diff options
author | dos-reis <gdr@axiomatics.org> | 2009-02-07 22:10:17 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2009-02-07 22:10:17 +0000 |
commit | 2fbcd8bc4f97cc3e534e11414f5a12dbc08edf2d (patch) | |
tree | 25f9002df4057d8e967d22c6f66a2d84378b3bcd /src | |
parent | 85f1c4d3dc7dc34ae4436d3ef0ffe0b6c6039b5a (diff) | |
download | open-axiom-2fbcd8bc4f97cc3e534e11414f5a12dbc08edf2d.tar.gz |
* algebra/system.spad.pamphlet (hostByteOrder$System): New.
* algebra/data.spad.pamphlet (ByteOrder): New.
* algebra/Makefile.pamphlet (axiom_algebra_layer_1): Include BYTEORD.
Diffstat (limited to 'src')
-rw-r--r-- | src/ChangeLog | 6 | ||||
-rw-r--r-- | src/algebra/Makefile.in | 4 | ||||
-rw-r--r-- | src/algebra/Makefile.pamphlet | 4 | ||||
-rw-r--r-- | src/algebra/data.spad.pamphlet | 25 | ||||
-rw-r--r-- | src/algebra/system.spad.pamphlet | 27 | ||||
-rw-r--r-- | src/include/cfuns.h | 3 | ||||
-rw-r--r-- | src/include/open-axiom.h | 5 | ||||
-rw-r--r-- | src/interp/Makefile.in | 2 | ||||
-rw-r--r-- | src/interp/nrunfast.boot | 25 | ||||
-rw-r--r-- | src/interp/sys-os.boot | 9 | ||||
-rw-r--r-- | src/interp/sys-utility.boot | 11 | ||||
-rw-r--r-- | src/lib/cfuns-c.c | 15 | ||||
-rw-r--r-- | src/share/algebra/browse.daase | 3552 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 6227 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 1346 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 10520 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 34060 |
17 files changed, 27962 insertions, 27879 deletions
diff --git a/src/ChangeLog b/src/ChangeLog index 92ea5f8d..9cd320fe 100644 --- a/src/ChangeLog +++ b/src/ChangeLog @@ -1,3 +1,9 @@ +2009-02-07 Gabriel Dos Reis <gdr@cs.tamu.edu> + + * algebra/system.spad.pamphlet (hostByteOrder$System): New. + * algebra/data.spad.pamphlet (ByteOrder): New. + * algebra/Makefile.pamphlet (axiom_algebra_layer_1): Include BYTEORD. + 2009-02-06 Alfredo Portes <doyenatccny@gmail.com> * hyper/presea.in: Fix thinko. diff --git a/src/algebra/Makefile.in b/src/algebra/Makefile.in index b9543285..b42c5f9f 100644 --- a/src/algebra/Makefile.in +++ b/src/algebra/Makefile.in @@ -287,12 +287,14 @@ $(OUT)/PROPLOG.$(FASLEXT): $(OUT)/SETCAT.$(FASLEXT) $(OUT)/RETRACT.$(FASLEXT) $(OUT)/RETRACT-.$(FASLEXT): $(OUT)/KRCFROM.$(FASLEXT) $(OUT)/MAYBE.$(FASLEXT): $(OUT)/KOERCE.$(FASLEXT) $(OUT)/RETRACT.$(FASLEXT) +$(OUT)/BYTEORD.$(FASLEXT): $(OUT)/SETCAT.$(FASLEXT) + axiom_algebra_layer_1 = \ AGG AGG- IEVALAB IEVALAB- FORTCAT ITUPLE \ PATAB PPCURVE PSCURVE REAL RESLATC RETRACT \ RETRACT- SEGCAT BINDING BMODULE LOGIC \ LOGIC- EVALAB EVALAB- FEVALAB FEVALAB- \ - OSGROUP MAYBE DATAARY PROPLOG HOMOTOP + OSGROUP MAYBE DATAARY PROPLOG HOMOTOP BYTEORD axiom_algebra_layer_1_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_1)) diff --git a/src/algebra/Makefile.pamphlet b/src/algebra/Makefile.pamphlet index 94c3641c..85249ac1 100644 --- a/src/algebra/Makefile.pamphlet +++ b/src/algebra/Makefile.pamphlet @@ -259,12 +259,14 @@ $(OUT)/PROPLOG.$(FASLEXT): $(OUT)/SETCAT.$(FASLEXT) $(OUT)/RETRACT.$(FASLEXT) $(OUT)/RETRACT-.$(FASLEXT): $(OUT)/KRCFROM.$(FASLEXT) $(OUT)/MAYBE.$(FASLEXT): $(OUT)/KOERCE.$(FASLEXT) $(OUT)/RETRACT.$(FASLEXT) +$(OUT)/BYTEORD.$(FASLEXT): $(OUT)/SETCAT.$(FASLEXT) + axiom_algebra_layer_1 = \ AGG AGG- IEVALAB IEVALAB- FORTCAT ITUPLE \ PATAB PPCURVE PSCURVE REAL RESLATC RETRACT \ RETRACT- SEGCAT BINDING BMODULE LOGIC \ LOGIC- EVALAB EVALAB- FEVALAB FEVALAB- \ - OSGROUP MAYBE DATAARY PROPLOG HOMOTOP + OSGROUP MAYBE DATAARY PROPLOG HOMOTOP BYTEORD axiom_algebra_layer_1_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_1)) diff --git a/src/algebra/data.spad.pamphlet b/src/algebra/data.spad.pamphlet index d52ee479..f40d8b1a 100644 --- a/src/algebra/data.spad.pamphlet +++ b/src/algebra/data.spad.pamphlet @@ -49,6 +49,31 @@ Byte(): Public == Private where @ +<<domain BYTEORD ByteOrder>>= +)abbrev domain BYTEORD ByteOrder +++ Author: Gabriel Dos Reis +++ Date Created: February 06, 2009 +++ Date Last Modified: +++ Description: +++ This datatype describes byte order of machine values stored memory. +ByteOrder(): Public == Private where + Public == SetCategory with + littleEndian: % ++ \spad{littleEndian} describes little endian host + bigEndian: % ++ \spad{bigEndian} describes big endian host + unknownEndian: % ++ \spad{unknownEndian} for none of the above. + Private == add + unknownEndian == %unknownEndian$Lisp + littleEndian == %littleEndian$Lisp + bigEndian == %bigEndian$Lisp + x = y == EQ(x,y)$Lisp + coerce(x: %): OutputForm == + outputForm + x = littleEndian => 'litteEndian + x = bigEndian => 'bigEndian + 'unknownEndian + +@ + \section{Sized System Integer datatypes} diff --git a/src/algebra/system.spad.pamphlet b/src/algebra/system.spad.pamphlet index 57eb4eaa..70b31162 100644 --- a/src/algebra/system.spad.pamphlet +++ b/src/algebra/system.spad.pamphlet @@ -17,34 +17,39 @@ )abbrev package SYSTEM System ++ Author: Gabriel Dos Reis ++ Date Created: April 2, 2008. +++ Date Last Modified: February 6, 2009. ++ Related Constructors: ++ Description: ++ The package \spadtype{System} provides information about ++ the runtime system and its characteristics. System(): Public == Private where - Public ==> with + Public == Type with rootDirectory: () -> String ++ rootDirectory() returns the pathname of the root directory ++ for the running OpenAxiom system. - hostPlatform: () -> String - ++ hostPlatform() returns a string `triplet' description + hostPlatform: String + ++ \spad{hostPlatform} is a string `triplet' description ++ of the platform hosting the running OpenAxiom system. - nativeModuleExtension: () -> String - ++ nativeModuleExtension() returns a string representation + hostByteOrder: ByteOrder + ++ \sapd{hostByteOrder} + nativeModuleExtension: String + ++ \spad{nativeModuleExtension} is a string representation ++ of a filename extension for native modules. loadNativeModule: String -> Void ++ loadNativeModule(path) loads the native modile designated ++ by \spadvar{path}. - Private ==> add + Private == add rootDirectory() == - systemRootDirectory()$Lisp : String + systemRootDirectory()$Lisp - hostPlatform() == - _$hostPlatform$Lisp : String + hostPlatform == + _$hostPlatform$Lisp - nativeModuleExtension() == - _$NativeModuleExt$Lisp : String + hostByteOrder == %hostByteOrder$Lisp + + nativeModuleExtension == + _$NativeModuleExt$Lisp loadNativeModule(path) == loadNativeModule(path)$Lisp diff --git a/src/include/cfuns.h b/src/include/cfuns.h index 99929a69..4d0a8f05 100644 --- a/src/include/cfuns.h +++ b/src/include/cfuns.h @@ -4,7 +4,7 @@ /* Copyright (C) 1991-2002, The Numerical ALgorithms Group Ltd. All rights reserved. - Copyright (C) 2007-2008, Gabriel Dos Reis. + Copyright (C) 2007-2009, Gabriel Dos Reis. All rights resrved. Redistribution and use in source and binary forms, with or without @@ -65,6 +65,7 @@ OPENAXIOM_EXPORT int oa_copy_file(const char*, const char*); OPENAXIOM_EXPORT double plus_infinity(void); OPENAXIOM_EXPORT double minus_infinity(void); OPENAXIOM_EXPORT double NANQ(void); +OPENAXIOM_EXPORT openaxiom_byteorder oa_get_host_byteorder(void); #ifdef __cplusplus diff --git a/src/include/open-axiom.h b/src/include/open-axiom.h index d4790120..b27c9ea3 100644 --- a/src/include/open-axiom.h +++ b/src/include/open-axiom.h @@ -79,6 +79,11 @@ extern "C" { # define OPENAXIOM_HAVE_GRAPHICS 1 #endif +/* Byte order enumeration. */ +typedef enum openaxiom_byteorder { + oa_unknown_endian, oa_little_endian, oa_big_endian +} openaxiom_byteorder; + /* Return the address of the data buffer `BUF'. */ diff --git a/src/interp/Makefile.in b/src/interp/Makefile.in index 55cea06a..5ac93c59 100644 --- a/src/interp/Makefile.in +++ b/src/interp/Makefile.in @@ -135,7 +135,7 @@ YEARWEEK=(progn (defconstant timestamp "${TIMESTAMP}") \ .PRECIOUS: ${AXIOMSYS} UNUSED= ${DOC}/construc.lisp.dvi \ - ${DOC}/domain.lisp.dvi ${DOC}/guess.boot.dvi \ + ${DOC}/guess.boot.dvi \ ${DOC}/interp-fix.boot.dvi \ ${DOC}/nhyper.boot.dvi ${DOC}/pf2atree.boot.dvi \ ${DOC}/redefs.boot.dvi ${DOC}/word.boot.dvi diff --git a/src/interp/nrunfast.boot b/src/interp/nrunfast.boot index 5ac53649..e7dc7a19 100644 --- a/src/interp/nrunfast.boot +++ b/src/interp/nrunfast.boot @@ -1,6 +1,6 @@ -- Copyright (c) 1991-2002, The Numerical Algorithms Group Ltd. -- All rights reserved. --- Copyright (C) 2007-2008, Gabriel Dos Reis. +-- Copyright (C) 2007-2009, Gabriel Dos Reis. -- All rights reserved. -- -- Redistribution and use in source and binary forms, with or without @@ -57,9 +57,11 @@ initNewWorld() == $updateCatTableIfTrue := false $doNotCompressHashTableIfTrue := true -isNewWorldDomain domain == INTEGERP domain.3 --see HasCategory/Attribute +isNewWorldDomain domain == + INTEGERP domain.3 --see HasCategory/Attribute -getDomainByteVector dom == CDDR dom.4 +getDomainByteVector dom == + CDDR dom.4 getOpCode(op,vec,max) == --search Op vector for "op" returning code if found, nil otherwise @@ -106,7 +108,6 @@ newGoGet(:l) == slot := replaceGoGetSlot env APPLY(first slot,[:arglist,rest slot]) --SPADCALL it! ---------------------> NEW DEFINITION (see interop.boot.pamphlet) replaceGoGetSlot env == [thisDomain,index,:op] := env thisDomainForm := devaluate thisDomain @@ -142,15 +143,12 @@ replaceGoGetSlot env == --======================================================= -- Lookup Function in Slot 1 (via SPADCALL) --======================================================= -lookupFF(op,sig,dollar,env) == newLookupInTable(op,sig,dollar,env,nil) - -lookupUF(op,sig,dollar,env) == newLookupInTable(op,sig,dollar,env,true) - ---------------------> NEW DEFINITION (see interop.boot.pamphlet) -lookupComplete(op,sig,dollar,env) == newLookupInTable(op,sig,dollar,env,nil) + +lookupComplete(op,sig,dollar,env) == + newLookupInTable(op,sig,dollar,env,nil) ---------------------> NEW DEFINITION (see interop.boot.pamphlet) -lookupIncomplete(op,sig,dollar,env) == newLookupInTable(op,sig,dollar,env,true) +lookupIncomplete(op,sig,dollar,env) == + newLookupInTable(op,sig,dollar,env,true) newLookupInTable(op,sig,dollar,[domain,opvec],flag) == dollar = nil => systemError() @@ -420,7 +418,6 @@ newCompareSig(sig, numvec, index, dollar, domain) == --======================================================= lazyMatchArg(s,a,dollar,domain) == lazyMatchArg2(s,a,dollar,domain,true) ---------------------> NEW DEFINITION (see interop.boot.pamphlet) lazyMatchArg2(s,a,dollar,domain,typeFlag) == if s = '$ then -- a = 0 => return true --needed only if extra call in newGoGet to basicLookup @@ -525,7 +522,6 @@ newExpandTypeSlot(slot, dollar, domain) == newExpandLocalType(sigDomainVal(dollar, domain, slot), dollar,domain) ---------------------> NEW DEFINITION (see interop.boot.pamphlet) newExpandLocalType(lazyt,dollar,domain) == VECP lazyt => lazyt.0 ATOM lazyt => lazyt @@ -577,7 +573,6 @@ sigDomainVal(dollar,domain,index) == -- Convert Lazy Domain to Domain Form --======================================================= ---------------------> NEW DEFINITION (see interop.boot.pamphlet) lazyDomainSet(lazyForm,thisDomain,slot) == form := lazyForm is [vec,.,:u] and VECP vec => u --old style diff --git a/src/interp/sys-os.boot b/src/interp/sys-os.boot index 2e9bf84b..f844fba7 100644 --- a/src/interp/sys-os.boot +++ b/src/interp/sys-os.boot @@ -234,4 +234,11 @@ minusInfinity() == ++ otherwise 0. import std__stream__is__terminal: int -> int for stdStreamIsTerminal ---% +--% Data layout + +++ getHostByteOrder: +++ returns the byte order of the host machine. +++ 0: unknown +++ 1: little endian +++ 2: big endian +import oa__get__host__byteorder: () -> int for getHostByteOrder diff --git a/src/interp/sys-utility.boot b/src/interp/sys-utility.boot index 2d334946..31781fae 100644 --- a/src/interp/sys-utility.boot +++ b/src/interp/sys-utility.boot @@ -47,6 +47,17 @@ $COMBLOCKLIST := nil %nothing == KEYWORD::%OpenAxiomNoValue +++ Constants describing byte order +%littleEndian == KEYWORD::%littleEndian +%bigEndian == KEYWORD::%bigEndian +%unknownEndian == KEYWORD::%unknownEndian + +++ The byte order of the host machine running OpenAxiom. +%hostByteOrder == + getHostByteOrder() = 1 => %littleEndian + getHostByteOrder() = 2 => %bigEndian + %unknownEndian + --% ++ getVMType returns an approximation of the underlying object type diff --git a/src/lib/cfuns-c.c b/src/lib/cfuns-c.c index fb043c9f..4a443b82 100644 --- a/src/lib/cfuns-c.c +++ b/src/lib/cfuns-c.c @@ -2,7 +2,7 @@ Copyright (C) 1991-2002, The Numerical Algorithms Group Ltd. All rights reserved. - Copyright (C) 2007-2008, Gabriel Dos Reis. + Copyright (C) 2007-2009, Gabriel Dos Reis. All rights reserved. Redistribution and use in source and binary forms, with or without @@ -672,6 +672,17 @@ NANQ(void) #ifdef NAN return NAN; #else - return sqrt(-1.0); /* Juts pick one. */ + return sqrt(-1.0); /* Just pick one. */ #endif } + + +OPENAXIOM_EXPORT openaxiom_byteorder +oa_get_host_byteorder(void) +{ +#ifdef WORDS_BIGENDIAN + return oa_big_endian; +#else + return oa_little_endian; +#endif +} diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index 958715a9..ca8b2a89 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2282336 . 3442698064) +(2282814 . 3443021571) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4404 . T) (-4403 . T)) +((-4408 . T) (-4407 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}."))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4400 . T) (-4398 . T) (-4397 . T) ((-4405 "*") . T) (-4396 . T) (-4401 . T) (-4395 . T)) +((-4404 . T) (-4402 . T) (-4401 . T) ((-4409 "*") . T) (-4400 . T) (-4405 . T) (-4399 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,14 +56,14 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -3196) +(-32 R -3191) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562))))) +((|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4403))) +((|HasAttribute| |#1| (QUOTE -4407))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4403 . T) (-4404 . T)) +((-4407 . T) (-4408 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) -((-4397 . T) (-4398 . T) (-4400 . T)) +((-4401 . T) (-4402 . T) (-4404 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -3196 UP UPUP -2685) +(-40 -3191 UP UPUP -2995) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4396 |has| (-406 |#2|) (-362)) (-4401 |has| (-406 |#2|) (-362)) (-4395 |has| (-406 |#2|) (-362)) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| (-406 |#2|) (QUOTE (-144))) (|HasCategory| (-406 |#2|) (QUOTE (-146))) (|HasCategory| (-406 |#2|) (QUOTE (-348))) (-4037 (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-367))) (-4037 (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (-4037 (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-406 |#2|) (QUOTE (-348))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -635) (QUOTE (-562)))) (-4037 (|HasCategory| (-406 |#2|) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362))))) -(-41 R -3196) +((-4400 |has| (-407 |#2|) (-363)) (-4405 |has| (-407 |#2|) (-363)) (-4399 |has| (-407 |#2|) (-363)) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| (-407 |#2|) (QUOTE (-145))) (|HasCategory| (-407 |#2|) (QUOTE (-147))) (|HasCategory| (-407 |#2|) (QUOTE (-349))) (-4032 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-368))) (-4032 (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (-4032 (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-407 |#2|) (QUOTE (-349))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -636) (QUOTE (-563)))) (-4032 (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363))))) +(-41 R -3191) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -103,34 +103,34 @@ NIL (-43 R A) ((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,{}A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,{}a) = 0} and \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}x,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}b,{}x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,{}a,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,{}a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis."))) NIL -((|HasCategory| |#1| (QUOTE (-306)))) +((|HasCategory| |#1| (QUOTE (-307)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4400 |has| |#1| (-554)) (-4398 . T) (-4397 . T)) -((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) +((-4404 |has| |#1| (-555)) (-4402 . T) (-4401 . T)) +((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4403 . T) (-4404 . T)) -((-4037 (-12 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-845))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2319) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2693) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2319) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2693) (|devaluate| |#2|))))))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-845))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-845))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2319) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2693) (|devaluate| |#2|))))))) +((-4407 . T) (-4408 . T)) +((-4032 (-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-846))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2557) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2557) (|devaluate| |#2|))))))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-846))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-846))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2557) (|devaluate| |#2|))))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4397 . T) (-4398 . T) (-4400 . T)) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4401 . T) (-4402 . T) (-4404 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| $ (QUOTE (-1044))) (|HasCategory| $ (LIST (QUOTE -1033) (QUOTE (-562))))) +((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| $ (QUOTE (-1045))) (|HasCategory| $ (LIST (QUOTE -1034) (QUOTE (-563))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4400 . T)) +((-4404 . T)) NIL (-51 S) ((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -3196) +(-54 |Base| R -3191) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -158,7 +158,7 @@ NIL NIL (-57 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4403 . T) (-4404 . T)) +((-4407 . T) (-4408 . T)) NIL (-58 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) @@ -166,65 +166,65 @@ NIL NIL (-59 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4404 . T) (-4403 . T)) -((-4037 (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) +((-4408 . T) (-4407 . T)) +((-4032 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4032 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4403 . T) (-4404 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) -(-61 -3253) +((-4407 . T) (-4408 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) +(-61 -3348) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-62 -3253) +(-62 -3348) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-63 -3253) +(-63 -3348) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -3253) +(-64 -3348) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-65 -3253) +(-65 -3348) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -3253) +(-66 -3348) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-67 -3253) +(-67 -3348) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -3253) +(-68 -3348) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-69 -3253) +(-69 -3348) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-70 -3253) +(-70 -3348) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-71 -3253) +(-71 -3348) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-72 -3253) +(-72 -3348) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-73 -3253) +(-73 -3348) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-74 -3253) +(-74 -3348) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL @@ -236,66 +236,66 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-77 -3253) +(-77 -3348) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-78 -3253) +(-78 -3348) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-79 -3253) +(-79 -3348) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -3253) +(-80 -3348) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -3253) +(-81 -3348) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}"))) NIL NIL -(-82 -3253) +(-82 -3348) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -3253) +(-83 -3348) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -3253) +(-84 -3348) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -3253) +(-85 -3348) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -3253) +(-86 -3348) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -3253) +(-87 -3348) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-88 -3253) +(-88 -3348) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-89 -3253) +(-89 -3348) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL (-90 R L) ((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op,{} m)} returns \\spad{[w,{} eq,{} lw,{} lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,{}...,{}A_n]} such that if \\spad{y = [y_1,{}...,{}y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',{}y_j'',{}...,{}y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}\\spad{'s}.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op,{} m)} returns \\spad{[M,{}w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}."))) NIL -((|HasCategory| |#1| (QUOTE (-362)))) +((|HasCategory| |#1| (QUOTE (-363)))) (-91 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4403 . T) (-4404 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) +((-4407 . T) (-4408 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (-92 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -318,15 +318,15 @@ NIL NIL (-97) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4403 . T)) +((-4407 . T)) NIL (-98) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4403 . T) ((-4405 "*") . T) (-4404 . T) (-4400 . T) (-4398 . T) (-4397 . T) (-4396 . T) (-4401 . T) (-4395 . T) (-4394 . T) (-4393 . T) (-4392 . T) (-4391 . T) (-4399 . T) (-4402 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4390 . T)) +((-4407 . T) ((-4409 "*") . T) (-4408 . T) (-4404 . T) (-4402 . T) (-4401 . T) (-4400 . T) (-4405 . T) (-4399 . T) (-4398 . T) (-4397 . T) (-4396 . T) (-4395 . T) (-4403 . T) (-4406 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4394 . T)) NIL (-99 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4400 . T)) +((-4404 . T)) NIL (-100 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}."))) @@ -342,15 +342,15 @@ NIL NIL (-103 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4403 . T) (-4404 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) +((-4407 . T) (-4408 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (-104 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4405 "*")))) +((|HasAttribute| |#1| (QUOTE (-4409 "*")))) (-105) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4403 . T)) +((-4407 . T)) NIL (-106 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) @@ -358,23 +358,23 @@ NIL NIL (-107 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4404 . T)) +((-4408 . T)) NIL (-108) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) -((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| (-562) (QUOTE (-904))) (|HasCategory| (-562) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| (-562) (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-146))) (|HasCategory| (-562) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-562) (QUOTE (-1017))) (|HasCategory| (-562) (QUOTE (-815))) (-4037 (|HasCategory| (-562) (QUOTE (-815))) (|HasCategory| (-562) (QUOTE (-845)))) (|HasCategory| (-562) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| (-562) (QUOTE (-1143))) (|HasCategory| (-562) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| (-562) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| (-562) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| (-562) (QUOTE (-232))) (|HasCategory| (-562) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-562) (LIST (QUOTE -513) (QUOTE (-1168)) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -308) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -285) (QUOTE (-562)) (QUOTE (-562)))) (|HasCategory| (-562) (QUOTE (-306))) (|HasCategory| (-562) (QUOTE (-544))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| (-562) (LIST (QUOTE -635) (QUOTE (-562)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-904)))) (|HasCategory| (-562) (QUOTE (-144))))) +((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| (-563) (QUOTE (-905))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-563) (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-147))) (|HasCategory| (-563) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-563) (QUOTE (-1018))) (|HasCategory| (-563) (QUOTE (-816))) (-4032 (|HasCategory| (-563) (QUOTE (-816))) (|HasCategory| (-563) (QUOTE (-846)))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-1144))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-563) (QUOTE (-233))) (|HasCategory| (-563) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-563) (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -309) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -286) (QUOTE (-563)) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-307))) (|HasCategory| (-563) (QUOTE (-545))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-563) (LIST (QUOTE -636) (QUOTE (-563)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (|HasCategory| (-563) (QUOTE (-145))))) (-109) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL NIL (-110) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4404 . T) (-4403 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1092))) (|HasCategory| (-112) (LIST (QUOTE -308) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-112) (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| (-112) (QUOTE (-1092))) (|HasCategory| (-112) (LIST (QUOTE -609) (QUOTE (-857))))) +((-4408 . T) (-4407 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1093))) (|HasCategory| (-112) (LIST (QUOTE -309) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-112) (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-112) (QUOTE (-1093))) (|HasCategory| (-112) (LIST (QUOTE -610) (QUOTE (-858))))) (-111 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4398 . T) (-4397 . T)) +((-4402 . T) (-4401 . T)) NIL (-112) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) @@ -383,27 +383,27 @@ NIL (-113 A) ((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise."))) NIL -((|HasCategory| |#1| (QUOTE (-845)))) +((|HasCategory| |#1| (QUOTE (-846)))) (-114) ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}."))) NIL NIL -(-115 -3196 UP) +(-115 -3191 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-116 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL (-117 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| (-116 |#1|) (QUOTE (-904))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| (-116 |#1|) (QUOTE (-144))) (|HasCategory| (-116 |#1|) (QUOTE (-146))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-116 |#1|) (QUOTE (-1017))) (|HasCategory| (-116 |#1|) (QUOTE (-815))) (-4037 (|HasCategory| (-116 |#1|) (QUOTE (-815))) (|HasCategory| (-116 |#1|) (QUOTE (-845)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| (-116 |#1|) (QUOTE (-1143))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| (-116 |#1|) (QUOTE (-232))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -513) (QUOTE (-1168)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -308) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -285) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-306))) (|HasCategory| (-116 |#1|) (QUOTE (-544))) (|HasCategory| (-116 |#1|) (QUOTE (-845))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-116 |#1|) (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-116 |#1|) (QUOTE (-904)))) (|HasCategory| (-116 |#1|) (QUOTE (-144))))) +((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| (-116 |#1|) (QUOTE (-905))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-116 |#1|) (QUOTE (-1018))) (|HasCategory| (-116 |#1|) (QUOTE (-816))) (-4032 (|HasCategory| (-116 |#1|) (QUOTE (-816))) (|HasCategory| (-116 |#1|) (QUOTE (-846)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-116 |#1|) (QUOTE (-1144))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| (-116 |#1|) (QUOTE (-233))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -309) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-307))) (|HasCategory| (-116 |#1|) (QUOTE (-545))) (|HasCategory| (-116 |#1|) (QUOTE (-846))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-905)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))))) (-118 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4404))) +((|HasAttribute| |#1| (QUOTE -4408))) (-119 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL @@ -414,15 +414,15 @@ NIL NIL (-121 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4403 . T) (-4404 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) +((-4407 . T) (-4408 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (-122 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) NIL NIL (-123) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) -((-4404 . T) (-4403 . T)) +((-4408 . T) (-4407 . T)) NIL (-124 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) @@ -430,4643 +430,4647 @@ NIL NIL (-125 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4403 . T) (-4404 . T)) +((-4407 . T) (-4408 . T)) NIL (-126 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4403 . T) (-4404 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) +((-4407 . T) (-4408 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (-127 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4403 . T) (-4404 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) +((-4407 . T) (-4408 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (-128) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,{}n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#buf} returns the number of active elements in the buffer.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) -((-4404 . T) (-4403 . T)) -((-4037 (-12 (|HasCategory| (-129) (QUOTE (-845))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1092))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129)))))) (-4037 (-12 (|HasCategory| (-129) (QUOTE (-1092))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-129) (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| (-129) (QUOTE (-845))) (|HasCategory| (-129) (QUOTE (-1092)))) (|HasCategory| (-129) (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| (-129) (QUOTE (-1092))) (|HasCategory| (-129) (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| (-129) (QUOTE (-1092))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129)))))) +((-4408 . T) (-4407 . T)) +((-4032 (-12 (|HasCategory| (-129) (QUOTE (-846))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1093))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129)))))) (-4032 (-12 (|HasCategory| (-129) (QUOTE (-1093))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-129) (LIST (QUOTE -611) (QUOTE (-536)))) (-4032 (|HasCategory| (-129) (QUOTE (-846))) (|HasCategory| (-129) (QUOTE (-1093)))) (|HasCategory| (-129) (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-129) (QUOTE (-1093))) (|HasCategory| (-129) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-129) (QUOTE (-1093))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129)))))) (-129) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample()} returns a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL NIL (-130) -((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\spad{ a+b = a+c => b=c }. This is formalised by the partial subtraction operator,{} which satisfies the axioms listed below: \\blankline")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x,{} y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists."))) +((|constructor| (NIL "This datatype describes byte order of machine values stored memory.")) (|unknownEndian| (($) "\\spad{unknownEndian} for none of the above.")) (|bigEndian| (($) "\\spad{bigEndian} describes big endian host")) (|littleEndian| (($) "\\spad{littleEndian} describes little endian host"))) NIL NIL (-131) -((|constructor| (NIL "A cachable set is a set whose elements keep an integer as part of their structure.")) (|setPosition| (((|Void|) $ (|NonNegativeInteger|)) "\\spad{setPosition(x,{} n)} associates the integer \\spad{n} to \\spad{x}.")) (|position| (((|NonNegativeInteger|) $) "\\spad{position(x)} returns the integer \\spad{n} associated to \\spad{x}."))) +((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\spad{ a+b = a+c => b=c }. This is formalised by the partial subtraction operator,{} which satisfies the axioms listed below: \\blankline")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x,{} y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists."))) NIL NIL (-132) -((|constructor| (NIL "This domain represents the capsule of a domain definition.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(c)} returns the list of top level expressions appearing in \\spad{`c'}."))) +((|constructor| (NIL "A cachable set is a set whose elements keep an integer as part of their structure.")) (|setPosition| (((|Void|) $ (|NonNegativeInteger|)) "\\spad{setPosition(x,{} n)} associates the integer \\spad{n} to \\spad{x}.")) (|position| (((|NonNegativeInteger|) $) "\\spad{position(x)} returns the integer \\spad{n} associated to \\spad{x}."))) NIL NIL (-133) +((|constructor| (NIL "This domain represents the capsule of a domain definition.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(c)} returns the list of top level expressions appearing in \\spad{`c'}."))) +NIL +NIL +(-134) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative."))) -(((-4405 "*") . T)) +(((-4409 "*") . T)) NIL -(-134 |minix| -2240 S T$) +(-135 |minix| -3304 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-135 |minix| -2240 R) +(-136 |minix| -3304 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL -(-136) +(-137) ((|constructor| (NIL "This domain represents a `case' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the case expression `e'."))) NIL NIL -(-137) +(-138) ((|constructor| (NIL "This domain represents the unnamed category defined \\indented{2}{by a list of exported signatures}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(c)} returns the list of exports in category syntax \\spad{`c'}.")) (|kind| (((|Symbol|) $) "\\spad{kind(c)} returns the kind of unnamed category,{} either 'domain' or 'package'."))) NIL NIL -(-138) +(-139) ((|constructor| (NIL "This domain provides representations for category constructors."))) NIL NIL -(-139) +(-140) ((|parents| (((|List| (|ConstructorCall|)) $) "\\spad{parents(c)} returns the list of all category forms directly extended by the category \\spad{`c'}.")) (|principalAncestors| (((|List| (|ConstructorCall|)) $) "\\spad{principalAncestors(c)} returns the list of all category forms that are principal ancestors of the the category \\spad{`c'}.")) (|exportedOperators| (((|List| (|OperatorSignature|)) $) "\\spad{exportedOperators(c)} returns the list of all operator signatures exported by the category \\spad{`c'},{} along with their predicates.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: December 20,{} 2008. Date Last Updated: February 16,{} 2008. Basic Operations: coerce Related Constructors: Also See: Type") (((|CategoryConstructor|) $) "\\spad{constructor(c)} returns the category constructor used to instantiate the category object \\spad{`c'}."))) NIL NIL -(-140) +(-141) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4403 . T) (-4393 . T) (-4404 . T)) -((-4037 (-12 (|HasCategory| (-143) (QUOTE (-367))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (-12 (|HasCategory| (-143) (QUOTE (-1092))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (|HasCategory| (-143) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-143) (QUOTE (-367))) (|HasCategory| (-143) (QUOTE (-845))) (|HasCategory| (-143) (QUOTE (-1092))) (|HasCategory| (-143) (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| (-143) (QUOTE (-1092))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) -(-141 R Q A) +((-4407 . T) (-4397 . T) (-4408 . T)) +((-4032 (-12 (|HasCategory| (-144) (QUOTE (-368))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-144) (QUOTE (-368))) (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) +(-142 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-142) +(-143) ((|constructor| (NIL "Category for the usual combinatorial functions.")) (|permutation| (($ $ $) "\\spad{permutation(n,{} m)} returns the number of permutations of \\spad{n} objects taken \\spad{m} at a time. Note: \\spad{permutation(n,{}m) = n!/(n-m)!}.")) (|factorial| (($ $) "\\spad{factorial(n)} computes the factorial of \\spad{n} (denoted in the literature by \\spad{n!}) Note: \\spad{n! = n (n-1)! when n > 0}; also,{} \\spad{0! = 1}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}r)} returns the \\spad{(n,{}r)} binomial coefficient (often denoted in the literature by \\spad{C(n,{}r)}). Note: \\spad{C(n,{}r) = n!/(r!(n-r)!)} where \\spad{n >= r >= 0}."))) NIL NIL -(-143) +(-144) ((|constructor| (NIL "This domain provides the basic character data type.")) (|alphanumeric?| (((|Boolean|) $) "\\spad{alphanumeric?(c)} tests if \\spad{c} is either a letter or number,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{z} or A..\\spad{Z}.")) (|lowerCase?| (((|Boolean|) $) "\\spad{lowerCase?(c)} tests if \\spad{c} is an lower case letter,{} \\spadignore{i.e.} one of a..\\spad{z}.")) (|upperCase?| (((|Boolean|) $) "\\spad{upperCase?(c)} tests if \\spad{c} is an upper case letter,{} \\spadignore{i.e.} one of A..\\spad{Z}.")) (|alphabetic?| (((|Boolean|) $) "\\spad{alphabetic?(c)} tests if \\spad{c} is a letter,{} \\spadignore{i.e.} one of a..\\spad{z} or A..\\spad{Z}.")) (|hexDigit?| (((|Boolean|) $) "\\spad{hexDigit?(c)} tests if \\spad{c} is a hexadecimal numeral,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{f} or A..\\spad{F}.")) (|digit?| (((|Boolean|) $) "\\spad{digit?(c)} tests if \\spad{c} is a digit character,{} \\spadignore{i.e.} one of 0..9.")) (|lowerCase| (($ $) "\\spad{lowerCase(c)} converts an upper case letter to the corresponding lower case letter. If \\spad{c} is not an upper case letter,{} then it is returned unchanged.")) (|upperCase| (($ $) "\\spad{upperCase(c)} converts a lower case letter to the corresponding upper case letter. If \\spad{c} is not a lower case letter,{} then it is returned unchanged.")) (|escape| (($) "\\spad{escape()} provides the escape character,{} \\spad{_},{} which is used to allow quotes and other characters {\\em within} strings.")) (|quote| (($) "\\spad{quote()} provides the string quote character,{} \\spad{\"}.")) (|space| (($) "\\spad{space()} provides the blank character.")) (|char| (($ (|String|)) "\\spad{char(s)} provides a character from a string \\spad{s} of length one.") (($ (|NonNegativeInteger|)) "\\spad{char(i)} provides a character corresponding to the integer code \\spad{i}. It is always \\spad{true} that \\spad{ord char i = i}.")) (|ord| (((|NonNegativeInteger|) $) "\\spad{ord(c)} provides an integral code corresponding to the character \\spad{c}. It is always \\spad{true} that \\spad{char ord c = c}."))) NIL NIL -(-144) +(-145) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4400 . T)) +((-4404 . T)) NIL -(-145 R) +(-146 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) NIL NIL -(-146) +(-147) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4400 . T)) +((-4404 . T)) NIL -(-147 -3196 UP UPUP) +(-148 -3191 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}."))) NIL NIL -(-148 R CR) +(-149 R CR) ((|constructor| (NIL "This package provides the generalized euclidean algorithm which is needed as the basic step for factoring polynomials.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} where (\\spad{fi} relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g} = sum \\spad{ai} prod \\spad{fj} (\\spad{j} \\spad{\\=} \\spad{i}) or equivalently g/prod \\spad{fj} = sum (ai/fi) or returns \"failed\" if no such list exists"))) NIL NIL -(-149 A S) +(-150 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasAttribute| |#1| (QUOTE -4403))) -(-150 S) +((|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasAttribute| |#1| (QUOTE -4407))) +(-151 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL NIL -(-151 |n| K Q) +(-152 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4398 . T) (-4397 . T) (-4400 . T)) +((-4402 . T) (-4401 . T) (-4404 . T)) NIL -(-152) +(-153) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) NIL NIL -(-153) +(-154) ((|constructor| (NIL "This domain represents list comprehension syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the expression being collected by the list comprehension `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of the iterators of the list comprehension `e'."))) NIL NIL -(-154 UP |Par|) +(-155 UP |Par|) ((|complexZeros| (((|List| (|Complex| |#2|)) |#1| |#2|) "\\spad{complexZeros(poly,{} eps)} finds the complex zeros of the univariate polynomial \\spad{poly} to precision eps with solutions returned as complex floats or rationals depending on the type of eps."))) NIL NIL -(-155) +(-156) ((|constructor| (NIL "This domain represents type specification \\indented{2}{for an identifier or expression.}")) (|rhs| (((|TypeAst|) $) "\\spad{rhs(e)} returns the right hand side of the colon expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the colon expression `e'."))) NIL NIL -(-156) +(-157) ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-157 R -3196) +(-158 R -3191) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL -(-158 I) +(-159 I) ((|stirling2| ((|#1| |#1| |#1|) "\\spad{stirling2(n,{}m)} returns the Stirling number of the second kind denoted \\spad{SS[n,{}m]}.")) (|stirling1| ((|#1| |#1| |#1|) "\\spad{stirling1(n,{}m)} returns the Stirling number of the first kind denoted \\spad{S[n,{}m]}.")) (|permutation| ((|#1| |#1| |#1|) "\\spad{permutation(n)} returns \\spad{!P(n,{}r) = n!/(n-r)!}. This is the number of permutations of \\spad{n} objects taken \\spad{r} at a time.")) (|partition| ((|#1| |#1|) "\\spad{partition(n)} returns the number of partitions of the integer \\spad{n}. This is the number of distinct ways that \\spad{n} can be written as a sum of positive integers.")) (|multinomial| ((|#1| |#1| (|List| |#1|)) "\\spad{multinomial(n,{}[m1,{}m2,{}...,{}mk])} returns the multinomial coefficient \\spad{n!/(m1! m2! ... mk!)}.")) (|factorial| ((|#1| |#1|) "\\spad{factorial(n)} returns \\spad{n!}. this is the product of all integers between 1 and \\spad{n} (inclusive). Note: \\spad{0!} is defined to be 1.")) (|binomial| ((|#1| |#1| |#1|) "\\spad{binomial(n,{}r)} returns the binomial coefficient \\spad{C(n,{}r) = n!/(r! (n-r)!)},{} where \\spad{n >= r >= 0}. This is the number of combinations of \\spad{n} objects taken \\spad{r} at a time."))) NIL NIL -(-159) +(-160) ((|constructor| (NIL "CombinatorialOpsCategory is the category obtaining by adjoining summations and products to the usual combinatorial operations.")) (|product| (($ $ (|SegmentBinding| $)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") (($ $ (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| (($ $ (|SegmentBinding| $)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") (($ $ (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| (($ $ (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") (($ $) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials."))) NIL NIL -(-160) +(-161) ((|constructor| (NIL "This domain represents the syntax of a comma-separated \\indented{2}{list of expressions.}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions making up `e'."))) NIL NIL -(-161) +(-162) ((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,{}j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}"))) NIL NIL -(-162) +(-163) ((|constructor| (NIL "This package exports the elementary operators,{} with some semantics already attached to them. The semantics that is attached here is not dependent on the set in which the operators will be applied.")) (|operator| (((|BasicOperator|) (|Symbol|)) "\\spad{operator(s)} returns an operator with name \\spad{s},{} with the appropriate semantics if \\spad{s} is known. If \\spad{s} is not known,{} the result has no semantics."))) NIL NIL -(-163 R UP UPUP) +(-164 R UP UPUP) ((|constructor| (NIL "A package for swapping the order of two variables in a tower of two UnivariatePolynomialCategory extensions.")) (|swap| ((|#3| |#3|) "\\spad{swap(p(x,{}y))} returns \\spad{p}(\\spad{y},{}\\spad{x})."))) NIL NIL -(-164 S R) -((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}."))) +(-165 S R) +((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-904))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-997))) (|HasCategory| |#2| (QUOTE (-1192))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4399)) (|HasAttribute| |#2| (QUOTE -4402)) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-845)))) -(-165 R) -((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}."))) -((-4396 -4037 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904)))) (-4401 |has| |#1| (-362)) (-4395 |has| |#1| (-362)) (-4399 |has| |#1| (-6 -4399)) (-4402 |has| |#1| (-6 -4402)) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((|HasCategory| |#2| (QUOTE (-905))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-1193))) (|HasCategory| |#2| (QUOTE (-1054))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4403)) (|HasAttribute| |#2| (QUOTE -4406)) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-846)))) +(-166 R) +((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) +((-4400 -4032 (|has| |#1| (-555)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4403 |has| |#1| (-6 -4403)) (-4406 |has| |#1| (-6 -4406)) (-1413 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-166 RR PR) +(-167 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) NIL NIL -(-167 R S) +(-168 R S) ((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,{}u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}."))) NIL NIL -(-168 R) +(-169 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4396 -4037 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904)))) (-4401 |has| |#1| (-362)) (-4395 |has| |#1| (-362)) (-4399 |has| |#1| (-6 -4399)) (-4402 |has| |#1| (-6 -4402)) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-348))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-232))) (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-845)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-1017)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-1192)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-904))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-904)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-904)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-904))))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (QUOTE (-997))) (|HasCategory| |#1| (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1053))) (-12 (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-1192)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-904))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-362)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-232))) (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasAttribute| |#1| (QUOTE -4399)) (|HasAttribute| |#1| (QUOTE -4402)) (-12 (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168))))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-348))))) -(-169 R S CS) +((-4400 -4032 (|has| |#1| (-555)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4403 |has| |#1| (-6 -4403)) (-4406 |has| |#1| (-6 -4406)) (-1413 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-4032 (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-824)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-846)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1193)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-905))))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-905))))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4032 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-555)))) (-4032 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-824))) (|HasCategory| |#1| (QUOTE (-1054))) (-12 (|HasCategory| |#1| (QUOTE (-1054))) (|HasCategory| |#1| (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363)))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasAttribute| |#1| (QUOTE -4403)) (|HasAttribute| |#1| (QUOTE -4406)) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169))))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-349))))) +(-170 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL NIL -(-170) +(-171) ((|constructor| (NIL "This domain implements some global properties of subspaces.")) (|copy| (($ $) "\\spad{copy(x)} \\undocumented")) (|solid| (((|Boolean|) $ (|Boolean|)) "\\spad{solid(x,{}b)} \\undocumented")) (|close| (((|Boolean|) $ (|Boolean|)) "\\spad{close(x,{}b)} \\undocumented")) (|solid?| (((|Boolean|) $) "\\spad{solid?(x)} \\undocumented")) (|closed?| (((|Boolean|) $) "\\spad{closed?(x)} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented"))) NIL NIL -(-171) +(-172) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +(((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-172) +(-173) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) NIL NIL -(-173 R) +(-174 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4405 "*") . T) (-4396 . T) (-4401 . T) (-4395 . T) (-4397 . T) (-4398 . T) (-4400 . T)) +(((-4409 "*") . T) (-4400 . T) (-4405 . T) (-4399 . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-174) +(-175) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `failed'.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) NIL NIL -(-175 R) +(-176 R) ((|constructor| (NIL "CoordinateSystems provides coordinate transformation functions for plotting. Functions in this package return conversion functions which take points expressed in other coordinate systems and return points with the corresponding Cartesian coordinates.")) (|conical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1| |#1|) "\\spad{conical(a,{}b)} transforms from conical coordinates to Cartesian coordinates: \\spad{conical(a,{}b)} is a function which will map the point \\spad{(lambda,{}mu,{}nu)} to \\spad{x = lambda*mu*nu/(a*b)},{} \\spad{y = lambda/a*sqrt((mu**2-a**2)*(nu**2-a**2)/(a**2-b**2))},{} \\spad{z = lambda/b*sqrt((mu**2-b**2)*(nu**2-b**2)/(b**2-a**2))}.")) (|toroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{toroidal(a)} transforms from toroidal coordinates to Cartesian coordinates: \\spad{toroidal(a)} is a function which will map the point \\spad{(u,{}v,{}phi)} to \\spad{x = a*sinh(v)*cos(phi)/(cosh(v)-cos(u))},{} \\spad{y = a*sinh(v)*sin(phi)/(cosh(v)-cos(u))},{} \\spad{z = a*sin(u)/(cosh(v)-cos(u))}.")) (|bipolarCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolarCylindrical(a)} transforms from bipolar cylindrical coordinates to Cartesian coordinates: \\spad{bipolarCylindrical(a)} is a function which will map the point \\spad{(u,{}v,{}z)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))},{} \\spad{z}.")) (|bipolar| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolar(a)} transforms from bipolar coordinates to Cartesian coordinates: \\spad{bipolar(a)} is a function which will map the point \\spad{(u,{}v)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))}.")) (|oblateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{oblateSpheroidal(a)} transforms from oblate spheroidal coordinates to Cartesian coordinates: \\spad{oblateSpheroidal(a)} is a function which will map the point \\spad{(\\spad{xi},{}eta,{}phi)} to \\spad{x = a*sinh(\\spad{xi})*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(\\spad{xi})*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(\\spad{xi})*cos(eta)}.")) (|prolateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{prolateSpheroidal(a)} transforms from prolate spheroidal coordinates to Cartesian coordinates: \\spad{prolateSpheroidal(a)} is a function which will map the point \\spad{(\\spad{xi},{}eta,{}phi)} to \\spad{x = a*sinh(\\spad{xi})*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(\\spad{xi})*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(\\spad{xi})*cos(eta)}.")) (|ellipticCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{ellipticCylindrical(a)} transforms from elliptic cylindrical coordinates to Cartesian coordinates: \\spad{ellipticCylindrical(a)} is a function which will map the point \\spad{(u,{}v,{}z)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)},{} \\spad{z}.")) (|elliptic| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{elliptic(a)} transforms from elliptic coordinates to Cartesian coordinates: \\spad{elliptic(a)} is a function which will map the point \\spad{(u,{}v)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)}.")) (|paraboloidal| (((|Point| |#1|) (|Point| |#1|)) "\\spad{paraboloidal(pt)} transforms \\spad{pt} from paraboloidal coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v,{}phi)} to \\spad{x = u*v*cos(phi)},{} \\spad{y = u*v*sin(phi)},{} \\spad{z = 1/2 * (u**2 - v**2)}.")) (|parabolicCylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolicCylindrical(pt)} transforms \\spad{pt} from parabolic cylindrical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v,{}z)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v},{} \\spad{z}.")) (|parabolic| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolic(pt)} transforms \\spad{pt} from parabolic coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v}.")) (|spherical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{spherical(pt)} transforms \\spad{pt} from spherical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta,{}phi)} to \\spad{x = r*sin(phi)*cos(theta)},{} \\spad{y = r*sin(phi)*sin(theta)},{} \\spad{z = r*cos(phi)}.")) (|cylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cylindrical(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta,{}z)} to \\spad{x = r * cos(theta)},{} \\spad{y = r * sin(theta)},{} \\spad{z}.")) (|polar| (((|Point| |#1|) (|Point| |#1|)) "\\spad{polar(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta)} to \\spad{x = r * cos(theta)} ,{} \\spad{y = r * sin(theta)}.")) (|cartesian| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cartesian(pt)} returns the Cartesian coordinates of point \\spad{pt}."))) NIL NIL -(-176 R |PolR| E) +(-177 R |PolR| E) ((|constructor| (NIL "This package implements characteristicPolynomials for monogenic algebras using resultants")) (|characteristicPolynomial| ((|#2| |#3|) "\\spad{characteristicPolynomial(e)} returns the characteristic polynomial of \\spad{e} using resultants"))) NIL NIL -(-177 R S CS) +(-178 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-947 |#2|) (LIST (QUOTE -881) (|devaluate| |#1|)))) -(-178 R) +((|HasCategory| (-948 |#2|) (LIST (QUOTE -882) (|devaluate| |#1|)))) +(-179 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}"))) NIL NIL -(-179) +(-180) ((|constructor| (NIL "This domain represents `coerce' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-180 R UP) +(-181 R UP) ((|constructor| (NIL "\\spadtype{ComplexRootFindingPackage} provides functions to find all roots of a polynomial \\spad{p} over the complex number by using Plesken\\spad{'s} idea to calculate in the polynomial ring modulo \\spad{f} and employing the Chinese Remainder Theorem. In this first version,{} the precision (see \\spadfunFrom{digits}{Float}) is not increased when this is necessary to avoid rounding errors. Hence it is the user\\spad{'s} responsibility to increase the precision if necessary. Note also,{} if this package is called with \\spadignore{e.g.} \\spadtype{Fraction Integer},{} the precise calculations could require a lot of time. Also note that evaluating the zeros is not necessarily a good check whether the result is correct: already evaluation can cause rounding errors.")) (|startPolynomial| (((|Record| (|:| |start| |#2|) (|:| |factors| (|Factored| |#2|))) |#2|) "\\spad{startPolynomial(p)} uses the ideas of Schoenhage\\spad{'s} variant of Graeffe\\spad{'s} method to construct circles which separate roots to get a good start polynomial,{} \\spadignore{i.e.} one whose image under the Chinese Remainder Isomorphism has both entries of norm smaller and greater or equal to 1. In case the roots are found during internal calculations. The corresponding factors are in {\\em factors} which are otherwise 1.")) (|setErrorBound| ((|#1| |#1|) "\\spad{setErrorBound(eps)} changes the internal error bound,{} by default being {\\em 10 ** (-3)} to \\spad{eps},{} if \\spad{R} is a member in the category \\spadtype{QuotientFieldCategory Integer}. The internal {\\em globalDigits} is set to {\\em ceiling(1/r)**2*10} being {\\em 10**7} by default.")) (|schwerpunkt| (((|Complex| |#1|) |#2|) "\\spad{schwerpunkt(p)} determines the 'Schwerpunkt' of the roots of the polynomial \\spad{p} of degree \\spad{n},{} \\spadignore{i.e.} the center of gravity,{} which is {\\em coeffient of \\spad{x**(n-1)}} divided by {\\em n times coefficient of \\spad{x**n}}.")) (|rootRadius| ((|#1| |#2|) "\\spad{rootRadius(p)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em 1+globalEps},{} where {\\em globalEps} is the internal error bound,{} which can be set by {\\em setErrorBound}.") ((|#1| |#2| |#1|) "\\spad{rootRadius(p,{}errQuot)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em errQuot}.")) (|reciprocalPolynomial| ((|#2| |#2|) "\\spad{reciprocalPolynomial(p)} calulates a polynomial which has exactly the inverses of the non-zero roots of \\spad{p} as roots,{} and the same number of 0-roots.")) (|pleskenSplit| (((|Factored| |#2|) |#2| |#1|) "\\spad{pleskenSplit(poly,{} eps)} determines a start polynomial {\\em start}\\\\ by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{pleskenSplit(poly,{}eps,{}info)} determines a start polynomial {\\em start} by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough. If {\\em info} is {\\em true},{} then information messages are issued.")) (|norm| ((|#1| |#2|) "\\spad{norm(p)} determines sum of absolute values of coefficients Note: this function depends on \\spadfunFrom{abs}{Complex}.")) (|graeffe| ((|#2| |#2|) "\\spad{graeffe p} determines \\spad{q} such that \\spad{q(-z**2) = p(z)*p(-z)}. Note that the roots of \\spad{q} are the squares of the roots of \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} tries to factor \\spad{p} into linear factors with error atmost {\\em globalEps},{} the internal error bound,{} which can be set by {\\em setErrorBound}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1|) "\\spad{factor(p,{} eps)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{factor(p,{} eps,{} info)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization. If {\\em info} is {\\em true},{} then information messages are given.")) (|divisorCascade| (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2|) "\\spad{divisorCascade(p,{}tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions is calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial.") (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2| (|Boolean|)) "\\spad{divisorCascade(p,{}tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions are calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial. If {\\em info} is {\\em true},{} then information messages are issued.")) (|complexZeros| (((|List| (|Complex| |#1|)) |#2| |#1|) "\\spad{complexZeros(p,{} eps)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by {\\em eps}.") (((|List| (|Complex| |#1|)) |#2|) "\\spad{complexZeros(p)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by the package constant {\\em globalEps} which you may change by {\\em setErrorBound}."))) NIL NIL -(-181 S ST) +(-182 S ST) ((|constructor| (NIL "This package provides tools for working with cyclic streams.")) (|computeCycleEntry| ((|#2| |#2| |#2|) "\\spad{computeCycleEntry(x,{}cycElt)},{} where \\spad{cycElt} is a pointer to a node in the cyclic part of the cyclic stream \\spad{x},{} returns a pointer to the first node in the cycle")) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) "\\spad{computeCycleLength(s)} returns the length of the cycle of a cyclic stream \\spad{t},{} where \\spad{s} is a pointer to a node in the cyclic part of \\spad{t}.")) (|cycleElt| (((|Union| |#2| "failed") |#2|) "\\spad{cycleElt(s)} returns a pointer to a node in the cycle if the stream \\spad{s} is cyclic and returns \"failed\" if \\spad{s} is not cyclic"))) NIL NIL -(-182) +(-183) ((|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments(t)} returns the list of syntax objects for the arguments used to invoke the constructor.")) (|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain") (((|Constructor|) $) "\\spad{constructor(t)} returns the name of the constructor used to make the call."))) NIL NIL -(-183 S) +(-184 S) ((|constructor| (NIL "This category declares basic operations on all constructors.")) (|operations| (((|List| (|OverloadSet|)) $) "\\spad{operations(c)} returns the list of all operator exported by instantiations of constructor \\spad{c}. The operators are partitioned into overload sets.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(i+1) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'."))) NIL NIL -(-184) +(-185) ((|constructor| (NIL "This category declares basic operations on all constructors.")) (|operations| (((|List| (|OverloadSet|)) $) "\\spad{operations(c)} returns the list of all operator exported by instantiations of constructor \\spad{c}. The operators are partitioned into overload sets.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(i+1) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'."))) NIL NIL -(-185) +(-186) ((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' is the kind of package constructors.")) (|domain| (($) "`domain' is the kind of domain constructors")) (|category| (($) "`category' is the kind of category constructors"))) NIL NIL -(-186) +(-187) ((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Symbol|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-187 R -3196) +(-188 R -3191) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-188 R) +(-189 R) ((|constructor| (NIL "CoerceVectorMatrixPackage: an unexposed,{} technical package for data conversions")) (|coerce| (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Vector| (|Matrix| |#1|))) "\\spad{coerce(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Fraction Polynomial R}")) (|coerceP| (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|Vector| (|Matrix| |#1|))) "\\spad{coerceP(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Polynomial R}"))) NIL NIL -(-189) +(-190) ((|constructor| (NIL "Enumeration by cycle indices.")) (|skewSFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{skewSFunction(li1,{}li2)} is the \\spad{S}-function \\indented{1}{of the partition difference \\spad{li1 - li2}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|SFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|))) "\\spad{SFunction(\\spad{li})} is the \\spad{S}-function of the partition \\spad{\\spad{li}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|wreath| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{wreath(s1,{}s2)} is the cycle index of the wreath product \\indented{1}{of the two groups whose cycle indices are \\spad{s1} and} \\indented{1}{\\spad{s2}.}")) (|eval| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval s} is the sum of the coefficients of a cycle index.")) (|cup| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cup(s1,{}s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices,{} in which the} \\indented{1}{power sums are retained to produce a cycle index.}")) (|cap| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cap(s1,{}s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices.}")) (|graphs| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{graphs n} is the cycle index of the group induced on \\indented{1}{the edges of a graph by applying the symmetric function to the} \\indented{1}{\\spad{n} nodes.}")) (|dihedral| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{dihedral n} is the cycle index of the \\indented{1}{dihedral group of degree \\spad{n}.}")) (|cyclic| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{cyclic n} is the cycle index of the \\indented{1}{cyclic group of degree \\spad{n}.}")) (|alternating| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{alternating n} is the cycle index of the \\indented{1}{alternating group of degree \\spad{n}.}")) (|elementary| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{elementary n} is the \\spad{n} th elementary symmetric \\indented{1}{function expressed in terms of power sums.}")) (|powerSum| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{powerSum n} is the \\spad{n} th power sum symmetric \\indented{1}{function.}")) (|complete| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{complete n} is the \\spad{n} th complete homogeneous \\indented{1}{symmetric function expressed in terms of power sums.} \\indented{1}{Alternatively it is the cycle index of the symmetric} \\indented{1}{group of degree \\spad{n}.}"))) NIL NIL -(-190) +(-191) ((|constructor| (NIL "This package \\undocumented{}")) (|cyclotomicFactorization| (((|Factored| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicFactorization(n)} \\undocumented{}")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} \\undocumented{}")) (|cyclotomicDecomposition| (((|List| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicDecomposition(n)} \\undocumented{}"))) NIL NIL -(-191) +(-192) ((|constructor| (NIL "\\axiomType{d01AgentsPackage} is a package of numerical agents to be used to investigate attributes of an input function so as to decide the \\axiomFun{measure} of an appropriate numerical integration routine. It contains functions \\axiomFun{rangeIsFinite} to test the input range and \\axiomFun{functionIsContinuousAtEndPoints} to check for continuity at the end points of the range.")) (|changeName| (((|Result|) (|Symbol|) (|Symbol|) (|Result|)) "\\spad{changeName(s,{}t,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to \\axiom{\\spad{t}}.")) (|commaSeparate| (((|String|) (|List| (|String|))) "\\spad{commaSeparate(l)} produces a comma separated string from a list of strings.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{singularitiesOf(args)} returns a list of potential singularities of the function within the given range")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function if it can be retracted to \\axiomType{Polynomial DoubleFloat}.")) (|functionIsOscillatory| (((|Float|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsOscillatory(a)} tests whether the function \\spad{a.fn} has many zeros of its derivative.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(x)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{x}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(x)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{x}}")) (|functionIsContinuousAtEndPoints| (((|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsContinuousAtEndPoints(args)} uses power series limits to check for problems at the end points of the range of \\spad{args}.")) (|rangeIsFinite| (((|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{rangeIsFinite(args)} tests the endpoints of \\spad{args.range} for infinite end points."))) NIL NIL -(-192) +(-193) ((|constructor| (NIL "\\axiomType{d01ajfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AJF,{} a general numerical integration routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AJF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-193) +(-194) ((|constructor| (NIL "\\axiomType{d01akfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AKF,{} a numerical integration routine which is is suitable for oscillating,{} non-singular functions. The function \\axiomFun{measure} measures the usefulness of the routine D01AKF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-194) +(-195) ((|constructor| (NIL "\\axiomType{d01alfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ALF,{} a general numerical integration routine which can handle a list of singularities. The function \\axiomFun{measure} measures the usefulness of the routine D01ALF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-195) +(-196) ((|constructor| (NIL "\\axiomType{d01amfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AMF,{} a general numerical integration routine which can handle infinite or semi-infinite range of the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AMF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-196) +(-197) ((|constructor| (NIL "\\axiomType{d01anfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ANF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}). The function \\axiomFun{measure} measures the usefulness of the routine D01ANF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-197) +(-198) ((|constructor| (NIL "\\axiomType{d01apfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01APF,{} a general numerical integration routine which can handle end point singularities of the algebraico-logarithmic form \\spad{w}(\\spad{x}) = (\\spad{x}-a)\\spad{^c} * (\\spad{b}-\\spad{x})\\spad{^d}. The function \\axiomFun{measure} measures the usefulness of the routine D01APF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-198) +(-199) ((|constructor| (NIL "\\axiomType{d01aqfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AQF,{} a general numerical integration routine which can solve an integral of the form \\newline \\centerline{\\inputbitmap{/home/bjd/Axiom/anna/hypertex/bitmaps/d01aqf.\\spad{xbm}}} The function \\axiomFun{measure} measures the usefulness of the routine D01AQF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-199) +(-200) ((|constructor| (NIL "\\axiomType{d01asfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ASF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}) on an semi-infinite range. The function \\axiomFun{measure} measures the usefulness of the routine D01ASF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-200) +(-201) ((|constructor| (NIL "\\axiomType{d01fcfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01FCF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-201) +(-202) ((|constructor| (NIL "\\axiomType{d01gbfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01GBF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-202) +(-203) NIL NIL NIL -(-203) +(-204) ((|constructor| (NIL "\\axiom{d01WeightsPackage} is a package for functions used to investigate whether a function can be divided into a simpler function and a weight function. The types of weights investigated are those giving rise to end-point singularities of the algebraico-logarithmic type,{} and trigonometric weights.")) (|exprHasLogarithmicWeights| (((|Integer|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasLogarithmicWeights} looks for logarithmic weights giving rise to singularities of the function at the end-points.")) (|exprHasAlgebraicWeight| (((|Union| (|List| (|DoubleFloat|)) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasAlgebraicWeight} looks for algebraic weights giving rise to singularities of the function at the end-points.")) (|exprHasWeightCosWXorSinWX| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |w| (|DoubleFloat|))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasWeightCosWXorSinWX} looks for trigonometric weights in an expression of the form \\axiom{cos \\omega \\spad{x}} or \\axiom{sin \\omega \\spad{x}},{} returning the value of \\omega (\\notequal 1) and the operator."))) NIL NIL -(-204) +(-205) ((|constructor| (NIL "\\axiom{d02AgentsPackage} contains a set of computational agents for use with Ordinary Differential Equation solvers.")) (|intermediateResultsIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{intermediateResultsIF(o)} returns a value corresponding to the required number of intermediate results required and,{} therefore,{} an indication of how much this would affect the step-length of the calculation. It returns a value in the range [0,{}1].")) (|accuracyIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{accuracyIF(o)} returns the intensity value of the accuracy requirements of the input ODE. A request of accuracy of 10^-6 corresponds to the neutral intensity. It returns a value in the range [0,{}1].")) (|expenseOfEvaluationIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{expenseOfEvaluationIF(o)} returns the intensity value of the cost of evaluating the input ODE. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].\\newline\\indent{20} 400 ``operation units\\spad{''} \\spad{->} 0.75 \\newline 200 ``operation units\\spad{''} \\spad{->} 0.5 \\newline 83 ``operation units\\spad{''} \\spad{->} 0.25 \\newline\\indent{15} exponentiation = 4 units ,{} function calls = 10 units.")) (|systemSizeIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{systemSizeIF(ode)} returns the intensity value of the size of the system of ODEs. 20 equations corresponds to the neutral value. It returns a value in the range [0,{}1].")) (|stiffnessAndStabilityOfODEIF| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityOfODEIF(ode)} calculates the intensity values of stiffness of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian). \\blankline It returns two values in the range [0,{}1].")) (|stiffnessAndStabilityFactor| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityFactor(me)} calculates the stability and stiffness factor of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian).")) (|eval| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Matrix| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{eval(mat,{}symbols,{}values)} evaluates a multivariable matrix at given \\spad{values} for each of a list of variables")) (|jacobian| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|))) "\\spad{jacobian(v,{}w)} is a local function to make a jacobian matrix")) (|sparsityIF| (((|Float|) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{sparsityIF(m)} calculates the sparsity of a jacobian matrix")) (|combineFeatureCompatibility| (((|Float|) (|Float|) (|List| (|Float|))) "\\spad{combineFeatureCompatibility(C1,{}L)} is for interacting attributes") (((|Float|) (|Float|) (|Float|)) "\\spad{combineFeatureCompatibility(C1,{}C2)} is for interacting attributes"))) NIL NIL -(-205) +(-206) ((|constructor| (NIL "\\axiomType{d02bbfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BBF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BBF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-206) +(-207) ((|constructor| (NIL "\\axiomType{d02bhfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BHF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BHF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-207) +(-208) ((|constructor| (NIL "\\axiomType{d02cjfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02CJF,{} a ODE routine which uses an Adams-Moulton-Bashworth method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02CJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-208) +(-209) ((|constructor| (NIL "\\axiomType{d02ejfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02EJF,{} a ODE routine which uses a backward differentiation formulae method to handle a stiff system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02EJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-209) +(-210) ((|elliptic?| (((|Boolean|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{elliptic?(r)} \\undocumented{}")) (|central?| (((|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{central?(f,{}g,{}l)} \\undocumented{}")) (|subscriptedVariables| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{subscriptedVariables(e)} \\undocumented{}")) (|varList| (((|List| (|Symbol|)) (|Symbol|) (|NonNegativeInteger|)) "\\spad{varList(s,{}n)} \\undocumented{}"))) NIL NIL -(-210) +(-211) ((|constructor| (NIL "\\axiomType{d03eefAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routines D03EEF/D03EDF."))) NIL NIL -(-211) +(-212) ((|constructor| (NIL "\\axiomType{d03fafAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routine D03FAF."))) NIL NIL -(-212 N T$) +(-213 N T$) ((|constructor| (NIL "This domain provides for a fixed-sized homogeneous data buffer.")) (|qsetelt| ((|#2| $ (|NonNegativeInteger|) |#2|) "setelt(\\spad{b},{}\\spad{i},{}\\spad{x}) sets the \\spad{i}th entry of data buffer \\spad{`b'} to \\spad{`x'}. Indexing is 0-based.")) (|qelt| ((|#2| $ (|NonNegativeInteger|)) "elt(\\spad{b},{}\\spad{i}) returns the \\spad{i}th element in buffer \\spad{`b'}. Indexing is 0-based.")) (|new| (($) "\\spad{new()} returns a fresly allocated data buffer or length \\spad{N}."))) NIL NIL -(-213 S) +(-214 S) ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-214 -3196 UP UPUP R) +(-215 -3191 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-215 -3196 FP) +(-216 -3191 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL -(-216) -((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) -((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| (-562) (QUOTE (-904))) (|HasCategory| (-562) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| (-562) (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-146))) (|HasCategory| (-562) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-562) (QUOTE (-1017))) (|HasCategory| (-562) (QUOTE (-815))) (-4037 (|HasCategory| (-562) (QUOTE (-815))) (|HasCategory| (-562) (QUOTE (-845)))) (|HasCategory| (-562) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| (-562) (QUOTE (-1143))) (|HasCategory| (-562) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| (-562) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| (-562) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| (-562) (QUOTE (-232))) (|HasCategory| (-562) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-562) (LIST (QUOTE -513) (QUOTE (-1168)) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -308) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -285) (QUOTE (-562)) (QUOTE (-562)))) (|HasCategory| (-562) (QUOTE (-306))) (|HasCategory| (-562) (QUOTE (-544))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| (-562) (LIST (QUOTE -635) (QUOTE (-562)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-904)))) (|HasCategory| (-562) (QUOTE (-144))))) (-217) +((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) +((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| (-563) (QUOTE (-905))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-563) (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-147))) (|HasCategory| (-563) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-563) (QUOTE (-1018))) (|HasCategory| (-563) (QUOTE (-816))) (-4032 (|HasCategory| (-563) (QUOTE (-816))) (|HasCategory| (-563) (QUOTE (-846)))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-1144))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-563) (QUOTE (-233))) (|HasCategory| (-563) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-563) (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -309) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -286) (QUOTE (-563)) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-307))) (|HasCategory| (-563) (QUOTE (-545))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-563) (LIST (QUOTE -636) (QUOTE (-563)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (|HasCategory| (-563) (QUOTE (-145))))) +(-218) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-218 R -3196) +(-219 R -3191) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-219 R) +(-220 R) ((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-220 R1 R2) +(-221 R1 R2) ((|constructor| (NIL "This package \\undocumented{}")) (|expand| (((|List| (|Expression| |#2|)) (|Expression| |#2|) (|PositiveInteger|)) "\\spad{expand(f,{}n)} \\undocumented{}")) (|reduce| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#1|)) (|:| |deg| (|PositiveInteger|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reduce(p)} \\undocumented{}"))) NIL NIL -(-221 S) +(-222 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4403 . T) (-4404 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) -(-222 |CoefRing| |listIndVar|) +((-4407 . T) (-4408 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) +(-223 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4400 . T)) +((-4404 . T)) NIL -(-223 R -3196) +(-224 R -3191) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL -(-224) +(-225) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-1406 . T) (-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-1403 . T) (-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-225) +(-226) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}"))) NIL NIL -(-226 R) +(-227 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4403 . T) (-4404 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-554))) (|HasAttribute| |#1| (QUOTE (-4405 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) -(-227 A S) +((-4407 . T) (-4408 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-555))) (|HasAttribute| |#1| (QUOTE (-4409 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) +(-228 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL -(-228 S) +(-229 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4404 . T)) +((-4408 . T)) NIL -(-229 S R) +(-230 S R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-232)))) -(-230 R) +((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233)))) +(-231 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) -((-4400 . T)) +((-4404 . T)) NIL -(-231 S) +(-232 S) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) NIL NIL -(-232) +(-233) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) -((-4400 . T)) +((-4404 . T)) NIL -(-233 A S) +(-234 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4403))) -(-234 S) +((|HasAttribute| |#1| (QUOTE -4407))) +(-235 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4404 . T)) +((-4408 . T)) NIL -(-235) +(-236) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-236 S -2240 R) +(-237 S -3304 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (QUOTE (-843))) (|HasAttribute| |#3| (QUOTE -4400)) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (QUOTE (-1092)))) -(-237 -2240 R) +((|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (QUOTE (-844))) (|HasAttribute| |#3| (QUOTE -4404)) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (QUOTE (-1093)))) +(-238 -3304 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4397 |has| |#2| (-1044)) (-4398 |has| |#2| (-1044)) (-4400 |has| |#2| (-6 -4400)) ((-4405 "*") |has| |#2| (-171)) (-4403 . T)) +((-4401 |has| |#2| (-1045)) (-4402 |has| |#2| (-1045)) (-4404 |has| |#2| (-6 -4404)) ((-4409 "*") |has| |#2| (-172)) (-4407 . T)) NIL -(-238 -2240 A B) +(-239 -3304 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-239 -2240 R) +(-240 -3304 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4397 |has| |#2| (-1044)) (-4398 |has| |#2| (-1044)) (-4400 |has| |#2| (-6 -4400)) ((-4405 "*") |has| |#2| (-171)) (-4403 . T)) -((-4037 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (QUOTE (-362))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-788))) (-4037 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-171))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1044)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-171)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-232)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-721)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-788)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-843)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1044))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (|HasCategory| (-562) (QUOTE (-845))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-4037 (|HasCategory| |#2| (QUOTE (-1044))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092)))) (|HasAttribute| |#2| (QUOTE -4400)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))))) -(-240) +((-4401 |has| |#2| (-1045)) (-4402 |has| |#2| (-1045)) (-4404 |has| |#2| (-6 -4404)) ((-4409 "*") |has| |#2| (-172)) (-4407 . T)) +((-4032 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-4032 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-363))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-789))) (-4032 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-172))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093))))) (-4032 (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-4032 (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| (-563) (QUOTE (-846))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-4032 (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093)))) (|HasAttribute| |#2| (QUOTE -4404)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))))) +(-241) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL NIL -(-241 S) +(-242 S) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) NIL NIL -(-242) +(-243) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4396 . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4400 . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-243 S) +(-244 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) NIL NIL -(-244 S) +(-245 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) -((-4404 . T) (-4403 . T)) -((-4037 (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) -(-245 M) +((-4408 . T) (-4407 . T)) +((-4032 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4032 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +(-246 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL -(-246 |vl| R) +(-247 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4405 "*") |has| |#2| (-171)) (-4396 |has| |#2| (-554)) (-4401 |has| |#2| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) -((|HasCategory| |#2| (QUOTE (-904))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-554)))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4401)) (|HasCategory| |#2| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-144))))) -(-247) +(((-4409 "*") |has| |#2| (-172)) (-4400 |has| |#2| (-555)) (-4405 |has| |#2| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T)) +((|HasCategory| |#2| (QUOTE (-905))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4032 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4032 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4405)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145))))) +(-248) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}."))) NIL NIL -(-248) +(-249) ((|constructor| (NIL "This domain provides representations for domains constructors."))) NIL NIL -(-249 |n| R M S) +(-250 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4400 -4037 (-2245 (|has| |#4| (-1044)) (|has| |#4| (-232))) (-2245 (|has| |#4| (-1044)) (|has| |#4| (-895 (-1168)))) (|has| |#4| (-6 -4400)) (-2245 (|has| |#4| (-1044)) (|has| |#4| (-635 (-562))))) (-4397 |has| |#4| (-1044)) (-4398 |has| |#4| (-1044)) ((-4405 "*") |has| |#4| (-171)) (-4403 . T)) -((-4037 (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-721))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-788))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-843))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168)))))) (|HasCategory| |#4| (QUOTE (-362))) (-4037 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (QUOTE (-1044)))) (-4037 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-362)))) (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (QUOTE (-788))) (-4037 (|HasCategory| |#4| (QUOTE (-788))) (|HasCategory| |#4| (QUOTE (-843)))) (|HasCategory| |#4| (QUOTE (-843))) (|HasCategory| |#4| (QUOTE (-721))) (|HasCategory| |#4| (QUOTE (-171))) (-4037 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-1044)))) (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168)))) (-4037 (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1044)))) (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-171)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-232)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-362)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-367)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-721)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-788)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-843)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-1044)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-1092))))) (-4037 (-12 (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-721))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-788))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-843))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-1044))) (-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-721))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-788))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-843))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562)))))) (|HasCategory| (-562) (QUOTE (-845))) (-12 (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1044)))) (-4037 (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1044)))) (|HasCategory| |#4| (QUOTE (-721))) (-12 (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168)))))) (-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562))))) (-4037 (|HasCategory| |#4| (QUOTE (-1044))) (-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (QUOTE (-1092)))) (-4037 (|HasAttribute| |#4| (QUOTE -4400)) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1044)))) (-12 (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#4| (QUOTE (-1044))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1168)))))) (|HasCategory| |#4| (QUOTE (-130))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|))))) -(-250 |n| R S) +((-4404 -4032 (-2190 (|has| |#4| (-1045)) (|has| |#4| (-233))) (-2190 (|has| |#4| (-1045)) (|has| |#4| (-896 (-1169)))) (|has| |#4| (-6 -4404)) (-2190 (|has| |#4| (-1045)) (|has| |#4| (-636 (-563))))) (-4401 |has| |#4| (-1045)) (-4402 |has| |#4| (-1045)) ((-4409 "*") |has| |#4| (-172)) (-4407 . T)) +((-4032 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-722))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-789))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-844))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#4| (QUOTE (-363))) (-4032 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (QUOTE (-1045)))) (-4032 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-363)))) (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (QUOTE (-789))) (-4032 (|HasCategory| |#4| (QUOTE (-789))) (|HasCategory| |#4| (QUOTE (-844)))) (|HasCategory| |#4| (QUOTE (-844))) (|HasCategory| |#4| (QUOTE (-722))) (|HasCategory| |#4| (QUOTE (-172))) (-4032 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-1045)))) (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))) (-4032 (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1045)))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-172)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-233)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-363)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-368)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-722)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-789)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-844)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-1045)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-1093))))) (-4032 (-12 (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-722))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-789))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-844))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-1045))) (-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-4032 (-12 (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-722))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-789))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-844))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| (-563) (QUOTE (-846))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1045)))) (-4032 (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1045)))) (|HasCategory| |#4| (QUOTE (-722))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-4032 (|HasCategory| |#4| (QUOTE (-1045))) (-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-1093)))) (-4032 (|HasAttribute| |#4| (QUOTE -4404)) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1045)))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))))) +(-251 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4400 -4037 (-2245 (|has| |#3| (-1044)) (|has| |#3| (-232))) (-2245 (|has| |#3| (-1044)) (|has| |#3| (-895 (-1168)))) (|has| |#3| (-6 -4400)) (-2245 (|has| |#3| (-1044)) (|has| |#3| (-635 (-562))))) (-4397 |has| |#3| (-1044)) (-4398 |has| |#3| (-1044)) ((-4405 "*") |has| |#3| (-171)) (-4403 . T)) -((-4037 (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))))) (|HasCategory| |#3| (QUOTE (-362))) (-4037 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1044)))) (-4037 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (QUOTE (-788))) (-4037 (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (QUOTE (-843)))) (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (QUOTE (-171))) (-4037 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-1044)))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (-4037 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1044)))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-171)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-232)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-362)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-367)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-721)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-788)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-843)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1044)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1092))))) (-4037 (-12 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1044))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562)))))) (|HasCategory| (-562) (QUOTE (-845))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1044)))) (-4037 (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1044)))) (|HasCategory| |#3| (QUOTE (-721))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-4037 (|HasCategory| |#3| (QUOTE (-1044))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1092)))) (-4037 (|HasAttribute| |#3| (QUOTE -4400)) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1044)))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))))) -(-251 A R S V E) +((-4404 -4032 (-2190 (|has| |#3| (-1045)) (|has| |#3| (-233))) (-2190 (|has| |#3| (-1045)) (|has| |#3| (-896 (-1169)))) (|has| |#3| (-6 -4404)) (-2190 (|has| |#3| (-1045)) (|has| |#3| (-636 (-563))))) (-4401 |has| |#3| (-1045)) (-4402 |has| |#3| (-1045)) ((-4409 "*") |has| |#3| (-172)) (-4407 . T)) +((-4032 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#3| (QUOTE (-363))) (-4032 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-4032 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (QUOTE (-789))) (-4032 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (QUOTE (-844)))) (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (QUOTE (-172))) (-4032 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (-4032 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-722)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-789)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-844)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1093))))) (-4032 (-12 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1045))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-4032 (-12 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| (-563) (QUOTE (-846))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (-4032 (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-722))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-4032 (|HasCategory| |#3| (QUOTE (-1045))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1093)))) (-4032 (|HasAttribute| |#3| (QUOTE -4404)) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))))) +(-252 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL -((|HasCategory| |#2| (QUOTE (-232)))) -(-252 R S V E) +((|HasCategory| |#2| (QUOTE (-233)))) +(-253 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T)) NIL -(-253 S) +(-254 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4403 . T) (-4404 . T)) +((-4407 . T) (-4408 . T)) NIL -(-254) +(-255) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-255 R |Ex|) +(-256 R |Ex|) ((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y) = g(x,{}y),{}x,{}y,{}l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched."))) NIL NIL -(-256) +(-257) ((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,{}rRange,{}iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f,{} -2..2,{} -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,{}rRange,{}iRange,{}arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f,{} 0.3..3,{} 0..2*\\%\\spad{pi},{} false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction."))) NIL NIL -(-257 R) +(-258 R) ((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}."))) NIL NIL -(-258 |Ex|) +(-259 |Ex|) ((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-259) +(-260) ((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}lz,{}l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly,{}lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,{}l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) NIL NIL -(-260) +(-261) ((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,{}u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,{}r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,{}ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned."))) NIL NIL -(-261 S) +(-262 S) ((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,{}s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command."))) NIL NIL -(-262) +(-263) ((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) NIL NIL -(-263 R S V) +(-264 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) -((|HasCategory| |#1| (QUOTE (-904))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#3| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#3| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#3| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#3| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4401)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) -(-264 A S) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T)) +((|HasCategory| |#1| (QUOTE (-905))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#3| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#3| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4405)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-265 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-265 S) +(-266 S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-266) +(-267) ((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,{}n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.\\spad{lfn}}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,{}n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,{}b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{\\spad{-b}}."))) NIL NIL -(-267) +(-268) ((|constructor| (NIL "\\axiomType{e04dgfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04DGF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04DGF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-268) +(-269) ((|constructor| (NIL "\\axiomType{e04fdfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04FDF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04FDF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-269) +(-270) ((|constructor| (NIL "\\axiomType{e04gcfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04GCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04GCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-270) +(-271) ((|constructor| (NIL "\\axiomType{e04jafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04JAF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04JAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-271) +(-272) ((|constructor| (NIL "\\axiomType{e04mbfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04MBF,{} an optimization routine for Linear functions. The function \\axiomFun{measure} measures the usefulness of the routine E04MBF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-272) +(-273) ((|constructor| (NIL "\\axiomType{e04nafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04NAF,{} an optimization routine for Quadratic functions. The function \\axiomFun{measure} measures the usefulness of the routine E04NAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-273) +(-274) ((|constructor| (NIL "\\axiomType{e04ucfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04UCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04UCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-274) +(-275) ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-275 R -3196) +(-276 R -3191) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-276 R -3196) +(-277 R -3191) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL -(-277 |Coef| UTS ULS) +(-278 |Coef| UTS ULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-362)))) -(-278 |Coef| ULS UPXS EFULS) +((|HasCategory| |#1| (QUOTE (-363)))) +(-279 |Coef| ULS UPXS EFULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-362)))) -(-279) +((|HasCategory| |#1| (QUOTE (-363)))) +(-280) ((|constructor| (NIL "This domains an expresion as elaborated by the interpreter. See Also:")) (|getOperands| (((|Union| (|List| $) "failed") $) "\\spad{getOperands(e)} returns the list of operands in `e',{} assuming it is a call form.")) (|getOperator| (((|Union| (|Symbol|) "failed") $) "\\spad{getOperator(e)} retrieves the operator being invoked in `e',{} when `e' is an expression.")) (|callForm?| (((|Boolean|) $) "\\spad{callForm?(e)} is \\spad{true} when `e' is a call expression.")) (|getIdentifier| (((|Union| (|Symbol|) "failed") $) "\\spad{getIdentifier(e)} retrieves the name of the variable `e'.")) (|variable?| (((|Boolean|) $) "\\spad{variable?(e)} returns \\spad{true} if `e' is a variable.")) (|getConstant| (((|Union| (|SExpression|) "failed") $) "\\spad{getConstant(e)} retrieves the constant value of `e'e.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(e)} returns \\spad{true} if `e' is a constant.")) (|type| (((|ConstructorCall|) $) "\\spad{type(e)} returns the type of the expression as computed by the interpreter."))) NIL NIL -(-280 A S) +(-281 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1092)))) -(-281 S) +((|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1093)))) +(-282 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4404 . T)) +((-4408 . T)) NIL -(-282 S) +(-283 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-283) +(-284) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-284 |Coef| UTS) +(-285 |Coef| UTS) ((|constructor| (NIL "The elliptic functions \\spad{sn},{} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,{}c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,{}k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,{}k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,{}k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}"))) NIL NIL -(-285 S |Index|) +(-286 S |Index|) ((|constructor| (NIL "An eltable over domains \\spad{D} and \\spad{I} is a structure which can be viewed as a function from \\spad{D} to \\spad{I}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,{}i)} (also written: \\spad{u} . \\spad{i}) returns the element of \\spad{u} indexed by \\spad{i}. Error: if \\spad{i} is not an index of \\spad{u}."))) NIL NIL -(-286 S |Dom| |Im|) +(-287 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4404))) -(-287 |Dom| |Im|) +((|HasAttribute| |#1| (QUOTE -4408))) +(-288 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-288 S R |Mod| -3834 -4103 |exactQuo|) +(-289 S R |Mod| -2472 -3164 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-289) +(-290) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4396 . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4400 . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-290) +(-291) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Symbol|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|Union| (|List| (|Property|)) "failed") (|Symbol|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}; otherwise `failed'.")) (|setProperty!| (($ (|Symbol|) (|Symbol|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Union| (|SExpression|) "failed") (|Symbol|) (|Symbol|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `failed'.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) NIL NIL -(-291 R) +(-292 R) ((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,{}m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,{}m,{}k,{}g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,{}m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable."))) NIL NIL -(-292 S R) +(-293 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,{}eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL -(-293 S) +(-294 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4400 -4037 (|has| |#1| (-1044)) (|has| |#1| (-472))) (-4397 |has| |#1| (-1044)) (-4398 |has| |#1| (-1044))) -((|HasCategory| |#1| (QUOTE (-362))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1044)))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-1044)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1044)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1044)))) (-4037 (|HasCategory| |#1| (QUOTE (-472))) (|HasCategory| |#1| (QUOTE (-721)))) (|HasCategory| |#1| (QUOTE (-472))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-472))) (|HasCategory| |#1| (QUOTE (-721))) (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-1092)))) (-4037 (|HasCategory| |#1| (QUOTE (-472))) (|HasCategory| |#1| (QUOTE (-721))) (|HasCategory| |#1| (QUOTE (-1104)))) (|HasCategory| |#1| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-301))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-472)))) (-4037 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-721)))) (-4037 (|HasCategory| |#1| (QUOTE (-472))) (|HasCategory| |#1| (QUOTE (-1044)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-721))) (|HasCategory| |#1| (QUOTE (-171)))) -(-294 |Key| |Entry|) +((-4404 -4032 (|has| |#1| (-1045)) (|has| |#1| (-473))) (-4401 |has| |#1| (-1045)) (-4402 |has| |#1| (-1045))) +((|HasCategory| |#1| (QUOTE (-363))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1045)))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-1045)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1045)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1045)))) (-4032 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-722)))) (|HasCategory| |#1| (QUOTE (-473))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-1093)))) (-4032 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1105)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-302))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-473)))) (-4032 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-722)))) (-4032 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-172)))) +(-295 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4403 . T) (-4404 . T)) -((-12 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2319) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2693) (|devaluate| |#2|)))))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1092))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857))))) -(-295) +((-4407 . T) (-4408 . T)) +((-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2557) (|devaluate| |#2|)))))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1093))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858))))) +(-296) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-296 -3196 S) +(-297 -3191 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-297 E -3196) +(-298 E -3191) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}."))) NIL NIL -(-298 A B) +(-299 A B) ((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) NIL NIL -(-299) +(-300) ((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,{}var,{}range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}"))) NIL NIL -(-300 S) +(-301 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-1044)))) -(-301) +((|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-1045)))) +(-302) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL NIL -(-302 R1) +(-303 R1) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}"))) NIL NIL -(-303 R1 R2) +(-304 R1 R2) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,{}m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}"))) NIL NIL -(-304) +(-305) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) NIL NIL -(-305 S) +(-306 S) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) NIL NIL -(-306) +(-307) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-307 S R) +(-308 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-308 R) +(-309 R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-309 -3196) +(-310 -3191) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL -(-310) +(-311) ((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'."))) NIL NIL -(-311) +(-312) ((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}."))) NIL NIL -(-312 R FE |var| |cen|) +(-313 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}."))) -((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-904))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-144))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-1017))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-815))) (-4037 (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-815))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-845)))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-1143))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-232))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -513) (QUOTE (-1168)) (LIST (QUOTE -1242) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -308) (LIST (QUOTE -1242) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (LIST (QUOTE -285) (LIST (QUOTE -1242) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1242) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-306))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-544))) (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-845))) (-12 (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-904))) (|HasCategory| $ (QUOTE (-144)))) (-4037 (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-144))) (-12 (|HasCategory| (-1242 |#1| |#2| |#3| |#4|) (QUOTE (-904))) (|HasCategory| $ (QUOTE (-144)))))) -(-313 R S) +((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-905))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-1018))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-816))) (-4032 (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-816))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-846)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-1144))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-233))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -309) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -286) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-307))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-545))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-846))) (-12 (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-905))) (|HasCategory| $ (QUOTE (-145)))) (-4032 (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (-12 (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-905))) (|HasCategory| $ (QUOTE (-145)))))) +(-314 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL NIL -(-314 R FE) +(-315 R FE) ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,{}x = a,{}n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,{}x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,{}n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}x = a,{}n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,{}x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,{}x = a,{}n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,{}x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,{}n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,{}n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-315 R) +(-316 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4400 -4037 (-2245 (|has| |#1| (-1044)) (|has| |#1| (-635 (-562)))) (-12 (|has| |#1| (-554)) (-4037 (-2245 (|has| |#1| (-1044)) (|has| |#1| (-635 (-562)))) (|has| |#1| (-1044)) (|has| |#1| (-472)))) (|has| |#1| (-1044)) (|has| |#1| (-472))) (-4398 |has| |#1| (-171)) (-4397 |has| |#1| (-171)) ((-4405 "*") |has| |#1| (-554)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-554)) (-4395 |has| |#1| (-554))) -((-4037 (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))))) (|HasCategory| |#1| (QUOTE (-554))) (-4037 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-1044)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (QUOTE (-472))) (|HasCategory| |#1| (QUOTE (-1104)))) (|HasCategory| |#1| (QUOTE (-472))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562))))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-1044)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-1044)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-1044)))) (-12 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (|HasCategory| |#1| (QUOTE (-472))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-1104)))) (-4037 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))))) (-4037 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-1104)))) (-4037 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))))) (-4037 (|HasCategory| |#1| (QUOTE (-472))) (|HasCategory| |#1| (QUOTE (-1044)))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| $ (QUOTE (-1044))) (|HasCategory| $ (LIST (QUOTE -1033) (QUOTE (-562))))) -(-316 R -3196) +((-4404 -4032 (-2190 (|has| |#1| (-1045)) (|has| |#1| (-636 (-563)))) (-12 (|has| |#1| (-555)) (-4032 (-2190 (|has| |#1| (-1045)) (|has| |#1| (-636 (-563)))) (|has| |#1| (-1045)) (|has| |#1| (-473)))) (|has| |#1| (-1045)) (|has| |#1| (-473))) (-4402 |has| |#1| (-172)) (-4401 |has| |#1| (-172)) ((-4409 "*") |has| |#1| (-555)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-555)) (-4399 |has| |#1| (-555))) +((-4032 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| |#1| (QUOTE (-555))) (-4032 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-1045)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (-4032 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1105)))) (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4032 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-1045)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-1045)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-1045)))) (-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555)))) (-4032 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563))))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-1105)))) (-4032 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))))) (-4032 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-1105)))) (-4032 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))))) (-4032 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1045)))) (-4032 (-12 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| $ (QUOTE (-1045))) (|HasCategory| $ (LIST (QUOTE -1034) (QUOTE (-563))))) +(-317 R -3191) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}."))) NIL NIL -(-317) +(-318) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}."))) NIL NIL -(-318 FE |var| |cen|) +(-319 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-362)) (-4395 |has| |#1| (-362)) (-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-562)) (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-362))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasSignature| |#1| (LIST (QUOTE -4053) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -3081) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1401) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|))))))) -(-319 M) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-563)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasSignature| |#1| (LIST (QUOTE -1693) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (-4032 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -3698) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2606) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|))))))) +(-320 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL NIL -(-320 E OV R P) +(-321 E OV R P) ((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,{}i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly,{} lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly,{} lvar,{} lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}."))) NIL NIL -(-321 S) +(-322 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4398 . T) (-4397 . T)) -((|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-787)))) -(-322 S E) +((-4402 . T) (-4401 . T)) +((|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-788)))) +(-323 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL NIL -(-323 S) +(-324 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-766) (QUOTE (-787)))) -(-324 S R E) +((|HasCategory| (-767) (QUOTE (-788)))) +(-325 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL -((|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171)))) -(-325 R E) +((|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172)))) +(-326 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4397 . T) (-4398 . T) (-4400 . T)) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-326 S) +(-327 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4404 . T) (-4403 . T)) -((-4037 (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) -(-327 S -3196) +((-4408 . T) (-4407 . T)) +((-4032 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4032 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +(-328 S -3191) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL -((|HasCategory| |#2| (QUOTE (-367)))) -(-328 -3196) +((|HasCategory| |#2| (QUOTE (-368)))) +(-329 -3191) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-329) +(-330) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10."))) NIL NIL -(-330 E) +(-331 E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series"))) NIL NIL -(-331) +(-332) ((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,{}p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,{}p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,{}b,{}d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,{}p,{}q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,{}p)} \\undocumented{}"))) NIL NIL -(-332 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-333 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}"))) NIL NIL -(-333 S -3196 UP UPUP R) +(-334 S -3191 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-334 -3196 UP UPUP R) +(-335 -3191 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-335 -3196 UP UPUP R) +(-336 -3191 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL -(-336 S R) +(-337 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) -(-337 R) +((|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) +(-338 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL -(-338 |basicSymbols| |subscriptedSymbols| R) +(-339 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-378)))) (|HasCategory| $ (QUOTE (-1044))) (|HasCategory| $ (LIST (QUOTE -1033) (QUOTE (-562))))) -(-339 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +((-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-379)))) (|HasCategory| $ (QUOTE (-1045))) (|HasCategory| $ (LIST (QUOTE -1034) (QUOTE (-563))))) +(-340 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-340 S -3196 UP UPUP) +(-341 S -3191 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL -((|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-362)))) -(-341 -3196 UP UPUP) +((|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-363)))) +(-342 -3191 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4396 |has| (-406 |#2|) (-362)) (-4401 |has| (-406 |#2|) (-362)) (-4395 |has| (-406 |#2|) (-362)) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4400 |has| (-407 |#2|) (-363)) (-4405 |has| (-407 |#2|) (-363)) (-4399 |has| (-407 |#2|) (-363)) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-342 |p| |extdeg|) +(-343 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) -((-4037 (|HasCategory| (-905 |#1|) (QUOTE (-144))) (|HasCategory| (-905 |#1|) (QUOTE (-367)))) (|HasCategory| (-905 |#1|) (QUOTE (-146))) (|HasCategory| (-905 |#1|) (QUOTE (-367))) (|HasCategory| (-905 |#1|) (QUOTE (-144)))) -(-343 GF |defpol|) +((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) +((-4032 (|HasCategory| (-906 |#1|) (QUOTE (-145))) (|HasCategory| (-906 |#1|) (QUOTE (-368)))) (|HasCategory| (-906 |#1|) (QUOTE (-147))) (|HasCategory| (-906 |#1|) (QUOTE (-368))) (|HasCategory| (-906 |#1|) (QUOTE (-145)))) +(-344 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) -((-4037 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144)))) -(-344 GF |extdeg|) +((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) +((-4032 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) +(-345 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) -((-4037 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144)))) -(-345 GF) +((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) +((-4032 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) +(-346 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL NIL -(-346 F1 GF F2) +(-347 F1 GF F2) ((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse."))) NIL NIL -(-347 S) +(-348 S) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) NIL NIL -(-348) +(-349) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-349 R UP -3196) +(-350 R UP -3191) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-350 |p| |extdeg|) +(-351 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) -((-4037 (|HasCategory| (-905 |#1|) (QUOTE (-144))) (|HasCategory| (-905 |#1|) (QUOTE (-367)))) (|HasCategory| (-905 |#1|) (QUOTE (-146))) (|HasCategory| (-905 |#1|) (QUOTE (-367))) (|HasCategory| (-905 |#1|) (QUOTE (-144)))) -(-351 GF |uni|) +((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) +((-4032 (|HasCategory| (-906 |#1|) (QUOTE (-145))) (|HasCategory| (-906 |#1|) (QUOTE (-368)))) (|HasCategory| (-906 |#1|) (QUOTE (-147))) (|HasCategory| (-906 |#1|) (QUOTE (-368))) (|HasCategory| (-906 |#1|) (QUOTE (-145)))) +(-352 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) -((-4037 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144)))) -(-352 GF |extdeg|) +((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) +((-4032 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) +(-353 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) -((-4037 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144)))) -(-353 |p| |n|) +((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) +((-4032 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) +(-354 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) -((-4037 (|HasCategory| (-905 |#1|) (QUOTE (-144))) (|HasCategory| (-905 |#1|) (QUOTE (-367)))) (|HasCategory| (-905 |#1|) (QUOTE (-146))) (|HasCategory| (-905 |#1|) (QUOTE (-367))) (|HasCategory| (-905 |#1|) (QUOTE (-144)))) -(-354 GF |defpol|) +((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) +((-4032 (|HasCategory| (-906 |#1|) (QUOTE (-145))) (|HasCategory| (-906 |#1|) (QUOTE (-368)))) (|HasCategory| (-906 |#1|) (QUOTE (-147))) (|HasCategory| (-906 |#1|) (QUOTE (-368))) (|HasCategory| (-906 |#1|) (QUOTE (-145)))) +(-355 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) -((-4037 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144)))) -(-355 -3196 GF) +((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) +((-4032 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) +(-356 -3191 GF) ((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-356 GF) +(-357 GF) ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-357 -3196 FP FPP) +(-358 -3191 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-358 GF |n|) +(-359 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) -((-4037 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144)))) -(-359 R |ls|) +((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) +((-4032 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) +(-360 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL -(-360 S) +(-361 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4400 . T)) +((-4404 . T)) NIL -(-361 S) +(-362 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) NIL NIL -(-362) +(-363) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-363 |Name| S) +(-364 |Name| S) ((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) NIL NIL -(-364 S) +(-365 S) ((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) NIL NIL -(-365 S R) +(-366 S R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-554)))) -(-366 R) +((|HasCategory| |#2| (QUOTE (-555)))) +(-367 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4400 |has| |#1| (-554)) (-4398 . T) (-4397 . T)) +((-4404 |has| |#1| (-555)) (-4402 . T) (-4401 . T)) NIL -(-367) +(-368) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) NIL NIL -(-368 S R UP) +(-369 S R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) NIL -((|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-362)))) -(-369 R UP) +((|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-363)))) +(-370 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4397 . T) (-4398 . T) (-4400 . T)) +((-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-370 S A R B) +(-371 S A R B) ((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) NIL NIL -(-371 A S) +(-372 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4404)) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1092)))) -(-372 S) +((|HasAttribute| |#1| (QUOTE -4408)) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1093)))) +(-373 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4403 . T)) +((-4407 . T)) NIL -(-373 |VarSet| R) +(-374 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4398 . T) (-4397 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4402 . T) (-4401 . T)) NIL -(-374 S V) +(-375 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) NIL NIL -(-375 S R) +(-376 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) -(-376 R) +((|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) +(-377 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) -((-4400 . T)) +((-4404 . T)) NIL -(-377 |Par|) +(-378 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) NIL NIL -(-378) +(-379) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4386 . T) (-4394 . T) (-1406 . T) (-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4390 . T) (-4398 . T) (-1403 . T) (-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-379 |Par|) +(-380 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) NIL NIL -(-380 R S) +(-381 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4398 . T) (-4397 . T)) -((|HasCategory| |#1| (QUOTE (-171)))) -(-381 R |Basis|) +((-4402 . T) (-4401 . T)) +((|HasCategory| |#1| (QUOTE (-172)))) +(-382 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4398 . T) (-4397 . T)) +((-4402 . T) (-4401 . T)) NIL -(-382) +(-383) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) NIL NIL -(-383) +(-384) ((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-384 R S) +(-385 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4398 . T) (-4397 . T)) -((|HasCategory| |#1| (QUOTE (-171)))) -(-385 S) +((-4402 . T) (-4401 . T)) +((|HasCategory| |#1| (QUOTE (-172)))) +(-386 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL -((|HasCategory| |#1| (QUOTE (-845)))) -(-386) +((|HasCategory| |#1| (QUOTE (-846)))) +(-387) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-387) +(-388) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) NIL NIL -(-388) +(-389) ((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,{}pref,{}e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,{}n,{}e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used."))) NIL NIL -(-389 |n| |class| R) +(-390 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4398 . T) (-4397 . T)) +((-4402 . T) (-4401 . T)) NIL -(-390) +(-391) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-391 -3196 UP UPUP R) +(-392 -3191 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL -(-392 S) +(-393 S) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format."))) NIL NIL -(-393) +(-394) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-394) +(-395) ((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) NIL NIL -(-395) +(-396) ((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-396) +(-397) ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}"))) NIL NIL -(-397 -3253 |returnType| -3433 |symbols|) +(-398 -3348 |returnType| -4093 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-398 -3196 UP) +(-399 -3191 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL -(-399 R) +(-400 R) ((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) NIL NIL -(-400 S) +(-401 S) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) NIL NIL -(-401) +(-402) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-402 S) +(-403 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4386)) (|HasAttribute| |#1| (QUOTE -4394))) -(-403) +((|HasAttribute| |#1| (QUOTE -4390)) (|HasAttribute| |#1| (QUOTE -4398))) +(-404) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-1406 . T) (-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-1403 . T) (-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-404 R S) +(-405 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL -(-405 A B) +(-406 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL NIL -(-406 S) +(-407 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4390 -12 (|has| |#1| (-6 -4401)) (|has| |#1| (-451)) (|has| |#1| (-6 -4390))) (-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| |#1| (QUOTE (-904))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-815))) (-4037 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-845)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-823))))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-823))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-544))) (-12 (|HasAttribute| |#1| (QUOTE -4401)) (|HasAttribute| |#1| (QUOTE -4390)) (|HasCategory| |#1| (QUOTE (-451)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) -(-407 S R UP) +((-4394 -12 (|has| |#1| (-6 -4405)) (|has| |#1| (-452)) (|has| |#1| (-6 -4394))) (-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| |#1| (QUOTE (-905))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-816))) (-4032 (|HasCategory| |#1| (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-846)))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-1144))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824))))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824)))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-545))) (-12 (|HasAttribute| |#1| (QUOTE -4405)) (|HasAttribute| |#1| (QUOTE -4394)) (|HasCategory| |#1| (QUOTE (-452)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-408 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL -(-408 R UP) +(-409 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4397 . T) (-4398 . T) (-4400 . T)) +((-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-409 A S) +(-410 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) -(-410 S) +((|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) +(-411 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-411 R1 F1 U1 A1 R2 F2 U2 A2) +(-412 R1 F1 U1 A1 R2 F2 U2 A2) ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}"))) NIL NIL -(-412 R -3196 UP A) +(-413 R -3191 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}."))) -((-4400 . T)) +((-4404 . T)) NIL -(-413 R -3196 UP A |ibasis|) +(-414 R -3191 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}."))) NIL -((|HasCategory| |#4| (LIST (QUOTE -1033) (|devaluate| |#2|)))) -(-414 AR R AS S) +((|HasCategory| |#4| (LIST (QUOTE -1034) (|devaluate| |#2|)))) +(-415 AR R AS S) ((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL NIL -(-415 S R) +(-416 S R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-362)))) -(-416 R) +((|HasCategory| |#2| (QUOTE (-363)))) +(-417 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4400 |has| |#1| (-554)) (-4398 . T) (-4397 . T)) +((-4404 |has| |#1| (-555)) (-4402 . T) (-4401 . T)) NIL -(-417 R) -((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| |#1| (LIST (QUOTE -513) (QUOTE (-1168)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -308) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -285) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-1211))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-1211)))) (|HasCategory| |#1| (QUOTE (-1017))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-451)))) (-418 R) +((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) +((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -309) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -286) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-1212))) (-4032 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-1212)))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-452)))) +(-419 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}."))) NIL NIL -(-419 R FE |x| |cen|) +(-420 R FE |x| |cen|) ((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) NIL NIL -(-420 R A S B) +(-421 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) NIL NIL -(-421 R FE |Expon| UPS TRAN |x|) +(-422 R FE |Expon| UPS TRAN |x|) ((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series"))) NIL NIL -(-422 S A R B) +(-423 S A R B) ((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL NIL -(-423 A S) +(-424 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-367)))) -(-424 S) +((|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-368)))) +(-425 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4403 . T) (-4393 . T) (-4404 . T)) +((-4407 . T) (-4397 . T) (-4408 . T)) NIL -(-425 R -3196) +(-426 R -3191) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL -(-426 R E) +(-427 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4390 -12 (|has| |#1| (-6 -4390)) (|has| |#2| (-6 -4390))) (-4397 . T) (-4398 . T) (-4400 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4390)) (|HasAttribute| |#2| (QUOTE -4390)))) -(-427 R -3196) +((-4394 -12 (|has| |#1| (-6 -4394)) (|has| |#2| (-6 -4394))) (-4401 . T) (-4402 . T) (-4404 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4394)) (|HasAttribute| |#2| (QUOTE -4394)))) +(-428 R -3191) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-428 S R) +(-429 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-472))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) -(-429 R) +((|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) +(-430 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4400 -4037 (|has| |#1| (-1044)) (|has| |#1| (-472))) (-4398 |has| |#1| (-171)) (-4397 |has| |#1| (-171)) ((-4405 "*") |has| |#1| (-554)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-554)) (-4395 |has| |#1| (-554))) +((-4404 -4032 (|has| |#1| (-1045)) (|has| |#1| (-473))) (-4402 |has| |#1| (-172)) (-4401 |has| |#1| (-172)) ((-4409 "*") |has| |#1| (-555)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-555)) (-4399 |has| |#1| (-555))) NIL -(-430 R -3196) +(-431 R -3191) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-431 R -3196) +(-432 R -3191) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-432 R -3196) +(-433 R -3191) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL -(-433) +(-434) ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-434 R -3196 UP) +(-435 R -3191 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-48))))) -(-435) +((|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-48))))) +(-436) ((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL NIL -(-436) +(-437) ((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type"))) NIL NIL -(-437 |f|) +(-438 |f|) ((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-438) +(-439) ((|constructor| (NIL "This is the datatype for exported function descriptor. A function descriptor consists of: (1) a signature; (2) a predicate; and (3) a slot into the scope object.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of function described by \\spad{x}."))) NIL NIL -(-439) +(-440) ((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) NIL NIL -(-440) +(-441) ((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-441 UP) +(-442 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-442 R UP -3196) +(-443 R UP -3191) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL -(-443 R UP) +(-444 R UP) ((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,{}f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,{}f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,{}c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,{}c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1)."))) NIL NIL -(-444 R) +(-445 R) ((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,{}r)} returns the binomial coefficient \\spad{C(n,{}r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation."))) NIL -((|HasCategory| |#1| (QUOTE (-403)))) -(-445) +((|HasCategory| |#1| (QUOTE (-404)))) +(-446) ((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(\\spad{zi})} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(\\spad{zi})} produces the complete factorization of the complex integer \\spad{zi}."))) NIL NIL -(-446 |Dom| |Expon| |VarSet| |Dpol|) +(-447 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) NIL NIL -(-447 |Dom| |Expon| |VarSet| |Dpol|) +(-448 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions,{} info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,{}info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) NIL NIL -(-448 |Dom| |Expon| |VarSet| |Dpol|) +(-449 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) NIL NIL -(-449 |Dom| |Expon| |VarSet| |Dpol|) +(-450 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) NIL -((|HasCategory| |#1| (QUOTE (-362)))) -(-450 S) +((|HasCategory| |#1| (QUOTE (-363)))) +(-451 S) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) NIL NIL -(-451) +(-452) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-452 R |n| |ls| |gamma|) +(-453 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4400 |has| (-406 (-947 |#1|)) (-554)) (-4398 . T) (-4397 . T)) -((|HasCategory| (-406 (-947 |#1|)) (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| (-406 (-947 |#1|)) (QUOTE (-554)))) -(-453 |vl| R E) +((-4404 |has| (-407 (-948 |#1|)) (-555)) (-4402 . T) (-4401 . T)) +((|HasCategory| (-407 (-948 |#1|)) (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| (-407 (-948 |#1|)) (QUOTE (-555)))) +(-454 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4405 "*") |has| |#2| (-171)) (-4396 |has| |#2| (-554)) (-4401 |has| |#2| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) -((|HasCategory| |#2| (QUOTE (-904))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-554)))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4401)) (|HasCategory| |#2| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-144))))) -(-454 R BP) +(((-4409 "*") |has| |#2| (-172)) (-4400 |has| |#2| (-555)) (-4405 |has| |#2| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T)) +((|HasCategory| |#2| (QUOTE (-905))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4032 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4032 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4405)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145))))) +(-455 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL NIL -(-455 OV E S R P) +(-456 OV E S R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-456 E OV R P) +(-457 E OV R P) ((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}"))) NIL NIL -(-457 R) +(-458 R) ((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}"))) NIL NIL -(-458 R FE) +(-459 R FE) ((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),{}n,{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(a(n),{}n,{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n=n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}."))) NIL NIL -(-459 RP TP) +(-460 RP TP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,{}pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,{}lfact,{}prime,{}bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,{}lfacts,{}prime,{}bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done ."))) NIL NIL -(-460 |vl| R IS E |ff| P) +(-461 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4398 . T) (-4397 . T)) +((-4402 . T) (-4401 . T)) NIL -(-461 E V R P Q) +(-462 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) NIL NIL -(-462 R E |VarSet| P) +(-463 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4404 . T) (-4403 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-857))))) -(-463 S R E) +((-4408 . T) (-4407 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-858))))) +(-464 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-464 R E) +(-465 R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-465) +(-466) ((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,{}n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,{}n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect."))) NIL NIL -(-466) +(-467) ((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done."))) NIL NIL -(-467) +(-468) ((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,{}lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(\\spad{gi})} returns the indicated graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(\\spad{gi},{}pt,{}pal)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(\\spad{gi},{}pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{\\spad{gi}},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}pt,{}pal1,{}pal2,{}ps)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(\\spad{gi},{}pt)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}lp,{}pal1,{}pal2,{}p)} sets the components of the graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{\\spad{gi}} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(\\spad{gi},{}lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{\\spad{gi}}.") (((|List| (|Float|)) $) "\\spad{units(\\spad{gi})} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(\\spad{gi},{}lr)} modifies the list of ranges for the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{\\spad{gi}}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(\\spad{gi})} returns the list of ranges of the point components from the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(\\spad{gi})} returns the process ID of the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(\\spad{gi})} returns the list of lists of points which compose the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp,{}lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(\\spad{gi})} takes the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{\\spad{gi}} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) NIL NIL -(-468 S R E) +(-469 S R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-469 R E) +(-470 R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-470 |lv| -3196 R) +(-471 |lv| -3191 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL -(-471 S) +(-472 S) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) NIL NIL -(-472) +(-473) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4400 . T)) +((-4404 . T)) NIL -(-473 |Coef| |var| |cen|) +(-474 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-362)) (-4395 |has| |#1| (-362)) (-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-562)) (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-362))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasSignature| |#1| (LIST (QUOTE -4053) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -3081) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1401) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|))))))) -(-474 |Key| |Entry| |Tbl| |dent|) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-563)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasSignature| |#1| (LIST (QUOTE -1693) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (-4032 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -3698) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2606) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|))))))) +(-475 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4404 . T)) -((-12 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2319) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2693) (|devaluate| |#2|)))))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-845))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092)))) -(-475 R E V P) +((-4408 . T)) +((-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2557) (|devaluate| |#2|)))))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-846))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093)))) +(-476 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4404 . T) (-4403 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-857))))) -(-476) +((-4408 . T) (-4407 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-858))))) +(-477) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}."))) -((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-477) +(-478) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) NIL NIL -(-478 |Key| |Entry| |hashfn|) +(-479 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4403 . T) (-4404 . T)) -((-12 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2319) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2693) (|devaluate| |#2|)))))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1092))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857))))) -(-479) +((-4407 . T) (-4408 . T)) +((-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2557) (|devaluate| |#2|)))))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1093))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858))))) +(-480) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL -(-480 |vl| R) +(-481 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4405 "*") |has| |#2| (-171)) (-4396 |has| |#2| (-554)) (-4401 |has| |#2| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) -((|HasCategory| |#2| (QUOTE (-904))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-554)))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4401)) (|HasCategory| |#2| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-144))))) -(-481 -2240 S) +(((-4409 "*") |has| |#2| (-172)) (-4400 |has| |#2| (-555)) (-4405 |has| |#2| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T)) +((|HasCategory| |#2| (QUOTE (-905))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4032 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4032 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4405)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145))))) +(-482 -3304 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4397 |has| |#2| (-1044)) (-4398 |has| |#2| (-1044)) (-4400 |has| |#2| (-6 -4400)) ((-4405 "*") |has| |#2| (-171)) (-4403 . T)) -((-4037 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (QUOTE (-362))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-788))) (-4037 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-171))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1044)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-171)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-232)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-721)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-788)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-843)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1044))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (|HasCategory| (-562) (QUOTE (-845))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-4037 (|HasCategory| |#2| (QUOTE (-1044))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092)))) (|HasAttribute| |#2| (QUOTE -4400)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))))) -(-482) +((-4401 |has| |#2| (-1045)) (-4402 |has| |#2| (-1045)) (-4404 |has| |#2| (-6 -4404)) ((-4409 "*") |has| |#2| (-172)) (-4407 . T)) +((-4032 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-4032 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-363))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-789))) (-4032 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-172))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093))))) (-4032 (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-4032 (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| (-563) (QUOTE (-846))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-4032 (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093)))) (|HasAttribute| |#2| (QUOTE -4404)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))))) +(-483) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|Identifier|))) "\\spad{headAst(f,{}[x1,{}..,{}xn])} constructs a function definition header."))) NIL NIL -(-483 S) +(-484 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4403 . T) (-4404 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) -(-484 -3196 UP UPUP R) +((-4407 . T) (-4408 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) +(-485 -3191 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL -(-485 BP) +(-486 BP) ((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,{}..,{}ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,{}..,{}fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,{}..,{}fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,{}..,{}fk])} = \\spad{gcd} of the polynomials \\spad{fi}."))) NIL NIL -(-486) +(-487) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) -((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| (-562) (QUOTE (-904))) (|HasCategory| (-562) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| (-562) (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-146))) (|HasCategory| (-562) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-562) (QUOTE (-1017))) (|HasCategory| (-562) (QUOTE (-815))) (-4037 (|HasCategory| (-562) (QUOTE (-815))) (|HasCategory| (-562) (QUOTE (-845)))) (|HasCategory| (-562) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| (-562) (QUOTE (-1143))) (|HasCategory| (-562) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| (-562) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| (-562) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| (-562) (QUOTE (-232))) (|HasCategory| (-562) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-562) (LIST (QUOTE -513) (QUOTE (-1168)) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -308) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -285) (QUOTE (-562)) (QUOTE (-562)))) (|HasCategory| (-562) (QUOTE (-306))) (|HasCategory| (-562) (QUOTE (-544))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| (-562) (LIST (QUOTE -635) (QUOTE (-562)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-904)))) (|HasCategory| (-562) (QUOTE (-144))))) -(-487 A S) +((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| (-563) (QUOTE (-905))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-563) (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-147))) (|HasCategory| (-563) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-563) (QUOTE (-1018))) (|HasCategory| (-563) (QUOTE (-816))) (-4032 (|HasCategory| (-563) (QUOTE (-816))) (|HasCategory| (-563) (QUOTE (-846)))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-1144))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-563) (QUOTE (-233))) (|HasCategory| (-563) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-563) (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -309) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -286) (QUOTE (-563)) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-307))) (|HasCategory| (-563) (QUOTE (-545))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-563) (LIST (QUOTE -636) (QUOTE (-563)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (|HasCategory| (-563) (QUOTE (-145))))) +(-488 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4403)) (|HasAttribute| |#1| (QUOTE -4404)) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) -(-488 S) +((|HasAttribute| |#1| (QUOTE -4407)) (|HasAttribute| |#1| (QUOTE -4408)) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) +(-489 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL NIL -(-489 S) +(-490 S) ((|constructor| (NIL "A is homotopic to \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain \\spad{B},{} and nay element of domain \\spad{B} can be automatically converted into an A."))) NIL NIL -(-490) +(-491) ((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name \\spad{`n'}."))) NIL NIL -(-491 S) +(-492 S) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-492) +(-493) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-493 -3196 UP |AlExt| |AlPol|) +(-494 -3191 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL -(-494) +(-495) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| $ (QUOTE (-1044))) (|HasCategory| $ (LIST (QUOTE -1033) (QUOTE (-562))))) -(-495 S |mn|) +((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| $ (QUOTE (-1045))) (|HasCategory| $ (LIST (QUOTE -1034) (QUOTE (-563))))) +(-496 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) -((-4404 . T) (-4403 . T)) -((-4037 (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) -(-496 R |mnRow| |mnCol|) +((-4408 . T) (-4407 . T)) +((-4032 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4032 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +(-497 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4403 . T) (-4404 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) -(-497 K R UP) +((-4407 . T) (-4408 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) +(-498 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented"))) NIL NIL -(-498 R UP -3196) +(-499 R UP -3191) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-499 |mn|) +(-500 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4404 . T) (-4403 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1092))) (|HasCategory| (-112) (LIST (QUOTE -308) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-112) (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| (-112) (QUOTE (-1092))) (|HasCategory| (-112) (LIST (QUOTE -609) (QUOTE (-857))))) -(-500 K R UP L) +((-4408 . T) (-4407 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1093))) (|HasCategory| (-112) (LIST (QUOTE -309) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-112) (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-112) (QUOTE (-1093))) (|HasCategory| (-112) (LIST (QUOTE -610) (QUOTE (-858))))) +(-501 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL NIL -(-501) +(-502) ((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur when using it.")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,{}s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}."))) NIL NIL -(-502 R Q A B) +(-503 R Q A B) ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-503 -3196 |Expon| |VarSet| |DPoly|) +(-504 -3191 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -610) (QUOTE (-1168))))) -(-504 |vl| |nv|) +((|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-1169))))) +(-505 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,{}lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL NIL -(-505) +(-506) ((|constructor| (NIL "This domain represents identifer AST. This domain differs from Symbol in that it does not support any form of scripting. A value of this domain is a plain old identifier. \\blankline"))) NIL NIL -(-506 A S) +(-507 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-507 A S) +(-508 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL NIL -(-508 A S) +(-509 A S) ((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,{}s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL NIL -(-509 A S) +(-510 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-510 A S) +(-511 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-511 A S) +(-512 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) NIL NIL -(-512 S A B) +(-513 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-513 A B) +(-514 A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-514 S E |un|) +(-515 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-787)))) -(-515 S |mn|) +((|HasCategory| |#2| (QUOTE (-788)))) +(-516 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4404 . T) (-4403 . T)) -((-4037 (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) -(-516) +((-4408 . T) (-4407 . T)) +((-4032 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4032 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +(-517) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL -(-517 |p| |n|) +(-518 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) -((-4037 (|HasCategory| (-579 |#1|) (QUOTE (-144))) (|HasCategory| (-579 |#1|) (QUOTE (-367)))) (|HasCategory| (-579 |#1|) (QUOTE (-146))) (|HasCategory| (-579 |#1|) (QUOTE (-367))) (|HasCategory| (-579 |#1|) (QUOTE (-144)))) -(-518 R |mnRow| |mnCol| |Row| |Col|) +((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) +((-4032 (|HasCategory| (-580 |#1|) (QUOTE (-145))) (|HasCategory| (-580 |#1|) (QUOTE (-368)))) (|HasCategory| (-580 |#1|) (QUOTE (-147))) (|HasCategory| (-580 |#1|) (QUOTE (-368))) (|HasCategory| (-580 |#1|) (QUOTE (-145)))) +(-519 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4403 . T) (-4404 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) -(-519 S |mn|) +((-4407 . T) (-4408 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) +(-520 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4404 . T) (-4403 . T)) -((-4037 (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) -(-520 R |Row| |Col| M) +((-4408 . T) (-4407 . T)) +((-4032 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4032 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +(-521 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4404))) -(-521 R |Row| |Col| M QF |Row2| |Col2| M2) +((|HasAttribute| |#3| (QUOTE -4408))) +(-522 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4404))) -(-522 R |mnRow| |mnCol|) +((|HasAttribute| |#7| (QUOTE -4408))) +(-523 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4403 . T) (-4404 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-554))) (|HasAttribute| |#1| (QUOTE (-4405 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) -(-523) +((-4407 . T) (-4408 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-555))) (|HasAttribute| |#1| (QUOTE (-4409 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) +(-524) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL NIL -(-524) +(-525) ((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|SpadAst|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Symbol|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'"))) NIL NIL -(-525 S) +(-526 S) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,{}b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-526) +(-527) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,{}b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-527 GF) +(-528 GF) ((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,{}n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,{}n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,{}e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,{}e,{}d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,{}e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,{}n,{}k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,{}...,{}vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,{}m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,{}p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}."))) NIL NIL -(-528) +(-529) ((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file \\spad{`f'}.")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(ifile)} holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) NIL NIL -(-529 R) +(-530 R) ((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}."))) NIL NIL -(-530 |Varset|) +(-531 |Varset|) ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL NIL -(-531 K -3196 |Par|) +(-532 K -3191 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL -(-532) +(-533) NIL NIL NIL -(-533) +(-534) ((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) NIL NIL -(-534 R) +(-535 R) ((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) NIL NIL -(-535) +(-536) ((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) NIL NIL -(-536 |Coef| UTS) +(-537 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-537 K -3196 |Par|) +(-538 K -3191 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL -(-538 R BP |pMod| |nextMod|) +(-539 R BP |pMod| |nextMod|) ((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,{}p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,{}f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) NIL NIL -(-539 OV E R P) +(-540 OV E R P) ((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}."))) NIL NIL -(-540 K UP |Coef| UTS) +(-541 K UP |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-541 |Coef| UTS) +(-542 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-542 R UP) +(-543 R UP) ((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented"))) NIL NIL -(-543 S) +(-544 S) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) NIL NIL -(-544) +(-545) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4401 . T) (-4402 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4405 . T) (-4406 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-545) +(-546) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits."))) NIL NIL -(-546) +(-547) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 32 bits."))) NIL NIL -(-547) +(-548) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 8 bits."))) NIL NIL -(-548 |Key| |Entry| |addDom|) +(-549 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4403 . T) (-4404 . T)) -((-12 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2319) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2693) (|devaluate| |#2|)))))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1092))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857))))) -(-549 R -3196) +((-4407 . T) (-4408 . T)) +((-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2557) (|devaluate| |#2|)))))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1093))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858))))) +(-550 R -3191) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-550 R0 -3196 UP UPUP R) +(-551 R0 -3191 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL -(-551) +(-552) ((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,{}m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,{}m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})"))) NIL NIL -(-552 R) +(-553 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-1406 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-1403 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-553 S) +(-554 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) NIL NIL -(-554) +(-555) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-555 R -3196) +(-556 R -3191) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL -(-556 I) +(-557 I) ((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}"))) NIL NIL -(-557) +(-558) ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-558 R -3196 L) +(-559 R -3191 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -650) (|devaluate| |#2|)))) -(-559) +((|HasCategory| |#3| (LIST (QUOTE -651) (|devaluate| |#2|)))) +(-560) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-560 -3196 UP UPUP R) +(-561 -3191 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-561 -3196 UP) +(-562 -3191 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL -(-562) +(-563) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}."))) -((-4385 . T) (-4391 . T) (-4395 . T) (-4390 . T) (-4401 . T) (-4402 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4389 . T) (-4395 . T) (-4399 . T) (-4394 . T) (-4405 . T) (-4406 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-563) +(-564) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-564 R -3196 L) +(-565 R -3191 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -650) (|devaluate| |#2|)))) -(-565 R -3196) +((|HasCategory| |#3| (LIST (QUOTE -651) (|devaluate| |#2|)))) +(-566 R -3191) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-1131)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-625))))) -(-566 -3196 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-626))))) +(-567 -3191 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL -(-567 S) +(-568 S) ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-568 -3196) +(-569 -3191) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL -(-569 R) +(-570 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-1406 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-1403 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-570) +(-571) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-571 R -3196) +(-572 R -3191) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-283))) (|HasCategory| |#2| (QUOTE (-625))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-1168))))) (-12 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-283)))) (|HasCategory| |#1| (QUOTE (-554)))) -(-572 -3196 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-284))) (|HasCategory| |#2| (QUOTE (-626))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-284)))) (|HasCategory| |#1| (QUOTE (-555)))) +(-573 -3191 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-573 R -3196) +(-574 R -3191) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL -(-574) +(-575) ((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations."))) NIL NIL -(-575) +(-576) ((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if \\spad{`f'} is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by \\spad{`f'} as a binary file."))) NIL NIL -(-576) +(-577) ((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|bothWays| (($) "`bothWays' indicates that an IO conduit is for both input and output.")) (|output| (($) "`output' indicates that an IO conduit is for output")) (|input| (($) "`input' indicates that an IO conduit is for input."))) NIL NIL -(-577) +(-578) ((|constructor| (NIL "This domain provides representation for ARPA Internet IP4 addresses.")) (|resolve| (((|Maybe| $) (|Hostname|)) "\\spad{resolve(h)} returns the IP4 address of host \\spad{`h'}.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address \\spad{`x'}.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'."))) NIL NIL -(-578 |p| |unBalanced?|) +(-579 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-579 |p|) +(-580 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-144))) (|HasCategory| $ (QUOTE (-367)))) -(-580) +((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-368)))) +(-581) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-581 R -3196) +(-582 R -3191) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-582 E -3196) +(-583 E -3191) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented"))) NIL NIL -(-583 -3196) +(-584 -3191) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4398 . T) (-4397 . T)) -((|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-1168))))) -(-584 I) +((-4402 . T) (-4401 . T)) +((|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-1169))))) +(-585 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL -(-585 GF) +(-586 GF) ((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) NIL NIL -(-586 R) +(-587 R) ((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL -((|HasCategory| |#1| (QUOTE (-146)))) -(-587) +((|HasCategory| |#1| (QUOTE (-147)))) +(-588) ((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,{}2,{}...,{}n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,{}3,{}3,{}1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,{}listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,{}\\spad{pi})} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em \\spad{pi}} in the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|Integer|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) NIL NIL -(-588 R E V P TS) +(-589 R E V P TS) ((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,{}lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,{}univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL -(-589) +(-590) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'."))) NIL NIL -(-590 |mn|) +(-591 |mn|) ((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings"))) -((-4404 . T) (-4403 . T)) -((-4037 (-12 (|HasCategory| (-143) (QUOTE (-845))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (-12 (|HasCategory| (-143) (QUOTE (-1092))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (-4037 (|HasCategory| (-143) (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| (-143) (QUOTE (-1092))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (|HasCategory| (-143) (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| (-143) (QUOTE (-845))) (|HasCategory| (-143) (QUOTE (-1092)))) (|HasCategory| (-143) (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| (-143) (QUOTE (-1092))) (|HasCategory| (-143) (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| (-143) (QUOTE (-1092))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) -(-591 E V R P) +((-4408 . T) (-4407 . T)) +((-4032 (-12 (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (-4032 (|HasCategory| (-144) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-536)))) (-4032 (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-144) (QUOTE (-1093)))) (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) +(-592 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-592 |Coef|) -((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-562)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-562)) (|devaluate| |#1|)))) (|HasCategory| (-562) (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -4053) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-562)))))) (-593 |Coef|) +((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|)))) (|HasCategory| (-563) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -1693) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563)))))) +(-594 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -((-4398 |has| |#1| (-554)) (-4397 |has| |#1| (-554)) ((-4405 "*") |has| |#1| (-554)) (-4396 |has| |#1| (-554)) (-4400 . T)) -((|HasCategory| |#1| (QUOTE (-554)))) -(-594 A B) +((-4402 |has| |#1| (-555)) (-4401 |has| |#1| (-555)) ((-4409 "*") |has| |#1| (-555)) (-4400 |has| |#1| (-555)) (-4404 . T)) +((|HasCategory| |#1| (QUOTE (-555)))) +(-595 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}."))) NIL NIL -(-595 A B C) +(-596 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented"))) NIL NIL -(-596 R -3196 FG) +(-597 R -3191 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-597 S) +(-598 S) ((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}s)} returns \\spad{[s,{}f(s),{}f(f(s)),{}...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL -(-598 R |mn|) +(-599 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4404 . T) (-4403 . T)) -((-4037 (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-721))) (|HasCategory| |#1| (QUOTE (-1044))) (-12 (|HasCategory| |#1| (QUOTE (-997))) (|HasCategory| |#1| (QUOTE (-1044)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) -(-599 S |Index| |Entry|) +((-4408 . T) (-4407 . T)) +((-4032 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4032 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +(-600 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4404)) (|HasCategory| |#2| (QUOTE (-845))) (|HasAttribute| |#1| (QUOTE -4403)) (|HasCategory| |#3| (QUOTE (-1092)))) -(-600 |Index| |Entry|) +((|HasAttribute| |#1| (QUOTE -4408)) (|HasCategory| |#2| (QUOTE (-846))) (|HasAttribute| |#1| (QUOTE -4407)) (|HasCategory| |#3| (QUOTE (-1093)))) +(-601 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL NIL -(-601) +(-602) ((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes."))) NIL NIL -(-602) +(-603) ((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join \\spad{`x'}.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'."))) NIL NIL -(-603 R A) +(-604 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4400 -4037 (-2245 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))) (-4398 . T) (-4397 . T)) -((-4037 (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|)))) -(-604 |Entry|) +((-4404 -4032 (-2190 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))) (-4402 . T) (-4401 . T)) +((-4032 (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) +(-605 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4403 . T) (-4404 . T)) -((-12 (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2319) (QUOTE (-1150))) (LIST (QUOTE |:|) (QUOTE -2693) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| (-1150) (QUOTE (-845))) (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (LIST (QUOTE -609) (QUOTE (-857))))) -(-605 S |Key| |Entry|) +((-4407 . T) (-4408 . T)) +((-12 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (QUOTE (-1151))) (LIST (QUOTE |:|) (QUOTE -2557) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| (-1151) (QUOTE (-846))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (LIST (QUOTE -610) (QUOTE (-858))))) +(-606 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-606 |Key| |Entry|) +(-607 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4404 . T)) +((-4408 . T)) NIL -(-607 R S) +(-608 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL -(-608 S) +(-609 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) -(-609 S) +((|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) +(-610 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-610 S) +(-611 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-611 -3196 UP) +(-612 -3191 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-612 S) +(-613 S) ((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms \\spad{`s'} into an element of `\\%'."))) NIL NIL -(-613) +(-614) ((|constructor| (NIL "This domain implements Kleene\\spad{'s} 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of \\spad{`x'} is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of \\spad{`x'} is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of \\spad{`x'} is `false'")) (|true| (($) "the definite truth value")) (|unknown| (($) "the indefinite `unknown'")) (|false| (($) "the definite falsehood value"))) NIL NIL -(-614 S) +(-615 S) ((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms \\spad{`s'} into an element of `\\%'."))) NIL NIL -(-615 S R) +(-616 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-616 R) +(-617 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4400 . T)) +((-4404 . T)) NIL -(-617 A R S) +(-618 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| |#1| (QUOTE (-843)))) -(-618 R -3196) +((-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| |#1| (QUOTE (-844)))) +(-619 R -3191) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform."))) NIL NIL -(-619 R UP) +(-620 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4398 . T) (-4397 . T) ((-4405 "*") . T) (-4396 . T) (-4400 . T)) -((|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562))))) -(-620 R E V P TS ST) +((-4402 . T) (-4401 . T) ((-4409 "*") . T) (-4400 . T) (-4404 . T)) +((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) +(-621 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) NIL NIL -(-621 OV E Z P) +(-622 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,{}unilist,{}plead,{}vl,{}lvar,{}lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod,{} numFacts,{} evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-622) +(-623) ((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'."))) NIL NIL -(-623 |VarSet| R |Order|) +(-624 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4400 . T)) +((-4404 . T)) NIL -(-624 R |ls|) +(-625 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) NIL NIL -(-625) +(-626) ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-626 R -3196) +(-627 R -3191) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-627 |lv| -3196) +(-628 |lv| -3191) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-628) +(-629) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4404 . T)) -((-12 (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2319) (QUOTE (-1150))) (LIST (QUOTE |:|) (QUOTE -2693) (QUOTE (-52))))))) (-4037 (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (QUOTE (-1092))) (|HasCategory| (-52) (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-52) (QUOTE (-1092))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| (-52) (QUOTE (-1092))) (|HasCategory| (-52) (LIST (QUOTE -308) (QUOTE (-52))))) (|HasCategory| (-1150) (QUOTE (-845))) (-4037 (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-52) (QUOTE (-1092))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (QUOTE (-1092)))) -(-629 S R) +((-4408 . T)) +((-12 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (QUOTE (-1151))) (LIST (QUOTE |:|) (QUOTE -2557) (QUOTE (-52))))))) (-4032 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (QUOTE (-1093))) (|HasCategory| (-52) (QUOTE (-1093)))) (-4032 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-1151) (QUOTE (-846))) (-4032 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (QUOTE (-1093)))) +(-630 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL -((|HasCategory| |#2| (QUOTE (-362)))) -(-630 R) +((|HasCategory| |#2| (QUOTE (-363)))) +(-631 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4398 . T) (-4397 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4402 . T) (-4401 . T)) NIL -(-631 R A) +(-632 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4400 -4037 (-2245 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))) (-4398 . T) (-4397 . T)) -((-4037 (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|)))) -(-632 R FE) +((-4404 -4032 (-2190 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))) (-4402 . T) (-4401 . T)) +((-4032 (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) +(-633 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}."))) NIL NIL -(-633 R) +(-634 R) ((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-634 S R) +(-635 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-2234 (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-362)))) -(-635 R) +((-2176 (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-363)))) +(-636 R) ((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}."))) -((-4400 . T)) +((-4404 . T)) NIL -(-636 A B) +(-637 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-637 A B) +(-638 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}."))) NIL NIL -(-638 A B C) +(-639 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,{}list1,{} u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,{}[1,{}2,{}3],{}[4,{}5,{}6]) = [1/4,{}2/4,{}1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-639 S) +(-640 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) -((-4404 . T) (-4403 . T)) -((-4037 (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) -(-640 T$) +((-4408 . T) (-4407 . T)) +((-4032 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4032 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-824))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +(-641 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL -(-641 S) +(-642 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4403 . T) (-4404 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) -(-642 R) +((-4407 . T) (-4408 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) +(-643 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL NIL -(-643 S E |un|) +(-644 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,{}y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x,{} y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s,{} e,{} x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s,{} a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a,{} s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l,{} n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l,{} n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s,{} e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l,{} fop,{} fexp,{} unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a,{} b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a,{} n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-644 A S) +(-645 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4404))) -(-645 S) +((|HasAttribute| |#1| (QUOTE -4408))) +(-646 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-646 R -3196 L) +(-647 R -3191 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-647 A) +(-648 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-362)))) -(-648 A M) +((-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363)))) +(-649 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-362)))) -(-649 S A) +((-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363)))) +(-650 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL -((|HasCategory| |#2| (QUOTE (-362)))) -(-650 A) +((|HasCategory| |#2| (QUOTE (-363)))) +(-651 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4397 . T) (-4398 . T) (-4400 . T)) +((-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-651 -3196 UP) +(-652 -3191 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-652 A -3679) +(-653 A -3397) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-362)))) -(-653 A L) +((-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363)))) +(-654 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-654 S) +(-655 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-655) +(-656) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-656 M R S) +(-657 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4398 . T) (-4397 . T)) -((|HasCategory| |#1| (QUOTE (-786)))) -(-657 R) +((-4402 . T) (-4401 . T)) +((|HasCategory| |#1| (QUOTE (-787)))) +(-658 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-658 |VarSet| R) +(-659 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4398 . T) (-4397 . T)) -((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-171)))) -(-659 A S) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4402 . T) (-4401 . T)) +((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-172)))) +(-660 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-660 S) +(-661 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4404 . T) (-4403 . T)) +((-4408 . T) (-4407 . T)) NIL -(-661 -3196) +(-662 -3191) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-662 -3196 |Row| |Col| M) +(-663 -3191 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-663 R E OV P) +(-664 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,{}lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-664 |n| R) +(-665 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4400 . T) (-4403 . T) (-4397 . T) (-4398 . T)) -((|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE (-4405 "*"))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-554))) (-4037 (|HasAttribute| |#2| (QUOTE (-4405 "*"))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-232)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-171)))) -(-665) +((-4404 . T) (-4407 . T) (-4401 . T) (-4402 . T)) +((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4409 "*"))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4032 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-555))) (-4032 (|HasAttribute| |#2| (QUOTE (-4409 "*"))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172)))) +(-666) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL NIL -(-666 |VarSet|) +(-667 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-667 A S) +(-668 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) NIL NIL -(-668 S) +(-669 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) NIL NIL -(-669 R) +(-670 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms"))) NIL -((-4037 (-12 (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) -(-670) +((-4032 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +(-671) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL NIL -(-671 |VarSet|) +(-672 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-672 A) +(-673 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,{}g,{}x)} is \\spad{g(n,{}g(n-1,{}..g(1,{}x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,{}n,{}x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-673 A C) +(-674 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,{}c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,{}c)} selects its first argument."))) NIL NIL -(-674 A B C) +(-675 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,{}g,{}x)} is \\spad{f(g x)}."))) NIL NIL -(-675) +(-676) ((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for \\spad{`s'}.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of \\spad{`s'}.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,{}t)} builds the mapping AST \\spad{s} \\spad{->} \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) NIL NIL -(-676 A) +(-677 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,{}x)= g(n,{}g(n-1,{}..g(1,{}x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,{}n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-677 A C) +(-678 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,{}a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-678 A B C) +(-679 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f(b,{}a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,{}b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,{}b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,{}b)}.}"))) NIL NIL -(-679 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +(-680 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-680 S R |Row| |Col|) +(-681 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4405 "*"))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-554)))) -(-681 R |Row| |Col|) +((|HasAttribute| |#2| (QUOTE (-4409 "*"))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-555)))) +(-682 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4403 . T) (-4404 . T)) +((-4407 . T) (-4408 . T)) NIL -(-682 R |Row| |Col| M) +(-683 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL -((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-554)))) -(-683 R) -((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4403 . T) (-4404 . T)) -((-4037 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-554))) (|HasAttribute| |#1| (QUOTE (-4405 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) +((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-555)))) (-684 R) +((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) +((-4407 . T) (-4408 . T)) +((-4032 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-555))) (|HasAttribute| |#1| (QUOTE (-4409 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +(-685 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-685 T$) +(-686 T$) ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%."))) NIL NIL -(-686 S -3196 FLAF FLAS) +(-687 S -3191 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL -(-687 R Q) +(-688 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-688) +(-689) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4396 . T) (-4401 |has| (-693) (-362)) (-4395 |has| (-693) (-362)) (-4402 |has| (-693) (-6 -4402)) (-4399 |has| (-693) (-6 -4399)) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| (-693) (QUOTE (-146))) (|HasCategory| (-693) (QUOTE (-144))) (|HasCategory| (-693) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-693) (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| (-693) (QUOTE (-367))) (|HasCategory| (-693) (QUOTE (-362))) (-4037 (|HasCategory| (-693) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-693) (QUOTE (-362)))) (|HasCategory| (-693) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-693) (QUOTE (-232))) (-4037 (|HasCategory| (-693) (QUOTE (-362))) (|HasCategory| (-693) (QUOTE (-348)))) (|HasCategory| (-693) (QUOTE (-348))) (|HasCategory| (-693) (LIST (QUOTE -285) (QUOTE (-693)) (QUOTE (-693)))) (|HasCategory| (-693) (LIST (QUOTE -308) (QUOTE (-693)))) (|HasCategory| (-693) (LIST (QUOTE -513) (QUOTE (-1168)) (QUOTE (-693)))) (|HasCategory| (-693) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| (-693) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| (-693) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| (-693) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (-4037 (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-362))) (|HasCategory| (-693) (QUOTE (-348)))) (|HasCategory| (-693) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-693) (QUOTE (-1017))) (|HasCategory| (-693) (QUOTE (-1192))) (-12 (|HasCategory| (-693) (QUOTE (-997))) (|HasCategory| (-693) (QUOTE (-1192)))) (-4037 (-12 (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-904)))) (|HasCategory| (-693) (QUOTE (-362))) (-12 (|HasCategory| (-693) (QUOTE (-348))) (|HasCategory| (-693) (QUOTE (-904))))) (-4037 (-12 (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-904)))) (-12 (|HasCategory| (-693) (QUOTE (-362))) (|HasCategory| (-693) (QUOTE (-904)))) (-12 (|HasCategory| (-693) (QUOTE (-348))) (|HasCategory| (-693) (QUOTE (-904))))) (|HasCategory| (-693) (QUOTE (-544))) (-12 (|HasCategory| (-693) (QUOTE (-1053))) (|HasCategory| (-693) (QUOTE (-1192)))) (|HasCategory| (-693) (QUOTE (-1053))) (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-904))) (-4037 (-12 (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-904)))) (|HasCategory| (-693) (QUOTE (-362)))) (-4037 (-12 (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-904)))) (|HasCategory| (-693) (QUOTE (-554)))) (-12 (|HasCategory| (-693) (QUOTE (-232))) (|HasCategory| (-693) (QUOTE (-362)))) (-12 (|HasCategory| (-693) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-693) (QUOTE (-362)))) (|HasCategory| (-693) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| (-693) (QUOTE (-845))) (|HasCategory| (-693) (QUOTE (-554))) (|HasAttribute| (-693) (QUOTE -4402)) (|HasAttribute| (-693) (QUOTE -4399)) (-12 (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-904)))) (|HasCategory| (-693) (QUOTE (-144)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-693) (QUOTE (-306))) (|HasCategory| (-693) (QUOTE (-904)))) (|HasCategory| (-693) (QUOTE (-348))))) -(-689 S) +((-4400 . T) (-4405 |has| (-694) (-363)) (-4399 |has| (-694) (-363)) (-1413 . T) (-4406 |has| (-694) (-6 -4406)) (-4403 |has| (-694) (-6 -4403)) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| (-694) (QUOTE (-147))) (|HasCategory| (-694) (QUOTE (-145))) (|HasCategory| (-694) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-694) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| (-694) (QUOTE (-368))) (|HasCategory| (-694) (QUOTE (-363))) (-4032 (|HasCategory| (-694) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-694) (QUOTE (-363)))) (|HasCategory| (-694) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-694) (QUOTE (-233))) (-4032 (|HasCategory| (-694) (QUOTE (-363))) (|HasCategory| (-694) (QUOTE (-349)))) (|HasCategory| (-694) (QUOTE (-349))) (|HasCategory| (-694) (LIST (QUOTE -286) (QUOTE (-694)) (QUOTE (-694)))) (|HasCategory| (-694) (LIST (QUOTE -309) (QUOTE (-694)))) (|HasCategory| (-694) (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE (-694)))) (|HasCategory| (-694) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-694) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-694) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-694) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (-4032 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-363))) (|HasCategory| (-694) (QUOTE (-349)))) (|HasCategory| (-694) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-694) (QUOTE (-1018))) (|HasCategory| (-694) (QUOTE (-1193))) (-12 (|HasCategory| (-694) (QUOTE (-998))) (|HasCategory| (-694) (QUOTE (-1193)))) (-4032 (-12 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (|HasCategory| (-694) (QUOTE (-363))) (-12 (|HasCategory| (-694) (QUOTE (-349))) (|HasCategory| (-694) (QUOTE (-905))))) (-4032 (-12 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (-12 (|HasCategory| (-694) (QUOTE (-363))) (|HasCategory| (-694) (QUOTE (-905)))) (-12 (|HasCategory| (-694) (QUOTE (-349))) (|HasCategory| (-694) (QUOTE (-905))))) (|HasCategory| (-694) (QUOTE (-545))) (-12 (|HasCategory| (-694) (QUOTE (-1054))) (|HasCategory| (-694) (QUOTE (-1193)))) (|HasCategory| (-694) (QUOTE (-1054))) (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905))) (-4032 (-12 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (|HasCategory| (-694) (QUOTE (-363)))) (-4032 (-12 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (|HasCategory| (-694) (QUOTE (-555)))) (-12 (|HasCategory| (-694) (QUOTE (-233))) (|HasCategory| (-694) (QUOTE (-363)))) (-12 (|HasCategory| (-694) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-694) (QUOTE (-363)))) (|HasCategory| (-694) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-694) (QUOTE (-846))) (|HasCategory| (-694) (QUOTE (-555))) (|HasAttribute| (-694) (QUOTE -4406)) (|HasAttribute| (-694) (QUOTE -4403)) (-12 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (|HasCategory| (-694) (QUOTE (-145)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (|HasCategory| (-694) (QUOTE (-349))))) +(-690 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4404 . T)) +((-4408 . T)) NIL -(-690 U) +(-691 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-691) +(-692) ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented"))) NIL NIL -(-692 OV E -3196 PG) +(-693 OV E -3191 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-693) +(-694) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-1406 . T) (-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-1403 . T) (-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-694 R) +(-695 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-695) +(-696) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4402 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4406 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-696 S D1 D2 I) +(-697 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-697 S) +(-698 S) ((|constructor| (NIL "MakeCachableSet(\\spad{S}) returns a cachable set which is equal to \\spad{S} as a set."))) NIL NIL -(-698 S) +(-699 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x,{} y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-699 S) +(-700 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e,{} foo,{} [x1,{}...,{}xn])} creates a function \\spad{foo(x1,{}...,{}xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x,{} y)} creates a function \\spad{foo(x,{} y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e,{} foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-700 S T$) +(-701 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-701 S -3113 I) +(-702 S -3209 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-702 E OV R P) +(-703 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,{}lv,{}lu,{}lr,{}lp,{}lt,{}ln,{}t,{}r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,{}lv,{}lu,{}lr,{}lp,{}ln,{}r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,{}lv,{}lr,{}ln,{}lu,{}t,{}r)} \\undocumented"))) NIL NIL -(-703 R) +(-704 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4397 . T) (-4398 . T) (-4400 . T)) +((-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-704 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-705 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-705) +(-706) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-706 R |Mod| -3834 -4103 |exactQuo|) +(-707 R |Mod| -2472 -3164 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-707 R |Rep|) +(-708 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4399 |has| |#1| (-362)) (-4401 |has| |#1| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) -((|HasCategory| |#1| (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4401)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) -(-708 IS E |ff|) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4403 |has| |#1| (-363)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T)) +((|HasCategory| |#1| (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1144))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4405)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-709 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-709 R M) +(-710 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4398 |has| |#1| (-171)) (-4397 |has| |#1| (-171)) (-4400 . T)) -((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146)))) -(-710 R |Mod| -3834 -4103 |exactQuo|) +((-4402 |has| |#1| (-172)) (-4401 |has| |#1| (-172)) (-4404 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147)))) +(-711 R |Mod| -2472 -3164 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4400 . T)) +((-4404 . T)) NIL -(-711 S R) +(-712 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-712 R) +(-713 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4398 . T) (-4397 . T)) +((-4402 . T) (-4401 . T)) NIL -(-713 -3196) +(-714 -3191) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}."))) -((-4400 . T)) +((-4404 . T)) NIL -(-714 S) +(-715 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-715) +(-716) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-716 S) +(-717 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-717) +(-718) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-718 S R UP) +(-719 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL -((|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367)))) -(-719 R UP) +((|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368)))) +(-720 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4396 |has| |#1| (-362)) (-4401 |has| |#1| (-362)) (-4395 |has| |#1| (-362)) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4400 |has| |#1| (-363)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-720 S) +(-721 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-721) +(-722) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-722 -3196 UP) +(-723 -3191 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-723 |VarSet| E1 E2 R S PR PS) +(-724 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,{}p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-724 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-725 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-725 E OV R PPR) +(-726 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-726 |vl| R) +(-727 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4405 "*") |has| |#2| (-171)) (-4396 |has| |#2| (-554)) (-4401 |has| |#2| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) -((|HasCategory| |#2| (QUOTE (-904))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-554)))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-859 |#1|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4401)) (|HasCategory| |#2| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-144))))) -(-727 E OV R PRF) +(((-4409 "*") |has| |#2| (-172)) (-4400 |has| |#2| (-555)) (-4405 |has| |#2| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T)) +((|HasCategory| |#2| (QUOTE (-905))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4032 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4032 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4405)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145))))) +(-728 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-728 E OV R P) +(-729 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-729 R S M) +(-730 R S M) ((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,{}u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-730 R M) +(-731 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4398 |has| |#1| (-171)) (-4397 |has| |#1| (-171)) (-4400 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-845)))) -(-731 S) +((-4402 |has| |#1| (-172)) (-4401 |has| |#1| (-172)) (-4404 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-846)))) +(-732 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4393 . T) (-4404 . T)) +((-4397 . T) (-4408 . T)) NIL -(-732 S) +(-733 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4403 . T) (-4393 . T) (-4404 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) -(-733) +((-4407 . T) (-4397 . T) (-4408 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) +(-734) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-734 S) +(-735 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,{}l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-735 |Coef| |Var|) +(-736 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4398 . T) (-4397 . T) (-4400 . T)) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4402 . T) (-4401 . T) (-4404 . T)) NIL -(-736 OV E R P) +(-737 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-737 E OV R P) +(-738 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-738 S R) +(-739 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-739 R) +(-740 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4398 . T) (-4397 . T)) +((-4402 . T) (-4401 . T)) NIL -(-740) +(-741) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) NIL NIL -(-741) +(-742) ((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,{}ldfjac,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,{}b,{}eps,{}eta,{}ifail,{}f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) NIL NIL -(-742) +(-743) ((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,{}n,{}x,{}ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,{}n,{}x,{}ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,{}y,{}ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,{}x,{}ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,{}n,{}init,{}x,{}y,{}trigm,{}trign,{}ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,{}n,{}init,{}x,{}y,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,{}n,{}x,{}y,{}ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,{}x,{}y,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) NIL NIL -(-743) +(-744) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,{}a,{}b,{}maxcls,{}eps,{}lenwrk,{}mincls,{}wrkstr,{}ifail,{}functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,{}y,{}n,{}ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,{}a,{}b,{}maxpts,{}eps,{}lenwrk,{}minpts,{}ifail,{}functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,{}b,{}itype,{}n,{}gtype,{}ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,{}omega,{}key,{}epsabs,{}limlst,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,{}b,{}c,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,{}b,{}alfa,{}beta,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,{}b,{}omega,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,{}inf,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,{}b,{}npts,{}points,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) NIL NIL -(-744) +(-745) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,{}mnp,{}numbeg,{}nummix,{}tol,{}init,{}iy,{}ijac,{}lwork,{}liwork,{}np,{}x,{}y,{}deleps,{}ifail,{}fcn,{}g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval,{}monit,{}report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,{}b,{}n,{}tol,{}mnp,{}lw,{}liw,{}c,{}d,{}gam,{}x,{}np,{}ifail,{}fcnf,{}fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,{}v,{}n,{}a,{}b,{}tol,{}mnp,{}lw,{}liw,{}x,{}np,{}ifail,{}fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,{}m,{}n,{}relabs,{}iw,{}x,{}y,{}tol,{}ifail,{}g,{}fcn,{}pederv,{}output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,{}m,{}n,{}tol,{}relabs,{}x,{}y,{}ifail,{}g,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,{}n,{}irelab,{}hmax,{}x,{}y,{}tol,{}ifail,{}g,{}fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,{}m,{}n,{}irelab,{}x,{}y,{}tol,{}ifail,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) NIL NIL -(-745) +(-746) ((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,{}xf,{}l,{}lbdcnd,{}bdxs,{}bdxf,{}ys,{}yf,{}m,{}mbdcnd,{}bdys,{}bdyf,{}zs,{}zf,{}n,{}nbdcnd,{}bdzs,{}bdzf,{}lambda,{}ldimf,{}mdimf,{}lwrk,{}f,{}ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,{}xmax,{}ymin,{}ymax,{}ngx,{}ngy,{}lda,{}scheme,{}ifail,{}pdef,{}bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,{}ngy,{}lda,{}maxit,{}acc,{}iout,{}a,{}rhs,{}ub,{}ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) NIL NIL -(-746) +(-747) ((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,{}x,{}y,{}f,{}rnw,{}fnodes,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,{}x,{}y,{}f,{}nw,{}nq,{}rnw,{}rnq,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,{}x,{}y,{}f,{}triang,{}grads,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,{}x,{}y,{}f,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,{}my,{}x,{}y,{}f,{}ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,{}x,{}f,{}d,{}a,{}b,{}ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,{}x,{}f,{}ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,{}x,{}y,{}lck,{}lwrk,{}ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) NIL NIL -(-747) +(-748) ((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,{}py,{}lamda,{}mu,{}m,{}x,{}y,{}npoint,{}nadres,{}ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,{}la,{}nplus2,{}toler,{}a,{}b,{}ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,{}my,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}lwrk,{}liwrk,{}ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,{}m,{}x,{}y,{}f,{}w,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,{}mx,{}x,{}my,{}y,{}f,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}iwrk,{}ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,{}px,{}py,{}x,{}y,{}f,{}w,{}mu,{}point,{}npoint,{}nc,{}nws,{}eps,{}lamda,{}ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,{}m,{}x,{}y,{}w,{}s,{}nest,{}lwrk,{}n,{}lamda,{}ifail,{}wrk,{}iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,{}lamda,{}c,{}ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,{}lamda,{}c,{}x,{}left,{}ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,{}lamda,{}c,{}x,{}ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,{}ncap7,{}x,{}y,{}w,{}lamda,{}ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}x,{}ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}qatm1,{}iaint1,{}laint,{}ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}iadif1,{}ladif,{}ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,{}kplus1,{}nrows,{}xmin,{}xmax,{}x,{}y,{}w,{}mf,{}xf,{}yf,{}lyf,{}ip,{}lwrk,{}liwrk,{}ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,{}a,{}xcap,{}ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,{}kplus1,{}nrows,{}x,{}y,{}w,{}ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) NIL NIL -(-748) +(-749) ((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,{}m,{}n,{}fsumsq,{}s,{}lv,{}v,{}ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,{}nclin,{}ncnln,{}nrowa,{}nrowj,{}nrowr,{}a,{}bl,{}bu,{}liwork,{}lwork,{}sta,{}cra,{}der,{}fea,{}fun,{}hes,{}infb,{}infs,{}linf,{}lint,{}list,{}maji,{}majp,{}mini,{}minp,{}mon,{}nonf,{}opt,{}ste,{}stao,{}stac,{}stoo,{}stoc,{}ve,{}istate,{}cjac,{}clamda,{}r,{}x,{}ifail,{}confun,{}objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}nrowh,{}ncolh,{}bigbnd,{}a,{}bl,{}bu,{}cvec,{}featol,{}hess,{}cold,{}lpp,{}orthog,{}liwork,{}lwork,{}x,{}istate,{}ifail,{}qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}a,{}bl,{}bu,{}cvec,{}linobj,{}liwork,{}lwork,{}x,{}ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,{}ibound,{}liw,{}lw,{}bl,{}bu,{}x,{}ifail,{}funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,{}es,{}fu,{}it,{}lin,{}list,{}ma,{}op,{}pr,{}sta,{}sto,{}ve,{}x,{}ifail,{}objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) NIL NIL -(-749) +(-750) ((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,{}m,{}n,{}ncolq,{}lda,{}theta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}theta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,{}m,{}n,{}ncolq,{}lda,{}zeta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}zeta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,{}avals,{}lal,{}nrow,{}ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,{}nz,{}licn,{}lirn,{}abort,{}avals,{}irn,{}icn,{}droptl,{}densw,{}ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,{}nz,{}licn,{}ivect,{}jvect,{}icn,{}ikeep,{}grow,{}eta,{}abort,{}idisp,{}avals,{}ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,{}nz,{}licn,{}lirn,{}pivot,{}lblock,{}grow,{}abort,{}a,{}irn,{}icn,{}ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) NIL NIL -(-750) +(-751) ((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldph,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldpt,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image,{}monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,{}ia,{}ib,{}eps1,{}matv,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,{}n,{}alb,{}ub,{}m,{}iv,{}a,{}ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,{}iar,{}\\spad{ai},{}iai,{}n,{}ivr,{}ivi,{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,{}iai,{}n,{}ivr,{}ivi,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,{}n,{}ivr,{}ivi,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,{}n,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,{}ib,{}n,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,{}ib,{}n,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,{}ia,{}n,{}iv,{}ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,{}n,{}a,{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) NIL NIL -(-751) +(-752) ((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,{}n,{}damp,{}atol,{}btol,{}conlim,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}b,{}ifail,{}aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,{}al,{}lal,{}d,{}nrow,{}ir,{}b,{}nrb,{}iselct,{}nrx,{}ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,{}b,{}precon,{}shift,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}rtol,{}ifail,{}aprod,{}msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,{}nz,{}avals,{}licn,{}irn,{}lirn,{}icn,{}wkeep,{}ikeep,{}inform,{}b,{}acc,{}noits,{}ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,{}n,{}nra,{}tol,{}lwork,{}a,{}b,{}ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,{}n,{}d,{}e,{}b,{}ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,{}a,{}licn,{}icn,{}ikeep,{}mtype,{}idisp,{}rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,{}ia,{}b,{}n,{}iaa,{}ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,{}b,{}n,{}a,{}ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,{}b,{}n,{}a,{}ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,{}b,{}ib,{}n,{}m,{}ic,{}a,{}ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) NIL NIL -(-752) +(-753) ((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,{}n,{}nrhs,{}a,{}lda,{}ldb,{}b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,{}n,{}lda,{}a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,{}n,{}nrhs,{}a,{}lda,{}ipiv,{}ldb,{}b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,{}n,{}lda,{}a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) NIL NIL -(-753) +(-754) ((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,{}y,{}z,{}r,{}ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,{}y,{}ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,{}ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,{}ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,{}ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,{}ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,{}ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,{}fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,{}ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,{}ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,{}ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,{}ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,{}ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,{}ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,{}x,{}tol,{}ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,{}ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,{}ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,{}ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,{}ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,{}ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,{}ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}."))) NIL NIL -(-754) +(-755) ((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) NIL NIL -(-755 S) +(-756 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-756) +(-757) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-757 S) +(-758 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-758) +(-759) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-759 |Par|) +(-760 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-760 -3196) +(-761 -3191) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-761 P -3196) +(-762 P -3191) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL -(-762 T$) +(-763 T$) NIL NIL NIL -(-763 UP -3196) +(-764 UP -3191) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-764) +(-765) ((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-765 R) +(-766 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-766) +(-767) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4405 "*") . T)) +(((-4409 "*") . T)) NIL -(-767 R -3196) +(-768 R -3191) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-768 S) +(-769 S) ((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-769) +(-770) ((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-770 R |PolR| E |PolE|) +(-771 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-771 R E V P TS) +(-772 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-772 -3196 |ExtF| |SUEx| |ExtP| |n|) +(-773 -3191 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-773 BP E OV R P) +(-774 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-774 |Par|) +(-775 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,{}eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable."))) NIL NIL -(-775 R |VarSet|) +(-776 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) -((|HasCategory| |#1| (QUOTE (-904))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-1168))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-1168))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-1168)))) (-2234 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-1168)))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-1168)))) (-2234 (|HasCategory| |#1| (QUOTE (-544)))) (-2234 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-1168)))) (-2234 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-562))))) (-2234 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-1168)))) (-2234 (|HasCategory| |#1| (LIST (QUOTE -987) (QUOTE (-562))))))) (|HasAttribute| |#1| (QUOTE -4401)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) -(-776 R S) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T)) +((|HasCategory| |#1| (QUOTE (-905))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169))))) (-4032 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))) (-2176 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))))) (-4032 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))) (-2176 (|HasCategory| |#1| (QUOTE (-545)))) (-2176 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))) (-2176 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-563))))) (-2176 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))) (-2176 (|HasCategory| |#1| (LIST (QUOTE -988) (QUOTE (-563))))))) (|HasAttribute| |#1| (QUOTE -4405)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-777 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-777 R) -((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4399 |has| |#1| (-362)) (-4401 |has| |#1| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) -((|HasCategory| |#1| (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4401)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) (-778 R) +((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4403 |has| |#1| (-363)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T)) +((|HasCategory| |#1| (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1144))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4405)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-779 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) -(-779 R E V P) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) +(-780 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4404 . T) (-4403 . T)) +((-4408 . T) (-4407 . T)) NIL -(-780 S) +(-781 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-845)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (QUOTE (-171)))) -(-781) +((-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-846)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-172)))) +(-782) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-782) +(-783) ((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-783) +(-784) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,{}y,{}x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try ,{} did ,{} next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is the same as \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-784) +(-785) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-785 |Curve|) +(-786 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,{}r,{}n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-786) +(-787) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering."))) NIL NIL -(-787) +(-788) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-788) +(-789) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,{}y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-789) +(-790) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-790) +(-791) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-791 S R) +(-792 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-367)))) -(-792 R) +((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-1054))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-368)))) +(-793 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4397 . T) (-4398 . T) (-4400 . T)) +((-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-793 -4037 R OS S) +(-794 -4032 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-794 R) +(-795 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (-4037 (|HasCategory| (-994 |#1|) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (-4037 (|HasCategory| (-994 |#1|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-994 |#1|) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-994 |#1|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562))))) -(-795) +((-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (-4032 (|HasCategory| (-995 |#1|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (-4032 (|HasCategory| (-995 |#1|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-1054))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-995 |#1|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-995 |#1|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) +(-796) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-796 R -3196 L) +(-797 R -3191 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-797 R -3196) +(-798 R -3191) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-798) +(-799) ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-799 R -3196) +(-800 R -3191) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-800) +(-801) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-801 -3196 UP UPUP R) +(-802 -3191 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-802 -3196 UP L LQ) +(-803 -3191 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-803) +(-804) ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-804 -3196 UP L LQ) +(-805 -3191 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-805 -3196 UP) +(-806 -3191 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-806 -3196 L UP A LO) +(-807 -3191 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-807 -3196 UP) +(-808 -3191 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-808 -3196 LO) +(-809 -3191 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-809 -3196 LODO) +(-810 -3191 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}."))) NIL NIL -(-810 -2240 S |f|) +(-811 -3304 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4397 |has| |#2| (-1044)) (-4398 |has| |#2| (-1044)) (-4400 |has| |#2| (-6 -4400)) ((-4405 "*") |has| |#2| (-171)) (-4403 . T)) -((-4037 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (QUOTE (-362))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-788))) (-4037 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-171))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1044)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1044)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-171)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-232)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-721)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-788)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-843)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1044))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (|HasCategory| (-562) (QUOTE (-845))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168))))) (-4037 (|HasCategory| |#2| (QUOTE (-1044))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-1092)))) (|HasAttribute| |#2| (QUOTE -4400)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))))) -(-811 R) +((-4401 |has| |#2| (-1045)) (-4402 |has| |#2| (-1045)) (-4404 |has| |#2| (-6 -4404)) ((-4409 "*") |has| |#2| (-172)) (-4407 . T)) +((-4032 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-4032 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-363))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-789))) (-4032 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-172))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093))))) (-4032 (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-4032 (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| (-563) (QUOTE (-846))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-4032 (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093)))) (|HasAttribute| |#2| (QUOTE -4404)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))))) +(-812 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) -((|HasCategory| |#1| (QUOTE (-904))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| (-813 (-1168)) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-813 (-1168)) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-813 (-1168)) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-813 (-1168)) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-813 (-1168)) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4401)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) -(-812 |Kernels| R |var|) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T)) +((|HasCategory| |#1| (QUOTE (-905))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-814 (-1169)) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-814 (-1169)) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-814 (-1169)) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-814 (-1169)) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-814 (-1169)) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4405)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-813 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) -(((-4405 "*") |has| |#2| (-362)) (-4396 |has| |#2| (-362)) (-4401 |has| |#2| (-362)) (-4395 |has| |#2| (-362)) (-4400 . T) (-4398 . T) (-4397 . T)) -((|HasCategory| |#2| (QUOTE (-362)))) -(-813 S) +(((-4409 "*") |has| |#2| (-363)) (-4400 |has| |#2| (-363)) (-4405 |has| |#2| (-363)) (-4399 |has| |#2| (-363)) (-4404 . T) (-4402 . T) (-4401 . T)) +((|HasCategory| |#2| (QUOTE (-363)))) +(-814 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-814 S) +(-815 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the \\spad{n-th} monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the \\spad{n-th} monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m} and \\spad{y = m * r} hold and such that \\spad{l} and \\spad{r} have no overlap,{} that is \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l,{} r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x,{} s)} returns the exact right quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} that is \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x,{} s)} returns the exact left quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} \\indented{1}{by \\spad{y} that is \\spad{q} such that \\spad{x = y * q},{}} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,{}y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL NIL -(-815) +(-816) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-816) +(-817) ((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) NIL NIL -(-817) +(-818) ((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) NIL NIL -(-818) +(-819) ((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device."))) NIL NIL -(-819) +(-820) ((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) NIL NIL -(-820) +(-821) ((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) NIL NIL -(-821 R) +(-822 R) ((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath."))) NIL NIL -(-822 P R) +(-823 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-232)))) -(-823) +((-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-233)))) +(-824) ((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) NIL NIL -(-824) +(-825) ((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,{}cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,{}cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM."))) NIL NIL -(-825 S) +(-826 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4403 . T) (-4393 . T) (-4404 . T)) +((-4407 . T) (-4397 . T) (-4408 . T)) NIL -(-826) +(-827) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) NIL NIL -(-827 R S) +(-828 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f,{} r,{} i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-828 R) +(-829 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4400 |has| |#1| (-843))) -((|HasCategory| |#1| (QUOTE (-843))) (-4037 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (-4037 (|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-21)))) -(-829 A S) +((-4404 |has| |#1| (-844))) +((|HasCategory| |#1| (QUOTE (-844))) (-4032 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-4032 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-21)))) +(-830 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator `op'.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of `op'."))) NIL NIL -(-830 S) +(-831 S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator `op'.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of `op'."))) NIL NIL -(-831 R) +(-832 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4398 |has| |#1| (-171)) (-4397 |has| |#1| (-171)) (-4400 . T)) -((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146)))) -(-832) +((-4402 |has| |#1| (-172)) (-4401 |has| |#1| (-172)) (-4404 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147)))) +(-833) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) NIL NIL -(-833) +(-834) ((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,{}sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of \\spad{`x'}."))) NIL NIL -(-834) +(-835) ((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-835) +(-836) ((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,{}start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,{}start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,{}start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}cons,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,{}routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information."))) NIL NIL -(-836) +(-837) ((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-837 R S) +(-838 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f,{} r,{} p,{} m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-838 R) +(-839 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4400 |has| |#1| (-843))) -((|HasCategory| |#1| (QUOTE (-843))) (-4037 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (-4037 (|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-21)))) -(-839) +((-4404 |has| |#1| (-844))) +((|HasCategory| |#1| (QUOTE (-844))) (-4032 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-4032 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-21)))) +(-840) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-840 -2240 S) +(-841 -3304 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-841) +(-842) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-842 S) +(-843 S) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) NIL NIL -(-843) +(-844) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4400 . T)) +((-4404 . T)) NIL -(-844 S) +(-845 S) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-845) +(-846) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-846 S R) +(-847 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) NIL -((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171)))) -(-847 R) +((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172)))) +(-848 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4397 . T) (-4398 . T) (-4400 . T)) +((-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-848 R C) +(-849 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL -((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) -(-849 R |sigma| -3756) +((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) +(-850 R |sigma| -1648) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-362)))) -(-850 |x| R |sigma| -3756) +((-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363)))) +(-851 |x| R |sigma| -1648) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) -((-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-362)))) -(-851 R) +((-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-363)))) +(-852 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) -(-852) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) +(-853) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL -(-853) +(-854) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-854 S) +(-855 S) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,{}b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,{}b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-855) +(-856) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,{}b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,{}b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-856) +(-857) ((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) NIL NIL -(-857) +(-858) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-858) +(-859) ((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-859 |VariableList|) +(-860 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-860) +(-861) ((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}."))) NIL NIL -(-861 R |vl| |wl| |wtlevel|) +(-862 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4398 |has| |#1| (-171)) (-4397 |has| |#1| (-171)) (-4400 . T)) -((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362)))) -(-862 R PS UP) +((-4402 |has| |#1| (-172)) (-4401 |has| |#1| (-172)) (-4404 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363)))) +(-863 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-863 R |x| |pt|) +(-864 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-864 |p|) +(-865 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-865 |p|) +(-866 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-866 |p|) +(-867 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| (-865 |#1|) (QUOTE (-904))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| (-865 |#1|) (QUOTE (-144))) (|HasCategory| (-865 |#1|) (QUOTE (-146))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-865 |#1|) (QUOTE (-1017))) (|HasCategory| (-865 |#1|) (QUOTE (-815))) (-4037 (|HasCategory| (-865 |#1|) (QUOTE (-815))) (|HasCategory| (-865 |#1|) (QUOTE (-845)))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| (-865 |#1|) (QUOTE (-1143))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| (-865 |#1|) (QUOTE (-232))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -513) (QUOTE (-1168)) (LIST (QUOTE -865) (|devaluate| |#1|)))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -308) (LIST (QUOTE -865) (|devaluate| |#1|)))) (|HasCategory| (-865 |#1|) (LIST (QUOTE -285) (LIST (QUOTE -865) (|devaluate| |#1|)) (LIST (QUOTE -865) (|devaluate| |#1|)))) (|HasCategory| (-865 |#1|) (QUOTE (-306))) (|HasCategory| (-865 |#1|) (QUOTE (-544))) (|HasCategory| (-865 |#1|) (QUOTE (-845))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-865 |#1|) (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-865 |#1|) (QUOTE (-904)))) (|HasCategory| (-865 |#1|) (QUOTE (-144))))) -(-867 |p| PADIC) +((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| (-866 |#1|) (QUOTE (-905))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-866 |#1|) (QUOTE (-145))) (|HasCategory| (-866 |#1|) (QUOTE (-147))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-866 |#1|) (QUOTE (-1018))) (|HasCategory| (-866 |#1|) (QUOTE (-816))) (-4032 (|HasCategory| (-866 |#1|) (QUOTE (-816))) (|HasCategory| (-866 |#1|) (QUOTE (-846)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-866 |#1|) (QUOTE (-1144))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| (-866 |#1|) (QUOTE (-233))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -866) (|devaluate| |#1|)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -309) (LIST (QUOTE -866) (|devaluate| |#1|)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -866) (|devaluate| |#1|)) (LIST (QUOTE -866) (|devaluate| |#1|)))) (|HasCategory| (-866 |#1|) (QUOTE (-307))) (|HasCategory| (-866 |#1|) (QUOTE (-545))) (|HasCategory| (-866 |#1|) (QUOTE (-846))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-866 |#1|) (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-866 |#1|) (QUOTE (-905)))) (|HasCategory| (-866 |#1|) (QUOTE (-145))))) +(-868 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| |#2| (QUOTE (-904))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (QUOTE (-815))) (-4037 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-845)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-1143))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-845))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-144))))) -(-868 S T$) +((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| |#2| (QUOTE (-905))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-816))) (-4032 (|HasCategory| |#2| (QUOTE (-816))) (|HasCategory| |#2| (QUOTE (-846)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-1144))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-846))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145))))) +(-869 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))))) -(-869) +((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))))) +(-870) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL NIL -(-870) +(-871) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-871 CF1 CF2) +(-872 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-872 |ComponentFunction|) +(-873 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,{}c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-873 CF1 CF2) +(-874 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-874 |ComponentFunction|) +(-875 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,{}c2,{}c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-875) +(-876) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-876 CF1 CF2) +(-877 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-877 |ComponentFunction|) +(-878 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,{}i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,{}c2,{}c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-878) +(-879) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,{}2,{}3,{}...,{}n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,{}l1,{}l2,{}..,{}ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,{}l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,{}2,{}4],{}[2,{}3,{}5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,{}st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,{}l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l,{}n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}"))) NIL NIL -(-879 R) +(-880 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-880 R S L) +(-881 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,{}r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-881 S) +(-882 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-882 |Base| |Subject| |Pat|) +(-883 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-2234 (|HasCategory| |#2| (QUOTE (-1044)))) (-2234 (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-1168)))))) (-12 (|HasCategory| |#2| (QUOTE (-1044))) (-2234 (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-1168)))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-1168))))) -(-883 R A B) +((-12 (-2176 (|HasCategory| |#2| (QUOTE (-1045)))) (-2176 (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (-2176 (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169))))) +(-884 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL NIL -(-884 R S) +(-885 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-885 R -3113) +(-886 R -3209) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-886 R S) +(-887 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-887 R) +(-888 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) NIL NIL -(-888 |VarSet|) +(-889 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL -(-889 UP R) +(-890 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,{}q)} \\undocumented"))) NIL NIL -(-890) +(-891) ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-891 UP -3196) +(-892 UP -3191) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-892) +(-893) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st,{}tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,{}routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}"))) NIL NIL -(-893) +(-894) ((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-894 A S) +(-895 A S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-895 S) +(-896 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) -((-4400 . T)) +((-4404 . T)) NIL -(-896 S) +(-897 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) -(-897 |n| R) +((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) +(-898 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-898 S) +(-899 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4400 . T)) +((-4404 . T)) NIL -(-899 S) +(-900 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-900 S) +(-901 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4400 . T)) -((-4037 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-845)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-845)))) -(-901 R E |VarSet| S) +((-4404 . T)) +((-4032 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-846)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-846)))) +(-902 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-902 R S) +(-903 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-903 S) +(-904 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL -((|HasCategory| |#1| (QUOTE (-144)))) -(-904) +((|HasCategory| |#1| (QUOTE (-145)))) +(-905) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-905 |p|) +(-906 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-144))) (|HasCategory| $ (QUOTE (-367)))) -(-906 R0 -3196 UP UPUP R) +((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-368)))) +(-907 R0 -3191 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-907 UP UPUP R) +(-908 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-908 UP UPUP) +(-909 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-909 R) +(-910 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-910 R) +(-911 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-911 E OV R P) +(-912 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-912) +(-913) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}."))) NIL NIL -(-913 -3196) +(-914 -3191) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-914 R) +(-915 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-915) +(-916) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-916) +(-917) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4405 "*") . T)) +(((-4409 "*") . T)) NIL -(-917 -3196 P) +(-918 -3191 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented"))) NIL NIL -(-918 |xx| -3196) +(-919 |xx| -3191) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented"))) NIL NIL -(-919 R |Var| |Expon| GR) +(-920 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-920 S) +(-921 S) ((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-921) +(-922) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-922) +(-923) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}."))) NIL NIL -(-923) +(-924) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-924 R -3196) +(-925 R -3191) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-925) +(-926) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-926 S A B) +(-927 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-927 S R -3196) +(-928 S R -3191) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-928 I) +(-929 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n,{} pat,{} res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-929 S E) +(-930 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,{}...,{}en),{} pat,{} res)} matches the pattern \\spad{pat} to \\spad{f(e1,{}...,{}en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-930 S R L) +(-931 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l,{} pat,{} res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-931 S E V R P) +(-932 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -881) (|devaluate| |#1|)))) -(-932 R -3196 -3113) +((|HasCategory| |#3| (LIST (QUOTE -882) (|devaluate| |#1|)))) +(-933 R -3191 -3209) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-933 -3113) +(-934 -3209) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-934 S R Q) +(-935 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b,{} pat,{} res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-935 S) +(-936 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-936 S R P) +(-937 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj,{} lpat,{} res,{} match)} matches the product of patterns \\spad{reduce(*,{}lpat)} to the product of subjects \\spad{reduce(*,{}lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj,{} lpat,{} op,{} res,{} match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-937) +(-938) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n,{} n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!,{} n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,{}[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,{}x)} computed by solving the differential equation \\spad{differentiate(E(n,{}x),{}x) = n E(n-1,{}x)} where \\spad{E(0,{}x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,{}1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,{}x)} computed by solving the differential equation \\spad{differentiate(B(n,{}x),{}x) = n B(n-1,{}x)} where \\spad{B(0,{}x) = 1} and initial condition comes from \\spad{B(n) = B(n,{}0)}."))) NIL NIL -(-938 R) +(-939 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4404 . T) (-4403 . T)) -((-4037 (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-721))) (|HasCategory| |#1| (QUOTE (-1044))) (-12 (|HasCategory| |#1| (QUOTE (-997))) (|HasCategory| |#1| (QUOTE (-1044)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) -(-939 |lv| R) +((-4408 . T) (-4407 . T)) +((-4032 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4032 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +(-940 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-940 |TheField| |ThePols|) +(-941 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-843)))) -(-941 R S) +((|HasCategory| |#1| (QUOTE (-844)))) +(-942 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-942 |x| R) +(-943 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-943 S R E |VarSet|) +(-944 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-904))) (|HasAttribute| |#2| (QUOTE -4401)) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#4| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#4| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#4| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-845)))) -(-944 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-905))) (|HasAttribute| |#2| (QUOTE -4405)) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#4| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#4| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#4| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-846)))) +(-945 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T)) NIL -(-945 E V R P -3196) +(-946 E V R P -3191) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-946 E |Vars| R P S) +(-947 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-947 R) +(-948 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) -((|HasCategory| |#1| (QUOTE (-904))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| (-1168) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-1168) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-1168) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-1168) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-1168) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4401)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) -(-948 E V R P -3196) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T)) +((|HasCategory| |#1| (QUOTE (-905))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1169) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1169) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-1169) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1169) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-1169) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4405)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-949 E V R P -3191) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL -((|HasCategory| |#3| (QUOTE (-451)))) -(-949) +((|HasCategory| |#3| (QUOTE (-452)))) +(-950) ((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}."))) NIL NIL -(-950) +(-951) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-951 R L) +(-952 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}."))) NIL NIL -(-952 A B) +(-953 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) NIL NIL -(-953 S) +(-954 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4404 . T) (-4403 . T)) -((-4037 (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) -(-954) +((-4408 . T) (-4407 . T)) +((-4032 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4032 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +(-955) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-955 -3196) +(-956 -3191) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL -(-956 I) +(-957 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-957) +(-958) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-958 R E) +(-959 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-6 -4401)) (-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-130)))) (|HasAttribute| |#1| (QUOTE -4401))) -(-959 A B) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-6 -4405)) (-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4405))) +(-960 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented"))) -((-4400 -12 (|has| |#2| (-472)) (|has| |#1| (-472)))) -((-4037 (-12 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-788)))) (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-845))))) (-12 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-788)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-788))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-788))))) (-12 (|HasCategory| |#1| (QUOTE (-472))) (|HasCategory| |#2| (QUOTE (-472)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-472))) (|HasCategory| |#2| (QUOTE (-472)))) (-12 (|HasCategory| |#1| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-721))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-367)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-472))) (|HasCategory| |#2| (QUOTE (-472)))) (-12 (|HasCategory| |#1| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-721)))) (-12 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-788))))) (-12 (|HasCategory| |#1| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-721)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-845))))) -(-960) +((-4404 -12 (|has| |#2| (-473)) (|has| |#1| (-473)))) +((-4032 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-846))))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789)))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-722))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-368)))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-846))))) +(-961) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-961 T$) +(-962 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|equivOperands| (((|Pair| $ $) $) "\\spad{equivOperands p} extracts the operands to the logical equivalence; otherwise errors.")) (|equiv?| (((|Boolean|) $) "\\spad{equiv? p} is \\spad{true} when \\spad{`p'} is a logical equivalence.")) (|impliesOperands| (((|Pair| $ $) $) "\\spad{impliesOperands p} extracts the operands to the logical implication; otherwise errors.")) (|implies?| (((|Boolean|) $) "\\spad{implies? p} is \\spad{true} when \\spad{`p'} is a logical implication.")) (|orOperands| (((|Pair| $ $) $) "\\spad{orOperands p} extracts the operands to the logical disjunction; otherwise errors.")) (|or?| (((|Boolean|) $) "\\spad{or? p} is \\spad{true} when \\spad{`p'} is a logical disjunction.")) (|andOperands| (((|Pair| $ $) $) "\\spad{andOperands p} extracts the operands of the logical conjunction; otherwise errors.")) (|and?| (((|Boolean|) $) "\\spad{and? p} is \\spad{true} when \\spad{`p'} is a logical conjunction.")) (|notOperand| (($ $) "\\spad{notOperand returns} the operand to the logical `not' operator; otherwise errors.")) (|not?| (((|Boolean|) $) "\\spad{not? p} is \\spad{true} when \\spad{`p'} is a logical negation")) (|variable| (((|Symbol|) $) "\\spad{variable p} extracts the variable name from \\spad{`p'}; otherwise errors.")) (|variable?| (((|Boolean|) $) "variables? \\spad{p} returns \\spad{true} when \\spad{`p'} really is a variable.")) (|term| ((|#1| $) "\\spad{term p} extracts the term value from \\spad{`p'}; otherwise errors.")) (|term?| (((|Boolean|) $) "\\spad{term? p} returns \\spad{true} when \\spad{`p'} really is a term")) (|variables| (((|Set| (|Symbol|)) $) "\\spad{variables(p)} returns the set of propositional variables appearing in the proposition \\spad{`p'}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional variable.") (($ |#1|) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional formula"))) NIL NIL -(-962) +(-963) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,{}q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,{}q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}."))) NIL NIL -(-963 S) +(-964 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4403 . T) (-4404 . T)) +((-4407 . T) (-4408 . T)) NIL -(-964 R |polR|) +(-965 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL -((|HasCategory| |#1| (QUOTE (-451)))) -(-965) +((|HasCategory| |#1| (QUOTE (-452)))) +(-966) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-966) +(-967) ((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(\\spad{li})} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(\\spad{li})} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-967 S |Coef| |Expon| |Var|) +(-968 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) NIL NIL -(-968 |Coef| |Expon| |Var|) +(-969 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4397 . T) (-4398 . T) (-4400 . T)) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-969) +(-970) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-970 S R E |VarSet| P) +(-971 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL -((|HasCategory| |#2| (QUOTE (-554)))) -(-971 R E |VarSet| P) +((|HasCategory| |#2| (QUOTE (-555)))) +(-972 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4403 . T)) +((-4407 . T)) NIL -(-972 R E V P) +(-973 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-306)))) (|HasCategory| |#1| (QUOTE (-451)))) -(-973 K) +((-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-307)))) (|HasCategory| |#1| (QUOTE (-452)))) +(-974 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m,{} v)} returns \\spad{[[C_1,{} g_1],{}...,{}[C_k,{} g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,{}...,{}C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M,{} A,{} sig,{} der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M,{} sig,{} der)} returns \\spad{[R,{} A,{} A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-974 |VarSet| E RC P) +(-975 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-975 R) +(-976 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4404 . T) (-4403 . T)) +((-4408 . T) (-4407 . T)) NIL -(-976 R1 R2) +(-977 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-977 R) +(-978 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-978 K) +(-979 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,{}n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-979 R E OV PPR) +(-980 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-980 K R UP -3196) +(-981 K R UP -3191) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-981 |vl| |nv|) +(-982 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-982 R |Var| |Expon| |Dpoly|) +(-983 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-306))))) -(-983 R E V P TS) +((-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-307))))) +(-984 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-984) +(-985) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation."))) NIL NIL -(-985 A B R S) +(-986 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-986 A S) +(-987 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-904))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-1017))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-1143)))) -(-987 S) +((|HasCategory| |#2| (QUOTE (-905))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-816))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-1144)))) +(-988 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-988 |n| K) +(-989 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-989) +(-990) ((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-990 S) +(-991 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4403 . T) (-4404 . T)) +((-4407 . T) (-4408 . T)) NIL -(-991 S R) +(-992 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-289)))) -(-992 R) +((|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-1054))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-290)))) +(-993 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4396 |has| |#1| (-289)) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4400 |has| |#1| (-290)) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-993 QR R QS S) +(-994 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-994 R) +(-995 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4396 |has| |#1| (-289)) (-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-362))) (-4037 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-544)))) -(-995 S) -((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4403 . T) (-4404 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) +((-4400 |has| |#1| (-290)) (-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363))) (-4032 (|HasCategory| |#1| (QUOTE (-290))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-290))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-1054))) (|HasCategory| |#1| (QUOTE (-545)))) (-996 S) +((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) +((-4407 . T) (-4408 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) +(-997 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-997) +(-998) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-998 -3196 UP UPUP |radicnd| |n|) +(-999 -3191 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4396 |has| (-406 |#2|) (-362)) (-4401 |has| (-406 |#2|) (-362)) (-4395 |has| (-406 |#2|) (-362)) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| (-406 |#2|) (QUOTE (-144))) (|HasCategory| (-406 |#2|) (QUOTE (-146))) (|HasCategory| (-406 |#2|) (QUOTE (-348))) (-4037 (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-367))) (-4037 (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (-4037 (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-406 |#2|) (QUOTE (-348))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -635) (QUOTE (-562)))) (-4037 (|HasCategory| (-406 |#2|) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362))))) -(-999 |bb|) +((-4400 |has| (-407 |#2|) (-363)) (-4405 |has| (-407 |#2|) (-363)) (-4399 |has| (-407 |#2|) (-363)) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| (-407 |#2|) (QUOTE (-145))) (|HasCategory| (-407 |#2|) (QUOTE (-147))) (|HasCategory| (-407 |#2|) (QUOTE (-349))) (-4032 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-368))) (-4032 (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (-4032 (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-407 |#2|) (QUOTE (-349))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -636) (QUOTE (-563)))) (-4032 (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363))))) +(-1000 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) -((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| (-562) (QUOTE (-904))) (|HasCategory| (-562) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| (-562) (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-146))) (|HasCategory| (-562) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-562) (QUOTE (-1017))) (|HasCategory| (-562) (QUOTE (-815))) (-4037 (|HasCategory| (-562) (QUOTE (-815))) (|HasCategory| (-562) (QUOTE (-845)))) (|HasCategory| (-562) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| (-562) (QUOTE (-1143))) (|HasCategory| (-562) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| (-562) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| (-562) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| (-562) (QUOTE (-232))) (|HasCategory| (-562) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| (-562) (LIST (QUOTE -513) (QUOTE (-1168)) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -308) (QUOTE (-562)))) (|HasCategory| (-562) (LIST (QUOTE -285) (QUOTE (-562)) (QUOTE (-562)))) (|HasCategory| (-562) (QUOTE (-306))) (|HasCategory| (-562) (QUOTE (-544))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| (-562) (LIST (QUOTE -635) (QUOTE (-562)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-562) (QUOTE (-904)))) (|HasCategory| (-562) (QUOTE (-144))))) -(-1000) +((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| (-563) (QUOTE (-905))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-563) (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-147))) (|HasCategory| (-563) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-563) (QUOTE (-1018))) (|HasCategory| (-563) (QUOTE (-816))) (-4032 (|HasCategory| (-563) (QUOTE (-816))) (|HasCategory| (-563) (QUOTE (-846)))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-1144))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-563) (QUOTE (-233))) (|HasCategory| (-563) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-563) (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -309) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -286) (QUOTE (-563)) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-307))) (|HasCategory| (-563) (QUOTE (-545))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-563) (LIST (QUOTE -636) (QUOTE (-563)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (|HasCategory| (-563) (QUOTE (-145))))) +(-1001) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-1001) +(-1002) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-1002 RP) +(-1003 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-1003 S) +(-1004 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-1004 A S) +(-1005 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4404)) (|HasCategory| |#2| (QUOTE (-1092)))) -(-1005 S) +((|HasAttribute| |#1| (QUOTE -4408)) (|HasCategory| |#2| (QUOTE (-1093)))) +(-1006 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL NIL -(-1006 S) +(-1007 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-1007) +(-1008) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4396 . T) (-4401 . T) (-4395 . T) (-4398 . T) (-4397 . T) ((-4405 "*") . T) (-4400 . T)) +((-4400 . T) (-4405 . T) (-4399 . T) (-4402 . T) (-4401 . T) ((-4409 "*") . T) (-4404 . T)) NIL -(-1008 R -3196) +(-1009 R -3191) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-1009 R -3196) +(-1010 R -3191) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-1010 -3196 UP) +(-1011 -3191 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-1011 -3196 UP) +(-1012 -3191 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-1012 S) +(-1013 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,{}u,{}n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1013 F1 UP UPUP R F2) +(-1014 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,{}u,{}g)} \\undocumented"))) NIL NIL -(-1014) +(-1015) ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-1015 |Pol|) +(-1016 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1016 |Pol|) +(-1017 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1017) +(-1018) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-1018) +(-1019) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,{}lv,{}eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-1019 |TheField|) +(-1020 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4396 . T) (-4401 . T) (-4395 . T) (-4398 . T) (-4397 . T) ((-4405 "*") . T) (-4400 . T)) -((-4037 (|HasCategory| (-406 (-562)) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| (-406 (-562)) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-406 (-562)) (LIST (QUOTE -1033) (QUOTE (-562))))) -(-1020 -3196 L) +((-4400 . T) (-4405 . T) (-4399 . T) (-4402 . T) (-4401 . T) ((-4409 "*") . T) (-4404 . T)) +((-4032 (|HasCategory| (-407 (-563)) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-407 (-563)) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-407 (-563)) (LIST (QUOTE -1034) (QUOTE (-563))))) +(-1021 -3191 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-1021 S) +(-1022 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1092)))) -(-1022 R E V P) +((|HasCategory| |#1| (QUOTE (-1093)))) +(-1023 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4404 . T) (-4403 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-857))))) -(-1023 R) +((-4408 . T) (-4407 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-858))))) +(-1024 R) ((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4405 "*")))) -(-1024 R) +((|HasAttribute| |#1| (QUOTE (-4409 "*")))) +(-1025 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-306)))) -(-1025 S) +((-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-307)))) +(-1026 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-1026) +(-1027) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-1027 S) +(-1028 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-1028 S) +(-1029 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1029 -3196 |Expon| |VarSet| |FPol| |LFPol|) +(-1030 -3191 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +(((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-1030) -((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4403 . T) (-4404 . T)) -((-12 (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2319) (QUOTE (-1168))) (LIST (QUOTE |:|) (QUOTE -2693) (QUOTE (-52))))))) (-4037 (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (QUOTE (-1092))) (|HasCategory| (-52) (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-52) (QUOTE (-1092))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| (-52) (QUOTE (-1092))) (|HasCategory| (-52) (LIST (QUOTE -308) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (QUOTE (-1092))) (|HasCategory| (-1168) (QUOTE (-845))) (|HasCategory| (-52) (QUOTE (-1092))) (-4037 (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (LIST (QUOTE -609) (QUOTE (-857))))) (-1031) +((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) +((-4407 . T) (-4408 . T)) +((-12 (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (QUOTE (-1169))) (LIST (QUOTE |:|) (QUOTE -2557) (QUOTE (-52))))))) (-4032 (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (QUOTE (-1093))) (|HasCategory| (-52) (QUOTE (-1093)))) (-4032 (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (QUOTE (-1093))) (|HasCategory| (-1169) (QUOTE (-846))) (|HasCategory| (-52) (QUOTE (-1093))) (-4032 (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (LIST (QUOTE -610) (QUOTE (-858))))) +(-1032) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-1032 A S) +(-1033 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1033 S) +(-1034 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1034 Q R) +(-1035 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-1035) +(-1036) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-1036 UP) +(-1037 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1037 R) +(-1038 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-1038 R) +(-1039 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-1039 T$) +(-1040 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}."))) NIL NIL -(-1040 T$) +(-1041 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space."))) NIL NIL -(-1041 R |ls|) +(-1042 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4404 . T) (-4403 . T)) -((-12 (|HasCategory| (-775 |#1| (-859 |#2|)) (QUOTE (-1092))) (|HasCategory| (-775 |#1| (-859 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -775) (|devaluate| |#1|) (LIST (QUOTE -859) (|devaluate| |#2|)))))) (|HasCategory| (-775 |#1| (-859 |#2|)) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-775 |#1| (-859 |#2|)) (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| (-859 |#2|) (QUOTE (-367))) (|HasCategory| (-775 |#1| (-859 |#2|)) (LIST (QUOTE -609) (QUOTE (-857))))) -(-1042) +((-4408 . T) (-4407 . T)) +((-12 (|HasCategory| (-776 |#1| (-860 |#2|)) (QUOTE (-1093))) (|HasCategory| (-776 |#1| (-860 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -776) (|devaluate| |#1|) (LIST (QUOTE -860) (|devaluate| |#2|)))))) (|HasCategory| (-776 |#1| (-860 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-776 |#1| (-860 |#2|)) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| (-860 |#2|) (QUOTE (-368))) (|HasCategory| (-776 |#1| (-860 |#2|)) (LIST (QUOTE -610) (QUOTE (-858))))) +(-1043) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1043 S) +(-1044 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-1044) +(-1045) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4400 . T)) +((-4404 . T)) NIL -(-1045 |xx| -3196) +(-1046 |xx| -3191) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-1046 S |m| |n| R |Row| |Col|) +(-1047 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL -((|HasCategory| |#4| (QUOTE (-306))) (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (QUOTE (-554))) (|HasCategory| |#4| (QUOTE (-171)))) -(-1047 |m| |n| R |Row| |Col|) +((|HasCategory| |#4| (QUOTE (-307))) (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (QUOTE (-555))) (|HasCategory| |#4| (QUOTE (-172)))) +(-1048 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4403 . T) (-4398 . T) (-4397 . T)) +((-4407 . T) (-4402 . T) (-4401 . T)) NIL -(-1048 |m| |n| R) +(-1049 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4403 . T) (-4398 . T) (-4397 . T)) -((-4037 (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (QUOTE (-306))) (|HasCategory| |#3| (QUOTE (-554))) (|HasCategory| |#3| (QUOTE (-171))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -609) (QUOTE (-857))))) -(-1049 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-4407 . T) (-4402 . T) (-4401 . T)) +((-4032 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-536)))) (-4032 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (QUOTE (-307))) (|HasCategory| |#3| (QUOTE (-555))) (|HasCategory| |#3| (QUOTE (-172))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -610) (QUOTE (-858))))) +(-1050 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-1050 R) +(-1051 R) ((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ $ |#1|) "\\spad{x*r} returns the right multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL NIL -(-1051) +(-1052) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-1052 S) +(-1053 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-1053) +(-1054) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-1054 |TheField| |ThePolDom|) +(-1055 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-1055) +(-1056) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4391 . T) (-4395 . T) (-4390 . T) (-4401 . T) (-4402 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4395 . T) (-4399 . T) (-4394 . T) (-4405 . T) (-4406 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-1056) +(-1057) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4403 . T) (-4404 . T)) -((-12 (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2319) (QUOTE (-1168))) (LIST (QUOTE |:|) (QUOTE -2693) (QUOTE (-52))))))) (-4037 (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (QUOTE (-1092))) (|HasCategory| (-52) (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-52) (QUOTE (-1092))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| (-52) (QUOTE (-1092))) (|HasCategory| (-52) (LIST (QUOTE -308) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (QUOTE (-1092))) (|HasCategory| (-1168) (QUOTE (-845))) (|HasCategory| (-52) (QUOTE (-1092))) (-4037 (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-52) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (LIST (QUOTE -609) (QUOTE (-857))))) -(-1057 S R E V) +((-4407 . T) (-4408 . T)) +((-12 (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (QUOTE (-1169))) (LIST (QUOTE |:|) (QUOTE -2557) (QUOTE (-52))))))) (-4032 (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (QUOTE (-1093))) (|HasCategory| (-52) (QUOTE (-1093)))) (-4032 (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (QUOTE (-1093))) (|HasCategory| (-1169) (QUOTE (-846))) (|HasCategory| (-52) (QUOTE (-1093))) (-4032 (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (LIST (QUOTE -610) (QUOTE (-858))))) +(-1058 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -987) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-1168))))) -(-1058 R E V) +((|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -988) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-1169))))) +(-1059 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T)) NIL -(-1059) +(-1060) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-1060 S |TheField| |ThePols|) +(-1061 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1061 |TheField| |ThePols|) +(-1062 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1062 R E V P TS) +(-1063 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1063 S R E V P) +(-1064 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#5| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-1064 R E V P) +(-1065 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4404 . T) (-4403 . T)) +((-4408 . T) (-4407 . T)) NIL -(-1065 R E V P TS) +(-1066 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1066) +(-1067) ((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-1067 |f|) +(-1068 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1068 |Base| R -3196) +(-1069 |Base| R -3191) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1069 |Base| R -3196) +(-1070 |Base| R -3191) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}."))) NIL NIL -(-1070 R |ls|) +(-1071 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-1071 UP SAE UPA) +(-1072 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1072 R UP M) +(-1073 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4396 |has| |#1| (-362)) (-4401 |has| |#1| (-362)) (-4395 |has| |#1| (-362)) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-348))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-348)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362))))) -(-1073 UP SAE UPA) +((-4400 |has| |#1| (-363)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-349)))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363))))) +(-1074 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1074) +(-1075) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-1075) +(-1076) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-1076 S) +(-1077 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(x,{} y)} to determine whether \\spad{x < y (f(x,{}y) < 0),{} x = y (f(x,{}y) = 0)},{} or \\spad{x > y (f(x,{}y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-1077) +(-1078) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,{}s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(n,{}s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `failed'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-1078 R) +(-1079 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1079 R) +(-1080 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) -((|HasCategory| |#1| (QUOTE (-904))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| (-1080 (-1168)) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-1080 (-1168)) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-1080 (-1168)) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-1080 (-1168)) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-1080 (-1168)) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4401)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) -(-1080 S) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T)) +((|HasCategory| |#1| (QUOTE (-905))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1081 (-1169)) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1081 (-1169)) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-1081 (-1169)) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1081 (-1169)) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-1081 (-1169)) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4405)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-1081 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1081 R S) +(-1082 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-843)))) -(-1082) +((|HasCategory| |#1| (QUOTE (-844)))) +(-1083) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list."))) NIL NIL -(-1083 R S) +(-1084 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-1084 S) +(-1085 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1092)))) -(-1085 S) +((|HasCategory| |#1| (QUOTE (-1093)))) +(-1086 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) NIL NIL -(-1086 S) +(-1087 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-1092)))) -(-1087 S L) +((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1093)))) +(-1088 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}."))) NIL NIL -(-1088) +(-1089) ((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'."))) NIL NIL -(-1089 A S) +(-1090 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1090 S) +(-1091 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4393 . T)) +((-4397 . T)) NIL -(-1091 S) +(-1092 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1092) +(-1093) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1093 |m| |n|) +(-1094 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1094 S) +(-1095 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}"))) -((-4403 . T) (-4393 . T) (-4404 . T)) -((-4037 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) -(-1095 |Str| |Sym| |Int| |Flt| |Expr|) +((-4407 . T) (-4397 . T) (-4408 . T)) +((-4032 (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +(-1096 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) NIL NIL -(-1096) +(-1097) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1097 |Str| |Sym| |Int| |Flt| |Expr|) +(-1098 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1098 R FS) +(-1099 R FS) ((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,{}ftype,{}body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL -(-1099 R E V P TS) +(-1100 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1100 R E V P TS) +(-1101 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1101 R E V P) +(-1102 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4404 . T) (-4403 . T)) +((-4408 . T) (-4407 . T)) NIL -(-1102) +(-1103) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1103 S) +(-1104 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1104) +(-1105) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1105 |dimtot| |dim1| S) +(-1106 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4397 |has| |#3| (-1044)) (-4398 |has| |#3| (-1044)) (-4400 |has| |#3| (-6 -4400)) ((-4405 "*") |has| |#3| (-171)) (-4403 . T)) -((-4037 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))))) (-4037 (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1092)))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1044)))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#3| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#3| (QUOTE (-362))) (-4037 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1044)))) (-4037 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (QUOTE (-788))) (-4037 (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (QUOTE (-843)))) (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (QUOTE (-171))) (-4037 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-1044)))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (-4037 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (QUOTE (-1092)))) (-4037 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1044)))) (-4037 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1044)))) (-4037 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1044)))) (-4037 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1044)))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-130)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-171)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-232)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-362)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-367)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-721)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-788)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-843)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1044)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1092))))) (-4037 (-12 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1044))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-721))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-843))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562)))))) (|HasCategory| (-562) (QUOTE (-845))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1044)))) (-12 (|HasCategory| |#3| (QUOTE (-1044))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1168))))) (-4037 (|HasCategory| |#3| (QUOTE (-1044))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562)))))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#3| (QUOTE (-1092)))) (|HasAttribute| |#3| (QUOTE -4400)) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#3| (QUOTE (-1092))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))))) -(-1106 R |x|) +((-4401 |has| |#3| (-1045)) (-4402 |has| |#3| (-1045)) (-4404 |has| |#3| (-6 -4404)) ((-4409 "*") |has| |#3| (-172)) (-4407 . T)) +((-4032 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-4032 (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1093)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#3| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#3| (QUOTE (-363))) (-4032 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-4032 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (QUOTE (-789))) (-4032 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (QUOTE (-844)))) (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (QUOTE (-172))) (-4032 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (-4032 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (QUOTE (-1093)))) (-4032 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-4032 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-4032 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-4032 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-131)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-722)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-789)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-844)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1093))))) (-4032 (-12 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1045))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-4032 (-12 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| (-563) (QUOTE (-846))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-4032 (|HasCategory| |#3| (QUOTE (-1045))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1093)))) (|HasAttribute| |#3| (QUOTE -4404)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))))) +(-1107 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL -((|HasCategory| |#1| (QUOTE (-451)))) -(-1107) +((|HasCategory| |#1| (QUOTE (-452)))) +(-1108) ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,{}s,{}t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) NIL NIL -(-1108 R -3196) +(-1109 R -3191) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1109 R) +(-1110 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1110) +(-1111) ((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,{}t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}."))) NIL NIL -(-1111) +(-1112) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1112) +(-1113) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4391 . T) (-4395 . T) (-4390 . T) (-4401 . T) (-4402 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4395 . T) (-4399 . T) (-4394 . T) (-4405 . T) (-4406 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-1113 S) +(-1114 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4403 . T) (-4404 . T)) +((-4407 . T) (-4408 . T)) NIL -(-1114 S |ndim| R |Row| |Col|) +(-1115 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-362))) (|HasAttribute| |#3| (QUOTE (-4405 "*"))) (|HasCategory| |#3| (QUOTE (-171)))) -(-1115 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-363))) (|HasAttribute| |#3| (QUOTE (-4409 "*"))) (|HasCategory| |#3| (QUOTE (-172)))) +(-1116 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-4403 . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4407 . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-1116 R |Row| |Col| M) +(-1117 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1117 R |VarSet|) +(-1118 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) -((|HasCategory| |#1| (QUOTE (-904))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4401)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) -(-1118 |Coef| |Var| SMP) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T)) +((|HasCategory| |#1| (QUOTE (-905))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4405)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-1119 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4398 . T) (-4397 . T) (-4400 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-362)))) -(-1119 R E V P) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4402 . T) (-4401 . T) (-4404 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-363)))) +(-1120 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4404 . T) (-4403 . T)) +((-4408 . T) (-4407 . T)) NIL -(-1120 UP -3196) +(-1121 UP -3191) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1121 R) +(-1122 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,{}lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,{}x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1122 R) +(-1123 R) ((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect,{} var,{} n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1,{} func2,{} newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1123 R) +(-1124 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs,{} lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,{}x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,{}x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1124 S A) +(-1125 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,{}f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,{}f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-845)))) -(-1125 R) +((|HasCategory| |#1| (QUOTE (-846)))) +(-1126 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1126 R) +(-1127 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} [props],{} prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{}[props],{}prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,{}p1,{}...,{}pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,{}[[r0],{}[r1],{}...,{}[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,{}[p0,{}p1,{}...,{}pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,{}R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,{}[[lr0],{}[lr1],{}...,{}[lrn],{}[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,{}[p0,{}p1,{}...,{}pn,{}p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,{}p1,{}p2,{}...,{}pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,{}[[p0],{}[p1],{}...,{}[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,{}[p0,{}p1,{}...,{}pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,{}i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,{}[x,{}y,{}z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,{}p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,{}i,{}p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,{}[p0,{}p1,{}...,{}pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,{}s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1127) +(-1128) ((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}"))) NIL NIL -(-1128) +(-1129) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1129) +(-1130) ((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement."))) NIL NIL -(-1130) +(-1131) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1131) +(-1132) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,{}z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,{}z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,{}z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,{}z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,{}x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,{}x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,{}x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1132 V C) +(-1133 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1133 V C) +(-1134 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4403 . T) (-4404 . T)) -((-12 (|HasCategory| (-1132 |#1| |#2|) (LIST (QUOTE -308) (LIST (QUOTE -1132) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1132 |#1| |#2|) (QUOTE (-1092)))) (|HasCategory| (-1132 |#1| |#2|) (QUOTE (-1092))) (-4037 (|HasCategory| (-1132 |#1| |#2|) (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| (-1132 |#1| |#2|) (LIST (QUOTE -308) (LIST (QUOTE -1132) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1132 |#1| |#2|) (QUOTE (-1092))))) (|HasCategory| (-1132 |#1| |#2|) (LIST (QUOTE -609) (QUOTE (-857))))) -(-1134 |ndim| R) +((-4407 . T) (-4408 . T)) +((-12 (|HasCategory| (-1133 |#1| |#2|) (LIST (QUOTE -309) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1133 |#1| |#2|) (QUOTE (-1093)))) (|HasCategory| (-1133 |#1| |#2|) (QUOTE (-1093))) (-4032 (|HasCategory| (-1133 |#1| |#2|) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-1133 |#1| |#2|) (LIST (QUOTE -309) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1133 |#1| |#2|) (QUOTE (-1093))))) (|HasCategory| (-1133 |#1| |#2|) (LIST (QUOTE -610) (QUOTE (-858))))) +(-1135 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-4400 . T) (-4392 |has| |#2| (-6 (-4405 "*"))) (-4403 . T) (-4397 . T) (-4398 . T)) -((|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE (-4405 "*"))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-362))) (-4037 (|HasAttribute| |#2| (QUOTE (-4405 "*"))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-232)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-171)))) -(-1135 S) +((-4404 . T) (-4396 |has| |#2| (-6 (-4409 "*"))) (-4407 . T) (-4401 . T) (-4402 . T)) +((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4409 "*"))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4032 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-363))) (-4032 (|HasAttribute| |#2| (QUOTE (-4409 "*"))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172)))) +(-1136 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1136) +(-1137) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4404 . T) (-4403 . T)) +((-4408 . T) (-4407 . T)) NIL -(-1137 R E V P TS) +(-1138 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1138 R E V P) +(-1139 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4404 . T) (-4403 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-857))))) -(-1139 S) +((-4408 . T) (-4407 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-858))))) +(-1140 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4403 . T) (-4404 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) -(-1140 A S) +((-4407 . T) (-4408 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) +(-1141 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1141 S) +(-1142 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1142 |Key| |Ent| |dent|) +(-1143 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4404 . T)) -((-12 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2319) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2693) (|devaluate| |#2|)))))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-845))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092)))) -(-1143) +((-4408 . T)) +((-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2557) (|devaluate| |#2|)))))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-846))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093)))) +(-1144) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1144 |Coef|) +(-1145 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1145 S) +(-1146 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}."))) NIL NIL -(-1146 A B) +(-1147 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}."))) NIL NIL -(-1147 A B C) +(-1148 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}."))) NIL NIL -(-1148 S) +(-1149 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4404 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) -(-1149) +((-4408 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) +(-1150) ((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) -((-4404 . T) (-4403 . T)) +((-4408 . T) (-4407 . T)) NIL -(-1150) +(-1151) NIL -((-4404 . T) (-4403 . T)) -((-4037 (-12 (|HasCategory| (-143) (QUOTE (-845))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (-12 (|HasCategory| (-143) (QUOTE (-1092))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (|HasCategory| (-143) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| (-143) (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| (-143) (QUOTE (-1092))) (|HasCategory| (-143) (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| (-143) (QUOTE (-1092))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) -(-1151 |Entry|) +((-4408 . T) (-4407 . T)) +((-4032 (-12 (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) +(-1152 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4403 . T) (-4404 . T)) -((-12 (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2319) (QUOTE (-1150))) (LIST (QUOTE |:|) (QUOTE -2693) (|devaluate| |#1|)))))) (-4037 (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (QUOTE (-1092))) (|HasCategory| (-1150) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (LIST (QUOTE -609) (QUOTE (-857))))) -(-1152 A) +((-4407 . T) (-4408 . T)) +((-12 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (QUOTE (-1151))) (LIST (QUOTE |:|) (QUOTE -2557) (|devaluate| |#1|)))))) (-4032 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-1093)))) (-4032 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (QUOTE (-1093))) (|HasCategory| (-1151) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (LIST (QUOTE -610) (QUOTE (-858))))) +(-1153 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) -(-1153 |Coef|) +((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) +(-1154 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1154 |Coef|) +(-1155 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1155 R UP) +(-1156 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p,{} q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p,{} q)} returns \\spad{[p0,{}...,{}pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p,{} q)}."))) NIL -((|HasCategory| |#1| (QUOTE (-306)))) -(-1156 |n| R) +((|HasCategory| |#1| (QUOTE (-307)))) +(-1157 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1157 S1 S2) +(-1158 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} makes a form \\spad{s:t}"))) NIL NIL -(-1158) +(-1159) ((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) NIL NIL -(-1159 |Coef| |var| |cen|) +(-1160 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4405 "*") -4037 (-2245 (|has| |#1| (-362)) (|has| (-1166 |#1| |#2| |#3|) (-815))) (|has| |#1| (-171)) (-2245 (|has| |#1| (-362)) (|has| (-1166 |#1| |#2| |#3|) (-904)))) (-4396 -4037 (-2245 (|has| |#1| (-362)) (|has| (-1166 |#1| |#2| |#3|) (-815))) (|has| |#1| (-554)) (-2245 (|has| |#1| (-362)) (|has| (-1166 |#1| |#2| |#3|) (-904)))) (-4401 |has| |#1| (-362)) (-4395 |has| |#1| (-362)) (-4397 . T) (-4398 . T) (-4400 . T)) -((-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -513) (QUOTE (-1168)) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144)))) (-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-146)))) (-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-562)) (|devaluate| |#1|)))))) (-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-562)) (|devaluate| |#1|))))) (|HasCategory| (-562) (QUOTE (-1104))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-362)))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-362))))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -513) (QUOTE (-1168)) (LIST (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -4053) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-562))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -3081) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1401) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-144))) (-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-171)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1166 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144))))) -(-1160 R -3196) +(((-4409 "*") -4032 (-2190 (|has| |#1| (-363)) (|has| (-1167 |#1| |#2| |#3|) (-816))) (|has| |#1| (-172)) (-2190 (|has| |#1| (-363)) (|has| (-1167 |#1| |#2| |#3|) (-905)))) (-4400 -4032 (-2190 (|has| |#1| (-363)) (|has| (-1167 |#1| |#2| |#3|) (-816))) (|has| |#1| (-555)) (-2190 (|has| |#1| (-363)) (|has| (-1167 |#1| |#2| |#3|) (-905)))) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T)) +((-4032 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-1144))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-4032 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))) (-4032 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-147)))) (-4032 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|)))))) (-4032 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|))))) (|HasCategory| (-563) (QUOTE (-1105))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-363)))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-4032 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363))))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-1144))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -1693) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (-4032 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -3698) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2606) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-4032 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-555)))) (-4032 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-4032 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-1161 R -3191) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1161 R) +(-1162 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1162 R S) +(-1163 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1163 E OV R P) +(-1164 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1164 R) +(-1165 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4399 |has| |#1| (-362)) (-4401 |has| |#1| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) -((|HasCategory| |#1| (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4401)) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))))) -(-1165 |Coef| |var| |cen|) -((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-362)) (-4395 |has| |#1| (-362)) (-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-562)) (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-362))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasSignature| |#1| (LIST (QUOTE -4053) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -3081) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1401) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|))))))) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4403 |has| |#1| (-363)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T)) +((|HasCategory| |#1| (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1144))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4405)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))))) (-1166 |Coef| |var| |cen|) +((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-563)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasSignature| |#1| (LIST (QUOTE -1693) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (-4032 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -3698) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2606) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|))))))) +(-1167 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-766)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-766)) (|devaluate| |#1|)))) (|HasCategory| (-766) (QUOTE (-1104))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-766))))) (|HasSignature| |#1| (LIST (QUOTE -4053) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-766))))) (|HasCategory| |#1| (QUOTE (-362))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -3081) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1401) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|))))))) -(-1167) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-767)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-767)) (|devaluate| |#1|)))) (|HasCategory| (-767) (QUOTE (-1105))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-767))))) (|HasSignature| |#1| (LIST (QUOTE -1693) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-767))))) (|HasCategory| |#1| (QUOTE (-363))) (-4032 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -3698) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2606) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|))))))) +(-1168) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL NIL -(-1168) +(-1169) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,{}[a1,{}...,{}an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s,{} [a1,{}...,{}an])} returns \\spad{s} arg-scripted by \\spad{[a1,{}...,{}an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s,{} [a1,{}...,{}an])} returns \\spad{s} superscripted by \\spad{[a1,{}...,{}an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s,{} [a1,{}...,{}an])} returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s,{} [a,{}b,{}c])} is equivalent to \\spad{script(s,{}[a,{}b,{}c,{}[],{}[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1169 R) +(-1170 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r,{} n)} returns the vector of the elementary symmetric functions in \\spad{[r,{}r,{}...,{}r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,{}...,{}rn])} returns the vector of the elementary symmetric functions in the \\spad{\\spad{ri}'s}: \\spad{[r1 + ... + rn,{} r1 r2 + ... + r(n-1) rn,{} ...,{} r1 r2 ... rn]}."))) NIL NIL -(-1170 R) +(-1171 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-6 -4401)) (-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-451))) (-12 (|HasCategory| (-966) (QUOTE (-130))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasAttribute| |#1| (QUOTE -4401))) -(-1171) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-6 -4405)) (-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| (-967) (QUOTE (-131))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasAttribute| |#1| (QUOTE -4405))) +(-1172) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1172) +(-1173) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,{}tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,{}tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,{}t,{}tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,{}t,{}tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1173) +(-1174) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{symbols,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: Integer,{} DoubleFloat,{} Symbol,{} String,{} SExpression. See Also: SExpression. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Symbol|))) "\\spad{x case Symbol} is \\spad{true} if \\spad{`x'} really is a Symbol") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Symbol|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Symbol|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Symbol|) $) "\\spad{autoCoerce(s)} forcibly extracts a symbo from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (((|Symbol|) $) "\\spad{coerce(s)} extracts a symbol from the syntax \\spad{`s'}.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1174 N) +(-1175 N) ((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files."))) NIL NIL -(-1175 N) +(-1176 N) ((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample()} returns a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}."))) NIL NIL -(-1176 R) +(-1177 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,{}lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,{}v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,{}v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,{}lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1177) +(-1178) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension()} returns a string representation of a filename extension for native modules.")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform()} returns a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1178 S) +(-1179 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1179 S) +(-1180 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1180 |Key| |Entry|) +(-1181 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4403 . T) (-4404 . T)) -((-12 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2319) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2693) (|devaluate| |#2|)))))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| |#2| (QUOTE (-1092)))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -610) (QUOTE (-535)))) (-12 (|HasCategory| |#2| (QUOTE (-1092))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1092))) (-4037 (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-857)))) (|HasCategory| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (LIST (QUOTE -609) (QUOTE (-857))))) -(-1181 R) +((-4407 . T) (-4408 . T)) +((-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2557) (|devaluate| |#2|)))))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1093))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858))))) +(-1182 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}."))) NIL NIL -(-1182 S |Key| |Entry|) +(-1183 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1183 |Key| |Entry|) +(-1184 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4404 . T)) +((-4408 . T)) NIL -(-1184 |Key| |Entry|) +(-1185 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1185) +(-1186) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1186 S) +(-1187 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1187) +(-1188) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-1188) +(-1189) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,{}\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,{}s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1189 R) +(-1190 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1190) +(-1191) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1191 S) +(-1192 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1192) +(-1193) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1193 S) -((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4404 . T) (-4403 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1092))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (-1194 S) +((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) +((-4408 . T) (-4407 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) +(-1195 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1195) +(-1196) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1196 R -3196) +(-1197 R -3191) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1197 R |Row| |Col| M) +(-1198 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1198 R -3196) +(-1199 R -3191) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -610) (LIST (QUOTE -887) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -881) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -881) (|devaluate| |#1|))))) -(-1199 S R E V P) +((-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -882) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -882) (|devaluate| |#1|))))) +(-1200 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL -((|HasCategory| |#4| (QUOTE (-367)))) -(-1200 R E V P) +((|HasCategory| |#4| (QUOTE (-368)))) +(-1201 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4404 . T) (-4403 . T)) +((-4408 . T) (-4407 . T)) NIL -(-1201 |Coef|) +(-1202 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4398 . T) (-4397 . T) (-4400 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-362)))) -(-1202 |Curve|) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4402 . T) (-4401 . T) (-4404 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-363)))) +(-1203 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1203) +(-1204) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,{}n,{}b,{}r,{}lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,{}sin(n - 1) a],{}...,{}[cos 2 a,{}sin 2 a],{}[cos a,{}sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,{}q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,{}x2,{}x3,{}c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1204 S) +(-1205 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL -((|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) -(-1205 -3196) +((|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) +(-1206 -3191) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1206) +(-1207) ((|constructor| (NIL "This domain represents a type AST."))) NIL NIL -(-1207) +(-1208) ((|constructor| (NIL "The fundamental Type."))) NIL NIL -(-1208 S) +(-1209 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL -((|HasCategory| |#1| (QUOTE (-845)))) -(-1209) +((|HasCategory| |#1| (QUOTE (-846)))) +(-1210) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,{}...,{}an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1210 S) +(-1211 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1211) +(-1212) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-1212) +(-1213) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits."))) NIL NIL -(-1213) +(-1214) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits."))) NIL NIL -(-1214) +(-1215) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits."))) NIL NIL -(-1215 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1216 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1216 |Coef|) +(-1217 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-362)) (-4395 |has| |#1| (-362)) (-4397 . T) (-4398 . T) (-4400 . T)) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-1217 S |Coef| UTS) +(-1218 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) NIL -((|HasCategory| |#2| (QUOTE (-362)))) -(-1218 |Coef| UTS) +((|HasCategory| |#2| (QUOTE (-363)))) +(-1219 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-362)) (-4395 |has| |#1| (-362)) (-4397 . T) (-4398 . T) (-4400 . T)) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-1219 |Coef| UTS) +(-1220 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-362)) (-4395 |has| |#1| (-362)) (-4397 . T) (-4398 . T) (-4400 . T)) -((-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-845)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-904)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1017)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1143)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-1168)))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-144))))) (-4037 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-146))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-562)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-232)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-562)) (|devaluate| |#1|))))) (|HasCategory| (-562) (QUOTE (-1104))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-904)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-1168))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1017)))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-815)))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-845))))) (-4037 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-845)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-904)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1017)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1143)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-1168)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1143)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -513) (QUOTE (-1168)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -4053) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-562))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -3081) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1401) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-845)))) (|HasCategory| |#2| (QUOTE (-904))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-306)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-144)))))) -(-1220 |Coef| |var| |cen|) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T)) +((-4032 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1144)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-4032 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-145))))) (-4032 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-147))))) (-4032 (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|))))) (|HasCategory| (-563) (QUOTE (-1105))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1018)))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-816)))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846))))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1144)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1144)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -1693) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (-4032 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -3698) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2606) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846)))) (|HasCategory| |#2| (QUOTE (-905))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-307)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-145)))))) +(-1221 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4405 "*") -4037 (-2245 (|has| |#1| (-362)) (|has| (-1248 |#1| |#2| |#3|) (-815))) (|has| |#1| (-171)) (-2245 (|has| |#1| (-362)) (|has| (-1248 |#1| |#2| |#3|) (-904)))) (-4396 -4037 (-2245 (|has| |#1| (-362)) (|has| (-1248 |#1| |#2| |#3|) (-815))) (|has| |#1| (-554)) (-2245 (|has| |#1| (-362)) (|has| (-1248 |#1| |#2| |#3|) (-904)))) (-4401 |has| |#1| (-362)) (-4395 |has| |#1| (-362)) (-4397 . T) (-4398 . T) (-4400 . T)) -((-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -513) (QUOTE (-1168)) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144)))) (-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-146)))) (-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-562)) (|devaluate| |#1|)))))) (-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-562)) (|devaluate| |#1|))))) (|HasCategory| (-562) (QUOTE (-1104))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-1168)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-1017))) (|HasCategory| |#1| (QUOTE (-362)))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-362))))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -513) (QUOTE (-1168)) (LIST (QUOTE -1248) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -4053) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-562))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -3081) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1401) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-144))) (-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-171)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1248 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144))))) -(-1221 ZP) +(((-4409 "*") -4032 (-2190 (|has| |#1| (-363)) (|has| (-1249 |#1| |#2| |#3|) (-816))) (|has| |#1| (-172)) (-2190 (|has| |#1| (-363)) (|has| (-1249 |#1| |#2| |#3|) (-905)))) (-4400 -4032 (-2190 (|has| |#1| (-363)) (|has| (-1249 |#1| |#2| |#3|) (-816))) (|has| |#1| (-555)) (-2190 (|has| |#1| (-363)) (|has| (-1249 |#1| |#2| |#3|) (-905)))) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T)) +((-4032 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-1144))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-4032 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))) (-4032 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-147)))) (-4032 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|)))))) (-4032 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|))))) (|HasCategory| (-563) (QUOTE (-1105))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-363)))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-4032 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363))))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-1144))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -1693) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (-4032 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -3698) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2606) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-4032 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-555)))) (-4032 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-4032 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-1222 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1222 R S) +(-1223 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-843)))) -(-1223 S) +((|HasCategory| |#1| (QUOTE (-844)))) +(-1224 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-1092)))) -(-1224 |x| R |y| S) +((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1093)))) +(-1225 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1225 R Q UP) +(-1226 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1226 R UP) +(-1227 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1227 R UP) +(-1228 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1228 R U) +(-1229 R U) ((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) NIL NIL -(-1229 |x| R) +(-1230 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4405 "*") |has| |#2| (-171)) (-4396 |has| |#2| (-554)) (-4399 |has| |#2| (-362)) (-4401 |has| |#2| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) -((|HasCategory| |#2| (QUOTE (-904))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-554)))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -881) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-378))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -881) (QUOTE (-562)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-562))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-378)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -610) (LIST (QUOTE -887) (QUOTE (-562)))))) (-12 (|HasCategory| (-1074) (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-535))))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -635) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (QUOTE (-562)))) (-4037 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| |#2| (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (-4037 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1143))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE -4401)) (|HasCategory| |#2| (QUOTE (-451))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (-4037 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-144))))) -(-1230 R PR S PS) +(((-4409 "*") |has| |#2| (-172)) (-4400 |has| |#2| (-555)) (-4403 |has| |#2| (-363)) (-4405 |has| |#2| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T)) +((|HasCategory| |#2| (QUOTE (-905))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4032 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4032 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1144))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE -4405)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145))))) +(-1231 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1231 S R) +(-1232 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-451))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1143)))) -(-1232 R) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1144)))) +(-1233 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4399 |has| |#1| (-362)) (-4401 |has| |#1| (-6 -4401)) (-4398 . T) (-4397 . T) (-4400 . T)) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4403 |has| |#1| (-363)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T)) NIL -(-1233 S |Coef| |Expon|) +(-1234 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1104))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4053) (LIST (|devaluate| |#2|) (QUOTE (-1168)))))) -(-1234 |Coef| |Expon|) +((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1105))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -1693) (LIST (|devaluate| |#2|) (QUOTE (-1169)))))) +(-1235 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4397 . T) (-4398 . T) (-4400 . T)) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-1235 RC P) +(-1236 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1236 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1237 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1237 |Coef|) +(-1238 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-362)) (-4395 |has| |#1| (-362)) (-4397 . T) (-4398 . T) (-4400 . T)) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-1238 S |Coef| ULS) +(-1239 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1239 |Coef| ULS) +(-1240 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-362)) (-4395 |has| |#1| (-362)) (-4397 . T) (-4398 . T) (-4400 . T)) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-1240 |Coef| ULS) +(-1241 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-362)) (-4395 |has| |#1| (-362)) (-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-562)) (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-362))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasSignature| |#1| (LIST (QUOTE -4053) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -3081) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1401) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) -(-1241 |Coef| |var| |cen|) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-563)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasSignature| |#1| (LIST (QUOTE -1693) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (-4032 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -3698) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2606) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) +(-1242 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4401 |has| |#1| (-362)) (-4395 |has| |#1| (-362)) (-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-171))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-562)) (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-362))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-4037 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-554)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasSignature| |#1| (LIST (QUOTE -4053) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-562)))))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -3081) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1401) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|))))))) -(-1242 R FE |var| |cen|) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-563)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasSignature| |#1| (LIST (QUOTE -1693) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (-4032 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -3698) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2606) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|))))))) +(-1243 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}."))) -(((-4405 "*") |has| (-1241 |#2| |#3| |#4|) (-171)) (-4396 |has| (-1241 |#2| |#3| |#4|) (-554)) (-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| (-1241 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-1241 |#2| |#3| |#4|) (QUOTE (-144))) (|HasCategory| (-1241 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1241 |#2| |#3| |#4|) (QUOTE (-171))) (-4037 (|HasCategory| (-1241 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-1241 |#2| |#3| |#4|) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562)))))) (|HasCategory| (-1241 |#2| |#3| |#4|) (LIST (QUOTE -1033) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| (-1241 |#2| |#3| |#4|) (LIST (QUOTE -1033) (QUOTE (-562)))) (|HasCategory| (-1241 |#2| |#3| |#4|) (QUOTE (-362))) (|HasCategory| (-1241 |#2| |#3| |#4|) (QUOTE (-451))) (|HasCategory| (-1241 |#2| |#3| |#4|) (QUOTE (-554)))) -(-1243 A S) +(((-4409 "*") |has| (-1242 |#2| |#3| |#4|) (-172)) (-4400 |has| (-1242 |#2| |#3| |#4|) (-555)) (-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| (-1242 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-1242 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1242 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1242 |#2| |#3| |#4|) (QUOTE (-172))) (-4032 (|HasCategory| (-1242 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-1242 |#2| |#3| |#4|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| (-1242 |#2| |#3| |#4|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-1242 |#2| |#3| |#4|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-1242 |#2| |#3| |#4|) (QUOTE (-363))) (|HasCategory| (-1242 |#2| |#3| |#4|) (QUOTE (-452))) (|HasCategory| (-1242 |#2| |#3| |#4|) (QUOTE (-555)))) +(-1244 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4404))) -(-1244 S) +((|HasAttribute| |#1| (QUOTE -4408))) +(-1245 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL NIL -(-1245 |Coef1| |Coef2| UTS1 UTS2) +(-1246 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1246 S |Coef|) +(-1247 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (QUOTE (-1192))) (|HasSignature| |#2| (LIST (QUOTE -1401) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3081) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1168))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#2| (QUOTE (-362)))) -(-1247 |Coef|) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-955))) (|HasCategory| |#2| (QUOTE (-1193))) (|HasSignature| |#2| (LIST (QUOTE -2606) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3698) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1169))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363)))) +(-1248 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4397 . T) (-4398 . T) (-4400 . T)) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-1248 |Coef| |var| |cen|) +(-1249 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4405 "*") |has| |#1| (-171)) (-4396 |has| |#1| (-554)) (-4397 . T) (-4398 . T) (-4400 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasCategory| |#1| (QUOTE (-554))) (-4037 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-554)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1168)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-766)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-766)) (|devaluate| |#1|)))) (|HasCategory| (-766) (QUOTE (-1104))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-766))))) (|HasSignature| |#1| (LIST (QUOTE -4053) (LIST (|devaluate| |#1|) (QUOTE (-1168)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-766))))) (|HasCategory| |#1| (QUOTE (-362))) (-4037 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1192))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasSignature| |#1| (LIST (QUOTE -3081) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1168))))) (|HasSignature| |#1| (LIST (QUOTE -1401) (LIST (LIST (QUOTE -639) (QUOTE (-1168))) (|devaluate| |#1|))))))) -(-1249 |Coef| UTS) +(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4401 . T) (-4402 . T) (-4404 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-767)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-767)) (|devaluate| |#1|)))) (|HasCategory| (-767) (QUOTE (-1105))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-767))))) (|HasSignature| |#1| (LIST (QUOTE -1693) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-767))))) (|HasCategory| |#1| (QUOTE (-363))) (-4032 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -3698) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2606) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|))))))) +(-1250 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1250 -3196 UP L UTS) +(-1251 -3191 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL -((|HasCategory| |#1| (QUOTE (-554)))) -(-1251) +((|HasCategory| |#1| (QUOTE (-555)))) +(-1252) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) NIL NIL -(-1252 |sym|) +(-1253 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1253 S R) +(-1254 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-997))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-721))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1254 R) +((|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1255 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4404 . T) (-4403 . T)) +((-4408 . T) (-4407 . T)) NIL -(-1255 A B) +(-1256 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1256 R) +(-1257 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4404 . T) (-4403 . T)) -((-4037 (-12 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-4037 (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-535)))) (-4037 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092)))) (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| (-562) (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-721))) (|HasCategory| |#1| (QUOTE (-1044))) (-12 (|HasCategory| |#1| (QUOTE (-997))) (|HasCategory| |#1| (QUOTE (-1044)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-857)))) (-12 (|HasCategory| |#1| (QUOTE (-1092))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) -(-1257) +((-4408 . T) (-4407 . T)) +((-4032 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4032 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +(-1258) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1258) +(-1259) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1259) +(-1260) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1260) +(-1261) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1261) +(-1262) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1262 A S) +(-1263 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1263 S) +(-1264 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4398 . T) (-4397 . T)) +((-4402 . T) (-4401 . T)) NIL -(-1264 R) +(-1265 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1265 K R UP -3196) +(-1266 K R UP -3191) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-1266) +(-1267) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1267) +(-1268) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1268 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1269 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4398 |has| |#1| (-171)) (-4397 |has| |#1| (-171)) (-4400 . T)) -((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362)))) -(-1269 R E V P) +((-4402 |has| |#1| (-172)) (-4401 |has| |#1| (-172)) (-4404 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363)))) +(-1270 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4404 . T) (-4403 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-535)))) (|HasCategory| |#4| (QUOTE (-1092))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-857))))) -(-1270 R) +((-4408 . T) (-4407 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-858))))) +(-1271 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})"))) -((-4397 . T) (-4398 . T) (-4400 . T)) +((-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-1271 |vl| R) +(-1272 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4400 . T) (-4396 |has| |#2| (-6 -4396)) (-4398 . T) (-4397 . T)) -((|HasCategory| |#2| (QUOTE (-171))) (|HasAttribute| |#2| (QUOTE -4396))) -(-1272 R |VarSet| XPOLY) +((-4404 . T) (-4400 |has| |#2| (-6 -4400)) (-4402 . T) (-4401 . T)) +((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4400))) +(-1273 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1273 |vl| R) +(-1274 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4396 |has| |#2| (-6 -4396)) (-4398 . T) (-4397 . T) (-4400 . T)) +((-4400 |has| |#2| (-6 -4400)) (-4402 . T) (-4401 . T) (-4404 . T)) NIL -(-1274 S -3196) +(-1275 S -3191) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL -((|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146)))) -(-1275 -3196) +((|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147)))) +(-1276 -3191) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4395 . T) (-4401 . T) (-4396 . T) ((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL -(-1276 |VarSet| R) +(-1277 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4396 |has| |#2| (-6 -4396)) (-4398 . T) (-4397 . T) (-4400 . T)) -((|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -712) (LIST (QUOTE -406) (QUOTE (-562))))) (|HasAttribute| |#2| (QUOTE -4396))) -(-1277 |vl| R) +((-4400 |has| |#2| (-6 -4400)) (-4402 . T) (-4401 . T) (-4404 . T)) +((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -713) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasAttribute| |#2| (QUOTE -4400))) +(-1278 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4396 |has| |#2| (-6 -4396)) (-4398 . T) (-4397 . T) (-4400 . T)) +((-4400 |has| |#2| (-6 -4400)) (-4402 . T) (-4401 . T) (-4404 . T)) NIL -(-1278 R) +(-1279 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4396 |has| |#1| (-6 -4396)) (-4398 . T) (-4397 . T) (-4400 . T)) -((|HasCategory| |#1| (QUOTE (-171))) (|HasAttribute| |#1| (QUOTE -4396))) -(-1279 R E) +((-4400 |has| |#1| (-6 -4400)) (-4402 . T) (-4401 . T) (-4404 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasAttribute| |#1| (QUOTE -4400))) +(-1280 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4400 . T) (-4401 |has| |#1| (-6 -4401)) (-4396 |has| |#1| (-6 -4396)) (-4398 . T) (-4397 . T)) -((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4400)) (|HasAttribute| |#1| (QUOTE -4401)) (|HasAttribute| |#1| (QUOTE -4396))) -(-1280 |VarSet| R) +((-4404 . T) (-4405 |has| |#1| (-6 -4405)) (-4400 |has| |#1| (-6 -4400)) (-4402 . T) (-4401 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4404)) (|HasAttribute| |#1| (QUOTE -4405)) (|HasAttribute| |#1| (QUOTE -4400))) +(-1281 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4396 |has| |#2| (-6 -4396)) (-4398 . T) (-4397 . T) (-4400 . T)) -((|HasCategory| |#2| (QUOTE (-171))) (|HasAttribute| |#2| (QUOTE -4396))) -(-1281 A) +((-4400 |has| |#2| (-6 -4400)) (-4402 . T) (-4401 . T) (-4404 . T)) +((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4400))) +(-1282 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1282 R |ls| |ls2|) +(-1283 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,{}s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}info?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,{}info?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,{}info?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,{}false,{}false,{}false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,{}info?)} returns the same as \\spad{realSolve(ts,{}info?,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?)} returns the same as \\spad{realSolve(ts,{}info?,{}check?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,{}false,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}check?,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?,{}lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,{}false,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,{}info?)} returns the same as \\spad{triangSolve(lp,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,{}info?,{}lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1283 R) +(-1284 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1284 |p|) +(-1285 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4405 "*") . T) (-4397 . T) (-4398 . T) (-4400 . T)) +(((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T)) NIL NIL NIL @@ -5084,4 +5088,4 @@ NIL NIL NIL NIL -((-3 NIL 2282316 2282321 2282326 2282331) (-2 NIL 2282296 2282301 2282306 2282311) (-1 NIL 2282276 2282281 2282286 2282291) (0 NIL 2282256 2282261 2282266 2282271) (-1284 "ZMOD.spad" 2282065 2282078 2282194 2282251) (-1283 "ZLINDEP.spad" 2281109 2281120 2282055 2282060) (-1282 "ZDSOLVE.spad" 2270958 2270980 2281099 2281104) (-1281 "YSTREAM.spad" 2270451 2270462 2270948 2270953) (-1280 "XRPOLY.spad" 2269671 2269691 2270307 2270376) (-1279 "XPR.spad" 2267462 2267475 2269389 2269488) (-1278 "XPOLY.spad" 2267017 2267028 2267318 2267387) (-1277 "XPOLYC.spad" 2266334 2266350 2266943 2267012) (-1276 "XPBWPOLY.spad" 2264771 2264791 2266114 2266183) (-1275 "XF.spad" 2263232 2263247 2264673 2264766) (-1274 "XF.spad" 2261673 2261690 2263116 2263121) (-1273 "XFALG.spad" 2258697 2258713 2261599 2261668) (-1272 "XEXPPKG.spad" 2257948 2257974 2258687 2258692) (-1271 "XDPOLY.spad" 2257562 2257578 2257804 2257873) (-1270 "XALG.spad" 2257222 2257233 2257518 2257557) (-1269 "WUTSET.spad" 2253061 2253078 2256868 2256895) (-1268 "WP.spad" 2252260 2252304 2252919 2252986) (-1267 "WHILEAST.spad" 2252058 2252067 2252250 2252255) (-1266 "WHEREAST.spad" 2251729 2251738 2252048 2252053) (-1265 "WFFINTBS.spad" 2249292 2249314 2251719 2251724) (-1264 "WEIER.spad" 2247506 2247517 2249282 2249287) (-1263 "VSPACE.spad" 2247179 2247190 2247474 2247501) (-1262 "VSPACE.spad" 2246872 2246885 2247169 2247174) (-1261 "VOID.spad" 2246549 2246558 2246862 2246867) (-1260 "VIEW.spad" 2244171 2244180 2246539 2246544) (-1259 "VIEWDEF.spad" 2239368 2239377 2244161 2244166) (-1258 "VIEW3D.spad" 2223203 2223212 2239358 2239363) (-1257 "VIEW2D.spad" 2210940 2210949 2223193 2223198) (-1256 "VECTOR.spad" 2209615 2209626 2209866 2209893) (-1255 "VECTOR2.spad" 2208242 2208255 2209605 2209610) (-1254 "VECTCAT.spad" 2206142 2206153 2208210 2208237) (-1253 "VECTCAT.spad" 2203850 2203863 2205920 2205925) (-1252 "VARIABLE.spad" 2203630 2203645 2203840 2203845) (-1251 "UTYPE.spad" 2203274 2203283 2203620 2203625) (-1250 "UTSODETL.spad" 2202567 2202591 2203230 2203235) (-1249 "UTSODE.spad" 2200755 2200775 2202557 2202562) (-1248 "UTS.spad" 2195544 2195572 2199222 2199319) (-1247 "UTSCAT.spad" 2192995 2193011 2195442 2195539) (-1246 "UTSCAT.spad" 2190090 2190108 2192539 2192544) (-1245 "UTS2.spad" 2189683 2189718 2190080 2190085) (-1244 "URAGG.spad" 2184315 2184326 2189673 2189678) (-1243 "URAGG.spad" 2178911 2178924 2184271 2184276) (-1242 "UPXSSING.spad" 2176554 2176580 2177992 2178125) (-1241 "UPXS.spad" 2173702 2173730 2174686 2174835) (-1240 "UPXSCONS.spad" 2171459 2171479 2171834 2171983) (-1239 "UPXSCCA.spad" 2170024 2170044 2171305 2171454) (-1238 "UPXSCCA.spad" 2168731 2168753 2170014 2170019) (-1237 "UPXSCAT.spad" 2167312 2167328 2168577 2168726) (-1236 "UPXS2.spad" 2166853 2166906 2167302 2167307) (-1235 "UPSQFREE.spad" 2165265 2165279 2166843 2166848) (-1234 "UPSCAT.spad" 2162858 2162882 2165163 2165260) (-1233 "UPSCAT.spad" 2160157 2160183 2162464 2162469) (-1232 "UPOLYC.spad" 2155135 2155146 2159999 2160152) (-1231 "UPOLYC.spad" 2150005 2150018 2154871 2154876) (-1230 "UPOLYC2.spad" 2149474 2149493 2149995 2150000) (-1229 "UP.spad" 2146631 2146646 2147024 2147177) (-1228 "UPMP.spad" 2145521 2145534 2146621 2146626) (-1227 "UPDIVP.spad" 2145084 2145098 2145511 2145516) (-1226 "UPDECOMP.spad" 2143321 2143335 2145074 2145079) (-1225 "UPCDEN.spad" 2142528 2142544 2143311 2143316) (-1224 "UP2.spad" 2141890 2141911 2142518 2142523) (-1223 "UNISEG.spad" 2141243 2141254 2141809 2141814) (-1222 "UNISEG2.spad" 2140736 2140749 2141199 2141204) (-1221 "UNIFACT.spad" 2139837 2139849 2140726 2140731) (-1220 "ULS.spad" 2130389 2130417 2131482 2131911) (-1219 "ULSCONS.spad" 2122783 2122803 2123155 2123304) (-1218 "ULSCCAT.spad" 2120512 2120532 2122629 2122778) (-1217 "ULSCCAT.spad" 2118349 2118371 2120468 2120473) (-1216 "ULSCAT.spad" 2116565 2116581 2118195 2118344) (-1215 "ULS2.spad" 2116077 2116130 2116555 2116560) (-1214 "UINT8.spad" 2115954 2115963 2116067 2116072) (-1213 "UINT32.spad" 2115830 2115839 2115944 2115949) (-1212 "UINT16.spad" 2115706 2115715 2115820 2115825) (-1211 "UFD.spad" 2114771 2114780 2115632 2115701) (-1210 "UFD.spad" 2113898 2113909 2114761 2114766) (-1209 "UDVO.spad" 2112745 2112754 2113888 2113893) (-1208 "UDPO.spad" 2110172 2110183 2112701 2112706) (-1207 "TYPE.spad" 2110104 2110113 2110162 2110167) (-1206 "TYPEAST.spad" 2110023 2110032 2110094 2110099) (-1205 "TWOFACT.spad" 2108673 2108688 2110013 2110018) (-1204 "TUPLE.spad" 2108157 2108168 2108572 2108577) (-1203 "TUBETOOL.spad" 2104994 2105003 2108147 2108152) (-1202 "TUBE.spad" 2103635 2103652 2104984 2104989) (-1201 "TS.spad" 2102224 2102240 2103200 2103297) (-1200 "TSETCAT.spad" 2089351 2089368 2102192 2102219) (-1199 "TSETCAT.spad" 2076464 2076483 2089307 2089312) (-1198 "TRMANIP.spad" 2070830 2070847 2076170 2076175) (-1197 "TRIMAT.spad" 2069789 2069814 2070820 2070825) (-1196 "TRIGMNIP.spad" 2068306 2068323 2069779 2069784) (-1195 "TRIGCAT.spad" 2067818 2067827 2068296 2068301) (-1194 "TRIGCAT.spad" 2067328 2067339 2067808 2067813) (-1193 "TREE.spad" 2065899 2065910 2066935 2066962) (-1192 "TRANFUN.spad" 2065730 2065739 2065889 2065894) (-1191 "TRANFUN.spad" 2065559 2065570 2065720 2065725) (-1190 "TOPSP.spad" 2065233 2065242 2065549 2065554) (-1189 "TOOLSIGN.spad" 2064896 2064907 2065223 2065228) (-1188 "TEXTFILE.spad" 2063453 2063462 2064886 2064891) (-1187 "TEX.spad" 2060585 2060594 2063443 2063448) (-1186 "TEX1.spad" 2060141 2060152 2060575 2060580) (-1185 "TEMUTL.spad" 2059696 2059705 2060131 2060136) (-1184 "TBCMPPK.spad" 2057789 2057812 2059686 2059691) (-1183 "TBAGG.spad" 2056825 2056848 2057769 2057784) (-1182 "TBAGG.spad" 2055869 2055894 2056815 2056820) (-1181 "TANEXP.spad" 2055245 2055256 2055859 2055864) (-1180 "TABLE.spad" 2053656 2053679 2053926 2053953) (-1179 "TABLEAU.spad" 2053137 2053148 2053646 2053651) (-1178 "TABLBUMP.spad" 2049920 2049931 2053127 2053132) (-1177 "SYSTEM.spad" 2049194 2049203 2049910 2049915) (-1176 "SYSSOLP.spad" 2046667 2046678 2049184 2049189) (-1175 "SYSNNI.spad" 2045843 2045854 2046657 2046662) (-1174 "SYSINT.spad" 2045316 2045327 2045833 2045838) (-1173 "SYNTAX.spad" 2041586 2041595 2045306 2045311) (-1172 "SYMTAB.spad" 2039642 2039651 2041576 2041581) (-1171 "SYMS.spad" 2035627 2035636 2039632 2039637) (-1170 "SYMPOLY.spad" 2034634 2034645 2034716 2034843) (-1169 "SYMFUNC.spad" 2034109 2034120 2034624 2034629) (-1168 "SYMBOL.spad" 2031536 2031545 2034099 2034104) (-1167 "SWITCH.spad" 2028293 2028302 2031526 2031531) (-1166 "SUTS.spad" 2025192 2025220 2026760 2026857) (-1165 "SUPXS.spad" 2022327 2022355 2023324 2023473) (-1164 "SUP.spad" 2019096 2019107 2019877 2020030) (-1163 "SUPFRACF.spad" 2018201 2018219 2019086 2019091) (-1162 "SUP2.spad" 2017591 2017604 2018191 2018196) (-1161 "SUMRF.spad" 2016557 2016568 2017581 2017586) (-1160 "SUMFS.spad" 2016190 2016207 2016547 2016552) (-1159 "SULS.spad" 2006729 2006757 2007835 2008264) (-1158 "SUCHTAST.spad" 2006498 2006507 2006719 2006724) (-1157 "SUCH.spad" 2006178 2006193 2006488 2006493) (-1156 "SUBSPACE.spad" 1998185 1998200 2006168 2006173) (-1155 "SUBRESP.spad" 1997345 1997359 1998141 1998146) (-1154 "STTF.spad" 1993444 1993460 1997335 1997340) (-1153 "STTFNC.spad" 1989912 1989928 1993434 1993439) (-1152 "STTAYLOR.spad" 1982310 1982321 1989793 1989798) (-1151 "STRTBL.spad" 1980815 1980832 1980964 1980991) (-1150 "STRING.spad" 1980224 1980233 1980238 1980265) (-1149 "STRICAT.spad" 1980012 1980021 1980192 1980219) (-1148 "STREAM.spad" 1976870 1976881 1979537 1979552) (-1147 "STREAM3.spad" 1976415 1976430 1976860 1976865) (-1146 "STREAM2.spad" 1975483 1975496 1976405 1976410) (-1145 "STREAM1.spad" 1975187 1975198 1975473 1975478) (-1144 "STINPROD.spad" 1974093 1974109 1975177 1975182) (-1143 "STEP.spad" 1973294 1973303 1974083 1974088) (-1142 "STBL.spad" 1971820 1971848 1971987 1972002) (-1141 "STAGG.spad" 1970895 1970906 1971810 1971815) (-1140 "STAGG.spad" 1969968 1969981 1970885 1970890) (-1139 "STACK.spad" 1969319 1969330 1969575 1969602) (-1138 "SREGSET.spad" 1967023 1967040 1968965 1968992) (-1137 "SRDCMPK.spad" 1965568 1965588 1967013 1967018) (-1136 "SRAGG.spad" 1960665 1960674 1965536 1965563) (-1135 "SRAGG.spad" 1955782 1955793 1960655 1960660) (-1134 "SQMATRIX.spad" 1953398 1953416 1954314 1954401) (-1133 "SPLTREE.spad" 1947950 1947963 1952834 1952861) (-1132 "SPLNODE.spad" 1944538 1944551 1947940 1947945) (-1131 "SPFCAT.spad" 1943315 1943324 1944528 1944533) (-1130 "SPECOUT.spad" 1941865 1941874 1943305 1943310) (-1129 "SPADXPT.spad" 1934004 1934013 1941855 1941860) (-1128 "spad-parser.spad" 1933469 1933478 1933994 1933999) (-1127 "SPADAST.spad" 1933170 1933179 1933459 1933464) (-1126 "SPACEC.spad" 1917183 1917194 1933160 1933165) (-1125 "SPACE3.spad" 1916959 1916970 1917173 1917178) (-1124 "SORTPAK.spad" 1916504 1916517 1916915 1916920) (-1123 "SOLVETRA.spad" 1914261 1914272 1916494 1916499) (-1122 "SOLVESER.spad" 1912781 1912792 1914251 1914256) (-1121 "SOLVERAD.spad" 1908791 1908802 1912771 1912776) (-1120 "SOLVEFOR.spad" 1907211 1907229 1908781 1908786) (-1119 "SNTSCAT.spad" 1906811 1906828 1907179 1907206) (-1118 "SMTS.spad" 1905071 1905097 1906376 1906473) (-1117 "SMP.spad" 1902510 1902530 1902900 1903027) (-1116 "SMITH.spad" 1901353 1901378 1902500 1902505) (-1115 "SMATCAT.spad" 1899463 1899493 1901297 1901348) (-1114 "SMATCAT.spad" 1897505 1897537 1899341 1899346) (-1113 "SKAGG.spad" 1896466 1896477 1897473 1897500) (-1112 "SINT.spad" 1895292 1895301 1896332 1896461) (-1111 "SIMPAN.spad" 1895020 1895029 1895282 1895287) (-1110 "SIG.spad" 1894348 1894357 1895010 1895015) (-1109 "SIGNRF.spad" 1893456 1893467 1894338 1894343) (-1108 "SIGNEF.spad" 1892725 1892742 1893446 1893451) (-1107 "SIGAST.spad" 1892106 1892115 1892715 1892720) (-1106 "SHP.spad" 1890024 1890039 1892062 1892067) (-1105 "SHDP.spad" 1879735 1879762 1880244 1880375) (-1104 "SGROUP.spad" 1879343 1879352 1879725 1879730) (-1103 "SGROUP.spad" 1878949 1878960 1879333 1879338) (-1102 "SGCF.spad" 1871830 1871839 1878939 1878944) (-1101 "SFRTCAT.spad" 1870758 1870775 1871798 1871825) (-1100 "SFRGCD.spad" 1869821 1869841 1870748 1870753) (-1099 "SFQCMPK.spad" 1864458 1864478 1869811 1869816) (-1098 "SFORT.spad" 1863893 1863907 1864448 1864453) (-1097 "SEXOF.spad" 1863736 1863776 1863883 1863888) (-1096 "SEX.spad" 1863628 1863637 1863726 1863731) (-1095 "SEXCAT.spad" 1861179 1861219 1863618 1863623) (-1094 "SET.spad" 1859479 1859490 1860600 1860639) (-1093 "SETMN.spad" 1857913 1857930 1859469 1859474) (-1092 "SETCAT.spad" 1857398 1857407 1857903 1857908) (-1091 "SETCAT.spad" 1856881 1856892 1857388 1857393) (-1090 "SETAGG.spad" 1853402 1853413 1856861 1856876) (-1089 "SETAGG.spad" 1849931 1849944 1853392 1853397) (-1088 "SEQAST.spad" 1849634 1849643 1849921 1849926) (-1087 "SEGXCAT.spad" 1848756 1848769 1849624 1849629) (-1086 "SEG.spad" 1848569 1848580 1848675 1848680) (-1085 "SEGCAT.spad" 1847476 1847487 1848559 1848564) (-1084 "SEGBIND.spad" 1846548 1846559 1847431 1847436) (-1083 "SEGBIND2.spad" 1846244 1846257 1846538 1846543) (-1082 "SEGAST.spad" 1845958 1845967 1846234 1846239) (-1081 "SEG2.spad" 1845383 1845396 1845914 1845919) (-1080 "SDVAR.spad" 1844659 1844670 1845373 1845378) (-1079 "SDPOL.spad" 1842049 1842060 1842340 1842467) (-1078 "SCPKG.spad" 1840128 1840139 1842039 1842044) (-1077 "SCOPE.spad" 1839273 1839282 1840118 1840123) (-1076 "SCACHE.spad" 1837955 1837966 1839263 1839268) (-1075 "SASTCAT.spad" 1837864 1837873 1837945 1837950) (-1074 "SAOS.spad" 1837736 1837745 1837854 1837859) (-1073 "SAERFFC.spad" 1837449 1837469 1837726 1837731) (-1072 "SAE.spad" 1835624 1835640 1836235 1836370) (-1071 "SAEFACT.spad" 1835325 1835345 1835614 1835619) (-1070 "RURPK.spad" 1832966 1832982 1835315 1835320) (-1069 "RULESET.spad" 1832407 1832431 1832956 1832961) (-1068 "RULE.spad" 1830611 1830635 1832397 1832402) (-1067 "RULECOLD.spad" 1830463 1830476 1830601 1830606) (-1066 "RSTRCAST.spad" 1830180 1830189 1830453 1830458) (-1065 "RSETGCD.spad" 1826558 1826578 1830170 1830175) (-1064 "RSETCAT.spad" 1816342 1816359 1826526 1826553) (-1063 "RSETCAT.spad" 1806146 1806165 1816332 1816337) (-1062 "RSDCMPK.spad" 1804598 1804618 1806136 1806141) (-1061 "RRCC.spad" 1802982 1803012 1804588 1804593) (-1060 "RRCC.spad" 1801364 1801396 1802972 1802977) (-1059 "RPTAST.spad" 1801066 1801075 1801354 1801359) (-1058 "RPOLCAT.spad" 1780426 1780441 1800934 1801061) (-1057 "RPOLCAT.spad" 1759500 1759517 1780010 1780015) (-1056 "ROUTINE.spad" 1755363 1755372 1758147 1758174) (-1055 "ROMAN.spad" 1754691 1754700 1755229 1755358) (-1054 "ROIRC.spad" 1753771 1753803 1754681 1754686) (-1053 "RNS.spad" 1752674 1752683 1753673 1753766) (-1052 "RNS.spad" 1751663 1751674 1752664 1752669) (-1051 "RNG.spad" 1751398 1751407 1751653 1751658) (-1050 "RMODULE.spad" 1751036 1751047 1751388 1751393) (-1049 "RMCAT2.spad" 1750444 1750501 1751026 1751031) (-1048 "RMATRIX.spad" 1749268 1749287 1749611 1749650) (-1047 "RMATCAT.spad" 1744801 1744832 1749224 1749263) (-1046 "RMATCAT.spad" 1740224 1740257 1744649 1744654) (-1045 "RINTERP.spad" 1740112 1740132 1740214 1740219) (-1044 "RING.spad" 1739582 1739591 1740092 1740107) (-1043 "RING.spad" 1739060 1739071 1739572 1739577) (-1042 "RIDIST.spad" 1738444 1738453 1739050 1739055) (-1041 "RGCHAIN.spad" 1737023 1737039 1737929 1737956) (-1040 "RGBCSPC.spad" 1736804 1736816 1737013 1737018) (-1039 "RGBCMDL.spad" 1736334 1736346 1736794 1736799) (-1038 "RF.spad" 1733948 1733959 1736324 1736329) (-1037 "RFFACTOR.spad" 1733410 1733421 1733938 1733943) (-1036 "RFFACT.spad" 1733145 1733157 1733400 1733405) (-1035 "RFDIST.spad" 1732133 1732142 1733135 1733140) (-1034 "RETSOL.spad" 1731550 1731563 1732123 1732128) (-1033 "RETRACT.spad" 1730978 1730989 1731540 1731545) (-1032 "RETRACT.spad" 1730404 1730417 1730968 1730973) (-1031 "RETAST.spad" 1730216 1730225 1730394 1730399) (-1030 "RESULT.spad" 1728276 1728285 1728863 1728890) (-1029 "RESRING.spad" 1727623 1727670 1728214 1728271) (-1028 "RESLATC.spad" 1726947 1726958 1727613 1727618) (-1027 "REPSQ.spad" 1726676 1726687 1726937 1726942) (-1026 "REP.spad" 1724228 1724237 1726666 1726671) (-1025 "REPDB.spad" 1723933 1723944 1724218 1724223) (-1024 "REP2.spad" 1713505 1713516 1723775 1723780) (-1023 "REP1.spad" 1707495 1707506 1713455 1713460) (-1022 "REGSET.spad" 1705292 1705309 1707141 1707168) (-1021 "REF.spad" 1704621 1704632 1705247 1705252) (-1020 "REDORDER.spad" 1703797 1703814 1704611 1704616) (-1019 "RECLOS.spad" 1702580 1702600 1703284 1703377) (-1018 "REALSOLV.spad" 1701712 1701721 1702570 1702575) (-1017 "REAL.spad" 1701584 1701593 1701702 1701707) (-1016 "REAL0Q.spad" 1698866 1698881 1701574 1701579) (-1015 "REAL0.spad" 1695694 1695709 1698856 1698861) (-1014 "RDUCEAST.spad" 1695415 1695424 1695684 1695689) (-1013 "RDIV.spad" 1695066 1695091 1695405 1695410) (-1012 "RDIST.spad" 1694629 1694640 1695056 1695061) (-1011 "RDETRS.spad" 1693425 1693443 1694619 1694624) (-1010 "RDETR.spad" 1691532 1691550 1693415 1693420) (-1009 "RDEEFS.spad" 1690605 1690622 1691522 1691527) (-1008 "RDEEF.spad" 1689601 1689618 1690595 1690600) (-1007 "RCFIELD.spad" 1686787 1686796 1689503 1689596) (-1006 "RCFIELD.spad" 1684059 1684070 1686777 1686782) (-1005 "RCAGG.spad" 1681971 1681982 1684049 1684054) (-1004 "RCAGG.spad" 1679810 1679823 1681890 1681895) (-1003 "RATRET.spad" 1679170 1679181 1679800 1679805) (-1002 "RATFACT.spad" 1678862 1678874 1679160 1679165) (-1001 "RANDSRC.spad" 1678181 1678190 1678852 1678857) (-1000 "RADUTIL.spad" 1677935 1677944 1678171 1678176) (-999 "RADIX.spad" 1674837 1674850 1676402 1676495) (-998 "RADFF.spad" 1673251 1673287 1673369 1673525) (-997 "RADCAT.spad" 1672845 1672853 1673241 1673246) (-996 "RADCAT.spad" 1672437 1672447 1672835 1672840) (-995 "QUEUE.spad" 1671780 1671790 1672044 1672071) (-994 "QUAT.spad" 1670362 1670372 1670704 1670769) (-993 "QUATCT2.spad" 1669981 1669999 1670352 1670357) (-992 "QUATCAT.spad" 1668146 1668156 1669911 1669976) (-991 "QUATCAT.spad" 1666062 1666074 1667829 1667834) (-990 "QUAGG.spad" 1664888 1664898 1666030 1666057) (-989 "QQUTAST.spad" 1664657 1664665 1664878 1664883) (-988 "QFORM.spad" 1664120 1664134 1664647 1664652) (-987 "QFCAT.spad" 1662823 1662833 1664022 1664115) (-986 "QFCAT.spad" 1661117 1661129 1662318 1662323) (-985 "QFCAT2.spad" 1660808 1660824 1661107 1661112) (-984 "QEQUAT.spad" 1660365 1660373 1660798 1660803) (-983 "QCMPACK.spad" 1655112 1655131 1660355 1660360) (-982 "QALGSET.spad" 1651187 1651219 1655026 1655031) (-981 "QALGSET2.spad" 1649183 1649201 1651177 1651182) (-980 "PWFFINTB.spad" 1646493 1646514 1649173 1649178) (-979 "PUSHVAR.spad" 1645822 1645841 1646483 1646488) (-978 "PTRANFN.spad" 1641948 1641958 1645812 1645817) (-977 "PTPACK.spad" 1639036 1639046 1641938 1641943) (-976 "PTFUNC2.spad" 1638857 1638871 1639026 1639031) (-975 "PTCAT.spad" 1638106 1638116 1638825 1638852) (-974 "PSQFR.spad" 1637413 1637437 1638096 1638101) (-973 "PSEUDLIN.spad" 1636271 1636281 1637403 1637408) (-972 "PSETPK.spad" 1621704 1621720 1636149 1636154) (-971 "PSETCAT.spad" 1615624 1615647 1621684 1621699) (-970 "PSETCAT.spad" 1609518 1609543 1615580 1615585) (-969 "PSCURVE.spad" 1608501 1608509 1609508 1609513) (-968 "PSCAT.spad" 1607268 1607297 1608399 1608496) (-967 "PSCAT.spad" 1606125 1606156 1607258 1607263) (-966 "PRTITION.spad" 1605070 1605078 1606115 1606120) (-965 "PRTDAST.spad" 1604789 1604797 1605060 1605065) (-964 "PRS.spad" 1594351 1594368 1604745 1604750) (-963 "PRQAGG.spad" 1593782 1593792 1594319 1594346) (-962 "PROPLOG.spad" 1593185 1593193 1593772 1593777) (-961 "PROPFRML.spad" 1591103 1591114 1593175 1593180) (-960 "PROPERTY.spad" 1590597 1590605 1591093 1591098) (-959 "PRODUCT.spad" 1588277 1588289 1588563 1588618) (-958 "PR.spad" 1586663 1586675 1587368 1587495) (-957 "PRINT.spad" 1586415 1586423 1586653 1586658) (-956 "PRIMES.spad" 1584666 1584676 1586405 1586410) (-955 "PRIMELT.spad" 1582647 1582661 1584656 1584661) (-954 "PRIMCAT.spad" 1582270 1582278 1582637 1582642) (-953 "PRIMARR.spad" 1581275 1581285 1581453 1581480) (-952 "PRIMARR2.spad" 1579998 1580010 1581265 1581270) (-951 "PREASSOC.spad" 1579370 1579382 1579988 1579993) (-950 "PPCURVE.spad" 1578507 1578515 1579360 1579365) (-949 "PORTNUM.spad" 1578282 1578290 1578497 1578502) (-948 "POLYROOT.spad" 1577111 1577133 1578238 1578243) (-947 "POLY.spad" 1574408 1574418 1574925 1575052) (-946 "POLYLIFT.spad" 1573669 1573692 1574398 1574403) (-945 "POLYCATQ.spad" 1571771 1571793 1573659 1573664) (-944 "POLYCAT.spad" 1565177 1565198 1571639 1571766) (-943 "POLYCAT.spad" 1557885 1557908 1564349 1564354) (-942 "POLY2UP.spad" 1557333 1557347 1557875 1557880) (-941 "POLY2.spad" 1556928 1556940 1557323 1557328) (-940 "POLUTIL.spad" 1555869 1555898 1556884 1556889) (-939 "POLTOPOL.spad" 1554617 1554632 1555859 1555864) (-938 "POINT.spad" 1553456 1553466 1553543 1553570) (-937 "PNTHEORY.spad" 1550122 1550130 1553446 1553451) (-936 "PMTOOLS.spad" 1548879 1548893 1550112 1550117) (-935 "PMSYM.spad" 1548424 1548434 1548869 1548874) (-934 "PMQFCAT.spad" 1548011 1548025 1548414 1548419) (-933 "PMPRED.spad" 1547480 1547494 1548001 1548006) (-932 "PMPREDFS.spad" 1546924 1546946 1547470 1547475) (-931 "PMPLCAT.spad" 1545994 1546012 1546856 1546861) (-930 "PMLSAGG.spad" 1545575 1545589 1545984 1545989) (-929 "PMKERNEL.spad" 1545142 1545154 1545565 1545570) (-928 "PMINS.spad" 1544718 1544728 1545132 1545137) (-927 "PMFS.spad" 1544291 1544309 1544708 1544713) (-926 "PMDOWN.spad" 1543577 1543591 1544281 1544286) (-925 "PMASS.spad" 1542589 1542597 1543567 1543572) (-924 "PMASSFS.spad" 1541558 1541574 1542579 1542584) (-923 "PLOTTOOL.spad" 1541338 1541346 1541548 1541553) (-922 "PLOT.spad" 1536169 1536177 1541328 1541333) (-921 "PLOT3D.spad" 1532589 1532597 1536159 1536164) (-920 "PLOT1.spad" 1531730 1531740 1532579 1532584) (-919 "PLEQN.spad" 1518946 1518973 1531720 1531725) (-918 "PINTERP.spad" 1518562 1518581 1518936 1518941) (-917 "PINTERPA.spad" 1518344 1518360 1518552 1518557) (-916 "PI.spad" 1517951 1517959 1518318 1518339) (-915 "PID.spad" 1516907 1516915 1517877 1517946) (-914 "PICOERCE.spad" 1516564 1516574 1516897 1516902) (-913 "PGROEB.spad" 1515161 1515175 1516554 1516559) (-912 "PGE.spad" 1506414 1506422 1515151 1515156) (-911 "PGCD.spad" 1505296 1505313 1506404 1506409) (-910 "PFRPAC.spad" 1504439 1504449 1505286 1505291) (-909 "PFR.spad" 1501096 1501106 1504341 1504434) (-908 "PFOTOOLS.spad" 1500354 1500370 1501086 1501091) (-907 "PFOQ.spad" 1499724 1499742 1500344 1500349) (-906 "PFO.spad" 1499143 1499170 1499714 1499719) (-905 "PF.spad" 1498717 1498729 1498948 1499041) (-904 "PFECAT.spad" 1496383 1496391 1498643 1498712) (-903 "PFECAT.spad" 1494077 1494087 1496339 1496344) (-902 "PFBRU.spad" 1491947 1491959 1494067 1494072) (-901 "PFBR.spad" 1489485 1489508 1491937 1491942) (-900 "PERM.spad" 1485166 1485176 1489315 1489330) (-899 "PERMGRP.spad" 1479902 1479912 1485156 1485161) (-898 "PERMCAT.spad" 1478454 1478464 1479882 1479897) (-897 "PERMAN.spad" 1476986 1477000 1478444 1478449) (-896 "PENDTREE.spad" 1476325 1476335 1476615 1476620) (-895 "PDRING.spad" 1474816 1474826 1476305 1476320) (-894 "PDRING.spad" 1473315 1473327 1474806 1474811) (-893 "PDEPROB.spad" 1472330 1472338 1473305 1473310) (-892 "PDEPACK.spad" 1466332 1466340 1472320 1472325) (-891 "PDECOMP.spad" 1465794 1465811 1466322 1466327) (-890 "PDECAT.spad" 1464148 1464156 1465784 1465789) (-889 "PCOMP.spad" 1463999 1464012 1464138 1464143) (-888 "PBWLB.spad" 1462581 1462598 1463989 1463994) (-887 "PATTERN.spad" 1457012 1457022 1462571 1462576) (-886 "PATTERN2.spad" 1456748 1456760 1457002 1457007) (-885 "PATTERN1.spad" 1455050 1455066 1456738 1456743) (-884 "PATRES.spad" 1452597 1452609 1455040 1455045) (-883 "PATRES2.spad" 1452259 1452273 1452587 1452592) (-882 "PATMATCH.spad" 1450416 1450447 1451967 1451972) (-881 "PATMAB.spad" 1449841 1449851 1450406 1450411) (-880 "PATLRES.spad" 1448925 1448939 1449831 1449836) (-879 "PATAB.spad" 1448689 1448699 1448915 1448920) (-878 "PARTPERM.spad" 1446051 1446059 1448679 1448684) (-877 "PARSURF.spad" 1445479 1445507 1446041 1446046) (-876 "PARSU2.spad" 1445274 1445290 1445469 1445474) (-875 "script-parser.spad" 1444794 1444802 1445264 1445269) (-874 "PARSCURV.spad" 1444222 1444250 1444784 1444789) (-873 "PARSC2.spad" 1444011 1444027 1444212 1444217) (-872 "PARPCURV.spad" 1443469 1443497 1444001 1444006) (-871 "PARPC2.spad" 1443258 1443274 1443459 1443464) (-870 "PAN2EXPR.spad" 1442670 1442678 1443248 1443253) (-869 "PALETTE.spad" 1441640 1441648 1442660 1442665) (-868 "PAIR.spad" 1440623 1440636 1441228 1441233) (-867 "PADICRC.spad" 1437953 1437971 1439128 1439221) (-866 "PADICRAT.spad" 1435968 1435980 1436189 1436282) (-865 "PADIC.spad" 1435663 1435675 1435894 1435963) (-864 "PADICCT.spad" 1434204 1434216 1435589 1435658) (-863 "PADEPAC.spad" 1432883 1432902 1434194 1434199) (-862 "PADE.spad" 1431623 1431639 1432873 1432878) (-861 "OWP.spad" 1430863 1430893 1431481 1431548) (-860 "OVERSET.spad" 1430436 1430444 1430853 1430858) (-859 "OVAR.spad" 1430217 1430240 1430426 1430431) (-858 "OUT.spad" 1429301 1429309 1430207 1430212) (-857 "OUTFORM.spad" 1418597 1418605 1429291 1429296) (-856 "OUTBFILE.spad" 1418015 1418023 1418587 1418592) (-855 "OUTBCON.spad" 1417013 1417021 1418005 1418010) (-854 "OUTBCON.spad" 1416009 1416019 1417003 1417008) (-853 "OSI.spad" 1415484 1415492 1415999 1416004) (-852 "OSGROUP.spad" 1415402 1415410 1415474 1415479) (-851 "ORTHPOL.spad" 1413863 1413873 1415319 1415324) (-850 "OREUP.spad" 1413316 1413344 1413543 1413582) (-849 "ORESUP.spad" 1412615 1412639 1412996 1413035) (-848 "OREPCTO.spad" 1410434 1410446 1412535 1412540) (-847 "OREPCAT.spad" 1404491 1404501 1410390 1410429) (-846 "OREPCAT.spad" 1398438 1398450 1404339 1404344) (-845 "ORDSET.spad" 1397604 1397612 1398428 1398433) (-844 "ORDSET.spad" 1396768 1396778 1397594 1397599) (-843 "ORDRING.spad" 1396158 1396166 1396748 1396763) (-842 "ORDRING.spad" 1395556 1395566 1396148 1396153) (-841 "ORDMON.spad" 1395411 1395419 1395546 1395551) (-840 "ORDFUNS.spad" 1394537 1394553 1395401 1395406) (-839 "ORDFIN.spad" 1394357 1394365 1394527 1394532) (-838 "ORDCOMP.spad" 1392822 1392832 1393904 1393933) (-837 "ORDCOMP2.spad" 1392107 1392119 1392812 1392817) (-836 "OPTPROB.spad" 1390745 1390753 1392097 1392102) (-835 "OPTPACK.spad" 1383130 1383138 1390735 1390740) (-834 "OPTCAT.spad" 1380805 1380813 1383120 1383125) (-833 "OPSIG.spad" 1380457 1380465 1380795 1380800) (-832 "OPQUERY.spad" 1380006 1380014 1380447 1380452) (-831 "OP.spad" 1379748 1379758 1379828 1379895) (-830 "OPERCAT.spad" 1379336 1379346 1379738 1379743) (-829 "OPERCAT.spad" 1378922 1378934 1379326 1379331) (-828 "ONECOMP.spad" 1377667 1377677 1378469 1378498) (-827 "ONECOMP2.spad" 1377085 1377097 1377657 1377662) (-826 "OMSERVER.spad" 1376087 1376095 1377075 1377080) (-825 "OMSAGG.spad" 1375875 1375885 1376043 1376082) (-824 "OMPKG.spad" 1374487 1374495 1375865 1375870) (-823 "OM.spad" 1373452 1373460 1374477 1374482) (-822 "OMLO.spad" 1372877 1372889 1373338 1373377) (-821 "OMEXPR.spad" 1372711 1372721 1372867 1372872) (-820 "OMERR.spad" 1372254 1372262 1372701 1372706) (-819 "OMERRK.spad" 1371288 1371296 1372244 1372249) (-818 "OMENC.spad" 1370632 1370640 1371278 1371283) (-817 "OMDEV.spad" 1364921 1364929 1370622 1370627) (-816 "OMCONN.spad" 1364330 1364338 1364911 1364916) (-815 "OINTDOM.spad" 1364093 1364101 1364256 1364325) (-814 "OFMONOID.spad" 1360280 1360290 1364083 1364088) (-813 "ODVAR.spad" 1359541 1359551 1360270 1360275) (-812 "ODR.spad" 1359185 1359211 1359353 1359502) (-811 "ODPOL.spad" 1356531 1356541 1356871 1356998) (-810 "ODP.spad" 1346378 1346398 1346751 1346882) (-809 "ODETOOLS.spad" 1344961 1344980 1346368 1346373) (-808 "ODESYS.spad" 1342611 1342628 1344951 1344956) (-807 "ODERTRIC.spad" 1338552 1338569 1342568 1342573) (-806 "ODERED.spad" 1337939 1337963 1338542 1338547) (-805 "ODERAT.spad" 1335490 1335507 1337929 1337934) (-804 "ODEPRRIC.spad" 1332381 1332403 1335480 1335485) (-803 "ODEPROB.spad" 1331638 1331646 1332371 1332376) (-802 "ODEPRIM.spad" 1328912 1328934 1331628 1331633) (-801 "ODEPAL.spad" 1328288 1328312 1328902 1328907) (-800 "ODEPACK.spad" 1314890 1314898 1328278 1328283) (-799 "ODEINT.spad" 1314321 1314337 1314880 1314885) (-798 "ODEIFTBL.spad" 1311716 1311724 1314311 1314316) (-797 "ODEEF.spad" 1307083 1307099 1311706 1311711) (-796 "ODECONST.spad" 1306602 1306620 1307073 1307078) (-795 "ODECAT.spad" 1305198 1305206 1306592 1306597) (-794 "OCT.spad" 1303336 1303346 1304052 1304091) (-793 "OCTCT2.spad" 1302980 1303001 1303326 1303331) (-792 "OC.spad" 1300754 1300764 1302936 1302975) (-791 "OC.spad" 1298253 1298265 1300437 1300442) (-790 "OCAMON.spad" 1298101 1298109 1298243 1298248) (-789 "OASGP.spad" 1297916 1297924 1298091 1298096) (-788 "OAMONS.spad" 1297436 1297444 1297906 1297911) (-787 "OAMON.spad" 1297297 1297305 1297426 1297431) (-786 "OAGROUP.spad" 1297159 1297167 1297287 1297292) (-785 "NUMTUBE.spad" 1296746 1296762 1297149 1297154) (-784 "NUMQUAD.spad" 1284608 1284616 1296736 1296741) (-783 "NUMODE.spad" 1275744 1275752 1284598 1284603) (-782 "NUMINT.spad" 1273302 1273310 1275734 1275739) (-781 "NUMFMT.spad" 1272142 1272150 1273292 1273297) (-780 "NUMERIC.spad" 1264214 1264224 1271947 1271952) (-779 "NTSCAT.spad" 1262716 1262732 1264182 1264209) (-778 "NTPOLFN.spad" 1262261 1262271 1262633 1262638) (-777 "NSUP.spad" 1255271 1255281 1259811 1259964) (-776 "NSUP2.spad" 1254663 1254675 1255261 1255266) (-775 "NSMP.spad" 1250858 1250877 1251166 1251293) (-774 "NREP.spad" 1249230 1249244 1250848 1250853) (-773 "NPCOEF.spad" 1248476 1248496 1249220 1249225) (-772 "NORMRETR.spad" 1248074 1248113 1248466 1248471) (-771 "NORMPK.spad" 1245976 1245995 1248064 1248069) (-770 "NORMMA.spad" 1245664 1245690 1245966 1245971) (-769 "NONE.spad" 1245405 1245413 1245654 1245659) (-768 "NONE1.spad" 1245081 1245091 1245395 1245400) (-767 "NODE1.spad" 1244550 1244566 1245071 1245076) (-766 "NNI.spad" 1243437 1243445 1244524 1244545) (-765 "NLINSOL.spad" 1242059 1242069 1243427 1243432) (-764 "NIPROB.spad" 1240600 1240608 1242049 1242054) (-763 "NFINTBAS.spad" 1238060 1238077 1240590 1240595) (-762 "NETCLT.spad" 1238034 1238045 1238050 1238055) (-761 "NCODIV.spad" 1236232 1236248 1238024 1238029) (-760 "NCNTFRAC.spad" 1235874 1235888 1236222 1236227) (-759 "NCEP.spad" 1234034 1234048 1235864 1235869) (-758 "NASRING.spad" 1233630 1233638 1234024 1234029) (-757 "NASRING.spad" 1233224 1233234 1233620 1233625) (-756 "NARNG.spad" 1232568 1232576 1233214 1233219) (-755 "NARNG.spad" 1231910 1231920 1232558 1232563) (-754 "NAGSP.spad" 1230983 1230991 1231900 1231905) (-753 "NAGS.spad" 1220508 1220516 1230973 1230978) (-752 "NAGF07.spad" 1218901 1218909 1220498 1220503) (-751 "NAGF04.spad" 1213133 1213141 1218891 1218896) (-750 "NAGF02.spad" 1206942 1206950 1213123 1213128) (-749 "NAGF01.spad" 1202545 1202553 1206932 1206937) (-748 "NAGE04.spad" 1196005 1196013 1202535 1202540) (-747 "NAGE02.spad" 1186347 1186355 1195995 1196000) (-746 "NAGE01.spad" 1182231 1182239 1186337 1186342) (-745 "NAGD03.spad" 1180151 1180159 1182221 1182226) (-744 "NAGD02.spad" 1172682 1172690 1180141 1180146) (-743 "NAGD01.spad" 1166795 1166803 1172672 1172677) (-742 "NAGC06.spad" 1162582 1162590 1166785 1166790) (-741 "NAGC05.spad" 1161051 1161059 1162572 1162577) (-740 "NAGC02.spad" 1160306 1160314 1161041 1161046) (-739 "NAALG.spad" 1159841 1159851 1160274 1160301) (-738 "NAALG.spad" 1159396 1159408 1159831 1159836) (-737 "MULTSQFR.spad" 1156354 1156371 1159386 1159391) (-736 "MULTFACT.spad" 1155737 1155754 1156344 1156349) (-735 "MTSCAT.spad" 1153771 1153792 1155635 1155732) (-734 "MTHING.spad" 1153428 1153438 1153761 1153766) (-733 "MSYSCMD.spad" 1152862 1152870 1153418 1153423) (-732 "MSET.spad" 1150804 1150814 1152568 1152607) (-731 "MSETAGG.spad" 1150649 1150659 1150772 1150799) (-730 "MRING.spad" 1147620 1147632 1150357 1150424) (-729 "MRF2.spad" 1147188 1147202 1147610 1147615) (-728 "MRATFAC.spad" 1146734 1146751 1147178 1147183) (-727 "MPRFF.spad" 1144764 1144783 1146724 1146729) (-726 "MPOLY.spad" 1142199 1142214 1142558 1142685) (-725 "MPCPF.spad" 1141463 1141482 1142189 1142194) (-724 "MPC3.spad" 1141278 1141318 1141453 1141458) (-723 "MPC2.spad" 1140920 1140953 1141268 1141273) (-722 "MONOTOOL.spad" 1139255 1139272 1140910 1140915) (-721 "MONOID.spad" 1138574 1138582 1139245 1139250) (-720 "MONOID.spad" 1137891 1137901 1138564 1138569) (-719 "MONOGEN.spad" 1136637 1136650 1137751 1137886) (-718 "MONOGEN.spad" 1135405 1135420 1136521 1136526) (-717 "MONADWU.spad" 1133419 1133427 1135395 1135400) (-716 "MONADWU.spad" 1131431 1131441 1133409 1133414) (-715 "MONAD.spad" 1130575 1130583 1131421 1131426) (-714 "MONAD.spad" 1129717 1129727 1130565 1130570) (-713 "MOEBIUS.spad" 1128403 1128417 1129697 1129712) (-712 "MODULE.spad" 1128273 1128283 1128371 1128398) (-711 "MODULE.spad" 1128163 1128175 1128263 1128268) (-710 "MODRING.spad" 1127494 1127533 1128143 1128158) (-709 "MODOP.spad" 1126153 1126165 1127316 1127383) (-708 "MODMONOM.spad" 1125882 1125900 1126143 1126148) (-707 "MODMON.spad" 1122641 1122657 1123360 1123513) (-706 "MODFIELD.spad" 1121999 1122038 1122543 1122636) (-705 "MMLFORM.spad" 1120859 1120867 1121989 1121994) (-704 "MMAP.spad" 1120599 1120633 1120849 1120854) (-703 "MLO.spad" 1119026 1119036 1120555 1120594) (-702 "MLIFT.spad" 1117598 1117615 1119016 1119021) (-701 "MKUCFUNC.spad" 1117131 1117149 1117588 1117593) (-700 "MKRECORD.spad" 1116733 1116746 1117121 1117126) (-699 "MKFUNC.spad" 1116114 1116124 1116723 1116728) (-698 "MKFLCFN.spad" 1115070 1115080 1116104 1116109) (-697 "MKCHSET.spad" 1114935 1114945 1115060 1115065) (-696 "MKBCFUNC.spad" 1114420 1114438 1114925 1114930) (-695 "MINT.spad" 1113859 1113867 1114322 1114415) (-694 "MHROWRED.spad" 1112360 1112370 1113849 1113854) (-693 "MFLOAT.spad" 1110876 1110884 1112250 1112355) (-692 "MFINFACT.spad" 1110276 1110298 1110866 1110871) (-691 "MESH.spad" 1108008 1108016 1110266 1110271) (-690 "MDDFACT.spad" 1106201 1106211 1107998 1108003) (-689 "MDAGG.spad" 1105488 1105498 1106181 1106196) (-688 "MCMPLX.spad" 1101474 1101482 1102088 1102277) (-687 "MCDEN.spad" 1100682 1100694 1101464 1101469) (-686 "MCALCFN.spad" 1097784 1097810 1100672 1100677) (-685 "MAYBE.spad" 1097068 1097079 1097774 1097779) (-684 "MATSTOR.spad" 1094344 1094354 1097058 1097063) (-683 "MATRIX.spad" 1093048 1093058 1093532 1093559) (-682 "MATLIN.spad" 1090374 1090398 1092932 1092937) (-681 "MATCAT.spad" 1081959 1081981 1090342 1090369) (-680 "MATCAT.spad" 1073416 1073440 1081801 1081806) (-679 "MATCAT2.spad" 1072684 1072732 1073406 1073411) (-678 "MAPPKG3.spad" 1071583 1071597 1072674 1072679) (-677 "MAPPKG2.spad" 1070917 1070929 1071573 1071578) (-676 "MAPPKG1.spad" 1069735 1069745 1070907 1070912) (-675 "MAPPAST.spad" 1069048 1069056 1069725 1069730) (-674 "MAPHACK3.spad" 1068856 1068870 1069038 1069043) (-673 "MAPHACK2.spad" 1068621 1068633 1068846 1068851) (-672 "MAPHACK1.spad" 1068251 1068261 1068611 1068616) (-671 "MAGMA.spad" 1066041 1066058 1068241 1068246) (-670 "MACROAST.spad" 1065620 1065628 1066031 1066036) (-669 "M3D.spad" 1063316 1063326 1064998 1065003) (-668 "LZSTAGG.spad" 1060544 1060554 1063306 1063311) (-667 "LZSTAGG.spad" 1057770 1057782 1060534 1060539) (-666 "LWORD.spad" 1054475 1054492 1057760 1057765) (-665 "LSTAST.spad" 1054259 1054267 1054465 1054470) (-664 "LSQM.spad" 1052485 1052499 1052883 1052934) (-663 "LSPP.spad" 1052018 1052035 1052475 1052480) (-662 "LSMP.spad" 1050858 1050886 1052008 1052013) (-661 "LSMP1.spad" 1048662 1048676 1050848 1050853) (-660 "LSAGG.spad" 1048331 1048341 1048630 1048657) (-659 "LSAGG.spad" 1048020 1048032 1048321 1048326) (-658 "LPOLY.spad" 1046974 1046993 1047876 1047945) (-657 "LPEFRAC.spad" 1046231 1046241 1046964 1046969) (-656 "LO.spad" 1045632 1045646 1046165 1046192) (-655 "LOGIC.spad" 1045234 1045242 1045622 1045627) (-654 "LOGIC.spad" 1044834 1044844 1045224 1045229) (-653 "LODOOPS.spad" 1043752 1043764 1044824 1044829) (-652 "LODO.spad" 1043136 1043152 1043432 1043471) (-651 "LODOF.spad" 1042180 1042197 1043093 1043098) (-650 "LODOCAT.spad" 1040838 1040848 1042136 1042175) (-649 "LODOCAT.spad" 1039494 1039506 1040794 1040799) (-648 "LODO2.spad" 1038767 1038779 1039174 1039213) (-647 "LODO1.spad" 1038167 1038177 1038447 1038486) (-646 "LODEEF.spad" 1036939 1036957 1038157 1038162) (-645 "LNAGG.spad" 1032741 1032751 1036929 1036934) (-644 "LNAGG.spad" 1028507 1028519 1032697 1032702) (-643 "LMOPS.spad" 1025243 1025260 1028497 1028502) (-642 "LMODULE.spad" 1024885 1024895 1025233 1025238) (-641 "LMDICT.spad" 1024168 1024178 1024436 1024463) (-640 "LITERAL.spad" 1024074 1024085 1024158 1024163) (-639 "LIST.spad" 1021792 1021802 1023221 1023248) (-638 "LIST3.spad" 1021083 1021097 1021782 1021787) (-637 "LIST2.spad" 1019723 1019735 1021073 1021078) (-636 "LIST2MAP.spad" 1016600 1016612 1019713 1019718) (-635 "LINEXP.spad" 1016032 1016042 1016580 1016595) (-634 "LINDEP.spad" 1014809 1014821 1015944 1015949) (-633 "LIMITRF.spad" 1012723 1012733 1014799 1014804) (-632 "LIMITPS.spad" 1011606 1011619 1012713 1012718) (-631 "LIE.spad" 1009620 1009632 1010896 1011041) (-630 "LIECAT.spad" 1009096 1009106 1009546 1009615) (-629 "LIECAT.spad" 1008600 1008612 1009052 1009057) (-628 "LIB.spad" 1006648 1006656 1007259 1007274) (-627 "LGROBP.spad" 1004001 1004020 1006638 1006643) (-626 "LF.spad" 1002920 1002936 1003991 1003996) (-625 "LFCAT.spad" 1001939 1001947 1002910 1002915) (-624 "LEXTRIPK.spad" 997442 997457 1001929 1001934) (-623 "LEXP.spad" 995445 995472 997422 997437) (-622 "LETAST.spad" 995144 995152 995435 995440) (-621 "LEADCDET.spad" 993528 993545 995134 995139) (-620 "LAZM3PK.spad" 992232 992254 993518 993523) (-619 "LAUPOL.spad" 990921 990934 991825 991894) (-618 "LAPLACE.spad" 990494 990510 990911 990916) (-617 "LA.spad" 989934 989948 990416 990455) (-616 "LALG.spad" 989710 989720 989914 989929) (-615 "LALG.spad" 989494 989506 989700 989705) (-614 "KVTFROM.spad" 989229 989239 989484 989489) (-613 "KTVLOGIC.spad" 988652 988660 989219 989224) (-612 "KRCFROM.spad" 988390 988400 988642 988647) (-611 "KOVACIC.spad" 987103 987120 988380 988385) (-610 "KONVERT.spad" 986825 986835 987093 987098) (-609 "KOERCE.spad" 986562 986572 986815 986820) (-608 "KERNEL.spad" 985097 985107 986346 986351) (-607 "KERNEL2.spad" 984800 984812 985087 985092) (-606 "KDAGG.spad" 983903 983925 984780 984795) (-605 "KDAGG.spad" 983014 983038 983893 983898) (-604 "KAFILE.spad" 981977 981993 982212 982239) (-603 "JORDAN.spad" 979804 979816 981267 981412) (-602 "JOINAST.spad" 979498 979506 979794 979799) (-601 "JAVACODE.spad" 979364 979372 979488 979493) (-600 "IXAGG.spad" 977487 977511 979354 979359) (-599 "IXAGG.spad" 975465 975491 977334 977339) (-598 "IVECTOR.spad" 974236 974251 974391 974418) (-597 "ITUPLE.spad" 973381 973391 974226 974231) (-596 "ITRIGMNP.spad" 972192 972211 973371 973376) (-595 "ITFUN3.spad" 971686 971700 972182 972187) (-594 "ITFUN2.spad" 971416 971428 971676 971681) (-593 "ITAYLOR.spad" 969208 969223 971252 971377) (-592 "ISUPS.spad" 961619 961634 968182 968279) (-591 "ISUMP.spad" 961116 961132 961609 961614) (-590 "ISTRING.spad" 960119 960132 960285 960312) (-589 "ISAST.spad" 959838 959846 960109 960114) (-588 "IRURPK.spad" 958551 958570 959828 959833) (-587 "IRSN.spad" 956511 956519 958541 958546) (-586 "IRRF2F.spad" 954986 954996 956467 956472) (-585 "IRREDFFX.spad" 954587 954598 954976 954981) (-584 "IROOT.spad" 952918 952928 954577 954582) (-583 "IR.spad" 950707 950721 952773 952800) (-582 "IR2.spad" 949727 949743 950697 950702) (-581 "IR2F.spad" 948927 948943 949717 949722) (-580 "IPRNTPK.spad" 948687 948695 948917 948922) (-579 "IPF.spad" 948252 948264 948492 948585) (-578 "IPADIC.spad" 948013 948039 948178 948247) (-577 "IP4ADDR.spad" 947570 947578 948003 948008) (-576 "IOMODE.spad" 947191 947199 947560 947565) (-575 "IOBFILE.spad" 946552 946560 947181 947186) (-574 "IOBCON.spad" 946417 946425 946542 946547) (-573 "INVLAPLA.spad" 946062 946078 946407 946412) (-572 "INTTR.spad" 939308 939325 946052 946057) (-571 "INTTOOLS.spad" 937019 937035 938882 938887) (-570 "INTSLPE.spad" 936325 936333 937009 937014) (-569 "INTRVL.spad" 935891 935901 936239 936320) (-568 "INTRF.spad" 934255 934269 935881 935886) (-567 "INTRET.spad" 933687 933697 934245 934250) (-566 "INTRAT.spad" 932362 932379 933677 933682) (-565 "INTPM.spad" 930725 930741 932005 932010) (-564 "INTPAF.spad" 928493 928511 930657 930662) (-563 "INTPACK.spad" 918803 918811 928483 928488) (-562 "INT.spad" 918164 918172 918657 918798) (-561 "INTHERTR.spad" 917430 917447 918154 918159) (-560 "INTHERAL.spad" 917096 917120 917420 917425) (-559 "INTHEORY.spad" 913509 913517 917086 917091) (-558 "INTG0.spad" 906972 906990 913441 913446) (-557 "INTFTBL.spad" 901001 901009 906962 906967) (-556 "INTFACT.spad" 900060 900070 900991 900996) (-555 "INTEF.spad" 898375 898391 900050 900055) (-554 "INTDOM.spad" 896990 896998 898301 898370) (-553 "INTDOM.spad" 895667 895677 896980 896985) (-552 "INTCAT.spad" 893920 893930 895581 895662) (-551 "INTBIT.spad" 893423 893431 893910 893915) (-550 "INTALG.spad" 892605 892632 893413 893418) (-549 "INTAF.spad" 892097 892113 892595 892600) (-548 "INTABL.spad" 890615 890646 890778 890805) (-547 "INT8.spad" 890495 890503 890605 890610) (-546 "INT32.spad" 890374 890382 890485 890490) (-545 "INT16.spad" 890253 890261 890364 890369) (-544 "INS.spad" 887720 887728 890155 890248) (-543 "INS.spad" 885273 885283 887710 887715) (-542 "INPSIGN.spad" 884707 884720 885263 885268) (-541 "INPRODPF.spad" 883773 883792 884697 884702) (-540 "INPRODFF.spad" 882831 882855 883763 883768) (-539 "INNMFACT.spad" 881802 881819 882821 882826) (-538 "INMODGCD.spad" 881286 881316 881792 881797) (-537 "INFSP.spad" 879571 879593 881276 881281) (-536 "INFPROD0.spad" 878621 878640 879561 879566) (-535 "INFORM.spad" 875782 875790 878611 878616) (-534 "INFORM1.spad" 875407 875417 875772 875777) (-533 "INFINITY.spad" 874959 874967 875397 875402) (-532 "INETCLTS.spad" 874936 874944 874949 874954) (-531 "INEP.spad" 873468 873490 874926 874931) (-530 "INDE.spad" 873197 873214 873458 873463) (-529 "INCRMAPS.spad" 872618 872628 873187 873192) (-528 "INBFILE.spad" 871690 871698 872608 872613) (-527 "INBFF.spad" 867460 867471 871680 871685) (-526 "INBCON.spad" 865748 865756 867450 867455) (-525 "INBCON.spad" 864034 864044 865738 865743) (-524 "INAST.spad" 863699 863707 864024 864029) (-523 "IMPTAST.spad" 863407 863415 863689 863694) (-522 "IMATRIX.spad" 862352 862378 862864 862891) (-521 "IMATQF.spad" 861446 861490 862308 862313) (-520 "IMATLIN.spad" 860051 860075 861402 861407) (-519 "ILIST.spad" 858707 858722 859234 859261) (-518 "IIARRAY2.spad" 858095 858133 858314 858341) (-517 "IFF.spad" 857505 857521 857776 857869) (-516 "IFAST.spad" 857119 857127 857495 857500) (-515 "IFARRAY.spad" 854606 854621 856302 856329) (-514 "IFAMON.spad" 854468 854485 854562 854567) (-513 "IEVALAB.spad" 853857 853869 854458 854463) (-512 "IEVALAB.spad" 853244 853258 853847 853852) (-511 "IDPO.spad" 853042 853054 853234 853239) (-510 "IDPOAMS.spad" 852798 852810 853032 853037) (-509 "IDPOAM.spad" 852518 852530 852788 852793) (-508 "IDPC.spad" 851452 851464 852508 852513) (-507 "IDPAM.spad" 851197 851209 851442 851447) (-506 "IDPAG.spad" 850944 850956 851187 851192) (-505 "IDENT.spad" 850716 850724 850934 850939) (-504 "IDECOMP.spad" 847953 847971 850706 850711) (-503 "IDEAL.spad" 842876 842915 847888 847893) (-502 "ICDEN.spad" 842027 842043 842866 842871) (-501 "ICARD.spad" 841216 841224 842017 842022) (-500 "IBPTOOLS.spad" 839809 839826 841206 841211) (-499 "IBITS.spad" 839008 839021 839445 839472) (-498 "IBATOOL.spad" 835883 835902 838998 839003) (-497 "IBACHIN.spad" 834370 834385 835873 835878) (-496 "IARRAY2.spad" 833358 833384 833977 834004) (-495 "IARRAY1.spad" 832403 832418 832541 832568) (-494 "IAN.spad" 830616 830624 832219 832312) (-493 "IALGFACT.spad" 830217 830250 830606 830611) (-492 "HYPCAT.spad" 829641 829649 830207 830212) (-491 "HYPCAT.spad" 829063 829073 829631 829636) (-490 "HOSTNAME.spad" 828871 828879 829053 829058) (-489 "HOMOTOP.spad" 828614 828624 828861 828866) (-488 "HOAGG.spad" 825882 825892 828604 828609) (-487 "HOAGG.spad" 822925 822937 825649 825654) (-486 "HEXADEC.spad" 821027 821035 821392 821485) (-485 "HEUGCD.spad" 820042 820053 821017 821022) (-484 "HELLFDIV.spad" 819632 819656 820032 820037) (-483 "HEAP.spad" 819024 819034 819239 819266) (-482 "HEADAST.spad" 818555 818563 819014 819019) (-481 "HDP.spad" 808398 808414 808775 808906) (-480 "HDMP.spad" 805574 805589 806192 806319) (-479 "HB.spad" 803811 803819 805564 805569) (-478 "HASHTBL.spad" 802281 802312 802492 802519) (-477 "HASAST.spad" 801997 802005 802271 802276) (-476 "HACKPI.spad" 801480 801488 801899 801992) (-475 "GTSET.spad" 800419 800435 801126 801153) (-474 "GSTBL.spad" 798938 798973 799112 799127) (-473 "GSERIES.spad" 796105 796132 797070 797219) (-472 "GROUP.spad" 795374 795382 796085 796100) (-471 "GROUP.spad" 794651 794661 795364 795369) (-470 "GROEBSOL.spad" 793139 793160 794641 794646) (-469 "GRMOD.spad" 791710 791722 793129 793134) (-468 "GRMOD.spad" 790279 790293 791700 791705) (-467 "GRIMAGE.spad" 782884 782892 790269 790274) (-466 "GRDEF.spad" 781263 781271 782874 782879) (-465 "GRAY.spad" 779722 779730 781253 781258) (-464 "GRALG.spad" 778769 778781 779712 779717) (-463 "GRALG.spad" 777814 777828 778759 778764) (-462 "GPOLSET.spad" 777268 777291 777496 777523) (-461 "GOSPER.spad" 776533 776551 777258 777263) (-460 "GMODPOL.spad" 775671 775698 776501 776528) (-459 "GHENSEL.spad" 774740 774754 775661 775666) (-458 "GENUPS.spad" 770841 770854 774730 774735) (-457 "GENUFACT.spad" 770418 770428 770831 770836) (-456 "GENPGCD.spad" 770002 770019 770408 770413) (-455 "GENMFACT.spad" 769454 769473 769992 769997) (-454 "GENEEZ.spad" 767393 767406 769444 769449) (-453 "GDMP.spad" 764411 764428 765187 765314) (-452 "GCNAALG.spad" 758306 758333 764205 764272) (-451 "GCDDOM.spad" 757478 757486 758232 758301) (-450 "GCDDOM.spad" 756712 756722 757468 757473) (-449 "GB.spad" 754230 754268 756668 756673) (-448 "GBINTERN.spad" 750250 750288 754220 754225) (-447 "GBF.spad" 746007 746045 750240 750245) (-446 "GBEUCLID.spad" 743881 743919 745997 746002) (-445 "GAUSSFAC.spad" 743178 743186 743871 743876) (-444 "GALUTIL.spad" 741500 741510 743134 743139) (-443 "GALPOLYU.spad" 739946 739959 741490 741495) (-442 "GALFACTU.spad" 738111 738130 739936 739941) (-441 "GALFACT.spad" 728244 728255 738101 738106) (-440 "FVFUN.spad" 725267 725275 728234 728239) (-439 "FVC.spad" 724319 724327 725257 725262) (-438 "FUNDESC.spad" 723997 724005 724309 724314) (-437 "FUNCTION.spad" 723846 723858 723987 723992) (-436 "FT.spad" 722139 722147 723836 723841) (-435 "FTEM.spad" 721302 721310 722129 722134) (-434 "FSUPFACT.spad" 720202 720221 721238 721243) (-433 "FST.spad" 718288 718296 720192 720197) (-432 "FSRED.spad" 717766 717782 718278 718283) (-431 "FSPRMELT.spad" 716590 716606 717723 717728) (-430 "FSPECF.spad" 714667 714683 716580 716585) (-429 "FS.spad" 708729 708739 714442 714662) (-428 "FS.spad" 702569 702581 708284 708289) (-427 "FSINT.spad" 702227 702243 702559 702564) (-426 "FSERIES.spad" 701414 701426 702047 702146) (-425 "FSCINT.spad" 700727 700743 701404 701409) (-424 "FSAGG.spad" 699844 699854 700683 700722) (-423 "FSAGG.spad" 698923 698935 699764 699769) (-422 "FSAGG2.spad" 697622 697638 698913 698918) (-421 "FS2UPS.spad" 692105 692139 697612 697617) (-420 "FS2.spad" 691750 691766 692095 692100) (-419 "FS2EXPXP.spad" 690873 690896 691740 691745) (-418 "FRUTIL.spad" 689815 689825 690863 690868) (-417 "FR.spad" 683509 683519 688839 688908) (-416 "FRNAALG.spad" 678596 678606 683451 683504) (-415 "FRNAALG.spad" 673695 673707 678552 678557) (-414 "FRNAAF2.spad" 673149 673167 673685 673690) (-413 "FRMOD.spad" 672543 672573 673080 673085) (-412 "FRIDEAL.spad" 671738 671759 672523 672538) (-411 "FRIDEAL2.spad" 671340 671372 671728 671733) (-410 "FRETRCT.spad" 670851 670861 671330 671335) (-409 "FRETRCT.spad" 670228 670240 670709 670714) (-408 "FRAMALG.spad" 668556 668569 670184 670223) (-407 "FRAMALG.spad" 666916 666931 668546 668551) (-406 "FRAC.spad" 664015 664025 664418 664591) (-405 "FRAC2.spad" 663618 663630 664005 664010) (-404 "FR2.spad" 662952 662964 663608 663613) (-403 "FPS.spad" 659761 659769 662842 662947) (-402 "FPS.spad" 656598 656608 659681 659686) (-401 "FPC.spad" 655640 655648 656500 656593) (-400 "FPC.spad" 654768 654778 655630 655635) (-399 "FPATMAB.spad" 654530 654540 654758 654763) (-398 "FPARFRAC.spad" 653003 653020 654520 654525) (-397 "FORTRAN.spad" 651509 651552 652993 652998) (-396 "FORT.spad" 650438 650446 651499 651504) (-395 "FORTFN.spad" 647608 647616 650428 650433) (-394 "FORTCAT.spad" 647292 647300 647598 647603) (-393 "FORMULA.spad" 644756 644764 647282 647287) (-392 "FORMULA1.spad" 644235 644245 644746 644751) (-391 "FORDER.spad" 643926 643950 644225 644230) (-390 "FOP.spad" 643127 643135 643916 643921) (-389 "FNLA.spad" 642551 642573 643095 643122) (-388 "FNCAT.spad" 641138 641146 642541 642546) (-387 "FNAME.spad" 641030 641038 641128 641133) (-386 "FMTC.spad" 640828 640836 640956 641025) (-385 "FMONOID.spad" 637883 637893 640784 640789) (-384 "FM.spad" 637578 637590 637817 637844) (-383 "FMFUN.spad" 634608 634616 637568 637573) (-382 "FMC.spad" 633660 633668 634598 634603) (-381 "FMCAT.spad" 631314 631332 633628 633655) (-380 "FM1.spad" 630671 630683 631248 631275) (-379 "FLOATRP.spad" 628392 628406 630661 630666) (-378 "FLOAT.spad" 621680 621688 628258 628387) (-377 "FLOATCP.spad" 619097 619111 621670 621675) (-376 "FLINEXP.spad" 618809 618819 619077 619092) (-375 "FLINEXP.spad" 618475 618487 618745 618750) (-374 "FLASORT.spad" 617795 617807 618465 618470) (-373 "FLALG.spad" 615441 615460 617721 617790) (-372 "FLAGG.spad" 612459 612469 615421 615436) (-371 "FLAGG.spad" 609378 609390 612342 612347) (-370 "FLAGG2.spad" 608059 608075 609368 609373) (-369 "FINRALG.spad" 606088 606101 608015 608054) (-368 "FINRALG.spad" 604043 604058 605972 605977) (-367 "FINITE.spad" 603195 603203 604033 604038) (-366 "FINAALG.spad" 592176 592186 603137 603190) (-365 "FINAALG.spad" 581169 581181 592132 592137) (-364 "FILE.spad" 580752 580762 581159 581164) (-363 "FILECAT.spad" 579270 579287 580742 580747) (-362 "FIELD.spad" 578676 578684 579172 579265) (-361 "FIELD.spad" 578168 578178 578666 578671) (-360 "FGROUP.spad" 576777 576787 578148 578163) (-359 "FGLMICPK.spad" 575564 575579 576767 576772) (-358 "FFX.spad" 574939 574954 575280 575373) (-357 "FFSLPE.spad" 574428 574449 574929 574934) (-356 "FFPOLY.spad" 565680 565691 574418 574423) (-355 "FFPOLY2.spad" 564740 564757 565670 565675) (-354 "FFP.spad" 564137 564157 564456 564549) (-353 "FF.spad" 563585 563601 563818 563911) (-352 "FFNBX.spad" 562097 562117 563301 563394) (-351 "FFNBP.spad" 560610 560627 561813 561906) (-350 "FFNB.spad" 559075 559096 560291 560384) (-349 "FFINTBAS.spad" 556489 556508 559065 559070) (-348 "FFIELDC.spad" 554064 554072 556391 556484) (-347 "FFIELDC.spad" 551725 551735 554054 554059) (-346 "FFHOM.spad" 550473 550490 551715 551720) (-345 "FFF.spad" 547908 547919 550463 550468) (-344 "FFCGX.spad" 546755 546775 547624 547717) (-343 "FFCGP.spad" 545644 545664 546471 546564) (-342 "FFCG.spad" 544436 544457 545325 545418) (-341 "FFCAT.spad" 537463 537485 544275 544431) (-340 "FFCAT.spad" 530569 530593 537383 537388) (-339 "FFCAT2.spad" 530314 530354 530559 530564) (-338 "FEXPR.spad" 522023 522069 530070 530109) (-337 "FEVALAB.spad" 521729 521739 522013 522018) (-336 "FEVALAB.spad" 521220 521232 521506 521511) (-335 "FDIV.spad" 520662 520686 521210 521215) (-334 "FDIVCAT.spad" 518704 518728 520652 520657) (-333 "FDIVCAT.spad" 516744 516770 518694 518699) (-332 "FDIV2.spad" 516398 516438 516734 516739) (-331 "FCPAK1.spad" 514951 514959 516388 516393) (-330 "FCOMP.spad" 514330 514340 514941 514946) (-329 "FC.spad" 504245 504253 514320 514325) (-328 "FAXF.spad" 497180 497194 504147 504240) (-327 "FAXF.spad" 490167 490183 497136 497141) (-326 "FARRAY.spad" 488313 488323 489350 489377) (-325 "FAMR.spad" 486433 486445 488211 488308) (-324 "FAMR.spad" 484537 484551 486317 486322) (-323 "FAMONOID.spad" 484187 484197 484491 484496) (-322 "FAMONC.spad" 482409 482421 484177 484182) (-321 "FAGROUP.spad" 482015 482025 482305 482332) (-320 "FACUTIL.spad" 480211 480228 482005 482010) (-319 "FACTFUNC.spad" 479387 479397 480201 480206) (-318 "EXPUPXS.spad" 476220 476243 477519 477668) (-317 "EXPRTUBE.spad" 473448 473456 476210 476215) (-316 "EXPRODE.spad" 470320 470336 473438 473443) (-315 "EXPR.spad" 465595 465605 466309 466716) (-314 "EXPR2UPS.spad" 461687 461700 465585 465590) (-313 "EXPR2.spad" 461390 461402 461677 461682) (-312 "EXPEXPAN.spad" 458328 458353 458962 459055) (-311 "EXIT.spad" 457999 458007 458318 458323) (-310 "EXITAST.spad" 457735 457743 457989 457994) (-309 "EVALCYC.spad" 457193 457207 457725 457730) (-308 "EVALAB.spad" 456757 456767 457183 457188) (-307 "EVALAB.spad" 456319 456331 456747 456752) (-306 "EUCDOM.spad" 453861 453869 456245 456314) (-305 "EUCDOM.spad" 451465 451475 453851 453856) (-304 "ESTOOLS.spad" 443305 443313 451455 451460) (-303 "ESTOOLS2.spad" 442906 442920 443295 443300) (-302 "ESTOOLS1.spad" 442591 442602 442896 442901) (-301 "ES.spad" 435138 435146 442581 442586) (-300 "ES.spad" 427591 427601 435036 435041) (-299 "ESCONT.spad" 424364 424372 427581 427586) (-298 "ESCONT1.spad" 424113 424125 424354 424359) (-297 "ES2.spad" 423608 423624 424103 424108) (-296 "ES1.spad" 423174 423190 423598 423603) (-295 "ERROR.spad" 420495 420503 423164 423169) (-294 "EQTBL.spad" 418967 418989 419176 419203) (-293 "EQ.spad" 413841 413851 416640 416752) (-292 "EQ2.spad" 413557 413569 413831 413836) (-291 "EP.spad" 409871 409881 413547 413552) (-290 "ENV.spad" 408573 408581 409861 409866) (-289 "ENTIRER.spad" 408241 408249 408517 408568) (-288 "EMR.spad" 407442 407483 408167 408236) (-287 "ELTAGG.spad" 405682 405701 407432 407437) (-286 "ELTAGG.spad" 403886 403907 405638 405643) (-285 "ELTAB.spad" 403333 403351 403876 403881) (-284 "ELFUTS.spad" 402712 402731 403323 403328) (-283 "ELEMFUN.spad" 402401 402409 402702 402707) (-282 "ELEMFUN.spad" 402088 402098 402391 402396) (-281 "ELAGG.spad" 400031 400041 402068 402083) (-280 "ELAGG.spad" 397911 397923 399950 399955) (-279 "ELABEXPR.spad" 396842 396850 397901 397906) (-278 "EFUPXS.spad" 393618 393648 396798 396803) (-277 "EFULS.spad" 390454 390477 393574 393579) (-276 "EFSTRUC.spad" 388409 388425 390444 390449) (-275 "EF.spad" 383175 383191 388399 388404) (-274 "EAB.spad" 381451 381459 383165 383170) (-273 "E04UCFA.spad" 380987 380995 381441 381446) (-272 "E04NAFA.spad" 380564 380572 380977 380982) (-271 "E04MBFA.spad" 380144 380152 380554 380559) (-270 "E04JAFA.spad" 379680 379688 380134 380139) (-269 "E04GCFA.spad" 379216 379224 379670 379675) (-268 "E04FDFA.spad" 378752 378760 379206 379211) (-267 "E04DGFA.spad" 378288 378296 378742 378747) (-266 "E04AGNT.spad" 374130 374138 378278 378283) (-265 "DVARCAT.spad" 370815 370825 374120 374125) (-264 "DVARCAT.spad" 367498 367510 370805 370810) (-263 "DSMP.spad" 364929 364943 365234 365361) (-262 "DROPT.spad" 358874 358882 364919 364924) (-261 "DROPT1.spad" 358537 358547 358864 358869) (-260 "DROPT0.spad" 353364 353372 358527 358532) (-259 "DRAWPT.spad" 351519 351527 353354 353359) (-258 "DRAW.spad" 344119 344132 351509 351514) (-257 "DRAWHACK.spad" 343427 343437 344109 344114) (-256 "DRAWCX.spad" 340869 340877 343417 343422) (-255 "DRAWCURV.spad" 340406 340421 340859 340864) (-254 "DRAWCFUN.spad" 329578 329586 340396 340401) (-253 "DQAGG.spad" 327746 327756 329546 329573) (-252 "DPOLCAT.spad" 323087 323103 327614 327741) (-251 "DPOLCAT.spad" 318514 318532 323043 323048) (-250 "DPMO.spad" 310740 310756 310878 311179) (-249 "DPMM.spad" 302979 302997 303104 303405) (-248 "DOMCTOR.spad" 302871 302879 302969 302974) (-247 "DOMAIN.spad" 302002 302010 302861 302866) (-246 "DMP.spad" 299224 299239 299796 299923) (-245 "DLP.spad" 298572 298582 299214 299219) (-244 "DLIST.spad" 297151 297161 297755 297782) (-243 "DLAGG.spad" 295562 295572 297141 297146) (-242 "DIVRING.spad" 295104 295112 295506 295557) (-241 "DIVRING.spad" 294690 294700 295094 295099) (-240 "DISPLAY.spad" 292870 292878 294680 294685) (-239 "DIRPROD.spad" 282450 282466 283090 283221) (-238 "DIRPROD2.spad" 281258 281276 282440 282445) (-237 "DIRPCAT.spad" 280200 280216 281122 281253) (-236 "DIRPCAT.spad" 278871 278889 279795 279800) (-235 "DIOSP.spad" 277696 277704 278861 278866) (-234 "DIOPS.spad" 276680 276690 277676 277691) (-233 "DIOPS.spad" 275638 275650 276636 276641) (-232 "DIFRING.spad" 274930 274938 275618 275633) (-231 "DIFRING.spad" 274230 274240 274920 274925) (-230 "DIFEXT.spad" 273389 273399 274210 274225) (-229 "DIFEXT.spad" 272465 272477 273288 273293) (-228 "DIAGG.spad" 272095 272105 272445 272460) (-227 "DIAGG.spad" 271733 271745 272085 272090) (-226 "DHMATRIX.spad" 270037 270047 271190 271217) (-225 "DFSFUN.spad" 263445 263453 270027 270032) (-224 "DFLOAT.spad" 260166 260174 263335 263440) (-223 "DFINTTLS.spad" 258375 258391 260156 260161) (-222 "DERHAM.spad" 256285 256317 258355 258370) (-221 "DEQUEUE.spad" 255603 255613 255892 255919) (-220 "DEGRED.spad" 255218 255232 255593 255598) (-219 "DEFINTRF.spad" 252743 252753 255208 255213) (-218 "DEFINTEF.spad" 251239 251255 252733 252738) (-217 "DEFAST.spad" 250607 250615 251229 251234) (-216 "DECIMAL.spad" 248713 248721 249074 249167) (-215 "DDFACT.spad" 246512 246529 248703 248708) (-214 "DBLRESP.spad" 246110 246134 246502 246507) (-213 "DBASE.spad" 244764 244774 246100 246105) (-212 "DATAARY.spad" 244226 244239 244754 244759) (-211 "D03FAFA.spad" 244054 244062 244216 244221) (-210 "D03EEFA.spad" 243874 243882 244044 244049) (-209 "D03AGNT.spad" 242954 242962 243864 243869) (-208 "D02EJFA.spad" 242416 242424 242944 242949) (-207 "D02CJFA.spad" 241894 241902 242406 242411) (-206 "D02BHFA.spad" 241384 241392 241884 241889) (-205 "D02BBFA.spad" 240874 240882 241374 241379) (-204 "D02AGNT.spad" 235678 235686 240864 240869) (-203 "D01WGTS.spad" 233997 234005 235668 235673) (-202 "D01TRNS.spad" 233974 233982 233987 233992) (-201 "D01GBFA.spad" 233496 233504 233964 233969) (-200 "D01FCFA.spad" 233018 233026 233486 233491) (-199 "D01ASFA.spad" 232486 232494 233008 233013) (-198 "D01AQFA.spad" 231932 231940 232476 232481) (-197 "D01APFA.spad" 231356 231364 231922 231927) (-196 "D01ANFA.spad" 230850 230858 231346 231351) (-195 "D01AMFA.spad" 230360 230368 230840 230845) (-194 "D01ALFA.spad" 229900 229908 230350 230355) (-193 "D01AKFA.spad" 229426 229434 229890 229895) (-192 "D01AJFA.spad" 228949 228957 229416 229421) (-191 "D01AGNT.spad" 225008 225016 228939 228944) (-190 "CYCLOTOM.spad" 224514 224522 224998 225003) (-189 "CYCLES.spad" 221346 221354 224504 224509) (-188 "CVMP.spad" 220763 220773 221336 221341) (-187 "CTRIGMNP.spad" 219253 219269 220753 220758) (-186 "CTOR.spad" 218948 218956 219243 219248) (-185 "CTORKIND.spad" 218551 218559 218938 218943) (-184 "CTORCAT.spad" 217800 217808 218541 218546) (-183 "CTORCAT.spad" 217047 217057 217790 217795) (-182 "CTORCALL.spad" 216627 216635 217037 217042) (-181 "CSTTOOLS.spad" 215870 215883 216617 216622) (-180 "CRFP.spad" 209574 209587 215860 215865) (-179 "CRCEAST.spad" 209294 209302 209564 209569) (-178 "CRAPACK.spad" 208337 208347 209284 209289) (-177 "CPMATCH.spad" 207837 207852 208262 208267) (-176 "CPIMA.spad" 207542 207561 207827 207832) (-175 "COORDSYS.spad" 202435 202445 207532 207537) (-174 "CONTOUR.spad" 201837 201845 202425 202430) (-173 "CONTFRAC.spad" 197449 197459 201739 201832) (-172 "CONDUIT.spad" 197207 197215 197439 197444) (-171 "COMRING.spad" 196881 196889 197145 197202) (-170 "COMPPROP.spad" 196395 196403 196871 196876) (-169 "COMPLPAT.spad" 196162 196177 196385 196390) (-168 "COMPLEX.spad" 190198 190208 190442 190691) (-167 "COMPLEX2.spad" 189911 189923 190188 190193) (-166 "COMPFACT.spad" 189513 189527 189901 189906) (-165 "COMPCAT.spad" 187651 187661 189259 189508) (-164 "COMPCAT.spad" 185470 185482 187080 187085) (-163 "COMMUPC.spad" 185216 185234 185460 185465) (-162 "COMMONOP.spad" 184749 184757 185206 185211) (-161 "COMM.spad" 184558 184566 184739 184744) (-160 "COMMAAST.spad" 184321 184329 184548 184553) (-159 "COMBOPC.spad" 183226 183234 184311 184316) (-158 "COMBINAT.spad" 181971 181981 183216 183221) (-157 "COMBF.spad" 179339 179355 181961 181966) (-156 "COLOR.spad" 178176 178184 179329 179334) (-155 "COLONAST.spad" 177842 177850 178166 178171) (-154 "CMPLXRT.spad" 177551 177568 177832 177837) (-153 "CLLCTAST.spad" 177213 177221 177541 177546) (-152 "CLIP.spad" 173305 173313 177203 177208) (-151 "CLIF.spad" 171944 171960 173261 173300) (-150 "CLAGG.spad" 168429 168439 171934 171939) (-149 "CLAGG.spad" 164785 164797 168292 168297) (-148 "CINTSLPE.spad" 164110 164123 164775 164780) (-147 "CHVAR.spad" 162188 162210 164100 164105) (-146 "CHARZ.spad" 162103 162111 162168 162183) (-145 "CHARPOL.spad" 161611 161621 162093 162098) (-144 "CHARNZ.spad" 161364 161372 161591 161606) (-143 "CHAR.spad" 159232 159240 161354 161359) (-142 "CFCAT.spad" 158548 158556 159222 159227) (-141 "CDEN.spad" 157706 157720 158538 158543) (-140 "CCLASS.spad" 155855 155863 157117 157156) (-139 "CATEGORY.spad" 154945 154953 155845 155850) (-138 "CATCTOR.spad" 154836 154844 154935 154940) (-137 "CATAST.spad" 154463 154471 154826 154831) (-136 "CASEAST.spad" 154177 154185 154453 154458) (-135 "CARTEN.spad" 149280 149304 154167 154172) (-134 "CARTEN2.spad" 148666 148693 149270 149275) (-133 "CARD.spad" 145955 145963 148640 148661) (-132 "CAPSLAST.spad" 145729 145737 145945 145950) (-131 "CACHSET.spad" 145351 145359 145719 145724) (-130 "CABMON.spad" 144904 144912 145341 145346) (-129 "BYTE.spad" 144325 144333 144894 144899) (-128 "BYTEBUF.spad" 142157 142165 143494 143521) (-127 "BTREE.spad" 141226 141236 141764 141791) (-126 "BTOURN.spad" 140229 140239 140833 140860) (-125 "BTCAT.spad" 139617 139627 140197 140224) (-124 "BTCAT.spad" 139025 139037 139607 139612) (-123 "BTAGG.spad" 138147 138155 138993 139020) (-122 "BTAGG.spad" 137289 137299 138137 138142) (-121 "BSTREE.spad" 136024 136034 136896 136923) (-120 "BRILL.spad" 134219 134230 136014 136019) (-119 "BRAGG.spad" 133143 133153 134209 134214) (-118 "BRAGG.spad" 132031 132043 133099 133104) (-117 "BPADICRT.spad" 130012 130024 130267 130360) (-116 "BPADIC.spad" 129676 129688 129938 130007) (-115 "BOUNDZRO.spad" 129332 129349 129666 129671) (-114 "BOP.spad" 124796 124804 129322 129327) (-113 "BOP1.spad" 122182 122192 124752 124757) (-112 "BOOLEAN.spad" 121506 121514 122172 122177) (-111 "BMODULE.spad" 121218 121230 121474 121501) (-110 "BITS.spad" 120637 120645 120854 120881) (-109 "BINDING.spad" 120056 120064 120627 120632) (-108 "BINARY.spad" 118167 118175 118523 118616) (-107 "BGAGG.spad" 117364 117374 118147 118162) (-106 "BGAGG.spad" 116569 116581 117354 117359) (-105 "BFUNCT.spad" 116133 116141 116549 116564) (-104 "BEZOUT.spad" 115267 115294 116083 116088) (-103 "BBTREE.spad" 112086 112096 114874 114901) (-102 "BASTYPE.spad" 111758 111766 112076 112081) (-101 "BASTYPE.spad" 111428 111438 111748 111753) (-100 "BALFACT.spad" 110867 110880 111418 111423) (-99 "AUTOMOR.spad" 110314 110323 110847 110862) (-98 "ATTREG.spad" 107033 107040 110066 110309) (-97 "ATTRBUT.spad" 103056 103063 107013 107028) (-96 "ATTRAST.spad" 102773 102780 103046 103051) (-95 "ATRIG.spad" 102243 102250 102763 102768) (-94 "ATRIG.spad" 101711 101720 102233 102238) (-93 "ASTCAT.spad" 101615 101622 101701 101706) (-92 "ASTCAT.spad" 101517 101526 101605 101610) (-91 "ASTACK.spad" 100850 100859 101124 101151) (-90 "ASSOCEQ.spad" 99650 99661 100806 100811) (-89 "ASP9.spad" 98731 98744 99640 99645) (-88 "ASP8.spad" 97774 97787 98721 98726) (-87 "ASP80.spad" 97096 97109 97764 97769) (-86 "ASP7.spad" 96256 96269 97086 97091) (-85 "ASP78.spad" 95707 95720 96246 96251) (-84 "ASP77.spad" 95076 95089 95697 95702) (-83 "ASP74.spad" 94168 94181 95066 95071) (-82 "ASP73.spad" 93439 93452 94158 94163) (-81 "ASP6.spad" 92306 92319 93429 93434) (-80 "ASP55.spad" 90815 90828 92296 92301) (-79 "ASP50.spad" 88632 88645 90805 90810) (-78 "ASP4.spad" 87927 87940 88622 88627) (-77 "ASP49.spad" 86926 86939 87917 87922) (-76 "ASP42.spad" 85333 85372 86916 86921) (-75 "ASP41.spad" 83912 83951 85323 85328) (-74 "ASP35.spad" 82900 82913 83902 83907) (-73 "ASP34.spad" 82201 82214 82890 82895) (-72 "ASP33.spad" 81761 81774 82191 82196) (-71 "ASP31.spad" 80901 80914 81751 81756) (-70 "ASP30.spad" 79793 79806 80891 80896) (-69 "ASP29.spad" 79259 79272 79783 79788) (-68 "ASP28.spad" 70532 70545 79249 79254) (-67 "ASP27.spad" 69429 69442 70522 70527) (-66 "ASP24.spad" 68516 68529 69419 69424) (-65 "ASP20.spad" 67980 67993 68506 68511) (-64 "ASP1.spad" 67361 67374 67970 67975) (-63 "ASP19.spad" 62047 62060 67351 67356) (-62 "ASP12.spad" 61461 61474 62037 62042) (-61 "ASP10.spad" 60732 60745 61451 61456) (-60 "ARRAY2.spad" 60092 60101 60339 60366) (-59 "ARRAY1.spad" 58927 58936 59275 59302) (-58 "ARRAY12.spad" 57596 57607 58917 58922) (-57 "ARR2CAT.spad" 53258 53279 57564 57591) (-56 "ARR2CAT.spad" 48940 48963 53248 53253) (-55 "ARITY.spad" 48508 48515 48930 48935) (-54 "APPRULE.spad" 47752 47774 48498 48503) (-53 "APPLYORE.spad" 47367 47380 47742 47747) (-52 "ANY.spad" 45709 45716 47357 47362) (-51 "ANY1.spad" 44780 44789 45699 45704) (-50 "ANTISYM.spad" 43219 43235 44760 44775) (-49 "ANON.spad" 42916 42923 43209 43214) (-48 "AN.spad" 41217 41224 42732 42825) (-47 "AMR.spad" 39396 39407 41115 41212) (-46 "AMR.spad" 37412 37425 39133 39138) (-45 "ALIST.spad" 34824 34845 35174 35201) (-44 "ALGSC.spad" 33947 33973 34696 34749) (-43 "ALGPKG.spad" 29656 29667 33903 33908) (-42 "ALGMFACT.spad" 28845 28859 29646 29651) (-41 "ALGMANIP.spad" 26265 26280 28642 28647) (-40 "ALGFF.spad" 24580 24607 24797 24953) (-39 "ALGFACT.spad" 23701 23711 24570 24575) (-38 "ALGEBRA.spad" 23534 23543 23657 23696) (-37 "ALGEBRA.spad" 23399 23410 23524 23529) (-36 "ALAGG.spad" 22909 22930 23367 23394) (-35 "AHYP.spad" 22290 22297 22899 22904) (-34 "AGG.spad" 20599 20606 22280 22285) (-33 "AGG.spad" 18872 18881 20555 20560) (-32 "AF.spad" 17297 17312 18807 18812) (-31 "ADDAST.spad" 16975 16982 17287 17292) (-30 "ACPLOT.spad" 15546 15553 16965 16970) (-29 "ACFS.spad" 13297 13306 15448 15541) (-28 "ACFS.spad" 11134 11145 13287 13292) (-27 "ACF.spad" 7736 7743 11036 11129) (-26 "ACF.spad" 4424 4433 7726 7731) (-25 "ABELSG.spad" 3965 3972 4414 4419) (-24 "ABELSG.spad" 3504 3513 3955 3960) (-23 "ABELMON.spad" 3047 3054 3494 3499) (-22 "ABELMON.spad" 2588 2597 3037 3042) (-21 "ABELGRP.spad" 2160 2167 2578 2583) (-20 "ABELGRP.spad" 1730 1739 2150 2155) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2282794 2282799 2282804 2282809) (-2 NIL 2282774 2282779 2282784 2282789) (-1 NIL 2282754 2282759 2282764 2282769) (0 NIL 2282734 2282739 2282744 2282749) (-1285 "ZMOD.spad" 2282543 2282556 2282672 2282729) (-1284 "ZLINDEP.spad" 2281587 2281598 2282533 2282538) (-1283 "ZDSOLVE.spad" 2271436 2271458 2281577 2281582) (-1282 "YSTREAM.spad" 2270929 2270940 2271426 2271431) (-1281 "XRPOLY.spad" 2270149 2270169 2270785 2270854) (-1280 "XPR.spad" 2267940 2267953 2269867 2269966) (-1279 "XPOLY.spad" 2267495 2267506 2267796 2267865) (-1278 "XPOLYC.spad" 2266812 2266828 2267421 2267490) (-1277 "XPBWPOLY.spad" 2265249 2265269 2266592 2266661) (-1276 "XF.spad" 2263710 2263725 2265151 2265244) (-1275 "XF.spad" 2262151 2262168 2263594 2263599) (-1274 "XFALG.spad" 2259175 2259191 2262077 2262146) (-1273 "XEXPPKG.spad" 2258426 2258452 2259165 2259170) (-1272 "XDPOLY.spad" 2258040 2258056 2258282 2258351) (-1271 "XALG.spad" 2257700 2257711 2257996 2258035) (-1270 "WUTSET.spad" 2253539 2253556 2257346 2257373) (-1269 "WP.spad" 2252738 2252782 2253397 2253464) (-1268 "WHILEAST.spad" 2252536 2252545 2252728 2252733) (-1267 "WHEREAST.spad" 2252207 2252216 2252526 2252531) (-1266 "WFFINTBS.spad" 2249770 2249792 2252197 2252202) (-1265 "WEIER.spad" 2247984 2247995 2249760 2249765) (-1264 "VSPACE.spad" 2247657 2247668 2247952 2247979) (-1263 "VSPACE.spad" 2247350 2247363 2247647 2247652) (-1262 "VOID.spad" 2247027 2247036 2247340 2247345) (-1261 "VIEW.spad" 2244649 2244658 2247017 2247022) (-1260 "VIEWDEF.spad" 2239846 2239855 2244639 2244644) (-1259 "VIEW3D.spad" 2223681 2223690 2239836 2239841) (-1258 "VIEW2D.spad" 2211418 2211427 2223671 2223676) (-1257 "VECTOR.spad" 2210093 2210104 2210344 2210371) (-1256 "VECTOR2.spad" 2208720 2208733 2210083 2210088) (-1255 "VECTCAT.spad" 2206620 2206631 2208688 2208715) (-1254 "VECTCAT.spad" 2204328 2204341 2206398 2206403) (-1253 "VARIABLE.spad" 2204108 2204123 2204318 2204323) (-1252 "UTYPE.spad" 2203752 2203761 2204098 2204103) (-1251 "UTSODETL.spad" 2203045 2203069 2203708 2203713) (-1250 "UTSODE.spad" 2201233 2201253 2203035 2203040) (-1249 "UTS.spad" 2196022 2196050 2199700 2199797) (-1248 "UTSCAT.spad" 2193473 2193489 2195920 2196017) (-1247 "UTSCAT.spad" 2190568 2190586 2193017 2193022) (-1246 "UTS2.spad" 2190161 2190196 2190558 2190563) (-1245 "URAGG.spad" 2184793 2184804 2190151 2190156) (-1244 "URAGG.spad" 2179389 2179402 2184749 2184754) (-1243 "UPXSSING.spad" 2177032 2177058 2178470 2178603) (-1242 "UPXS.spad" 2174180 2174208 2175164 2175313) (-1241 "UPXSCONS.spad" 2171937 2171957 2172312 2172461) (-1240 "UPXSCCA.spad" 2170502 2170522 2171783 2171932) (-1239 "UPXSCCA.spad" 2169209 2169231 2170492 2170497) (-1238 "UPXSCAT.spad" 2167790 2167806 2169055 2169204) (-1237 "UPXS2.spad" 2167331 2167384 2167780 2167785) (-1236 "UPSQFREE.spad" 2165743 2165757 2167321 2167326) (-1235 "UPSCAT.spad" 2163336 2163360 2165641 2165738) (-1234 "UPSCAT.spad" 2160635 2160661 2162942 2162947) (-1233 "UPOLYC.spad" 2155613 2155624 2160477 2160630) (-1232 "UPOLYC.spad" 2150483 2150496 2155349 2155354) (-1231 "UPOLYC2.spad" 2149952 2149971 2150473 2150478) (-1230 "UP.spad" 2147109 2147124 2147502 2147655) (-1229 "UPMP.spad" 2145999 2146012 2147099 2147104) (-1228 "UPDIVP.spad" 2145562 2145576 2145989 2145994) (-1227 "UPDECOMP.spad" 2143799 2143813 2145552 2145557) (-1226 "UPCDEN.spad" 2143006 2143022 2143789 2143794) (-1225 "UP2.spad" 2142368 2142389 2142996 2143001) (-1224 "UNISEG.spad" 2141721 2141732 2142287 2142292) (-1223 "UNISEG2.spad" 2141214 2141227 2141677 2141682) (-1222 "UNIFACT.spad" 2140315 2140327 2141204 2141209) (-1221 "ULS.spad" 2130867 2130895 2131960 2132389) (-1220 "ULSCONS.spad" 2123261 2123281 2123633 2123782) (-1219 "ULSCCAT.spad" 2120990 2121010 2123107 2123256) (-1218 "ULSCCAT.spad" 2118827 2118849 2120946 2120951) (-1217 "ULSCAT.spad" 2117043 2117059 2118673 2118822) (-1216 "ULS2.spad" 2116555 2116608 2117033 2117038) (-1215 "UINT8.spad" 2116432 2116441 2116545 2116550) (-1214 "UINT32.spad" 2116308 2116317 2116422 2116427) (-1213 "UINT16.spad" 2116184 2116193 2116298 2116303) (-1212 "UFD.spad" 2115249 2115258 2116110 2116179) (-1211 "UFD.spad" 2114376 2114387 2115239 2115244) (-1210 "UDVO.spad" 2113223 2113232 2114366 2114371) (-1209 "UDPO.spad" 2110650 2110661 2113179 2113184) (-1208 "TYPE.spad" 2110582 2110591 2110640 2110645) (-1207 "TYPEAST.spad" 2110501 2110510 2110572 2110577) (-1206 "TWOFACT.spad" 2109151 2109166 2110491 2110496) (-1205 "TUPLE.spad" 2108635 2108646 2109050 2109055) (-1204 "TUBETOOL.spad" 2105472 2105481 2108625 2108630) (-1203 "TUBE.spad" 2104113 2104130 2105462 2105467) (-1202 "TS.spad" 2102702 2102718 2103678 2103775) (-1201 "TSETCAT.spad" 2089829 2089846 2102670 2102697) (-1200 "TSETCAT.spad" 2076942 2076961 2089785 2089790) (-1199 "TRMANIP.spad" 2071308 2071325 2076648 2076653) (-1198 "TRIMAT.spad" 2070267 2070292 2071298 2071303) (-1197 "TRIGMNIP.spad" 2068784 2068801 2070257 2070262) (-1196 "TRIGCAT.spad" 2068296 2068305 2068774 2068779) (-1195 "TRIGCAT.spad" 2067806 2067817 2068286 2068291) (-1194 "TREE.spad" 2066377 2066388 2067413 2067440) (-1193 "TRANFUN.spad" 2066208 2066217 2066367 2066372) (-1192 "TRANFUN.spad" 2066037 2066048 2066198 2066203) (-1191 "TOPSP.spad" 2065711 2065720 2066027 2066032) (-1190 "TOOLSIGN.spad" 2065374 2065385 2065701 2065706) (-1189 "TEXTFILE.spad" 2063931 2063940 2065364 2065369) (-1188 "TEX.spad" 2061063 2061072 2063921 2063926) (-1187 "TEX1.spad" 2060619 2060630 2061053 2061058) (-1186 "TEMUTL.spad" 2060174 2060183 2060609 2060614) (-1185 "TBCMPPK.spad" 2058267 2058290 2060164 2060169) (-1184 "TBAGG.spad" 2057303 2057326 2058247 2058262) (-1183 "TBAGG.spad" 2056347 2056372 2057293 2057298) (-1182 "TANEXP.spad" 2055723 2055734 2056337 2056342) (-1181 "TABLE.spad" 2054134 2054157 2054404 2054431) (-1180 "TABLEAU.spad" 2053615 2053626 2054124 2054129) (-1179 "TABLBUMP.spad" 2050398 2050409 2053605 2053610) (-1178 "SYSTEM.spad" 2049672 2049681 2050388 2050393) (-1177 "SYSSOLP.spad" 2047145 2047156 2049662 2049667) (-1176 "SYSNNI.spad" 2046321 2046332 2047135 2047140) (-1175 "SYSINT.spad" 2045794 2045805 2046311 2046316) (-1174 "SYNTAX.spad" 2042064 2042073 2045784 2045789) (-1173 "SYMTAB.spad" 2040120 2040129 2042054 2042059) (-1172 "SYMS.spad" 2036105 2036114 2040110 2040115) (-1171 "SYMPOLY.spad" 2035112 2035123 2035194 2035321) (-1170 "SYMFUNC.spad" 2034587 2034598 2035102 2035107) (-1169 "SYMBOL.spad" 2032014 2032023 2034577 2034582) (-1168 "SWITCH.spad" 2028771 2028780 2032004 2032009) (-1167 "SUTS.spad" 2025670 2025698 2027238 2027335) (-1166 "SUPXS.spad" 2022805 2022833 2023802 2023951) (-1165 "SUP.spad" 2019574 2019585 2020355 2020508) (-1164 "SUPFRACF.spad" 2018679 2018697 2019564 2019569) (-1163 "SUP2.spad" 2018069 2018082 2018669 2018674) (-1162 "SUMRF.spad" 2017035 2017046 2018059 2018064) (-1161 "SUMFS.spad" 2016668 2016685 2017025 2017030) (-1160 "SULS.spad" 2007207 2007235 2008313 2008742) (-1159 "SUCHTAST.spad" 2006976 2006985 2007197 2007202) (-1158 "SUCH.spad" 2006656 2006671 2006966 2006971) (-1157 "SUBSPACE.spad" 1998663 1998678 2006646 2006651) (-1156 "SUBRESP.spad" 1997823 1997837 1998619 1998624) (-1155 "STTF.spad" 1993922 1993938 1997813 1997818) (-1154 "STTFNC.spad" 1990390 1990406 1993912 1993917) (-1153 "STTAYLOR.spad" 1982788 1982799 1990271 1990276) (-1152 "STRTBL.spad" 1981293 1981310 1981442 1981469) (-1151 "STRING.spad" 1980702 1980711 1980716 1980743) (-1150 "STRICAT.spad" 1980490 1980499 1980670 1980697) (-1149 "STREAM.spad" 1977348 1977359 1980015 1980030) (-1148 "STREAM3.spad" 1976893 1976908 1977338 1977343) (-1147 "STREAM2.spad" 1975961 1975974 1976883 1976888) (-1146 "STREAM1.spad" 1975665 1975676 1975951 1975956) (-1145 "STINPROD.spad" 1974571 1974587 1975655 1975660) (-1144 "STEP.spad" 1973772 1973781 1974561 1974566) (-1143 "STBL.spad" 1972298 1972326 1972465 1972480) (-1142 "STAGG.spad" 1971373 1971384 1972288 1972293) (-1141 "STAGG.spad" 1970446 1970459 1971363 1971368) (-1140 "STACK.spad" 1969797 1969808 1970053 1970080) (-1139 "SREGSET.spad" 1967501 1967518 1969443 1969470) (-1138 "SRDCMPK.spad" 1966046 1966066 1967491 1967496) (-1137 "SRAGG.spad" 1961143 1961152 1966014 1966041) (-1136 "SRAGG.spad" 1956260 1956271 1961133 1961138) (-1135 "SQMATRIX.spad" 1953876 1953894 1954792 1954879) (-1134 "SPLTREE.spad" 1948428 1948441 1953312 1953339) (-1133 "SPLNODE.spad" 1945016 1945029 1948418 1948423) (-1132 "SPFCAT.spad" 1943793 1943802 1945006 1945011) (-1131 "SPECOUT.spad" 1942343 1942352 1943783 1943788) (-1130 "SPADXPT.spad" 1934482 1934491 1942333 1942338) (-1129 "spad-parser.spad" 1933947 1933956 1934472 1934477) (-1128 "SPADAST.spad" 1933648 1933657 1933937 1933942) (-1127 "SPACEC.spad" 1917661 1917672 1933638 1933643) (-1126 "SPACE3.spad" 1917437 1917448 1917651 1917656) (-1125 "SORTPAK.spad" 1916982 1916995 1917393 1917398) (-1124 "SOLVETRA.spad" 1914739 1914750 1916972 1916977) (-1123 "SOLVESER.spad" 1913259 1913270 1914729 1914734) (-1122 "SOLVERAD.spad" 1909269 1909280 1913249 1913254) (-1121 "SOLVEFOR.spad" 1907689 1907707 1909259 1909264) (-1120 "SNTSCAT.spad" 1907289 1907306 1907657 1907684) (-1119 "SMTS.spad" 1905549 1905575 1906854 1906951) (-1118 "SMP.spad" 1902988 1903008 1903378 1903505) (-1117 "SMITH.spad" 1901831 1901856 1902978 1902983) (-1116 "SMATCAT.spad" 1899941 1899971 1901775 1901826) (-1115 "SMATCAT.spad" 1897983 1898015 1899819 1899824) (-1114 "SKAGG.spad" 1896944 1896955 1897951 1897978) (-1113 "SINT.spad" 1895770 1895779 1896810 1896939) (-1112 "SIMPAN.spad" 1895498 1895507 1895760 1895765) (-1111 "SIG.spad" 1894826 1894835 1895488 1895493) (-1110 "SIGNRF.spad" 1893934 1893945 1894816 1894821) (-1109 "SIGNEF.spad" 1893203 1893220 1893924 1893929) (-1108 "SIGAST.spad" 1892584 1892593 1893193 1893198) (-1107 "SHP.spad" 1890502 1890517 1892540 1892545) (-1106 "SHDP.spad" 1880213 1880240 1880722 1880853) (-1105 "SGROUP.spad" 1879821 1879830 1880203 1880208) (-1104 "SGROUP.spad" 1879427 1879438 1879811 1879816) (-1103 "SGCF.spad" 1872308 1872317 1879417 1879422) (-1102 "SFRTCAT.spad" 1871236 1871253 1872276 1872303) (-1101 "SFRGCD.spad" 1870299 1870319 1871226 1871231) (-1100 "SFQCMPK.spad" 1864936 1864956 1870289 1870294) (-1099 "SFORT.spad" 1864371 1864385 1864926 1864931) (-1098 "SEXOF.spad" 1864214 1864254 1864361 1864366) (-1097 "SEX.spad" 1864106 1864115 1864204 1864209) (-1096 "SEXCAT.spad" 1861657 1861697 1864096 1864101) (-1095 "SET.spad" 1859957 1859968 1861078 1861117) (-1094 "SETMN.spad" 1858391 1858408 1859947 1859952) (-1093 "SETCAT.spad" 1857876 1857885 1858381 1858386) (-1092 "SETCAT.spad" 1857359 1857370 1857866 1857871) (-1091 "SETAGG.spad" 1853880 1853891 1857339 1857354) (-1090 "SETAGG.spad" 1850409 1850422 1853870 1853875) (-1089 "SEQAST.spad" 1850112 1850121 1850399 1850404) (-1088 "SEGXCAT.spad" 1849234 1849247 1850102 1850107) (-1087 "SEG.spad" 1849047 1849058 1849153 1849158) (-1086 "SEGCAT.spad" 1847954 1847965 1849037 1849042) (-1085 "SEGBIND.spad" 1847026 1847037 1847909 1847914) (-1084 "SEGBIND2.spad" 1846722 1846735 1847016 1847021) (-1083 "SEGAST.spad" 1846436 1846445 1846712 1846717) (-1082 "SEG2.spad" 1845861 1845874 1846392 1846397) (-1081 "SDVAR.spad" 1845137 1845148 1845851 1845856) (-1080 "SDPOL.spad" 1842527 1842538 1842818 1842945) (-1079 "SCPKG.spad" 1840606 1840617 1842517 1842522) (-1078 "SCOPE.spad" 1839751 1839760 1840596 1840601) (-1077 "SCACHE.spad" 1838433 1838444 1839741 1839746) (-1076 "SASTCAT.spad" 1838342 1838351 1838423 1838428) (-1075 "SAOS.spad" 1838214 1838223 1838332 1838337) (-1074 "SAERFFC.spad" 1837927 1837947 1838204 1838209) (-1073 "SAE.spad" 1836102 1836118 1836713 1836848) (-1072 "SAEFACT.spad" 1835803 1835823 1836092 1836097) (-1071 "RURPK.spad" 1833444 1833460 1835793 1835798) (-1070 "RULESET.spad" 1832885 1832909 1833434 1833439) (-1069 "RULE.spad" 1831089 1831113 1832875 1832880) (-1068 "RULECOLD.spad" 1830941 1830954 1831079 1831084) (-1067 "RSTRCAST.spad" 1830658 1830667 1830931 1830936) (-1066 "RSETGCD.spad" 1827036 1827056 1830648 1830653) (-1065 "RSETCAT.spad" 1816820 1816837 1827004 1827031) (-1064 "RSETCAT.spad" 1806624 1806643 1816810 1816815) (-1063 "RSDCMPK.spad" 1805076 1805096 1806614 1806619) (-1062 "RRCC.spad" 1803460 1803490 1805066 1805071) (-1061 "RRCC.spad" 1801842 1801874 1803450 1803455) (-1060 "RPTAST.spad" 1801544 1801553 1801832 1801837) (-1059 "RPOLCAT.spad" 1780904 1780919 1801412 1801539) (-1058 "RPOLCAT.spad" 1759978 1759995 1780488 1780493) (-1057 "ROUTINE.spad" 1755841 1755850 1758625 1758652) (-1056 "ROMAN.spad" 1755169 1755178 1755707 1755836) (-1055 "ROIRC.spad" 1754249 1754281 1755159 1755164) (-1054 "RNS.spad" 1753152 1753161 1754151 1754244) (-1053 "RNS.spad" 1752141 1752152 1753142 1753147) (-1052 "RNG.spad" 1751876 1751885 1752131 1752136) (-1051 "RMODULE.spad" 1751514 1751525 1751866 1751871) (-1050 "RMCAT2.spad" 1750922 1750979 1751504 1751509) (-1049 "RMATRIX.spad" 1749746 1749765 1750089 1750128) (-1048 "RMATCAT.spad" 1745279 1745310 1749702 1749741) (-1047 "RMATCAT.spad" 1740702 1740735 1745127 1745132) (-1046 "RINTERP.spad" 1740590 1740610 1740692 1740697) (-1045 "RING.spad" 1740060 1740069 1740570 1740585) (-1044 "RING.spad" 1739538 1739549 1740050 1740055) (-1043 "RIDIST.spad" 1738922 1738931 1739528 1739533) (-1042 "RGCHAIN.spad" 1737501 1737517 1738407 1738434) (-1041 "RGBCSPC.spad" 1737282 1737294 1737491 1737496) (-1040 "RGBCMDL.spad" 1736812 1736824 1737272 1737277) (-1039 "RF.spad" 1734426 1734437 1736802 1736807) (-1038 "RFFACTOR.spad" 1733888 1733899 1734416 1734421) (-1037 "RFFACT.spad" 1733623 1733635 1733878 1733883) (-1036 "RFDIST.spad" 1732611 1732620 1733613 1733618) (-1035 "RETSOL.spad" 1732028 1732041 1732601 1732606) (-1034 "RETRACT.spad" 1731456 1731467 1732018 1732023) (-1033 "RETRACT.spad" 1730882 1730895 1731446 1731451) (-1032 "RETAST.spad" 1730694 1730703 1730872 1730877) (-1031 "RESULT.spad" 1728754 1728763 1729341 1729368) (-1030 "RESRING.spad" 1728101 1728148 1728692 1728749) (-1029 "RESLATC.spad" 1727425 1727436 1728091 1728096) (-1028 "REPSQ.spad" 1727154 1727165 1727415 1727420) (-1027 "REP.spad" 1724706 1724715 1727144 1727149) (-1026 "REPDB.spad" 1724411 1724422 1724696 1724701) (-1025 "REP2.spad" 1713983 1713994 1724253 1724258) (-1024 "REP1.spad" 1707973 1707984 1713933 1713938) (-1023 "REGSET.spad" 1705770 1705787 1707619 1707646) (-1022 "REF.spad" 1705099 1705110 1705725 1705730) (-1021 "REDORDER.spad" 1704275 1704292 1705089 1705094) (-1020 "RECLOS.spad" 1703058 1703078 1703762 1703855) (-1019 "REALSOLV.spad" 1702190 1702199 1703048 1703053) (-1018 "REAL.spad" 1702062 1702071 1702180 1702185) (-1017 "REAL0Q.spad" 1699344 1699359 1702052 1702057) (-1016 "REAL0.spad" 1696172 1696187 1699334 1699339) (-1015 "RDUCEAST.spad" 1695893 1695902 1696162 1696167) (-1014 "RDIV.spad" 1695544 1695569 1695883 1695888) (-1013 "RDIST.spad" 1695107 1695118 1695534 1695539) (-1012 "RDETRS.spad" 1693903 1693921 1695097 1695102) (-1011 "RDETR.spad" 1692010 1692028 1693893 1693898) (-1010 "RDEEFS.spad" 1691083 1691100 1692000 1692005) (-1009 "RDEEF.spad" 1690079 1690096 1691073 1691078) (-1008 "RCFIELD.spad" 1687265 1687274 1689981 1690074) (-1007 "RCFIELD.spad" 1684537 1684548 1687255 1687260) (-1006 "RCAGG.spad" 1682449 1682460 1684527 1684532) (-1005 "RCAGG.spad" 1680288 1680301 1682368 1682373) (-1004 "RATRET.spad" 1679648 1679659 1680278 1680283) (-1003 "RATFACT.spad" 1679340 1679352 1679638 1679643) (-1002 "RANDSRC.spad" 1678659 1678668 1679330 1679335) (-1001 "RADUTIL.spad" 1678413 1678422 1678649 1678654) (-1000 "RADIX.spad" 1675314 1675328 1676880 1676973) (-999 "RADFF.spad" 1673728 1673764 1673846 1674002) (-998 "RADCAT.spad" 1673322 1673330 1673718 1673723) (-997 "RADCAT.spad" 1672914 1672924 1673312 1673317) (-996 "QUEUE.spad" 1672257 1672267 1672521 1672548) (-995 "QUAT.spad" 1670839 1670849 1671181 1671246) (-994 "QUATCT2.spad" 1670458 1670476 1670829 1670834) (-993 "QUATCAT.spad" 1668623 1668633 1670388 1670453) (-992 "QUATCAT.spad" 1666539 1666551 1668306 1668311) (-991 "QUAGG.spad" 1665365 1665375 1666507 1666534) (-990 "QQUTAST.spad" 1665134 1665142 1665355 1665360) (-989 "QFORM.spad" 1664597 1664611 1665124 1665129) (-988 "QFCAT.spad" 1663300 1663310 1664499 1664592) (-987 "QFCAT.spad" 1661594 1661606 1662795 1662800) (-986 "QFCAT2.spad" 1661285 1661301 1661584 1661589) (-985 "QEQUAT.spad" 1660842 1660850 1661275 1661280) (-984 "QCMPACK.spad" 1655589 1655608 1660832 1660837) (-983 "QALGSET.spad" 1651664 1651696 1655503 1655508) (-982 "QALGSET2.spad" 1649660 1649678 1651654 1651659) (-981 "PWFFINTB.spad" 1646970 1646991 1649650 1649655) (-980 "PUSHVAR.spad" 1646299 1646318 1646960 1646965) (-979 "PTRANFN.spad" 1642425 1642435 1646289 1646294) (-978 "PTPACK.spad" 1639513 1639523 1642415 1642420) (-977 "PTFUNC2.spad" 1639334 1639348 1639503 1639508) (-976 "PTCAT.spad" 1638583 1638593 1639302 1639329) (-975 "PSQFR.spad" 1637890 1637914 1638573 1638578) (-974 "PSEUDLIN.spad" 1636748 1636758 1637880 1637885) (-973 "PSETPK.spad" 1622181 1622197 1636626 1636631) (-972 "PSETCAT.spad" 1616101 1616124 1622161 1622176) (-971 "PSETCAT.spad" 1609995 1610020 1616057 1616062) (-970 "PSCURVE.spad" 1608978 1608986 1609985 1609990) (-969 "PSCAT.spad" 1607745 1607774 1608876 1608973) (-968 "PSCAT.spad" 1606602 1606633 1607735 1607740) (-967 "PRTITION.spad" 1605547 1605555 1606592 1606597) (-966 "PRTDAST.spad" 1605266 1605274 1605537 1605542) (-965 "PRS.spad" 1594828 1594845 1605222 1605227) (-964 "PRQAGG.spad" 1594259 1594269 1594796 1594823) (-963 "PROPLOG.spad" 1593662 1593670 1594249 1594254) (-962 "PROPFRML.spad" 1591580 1591591 1593652 1593657) (-961 "PROPERTY.spad" 1591074 1591082 1591570 1591575) (-960 "PRODUCT.spad" 1588754 1588766 1589040 1589095) (-959 "PR.spad" 1587140 1587152 1587845 1587972) (-958 "PRINT.spad" 1586892 1586900 1587130 1587135) (-957 "PRIMES.spad" 1585143 1585153 1586882 1586887) (-956 "PRIMELT.spad" 1583124 1583138 1585133 1585138) (-955 "PRIMCAT.spad" 1582747 1582755 1583114 1583119) (-954 "PRIMARR.spad" 1581752 1581762 1581930 1581957) (-953 "PRIMARR2.spad" 1580475 1580487 1581742 1581747) (-952 "PREASSOC.spad" 1579847 1579859 1580465 1580470) (-951 "PPCURVE.spad" 1578984 1578992 1579837 1579842) (-950 "PORTNUM.spad" 1578759 1578767 1578974 1578979) (-949 "POLYROOT.spad" 1577588 1577610 1578715 1578720) (-948 "POLY.spad" 1574885 1574895 1575402 1575529) (-947 "POLYLIFT.spad" 1574146 1574169 1574875 1574880) (-946 "POLYCATQ.spad" 1572248 1572270 1574136 1574141) (-945 "POLYCAT.spad" 1565654 1565675 1572116 1572243) (-944 "POLYCAT.spad" 1558362 1558385 1564826 1564831) (-943 "POLY2UP.spad" 1557810 1557824 1558352 1558357) (-942 "POLY2.spad" 1557405 1557417 1557800 1557805) (-941 "POLUTIL.spad" 1556346 1556375 1557361 1557366) (-940 "POLTOPOL.spad" 1555094 1555109 1556336 1556341) (-939 "POINT.spad" 1553933 1553943 1554020 1554047) (-938 "PNTHEORY.spad" 1550599 1550607 1553923 1553928) (-937 "PMTOOLS.spad" 1549356 1549370 1550589 1550594) (-936 "PMSYM.spad" 1548901 1548911 1549346 1549351) (-935 "PMQFCAT.spad" 1548488 1548502 1548891 1548896) (-934 "PMPRED.spad" 1547957 1547971 1548478 1548483) (-933 "PMPREDFS.spad" 1547401 1547423 1547947 1547952) (-932 "PMPLCAT.spad" 1546471 1546489 1547333 1547338) (-931 "PMLSAGG.spad" 1546052 1546066 1546461 1546466) (-930 "PMKERNEL.spad" 1545619 1545631 1546042 1546047) (-929 "PMINS.spad" 1545195 1545205 1545609 1545614) (-928 "PMFS.spad" 1544768 1544786 1545185 1545190) (-927 "PMDOWN.spad" 1544054 1544068 1544758 1544763) (-926 "PMASS.spad" 1543066 1543074 1544044 1544049) (-925 "PMASSFS.spad" 1542035 1542051 1543056 1543061) (-924 "PLOTTOOL.spad" 1541815 1541823 1542025 1542030) (-923 "PLOT.spad" 1536646 1536654 1541805 1541810) (-922 "PLOT3D.spad" 1533066 1533074 1536636 1536641) (-921 "PLOT1.spad" 1532207 1532217 1533056 1533061) (-920 "PLEQN.spad" 1519423 1519450 1532197 1532202) (-919 "PINTERP.spad" 1519039 1519058 1519413 1519418) (-918 "PINTERPA.spad" 1518821 1518837 1519029 1519034) (-917 "PI.spad" 1518428 1518436 1518795 1518816) (-916 "PID.spad" 1517384 1517392 1518354 1518423) (-915 "PICOERCE.spad" 1517041 1517051 1517374 1517379) (-914 "PGROEB.spad" 1515638 1515652 1517031 1517036) (-913 "PGE.spad" 1506891 1506899 1515628 1515633) (-912 "PGCD.spad" 1505773 1505790 1506881 1506886) (-911 "PFRPAC.spad" 1504916 1504926 1505763 1505768) (-910 "PFR.spad" 1501573 1501583 1504818 1504911) (-909 "PFOTOOLS.spad" 1500831 1500847 1501563 1501568) (-908 "PFOQ.spad" 1500201 1500219 1500821 1500826) (-907 "PFO.spad" 1499620 1499647 1500191 1500196) (-906 "PF.spad" 1499194 1499206 1499425 1499518) (-905 "PFECAT.spad" 1496860 1496868 1499120 1499189) (-904 "PFECAT.spad" 1494554 1494564 1496816 1496821) (-903 "PFBRU.spad" 1492424 1492436 1494544 1494549) (-902 "PFBR.spad" 1489962 1489985 1492414 1492419) (-901 "PERM.spad" 1485643 1485653 1489792 1489807) (-900 "PERMGRP.spad" 1480379 1480389 1485633 1485638) (-899 "PERMCAT.spad" 1478931 1478941 1480359 1480374) (-898 "PERMAN.spad" 1477463 1477477 1478921 1478926) (-897 "PENDTREE.spad" 1476802 1476812 1477092 1477097) (-896 "PDRING.spad" 1475293 1475303 1476782 1476797) (-895 "PDRING.spad" 1473792 1473804 1475283 1475288) (-894 "PDEPROB.spad" 1472807 1472815 1473782 1473787) (-893 "PDEPACK.spad" 1466809 1466817 1472797 1472802) (-892 "PDECOMP.spad" 1466271 1466288 1466799 1466804) (-891 "PDECAT.spad" 1464625 1464633 1466261 1466266) (-890 "PCOMP.spad" 1464476 1464489 1464615 1464620) (-889 "PBWLB.spad" 1463058 1463075 1464466 1464471) (-888 "PATTERN.spad" 1457489 1457499 1463048 1463053) (-887 "PATTERN2.spad" 1457225 1457237 1457479 1457484) (-886 "PATTERN1.spad" 1455527 1455543 1457215 1457220) (-885 "PATRES.spad" 1453074 1453086 1455517 1455522) (-884 "PATRES2.spad" 1452736 1452750 1453064 1453069) (-883 "PATMATCH.spad" 1450893 1450924 1452444 1452449) (-882 "PATMAB.spad" 1450318 1450328 1450883 1450888) (-881 "PATLRES.spad" 1449402 1449416 1450308 1450313) (-880 "PATAB.spad" 1449166 1449176 1449392 1449397) (-879 "PARTPERM.spad" 1446528 1446536 1449156 1449161) (-878 "PARSURF.spad" 1445956 1445984 1446518 1446523) (-877 "PARSU2.spad" 1445751 1445767 1445946 1445951) (-876 "script-parser.spad" 1445271 1445279 1445741 1445746) (-875 "PARSCURV.spad" 1444699 1444727 1445261 1445266) (-874 "PARSC2.spad" 1444488 1444504 1444689 1444694) (-873 "PARPCURV.spad" 1443946 1443974 1444478 1444483) (-872 "PARPC2.spad" 1443735 1443751 1443936 1443941) (-871 "PAN2EXPR.spad" 1443147 1443155 1443725 1443730) (-870 "PALETTE.spad" 1442117 1442125 1443137 1443142) (-869 "PAIR.spad" 1441100 1441113 1441705 1441710) (-868 "PADICRC.spad" 1438430 1438448 1439605 1439698) (-867 "PADICRAT.spad" 1436445 1436457 1436666 1436759) (-866 "PADIC.spad" 1436140 1436152 1436371 1436440) (-865 "PADICCT.spad" 1434681 1434693 1436066 1436135) (-864 "PADEPAC.spad" 1433360 1433379 1434671 1434676) (-863 "PADE.spad" 1432100 1432116 1433350 1433355) (-862 "OWP.spad" 1431340 1431370 1431958 1432025) (-861 "OVERSET.spad" 1430913 1430921 1431330 1431335) (-860 "OVAR.spad" 1430694 1430717 1430903 1430908) (-859 "OUT.spad" 1429778 1429786 1430684 1430689) (-858 "OUTFORM.spad" 1419074 1419082 1429768 1429773) (-857 "OUTBFILE.spad" 1418492 1418500 1419064 1419069) (-856 "OUTBCON.spad" 1417490 1417498 1418482 1418487) (-855 "OUTBCON.spad" 1416486 1416496 1417480 1417485) (-854 "OSI.spad" 1415961 1415969 1416476 1416481) (-853 "OSGROUP.spad" 1415879 1415887 1415951 1415956) (-852 "ORTHPOL.spad" 1414340 1414350 1415796 1415801) (-851 "OREUP.spad" 1413793 1413821 1414020 1414059) (-850 "ORESUP.spad" 1413092 1413116 1413473 1413512) (-849 "OREPCTO.spad" 1410911 1410923 1413012 1413017) (-848 "OREPCAT.spad" 1404968 1404978 1410867 1410906) (-847 "OREPCAT.spad" 1398915 1398927 1404816 1404821) (-846 "ORDSET.spad" 1398081 1398089 1398905 1398910) (-845 "ORDSET.spad" 1397245 1397255 1398071 1398076) (-844 "ORDRING.spad" 1396635 1396643 1397225 1397240) (-843 "ORDRING.spad" 1396033 1396043 1396625 1396630) (-842 "ORDMON.spad" 1395888 1395896 1396023 1396028) (-841 "ORDFUNS.spad" 1395014 1395030 1395878 1395883) (-840 "ORDFIN.spad" 1394834 1394842 1395004 1395009) (-839 "ORDCOMP.spad" 1393299 1393309 1394381 1394410) (-838 "ORDCOMP2.spad" 1392584 1392596 1393289 1393294) (-837 "OPTPROB.spad" 1391222 1391230 1392574 1392579) (-836 "OPTPACK.spad" 1383607 1383615 1391212 1391217) (-835 "OPTCAT.spad" 1381282 1381290 1383597 1383602) (-834 "OPSIG.spad" 1380934 1380942 1381272 1381277) (-833 "OPQUERY.spad" 1380483 1380491 1380924 1380929) (-832 "OP.spad" 1380225 1380235 1380305 1380372) (-831 "OPERCAT.spad" 1379813 1379823 1380215 1380220) (-830 "OPERCAT.spad" 1379399 1379411 1379803 1379808) (-829 "ONECOMP.spad" 1378144 1378154 1378946 1378975) (-828 "ONECOMP2.spad" 1377562 1377574 1378134 1378139) (-827 "OMSERVER.spad" 1376564 1376572 1377552 1377557) (-826 "OMSAGG.spad" 1376352 1376362 1376520 1376559) (-825 "OMPKG.spad" 1374964 1374972 1376342 1376347) (-824 "OM.spad" 1373929 1373937 1374954 1374959) (-823 "OMLO.spad" 1373354 1373366 1373815 1373854) (-822 "OMEXPR.spad" 1373188 1373198 1373344 1373349) (-821 "OMERR.spad" 1372731 1372739 1373178 1373183) (-820 "OMERRK.spad" 1371765 1371773 1372721 1372726) (-819 "OMENC.spad" 1371109 1371117 1371755 1371760) (-818 "OMDEV.spad" 1365398 1365406 1371099 1371104) (-817 "OMCONN.spad" 1364807 1364815 1365388 1365393) (-816 "OINTDOM.spad" 1364570 1364578 1364733 1364802) (-815 "OFMONOID.spad" 1360757 1360767 1364560 1364565) (-814 "ODVAR.spad" 1360018 1360028 1360747 1360752) (-813 "ODR.spad" 1359662 1359688 1359830 1359979) (-812 "ODPOL.spad" 1357008 1357018 1357348 1357475) (-811 "ODP.spad" 1346855 1346875 1347228 1347359) (-810 "ODETOOLS.spad" 1345438 1345457 1346845 1346850) (-809 "ODESYS.spad" 1343088 1343105 1345428 1345433) (-808 "ODERTRIC.spad" 1339029 1339046 1343045 1343050) (-807 "ODERED.spad" 1338416 1338440 1339019 1339024) (-806 "ODERAT.spad" 1335967 1335984 1338406 1338411) (-805 "ODEPRRIC.spad" 1332858 1332880 1335957 1335962) (-804 "ODEPROB.spad" 1332115 1332123 1332848 1332853) (-803 "ODEPRIM.spad" 1329389 1329411 1332105 1332110) (-802 "ODEPAL.spad" 1328765 1328789 1329379 1329384) (-801 "ODEPACK.spad" 1315367 1315375 1328755 1328760) (-800 "ODEINT.spad" 1314798 1314814 1315357 1315362) (-799 "ODEIFTBL.spad" 1312193 1312201 1314788 1314793) (-798 "ODEEF.spad" 1307560 1307576 1312183 1312188) (-797 "ODECONST.spad" 1307079 1307097 1307550 1307555) (-796 "ODECAT.spad" 1305675 1305683 1307069 1307074) (-795 "OCT.spad" 1303813 1303823 1304529 1304568) (-794 "OCTCT2.spad" 1303457 1303478 1303803 1303808) (-793 "OC.spad" 1301231 1301241 1303413 1303452) (-792 "OC.spad" 1298730 1298742 1300914 1300919) (-791 "OCAMON.spad" 1298578 1298586 1298720 1298725) (-790 "OASGP.spad" 1298393 1298401 1298568 1298573) (-789 "OAMONS.spad" 1297913 1297921 1298383 1298388) (-788 "OAMON.spad" 1297774 1297782 1297903 1297908) (-787 "OAGROUP.spad" 1297636 1297644 1297764 1297769) (-786 "NUMTUBE.spad" 1297223 1297239 1297626 1297631) (-785 "NUMQUAD.spad" 1285085 1285093 1297213 1297218) (-784 "NUMODE.spad" 1276221 1276229 1285075 1285080) (-783 "NUMINT.spad" 1273779 1273787 1276211 1276216) (-782 "NUMFMT.spad" 1272619 1272627 1273769 1273774) (-781 "NUMERIC.spad" 1264691 1264701 1272424 1272429) (-780 "NTSCAT.spad" 1263193 1263209 1264659 1264686) (-779 "NTPOLFN.spad" 1262738 1262748 1263110 1263115) (-778 "NSUP.spad" 1255748 1255758 1260288 1260441) (-777 "NSUP2.spad" 1255140 1255152 1255738 1255743) (-776 "NSMP.spad" 1251335 1251354 1251643 1251770) (-775 "NREP.spad" 1249707 1249721 1251325 1251330) (-774 "NPCOEF.spad" 1248953 1248973 1249697 1249702) (-773 "NORMRETR.spad" 1248551 1248590 1248943 1248948) (-772 "NORMPK.spad" 1246453 1246472 1248541 1248546) (-771 "NORMMA.spad" 1246141 1246167 1246443 1246448) (-770 "NONE.spad" 1245882 1245890 1246131 1246136) (-769 "NONE1.spad" 1245558 1245568 1245872 1245877) (-768 "NODE1.spad" 1245027 1245043 1245548 1245553) (-767 "NNI.spad" 1243914 1243922 1245001 1245022) (-766 "NLINSOL.spad" 1242536 1242546 1243904 1243909) (-765 "NIPROB.spad" 1241077 1241085 1242526 1242531) (-764 "NFINTBAS.spad" 1238537 1238554 1241067 1241072) (-763 "NETCLT.spad" 1238511 1238522 1238527 1238532) (-762 "NCODIV.spad" 1236709 1236725 1238501 1238506) (-761 "NCNTFRAC.spad" 1236351 1236365 1236699 1236704) (-760 "NCEP.spad" 1234511 1234525 1236341 1236346) (-759 "NASRING.spad" 1234107 1234115 1234501 1234506) (-758 "NASRING.spad" 1233701 1233711 1234097 1234102) (-757 "NARNG.spad" 1233045 1233053 1233691 1233696) (-756 "NARNG.spad" 1232387 1232397 1233035 1233040) (-755 "NAGSP.spad" 1231460 1231468 1232377 1232382) (-754 "NAGS.spad" 1220985 1220993 1231450 1231455) (-753 "NAGF07.spad" 1219378 1219386 1220975 1220980) (-752 "NAGF04.spad" 1213610 1213618 1219368 1219373) (-751 "NAGF02.spad" 1207419 1207427 1213600 1213605) (-750 "NAGF01.spad" 1203022 1203030 1207409 1207414) (-749 "NAGE04.spad" 1196482 1196490 1203012 1203017) (-748 "NAGE02.spad" 1186824 1186832 1196472 1196477) (-747 "NAGE01.spad" 1182708 1182716 1186814 1186819) (-746 "NAGD03.spad" 1180628 1180636 1182698 1182703) (-745 "NAGD02.spad" 1173159 1173167 1180618 1180623) (-744 "NAGD01.spad" 1167272 1167280 1173149 1173154) (-743 "NAGC06.spad" 1163059 1163067 1167262 1167267) (-742 "NAGC05.spad" 1161528 1161536 1163049 1163054) (-741 "NAGC02.spad" 1160783 1160791 1161518 1161523) (-740 "NAALG.spad" 1160318 1160328 1160751 1160778) (-739 "NAALG.spad" 1159873 1159885 1160308 1160313) (-738 "MULTSQFR.spad" 1156831 1156848 1159863 1159868) (-737 "MULTFACT.spad" 1156214 1156231 1156821 1156826) (-736 "MTSCAT.spad" 1154248 1154269 1156112 1156209) (-735 "MTHING.spad" 1153905 1153915 1154238 1154243) (-734 "MSYSCMD.spad" 1153339 1153347 1153895 1153900) (-733 "MSET.spad" 1151281 1151291 1153045 1153084) (-732 "MSETAGG.spad" 1151126 1151136 1151249 1151276) (-731 "MRING.spad" 1148097 1148109 1150834 1150901) (-730 "MRF2.spad" 1147665 1147679 1148087 1148092) (-729 "MRATFAC.spad" 1147211 1147228 1147655 1147660) (-728 "MPRFF.spad" 1145241 1145260 1147201 1147206) (-727 "MPOLY.spad" 1142676 1142691 1143035 1143162) (-726 "MPCPF.spad" 1141940 1141959 1142666 1142671) (-725 "MPC3.spad" 1141755 1141795 1141930 1141935) (-724 "MPC2.spad" 1141397 1141430 1141745 1141750) (-723 "MONOTOOL.spad" 1139732 1139749 1141387 1141392) (-722 "MONOID.spad" 1139051 1139059 1139722 1139727) (-721 "MONOID.spad" 1138368 1138378 1139041 1139046) (-720 "MONOGEN.spad" 1137114 1137127 1138228 1138363) (-719 "MONOGEN.spad" 1135882 1135897 1136998 1137003) (-718 "MONADWU.spad" 1133896 1133904 1135872 1135877) (-717 "MONADWU.spad" 1131908 1131918 1133886 1133891) (-716 "MONAD.spad" 1131052 1131060 1131898 1131903) (-715 "MONAD.spad" 1130194 1130204 1131042 1131047) (-714 "MOEBIUS.spad" 1128880 1128894 1130174 1130189) (-713 "MODULE.spad" 1128750 1128760 1128848 1128875) (-712 "MODULE.spad" 1128640 1128652 1128740 1128745) (-711 "MODRING.spad" 1127971 1128010 1128620 1128635) (-710 "MODOP.spad" 1126630 1126642 1127793 1127860) (-709 "MODMONOM.spad" 1126359 1126377 1126620 1126625) (-708 "MODMON.spad" 1123118 1123134 1123837 1123990) (-707 "MODFIELD.spad" 1122476 1122515 1123020 1123113) (-706 "MMLFORM.spad" 1121336 1121344 1122466 1122471) (-705 "MMAP.spad" 1121076 1121110 1121326 1121331) (-704 "MLO.spad" 1119503 1119513 1121032 1121071) (-703 "MLIFT.spad" 1118075 1118092 1119493 1119498) (-702 "MKUCFUNC.spad" 1117608 1117626 1118065 1118070) (-701 "MKRECORD.spad" 1117210 1117223 1117598 1117603) (-700 "MKFUNC.spad" 1116591 1116601 1117200 1117205) (-699 "MKFLCFN.spad" 1115547 1115557 1116581 1116586) (-698 "MKCHSET.spad" 1115412 1115422 1115537 1115542) (-697 "MKBCFUNC.spad" 1114897 1114915 1115402 1115407) (-696 "MINT.spad" 1114336 1114344 1114799 1114892) (-695 "MHROWRED.spad" 1112837 1112847 1114326 1114331) (-694 "MFLOAT.spad" 1111353 1111361 1112727 1112832) (-693 "MFINFACT.spad" 1110753 1110775 1111343 1111348) (-692 "MESH.spad" 1108485 1108493 1110743 1110748) (-691 "MDDFACT.spad" 1106678 1106688 1108475 1108480) (-690 "MDAGG.spad" 1105965 1105975 1106658 1106673) (-689 "MCMPLX.spad" 1101939 1101947 1102553 1102754) (-688 "MCDEN.spad" 1101147 1101159 1101929 1101934) (-687 "MCALCFN.spad" 1098249 1098275 1101137 1101142) (-686 "MAYBE.spad" 1097533 1097544 1098239 1098244) (-685 "MATSTOR.spad" 1094809 1094819 1097523 1097528) (-684 "MATRIX.spad" 1093513 1093523 1093997 1094024) (-683 "MATLIN.spad" 1090839 1090863 1093397 1093402) (-682 "MATCAT.spad" 1082424 1082446 1090807 1090834) (-681 "MATCAT.spad" 1073881 1073905 1082266 1082271) (-680 "MATCAT2.spad" 1073149 1073197 1073871 1073876) (-679 "MAPPKG3.spad" 1072048 1072062 1073139 1073144) (-678 "MAPPKG2.spad" 1071382 1071394 1072038 1072043) (-677 "MAPPKG1.spad" 1070200 1070210 1071372 1071377) (-676 "MAPPAST.spad" 1069513 1069521 1070190 1070195) (-675 "MAPHACK3.spad" 1069321 1069335 1069503 1069508) (-674 "MAPHACK2.spad" 1069086 1069098 1069311 1069316) (-673 "MAPHACK1.spad" 1068716 1068726 1069076 1069081) (-672 "MAGMA.spad" 1066506 1066523 1068706 1068711) (-671 "MACROAST.spad" 1066085 1066093 1066496 1066501) (-670 "M3D.spad" 1063781 1063791 1065463 1065468) (-669 "LZSTAGG.spad" 1061009 1061019 1063771 1063776) (-668 "LZSTAGG.spad" 1058235 1058247 1060999 1061004) (-667 "LWORD.spad" 1054940 1054957 1058225 1058230) (-666 "LSTAST.spad" 1054724 1054732 1054930 1054935) (-665 "LSQM.spad" 1052950 1052964 1053348 1053399) (-664 "LSPP.spad" 1052483 1052500 1052940 1052945) (-663 "LSMP.spad" 1051323 1051351 1052473 1052478) (-662 "LSMP1.spad" 1049127 1049141 1051313 1051318) (-661 "LSAGG.spad" 1048796 1048806 1049095 1049122) (-660 "LSAGG.spad" 1048485 1048497 1048786 1048791) (-659 "LPOLY.spad" 1047439 1047458 1048341 1048410) (-658 "LPEFRAC.spad" 1046696 1046706 1047429 1047434) (-657 "LO.spad" 1046097 1046111 1046630 1046657) (-656 "LOGIC.spad" 1045699 1045707 1046087 1046092) (-655 "LOGIC.spad" 1045299 1045309 1045689 1045694) (-654 "LODOOPS.spad" 1044217 1044229 1045289 1045294) (-653 "LODO.spad" 1043601 1043617 1043897 1043936) (-652 "LODOF.spad" 1042645 1042662 1043558 1043563) (-651 "LODOCAT.spad" 1041303 1041313 1042601 1042640) (-650 "LODOCAT.spad" 1039959 1039971 1041259 1041264) (-649 "LODO2.spad" 1039232 1039244 1039639 1039678) (-648 "LODO1.spad" 1038632 1038642 1038912 1038951) (-647 "LODEEF.spad" 1037404 1037422 1038622 1038627) (-646 "LNAGG.spad" 1033206 1033216 1037394 1037399) (-645 "LNAGG.spad" 1028972 1028984 1033162 1033167) (-644 "LMOPS.spad" 1025708 1025725 1028962 1028967) (-643 "LMODULE.spad" 1025350 1025360 1025698 1025703) (-642 "LMDICT.spad" 1024633 1024643 1024901 1024928) (-641 "LITERAL.spad" 1024539 1024550 1024623 1024628) (-640 "LIST.spad" 1022257 1022267 1023686 1023713) (-639 "LIST3.spad" 1021548 1021562 1022247 1022252) (-638 "LIST2.spad" 1020188 1020200 1021538 1021543) (-637 "LIST2MAP.spad" 1017065 1017077 1020178 1020183) (-636 "LINEXP.spad" 1016497 1016507 1017045 1017060) (-635 "LINDEP.spad" 1015274 1015286 1016409 1016414) (-634 "LIMITRF.spad" 1013188 1013198 1015264 1015269) (-633 "LIMITPS.spad" 1012071 1012084 1013178 1013183) (-632 "LIE.spad" 1010085 1010097 1011361 1011506) (-631 "LIECAT.spad" 1009561 1009571 1010011 1010080) (-630 "LIECAT.spad" 1009065 1009077 1009517 1009522) (-629 "LIB.spad" 1007113 1007121 1007724 1007739) (-628 "LGROBP.spad" 1004466 1004485 1007103 1007108) (-627 "LF.spad" 1003385 1003401 1004456 1004461) (-626 "LFCAT.spad" 1002404 1002412 1003375 1003380) (-625 "LEXTRIPK.spad" 997907 997922 1002394 1002399) (-624 "LEXP.spad" 995910 995937 997887 997902) (-623 "LETAST.spad" 995609 995617 995900 995905) (-622 "LEADCDET.spad" 993993 994010 995599 995604) (-621 "LAZM3PK.spad" 992697 992719 993983 993988) (-620 "LAUPOL.spad" 991386 991399 992290 992359) (-619 "LAPLACE.spad" 990959 990975 991376 991381) (-618 "LA.spad" 990399 990413 990881 990920) (-617 "LALG.spad" 990175 990185 990379 990394) (-616 "LALG.spad" 989959 989971 990165 990170) (-615 "KVTFROM.spad" 989694 989704 989949 989954) (-614 "KTVLOGIC.spad" 989117 989125 989684 989689) (-613 "KRCFROM.spad" 988855 988865 989107 989112) (-612 "KOVACIC.spad" 987568 987585 988845 988850) (-611 "KONVERT.spad" 987290 987300 987558 987563) (-610 "KOERCE.spad" 987027 987037 987280 987285) (-609 "KERNEL.spad" 985562 985572 986811 986816) (-608 "KERNEL2.spad" 985265 985277 985552 985557) (-607 "KDAGG.spad" 984368 984390 985245 985260) (-606 "KDAGG.spad" 983479 983503 984358 984363) (-605 "KAFILE.spad" 982442 982458 982677 982704) (-604 "JORDAN.spad" 980269 980281 981732 981877) (-603 "JOINAST.spad" 979963 979971 980259 980264) (-602 "JAVACODE.spad" 979829 979837 979953 979958) (-601 "IXAGG.spad" 977952 977976 979819 979824) (-600 "IXAGG.spad" 975930 975956 977799 977804) (-599 "IVECTOR.spad" 974701 974716 974856 974883) (-598 "ITUPLE.spad" 973846 973856 974691 974696) (-597 "ITRIGMNP.spad" 972657 972676 973836 973841) (-596 "ITFUN3.spad" 972151 972165 972647 972652) (-595 "ITFUN2.spad" 971881 971893 972141 972146) (-594 "ITAYLOR.spad" 969673 969688 971717 971842) (-593 "ISUPS.spad" 962084 962099 968647 968744) (-592 "ISUMP.spad" 961581 961597 962074 962079) (-591 "ISTRING.spad" 960584 960597 960750 960777) (-590 "ISAST.spad" 960303 960311 960574 960579) (-589 "IRURPK.spad" 959016 959035 960293 960298) (-588 "IRSN.spad" 956976 956984 959006 959011) (-587 "IRRF2F.spad" 955451 955461 956932 956937) (-586 "IRREDFFX.spad" 955052 955063 955441 955446) (-585 "IROOT.spad" 953383 953393 955042 955047) (-584 "IR.spad" 951172 951186 953238 953265) (-583 "IR2.spad" 950192 950208 951162 951167) (-582 "IR2F.spad" 949392 949408 950182 950187) (-581 "IPRNTPK.spad" 949152 949160 949382 949387) (-580 "IPF.spad" 948717 948729 948957 949050) (-579 "IPADIC.spad" 948478 948504 948643 948712) (-578 "IP4ADDR.spad" 948035 948043 948468 948473) (-577 "IOMODE.spad" 947656 947664 948025 948030) (-576 "IOBFILE.spad" 947017 947025 947646 947651) (-575 "IOBCON.spad" 946882 946890 947007 947012) (-574 "INVLAPLA.spad" 946527 946543 946872 946877) (-573 "INTTR.spad" 939773 939790 946517 946522) (-572 "INTTOOLS.spad" 937484 937500 939347 939352) (-571 "INTSLPE.spad" 936790 936798 937474 937479) (-570 "INTRVL.spad" 936356 936366 936704 936785) (-569 "INTRF.spad" 934720 934734 936346 936351) (-568 "INTRET.spad" 934152 934162 934710 934715) (-567 "INTRAT.spad" 932827 932844 934142 934147) (-566 "INTPM.spad" 931190 931206 932470 932475) (-565 "INTPAF.spad" 928958 928976 931122 931127) (-564 "INTPACK.spad" 919268 919276 928948 928953) (-563 "INT.spad" 918629 918637 919122 919263) (-562 "INTHERTR.spad" 917895 917912 918619 918624) (-561 "INTHERAL.spad" 917561 917585 917885 917890) (-560 "INTHEORY.spad" 913974 913982 917551 917556) (-559 "INTG0.spad" 907437 907455 913906 913911) (-558 "INTFTBL.spad" 901466 901474 907427 907432) (-557 "INTFACT.spad" 900525 900535 901456 901461) (-556 "INTEF.spad" 898840 898856 900515 900520) (-555 "INTDOM.spad" 897455 897463 898766 898835) (-554 "INTDOM.spad" 896132 896142 897445 897450) (-553 "INTCAT.spad" 894385 894395 896046 896127) (-552 "INTBIT.spad" 893888 893896 894375 894380) (-551 "INTALG.spad" 893070 893097 893878 893883) (-550 "INTAF.spad" 892562 892578 893060 893065) (-549 "INTABL.spad" 891080 891111 891243 891270) (-548 "INT8.spad" 890960 890968 891070 891075) (-547 "INT32.spad" 890839 890847 890950 890955) (-546 "INT16.spad" 890718 890726 890829 890834) (-545 "INS.spad" 888185 888193 890620 890713) (-544 "INS.spad" 885738 885748 888175 888180) (-543 "INPSIGN.spad" 885172 885185 885728 885733) (-542 "INPRODPF.spad" 884238 884257 885162 885167) (-541 "INPRODFF.spad" 883296 883320 884228 884233) (-540 "INNMFACT.spad" 882267 882284 883286 883291) (-539 "INMODGCD.spad" 881751 881781 882257 882262) (-538 "INFSP.spad" 880036 880058 881741 881746) (-537 "INFPROD0.spad" 879086 879105 880026 880031) (-536 "INFORM.spad" 876247 876255 879076 879081) (-535 "INFORM1.spad" 875872 875882 876237 876242) (-534 "INFINITY.spad" 875424 875432 875862 875867) (-533 "INETCLTS.spad" 875401 875409 875414 875419) (-532 "INEP.spad" 873933 873955 875391 875396) (-531 "INDE.spad" 873662 873679 873923 873928) (-530 "INCRMAPS.spad" 873083 873093 873652 873657) (-529 "INBFILE.spad" 872155 872163 873073 873078) (-528 "INBFF.spad" 867925 867936 872145 872150) (-527 "INBCON.spad" 866213 866221 867915 867920) (-526 "INBCON.spad" 864499 864509 866203 866208) (-525 "INAST.spad" 864164 864172 864489 864494) (-524 "IMPTAST.spad" 863872 863880 864154 864159) (-523 "IMATRIX.spad" 862817 862843 863329 863356) (-522 "IMATQF.spad" 861911 861955 862773 862778) (-521 "IMATLIN.spad" 860516 860540 861867 861872) (-520 "ILIST.spad" 859172 859187 859699 859726) (-519 "IIARRAY2.spad" 858560 858598 858779 858806) (-518 "IFF.spad" 857970 857986 858241 858334) (-517 "IFAST.spad" 857584 857592 857960 857965) (-516 "IFARRAY.spad" 855071 855086 856767 856794) (-515 "IFAMON.spad" 854933 854950 855027 855032) (-514 "IEVALAB.spad" 854322 854334 854923 854928) (-513 "IEVALAB.spad" 853709 853723 854312 854317) (-512 "IDPO.spad" 853507 853519 853699 853704) (-511 "IDPOAMS.spad" 853263 853275 853497 853502) (-510 "IDPOAM.spad" 852983 852995 853253 853258) (-509 "IDPC.spad" 851917 851929 852973 852978) (-508 "IDPAM.spad" 851662 851674 851907 851912) (-507 "IDPAG.spad" 851409 851421 851652 851657) (-506 "IDENT.spad" 851181 851189 851399 851404) (-505 "IDECOMP.spad" 848418 848436 851171 851176) (-504 "IDEAL.spad" 843341 843380 848353 848358) (-503 "ICDEN.spad" 842492 842508 843331 843336) (-502 "ICARD.spad" 841681 841689 842482 842487) (-501 "IBPTOOLS.spad" 840274 840291 841671 841676) (-500 "IBITS.spad" 839473 839486 839910 839937) (-499 "IBATOOL.spad" 836348 836367 839463 839468) (-498 "IBACHIN.spad" 834835 834850 836338 836343) (-497 "IARRAY2.spad" 833823 833849 834442 834469) (-496 "IARRAY1.spad" 832868 832883 833006 833033) (-495 "IAN.spad" 831081 831089 832684 832777) (-494 "IALGFACT.spad" 830682 830715 831071 831076) (-493 "HYPCAT.spad" 830106 830114 830672 830677) (-492 "HYPCAT.spad" 829528 829538 830096 830101) (-491 "HOSTNAME.spad" 829336 829344 829518 829523) (-490 "HOMOTOP.spad" 829079 829089 829326 829331) (-489 "HOAGG.spad" 826347 826357 829069 829074) (-488 "HOAGG.spad" 823390 823402 826114 826119) (-487 "HEXADEC.spad" 821492 821500 821857 821950) (-486 "HEUGCD.spad" 820507 820518 821482 821487) (-485 "HELLFDIV.spad" 820097 820121 820497 820502) (-484 "HEAP.spad" 819489 819499 819704 819731) (-483 "HEADAST.spad" 819020 819028 819479 819484) (-482 "HDP.spad" 808863 808879 809240 809371) (-481 "HDMP.spad" 806039 806054 806657 806784) (-480 "HB.spad" 804276 804284 806029 806034) (-479 "HASHTBL.spad" 802746 802777 802957 802984) (-478 "HASAST.spad" 802462 802470 802736 802741) (-477 "HACKPI.spad" 801945 801953 802364 802457) (-476 "GTSET.spad" 800884 800900 801591 801618) (-475 "GSTBL.spad" 799403 799438 799577 799592) (-474 "GSERIES.spad" 796570 796597 797535 797684) (-473 "GROUP.spad" 795839 795847 796550 796565) (-472 "GROUP.spad" 795116 795126 795829 795834) (-471 "GROEBSOL.spad" 793604 793625 795106 795111) (-470 "GRMOD.spad" 792175 792187 793594 793599) (-469 "GRMOD.spad" 790744 790758 792165 792170) (-468 "GRIMAGE.spad" 783349 783357 790734 790739) (-467 "GRDEF.spad" 781728 781736 783339 783344) (-466 "GRAY.spad" 780187 780195 781718 781723) (-465 "GRALG.spad" 779234 779246 780177 780182) (-464 "GRALG.spad" 778279 778293 779224 779229) (-463 "GPOLSET.spad" 777733 777756 777961 777988) (-462 "GOSPER.spad" 776998 777016 777723 777728) (-461 "GMODPOL.spad" 776136 776163 776966 776993) (-460 "GHENSEL.spad" 775205 775219 776126 776131) (-459 "GENUPS.spad" 771306 771319 775195 775200) (-458 "GENUFACT.spad" 770883 770893 771296 771301) (-457 "GENPGCD.spad" 770467 770484 770873 770878) (-456 "GENMFACT.spad" 769919 769938 770457 770462) (-455 "GENEEZ.spad" 767858 767871 769909 769914) (-454 "GDMP.spad" 764876 764893 765652 765779) (-453 "GCNAALG.spad" 758771 758798 764670 764737) (-452 "GCDDOM.spad" 757943 757951 758697 758766) (-451 "GCDDOM.spad" 757177 757187 757933 757938) (-450 "GB.spad" 754695 754733 757133 757138) (-449 "GBINTERN.spad" 750715 750753 754685 754690) (-448 "GBF.spad" 746472 746510 750705 750710) (-447 "GBEUCLID.spad" 744346 744384 746462 746467) (-446 "GAUSSFAC.spad" 743643 743651 744336 744341) (-445 "GALUTIL.spad" 741965 741975 743599 743604) (-444 "GALPOLYU.spad" 740411 740424 741955 741960) (-443 "GALFACTU.spad" 738576 738595 740401 740406) (-442 "GALFACT.spad" 728709 728720 738566 738571) (-441 "FVFUN.spad" 725732 725740 728699 728704) (-440 "FVC.spad" 724784 724792 725722 725727) (-439 "FUNDESC.spad" 724462 724470 724774 724779) (-438 "FUNCTION.spad" 724311 724323 724452 724457) (-437 "FT.spad" 722604 722612 724301 724306) (-436 "FTEM.spad" 721767 721775 722594 722599) (-435 "FSUPFACT.spad" 720667 720686 721703 721708) (-434 "FST.spad" 718753 718761 720657 720662) (-433 "FSRED.spad" 718231 718247 718743 718748) (-432 "FSPRMELT.spad" 717055 717071 718188 718193) (-431 "FSPECF.spad" 715132 715148 717045 717050) (-430 "FS.spad" 709194 709204 714907 715127) (-429 "FS.spad" 703034 703046 708749 708754) (-428 "FSINT.spad" 702692 702708 703024 703029) (-427 "FSERIES.spad" 701879 701891 702512 702611) (-426 "FSCINT.spad" 701192 701208 701869 701874) (-425 "FSAGG.spad" 700309 700319 701148 701187) (-424 "FSAGG.spad" 699388 699400 700229 700234) (-423 "FSAGG2.spad" 698087 698103 699378 699383) (-422 "FS2UPS.spad" 692570 692604 698077 698082) (-421 "FS2.spad" 692215 692231 692560 692565) (-420 "FS2EXPXP.spad" 691338 691361 692205 692210) (-419 "FRUTIL.spad" 690280 690290 691328 691333) (-418 "FR.spad" 683974 683984 689304 689373) (-417 "FRNAALG.spad" 679061 679071 683916 683969) (-416 "FRNAALG.spad" 674160 674172 679017 679022) (-415 "FRNAAF2.spad" 673614 673632 674150 674155) (-414 "FRMOD.spad" 673008 673038 673545 673550) (-413 "FRIDEAL.spad" 672203 672224 672988 673003) (-412 "FRIDEAL2.spad" 671805 671837 672193 672198) (-411 "FRETRCT.spad" 671316 671326 671795 671800) (-410 "FRETRCT.spad" 670693 670705 671174 671179) (-409 "FRAMALG.spad" 669021 669034 670649 670688) (-408 "FRAMALG.spad" 667381 667396 669011 669016) (-407 "FRAC.spad" 664480 664490 664883 665056) (-406 "FRAC2.spad" 664083 664095 664470 664475) (-405 "FR2.spad" 663417 663429 664073 664078) (-404 "FPS.spad" 660226 660234 663307 663412) (-403 "FPS.spad" 657063 657073 660146 660151) (-402 "FPC.spad" 656105 656113 656965 657058) (-401 "FPC.spad" 655233 655243 656095 656100) (-400 "FPATMAB.spad" 654995 655005 655223 655228) (-399 "FPARFRAC.spad" 653468 653485 654985 654990) (-398 "FORTRAN.spad" 651974 652017 653458 653463) (-397 "FORT.spad" 650903 650911 651964 651969) (-396 "FORTFN.spad" 648073 648081 650893 650898) (-395 "FORTCAT.spad" 647757 647765 648063 648068) (-394 "FORMULA.spad" 645221 645229 647747 647752) (-393 "FORMULA1.spad" 644700 644710 645211 645216) (-392 "FORDER.spad" 644391 644415 644690 644695) (-391 "FOP.spad" 643592 643600 644381 644386) (-390 "FNLA.spad" 643016 643038 643560 643587) (-389 "FNCAT.spad" 641603 641611 643006 643011) (-388 "FNAME.spad" 641495 641503 641593 641598) (-387 "FMTC.spad" 641293 641301 641421 641490) (-386 "FMONOID.spad" 638348 638358 641249 641254) (-385 "FM.spad" 638043 638055 638282 638309) (-384 "FMFUN.spad" 635073 635081 638033 638038) (-383 "FMC.spad" 634125 634133 635063 635068) (-382 "FMCAT.spad" 631779 631797 634093 634120) (-381 "FM1.spad" 631136 631148 631713 631740) (-380 "FLOATRP.spad" 628857 628871 631126 631131) (-379 "FLOAT.spad" 622145 622153 628723 628852) (-378 "FLOATCP.spad" 619562 619576 622135 622140) (-377 "FLINEXP.spad" 619274 619284 619542 619557) (-376 "FLINEXP.spad" 618940 618952 619210 619215) (-375 "FLASORT.spad" 618260 618272 618930 618935) (-374 "FLALG.spad" 615906 615925 618186 618255) (-373 "FLAGG.spad" 612924 612934 615886 615901) (-372 "FLAGG.spad" 609843 609855 612807 612812) (-371 "FLAGG2.spad" 608524 608540 609833 609838) (-370 "FINRALG.spad" 606553 606566 608480 608519) (-369 "FINRALG.spad" 604508 604523 606437 606442) (-368 "FINITE.spad" 603660 603668 604498 604503) (-367 "FINAALG.spad" 592641 592651 603602 603655) (-366 "FINAALG.spad" 581634 581646 592597 592602) (-365 "FILE.spad" 581217 581227 581624 581629) (-364 "FILECAT.spad" 579735 579752 581207 581212) (-363 "FIELD.spad" 579141 579149 579637 579730) (-362 "FIELD.spad" 578633 578643 579131 579136) (-361 "FGROUP.spad" 577242 577252 578613 578628) (-360 "FGLMICPK.spad" 576029 576044 577232 577237) (-359 "FFX.spad" 575404 575419 575745 575838) (-358 "FFSLPE.spad" 574893 574914 575394 575399) (-357 "FFPOLY.spad" 566145 566156 574883 574888) (-356 "FFPOLY2.spad" 565205 565222 566135 566140) (-355 "FFP.spad" 564602 564622 564921 565014) (-354 "FF.spad" 564050 564066 564283 564376) (-353 "FFNBX.spad" 562562 562582 563766 563859) (-352 "FFNBP.spad" 561075 561092 562278 562371) (-351 "FFNB.spad" 559540 559561 560756 560849) (-350 "FFINTBAS.spad" 556954 556973 559530 559535) (-349 "FFIELDC.spad" 554529 554537 556856 556949) (-348 "FFIELDC.spad" 552190 552200 554519 554524) (-347 "FFHOM.spad" 550938 550955 552180 552185) (-346 "FFF.spad" 548373 548384 550928 550933) (-345 "FFCGX.spad" 547220 547240 548089 548182) (-344 "FFCGP.spad" 546109 546129 546936 547029) (-343 "FFCG.spad" 544901 544922 545790 545883) (-342 "FFCAT.spad" 537928 537950 544740 544896) (-341 "FFCAT.spad" 531034 531058 537848 537853) (-340 "FFCAT2.spad" 530779 530819 531024 531029) (-339 "FEXPR.spad" 522488 522534 530535 530574) (-338 "FEVALAB.spad" 522194 522204 522478 522483) (-337 "FEVALAB.spad" 521685 521697 521971 521976) (-336 "FDIV.spad" 521127 521151 521675 521680) (-335 "FDIVCAT.spad" 519169 519193 521117 521122) (-334 "FDIVCAT.spad" 517209 517235 519159 519164) (-333 "FDIV2.spad" 516863 516903 517199 517204) (-332 "FCPAK1.spad" 515416 515424 516853 516858) (-331 "FCOMP.spad" 514795 514805 515406 515411) (-330 "FC.spad" 504710 504718 514785 514790) (-329 "FAXF.spad" 497645 497659 504612 504705) (-328 "FAXF.spad" 490632 490648 497601 497606) (-327 "FARRAY.spad" 488778 488788 489815 489842) (-326 "FAMR.spad" 486898 486910 488676 488773) (-325 "FAMR.spad" 485002 485016 486782 486787) (-324 "FAMONOID.spad" 484652 484662 484956 484961) (-323 "FAMONC.spad" 482874 482886 484642 484647) (-322 "FAGROUP.spad" 482480 482490 482770 482797) (-321 "FACUTIL.spad" 480676 480693 482470 482475) (-320 "FACTFUNC.spad" 479852 479862 480666 480671) (-319 "EXPUPXS.spad" 476685 476708 477984 478133) (-318 "EXPRTUBE.spad" 473913 473921 476675 476680) (-317 "EXPRODE.spad" 470785 470801 473903 473908) (-316 "EXPR.spad" 466060 466070 466774 467181) (-315 "EXPR2UPS.spad" 462152 462165 466050 466055) (-314 "EXPR2.spad" 461855 461867 462142 462147) (-313 "EXPEXPAN.spad" 458793 458818 459427 459520) (-312 "EXIT.spad" 458464 458472 458783 458788) (-311 "EXITAST.spad" 458200 458208 458454 458459) (-310 "EVALCYC.spad" 457658 457672 458190 458195) (-309 "EVALAB.spad" 457222 457232 457648 457653) (-308 "EVALAB.spad" 456784 456796 457212 457217) (-307 "EUCDOM.spad" 454326 454334 456710 456779) (-306 "EUCDOM.spad" 451930 451940 454316 454321) (-305 "ESTOOLS.spad" 443770 443778 451920 451925) (-304 "ESTOOLS2.spad" 443371 443385 443760 443765) (-303 "ESTOOLS1.spad" 443056 443067 443361 443366) (-302 "ES.spad" 435603 435611 443046 443051) (-301 "ES.spad" 428056 428066 435501 435506) (-300 "ESCONT.spad" 424829 424837 428046 428051) (-299 "ESCONT1.spad" 424578 424590 424819 424824) (-298 "ES2.spad" 424073 424089 424568 424573) (-297 "ES1.spad" 423639 423655 424063 424068) (-296 "ERROR.spad" 420960 420968 423629 423634) (-295 "EQTBL.spad" 419432 419454 419641 419668) (-294 "EQ.spad" 414306 414316 417105 417217) (-293 "EQ2.spad" 414022 414034 414296 414301) (-292 "EP.spad" 410336 410346 414012 414017) (-291 "ENV.spad" 409038 409046 410326 410331) (-290 "ENTIRER.spad" 408706 408714 408982 409033) (-289 "EMR.spad" 407907 407948 408632 408701) (-288 "ELTAGG.spad" 406147 406166 407897 407902) (-287 "ELTAGG.spad" 404351 404372 406103 406108) (-286 "ELTAB.spad" 403798 403816 404341 404346) (-285 "ELFUTS.spad" 403177 403196 403788 403793) (-284 "ELEMFUN.spad" 402866 402874 403167 403172) (-283 "ELEMFUN.spad" 402553 402563 402856 402861) (-282 "ELAGG.spad" 400496 400506 402533 402548) (-281 "ELAGG.spad" 398376 398388 400415 400420) (-280 "ELABEXPR.spad" 397307 397315 398366 398371) (-279 "EFUPXS.spad" 394083 394113 397263 397268) (-278 "EFULS.spad" 390919 390942 394039 394044) (-277 "EFSTRUC.spad" 388874 388890 390909 390914) (-276 "EF.spad" 383640 383656 388864 388869) (-275 "EAB.spad" 381916 381924 383630 383635) (-274 "E04UCFA.spad" 381452 381460 381906 381911) (-273 "E04NAFA.spad" 381029 381037 381442 381447) (-272 "E04MBFA.spad" 380609 380617 381019 381024) (-271 "E04JAFA.spad" 380145 380153 380599 380604) (-270 "E04GCFA.spad" 379681 379689 380135 380140) (-269 "E04FDFA.spad" 379217 379225 379671 379676) (-268 "E04DGFA.spad" 378753 378761 379207 379212) (-267 "E04AGNT.spad" 374595 374603 378743 378748) (-266 "DVARCAT.spad" 371280 371290 374585 374590) (-265 "DVARCAT.spad" 367963 367975 371270 371275) (-264 "DSMP.spad" 365394 365408 365699 365826) (-263 "DROPT.spad" 359339 359347 365384 365389) (-262 "DROPT1.spad" 359002 359012 359329 359334) (-261 "DROPT0.spad" 353829 353837 358992 358997) (-260 "DRAWPT.spad" 351984 351992 353819 353824) (-259 "DRAW.spad" 344584 344597 351974 351979) (-258 "DRAWHACK.spad" 343892 343902 344574 344579) (-257 "DRAWCX.spad" 341334 341342 343882 343887) (-256 "DRAWCURV.spad" 340871 340886 341324 341329) (-255 "DRAWCFUN.spad" 330043 330051 340861 340866) (-254 "DQAGG.spad" 328211 328221 330011 330038) (-253 "DPOLCAT.spad" 323552 323568 328079 328206) (-252 "DPOLCAT.spad" 318979 318997 323508 323513) (-251 "DPMO.spad" 311205 311221 311343 311644) (-250 "DPMM.spad" 303444 303462 303569 303870) (-249 "DOMCTOR.spad" 303336 303344 303434 303439) (-248 "DOMAIN.spad" 302467 302475 303326 303331) (-247 "DMP.spad" 299689 299704 300261 300388) (-246 "DLP.spad" 299037 299047 299679 299684) (-245 "DLIST.spad" 297616 297626 298220 298247) (-244 "DLAGG.spad" 296027 296037 297606 297611) (-243 "DIVRING.spad" 295569 295577 295971 296022) (-242 "DIVRING.spad" 295155 295165 295559 295564) (-241 "DISPLAY.spad" 293335 293343 295145 295150) (-240 "DIRPROD.spad" 282915 282931 283555 283686) (-239 "DIRPROD2.spad" 281723 281741 282905 282910) (-238 "DIRPCAT.spad" 280665 280681 281587 281718) (-237 "DIRPCAT.spad" 279336 279354 280260 280265) (-236 "DIOSP.spad" 278161 278169 279326 279331) (-235 "DIOPS.spad" 277145 277155 278141 278156) (-234 "DIOPS.spad" 276103 276115 277101 277106) (-233 "DIFRING.spad" 275395 275403 276083 276098) (-232 "DIFRING.spad" 274695 274705 275385 275390) (-231 "DIFEXT.spad" 273854 273864 274675 274690) (-230 "DIFEXT.spad" 272930 272942 273753 273758) (-229 "DIAGG.spad" 272560 272570 272910 272925) (-228 "DIAGG.spad" 272198 272210 272550 272555) (-227 "DHMATRIX.spad" 270502 270512 271655 271682) (-226 "DFSFUN.spad" 263910 263918 270492 270497) (-225 "DFLOAT.spad" 260631 260639 263800 263905) (-224 "DFINTTLS.spad" 258840 258856 260621 260626) (-223 "DERHAM.spad" 256750 256782 258820 258835) (-222 "DEQUEUE.spad" 256068 256078 256357 256384) (-221 "DEGRED.spad" 255683 255697 256058 256063) (-220 "DEFINTRF.spad" 253208 253218 255673 255678) (-219 "DEFINTEF.spad" 251704 251720 253198 253203) (-218 "DEFAST.spad" 251072 251080 251694 251699) (-217 "DECIMAL.spad" 249178 249186 249539 249632) (-216 "DDFACT.spad" 246977 246994 249168 249173) (-215 "DBLRESP.spad" 246575 246599 246967 246972) (-214 "DBASE.spad" 245229 245239 246565 246570) (-213 "DATAARY.spad" 244691 244704 245219 245224) (-212 "D03FAFA.spad" 244519 244527 244681 244686) (-211 "D03EEFA.spad" 244339 244347 244509 244514) (-210 "D03AGNT.spad" 243419 243427 244329 244334) (-209 "D02EJFA.spad" 242881 242889 243409 243414) (-208 "D02CJFA.spad" 242359 242367 242871 242876) (-207 "D02BHFA.spad" 241849 241857 242349 242354) (-206 "D02BBFA.spad" 241339 241347 241839 241844) (-205 "D02AGNT.spad" 236143 236151 241329 241334) (-204 "D01WGTS.spad" 234462 234470 236133 236138) (-203 "D01TRNS.spad" 234439 234447 234452 234457) (-202 "D01GBFA.spad" 233961 233969 234429 234434) (-201 "D01FCFA.spad" 233483 233491 233951 233956) (-200 "D01ASFA.spad" 232951 232959 233473 233478) (-199 "D01AQFA.spad" 232397 232405 232941 232946) (-198 "D01APFA.spad" 231821 231829 232387 232392) (-197 "D01ANFA.spad" 231315 231323 231811 231816) (-196 "D01AMFA.spad" 230825 230833 231305 231310) (-195 "D01ALFA.spad" 230365 230373 230815 230820) (-194 "D01AKFA.spad" 229891 229899 230355 230360) (-193 "D01AJFA.spad" 229414 229422 229881 229886) (-192 "D01AGNT.spad" 225473 225481 229404 229409) (-191 "CYCLOTOM.spad" 224979 224987 225463 225468) (-190 "CYCLES.spad" 221811 221819 224969 224974) (-189 "CVMP.spad" 221228 221238 221801 221806) (-188 "CTRIGMNP.spad" 219718 219734 221218 221223) (-187 "CTOR.spad" 219413 219421 219708 219713) (-186 "CTORKIND.spad" 219016 219024 219403 219408) (-185 "CTORCAT.spad" 218265 218273 219006 219011) (-184 "CTORCAT.spad" 217512 217522 218255 218260) (-183 "CTORCALL.spad" 217092 217100 217502 217507) (-182 "CSTTOOLS.spad" 216335 216348 217082 217087) (-181 "CRFP.spad" 210039 210052 216325 216330) (-180 "CRCEAST.spad" 209759 209767 210029 210034) (-179 "CRAPACK.spad" 208802 208812 209749 209754) (-178 "CPMATCH.spad" 208302 208317 208727 208732) (-177 "CPIMA.spad" 208007 208026 208292 208297) (-176 "COORDSYS.spad" 202900 202910 207997 208002) (-175 "CONTOUR.spad" 202302 202310 202890 202895) (-174 "CONTFRAC.spad" 197914 197924 202204 202297) (-173 "CONDUIT.spad" 197672 197680 197904 197909) (-172 "COMRING.spad" 197346 197354 197610 197667) (-171 "COMPPROP.spad" 196860 196868 197336 197341) (-170 "COMPLPAT.spad" 196627 196642 196850 196855) (-169 "COMPLEX.spad" 190651 190661 190895 191156) (-168 "COMPLEX2.spad" 190364 190376 190641 190646) (-167 "COMPFACT.spad" 189966 189980 190354 190359) (-166 "COMPCAT.spad" 188034 188044 189700 189961) (-165 "COMPCAT.spad" 185795 185807 187463 187468) (-164 "COMMUPC.spad" 185541 185559 185785 185790) (-163 "COMMONOP.spad" 185074 185082 185531 185536) (-162 "COMM.spad" 184883 184891 185064 185069) (-161 "COMMAAST.spad" 184646 184654 184873 184878) (-160 "COMBOPC.spad" 183551 183559 184636 184641) (-159 "COMBINAT.spad" 182296 182306 183541 183546) (-158 "COMBF.spad" 179664 179680 182286 182291) (-157 "COLOR.spad" 178501 178509 179654 179659) (-156 "COLONAST.spad" 178167 178175 178491 178496) (-155 "CMPLXRT.spad" 177876 177893 178157 178162) (-154 "CLLCTAST.spad" 177538 177546 177866 177871) (-153 "CLIP.spad" 173630 173638 177528 177533) (-152 "CLIF.spad" 172269 172285 173586 173625) (-151 "CLAGG.spad" 168754 168764 172259 172264) (-150 "CLAGG.spad" 165110 165122 168617 168622) (-149 "CINTSLPE.spad" 164435 164448 165100 165105) (-148 "CHVAR.spad" 162513 162535 164425 164430) (-147 "CHARZ.spad" 162428 162436 162493 162508) (-146 "CHARPOL.spad" 161936 161946 162418 162423) (-145 "CHARNZ.spad" 161689 161697 161916 161931) (-144 "CHAR.spad" 159557 159565 161679 161684) (-143 "CFCAT.spad" 158873 158881 159547 159552) (-142 "CDEN.spad" 158031 158045 158863 158868) (-141 "CCLASS.spad" 156180 156188 157442 157481) (-140 "CATEGORY.spad" 155270 155278 156170 156175) (-139 "CATCTOR.spad" 155161 155169 155260 155265) (-138 "CATAST.spad" 154788 154796 155151 155156) (-137 "CASEAST.spad" 154502 154510 154778 154783) (-136 "CARTEN.spad" 149605 149629 154492 154497) (-135 "CARTEN2.spad" 148991 149018 149595 149600) (-134 "CARD.spad" 146280 146288 148965 148986) (-133 "CAPSLAST.spad" 146054 146062 146270 146275) (-132 "CACHSET.spad" 145676 145684 146044 146049) (-131 "CABMON.spad" 145229 145237 145666 145671) (-130 "BYTEORD.spad" 144904 144912 145219 145224) (-129 "BYTE.spad" 144325 144333 144894 144899) (-128 "BYTEBUF.spad" 142157 142165 143494 143521) (-127 "BTREE.spad" 141226 141236 141764 141791) (-126 "BTOURN.spad" 140229 140239 140833 140860) (-125 "BTCAT.spad" 139617 139627 140197 140224) (-124 "BTCAT.spad" 139025 139037 139607 139612) (-123 "BTAGG.spad" 138147 138155 138993 139020) (-122 "BTAGG.spad" 137289 137299 138137 138142) (-121 "BSTREE.spad" 136024 136034 136896 136923) (-120 "BRILL.spad" 134219 134230 136014 136019) (-119 "BRAGG.spad" 133143 133153 134209 134214) (-118 "BRAGG.spad" 132031 132043 133099 133104) (-117 "BPADICRT.spad" 130012 130024 130267 130360) (-116 "BPADIC.spad" 129676 129688 129938 130007) (-115 "BOUNDZRO.spad" 129332 129349 129666 129671) (-114 "BOP.spad" 124796 124804 129322 129327) (-113 "BOP1.spad" 122182 122192 124752 124757) (-112 "BOOLEAN.spad" 121506 121514 122172 122177) (-111 "BMODULE.spad" 121218 121230 121474 121501) (-110 "BITS.spad" 120637 120645 120854 120881) (-109 "BINDING.spad" 120056 120064 120627 120632) (-108 "BINARY.spad" 118167 118175 118523 118616) (-107 "BGAGG.spad" 117364 117374 118147 118162) (-106 "BGAGG.spad" 116569 116581 117354 117359) (-105 "BFUNCT.spad" 116133 116141 116549 116564) (-104 "BEZOUT.spad" 115267 115294 116083 116088) (-103 "BBTREE.spad" 112086 112096 114874 114901) (-102 "BASTYPE.spad" 111758 111766 112076 112081) (-101 "BASTYPE.spad" 111428 111438 111748 111753) (-100 "BALFACT.spad" 110867 110880 111418 111423) (-99 "AUTOMOR.spad" 110314 110323 110847 110862) (-98 "ATTREG.spad" 107033 107040 110066 110309) (-97 "ATTRBUT.spad" 103056 103063 107013 107028) (-96 "ATTRAST.spad" 102773 102780 103046 103051) (-95 "ATRIG.spad" 102243 102250 102763 102768) (-94 "ATRIG.spad" 101711 101720 102233 102238) (-93 "ASTCAT.spad" 101615 101622 101701 101706) (-92 "ASTCAT.spad" 101517 101526 101605 101610) (-91 "ASTACK.spad" 100850 100859 101124 101151) (-90 "ASSOCEQ.spad" 99650 99661 100806 100811) (-89 "ASP9.spad" 98731 98744 99640 99645) (-88 "ASP8.spad" 97774 97787 98721 98726) (-87 "ASP80.spad" 97096 97109 97764 97769) (-86 "ASP7.spad" 96256 96269 97086 97091) (-85 "ASP78.spad" 95707 95720 96246 96251) (-84 "ASP77.spad" 95076 95089 95697 95702) (-83 "ASP74.spad" 94168 94181 95066 95071) (-82 "ASP73.spad" 93439 93452 94158 94163) (-81 "ASP6.spad" 92306 92319 93429 93434) (-80 "ASP55.spad" 90815 90828 92296 92301) (-79 "ASP50.spad" 88632 88645 90805 90810) (-78 "ASP4.spad" 87927 87940 88622 88627) (-77 "ASP49.spad" 86926 86939 87917 87922) (-76 "ASP42.spad" 85333 85372 86916 86921) (-75 "ASP41.spad" 83912 83951 85323 85328) (-74 "ASP35.spad" 82900 82913 83902 83907) (-73 "ASP34.spad" 82201 82214 82890 82895) (-72 "ASP33.spad" 81761 81774 82191 82196) (-71 "ASP31.spad" 80901 80914 81751 81756) (-70 "ASP30.spad" 79793 79806 80891 80896) (-69 "ASP29.spad" 79259 79272 79783 79788) (-68 "ASP28.spad" 70532 70545 79249 79254) (-67 "ASP27.spad" 69429 69442 70522 70527) (-66 "ASP24.spad" 68516 68529 69419 69424) (-65 "ASP20.spad" 67980 67993 68506 68511) (-64 "ASP1.spad" 67361 67374 67970 67975) (-63 "ASP19.spad" 62047 62060 67351 67356) (-62 "ASP12.spad" 61461 61474 62037 62042) (-61 "ASP10.spad" 60732 60745 61451 61456) (-60 "ARRAY2.spad" 60092 60101 60339 60366) (-59 "ARRAY1.spad" 58927 58936 59275 59302) (-58 "ARRAY12.spad" 57596 57607 58917 58922) (-57 "ARR2CAT.spad" 53258 53279 57564 57591) (-56 "ARR2CAT.spad" 48940 48963 53248 53253) (-55 "ARITY.spad" 48508 48515 48930 48935) (-54 "APPRULE.spad" 47752 47774 48498 48503) (-53 "APPLYORE.spad" 47367 47380 47742 47747) (-52 "ANY.spad" 45709 45716 47357 47362) (-51 "ANY1.spad" 44780 44789 45699 45704) (-50 "ANTISYM.spad" 43219 43235 44760 44775) (-49 "ANON.spad" 42916 42923 43209 43214) (-48 "AN.spad" 41217 41224 42732 42825) (-47 "AMR.spad" 39396 39407 41115 41212) (-46 "AMR.spad" 37412 37425 39133 39138) (-45 "ALIST.spad" 34824 34845 35174 35201) (-44 "ALGSC.spad" 33947 33973 34696 34749) (-43 "ALGPKG.spad" 29656 29667 33903 33908) (-42 "ALGMFACT.spad" 28845 28859 29646 29651) (-41 "ALGMANIP.spad" 26265 26280 28642 28647) (-40 "ALGFF.spad" 24580 24607 24797 24953) (-39 "ALGFACT.spad" 23701 23711 24570 24575) (-38 "ALGEBRA.spad" 23534 23543 23657 23696) (-37 "ALGEBRA.spad" 23399 23410 23524 23529) (-36 "ALAGG.spad" 22909 22930 23367 23394) (-35 "AHYP.spad" 22290 22297 22899 22904) (-34 "AGG.spad" 20599 20606 22280 22285) (-33 "AGG.spad" 18872 18881 20555 20560) (-32 "AF.spad" 17297 17312 18807 18812) (-31 "ADDAST.spad" 16975 16982 17287 17292) (-30 "ACPLOT.spad" 15546 15553 16965 16970) (-29 "ACFS.spad" 13297 13306 15448 15541) (-28 "ACFS.spad" 11134 11145 13287 13292) (-27 "ACF.spad" 7736 7743 11036 11129) (-26 "ACF.spad" 4424 4433 7726 7731) (-25 "ABELSG.spad" 3965 3972 4414 4419) (-24 "ABELSG.spad" 3504 3513 3955 3960) (-23 "ABELMON.spad" 3047 3054 3494 3499) (-22 "ABELMON.spad" 2588 2597 3037 3042) (-21 "ABELGRP.spad" 2160 2167 2578 2583) (-20 "ABELGRP.spad" 1730 1739 2150 2155) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index 9c3dd555..f7e35655 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,996 +1,997 @@ -(162070 . 3442698070) -(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) ((#0=(-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) #0#) |has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))))) -((((-562)) . T) (($) -4037 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-554))) (((-406 (-562))) -4037 (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-1033 (-406 (-562))))) ((|#1|) . T)) +(162091 . 3443021577) +(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((#0=(-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) #0#) |has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))))) +((((-563)) . T) (($) -4032 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-555))) (((-407 (-563))) -4032 (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-1034 (-407 (-563))))) ((|#1|) . T)) (((|#2| |#2|) . T)) -((((-562)) . T)) -((($ $) -4037 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) ((|#2| |#2|) . T) ((#0=(-406 (-562)) #0#) |has| |#2| (-38 (-406 (-562))))) +((((-563)) . T)) +((($ $) -4032 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) ((|#2| |#2|) . T) ((#0=(-407 (-563)) #0#) |has| |#2| (-38 (-407 (-563))))) ((($) . T)) (((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +((($) . T) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) (((|#2|) . T)) -((($) -4037 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) ((|#2|) . T) (((-406 (-562))) |has| |#2| (-38 (-406 (-562))))) -(|has| |#1| (-904)) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((($) . T) (((-406 (-562))) . T)) +((($) -4032 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) ((|#2|) . T) (((-407 (-563))) |has| |#2| (-38 (-407 (-563))))) +(|has| |#1| (-905)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((($) . T) (((-407 (-563))) . T)) ((($) . T)) ((($) . T)) (((|#2| |#2|) . T)) -((((-143)) . T)) -((((-535)) . T) (((-1150)) . T) (((-224)) . T) (((-378)) . T) (((-887 (-378))) . T)) -(((|#1|) . T)) -((((-224)) . T) (((-857)) . T)) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -(((|#1|) . T)) -(-4037 (|has| |#1| (-21)) (|has| |#1| (-843))) -((($ $) . T) ((#0=(-406 (-562)) #0#) -4037 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1| |#1|) . T)) -(-4037 (|has| |#1| (-815)) (|has| |#1| (-845))) -((((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) (((-562)) |has| |#1| (-1033 (-562))) ((|#1|) . T)) -((((-857)) . T)) -((((-857)) . T)) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-554))) -(|has| |#1| (-843)) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +((((-144)) . T)) +((((-536)) . T) (((-1151)) . T) (((-225)) . T) (((-379)) . T) (((-888 (-379))) . T)) +(((|#1|) . T)) +((((-225)) . T) (((-858)) . T)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(((|#1|) . T)) +(-4032 (|has| |#1| (-21)) (|has| |#1| (-844))) +((($ $) . T) ((#0=(-407 (-563)) #0#) -4032 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1| |#1|) . T)) +(-4032 (|has| |#1| (-816)) (|has| |#1| (-846))) +((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-563)) |has| |#1| (-1034 (-563))) ((|#1|) . T)) +((((-858)) . T)) +((((-858)) . T)) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-555))) +(|has| |#1| (-844)) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (((|#1| |#2| |#3|) . T)) -((((-1173)) . T)) -((((-562)) . T) (((-865 |#1|)) . T) (($) . T) (((-406 (-562))) . T)) -((($) . T) (((-406 (-562))) -4037 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T)) -((((-857)) . T)) -((((-1173)) . T)) +((((-1174)) . T)) +((((-563)) . T) (((-866 |#1|)) . T) (($) . T) (((-407 (-563))) . T)) +((($) . T) (((-407 (-563))) -4032 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) +((((-858)) . T)) +((((-1174)) . T)) (((|#4|) . T)) -((((-857)) . T)) -((((-857)) |has| |#1| (-1092))) -((((-857)) . T) (((-1173)) . T)) +((((-858)) . T)) +((((-858)) |has| |#1| (-1093))) +((((-858)) . T) (((-1174)) . T)) (((|#1|) . T) ((|#2|) . T)) -((((-1173)) . T)) -(((|#1|) . T) (((-562)) |has| |#1| (-1033 (-562))) (((-406 (-562))) |has| |#1| (-1033 (-406 (-562))))) -(-4037 (|has| |#2| (-171)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) -(-4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) -(((|#2| (-481 (-3492 |#1|) (-766))) . T)) -(((|#1| (-530 (-1168))) . T)) -(((#0=(-865 |#1|) #0#) . T) ((#1=(-406 (-562)) #1#) . T) (($ $) . T)) -((((-1150)) . T) (((-857)) . T)) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -(|has| |#4| (-367)) -(|has| |#3| (-367)) -(((|#1|) . T)) -((((-505)) . T)) -((((-865 |#1|)) . T) (((-406 (-562))) . T) (($) . T)) -((((-857)) . T)) -((((-857)) . T)) +((((-1174)) . T)) +(((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563))))) +(-4032 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) +(-4032 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) +(((|#2| (-482 (-3608 |#1|) (-767))) . T)) +(((|#1| (-531 (-1169))) . T)) +(((#0=(-866 |#1|) #0#) . T) ((#1=(-407 (-563)) #1#) . T) (($ $) . T)) +((((-1151)) . T) (((-858)) . T)) +((((-858)) . T)) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +(|has| |#4| (-368)) +(|has| |#3| (-368)) +(((|#1|) . T)) +((((-506)) . T)) +((((-866 |#1|)) . T) (((-407 (-563))) . T) (($) . T)) +((((-858)) . T)) +((((-858)) . T)) (((|#1| |#2|) . T)) ((($) . T)) -(|has| |#1| (-144)) -(|has| |#1| (-146)) -(|has| |#1| (-554)) -((((-562)) . T) (((-406 (-562))) -4037 (|has| |#2| (-38 (-406 (-562)))) (|has| |#2| (-1033 (-406 (-562))))) ((|#2|) . T) (($) -4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) (((-859 |#1|)) . T)) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-554))) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-554))) -((((-2 (|:| -2464 |#1|) (|:| -1300 |#2|))) . T)) -((($) . T)) -((((-562)) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562))))) ((|#1|) . T) (($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) (((-1168)) . T)) -((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-845)) (|has| |#1| (-1092)))) -((((-535)) |has| |#1| (-610 (-535)))) -((((-1168)) . T)) -((((-562)) . T) (($) . T)) -((($) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) . T)) -((($) . T)) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -((((-857)) . T)) -((((-857)) . T)) -((((-406 (-562))) . T) (($) . T)) -((((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (((-1248 |#1| |#2| |#3|)) |has| |#1| (-362)) (($) . T) ((|#1|) . T)) -((((-857)) . T)) -(((|#1|) . T)) -((((-857)) . T)) -((((-857)) . T)) -(((|#1|) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) . T)) +(|has| |#1| (-145)) +(|has| |#1| (-147)) +(|has| |#1| (-555)) +((((-563)) . T) (((-407 (-563))) -4032 (|has| |#2| (-38 (-407 (-563)))) (|has| |#2| (-1034 (-407 (-563))))) ((|#2|) . T) (($) -4032 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) (((-860 |#1|)) . T)) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-555))) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-555))) +((((-2 (|:| -2555 |#1|) (|:| -1654 |#2|))) . T)) +((($) . T)) +((((-563)) . T) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))) ((|#1|) . T) (($) -4032 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) (((-1169)) . T)) +((((-858)) -4032 (|has| |#1| (-610 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1093)))) +((((-536)) |has| |#1| (-611 (-536)))) +((((-1169)) . T)) +((((-563)) . T) (($) . T)) +((($) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) . T)) +((($) . T)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +((((-858)) . T)) +((((-858)) . T)) +((((-407 (-563))) . T) (($) . T)) +((((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (((-1249 |#1| |#2| |#3|)) |has| |#1| (-363)) (($) . T) ((|#1|) . T)) +((((-858)) . T)) +(((|#1|) . T)) +((((-858)) . T)) +((((-858)) . T)) +(((|#1|) . T) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) . T)) (((|#1| |#2|) . T)) -((((-857)) . T)) +((((-858)) . T)) (((|#1|) . T)) -(((#0=(-406 (-562)) #0#) |has| |#2| (-38 (-406 (-562)))) ((|#2| |#2|) . T) (($ $) -4037 (|has| |#2| (-171)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904)))) +(((#0=(-407 (-563)) #0#) |has| |#2| (-38 (-407 (-563)))) ((|#2| |#2|) . T) (($ $) -4032 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))) (((|#1|) . T)) -(((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) (($) . T)) -((((-406 (-562))) |has| |#2| (-38 (-406 (-562)))) ((|#2|) |has| |#2| (-171)) (($) -4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904)))) -((($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -(((|#1|) . T) (((-406 (-562))) . T) (($) . T)) -(((|#1|) . T) (((-406 (-562))) . T) (($) . T)) -(((|#1|) . T) (((-406 (-562))) . T) (($) . T)) -((((-406 (-562))) . T) (($) . T) (((-562)) . T)) -(((#0=(-406 (-562)) #0#) |has| |#1| (-38 (-406 (-562)))) ((|#1| |#1|) . T) (($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904)))) +(((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) (($) . T)) +((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) |has| |#2| (-172)) (($) -4032 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))) +((($) -4032 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +(((|#1|) . T) (((-407 (-563))) . T) (($) . T)) +(((|#1|) . T) (((-407 (-563))) . T) (($) . T)) +(((|#1|) . T) (((-407 (-563))) . T) (($) . T)) +((((-407 (-563))) . T) (($) . T) (((-563)) . T)) +(((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563)))) ((|#1| |#1|) . T) (($ $) -4032 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))) (((|#2|) . T)) -((((-406 (-562))) |has| |#2| (-38 (-406 (-562)))) ((|#2|) . T) (($) -4037 (|has| |#2| (-171)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904)))) +((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) . T) (($) -4032 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))) ((($ $) . T)) -(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) -((((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) . T) (($) -4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904)))) +(-4032 (|has| |#1| (-846)) (|has| |#1| (-1093))) +((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) . T) (($) -4032 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))) ((($) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-367)) +(|has| |#1| (-368)) (((|#1|) . T)) (((|#1|) . T)) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -((((-857)) . T)) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +((((-858)) . T)) (((|#1| |#2|) . T)) -(-4037 (|has| |#1| (-21)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-895 (-1168))) (|has| |#1| (-1044))) -(-4037 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-895 (-1168))) (|has| |#1| (-1044))) +(-4032 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045))) +(-4032 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045))) (((|#1| |#1|) . T)) -((((-857)) . T)) -(|has| |#1| (-554)) -(((|#2| |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|))) (((-1168) |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-513 (-1168) |#2|)))) -((((-406 |#2|)) . T) (((-406 (-562))) . T) (($) . T)) -(-4037 (|has| |#1| (-21)) (|has| |#1| (-843))) -((($ $) . T) ((#0=(-406 (-562)) #0#) . T)) -(-4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) -(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) -(|has| |#1| (-1092)) -(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) -(|has| |#1| (-1092)) -(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) -(|has| |#1| (-843)) -((($) . T) (((-406 (-562))) . T)) -(((|#1|) . T)) -((((-562) (-129)) . T)) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-348))) +((((-858)) . T)) +(|has| |#1| (-555)) +(((|#2| |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))) (((-1169) |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-514 (-1169) |#2|)))) +((((-407 |#2|)) . T) (((-407 (-563))) . T) (($) . T)) +(-4032 (|has| |#1| (-21)) (|has| |#1| (-844))) +((($ $) . T) ((#0=(-407 (-563)) #0#) . T)) +(-4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) +(-4032 (|has| |#1| (-846)) (|has| |#1| (-1093))) +(|has| |#1| (-1093)) +(-4032 (|has| |#1| (-846)) (|has| |#1| (-1093))) +(|has| |#1| (-1093)) +(-4032 (|has| |#1| (-846)) (|has| |#1| (-1093))) +(|has| |#1| (-844)) +((($) . T) (((-407 (-563))) . T)) +(((|#1|) . T)) +((((-563) (-129)) . T)) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-349))) ((((-129)) . T)) -((((-1173)) . T)) -(-4037 (|has| |#4| (-788)) (|has| |#4| (-843))) -(-4037 (|has| |#4| (-788)) (|has| |#4| (-843))) -(-4037 (|has| |#3| (-788)) (|has| |#3| (-843))) -(-4037 (|has| |#3| (-788)) (|has| |#3| (-843))) +((((-1174)) . T)) +(-4032 (|has| |#4| (-789)) (|has| |#4| (-844))) +(-4032 (|has| |#4| (-789)) (|has| |#4| (-844))) +(-4032 (|has| |#3| (-789)) (|has| |#3| (-844))) +(-4032 (|has| |#3| (-789)) (|has| |#3| (-844))) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-1092)) -(|has| |#1| (-1092)) -(((|#1| (-1168) (-1080 (-1168)) (-530 (-1080 (-1168)))) . T)) -((((-562) |#1|) . T)) -((((-562)) . T)) -((((-562)) . T)) -((((-905 |#1|)) . T)) -(((|#1| (-530 |#2|)) . T)) -((((-562)) . T)) -((((-562)) . T)) -(((|#1|) . T)) -(-4037 (|has| |#2| (-171)) (|has| |#2| (-721)) (|has| |#2| (-843)) (|has| |#2| (-1044))) -(((|#1| (-766)) . T)) -(|has| |#2| (-788)) -(-4037 (|has| |#2| (-788)) (|has| |#2| (-843))) -(|has| |#2| (-843)) +(|has| |#1| (-1093)) +(|has| |#1| (-1093)) +(((|#1| (-1169) (-1081 (-1169)) (-531 (-1081 (-1169)))) . T)) +((((-563) |#1|) . T)) +((((-563)) . T)) +((((-563)) . T)) +((((-906 |#1|)) . T)) +(((|#1| (-531 |#2|)) . T)) +((((-563)) . T)) +((((-563)) . T)) +(((|#1|) . T)) +(-4032 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +(((|#1| (-767)) . T)) +(|has| |#2| (-789)) +(-4032 (|has| |#2| (-789)) (|has| |#2| (-844))) +(|has| |#2| (-844)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-1150) |#1|) . T)) -((((-562) (-129)) . T)) -(((|#1|) . T)) -((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) -(((|#3| (-766)) . T)) -(|has| |#1| (-146)) -(|has| |#1| (-144)) -(-4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) -(-4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) -(|has| |#1| (-1092)) -((((-406 (-562))) . T) (((-562)) . T)) -((((-562)) . T) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-1033 (-406 (-562))))) -((((-562)) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562))))) ((|#1|) . T) (($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#2|) . T)) -((((-1168) |#2|) |has| |#2| (-513 (-1168) |#2|)) ((|#2| |#2|) |has| |#2| (-308 |#2|))) -((((-406 (-562))) . T) (((-562)) . T)) -((((-562)) . T) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) (((-1074)) . T) ((|#1|) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562)))))) +((((-1151) |#1|) . T)) +((((-563) (-129)) . T)) +(((|#1|) . T)) +((((-858)) -4032 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) +(((|#3| (-767)) . T)) +(|has| |#1| (-147)) +(|has| |#1| (-145)) +(-4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) +(-4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) +(|has| |#1| (-1093)) +((((-407 (-563))) . T) (((-563)) . T)) +((((-563)) . T) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563))))) +((((-563)) . T) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))) ((|#1|) . T) (($) -4032 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#2|) . T)) +((((-1169) |#2|) |has| |#2| (-514 (-1169) |#2|)) ((|#2| |#2|) |has| |#2| (-309 |#2|))) +((((-407 (-563))) . T) (((-563)) . T)) +((((-563)) . T) (($) -4032 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) (((-1075)) . T) ((|#1|) . T) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563)))))) (((|#1|) . T) (($) . T)) -((((-562)) . T)) -((((-562)) . T)) -((($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171))) -((((-562)) . T)) -((((-562)) . T)) -(((#0=(-693) (-1164 #0#)) . T)) -((((-406 (-562))) . T) (($) . T)) -(((|#1|) . T) (((-406 (-562))) . T) (($) . T)) -((((-562) |#1|) . T)) -(((|#1|) . T)) -(|has| |#2| (-362)) -((($) . T) (((-562)) . T) (((-406 (-562))) . T)) +((((-563)) . T)) +((((-563)) . T)) +((($) -4032 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) +((((-563)) . T)) +((((-563)) . T)) +(((#0=(-694) (-1165 #0#)) . T)) +((((-407 (-563))) . T) (($) . T)) +(((|#1|) . T) (((-407 (-563))) . T) (($) . T)) +((((-563) |#1|) . T)) +(((|#1|) . T)) +(|has| |#2| (-363)) +((($) . T) (((-563)) . T) (((-407 (-563))) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-857)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -((((-1150) |#1|) . T)) +((((-858)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +((((-1151) |#1|) . T)) (((|#3| |#3|) . T)) -((((-857)) . T)) -((((-857)) . T)) +((((-858)) . T)) +((((-858)) . T)) (((|#1| |#1|) . T)) -(((#0=(-406 (-562)) #0#) |has| |#1| (-38 (-406 (-562)))) ((|#1| |#1|) . T) (($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904)))) -((($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1| |#1|) . T) ((#0=(-406 (-562)) #0#) |has| |#1| (-38 (-406 (-562))))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) . T) (($) -4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904)))) -((($) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -((($) -4037 (|has| |#2| (-171)) (|has| |#2| (-843)) (|has| |#2| (-1044))) ((|#2|) -4037 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1044)))) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-562) |#1|) . T)) -((((-857)) . T)) -((((-168 (-224))) |has| |#1| (-1017)) (((-168 (-378))) |has| |#1| (-1017)) (((-535)) |has| |#1| (-610 (-535))) (((-1164 |#1|)) . T) (((-887 (-562))) |has| |#1| (-610 (-887 (-562)))) (((-887 (-378))) |has| |#1| (-610 (-887 (-378))))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -(((|#1|) . T)) -(-4037 (|has| |#1| (-21)) (|has| |#1| (-843))) -(-4037 (|has| |#1| (-21)) (|has| |#1| (-843))) -((((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554))) ((|#2|) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171))) -(((|#1|) |has| |#1| (-171)) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554)))) -(|has| |#1| (-362)) -((((-857)) . T)) +(((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563)))) ((|#1| |#1|) . T) (($ $) -4032 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))) +((($ $) -4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563))))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) . T) (($) -4032 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))) +((($) -4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +((($) -4032 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) ((|#2|) -4032 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045)))) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-563) |#1|) . T)) +((((-858)) . T)) +((((-169 (-225))) |has| |#1| (-1018)) (((-169 (-379))) |has| |#1| (-1018)) (((-536)) |has| |#1| (-611 (-536))) (((-1165 |#1|)) . T) (((-888 (-563))) |has| |#1| (-611 (-888 (-563)))) (((-888 (-379))) |has| |#1| (-611 (-888 (-379))))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(((|#1|) . T)) +(-4032 (|has| |#1| (-21)) (|has| |#1| (-844))) +(-4032 (|has| |#1| (-21)) (|has| |#1| (-844))) +((((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -4032 (|has| |#1| (-363)) (|has| |#1| (-555))) ((|#2|) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -4032 (|has| |#1| (-363)) (|has| |#1| (-555)))) +(|has| |#1| (-363)) +((((-858)) . T)) ((((-129)) . T)) -(-12 (|has| |#4| (-232)) (|has| |#4| (-1044))) -(-12 (|has| |#3| (-232)) (|has| |#3| (-1044))) -(-4037 (|has| |#4| (-171)) (|has| |#4| (-843)) (|has| |#4| (-1044))) -(-4037 (|has| |#3| (-171)) (|has| |#3| (-843)) (|has| |#3| (-1044))) -((((-857)) . T) (((-1173)) . T)) -((((-857)) . T) (((-1173)) . T)) -((((-1173)) . T)) -((((-1173)) . T)) -((((-857)) . T)) -(((|#1|) . T)) -((((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) (((-562)) |has| |#1| (-1033 (-562))) ((|#1|) . T)) -(((|#1|) . T) (((-562)) |has| |#1| (-635 (-562)))) -(((|#2|) . T) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -(((|#1|) . T) (((-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) . T)) -(|has| |#1| (-554)) -((((-562)) -4037 (|has| |#4| (-171)) (|has| |#4| (-843)) (-12 (|has| |#4| (-1033 (-562))) (|has| |#4| (-1092))) (|has| |#4| (-1044))) ((|#4|) -4037 (|has| |#4| (-171)) (|has| |#4| (-1092))) (((-406 (-562))) -12 (|has| |#4| (-1033 (-406 (-562)))) (|has| |#4| (-1092)))) -((((-562)) -4037 (|has| |#3| (-171)) (|has| |#3| (-843)) (-12 (|has| |#3| (-1033 (-562))) (|has| |#3| (-1092))) (|has| |#3| (-1044))) ((|#3|) -4037 (|has| |#3| (-171)) (|has| |#3| (-1092))) (((-406 (-562))) -12 (|has| |#3| (-1033 (-406 (-562)))) (|has| |#3| (-1092)))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -(|has| |#1| (-554)) -(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) -(((|#1|) . T)) -(|has| |#1| (-554)) -(|has| |#1| (-554)) -(|has| |#1| (-554)) -((((-693)) . T)) -(((|#1|) . T)) -(-12 (|has| |#1| (-997)) (|has| |#1| (-1192))) -(((|#2|) . T) (($) . T) (((-406 (-562))) . T)) -(-12 (|has| |#1| (-1092)) (|has| |#2| (-1092))) -((($) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) . T)) -((((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (((-1166 |#1| |#2| |#3|)) |has| |#1| (-362)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) . T)) -(((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) (($) . T)) -(((|#4| |#4|) -4037 (|has| |#4| (-171)) (|has| |#4| (-362)) (|has| |#4| (-1044))) (($ $) |has| |#4| (-171))) -(((|#3| |#3|) -4037 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1044))) (($ $) |has| |#3| (-171))) -(((|#1|) . T)) -(((|#2|) . T)) -((((-535)) |has| |#2| (-610 (-535))) (((-887 (-378))) |has| |#2| (-610 (-887 (-378)))) (((-887 (-562))) |has| |#2| (-610 (-887 (-562))))) -((((-857)) . T)) +(-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) +(-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) +(-4032 (|has| |#4| (-172)) (|has| |#4| (-844)) (|has| |#4| (-1045))) +(-4032 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045))) +((((-858)) . T) (((-1174)) . T)) +((((-858)) . T) (((-1174)) . T)) +((((-1174)) . T)) +((((-1174)) . T)) +((((-858)) . T)) +(((|#1|) . T)) +((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-563)) |has| |#1| (-1034 (-563))) ((|#1|) . T)) +(((|#1|) . T) (((-563)) |has| |#1| (-636 (-563)))) +(((|#2|) . T) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) . T)) +(|has| |#1| (-555)) +((((-563)) -4032 (|has| |#4| (-172)) (|has| |#4| (-844)) (-12 (|has| |#4| (-1034 (-563))) (|has| |#4| (-1093))) (|has| |#4| (-1045))) ((|#4|) -4032 (|has| |#4| (-172)) (|has| |#4| (-1093))) (((-407 (-563))) -12 (|has| |#4| (-1034 (-407 (-563)))) (|has| |#4| (-1093)))) +((((-563)) -4032 (|has| |#3| (-172)) (|has| |#3| (-844)) (-12 (|has| |#3| (-1034 (-563))) (|has| |#3| (-1093))) (|has| |#3| (-1045))) ((|#3|) -4032 (|has| |#3| (-172)) (|has| |#3| (-1093))) (((-407 (-563))) -12 (|has| |#3| (-1034 (-407 (-563)))) (|has| |#3| (-1093)))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(|has| |#1| (-555)) +(-4032 (|has| |#1| (-846)) (|has| |#1| (-1093))) +(((|#1|) . T)) +(|has| |#1| (-555)) +(|has| |#1| (-555)) +(|has| |#1| (-555)) +((((-694)) . T)) +(((|#1|) . T)) +(-12 (|has| |#1| (-998)) (|has| |#1| (-1193))) +(((|#2|) . T) (($) . T) (((-407 (-563))) . T)) +(-12 (|has| |#1| (-1093)) (|has| |#2| (-1093))) +((($) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) . T)) +((((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-363)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) . T)) +(((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) (($) . T)) +(((|#4| |#4|) -4032 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1045))) (($ $) |has| |#4| (-172))) +(((|#3| |#3|) -4032 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045))) (($ $) |has| |#3| (-172))) +(((|#1|) . T)) +(((|#2|) . T)) +((((-536)) |has| |#2| (-611 (-536))) (((-888 (-379))) |has| |#2| (-611 (-888 (-379)))) (((-888 (-563))) |has| |#2| (-611 (-888 (-563))))) +((((-858)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-2 (|:| -2464 |#1|) (|:| -1300 |#2|))) . T) (((-857)) . T)) -((((-535)) |has| |#1| (-610 (-535))) (((-887 (-378))) |has| |#1| (-610 (-887 (-378)))) (((-887 (-562))) |has| |#1| (-610 (-887 (-562))))) -(((|#4|) -4037 (|has| |#4| (-171)) (|has| |#4| (-362)) (|has| |#4| (-1044))) (($) |has| |#4| (-171))) -(((|#3|) -4037 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1044))) (($) |has| |#3| (-171))) -((((-2 (|:| -2464 |#1|) (|:| -1300 |#2|))) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-535)) . T) (((-562)) . T) (((-887 (-562))) . T) (((-378)) . T) (((-224)) . T)) -((((-639 |#1|)) . T)) -(((|#1|) . T) (((-562)) |has| |#1| (-1033 (-562))) (((-406 (-562))) |has| |#1| (-1033 (-406 (-562))))) -((($) . T) (((-406 (-562))) |has| |#2| (-38 (-406 (-562)))) ((|#2|) . T)) -((((-406 $) (-406 $)) |has| |#2| (-554)) (($ $) . T) ((|#2| |#2|) . T)) -((((-2 (|:| -2319 (-1150)) (|:| -2693 (-52)))) . T)) -(((|#1|) . T)) -(|has| |#2| (-904)) -((((-1150) (-52)) . T)) -((((-562)) |has| #0=(-406 |#2|) (-635 (-562))) ((#0#) . T)) -((((-535)) . T) (((-224)) . T) (((-378)) . T) (((-887 (-378))) . T)) -((((-857)) . T)) -(-4037 (|has| |#1| (-21)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-895 (-1168))) (|has| |#1| (-1044))) -(((|#1|) |has| |#1| (-171))) -(((|#1| $) |has| |#1| (-285 |#1| |#1|))) -((((-857)) . T)) -((((-857)) . T)) -((((-406 (-562))) . T) (($) . T)) -((((-406 (-562))) . T) (($) . T)) -((((-857)) . T)) -(|has| |#1| (-845)) -(((|#2|) . T) (((-562)) . T) (((-814 |#1|)) . T)) -(|has| |#1| (-1092)) -(((|#1|) . T)) -((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-845)) (|has| |#1| (-1092)))) -((((-535)) |has| |#1| (-610 (-535)))) -((((-857)) . T) (((-1173)) . T)) -((((-406 (-562))) |has| |#2| (-38 (-406 (-562)))) ((|#2|) |has| |#2| (-171)) (($) -4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904)))) -((((-1173)) . T)) -((($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -((($) -4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -(|has| |#1| (-232)) -((($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -(((|#1| (-530 (-813 (-1168)))) . T)) -(((|#1| (-966)) . T)) -(((#0=(-865 |#1|) $) |has| #0# (-285 #0# #0#))) -((((-562) |#4|) . T)) -((((-562) |#3|) . T)) +((((-2 (|:| -2555 |#1|) (|:| -1654 |#2|))) . T) (((-858)) . T)) +((((-536)) |has| |#1| (-611 (-536))) (((-888 (-379))) |has| |#1| (-611 (-888 (-379)))) (((-888 (-563))) |has| |#1| (-611 (-888 (-563))))) +(((|#4|) -4032 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1045))) (($) |has| |#4| (-172))) +(((|#3|) -4032 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045))) (($) |has| |#3| (-172))) +((((-2 (|:| -2555 |#1|) (|:| -1654 |#2|))) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-536)) . T) (((-563)) . T) (((-888 (-563))) . T) (((-379)) . T) (((-225)) . T)) +((((-640 |#1|)) . T)) +(((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563))))) +((($) . T) (((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) . T)) +((((-407 $) (-407 $)) |has| |#2| (-555)) (($ $) . T) ((|#2| |#2|) . T)) +((((-2 (|:| -2387 (-1151)) (|:| -2557 (-52)))) . T)) +(((|#1|) . T)) +(|has| |#2| (-905)) +((((-1151) (-52)) . T)) +((((-563)) |has| #0=(-407 |#2|) (-636 (-563))) ((#0#) . T)) +((((-536)) . T) (((-225)) . T) (((-379)) . T) (((-888 (-379))) . T)) +((((-858)) . T)) +(-4032 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045))) +(((|#1|) |has| |#1| (-172))) +(((|#1| $) |has| |#1| (-286 |#1| |#1|))) +((((-858)) . T)) +((((-858)) . T)) +((((-407 (-563))) . T) (($) . T)) +((((-407 (-563))) . T) (($) . T)) +((((-858)) . T)) +(|has| |#1| (-846)) +(((|#2|) . T) (((-563)) . T) (((-815 |#1|)) . T)) +(|has| |#1| (-1093)) +(((|#1|) . T)) +((((-858)) -4032 (|has| |#1| (-610 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1093)))) +((((-536)) |has| |#1| (-611 (-536)))) +((((-858)) . T) (((-1174)) . T)) +((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) |has| |#2| (-172)) (($) -4032 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))) +((((-1174)) . T)) +((($) -4032 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +((($) -4032 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +(|has| |#1| (-233)) +((($) -4032 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +(((|#1| (-531 (-814 (-1169)))) . T)) +(((|#1| (-967)) . T)) +(((#0=(-866 |#1|) $) |has| #0# (-286 #0# #0#))) +((((-563) |#4|) . T)) +((((-563) |#3|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) -(|has| |#1| (-1143)) -((((-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) . T)) -(|has| (-1242 |#1| |#2| |#3| |#4|) (-144)) -(|has| (-1242 |#1| |#2| |#3| |#4|) (-146)) -(|has| |#1| (-144)) -(|has| |#1| (-146)) -(((|#1|) |has| |#1| (-171))) -((((-1168)) -12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) -(|has| |#1| (-1092)) -((((-1150) |#1|) . T)) -(((|#2|) . T)) -(((|#1|) . T)) -(((|#2|) . T) (((-562)) |has| |#2| (-635 (-562)))) -((((-1117 |#1| (-1168))) . T) (((-562)) . T) (((-813 (-1168))) . T) (($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562))))) (((-1168)) . T)) -(|has| |#2| (-367)) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(|has| |#1| (-1144)) +((((-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) . T)) +(|has| (-1243 |#1| |#2| |#3| |#4|) (-145)) +(|has| (-1243 |#1| |#2| |#3| |#4|) (-147)) +(|has| |#1| (-145)) +(|has| |#1| (-147)) +(((|#1|) |has| |#1| (-172))) +((((-1169)) -12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) +(|has| |#1| (-1093)) +((((-1151) |#1|) . T)) +(((|#2|) . T)) +(((|#1|) . T)) +(((|#2|) . T) (((-563)) |has| |#2| (-636 (-563)))) +((((-1118 |#1| (-1169))) . T) (((-563)) . T) (((-814 (-1169))) . T) (($) -4032 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))) (((-1169)) . T)) +(|has| |#2| (-368)) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) ((($) . T) ((|#1|) . T)) -(((|#2|) |has| |#2| (-1044))) -((((-857)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) ((#0=(-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) #0#) |has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))))) +(((|#2|) |has| |#2| (-1045))) +((((-858)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((#0=(-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) #0#) |has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))))) (((|#1|) . T)) -((((-1256 (-338 (-4064) (-4064 (QUOTE X)) (-693)))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((#0=(-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) #0#) |has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-308 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))))) -((((-857)) . T)) -((((-562) |#1|) . T)) -((((-535)) -12 (|has| |#1| (-610 (-535))) (|has| |#2| (-610 (-535)))) (((-887 (-378))) -12 (|has| |#1| (-610 (-887 (-378)))) (|has| |#2| (-610 (-887 (-378))))) (((-887 (-562))) -12 (|has| |#1| (-610 (-887 (-562)))) (|has| |#2| (-610 (-887 (-562)))))) +((((-1257 (-339 (-1707) (-1707 (QUOTE X)) (-694)))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((#0=(-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) #0#) |has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-309 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))))) +((((-858)) . T)) +((((-563) |#1|) . T)) +((((-536)) -12 (|has| |#1| (-611 (-536))) (|has| |#2| (-611 (-536)))) (((-888 (-379))) -12 (|has| |#1| (-611 (-888 (-379)))) (|has| |#2| (-611 (-888 (-379))))) (((-888 (-563))) -12 (|has| |#1| (-611 (-888 (-563)))) (|has| |#2| (-611 (-888 (-563)))))) ((($) . T)) -((((-857)) . T)) -((($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1| |#1|) . T) ((#0=(-406 (-562)) #0#) |has| |#1| (-38 (-406 (-562))))) -((((-857)) . T)) +((((-858)) . T)) +((($ $) -4032 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563))))) +((((-858)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((($) -4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -((((-857)) . T)) -((((-857)) . T)) -(|has| (-1241 |#2| |#3| |#4|) (-146)) -(|has| (-1241 |#2| |#3| |#4|) (-144)) -(((|#2|) |has| |#2| (-1092)) (((-562)) -12 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092))) (((-406 (-562))) -12 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) +((($) -4032 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +((((-858)) . T)) +((((-858)) . T)) +(|has| (-1242 |#2| |#3| |#4|) (-147)) +(|has| (-1242 |#2| |#3| |#4|) (-145)) +(((|#2|) |has| |#2| (-1093)) (((-563)) -12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) (((-407 (-563))) -12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) (((|#1|) . T)) -(|has| |#1| (-1092)) -((((-857)) . T)) +(|has| |#1| (-1093)) +((((-858)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-4037 (|has| |#1| (-21)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-895 (-1168))) (|has| |#1| (-1044))) +(-4032 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045))) (((|#1|) . T)) -((((-562) |#1|) . T)) -(((|#2|) |has| |#2| (-171))) -(((|#1|) |has| |#1| (-171))) +((((-563) |#1|) . T)) +(((|#2|) |has| |#2| (-172))) +(((|#1|) |has| |#1| (-172))) (((|#1|) . T)) -(-4037 (|has| |#1| (-21)) (|has| |#1| (-843))) -((((-857)) |has| |#1| (-1092))) -(-4037 (|has| |#1| (-472)) (|has| |#1| (-721)) (|has| |#1| (-895 (-1168))) (|has| |#1| (-1044)) (|has| |#1| (-1104))) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-348))) -((((-905 |#1|)) . T)) -((((-406 |#2|) |#3|) . T)) -(|has| |#1| (-15 * (|#1| (-562) |#1|))) -((((-406 (-562))) . T) (($) . T)) -(|has| |#1| (-845)) +(-4032 (|has| |#1| (-21)) (|has| |#1| (-844))) +((((-858)) |has| |#1| (-1093))) +(-4032 (|has| |#1| (-473)) (|has| |#1| (-722)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045)) (|has| |#1| (-1105))) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-349))) +((((-906 |#1|)) . T)) +((((-407 |#2|) |#3|) . T)) +(|has| |#1| (-15 * (|#1| (-563) |#1|))) +((((-407 (-563))) . T) (($) . T)) +(|has| |#1| (-846)) (((|#1|) . T) (($) . T)) -((((-406 (-562))) . T) (($) . T)) -((((-857)) . T)) -(((|#1|) . T)) -((((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554))) -(|has| |#1| (-362)) -(-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|)))) -(|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) -(|has| |#1| (-362)) -((((-562)) . T)) -(|has| |#1| (-15 * (|#1| (-766) |#1|))) -((((-1134 |#2| (-406 (-947 |#1|)))) . T) (((-406 (-947 |#1|))) . T)) -((($) . T)) -(((|#1|) |has| |#1| (-171)) (($) . T)) -(((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) (($) . T)) -(((|#1|) . T)) -((((-562) |#1|) . T)) -((((-857)) . T)) -(((|#2|) . T)) -(-4037 (|has| |#2| (-362)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) -((((-562)) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554))) -((($) |has| |#1| (-554)) (((-562)) . T)) -(-4037 (|has| |#2| (-788)) (|has| |#2| (-843))) -(-4037 (|has| |#2| (-788)) (|has| |#2| (-843))) -((((-1248 |#1| |#2| |#3|)) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-562)) . T) ((|#1|) |has| |#1| (-171))) -((((-1252 |#2|)) . T) (((-1248 |#1| |#2| |#3|)) . T) (((-1220 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (((-562)) . T) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554)))) -((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) (((-562)) . T)) -(((|#1|) . T)) -((((-1168)) -12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -(-12 (|has| |#1| (-362)) (|has| |#2| (-815))) -(-4037 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-554))) -(((#0=(-406 (-562)) #0#) |has| |#1| (-38 (-406 (-562)))) ((|#1| |#1|) . T) (($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-554)))) -((($ $) |has| |#1| (-554))) -(((#0=(-693) (-1164 #0#)) . T)) -((((-857)) . T) (((-1256 |#4|)) . T)) -((((-857)) . T) (((-1256 |#3|)) . T)) -((((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) . T) (($) -4037 (|has| |#1| (-171)) (|has| |#1| (-554)))) -((($) |has| |#1| (-554))) -((((-857)) . T)) -((($) . T)) -((($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((#0=(-406 (-562)) #0#) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) ((#1=(-1248 |#1| |#2| |#3|) #1#) |has| |#1| (-362)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((#0=(-406 (-562)) #0#) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362)))) -((($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-554))) ((|#1| |#1|) . T) ((#0=(-406 (-562)) #0#) |has| |#1| (-38 (-406 (-562))))) -((($) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (((-1248 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) . T)) -(((|#1|) . T) (($) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362)))) -(((|#3|) |has| |#3| (-1044))) -((($) -4037 (|has| |#1| (-171)) (|has| |#1| (-554))) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -(|has| |#1| (-1092)) -(((|#2| (-814 |#1|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-362)) -((((-406 $) (-406 $)) |has| |#1| (-554)) (($ $) . T) ((|#1| |#1|) . T)) -(((#0=(-1074) |#2|) . T) ((#0# $) . T) (($ $) . T)) -((((-857)) . T)) -((((-905 |#1|)) . T)) -((((-143)) . T)) -((((-143)) . T)) -(((|#3|) |has| |#3| (-1092)) (((-562)) -12 (|has| |#3| (-1033 (-562))) (|has| |#3| (-1092))) (((-406 (-562))) -12 (|has| |#3| (-1033 (-406 (-562)))) (|has| |#3| (-1092)))) -((((-857)) . T)) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -(((|#1|) . T)) -((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-845)) (|has| |#1| (-1092)))) -((((-535)) |has| |#1| (-610 (-535)))) -((((-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) . T)) -(|has| |#1| (-362)) -((((-1173)) . T)) -(-4037 (|has| |#1| (-21)) (|has| |#1| (-843))) -((((-1168) |#1|) |has| |#1| (-513 (-1168) |#1|)) ((|#1| |#1|) |has| |#1| (-308 |#1|))) -(|has| |#2| (-815)) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-843)) -(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) -((((-857)) . T)) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -((((-535)) |has| |#1| (-610 (-535)))) +((((-407 (-563))) . T) (($) . T)) +((((-858)) . T)) +(((|#1|) . T)) +((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-555))) +(|has| |#1| (-363)) +(-4032 (-12 (|has| (-1249 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|)))) +(|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) +(|has| |#1| (-363)) +((((-563)) . T)) +(|has| |#1| (-15 * (|#1| (-767) |#1|))) +((((-1135 |#2| (-407 (-948 |#1|)))) . T) (((-407 (-948 |#1|))) . T)) +((($) . T)) +(((|#1|) |has| |#1| (-172)) (($) . T)) +(((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) (($) . T)) +(((|#1|) . T)) +((((-563) |#1|) . T)) +((((-858)) . T)) +(((|#2|) . T)) +(-4032 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) +((((-563)) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-555))) +((($) |has| |#1| (-555)) (((-563)) . T)) +(-4032 (|has| |#2| (-789)) (|has| |#2| (-844))) +(-4032 (|has| |#2| (-789)) (|has| |#2| (-844))) +((((-1249 |#1| |#2| |#3|)) . T) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -4032 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-563)) . T) ((|#1|) |has| |#1| (-172))) +((((-1253 |#2|)) . T) (((-1249 |#1| |#2| |#3|)) . T) (((-1221 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (((-563)) . T) (($) -4032 (|has| |#1| (-363)) (|has| |#1| (-555)))) +((($) |has| |#1| (-555)) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) (((-563)) . T)) +(((|#1|) . T)) +((((-1169)) -12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(-12 (|has| |#1| (-363)) (|has| |#2| (-816))) +(-4032 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-555))) +(((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563)))) ((|#1| |#1|) . T) (($ $) -4032 (|has| |#1| (-172)) (|has| |#1| (-555)))) +((($ $) |has| |#1| (-555))) +(((#0=(-694) (-1165 #0#)) . T)) +((((-858)) . T) (((-1257 |#4|)) . T)) +((((-858)) . T) (((-1257 |#3|)) . T)) +((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) . T) (($) -4032 (|has| |#1| (-172)) (|has| |#1| (-555)))) +((($) |has| |#1| (-555))) +((((-858)) . T)) +((($) . T)) +((($ $) -4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) ((#0=(-407 (-563)) #0#) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((#1=(-1249 |#1| |#2| |#3|) #1#) |has| |#1| (-363)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) ((#0=(-407 (-563)) #0#) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363)))) +((($ $) -4032 (|has| |#1| (-172)) (|has| |#1| (-555))) ((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563))))) +((($) -4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (((-1249 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) . T)) +(((|#1|) . T) (($) -4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363)))) +(((|#3|) |has| |#3| (-1045))) +((($) -4032 (|has| |#1| (-172)) (|has| |#1| (-555))) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +(|has| |#1| (-1093)) +(((|#2| (-815 |#1|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-363)) +((((-407 $) (-407 $)) |has| |#1| (-555)) (($ $) . T) ((|#1| |#1|) . T)) +(((#0=(-1075) |#2|) . T) ((#0# $) . T) (($ $) . T)) +((((-858)) . T)) +((((-906 |#1|)) . T)) +((((-144)) . T)) +((((-144)) . T)) +(((|#3|) |has| |#3| (-1093)) (((-563)) -12 (|has| |#3| (-1034 (-563))) (|has| |#3| (-1093))) (((-407 (-563))) -12 (|has| |#3| (-1034 (-407 (-563)))) (|has| |#3| (-1093)))) +((((-858)) . T)) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +(((|#1|) . T)) +((((-858)) -4032 (|has| |#1| (-610 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1093)))) +((((-536)) |has| |#1| (-611 (-536)))) +((((-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) . T)) +(|has| |#1| (-363)) +((((-1174)) . T)) +(-4032 (|has| |#1| (-21)) (|has| |#1| (-844))) +((((-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|))) +(|has| |#2| (-816)) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-844)) +(-4032 (|has| |#1| (-846)) (|has| |#1| (-1093))) +((((-858)) . T)) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +((((-536)) |has| |#1| (-611 (-536)))) (((|#1| |#2|) . T)) -((((-1168)) -12 (|has| |#1| (-362)) (|has| |#1| (-895 (-1168))))) -((((-1150) |#1|) . T)) -(((|#1| |#2| |#3| (-530 |#3|)) . T)) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -((((-857)) . T)) -(((|#1|) . T)) -(-4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) -(|has| |#1| (-367)) -(-4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) -((((-562)) . T)) -((((-562)) . T)) -(((|#1|) . T) (((-562)) . T)) -(-4037 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) -((((-857)) . T)) -((((-857)) . T)) -(((|#1|) . T) (((-406 (-562))) . T) (((-562)) . T) (($) . T)) -((((-562)) . T) (($) . T) (((-406 (-562))) . T)) -(-12 (|has| |#2| (-232)) (|has| |#2| (-1044))) -((((-1168) #0=(-865 |#1|)) |has| #0# (-513 (-1168) #0#)) ((#0# #0#) |has| #0# (-308 #0#))) -(((|#1|) . T)) -((((-562) |#4|) . T)) -((((-562) |#3|) . T)) -(((|#1|) . T) (((-562)) |has| |#1| (-635 (-562)))) -(-4037 (|has| |#2| (-171)) (|has| |#2| (-843)) (|has| |#2| (-1044))) -((((-1242 |#1| |#2| |#3| |#4|)) . T)) -((((-406 (-562))) . T) (((-562)) . T)) -((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) +((((-1169)) -12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))))) +((((-1151) |#1|) . T)) +(((|#1| |#2| |#3| (-531 |#3|)) . T)) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +(|has| |#1| (-368)) +(|has| |#1| (-368)) +(|has| |#1| (-368)) +((((-858)) . T)) +(((|#1|) . T)) +(-4032 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) +(|has| |#1| (-368)) +(-4032 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) +((((-563)) . T)) +((((-563)) . T)) +(((|#1|) . T) (((-563)) . T)) +(-4032 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) +((((-858)) . T)) +((((-858)) . T)) +(((|#1|) . T) (((-407 (-563))) . T) (((-563)) . T) (($) . T)) +((((-563)) . T) (($) . T) (((-407 (-563))) . T)) +(-12 (|has| |#2| (-233)) (|has| |#2| (-1045))) +((((-1169) #0=(-866 |#1|)) |has| #0# (-514 (-1169) #0#)) ((#0# #0#) |has| #0# (-309 #0#))) +(((|#1|) . T)) +((((-563) |#4|) . T)) +((((-563) |#3|) . T)) +(((|#1|) . T) (((-563)) |has| |#1| (-636 (-563)))) +(-4032 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +((((-1243 |#1| |#2| |#3| |#4|)) . T)) +((((-407 (-563))) . T) (((-563)) . T)) +((((-858)) -4032 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -(((|#1|) . T)) -(((|#1|) . T)) -((($) . T) (((-562)) . T) (((-406 (-562))) . T)) -((((-562)) . T)) -((((-562)) . T)) -((($) . T) (((-562)) . T) (((-406 (-562))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-562)) #0#) . T)) -((((-562)) -4037 (|has| |#2| (-171)) (|has| |#2| (-843)) (-12 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092))) (|has| |#2| (-1044))) ((|#2|) -4037 (|has| |#2| (-171)) (|has| |#2| (-1092))) (((-406 (-562))) -12 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((#0=(-562) #0#) . T) ((#1=(-406 (-562)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-562)) |has| |#1| (-1033 (-562))) (((-406 (-562))) |has| |#1| (-1033 (-406 (-562))))) -(((|#1|) . T) (($) . T) (((-406 (-562))) . T)) -(((|#1|) |has| |#1| (-554))) -((((-562) |#4|) . T)) -((((-562) |#3|) . T)) -((((-857)) . T)) -((((-562)) . T) (((-406 (-562))) . T) (($) . T)) -((((-857)) . T)) -((((-562) |#1|) . T)) -(((|#1|) . T)) -((($ $) . T) ((#0=(-859 |#1|) $) . T) ((#0# |#2|) . T)) -((($) . T)) -((($ $) . T) ((#0=(-1168) $) . T) ((#0# |#1|) . T)) -(((|#2|) |has| |#2| (-171))) -((($) -4037 (|has| |#2| (-362)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) ((|#2|) |has| |#2| (-171)) (((-406 (-562))) |has| |#2| (-38 (-406 (-562))))) -(((|#2| |#2|) -4037 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1044))) (($ $) |has| |#2| (-171))) -((((-143)) . T)) -(((|#1|) . T)) -(-12 (|has| |#1| (-367)) (|has| |#2| (-367))) -((((-857)) . T)) -(((|#2|) -4037 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1044))) (($) |has| |#2| (-171))) -(((|#1|) . T)) -((((-857)) . T)) -(|has| |#1| (-1092)) -(|has| $ (-146)) -((((-1173)) . T)) -((((-562) |#1|) . T)) -((($) -4037 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-554))) (((-406 (-562))) -4037 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T)) -((((-1168)) -12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) -(|has| |#1| (-362)) -(-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|)))) -(|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) -(|has| |#1| (-362)) -(|has| |#1| (-15 * (|#1| (-766) |#1|))) -(((|#1|) . T)) -(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) -((((-857)) . T)) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -(-4037 (|has| |#2| (-171)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) -(((|#2| (-530 (-859 |#1|))) . T)) -((((-857)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -(((|#1|) . T)) -(-4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) -(-4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) -((((-579 |#1|)) . T)) -((($) . T)) -((((-562)) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(((|#1|) . T)) +(((|#1|) . T)) +((($) . T) (((-563)) . T) (((-407 (-563))) . T)) +((((-563)) . T)) +((((-563)) . T)) +((($) . T) (((-563)) . T) (((-407 (-563))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-563)) #0#) . T)) +((((-563)) -4032 (|has| |#2| (-172)) (|has| |#2| (-844)) (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) (|has| |#2| (-1045))) ((|#2|) -4032 (|has| |#2| (-172)) (|has| |#2| (-1093))) (((-407 (-563))) -12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((#0=(-563) #0#) . T) ((#1=(-407 (-563)) #1#) . T) (($ $) . T)) +(((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563))))) +(((|#1|) . T) (($) . T) (((-407 (-563))) . T)) +(((|#1|) |has| |#1| (-555))) +((((-563) |#4|) . T)) +((((-563) |#3|) . T)) +((((-858)) . T)) +((((-563)) . T) (((-407 (-563))) . T) (($) . T)) +((((-858)) . T)) +((((-563) |#1|) . T)) +(((|#1|) . T)) +((($ $) . T) ((#0=(-860 |#1|) $) . T) ((#0# |#2|) . T)) +((($) . T)) +((($ $) . T) ((#0=(-1169) $) . T) ((#0# |#1|) . T)) +(((|#2|) |has| |#2| (-172))) +((($) -4032 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) ((|#2|) |has| |#2| (-172)) (((-407 (-563))) |has| |#2| (-38 (-407 (-563))))) +(((|#2| |#2|) -4032 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($ $) |has| |#2| (-172))) +((((-144)) . T)) +(((|#1|) . T)) +(-12 (|has| |#1| (-368)) (|has| |#2| (-368))) +((((-858)) . T)) +(((|#2|) -4032 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($) |has| |#2| (-172))) +(((|#1|) . T)) +((((-858)) . T)) +(|has| |#1| (-1093)) +(|has| $ (-147)) +((((-1174)) . T)) +((((-563) |#1|) . T)) +((($) -4032 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-555))) (((-407 (-563))) -4032 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) +((((-1169)) -12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) +(|has| |#1| (-363)) +(-4032 (-12 (|has| (-1167 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|)))) +(|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) +(|has| |#1| (-363)) +(|has| |#1| (-15 * (|#1| (-767) |#1|))) +(((|#1|) . T)) +(-4032 (|has| |#1| (-846)) (|has| |#1| (-1093))) +((((-858)) . T)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(-4032 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) +(((|#2| (-531 (-860 |#1|))) . T)) +((((-858)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(((|#1|) . T)) +(-4032 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) +(-4032 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) +((((-580 |#1|)) . T)) +((($) . T)) +((((-563)) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-555))) (((|#1|) . T) (($) . T)) -((((-562)) |has| |#1| (-635 (-562))) ((|#1|) . T)) -((((-1166 |#1| |#2| |#3|)) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-562)) . T) ((|#1|) |has| |#1| (-171))) -((((-1252 |#2|)) . T) (((-1166 |#1| |#2| |#3|)) . T) (((-1159 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (((-562)) . T) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554)))) +((((-563)) |has| |#1| (-636 (-563))) ((|#1|) . T)) +((((-1167 |#1| |#2| |#3|)) . T) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -4032 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-563)) . T) ((|#1|) |has| |#1| (-172))) +((((-1253 |#2|)) . T) (((-1167 |#1| |#2| |#3|)) . T) (((-1160 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (((-563)) . T) (($) -4032 (|has| |#1| (-363)) (|has| |#1| (-555)))) (((|#4|) . T)) (((|#3|) . T)) -((((-865 |#1|)) . T) (($) . T) (((-406 (-562))) . T)) -((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) (((-562)) . T)) -((((-1168)) -12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) -(((|#1|) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-562)) . T) (((-406 (-562))) -4037 (|has| |#2| (-38 (-406 (-562)))) (|has| |#2| (-1033 (-406 (-562))))) ((|#2|) . T) (($) -4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) (((-859 |#1|)) . T)) -((((-562) |#2|) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) +((((-866 |#1|)) . T) (($) . T) (((-407 (-563))) . T)) +((($) |has| |#1| (-555)) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) (((-563)) . T)) +((((-1169)) -12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) +(((|#1|) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-563)) . T) (((-407 (-563))) -4032 (|has| |#2| (-38 (-407 (-563)))) (|has| |#2| (-1034 (-407 (-563))))) ((|#2|) . T) (($) -4032 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) (((-860 |#1|)) . T)) +((((-563) |#2|) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -(((#0=(-406 (-562)) #0#) |has| |#1| (-38 (-406 (-562)))) ((|#1| |#1|) . T) (($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-554)))) -((($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((#0=(-406 (-562)) #0#) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) ((#1=(-1166 |#1| |#2| |#3|) #1#) |has| |#1| (-362)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((#0=(-406 (-562)) #0#) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362)))) -((($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-554))) ((|#1| |#1|) . T) ((#0=(-406 (-562)) #0#) |has| |#1| (-38 (-406 (-562))))) -((((-857)) . T)) -(((|#2|) |has| |#2| (-1044))) -(|has| |#1| (-1092)) -((((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) . T) (($) -4037 (|has| |#1| (-171)) (|has| |#1| (-554)))) -((($) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (((-1166 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) . T)) -(((|#1|) . T) (($) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362)))) -((($) -4037 (|has| |#1| (-171)) (|has| |#1| (-554))) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -(((|#1|) |has| |#1| (-171)) (($) . T)) -(((|#1|) . T)) -(((#0=(-406 (-562)) #0#) |has| |#2| (-38 (-406 (-562)))) ((|#2| |#2|) . T) (($ $) -4037 (|has| |#2| (-171)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904)))) -((((-857)) . T)) -((((-406 (-562))) |has| |#2| (-38 (-406 (-562)))) ((|#2|) |has| |#2| (-171)) (($) -4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904)))) +(((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563)))) ((|#1| |#1|) . T) (($ $) -4032 (|has| |#1| (-172)) (|has| |#1| (-555)))) +((($ $) -4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) ((#0=(-407 (-563)) #0#) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((#1=(-1167 |#1| |#2| |#3|) #1#) |has| |#1| (-363)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) ((#0=(-407 (-563)) #0#) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363)))) +((($ $) -4032 (|has| |#1| (-172)) (|has| |#1| (-555))) ((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563))))) +((((-858)) . T)) +(((|#2|) |has| |#2| (-1045))) +(|has| |#1| (-1093)) +((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) . T) (($) -4032 (|has| |#1| (-172)) (|has| |#1| (-555)))) +((($) -4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) . T)) +(((|#1|) . T) (($) -4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363)))) +((($) -4032 (|has| |#1| (-172)) (|has| |#1| (-555))) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +(((|#1|) |has| |#1| (-172)) (($) . T)) +(((|#1|) . T)) +(((#0=(-407 (-563)) #0#) |has| |#2| (-38 (-407 (-563)))) ((|#2| |#2|) . T) (($ $) -4032 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))) +((((-858)) . T)) +((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) |has| |#2| (-172)) (($) -4032 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -((((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) |has| |#1| (-171)) (($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904)))) -(((#0=(-1074) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((((-406 (-562))) |has| |#2| (-38 (-406 (-562)))) ((|#2|) . T) (($) -4037 (|has| |#2| (-171)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904)))) -((($) . T)) -(((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) (($) . T)) -(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) -(((|#1|) . T)) -(((|#2|) |has| |#2| (-1092)) (((-562)) -12 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092))) (((-406 (-562))) -12 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) -(((|#2|) |has| |#1| (-362))) -((((-562) |#1|) . T)) -((((-1173)) . T)) -((((-1173)) . T)) -((((-1173)) . T)) -((((-1173)) . T)) -((((-1173)) . T)) -((((-1173)) . T)) -((((-857)) . T)) -((((-406 |#2|) |#3|) . T)) -(((|#1| (-406 (-562))) . T)) -((((-406 (-562))) . T) (($) . T)) -((((-406 (-562))) . T) (($) . T)) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -((((-857)) . T) (((-1173)) . T)) -(|has| |#1| (-144)) -(|has| |#1| (-146)) -((((-1173)) . T)) -((((-406 (-562))) |has| |#2| (-38 (-406 (-562)))) ((|#2|) |has| |#2| (-171)) (($) -4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904)))) -((($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -((((-406 (-562))) . T) (($) . T)) -((((-406 (-562))) . T) (($) . T)) -((((-406 (-562))) . T) (($) . T)) -(((|#2| |#3| (-859 |#1|)) . T)) -((((-1168)) |has| |#2| (-895 (-1168)))) -(((|#1|) . T)) -(((|#1| (-530 |#2|) |#2|) . T)) -(((|#1| (-766) (-1074)) . T)) -((((-406 (-562))) |has| |#2| (-362)) (($) . T)) -(((|#1| (-530 (-1080 (-1168))) (-1080 (-1168))) . T)) -(-4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) -(-4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) -(((|#1|) . T)) -((((-994 |#1|)) . T) (((-562)) . T) ((|#1|) . T) (((-406 (-562))) -4037 (|has| (-994 |#1|) (-1033 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562)))))) -(-4037 (|has| |#2| (-171)) (|has| |#2| (-721)) (|has| |#2| (-843)) (|has| |#2| (-1044))) -(|has| |#2| (-788)) -(-4037 (|has| |#2| (-788)) (|has| |#2| (-843))) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(|has| |#2| (-843)) -((((-888 |#1|)) . T) (((-814 |#1|)) . T)) -((((-814 (-1168))) . T)) -(((|#1|) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-639 (-562))) . T)) -((((-639 (-562))) . T) (((-857)) . T)) -((((-406 (-562))) . T) (((-857)) . T)) -((((-535)) . T) (((-887 (-562))) . T) (((-378)) . T) (((-224)) . T)) -(|has| |#1| (-232)) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) -4032 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))) +(((#0=(-1075) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) . T) (($) -4032 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))) +((($) . T)) +(((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) (($) . T)) +(-4032 (|has| |#1| (-846)) (|has| |#1| (-1093))) +(((|#1|) . T)) +(((|#2|) |has| |#2| (-1093)) (((-563)) -12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) (((-407 (-563))) -12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) +(((|#2|) |has| |#1| (-363))) +((((-563) |#1|) . T)) +((((-1174)) . T)) +((((-1174)) . T)) +((((-1174)) . T)) +((((-1174)) . T)) +((((-1174)) . T)) +((((-1174)) . T)) +((((-858)) . T)) +((((-407 |#2|) |#3|) . T)) +(((|#1| (-407 (-563))) . T)) +((((-407 (-563))) . T) (($) . T)) +((((-407 (-563))) . T) (($) . T)) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +((((-858)) . T) (((-1174)) . T)) +(|has| |#1| (-145)) +(|has| |#1| (-147)) +((((-1174)) . T)) +((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) |has| |#2| (-172)) (($) -4032 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))) +((($) -4032 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +((((-407 (-563))) . T) (($) . T)) +((((-407 (-563))) . T) (($) . T)) +((((-407 (-563))) . T) (($) . T)) +(((|#2| |#3| (-860 |#1|)) . T)) +((((-1169)) |has| |#2| (-896 (-1169)))) +(((|#1|) . T)) +(((|#1| (-531 |#2|) |#2|) . T)) +(((|#1| (-767) (-1075)) . T)) +((((-407 (-563))) |has| |#2| (-363)) (($) . T)) +(((|#1| (-531 (-1081 (-1169))) (-1081 (-1169))) . T)) +(-4032 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) +(-4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) +(((|#1|) . T)) +((((-995 |#1|)) . T) (((-563)) . T) ((|#1|) . T) (((-407 (-563))) -4032 (|has| (-995 |#1|) (-1034 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563)))))) +(-4032 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +(|has| |#2| (-789)) +(-4032 (|has| |#2| (-789)) (|has| |#2| (-844))) +(|has| |#1| (-368)) +(|has| |#1| (-368)) +(|has| |#1| (-368)) +(|has| |#2| (-844)) +((((-889 |#1|)) . T) (((-815 |#1|)) . T)) +((((-815 (-1169))) . T)) +(((|#1|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-640 (-563))) . T)) +((((-640 (-563))) . T) (((-858)) . T)) +((((-407 (-563))) . T) (((-858)) . T)) +((((-536)) . T) (((-888 (-563))) . T) (((-379)) . T) (((-225)) . T)) +(|has| |#1| (-233)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) ((($ $) . T)) (((|#1| |#1|) . T)) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -((((-1248 |#1| |#2| |#3|) $) -12 (|has| (-1248 |#1| |#2| |#3|) (-285 (-1248 |#1| |#2| |#3|) (-1248 |#1| |#2| |#3|))) (|has| |#1| (-362))) (($ $) . T)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +((((-1249 |#1| |#2| |#3|) $) -12 (|has| (-1249 |#1| |#2| |#3|) (-286 (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|))) (|has| |#1| (-363))) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1|) . T)) -((((-1132 |#1| |#2|)) |has| (-1132 |#1| |#2|) (-308 (-1132 |#1| |#2|)))) -(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) -(((|#2|) . T) (((-562)) |has| |#2| (-1033 (-562))) (((-406 (-562))) |has| |#2| (-1033 (-406 (-562))))) -(((|#3| |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) -(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) |has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))))) +((((-1133 |#1| |#2|)) |has| (-1133 |#1| |#2|) (-309 (-1133 |#1| |#2|)))) +(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) +(((|#2|) . T) (((-563)) |has| |#2| (-1034 (-563))) (((-407 (-563))) |has| |#2| (-1034 (-407 (-563))))) +(((|#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) +(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) |has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))))) (((|#1|) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((($) . T)) (((|#2|) . T)) (((|#3|) . T)) -(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) -(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) |has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))))) -(((|#2|) . T)) -((((-857)) -4037 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-609 (-857))) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-721)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044)) (|has| |#2| (-1092))) (((-1256 |#2|)) . T)) -((((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((|#1|) . T) (((-562)) . T) (($) . T)) -(((|#1|) |has| |#1| (-171))) -((((-562)) . T)) -((((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) |has| |#1| (-171)) (($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904)))) -((($) -4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -((((-562) (-143)) . T)) -((($) -4037 (|has| |#2| (-171)) (|has| |#2| (-843)) (|has| |#2| (-1044))) ((|#2|) -4037 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1044)))) -((((-562)) . T)) -(((|#1|) . T) ((|#2|) . T) (((-562)) . T)) -((($) |has| |#1| (-554)) ((|#1|) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562))))) (((-562)) . T)) -(-4037 (|has| |#1| (-21)) (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-554)) (|has| |#1| (-1044))) -(((|#1|) . T)) -(-4037 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-554)) (|has| |#1| (-1044))) -(((|#2|) |has| |#1| (-362))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(-4032 (|has| |#1| (-846)) (|has| |#1| (-1093))) +(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) |has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))))) +(((|#2|) . T)) +((((-858)) -4032 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-610 (-858))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1093))) (((-1257 |#2|)) . T)) +((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((|#1|) . T) (((-563)) . T) (($) . T)) +(((|#1|) |has| |#1| (-172))) +((((-563)) . T)) +((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) -4032 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))) +((($) -4032 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +((((-563) (-144)) . T)) +((($) -4032 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) ((|#2|) -4032 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045)))) +((((-563)) . T)) +(((|#1|) . T) ((|#2|) . T) (((-563)) . T)) +((($) |has| |#1| (-555)) ((|#1|) . T) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))) (((-563)) . T)) +(-4032 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-555)) (|has| |#1| (-1045))) +(((|#1|) . T)) +(-4032 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-555)) (|has| |#1| (-1045))) +(((|#2|) |has| |#1| (-363))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (((|#1| |#1|) . T) (($ $) . T)) -((($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -((((-1173)) . T)) -(((|#1| (-530 #0=(-1168)) #0#) . T)) +((($) -4032 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +((((-1174)) . T)) +(((|#1| (-531 #0=(-1169)) #0#) . T)) (((|#1|) . T) (($) . T)) -(|has| |#4| (-171)) -(|has| |#3| (-171)) -(((#0=(-406 (-947 |#1|)) #0#) . T)) -(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) -(|has| |#1| (-1092)) -(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) -(|has| |#1| (-1092)) -((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-845)) (|has| |#1| (-1092)))) -((((-535)) |has| |#1| (-610 (-535)))) -(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) -((((-857)) . T) (((-1173)) . T)) -((((-1173)) . T)) -(((|#1| |#1|) |has| |#1| (-171))) -((($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-554))) ((|#1| |#1|) . T) ((#0=(-406 (-562)) #0#) |has| |#1| (-38 (-406 (-562))))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -(((|#1|) . T)) -((((-406 (-947 |#1|))) . T)) -(((|#1|) |has| |#1| (-171))) -((($) -4037 (|has| |#1| (-171)) (|has| |#1| (-554))) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -(-4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) -((((-857)) . T)) -((((-1242 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1044)) (((-562)) -12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044)))) +(|has| |#4| (-172)) +(|has| |#3| (-172)) +(((#0=(-407 (-948 |#1|)) #0#) . T)) +(-4032 (|has| |#1| (-846)) (|has| |#1| (-1093))) +(|has| |#1| (-1093)) +(-4032 (|has| |#1| (-846)) (|has| |#1| (-1093))) +(|has| |#1| (-1093)) +((((-858)) -4032 (|has| |#1| (-610 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1093)))) +((((-536)) |has| |#1| (-611 (-536)))) +(-4032 (|has| |#1| (-846)) (|has| |#1| (-1093))) +((((-858)) . T) (((-1174)) . T)) +((((-1174)) . T)) +(((|#1| |#1|) |has| |#1| (-172))) +((($ $) -4032 (|has| |#1| (-172)) (|has| |#1| (-555))) ((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563))))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(((|#1|) . T)) +((((-407 (-948 |#1|))) . T)) +(((|#1|) |has| |#1| (-172))) +((($) -4032 (|has| |#1| (-172)) (|has| |#1| (-555))) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +(-4032 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) +((((-858)) . T)) +((((-1243 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1045)) (((-563)) -12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045)))) (((|#1| |#2|) . T)) -(-4037 (|has| |#3| (-171)) (|has| |#3| (-721)) (|has| |#3| (-843)) (|has| |#3| (-1044))) -(|has| |#3| (-788)) -(-4037 (|has| |#3| (-788)) (|has| |#3| (-843))) -(|has| |#3| (-843)) -(((|#1|) . T)) -((((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554))) ((|#2|) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171))) -(((|#1|) |has| |#1| (-171)) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554)))) -(((|#2|) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) -(((|#1| (-1148 |#1|)) |has| |#1| (-843))) -((((-562) |#2|) . T)) -(|has| |#1| (-1092)) -(((|#1|) . T)) -(-12 (|has| |#1| (-362)) (|has| |#2| (-1143))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -(|has| |#1| (-1092)) -(((|#2|) . T)) -((((-535)) |has| |#2| (-610 (-535))) (((-887 (-378))) |has| |#2| (-610 (-887 (-378)))) (((-887 (-562))) |has| |#2| (-610 (-887 (-562))))) -(((|#4|) -4037 (|has| |#4| (-171)) (|has| |#4| (-362)))) -(((|#3|) -4037 (|has| |#3| (-171)) (|has| |#3| (-362)))) -((((-857)) . T)) -(((|#1|) . T)) -(-4037 (|has| |#2| (-451)) (|has| |#2| (-904))) -(-4037 (|has| |#1| (-451)) (|has| |#1| (-904))) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-904))) -((($ $) . T) ((#0=(-1168) $) |has| |#1| (-232)) ((#0# |#1|) |has| |#1| (-232)) ((#1=(-813 (-1168)) |#1|) . T) ((#1# $) . T)) -(-4037 (|has| |#1| (-451)) (|has| |#1| (-904))) -((((-562) |#2|) . T)) -((((-857)) . T)) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -((($) -4037 (|has| |#3| (-171)) (|has| |#3| (-843)) (|has| |#3| (-1044))) ((|#3|) -4037 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1044)))) -((((-562) |#1|) . T)) -(|has| (-406 |#2|) (-146)) -(|has| (-406 |#2|) (-144)) -(((|#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|)))) -(|has| |#1| (-38 (-406 (-562)))) -(((|#1|) . T)) -(((|#2|) . T) (($) . T) (((-406 (-562))) . T)) -((((-857)) . T)) -(|has| |#1| (-554)) -(|has| |#1| (-554)) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -((((-857)) . T)) -((((-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) . T)) -(|has| |#1| (-38 (-406 (-562)))) -((((-387) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) . T)) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#2| (-1143)) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-554))) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-554))) -((((-857)) . T) (((-1173)) . T)) -((((-857)) . T) (((-1173)) . T)) -((((-857)) . T) (((-1173)) . T)) -((((-1173)) . T)) -((((-1173)) . T)) -((((-1173)) . T)) -((((-857)) . T) (((-1173)) . T)) -((((-1173)) . T)) -((((-1206)) . T) (((-857)) . T) (((-1173)) . T)) +(-4032 (|has| |#3| (-172)) (|has| |#3| (-722)) (|has| |#3| (-844)) (|has| |#3| (-1045))) +(|has| |#3| (-789)) +(-4032 (|has| |#3| (-789)) (|has| |#3| (-844))) +(|has| |#3| (-844)) +(((|#1|) . T)) +((((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -4032 (|has| |#1| (-363)) (|has| |#1| (-555))) ((|#2|) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -4032 (|has| |#1| (-363)) (|has| |#1| (-555)))) +(((|#2|) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +(((|#1| (-1149 |#1|)) |has| |#1| (-844))) +((((-563) |#2|) . T)) +(|has| |#1| (-1093)) +(((|#1|) . T)) +(-12 (|has| |#1| (-363)) (|has| |#2| (-1144))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(|has| |#1| (-1093)) +(((|#2|) . T)) +((((-536)) |has| |#2| (-611 (-536))) (((-888 (-379))) |has| |#2| (-611 (-888 (-379)))) (((-888 (-563))) |has| |#2| (-611 (-888 (-563))))) +(((|#4|) -4032 (|has| |#4| (-172)) (|has| |#4| (-363)))) +(((|#3|) -4032 (|has| |#3| (-172)) (|has| |#3| (-363)))) +((((-858)) . T)) +(((|#1|) . T)) +(-4032 (|has| |#2| (-452)) (|has| |#2| (-905))) +(-4032 (|has| |#1| (-452)) (|has| |#1| (-905))) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-905))) +((($ $) . T) ((#0=(-1169) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-814 (-1169)) |#1|) . T) ((#1# $) . T)) +(-4032 (|has| |#1| (-452)) (|has| |#1| (-905))) +((((-563) |#2|) . T)) +((((-858)) . T)) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +((($) -4032 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045))) ((|#3|) -4032 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045)))) +((((-563) |#1|) . T)) +(|has| (-407 |#2|) (-147)) +(|has| (-407 |#2|) (-145)) +(((|#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|)))) +(|has| |#1| (-38 (-407 (-563)))) +(((|#1|) . T)) +(((|#2|) . T) (($) . T) (((-407 (-563))) . T)) +((((-858)) . T)) +(|has| |#1| (-555)) +(|has| |#1| (-555)) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +((((-858)) . T)) +((((-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) . T)) +(|has| |#1| (-38 (-407 (-563)))) +((((-388) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) . T)) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#2| (-1144)) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-555))) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-555))) +((((-858)) . T) (((-1174)) . T)) +((((-858)) . T) (((-1174)) . T)) +((((-858)) . T) (((-1174)) . T)) +((((-1174)) . T)) +((((-1174)) . T)) +((((-1174)) . T)) +((((-858)) . T) (((-1174)) . T)) +((((-1174)) . T)) +((((-1207)) . T) (((-858)) . T) (((-1174)) . T)) ((((-116 |#1|)) . T)) -((((-1173)) . T)) -((((-857)) . T) (((-1173)) . T)) -((((-1173)) . T)) -(((|#1|) . T)) -((((-387) (-1150)) . T)) -(|has| |#1| (-554)) -((((-562) |#1|) . T)) -(-4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) -((((-562)) . T) (($) . T) (((-406 (-562))) . T)) -((((-562)) . T) (($) . T) (((-406 (-562))) . T)) -(((|#2|) . T)) -((((-857)) . T)) -((((-814 |#1|)) . T)) -(((|#2|) |has| |#2| (-171))) -((((-1168) (-52)) . T)) -(((|#1|) . T)) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-554)) -(((|#1|) |has| |#1| (-171))) -((((-639 |#1|)) . T)) -((((-857)) . T)) -((((-535)) |has| |#1| (-610 (-535)))) -(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) -(((|#2|) |has| |#2| (-308 |#2|))) -(((#0=(-562) #0#) . T) ((#1=(-406 (-562)) #1#) . T) (($ $) . T)) -(((|#1|) . T)) -(((|#1| (-1164 |#1|)) . T)) -(|has| $ (-146)) -(((|#2|) . T)) -(((#0=(-562) #0#) . T) ((#1=(-406 (-562)) #1#) . T) (($ $) . T)) -((($) . T) (((-562)) . T) (((-406 (-562))) . T)) -(|has| |#2| (-367)) -(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) -(((|#1|) . T) (((-406 (-562))) . T) (($) . T)) -(((|#1|) . T) (((-406 (-562))) . T) (($) . T)) -(((|#1|) . T) (((-406 (-562))) . T) (($) . T)) -((((-562)) . T) (((-406 (-562))) . T) (($) . T)) +((((-1174)) . T)) +((((-858)) . T) (((-1174)) . T)) +((((-1174)) . T)) +(((|#1|) . T)) +((((-388) (-1151)) . T)) +(|has| |#1| (-555)) +((((-563) |#1|) . T)) +(-4032 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) +((((-563)) . T) (($) . T) (((-407 (-563))) . T)) +((((-563)) . T) (($) . T) (((-407 (-563))) . T)) +(((|#2|) . T)) +((((-858)) . T)) +((((-815 |#1|)) . T)) +(((|#2|) |has| |#2| (-172))) +((((-1169) (-52)) . T)) +(((|#1|) . T)) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-555)) +(((|#1|) |has| |#1| (-172))) +((((-640 |#1|)) . T)) +((((-858)) . T)) +((((-536)) |has| |#1| (-611 (-536)))) +(-4032 (|has| |#1| (-846)) (|has| |#1| (-1093))) +(((|#2|) |has| |#2| (-309 |#2|))) +(((#0=(-563) #0#) . T) ((#1=(-407 (-563)) #1#) . T) (($ $) . T)) +(((|#1|) . T)) +(((|#1| (-1165 |#1|)) . T)) +(|has| $ (-147)) +(((|#2|) . T)) +(((#0=(-563) #0#) . T) ((#1=(-407 (-563)) #1#) . T) (($ $) . T)) +((($) . T) (((-563)) . T) (((-407 (-563))) . T)) +(|has| |#2| (-368)) +(-4032 (|has| |#1| (-846)) (|has| |#1| (-1093))) +(((|#1|) . T) (((-407 (-563))) . T) (($) . T)) +(((|#1|) . T) (((-407 (-563))) . T) (($) . T)) +(((|#1|) . T) (((-407 (-563))) . T) (($) . T)) +((((-563)) . T) (((-407 (-563))) . T) (($) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-562)) . T) (((-406 (-562))) . T) (($) . T)) -((((-1166 |#1| |#2| |#3|) $) -12 (|has| (-1166 |#1| |#2| |#3|) (-285 (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|))) (|has| |#1| (-362))) (($ $) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-535)) |has| |#1| (-610 (-535)))) -((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) -((($) . T) (((-406 (-562))) -4037 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T)) +((((-563)) . T) (((-407 (-563))) . T) (($) . T)) +((((-1167 |#1| |#2| |#3|) $) -12 (|has| (-1167 |#1| |#2| |#3|) (-286 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363))) (($ $) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-536)) |has| |#1| (-611 (-536)))) +((((-858)) -4032 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) +((($) . T) (((-407 (-563))) -4032 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) ((($ $) . T)) -((((-857)) . T)) +((((-858)) . T)) ((($ $) . T)) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -(((#0=(-1248 |#1| |#2| |#3|) #0#) -12 (|has| (-1248 |#1| |#2| |#3|) (-308 (-1248 |#1| |#2| |#3|))) (|has| |#1| (-362))) (((-1168) #0#) -12 (|has| (-1248 |#1| |#2| |#3|) (-513 (-1168) (-1248 |#1| |#2| |#3|))) (|has| |#1| (-362)))) -(-12 (|has| |#1| (-1092)) (|has| |#2| (-1092))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(((#0=(-1249 |#1| |#2| |#3|) #0#) -12 (|has| (-1249 |#1| |#2| |#3|) (-309 (-1249 |#1| |#2| |#3|))) (|has| |#1| (-363))) (((-1169) #0#) -12 (|has| (-1249 |#1| |#2| |#3|) (-514 (-1169) (-1249 |#1| |#2| |#3|))) (|has| |#1| (-363)))) +(-12 (|has| |#1| (-1093)) (|has| |#2| (-1093))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -((((-406 (-562))) . T) (((-562)) . T)) -((((-562) (-143)) . T)) -((((-143)) . T)) +((($) -4032 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +((((-407 (-563))) . T) (((-563)) . T)) +((((-563) (-144)) . T)) +((((-144)) . T)) (((|#1|) . T)) -(-4037 (|has| |#1| (-21)) (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-554)) (|has| |#1| (-1044))) +(-4032 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-555)) (|has| |#1| (-1045))) ((((-112)) . T)) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) ((((-112)) . T)) (((|#1|) . T)) -((((-535)) |has| |#1| (-610 (-535))) (((-224)) . #0=(|has| |#1| (-1017))) (((-378)) . #0#)) -((((-857)) . T)) -((((-1173)) . T)) -(|has| |#1| (-815)) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) -(|has| |#1| (-845)) -(-4037 (|has| |#1| (-171)) (|has| |#1| (-554))) -(|has| |#1| (-554)) -((((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((|#1|) . T) (((-562)) . T)) -(|has| |#1| (-904)) -(((|#1|) . T)) -(|has| |#1| (-1092)) -((((-857)) . T)) -(-4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) -(-4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) -(-4037 (|has| |#1| (-171)) (|has| |#1| (-554))) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) -(((|#1| (-1256 |#1|) (-1256 |#1|)) . T)) -((((-562) (-143)) . T)) -((($) . T)) -(-4037 (|has| |#4| (-171)) (|has| |#4| (-843)) (|has| |#4| (-1044))) -(-4037 (|has| |#3| (-171)) (|has| |#3| (-843)) (|has| |#3| (-1044))) -((((-1173)) . T) (((-857)) . T)) -((((-1173)) . T)) -((((-857)) . T)) -(|has| |#1| (-1092)) -(((|#1| (-966)) . T)) +((((-536)) |has| |#1| (-611 (-536))) (((-225)) . #0=(|has| |#1| (-1018))) (((-379)) . #0#)) +((((-858)) . T)) +((((-1174)) . T)) +(|has| |#1| (-816)) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) +(|has| |#1| (-846)) +(-4032 (|has| |#1| (-172)) (|has| |#1| (-555))) +(|has| |#1| (-555)) +((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((|#1|) . T) (((-563)) . T)) +(|has| |#1| (-905)) +(((|#1|) . T)) +(|has| |#1| (-1093)) +((((-858)) . T)) +(-4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) +(-4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) +(-4032 (|has| |#1| (-172)) (|has| |#1| (-555))) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +(((|#1| (-1257 |#1|) (-1257 |#1|)) . T)) +((((-563) (-144)) . T)) +((($) . T)) +(-4032 (|has| |#4| (-172)) (|has| |#4| (-844)) (|has| |#4| (-1045))) +(-4032 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045))) +((((-1174)) . T) (((-858)) . T)) +((((-1174)) . T)) +((((-858)) . T)) +(|has| |#1| (-1093)) +(((|#1| (-967)) . T)) (((|#1| |#1|) . T)) ((($) . T)) -(-4037 (|has| |#2| (-788)) (|has| |#2| (-843))) -(-4037 (|has| |#2| (-788)) (|has| |#2| (-843))) -(-12 (|has| |#1| (-472)) (|has| |#2| (-472))) -(-4037 (|has| |#2| (-171)) (|has| |#2| (-721)) (|has| |#2| (-843)) (|has| |#2| (-1044))) -(-4037 (-12 (|has| |#1| (-472)) (|has| |#2| (-472))) (-12 (|has| |#1| (-721)) (|has| |#2| (-721)))) +(-4032 (|has| |#2| (-789)) (|has| |#2| (-844))) +(-4032 (|has| |#2| (-789)) (|has| |#2| (-844))) +(-12 (|has| |#1| (-473)) (|has| |#2| (-473))) +(-4032 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +(-4032 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722)))) (((|#1|) . T)) -(|has| |#2| (-788)) -(-4037 (|has| |#2| (-788)) (|has| |#2| (-843))) +(|has| |#2| (-789)) +(-4032 (|has| |#2| (-789)) (|has| |#2| (-844))) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -(|has| |#2| (-843)) -(-12 (|has| |#1| (-788)) (|has| |#2| (-788))) -(-12 (|has| |#1| (-788)) (|has| |#2| (-788))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(|has| |#2| (-844)) +(-12 (|has| |#1| (-789)) (|has| |#2| (-789))) +(-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-171)) ((|#4|) . T) (((-562)) . T)) -(((|#2|) |has| |#2| (-171))) -(((|#1|) |has| |#1| (-171))) -((((-857)) . T)) -(|has| |#1| (-348)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-406 (-562))) . T) (($) . T)) -((($) |has| |#1| (-554)) ((|#1|) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562))))) (((-562)) . T)) -((($) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) ((|#1|) . T)) -(|has| |#1| (-823)) -((((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) (((-562)) |has| |#1| (-1033 (-562))) ((|#1|) . T)) -(|has| |#1| (-1092)) -(((|#1| $) |has| |#1| (-285 |#1| |#1|))) -((((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554))) -((($) |has| |#1| (-554))) -(((|#4|) |has| |#4| (-1092))) -(((|#3|) |has| |#3| (-1092))) -(|has| |#3| (-367)) -(((|#1|) . T) (((-857)) . T)) -((((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-1248 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171))) -(((|#1|) . T)) -((((-857)) . T)) -((((-857)) . T)) +(((|#1|) |has| |#1| (-172)) ((|#4|) . T) (((-563)) . T)) +(((|#2|) |has| |#2| (-172))) +(((|#1|) |has| |#1| (-172))) +((((-858)) . T)) +(|has| |#1| (-349)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-407 (-563))) . T) (($) . T)) +((($) |has| |#1| (-555)) ((|#1|) . T) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))) (((-563)) . T)) +((($) . T) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((|#1|) . T)) +(|has| |#1| (-824)) +((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-563)) |has| |#1| (-1034 (-563))) ((|#1|) . T)) +(|has| |#1| (-1093)) +(((|#1| $) |has| |#1| (-286 |#1| |#1|))) +((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-555))) +((($) |has| |#1| (-555))) +(((|#4|) |has| |#4| (-1093))) +(((|#3|) |has| |#3| (-1093))) +(|has| |#3| (-368)) +(((|#1|) . T) (((-858)) . T)) +((((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -4032 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-1249 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) +(((|#1|) . T)) +((((-858)) . T)) +((((-858)) . T)) (((|#1| |#2|) . T)) (((|#2|) . T)) -(((|#1|) |has| |#1| (-171)) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554)))) -((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -(((|#1| |#1|) |has| |#1| (-171))) -(|has| |#2| (-362)) -(((|#1|) . T)) -(((|#1|) |has| |#1| (-171))) -((((-406 (-562))) . T) (((-562)) . T)) -((($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-554))) ((|#1| |#1|) . T) ((#0=(-406 (-562)) #0#) |has| |#1| (-38 (-406 (-562))))) -((($) -4037 (|has| |#1| (-171)) (|has| |#1| (-554))) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) -((((-143)) . T)) -(((|#1|) . T)) -((($) -4037 (|has| |#2| (-171)) (|has| |#2| (-843)) (|has| |#2| (-1044))) ((|#2|) -4037 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1044)))) -((((-143)) . T)) -((((-143)) . T)) -((((-406 (-562))) . #0=(|has| |#2| (-362))) (($) . #0#) ((|#2|) . T) (((-562)) . T)) +(((|#1|) |has| |#1| (-172)) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -4032 (|has| |#1| (-363)) (|has| |#1| (-555)))) +((($) |has| |#1| (-555)) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +(((|#1| |#1|) |has| |#1| (-172))) +(|has| |#2| (-363)) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-172))) +((((-407 (-563))) . T) (((-563)) . T)) +((($ $) -4032 (|has| |#1| (-172)) (|has| |#1| (-555))) ((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563))))) +((($) -4032 (|has| |#1| (-172)) (|has| |#1| (-555))) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) +((((-144)) . T)) +(((|#1|) . T)) +((($) -4032 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) ((|#2|) -4032 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045)))) +((((-144)) . T)) +((((-144)) . T)) +((((-407 (-563))) . #0=(|has| |#2| (-363))) (($) . #0#) ((|#2|) . T) (((-563)) . T)) (((|#1| |#2| |#3|) . T)) -(-4037 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-554)) (|has| |#1| (-1044))) -(|has| $ (-146)) -(|has| $ (-146)) -((((-1173)) . T)) -(|has| |#1| (-1092)) -((((-857)) . T)) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -(-4037 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-472)) (|has| |#1| (-554)) (|has| |#1| (-1044)) (|has| |#1| (-1104))) -((($ $) |has| |#1| (-285 $ $)) ((|#1| $) |has| |#1| (-285 |#1| |#1|))) -(((|#1| (-406 (-562))) . T)) -(((|#1|) . T)) -((((-1168)) . T)) -(|has| |#1| (-554)) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-554))) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-554))) -(|has| |#1| (-554)) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -((((-857)) . T)) -(|has| |#2| (-144)) -(|has| |#2| (-146)) +(-4032 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-555)) (|has| |#1| (-1045))) +(|has| $ (-147)) +(|has| $ (-147)) +((((-1174)) . T)) +(|has| |#1| (-1093)) +((((-858)) . T)) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +(-4032 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-473)) (|has| |#1| (-555)) (|has| |#1| (-1045)) (|has| |#1| (-1105))) +((($ $) |has| |#1| (-286 $ $)) ((|#1| $) |has| |#1| (-286 |#1| |#1|))) +(((|#1| (-407 (-563))) . T)) +(((|#1|) . T)) +((((-1169)) . T)) +(|has| |#1| (-555)) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-555))) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-555))) +(|has| |#1| (-555)) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +((((-858)) . T)) +(|has| |#2| (-145)) +(|has| |#2| (-147)) (((|#2|) . T) (($) . T)) -(|has| |#1| (-146)) -(|has| |#1| (-144)) -(|has| |#4| (-843)) -(((|#2| (-239 (-3492 |#1|) (-766)) (-859 |#1|)) . T)) -(|has| |#3| (-843)) -(((|#1| (-530 |#3|) |#3|) . T)) -(|has| |#1| (-146)) -(|has| |#1| (-144)) -(((#0=(-406 (-562)) #0#) |has| |#2| (-362)) (($ $) . T)) -((((-865 |#1|)) . T)) -(|has| |#1| (-146)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -((((-857)) . T)) -(|has| |#1| (-144)) -((((-406 (-562))) |has| |#2| (-362)) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -(-4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) -(-4037 (|has| |#1| (-348)) (|has| |#1| (-367))) -((((-1134 |#2| |#1|)) . T) ((|#1|) . T)) -(|has| |#2| (-171)) +(|has| |#1| (-147)) +(|has| |#1| (-145)) +(|has| |#4| (-844)) +(((|#2| (-240 (-3608 |#1|) (-767)) (-860 |#1|)) . T)) +(|has| |#3| (-844)) +(((|#1| (-531 |#3|) |#3|) . T)) +(|has| |#1| (-147)) +(|has| |#1| (-145)) +(((#0=(-407 (-563)) #0#) |has| |#2| (-363)) (($ $) . T)) +((((-866 |#1|)) . T)) +(|has| |#1| (-147)) +(|has| |#1| (-368)) +(|has| |#1| (-368)) +(|has| |#1| (-368)) +((((-858)) . T)) +(|has| |#1| (-145)) +((((-407 (-563))) |has| |#2| (-363)) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(-4032 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) +(-4032 (|has| |#1| (-349)) (|has| |#1| (-368))) +((((-1135 |#2| |#1|)) . T) ((|#1|) . T)) +(|has| |#2| (-172)) (((|#1| |#2|) . T)) -(-12 (|has| |#2| (-232)) (|has| |#2| (-1044))) -(((|#2|) . T) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -(-4037 (|has| |#3| (-788)) (|has| |#3| (-843))) -(-4037 (|has| |#3| (-788)) (|has| |#3| (-843))) -((((-857)) . T)) +(-12 (|has| |#2| (-233)) (|has| |#2| (-1045))) +(((|#2|) . T) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +(-4032 (|has| |#3| (-789)) (|has| |#3| (-844))) +(-4032 (|has| |#3| (-789)) (|has| |#3| (-844))) +((((-858)) . T)) (((|#1|) . T)) (((|#2|) . T) (($) . T)) -((((-693)) . T)) -(-4037 (|has| |#2| (-171)) (|has| |#2| (-843)) (|has| |#2| (-1044))) -(|has| |#1| (-554)) +((((-694)) . T)) +(-4032 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +(|has| |#1| (-555)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -998,2545 +999,2545 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1168) (-52)) . T)) +((((-1169) (-52)) . T)) (((|#1|) . T) (($) . T)) -((((-999 10)) . T) (((-406 (-562))) . T) (((-857)) . T)) -((((-535)) . T) (((-887 (-562))) . T) (((-378)) . T) (((-224)) . T)) -(((|#1|) . T)) -((((-999 16)) . T) (((-406 (-562))) . T) (((-857)) . T)) -((((-535)) . T) (((-887 (-562))) . T) (((-378)) . T) (((-224)) . T)) -(((|#1| (-562)) . T)) -((((-857)) . T)) -((((-857)) . T)) +((((-1000 10)) . T) (((-407 (-563))) . T) (((-858)) . T)) +((((-536)) . T) (((-888 (-563))) . T) (((-379)) . T) (((-225)) . T)) +(((|#1|) . T)) +((((-1000 16)) . T) (((-407 (-563))) . T) (((-858)) . T)) +((((-536)) . T) (((-888 (-563))) . T) (((-379)) . T) (((-225)) . T)) +(((|#1| (-563)) . T)) +((((-858)) . T)) +((((-858)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-406 (-562))) . T)) -(((|#3|) . T) (((-608 $)) . T)) +(((|#1| (-407 (-563))) . T)) +(((|#3|) . T) (((-609 $)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -((((-562)) -4037 (|has| |#2| (-171)) (|has| |#2| (-843)) (-12 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092))) (|has| |#2| (-1044))) ((|#2|) -4037 (|has| |#2| (-171)) (|has| |#2| (-1092))) (((-406 (-562))) -12 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) -(((|#1|) . T) (((-406 (-562))) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +((((-563)) -4032 (|has| |#2| (-172)) (|has| |#2| (-844)) (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) (|has| |#2| (-1045))) ((|#2|) -4032 (|has| |#2| (-172)) (|has| |#2| (-1093))) (((-407 (-563))) -12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) +(((|#1|) . T) (((-407 (-563))) . T) (($) . T)) ((($ $) . T) ((|#2| $) . T)) -((((-562)) . T) (($) . T) (((-406 (-562))) . T)) -(((#0=(-1166 |#1| |#2| |#3|) #0#) -12 (|has| (-1166 |#1| |#2| |#3|) (-308 (-1166 |#1| |#2| |#3|))) (|has| |#1| (-362))) (((-1168) #0#) -12 (|has| (-1166 |#1| |#2| |#3|) (-513 (-1168) (-1166 |#1| |#2| |#3|))) (|has| |#1| (-362)))) -((((-857)) . T)) -((((-857)) . T)) +((((-563)) . T) (($) . T) (((-407 (-563))) . T)) +(((#0=(-1167 |#1| |#2| |#3|) #0#) -12 (|has| (-1167 |#1| |#2| |#3|) (-309 (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363))) (((-1169) #0#) -12 (|has| (-1167 |#1| |#2| |#3|) (-514 (-1169) (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363)))) +((((-858)) . T)) +((((-858)) . T)) (((|#1| |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) |has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) (((-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) |has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-308 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))))) -((((-857)) . T)) +(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) |has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) (((-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) |has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-309 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))))) +((((-858)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#1|) . T)) ((($) . T) ((|#2|) . T)) -((((-1168) (-52)) . T)) +((((-1169) (-52)) . T)) (((|#3|) . T)) -((($ $) . T) ((#0=(-859 |#1|) $) . T) ((#0# |#2|) . T)) -(|has| |#1| (-823)) -(|has| |#1| (-1092)) -(((|#2| |#2|) -4037 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1044))) (($ $) |has| |#2| (-171))) -(((|#2|) -4037 (|has| |#2| (-171)) (|has| |#2| (-362)))) -((((-562) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T) ((|#1| |#2|) . T)) -(((|#2|) -4037 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1044))) (($) |has| |#2| (-171))) -((((-1173)) . T)) -((((-766)) . T)) -(|has| |#1| (-554)) -((((-562)) . T)) -((((-857)) . T)) -(((|#1| (-406 (-562)) (-1074)) . T)) -(|has| |#1| (-144)) -(((|#1|) . T)) -(|has| |#1| (-554)) -((((-562)) . T)) +((($ $) . T) ((#0=(-860 |#1|) $) . T) ((#0# |#2|) . T)) +(|has| |#1| (-824)) +(|has| |#1| (-1093)) +(((|#2| |#2|) -4032 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($ $) |has| |#2| (-172))) +(((|#2|) -4032 (|has| |#2| (-172)) (|has| |#2| (-363)))) +((((-563) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#2|) -4032 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($) |has| |#2| (-172))) +((((-1174)) . T)) +((((-767)) . T)) +(|has| |#1| (-555)) +((((-563)) . T)) +((((-858)) . T)) +(((|#1| (-407 (-563)) (-1075)) . T)) +(|has| |#1| (-145)) +(((|#1|) . T)) +(|has| |#1| (-555)) +((((-563)) . T)) ((((-116 |#1|)) . T)) (((|#1|) . T)) -(|has| |#1| (-146)) -(-4037 (|has| |#1| (-171)) (|has| |#1| (-554))) -(-4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) -(-4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) -(-4037 (|has| |#1| (-171)) (|has| |#1| (-554))) -((((-887 (-562))) . T) (((-887 (-378))) . T) (((-535)) . T) (((-1168)) . T)) -((((-857)) . T)) -(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) -((((-857)) . T) (((-1173)) . T)) -((((-1173)) . T)) -((($) . T)) -((((-857)) . T)) -(-4037 (|has| |#2| (-171)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) -(((|#2|) |has| |#2| (-171))) -((($) -4037 (|has| |#2| (-362)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) ((|#2|) |has| |#2| (-171)) (((-406 (-562))) |has| |#2| (-38 (-406 (-562))))) -((((-865 |#1|)) . T)) -(-4037 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-721)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044)) (|has| |#2| (-1092))) -(-12 (|has| |#3| (-232)) (|has| |#3| (-1044))) -(|has| |#2| (-1143)) -(((#0=(-52)) . T) (((-2 (|:| -2319 (-1168)) (|:| -2693 #0#))) . T)) +(|has| |#1| (-147)) +(-4032 (|has| |#1| (-172)) (|has| |#1| (-555))) +(-4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) +(-4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) +(-4032 (|has| |#1| (-172)) (|has| |#1| (-555))) +((((-888 (-563))) . T) (((-888 (-379))) . T) (((-536)) . T) (((-1169)) . T)) +((((-858)) . T)) +(-4032 (|has| |#1| (-846)) (|has| |#1| (-1093))) +((((-858)) . T) (((-1174)) . T)) +((((-1174)) . T)) +((($) . T)) +((((-858)) . T)) +(-4032 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) +(((|#2|) |has| |#2| (-172))) +((($) -4032 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) ((|#2|) |has| |#2| (-172)) (((-407 (-563))) |has| |#2| (-38 (-407 (-563))))) +((((-866 |#1|)) . T)) +(-4032 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1093))) +(-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) +(|has| |#2| (-1144)) +(((#0=(-52)) . T) (((-2 (|:| -2387 (-1169)) (|:| -2557 #0#))) . T)) (((|#1| |#2|) . T)) -(-4037 (|has| |#3| (-171)) (|has| |#3| (-843)) (|has| |#3| (-1044))) -(((|#1| (-562) (-1074)) . T)) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -(((|#1| (-406 (-562)) (-1074)) . T)) -((($) -4037 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-554))) (((-406 (-562))) -4037 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T)) -((((-562) |#2|) . T)) +(-4032 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045))) +(((|#1| (-563) (-1075)) . T)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(((|#1| (-407 (-563)) (-1075)) . T)) +((($) -4032 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-555))) (((-407 (-563))) -4032 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) +((((-563) |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#2| (-367)) -(-12 (|has| |#1| (-367)) (|has| |#2| (-367))) -((((-857)) . T)) -((((-1168) |#1|) |has| |#1| (-513 (-1168) |#1|)) ((|#1| |#1|) |has| |#1| (-308 |#1|))) -(-4037 (|has| |#1| (-144)) (|has| |#1| (-367))) -(-4037 (|has| |#1| (-144)) (|has| |#1| (-367))) -(-4037 (|has| |#1| (-144)) (|has| |#1| (-367))) -(((|#1|) . T)) -((((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554))) -((((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-1166 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171))) -(((|#1|) |has| |#1| (-171)) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554)))) -((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +(|has| |#2| (-368)) +(-12 (|has| |#1| (-368)) (|has| |#2| (-368))) +((((-858)) . T)) +((((-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|))) +(-4032 (|has| |#1| (-145)) (|has| |#1| (-368))) +(-4032 (|has| |#1| (-145)) (|has| |#1| (-368))) +(-4032 (|has| |#1| (-145)) (|has| |#1| (-368))) +(((|#1|) . T)) +((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-555))) +((((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -4032 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -4032 (|has| |#1| (-363)) (|has| |#1| (-555)))) +((($) |has| |#1| (-555)) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) (((|#4|) . T)) -(|has| |#1| (-348)) -((((-562)) -4037 (|has| |#3| (-171)) (|has| |#3| (-843)) (-12 (|has| |#3| (-1033 (-562))) (|has| |#3| (-1092))) (|has| |#3| (-1044))) ((|#3|) -4037 (|has| |#3| (-171)) (|has| |#3| (-1092))) (((-406 (-562))) -12 (|has| |#3| (-1033 (-406 (-562)))) (|has| |#3| (-1092)))) -(((|#1|) . T)) -(((|#4|) . T) (((-857)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) ((#0=(-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) #0#) |has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))))) -(|has| |#1| (-554)) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -((((-857)) . T)) +(|has| |#1| (-349)) +((((-563)) -4032 (|has| |#3| (-172)) (|has| |#3| (-844)) (-12 (|has| |#3| (-1034 (-563))) (|has| |#3| (-1093))) (|has| |#3| (-1045))) ((|#3|) -4032 (|has| |#3| (-172)) (|has| |#3| (-1093))) (((-407 (-563))) -12 (|has| |#3| (-1034 (-407 (-563)))) (|has| |#3| (-1093)))) +(((|#1|) . T)) +(((|#4|) . T) (((-858)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((#0=(-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) #0#) |has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))))) +(|has| |#1| (-555)) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +((((-858)) . T)) (((|#1| |#2|) . T)) -(-4037 (|has| |#2| (-451)) (|has| |#2| (-904))) -(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) -(-4037 (|has| |#1| (-451)) (|has| |#1| (-904))) -((((-406 (-562))) . T) (((-562)) . T)) -((((-562)) . T)) -((((-406 (-562))) |has| |#2| (-38 (-406 (-562)))) ((|#2|) |has| |#2| (-171)) (($) -4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904)))) -((($) . T)) -((((-857)) . T)) -(((|#1|) . T)) -((((-865 |#1|)) . T) (($) . T) (((-406 (-562))) . T)) -((((-857)) . T)) -(((|#3| |#3|) -4037 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1044))) (($ $) |has| |#3| (-171))) -(|has| |#1| (-1017)) -((((-857)) . T)) -(((|#3|) -4037 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1044))) (($) |has| |#3| (-171))) -((((-562) (-112)) . T)) -((((-1173)) . T)) -(((|#1|) |has| |#1| (-308 |#1|))) -((((-1173)) . T)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -((((-1168) $) |has| |#1| (-513 (-1168) $)) (($ $) |has| |#1| (-308 $)) ((|#1| |#1|) |has| |#1| (-308 |#1|)) (((-1168) |#1|) |has| |#1| (-513 (-1168) |#1|))) -((((-1168)) |has| |#1| (-895 (-1168)))) -(-4037 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348))) +(-4032 (|has| |#2| (-452)) (|has| |#2| (-905))) +(-4032 (|has| |#1| (-846)) (|has| |#1| (-1093))) +(-4032 (|has| |#1| (-452)) (|has| |#1| (-905))) +((((-407 (-563))) . T) (((-563)) . T)) +((((-563)) . T)) +((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) |has| |#2| (-172)) (($) -4032 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))) +((($) . T)) +((((-858)) . T)) +(((|#1|) . T)) +((((-866 |#1|)) . T) (($) . T) (((-407 (-563))) . T)) +((((-858)) . T)) +(((|#3| |#3|) -4032 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045))) (($ $) |has| |#3| (-172))) +(|has| |#1| (-1018)) +((((-858)) . T)) +(((|#3|) -4032 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045))) (($) |has| |#3| (-172))) +((((-563) (-112)) . T)) +((((-1174)) . T)) +(((|#1|) |has| |#1| (-309 |#1|))) +((((-1174)) . T)) +(|has| |#1| (-368)) +(|has| |#1| (-368)) +(|has| |#1| (-368)) +((((-1169) $) |has| |#1| (-514 (-1169) $)) (($ $) |has| |#1| (-309 $)) ((|#1| |#1|) |has| |#1| (-309 |#1|)) (((-1169) |#1|) |has| |#1| (-514 (-1169) |#1|))) +((((-1169)) |has| |#1| (-896 (-1169)))) +(-4032 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349))) (((|#1| |#4|) . T)) (((|#1| |#3|) . T)) -((((-387) |#1|) . T)) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-348))) -(|has| |#1| (-1092)) -(((|#2|) . T) (((-857)) . T)) -((((-857)) . T)) -(((|#2|) . T)) -((((-905 |#1|)) . T)) -((((-857)) . T) (((-1173)) . T)) -((((-1173)) . T)) -((((-406 (-562))) |has| |#2| (-38 (-406 (-562)))) ((|#2|) |has| |#2| (-171)) (($) -4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904)))) -((((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) |has| |#1| (-171)) (($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904)))) +((((-388) |#1|) . T)) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-349))) +(|has| |#1| (-1093)) +(((|#2|) . T) (((-858)) . T)) +((((-858)) . T)) +(((|#2|) . T)) +((((-906 |#1|)) . T)) +((((-858)) . T) (((-1174)) . T)) +((((-1174)) . T)) +((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) |has| |#2| (-172)) (($) -4032 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))) +((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) -4032 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))) (((|#1| |#2|) . T)) ((($) . T)) -((((-562)) . T) (($) . T) (((-406 (-562))) . T)) -(((|#1|) . T) (((-406 (-562))) . T) (($) . T) (((-562)) . T)) -(((|#1|) . T) (((-406 (-562))) . T) (($) . T) (((-562)) . T)) -(((|#1|) . T) (((-406 (-562))) . T) (($) . T) (((-562)) . T)) +((((-563)) . T) (($) . T) (((-407 (-563))) . T)) +(((|#1|) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T)) +(((|#1|) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T)) +(((|#1|) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T)) (((|#1| |#1|) . T)) -(((#0=(-865 |#1|)) |has| #0# (-308 #0#))) -((((-562)) . T) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-348))) (((-406 (-562))) -4037 (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-1033 (-406 (-562))))) ((|#1|) . T)) +(((#0=(-866 |#1|)) |has| #0# (-309 #0#))) +((((-563)) . T) (($) -4032 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-563))) -4032 (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-1034 (-407 (-563))))) ((|#1|) . T)) (((|#1| |#2|) . T)) -(-4037 (|has| |#2| (-788)) (|has| |#2| (-843))) -(-4037 (|has| |#2| (-788)) (|has| |#2| (-843))) -(-12 (|has| |#1| (-788)) (|has| |#2| (-788))) +(-4032 (|has| |#2| (-789)) (|has| |#2| (-844))) +(-4032 (|has| |#2| (-789)) (|has| |#2| (-844))) +(-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (((|#1|) . T)) -(-12 (|has| |#1| (-788)) (|has| |#2| (-788))) -(-4037 (|has| |#2| (-171)) (|has| |#2| (-843)) (|has| |#2| (-1044))) +(-12 (|has| |#1| (-789)) (|has| |#2| (-789))) +(-4032 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) (((|#2|) . T) (($) . T)) -(((|#2|) . T) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -(|has| |#1| (-1192)) -(((#0=(-562) #0#) . T) ((#1=(-406 (-562)) #1#) . T) (($ $) . T)) -((((-406 (-562))) . T) (($) . T)) -(((|#4|) |has| |#4| (-1044))) -(((|#3|) |has| |#3| (-1044))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-562)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-562)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-562)) #0#) . T)) -(|has| |#1| (-362)) -((((-562)) . T) (((-406 (-562))) . T) (($) . T)) -((($ $) . T) ((#0=(-406 (-562)) #0#) -4037 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1| |#1|) . T)) -((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) -(((|#1|) . T) (($) . T) (((-406 (-562))) . T)) -((((-857)) . T)) -((((-857)) . T)) -(((|#1|) . T) (($) . T) (((-406 (-562))) . T)) -(((|#1|) . T) (($) . T) (((-406 (-562))) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-562) |#3|) . T)) -((((-857)) . T)) -((((-535)) |has| |#3| (-610 (-535)))) -((((-683 |#3|)) . T) (((-857)) . T)) +(((|#2|) . T) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +(|has| |#1| (-1193)) +(((#0=(-563) #0#) . T) ((#1=(-407 (-563)) #1#) . T) (($ $) . T)) +((((-407 (-563))) . T) (($) . T)) +(((|#4|) |has| |#4| (-1045))) +(((|#3|) |has| |#3| (-1045))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-563)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-563)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-563)) #0#) . T)) +(|has| |#1| (-363)) +((((-563)) . T) (((-407 (-563))) . T) (($) . T)) +((($ $) . T) ((#0=(-407 (-563)) #0#) -4032 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1| |#1|) . T)) +((((-858)) -4032 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) +(((|#1|) . T) (($) . T) (((-407 (-563))) . T)) +((((-858)) . T)) +((((-858)) . T)) +(((|#1|) . T) (($) . T) (((-407 (-563))) . T)) +(((|#1|) . T) (($) . T) (((-407 (-563))) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-563) |#3|) . T)) +((((-858)) . T)) +((((-536)) |has| |#3| (-611 (-536)))) +((((-684 |#3|)) . T) (((-858)) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-843)) -(|has| |#1| (-843)) -((($) . T) (((-406 (-562))) -4037 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T)) -(-4037 (|has| |#1| (-171)) (|has| |#1| (-554))) -((($) . T)) -(((#0=(-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) #0#) |has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-308 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))))) -(|has| |#2| (-845)) -((($) . T)) -(((|#2|) |has| |#2| (-1092))) -((((-857)) -4037 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-609 (-857))) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-721)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044)) (|has| |#2| (-1092))) (((-1256 |#2|)) . T)) -(|has| |#1| (-845)) -(|has| |#1| (-845)) -((((-1150) (-52)) . T)) -(|has| |#1| (-845)) -((((-857)) . T)) -((((-562)) |has| #0=(-406 |#2|) (-635 (-562))) ((#0#) . T)) -((($) . T) (((-562)) . T)) -((((-562) (-143)) . T)) -((((-562) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T) ((|#1| |#2|) . T)) -((((-406 (-562))) . T) (($) . T)) -(((|#1|) . T)) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -((((-857)) . T)) -((((-905 |#1|)) . T)) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -(|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) -(|has| |#1| (-843)) -(|has| |#1| (-362)) -(|has| |#1| (-843)) +(|has| |#1| (-844)) +(|has| |#1| (-844)) +((($) . T) (((-407 (-563))) -4032 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) +(-4032 (|has| |#1| (-172)) (|has| |#1| (-555))) +((($) . T)) +(((#0=(-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) #0#) |has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-309 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))))) +(|has| |#2| (-846)) +((($) . T)) +(((|#2|) |has| |#2| (-1093))) +((((-858)) -4032 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-610 (-858))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1093))) (((-1257 |#2|)) . T)) +(|has| |#1| (-846)) +(|has| |#1| (-846)) +((((-1151) (-52)) . T)) +(|has| |#1| (-846)) +((((-858)) . T)) +((((-563)) |has| #0=(-407 |#2|) (-636 (-563))) ((#0#) . T)) +((($) . T) (((-563)) . T)) +((((-563) (-144)) . T)) +((((-563) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T) ((|#1| |#2|) . T)) +((((-407 (-563))) . T) (($) . T)) +(((|#1|) . T)) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +((((-858)) . T)) +((((-906 |#1|)) . T)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) +(|has| |#1| (-844)) +(|has| |#1| (-363)) +(|has| |#1| (-844)) (((|#1|) . T) (($) . T)) -(|has| |#1| (-843)) -((((-1168)) |has| |#1| (-895 (-1168)))) -((((-505)) . T)) -(((|#1| (-1168)) . T)) -(((|#1| (-1256 |#1|) (-1256 |#1|)) . T)) -((((-857)) . T) (((-1173)) . T)) +(|has| |#1| (-844)) +((((-1169)) |has| |#1| (-896 (-1169)))) +((((-506)) . T)) +(((|#1| (-1169)) . T)) +(((|#1| (-1257 |#1|) (-1257 |#1|)) . T)) +((((-858)) . T) (((-1174)) . T)) (((|#1| |#2|) . T)) ((($ $) . T)) -((((-1173)) . T)) -(|has| |#1| (-1092)) -(((|#1| (-1168) (-813 (-1168)) (-530 (-813 (-1168)))) . T)) -((((-406 (-947 |#1|))) . T)) -((((-535)) . T)) -((((-857)) . T)) +((((-1174)) . T)) +(|has| |#1| (-1093)) +(((|#1| (-1169) (-814 (-1169)) (-531 (-814 (-1169)))) . T)) +((((-407 (-948 |#1|))) . T)) +((((-536)) . T)) +((((-858)) . T)) ((($) . T)) (((|#2|) . T) (($) . T)) -((((-562) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T) ((|#1| |#2|) . T)) +((((-563) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T) ((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-171))) -((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(((|#1|) |has| |#1| (-172))) +((($) |has| |#1| (-555)) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (((|#3|) . T)) -(((|#1|) |has| |#1| (-171))) -((((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) |has| |#1| (-171)) (($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904)))) -((($) -4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -((($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-562)) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-535)) |has| |#1| (-610 (-535))) (((-887 (-378))) |has| |#1| (-610 (-887 (-378)))) (((-887 (-562))) |has| |#1| (-610 (-887 (-562))))) -((((-857)) . T)) -(((|#2|) . T) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -((((-505)) . T)) -(|has| |#2| (-843)) -((((-505)) . T)) -(-12 (|has| |#2| (-232)) (|has| |#2| (-1044))) -(|has| |#1| (-554)) -((((-1150) |#1|) . T)) -(|has| |#1| (-1143)) -(-4037 (|has| |#2| (-171)) (|has| |#2| (-843)) (|has| |#2| (-1044))) -((((-953 |#1|)) . T)) -(((#0=(-406 (-562)) #0#) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((|#1| |#1|) . T)) -((((-406 (-562))) |has| |#1| (-1033 (-562))) (((-562)) |has| |#1| (-1033 (-562))) (((-1168)) |has| |#1| (-1033 (-1168))) ((|#1|) . T)) -((((-562) |#2|) . T)) -((((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) (((-562)) |has| |#1| (-1033 (-562))) ((|#1|) . T)) -((((-562)) |has| |#1| (-881 (-562))) (((-378)) |has| |#1| (-881 (-378)))) -((((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((|#1|) . T)) -(((|#1|) . T)) -((((-639 |#4|)) . T) (((-857)) . T)) -((((-535)) |has| |#4| (-610 (-535)))) -((((-535)) |has| |#4| (-610 (-535)))) -((((-857)) . T) (((-639 |#4|)) . T)) -((($) |has| |#1| (-843))) -((((-562)) -4037 (|has| |#2| (-171)) (|has| |#2| (-843)) (-12 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092))) (|has| |#2| (-1044))) ((|#2|) -4037 (|has| |#2| (-171)) (|has| |#2| (-1092))) (((-406 (-562))) -12 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) -(((|#1|) . T)) -((((-639 |#4|)) . T) (((-857)) . T)) -((((-535)) |has| |#4| (-610 (-535)))) -(((|#1|) . T)) -(((|#2|) . T)) -((((-1168)) |has| (-406 |#2|) (-895 (-1168)))) -(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) ((#0=(-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) #0#) |has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))))) -((($) . T)) -((($) . T)) -(((|#2|) . T)) -((((-857)) -4037 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-609 (-857))) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-367)) (|has| |#3| (-721)) (|has| |#3| (-788)) (|has| |#3| (-843)) (|has| |#3| (-1044)) (|has| |#3| (-1092))) (((-1256 |#3|)) . T)) -((((-562) |#2|) . T)) -(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) -(((|#2| |#2|) -4037 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1044))) (($ $) |has| |#2| (-171))) -(((|#2|) . T) (((-562)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T) ((|#2|) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-1150) (-1168) (-562) (-224) (-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -((((-857)) . T)) -((((-562) (-112)) . T)) -(((|#1|) . T)) -((((-857)) . T)) +(((|#1|) |has| |#1| (-172))) +((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) -4032 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))) +((($) -4032 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +((($) -4032 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-563)) . T) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-536)) |has| |#1| (-611 (-536))) (((-888 (-379))) |has| |#1| (-611 (-888 (-379)))) (((-888 (-563))) |has| |#1| (-611 (-888 (-563))))) +((((-858)) . T)) +(((|#2|) . T) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +((((-506)) . T)) +(|has| |#2| (-844)) +((((-506)) . T)) +(-12 (|has| |#2| (-233)) (|has| |#2| (-1045))) +(|has| |#1| (-555)) +((((-1151) |#1|) . T)) +(|has| |#1| (-1144)) +(-4032 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +((((-954 |#1|)) . T)) +(((#0=(-407 (-563)) #0#) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($ $) -4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) ((|#1| |#1|) . T)) +((((-407 (-563))) |has| |#1| (-1034 (-563))) (((-563)) |has| |#1| (-1034 (-563))) (((-1169)) |has| |#1| (-1034 (-1169))) ((|#1|) . T)) +((((-563) |#2|) . T)) +((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-563)) |has| |#1| (-1034 (-563))) ((|#1|) . T)) +((((-563)) |has| |#1| (-882 (-563))) (((-379)) |has| |#1| (-882 (-379)))) +((((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) ((|#1|) . T)) +(((|#1|) . T)) +((((-640 |#4|)) . T) (((-858)) . T)) +((((-536)) |has| |#4| (-611 (-536)))) +((((-536)) |has| |#4| (-611 (-536)))) +((((-858)) . T) (((-640 |#4|)) . T)) +((($) |has| |#1| (-844))) +((((-563)) -4032 (|has| |#2| (-172)) (|has| |#2| (-844)) (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) (|has| |#2| (-1045))) ((|#2|) -4032 (|has| |#2| (-172)) (|has| |#2| (-1093))) (((-407 (-563))) -12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) +(((|#1|) . T)) +((((-640 |#4|)) . T) (((-858)) . T)) +((((-536)) |has| |#4| (-611 (-536)))) +(((|#1|) . T)) +(((|#2|) . T)) +((((-1169)) |has| (-407 |#2|) (-896 (-1169)))) +(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((#0=(-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) #0#) |has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))))) +((($) . T)) +((($) . T)) +(((|#2|) . T)) +((((-858)) -4032 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-610 (-858))) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-722)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045)) (|has| |#3| (-1093))) (((-1257 |#3|)) . T)) +((((-563) |#2|) . T)) +(-4032 (|has| |#1| (-846)) (|has| |#1| (-1093))) +(((|#2| |#2|) -4032 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($ $) |has| |#2| (-172))) +(((|#2|) . T) (((-563)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T) ((|#2|) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-1151) (-1169) (-563) (-225) (-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +((((-858)) . T)) +((((-563) (-112)) . T)) +(((|#1|) . T)) +((((-858)) . T)) ((((-112)) . T)) ((((-112)) . T)) -((((-857)) . T)) -((((-857)) . T)) +((((-858)) . T)) +((((-858)) . T)) ((((-112)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -((((-857)) . T)) -((((-535)) |has| |#1| (-610 (-535)))) -((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) -(((|#2|) -4037 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-1044))) (($) |has| |#2| (-171))) -(|has| $ (-146)) -((((-406 |#2|)) . T)) -((((-888 |#1|)) . T) ((|#2|) . T) (((-562)) . T) (((-814 |#1|)) . T)) -((((-406 (-562))) |has| #0=(-406 |#2|) (-1033 (-406 (-562)))) (((-562)) |has| #0# (-1033 (-562))) ((#0#) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +((((-858)) . T)) +((((-536)) |has| |#1| (-611 (-536)))) +((((-858)) -4032 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) +(((|#2|) -4032 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($) |has| |#2| (-172))) +(|has| $ (-147)) +((((-407 |#2|)) . T)) +((((-889 |#1|)) . T) ((|#2|) . T) (((-563)) . T) (((-815 |#1|)) . T)) +((((-407 (-563))) |has| #0=(-407 |#2|) (-1034 (-407 (-563)))) (((-563)) |has| #0# (-1034 (-563))) ((#0#) . T)) (((|#2| |#2|) . T)) -(((|#4|) |has| |#4| (-171))) -(|has| |#2| (-144)) -(|has| |#2| (-146)) -(((|#3|) |has| |#3| (-171))) -(|has| |#1| (-146)) -(|has| |#1| (-144)) -(-4037 (|has| |#1| (-144)) (|has| |#1| (-367))) -(|has| |#1| (-146)) -(-4037 (|has| |#1| (-144)) (|has| |#1| (-367))) -(|has| |#1| (-146)) -(-4037 (|has| |#1| (-144)) (|has| |#1| (-367))) -(|has| |#1| (-146)) -(((|#1|) . T)) -(|has| |#2| (-232)) -(((|#2|) . T)) -((((-857)) . T) (((-1173)) . T)) -((((-1173)) . T)) -((((-1168) (-52)) . T)) -((((-857)) . T)) -((((-857)) . T) (((-1173)) . T)) -((((-1173)) . T)) +(((|#4|) |has| |#4| (-172))) +(|has| |#2| (-145)) +(|has| |#2| (-147)) +(((|#3|) |has| |#3| (-172))) +(|has| |#1| (-147)) +(|has| |#1| (-145)) +(-4032 (|has| |#1| (-145)) (|has| |#1| (-368))) +(|has| |#1| (-147)) +(-4032 (|has| |#1| (-145)) (|has| |#1| (-368))) +(|has| |#1| (-147)) +(-4032 (|has| |#1| (-145)) (|has| |#1| (-368))) +(|has| |#1| (-147)) +(((|#1|) . T)) +(|has| |#2| (-233)) +(((|#2|) . T)) +((((-858)) . T) (((-1174)) . T)) +((((-1174)) . T)) +((((-1169) (-52)) . T)) +((((-858)) . T)) +((((-858)) . T) (((-1174)) . T)) +((((-1174)) . T)) (((|#1| |#1|) . T)) -((((-1168)) |has| |#2| (-895 (-1168)))) +((((-1169)) |has| |#2| (-896 (-1169)))) ((((-129)) . T)) -((((-562) (-112)) . T)) -(|has| |#1| (-554)) -(((|#1|) . T) (((-562)) . T) (((-814 (-1168))) . T)) +((((-563) (-112)) . T)) +(|has| |#1| (-555)) +(((|#1|) . T) (((-563)) . T) (((-815 (-1169))) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) (((|#3|) . T)) -(|has| |#1| (-38 (-406 (-562)))) -((((-562)) . T) ((|#2|) . T) (((-406 (-562))) |has| |#2| (-1033 (-406 (-562))))) -(((|#1|) . T)) -((((-999 2)) . T) (((-406 (-562))) . T) (((-857)) . T)) -((((-535)) . T) (((-887 (-562))) . T) (((-378)) . T) (((-224)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-994 |#1|)) . T) ((|#1|) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -((((-406 (-562))) . T) (((-406 |#1|)) . T) ((|#1|) . T) (($) . T)) -(((|#1| (-1164 |#1|)) . T)) -((((-562)) . T) (($) . T) (((-406 (-562))) . T)) +(|has| |#1| (-38 (-407 (-563)))) +((((-563)) . T) ((|#2|) . T) (((-407 (-563))) |has| |#2| (-1034 (-407 (-563))))) +(((|#1|) . T)) +((((-1000 2)) . T) (((-407 (-563))) . T) (((-858)) . T)) +((((-536)) . T) (((-888 (-563))) . T) (((-379)) . T) (((-225)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-995 |#1|)) . T) ((|#1|) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +((((-407 (-563))) . T) (((-407 |#1|)) . T) ((|#1|) . T) (($) . T)) +(((|#1| (-1165 |#1|)) . T)) +((((-563)) . T) (($) . T) (((-407 (-563))) . T)) (((|#3|) . T) (($) . T)) -(|has| |#1| (-845)) -(((|#2|) . T)) -((((-562)) . T) (($) . T) (((-406 (-562))) . T)) -((((-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) . T)) -((((-562) |#2|) . T)) -((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) -(((|#2|) . T)) -((((-562) |#3|) . T)) -(((|#2|) . T)) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -((((-857)) . T)) -((((-1248 |#1| |#2| |#3|)) |has| |#1| (-362))) -(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) -(((|#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) -(|has| |#1| (-1092)) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) ((#0=(-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) #0#) |has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))))) +(|has| |#1| (-846)) +(((|#2|) . T)) +((((-563)) . T) (($) . T) (((-407 (-563))) . T)) +((((-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) . T)) +((((-563) |#2|) . T)) +((((-858)) -4032 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) +(((|#2|) . T)) +((((-563) |#3|) . T)) +(((|#2|) . T)) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +((((-858)) . T)) +((((-1249 |#1| |#2| |#3|)) |has| |#1| (-363))) +(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) +(((|#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) +(|has| |#1| (-1093)) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((#0=(-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) #0#) |has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))))) (((|#2| |#2|) . T)) -(|has| |#1| (-38 (-406 (-562)))) +(|has| |#1| (-38 (-407 (-563)))) (((|#2|) . T)) -(|has| |#2| (-362)) -(((|#2|) . T) (((-562)) |has| |#2| (-1033 (-562))) (((-406 (-562))) |has| |#2| (-1033 (-406 (-562))))) +(|has| |#2| (-363)) +(((|#2|) . T) (((-563)) |has| |#2| (-1034 (-563))) (((-407 (-563))) |has| |#2| (-1034 (-407 (-563))))) (((|#1|) . T)) (((|#2|) . T)) -((((-1150) (-52)) . T)) -(((|#2|) |has| |#2| (-171))) -((((-562) |#3|) . T)) -((((-562) (-143)) . T)) -((((-143)) . T)) -((((-857)) . T)) -((((-1173)) . T)) +((((-1151) (-52)) . T)) +(((|#2|) |has| |#2| (-172))) +((((-563) |#3|) . T)) +((((-563) (-144)) . T)) +((((-144)) . T)) +((((-858)) . T)) +((((-1174)) . T)) ((((-112)) . T)) -(|has| |#1| (-146)) +(|has| |#1| (-147)) (((|#1|) . T)) -(|has| |#1| (-144)) +(|has| |#1| (-145)) ((($) . T)) -(|has| |#1| (-554)) +(|has| |#1| (-555)) ((($) . T)) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (((|#1|) . T)) -(((|#2|) . T) (((-562)) |has| |#2| (-635 (-562)))) -((((-143)) . T)) -((((-857)) . T)) -((((-562)) |has| |#1| (-635 (-562))) ((|#1|) . T)) -((((-562)) |has| |#1| (-635 (-562))) ((|#1|) . T)) -((((-562)) |has| |#1| (-635 (-562))) ((|#1|) . T)) -((((-1150) (-52)) . T)) +(((|#2|) . T) (((-563)) |has| |#2| (-636 (-563)))) +((((-144)) . T)) +((((-858)) . T)) +((((-563)) |has| |#1| (-636 (-563))) ((|#1|) . T)) +((((-563)) |has| |#1| (-636 (-563))) ((|#1|) . T)) +((((-563)) |has| |#1| (-636 (-563))) ((|#1|) . T)) +((((-1151) (-52)) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (((|#1| |#2|) . T)) -((((-562) (-143)) . T)) -(((#0=(-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) #0#) |has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) -((($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -(|has| |#1| (-845)) -(((|#2| (-766) (-1074)) . T)) +((((-563) (-144)) . T)) +(((#0=(-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) #0#) |has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) +((($) -4032 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +(|has| |#1| (-846)) +(((|#2| (-767) (-1075)) . T)) (((|#1| |#2|) . T)) -(-4037 (|has| |#1| (-171)) (|has| |#1| (-554))) -(|has| |#1| (-786)) -(((|#1|) |has| |#1| (-171))) +(-4032 (|has| |#1| (-172)) (|has| |#1| (-555))) +(|has| |#1| (-787)) +(((|#1|) |has| |#1| (-172))) (((|#4|) . T)) (((|#4|) . T)) (((|#1| |#2|) . T)) -(-4037 (|has| |#1| (-146)) (-12 (|has| |#1| (-362)) (|has| |#2| (-146)))) -(-4037 (|has| |#1| (-144)) (-12 (|has| |#1| (-362)) (|has| |#2| (-144)))) +(-4032 (|has| |#1| (-147)) (-12 (|has| |#1| (-363)) (|has| |#2| (-147)))) +(-4032 (|has| |#1| (-145)) (-12 (|has| |#1| (-363)) (|has| |#2| (-145)))) (((|#4|) . T)) -(|has| |#1| (-144)) -((((-1150) |#1|) . T)) -(|has| |#1| (-146)) +(|has| |#1| (-145)) +((((-1151) |#1|) . T)) +(|has| |#1| (-147)) (((|#1|) . T)) -((((-562)) . T)) -((((-857)) . T)) +((((-563)) . T)) +((((-858)) . T)) (((|#1| |#2|) . T)) -((((-857)) . T)) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +((((-858)) . T)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (((|#3|) . T)) -((((-1248 |#1| |#2| |#3|)) |has| |#1| (-362))) -((((-857)) . T)) -(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) -(((|#1|) . T)) -((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) -((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092))) (((-953 |#1|)) . T)) -(|has| |#1| (-843)) -(|has| |#1| (-843)) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -((((-953 |#1|)) . T)) -(|has| |#2| (-362)) -(((|#1|) |has| |#1| (-171))) -(((|#2|) |has| |#2| (-1044))) -((((-1150) |#1|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) -(((|#2| (-888 |#1|)) . T)) -((($) . T)) -((((-387) (-1150)) . T)) -((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -((((-857)) -4037 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-609 (-857))) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-721)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044)) (|has| |#2| (-1092))) (((-1256 |#2|)) . T)) -(((#0=(-52)) . T) (((-2 (|:| -2319 (-1150)) (|:| -2693 #0#))) . T)) -(((|#1|) . T)) -((((-857)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) -((((-143)) . T)) -(|has| |#2| (-144)) -(|has| |#2| (-146)) -(|has| |#1| (-472)) -(-4037 (|has| |#1| (-472)) (|has| |#1| (-721)) (|has| |#1| (-895 (-1168))) (|has| |#1| (-1044))) -(|has| |#1| (-362)) -((((-857)) . T)) -(|has| |#1| (-38 (-406 (-562)))) -((((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554))) -((($) |has| |#1| (-554))) -((((-1173)) . T)) -(|has| |#1| (-843)) -(|has| |#1| (-843)) -((((-857)) . T)) -(((|#2|) . T)) -((((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-1248 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171))) -(((|#1|) |has| |#1| (-171)) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554)))) -((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -(((|#2|) . T) (((-562)) . T) (((-814 |#1|)) . T)) +((((-1249 |#1| |#2| |#3|)) |has| |#1| (-363))) +((((-858)) . T)) +(-4032 (|has| |#1| (-846)) (|has| |#1| (-1093))) +(((|#1|) . T)) +((((-858)) -4032 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) +((((-858)) -4032 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093))) (((-954 |#1|)) . T)) +(|has| |#1| (-844)) +(|has| |#1| (-844)) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +((((-954 |#1|)) . T)) +(|has| |#2| (-363)) +(((|#1|) |has| |#1| (-172))) +(((|#2|) |has| |#2| (-1045))) +((((-1151) |#1|) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) +(((|#2| (-889 |#1|)) . T)) +((($) . T)) +((((-388) (-1151)) . T)) +((($) |has| |#1| (-555)) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +((((-858)) -4032 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-610 (-858))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1093))) (((-1257 |#2|)) . T)) +(((#0=(-52)) . T) (((-2 (|:| -2387 (-1151)) (|:| -2557 #0#))) . T)) +(((|#1|) . T)) +((((-858)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) +((((-144)) . T)) +(|has| |#2| (-145)) +(|has| |#2| (-147)) +(|has| |#1| (-473)) +(-4032 (|has| |#1| (-473)) (|has| |#1| (-722)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045))) +(|has| |#1| (-363)) +((((-858)) . T)) +(|has| |#1| (-38 (-407 (-563)))) +((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-555))) +((($) |has| |#1| (-555))) +((((-1174)) . T)) +(|has| |#1| (-844)) +(|has| |#1| (-844)) +((((-858)) . T)) +(((|#2|) . T)) +((((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -4032 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-1249 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -4032 (|has| |#1| (-363)) (|has| |#1| (-555)))) +((($) |has| |#1| (-555)) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +(((|#2|) . T) (((-563)) . T) (((-815 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-1168)) |has| |#1| (-895 (-1168)))) -((((-905 |#1|)) . T) (((-406 (-562))) . T) (($) . T)) -((((-857)) . T)) -((((-857)) . T)) -(|has| |#1| (-1092)) -(((|#2| (-481 (-3492 |#1|) (-766)) (-859 |#1|)) . T)) -((((-406 (-562))) . #0=(|has| |#2| (-362))) (($) . #0#)) -(((|#1| (-530 (-1168)) (-1168)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-857)) . T)) -((((-857)) . T)) +((((-1169)) |has| |#1| (-896 (-1169)))) +((((-906 |#1|)) . T) (((-407 (-563))) . T) (($) . T)) +((((-858)) . T)) +((((-858)) . T)) +(|has| |#1| (-1093)) +(((|#2| (-482 (-3608 |#1|) (-767)) (-860 |#1|)) . T)) +((((-407 (-563))) . #0=(|has| |#2| (-363))) (($) . #0#)) +(((|#1| (-531 (-1169)) (-1169)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-858)) . T)) +((((-858)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(|has| |#2| (-171)) +(|has| |#2| (-172)) (((|#2| |#2|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) -(|has| |#1| (-144)) -(|has| |#1| (-146)) +(|has| |#1| (-145)) +(|has| |#1| (-147)) (((|#1|) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) . T)) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -((((-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) . T)) -((((-1166 |#1| |#2| |#3|)) |has| |#1| (-362))) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -((((-1168) (-52)) . T)) +(((|#1|) . T) (((-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) . T)) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +((((-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) . T)) +((((-1167 |#1| |#2| |#3|)) |has| |#1| (-363))) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +((((-1169) (-52)) . T)) ((($ $) . T)) -(((|#1| (-562)) . T)) -((((-905 |#1|)) . T)) -(((|#1|) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-1044))) (($) -4037 (|has| |#1| (-895 (-1168))) (|has| |#1| (-1044)))) -(((|#1|) . T) (((-562)) |has| |#1| (-1033 (-562))) (((-406 (-562))) |has| |#1| (-1033 (-406 (-562))))) -(|has| |#1| (-845)) -(|has| |#1| (-845)) -((((-562) |#2|) . T)) -((((-562)) . T)) -((((-1248 |#1| |#2| |#3|)) -12 (|has| (-1248 |#1| |#2| |#3|) (-308 (-1248 |#1| |#2| |#3|))) (|has| |#1| (-362)))) -(|has| |#1| (-845)) -((((-683 |#2|)) . T) (((-857)) . T)) -((((-406 (-562))) . T) (((-562)) . T) (($) . T)) +(((|#1| (-563)) . T)) +((((-906 |#1|)) . T)) +(((|#1|) -4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1045))) (($) -4032 (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045)))) +(((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563))))) +(|has| |#1| (-846)) +(|has| |#1| (-846)) +((((-563) |#2|) . T)) +((((-563)) . T)) +((((-1249 |#1| |#2| |#3|)) -12 (|has| (-1249 |#1| |#2| |#3|) (-309 (-1249 |#1| |#2| |#3|))) (|has| |#1| (-363)))) +(|has| |#1| (-846)) +((((-684 |#2|)) . T) (((-858)) . T)) +((((-407 (-563))) . T) (((-563)) . T) (($) . T)) (((|#1| |#2|) . T)) -((((-406 (-947 |#1|))) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) -(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) -(((|#1|) |has| |#1| (-171))) -(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) -(|has| |#2| (-845)) -(|has| |#1| (-845)) -(((|#3|) -4037 (|has| |#3| (-171)) (|has| |#3| (-362)))) -(-4037 (|has| |#2| (-362)) (|has| |#2| (-451)) (|has| |#2| (-904))) -((($ $) . T) ((#0=(-406 (-562)) #0#) . T)) -((((-562) |#2|) . T)) -(((|#2|) -4037 (|has| |#2| (-171)) (|has| |#2| (-362)))) -(|has| |#1| (-348)) -(((|#3| |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) -(((|#2|) . T) (((-562)) . T)) -((($) . T) (((-406 (-562))) . T)) -((((-562) (-112)) . T)) -(|has| |#1| (-815)) -(|has| |#1| (-815)) -(((|#1|) . T)) -(-4037 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348))) -(|has| |#1| (-843)) -(|has| |#1| (-843)) -(|has| |#1| (-843)) -(((|#1|) . T) (((-406 (-562))) . T) (($) . T)) -(|has| |#1| (-38 (-406 (-562)))) -((((-562)) . T) (($) . T) (((-406 (-562))) . T)) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-348))) -(|has| |#1| (-38 (-406 (-562)))) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -((((-1168)) |has| |#1| (-895 (-1168))) (((-1074)) . T)) -(((|#1|) . T)) -(|has| |#1| (-843)) -(((#0=(-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) #0#) |has| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (-308 (-2 (|:| -2319 (-1150)) (|:| -2693 (-52)))))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -(|has| |#1| (-1092)) -((((-857)) . T) (((-1173)) . T)) -((((-1173)) . T)) +((((-407 (-948 |#1|))) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) +(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) +(((|#1|) |has| |#1| (-172))) +(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) +(|has| |#2| (-846)) +(|has| |#1| (-846)) +(((|#3|) -4032 (|has| |#3| (-172)) (|has| |#3| (-363)))) +(-4032 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-905))) +((($ $) . T) ((#0=(-407 (-563)) #0#) . T)) +((((-563) |#2|) . T)) +(((|#2|) -4032 (|has| |#2| (-172)) (|has| |#2| (-363)))) +(|has| |#1| (-349)) +(((|#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) +(((|#2|) . T) (((-563)) . T)) +((($) . T) (((-407 (-563))) . T)) +((((-563) (-112)) . T)) +(|has| |#1| (-816)) +(|has| |#1| (-816)) +(((|#1|) . T)) +(-4032 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349))) +(|has| |#1| (-844)) +(|has| |#1| (-844)) +(|has| |#1| (-844)) +(((|#1|) . T) (((-407 (-563))) . T) (($) . T)) +(|has| |#1| (-38 (-407 (-563)))) +((((-563)) . T) (($) . T) (((-407 (-563))) . T)) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-349))) +(|has| |#1| (-38 (-407 (-563)))) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +((((-1169)) |has| |#1| (-896 (-1169))) (((-1075)) . T)) +(((|#1|) . T)) +(|has| |#1| (-844)) +(((#0=(-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) #0#) |has| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (-309 (-2 (|:| -2387 (-1151)) (|:| -2557 (-52)))))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(|has| |#1| (-1093)) +((((-858)) . T) (((-1174)) . T)) +((((-1174)) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1|) . T)) -(((|#1| |#2| |#3| (-239 |#2| |#3|) (-239 |#1| |#3|)) . T)) +(((|#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#2|) . T)) (((|#1|) . T)) -(((|#1| (-530 |#2|) |#2|) . T)) -((((-857)) . T)) -((((-143)) . T) (((-857)) . T)) -(((|#1| (-766) (-1074)) . T)) +(((|#1| (-531 |#2|) |#2|) . T)) +((((-858)) . T)) +((((-144)) . T) (((-858)) . T)) +(((|#1| (-767) (-1075)) . T)) (((|#3|) . T)) -((((-143)) . T)) -((((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) (((-562)) -4037 (|has| |#1| (-843)) (|has| |#1| (-1033 (-562)))) ((|#1|) . T)) +((((-144)) . T)) +((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-563)) -4032 (|has| |#1| (-844)) (|has| |#1| (-1034 (-563)))) ((|#1|) . T)) (((|#1|) . T)) -((((-143)) . T)) -(((|#2|) |has| |#2| (-171))) -(-4037 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-721)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044)) (|has| |#2| (-1092))) +((((-144)) . T)) +(((|#2|) |has| |#2| (-172))) +(-4032 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1093))) (((|#1|) . T)) -(|has| |#1| (-144)) -(|has| |#1| (-146)) -(|has| |#3| (-171)) -(((|#4|) |has| |#4| (-362))) -(((|#3|) |has| |#3| (-362))) +(|has| |#1| (-145)) +(|has| |#1| (-147)) +(|has| |#3| (-172)) +(((|#4|) |has| |#4| (-363))) +(((|#3|) |has| |#3| (-363))) (((|#1|) . T)) -(((|#2|) |has| |#1| (-362))) -((((-857)) . T)) +(((|#2|) |has| |#1| (-363))) +((((-858)) . T)) (((|#2|) . T)) -(((|#1| (-1164 |#1|)) . T)) -((((-1074)) . T) ((|#1|) . T) (((-562)) |has| |#1| (-1033 (-562))) (((-406 (-562))) |has| |#1| (-1033 (-406 (-562))))) -((($) . T) ((|#1|) . T) (((-406 (-562))) . T)) +(((|#1| (-1165 |#1|)) . T)) +((((-1075)) . T) ((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563))))) +((($) . T) ((|#1|) . T) (((-407 (-563))) . T)) (((|#2|) . T)) -((((-1166 |#1| |#2| |#3|)) |has| |#1| (-362))) -((($) |has| |#1| (-843))) -(|has| |#1| (-904)) -((((-1168)) . T)) -((((-857)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +((((-1167 |#1| |#2| |#3|)) |has| |#1| (-363))) +((($) |has| |#1| (-844))) +(|has| |#1| (-905)) +((((-1169)) . T)) +((((-858)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((#0=(-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) #0#) |has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-308 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))))) -(-4037 (|has| |#2| (-451)) (|has| |#2| (-904))) -(-4037 (|has| |#1| (-451)) (|has| |#1| (-904))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((#0=(-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) #0#) |has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-309 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))))) +(-4032 (|has| |#2| (-452)) (|has| |#2| (-905))) +(-4032 (|has| |#1| (-452)) (|has| |#1| (-905))) (((|#1|) . T) (($) . T)) -(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) +(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -4037 (|has| |#3| (-171)) (|has| |#3| (-362)))) -(|has| |#1| (-845)) -(|has| |#1| (-554)) -((((-579 |#1|)) . T)) +(((|#3|) -4032 (|has| |#3| (-172)) (|has| |#3| (-363)))) +(|has| |#1| (-846)) +(|has| |#1| (-555)) +((((-580 |#1|)) . T)) ((($) . T)) (((|#2|) . T)) -(-4037 (-12 (|has| |#1| (-362)) (|has| |#2| (-815))) (-12 (|has| |#1| (-362)) (|has| |#2| (-845)))) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-554))) -((((-905 |#1|)) . T)) -(((|#1| (-495 |#1| |#3|) (-495 |#1| |#2|)) . T)) +(-4032 (-12 (|has| |#1| (-363)) (|has| |#2| (-816))) (-12 (|has| |#1| (-363)) (|has| |#2| (-846)))) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-555))) +((((-906 |#1|)) . T)) +(((|#1| (-496 |#1| |#3|) (-496 |#1| |#2|)) . T)) (((|#1| |#4| |#5|) . T)) -(((|#1| (-766)) . T)) -((((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554))) -((((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-1166 |#1| |#2| |#3|)) |has| |#1| (-362)) ((|#1|) |has| |#1| (-171))) -(((|#1|) |has| |#1| (-171)) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554)))) -((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -((((-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) . T)) -((((-406 |#2|)) . T) (((-406 (-562))) . T) (($) . T)) -((((-666 |#1|)) . T)) +(((|#1| (-767)) . T)) +((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-555))) +((((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -4032 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -4032 (|has| |#1| (-363)) (|has| |#1| (-555)))) +((($) |has| |#1| (-555)) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +((((-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) . T)) +((((-407 |#2|)) . T) (((-407 (-563))) . T) (($) . T)) +((((-667 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-857)) . T) (((-1173)) . T)) -((((-535)) . T)) -((((-857)) . T)) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -((((-857)) . T)) -((((-406 (-562))) |has| |#2| (-38 (-406 (-562)))) ((|#2|) |has| |#2| (-171)) (($) -4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904)))) -((((-1173)) . T)) -((((-406 (-562))) . T) (($) . T) (((-406 |#1|)) . T) ((|#1|) . T) (((-562)) . T)) -(((|#3|) . T) (((-562)) . T) (((-608 $)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) -(((|#2|) . T)) -(-4037 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-367)) (|has| |#3| (-721)) (|has| |#3| (-788)) (|has| |#3| (-843)) (|has| |#3| (-1044)) (|has| |#3| (-1092))) -(-4037 (|has| |#2| (-171)) (|has| |#2| (-843)) (|has| |#2| (-1044))) -((((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) (((-562)) |has| |#1| (-1033 (-562))) ((|#1|) . T)) -(|has| |#1| (-1192)) -(|has| |#1| (-1192)) -(-4037 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-721)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044)) (|has| |#2| (-1092))) -(|has| |#1| (-1192)) -(|has| |#1| (-1192)) +((((-858)) . T) (((-1174)) . T)) +((((-536)) . T)) +((((-858)) . T)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +((((-858)) . T)) +((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) |has| |#2| (-172)) (($) -4032 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))) +((((-1174)) . T)) +((((-407 (-563))) . T) (($) . T) (((-407 |#1|)) . T) ((|#1|) . T) (((-563)) . T)) +(((|#3|) . T) (((-563)) . T) (((-609 $)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +(((|#2|) . T)) +(-4032 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-722)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045)) (|has| |#3| (-1093))) +(-4032 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-563)) |has| |#1| (-1034 (-563))) ((|#1|) . T)) +(|has| |#1| (-1193)) +(|has| |#1| (-1193)) +(-4032 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1093))) +(|has| |#1| (-1193)) +(|has| |#1| (-1193)) (((|#3| |#3|) . T)) -((((-562)) . T) (($) . T) (((-406 (-562))) . T)) -((($ $) . T) ((#0=(-406 (-562)) #0#) . T) ((#1=(-406 |#1|) #1#) . T) ((|#1| |#1|) . T)) -((($) . T) (((-406 (-562))) . T) (((-406 |#1|)) . T) ((|#1|) . T)) -(((|#1|) . T) (((-406 (-562))) . T) (($) . T)) -(((|#1|) . T) (((-406 (-562))) . T) (($) . T)) +((((-563)) . T) (($) . T) (((-407 (-563))) . T)) +((($ $) . T) ((#0=(-407 (-563)) #0#) . T) ((#1=(-407 |#1|) #1#) . T) ((|#1| |#1|) . T)) +((($) . T) (((-407 (-563))) . T) (((-407 |#1|)) . T) ((|#1|) . T)) +(((|#1|) . T) (((-407 (-563))) . T) (($) . T)) +(((|#1|) . T) (((-407 (-563))) . T) (($) . T)) (((|#3|) . T)) -(((|#1|) . T) (((-406 (-562))) . T) (($) . T)) -((((-1150) (-52)) . T)) -(|has| |#1| (-1092)) -(-4037 (|has| |#2| (-815)) (|has| |#2| (-845))) -(((|#1|) . T)) -(((|#1|) |has| |#1| (-171)) (($) . T)) -((($) -4037 (|has| |#1| (-362)) (|has| |#1| (-348))) (((-406 (-562))) -4037 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T)) -((($) . T)) -((((-1166 |#1| |#2| |#3|)) -12 (|has| (-1166 |#1| |#2| |#3|) (-308 (-1166 |#1| |#2| |#3|))) (|has| |#1| (-362)))) -((((-857)) . T)) -((((-562)) . T) (($) . T)) -((((-766)) . T)) -(-4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -((((-857)) . T)) -((($) . T) (((-562)) . T)) -((($) . T)) -(|has| |#2| (-904)) -(|has| |#1| (-362)) -(((|#2|) |has| |#2| (-1092))) -(-4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) -(-4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) -((((-535)) . T) (((-406 (-1164 (-562)))) . T) (((-224)) . T) (((-378)) . T)) -((((-378)) . T) (((-224)) . T) (((-857)) . T)) -(|has| |#1| (-904)) -(|has| |#1| (-904)) -(|has| |#1| (-904)) -(-4037 (|has| |#1| (-451)) (|has| |#1| (-904))) +(((|#1|) . T) (((-407 (-563))) . T) (($) . T)) +((((-1151) (-52)) . T)) +(|has| |#1| (-1093)) +(-4032 (|has| |#2| (-816)) (|has| |#2| (-846))) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-172)) (($) . T)) +((($) -4032 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-563))) -4032 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) +((($) . T)) +((((-1167 |#1| |#2| |#3|)) -12 (|has| (-1167 |#1| |#2| |#3|) (-309 (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363)))) +((((-858)) . T)) +((((-563)) . T) (($) . T)) +((((-767)) . T)) +(-4032 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +((((-858)) . T)) +((($) . T) (((-563)) . T)) +((($) . T)) +(|has| |#2| (-905)) +(|has| |#1| (-363)) +(((|#2|) |has| |#2| (-1093))) +(-4032 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) +(-4032 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) +((((-536)) . T) (((-407 (-1165 (-563)))) . T) (((-225)) . T) (((-379)) . T)) +((((-379)) . T) (((-225)) . T) (((-858)) . T)) +(|has| |#1| (-905)) +(|has| |#1| (-905)) +(|has| |#1| (-905)) +(-4032 (|has| |#1| (-452)) (|has| |#1| (-905))) ((($) . T) ((|#2|) . T)) -(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-904))) -((((-857)) . T)) +(-4032 (|has| |#1| (-846)) (|has| |#1| (-1093))) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-905))) +((((-858)) . T)) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) +(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) ((($ $) . T)) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) ((($ $) . T)) -((((-562) (-112)) . T)) +((((-563) (-112)) . T)) ((($) . T)) (((|#1|) . T)) -((((-562)) . T)) +((((-563)) . T)) ((((-112)) . T)) -(-4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) -(|has| |#1| (-38 (-406 (-562)))) -(((|#1| (-562)) . T)) +(-4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) +(|has| |#1| (-38 (-407 (-563)))) +(((|#1| (-563)) . T)) ((($) . T)) -(((|#2|) . T) (((-562)) |has| |#2| (-635 (-562)))) -((((-562)) |has| |#1| (-635 (-562))) ((|#1|) . T)) +(((|#2|) . T) (((-563)) |has| |#2| (-636 (-563)))) +((((-563)) |has| |#1| (-636 (-563))) ((|#1|) . T)) (((|#1|) . T)) -((((-562)) . T)) +((((-563)) . T)) (((|#1| |#2|) . T)) -((((-1168)) |has| |#1| (-1044))) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -(((|#1|) . T)) -((((-857)) . T)) -(((|#1| (-562)) . T)) -(((|#1| (-1248 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(((|#1| (-406 (-562))) . T)) -(((|#1| (-1220 |#1| |#2| |#3|)) . T)) -(((|#1| (-766)) . T)) -(((|#1|) . T)) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -((((-857)) . T)) -(|has| |#1| (-1092)) -((((-1150) |#1|) . T)) -((($) . T)) -(|has| |#2| (-146)) -(|has| |#2| (-144)) -(((|#1| (-530 (-813 (-1168))) (-813 (-1168))) . T)) -((((-857)) . T)) -((((-1242 |#1| |#2| |#3| |#4|)) . T)) -((((-1242 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1044))) -((((-562) (-112)) . T)) -((((-857)) |has| |#1| (-1092))) -(|has| |#2| (-171)) -((((-562)) . T)) -(|has| |#2| (-843)) -(((|#1|) . T)) -((((-562)) . T)) -((((-857)) . T)) -(-4037 (|has| |#1| (-144)) (|has| |#1| (-348))) -(|has| |#1| (-146)) -((((-857)) . T)) +((((-1169)) |has| |#1| (-1045))) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +(((|#1|) . T)) +((((-858)) . T)) +(((|#1| (-563)) . T)) +(((|#1| (-1249 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(((|#1| (-407 (-563))) . T)) +(((|#1| (-1221 |#1| |#2| |#3|)) . T)) +(((|#1| (-767)) . T)) +(((|#1|) . T)) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +((((-858)) . T)) +(|has| |#1| (-1093)) +((((-1151) |#1|) . T)) +((($) . T)) +(|has| |#2| (-147)) +(|has| |#2| (-145)) +(((|#1| (-531 (-814 (-1169))) (-814 (-1169))) . T)) +((((-858)) . T)) +((((-1243 |#1| |#2| |#3| |#4|)) . T)) +((((-1243 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1045))) +((((-563) (-112)) . T)) +((((-858)) |has| |#1| (-1093))) +(|has| |#2| (-172)) +((((-563)) . T)) +(|has| |#2| (-844)) +(((|#1|) . T)) +((((-563)) . T)) +((((-858)) . T)) +(-4032 (|has| |#1| (-145)) (|has| |#1| (-349))) +(|has| |#1| (-147)) +((((-858)) . T)) (((|#3|) . T)) -(-4037 (|has| |#3| (-171)) (|has| |#3| (-843)) (|has| |#3| (-1044))) -((((-857)) . T)) -((((-1241 |#2| |#3| |#4|)) . T) (((-1242 |#1| |#2| |#3| |#4|)) . T)) -((((-857)) . T)) -((((-48)) -12 (|has| |#1| (-554)) (|has| |#1| (-1033 (-562)))) (((-608 $)) . T) ((|#1|) . T) (((-562)) |has| |#1| (-1033 (-562))) (((-406 (-562))) -4037 (-12 (|has| |#1| (-554)) (|has| |#1| (-1033 (-562)))) (|has| |#1| (-1033 (-406 (-562))))) (((-406 (-947 |#1|))) |has| |#1| (-554)) (((-947 |#1|)) |has| |#1| (-1044)) (((-1168)) . T)) +(-4032 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045))) +((((-858)) . T)) +((((-1242 |#2| |#3| |#4|)) . T) (((-1243 |#1| |#2| |#3| |#4|)) . T)) +((((-858)) . T)) +((((-48)) -12 (|has| |#1| (-555)) (|has| |#1| (-1034 (-563)))) (((-609 $)) . T) ((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) -4032 (-12 (|has| |#1| (-555)) (|has| |#1| (-1034 (-563)))) (|has| |#1| (-1034 (-407 (-563))))) (((-407 (-948 |#1|))) |has| |#1| (-555)) (((-948 |#1|)) |has| |#1| (-1045)) (((-1169)) . T)) (((|#1|) . T) (($) . T)) -(((|#1| (-766)) . T)) -((($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171))) -(((|#1|) |has| |#1| (-308 |#1|))) -((((-1242 |#1| |#2| |#3| |#4|)) . T)) -((((-562)) |has| |#1| (-881 (-562))) (((-378)) |has| |#1| (-881 (-378)))) -(((|#1|) . T)) -(|has| |#1| (-554)) -(((|#1|) . T)) -((((-857)) . T)) -(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) |has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))))) -(((|#1|) |has| |#1| (-171))) -((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) -(((|#1|) . T)) -(((|#3|) |has| |#3| (-1092))) -((((-905 |#1|)) . T) (((-406 (-562))) . T) (($) . T) (((-562)) . T)) -(((|#2|) -4037 (|has| |#2| (-171)) (|has| |#2| (-362)))) -((((-1241 |#2| |#3| |#4|)) . T)) +(((|#1| (-767)) . T)) +((($) -4032 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-309 |#1|))) +((((-1243 |#1| |#2| |#3| |#4|)) . T)) +((((-563)) |has| |#1| (-882 (-563))) (((-379)) |has| |#1| (-882 (-379)))) +(((|#1|) . T)) +(|has| |#1| (-555)) +(((|#1|) . T)) +((((-858)) . T)) +(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) |has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))))) +(((|#1|) |has| |#1| (-172))) +((($) |has| |#1| (-555)) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) +(((|#1|) . T)) +(((|#3|) |has| |#3| (-1093))) +((((-906 |#1|)) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T)) +(((|#2|) -4032 (|has| |#2| (-172)) (|has| |#2| (-363)))) +((((-1242 |#2| |#3| |#4|)) . T)) ((((-112)) . T)) -(|has| |#1| (-815)) -(|has| |#1| (-815)) -(((|#1| (-562) (-1074)) . T)) -((($) |has| |#1| (-308 $)) ((|#1|) |has| |#1| (-308 |#1|))) -(|has| |#1| (-843)) -(|has| |#1| (-843)) -(((|#1| (-562) (-1074)) . T)) -(-4037 (|has| |#1| (-895 (-1168))) (|has| |#1| (-1044))) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -(((|#1| (-406 (-562)) (-1074)) . T)) -(((|#1| (-766) (-1074)) . T)) -(|has| |#1| (-845)) -(((#0=(-905 |#1|) #0#) . T) (($ $) . T) ((#1=(-406 (-562)) #1#) . T)) -(|has| |#2| (-144)) -(|has| |#2| (-146)) -(((|#2|) . T)) -(|has| |#1| (-144)) -(|has| |#1| (-146)) -(|has| |#1| (-1092)) -((((-905 |#1|)) . T) (($) . T) (((-406 (-562))) . T)) -(|has| |#1| (-1092)) -((((-562)) -4037 (|has| |#1| (-895 (-1168))) (|has| |#1| (-1044)))) -(((|#1|) . T)) -(|has| |#1| (-1092)) -((((-562)) -12 (|has| |#1| (-362)) (|has| |#2| (-635 (-562)))) ((|#2|) |has| |#1| (-362))) -(-4037 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-721)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044)) (|has| |#2| (-1092))) -((((-683 (-338 (-4064) (-4064 (QUOTE X) (QUOTE HESS)) (-693)))) . T)) -(((|#2|) |has| |#2| (-171))) -(((|#1|) |has| |#1| (-171))) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -((((-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) . T)) -((((-857)) . T)) -(|has| |#3| (-843)) -((((-857)) . T)) -((((-1241 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) . T)) -((((-857)) . T)) -(((|#1| |#1|) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-1044)))) -(((|#1|) . T)) -((((-562)) . T)) -((((-562)) . T)) -(((|#1|) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-1044)))) -(((|#2|) |has| |#2| (-362))) -((($) . T) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-362))) -(|has| |#1| (-845)) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -(((|#2|) . T)) -((((-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) |has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-308 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))))) -(-4037 (|has| |#1| (-451)) (|has| |#1| (-904))) -(((|#2|) . T) (((-562)) |has| |#2| (-635 (-562)))) -((((-857)) . T)) -((((-857)) . T)) -((((-535)) . T) (((-562)) . T) (((-887 (-562))) . T) (((-378)) . T) (((-224)) . T)) -((((-857)) . T)) -(|has| |#1| (-38 (-406 (-562)))) -((((-562)) . T) (($) . T) (((-406 (-562))) . T)) -((((-562)) . T) (($) . T) (((-406 (-562))) . T)) -(|has| |#1| (-232)) -(((|#1|) . T)) -(((|#1| (-562)) . T)) -(|has| |#1| (-843)) -(((|#1| (-1166 |#1| |#2| |#3|)) . T)) +(|has| |#1| (-816)) +(|has| |#1| (-816)) +(((|#1| (-563) (-1075)) . T)) +((($) |has| |#1| (-309 $)) ((|#1|) |has| |#1| (-309 |#1|))) +(|has| |#1| (-844)) +(|has| |#1| (-844)) +(((|#1| (-563) (-1075)) . T)) +(-4032 (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045))) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +(((|#1| (-407 (-563)) (-1075)) . T)) +(((|#1| (-767) (-1075)) . T)) +(|has| |#1| (-846)) +(((#0=(-906 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-563)) #1#) . T)) +(|has| |#2| (-145)) +(|has| |#2| (-147)) +(((|#2|) . T)) +(|has| |#1| (-145)) +(|has| |#1| (-147)) +(|has| |#1| (-1093)) +((((-906 |#1|)) . T) (($) . T) (((-407 (-563))) . T)) +(|has| |#1| (-1093)) +((((-563)) -4032 (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045)))) +(((|#1|) . T)) +(|has| |#1| (-1093)) +((((-563)) -12 (|has| |#1| (-363)) (|has| |#2| (-636 (-563)))) ((|#2|) |has| |#1| (-363))) +(-4032 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1093))) +((((-684 (-339 (-1707) (-1707 (QUOTE X) (QUOTE HESS)) (-694)))) . T)) +(((|#2|) |has| |#2| (-172))) +(((|#1|) |has| |#1| (-172))) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +((((-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) . T)) +((((-858)) . T)) +(|has| |#3| (-844)) +((((-858)) . T)) +((((-1242 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) . T)) +((((-858)) . T)) +(((|#1| |#1|) -4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1045)))) +(((|#1|) . T)) +((((-563)) . T)) +((((-563)) . T)) +(((|#1|) -4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1045)))) +(((|#2|) |has| |#2| (-363))) +((($) . T) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-363))) +(|has| |#1| (-846)) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +(((|#2|) . T)) +((((-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) |has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-309 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))))) +(-4032 (|has| |#1| (-452)) (|has| |#1| (-905))) +(((|#2|) . T) (((-563)) |has| |#2| (-636 (-563)))) +((((-858)) . T)) +((((-858)) . T)) +((((-536)) . T) (((-563)) . T) (((-888 (-563))) . T) (((-379)) . T) (((-225)) . T)) +((((-858)) . T)) +(|has| |#1| (-38 (-407 (-563)))) +((((-563)) . T) (($) . T) (((-407 (-563))) . T)) +((((-563)) . T) (($) . T) (((-407 (-563))) . T)) +(|has| |#1| (-233)) +(((|#1|) . T)) +(((|#1| (-563)) . T)) +(|has| |#1| (-844)) +(((|#1| (-1167 |#1| |#2| |#3|)) . T)) (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-406 (-562))) . T)) -(((|#1| (-1159 |#1| |#2| |#3|)) . T)) -(((|#1| (-766)) . T)) +(((|#1| (-407 (-563))) . T)) +(((|#1| (-1160 |#1| |#2| |#3|)) . T)) +(((|#1| (-767)) . T)) (((|#1|) . T)) -(((|#1| |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) . T)) +(((|#1| |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-144)) -(|has| |#1| (-146)) -(|has| |#1| (-146)) -(|has| |#1| (-144)) -((((-562)) . T) ((|#1|) . T) (($) . T) (((-406 (-562))) . T) (((-1168)) |has| |#1| (-1033 (-1168)))) +(|has| |#1| (-145)) +(|has| |#1| (-147)) +(|has| |#1| (-147)) +(|has| |#1| (-145)) +((((-563)) . T) ((|#1|) . T) (($) . T) (((-407 (-563))) . T) (((-1169)) |has| |#1| (-1034 (-1169)))) (((|#1| |#2|) . T)) -((((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) (((-562)) -4037 (|has| |#1| (-843)) (|has| |#1| (-1033 (-562)))) ((|#1|) . T)) -((((-143)) . T)) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -(((|#1|) . T)) -(-4037 (|has| |#2| (-171)) (|has| |#2| (-843)) (|has| |#2| (-1044))) -(((|#1| |#1|) . T) ((#0=(-406 (-562)) #0#) . T) (($ $) . T)) -(((|#2|) . T) ((|#1|) . T) (((-562)) . T)) -((((-857)) . T)) -(((|#1|) . T) (((-406 (-562))) . T) (($) . T)) -((($) . T) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -(|has| (-406 |#2|) (-232)) -((((-639 |#1|)) . T)) -(|has| |#1| (-904)) -(((|#2|) |has| |#2| (-1044))) -(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) |has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))))) -(|has| |#1| (-362)) -(((|#1|) |has| |#1| (-171))) +((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-563)) -4032 (|has| |#1| (-844)) (|has| |#1| (-1034 (-563)))) ((|#1|) . T)) +((((-144)) . T)) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +(((|#1|) . T)) +(-4032 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +(((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) . T) (($ $) . T)) +(((|#2|) . T) ((|#1|) . T) (((-563)) . T)) +((((-858)) . T)) +(((|#1|) . T) (((-407 (-563))) . T) (($) . T)) +((($) . T) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +((((-858)) -4032 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(|has| (-407 |#2|) (-233)) +((((-640 |#1|)) . T)) +(|has| |#1| (-905)) +(((|#2|) |has| |#2| (-1045))) +(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) |has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))))) +(|has| |#1| (-363)) +(((|#1|) |has| |#1| (-172))) (((|#1| |#1|) . T)) -((((-865 |#1|)) . T)) -((((-857)) . T)) +((((-866 |#1|)) . T)) +((((-858)) . T)) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1092))) -(|has| |#2| (-845)) +(((|#2|) |has| |#2| (-1093))) +(|has| |#2| (-846)) (((|#1|) . T)) -((((-406 |#2|)) . T) (((-406 (-562))) . T) (($) . T) (((-562)) . T)) -((((-639 $)) . T) (((-1150)) . T) (((-1168)) . T) (((-562)) . T) (((-224)) . T) (((-857)) . T)) -((((-406 (-562))) . T) (((-562)) . T) (((-608 $)) . T)) +((((-407 |#2|)) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T)) +((((-640 $)) . T) (((-1151)) . T) (((-1169)) . T) (((-563)) . T) (((-225)) . T) (((-858)) . T)) +((((-407 (-563))) . T) (((-563)) . T) (((-609 $)) . T)) (((|#1|) . T)) -((((-857)) . T)) +((((-858)) . T)) ((($) . T)) -(|has| |#1| (-845)) -((((-857)) . T)) -(((|#1| (-530 |#2|) |#2|) . T)) -(((|#1| (-562) (-1074)) . T)) -((((-905 |#1|)) . T)) -((((-857)) . T)) +(|has| |#1| (-846)) +((((-858)) . T)) +(((|#1| (-531 |#2|) |#2|) . T)) +(((|#1| (-563) (-1075)) . T)) +((((-906 |#1|)) . T)) +((((-858)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-406 (-562)) (-1074)) . T)) -(((|#1| (-766) (-1074)) . T)) -(((#0=(-406 |#2|) #0#) . T) ((#1=(-406 (-562)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-562)) -4037 (|has| (-406 (-562)) (-1033 (-562))) (|has| |#1| (-1033 (-562)))) (((-406 (-562))) . T)) -(((|#1| (-598 |#1| |#3|) (-598 |#1| |#2|)) . T)) -(((|#1|) |has| |#1| (-171))) +(((|#1| (-407 (-563)) (-1075)) . T)) +(((|#1| (-767) (-1075)) . T)) +(((#0=(-407 |#2|) #0#) . T) ((#1=(-407 (-563)) #1#) . T) (($ $) . T)) +(((|#1|) . T) (((-563)) -4032 (|has| (-407 (-563)) (-1034 (-563))) (|has| |#1| (-1034 (-563)))) (((-407 (-563))) . T)) +(((|#1| (-599 |#1| |#3|) (-599 |#1| |#2|)) . T)) +(((|#1|) |has| |#1| (-172))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-406 |#2|)) . T) (((-406 (-562))) . T) (($) . T)) -(|has| |#2| (-232)) -(((|#2| (-530 (-859 |#1|)) (-859 |#1|)) . T)) -((((-857)) . T)) -((($) |has| |#1| (-554)) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -((((-857)) . T)) +((((-407 |#2|)) . T) (((-407 (-563))) . T) (($) . T)) +(|has| |#2| (-233)) +(((|#2| (-531 (-860 |#1|)) (-860 |#1|)) . T)) +((((-858)) . T)) +((($) |has| |#1| (-555)) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +((((-858)) . T)) (((|#1| |#3|) . T)) -((((-857)) . T)) -(((|#1|) |has| |#1| (-171)) (((-947 |#1|)) . T) (((-562)) . T)) -(((|#1|) |has| |#1| (-171))) -((((-693)) . T)) -((((-693)) . T)) -(((|#2|) |has| |#2| (-171))) -(|has| |#2| (-843)) -((((-562)) . T) ((|#2|) . T) (((-406 (-562))) |has| |#2| (-1033 (-406 (-562))))) -((((-112)) |has| |#1| (-1092)) (((-857)) -4037 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-472)) (|has| |#1| (-721)) (|has| |#1| (-895 (-1168))) (|has| |#1| (-1044)) (|has| |#1| (-1104)) (|has| |#1| (-1092)))) +((((-858)) . T)) +(((|#1|) |has| |#1| (-172)) (((-948 |#1|)) . T) (((-563)) . T)) +(((|#1|) |has| |#1| (-172))) +((((-694)) . T)) +((((-694)) . T)) +(((|#2|) |has| |#2| (-172))) +(|has| |#2| (-844)) +((((-563)) . T) ((|#2|) . T) (((-407 (-563))) |has| |#2| (-1034 (-407 (-563))))) +((((-112)) |has| |#1| (-1093)) (((-858)) -4032 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-722)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045)) (|has| |#1| (-1105)) (|has| |#1| (-1093)))) (((|#1|) . T) (($) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -2319 (-1150)) (|:| -2693 (-52)))) . T)) -((((-857)) . T)) -((((-562) |#1|) . T)) -((((-857)) . T)) -((((-693)) . T) (((-406 (-562))) . T) (((-562)) . T)) -(((|#1| |#1|) |has| |#1| (-171))) -(((|#2|) . T)) -(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) |has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))))) -((((-378)) . T)) -((((-693)) . T)) -((((-406 (-562))) . #0=(|has| |#2| (-362))) (($) . #0#)) -(((|#1|) |has| |#1| (-171))) -((((-406 (-947 |#1|))) . T)) +((((-2 (|:| -2387 (-1151)) (|:| -2557 (-52)))) . T)) +((((-858)) . T)) +((((-563) |#1|) . T)) +((((-858)) . T)) +((((-694)) . T) (((-407 (-563))) . T) (((-563)) . T)) +(((|#1| |#1|) |has| |#1| (-172))) +(((|#2|) . T)) +(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) |has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))))) +((((-379)) . T)) +((((-694)) . T)) +((((-407 (-563))) . #0=(|has| |#2| (-363))) (($) . #0#)) +(((|#1|) |has| |#1| (-172))) +((((-407 (-948 |#1|))) . T)) (((|#2| |#2|) . T)) -(-4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) -(-4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) -(((|#1|) . T)) -(((|#2|) . T)) -(|has| |#2| (-845)) -(|has| |#2| (-904)) -(|has| |#1| (-904)) -(|has| |#1| (-362)) -(|has| |#1| (-845)) -(((|#3|) |has| |#3| (-1044))) -((((-1168)) |has| |#2| (-895 (-1168)))) -((((-857)) . T)) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -((((-406 (-562))) . T) (($) . T)) -(|has| |#1| (-472)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(|has| |#1| (-362)) -(-4037 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-472)) (|has| |#1| (-554)) (|has| |#1| (-1044)) (|has| |#1| (-1104))) -(|has| |#1| (-38 (-406 (-562)))) +(-4032 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) +(-4032 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) +(((|#1|) . T)) +(((|#2|) . T)) +(|has| |#2| (-846)) +(|has| |#2| (-905)) +(|has| |#1| (-905)) +(|has| |#1| (-363)) +(|has| |#1| (-846)) +(((|#3|) |has| |#3| (-1045))) +((((-1169)) |has| |#2| (-896 (-1169)))) +((((-858)) . T)) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +((((-407 (-563))) . T) (($) . T)) +(|has| |#1| (-473)) +(|has| |#1| (-368)) +(|has| |#1| (-368)) +(|has| |#1| (-368)) +(|has| |#1| (-363)) +(-4032 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-473)) (|has| |#1| (-555)) (|has| |#1| (-1045)) (|has| |#1| (-1105))) +(|has| |#1| (-38 (-407 (-563)))) ((((-116 |#1|)) . T)) ((((-116 |#1|)) . T)) -(|has| |#1| (-348)) -((((-143)) . T)) -(|has| |#1| (-38 (-406 (-562)))) -((($) . T)) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -(((|#2|) . T) (((-857)) . T)) -(((|#2|) . T) (((-857)) . T)) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-845)) -((((-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) . T)) +(|has| |#1| (-349)) +((((-144)) . T)) +(|has| |#1| (-38 (-407 (-563)))) +((($) . T)) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +(((|#2|) . T) (((-858)) . T)) +(((|#2|) . T) (((-858)) . T)) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-846)) +((((-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-146)) -(|has| |#1| (-144)) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) |has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) ((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) +(|has| |#1| (-147)) +(|has| |#1| (-145)) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) |has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) ((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (((|#2|) . T)) (((|#3|) . T)) ((((-116 |#1|)) . T)) -(|has| |#1| (-367)) -(|has| |#1| (-845)) -(((|#2|) . T) (((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) (((-562)) |has| |#1| (-1033 (-562))) ((|#1|) . T)) +(|has| |#1| (-368)) +(|has| |#1| (-846)) +(((|#2|) . T) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-563)) |has| |#1| (-1034 (-563))) ((|#1|) . T)) ((((-116 |#1|)) . T)) -(((|#2|) |has| |#2| (-171))) -(((|#1|) . T)) -((((-562)) . T)) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -((((-857)) . T)) -((((-857)) . T)) -((((-535)) |has| |#1| (-610 (-535))) (((-887 (-562))) |has| |#1| (-610 (-887 (-562)))) (((-887 (-378))) |has| |#1| (-610 (-887 (-378)))) (((-378)) . #0=(|has| |#1| (-1017))) (((-224)) . #0#)) -(((|#1|) |has| |#1| (-362))) -((((-857)) . T)) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -((($ $) . T) (((-608 $) $) . T)) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-554))) -((($) . T) (((-1242 |#1| |#2| |#3| |#4|)) . T) (((-406 (-562))) . T)) -((($) -4037 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-554)) (|has| |#1| (-1044))) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-554))) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -((((-378)) . T) (((-562)) . T) (((-406 (-562))) . T)) -((((-639 (-775 |#1| (-859 |#2|)))) . T) (((-857)) . T)) -((((-535)) |has| (-775 |#1| (-859 |#2|)) (-610 (-535)))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -((((-378)) . T)) -(((|#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) -((((-857)) . T)) -(-4037 (|has| |#2| (-451)) (|has| |#2| (-904))) -(((|#1|) . T)) -(|has| |#1| (-845)) -(|has| |#1| (-845)) -((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) -((((-535)) |has| |#1| (-610 (-535)))) -(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) -((((-766)) . T)) -(|has| |#1| (-1092)) -((((-857)) . T)) -((((-1168)) . T) (((-857)) . T)) -((((-406 (-562))) . T) (((-562)) . T) (((-608 $)) . T)) -(|has| |#1| (-144)) -(|has| |#1| (-146)) -((((-562)) . T)) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-554))) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-554))) -(((#0=(-1241 |#2| |#3| |#4|)) . T) (((-406 (-562))) |has| #0# (-38 (-406 (-562)))) (($) . T)) -((((-562)) . T)) -(|has| |#1| (-362)) -(-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-146)) (|has| |#1| (-362))) (|has| |#1| (-146))) -(-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-144)) (|has| |#1| (-362))) (|has| |#1| (-144))) -(|has| |#1| (-362)) -(|has| |#1| (-144)) -(|has| |#1| (-146)) -(|has| |#1| (-146)) -(|has| |#1| (-144)) -(|has| |#1| (-232)) -(|has| |#1| (-362)) +(((|#2|) |has| |#2| (-172))) +(((|#1|) . T)) +((((-563)) . T)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +((((-858)) . T)) +((((-858)) . T)) +((((-536)) |has| |#1| (-611 (-536))) (((-888 (-563))) |has| |#1| (-611 (-888 (-563)))) (((-888 (-379))) |has| |#1| (-611 (-888 (-379)))) (((-379)) . #0=(|has| |#1| (-1018))) (((-225)) . #0#)) +(((|#1|) |has| |#1| (-363))) +((((-858)) . T)) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +((($ $) . T) (((-609 $) $) . T)) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-555))) +((($) . T) (((-1243 |#1| |#2| |#3| |#4|)) . T) (((-407 (-563))) . T)) +((($) -4032 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-555)) (|has| |#1| (-1045))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-555))) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +((((-379)) . T) (((-563)) . T) (((-407 (-563))) . T)) +((((-640 (-776 |#1| (-860 |#2|)))) . T) (((-858)) . T)) +((((-536)) |has| (-776 |#1| (-860 |#2|)) (-611 (-536)))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +((((-379)) . T)) +(((|#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) +((((-858)) . T)) +(-4032 (|has| |#2| (-452)) (|has| |#2| (-905))) +(((|#1|) . T)) +(|has| |#1| (-846)) +(|has| |#1| (-846)) +((((-858)) -4032 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) +((((-536)) |has| |#1| (-611 (-536)))) +(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) +((((-767)) . T)) +(|has| |#1| (-1093)) +((((-858)) . T)) +((((-1169)) . T) (((-858)) . T)) +((((-407 (-563))) . T) (((-563)) . T) (((-609 $)) . T)) +(|has| |#1| (-145)) +(|has| |#1| (-147)) +((((-563)) . T)) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-555))) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-555))) +(((#0=(-1242 |#2| |#3| |#4|)) . T) (((-407 (-563))) |has| #0# (-38 (-407 (-563)))) (($) . T)) +((((-563)) . T)) +(|has| |#1| (-363)) +(-4032 (-12 (|has| (-1249 |#1| |#2| |#3|) (-147)) (|has| |#1| (-363))) (|has| |#1| (-147))) +(-4032 (-12 (|has| (-1249 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))) +(|has| |#1| (-363)) +(|has| |#1| (-145)) +(|has| |#1| (-147)) +(|has| |#1| (-147)) +(|has| |#1| (-145)) +(|has| |#1| (-233)) +(|has| |#1| (-363)) (((|#3|) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-562)) |has| |#2| (-635 (-562))) ((|#2|) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-563)) |has| |#2| (-636 (-563))) ((|#2|) . T)) (((|#2|) . T)) -(|has| |#1| (-1092)) +(|has| |#1| (-1093)) (((|#1| |#2|) . T)) -((((-562)) . T) ((|#1|) . T) (((-406 (-562))) -4037 (|has| |#1| (-362)) (|has| |#1| (-1033 (-406 (-562)))))) -(((|#1|) . T) (((-562)) |has| |#1| (-635 (-562)))) -(((|#3|) |has| |#3| (-171))) -(-4037 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-721)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044)) (|has| |#2| (-1092))) -((((-857)) . T)) -((((-562)) . T)) -(((|#1| $) |has| |#1| (-285 |#1| |#1|))) -((((-406 (-562))) . T) (($) . T) (((-406 |#1|)) . T) ((|#1|) . T)) -((((-947 |#1|)) . T) (((-857)) . T)) +((((-563)) . T) ((|#1|) . T) (((-407 (-563))) -4032 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-563)))))) +(((|#1|) . T) (((-563)) |has| |#1| (-636 (-563)))) +(((|#3|) |has| |#3| (-172))) +(-4032 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1093))) +((((-858)) . T)) +((((-563)) . T)) +(((|#1| $) |has| |#1| (-286 |#1| |#1|))) +((((-407 (-563))) . T) (($) . T) (((-407 |#1|)) . T) ((|#1|) . T)) +((((-948 |#1|)) . T) (((-858)) . T)) (((|#3|) . T)) -(((|#1| |#1|) . T) (($ $) -4037 (|has| |#1| (-289)) (|has| |#1| (-362))) ((#0=(-406 (-562)) #0#) |has| |#1| (-362))) -((((-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) . T)) -((((-947 |#1|)) . T)) -((($) . T)) -((((-562) |#1|) . T)) -((((-1168)) |has| (-406 |#2|) (-895 (-1168)))) -(((|#1|) . T) (($) -4037 (|has| |#1| (-289)) (|has| |#1| (-362))) (((-406 (-562))) |has| |#1| (-362))) -((((-535)) |has| |#2| (-610 (-535)))) -((((-683 |#2|)) . T) (((-857)) . T)) -(((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) -(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) -((((-865 |#1|)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -(-4037 (|has| |#4| (-788)) (|has| |#4| (-843))) -(-4037 (|has| |#3| (-788)) (|has| |#3| (-843))) -((((-857)) . T)) -((((-857)) . T)) -(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) -(((|#2|) |has| |#2| (-1044))) -(((|#1|) . T)) -((((-406 |#2|)) . T)) -(((|#1|) . T)) -(((|#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) -((((-562) |#1|) . T)) -(((|#1|) . T)) -((($) . T)) -((((-562)) . T) (($) . T) (((-406 (-562))) . T)) -((((-406 (-562))) . T) (($) . T)) -((((-406 (-562))) . T) (($) . T)) -((((-406 (-562))) . T) (($) . T)) -(-4037 (|has| |#1| (-451)) (|has| |#1| (-1211))) -((($) . T)) -((((-406 (-562))) |has| #0=(-406 |#2|) (-1033 (-406 (-562)))) (((-562)) |has| #0# (-1033 (-562))) ((#0#) . T)) -(((|#2|) . T) (((-562)) |has| |#2| (-635 (-562)))) -(((|#1| (-766)) . T)) -(|has| |#1| (-845)) -(((|#1|) . T) (((-562)) |has| |#1| (-635 (-562)))) -((($) -4037 (|has| |#1| (-362)) (|has| |#1| (-348))) (((-406 (-562))) -4037 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T)) -((((-562)) . T)) -(|has| |#1| (-38 (-406 (-562)))) -((((-2 (|:| -2319 (-1150)) (|:| -2693 (-52)))) |has| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (-308 (-2 (|:| -2319 (-1150)) (|:| -2693 (-52)))))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -(|has| |#1| (-843)) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-348)) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -((((-1150)) . T) (((-1168)) . T) (((-224)) . T) (((-562)) . T)) -(((|#2|) . T) (((-562)) . T) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) (((-1074)) . T) ((|#1|) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562)))))) +(((|#1| |#1|) . T) (($ $) -4032 (|has| |#1| (-290)) (|has| |#1| (-363))) ((#0=(-407 (-563)) #0#) |has| |#1| (-363))) +((((-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) . T)) +((((-948 |#1|)) . T)) +((($) . T)) +((((-563) |#1|) . T)) +((((-1169)) |has| (-407 |#2|) (-896 (-1169)))) +(((|#1|) . T) (($) -4032 (|has| |#1| (-290)) (|has| |#1| (-363))) (((-407 (-563))) |has| |#1| (-363))) +((((-536)) |has| |#2| (-611 (-536)))) +((((-684 |#2|)) . T) (((-858)) . T)) +(((|#1|) . T)) +(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) +(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) +((((-866 |#1|)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(-4032 (|has| |#4| (-789)) (|has| |#4| (-844))) +(-4032 (|has| |#3| (-789)) (|has| |#3| (-844))) +((((-858)) . T)) +((((-858)) . T)) +(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) +(((|#2|) |has| |#2| (-1045))) +(((|#1|) . T)) +((((-407 |#2|)) . T)) +(((|#1|) . T)) +(((|#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) +((((-563) |#1|) . T)) +(((|#1|) . T)) +((($) . T)) +((((-563)) . T) (($) . T) (((-407 (-563))) . T)) +((((-407 (-563))) . T) (($) . T)) +((((-407 (-563))) . T) (($) . T)) +((((-407 (-563))) . T) (($) . T)) +(-4032 (|has| |#1| (-452)) (|has| |#1| (-1212))) +((($) . T)) +((((-407 (-563))) |has| #0=(-407 |#2|) (-1034 (-407 (-563)))) (((-563)) |has| #0# (-1034 (-563))) ((#0#) . T)) +(((|#2|) . T) (((-563)) |has| |#2| (-636 (-563)))) +(((|#1| (-767)) . T)) +(|has| |#1| (-846)) +(((|#1|) . T) (((-563)) |has| |#1| (-636 (-563)))) +((($) -4032 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-563))) -4032 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) +((((-563)) . T)) +(|has| |#1| (-38 (-407 (-563)))) +((((-2 (|:| -2387 (-1151)) (|:| -2557 (-52)))) |has| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (-309 (-2 (|:| -2387 (-1151)) (|:| -2557 (-52)))))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(|has| |#1| (-844)) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-368)) +(|has| |#1| (-368)) +(|has| |#1| (-368)) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-349)) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +((((-1151)) . T) (((-1169)) . T) (((-225)) . T) (((-563)) . T)) +(((|#2|) . T) (((-563)) . T) (($) -4032 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) (((-1075)) . T) ((|#1|) . T) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563)))))) (((|#1| |#2|) . T)) -((((-143)) . T)) -((((-775 |#1| (-859 |#2|))) . T)) -((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) -(|has| |#1| (-1192)) -((((-857)) . T)) -(((|#1|) . T)) -(-4037 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-367)) (|has| |#3| (-721)) (|has| |#3| (-788)) (|has| |#3| (-843)) (|has| |#3| (-1044)) (|has| |#3| (-1092))) -((((-1168) |#1|) |has| |#1| (-513 (-1168) |#1|))) -(((|#2|) . T)) -((($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1| |#1|) . T) ((#0=(-406 (-562)) #0#) |has| |#1| (-38 (-406 (-562))))) -((((-905 |#1|)) . T)) -((($) . T)) -((((-406 (-947 |#1|))) . T)) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -((($) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -((((-535)) |has| |#4| (-610 (-535)))) -((((-857)) . T) (((-639 |#4|)) . T)) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -(((|#1|) . T)) -(|has| |#1| (-843)) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) (((-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) |has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-308 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))))) -(|has| |#1| (-1092)) -(|has| |#1| (-362)) -(|has| |#1| (-845)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-666 |#1|)) . T)) -((($) . T) (((-406 (-562))) . T)) -((($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171))) -(|has| |#1| (-144)) -(|has| |#1| (-146)) -(-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-146)) (|has| |#1| (-362))) (|has| |#1| (-146))) -(-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-144)) (|has| |#1| (-362))) (|has| |#1| (-144))) -(|has| |#1| (-144)) -(|has| |#1| (-146)) -(|has| |#1| (-146)) -(|has| |#1| (-144)) -((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) -((((-1248 |#1| |#2| |#3|)) |has| |#1| (-362))) -(|has| |#1| (-843)) +((((-144)) . T)) +((((-776 |#1| (-860 |#2|))) . T)) +((((-858)) -4032 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) +(|has| |#1| (-1193)) +((((-858)) . T)) +(((|#1|) . T)) +(-4032 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-722)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045)) (|has| |#3| (-1093))) +((((-1169) |#1|) |has| |#1| (-514 (-1169) |#1|))) +(((|#2|) . T)) +((($ $) -4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563))))) +((((-906 |#1|)) . T)) +((($) . T)) +((((-407 (-948 |#1|))) . T)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +((($) -4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +((((-536)) |has| |#4| (-611 (-536)))) +((((-858)) . T) (((-640 |#4|)) . T)) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +(((|#1|) . T)) +(|has| |#1| (-844)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) (((-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) |has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-309 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))))) +(|has| |#1| (-1093)) +(|has| |#1| (-363)) +(|has| |#1| (-846)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-667 |#1|)) . T)) +((($) . T) (((-407 (-563))) . T)) +((($) -4032 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) +(|has| |#1| (-145)) +(|has| |#1| (-147)) +(-4032 (-12 (|has| (-1167 |#1| |#2| |#3|) (-147)) (|has| |#1| (-363))) (|has| |#1| (-147))) +(-4032 (-12 (|has| (-1167 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))) +(|has| |#1| (-145)) +(|has| |#1| (-147)) +(|has| |#1| (-147)) +(|has| |#1| (-145)) +((((-858)) -4032 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) +((((-1249 |#1| |#2| |#3|)) |has| |#1| (-363))) +(|has| |#1| (-844)) (((|#1| |#2|) . T)) -(((|#1|) . T) (((-562)) |has| |#1| (-635 (-562)))) -((((-562)) |has| |#1| (-635 (-562))) ((|#1|) . T)) -((((-905 |#1|)) . T) (((-406 (-562))) . T) (($) . T)) -(|has| |#1| (-1092)) -(((|#1|) . T) (($) . T) (((-406 (-562))) . T) (((-562)) . T)) -((((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((|#1|) . T) (((-562)) . T)) -(|has| |#2| (-144)) -(|has| |#2| (-146)) -((((-905 |#1|)) . T) (((-406 (-562))) . T) (($) . T)) -(|has| |#1| (-1092)) -(((|#2|) |has| |#2| (-171))) +(((|#1|) . T) (((-563)) |has| |#1| (-636 (-563)))) +((((-563)) |has| |#1| (-636 (-563))) ((|#1|) . T)) +((((-906 |#1|)) . T) (((-407 (-563))) . T) (($) . T)) +(|has| |#1| (-1093)) +(((|#1|) . T) (($) . T) (((-407 (-563))) . T) (((-563)) . T)) +((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((|#1|) . T) (((-563)) . T)) +(|has| |#2| (-145)) +(|has| |#2| (-147)) +((((-906 |#1|)) . T) (((-407 (-563))) . T) (($) . T)) +(|has| |#1| (-1093)) +(((|#2|) |has| |#2| (-172))) (((|#2|) . T)) (((|#1| |#1|) . T)) -(((|#3|) |has| |#3| (-362))) -((((-406 |#2|)) . T)) -((((-857)) . T)) -(((|#1|) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-535)) |has| |#1| (-610 (-535)))) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -((((-1168) |#1|) |has| |#1| (-513 (-1168) |#1|)) ((|#1| |#1|) |has| |#1| (-308 |#1|))) -(((|#1|) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)))) -((((-315 |#1|)) . T)) -(((|#2|) |has| |#2| (-362))) -(((|#2|) . T)) -((((-406 (-562))) . T) (((-693)) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -(((#0=(-775 |#1| (-859 |#2|)) #0#) |has| (-775 |#1| (-859 |#2|)) (-308 (-775 |#1| (-859 |#2|))))) -((((-562)) . T) (($) . T)) -((((-859 |#1|)) . T)) -(((|#2|) |has| |#2| (-171))) -(((|#1|) |has| |#1| (-171))) -(((|#2|) . T)) -((((-1168)) |has| |#1| (-895 (-1168))) (((-1074)) . T)) -((((-1168)) |has| |#1| (-895 (-1168))) (((-1080 (-1168))) . T)) -(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -(|has| |#1| (-38 (-406 (-562)))) -(((|#4|) |has| |#4| (-1044)) (((-562)) -12 (|has| |#4| (-635 (-562))) (|has| |#4| (-1044)))) -(((|#3|) |has| |#3| (-1044)) (((-562)) -12 (|has| |#3| (-635 (-562))) (|has| |#3| (-1044)))) -(|has| |#1| (-144)) -(|has| |#1| (-146)) +(((|#3|) |has| |#3| (-363))) +((((-407 |#2|)) . T)) +((((-858)) . T)) +(((|#1|) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-536)) |has| |#1| (-611 (-536)))) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +((((-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|))) +(((|#1|) -4032 (|has| |#1| (-172)) (|has| |#1| (-363)))) +((((-316 |#1|)) . T)) +(((|#2|) |has| |#2| (-363))) +(((|#2|) . T)) +((((-407 (-563))) . T) (((-694)) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(((#0=(-776 |#1| (-860 |#2|)) #0#) |has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|))))) +((((-563)) . T) (($) . T)) +((((-860 |#1|)) . T)) +(((|#2|) |has| |#2| (-172))) +(((|#1|) |has| |#1| (-172))) +(((|#2|) . T)) +((((-1169)) |has| |#1| (-896 (-1169))) (((-1075)) . T)) +((((-1169)) |has| |#1| (-896 (-1169))) (((-1081 (-1169))) . T)) +(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(|has| |#1| (-38 (-407 (-563)))) +(((|#4|) |has| |#4| (-1045)) (((-563)) -12 (|has| |#4| (-636 (-563))) (|has| |#4| (-1045)))) +(((|#3|) |has| |#3| (-1045)) (((-563)) -12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045)))) +(|has| |#1| (-145)) +(|has| |#1| (-147)) ((($ $) . T)) -(-4037 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-472)) (|has| |#1| (-721)) (|has| |#1| (-895 (-1168))) (|has| |#1| (-1044)) (|has| |#1| (-1104)) (|has| |#1| (-1092))) -(|has| |#1| (-554)) +(-4032 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-722)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045)) (|has| |#1| (-1105)) (|has| |#1| (-1093))) +(|has| |#1| (-555)) (((|#2|) . T)) -((((-562)) . T)) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) +((((-563)) . T)) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) (((|#1|) . T)) -(-4037 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-554)) (|has| |#1| (-1044))) -((((-579 |#1|)) . T)) -((($) . T)) +(-4032 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-555)) (|has| |#1| (-1045))) (((|#1| (-59 |#1|) (-59 |#1|)) . T)) +((((-580 |#1|)) . T)) +((($) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) (((|#1|) . T)) -((((-857)) . T)) -(((|#2|) |has| |#2| (-6 (-4405 "*")))) +((((-858)) . T)) +(((|#2|) |has| |#2| (-6 (-4409 "*")))) (((|#1|) . T)) (((|#1|) . T)) (((|#3|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1241 |#2| |#3| |#4|)) . T) (((-562)) . T) (((-1242 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-406 (-562))) . T)) -((((-48)) -12 (|has| |#1| (-554)) (|has| |#1| (-1033 (-562)))) (((-562)) -4037 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-554)) (|has| |#1| (-1033 (-562))) (|has| |#1| (-1044))) ((|#1|) . T) (((-608 $)) . T) (($) |has| |#1| (-554)) (((-406 (-562))) -4037 (|has| |#1| (-554)) (|has| |#1| (-1033 (-406 (-562))))) (((-406 (-947 |#1|))) |has| |#1| (-554)) (((-947 |#1|)) |has| |#1| (-1044)) (((-1168)) . T)) -((((-406 (-562))) |has| |#2| (-1033 (-406 (-562)))) (((-562)) |has| |#2| (-1033 (-562))) ((|#2|) . T) (((-859 |#1|)) . T)) -((($) . T) (((-116 |#1|)) . T) (((-406 (-562))) . T)) -((((-1117 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-562)) |has| |#1| (-1033 (-562))) (((-406 (-562))) |has| |#1| (-1033 (-406 (-562))))) -((((-1164 |#1|)) . T) (((-1074)) . T) ((|#1|) . T) (((-562)) |has| |#1| (-1033 (-562))) (((-406 (-562))) |has| |#1| (-1033 (-406 (-562))))) -((((-1117 |#1| (-1168))) . T) (((-1080 (-1168))) . T) ((|#1|) . T) (((-562)) |has| |#1| (-1033 (-562))) (((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) (((-1168)) . T)) -(|has| |#1| (-1092)) +((((-1242 |#2| |#3| |#4|)) . T) (((-563)) . T) (((-1243 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-407 (-563))) . T)) +((((-48)) -12 (|has| |#1| (-555)) (|has| |#1| (-1034 (-563)))) (((-563)) -4032 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-555)) (|has| |#1| (-1034 (-563))) (|has| |#1| (-1045))) ((|#1|) . T) (((-609 $)) . T) (($) |has| |#1| (-555)) (((-407 (-563))) -4032 (|has| |#1| (-555)) (|has| |#1| (-1034 (-407 (-563))))) (((-407 (-948 |#1|))) |has| |#1| (-555)) (((-948 |#1|)) |has| |#1| (-1045)) (((-1169)) . T)) +((((-407 (-563))) |has| |#2| (-1034 (-407 (-563)))) (((-563)) |has| |#2| (-1034 (-563))) ((|#2|) . T) (((-860 |#1|)) . T)) +((($) . T) (((-116 |#1|)) . T) (((-407 (-563))) . T)) +((((-1118 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563))))) +((((-1165 |#1|)) . T) (((-1075)) . T) ((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563))))) +((((-1118 |#1| (-1169))) . T) (((-1081 (-1169))) . T) ((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-1169)) . T)) +(|has| |#1| (-1093)) ((($) . T)) -(|has| |#1| (-1092)) -((((-562)) -12 (|has| |#1| (-881 (-562))) (|has| |#2| (-881 (-562)))) (((-378)) -12 (|has| |#1| (-881 (-378))) (|has| |#2| (-881 (-378))))) +(|has| |#1| (-1093)) +((((-563)) -12 (|has| |#1| (-882 (-563))) (|has| |#2| (-882 (-563)))) (((-379)) -12 (|has| |#1| (-882 (-379))) (|has| |#2| (-882 (-379))))) (((|#1| |#2|) . T)) -((((-1168) |#1|) . T)) +((((-1169) |#1|) . T)) (((|#4|) . T)) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-348))) -((((-1168) (-52)) . T)) -((((-1241 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) . T)) -((((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) (((-562)) |has| |#1| (-1033 (-562))) ((|#1|) . T)) -((((-857)) . T)) -(-4037 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-367)) (|has| |#2| (-721)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044)) (|has| |#2| (-1092))) -(((#0=(-1242 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-406 (-562)) #1#) . T) (($ $) . T)) -(((|#1| |#1|) |has| |#1| (-171)) ((#0=(-406 (-562)) #0#) |has| |#1| (-554)) (($ $) |has| |#1| (-554))) -(((|#1|) . T) (($) . T) (((-406 (-562))) . T)) -(((|#1| $) |has| |#1| (-285 |#1| |#1|))) -((((-1242 |#1| |#2| |#3| |#4|)) . T) (((-406 (-562))) . T) (($) . T)) -(((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-554)) (($) |has| |#1| (-554))) -(|has| |#1| (-362)) -(|has| |#1| (-144)) -(|has| |#1| (-146)) -(|has| |#1| (-146)) -(|has| |#1| (-144)) -((((-406 (-562))) . T) (($) . T)) -(((|#3|) |has| |#3| (-362))) -(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) -((((-1168)) . T)) -((($) . T) (((-1241 |#2| |#3| |#4|)) . T) (((-406 (-562))) |has| (-1241 |#2| |#3| |#4|) (-38 (-406 (-562)))) (((-562)) . T)) -(((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-349))) +((((-1169) (-52)) . T)) +((((-1242 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) . T)) +((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-563)) |has| |#1| (-1034 (-563))) ((|#1|) . T)) +((((-858)) . T)) +(-4032 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1093))) +(((#0=(-1243 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-407 (-563)) #1#) . T) (($ $) . T)) +(((|#1| |#1|) |has| |#1| (-172)) ((#0=(-407 (-563)) #0#) |has| |#1| (-555)) (($ $) |has| |#1| (-555))) +(((|#1|) . T) (($) . T) (((-407 (-563))) . T)) +(((|#1| $) |has| |#1| (-286 |#1| |#1|))) +((((-1243 |#1| |#2| |#3| |#4|)) . T) (((-407 (-563))) . T) (($) . T)) +(((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-555)) (($) |has| |#1| (-555))) +(|has| |#1| (-363)) +(|has| |#1| (-145)) +(|has| |#1| (-147)) +(|has| |#1| (-147)) +(|has| |#1| (-145)) +((((-407 (-563))) . T) (($) . T)) +(((|#3|) |has| |#3| (-363))) +(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) +((((-1169)) . T)) +((($) . T) (((-1242 |#2| |#3| |#4|)) . T) (((-407 (-563))) |has| (-1242 |#2| |#3| |#4|) (-38 (-407 (-563)))) (((-563)) . T)) +(((|#1|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (((|#2| |#3|) . T)) -(-4037 (|has| |#2| (-362)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) -(((|#1| (-530 |#2|)) . T)) -(((|#1| (-766)) . T)) -(((|#1| (-530 (-1080 (-1168)))) . T)) -(((|#1|) |has| |#1| (-171))) -(((|#1|) . T)) -(|has| |#2| (-904)) -(-4037 (|has| |#2| (-788)) (|has| |#2| (-843))) -((((-857)) . T)) -((($ $) . T) ((#0=(-1241 |#2| |#3| |#4|) #0#) . T) ((#1=(-406 (-562)) #1#) |has| #0# (-38 (-406 (-562))))) -((((-905 |#1|)) . T)) -(-12 (|has| |#1| (-362)) (|has| |#2| (-815))) -((($) . T) (((-406 (-562))) . T)) -((((-857)) . T)) -((($) . T)) -((($) . T)) -(-4037 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348)) (|has| |#1| (-554))) -(|has| |#1| (-362)) -(|has| |#1| (-362)) +(-4032 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) +(((|#1| (-531 |#2|)) . T)) +(((|#1| (-767)) . T)) +(((|#1| (-531 (-1081 (-1169)))) . T)) +(((|#1|) |has| |#1| (-172))) +(((|#1|) . T)) +(|has| |#2| (-905)) +(-4032 (|has| |#2| (-789)) (|has| |#2| (-844))) +((((-858)) . T)) +((($ $) . T) ((#0=(-1242 |#2| |#3| |#4|) #0#) . T) ((#1=(-407 (-563)) #1#) |has| #0# (-38 (-407 (-563))))) +((((-906 |#1|)) . T)) +(-12 (|has| |#1| (-363)) (|has| |#2| (-816))) +((($) . T) (((-407 (-563))) . T)) +((((-858)) . T)) +((($) . T)) +((($) . T)) +(-4032 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-555))) +(|has| |#1| (-363)) +(|has| |#1| (-363)) (((|#1| |#2|) . T)) -((($) . T) ((#0=(-1241 |#2| |#3| |#4|)) . T) (((-406 (-562))) |has| #0# (-38 (-406 (-562))))) -((((-1166 |#1| |#2| |#3|)) |has| |#1| (-362))) -(-4037 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))) (|has| |#1| (-362)) (|has| |#1| (-348))) -(-4037 (|has| |#1| (-895 (-1168))) (|has| |#1| (-1044))) -((((-562)) |has| |#1| (-635 (-562))) ((|#1|) . T)) +((($) . T) ((#0=(-1242 |#2| |#3| |#4|)) . T) (((-407 (-563))) |has| #0# (-38 (-407 (-563))))) +((((-1167 |#1| |#2| |#3|)) |has| |#1| (-363))) +(-4032 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363)) (|has| |#1| (-349))) +(-4032 (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045))) +((((-563)) |has| |#1| (-636 (-563))) ((|#1|) . T)) (((|#1| |#2|) . T)) -((((-857)) . T)) -((((-857)) . T)) +((((-858)) . T)) +((((-858)) . T)) ((((-112)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-406 |#2|)) . T) (((-406 (-562))) . T) (($) . T)) +((((-407 |#2|)) . T) (((-407 (-563))) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((|#1| (-530 (-859 |#2|)) (-859 |#2|) (-775 |#1| (-859 |#2|))) . T)) -(|has| |#2| (-362)) -(|has| |#1| (-845)) +(((|#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|))) . T)) +(|has| |#2| (-363)) +(|has| |#1| (-846)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-562)) . T)) -((((-857)) . T)) -(|has| |#1| (-1092)) +((((-563)) . T)) +((((-858)) . T)) +(|has| |#1| (-1093)) (((|#4|) . T)) (((|#4|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -((((-406 $) (-406 $)) |has| |#1| (-554)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#2| (-815)) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +((((-407 $) (-407 $)) |has| |#1| (-555)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#2| (-816)) (((|#4|) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) -((((-857)) . T)) -(((|#1| (-530 (-1168))) . T)) -(((|#1|) |has| |#1| (-171))) -((((-857)) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) -(((|#2|) -4037 (|has| |#2| (-6 (-4405 "*"))) (|has| |#2| (-171)))) -(-4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) -(-4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) -(|has| |#2| (-845)) -(|has| |#2| (-904)) -(|has| |#1| (-904)) -(((|#2|) |has| |#2| (-171))) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -((((-1248 |#1| |#2| |#3|)) |has| |#1| (-362))) -((((-857)) . T)) -((((-857)) . T)) -((((-535)) . T) (((-562)) . T) (((-887 (-562))) . T) (((-378)) . T) (((-224)) . T)) +((((-858)) . T)) +(((|#1| (-531 (-1169))) . T)) +(((|#1|) |has| |#1| (-172))) +((((-858)) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) +(((|#2|) -4032 (|has| |#2| (-6 (-4409 "*"))) (|has| |#2| (-172)))) +(-4032 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) +(-4032 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) +(|has| |#2| (-846)) +(|has| |#2| (-905)) +(|has| |#1| (-905)) +(((|#2|) |has| |#2| (-172))) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +((((-1249 |#1| |#2| |#3|)) |has| |#1| (-363))) +((((-858)) . T)) +((((-858)) . T)) +((((-536)) . T) (((-563)) . T) (((-888 (-563))) . T) (((-379)) . T) (((-225)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -((((-2 (|:| -2319 (-1150)) (|:| -2693 (-52)))) . T)) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +((((-2 (|:| -2387 (-1151)) (|:| -2557 (-52)))) . T)) (((|#1|) . T)) -((((-857)) . T)) +((((-858)) . T)) (((|#1| |#2|) . T)) -(((|#1| (-406 (-562))) . T)) +(((|#1| (-407 (-563))) . T)) (((|#1|) . T)) -(-4037 (|has| |#1| (-289)) (|has| |#1| (-362))) -((((-143)) . T)) -((((-406 |#2|)) . T) (((-406 (-562))) . T) (($) . T)) -(|has| |#1| (-843)) -((((-857)) . T)) -((((-857)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -(((|#1| |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) . T)) +(-4032 (|has| |#1| (-290)) (|has| |#1| (-363))) +((((-144)) . T)) +((((-407 |#2|)) . T) (((-407 (-563))) . T) (($) . T)) +(|has| |#1| (-844)) +((((-858)) . T)) +((((-858)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(((|#1| |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-406 (-562))) . T) (($) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-186)) . T) (((-857)) . T)) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) +((((-407 (-563))) . T) (($) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-187)) . T) (((-858)) . T)) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-535)) |has| |#1| (-610 (-535))) (((-887 (-562))) |has| |#1| (-610 (-887 (-562)))) (((-887 (-378))) |has| |#1| (-610 (-887 (-378))))) -((((-1168) (-52)) . T)) -(((|#2|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-639 (-143))) . T) (((-1150)) . T)) -((((-857)) . T)) -((((-1150)) . T)) -((((-1168) |#1|) |has| |#1| (-513 (-1168) |#1|)) ((|#1| |#1|) |has| |#1| (-308 |#1|))) -((((-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) . T)) -(|has| |#1| (-845)) -((((-857)) . T)) -((((-535)) |has| |#1| (-610 (-535)))) -((((-857)) . T)) -(((|#2|) |has| |#2| (-362))) -((((-857)) . T)) -((((-535)) |has| |#4| (-610 (-535)))) -((((-857)) . T) (((-639 |#4|)) . T)) -(((|#2|) . T)) -((((-905 |#1|)) . T) (((-406 (-562))) . T) (($) . T)) -((($) . T) (((-562)) . T) (((-406 (-562))) . T) (((-608 $)) . T)) -(-4037 (|has| |#4| (-171)) (|has| |#4| (-721)) (|has| |#4| (-843)) (|has| |#4| (-1044))) -(-4037 (|has| |#3| (-171)) (|has| |#3| (-721)) (|has| |#3| (-843)) (|has| |#3| (-1044))) -((((-1168) (-52)) . T)) -(-4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-4037 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044))) -(-4037 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-843)) (|has| |#2| (-1044))) -(|has| |#1| (-904)) -((((-905 |#1|)) . T) (((-406 (-562))) . T) (($) . T) (((-562)) . T)) -(|has| |#1| (-904)) -(((|#1|) . T) (((-562)) . T) (((-406 (-562))) . T) (($) . T)) -(((|#2|) . T)) -(((|#1|) . T)) -((((-857)) . T)) -((((-562)) . T)) -(((#0=(-406 (-562)) #0#) . T) (($ $) . T)) -((((-406 (-562))) . T) (($) . T)) -(((|#1| (-406 (-562)) (-1074)) . T)) -(|has| |#1| (-1092)) -(|has| |#1| (-554)) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) -(|has| |#1| (-815)) -(((#0=(-905 |#1|) #0#) . T) (($ $) . T) ((#1=(-406 (-562)) #1#) . T)) -((((-406 |#2|)) . T)) -(|has| |#1| (-843)) -((((-1193 |#1|)) . T) (((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) -(((|#1| |#1|) . T) ((#0=(-406 (-562)) #0#) . T) ((#1=(-562) #1#) . T) (($ $) . T)) -((((-905 |#1|)) . T) (($) . T) (((-406 (-562))) . T)) -(((|#2|) |has| |#2| (-1044)) (((-562)) -12 (|has| |#2| (-635 (-562))) (|has| |#2| (-1044)))) -(((|#1|) . T) (((-406 (-562))) . T) (((-562)) . T) (($) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-536)) |has| |#1| (-611 (-536))) (((-888 (-563))) |has| |#1| (-611 (-888 (-563)))) (((-888 (-379))) |has| |#1| (-611 (-888 (-379))))) +((((-1169) (-52)) . T)) +(((|#2|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-640 (-144))) . T) (((-1151)) . T)) +((((-858)) . T)) +((((-1151)) . T)) +((((-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|))) +((((-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) . T)) +(|has| |#1| (-846)) +((((-858)) . T)) +((((-536)) |has| |#1| (-611 (-536)))) +((((-858)) . T)) +(((|#2|) |has| |#2| (-363))) +((((-858)) . T)) +((((-536)) |has| |#4| (-611 (-536)))) +((((-858)) . T) (((-640 |#4|)) . T)) +(((|#2|) . T)) +((((-906 |#1|)) . T) (((-407 (-563))) . T) (($) . T)) +((($) . T) (((-563)) . T) (((-407 (-563))) . T) (((-609 $)) . T)) +(-4032 (|has| |#4| (-172)) (|has| |#4| (-722)) (|has| |#4| (-844)) (|has| |#4| (-1045))) +(-4032 (|has| |#3| (-172)) (|has| |#3| (-722)) (|has| |#3| (-844)) (|has| |#3| (-1045))) +((((-1169) (-52)) . T)) +(-4032 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-4032 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +(-4032 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +(|has| |#1| (-905)) +((((-906 |#1|)) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T)) +(|has| |#1| (-905)) +(((|#1|) . T) (((-563)) . T) (((-407 (-563))) . T) (($) . T)) +(((|#2|) . T)) +(((|#1|) . T)) +((((-858)) . T)) +((((-563)) . T)) +(((#0=(-407 (-563)) #0#) . T) (($ $) . T)) +((((-407 (-563))) . T) (($) . T)) +(((|#1| (-407 (-563)) (-1075)) . T)) +(|has| |#1| (-1093)) +(|has| |#1| (-555)) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) +(|has| |#1| (-816)) +(((#0=(-906 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-563)) #1#) . T)) +((((-407 |#2|)) . T)) +(|has| |#1| (-844)) +((((-1194 |#1|)) . T) (((-858)) -4032 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) +(((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) . T) ((#1=(-563) #1#) . T) (($ $) . T)) +((((-906 |#1|)) . T) (($) . T) (((-407 (-563))) . T)) +(((|#2|) |has| |#2| (-1045)) (((-563)) -12 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045)))) +(((|#1|) . T) (((-407 (-563))) . T) (((-563)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(|has| |#1| (-146)) -(|has| |#1| (-144)) -(((|#2|) . T)) -((((-857)) . T)) -((((-406 (-562))) . T) (((-693)) . T) (($) . T) (((-562)) . T)) -(-4037 (|has| |#1| (-144)) (|has| |#1| (-367))) -(-4037 (|has| |#1| (-144)) (|has| |#1| (-367))) -(-4037 (|has| |#1| (-144)) (|has| |#1| (-367))) -((((-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) . T)) -(((#0=(-52)) . T) (((-2 (|:| -2319 (-1168)) (|:| -2693 #0#))) . T)) -(|has| |#1| (-348)) -((((-562)) . T)) -((((-857)) . T)) -(((|#1|) . T)) -(((#0=(-1242 |#1| |#2| |#3| |#4|) $) |has| #0# (-285 #0# #0#))) -(|has| |#1| (-362)) -(((#0=(-1074) |#1|) . T) ((#0# $) . T) (($ $) . T)) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-348))) -(((#0=(-406 (-562)) #0#) . T) ((#1=(-693) #1#) . T) (($ $) . T)) -((((-315 |#1|)) . T) (($) . T)) -(((|#1|) . T) (((-406 (-562))) |has| |#1| (-362))) -((((-857)) . T)) -(|has| |#1| (-1092)) -(((|#1|) . T)) -(((|#1|) -4037 (|has| |#2| (-366 |#1|)) (|has| |#2| (-416 |#1|)))) -(((|#1|) -4037 (|has| |#2| (-366 |#1|)) (|has| |#2| (-416 |#1|)))) -(((|#2|) . T)) -((((-406 (-562))) . T) (((-693)) . T) (($) . T)) -((((-577)) . T)) +(|has| |#1| (-147)) +(|has| |#1| (-145)) +(((|#2|) . T)) +((((-858)) . T)) +((((-407 (-563))) . T) (((-694)) . T) (($) . T) (((-563)) . T)) +(-4032 (|has| |#1| (-145)) (|has| |#1| (-368))) +(-4032 (|has| |#1| (-145)) (|has| |#1| (-368))) +(-4032 (|has| |#1| (-145)) (|has| |#1| (-368))) +((((-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) . T)) +(((#0=(-52)) . T) (((-2 (|:| -2387 (-1169)) (|:| -2557 #0#))) . T)) +(|has| |#1| (-349)) +((((-563)) . T)) +((((-858)) . T)) +(((|#1|) . T)) +(((#0=(-1243 |#1| |#2| |#3| |#4|) $) |has| #0# (-286 #0# #0#))) +(|has| |#1| (-363)) +(((#0=(-1075) |#1|) . T) ((#0# $) . T) (($ $) . T)) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-349))) +(((#0=(-407 (-563)) #0#) . T) ((#1=(-694) #1#) . T) (($ $) . T)) +((((-316 |#1|)) . T) (($) . T)) +(((|#1|) . T) (((-407 (-563))) |has| |#1| (-363))) +((((-858)) . T)) +(|has| |#1| (-1093)) +(((|#1|) . T)) +(((|#1|) -4032 (|has| |#2| (-367 |#1|)) (|has| |#2| (-417 |#1|)))) +(((|#1|) -4032 (|has| |#2| (-367 |#1|)) (|has| |#2| (-417 |#1|)))) +(((|#2|) . T)) +((((-407 (-563))) . T) (((-694)) . T) (($) . T)) +((((-578)) . T)) (((|#3| |#3|) . T)) -(|has| |#2| (-232)) -((((-859 |#1|)) . T)) -((((-1168)) |has| |#1| (-895 (-1168))) ((|#3|) . T)) -((((-639 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) -(-12 (|has| |#1| (-362)) (|has| |#2| (-1017))) -((((-1166 |#1| |#2| |#3|)) |has| |#1| (-362))) -((((-857)) . T)) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -((((-406 (-562))) . T) (($) . T) (((-406 |#1|)) . T) ((|#1|) . T)) -((((-562)) . T) (((-116 |#1|)) . T) (($) . T) (((-406 (-562))) . T)) -((((-562)) . T)) +(|has| |#2| (-233)) +((((-860 |#1|)) . T)) +((((-1169)) |has| |#1| (-896 (-1169))) ((|#3|) . T)) +((((-640 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) +(-12 (|has| |#1| (-363)) (|has| |#2| (-1018))) +((((-1167 |#1| |#2| |#3|)) |has| |#1| (-363))) +((((-858)) . T)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +((((-407 (-563))) . T) (($) . T) (((-407 |#1|)) . T) ((|#1|) . T)) +((((-563)) . T) (((-116 |#1|)) . T) (($) . T) (((-407 (-563))) . T)) +((((-563)) . T)) (((|#3|) . T)) -(|has| |#1| (-1092)) +(|has| |#1| (-1093)) (((|#2|) . T)) (((|#1|) . T)) -((((-562)) . T)) -(((|#2|) . T) (((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((|#1|) . T) (($) . T) (((-562)) . T)) -(-4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) -(((|#2|) . T) (((-562)) |has| |#2| (-635 (-562)))) +((((-563)) . T)) +(((|#2|) . T) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((|#1|) . T) (($) . T) (((-563)) . T)) +(-4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) +(((|#2|) . T) (((-563)) |has| |#2| (-636 (-563)))) (((|#1| |#2|) . T)) ((($) . T)) -((((-579 |#1|)) . T) (((-406 (-562))) . T) (($) . T)) -((($) . T) (((-406 (-562))) . T)) +((((-580 |#1|)) . T) (((-407 (-563))) . T) (($) . T)) +((($) . T) (((-407 (-563))) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T) (($) . T)) -(((|#1| (-1256 |#1|) (-1256 |#1|)) . T)) +(((|#1| (-1257 |#1|) (-1257 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-857)) . T)) -((((-857)) . T)) -(((#0=(-116 |#1|) #0#) . T) ((#1=(-406 (-562)) #1#) . T) (($ $) . T)) -((((-406 (-562))) |has| |#2| (-1033 (-406 (-562)))) (((-562)) |has| |#2| (-1033 (-562))) ((|#2|) . T) (((-859 |#1|)) . T)) -((((-1117 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-562)) |has| |#1| (-1033 (-562))) (((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((|#2|) . T)) +((((-858)) . T)) +((((-858)) . T)) +(((#0=(-116 |#1|) #0#) . T) ((#1=(-407 (-563)) #1#) . T) (($ $) . T)) +((((-407 (-563))) |has| |#2| (-1034 (-407 (-563)))) (((-563)) |has| |#2| (-1034 (-563))) ((|#2|) . T) (((-860 |#1|)) . T)) +((((-1118 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($ $) . T)) -((((-666 |#1|)) . T)) -((($) . T) (((-406 (-562))) |has| |#2| (-38 (-406 (-562)))) ((|#2|) . T)) -((((-116 |#1|)) . T) (((-406 (-562))) . T) (($) . T)) -((((-562)) -12 (|has| |#1| (-881 (-562))) (|has| |#3| (-881 (-562)))) (((-378)) -12 (|has| |#1| (-881 (-378))) (|has| |#3| (-881 (-378))))) +((((-667 |#1|)) . T)) +((($) . T) (((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) . T)) +((((-116 |#1|)) . T) (((-407 (-563))) . T) (($) . T)) +((((-563)) -12 (|has| |#1| (-882 (-563))) (|has| |#3| (-882 (-563)))) (((-379)) -12 (|has| |#1| (-882 (-379))) (|has| |#3| (-882 (-379))))) (((|#2|) . T) ((|#6|) . T)) -(((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) (($) . T)) -((((-143)) . T)) +(((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) (($) . T)) +((((-144)) . T)) ((($) . T)) -((($) . T) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -((((-378)) . T) (((-406 (-562))) . T) (($) . T) (((-562)) . T)) -((($) . T) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) +((($) . T) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +((((-379)) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T)) +((($) . T) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) (((|#1|) . T)) -(|has| |#2| (-904)) -(|has| |#1| (-904)) -(|has| |#1| (-904)) +(|has| |#2| (-905)) +(|has| |#1| (-905)) +(|has| |#1| (-905)) (((|#4|) . T)) -(|has| |#2| (-1017)) +(|has| |#2| (-1018)) ((($) . T)) -(|has| |#1| (-904)) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) +(|has| |#1| (-905)) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) ((($) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) ((($) . T)) -(|has| |#1| (-362)) -((((-905 |#1|)) . T)) -((($) -4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -((($ $) . T) ((#0=(-406 (-562)) #0#) . T)) -(-4037 (|has| |#1| (-367)) (|has| |#1| (-845))) -(((|#1|) . T)) -((((-766)) . T)) -((((-857)) . T)) -((((-1168)) -12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) -((((-406 |#2|) |#3|) . T)) -((($) . T) (((-406 (-562))) . T)) -((($) . T) (((-562)) . T) (((-406 (-562))) . T) (((-608 $)) . T)) -((((-562)) . T) (($) . T)) -((((-562)) . T) (($) . T)) -((((-766) |#1|) . T)) -(((|#2| (-239 (-3492 |#1|) (-766))) . T)) -(((|#1| (-530 |#3|)) . T)) -((((-406 (-562))) . T)) -(-4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) -((((-1150)) . T) (((-857)) . T)) -(((#0=(-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) #0#) |has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-308 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))))) -((((-1150)) . T)) -(|has| |#1| (-904)) -(|has| |#2| (-362)) -(-4037 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044))) -((((-168 (-378))) . T) (((-224)) . T) (((-378)) . T)) -((((-857)) . T)) -(((|#1|) . T)) -((((-378)) . T) (((-562)) . T)) -(((#0=(-406 (-562)) #0#) . T) (($ $) . T)) +(|has| |#1| (-363)) +((((-906 |#1|)) . T)) +((($) -4032 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +((($ $) . T) ((#0=(-407 (-563)) #0#) . T)) +(-4032 (|has| |#1| (-368)) (|has| |#1| (-846))) +(((|#1|) . T)) +((((-767)) . T)) +((((-858)) . T)) +((((-1169)) -12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) +((((-407 |#2|) |#3|) . T)) +((($) . T) (((-407 (-563))) . T)) +((($) . T) (((-563)) . T) (((-407 (-563))) . T) (((-609 $)) . T)) +((((-563)) . T) (($) . T)) +((((-563)) . T) (($) . T)) +((((-767) |#1|) . T)) +(((|#2| (-240 (-3608 |#1|) (-767))) . T)) +(((|#1| (-531 |#3|)) . T)) +((((-407 (-563))) . T)) +(-4032 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) +((((-1151)) . T) (((-858)) . T)) +(((#0=(-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) #0#) |has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-309 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))))) +((((-1151)) . T)) +(|has| |#1| (-905)) +(|has| |#2| (-363)) +(-4032 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +((((-169 (-379))) . T) (((-225)) . T) (((-379)) . T)) +((((-858)) . T)) +(((|#1|) . T)) +((((-379)) . T) (((-563)) . T)) +(((#0=(-407 (-563)) #0#) . T) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1| |#1|) . T)) -((((-857)) . T)) -(|has| |#1| (-554)) -((((-406 (-562))) . T) (($) . T)) -((($) . T)) -((($) . T)) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -(-4037 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348))) -(|has| |#1| (-38 (-406 (-562)))) -(-12 (|has| |#1| (-544)) (|has| |#1| (-823))) -((((-857)) . T)) -((((-1168)) -4037 (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))) (-12 (|has| |#1| (-362)) (|has| |#2| (-895 (-1168)))))) -(|has| |#1| (-362)) -((((-1168)) -12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) -(|has| |#1| (-362)) -((((-406 (-562))) . T) (($) . T)) -((($) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) . T)) -((((-562) |#1|) . T)) -(((|#1|) . T)) -(((|#2|) |has| |#1| (-362))) -(((|#2|) |has| |#1| (-362))) -((((-562)) . T) (($) . T)) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -(((|#1|) . T)) -(((|#1|) |has| |#1| (-171))) -(((|#1|) . T)) -(((|#2|) . T) (((-1168)) -12 (|has| |#1| (-362)) (|has| |#2| (-1033 (-1168)))) (((-562)) -12 (|has| |#1| (-362)) (|has| |#2| (-1033 (-562)))) (((-406 (-562))) -12 (|has| |#1| (-362)) (|has| |#2| (-1033 (-562))))) -(((|#2|) . T)) -((((-1168) #0=(-1242 |#1| |#2| |#3| |#4|)) |has| #0# (-513 (-1168) #0#)) ((#0# #0#) |has| #0# (-308 #0#))) -((((-608 $) $) . T) (($ $) . T)) -((((-168 (-224))) . T) (((-168 (-378))) . T) (((-1164 (-693))) . T) (((-887 (-378))) . T)) -((((-857)) . T)) -(|has| |#1| (-554)) -(|has| |#1| (-554)) -(|has| (-406 |#2|) (-232)) -(((|#1| (-406 (-562))) . T)) +((((-858)) . T)) +(|has| |#1| (-555)) +((((-407 (-563))) . T) (($) . T)) +((($) . T)) +((($) . T)) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +(-4032 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349))) +(|has| |#1| (-38 (-407 (-563)))) +(-12 (|has| |#1| (-545)) (|has| |#1| (-824))) +((((-858)) . T)) +((((-1169)) -4032 (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))) (-12 (|has| |#1| (-363)) (|has| |#2| (-896 (-1169)))))) +(|has| |#1| (-363)) +((((-1169)) -12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) +(|has| |#1| (-363)) +((((-407 (-563))) . T) (($) . T)) +((($) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) . T)) +((((-563) |#1|) . T)) +(((|#1|) . T)) +(((|#2|) |has| |#1| (-363))) +(((|#2|) |has| |#1| (-363))) +((((-563)) . T) (($) . T)) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-172))) +(((|#1|) . T)) +(((|#2|) . T) (((-1169)) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-1169)))) (((-563)) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-563)))) (((-407 (-563))) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-563))))) +(((|#2|) . T)) +((((-1169) #0=(-1243 |#1| |#2| |#3| |#4|)) |has| #0# (-514 (-1169) #0#)) ((#0# #0#) |has| #0# (-309 #0#))) +((((-609 $) $) . T) (($ $) . T)) +((((-169 (-225))) . T) (((-169 (-379))) . T) (((-1165 (-694))) . T) (((-888 (-379))) . T)) +((((-858)) . T)) +(|has| |#1| (-555)) +(|has| |#1| (-555)) +(|has| (-407 |#2|) (-233)) +(((|#1| (-407 (-563))) . T)) ((($ $) . T)) -((((-1168)) |has| |#2| (-895 (-1168)))) -((($) . T)) -((((-857)) . T)) -((((-406 (-562))) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -((((-857)) . T)) -(((|#2|) |has| |#1| (-362))) -((((-378)) -12 (|has| |#1| (-362)) (|has| |#2| (-881 (-378)))) (((-562)) -12 (|has| |#1| (-362)) (|has| |#2| (-881 (-562))))) -(|has| |#1| (-362)) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-554))) -(|has| |#1| (-362)) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-554))) -(|has| |#1| (-362)) -(|has| |#1| (-554)) -(((|#1|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) +((((-1169)) |has| |#2| (-896 (-1169)))) +((($) . T)) +((((-858)) . T)) +((((-407 (-563))) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +((((-858)) . T)) +(((|#2|) |has| |#1| (-363))) +((((-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-882 (-379)))) (((-563)) -12 (|has| |#1| (-363)) (|has| |#2| (-882 (-563))))) +(|has| |#1| (-363)) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-555))) +(|has| |#1| (-363)) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-555))) +(|has| |#1| (-363)) +(|has| |#1| (-555)) +(((|#1|) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (((|#3|) . T)) -((((-1150)) . T) (((-1168)) . T) (((-224)) . T) (((-562)) . T)) +((((-1151)) . T) (((-1169)) . T) (((-225)) . T) (((-563)) . T)) (((|#1|) . T)) -((((-406 |#2|)) . T) (((-406 (-562))) . T) (($) . T) (((-562)) . T)) -(-4037 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044))) +((((-407 |#2|)) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T)) +(-4032 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045))) (((|#2|) . T)) (((|#2|) . T)) -(-4037 (|has| |#2| (-171)) (|has| |#2| (-721)) (|has| |#2| (-843)) (|has| |#2| (-1044))) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -((((-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) . T)) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -(|has| |#1| (-38 (-406 (-562)))) +(-4032 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +((((-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) . T)) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +(|has| |#1| (-38 (-407 (-563)))) (((|#1| |#2|) . T)) -(|has| |#1| (-38 (-406 (-562)))) -(-4037 (|has| |#1| (-144)) (|has| |#1| (-367))) -(|has| |#1| (-146)) -((((-1150) |#1|) . T)) -(-4037 (|has| |#1| (-144)) (|has| |#1| (-367))) -(|has| |#1| (-146)) -(-4037 (|has| |#1| (-144)) (|has| |#1| (-367))) -(|has| |#1| (-146)) -((((-579 |#1|)) . T)) -((($) . T)) -((((-406 |#2|)) . T)) -(|has| |#1| (-554)) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -(-4037 (|has| |#1| (-144)) (|has| |#1| (-348))) -(|has| |#1| (-146)) -((((-857)) . T)) -((($) . T)) -((((-406 (-562))) |has| |#2| (-1033 (-562))) (((-562)) |has| |#2| (-1033 (-562))) (((-1168)) |has| |#2| (-1033 (-1168))) ((|#2|) . T)) -(((#0=(-406 |#2|) #0#) . T) ((#1=(-406 (-562)) #1#) . T) (($ $) . T)) -((((-1132 |#1| |#2|)) . T)) -(((|#1| (-562)) . T)) -(((|#1| (-406 (-562))) . T)) -((((-562)) |has| |#2| (-881 (-562))) (((-378)) |has| |#2| (-881 (-378)))) -(((|#2|) . T)) -((((-406 |#2|)) . T) (((-406 (-562))) . T) (($) . T)) +(|has| |#1| (-38 (-407 (-563)))) +(-4032 (|has| |#1| (-145)) (|has| |#1| (-368))) +(|has| |#1| (-147)) +((((-1151) |#1|) . T)) +(-4032 (|has| |#1| (-145)) (|has| |#1| (-368))) +(|has| |#1| (-147)) +(-4032 (|has| |#1| (-145)) (|has| |#1| (-368))) +(|has| |#1| (-147)) +((((-580 |#1|)) . T)) +((($) . T)) +((((-407 |#2|)) . T)) +(|has| |#1| (-555)) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +(-4032 (|has| |#1| (-145)) (|has| |#1| (-349))) +(|has| |#1| (-147)) +((((-858)) . T)) +((($) . T)) +((((-407 (-563))) |has| |#2| (-1034 (-563))) (((-563)) |has| |#2| (-1034 (-563))) (((-1169)) |has| |#2| (-1034 (-1169))) ((|#2|) . T)) +(((#0=(-407 |#2|) #0#) . T) ((#1=(-407 (-563)) #1#) . T) (($ $) . T)) +((((-1133 |#1| |#2|)) . T)) +(((|#1| (-563)) . T)) +(((|#1| (-407 (-563))) . T)) +((((-563)) |has| |#2| (-882 (-563))) (((-379)) |has| |#2| (-882 (-379)))) +(((|#2|) . T)) +((((-407 |#2|)) . T) (((-407 (-563))) . T) (($) . T)) ((((-112)) . T)) -(((|#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) . T)) -(((|#2|) . T)) -((((-857)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -((((-1168) (-52)) . T)) -((((-406 |#2|)) . T)) -((((-857)) . T)) -(((|#1|) . T)) -(|has| |#1| (-1092)) -(|has| |#1| (-786)) -(|has| |#1| (-786)) -((((-857)) . T)) -((((-905 |#1|)) . T) (((-406 (-562))) . T) (($) . T) (((-562)) . T)) -((((-535)) |has| |#1| (-610 (-535)))) -((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-845)) (|has| |#1| (-1092)))) +(((|#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T)) +(((|#2|) . T)) +((((-858)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +((((-1169) (-52)) . T)) +((((-407 |#2|)) . T)) +((((-858)) . T)) +(((|#1|) . T)) +(|has| |#1| (-1093)) +(|has| |#1| (-787)) +(|has| |#1| (-787)) +((((-858)) . T)) +((((-906 |#1|)) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T)) +((((-536)) |has| |#1| (-611 (-536)))) +((((-858)) -4032 (|has| |#1| (-610 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1093)))) ((((-114)) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-224)) . T) (((-378)) . T) (((-887 (-378))) . T)) -((((-857)) . T)) -((((-1242 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-406 (-562))) . T)) -(((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554)) (((-406 (-562))) |has| |#1| (-554))) -((((-857)) . T)) -((((-857)) . T)) -(((|#2|) . T)) -((((-857)) . T)) -(((#0=(-905 |#1|) #0#) . T) (($ $) . T) ((#1=(-406 (-562)) #1#) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-905 |#1|)) . T) (($) . T) (((-406 (-562))) . T)) -(|has| |#1| (-362)) -((((-857)) . T)) -(((|#2|) . T)) -((((-562)) . T)) -((((-857)) . T)) -((((-562)) . T)) -(-4037 (|has| |#2| (-788)) (|has| |#2| (-843))) -((((-168 (-378))) . T) (((-224)) . T) (((-378)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-1150)) . T) (((-535)) . T) (((-562)) . T) (((-887 (-562))) . T) (((-378)) . T) (((-224)) . T)) -((((-857)) . T)) -(|has| |#1| (-146)) -(|has| |#1| (-144)) -((($) . T) ((#0=(-1241 |#2| |#3| |#4|)) |has| #0# (-171)) (((-406 (-562))) |has| #0# (-38 (-406 (-562))))) -(((|#1|) . T) (($) . T) (((-406 (-562))) . T)) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) -((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) -(-4037 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-472)) (|has| |#1| (-721)) (|has| |#1| (-895 (-1168))) (|has| |#1| (-1044)) (|has| |#1| (-1104)) (|has| |#1| (-1092))) -(|has| |#1| (-1143)) -((((-562) |#1|) . T)) -(((|#1|) . T)) -(((#0=(-116 |#1|) $) |has| #0# (-285 #0# #0#))) -(((|#1|) |has| |#1| (-171))) -((((-315 |#1|)) . T) (((-562)) . T)) -(((|#1|) . T)) -((((-857)) . T)) +((((-225)) . T) (((-379)) . T) (((-888 (-379))) . T)) +((((-858)) . T)) +((((-1243 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-407 (-563))) . T)) +(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-555)) (((-407 (-563))) |has| |#1| (-555))) +((((-858)) . T)) +((((-858)) . T)) +(((|#2|) . T)) +((((-858)) . T)) +(((#0=(-906 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-563)) #1#) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-906 |#1|)) . T) (($) . T) (((-407 (-563))) . T)) +(|has| |#1| (-363)) +((((-858)) . T)) +(((|#2|) . T)) +((((-563)) . T)) +((((-858)) . T)) +((((-563)) . T)) +(-4032 (|has| |#2| (-789)) (|has| |#2| (-844))) +((((-169 (-379))) . T) (((-225)) . T) (((-379)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-1151)) . T) (((-536)) . T) (((-563)) . T) (((-888 (-563))) . T) (((-379)) . T) (((-225)) . T)) +((((-858)) . T)) +(|has| |#1| (-147)) +(|has| |#1| (-145)) +((($) . T) ((#0=(-1242 |#2| |#3| |#4|)) |has| #0# (-172)) (((-407 (-563))) |has| #0# (-38 (-407 (-563))))) +(((|#1|) . T) (($) . T) (((-407 (-563))) . T)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +((((-858)) -4032 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) +((((-858)) -4032 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) +(-4032 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-722)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045)) (|has| |#1| (-1105)) (|has| |#1| (-1093))) +(|has| |#1| (-1144)) +((((-563) |#1|) . T)) +(((|#1|) . T)) +(((#0=(-116 |#1|) $) |has| #0# (-286 #0# #0#))) +(((|#1|) |has| |#1| (-172))) +((((-316 |#1|)) . T) (((-563)) . T)) +(((|#1|) . T)) +((((-858)) . T)) ((((-114)) . T) ((|#1|) . T)) -((((-857)) . T)) +((((-858)) . T)) (((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-308 |#1|))) -((((-562) |#1|) . T)) -((((-1168) |#1|) . T)) +(((|#1|) |has| |#1| (-309 |#1|))) +((((-563) |#1|) . T)) +((((-1169) |#1|) . T)) (((|#1|) . T)) -((((-562)) . T) (((-406 (-562))) . T)) +((((-563)) . T) (((-407 (-563))) . T)) (((|#1|) . T)) -(|has| |#1| (-554)) -((((-406 |#2|)) . T) (((-406 (-562))) . T) (($) . T)) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-554))) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-554))) -((((-378)) . T)) +(|has| |#1| (-555)) +((((-407 |#2|)) . T) (((-407 (-563))) . T) (($) . T)) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-555))) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-555))) +((((-379)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -(|has| |#1| (-554)) -(|has| |#1| (-1092)) -((((-775 |#1| (-859 |#2|))) |has| (-775 |#1| (-859 |#2|)) (-308 (-775 |#1| (-859 |#2|))))) -(-4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(|has| |#1| (-555)) +(|has| |#1| (-1093)) +((((-776 |#1| (-860 |#2|))) |has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|))))) +(-4032 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) (((|#1|) . T)) (((|#2| |#3|) . T)) (((|#1|) . T)) -(|has| |#2| (-904)) -(((|#1| (-530 |#2|)) . T)) -(((|#1| (-766)) . T)) -(|has| |#1| (-232)) -(((|#1| (-530 (-1080 (-1168)))) . T)) -(|has| |#2| (-362)) -((((-579 |#1|)) . T) (((-406 (-562))) . T) (($) . T) (((-562)) . T)) -((((-562)) . T) (((-406 (-562))) . T) (($) . T)) -((((-2 (|:| -2319 (-1150)) (|:| -2693 (-52)))) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-562)) . T)) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -((((-857)) . T)) -((((-857)) . T)) -(-4037 (|has| |#3| (-788)) (|has| |#3| (-843))) -((((-857)) . T)) -((((-1112)) . T) (((-857)) . T)) -((((-535)) . T) (((-857)) . T)) -(((|#1|) . T)) -((($ $) . T) (((-608 $) $) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-562)) . T)) +(|has| |#2| (-905)) +(((|#1| (-531 |#2|)) . T)) +(((|#1| (-767)) . T)) +(|has| |#1| (-233)) +(((|#1| (-531 (-1081 (-1169)))) . T)) +(|has| |#2| (-363)) +((((-580 |#1|)) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T)) +((((-563)) . T) (((-407 (-563))) . T) (($) . T)) +((((-2 (|:| -2387 (-1151)) (|:| -2557 (-52)))) . T)) +(((|#1|) . T)) +(((|#1|) . T) (((-563)) . T)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +((((-858)) . T)) +((((-858)) . T)) +(-4032 (|has| |#3| (-789)) (|has| |#3| (-844))) +((((-858)) . T)) +((((-1113)) . T) (((-858)) . T)) +((((-536)) . T) (((-858)) . T)) +(((|#1|) . T)) +((($ $) . T) (((-609 $) $) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-563)) . T)) (((|#3|) . T)) -((((-857)) . T)) -(-4037 (|has| |#1| (-306)) (|has| |#1| (-362)) (|has| |#1| (-348))) -((((-562)) . T) (((-406 (-562))) -4037 (|has| |#2| (-38 (-406 (-562)))) (|has| |#2| (-1033 (-406 (-562))))) ((|#2|) . T) (($) -4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) (((-859 |#1|)) . T)) -((((-1117 |#1| |#2|)) . T) ((|#2|) . T) (($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562))))) (((-562)) . T)) -((((-1164 |#1|)) . T) (((-562)) . T) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) (((-1074)) . T) ((|#1|) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562)))))) -(-4037 (|has| |#1| (-144)) (|has| |#1| (-146)) (|has| |#1| (-171)) (|has| |#1| (-554)) (|has| |#1| (-1044))) -((((-1117 |#1| (-1168))) . T) (((-562)) . T) (((-1080 (-1168))) . T) (($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562))))) (((-1168)) . T)) -(((#0=(-579 |#1|) #0#) . T) (($ $) . T) ((#1=(-406 (-562)) #1#) . T)) -((($ $) . T) ((#0=(-406 (-562)) #0#) . T)) -(((|#1|) |has| |#1| (-171))) -(((|#1| (-1256 |#1|) (-1256 |#1|)) . T)) -((((-579 |#1|)) . T) (($) . T) (((-406 (-562))) . T)) -((($) . T) (((-406 (-562))) . T)) -((($) . T) (((-406 (-562))) . T)) -(((|#2|) |has| |#2| (-6 (-4405 "*")))) -(((|#1|) . T)) -((((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((|#1|) . T) (((-562)) . T)) -(((|#1|) . T)) -((((-857)) . T)) -((((-293 |#3|)) . T)) -(((#0=(-406 (-562)) #0#) |has| |#2| (-38 (-406 (-562)))) ((|#2| |#2|) . T) (($ $) -4037 (|has| |#2| (-171)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904)))) +((((-858)) . T)) +(-4032 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349))) +((((-563)) . T) (((-407 (-563))) -4032 (|has| |#2| (-38 (-407 (-563)))) (|has| |#2| (-1034 (-407 (-563))))) ((|#2|) . T) (($) -4032 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) (((-860 |#1|)) . T)) +((((-1118 |#1| |#2|)) . T) ((|#2|) . T) (($) -4032 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))) (((-563)) . T)) +((((-1165 |#1|)) . T) (((-563)) . T) (($) -4032 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) (((-1075)) . T) ((|#1|) . T) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563)))))) +(-4032 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-555)) (|has| |#1| (-1045))) +((((-1118 |#1| (-1169))) . T) (((-563)) . T) (((-1081 (-1169))) . T) (($) -4032 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))) (((-1169)) . T)) +(((#0=(-580 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-563)) #1#) . T)) +((($ $) . T) ((#0=(-407 (-563)) #0#) . T)) +(((|#1|) |has| |#1| (-172))) +(((|#1| (-1257 |#1|) (-1257 |#1|)) . T)) +((((-580 |#1|)) . T) (($) . T) (((-407 (-563))) . T)) +((($) . T) (((-407 (-563))) . T)) +((($) . T) (((-407 (-563))) . T)) +(((|#2|) |has| |#2| (-6 (-4409 "*")))) +(((|#1|) . T)) +((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((|#1|) . T) (((-563)) . T)) +(((|#1|) . T)) +((((-858)) . T)) +((((-294 |#3|)) . T)) +(((#0=(-407 (-563)) #0#) |has| |#2| (-38 (-407 (-563)))) ((|#2| |#2|) . T) (($ $) -4032 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) (((|#1|) . T)) -((($) . T) (((-406 (-562))) |has| |#2| (-38 (-406 (-562)))) ((|#2|) . T)) -((($) . T) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -(((|#1|) . T) (((-406 (-562))) . T) (($) . T)) -(((|#1|) . T) (((-406 (-562))) . T) (($) . T)) -(((|#1|) . T) (((-406 (-562))) . T) (($) . T)) -((($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1| |#1|) . T) ((#0=(-406 (-562)) #0#) |has| |#1| (-38 (-406 (-562))))) -((($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1| |#1|) . T) ((#0=(-406 (-562)) #0#) |has| |#1| (-38 (-406 (-562))))) +((($) . T) (((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) . T)) +((($) . T) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +(((|#1|) . T) (((-407 (-563))) . T) (($) . T)) +(((|#1|) . T) (((-407 (-563))) . T) (($) . T)) +(((|#1|) . T) (((-407 (-563))) . T) (($) . T)) +((($ $) -4032 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563))))) +((($ $) -4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563))))) (((|#2|) . T)) -((((-406 (-562))) |has| |#2| (-38 (-406 (-562)))) ((|#2|) . T) (($) -4037 (|has| |#2| (-171)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904)))) +((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) . T) (($) -4032 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))) (((|#2|) . T) ((|#6|) . T)) -((($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1| |#1|) . T) ((#0=(-406 (-562)) #0#) |has| |#1| (-38 (-406 (-562))))) -((((-857)) . T)) -((($) -4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -((($) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -(|has| |#2| (-904)) -(|has| |#1| (-904)) -((($) -4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -((((-857)) . T)) +((($ $) -4032 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563))))) +((((-858)) . T)) +((($) -4032 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +((($) -4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +(|has| |#2| (-905)) +(|has| |#1| (-905)) +((($) -4032 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +((((-858)) . T)) (((|#1|) . T)) -((((-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) . T)) +((((-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1092)) -(((|#1|) . T)) -((((-1168)) . T) ((|#1|) . T)) -((((-857)) . T)) -((((-857)) . T)) -(((|#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) -(((#0=(-406 (-562)) #0#) . T)) -((((-406 (-562))) . T)) -(-4037 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044))) -(((|#1|) . T)) -(((|#1|) . T)) -(-4037 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-843)) (|has| |#2| (-1044))) -((((-406 (-562))) . T) (((-562)) . T) (($) . T)) -((((-535)) . T)) -((((-857)) . T)) -((((-562)) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554))) -((((-1168)) |has| |#2| (-895 (-1168))) (((-1074)) . T)) -((((-1241 |#2| |#3| |#4|)) . T)) -((((-905 |#1|)) . T)) -((($) . T) (((-406 (-562))) . T)) -(-12 (|has| |#1| (-362)) (|has| |#2| (-815))) -(-12 (|has| |#1| (-362)) (|has| |#2| (-815))) -((((-857)) . T)) -(|has| |#1| (-1211)) -(((|#2|) . T)) -((($ $) . T) ((#0=(-406 (-562)) #0#) . T)) -((((-1168)) |has| |#1| (-895 (-1168)))) -((((-905 |#1|)) . T) (((-406 (-562))) . T) (($) . T)) -((($) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) ((|#1|) . T)) -(((#0=(-406 (-562)) #0#) |has| |#1| (-38 (-406 (-562)))) ((|#1| |#1|) . T) (($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-554)))) -((($) . T) (((-406 (-562))) . T)) -(((|#1|) . T) (((-406 (-562))) . T) (((-562)) . T) (($) . T)) -(((|#2|) |has| |#2| (-1044)) (((-562)) -12 (|has| |#2| (-635 (-562))) (|has| |#2| (-1044)))) -((((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) . T) (($) -4037 (|has| |#1| (-171)) (|has| |#1| (-554)))) -(|has| |#1| (-554)) -(((|#1|) |has| |#1| (-362))) -((((-562)) . T)) -(|has| |#1| (-786)) -(|has| |#1| (-786)) -((((-1168) #0=(-116 |#1|)) |has| #0# (-513 (-1168) #0#)) ((#0# #0#) |has| #0# (-308 #0#))) -(((|#2|) . T) (((-562)) |has| |#2| (-1033 (-562))) (((-406 (-562))) |has| |#2| (-1033 (-406 (-562))))) -((((-1074)) . T) ((|#2|) . T) (((-562)) |has| |#2| (-1033 (-562))) (((-406 (-562))) |has| |#2| (-1033 (-406 (-562))))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-562) (-766)) . T) ((|#3| (-766)) . T)) +(|has| |#1| (-1093)) +(((|#1|) . T)) +((((-1169)) . T) ((|#1|) . T)) +((((-858)) . T)) +((((-858)) . T)) +(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) +(((#0=(-407 (-563)) #0#) . T)) +((((-407 (-563))) . T)) +(-4032 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +(((|#1|) . T)) +(((|#1|) . T)) +(-4032 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +((((-407 (-563))) . T) (((-563)) . T) (($) . T)) +((((-536)) . T)) +((((-858)) . T)) +((((-563)) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-555))) +((((-1169)) |has| |#2| (-896 (-1169))) (((-1075)) . T)) +((((-1242 |#2| |#3| |#4|)) . T)) +((((-906 |#1|)) . T)) +((($) . T) (((-407 (-563))) . T)) +(-12 (|has| |#1| (-363)) (|has| |#2| (-816))) +(-12 (|has| |#1| (-363)) (|has| |#2| (-816))) +((((-858)) . T)) +(|has| |#1| (-1212)) +(((|#2|) . T)) +((($ $) . T) ((#0=(-407 (-563)) #0#) . T)) +((((-1169)) |has| |#1| (-896 (-1169)))) +((((-906 |#1|)) . T) (((-407 (-563))) . T) (($) . T)) +((($) . T) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((|#1|) . T)) +(((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563)))) ((|#1| |#1|) . T) (($ $) -4032 (|has| |#1| (-172)) (|has| |#1| (-555)))) +((($) . T) (((-407 (-563))) . T)) +(((|#1|) . T) (((-407 (-563))) . T) (((-563)) . T) (($) . T)) +(((|#2|) |has| |#2| (-1045)) (((-563)) -12 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045)))) +((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) . T) (($) -4032 (|has| |#1| (-172)) (|has| |#1| (-555)))) +(|has| |#1| (-555)) +(((|#1|) |has| |#1| (-363))) +((((-563)) . T)) +(|has| |#1| (-787)) +(|has| |#1| (-787)) +((((-1169) #0=(-116 |#1|)) |has| #0# (-514 (-1169) #0#)) ((#0# #0#) |has| #0# (-309 #0#))) +(((|#2|) . T) (((-563)) |has| |#2| (-1034 (-563))) (((-407 (-563))) |has| |#2| (-1034 (-407 (-563))))) +((((-1075)) . T) ((|#2|) . T) (((-563)) |has| |#2| (-1034 (-563))) (((-407 (-563))) |has| |#2| (-1034 (-407 (-563))))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-563) (-767)) . T) ((|#3| (-767)) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -((((-857)) . T)) -(|has| |#2| (-815)) -(|has| |#2| (-815)) -((((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) ((|#2|) |has| |#1| (-362)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -(((|#1|) . T) (((-562)) |has| |#1| (-1033 (-562))) (((-406 (-562))) |has| |#1| (-1033 (-406 (-562))))) -((((-562)) |has| |#1| (-881 (-562))) (((-378)) |has| |#1| (-881 (-378)))) -(((|#1|) . T)) -((((-865 |#1|)) . T)) -((((-865 |#1|)) . T)) -(-12 (|has| |#1| (-362)) (|has| |#2| (-904))) -((((-406 (-562))) . T) (((-693)) . T) (($) . T)) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) -(|has| |#1| (-362)) -(((|#2|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-859 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#2| (-766)) . T)) -((((-1168)) . T)) -((((-865 |#1|)) . T)) -(-4037 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-788)) (|has| |#3| (-843)) (|has| |#3| (-1044))) -(-4037 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-843)) (|has| |#3| (-1044))) -((((-857)) . T)) -(((|#1|) . T)) -(-4037 (|has| |#2| (-788)) (|has| |#2| (-843))) -(-4037 (-12 (|has| |#1| (-788)) (|has| |#2| (-788))) (-12 (|has| |#1| (-845)) (|has| |#2| (-845)))) -((((-865 |#1|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -((($ $) . T) (((-608 $) $) . T)) -((($) . T)) -((((-857)) . T)) -((((-562)) . T)) -(((|#2|) . T)) -((((-857)) . T)) -(((|#1|) . T) (((-406 (-562))) |has| |#1| (-362))) -((((-857)) . T)) -(((|#1|) . T)) -((((-857)) . T)) -((($) . T) ((|#2|) . T) (((-406 (-562))) . T)) -(|has| |#1| (-1092)) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-857)) . T)) -(|has| |#2| (-904)) -((((-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) . T)) -((((-535)) |has| |#2| (-610 (-535))) (((-887 (-378))) |has| |#2| (-610 (-887 (-378)))) (((-887 (-562))) |has| |#2| (-610 (-887 (-562))))) -((((-857)) . T)) -((((-857)) . T)) -(((|#3|) |has| |#3| (-1044)) (((-562)) -12 (|has| |#3| (-635 (-562))) (|has| |#3| (-1044)))) -((((-1117 |#1| |#2|)) . T) (((-947 |#1|)) |has| |#2| (-610 (-1168))) (((-857)) . T)) -((((-947 |#1|)) |has| |#2| (-610 (-1168))) (((-1150)) -12 (|has| |#1| (-1033 (-562))) (|has| |#2| (-610 (-1168)))) (((-887 (-562))) -12 (|has| |#1| (-610 (-887 (-562)))) (|has| |#2| (-610 (-887 (-562))))) (((-887 (-378))) -12 (|has| |#1| (-610 (-887 (-378)))) (|has| |#2| (-610 (-887 (-378))))) (((-535)) -12 (|has| |#1| (-610 (-535))) (|has| |#2| (-610 (-535))))) -((((-1164 |#1|)) . T) (((-857)) . T)) -((((-857)) . T)) -((((-406 (-562))) |has| |#2| (-1033 (-406 (-562)))) (((-562)) |has| |#2| (-1033 (-562))) ((|#2|) . T) (((-859 |#1|)) . T)) -((((-116 |#1|)) . T) (($) . T) (((-406 (-562))) . T)) -((((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) (((-562)) |has| |#1| (-1033 (-562))) ((|#1|) . T) (((-1168)) . T)) -((((-857)) . T)) -((((-562)) . T)) -(((|#1|) . T)) -((($) . T)) -((((-378)) |has| |#1| (-881 (-378))) (((-562)) |has| |#1| (-881 (-562)))) -((((-562)) . T)) -(((|#1|) . T)) -((((-857)) . T)) -(((|#1|) . T)) -((((-857)) . T)) -((((-1173)) . T)) -((((-1173)) . T)) -((((-1173)) . T)) -((((-639 |#1|)) . T)) -((((-1173)) . T)) -((((-1173)) . T)) -((((-1173)) . T)) -(((|#1|) |has| |#1| (-171)) (($) . T)) -((((-562)) . T) (((-406 (-562))) . T)) -(((|#1|) |has| |#1| (-308 |#1|))) -((((-857)) . T)) -((((-378)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-857)) . T)) -((((-406 (-562))) . T) (($) . T)) -((((-406 |#2|) |#3|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1092)) -(((|#2| (-481 (-3492 |#1|) (-766))) . T)) -((((-562) |#1|) . T)) -((((-1150)) . T) (((-857)) . T)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +((((-858)) . T)) +(|has| |#2| (-816)) +(|has| |#2| (-816)) +((((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((|#2|) |has| |#1| (-363)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563))))) +((((-563)) |has| |#1| (-882 (-563))) (((-379)) |has| |#1| (-882 (-379)))) +(((|#1|) . T)) +((((-866 |#1|)) . T)) +((((-866 |#1|)) . T)) +(-12 (|has| |#1| (-363)) (|has| |#2| (-905))) +((((-407 (-563))) . T) (((-694)) . T) (($) . T)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) +(|has| |#1| (-363)) +(((|#2|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-860 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#2| (-767)) . T)) +((((-1169)) . T)) +((((-866 |#1|)) . T)) +(-4032 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045))) +(-4032 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-844)) (|has| |#3| (-1045))) +((((-858)) . T)) +(((|#1|) . T)) +(-4032 (|has| |#2| (-789)) (|has| |#2| (-844))) +(-4032 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))) +((((-866 |#1|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-368)) +(|has| |#1| (-368)) +(|has| |#1| (-368)) +((($ $) . T) (((-609 $) $) . T)) +((($) . T)) +((((-858)) . T)) +((((-563)) . T)) +(((|#2|) . T)) +((((-858)) . T)) +(((|#1|) . T) (((-407 (-563))) |has| |#1| (-363))) +((((-858)) . T)) +(((|#1|) . T)) +((((-858)) . T)) +((($) . T) ((|#2|) . T) (((-407 (-563))) . T)) +(|has| |#1| (-1093)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-858)) . T)) +(|has| |#2| (-905)) +((((-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) . T)) +((((-536)) |has| |#2| (-611 (-536))) (((-888 (-379))) |has| |#2| (-611 (-888 (-379)))) (((-888 (-563))) |has| |#2| (-611 (-888 (-563))))) +((((-858)) . T)) +((((-858)) . T)) +(((|#3|) |has| |#3| (-1045)) (((-563)) -12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045)))) +((((-1118 |#1| |#2|)) . T) (((-948 |#1|)) |has| |#2| (-611 (-1169))) (((-858)) . T)) +((((-948 |#1|)) |has| |#2| (-611 (-1169))) (((-1151)) -12 (|has| |#1| (-1034 (-563))) (|has| |#2| (-611 (-1169)))) (((-888 (-563))) -12 (|has| |#1| (-611 (-888 (-563)))) (|has| |#2| (-611 (-888 (-563))))) (((-888 (-379))) -12 (|has| |#1| (-611 (-888 (-379)))) (|has| |#2| (-611 (-888 (-379))))) (((-536)) -12 (|has| |#1| (-611 (-536))) (|has| |#2| (-611 (-536))))) +((((-1165 |#1|)) . T) (((-858)) . T)) +((((-858)) . T)) +((((-407 (-563))) |has| |#2| (-1034 (-407 (-563)))) (((-563)) |has| |#2| (-1034 (-563))) ((|#2|) . T) (((-860 |#1|)) . T)) +((((-116 |#1|)) . T) (($) . T) (((-407 (-563))) . T)) +((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-563)) |has| |#1| (-1034 (-563))) ((|#1|) . T) (((-1169)) . T)) +((((-858)) . T)) +((((-563)) . T)) +(((|#1|) . T)) +((($) . T)) +((((-379)) |has| |#1| (-882 (-379))) (((-563)) |has| |#1| (-882 (-563)))) +((((-563)) . T)) +(((|#1|) . T)) +((((-858)) . T)) +(((|#1|) . T)) +((((-858)) . T)) +((((-1174)) . T)) +((((-1174)) . T)) +((((-1174)) . T)) +((((-640 |#1|)) . T)) +((((-1174)) . T)) +((((-1174)) . T)) +((((-1174)) . T)) +(((|#1|) |has| |#1| (-172)) (($) . T)) +((((-563)) . T) (((-407 (-563))) . T)) +(((|#1|) |has| |#1| (-309 |#1|))) +((((-858)) . T)) +((((-379)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-858)) . T)) +((((-407 (-563))) . T) (($) . T)) +((((-407 |#2|) |#3|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1093)) +(((|#2| (-482 (-3608 |#1|) (-767))) . T)) +((((-563) |#1|) . T)) +((((-1151)) . T) (((-858)) . T)) (((|#2| |#2|) . T)) -(((|#1| (-530 (-1168))) . T)) -(-4037 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044))) -((((-562)) . T)) +(((|#1| (-531 (-1169))) . T)) +(-4032 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +((((-563)) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-1168)) |has| |#1| (-895 (-1168))) (((-1074)) . T)) -(((|#1|) . T) (((-562)) |has| |#1| (-635 (-562)))) -(|has| |#1| (-554)) -((($) . T) (((-406 (-562))) . T)) +((((-1169)) |has| |#1| (-896 (-1169))) (((-1075)) . T)) +(((|#1|) . T) (((-563)) |has| |#1| (-636 (-563)))) +(|has| |#1| (-555)) +((($) . T) (((-407 (-563))) . T)) ((($) . T)) ((($) . T)) -(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) +(-4032 (|has| |#1| (-846)) (|has| |#1| (-1093))) (((|#1|) . T)) -((($) -4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -((((-857)) . T)) -((((-143)) . T)) -(((|#1|) . T) (((-406 (-562))) . T)) +((($) -4032 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +((((-858)) . T)) +((((-144)) . T)) +(((|#1|) . T) (((-407 (-563))) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-857)) . T)) +((((-858)) . T)) (((|#1|) . T)) -(|has| |#1| (-1143)) -(((|#1| (-530 (-859 |#2|)) (-859 |#2|) (-775 |#1| (-859 |#2|))) . T)) +(|has| |#1| (-1144)) +(((|#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|))) . T)) (((|#1|) . T)) -((((-406 $) (-406 $)) |has| |#1| (-554)) (($ $) . T) ((|#1| |#1|) . T)) -(((|#1|) . T) (((-562)) |has| |#1| (-1033 (-562))) (((-406 (-562))) |has| |#1| (-1033 (-406 (-562))))) -((((-857)) . T)) -((((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) (((-562)) |has| |#1| (-1033 (-562))) ((|#1|) . T) ((|#2|) . T)) -((((-1074)) . T) ((|#1|) . T) (((-562)) |has| |#1| (-1033 (-562))) (((-406 (-562))) |has| |#1| (-1033 (-406 (-562))))) -((((-378)) -12 (|has| |#1| (-881 (-378))) (|has| |#2| (-881 (-378)))) (((-562)) -12 (|has| |#1| (-881 (-562))) (|has| |#2| (-881 (-562))))) -((((-1242 |#1| |#2| |#3| |#4|)) . T)) -((((-562) |#1|) . T)) +((((-407 $) (-407 $)) |has| |#1| (-555)) (($ $) . T) ((|#1| |#1|) . T)) +(((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563))))) +((((-858)) . T)) +((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-563)) |has| |#1| (-1034 (-563))) ((|#1|) . T) ((|#2|) . T)) +((((-1075)) . T) ((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563))))) +((((-379)) -12 (|has| |#1| (-882 (-379))) (|has| |#2| (-882 (-379)))) (((-563)) -12 (|has| |#1| (-882 (-563))) (|has| |#2| (-882 (-563))))) +((((-1243 |#1| |#2| |#3| |#4|)) . T)) +((((-563) |#1|) . T)) (((|#1| |#1|) . T)) ((($) . T) ((|#2|) . T)) -(((|#1|) |has| |#1| (-171)) (($) . T)) -((($) . T)) -((((-693)) . T)) -((((-775 |#1| (-859 |#2|))) . T)) -((($) . T)) -((((-406 (-562))) . T) (($) . T)) -(|has| |#1| (-1092)) -(|has| |#1| (-1092)) -(|has| |#2| (-362)) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -(|has| |#1| (-38 (-406 (-562)))) -((((-562)) . T)) -((((-1168)) -12 (|has| |#4| (-895 (-1168))) (|has| |#4| (-1044)))) -((((-1168)) -12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) -(((|#1|) . T)) -(|has| |#1| (-232)) -(((|#1| (-530 |#3|)) . T)) -(((|#2| (-239 (-3492 |#1|) (-766))) . T)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) +(((|#1|) |has| |#1| (-172)) (($) . T)) +((($) . T)) +((((-694)) . T)) +((((-776 |#1| (-860 |#2|))) . T)) +((($) . T)) +((((-407 (-563))) . T) (($) . T)) +(|has| |#1| (-1093)) +(|has| |#1| (-1093)) +(|has| |#2| (-363)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(|has| |#1| (-38 (-407 (-563)))) +((((-563)) . T)) +((((-1169)) -12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) +((((-1169)) -12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) +(((|#1|) . T)) +(|has| |#1| (-233)) +(((|#1| (-531 |#3|)) . T)) +(((|#2| (-240 (-3608 |#1|) (-767))) . T)) +(|has| |#1| (-368)) +(|has| |#1| (-368)) +(|has| |#1| (-368)) (((|#1|) . T) (($) . T)) -(((|#1| (-530 |#2|)) . T)) -(-4037 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044))) -(((|#1| (-766)) . T)) -(|has| |#1| (-554)) -(-4037 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044))) -(-4037 (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-843)) (|has| |#2| (-1044))) +(((|#1| (-531 |#2|)) . T)) +(-4032 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +(((|#1| (-767)) . T)) +(|has| |#1| (-555)) +(-4032 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +(-4032 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-844)) (|has| |#2| (-1045))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -((((-857)) . T)) -((((-562)) . T) (((-406 (-562))) . T) (($) . T)) -(-4037 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788)))) -(-4037 (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-788)) (|has| |#3| (-843)) (|has| |#3| (-1044))) -(-4037 (|has| |#2| (-171)) (|has| |#2| (-721)) (|has| |#2| (-843)) (|has| |#2| (-1044))) -(((|#1|) |has| |#1| (-171))) -(((|#4|) |has| |#4| (-1044))) -(((|#3|) |has| |#3| (-1044))) -(-12 (|has| |#1| (-362)) (|has| |#2| (-815))) -(-12 (|has| |#1| (-362)) (|has| |#2| (-815))) -((((-562)) . T) (((-406 (-562))) -4037 (|has| |#2| (-38 (-406 (-562)))) (|has| |#2| (-1033 (-406 (-562))))) ((|#2|) . T) (($) -4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) (((-859 |#1|)) . T)) -((((-1117 |#1| |#2|)) . T) (((-562)) . T) ((|#3|) . T) (($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562))))) ((|#2|) . T)) -((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-845)) (|has| |#1| (-1092)))) -((((-535)) |has| |#1| (-610 (-535)))) -(((|#1|) . T) (((-406 (-562))) . T) (($) . T) (((-562)) . T)) -(((|#1|) . T) (((-406 (-562))) . T) (($) . T) (((-562)) . T)) -(((|#1|) . T) (((-406 (-562))) . T) (($) . T) (((-562)) . T)) -((((-1173)) . T)) -((((-666 |#1|)) . T)) -((((-406 |#2|)) . T) (((-406 (-562))) . T) (($) . T)) -((($ $) . T) ((#0=(-406 (-562)) #0#) . T)) -((((-857)) . T)) -((((-639 $)) . T) (((-1150)) . T) (((-1168)) . T) (((-562)) . T) (((-224)) . T) (((-857)) . T)) -((($) . T) (((-406 (-562))) . T)) -(((|#1|) . T)) -(((|#4|) |has| |#4| (-1092)) (((-562)) -12 (|has| |#4| (-1033 (-562))) (|has| |#4| (-1092))) (((-406 (-562))) -12 (|has| |#4| (-1033 (-406 (-562)))) (|has| |#4| (-1092)))) -(((|#3|) |has| |#3| (-1092)) (((-562)) -12 (|has| |#3| (-1033 (-562))) (|has| |#3| (-1092))) (((-406 (-562))) -12 (|has| |#3| (-1033 (-406 (-562)))) (|has| |#3| (-1092)))) -(|has| |#2| (-362)) -(((|#2|) |has| |#2| (-1044)) (((-562)) -12 (|has| |#2| (-635 (-562))) (|has| |#2| (-1044)))) -(((|#1|) . T)) -(|has| |#2| (-362)) -(((#0=(-406 (-562)) #0#) |has| |#2| (-38 (-406 (-562)))) ((|#2| |#2|) . T) (($ $) -4037 (|has| |#2| (-171)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904)))) -((($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1| |#1|) . T) ((#0=(-406 (-562)) #0#) |has| |#1| (-38 (-406 (-562))))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-562)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-562)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-406 (-562)) #0#) . T)) +((((-858)) . T)) +((((-563)) . T) (((-407 (-563))) . T) (($) . T)) +(-4032 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))) +(-4032 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045))) +(-4032 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +(((|#1|) |has| |#1| (-172))) +(((|#4|) |has| |#4| (-1045))) +(((|#3|) |has| |#3| (-1045))) +(-12 (|has| |#1| (-363)) (|has| |#2| (-816))) +(-12 (|has| |#1| (-363)) (|has| |#2| (-816))) +((((-563)) . T) (((-407 (-563))) -4032 (|has| |#2| (-38 (-407 (-563)))) (|has| |#2| (-1034 (-407 (-563))))) ((|#2|) . T) (($) -4032 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) (((-860 |#1|)) . T)) +((((-1118 |#1| |#2|)) . T) (((-563)) . T) ((|#3|) . T) (($) -4032 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))) ((|#2|) . T)) +((((-858)) -4032 (|has| |#1| (-610 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1093)))) +((((-536)) |has| |#1| (-611 (-536)))) +(((|#1|) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T)) +(((|#1|) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T)) +(((|#1|) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T)) +((((-1174)) . T)) +((((-667 |#1|)) . T)) +((((-407 |#2|)) . T) (((-407 (-563))) . T) (($) . T)) +((($ $) . T) ((#0=(-407 (-563)) #0#) . T)) +((((-858)) . T)) +((((-640 $)) . T) (((-1151)) . T) (((-1169)) . T) (((-563)) . T) (((-225)) . T) (((-858)) . T)) +((($) . T) (((-407 (-563))) . T)) +(((|#1|) . T)) +(((|#4|) |has| |#4| (-1093)) (((-563)) -12 (|has| |#4| (-1034 (-563))) (|has| |#4| (-1093))) (((-407 (-563))) -12 (|has| |#4| (-1034 (-407 (-563)))) (|has| |#4| (-1093)))) +(((|#3|) |has| |#3| (-1093)) (((-563)) -12 (|has| |#3| (-1034 (-563))) (|has| |#3| (-1093))) (((-407 (-563))) -12 (|has| |#3| (-1034 (-407 (-563)))) (|has| |#3| (-1093)))) +(|has| |#2| (-363)) +(((|#2|) |has| |#2| (-1045)) (((-563)) -12 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045)))) +(((|#1|) . T)) +(|has| |#2| (-363)) +(((#0=(-407 (-563)) #0#) |has| |#2| (-38 (-407 (-563)))) ((|#2| |#2|) . T) (($ $) -4032 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))) +((($ $) -4032 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563))))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-563)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-563)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-563)) #0#) . T)) (((|#2| |#2|) . T)) -((((-406 (-562))) |has| |#2| (-38 (-406 (-562)))) ((|#2|) . T) (($) -4037 (|has| |#2| (-171)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904)))) -((($) -4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -(((|#1|) . T) (($) . T) (((-406 (-562))) . T)) -(((|#1|) . T) (($) . T) (((-406 (-562))) . T)) -(((|#1|) . T) (($) . T) (((-406 (-562))) . T)) -(((|#2|) . T)) -((((-857)) |has| |#1| (-1092))) -((($) . T)) -((((-1242 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#2| (-815)) -(|has| |#2| (-815)) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -(|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) -(|has| |#1| (-362)) -(((|#1|) |has| |#2| (-416 |#1|))) -(((|#1|) |has| |#2| (-416 |#1|))) -((((-1150)) . T)) -((((-905 |#1|)) . T) (((-406 (-562))) . T) (($) . T)) -((((-857)) . T) (((-1173)) . T)) -((((-857)) . T) (((-1173)) . T)) -((((-857)) . T) (((-1173)) . T)) -((((-639 |#1|)) . T) (((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-845)) (|has| |#1| (-1092)))) -((((-1173)) . T)) -((((-1173)) . T)) -((((-1173)) . T)) -((((-639 |#1|)) . T)) -((((-535)) |has| |#1| (-610 (-535)))) -((((-857)) . T) (((-1173)) . T)) -((((-1173)) . T)) -((((-857)) . T)) -((((-857)) . T) (((-1173)) . T)) -((((-1206)) . T) (((-857)) . T) (((-1173)) . T)) -((((-1173)) . T)) -((((-1173)) . T)) -((((-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) |has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-308 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))))) -(-4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) -((((-562) |#1|) . T)) -((((-562) |#1|) . T)) -((((-562) |#1|) . T)) -(-4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) -((((-562) |#1|) . T)) -(((|#1|) . T)) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) -(-4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) -((($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-562)) . T) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) ((|#1|) |has| |#1| (-171))) -((((-1168)) |has| |#1| (-895 (-1168))) (((-813 (-1168))) . T)) -(-4037 (|has| |#3| (-130)) (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-788)) (|has| |#3| (-843)) (|has| |#3| (-1044))) -((((-814 |#1|)) . T)) +((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) . T) (($) -4032 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))) +((($) -4032 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +(((|#1|) . T) (($) . T) (((-407 (-563))) . T)) +(((|#1|) . T) (($) . T) (((-407 (-563))) . T)) +(((|#1|) . T) (($) . T) (((-407 (-563))) . T)) +(((|#2|) . T)) +((((-858)) |has| |#1| (-1093))) +((($) . T)) +((((-1243 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#2| (-816)) +(|has| |#2| (-816)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) +(|has| |#1| (-363)) +(((|#1|) |has| |#2| (-417 |#1|))) +(((|#1|) |has| |#2| (-417 |#1|))) +((((-1151)) . T)) +((((-906 |#1|)) . T) (((-407 (-563))) . T) (($) . T)) +((((-858)) . T) (((-1174)) . T)) +((((-858)) . T) (((-1174)) . T)) +((((-858)) . T) (((-1174)) . T)) +((((-640 |#1|)) . T) (((-858)) -4032 (|has| |#1| (-610 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1093)))) +((((-1174)) . T)) +((((-1174)) . T)) +((((-1174)) . T)) +((((-640 |#1|)) . T)) +((((-536)) |has| |#1| (-611 (-536)))) +((((-858)) . T) (((-1174)) . T)) +((((-1174)) . T)) +((((-858)) . T)) +((((-858)) . T) (((-1174)) . T)) +((((-1207)) . T) (((-858)) . T) (((-1174)) . T)) +((((-1174)) . T)) +((((-1174)) . T)) +((((-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) |has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-309 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))))) +(-4032 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) +((((-563) |#1|) . T)) +((((-563) |#1|) . T)) +((((-563) |#1|) . T)) +(-4032 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) +((((-563) |#1|) . T)) +(((|#1|) . T)) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) +(-4032 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) +((($) -4032 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-563)) . T) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) +((((-1169)) |has| |#1| (-896 (-1169))) (((-814 (-1169))) . T)) +(-4032 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045))) +((((-815 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-857)) . T)) -(-4037 (|has| |#3| (-171)) (|has| |#3| (-721)) (|has| |#3| (-843)) (|has| |#3| (-1044))) +((((-858)) . T)) +(-4032 (|has| |#3| (-172)) (|has| |#3| (-722)) (|has| |#3| (-844)) (|has| |#3| (-1045))) (((|#1| |#2|) . T)) -(|has| |#1| (-38 (-406 (-562)))) -((((-857)) . T)) -((((-1242 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-406 (-562))) . T)) -(((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554)) (((-406 (-562))) |has| |#1| (-554))) -(((|#2|) . T) (((-562)) |has| |#2| (-635 (-562)))) -(|has| |#1| (-362)) -(-4037 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (-12 (|has| |#1| (-362)) (|has| |#2| (-232)))) -(|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) -(|has| |#1| (-362)) -(((|#1|) . T)) -(((#0=(-406 (-562)) #0#) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((|#1| |#1|) . T)) -((((-562) |#1|) . T)) -((((-315 |#1|)) . T)) -(((#0=(-693) (-1164 #0#)) . T)) -((((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((|#1|) . T)) +(|has| |#1| (-38 (-407 (-563)))) +((((-858)) . T)) +((((-1243 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-407 (-563))) . T)) +(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-555)) (((-407 (-563))) |has| |#1| (-555))) +(((|#2|) . T) (((-563)) |has| |#2| (-636 (-563)))) +(|has| |#1| (-363)) +(-4032 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (-12 (|has| |#1| (-363)) (|has| |#2| (-233)))) +(|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) +(|has| |#1| (-363)) +(((|#1|) . T)) +(((#0=(-407 (-563)) #0#) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($ $) -4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) ((|#1| |#1|) . T)) +((((-563) |#1|) . T)) +((((-316 |#1|)) . T)) +(((#0=(-694) (-1165 #0#)) . T)) +((((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) ((|#1|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(|has| |#1| (-843)) -(((|#2|) . T) (((-1168)) -12 (|has| |#1| (-362)) (|has| |#2| (-1033 (-1168)))) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554))) (((-562)) . T) ((|#1|) |has| |#1| (-171))) -(((|#2|) . T) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) (((-562)) . T) (($) -4037 (|has| |#1| (-362)) (|has| |#1| (-554)))) -((($ $) . T) ((#0=(-859 |#1|) $) . T) ((#0# |#2|) . T)) -((((-1117 |#1| (-1168))) . T) (((-813 (-1168))) . T) ((|#1|) . T) (((-562)) |has| |#1| (-1033 (-562))) (((-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) (((-1168)) . T)) +(|has| |#1| (-844)) +(((|#2|) . T) (((-1169)) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-1169)))) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -4032 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-563)) . T) ((|#1|) |has| |#1| (-172))) +(((|#2|) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (((-563)) . T) (($) -4032 (|has| |#1| (-363)) (|has| |#1| (-555)))) +((($ $) . T) ((#0=(-860 |#1|) $) . T) ((#0# |#2|) . T)) +((((-1118 |#1| (-1169))) . T) (((-814 (-1169))) . T) ((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-1169)) . T)) ((($) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) -(((#0=(-1074) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((($ $) . T) ((#0=(-1168) $) |has| |#1| (-232)) ((#0# |#1|) |has| |#1| (-232)) ((#1=(-1080 (-1168)) |#1|) . T) ((#1# $) . T)) +(((#0=(-1075) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((($ $) . T) ((#0=(-1169) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-1081 (-1169)) |#1|) . T) ((#1# $) . T)) ((($) . T) ((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-406 (-562))) |has| |#2| (-38 (-406 (-562))))) -(|has| |#2| (-904)) -((($) . T) ((#0=(-1241 |#2| |#3| |#4|)) |has| #0# (-171)) (((-406 (-562))) |has| #0# (-38 (-406 (-562))))) -((((-562) |#1|) . T)) -((((-1173)) . T)) -(((#0=(-1242 |#1| |#2| |#3| |#4|)) |has| #0# (-308 #0#))) -((($) . T)) -(((|#1|) . T)) -((($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((#0=(-406 (-562)) #0#) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) ((|#2| |#2|) |has| |#1| (-362)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) ((#0=(-406 (-562)) #0#) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362)))) -(|has| |#2| (-232)) -(|has| $ (-146)) -((((-857)) . T)) -((($) . T) (((-406 (-562))) -4037 (|has| |#1| (-362)) (|has| |#1| (-348))) ((|#1|) . T)) -((((-857)) . T)) -(|has| |#1| (-843)) +((($) . T) ((|#2|) . T) (((-407 (-563))) |has| |#2| (-38 (-407 (-563))))) +(|has| |#2| (-905)) +((($) . T) ((#0=(-1242 |#2| |#3| |#4|)) |has| #0# (-172)) (((-407 (-563))) |has| #0# (-38 (-407 (-563))))) +((((-563) |#1|) . T)) +((((-1174)) . T)) +(((#0=(-1243 |#1| |#2| |#3| |#4|)) |has| #0# (-309 #0#))) +((($) . T)) +(((|#1|) . T)) +((($ $) -4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) ((#0=(-407 (-563)) #0#) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((|#2| |#2|) |has| |#1| (-363)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) ((#0=(-407 (-563)) #0#) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363)))) +(|has| |#2| (-233)) +(|has| $ (-147)) +((((-858)) . T)) +((($) . T) (((-407 (-563))) -4032 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) +((((-858)) . T)) +(|has| |#1| (-844)) ((((-129)) . T)) -((((-1168)) -12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168))))) -((((-406 |#2|) |#3|) . T)) +((((-1169)) -12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))) +((((-407 |#2|) |#3|) . T)) (((|#1|) . T)) ((((-129)) . T)) -((((-857)) . T)) -(((|#2| (-666 |#1|)) . T)) -(-12 (|has| |#1| (-306)) (|has| |#1| (-904))) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +((((-858)) . T)) +(((|#2| (-667 |#1|)) . T)) +(-12 (|has| |#1| (-307)) (|has| |#1| (-905))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (((|#4|) . T)) -(|has| |#1| (-554)) -((($) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362))) ((|#2|) |has| |#1| (-362)) ((|#1|) . T)) -((((-1168)) -4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) -(((|#1|) . T) (($) -4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-554))) (((-406 (-562))) -4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-362)))) -((((-1168)) -12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) -((((-1168)) -12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) -(((|#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) -((((-562) |#1|) . T)) -(-4037 (|has| |#2| (-171)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) -(((|#1|) . T)) -(((|#1| (-530 (-813 (-1168)))) . T)) -(-4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) -(-4037 (|has| |#1| (-171)) (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) -((((-562)) . T) ((|#2|) . T) (($) . T) (((-406 (-562))) . T) (((-1168)) |has| |#2| (-1033 (-1168)))) -(((|#1|) . T)) -(-4037 (|has| |#1| (-171)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) -(((|#1|) . T)) -(-4037 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044))) -(-4037 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788)))) -((((-1248 |#1| |#2| |#3|)) |has| |#1| (-362))) -((($) . T) (((-865 |#1|)) . T) (((-406 (-562))) . T)) -((((-1248 |#1| |#2| |#3|)) |has| |#1| (-362))) -(|has| |#1| (-554)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-406 |#2|)) . T)) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-348))) -((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-845)) (|has| |#1| (-1092)))) -((((-535)) |has| |#1| (-610 (-535)))) -((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) -((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-845)) (|has| |#1| (-1092)))) -((((-535)) |has| |#1| (-610 (-535)))) -((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-845)) (|has| |#1| (-1092)))) -((((-535)) |has| |#1| (-610 (-535)))) -((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) -(((|#1|) . T)) -(((|#2| |#2|) . T) ((#0=(-406 (-562)) #0#) . T) (($ $) . T)) -((((-562)) . T)) -(((|#2|) . T) (((-406 (-562))) . T) (($) . T)) -((((-857)) . T)) -((((-579 |#1|)) . T) (((-406 (-562))) . T) (($) . T)) -((((-857)) . T)) -((((-406 (-562))) . T) (($) . T)) -((((-562) |#1|) . T)) -((((-857)) . T)) -((($ $) . T) (((-1168) $) . T)) -((((-1248 |#1| |#2| |#3|)) . T)) -((((-535)) |has| |#2| (-610 (-535))) (((-887 (-378))) |has| |#2| (-610 (-887 (-378)))) (((-887 (-562))) |has| |#2| (-610 (-887 (-562))))) -((((-857)) . T)) -((((-857)) . T)) -((((-887 (-562))) -12 (|has| |#1| (-610 (-887 (-562)))) (|has| |#3| (-610 (-887 (-562))))) (((-887 (-378))) -12 (|has| |#1| (-610 (-887 (-378)))) (|has| |#3| (-610 (-887 (-378))))) (((-535)) -12 (|has| |#1| (-610 (-535))) (|has| |#3| (-610 (-535))))) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) -(((|#1|) . T) (((-857)) . T) (((-1173)) . T)) -((((-857)) . T)) -((((-1173)) . T)) -((((-114)) . T) ((|#1|) . T) (((-562)) . T)) -(((|#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -(((|#1| (-530 (-859 |#2|)) (-859 |#2|) (-775 |#1| (-859 |#2|))) . T)) -(((|#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) . T)) +(|has| |#1| (-555)) +((($) -4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((|#2|) |has| |#1| (-363)) ((|#1|) . T)) +((((-1169)) -4032 (-12 (|has| (-1249 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) +(((|#1|) . T) (($) -4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) (((-407 (-563))) -4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363)))) +((((-1169)) -12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) +((((-1169)) -12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) +(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) +((((-563) |#1|) . T)) +(-4032 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) +(((|#1|) . T)) +(((|#1| (-531 (-814 (-1169)))) . T)) +(-4032 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) +(-4032 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) +((((-563)) . T) ((|#2|) . T) (($) . T) (((-407 (-563))) . T) (((-1169)) |has| |#2| (-1034 (-1169)))) +(((|#1|) . T)) +(-4032 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) +(((|#1|) . T)) +(-4032 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +(-4032 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))) +((((-1249 |#1| |#2| |#3|)) |has| |#1| (-363))) +((($) . T) (((-866 |#1|)) . T) (((-407 (-563))) . T)) +((((-1249 |#1| |#2| |#3|)) |has| |#1| (-363))) +(|has| |#1| (-555)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-407 |#2|)) . T)) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-349))) +((((-858)) -4032 (|has| |#1| (-610 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1093)))) +((((-536)) |has| |#1| (-611 (-536)))) +((((-858)) -4032 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) +((((-858)) -4032 (|has| |#1| (-610 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1093)))) +((((-536)) |has| |#1| (-611 (-536)))) +((((-858)) -4032 (|has| |#1| (-610 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1093)))) +((((-536)) |has| |#1| (-611 (-536)))) +((((-858)) -4032 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) +(((|#1|) . T)) +(((|#2| |#2|) . T) ((#0=(-407 (-563)) #0#) . T) (($ $) . T)) +((((-563)) . T)) +(((|#2|) . T) (((-407 (-563))) . T) (($) . T)) +((((-858)) . T)) +((((-580 |#1|)) . T) (((-407 (-563))) . T) (($) . T)) +((((-858)) . T)) +((((-407 (-563))) . T) (($) . T)) +((((-563) |#1|) . T)) +((((-858)) . T)) +((($ $) . T) (((-1169) $) . T)) +((((-1249 |#1| |#2| |#3|)) . T)) +((((-536)) |has| |#2| (-611 (-536))) (((-888 (-379))) |has| |#2| (-611 (-888 (-379)))) (((-888 (-563))) |has| |#2| (-611 (-888 (-563))))) +((((-858)) . T)) +((((-858)) . T)) +((((-888 (-563))) -12 (|has| |#1| (-611 (-888 (-563)))) (|has| |#3| (-611 (-888 (-563))))) (((-888 (-379))) -12 (|has| |#1| (-611 (-888 (-379)))) (|has| |#3| (-611 (-888 (-379))))) (((-536)) -12 (|has| |#1| (-611 (-536))) (|has| |#3| (-611 (-536))))) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +(((|#1|) . T) (((-858)) . T) (((-1174)) . T)) +((((-858)) . T)) +((((-1174)) . T)) +((((-114)) . T) ((|#1|) . T) (((-563)) . T)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(((|#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|))) . T)) +(((|#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T)) ((((-129)) . T)) -((((-857)) . T)) -((((-1248 |#1| |#2| |#3|)) |has| |#1| (-362))) -((((-406 (-562))) |has| |#2| (-38 (-406 (-562)))) ((|#2|) |has| |#2| (-171)) (($) -4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904)))) +((((-858)) . T)) +((((-1249 |#1| |#2| |#3|)) |has| |#1| (-363))) +((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) |has| |#2| (-172)) (($) -4032 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))) (((|#2|) . T) ((|#6|) . T)) -((($) . T) (((-406 (-562))) |has| |#2| (-38 (-406 (-562)))) ((|#2|) . T)) -(|has| |#1| (-362)) -((($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -((((-1096)) . T)) -((((-857)) . T)) -((($) -4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -((($) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) . T)) -((($) . T)) -((($) -4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-171)) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -((((-1248 |#1| |#2| |#3|)) . T) (((-1220 |#1| |#2| |#3|)) . T)) -((((-1168)) . T) (((-857)) . T)) -(|has| |#2| (-904)) -(((|#1|) . T)) -(|has| |#1| (-904)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1| |#1|) |has| |#1| (-171))) -((((-693)) . T)) -((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) -((((-1173)) . T)) -(((|#1|) |has| |#1| (-171))) -((((-1173)) . T)) -((((-1173)) . T)) -(((|#1|) |has| |#1| (-171))) -((((-406 (-562))) . T) (($) . T)) -(((|#1| (-562)) . T)) -((((-1173)) . T)) -((((-1173)) . T)) -((((-1173)) . T)) -((((-1173)) . T)) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-348))) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-348))) -((((-1173)) . T)) -((((-1173)) . T)) -(|has| |#1| (-362)) -(|has| |#1| (-362)) -(-4037 (|has| |#1| (-171)) (|has| |#1| (-554))) -(((|#1| (-562)) . T)) -(((|#1| (-406 (-562))) . T)) -(((|#1| (-766)) . T)) -((((-406 (-562))) . T)) -(((|#1| (-530 |#2|) |#2|) . T)) -((((-562) |#1|) . T)) -((((-562) |#1|) . T)) -(|has| |#1| (-1092)) -((((-562) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-887 (-378))) . T) (((-887 (-562))) . T) (((-1168)) . T) (((-535)) . T)) -(((|#1|) . T)) -((((-857)) . T)) -(-4037 (|has| |#2| (-130)) (|has| |#2| (-171)) (|has| |#2| (-362)) (|has| |#2| (-788)) (|has| |#2| (-843)) (|has| |#2| (-1044))) -(-4037 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788)))) -((((-562)) . T)) -((((-562)) . T)) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) +((($) . T) (((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) . T)) +(|has| |#1| (-363)) +((($) -4032 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +((((-1097)) . T)) +((((-858)) . T)) +((($) -4032 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +((($) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) . T)) +((($) . T)) +((($) -4032 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +((((-1249 |#1| |#2| |#3|)) . T) (((-1221 |#1| |#2| |#3|)) . T)) +((((-1169)) . T) (((-858)) . T)) +(|has| |#2| (-905)) +(((|#1|) . T)) +(|has| |#1| (-905)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1| |#1|) |has| |#1| (-172))) +((((-694)) . T)) +((((-858)) -4032 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) +((((-1174)) . T)) +(((|#1|) |has| |#1| (-172))) +((((-1174)) . T)) +((((-1174)) . T)) +(((|#1|) |has| |#1| (-172))) +((((-407 (-563))) . T) (($) . T)) +(((|#1| (-563)) . T)) +((((-1174)) . T)) +((((-1174)) . T)) +((((-1174)) . T)) +((((-1174)) . T)) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-349))) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-349))) +((((-1174)) . T)) +((((-1174)) . T)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(-4032 (|has| |#1| (-172)) (|has| |#1| (-555))) +(((|#1| (-563)) . T)) +(((|#1| (-407 (-563))) . T)) +(((|#1| (-767)) . T)) +((((-407 (-563))) . T)) +(((|#1| (-531 |#2|) |#2|) . T)) +((((-563) |#1|) . T)) +((((-563) |#1|) . T)) +(|has| |#1| (-1093)) +((((-563) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-888 (-379))) . T) (((-888 (-563))) . T) (((-1169)) . T) (((-536)) . T)) +(((|#1|) . T)) +((((-858)) . T)) +(-4032 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +(-4032 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))) +((((-563)) . T)) +((((-563)) . T)) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(-4037 (|has| |#2| (-171)) (|has| |#2| (-721)) (|has| |#2| (-843)) (|has| |#2| (-1044))) -((((-1168)) -12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) -(-4037 (-12 (|has| |#1| (-472)) (|has| |#2| (-472))) (-12 (|has| |#1| (-721)) (|has| |#2| (-721)))) -(|has| |#1| (-144)) -(|has| |#1| (-146)) -(|has| |#1| (-362)) +(-4032 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +((((-1169)) -12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) +(-4032 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722)))) +(|has| |#1| (-145)) +(|has| |#1| (-147)) +(|has| |#1| (-363)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-232)) -((((-857)) . T)) -(((|#1| (-766) (-1074)) . T)) -((((-562) |#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -((((-562) |#1|) . T)) -((((-562) |#1|) . T)) +(|has| |#1| (-233)) +((((-858)) . T)) +(((|#1| (-767) (-1075)) . T)) +((((-563) |#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +((((-563) |#1|) . T)) +((((-563) |#1|) . T)) ((((-116 |#1|)) . T)) -((((-406 (-562))) . T) (((-562)) . T)) -(((|#2|) |has| |#2| (-1044))) -((((-406 (-562))) . T) (($) . T)) -(((|#2|) . T)) -((((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) |has| |#1| (-171)) (($) |has| |#1| (-554))) -((((-562)) . T)) -((((-562)) . T)) -((((-1150) (-1168) (-562) (-224) (-857)) . T)) +((((-407 (-563))) . T) (((-563)) . T)) +(((|#2|) |has| |#2| (-1045))) +((((-407 (-563))) . T) (($) . T)) +(((|#2|) . T)) +((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-555))) +((((-563)) . T)) +((((-563)) . T)) +((((-1151) (-1169) (-563) (-225) (-858)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-562)) . T) ((|#2|) |has| |#2| (-171))) -((((-114)) . T) ((|#1|) . T) (((-562)) . T)) -(-4037 (|has| |#1| (-348)) (|has| |#1| (-367))) +((((-563)) . T) ((|#2|) |has| |#2| (-172))) +((((-114)) . T) ((|#1|) . T) (((-563)) . T)) +(-4032 (|has| |#1| (-349)) (|has| |#1| (-368))) (((|#1| |#2|) . T)) -((((-224)) . T)) -((((-406 (-562))) . T) (($) . T) (((-562)) . T)) -((((-857)) . T)) +((((-225)) . T)) +((((-407 (-563))) . T) (($) . T) (((-563)) . T)) +((((-858)) . T)) ((($) . T) ((|#1|) . T)) -((($) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-406 (-562))) |has| |#1| (-38 (-406 (-562))))) -(((|#2|) |has| |#2| (-1092)) (((-562)) -12 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092))) (((-406 (-562))) -12 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-535)) |has| |#1| (-610 (-535)))) -((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-845)) (|has| |#1| (-1092)))) -((($) . T) (((-406 (-562))) . T)) -(|has| |#1| (-904)) -(|has| |#1| (-904)) -((((-224)) -12 (|has| |#1| (-362)) (|has| |#2| (-1017))) (((-378)) -12 (|has| |#1| (-362)) (|has| |#2| (-1017))) (((-887 (-378))) -12 (|has| |#1| (-362)) (|has| |#2| (-610 (-887 (-378))))) (((-887 (-562))) -12 (|has| |#1| (-362)) (|has| |#2| (-610 (-887 (-562))))) (((-535)) -12 (|has| |#1| (-362)) (|has| |#2| (-610 (-535))))) -((((-857)) . T)) -((((-857)) . T)) +((($) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) . T)) +((($) . T) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +(((|#2|) |has| |#2| (-1093)) (((-563)) -12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) (((-407 (-563))) -12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-536)) |has| |#1| (-611 (-536)))) +((((-858)) -4032 (|has| |#1| (-610 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1093)))) +((($) . T) (((-407 (-563))) . T)) +(|has| |#1| (-905)) +(|has| |#1| (-905)) +((((-225)) -12 (|has| |#1| (-363)) (|has| |#2| (-1018))) (((-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-1018))) (((-888 (-379))) -12 (|has| |#1| (-363)) (|has| |#2| (-611 (-888 (-379))))) (((-888 (-563))) -12 (|has| |#1| (-363)) (|has| |#2| (-611 (-888 (-563))))) (((-536)) -12 (|has| |#1| (-363)) (|has| |#2| (-611 (-536))))) +((((-858)) . T)) +((((-858)) . T)) (((|#2| |#2|) . T)) -(((|#1| |#1|) |has| |#1| (-171))) -(((|#1|) . T) (((-562)) . T)) -((((-1173)) . T)) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-554))) -(-4037 (|has| |#1| (-21)) (|has| |#1| (-843))) -(((|#2|) . T)) -(-4037 (|has| |#1| (-21)) (|has| |#1| (-843))) -(((|#1|) |has| |#1| (-171))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-857)) -4037 (-12 (|has| |#1| (-609 (-857))) (|has| |#2| (-609 (-857)))) (-12 (|has| |#1| (-1092)) (|has| |#2| (-1092))))) -((((-406 |#2|) |#3|) . T)) -((((-406 (-562))) . T) (($) . T)) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-362)) -((($ $) . T) ((#0=(-406 (-562)) #0#) . T)) -(|has| (-406 |#2|) (-146)) -(|has| (-406 |#2|) (-144)) -((((-693)) . T)) -(((|#1|) . T) (((-406 (-562))) . T) (((-562)) . T) (($) . T)) -(((#0=(-562) #0#) . T)) -((($) . T) (((-406 (-562))) . T)) -(-4037 (|has| |#4| (-171)) (|has| |#4| (-721)) (|has| |#4| (-843)) (|has| |#4| (-1044))) -(-4037 (|has| |#3| (-171)) (|has| |#3| (-721)) (|has| |#3| (-843)) (|has| |#3| (-1044))) -((((-857)) . T) (((-1173)) . T)) -(|has| |#4| (-788)) -(-4037 (|has| |#4| (-788)) (|has| |#4| (-843))) -(|has| |#4| (-843)) -(|has| |#3| (-788)) -((((-1173)) . T)) -(-4037 (|has| |#3| (-788)) (|has| |#3| (-843))) -(|has| |#3| (-843)) -((((-562)) . T)) -(((|#2|) . T)) -((((-1168)) -4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) -((((-1168)) -12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) -((((-1168)) -12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) +(((|#1| |#1|) |has| |#1| (-172))) +(((|#1|) . T) (((-563)) . T)) +((((-1174)) . T)) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-555))) +(-4032 (|has| |#1| (-21)) (|has| |#1| (-844))) +(((|#2|) . T)) +(-4032 (|has| |#1| (-21)) (|has| |#1| (-844))) +(((|#1|) |has| |#1| (-172))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-858)) -4032 (-12 (|has| |#1| (-610 (-858))) (|has| |#2| (-610 (-858)))) (-12 (|has| |#1| (-1093)) (|has| |#2| (-1093))))) +((((-407 |#2|) |#3|) . T)) +((((-407 (-563))) . T) (($) . T)) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-363)) +((($ $) . T) ((#0=(-407 (-563)) #0#) . T)) +(|has| (-407 |#2|) (-147)) +(|has| (-407 |#2|) (-145)) +((((-694)) . T)) +(((|#1|) . T) (((-407 (-563))) . T) (((-563)) . T) (($) . T)) +(((#0=(-563) #0#) . T)) +((($) . T) (((-407 (-563))) . T)) +(-4032 (|has| |#4| (-172)) (|has| |#4| (-722)) (|has| |#4| (-844)) (|has| |#4| (-1045))) +(-4032 (|has| |#3| (-172)) (|has| |#3| (-722)) (|has| |#3| (-844)) (|has| |#3| (-1045))) +((((-858)) . T) (((-1174)) . T)) +(|has| |#4| (-789)) +(-4032 (|has| |#4| (-789)) (|has| |#4| (-844))) +(|has| |#4| (-844)) +(|has| |#3| (-789)) +((((-1174)) . T)) +(-4032 (|has| |#3| (-789)) (|has| |#3| (-844))) +(|has| |#3| (-844)) +((((-563)) . T)) +(((|#2|) . T)) +((((-1169)) -4032 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) +((((-1169)) -12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) +((((-1169)) -12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (((|#1| |#1|) . T) (($ $) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -((((-859 |#1|)) . T)) -((((-1166 |#1| |#2| |#3|)) |has| |#1| (-362))) -((((-1132 |#1| |#2|)) . T)) -((((-1166 |#1| |#2| |#3|)) |has| |#1| (-362))) -(((|#2|) . T) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -((((-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) . T)) -((($) . T)) -(|has| |#1| (-1017)) -(((|#2|) . T) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -((((-857)) . T)) -((((-535)) |has| |#2| (-610 (-535))) (((-887 (-562))) |has| |#2| (-610 (-887 (-562)))) (((-887 (-378))) |has| |#2| (-610 (-887 (-378)))) (((-378)) . #0=(|has| |#2| (-1017))) (((-224)) . #0#)) -((((-293 |#3|)) . T)) -((((-1168) (-52)) . T)) -(((|#1|) . T)) -(|has| |#1| (-38 (-406 (-562)))) -(|has| |#1| (-38 (-406 (-562)))) -((((-857)) . T)) -(((|#2|) . T)) -((((-857)) . T)) +((((-860 |#1|)) . T)) +((((-1167 |#1| |#2| |#3|)) |has| |#1| (-363))) +((((-1133 |#1| |#2|)) . T)) +((((-1167 |#1| |#2| |#3|)) |has| |#1| (-363))) +(((|#2|) . T) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +((((-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) . T)) +((($) . T)) +(|has| |#1| (-1018)) +(((|#2|) . T) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +((((-858)) . T)) +((((-536)) |has| |#2| (-611 (-536))) (((-888 (-563))) |has| |#2| (-611 (-888 (-563)))) (((-888 (-379))) |has| |#2| (-611 (-888 (-379)))) (((-379)) . #0=(|has| |#2| (-1018))) (((-225)) . #0#)) +((((-294 |#3|)) . T)) +((((-1169) (-52)) . T)) +(((|#1|) . T)) +(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-563)))) +((((-858)) . T)) +(((|#2|) . T)) +((((-858)) . T)) ((($ $) . T)) -((((-406 (-562))) . T) (((-693)) . T) (($) . T)) -((((-1166 |#1| |#2| |#3|)) . T)) -((((-1166 |#1| |#2| |#3|)) . T) (((-1159 |#1| |#2| |#3|)) . T)) -((((-857)) . T)) -((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) -((((-562) |#1|) . T)) -((((-1166 |#1| |#2| |#3|)) |has| |#1| (-362))) +((((-407 (-563))) . T) (((-694)) . T) (($) . T)) +((((-1167 |#1| |#2| |#3|)) . T)) +((((-1167 |#1| |#2| |#3|)) . T) (((-1160 |#1| |#2| |#3|)) . T)) +((((-858)) . T)) +((((-858)) -4032 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) +((((-563) |#1|) . T)) +((((-1167 |#1| |#2| |#3|)) |has| |#1| (-363))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#2|) . T)) -(|has| |#2| (-362)) -(((|#3|) . T) ((|#2|) . T) (($) -4037 (|has| |#4| (-171)) (|has| |#4| (-843)) (|has| |#4| (-1044))) ((|#4|) -4037 (|has| |#4| (-171)) (|has| |#4| (-362)) (|has| |#4| (-1044)))) -(((|#2|) . T) (($) -4037 (|has| |#3| (-171)) (|has| |#3| (-843)) (|has| |#3| (-1044))) ((|#3|) -4037 (|has| |#3| (-171)) (|has| |#3| (-362)) (|has| |#3| (-1044)))) +(|has| |#2| (-363)) +(((|#3|) . T) ((|#2|) . T) (($) -4032 (|has| |#4| (-172)) (|has| |#4| (-844)) (|has| |#4| (-1045))) ((|#4|) -4032 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1045)))) +(((|#2|) . T) (($) -4032 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045))) ((|#3|) -4032 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045)))) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-362)) +(|has| |#1| (-363)) ((((-116 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-406 (-562))) |has| |#2| (-1033 (-406 (-562)))) (((-562)) |has| |#2| (-1033 (-562))) ((|#2|) . T) (((-859 |#1|)) . T)) -((((-1168)) . T) ((|#1|) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) -((((-186)) . T) (((-857)) . T)) -((((-857)) . T)) +((((-407 (-563))) |has| |#2| (-1034 (-407 (-563)))) (((-563)) |has| |#2| (-1034 (-563))) ((|#2|) . T) (((-860 |#1|)) . T)) +((((-1169)) . T) ((|#1|) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +((((-187)) . T) (((-858)) . T)) +((((-858)) . T)) (((|#1|) . T)) -((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) -((((-129)) . T) (((-857)) . T)) -((((-562) |#1|) . T)) +((((-858)) -4032 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) +((((-129)) . T) (((-858)) . T)) +((((-563) |#1|) . T)) ((((-129)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2| $) -12 (|has| |#1| (-362)) (|has| |#2| (-285 |#2| |#2|))) (($ $) . T)) +(((|#2| $) -12 (|has| |#1| (-363)) (|has| |#2| (-286 |#2| |#2|))) (($ $) . T)) ((($ $) . T)) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-451)) (|has| |#1| (-904))) -(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) -((((-857)) . T)) -((((-857)) . T)) -((((-857)) . T)) -(((|#1| (-530 |#2|)) . T)) -((((-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) . T)) -((((-562) (-129)) . T)) -(((|#1| (-562)) . T)) -(((|#1| (-406 (-562))) . T)) -(((|#1| (-766)) . T)) -((((-857)) . T) (((-1173)) . T)) -((((-857)) . T) (((-1173)) . T)) -((((-1173)) . T)) -((((-857)) . T) (((-1173)) . T)) -((((-1173)) . T)) -((((-116 |#1|)) . T) (($) . T) (((-406 (-562))) . T)) -((((-1173)) . T)) -((((-857)) . T) (((-1173)) . T)) -((((-857)) . T) (((-1173)) . T)) -(-4037 (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) -(-4037 (|has| |#1| (-451)) (|has| |#1| (-554)) (|has| |#1| (-904))) -((($) . T)) -(((|#2| (-530 (-859 |#1|))) . T)) -((((-1173)) . T)) -((((-1173)) . T)) -((((-562) |#1|) . T)) -((((-857)) . T) (((-1173)) . T)) -((((-1173)) . T)) -(((|#2|) . T)) -((((-857)) . T) (((-1173)) . T)) -((((-1173)) . T)) -((((-857)) . T) (((-1173)) . T)) -((((-1173)) . T)) -((((-857)) . T) (((-1173)) . T)) -((((-1173)) . T)) -((((-857)) -4037 (|has| |#1| (-609 (-857))) (|has| |#1| (-1092)))) -(((|#1|) . T)) -(((|#2| (-766)) . T)) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-905))) +(-4032 (|has| |#1| (-846)) (|has| |#1| (-1093))) +((((-858)) . T)) +((((-858)) . T)) +((((-858)) . T)) +(((|#1| (-531 |#2|)) . T)) +((((-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) . T)) +((((-563) (-129)) . T)) +(((|#1| (-563)) . T)) +(((|#1| (-407 (-563))) . T)) +(((|#1| (-767)) . T)) +((((-858)) . T) (((-1174)) . T)) +((((-858)) . T) (((-1174)) . T)) +((((-1174)) . T)) +((((-858)) . T) (((-1174)) . T)) +((((-1174)) . T)) +((((-116 |#1|)) . T) (($) . T) (((-407 (-563))) . T)) +((((-1174)) . T)) +((((-858)) . T) (((-1174)) . T)) +((((-858)) . T) (((-1174)) . T)) +(-4032 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) +(-4032 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) +((($) . T)) +(((|#2| (-531 (-860 |#1|))) . T)) +((((-1174)) . T)) +((((-1174)) . T)) +((((-563) |#1|) . T)) +((((-858)) . T) (((-1174)) . T)) +((((-1174)) . T)) +(((|#2|) . T)) +((((-858)) . T) (((-1174)) . T)) +((((-1174)) . T)) +((((-858)) . T) (((-1174)) . T)) +((((-1174)) . T)) +((((-858)) . T) (((-1174)) . T)) +((((-1174)) . T)) +((((-858)) -4032 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) +(((|#1|) . T)) +(((|#2| (-767)) . T)) (((|#1| |#2|) . T)) -((((-1150) |#1|) . T)) -((((-406 |#2|)) . T)) -((((-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T)) -(|has| |#1| (-554)) -(|has| |#1| (-554)) +((((-1151) |#1|) . T)) +((((-407 |#2|)) . T)) +((((-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T)) +(|has| |#1| (-555)) +(|has| |#1| (-555)) ((($) . T) ((|#2|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-562)) . T) (($) . T)) -(((|#2| $) |has| |#2| (-285 |#2| |#2|))) -(((|#1| (-639 |#1|)) |has| |#1| (-843))) -(-4037 (|has| |#1| (-232)) (|has| |#1| (-348))) -(-4037 (|has| |#1| (-362)) (|has| |#1| (-348))) -((((-1252 |#1|)) . T) (((-562)) . T) ((|#2|) . T) (((-406 (-562))) |has| |#2| (-1033 (-406 (-562))))) -(|has| |#1| (-1092)) -(((|#1|) . T)) -((((-1252 |#1|)) . T) (((-562)) . T) (($) -4037 (|has| |#2| (-362)) (|has| |#2| (-451)) (|has| |#2| (-554)) (|has| |#2| (-904))) (((-1074)) . T) ((|#2|) . T) (((-406 (-562))) -4037 (|has| |#2| (-38 (-406 (-562)))) (|has| |#2| (-1033 (-406 (-562)))))) -((((-406 (-562))) . T) (($) . T)) -((((-994 |#1|)) . T) ((|#1|) . T) (((-562)) -4037 (|has| (-994 |#1|) (-1033 (-562))) (|has| |#1| (-1033 (-562)))) (((-406 (-562))) -4037 (|has| (-994 |#1|) (-1033 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562)))))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -((((-1168)) |has| |#1| (-895 (-1168)))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -(((|#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) -(((|#1| (-598 |#1| |#3|) (-598 |#1| |#2|)) . T)) +((((-563)) . T) (($) . T)) +(((|#2| $) |has| |#2| (-286 |#2| |#2|))) +(((|#1| (-640 |#1|)) |has| |#1| (-844))) +(-4032 (|has| |#1| (-233)) (|has| |#1| (-349))) +(-4032 (|has| |#1| (-363)) (|has| |#1| (-349))) +((((-1253 |#1|)) . T) (((-563)) . T) ((|#2|) . T) (((-407 (-563))) |has| |#2| (-1034 (-407 (-563))))) +(|has| |#1| (-1093)) +(((|#1|) . T)) +((((-1253 |#1|)) . T) (((-563)) . T) (($) -4032 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) (((-1075)) . T) ((|#2|) . T) (((-407 (-563))) -4032 (|has| |#2| (-38 (-407 (-563)))) (|has| |#2| (-1034 (-407 (-563)))))) +((((-407 (-563))) . T) (($) . T)) +((((-995 |#1|)) . T) ((|#1|) . T) (((-563)) -4032 (|has| (-995 |#1|) (-1034 (-563))) (|has| |#1| (-1034 (-563)))) (((-407 (-563))) -4032 (|has| (-995 |#1|) (-1034 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563)))))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +((((-1169)) |has| |#1| (-896 (-1169)))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(((|#1| (-599 |#1| |#3|) (-599 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((#0=(-1132 |#1| |#2|) #0#) |has| (-1132 |#1| |#2|) (-308 (-1132 |#1| |#2|)))) +(((#0=(-1133 |#1| |#2|) #0#) |has| (-1133 |#1| |#2|) (-309 (-1133 |#1| |#2|)))) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) ((#0=(-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) #0#) |has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))))) -(((#0=(-116 |#1|)) |has| #0# (-308 #0#))) +(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((#0=(-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) #0#) |has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))))) +(((#0=(-116 |#1|)) |has| #0# (-309 #0#))) ((($ $) . T)) -(-4037 (|has| |#1| (-845)) (|has| |#1| (-1092))) -((($ $) . T) ((#0=(-859 |#1|) $) . T) ((#0# |#2|) . T)) -((($ $) . T) ((|#2| $) |has| |#1| (-232)) ((|#2| |#1|) |has| |#1| (-232)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(((-477 . -1092) T) ((-263 . -513) 161961) ((-246 . -513) 161904) ((-244 . -1092) 161854) ((-569 . -111) 161839) ((-530 . -23) T) ((-137 . -1092) T) ((-136 . -1092) T) ((-117 . -308) 161796) ((-132 . -1092) T) ((-478 . -513) 161588) ((-671 . -612) 161572) ((-688 . -102) T) ((-1133 . -513) 161491) ((-389 . -130) T) ((-1269 . -971) 161460) ((-31 . -93) T) ((-598 . -488) 161444) ((-617 . -130) T) ((-814 . -841) T) ((-522 . -57) 161394) ((-59 . -513) 161327) ((-518 . -513) 161260) ((-417 . -895) 161219) ((-168 . -1044) T) ((-515 . -513) 161152) ((-496 . -513) 161085) ((-495 . -513) 161018) ((-794 . -1033) 160801) ((-693 . -38) 160766) ((-1229 . -612) 160514) ((-342 . -348) T) ((-1086 . -1085) 160498) ((-1086 . -1092) 160476) ((-850 . -612) 160373) ((-168 . -242) 160324) ((-168 . -232) 160275) ((-1086 . -1087) 160233) ((-867 . -285) 160191) ((-224 . -790) T) ((-224 . -787) T) ((-688 . -283) NIL) ((-569 . -612) 160163) ((-1142 . -1183) 160142) ((-406 . -987) 160126) ((-695 . -21) T) ((-695 . -25) T) ((-1271 . -642) 160100) ((-315 . -159) 160079) ((-315 . -142) 160058) ((-1142 . -107) 160008) ((-133 . -25) T) ((-40 . -230) 159985) ((-116 . -21) T) ((-116 . -25) T) ((-604 . -287) 159961) ((-474 . -287) 159940) ((-1229 . -325) 159917) ((-1229 . -1044) T) ((-850 . -1044) T) ((-794 . -337) 159901) ((-138 . -184) T) ((-117 . -1143) NIL) ((-91 . -609) 159833) ((-476 . -130) T) ((-1229 . -232) T) ((-1088 . -489) 159814) ((-1088 . -609) 159780) ((-1082 . -489) 159761) ((-1082 . -609) 159727) ((-590 . -1207) T) ((-1066 . -489) 159708) ((-569 . -1044) T) ((-1066 . -609) 159674) ((-656 . -712) 159658) ((-1059 . -489) 159639) ((-1059 . -609) 159605) ((-953 . -287) 159582) ((-60 . -34) T) ((-1055 . -790) T) ((-1055 . -787) T) ((-1031 . -489) 159563) ((-1014 . -489) 159544) ((-811 . -721) T) ((-726 . -47) 159509) ((-619 . -38) 159496) ((-354 . -289) T) ((-351 . -289) T) ((-343 . -289) T) ((-263 . -289) 159427) ((-246 . -289) 159358) ((-1031 . -609) 159324) ((-1019 . -102) T) ((-1014 . -609) 159290) ((-622 . -489) 159271) ((-412 . -721) T) ((-117 . -38) 159216) ((-482 . -489) 159197) ((-622 . -609) 159163) ((-412 . -472) T) ((-217 . -489) 159144) ((-482 . -609) 159110) ((-353 . -102) T) ((-217 . -609) 159076) ((-1201 . -1051) T) ((-706 . -1051) T) ((-1166 . -47) 159053) ((-1165 . -47) 159023) ((-1159 . -47) 159000) ((-128 . -287) 158975) ((-1030 . -150) 158921) ((-905 . -289) T) ((-1118 . -47) 158893) ((-688 . -308) NIL) ((-514 . -609) 158875) ((-509 . -609) 158857) ((-507 . -609) 158839) ((-326 . -1092) 158789) ((-707 . -451) 158720) ((-48 . -102) T) ((-1240 . -285) 158705) ((-1219 . -285) 158625) ((-639 . -660) 158609) ((-639 . -645) 158593) ((-338 . -21) T) ((-338 . -25) T) ((-40 . -348) NIL) ((-173 . -21) T) ((-173 . -25) T) ((-639 . -372) 158577) ((-601 . -489) 158559) ((-598 . -285) 158536) ((-601 . -609) 158503) ((-387 . -102) T) ((-1112 . -142) T) ((-126 . -609) 158435) ((-869 . -1092) T) ((-652 . -410) 158419) ((-709 . -609) 158401) ((-248 . -609) 158368) ((-186 . -609) 158350) ((-161 . -609) 158332) ((-156 . -609) 158314) ((-1271 . -721) T) ((-1094 . -34) T) ((-866 . -790) NIL) ((-866 . -787) NIL) ((-853 . -845) T) ((-726 . -881) NIL) ((-1280 . -130) T) ((-380 . -130) T) ((-887 . -612) 158282) ((-899 . -102) T) ((-726 . -1033) 158158) ((-530 . -130) T) ((-1079 . -410) 158142) ((-995 . -488) 158126) ((-117 . -399) 158103) ((-1159 . -1207) 158082) ((-777 . -410) 158066) ((-775 . -410) 158050) ((-938 . -34) T) ((-688 . -1143) NIL) ((-250 . -642) 157885) ((-249 . -642) 157707) ((-812 . -915) 157686) ((-453 . -410) 157670) ((-598 . -19) 157654) ((-1138 . -1200) 157623) ((-1159 . -881) NIL) ((-1159 . -879) 157575) ((-598 . -600) 157552) ((-1193 . -609) 157484) ((-1167 . -609) 157466) ((-62 . -394) T) ((-1165 . -1033) 157401) ((-1159 . -1033) 157367) ((-688 . -38) 157317) ((-473 . -285) 157302) ((-1213 . -609) 157284) ((-726 . -376) 157268) ((-833 . -609) 157250) ((-652 . -1051) T) ((-1240 . -997) 157216) ((-1219 . -997) 157182) ((-1080 . -612) 157166) ((-1056 . -1183) 157141) ((-1068 . -612) 157118) ((-867 . -610) 156925) ((-867 . -609) 156907) ((-1180 . -488) 156844) ((-417 . -1017) 156822) ((-48 . -308) 156809) ((-1056 . -107) 156755) ((-478 . -488) 156692) ((-519 . -1207) T) ((-1159 . -337) 156644) ((-1133 . -488) 156615) ((-1159 . -376) 156567) ((-1079 . -1051) T) ((-436 . -102) T) ((-182 . -1092) T) ((-250 . -34) T) ((-249 . -34) T) ((-777 . -1051) T) ((-775 . -1051) T) ((-726 . -895) 156544) ((-453 . -1051) T) ((-59 . -488) 156528) ((-1029 . -1050) 156502) ((-518 . -488) 156486) ((-515 . -488) 156470) ((-496 . -488) 156454) ((-495 . -488) 156438) ((-244 . -513) 156371) ((-1029 . -111) 156338) ((-1166 . -895) 156251) ((-1165 . -895) 156157) ((-1159 . -895) 155990) ((-1118 . -895) 155974) ((-664 . -1104) T) ((-353 . -1143) T) ((-640 . -93) T) ((-321 . -1050) 155956) ((-250 . -786) 155935) ((-250 . -789) 155886) ((-31 . -489) 155867) ((-250 . -788) 155846) ((-249 . -786) 155825) ((-249 . -789) 155776) ((-249 . -788) 155755) ((-31 . -609) 155721) ((-50 . -1051) T) ((-250 . -721) 155631) ((-249 . -721) 155541) ((-1201 . -1092) T) ((-664 . -23) T) ((-579 . -1051) T) ((-517 . -1051) T) ((-378 . -1050) 155506) ((-321 . -111) 155481) ((-73 . -382) T) ((-73 . -394) T) ((-1019 . -38) 155418) ((-688 . -399) 155400) ((-99 . -102) T) ((-706 . -1092) T) ((-998 . -144) 155372) ((-998 . -146) 155344) ((-378 . -111) 155300) ((-318 . -1211) 155279) ((-473 . -997) 155245) ((-353 . -38) 155210) ((-40 . -369) 155182) ((-868 . -609) 155054) ((-127 . -125) 155038) ((-121 . -125) 155022) ((-831 . -1050) 154992) ((-828 . -21) 154944) ((-822 . -1050) 154928) ((-828 . -25) 154880) ((-318 . -554) 154831) ((-516 . -612) 154812) ((-562 . -823) T) ((-239 . -1207) T) ((-1029 . -612) 154781) ((-831 . -111) 154746) ((-822 . -111) 154725) ((-1240 . -609) 154707) ((-1219 . -609) 154689) ((-1219 . -610) 154360) ((-1164 . -904) 154339) ((-1117 . -904) 154318) ((-48 . -38) 154283) ((-1278 . -1104) T) ((-598 . -609) 154195) ((-598 . -610) 154156) ((-1276 . -1104) T) ((-360 . -612) 154140) ((-321 . -612) 154124) ((-239 . -1033) 153951) ((-1164 . -642) 153876) ((-1117 . -642) 153801) ((-849 . -642) 153775) ((-713 . -609) 153757) ((-545 . -367) T) ((-1278 . -23) T) ((-1276 . -23) T) ((-490 . -1092) T) ((-378 . -612) 153707) ((-378 . -614) 153689) ((-1029 . -1044) T) ((-860 . -102) T) ((-1180 . -285) 153668) ((-168 . -367) 153619) ((-999 . -1207) T) ((-831 . -612) 153573) ((-822 . -612) 153528) ((-44 . -23) T) ((-478 . -285) 153507) ((-583 . -1092) T) ((-1138 . -1101) 153476) ((-1096 . -1095) 153428) ((-389 . -21) T) ((-389 . -25) T) ((-151 . -1104) T) ((-1284 . -102) T) ((-999 . -879) 153410) ((-999 . -881) 153392) ((-1201 . -712) 153289) ((-619 . -230) 153273) ((-617 . -21) T) ((-288 . -554) T) ((-617 . -25) T) ((-1187 . -1092) T) ((-706 . -712) 153238) ((-239 . -376) 153207) ((-999 . -1033) 153167) ((-378 . -1044) T) ((-222 . -1051) T) ((-117 . -230) 153144) ((-59 . -285) 153121) ((-151 . -23) T) ((-515 . -285) 153098) ((-326 . -513) 153031) ((-495 . -285) 153008) ((-378 . -242) T) ((-378 . -232) T) ((-831 . -1044) T) ((-822 . -1044) T) ((-707 . -944) 152977) ((-695 . -845) T) ((-473 . -609) 152959) ((-822 . -232) 152938) ((-133 . -845) T) ((-652 . -1092) T) ((-1180 . -600) 152917) ((-548 . -1183) 152896) ((-335 . -1092) T) ((-318 . -362) 152875) ((-406 . -146) 152854) ((-406 . -144) 152833) ((-959 . -1104) 152732) ((-239 . -895) 152664) ((-810 . -1104) 152574) ((-648 . -847) 152558) ((-478 . -600) 152537) ((-548 . -107) 152487) ((-999 . -376) 152469) ((-999 . -337) 152451) ((-97 . -1092) T) ((-959 . -23) 152262) ((-476 . -21) T) ((-476 . -25) T) ((-810 . -23) 152132) ((-1168 . -609) 152114) ((-59 . -19) 152098) ((-1168 . -610) 152020) ((-1164 . -721) T) ((-1117 . -721) T) ((-515 . -19) 152004) ((-495 . -19) 151988) ((-59 . -600) 151965) ((-1079 . -1092) T) ((-896 . -102) 151943) ((-849 . -721) T) ((-777 . -1092) T) ((-515 . -600) 151920) ((-495 . -600) 151897) ((-775 . -1092) T) ((-775 . -1058) 151864) ((-460 . -1092) T) ((-453 . -1092) T) ((-583 . -712) 151839) ((-643 . -1092) T) ((-1248 . -47) 151816) ((-1242 . -102) T) ((-1241 . -47) 151786) ((-1220 . -47) 151763) ((-1201 . -171) 151714) ((-1165 . -306) 151693) ((-999 . -895) NIL) ((-1159 . -306) 151672) ((-623 . -1104) T) ((-664 . -130) T) ((-1088 . -612) 151653) ((-1082 . -612) 151634) ((-1072 . -554) 151585) ((-1072 . -1211) 151536) ((-1066 . -612) 151517) ((-274 . -1092) T) ((-85 . -440) T) ((-85 . -394) T) ((-1059 . -612) 151498) ((-1031 . -612) 151479) ((-50 . -1092) T) ((-1014 . -612) 151460) ((-706 . -171) T) ((-592 . -47) 151437) ((-224 . -642) 151402) ((-579 . -1092) T) ((-517 . -1092) T) ((-358 . -1211) T) ((-352 . -1211) T) ((-344 . -1211) T) ((-486 . -815) T) ((-486 . -915) T) ((-318 . -1104) T) ((-108 . -1211) T) ((-709 . -1050) 151372) ((-338 . -845) T) ((-216 . -915) T) ((-216 . -815) T) ((-622 . -612) 151353) ((-358 . -554) T) ((-352 . -554) T) ((-344 . -554) T) ((-482 . -612) 151334) ((-108 . -554) T) ((-652 . -712) 151304) ((-1159 . -1017) NIL) ((-217 . -612) 151285) ((-318 . -23) T) ((-67 . -1207) T) ((-995 . -609) 151217) ((-688 . -230) 151199) ((-709 . -111) 151164) ((-639 . -34) T) ((-244 . -488) 151148) ((-1094 . -1090) 151132) ((-170 . -1092) T) ((-947 . -904) 151111) ((-514 . -612) 151095) ((-1284 . -1143) T) ((-1280 . -21) T) ((-480 . -904) 151074) ((-1280 . -25) T) ((-1278 . -130) T) ((-1276 . -130) T) ((-1269 . -102) T) ((-1252 . -609) 151040) ((-1241 . -1033) 150975) ((-1079 . -712) 150824) ((-1055 . -642) 150811) ((-947 . -642) 150736) ((-777 . -712) 150565) ((-535 . -609) 150547) ((-535 . -610) 150528) ((-775 . -712) 150377) ((-1220 . -1207) 150356) ((-1069 . -102) T) ((-380 . -25) T) ((-380 . -21) T) ((-480 . -642) 150281) ((-460 . -712) 150252) ((-453 . -712) 150101) ((-982 . -102) T) ((-1220 . -881) NIL) ((-1220 . -879) 150053) ((-1180 . -610) NIL) ((-732 . -102) T) ((-1180 . -609) 150035) ((-601 . -612) 150017) ((-1134 . -1115) 149962) ((-1041 . -1200) 149891) ((-530 . -25) T) ((-896 . -308) 149829) ((-709 . -612) 149783) ((-342 . -1051) T) ((-640 . -489) 149764) ((-140 . -102) T) ((-44 . -130) T) ((-288 . -1104) T) ((-675 . -93) T) ((-670 . -93) T) ((-658 . -609) 149746) ((-640 . -609) 149699) ((-477 . -93) T) ((-354 . -609) 149681) ((-351 . -609) 149663) ((-343 . -609) 149645) ((-263 . -610) 149393) ((-263 . -609) 149375) ((-246 . -609) 149357) ((-246 . -610) 149218) ((-132 . -93) T) ((-137 . -93) T) ((-136 . -93) T) ((-1220 . -1033) 149184) ((-1201 . -513) 149151) ((-1133 . -609) 149133) ((-814 . -852) T) ((-814 . -721) T) ((-598 . -287) 149110) ((-579 . -712) 149075) ((-478 . -610) NIL) ((-478 . -609) 149057) ((-517 . -712) 149002) ((-315 . -102) T) ((-312 . -102) T) ((-288 . -23) T) ((-151 . -130) T) ((-905 . -609) 148984) ((-385 . -721) T) ((-867 . -1050) 148936) ((-905 . -610) 148918) ((-867 . -111) 148856) ((-709 . -1044) T) ((-707 . -1232) 148840) ((-138 . -102) T) ((-135 . -102) T) ((-114 . -102) T) ((-688 . -348) NIL) ((-518 . -609) 148772) ((-378 . -790) T) ((-222 . -1092) T) ((-378 . -787) T) ((-224 . -789) T) ((-224 . -786) T) ((-59 . -610) 148733) ((-59 . -609) 148645) ((-224 . -721) T) ((-515 . -610) 148606) ((-515 . -609) 148518) ((-496 . -609) 148450) ((-495 . -610) 148411) ((-495 . -609) 148323) ((-1072 . -362) 148274) ((-40 . -410) 148251) ((-77 . -1207) T) ((-866 . -904) NIL) ((-358 . -328) 148235) ((-358 . -362) T) ((-352 . -328) 148219) ((-352 . -362) T) ((-344 . -328) 148203) ((-344 . -362) T) ((-315 . -283) 148182) ((-108 . -362) T) ((-70 . -1207) T) ((-1220 . -337) 148134) ((-866 . -642) 148079) ((-1220 . -376) 148031) ((-959 . -130) 147886) ((-810 . -130) 147756) ((-953 . -645) 147740) ((-1079 . -171) 147651) ((-953 . -372) 147635) ((-1055 . -789) T) ((-1055 . -786) T) ((-867 . -612) 147533) ((-777 . -171) 147424) ((-775 . -171) 147335) ((-811 . -47) 147297) ((-1055 . -721) T) ((-326 . -488) 147281) ((-947 . -721) T) ((-453 . -171) 147192) ((-244 . -285) 147169) ((-1269 . -308) 147107) ((-480 . -721) T) ((-1248 . -895) 147020) ((-1241 . -895) 146926) ((-1240 . -1050) 146761) ((-1220 . -895) 146594) ((-1219 . -1050) 146402) ((-1201 . -289) 146381) ((-1175 . -367) T) ((-1174 . -367) T) ((-1138 . -150) 146365) ((-1112 . -102) T) ((-1110 . -1092) T) ((-1072 . -23) T) ((-1067 . -102) T) ((-922 . -950) T) ((-732 . -308) 146303) ((-75 . -1207) T) ((-30 . -950) T) ((-168 . -904) 146256) ((-658 . -381) 146228) ((-112 . -839) T) ((-1 . -609) 146210) ((-1072 . -1104) T) ((-128 . -645) 146192) ((-50 . -616) 146176) ((-998 . -408) 146148) ((-592 . -895) 146061) ((-437 . -102) T) ((-140 . -308) NIL) ((-128 . -372) 146043) ((-867 . -1044) T) ((-828 . -845) 146022) ((-81 . -1207) T) ((-706 . -289) T) ((-40 . -1051) T) ((-579 . -171) T) ((-517 . -171) T) ((-510 . -609) 146004) ((-168 . -642) 145914) ((-506 . -609) 145896) ((-350 . -146) 145878) ((-350 . -144) T) ((-358 . -1104) T) ((-352 . -1104) T) ((-344 . -1104) T) ((-999 . -306) T) ((-909 . -306) T) ((-867 . -242) T) ((-108 . -1104) T) ((-867 . -232) 145857) ((-1240 . -111) 145678) ((-1219 . -111) 145467) ((-244 . -1244) 145451) ((-562 . -843) T) ((-358 . -23) T) ((-353 . -348) T) ((-315 . -308) 145438) ((-312 . -308) 145379) ((-352 . -23) T) ((-318 . -130) T) ((-344 . -23) T) ((-999 . -1017) T) ((-31 . -612) 145360) ((-108 . -23) T) ((-244 . -600) 145337) ((-1242 . -38) 145229) ((-1229 . -904) 145208) ((-112 . -1092) T) ((-1030 . -102) T) ((-1229 . -642) 145133) ((-866 . -789) NIL) ((-850 . -642) 145107) ((-866 . -786) NIL) ((-811 . -881) NIL) ((-866 . -721) T) ((-1079 . -513) 144980) ((-777 . -513) 144927) ((-775 . -513) 144879) ((-569 . -642) 144866) ((-811 . -1033) 144694) ((-453 . -513) 144637) ((-387 . -388) T) ((-1240 . -612) 144450) ((-1219 . -612) 144198) ((-60 . -1207) T) ((-617 . -845) 144177) ((-499 . -655) T) ((-1138 . -971) 144146) ((-998 . -451) T) ((-693 . -843) T) ((-509 . -787) T) ((-473 . -1050) 143981) ((-342 . -1092) T) ((-312 . -1143) NIL) ((-288 . -130) T) ((-393 . -1092) T) ((-688 . -369) 143948) ((-865 . -1051) T) ((-222 . -616) 143925) ((-326 . -285) 143902) ((-473 . -111) 143723) ((-1240 . -1044) T) ((-1219 . -1044) T) ((-811 . -376) 143707) ((-168 . -721) T) ((-648 . -102) T) ((-1240 . -242) 143686) ((-1240 . -232) 143638) ((-1219 . -232) 143543) ((-1219 . -242) 143522) ((-998 . -401) NIL) ((-664 . -635) 143470) ((-315 . -38) 143380) ((-312 . -38) 143309) ((-69 . -609) 143291) ((-318 . -492) 143257) ((-1180 . -287) 143236) ((-1214 . -845) T) ((-1105 . -1104) 143146) ((-83 . -1207) T) ((-61 . -609) 143128) ((-478 . -287) 143107) ((-1271 . -1033) 143084) ((-1156 . -1092) T) ((-1105 . -23) 142954) ((-811 . -895) 142890) ((-1229 . -721) T) ((-1094 . -1207) T) ((-473 . -612) 142716) ((-1079 . -289) 142647) ((-961 . -1092) T) ((-888 . -102) T) ((-777 . -289) 142558) ((-326 . -19) 142542) ((-59 . -287) 142519) ((-775 . -289) 142450) ((-850 . -721) T) ((-117 . -843) NIL) ((-515 . -287) 142427) ((-326 . -600) 142404) ((-495 . -287) 142381) ((-453 . -289) 142312) ((-1030 . -308) 142163) ((-675 . -489) 142144) ((-569 . -721) T) ((-670 . -489) 142125) ((-675 . -609) 142075) ((-670 . -609) 142041) ((-656 . -609) 142023) ((-477 . -489) 142004) ((-477 . -609) 141970) ((-244 . -610) 141931) ((-244 . -489) 141908) ((-137 . -489) 141889) ((-136 . -489) 141870) ((-132 . -489) 141851) ((-244 . -609) 141743) ((-212 . -102) T) ((-137 . -609) 141709) ((-136 . -609) 141675) ((-132 . -609) 141641) ((-1139 . -34) T) ((-938 . -1207) T) ((-342 . -712) 141586) ((-664 . -25) T) ((-664 . -21) T) ((-1168 . -612) 141567) ((-473 . -1044) T) ((-631 . -416) 141532) ((-603 . -416) 141497) ((-1112 . -1143) T) ((-579 . -289) T) ((-517 . -289) T) ((-1241 . -306) 141476) ((-473 . -232) 141428) ((-473 . -242) 141407) ((-1220 . -306) 141386) ((-1220 . -1017) NIL) ((-1072 . -130) T) ((-867 . -790) 141365) ((-143 . -102) T) ((-40 . -1092) T) ((-867 . -787) 141344) ((-639 . -1005) 141328) ((-578 . -1051) T) ((-562 . -1051) T) ((-494 . -1051) T) ((-406 . -451) T) ((-358 . -130) T) ((-315 . -399) 141312) ((-312 . -399) 141273) ((-352 . -130) T) ((-344 . -130) T) ((-1173 . -1092) T) ((-1112 . -38) 141260) ((-1086 . -609) 141227) ((-108 . -130) T) ((-949 . -1092) T) ((-916 . -1092) T) ((-766 . -1092) T) ((-666 . -1092) T) ((-695 . -146) T) ((-116 . -146) T) ((-1278 . -21) T) ((-1278 . -25) T) ((-1276 . -21) T) ((-1276 . -25) T) ((-658 . -1050) 141211) ((-530 . -845) T) ((-499 . -845) T) ((-354 . -1050) 141163) ((-351 . -1050) 141115) ((-343 . -1050) 141067) ((-250 . -1207) T) ((-249 . -1207) T) ((-263 . -1050) 140910) ((-246 . -1050) 140753) ((-658 . -111) 140732) ((-546 . -839) T) ((-354 . -111) 140670) ((-351 . -111) 140608) ((-343 . -111) 140546) ((-263 . -111) 140375) ((-246 . -111) 140204) ((-812 . -1211) 140183) ((-619 . -410) 140167) ((-44 . -21) T) ((-44 . -25) T) ((-810 . -635) 140073) ((-812 . -554) 140052) ((-250 . -1033) 139879) ((-249 . -1033) 139706) ((-126 . -119) 139690) ((-905 . -1050) 139655) ((-707 . -102) T) ((-693 . -1051) T) ((-535 . -614) 139558) ((-342 . -171) T) ((-151 . -25) T) ((-88 . -609) 139540) ((-151 . -21) T) ((-905 . -111) 139496) ((-40 . -712) 139441) ((-865 . -1092) T) ((-658 . -612) 139418) ((-640 . -612) 139399) ((-354 . -612) 139336) ((-351 . -612) 139273) ((-546 . -1092) T) ((-343 . -612) 139210) ((-326 . -610) 139171) ((-326 . -609) 139083) ((-263 . -612) 138836) ((-246 . -612) 138621) ((-1219 . -787) 138574) ((-1219 . -790) 138527) ((-250 . -376) 138496) ((-249 . -376) 138465) ((-648 . -38) 138435) ((-604 . -34) T) ((-481 . -1104) 138345) ((-474 . -34) T) ((-1105 . -130) 138215) ((-959 . -25) 138026) ((-905 . -612) 137976) ((-869 . -609) 137958) ((-959 . -21) 137913) ((-810 . -21) 137823) ((-810 . -25) 137674) ((-1213 . -367) T) ((-619 . -1051) T) ((-1170 . -554) 137653) ((-1164 . -47) 137630) ((-354 . -1044) T) ((-351 . -1044) T) ((-481 . -23) 137500) ((-343 . -1044) T) ((-246 . -1044) T) ((-263 . -1044) T) ((-1117 . -47) 137472) ((-117 . -1051) T) ((-1029 . -642) 137446) ((-953 . -34) T) ((-354 . -232) 137425) ((-354 . -242) T) ((-351 . -232) 137404) ((-351 . -242) T) ((-343 . -232) 137383) ((-343 . -242) T) ((-246 . -325) 137340) ((-263 . -325) 137312) ((-263 . -232) 137291) ((-1148 . -150) 137275) ((-250 . -895) 137207) ((-249 . -895) 137139) ((-1074 . -845) T) ((-413 . -1104) T) ((-1048 . -23) T) ((-905 . -1044) T) ((-321 . -642) 137121) ((-1019 . -843) T) ((-1201 . -997) 137087) ((-1165 . -915) 137066) ((-1159 . -915) 137045) ((-1159 . -815) NIL) ((-905 . -242) T) ((-812 . -362) 137024) ((-384 . -23) T) ((-127 . -1092) 137002) ((-121 . -1092) 136980) ((-905 . -232) T) ((-128 . -34) T) ((-378 . -642) 136945) ((-865 . -712) 136932) ((-1041 . -150) 136897) ((-40 . -171) T) ((-688 . -410) 136879) ((-707 . -308) 136866) ((-831 . -642) 136826) ((-822 . -642) 136800) ((-318 . -25) T) ((-318 . -21) T) ((-652 . -285) 136779) ((-578 . -1092) T) ((-562 . -1092) T) ((-494 . -1092) T) ((-244 . -287) 136756) ((-312 . -230) 136717) ((-1164 . -881) NIL) ((-55 . -1092) T) ((-1117 . -881) 136576) ((-129 . -845) T) ((-1164 . -1033) 136456) ((-1117 . -1033) 136339) ((-182 . -609) 136321) ((-849 . -1033) 136217) ((-777 . -285) 136144) ((-812 . -1104) T) ((-1029 . -721) T) ((-598 . -645) 136128) ((-1041 . -971) 136057) ((-994 . -102) T) ((-812 . -23) T) ((-707 . -1143) 136035) ((-688 . -1051) T) ((-598 . -372) 136019) ((-350 . -451) T) ((-342 . -289) T) ((-1257 . -1092) T) ((-247 . -1092) T) ((-398 . -102) T) ((-288 . -21) T) ((-288 . -25) T) ((-360 . -721) T) ((-705 . -1092) T) ((-693 . -1092) T) ((-360 . -472) T) ((-1201 . -609) 136001) ((-1164 . -376) 135985) ((-1117 . -376) 135969) ((-1019 . -410) 135931) ((-140 . -228) 135913) ((-378 . -789) T) ((-378 . -786) T) ((-865 . -171) T) ((-378 . -721) T) ((-706 . -609) 135895) ((-707 . -38) 135724) ((-1256 . -1254) 135708) ((-350 . -401) T) ((-1256 . -1092) 135658) ((-578 . -712) 135645) ((-562 . -712) 135632) ((-494 . -712) 135597) ((-315 . -625) 135576) ((-831 . -721) T) ((-822 . -721) T) ((-639 . -1207) T) ((-1072 . -635) 135524) ((-1164 . -895) 135467) ((-1117 . -895) 135451) ((-656 . -1050) 135435) ((-108 . -635) 135417) ((-481 . -130) 135287) ((-1170 . -1104) T) ((-947 . -47) 135256) ((-619 . -1092) T) ((-656 . -111) 135235) ((-490 . -609) 135201) ((-326 . -287) 135178) ((-480 . -47) 135135) ((-1170 . -23) T) ((-117 . -1092) T) ((-103 . -102) 135113) ((-1268 . -1104) T) ((-1048 . -130) T) ((-1019 . -1051) T) ((-814 . -1033) 135097) ((-998 . -719) 135069) ((-1268 . -23) T) ((-693 . -712) 135034) ((-583 . -609) 135016) ((-385 . -1033) 135000) ((-353 . -1051) T) ((-384 . -130) T) ((-323 . -1033) 134984) ((-224 . -881) 134966) ((-999 . -915) T) ((-91 . -34) T) ((-999 . -815) T) ((-909 . -915) T) ((-1187 . -609) 134948) ((-1112 . -823) T) ((-486 . -1211) T) ((-1097 . -1092) T) ((-1072 . -21) T) ((-1072 . -25) T) ((-216 . -1211) T) ((-994 . -308) 134913) ((-224 . -1033) 134873) ((-40 . -289) T) ((-709 . -642) 134833) ((-675 . -612) 134814) ((-670 . -612) 134795) ((-486 . -554) T) ((-477 . -612) 134776) ((-358 . -25) T) ((-358 . -21) T) ((-352 . -25) T) ((-216 . -554) T) ((-352 . -21) T) ((-344 . -25) T) ((-344 . -21) T) ((-244 . -612) 134753) ((-137 . -612) 134734) ((-136 . -612) 134715) ((-132 . -612) 134696) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1051) T) ((-578 . -171) T) ((-562 . -171) T) ((-494 . -171) T) ((-652 . -609) 134678) ((-732 . -731) 134662) ((-335 . -609) 134644) ((-68 . -382) T) ((-68 . -394) T) ((-1094 . -107) 134628) ((-1055 . -881) 134610) ((-947 . -881) 134535) ((-647 . -1104) T) ((-619 . -712) 134522) ((-480 . -881) NIL) ((-1138 . -102) T) ((-1086 . -614) 134506) ((-1055 . -1033) 134488) ((-97 . -609) 134470) ((-476 . -146) T) ((-947 . -1033) 134350) ((-117 . -712) 134295) ((-647 . -23) T) ((-480 . -1033) 134171) ((-1079 . -610) NIL) ((-1079 . -609) 134153) ((-777 . -610) NIL) ((-777 . -609) 134114) ((-775 . -610) 133748) ((-775 . -609) 133662) ((-1105 . -635) 133568) ((-460 . -609) 133550) ((-453 . -609) 133532) ((-453 . -610) 133393) ((-1030 . -228) 133339) ((-867 . -904) 133318) ((-126 . -34) T) ((-812 . -130) T) ((-643 . -609) 133300) ((-576 . -102) T) ((-354 . -1275) 133284) ((-351 . -1275) 133268) ((-343 . -1275) 133252) ((-127 . -513) 133185) ((-121 . -513) 133118) ((-510 . -787) T) ((-510 . -790) T) ((-509 . -789) T) ((-103 . -308) 133056) ((-221 . -102) 133034) ((-688 . -1092) T) ((-693 . -171) T) ((-867 . -642) 132986) ((-65 . -383) T) ((-274 . -609) 132968) ((-65 . -394) T) ((-947 . -376) 132952) ((-865 . -289) T) ((-50 . -609) 132934) ((-994 . -38) 132882) ((-579 . -609) 132864) ((-480 . -376) 132848) ((-579 . -610) 132830) ((-517 . -609) 132812) ((-905 . -1275) 132799) ((-866 . -1207) T) ((-695 . -451) T) ((-494 . -513) 132765) ((-486 . -362) T) ((-354 . -367) 132744) ((-351 . -367) 132723) ((-343 . -367) 132702) ((-709 . -721) T) ((-216 . -362) T) ((-116 . -451) T) ((-1279 . -1270) 132686) ((-866 . -879) 132663) ((-866 . -881) NIL) ((-959 . -845) 132562) ((-810 . -845) 132513) ((-648 . -650) 132497) ((-1193 . -34) T) ((-170 . -609) 132479) ((-1105 . -21) 132389) ((-1105 . -25) 132240) ((-866 . -1033) 132217) ((-947 . -895) 132198) ((-1229 . -47) 132175) ((-905 . -367) T) ((-59 . -645) 132159) ((-515 . -645) 132143) ((-480 . -895) 132120) ((-71 . -440) T) ((-71 . -394) T) ((-495 . -645) 132104) ((-59 . -372) 132088) ((-619 . -171) T) ((-515 . -372) 132072) ((-495 . -372) 132056) ((-822 . -703) 132040) ((-1164 . -306) 132019) ((-1170 . -130) T) ((-117 . -171) T) ((-1138 . -308) 131957) ((-168 . -1207) T) ((-631 . -739) 131941) ((-603 . -739) 131925) ((-1268 . -130) T) ((-1241 . -915) 131904) ((-1220 . -915) 131883) ((-1220 . -815) NIL) ((-688 . -712) 131833) ((-1219 . -904) 131786) ((-1019 . -1092) T) ((-866 . -376) 131763) ((-866 . -337) 131740) ((-900 . -1104) T) ((-168 . -879) 131724) ((-168 . -881) 131649) ((-486 . -1104) T) ((-353 . -1092) T) ((-216 . -1104) T) ((-76 . -440) T) ((-76 . -394) T) ((-168 . -1033) 131545) ((-318 . -845) T) ((-1256 . -513) 131478) ((-1240 . -642) 131375) ((-1219 . -642) 131245) ((-867 . -789) 131224) ((-867 . -786) 131203) ((-867 . -721) T) ((-486 . -23) T) ((-222 . -609) 131185) ((-173 . -451) T) ((-221 . -308) 131123) ((-86 . -440) T) ((-86 . -394) T) ((-216 . -23) T) ((-1280 . -1273) 131102) ((-578 . -289) T) ((-562 . -289) T) ((-671 . -1033) 131086) ((-494 . -289) T) ((-135 . -469) 131041) ((-48 . -1092) T) ((-707 . -230) 131025) ((-866 . -895) NIL) ((-1229 . -881) NIL) ((-884 . -102) T) ((-880 . -102) T) ((-387 . -1092) T) ((-168 . -376) 131009) ((-168 . -337) 130993) ((-1229 . -1033) 130873) ((-850 . -1033) 130769) ((-1134 . -102) T) ((-647 . -130) T) ((-117 . -513) 130677) ((-656 . -787) 130656) ((-656 . -790) 130635) ((-569 . -1033) 130617) ((-293 . -1263) 130587) ((-861 . -102) T) ((-958 . -554) 130566) ((-1201 . -1050) 130449) ((-481 . -635) 130355) ((-899 . -1092) T) ((-1019 . -712) 130292) ((-706 . -1050) 130257) ((-613 . -102) T) ((-598 . -34) T) ((-1139 . -1207) T) ((-1201 . -111) 130126) ((-473 . -642) 130023) ((-353 . -712) 129968) ((-168 . -895) 129927) ((-693 . -289) T) ((-688 . -171) T) ((-706 . -111) 129883) ((-1284 . -1051) T) ((-1229 . -376) 129867) ((-417 . -1211) 129845) ((-1110 . -609) 129827) ((-312 . -843) NIL) ((-417 . -554) T) ((-224 . -306) T) ((-1219 . -786) 129780) ((-1219 . -789) 129733) ((-1240 . -721) T) ((-1219 . -721) T) ((-48 . -712) 129698) ((-224 . -1017) T) ((-350 . -1263) 129675) ((-1242 . -410) 129641) ((-713 . -721) T) ((-1229 . -895) 129584) ((-1201 . -612) 129466) ((-112 . -609) 129448) ((-112 . -610) 129430) ((-713 . -472) T) ((-706 . -612) 129380) ((-481 . -21) 129290) ((-127 . -488) 129274) ((-121 . -488) 129258) ((-481 . -25) 129109) ((-619 . -289) T) ((-583 . -1050) 129084) ((-436 . -1092) T) ((-1055 . -306) T) ((-117 . -289) T) ((-1096 . -102) T) ((-998 . -102) T) ((-583 . -111) 129052) ((-1134 . -308) 128990) ((-1201 . -1044) T) ((-1055 . -1017) T) ((-66 . -1207) T) ((-1048 . -25) T) ((-1048 . -21) T) ((-706 . -1044) T) ((-384 . -21) T) ((-384 . -25) T) ((-688 . -513) NIL) ((-1019 . -171) T) ((-706 . -242) T) ((-1055 . -544) T) ((-505 . -102) T) ((-501 . -102) T) ((-353 . -171) T) ((-342 . -609) 128972) ((-393 . -609) 128954) ((-473 . -721) T) ((-1112 . -843) T) ((-887 . -1033) 128922) ((-108 . -845) T) ((-652 . -1050) 128906) ((-486 . -130) T) ((-1242 . -1051) T) ((-216 . -130) T) ((-1148 . -102) 128884) ((-99 . -1092) T) ((-244 . -660) 128868) ((-244 . -645) 128852) ((-652 . -111) 128831) ((-583 . -612) 128815) ((-315 . -410) 128799) ((-244 . -372) 128783) ((-1151 . -234) 128730) ((-994 . -230) 128714) ((-74 . -1207) T) ((-48 . -171) T) ((-695 . -386) T) ((-695 . -142) T) ((-1279 . -102) T) ((-1187 . -612) 128696) ((-1079 . -1050) 128539) ((-263 . -904) 128518) ((-246 . -904) 128497) ((-777 . -1050) 128320) ((-775 . -1050) 128163) ((-604 . -1207) T) ((-1156 . -609) 128145) ((-1079 . -111) 127974) ((-1041 . -102) T) ((-474 . -1207) T) ((-460 . -1050) 127945) ((-453 . -1050) 127788) ((-658 . -642) 127772) ((-866 . -306) T) ((-777 . -111) 127581) ((-775 . -111) 127410) ((-354 . -642) 127362) ((-351 . -642) 127314) ((-343 . -642) 127266) ((-263 . -642) 127191) ((-246 . -642) 127116) ((-1150 . -845) T) ((-1080 . -1033) 127100) ((-460 . -111) 127061) ((-453 . -111) 126890) ((-1068 . -1033) 126867) ((-995 . -34) T) ((-961 . -609) 126849) ((-953 . -1207) T) ((-126 . -1005) 126833) ((-958 . -1104) T) ((-866 . -1017) NIL) ((-730 . -1104) T) ((-710 . -1104) T) ((-652 . -612) 126751) ((-1256 . -488) 126735) ((-1134 . -38) 126695) ((-958 . -23) T) ((-860 . -1092) T) ((-838 . -102) T) ((-812 . -21) T) ((-812 . -25) T) ((-730 . -23) T) ((-710 . -23) T) ((-110 . -655) T) ((-905 . -642) 126660) ((-579 . -1050) 126625) ((-517 . -1050) 126570) ((-226 . -57) 126528) ((-452 . -23) T) ((-406 . -102) T) ((-262 . -102) T) ((-688 . -289) T) ((-861 . -38) 126498) ((-579 . -111) 126454) ((-517 . -111) 126383) ((-1079 . -612) 126119) ((-417 . -1104) T) ((-315 . -1051) 126009) ((-312 . -1051) T) ((-128 . -1207) T) ((-777 . -612) 125757) ((-775 . -612) 125523) ((-652 . -1044) T) ((-1284 . -1092) T) ((-453 . -612) 125308) ((-168 . -306) 125239) ((-417 . -23) T) ((-40 . -609) 125221) ((-40 . -610) 125205) ((-108 . -987) 125187) ((-116 . -864) 125171) ((-643 . -612) 125155) ((-48 . -513) 125121) ((-1193 . -1005) 125105) ((-1173 . -609) 125072) ((-1180 . -34) T) ((-949 . -609) 125038) ((-916 . -609) 125020) ((-1105 . -845) 124971) ((-766 . -609) 124953) ((-666 . -609) 124935) ((-1148 . -308) 124873) ((-478 . -34) T) ((-1084 . -1207) T) ((-476 . -451) T) ((-1133 . -34) T) ((-1079 . -1044) T) ((-50 . -612) 124842) ((-777 . -1044) T) ((-775 . -1044) T) ((-641 . -234) 124826) ((-628 . -234) 124772) ((-579 . -612) 124722) ((-517 . -612) 124652) ((-1229 . -306) 124631) ((-1079 . -325) 124592) ((-453 . -1044) T) ((-1170 . -21) T) ((-1079 . -232) 124571) ((-777 . -325) 124548) ((-777 . -232) T) ((-775 . -325) 124520) ((-726 . -1211) 124499) ((-326 . -645) 124483) ((-1170 . -25) T) ((-59 . -34) T) ((-518 . -34) T) ((-515 . -34) T) ((-453 . -325) 124462) ((-326 . -372) 124446) ((-496 . -34) T) ((-495 . -34) T) ((-998 . -1143) NIL) ((-726 . -554) 124377) ((-631 . -102) T) ((-603 . -102) T) ((-354 . -721) T) ((-351 . -721) T) ((-343 . -721) T) ((-263 . -721) T) ((-246 . -721) T) ((-1041 . -308) 124285) ((-896 . -1092) 124263) ((-50 . -1044) T) ((-1268 . -21) T) ((-1268 . -25) T) ((-1166 . -554) 124242) ((-1165 . -1211) 124221) ((-579 . -1044) T) ((-517 . -1044) T) ((-1159 . -1211) 124200) ((-360 . -1033) 124184) ((-321 . -1033) 124168) ((-1019 . -289) T) ((-378 . -881) 124150) ((-1165 . -554) 124101) ((-1159 . -554) 124052) ((-998 . -38) 123997) ((-794 . -1104) T) ((-905 . -721) T) ((-579 . -242) T) ((-579 . -232) T) ((-517 . -232) T) ((-517 . -242) T) ((-1118 . -554) 123976) ((-353 . -289) T) ((-641 . -689) 123960) ((-378 . -1033) 123920) ((-1112 . -1051) T) ((-103 . -125) 123904) ((-794 . -23) T) ((-1278 . -1273) 123880) ((-1256 . -285) 123857) ((-406 . -308) 123822) ((-1276 . -1273) 123801) ((-1242 . -1092) T) ((-865 . -609) 123783) ((-831 . -1033) 123752) ((-202 . -782) T) ((-201 . -782) T) ((-200 . -782) T) ((-199 . -782) T) ((-198 . -782) T) ((-197 . -782) T) ((-196 . -782) T) ((-195 . -782) T) ((-194 . -782) T) ((-193 . -782) T) ((-546 . -609) 123734) ((-494 . -997) T) ((-273 . -834) T) ((-272 . -834) T) ((-271 . -834) T) ((-270 . -834) T) ((-48 . -289) T) ((-269 . -834) T) ((-268 . -834) T) ((-267 . -834) T) ((-192 . -782) T) ((-608 . -845) T) ((-648 . -410) 123718) ((-222 . -612) 123680) ((-110 . -845) T) ((-647 . -21) T) ((-647 . -25) T) ((-1279 . -38) 123650) ((-117 . -285) 123601) ((-1256 . -19) 123585) ((-1256 . -600) 123562) ((-1269 . -1092) T) ((-1069 . -1092) T) ((-982 . -1092) T) ((-958 . -130) T) ((-732 . -1092) T) ((-730 . -130) T) ((-710 . -130) T) ((-510 . -788) T) ((-406 . -1143) 123540) ((-452 . -130) T) ((-510 . -789) T) ((-222 . -1044) T) ((-293 . -102) 123322) ((-140 . -1092) T) ((-693 . -997) T) ((-91 . -1207) T) ((-127 . -609) 123254) ((-121 . -609) 123186) ((-1284 . -171) T) ((-1165 . -362) 123165) ((-1159 . -362) 123144) ((-315 . -1092) T) ((-417 . -130) T) ((-312 . -1092) T) ((-406 . -38) 123096) ((-1125 . -102) T) ((-1242 . -712) 122988) ((-648 . -1051) T) ((-1127 . -1251) T) ((-318 . -144) 122967) ((-318 . -146) 122946) ((-138 . -1092) T) ((-135 . -1092) T) ((-114 . -1092) T) ((-853 . -102) T) ((-578 . -609) 122928) ((-562 . -610) 122827) ((-562 . -609) 122809) ((-494 . -609) 122791) ((-494 . -610) 122736) ((-484 . -23) T) ((-481 . -845) 122687) ((-486 . -635) 122669) ((-960 . -609) 122651) ((-216 . -635) 122633) ((-224 . -403) T) ((-656 . -642) 122617) ((-55 . -609) 122599) ((-1164 . -915) 122578) ((-726 . -1104) T) ((-350 . -102) T) ((-1206 . -1075) T) ((-1112 . -839) T) ((-813 . -845) T) ((-726 . -23) T) ((-342 . -1050) 122523) ((-1150 . -1149) T) ((-1139 . -107) 122507) ((-1166 . -1104) T) ((-1165 . -1104) T) ((-514 . -1033) 122491) ((-1159 . -1104) T) ((-1118 . -1104) T) ((-342 . -111) 122420) ((-999 . -1211) T) ((-126 . -1207) T) ((-909 . -1211) T) ((-688 . -285) NIL) ((-1257 . -609) 122402) ((-1166 . -23) T) ((-1165 . -23) T) ((-1159 . -23) T) ((-999 . -554) T) ((-1134 . -230) 122386) ((-909 . -554) T) ((-1118 . -23) T) ((-247 . -609) 122368) ((-1067 . -1092) T) ((-794 . -130) T) ((-705 . -609) 122350) ((-315 . -712) 122260) ((-312 . -712) 122189) ((-693 . -609) 122171) ((-693 . -610) 122116) ((-406 . -399) 122100) ((-437 . -1092) T) ((-486 . -25) T) ((-486 . -21) T) ((-1112 . -1092) T) ((-216 . -25) T) ((-216 . -21) T) ((-707 . -410) 122084) ((-709 . -1033) 122053) ((-1256 . -609) 121965) ((-1256 . -610) 121926) ((-1242 . -171) T) ((-244 . -34) T) ((-342 . -612) 121856) ((-393 . -612) 121838) ((-921 . -969) T) ((-1193 . -1207) T) ((-656 . -786) 121817) ((-656 . -789) 121796) ((-397 . -394) T) ((-522 . -102) 121774) ((-1030 . -1092) T) ((-221 . -990) 121758) ((-503 . -102) T) ((-619 . -609) 121740) ((-45 . -845) NIL) ((-619 . -610) 121717) ((-1030 . -606) 121692) ((-896 . -513) 121625) ((-342 . -1044) T) ((-117 . -610) NIL) ((-117 . -609) 121607) ((-867 . -1207) T) ((-664 . -416) 121591) ((-664 . -1115) 121536) ((-499 . -150) 121518) ((-342 . -232) T) ((-342 . -242) T) ((-40 . -1050) 121463) ((-867 . -879) 121447) ((-867 . -881) 121372) ((-707 . -1051) T) ((-688 . -997) NIL) ((-3 . |UnionCategory|) T) ((-1240 . -47) 121342) ((-1219 . -47) 121319) ((-1133 . -1005) 121290) ((-224 . -915) T) ((-40 . -111) 121219) ((-867 . -1033) 121083) ((-1112 . -712) 121070) ((-1097 . -609) 121052) ((-1072 . -146) 121031) ((-1072 . -144) 120982) ((-999 . -362) T) ((-318 . -1195) 120948) ((-378 . -306) T) ((-318 . -1192) 120914) ((-315 . -171) 120893) ((-312 . -171) T) ((-998 . -230) 120870) ((-909 . -362) T) ((-579 . -1275) 120857) ((-517 . -1275) 120834) ((-358 . -146) 120813) ((-358 . -144) 120764) ((-352 . -146) 120743) ((-352 . -144) 120694) ((-604 . -1183) 120670) ((-344 . -146) 120649) ((-344 . -144) 120600) ((-318 . -35) 120566) ((-474 . -1183) 120545) ((0 . |EnumerationCategory|) T) ((-318 . -95) 120511) ((-378 . -1017) T) ((-108 . -146) T) ((-108 . -144) NIL) ((-45 . -234) 120461) ((-648 . -1092) T) ((-604 . -107) 120408) ((-484 . -130) T) ((-474 . -107) 120358) ((-239 . -1104) 120268) ((-867 . -376) 120252) ((-867 . -337) 120236) ((-239 . -23) 120106) ((-40 . -612) 120036) ((-1055 . -915) T) ((-1055 . -815) T) ((-579 . -367) T) ((-517 . -367) T) ((-350 . -1143) T) ((-326 . -34) T) ((-44 . -416) 120020) ((-1173 . -612) 119955) ((-868 . -1207) T) ((-389 . -739) 119939) ((-1269 . -513) 119872) ((-726 . -130) T) ((-666 . -612) 119856) ((-1248 . -554) 119835) ((-1241 . -1211) 119814) ((-1241 . -554) 119765) ((-1220 . -1211) 119744) ((-310 . -1075) T) ((-1220 . -554) 119695) ((-732 . -513) 119628) ((-1219 . -1207) 119607) ((-1219 . -881) 119480) ((-888 . -1092) T) ((-143 . -839) T) ((-1219 . -879) 119450) ((-685 . -609) 119432) ((-1166 . -130) T) ((-522 . -308) 119370) ((-1165 . -130) T) ((-140 . -513) NIL) ((-1159 . -130) T) ((-1118 . -130) T) ((-1019 . -997) T) ((-999 . -23) T) ((-350 . -38) 119335) ((-999 . -1104) T) ((-909 . -1104) T) ((-82 . -609) 119317) ((-40 . -1044) T) ((-865 . -1050) 119304) ((-998 . -348) NIL) ((-867 . -895) 119263) ((-695 . -102) T) ((-966 . -23) T) ((-598 . -1207) T) ((-909 . -23) T) ((-865 . -111) 119248) ((-426 . -1104) T) ((-212 . -1092) T) ((-473 . -47) 119218) ((-133 . -102) T) ((-40 . -232) 119190) ((-40 . -242) T) ((-116 . -102) T) ((-593 . -554) 119169) ((-592 . -554) 119148) ((-688 . -609) 119130) ((-688 . -610) 119038) ((-315 . -513) 119004) ((-312 . -513) 118896) ((-1240 . -1033) 118880) ((-1219 . -1033) 118666) ((-994 . -410) 118650) ((-426 . -23) T) ((-1112 . -171) T) ((-1242 . -289) T) ((-648 . -712) 118620) ((-143 . -1092) T) ((-48 . -997) T) ((-406 . -230) 118604) ((-294 . -234) 118554) ((-866 . -915) T) ((-866 . -815) NIL) ((-865 . -612) 118526) ((-859 . -845) T) ((-1219 . -337) 118496) ((-1219 . -376) 118466) ((-221 . -1113) 118450) ((-1256 . -287) 118427) ((-1201 . -642) 118352) ((-958 . -21) T) ((-958 . -25) T) ((-730 . -21) T) ((-730 . -25) T) ((-710 . -21) T) ((-710 . -25) T) ((-706 . -642) 118317) ((-452 . -21) T) ((-452 . -25) T) ((-338 . -102) T) ((-173 . -102) T) ((-994 . -1051) T) ((-865 . -1044) T) ((-769 . -102) T) ((-1241 . -362) 118296) ((-1240 . -895) 118202) ((-1220 . -362) 118181) ((-1219 . -895) 118032) ((-1019 . -609) 118014) ((-406 . -823) 117967) ((-1166 . -492) 117933) ((-168 . -915) 117864) ((-1165 . -492) 117830) ((-1159 . -492) 117796) ((-707 . -1092) T) ((-1118 . -492) 117762) ((-578 . -1050) 117749) ((-562 . -1050) 117736) ((-494 . -1050) 117701) ((-315 . -289) 117680) ((-312 . -289) T) ((-353 . -609) 117662) ((-417 . -25) T) ((-417 . -21) T) ((-99 . -285) 117641) ((-578 . -111) 117626) ((-562 . -111) 117611) ((-494 . -111) 117567) ((-1168 . -881) 117534) ((-896 . -488) 117518) ((-48 . -609) 117500) ((-48 . -610) 117445) ((-239 . -130) 117315) ((-1229 . -915) 117294) ((-811 . -1211) 117273) ((-387 . -489) 117254) ((-1030 . -513) 117098) ((-387 . -609) 117064) ((-811 . -554) 116995) ((-583 . -642) 116970) ((-263 . -47) 116942) ((-246 . -47) 116899) ((-530 . -508) 116876) ((-578 . -612) 116848) ((-562 . -612) 116820) ((-494 . -612) 116753) ((-995 . -1207) T) ((-693 . -1050) 116718) ((-1248 . -23) T) ((-1248 . -1104) T) ((-1241 . -1104) T) ((-1220 . -1104) T) ((-998 . -369) 116690) ((-112 . -367) T) ((-473 . -895) 116596) ((-1241 . -23) T) ((-899 . -609) 116578) ((-55 . -612) 116560) ((-91 . -107) 116544) ((-1201 . -721) T) ((-900 . -845) 116495) ((-695 . -1143) T) ((-693 . -111) 116451) ((-1220 . -23) T) ((-593 . -1104) T) ((-592 . -1104) T) ((-707 . -712) 116280) ((-706 . -721) T) ((-1112 . -289) T) ((-999 . -130) T) ((-486 . -845) T) ((-966 . -130) T) ((-909 . -130) T) ((-794 . -25) T) ((-216 . -845) T) ((-794 . -21) T) ((-578 . -1044) T) ((-562 . -1044) T) ((-494 . -1044) T) ((-593 . -23) T) ((-342 . -1275) 116257) ((-318 . -451) 116236) ((-338 . -308) 116223) ((-592 . -23) T) ((-426 . -130) T) ((-652 . -642) 116197) ((-244 . -1005) 116181) ((-867 . -306) T) ((-1280 . -1270) 116165) ((-766 . -787) T) ((-766 . -790) T) ((-695 . -38) 116152) ((-562 . -232) T) ((-494 . -242) T) ((-494 . -232) T) ((-1142 . -234) 116102) ((-1079 . -904) 116081) ((-116 . -38) 116068) ((-208 . -795) T) ((-207 . -795) T) ((-206 . -795) T) ((-205 . -795) T) ((-867 . -1017) 116046) ((-1269 . -488) 116030) ((-777 . -904) 116009) ((-775 . -904) 115988) ((-1180 . -1207) T) ((-453 . -904) 115967) ((-732 . -488) 115951) ((-1079 . -642) 115876) ((-693 . -612) 115811) ((-777 . -642) 115736) ((-619 . -1050) 115723) ((-478 . -1207) T) ((-342 . -367) T) ((-140 . -488) 115705) ((-775 . -642) 115630) ((-1133 . -1207) T) ((-547 . -845) T) ((-460 . -642) 115601) ((-263 . -881) 115460) ((-246 . -881) NIL) ((-117 . -1050) 115405) ((-453 . -642) 115330) ((-658 . -1033) 115307) ((-619 . -111) 115292) ((-354 . -1033) 115276) ((-351 . -1033) 115260) ((-343 . -1033) 115244) ((-263 . -1033) 115088) ((-246 . -1033) 114964) ((-117 . -111) 114893) ((-59 . -1207) T) ((-518 . -1207) T) ((-515 . -1207) T) ((-496 . -1207) T) ((-495 . -1207) T) ((-436 . -609) 114875) ((-433 . -609) 114857) ((-3 . -102) T) ((-1022 . -1200) 114826) ((-828 . -102) T) ((-683 . -57) 114784) ((-693 . -1044) T) ((-50 . -642) 114758) ((-288 . -451) T) ((-475 . -1200) 114727) ((0 . -102) T) ((-579 . -642) 114692) ((-517 . -642) 114637) ((-49 . -102) T) ((-905 . -1033) 114624) ((-693 . -242) T) ((-1072 . -408) 114603) ((-726 . -635) 114551) ((-994 . -1092) T) ((-707 . -171) 114442) ((-619 . -612) 114337) ((-486 . -987) 114319) ((-263 . -376) 114303) ((-246 . -376) 114287) ((-398 . -1092) T) ((-1021 . -102) 114265) ((-338 . -38) 114249) ((-216 . -987) 114231) ((-117 . -612) 114161) ((-173 . -38) 114093) ((-1240 . -306) 114072) ((-1219 . -306) 114051) ((-652 . -721) T) ((-99 . -609) 114033) ((-1159 . -635) 113985) ((-484 . -25) T) ((-484 . -21) T) ((-1219 . -1017) 113937) ((-619 . -1044) T) ((-378 . -403) T) ((-389 . -102) T) ((-1097 . -614) 113852) ((-263 . -895) 113798) ((-246 . -895) 113775) ((-117 . -1044) T) ((-811 . -1104) T) ((-1079 . -721) T) ((-619 . -232) 113754) ((-617 . -102) T) ((-777 . -721) T) ((-775 . -721) T) ((-412 . -1104) T) ((-117 . -242) T) ((-40 . -367) NIL) ((-117 . -232) NIL) ((-1212 . -845) T) ((-453 . -721) T) ((-811 . -23) T) ((-726 . -25) T) ((-726 . -21) T) ((-697 . -845) T) ((-1069 . -285) 113733) ((-78 . -395) T) ((-78 . -394) T) ((-532 . -762) 113715) ((-688 . -1050) 113665) ((-1248 . -130) T) ((-1241 . -130) T) ((-1220 . -130) T) ((-1166 . -25) T) ((-1134 . -410) 113649) ((-631 . -366) 113581) ((-603 . -366) 113513) ((-1148 . -1141) 113497) ((-103 . -1092) 113475) ((-1166 . -21) T) ((-1165 . -21) T) ((-860 . -609) 113457) ((-994 . -712) 113405) ((-222 . -642) 113372) ((-688 . -111) 113306) ((-50 . -721) T) ((-1165 . -25) T) ((-350 . -348) T) ((-1159 . -21) T) ((-1072 . -451) 113257) ((-1159 . -25) T) ((-707 . -513) 113204) ((-579 . -721) T) ((-517 . -721) T) ((-1118 . -21) T) ((-1118 . -25) T) ((-593 . -130) T) ((-592 . -130) T) ((-358 . -451) T) ((-352 . -451) T) ((-344 . -451) T) ((-473 . -306) 113183) ((-1214 . -102) T) ((-312 . -285) 113118) ((-108 . -451) T) ((-79 . -440) T) ((-79 . -394) T) ((-476 . -102) T) ((-685 . -612) 113102) ((-1284 . -609) 113084) ((-1284 . -610) 113066) ((-1072 . -401) 113045) ((-1030 . -488) 112976) ((-562 . -790) T) ((-562 . -787) T) ((-1056 . -234) 112922) ((-358 . -401) 112873) ((-352 . -401) 112824) ((-344 . -401) 112775) ((-1271 . -1104) T) ((-688 . -612) 112710) ((-1271 . -23) T) ((-1258 . -102) T) ((-174 . -609) 112692) ((-1134 . -1051) T) ((-546 . -367) T) ((-664 . -739) 112676) ((-1170 . -144) 112655) ((-1170 . -146) 112634) ((-1138 . -1092) T) ((-1138 . -1064) 112603) ((-69 . -1207) T) ((-1019 . -1050) 112540) ((-861 . -1051) T) ((-239 . -635) 112446) ((-688 . -1044) T) ((-353 . -1050) 112391) ((-61 . -1207) T) ((-1019 . -111) 112307) ((-896 . -609) 112218) ((-688 . -242) T) ((-688 . -232) NIL) ((-838 . -843) 112197) ((-693 . -790) T) ((-693 . -787) T) ((-998 . -410) 112174) ((-353 . -111) 112103) ((-378 . -915) T) ((-406 . -843) 112082) ((-707 . -289) 111993) ((-222 . -721) T) ((-1248 . -492) 111959) ((-1241 . -492) 111925) ((-1220 . -492) 111891) ((-576 . -1092) T) ((-315 . -997) 111870) ((-221 . -1092) 111848) ((-318 . -968) 111810) ((-105 . -102) T) ((-48 . -1050) 111775) ((-1280 . -102) T) ((-380 . -102) T) ((-48 . -111) 111731) ((-999 . -635) 111713) ((-1242 . -609) 111695) ((-530 . -102) T) ((-499 . -102) T) ((-1125 . -1126) 111679) ((-151 . -1263) 111663) ((-244 . -1207) T) ((-1206 . -102) T) ((-1019 . -612) 111600) ((-1164 . -1211) 111579) ((-353 . -612) 111509) ((-1117 . -1211) 111488) ((-239 . -21) 111398) ((-239 . -25) 111249) ((-127 . -119) 111233) ((-121 . -119) 111217) ((-44 . -739) 111201) ((-1164 . -554) 111112) ((-1117 . -554) 111043) ((-1030 . -285) 111018) ((-1158 . -1075) T) ((-989 . -1075) T) ((-811 . -130) T) ((-117 . -790) NIL) ((-117 . -787) NIL) ((-354 . -306) T) ((-351 . -306) T) ((-343 . -306) T) ((-250 . -1104) 110928) ((-249 . -1104) 110838) ((-1019 . -1044) T) ((-998 . -1051) T) ((-48 . -612) 110771) ((-342 . -642) 110716) ((-617 . -38) 110700) ((-1269 . -609) 110662) ((-1269 . -610) 110623) ((-1069 . -609) 110605) ((-1019 . -242) T) ((-353 . -1044) T) ((-810 . -1263) 110575) ((-250 . -23) T) ((-249 . -23) T) ((-982 . -609) 110557) ((-732 . -610) 110518) ((-732 . -609) 110500) ((-794 . -845) 110479) ((-1151 . -150) 110426) ((-994 . -513) 110338) ((-353 . -232) T) ((-353 . -242) T) ((-387 . -612) 110319) ((-999 . -25) T) ((-140 . -609) 110301) ((-140 . -610) 110260) ((-905 . -306) T) ((-999 . -21) T) ((-966 . -25) T) ((-909 . -21) T) ((-909 . -25) T) ((-426 . -21) T) ((-426 . -25) T) ((-838 . -410) 110244) ((-48 . -1044) T) ((-1278 . -1270) 110228) ((-1276 . -1270) 110212) ((-1030 . -600) 110187) ((-315 . -610) 110048) ((-315 . -609) 110030) ((-312 . -610) NIL) ((-312 . -609) 110012) ((-48 . -242) T) ((-48 . -232) T) ((-648 . -285) 109973) ((-548 . -234) 109923) ((-138 . -609) 109890) ((-135 . -609) 109872) ((-114 . -609) 109854) ((-476 . -38) 109819) ((-1280 . -1277) 109798) ((-1271 . -130) T) ((-1279 . -1051) T) ((-1074 . -102) T) ((-88 . -1207) T) ((-499 . -308) NIL) ((-995 . -107) 109782) ((-884 . -1092) T) ((-880 . -1092) T) ((-1256 . -645) 109766) ((-1256 . -372) 109750) ((-326 . -1207) T) ((-590 . -845) T) ((-1134 . -1092) T) ((-1134 . -1047) 109690) ((-103 . -513) 109623) ((-922 . -609) 109605) ((-342 . -721) T) ((-30 . -609) 109587) ((-861 . -1092) T) ((-838 . -1051) 109566) ((-40 . -642) 109511) ((-224 . -1211) T) ((-406 . -1051) T) ((-1150 . -150) 109493) ((-994 . -289) 109444) ((-613 . -1092) T) ((-224 . -554) T) ((-318 . -1237) 109428) ((-318 . -1234) 109398) ((-1180 . -1183) 109377) ((-1067 . -609) 109359) ((-641 . -150) 109343) ((-628 . -150) 109289) ((-1180 . -107) 109239) ((-478 . -1183) 109218) ((-486 . -146) T) ((-486 . -144) NIL) ((-1112 . -610) 109133) ((-437 . -609) 109115) ((-216 . -146) T) ((-216 . -144) NIL) ((-1112 . -609) 109097) ((-129 . -102) T) ((-52 . -102) T) ((-1220 . -635) 109049) ((-478 . -107) 108999) ((-988 . -23) T) ((-1280 . -38) 108969) ((-1164 . -1104) T) ((-1117 . -1104) T) ((-1055 . -1211) T) ((-310 . -102) T) ((-849 . -1104) T) ((-947 . -1211) 108948) ((-480 . -1211) 108927) ((-726 . -845) 108906) ((-1055 . -554) T) ((-947 . -554) 108837) ((-1164 . -23) T) ((-1117 . -23) T) ((-849 . -23) T) ((-480 . -554) 108768) ((-1134 . -712) 108700) ((-1138 . -513) 108633) ((-1030 . -610) NIL) ((-1030 . -609) 108615) ((-96 . -1075) T) ((-861 . -712) 108585) ((-1201 . -47) 108554) ((-250 . -130) T) ((-249 . -130) T) ((-1096 . -1092) T) ((-998 . -1092) T) ((-62 . -609) 108536) ((-1159 . -845) NIL) ((-1019 . -787) T) ((-1019 . -790) T) ((-1284 . -1050) 108523) ((-1284 . -111) 108508) ((-865 . -642) 108495) ((-1248 . -25) T) ((-1248 . -21) T) ((-1241 . -21) T) ((-1241 . -25) T) ((-1220 . -21) T) ((-1220 . -25) T) ((-1022 . -150) 108479) ((-867 . -815) 108458) ((-867 . -915) T) ((-707 . -285) 108385) ((-593 . -21) T) ((-593 . -25) T) ((-592 . -21) T) ((-40 . -721) T) ((-221 . -513) 108318) ((-592 . -25) T) ((-475 . -150) 108302) ((-462 . -150) 108286) ((-916 . -789) T) ((-916 . -721) T) ((-766 . -788) T) ((-766 . -789) T) ((-505 . -1092) T) ((-501 . -1092) T) ((-766 . -721) T) ((-224 . -362) T) ((-1148 . -1092) 108264) ((-866 . -1211) T) ((-648 . -609) 108246) ((-866 . -554) T) ((-688 . -367) NIL) ((-1284 . -612) 108228) ((-358 . -1263) 108212) ((-664 . -102) T) ((-352 . -1263) 108196) ((-344 . -1263) 108180) ((-1279 . -1092) T) ((-519 . -845) 108159) ((-812 . -451) 108138) ((-1041 . -1092) T) ((-1041 . -1064) 108067) ((-1022 . -971) 108036) ((-814 . -1104) T) ((-998 . -712) 107981) ((-385 . -1104) T) ((-475 . -971) 107950) ((-462 . -971) 107919) ((-110 . -150) 107901) ((-73 . -609) 107883) ((-888 . -609) 107865) ((-1072 . -719) 107844) ((-1284 . -1044) T) ((-811 . -635) 107792) ((-293 . -1051) 107734) ((-168 . -1211) 107639) ((-224 . -1104) T) ((-323 . -23) T) ((-1159 . -987) 107591) ((-838 . -1092) T) ((-1242 . -1050) 107496) ((-1118 . -735) 107475) ((-1240 . -915) 107454) ((-1219 . -915) 107433) ((-865 . -721) T) ((-168 . -554) 107344) ((-578 . -642) 107331) ((-562 . -642) 107318) ((-406 . -1092) T) ((-262 . -1092) T) ((-212 . -609) 107300) ((-494 . -642) 107265) ((-224 . -23) T) ((-1219 . -815) 107218) ((-1278 . -102) T) ((-353 . -1275) 107195) ((-1276 . -102) T) ((-1242 . -111) 107087) ((-143 . -609) 107069) ((-988 . -130) T) ((-44 . -102) T) ((-239 . -845) 107020) ((-1229 . -1211) 106999) ((-103 . -488) 106983) ((-1279 . -712) 106953) ((-1079 . -47) 106914) ((-1055 . -1104) T) ((-947 . -1104) T) ((-127 . -34) T) ((-121 . -34) T) ((-777 . -47) 106891) ((-775 . -47) 106863) ((-1229 . -554) 106774) ((-353 . -367) T) ((-480 . -1104) T) ((-1164 . -130) T) ((-1117 . -130) T) ((-453 . -47) 106753) ((-866 . -362) T) ((-849 . -130) T) ((-151 . -102) T) ((-1055 . -23) T) ((-947 . -23) T) ((-569 . -554) T) ((-811 . -25) T) ((-811 . -21) T) ((-1134 . -513) 106686) ((-589 . -1075) T) ((-583 . -1033) 106670) ((-1242 . -612) 106544) ((-480 . -23) T) ((-350 . -1051) T) ((-1201 . -895) 106525) ((-664 . -308) 106463) ((-1105 . -1263) 106433) ((-693 . -642) 106398) ((-998 . -171) T) ((-958 . -144) 106377) ((-631 . -1092) T) ((-603 . -1092) T) ((-958 . -146) 106356) ((-999 . -845) T) ((-730 . -146) 106335) ((-730 . -144) 106314) ((-966 . -845) T) ((-473 . -915) 106293) ((-315 . -1050) 106203) ((-312 . -1050) 106132) ((-994 . -285) 106090) ((-406 . -712) 106042) ((-695 . -843) T) ((-1242 . -1044) T) ((-315 . -111) 105938) ((-312 . -111) 105851) ((-959 . -102) T) ((-810 . -102) 105641) ((-707 . -610) NIL) ((-707 . -609) 105623) ((-652 . -1033) 105519) ((-1242 . -325) 105463) ((-1030 . -287) 105438) ((-578 . -721) T) ((-562 . -789) T) ((-168 . -362) 105389) ((-562 . -786) T) ((-562 . -721) T) ((-494 . -721) T) ((-1138 . -488) 105373) ((-1079 . -881) NIL) ((-866 . -1104) T) ((-117 . -904) NIL) ((-1278 . -1277) 105349) ((-1276 . -1277) 105328) ((-777 . -881) NIL) ((-775 . -881) 105187) ((-1271 . -25) T) ((-1271 . -21) T) ((-1204 . -102) 105165) ((-1098 . -394) T) ((-619 . -642) 105152) ((-453 . -881) NIL) ((-669 . -102) 105130) ((-1079 . -1033) 104957) ((-866 . -23) T) ((-777 . -1033) 104816) ((-775 . -1033) 104673) ((-117 . -642) 104618) ((-453 . -1033) 104494) ((-315 . -612) 104058) ((-312 . -612) 103941) ((-643 . -1033) 103925) ((-623 . -102) T) ((-221 . -488) 103909) ((-1256 . -34) T) ((-135 . -612) 103893) ((-631 . -712) 103877) ((-603 . -712) 103861) ((-664 . -38) 103821) ((-318 . -102) T) ((-85 . -609) 103803) ((-50 . -1033) 103787) ((-1112 . -1050) 103774) ((-1079 . -376) 103758) ((-777 . -376) 103742) ((-60 . -57) 103704) ((-693 . -789) T) ((-693 . -786) T) ((-579 . -1033) 103691) ((-517 . -1033) 103668) ((-693 . -721) T) ((-323 . -130) T) ((-315 . -1044) 103558) ((-312 . -1044) T) ((-168 . -1104) T) ((-775 . -376) 103542) ((-45 . -150) 103492) ((-999 . -987) 103474) ((-453 . -376) 103458) ((-406 . -171) T) ((-315 . -242) 103437) ((-312 . -242) T) ((-312 . -232) NIL) ((-293 . -1092) 103219) ((-224 . -130) T) ((-1112 . -111) 103204) ((-168 . -23) T) ((-794 . -146) 103183) ((-794 . -144) 103162) ((-250 . -635) 103068) ((-249 . -635) 102974) ((-318 . -283) 102940) ((-1148 . -513) 102873) ((-1125 . -1092) T) ((-224 . -1053) T) ((-810 . -308) 102811) ((-1079 . -895) 102746) ((-777 . -895) 102689) ((-775 . -895) 102673) ((-1278 . -38) 102643) ((-1276 . -38) 102613) ((-1229 . -1104) T) ((-850 . -1104) T) ((-453 . -895) 102590) ((-853 . -1092) T) ((-1229 . -23) T) ((-1112 . -612) 102562) ((-569 . -1104) T) ((-850 . -23) T) ((-619 . -721) T) ((-354 . -915) T) ((-351 . -915) T) ((-288 . -102) T) ((-343 . -915) T) ((-1055 . -130) T) ((-965 . -1075) T) ((-947 . -130) T) ((-117 . -789) NIL) ((-117 . -786) NIL) ((-117 . -721) T) ((-688 . -904) NIL) ((-1041 . -513) 102463) ((-480 . -130) T) ((-569 . -23) T) ((-669 . -308) 102401) ((-631 . -756) T) ((-603 . -756) T) ((-1220 . -845) NIL) ((-998 . -289) T) ((-250 . -21) T) ((-688 . -642) 102351) ((-350 . -1092) T) ((-250 . -25) T) ((-249 . -21) T) ((-249 . -25) T) ((-151 . -38) 102335) ((-2 . -102) T) ((-905 . -915) T) ((-481 . -1263) 102305) ((-222 . -1033) 102282) ((-1112 . -1044) T) ((-706 . -306) T) ((-293 . -712) 102224) ((-695 . -1051) T) ((-486 . -451) T) ((-406 . -513) 102136) ((-216 . -451) T) ((-1112 . -232) T) ((-294 . -150) 102086) ((-994 . -610) 102047) ((-994 . -609) 102029) ((-984 . -609) 102011) ((-116 . -1051) T) ((-648 . -1050) 101995) ((-224 . -492) T) ((-398 . -609) 101977) ((-398 . -610) 101954) ((-1048 . -1263) 101924) ((-648 . -111) 101903) ((-1134 . -488) 101887) ((-810 . -38) 101857) ((-63 . -440) T) ((-63 . -394) T) ((-1151 . -102) T) ((-866 . -130) T) ((-483 . -102) 101835) ((-1284 . -367) T) ((-1072 . -102) T) ((-1054 . -102) T) ((-350 . -712) 101780) ((-726 . -146) 101759) ((-726 . -144) 101738) ((-648 . -612) 101656) ((-1019 . -642) 101593) ((-522 . -1092) 101571) ((-358 . -102) T) ((-352 . -102) T) ((-344 . -102) T) ((-108 . -102) T) ((-503 . -1092) T) ((-353 . -642) 101516) ((-1164 . -635) 101464) ((-1117 . -635) 101412) ((-384 . -508) 101391) ((-828 . -843) 101370) ((-378 . -1211) T) ((-688 . -721) T) ((-338 . -1051) T) ((-1220 . -987) 101322) ((-173 . -1051) T) ((-103 . -609) 101254) ((-1166 . -144) 101233) ((-1166 . -146) 101212) ((-378 . -554) T) ((-1165 . -146) 101191) ((-1165 . -144) 101170) ((-1159 . -144) 101077) ((-406 . -289) T) ((-1159 . -146) 100984) ((-1118 . -146) 100963) ((-1118 . -144) 100942) ((-318 . -38) 100783) ((-168 . -130) T) ((-312 . -790) NIL) ((-312 . -787) NIL) ((-648 . -1044) T) ((-48 . -642) 100748) ((-888 . -612) 100725) ((-1158 . -102) T) ((-989 . -102) T) ((-988 . -21) T) ((-127 . -1005) 100709) ((-121 . -1005) 100693) ((-988 . -25) T) ((-896 . -119) 100677) ((-1150 . -102) T) ((-811 . -845) 100656) ((-1229 . -130) T) ((-1164 . -25) T) ((-1164 . -21) T) ((-850 . -130) T) ((-1117 . -25) T) ((-1117 . -21) T) ((-849 . -25) T) ((-849 . -21) T) ((-777 . -306) 100635) ((-641 . -102) 100613) ((-628 . -102) T) ((-1151 . -308) 100408) ((-569 . -130) T) ((-617 . -843) 100387) ((-1148 . -488) 100371) ((-1142 . -150) 100321) ((-1138 . -609) 100283) ((-1138 . -610) 100244) ((-1019 . -786) T) ((-1019 . -789) T) ((-1019 . -721) T) ((-707 . -1050) 100067) ((-483 . -308) 100005) ((-452 . -416) 99975) ((-350 . -171) T) ((-288 . -38) 99962) ((-273 . -102) T) ((-272 . -102) T) ((-271 . -102) T) ((-270 . -102) T) ((-269 . -102) T) ((-268 . -102) T) ((-342 . -1033) 99939) ((-267 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-208 . -102) T) ((-207 . -102) T) ((-206 . -102) T) ((-205 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-194 . -102) T) ((-193 . -102) T) ((-192 . -102) T) ((-353 . -721) T) ((-707 . -111) 99748) ((-664 . -230) 99732) ((-579 . -306) T) ((-517 . -306) T) ((-293 . -513) 99681) ((-108 . -308) NIL) ((-72 . -394) T) ((-1105 . -102) 99471) ((-828 . -410) 99455) ((-1112 . -790) T) ((-1112 . -787) T) ((-695 . -1092) T) ((-576 . -609) 99437) ((-378 . -362) T) ((-168 . -492) 99415) ((-221 . -609) 99347) ((-133 . -1092) T) ((-116 . -1092) T) ((-48 . -721) T) ((-1041 . -488) 99312) ((-140 . -424) 99294) ((-140 . -367) T) ((-1022 . -102) T) ((-511 . -508) 99273) ((-707 . -612) 99029) ((-475 . -102) T) ((-462 . -102) T) ((-1029 . -1104) T) ((-1173 . -1033) 98964) ((-1166 . -35) 98930) ((-1166 . -95) 98896) ((-1166 . -1195) 98862) ((-1166 . -1192) 98828) ((-1150 . -308) NIL) ((-89 . -395) T) ((-89 . -394) T) ((-1072 . -1143) 98807) ((-1165 . -1192) 98773) ((-1165 . -1195) 98739) ((-1029 . -23) T) ((-1165 . -95) 98705) ((-569 . -492) T) ((-1165 . -35) 98671) ((-1159 . -1192) 98637) ((-1159 . -1195) 98603) ((-1159 . -95) 98569) ((-360 . -1104) T) ((-358 . -1143) 98548) ((-352 . -1143) 98527) ((-344 . -1143) 98506) ((-1159 . -35) 98472) ((-1118 . -35) 98438) ((-1118 . -95) 98404) ((-108 . -1143) T) ((-1118 . -1195) 98370) ((-828 . -1051) 98349) ((-641 . -308) 98287) ((-628 . -308) 98138) ((-1118 . -1192) 98104) ((-707 . -1044) T) ((-1055 . -635) 98086) ((-1072 . -38) 97954) ((-947 . -635) 97902) ((-999 . -146) T) ((-999 . -144) NIL) ((-378 . -1104) T) ((-323 . -25) T) ((-321 . -23) T) ((-938 . -845) 97881) ((-707 . -325) 97858) ((-480 . -635) 97806) ((-40 . -1033) 97694) ((-707 . -232) T) ((-695 . -712) 97681) ((-338 . -1092) T) ((-173 . -1092) T) ((-330 . -845) T) ((-417 . -451) 97631) ((-378 . -23) T) ((-358 . -38) 97596) ((-352 . -38) 97561) ((-344 . -38) 97526) ((-80 . -440) T) ((-80 . -394) T) ((-224 . -25) T) ((-224 . -21) T) ((-831 . -1104) T) ((-108 . -38) 97476) ((-822 . -1104) T) ((-769 . -1092) T) ((-116 . -712) 97463) ((-666 . -1033) 97447) ((-608 . -102) T) ((-831 . -23) T) ((-822 . -23) T) ((-1148 . -285) 97424) ((-1105 . -308) 97362) ((-1094 . -234) 97346) ((-64 . -395) T) ((-64 . -394) T) ((-110 . -102) T) ((-40 . -376) 97323) ((-96 . -102) T) ((-647 . -847) 97307) ((-1127 . -1075) T) ((-1055 . -21) T) ((-1055 . -25) T) ((-810 . -230) 97276) ((-947 . -25) T) ((-947 . -21) T) ((-617 . -1051) T) ((-1112 . -367) T) ((-480 . -25) T) ((-480 . -21) T) ((-1022 . -308) 97214) ((-884 . -609) 97196) ((-880 . -609) 97178) ((-250 . -845) 97129) ((-249 . -845) 97080) ((-522 . -513) 97013) ((-866 . -635) 96990) ((-475 . -308) 96928) ((-462 . -308) 96866) ((-350 . -289) T) ((-1148 . -1244) 96850) ((-1134 . -609) 96812) ((-1134 . -610) 96773) ((-1132 . -102) T) ((-994 . -1050) 96669) ((-40 . -895) 96621) ((-1148 . -600) 96598) ((-1284 . -642) 96585) ((-861 . -489) 96562) ((-1056 . -150) 96508) ((-867 . -1211) T) ((-994 . -111) 96390) ((-338 . -712) 96374) ((-861 . -609) 96336) ((-173 . -712) 96268) ((-406 . -285) 96226) ((-867 . -554) T) ((-108 . -399) 96208) ((-84 . -383) T) ((-84 . -394) T) ((-695 . -171) T) ((-613 . -609) 96190) ((-99 . -721) T) ((-481 . -102) 95980) ((-99 . -472) T) ((-116 . -171) T) ((-1105 . -38) 95950) ((-168 . -635) 95898) ((-1048 . -102) T) ((-994 . -612) 95788) ((-866 . -25) T) ((-810 . -237) 95767) ((-866 . -21) T) ((-813 . -102) T) ((-413 . -102) T) ((-384 . -102) T) ((-110 . -308) NIL) ((-226 . -102) 95745) ((-127 . -1207) T) ((-121 . -1207) T) ((-1029 . -130) T) ((-664 . -366) 95729) ((-994 . -1044) T) ((-1229 . -635) 95677) ((-1096 . -609) 95659) ((-998 . -609) 95641) ((-514 . -23) T) ((-509 . -23) T) ((-342 . -306) T) ((-507 . -23) T) ((-321 . -130) T) ((-3 . -1092) T) ((-998 . -610) 95625) ((-994 . -242) 95604) ((-994 . -232) 95583) ((-1284 . -721) T) ((-1248 . -144) 95562) ((-828 . -1092) T) ((-1248 . -146) 95541) ((-1241 . -146) 95520) ((-1241 . -144) 95499) ((-1240 . -1211) 95478) ((-1220 . -144) 95385) ((-1220 . -146) 95292) ((-1219 . -1211) 95271) ((-378 . -130) T) ((-562 . -881) 95253) ((0 . -1092) T) ((-173 . -171) T) ((-168 . -21) T) ((-168 . -25) T) ((-49 . -1092) T) ((-1242 . -642) 95158) ((-1240 . -554) 95109) ((-709 . -1104) T) ((-1219 . -554) 95060) ((-562 . -1033) 95042) ((-592 . -146) 95021) ((-592 . -144) 95000) ((-494 . -1033) 94943) ((-1127 . -1129) T) ((-87 . -383) T) ((-87 . -394) T) ((-867 . -362) T) ((-831 . -130) T) ((-822 . -130) T) ((-709 . -23) T) ((-505 . -609) 94909) ((-501 . -609) 94891) ((-1280 . -1051) T) ((-378 . -1053) T) ((-1021 . -1092) 94869) ((-55 . -1033) 94851) ((-896 . -34) T) ((-481 . -308) 94789) ((-589 . -102) T) ((-1148 . -610) 94750) ((-1148 . -609) 94682) ((-1164 . -845) 94661) ((-45 . -102) T) ((-1117 . -845) 94640) ((-812 . -102) T) ((-1229 . -25) T) ((-1229 . -21) T) ((-850 . -25) T) ((-44 . -366) 94624) ((-850 . -21) T) ((-726 . -451) 94575) ((-1279 . -609) 94557) ((-1048 . -308) 94495) ((-665 . -1075) T) ((-602 . -1075) T) ((-389 . -1092) T) ((-569 . -25) T) ((-569 . -21) T) ((-179 . -1075) T) ((-160 . -1075) T) ((-155 . -1075) T) ((-153 . -1075) T) ((-617 . -1092) T) ((-693 . -881) 94477) ((-1256 . -1207) T) ((-226 . -308) 94415) ((-143 . -367) T) ((-1041 . -610) 94357) ((-1041 . -609) 94300) ((-312 . -904) NIL) ((-1214 . -839) T) ((-693 . -1033) 94245) ((-706 . -915) T) ((-473 . -1211) 94224) ((-1165 . -451) 94203) ((-1159 . -451) 94182) ((-329 . -102) T) ((-867 . -1104) T) ((-315 . -642) 94003) ((-312 . -642) 93932) ((-473 . -554) 93883) ((-338 . -513) 93849) ((-548 . -150) 93799) ((-40 . -306) T) ((-838 . -609) 93781) ((-695 . -289) T) ((-867 . -23) T) ((-378 . -492) T) ((-1072 . -230) 93751) ((-511 . -102) T) ((-406 . -610) 93558) ((-406 . -609) 93540) ((-262 . -609) 93522) ((-116 . -289) T) ((-1242 . -721) T) ((-1240 . -362) 93501) ((-1219 . -362) 93480) ((-1269 . -34) T) ((-1214 . -1092) T) ((-117 . -1207) T) ((-108 . -230) 93462) ((-1170 . -102) T) ((-476 . -1092) T) ((-522 . -488) 93446) ((-732 . -34) T) ((-481 . -38) 93416) ((-140 . -34) T) ((-117 . -879) 93393) ((-117 . -881) NIL) ((-619 . -1033) 93276) ((-639 . -845) 93255) ((-1268 . -102) T) ((-294 . -102) T) ((-707 . -367) 93234) ((-117 . -1033) 93211) ((-389 . -712) 93195) ((-617 . -712) 93179) ((-45 . -308) 92983) ((-811 . -144) 92962) ((-811 . -146) 92941) ((-1279 . -381) 92920) ((-814 . -845) T) ((-1258 . -1092) T) ((-1151 . -228) 92867) ((-385 . -845) 92846) ((-1248 . -1195) 92812) ((-1248 . -1192) 92778) ((-1241 . -1192) 92744) ((-514 . -130) T) ((-1241 . -1195) 92710) ((-1220 . -1192) 92676) ((-1220 . -1195) 92642) ((-1248 . -35) 92608) ((-1248 . -95) 92574) ((-631 . -609) 92543) ((-603 . -609) 92512) ((-224 . -845) T) ((-1241 . -95) 92478) ((-1241 . -35) 92444) ((-1240 . -1104) T) ((-1112 . -642) 92431) ((-1220 . -95) 92397) ((-1219 . -1104) T) ((-590 . -150) 92379) ((-1072 . -348) 92358) ((-173 . -289) T) ((-117 . -376) 92335) ((-117 . -337) 92312) ((-1220 . -35) 92278) ((-865 . -306) T) ((-312 . -789) NIL) ((-312 . -786) NIL) ((-315 . -721) 92127) ((-312 . -721) T) ((-473 . -362) 92106) ((-358 . -348) 92085) ((-352 . -348) 92064) ((-344 . -348) 92043) ((-315 . -472) 92022) ((-1240 . -23) T) ((-1219 . -23) T) ((-713 . -1104) T) ((-709 . -130) T) ((-647 . -102) T) ((-476 . -712) 91987) ((-45 . -281) 91937) ((-105 . -1092) T) ((-68 . -609) 91919) ((-965 . -102) T) ((-859 . -102) T) ((-619 . -895) 91878) ((-1280 . -1092) T) ((-380 . -1092) T) ((-1206 . -1092) T) ((-1105 . -230) 91847) ((-82 . -1207) T) ((-1055 . -845) T) ((-947 . -845) 91826) ((-117 . -895) NIL) ((-777 . -915) 91805) ((-708 . -845) T) ((-530 . -1092) T) ((-499 . -1092) T) ((-354 . -1211) T) ((-351 . -1211) T) ((-343 . -1211) T) ((-263 . -1211) 91784) ((-246 . -1211) 91763) ((-532 . -855) T) ((-480 . -845) 91742) ((-1150 . -823) T) ((-1134 . -1050) 91726) ((-389 . -756) T) ((-688 . -1207) T) ((-685 . -1033) 91710) ((-354 . -554) T) ((-351 . -554) T) ((-343 . -554) T) ((-263 . -554) 91641) ((-246 . -554) 91572) ((-524 . -1075) T) ((-1134 . -111) 91551) ((-452 . -739) 91521) ((-861 . -1050) 91491) ((-812 . -38) 91433) ((-688 . -879) 91415) ((-688 . -881) 91397) ((-294 . -308) 91201) ((-905 . -1211) T) ((-664 . -410) 91185) ((-861 . -111) 91150) ((-688 . -1033) 91095) ((-999 . -451) T) ((-905 . -554) T) ((-532 . -609) 91077) ((-579 . -915) T) ((-473 . -1104) T) ((-517 . -915) T) ((-1148 . -287) 91054) ((-909 . -451) T) ((-65 . -609) 91036) ((-628 . -228) 90982) ((-473 . -23) T) ((-1112 . -789) T) ((-867 . -130) T) ((-1112 . -786) T) ((-1271 . -1273) 90961) ((-1112 . -721) T) ((-648 . -642) 90935) ((-293 . -609) 90676) ((-1134 . -612) 90594) ((-1030 . -34) T) ((-810 . -843) 90573) ((-578 . -306) T) ((-562 . -306) T) ((-494 . -306) T) ((-1280 . -712) 90543) ((-688 . -376) 90525) ((-688 . -337) 90507) ((-476 . -171) T) ((-380 . -712) 90477) ((-861 . -612) 90412) ((-866 . -845) NIL) ((-562 . -1017) T) ((-494 . -1017) T) ((-1125 . -609) 90394) ((-1105 . -237) 90373) ((-213 . -102) T) ((-1142 . -102) T) ((-71 . -609) 90355) ((-1134 . -1044) T) ((-1170 . -38) 90252) ((-853 . -609) 90234) ((-562 . -544) T) ((-664 . -1051) T) ((-726 . -944) 90187) ((-1134 . -232) 90166) ((-1074 . -1092) T) ((-1029 . -25) T) ((-1029 . -21) T) ((-998 . -1050) 90111) ((-900 . -102) T) ((-861 . -1044) T) ((-688 . -895) NIL) ((-354 . -328) 90095) ((-354 . -362) T) ((-351 . -328) 90079) ((-351 . -362) T) ((-343 . -328) 90063) ((-343 . -362) T) ((-486 . -102) T) ((-1268 . -38) 90033) ((-545 . -845) T) ((-522 . -681) 89983) ((-216 . -102) T) ((-1019 . -1033) 89863) ((-998 . -111) 89792) ((-1166 . -968) 89761) ((-1165 . -968) 89723) ((-519 . -150) 89707) ((-1072 . -369) 89686) ((-350 . -609) 89668) ((-321 . -21) T) ((-353 . -1033) 89645) ((-321 . -25) T) ((-1159 . -968) 89614) ((-1118 . -968) 89581) ((-76 . -609) 89563) ((-693 . -306) T) ((-168 . -845) 89542) ((-129 . -839) T) ((-905 . -362) T) ((-378 . -25) T) ((-378 . -21) T) ((-905 . -328) 89529) ((-86 . -609) 89511) ((-693 . -1017) T) ((-671 . -845) T) ((-1240 . -130) T) ((-1219 . -130) T) ((-896 . -1005) 89495) ((-831 . -21) T) ((-48 . -1033) 89438) ((-831 . -25) T) ((-822 . -25) T) ((-822 . -21) T) ((-1278 . -1051) T) ((-547 . -102) T) ((-1276 . -1051) T) ((-648 . -721) T) ((-1096 . -614) 89341) ((-998 . -612) 89271) ((-1279 . -1050) 89255) ((-1229 . -845) 89234) ((-810 . -410) 89203) ((-103 . -119) 89187) ((-129 . -1092) T) ((-52 . -1092) T) ((-921 . -609) 89169) ((-866 . -987) 89146) ((-818 . -102) T) ((-1279 . -111) 89125) ((-647 . -38) 89095) ((-569 . -845) T) ((-354 . -1104) T) ((-351 . -1104) T) ((-343 . -1104) T) ((-263 . -1104) T) ((-246 . -1104) T) ((-619 . -306) 89074) ((-1142 . -308) 88878) ((-523 . -1075) T) ((-310 . -1092) T) ((-658 . -23) T) ((-481 . -230) 88847) ((-151 . -1051) T) ((-354 . -23) T) ((-351 . -23) T) ((-343 . -23) T) ((-117 . -306) T) ((-263 . -23) T) ((-246 . -23) T) ((-998 . -1044) T) ((-707 . -904) 88826) ((-1148 . -612) 88803) ((-998 . -232) 88775) ((-998 . -242) T) ((-117 . -1017) NIL) ((-905 . -1104) T) ((-1241 . -451) 88754) ((-1220 . -451) 88733) ((-522 . -609) 88665) ((-707 . -642) 88590) ((-406 . -1050) 88542) ((-503 . -609) 88524) ((-905 . -23) T) ((-486 . -308) NIL) ((-1279 . -612) 88480) ((-473 . -130) T) ((-216 . -308) NIL) ((-406 . -111) 88418) ((-810 . -1051) 88348) ((-732 . -1090) 88332) ((-1240 . -492) 88298) ((-1219 . -492) 88264) ((-140 . -1090) 88246) ((-476 . -289) T) ((-1279 . -1044) T) ((-1212 . -102) T) ((-1056 . -102) T) ((-838 . -612) 88114) ((-499 . -513) NIL) ((-697 . -102) T) ((-481 . -237) 88093) ((-406 . -612) 87991) ((-1164 . -144) 87970) ((-1164 . -146) 87949) ((-1117 . -146) 87928) ((-1117 . -144) 87907) ((-631 . -1050) 87891) ((-603 . -1050) 87875) ((-664 . -1092) T) ((-664 . -1047) 87815) ((-1166 . -1247) 87799) ((-1166 . -1234) 87776) ((-486 . -1143) T) ((-1165 . -1239) 87737) ((-1165 . -1234) 87707) ((-1165 . -1237) 87691) ((-216 . -1143) T) ((-342 . -915) T) ((-813 . -265) 87675) ((-631 . -111) 87654) ((-603 . -111) 87633) ((-1159 . -1218) 87594) ((-838 . -1044) 87573) ((-1159 . -1234) 87550) ((-514 . -25) T) ((-494 . -301) T) ((-510 . -23) T) ((-509 . -25) T) ((-507 . -25) T) ((-506 . -23) T) ((-1159 . -1216) 87534) ((-406 . -1044) T) ((-318 . -1051) T) ((-688 . -306) T) ((-108 . -843) T) ((-707 . -721) T) ((-406 . -242) T) ((-406 . -232) 87513) ((-486 . -38) 87463) ((-216 . -38) 87413) ((-473 . -492) 87379) ((-1150 . -1136) T) ((-1093 . -102) T) ((-695 . -609) 87361) ((-695 . -610) 87276) ((-709 . -21) T) ((-709 . -25) T) ((-1127 . -102) T) ((-133 . -609) 87258) ((-116 . -609) 87240) ((-156 . -25) T) ((-1278 . -1092) T) ((-867 . -635) 87188) ((-1276 . -1092) T) ((-958 . -102) T) ((-730 . -102) T) ((-710 . -102) T) ((-452 . -102) T) ((-811 . -451) 87139) ((-44 . -1092) T) ((-1080 . -845) T) ((-658 . -130) T) ((-1056 . -308) 86990) ((-664 . -712) 86974) ((-288 . -1051) T) ((-354 . -130) T) ((-351 . -130) T) ((-343 . -130) T) ((-263 . -130) T) ((-246 . -130) T) ((-417 . -102) T) ((-151 . -1092) T) ((-45 . -228) 86924) ((-953 . -845) 86903) ((-994 . -642) 86841) ((-239 . -1263) 86811) ((-1019 . -306) T) ((-293 . -1050) 86732) ((-905 . -130) T) ((-40 . -915) T) ((-486 . -399) 86714) ((-353 . -306) T) ((-216 . -399) 86696) ((-1072 . -410) 86680) ((-293 . -111) 86596) ((-1175 . -845) T) ((-1174 . -845) T) ((-867 . -25) T) ((-867 . -21) T) ((-338 . -609) 86578) ((-1242 . -47) 86522) ((-224 . -146) T) ((-173 . -609) 86504) ((-1105 . -843) 86483) ((-769 . -609) 86465) ((-128 . -845) T) ((-604 . -234) 86412) ((-474 . -234) 86362) ((-1278 . -712) 86332) ((-48 . -306) T) ((-1276 . -712) 86302) ((-65 . -612) 86231) ((-959 . -1092) T) ((-810 . -1092) 86021) ((-311 . -102) T) ((-896 . -1207) T) ((-48 . -1017) T) ((-1219 . -635) 85929) ((-683 . -102) 85907) ((-44 . -712) 85891) ((-548 . -102) T) ((-293 . -612) 85822) ((-67 . -382) T) ((-67 . -394) T) ((-656 . -23) T) ((-664 . -756) T) ((-1204 . -1092) 85800) ((-350 . -1050) 85745) ((-669 . -1092) 85723) ((-1055 . -146) T) ((-947 . -146) 85702) ((-947 . -144) 85681) ((-794 . -102) T) ((-151 . -712) 85665) ((-480 . -146) 85644) ((-480 . -144) 85623) ((-350 . -111) 85552) ((-1072 . -1051) T) ((-321 . -845) 85531) ((-1248 . -968) 85500) ((-623 . -1092) T) ((-1241 . -968) 85462) ((-510 . -130) T) ((-506 . -130) T) ((-294 . -228) 85412) ((-358 . -1051) T) ((-352 . -1051) T) ((-344 . -1051) T) ((-293 . -1044) 85354) ((-1220 . -968) 85323) ((-378 . -845) T) ((-108 . -1051) T) ((-994 . -721) T) ((-865 . -915) T) ((-838 . -790) 85302) ((-838 . -787) 85281) ((-417 . -308) 85220) ((-467 . -102) T) ((-592 . -968) 85189) ((-318 . -1092) T) ((-406 . -790) 85168) ((-406 . -787) 85147) ((-499 . -488) 85129) ((-1242 . -1033) 85095) ((-1240 . -21) T) ((-1240 . -25) T) ((-1219 . -21) T) ((-1219 . -25) T) ((-810 . -712) 85037) ((-350 . -612) 84967) ((-693 . -403) T) ((-1269 . -1207) T) ((-602 . -102) T) ((-1105 . -410) 84936) ((-998 . -367) NIL) ((-665 . -102) T) ((-179 . -102) T) ((-160 . -102) T) ((-155 . -102) T) ((-153 . -102) T) ((-103 . -34) T) ((-732 . -1207) T) ((-44 . -756) T) ((-590 . -102) T) ((-77 . -395) T) ((-77 . -394) T) ((-647 . -650) 84920) ((-140 . -1207) T) ((-866 . -146) T) ((-866 . -144) NIL) ((-1206 . -93) T) ((-350 . -1044) T) ((-70 . -382) T) ((-70 . -394) T) ((-1157 . -102) T) ((-664 . -513) 84853) ((-683 . -308) 84791) ((-958 . -38) 84688) ((-730 . -38) 84658) ((-548 . -308) 84462) ((-315 . -1207) T) ((-350 . -232) T) ((-350 . -242) T) ((-312 . -1207) T) ((-288 . -1092) T) ((-1172 . -609) 84444) ((-706 . -1211) T) ((-1148 . -645) 84428) ((-1201 . -554) 84407) ((-706 . -554) T) ((-315 . -879) 84391) ((-315 . -881) 84316) ((-312 . -879) 84277) ((-312 . -881) NIL) ((-794 . -308) 84242) ((-318 . -712) 84083) ((-323 . -322) 84060) ((-484 . -102) T) ((-473 . -25) T) ((-473 . -21) T) ((-417 . -38) 84034) ((-315 . -1033) 83697) ((-224 . -1192) T) ((-224 . -1195) T) ((-3 . -609) 83679) ((-312 . -1033) 83609) ((-2 . -1092) T) ((-2 . |RecordCategory|) T) ((-828 . -609) 83591) ((-1105 . -1051) 83521) ((-578 . -915) T) ((-562 . -815) T) ((-562 . -915) T) ((-494 . -915) T) ((-135 . -1033) 83505) ((-224 . -95) T) ((-75 . -440) T) ((-75 . -394) T) ((0 . -609) 83487) ((-168 . -146) 83466) ((-168 . -144) 83417) ((-224 . -35) T) ((-49 . -609) 83399) ((-476 . -1051) T) ((-486 . -230) 83381) ((-483 . -963) 83365) ((-481 . -843) 83344) ((-216 . -230) 83326) ((-81 . -440) T) ((-81 . -394) T) ((-1138 . -34) T) ((-810 . -171) 83305) ((-726 . -102) T) ((-1021 . -609) 83272) ((-499 . -285) 83247) ((-315 . -376) 83216) ((-312 . -376) 83177) ((-312 . -337) 83138) ((-1077 . -609) 83120) ((-811 . -944) 83067) ((-656 . -130) T) ((-1229 . -144) 83046) ((-1229 . -146) 83025) ((-1166 . -102) T) ((-1165 . -102) T) ((-1159 . -102) T) ((-1151 . -1092) T) ((-1118 . -102) T) ((-221 . -34) T) ((-288 . -712) 83012) ((-1151 . -606) 82988) ((-590 . -308) NIL) ((-483 . -1092) 82966) ((-389 . -609) 82948) ((-509 . -845) T) ((-1142 . -228) 82898) ((-1248 . -1247) 82882) ((-1248 . -1234) 82859) ((-1241 . -1239) 82820) ((-1241 . -1234) 82790) ((-1241 . -1237) 82774) ((-1220 . -1218) 82735) ((-1220 . -1234) 82712) ((-617 . -609) 82694) ((-1220 . -1216) 82678) ((-693 . -915) T) ((-1166 . -283) 82644) ((-1165 . -283) 82610) ((-1159 . -283) 82576) ((-1072 . -1092) T) ((-1054 . -1092) T) ((-48 . -301) T) ((-315 . -895) 82542) ((-312 . -895) NIL) ((-1054 . -1061) 82521) ((-1112 . -881) 82503) ((-794 . -38) 82487) ((-263 . -635) 82435) ((-246 . -635) 82383) ((-695 . -1050) 82370) ((-592 . -1234) 82347) ((-1118 . -283) 82313) ((-318 . -171) 82244) ((-358 . -1092) T) ((-352 . -1092) T) ((-344 . -1092) T) ((-499 . -19) 82226) ((-1112 . -1033) 82208) ((-1094 . -150) 82192) ((-108 . -1092) T) ((-116 . -1050) 82179) ((-706 . -362) T) ((-499 . -600) 82154) ((-695 . -111) 82139) ((-435 . -102) T) ((-45 . -1141) 82089) ((-116 . -111) 82074) ((-631 . -715) T) ((-603 . -715) T) ((-810 . -513) 82007) ((-1030 . -1207) T) ((-938 . -150) 81991) ((-1214 . -609) 81973) ((-1164 . -451) 81904) ((-1158 . -1092) T) ((-1150 . -1092) T) ((-524 . -102) T) ((-519 . -102) 81854) ((-1134 . -642) 81828) ((-1117 . -451) 81779) ((-1079 . -1211) 81758) ((-777 . -1211) 81737) ((-775 . -1211) 81716) ((-62 . -1207) T) ((-476 . -609) 81668) ((-476 . -610) 81590) ((-1079 . -554) 81521) ((-989 . -1092) T) ((-777 . -554) 81432) ((-775 . -554) 81363) ((-481 . -410) 81332) ((-619 . -915) 81311) ((-453 . -1211) 81290) ((-726 . -308) 81277) ((-695 . -612) 81249) ((-397 . -609) 81231) ((-669 . -513) 81164) ((-658 . -25) T) ((-658 . -21) T) ((-453 . -554) 81095) ((-354 . -25) T) ((-354 . -21) T) ((-117 . -915) T) ((-117 . -815) NIL) ((-351 . -25) T) ((-351 . -21) T) ((-343 . -25) T) ((-343 . -21) T) ((-263 . -25) T) ((-263 . -21) T) ((-246 . -25) T) ((-246 . -21) T) ((-83 . -383) T) ((-83 . -394) T) ((-133 . -612) 81077) ((-116 . -612) 81049) ((-1258 . -609) 81031) ((-1213 . -845) T) ((-1201 . -1104) T) ((-1201 . -23) T) ((-1159 . -308) 80916) ((-1118 . -308) 80903) ((-1072 . -712) 80771) ((-861 . -642) 80731) ((-938 . -975) 80715) ((-905 . -21) T) ((-288 . -171) T) ((-905 . -25) T) ((-310 . -93) T) ((-867 . -845) 80666) ((-706 . -1104) T) ((-706 . -23) T) ((-695 . -1044) T) ((-641 . -1092) 80644) ((-628 . -1092) T) ((-579 . -1211) T) ((-517 . -1211) T) ((-695 . -232) T) ((-628 . -606) 80619) ((-579 . -554) T) ((-517 . -554) T) ((-358 . -712) 80571) ((-338 . -1050) 80555) ((-352 . -712) 80507) ((-344 . -712) 80459) ((-173 . -1050) 80391) ((-173 . -111) 80302) ((-108 . -712) 80252) ((-338 . -111) 80231) ((-273 . -1092) T) ((-272 . -1092) T) ((-271 . -1092) T) ((-270 . -1092) T) ((-269 . -1092) T) ((-268 . -1092) T) ((-267 . -1092) T) ((-211 . -1092) T) ((-210 . -1092) T) ((-168 . -1195) 80209) ((-168 . -1192) 80187) ((-208 . -1092) T) ((-207 . -1092) T) ((-116 . -1044) T) ((-206 . -1092) T) ((-205 . -1092) T) ((-202 . -1092) T) ((-201 . -1092) T) ((-200 . -1092) T) ((-199 . -1092) T) ((-198 . -1092) T) ((-197 . -1092) T) ((-196 . -1092) T) ((-195 . -1092) T) ((-194 . -1092) T) ((-193 . -1092) T) ((-192 . -1092) T) ((-239 . -102) 79977) ((-168 . -35) 79955) ((-168 . -95) 79933) ((-648 . -1033) 79829) ((-481 . -1051) 79759) ((-1105 . -1092) 79549) ((-1134 . -34) T) ((-664 . -488) 79533) ((-73 . -1207) T) ((-105 . -609) 79515) ((-1280 . -609) 79497) ((-380 . -609) 79479) ((-338 . -612) 79431) ((-173 . -612) 79348) ((-1206 . -489) 79329) ((-726 . -38) 79178) ((-569 . -1195) T) ((-569 . -1192) T) ((-530 . -609) 79160) ((-519 . -308) 79098) ((-499 . -609) 79080) ((-499 . -610) 79062) ((-1206 . -609) 79028) ((-1159 . -1143) NIL) ((-1022 . -1064) 78997) ((-1022 . -1092) T) ((-999 . -102) T) ((-966 . -102) T) ((-909 . -102) T) ((-888 . -1033) 78974) ((-1134 . -721) T) ((-998 . -642) 78919) ((-475 . -1092) T) ((-462 . -1092) T) ((-583 . -23) T) ((-569 . -35) T) ((-569 . -95) T) ((-426 . -102) T) ((-1056 . -228) 78865) ((-1166 . -38) 78762) ((-861 . -721) T) ((-688 . -915) T) ((-510 . -25) T) ((-506 . -21) T) ((-506 . -25) T) ((-1165 . -38) 78603) ((-338 . -1044) T) ((-1159 . -38) 78399) ((-1072 . -171) T) ((-173 . -1044) T) ((-1118 . -38) 78296) ((-707 . -47) 78273) ((-358 . -171) T) ((-352 . -171) T) ((-518 . -57) 78247) ((-496 . -57) 78197) ((-350 . -1275) 78174) ((-224 . -451) T) ((-318 . -289) 78125) ((-344 . -171) T) ((-173 . -242) T) ((-1219 . -845) 78024) ((-108 . -171) T) ((-867 . -987) 78008) ((-652 . -1104) T) ((-579 . -362) T) ((-579 . -328) 77995) ((-517 . -328) 77972) ((-517 . -362) T) ((-315 . -306) 77951) ((-312 . -306) T) ((-598 . -845) 77930) ((-1105 . -712) 77872) ((-519 . -281) 77856) ((-652 . -23) T) ((-417 . -230) 77840) ((-312 . -1017) NIL) ((-335 . -23) T) ((-103 . -1005) 77824) ((-45 . -36) 77803) ((-608 . -1092) T) ((-350 . -367) T) ((-523 . -102) T) ((-494 . -27) T) ((-239 . -308) 77741) ((-1079 . -1104) T) ((-1279 . -642) 77715) ((-777 . -1104) T) ((-775 . -1104) T) ((-453 . -1104) T) ((-1055 . -451) T) ((-947 . -451) 77666) ((-1107 . -1075) T) ((-110 . -1092) T) ((-1079 . -23) T) ((-812 . -1051) T) ((-777 . -23) T) ((-775 . -23) T) ((-480 . -451) 77617) ((-1151 . -513) 77400) ((-380 . -381) 77379) ((-1170 . -410) 77363) ((-460 . -23) T) ((-453 . -23) T) ((-96 . -1092) T) ((-483 . -513) 77296) ((-288 . -289) T) ((-1074 . -609) 77278) ((-1074 . -610) 77259) ((-406 . -904) 77238) ((-50 . -1104) T) ((-1019 . -915) T) ((-998 . -721) T) ((-707 . -881) NIL) ((-579 . -1104) T) ((-517 . -1104) T) ((-838 . -642) 77211) ((-1201 . -130) T) ((-1159 . -399) 77163) ((-999 . -308) NIL) ((-810 . -488) 77147) ((-353 . -915) T) ((-1148 . -34) T) ((-406 . -642) 77099) ((-50 . -23) T) ((-706 . -130) T) ((-707 . -1033) 76979) ((-579 . -23) T) ((-108 . -513) NIL) ((-517 . -23) T) ((-168 . -408) 76950) ((-1132 . -1092) T) ((-1271 . -1270) 76934) ((-695 . -790) T) ((-695 . -787) T) ((-1112 . -306) T) ((-378 . -146) T) ((-279 . -609) 76916) ((-1219 . -987) 76886) ((-48 . -915) T) ((-669 . -488) 76870) ((-250 . -1263) 76840) ((-249 . -1263) 76810) ((-1168 . -845) T) ((-1105 . -171) 76789) ((-1112 . -1017) T) ((-1041 . -34) T) ((-831 . -146) 76768) ((-831 . -144) 76747) ((-732 . -107) 76731) ((-608 . -131) T) ((-481 . -1092) 76521) ((-1170 . -1051) T) ((-866 . -451) T) ((-85 . -1207) T) ((-239 . -38) 76491) ((-140 . -107) 76473) ((-707 . -376) 76457) ((-828 . -612) 76325) ((-1112 . -544) T) ((-577 . -102) T) ((-129 . -489) 76307) ((-389 . -1050) 76291) ((-1279 . -721) T) ((-1164 . -944) 76260) ((-129 . -609) 76227) ((-52 . -609) 76209) ((-1117 . -944) 76176) ((-647 . -410) 76160) ((-1268 . -1051) T) ((-617 . -1050) 76144) ((-656 . -25) T) ((-656 . -21) T) ((-1150 . -513) NIL) ((-1248 . -102) T) ((-1241 . -102) T) ((-389 . -111) 76123) ((-221 . -253) 76107) ((-1220 . -102) T) ((-1048 . -1092) T) ((-999 . -1143) T) ((-1048 . -1047) 76047) ((-813 . -1092) T) ((-342 . -1211) T) ((-631 . -642) 76031) ((-617 . -111) 76010) ((-603 . -642) 75994) ((-593 . -102) T) ((-310 . -489) 75975) ((-583 . -130) T) ((-592 . -102) T) ((-413 . -1092) T) ((-384 . -1092) T) ((-310 . -609) 75941) ((-226 . -1092) 75919) ((-641 . -513) 75852) ((-628 . -513) 75696) ((-828 . -1044) 75675) ((-639 . -150) 75659) ((-342 . -554) T) ((-707 . -895) 75602) ((-548 . -228) 75552) ((-1248 . -283) 75518) ((-1072 . -289) 75469) ((-486 . -843) T) ((-222 . -1104) T) ((-1241 . -283) 75435) ((-1220 . -283) 75401) ((-999 . -38) 75351) ((-216 . -843) T) ((-1201 . -492) 75317) ((-909 . -38) 75269) ((-838 . -789) 75248) ((-838 . -786) 75227) ((-838 . -721) 75206) ((-358 . -289) T) ((-352 . -289) T) ((-344 . -289) T) ((-168 . -451) 75137) ((-426 . -38) 75121) ((-108 . -289) T) ((-222 . -23) T) ((-406 . -789) 75100) ((-406 . -786) 75079) ((-406 . -721) T) ((-499 . -287) 75054) ((-476 . -1050) 75019) ((-652 . -130) T) ((-617 . -612) 74988) ((-1105 . -513) 74921) ((-335 . -130) T) ((-168 . -401) 74900) ((-481 . -712) 74842) ((-810 . -285) 74819) ((-476 . -111) 74775) ((-647 . -1051) T) ((-1229 . -451) 74706) ((-1267 . -1075) T) ((-1266 . -1075) T) ((-1079 . -130) T) ((-1048 . -712) 74648) ((-263 . -845) 74627) ((-246 . -845) 74606) ((-777 . -130) T) ((-775 . -130) T) ((-569 . -451) T) ((-1022 . -513) 74539) ((-617 . -1044) T) ((-589 . -1092) T) ((-532 . -172) T) ((-460 . -130) T) ((-453 . -130) T) ((-45 . -1092) T) ((-384 . -712) 74509) ((-812 . -1092) T) ((-475 . -513) 74442) ((-462 . -513) 74375) ((-452 . -366) 74345) ((-45 . -606) 74324) ((-315 . -301) T) ((-476 . -612) 74274) ((-664 . -609) 74236) ((-59 . -845) 74215) ((-1220 . -308) 74100) ((-999 . -399) 74082) ((-810 . -600) 74059) ((-515 . -845) 74038) ((-495 . -845) 74017) ((-40 . -1211) T) ((-994 . -1033) 73913) ((-50 . -130) T) ((-579 . -130) T) ((-517 . -130) T) ((-293 . -642) 73773) ((-342 . -328) 73750) ((-342 . -362) T) ((-321 . -322) 73727) ((-318 . -285) 73712) ((-40 . -554) T) ((-378 . -1192) T) ((-378 . -1195) T) ((-1030 . -1183) 73687) ((-1180 . -234) 73637) ((-1159 . -230) 73589) ((-329 . -1092) T) ((-378 . -95) T) ((-378 . -35) T) ((-1030 . -107) 73535) ((-476 . -1044) T) ((-478 . -234) 73485) ((-1151 . -488) 73419) ((-1280 . -1050) 73403) ((-380 . -1050) 73387) ((-476 . -242) T) ((-811 . -102) T) ((-709 . -146) 73366) ((-709 . -144) 73345) ((-483 . -488) 73329) ((-484 . -334) 73298) ((-1280 . -111) 73277) ((-511 . -1092) T) ((-481 . -171) 73256) ((-994 . -376) 73240) ((-412 . -102) T) ((-380 . -111) 73219) ((-994 . -337) 73203) ((-278 . -978) 73187) ((-277 . -978) 73171) ((-1278 . -609) 73153) ((-1276 . -609) 73135) ((-110 . -513) NIL) ((-1164 . -1232) 73119) ((-849 . -847) 73103) ((-1170 . -1092) T) ((-103 . -1207) T) ((-947 . -944) 73064) ((-812 . -712) 73006) ((-1220 . -1143) NIL) ((-480 . -944) 72951) ((-1055 . -142) T) ((-60 . -102) 72929) ((-44 . -609) 72911) ((-78 . -609) 72893) ((-350 . -642) 72838) ((-1268 . -1092) T) ((-510 . -845) T) ((-342 . -1104) T) ((-294 . -1092) T) ((-994 . -895) 72797) ((-294 . -606) 72776) ((-1280 . -612) 72725) ((-1248 . -38) 72622) ((-1241 . -38) 72463) ((-1220 . -38) 72259) ((-486 . -1051) T) ((-380 . -612) 72243) ((-216 . -1051) T) ((-342 . -23) T) ((-151 . -609) 72225) ((-828 . -790) 72204) ((-828 . -787) 72183) ((-1206 . -612) 72164) ((-593 . -38) 72137) ((-592 . -38) 72034) ((-865 . -554) T) ((-222 . -130) T) ((-318 . -997) 72000) ((-79 . -609) 71982) ((-707 . -306) 71961) ((-293 . -721) 71863) ((-819 . -102) T) ((-859 . -839) T) ((-293 . -472) 71842) ((-1271 . -102) T) ((-40 . -362) T) ((-867 . -146) 71821) ((-867 . -144) 71800) ((-1150 . -488) 71782) ((-1280 . -1044) T) ((-481 . -513) 71715) ((-1138 . -1207) T) ((-959 . -609) 71697) ((-641 . -488) 71681) ((-628 . -488) 71612) ((-810 . -609) 71343) ((-48 . -27) T) ((-1170 . -712) 71240) ((-647 . -1092) T) ((-856 . -855) T) ((-435 . -363) 71214) ((-1094 . -102) T) ((-965 . -1092) T) ((-859 . -1092) T) ((-811 . -308) 71201) ((-532 . -526) T) ((-532 . -574) T) ((-1276 . -381) 71173) ((-1048 . -513) 71106) ((-1151 . -285) 71082) ((-239 . -230) 71051) ((-1268 . -712) 71021) ((-1158 . -93) T) ((-989 . -93) T) ((-812 . -171) 71000) ((-1204 . -489) 70977) ((-226 . -513) 70910) ((-617 . -790) 70889) ((-617 . -787) 70868) ((-1204 . -609) 70780) ((-221 . -1207) T) ((-669 . -609) 70712) ((-1148 . -1005) 70696) ((-938 . -102) 70646) ((-350 . -721) T) ((-856 . -609) 70628) ((-1220 . -399) 70580) ((-1105 . -488) 70564) ((-60 . -308) 70502) ((-330 . -102) T) ((-1201 . -21) T) ((-1201 . -25) T) ((-40 . -1104) T) ((-706 . -21) T) ((-623 . -609) 70484) ((-514 . -322) 70463) ((-706 . -25) T) ((-438 . -102) T) ((-108 . -285) NIL) ((-916 . -1104) T) ((-40 . -23) T) ((-766 . -1104) T) ((-562 . -1211) T) ((-494 . -1211) T) ((-318 . -609) 70445) ((-999 . -230) 70427) ((-168 . -165) 70411) ((-578 . -554) T) ((-562 . -554) T) ((-494 . -554) T) ((-766 . -23) T) ((-1240 . -146) 70390) ((-1151 . -600) 70366) ((-1240 . -144) 70345) ((-1022 . -488) 70329) ((-1219 . -144) 70254) ((-1219 . -146) 70179) ((-1271 . -1277) 70158) ((-475 . -488) 70142) ((-462 . -488) 70126) ((-522 . -34) T) ((-647 . -712) 70096) ((-112 . -962) T) ((-656 . -845) 70075) ((-1170 . -171) 70026) ((-364 . -102) T) ((-239 . -237) 70005) ((-250 . -102) T) ((-249 . -102) T) ((-1229 . -944) 69974) ((-244 . -845) 69953) ((-811 . -38) 69802) ((-45 . -513) 69594) ((-1150 . -285) 69569) ((-213 . -1092) T) ((-1142 . -1092) T) ((-1142 . -606) 69548) ((-583 . -25) T) ((-583 . -21) T) ((-1094 . -308) 69486) ((-958 . -410) 69470) ((-693 . -1211) T) ((-628 . -285) 69445) ((-1079 . -635) 69393) ((-777 . -635) 69341) ((-775 . -635) 69289) ((-342 . -130) T) ((-288 . -609) 69271) ((-900 . -1092) T) ((-693 . -554) T) ((-129 . -612) 69253) ((-865 . -1104) T) ((-453 . -635) 69201) ((-900 . -898) 69185) ((-378 . -451) T) ((-486 . -1092) T) ((-938 . -308) 69123) ((-695 . -642) 69110) ((-547 . -839) T) ((-216 . -1092) T) ((-315 . -915) 69089) ((-312 . -915) T) ((-312 . -815) NIL) ((-389 . -715) T) ((-865 . -23) T) ((-116 . -642) 69076) ((-473 . -144) 69055) ((-417 . -410) 69039) ((-473 . -146) 69018) ((-110 . -488) 69000) ((-310 . -612) 68981) ((-2 . -609) 68963) ((-185 . -102) T) ((-1150 . -19) 68945) ((-1150 . -600) 68920) ((-652 . -21) T) ((-652 . -25) T) ((-590 . -1136) T) ((-1105 . -285) 68897) ((-335 . -25) T) ((-335 . -21) T) ((-494 . -362) T) ((-1271 . -38) 68867) ((-1134 . -1207) T) ((-628 . -600) 68842) ((-547 . -1092) T) ((-1079 . -25) T) ((-1079 . -21) T) ((-530 . -787) T) ((-530 . -790) T) ((-117 . -1211) T) ((-958 . -1051) T) ((-619 . -554) T) ((-777 . -25) T) ((-777 . -21) T) ((-775 . -21) T) ((-775 . -25) T) ((-730 . -1051) T) ((-710 . -1051) T) ((-664 . -1050) 68826) ((-516 . -1075) T) ((-460 . -25) T) ((-117 . -554) T) ((-460 . -21) T) ((-453 . -25) T) ((-453 . -21) T) ((-1278 . -1050) 68810) ((-1134 . -1033) 68706) ((-812 . -289) 68685) ((-1276 . -1050) 68669) ((-818 . -1092) T) ((-1240 . -1192) 68635) ((-961 . -962) T) ((-664 . -111) 68614) ((-294 . -513) 68406) ((-1240 . -1195) 68372) ((-1240 . -95) 68338) ((-1223 . -102) 68316) ((-250 . -308) 68254) ((-249 . -308) 68192) ((-1220 . -230) 68144) ((-1151 . -610) NIL) ((-1151 . -609) 68126) ((-1219 . -1192) 68092) ((-1219 . -1195) 68058) ((-1214 . -367) T) ((-96 . -93) T) ((-1212 . -839) T) ((-1134 . -376) 68042) ((-1112 . -815) T) ((-1112 . -915) T) ((-1105 . -600) 68019) ((-1072 . -610) 68003) ((-483 . -609) 67935) ((-810 . -287) 67912) ((-604 . -150) 67859) ((-417 . -1051) T) ((-486 . -712) 67809) ((-481 . -488) 67793) ((-326 . -845) 67772) ((-338 . -642) 67746) ((-50 . -21) T) ((-50 . -25) T) ((-216 . -712) 67696) ((-168 . -719) 67667) ((-173 . -642) 67599) ((-579 . -21) T) ((-579 . -25) T) ((-517 . -25) T) ((-517 . -21) T) ((-474 . -150) 67549) ((-1072 . -609) 67531) ((-1054 . -609) 67513) ((-988 . -102) T) ((-857 . -102) T) ((-794 . -410) 67477) ((-40 . -130) T) ((-693 . -362) T) ((-695 . -721) T) ((-695 . -789) T) ((-695 . -786) T) ((-211 . -890) T) ((-578 . -1104) T) ((-562 . -1104) T) ((-494 . -1104) T) ((-358 . -609) 67459) ((-352 . -609) 67441) ((-344 . -609) 67423) ((-66 . -395) T) ((-66 . -394) T) ((-108 . -610) 67353) ((-108 . -609) 67296) ((-210 . -890) T) ((-953 . -150) 67280) ((-766 . -130) T) ((-664 . -612) 67198) ((-133 . -721) T) ((-116 . -721) T) ((-1240 . -35) 67164) ((-1048 . -488) 67148) ((-578 . -23) T) ((-562 . -23) T) ((-494 . -23) T) ((-1219 . -95) 67114) ((-1219 . -35) 67080) ((-1164 . -102) T) ((-1117 . -102) T) ((-849 . -102) T) ((-226 . -488) 67064) ((-1278 . -111) 67043) ((-1276 . -111) 67022) ((-44 . -1050) 67006) ((-1229 . -1232) 66990) ((-850 . -847) 66974) ((-1278 . -612) 66920) ((-1170 . -289) 66899) ((-110 . -285) 66874) ((-1212 . -1092) T) ((-128 . -150) 66856) ((-1134 . -895) 66815) ((-44 . -111) 66794) ((-1173 . -1251) T) ((-1158 . -489) 66775) ((-1158 . -609) 66741) ((-1150 . -610) NIL) ((-664 . -1044) T) ((-1150 . -609) 66723) ((-1056 . -606) 66698) ((-1056 . -1092) T) ((-989 . -489) 66679) ((-989 . -609) 66645) ((-74 . -440) T) ((-74 . -394) T) ((-697 . -1092) T) ((-151 . -1050) 66629) ((-664 . -232) 66608) ((-569 . -552) 66592) ((-354 . -146) 66571) ((-354 . -144) 66522) ((-351 . -146) 66501) ((-351 . -144) 66452) ((-343 . -146) 66431) ((-343 . -144) 66382) ((-263 . -144) 66361) ((-263 . -146) 66340) ((-250 . -38) 66310) ((-246 . -146) 66289) ((-117 . -362) T) ((-246 . -144) 66268) ((-249 . -38) 66238) ((-151 . -111) 66217) ((-998 . -1033) 66105) ((-1159 . -843) NIL) ((-688 . -1211) T) ((-794 . -1051) T) ((-693 . -1104) T) ((-1278 . -1044) T) ((-1276 . -612) 66034) ((-1276 . -1044) T) ((-1148 . -1207) T) ((-998 . -376) 66011) ((-905 . -144) T) ((-905 . -146) 65993) ((-865 . -130) T) ((-810 . -1050) 65890) ((-688 . -554) T) ((-693 . -23) T) ((-641 . -609) 65822) ((-641 . -610) 65783) ((-628 . -610) NIL) ((-628 . -609) 65765) ((-486 . -171) T) ((-222 . -21) T) ((-216 . -171) T) ((-222 . -25) T) ((-473 . -1195) 65731) ((-473 . -1192) 65697) ((-273 . -609) 65679) ((-272 . -609) 65661) ((-271 . -609) 65643) ((-270 . -609) 65625) ((-269 . -609) 65607) ((-499 . -645) 65589) ((-268 . -609) 65571) ((-338 . -721) T) ((-267 . -609) 65553) ((-110 . -19) 65535) ((-173 . -721) T) ((-499 . -372) 65517) ((-211 . -609) 65499) ((-519 . -1141) 65483) ((-499 . -123) T) ((-110 . -600) 65458) ((-210 . -609) 65440) ((-473 . -35) 65406) ((-473 . -95) 65372) ((-208 . -609) 65354) ((-207 . -609) 65336) ((-206 . -609) 65318) ((-205 . -609) 65300) ((-202 . -609) 65282) ((-201 . -609) 65264) ((-200 . -609) 65246) ((-199 . -609) 65228) ((-198 . -609) 65210) ((-197 . -609) 65192) ((-196 . -609) 65174) ((-535 . -1095) 65126) ((-195 . -609) 65108) ((-194 . -609) 65090) ((-45 . -488) 65027) ((-193 . -609) 65009) ((-192 . -609) 64991) ((-151 . -612) 64960) ((-1107 . -102) T) ((-810 . -111) 64850) ((-639 . -102) 64800) ((-481 . -285) 64777) ((-1105 . -609) 64508) ((-1093 . -1092) T) ((-1041 . -1207) T) ((-1279 . -1033) 64492) ((-619 . -1104) T) ((-1164 . -308) 64479) ((-1127 . -1092) T) ((-1117 . -308) 64466) ((-1088 . -1075) T) ((-1082 . -1075) T) ((-1066 . -1075) T) ((-1059 . -1075) T) ((-1031 . -1075) T) ((-1014 . -1075) T) ((-117 . -1104) T) ((-814 . -102) T) ((-622 . -1075) T) ((-619 . -23) T) ((-1142 . -513) 64258) ((-482 . -1075) T) ((-998 . -895) 64210) ((-385 . -102) T) ((-323 . -102) T) ((-217 . -1075) T) ((-958 . -1092) T) ((-151 . -1044) T) ((-726 . -410) 64194) ((-117 . -23) T) ((-730 . -1092) T) ((-710 . -1092) T) ((-697 . -131) T) ((-452 . -1092) T) ((-406 . -1207) T) ((-315 . -429) 64178) ((-589 . -93) T) ((-1022 . -610) 64139) ((-1019 . -1211) T) ((-224 . -102) T) ((-1022 . -609) 64101) ((-811 . -230) 64085) ((-810 . -612) 63815) ((-1019 . -554) T) ((-828 . -642) 63788) ((-353 . -1211) T) ((-475 . -609) 63750) ((-475 . -610) 63711) ((-462 . -610) 63672) ((-462 . -609) 63634) ((-406 . -879) 63618) ((-318 . -1050) 63453) ((-406 . -881) 63378) ((-838 . -1033) 63274) ((-486 . -513) NIL) ((-481 . -600) 63251) ((-353 . -554) T) ((-216 . -513) NIL) ((-867 . -451) T) ((-417 . -1092) T) ((-406 . -1033) 63115) ((-318 . -111) 62936) ((-688 . -362) T) ((-224 . -283) T) ((-1204 . -612) 62913) ((-48 . -1211) T) ((-810 . -1044) 62843) ((-578 . -130) T) ((-562 . -130) T) ((-494 . -130) T) ((-1164 . -1143) 62821) ((-48 . -554) T) ((-1151 . -287) 62797) ((-1055 . -102) T) ((-947 . -102) T) ((-315 . -27) 62776) ((-810 . -232) 62728) ((-248 . -830) 62710) ((-239 . -843) 62689) ((-186 . -830) 62671) ((-708 . -102) T) ((-294 . -488) 62608) ((-480 . -102) T) ((-726 . -1051) T) ((-608 . -609) 62590) ((-608 . -610) 62451) ((-406 . -376) 62435) ((-406 . -337) 62419) ((-318 . -612) 62245) ((-1164 . -38) 62074) ((-1117 . -38) 61923) ((-849 . -38) 61893) ((-389 . -642) 61877) ((-639 . -308) 61815) ((-958 . -712) 61712) ((-730 . -712) 61682) ((-221 . -107) 61666) ((-45 . -285) 61591) ((-617 . -642) 61565) ((-311 . -1092) T) ((-288 . -1050) 61552) ((-110 . -609) 61534) ((-110 . -610) 61516) ((-452 . -712) 61486) ((-811 . -252) 61425) ((-683 . -1092) 61403) ((-548 . -1092) T) ((-1166 . -1051) T) ((-1165 . -1051) T) ((-96 . -489) 61384) ((-1159 . -1051) T) ((-288 . -111) 61369) ((-1118 . -1051) T) ((-548 . -606) 61348) ((-96 . -609) 61314) ((-999 . -843) T) ((-226 . -681) 61272) ((-688 . -1104) T) ((-1201 . -735) 61248) ((-1019 . -362) T) ((-833 . -830) 61230) ((-318 . -1044) T) ((-342 . -25) T) ((-342 . -21) T) ((-406 . -895) 61189) ((-68 . -1207) T) ((-828 . -789) 61168) ((-417 . -712) 61142) ((-794 . -1092) T) ((-828 . -786) 61121) ((-693 . -130) T) ((-707 . -915) 61100) ((-688 . -23) T) ((-486 . -289) T) ((-828 . -721) 61079) ((-318 . -232) 61031) ((-318 . -242) 61010) ((-216 . -289) T) ((-129 . -367) T) ((-1240 . -451) 60989) ((-1219 . -451) 60968) ((-353 . -328) 60945) ((-353 . -362) T) ((-1132 . -609) 60927) ((-45 . -1244) 60877) ((-866 . -102) T) ((-639 . -281) 60861) ((-693 . -1053) T) ((-1267 . -102) T) ((-1266 . -102) T) ((-476 . -642) 60826) ((-467 . -1092) T) ((-45 . -600) 60751) ((-1150 . -287) 60726) ((-288 . -612) 60698) ((-40 . -635) 60637) ((-48 . -362) T) ((-1098 . -609) 60619) ((-1079 . -845) 60598) ((-628 . -287) 60573) ((-777 . -845) 60552) ((-775 . -845) 60531) ((-481 . -609) 60262) ((-239 . -410) 60231) ((-947 . -308) 60218) ((-453 . -845) 60197) ((-65 . -1207) T) ((-1056 . -513) 60041) ((-619 . -130) T) ((-545 . -102) T) ((-480 . -308) 60028) ((-602 . -1092) T) ((-117 . -130) T) ((-665 . -1092) T) ((-288 . -1044) T) ((-179 . -1092) T) ((-160 . -1092) T) ((-155 . -1092) T) ((-153 . -1092) T) ((-452 . -756) T) ((-31 . -1075) T) ((-958 . -171) 59979) ((-965 . -93) T) ((-1072 . -1050) 59889) ((-617 . -789) 59868) ((-590 . -1092) T) ((-617 . -786) 59847) ((-617 . -721) T) ((-294 . -285) 59826) ((-293 . -1207) T) ((-1048 . -609) 59788) ((-1048 . -610) 59749) ((-1019 . -1104) T) ((-168 . -102) T) ((-274 . -845) T) ((-1157 . -1092) T) ((-813 . -609) 59731) ((-1105 . -287) 59708) ((-1094 . -228) 59692) ((-998 . -306) T) ((-794 . -712) 59676) ((-358 . -1050) 59628) ((-353 . -1104) T) ((-352 . -1050) 59580) ((-413 . -609) 59562) ((-384 . -609) 59544) ((-344 . -1050) 59496) ((-226 . -609) 59428) ((-1072 . -111) 59324) ((-1019 . -23) T) ((-108 . -1050) 59274) ((-893 . -102) T) ((-836 . -102) T) ((-803 . -102) T) ((-764 . -102) T) ((-671 . -102) T) ((-473 . -451) 59253) ((-417 . -171) T) ((-358 . -111) 59191) ((-352 . -111) 59129) ((-344 . -111) 59067) ((-250 . -230) 59036) ((-249 . -230) 59005) ((-353 . -23) T) ((-71 . -1207) T) ((-224 . -38) 58970) ((-108 . -111) 58904) ((-40 . -25) T) ((-40 . -21) T) ((-664 . -715) T) ((-168 . -283) 58882) ((-48 . -1104) T) ((-916 . -25) T) ((-766 . -25) T) ((-1142 . -488) 58819) ((-484 . -1092) T) ((-1280 . -642) 58793) ((-1229 . -102) T) ((-850 . -102) T) ((-239 . -1051) 58723) ((-1055 . -1143) T) ((-959 . -787) 58676) ((-380 . -642) 58660) ((-48 . -23) T) ((-959 . -790) 58613) ((-810 . -790) 58564) ((-810 . -787) 58515) ((-294 . -600) 58494) ((-476 . -721) T) ((-569 . -102) T) ((-1072 . -612) 58312) ((-248 . -184) T) ((-186 . -184) T) ((-866 . -308) 58269) ((-647 . -285) 58248) ((-112 . -655) T) ((-358 . -612) 58185) ((-352 . -612) 58122) ((-344 . -612) 58059) ((-76 . -1207) T) ((-108 . -612) 58009) ((-1055 . -38) 57996) ((-658 . -373) 57975) ((-947 . -38) 57824) ((-726 . -1092) T) ((-480 . -38) 57673) ((-86 . -1207) T) ((-589 . -489) 57654) ((-569 . -283) T) ((-1220 . -843) NIL) ((-589 . -609) 57620) ((-1166 . -1092) T) ((-1165 . -1092) T) ((-1072 . -1044) T) ((-350 . -1033) 57597) ((-812 . -489) 57581) ((-999 . -1051) T) ((-45 . -609) 57563) ((-45 . -610) NIL) ((-909 . -1051) T) ((-812 . -609) 57532) ((-1159 . -1092) T) ((-1139 . -102) 57510) ((-1072 . -242) 57461) ((-426 . -1051) T) ((-358 . -1044) T) ((-364 . -363) 57438) ((-352 . -1044) T) ((-344 . -1044) T) ((-250 . -237) 57417) ((-249 . -237) 57396) ((-1072 . -232) 57321) ((-1118 . -1092) T) ((-293 . -895) 57280) ((-108 . -1044) T) ((-688 . -130) T) ((-417 . -513) 57122) ((-358 . -232) 57101) ((-358 . -242) T) ((-44 . -715) T) ((-352 . -232) 57080) ((-352 . -242) T) ((-344 . -232) 57059) ((-344 . -242) T) ((-1158 . -612) 57040) ((-168 . -308) 57005) ((-108 . -242) T) ((-108 . -232) T) ((-989 . -612) 56986) ((-318 . -787) T) ((-865 . -21) T) ((-865 . -25) T) ((-406 . -306) T) ((-499 . -34) T) ((-110 . -287) 56961) ((-1105 . -1050) 56858) ((-866 . -1143) NIL) ((-329 . -609) 56840) ((-406 . -1017) 56818) ((-1105 . -111) 56708) ((-685 . -1251) T) ((-435 . -1092) T) ((-1280 . -721) T) ((-63 . -609) 56690) ((-866 . -38) 56635) ((-522 . -1207) T) ((-598 . -150) 56619) ((-511 . -609) 56601) ((-1229 . -308) 56588) ((-726 . -712) 56437) ((-530 . -788) T) ((-530 . -789) T) ((-562 . -635) 56419) ((-494 . -635) 56379) ((-354 . -451) T) ((-351 . -451) T) ((-343 . -451) T) ((-263 . -451) 56330) ((-524 . -1092) T) ((-519 . -1092) 56280) ((-246 . -451) 56231) ((-1142 . -285) 56210) ((-1170 . -609) 56192) ((-683 . -513) 56125) ((-958 . -289) 56104) ((-548 . -513) 55896) ((-1268 . -609) 55865) ((-1164 . -230) 55849) ((-1105 . -612) 55579) ((-168 . -1143) 55558) ((-1268 . -489) 55542) ((-1166 . -712) 55439) ((-1165 . -712) 55280) ((-887 . -102) T) ((-1159 . -712) 55076) ((-1118 . -712) 54973) ((-1148 . -668) 54957) ((-354 . -401) 54908) ((-351 . -401) 54859) ((-343 . -401) 54810) ((-1019 . -130) T) ((-794 . -513) 54722) ((-294 . -610) NIL) ((-294 . -609) 54704) ((-905 . -451) T) ((-959 . -367) 54657) ((-810 . -367) 54636) ((-509 . -508) 54615) ((-507 . -508) 54594) ((-486 . -285) NIL) ((-481 . -287) 54571) ((-417 . -289) T) ((-353 . -130) T) ((-216 . -285) NIL) ((-688 . -492) NIL) ((-99 . -1104) T) ((-168 . -38) 54399) ((-1240 . -968) 54361) ((-1139 . -308) 54299) ((-1219 . -968) 54268) ((-905 . -401) T) ((-1105 . -1044) 54198) ((-1242 . -554) T) ((-1142 . -600) 54177) ((-112 . -845) T) ((-1056 . -488) 54108) ((-578 . -21) T) ((-578 . -25) T) ((-562 . -21) T) ((-562 . -25) T) ((-494 . -25) T) ((-494 . -21) T) ((-1229 . -1143) 54086) ((-1105 . -232) 54038) ((-48 . -130) T) ((-1188 . -102) T) ((-239 . -1092) 53828) ((-866 . -399) 53805) ((-1080 . -102) T) ((-1068 . -102) T) ((-604 . -102) T) ((-474 . -102) T) ((-1229 . -38) 53634) ((-850 . -38) 53604) ((-726 . -171) 53515) ((-647 . -609) 53497) ((-640 . -1075) T) ((-569 . -38) 53484) ((-965 . -489) 53465) ((-965 . -609) 53431) ((-953 . -102) 53381) ((-859 . -609) 53363) ((-859 . -610) 53285) ((-590 . -513) NIL) ((-1248 . -1051) T) ((-1241 . -1051) T) ((-1220 . -1051) T) ((-1284 . -1104) T) ((-1175 . -102) T) ((-593 . -1051) T) ((-592 . -1051) T) ((-1174 . -102) T) ((-1166 . -171) 53236) ((-1165 . -171) 53167) ((-1159 . -171) 53098) ((-1118 . -171) 53049) ((-999 . -1092) T) ((-966 . -1092) T) ((-909 . -1092) T) ((-1201 . -146) 53028) ((-794 . -792) 53012) ((-693 . -25) T) ((-693 . -21) T) ((-117 . -635) 52989) ((-695 . -881) 52971) ((-426 . -1092) T) ((-315 . -1211) 52950) ((-312 . -1211) T) ((-168 . -399) 52934) ((-1201 . -144) 52913) ((-473 . -968) 52875) ((-128 . -102) T) ((-72 . -609) 52857) ((-108 . -790) T) ((-108 . -787) T) ((-695 . -1033) 52839) ((-315 . -554) 52818) ((-312 . -554) T) ((-1284 . -23) T) ((-133 . -1033) 52800) ((-96 . -612) 52781) ((-481 . -1050) 52678) ((-45 . -287) 52603) ((-239 . -712) 52545) ((-516 . -102) T) ((-481 . -111) 52435) ((-1084 . -102) 52413) ((-1029 . -102) T) ((-639 . -823) 52392) ((-726 . -513) 52335) ((-1048 . -1050) 52319) ((-1127 . -93) T) ((-1056 . -285) 52294) ((-619 . -21) T) ((-619 . -25) T) ((-523 . -1092) T) ((-360 . -102) T) ((-321 . -102) T) ((-664 . -642) 52268) ((-384 . -1050) 52252) ((-1048 . -111) 52231) ((-811 . -410) 52215) ((-117 . -25) T) ((-89 . -609) 52197) ((-117 . -21) T) ((-604 . -308) 51992) ((-474 . -308) 51796) ((-1142 . -610) NIL) ((-384 . -111) 51775) ((-378 . -102) T) ((-213 . -609) 51757) ((-1142 . -609) 51739) ((-1159 . -513) 51508) ((-999 . -712) 51458) ((-1118 . -513) 51428) ((-909 . -712) 51380) ((-481 . -612) 51110) ((-350 . -306) T) ((-1180 . -150) 51060) ((-953 . -308) 50998) ((-831 . -102) T) ((-426 . -712) 50982) ((-224 . -823) T) ((-822 . -102) T) ((-820 . -102) T) ((-478 . -150) 50932) ((-1240 . -1239) 50911) ((-1112 . -1211) T) ((-338 . -1033) 50878) ((-1240 . -1234) 50848) ((-1240 . -1237) 50832) ((-1219 . -1218) 50811) ((-80 . -609) 50793) ((-900 . -609) 50775) ((-1219 . -1234) 50752) ((-1112 . -554) T) ((-916 . -845) T) ((-766 . -845) T) ((-486 . -610) 50682) ((-486 . -609) 50624) ((-378 . -283) T) ((-666 . -845) T) ((-1219 . -1216) 50608) ((-1242 . -1104) T) ((-216 . -610) 50538) ((-216 . -609) 50480) ((-1278 . -642) 50454) ((-1056 . -600) 50429) ((-813 . -612) 50413) ((-59 . -150) 50397) ((-515 . -150) 50381) ((-495 . -150) 50365) ((-358 . -1275) 50349) ((-352 . -1275) 50333) ((-344 . -1275) 50317) ((-315 . -362) 50296) ((-312 . -362) T) ((-481 . -1044) 50226) ((-688 . -635) 50208) ((-1276 . -642) 50182) ((-128 . -308) NIL) ((-1242 . -23) T) ((-683 . -488) 50166) ((-64 . -609) 50148) ((-1105 . -790) 50099) ((-1105 . -787) 50050) ((-548 . -488) 49987) ((-664 . -34) T) ((-481 . -232) 49939) ((-294 . -287) 49918) ((-239 . -171) 49897) ((-811 . -1051) T) ((-44 . -642) 49855) ((-1072 . -367) 49806) ((-726 . -289) 49737) ((-519 . -513) 49670) ((-812 . -1050) 49621) ((-1079 . -144) 49600) ((-547 . -609) 49582) ((-358 . -367) 49561) ((-352 . -367) 49540) ((-344 . -367) 49519) ((-1079 . -146) 49498) ((-866 . -230) 49475) ((-812 . -111) 49417) ((-777 . -144) 49396) ((-777 . -146) 49375) ((-263 . -944) 49342) ((-250 . -843) 49321) ((-246 . -944) 49266) ((-249 . -843) 49245) ((-775 . -144) 49224) ((-775 . -146) 49203) ((-151 . -642) 49177) ((-577 . -1092) T) ((-453 . -146) 49156) ((-453 . -144) 49135) ((-664 . -721) T) ((-818 . -609) 49117) ((-1248 . -1092) T) ((-1241 . -1092) T) ((-1220 . -1092) T) ((-1201 . -1195) 49083) ((-1201 . -1192) 49049) ((-1166 . -289) 49028) ((-1165 . -289) 48979) ((-1159 . -289) 48930) ((-1118 . -289) 48909) ((-338 . -895) 48890) ((-999 . -171) T) ((-909 . -171) T) ((-593 . -1092) T) ((-592 . -1092) T) ((-688 . -21) T) ((-688 . -25) T) ((-473 . -1237) 48874) ((-473 . -1234) 48844) ((-417 . -285) 48772) ((-546 . -845) T) ((-315 . -1104) 48621) ((-312 . -1104) T) ((-1201 . -35) 48587) ((-1201 . -95) 48553) ((-84 . -609) 48535) ((-91 . -102) 48513) ((-1284 . -130) T) ((-589 . -612) 48494) ((-579 . -144) T) ((-579 . -146) 48476) ((-517 . -146) 48458) ((-517 . -144) T) ((-315 . -23) 48310) ((-40 . -341) 48284) ((-312 . -23) T) ((-812 . -612) 48198) ((-1150 . -645) 48180) ((-1271 . -1051) T) ((-1150 . -372) 48162) ((-810 . -642) 48010) ((-1088 . -102) T) ((-1082 . -102) T) ((-1066 . -102) T) ((-168 . -230) 47994) ((-1059 . -102) T) ((-1031 . -102) T) ((-1014 . -102) T) ((-590 . -488) 47976) ((-622 . -102) T) ((-239 . -513) 47909) ((-482 . -102) T) ((-1278 . -721) T) ((-1276 . -721) T) ((-217 . -102) T) ((-1170 . -1050) 47792) ((-1170 . -111) 47661) ((-856 . -172) T) ((-812 . -1044) T) ((-675 . -1075) T) ((-670 . -1075) T) ((-514 . -102) T) ((-509 . -102) T) ((-48 . -635) 47621) ((-507 . -102) T) ((-477 . -1075) T) ((-1268 . -1050) 47591) ((-137 . -1075) T) ((-136 . -1075) T) ((-132 . -1075) T) ((-1029 . -38) 47575) ((-812 . -232) T) ((-812 . -242) 47554) ((-1268 . -111) 47519) ((-1248 . -712) 47416) ((-1241 . -712) 47257) ((-1229 . -230) 47241) ((-548 . -285) 47220) ((-1212 . -609) 47202) ((-1056 . -610) NIL) ((-602 . -93) T) ((-1056 . -609) 47184) ((-697 . -489) 47168) ((-665 . -93) T) ((-179 . -93) T) ((-160 . -93) T) ((-155 . -93) T) ((-153 . -93) T) ((-1220 . -712) 46964) ((-998 . -915) T) ((-697 . -609) 46933) ((-151 . -721) T) ((-1105 . -367) 46912) ((-999 . -513) NIL) ((-250 . -410) 46881) ((-249 . -410) 46850) ((-1019 . -25) T) ((-1019 . -21) T) ((-593 . -712) 46823) ((-592 . -712) 46720) ((-794 . -285) 46678) ((-126 . -102) 46656) ((-828 . -1033) 46552) ((-168 . -823) 46531) ((-318 . -642) 46428) ((-810 . -34) T) ((-709 . -102) T) ((-1170 . -612) 46281) ((-1112 . -1104) T) ((-1021 . -1207) T) ((-378 . -38) 46246) ((-353 . -25) T) ((-353 . -21) T) ((-186 . -102) T) ((-161 . -102) T) ((-248 . -102) T) ((-156 . -102) T) ((-354 . -1263) 46230) ((-351 . -1263) 46214) ((-343 . -1263) 46198) ((-168 . -348) 46177) ((-562 . -845) T) ((-494 . -845) T) ((-1112 . -23) T) ((-87 . -609) 46159) ((-695 . -306) T) ((-831 . -38) 46129) ((-822 . -38) 46099) ((-1268 . -612) 46041) ((-1242 . -130) T) ((-1142 . -287) 46020) ((-959 . -788) 45973) ((-959 . -789) 45926) ((-810 . -786) 45905) ((-116 . -306) T) ((-91 . -308) 45843) ((-669 . -34) T) ((-548 . -600) 45822) ((-48 . -25) T) ((-48 . -21) T) ((-810 . -789) 45773) ((-810 . -788) 45752) ((-695 . -1017) T) ((-647 . -1050) 45736) ((-959 . -721) 45635) ((-810 . -721) 45545) ((-959 . -472) 45498) ((-481 . -790) 45449) ((-481 . -787) 45400) ((-905 . -1263) 45387) ((-1170 . -1044) T) ((-647 . -111) 45366) ((-1170 . -325) 45343) ((-1193 . -102) 45321) ((-1093 . -609) 45303) ((-695 . -544) T) ((-811 . -1092) T) ((-1268 . -1044) T) ((-1127 . -489) 45284) ((-1213 . -102) T) ((-412 . -1092) T) ((-1127 . -609) 45250) ((-250 . -1051) 45180) ((-249 . -1051) 45110) ((-833 . -102) T) ((-288 . -642) 45097) ((-590 . -285) 45072) ((-683 . -681) 45030) ((-958 . -609) 45012) ((-867 . -102) T) ((-730 . -609) 44994) ((-710 . -609) 44976) ((-1248 . -171) 44927) ((-1241 . -171) 44858) ((-1220 . -171) 44789) ((-693 . -845) T) ((-999 . -289) T) ((-452 . -609) 44771) ((-623 . -721) T) ((-60 . -1092) 44749) ((-244 . -150) 44733) ((-909 . -289) T) ((-1019 . -1007) T) ((-623 . -472) T) ((-707 . -1211) 44712) ((-647 . -612) 44630) ((-593 . -171) 44609) ((-592 . -171) 44560) ((-1256 . -845) 44539) ((-707 . -554) 44450) ((-406 . -915) T) ((-406 . -815) 44429) ((-318 . -789) T) ((-965 . -612) 44410) ((-318 . -721) T) ((-417 . -609) 44392) ((-417 . -610) 44299) ((-639 . -1141) 44283) ((-110 . -645) 44265) ((-173 . -306) T) ((-126 . -308) 44203) ((-110 . -372) 44185) ((-397 . -1207) T) ((-315 . -130) 44056) ((-312 . -130) T) ((-69 . -394) T) ((-110 . -123) T) ((-519 . -488) 44040) ((-648 . -1104) T) ((-590 . -19) 44022) ((-61 . -440) T) ((-61 . -394) T) ((-819 . -1092) T) ((-590 . -600) 43997) ((-476 . -1033) 43957) ((-647 . -1044) T) ((-648 . -23) T) ((-1271 . -1092) T) ((-31 . -102) T) ((-811 . -712) 43806) ((-575 . -855) T) ((-117 . -845) NIL) ((-1164 . -410) 43790) ((-1117 . -410) 43774) ((-849 . -410) 43758) ((-868 . -102) 43709) ((-1240 . -102) T) ((-1220 . -513) 43478) ((-1219 . -102) T) ((-1193 . -308) 43416) ((-524 . -93) T) ((-1166 . -285) 43401) ((-311 . -609) 43383) ((-1165 . -285) 43368) ((-1094 . -1092) T) ((-1072 . -642) 43278) ((-683 . -609) 43210) ((-288 . -721) T) ((-108 . -904) NIL) ((-683 . -610) 43171) ((-597 . -609) 43153) ((-575 . -609) 43135) ((-548 . -610) NIL) ((-548 . -609) 43117) ((-528 . -609) 43099) ((-1159 . -285) 42947) ((-486 . -1050) 42897) ((-706 . -451) T) ((-510 . -508) 42876) ((-506 . -508) 42855) ((-216 . -1050) 42805) ((-358 . -642) 42757) ((-352 . -642) 42709) ((-224 . -843) T) ((-344 . -642) 42661) ((-598 . -102) 42611) ((-481 . -367) 42590) ((-108 . -642) 42540) ((-486 . -111) 42474) ((-239 . -488) 42458) ((-342 . -146) 42440) ((-342 . -144) T) ((-168 . -369) 42411) ((-938 . -1254) 42395) ((-216 . -111) 42329) ((-867 . -308) 42294) ((-938 . -1092) 42244) ((-794 . -610) 42205) ((-794 . -609) 42187) ((-713 . -102) T) ((-330 . -1092) T) ((-213 . -612) 42164) ((-1112 . -130) T) ((-709 . -38) 42134) ((-315 . -492) 42113) ((-499 . -1207) T) ((-1240 . -283) 42079) ((-1219 . -283) 42045) ((-326 . -150) 42029) ((-438 . -1092) T) ((-1056 . -287) 42004) ((-1271 . -712) 41974) ((-1151 . -34) T) ((-1280 . -1033) 41951) ((-467 . -609) 41933) ((-483 . -34) T) ((-380 . -1033) 41917) ((-1164 . -1051) T) ((-1117 . -1051) T) ((-849 . -1051) T) ((-1055 . -843) T) ((-486 . -612) 41867) ((-216 . -612) 41817) ((-811 . -171) 41728) ((-519 . -285) 41705) ((-1248 . -289) 41684) ((-1188 . -363) 41658) ((-1080 . -265) 41642) ((-665 . -489) 41623) ((-665 . -609) 41589) ((-602 . -489) 41570) ((-117 . -987) 41547) ((-602 . -609) 41497) ((-473 . -102) T) ((-179 . -489) 41478) ((-179 . -609) 41444) ((-160 . -489) 41425) ((-155 . -489) 41406) ((-153 . -489) 41387) ((-160 . -609) 41353) ((-155 . -609) 41319) ((-364 . -1092) T) ((-250 . -1092) T) ((-249 . -1092) T) ((-153 . -609) 41285) ((-1241 . -289) 41236) ((-1220 . -289) 41187) ((-867 . -1143) 41165) ((-1166 . -997) 41131) ((-604 . -363) 41071) ((-1165 . -997) 41037) ((-604 . -228) 40984) ((-590 . -609) 40966) ((-590 . -610) NIL) ((-688 . -845) T) ((-474 . -228) 40916) ((-486 . -1044) T) ((-1159 . -997) 40882) ((-88 . -439) T) ((-88 . -394) T) ((-216 . -1044) T) ((-1118 . -997) 40848) ((-1072 . -721) T) ((-707 . -1104) T) ((-593 . -289) 40827) ((-592 . -289) 40806) ((-486 . -242) T) ((-486 . -232) T) ((-216 . -242) T) ((-216 . -232) T) ((-1157 . -609) 40788) ((-867 . -38) 40740) ((-358 . -721) T) ((-352 . -721) T) ((-344 . -721) T) ((-108 . -789) T) ((-108 . -786) T) ((-707 . -23) T) ((-108 . -721) T) ((-519 . -1244) 40724) ((-1284 . -25) T) ((-473 . -283) 40690) ((-1284 . -21) T) ((-1219 . -308) 40629) ((-1168 . -102) T) ((-40 . -144) 40601) ((-40 . -146) 40573) ((-519 . -600) 40550) ((-1105 . -642) 40398) ((-598 . -308) 40336) ((-45 . -645) 40286) ((-45 . -660) 40236) ((-45 . -372) 40186) ((-1150 . -34) T) ((-866 . -843) NIL) ((-648 . -130) T) ((-484 . -609) 40168) ((-239 . -285) 40145) ((-185 . -1092) T) ((-641 . -34) T) ((-628 . -34) T) ((-1079 . -451) 40096) ((-811 . -513) 39970) ((-777 . -451) 39901) ((-775 . -451) 39852) ((-453 . -451) 39803) ((-947 . -410) 39787) ((-726 . -609) 39769) ((-250 . -712) 39711) ((-249 . -712) 39653) ((-726 . -610) 39514) ((-480 . -410) 39498) ((-338 . -301) T) ((-523 . -93) T) ((-350 . -915) T) ((-995 . -102) 39476) ((-1019 . -845) T) ((-60 . -513) 39409) ((-1219 . -1143) 39361) ((-999 . -285) NIL) ((-224 . -1051) T) ((-378 . -823) T) ((-1105 . -34) T) ((-579 . -451) T) ((-517 . -451) T) ((-1223 . -1085) 39345) ((-1223 . -1092) 39323) ((-239 . -600) 39300) ((-1223 . -1087) 39257) ((-1166 . -609) 39239) ((-1165 . -609) 39221) ((-1159 . -609) 39203) ((-1159 . -610) NIL) ((-1118 . -609) 39185) ((-867 . -399) 39169) ((-535 . -102) T) ((-1240 . -38) 39010) ((-1219 . -38) 38824) ((-865 . -146) T) ((-697 . -612) 38808) ((-579 . -401) T) ((-48 . -845) T) ((-517 . -401) T) ((-1252 . -102) T) ((-1242 . -21) T) ((-1242 . -25) T) ((-1105 . -786) 38787) ((-1105 . -789) 38738) ((-1105 . -788) 38717) ((-988 . -1092) T) ((-1022 . -34) T) ((-857 . -1092) T) ((-1105 . -721) 38627) ((-658 . -102) T) ((-640 . -102) T) ((-548 . -287) 38606) ((-1180 . -102) T) ((-475 . -34) T) ((-462 . -34) T) ((-354 . -102) T) ((-351 . -102) T) ((-343 . -102) T) ((-263 . -102) T) ((-246 . -102) T) ((-476 . -306) T) ((-1055 . -1051) T) ((-947 . -1051) T) ((-315 . -635) 38512) ((-312 . -635) 38473) ((-480 . -1051) T) ((-478 . -102) T) ((-435 . -609) 38455) ((-1164 . -1092) T) ((-1117 . -1092) T) ((-849 . -1092) T) ((-1133 . -102) T) ((-811 . -289) 38386) ((-958 . -1050) 38269) ((-476 . -1017) T) ((-730 . -1050) 38239) ((-452 . -1050) 38209) ((-1139 . -1113) 38193) ((-1094 . -513) 38126) ((-958 . -111) 37995) ((-905 . -102) T) ((-730 . -111) 37960) ((-524 . -489) 37941) ((-524 . -609) 37907) ((-59 . -102) 37857) ((-519 . -610) 37818) ((-519 . -609) 37730) ((-518 . -102) 37708) ((-515 . -102) 37658) ((-496 . -102) 37636) ((-495 . -102) 37586) ((-452 . -111) 37549) ((-250 . -171) 37528) ((-249 . -171) 37507) ((-417 . -1050) 37481) ((-1201 . -968) 37443) ((-994 . -1104) T) ((-1127 . -612) 37424) ((-938 . -513) 37357) ((-486 . -790) T) ((-473 . -38) 37198) ((-417 . -111) 37165) ((-486 . -787) T) ((-995 . -308) 37103) ((-216 . -790) T) ((-216 . -787) T) ((-994 . -23) T) ((-707 . -130) T) ((-1219 . -399) 37073) ((-315 . -25) 36925) ((-168 . -410) 36909) ((-315 . -21) 36780) ((-312 . -25) T) ((-312 . -21) T) ((-859 . -367) T) ((-958 . -612) 36633) ((-110 . -34) T) ((-730 . -612) 36589) ((-710 . -612) 36571) ((-481 . -642) 36419) ((-866 . -1051) T) ((-590 . -287) 36394) ((-578 . -146) T) ((-562 . -146) T) ((-494 . -146) T) ((-1164 . -712) 36223) ((-1117 . -712) 36072) ((-1112 . -635) 36054) ((-849 . -712) 36024) ((-664 . -1207) T) ((-1 . -102) T) ((-417 . -612) 35932) ((-239 . -609) 35663) ((-1107 . -1092) T) ((-1229 . -410) 35647) ((-1180 . -308) 35451) ((-958 . -1044) T) ((-730 . -1044) T) ((-710 . -1044) T) ((-639 . -1092) 35401) ((-1048 . -642) 35385) ((-850 . -410) 35369) ((-510 . -102) T) ((-506 . -102) T) ((-246 . -308) 35356) ((-263 . -308) 35343) ((-958 . -325) 35322) ((-384 . -642) 35306) ((-478 . -308) 35110) ((-250 . -513) 35043) ((-664 . -1033) 34939) ((-249 . -513) 34872) ((-1133 . -308) 34798) ((-814 . -1092) T) ((-794 . -1050) 34782) ((-1248 . -285) 34767) ((-1241 . -285) 34752) ((-1220 . -285) 34600) ((-385 . -1092) T) ((-323 . -1092) T) ((-417 . -1044) T) ((-168 . -1051) T) ((-59 . -308) 34538) ((-794 . -111) 34517) ((-592 . -285) 34502) ((-518 . -308) 34440) ((-515 . -308) 34378) ((-496 . -308) 34316) ((-495 . -308) 34254) ((-417 . -232) 34233) ((-481 . -34) T) ((-999 . -610) 34163) ((-224 . -1092) T) ((-999 . -609) 34123) ((-966 . -609) 34083) ((-966 . -610) 34058) ((-909 . -609) 34040) ((-693 . -146) T) ((-695 . -915) T) ((-695 . -815) T) ((-426 . -609) 34022) ((-1112 . -21) T) ((-1112 . -25) T) ((-664 . -376) 34006) ((-116 . -915) T) ((-867 . -230) 33990) ((-78 . -1207) T) ((-126 . -125) 33974) ((-1048 . -34) T) ((-1278 . -1033) 33948) ((-1276 . -1033) 33905) ((-1229 . -1051) T) ((-850 . -1051) T) ((-481 . -786) 33884) ((-354 . -1143) 33863) ((-351 . -1143) 33842) ((-343 . -1143) 33821) ((-481 . -789) 33772) ((-481 . -788) 33751) ((-226 . -34) T) ((-481 . -721) 33661) ((-794 . -612) 33509) ((-60 . -488) 33493) ((-569 . -1051) T) ((-1164 . -171) 33384) ((-1117 . -171) 33295) ((-1055 . -1092) T) ((-1079 . -944) 33240) ((-947 . -1092) T) ((-812 . -642) 33191) ((-777 . -944) 33160) ((-708 . -1092) T) ((-775 . -944) 33127) ((-515 . -281) 33111) ((-664 . -895) 33070) ((-480 . -1092) T) ((-453 . -944) 33037) ((-79 . -1207) T) ((-354 . -38) 33002) ((-351 . -38) 32967) ((-343 . -38) 32932) ((-263 . -38) 32781) ((-246 . -38) 32630) ((-905 . -1143) T) ((-523 . -489) 32611) ((-619 . -146) 32590) ((-619 . -144) 32569) ((-523 . -609) 32535) ((-117 . -146) T) ((-117 . -144) NIL) ((-413 . -721) T) ((-794 . -1044) T) ((-342 . -451) T) ((-1248 . -997) 32501) ((-1241 . -997) 32467) ((-1220 . -997) 32433) ((-905 . -38) 32398) ((-224 . -712) 32363) ((-318 . -47) 32333) ((-40 . -408) 32305) ((-139 . -609) 32287) ((-994 . -130) T) ((-810 . -1207) T) ((-173 . -915) T) ((-547 . -367) T) ((-602 . -612) 32268) ((-342 . -401) T) ((-665 . -612) 32249) ((-179 . -612) 32230) ((-160 . -612) 32211) ((-155 . -612) 32192) ((-153 . -612) 32173) ((-519 . -287) 32150) ((-1219 . -230) 32120) ((-810 . -1033) 31947) ((-45 . -34) T) ((-675 . -102) T) ((-670 . -102) T) ((-656 . -102) T) ((-648 . -21) T) ((-648 . -25) T) ((-1094 . -488) 31931) ((-669 . -1207) T) ((-477 . -102) T) ((-244 . -102) 31881) ((-545 . -839) T) ((-137 . -102) T) ((-136 . -102) T) ((-132 . -102) T) ((-866 . -1092) T) ((-1170 . -642) 31806) ((-1055 . -712) 31793) ((-726 . -1050) 31636) ((-1164 . -513) 31583) ((-947 . -712) 31432) ((-1117 . -513) 31384) ((-1267 . -1092) T) ((-1266 . -1092) T) ((-480 . -712) 31233) ((-67 . -609) 31215) ((-726 . -111) 31044) ((-938 . -488) 31028) ((-1268 . -642) 30988) ((-812 . -721) T) ((-1166 . -1050) 30871) ((-1165 . -1050) 30706) ((-1159 . -1050) 30496) ((-1118 . -1050) 30379) ((-998 . -1211) T) ((-1086 . -102) 30357) ((-810 . -376) 30326) ((-577 . -609) 30308) ((-545 . -1092) T) ((-998 . -554) T) ((-1166 . -111) 30177) ((-1165 . -111) 29998) ((-1159 . -111) 29767) ((-1118 . -111) 29636) ((-1097 . -1095) 29600) ((-378 . -843) T) ((-1248 . -609) 29582) ((-1241 . -609) 29564) ((-1220 . -609) 29546) ((-1220 . -610) NIL) ((-239 . -287) 29523) ((-40 . -451) T) ((-224 . -171) T) ((-168 . -1092) T) ((-726 . -612) 29308) ((-688 . -146) T) ((-688 . -144) NIL) ((-593 . -609) 29290) ((-592 . -609) 29272) ((-893 . -1092) T) ((-836 . -1092) T) ((-803 . -1092) T) ((-764 . -1092) T) ((-652 . -847) 29256) ((-671 . -1092) T) ((-810 . -895) 29188) ((-1212 . -367) T) ((-40 . -401) NIL) ((-1166 . -612) 29070) ((-1112 . -655) T) ((-866 . -712) 29015) ((-250 . -488) 28999) ((-249 . -488) 28983) ((-1165 . -612) 28726) ((-1159 . -612) 28521) ((-707 . -635) 28469) ((-647 . -642) 28443) ((-1118 . -612) 28325) ((-294 . -34) T) ((-726 . -1044) T) ((-579 . -1263) 28312) ((-517 . -1263) 28289) ((-1229 . -1092) T) ((-1164 . -289) 28200) ((-1117 . -289) 28131) ((-1055 . -171) T) ((-850 . -1092) T) ((-947 . -171) 28042) ((-777 . -1232) 28026) ((-639 . -513) 27959) ((-77 . -609) 27941) ((-726 . -325) 27906) ((-1170 . -721) T) ((-569 . -1092) T) ((-480 . -171) 27817) ((-244 . -308) 27755) ((-1134 . -1104) T) ((-70 . -609) 27737) ((-1268 . -721) T) ((-1166 . -1044) T) ((-1165 . -1044) T) ((-326 . -102) 27687) ((-1159 . -1044) T) ((-1134 . -23) T) ((-1118 . -1044) T) ((-91 . -1113) 27671) ((-861 . -1104) T) ((-1166 . -232) 27630) ((-1165 . -242) 27609) ((-1165 . -232) 27561) ((-1159 . -232) 27448) ((-1159 . -242) 27427) ((-318 . -895) 27333) ((-861 . -23) T) ((-168 . -712) 27161) ((-406 . -1211) T) ((-1093 . -367) T) ((-1019 . -146) T) ((-998 . -362) T) ((-865 . -451) T) ((-938 . -285) 27138) ((-315 . -845) T) ((-312 . -845) NIL) ((-869 . -102) T) ((-707 . -25) T) ((-406 . -554) T) ((-707 . -21) T) ((-524 . -612) 27119) ((-353 . -146) 27101) ((-353 . -144) T) ((-1139 . -1092) 27079) ((-452 . -715) T) ((-75 . -609) 27061) ((-114 . -845) T) ((-244 . -281) 27045) ((-239 . -1050) 26942) ((-81 . -609) 26924) ((-730 . -367) 26877) ((-1168 . -823) T) ((-732 . -234) 26861) ((-1151 . -1207) T) ((-140 . -234) 26843) ((-239 . -111) 26733) ((-1229 . -712) 26562) ((-48 . -146) T) ((-866 . -171) T) ((-850 . -712) 26532) ((-483 . -1207) T) ((-947 . -513) 26479) ((-647 . -721) T) ((-569 . -712) 26466) ((-1029 . -1051) T) ((-480 . -513) 26409) ((-938 . -19) 26393) ((-938 . -600) 26370) ((-811 . -610) NIL) ((-811 . -609) 26352) ((-999 . -1050) 26302) ((-412 . -609) 26284) ((-250 . -285) 26261) ((-249 . -285) 26238) ((-486 . -904) NIL) ((-315 . -29) 26208) ((-108 . -1207) T) ((-998 . -1104) T) ((-216 . -904) NIL) ((-909 . -1050) 26160) ((-1072 . -1033) 26056) ((-999 . -111) 25990) ((-998 . -23) T) ((-732 . -689) 25974) ((-263 . -230) 25958) ((-426 . -1050) 25942) ((-378 . -1051) T) ((-239 . -612) 25672) ((-909 . -111) 25610) ((-688 . -1195) NIL) ((-486 . -642) 25560) ((-108 . -879) 25542) ((-108 . -881) 25524) ((-688 . -1192) NIL) ((-216 . -642) 25474) ((-358 . -1033) 25458) ((-352 . -1033) 25442) ((-326 . -308) 25380) ((-344 . -1033) 25364) ((-224 . -289) T) ((-426 . -111) 25343) ((-60 . -609) 25275) ((-168 . -171) T) ((-1112 . -845) T) ((-108 . -1033) 25235) ((-887 . -1092) T) ((-831 . -1051) T) ((-822 . -1051) T) ((-688 . -35) NIL) ((-688 . -95) NIL) ((-312 . -987) 25196) ((-182 . -102) T) ((-578 . -451) T) ((-562 . -451) T) ((-494 . -451) T) ((-406 . -362) T) ((-239 . -1044) 25126) ((-1142 . -34) T) ((-476 . -915) T) ((-994 . -635) 25074) ((-250 . -600) 25051) ((-249 . -600) 25028) ((-1072 . -376) 25012) ((-866 . -513) 24920) ((-239 . -232) 24872) ((-1150 . -1207) T) ((-999 . -612) 24822) ((-909 . -612) 24759) ((-819 . -609) 24741) ((-1279 . -1104) T) ((-1271 . -609) 24723) ((-1229 . -171) 24614) ((-426 . -612) 24583) ((-108 . -376) 24565) ((-108 . -337) 24547) ((-1055 . -289) T) ((-947 . -289) 24478) ((-794 . -367) 24457) ((-641 . -1207) T) ((-628 . -1207) T) ((-480 . -289) 24388) ((-569 . -171) T) ((-326 . -281) 24372) ((-1279 . -23) T) ((-1201 . -102) T) ((-1188 . -1092) T) ((-1080 . -1092) T) ((-1068 . -1092) T) ((-83 . -609) 24354) ((-1175 . -839) T) ((-1174 . -839) T) ((-706 . -102) T) ((-354 . -348) 24333) ((-604 . -1092) T) ((-351 . -348) 24312) ((-343 . -348) 24291) ((-474 . -1092) T) ((-1180 . -228) 24241) ((-263 . -252) 24203) ((-1134 . -130) T) ((-604 . -606) 24179) ((-1072 . -895) 24112) ((-999 . -1044) T) ((-909 . -1044) T) ((-474 . -606) 24091) ((-1159 . -787) NIL) ((-1159 . -790) NIL) ((-1094 . -610) 24052) ((-478 . -228) 24002) ((-1094 . -609) 23984) ((-999 . -242) T) ((-999 . -232) T) ((-426 . -1044) T) ((-953 . -1092) 23934) ((-909 . -242) T) ((-861 . -130) T) ((-693 . -451) T) ((-838 . -1104) 23913) ((-108 . -895) NIL) ((-1201 . -283) 23879) ((-867 . -843) 23858) ((-1105 . -1207) T) ((-900 . -721) T) ((-168 . -513) 23770) ((-994 . -25) T) ((-900 . -472) T) ((-406 . -1104) T) ((-486 . -789) T) ((-486 . -786) T) ((-905 . -348) T) ((-486 . -721) T) ((-216 . -789) T) ((-216 . -786) T) ((-994 . -21) T) ((-216 . -721) T) ((-838 . -23) 23722) ((-523 . -612) 23703) ((-1175 . -1092) T) ((-318 . -306) 23682) ((-1174 . -1092) T) ((-1030 . -234) 23628) ((-406 . -23) T) ((-938 . -610) 23589) ((-938 . -609) 23501) ((-639 . -488) 23485) ((-45 . -1005) 23435) ((-613 . -962) T) ((-490 . -102) T) ((-330 . -609) 23417) ((-1105 . -1033) 23244) ((-590 . -645) 23226) ((-128 . -1092) T) ((-590 . -372) 23208) ((-342 . -1263) 23185) ((-438 . -609) 23167) ((-1022 . -1207) T) ((-866 . -289) T) ((-1229 . -513) 23114) ((-475 . -1207) T) ((-462 . -1207) T) ((-583 . -102) T) ((-1164 . -285) 23041) ((-619 . -451) 23020) ((-995 . -990) 23004) ((-1271 . -381) 22976) ((-516 . -1092) T) ((-117 . -451) T) ((-1187 . -102) T) ((-1084 . -1092) 22954) ((-1029 . -1092) T) ((-1107 . -93) T) ((-888 . -845) T) ((-350 . -1211) T) ((-1248 . -1050) 22837) ((-1105 . -376) 22806) ((-1241 . -1050) 22641) ((-1220 . -1050) 22431) ((-1248 . -111) 22300) ((-1241 . -111) 22121) ((-1220 . -111) 21890) ((-1201 . -308) 21877) ((-350 . -554) T) ((-364 . -609) 21859) ((-288 . -306) T) ((-593 . -1050) 21832) ((-592 . -1050) 21715) ((-360 . -1092) T) ((-321 . -1092) T) ((-250 . -609) 21676) ((-249 . -609) 21637) ((-998 . -130) T) ((-631 . -23) T) ((-688 . -408) 21604) ((-603 . -23) T) ((-652 . -102) T) ((-593 . -111) 21575) ((-592 . -111) 21444) ((-378 . -1092) T) ((-335 . -102) T) ((-168 . -289) 21355) ((-1219 . -843) 21308) ((-709 . -1051) T) ((-1139 . -513) 21241) ((-1105 . -895) 21173) ((-831 . -1092) T) ((-822 . -1092) T) ((-820 . -1092) T) ((-97 . -102) T) ((-143 . -845) T) ((-608 . -879) 21157) ((-110 . -1207) T) ((-1079 . -102) T) ((-1056 . -34) T) ((-777 . -102) T) ((-775 . -102) T) ((-1248 . -612) 21039) ((-1241 . -612) 20782) ((-460 . -102) T) ((-453 . -102) T) ((-1220 . -612) 20577) ((-239 . -790) 20528) ((-239 . -787) 20479) ((-643 . -102) T) ((-593 . -612) 20437) ((-592 . -612) 20319) ((-1229 . -289) 20230) ((-658 . -630) 20214) ((-185 . -609) 20196) ((-639 . -285) 20173) ((-1029 . -712) 20157) ((-569 . -289) T) ((-958 . -642) 20082) ((-1279 . -130) T) ((-730 . -642) 20042) ((-710 . -642) 20029) ((-274 . -102) T) ((-452 . -642) 19959) ((-50 . -102) T) ((-579 . -102) T) ((-517 . -102) T) ((-1248 . -1044) T) ((-1241 . -1044) T) ((-1220 . -1044) T) ((-1248 . -232) 19918) ((-321 . -712) 19900) ((-1241 . -242) 19879) ((-1241 . -232) 19831) ((-1220 . -232) 19718) ((-1220 . -242) 19697) ((-1201 . -38) 19594) ((-999 . -790) T) ((-593 . -1044) T) ((-592 . -1044) T) ((-999 . -787) T) ((-966 . -790) T) ((-966 . -787) T) ((-867 . -1051) T) ((-865 . -864) 19578) ((-109 . -609) 19560) ((-688 . -451) T) ((-378 . -712) 19525) ((-417 . -642) 19499) ((-707 . -845) 19478) ((-706 . -38) 19443) ((-592 . -232) 19402) ((-40 . -719) 19374) ((-350 . -328) 19351) ((-350 . -362) T) ((-1072 . -306) 19302) ((-293 . -1104) 19183) ((-1098 . -1207) T) ((-170 . -102) T) ((-1223 . -609) 19150) ((-838 . -130) 19102) ((-639 . -1244) 19086) ((-831 . -712) 19056) ((-822 . -712) 19026) ((-481 . -1207) T) ((-358 . -306) T) ((-352 . -306) T) ((-344 . -306) T) ((-639 . -600) 19003) ((-406 . -130) T) ((-519 . -660) 18987) ((-108 . -306) T) ((-293 . -23) 18870) ((-519 . -645) 18854) ((-688 . -401) NIL) ((-519 . -372) 18838) ((-290 . -609) 18820) ((-91 . -1092) 18798) ((-108 . -1017) T) ((-562 . -142) T) ((-1256 . -150) 18782) ((-481 . -1033) 18609) ((-1242 . -144) 18570) ((-1242 . -146) 18531) ((-1048 . -1207) T) ((-988 . -609) 18513) ((-857 . -609) 18495) ((-811 . -1050) 18338) ((-1267 . -93) T) ((-1266 . -93) T) ((-1164 . -610) NIL) ((-1088 . -1092) T) ((-1082 . -1092) T) ((-1079 . -308) 18325) ((-1066 . -1092) T) ((-226 . -1207) T) ((-1059 . -1092) T) ((-1031 . -1092) T) ((-1014 . -1092) T) ((-777 . -308) 18312) ((-775 . -308) 18299) ((-1164 . -609) 18281) ((-811 . -111) 18110) ((-1117 . -609) 18092) ((-622 . -1092) T) ((-575 . -172) T) ((-528 . -172) T) ((-453 . -308) 18079) ((-482 . -1092) T) ((-1117 . -610) 17827) ((-1029 . -171) T) ((-938 . -287) 17804) ((-217 . -1092) T) ((-849 . -609) 17786) ((-604 . -513) 17569) ((-81 . -612) 17510) ((-813 . -1033) 17494) ((-474 . -513) 17286) ((-958 . -721) T) ((-730 . -721) T) ((-710 . -721) T) ((-350 . -1104) T) ((-1171 . -609) 17268) ((-222 . -102) T) ((-481 . -376) 17237) ((-514 . -1092) T) ((-509 . -1092) T) ((-507 . -1092) T) ((-794 . -642) 17211) ((-1019 . -451) T) ((-953 . -513) 17144) ((-350 . -23) T) ((-631 . -130) T) ((-603 . -130) T) ((-353 . -451) T) ((-239 . -367) 17123) ((-378 . -171) T) ((-1240 . -1051) T) ((-1219 . -1051) T) ((-224 . -997) T) ((-811 . -612) 16860) ((-693 . -386) T) ((-417 . -721) T) ((-695 . -1211) T) ((-1134 . -635) 16808) ((-578 . -864) 16792) ((-1271 . -1050) 16776) ((-1151 . -1183) 16752) ((-695 . -554) T) ((-126 . -1092) 16730) ((-709 . -1092) T) ((-481 . -895) 16662) ((-248 . -1092) T) ((-186 . -1092) T) ((-652 . -38) 16632) ((-353 . -401) T) ((-315 . -146) 16611) ((-315 . -144) 16590) ((-128 . -513) NIL) ((-116 . -554) T) ((-312 . -146) 16546) ((-312 . -144) 16502) ((-48 . -451) T) ((-161 . -1092) T) ((-156 . -1092) T) ((-1151 . -107) 16449) ((-777 . -1143) 16427) ((-683 . -34) T) ((-1271 . -111) 16406) ((-548 . -34) T) ((-483 . -107) 16390) ((-250 . -287) 16367) ((-249 . -287) 16344) ((-866 . -285) 16295) ((-45 . -1207) T) ((-1213 . -839) T) ((-811 . -1044) T) ((-1170 . -47) 16272) ((-811 . -325) 16234) ((-1079 . -38) 16083) ((-811 . -232) 16062) ((-777 . -38) 15891) ((-775 . -38) 15740) ((-1107 . -489) 15721) ((-453 . -38) 15570) ((-1107 . -609) 15536) ((-1110 . -102) T) ((-639 . -610) 15497) ((-639 . -609) 15409) ((-579 . -1143) T) ((-517 . -1143) T) ((-1139 . -488) 15393) ((-1193 . -1092) 15371) ((-1134 . -25) T) ((-1134 . -21) T) ((-1271 . -612) 15320) ((-473 . -1051) T) ((-1213 . -1092) T) ((-1220 . -787) NIL) ((-1220 . -790) NIL) ((-994 . -845) 15299) ((-833 . -1092) T) ((-814 . -609) 15281) ((-861 . -21) T) ((-861 . -25) T) ((-794 . -721) T) ((-173 . -1211) T) ((-579 . -38) 15246) ((-517 . -38) 15211) ((-385 . -609) 15193) ((-323 . -609) 15175) ((-168 . -285) 15133) ((-63 . -1207) T) ((-112 . -102) T) ((-867 . -1092) T) ((-173 . -554) T) ((-709 . -712) 15103) ((-293 . -130) 14986) ((-224 . -609) 14968) ((-224 . -610) 14898) ((-998 . -635) 14837) ((-1271 . -1044) T) ((-1112 . -146) T) ((-628 . -1183) 14812) ((-726 . -904) 14791) ((-590 . -34) T) ((-641 . -107) 14775) ((-628 . -107) 14721) ((-1229 . -285) 14648) ((-726 . -642) 14573) ((-294 . -1207) T) ((-1170 . -1033) 14469) ((-938 . -614) 14446) ((-575 . -574) T) ((-575 . -526) T) ((-528 . -526) T) ((-1159 . -904) NIL) ((-1055 . -610) 14361) ((-1055 . -609) 14343) ((-947 . -609) 14325) ((-708 . -489) 14275) ((-342 . -102) T) ((-250 . -1050) 14172) ((-249 . -1050) 14069) ((-393 . -102) T) ((-31 . -1092) T) ((-947 . -610) 13930) ((-708 . -609) 13865) ((-1269 . -1200) 13834) ((-480 . -609) 13816) ((-480 . -610) 13677) ((-246 . -410) 13661) ((-263 . -410) 13645) ((-250 . -111) 13535) ((-249 . -111) 13425) ((-1166 . -642) 13350) ((-1165 . -642) 13247) ((-1159 . -642) 13099) ((-1118 . -642) 13024) ((-350 . -130) T) ((-82 . -440) T) ((-82 . -394) T) ((-998 . -25) T) ((-998 . -21) T) ((-868 . -1092) 12975) ((-867 . -712) 12927) ((-378 . -289) T) ((-168 . -997) 12879) ((-688 . -386) T) ((-994 . -992) 12863) ((-695 . -1104) T) ((-688 . -165) 12845) ((-1240 . -1092) T) ((-1219 . -1092) T) ((-315 . -1192) 12824) ((-315 . -1195) 12803) ((-1156 . -102) T) ((-315 . -954) 12782) ((-133 . -1104) T) ((-116 . -1104) T) ((-598 . -1254) 12766) ((-695 . -23) T) ((-598 . -1092) 12716) ((-315 . -95) 12695) ((-91 . -513) 12628) ((-173 . -362) T) ((-250 . -612) 12358) ((-249 . -612) 12088) ((-315 . -35) 12067) ((-604 . -488) 12001) ((-133 . -23) T) ((-116 . -23) T) ((-961 . -102) T) ((-713 . -1092) T) ((-474 . -488) 11938) ((-406 . -635) 11886) ((-647 . -1033) 11782) ((-953 . -488) 11766) ((-354 . -1051) T) ((-351 . -1051) T) ((-343 . -1051) T) ((-263 . -1051) T) ((-246 . -1051) T) ((-866 . -610) NIL) ((-866 . -609) 11748) ((-1267 . -489) 11729) ((-1266 . -489) 11710) ((-1279 . -21) T) ((-1267 . -609) 11676) ((-1266 . -609) 11642) ((-569 . -997) T) ((-726 . -721) T) ((-1279 . -25) T) ((-250 . -1044) 11572) ((-249 . -1044) 11502) ((-72 . -1207) T) ((-250 . -232) 11454) ((-249 . -232) 11406) ((-40 . -102) T) ((-905 . -1051) T) ((-128 . -488) 11388) ((-1173 . -102) T) ((-1166 . -721) T) ((-1165 . -721) T) ((-1159 . -721) T) ((-1159 . -786) NIL) ((-1159 . -789) NIL) ((-949 . -102) T) ((-916 . -102) T) ((-1118 . -721) T) ((-766 . -102) T) ((-666 . -102) T) ((-545 . -609) 11370) ((-473 . -1092) T) ((-338 . -1104) T) ((-173 . -1104) T) ((-318 . -915) 11349) ((-1240 . -712) 11190) ((-867 . -171) T) ((-1219 . -712) 11004) ((-838 . -21) 10956) ((-838 . -25) 10908) ((-244 . -1141) 10892) ((-126 . -513) 10825) ((-406 . -25) T) ((-406 . -21) T) ((-338 . -23) T) ((-168 . -610) 10591) ((-168 . -609) 10573) ((-173 . -23) T) ((-639 . -287) 10550) ((-519 . -34) T) ((-893 . -609) 10532) ((-89 . -1207) T) ((-836 . -609) 10514) ((-803 . -609) 10496) ((-764 . -609) 10478) ((-671 . -609) 10460) ((-239 . -642) 10308) ((-1168 . -1092) T) ((-1164 . -1050) 10131) ((-1142 . -1207) T) ((-1117 . -1050) 9974) ((-849 . -1050) 9958) ((-1223 . -614) 9942) ((-1164 . -111) 9751) ((-1117 . -111) 9580) ((-849 . -111) 9559) ((-1229 . -610) NIL) ((-1229 . -609) 9541) ((-342 . -1143) T) ((-850 . -609) 9523) ((-1068 . -285) 9502) ((-80 . -1207) T) ((-999 . -904) NIL) ((-604 . -285) 9478) ((-1193 . -513) 9411) ((-486 . -1207) T) ((-569 . -609) 9393) ((-474 . -285) 9372) ((-516 . -93) T) ((-216 . -1207) T) ((-1079 . -230) 9356) ((-999 . -642) 9306) ((-288 . -915) T) ((-812 . -306) 9285) ((-865 . -102) T) ((-777 . -230) 9269) ((-953 . -285) 9246) ((-909 . -642) 9198) ((-631 . -21) T) ((-631 . -25) T) ((-603 . -21) T) ((-546 . -102) T) ((-342 . -38) 9163) ((-688 . -719) 9130) ((-486 . -879) 9112) ((-486 . -881) 9094) ((-473 . -712) 8935) ((-216 . -879) 8917) ((-64 . -1207) T) ((-216 . -881) 8899) ((-603 . -25) T) ((-426 . -642) 8873) ((-1164 . -612) 8642) ((-486 . -1033) 8602) ((-867 . -513) 8514) ((-1117 . -612) 8306) ((-849 . -612) 8224) ((-216 . -1033) 8184) ((-239 . -34) T) ((-995 . -1092) 8162) ((-1240 . -171) 8093) ((-1219 . -171) 8024) ((-707 . -144) 8003) ((-707 . -146) 7982) ((-695 . -130) T) ((-135 . -464) 7959) ((-1139 . -609) 7891) ((-652 . -650) 7875) ((-128 . -285) 7850) ((-116 . -130) T) ((-476 . -1211) T) ((-604 . -600) 7826) ((-474 . -600) 7805) ((-335 . -334) 7774) ((-535 . -1092) T) ((-476 . -554) T) ((-1164 . -1044) T) ((-1117 . -1044) T) ((-849 . -1044) T) ((-239 . -786) 7753) ((-239 . -789) 7704) ((-239 . -788) 7683) ((-1164 . -325) 7660) ((-239 . -721) 7570) ((-953 . -19) 7554) ((-486 . -376) 7536) ((-486 . -337) 7518) ((-1117 . -325) 7490) ((-353 . -1263) 7467) ((-216 . -376) 7449) ((-216 . -337) 7431) ((-953 . -600) 7408) ((-1164 . -232) T) ((-658 . -1092) T) ((-640 . -1092) T) ((-1252 . -1092) T) ((-1180 . -1092) T) ((-1079 . -252) 7345) ((-354 . -1092) T) ((-351 . -1092) T) ((-343 . -1092) T) ((-263 . -1092) T) ((-246 . -1092) T) ((-84 . -1207) T) ((-127 . -102) 7323) ((-121 . -102) 7301) ((-1180 . -606) 7280) ((-478 . -1092) T) ((-1133 . -1092) T) ((-478 . -606) 7259) ((-250 . -790) 7210) ((-250 . -787) 7161) ((-249 . -790) 7112) ((-40 . -1143) NIL) ((-249 . -787) 7063) ((-1107 . -612) 7044) ((-128 . -19) 7026) ((-1072 . -915) 6977) ((-999 . -789) T) ((-999 . -786) T) ((-999 . -721) T) ((-966 . -789) T) ((-128 . -600) 6952) ((-909 . -721) T) ((-91 . -488) 6936) ((-486 . -895) NIL) ((-905 . -1092) T) ((-224 . -1050) 6901) ((-867 . -289) T) ((-216 . -895) NIL) ((-828 . -1104) 6880) ((-59 . -1092) 6830) ((-518 . -1092) 6808) ((-515 . -1092) 6758) ((-496 . -1092) 6736) ((-495 . -1092) 6686) ((-578 . -102) T) ((-562 . -102) T) ((-494 . -102) T) ((-473 . -171) 6617) ((-358 . -915) T) ((-352 . -915) T) ((-344 . -915) T) ((-224 . -111) 6573) ((-828 . -23) 6525) ((-426 . -721) T) ((-108 . -915) T) ((-40 . -38) 6470) ((-108 . -815) T) ((-579 . -348) T) ((-517 . -348) T) ((-1219 . -513) 6330) ((-315 . -451) 6309) ((-312 . -451) T) ((-887 . -609) 6291) ((-831 . -285) 6270) ((-338 . -130) T) ((-173 . -130) T) ((-293 . -25) 6134) ((-293 . -21) 6017) ((-45 . -1183) 5996) ((-66 . -609) 5978) ((-55 . -102) T) ((-598 . -513) 5911) ((-45 . -107) 5861) ((-814 . -612) 5845) ((-1094 . -424) 5829) ((-1094 . -367) 5808) ((-385 . -612) 5792) ((-323 . -612) 5776) ((-1056 . -1207) T) ((-1055 . -1050) 5763) ((-947 . -1050) 5606) ((-1257 . -102) T) ((-1256 . -102) 5556) ((-1055 . -111) 5541) ((-480 . -1050) 5384) ((-658 . -712) 5368) ((-947 . -111) 5197) ((-224 . -612) 5147) ((-476 . -362) T) ((-354 . -712) 5099) ((-351 . -712) 5051) ((-343 . -712) 5003) ((-263 . -712) 4852) ((-246 . -712) 4701) ((-1248 . -642) 4626) ((-1220 . -904) NIL) ((-1088 . -93) T) ((-1082 . -93) T) ((-938 . -645) 4610) ((-1066 . -93) T) ((-480 . -111) 4439) ((-1059 . -93) T) ((-1031 . -93) T) ((-938 . -372) 4423) ((-247 . -102) T) ((-1014 . -93) T) ((-74 . -609) 4405) ((-958 . -47) 4384) ((-705 . -102) T) ((-693 . -102) T) ((-1 . -1092) T) ((-617 . -1104) T) ((-1241 . -642) 4281) ((-622 . -93) T) ((-1188 . -609) 4263) ((-1080 . -609) 4245) ((-126 . -488) 4229) ((-482 . -93) T) ((-1068 . -609) 4211) ((-389 . -23) T) ((-87 . -1207) T) ((-217 . -93) T) ((-1220 . -642) 4063) ((-905 . -712) 4028) ((-617 . -23) T) ((-604 . -609) 4010) ((-604 . -610) NIL) ((-474 . -610) NIL) ((-474 . -609) 3992) ((-510 . -1092) T) ((-506 . -1092) T) ((-350 . -25) T) ((-350 . -21) T) ((-127 . -308) 3930) ((-121 . -308) 3868) ((-593 . -642) 3855) ((-224 . -1044) T) ((-592 . -642) 3780) ((-378 . -997) T) ((-224 . -242) T) ((-224 . -232) T) ((-1055 . -612) 3752) ((-1055 . -614) 3733) ((-953 . -610) 3694) ((-953 . -609) 3606) ((-947 . -612) 3395) ((-865 . -38) 3382) ((-708 . -612) 3332) ((-1240 . -289) 3283) ((-1219 . -289) 3234) ((-480 . -612) 3019) ((-1112 . -451) T) ((-501 . -845) T) ((-315 . -1131) 2998) ((-994 . -146) 2977) ((-994 . -144) 2956) ((-494 . -308) 2943) ((-294 . -1183) 2922) ((-1175 . -609) 2904) ((-1174 . -609) 2886) ((-866 . -1050) 2831) ((-476 . -1104) T) ((-138 . -830) 2813) ((-619 . -102) T) ((-1193 . -488) 2797) ((-250 . -367) 2776) ((-249 . -367) 2755) ((-1055 . -1044) T) ((-294 . -107) 2705) ((-128 . -610) NIL) ((-128 . -609) 2671) ((-117 . -102) T) ((-947 . -1044) T) ((-866 . -111) 2600) ((-476 . -23) T) ((-480 . -1044) T) ((-1055 . -232) T) ((-947 . -325) 2569) ((-480 . -325) 2526) ((-354 . -171) T) ((-351 . -171) T) ((-343 . -171) T) ((-263 . -171) 2437) ((-246 . -171) 2348) ((-958 . -1033) 2244) ((-516 . -489) 2225) ((-730 . -1033) 2196) ((-516 . -609) 2162) ((-1097 . -102) T) ((-1084 . -609) 2129) ((-1029 . -609) 2111) ((-1269 . -150) 2095) ((-1267 . -612) 2076) ((-1261 . -609) 2058) ((-1248 . -721) T) ((-1241 . -721) T) ((-1220 . -786) NIL) ((-1220 . -789) NIL) ((-168 . -1050) 1968) ((-905 . -171) T) ((-866 . -612) 1898) ((-1220 . -721) T) ((-1266 . -612) 1879) ((-998 . -341) 1853) ((-995 . -513) 1786) ((-838 . -845) 1765) ((-562 . -1143) T) ((-473 . -289) 1716) ((-593 . -721) T) ((-360 . -609) 1698) ((-321 . -609) 1680) ((-417 . -1033) 1576) ((-592 . -721) T) ((-406 . -845) 1527) ((-168 . -111) 1423) ((-828 . -130) 1375) ((-732 . -150) 1359) ((-1256 . -308) 1297) ((-486 . -306) T) ((-378 . -609) 1264) ((-519 . -1005) 1248) ((-378 . -610) 1162) ((-216 . -306) T) ((-140 . -150) 1144) ((-709 . -285) 1123) ((-486 . -1017) T) ((-578 . -38) 1110) ((-562 . -38) 1097) ((-494 . -38) 1062) ((-216 . -1017) T) ((-866 . -1044) T) ((-831 . -609) 1044) ((-822 . -609) 1026) ((-820 . -609) 1008) ((-811 . -904) 987) ((-1280 . -1104) T) ((-1229 . -1050) 810) ((-850 . -1050) 794) ((-866 . -242) T) ((-866 . -232) NIL) ((-683 . -1207) T) ((-1280 . -23) T) ((-811 . -642) 719) ((-548 . -1207) T) ((-417 . -337) 703) ((-569 . -1050) 690) ((-1229 . -111) 499) ((-695 . -635) 481) ((-850 . -111) 460) ((-380 . -23) T) ((-168 . -612) 238) ((-1180 . -513) 30) ((-656 . -1092) T) ((-675 . -1092) T) ((-670 . -1092) T))
\ No newline at end of file +(-4032 (|has| |#1| (-846)) (|has| |#1| (-1093))) +((($ $) . T) ((#0=(-860 |#1|) $) . T) ((#0# |#2|) . T)) +((($ $) . T) ((|#2| $) |has| |#1| (-233)) ((|#2| |#1|) |has| |#1| (-233)) ((|#3| |#1|) . T) ((|#3| $) . T)) +(((-478 . -1093) T) ((-264 . -514) 161982) ((-247 . -514) 161925) ((-245 . -1093) 161875) ((-570 . -111) 161860) ((-531 . -23) T) ((-138 . -1093) T) ((-137 . -1093) T) ((-117 . -309) 161817) ((-133 . -1093) T) ((-479 . -514) 161609) ((-672 . -613) 161593) ((-689 . -102) T) ((-1134 . -514) 161512) ((-390 . -131) T) ((-1270 . -972) 161481) ((-31 . -93) T) ((-599 . -489) 161465) ((-618 . -131) T) ((-815 . -842) T) ((-523 . -57) 161415) ((-59 . -514) 161348) ((-519 . -514) 161281) ((-418 . -896) 161240) ((-169 . -1045) T) ((-516 . -514) 161173) ((-497 . -514) 161106) ((-496 . -514) 161039) ((-795 . -1034) 160822) ((-694 . -38) 160787) ((-1230 . -613) 160535) ((-343 . -349) T) ((-1087 . -1086) 160519) ((-1087 . -1093) 160497) ((-851 . -613) 160394) ((-169 . -243) 160345) ((-169 . -233) 160296) ((-1087 . -1088) 160254) ((-868 . -286) 160212) ((-225 . -791) T) ((-225 . -788) T) ((-689 . -284) NIL) ((-570 . -613) 160184) ((-1143 . -1184) 160163) ((-407 . -988) 160147) ((-696 . -21) T) ((-696 . -25) T) ((-1272 . -643) 160121) ((-316 . -160) 160100) ((-316 . -143) 160079) ((-1143 . -107) 160029) ((-134 . -25) T) ((-40 . -231) 160006) ((-116 . -21) T) ((-116 . -25) T) ((-605 . -288) 159982) ((-475 . -288) 159961) ((-1230 . -326) 159938) ((-1230 . -1045) T) ((-851 . -1045) T) ((-795 . -338) 159922) ((-139 . -185) T) ((-117 . -1144) NIL) ((-91 . -610) 159854) ((-477 . -131) T) ((-1230 . -233) T) ((-1089 . -490) 159835) ((-1089 . -610) 159801) ((-1083 . -490) 159782) ((-1083 . -610) 159748) ((-591 . -1208) T) ((-1067 . -490) 159729) ((-570 . -1045) T) ((-1067 . -610) 159695) ((-657 . -713) 159679) ((-1060 . -490) 159660) ((-1060 . -610) 159626) ((-954 . -288) 159603) ((-60 . -34) T) ((-1056 . -791) T) ((-1056 . -788) T) ((-1032 . -490) 159584) ((-1015 . -490) 159565) ((-812 . -722) T) ((-727 . -47) 159530) ((-620 . -38) 159517) ((-355 . -290) T) ((-352 . -290) T) ((-344 . -290) T) ((-264 . -290) 159448) ((-247 . -290) 159379) ((-1032 . -610) 159345) ((-1020 . -102) T) ((-1015 . -610) 159311) ((-623 . -490) 159292) ((-413 . -722) T) ((-117 . -38) 159237) ((-483 . -490) 159218) ((-623 . -610) 159184) ((-413 . -473) T) ((-218 . -490) 159165) ((-483 . -610) 159131) ((-354 . -102) T) ((-218 . -610) 159097) ((-1202 . -1052) T) ((-707 . -1052) T) ((-1167 . -47) 159074) ((-1166 . -47) 159044) ((-1160 . -47) 159021) ((-128 . -288) 158996) ((-1031 . -151) 158942) ((-906 . -290) T) ((-1119 . -47) 158914) ((-689 . -309) NIL) ((-515 . -610) 158896) ((-510 . -610) 158878) ((-508 . -610) 158860) ((-327 . -1093) 158810) ((-708 . -452) 158741) ((-48 . -102) T) ((-1241 . -286) 158726) ((-1220 . -286) 158646) ((-640 . -661) 158630) ((-640 . -646) 158614) ((-339 . -21) T) ((-339 . -25) T) ((-40 . -349) NIL) ((-174 . -21) T) ((-174 . -25) T) ((-640 . -373) 158598) ((-602 . -490) 158580) ((-599 . -286) 158557) ((-602 . -610) 158524) ((-388 . -102) T) ((-1113 . -143) T) ((-126 . -610) 158456) ((-870 . -1093) T) ((-653 . -411) 158440) ((-710 . -610) 158422) ((-249 . -610) 158389) ((-187 . -610) 158371) ((-162 . -610) 158353) ((-157 . -610) 158335) ((-1272 . -722) T) ((-1095 . -34) T) ((-867 . -791) NIL) ((-867 . -788) NIL) ((-854 . -846) T) ((-727 . -882) NIL) ((-1281 . -131) T) ((-381 . -131) T) ((-888 . -613) 158303) ((-900 . -102) T) ((-727 . -1034) 158179) ((-531 . -131) T) ((-1080 . -411) 158163) ((-996 . -489) 158147) ((-117 . -400) 158124) ((-1160 . -1208) 158103) ((-778 . -411) 158087) ((-776 . -411) 158071) ((-939 . -34) T) ((-689 . -1144) NIL) ((-251 . -643) 157906) ((-250 . -643) 157728) ((-813 . -916) 157707) ((-454 . -411) 157691) ((-599 . -19) 157675) ((-1139 . -1201) 157644) ((-1160 . -882) NIL) ((-1160 . -880) 157596) ((-599 . -601) 157573) ((-1194 . -610) 157505) ((-1168 . -610) 157487) ((-62 . -395) T) ((-1166 . -1034) 157422) ((-1160 . -1034) 157388) ((-689 . -38) 157338) ((-474 . -286) 157323) ((-1214 . -610) 157305) ((-727 . -377) 157289) ((-834 . -610) 157271) ((-653 . -1052) T) ((-1241 . -998) 157237) ((-1220 . -998) 157203) ((-1081 . -613) 157187) ((-1057 . -1184) 157162) ((-1069 . -613) 157139) ((-868 . -611) 156946) ((-868 . -610) 156928) ((-1181 . -489) 156865) ((-418 . -1018) 156843) ((-48 . -309) 156830) ((-1057 . -107) 156776) ((-479 . -489) 156713) ((-520 . -1208) T) ((-1160 . -338) 156665) ((-1134 . -489) 156636) ((-1160 . -377) 156588) ((-1080 . -1052) T) ((-437 . -102) T) ((-183 . -1093) T) ((-251 . -34) T) ((-250 . -34) T) ((-778 . -1052) T) ((-776 . -1052) T) ((-727 . -896) 156565) ((-454 . -1052) T) ((-59 . -489) 156549) ((-1030 . -1051) 156523) ((-519 . -489) 156507) ((-516 . -489) 156491) ((-497 . -489) 156475) ((-496 . -489) 156459) ((-245 . -514) 156392) ((-1030 . -111) 156359) ((-1167 . -896) 156272) ((-1166 . -896) 156178) ((-1160 . -896) 156011) ((-1119 . -896) 155995) ((-665 . -1105) T) ((-354 . -1144) T) ((-641 . -93) T) ((-322 . -1051) 155977) ((-251 . -787) 155956) ((-251 . -790) 155907) ((-31 . -490) 155888) ((-251 . -789) 155867) ((-250 . -787) 155846) ((-250 . -790) 155797) ((-250 . -789) 155776) ((-31 . -610) 155742) ((-50 . -1052) T) ((-251 . -722) 155652) ((-250 . -722) 155562) ((-1202 . -1093) T) ((-665 . -23) T) ((-580 . -1052) T) ((-518 . -1052) T) ((-379 . -1051) 155527) ((-322 . -111) 155502) ((-73 . -383) T) ((-73 . -395) T) ((-1020 . -38) 155439) ((-689 . -400) 155421) ((-99 . -102) T) ((-707 . -1093) T) ((-999 . -145) 155393) ((-999 . -147) 155365) ((-379 . -111) 155321) ((-319 . -1212) 155300) ((-474 . -998) 155266) ((-354 . -38) 155231) ((-40 . -370) 155203) ((-869 . -610) 155075) ((-127 . -125) 155059) ((-121 . -125) 155043) ((-832 . -1051) 155013) ((-829 . -21) 154965) ((-823 . -1051) 154949) ((-829 . -25) 154901) ((-319 . -555) 154852) ((-517 . -613) 154833) ((-563 . -824) T) ((-240 . -1208) T) ((-1030 . -613) 154802) ((-832 . -111) 154767) ((-823 . -111) 154746) ((-1241 . -610) 154728) ((-1220 . -610) 154710) ((-1220 . -611) 154381) ((-1165 . -905) 154360) ((-1118 . -905) 154339) ((-48 . -38) 154304) ((-1279 . -1105) T) ((-599 . -610) 154216) ((-599 . -611) 154177) ((-1277 . -1105) T) ((-361 . -613) 154161) ((-322 . -613) 154145) ((-240 . -1034) 153972) ((-1165 . -643) 153897) ((-1118 . -643) 153822) ((-850 . -643) 153796) ((-714 . -610) 153778) ((-546 . -368) T) ((-1279 . -23) T) ((-1277 . -23) T) ((-491 . -1093) T) ((-379 . -613) 153728) ((-379 . -615) 153710) ((-1030 . -1045) T) ((-861 . -102) T) ((-1181 . -286) 153689) ((-169 . -368) 153640) ((-1000 . -1208) T) ((-832 . -613) 153594) ((-823 . -613) 153549) ((-44 . -23) T) ((-479 . -286) 153528) ((-584 . -1093) T) ((-1139 . -1102) 153497) ((-1097 . -1096) 153449) ((-390 . -21) T) ((-390 . -25) T) ((-152 . -1105) T) ((-1285 . -102) T) ((-1000 . -880) 153431) ((-1000 . -882) 153413) ((-1202 . -713) 153310) ((-620 . -231) 153294) ((-618 . -21) T) ((-289 . -555) T) ((-618 . -25) T) ((-1188 . -1093) T) ((-707 . -713) 153259) ((-240 . -377) 153228) ((-1000 . -1034) 153188) ((-379 . -1045) T) ((-223 . -1052) T) ((-117 . -231) 153165) ((-59 . -286) 153142) ((-152 . -23) T) ((-516 . -286) 153119) ((-327 . -514) 153052) ((-496 . -286) 153029) ((-379 . -243) T) ((-379 . -233) T) ((-832 . -1045) T) ((-823 . -1045) T) ((-708 . -945) 152998) ((-696 . -846) T) ((-474 . -610) 152980) ((-823 . -233) 152959) ((-134 . -846) T) ((-653 . -1093) T) ((-1181 . -601) 152938) ((-549 . -1184) 152917) ((-336 . -1093) T) ((-319 . -363) 152896) ((-407 . -147) 152875) ((-407 . -145) 152854) ((-960 . -1105) 152753) ((-240 . -896) 152685) ((-811 . -1105) 152595) ((-649 . -848) 152579) ((-479 . -601) 152558) ((-549 . -107) 152508) ((-1000 . -377) 152490) ((-1000 . -338) 152472) ((-97 . -1093) T) ((-960 . -23) 152283) ((-477 . -21) T) ((-477 . -25) T) ((-811 . -23) 152153) ((-1169 . -610) 152135) ((-59 . -19) 152119) ((-1169 . -611) 152041) ((-1165 . -722) T) ((-1118 . -722) T) ((-516 . -19) 152025) ((-496 . -19) 152009) ((-59 . -601) 151986) ((-1080 . -1093) T) ((-897 . -102) 151964) ((-850 . -722) T) ((-778 . -1093) T) ((-516 . -601) 151941) ((-496 . -601) 151918) ((-776 . -1093) T) ((-776 . -1059) 151885) ((-461 . -1093) T) ((-454 . -1093) T) ((-584 . -713) 151860) ((-644 . -1093) T) ((-1249 . -47) 151837) ((-1243 . -102) T) ((-1242 . -47) 151807) ((-1221 . -47) 151784) ((-1202 . -172) 151735) ((-1166 . -307) 151714) ((-1000 . -896) NIL) ((-1160 . -307) 151693) ((-624 . -1105) T) ((-665 . -131) T) ((-1089 . -613) 151674) ((-1083 . -613) 151655) ((-1073 . -555) 151606) ((-1073 . -1212) 151557) ((-1067 . -613) 151538) ((-275 . -1093) T) ((-85 . -441) T) ((-85 . -395) T) ((-1060 . -613) 151519) ((-1032 . -613) 151500) ((-50 . -1093) T) ((-1015 . -613) 151481) ((-707 . -172) T) ((-593 . -47) 151458) ((-225 . -643) 151423) ((-580 . -1093) T) ((-518 . -1093) T) ((-359 . -1212) T) ((-353 . -1212) T) ((-345 . -1212) T) ((-487 . -816) T) ((-487 . -916) T) ((-319 . -1105) T) ((-108 . -1212) T) ((-710 . -1051) 151393) ((-339 . -846) T) ((-217 . -916) T) ((-217 . -816) T) ((-623 . -613) 151374) ((-359 . -555) T) ((-353 . -555) T) ((-345 . -555) T) ((-483 . -613) 151355) ((-108 . -555) T) ((-653 . -713) 151325) ((-1160 . -1018) NIL) ((-218 . -613) 151306) ((-319 . -23) T) ((-67 . -1208) T) ((-996 . -610) 151238) ((-689 . -231) 151220) ((-710 . -111) 151185) ((-640 . -34) T) ((-245 . -489) 151169) ((-1095 . -1091) 151153) ((-171 . -1093) T) ((-948 . -905) 151132) ((-515 . -613) 151116) ((-1285 . -1144) T) ((-1281 . -21) T) ((-481 . -905) 151095) ((-1281 . -25) T) ((-1279 . -131) T) ((-1277 . -131) T) ((-1270 . -102) T) ((-1253 . -610) 151061) ((-1242 . -1034) 150996) ((-1080 . -713) 150845) ((-1056 . -643) 150832) ((-948 . -643) 150757) ((-778 . -713) 150586) ((-536 . -610) 150568) ((-536 . -611) 150549) ((-776 . -713) 150398) ((-1221 . -1208) 150377) ((-1070 . -102) T) ((-381 . -25) T) ((-381 . -21) T) ((-481 . -643) 150302) ((-461 . -713) 150273) ((-454 . -713) 150122) ((-983 . -102) T) ((-1221 . -882) NIL) ((-1221 . -880) 150074) ((-1181 . -611) NIL) ((-733 . -102) T) ((-1181 . -610) 150056) ((-602 . -613) 150038) ((-1135 . -1116) 149983) ((-1042 . -1201) 149912) ((-531 . -25) T) ((-897 . -309) 149850) ((-710 . -613) 149804) ((-343 . -1052) T) ((-641 . -490) 149785) ((-141 . -102) T) ((-44 . -131) T) ((-289 . -1105) T) ((-676 . -93) T) ((-671 . -93) T) ((-659 . -610) 149767) ((-641 . -610) 149720) ((-478 . -93) T) ((-355 . -610) 149702) ((-352 . -610) 149684) ((-344 . -610) 149666) ((-264 . -611) 149414) ((-264 . -610) 149396) ((-247 . -610) 149378) ((-247 . -611) 149239) ((-133 . -93) T) ((-138 . -93) T) ((-137 . -93) T) ((-1221 . -1034) 149205) ((-1202 . -514) 149172) ((-1134 . -610) 149154) ((-815 . -853) T) ((-815 . -722) T) ((-599 . -288) 149131) ((-580 . -713) 149096) ((-479 . -611) NIL) ((-479 . -610) 149078) ((-518 . -713) 149023) ((-316 . -102) T) ((-313 . -102) T) ((-289 . -23) T) ((-152 . -131) T) ((-906 . -610) 149005) ((-386 . -722) T) ((-868 . -1051) 148957) ((-906 . -611) 148939) ((-868 . -111) 148877) ((-710 . -1045) T) ((-708 . -1233) 148861) ((-139 . -102) T) ((-136 . -102) T) ((-114 . -102) T) ((-689 . -349) NIL) ((-519 . -610) 148793) ((-379 . -791) T) ((-223 . -1093) T) ((-379 . -788) T) ((-225 . -790) T) ((-225 . -787) T) ((-59 . -611) 148754) ((-59 . -610) 148666) ((-225 . -722) T) ((-516 . -611) 148627) ((-516 . -610) 148539) ((-497 . -610) 148471) ((-496 . -611) 148432) ((-496 . -610) 148344) ((-1073 . -363) 148295) ((-40 . -411) 148272) ((-77 . -1208) T) ((-867 . -905) NIL) ((-359 . -329) 148256) ((-359 . -363) T) ((-353 . -329) 148240) ((-353 . -363) T) ((-345 . -329) 148224) ((-345 . -363) T) ((-316 . -284) 148203) ((-108 . -363) T) ((-70 . -1208) T) ((-1221 . -338) 148155) ((-867 . -643) 148100) ((-1221 . -377) 148052) ((-960 . -131) 147907) ((-811 . -131) 147777) ((-954 . -646) 147761) ((-1080 . -172) 147672) ((-954 . -373) 147656) ((-1056 . -790) T) ((-1056 . -787) T) ((-868 . -613) 147554) ((-778 . -172) 147445) ((-776 . -172) 147356) ((-812 . -47) 147318) ((-1056 . -722) T) ((-327 . -489) 147302) ((-948 . -722) T) ((-454 . -172) 147213) ((-245 . -286) 147190) ((-1270 . -309) 147128) ((-481 . -722) T) ((-1249 . -896) 147041) ((-1242 . -896) 146947) ((-1241 . -1051) 146782) ((-1221 . -896) 146615) ((-1220 . -1051) 146423) ((-1202 . -290) 146402) ((-1176 . -368) T) ((-1175 . -368) T) ((-1139 . -151) 146386) ((-1113 . -102) T) ((-1111 . -1093) T) ((-1073 . -23) T) ((-1068 . -102) T) ((-923 . -951) T) ((-733 . -309) 146324) ((-75 . -1208) T) ((-30 . -951) T) ((-169 . -905) 146277) ((-659 . -382) 146249) ((-112 . -840) T) ((-1 . -610) 146231) ((-1073 . -1105) T) ((-128 . -646) 146213) ((-50 . -617) 146197) ((-999 . -409) 146169) ((-593 . -896) 146082) ((-438 . -102) T) ((-141 . -309) NIL) ((-128 . -373) 146064) ((-868 . -1045) T) ((-829 . -846) 146043) ((-81 . -1208) T) ((-707 . -290) T) ((-40 . -1052) T) ((-580 . -172) T) ((-518 . -172) T) ((-511 . -610) 146025) ((-169 . -643) 145935) ((-507 . -610) 145917) ((-351 . -147) 145899) ((-351 . -145) T) ((-359 . -1105) T) ((-353 . -1105) T) ((-345 . -1105) T) ((-1000 . -307) T) ((-910 . -307) T) ((-868 . -243) T) ((-108 . -1105) T) ((-868 . -233) 145878) ((-1241 . -111) 145699) ((-1220 . -111) 145488) ((-245 . -1245) 145472) ((-563 . -844) T) ((-359 . -23) T) ((-354 . -349) T) ((-316 . -309) 145459) ((-313 . -309) 145400) ((-353 . -23) T) ((-319 . -131) T) ((-345 . -23) T) ((-1000 . -1018) T) ((-31 . -613) 145381) ((-108 . -23) T) ((-245 . -601) 145358) ((-1243 . -38) 145250) ((-1230 . -905) 145229) ((-112 . -1093) T) ((-1031 . -102) T) ((-1230 . -643) 145154) ((-867 . -790) NIL) ((-851 . -643) 145128) ((-867 . -787) NIL) ((-812 . -882) NIL) ((-867 . -722) T) ((-1080 . -514) 145001) ((-778 . -514) 144948) ((-776 . -514) 144900) ((-570 . -643) 144887) ((-812 . -1034) 144715) ((-454 . -514) 144658) ((-388 . -389) T) ((-1241 . -613) 144471) ((-1220 . -613) 144219) ((-60 . -1208) T) ((-618 . -846) 144198) ((-500 . -656) T) ((-1139 . -972) 144167) ((-999 . -452) T) ((-694 . -844) T) ((-510 . -788) T) ((-474 . -1051) 144002) ((-343 . -1093) T) ((-313 . -1144) NIL) ((-289 . -131) T) ((-394 . -1093) T) ((-689 . -370) 143969) ((-866 . -1052) T) ((-223 . -617) 143946) ((-327 . -286) 143923) ((-474 . -111) 143744) ((-1241 . -1045) T) ((-1220 . -1045) T) ((-812 . -377) 143728) ((-169 . -722) T) ((-649 . -102) T) ((-1241 . -243) 143707) ((-1241 . -233) 143659) ((-1220 . -233) 143564) ((-1220 . -243) 143543) ((-999 . -402) NIL) ((-665 . -636) 143491) ((-316 . -38) 143401) ((-313 . -38) 143330) ((-69 . -610) 143312) ((-319 . -493) 143278) ((-1181 . -288) 143257) ((-1215 . -846) T) ((-1106 . -1105) 143167) ((-83 . -1208) T) ((-61 . -610) 143149) ((-479 . -288) 143128) ((-1272 . -1034) 143105) ((-1157 . -1093) T) ((-1106 . -23) 142975) ((-812 . -896) 142911) ((-1230 . -722) T) ((-1095 . -1208) T) ((-474 . -613) 142737) ((-1080 . -290) 142668) ((-962 . -1093) T) ((-889 . -102) T) ((-778 . -290) 142579) ((-327 . -19) 142563) ((-59 . -288) 142540) ((-776 . -290) 142471) ((-851 . -722) T) ((-117 . -844) NIL) ((-516 . -288) 142448) ((-327 . -601) 142425) ((-496 . -288) 142402) ((-454 . -290) 142333) ((-1031 . -309) 142184) ((-676 . -490) 142165) ((-570 . -722) T) ((-671 . -490) 142146) ((-676 . -610) 142096) ((-671 . -610) 142062) ((-657 . -610) 142044) ((-478 . -490) 142025) ((-478 . -610) 141991) ((-245 . -611) 141952) ((-245 . -490) 141929) ((-138 . -490) 141910) ((-137 . -490) 141891) ((-133 . -490) 141872) ((-245 . -610) 141764) ((-213 . -102) T) ((-138 . -610) 141730) ((-137 . -610) 141696) ((-133 . -610) 141662) ((-1140 . -34) T) ((-939 . -1208) T) ((-343 . -713) 141607) ((-665 . -25) T) ((-665 . -21) T) ((-1169 . -613) 141588) ((-474 . -1045) T) ((-632 . -417) 141553) ((-604 . -417) 141518) ((-1113 . -1144) T) ((-580 . -290) T) ((-518 . -290) T) ((-1242 . -307) 141497) ((-474 . -233) 141449) ((-474 . -243) 141428) ((-1221 . -307) 141407) ((-1221 . -1018) NIL) ((-1073 . -131) T) ((-868 . -791) 141386) ((-144 . -102) T) ((-40 . -1093) T) ((-868 . -788) 141365) ((-640 . -1006) 141349) ((-579 . -1052) T) ((-563 . -1052) T) ((-495 . -1052) T) ((-407 . -452) T) ((-359 . -131) T) ((-316 . -400) 141333) ((-313 . -400) 141294) ((-353 . -131) T) ((-345 . -131) T) ((-1174 . -1093) T) ((-1113 . -38) 141281) ((-1087 . -610) 141248) ((-108 . -131) T) ((-950 . -1093) T) ((-917 . -1093) T) ((-767 . -1093) T) ((-667 . -1093) T) ((-696 . -147) T) ((-116 . -147) T) ((-1279 . -21) T) ((-1279 . -25) T) ((-1277 . -21) T) ((-1277 . -25) T) ((-659 . -1051) 141232) ((-531 . -846) T) ((-500 . -846) T) ((-355 . -1051) 141184) ((-352 . -1051) 141136) ((-344 . -1051) 141088) ((-251 . -1208) T) ((-250 . -1208) T) ((-264 . -1051) 140931) ((-247 . -1051) 140774) ((-659 . -111) 140753) ((-547 . -840) T) ((-355 . -111) 140691) ((-352 . -111) 140629) ((-344 . -111) 140567) ((-264 . -111) 140396) ((-247 . -111) 140225) ((-813 . -1212) 140204) ((-620 . -411) 140188) ((-44 . -21) T) ((-44 . -25) T) ((-811 . -636) 140094) ((-813 . -555) 140073) ((-251 . -1034) 139900) ((-250 . -1034) 139727) ((-126 . -119) 139711) ((-906 . -1051) 139676) ((-708 . -102) T) ((-694 . -1052) T) ((-536 . -615) 139579) ((-343 . -172) T) ((-88 . -610) 139561) ((-152 . -21) T) ((-152 . -25) T) ((-906 . -111) 139517) ((-40 . -713) 139462) ((-866 . -1093) T) ((-659 . -613) 139439) ((-641 . -613) 139420) ((-355 . -613) 139357) ((-352 . -613) 139294) ((-547 . -1093) T) ((-344 . -613) 139231) ((-327 . -611) 139192) ((-327 . -610) 139104) ((-264 . -613) 138857) ((-247 . -613) 138642) ((-1220 . -788) 138595) ((-1220 . -791) 138548) ((-251 . -377) 138517) ((-250 . -377) 138486) ((-649 . -38) 138456) ((-605 . -34) T) ((-482 . -1105) 138366) ((-475 . -34) T) ((-1106 . -131) 138236) ((-960 . -25) 138047) ((-906 . -613) 137997) ((-870 . -610) 137979) ((-960 . -21) 137934) ((-811 . -21) 137844) ((-811 . -25) 137695) ((-1214 . -368) T) ((-620 . -1052) T) ((-1171 . -555) 137674) ((-1165 . -47) 137651) ((-355 . -1045) T) ((-352 . -1045) T) ((-482 . -23) 137521) ((-344 . -1045) T) ((-247 . -1045) T) ((-264 . -1045) T) ((-1118 . -47) 137493) ((-117 . -1052) T) ((-1030 . -643) 137467) ((-954 . -34) T) ((-355 . -233) 137446) ((-355 . -243) T) ((-352 . -233) 137425) ((-352 . -243) T) ((-344 . -233) 137404) ((-344 . -243) T) ((-247 . -326) 137361) ((-264 . -326) 137333) ((-264 . -233) 137312) ((-1149 . -151) 137296) ((-251 . -896) 137228) ((-250 . -896) 137160) ((-1075 . -846) T) ((-414 . -1105) T) ((-1049 . -23) T) ((-906 . -1045) T) ((-322 . -643) 137142) ((-1020 . -844) T) ((-1202 . -998) 137108) ((-1166 . -916) 137087) ((-1160 . -916) 137066) ((-1160 . -816) NIL) ((-906 . -243) T) ((-813 . -363) 137045) ((-385 . -23) T) ((-127 . -1093) 137023) ((-121 . -1093) 137001) ((-906 . -233) T) ((-128 . -34) T) ((-379 . -643) 136966) ((-866 . -713) 136953) ((-1042 . -151) 136918) ((-40 . -172) T) ((-689 . -411) 136900) ((-708 . -309) 136887) ((-832 . -643) 136847) ((-823 . -643) 136821) ((-319 . -25) T) ((-319 . -21) T) ((-653 . -286) 136800) ((-579 . -1093) T) ((-563 . -1093) T) ((-495 . -1093) T) ((-245 . -288) 136777) ((-313 . -231) 136738) ((-1165 . -882) NIL) ((-55 . -1093) T) ((-1118 . -882) 136597) ((-129 . -846) T) ((-1165 . -1034) 136477) ((-1118 . -1034) 136360) ((-183 . -610) 136342) ((-850 . -1034) 136238) ((-778 . -286) 136165) ((-813 . -1105) T) ((-1030 . -722) T) ((-599 . -646) 136149) ((-1042 . -972) 136078) ((-995 . -102) T) ((-813 . -23) T) ((-708 . -1144) 136056) ((-689 . -1052) T) ((-599 . -373) 136040) ((-351 . -452) T) ((-343 . -290) T) ((-1258 . -1093) T) ((-248 . -1093) T) ((-399 . -102) T) ((-289 . -21) T) ((-289 . -25) T) ((-361 . -722) T) ((-706 . -1093) T) ((-694 . -1093) T) ((-361 . -473) T) ((-1202 . -610) 136022) ((-1165 . -377) 136006) ((-1118 . -377) 135990) ((-1020 . -411) 135952) ((-141 . -229) 135934) ((-379 . -790) T) ((-379 . -787) T) ((-866 . -172) T) ((-379 . -722) T) ((-707 . -610) 135916) ((-708 . -38) 135745) ((-1257 . -1255) 135729) ((-351 . -402) T) ((-1257 . -1093) 135679) ((-579 . -713) 135666) ((-563 . -713) 135653) ((-495 . -713) 135618) ((-316 . -626) 135597) ((-832 . -722) T) ((-823 . -722) T) ((-640 . -1208) T) ((-1073 . -636) 135545) ((-1165 . -896) 135488) ((-1118 . -896) 135472) ((-657 . -1051) 135456) ((-108 . -636) 135438) ((-482 . -131) 135308) ((-1171 . -1105) T) ((-948 . -47) 135277) ((-620 . -1093) T) ((-657 . -111) 135256) ((-491 . -610) 135222) ((-327 . -288) 135199) ((-481 . -47) 135156) ((-1171 . -23) T) ((-117 . -1093) T) ((-103 . -102) 135134) ((-1269 . -1105) T) ((-1049 . -131) T) ((-1020 . -1052) T) ((-815 . -1034) 135118) ((-999 . -720) 135090) ((-1269 . -23) T) ((-694 . -713) 135055) ((-584 . -610) 135037) ((-386 . -1034) 135021) ((-354 . -1052) T) ((-385 . -131) T) ((-324 . -1034) 135005) ((-225 . -882) 134987) ((-1000 . -916) T) ((-91 . -34) T) ((-1000 . -816) T) ((-910 . -916) T) ((-1188 . -610) 134969) ((-1113 . -824) T) ((-487 . -1212) T) ((-1098 . -1093) T) ((-1073 . -21) T) ((-1073 . -25) T) ((-217 . -1212) T) ((-995 . -309) 134934) ((-225 . -1034) 134894) ((-40 . -290) T) ((-710 . -643) 134854) ((-676 . -613) 134835) ((-671 . -613) 134816) ((-487 . -555) T) ((-478 . -613) 134797) ((-359 . -25) T) ((-359 . -21) T) ((-353 . -25) T) ((-217 . -555) T) ((-353 . -21) T) ((-345 . -25) T) ((-345 . -21) T) ((-245 . -613) 134774) ((-138 . -613) 134755) ((-137 . -613) 134736) ((-133 . -613) 134717) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1052) T) ((-579 . -172) T) ((-563 . -172) T) ((-495 . -172) T) ((-653 . -610) 134699) ((-733 . -732) 134683) ((-336 . -610) 134665) ((-68 . -383) T) ((-68 . -395) T) ((-1095 . -107) 134649) ((-1056 . -882) 134631) ((-948 . -882) 134556) ((-648 . -1105) T) ((-620 . -713) 134543) ((-481 . -882) NIL) ((-1139 . -102) T) ((-1087 . -615) 134527) ((-1056 . -1034) 134509) ((-97 . -610) 134491) ((-477 . -147) T) ((-948 . -1034) 134371) ((-117 . -713) 134316) ((-648 . -23) T) ((-481 . -1034) 134192) ((-1080 . -611) NIL) ((-1080 . -610) 134174) ((-778 . -611) NIL) ((-778 . -610) 134135) ((-776 . -611) 133769) ((-776 . -610) 133683) ((-1106 . -636) 133589) ((-461 . -610) 133571) ((-454 . -610) 133553) ((-454 . -611) 133414) ((-1031 . -229) 133360) ((-868 . -905) 133339) ((-126 . -34) T) ((-813 . -131) T) ((-644 . -610) 133321) ((-577 . -102) T) ((-355 . -1276) 133305) ((-352 . -1276) 133289) ((-344 . -1276) 133273) ((-127 . -514) 133206) ((-121 . -514) 133139) ((-511 . -788) T) ((-511 . -791) T) ((-510 . -790) T) ((-103 . -309) 133077) ((-222 . -102) 133055) ((-689 . -1093) T) ((-694 . -172) T) ((-868 . -643) 133007) ((-65 . -384) T) ((-275 . -610) 132989) ((-65 . -395) T) ((-948 . -377) 132973) ((-866 . -290) T) ((-50 . -610) 132955) ((-995 . -38) 132903) ((-580 . -610) 132885) ((-481 . -377) 132869) ((-580 . -611) 132851) ((-518 . -610) 132833) ((-906 . -1276) 132820) ((-867 . -1208) T) ((-696 . -452) T) ((-495 . -514) 132786) ((-487 . -363) T) ((-355 . -368) 132765) ((-352 . -368) 132744) ((-344 . -368) 132723) ((-710 . -722) T) ((-217 . -363) T) ((-116 . -452) T) ((-1280 . -1271) 132707) ((-867 . -880) 132684) ((-867 . -882) NIL) ((-960 . -846) 132583) ((-811 . -846) 132534) ((-649 . -651) 132518) ((-1194 . -34) T) ((-171 . -610) 132500) ((-1106 . -21) 132410) ((-1106 . -25) 132261) ((-867 . -1034) 132238) ((-948 . -896) 132219) ((-1230 . -47) 132196) ((-906 . -368) T) ((-59 . -646) 132180) ((-516 . -646) 132164) ((-481 . -896) 132141) ((-71 . -441) T) ((-71 . -395) T) ((-496 . -646) 132125) ((-59 . -373) 132109) ((-620 . -172) T) ((-516 . -373) 132093) ((-496 . -373) 132077) ((-823 . -704) 132061) ((-1165 . -307) 132040) ((-1171 . -131) T) ((-117 . -172) T) ((-1139 . -309) 131978) ((-169 . -1208) T) ((-632 . -740) 131962) ((-604 . -740) 131946) ((-1269 . -131) T) ((-1242 . -916) 131925) ((-1221 . -916) 131904) ((-1221 . -816) NIL) ((-689 . -713) 131854) ((-1220 . -905) 131807) ((-1020 . -1093) T) ((-867 . -377) 131784) ((-867 . -338) 131761) ((-901 . -1105) T) ((-169 . -880) 131745) ((-169 . -882) 131670) ((-487 . -1105) T) ((-354 . -1093) T) ((-217 . -1105) T) ((-76 . -441) T) ((-76 . -395) T) ((-169 . -1034) 131566) ((-319 . -846) T) ((-1257 . -514) 131499) ((-1241 . -643) 131396) ((-1220 . -643) 131266) ((-868 . -790) 131245) ((-868 . -787) 131224) ((-868 . -722) T) ((-487 . -23) T) ((-223 . -610) 131206) ((-174 . -452) T) ((-222 . -309) 131144) ((-86 . -441) T) ((-86 . -395) T) ((-217 . -23) T) ((-1281 . -1274) 131123) ((-579 . -290) T) ((-563 . -290) T) ((-672 . -1034) 131107) ((-495 . -290) T) ((-136 . -470) 131062) ((-48 . -1093) T) ((-708 . -231) 131046) ((-867 . -896) NIL) ((-1230 . -882) NIL) ((-885 . -102) T) ((-881 . -102) T) ((-388 . -1093) T) ((-169 . -377) 131030) ((-169 . -338) 131014) ((-1230 . -1034) 130894) ((-851 . -1034) 130790) ((-1135 . -102) T) ((-648 . -131) T) ((-117 . -514) 130698) ((-657 . -788) 130677) ((-657 . -791) 130656) ((-570 . -1034) 130638) ((-294 . -1264) 130608) ((-862 . -102) T) ((-959 . -555) 130587) ((-1202 . -1051) 130470) ((-482 . -636) 130376) ((-900 . -1093) T) ((-1020 . -713) 130313) ((-707 . -1051) 130278) ((-614 . -102) T) ((-599 . -34) T) ((-1140 . -1208) T) ((-1202 . -111) 130147) ((-474 . -643) 130044) ((-354 . -713) 129989) ((-169 . -896) 129948) ((-694 . -290) T) ((-689 . -172) T) ((-707 . -111) 129904) ((-1285 . -1052) T) ((-1230 . -377) 129888) ((-418 . -1212) 129866) ((-1111 . -610) 129848) ((-313 . -844) NIL) ((-418 . -555) T) ((-225 . -307) T) ((-1220 . -787) 129801) ((-1220 . -790) 129754) ((-1241 . -722) T) ((-1220 . -722) T) ((-48 . -713) 129719) ((-225 . -1018) T) ((-351 . -1264) 129696) ((-1243 . -411) 129662) ((-714 . -722) T) ((-1230 . -896) 129605) ((-1202 . -613) 129487) ((-112 . -610) 129469) ((-112 . -611) 129451) ((-714 . -473) T) ((-707 . -613) 129401) ((-482 . -21) 129311) ((-127 . -489) 129295) ((-121 . -489) 129279) ((-482 . -25) 129130) ((-620 . -290) T) ((-584 . -1051) 129105) ((-437 . -1093) T) ((-1056 . -307) T) ((-117 . -290) T) ((-1097 . -102) T) ((-999 . -102) T) ((-584 . -111) 129073) ((-1135 . -309) 129011) ((-1202 . -1045) T) ((-1056 . -1018) T) ((-66 . -1208) T) ((-1049 . -25) T) ((-1049 . -21) T) ((-707 . -1045) T) ((-385 . -21) T) ((-385 . -25) T) ((-689 . -514) NIL) ((-1020 . -172) T) ((-707 . -243) T) ((-1056 . -545) T) ((-506 . -102) T) ((-502 . -102) T) ((-354 . -172) T) ((-343 . -610) 128993) ((-394 . -610) 128975) ((-474 . -722) T) ((-1113 . -844) T) ((-888 . -1034) 128943) ((-108 . -846) T) ((-653 . -1051) 128927) ((-487 . -131) T) ((-1243 . -1052) T) ((-217 . -131) T) ((-1149 . -102) 128905) ((-99 . -1093) T) ((-245 . -661) 128889) ((-245 . -646) 128873) ((-653 . -111) 128852) ((-584 . -613) 128836) ((-316 . -411) 128820) ((-245 . -373) 128804) ((-1152 . -235) 128751) ((-995 . -231) 128735) ((-74 . -1208) T) ((-48 . -172) T) ((-696 . -387) T) ((-696 . -143) T) ((-1280 . -102) T) ((-1188 . -613) 128717) ((-1080 . -1051) 128560) ((-264 . -905) 128539) ((-247 . -905) 128518) ((-778 . -1051) 128341) ((-776 . -1051) 128184) ((-605 . -1208) T) ((-1157 . -610) 128166) ((-1080 . -111) 127995) ((-1042 . -102) T) ((-475 . -1208) T) ((-461 . -1051) 127966) ((-454 . -1051) 127809) ((-659 . -643) 127793) ((-867 . -307) T) ((-778 . -111) 127602) ((-776 . -111) 127431) ((-355 . -643) 127383) ((-352 . -643) 127335) ((-344 . -643) 127287) ((-264 . -643) 127212) ((-247 . -643) 127137) ((-1151 . -846) T) ((-1081 . -1034) 127121) ((-461 . -111) 127082) ((-454 . -111) 126911) ((-1069 . -1034) 126888) ((-996 . -34) T) ((-962 . -610) 126870) ((-954 . -1208) T) ((-126 . -1006) 126854) ((-959 . -1105) T) ((-867 . -1018) NIL) ((-731 . -1105) T) ((-711 . -1105) T) ((-653 . -613) 126772) ((-1257 . -489) 126756) ((-1135 . -38) 126716) ((-959 . -23) T) ((-861 . -1093) T) ((-839 . -102) T) ((-813 . -21) T) ((-813 . -25) T) ((-731 . -23) T) ((-711 . -23) T) ((-110 . -656) T) ((-906 . -643) 126681) ((-580 . -1051) 126646) ((-518 . -1051) 126591) ((-227 . -57) 126549) ((-453 . -23) T) ((-407 . -102) T) ((-263 . -102) T) ((-689 . -290) T) ((-862 . -38) 126519) ((-580 . -111) 126475) ((-518 . -111) 126404) ((-1080 . -613) 126140) ((-418 . -1105) T) ((-316 . -1052) 126030) ((-313 . -1052) T) ((-128 . -1208) T) ((-778 . -613) 125778) ((-776 . -613) 125544) ((-653 . -1045) T) ((-1285 . -1093) T) ((-454 . -613) 125329) ((-169 . -307) 125260) ((-418 . -23) T) ((-40 . -610) 125242) ((-40 . -611) 125226) ((-108 . -988) 125208) ((-116 . -865) 125192) ((-644 . -613) 125176) ((-48 . -514) 125142) ((-1194 . -1006) 125126) ((-1174 . -610) 125093) ((-1181 . -34) T) ((-950 . -610) 125059) ((-917 . -610) 125041) ((-1106 . -846) 124992) ((-767 . -610) 124974) ((-667 . -610) 124956) ((-1149 . -309) 124894) ((-479 . -34) T) ((-1085 . -1208) T) ((-477 . -452) T) ((-1134 . -34) T) ((-1080 . -1045) T) ((-50 . -613) 124863) ((-778 . -1045) T) ((-776 . -1045) T) ((-642 . -235) 124847) ((-629 . -235) 124793) ((-580 . -613) 124743) ((-518 . -613) 124673) ((-1230 . -307) 124652) ((-1080 . -326) 124613) ((-454 . -1045) T) ((-1171 . -21) T) ((-1080 . -233) 124592) ((-778 . -326) 124569) ((-778 . -233) T) ((-776 . -326) 124541) ((-727 . -1212) 124520) ((-327 . -646) 124504) ((-1171 . -25) T) ((-59 . -34) T) ((-519 . -34) T) ((-516 . -34) T) ((-454 . -326) 124483) ((-327 . -373) 124467) ((-497 . -34) T) ((-496 . -34) T) ((-999 . -1144) NIL) ((-727 . -555) 124398) ((-632 . -102) T) ((-604 . -102) T) ((-355 . -722) T) ((-352 . -722) T) ((-344 . -722) T) ((-264 . -722) T) ((-247 . -722) T) ((-1042 . -309) 124306) ((-897 . -1093) 124284) ((-50 . -1045) T) ((-1269 . -21) T) ((-1269 . -25) T) ((-1167 . -555) 124263) ((-1166 . -1212) 124242) ((-580 . -1045) T) ((-518 . -1045) T) ((-1160 . -1212) 124221) ((-361 . -1034) 124205) ((-322 . -1034) 124189) ((-1020 . -290) T) ((-379 . -882) 124171) ((-1166 . -555) 124122) ((-1160 . -555) 124073) ((-999 . -38) 124018) ((-795 . -1105) T) ((-906 . -722) T) ((-580 . -243) T) ((-580 . -233) T) ((-518 . -233) T) ((-518 . -243) T) ((-1119 . -555) 123997) ((-354 . -290) T) ((-642 . -690) 123981) ((-379 . -1034) 123941) ((-1113 . -1052) T) ((-103 . -125) 123925) ((-795 . -23) T) ((-1279 . -1274) 123901) ((-1257 . -286) 123878) ((-407 . -309) 123843) ((-1277 . -1274) 123822) ((-1243 . -1093) T) ((-866 . -610) 123804) ((-832 . -1034) 123773) ((-203 . -783) T) ((-202 . -783) T) ((-201 . -783) T) ((-200 . -783) T) ((-199 . -783) T) ((-198 . -783) T) ((-197 . -783) T) ((-196 . -783) T) ((-195 . -783) T) ((-194 . -783) T) ((-547 . -610) 123755) ((-495 . -998) T) ((-274 . -835) T) ((-273 . -835) T) ((-272 . -835) T) ((-271 . -835) T) ((-48 . -290) T) ((-270 . -835) T) ((-269 . -835) T) ((-268 . -835) T) ((-193 . -783) T) ((-609 . -846) T) ((-649 . -411) 123739) ((-223 . -613) 123701) ((-110 . -846) T) ((-648 . -21) T) ((-648 . -25) T) ((-1280 . -38) 123671) ((-117 . -286) 123622) ((-1257 . -19) 123606) ((-1257 . -601) 123583) ((-1270 . -1093) T) ((-1070 . -1093) T) ((-983 . -1093) T) ((-959 . -131) T) ((-733 . -1093) T) ((-731 . -131) T) ((-711 . -131) T) ((-511 . -789) T) ((-407 . -1144) 123561) ((-453 . -131) T) ((-511 . -790) T) ((-223 . -1045) T) ((-294 . -102) 123343) ((-141 . -1093) T) ((-694 . -998) T) ((-91 . -1208) T) ((-127 . -610) 123275) ((-121 . -610) 123207) ((-1285 . -172) T) ((-1166 . -363) 123186) ((-1160 . -363) 123165) ((-316 . -1093) T) ((-418 . -131) T) ((-313 . -1093) T) ((-407 . -38) 123117) ((-1126 . -102) T) ((-1243 . -713) 123009) ((-649 . -1052) T) ((-1128 . -1252) T) ((-319 . -145) 122988) ((-319 . -147) 122967) ((-139 . -1093) T) ((-136 . -1093) T) ((-114 . -1093) T) ((-854 . -102) T) ((-579 . -610) 122949) ((-563 . -611) 122848) ((-563 . -610) 122830) ((-495 . -610) 122812) ((-495 . -611) 122757) ((-485 . -23) T) ((-482 . -846) 122708) ((-487 . -636) 122690) ((-961 . -610) 122672) ((-217 . -636) 122654) ((-225 . -404) T) ((-657 . -643) 122638) ((-55 . -610) 122620) ((-1165 . -916) 122599) ((-727 . -1105) T) ((-351 . -102) T) ((-1207 . -1076) T) ((-1113 . -840) T) ((-814 . -846) T) ((-727 . -23) T) ((-343 . -1051) 122544) ((-1151 . -1150) T) ((-1140 . -107) 122528) ((-1167 . -1105) T) ((-1166 . -1105) T) ((-515 . -1034) 122512) ((-1160 . -1105) T) ((-1119 . -1105) T) ((-343 . -111) 122441) ((-1000 . -1212) T) ((-126 . -1208) T) ((-910 . -1212) T) ((-689 . -286) NIL) ((-1258 . -610) 122423) ((-1167 . -23) T) ((-1166 . -23) T) ((-1160 . -23) T) ((-1000 . -555) T) ((-1135 . -231) 122407) ((-910 . -555) T) ((-1119 . -23) T) ((-248 . -610) 122389) ((-1068 . -1093) T) ((-795 . -131) T) ((-706 . -610) 122371) ((-316 . -713) 122281) ((-313 . -713) 122210) ((-694 . -610) 122192) ((-694 . -611) 122137) ((-407 . -400) 122121) ((-438 . -1093) T) ((-487 . -25) T) ((-487 . -21) T) ((-1113 . -1093) T) ((-217 . -25) T) ((-217 . -21) T) ((-708 . -411) 122105) ((-710 . -1034) 122074) ((-1257 . -610) 121986) ((-1257 . -611) 121947) ((-1243 . -172) T) ((-245 . -34) T) ((-343 . -613) 121877) ((-394 . -613) 121859) ((-922 . -970) T) ((-1194 . -1208) T) ((-657 . -787) 121838) ((-657 . -790) 121817) ((-398 . -395) T) ((-523 . -102) 121795) ((-1031 . -1093) T) ((-222 . -991) 121779) ((-504 . -102) T) ((-620 . -610) 121761) ((-45 . -846) NIL) ((-620 . -611) 121738) ((-1031 . -607) 121713) ((-897 . -514) 121646) ((-343 . -1045) T) ((-117 . -611) NIL) ((-117 . -610) 121628) ((-868 . -1208) T) ((-665 . -417) 121612) ((-665 . -1116) 121557) ((-500 . -151) 121539) ((-343 . -233) T) ((-343 . -243) T) ((-40 . -1051) 121484) ((-868 . -880) 121468) ((-868 . -882) 121393) ((-708 . -1052) T) ((-689 . -998) NIL) ((-3 . |UnionCategory|) T) ((-1241 . -47) 121363) ((-1220 . -47) 121340) ((-1134 . -1006) 121311) ((-225 . -916) T) ((-40 . -111) 121240) ((-868 . -1034) 121104) ((-1113 . -713) 121091) ((-1098 . -610) 121073) ((-1073 . -147) 121052) ((-1073 . -145) 121003) ((-1000 . -363) T) ((-319 . -1196) 120969) ((-379 . -307) T) ((-319 . -1193) 120935) ((-316 . -172) 120914) ((-313 . -172) T) ((-999 . -231) 120891) ((-910 . -363) T) ((-580 . -1276) 120878) ((-518 . -1276) 120855) ((-359 . -147) 120834) ((-359 . -145) 120785) ((-353 . -147) 120764) ((-353 . -145) 120715) ((-605 . -1184) 120691) ((-345 . -147) 120670) ((-345 . -145) 120621) ((-319 . -35) 120587) ((-475 . -1184) 120566) ((0 . |EnumerationCategory|) T) ((-319 . -95) 120532) ((-379 . -1018) T) ((-108 . -147) T) ((-108 . -145) NIL) ((-45 . -235) 120482) ((-649 . -1093) T) ((-605 . -107) 120429) ((-485 . -131) T) ((-475 . -107) 120379) ((-240 . -1105) 120289) ((-868 . -377) 120273) ((-868 . -338) 120257) ((-240 . -23) 120127) ((-40 . -613) 120057) ((-1056 . -916) T) ((-1056 . -816) T) ((-580 . -368) T) ((-518 . -368) T) ((-351 . -1144) T) ((-327 . -34) T) ((-44 . -417) 120041) ((-1174 . -613) 119976) ((-869 . -1208) T) ((-390 . -740) 119960) ((-1270 . -514) 119893) ((-727 . -131) T) ((-667 . -613) 119877) ((-1249 . -555) 119856) ((-1242 . -1212) 119835) ((-1242 . -555) 119786) ((-1221 . -1212) 119765) ((-311 . -1076) T) ((-1221 . -555) 119716) ((-733 . -514) 119649) ((-1220 . -1208) 119628) ((-1220 . -882) 119501) ((-889 . -1093) T) ((-144 . -840) T) ((-1220 . -880) 119471) ((-686 . -610) 119453) ((-1167 . -131) T) ((-523 . -309) 119391) ((-1166 . -131) T) ((-141 . -514) NIL) ((-1160 . -131) T) ((-1119 . -131) T) ((-1020 . -998) T) ((-1000 . -23) T) ((-351 . -38) 119356) ((-1000 . -1105) T) ((-910 . -1105) T) ((-82 . -610) 119338) ((-40 . -1045) T) ((-866 . -1051) 119325) ((-999 . -349) NIL) ((-868 . -896) 119284) ((-696 . -102) T) ((-967 . -23) T) ((-599 . -1208) T) ((-910 . -23) T) ((-866 . -111) 119269) ((-427 . -1105) T) ((-213 . -1093) T) ((-474 . -47) 119239) ((-134 . -102) T) ((-40 . -233) 119211) ((-40 . -243) T) ((-116 . -102) T) ((-594 . -555) 119190) ((-593 . -555) 119169) ((-689 . -610) 119151) ((-689 . -611) 119059) ((-316 . -514) 119025) ((-313 . -514) 118917) ((-1241 . -1034) 118901) ((-1220 . -1034) 118687) ((-995 . -411) 118671) ((-427 . -23) T) ((-1113 . -172) T) ((-1243 . -290) T) ((-649 . -713) 118641) ((-144 . -1093) T) ((-48 . -998) T) ((-407 . -231) 118625) ((-295 . -235) 118575) ((-867 . -916) T) ((-867 . -816) NIL) ((-866 . -613) 118547) ((-860 . -846) T) ((-1220 . -338) 118517) ((-1220 . -377) 118487) ((-222 . -1114) 118471) ((-1257 . -288) 118448) ((-1202 . -643) 118373) ((-959 . -21) T) ((-959 . -25) T) ((-731 . -21) T) ((-731 . -25) T) ((-711 . -21) T) ((-711 . -25) T) ((-707 . -643) 118338) ((-453 . -21) T) ((-453 . -25) T) ((-339 . -102) T) ((-174 . -102) T) ((-995 . -1052) T) ((-866 . -1045) T) ((-770 . -102) T) ((-1242 . -363) 118317) ((-1241 . -896) 118223) ((-1221 . -363) 118202) ((-1220 . -896) 118053) ((-1020 . -610) 118035) ((-407 . -824) 117988) ((-1167 . -493) 117954) ((-169 . -916) 117885) ((-1166 . -493) 117851) ((-1160 . -493) 117817) ((-708 . -1093) T) ((-1119 . -493) 117783) ((-579 . -1051) 117770) ((-563 . -1051) 117757) ((-495 . -1051) 117722) ((-316 . -290) 117701) ((-313 . -290) T) ((-354 . -610) 117683) ((-418 . -25) T) ((-418 . -21) T) ((-99 . -286) 117662) ((-579 . -111) 117647) ((-563 . -111) 117632) ((-495 . -111) 117588) ((-1169 . -882) 117555) ((-897 . -489) 117539) ((-48 . -610) 117521) ((-48 . -611) 117466) ((-240 . -131) 117336) ((-1230 . -916) 117315) ((-812 . -1212) 117294) ((-388 . -490) 117275) ((-1031 . -514) 117119) ((-388 . -610) 117085) ((-812 . -555) 117016) ((-584 . -643) 116991) ((-264 . -47) 116963) ((-247 . -47) 116920) ((-531 . -509) 116897) ((-579 . -613) 116869) ((-563 . -613) 116841) ((-495 . -613) 116774) ((-996 . -1208) T) ((-694 . -1051) 116739) ((-1249 . -23) T) ((-1249 . -1105) T) ((-1242 . -1105) T) ((-1221 . -1105) T) ((-999 . -370) 116711) ((-112 . -368) T) ((-474 . -896) 116617) ((-1242 . -23) T) ((-900 . -610) 116599) ((-55 . -613) 116581) ((-91 . -107) 116565) ((-1202 . -722) T) ((-901 . -846) 116516) ((-696 . -1144) T) ((-694 . -111) 116472) ((-1221 . -23) T) ((-594 . -1105) T) ((-593 . -1105) T) ((-708 . -713) 116301) ((-707 . -722) T) ((-1113 . -290) T) ((-1000 . -131) T) ((-487 . -846) T) ((-967 . -131) T) ((-910 . -131) T) ((-795 . -25) T) ((-217 . -846) T) ((-795 . -21) T) ((-579 . -1045) T) ((-563 . -1045) T) ((-495 . -1045) T) ((-594 . -23) T) ((-343 . -1276) 116278) ((-319 . -452) 116257) ((-339 . -309) 116244) ((-593 . -23) T) ((-427 . -131) T) ((-653 . -643) 116218) ((-245 . -1006) 116202) ((-868 . -307) T) ((-1281 . -1271) 116186) ((-767 . -788) T) ((-767 . -791) T) ((-696 . -38) 116173) ((-563 . -233) T) ((-495 . -243) T) ((-495 . -233) T) ((-1143 . -235) 116123) ((-1080 . -905) 116102) ((-116 . -38) 116089) ((-209 . -796) T) ((-208 . -796) T) ((-207 . -796) T) ((-206 . -796) T) ((-868 . -1018) 116067) ((-1270 . -489) 116051) ((-778 . -905) 116030) ((-776 . -905) 116009) ((-1181 . -1208) T) ((-454 . -905) 115988) ((-733 . -489) 115972) ((-1080 . -643) 115897) ((-694 . -613) 115832) ((-778 . -643) 115757) ((-620 . -1051) 115744) ((-479 . -1208) T) ((-343 . -368) T) ((-141 . -489) 115726) ((-776 . -643) 115651) ((-1134 . -1208) T) ((-548 . -846) T) ((-461 . -643) 115622) ((-264 . -882) 115481) ((-247 . -882) NIL) ((-117 . -1051) 115426) ((-454 . -643) 115351) ((-659 . -1034) 115328) ((-620 . -111) 115313) ((-355 . -1034) 115297) ((-352 . -1034) 115281) ((-344 . -1034) 115265) ((-264 . -1034) 115109) ((-247 . -1034) 114985) ((-117 . -111) 114914) ((-59 . -1208) T) ((-519 . -1208) T) ((-516 . -1208) T) ((-497 . -1208) T) ((-496 . -1208) T) ((-437 . -610) 114896) ((-434 . -610) 114878) ((-3 . -102) T) ((-1023 . -1201) 114847) ((-829 . -102) T) ((-684 . -57) 114805) ((-694 . -1045) T) ((-50 . -643) 114779) ((-289 . -452) T) ((-476 . -1201) 114748) ((0 . -102) T) ((-580 . -643) 114713) ((-518 . -643) 114658) ((-49 . -102) T) ((-906 . -1034) 114645) ((-694 . -243) T) ((-1073 . -409) 114624) ((-727 . -636) 114572) ((-995 . -1093) T) ((-708 . -172) 114463) ((-620 . -613) 114358) ((-487 . -988) 114340) ((-264 . -377) 114324) ((-247 . -377) 114308) ((-399 . -1093) T) ((-1022 . -102) 114286) ((-339 . -38) 114270) ((-217 . -988) 114252) ((-117 . -613) 114182) ((-174 . -38) 114114) ((-1241 . -307) 114093) ((-1220 . -307) 114072) ((-653 . -722) T) ((-99 . -610) 114054) ((-1160 . -636) 114006) ((-485 . -25) T) ((-485 . -21) T) ((-1220 . -1018) 113958) ((-620 . -1045) T) ((-379 . -404) T) ((-390 . -102) T) ((-1098 . -615) 113873) ((-264 . -896) 113819) ((-247 . -896) 113796) ((-117 . -1045) T) ((-812 . -1105) T) ((-1080 . -722) T) ((-620 . -233) 113775) ((-618 . -102) T) ((-778 . -722) T) ((-776 . -722) T) ((-413 . -1105) T) ((-117 . -243) T) ((-40 . -368) NIL) ((-117 . -233) NIL) ((-1213 . -846) T) ((-454 . -722) T) ((-812 . -23) T) ((-727 . -25) T) ((-727 . -21) T) ((-698 . -846) T) ((-1070 . -286) 113754) ((-78 . -396) T) ((-78 . -395) T) ((-533 . -763) 113736) ((-689 . -1051) 113686) ((-1249 . -131) T) ((-1242 . -131) T) ((-1221 . -131) T) ((-1167 . -25) T) ((-1135 . -411) 113670) ((-632 . -367) 113602) ((-604 . -367) 113534) ((-1149 . -1142) 113518) ((-103 . -1093) 113496) ((-1167 . -21) T) ((-1166 . -21) T) ((-861 . -610) 113478) ((-995 . -713) 113426) ((-223 . -643) 113393) ((-689 . -111) 113327) ((-50 . -722) T) ((-1166 . -25) T) ((-351 . -349) T) ((-1160 . -21) T) ((-1073 . -452) 113278) ((-1160 . -25) T) ((-708 . -514) 113225) ((-580 . -722) T) ((-518 . -722) T) ((-1119 . -21) T) ((-1119 . -25) T) ((-594 . -131) T) ((-593 . -131) T) ((-359 . -452) T) ((-353 . -452) T) ((-345 . -452) T) ((-474 . -307) 113204) ((-1215 . -102) T) ((-313 . -286) 113139) ((-108 . -452) T) ((-79 . -441) T) ((-79 . -395) T) ((-477 . -102) T) ((-686 . -613) 113123) ((-1285 . -610) 113105) ((-1285 . -611) 113087) ((-1073 . -402) 113066) ((-1031 . -489) 112997) ((-563 . -791) T) ((-563 . -788) T) ((-1057 . -235) 112943) ((-359 . -402) 112894) ((-353 . -402) 112845) ((-345 . -402) 112796) ((-1272 . -1105) T) ((-689 . -613) 112731) ((-1272 . -23) T) ((-1259 . -102) T) ((-175 . -610) 112713) ((-1135 . -1052) T) ((-547 . -368) T) ((-665 . -740) 112697) ((-1171 . -145) 112676) ((-1171 . -147) 112655) ((-1139 . -1093) T) ((-1139 . -1065) 112624) ((-69 . -1208) T) ((-1020 . -1051) 112561) ((-862 . -1052) T) ((-240 . -636) 112467) ((-689 . -1045) T) ((-354 . -1051) 112412) ((-61 . -1208) T) ((-1020 . -111) 112328) ((-897 . -610) 112239) ((-689 . -243) T) ((-689 . -233) NIL) ((-839 . -844) 112218) ((-694 . -791) T) ((-694 . -788) T) ((-999 . -411) 112195) ((-354 . -111) 112124) ((-379 . -916) T) ((-407 . -844) 112103) ((-708 . -290) 112014) ((-223 . -722) T) ((-1249 . -493) 111980) ((-1242 . -493) 111946) ((-1221 . -493) 111912) ((-577 . -1093) T) ((-316 . -998) 111891) ((-222 . -1093) 111869) ((-319 . -969) 111831) ((-105 . -102) T) ((-48 . -1051) 111796) ((-1281 . -102) T) ((-381 . -102) T) ((-48 . -111) 111752) ((-1000 . -636) 111734) ((-1243 . -610) 111716) ((-531 . -102) T) ((-500 . -102) T) ((-1126 . -1127) 111700) ((-152 . -1264) 111684) ((-245 . -1208) T) ((-1207 . -102) T) ((-1020 . -613) 111621) ((-1165 . -1212) 111600) ((-354 . -613) 111530) ((-1118 . -1212) 111509) ((-240 . -21) 111419) ((-240 . -25) 111270) ((-127 . -119) 111254) ((-121 . -119) 111238) ((-44 . -740) 111222) ((-1165 . -555) 111133) ((-1118 . -555) 111064) ((-1031 . -286) 111039) ((-1159 . -1076) T) ((-990 . -1076) T) ((-812 . -131) T) ((-117 . -791) NIL) ((-117 . -788) NIL) ((-355 . -307) T) ((-352 . -307) T) ((-344 . -307) T) ((-251 . -1105) 110949) ((-250 . -1105) 110859) ((-1020 . -1045) T) ((-999 . -1052) T) ((-48 . -613) 110792) ((-343 . -643) 110737) ((-618 . -38) 110721) ((-1270 . -610) 110683) ((-1270 . -611) 110644) ((-1070 . -610) 110626) ((-1020 . -243) T) ((-354 . -1045) T) ((-811 . -1264) 110596) ((-251 . -23) T) ((-250 . -23) T) ((-983 . -610) 110578) ((-733 . -611) 110539) ((-733 . -610) 110521) ((-795 . -846) 110500) ((-1152 . -151) 110447) ((-995 . -514) 110359) ((-354 . -233) T) ((-354 . -243) T) ((-388 . -613) 110340) ((-1000 . -25) T) ((-141 . -610) 110322) ((-141 . -611) 110281) ((-906 . -307) T) ((-1000 . -21) T) ((-967 . -25) T) ((-910 . -21) T) ((-910 . -25) T) ((-427 . -21) T) ((-427 . -25) T) ((-839 . -411) 110265) ((-48 . -1045) T) ((-1279 . -1271) 110249) ((-1277 . -1271) 110233) ((-1031 . -601) 110208) ((-316 . -611) 110069) ((-316 . -610) 110051) ((-313 . -611) NIL) ((-313 . -610) 110033) ((-48 . -243) T) ((-48 . -233) T) ((-649 . -286) 109994) ((-549 . -235) 109944) ((-139 . -610) 109911) ((-136 . -610) 109893) ((-114 . -610) 109875) ((-477 . -38) 109840) ((-1281 . -1278) 109819) ((-1272 . -131) T) ((-1280 . -1052) T) ((-1075 . -102) T) ((-88 . -1208) T) ((-500 . -309) NIL) ((-996 . -107) 109803) ((-885 . -1093) T) ((-881 . -1093) T) ((-1257 . -646) 109787) ((-1257 . -373) 109771) ((-327 . -1208) T) ((-591 . -846) T) ((-1135 . -1093) T) ((-1135 . -1048) 109711) ((-103 . -514) 109644) ((-923 . -610) 109626) ((-343 . -722) T) ((-30 . -610) 109608) ((-862 . -1093) T) ((-839 . -1052) 109587) ((-40 . -643) 109532) ((-225 . -1212) T) ((-407 . -1052) T) ((-1151 . -151) 109514) ((-995 . -290) 109465) ((-614 . -1093) T) ((-225 . -555) T) ((-319 . -1238) 109449) ((-319 . -1235) 109419) ((-1181 . -1184) 109398) ((-1068 . -610) 109380) ((-642 . -151) 109364) ((-629 . -151) 109310) ((-1181 . -107) 109260) ((-479 . -1184) 109239) ((-487 . -147) T) ((-487 . -145) NIL) ((-1113 . -611) 109154) ((-438 . -610) 109136) ((-217 . -147) T) ((-217 . -145) NIL) ((-1113 . -610) 109118) ((-129 . -102) T) ((-52 . -102) T) ((-1221 . -636) 109070) ((-479 . -107) 109020) ((-989 . -23) T) ((-1281 . -38) 108990) ((-1165 . -1105) T) ((-1118 . -1105) T) ((-1056 . -1212) T) ((-311 . -102) T) ((-850 . -1105) T) ((-948 . -1212) 108969) ((-481 . -1212) 108948) ((-727 . -846) 108927) ((-1056 . -555) T) ((-948 . -555) 108858) ((-1165 . -23) T) ((-1118 . -23) T) ((-850 . -23) T) ((-481 . -555) 108789) ((-1135 . -713) 108721) ((-1139 . -514) 108654) ((-1031 . -611) NIL) ((-1031 . -610) 108636) ((-96 . -1076) T) ((-862 . -713) 108606) ((-1202 . -47) 108575) ((-251 . -131) T) ((-250 . -131) T) ((-1097 . -1093) T) ((-999 . -1093) T) ((-62 . -610) 108557) ((-1160 . -846) NIL) ((-1020 . -788) T) ((-1020 . -791) T) ((-1285 . -1051) 108544) ((-1285 . -111) 108529) ((-866 . -643) 108516) ((-1249 . -25) T) ((-1249 . -21) T) ((-1242 . -21) T) ((-1242 . -25) T) ((-1221 . -21) T) ((-1221 . -25) T) ((-1023 . -151) 108500) ((-868 . -816) 108479) ((-868 . -916) T) ((-708 . -286) 108406) ((-594 . -21) T) ((-594 . -25) T) ((-593 . -21) T) ((-40 . -722) T) ((-222 . -514) 108339) ((-593 . -25) T) ((-476 . -151) 108323) ((-463 . -151) 108307) ((-917 . -790) T) ((-917 . -722) T) ((-767 . -789) T) ((-767 . -790) T) ((-506 . -1093) T) ((-502 . -1093) T) ((-767 . -722) T) ((-225 . -363) T) ((-1149 . -1093) 108285) ((-867 . -1212) T) ((-649 . -610) 108267) ((-867 . -555) T) ((-689 . -368) NIL) ((-1285 . -613) 108249) ((-359 . -1264) 108233) ((-665 . -102) T) ((-353 . -1264) 108217) ((-345 . -1264) 108201) ((-1280 . -1093) T) ((-520 . -846) 108180) ((-813 . -452) 108159) ((-1042 . -1093) T) ((-1042 . -1065) 108088) ((-1023 . -972) 108057) ((-815 . -1105) T) ((-999 . -713) 108002) ((-386 . -1105) T) ((-476 . -972) 107971) ((-463 . -972) 107940) ((-110 . -151) 107922) ((-73 . -610) 107904) ((-889 . -610) 107886) ((-1073 . -720) 107865) ((-1285 . -1045) T) ((-812 . -636) 107813) ((-294 . -1052) 107755) ((-169 . -1212) 107660) ((-225 . -1105) T) ((-324 . -23) T) ((-1160 . -988) 107612) ((-839 . -1093) T) ((-1243 . -1051) 107517) ((-1119 . -736) 107496) ((-1241 . -916) 107475) ((-1220 . -916) 107454) ((-866 . -722) T) ((-169 . -555) 107365) ((-579 . -643) 107352) ((-563 . -643) 107339) ((-407 . -1093) T) ((-263 . -1093) T) ((-213 . -610) 107321) ((-495 . -643) 107286) ((-225 . -23) T) ((-1220 . -816) 107239) ((-1279 . -102) T) ((-354 . -1276) 107216) ((-1277 . -102) T) ((-1243 . -111) 107108) ((-144 . -610) 107090) ((-989 . -131) T) ((-44 . -102) T) ((-240 . -846) 107041) ((-1230 . -1212) 107020) ((-103 . -489) 107004) ((-1280 . -713) 106974) ((-1080 . -47) 106935) ((-1056 . -1105) T) ((-948 . -1105) T) ((-127 . -34) T) ((-121 . -34) T) ((-778 . -47) 106912) ((-776 . -47) 106884) ((-1230 . -555) 106795) ((-354 . -368) T) ((-481 . -1105) T) ((-1165 . -131) T) ((-1118 . -131) T) ((-454 . -47) 106774) ((-867 . -363) T) ((-850 . -131) T) ((-152 . -102) T) ((-1056 . -23) T) ((-948 . -23) T) ((-570 . -555) T) ((-812 . -25) T) ((-812 . -21) T) ((-1135 . -514) 106707) ((-590 . -1076) T) ((-584 . -1034) 106691) ((-1243 . -613) 106565) ((-481 . -23) T) ((-351 . -1052) T) ((-1202 . -896) 106546) ((-665 . -309) 106484) ((-1106 . -1264) 106454) ((-694 . -643) 106419) ((-999 . -172) T) ((-959 . -145) 106398) ((-632 . -1093) T) ((-604 . -1093) T) ((-959 . -147) 106377) ((-1000 . -846) T) ((-731 . -147) 106356) ((-731 . -145) 106335) ((-967 . -846) T) ((-474 . -916) 106314) ((-316 . -1051) 106224) ((-313 . -1051) 106153) ((-995 . -286) 106111) ((-407 . -713) 106063) ((-696 . -844) T) ((-1243 . -1045) T) ((-316 . -111) 105959) ((-313 . -111) 105872) ((-960 . -102) T) ((-811 . -102) 105662) ((-708 . -611) NIL) ((-708 . -610) 105644) ((-653 . -1034) 105540) ((-1243 . -326) 105484) ((-1031 . -288) 105459) ((-579 . -722) T) ((-563 . -790) T) ((-169 . -363) 105410) ((-563 . -787) T) ((-563 . -722) T) ((-495 . -722) T) ((-1139 . -489) 105394) ((-1080 . -882) NIL) ((-867 . -1105) T) ((-117 . -905) NIL) ((-1279 . -1278) 105370) ((-1277 . -1278) 105349) ((-778 . -882) NIL) ((-776 . -882) 105208) ((-1272 . -25) T) ((-1272 . -21) T) ((-1205 . -102) 105186) ((-1099 . -395) T) ((-620 . -643) 105173) ((-454 . -882) NIL) ((-670 . -102) 105151) ((-1080 . -1034) 104978) ((-867 . -23) T) ((-778 . -1034) 104837) ((-776 . -1034) 104694) ((-117 . -643) 104639) ((-454 . -1034) 104515) ((-316 . -613) 104079) ((-313 . -613) 103962) ((-644 . -1034) 103946) ((-624 . -102) T) ((-222 . -489) 103930) ((-1257 . -34) T) ((-136 . -613) 103914) ((-632 . -713) 103898) ((-604 . -713) 103882) ((-665 . -38) 103842) ((-319 . -102) T) ((-85 . -610) 103824) ((-50 . -1034) 103808) ((-1113 . -1051) 103795) ((-1080 . -377) 103779) ((-778 . -377) 103763) ((-694 . -722) T) ((-694 . -790) T) ((-694 . -787) T) ((-580 . -1034) 103750) ((-518 . -1034) 103727) ((-60 . -57) 103689) ((-324 . -131) T) ((-316 . -1045) 103579) ((-313 . -1045) T) ((-169 . -1105) T) ((-776 . -377) 103563) ((-45 . -151) 103513) ((-1000 . -988) 103495) ((-454 . -377) 103479) ((-407 . -172) T) ((-316 . -243) 103458) ((-313 . -243) T) ((-313 . -233) NIL) ((-294 . -1093) 103240) ((-225 . -131) T) ((-1113 . -111) 103225) ((-169 . -23) T) ((-795 . -147) 103204) ((-795 . -145) 103183) ((-251 . -636) 103089) ((-250 . -636) 102995) ((-319 . -284) 102961) ((-1149 . -514) 102894) ((-1126 . -1093) T) ((-225 . -1054) T) ((-811 . -309) 102832) ((-1080 . -896) 102767) ((-778 . -896) 102710) ((-776 . -896) 102694) ((-1279 . -38) 102664) ((-1277 . -38) 102634) ((-1230 . -1105) T) ((-851 . -1105) T) ((-454 . -896) 102611) ((-854 . -1093) T) ((-1230 . -23) T) ((-1113 . -613) 102583) ((-570 . -1105) T) ((-851 . -23) T) ((-620 . -722) T) ((-355 . -916) T) ((-352 . -916) T) ((-289 . -102) T) ((-344 . -916) T) ((-1056 . -131) T) ((-966 . -1076) T) ((-948 . -131) T) ((-117 . -790) NIL) ((-117 . -787) NIL) ((-117 . -722) T) ((-689 . -905) NIL) ((-1042 . -514) 102484) ((-481 . -131) T) ((-570 . -23) T) ((-670 . -309) 102422) ((-632 . -757) T) ((-604 . -757) T) ((-1221 . -846) NIL) ((-999 . -290) T) ((-251 . -21) T) ((-689 . -643) 102372) ((-351 . -1093) T) ((-251 . -25) T) ((-250 . -21) T) ((-250 . -25) T) ((-152 . -38) 102356) ((-2 . -102) T) ((-906 . -916) T) ((-482 . -1264) 102326) ((-223 . -1034) 102303) ((-1113 . -1045) T) ((-707 . -307) T) ((-294 . -713) 102245) ((-696 . -1052) T) ((-487 . -452) T) ((-407 . -514) 102157) ((-217 . -452) T) ((-1113 . -233) T) ((-295 . -151) 102107) ((-995 . -611) 102068) ((-995 . -610) 102050) ((-985 . -610) 102032) ((-116 . -1052) T) ((-649 . -1051) 102016) ((-225 . -493) T) ((-399 . -610) 101998) ((-399 . -611) 101975) ((-1049 . -1264) 101945) ((-649 . -111) 101924) ((-1135 . -489) 101908) ((-811 . -38) 101878) ((-63 . -441) T) ((-63 . -395) T) ((-1152 . -102) T) ((-867 . -131) T) ((-484 . -102) 101856) ((-1285 . -368) T) ((-1073 . -102) T) ((-1055 . -102) T) ((-351 . -713) 101801) ((-727 . -147) 101780) ((-727 . -145) 101759) ((-649 . -613) 101677) ((-1020 . -643) 101614) ((-523 . -1093) 101592) ((-359 . -102) T) ((-353 . -102) T) ((-345 . -102) T) ((-108 . -102) T) ((-504 . -1093) T) ((-354 . -643) 101537) ((-1165 . -636) 101485) ((-1118 . -636) 101433) ((-385 . -509) 101412) ((-829 . -844) 101391) ((-379 . -1212) T) ((-689 . -722) T) ((-339 . -1052) T) ((-1221 . -988) 101343) ((-174 . -1052) T) ((-103 . -610) 101275) ((-1167 . -145) 101254) ((-1167 . -147) 101233) ((-379 . -555) T) ((-1166 . -147) 101212) ((-1166 . -145) 101191) ((-1160 . -145) 101098) ((-407 . -290) T) ((-1160 . -147) 101005) ((-1119 . -147) 100984) ((-1119 . -145) 100963) ((-319 . -38) 100804) ((-169 . -131) T) ((-313 . -791) NIL) ((-313 . -788) NIL) ((-649 . -1045) T) ((-48 . -643) 100769) ((-889 . -613) 100746) ((-1159 . -102) T) ((-990 . -102) T) ((-989 . -21) T) ((-127 . -1006) 100730) ((-121 . -1006) 100714) ((-989 . -25) T) ((-897 . -119) 100698) ((-1151 . -102) T) ((-812 . -846) 100677) ((-1230 . -131) T) ((-1165 . -25) T) ((-1165 . -21) T) ((-851 . -131) T) ((-1118 . -25) T) ((-1118 . -21) T) ((-850 . -25) T) ((-850 . -21) T) ((-778 . -307) 100656) ((-642 . -102) 100634) ((-629 . -102) T) ((-1152 . -309) 100429) ((-570 . -131) T) ((-618 . -844) 100408) ((-1149 . -489) 100392) ((-1143 . -151) 100342) ((-1139 . -610) 100304) ((-1139 . -611) 100265) ((-1020 . -787) T) ((-1020 . -790) T) ((-1020 . -722) T) ((-708 . -1051) 100088) ((-484 . -309) 100026) ((-453 . -417) 99996) ((-351 . -172) T) ((-289 . -38) 99983) ((-274 . -102) T) ((-273 . -102) T) ((-272 . -102) T) ((-271 . -102) T) ((-270 . -102) T) ((-269 . -102) T) ((-343 . -1034) 99960) ((-268 . -102) T) ((-212 . -102) T) ((-211 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-207 . -102) T) ((-206 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-194 . -102) T) ((-193 . -102) T) ((-354 . -722) T) ((-708 . -111) 99769) ((-665 . -231) 99753) ((-580 . -307) T) ((-518 . -307) T) ((-294 . -514) 99702) ((-108 . -309) NIL) ((-72 . -395) T) ((-1106 . -102) 99492) ((-829 . -411) 99476) ((-1113 . -791) T) ((-1113 . -788) T) ((-696 . -1093) T) ((-577 . -610) 99458) ((-379 . -363) T) ((-169 . -493) 99436) ((-222 . -610) 99368) ((-134 . -1093) T) ((-116 . -1093) T) ((-48 . -722) T) ((-1042 . -489) 99333) ((-141 . -425) 99315) ((-141 . -368) T) ((-1023 . -102) T) ((-512 . -509) 99294) ((-708 . -613) 99050) ((-476 . -102) T) ((-463 . -102) T) ((-1030 . -1105) T) ((-1174 . -1034) 98985) ((-1167 . -35) 98951) ((-1167 . -95) 98917) ((-1167 . -1196) 98883) ((-1167 . -1193) 98849) ((-1151 . -309) NIL) ((-89 . -396) T) ((-89 . -395) T) ((-1073 . -1144) 98828) ((-1166 . -1193) 98794) ((-1166 . -1196) 98760) ((-1030 . -23) T) ((-1166 . -95) 98726) ((-570 . -493) T) ((-1166 . -35) 98692) ((-1160 . -1193) 98658) ((-1160 . -1196) 98624) ((-1160 . -95) 98590) ((-361 . -1105) T) ((-359 . -1144) 98569) ((-353 . -1144) 98548) ((-345 . -1144) 98527) ((-1160 . -35) 98493) ((-1119 . -35) 98459) ((-1119 . -95) 98425) ((-108 . -1144) T) ((-1119 . -1196) 98391) ((-829 . -1052) 98370) ((-642 . -309) 98308) ((-629 . -309) 98159) ((-1119 . -1193) 98125) ((-708 . -1045) T) ((-1056 . -636) 98107) ((-1073 . -38) 97975) ((-948 . -636) 97923) ((-1000 . -147) T) ((-1000 . -145) NIL) ((-379 . -1105) T) ((-324 . -25) T) ((-322 . -23) T) ((-939 . -846) 97902) ((-708 . -326) 97879) ((-481 . -636) 97827) ((-40 . -1034) 97715) ((-708 . -233) T) ((-696 . -713) 97702) ((-339 . -1093) T) ((-174 . -1093) T) ((-331 . -846) T) ((-418 . -452) 97652) ((-379 . -23) T) ((-359 . -38) 97617) ((-353 . -38) 97582) ((-345 . -38) 97547) ((-80 . -441) T) ((-80 . -395) T) ((-225 . -25) T) ((-225 . -21) T) ((-832 . -1105) T) ((-108 . -38) 97497) ((-823 . -1105) T) ((-770 . -1093) T) ((-116 . -713) 97484) ((-667 . -1034) 97468) ((-609 . -102) T) ((-832 . -23) T) ((-823 . -23) T) ((-1149 . -286) 97445) ((-1106 . -309) 97383) ((-1095 . -235) 97367) ((-64 . -396) T) ((-64 . -395) T) ((-110 . -102) T) ((-40 . -377) 97344) ((-96 . -102) T) ((-648 . -848) 97328) ((-1128 . -1076) T) ((-1056 . -21) T) ((-1056 . -25) T) ((-811 . -231) 97297) ((-948 . -25) T) ((-948 . -21) T) ((-618 . -1052) T) ((-1113 . -368) T) ((-481 . -25) T) ((-481 . -21) T) ((-1023 . -309) 97235) ((-885 . -610) 97217) ((-881 . -610) 97199) ((-251 . -846) 97150) ((-250 . -846) 97101) ((-523 . -514) 97034) ((-867 . -636) 97011) ((-476 . -309) 96949) ((-463 . -309) 96887) ((-351 . -290) T) ((-1149 . -1245) 96871) ((-1135 . -610) 96833) ((-1135 . -611) 96794) ((-1133 . -102) T) ((-995 . -1051) 96690) ((-40 . -896) 96642) ((-1149 . -601) 96619) ((-1285 . -643) 96606) ((-862 . -490) 96583) ((-1057 . -151) 96529) ((-868 . -1212) T) ((-995 . -111) 96411) ((-339 . -713) 96395) ((-862 . -610) 96357) ((-174 . -713) 96289) ((-407 . -286) 96247) ((-868 . -555) T) ((-108 . -400) 96229) ((-84 . -384) T) ((-84 . -395) T) ((-696 . -172) T) ((-614 . -610) 96211) ((-99 . -722) T) ((-482 . -102) 96001) ((-99 . -473) T) ((-116 . -172) T) ((-1106 . -38) 95971) ((-169 . -636) 95919) ((-1049 . -102) T) ((-995 . -613) 95809) ((-867 . -25) T) ((-811 . -238) 95788) ((-867 . -21) T) ((-814 . -102) T) ((-414 . -102) T) ((-385 . -102) T) ((-110 . -309) NIL) ((-227 . -102) 95766) ((-127 . -1208) T) ((-121 . -1208) T) ((-1030 . -131) T) ((-665 . -367) 95750) ((-995 . -1045) T) ((-1230 . -636) 95698) ((-1097 . -610) 95680) ((-999 . -610) 95662) ((-515 . -23) T) ((-510 . -23) T) ((-343 . -307) T) ((-508 . -23) T) ((-322 . -131) T) ((-3 . -1093) T) ((-999 . -611) 95646) ((-995 . -243) 95625) ((-995 . -233) 95604) ((-1285 . -722) T) ((-1249 . -145) 95583) ((-829 . -1093) T) ((-1249 . -147) 95562) ((-1242 . -147) 95541) ((-1242 . -145) 95520) ((-1241 . -1212) 95499) ((-1221 . -145) 95406) ((-1221 . -147) 95313) ((-1220 . -1212) 95292) ((-379 . -131) T) ((-563 . -882) 95274) ((0 . -1093) T) ((-174 . -172) T) ((-169 . -21) T) ((-169 . -25) T) ((-49 . -1093) T) ((-1243 . -643) 95179) ((-1241 . -555) 95130) ((-710 . -1105) T) ((-1220 . -555) 95081) ((-563 . -1034) 95063) ((-593 . -147) 95042) ((-593 . -145) 95021) ((-495 . -1034) 94964) ((-1128 . -1130) T) ((-87 . -384) T) ((-87 . -395) T) ((-868 . -363) T) ((-832 . -131) T) ((-823 . -131) T) ((-710 . -23) T) ((-506 . -610) 94930) ((-502 . -610) 94912) ((-1281 . -1052) T) ((-379 . -1054) T) ((-1022 . -1093) 94890) ((-55 . -1034) 94872) ((-897 . -34) T) ((-482 . -309) 94810) ((-590 . -102) T) ((-1149 . -611) 94771) ((-1149 . -610) 94703) ((-1165 . -846) 94682) ((-45 . -102) T) ((-1118 . -846) 94661) ((-813 . -102) T) ((-1230 . -25) T) ((-1230 . -21) T) ((-851 . -25) T) ((-44 . -367) 94645) ((-851 . -21) T) ((-727 . -452) 94596) ((-1280 . -610) 94578) ((-1049 . -309) 94516) ((-666 . -1076) T) ((-603 . -1076) T) ((-390 . -1093) T) ((-570 . -25) T) ((-570 . -21) T) ((-180 . -1076) T) ((-161 . -1076) T) ((-156 . -1076) T) ((-154 . -1076) T) ((-618 . -1093) T) ((-694 . -882) 94498) ((-1257 . -1208) T) ((-227 . -309) 94436) ((-144 . -368) T) ((-1042 . -611) 94378) ((-1042 . -610) 94321) ((-313 . -905) NIL) ((-1215 . -840) T) ((-694 . -1034) 94266) ((-707 . -916) T) ((-474 . -1212) 94245) ((-1166 . -452) 94224) ((-1160 . -452) 94203) ((-330 . -102) T) ((-868 . -1105) T) ((-316 . -643) 94024) ((-313 . -643) 93953) ((-474 . -555) 93904) ((-339 . -514) 93870) ((-549 . -151) 93820) ((-40 . -307) T) ((-839 . -610) 93802) ((-696 . -290) T) ((-868 . -23) T) ((-379 . -493) T) ((-1073 . -231) 93772) ((-512 . -102) T) ((-407 . -611) 93579) ((-407 . -610) 93561) ((-263 . -610) 93543) ((-116 . -290) T) ((-1243 . -722) T) ((-1241 . -363) 93522) ((-1220 . -363) 93501) ((-1270 . -34) T) ((-1215 . -1093) T) ((-117 . -1208) T) ((-108 . -231) 93483) ((-1171 . -102) T) ((-477 . -1093) T) ((-523 . -489) 93467) ((-733 . -34) T) ((-482 . -38) 93437) ((-141 . -34) T) ((-117 . -880) 93414) ((-117 . -882) NIL) ((-620 . -1034) 93297) ((-640 . -846) 93276) ((-1269 . -102) T) ((-295 . -102) T) ((-708 . -368) 93255) ((-117 . -1034) 93232) ((-390 . -713) 93216) ((-618 . -713) 93200) ((-45 . -309) 93004) ((-812 . -145) 92983) ((-812 . -147) 92962) ((-1280 . -382) 92941) ((-815 . -846) T) ((-1259 . -1093) T) ((-1152 . -229) 92888) ((-386 . -846) 92867) ((-1249 . -1196) 92833) ((-1249 . -1193) 92799) ((-1242 . -1193) 92765) ((-515 . -131) T) ((-1242 . -1196) 92731) ((-1221 . -1193) 92697) ((-1221 . -1196) 92663) ((-1249 . -35) 92629) ((-1249 . -95) 92595) ((-632 . -610) 92564) ((-604 . -610) 92533) ((-225 . -846) T) ((-1242 . -95) 92499) ((-1242 . -35) 92465) ((-1241 . -1105) T) ((-1113 . -643) 92452) ((-1221 . -95) 92418) ((-1220 . -1105) T) ((-591 . -151) 92400) ((-1073 . -349) 92379) ((-174 . -290) T) ((-117 . -377) 92356) ((-117 . -338) 92333) ((-1221 . -35) 92299) ((-866 . -307) T) ((-313 . -790) NIL) ((-313 . -787) NIL) ((-316 . -722) 92148) ((-313 . -722) T) ((-474 . -363) 92127) ((-359 . -349) 92106) ((-353 . -349) 92085) ((-345 . -349) 92064) ((-316 . -473) 92043) ((-1241 . -23) T) ((-1220 . -23) T) ((-714 . -1105) T) ((-710 . -131) T) ((-648 . -102) T) ((-477 . -713) 92008) ((-45 . -282) 91958) ((-105 . -1093) T) ((-68 . -610) 91940) ((-966 . -102) T) ((-860 . -102) T) ((-620 . -896) 91899) ((-1281 . -1093) T) ((-381 . -1093) T) ((-1207 . -1093) T) ((-1106 . -231) 91868) ((-82 . -1208) T) ((-1056 . -846) T) ((-948 . -846) 91847) ((-117 . -896) NIL) ((-778 . -916) 91826) ((-709 . -846) T) ((-531 . -1093) T) ((-500 . -1093) T) ((-355 . -1212) T) ((-352 . -1212) T) ((-344 . -1212) T) ((-264 . -1212) 91805) ((-247 . -1212) 91784) ((-533 . -856) T) ((-481 . -846) 91763) ((-1151 . -824) T) ((-1135 . -1051) 91747) ((-390 . -757) T) ((-689 . -1208) T) ((-686 . -1034) 91731) ((-355 . -555) T) ((-352 . -555) T) ((-344 . -555) T) ((-264 . -555) 91662) ((-247 . -555) 91593) ((-525 . -1076) T) ((-1135 . -111) 91572) ((-453 . -740) 91542) ((-862 . -1051) 91512) ((-813 . -38) 91454) ((-689 . -880) 91436) ((-689 . -882) 91418) ((-295 . -309) 91222) ((-906 . -1212) T) ((-665 . -411) 91206) ((-862 . -111) 91171) ((-689 . -1034) 91116) ((-1000 . -452) T) ((-906 . -555) T) ((-533 . -610) 91098) ((-580 . -916) T) ((-474 . -1105) T) ((-518 . -916) T) ((-1149 . -288) 91075) ((-910 . -452) T) ((-65 . -610) 91057) ((-629 . -229) 91003) ((-474 . -23) T) ((-1113 . -790) T) ((-868 . -131) T) ((-1113 . -787) T) ((-1272 . -1274) 90982) ((-1113 . -722) T) ((-649 . -643) 90956) ((-294 . -610) 90697) ((-1135 . -613) 90615) ((-1031 . -34) T) ((-811 . -844) 90594) ((-579 . -307) T) ((-563 . -307) T) ((-495 . -307) T) ((-1281 . -713) 90564) ((-689 . -377) 90546) ((-689 . -338) 90528) ((-477 . -172) T) ((-381 . -713) 90498) ((-862 . -613) 90433) ((-867 . -846) NIL) ((-563 . -1018) T) ((-495 . -1018) T) ((-1126 . -610) 90415) ((-1106 . -238) 90394) ((-214 . -102) T) ((-1143 . -102) T) ((-71 . -610) 90376) ((-1135 . -1045) T) ((-1171 . -38) 90273) ((-854 . -610) 90255) ((-563 . -545) T) ((-665 . -1052) T) ((-727 . -945) 90208) ((-1135 . -233) 90187) ((-1075 . -1093) T) ((-1030 . -25) T) ((-1030 . -21) T) ((-999 . -1051) 90132) ((-901 . -102) T) ((-862 . -1045) T) ((-689 . -896) NIL) ((-355 . -329) 90116) ((-355 . -363) T) ((-352 . -329) 90100) ((-352 . -363) T) ((-344 . -329) 90084) ((-344 . -363) T) ((-487 . -102) T) ((-1269 . -38) 90054) ((-546 . -846) T) ((-523 . -682) 90004) ((-217 . -102) T) ((-1020 . -1034) 89884) ((-999 . -111) 89813) ((-1167 . -969) 89782) ((-1166 . -969) 89744) ((-520 . -151) 89728) ((-1073 . -370) 89707) ((-351 . -610) 89689) ((-322 . -21) T) ((-354 . -1034) 89666) ((-322 . -25) T) ((-1160 . -969) 89635) ((-1119 . -969) 89602) ((-76 . -610) 89584) ((-694 . -307) T) ((-169 . -846) 89563) ((-129 . -840) T) ((-906 . -363) T) ((-379 . -25) T) ((-379 . -21) T) ((-906 . -329) 89550) ((-86 . -610) 89532) ((-694 . -1018) T) ((-672 . -846) T) ((-1241 . -131) T) ((-1220 . -131) T) ((-897 . -1006) 89516) ((-832 . -21) T) ((-48 . -1034) 89459) ((-832 . -25) T) ((-823 . -25) T) ((-823 . -21) T) ((-1279 . -1052) T) ((-548 . -102) T) ((-1277 . -1052) T) ((-649 . -722) T) ((-1097 . -615) 89362) ((-999 . -613) 89292) ((-1280 . -1051) 89276) ((-1230 . -846) 89255) ((-811 . -411) 89224) ((-103 . -119) 89208) ((-129 . -1093) T) ((-52 . -1093) T) ((-922 . -610) 89190) ((-867 . -988) 89167) ((-819 . -102) T) ((-1280 . -111) 89146) ((-648 . -38) 89116) ((-570 . -846) T) ((-355 . -1105) T) ((-352 . -1105) T) ((-344 . -1105) T) ((-264 . -1105) T) ((-247 . -1105) T) ((-620 . -307) 89095) ((-1143 . -309) 88899) ((-524 . -1076) T) ((-311 . -1093) T) ((-659 . -23) T) ((-482 . -231) 88868) ((-152 . -1052) T) ((-355 . -23) T) ((-352 . -23) T) ((-344 . -23) T) ((-117 . -307) T) ((-264 . -23) T) ((-247 . -23) T) ((-999 . -1045) T) ((-708 . -905) 88847) ((-1149 . -613) 88824) ((-999 . -233) 88796) ((-999 . -243) T) ((-117 . -1018) NIL) ((-906 . -1105) T) ((-1242 . -452) 88775) ((-1221 . -452) 88754) ((-523 . -610) 88686) ((-708 . -643) 88611) ((-407 . -1051) 88563) ((-504 . -610) 88545) ((-906 . -23) T) ((-487 . -309) NIL) ((-1280 . -613) 88501) ((-474 . -131) T) ((-217 . -309) NIL) ((-407 . -111) 88439) ((-811 . -1052) 88369) ((-733 . -1091) 88353) ((-1241 . -493) 88319) ((-1220 . -493) 88285) ((-141 . -1091) 88267) ((-477 . -290) T) ((-1280 . -1045) T) ((-1213 . -102) T) ((-1057 . -102) T) ((-839 . -613) 88135) ((-500 . -514) NIL) ((-698 . -102) T) ((-482 . -238) 88114) ((-407 . -613) 88012) ((-1165 . -145) 87991) ((-1165 . -147) 87970) ((-1118 . -147) 87949) ((-1118 . -145) 87928) ((-632 . -1051) 87912) ((-604 . -1051) 87896) ((-665 . -1093) T) ((-665 . -1048) 87836) ((-1167 . -1248) 87820) ((-1167 . -1235) 87797) ((-487 . -1144) T) ((-1166 . -1240) 87758) ((-1166 . -1235) 87728) ((-1166 . -1238) 87712) ((-217 . -1144) T) ((-343 . -916) T) ((-814 . -266) 87696) ((-632 . -111) 87675) ((-604 . -111) 87654) ((-1160 . -1219) 87615) ((-839 . -1045) 87594) ((-1160 . -1235) 87571) ((-515 . -25) T) ((-495 . -302) T) ((-511 . -23) T) ((-510 . -25) T) ((-508 . -25) T) ((-507 . -23) T) ((-1160 . -1217) 87555) ((-407 . -1045) T) ((-319 . -1052) T) ((-689 . -307) T) ((-108 . -844) T) ((-708 . -722) T) ((-407 . -243) T) ((-407 . -233) 87534) ((-487 . -38) 87484) ((-217 . -38) 87434) ((-474 . -493) 87400) ((-1151 . -1137) T) ((-1094 . -102) T) ((-696 . -610) 87382) ((-696 . -611) 87297) ((-710 . -21) T) ((-710 . -25) T) ((-1128 . -102) T) ((-134 . -610) 87279) ((-116 . -610) 87261) ((-157 . -25) T) ((-1279 . -1093) T) ((-868 . -636) 87209) ((-1277 . -1093) T) ((-959 . -102) T) ((-731 . -102) T) ((-711 . -102) T) ((-453 . -102) T) ((-812 . -452) 87160) ((-44 . -1093) T) ((-1081 . -846) T) ((-659 . -131) T) ((-1057 . -309) 87011) ((-665 . -713) 86995) ((-289 . -1052) T) ((-355 . -131) T) ((-352 . -131) T) ((-344 . -131) T) ((-264 . -131) T) ((-247 . -131) T) ((-418 . -102) T) ((-152 . -1093) T) ((-45 . -229) 86945) ((-954 . -846) 86924) ((-995 . -643) 86862) ((-240 . -1264) 86832) ((-1020 . -307) T) ((-294 . -1051) 86753) ((-906 . -131) T) ((-40 . -916) T) ((-487 . -400) 86735) ((-354 . -307) T) ((-217 . -400) 86717) ((-1073 . -411) 86701) ((-294 . -111) 86617) ((-1176 . -846) T) ((-1175 . -846) T) ((-868 . -25) T) ((-868 . -21) T) ((-339 . -610) 86599) ((-1243 . -47) 86543) ((-225 . -147) T) ((-174 . -610) 86525) ((-1106 . -844) 86504) ((-770 . -610) 86486) ((-128 . -846) T) ((-605 . -235) 86433) ((-475 . -235) 86383) ((-1279 . -713) 86353) ((-48 . -307) T) ((-1277 . -713) 86323) ((-65 . -613) 86252) ((-960 . -1093) T) ((-811 . -1093) 86042) ((-312 . -102) T) ((-897 . -1208) T) ((-48 . -1018) T) ((-1220 . -636) 85950) ((-684 . -102) 85928) ((-44 . -713) 85912) ((-549 . -102) T) ((-294 . -613) 85843) ((-67 . -383) T) ((-67 . -395) T) ((-657 . -23) T) ((-665 . -757) T) ((-1205 . -1093) 85821) ((-351 . -1051) 85766) ((-670 . -1093) 85744) ((-1056 . -147) T) ((-948 . -147) 85723) ((-948 . -145) 85702) ((-795 . -102) T) ((-152 . -713) 85686) ((-481 . -147) 85665) ((-481 . -145) 85644) ((-351 . -111) 85573) ((-1073 . -1052) T) ((-322 . -846) 85552) ((-1249 . -969) 85521) ((-624 . -1093) T) ((-1242 . -969) 85483) ((-511 . -131) T) ((-507 . -131) T) ((-295 . -229) 85433) ((-359 . -1052) T) ((-353 . -1052) T) ((-345 . -1052) T) ((-294 . -1045) 85375) ((-1221 . -969) 85344) ((-379 . -846) T) ((-108 . -1052) T) ((-995 . -722) T) ((-866 . -916) T) ((-839 . -791) 85323) ((-839 . -788) 85302) ((-418 . -309) 85241) ((-468 . -102) T) ((-593 . -969) 85210) ((-319 . -1093) T) ((-407 . -791) 85189) ((-407 . -788) 85168) ((-500 . -489) 85150) ((-1243 . -1034) 85116) ((-1241 . -21) T) ((-1241 . -25) T) ((-1220 . -21) T) ((-1220 . -25) T) ((-811 . -713) 85058) ((-351 . -613) 84988) ((-694 . -404) T) ((-1270 . -1208) T) ((-603 . -102) T) ((-1106 . -411) 84957) ((-999 . -368) NIL) ((-666 . -102) T) ((-180 . -102) T) ((-161 . -102) T) ((-156 . -102) T) ((-154 . -102) T) ((-103 . -34) T) ((-733 . -1208) T) ((-44 . -757) T) ((-591 . -102) T) ((-77 . -396) T) ((-77 . -395) T) ((-648 . -651) 84941) ((-141 . -1208) T) ((-867 . -147) T) ((-867 . -145) NIL) ((-1207 . -93) T) ((-351 . -1045) T) ((-70 . -383) T) ((-70 . -395) T) ((-1158 . -102) T) ((-665 . -514) 84874) ((-684 . -309) 84812) ((-959 . -38) 84709) ((-731 . -38) 84679) ((-549 . -309) 84483) ((-316 . -1208) T) ((-351 . -233) T) ((-351 . -243) T) ((-313 . -1208) T) ((-289 . -1093) T) ((-1173 . -610) 84465) ((-707 . -1212) T) ((-1149 . -646) 84449) ((-1202 . -555) 84428) ((-707 . -555) T) ((-316 . -880) 84412) ((-316 . -882) 84337) ((-313 . -880) 84298) ((-313 . -882) NIL) ((-795 . -309) 84263) ((-319 . -713) 84104) ((-324 . -323) 84081) ((-485 . -102) T) ((-474 . -25) T) ((-474 . -21) T) ((-418 . -38) 84055) ((-316 . -1034) 83718) ((-225 . -1193) T) ((-225 . -1196) T) ((-3 . -610) 83700) ((-313 . -1034) 83630) ((-2 . -1093) T) ((-2 . |RecordCategory|) T) ((-829 . -610) 83612) ((-1106 . -1052) 83542) ((-579 . -916) T) ((-563 . -816) T) ((-563 . -916) T) ((-495 . -916) T) ((-136 . -1034) 83526) ((-225 . -95) T) ((-75 . -441) T) ((-75 . -395) T) ((0 . -610) 83508) ((-169 . -147) 83487) ((-169 . -145) 83438) ((-225 . -35) T) ((-49 . -610) 83420) ((-477 . -1052) T) ((-487 . -231) 83402) ((-484 . -964) 83386) ((-482 . -844) 83365) ((-217 . -231) 83347) ((-81 . -441) T) ((-81 . -395) T) ((-1139 . -34) T) ((-811 . -172) 83326) ((-727 . -102) T) ((-1022 . -610) 83293) ((-500 . -286) 83268) ((-316 . -377) 83237) ((-313 . -377) 83198) ((-313 . -338) 83159) ((-1078 . -610) 83141) ((-812 . -945) 83088) ((-657 . -131) T) ((-1230 . -145) 83067) ((-1230 . -147) 83046) ((-1167 . -102) T) ((-1166 . -102) T) ((-1160 . -102) T) ((-1152 . -1093) T) ((-1119 . -102) T) ((-222 . -34) T) ((-289 . -713) 83033) ((-1152 . -607) 83009) ((-591 . -309) NIL) ((-484 . -1093) 82987) ((-390 . -610) 82969) ((-510 . -846) T) ((-1143 . -229) 82919) ((-1249 . -1248) 82903) ((-1249 . -1235) 82880) ((-1242 . -1240) 82841) ((-1242 . -1235) 82811) ((-1242 . -1238) 82795) ((-1221 . -1219) 82756) ((-1221 . -1235) 82733) ((-618 . -610) 82715) ((-1221 . -1217) 82699) ((-694 . -916) T) ((-1167 . -284) 82665) ((-1166 . -284) 82631) ((-1160 . -284) 82597) ((-1073 . -1093) T) ((-1055 . -1093) T) ((-48 . -302) T) ((-316 . -896) 82563) ((-313 . -896) NIL) ((-1055 . -1062) 82542) ((-1113 . -882) 82524) ((-795 . -38) 82508) ((-264 . -636) 82456) ((-247 . -636) 82404) ((-696 . -1051) 82391) ((-593 . -1235) 82368) ((-1119 . -284) 82334) ((-319 . -172) 82265) ((-359 . -1093) T) ((-353 . -1093) T) ((-345 . -1093) T) ((-500 . -19) 82247) ((-1113 . -1034) 82229) ((-1095 . -151) 82213) ((-108 . -1093) T) ((-116 . -1051) 82200) ((-707 . -363) T) ((-500 . -601) 82175) ((-696 . -111) 82160) ((-436 . -102) T) ((-45 . -1142) 82110) ((-116 . -111) 82095) ((-632 . -716) T) ((-604 . -716) T) ((-811 . -514) 82028) ((-1031 . -1208) T) ((-939 . -151) 82012) ((-1215 . -610) 81994) ((-1165 . -452) 81925) ((-1159 . -1093) T) ((-1151 . -1093) T) ((-525 . -102) T) ((-520 . -102) 81875) ((-1135 . -643) 81849) ((-1118 . -452) 81800) ((-1080 . -1212) 81779) ((-778 . -1212) 81758) ((-776 . -1212) 81737) ((-62 . -1208) T) ((-477 . -610) 81689) ((-477 . -611) 81611) ((-1080 . -555) 81542) ((-990 . -1093) T) ((-778 . -555) 81453) ((-776 . -555) 81384) ((-482 . -411) 81353) ((-620 . -916) 81332) ((-454 . -1212) 81311) ((-727 . -309) 81298) ((-696 . -613) 81270) ((-398 . -610) 81252) ((-670 . -514) 81185) ((-659 . -25) T) ((-659 . -21) T) ((-454 . -555) 81116) ((-355 . -25) T) ((-355 . -21) T) ((-117 . -916) T) ((-117 . -816) NIL) ((-352 . -25) T) ((-352 . -21) T) ((-344 . -25) T) ((-344 . -21) T) ((-264 . -25) T) ((-264 . -21) T) ((-247 . -25) T) ((-247 . -21) T) ((-83 . -384) T) ((-83 . -395) T) ((-134 . -613) 81098) ((-116 . -613) 81070) ((-1259 . -610) 81052) ((-1214 . -846) T) ((-1202 . -1105) T) ((-1202 . -23) T) ((-1160 . -309) 80937) ((-1119 . -309) 80924) ((-1073 . -713) 80792) ((-862 . -643) 80752) ((-939 . -976) 80736) ((-906 . -21) T) ((-289 . -172) T) ((-906 . -25) T) ((-311 . -93) T) ((-868 . -846) 80687) ((-707 . -1105) T) ((-707 . -23) T) ((-696 . -1045) T) ((-642 . -1093) 80665) ((-629 . -1093) T) ((-580 . -1212) T) ((-518 . -1212) T) ((-696 . -233) T) ((-629 . -607) 80640) ((-580 . -555) T) ((-518 . -555) T) ((-359 . -713) 80592) ((-339 . -1051) 80576) ((-353 . -713) 80528) ((-345 . -713) 80480) ((-174 . -1051) 80412) ((-174 . -111) 80323) ((-108 . -713) 80273) ((-339 . -111) 80252) ((-274 . -1093) T) ((-273 . -1093) T) ((-272 . -1093) T) ((-271 . -1093) T) ((-270 . -1093) T) ((-269 . -1093) T) ((-268 . -1093) T) ((-212 . -1093) T) ((-211 . -1093) T) ((-169 . -1196) 80230) ((-169 . -1193) 80208) ((-209 . -1093) T) ((-208 . -1093) T) ((-116 . -1045) T) ((-207 . -1093) T) ((-206 . -1093) T) ((-203 . -1093) T) ((-202 . -1093) T) ((-201 . -1093) T) ((-200 . -1093) T) ((-199 . -1093) T) ((-198 . -1093) T) ((-197 . -1093) T) ((-196 . -1093) T) ((-195 . -1093) T) ((-194 . -1093) T) ((-193 . -1093) T) ((-240 . -102) 79998) ((-169 . -35) 79976) ((-169 . -95) 79954) ((-649 . -1034) 79850) ((-482 . -1052) 79780) ((-1106 . -1093) 79570) ((-1135 . -34) T) ((-665 . -489) 79554) ((-73 . -1208) T) ((-105 . -610) 79536) ((-1281 . -610) 79518) ((-381 . -610) 79500) ((-339 . -613) 79452) ((-174 . -613) 79369) ((-1207 . -490) 79350) ((-727 . -38) 79199) ((-570 . -1196) T) ((-570 . -1193) T) ((-531 . -610) 79181) ((-520 . -309) 79119) ((-500 . -610) 79101) ((-500 . -611) 79083) ((-1207 . -610) 79049) ((-1160 . -1144) NIL) ((-1023 . -1065) 79018) ((-1023 . -1093) T) ((-1000 . -102) T) ((-967 . -102) T) ((-910 . -102) T) ((-889 . -1034) 78995) ((-1135 . -722) T) ((-999 . -643) 78940) ((-476 . -1093) T) ((-463 . -1093) T) ((-584 . -23) T) ((-570 . -35) T) ((-570 . -95) T) ((-427 . -102) T) ((-1057 . -229) 78886) ((-1167 . -38) 78783) ((-862 . -722) T) ((-689 . -916) T) ((-511 . -25) T) ((-507 . -21) T) ((-507 . -25) T) ((-1166 . -38) 78624) ((-339 . -1045) T) ((-1160 . -38) 78420) ((-1073 . -172) T) ((-174 . -1045) T) ((-1119 . -38) 78317) ((-708 . -47) 78294) ((-359 . -172) T) ((-353 . -172) T) ((-519 . -57) 78268) ((-497 . -57) 78218) ((-351 . -1276) 78195) ((-225 . -452) T) ((-319 . -290) 78146) ((-345 . -172) T) ((-174 . -243) T) ((-1220 . -846) 78045) ((-108 . -172) T) ((-868 . -988) 78029) ((-653 . -1105) T) ((-580 . -363) T) ((-580 . -329) 78016) ((-518 . -329) 77993) ((-518 . -363) T) ((-316 . -307) 77972) ((-313 . -307) T) ((-599 . -846) 77951) ((-1106 . -713) 77893) ((-520 . -282) 77877) ((-653 . -23) T) ((-418 . -231) 77861) ((-313 . -1018) NIL) ((-336 . -23) T) ((-103 . -1006) 77845) ((-45 . -36) 77824) ((-609 . -1093) T) ((-351 . -368) T) ((-524 . -102) T) ((-495 . -27) T) ((-240 . -309) 77762) ((-1080 . -1105) T) ((-1280 . -643) 77736) ((-778 . -1105) T) ((-776 . -1105) T) ((-454 . -1105) T) ((-1056 . -452) T) ((-948 . -452) 77687) ((-1108 . -1076) T) ((-110 . -1093) T) ((-1080 . -23) T) ((-813 . -1052) T) ((-778 . -23) T) ((-776 . -23) T) ((-481 . -452) 77638) ((-1152 . -514) 77421) ((-381 . -382) 77400) ((-1171 . -411) 77384) ((-461 . -23) T) ((-454 . -23) T) ((-96 . -1093) T) ((-484 . -514) 77317) ((-289 . -290) T) ((-1075 . -610) 77299) ((-1075 . -611) 77280) ((-407 . -905) 77259) ((-50 . -1105) T) ((-1020 . -916) T) ((-999 . -722) T) ((-708 . -882) NIL) ((-580 . -1105) T) ((-518 . -1105) T) ((-839 . -643) 77232) ((-1202 . -131) T) ((-1160 . -400) 77184) ((-1000 . -309) NIL) ((-811 . -489) 77168) ((-354 . -916) T) ((-1149 . -34) T) ((-407 . -643) 77120) ((-50 . -23) T) ((-707 . -131) T) ((-708 . -1034) 77000) ((-580 . -23) T) ((-108 . -514) NIL) ((-518 . -23) T) ((-169 . -409) 76971) ((-1133 . -1093) T) ((-1272 . -1271) 76955) ((-696 . -791) T) ((-696 . -788) T) ((-1113 . -307) T) ((-379 . -147) T) ((-280 . -610) 76937) ((-1220 . -988) 76907) ((-48 . -916) T) ((-670 . -489) 76891) ((-251 . -1264) 76861) ((-250 . -1264) 76831) ((-1169 . -846) T) ((-1106 . -172) 76810) ((-1113 . -1018) T) ((-1042 . -34) T) ((-832 . -147) 76789) ((-832 . -145) 76768) ((-733 . -107) 76752) ((-609 . -132) T) ((-482 . -1093) 76542) ((-1171 . -1052) T) ((-867 . -452) T) ((-85 . -1208) T) ((-240 . -38) 76512) ((-141 . -107) 76494) ((-708 . -377) 76478) ((-829 . -613) 76346) ((-1113 . -545) T) ((-578 . -102) T) ((-129 . -490) 76328) ((-390 . -1051) 76312) ((-1280 . -722) T) ((-1165 . -945) 76281) ((-129 . -610) 76248) ((-52 . -610) 76230) ((-1118 . -945) 76197) ((-648 . -411) 76181) ((-1269 . -1052) T) ((-618 . -1051) 76165) ((-657 . -25) T) ((-657 . -21) T) ((-1151 . -514) NIL) ((-1249 . -102) T) ((-1242 . -102) T) ((-390 . -111) 76144) ((-222 . -254) 76128) ((-1221 . -102) T) ((-1049 . -1093) T) ((-1000 . -1144) T) ((-1049 . -1048) 76068) ((-814 . -1093) T) ((-343 . -1212) T) ((-632 . -643) 76052) ((-618 . -111) 76031) ((-604 . -643) 76015) ((-594 . -102) T) ((-311 . -490) 75996) ((-584 . -131) T) ((-593 . -102) T) ((-414 . -1093) T) ((-385 . -1093) T) ((-311 . -610) 75962) ((-227 . -1093) 75940) ((-642 . -514) 75873) ((-629 . -514) 75717) ((-829 . -1045) 75696) ((-640 . -151) 75680) ((-343 . -555) T) ((-708 . -896) 75623) ((-549 . -229) 75573) ((-1249 . -284) 75539) ((-1073 . -290) 75490) ((-487 . -844) T) ((-223 . -1105) T) ((-1242 . -284) 75456) ((-1221 . -284) 75422) ((-1000 . -38) 75372) ((-217 . -844) T) ((-1202 . -493) 75338) ((-910 . -38) 75290) ((-839 . -790) 75269) ((-839 . -787) 75248) ((-839 . -722) 75227) ((-359 . -290) T) ((-353 . -290) T) ((-345 . -290) T) ((-169 . -452) 75158) ((-427 . -38) 75142) ((-108 . -290) T) ((-223 . -23) T) ((-407 . -790) 75121) ((-407 . -787) 75100) ((-407 . -722) T) ((-500 . -288) 75075) ((-477 . -1051) 75040) ((-653 . -131) T) ((-618 . -613) 75009) ((-1106 . -514) 74942) ((-336 . -131) T) ((-169 . -402) 74921) ((-482 . -713) 74863) ((-811 . -286) 74840) ((-477 . -111) 74796) ((-648 . -1052) T) ((-1230 . -452) 74727) ((-1268 . -1076) T) ((-1267 . -1076) T) ((-1080 . -131) T) ((-1049 . -713) 74669) ((-264 . -846) 74648) ((-247 . -846) 74627) ((-778 . -131) T) ((-776 . -131) T) ((-570 . -452) T) ((-1023 . -514) 74560) ((-618 . -1045) T) ((-590 . -1093) T) ((-533 . -173) T) ((-461 . -131) T) ((-454 . -131) T) ((-45 . -1093) T) ((-385 . -713) 74530) ((-813 . -1093) T) ((-476 . -514) 74463) ((-463 . -514) 74396) ((-453 . -367) 74366) ((-45 . -607) 74345) ((-316 . -302) T) ((-477 . -613) 74295) ((-665 . -610) 74257) ((-59 . -846) 74236) ((-1221 . -309) 74121) ((-1000 . -400) 74103) ((-811 . -601) 74080) ((-516 . -846) 74059) ((-496 . -846) 74038) ((-40 . -1212) T) ((-995 . -1034) 73934) ((-50 . -131) T) ((-580 . -131) T) ((-518 . -131) T) ((-294 . -643) 73794) ((-343 . -329) 73771) ((-343 . -363) T) ((-322 . -323) 73748) ((-319 . -286) 73733) ((-40 . -555) T) ((-379 . -1193) T) ((-379 . -1196) T) ((-1031 . -1184) 73708) ((-1181 . -235) 73658) ((-1160 . -231) 73610) ((-330 . -1093) T) ((-379 . -95) T) ((-379 . -35) T) ((-1031 . -107) 73556) ((-477 . -1045) T) ((-479 . -235) 73506) ((-1152 . -489) 73440) ((-1281 . -1051) 73424) ((-381 . -1051) 73408) ((-477 . -243) T) ((-812 . -102) T) ((-710 . -147) 73387) ((-710 . -145) 73366) ((-484 . -489) 73350) ((-485 . -335) 73319) ((-1281 . -111) 73298) ((-512 . -1093) T) ((-482 . -172) 73277) ((-995 . -377) 73261) ((-413 . -102) T) ((-381 . -111) 73240) ((-995 . -338) 73224) ((-279 . -979) 73208) ((-278 . -979) 73192) ((-1279 . -610) 73174) ((-1277 . -610) 73156) ((-110 . -514) NIL) ((-1165 . -1233) 73140) ((-850 . -848) 73124) ((-1171 . -1093) T) ((-103 . -1208) T) ((-948 . -945) 73085) ((-813 . -713) 73027) ((-1221 . -1144) NIL) ((-481 . -945) 72972) ((-1056 . -143) T) ((-60 . -102) 72950) ((-44 . -610) 72932) ((-78 . -610) 72914) ((-351 . -643) 72859) ((-1269 . -1093) T) ((-511 . -846) T) ((-343 . -1105) T) ((-295 . -1093) T) ((-995 . -896) 72818) ((-295 . -607) 72797) ((-1281 . -613) 72746) ((-1249 . -38) 72643) ((-1242 . -38) 72484) ((-1221 . -38) 72280) ((-487 . -1052) T) ((-381 . -613) 72264) ((-217 . -1052) T) ((-343 . -23) T) ((-152 . -610) 72246) ((-829 . -791) 72225) ((-829 . -788) 72204) ((-1207 . -613) 72185) ((-594 . -38) 72158) ((-593 . -38) 72055) ((-866 . -555) T) ((-223 . -131) T) ((-319 . -998) 72021) ((-79 . -610) 72003) ((-708 . -307) 71982) ((-294 . -722) 71884) ((-820 . -102) T) ((-860 . -840) T) ((-294 . -473) 71863) ((-1272 . -102) T) ((-40 . -363) T) ((-868 . -147) 71842) ((-868 . -145) 71821) ((-1151 . -489) 71803) ((-1281 . -1045) T) ((-482 . -514) 71736) ((-1139 . -1208) T) ((-960 . -610) 71718) ((-642 . -489) 71702) ((-629 . -489) 71633) ((-811 . -610) 71364) ((-48 . -27) T) ((-1171 . -713) 71261) ((-648 . -1093) T) ((-857 . -856) T) ((-436 . -364) 71235) ((-1095 . -102) T) ((-966 . -1093) T) ((-860 . -1093) T) ((-812 . -309) 71222) ((-533 . -527) T) ((-533 . -575) T) ((-1277 . -382) 71194) ((-1049 . -514) 71127) ((-1152 . -286) 71103) ((-240 . -231) 71072) ((-1269 . -713) 71042) ((-1159 . -93) T) ((-990 . -93) T) ((-813 . -172) 71021) ((-1205 . -490) 70998) ((-227 . -514) 70931) ((-618 . -791) 70910) ((-618 . -788) 70889) ((-1205 . -610) 70801) ((-222 . -1208) T) ((-670 . -610) 70733) ((-1149 . -1006) 70717) ((-939 . -102) 70667) ((-351 . -722) T) ((-857 . -610) 70649) ((-1221 . -400) 70601) ((-1106 . -489) 70585) ((-60 . -309) 70523) ((-331 . -102) T) ((-1202 . -21) T) ((-1202 . -25) T) ((-40 . -1105) T) ((-707 . -21) T) ((-624 . -610) 70505) ((-515 . -323) 70484) ((-707 . -25) T) ((-439 . -102) T) ((-108 . -286) NIL) ((-917 . -1105) T) ((-40 . -23) T) ((-767 . -1105) T) ((-563 . -1212) T) ((-495 . -1212) T) ((-319 . -610) 70466) ((-1000 . -231) 70448) ((-169 . -166) 70432) ((-579 . -555) T) ((-563 . -555) T) ((-495 . -555) T) ((-767 . -23) T) ((-1241 . -147) 70411) ((-1152 . -601) 70387) ((-1241 . -145) 70366) ((-1023 . -489) 70350) ((-1220 . -145) 70275) ((-1220 . -147) 70200) ((-1272 . -1278) 70179) ((-476 . -489) 70163) ((-463 . -489) 70147) ((-523 . -34) T) ((-648 . -713) 70117) ((-112 . -963) T) ((-657 . -846) 70096) ((-1171 . -172) 70047) ((-365 . -102) T) ((-240 . -238) 70026) ((-251 . -102) T) ((-250 . -102) T) ((-1230 . -945) 69995) ((-245 . -846) 69974) ((-812 . -38) 69823) ((-45 . -514) 69615) ((-1151 . -286) 69590) ((-214 . -1093) T) ((-1143 . -1093) T) ((-1143 . -607) 69569) ((-584 . -25) T) ((-584 . -21) T) ((-1095 . -309) 69507) ((-959 . -411) 69491) ((-694 . -1212) T) ((-629 . -286) 69466) ((-1080 . -636) 69414) ((-778 . -636) 69362) ((-776 . -636) 69310) ((-343 . -131) T) ((-289 . -610) 69292) ((-901 . -1093) T) ((-694 . -555) T) ((-129 . -613) 69274) ((-866 . -1105) T) ((-454 . -636) 69222) ((-901 . -899) 69206) ((-379 . -452) T) ((-487 . -1093) T) ((-939 . -309) 69144) ((-696 . -643) 69131) ((-548 . -840) T) ((-217 . -1093) T) ((-316 . -916) 69110) ((-313 . -916) T) ((-313 . -816) NIL) ((-390 . -716) T) ((-866 . -23) T) ((-116 . -643) 69097) ((-474 . -145) 69076) ((-418 . -411) 69060) ((-474 . -147) 69039) ((-110 . -489) 69021) ((-311 . -613) 69002) ((-2 . -610) 68984) ((-186 . -102) T) ((-1151 . -19) 68966) ((-1151 . -601) 68941) ((-653 . -21) T) ((-653 . -25) T) ((-591 . -1137) T) ((-1106 . -286) 68918) ((-336 . -25) T) ((-336 . -21) T) ((-495 . -363) T) ((-1272 . -38) 68888) ((-1135 . -1208) T) ((-629 . -601) 68863) ((-548 . -1093) T) ((-1080 . -25) T) ((-1080 . -21) T) ((-531 . -788) T) ((-531 . -791) T) ((-117 . -1212) T) ((-959 . -1052) T) ((-620 . -555) T) ((-778 . -25) T) ((-778 . -21) T) ((-776 . -21) T) ((-776 . -25) T) ((-731 . -1052) T) ((-711 . -1052) T) ((-665 . -1051) 68847) ((-517 . -1076) T) ((-461 . -25) T) ((-117 . -555) T) ((-461 . -21) T) ((-454 . -25) T) ((-454 . -21) T) ((-1279 . -1051) 68831) ((-1135 . -1034) 68727) ((-813 . -290) 68706) ((-1277 . -1051) 68690) ((-819 . -1093) T) ((-1241 . -1193) 68656) ((-962 . -963) T) ((-665 . -111) 68635) ((-295 . -514) 68427) ((-1241 . -1196) 68393) ((-1241 . -95) 68359) ((-1224 . -102) 68337) ((-251 . -309) 68275) ((-250 . -309) 68213) ((-1221 . -231) 68165) ((-1152 . -611) NIL) ((-1152 . -610) 68147) ((-1220 . -1193) 68113) ((-1220 . -1196) 68079) ((-1215 . -368) T) ((-96 . -93) T) ((-1213 . -840) T) ((-1135 . -377) 68063) ((-1113 . -816) T) ((-1113 . -916) T) ((-1106 . -601) 68040) ((-1073 . -611) 68024) ((-484 . -610) 67956) ((-811 . -288) 67933) ((-605 . -151) 67880) ((-418 . -1052) T) ((-487 . -713) 67830) ((-482 . -489) 67814) ((-327 . -846) 67793) ((-339 . -643) 67767) ((-50 . -21) T) ((-50 . -25) T) ((-217 . -713) 67717) ((-169 . -720) 67688) ((-174 . -643) 67620) ((-580 . -21) T) ((-580 . -25) T) ((-518 . -25) T) ((-518 . -21) T) ((-475 . -151) 67570) ((-1073 . -610) 67552) ((-1055 . -610) 67534) ((-989 . -102) T) ((-858 . -102) T) ((-795 . -411) 67498) ((-40 . -131) T) ((-694 . -363) T) ((-696 . -722) T) ((-696 . -790) T) ((-696 . -787) T) ((-212 . -891) T) ((-579 . -1105) T) ((-563 . -1105) T) ((-495 . -1105) T) ((-359 . -610) 67480) ((-353 . -610) 67462) ((-345 . -610) 67444) ((-66 . -396) T) ((-66 . -395) T) ((-108 . -611) 67374) ((-108 . -610) 67316) ((-211 . -891) T) ((-954 . -151) 67300) ((-767 . -131) T) ((-665 . -613) 67218) ((-134 . -722) T) ((-116 . -722) T) ((-1241 . -35) 67184) ((-1049 . -489) 67168) ((-579 . -23) T) ((-563 . -23) T) ((-495 . -23) T) ((-1220 . -95) 67134) ((-1220 . -35) 67100) ((-1165 . -102) T) ((-1118 . -102) T) ((-850 . -102) T) ((-227 . -489) 67084) ((-1279 . -111) 67063) ((-1277 . -111) 67042) ((-44 . -1051) 67026) ((-1230 . -1233) 67010) ((-851 . -848) 66994) ((-1279 . -613) 66940) ((-1171 . -290) 66919) ((-110 . -286) 66894) ((-1213 . -1093) T) ((-128 . -151) 66876) ((-1135 . -896) 66835) ((-44 . -111) 66814) ((-1174 . -1252) T) ((-1159 . -490) 66795) ((-1159 . -610) 66761) ((-1151 . -611) NIL) ((-665 . -1045) T) ((-1151 . -610) 66743) ((-1057 . -607) 66718) ((-1057 . -1093) T) ((-990 . -490) 66699) ((-990 . -610) 66665) ((-74 . -441) T) ((-74 . -395) T) ((-698 . -1093) T) ((-152 . -1051) 66649) ((-665 . -233) 66628) ((-570 . -553) 66612) ((-355 . -147) 66591) ((-355 . -145) 66542) ((-352 . -147) 66521) ((-352 . -145) 66472) ((-344 . -147) 66451) ((-344 . -145) 66402) ((-264 . -145) 66381) ((-264 . -147) 66360) ((-251 . -38) 66330) ((-247 . -147) 66309) ((-117 . -363) T) ((-247 . -145) 66288) ((-250 . -38) 66258) ((-152 . -111) 66237) ((-999 . -1034) 66125) ((-1160 . -844) NIL) ((-689 . -1212) T) ((-795 . -1052) T) ((-694 . -1105) T) ((-1279 . -1045) T) ((-1277 . -613) 66054) ((-1277 . -1045) T) ((-1149 . -1208) T) ((-999 . -377) 66031) ((-906 . -145) T) ((-906 . -147) 66013) ((-866 . -131) T) ((-811 . -1051) 65910) ((-689 . -555) T) ((-694 . -23) T) ((-642 . -610) 65842) ((-642 . -611) 65803) ((-629 . -611) NIL) ((-629 . -610) 65785) ((-487 . -172) T) ((-223 . -21) T) ((-217 . -172) T) ((-223 . -25) T) ((-474 . -1196) 65751) ((-474 . -1193) 65717) ((-274 . -610) 65699) ((-273 . -610) 65681) ((-272 . -610) 65663) ((-271 . -610) 65645) ((-270 . -610) 65627) ((-500 . -646) 65609) ((-269 . -610) 65591) ((-339 . -722) T) ((-268 . -610) 65573) ((-110 . -19) 65555) ((-174 . -722) T) ((-500 . -373) 65537) ((-212 . -610) 65519) ((-520 . -1142) 65503) ((-500 . -123) T) ((-110 . -601) 65478) ((-211 . -610) 65460) ((-474 . -35) 65426) ((-474 . -95) 65392) ((-209 . -610) 65374) ((-208 . -610) 65356) ((-207 . -610) 65338) ((-206 . -610) 65320) ((-203 . -610) 65302) ((-202 . -610) 65284) ((-201 . -610) 65266) ((-200 . -610) 65248) ((-199 . -610) 65230) ((-198 . -610) 65212) ((-197 . -610) 65194) ((-536 . -1096) 65146) ((-196 . -610) 65128) ((-195 . -610) 65110) ((-45 . -489) 65047) ((-194 . -610) 65029) ((-193 . -610) 65011) ((-152 . -613) 64980) ((-1108 . -102) T) ((-811 . -111) 64870) ((-640 . -102) 64820) ((-482 . -286) 64797) ((-1106 . -610) 64528) ((-1094 . -1093) T) ((-1042 . -1208) T) ((-1280 . -1034) 64512) ((-620 . -1105) T) ((-1165 . -309) 64499) ((-1128 . -1093) T) ((-1118 . -309) 64486) ((-1089 . -1076) T) ((-1083 . -1076) T) ((-1067 . -1076) T) ((-1060 . -1076) T) ((-1032 . -1076) T) ((-1015 . -1076) T) ((-117 . -1105) T) ((-815 . -102) T) ((-623 . -1076) T) ((-620 . -23) T) ((-1143 . -514) 64278) ((-483 . -1076) T) ((-999 . -896) 64230) ((-386 . -102) T) ((-324 . -102) T) ((-218 . -1076) T) ((-959 . -1093) T) ((-152 . -1045) T) ((-727 . -411) 64214) ((-117 . -23) T) ((-731 . -1093) T) ((-711 . -1093) T) ((-698 . -132) T) ((-453 . -1093) T) ((-407 . -1208) T) ((-316 . -430) 64198) ((-590 . -93) T) ((-1023 . -611) 64159) ((-1020 . -1212) T) ((-225 . -102) T) ((-1023 . -610) 64121) ((-812 . -231) 64105) ((-811 . -613) 63835) ((-1020 . -555) T) ((-829 . -643) 63808) ((-354 . -1212) T) ((-476 . -610) 63770) ((-476 . -611) 63731) ((-463 . -611) 63692) ((-463 . -610) 63654) ((-407 . -880) 63638) ((-319 . -1051) 63473) ((-407 . -882) 63398) ((-839 . -1034) 63294) ((-487 . -514) NIL) ((-482 . -601) 63271) ((-354 . -555) T) ((-217 . -514) NIL) ((-868 . -452) T) ((-418 . -1093) T) ((-407 . -1034) 63135) ((-319 . -111) 62956) ((-689 . -363) T) ((-225 . -284) T) ((-1205 . -613) 62933) ((-48 . -1212) T) ((-811 . -1045) 62863) ((-579 . -131) T) ((-563 . -131) T) ((-495 . -131) T) ((-1165 . -1144) 62841) ((-48 . -555) T) ((-1152 . -288) 62817) ((-1056 . -102) T) ((-948 . -102) T) ((-316 . -27) 62796) ((-811 . -233) 62748) ((-249 . -831) 62730) ((-240 . -844) 62709) ((-187 . -831) 62691) ((-709 . -102) T) ((-295 . -489) 62628) ((-481 . -102) T) ((-727 . -1052) T) ((-609 . -610) 62610) ((-609 . -611) 62471) ((-407 . -377) 62455) ((-407 . -338) 62439) ((-319 . -613) 62265) ((-1165 . -38) 62094) ((-1118 . -38) 61943) ((-850 . -38) 61913) ((-390 . -643) 61897) ((-640 . -309) 61835) ((-959 . -713) 61732) ((-731 . -713) 61702) ((-222 . -107) 61686) ((-45 . -286) 61611) ((-618 . -643) 61585) ((-312 . -1093) T) ((-289 . -1051) 61572) ((-110 . -610) 61554) ((-110 . -611) 61536) ((-453 . -713) 61506) ((-812 . -253) 61445) ((-684 . -1093) 61423) ((-549 . -1093) T) ((-1167 . -1052) T) ((-1166 . -1052) T) ((-96 . -490) 61404) ((-1160 . -1052) T) ((-289 . -111) 61389) ((-1119 . -1052) T) ((-549 . -607) 61368) ((-96 . -610) 61334) ((-1000 . -844) T) ((-227 . -682) 61292) ((-689 . -1105) T) ((-1202 . -736) 61268) ((-1020 . -363) T) ((-834 . -831) 61250) ((-319 . -1045) T) ((-343 . -25) T) ((-343 . -21) T) ((-407 . -896) 61209) ((-68 . -1208) T) ((-829 . -790) 61188) ((-418 . -713) 61162) ((-795 . -1093) T) ((-829 . -787) 61141) ((-694 . -131) T) ((-708 . -916) 61120) ((-689 . -23) T) ((-487 . -290) T) ((-829 . -722) 61099) ((-319 . -233) 61051) ((-319 . -243) 61030) ((-217 . -290) T) ((-129 . -368) T) ((-1241 . -452) 61009) ((-1220 . -452) 60988) ((-354 . -329) 60965) ((-354 . -363) T) ((-1133 . -610) 60947) ((-45 . -1245) 60897) ((-867 . -102) T) ((-640 . -282) 60881) ((-694 . -1054) T) ((-1268 . -102) T) ((-1267 . -102) T) ((-477 . -643) 60846) ((-468 . -1093) T) ((-45 . -601) 60771) ((-1151 . -288) 60746) ((-289 . -613) 60718) ((-40 . -636) 60657) ((-48 . -363) T) ((-1099 . -610) 60639) ((-1080 . -846) 60618) ((-629 . -288) 60593) ((-778 . -846) 60572) ((-776 . -846) 60551) ((-482 . -610) 60282) ((-240 . -411) 60251) ((-948 . -309) 60238) ((-454 . -846) 60217) ((-65 . -1208) T) ((-1057 . -514) 60061) ((-620 . -131) T) ((-546 . -102) T) ((-481 . -309) 60048) ((-603 . -1093) T) ((-117 . -131) T) ((-666 . -1093) T) ((-289 . -1045) T) ((-180 . -1093) T) ((-161 . -1093) T) ((-156 . -1093) T) ((-154 . -1093) T) ((-453 . -757) T) ((-31 . -1076) T) ((-959 . -172) 59999) ((-966 . -93) T) ((-1073 . -1051) 59909) ((-618 . -790) 59888) ((-591 . -1093) T) ((-618 . -787) 59867) ((-618 . -722) T) ((-295 . -286) 59846) ((-294 . -1208) T) ((-1049 . -610) 59808) ((-1049 . -611) 59769) ((-1020 . -1105) T) ((-169 . -102) T) ((-275 . -846) T) ((-1158 . -1093) T) ((-814 . -610) 59751) ((-1106 . -288) 59728) ((-1095 . -229) 59712) ((-999 . -307) T) ((-795 . -713) 59696) ((-359 . -1051) 59648) ((-354 . -1105) T) ((-353 . -1051) 59600) ((-414 . -610) 59582) ((-385 . -610) 59564) ((-345 . -1051) 59516) ((-227 . -610) 59448) ((-1073 . -111) 59344) ((-1020 . -23) T) ((-108 . -1051) 59294) ((-894 . -102) T) ((-837 . -102) T) ((-804 . -102) T) ((-765 . -102) T) ((-672 . -102) T) ((-474 . -452) 59273) ((-418 . -172) T) ((-359 . -111) 59211) ((-353 . -111) 59149) ((-345 . -111) 59087) ((-251 . -231) 59056) ((-250 . -231) 59025) ((-354 . -23) T) ((-71 . -1208) T) ((-225 . -38) 58990) ((-108 . -111) 58924) ((-40 . -25) T) ((-40 . -21) T) ((-665 . -716) T) ((-169 . -284) 58902) ((-48 . -1105) T) ((-917 . -25) T) ((-767 . -25) T) ((-1143 . -489) 58839) ((-485 . -1093) T) ((-1281 . -643) 58813) ((-1230 . -102) T) ((-851 . -102) T) ((-240 . -1052) 58743) ((-1056 . -1144) T) ((-960 . -788) 58696) ((-381 . -643) 58680) ((-48 . -23) T) ((-960 . -791) 58633) ((-811 . -791) 58584) ((-811 . -788) 58535) ((-295 . -601) 58514) ((-477 . -722) T) ((-570 . -102) T) ((-1073 . -613) 58332) ((-249 . -185) T) ((-187 . -185) T) ((-867 . -309) 58289) ((-648 . -286) 58268) ((-112 . -656) T) ((-359 . -613) 58205) ((-353 . -613) 58142) ((-345 . -613) 58079) ((-76 . -1208) T) ((-108 . -613) 58029) ((-1056 . -38) 58016) ((-659 . -374) 57995) ((-948 . -38) 57844) ((-727 . -1093) T) ((-481 . -38) 57693) ((-86 . -1208) T) ((-590 . -490) 57674) ((-570 . -284) T) ((-1221 . -844) NIL) ((-590 . -610) 57640) ((-1167 . -1093) T) ((-1166 . -1093) T) ((-1073 . -1045) T) ((-351 . -1034) 57617) ((-813 . -490) 57601) ((-1000 . -1052) T) ((-45 . -610) 57583) ((-45 . -611) NIL) ((-910 . -1052) T) ((-813 . -610) 57552) ((-1160 . -1093) T) ((-1140 . -102) 57530) ((-1073 . -243) 57481) ((-427 . -1052) T) ((-359 . -1045) T) ((-365 . -364) 57458) ((-353 . -1045) T) ((-345 . -1045) T) ((-251 . -238) 57437) ((-250 . -238) 57416) ((-1073 . -233) 57341) ((-1119 . -1093) T) ((-294 . -896) 57300) ((-108 . -1045) T) ((-689 . -131) T) ((-418 . -514) 57142) ((-359 . -233) 57121) ((-359 . -243) T) ((-44 . -716) T) ((-353 . -233) 57100) ((-353 . -243) T) ((-345 . -233) 57079) ((-345 . -243) T) ((-1159 . -613) 57060) ((-169 . -309) 57025) ((-108 . -243) T) ((-108 . -233) T) ((-990 . -613) 57006) ((-319 . -788) T) ((-866 . -21) T) ((-866 . -25) T) ((-407 . -307) T) ((-500 . -34) T) ((-110 . -288) 56981) ((-1106 . -1051) 56878) ((-867 . -1144) NIL) ((-330 . -610) 56860) ((-407 . -1018) 56838) ((-1106 . -111) 56728) ((-686 . -1252) T) ((-436 . -1093) T) ((-1281 . -722) T) ((-63 . -610) 56710) ((-867 . -38) 56655) ((-523 . -1208) T) ((-599 . -151) 56639) ((-512 . -610) 56621) ((-1230 . -309) 56608) ((-727 . -713) 56457) ((-531 . -789) T) ((-531 . -790) T) ((-563 . -636) 56439) ((-495 . -636) 56399) ((-355 . -452) T) ((-352 . -452) T) ((-344 . -452) T) ((-264 . -452) 56350) ((-525 . -1093) T) ((-520 . -1093) 56300) ((-247 . -452) 56251) ((-1143 . -286) 56230) ((-1171 . -610) 56212) ((-684 . -514) 56145) ((-959 . -290) 56124) ((-549 . -514) 55916) ((-1269 . -610) 55885) ((-1165 . -231) 55869) ((-1106 . -613) 55599) ((-169 . -1144) 55578) ((-1269 . -490) 55562) ((-1167 . -713) 55459) ((-1166 . -713) 55300) ((-888 . -102) T) ((-1160 . -713) 55096) ((-1119 . -713) 54993) ((-1149 . -669) 54977) ((-355 . -402) 54928) ((-352 . -402) 54879) ((-344 . -402) 54830) ((-1020 . -131) T) ((-795 . -514) 54742) ((-295 . -611) NIL) ((-295 . -610) 54724) ((-906 . -452) T) ((-960 . -368) 54677) ((-811 . -368) 54656) ((-510 . -509) 54635) ((-508 . -509) 54614) ((-487 . -286) NIL) ((-482 . -288) 54591) ((-418 . -290) T) ((-354 . -131) T) ((-217 . -286) NIL) ((-689 . -493) NIL) ((-99 . -1105) T) ((-169 . -38) 54419) ((-1241 . -969) 54381) ((-1140 . -309) 54319) ((-1220 . -969) 54288) ((-906 . -402) T) ((-1106 . -1045) 54218) ((-1243 . -555) T) ((-1143 . -601) 54197) ((-112 . -846) T) ((-1057 . -489) 54128) ((-579 . -21) T) ((-579 . -25) T) ((-563 . -21) T) ((-563 . -25) T) ((-495 . -25) T) ((-495 . -21) T) ((-1230 . -1144) 54106) ((-1106 . -233) 54058) ((-48 . -131) T) ((-1189 . -102) T) ((-240 . -1093) 53848) ((-867 . -400) 53825) ((-1081 . -102) T) ((-1069 . -102) T) ((-605 . -102) T) ((-475 . -102) T) ((-1230 . -38) 53654) ((-851 . -38) 53624) ((-727 . -172) 53535) ((-648 . -610) 53517) ((-641 . -1076) T) ((-570 . -38) 53504) ((-966 . -490) 53485) ((-966 . -610) 53451) ((-954 . -102) 53401) ((-860 . -610) 53383) ((-860 . -611) 53305) ((-591 . -514) NIL) ((-1249 . -1052) T) ((-1242 . -1052) T) ((-1221 . -1052) T) ((-1285 . -1105) T) ((-1176 . -102) T) ((-594 . -1052) T) ((-593 . -1052) T) ((-1175 . -102) T) ((-1167 . -172) 53256) ((-1166 . -172) 53187) ((-1160 . -172) 53118) ((-1119 . -172) 53069) ((-1000 . -1093) T) ((-967 . -1093) T) ((-910 . -1093) T) ((-1202 . -147) 53048) ((-795 . -793) 53032) ((-694 . -25) T) ((-694 . -21) T) ((-117 . -636) 53009) ((-696 . -882) 52991) ((-427 . -1093) T) ((-316 . -1212) 52970) ((-313 . -1212) T) ((-169 . -400) 52954) ((-1202 . -145) 52933) ((-474 . -969) 52895) ((-130 . -102) T) ((-128 . -102) T) ((-72 . -610) 52877) ((-108 . -791) T) ((-108 . -788) T) ((-696 . -1034) 52859) ((-316 . -555) 52838) ((-313 . -555) T) ((-1285 . -23) T) ((-134 . -1034) 52820) ((-96 . -613) 52801) ((-482 . -1051) 52698) ((-45 . -288) 52623) ((-240 . -713) 52565) ((-517 . -102) T) ((-482 . -111) 52455) ((-1085 . -102) 52433) ((-1030 . -102) T) ((-640 . -824) 52412) ((-727 . -514) 52355) ((-1049 . -1051) 52339) ((-1128 . -93) T) ((-1057 . -286) 52314) ((-620 . -21) T) ((-620 . -25) T) ((-524 . -1093) T) ((-361 . -102) T) ((-322 . -102) T) ((-665 . -643) 52288) ((-385 . -1051) 52272) ((-1049 . -111) 52251) ((-812 . -411) 52235) ((-117 . -25) T) ((-89 . -610) 52217) ((-117 . -21) T) ((-605 . -309) 52012) ((-475 . -309) 51816) ((-1143 . -611) NIL) ((-385 . -111) 51795) ((-379 . -102) T) ((-214 . -610) 51777) ((-1143 . -610) 51759) ((-1160 . -514) 51528) ((-1000 . -713) 51478) ((-1119 . -514) 51448) ((-910 . -713) 51400) ((-482 . -613) 51130) ((-351 . -307) T) ((-1181 . -151) 51080) ((-954 . -309) 51018) ((-832 . -102) T) ((-427 . -713) 51002) ((-225 . -824) T) ((-823 . -102) T) ((-821 . -102) T) ((-479 . -151) 50952) ((-1241 . -1240) 50931) ((-1113 . -1212) T) ((-339 . -1034) 50898) ((-1241 . -1235) 50868) ((-1241 . -1238) 50852) ((-1220 . -1219) 50831) ((-80 . -610) 50813) ((-901 . -610) 50795) ((-1220 . -1235) 50772) ((-1113 . -555) T) ((-917 . -846) T) ((-767 . -846) T) ((-487 . -611) 50702) ((-487 . -610) 50643) ((-379 . -284) T) ((-667 . -846) T) ((-1220 . -1217) 50627) ((-1243 . -1105) T) ((-217 . -611) 50557) ((-217 . -610) 50498) ((-1279 . -643) 50472) ((-1057 . -601) 50447) ((-814 . -613) 50431) ((-59 . -151) 50415) ((-516 . -151) 50399) ((-496 . -151) 50383) ((-359 . -1276) 50367) ((-353 . -1276) 50351) ((-345 . -1276) 50335) ((-316 . -363) 50314) ((-313 . -363) T) ((-482 . -1045) 50244) ((-689 . -636) 50226) ((-1277 . -643) 50200) ((-128 . -309) NIL) ((-1243 . -23) T) ((-684 . -489) 50184) ((-64 . -610) 50166) ((-1106 . -791) 50117) ((-1106 . -788) 50068) ((-549 . -489) 50005) ((-665 . -34) T) ((-482 . -233) 49957) ((-295 . -288) 49936) ((-240 . -172) 49915) ((-812 . -1052) T) ((-44 . -643) 49873) ((-1073 . -368) 49824) ((-727 . -290) 49755) ((-520 . -514) 49688) ((-813 . -1051) 49639) ((-1080 . -145) 49618) ((-548 . -610) 49600) ((-359 . -368) 49579) ((-353 . -368) 49558) ((-345 . -368) 49537) ((-1080 . -147) 49516) ((-867 . -231) 49493) ((-813 . -111) 49435) ((-778 . -145) 49414) ((-778 . -147) 49393) ((-264 . -945) 49360) ((-251 . -844) 49339) ((-247 . -945) 49284) ((-250 . -844) 49263) ((-776 . -145) 49242) ((-776 . -147) 49221) ((-152 . -643) 49195) ((-578 . -1093) T) ((-454 . -147) 49174) ((-454 . -145) 49153) ((-665 . -722) T) ((-819 . -610) 49135) ((-1249 . -1093) T) ((-1242 . -1093) T) ((-1221 . -1093) T) ((-1202 . -1196) 49101) ((-1202 . -1193) 49067) ((-1167 . -290) 49046) ((-1166 . -290) 48997) ((-1160 . -290) 48948) ((-1119 . -290) 48927) ((-339 . -896) 48908) ((-1000 . -172) T) ((-910 . -172) T) ((-594 . -1093) T) ((-593 . -1093) T) ((-689 . -21) T) ((-689 . -25) T) ((-474 . -1238) 48892) ((-474 . -1235) 48862) ((-418 . -286) 48790) ((-547 . -846) T) ((-316 . -1105) 48639) ((-313 . -1105) T) ((-1202 . -35) 48605) ((-1202 . -95) 48571) ((-84 . -610) 48553) ((-91 . -102) 48531) ((-1285 . -131) T) ((-590 . -613) 48512) ((-580 . -145) T) ((-580 . -147) 48494) ((-518 . -147) 48476) ((-518 . -145) T) ((-316 . -23) 48328) ((-40 . -342) 48302) ((-313 . -23) T) ((-813 . -613) 48216) ((-1151 . -646) 48198) ((-1272 . -1052) T) ((-1151 . -373) 48180) ((-811 . -643) 48028) ((-1089 . -102) T) ((-1083 . -102) T) ((-1067 . -102) T) ((-169 . -231) 48012) ((-1060 . -102) T) ((-1032 . -102) T) ((-1015 . -102) T) ((-591 . -489) 47994) ((-623 . -102) T) ((-240 . -514) 47927) ((-483 . -102) T) ((-1279 . -722) T) ((-1277 . -722) T) ((-218 . -102) T) ((-1171 . -1051) 47810) ((-1171 . -111) 47679) ((-857 . -173) T) ((-813 . -1045) T) ((-676 . -1076) T) ((-671 . -1076) T) ((-515 . -102) T) ((-510 . -102) T) ((-48 . -636) 47639) ((-508 . -102) T) ((-478 . -1076) T) ((-1269 . -1051) 47609) ((-138 . -1076) T) ((-137 . -1076) T) ((-133 . -1076) T) ((-1030 . -38) 47593) ((-813 . -233) T) ((-813 . -243) 47572) ((-1269 . -111) 47537) ((-1249 . -713) 47434) ((-1242 . -713) 47275) ((-1230 . -231) 47259) ((-549 . -286) 47238) ((-1213 . -610) 47220) ((-1057 . -611) NIL) ((-603 . -93) T) ((-1057 . -610) 47202) ((-698 . -490) 47186) ((-666 . -93) T) ((-180 . -93) T) ((-161 . -93) T) ((-156 . -93) T) ((-154 . -93) T) ((-1221 . -713) 46982) ((-999 . -916) T) ((-698 . -610) 46951) ((-152 . -722) T) ((-1106 . -368) 46930) ((-1000 . -514) NIL) ((-251 . -411) 46899) ((-250 . -411) 46868) ((-1020 . -25) T) ((-1020 . -21) T) ((-594 . -713) 46841) ((-593 . -713) 46738) ((-795 . -286) 46696) ((-126 . -102) 46674) ((-829 . -1034) 46570) ((-169 . -824) 46549) ((-319 . -643) 46446) ((-811 . -34) T) ((-710 . -102) T) ((-1171 . -613) 46299) ((-1113 . -1105) T) ((-1022 . -1208) T) ((-379 . -38) 46264) ((-354 . -25) T) ((-354 . -21) T) ((-187 . -102) T) ((-162 . -102) T) ((-249 . -102) T) ((-157 . -102) T) ((-355 . -1264) 46248) ((-352 . -1264) 46232) ((-344 . -1264) 46216) ((-169 . -349) 46195) ((-563 . -846) T) ((-495 . -846) T) ((-1113 . -23) T) ((-87 . -610) 46177) ((-696 . -307) T) ((-832 . -38) 46147) ((-823 . -38) 46117) ((-1269 . -613) 46059) ((-1243 . -131) T) ((-1143 . -288) 46038) ((-960 . -789) 45991) ((-960 . -790) 45944) ((-811 . -787) 45923) ((-116 . -307) T) ((-91 . -309) 45861) ((-670 . -34) T) ((-549 . -601) 45840) ((-48 . -25) T) ((-48 . -21) T) ((-811 . -790) 45791) ((-811 . -789) 45770) ((-696 . -1018) T) ((-648 . -1051) 45754) ((-960 . -722) 45653) ((-811 . -722) 45563) ((-960 . -473) 45516) ((-482 . -791) 45467) ((-482 . -788) 45418) ((-906 . -1264) 45405) ((-1171 . -1045) T) ((-648 . -111) 45384) ((-1171 . -326) 45361) ((-1194 . -102) 45339) ((-1094 . -610) 45321) ((-696 . -545) T) ((-812 . -1093) T) ((-1269 . -1045) T) ((-1128 . -490) 45302) ((-1214 . -102) T) ((-413 . -1093) T) ((-1128 . -610) 45268) ((-251 . -1052) 45198) ((-250 . -1052) 45128) ((-834 . -102) T) ((-289 . -643) 45115) ((-591 . -286) 45090) ((-684 . -682) 45048) ((-959 . -610) 45030) ((-868 . -102) T) ((-731 . -610) 45012) ((-711 . -610) 44994) ((-1249 . -172) 44945) ((-1242 . -172) 44876) ((-1221 . -172) 44807) ((-694 . -846) T) ((-1000 . -290) T) ((-453 . -610) 44789) ((-624 . -722) T) ((-60 . -1093) 44767) ((-245 . -151) 44751) ((-910 . -290) T) ((-1020 . -1008) T) ((-624 . -473) T) ((-708 . -1212) 44730) ((-648 . -613) 44648) ((-594 . -172) 44627) ((-593 . -172) 44578) ((-1257 . -846) 44557) ((-708 . -555) 44468) ((-407 . -916) T) ((-407 . -816) 44447) ((-319 . -790) T) ((-966 . -613) 44428) ((-319 . -722) T) ((-418 . -610) 44410) ((-418 . -611) 44317) ((-640 . -1142) 44301) ((-110 . -646) 44283) ((-174 . -307) T) ((-126 . -309) 44221) ((-110 . -373) 44203) ((-398 . -1208) T) ((-316 . -131) 44074) ((-313 . -131) T) ((-69 . -395) T) ((-110 . -123) T) ((-520 . -489) 44058) ((-649 . -1105) T) ((-591 . -19) 44040) ((-61 . -441) T) ((-61 . -395) T) ((-820 . -1093) T) ((-591 . -601) 44015) ((-477 . -1034) 43975) ((-648 . -1045) T) ((-649 . -23) T) ((-1272 . -1093) T) ((-31 . -102) T) ((-812 . -713) 43824) ((-576 . -856) T) ((-117 . -846) NIL) ((-1165 . -411) 43808) ((-1118 . -411) 43792) ((-850 . -411) 43776) ((-869 . -102) 43727) ((-1241 . -102) T) ((-1221 . -514) 43496) ((-1220 . -102) T) ((-1194 . -309) 43434) ((-525 . -93) T) ((-1167 . -286) 43419) ((-312 . -610) 43401) ((-1166 . -286) 43386) ((-1095 . -1093) T) ((-1073 . -643) 43296) ((-684 . -610) 43228) ((-289 . -722) T) ((-108 . -905) NIL) ((-684 . -611) 43189) ((-598 . -610) 43171) ((-576 . -610) 43153) ((-549 . -611) NIL) ((-549 . -610) 43135) ((-529 . -610) 43117) ((-1160 . -286) 42965) ((-487 . -1051) 42915) ((-707 . -452) T) ((-511 . -509) 42894) ((-507 . -509) 42873) ((-217 . -1051) 42823) ((-359 . -643) 42775) ((-353 . -643) 42727) ((-225 . -844) T) ((-345 . -643) 42679) ((-599 . -102) 42629) ((-482 . -368) 42608) ((-108 . -643) 42558) ((-487 . -111) 42492) ((-240 . -489) 42476) ((-343 . -147) 42458) ((-343 . -145) T) ((-169 . -370) 42429) ((-939 . -1255) 42413) ((-217 . -111) 42347) ((-868 . -309) 42312) ((-939 . -1093) 42262) ((-795 . -611) 42223) ((-795 . -610) 42205) ((-714 . -102) T) ((-331 . -1093) T) ((-214 . -613) 42182) ((-1113 . -131) T) ((-710 . -38) 42152) ((-316 . -493) 42131) ((-500 . -1208) T) ((-1241 . -284) 42097) ((-1220 . -284) 42063) ((-327 . -151) 42047) ((-439 . -1093) T) ((-1057 . -288) 42022) ((-1272 . -713) 41992) ((-1152 . -34) T) ((-1281 . -1034) 41969) ((-468 . -610) 41951) ((-484 . -34) T) ((-381 . -1034) 41935) ((-1165 . -1052) T) ((-1118 . -1052) T) ((-850 . -1052) T) ((-1056 . -844) T) ((-487 . -613) 41885) ((-217 . -613) 41835) ((-812 . -172) 41746) ((-520 . -286) 41723) ((-1249 . -290) 41702) ((-1189 . -364) 41676) ((-1081 . -266) 41660) ((-666 . -490) 41641) ((-666 . -610) 41607) ((-603 . -490) 41588) ((-117 . -988) 41565) ((-603 . -610) 41515) ((-474 . -102) T) ((-180 . -490) 41496) ((-180 . -610) 41462) ((-161 . -490) 41443) ((-156 . -490) 41424) ((-154 . -490) 41405) ((-161 . -610) 41371) ((-156 . -610) 41337) ((-365 . -1093) T) ((-251 . -1093) T) ((-250 . -1093) T) ((-154 . -610) 41303) ((-1242 . -290) 41254) ((-1221 . -290) 41205) ((-868 . -1144) 41183) ((-1167 . -998) 41149) ((-605 . -364) 41089) ((-1166 . -998) 41055) ((-605 . -229) 41002) ((-591 . -610) 40984) ((-591 . -611) NIL) ((-689 . -846) T) ((-475 . -229) 40934) ((-487 . -1045) T) ((-1160 . -998) 40900) ((-88 . -440) T) ((-88 . -395) T) ((-217 . -1045) T) ((-1119 . -998) 40866) ((-1073 . -722) T) ((-708 . -1105) T) ((-594 . -290) 40845) ((-593 . -290) 40824) ((-487 . -243) T) ((-487 . -233) T) ((-217 . -243) T) ((-217 . -233) T) ((-1158 . -610) 40806) ((-868 . -38) 40758) ((-359 . -722) T) ((-353 . -722) T) ((-345 . -722) T) ((-108 . -790) T) ((-108 . -787) T) ((-708 . -23) T) ((-108 . -722) T) ((-520 . -1245) 40742) ((-1285 . -25) T) ((-474 . -284) 40708) ((-1285 . -21) T) ((-1220 . -309) 40647) ((-1169 . -102) T) ((-40 . -145) 40619) ((-40 . -147) 40591) ((-520 . -601) 40568) ((-1106 . -643) 40416) ((-599 . -309) 40354) ((-45 . -646) 40304) ((-45 . -661) 40254) ((-45 . -373) 40204) ((-1151 . -34) T) ((-867 . -844) NIL) ((-649 . -131) T) ((-485 . -610) 40186) ((-240 . -286) 40163) ((-186 . -1093) T) ((-642 . -34) T) ((-629 . -34) T) ((-1080 . -452) 40114) ((-812 . -514) 39988) ((-778 . -452) 39919) ((-776 . -452) 39870) ((-454 . -452) 39821) ((-948 . -411) 39805) ((-727 . -610) 39787) ((-251 . -713) 39729) ((-250 . -713) 39671) ((-727 . -611) 39532) ((-481 . -411) 39516) ((-339 . -302) T) ((-524 . -93) T) ((-351 . -916) T) ((-996 . -102) 39494) ((-1020 . -846) T) ((-60 . -514) 39427) ((-1220 . -1144) 39379) ((-1000 . -286) NIL) ((-225 . -1052) T) ((-379 . -824) T) ((-1106 . -34) T) ((-580 . -452) T) ((-518 . -452) T) ((-1224 . -1086) 39363) ((-1224 . -1093) 39341) ((-240 . -601) 39318) ((-1224 . -1088) 39275) ((-1167 . -610) 39257) ((-1166 . -610) 39239) ((-1160 . -610) 39221) ((-1160 . -611) NIL) ((-1119 . -610) 39203) ((-868 . -400) 39187) ((-536 . -102) T) ((-1241 . -38) 39028) ((-1220 . -38) 38842) ((-866 . -147) T) ((-698 . -613) 38826) ((-580 . -402) T) ((-48 . -846) T) ((-518 . -402) T) ((-1253 . -102) T) ((-1243 . -21) T) ((-1243 . -25) T) ((-1106 . -787) 38805) ((-1106 . -790) 38756) ((-1106 . -789) 38735) ((-989 . -1093) T) ((-1023 . -34) T) ((-858 . -1093) T) ((-1106 . -722) 38645) ((-659 . -102) T) ((-641 . -102) T) ((-549 . -288) 38624) ((-1181 . -102) T) ((-476 . -34) T) ((-463 . -34) T) ((-355 . -102) T) ((-352 . -102) T) ((-344 . -102) T) ((-264 . -102) T) ((-247 . -102) T) ((-477 . -307) T) ((-1056 . -1052) T) ((-948 . -1052) T) ((-316 . -636) 38530) ((-313 . -636) 38491) ((-481 . -1052) T) ((-479 . -102) T) ((-436 . -610) 38473) ((-1165 . -1093) T) ((-1118 . -1093) T) ((-850 . -1093) T) ((-1134 . -102) T) ((-812 . -290) 38404) ((-959 . -1051) 38287) ((-477 . -1018) T) ((-731 . -1051) 38257) ((-453 . -1051) 38227) ((-1140 . -1114) 38211) ((-1095 . -514) 38144) ((-959 . -111) 38013) ((-906 . -102) T) ((-731 . -111) 37978) ((-525 . -490) 37959) ((-525 . -610) 37925) ((-59 . -102) 37875) ((-520 . -611) 37836) ((-520 . -610) 37748) ((-519 . -102) 37726) ((-516 . -102) 37676) ((-497 . -102) 37654) ((-496 . -102) 37604) ((-453 . -111) 37567) ((-251 . -172) 37546) ((-250 . -172) 37525) ((-418 . -1051) 37499) ((-1202 . -969) 37461) ((-995 . -1105) T) ((-1128 . -613) 37442) ((-939 . -514) 37375) ((-487 . -791) T) ((-474 . -38) 37216) ((-418 . -111) 37183) ((-487 . -788) T) ((-996 . -309) 37121) ((-217 . -791) T) ((-217 . -788) T) ((-995 . -23) T) ((-708 . -131) T) ((-1220 . -400) 37091) ((-316 . -25) 36943) ((-169 . -411) 36927) ((-316 . -21) 36798) ((-313 . -25) T) ((-313 . -21) T) ((-860 . -368) T) ((-959 . -613) 36651) ((-110 . -34) T) ((-731 . -613) 36607) ((-711 . -613) 36589) ((-482 . -643) 36437) ((-867 . -1052) T) ((-591 . -288) 36412) ((-579 . -147) T) ((-563 . -147) T) ((-495 . -147) T) ((-1165 . -713) 36241) ((-1118 . -713) 36090) ((-1113 . -636) 36072) ((-850 . -713) 36042) ((-665 . -1208) T) ((-1 . -102) T) ((-418 . -613) 35950) ((-240 . -610) 35681) ((-1108 . -1093) T) ((-1230 . -411) 35665) ((-1181 . -309) 35469) ((-959 . -1045) T) ((-731 . -1045) T) ((-711 . -1045) T) ((-640 . -1093) 35419) ((-1049 . -643) 35403) ((-851 . -411) 35387) ((-511 . -102) T) ((-507 . -102) T) ((-247 . -309) 35374) ((-264 . -309) 35361) ((-959 . -326) 35340) ((-385 . -643) 35324) ((-479 . -309) 35128) ((-251 . -514) 35061) ((-665 . -1034) 34957) ((-250 . -514) 34890) ((-1134 . -309) 34816) ((-815 . -1093) T) ((-795 . -1051) 34800) ((-1249 . -286) 34785) ((-1242 . -286) 34770) ((-1221 . -286) 34618) ((-386 . -1093) T) ((-324 . -1093) T) ((-418 . -1045) T) ((-169 . -1052) T) ((-59 . -309) 34556) ((-795 . -111) 34535) ((-593 . -286) 34520) ((-519 . -309) 34458) ((-516 . -309) 34396) ((-497 . -309) 34334) ((-496 . -309) 34272) ((-418 . -233) 34251) ((-482 . -34) T) ((-1000 . -611) 34181) ((-225 . -1093) T) ((-1000 . -610) 34141) ((-967 . -610) 34101) ((-967 . -611) 34076) ((-910 . -610) 34058) ((-694 . -147) T) ((-696 . -916) T) ((-696 . -816) T) ((-427 . -610) 34040) ((-1113 . -21) T) ((-1113 . -25) T) ((-665 . -377) 34024) ((-116 . -916) T) ((-868 . -231) 34008) ((-78 . -1208) T) ((-126 . -125) 33992) ((-1049 . -34) T) ((-1279 . -1034) 33966) ((-1277 . -1034) 33923) ((-1230 . -1052) T) ((-851 . -1052) T) ((-482 . -787) 33902) ((-355 . -1144) 33881) ((-352 . -1144) 33860) ((-344 . -1144) 33839) ((-482 . -790) 33790) ((-482 . -789) 33769) ((-227 . -34) T) ((-482 . -722) 33679) ((-795 . -613) 33527) ((-60 . -489) 33511) ((-570 . -1052) T) ((-1165 . -172) 33402) ((-1118 . -172) 33313) ((-1056 . -1093) T) ((-1080 . -945) 33258) ((-948 . -1093) T) ((-813 . -643) 33209) ((-778 . -945) 33178) ((-709 . -1093) T) ((-776 . -945) 33145) ((-516 . -282) 33129) ((-665 . -896) 33088) ((-481 . -1093) T) ((-454 . -945) 33055) ((-79 . -1208) T) ((-355 . -38) 33020) ((-352 . -38) 32985) ((-344 . -38) 32950) ((-264 . -38) 32799) ((-247 . -38) 32648) ((-906 . -1144) T) ((-524 . -490) 32629) ((-620 . -147) 32608) ((-620 . -145) 32587) ((-524 . -610) 32553) ((-117 . -147) T) ((-117 . -145) NIL) ((-414 . -722) T) ((-795 . -1045) T) ((-343 . -452) T) ((-1249 . -998) 32519) ((-1242 . -998) 32485) ((-1221 . -998) 32451) ((-906 . -38) 32416) ((-225 . -713) 32381) ((-319 . -47) 32351) ((-40 . -409) 32323) ((-140 . -610) 32305) ((-995 . -131) T) ((-811 . -1208) T) ((-174 . -916) T) ((-548 . -368) T) ((-603 . -613) 32286) ((-343 . -402) T) ((-666 . -613) 32267) ((-180 . -613) 32248) ((-161 . -613) 32229) ((-156 . -613) 32210) ((-154 . -613) 32191) ((-520 . -288) 32168) ((-1220 . -231) 32138) ((-811 . -1034) 31965) ((-45 . -34) T) ((-676 . -102) T) ((-671 . -102) T) ((-657 . -102) T) ((-649 . -21) T) ((-649 . -25) T) ((-1095 . -489) 31949) ((-670 . -1208) T) ((-478 . -102) T) ((-245 . -102) 31899) ((-546 . -840) T) ((-138 . -102) T) ((-137 . -102) T) ((-133 . -102) T) ((-867 . -1093) T) ((-1171 . -643) 31824) ((-1056 . -713) 31811) ((-727 . -1051) 31654) ((-1165 . -514) 31601) ((-948 . -713) 31450) ((-1118 . -514) 31402) ((-1268 . -1093) T) ((-1267 . -1093) T) ((-481 . -713) 31251) ((-67 . -610) 31233) ((-727 . -111) 31062) ((-939 . -489) 31046) ((-1269 . -643) 31006) ((-813 . -722) T) ((-1167 . -1051) 30889) ((-1166 . -1051) 30724) ((-1160 . -1051) 30514) ((-1119 . -1051) 30397) ((-999 . -1212) T) ((-1087 . -102) 30375) ((-811 . -377) 30344) ((-578 . -610) 30326) ((-546 . -1093) T) ((-999 . -555) T) ((-1167 . -111) 30195) ((-1166 . -111) 30016) ((-1160 . -111) 29785) ((-1119 . -111) 29654) ((-1098 . -1096) 29618) ((-379 . -844) T) ((-1249 . -610) 29600) ((-1242 . -610) 29582) ((-1221 . -610) 29564) ((-1221 . -611) NIL) ((-240 . -288) 29541) ((-40 . -452) T) ((-225 . -172) T) ((-169 . -1093) T) ((-727 . -613) 29326) ((-689 . -147) T) ((-689 . -145) NIL) ((-594 . -610) 29308) ((-593 . -610) 29290) ((-894 . -1093) T) ((-837 . -1093) T) ((-804 . -1093) T) ((-765 . -1093) T) ((-653 . -848) 29274) ((-672 . -1093) T) ((-811 . -896) 29206) ((-1213 . -368) T) ((-40 . -402) NIL) ((-1167 . -613) 29088) ((-1113 . -656) T) ((-867 . -713) 29033) ((-251 . -489) 29017) ((-250 . -489) 29001) ((-1166 . -613) 28744) ((-1160 . -613) 28539) ((-708 . -636) 28487) ((-648 . -643) 28461) ((-1119 . -613) 28343) ((-295 . -34) T) ((-727 . -1045) T) ((-580 . -1264) 28330) ((-518 . -1264) 28307) ((-1230 . -1093) T) ((-1165 . -290) 28218) ((-1118 . -290) 28149) ((-1056 . -172) T) ((-851 . -1093) T) ((-948 . -172) 28060) ((-778 . -1233) 28044) ((-640 . -514) 27977) ((-77 . -610) 27959) ((-727 . -326) 27924) ((-1171 . -722) T) ((-570 . -1093) T) ((-481 . -172) 27835) ((-245 . -309) 27773) ((-1135 . -1105) T) ((-70 . -610) 27755) ((-1269 . -722) T) ((-1167 . -1045) T) ((-1166 . -1045) T) ((-327 . -102) 27705) ((-1160 . -1045) T) ((-1135 . -23) T) ((-1119 . -1045) T) ((-91 . -1114) 27689) ((-862 . -1105) T) ((-1167 . -233) 27648) ((-1166 . -243) 27627) ((-1166 . -233) 27579) ((-1160 . -233) 27466) ((-1160 . -243) 27445) ((-319 . -896) 27351) ((-862 . -23) T) ((-169 . -713) 27179) ((-407 . -1212) T) ((-1094 . -368) T) ((-1020 . -147) T) ((-999 . -363) T) ((-866 . -452) T) ((-939 . -286) 27156) ((-316 . -846) T) ((-313 . -846) NIL) ((-870 . -102) T) ((-708 . -25) T) ((-407 . -555) T) ((-708 . -21) T) ((-525 . -613) 27137) ((-354 . -147) 27119) ((-354 . -145) T) ((-1140 . -1093) 27097) ((-453 . -716) T) ((-75 . -610) 27079) ((-114 . -846) T) ((-245 . -282) 27063) ((-240 . -1051) 26960) ((-81 . -610) 26942) ((-731 . -368) 26895) ((-1169 . -824) T) ((-733 . -235) 26879) ((-1152 . -1208) T) ((-141 . -235) 26861) ((-240 . -111) 26751) ((-1230 . -713) 26580) ((-48 . -147) T) ((-867 . -172) T) ((-851 . -713) 26550) ((-484 . -1208) T) ((-948 . -514) 26497) ((-648 . -722) T) ((-570 . -713) 26484) ((-1030 . -1052) T) ((-481 . -514) 26427) ((-939 . -19) 26411) ((-939 . -601) 26388) ((-812 . -611) NIL) ((-812 . -610) 26370) ((-1000 . -1051) 26320) ((-413 . -610) 26302) ((-251 . -286) 26279) ((-250 . -286) 26256) ((-487 . -905) NIL) ((-316 . -29) 26226) ((-108 . -1208) T) ((-999 . -1105) T) ((-217 . -905) NIL) ((-910 . -1051) 26178) ((-1073 . -1034) 26074) ((-1000 . -111) 26008) ((-999 . -23) T) ((-733 . -690) 25992) ((-264 . -231) 25976) ((-427 . -1051) 25960) ((-379 . -1052) T) ((-240 . -613) 25690) ((-910 . -111) 25628) ((-689 . -1196) NIL) ((-487 . -643) 25578) ((-108 . -880) 25560) ((-108 . -882) 25542) ((-689 . -1193) NIL) ((-217 . -643) 25492) ((-359 . -1034) 25476) ((-353 . -1034) 25460) ((-327 . -309) 25398) ((-345 . -1034) 25382) ((-225 . -290) T) ((-427 . -111) 25361) ((-60 . -610) 25293) ((-169 . -172) T) ((-1113 . -846) T) ((-108 . -1034) 25253) ((-888 . -1093) T) ((-832 . -1052) T) ((-823 . -1052) T) ((-689 . -35) NIL) ((-689 . -95) NIL) ((-313 . -988) 25214) ((-183 . -102) T) ((-579 . -452) T) ((-563 . -452) T) ((-495 . -452) T) ((-407 . -363) T) ((-240 . -1045) 25144) ((-1143 . -34) T) ((-477 . -916) T) ((-995 . -636) 25092) ((-251 . -601) 25069) ((-250 . -601) 25046) ((-1073 . -377) 25030) ((-867 . -514) 24938) ((-240 . -233) 24890) ((-1151 . -1208) T) ((-1000 . -613) 24840) ((-910 . -613) 24777) ((-820 . -610) 24759) ((-1280 . -1105) T) ((-1272 . -610) 24741) ((-1230 . -172) 24632) ((-427 . -613) 24601) ((-108 . -377) 24583) ((-108 . -338) 24565) ((-1056 . -290) T) ((-948 . -290) 24496) ((-795 . -368) 24475) ((-642 . -1208) T) ((-629 . -1208) T) ((-481 . -290) 24406) ((-570 . -172) T) ((-327 . -282) 24390) ((-1280 . -23) T) ((-1202 . -102) T) ((-1189 . -1093) T) ((-1081 . -1093) T) ((-1069 . -1093) T) ((-83 . -610) 24372) ((-1176 . -840) T) ((-1175 . -840) T) ((-707 . -102) T) ((-355 . -349) 24351) ((-605 . -1093) T) ((-352 . -349) 24330) ((-344 . -349) 24309) ((-475 . -1093) T) ((-1181 . -229) 24259) ((-264 . -253) 24221) ((-1135 . -131) T) ((-605 . -607) 24197) ((-1073 . -896) 24130) ((-1000 . -1045) T) ((-910 . -1045) T) ((-475 . -607) 24109) ((-1160 . -788) NIL) ((-1160 . -791) NIL) ((-1095 . -611) 24070) ((-479 . -229) 24020) ((-1095 . -610) 24002) ((-1000 . -243) T) ((-1000 . -233) T) ((-427 . -1045) T) ((-954 . -1093) 23952) ((-910 . -243) T) ((-862 . -131) T) ((-694 . -452) T) ((-839 . -1105) 23931) ((-108 . -896) NIL) ((-1202 . -284) 23897) ((-868 . -844) 23876) ((-1106 . -1208) T) ((-901 . -722) T) ((-169 . -514) 23788) ((-995 . -25) T) ((-901 . -473) T) ((-407 . -1105) T) ((-487 . -790) T) ((-487 . -787) T) ((-906 . -349) T) ((-487 . -722) T) ((-217 . -790) T) ((-217 . -787) T) ((-995 . -21) T) ((-217 . -722) T) ((-839 . -23) 23740) ((-524 . -613) 23721) ((-1176 . -1093) T) ((-319 . -307) 23700) ((-1175 . -1093) T) ((-1031 . -235) 23646) ((-407 . -23) T) ((-939 . -611) 23607) ((-939 . -610) 23519) ((-640 . -489) 23503) ((-45 . -1006) 23453) ((-614 . -963) T) ((-491 . -102) T) ((-331 . -610) 23435) ((-1106 . -1034) 23262) ((-591 . -646) 23244) ((-130 . -1093) T) ((-128 . -1093) T) ((-591 . -373) 23226) ((-343 . -1264) 23203) ((-439 . -610) 23185) ((-1023 . -1208) T) ((-867 . -290) T) ((-1230 . -514) 23132) ((-476 . -1208) T) ((-463 . -1208) T) ((-584 . -102) T) ((-1165 . -286) 23059) ((-620 . -452) 23038) ((-996 . -991) 23022) ((-1272 . -382) 22994) ((-517 . -1093) T) ((-117 . -452) T) ((-1188 . -102) T) ((-1085 . -1093) 22972) ((-1030 . -1093) T) ((-1108 . -93) T) ((-889 . -846) T) ((-351 . -1212) T) ((-1249 . -1051) 22855) ((-1106 . -377) 22824) ((-1242 . -1051) 22659) ((-1221 . -1051) 22449) ((-1249 . -111) 22318) ((-1242 . -111) 22139) ((-1221 . -111) 21908) ((-1202 . -309) 21895) ((-351 . -555) T) ((-365 . -610) 21877) ((-289 . -307) T) ((-594 . -1051) 21850) ((-593 . -1051) 21733) ((-361 . -1093) T) ((-322 . -1093) T) ((-251 . -610) 21694) ((-250 . -610) 21655) ((-999 . -131) T) ((-632 . -23) T) ((-689 . -409) 21622) ((-604 . -23) T) ((-653 . -102) T) ((-594 . -111) 21593) ((-593 . -111) 21462) ((-379 . -1093) T) ((-336 . -102) T) ((-169 . -290) 21373) ((-1220 . -844) 21326) ((-710 . -1052) T) ((-1140 . -514) 21259) ((-1106 . -896) 21191) ((-832 . -1093) T) ((-823 . -1093) T) ((-821 . -1093) T) ((-97 . -102) T) ((-144 . -846) T) ((-609 . -880) 21175) ((-110 . -1208) T) ((-1080 . -102) T) ((-1057 . -34) T) ((-778 . -102) T) ((-776 . -102) T) ((-1249 . -613) 21057) ((-1242 . -613) 20800) ((-461 . -102) T) ((-454 . -102) T) ((-1221 . -613) 20595) ((-240 . -791) 20546) ((-240 . -788) 20497) ((-644 . -102) T) ((-594 . -613) 20455) ((-593 . -613) 20337) ((-1230 . -290) 20248) ((-659 . -631) 20232) ((-186 . -610) 20214) ((-640 . -286) 20191) ((-1030 . -713) 20175) ((-570 . -290) T) ((-959 . -643) 20100) ((-1280 . -131) T) ((-731 . -643) 20060) ((-711 . -643) 20047) ((-275 . -102) T) ((-453 . -643) 19977) ((-50 . -102) T) ((-580 . -102) T) ((-518 . -102) T) ((-1249 . -1045) T) ((-1242 . -1045) T) ((-1221 . -1045) T) ((-1249 . -233) 19936) ((-322 . -713) 19918) ((-1242 . -243) 19897) ((-1242 . -233) 19849) ((-1221 . -233) 19736) ((-1221 . -243) 19715) ((-1202 . -38) 19612) ((-1000 . -791) T) ((-594 . -1045) T) ((-593 . -1045) T) ((-1000 . -788) T) ((-967 . -791) T) ((-967 . -788) T) ((-868 . -1052) T) ((-866 . -865) 19596) ((-109 . -610) 19578) ((-689 . -452) T) ((-379 . -713) 19543) ((-418 . -643) 19517) ((-708 . -846) 19496) ((-707 . -38) 19461) ((-593 . -233) 19420) ((-40 . -720) 19392) ((-351 . -329) 19369) ((-351 . -363) T) ((-1073 . -307) 19320) ((-294 . -1105) 19201) ((-1099 . -1208) T) ((-171 . -102) T) ((-1224 . -610) 19168) ((-839 . -131) 19120) ((-640 . -1245) 19104) ((-832 . -713) 19074) ((-823 . -713) 19044) ((-482 . -1208) T) ((-359 . -307) T) ((-353 . -307) T) ((-345 . -307) T) ((-640 . -601) 19021) ((-407 . -131) T) ((-520 . -661) 19005) ((-108 . -307) T) ((-294 . -23) 18888) ((-520 . -646) 18872) ((-689 . -402) NIL) ((-520 . -373) 18856) ((-291 . -610) 18838) ((-91 . -1093) 18816) ((-108 . -1018) T) ((-563 . -143) T) ((-1257 . -151) 18800) ((-482 . -1034) 18627) ((-1243 . -145) 18588) ((-1243 . -147) 18549) ((-1049 . -1208) T) ((-989 . -610) 18531) ((-858 . -610) 18513) ((-812 . -1051) 18356) ((-1268 . -93) T) ((-1267 . -93) T) ((-1165 . -611) NIL) ((-1089 . -1093) T) ((-1083 . -1093) T) ((-1080 . -309) 18343) ((-1067 . -1093) T) ((-227 . -1208) T) ((-1060 . -1093) T) ((-1032 . -1093) T) ((-1015 . -1093) T) ((-778 . -309) 18330) ((-776 . -309) 18317) ((-1165 . -610) 18299) ((-812 . -111) 18128) ((-1118 . -610) 18110) ((-623 . -1093) T) ((-576 . -173) T) ((-529 . -173) T) ((-454 . -309) 18097) ((-483 . -1093) T) ((-1118 . -611) 17845) ((-1030 . -172) T) ((-939 . -288) 17822) ((-218 . -1093) T) ((-850 . -610) 17804) ((-605 . -514) 17587) ((-81 . -613) 17528) ((-814 . -1034) 17512) ((-475 . -514) 17304) ((-959 . -722) T) ((-731 . -722) T) ((-711 . -722) T) ((-351 . -1105) T) ((-1172 . -610) 17286) ((-223 . -102) T) ((-482 . -377) 17255) ((-515 . -1093) T) ((-510 . -1093) T) ((-508 . -1093) T) ((-795 . -643) 17229) ((-1020 . -452) T) ((-954 . -514) 17162) ((-351 . -23) T) ((-632 . -131) T) ((-604 . -131) T) ((-354 . -452) T) ((-240 . -368) 17141) ((-379 . -172) T) ((-1241 . -1052) T) ((-1220 . -1052) T) ((-225 . -998) T) ((-812 . -613) 16878) ((-694 . -387) T) ((-418 . -722) T) ((-696 . -1212) T) ((-1135 . -636) 16826) ((-579 . -865) 16810) ((-1272 . -1051) 16794) ((-1152 . -1184) 16770) ((-696 . -555) T) ((-126 . -1093) 16748) ((-710 . -1093) T) ((-482 . -896) 16680) ((-249 . -1093) T) ((-187 . -1093) T) ((-653 . -38) 16650) ((-354 . -402) T) ((-316 . -147) 16629) ((-316 . -145) 16608) ((-128 . -514) NIL) ((-116 . -555) T) ((-313 . -147) 16564) ((-313 . -145) 16520) ((-48 . -452) T) ((-162 . -1093) T) ((-157 . -1093) T) ((-1152 . -107) 16467) ((-778 . -1144) 16445) ((-684 . -34) T) ((-1272 . -111) 16424) ((-549 . -34) T) ((-484 . -107) 16408) ((-251 . -288) 16385) ((-250 . -288) 16362) ((-867 . -286) 16313) ((-45 . -1208) T) ((-1214 . -840) T) ((-812 . -1045) T) ((-1171 . -47) 16290) ((-812 . -326) 16252) ((-1080 . -38) 16101) ((-812 . -233) 16080) ((-778 . -38) 15909) ((-776 . -38) 15758) ((-1108 . -490) 15739) ((-454 . -38) 15588) ((-1108 . -610) 15554) ((-1111 . -102) T) ((-640 . -611) 15515) ((-640 . -610) 15427) ((-580 . -1144) T) ((-518 . -1144) T) ((-1140 . -489) 15411) ((-1194 . -1093) 15389) ((-1135 . -25) T) ((-1135 . -21) T) ((-1272 . -613) 15338) ((-474 . -1052) T) ((-1214 . -1093) T) ((-1221 . -788) NIL) ((-1221 . -791) NIL) ((-995 . -846) 15317) ((-834 . -1093) T) ((-815 . -610) 15299) ((-862 . -21) T) ((-862 . -25) T) ((-795 . -722) T) ((-174 . -1212) T) ((-580 . -38) 15264) ((-518 . -38) 15229) ((-386 . -610) 15211) ((-324 . -610) 15193) ((-169 . -286) 15151) ((-63 . -1208) T) ((-112 . -102) T) ((-868 . -1093) T) ((-174 . -555) T) ((-710 . -713) 15121) ((-294 . -131) 15004) ((-225 . -610) 14986) ((-225 . -611) 14916) ((-999 . -636) 14855) ((-1272 . -1045) T) ((-1113 . -147) T) ((-629 . -1184) 14830) ((-727 . -905) 14809) ((-591 . -34) T) ((-642 . -107) 14793) ((-629 . -107) 14739) ((-1230 . -286) 14666) ((-727 . -643) 14591) ((-295 . -1208) T) ((-1171 . -1034) 14487) ((-939 . -615) 14464) ((-576 . -575) T) ((-576 . -527) T) ((-529 . -527) T) ((-1160 . -905) NIL) ((-1056 . -611) 14379) ((-1056 . -610) 14361) ((-948 . -610) 14343) ((-709 . -490) 14293) ((-343 . -102) T) ((-251 . -1051) 14190) ((-250 . -1051) 14087) ((-394 . -102) T) ((-31 . -1093) T) ((-948 . -611) 13948) ((-709 . -610) 13883) ((-1270 . -1201) 13852) ((-481 . -610) 13834) ((-481 . -611) 13695) ((-247 . -411) 13679) ((-264 . -411) 13663) ((-251 . -111) 13553) ((-250 . -111) 13443) ((-1167 . -643) 13368) ((-1166 . -643) 13265) ((-1160 . -643) 13117) ((-1119 . -643) 13042) ((-351 . -131) T) ((-82 . -441) T) ((-82 . -395) T) ((-999 . -25) T) ((-999 . -21) T) ((-869 . -1093) 12993) ((-868 . -713) 12945) ((-379 . -290) T) ((-169 . -998) 12897) ((-689 . -387) T) ((-995 . -993) 12881) ((-696 . -1105) T) ((-689 . -166) 12863) ((-1241 . -1093) T) ((-1220 . -1093) T) ((-316 . -1193) 12842) ((-316 . -1196) 12821) ((-1157 . -102) T) ((-316 . -955) 12800) ((-134 . -1105) T) ((-116 . -1105) T) ((-599 . -1255) 12784) ((-696 . -23) T) ((-599 . -1093) 12734) ((-316 . -95) 12713) ((-91 . -514) 12646) ((-174 . -363) T) ((-251 . -613) 12376) ((-250 . -613) 12106) ((-316 . -35) 12085) ((-605 . -489) 12019) ((-134 . -23) T) ((-116 . -23) T) ((-962 . -102) T) ((-714 . -1093) T) ((-475 . -489) 11956) ((-407 . -636) 11904) ((-648 . -1034) 11800) ((-954 . -489) 11784) ((-355 . -1052) T) ((-352 . -1052) T) ((-344 . -1052) T) ((-264 . -1052) T) ((-247 . -1052) T) ((-867 . -611) NIL) ((-867 . -610) 11766) ((-1268 . -490) 11747) ((-1267 . -490) 11728) ((-1280 . -21) T) ((-1268 . -610) 11694) ((-1267 . -610) 11660) ((-570 . -998) T) ((-727 . -722) T) ((-1280 . -25) T) ((-251 . -1045) 11590) ((-250 . -1045) 11520) ((-72 . -1208) T) ((-251 . -233) 11472) ((-250 . -233) 11424) ((-40 . -102) T) ((-906 . -1052) T) ((-128 . -489) 11406) ((-1174 . -102) T) ((-1167 . -722) T) ((-1166 . -722) T) ((-1160 . -722) T) ((-1160 . -787) NIL) ((-1160 . -790) NIL) ((-950 . -102) T) ((-917 . -102) T) ((-1119 . -722) T) ((-767 . -102) T) ((-667 . -102) T) ((-546 . -610) 11388) ((-474 . -1093) T) ((-339 . -1105) T) ((-174 . -1105) T) ((-319 . -916) 11367) ((-1241 . -713) 11208) ((-868 . -172) T) ((-1220 . -713) 11022) ((-839 . -21) 10974) ((-839 . -25) 10926) ((-245 . -1142) 10910) ((-126 . -514) 10843) ((-407 . -25) T) ((-407 . -21) T) ((-339 . -23) T) ((-169 . -611) 10609) ((-169 . -610) 10591) ((-174 . -23) T) ((-640 . -288) 10568) ((-520 . -34) T) ((-894 . -610) 10550) ((-89 . -1208) T) ((-837 . -610) 10532) ((-804 . -610) 10514) ((-765 . -610) 10496) ((-672 . -610) 10478) ((-240 . -643) 10326) ((-1169 . -1093) T) ((-1165 . -1051) 10149) ((-1143 . -1208) T) ((-1118 . -1051) 9992) ((-850 . -1051) 9976) ((-1224 . -615) 9960) ((-1165 . -111) 9769) ((-1118 . -111) 9598) ((-850 . -111) 9577) ((-1230 . -611) NIL) ((-1230 . -610) 9559) ((-343 . -1144) T) ((-851 . -610) 9541) ((-1069 . -286) 9520) ((-80 . -1208) T) ((-1000 . -905) NIL) ((-605 . -286) 9496) ((-1194 . -514) 9429) ((-487 . -1208) T) ((-570 . -610) 9411) ((-475 . -286) 9390) ((-517 . -93) T) ((-217 . -1208) T) ((-1080 . -231) 9374) ((-1000 . -643) 9324) ((-289 . -916) T) ((-813 . -307) 9303) ((-866 . -102) T) ((-778 . -231) 9287) ((-954 . -286) 9264) ((-910 . -643) 9216) ((-632 . -21) T) ((-632 . -25) T) ((-604 . -21) T) ((-547 . -102) T) ((-343 . -38) 9181) ((-689 . -720) 9148) ((-487 . -880) 9130) ((-487 . -882) 9112) ((-474 . -713) 8953) ((-217 . -880) 8935) ((-64 . -1208) T) ((-217 . -882) 8917) ((-604 . -25) T) ((-427 . -643) 8891) ((-1165 . -613) 8660) ((-487 . -1034) 8620) ((-868 . -514) 8532) ((-1118 . -613) 8324) ((-850 . -613) 8242) ((-217 . -1034) 8202) ((-240 . -34) T) ((-996 . -1093) 8180) ((-1241 . -172) 8111) ((-1220 . -172) 8042) ((-708 . -145) 8021) ((-708 . -147) 8000) ((-696 . -131) T) ((-136 . -465) 7977) ((-1140 . -610) 7909) ((-653 . -651) 7893) ((-128 . -286) 7868) ((-116 . -131) T) ((-477 . -1212) T) ((-605 . -601) 7844) ((-475 . -601) 7823) ((-336 . -335) 7792) ((-536 . -1093) T) ((-477 . -555) T) ((-1165 . -1045) T) ((-1118 . -1045) T) ((-850 . -1045) T) ((-240 . -787) 7771) ((-240 . -790) 7722) ((-240 . -789) 7701) ((-1165 . -326) 7678) ((-240 . -722) 7588) ((-954 . -19) 7572) ((-487 . -377) 7554) ((-487 . -338) 7536) ((-1118 . -326) 7508) ((-354 . -1264) 7485) ((-217 . -377) 7467) ((-217 . -338) 7449) ((-954 . -601) 7426) ((-1165 . -233) T) ((-659 . -1093) T) ((-641 . -1093) T) ((-1253 . -1093) T) ((-1181 . -1093) T) ((-1080 . -253) 7363) ((-355 . -1093) T) ((-352 . -1093) T) ((-344 . -1093) T) ((-264 . -1093) T) ((-247 . -1093) T) ((-84 . -1208) T) ((-127 . -102) 7341) ((-121 . -102) 7319) ((-1181 . -607) 7298) ((-479 . -1093) T) ((-1134 . -1093) T) ((-479 . -607) 7277) ((-251 . -791) 7228) ((-251 . -788) 7179) ((-250 . -791) 7130) ((-40 . -1144) NIL) ((-250 . -788) 7081) ((-1108 . -613) 7062) ((-128 . -19) 7044) ((-1073 . -916) 6995) ((-1000 . -790) T) ((-1000 . -787) T) ((-1000 . -722) T) ((-967 . -790) T) ((-128 . -601) 6970) ((-910 . -722) T) ((-91 . -489) 6954) ((-487 . -896) NIL) ((-906 . -1093) T) ((-225 . -1051) 6919) ((-868 . -290) T) ((-217 . -896) NIL) ((-829 . -1105) 6898) ((-59 . -1093) 6848) ((-519 . -1093) 6826) ((-516 . -1093) 6776) ((-497 . -1093) 6754) ((-496 . -1093) 6704) ((-579 . -102) T) ((-563 . -102) T) ((-495 . -102) T) ((-474 . -172) 6635) ((-359 . -916) T) ((-353 . -916) T) ((-345 . -916) T) ((-225 . -111) 6591) ((-829 . -23) 6543) ((-427 . -722) T) ((-108 . -916) T) ((-40 . -38) 6488) ((-108 . -816) T) ((-580 . -349) T) ((-518 . -349) T) ((-1220 . -514) 6348) ((-316 . -452) 6327) ((-313 . -452) T) ((-888 . -610) 6309) ((-832 . -286) 6288) ((-339 . -131) T) ((-174 . -131) T) ((-294 . -25) 6152) ((-294 . -21) 6035) ((-45 . -1184) 6014) ((-66 . -610) 5996) ((-55 . -102) T) ((-599 . -514) 5929) ((-45 . -107) 5879) ((-815 . -613) 5863) ((-1095 . -425) 5847) ((-1095 . -368) 5826) ((-386 . -613) 5810) ((-324 . -613) 5794) ((-1057 . -1208) T) ((-1056 . -1051) 5781) ((-948 . -1051) 5624) ((-1258 . -102) T) ((-1257 . -102) 5574) ((-1056 . -111) 5559) ((-481 . -1051) 5402) ((-659 . -713) 5386) ((-948 . -111) 5215) ((-225 . -613) 5165) ((-477 . -363) T) ((-355 . -713) 5117) ((-352 . -713) 5069) ((-344 . -713) 5021) ((-264 . -713) 4870) ((-247 . -713) 4719) ((-1249 . -643) 4644) ((-1221 . -905) NIL) ((-1089 . -93) T) ((-1083 . -93) T) ((-939 . -646) 4628) ((-1067 . -93) T) ((-481 . -111) 4457) ((-1060 . -93) T) ((-1032 . -93) T) ((-939 . -373) 4441) ((-248 . -102) T) ((-1015 . -93) T) ((-74 . -610) 4423) ((-959 . -47) 4402) ((-706 . -102) T) ((-694 . -102) T) ((-1 . -1093) T) ((-618 . -1105) T) ((-1242 . -643) 4299) ((-623 . -93) T) ((-1189 . -610) 4281) ((-1081 . -610) 4263) ((-126 . -489) 4247) ((-483 . -93) T) ((-1069 . -610) 4229) ((-390 . -23) T) ((-87 . -1208) T) ((-218 . -93) T) ((-1221 . -643) 4081) ((-906 . -713) 4046) ((-618 . -23) T) ((-605 . -610) 4028) ((-605 . -611) NIL) ((-475 . -611) NIL) ((-475 . -610) 4010) ((-511 . -1093) T) ((-507 . -1093) T) ((-351 . -25) T) ((-351 . -21) T) ((-127 . -309) 3948) ((-121 . -309) 3886) ((-594 . -643) 3873) ((-225 . -1045) T) ((-593 . -643) 3798) ((-379 . -998) T) ((-225 . -243) T) ((-225 . -233) T) ((-1056 . -613) 3770) ((-1056 . -615) 3751) ((-954 . -611) 3712) ((-954 . -610) 3624) ((-948 . -613) 3413) ((-866 . -38) 3400) ((-709 . -613) 3350) ((-1241 . -290) 3301) ((-1220 . -290) 3252) ((-481 . -613) 3037) ((-1113 . -452) T) ((-502 . -846) T) ((-316 . -1132) 3016) ((-995 . -147) 2995) ((-995 . -145) 2974) ((-495 . -309) 2961) ((-295 . -1184) 2940) ((-1176 . -610) 2922) ((-1175 . -610) 2904) ((-867 . -1051) 2849) ((-477 . -1105) T) ((-139 . -831) 2831) ((-620 . -102) T) ((-1194 . -489) 2815) ((-251 . -368) 2794) ((-250 . -368) 2773) ((-1056 . -1045) T) ((-295 . -107) 2723) ((-130 . -610) 2705) ((-128 . -611) NIL) ((-128 . -610) 2671) ((-117 . -102) T) ((-948 . -1045) T) ((-867 . -111) 2600) ((-477 . -23) T) ((-481 . -1045) T) ((-1056 . -233) T) ((-948 . -326) 2569) ((-481 . -326) 2526) ((-355 . -172) T) ((-352 . -172) T) ((-344 . -172) T) ((-264 . -172) 2437) ((-247 . -172) 2348) ((-959 . -1034) 2244) ((-517 . -490) 2225) ((-731 . -1034) 2196) ((-517 . -610) 2162) ((-1098 . -102) T) ((-1085 . -610) 2129) ((-1030 . -610) 2111) ((-1270 . -151) 2095) ((-1268 . -613) 2076) ((-1262 . -610) 2058) ((-1249 . -722) T) ((-1242 . -722) T) ((-1221 . -787) NIL) ((-1221 . -790) NIL) ((-169 . -1051) 1968) ((-906 . -172) T) ((-867 . -613) 1898) ((-1221 . -722) T) ((-1267 . -613) 1879) ((-999 . -342) 1853) ((-996 . -514) 1786) ((-839 . -846) 1765) ((-563 . -1144) T) ((-474 . -290) 1716) ((-594 . -722) T) ((-361 . -610) 1698) ((-322 . -610) 1680) ((-418 . -1034) 1576) ((-593 . -722) T) ((-407 . -846) 1527) ((-169 . -111) 1423) ((-829 . -131) 1375) ((-733 . -151) 1359) ((-1257 . -309) 1297) ((-487 . -307) T) ((-379 . -610) 1264) ((-520 . -1006) 1248) ((-379 . -611) 1162) ((-217 . -307) T) ((-141 . -151) 1144) ((-710 . -286) 1123) ((-487 . -1018) T) ((-579 . -38) 1110) ((-563 . -38) 1097) ((-495 . -38) 1062) ((-217 . -1018) T) ((-867 . -1045) T) ((-832 . -610) 1044) ((-823 . -610) 1026) ((-821 . -610) 1008) ((-812 . -905) 987) ((-1281 . -1105) T) ((-1230 . -1051) 810) ((-851 . -1051) 794) ((-867 . -243) T) ((-867 . -233) NIL) ((-684 . -1208) T) ((-1281 . -23) T) ((-812 . -643) 719) ((-549 . -1208) T) ((-418 . -338) 703) ((-570 . -1051) 690) ((-1230 . -111) 499) ((-696 . -636) 481) ((-851 . -111) 460) ((-381 . -23) T) ((-169 . -613) 238) ((-1181 . -514) 30) ((-657 . -1093) T) ((-676 . -1093) T) ((-671 . -1093) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index 5f51ab94..eae6de58 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3442698062) -(4406 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3443021569) +(4410 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| @@ -33,22 +33,22 @@ |BinaryRecursiveAggregate&| |BinaryRecursiveAggregate| |BrillhartTests| |BinarySearchTree| |BitAggregate&| |BitAggregate| |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament| - |BinaryTree| |ByteBuffer| |Byte| |CancellationAbelianMonoid| - |CachableSet| |CapsuleAst| |CardinalNumber| - |CartesianTensorFunctions2| |CartesianTensor| |CaseAst| |CategoryAst| - |CategoryConstructor| |Category| |CharacterClass| |CommonDenominator| - |CombinatorialFunctionCategory| |Character| |CharacteristicNonZero| - |CharacteristicPolynomialPackage| |CharacteristicZero| - |ChangeOfVariable| |ComplexIntegerSolveLinearPolynomialEquation| - |Collection&| |Collection| |CliffordAlgebra| - |TwoDimensionalPlotClipping| |CollectAst| |ComplexRootPackage| - |ColonAst| |Color| |CombinatorialFunction| - |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |CommaAst| - |Commutator| |CommonOperators| |CommuteUnivariatePolynomialCategory| - |ComplexCategory&| |ComplexCategory| |ComplexFactorization| - |ComplexFunctions2| |Complex| |ComplexPattern| - |SubSpaceComponentProperty| |CommutativeRing| |Conduit| - |ContinuedFraction| |Contour| |CoordinateSystems| + |BinaryTree| |ByteBuffer| |Byte| |ByteOrder| + |CancellationAbelianMonoid| |CachableSet| |CapsuleAst| + |CardinalNumber| |CartesianTensorFunctions2| |CartesianTensor| + |CaseAst| |CategoryAst| |CategoryConstructor| |Category| + |CharacterClass| |CommonDenominator| |CombinatorialFunctionCategory| + |Character| |CharacteristicNonZero| |CharacteristicPolynomialPackage| + |CharacteristicZero| |ChangeOfVariable| + |ComplexIntegerSolveLinearPolynomialEquation| |Collection&| + |Collection| |CliffordAlgebra| |TwoDimensionalPlotClipping| + |CollectAst| |ComplexRootPackage| |ColonAst| |Color| + |CombinatorialFunction| |IntegerCombinatoricFunctions| + |CombinatorialOpsCategory| |CommaAst| |Commutator| |CommonOperators| + |CommuteUnivariatePolynomialCategory| |ComplexCategory&| + |ComplexCategory| |ComplexFactorization| |ComplexFunctions2| |Complex| + |ComplexPattern| |SubSpaceComponentProperty| |CommutativeRing| + |Conduit| |ContinuedFraction| |Contour| |CoordinateSystems| |CharacteristicPolynomialInMonogenicalAlgebra| |ComplexPatternMatch| |CRApackage| |CoerceAst| |ComplexRootFindingPackage| |CyclicStreamTools| |ConstructorCall| |ConstructorCategory&| @@ -477,661 +477,661 @@ |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| - |Record| |Union| |tanintegrate| |cAtanh| |ScanFloatIgnoreSpacesIfCan| - |alternating| |polynomialZeros| |clearTheFTable| - |functionIsOscillatory| |denominators| |s14baf| |byte| - |removeRedundantFactorsInContents| |exponent| |iisqrt3| |truncate| - |deleteProperty!| |splitLinear| |setPredicates| |dmp2rfi| |totalLex| - |atanIfCan| |FormatRoman| |cyclic| |iiacsc| |changeNameToObjf| - |permutationRepresentation| |edf2ef| |radicalEigenvalues| - |basisOfCenter| |coerceP| |complexZeros| |clearFortranOutputStack| - |hasoln| |pmintegrate| |int| |lfinfieldint| |cyclicGroup| - |binaryTournament| |OMReadError?| |forLoop| |outputGeneral| |or?| - |zeroSetSplitIntoTriangularSystems| |bivariatePolynomials| |fortran| - |complexRoots| |sturmSequence| |split!| |surface| |generalLambert| - |fortranLiteral| |SFunction| |setIntersection| |palgint0| |f04atf| - |prindINFO| |fortranLogical| |complete| |queue| |credPol| |replace| - |setUnion| |rightScalarTimes!| |increment| |pade| |rightGcd| |f02akf| - |f02adf| |removeRoughlyRedundantFactorsInContents| |laplace| |points| - |fullDisplay| |apply| |makeViewport2D| |dimensions| |plus!| - |partialDenominators| |predicates| |frobenius| |rk4| |currentEnv| - |mapExpon| |nil| |f02fjf| |e02ahf| |removeSinSq| |numberOfOperations| - |setAttributeButtonStep| |lambert| |monomial| |LazardQuotient2| - |getIdentifier| |close!| |s17dlf| |size| |palglimint| |triangSolve| - |call| |fractRagits| |ideal| |setFieldInfo| |multivariate| |OMbindTCP| - |meatAxe| |perfectSqrt| |setlast!| |nthFractionalTerm| |sort| - |spherical| |pointSizeDefault| |kovacic| |rootProduct| |baseRDEsys| - |variables| |imagI| |sh| |clipWithRanges| |constantLeft| |approximate| - |function| |calcRanges| |createLowComplexityNormalBasis| - |removeRedundantFactorsInPols| |iidprod| |nary?| |df2fi| - |completeEval| |mathieu23| |id| |rationalPower| |complex| - |viewWriteAvailable| |qelt| |first| |alternatingGroup| |distance| - |standardBasisOfCyclicSubmodule| |rootOfIrreduciblePoly| |palglimint0| - |s13acf| |linear| |genericLeftDiscriminant| |transform| |rootsOf| - |bivariateSLPEBR| |eval| |rest| |qsetelt| |sizeLess?| |cubic| |Aleph| - |thetaCoord| |leftZero| |remainder| |curryRight| |table| |biRank| - |equality| |substitute| |random| |xRange| |close| |OMopenString| - |startPolynomial| |eq?| |saturate| |factor1| |polynomial| |rCoord| - |pToHdmp| |new| |removeDuplicates| |point| |gcdprim| |yRange| - |semiResultantEuclidean1| |nthRootIfCan| |obj| - |eisensteinIrreducible?| |distdfact| |musserTrials| |rightUnits| - |taylor| |quasiComponent| |search| |compdegd| |log2| |remove| - |bandedHessian| |continuedFraction| |zRange| |display| - |semiDegreeSubResultantEuclidean| |cache| |script| BY |critT| - |leftFactorIfCan| |expextendedint| |laurent| |principal?| - |OMputEndApp| |balancedBinaryTree| |map!| |plenaryPower| |normalized?| - |rst| |tanQ| |setLabelValue| |constant| |list?| |puiseux| |smith| - |tower| |operator| |series| |last| |capacity| |style| |qsetelt!| - |polyRicDE| |po| |makeResult| |irreducibleFactor| |e01bgf| - |setScreenResolution3D| |inverseColeman| |assoc| |getlo| - |antiCommutative?| |OMgetAtp| |notOperand| |just| |keys| |tex| - |createNormalPoly| |monicRightDivide| |inv| |hitherPlane| |delete!| - |e02ajf| |integral| |OMParseError?| |middle| |tanNa| |freeOf?| - |ground?| |genericRightTrace| |trapezoidalo| |tubePointsDefault| - |rk4a| |OMputAtp| |someBasis| |Lazard2| |input| |LyndonWordsList| - |explogs2trigs| |mapCoef| |cAtan| |ground| |inputBinaryFile| |s21bdf| - |removeSuperfluousCases| |min| |library| |complexElementary| |d01aqf| - |scan| |makeSUP| |sumOfKthPowerDivisors| |e01saf| |reseed| - |leadingMonomial| |OMputString| |s17agf| |complexNumeric| |lcm| - |f02abf| |Is| |acsch| |characteristic| |currentScope| - |associatedEquations| |writeByte!| |member?| |leadingCoefficient| - |qualifier| |rules| |setEmpty!| |basisOfMiddleNucleus| |totalDegree| - |jordanAdmissible?| |denominator| |insert!| |kernels| - |leftRegularRepresentation| |btwFact| |primitiveMonomials| - |algebraicSort| |sign| |fTable| |left| |ran| |append| |imagi| |sup| - |mindeg| |resize| |diag| |c06ekf| |f04mcf| |super| |reductum| |fmecg| - |univariate| |right| |sPol| |coerceL| |gcd| |set| |newTypeLists| - |linearPart| |divideExponents| |isobaric?| |squareFreePrim| |gradient| - |shade| |false| |hclf| |readUInt16!| |writeLine!| |contractSolve| - |useSingleFactorBound| |genericPosition| |minordet| |besselI| - |overbar| |sum| |minPoints| |bsolve| |invmultisect| |powerSum| - |headReduce| |yCoordinates| |moebiusMu| |OMputObject| |mainContent| - |factor| |leftDiscriminant| |explicitlyEmpty?| |retractable?| - |simplifyPower| |idealSimplify| |bfKeys| |outputSpacing| |vark| |sqrt| - |initiallyReduced?| |nthExpon| |fractRadix| |lazyPremWithDefault| - |unitsColorDefault| |countRealRootsMultiple| |leftDivide| |ipow| - |createPrimitiveElement| |tryFunctionalDecomposition| |numeric| - |f07aef| |real| |OMgetFloat| |slash| |conjugate| |check| |lp| |empty| - |imagK| |numerators| |radical| |cTanh| |f02aff| |aromberg| |imag| - |triangulate| |ptree| |primintegrate| |lazyResidueClass| |multiple?| - |dflist| |zoom| |directProduct| |d01apf| |OMsupportsSymbol?| |symbol?| - |df2st| |completeHermite| |reduceLODE| |module| |showSummary| |iprint| - |d03edf| |s21bcf| |vedf2vef| |shufflein| |term| |inf| |recip| - |sinh2csch| |OMcloseConn| |e02dcf| |curve| |maxrank| |deref| |exp1| - |brace| |composites| |inconsistent?| |quadratic?| |sorted?| |setPoly| - |componentUpperBound| |hash| |sechIfCan| |eigenvectors| - |linkToFortran| |showAttributes| |f02aaf| |wholeRagits| |destruct| - |unrankImproperPartitions1| |rationalPoint?| |multiEuclidean| |parts| - |solveLinear| |show| |count| |viewDeltaXDefault| |d02bhf| |f02awf| - |PDESolve| |elementary| |symbol| |shiftRight| |iilog| |ranges| = - |writeUInt8!| |OMgetSymbol| |createGenericMatrix| |crest| |cotIfCan| - |limit| |pointData| |algDsolve| |ratDsolve| |expression| - |oneDimensionalArray| |fi2df| |monomialIntegrate| |viewZoomDefault| - |trace| UTS2UP |lo| |listYoungTableaus| |diagonal?| - |factorsOfCyclicGroupSize| |leadingCoefficientRicDE| - |tableForDiscreteLogarithm| |host| |integer| |sylvesterMatrix| - |weights| |binomThmExpt| < |exquo| |zerosOf| |powern| |incr| - |rewriteSetByReducingWithParticularGenerators| |mat| |top!| |newReduc| - |computeCycleEntry| > |trunc| |OMunhandledSymbol| |div| |normal?| - |nthr| |setnext!| |isPlus| |f07fef| |rdregime| |iicsc| |OMgetString| - |mkIntegral| GF2FG <= |OMclose| |quo| |complexIntegrate| |infRittWu?| - |rombergo| |normalForm| |palgextint0| |getBadValues| |whatInfinity| - |parent| |parabolic| |cSin| >= |label| |radix| |chvar| |rotatey| - |zeroDimPrime?| |leftMult| |nullary?| |measure| |heapSort| - |minRowIndex| |lazyPseudoQuotient| |rem| |setStatus!| |endSubProgram| - |ignore?| |primitivePart!| |basisOfLeftNucleus| |d01amf| |findBinding| - |countRealRoots| |getProperties| |predicate| |iiacoth| - |euclideanGroebner| |associatorDependence| |extendedIntegrate| - |sizePascalTriangle| |cAsin| |tubeRadius| |s18def| |hermite| - |generalizedInverse| |degreeSubResultant| |powerAssociative?| - |infinityNorm| |inRadical?| |bitCoef| + |redPol| |mainMonomials| - |splitSquarefree| |rarrow| |split| |child| |tube| |primitive?| - |compiledFunction| |OMmakeConn| - |light| |minIndex| - |quasiAlgebraicSet| |BumInSepFFE| |bounds| |monicDecomposeIfCan| - |expenseOfEvaluation| |mainExpression| |leastPower| |d03faf| |sqfree| - / |ode1| |e02dff| |f04mbf| |fortranComplex| |selectFiniteRoutines| - |resetNew| |cycleElt| |linGenPos| |cCsc| |monomials| |conditionP| - |f07fdf| |nextLatticePermutation| |addBadValue| |monicModulo| - |constructor| |iiatan| |pointLists| |toseInvertibleSet| - |expressIdealMember| |graphs| |bezoutResultant| |readInt32!| - |externalList| |rightLcm| |maxPoints| |nor| |optpair| |gcdcofact| - |makeSeries| |returnTypeOf| |cSec| |fortranLinkerArgs| |option| - |linearAssociatedLog| |nthRoot| |resultantReduitEuclidean| - |replaceKthElement| |patternMatchTimes| |resultantEuclidean| - |noKaratsuba| |clipPointsDefault| |branchIfCan| |dequeue!| |digamma| - |intcompBasis| |lazyEvaluate| |elRow1!| |numericalIntegration| - |OMputBVar| |evaluateInverse| |normalise| |ramified?| |getZechTable| - |subTriSet?| |randnum| |mapmult| |parameters| |nothing| - |mapMatrixIfCan| |exponents| |indiceSubResultantEuclidean| - |OMreadFile| |sub| |dimensionOfIrreducibleRepresentation| - |clipSurface| |adjoint| |OMconnOutDevice| |lighting| |maxIndex| - |numberOfVariables| |binarySearchTree| |dictionary| |divisor| - |leftQuotient| |twist| |chebyshevT| |minimalPolynomial| - |GospersMethod| |hasSolution?| |permutation| |viewDeltaYDefault| - |lift| |insertRoot!| |rightRemainder| |lowerCase?| |movedPoints| - |wordInStrongGenerators| |reverseLex| |solveInField| |string?| - |setTex!| |exponential| |csc2sin| |reduce| |reify| |realEigenvalues| - |space| |inverseLaplace| |s17def| |usingTable?| |associatedSystem| - |collect| |find| |drawComplexVectorField| |unitCanonical| |outputList| - |rightTrim| |exprToGenUPS| |tanIfCan| |zeroMatrix| |d02raf| - |algebraicCoefficients?| |OMUnknownSymbol?| |linearlyDependent?| - |swapRows!| |positiveSolve| |squareFreePart| |scale| |leftTrim| - |setsubMatrix!| |defineProperty| |sylvesterSequence| |startTable!| - |normalizedAssociate| |npcoef| |gbasis| |index?| |getStream| - |leftExtendedGcd| |complexLimit| |characteristicSerie| |eigenvalues| - |order| |expintegrate| |s18dcf| |antisymmetric?| |internalAugment| - |dihedral| |maximumExponent| |ScanFloatIgnoreSpaces| |airyBi| - |subNode?| |makeViewport3D| |nonSingularModel| |addMatchRestricted| - |leadingSupport| |firstNumer| |makeMulti| |birth| |showArrayValues| - |OMputInteger| RF2UTS |exprToUPS| |c06ebf| |HermiteIntegrate| - |structuralConstants| |c06gsf| |minset| |extendedResultant| |primes| - |evenlambert| |OMreadStr| |unprotectedRemoveRedundantFactors| - |anfactor| |extractIndex| |moduleSum| |moreAlgebraic?| |minColIndex| - |expandTrigProducts| |semiSubResultantGcdEuclidean1| |startStats!| - |li| |upperCase| |leftRank| |subResultantGcd| |belong?| - |rewriteIdealWithRemainder| |extract!| |sncndn| |s17akf| |axes| - |outputFloating| |outputAsScript| |euclideanSize| |messagePrint| - |deepCopy| |setErrorBound| |elements| |sn| |complexForm| |mulmod| - |cRationalPower| |outlineRender| |midpoint| |indicialEquations| - |setLegalFortranSourceExtensions| |extendedSubResultantGcd| - |squareTop| |charthRoot| |trailingCoefficient| |symmetricPower| - |numberOfComputedEntries| |initials| |multiplyCoefficients| - |selectPDERoutines| |factorGroebnerBasis| |f04asf| |binomial| - |iterationVar| |rroot| |reciprocalPolynomial| |shallowExpand| - |asechIfCan| |stoseInternalLastSubResultant| |f01qef| |OMgetInteger| - |mainValue| |inspect| |e04jaf| |cap| |e04dgf| |computeCycleLength| - |createPrimitivePoly| |fortranCharacter| |SturmHabicht| - |showClipRegion| |closeComponent| |hi| |backOldPos| |genericRightNorm| - |real?| |exprToXXP| |s20adf| |createPrimitiveNormalPoly| |cAcos| - |squareFreeFactors| |subCase?| |infinite?| |asinIfCan| |mapUp!| - |possiblyInfinite?| |evenInfiniteProduct| |changeName| - |jacobiIdentity?| |OMputEndBVar| |orthonormalBasis| |realSolve| - |taylorRep| |leadingExponent| |att2Result| |charpol| |lyndon?| - |viewpoint| |commutator| |withPredicates| |bivariate?| |byteBuffer| - |rischDE| |showTheIFTable| |padicallyExpand| |linearAssociatedOrder| - |aspFilename| |members| |padicFraction| |stopTableGcd!| - |brillhartTrials| |rightPower| |permutations| |kroneckerDelta| - |squareMatrix| |OMgetApp| |resultantnaif| |palgextint| |cCoth| - |pushup| |minGbasis| |f01brf| |nonQsign| |arbitrary| |normalize| - |matrixGcd| |d01alf| |antisymmetricTensors| |invertIfCan| |zCoord| - |polygamma| |range| |basisOfLeftAnnihilator| |normalDenom| - |setMaxPoints| |Hausdorff| |test| |setEpilogue!| - |showIntensityFunctions| |composite| |toScale| |cAcsc| |corrPoly| - |simplifyExp| |cSinh| |e02adf| |commonDenominator| |s14abf| - |changeVar| |cyclicEntries| |generate| |subMatrix| - |halfExtendedResultant2| |roughUnitIdeal?| |iicot| |mapSolve| |rank| - |e02bdf| |ListOfTerms| |htrigs| |applyRules| |prefix| |dmpToHdmp| - |patternVariable| |collectUnder| |extension| |removeSinhSq| - |roughSubIdeal?| |primeFrobenius| |OMputVariable| |cardinality| - |setProperties!| |completeHensel| |e02gaf| |factorset| |depth| - |diagonals| |d02kef| |degreePartition| |OMputEndAtp| |enterPointData| - |rangePascalTriangle| |outputBinaryFile| |subResultantGcdEuclidean| - |rightDiscriminant| |content| |consnewpol| |shuffle| |lSpaceBasis| - |coordinates| |cCsch| |safetyMargin| |column| |collectQuasiMonic| - |expint| |unitVector| |stoseInvertible?| |selectOrPolynomials| - |systemSizeIF| |karatsubaDivide| |insertBottom!| |leftRecip| - |charClass| |iflist2Result| |dimensionsOf| |primlimintfrac| - |showRegion| |approxSqrt| |null| |rename!| |validExponential| - |reduceByQuasiMonic| |complexEigenvalues| |paren| - |identitySquareMatrix| |f01rcf| |clikeUniv| |LowTriBddDenomInv| |not| - |readLineIfCan!| |optional?| |reducedQPowers| |f04axf| |rowEchelon| - |dim| |ramifiedAtInfinity?| |rootRadius| |sortConstraints| |digits| - |and| |quartic| |listOfLists| |imagk| |extractIfCan| |degree| |maxdeg| - |lowerPolynomial| |e04mbf| |lazyIntegrate| |f01maf| |or| - |leadingIndex| |OMgetEndBind| |listBranches| |generic| |elseBranch| - |mappingAst| |cycle| |xor| |prefixRagits| |coefficient| |setRow!| - |callForm?| |dominantTerm| |f07adf| |unitNormal| |rootPower| - |processTemplate| |twoFactor| |ptFunc| |case| |weight| |in?| |dark| - |var1Steps| |identification| |argument| |Vectorise| - |transcendenceDegree| |Zero| |chebyshevU| |e02bbf| |principalIdeal| - |inverseIntegralMatrix| |printInfo!| |double?| |scalarTypeOf| - |approxNthRoot| |One| |viewDefaults| |invmod| |/\\| |makeVariable| - |f02xef| |wholePart| |paraboloidal| |laguerre| |lquo| |getButtonValue| - |cSech| |\\/| |screenResolution3D| |perfectNthRoot| |transpose| - |rationalApproximation| |zeroDimensional?| |logpart| |d01bbf| - |getProperty| |compactFraction| |collectUpper| |s13aaf| - |areEquivalent?| |key| |polCase| |coleman| |parseString| |henselFact| - |equiv?| |leastAffineMultiple| |minPol| |shrinkable| |center| - |algebraicDecompose| |simpson| |froot| |OMwrite| |cycleEntry| - |invertibleSet| |filename| |fixedPoints| |patternMatch| |An| |s17adf| - |palgint| |particularSolution| |setprevious!| |elt| |quoByVar| - |setProperty| |ratDenom| |seed| |not?| |second| |autoReduced?| - |pdf2df| |fullPartialFraction| |superscript| |compound?| |resultant| - |rootPoly| |parse| |third| |solveLinearPolynomialEquationByFractions| - |cot2trig| |basisOfNucleus| |localAbs| |mapExponents| |getGoodPrime| - |tubePlot| |entries| |rightFactorCandidate| |c05adf| |dec| |connect| - |pushNewContour| |updateStatus!| |trapezoidal| |fixedPointExquo| - |simplifyLog| |shanksDiscLogAlgorithm| |closedCurve| |d01ajf| - |intermediateResultsIF| |recolor| |moebius| |realElementary| |conjug| - |infieldIntegrate| |reopen!| |insertMatch| |removeConstantTerm| - |createMultiplicationMatrix| |setPosition| - |genericRightMinimalPolynomial| |zeroOf| |lazyVariations| |tab| - |lieAdmissible?| |leadingTerm| |imaginary| |acosIfCan| - |wordsForStrongGenerators| |diagonal| |expr| |zag| |complexNormalize| - |rquo| |OMputEndBind| |expandPower| |signAround| |goodnessOfFit| - |divideIfCan!| |nodes| |bezoutDiscriminant| |kmax| |iFTable| |cAcoth| - |clearDenominator| |exprex| |internal?| |principalAncestors| - |mightHaveRoots| |systemCommand| |kind| |fortranInteger| |e02aef| - |gderiv| |prepareSubResAlgo| |e02bcf| |OMsupportsCD?| |comparison| - |maxPoints3D| |op| |inR?| |stiffnessAndStabilityOfODEIF| - |measure2Result| |midpoints| |cup| |genus| |failed?| - |mainDefiningPolynomial| |even?| |stack| |OMencodingSGML| |imagE| - |setPrologue!| |variable| |rightZero| |getConstant| |localUnquote| - |rightUnit| |outputMeasure| |removeZeroes| |normal| - |parabolicCylindrical| |rightTrace| |iterators| |hostPlatform| - |eigenvector| |readBytes!| |bitTruth| |harmonic| |ReduceOrder| - |makingStats?| |iiabs| |e02akf| |inverse| |index| |OMputApp| - |cylindrical| |semicolonSeparate| |factorByRecursion| - |factorSquareFreeByRecursion| |regime| |totalfract| |alphanumeric?| - |cyclic?| |rspace| |doubleFloatFormat| |setLength!| |nextSublist| - |debug3D| |stoseInvertible?reg| |lfextlimint| |redpps| - |numberOfDivisors| |lexico| |wholeRadix| |setMinPoints3D| - |loadNativeModule| |quatern| |rischDEsys| |alphanumeric| - |oddInfiniteProduct| |mapGen| |union| |axesColorDefault| |errorInfo| - |wrregime| |pair| |integralLastSubResultant| |bat| |knownInfBasis| - |iisqrt2| |logIfCan| |buildSyntax| |doubleRank| |yellow| |unmakeSUP| - |goto| |commutativeEquality| |block| |iiGamma| |elRow2!| |whileLoop| - |prinpolINFO| |genericLeftNorm| |compBound| |element?| |leftLcm| - |upperCase?| |getGraph| |colorFunction| |eyeDistance| |explimitedint| - |term?| |symmetricGroup| |fixedPoint| |constDsolve| |factorSFBRlcUnit| - |varselect| |e02baf| |hdmpToDmp| |double| - |noncommutativeJordanAlgebra?| |complexExpand| |value| |numFunEvals| - |palgintegrate| |setCondition!| |interReduce| |dAndcExp| - |derivationCoordinates| |radicalSimplify| |putColorInfo| |expt| - |leadingIdeal| |nextPrimitivePoly| |janko2| |s18adf| - |rationalFunction| |edf2fi| |mathieu11| |partialNumerators| |nullary| - |currentSubProgram| |logical?| |c06fqf| |conditionsForIdempotents| - |f02bbf| |pushuconst| |physicalLength| |gramschmidt| |e01bhf| - |fractionPart| |multiset| |blankSeparate| |removeSquaresIfCan| - |recoverAfterFail| |userOrdered?| |convergents| |pushdterm| - |genericRightTraceForm| |symmetricDifference| |push!| |mirror| - |listLoops| |leftOne| |reduceBasisAtInfinity| |numberOfPrimitivePoly| - |e04naf| |primitivePart| |perfectNthPower?| |internalLastSubResultant| - |color| |Gamma| |setVariableOrder| |associator| |acotIfCan| |rule| - |concat!| |getVariableOrder| |readUInt32!| |minimumExponent| |unparse| - |f04arf| |say| |combineFeatureCompatibility| |divisors| - |binaryFunction| |stFunc1| |recur| |rk4qc| |polyRDE| |declare!| - |gcdPolynomial| |RemainderList| |graphStates| |numericalOptimization| - |localIntegralBasis| |chiSquare1| |rootOf| |testDim| |quadraticForm| - |genericRightDiscriminant| |fortranTypeOf| |hMonic| |setleaves!| - |e01daf| |pointPlot| |setref| |nand| |lineColorDefault| - |leftRankPolynomial| |generic?| |xn| |scaleRoots| |adaptive?| - |incrementKthElement| |numFunEvals3D| |pr2dmp| |csubst| |upperCase!| - |sin2csc| |normalElement| |RittWuCompare| - |purelyAlgebraicLeadingMonomial?| |tan2trig| |subSet| - |antiAssociative?| |repeating| |stiffnessAndStabilityFactor| - |integralBasis| |linearDependence| |se2rfi| |overset?| - |createLowComplexityTable| |drawComplex| |nthFlag| |doubleComplex?| - |tanhIfCan| |inputOutputBinaryFile| |void| |reset| |initiallyReduce| - |extractPoint| |prologue| |solveLinearPolynomialEquation| |formula| - |factors| |clip| |lyndon| |isConnected?| |viewThetaDefault| - |readByte!| |front| |aQuartic| |leftTrace| |solid| |elliptic?| - |writeInt8!| |segment| |uncouplingMatrices| |stripCommentsAndBlanks| - |write| |lastSubResultant| |reverse!| |uniform| |enterInCache| - |reverse| |setvalue!| |constantToUnaryFunction| |linSolve| |iidsum| - |mindegTerm| |save| |directory| |subresultantVector| |modulus| - |abelianGroup| |separate| |OMlistCDs| FG2F |setTopPredicate| |iiperm| - |prevPrime| |entry| |copyInto!| |complement| |positive?| |ratPoly| - |nrows| |tensorProduct| |normalizeAtInfinity| |stoseInvertibleSet| - |OMputError| |addiag| |showFortranOutputStack| |normalDeriv| - |complex?| |finiteBasis| |ncols| |reducedContinuedFraction| - |internalIntegrate| |primlimitedint| |extractBottom!| |rationalPoints| - |assign| |inverseIntegralMatrixAtInfinity| |entry?| - |exteriorDifferential| |comment| |generalizedEigenvectors| - |jordanAlgebra?| |meshFun2Var| |e01sbf| |prod| |checkPrecision| - |oddintegers| |cartesian| |maxColIndex| |graphState| - |genericLeftTrace| |useSingleFactorBound?| |definingInequation| - |mkcomm| |solveLinearlyOverQ| |maxint| |iomode| |discriminant| - |brillhartIrreducible?| |parents| |nextColeman| |atoms| |lex| - |linearMatrix| |UP2ifCan| |ScanArabic| |box| |nextsubResultant2| - |printHeader| |singularitiesOf| |nextsousResultant2| |dioSolve| - |coercePreimagesImages| |padecf| |addPoint| |flatten| |makeop| - |selectSumOfSquaresRoutines| |abs| |palgLODE0| |fortranReal| - |dualSignature| |iiacosh| |escape| |closedCurve?| |makeSin| - |readIfCan!| |genericLeftTraceForm| |concat| |digit| |times!| - |iibinom| |f2df| |zeroSquareMatrix| |OMconnectTCP| |top| |open?| - |refine| |deleteRoutine!| |nextNormalPrimitivePoly| |setClosed| - |viewWriteDefault| |subtractIfCan| |solveid| |rootBound| - |relationsIdeal| |coth2tanh| |domainOf| |primitiveElement| |has?| - |exportedOperators| |limitedIntegrate| |mapBivariate| |ip4Address| - |ldf2lst| |pow| |binding| |true| |lexGroebner| |baseRDE| - |trivialIdeal?| |subresultantSequence| |setMinPoints| |maxrow| - |d02ejf| |selectsecond| |idealiserMatrix| |iitanh| - |stoseInvertibleSetreg| |rootNormalize| |scopes| |unitNormalize| - |isPower| |numberOfHues| |purelyAlgebraic?| |lflimitedint| - |outputFixed| |nilFactor| |numberOfComposites| |symmetricSquare| - |square?| |leadingBasisTerm| |red| |lists| |completeSmith| - |coerceListOfPairs| |changeWeightLevel| |nthCoef| - |primPartElseUnitCanonical!| |printingInfo?| |minrank| |headReduced?| - |besselK| |primextintfrac| |monomial?| |interpretString| - |create3Space| |tan2cot| |createRandomElement| |internalSubPolSet?| - |c06gbf| |outerProduct| |lexTriangular| |swapColumns!| - |palginfieldint| |signature| |f04jgf| |transcendentalDecompose| - |getMultiplicationMatrix| |groebner| |d02gbf| |varList| |isOpen?| - |dot| |morphism| |eulerPhi| |youngGroup| |setStatus| |nlde| |makeFR| - |argumentListOf| |setClipValue| |setleft!| |e02agf| |expintfldpoly| - |roughEqualIdeals?| |unravel| |iiasin| |addPoint2| |hexDigit?| - |clipParametric| |setRealSteps| |isMult| |orbit| |leviCivitaSymbol| - |setAdaptive| |extractProperty| |f2st| |powmod| - |semiDiscriminantEuclidean| |any?| |delete| |integral?| - |selectAndPolynomials| |tracePowMod| |matrix| |OMgetEndApp| |putGraph| - |selectIntegrationRoutines| |mesh?| |pToDmp| - |basisOfCommutingElements| |dequeue| |direction| |schwerpunkt| |green| - |denomLODE| |root?| |perfectSquare?| |increasePrecision| |f02agf| - |getPickedPoints| |sizeMultiplication| |choosemon| - |irreducibleRepresentation| |cothIfCan| - |semiSubResultantGcdEuclidean2| |optimize| |iisec| |c06ecf| |untab| - |zero| |OMputFloat| |endOfFile?| |cot2tan| |checkRur| - |LyndonWordsList1| |internalSubQuasiComponent?| |updatF| - |relativeApprox| |sumOfSquares| |moduloP| |rightRank| |cPower| |plot| - |OMconnInDevice| |normalizedDivide| |OMgetType| |And| - |PollardSmallFactor| |ratpart| |newSubProgram| |iisinh| |printCode| - |f04adf| |pureLex| |Or| |returnType!| F2FG |hcrf| |toseInvertible?| - |digit?| |controlPanel| |cond| |Not| |aCubic| |epilogue| |reflect| - |exists?| |modifyPointData| |rightNorm| |mpsode| |lllip| |mathieu24| - |rotate!| |nextSubsetGray| |vertConcat| |highCommonTerms| |numerator| - |stFuncN| |plus| |algSplitSimple| |iicosh| |subspace| |omError| |slex| - |pole?| |curry| |roughBasicSet| |select!| |cyclePartition| |jacobi| - |cCot| |zeroVector| |d01gbf| |rightCharacteristicPolynomial| - |commaSeparate| |c05nbf| |cosh| |bipolar| |idealiser| |sayLength| - |iiatanh| |log10| |f04faf| |acothIfCan| |child?| |clearTheSymbolTable| - |tanh| |cfirst| |rowEchLocal| |curve?| |inGroundField?| |simpsono| - |max| |polarCoordinates| |rightRegularRepresentation| |legendre| - |bitand| |explicitEntries?| |identityMatrix| |coth| |times| |rootSimp| - |unrankImproperPartitions0| |partition| |stopTableInvSet!| - |isQuotient| |tablePow| |every?| |bitior| |fractionFreeGauss!| - |OMgetVariable| |plotPolar| |sech| |octon| - |halfExtendedSubResultantGcd1| |drawToScale| |unvectorise| |logGamma| - |printStats!| |ocf2ocdf| |coshIfCan| |csch| |shallowCopy| - |fortranDoubleComplex| |f02ajf| |indicialEquationAtInfinity| - |linearDependenceOverZ| |balancedFactorisation| |newLine| |cAsec| - |OMencodingXML| |null?| |asinh| |sumSquares| |karatsubaOnce| - |makeUnit| |e01bef| |e02daf| |ScanRoman| |acosh| |typeList| - |diagonalProduct| |revert| |monom| |shellSort| |d01anf| - |setMaxPoints3D| |drawStyle| |alphabetic| |identity| |copies| - |integers| |discriminantEuclidean| |atanh| |c06gcf| |quasiRegular?| - |objectOf| |normal01| |height| |edf2efi| |SturmHabichtMultiple| - |meshPar2Var| |quotedOperators| |selectOptimizationRoutines| |acoth| - |pomopo!| |tubeRadiusDefault| |flagFactor| |ODESolve| |cn| |conical| - |doubleResultant| |common| |supersub| |getOperands| |computePowers| - |asech| |numberOfNormalPoly| |poisson| |aQuadratic| |integrate| - |representationType| |qfactor| |selectfirst| |tree| - |scanOneDimSubspaces| |empty?| |exprHasLogarithmicWeights| - |getExplanations| |algintegrate| |cyclicEqual?| |elliptic| |declare| - |cosh2sech| |getRef| |laplacian| |multiple| |getOperator| - |leftCharacteristicPolynomial| |hasPredicate?| |adaptive3D?| |s13adf| - |debug| |radPoly| |applyQuote| |leftScalarTimes!| |quoted?| - |changeMeasure| |radicalSolve| |duplicates| |nthFactor| - |mainVariable?| D |semiLastSubResultantEuclidean| |is?| |d01asf| - |acoshIfCan| |df2mf| |quotientByP| |tail| |shiftRoots| |s17dcf| - |ldf2vmf| |merge!| |tanh2coth| |bernoulliB| |pseudoQuotient| - |integralDerivationMatrix| |infieldint| |meshPar1Var| |listexp| - |cAsinh| |mainVariables| |symbolTable| |functionIsFracPolynomial?| - |removeCosSq| |integralBasisAtInfinity| |point?| |ruleset| - |stosePrepareSubResAlgo| |rk4f| |presub| |chineseRemainder| - |companionBlocks| |qPot| |satisfy?| |generator| - |numberOfFractionalTerms| |multinomial| |SturmHabichtCoefficients| - |leftExactQuotient| |odd?| |hyperelliptic| |iCompose| - |stoseSquareFreePart| |mergeDifference| |mesh| |computeInt| |critM| - |addmod| |minimumDegree| |getCode| |s18acf| |subst| |iiacsch| - |quickSort| |mix| |diagonalMatrix| |gcdPrimitive| |suchThat| Y - |f01qcf| |iteratedInitials| |integralRepresents| |printTypes| - |pushFortranOutputStack| |subscript| |rightAlternative?| |leaf?| - |powers| |mainSquareFreePart| |randomLC| |hessian| |critB| |power| - |rootSplit| |mkAnswer| |bumptab1| |purelyTranscendental?| LODO2FUN - |component| |LiePolyIfCan| |createZechTable| |radicalRoots| - |popFortranOutputStack| F |limitedint| |semiResultantReduitEuclidean| - |quasiRegular| |selectMultiDimensionalRoutines| |rotate| - |radicalOfLeftTraceForm| |interval| |divide| |sturmVariationsOf| - |print| |cTan| |opeval| |findConstructor| |trace2PowMod| |drawCurves| - |qqq| |Nul| |iiacos| |subResultantsChain| |resolve| - |toseSquareFreePart| |outputAsFortran| |constantOperator| |iisin| - |c06eaf| |numberOfCycles| |internalIntegrate0| |cAcsch| |karatsuba| - |graeffe| |and?| |goodPoint| |clearTheIFTable| |objects| - |generalPosition| |curveColorPalette| |lifting1| |Si| |leftPower| - |singularAtInfinity?| |SturmHabichtSequence| |whitePoint| |setfirst!| - |base| |torsion?| |c06fuf| |absolutelyIrreducible?| - |univariatePolynomialsGcds| |removeRoughlyRedundantFactorsInPols| - |contours| |cross| |splitNodeOf!| |lowerCase| |makeCos| |f02wef| - |fortranDouble| |name| |bfEntry| |removeZero| |deriv| |coth2trigh| - |intPatternMatch| |d02bbf| |infix| |crushedSet| |ode| |datalist| - |c06fpf| |body| |lintgcd| |listRepresentation| |topFortranOutputStack| - |maxRowIndex| |complexEigenvectors| |isOp| |raisePolynomial| |cAsech| - |removeIrreducibleRedundantFactors| |sinIfCan| |deepestTail| - |fortranLiteralLine| |algebraicVariables| |e04fdf| |firstDenom| - |curryLeft| |determinant| ** |halfExtendedResultant1| - |cyclotomicFactorization| |acschIfCan| |cAcosh| |decomposeFunc| - |checkForZero| |secIfCan| |Beta| |stop| |deepestInitial| ~ |insert| - |mainForm| |enqueue!| |nodeOf?| |rightMult| |reduced?| |iitan| - |leftAlternative?| |e04ycf| |selectODEIVPRoutines| |distFact| - |doublyTransitive?| |showScalarValues| |BasicMethod| |e01baf| EQ - |normDeriv2| |sec2cos| |rotatez| |s19adf| |open| |condition| - |separateFactors| |separateDegrees| |linearAssociatedExp| |setColumn!| - |prem| |eulerE| |tab1| |integralMatrixAtInfinity| |tanh2trigh| - |precision| |level| |port| |sample| |lazyGintegrate| |scripted?| - |OMputSymbol| |OMlistSymbols| |B1solve| |palgLODE| |indices| - |integerBound| |internalInfRittWu?| |eq| |superHeight| - |internalDecompose| |viewport3D| |e04ucf| |constantCoefficientRicDE| - |routines| |phiCoord| |exactQuotient| |skewSFunction| - |mainPrimitivePart| |factorial| |iter| |e04gcf| |mathieu22| |t| - |shift| |unexpand| |taylorIfCan| |splitDenominator| - |ellipticCylindrical| |operations| |lazyIrreducibleFactors| - |nextIrreduciblePoly| |minus!| |previous| |characteristicSet| - |rightFactorIfCan| |beauzamyBound| |topPredicate| |seriesToOutputForm| - |laurentRep| |definingPolynomial| |getCurve| |normFactors| - |hasTopPredicate?| |duplicates?| |adaptive| |infiniteProduct| - |bandedJacobian| |modifyPoint| |quotient| |blue| |expPot| |components| - |category| |read!| |f01mcf| |laguerreL| |changeBase| |readLine!| - |rowEch| |pair?| |rightExtendedGcd| |hermiteH| |property| |domain| - |ref| |qroot| |linearPolynomials| |extendedEuclidean| |setrest!| - |inHallBasis?| |c06frf| |FormatArabic| |stFunc2| |package| - |curveColor| |rightMinimalPolynomial| |polyPart| |f01bsf| |round| - |clearCache| |cycleRagits| |showAllElements| |pdf2ef| |supRittWu?| - |chainSubResultants| |initializeGroupForWordProblem| |firstSubsetGray| - |palgRDE0| |rangeIsFinite| |primaryDecomp| - |generalizedContinuumHypothesisAssumed| |numberOfFactors| - |viewPhiDefault| |selectPolynomials| |units| |constantKernel| - |modularFactor| |f01rdf| |exp| |var2Steps| |makeTerm| |arguments| - |s19acf| |LagrangeInterpolation| |quote| |rur| |subscriptedVariables| - |setButtonValue| |e02zaf| |useEisensteinCriterion?| |s20acf| - |bernoulli| |pushdown| |writeBytes!| |quasiMonic?| |argscript| - |makeGraphImage| |reducedSystem| |insertionSort!| |medialSet| - |listConjugateBases| |matrixDimensions| |denomRicDE| |conjugates| - |trigs| |innerint| |palgRDE| |s17aff| |orOperands| |distribute| - |output| |certainlySubVariety?| |compile| |eigenMatrix| |any| |heap| - |factorPolynomial| |countable?| |torsionIfCan| |printStatement| - |initTable!| |code| |contract| |tanAn| |minPoly| |bytes| |isList| - |qinterval| |ParCond| |definingEquations| |expandLog| - |useEisensteinCriterion| |perspective| |decrease| |pquo| |hasHi| - |alternative?| |fixedDivisor| |central?| |numberOfChildren| |#| - |lazyPrem| |currentCategoryFrame| |leftNorm| |nextPartition| |ode2| - |rational?| |primPartElseUnitCanonical| |OMgetEndAttr| |generators| - |leftUnits| |ricDsolve| |exactQuotient!| |iicos| |leftTraceMatrix| - |compose| |outputForm| |dom| |fill!| |row| |multMonom| |incrementBy| - |lprop| |laurentIfCan| |constantIfCan| |squareFreePolynomial| - |genericLeftMinimalPolynomial| |triangularSystems| |singular?| - |prime?| |iifact| |realEigenvectors| |rubiksGroup| |expand| - |radicalEigenvectors| |linears| |part?| |frst| |s17dhf| |droot| |node| - |push| |OMputEndError| |filterWhile| |univariateSolve| |simplify| - |shiftLeft| |elem?| |reducedDiscriminant| |prinshINFO| |const| - |discreteLog| |symmetricRemainder| |aLinear| |filterUntil| |e01sff| - |extensionDegree| |lookup| |outputArgs| |anticoord| |leftGcd| - |mapDown!| |swap| |factorOfDegree| |select| |d01akf| |schema| |c06gqf| - |rightExactQuotient| |c02agf| |parametric?| |title| |bezoutMatrix| - |clearTable!| |divergence| |options| |cAcot| |OMgetAttr| |elColumn2!| - |e01bff| |sequences| |bits| |polyred| |pile| |radicalEigenvector| - |iExquo| |infLex?| |prepareDecompose| |bumptab| |increase| |operation| - |euclideanNormalForm| |totalGroebner| |accuracyIF| - |factorSquareFreePolynomial| |bombieriNorm| |cExp| |s17ahf| - |supDimElseRittWu?| |e| |initial| |OMserve| |UpTriBddDenomInv| - |cycleLength| |string| |setProperties| |bumprow| |nextPrime| - |univariatePolynomial| |symbolTableOf| |monicCompleteDecompose| - |setFormula!| |plusInfinity| |prinb| |directSum| |insertTop!| - |KrullNumber| |build| |evaluate| |separant| |cyclotomic| - |partialFraction| |generalizedContinuumHypothesisAssumed?| |iipow| - |minusInfinity| |makeRecord| |enumerate| |minimize| |constant?| - |pointColorDefault| |symFunc| |stronglyReduce| |OMencodingBinary| - |asinhIfCan| |flexible?| |numberOfMonomials| |gethi| |safeCeiling| - |basisOfRightAnnihilator| |s19aaf| |vspace| |rischNormalize| - |permanent| |redPo| |ceiling| |multisect| |setProperty!| |cycles| - |mainVariable| |length| |OMread| |children| |dmpToP| - |generalTwoFactor| |e02bef| |linear?| |jacobian| |exQuo| |generalSqFr| - |stoseInvertible?sqfreg| |scripts| |pushucoef| |makeYoungTableau| - |swap!| |oddlambert| |nthExponent| |factorFraction| |cycleSplit!| - |tValues| |sqfrFactor| |multiplyExponents| |position!| |implies| |low| - |resetVariableOrder| |interpolate| |numberOfComponents| - |generalInfiniteProduct| |constantOpIfCan| |lieAlgebra?| - |zeroSetSplit| |mapUnivariate| |removeRedundantFactors| - |zeroDimPrimary?| |findCycle| |ffactor| |ddFact| |diff| |equation| - |type| |acscIfCan| |characteristicPolynomial| |partitions| - |trigs2explogs| |f02axf| |errorKind| |boundOfCauchy| |arrayStack| - |back| |singleFactorBound| |subNodeOf?| |integer?| - |nativeModuleExtension| |relerror| |latex| |width| - |lastSubResultantEuclidean| UP2UTS |decimal| |pmComplexintegrate| - |pack!| |specialTrigs| |toroidal| |returns| |packageCall| - |firstUncouplingMatrix| |iiasech| |factorAndSplit| |OMgetEndBVar| - |rightQuotient| |differentialVariables| |horizConcat| |e01sef| - |viewPosDefault| |list| |power!| |normInvertible?| |decreasePrecision| - |d02cjf| |fortranCarriageReturn| |lifting| |root| |multiEuclideanTree| - |lazyPquo| |addPointLast| |OMUnknownCD?| |car| |remove!| |init| - |inrootof| |realRoots| |besselY| |cycleTail| |size?| |leader| |sort!| - |deepExpand| |monic?| |cdr| |nonLinearPart| |setchildren!| |arg1| - |figureUnits| |explicitlyFinite?| |readUInt8!| |roman| |groebgen| - |oblateSpheroidal| |groebSolve| |setDifference| - |solveLinearPolynomialEquationByRecursion| |lepol| |symbolIfCan| - |arg2| |delta| |head| |decompose| |extendedint| |s18aef| |mvar| - |innerSolve1| |ksec| |preprocess| |llprop| |showAll?| |pop!| - |showTheSymbolTable| |f02aef| |polygon?| |redmat| |equivOperands| - |wordInGenerators| |expIfCan| |option?| |nextPrimitiveNormalPoly| - |conditions| |optional| |fglmIfCan| |restorePrecision| |UnVectorise| - |algebraic?| |rename| |mathieu12| |pleskenSplit| - |mainCharacterization| |sin?| |squareFree| |match| |rightOne| |write!| - |invertible?| |normalizeIfCan| |result| |euler| |chiSquare| |cosIfCan| - |extractClosed| |associates?| |signatureAst| |substring?| - |divideIfCan| |move| |groebnerIdeal| |factorSquareFree| |properties| - |mainMonomial| |vconcat| |finiteBound| |localReal?| |irreducible?| - |badValues| |socf2socdf| |groebnerFactorize| |fillPascalTriangle| - |lllp| |hdmpToP| |translate| |monomRDEsys| |irreducibleFactors| - |nullSpace| |screenResolution| |lazyPseudoDivide| |suffix?| - |LyndonCoordinates| |transcendent?| |c05pbf| |nextItem| |bubbleSort!| - |coord| |myDegree| |removeCoshSq| |repeatUntilLoop| |reduction| - |lambda| |factorials| |problemPoints| |pattern| |leftUnit| - |pseudoDivide| |integralAtInfinity?| |getOrder| |s15aef| - |complexNumericIfCan| |startTableGcd!| |parametersOf| |prefix?| - |solid?| |leftMinimalPolynomial| |leftFactor| |monicDivide| |randomR| - |setright!| |rational| |negative?| |delay| |noLinearFactor?| - |viewSizeDefault| |iicoth| |f02bjf| |createNormalElement| |hex| - SEGMENT |create| |makeSketch| |branchPoint?| |positiveRemainder| - |OMputEndObject| |bit?| |floor| |sech2cosh| |magnitude| |rdHack1| - |difference| |removeRoughlyRedundantFactorsInPol| |diophantineSystem| - |iroot| |resultantEuclideannaif| |unary?| |exptMod| |mkPrim| - |cscIfCan| |graphImage| |nsqfree| |message| |basisOfCentroid| - |critMTonD1| |solve| |postfix| |changeThreshhold| |var1StepsDefault| - |OMgetBind| |viewport2D| |stirling2| |sequence| |rotatex| |cCos| - |OMputEndAttr| |OMsend| |constantRight| |commutative?| |subHeight| - |s18aff| |trim| |optAttributes| |sdf2lst| |tRange| |asecIfCan| - |basisOfLeftNucloid| |cyclotomicDecomposition| |sinhIfCan| |product| - |rationalIfCan| |asimpson| |getSyntaxFormsFromFile| |represents| - |physicalLength!| |infix?| |wronskianMatrix| |sinhcosh| - |tryFunctionalDecomposition?| |OMputBind| |removeDuplicates!| - |interpret| |bat1| |strongGenerators| |variable?| |neglist| - |quadraticNorm| |mask| |binaryTree| |region| |modTree| |dfRange| - |csch2sinh| |modularGcdPrimitive| |makeFloatFunction| |subset?| - |critpOrder| |getDatabase| |homogeneous?| |createIrreduciblePoly| - |headAst| |realZeros| |rightTraceMatrix| |mantissa| |categoryFrame| - |OMgetEndAtp| |cons| |airyAi| |splitConstant| |singRicDE| - |stopMusserTrials| |over| |fixPredicate| |traverse| - |exprHasAlgebraicWeight| |OMgetObject| |resultantReduit| |retract| - |limitPlus| |OMputAttr| |atanhIfCan| |error| |factorsOfDegree| |imagJ| - |updatD| |stoseLastSubResultant| |coefficients| |xCoord| - |partialQuotients| |andOperands| |finite?| |getMatch| |arity| |assert| - |stoseInvertibleSetsqfreg| |mapUnivariateIfCan| |high| |ord| |status| - |bright| |numberOfImproperPartitions| |s17aef| |OMsetEncoding| - |cschIfCan| |ridHack1| |weakBiRank| |completeEchelonBasis| - |sparsityIF| |numericIfCan| |implies?| |mr| |readInt8!| |dn| - |rightRankPolynomial| |lfintegrate| |outputAsTex| |reorder| - |squareFreeLexTriangular| |setImagSteps| |dihedralGroup| |Ci| |vector| - |s14aaf| |monicLeftDivide| |addMatch| |leaves| |hypergeometric0F1| - |atrapezoidal| |e02ddf| |OMgetBVar| |makeCrit| |float?| - |permutationGroup| |LiePoly| |source| |makeprod| |Lazard| |polygon| - |erf| |colorDef| NOT |thenBranch| |isTimes| |summation| |quadratic| - |createMultiplicationTable| |differentiate| |imagj| |hue| - |monicRightFactorIfCan| |approximants| |monomialIntPoly| |iicsch| - |repSq| OR |categories| |symmetricProduct| |lazy?| ~= |lfunc| - |functionIsContinuousAtEndPoints| |iiasinh| |taylorQuoByVar| - |fprindINFO| |generateIrredPoly| |retractIfCan| |simpleBounds?| AND - |HenselLift| |connectTo| |coerce| |toseLastSubResultant| - |solveRetract| |alphabetic?| |dilog| |indicialEquation| |hconcat| - |intChoose| |rewriteIdealWithQuasiMonicGenerators| |writable?| |numer| - |construct| |indiceSubResultant| |prime| |tanSum| |mainKernel| - |overlap| |appendPoint| |gcdcofactprim| |factorList| |bitLength| |sin| - |bindings| |universe| |subPolSet?| |f01ref| |denom| |pdct| |trueEqual| - |totolex| |s21bbf| |target| |overlabel| |probablyZeroDim?| |cos| - |algint| |stopTable!| |s15adf| |mdeg| |mergeFactors| - |lastSubResultantElseSplit| |s01eaf| |rectangularMatrix| |fintegrate| - |symmetric?| |tan| |notelem| |pi| |extractSplittingLeaf| |unit?| - |merge| |iiacot| |primintfldpoly| |coerceS| |yCoord| |cot| |continue| - |internalZeroSetSplit| |reducedForm| |pointColorPalette| |infinity| - |OMgetEndError| |divisorCascade| |hexDigit| |lyndonIfCan| |pastel| - |mainCoefficients| |sec| |setOrder| |showTheFTable| |headRemainder| - |possiblyNewVariety?| |augment| |useNagFunctions| |nextNormalPoly| - |isAbsolutelyIrreducible?| |cCosh| |csc| |bag| |eof?| |geometric| - |virtualDegree| |pointColor| |totalDifferential| |inc| |bracket| - |asin| |readable?| |kernel| |romberg| |coerceImages| |Frobenius| - |lowerCase!| |s17ajf| |less?| |ravel| |unaryFunction| - |symmetricTensors| |acos| |map| |number?| * |draw| |univcase| - |coHeight| |submod| |lazyPseudoRemainder| |hspace| - |semiResultantEuclidean2| |reshape| |OMgetEndObject| - |OMencodingUnknown| |atan| |equiv| |ef2edf| |basicSet| |intersect| - |seriesSolve| |setScreenResolution| |more?| |monomRDE| |weighted| - |acot| |setOfMinN| |stronglyReduced?| |integerIfCan| |iiasec| - |innerSolve| |resetAttributeButtons| |resetBadValues| |asec| |char| - |var2StepsDefault| |exprHasWeightCosWXorSinWX| |coefChoose| |node?| - |solve1| |rightDivide| |ParCondList| |printInfo| |reindex| |orbits| - |acsc| |terms| |prolateSpheroidal| |Ei| |makeObject| |setelt| |pol| - |cosSinInfo| |rootKerSimp| |stoseIntegralLastSubResultant| - |subResultantChain| |sinh| |cyclicParents| |convert| |derivative| - |complexSolve| |upDateBranches| |basisOfRightNucloid| - |basisOfRightNucleus| |critMonD1| |d01gaf| |update| |safeFloor| - |iisech| |roughBase?| |copy| |coef| |expenseOfEvaluationIF| - |bringDown| |nil?| |cos2sec| |showTheRoutinesTable| - |rewriteSetWithReduction| |makeEq| |testModulus| - |rewriteIdealWithHeadRemainder| |closed?| |zeroDim?| |badNum| - |extractTop!| |bothWays| |s17acf| |float| |f04maf| |cyclicSubmodule| - |complementaryBasis| |innerEigenvectors| |weierstrass| |edf2df| - |nullity| |showTypeInOutput| |d01fcf| |coordinate| |autoCoerce| - |iiexp| |semiIndiceSubResultantEuclidean| |contains?| |computeBasis| - |s17dgf| |failed| |fortranCompilerName| |pascalTriangle| - |removeSuperfluousQuasiComponents| |typeLists| - |generalizedEigenvector| |s21baf| |lfextendedint| |OMreceive| - |vectorise| |match?| |position| |branchPointAtInfinity?| |copy!| - |algebraicOf| |linearlyDependentOverZ?| |isExpt| |wreath| - |halfExtendedSubResultantGcd2| |f01qdf| |mapdiv| |OMopenFile| - |rightRecip| |selectNonFiniteRoutines| |key?| |argumentList!| - |legendreP| |quasiMonicPolynomials| |leastMonomial| |cyclicCopy| - |minPoints3D| |groebner?| |presuper| |besselJ| |impliesOperands| - |numberOfIrreduciblePoly| |character?| |basis| |LyndonBasis| |sincos| - |primeFactor| |largest| |pseudoRemainder| |exponentialOrder| - |listOfMonoms| |createThreeSpace| |d02gaf| |atom?| - |invertibleElseSplit?| |OMgetError| |graphCurves| |exponential1| - |getMeasure| |external?| |c02aff| |associative?| |unit| |bottom!| - |comp| |matrixConcat3D| GE |rootDirectory| |extend| |binary| |lhs| - |intensity| |readInt16!| |modularGcd| |flexibleArray| |psolve| - |antiCommutator| |zero?| GT |doubleDisc| |loopPoints| - |integralCoordinates| |rhs| |univariatePolynomials| |sumOfDivisors| - |extendIfCan| |clipBoolean| |integralMatrix| |next| |rowEchelonLocal| - LE |getMultiplicationTable| |dimension| |critBonD| |traceMatrix| - |df2ef| |uniform01| |d03eef| |subQuasiComponent?| |univariate?| LT - |fibonacci| |f04qaf| |stirling1| |primextendedint| |s19abf| - |startTableInvSet!| |createNormalPrimitivePoly| |e02def| |polar| - |setelt!| |degreeSubResultantEuclidean| |imports| |lagrange| |cLog| - |norm| |operators| |variationOfParameters| |log| |one?| - |bipolarCylindrical| |scalarMatrix| |triangular?| |leftRemainder| - |setAdaptive3D| |setValue!| |fracPart| |sts2stst| - |regularRepresentation| |repeating?| |tableau| |tubePoints| |unknown| - |semiResultantEuclideannaif| |LazardQuotient| |allRootsOf| |nil| - |infinite| |arbitraryExponent| |approximate| |complex| - |shallowMutable| |canonical| |noetherian| |central| + |Record| |Union| |e04naf| |oddlambert| |listOfMonoms| + |monicRightDivide| |integral?| |processTemplate| + |constantCoefficientRicDE| |factorsOfDegree| |LazardQuotient2| + |nthExponent| |primitivePart| |createThreeSpace| |hitherPlane| |keys| + |routines| |twoFactor| |selectAndPolynomials| |imagJ| + |pushFortranOutputStack| |fortranComplex| |perfectNthPower?| |acsch| + |factorFraction| |d02gaf| |delete!| |ptFunc| |phiCoord| |tracePowMod| + |updatD| |popFortranOutputStack| |selectFiniteRoutines| + |internalLastSubResultant| |cycleSplit!| |atom?| |e02ajf| GE |weight| + |exactQuotient| |OMgetEndApp| |stoseLastSubResultant| |resetNew| + |tValues| |color| |next| |invertibleElseSplit?| |integral| GT + |coefficients| |putGraph| |cycleElt| |sqfrFactor| |Gamma| |OMgetError| + |iisin| |OMParseError?| LE |composite| |xCoord| + |selectIntegrationRoutines| |linGenPos| |setVariableOrder| + |multiplyExponents| |graphCurves| |toScale| |middle| |c06eaf| LT + |partialQuotients| |mesh?| |cCsc| |position!| |associator| + |exponential1| |tanNa| |cAcsc| |numberOfCycles| |pToDmp| |andOperands| + |monomials| |changeNameToObjf| |nil| |getMeasure| |freeOf?| + |internalIntegrate0| |corrPoly| |basisOfCommutingElements| |finite?| + |conditionP| |elem?| |factorByRecursion| |permutationRepresentation| + |external?| |genericRightTrace| |cAcsch| |simplifyExp| |dequeue| + |getMatch| |f07fdf| |factorSquareFreeByRecursion| + |reducedDiscriminant| |edf2ef| |c02aff| |cSinh| |trapezoidalo| + |condition| |karatsuba| |arity| |direction| |nextLatticePermutation| + |prinshINFO| |regime| |radicalEigenvalues| |associative?| + |approximate| |tubePointsDefault| |graeffe| |e02adf| |level| |comment| + |addBadValue| |const| |totalfract| |basisOfCenter| |complex| |unit| + |rk4a| |and?| |commonDenominator| |OMconnectTCP| |negative?| |eq| + |monicModulo| |alphanumeric?| |discreteLog| |coerceP| |bottom!| + |OMputAtp| |goodPoint| |s14abf| |delay| |open?| |iter| |iiatan| + |symmetricRemainder| |cyclic?| |complexZeros| |matrixConcat3D| + |noLinearFactor?| |someBasis| |clearTheIFTable| |changeVar| |refine| + |close| |pointLists| |rspace| |aLinear| |clearFortranOutputStack| + |Lazard2| |generalPosition| |cyclicEntries| |deleteRoutine!| + |viewSizeDefault| |toseInvertibleSet| |e01sff| |doubleFloatFormat| + |coefChoose| |hasoln| |curveColorPalette| |LyndonWordsList| |remove| + |iicoth| |subMatrix| |nextNormalPrimitivePoly| |display| BY + |expressIdealMember| |setLength!| |extensionDegree| |pmintegrate| + |node?| |explogs2trigs| |lifting1| |halfExtendedResultant2| |f02bjf| + |setClosed| |graphs| |lookup| |nextSublist| |solve1| |int| |mapCoef| + |last| |Si| |roughUnitIdeal?| |createNormalElement| |viewWriteDefault| + |bezoutResultant| |outputArgs| |debug3D| |lfinfieldint| |rightDivide| + |assoc| |cAtan| |iicot| |leftPower| |subtractIfCan| |hex| |readInt32!| + |anticoord| |ParCondList| |stoseInvertible?reg| |cyclicGroup| + |dimensions| |inputBinaryFile| |singularAtInfinity?| |mapSolve| + |solveid| |create| |binaryTournament| |externalList| |lfextlimint| + |leftGcd| |reindex| |plus!| |makeSketch| |rootBound| |function| + |s21bdf| |e02bdf| |SturmHabichtSequence| |input| |/\\| |mapDown!| + |rightLcm| |id| |redpps| |orbits| |OMReadError?| |branchPoint?| + |relationsIdeal| |removeSuperfluousCases| |ListOfTerms| |whitePoint| + |library| |\\/| |maxPoints| |swap| |numberOfDivisors| |forLoop| + |terms| |eval| |complexElementary| |htrigs| |setfirst!| + |positiveRemainder| |coth2tanh| |nor| |prolateSpheroidal| + |tanintegrate| |factorOfDegree| |lexico| |outputGeneral| |table| + |applyRules| |d01aqf| |output| |compile| |torsion?| |domainOf| + |OMputEndObject| |cAtanh| |Ei| |optpair| |d01akf| |wholeRadix| |or?| + |new| |scan| |c06fuf| |dmpToHdmp| |bit?| |primitiveElement| |obj| + |gcdcofact| |pol| |setMinPoints3D| |schema| |search| + |zeroSetSplitIntoTriangularSystems| |has?| |makeSUP| + |absolutelyIrreducible?| |patternVariable| |floor| |set| |cache| + |dilog| |makeSeries| |c06gqf| |quatern| |cosSinInfo| + |bivariatePolynomials| |sumOfKthPowerDivisors| |collectUnder| + |univariatePolynomialsGcds| |exportedOperators| |sech2cosh| |sin| + |returnTypeOf| |rightExactQuotient| |rischDEsys| |rootKerSimp| + |complexRoots| |e01saf| |extension| + |removeRoughlyRedundantFactorsInPols| |limitedIntegrate| |magnitude| + |cos| |cSec| |alphanumeric| |c02agf| |stoseIntegralLastSubResultant| + |sturmSequence| |reseed| |contours| |removeSinhSq| |mapBivariate| + |rdHack1| |tan| |fortranLinkerArgs| |parametric?| |oddInfiniteProduct| + |subResultantChain| |split!| |OMputString| |roughSubIdeal?| |cross| + |ip4Address| |difference| |cot| |linearAssociatedLog| |bezoutMatrix| + |mapGen| |cyclicParents| |surface| |ldf2lst| |primeFrobenius| |s17agf| + |removeRoughlyRedundantFactorsInPol| |splitNodeOf!| + |removeRedundantFactorsInContents| |sort| |sec| |derivative| |nthRoot| + |clearTable!| |axesColorDefault| |delta| |generalLambert| |pow| + |f02abf| |lowerCase| |OMputVariable| |exponent| |diophantineSystem| + |csc| |resultantReduitEuclidean| |divergence| |errorInfo| + |complexSolve| |fortranLiteral| |Is| |cardinality| |makeCos| |iroot| + |binding| |asin| |replaceKthElement| |cAcot| |wrregime| |SFunction| + |upDateBranches| |setProperties!| |true| |characteristic| |f02wef| ~= + |lexGroebner| |resultantEuclideannaif| |acos| |basisOfRightNucloid| + |patternMatchTimes| |OMgetAttr| |integralLastSubResultant| |palgint0| + |left| |unary?| |fortranDouble| |currentScope| |completeHensel| + |random| |baseRDE| |coerce| |hash| |atan| |basisOfRightNucleus| + |resultantEuclidean| |elColumn2!| |bat| |f04atf| |right| + |associatedEquations| |bfEntry| |exptMod| |e02gaf| |trivialIdeal?| + |construct| |show| |count| |acot| |noKaratsuba| |knownInfBasis| + |e01bff| |critMonD1| |prindINFO| |factorset| |writeByte!| = + |removeZero| |mkPrim| |subresultantSequence| |asec| + |clipPointsDefault| |iisqrt2| |sequences| |fortranLogical| |d01gaf| + |deriv| |member?| |diagonals| |setMinPoints| |cscIfCan| |trace| |bits| + |acsc| |safeFloor| |branchIfCan| |lambda| |logIfCan| |triangSolve| + |complete| |d02kef| |qualifier| < |coth2trigh| |graphImage| |maxrow| + |sinh| |dequeue!| |polyred| |buildSyntax| |iisech| |degreePartition| + |setEmpty!| |intPatternMatch| > |nsqfree| |d02ejf| |cosh| |digamma| + |doubleRank| |pile| |roughBase?| |fractRagits| |basisOfMiddleNucleus| + |d02bbf| |OMputEndAtp| <= |basisOfCentroid| |selectsecond| |tanh| + |intcompBasis| |yellow| |radicalEigenvector| |expenseOfEvaluationIF| + |ideal| |max| >= |totalDegree| |infix| |enterPointData| |critMTonD1| + |idealiserMatrix| |coth| |lazyEvaluate| |iExquo| |unmakeSUP| + |bringDown| |jordanAdmissible?| |rangePascalTriangle| |crushedSet| + |iitanh| |solve| |sech| |showSummary| |elRow1!| |goto| |infLex?| + |nil?| |cn| |denominator| |outputBinaryFile| |ode| |postfix| + |stoseInvertibleSetreg| |csch| |numericalIntegration| + |commutativeEquality| |prepareDecompose| |cos2sec| |c06fpf| |insert!| + |subResultantGcdEuclidean| + |rootNormalize| |changeThreshhold| + |asinh| |showAttributes| |OMputBVar| |block| |bumptab| + |showTheRoutinesTable| |leftRegularRepresentation| |rightDiscriminant| + |lintgcd| - |scopes| |var1StepsDefault| |acosh| |evaluateInverse| + |increase| |iiGamma| |rewriteSetWithReduction| |btwFact| + |listRepresentation| |content| / |unitNormalize| |OMgetBind| |atanh| + |normalise| |euclideanNormalForm| |elRow2!| |makeEq| + |topFortranOutputStack| |algebraicSort| |consnewpol| |isPower| + |setelt| |viewport2D| |acoth| |ramified?| |whileLoop| |totalGroebner| + |testModulus| |parents| |sign| |shuffle| |maxRowIndex| |numberOfHues| + |stirling2| |asech| |getZechTable| |accuracyIF| |prinpolINFO| + |rewriteIdealWithHeadRemainder| |lSpaceBasis| |fTable| |sequence| + |complexEigenvectors| |purelyAlgebraic?| |copy| |arg1| |subTriSet?| + |genericLeftNorm| |factorSquareFreePolynomial| |closed?| |ran| |isOp| + |coordinates| |rotatex| |lflimitedint| |multiple| |arg2| |randnum| + |bombieriNorm| |compBound| |zeroDim?| |raisePolynomial| |imagi| + |cCsch| |label| |outputFixed| |cCos| |applyQuote| |mapmult| |element?| + |cExp| |badNum| |nilFactor| |sup| |safetyMargin| |cAsech| + |OMputEndAttr| |autoCoerce| |mapMatrixIfCan| |conditions| |s17ahf| + |leftLcm| |extractTop!| |removeIrreducibleRedundantFactors| |column| + |OMsend| |numberOfComposites| |exponents| |match| |upperCase?| + |supDimElseRittWu?| |sizeLess?| |bothWays| |result| |outputList| + |sinIfCan| |collectQuasiMonic| |symmetricSquare| |constantRight| + |ruleset| |indiceSubResultantEuclidean| |OMserve| |getGraph| |s17acf| + |cubic| |properties| |expint| |deepestTail| |commutative?| |square?| + |replace| |OMreadFile| |colorFunction| |UpTriBddDenomInv| |f04maf| + |Aleph| |translate| |fortranLiteralLine| |unitVector| + |leadingBasisTerm| |subHeight| |rightScalarTimes!| |cycleLength| + |eyeDistance| |cyclicSubmodule| |thetaCoord| |stoseInvertible?| + |algebraicVariables| |s18aff| |red| |rotatey| |suchThat| + |setProperties| |explimitedint| |complementaryBasis| |leftZero| + |e04fdf| |selectOrPolynomials| |completeSmith| |trim| |zeroDimPrime?| + |term?| |bumprow| |innerEigenvectors| |remainder| |systemSizeIF| + |option| |firstDenom| |optAttributes| |coerceListOfPairs| |leftMult| + |symmetricGroup| |nextPrime| |weierstrass| |curryRight| |sdf2lst| + |changeWeightLevel| |nullary?| |fixedPoint| |univariatePolynomial| + |edf2df| |biRank| |infinite?| |stoseSquareFreePart| |nthCoef| |tRange| + |measure| |constDsolve| |symbolTableOf| |nullity| |equality| + |mergeDifference| |asinIfCan| |checkPrecision| |asecIfCan| + |primPartElseUnitCanonical!| |heapSort| |factorSFBRlcUnit| + |monicCompleteDecompose| |showTypeInOutput| |OMopenString| |mapUp!| + |mesh| |basisOfLeftNucloid| |printingInfo?| |minRowIndex| |d01fcf| + |startPolynomial| |computeInt| |perfectSqrt| |possiblyInfinite?| + |cyclotomicDecomposition| |minrank| |lazyPseudoQuotient| |bytes| + |OMputEndBind| |coordinate| |rightTrim| |eq?| |critM| + |evenInfiniteProduct| |interpret| |sinhIfCan| |headReduced?| + |setStatus!| |isList| |expandPower| |iiexp| |leftTrim| |saturate| + |changeName| |addmod| |besselK| |product| |endSubProgram| |signAround| + |qinterval| |semiIndiceSubResultantEuclidean| |factor1| + |jacobiIdentity?| |minimumDegree| |ignore?| |goodnessOfFit| |ParCond| + |contains?| |rCoord| |getCode| |OMputEndBVar| |write!| + |primlimitedint| |retract| |tower| |primitivePart!| |divideIfCan!| + |definingEquations| |computeBasis| |stop| |pToHdmp| |s18acf| + |orthonormalBasis| |extractBottom!| |invertible?| |basisOfLeftNucleus| + |nodes| |expandLog| |s17dgf| |gcdprim| |iiacsch| |realSolve| + |rationalPoints| |normalizeIfCan| |d01amf| |bezoutDiscriminant| + |useEisensteinCriterion| |semiResultantEuclidean1| |quickSort| + |taylorRep| |assign| |euler| |findBinding| |kmax| |perspective| + |hexDigit| |directory| |nthRootIfCan| |leadingExponent| |mix| + |inverseIntegralMatrixAtInfinity| |chiSquare| |decrease| + |countRealRoots| |continue| |iFTable| |lyndonIfCan| + |eisensteinIrreducible?| |att2Result| |diagonalMatrix| |entry?| + |cosIfCan| |getProperties| |complexNumeric| |cAcoth| |pquo| |pastel| + |distdfact| |charpol| |gcdPrimitive| |exteriorDifferential| + |extractClosed| |iiacoth| |hasHi| |clearDenominator| + |mainCoefficients| |musserTrials| |categories| |lyndon?| |f01qcf| + |generalizedEigenvectors| |associates?| |kernels| |alternative?| + |euclideanGroebner| |exprex| |retractIfCan| |setOrder| |rightUnits| + |iteratedInitials| |viewpoint| |jordanAlgebra?| |signatureAst| + |associatorDependence| |univariate| |fixedDivisor| |internal?| + |showTheFTable| |numer| |quasiComponent| |integralRepresents| + |commutator| |meshFun2Var| |divideIfCan| |extendedIntegrate| + |principalAncestors| |central?| |headRemainder| |compdegd| |denom| + |withPredicates| |printTypes| |e01sbf| |move| |sizePascalTriangle| + |null| |mightHaveRoots| |numberOfChildren| |mapExpon| + |possiblyNewVariety?| |log2| |bivariate?| |subscript| |groebnerIdeal| + |prod| |fortranInteger| |cAsin| |f02fjf| |lazyPrem| |factor| |augment| + |not| |generate| SEGMENT |bandedHessian| |pi| |byteBuffer| + |rightAlternative?| |oddintegers| |factorSquareFree| |tubeRadius| + |sqrt| |e02aef| |currentCategoryFrame| |useNagFunctions| |and| + |infinity| |continuedFraction| |rischDE| |leaf?| |cartesian| + |mainMonomial| |nextNormalPoly| |s18def| |leftNorm| |gderiv| + |incrementBy| |or| |semiDegreeSubResultantEuclidean| |showTheIFTable| + |powers| |vconcat| |maxColIndex| |prepareSubResAlgo| |hermite| + |nextPartition| |isAbsolutelyIrreducible?| |xor| |expand| |critT| + |padicallyExpand| |mainSquareFreePart| |finiteBound| |graphState| + |node| |convert| |generalizedInverse| |cCosh| |e02bcf| |ode2| + |filterWhile| |case| |kernel| |leftFactorIfCan| + |linearAssociatedOrder| |randomLC| |localReal?| |genericLeftTrace| + |bag| |e02ahf| |OMsupportsCD?| |sum| |rightGcd| |degreeSubResultant| + |rational?| |map| |Zero| |filterUntil| |draw| |expextendedint| + |hessian| |aspFilename| |irreducible?| |useSingleFactorBound?| + |comparison| |powerAssociative?| |eof?| |f02akf| + |primPartElseUnitCanonical| |One| |removeSinSq| |select| |principal?| + |critB| |members| |badValues| |definingInequation| |infinityNorm| + |OMgetEndAttr| |maxPoints3D| |geometric| |port| |OMputEndApp| + |padicFraction| |power| |mkcomm| |socf2socdf| |inRadical?| |inR?| + |generators| |virtualDegree| |balancedBinaryTree| |lp| |rootSplit| + |stopTableGcd!| |groebnerFactorize| |solveLinearlyOverQ| |bitCoef| + |stiffnessAndStabilityOfODEIF| |leftUnits| |pointColor| |makeObject| + |plenaryPower| |t| |brillhartTrials| |mkAnswer| |fillPascalTriangle| + |maxint| |redPol| |setFieldInfo| |assert| |measure2Result| |ricDsolve| + |totalDifferential| |normalized?| |rightPower| |bumptab1| |iomode| + |lllp| |OMbindTCP| |mainMonomials| |midpoints| |exactQuotient!| + |bracket| |elt| |rst| |coef| |permutations| |purelyTranscendental?| + |hdmpToP| |discriminant| |splitSquarefree| |cup| |iicos| |readable?| + |makeRecord| |tanQ| |kroneckerDelta| LODO2FUN |brillhartIrreducible?| + |monomRDEsys| |rarrow| |genus| |leftTraceMatrix| |romberg| + |setLabelValue| |component| |squareMatrix| |irreducibleFactors| + |nextColeman| |split| |failed?| |compose| |formula| |coerceImages| + |lhs| |list?| |OMgetApp| |LiePolyIfCan| |atoms| |nullSpace| + |systemCommand| |child| |mainDefiningPolynomial| |outputForm| + |Frobenius| |rhs| |smith| |createZechTable| |resultantnaif| + |screenResolution| |lex| |tube| |fill!| |even?| |lowerCase!| + |operator| |palgextint| |radicalRoots| |linearMatrix| + |lazyPseudoDivide| |primitive?| |OMencodingSGML| |row| |s17ajf| + |depth| |capacity| |limitedint| |cCoth| |UP2ifCan| |LyndonCoordinates| + |compiledFunction| |normal| |equation| |multMonom| |imagE| |nrows| + |less?| |style| |ScanArabic| |semiResultantReduitEuclidean| |pushup| + |key| |transcendent?| |OMmakeConn| |lprop| |setPrologue!| + |unaryFunction| |ncols| |polyRicDE| |minGbasis| |quasiRegular| + |c05pbf| |nextsubResultant2| |light| |rightZero| |laurentIfCan| + |symmetricTensors| |iisqrt3| |filename| |po| |f01brf| + |selectMultiDimensionalRoutines| |nextItem| |printHeader| + |getConstant| |minIndex| |code| |constantIfCan| |number?| + |singularitiesOf| |makeResult| |not?| |nonQsign| |rotate| + |bubbleSort!| |truncate| |quasiAlgebraicSet| |localUnquote| + |squareFreePolynomial| |univcase| |radicalOfLeftTraceForm| |arbitrary| + |irreducibleFactor| |deleteProperty!| |coord| |nextsousResultant2| + |parse| |lift| |BumInSepFFE| |rightUnit| + |genericLeftMinimalPolynomial| |coHeight| |dioSolve| |e01bgf| + |interval| |normalize| |splitLinear| |myDegree| |reduce| |bounds| + |outputMeasure| |triangularSystems| |submod| |matrixGcd| + |setScreenResolution3D| |coercePreimagesImages| |divide| + |removeCoshSq| |setPredicates| |monicDecomposeIfCan| |singular?| + |removeZeroes| |lazyPseudoRemainder| |repeatUntilLoop| + |inverseColeman| |d01alf| |sturmVariationsOf| |padecf| |dmp2rfi| + |loadNativeModule| |expenseOfEvaluation| |parabolicCylindrical| + |prime?| |numberOfOperations| |hspace| |getlo| |reduction| |cTan| + |expr| |antisymmetricTensors| |addPoint| |totalLex| |mainExpression| + |iifact| |rightTrace| |setAttributeButtonStep| + |semiResultantEuclidean2| |antiCommutative?| |unknown| |invertIfCan| + |opeval| |factorials| |makeop| |real| |leastPower| |realEigenvectors| + |hostPlatform| |OMgetEndObject| |OMgetAtp| |findConstructor| |zCoord| + |problemPoints| |selectSumOfSquaresRoutines| |imag| |d03faf| + |eigenvector| |rubiksGroup| |OMencodingUnknown| |kind| |notOperand| + |trace2PowMod| |polygamma| |leftUnit| |abs| |directProduct| |sqfree| + |leaves| |readBytes!| |radicalEigenvectors| |equiv| |range| |op| + |variable| |drawCurves| |palgLODE0| |pseudoDivide| |rank| |init| + |bitTruth| |ode1| |linears| |f02adf| |ef2edf| |basisOfLeftAnnihilator| + |iterators| |qqq| |integralAtInfinity?| |fortranReal| |brace| + |harmonic| |e02dff| |substring?| + |removeRoughlyRedundantFactorsInContents| |part?| |basicSet| + |partialDenominators| |Nul| |normalDenom| |dualSignature| |getOrder| + |destruct| |f04mbf| |frst| |ReduceOrder| |intersect| |iiacos| + |iiacosh| |predicates| |setMaxPoints| |index| |s15aef| |entry| + |s17dhf| |suffix?| |makingStats?| |seriesSolve| |escape| + |subResultantsChain| |Hausdorff| |complexNumericIfCan| |atanIfCan| + |ranges| |droot| |iiabs| |setScreenResolution| |FormatRoman| + |toseSquareFreePart| |setEpilogue!| |startTableGcd!| |closedCurve?| + |currentEnv| |writeUInt8!| |push| |e02akf| |prefix?| |more?| + |constantOperator| |union| |makeSin| |showIntensityFunctions| |pair| + |parametersOf| |monomial| |OMgetSymbol| |OMputEndError| |inverse| + |monomRDE| |solid?| |readIfCan!| |lists| |multivariate| + |createGenericMatrix| |nothing| |OMputApp| |univariateSolve| + |weighted| |algintegrate| |axes| |leftMinimalPolynomial| + |genericLeftTraceForm| |variables| |crest| |cylindrical| |simplify| + |setOfMinN| |outputFloating| |cyclicEqual?| |digit| |leftFactor| + |outputAsFortran| |cotIfCan| |semicolonSeparate| |shiftLeft| |value| + |stronglyReduced?| |elliptic| |laplace| |outputAsScript| |times!| + |monicDivide| |limit| |integerIfCan| |euclideanSize| |cosh2sech| + |points| |iibinom| |randomR| |pdf2ef| |pointData| |particularSolution| + |top| |infix?| |iiasec| |getRef| |messagePrint| |setright!| |f2df| + |algDsolve| |setprevious!| |supRittWu?| |mask| |innerSolve| + |laplacian| |deepCopy| |zeroSquareMatrix| |rational| |taylor| + |ratDsolve| |chainSubResultants| |quoByVar| |resetAttributeButtons| + |setErrorBound| |getOperator| |parts| |laurent| |oneDimensionalArray| + |setProperty| |initializeGroupForWordProblem| |resetBadValues| + |leftCharacteristicPolynomial| |elements| |multiEuclideanTree| + |drawComplex| |constant| |puiseux| |fi2df| |printInfo| |ratDenom| + |firstSubsetGray| |var2StepsDefault| |sn| |hasPredicate?| |nthFlag| + |lazyPquo| |monomialIntegrate| |palgRDE0| |seed| + |exprHasWeightCosWXorSinWX| |adaptive3D?| |complexForm| + |doubleComplex?| |addPointLast| |inv| |viewZoomDefault| + |rangeIsFinite| |autoReduced?| |mulmod| |s13adf| |OMUnknownCD?| + |tanhIfCan| |ground?| UTS2UP |pdf2df| |primaryDecomp| + |highCommonTerms| |taylorQuoByVar| |radPoly| |cRationalPower| + |inputOutputBinaryFile| |remove!| |ground| |listYoungTableaus| + |generalizedContinuumHypothesisAssumed| |fullPartialFraction| + |fprindINFO| |numerator| |leftScalarTimes!| |outlineRender| |inrootof| + |initiallyReduce| |leadingMonomial| |diagonal?| |numberOfFactors| + |superscript| |generateIrredPoly| |stFuncN| |quoted?| |midpoint| + |realRoots| |extractPoint| |leadingCoefficient| + |factorsOfCyclicGroupSize| |rules| |compound?| |viewPhiDefault| + |simpleBounds?| |algSplitSimple| |status| |indicialEquations| + |changeMeasure| |besselY| |prologue| |tableau| |primitiveMonomials| + |leadingCoefficientRicDE| |selectPolynomials| |resultant| |iicosh| + |HenselLift| |operation| |setLegalFortranSourceExtensions| + |radicalSolve| |solveLinearPolynomialEquation| |cycleTail| + |tubePoints| |reductum| |tableForDiscreteLogarithm| |rootPoly| + |constantKernel| |connectTo| |subspace| |duplicates| + |extendedSubResultantGcd| |size?| |factors| + |semiResultantEuclideannaif| |host| |modularFactor| + |solveLinearPolynomialEquationByFractions| |omError| + |toseLastSubResultant| |squareTop| |nthFactor| |clip| |sort!| + |LazardQuotient| |sylvesterMatrix| |erf| |f01rdf| |cot2trig| + |solveRetract| |slex| |symbolTable| |charthRoot| |mainVariable?| + |deepExpand| |lyndon| |allRootsOf| |weights| |basisOfNucleus| + |var2Steps| |alphabetic?| |pole?| |trailingCoefficient| + |semiLastSubResultantEuclidean| |isConnected?| |monic?| |binomThmExpt| + |localAbs| |makeTerm| |curry| |indicialEquation| |symmetricPower| + |is?| |nonLinearPart| |viewThetaDefault| |zerosOf| |mapExponents| + |s19acf| |hconcat| |roughBasicSet| |fullDisplay| + |numberOfComputedEntries| |d01asf| |readByte!| |setchildren!| + |select!| |powern| |getGoodPrime| |LagrangeInterpolation| |intChoose| + |ptree| |makeViewport2D| |acoshIfCan| |initials| |figureUnits| |front| + |cyclic| |inc| |rewriteSetByReducingWithParticularGenerators| + |tubePlot| |quote| |cyclePartition| + |rewriteIdealWithQuasiMonicGenerators| |df2mf| |multiplyCoefficients| + |aQuartic| |explicitlyFinite?| |iiacsc| |mat| |entries| |rur| + |writable?| |jacobi| |quotientByP| |selectPDERoutines| |leftTrace| + |readUInt8!| |top!| |subscriptedVariables| |rightFactorCandidate| + |cCot| |indiceSubResultant| |solid| |shiftRoots| |factorGroebnerBasis| + |roman| |concat| |newReduc| |setButtonValue| |c05adf| |zeroVector| + |prime| |f04asf| |s17dcf| |elliptic?| |groebgen| |computeCycleEntry| + |e02zaf| |connect| |d01gbf| |tanSum| |ldf2vmf| |binomial| + |oblateSpheroidal| |writeInt8!| |trunc| |useEisensteinCriterion?| + |pushNewContour| |mainKernel| |rightCharacteristicPolynomial| + |iterationVar| |merge!| |uncouplingMatrices| |groebSolve| + |OMunhandledSymbol| |s20acf| |updateStatus!| |overlap| |commaSeparate| + |rroot| |tanh2coth| |solveLinearPolynomialEquationByRecursion| + |stripCommentsAndBlanks| |normal?| |trapezoidal| |bernoulli| + |appendPoint| |c05nbf| |reciprocalPolynomial| |bernoulliB| |lepol| + |lastSubResultant| |nthr| |pushdown| |fixedPointExquo| |bipolar| + |gcdcofactprim| |shallowExpand| |symbolIfCan| |pseudoQuotient| + |reverse!| |optimize| |setnext!| |writeBytes!| |simplifyLog| + |factorList| |idealiser| |integralDerivationMatrix| |asechIfCan| + |uniform| |head| |signature| |isPlus| |shanksDiscLogAlgorithm| + |quasiMonic?| |sayLength| |bitLength| |infieldint| + |stoseInternalLastSubResultant| |enterInCache| |decompose| |f07fef| + |closedCurve| |argscript| |bindings| |iiatanh| |meshPar1Var| |f01qef| + |extendedint| |setvalue!| |s14baf| |rdregime| |makeGraphImage| + |d01ajf| |universe| |f04faf| |listexp| |OMgetInteger| + |constantToUnaryFunction| |s18aef| |byte| |iicsc| + |intermediateResultsIF| |reducedSystem| |acothIfCan| |subPolSet?| + |digit?| |cAsinh| |mainValue| |linSolve| |mvar| |OMgetString| + |recolor| |insertionSort!| |f01ref| |child?| |delete| |inspect| + |mainVariables| |iidsum| |innerSolve1| |mkIntegral| |moebius| + |medialSet| |pdct| |clearTheSymbolTable| |functionIsFracPolynomial?| + |e04jaf| |ksec| |mindegTerm| GF2FG |realElementary| + |listConjugateBases| |trueEqual| |cfirst| |cap| |removeCosSq| + |preprocess| |subresultantVector| |functionIsOscillatory| |OMclose| + |matrixDimensions| |conjug| |totolex| |rowEchLocal| |getIdentifier| + |integralBasisAtInfinity| |e04dgf| |modulus| |llprop| |denominators| + |complexIntegrate| |infieldIntegrate| |denomRicDE| |s21bbf| |curve?| + |computeCycleLength| |close!| |point?| |abelianGroup| |showAll?| + |exquo| |infRittWu?| |reopen!| |conjugates| |overlabel| + |inGroundField?| |point| |createPrimitivePoly| + |stosePrepareSubResAlgo| |pop!| |separate| |rombergo| |insertMatch| + |trigs| |simpsono| |probablyZeroDim?| |fortranCharacter| |rk4f| + |OMlistCDs| |showTheSymbolTable| |div| |normalForm| |innerint| + |removeConstantTerm| |polarCoordinates| |algint| |presub| + |SturmHabicht| FG2F |f02aef| |datalist| |cond| |palgextint0| + |createMultiplicationMatrix| |palgRDE| |rightRegularRepresentation| + |stopTable!| |series| |chineseRemainder| |showClipRegion| + |setTopPredicate| |polygon?| |quo| |getBadValues| |setPosition| + |s17aff| |s15adf| |legendre| |companionBlocks| |closeComponent| + |iiperm| |redmat| |whatInfinity| |genericRightMinimalPolynomial| + |orOperands| |explicitEntries?| |mdeg| |backOldPos| |qPot| |prevPrime| + |equivOperands| |parent| |zeroOf| |distribute| |mergeFactors| + |identityMatrix| |genericRightNorm| |satisfy?| |copyInto!| + |wordInGenerators| |parabolic| |box| |lazyVariations| + |certainlySubVariety?| |rootSimp| |lastSubResultantElseSplit| |min| + |complement| |numberOfFractionalTerms| |real?| |s17dlf| |expIfCan| + |rem| |cSin| |eigenMatrix| |tab| |s01eaf| |unrankImproperPartitions0| + |multinomial| |log10| |option?| |exprToXXP| |palglimint| |positive?| + |precision| |radix| |lieAdmissible?| |heap| |partition| + |rectangularMatrix| |li| |bitand| |s20adf| |SturmHabichtCoefficients| + |ratPoly| |nextPrimitiveNormalPoly| |chvar| |leadingTerm| + |factorPolynomial| |stopTableInvSet!| |fintegrate| |bitior| + |createPrimitiveNormalPoly| |leftExactQuotient| |fglmIfCan| + |tensorProduct| |increment| |super| |countable?| |imaginary| + |tablePow| |symmetric?| |cAcos| |odd?| |normalizeAtInfinity| + |restorePrecision| |pade| |empty| |torsionIfCan| |acosIfCan| |every?| + |notelem| |hyperelliptic| |squareFreeFactors| |UnVectorise| + |stoseInvertibleSet| |imagK| |printStatement| + |wordsForStrongGenerators| |fractionFreeGauss!| |extractSplittingLeaf| + |iCompose| |subCase?| |OMputError| |algebraic?| |numerators| + |diagonal| |initTable!| |unit?| |OMgetVariable| |rename| |addiag| + |cTanh| |contract| |zag| |plotPolar| |merge| |fortranDoubleComplex| + |normalizedAssociate| |showFortranOutputStack| |mathieu12| |f02aff| Y + |tanAn| |complexNormalize| |iiacot| |octon| |f02ajf| |npcoef| + |pleskenSplit| |normalDeriv| |aromberg| |minPoly| |rquo| + |primintfldpoly| |halfExtendedSubResultantGcd1| |gbasis| + |indicialEquationAtInfinity| |complex?| |mainCharacterization| + |triangulate| |drawToScale| |coerceS| F |index?| + |linearDependenceOverZ| |sin?| |finiteBasis| |primintegrate| + |skewSFunction| |in?| |debug| |yCoord| |unvectorise| + |balancedFactorisation| |getStream| |reducedContinuedFraction| + |squareFree| |lazyResidueClass| |dark| |mainPrimitivePart| D + |logGamma| |internalZeroSetSplit| |zero| |newLine| |leftExtendedGcd| + |rightOne| |internalIntegrate| |test| |multiple?| |factorial| + |var1Steps| |reducedForm| |printStats!| |cAsec| |complexLimit| |any| + |dflist| |identification| |e04gcf| |pointColorPalette| |ocf2ocdf| + |And| |OMencodingXML| |characteristicSerie| |implies| |acotIfCan| + |zoom| |argument| |mathieu22| |OMgetEndError| |coshIfCan| + |eigenvalues| |Or| |null?| |low| |concat!| |prefix| |d01apf| + |Vectorise| |unexpand| |divisorCascade| |shallowCopy| |Not| + |sumSquares| |order| |getVariableOrder| |resetVariableOrder| + |OMsupportsSymbol?| |taylorIfCan| |transcendenceDegree| |expintegrate| + |karatsubaOnce| |readUInt32!| |interpolate| |symbol?| |chebyshevU| + |splitDenominator| |schwerpunkt| |stoseInvertibleSetsqfreg| ** + |makeUnit| |s18dcf| |minimumExponent| |numberOfComponents| |df2st| + |ellipticCylindrical| |e02bbf| |mapUnivariateIfCan| |green| |e01bef| + |antisymmetric?| |unparse| |generalInfiniteProduct| |queue| |lo| + |completeHermite| |principalIdeal| |lazyIrreducibleFactors| + |denomLODE| |high| |e02daf| |internalAugment| |constantOpIfCan| + |f04arf| |ord| |inverseIntegralMatrix| |nextIrreduciblePoly| + |reduceLODE| |incr| EQ |credPol| |predicate| |root?| |print| |dim| + |dihedral| |ScanRoman| |combineFeatureCompatibility| |lieAlgebra?| + |rootDirectory| |module| |resolve| |minus!| |printInfo!| + |perfectSquare?| |numberOfImproperPartitions| |maximumExponent| + |typeList| |divisors| |zeroSetSplit| |extend| |iprint| |double?| + |characteristicSet| |increasePrecision| |s17aef| + |ScanFloatIgnoreSpaces| |diagonalProduct| |mapUnivariate| + |binaryFunction| |binary| |d03edf| |scalarTypeOf| |rightFactorIfCan| + |f02agf| |OMsetEncoding| |airyBi| |revert| |removeRedundantFactors| + |stFunc1| |intensity| |s21bcf| |beauzamyBound| |approxNthRoot| + |cschIfCan| |getPickedPoints| |shellSort| |subNode?| |name| + |zeroDimPrimary?| |recur| |readInt16!| |vedf2vef| |topPredicate| + |viewDefaults| |sizeMultiplication| |ridHack1| |d01anf| + |makeViewport3D| |body| |rk4qc| |findCycle| |modularGcd| |shufflein| + |invmod| |seriesToOutputForm| |weakBiRank| |choosemon| |exp| + |category| |nonSingularModel| |setMaxPoints3D| |ffactor| |polyRDE| + |flexibleArray| |term| |makeVariable| |laurentRep| + |irreducibleRepresentation| |completeEchelonBasis| ~ |domain| + |addMatchRestricted| |drawStyle| |ddFact| |gcdPolynomial| |psolve| + |parameters| |inf| |f02xef| |definingPolynomial| |sparsityIF| + |cothIfCan| |alphabetic| |package| |leadingSupport| |insert| |diff| + |RemainderList| |antiCommutator| |recip| |wholePart| |getCurve| + |numericIfCan| |semiSubResultantGcdEuclidean2| |open| |identity| + |firstNumer| |center| |acscIfCan| |graphStates| |zero?| |paraboloidal| + |sinh2csch| |normFactors| |length| |iisec| |implies?| |copies| + |makeMulti| |fortran| |characteristicPolynomial| + |numericalOptimization| |doubleDisc| |hasTopPredicate?| |OMcloseConn| + |hi| |laguerre| |scripts| |readInt8!| |c06ecf| |second| |integers| + |birth| |partitions| |localIntegralBasis| |loopPoints| |e02dcf| + |duplicates?| |lquo| |dn| |untab| |third| |discriminantEuclidean| + |showArrayValues| |trigs2explogs| |chiSquare1| |integralCoordinates| + |curve| |getButtonValue| |adaptive| |rightRankPolynomial| |OMputFloat| + |operations| |c06gcf| |OMputInteger| |f02axf| |rootOf| |shift| + |univariatePolynomials| |maxrank| |cSech| |infiniteProduct| + |lfintegrate| |endOfFile?| RF2UTS |quasiRegular?| |testDim| + |errorKind| |sumOfDivisors| |deref| |bandedJacobian| + |screenResolution3D| |outputAsTex| |cot2tan| |objectOf| |exprToUPS| + |boundOfCauchy| |quadraticForm| |extendIfCan| |exp1| |perfectNthRoot| + |modifyPoint| |reorder| |checkRur| |c06ebf| |normal01| |arrayStack| + |genericRightDiscriminant| |clipBoolean| |quotient| |composites| + |squareFreeLexTriangular| |transpose| |LyndonWordsList1| |property| + |edf2efi| |HermiteIntegrate| |back| |fortranTypeOf| |integralMatrix| + |clearCache| |inconsistent?| |rationalApproximation| |blue| + |setImagSteps| |internalSubQuasiComponent?| |structuralConstants| + |SturmHabichtMultiple| |singleFactorBound| |hMonic| |rowEchelonLocal| + |quadratic?| |lcm| |expPot| |zeroDimensional?| |updatF| + |dihedralGroup| |meshPar2Var| |c06gsf| |setleaves!| |subNodeOf?| + |getMultiplicationTable| |sorted?| |logpart| |Ci| |components| + |relativeApprox| |units| |minset| |quotedOperators| |e01daf| + |integer?| |dimension| |unknownEndian| |stack| |append| |setPoly| + |read!| |d01bbf| |sumOfSquares| |s14aaf| |extendedResultant| + |selectOptimizationRoutines| |pointPlot| |nativeModuleExtension| + |critBonD| |littleEndian| |gcd| |componentUpperBound| |getProperty| + |f01mcf| |monicLeftDivide| |moduloP| |pomopo!| |comp| |primes| + |script| |relerror| |setref| |rightRank| |traceMatrix| |initial| + |false| |frobenius| |sechIfCan| |laguerreL| |compactFraction| + |bigEndian| |addMatch| |evenlambert| |tubeRadiusDefault| |nand| + |latex| |df2ef| |eigenvectors| |rk4| |collectUpper| |changeBase| + |hypergeometric0F1| |cPower| |flagFactor| |OMreadStr| + |lastSubResultantEuclidean| |lineColorDefault| |uniform01| + |linkToFortran| |s13aaf| |readLine!| |atrapezoidal| |plot| |ODESolve| + |unprotectedRemoveRedundantFactors| |tex| |leftRankPolynomial| UP2UTS + |d03eef| |f02aaf| |linear| |rowEch| |areEquivalent?| |e02ddf| + |OMconnInDevice| |conical| |anfactor| |decimal| |generic?| + |subQuasiComponent?| |#| |wholeRagits| |polCase| |pair?| + |normalizedDivide| |OMgetBVar| |doubleResultant| |extractIndex| |xn| + |pmComplexintegrate| |univariate?| |polynomial| + |unrankImproperPartitions1| |rightExtendedGcd| |coleman| |makeCrit| + |OMgetType| |plusInfinity| |moduleSum| |supersub| |scaleRoots| |pack!| + |fibonacci| |dom| |rationalPoint?| |parseString| |hermiteH| + |PollardSmallFactor| |float?| |minusInfinity| |moreAlgebraic?| + |getOperands| |specialTrigs| |adaptive?| |f04qaf| |multiEuclidean| + |ref| |henselFact| |ratpart| |permutationGroup| |toroidal| + |computePowers| |minColIndex| |list| |incrementKthElement| |stirling1| + |solveLinear| |qroot| |equiv?| |LiePoly| |newSubProgram| |returns| + |numberOfNormalPoly| |expandTrigProducts| |car| |numFunEvals3D| + |primextendedint| |viewDeltaXDefault| |leastAffineMultiple| + |linearPolynomials| |iisinh| |makeprod| |packageCall| + |semiSubResultantGcdEuclidean1| |poisson| |cdr| |symbol| |pr2dmp| + |s19abf| |d02bhf| |extendedEuclidean| |minPol| |printCode| |Lazard| + |setDifference| |aQuadratic| |startStats!| |expression| + |firstUncouplingMatrix| |csubst| |startTableInvSet!| |shrinkable| + |f02awf| |f04adf| |setrest!| |polygon| |title| |iiasech| + |setIntersection| |upperCase| |integrate| |options| |upperCase!| + |integer| |createNormalPrimitivePoly| |PDESolve| |inHallBasis?| + |algebraicDecompose| |pureLex| |colorDef| |leftRank| |rule| + |factorAndSplit| |representationType| |setUnion| |sin2csc| |e02def| + |elementary| |say| |c06frf| |simpson| |thenBranch| |returnType!| + |type| |qfactor| |normalElement| |subResultantGcd| |OMgetEndBVar| + |apply| |polar| |e| |shiftRight| |FormatArabic| |froot| F2FG |isTimes| + |belong?| |selectfirst| |string| |rightQuotient| |RittWuCompare| + |setelt!| |iilog| |OMwrite| |stFunc2| |summation| |hcrf| + |differentialVariables| |rewriteIdealWithRemainder| + |scanOneDimSubspaces| |purelyAlgebraicLeadingMonomial?| |size| + |degreeSubResultantEuclidean| |curveColor| |cycleEntry| + |toseInvertible?| |quadratic| |extract!| |empty?| |horizConcat| + |tan2trig| |leader| |imports| |mindeg| |constructor| + |rightMinimalPolynomial| |invertibleSet| |createMultiplicationTable| + |controlPanel| |exprHasLogarithmicWeights| |sncndn| |e01sef| |subSet| + |lagrange| |resize| |polyPart| |fixedPoints| |imagj| |aCubic| + |antiAssociative?| |s17akf| |getExplanations| |viewPosDefault| |first| + |cLog| |diag| |void| |reset| |f01bsf| |patternMatch| |hue| |epilogue| + |power!| |repeating| |rest| |norm| |c06ekf| |An| |round| |reflect| + |monicRightFactorIfCan| |sub| |meatAxe| |stiffnessAndStabilityFactor| + |substitute| |normInvertible?| |operators| |f04mcf| |numeric| |write| + |s17adf| |cycleRagits| |approximants| |exists?| + |dimensionOfIrreducibleRepresentation| |removeDuplicates| + |decreasePrecision| |integralBasis| |variationOfParameters| |fmecg| + |save| |radical| |palgint| |showAllElements| |monomialIntPoly| + |modifyPointData| |clipSurface| |linearDependence| |d02cjf| |one?| + |sPol| |iicsch| |rightNorm| |adjoint| |fortranCarriageReturn| |se2rfi| + |bipolarCylindrical| |width| |call| |coerceL| |curryLeft| + |karatsubaDivide| |repSq| |mpsode| |OMconnOutDevice| |lifting| + |overset?| |scalarMatrix| |newTypeLists| |insertBottom!| |determinant| + |symmetricProduct| |lllip| |lighting| |createLowComplexityTable| + |root| |triangular?| |linearPart| |leftRecip| |halfExtendedResultant1| + |lazy?| |mathieu24| |maxIndex| |leftRemainder| |divideExponents| + |charClass| |cyclotomicFactorization| |lfunc| |rotate!| + |numberOfVariables| |setFormula!| |varselect| |setAdaptive3D| + |isobaric?| |dec| |iflist2Result| |acschIfCan| |kovacic| + |functionIsContinuousAtEndPoints| |nextSubsetGray| |binarySearchTree| + |prinb| |e02baf| |setValue!| |squareFreePrim| |cAcosh| |dimensionsOf| + |rootProduct| |iiasinh| |flatten| |vertConcat| |setlast!| |dictionary| + |directSum| |hdmpToDmp| |fracPart| |gradient| |primlimintfrac| + |decomposeFunc| |baseRDEsys| |nthFractionalTerm| |divisor| + |insertTop!| |noncommutativeJordanAlgebra?| |optional| |sts2stst| + |checkForZero| |shade| |primextintfrac| |showRegion| |imagI| + |rationalIfCan| |spherical| |leftQuotient| |complexExpand| + |KrullNumber| |regularRepresentation| |approxSqrt| |hclf| |sh| + |secIfCan| |asimpson| |monomial?| |pointSizeDefault| |twist| |build| + |numFunEvals| |repeating?| |clipWithRanges| |readUInt16!| |rename!| + |Beta| |getSyntaxFormsFromFile| |interpretString| |chebyshevT| + |palgintegrate| |evaluate| |validExponential| |writeLine!| + |represents| |deepestInitial| |constantLeft| |create3Space| + |minimalPolynomial| |separant| |setCondition!| |fortranCompilerName| + |physicalLength!| |contractSolve| |mainForm| |reduceByQuasiMonic| + |calcRanges| |tan2cot| |GospersMethod| |cyclotomic| |interReduce| + |pascalTriangle| |createLowComplexityNormalBasis| + |useSingleFactorBound| |complexEigenvalues| |enqueue!| |pattern| + |wronskianMatrix| |createRandomElement| |hasSolution?| |dAndcExp| + |partialFraction| |removeSuperfluousQuasiComponents| |genericPosition| + |removeRedundantFactorsInPols| |paren| |nodeOf?| |internalSubPolSet?| + |sinhcosh| |permutation| |generalizedContinuumHypothesisAssumed?| + |derivationCoordinates| |typeLists| |iidprod| |minordet| + |identitySquareMatrix| |rightMult| |tryFunctionalDecomposition?| + |c06gbf| |outerProduct| |viewDeltaYDefault| |iipow| |radicalSimplify| + |generalizedEigenvector| |nary?| |besselI| |f01rcf| |reduced?| + |lexTriangular| |OMputBind| |varList| |insertRoot!| |bright| + |putColorInfo| |enumerate| |s21baf| |iitan| |df2fi| |overbar| + |message| |clikeUniv| |swapColumns!| |removeDuplicates!| + |rightRemainder| |minimize| |expt| |lfextendedint| |completeEval| + |minPoints| |leftAlternative?| |LowTriBddDenomInv| |palginfieldint| + |bat1| |lowerCase?| |leadingIdeal| |constant?| |OMreceive| |e04ycf| + |bsolve| NOT |f04jgf| |readLineIfCan!| |mathieu23| |strongGenerators| + |movedPoints| |nextPrimitivePoly| |pointColorDefault| |vectorise| + |rationalPower| OR |invmultisect| |optional?| |selectODEIVPRoutines| + |variable?| |transcendentalDecompose| |matrix| + |wordInStrongGenerators| |janko2| |symFunc| |branchPointAtInfinity?| + |powerSum| |neglist| AND |reducedQPowers| |distFact| + |getMultiplicationMatrix| |viewWriteAvailable| |mantissa| |reverseLex| + |s18adf| |stronglyReduce| |copy!| |doublyTransitive?| |headReduce| + |quadraticNorm| |f04axf| |groebner| |alternatingGroup| + |OMencodingBinary| |solveInField| |cons| |rationalFunction| + |algebraicOf| |binaryTree| |yCoordinates| |showScalarValues| + |rowEchelon| |d02gbf| |distance| |string?| |edf2fi| |asinhIfCan| + |linearlyDependentOverZ?| |error| |ramifiedAtInfinity?| |moebiusMu| + |BasicMethod| |isOpen?| |region| |standardBasisOfCyclicSubmodule| + |setTex!| |flexible?| |mathieu11| |isExpt| |modTree| |OMputObject| + |rootRadius| |e01baf| |rootOfIrreduciblePoly| |dot| |arguments| + |exponential| |partialNumerators| |numberOfMonomials| |wreath| + |morphism| |mainContent| |sortConstraints| |normDeriv2| |dfRange| + |palglimint0| |vector| |mr| |csc2sin| |gethi| |nullary| |double| + |halfExtendedSubResultantGcd2| |leftDiscriminant| |eulerPhi| |digits| + |sec2cos| |s13acf| |csch2sinh| |reify| |safeCeiling| + |currentSubProgram| |f01qdf| |rotatez| |explicitlyEmpty?| + |genericLeftDiscriminant| |quartic| |modularGcdPrimitive| |youngGroup| + |basisOfRightAnnihilator| |realEigenvalues| |logical?| |source| + |mapdiv| |subst| |transform| |retractable?| |s19adf| |listOfLists| + |makeFloatFunction| |setStatus| |plus| |space| |c06fqf| |s19aaf| + |OMopenFile| |rootsOf| |simplifyPower| * |separateFactors| |imagk| + |subset?| |nlde| |inverseLaplace| |conditionsForIdempotents| |vspace| + |rightRecip| |separateDegrees| |idealSimplify| |makeFR| |extractIfCan| + |critpOrder| |bivariateSLPEBR| |s17def| |rischNormalize| |f02bbf| + |selectNonFiniteRoutines| |bfKeys| |linearAssociatedExp| |degree| + |getDatabase| |argumentListOf| |usingTable?| |pushuconst| |permanent| + |key?| |outputSpacing| |setColumn!| |maxdeg| |homogeneous?| + |setClipValue| |times| |associatedSystem| |redPo| |physicalLength| + |target| |argumentList!| |declare!| |vark| |isQuotient| + |lowerPolynomial| |prem| |setleft!| |createIrreduciblePoly| |collect| + |gramschmidt| |ceiling| |legendreP| |headAst| |initiallyReduced?| + |e04mbf| |eulerE| |e02agf| |objects| |differentiate| |find| |e01bhf| + |multisect| |quasiMonicPolynomials| |expintfldpoly| |nthExpon| + |lazyIntegrate| |tab1| |base| |realZeros| |drawComplexVectorField| + |setProperty!| |fractionPart| |leastMonomial| |fractRadix| + |integralMatrixAtInfinity| |f01maf| |rightTraceMatrix| + |roughEqualIdeals?| |monom| |unitCanonical| |multiset| |cycles| + |cyclicCopy| |lazyPremWithDefault| |leadingIndex| |tanh2trigh| + |unravel| |categoryFrame| |exprToGenUPS| |blankSeparate| + |mainVariable| |minPoints3D| |height| |unitsColorDefault| + |OMgetEndBind| |sample| |iiasin| |OMgetEndAtp| |OMread| |tanIfCan| + |failed| |removeSquaresIfCan| |ravel| |groebner?| + |ScanFloatIgnoreSpacesIfCan| |countRealRootsMultiple| |listBranches| + |lazyGintegrate| |airyAi| |addPoint2| |common| |zeroMatrix| |reshape| + |recoverAfterFail| |children| |presuper| |segment| |alternating| + |leftDivide| |generic| |scripted?| |hexDigit?| |splitConstant| |tree| + |d02raf| |dmpToP| |userOrdered?| |besselJ| |ipow| |polynomialZeros| + |elseBranch| |OMputSymbol| |clipParametric| |singRicDE| |declare| + |algebraicCoefficients?| |convergents| |generalTwoFactor| + |impliesOperands| |char| |createPrimitiveElement| |clearTheFTable| + |mappingAst| |OMlistSymbols| |setRealSteps| |stopMusserTrials| + |pushdterm| |OMUnknownSymbol?| |e02bef| |qelt| + |numberOfIrreduciblePoly| |tryFunctionalDecomposition| |cycle| + |B1solve| |isMult| |over| |qsetelt| |linearlyDependent?| |tail| + |genericRightTraceForm| |linear?| |character?| |f07aef| |palgLODE| + |prefixRagits| |orbit| |fixPredicate| |swapRows!| |jacobian| |xRange| + |symmetricDifference| |basis| |update| |OMgetFloat| |indices| + |coefficient| |leviCivitaSymbol| |traverse| |exQuo| |positiveSolve| + |yRange| |push!| |LyndonBasis| |setRow!| |slash| |integerBound| + |exprHasAlgebraicWeight| |previous| |setAdaptive| |generator| |zRange| + |squareFreePart| |generalSqFr| |mirror| |sincos| |conjugate| |float| + |callForm?| |internalInfRittWu?| |OMgetObject| |extractProperty| + |map!| |scale| |stoseInvertible?sqfreg| |listLoops| |primeFactor| + |check| |superHeight| |dominantTerm| |f2st| |resultantReduit| + |qsetelt!| |setsubMatrix!| |leftOne| |pushucoef| |largest| |f07adf| + |internalDecompose| |powmod| |limitPlus| |reduceBasisAtInfinity| + |defineProperty| |makeYoungTableau| |match?| |position| + |pseudoRemainder| |just| |log| |unitNormal| |viewport3D| |OMputAttr| + |semiDiscriminantEuclidean| |sylvesterSequence| + |numberOfPrimitivePoly| |swap!| |exponentialOrder| |createNormalPoly| + |rootPower| |reverse| |any?| |e04ucf| |atanhIfCan| |lambert| + |startTable!| |nil| |infinite| |arbitraryExponent| |approximate| + |complex| |shallowMutable| |canonical| |noetherian| |central| |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index d9c2c341..fb759cd3 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,5295 +1,5299 @@ -(3194856 . 3442698085) -((-1706 (((-112) (-1 (-112) |#2| |#2|) $) 63) (((-112) $) NIL)) (-3737 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-4200 ((|#2| $ (-562) |#2|) NIL) ((|#2| $ (-1223 (-562)) |#2|) 34)) (-2673 (($ $) 59)) (-1954 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-4265 (((-562) (-1 (-112) |#2|) $) 22) (((-562) |#2| $) NIL) (((-562) |#2| $ (-562)) 73)) (-1720 (((-639 |#2|) $) 13)) (-4103 (($ (-1 (-112) |#2| |#2|) $ $) 47) (($ $ $) NIL)) (-1491 (($ (-1 |#2| |#2|) $) 29)) (-4152 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-3295 (($ |#2| $ (-562)) NIL) (($ $ $ (-562)) 50)) (-1963 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 24)) (-3008 (((-112) (-1 (-112) |#2|) $) 21)) (-2343 ((|#2| $ (-562) |#2|) NIL) ((|#2| $ (-562)) NIL) (($ $ (-1223 (-562))) 49)) (-2880 (($ $ (-562)) 56) (($ $ (-1223 (-562))) 55)) (-1723 (((-766) (-1 (-112) |#2|) $) 26) (((-766) |#2| $) NIL)) (-2694 (($ $ $ (-562)) 52)) (-4220 (($ $) 51)) (-4064 (($ (-639 |#2|)) 53)) (-2767 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-639 $)) 62)) (-4053 (((-857) $) 69)) (-2879 (((-112) (-1 (-112) |#2|) $) 20)) (-1733 (((-112) $ $) 72)) (-1761 (((-112) $ $) 75))) -(((-18 |#1| |#2|) (-10 -8 (-15 -1733 ((-112) |#1| |#1|)) (-15 -4053 ((-857) |#1|)) (-15 -1761 ((-112) |#1| |#1|)) (-15 -3737 (|#1| |#1|)) (-15 -3737 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2673 (|#1| |#1|)) (-15 -2694 (|#1| |#1| |#1| (-562))) (-15 -1706 ((-112) |#1|)) (-15 -4103 (|#1| |#1| |#1|)) (-15 -4265 ((-562) |#2| |#1| (-562))) (-15 -4265 ((-562) |#2| |#1|)) (-15 -4265 ((-562) (-1 (-112) |#2|) |#1|)) (-15 -1706 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4103 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4200 (|#2| |#1| (-1223 (-562)) |#2|)) (-15 -3295 (|#1| |#1| |#1| (-562))) (-15 -3295 (|#1| |#2| |#1| (-562))) (-15 -2880 (|#1| |#1| (-1223 (-562)))) (-15 -2880 (|#1| |#1| (-562))) (-15 -2343 (|#1| |#1| (-1223 (-562)))) (-15 -4152 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2767 (|#1| (-639 |#1|))) (-15 -2767 (|#1| |#1| |#1|)) (-15 -2767 (|#1| |#2| |#1|)) (-15 -2767 (|#1| |#1| |#2|)) (-15 -4064 (|#1| (-639 |#2|))) (-15 -1963 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1954 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1954 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1954 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2343 (|#2| |#1| (-562))) (-15 -2343 (|#2| |#1| (-562) |#2|)) (-15 -4200 (|#2| |#1| (-562) |#2|)) (-15 -1723 ((-766) |#2| |#1|)) (-15 -1720 ((-639 |#2|) |#1|)) (-15 -1723 ((-766) (-1 (-112) |#2|) |#1|)) (-15 -3008 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2879 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1491 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4152 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4220 (|#1| |#1|))) (-19 |#2|) (-1207)) (T -18)) -NIL -(-10 -8 (-15 -1733 ((-112) |#1| |#1|)) (-15 -4053 ((-857) |#1|)) (-15 -1761 ((-112) |#1| |#1|)) (-15 -3737 (|#1| |#1|)) (-15 -3737 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2673 (|#1| |#1|)) (-15 -2694 (|#1| |#1| |#1| (-562))) (-15 -1706 ((-112) |#1|)) (-15 -4103 (|#1| |#1| |#1|)) (-15 -4265 ((-562) |#2| |#1| (-562))) (-15 -4265 ((-562) |#2| |#1|)) (-15 -4265 ((-562) (-1 (-112) |#2|) |#1|)) (-15 -1706 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4103 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4200 (|#2| |#1| (-1223 (-562)) |#2|)) (-15 -3295 (|#1| |#1| |#1| (-562))) (-15 -3295 (|#1| |#2| |#1| (-562))) (-15 -2880 (|#1| |#1| (-1223 (-562)))) (-15 -2880 (|#1| |#1| (-562))) (-15 -2343 (|#1| |#1| (-1223 (-562)))) (-15 -4152 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2767 (|#1| (-639 |#1|))) (-15 -2767 (|#1| |#1| |#1|)) (-15 -2767 (|#1| |#2| |#1|)) (-15 -2767 (|#1| |#1| |#2|)) (-15 -4064 (|#1| (-639 |#2|))) (-15 -1963 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1954 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1954 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1954 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2343 (|#2| |#1| (-562))) (-15 -2343 (|#2| |#1| (-562) |#2|)) (-15 -4200 (|#2| |#1| (-562) |#2|)) (-15 -1723 ((-766) |#2| |#1|)) (-15 -1720 ((-639 |#2|) |#1|)) (-15 -1723 ((-766) (-1 (-112) |#2|) |#1|)) (-15 -3008 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2879 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1491 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4152 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4220 (|#1| |#1|))) -((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-3655 (((-1261) $ (-562) (-562)) 40 (|has| $ (-6 -4404)))) (-1706 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-845)))) (-3737 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4404))) (($ $) 88 (-12 (|has| |#1| (-845)) (|has| $ (-6 -4404))))) (-1395 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-845)))) (-3735 (((-112) $ (-766)) 8)) (-4200 ((|#1| $ (-562) |#1|) 52 (|has| $ (-6 -4404))) ((|#1| $ (-1223 (-562)) |#1|) 58 (|has| $ (-6 -4404)))) (-3556 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4403)))) (-3329 (($) 7 T CONST)) (-2673 (($ $) 90 (|has| $ (-6 -4404)))) (-2676 (($ $) 100)) (-1459 (($ $) 78 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1475 (($ |#1| $) 77 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4403)))) (-1954 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4403)))) (-1507 ((|#1| $ (-562) |#1|) 53 (|has| $ (-6 -4404)))) (-1420 ((|#1| $ (-562)) 51)) (-4265 (((-562) (-1 (-112) |#1|) $) 97) (((-562) |#1| $) 96 (|has| |#1| (-1092))) (((-562) |#1| $ (-562)) 95 (|has| |#1| (-1092)))) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4403)))) (-1458 (($ (-766) |#1|) 69)) (-4172 (((-112) $ (-766)) 9)) (-1849 (((-562) $) 43 (|has| (-562) (-845)))) (-1551 (($ $ $) 87 (|has| |#1| (-845)))) (-4103 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-845)))) (-2123 (((-639 |#1|) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1929 (((-562) $) 44 (|has| (-562) (-845)))) (-2993 (($ $ $) 86 (|has| |#1| (-845)))) (-1491 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4147 (((-112) $ (-766)) 10)) (-3696 (((-1150) $) 22 (|has| |#1| (-1092)))) (-3295 (($ |#1| $ (-562)) 60) (($ $ $ (-562)) 59)) (-3336 (((-639 (-562)) $) 46)) (-1987 (((-112) (-562) $) 47)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-1421 ((|#1| $) 42 (|has| (-562) (-845)))) (-1963 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3510 (($ $ |#1|) 41 (|has| $ (-6 -4404)))) (-3008 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) 14)) (-2716 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2366 (((-639 |#1|) $) 48)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-2343 ((|#1| $ (-562) |#1|) 50) ((|#1| $ (-562)) 49) (($ $ (-1223 (-562))) 63)) (-2880 (($ $ (-562)) 62) (($ $ (-1223 (-562))) 61)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4403))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-2694 (($ $ $ (-562)) 91 (|has| $ (-6 -4404)))) (-4220 (($ $) 13)) (-4208 (((-535) $) 79 (|has| |#1| (-610 (-535))))) (-4064 (($ (-639 |#1|)) 70)) (-2767 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-639 $)) 65)) (-4053 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-2879 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4403)))) (-1798 (((-112) $ $) 84 (|has| |#1| (-845)))) (-1771 (((-112) $ $) 83 (|has| |#1| (-845)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-1785 (((-112) $ $) 85 (|has| |#1| (-845)))) (-1761 (((-112) $ $) 82 (|has| |#1| (-845)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-19 |#1|) (-139) (-1207)) (T -19)) -NIL -(-13 (-372 |t#1|) (-10 -7 (-6 -4404))) -(((-34) . T) ((-102) -4037 (|has| |#1| (-1092)) (|has| |#1| (-845))) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-845)) (|has| |#1| (-609 (-857)))) ((-150 |#1|) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-285 #0=(-562) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-372 |#1|) . T) ((-488 |#1|) . T) ((-600 #0# |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-645 |#1|) . T) ((-845) |has| |#1| (-845)) ((-1092) -4037 (|has| |#1| (-1092)) (|has| |#1| (-845))) ((-1207) . T)) -((-2781 (((-3 $ "failed") $ $) 12)) (-1847 (($ $) NIL) (($ $ $) 9)) (* (($ (-916) $) NIL) (($ (-766) $) 16) (($ (-562) $) 21))) -(((-20 |#1|) (-10 -8 (-15 * (|#1| (-562) |#1|)) (-15 -1847 (|#1| |#1| |#1|)) (-15 -1847 (|#1| |#1|)) (-15 -2781 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 * (|#1| (-916) |#1|))) (-21)) (T -20)) -NIL -(-10 -8 (-15 * (|#1| (-562) |#1|)) (-15 -1847 (|#1| |#1| |#1|)) (-15 -1847 (|#1| |#1|)) (-15 -2781 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 * (|#1| (-916) |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11)) (-2285 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20))) -(((-21) (-139)) (T -21)) -((-1847 (*1 *1 *1) (-4 *1 (-21))) (-1847 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-562))))) -(-13 (-130) (-10 -8 (-15 -1847 ($ $)) (-15 -1847 ($ $ $)) (-15 * ($ (-562) $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-609 (-857)) . T) ((-1092) . T)) -((-4325 (((-112) $) 10)) (-3329 (($) 15)) (* (($ (-916) $) 14) (($ (-766) $) 18))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-766) |#1|)) (-15 -4325 ((-112) |#1|)) (-15 -3329 (|#1|)) (-15 * (|#1| (-916) |#1|))) (-23)) (T -22)) -NIL -(-10 -8 (-15 * (|#1| (-766) |#1|)) (-15 -4325 ((-112) |#1|)) (-15 -3329 (|#1|)) (-15 * (|#1| (-916) |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-3329 (($) 17 T CONST)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11)) (-2285 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1836 (($ $ $) 14)) (* (($ (-916) $) 13) (($ (-766) $) 15))) -(((-23) (-139)) (T -23)) -((-2285 (*1 *1) (-4 *1 (-23))) (-3329 (*1 *1) (-4 *1 (-23))) (-4325 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-766))))) -(-13 (-25) (-10 -8 (-15 (-2285) ($) -1497) (-15 -3329 ($) -1497) (-15 -4325 ((-112) $)) (-15 * ($ (-766) $)))) -(((-25) . T) ((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) -((* (($ (-916) $) 10))) -(((-24 |#1|) (-10 -8 (-15 * (|#1| (-916) |#1|))) (-25)) (T -24)) -NIL -(-10 -8 (-15 * (|#1| (-916) |#1|))) -((-4041 (((-112) $ $) 7)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11)) (-1733 (((-112) $ $) 6)) (-1836 (($ $ $) 14)) (* (($ (-916) $) 13))) -(((-25) (-139)) (T -25)) -((-1836 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-916))))) -(-13 (-1092) (-10 -8 (-15 -1836 ($ $ $)) (-15 * ($ (-916) $)))) -(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) -((-1763 (((-639 $) (-947 $)) 29) (((-639 $) (-1164 $)) 16) (((-639 $) (-1164 $) (-1168)) 20)) (-2391 (($ (-947 $)) 27) (($ (-1164 $)) 11) (($ (-1164 $) (-1168)) 54)) (-1431 (((-639 $) (-947 $)) 30) (((-639 $) (-1164 $)) 18) (((-639 $) (-1164 $) (-1168)) 19)) (-2608 (($ (-947 $)) 28) (($ (-1164 $)) 13) (($ (-1164 $) (-1168)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -1763 ((-639 |#1|) (-1164 |#1|) (-1168))) (-15 -1763 ((-639 |#1|) (-1164 |#1|))) (-15 -1763 ((-639 |#1|) (-947 |#1|))) (-15 -2391 (|#1| (-1164 |#1|) (-1168))) (-15 -2391 (|#1| (-1164 |#1|))) (-15 -2391 (|#1| (-947 |#1|))) (-15 -1431 ((-639 |#1|) (-1164 |#1|) (-1168))) (-15 -1431 ((-639 |#1|) (-1164 |#1|))) (-15 -1431 ((-639 |#1|) (-947 |#1|))) (-15 -2608 (|#1| (-1164 |#1|) (-1168))) (-15 -2608 (|#1| (-1164 |#1|))) (-15 -2608 (|#1| (-947 |#1|)))) (-27)) (T -26)) -NIL -(-10 -8 (-15 -1763 ((-639 |#1|) (-1164 |#1|) (-1168))) (-15 -1763 ((-639 |#1|) (-1164 |#1|))) (-15 -1763 ((-639 |#1|) (-947 |#1|))) (-15 -2391 (|#1| (-1164 |#1|) (-1168))) (-15 -2391 (|#1| (-1164 |#1|))) (-15 -2391 (|#1| (-947 |#1|))) (-15 -1431 ((-639 |#1|) (-1164 |#1|) (-1168))) (-15 -1431 ((-639 |#1|) (-1164 |#1|))) (-15 -1431 ((-639 |#1|) (-947 |#1|))) (-15 -2608 (|#1| (-1164 |#1|) (-1168))) (-15 -2608 (|#1| (-1164 |#1|))) (-15 -2608 (|#1| (-947 |#1|)))) -((-4041 (((-112) $ $) 7)) (-1763 (((-639 $) (-947 $)) 81) (((-639 $) (-1164 $)) 80) (((-639 $) (-1164 $) (-1168)) 79)) (-2391 (($ (-947 $)) 84) (($ (-1164 $)) 83) (($ (-1164 $) (-1168)) 82)) (-4325 (((-112) $) 16)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 42)) (-1965 (($ $) 41)) (-4102 (((-112) $) 39)) (-2781 (((-3 $ "failed") $ $) 19)) (-1977 (($ $) 74)) (-3788 (((-417 $) $) 73)) (-1644 (($ $) 93)) (-1436 (((-112) $ $) 60)) (-3329 (($) 17 T CONST)) (-1431 (((-639 $) (-947 $)) 87) (((-639 $) (-1164 $)) 86) (((-639 $) (-1164 $) (-1168)) 85)) (-2608 (($ (-947 $)) 90) (($ (-1164 $)) 89) (($ (-1164 $) (-1168)) 88)) (-1810 (($ $ $) 56)) (-1694 (((-3 $ "failed") $) 33)) (-1787 (($ $ $) 57)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) 52)) (-3521 (((-112) $) 72)) (-4367 (((-112) $) 31)) (-1895 (($ $ (-562)) 92)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) 53)) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-3696 (((-1150) $) 9)) (-1525 (($ $) 71)) (-1709 (((-1112) $) 10)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-1635 (((-417 $) $) 75)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1762 (((-3 $ "failed") $ $) 43)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) 51)) (-2044 (((-766) $) 59)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 58)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ $) 44) (($ (-406 (-562))) 67)) (-1568 (((-766)) 28)) (-3799 (((-112) $ $) 40)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1859 (($ $ $) 66)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 70) (($ $ (-406 (-562))) 91)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ (-406 (-562))) 69) (($ (-406 (-562)) $) 68))) -(((-27) (-139)) (T -27)) -((-2608 (*1 *1 *2) (-12 (-5 *2 (-947 *1)) (-4 *1 (-27)))) (-2608 (*1 *1 *2) (-12 (-5 *2 (-1164 *1)) (-4 *1 (-27)))) (-2608 (*1 *1 *2 *3) (-12 (-5 *2 (-1164 *1)) (-5 *3 (-1168)) (-4 *1 (-27)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-947 *1)) (-4 *1 (-27)) (-5 *2 (-639 *1)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-27)) (-5 *2 (-639 *1)))) (-1431 (*1 *2 *3 *4) (-12 (-5 *3 (-1164 *1)) (-5 *4 (-1168)) (-4 *1 (-27)) (-5 *2 (-639 *1)))) (-2391 (*1 *1 *2) (-12 (-5 *2 (-947 *1)) (-4 *1 (-27)))) (-2391 (*1 *1 *2) (-12 (-5 *2 (-1164 *1)) (-4 *1 (-27)))) (-2391 (*1 *1 *2 *3) (-12 (-5 *2 (-1164 *1)) (-5 *3 (-1168)) (-4 *1 (-27)))) (-1763 (*1 *2 *3) (-12 (-5 *3 (-947 *1)) (-4 *1 (-27)) (-5 *2 (-639 *1)))) (-1763 (*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-27)) (-5 *2 (-639 *1)))) (-1763 (*1 *2 *3 *4) (-12 (-5 *3 (-1164 *1)) (-5 *4 (-1168)) (-4 *1 (-27)) (-5 *2 (-639 *1))))) -(-13 (-362) (-997) (-10 -8 (-15 -2608 ($ (-947 $))) (-15 -2608 ($ (-1164 $))) (-15 -2608 ($ (-1164 $) (-1168))) (-15 -1431 ((-639 $) (-947 $))) (-15 -1431 ((-639 $) (-1164 $))) (-15 -1431 ((-639 $) (-1164 $) (-1168))) (-15 -2391 ($ (-947 $))) (-15 -2391 ($ (-1164 $))) (-15 -2391 ($ (-1164 $) (-1168))) (-15 -1763 ((-639 $) (-947 $))) (-15 -1763 ((-639 $) (-1164 $))) (-15 -1763 ((-639 $) (-1164 $) (-1168))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-562))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-612 #0#) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-451) . T) ((-554) . T) ((-642 #0#) . T) ((-642 $) . T) ((-712 #0#) . T) ((-712 $) . T) ((-721) . T) ((-915) . T) ((-997) . T) ((-1050 #0#) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1211) . T)) -((-1763 (((-639 $) (-947 $)) NIL) (((-639 $) (-1164 $)) NIL) (((-639 $) (-1164 $) (-1168)) 50) (((-639 $) $) 19) (((-639 $) $ (-1168)) 41)) (-2391 (($ (-947 $)) NIL) (($ (-1164 $)) NIL) (($ (-1164 $) (-1168)) 52) (($ $) 17) (($ $ (-1168)) 37)) (-1431 (((-639 $) (-947 $)) NIL) (((-639 $) (-1164 $)) NIL) (((-639 $) (-1164 $) (-1168)) 48) (((-639 $) $) 15) (((-639 $) $ (-1168)) 43)) (-2608 (($ (-947 $)) NIL) (($ (-1164 $)) NIL) (($ (-1164 $) (-1168)) NIL) (($ $) 12) (($ $ (-1168)) 39))) -(((-28 |#1| |#2|) (-10 -8 (-15 -1763 ((-639 |#1|) |#1| (-1168))) (-15 -2391 (|#1| |#1| (-1168))) (-15 -1763 ((-639 |#1|) |#1|)) (-15 -2391 (|#1| |#1|)) (-15 -1431 ((-639 |#1|) |#1| (-1168))) (-15 -2608 (|#1| |#1| (-1168))) (-15 -1431 ((-639 |#1|) |#1|)) (-15 -2608 (|#1| |#1|)) (-15 -1763 ((-639 |#1|) (-1164 |#1|) (-1168))) (-15 -1763 ((-639 |#1|) (-1164 |#1|))) (-15 -1763 ((-639 |#1|) (-947 |#1|))) (-15 -2391 (|#1| (-1164 |#1|) (-1168))) (-15 -2391 (|#1| (-1164 |#1|))) (-15 -2391 (|#1| (-947 |#1|))) (-15 -1431 ((-639 |#1|) (-1164 |#1|) (-1168))) (-15 -1431 ((-639 |#1|) (-1164 |#1|))) (-15 -1431 ((-639 |#1|) (-947 |#1|))) (-15 -2608 (|#1| (-1164 |#1|) (-1168))) (-15 -2608 (|#1| (-1164 |#1|))) (-15 -2608 (|#1| (-947 |#1|)))) (-29 |#2|) (-13 (-845) (-554))) (T -28)) -NIL -(-10 -8 (-15 -1763 ((-639 |#1|) |#1| (-1168))) (-15 -2391 (|#1| |#1| (-1168))) (-15 -1763 ((-639 |#1|) |#1|)) (-15 -2391 (|#1| |#1|)) (-15 -1431 ((-639 |#1|) |#1| (-1168))) (-15 -2608 (|#1| |#1| (-1168))) (-15 -1431 ((-639 |#1|) |#1|)) (-15 -2608 (|#1| |#1|)) (-15 -1763 ((-639 |#1|) (-1164 |#1|) (-1168))) (-15 -1763 ((-639 |#1|) (-1164 |#1|))) (-15 -1763 ((-639 |#1|) (-947 |#1|))) (-15 -2391 (|#1| (-1164 |#1|) (-1168))) (-15 -2391 (|#1| (-1164 |#1|))) (-15 -2391 (|#1| (-947 |#1|))) (-15 -1431 ((-639 |#1|) (-1164 |#1|) (-1168))) (-15 -1431 ((-639 |#1|) (-1164 |#1|))) (-15 -1431 ((-639 |#1|) (-947 |#1|))) (-15 -2608 (|#1| (-1164 |#1|) (-1168))) (-15 -2608 (|#1| (-1164 |#1|))) (-15 -2608 (|#1| (-947 |#1|)))) -((-4041 (((-112) $ $) 7)) (-1763 (((-639 $) (-947 $)) 81) (((-639 $) (-1164 $)) 80) (((-639 $) (-1164 $) (-1168)) 79) (((-639 $) $) 125) (((-639 $) $ (-1168)) 123)) (-2391 (($ (-947 $)) 84) (($ (-1164 $)) 83) (($ (-1164 $) (-1168)) 82) (($ $) 126) (($ $ (-1168)) 124)) (-4325 (((-112) $) 16)) (-1401 (((-639 (-1168)) $) 200)) (-1602 (((-406 (-1164 $)) $ (-608 $)) 232 (|has| |#1| (-554)))) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 42)) (-1965 (($ $) 41)) (-4102 (((-112) $) 39)) (-1501 (((-639 (-608 $)) $) 163)) (-2781 (((-3 $ "failed") $ $) 19)) (-3164 (($ $ (-639 (-608 $)) (-639 $)) 153) (($ $ (-639 (-293 $))) 152) (($ $ (-293 $)) 151)) (-1977 (($ $) 74)) (-3788 (((-417 $) $) 73)) (-1644 (($ $) 93)) (-1436 (((-112) $ $) 60)) (-3329 (($) 17 T CONST)) (-1431 (((-639 $) (-947 $)) 87) (((-639 $) (-1164 $)) 86) (((-639 $) (-1164 $) (-1168)) 85) (((-639 $) $) 129) (((-639 $) $ (-1168)) 127)) (-2608 (($ (-947 $)) 90) (($ (-1164 $)) 89) (($ (-1164 $) (-1168)) 88) (($ $) 130) (($ $ (-1168)) 128)) (-4048 (((-3 (-947 |#1|) "failed") $) 250 (|has| |#1| (-1044))) (((-3 (-406 (-947 |#1|)) "failed") $) 234 (|has| |#1| (-554))) (((-3 |#1| "failed") $) 196) (((-3 (-562) "failed") $) 193 (|has| |#1| (-1033 (-562)))) (((-3 (-1168) "failed") $) 187) (((-3 (-608 $) "failed") $) 138) (((-3 (-406 (-562)) "failed") $) 121 (-4037 (-12 (|has| |#1| (-1033 (-562))) (|has| |#1| (-554))) (|has| |#1| (-1033 (-406 (-562))))))) (-3960 (((-947 |#1|) $) 249 (|has| |#1| (-1044))) (((-406 (-947 |#1|)) $) 233 (|has| |#1| (-554))) ((|#1| $) 195) (((-562) $) 194 (|has| |#1| (-1033 (-562)))) (((-1168) $) 186) (((-608 $) $) 137) (((-406 (-562)) $) 122 (-4037 (-12 (|has| |#1| (-1033 (-562))) (|has| |#1| (-554))) (|has| |#1| (-1033 (-406 (-562))))))) (-1810 (($ $ $) 56)) (-3449 (((-683 |#1|) (-683 $)) 240 (|has| |#1| (-1044))) (((-2 (|:| -1767 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) 239 (|has| |#1| (-1044))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 120 (-4037 (-2245 (|has| |#1| (-1044)) (|has| |#1| (-635 (-562)))) (-2245 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044))))) (((-683 (-562)) (-683 $)) 119 (-4037 (-2245 (|has| |#1| (-1044)) (|has| |#1| (-635 (-562)))) (-2245 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044)))))) (-1694 (((-3 $ "failed") $) 33)) (-1787 (($ $ $) 57)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) 52)) (-3521 (((-112) $) 72)) (-2337 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 192 (|has| |#1| (-881 (-378)))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) 191 (|has| |#1| (-881 (-562))))) (-2229 (($ (-639 $)) 157) (($ $) 156)) (-4364 (((-639 (-114)) $) 164)) (-1502 (((-114) (-114)) 165)) (-4367 (((-112) $) 31)) (-3152 (((-112) $) 185 (|has| $ (-1033 (-562))))) (-2957 (($ $) 217 (|has| |#1| (-1044)))) (-4063 (((-1117 |#1| (-608 $)) $) 216 (|has| |#1| (-1044)))) (-1895 (($ $ (-562)) 92)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) 53)) (-3476 (((-1164 $) (-608 $)) 182 (|has| $ (-1044)))) (-1551 (($ $ $) 136)) (-2993 (($ $ $) 135)) (-4152 (($ (-1 $ $) (-608 $)) 171)) (-4068 (((-3 (-608 $) "failed") $) 161)) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-3696 (((-1150) $) 9)) (-1582 (((-639 (-608 $)) $) 162)) (-4141 (($ (-114) (-639 $)) 170) (($ (-114) $) 169)) (-4025 (((-3 (-639 $) "failed") $) 211 (|has| |#1| (-1104)))) (-2811 (((-3 (-2 (|:| |val| $) (|:| -1300 (-562))) "failed") $) 220 (|has| |#1| (-1044)))) (-1778 (((-3 (-639 $) "failed") $) 213 (|has| |#1| (-25)))) (-2871 (((-3 (-2 (|:| -4221 (-562)) (|:| |var| (-608 $))) "failed") $) 214 (|has| |#1| (-25)))) (-4270 (((-3 (-2 (|:| |var| (-608 $)) (|:| -1300 (-562))) "failed") $ (-1168)) 219 (|has| |#1| (-1044))) (((-3 (-2 (|:| |var| (-608 $)) (|:| -1300 (-562))) "failed") $ (-114)) 218 (|has| |#1| (-1044))) (((-3 (-2 (|:| |var| (-608 $)) (|:| -1300 (-562))) "failed") $) 212 (|has| |#1| (-1104)))) (-3115 (((-112) $ (-1168)) 168) (((-112) $ (-114)) 167)) (-1525 (($ $) 71)) (-3059 (((-766) $) 160)) (-1709 (((-1112) $) 10)) (-1534 (((-112) $) 198)) (-1547 ((|#1| $) 199)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-1533 (((-112) $ (-1168)) 173) (((-112) $ $) 172)) (-1635 (((-417 $) $) 75)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1762 (((-3 $ "failed") $ $) 43)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) 51)) (-2438 (((-112) $) 184 (|has| $ (-1033 (-562))))) (-1433 (($ $ (-1168) (-766) (-1 $ $)) 224 (|has| |#1| (-1044))) (($ $ (-1168) (-766) (-1 $ (-639 $))) 223 (|has| |#1| (-1044))) (($ $ (-639 (-1168)) (-639 (-766)) (-639 (-1 $ (-639 $)))) 222 (|has| |#1| (-1044))) (($ $ (-639 (-1168)) (-639 (-766)) (-639 (-1 $ $))) 221 (|has| |#1| (-1044))) (($ $ (-639 (-114)) (-639 $) (-1168)) 210 (|has| |#1| (-610 (-535)))) (($ $ (-114) $ (-1168)) 209 (|has| |#1| (-610 (-535)))) (($ $) 208 (|has| |#1| (-610 (-535)))) (($ $ (-639 (-1168))) 207 (|has| |#1| (-610 (-535)))) (($ $ (-1168)) 206 (|has| |#1| (-610 (-535)))) (($ $ (-114) (-1 $ $)) 181) (($ $ (-114) (-1 $ (-639 $))) 180) (($ $ (-639 (-114)) (-639 (-1 $ (-639 $)))) 179) (($ $ (-639 (-114)) (-639 (-1 $ $))) 178) (($ $ (-1168) (-1 $ $)) 177) (($ $ (-1168) (-1 $ (-639 $))) 176) (($ $ (-639 (-1168)) (-639 (-1 $ (-639 $)))) 175) (($ $ (-639 (-1168)) (-639 (-1 $ $))) 174) (($ $ (-639 $) (-639 $)) 145) (($ $ $ $) 144) (($ $ (-293 $)) 143) (($ $ (-639 (-293 $))) 142) (($ $ (-639 (-608 $)) (-639 $)) 141) (($ $ (-608 $) $) 140)) (-2044 (((-766) $) 59)) (-2343 (($ (-114) (-639 $)) 150) (($ (-114) $ $ $ $) 149) (($ (-114) $ $ $) 148) (($ (-114) $ $) 147) (($ (-114) $) 146)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 58)) (-3461 (($ $ $) 159) (($ $) 158)) (-4029 (($ $ (-1168)) 248 (|has| |#1| (-1044))) (($ $ (-639 (-1168))) 247 (|has| |#1| (-1044))) (($ $ (-1168) (-766)) 246 (|has| |#1| (-1044))) (($ $ (-639 (-1168)) (-639 (-766))) 245 (|has| |#1| (-1044)))) (-1580 (($ $) 227 (|has| |#1| (-554)))) (-4079 (((-1117 |#1| (-608 $)) $) 226 (|has| |#1| (-554)))) (-3371 (($ $) 183 (|has| $ (-1044)))) (-4208 (((-535) $) 254 (|has| |#1| (-610 (-535)))) (($ (-417 $)) 225 (|has| |#1| (-554))) (((-887 (-378)) $) 190 (|has| |#1| (-610 (-887 (-378))))) (((-887 (-562)) $) 189 (|has| |#1| (-610 (-887 (-562)))))) (-1660 (($ $ $) 253 (|has| |#1| (-472)))) (-2114 (($ $ $) 252 (|has| |#1| (-472)))) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ $) 44) (($ (-406 (-562))) 67) (($ (-947 |#1|)) 251 (|has| |#1| (-1044))) (($ (-406 (-947 |#1|))) 235 (|has| |#1| (-554))) (($ (-406 (-947 (-406 |#1|)))) 231 (|has| |#1| (-554))) (($ (-947 (-406 |#1|))) 230 (|has| |#1| (-554))) (($ (-406 |#1|)) 229 (|has| |#1| (-554))) (($ (-1117 |#1| (-608 $))) 215 (|has| |#1| (-1044))) (($ |#1|) 197) (($ (-1168)) 188) (($ (-608 $)) 139)) (-2059 (((-3 $ "failed") $) 238 (|has| |#1| (-144)))) (-1568 (((-766)) 28)) (-2745 (($ (-639 $)) 155) (($ $) 154)) (-2036 (((-112) (-114)) 166)) (-3799 (((-112) $ $) 40)) (-3105 (($ (-1168) (-639 $)) 205) (($ (-1168) $ $ $ $) 204) (($ (-1168) $ $ $) 203) (($ (-1168) $ $) 202) (($ (-1168) $) 201)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3113 (($ $ (-1168)) 244 (|has| |#1| (-1044))) (($ $ (-639 (-1168))) 243 (|has| |#1| (-1044))) (($ $ (-1168) (-766)) 242 (|has| |#1| (-1044))) (($ $ (-639 (-1168)) (-639 (-766))) 241 (|has| |#1| (-1044)))) (-1798 (((-112) $ $) 133)) (-1771 (((-112) $ $) 132)) (-1733 (((-112) $ $) 6)) (-1785 (((-112) $ $) 134)) (-1761 (((-112) $ $) 131)) (-1859 (($ $ $) 66) (($ (-1117 |#1| (-608 $)) (-1117 |#1| (-608 $))) 228 (|has| |#1| (-554)))) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 70) (($ $ (-406 (-562))) 91)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ (-406 (-562))) 69) (($ (-406 (-562)) $) 68) (($ $ |#1|) 237 (|has| |#1| (-171))) (($ |#1| $) 236 (|has| |#1| (-171))))) -(((-29 |#1|) (-139) (-13 (-845) (-554))) (T -29)) -((-2608 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-845) (-554))))) (-1431 (*1 *2 *1) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *2 (-639 *1)) (-4 *1 (-29 *3)))) (-2608 (*1 *1 *1 *2) (-12 (-5 *2 (-1168)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-845) (-554))))) (-1431 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-845) (-554))) (-5 *2 (-639 *1)) (-4 *1 (-29 *4)))) (-2391 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-845) (-554))))) (-1763 (*1 *2 *1) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *2 (-639 *1)) (-4 *1 (-29 *3)))) (-2391 (*1 *1 *1 *2) (-12 (-5 *2 (-1168)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-845) (-554))))) (-1763 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-845) (-554))) (-5 *2 (-639 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-429 |t#1|) (-10 -8 (-15 -2608 ($ $)) (-15 -1431 ((-639 $) $)) (-15 -2608 ($ $ (-1168))) (-15 -1431 ((-639 $) $ (-1168))) (-15 -2391 ($ $)) (-15 -1763 ((-639 $) $)) (-15 -2391 ($ $ (-1168))) (-15 -1763 ((-639 $) $ (-1168))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-562))) . T) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-171)) ((-111 $ $) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #0#) . T) ((-612 #1=(-406 (-947 |#1|))) |has| |#1| (-554)) ((-612 (-562)) . T) ((-612 #2=(-608 $)) . T) ((-612 #3=(-947 |#1|)) |has| |#1| (-1044)) ((-612 #4=(-1168)) . T) ((-612 |#1|) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-610 (-887 (-378))) |has| |#1| (-610 (-887 (-378)))) ((-610 (-887 (-562))) |has| |#1| (-610 (-887 (-562)))) ((-242) . T) ((-289) . T) ((-306) . T) ((-308 $) . T) ((-301) . T) ((-362) . T) ((-376 |#1|) |has| |#1| (-1044)) ((-399 |#1|) . T) ((-410 |#1|) . T) ((-429 |#1|) . T) ((-451) . T) ((-472) |has| |#1| (-472)) ((-513 (-608 $) $) . T) ((-513 $ $) . T) ((-554) . T) ((-642 #0#) . T) ((-642 |#1|) |has| |#1| (-171)) ((-642 $) . T) ((-635 (-562)) -12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044))) ((-635 |#1|) |has| |#1| (-1044)) ((-712 #0#) . T) ((-712 |#1|) |has| |#1| (-171)) ((-712 $) . T) ((-721) . T) ((-845) . T) ((-895 (-1168)) |has| |#1| (-1044)) ((-881 (-378)) |has| |#1| (-881 (-378))) ((-881 (-562)) |has| |#1| (-881 (-562))) ((-879 |#1|) . T) ((-915) . T) ((-997) . T) ((-1033 (-406 (-562))) -4037 (|has| |#1| (-1033 (-406 (-562)))) (-12 (|has| |#1| (-554)) (|has| |#1| (-1033 (-562))))) ((-1033 #1#) |has| |#1| (-554)) ((-1033 (-562)) |has| |#1| (-1033 (-562))) ((-1033 #2#) . T) ((-1033 #3#) |has| |#1| (-1044)) ((-1033 #4#) . T) ((-1033 |#1|) . T) ((-1050 #0#) . T) ((-1050 |#1|) |has| |#1| (-171)) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1207) . T) ((-1211) . T)) -((-1462 (((-1086 (-224)) $) NIL)) (-1448 (((-1086 (-224)) $) NIL)) (-2776 (($ $ (-224)) 125)) (-3865 (($ (-947 (-562)) (-1168) (-1168) (-1086 (-406 (-562))) (-1086 (-406 (-562)))) 82)) (-2259 (((-639 (-639 (-938 (-224)))) $) 137)) (-4053 (((-857) $) 149))) -(((-30) (-13 (-950) (-10 -8 (-15 -3865 ($ (-947 (-562)) (-1168) (-1168) (-1086 (-406 (-562))) (-1086 (-406 (-562))))) (-15 -2776 ($ $ (-224)))))) (T -30)) -((-3865 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-947 (-562))) (-5 *3 (-1168)) (-5 *4 (-1086 (-406 (-562)))) (-5 *1 (-30)))) (-2776 (*1 *1 *1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-30))))) -(-13 (-950) (-10 -8 (-15 -3865 ($ (-947 (-562)) (-1168) (-1168) (-1086 (-406 (-562))) (-1086 (-406 (-562))))) (-15 -2776 ($ $ (-224))))) -((-4041 (((-112) $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 19) (($ (-1173)) NIL) (((-1173) $) NIL)) (-3265 (((-1127) $) 11)) (-3240 (((-1127) $) 9)) (-1733 (((-112) $ $) NIL))) -(((-31) (-13 (-1075) (-10 -8 (-15 -3240 ((-1127) $)) (-15 -3265 ((-1127) $))))) (T -31)) -((-3240 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-31)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-31))))) -(-13 (-1075) (-10 -8 (-15 -3240 ((-1127) $)) (-15 -3265 ((-1127) $)))) -((-2608 ((|#2| (-1164 |#2|) (-1168)) 43)) (-1502 (((-114) (-114)) 56)) (-3476 (((-1164 |#2|) (-608 |#2|)) 133 (|has| |#1| (-1033 (-562))))) (-3877 ((|#2| |#1| (-562)) 123 (|has| |#1| (-1033 (-562))))) (-3731 ((|#2| (-1164 |#2|) |#2|) 30)) (-3531 (((-857) (-639 |#2|)) 85)) (-3371 ((|#2| |#2|) 129 (|has| |#1| (-1033 (-562))))) (-2036 (((-112) (-114)) 18)) (** ((|#2| |#2| (-406 (-562))) 96 (|has| |#1| (-1033 (-562)))))) -(((-32 |#1| |#2|) (-10 -7 (-15 -2608 (|#2| (-1164 |#2|) (-1168))) (-15 -1502 ((-114) (-114))) (-15 -2036 ((-112) (-114))) (-15 -3731 (|#2| (-1164 |#2|) |#2|)) (-15 -3531 ((-857) (-639 |#2|))) (IF (|has| |#1| (-1033 (-562))) (PROGN (-15 ** (|#2| |#2| (-406 (-562)))) (-15 -3476 ((-1164 |#2|) (-608 |#2|))) (-15 -3371 (|#2| |#2|)) (-15 -3877 (|#2| |#1| (-562)))) |%noBranch|)) (-13 (-845) (-554)) (-429 |#1|)) (T -32)) -((-3877 (*1 *2 *3 *4) (-12 (-5 *4 (-562)) (-4 *2 (-429 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1033 *4)) (-4 *3 (-13 (-845) (-554))))) (-3371 (*1 *2 *2) (-12 (-4 *3 (-1033 (-562))) (-4 *3 (-13 (-845) (-554))) (-5 *1 (-32 *3 *2)) (-4 *2 (-429 *3)))) (-3476 (*1 *2 *3) (-12 (-5 *3 (-608 *5)) (-4 *5 (-429 *4)) (-4 *4 (-1033 (-562))) (-4 *4 (-13 (-845) (-554))) (-5 *2 (-1164 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-406 (-562))) (-4 *4 (-1033 (-562))) (-4 *4 (-13 (-845) (-554))) (-5 *1 (-32 *4 *2)) (-4 *2 (-429 *4)))) (-3531 (*1 *2 *3) (-12 (-5 *3 (-639 *5)) (-4 *5 (-429 *4)) (-4 *4 (-13 (-845) (-554))) (-5 *2 (-857)) (-5 *1 (-32 *4 *5)))) (-3731 (*1 *2 *3 *2) (-12 (-5 *3 (-1164 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-845) (-554))) (-5 *1 (-32 *4 *2)))) (-2036 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-845) (-554))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-429 *4)))) (-1502 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-845) (-554))) (-5 *1 (-32 *3 *4)) (-4 *4 (-429 *3)))) (-2608 (*1 *2 *3 *4) (-12 (-5 *3 (-1164 *2)) (-5 *4 (-1168)) (-4 *2 (-429 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-845) (-554)))))) -(-10 -7 (-15 -2608 (|#2| (-1164 |#2|) (-1168))) (-15 -1502 ((-114) (-114))) (-15 -2036 ((-112) (-114))) (-15 -3731 (|#2| (-1164 |#2|) |#2|)) (-15 -3531 ((-857) (-639 |#2|))) (IF (|has| |#1| (-1033 (-562))) (PROGN (-15 ** (|#2| |#2| (-406 (-562)))) (-15 -3476 ((-1164 |#2|) (-608 |#2|))) (-15 -3371 (|#2| |#2|)) (-15 -3877 (|#2| |#1| (-562)))) |%noBranch|)) -((-3735 (((-112) $ (-766)) 16)) (-3329 (($) 10)) (-4172 (((-112) $ (-766)) 15)) (-4147 (((-112) $ (-766)) 14)) (-1452 (((-112) $ $) 8)) (-3087 (((-112) $) 13))) -(((-33 |#1|) (-10 -8 (-15 -3329 (|#1|)) (-15 -3735 ((-112) |#1| (-766))) (-15 -4172 ((-112) |#1| (-766))) (-15 -4147 ((-112) |#1| (-766))) (-15 -3087 ((-112) |#1|)) (-15 -1452 ((-112) |#1| |#1|))) (-34)) (T -33)) -NIL -(-10 -8 (-15 -3329 (|#1|)) (-15 -3735 ((-112) |#1| (-766))) (-15 -4172 ((-112) |#1| (-766))) (-15 -4147 ((-112) |#1| (-766))) (-15 -3087 ((-112) |#1|)) (-15 -1452 ((-112) |#1| |#1|))) -((-3735 (((-112) $ (-766)) 8)) (-3329 (($) 7 T CONST)) (-4172 (((-112) $ (-766)) 9)) (-4147 (((-112) $ (-766)) 10)) (-1452 (((-112) $ $) 14)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-4220 (($ $) 13)) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-34) (-139)) (T -34)) -((-1452 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4220 (*1 *1 *1) (-4 *1 (-34))) (-1663 (*1 *1) (-4 *1 (-34))) (-3087 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4147 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-766)) (-5 *2 (-112)))) (-4172 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-766)) (-5 *2 (-112)))) (-3735 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-766)) (-5 *2 (-112)))) (-3329 (*1 *1) (-4 *1 (-34))) (-3492 (*1 *2 *1) (-12 (|has| *1 (-6 -4403)) (-4 *1 (-34)) (-5 *2 (-766))))) -(-13 (-1207) (-10 -8 (-15 -1452 ((-112) $ $)) (-15 -4220 ($ $)) (-15 -1663 ($)) (-15 -3087 ((-112) $)) (-15 -4147 ((-112) $ (-766))) (-15 -4172 ((-112) $ (-766))) (-15 -3735 ((-112) $ (-766))) (-15 -3329 ($) -1497) (IF (|has| $ (-6 -4403)) (-15 -3492 ((-766) $)) |%noBranch|))) -(((-1207) . T)) -((-3054 (($ $) 11)) (-3033 (($ $) 10)) (-3077 (($ $) 9)) (-1567 (($ $) 8)) (-3065 (($ $) 7)) (-3040 (($ $) 6))) -(((-35) (-139)) (T -35)) -((-3054 (*1 *1 *1) (-4 *1 (-35))) (-3033 (*1 *1 *1) (-4 *1 (-35))) (-3077 (*1 *1 *1) (-4 *1 (-35))) (-1567 (*1 *1 *1) (-4 *1 (-35))) (-3065 (*1 *1 *1) (-4 *1 (-35))) (-3040 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -3040 ($ $)) (-15 -3065 ($ $)) (-15 -1567 ($ $)) (-15 -3077 ($ $)) (-15 -3033 ($ $)) (-15 -3054 ($ $)))) -((-4041 (((-112) $ $) 19 (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| |#2| (-1092)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092))))) (-2533 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 125)) (-2358 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 148)) (-3120 (($ $) 146)) (-1443 (($) 72) (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) 71)) (-3655 (((-1261) $ |#1| |#1|) 99 (|has| $ (-6 -4404))) (((-1261) $ (-562) (-562)) 178 (|has| $ (-6 -4404)))) (-1335 (($ $ (-562)) 159 (|has| $ (-6 -4404)))) (-1706 (((-112) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-845)))) (-3737 (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 200 (|has| $ (-6 -4404))) (($ $) 199 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-845)) (|has| $ (-6 -4404))))) (-1395 (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-845)))) (-3735 (((-112) $ (-766)) 8)) (-2677 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) 134 (|has| $ (-6 -4404)))) (-3400 (($ $ $) 155 (|has| $ (-6 -4404)))) (-1393 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) 157 (|has| $ (-6 -4404)))) (-3239 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) 153 (|has| $ (-6 -4404)))) (-4200 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ (-562) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) 189 (|has| $ (-6 -4404))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ (-1223 (-562)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) 160 (|has| $ (-6 -4404))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ "last" (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) 158 (|has| $ (-6 -4404))) (($ $ "rest" $) 156 (|has| $ (-6 -4404))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ "first" (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) 154 (|has| $ (-6 -4404))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ "value" (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) 133 (|has| $ (-6 -4404)))) (-3742 (($ $ (-639 $)) 132 (|has| $ (-6 -4404)))) (-2968 (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 45 (|has| $ (-6 -4403))) (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 216)) (-3556 (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 55 (|has| $ (-6 -4403))) (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 175 (|has| $ (-6 -4403)))) (-2349 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 147)) (-1472 (((-3 |#2| "failed") |#1| $) 61)) (-3329 (($) 7 T CONST)) (-2673 (($ $) 201 (|has| $ (-6 -4404)))) (-2676 (($ $) 211)) (-1434 (($ $ (-766)) 142) (($ $) 140)) (-3923 (($ $) 214 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (-1459 (($ $) 58 (-4037 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| $ (-6 -4403))) (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| $ (-6 -4403)))))) (-3729 (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 47 (|has| $ (-6 -4403))) (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 46 (|has| $ (-6 -4403))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 220) (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 215 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (-1475 (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| $ (-6 -4403)))) (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 54 (|has| $ (-6 -4403))) (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 177 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| $ (-6 -4403)))) (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 174 (|has| $ (-6 -4403)))) (-1954 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) 56 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| $ (-6 -4403)))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) 53 (|has| $ (-6 -4403))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 52 (|has| $ (-6 -4403))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) 176 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| $ (-6 -4403)))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) 173 (|has| $ (-6 -4403))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 172 (|has| $ (-6 -4403)))) (-1507 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4404))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ (-562) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) 190 (|has| $ (-6 -4404)))) (-1420 ((|#2| $ |#1|) 88) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ (-562)) 188)) (-2101 (((-112) $) 192)) (-4265 (((-562) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 208) (((-562) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 207 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092))) (((-562) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ (-562)) 206 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (-1720 (((-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 30 (|has| $ (-6 -4403))) (((-639 |#2|) $) 79 (|has| $ (-6 -4403))) (((-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 114 (|has| $ (-6 -4403)))) (-2409 (((-639 $) $) 123)) (-4188 (((-112) $ $) 131 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (-1458 (($ (-766) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) 169)) (-4172 (((-112) $ (-766)) 9)) (-1849 ((|#1| $) 96 (|has| |#1| (-845))) (((-562) $) 180 (|has| (-562) (-845)))) (-1551 (($ $ $) 198 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-845)))) (-3124 (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-845)))) (-4103 (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-845)))) (-2123 (((-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 29 (|has| $ (-6 -4403))) (((-639 |#2|) $) 80 (|has| $ (-6 -4403))) (((-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 115 (|has| $ (-6 -4403)))) (-1572 (((-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| $ (-6 -4403)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1092)) (|has| $ (-6 -4403)))) (((-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| $ (-6 -4403))))) (-1929 ((|#1| $) 95 (|has| |#1| (-845))) (((-562) $) 181 (|has| (-562) (-845)))) (-2993 (($ $ $) 197 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-845)))) (-1491 (($ (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 34 (|has| $ (-6 -4404))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4404))) (($ (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 110 (|has| $ (-6 -4404)))) (-4152 (($ (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 109)) (-3716 (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) 225)) (-4147 (((-112) $ (-766)) 10)) (-4008 (((-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 128)) (-3179 (((-112) $) 124)) (-3696 (((-1150) $) 22 (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| |#2| (-1092)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092))))) (-1504 (($ $ (-766)) 145) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 143)) (-1521 (((-639 |#1|) $) 63)) (-4278 (((-112) |#1| $) 64)) (-2078 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 39)) (-1581 (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 40) (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ (-562)) 219) (($ $ $ (-562)) 218)) (-3295 (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ (-562)) 162) (($ $ $ (-562)) 161)) (-3336 (((-639 |#1|) $) 93) (((-639 (-562)) $) 183)) (-1987 (((-112) |#1| $) 92) (((-112) (-562) $) 184)) (-1709 (((-1112) $) 21 (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| |#2| (-1092)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092))))) (-1421 ((|#2| $) 97 (|has| |#1| (-845))) (($ $ (-766)) 139) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 137)) (-1963 (((-3 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) "failed") (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 51) (((-3 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) "failed") (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 171)) (-3510 (($ $ |#2|) 98 (|has| $ (-6 -4404))) (($ $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) 179 (|has| $ (-6 -4404)))) (-2038 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 41)) (-3745 (((-112) $) 191)) (-3008 (((-112) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 32 (|has| $ (-6 -4403))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4403))) (((-112) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 112 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))))) 26 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-293 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) 25 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) 24 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) 23 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-639 |#2|) (-639 |#2|)) 86 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-293 |#2|)) 84 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 (-293 |#2|))) 83 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) 121 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) 120 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-293 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) 119 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-639 (-293 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))))) 118 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092))))) (-1452 (((-112) $ $) 14)) (-2716 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092)))) (((-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 182 (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092))))) (-2366 (((-639 |#2|) $) 91) (((-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 185)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-2343 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ (-562) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) 187) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ (-562)) 186) (($ $ (-1223 (-562))) 165) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ "first") 138) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ "value") 126)) (-1423 (((-562) $ $) 129)) (-1932 (($) 49) (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) 48)) (-1527 (($ $ (-562)) 222) (($ $ (-1223 (-562))) 221)) (-2880 (($ $ (-562)) 164) (($ $ (-1223 (-562))) 163)) (-2473 (((-112) $) 127)) (-3734 (($ $) 151)) (-3659 (($ $) 152 (|has| $ (-6 -4404)))) (-3595 (((-766) $) 150)) (-2333 (($ $) 149)) (-1723 (((-766) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 31 (|has| $ (-6 -4403))) (((-766) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| $ (-6 -4403)))) (((-766) |#2| $) 81 (-12 (|has| |#2| (-1092)) (|has| $ (-6 -4403)))) (((-766) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4403))) (((-766) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 116 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| $ (-6 -4403)))) (((-766) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 113 (|has| $ (-6 -4403)))) (-2694 (($ $ $ (-562)) 202 (|has| $ (-6 -4404)))) (-4220 (($ $) 13)) (-4208 (((-535) $) 59 (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-610 (-535))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-610 (-535)))))) (-4064 (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) 50) (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) 170)) (-2587 (($ $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) 224) (($ $ $) 223)) (-2767 (($ $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) 168) (($ (-639 $)) 167) (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 136) (($ $ $) 135)) (-4053 (((-857) $) 18 (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-609 (-857))) (|has| |#2| (-609 (-857))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-609 (-857)))))) (-3643 (((-639 $) $) 122)) (-2985 (((-112) $ $) 130 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (-4131 (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) 42)) (-1515 (((-3 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) "failed") |#1| $) 108)) (-2879 (((-112) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 33 (|has| $ (-6 -4403))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4403))) (((-112) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 111 (|has| $ (-6 -4403)))) (-1798 (((-112) $ $) 195 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-845)))) (-1771 (((-112) $ $) 194 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-845)))) (-1733 (((-112) $ $) 20 (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| |#2| (-1092)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092))))) (-1785 (((-112) $ $) 196 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-845)))) (-1761 (((-112) $ $) 193 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-845)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-36 |#1| |#2|) (-139) (-1092) (-1092)) (T -36)) -((-1515 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-5 *2 (-2 (|:| -2319 *3) (|:| -2693 *4)))))) -(-13 (-1183 |t#1| |t#2|) (-660 (-2 (|:| -2319 |t#1|) (|:| -2693 |t#2|))) (-10 -8 (-15 -1515 ((-3 (-2 (|:| -2319 |t#1|) (|:| -2693 |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T) ((-102) -4037 (|has| |#2| (-1092)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-845))) ((-609 (-857)) -4037 (|has| |#2| (-1092)) (|has| |#2| (-609 (-857))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-845)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-609 (-857)))) ((-150 #1=(-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T) ((-610 (-535)) |has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-610 (-535))) ((-228 #0#) . T) ((-234 #0#) . T) ((-285 #2=(-562) #1#) . T) ((-285 |#1| |#2|) . T) ((-287 #2# #1#) . T) ((-287 |#1| |#2|) . T) ((-308 #1#) -12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092))) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) ((-281 #1#) . T) ((-372 #1#) . T) ((-488 #1#) . T) ((-488 |#2|) . T) ((-600 #2# #1#) . T) ((-600 |#1| |#2|) . T) ((-513 #1# #1#) -12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092))) ((-513 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) ((-606 |#1| |#2|) . T) ((-645 #1#) . T) ((-660 #1#) . T) ((-845) |has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-845)) ((-1005 #1#) . T) ((-1092) -4037 (|has| |#2| (-1092)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-845))) ((-1141 #1#) . T) ((-1183 |#1| |#2|) . T) ((-1207) . T) ((-1244 #1#) . T)) -((-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ |#2|) 10))) -(((-37 |#1| |#2|) (-10 -8 (-15 -4053 (|#1| |#2|)) (-15 -4053 (|#1| (-562))) (-15 -4053 ((-857) |#1|))) (-38 |#2|) (-171)) (T -37)) -NIL -(-10 -8 (-15 -4053 (|#1| |#2|)) (-15 -4053 (|#1| (-562))) (-15 -4053 ((-857) |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-1694 (((-3 $ "failed") $) 33)) (-4367 (((-112) $) 31)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 38)) (-1568 (((-766)) 28)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-38 |#1|) (-139) (-171)) (T -38)) -NIL -(-13 (-1044) (-712 |t#1|) (-612 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-612 (-562)) . T) ((-612 |#1|) . T) ((-609 (-857)) . T) ((-642 |#1|) . T) ((-642 $) . T) ((-712 |#1|) . T) ((-721) . T) ((-1050 |#1|) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) -((-1841 (((-417 |#1|) |#1|) 41)) (-1635 (((-417 |#1|) |#1|) 30) (((-417 |#1|) |#1| (-639 (-48))) 33)) (-3306 (((-112) |#1|) 56))) -(((-39 |#1|) (-10 -7 (-15 -1635 ((-417 |#1|) |#1| (-639 (-48)))) (-15 -1635 ((-417 |#1|) |#1|)) (-15 -1841 ((-417 |#1|) |#1|)) (-15 -3306 ((-112) |#1|))) (-1232 (-48))) (T -39)) -((-3306 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1232 (-48))))) (-1841 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1232 (-48))))) (-1635 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1232 (-48))))) (-1635 (*1 *2 *3 *4) (-12 (-5 *4 (-639 (-48))) (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1232 (-48)))))) -(-10 -7 (-15 -1635 ((-417 |#1|) |#1| (-639 (-48)))) (-15 -1635 ((-417 |#1|) |#1|)) (-15 -1841 ((-417 |#1|) |#1|)) (-15 -3306 ((-112) |#1|))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-1631 (((-2 (|:| |num| (-1256 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL (|has| (-406 |#2|) (-362)))) (-1965 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-4102 (((-112) $) NIL (|has| (-406 |#2|) (-362)))) (-4342 (((-683 (-406 |#2|)) (-1256 $)) NIL) (((-683 (-406 |#2|))) NIL)) (-1748 (((-406 |#2|) $) NIL)) (-1755 (((-1180 (-916) (-766)) (-562)) NIL (|has| (-406 |#2|) (-348)))) (-2781 (((-3 $ "failed") $ $) NIL)) (-1977 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-3788 (((-417 $) $) NIL (|has| (-406 |#2|) (-362)))) (-1436 (((-112) $ $) NIL (|has| (-406 |#2|) (-362)))) (-1382 (((-766)) NIL (|has| (-406 |#2|) (-367)))) (-3236 (((-112)) NIL)) (-3520 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL (|has| (-406 |#2|) (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| (-406 |#2|) (-1033 (-406 (-562))))) (((-3 (-406 |#2|) "failed") $) NIL)) (-3960 (((-562) $) NIL (|has| (-406 |#2|) (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| (-406 |#2|) (-1033 (-406 (-562))))) (((-406 |#2|) $) NIL)) (-3916 (($ (-1256 (-406 |#2|)) (-1256 $)) NIL) (($ (-1256 (-406 |#2|))) 57) (($ (-1256 |#2|) |#2|) 125)) (-3082 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-406 |#2|) (-348)))) (-1810 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-4376 (((-683 (-406 |#2|)) $ (-1256 $)) NIL) (((-683 (-406 |#2|)) $) NIL)) (-3449 (((-683 (-562)) (-683 $)) NIL (|has| (-406 |#2|) (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| (-406 |#2|) (-635 (-562)))) (((-2 (|:| -1767 (-683 (-406 |#2|))) (|:| |vec| (-1256 (-406 |#2|)))) (-683 $) (-1256 $)) NIL) (((-683 (-406 |#2|)) (-683 $)) NIL)) (-2575 (((-1256 $) (-1256 $)) NIL)) (-1954 (($ |#3|) NIL) (((-3 $ "failed") (-406 |#3|)) NIL (|has| (-406 |#2|) (-362)))) (-1694 (((-3 $ "failed") $) NIL)) (-2713 (((-639 (-639 |#1|))) NIL (|has| |#1| (-367)))) (-1718 (((-112) |#1| |#1|) NIL)) (-2172 (((-916)) NIL)) (-1447 (($) NIL (|has| (-406 |#2|) (-367)))) (-2241 (((-112)) NIL)) (-1912 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-1787 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL (|has| (-406 |#2|) (-362)))) (-2578 (($ $) NIL)) (-2787 (($) NIL (|has| (-406 |#2|) (-348)))) (-1844 (((-112) $) NIL (|has| (-406 |#2|) (-348)))) (-2184 (($ $ (-766)) NIL (|has| (-406 |#2|) (-348))) (($ $) NIL (|has| (-406 |#2|) (-348)))) (-3521 (((-112) $) NIL (|has| (-406 |#2|) (-362)))) (-1993 (((-916) $) NIL (|has| (-406 |#2|) (-348))) (((-828 (-916)) $) NIL (|has| (-406 |#2|) (-348)))) (-4367 (((-112) $) NIL)) (-3668 (((-766)) NIL)) (-2700 (((-1256 $) (-1256 $)) 102)) (-4363 (((-406 |#2|) $) NIL)) (-2004 (((-639 (-947 |#1|)) (-1168)) NIL (|has| |#1| (-362)))) (-3828 (((-3 $ "failed") $) NIL (|has| (-406 |#2|) (-348)))) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| (-406 |#2|) (-362)))) (-1937 ((|#3| $) NIL (|has| (-406 |#2|) (-362)))) (-3549 (((-916) $) NIL (|has| (-406 |#2|) (-367)))) (-1942 ((|#3| $) NIL)) (-1564 (($ (-639 $)) NIL (|has| (-406 |#2|) (-362))) (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-3696 (((-1150) $) NIL)) (-2499 (((-1261) (-766)) 79)) (-2715 (((-683 (-406 |#2|))) 51)) (-2289 (((-683 (-406 |#2|))) 44)) (-1525 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-3174 (($ (-1256 |#2|) |#2|) 126)) (-3324 (((-683 (-406 |#2|))) 45)) (-4335 (((-683 (-406 |#2|))) 43)) (-3128 (((-2 (|:| |num| (-683 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-4329 (((-2 (|:| |num| (-1256 |#2|)) (|:| |den| |#2|)) $) 64)) (-3137 (((-1256 $)) 42)) (-2639 (((-1256 $)) 41)) (-3841 (((-112) $) NIL)) (-2881 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3730 (($) NIL (|has| (-406 |#2|) (-348)) CONST)) (-2464 (($ (-916)) NIL (|has| (-406 |#2|) (-367)))) (-3153 (((-3 |#2| "failed")) NIL)) (-1709 (((-1112) $) NIL)) (-2435 (((-766)) NIL)) (-3147 (($) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| (-406 |#2|) (-362)))) (-1606 (($ (-639 $)) NIL (|has| (-406 |#2|) (-362))) (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-1753 (((-639 (-2 (|:| -1635 (-562)) (|:| -1300 (-562))))) NIL (|has| (-406 |#2|) (-348)))) (-1635 (((-417 $) $) NIL (|has| (-406 |#2|) (-362)))) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-406 |#2|) (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL (|has| (-406 |#2|) (-362)))) (-1762 (((-3 $ "failed") $ $) NIL (|has| (-406 |#2|) (-362)))) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| (-406 |#2|) (-362)))) (-2044 (((-766) $) NIL (|has| (-406 |#2|) (-362)))) (-2343 ((|#1| $ |#1| |#1|) NIL)) (-3092 (((-3 |#2| "failed")) NIL)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| (-406 |#2|) (-362)))) (-2736 (((-406 |#2|) (-1256 $)) NIL) (((-406 |#2|)) 39)) (-3543 (((-766) $) NIL (|has| (-406 |#2|) (-348))) (((-3 (-766) "failed") $ $) NIL (|has| (-406 |#2|) (-348)))) (-4029 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-766)) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168))))) (($ $ (-1168)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168))))) (($ $ (-766)) NIL (-4037 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) NIL (-4037 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-2539 (((-683 (-406 |#2|)) (-1256 $) (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362)))) (-3371 ((|#3|) 50)) (-1653 (($) NIL (|has| (-406 |#2|) (-348)))) (-2205 (((-1256 (-406 |#2|)) $ (-1256 $)) NIL) (((-683 (-406 |#2|)) (-1256 $) (-1256 $)) NIL) (((-1256 (-406 |#2|)) $) 58) (((-683 (-406 |#2|)) (-1256 $)) 103)) (-4208 (((-1256 (-406 |#2|)) $) NIL) (($ (-1256 (-406 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (|has| (-406 |#2|) (-348)))) (-4240 (((-1256 $) (-1256 $)) NIL)) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ (-406 |#2|)) NIL) (($ (-406 (-562))) NIL (-4037 (|has| (-406 |#2|) (-1033 (-406 (-562)))) (|has| (-406 |#2|) (-362)))) (($ $) NIL (|has| (-406 |#2|) (-362)))) (-2059 (($ $) NIL (|has| (-406 |#2|) (-348))) (((-3 $ "failed") $) NIL (|has| (-406 |#2|) (-144)))) (-3683 ((|#3| $) NIL)) (-1568 (((-766)) NIL)) (-4266 (((-112)) 37)) (-3866 (((-112) |#1|) 49) (((-112) |#2|) 131)) (-4291 (((-1256 $)) 93)) (-3799 (((-112) $ $) NIL (|has| (-406 |#2|) (-362)))) (-2960 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3243 (((-112)) NIL)) (-2285 (($) 16 T CONST)) (-2294 (($) 26 T CONST)) (-3113 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-766)) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168))))) (($ $ (-1168)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168))))) (($ $ (-766)) NIL (-4037 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) NIL (-4037 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-1733 (((-112) $ $) NIL)) (-1859 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL (|has| (-406 |#2|) (-362)))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 |#2|)) NIL) (($ (-406 |#2|) $) NIL) (($ (-406 (-562)) $) NIL (|has| (-406 |#2|) (-362))) (($ $ (-406 (-562))) NIL (|has| (-406 |#2|) (-362))))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-341 |#1| |#2| |#3|) (-10 -7 (-15 -2499 ((-1261) (-766))))) (-362) (-1232 |#1|) (-1232 (-406 |#2|)) |#3|) (T -40)) -((-2499 (*1 *2 *3) (-12 (-5 *3 (-766)) (-4 *4 (-362)) (-4 *5 (-1232 *4)) (-5 *2 (-1261)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1232 (-406 *5))) (-14 *7 *6)))) -(-13 (-341 |#1| |#2| |#3|) (-10 -7 (-15 -2499 ((-1261) (-766))))) -((-3186 ((|#2| |#2|) 48)) (-3002 ((|#2| |#2|) 119 (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-451)) (|has| |#1| (-845)) (|has| |#1| (-1033 (-562)))))) (-1399 ((|#2| |#2|) 86 (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-451)) (|has| |#1| (-845)) (|has| |#1| (-1033 (-562)))))) (-2272 ((|#2| |#2|) 87 (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-451)) (|has| |#1| (-845)) (|has| |#1| (-1033 (-562)))))) (-4203 ((|#2| (-114) |#2| (-766)) 115 (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-451)) (|has| |#1| (-845)) (|has| |#1| (-1033 (-562)))))) (-2697 (((-1164 |#2|) |#2|) 45)) (-2346 ((|#2| |#2| (-639 (-608 |#2|))) 18) ((|#2| |#2| (-639 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) -(((-41 |#1| |#2|) (-10 -7 (-15 -3186 (|#2| |#2|)) (-15 -2346 (|#2| |#2|)) (-15 -2346 (|#2| |#2| |#2|)) (-15 -2346 (|#2| |#2| (-639 |#2|))) (-15 -2346 (|#2| |#2| (-639 (-608 |#2|)))) (-15 -2697 ((-1164 |#2|) |#2|)) (IF (|has| |#1| (-845)) (IF (|has| |#1| (-451)) (IF (|has| |#1| (-1033 (-562))) (IF (|has| |#2| (-429 |#1|)) (PROGN (-15 -2272 (|#2| |#2|)) (-15 -1399 (|#2| |#2|)) (-15 -3002 (|#2| |#2|)) (-15 -4203 (|#2| (-114) |#2| (-766)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-554) (-13 (-362) (-301) (-10 -8 (-15 -4063 ((-1117 |#1| (-608 $)) $)) (-15 -4079 ((-1117 |#1| (-608 $)) $)) (-15 -4053 ($ (-1117 |#1| (-608 $))))))) (T -41)) -((-4203 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-766)) (-4 *5 (-451)) (-4 *5 (-845)) (-4 *5 (-1033 (-562))) (-4 *5 (-554)) (-5 *1 (-41 *5 *2)) (-4 *2 (-429 *5)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4063 ((-1117 *5 (-608 $)) $)) (-15 -4079 ((-1117 *5 (-608 $)) $)) (-15 -4053 ($ (-1117 *5 (-608 $))))))))) (-3002 (*1 *2 *2) (-12 (-4 *3 (-451)) (-4 *3 (-845)) (-4 *3 (-1033 (-562))) (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4063 ((-1117 *3 (-608 $)) $)) (-15 -4079 ((-1117 *3 (-608 $)) $)) (-15 -4053 ($ (-1117 *3 (-608 $))))))))) (-1399 (*1 *2 *2) (-12 (-4 *3 (-451)) (-4 *3 (-845)) (-4 *3 (-1033 (-562))) (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4063 ((-1117 *3 (-608 $)) $)) (-15 -4079 ((-1117 *3 (-608 $)) $)) (-15 -4053 ($ (-1117 *3 (-608 $))))))))) (-2272 (*1 *2 *2) (-12 (-4 *3 (-451)) (-4 *3 (-845)) (-4 *3 (-1033 (-562))) (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4063 ((-1117 *3 (-608 $)) $)) (-15 -4079 ((-1117 *3 (-608 $)) $)) (-15 -4053 ($ (-1117 *3 (-608 $))))))))) (-2697 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-1164 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-362) (-301) (-10 -8 (-15 -4063 ((-1117 *4 (-608 $)) $)) (-15 -4079 ((-1117 *4 (-608 $)) $)) (-15 -4053 ($ (-1117 *4 (-608 $))))))))) (-2346 (*1 *2 *2 *3) (-12 (-5 *3 (-639 (-608 *2))) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4063 ((-1117 *4 (-608 $)) $)) (-15 -4079 ((-1117 *4 (-608 $)) $)) (-15 -4053 ($ (-1117 *4 (-608 $))))))) (-4 *4 (-554)) (-5 *1 (-41 *4 *2)))) (-2346 (*1 *2 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4063 ((-1117 *4 (-608 $)) $)) (-15 -4079 ((-1117 *4 (-608 $)) $)) (-15 -4053 ($ (-1117 *4 (-608 $))))))) (-4 *4 (-554)) (-5 *1 (-41 *4 *2)))) (-2346 (*1 *2 *2 *2) (-12 (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4063 ((-1117 *3 (-608 $)) $)) (-15 -4079 ((-1117 *3 (-608 $)) $)) (-15 -4053 ($ (-1117 *3 (-608 $))))))))) (-2346 (*1 *2 *2) (-12 (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4063 ((-1117 *3 (-608 $)) $)) (-15 -4079 ((-1117 *3 (-608 $)) $)) (-15 -4053 ($ (-1117 *3 (-608 $))))))))) (-3186 (*1 *2 *2) (-12 (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-362) (-301) (-10 -8 (-15 -4063 ((-1117 *3 (-608 $)) $)) (-15 -4079 ((-1117 *3 (-608 $)) $)) (-15 -4053 ($ (-1117 *3 (-608 $)))))))))) -(-10 -7 (-15 -3186 (|#2| |#2|)) (-15 -2346 (|#2| |#2|)) (-15 -2346 (|#2| |#2| |#2|)) (-15 -2346 (|#2| |#2| (-639 |#2|))) (-15 -2346 (|#2| |#2| (-639 (-608 |#2|)))) (-15 -2697 ((-1164 |#2|) |#2|)) (IF (|has| |#1| (-845)) (IF (|has| |#1| (-451)) (IF (|has| |#1| (-1033 (-562))) (IF (|has| |#2| (-429 |#1|)) (PROGN (-15 -2272 (|#2| |#2|)) (-15 -1399 (|#2| |#2|)) (-15 -3002 (|#2| |#2|)) (-15 -4203 (|#2| (-114) |#2| (-766)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-1635 (((-417 (-1164 |#3|)) (-1164 |#3|) (-639 (-48))) 23) (((-417 |#3|) |#3| (-639 (-48))) 19))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -1635 ((-417 |#3|) |#3| (-639 (-48)))) (-15 -1635 ((-417 (-1164 |#3|)) (-1164 |#3|) (-639 (-48))))) (-845) (-788) (-944 (-48) |#2| |#1|)) (T -42)) -((-1635 (*1 *2 *3 *4) (-12 (-5 *4 (-639 (-48))) (-4 *5 (-845)) (-4 *6 (-788)) (-4 *7 (-944 (-48) *6 *5)) (-5 *2 (-417 (-1164 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1164 *7)))) (-1635 (*1 *2 *3 *4) (-12 (-5 *4 (-639 (-48))) (-4 *5 (-845)) (-4 *6 (-788)) (-5 *2 (-417 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-944 (-48) *6 *5))))) -(-10 -7 (-15 -1635 ((-417 |#3|) |#3| (-639 (-48)))) (-15 -1635 ((-417 (-1164 |#3|)) (-1164 |#3|) (-639 (-48))))) -((-3988 (((-766) |#2|) 65)) (-2921 (((-766) |#2|) 68)) (-3202 (((-639 |#2|)) 33)) (-2034 (((-766) |#2|) 67)) (-2503 (((-766) |#2|) 64)) (-1444 (((-766) |#2|) 66)) (-4212 (((-639 (-683 |#1|))) 60)) (-4213 (((-639 |#2|)) 55)) (-3630 (((-639 |#2|) |#2|) 43)) (-2361 (((-639 |#2|)) 57)) (-1577 (((-639 |#2|)) 56)) (-3909 (((-639 (-683 |#1|))) 48)) (-1815 (((-639 |#2|)) 54)) (-2148 (((-639 |#2|) |#2|) 42)) (-2890 (((-639 |#2|)) 50)) (-3886 (((-639 (-683 |#1|))) 61)) (-1316 (((-639 |#2|)) 59)) (-4291 (((-1256 |#2|) (-1256 |#2|)) 83 (|has| |#1| (-306))))) -(((-43 |#1| |#2|) (-10 -7 (-15 -2034 ((-766) |#2|)) (-15 -2921 ((-766) |#2|)) (-15 -2503 ((-766) |#2|)) (-15 -3988 ((-766) |#2|)) (-15 -1444 ((-766) |#2|)) (-15 -2890 ((-639 |#2|))) (-15 -2148 ((-639 |#2|) |#2|)) (-15 -3630 ((-639 |#2|) |#2|)) (-15 -1815 ((-639 |#2|))) (-15 -4213 ((-639 |#2|))) (-15 -1577 ((-639 |#2|))) (-15 -2361 ((-639 |#2|))) (-15 -1316 ((-639 |#2|))) (-15 -3909 ((-639 (-683 |#1|)))) (-15 -4212 ((-639 (-683 |#1|)))) (-15 -3886 ((-639 (-683 |#1|)))) (-15 -3202 ((-639 |#2|))) (IF (|has| |#1| (-306)) (-15 -4291 ((-1256 |#2|) (-1256 |#2|))) |%noBranch|)) (-554) (-416 |#1|)) (T -43)) -((-4291 (*1 *2 *2) (-12 (-5 *2 (-1256 *4)) (-4 *4 (-416 *3)) (-4 *3 (-306)) (-4 *3 (-554)) (-5 *1 (-43 *3 *4)))) (-3202 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-639 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-3886 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-639 (-683 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-4212 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-639 (-683 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-3909 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-639 (-683 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-1316 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-639 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-2361 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-639 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-1577 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-639 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-4213 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-639 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-1815 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-639 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-3630 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-639 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-2148 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-639 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-2890 (*1 *2) (-12 (-4 *3 (-554)) (-5 *2 (-639 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-416 *3)))) (-1444 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-766)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-3988 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-766)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-2503 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-766)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-2921 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-766)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4)))) (-2034 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-766)) (-5 *1 (-43 *4 *3)) (-4 *3 (-416 *4))))) -(-10 -7 (-15 -2034 ((-766) |#2|)) (-15 -2921 ((-766) |#2|)) (-15 -2503 ((-766) |#2|)) (-15 -3988 ((-766) |#2|)) (-15 -1444 ((-766) |#2|)) (-15 -2890 ((-639 |#2|))) (-15 -2148 ((-639 |#2|) |#2|)) (-15 -3630 ((-639 |#2|) |#2|)) (-15 -1815 ((-639 |#2|))) (-15 -4213 ((-639 |#2|))) (-15 -1577 ((-639 |#2|))) (-15 -2361 ((-639 |#2|))) (-15 -1316 ((-639 |#2|))) (-15 -3909 ((-639 (-683 |#1|)))) (-15 -4212 ((-639 (-683 |#1|)))) (-15 -3886 ((-639 (-683 |#1|)))) (-15 -3202 ((-639 |#2|))) (IF (|has| |#1| (-306)) (-15 -4291 ((-1256 |#2|) (-1256 |#2|))) |%noBranch|)) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-4310 (((-3 $ "failed")) NIL (|has| |#1| (-554)))) (-2781 (((-3 $ "failed") $ $) NIL)) (-2016 (((-1256 (-683 |#1|)) (-1256 $)) NIL) (((-1256 (-683 |#1|))) 24)) (-1540 (((-1256 $)) 51)) (-3329 (($) NIL T CONST)) (-1469 (((-3 (-2 (|:| |particular| $) (|:| -4291 (-639 $))) "failed")) NIL (|has| |#1| (-554)))) (-2447 (((-3 $ "failed")) NIL (|has| |#1| (-554)))) (-3945 (((-683 |#1|) (-1256 $)) NIL) (((-683 |#1|)) NIL)) (-2452 ((|#1| $) NIL)) (-2995 (((-683 |#1|) $ (-1256 $)) NIL) (((-683 |#1|) $) NIL)) (-4276 (((-3 $ "failed") $) NIL (|has| |#1| (-554)))) (-3996 (((-1164 (-947 |#1|))) NIL (|has| |#1| (-362)))) (-2127 (($ $ (-916)) NIL)) (-2949 ((|#1| $) NIL)) (-3407 (((-1164 |#1|) $) NIL (|has| |#1| (-554)))) (-2200 ((|#1| (-1256 $)) NIL) ((|#1|) NIL)) (-2974 (((-1164 |#1|) $) NIL)) (-3178 (((-112)) 87)) (-3916 (($ (-1256 |#1|) (-1256 $)) NIL) (($ (-1256 |#1|)) NIL)) (-1694 (((-3 $ "failed") $) 14 (|has| |#1| (-554)))) (-2172 (((-916)) 52)) (-1832 (((-112)) NIL)) (-1492 (($ $ (-916)) NIL)) (-2531 (((-112)) NIL)) (-3671 (((-112)) NIL)) (-2394 (((-112)) 89)) (-3502 (((-3 (-2 (|:| |particular| $) (|:| -4291 (-639 $))) "failed")) NIL (|has| |#1| (-554)))) (-3839 (((-3 $ "failed")) NIL (|has| |#1| (-554)))) (-3506 (((-683 |#1|) (-1256 $)) NIL) (((-683 |#1|)) NIL)) (-2664 ((|#1| $) NIL)) (-1583 (((-683 |#1|) $ (-1256 $)) NIL) (((-683 |#1|) $) NIL)) (-2217 (((-3 $ "failed") $) NIL (|has| |#1| (-554)))) (-2620 (((-1164 (-947 |#1|))) NIL (|has| |#1| (-362)))) (-3235 (($ $ (-916)) NIL)) (-3495 ((|#1| $) NIL)) (-3849 (((-1164 |#1|) $) NIL (|has| |#1| (-554)))) (-1636 ((|#1| (-1256 $)) NIL) ((|#1|) NIL)) (-3099 (((-1164 |#1|) $) NIL)) (-3302 (((-112)) 86)) (-3696 (((-1150) $) NIL)) (-2720 (((-112)) 93)) (-1579 (((-112)) 92)) (-2104 (((-112)) 94)) (-1709 (((-1112) $) NIL)) (-3626 (((-112)) 88)) (-2343 ((|#1| $ (-562)) 54)) (-2205 (((-1256 |#1|) $ (-1256 $)) 48) (((-683 |#1|) (-1256 $) (-1256 $)) NIL) (((-1256 |#1|) $) 28) (((-683 |#1|) (-1256 $)) NIL)) (-4208 (((-1256 |#1|) $) NIL) (($ (-1256 |#1|)) NIL)) (-2555 (((-639 (-947 |#1|)) (-1256 $)) NIL) (((-639 (-947 |#1|))) NIL)) (-2114 (($ $ $) NIL)) (-3901 (((-112)) 84)) (-4053 (((-857) $) 69) (($ (-1256 |#1|)) 22)) (-4291 (((-1256 $)) 45)) (-1823 (((-639 (-1256 |#1|))) NIL (|has| |#1| (-554)))) (-2584 (($ $ $ $) NIL)) (-4309 (((-112)) 82)) (-1360 (($ (-683 |#1|) $) 18)) (-4324 (($ $ $) NIL)) (-1517 (((-112)) 85)) (-2636 (((-112)) 83)) (-3488 (((-112)) 81)) (-2285 (($) NIL T CONST)) (-1733 (((-112) $ $) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1134 |#2| |#1|) $) 19))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-416 |#1|) (-642 (-1134 |#2| |#1|)) (-10 -8 (-15 -4053 ($ (-1256 |#1|))))) (-362) (-916) (-639 (-1168)) (-1256 (-683 |#1|))) (T -44)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-362)) (-14 *6 (-1256 (-683 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-916)) (-14 *5 (-639 (-1168)))))) -(-13 (-416 |#1|) (-642 (-1134 |#2| |#1|)) (-10 -8 (-15 -4053 ($ (-1256 |#1|))))) -((-4041 (((-112) $ $) NIL (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-2533 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL)) (-2358 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL)) (-3120 (($ $) NIL)) (-1443 (($) NIL) (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL)) (-3655 (((-1261) $ |#1| |#1|) NIL (|has| $ (-6 -4404))) (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4404)))) (-1335 (($ $ (-562)) NIL (|has| $ (-6 -4404)))) (-1706 (((-112) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-845)))) (-3737 (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4404))) (($ $) NIL (-12 (|has| $ (-6 -4404)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-845))))) (-1395 (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-845)))) (-3735 (((-112) $ (-766)) NIL)) (-2677 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL (|has| $ (-6 -4404)))) (-3400 (($ $ $) 27 (|has| $ (-6 -4404)))) (-1393 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL (|has| $ (-6 -4404)))) (-3239 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) 29 (|has| $ (-6 -4404)))) (-4200 ((|#2| $ |#1| |#2|) 45) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ (-562) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL (|has| $ (-6 -4404))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ (-1223 (-562)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL (|has| $ (-6 -4404))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ "last" (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL (|has| $ (-6 -4404))) (($ $ "rest" $) NIL (|has| $ (-6 -4404))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ "first" (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL (|has| $ (-6 -4404))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ "value" (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL (|has| $ (-6 -4404)))) (-3742 (($ $ (-639 $)) NIL (|has| $ (-6 -4404)))) (-2968 (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL)) (-3556 (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-2349 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL)) (-1472 (((-3 |#2| "failed") |#1| $) 37)) (-3329 (($) NIL T CONST)) (-2673 (($ $) NIL (|has| $ (-6 -4404)))) (-2676 (($ $) NIL)) (-1434 (($ $ (-766)) NIL) (($ $) 24)) (-3923 (($ $) NIL (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092))))) (-3729 (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL (|has| $ (-6 -4403))) (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-3 |#2| "failed") |#1| $) 47) (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL) (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (-1475 (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-1954 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL (|has| $ (-6 -4403))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL (|has| $ (-6 -4403))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-1507 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4404))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ (-562) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL (|has| $ (-6 -4404)))) (-1420 ((|#2| $ |#1|) NIL) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ (-562)) NIL)) (-2101 (((-112) $) NIL)) (-4265 (((-562) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL) (((-562) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092))) (((-562) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ (-562)) NIL (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (-1720 (((-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 18 (|has| $ (-6 -4403))) (((-639 |#2|) $) NIL (|has| $ (-6 -4403))) (((-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 18 (|has| $ (-6 -4403)))) (-2409 (((-639 $) $) NIL)) (-4188 (((-112) $ $) NIL (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (-1458 (($ (-766) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL)) (-4172 (((-112) $ (-766)) NIL)) (-1849 ((|#1| $) NIL (|has| |#1| (-845))) (((-562) $) 32 (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-845)))) (-3124 (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-845)))) (-4103 (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-845)))) (-2123 (((-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-639 |#2|) $) NIL (|has| $ (-6 -4403))) (((-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092)))) (((-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092))))) (-1929 ((|#1| $) NIL (|has| |#1| (-845))) (((-562) $) 34 (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-845)))) (-1491 (($ (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4404))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4404))) (($ (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL)) (-3716 (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-4008 (((-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL)) (-3179 (((-112) $) NIL)) (-3696 (((-1150) $) 41 (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1504 (($ $ (-766)) NIL) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL)) (-1521 (((-639 |#1|) $) 20)) (-4278 (((-112) |#1| $) NIL)) (-2078 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL)) (-1581 (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL) (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ (-562)) NIL) (($ $ $ (-562)) NIL)) (-3295 (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ (-562)) NIL) (($ $ $ (-562)) NIL)) (-3336 (((-639 |#1|) $) NIL) (((-639 (-562)) $) NIL)) (-1987 (((-112) |#1| $) NIL) (((-112) (-562) $) NIL)) (-1709 (((-1112) $) NIL (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1421 ((|#2| $) NIL (|has| |#1| (-845))) (($ $ (-766)) NIL) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 23)) (-1963 (((-3 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) "failed") (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL) (((-3 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) "failed") (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL)) (-3510 (($ $ |#2|) NIL (|has| $ (-6 -4404))) (($ $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL (|has| $ (-6 -4404)))) (-2038 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL)) (-3745 (((-112) $) NIL)) (-3008 (((-112) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403))) (((-112) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))))) NIL (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-293 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-639 |#2|) (-639 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-293 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-639 (-293 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))))) NIL (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092))))) (-1452 (((-112) $ $) NIL)) (-2716 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092)))) (((-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092))))) (-2366 (((-639 |#2|) $) NIL) (((-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 17)) (-3087 (((-112) $) 16)) (-1663 (($) 13)) (-2343 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ (-562) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ (-562)) NIL) (($ $ (-1223 (-562))) NIL) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ "first") NIL) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $ "value") NIL)) (-1423 (((-562) $ $) NIL)) (-1932 (($) 12) (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL)) (-1527 (($ $ (-562)) NIL) (($ $ (-1223 (-562))) NIL)) (-2880 (($ $ (-562)) NIL) (($ $ (-1223 (-562))) NIL)) (-2473 (((-112) $) NIL)) (-3734 (($ $) NIL)) (-3659 (($ $) NIL (|has| $ (-6 -4404)))) (-3595 (((-766) $) NIL)) (-2333 (($ $) NIL)) (-1723 (((-766) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-766) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (((-766) |#2| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092)))) (((-766) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403))) (((-766) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (((-766) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-2694 (($ $ $ (-562)) NIL (|has| $ (-6 -4404)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-610 (-535))))) (-4064 (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL) (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL)) (-2587 (($ $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL) (($ $ $) NIL)) (-2767 (($ $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL) (($ (-639 $)) NIL) (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 25) (($ $ $) NIL)) (-4053 (((-857) $) NIL (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-609 (-857))) (|has| |#2| (-609 (-857)))))) (-3643 (((-639 $) $) NIL)) (-2985 (((-112) $ $) NIL (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (-4131 (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL)) (-1515 (((-3 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) "failed") |#1| $) 43)) (-2879 (((-112) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403))) (((-112) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-1798 (((-112) $ $) NIL (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-845)))) (-1771 (((-112) $ $) NIL (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-845)))) (-1733 (((-112) $ $) NIL (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1785 (((-112) $ $) NIL (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-845)))) (-1761 (((-112) $ $) NIL (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-845)))) (-3492 (((-766) $) 22 (|has| $ (-6 -4403))))) -(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1092) (-1092)) (T -45)) +(3195384 . 3443021592) +((-3523 (((-112) (-1 (-112) |#2| |#2|) $) 63) (((-112) $) NIL)) (-2770 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-1849 ((|#2| $ (-563) |#2|) NIL) ((|#2| $ (-1224 (-563)) |#2|) 34)) (-2907 (($ $) 59)) (-2444 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-4368 (((-563) (-1 (-112) |#2|) $) 22) (((-563) |#2| $) NIL) (((-563) |#2| $ (-563)) 73)) (-2659 (((-640 |#2|) $) 13)) (-3164 (($ (-1 (-112) |#2| |#2|) $ $) 47) (($ $ $) NIL)) (-4345 (($ (-1 |#2| |#2|) $) 29)) (-2240 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-3396 (($ |#2| $ (-563)) NIL) (($ $ $ (-563)) 50)) (-4203 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 24)) (-3138 (((-112) (-1 (-112) |#2|) $) 21)) (-2309 ((|#2| $ (-563) |#2|) NIL) ((|#2| $ (-563)) NIL) (($ $ (-1224 (-563))) 49)) (-2963 (($ $ (-563)) 56) (($ $ (-1224 (-563))) 55)) (-1709 (((-767) (-1 (-112) |#2|) $) 26) (((-767) |#2| $) NIL)) (-3076 (($ $ $ (-563)) 52)) (-1872 (($ $) 51)) (-1707 (($ (-640 |#2|)) 53)) (-2853 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-640 $)) 62)) (-1693 (((-858) $) 69)) (-4383 (((-112) (-1 (-112) |#2|) $) 20)) (-1718 (((-112) $ $) 72)) (-1744 (((-112) $ $) 75))) +(((-18 |#1| |#2|) (-10 -8 (-15 -1718 ((-112) |#1| |#1|)) (-15 -1693 ((-858) |#1|)) (-15 -1744 ((-112) |#1| |#1|)) (-15 -2770 (|#1| |#1|)) (-15 -2770 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2907 (|#1| |#1|)) (-15 -3076 (|#1| |#1| |#1| (-563))) (-15 -3523 ((-112) |#1|)) (-15 -3164 (|#1| |#1| |#1|)) (-15 -4368 ((-563) |#2| |#1| (-563))) (-15 -4368 ((-563) |#2| |#1|)) (-15 -4368 ((-563) (-1 (-112) |#2|) |#1|)) (-15 -3523 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3164 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1849 (|#2| |#1| (-1224 (-563)) |#2|)) (-15 -3396 (|#1| |#1| |#1| (-563))) (-15 -3396 (|#1| |#2| |#1| (-563))) (-15 -2963 (|#1| |#1| (-1224 (-563)))) (-15 -2963 (|#1| |#1| (-563))) (-15 -2309 (|#1| |#1| (-1224 (-563)))) (-15 -2240 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2853 (|#1| (-640 |#1|))) (-15 -2853 (|#1| |#1| |#1|)) (-15 -2853 (|#1| |#2| |#1|)) (-15 -2853 (|#1| |#1| |#2|)) (-15 -1707 (|#1| (-640 |#2|))) (-15 -4203 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2309 (|#2| |#1| (-563))) (-15 -2309 (|#2| |#1| (-563) |#2|)) (-15 -1849 (|#2| |#1| (-563) |#2|)) (-15 -1709 ((-767) |#2| |#1|)) (-15 -2659 ((-640 |#2|) |#1|)) (-15 -1709 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -3138 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4383 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4345 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2240 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1872 (|#1| |#1|))) (-19 |#2|) (-1208)) (T -18)) +NIL +(-10 -8 (-15 -1718 ((-112) |#1| |#1|)) (-15 -1693 ((-858) |#1|)) (-15 -1744 ((-112) |#1| |#1|)) (-15 -2770 (|#1| |#1|)) (-15 -2770 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2907 (|#1| |#1|)) (-15 -3076 (|#1| |#1| |#1| (-563))) (-15 -3523 ((-112) |#1|)) (-15 -3164 (|#1| |#1| |#1|)) (-15 -4368 ((-563) |#2| |#1| (-563))) (-15 -4368 ((-563) |#2| |#1|)) (-15 -4368 ((-563) (-1 (-112) |#2|) |#1|)) (-15 -3523 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3164 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1849 (|#2| |#1| (-1224 (-563)) |#2|)) (-15 -3396 (|#1| |#1| |#1| (-563))) (-15 -3396 (|#1| |#2| |#1| (-563))) (-15 -2963 (|#1| |#1| (-1224 (-563)))) (-15 -2963 (|#1| |#1| (-563))) (-15 -2309 (|#1| |#1| (-1224 (-563)))) (-15 -2240 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2853 (|#1| (-640 |#1|))) (-15 -2853 (|#1| |#1| |#1|)) (-15 -2853 (|#1| |#2| |#1|)) (-15 -2853 (|#1| |#1| |#2|)) (-15 -1707 (|#1| (-640 |#2|))) (-15 -4203 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2309 (|#2| |#1| (-563))) (-15 -2309 (|#2| |#1| (-563) |#2|)) (-15 -1849 (|#2| |#1| (-563) |#2|)) (-15 -1709 ((-767) |#2| |#1|)) (-15 -2659 ((-640 |#2|) |#1|)) (-15 -1709 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -3138 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4383 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4345 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2240 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1872 (|#1| |#1|))) +((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-4378 (((-1262) $ (-563) (-563)) 40 (|has| $ (-6 -4408)))) (-3523 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-846)))) (-2770 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4408))) (($ $) 88 (-12 (|has| |#1| (-846)) (|has| $ (-6 -4408))))) (-1642 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-846)))) (-2759 (((-112) $ (-767)) 8)) (-1849 ((|#1| $ (-563) |#1|) 52 (|has| $ (-6 -4408))) ((|#1| $ (-1224 (-563)) |#1|) 58 (|has| $ (-6 -4408)))) (-2256 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4407)))) (-4239 (($) 7 T CONST)) (-2907 (($ $) 90 (|has| $ (-6 -4408)))) (-4382 (($ $) 100)) (-3813 (($ $) 78 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1459 (($ |#1| $) 77 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4407)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4407)))) (-4355 ((|#1| $ (-563) |#1|) 53 (|has| $ (-6 -4408)))) (-4293 ((|#1| $ (-563)) 51)) (-4368 (((-563) (-1 (-112) |#1|) $) 97) (((-563) |#1| $) 96 (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) 95 (|has| |#1| (-1093)))) (-2659 (((-640 |#1|) $) 30 (|has| $ (-6 -4407)))) (-1566 (($ (-767) |#1|) 69)) (-2581 (((-112) $ (-767)) 9)) (-2411 (((-563) $) 43 (|has| (-563) (-846)))) (-3084 (($ $ $) 87 (|has| |#1| (-846)))) (-3164 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-846)))) (-2259 (((-640 |#1|) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-3860 (((-563) $) 44 (|has| (-563) (-846)))) (-1777 (($ $ $) 86 (|has| |#1| (-846)))) (-4345 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2382 (((-112) $ (-767)) 10)) (-3573 (((-1151) $) 22 (|has| |#1| (-1093)))) (-3396 (($ |#1| $ (-563)) 60) (($ $ $ (-563)) 59)) (-4318 (((-640 (-563)) $) 46)) (-3192 (((-112) (-563) $) 47)) (-1694 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3781 ((|#1| $) 42 (|has| (-563) (-846)))) (-4203 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2358 (($ $ |#1|) 41 (|has| $ (-6 -4408)))) (-3138 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) 14)) (-2105 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2836 (((-640 |#1|) $) 48)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-2309 ((|#1| $ (-563) |#1|) 50) ((|#1| $ (-563)) 49) (($ $ (-1224 (-563))) 63)) (-2963 (($ $ (-563)) 62) (($ $ (-1224 (-563))) 61)) (-1709 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4407))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-3076 (($ $ $ (-563)) 91 (|has| $ (-6 -4408)))) (-1872 (($ $) 13)) (-2220 (((-536) $) 79 (|has| |#1| (-611 (-536))))) (-1707 (($ (-640 |#1|)) 70)) (-2853 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-640 $)) 65)) (-1693 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-4383 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-1778 (((-112) $ $) 84 (|has| |#1| (-846)))) (-1756 (((-112) $ $) 83 (|has| |#1| (-846)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-1768 (((-112) $ $) 85 (|has| |#1| (-846)))) (-1744 (((-112) $ $) 82 (|has| |#1| (-846)))) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-19 |#1|) (-140) (-1208)) (T -19)) +NIL +(-13 (-373 |t#1|) (-10 -7 (-6 -4408))) +(((-34) . T) ((-102) -4032 (|has| |#1| (-1093)) (|has| |#1| (-846))) ((-610 (-858)) -4032 (|has| |#1| (-1093)) (|has| |#1| (-846)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-286 #0=(-563) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-601 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-646 |#1|) . T) ((-846) |has| |#1| (-846)) ((-1093) -4032 (|has| |#1| (-1093)) (|has| |#1| (-846))) ((-1208) . T)) +((-1495 (((-3 $ "failed") $ $) 12)) (-1826 (($ $) NIL) (($ $ $) 9)) (* (($ (-917) $) NIL) (($ (-767) $) 16) (($ (-563) $) 21))) +(((-20 |#1|) (-10 -8 (-15 * (|#1| (-563) |#1|)) (-15 -1826 (|#1| |#1| |#1|)) (-15 -1826 (|#1| |#1|)) (-15 -1495 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) (-21)) (T -20)) +NIL +(-10 -8 (-15 * (|#1| (-563) |#1|)) (-15 -1826 (|#1| |#1| |#1|)) (-15 -1826 (|#1| |#1|)) (-15 -1495 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11)) (-2241 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20))) +(((-21) (-140)) (T -21)) +((-1826 (*1 *1 *1) (-4 *1 (-21))) (-1826 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-563))))) +(-13 (-131) (-10 -8 (-15 -1826 ($ $)) (-15 -1826 ($ $ $)) (-15 * ($ (-563) $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-858)) . T) ((-1093) . T)) +((-3411 (((-112) $) 10)) (-4239 (($) 15)) (* (($ (-917) $) 14) (($ (-767) $) 18))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-767) |#1|)) (-15 -3411 ((-112) |#1|)) (-15 -4239 (|#1|)) (-15 * (|#1| (-917) |#1|))) (-23)) (T -22)) +NIL +(-10 -8 (-15 * (|#1| (-767) |#1|)) (-15 -3411 ((-112) |#1|)) (-15 -4239 (|#1|)) (-15 * (|#1| (-917) |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-4239 (($) 17 T CONST)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11)) (-2241 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1814 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15))) +(((-23) (-140)) (T -23)) +((-2241 (*1 *1) (-4 *1 (-23))) (-4239 (*1 *1) (-4 *1 (-23))) (-3411 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-767))))) +(-13 (-25) (-10 -8 (-15 (-2241) ($) -2669) (-15 -4239 ($) -2669) (-15 -3411 ((-112) $)) (-15 * ($ (-767) $)))) +(((-25) . T) ((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) +((* (($ (-917) $) 10))) +(((-24 |#1|) (-10 -8 (-15 * (|#1| (-917) |#1|))) (-25)) (T -24)) +NIL +(-10 -8 (-15 * (|#1| (-917) |#1|))) +((-1677 (((-112) $ $) 7)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11)) (-1718 (((-112) $ $) 6)) (-1814 (($ $ $) 14)) (* (($ (-917) $) 13))) +(((-25) (-140)) (T -25)) +((-1814 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-917))))) +(-13 (-1093) (-10 -8 (-15 -1814 ($ $ $)) (-15 * ($ (-917) $)))) +(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) +((-2802 (((-640 $) (-948 $)) 29) (((-640 $) (-1165 $)) 16) (((-640 $) (-1165 $) (-1169)) 20)) (-3070 (($ (-948 $)) 27) (($ (-1165 $)) 11) (($ (-1165 $) (-1169)) 54)) (-4144 (((-640 $) (-948 $)) 30) (((-640 $) (-1165 $)) 18) (((-640 $) (-1165 $) (-1169)) 19)) (-3457 (($ (-948 $)) 28) (($ (-1165 $)) 13) (($ (-1165 $) (-1169)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -2802 ((-640 |#1|) (-1165 |#1|) (-1169))) (-15 -2802 ((-640 |#1|) (-1165 |#1|))) (-15 -2802 ((-640 |#1|) (-948 |#1|))) (-15 -3070 (|#1| (-1165 |#1|) (-1169))) (-15 -3070 (|#1| (-1165 |#1|))) (-15 -3070 (|#1| (-948 |#1|))) (-15 -4144 ((-640 |#1|) (-1165 |#1|) (-1169))) (-15 -4144 ((-640 |#1|) (-1165 |#1|))) (-15 -4144 ((-640 |#1|) (-948 |#1|))) (-15 -3457 (|#1| (-1165 |#1|) (-1169))) (-15 -3457 (|#1| (-1165 |#1|))) (-15 -3457 (|#1| (-948 |#1|)))) (-27)) (T -26)) +NIL +(-10 -8 (-15 -2802 ((-640 |#1|) (-1165 |#1|) (-1169))) (-15 -2802 ((-640 |#1|) (-1165 |#1|))) (-15 -2802 ((-640 |#1|) (-948 |#1|))) (-15 -3070 (|#1| (-1165 |#1|) (-1169))) (-15 -3070 (|#1| (-1165 |#1|))) (-15 -3070 (|#1| (-948 |#1|))) (-15 -4144 ((-640 |#1|) (-1165 |#1|) (-1169))) (-15 -4144 ((-640 |#1|) (-1165 |#1|))) (-15 -4144 ((-640 |#1|) (-948 |#1|))) (-15 -3457 (|#1| (-1165 |#1|) (-1169))) (-15 -3457 (|#1| (-1165 |#1|))) (-15 -3457 (|#1| (-948 |#1|)))) +((-1677 (((-112) $ $) 7)) (-2802 (((-640 $) (-948 $)) 81) (((-640 $) (-1165 $)) 80) (((-640 $) (-1165 $) (-1169)) 79)) (-3070 (($ (-948 $)) 84) (($ (-1165 $)) 83) (($ (-1165 $) (-1169)) 82)) (-3411 (((-112) $) 16)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 42)) (-4223 (($ $) 41)) (-3156 (((-112) $) 39)) (-1495 (((-3 $ "failed") $ $) 19)) (-4335 (($ $) 74)) (-3205 (((-418 $) $) 73)) (-2186 (($ $) 93)) (-1919 (((-112) $ $) 60)) (-4239 (($) 17 T CONST)) (-4144 (((-640 $) (-948 $)) 87) (((-640 $) (-1165 $)) 86) (((-640 $) (-1165 $) (-1169)) 85)) (-3457 (($ (-948 $)) 90) (($ (-1165 $)) 89) (($ (-1165 $) (-1169)) 88)) (-3090 (($ $ $) 56)) (-3400 (((-3 $ "failed") $) 33)) (-3050 (($ $ $) 57)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) 52)) (-2468 (((-112) $) 72)) (-3827 (((-112) $) 31)) (-1645 (($ $ (-563)) 92)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-3513 (($ $ $) 47) (($ (-640 $)) 46)) (-3573 (((-1151) $) 9)) (-2688 (($ $) 71)) (-1694 (((-1113) $) 10)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3548 (($ $ $) 49) (($ (-640 $)) 48)) (-2174 (((-418 $) $) 75)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3008 (((-3 $ "failed") $ $) 43)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-2628 (((-767) $) 59)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 58)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-407 (-563))) 67)) (-1675 (((-767)) 28)) (-2126 (((-112) $ $) 40)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1837 (($ $ $) 66)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 70) (($ $ (-407 (-563))) 91)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 69) (($ (-407 (-563)) $) 68))) +(((-27) (-140)) (T -27)) +((-3457 (*1 *1 *2) (-12 (-5 *2 (-948 *1)) (-4 *1 (-27)))) (-3457 (*1 *1 *2) (-12 (-5 *2 (-1165 *1)) (-4 *1 (-27)))) (-3457 (*1 *1 *2 *3) (-12 (-5 *2 (-1165 *1)) (-5 *3 (-1169)) (-4 *1 (-27)))) (-4144 (*1 *2 *3) (-12 (-5 *3 (-948 *1)) (-4 *1 (-27)) (-5 *2 (-640 *1)))) (-4144 (*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-27)) (-5 *2 (-640 *1)))) (-4144 (*1 *2 *3 *4) (-12 (-5 *3 (-1165 *1)) (-5 *4 (-1169)) (-4 *1 (-27)) (-5 *2 (-640 *1)))) (-3070 (*1 *1 *2) (-12 (-5 *2 (-948 *1)) (-4 *1 (-27)))) (-3070 (*1 *1 *2) (-12 (-5 *2 (-1165 *1)) (-4 *1 (-27)))) (-3070 (*1 *1 *2 *3) (-12 (-5 *2 (-1165 *1)) (-5 *3 (-1169)) (-4 *1 (-27)))) (-2802 (*1 *2 *3) (-12 (-5 *3 (-948 *1)) (-4 *1 (-27)) (-5 *2 (-640 *1)))) (-2802 (*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-27)) (-5 *2 (-640 *1)))) (-2802 (*1 *2 *3 *4) (-12 (-5 *3 (-1165 *1)) (-5 *4 (-1169)) (-4 *1 (-27)) (-5 *2 (-640 *1))))) +(-13 (-363) (-998) (-10 -8 (-15 -3457 ($ (-948 $))) (-15 -3457 ($ (-1165 $))) (-15 -3457 ($ (-1165 $) (-1169))) (-15 -4144 ((-640 $) (-948 $))) (-15 -4144 ((-640 $) (-1165 $))) (-15 -4144 ((-640 $) (-1165 $) (-1169))) (-15 -3070 ($ (-948 $))) (-15 -3070 ($ (-1165 $))) (-15 -3070 ($ (-1165 $) (-1169))) (-15 -2802 ((-640 $) (-948 $))) (-15 -2802 ((-640 $) (-1165 $))) (-15 -2802 ((-640 $) (-1165 $) (-1169))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-613 #0#) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-555) . T) ((-643 #0#) . T) ((-643 $) . T) ((-713 #0#) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-998) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1212) . T)) +((-2802 (((-640 $) (-948 $)) NIL) (((-640 $) (-1165 $)) NIL) (((-640 $) (-1165 $) (-1169)) 50) (((-640 $) $) 19) (((-640 $) $ (-1169)) 41)) (-3070 (($ (-948 $)) NIL) (($ (-1165 $)) NIL) (($ (-1165 $) (-1169)) 52) (($ $) 17) (($ $ (-1169)) 37)) (-4144 (((-640 $) (-948 $)) NIL) (((-640 $) (-1165 $)) NIL) (((-640 $) (-1165 $) (-1169)) 48) (((-640 $) $) 15) (((-640 $) $ (-1169)) 43)) (-3457 (($ (-948 $)) NIL) (($ (-1165 $)) NIL) (($ (-1165 $) (-1169)) NIL) (($ $) 12) (($ $ (-1169)) 39))) +(((-28 |#1| |#2|) (-10 -8 (-15 -2802 ((-640 |#1|) |#1| (-1169))) (-15 -3070 (|#1| |#1| (-1169))) (-15 -2802 ((-640 |#1|) |#1|)) (-15 -3070 (|#1| |#1|)) (-15 -4144 ((-640 |#1|) |#1| (-1169))) (-15 -3457 (|#1| |#1| (-1169))) (-15 -4144 ((-640 |#1|) |#1|)) (-15 -3457 (|#1| |#1|)) (-15 -2802 ((-640 |#1|) (-1165 |#1|) (-1169))) (-15 -2802 ((-640 |#1|) (-1165 |#1|))) (-15 -2802 ((-640 |#1|) (-948 |#1|))) (-15 -3070 (|#1| (-1165 |#1|) (-1169))) (-15 -3070 (|#1| (-1165 |#1|))) (-15 -3070 (|#1| (-948 |#1|))) (-15 -4144 ((-640 |#1|) (-1165 |#1|) (-1169))) (-15 -4144 ((-640 |#1|) (-1165 |#1|))) (-15 -4144 ((-640 |#1|) (-948 |#1|))) (-15 -3457 (|#1| (-1165 |#1|) (-1169))) (-15 -3457 (|#1| (-1165 |#1|))) (-15 -3457 (|#1| (-948 |#1|)))) (-29 |#2|) (-13 (-846) (-555))) (T -28)) +NIL +(-10 -8 (-15 -2802 ((-640 |#1|) |#1| (-1169))) (-15 -3070 (|#1| |#1| (-1169))) (-15 -2802 ((-640 |#1|) |#1|)) (-15 -3070 (|#1| |#1|)) (-15 -4144 ((-640 |#1|) |#1| (-1169))) (-15 -3457 (|#1| |#1| (-1169))) (-15 -4144 ((-640 |#1|) |#1|)) (-15 -3457 (|#1| |#1|)) (-15 -2802 ((-640 |#1|) (-1165 |#1|) (-1169))) (-15 -2802 ((-640 |#1|) (-1165 |#1|))) (-15 -2802 ((-640 |#1|) (-948 |#1|))) (-15 -3070 (|#1| (-1165 |#1|) (-1169))) (-15 -3070 (|#1| (-1165 |#1|))) (-15 -3070 (|#1| (-948 |#1|))) (-15 -4144 ((-640 |#1|) (-1165 |#1|) (-1169))) (-15 -4144 ((-640 |#1|) (-1165 |#1|))) (-15 -4144 ((-640 |#1|) (-948 |#1|))) (-15 -3457 (|#1| (-1165 |#1|) (-1169))) (-15 -3457 (|#1| (-1165 |#1|))) (-15 -3457 (|#1| (-948 |#1|)))) +((-1677 (((-112) $ $) 7)) (-2802 (((-640 $) (-948 $)) 81) (((-640 $) (-1165 $)) 80) (((-640 $) (-1165 $) (-1169)) 79) (((-640 $) $) 125) (((-640 $) $ (-1169)) 123)) (-3070 (($ (-948 $)) 84) (($ (-1165 $)) 83) (($ (-1165 $) (-1169)) 82) (($ $) 126) (($ $ (-1169)) 124)) (-3411 (((-112) $) 16)) (-2606 (((-640 (-1169)) $) 200)) (-2139 (((-407 (-1165 $)) $ (-609 $)) 232 (|has| |#1| (-555)))) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 42)) (-4223 (($ $) 41)) (-3156 (((-112) $) 39)) (-2059 (((-640 (-609 $)) $) 163)) (-1495 (((-3 $ "failed") $ $) 19)) (-4132 (($ $ (-640 (-609 $)) (-640 $)) 153) (($ $ (-640 (-294 $))) 152) (($ $ (-294 $)) 151)) (-4335 (($ $) 74)) (-3205 (((-418 $) $) 73)) (-2186 (($ $) 93)) (-1919 (((-112) $ $) 60)) (-4239 (($) 17 T CONST)) (-4144 (((-640 $) (-948 $)) 87) (((-640 $) (-1165 $)) 86) (((-640 $) (-1165 $) (-1169)) 85) (((-640 $) $) 129) (((-640 $) $ (-1169)) 127)) (-3457 (($ (-948 $)) 90) (($ (-1165 $)) 89) (($ (-1165 $) (-1169)) 88) (($ $) 130) (($ $ (-1169)) 128)) (-2131 (((-3 (-948 |#1|) "failed") $) 250 (|has| |#1| (-1045))) (((-3 (-407 (-948 |#1|)) "failed") $) 234 (|has| |#1| (-555))) (((-3 |#1| "failed") $) 196) (((-3 (-563) "failed") $) 193 (|has| |#1| (-1034 (-563)))) (((-3 (-1169) "failed") $) 187) (((-3 (-609 $) "failed") $) 138) (((-3 (-407 (-563)) "failed") $) 121 (-4032 (-12 (|has| |#1| (-1034 (-563))) (|has| |#1| (-555))) (|has| |#1| (-1034 (-407 (-563))))))) (-2058 (((-948 |#1|) $) 249 (|has| |#1| (-1045))) (((-407 (-948 |#1|)) $) 233 (|has| |#1| (-555))) ((|#1| $) 195) (((-563) $) 194 (|has| |#1| (-1034 (-563)))) (((-1169) $) 186) (((-609 $) $) 137) (((-407 (-563)) $) 122 (-4032 (-12 (|has| |#1| (-1034 (-563))) (|has| |#1| (-555))) (|has| |#1| (-1034 (-407 (-563))))))) (-3090 (($ $ $) 56)) (-2950 (((-684 |#1|) (-684 $)) 240 (|has| |#1| (-1045))) (((-2 (|:| -2835 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 239 (|has| |#1| (-1045))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 120 (-4032 (-2190 (|has| |#1| (-1045)) (|has| |#1| (-636 (-563)))) (-2190 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))))) (((-684 (-563)) (-684 $)) 119 (-4032 (-2190 (|has| |#1| (-1045)) (|has| |#1| (-636 (-563)))) (-2190 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045)))))) (-3400 (((-3 $ "failed") $) 33)) (-3050 (($ $ $) 57)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) 52)) (-2468 (((-112) $) 72)) (-3787 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 192 (|has| |#1| (-882 (-379)))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 191 (|has| |#1| (-882 (-563))))) (-3968 (($ (-640 $)) 157) (($ $) 156)) (-3804 (((-640 (-114)) $) 164)) (-2361 (((-114) (-114)) 165)) (-3827 (((-112) $) 31)) (-3131 (((-112) $) 185 (|has| $ (-1034 (-563))))) (-2711 (($ $) 217 (|has| |#1| (-1045)))) (-2143 (((-1118 |#1| (-609 $)) $) 216 (|has| |#1| (-1045)))) (-1645 (($ $ (-563)) 92)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-3180 (((-1165 $) (-609 $)) 182 (|has| $ (-1045)))) (-3084 (($ $ $) 136)) (-1777 (($ $ $) 135)) (-2240 (($ (-1 $ $) (-609 $)) 171)) (-2875 (((-3 (-609 $) "failed") $) 161)) (-3513 (($ $ $) 47) (($ (-640 $)) 46)) (-3573 (((-1151) $) 9)) (-2127 (((-640 (-609 $)) $) 162)) (-2227 (($ (-114) (-640 $)) 170) (($ (-114) $) 169)) (-3733 (((-3 (-640 $) "failed") $) 211 (|has| |#1| (-1105)))) (-1848 (((-3 (-2 (|:| |val| $) (|:| -1654 (-563))) "failed") $) 220 (|has| |#1| (-1045)))) (-2919 (((-3 (-640 $) "failed") $) 213 (|has| |#1| (-25)))) (-4298 (((-3 (-2 (|:| -2311 (-563)) (|:| |var| (-609 $))) "failed") $) 214 (|has| |#1| (-25)))) (-4086 (((-3 (-2 (|:| |var| (-609 $)) (|:| -1654 (-563))) "failed") $ (-1169)) 219 (|has| |#1| (-1045))) (((-3 (-2 (|:| |var| (-609 $)) (|:| -1654 (-563))) "failed") $ (-114)) 218 (|has| |#1| (-1045))) (((-3 (-2 (|:| |var| (-609 $)) (|:| -1654 (-563))) "failed") $) 212 (|has| |#1| (-1105)))) (-2799 (((-112) $ (-1169)) 168) (((-112) $ (-114)) 167)) (-2688 (($ $) 71)) (-4236 (((-767) $) 160)) (-1694 (((-1113) $) 10)) (-2696 (((-112) $) 198)) (-2706 ((|#1| $) 199)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3548 (($ $ $) 49) (($ (-640 $)) 48)) (-1372 (((-112) $ (-1169)) 173) (((-112) $ $) 172)) (-2174 (((-418 $) $) 75)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3008 (((-3 $ "failed") $ $) 43)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-2359 (((-112) $) 184 (|has| $ (-1034 (-563))))) (-1540 (($ $ (-1169) (-767) (-1 $ $)) 224 (|has| |#1| (-1045))) (($ $ (-1169) (-767) (-1 $ (-640 $))) 223 (|has| |#1| (-1045))) (($ $ (-640 (-1169)) (-640 (-767)) (-640 (-1 $ (-640 $)))) 222 (|has| |#1| (-1045))) (($ $ (-640 (-1169)) (-640 (-767)) (-640 (-1 $ $))) 221 (|has| |#1| (-1045))) (($ $ (-640 (-114)) (-640 $) (-1169)) 210 (|has| |#1| (-611 (-536)))) (($ $ (-114) $ (-1169)) 209 (|has| |#1| (-611 (-536)))) (($ $) 208 (|has| |#1| (-611 (-536)))) (($ $ (-640 (-1169))) 207 (|has| |#1| (-611 (-536)))) (($ $ (-1169)) 206 (|has| |#1| (-611 (-536)))) (($ $ (-114) (-1 $ $)) 181) (($ $ (-114) (-1 $ (-640 $))) 180) (($ $ (-640 (-114)) (-640 (-1 $ (-640 $)))) 179) (($ $ (-640 (-114)) (-640 (-1 $ $))) 178) (($ $ (-1169) (-1 $ $)) 177) (($ $ (-1169) (-1 $ (-640 $))) 176) (($ $ (-640 (-1169)) (-640 (-1 $ (-640 $)))) 175) (($ $ (-640 (-1169)) (-640 (-1 $ $))) 174) (($ $ (-640 $) (-640 $)) 145) (($ $ $ $) 144) (($ $ (-294 $)) 143) (($ $ (-640 (-294 $))) 142) (($ $ (-640 (-609 $)) (-640 $)) 141) (($ $ (-609 $) $) 140)) (-2628 (((-767) $) 59)) (-2309 (($ (-114) (-640 $)) 150) (($ (-114) $ $ $ $) 149) (($ (-114) $ $ $) 148) (($ (-114) $ $) 147) (($ (-114) $) 146)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 58)) (-3071 (($ $ $) 159) (($ $) 158)) (-4202 (($ $ (-1169)) 248 (|has| |#1| (-1045))) (($ $ (-640 (-1169))) 247 (|has| |#1| (-1045))) (($ $ (-1169) (-767)) 246 (|has| |#1| (-1045))) (($ $ (-640 (-1169)) (-640 (-767))) 245 (|has| |#1| (-1045)))) (-1801 (($ $) 227 (|has| |#1| (-555)))) (-2154 (((-1118 |#1| (-609 $)) $) 226 (|has| |#1| (-555)))) (-3390 (($ $) 183 (|has| $ (-1045)))) (-2220 (((-536) $) 254 (|has| |#1| (-611 (-536)))) (($ (-418 $)) 225 (|has| |#1| (-555))) (((-888 (-379)) $) 190 (|has| |#1| (-611 (-888 (-379))))) (((-888 (-563)) $) 189 (|has| |#1| (-611 (-888 (-563)))))) (-4339 (($ $ $) 253 (|has| |#1| (-473)))) (-2146 (($ $ $) 252 (|has| |#1| (-473)))) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-407 (-563))) 67) (($ (-948 |#1|)) 251 (|has| |#1| (-1045))) (($ (-407 (-948 |#1|))) 235 (|has| |#1| (-555))) (($ (-407 (-948 (-407 |#1|)))) 231 (|has| |#1| (-555))) (($ (-948 (-407 |#1|))) 230 (|has| |#1| (-555))) (($ (-407 |#1|)) 229 (|has| |#1| (-555))) (($ (-1118 |#1| (-609 $))) 215 (|has| |#1| (-1045))) (($ |#1|) 197) (($ (-1169)) 188) (($ (-609 $)) 139)) (-2779 (((-3 $ "failed") $) 238 (|has| |#1| (-145)))) (-1675 (((-767)) 28)) (-3079 (($ (-640 $)) 155) (($ $) 154)) (-3734 (((-112) (-114)) 166)) (-2126 (((-112) $ $) 40)) (-1895 (($ (-1169) (-640 $)) 205) (($ (-1169) $ $ $ $) 204) (($ (-1169) $ $ $) 203) (($ (-1169) $ $) 202) (($ (-1169) $) 201)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-3209 (($ $ (-1169)) 244 (|has| |#1| (-1045))) (($ $ (-640 (-1169))) 243 (|has| |#1| (-1045))) (($ $ (-1169) (-767)) 242 (|has| |#1| (-1045))) (($ $ (-640 (-1169)) (-640 (-767))) 241 (|has| |#1| (-1045)))) (-1778 (((-112) $ $) 133)) (-1756 (((-112) $ $) 132)) (-1718 (((-112) $ $) 6)) (-1768 (((-112) $ $) 134)) (-1744 (((-112) $ $) 131)) (-1837 (($ $ $) 66) (($ (-1118 |#1| (-609 $)) (-1118 |#1| (-609 $))) 228 (|has| |#1| (-555)))) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 70) (($ $ (-407 (-563))) 91)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 69) (($ (-407 (-563)) $) 68) (($ $ |#1|) 237 (|has| |#1| (-172))) (($ |#1| $) 236 (|has| |#1| (-172))))) +(((-29 |#1|) (-140) (-13 (-846) (-555))) (T -29)) +((-3457 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-846) (-555))))) (-4144 (*1 *2 *1) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *2 (-640 *1)) (-4 *1 (-29 *3)))) (-3457 (*1 *1 *1 *2) (-12 (-5 *2 (-1169)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-846) (-555))))) (-4144 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-640 *1)) (-4 *1 (-29 *4)))) (-3070 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-846) (-555))))) (-2802 (*1 *2 *1) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *2 (-640 *1)) (-4 *1 (-29 *3)))) (-3070 (*1 *1 *1 *2) (-12 (-5 *2 (-1169)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-846) (-555))))) (-2802 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-640 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-430 |t#1|) (-10 -8 (-15 -3457 ($ $)) (-15 -4144 ((-640 $) $)) (-15 -3457 ($ $ (-1169))) (-15 -4144 ((-640 $) $ (-1169))) (-15 -3070 ($ $)) (-15 -2802 ((-640 $) $)) (-15 -3070 ($ $ (-1169))) (-15 -2802 ((-640 $) $ (-1169))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0#) . T) ((-613 #1=(-407 (-948 |#1|))) |has| |#1| (-555)) ((-613 (-563)) . T) ((-613 #2=(-609 $)) . T) ((-613 #3=(-948 |#1|)) |has| |#1| (-1045)) ((-613 #4=(-1169)) . T) ((-613 |#1|) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-611 (-888 (-379))) |has| |#1| (-611 (-888 (-379)))) ((-611 (-888 (-563))) |has| |#1| (-611 (-888 (-563)))) ((-243) . T) ((-290) . T) ((-307) . T) ((-309 $) . T) ((-302) . T) ((-363) . T) ((-377 |#1|) |has| |#1| (-1045)) ((-400 |#1|) . T) ((-411 |#1|) . T) ((-430 |#1|) . T) ((-452) . T) ((-473) |has| |#1| (-473)) ((-514 (-609 $) $) . T) ((-514 $ $) . T) ((-555) . T) ((-643 #0#) . T) ((-643 |#1|) |has| |#1| (-172)) ((-643 $) . T) ((-636 (-563)) -12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))) ((-636 |#1|) |has| |#1| (-1045)) ((-713 #0#) . T) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) . T) ((-722) . T) ((-846) . T) ((-896 (-1169)) |has| |#1| (-1045)) ((-882 (-379)) |has| |#1| (-882 (-379))) ((-882 (-563)) |has| |#1| (-882 (-563))) ((-880 |#1|) . T) ((-916) . T) ((-998) . T) ((-1034 (-407 (-563))) -4032 (|has| |#1| (-1034 (-407 (-563)))) (-12 (|has| |#1| (-555)) (|has| |#1| (-1034 (-563))))) ((-1034 #1#) |has| |#1| (-555)) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 #2#) . T) ((-1034 #3#) |has| |#1| (-1045)) ((-1034 #4#) . T) ((-1034 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) |has| |#1| (-172)) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1208) . T) ((-1212) . T)) +((-4324 (((-1087 (-225)) $) NIL)) (-4313 (((-1087 (-225)) $) NIL)) (-1441 (($ $ (-225)) 125)) (-1514 (($ (-948 (-563)) (-1169) (-1169) (-1087 (-407 (-563))) (-1087 (-407 (-563)))) 82)) (-4250 (((-640 (-640 (-939 (-225)))) $) 137)) (-1693 (((-858) $) 149))) +(((-30) (-13 (-951) (-10 -8 (-15 -1514 ($ (-948 (-563)) (-1169) (-1169) (-1087 (-407 (-563))) (-1087 (-407 (-563))))) (-15 -1441 ($ $ (-225)))))) (T -30)) +((-1514 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-948 (-563))) (-5 *3 (-1169)) (-5 *4 (-1087 (-407 (-563)))) (-5 *1 (-30)))) (-1441 (*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30))))) +(-13 (-951) (-10 -8 (-15 -1514 ($ (-948 (-563)) (-1169) (-1169) (-1087 (-407 (-563))) (-1087 (-407 (-563))))) (-15 -1441 ($ $ (-225))))) +((-1677 (((-112) $ $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 19) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3359 (((-1128) $) 11)) (-4211 (((-1128) $) 9)) (-1718 (((-112) $ $) NIL))) +(((-31) (-13 (-1076) (-10 -8 (-15 -4211 ((-1128) $)) (-15 -3359 ((-1128) $))))) (T -31)) +((-4211 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-31)))) (-3359 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-31))))) +(-13 (-1076) (-10 -8 (-15 -4211 ((-1128) $)) (-15 -3359 ((-1128) $)))) +((-3457 ((|#2| (-1165 |#2|) (-1169)) 42)) (-2361 (((-114) (-114)) 55)) (-3180 (((-1165 |#2|) (-609 |#2|)) 132 (|has| |#1| (-1034 (-563))))) (-1665 ((|#2| |#1| (-563)) 122 (|has| |#1| (-1034 (-563))))) (-2714 ((|#2| (-1165 |#2|) |#2|) 29)) (-2568 (((-858) (-640 |#2|)) 84)) (-3390 ((|#2| |#2|) 128 (|has| |#1| (-1034 (-563))))) (-3734 (((-112) (-114)) 17)) (** ((|#2| |#2| (-407 (-563))) 95 (|has| |#1| (-1034 (-563)))))) +(((-32 |#1| |#2|) (-10 -7 (-15 -3457 (|#2| (-1165 |#2|) (-1169))) (-15 -2361 ((-114) (-114))) (-15 -3734 ((-112) (-114))) (-15 -2714 (|#2| (-1165 |#2|) |#2|)) (-15 -2568 ((-858) (-640 |#2|))) (IF (|has| |#1| (-1034 (-563))) (PROGN (-15 ** (|#2| |#2| (-407 (-563)))) (-15 -3180 ((-1165 |#2|) (-609 |#2|))) (-15 -3390 (|#2| |#2|)) (-15 -1665 (|#2| |#1| (-563)))) |%noBranch|)) (-13 (-846) (-555)) (-430 |#1|)) (T -32)) +((-1665 (*1 *2 *3 *4) (-12 (-5 *4 (-563)) (-4 *2 (-430 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1034 *4)) (-4 *3 (-13 (-846) (-555))))) (-3390 (*1 *2 *2) (-12 (-4 *3 (-1034 (-563))) (-4 *3 (-13 (-846) (-555))) (-5 *1 (-32 *3 *2)) (-4 *2 (-430 *3)))) (-3180 (*1 *2 *3) (-12 (-5 *3 (-609 *5)) (-4 *5 (-430 *4)) (-4 *4 (-1034 (-563))) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-1165 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-563))) (-4 *4 (-1034 (-563))) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-32 *4 *2)) (-4 *2 (-430 *4)))) (-2568 (*1 *2 *3) (-12 (-5 *3 (-640 *5)) (-4 *5 (-430 *4)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-858)) (-5 *1 (-32 *4 *5)))) (-2714 (*1 *2 *3 *2) (-12 (-5 *3 (-1165 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-32 *4 *2)))) (-3734 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-430 *4)))) (-2361 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-555))) (-5 *1 (-32 *3 *4)) (-4 *4 (-430 *3)))) (-3457 (*1 *2 *3 *4) (-12 (-5 *3 (-1165 *2)) (-5 *4 (-1169)) (-4 *2 (-430 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-846) (-555)))))) +(-10 -7 (-15 -3457 (|#2| (-1165 |#2|) (-1169))) (-15 -2361 ((-114) (-114))) (-15 -3734 ((-112) (-114))) (-15 -2714 (|#2| (-1165 |#2|) |#2|)) (-15 -2568 ((-858) (-640 |#2|))) (IF (|has| |#1| (-1034 (-563))) (PROGN (-15 ** (|#2| |#2| (-407 (-563)))) (-15 -3180 ((-1165 |#2|) (-609 |#2|))) (-15 -3390 (|#2| |#2|)) (-15 -1665 (|#2| |#1| (-563)))) |%noBranch|)) +((-2759 (((-112) $ (-767)) 16)) (-4239 (($) 10)) (-2581 (((-112) $ (-767)) 15)) (-2382 (((-112) $ (-767)) 14)) (-2026 (((-112) $ $) 8)) (-3756 (((-112) $) 13))) +(((-33 |#1|) (-10 -8 (-15 -4239 (|#1|)) (-15 -2759 ((-112) |#1| (-767))) (-15 -2581 ((-112) |#1| (-767))) (-15 -2382 ((-112) |#1| (-767))) (-15 -3756 ((-112) |#1|)) (-15 -2026 ((-112) |#1| |#1|))) (-34)) (T -33)) +NIL +(-10 -8 (-15 -4239 (|#1|)) (-15 -2759 ((-112) |#1| (-767))) (-15 -2581 ((-112) |#1| (-767))) (-15 -2382 ((-112) |#1| (-767))) (-15 -3756 ((-112) |#1|)) (-15 -2026 ((-112) |#1| |#1|))) +((-2759 (((-112) $ (-767)) 8)) (-4239 (($) 7 T CONST)) (-2581 (((-112) $ (-767)) 9)) (-2382 (((-112) $ (-767)) 10)) (-2026 (((-112) $ $) 14)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-1872 (($ $) 13)) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-34) (-140)) (T -34)) +((-2026 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1872 (*1 *1 *1) (-4 *1 (-34))) (-3135 (*1 *1) (-4 *1 (-34))) (-3756 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-2382 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112)))) (-2581 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112)))) (-2759 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112)))) (-4239 (*1 *1) (-4 *1 (-34))) (-3608 (*1 *2 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-34)) (-5 *2 (-767))))) +(-13 (-1208) (-10 -8 (-15 -2026 ((-112) $ $)) (-15 -1872 ($ $)) (-15 -3135 ($)) (-15 -3756 ((-112) $)) (-15 -2382 ((-112) $ (-767))) (-15 -2581 ((-112) $ (-767))) (-15 -2759 ((-112) $ (-767))) (-15 -4239 ($) -2669) (IF (|has| $ (-6 -4407)) (-15 -3608 ((-767) $)) |%noBranch|))) +(((-1208) . T)) +((-1840 (($ $) 11)) (-1817 (($ $) 10)) (-1862 (($ $) 9)) (-1311 (($ $) 8)) (-1851 (($ $) 7)) (-1829 (($ $) 6))) +(((-35) (-140)) (T -35)) +((-1840 (*1 *1 *1) (-4 *1 (-35))) (-1817 (*1 *1 *1) (-4 *1 (-35))) (-1862 (*1 *1 *1) (-4 *1 (-35))) (-1311 (*1 *1 *1) (-4 *1 (-35))) (-1851 (*1 *1 *1) (-4 *1 (-35))) (-1829 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -1829 ($ $)) (-15 -1851 ($ $)) (-15 -1311 ($ $)) (-15 -1862 ($ $)) (-15 -1817 ($ $)) (-15 -1840 ($ $)))) +((-1677 (((-112) $ $) 19 (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| |#2| (-1093)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093))))) (-2619 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 125)) (-3442 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 148)) (-4302 (($ $) 146)) (-1552 (($) 72) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) 71)) (-4378 (((-1262) $ |#1| |#1|) 99 (|has| $ (-6 -4408))) (((-1262) $ (-563) (-563)) 178 (|has| $ (-6 -4408)))) (-1624 (($ $ (-563)) 159 (|has| $ (-6 -4408)))) (-3523 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-846)))) (-2770 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 200 (|has| $ (-6 -4408))) (($ $) 199 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-846)) (|has| $ (-6 -4408))))) (-1642 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-846)))) (-2759 (((-112) $ (-767)) 8)) (-2936 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) 134 (|has| $ (-6 -4408)))) (-3692 (($ $ $) 155 (|has| $ (-6 -4408)))) (-3889 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) 157 (|has| $ (-6 -4408)))) (-1543 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) 153 (|has| $ (-6 -4408)))) (-1849 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ (-563) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) 189 (|has| $ (-6 -4408))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ (-1224 (-563)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) 160 (|has| $ (-6 -4408))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ "last" (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) 158 (|has| $ (-6 -4408))) (($ $ "rest" $) 156 (|has| $ (-6 -4408))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ "first" (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) 154 (|has| $ (-6 -4408))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ "value" (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) 133 (|has| $ (-6 -4408)))) (-2811 (($ $ (-640 $)) 132 (|has| $ (-6 -4408)))) (-2812 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 45 (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 216)) (-2256 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 55 (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 175 (|has| $ (-6 -4407)))) (-3431 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 147)) (-1577 (((-3 |#2| "failed") |#1| $) 61)) (-4239 (($) 7 T CONST)) (-2907 (($ $) 201 (|has| $ (-6 -4408)))) (-4382 (($ $) 211)) (-3792 (($ $ (-767)) 142) (($ $) 140)) (-4005 (($ $) 214 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (-3813 (($ $) 58 (-4032 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| $ (-6 -4407))) (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| $ (-6 -4407)))))) (-2705 (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 47 (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 46 (|has| $ (-6 -4407))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 220) (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 215 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (-1459 (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| $ (-6 -4407)))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 54 (|has| $ (-6 -4407))) (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 177 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| $ (-6 -4407)))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 174 (|has| $ (-6 -4407)))) (-2444 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) 56 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| $ (-6 -4407)))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) 53 (|has| $ (-6 -4407))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 52 (|has| $ (-6 -4407))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) 176 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| $ (-6 -4407)))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) 173 (|has| $ (-6 -4407))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 172 (|has| $ (-6 -4407)))) (-4355 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4408))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ (-563) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) 190 (|has| $ (-6 -4408)))) (-4293 ((|#2| $ |#1|) 88) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ (-563)) 188)) (-2018 (((-112) $) 192)) (-4368 (((-563) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 208) (((-563) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 207 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093))) (((-563) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ (-563)) 206 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (-2659 (((-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 30 (|has| $ (-6 -4407))) (((-640 |#2|) $) 79 (|has| $ (-6 -4407))) (((-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 114 (|has| $ (-6 -4407)))) (-2071 (((-640 $) $) 123)) (-1469 (((-112) $ $) 131 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (-1566 (($ (-767) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) 169)) (-2581 (((-112) $ (-767)) 9)) (-2411 ((|#1| $) 96 (|has| |#1| (-846))) (((-563) $) 180 (|has| (-563) (-846)))) (-3084 (($ $ $) 198 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-846)))) (-2878 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-846)))) (-3164 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-846)))) (-2259 (((-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 29 (|has| $ (-6 -4407))) (((-640 |#2|) $) 80 (|has| $ (-6 -4407))) (((-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 115 (|has| $ (-6 -4407)))) (-1729 (((-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| $ (-6 -4407)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1093)) (|has| $ (-6 -4407)))) (((-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| $ (-6 -4407))))) (-3860 ((|#1| $) 95 (|has| |#1| (-846))) (((-563) $) 181 (|has| (-563) (-846)))) (-1777 (($ $ $) 197 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-846)))) (-4345 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 34 (|has| $ (-6 -4408))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4408))) (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 110 (|has| $ (-6 -4408)))) (-2240 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 109)) (-3651 (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) 225)) (-2382 (((-112) $ (-767)) 10)) (-2512 (((-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 128)) (-2194 (((-112) $) 124)) (-3573 (((-1151) $) 22 (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| |#2| (-1093)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093))))) (-1481 (($ $ (-767)) 145) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 143)) (-1303 (((-640 |#1|) $) 63)) (-4173 (((-112) |#1| $) 64)) (-2964 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 39)) (-1812 (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 40) (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ (-563)) 219) (($ $ $ (-563)) 218)) (-3396 (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ (-563)) 162) (($ $ $ (-563)) 161)) (-4318 (((-640 |#1|) $) 93) (((-640 (-563)) $) 183)) (-3192 (((-112) |#1| $) 92) (((-112) (-563) $) 184)) (-1694 (((-1113) $) 21 (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| |#2| (-1093)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093))))) (-3781 ((|#2| $) 97 (|has| |#1| (-846))) (($ $ (-767)) 139) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 137)) (-4203 (((-3 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) "failed") (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 51) (((-3 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) "failed") (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 171)) (-2358 (($ $ |#2|) 98 (|has| $ (-6 -4408))) (($ $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) 179 (|has| $ (-6 -4408)))) (-3755 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 41)) (-2833 (((-112) $) 191)) (-3138 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 32 (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 112 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))))) 26 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) 25 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) 24 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) 23 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) 86 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) 84 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 (-294 |#2|))) 83 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) 121 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) 120 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) 119 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-640 (-294 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))))) 118 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093))))) (-2026 (((-112) $ $) 14)) (-2105 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093)))) (((-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 182 (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093))))) (-2836 (((-640 |#2|) $) 91) (((-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 185)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-2309 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ (-563) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) 187) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ (-563)) 186) (($ $ (-1224 (-563))) 165) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ "first") 138) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ "value") 126)) (-4071 (((-563) $ $) 129)) (-3890 (($) 49) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) 48)) (-1314 (($ $ (-563)) 222) (($ $ (-1224 (-563))) 221)) (-2963 (($ $ (-563)) 164) (($ $ (-1224 (-563))) 163)) (-1434 (((-112) $) 127)) (-2749 (($ $) 151)) (-1322 (($ $) 152 (|has| $ (-6 -4408)))) (-1950 (((-767) $) 150)) (-3752 (($ $) 149)) (-1709 (((-767) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 31 (|has| $ (-6 -4407))) (((-767) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| $ (-6 -4407)))) (((-767) |#2| $) 81 (-12 (|has| |#2| (-1093)) (|has| $ (-6 -4407)))) (((-767) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4407))) (((-767) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 116 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| $ (-6 -4407)))) (((-767) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 113 (|has| $ (-6 -4407)))) (-3076 (($ $ $ (-563)) 202 (|has| $ (-6 -4408)))) (-1872 (($ $) 13)) (-2220 (((-536) $) 59 (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-611 (-536))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-611 (-536)))))) (-1707 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) 50) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) 170)) (-3245 (($ $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) 224) (($ $ $) 223)) (-2853 (($ $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) 168) (($ (-640 $)) 167) (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 136) (($ $ $) 135)) (-1693 (((-858) $) 18 (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-610 (-858))) (|has| |#2| (-610 (-858))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-610 (-858)))))) (-4258 (((-640 $) $) 122)) (-2962 (((-112) $ $) 130 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (-2233 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) 42)) (-1491 (((-3 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) "failed") |#1| $) 108)) (-4383 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 33 (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 111 (|has| $ (-6 -4407)))) (-1778 (((-112) $ $) 195 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-846)))) (-1756 (((-112) $ $) 194 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-846)))) (-1718 (((-112) $ $) 20 (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| |#2| (-1093)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093))))) (-1768 (((-112) $ $) 196 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-846)))) (-1744 (((-112) $ $) 193 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-846)))) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-36 |#1| |#2|) (-140) (-1093) (-1093)) (T -36)) +((-1491 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-5 *2 (-2 (|:| -2387 *3) (|:| -2557 *4)))))) +(-13 (-1184 |t#1| |t#2|) (-661 (-2 (|:| -2387 |t#1|) (|:| -2557 |t#2|))) (-10 -8 (-15 -1491 ((-3 (-2 (|:| -2387 |t#1|) (|:| -2557 |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T) ((-102) -4032 (|has| |#2| (-1093)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-846))) ((-610 (-858)) -4032 (|has| |#2| (-1093)) (|has| |#2| (-610 (-858))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-846)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-610 (-858)))) ((-151 #1=(-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T) ((-611 (-536)) |has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-611 (-536))) ((-229 #0#) . T) ((-235 #0#) . T) ((-286 #2=(-563) #1#) . T) ((-286 |#1| |#2|) . T) ((-288 #2# #1#) . T) ((-288 |#1| |#2|) . T) ((-309 #1#) -12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093))) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((-282 #1#) . T) ((-373 #1#) . T) ((-489 #1#) . T) ((-489 |#2|) . T) ((-601 #2# #1#) . T) ((-601 |#1| |#2|) . T) ((-514 #1# #1#) -12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093))) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((-607 |#1| |#2|) . T) ((-646 #1#) . T) ((-661 #1#) . T) ((-846) |has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-846)) ((-1006 #1#) . T) ((-1093) -4032 (|has| |#2| (-1093)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-846))) ((-1142 #1#) . T) ((-1184 |#1| |#2|) . T) ((-1208) . T) ((-1245 #1#) . T)) +((-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ |#2|) 10))) +(((-37 |#1| |#2|) (-10 -8 (-15 -1693 (|#1| |#2|)) (-15 -1693 (|#1| (-563))) (-15 -1693 ((-858) |#1|))) (-38 |#2|) (-172)) (T -37)) +NIL +(-10 -8 (-15 -1693 (|#1| |#2|)) (-15 -1693 (|#1| (-563))) (-15 -1693 ((-858) |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-3400 (((-3 $ "failed") $) 33)) (-3827 (((-112) $) 31)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 38)) (-1675 (((-767)) 28)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-38 |#1|) (-140) (-172)) (T -38)) +NIL +(-13 (-1045) (-713 |t#1|) (-613 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 |#1|) . T) ((-722) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) +((-2335 (((-418 |#1|) |#1|) 41)) (-2174 (((-418 |#1|) |#1|) 30) (((-418 |#1|) |#1| (-640 (-48))) 33)) (-4055 (((-112) |#1|) 56))) +(((-39 |#1|) (-10 -7 (-15 -2174 ((-418 |#1|) |#1| (-640 (-48)))) (-15 -2174 ((-418 |#1|) |#1|)) (-15 -2335 ((-418 |#1|) |#1|)) (-15 -4055 ((-112) |#1|))) (-1233 (-48))) (T -39)) +((-4055 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1233 (-48))))) (-2335 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1233 (-48))))) (-2174 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1233 (-48))))) (-2174 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-48))) (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1233 (-48)))))) +(-10 -7 (-15 -2174 ((-418 |#1|) |#1| (-640 (-48)))) (-15 -2174 ((-418 |#1|) |#1|)) (-15 -2335 ((-418 |#1|) |#1|)) (-15 -4055 ((-112) |#1|))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-4067 (((-2 (|:| |num| (-1257 |#2|)) (|:| |den| |#2|)) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| (-407 |#2|) (-363)))) (-4223 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-3156 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-3561 (((-684 (-407 |#2|)) (-1257 $)) NIL) (((-684 (-407 |#2|))) NIL)) (-1733 (((-407 |#2|) $) NIL)) (-2752 (((-1181 (-917) (-767)) (-563)) NIL (|has| (-407 |#2|) (-349)))) (-1495 (((-3 $ "failed") $ $) NIL)) (-4335 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-3205 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-1919 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-3749 (((-767)) NIL (|has| (-407 |#2|) (-368)))) (-1504 (((-112)) NIL)) (-2456 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-563) "failed") $) NIL (|has| (-407 |#2|) (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| (-407 |#2|) (-1034 (-407 (-563))))) (((-3 (-407 |#2|) "failed") $) NIL)) (-2058 (((-563) $) NIL (|has| (-407 |#2|) (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| (-407 |#2|) (-1034 (-407 (-563))))) (((-407 |#2|) $) NIL)) (-3937 (($ (-1257 (-407 |#2|)) (-1257 $)) NIL) (($ (-1257 (-407 |#2|))) 57) (($ (-1257 |#2|) |#2|) 125)) (-3711 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-407 |#2|) (-349)))) (-3090 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3914 (((-684 (-407 |#2|)) $ (-1257 $)) NIL) (((-684 (-407 |#2|)) $) NIL)) (-2950 (((-684 (-563)) (-684 $)) NIL (|has| (-407 |#2|) (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| (-407 |#2|) (-636 (-563)))) (((-2 (|:| -2835 (-684 (-407 |#2|))) (|:| |vec| (-1257 (-407 |#2|)))) (-684 $) (-1257 $)) NIL) (((-684 (-407 |#2|)) (-684 $)) NIL)) (-4364 (((-1257 $) (-1257 $)) NIL)) (-2444 (($ |#3|) NIL) (((-3 $ "failed") (-407 |#3|)) NIL (|has| (-407 |#2|) (-363)))) (-3400 (((-3 $ "failed") $) NIL)) (-2077 (((-640 (-640 |#1|))) NIL (|has| |#1| (-368)))) (-3632 (((-112) |#1| |#1|) NIL)) (-2522 (((-917)) NIL)) (-1691 (($) NIL (|has| (-407 |#2|) (-368)))) (-4077 (((-112)) NIL)) (-1852 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3050 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL (|has| (-407 |#2|) (-363)))) (-1300 (($ $) NIL)) (-1571 (($) NIL (|has| (-407 |#2|) (-349)))) (-2366 (((-112) $) NIL (|has| (-407 |#2|) (-349)))) (-1637 (($ $ (-767)) NIL (|has| (-407 |#2|) (-349))) (($ $) NIL (|has| (-407 |#2|) (-349)))) (-2468 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-3254 (((-917) $) NIL (|has| (-407 |#2|) (-349))) (((-829 (-917)) $) NIL (|has| (-407 |#2|) (-349)))) (-3827 (((-112) $) NIL)) (-3273 (((-767)) NIL)) (-3132 (((-1257 $) (-1257 $)) 102)) (-3793 (((-407 |#2|) $) NIL)) (-3370 (((-640 (-948 |#1|)) (-1169)) NIL (|has| |#1| (-363)))) (-2408 (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-349)))) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| (-407 |#2|) (-363)))) (-3941 ((|#3| $) NIL (|has| (-407 |#2|) (-363)))) (-1476 (((-917) $) NIL (|has| (-407 |#2|) (-368)))) (-2433 ((|#3| $) NIL)) (-3513 (($ (-640 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3573 (((-1151) $) NIL)) (-1712 (((-1262) (-767)) 79)) (-2095 (((-684 (-407 |#2|))) 51)) (-3295 (((-684 (-407 |#2|))) 44)) (-2688 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-2145 (($ (-1257 |#2|) |#2|) 126)) (-4218 (((-684 (-407 |#2|))) 45)) (-3500 (((-684 (-407 |#2|))) 43)) (-2914 (((-2 (|:| |num| (-684 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-3447 (((-2 (|:| |num| (-1257 |#2|)) (|:| |den| |#2|)) $) 64)) (-2993 (((-1257 $)) 42)) (-3815 (((-1257 $)) 41)) (-2532 (((-112) $) NIL)) (-1294 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2523 (($) NIL (|has| (-407 |#2|) (-349)) CONST)) (-2555 (($ (-917)) NIL (|has| (-407 |#2|) (-368)))) (-3140 (((-3 |#2| "failed")) NIL)) (-1694 (((-1113) $) NIL)) (-2327 (((-767)) NIL)) (-4333 (($) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| (-407 |#2|) (-363)))) (-3548 (($ (-640 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-2727 (((-640 (-2 (|:| -2174 (-563)) (|:| -1654 (-563))))) NIL (|has| (-407 |#2|) (-349)))) (-2174 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-3008 (((-3 $ "failed") $ $) NIL (|has| (-407 |#2|) (-363)))) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| (-407 |#2|) (-363)))) (-2628 (((-767) $) NIL (|has| (-407 |#2|) (-363)))) (-2309 ((|#1| $ |#1| |#1|) NIL)) (-2621 (((-3 |#2| "failed")) NIL)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-2315 (((-407 |#2|) (-1257 $)) NIL) (((-407 |#2|)) 39)) (-1423 (((-767) $) NIL (|has| (-407 |#2|) (-349))) (((-3 (-767) "failed") $ $) NIL (|has| (-407 |#2|) (-349)))) (-4202 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-767)) NIL (-4032 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-4032 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-3974 (((-684 (-407 |#2|)) (-1257 $) (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363)))) (-3390 ((|#3|) 50)) (-4284 (($) NIL (|has| (-407 |#2|) (-349)))) (-1880 (((-1257 (-407 |#2|)) $ (-1257 $)) NIL) (((-684 (-407 |#2|)) (-1257 $) (-1257 $)) NIL) (((-1257 (-407 |#2|)) $) 58) (((-684 (-407 |#2|)) (-1257 $)) 103)) (-2220 (((-1257 (-407 |#2|)) $) NIL) (($ (-1257 (-407 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| (-407 |#2|) (-349)))) (-1962 (((-1257 $) (-1257 $)) NIL)) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ (-407 |#2|)) NIL) (($ (-407 (-563))) NIL (-4032 (|has| (-407 |#2|) (-1034 (-407 (-563)))) (|has| (-407 |#2|) (-363)))) (($ $) NIL (|has| (-407 |#2|) (-363)))) (-2779 (($ $) NIL (|has| (-407 |#2|) (-349))) (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-145)))) (-3421 ((|#3| $) NIL)) (-1675 (((-767)) NIL)) (-4042 (((-112)) 37)) (-1528 (((-112) |#1|) 49) (((-112) |#2|) 131)) (-4315 (((-1257 $)) 93)) (-2126 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-2732 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1581 (((-112)) NIL)) (-2241 (($) 16 T CONST)) (-2254 (($) 26 T CONST)) (-3209 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-767)) NIL (-4032 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-4032 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-1718 (((-112) $ $) NIL)) (-1837 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| (-407 |#2|) (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 |#2|)) NIL) (($ (-407 |#2|) $) NIL) (($ (-407 (-563)) $) NIL (|has| (-407 |#2|) (-363))) (($ $ (-407 (-563))) NIL (|has| (-407 |#2|) (-363))))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-342 |#1| |#2| |#3|) (-10 -7 (-15 -1712 ((-1262) (-767))))) (-363) (-1233 |#1|) (-1233 (-407 |#2|)) |#3|) (T -40)) +((-1712 (*1 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-363)) (-4 *5 (-1233 *4)) (-5 *2 (-1262)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1233 (-407 *5))) (-14 *7 *6)))) +(-13 (-342 |#1| |#2| |#3|) (-10 -7 (-15 -1712 ((-1262) (-767))))) +((-2278 ((|#2| |#2|) 48)) (-3082 ((|#2| |#2|) 119 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-846)) (|has| |#1| (-1034 (-563)))))) (-3885 ((|#2| |#2|) 86 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-846)) (|has| |#1| (-1034 (-563)))))) (-4381 ((|#2| |#2|) 87 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-846)) (|has| |#1| (-1034 (-563)))))) (-1601 ((|#2| (-114) |#2| (-767)) 115 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-846)) (|has| |#1| (-1034 (-563)))))) (-3112 (((-1165 |#2|) |#2|) 45)) (-2673 ((|#2| |#2| (-640 (-609 |#2|))) 18) ((|#2| |#2| (-640 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) +(((-41 |#1| |#2|) (-10 -7 (-15 -2278 (|#2| |#2|)) (-15 -2673 (|#2| |#2|)) (-15 -2673 (|#2| |#2| |#2|)) (-15 -2673 (|#2| |#2| (-640 |#2|))) (-15 -2673 (|#2| |#2| (-640 (-609 |#2|)))) (-15 -3112 ((-1165 |#2|) |#2|)) (IF (|has| |#1| (-846)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-1034 (-563))) (IF (|has| |#2| (-430 |#1|)) (PROGN (-15 -4381 (|#2| |#2|)) (-15 -3885 (|#2| |#2|)) (-15 -3082 (|#2| |#2|)) (-15 -1601 (|#2| (-114) |#2| (-767)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-555) (-13 (-363) (-302) (-10 -8 (-15 -2143 ((-1118 |#1| (-609 $)) $)) (-15 -2154 ((-1118 |#1| (-609 $)) $)) (-15 -1693 ($ (-1118 |#1| (-609 $))))))) (T -41)) +((-1601 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-767)) (-4 *5 (-452)) (-4 *5 (-846)) (-4 *5 (-1034 (-563))) (-4 *5 (-555)) (-5 *1 (-41 *5 *2)) (-4 *2 (-430 *5)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2143 ((-1118 *5 (-609 $)) $)) (-15 -2154 ((-1118 *5 (-609 $)) $)) (-15 -1693 ($ (-1118 *5 (-609 $))))))))) (-3082 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-846)) (-4 *3 (-1034 (-563))) (-4 *3 (-555)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2143 ((-1118 *3 (-609 $)) $)) (-15 -2154 ((-1118 *3 (-609 $)) $)) (-15 -1693 ($ (-1118 *3 (-609 $))))))))) (-3885 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-846)) (-4 *3 (-1034 (-563))) (-4 *3 (-555)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2143 ((-1118 *3 (-609 $)) $)) (-15 -2154 ((-1118 *3 (-609 $)) $)) (-15 -1693 ($ (-1118 *3 (-609 $))))))))) (-4381 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-846)) (-4 *3 (-1034 (-563))) (-4 *3 (-555)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2143 ((-1118 *3 (-609 $)) $)) (-15 -2154 ((-1118 *3 (-609 $)) $)) (-15 -1693 ($ (-1118 *3 (-609 $))))))))) (-3112 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-1165 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-363) (-302) (-10 -8 (-15 -2143 ((-1118 *4 (-609 $)) $)) (-15 -2154 ((-1118 *4 (-609 $)) $)) (-15 -1693 ($ (-1118 *4 (-609 $))))))))) (-2673 (*1 *2 *2 *3) (-12 (-5 *3 (-640 (-609 *2))) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2143 ((-1118 *4 (-609 $)) $)) (-15 -2154 ((-1118 *4 (-609 $)) $)) (-15 -1693 ($ (-1118 *4 (-609 $))))))) (-4 *4 (-555)) (-5 *1 (-41 *4 *2)))) (-2673 (*1 *2 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2143 ((-1118 *4 (-609 $)) $)) (-15 -2154 ((-1118 *4 (-609 $)) $)) (-15 -1693 ($ (-1118 *4 (-609 $))))))) (-4 *4 (-555)) (-5 *1 (-41 *4 *2)))) (-2673 (*1 *2 *2 *2) (-12 (-4 *3 (-555)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2143 ((-1118 *3 (-609 $)) $)) (-15 -2154 ((-1118 *3 (-609 $)) $)) (-15 -1693 ($ (-1118 *3 (-609 $))))))))) (-2673 (*1 *2 *2) (-12 (-4 *3 (-555)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2143 ((-1118 *3 (-609 $)) $)) (-15 -2154 ((-1118 *3 (-609 $)) $)) (-15 -1693 ($ (-1118 *3 (-609 $))))))))) (-2278 (*1 *2 *2) (-12 (-4 *3 (-555)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2143 ((-1118 *3 (-609 $)) $)) (-15 -2154 ((-1118 *3 (-609 $)) $)) (-15 -1693 ($ (-1118 *3 (-609 $)))))))))) +(-10 -7 (-15 -2278 (|#2| |#2|)) (-15 -2673 (|#2| |#2|)) (-15 -2673 (|#2| |#2| |#2|)) (-15 -2673 (|#2| |#2| (-640 |#2|))) (-15 -2673 (|#2| |#2| (-640 (-609 |#2|)))) (-15 -3112 ((-1165 |#2|) |#2|)) (IF (|has| |#1| (-846)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-1034 (-563))) (IF (|has| |#2| (-430 |#1|)) (PROGN (-15 -4381 (|#2| |#2|)) (-15 -3885 (|#2| |#2|)) (-15 -3082 (|#2| |#2|)) (-15 -1601 (|#2| (-114) |#2| (-767)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-2174 (((-418 (-1165 |#3|)) (-1165 |#3|) (-640 (-48))) 23) (((-418 |#3|) |#3| (-640 (-48))) 19))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -2174 ((-418 |#3|) |#3| (-640 (-48)))) (-15 -2174 ((-418 (-1165 |#3|)) (-1165 |#3|) (-640 (-48))))) (-846) (-789) (-945 (-48) |#2| |#1|)) (T -42)) +((-2174 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-48))) (-4 *5 (-846)) (-4 *6 (-789)) (-4 *7 (-945 (-48) *6 *5)) (-5 *2 (-418 (-1165 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1165 *7)))) (-2174 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-48))) (-4 *5 (-846)) (-4 *6 (-789)) (-5 *2 (-418 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-945 (-48) *6 *5))))) +(-10 -7 (-15 -2174 ((-418 |#3|) |#3| (-640 (-48)))) (-15 -2174 ((-418 (-1165 |#3|)) (-1165 |#3|) (-640 (-48))))) +((-3366 (((-767) |#2|) 65)) (-3560 (((-767) |#2|) 68)) (-2426 (((-640 |#2|)) 33)) (-3708 (((-767) |#2|) 67)) (-1761 (((-767) |#2|) 64)) (-1989 (((-767) |#2|) 66)) (-1681 (((-640 (-684 |#1|))) 60)) (-1696 (((-640 |#2|)) 55)) (-4127 (((-640 |#2|) |#2|) 43)) (-2785 (((-640 |#2|)) 57)) (-1765 (((-640 |#2|)) 56)) (-2011 (((-640 (-684 |#1|))) 48)) (-2070 (((-640 |#2|)) 54)) (-2529 (((-640 |#2|) |#2|) 42)) (-1375 (((-640 |#2|)) 50)) (-1769 (((-640 (-684 |#1|))) 61)) (-1412 (((-640 |#2|)) 59)) (-4315 (((-1257 |#2|) (-1257 |#2|)) 83 (|has| |#1| (-307))))) +(((-43 |#1| |#2|) (-10 -7 (-15 -3708 ((-767) |#2|)) (-15 -3560 ((-767) |#2|)) (-15 -1761 ((-767) |#2|)) (-15 -3366 ((-767) |#2|)) (-15 -1989 ((-767) |#2|)) (-15 -1375 ((-640 |#2|))) (-15 -2529 ((-640 |#2|) |#2|)) (-15 -4127 ((-640 |#2|) |#2|)) (-15 -2070 ((-640 |#2|))) (-15 -1696 ((-640 |#2|))) (-15 -1765 ((-640 |#2|))) (-15 -2785 ((-640 |#2|))) (-15 -1412 ((-640 |#2|))) (-15 -2011 ((-640 (-684 |#1|)))) (-15 -1681 ((-640 (-684 |#1|)))) (-15 -1769 ((-640 (-684 |#1|)))) (-15 -2426 ((-640 |#2|))) (IF (|has| |#1| (-307)) (-15 -4315 ((-1257 |#2|) (-1257 |#2|))) |%noBranch|)) (-555) (-417 |#1|)) (T -43)) +((-4315 (*1 *2 *2) (-12 (-5 *2 (-1257 *4)) (-4 *4 (-417 *3)) (-4 *3 (-307)) (-4 *3 (-555)) (-5 *1 (-43 *3 *4)))) (-2426 (*1 *2) (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1769 (*1 *2) (-12 (-4 *3 (-555)) (-5 *2 (-640 (-684 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1681 (*1 *2) (-12 (-4 *3 (-555)) (-5 *2 (-640 (-684 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-2011 (*1 *2) (-12 (-4 *3 (-555)) (-5 *2 (-640 (-684 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1412 (*1 *2) (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-2785 (*1 *2) (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1765 (*1 *2) (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1696 (*1 *2) (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-2070 (*1 *2) (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-4127 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-640 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-2529 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-640 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-1375 (*1 *2) (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1989 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-3366 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-1761 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-3560 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-3708 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4))))) +(-10 -7 (-15 -3708 ((-767) |#2|)) (-15 -3560 ((-767) |#2|)) (-15 -1761 ((-767) |#2|)) (-15 -3366 ((-767) |#2|)) (-15 -1989 ((-767) |#2|)) (-15 -1375 ((-640 |#2|))) (-15 -2529 ((-640 |#2|) |#2|)) (-15 -4127 ((-640 |#2|) |#2|)) (-15 -2070 ((-640 |#2|))) (-15 -1696 ((-640 |#2|))) (-15 -1765 ((-640 |#2|))) (-15 -2785 ((-640 |#2|))) (-15 -1412 ((-640 |#2|))) (-15 -2011 ((-640 (-684 |#1|)))) (-15 -1681 ((-640 (-684 |#1|)))) (-15 -1769 ((-640 (-684 |#1|)))) (-15 -2426 ((-640 |#2|))) (IF (|has| |#1| (-307)) (-15 -4315 ((-1257 |#2|) (-1257 |#2|))) |%noBranch|)) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1414 (((-3 $ "failed")) NIL (|has| |#1| (-555)))) (-1495 (((-3 $ "failed") $ $) NIL)) (-3507 (((-1257 (-684 |#1|)) (-1257 $)) NIL) (((-1257 (-684 |#1|))) 24)) (-1438 (((-1257 $)) 51)) (-4239 (($) NIL T CONST)) (-2133 (((-3 (-2 (|:| |particular| $) (|:| -4315 (-640 $))) "failed")) NIL (|has| |#1| (-555)))) (-2435 (((-3 $ "failed")) NIL (|has| |#1| (-555)))) (-4220 (((-684 |#1|) (-1257 $)) NIL) (((-684 |#1|)) NIL)) (-2480 ((|#1| $) NIL)) (-3043 (((-684 |#1|) $ (-1257 $)) NIL) (((-684 |#1|) $) NIL)) (-4154 (((-3 $ "failed") $) NIL (|has| |#1| (-555)))) (-3451 (((-1165 (-948 |#1|))) NIL (|has| |#1| (-363)))) (-2300 (($ $ (-917)) NIL)) (-3830 ((|#1| $) NIL)) (-3763 (((-1165 |#1|) $) NIL (|has| |#1| (-555)))) (-1824 ((|#1| (-1257 $)) NIL) ((|#1|) NIL)) (-2876 (((-1165 |#1|) $) NIL)) (-2182 (((-112)) 87)) (-3937 (($ (-1257 |#1|) (-1257 $)) NIL) (($ (-1257 |#1|)) NIL)) (-3400 (((-3 $ "failed") $) 14 (|has| |#1| (-555)))) (-2522 (((-917)) 52)) (-2250 (((-112)) NIL)) (-2287 (($ $ (-917)) NIL)) (-3901 (((-112)) NIL)) (-3308 (((-112)) NIL)) (-3104 (((-112)) 89)) (-2284 (((-3 (-2 (|:| |particular| $) (|:| -4315 (-640 $))) "failed")) NIL (|has| |#1| (-555)))) (-2508 (((-3 $ "failed")) NIL (|has| |#1| (-555)))) (-2328 (((-684 |#1|) (-1257 $)) NIL) (((-684 |#1|)) NIL)) (-2842 ((|#1| $) NIL)) (-1823 (((-684 |#1|) $ (-1257 $)) NIL) (((-684 |#1|) $) NIL)) (-3856 (((-3 $ "failed") $) NIL (|has| |#1| (-555)))) (-3594 (((-1165 (-948 |#1|))) NIL (|has| |#1| (-363)))) (-1494 (($ $ (-917)) NIL)) (-2199 ((|#1| $) NIL)) (-2604 (((-1165 |#1|) $) NIL (|has| |#1| (-555)))) (-4111 ((|#1| (-1257 $)) NIL) ((|#1|) NIL)) (-2665 (((-1165 |#1|) $) NIL)) (-4012 (((-112)) 86)) (-3573 (((-1151) $) NIL)) (-2136 (((-112)) 93)) (-1789 (((-112)) 92)) (-2047 (((-112)) 94)) (-1694 (((-1113) $) NIL)) (-4084 (((-112)) 88)) (-2309 ((|#1| $ (-563)) 54)) (-1880 (((-1257 |#1|) $ (-1257 $)) 48) (((-684 |#1|) (-1257 $) (-1257 $)) NIL) (((-1257 |#1|) $) 28) (((-684 |#1|) (-1257 $)) NIL)) (-2220 (((-1257 |#1|) $) NIL) (($ (-1257 |#1|)) NIL)) (-4152 (((-640 (-948 |#1|)) (-1257 $)) NIL) (((-640 (-948 |#1|))) NIL)) (-2146 (($ $ $) NIL)) (-1936 (((-112)) 84)) (-1693 (((-858) $) 69) (($ (-1257 |#1|)) 22)) (-4315 (((-1257 $)) 45)) (-2138 (((-640 (-1257 |#1|))) NIL (|has| |#1| (-555)))) (-1361 (($ $ $ $) NIL)) (-1402 (((-112)) 82)) (-3726 (($ (-684 |#1|) $) 18)) (-3399 (($ $ $) NIL)) (-2483 (((-112)) 85)) (-3777 (((-112)) 83)) (-2128 (((-112)) 81)) (-2241 (($) NIL T CONST)) (-1718 (((-112) $ $) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1135 |#2| |#1|) $) 19))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-417 |#1|) (-643 (-1135 |#2| |#1|)) (-10 -8 (-15 -1693 ($ (-1257 |#1|))))) (-363) (-917) (-640 (-1169)) (-1257 (-684 |#1|))) (T -44)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-363)) (-14 *6 (-1257 (-684 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-917)) (-14 *5 (-640 (-1169)))))) +(-13 (-417 |#1|) (-643 (-1135 |#2| |#1|)) (-10 -8 (-15 -1693 ($ (-1257 |#1|))))) +((-1677 (((-112) $ $) NIL (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-2619 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL)) (-3442 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL)) (-4302 (($ $) NIL)) (-1552 (($) NIL) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL)) (-4378 (((-1262) $ |#1| |#1|) NIL (|has| $ (-6 -4408))) (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4408)))) (-1624 (($ $ (-563)) NIL (|has| $ (-6 -4408)))) (-3523 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-846)))) (-2770 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4408))) (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-846))))) (-1642 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-846)))) (-2759 (((-112) $ (-767)) NIL)) (-2936 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL (|has| $ (-6 -4408)))) (-3692 (($ $ $) 27 (|has| $ (-6 -4408)))) (-3889 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL (|has| $ (-6 -4408)))) (-1543 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) 29 (|has| $ (-6 -4408)))) (-1849 ((|#2| $ |#1| |#2|) 45) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ (-563) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ (-1224 (-563)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ "last" (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL (|has| $ (-6 -4408))) (($ $ "rest" $) NIL (|has| $ (-6 -4408))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ "first" (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ "value" (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL (|has| $ (-6 -4408)))) (-2811 (($ $ (-640 $)) NIL (|has| $ (-6 -4408)))) (-2812 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL)) (-2256 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-3431 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL)) (-1577 (((-3 |#2| "failed") |#1| $) 37)) (-4239 (($) NIL T CONST)) (-2907 (($ $) NIL (|has| $ (-6 -4408)))) (-4382 (($ $) NIL)) (-3792 (($ $ (-767)) NIL) (($ $) 24)) (-4005 (($ $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093))))) (-2705 (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-3 |#2| "failed") |#1| $) 47) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL) (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (-1459 (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-2444 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL (|has| $ (-6 -4407))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL (|has| $ (-6 -4407))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-4355 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4408))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ (-563) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL (|has| $ (-6 -4408)))) (-4293 ((|#2| $ |#1|) NIL) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ (-563)) NIL)) (-2018 (((-112) $) NIL)) (-4368 (((-563) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL) (((-563) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093))) (((-563) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ (-563)) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (-2659 (((-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 18 (|has| $ (-6 -4407))) (((-640 |#2|) $) NIL (|has| $ (-6 -4407))) (((-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 18 (|has| $ (-6 -4407)))) (-2071 (((-640 $) $) NIL)) (-1469 (((-112) $ $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (-1566 (($ (-767) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL)) (-2581 (((-112) $ (-767)) NIL)) (-2411 ((|#1| $) NIL (|has| |#1| (-846))) (((-563) $) 32 (|has| (-563) (-846)))) (-3084 (($ $ $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-846)))) (-2878 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-846)))) (-3164 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-846)))) (-2259 (((-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-640 |#2|) $) NIL (|has| $ (-6 -4407))) (((-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093)))) (((-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093))))) (-3860 ((|#1| $) NIL (|has| |#1| (-846))) (((-563) $) 34 (|has| (-563) (-846)))) (-1777 (($ $ $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-846)))) (-4345 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4408))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL)) (-3651 (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-2512 (((-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL)) (-2194 (((-112) $) NIL)) (-3573 (((-1151) $) 41 (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1481 (($ $ (-767)) NIL) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL)) (-1303 (((-640 |#1|) $) 20)) (-4173 (((-112) |#1| $) NIL)) (-2964 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL)) (-1812 (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL) (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-3396 (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-4318 (((-640 |#1|) $) NIL) (((-640 (-563)) $) NIL)) (-3192 (((-112) |#1| $) NIL) (((-112) (-563) $) NIL)) (-1694 (((-1113) $) NIL (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-3781 ((|#2| $) NIL (|has| |#1| (-846))) (($ $ (-767)) NIL) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 23)) (-4203 (((-3 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) "failed") (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL) (((-3 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) "failed") (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL)) (-2358 (($ $ |#2|) NIL (|has| $ (-6 -4408))) (($ $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL (|has| $ (-6 -4408)))) (-3755 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL)) (-2833 (((-112) $) NIL)) (-3138 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-640 (-294 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093))))) (-2026 (((-112) $ $) NIL)) (-2105 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093)))) (((-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093))))) (-2836 (((-640 |#2|) $) NIL) (((-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 17)) (-3756 (((-112) $) 16)) (-3135 (($) 13)) (-2309 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ (-563) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ (-563)) NIL) (($ $ (-1224 (-563))) NIL) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ "first") NIL) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $ "value") NIL)) (-4071 (((-563) $ $) NIL)) (-3890 (($) 12) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL)) (-1314 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-2963 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-1434 (((-112) $) NIL)) (-2749 (($ $) NIL)) (-1322 (($ $) NIL (|has| $ (-6 -4408)))) (-1950 (((-767) $) NIL)) (-3752 (($ $) NIL)) (-1709 (((-767) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-767) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407))) (((-767) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (((-767) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-3076 (($ $ $ (-563)) NIL (|has| $ (-6 -4408)))) (-1872 (($ $) NIL)) (-2220 (((-536) $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-611 (-536))))) (-1707 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL)) (-3245 (($ $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL) (($ $ $) NIL)) (-2853 (($ $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL) (($ (-640 $)) NIL) (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 25) (($ $ $) NIL)) (-1693 (((-858) $) NIL (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-610 (-858))) (|has| |#2| (-610 (-858)))))) (-4258 (((-640 $) $) NIL)) (-2962 (((-112) $ $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (-2233 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL)) (-1491 (((-3 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) "failed") |#1| $) 43)) (-4383 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-1778 (((-112) $ $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-846)))) (-1756 (((-112) $ $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-846)))) (-1718 (((-112) $ $) NIL (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1768 (((-112) $ $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-846)))) (-1744 (((-112) $ $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-846)))) (-3608 (((-767) $) 22 (|has| $ (-6 -4407))))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1093) (-1093)) (T -45)) NIL (-36 |#1| |#2|) -((-2833 (((-112) $) 12)) (-4152 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-406 (-562)) $) 25) (($ $ (-406 (-562))) NIL))) -(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-406 (-562)))) (-15 * (|#1| (-406 (-562)) |#1|)) (-15 -2833 ((-112) |#1|)) (-15 -4152 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-562) |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 * (|#1| (-916) |#1|))) (-47 |#2| |#3|) (-1044) (-787)) (T -46)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-406 (-562)))) (-15 * (|#1| (-406 (-562)) |#1|)) (-15 -2833 ((-112) |#1|)) (-15 -4152 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-562) |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 * (|#1| (-916) |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-1965 (($ $) 55 (|has| |#1| (-554)))) (-4102 (((-112) $) 57 (|has| |#1| (-554)))) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-1600 (($ $) 63)) (-1694 (((-3 $ "failed") $) 33)) (-4367 (((-112) $) 31)) (-2833 (((-112) $) 65)) (-1377 (($ |#1| |#2|) 64)) (-4152 (($ (-1 |#1| |#1|) $) 66)) (-1560 (($ $) 68)) (-1573 ((|#1| $) 69)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-1762 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554)))) (-2250 ((|#2| $) 67)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ (-406 (-562))) 60 (|has| |#1| (-38 (-406 (-562))))) (($ $) 52 (|has| |#1| (-554))) (($ |#1|) 50 (|has| |#1| (-171)))) (-2266 ((|#1| $ |#2|) 62)) (-2059 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-1568 (((-766)) 28)) (-3799 (((-112) $ $) 56 (|has| |#1| (-554)))) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1859 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-562)) $) 59 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 58 (|has| |#1| (-38 (-406 (-562))))))) -(((-47 |#1| |#2|) (-139) (-1044) (-787)) (T -47)) -((-1573 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1044)))) (-1560 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-787)))) (-2250 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-787)))) (-4152 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)))) (-2833 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)) (-5 *2 (-112)))) (-1377 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-787)))) (-1600 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-787)))) (-2266 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1044)))) (-1859 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-787)) (-4 *2 (-362))))) -(-13 (-1044) (-111 |t#1| |t#1|) (-10 -8 (-15 -1573 (|t#1| $)) (-15 -1560 ($ $)) (-15 -2250 (|t#2| $)) (-15 -4152 ($ (-1 |t#1| |t#1|) $)) (-15 -2833 ((-112) $)) (-15 -1377 ($ |t#1| |t#2|)) (-15 -1600 ($ $)) (-15 -2266 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-362)) (-15 -1859 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-171)) (PROGN (-6 (-171)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-554)) (-6 (-554)) |%noBranch|) (IF (|has| |t#1| (-38 (-406 (-562)))) (-6 (-38 (-406 (-562)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-554)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-562)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #0#) |has| |#1| (-38 (-406 (-562)))) ((-612 (-562)) . T) ((-612 |#1|) |has| |#1| (-171)) ((-612 $) |has| |#1| (-554)) ((-609 (-857)) . T) ((-171) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-289) |has| |#1| (-554)) ((-554) |has| |#1| (-554)) ((-642 #0#) |has| |#1| (-38 (-406 (-562)))) ((-642 |#1|) . T) ((-642 $) . T) ((-712 #0#) |has| |#1| (-38 (-406 (-562)))) ((-712 |#1|) |has| |#1| (-171)) ((-712 $) |has| |#1| (-554)) ((-721) . T) ((-1050 #0#) |has| |#1| (-38 (-406 (-562)))) ((-1050 |#1|) . T) ((-1050 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) -((-4041 (((-112) $ $) NIL)) (-1763 (((-639 $) (-1164 $) (-1168)) NIL) (((-639 $) (-1164 $)) NIL) (((-639 $) (-947 $)) NIL)) (-2391 (($ (-1164 $) (-1168)) NIL) (($ (-1164 $)) NIL) (($ (-947 $)) NIL)) (-4325 (((-112) $) 11)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-1501 (((-639 (-608 $)) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3164 (($ $ (-293 $)) NIL) (($ $ (-639 (-293 $))) NIL) (($ $ (-639 (-608 $)) (-639 $)) NIL)) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-1644 (($ $) NIL)) (-1436 (((-112) $ $) NIL)) (-3329 (($) NIL T CONST)) (-1431 (((-639 $) (-1164 $) (-1168)) NIL) (((-639 $) (-1164 $)) NIL) (((-639 $) (-947 $)) NIL)) (-2608 (($ (-1164 $) (-1168)) NIL) (($ (-1164 $)) NIL) (($ (-947 $)) NIL)) (-4048 (((-3 (-608 $) "failed") $) NIL) (((-3 (-562) "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL)) (-3960 (((-608 $) $) NIL) (((-562) $) NIL) (((-406 (-562)) $) NIL)) (-1810 (($ $ $) NIL)) (-3449 (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL) (((-683 (-562)) (-683 $)) NIL) (((-2 (|:| -1767 (-683 (-406 (-562)))) (|:| |vec| (-1256 (-406 (-562))))) (-683 $) (-1256 $)) NIL) (((-683 (-406 (-562))) (-683 $)) NIL)) (-1954 (($ $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-3521 (((-112) $) NIL)) (-2229 (($ $) NIL) (($ (-639 $)) NIL)) (-4364 (((-639 (-114)) $) NIL)) (-1502 (((-114) (-114)) NIL)) (-4367 (((-112) $) 14)) (-3152 (((-112) $) NIL (|has| $ (-1033 (-562))))) (-4063 (((-1117 (-562) (-608 $)) $) NIL)) (-1895 (($ $ (-562)) NIL)) (-4363 (((-1164 $) (-1164 $) (-608 $)) NIL) (((-1164 $) (-1164 $) (-639 (-608 $))) NIL) (($ $ (-608 $)) NIL) (($ $ (-639 (-608 $))) NIL)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-3476 (((-1164 $) (-608 $)) NIL (|has| $ (-1044)))) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-4152 (($ (-1 $ $) (-608 $)) NIL)) (-4068 (((-3 (-608 $) "failed") $) NIL)) (-1564 (($ (-639 $)) NIL) (($ $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1582 (((-639 (-608 $)) $) NIL)) (-4141 (($ (-114) $) NIL) (($ (-114) (-639 $)) NIL)) (-3115 (((-112) $ (-114)) NIL) (((-112) $ (-1168)) NIL)) (-1525 (($ $) NIL)) (-3059 (((-766) $) NIL)) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ (-639 $)) NIL) (($ $ $) NIL)) (-1533 (((-112) $ $) NIL) (((-112) $ (-1168)) NIL)) (-1635 (((-417 $) $) NIL)) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2438 (((-112) $) NIL (|has| $ (-1033 (-562))))) (-1433 (($ $ (-608 $) $) NIL) (($ $ (-639 (-608 $)) (-639 $)) NIL) (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-639 (-1168)) (-639 (-1 $ $))) NIL) (($ $ (-639 (-1168)) (-639 (-1 $ (-639 $)))) NIL) (($ $ (-1168) (-1 $ (-639 $))) NIL) (($ $ (-1168) (-1 $ $)) NIL) (($ $ (-639 (-114)) (-639 (-1 $ $))) NIL) (($ $ (-639 (-114)) (-639 (-1 $ (-639 $)))) NIL) (($ $ (-114) (-1 $ (-639 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2044 (((-766) $) NIL)) (-2343 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-639 $)) NIL)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-3461 (($ $) NIL) (($ $ $) NIL)) (-4029 (($ $ (-766)) NIL) (($ $) NIL)) (-4079 (((-1117 (-562) (-608 $)) $) NIL)) (-3371 (($ $) NIL (|has| $ (-1044)))) (-4208 (((-378) $) NIL) (((-224) $) NIL) (((-168 (-378)) $) NIL)) (-4053 (((-857) $) NIL) (($ (-608 $)) NIL) (($ (-406 (-562))) NIL) (($ $) NIL) (($ (-562)) NIL) (($ (-1117 (-562) (-608 $))) NIL)) (-1568 (((-766)) NIL)) (-2745 (($ $) NIL) (($ (-639 $)) NIL)) (-2036 (((-112) (-114)) NIL)) (-3799 (((-112) $ $) NIL)) (-2285 (($) 7 T CONST)) (-2294 (($) 12 T CONST)) (-3113 (($ $ (-766)) NIL) (($ $) NIL)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 16)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) NIL)) (-1859 (($ $ $) NIL)) (-1847 (($ $ $) 15) (($ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-406 (-562))) NIL) (($ $ (-562)) NIL) (($ $ (-766)) NIL) (($ $ (-916)) NIL)) (* (($ (-406 (-562)) $) NIL) (($ $ (-406 (-562))) NIL) (($ $ $) NIL) (($ (-562) $) NIL) (($ (-766) $) NIL) (($ (-916) $) NIL))) -(((-48) (-13 (-301) (-27) (-1033 (-562)) (-1033 (-406 (-562))) (-635 (-562)) (-1017) (-635 (-406 (-562))) (-146) (-610 (-168 (-378))) (-232) (-10 -8 (-15 -4053 ($ (-1117 (-562) (-608 $)))) (-15 -4063 ((-1117 (-562) (-608 $)) $)) (-15 -4079 ((-1117 (-562) (-608 $)) $)) (-15 -1954 ($ $)) (-15 -4363 ((-1164 $) (-1164 $) (-608 $))) (-15 -4363 ((-1164 $) (-1164 $) (-639 (-608 $)))) (-15 -4363 ($ $ (-608 $))) (-15 -4363 ($ $ (-639 (-608 $))))))) (T -48)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-1117 (-562) (-608 (-48)))) (-5 *1 (-48)))) (-4063 (*1 *2 *1) (-12 (-5 *2 (-1117 (-562) (-608 (-48)))) (-5 *1 (-48)))) (-4079 (*1 *2 *1) (-12 (-5 *2 (-1117 (-562) (-608 (-48)))) (-5 *1 (-48)))) (-1954 (*1 *1 *1) (-5 *1 (-48))) (-4363 (*1 *2 *2 *3) (-12 (-5 *2 (-1164 (-48))) (-5 *3 (-608 (-48))) (-5 *1 (-48)))) (-4363 (*1 *2 *2 *3) (-12 (-5 *2 (-1164 (-48))) (-5 *3 (-639 (-608 (-48)))) (-5 *1 (-48)))) (-4363 (*1 *1 *1 *2) (-12 (-5 *2 (-608 (-48))) (-5 *1 (-48)))) (-4363 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-608 (-48)))) (-5 *1 (-48))))) -(-13 (-301) (-27) (-1033 (-562)) (-1033 (-406 (-562))) (-635 (-562)) (-1017) (-635 (-406 (-562))) (-146) (-610 (-168 (-378))) (-232) (-10 -8 (-15 -4053 ($ (-1117 (-562) (-608 $)))) (-15 -4063 ((-1117 (-562) (-608 $)) $)) (-15 -4079 ((-1117 (-562) (-608 $)) $)) (-15 -1954 ($ $)) (-15 -4363 ((-1164 $) (-1164 $) (-608 $))) (-15 -4363 ((-1164 $) (-1164 $) (-639 (-608 $)))) (-15 -4363 ($ $ (-608 $))) (-15 -4363 ($ $ (-639 (-608 $)))))) -((-4041 (((-112) $ $) NIL)) (-1917 (((-639 (-1168)) $) 17)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 7)) (-3265 (((-1173) $) 18)) (-1733 (((-112) $ $) NIL))) -(((-49) (-13 (-1092) (-10 -8 (-15 -1917 ((-639 (-1168)) $)) (-15 -3265 ((-1173) $))))) (T -49)) -((-1917 (*1 *2 *1) (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-49)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-49))))) -(-13 (-1092) (-10 -8 (-15 -1917 ((-639 (-1168)) $)) (-15 -3265 ((-1173) $)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) 61)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3329 (($) NIL T CONST)) (-1638 (((-112) $) 20)) (-4048 (((-3 |#1| "failed") $) 23)) (-3960 ((|#1| $) 24)) (-1600 (($ $) 28)) (-1694 (((-3 $ "failed") $) NIL)) (-4367 (((-112) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-1573 ((|#1| $) 21)) (-2820 (($ $) 50)) (-3696 (((-1150) $) NIL)) (-3941 (((-112) $) 30)) (-1709 (((-1112) $) NIL)) (-3147 (($ (-766)) 48)) (-3430 (($ (-639 (-562))) 49)) (-2250 (((-766) $) 31)) (-4053 (((-857) $) 64) (($ (-562)) 45) (($ |#1|) 43)) (-2266 ((|#1| $ $) 19)) (-1568 (((-766)) 47)) (-2285 (($) 32 T CONST)) (-2294 (($) 14 T CONST)) (-1733 (((-112) $ $) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) 40)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 41) (($ |#1| $) 35))) -(((-50 |#1| |#2|) (-13 (-616 |#1|) (-1033 |#1|) (-10 -8 (-15 -1573 (|#1| $)) (-15 -2820 ($ $)) (-15 -1600 ($ $)) (-15 -2266 (|#1| $ $)) (-15 -3147 ($ (-766))) (-15 -3430 ($ (-639 (-562)))) (-15 -3941 ((-112) $)) (-15 -1638 ((-112) $)) (-15 -2250 ((-766) $)) (-15 -4152 ($ (-1 |#1| |#1|) $)))) (-1044) (-639 (-1168))) (T -50)) -((-1573 (*1 *2 *1) (-12 (-4 *2 (-1044)) (-5 *1 (-50 *2 *3)) (-14 *3 (-639 (-1168))))) (-2820 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1044)) (-14 *3 (-639 (-1168))))) (-1600 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1044)) (-14 *3 (-639 (-1168))))) (-2266 (*1 *2 *1 *1) (-12 (-4 *2 (-1044)) (-5 *1 (-50 *2 *3)) (-14 *3 (-639 (-1168))))) (-3147 (*1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1044)) (-14 *4 (-639 (-1168))))) (-3430 (*1 *1 *2) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1044)) (-14 *4 (-639 (-1168))))) (-3941 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1044)) (-14 *4 (-639 (-1168))))) (-1638 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1044)) (-14 *4 (-639 (-1168))))) (-2250 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1044)) (-14 *4 (-639 (-1168))))) (-4152 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1044)) (-5 *1 (-50 *3 *4)) (-14 *4 (-639 (-1168)))))) -(-13 (-616 |#1|) (-1033 |#1|) (-10 -8 (-15 -1573 (|#1| $)) (-15 -2820 ($ $)) (-15 -1600 ($ $)) (-15 -2266 (|#1| $ $)) (-15 -3147 ($ (-766))) (-15 -3430 ($ (-639 (-562)))) (-15 -3941 ((-112) $)) (-15 -1638 ((-112) $)) (-15 -2250 ((-766) $)) (-15 -4152 ($ (-1 |#1| |#1|) $)))) -((-1638 (((-112) (-52)) 13)) (-4048 (((-3 |#1| "failed") (-52)) 21)) (-3960 ((|#1| (-52)) 22)) (-4053 (((-52) |#1|) 18))) -(((-51 |#1|) (-10 -7 (-15 -4053 ((-52) |#1|)) (-15 -4048 ((-3 |#1| "failed") (-52))) (-15 -1638 ((-112) (-52))) (-15 -3960 (|#1| (-52)))) (-1207)) (T -51)) -((-3960 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1207)))) (-1638 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1207)))) (-4048 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1207)))) (-4053 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1207))))) -(-10 -7 (-15 -4053 ((-52) |#1|)) (-15 -4048 ((-3 |#1| "failed") (-52))) (-15 -1638 ((-112) (-52))) (-15 -3960 (|#1| (-52)))) -((-4041 (((-112) $ $) NIL)) (-4245 (((-1150) (-112)) 25)) (-3057 (((-857) $) 24)) (-1465 (((-769) $) 12)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2786 (((-857) $) 16)) (-3509 (((-1096) $) 14)) (-4053 (((-857) $) 32)) (-3466 (($ (-1096) (-769)) 33)) (-1733 (((-112) $ $) 18))) -(((-52) (-13 (-1092) (-10 -8 (-15 -3466 ($ (-1096) (-769))) (-15 -2786 ((-857) $)) (-15 -3057 ((-857) $)) (-15 -3509 ((-1096) $)) (-15 -1465 ((-769) $)) (-15 -4245 ((-1150) (-112)))))) (T -52)) -((-3466 (*1 *1 *2 *3) (-12 (-5 *2 (-1096)) (-5 *3 (-769)) (-5 *1 (-52)))) (-2786 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-52)))) (-3057 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-52)))) (-3509 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-52)))) (-1465 (*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-52)))) (-4245 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1150)) (-5 *1 (-52))))) -(-13 (-1092) (-10 -8 (-15 -3466 ($ (-1096) (-769))) (-15 -2786 ((-857) $)) (-15 -3057 ((-857) $)) (-15 -3509 ((-1096) $)) (-15 -1465 ((-769) $)) (-15 -4245 ((-1150) (-112))))) -((-1360 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -1360 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1044) (-642 |#1|) (-847 |#1|)) (T -53)) -((-1360 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-642 *5)) (-4 *5 (-1044)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-847 *5))))) -(-10 -7 (-15 -1360 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-2446 ((|#3| |#3| (-639 (-1168))) 35)) (-2176 ((|#3| (-639 (-1068 |#1| |#2| |#3|)) |#3| (-916)) 22) ((|#3| (-639 (-1068 |#1| |#2| |#3|)) |#3|) 20))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -2176 (|#3| (-639 (-1068 |#1| |#2| |#3|)) |#3|)) (-15 -2176 (|#3| (-639 (-1068 |#1| |#2| |#3|)) |#3| (-916))) (-15 -2446 (|#3| |#3| (-639 (-1168))))) (-1092) (-13 (-1044) (-881 |#1|) (-845) (-610 (-887 |#1|))) (-13 (-429 |#2|) (-881 |#1|) (-610 (-887 |#1|)))) (T -54)) -((-2446 (*1 *2 *2 *3) (-12 (-5 *3 (-639 (-1168))) (-4 *4 (-1092)) (-4 *5 (-13 (-1044) (-881 *4) (-845) (-610 (-887 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-429 *5) (-881 *4) (-610 (-887 *4)))))) (-2176 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-639 (-1068 *5 *6 *2))) (-5 *4 (-916)) (-4 *5 (-1092)) (-4 *6 (-13 (-1044) (-881 *5) (-845) (-610 (-887 *5)))) (-4 *2 (-13 (-429 *6) (-881 *5) (-610 (-887 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-2176 (*1 *2 *3 *2) (-12 (-5 *3 (-639 (-1068 *4 *5 *2))) (-4 *4 (-1092)) (-4 *5 (-13 (-1044) (-881 *4) (-845) (-610 (-887 *4)))) (-4 *2 (-13 (-429 *5) (-881 *4) (-610 (-887 *4)))) (-5 *1 (-54 *4 *5 *2))))) -(-10 -7 (-15 -2176 (|#3| (-639 (-1068 |#1| |#2| |#3|)) |#3|)) (-15 -2176 (|#3| (-639 (-1068 |#1| |#2| |#3|)) |#3| (-916))) (-15 -2446 (|#3| |#3| (-639 (-1168))))) -((-4041 (((-112) $ $) NIL)) (-4048 (((-3 (-766) "failed") $) 22)) (-3960 (((-766) $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) 9)) (-4053 (((-857) $) 16) (($ (-766)) 20)) (-2139 (($) 7 T CONST)) (-1733 (((-112) $ $) 11))) -(((-55) (-13 (-1092) (-1033 (-766)) (-10 -8 (-15 -2139 ($) -1497)))) (T -55)) -((-2139 (*1 *1) (-5 *1 (-55)))) -(-13 (-1092) (-1033 (-766)) (-10 -8 (-15 -2139 ($) -1497))) -((-3735 (((-112) $ (-766)) 23)) (-2267 (($ $ (-562) |#3|) 47)) (-3320 (($ $ (-562) |#4|) 51)) (-3511 ((|#3| $ (-562)) 60)) (-1720 (((-639 |#2|) $) 30)) (-4172 (((-112) $ (-766)) 25)) (-1572 (((-112) |#2| $) 55)) (-1491 (($ (-1 |#2| |#2|) $) 38)) (-4152 (($ (-1 |#2| |#2|) $) 37) (($ (-1 |#2| |#2| |#2|) $ $) 41) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 43)) (-4147 (((-112) $ (-766)) 24)) (-3510 (($ $ |#2|) 35)) (-3008 (((-112) (-1 (-112) |#2|) $) 19)) (-2343 ((|#2| $ (-562) (-562)) NIL) ((|#2| $ (-562) (-562) |#2|) 27)) (-1723 (((-766) (-1 (-112) |#2|) $) 28) (((-766) |#2| $) 57)) (-4220 (($ $) 34)) (-2208 ((|#4| $ (-562)) 63)) (-4053 (((-857) $) 69)) (-2879 (((-112) (-1 (-112) |#2|) $) 18)) (-1733 (((-112) $ $) 54)) (-3492 (((-766) $) 26))) -(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4053 ((-857) |#1|)) (-15 -4152 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4152 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1491 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3320 (|#1| |#1| (-562) |#4|)) (-15 -2267 (|#1| |#1| (-562) |#3|)) (-15 -1720 ((-639 |#2|) |#1|)) (-15 -2208 (|#4| |#1| (-562))) (-15 -3511 (|#3| |#1| (-562))) (-15 -2343 (|#2| |#1| (-562) (-562) |#2|)) (-15 -2343 (|#2| |#1| (-562) (-562))) (-15 -3510 (|#1| |#1| |#2|)) (-15 -1733 ((-112) |#1| |#1|)) (-15 -1572 ((-112) |#2| |#1|)) (-15 -1723 ((-766) |#2| |#1|)) (-15 -1723 ((-766) (-1 (-112) |#2|) |#1|)) (-15 -3008 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2879 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4152 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3492 ((-766) |#1|)) (-15 -3735 ((-112) |#1| (-766))) (-15 -4172 ((-112) |#1| (-766))) (-15 -4147 ((-112) |#1| (-766))) (-15 -4220 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1207) (-372 |#2|) (-372 |#2|)) (T -56)) -NIL -(-10 -8 (-15 -4053 ((-857) |#1|)) (-15 -4152 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4152 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1491 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3320 (|#1| |#1| (-562) |#4|)) (-15 -2267 (|#1| |#1| (-562) |#3|)) (-15 -1720 ((-639 |#2|) |#1|)) (-15 -2208 (|#4| |#1| (-562))) (-15 -3511 (|#3| |#1| (-562))) (-15 -2343 (|#2| |#1| (-562) (-562) |#2|)) (-15 -2343 (|#2| |#1| (-562) (-562))) (-15 -3510 (|#1| |#1| |#2|)) (-15 -1733 ((-112) |#1| |#1|)) (-15 -1572 ((-112) |#2| |#1|)) (-15 -1723 ((-766) |#2| |#1|)) (-15 -1723 ((-766) (-1 (-112) |#2|) |#1|)) (-15 -3008 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2879 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4152 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3492 ((-766) |#1|)) (-15 -3735 ((-112) |#1| (-766))) (-15 -4172 ((-112) |#1| (-766))) (-15 -4147 ((-112) |#1| (-766))) (-15 -4220 (|#1| |#1|))) -((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-3735 (((-112) $ (-766)) 8)) (-4200 ((|#1| $ (-562) (-562) |#1|) 44)) (-2267 (($ $ (-562) |#2|) 42)) (-3320 (($ $ (-562) |#3|) 41)) (-3329 (($) 7 T CONST)) (-3511 ((|#2| $ (-562)) 46)) (-1507 ((|#1| $ (-562) (-562) |#1|) 43)) (-1420 ((|#1| $ (-562) (-562)) 48)) (-1720 (((-639 |#1|) $) 30)) (-2698 (((-766) $) 51)) (-1458 (($ (-766) (-766) |#1|) 57)) (-2708 (((-766) $) 50)) (-4172 (((-112) $ (-766)) 9)) (-1808 (((-562) $) 55)) (-2028 (((-562) $) 53)) (-2123 (((-639 |#1|) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-3269 (((-562) $) 54)) (-2727 (((-562) $) 52)) (-1491 (($ (-1 |#1| |#1|) $) 34)) (-4152 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-4147 (((-112) $ (-766)) 10)) (-3696 (((-1150) $) 22 (|has| |#1| (-1092)))) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-3510 (($ $ |#1|) 56)) (-3008 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) 14)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-2343 ((|#1| $ (-562) (-562)) 49) ((|#1| $ (-562) (-562) |#1|) 47)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4403))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-4220 (($ $) 13)) (-2208 ((|#3| $ (-562)) 45)) (-4053 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-2879 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-57 |#1| |#2| |#3|) (-139) (-1207) (-372 |t#1|) (-372 |t#1|)) (T -57)) -((-4152 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-1458 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-766)) (-4 *3 (-1207)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-3510 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1207)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-1808 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-562)))) (-3269 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-562)))) (-2028 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-562)))) (-2727 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-562)))) (-2698 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-766)))) (-2708 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-766)))) (-2343 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-562)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-1207)))) (-1420 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-562)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-1207)))) (-2343 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-562)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1207)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)))) (-3511 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1207)) (-4 *5 (-372 *4)) (-4 *2 (-372 *4)))) (-2208 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1207)) (-4 *5 (-372 *4)) (-4 *2 (-372 *4)))) (-1720 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-639 *3)))) (-4200 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-562)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1207)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)))) (-1507 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-562)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1207)) (-4 *4 (-372 *2)) (-4 *5 (-372 *2)))) (-2267 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-562)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1207)) (-4 *3 (-372 *4)) (-4 *5 (-372 *4)))) (-3320 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-562)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1207)) (-4 *5 (-372 *4)) (-4 *3 (-372 *4)))) (-1491 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-4152 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-4152 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))) -(-13 (-488 |t#1|) (-10 -8 (-6 -4404) (-6 -4403) (-15 -1458 ($ (-766) (-766) |t#1|)) (-15 -3510 ($ $ |t#1|)) (-15 -1808 ((-562) $)) (-15 -3269 ((-562) $)) (-15 -2028 ((-562) $)) (-15 -2727 ((-562) $)) (-15 -2698 ((-766) $)) (-15 -2708 ((-766) $)) (-15 -2343 (|t#1| $ (-562) (-562))) (-15 -1420 (|t#1| $ (-562) (-562))) (-15 -2343 (|t#1| $ (-562) (-562) |t#1|)) (-15 -3511 (|t#2| $ (-562))) (-15 -2208 (|t#3| $ (-562))) (-15 -1720 ((-639 |t#1|) $)) (-15 -4200 (|t#1| $ (-562) (-562) |t#1|)) (-15 -1507 (|t#1| $ (-562) (-562) |t#1|)) (-15 -2267 ($ $ (-562) |t#2|)) (-15 -3320 ($ $ (-562) |t#3|)) (-15 -4152 ($ (-1 |t#1| |t#1|) $)) (-15 -1491 ($ (-1 |t#1| |t#1|) $)) (-15 -4152 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4152 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1092) |has| |#1| (-1092)) ((-1207) . T)) -((-1555 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-1954 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-4152 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) -(((-58 |#1| |#2|) (-10 -7 (-15 -1555 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1954 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -4152 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1207) (-1207)) (T -58)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-1954 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1207)) (-4 *2 (-1207)) (-5 *1 (-58 *5 *2)))) (-1555 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1207)) (-4 *5 (-1207)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) -(-10 -7 (-15 -1555 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1954 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -4152 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3655 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4404)))) (-1706 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-845)))) (-3737 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4404))) (($ $) NIL (-12 (|has| $ (-6 -4404)) (|has| |#1| (-845))))) (-1395 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-845)))) (-3735 (((-112) $ (-766)) NIL)) (-4200 ((|#1| $ (-562) |#1|) 11 (|has| $ (-6 -4404))) ((|#1| $ (-1223 (-562)) |#1|) NIL (|has| $ (-6 -4404)))) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-3329 (($) NIL T CONST)) (-2673 (($ $) NIL (|has| $ (-6 -4404)))) (-2676 (($ $) NIL)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1954 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4403)))) (-1507 ((|#1| $ (-562) |#1|) NIL (|has| $ (-6 -4404)))) (-1420 ((|#1| $ (-562)) NIL)) (-4265 (((-562) (-1 (-112) |#1|) $) NIL) (((-562) |#1| $) NIL (|has| |#1| (-1092))) (((-562) |#1| $ (-562)) NIL (|has| |#1| (-1092)))) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1744 (($ (-639 |#1|)) 13) (($ (-766) |#1|) 14)) (-1458 (($ (-766) |#1|) 9)) (-4172 (((-112) $ (-766)) NIL)) (-1849 (((-562) $) NIL (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-4103 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-845)))) (-2123 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1929 (((-562) $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-1491 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-3295 (($ |#1| $ (-562)) NIL) (($ $ $ (-562)) NIL)) (-3336 (((-639 (-562)) $) NIL)) (-1987 (((-112) (-562) $) NIL)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-1421 ((|#1| $) NIL (|has| (-562) (-845)))) (-1963 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3510 (($ $ |#1|) NIL (|has| $ (-6 -4404)))) (-3008 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) NIL)) (-2716 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2366 (((-639 |#1|) $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) 7)) (-2343 ((|#1| $ (-562) |#1|) NIL) ((|#1| $ (-562)) NIL) (($ $ (-1223 (-562))) NIL)) (-2880 (($ $ (-562)) NIL) (($ $ (-1223 (-562))) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2694 (($ $ $ (-562)) NIL (|has| $ (-6 -4404)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| |#1| (-610 (-535))))) (-4064 (($ (-639 |#1|)) NIL)) (-2767 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-639 $)) NIL)) (-4053 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-2879 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1771 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1761 (((-112) $ $) NIL (|has| |#1| (-845)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1744 ($ (-639 |#1|))) (-15 -1744 ($ (-766) |#1|)))) (-1207)) (T -59)) -((-1744 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-5 *1 (-59 *3)))) (-1744 (*1 *1 *2 *3) (-12 (-5 *2 (-766)) (-5 *1 (-59 *3)) (-4 *3 (-1207))))) -(-13 (-19 |#1|) (-10 -8 (-15 -1744 ($ (-639 |#1|))) (-15 -1744 ($ (-766) |#1|)))) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3735 (((-112) $ (-766)) NIL)) (-4200 ((|#1| $ (-562) (-562) |#1|) NIL)) (-2267 (($ $ (-562) (-59 |#1|)) NIL)) (-3320 (($ $ (-562) (-59 |#1|)) NIL)) (-3329 (($) NIL T CONST)) (-3511 (((-59 |#1|) $ (-562)) NIL)) (-1507 ((|#1| $ (-562) (-562) |#1|) NIL)) (-1420 ((|#1| $ (-562) (-562)) NIL)) (-1720 (((-639 |#1|) $) NIL)) (-2698 (((-766) $) NIL)) (-1458 (($ (-766) (-766) |#1|) NIL)) (-2708 (((-766) $) NIL)) (-4172 (((-112) $ (-766)) NIL)) (-1808 (((-562) $) NIL)) (-2028 (((-562) $) NIL)) (-2123 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-3269 (((-562) $) NIL)) (-2727 (((-562) $) NIL)) (-1491 (($ (-1 |#1| |#1|) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-3510 (($ $ |#1|) NIL)) (-3008 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) NIL)) (-2343 ((|#1| $ (-562) (-562)) NIL) ((|#1| $ (-562) (-562) |#1|) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-4220 (($ $) NIL)) (-2208 (((-59 |#1|) $ (-562)) NIL)) (-4053 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-2879 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4404))) (-1207)) (T -60)) -NIL -(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4404))) -((-4048 (((-3 $ "failed") (-1256 (-315 (-378)))) 74) (((-3 $ "failed") (-1256 (-315 (-562)))) 63) (((-3 $ "failed") (-1256 (-947 (-378)))) 94) (((-3 $ "failed") (-1256 (-947 (-562)))) 84) (((-3 $ "failed") (-1256 (-406 (-947 (-378))))) 52) (((-3 $ "failed") (-1256 (-406 (-947 (-562))))) 39)) (-3960 (($ (-1256 (-315 (-378)))) 70) (($ (-1256 (-315 (-562)))) 59) (($ (-1256 (-947 (-378)))) 90) (($ (-1256 (-947 (-562)))) 80) (($ (-1256 (-406 (-947 (-378))))) 48) (($ (-1256 (-406 (-947 (-562))))) 32)) (-3218 (((-1261) $) 120)) (-4053 (((-857) $) 113) (($ (-639 (-329))) 103) (($ (-329)) 97) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 101) (($ (-1256 (-338 (-4064 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4064) (-693)))) 31))) -(((-61 |#1|) (-13 (-440) (-10 -8 (-15 -4053 ($ (-1256 (-338 (-4064 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4064) (-693))))))) (-1168)) (T -61)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-1256 (-338 (-4064 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4064) (-693)))) (-5 *1 (-61 *3)) (-14 *3 (-1168))))) -(-13 (-440) (-10 -8 (-15 -4053 ($ (-1256 (-338 (-4064 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4064) (-693))))))) -((-3218 (((-1261) $) 53) (((-1261)) 54)) (-4053 (((-857) $) 50))) -(((-62 |#1|) (-13 (-394) (-10 -7 (-15 -3218 ((-1261))))) (-1168)) (T -62)) -((-3218 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-62 *3)) (-14 *3 (-1168))))) -(-13 (-394) (-10 -7 (-15 -3218 ((-1261))))) -((-4048 (((-3 $ "failed") (-1256 (-315 (-378)))) 145) (((-3 $ "failed") (-1256 (-315 (-562)))) 135) (((-3 $ "failed") (-1256 (-947 (-378)))) 165) (((-3 $ "failed") (-1256 (-947 (-562)))) 155) (((-3 $ "failed") (-1256 (-406 (-947 (-378))))) 124) (((-3 $ "failed") (-1256 (-406 (-947 (-562))))) 112)) (-3960 (($ (-1256 (-315 (-378)))) 141) (($ (-1256 (-315 (-562)))) 131) (($ (-1256 (-947 (-378)))) 161) (($ (-1256 (-947 (-562)))) 151) (($ (-1256 (-406 (-947 (-378))))) 120) (($ (-1256 (-406 (-947 (-562))))) 105)) (-3218 (((-1261) $) 98)) (-4053 (((-857) $) 92) (($ (-639 (-329))) 29) (($ (-329)) 34) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 32) (($ (-1256 (-338 (-4064) (-4064 (QUOTE XC)) (-693)))) 90))) -(((-63 |#1|) (-13 (-440) (-10 -8 (-15 -4053 ($ (-1256 (-338 (-4064) (-4064 (QUOTE XC)) (-693))))))) (-1168)) (T -63)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-1256 (-338 (-4064) (-4064 (QUOTE XC)) (-693)))) (-5 *1 (-63 *3)) (-14 *3 (-1168))))) -(-13 (-440) (-10 -8 (-15 -4053 ($ (-1256 (-338 (-4064) (-4064 (QUOTE XC)) (-693))))))) -((-4048 (((-3 $ "failed") (-315 (-378))) 41) (((-3 $ "failed") (-315 (-562))) 46) (((-3 $ "failed") (-947 (-378))) 50) (((-3 $ "failed") (-947 (-562))) 54) (((-3 $ "failed") (-406 (-947 (-378)))) 36) (((-3 $ "failed") (-406 (-947 (-562)))) 29)) (-3960 (($ (-315 (-378))) 39) (($ (-315 (-562))) 44) (($ (-947 (-378))) 48) (($ (-947 (-562))) 52) (($ (-406 (-947 (-378)))) 34) (($ (-406 (-947 (-562)))) 26)) (-3218 (((-1261) $) 76)) (-4053 (((-857) $) 69) (($ (-639 (-329))) 61) (($ (-329)) 66) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 64) (($ (-338 (-4064 (QUOTE X)) (-4064) (-693))) 25))) -(((-64 |#1|) (-13 (-395) (-10 -8 (-15 -4053 ($ (-338 (-4064 (QUOTE X)) (-4064) (-693)))))) (-1168)) (T -64)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-338 (-4064 (QUOTE X)) (-4064) (-693))) (-5 *1 (-64 *3)) (-14 *3 (-1168))))) -(-13 (-395) (-10 -8 (-15 -4053 ($ (-338 (-4064 (QUOTE X)) (-4064) (-693)))))) -((-4048 (((-3 $ "failed") (-683 (-315 (-378)))) 109) (((-3 $ "failed") (-683 (-315 (-562)))) 97) (((-3 $ "failed") (-683 (-947 (-378)))) 131) (((-3 $ "failed") (-683 (-947 (-562)))) 120) (((-3 $ "failed") (-683 (-406 (-947 (-378))))) 85) (((-3 $ "failed") (-683 (-406 (-947 (-562))))) 71)) (-3960 (($ (-683 (-315 (-378)))) 105) (($ (-683 (-315 (-562)))) 93) (($ (-683 (-947 (-378)))) 127) (($ (-683 (-947 (-562)))) 116) (($ (-683 (-406 (-947 (-378))))) 81) (($ (-683 (-406 (-947 (-562))))) 64)) (-3218 (((-1261) $) 139)) (-4053 (((-857) $) 133) (($ (-639 (-329))) 28) (($ (-329)) 33) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 31) (($ (-683 (-338 (-4064) (-4064 (QUOTE X) (QUOTE HESS)) (-693)))) 54))) -(((-65 |#1|) (-13 (-383) (-612 (-683 (-338 (-4064) (-4064 (QUOTE X) (QUOTE HESS)) (-693))))) (-1168)) (T -65)) -NIL -(-13 (-383) (-612 (-683 (-338 (-4064) (-4064 (QUOTE X) (QUOTE HESS)) (-693))))) -((-4048 (((-3 $ "failed") (-315 (-378))) 59) (((-3 $ "failed") (-315 (-562))) 64) (((-3 $ "failed") (-947 (-378))) 68) (((-3 $ "failed") (-947 (-562))) 72) (((-3 $ "failed") (-406 (-947 (-378)))) 54) (((-3 $ "failed") (-406 (-947 (-562)))) 47)) (-3960 (($ (-315 (-378))) 57) (($ (-315 (-562))) 62) (($ (-947 (-378))) 66) (($ (-947 (-562))) 70) (($ (-406 (-947 (-378)))) 52) (($ (-406 (-947 (-562)))) 44)) (-3218 (((-1261) $) 81)) (-4053 (((-857) $) 75) (($ (-639 (-329))) 28) (($ (-329)) 33) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 31) (($ (-338 (-4064) (-4064 (QUOTE XC)) (-693))) 39))) -(((-66 |#1|) (-13 (-395) (-10 -8 (-15 -4053 ($ (-338 (-4064) (-4064 (QUOTE XC)) (-693)))))) (-1168)) (T -66)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-338 (-4064) (-4064 (QUOTE XC)) (-693))) (-5 *1 (-66 *3)) (-14 *3 (-1168))))) -(-13 (-395) (-10 -8 (-15 -4053 ($ (-338 (-4064) (-4064 (QUOTE XC)) (-693)))))) -((-3218 (((-1261) $) 63)) (-4053 (((-857) $) 57) (($ (-683 (-693))) 49) (($ (-639 (-329))) 48) (($ (-329)) 55) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 53))) -(((-67 |#1|) (-382) (-1168)) (T -67)) -NIL -(-382) -((-3218 (((-1261) $) 64)) (-4053 (((-857) $) 58) (($ (-683 (-693))) 50) (($ (-639 (-329))) 49) (($ (-329)) 52) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 55))) -(((-68 |#1|) (-382) (-1168)) (T -68)) -NIL -(-382) -((-3218 (((-1261) $) NIL) (((-1261)) 32)) (-4053 (((-857) $) NIL))) -(((-69 |#1|) (-13 (-394) (-10 -7 (-15 -3218 ((-1261))))) (-1168)) (T -69)) -((-3218 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-69 *3)) (-14 *3 (-1168))))) -(-13 (-394) (-10 -7 (-15 -3218 ((-1261))))) -((-3218 (((-1261) $) 73)) (-4053 (((-857) $) 67) (($ (-683 (-693))) 59) (($ (-639 (-329))) 61) (($ (-329)) 64) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 58))) -(((-70 |#1|) (-382) (-1168)) (T -70)) -NIL -(-382) -((-4048 (((-3 $ "failed") (-1256 (-315 (-378)))) 103) (((-3 $ "failed") (-1256 (-315 (-562)))) 92) (((-3 $ "failed") (-1256 (-947 (-378)))) 123) (((-3 $ "failed") (-1256 (-947 (-562)))) 113) (((-3 $ "failed") (-1256 (-406 (-947 (-378))))) 81) (((-3 $ "failed") (-1256 (-406 (-947 (-562))))) 68)) (-3960 (($ (-1256 (-315 (-378)))) 99) (($ (-1256 (-315 (-562)))) 88) (($ (-1256 (-947 (-378)))) 119) (($ (-1256 (-947 (-562)))) 109) (($ (-1256 (-406 (-947 (-378))))) 77) (($ (-1256 (-406 (-947 (-562))))) 61)) (-3218 (((-1261) $) 136)) (-4053 (((-857) $) 130) (($ (-639 (-329))) 125) (($ (-329)) 128) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 53) (($ (-1256 (-338 (-4064 (QUOTE X)) (-4064 (QUOTE -3171)) (-693)))) 54))) -(((-71 |#1|) (-13 (-440) (-10 -8 (-15 -4053 ($ (-1256 (-338 (-4064 (QUOTE X)) (-4064 (QUOTE -3171)) (-693))))))) (-1168)) (T -71)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-1256 (-338 (-4064 (QUOTE X)) (-4064 (QUOTE -3171)) (-693)))) (-5 *1 (-71 *3)) (-14 *3 (-1168))))) -(-13 (-440) (-10 -8 (-15 -4053 ($ (-1256 (-338 (-4064 (QUOTE X)) (-4064 (QUOTE -3171)) (-693))))))) -((-3218 (((-1261) $) 32) (((-1261)) 31)) (-4053 (((-857) $) 35))) -(((-72 |#1|) (-13 (-394) (-10 -7 (-15 -3218 ((-1261))))) (-1168)) (T -72)) -((-3218 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-72 *3)) (-14 *3 (-1168))))) -(-13 (-394) (-10 -7 (-15 -3218 ((-1261))))) -((-3218 (((-1261) $) 63)) (-4053 (((-857) $) 57) (($ (-683 (-693))) 49) (($ (-639 (-329))) 51) (($ (-329)) 54) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 48))) -(((-73 |#1|) (-382) (-1168)) (T -73)) -NIL -(-382) -((-4048 (((-3 $ "failed") (-1256 (-315 (-378)))) 125) (((-3 $ "failed") (-1256 (-315 (-562)))) 115) (((-3 $ "failed") (-1256 (-947 (-378)))) 145) (((-3 $ "failed") (-1256 (-947 (-562)))) 135) (((-3 $ "failed") (-1256 (-406 (-947 (-378))))) 105) (((-3 $ "failed") (-1256 (-406 (-947 (-562))))) 93)) (-3960 (($ (-1256 (-315 (-378)))) 121) (($ (-1256 (-315 (-562)))) 111) (($ (-1256 (-947 (-378)))) 141) (($ (-1256 (-947 (-562)))) 131) (($ (-1256 (-406 (-947 (-378))))) 101) (($ (-1256 (-406 (-947 (-562))))) 86)) (-3218 (((-1261) $) 78)) (-4053 (((-857) $) 27) (($ (-639 (-329))) 68) (($ (-329)) 64) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 71) (($ (-1256 (-338 (-4064) (-4064 (QUOTE X)) (-693)))) 65))) -(((-74 |#1|) (-13 (-440) (-10 -8 (-15 -4053 ($ (-1256 (-338 (-4064) (-4064 (QUOTE X)) (-693))))))) (-1168)) (T -74)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-1256 (-338 (-4064) (-4064 (QUOTE X)) (-693)))) (-5 *1 (-74 *3)) (-14 *3 (-1168))))) -(-13 (-440) (-10 -8 (-15 -4053 ($ (-1256 (-338 (-4064) (-4064 (QUOTE X)) (-693))))))) -((-4048 (((-3 $ "failed") (-1256 (-315 (-378)))) 130) (((-3 $ "failed") (-1256 (-315 (-562)))) 119) (((-3 $ "failed") (-1256 (-947 (-378)))) 150) (((-3 $ "failed") (-1256 (-947 (-562)))) 140) (((-3 $ "failed") (-1256 (-406 (-947 (-378))))) 108) (((-3 $ "failed") (-1256 (-406 (-947 (-562))))) 95)) (-3960 (($ (-1256 (-315 (-378)))) 126) (($ (-1256 (-315 (-562)))) 115) (($ (-1256 (-947 (-378)))) 146) (($ (-1256 (-947 (-562)))) 136) (($ (-1256 (-406 (-947 (-378))))) 104) (($ (-1256 (-406 (-947 (-562))))) 88)) (-3218 (((-1261) $) 79)) (-4053 (((-857) $) 71) (($ (-639 (-329))) NIL) (($ (-329)) NIL) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) NIL) (($ (-1256 (-338 (-4064 (QUOTE X) (QUOTE EPS)) (-4064 (QUOTE -3171)) (-693)))) 66))) -(((-75 |#1| |#2| |#3|) (-13 (-440) (-10 -8 (-15 -4053 ($ (-1256 (-338 (-4064 (QUOTE X) (QUOTE EPS)) (-4064 (QUOTE -3171)) (-693))))))) (-1168) (-1168) (-1168)) (T -75)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-1256 (-338 (-4064 (QUOTE X) (QUOTE EPS)) (-4064 (QUOTE -3171)) (-693)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1168)) (-14 *4 (-1168)) (-14 *5 (-1168))))) -(-13 (-440) (-10 -8 (-15 -4053 ($ (-1256 (-338 (-4064 (QUOTE X) (QUOTE EPS)) (-4064 (QUOTE -3171)) (-693))))))) -((-4048 (((-3 $ "failed") (-1256 (-315 (-378)))) 134) (((-3 $ "failed") (-1256 (-315 (-562)))) 123) (((-3 $ "failed") (-1256 (-947 (-378)))) 154) (((-3 $ "failed") (-1256 (-947 (-562)))) 144) (((-3 $ "failed") (-1256 (-406 (-947 (-378))))) 112) (((-3 $ "failed") (-1256 (-406 (-947 (-562))))) 99)) (-3960 (($ (-1256 (-315 (-378)))) 130) (($ (-1256 (-315 (-562)))) 119) (($ (-1256 (-947 (-378)))) 150) (($ (-1256 (-947 (-562)))) 140) (($ (-1256 (-406 (-947 (-378))))) 108) (($ (-1256 (-406 (-947 (-562))))) 92)) (-3218 (((-1261) $) 83)) (-4053 (((-857) $) 75) (($ (-639 (-329))) NIL) (($ (-329)) NIL) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) NIL) (($ (-1256 (-338 (-4064 (QUOTE EPS)) (-4064 (QUOTE YA) (QUOTE YB)) (-693)))) 70))) -(((-76 |#1| |#2| |#3|) (-13 (-440) (-10 -8 (-15 -4053 ($ (-1256 (-338 (-4064 (QUOTE EPS)) (-4064 (QUOTE YA) (QUOTE YB)) (-693))))))) (-1168) (-1168) (-1168)) (T -76)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-1256 (-338 (-4064 (QUOTE EPS)) (-4064 (QUOTE YA) (QUOTE YB)) (-693)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1168)) (-14 *4 (-1168)) (-14 *5 (-1168))))) -(-13 (-440) (-10 -8 (-15 -4053 ($ (-1256 (-338 (-4064 (QUOTE EPS)) (-4064 (QUOTE YA) (QUOTE YB)) (-693))))))) -((-4048 (((-3 $ "failed") (-315 (-378))) 82) (((-3 $ "failed") (-315 (-562))) 87) (((-3 $ "failed") (-947 (-378))) 91) (((-3 $ "failed") (-947 (-562))) 95) (((-3 $ "failed") (-406 (-947 (-378)))) 77) (((-3 $ "failed") (-406 (-947 (-562)))) 70)) (-3960 (($ (-315 (-378))) 80) (($ (-315 (-562))) 85) (($ (-947 (-378))) 89) (($ (-947 (-562))) 93) (($ (-406 (-947 (-378)))) 75) (($ (-406 (-947 (-562)))) 67)) (-3218 (((-1261) $) 62)) (-4053 (((-857) $) 50) (($ (-639 (-329))) 46) (($ (-329)) 56) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 54) (($ (-338 (-4064) (-4064 (QUOTE X)) (-693))) 47))) -(((-77 |#1|) (-13 (-395) (-10 -8 (-15 -4053 ($ (-338 (-4064) (-4064 (QUOTE X)) (-693)))))) (-1168)) (T -77)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-338 (-4064) (-4064 (QUOTE X)) (-693))) (-5 *1 (-77 *3)) (-14 *3 (-1168))))) -(-13 (-395) (-10 -8 (-15 -4053 ($ (-338 (-4064) (-4064 (QUOTE X)) (-693)))))) -((-4048 (((-3 $ "failed") (-315 (-378))) 46) (((-3 $ "failed") (-315 (-562))) 51) (((-3 $ "failed") (-947 (-378))) 55) (((-3 $ "failed") (-947 (-562))) 59) (((-3 $ "failed") (-406 (-947 (-378)))) 41) (((-3 $ "failed") (-406 (-947 (-562)))) 34)) (-3960 (($ (-315 (-378))) 44) (($ (-315 (-562))) 49) (($ (-947 (-378))) 53) (($ (-947 (-562))) 57) (($ (-406 (-947 (-378)))) 39) (($ (-406 (-947 (-562)))) 31)) (-3218 (((-1261) $) 80)) (-4053 (((-857) $) 74) (($ (-639 (-329))) 66) (($ (-329)) 71) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 69) (($ (-338 (-4064) (-4064 (QUOTE X)) (-693))) 30))) -(((-78 |#1|) (-13 (-395) (-10 -8 (-15 -4053 ($ (-338 (-4064) (-4064 (QUOTE X)) (-693)))))) (-1168)) (T -78)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-338 (-4064) (-4064 (QUOTE X)) (-693))) (-5 *1 (-78 *3)) (-14 *3 (-1168))))) -(-13 (-395) (-10 -8 (-15 -4053 ($ (-338 (-4064) (-4064 (QUOTE X)) (-693)))))) -((-4048 (((-3 $ "failed") (-1256 (-315 (-378)))) 89) (((-3 $ "failed") (-1256 (-315 (-562)))) 78) (((-3 $ "failed") (-1256 (-947 (-378)))) 109) (((-3 $ "failed") (-1256 (-947 (-562)))) 99) (((-3 $ "failed") (-1256 (-406 (-947 (-378))))) 67) (((-3 $ "failed") (-1256 (-406 (-947 (-562))))) 54)) (-3960 (($ (-1256 (-315 (-378)))) 85) (($ (-1256 (-315 (-562)))) 74) (($ (-1256 (-947 (-378)))) 105) (($ (-1256 (-947 (-562)))) 95) (($ (-1256 (-406 (-947 (-378))))) 63) (($ (-1256 (-406 (-947 (-562))))) 47)) (-3218 (((-1261) $) 125)) (-4053 (((-857) $) 119) (($ (-639 (-329))) 112) (($ (-329)) 37) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 115) (($ (-1256 (-338 (-4064) (-4064 (QUOTE XC)) (-693)))) 38))) -(((-79 |#1|) (-13 (-440) (-10 -8 (-15 -4053 ($ (-1256 (-338 (-4064) (-4064 (QUOTE XC)) (-693))))))) (-1168)) (T -79)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-1256 (-338 (-4064) (-4064 (QUOTE XC)) (-693)))) (-5 *1 (-79 *3)) (-14 *3 (-1168))))) -(-13 (-440) (-10 -8 (-15 -4053 ($ (-1256 (-338 (-4064) (-4064 (QUOTE XC)) (-693))))))) -((-4048 (((-3 $ "failed") (-1256 (-315 (-378)))) 143) (((-3 $ "failed") (-1256 (-315 (-562)))) 133) (((-3 $ "failed") (-1256 (-947 (-378)))) 163) (((-3 $ "failed") (-1256 (-947 (-562)))) 153) (((-3 $ "failed") (-1256 (-406 (-947 (-378))))) 123) (((-3 $ "failed") (-1256 (-406 (-947 (-562))))) 111)) (-3960 (($ (-1256 (-315 (-378)))) 139) (($ (-1256 (-315 (-562)))) 129) (($ (-1256 (-947 (-378)))) 159) (($ (-1256 (-947 (-562)))) 149) (($ (-1256 (-406 (-947 (-378))))) 119) (($ (-1256 (-406 (-947 (-562))))) 104)) (-3218 (((-1261) $) 97)) (-4053 (((-857) $) 91) (($ (-639 (-329))) 82) (($ (-329)) 89) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 87) (($ (-1256 (-338 (-4064) (-4064 (QUOTE X)) (-693)))) 83))) -(((-80 |#1|) (-13 (-440) (-10 -8 (-15 -4053 ($ (-1256 (-338 (-4064) (-4064 (QUOTE X)) (-693))))))) (-1168)) (T -80)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-1256 (-338 (-4064) (-4064 (QUOTE X)) (-693)))) (-5 *1 (-80 *3)) (-14 *3 (-1168))))) -(-13 (-440) (-10 -8 (-15 -4053 ($ (-1256 (-338 (-4064) (-4064 (QUOTE X)) (-693))))))) -((-4048 (((-3 $ "failed") (-1256 (-315 (-378)))) 78) (((-3 $ "failed") (-1256 (-315 (-562)))) 67) (((-3 $ "failed") (-1256 (-947 (-378)))) 98) (((-3 $ "failed") (-1256 (-947 (-562)))) 88) (((-3 $ "failed") (-1256 (-406 (-947 (-378))))) 56) (((-3 $ "failed") (-1256 (-406 (-947 (-562))))) 43)) (-3960 (($ (-1256 (-315 (-378)))) 74) (($ (-1256 (-315 (-562)))) 63) (($ (-1256 (-947 (-378)))) 94) (($ (-1256 (-947 (-562)))) 84) (($ (-1256 (-406 (-947 (-378))))) 52) (($ (-1256 (-406 (-947 (-562))))) 36)) (-3218 (((-1261) $) 124)) (-4053 (((-857) $) 118) (($ (-639 (-329))) 109) (($ (-329)) 115) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 113) (($ (-1256 (-338 (-4064) (-4064 (QUOTE X)) (-693)))) 35))) -(((-81 |#1|) (-13 (-440) (-612 (-1256 (-338 (-4064) (-4064 (QUOTE X)) (-693))))) (-1168)) (T -81)) -NIL -(-13 (-440) (-612 (-1256 (-338 (-4064) (-4064 (QUOTE X)) (-693))))) -((-4048 (((-3 $ "failed") (-1256 (-315 (-378)))) 95) (((-3 $ "failed") (-1256 (-315 (-562)))) 84) (((-3 $ "failed") (-1256 (-947 (-378)))) 115) (((-3 $ "failed") (-1256 (-947 (-562)))) 105) (((-3 $ "failed") (-1256 (-406 (-947 (-378))))) 73) (((-3 $ "failed") (-1256 (-406 (-947 (-562))))) 60)) (-3960 (($ (-1256 (-315 (-378)))) 91) (($ (-1256 (-315 (-562)))) 80) (($ (-1256 (-947 (-378)))) 111) (($ (-1256 (-947 (-562)))) 101) (($ (-1256 (-406 (-947 (-378))))) 69) (($ (-1256 (-406 (-947 (-562))))) 53)) (-3218 (((-1261) $) 45)) (-4053 (((-857) $) 39) (($ (-639 (-329))) 29) (($ (-329)) 32) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 35) (($ (-1256 (-338 (-4064 (QUOTE X) (QUOTE -3171)) (-4064) (-693)))) 30))) -(((-82 |#1|) (-13 (-440) (-10 -8 (-15 -4053 ($ (-1256 (-338 (-4064 (QUOTE X) (QUOTE -3171)) (-4064) (-693))))))) (-1168)) (T -82)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-1256 (-338 (-4064 (QUOTE X) (QUOTE -3171)) (-4064) (-693)))) (-5 *1 (-82 *3)) (-14 *3 (-1168))))) -(-13 (-440) (-10 -8 (-15 -4053 ($ (-1256 (-338 (-4064 (QUOTE X) (QUOTE -3171)) (-4064) (-693))))))) -((-4048 (((-3 $ "failed") (-683 (-315 (-378)))) 115) (((-3 $ "failed") (-683 (-315 (-562)))) 104) (((-3 $ "failed") (-683 (-947 (-378)))) 137) (((-3 $ "failed") (-683 (-947 (-562)))) 126) (((-3 $ "failed") (-683 (-406 (-947 (-378))))) 93) (((-3 $ "failed") (-683 (-406 (-947 (-562))))) 80)) (-3960 (($ (-683 (-315 (-378)))) 111) (($ (-683 (-315 (-562)))) 100) (($ (-683 (-947 (-378)))) 133) (($ (-683 (-947 (-562)))) 122) (($ (-683 (-406 (-947 (-378))))) 89) (($ (-683 (-406 (-947 (-562))))) 73)) (-3218 (((-1261) $) 63)) (-4053 (((-857) $) 50) (($ (-639 (-329))) 57) (($ (-329)) 46) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 55) (($ (-683 (-338 (-4064 (QUOTE X) (QUOTE -3171)) (-4064) (-693)))) 47))) -(((-83 |#1|) (-13 (-383) (-10 -8 (-15 -4053 ($ (-683 (-338 (-4064 (QUOTE X) (QUOTE -3171)) (-4064) (-693))))))) (-1168)) (T -83)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-683 (-338 (-4064 (QUOTE X) (QUOTE -3171)) (-4064) (-693)))) (-5 *1 (-83 *3)) (-14 *3 (-1168))))) -(-13 (-383) (-10 -8 (-15 -4053 ($ (-683 (-338 (-4064 (QUOTE X) (QUOTE -3171)) (-4064) (-693))))))) -((-4048 (((-3 $ "failed") (-683 (-315 (-378)))) 112) (((-3 $ "failed") (-683 (-315 (-562)))) 100) (((-3 $ "failed") (-683 (-947 (-378)))) 134) (((-3 $ "failed") (-683 (-947 (-562)))) 123) (((-3 $ "failed") (-683 (-406 (-947 (-378))))) 88) (((-3 $ "failed") (-683 (-406 (-947 (-562))))) 74)) (-3960 (($ (-683 (-315 (-378)))) 108) (($ (-683 (-315 (-562)))) 96) (($ (-683 (-947 (-378)))) 130) (($ (-683 (-947 (-562)))) 119) (($ (-683 (-406 (-947 (-378))))) 84) (($ (-683 (-406 (-947 (-562))))) 67)) (-3218 (((-1261) $) 59)) (-4053 (((-857) $) 53) (($ (-639 (-329))) 47) (($ (-329)) 50) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 44) (($ (-683 (-338 (-4064 (QUOTE X)) (-4064) (-693)))) 45))) -(((-84 |#1|) (-13 (-383) (-10 -8 (-15 -4053 ($ (-683 (-338 (-4064 (QUOTE X)) (-4064) (-693))))))) (-1168)) (T -84)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-683 (-338 (-4064 (QUOTE X)) (-4064) (-693)))) (-5 *1 (-84 *3)) (-14 *3 (-1168))))) -(-13 (-383) (-10 -8 (-15 -4053 ($ (-683 (-338 (-4064 (QUOTE X)) (-4064) (-693))))))) -((-4048 (((-3 $ "failed") (-1256 (-315 (-378)))) 104) (((-3 $ "failed") (-1256 (-315 (-562)))) 93) (((-3 $ "failed") (-1256 (-947 (-378)))) 124) (((-3 $ "failed") (-1256 (-947 (-562)))) 114) (((-3 $ "failed") (-1256 (-406 (-947 (-378))))) 82) (((-3 $ "failed") (-1256 (-406 (-947 (-562))))) 69)) (-3960 (($ (-1256 (-315 (-378)))) 100) (($ (-1256 (-315 (-562)))) 89) (($ (-1256 (-947 (-378)))) 120) (($ (-1256 (-947 (-562)))) 110) (($ (-1256 (-406 (-947 (-378))))) 78) (($ (-1256 (-406 (-947 (-562))))) 62)) (-3218 (((-1261) $) 46)) (-4053 (((-857) $) 40) (($ (-639 (-329))) 49) (($ (-329)) 36) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 52) (($ (-1256 (-338 (-4064 (QUOTE X)) (-4064) (-693)))) 37))) -(((-85 |#1|) (-13 (-440) (-10 -8 (-15 -4053 ($ (-1256 (-338 (-4064 (QUOTE X)) (-4064) (-693))))))) (-1168)) (T -85)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-1256 (-338 (-4064 (QUOTE X)) (-4064) (-693)))) (-5 *1 (-85 *3)) (-14 *3 (-1168))))) -(-13 (-440) (-10 -8 (-15 -4053 ($ (-1256 (-338 (-4064 (QUOTE X)) (-4064) (-693))))))) -((-4048 (((-3 $ "failed") (-1256 (-315 (-378)))) 79) (((-3 $ "failed") (-1256 (-315 (-562)))) 68) (((-3 $ "failed") (-1256 (-947 (-378)))) 99) (((-3 $ "failed") (-1256 (-947 (-562)))) 89) (((-3 $ "failed") (-1256 (-406 (-947 (-378))))) 57) (((-3 $ "failed") (-1256 (-406 (-947 (-562))))) 44)) (-3960 (($ (-1256 (-315 (-378)))) 75) (($ (-1256 (-315 (-562)))) 64) (($ (-1256 (-947 (-378)))) 95) (($ (-1256 (-947 (-562)))) 85) (($ (-1256 (-406 (-947 (-378))))) 53) (($ (-1256 (-406 (-947 (-562))))) 37)) (-3218 (((-1261) $) 125)) (-4053 (((-857) $) 119) (($ (-639 (-329))) 110) (($ (-329)) 116) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 114) (($ (-1256 (-338 (-4064 (QUOTE X)) (-4064 (QUOTE -3171)) (-693)))) 36))) -(((-86 |#1|) (-13 (-440) (-10 -8 (-15 -4053 ($ (-1256 (-338 (-4064 (QUOTE X)) (-4064 (QUOTE -3171)) (-693))))))) (-1168)) (T -86)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-1256 (-338 (-4064 (QUOTE X)) (-4064 (QUOTE -3171)) (-693)))) (-5 *1 (-86 *3)) (-14 *3 (-1168))))) -(-13 (-440) (-10 -8 (-15 -4053 ($ (-1256 (-338 (-4064 (QUOTE X)) (-4064 (QUOTE -3171)) (-693))))))) -((-4048 (((-3 $ "failed") (-683 (-315 (-378)))) 113) (((-3 $ "failed") (-683 (-315 (-562)))) 101) (((-3 $ "failed") (-683 (-947 (-378)))) 135) (((-3 $ "failed") (-683 (-947 (-562)))) 124) (((-3 $ "failed") (-683 (-406 (-947 (-378))))) 89) (((-3 $ "failed") (-683 (-406 (-947 (-562))))) 75)) (-3960 (($ (-683 (-315 (-378)))) 109) (($ (-683 (-315 (-562)))) 97) (($ (-683 (-947 (-378)))) 131) (($ (-683 (-947 (-562)))) 120) (($ (-683 (-406 (-947 (-378))))) 85) (($ (-683 (-406 (-947 (-562))))) 68)) (-3218 (((-1261) $) 59)) (-4053 (((-857) $) 53) (($ (-639 (-329))) 43) (($ (-329)) 50) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 48) (($ (-683 (-338 (-4064 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4064) (-693)))) 44))) -(((-87 |#1|) (-13 (-383) (-10 -8 (-15 -4053 ($ (-683 (-338 (-4064 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4064) (-693))))))) (-1168)) (T -87)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-683 (-338 (-4064 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4064) (-693)))) (-5 *1 (-87 *3)) (-14 *3 (-1168))))) -(-13 (-383) (-10 -8 (-15 -4053 ($ (-683 (-338 (-4064 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4064) (-693))))))) -((-3218 (((-1261) $) 44)) (-4053 (((-857) $) 38) (($ (-1256 (-693))) 93) (($ (-639 (-329))) 30) (($ (-329)) 35) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 33))) -(((-88 |#1|) (-439) (-1168)) (T -88)) -NIL -(-439) -((-4048 (((-3 $ "failed") (-315 (-378))) 47) (((-3 $ "failed") (-315 (-562))) 52) (((-3 $ "failed") (-947 (-378))) 56) (((-3 $ "failed") (-947 (-562))) 60) (((-3 $ "failed") (-406 (-947 (-378)))) 42) (((-3 $ "failed") (-406 (-947 (-562)))) 35)) (-3960 (($ (-315 (-378))) 45) (($ (-315 (-562))) 50) (($ (-947 (-378))) 54) (($ (-947 (-562))) 58) (($ (-406 (-947 (-378)))) 40) (($ (-406 (-947 (-562)))) 32)) (-3218 (((-1261) $) 90)) (-4053 (((-857) $) 84) (($ (-639 (-329))) 78) (($ (-329)) 81) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 76) (($ (-338 (-4064 (QUOTE X)) (-4064 (QUOTE -3171)) (-693))) 31))) -(((-89 |#1|) (-13 (-395) (-10 -8 (-15 -4053 ($ (-338 (-4064 (QUOTE X)) (-4064 (QUOTE -3171)) (-693)))))) (-1168)) (T -89)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-338 (-4064 (QUOTE X)) (-4064 (QUOTE -3171)) (-693))) (-5 *1 (-89 *3)) (-14 *3 (-1168))))) -(-13 (-395) (-10 -8 (-15 -4053 ($ (-338 (-4064 (QUOTE X)) (-4064 (QUOTE -3171)) (-693)))))) -((-2669 (((-1256 (-683 |#1|)) (-683 |#1|)) 54)) (-1961 (((-2 (|:| -1767 (-683 |#1|)) (|:| |vec| (-1256 (-639 (-916))))) |#2| (-916)) 44)) (-1570 (((-2 (|:| |minor| (-639 (-916))) (|:| -3339 |#2|) (|:| |minors| (-639 (-639 (-916)))) (|:| |ops| (-639 |#2|))) |#2| (-916)) 65 (|has| |#1| (-362))))) -(((-90 |#1| |#2|) (-10 -7 (-15 -1961 ((-2 (|:| -1767 (-683 |#1|)) (|:| |vec| (-1256 (-639 (-916))))) |#2| (-916))) (-15 -2669 ((-1256 (-683 |#1|)) (-683 |#1|))) (IF (|has| |#1| (-362)) (-15 -1570 ((-2 (|:| |minor| (-639 (-916))) (|:| -3339 |#2|) (|:| |minors| (-639 (-639 (-916)))) (|:| |ops| (-639 |#2|))) |#2| (-916))) |%noBranch|)) (-554) (-650 |#1|)) (T -90)) -((-1570 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *5 (-554)) (-5 *2 (-2 (|:| |minor| (-639 (-916))) (|:| -3339 *3) (|:| |minors| (-639 (-639 (-916)))) (|:| |ops| (-639 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-916)) (-4 *3 (-650 *5)))) (-2669 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-1256 (-683 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-683 *4)) (-4 *5 (-650 *4)))) (-1961 (*1 *2 *3 *4) (-12 (-4 *5 (-554)) (-5 *2 (-2 (|:| -1767 (-683 *5)) (|:| |vec| (-1256 (-639 (-916)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-916)) (-4 *3 (-650 *5))))) -(-10 -7 (-15 -1961 ((-2 (|:| -1767 (-683 |#1|)) (|:| |vec| (-1256 (-639 (-916))))) |#2| (-916))) (-15 -2669 ((-1256 (-683 |#1|)) (-683 |#1|))) (IF (|has| |#1| (-362)) (-15 -1570 ((-2 (|:| |minor| (-639 (-916))) (|:| -3339 |#2|) (|:| |minors| (-639 (-639 (-916)))) (|:| |ops| (-639 |#2|))) |#2| (-916))) |%noBranch|)) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2774 ((|#1| $) 35)) (-3735 (((-112) $ (-766)) NIL)) (-3329 (($) NIL T CONST)) (-2571 ((|#1| |#1| $) 30)) (-3767 ((|#1| $) 28)) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-4172 (((-112) $ (-766)) NIL)) (-2123 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1491 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-2078 ((|#1| $) NIL)) (-1581 (($ |#1| $) 31)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-2038 ((|#1| $) 29)) (-3008 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) NIL)) (-3087 (((-112) $) 16)) (-1663 (($) 39)) (-2191 (((-766) $) 26)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-4220 (($ $) 15)) (-4053 (((-857) $) 25 (|has| |#1| (-609 (-857))))) (-4131 (($ (-639 |#1|)) NIL)) (-3689 (($ (-639 |#1|)) 37)) (-2879 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 13 (|has| |#1| (-1092)))) (-3492 (((-766) $) 10 (|has| $ (-6 -4403))))) -(((-91 |#1|) (-13 (-1113 |#1|) (-10 -8 (-15 -3689 ($ (-639 |#1|))))) (-1092)) (T -91)) -((-3689 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-5 *1 (-91 *3))))) -(-13 (-1113 |#1|) (-10 -8 (-15 -3689 ($ (-639 |#1|))))) -((-4053 (((-857) $) 13) (($ (-1173)) 9) (((-1173) $) 8))) -(((-92 |#1|) (-10 -8 (-15 -4053 ((-1173) |#1|)) (-15 -4053 (|#1| (-1173))) (-15 -4053 ((-857) |#1|))) (-93)) (T -92)) -NIL -(-10 -8 (-15 -4053 ((-1173) |#1|)) (-15 -4053 (|#1| (-1173))) (-15 -4053 ((-857) |#1|))) -((-4041 (((-112) $ $) 7)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11) (($ (-1173)) 16) (((-1173) $) 15)) (-1733 (((-112) $ $) 6))) -(((-93) (-139)) (T -93)) -NIL -(-13 (-1092) (-489 (-1173))) -(((-102) . T) ((-612 #0=(-1173)) . T) ((-609 (-857)) . T) ((-609 #0#) . T) ((-489 #0#) . T) ((-1092) . T)) -((-4183 (($ $) 10)) (-4195 (($ $) 12))) -(((-94 |#1|) (-10 -8 (-15 -4195 (|#1| |#1|)) (-15 -4183 (|#1| |#1|))) (-95)) (T -94)) -NIL -(-10 -8 (-15 -4195 (|#1| |#1|)) (-15 -4183 (|#1| |#1|))) -((-4165 (($ $) 11)) (-4139 (($ $) 10)) (-4183 (($ $) 9)) (-4195 (($ $) 8)) (-4175 (($ $) 7)) (-4151 (($ $) 6))) -(((-95) (-139)) (T -95)) -((-4165 (*1 *1 *1) (-4 *1 (-95))) (-4139 (*1 *1 *1) (-4 *1 (-95))) (-4183 (*1 *1 *1) (-4 *1 (-95))) (-4195 (*1 *1 *1) (-4 *1 (-95))) (-4175 (*1 *1 *1) (-4 *1 (-95))) (-4151 (*1 *1 *1) (-4 *1 (-95)))) -(-13 (-10 -8 (-15 -4151 ($ $)) (-15 -4175 ($ $)) (-15 -4195 ($ $)) (-15 -4183 ($ $)) (-15 -4139 ($ $)) (-15 -4165 ($ $)))) -((-4041 (((-112) $ $) NIL)) (-3253 (((-1127) $) 9)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 17) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-96) (-13 (-1075) (-10 -8 (-15 -3253 ((-1127) $))))) (T -96)) -((-3253 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-96))))) -(-13 (-1075) (-10 -8 (-15 -3253 ((-1127) $)))) -((-4041 (((-112) $ $) NIL)) (-3439 (((-378) (-1150) (-378)) 42) (((-378) (-1150) (-1150) (-378)) 41)) (-1375 (((-378) (-378)) 33)) (-4181 (((-1261)) 36)) (-3696 (((-1150) $) NIL)) (-3581 (((-378) (-1150) (-1150)) 46) (((-378) (-1150)) 48)) (-1709 (((-1112) $) NIL)) (-2304 (((-378) (-1150) (-1150)) 47)) (-3485 (((-378) (-1150) (-1150)) 49) (((-378) (-1150)) 50)) (-4053 (((-857) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-97) (-13 (-1092) (-10 -7 (-15 -3581 ((-378) (-1150) (-1150))) (-15 -3581 ((-378) (-1150))) (-15 -3485 ((-378) (-1150) (-1150))) (-15 -3485 ((-378) (-1150))) (-15 -2304 ((-378) (-1150) (-1150))) (-15 -4181 ((-1261))) (-15 -1375 ((-378) (-378))) (-15 -3439 ((-378) (-1150) (-378))) (-15 -3439 ((-378) (-1150) (-1150) (-378))) (-6 -4403)))) (T -97)) -((-3581 (*1 *2 *3 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-378)) (-5 *1 (-97)))) (-3581 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-378)) (-5 *1 (-97)))) (-3485 (*1 *2 *3 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-378)) (-5 *1 (-97)))) (-3485 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-378)) (-5 *1 (-97)))) (-2304 (*1 *2 *3 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-378)) (-5 *1 (-97)))) (-4181 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-97)))) (-1375 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-97)))) (-3439 (*1 *2 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-1150)) (-5 *1 (-97)))) (-3439 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-1150)) (-5 *1 (-97))))) -(-13 (-1092) (-10 -7 (-15 -3581 ((-378) (-1150) (-1150))) (-15 -3581 ((-378) (-1150))) (-15 -3485 ((-378) (-1150) (-1150))) (-15 -3485 ((-378) (-1150))) (-15 -2304 ((-378) (-1150) (-1150))) (-15 -4181 ((-1261))) (-15 -1375 ((-378) (-378))) (-15 -3439 ((-378) (-1150) (-378))) (-15 -3439 ((-378) (-1150) (-1150) (-378))) (-6 -4403))) -NIL -(((-98) (-139)) (T -98)) -NIL -(-13 (-10 -7 (-6 -4403) (-6 (-4405 "*")) (-6 -4404) (-6 -4400) (-6 -4398) (-6 -4397) (-6 -4396) (-6 -4401) (-6 -4395) (-6 -4394) (-6 -4393) (-6 -4392) (-6 -4391) (-6 -4399) (-6 -4402) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4390))) -((-4041 (((-112) $ $) NIL)) (-3329 (($) NIL T CONST)) (-1694 (((-3 $ "failed") $) NIL)) (-4367 (((-112) $) NIL)) (-2853 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-562))) 22)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) 14)) (-1709 (((-1112) $) NIL)) (-2343 ((|#1| $ |#1|) 11)) (-1660 (($ $ $) NIL)) (-2114 (($ $ $) NIL)) (-4053 (((-857) $) 20)) (-2294 (($) 8 T CONST)) (-1733 (((-112) $ $) 10)) (-1859 (($ $ $) NIL)) (** (($ $ (-916)) 27) (($ $ (-766)) NIL) (($ $ (-562)) 16)) (* (($ $ $) 28))) -(((-99 |#1|) (-13 (-472) (-285 |#1| |#1|) (-10 -8 (-15 -2853 ($ (-1 |#1| |#1|))) (-15 -2853 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2853 ($ (-1 |#1| |#1| (-562)))))) (-1044)) (T -99)) -((-2853 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1044)) (-5 *1 (-99 *3)))) (-2853 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1044)) (-5 *1 (-99 *3)))) (-2853 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-562))) (-4 *3 (-1044)) (-5 *1 (-99 *3))))) -(-13 (-472) (-285 |#1| |#1|) (-10 -8 (-15 -2853 ($ (-1 |#1| |#1|))) (-15 -2853 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2853 ($ (-1 |#1| |#1| (-562)))))) -((-3028 (((-417 |#2|) |#2| (-639 |#2|)) 10) (((-417 |#2|) |#2| |#2|) 11))) -(((-100 |#1| |#2|) (-10 -7 (-15 -3028 ((-417 |#2|) |#2| |#2|)) (-15 -3028 ((-417 |#2|) |#2| (-639 |#2|)))) (-13 (-451) (-146)) (-1232 |#1|)) (T -100)) -((-3028 (*1 *2 *3 *4) (-12 (-5 *4 (-639 *3)) (-4 *3 (-1232 *5)) (-4 *5 (-13 (-451) (-146))) (-5 *2 (-417 *3)) (-5 *1 (-100 *5 *3)))) (-3028 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-451) (-146))) (-5 *2 (-417 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1232 *4))))) -(-10 -7 (-15 -3028 ((-417 |#2|) |#2| |#2|)) (-15 -3028 ((-417 |#2|) |#2| (-639 |#2|)))) -((-4041 (((-112) $ $) 9))) -(((-101 |#1|) (-10 -8 (-15 -4041 ((-112) |#1| |#1|))) (-102)) (T -101)) -NIL -(-10 -8 (-15 -4041 ((-112) |#1| |#1|))) -((-4041 (((-112) $ $) 7)) (-1733 (((-112) $ $) 6))) -(((-102) (-139)) (T -102)) -((-4041 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-1733 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) -(-13 (-10 -8 (-15 -1733 ((-112) $ $)) (-15 -4041 ((-112) $ $)))) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2533 ((|#1| $) NIL)) (-3735 (((-112) $ (-766)) NIL)) (-2677 ((|#1| $ |#1|) 13 (|has| $ (-6 -4404)))) (-3853 (($ $ $) NIL (|has| $ (-6 -4404)))) (-2861 (($ $ $) NIL (|has| $ (-6 -4404)))) (-2614 (($ $ (-639 |#1|)) 15)) (-4200 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4404))) (($ $ "left" $) NIL (|has| $ (-6 -4404))) (($ $ "right" $) NIL (|has| $ (-6 -4404)))) (-3742 (($ $ (-639 $)) NIL (|has| $ (-6 -4404)))) (-3329 (($) NIL T CONST)) (-1603 (($ $) 11)) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-2409 (((-639 $) $) NIL)) (-4188 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3532 (($ $ |#1| $) 17)) (-4172 (((-112) $ (-766)) NIL)) (-2123 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2100 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-3553 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-639 |#1|) |#1| |#1| |#1|)) 35)) (-1491 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-1589 (($ $) 10)) (-4008 (((-639 |#1|) $) NIL)) (-3179 (((-112) $) 12)) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-3008 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) NIL)) (-3087 (((-112) $) 9)) (-1663 (($) 16)) (-2343 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1423 (((-562) $ $) NIL)) (-2473 (((-112) $) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-4220 (($ $) NIL)) (-4053 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-3643 (((-639 $) $) NIL)) (-2985 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1490 (($ (-766) |#1|) 19)) (-2879 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4403) (-6 -4404) (-15 -1490 ($ (-766) |#1|)) (-15 -2614 ($ $ (-639 |#1|))) (-15 -2100 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2100 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3553 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3553 ($ $ |#1| (-1 (-639 |#1|) |#1| |#1| |#1|))))) (-1092)) (T -103)) -((-1490 (*1 *1 *2 *3) (-12 (-5 *2 (-766)) (-5 *1 (-103 *3)) (-4 *3 (-1092)))) (-2614 (*1 *1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-5 *1 (-103 *3)))) (-2100 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1092)))) (-2100 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1092)) (-5 *1 (-103 *3)))) (-3553 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1092)) (-5 *1 (-103 *2)))) (-3553 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-639 *2) *2 *2 *2)) (-4 *2 (-1092)) (-5 *1 (-103 *2))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4403) (-6 -4404) (-15 -1490 ($ (-766) |#1|)) (-15 -2614 ($ $ (-639 |#1|))) (-15 -2100 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2100 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3553 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3553 ($ $ |#1| (-1 (-639 |#1|) |#1| |#1| |#1|))))) -((-1758 ((|#3| |#2| |#2|) 28)) (-1881 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4405 "*"))))) (-3564 ((|#3| |#2| |#2|) 29)) (-2410 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4405 "*")))))) -(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1758 (|#3| |#2| |#2|)) (-15 -3564 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4405 "*"))) (PROGN (-15 -1881 (|#1| |#2| |#2|)) (-15 -2410 (|#1| |#2|))) |%noBranch|)) (-1044) (-1232 |#1|) (-681 |#1| |#4| |#5|) (-372 |#1|) (-372 |#1|)) (T -104)) -((-2410 (*1 *2 *3) (-12 (|has| *2 (-6 (-4405 "*"))) (-4 *5 (-372 *2)) (-4 *6 (-372 *2)) (-4 *2 (-1044)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1232 *2)) (-4 *4 (-681 *2 *5 *6)))) (-1881 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4405 "*"))) (-4 *5 (-372 *2)) (-4 *6 (-372 *2)) (-4 *2 (-1044)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1232 *2)) (-4 *4 (-681 *2 *5 *6)))) (-3564 (*1 *2 *3 *3) (-12 (-4 *4 (-1044)) (-4 *2 (-681 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1232 *4)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)))) (-1758 (*1 *2 *3 *3) (-12 (-4 *4 (-1044)) (-4 *2 (-681 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1232 *4)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4))))) -(-10 -7 (-15 -1758 (|#3| |#2| |#2|)) (-15 -3564 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4405 "*"))) (PROGN (-15 -1881 (|#1| |#2| |#2|)) (-15 -2410 (|#1| |#2|))) |%noBranch|)) -((-4041 (((-112) $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-1641 (((-639 (-1168))) 33)) (-3254 (((-2 (|:| |zeros| (-1148 (-224))) (|:| |ones| (-1148 (-224))) (|:| |singularities| (-1148 (-224)))) (-1168)) 35)) (-1733 (((-112) $ $) NIL))) -(((-105) (-13 (-1092) (-10 -7 (-15 -1641 ((-639 (-1168)))) (-15 -3254 ((-2 (|:| |zeros| (-1148 (-224))) (|:| |ones| (-1148 (-224))) (|:| |singularities| (-1148 (-224)))) (-1168))) (-6 -4403)))) (T -105)) -((-1641 (*1 *2) (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-105)))) (-3254 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-2 (|:| |zeros| (-1148 (-224))) (|:| |ones| (-1148 (-224))) (|:| |singularities| (-1148 (-224))))) (-5 *1 (-105))))) -(-13 (-1092) (-10 -7 (-15 -1641 ((-639 (-1168)))) (-15 -3254 ((-2 (|:| |zeros| (-1148 (-224))) (|:| |ones| (-1148 (-224))) (|:| |singularities| (-1148 (-224)))) (-1168))) (-6 -4403))) -((-4131 (($ (-639 |#2|)) 11))) -(((-106 |#1| |#2|) (-10 -8 (-15 -4131 (|#1| (-639 |#2|)))) (-107 |#2|) (-1207)) (T -106)) -NIL -(-10 -8 (-15 -4131 (|#1| (-639 |#2|)))) -((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-3735 (((-112) $ (-766)) 8)) (-3329 (($) 7 T CONST)) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4403)))) (-4172 (((-112) $ (-766)) 9)) (-2123 (((-639 |#1|) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1491 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-4147 (((-112) $ (-766)) 10)) (-3696 (((-1150) $) 22 (|has| |#1| (-1092)))) (-2078 ((|#1| $) 39)) (-1581 (($ |#1| $) 40)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-2038 ((|#1| $) 41)) (-3008 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) 14)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4403))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-4220 (($ $) 13)) (-4053 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-4131 (($ (-639 |#1|)) 42)) (-2879 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-107 |#1|) (-139) (-1207)) (T -107)) -((-4131 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-4 *1 (-107 *3)))) (-2038 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1207)))) (-1581 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1207)))) (-2078 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1207))))) -(-13 (-488 |t#1|) (-10 -8 (-6 -4404) (-15 -4131 ($ (-639 |t#1|))) (-15 -2038 (|t#1| $)) (-15 -1581 ($ |t#1| $)) (-15 -2078 (|t#1| $)))) -(((-34) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1092) |has| |#1| (-1092)) ((-1207) . T)) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2300 (((-562) $) NIL (|has| (-562) (-306)))) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3517 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-562) (-904)))) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| (-562) (-904)))) (-1436 (((-112) $ $) NIL)) (-1587 (((-562) $) NIL (|has| (-562) (-815)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL) (((-3 (-1168) "failed") $) NIL (|has| (-562) (-1033 (-1168)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| (-562) (-1033 (-562)))) (((-3 (-562) "failed") $) NIL (|has| (-562) (-1033 (-562))))) (-3960 (((-562) $) NIL) (((-1168) $) NIL (|has| (-562) (-1033 (-1168)))) (((-406 (-562)) $) NIL (|has| (-562) (-1033 (-562)))) (((-562) $) NIL (|has| (-562) (-1033 (-562))))) (-1810 (($ $ $) NIL)) (-3449 (((-683 (-562)) (-683 $)) NIL (|has| (-562) (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| (-562) (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL) (((-683 (-562)) (-683 $)) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-1447 (($) NIL (|has| (-562) (-544)))) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-3521 (((-112) $) NIL)) (-2696 (((-112) $) NIL (|has| (-562) (-815)))) (-2337 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (|has| (-562) (-881 (-562)))) (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (|has| (-562) (-881 (-378))))) (-4367 (((-112) $) NIL)) (-2957 (($ $) NIL)) (-4063 (((-562) $) NIL)) (-3828 (((-3 $ "failed") $) NIL (|has| (-562) (-1143)))) (-3855 (((-112) $) NIL (|has| (-562) (-815)))) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1551 (($ $ $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| (-562) (-845)))) (-4152 (($ (-1 (-562) (-562)) $) NIL)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3730 (($) NIL (|has| (-562) (-1143)) CONST)) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2561 (($ $) NIL (|has| (-562) (-306))) (((-406 (-562)) $) NIL)) (-3870 (((-562) $) NIL (|has| (-562) (-544)))) (-3586 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-562) (-904)))) (-3468 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-562) (-904)))) (-1635 (((-417 $) $) NIL)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1433 (($ $ (-639 (-562)) (-639 (-562))) NIL (|has| (-562) (-308 (-562)))) (($ $ (-562) (-562)) NIL (|has| (-562) (-308 (-562)))) (($ $ (-293 (-562))) NIL (|has| (-562) (-308 (-562)))) (($ $ (-639 (-293 (-562)))) NIL (|has| (-562) (-308 (-562)))) (($ $ (-639 (-1168)) (-639 (-562))) NIL (|has| (-562) (-513 (-1168) (-562)))) (($ $ (-1168) (-562)) NIL (|has| (-562) (-513 (-1168) (-562))))) (-2044 (((-766) $) NIL)) (-2343 (($ $ (-562)) NIL (|has| (-562) (-285 (-562) (-562))))) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-4029 (($ $) NIL (|has| (-562) (-232))) (($ $ (-766)) NIL (|has| (-562) (-232))) (($ $ (-1168)) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-1 (-562) (-562)) (-766)) NIL) (($ $ (-1 (-562) (-562))) NIL)) (-1580 (($ $) NIL)) (-4079 (((-562) $) NIL)) (-4208 (((-887 (-562)) $) NIL (|has| (-562) (-610 (-887 (-562))))) (((-887 (-378)) $) NIL (|has| (-562) (-610 (-887 (-378))))) (((-535) $) NIL (|has| (-562) (-610 (-535)))) (((-378) $) NIL (|has| (-562) (-1017))) (((-224) $) NIL (|has| (-562) (-1017)))) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| (-562) (-904))))) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) 8) (($ (-562)) NIL) (($ (-1168)) NIL (|has| (-562) (-1033 (-1168)))) (((-406 (-562)) $) NIL) (((-999 2) $) 10)) (-2059 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| (-562) (-904))) (|has| (-562) (-144))))) (-1568 (((-766)) NIL)) (-3636 (((-562) $) NIL (|has| (-562) (-544)))) (-4317 (($ (-406 (-562))) 9)) (-3799 (((-112) $ $) NIL)) (-2757 (($ $) NIL (|has| (-562) (-815)))) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3113 (($ $) NIL (|has| (-562) (-232))) (($ $ (-766)) NIL (|has| (-562) (-232))) (($ $ (-1168)) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-1 (-562) (-562)) (-766)) NIL) (($ $ (-1 (-562) (-562))) NIL)) (-1798 (((-112) $ $) NIL (|has| (-562) (-845)))) (-1771 (((-112) $ $) NIL (|has| (-562) (-845)))) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| (-562) (-845)))) (-1761 (((-112) $ $) NIL (|has| (-562) (-845)))) (-1859 (($ $ $) NIL) (($ (-562) (-562)) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ (-562) $) NIL) (($ $ (-562)) NIL))) -(((-108) (-13 (-987 (-562)) (-609 (-406 (-562))) (-609 (-999 2)) (-10 -8 (-15 -2561 ((-406 (-562)) $)) (-15 -4317 ($ (-406 (-562))))))) (T -108)) -((-2561 (*1 *2 *1) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-108)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-108))))) -(-13 (-987 (-562)) (-609 (-406 (-562))) (-609 (-999 2)) (-10 -8 (-15 -2561 ((-406 (-562)) $)) (-15 -4317 ($ (-406 (-562)))))) -((-3806 (((-639 (-960)) $) 14)) (-3253 (((-1168) $) 10)) (-4053 (((-857) $) 23)) (-2795 (($ (-1168) (-639 (-960))) 15))) -(((-109) (-13 (-609 (-857)) (-10 -8 (-15 -3253 ((-1168) $)) (-15 -3806 ((-639 (-960)) $)) (-15 -2795 ($ (-1168) (-639 (-960))))))) (T -109)) -((-3253 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-109)))) (-3806 (*1 *2 *1) (-12 (-5 *2 (-639 (-960))) (-5 *1 (-109)))) (-2795 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-960))) (-5 *1 (-109))))) -(-13 (-609 (-857)) (-10 -8 (-15 -3253 ((-1168) $)) (-15 -3806 ((-639 (-960)) $)) (-15 -2795 ($ (-1168) (-639 (-960)))))) -((-4041 (((-112) $ $) NIL)) (-3294 (($ $) NIL)) (-2264 (($ $ $) NIL)) (-3655 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4404)))) (-1706 (((-112) $) NIL (|has| (-112) (-845))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3737 (($ $) NIL (-12 (|has| $ (-6 -4404)) (|has| (-112) (-845)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4404)))) (-1395 (($ $) NIL (|has| (-112) (-845))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3735 (((-112) $ (-766)) NIL)) (-4200 (((-112) $ (-1223 (-562)) (-112)) NIL (|has| $ (-6 -4404))) (((-112) $ (-562) (-112)) NIL (|has| $ (-6 -4404)))) (-3556 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4403)))) (-3329 (($) NIL T CONST)) (-2673 (($ $) NIL (|has| $ (-6 -4404)))) (-2676 (($ $) NIL)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-112) (-1092))))) (-1475 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4403))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-112) (-1092))))) (-1954 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4403))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4403))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4403)) (|has| (-112) (-1092))))) (-1507 (((-112) $ (-562) (-112)) NIL (|has| $ (-6 -4404)))) (-1420 (((-112) $ (-562)) NIL)) (-4265 (((-562) (-112) $ (-562)) NIL (|has| (-112) (-1092))) (((-562) (-112) $) NIL (|has| (-112) (-1092))) (((-562) (-1 (-112) (-112)) $) NIL)) (-1720 (((-639 (-112)) $) NIL (|has| $ (-6 -4403)))) (-2256 (($ $ $) NIL)) (-2234 (($ $) NIL)) (-1886 (($ $ $) NIL)) (-1458 (($ (-766) (-112)) 8)) (-2618 (($ $ $) NIL)) (-4172 (((-112) $ (-766)) NIL)) (-1849 (((-562) $) NIL (|has| (-562) (-845)))) (-1551 (($ $ $) NIL)) (-4103 (($ $ $) NIL (|has| (-112) (-845))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2123 (((-639 (-112)) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-112) (-1092))))) (-1929 (((-562) $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL)) (-1491 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL)) (-3295 (($ $ $ (-562)) NIL) (($ (-112) $ (-562)) NIL)) (-3336 (((-639 (-562)) $) NIL)) (-1987 (((-112) (-562) $) NIL)) (-1709 (((-1112) $) NIL)) (-1421 (((-112) $) NIL (|has| (-562) (-845)))) (-1963 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3510 (($ $ (-112)) NIL (|has| $ (-6 -4404)))) (-3008 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-112)) (-639 (-112))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1092)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1092)))) (($ $ (-293 (-112))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1092)))) (($ $ (-639 (-293 (-112)))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1092))))) (-1452 (((-112) $ $) NIL)) (-2716 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-112) (-1092))))) (-2366 (((-639 (-112)) $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) NIL)) (-2343 (($ $ (-1223 (-562))) NIL) (((-112) $ (-562)) NIL) (((-112) $ (-562) (-112)) NIL)) (-2880 (($ $ (-1223 (-562))) NIL) (($ $ (-562)) NIL)) (-1723 (((-766) (-112) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-112) (-1092)))) (((-766) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4403)))) (-2694 (($ $ $ (-562)) NIL (|has| $ (-6 -4404)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| (-112) (-610 (-535))))) (-4064 (($ (-639 (-112))) NIL)) (-2767 (($ (-639 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4053 (((-857) $) NIL)) (-3573 (($ (-766) (-112)) 9)) (-2879 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4403)))) (-2245 (($ $ $) NIL)) (-2306 (($ $ $) NIL)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) NIL)) (-2297 (($ $ $) NIL)) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-110) (-13 (-123) (-10 -8 (-15 -3573 ($ (-766) (-112)))))) (T -110)) -((-3573 (*1 *1 *2 *3) (-12 (-5 *2 (-766)) (-5 *3 (-112)) (-5 *1 (-110))))) -(-13 (-123) (-10 -8 (-15 -3573 ($ (-766) (-112))))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11)) (-2285 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) -(((-111 |#1| |#2|) (-139) (-1044) (-1044)) (T -111)) -NIL -(-13 (-642 |t#1|) (-1050 |t#2|) (-10 -7 (-6 -4398) (-6 -4397))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-609 (-857)) . T) ((-642 |#1|) . T) ((-1050 |#2|) . T) ((-1092) . T)) -((-4041 (((-112) $ $) NIL)) (-3294 (($ $) 10)) (-2264 (($ $ $) 15)) (-2796 (($) 7 T CONST)) (-2152 (($ $) 6)) (-1382 (((-766)) 24)) (-1447 (($) 30)) (-2256 (($ $ $) 13)) (-2234 (($ $) 9)) (-1886 (($ $ $) 16)) (-2618 (($ $ $) 17)) (-1551 (($ $ $) NIL) (($) NIL T CONST)) (-2993 (($ $ $) NIL) (($) NIL T CONST)) (-3549 (((-916) $) 29)) (-3696 (((-1150) $) NIL)) (-2464 (($ (-916)) 28)) (-3664 (($ $ $) 20)) (-1709 (((-1112) $) NIL)) (-1615 (($) 8 T CONST)) (-4166 (($ $ $) 21)) (-4208 (((-535) $) 34)) (-4053 (((-857) $) 37)) (-2245 (($ $ $) 11)) (-2306 (($ $ $) 14)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 19)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) 22)) (-2297 (($ $ $) 12))) -(((-112) (-13 (-839) (-655) (-962) (-610 (-535)) (-10 -8 (-15 -2796 ($) -1497) (-15 -1615 ($) -1497) (-15 -2264 ($ $ $)) (-15 -2618 ($ $ $)) (-15 -1886 ($ $ $)) (-15 -2152 ($ $))))) (T -112)) -((-2796 (*1 *1) (-5 *1 (-112))) (-1615 (*1 *1) (-5 *1 (-112))) (-2264 (*1 *1 *1 *1) (-5 *1 (-112))) (-2618 (*1 *1 *1 *1) (-5 *1 (-112))) (-1886 (*1 *1 *1 *1) (-5 *1 (-112))) (-2152 (*1 *1 *1) (-5 *1 (-112)))) -(-13 (-839) (-655) (-962) (-610 (-535)) (-10 -8 (-15 -2796 ($) -1497) (-15 -1615 ($) -1497) (-15 -2264 ($ $ $)) (-15 -2618 ($ $ $)) (-15 -1886 ($ $ $)) (-15 -2152 ($ $)))) -((-3610 (((-3 (-1 |#1| (-639 |#1|)) "failed") (-114)) 19) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-639 |#1|))) 11) (((-3 |#1| "failed") (-114) (-639 |#1|)) 21)) (-4209 (((-3 (-639 (-1 |#1| (-639 |#1|))) "failed") (-114)) 25) (((-114) (-114) (-1 |#1| |#1|)) 30) (((-114) (-114) (-639 (-1 |#1| (-639 |#1|)))) 26)) (-3219 (((-114) |#1|) 55 (|has| |#1| (-845)))) (-3670 (((-3 |#1| "failed") (-114)) 49 (|has| |#1| (-845))))) -(((-113 |#1|) (-10 -7 (-15 -3610 ((-3 |#1| "failed") (-114) (-639 |#1|))) (-15 -3610 ((-114) (-114) (-1 |#1| (-639 |#1|)))) (-15 -3610 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3610 ((-3 (-1 |#1| (-639 |#1|)) "failed") (-114))) (-15 -4209 ((-114) (-114) (-639 (-1 |#1| (-639 |#1|))))) (-15 -4209 ((-114) (-114) (-1 |#1| |#1|))) (-15 -4209 ((-3 (-639 (-1 |#1| (-639 |#1|))) "failed") (-114))) (IF (|has| |#1| (-845)) (PROGN (-15 -3219 ((-114) |#1|)) (-15 -3670 ((-3 |#1| "failed") (-114)))) |%noBranch|)) (-1092)) (T -113)) -((-3670 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1092)) (-4 *2 (-845)) (-5 *1 (-113 *2)))) (-3219 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-845)) (-4 *3 (-1092)))) (-4209 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-639 (-1 *4 (-639 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1092)))) (-4209 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1092)) (-5 *1 (-113 *4)))) (-4209 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-639 (-1 *4 (-639 *4)))) (-4 *4 (-1092)) (-5 *1 (-113 *4)))) (-3610 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-639 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1092)))) (-3610 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1092)) (-5 *1 (-113 *4)))) (-3610 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-639 *4))) (-4 *4 (-1092)) (-5 *1 (-113 *4)))) (-3610 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-639 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1092))))) -(-10 -7 (-15 -3610 ((-3 |#1| "failed") (-114) (-639 |#1|))) (-15 -3610 ((-114) (-114) (-1 |#1| (-639 |#1|)))) (-15 -3610 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3610 ((-3 (-1 |#1| (-639 |#1|)) "failed") (-114))) (-15 -4209 ((-114) (-114) (-639 (-1 |#1| (-639 |#1|))))) (-15 -4209 ((-114) (-114) (-1 |#1| |#1|))) (-15 -4209 ((-3 (-639 (-1 |#1| (-639 |#1|))) "failed") (-114))) (IF (|has| |#1| (-845)) (PROGN (-15 -3219 ((-114) |#1|)) (-15 -3670 ((-3 |#1| "failed") (-114)))) |%noBranch|)) -((-4041 (((-112) $ $) NIL)) (-2277 (((-766) $) 72) (($ $ (-766)) 30)) (-3879 (((-112) $) 32)) (-2345 (($ $ (-1150) (-769)) 26)) (-3597 (($ $ (-45 (-1150) (-769))) 15)) (-3394 (((-3 (-769) "failed") $ (-1150)) 25)) (-3806 (((-45 (-1150) (-769)) $) 14)) (-1502 (($ (-1168)) 17) (($ (-1168) (-766)) 22)) (-1805 (((-112) $) 31)) (-1412 (((-112) $) 33)) (-3253 (((-1168) $) 8)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-3696 (((-1150) $) NIL)) (-3115 (((-112) $ (-1168)) 10)) (-1542 (($ $ (-1 (-535) (-639 (-535)))) 52) (((-3 (-1 (-535) (-639 (-535))) "failed") $) 56)) (-1709 (((-1112) $) NIL)) (-2788 (((-112) $ (-1150)) 29)) (-1445 (($ $ (-1 (-112) $ $)) 35)) (-1479 (((-3 (-1 (-857) (-639 (-857))) "failed") $) 54) (($ $ (-1 (-857) (-639 (-857)))) 41) (($ $ (-1 (-857) (-857))) 43)) (-1303 (($ $ (-1150)) 45)) (-4220 (($ $) 63)) (-2427 (($ $ (-1 (-112) $ $)) 36)) (-4053 (((-857) $) 48)) (-3976 (($ $ (-1150)) 27)) (-3975 (((-3 (-766) "failed") $) 58)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 71)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) 78))) -(((-114) (-13 (-845) (-10 -8 (-15 -3253 ((-1168) $)) (-15 -3806 ((-45 (-1150) (-769)) $)) (-15 -4220 ($ $)) (-15 -1502 ($ (-1168))) (-15 -1502 ($ (-1168) (-766))) (-15 -3975 ((-3 (-766) "failed") $)) (-15 -1805 ((-112) $)) (-15 -3879 ((-112) $)) (-15 -1412 ((-112) $)) (-15 -2277 ((-766) $)) (-15 -2277 ($ $ (-766))) (-15 -1445 ($ $ (-1 (-112) $ $))) (-15 -2427 ($ $ (-1 (-112) $ $))) (-15 -1479 ((-3 (-1 (-857) (-639 (-857))) "failed") $)) (-15 -1479 ($ $ (-1 (-857) (-639 (-857))))) (-15 -1479 ($ $ (-1 (-857) (-857)))) (-15 -1542 ($ $ (-1 (-535) (-639 (-535))))) (-15 -1542 ((-3 (-1 (-535) (-639 (-535))) "failed") $)) (-15 -3115 ((-112) $ (-1168))) (-15 -2788 ((-112) $ (-1150))) (-15 -3976 ($ $ (-1150))) (-15 -1303 ($ $ (-1150))) (-15 -3394 ((-3 (-769) "failed") $ (-1150))) (-15 -2345 ($ $ (-1150) (-769))) (-15 -3597 ($ $ (-45 (-1150) (-769))))))) (T -114)) -((-3253 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-114)))) (-3806 (*1 *2 *1) (-12 (-5 *2 (-45 (-1150) (-769))) (-5 *1 (-114)))) (-4220 (*1 *1 *1) (-5 *1 (-114))) (-1502 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-114)))) (-1502 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-766)) (-5 *1 (-114)))) (-3975 (*1 *2 *1) (|partial| -12 (-5 *2 (-766)) (-5 *1 (-114)))) (-1805 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3879 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1412 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-2277 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-114)))) (-2277 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-114)))) (-1445 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-2427 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-1479 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-857) (-639 (-857)))) (-5 *1 (-114)))) (-1479 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-857) (-639 (-857)))) (-5 *1 (-114)))) (-1479 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-857) (-857))) (-5 *1 (-114)))) (-1542 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-535) (-639 (-535)))) (-5 *1 (-114)))) (-1542 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-535) (-639 (-535)))) (-5 *1 (-114)))) (-3115 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-112)) (-5 *1 (-114)))) (-2788 (*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-112)) (-5 *1 (-114)))) (-3976 (*1 *1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-114)))) (-1303 (*1 *1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-114)))) (-3394 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1150)) (-5 *2 (-769)) (-5 *1 (-114)))) (-2345 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1150)) (-5 *3 (-769)) (-5 *1 (-114)))) (-3597 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1150) (-769))) (-5 *1 (-114))))) -(-13 (-845) (-10 -8 (-15 -3253 ((-1168) $)) (-15 -3806 ((-45 (-1150) (-769)) $)) (-15 -4220 ($ $)) (-15 -1502 ($ (-1168))) (-15 -1502 ($ (-1168) (-766))) (-15 -3975 ((-3 (-766) "failed") $)) (-15 -1805 ((-112) $)) (-15 -3879 ((-112) $)) (-15 -1412 ((-112) $)) (-15 -2277 ((-766) $)) (-15 -2277 ($ $ (-766))) (-15 -1445 ($ $ (-1 (-112) $ $))) (-15 -2427 ($ $ (-1 (-112) $ $))) (-15 -1479 ((-3 (-1 (-857) (-639 (-857))) "failed") $)) (-15 -1479 ($ $ (-1 (-857) (-639 (-857))))) (-15 -1479 ($ $ (-1 (-857) (-857)))) (-15 -1542 ($ $ (-1 (-535) (-639 (-535))))) (-15 -1542 ((-3 (-1 (-535) (-639 (-535))) "failed") $)) (-15 -3115 ((-112) $ (-1168))) (-15 -2788 ((-112) $ (-1150))) (-15 -3976 ($ $ (-1150))) (-15 -1303 ($ $ (-1150))) (-15 -3394 ((-3 (-769) "failed") $ (-1150))) (-15 -2345 ($ $ (-1150) (-769))) (-15 -3597 ($ $ (-45 (-1150) (-769)))))) -((-3337 (((-562) |#2|) 37))) -(((-115 |#1| |#2|) (-10 -7 (-15 -3337 ((-562) |#2|))) (-13 (-362) (-1033 (-406 (-562)))) (-1232 |#1|)) (T -115)) -((-3337 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-1033 (-406 *2)))) (-5 *2 (-562)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1232 *4))))) -(-10 -7 (-15 -3337 ((-562) |#2|))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-1644 (($ $ (-562)) NIL)) (-1436 (((-112) $ $) NIL)) (-3329 (($) NIL T CONST)) (-3723 (($ (-1164 (-562)) (-562)) NIL)) (-1810 (($ $ $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-3119 (($ $) NIL)) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-1993 (((-766) $) NIL)) (-4367 (((-112) $) NIL)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2685 (((-562)) NIL)) (-2920 (((-562) $) NIL)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4316 (($ $ (-562)) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2044 (((-766) $) NIL)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-2244 (((-1148 (-562)) $) NIL)) (-1345 (($ $) NIL)) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL)) (-1568 (((-766)) NIL)) (-3799 (((-112) $ $) NIL)) (-1406 (((-562) $ (-562)) NIL)) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-1733 (((-112) $ $) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL))) -(((-116 |#1|) (-864 |#1|) (-562)) (T -116)) -NIL -(-864 |#1|) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2300 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-306)))) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3517 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-116 |#1|) (-904)))) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| (-116 |#1|) (-904)))) (-1436 (((-112) $ $) NIL)) (-1587 (((-562) $) NIL (|has| (-116 |#1|) (-815)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1168) "failed") $) NIL (|has| (-116 |#1|) (-1033 (-1168)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| (-116 |#1|) (-1033 (-562)))) (((-3 (-562) "failed") $) NIL (|has| (-116 |#1|) (-1033 (-562))))) (-3960 (((-116 |#1|) $) NIL) (((-1168) $) NIL (|has| (-116 |#1|) (-1033 (-1168)))) (((-406 (-562)) $) NIL (|has| (-116 |#1|) (-1033 (-562)))) (((-562) $) NIL (|has| (-116 |#1|) (-1033 (-562))))) (-2449 (($ $) NIL) (($ (-562) $) NIL)) (-1810 (($ $ $) NIL)) (-3449 (((-683 (-562)) (-683 $)) NIL (|has| (-116 |#1|) (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| (-116 |#1|) (-635 (-562)))) (((-2 (|:| -1767 (-683 (-116 |#1|))) (|:| |vec| (-1256 (-116 |#1|)))) (-683 $) (-1256 $)) NIL) (((-683 (-116 |#1|)) (-683 $)) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-1447 (($) NIL (|has| (-116 |#1|) (-544)))) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-3521 (((-112) $) NIL)) (-2696 (((-112) $) NIL (|has| (-116 |#1|) (-815)))) (-2337 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (|has| (-116 |#1|) (-881 (-562)))) (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (|has| (-116 |#1|) (-881 (-378))))) (-4367 (((-112) $) NIL)) (-2957 (($ $) NIL)) (-4063 (((-116 |#1|) $) NIL)) (-3828 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1143)))) (-3855 (((-112) $) NIL (|has| (-116 |#1|) (-815)))) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1551 (($ $ $) NIL (|has| (-116 |#1|) (-845)))) (-2993 (($ $ $) NIL (|has| (-116 |#1|) (-845)))) (-4152 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3730 (($) NIL (|has| (-116 |#1|) (-1143)) CONST)) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2561 (($ $) NIL (|has| (-116 |#1|) (-306)))) (-3870 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-544)))) (-3586 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-116 |#1|) (-904)))) (-3468 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-116 |#1|) (-904)))) (-1635 (((-417 $) $) NIL)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1433 (($ $ (-639 (-116 |#1|)) (-639 (-116 |#1|))) NIL (|has| (-116 |#1|) (-308 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-308 (-116 |#1|)))) (($ $ (-293 (-116 |#1|))) NIL (|has| (-116 |#1|) (-308 (-116 |#1|)))) (($ $ (-639 (-293 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-308 (-116 |#1|)))) (($ $ (-639 (-1168)) (-639 (-116 |#1|))) NIL (|has| (-116 |#1|) (-513 (-1168) (-116 |#1|)))) (($ $ (-1168) (-116 |#1|)) NIL (|has| (-116 |#1|) (-513 (-1168) (-116 |#1|))))) (-2044 (((-766) $) NIL)) (-2343 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-285 (-116 |#1|) (-116 |#1|))))) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-4029 (($ $) NIL (|has| (-116 |#1|) (-232))) (($ $ (-766)) NIL (|has| (-116 |#1|) (-232))) (($ $ (-1168)) NIL (|has| (-116 |#1|) (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| (-116 |#1|) (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| (-116 |#1|) (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| (-116 |#1|) (-895 (-1168)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-766)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-1580 (($ $) NIL)) (-4079 (((-116 |#1|) $) NIL)) (-4208 (((-887 (-562)) $) NIL (|has| (-116 |#1|) (-610 (-887 (-562))))) (((-887 (-378)) $) NIL (|has| (-116 |#1|) (-610 (-887 (-378))))) (((-535) $) NIL (|has| (-116 |#1|) (-610 (-535)))) (((-378) $) NIL (|has| (-116 |#1|) (-1017))) (((-224) $) NIL (|has| (-116 |#1|) (-1017)))) (-1477 (((-173 (-406 (-562))) $) NIL)) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| (-116 |#1|) (-904))))) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL) (($ (-116 |#1|)) NIL) (($ (-1168)) NIL (|has| (-116 |#1|) (-1033 (-1168))))) (-2059 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| (-116 |#1|) (-904))) (|has| (-116 |#1|) (-144))))) (-1568 (((-766)) NIL)) (-3636 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-544)))) (-3799 (((-112) $ $) NIL)) (-1406 (((-406 (-562)) $ (-562)) NIL)) (-2757 (($ $) NIL (|has| (-116 |#1|) (-815)))) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3113 (($ $) NIL (|has| (-116 |#1|) (-232))) (($ $ (-766)) NIL (|has| (-116 |#1|) (-232))) (($ $ (-1168)) NIL (|has| (-116 |#1|) (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| (-116 |#1|) (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| (-116 |#1|) (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| (-116 |#1|) (-895 (-1168)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-766)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-1798 (((-112) $ $) NIL (|has| (-116 |#1|) (-845)))) (-1771 (((-112) $ $) NIL (|has| (-116 |#1|) (-845)))) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| (-116 |#1|) (-845)))) (-1761 (((-112) $ $) NIL (|has| (-116 |#1|) (-845)))) (-1859 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL))) -(((-117 |#1|) (-13 (-987 (-116 |#1|)) (-10 -8 (-15 -1406 ((-406 (-562)) $ (-562))) (-15 -1477 ((-173 (-406 (-562))) $)) (-15 -2449 ($ $)) (-15 -2449 ($ (-562) $)))) (-562)) (T -117)) -((-1406 (*1 *2 *1 *3) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-562)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-173 (-406 (-562)))) (-5 *1 (-117 *3)) (-14 *3 (-562)))) (-2449 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-562)))) (-2449 (*1 *1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-117 *3)) (-14 *3 *2)))) -(-13 (-987 (-116 |#1|)) (-10 -8 (-15 -1406 ((-406 (-562)) $ (-562))) (-15 -1477 ((-173 (-406 (-562))) $)) (-15 -2449 ($ $)) (-15 -2449 ($ (-562) $)))) -((-4200 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 48) (($ $ "right" $) 50)) (-2409 (((-639 $) $) 27)) (-4188 (((-112) $ $) 32)) (-1572 (((-112) |#2| $) 36)) (-4008 (((-639 |#2|) $) 22)) (-3179 (((-112) $) 16)) (-2343 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2473 (((-112) $) 45)) (-4053 (((-857) $) 41)) (-3643 (((-639 $) $) 28)) (-1733 (((-112) $ $) 34)) (-3492 (((-766) $) 43))) -(((-118 |#1| |#2|) (-10 -8 (-15 -4053 ((-857) |#1|)) (-15 -4200 (|#1| |#1| "right" |#1|)) (-15 -4200 (|#1| |#1| "left" |#1|)) (-15 -2343 (|#1| |#1| "right")) (-15 -2343 (|#1| |#1| "left")) (-15 -4200 (|#2| |#1| "value" |#2|)) (-15 -4188 ((-112) |#1| |#1|)) (-15 -4008 ((-639 |#2|) |#1|)) (-15 -2473 ((-112) |#1|)) (-15 -2343 (|#2| |#1| "value")) (-15 -3179 ((-112) |#1|)) (-15 -2409 ((-639 |#1|) |#1|)) (-15 -3643 ((-639 |#1|) |#1|)) (-15 -1733 ((-112) |#1| |#1|)) (-15 -1572 ((-112) |#2| |#1|)) (-15 -3492 ((-766) |#1|))) (-119 |#2|) (-1207)) (T -118)) -NIL -(-10 -8 (-15 -4053 ((-857) |#1|)) (-15 -4200 (|#1| |#1| "right" |#1|)) (-15 -4200 (|#1| |#1| "left" |#1|)) (-15 -2343 (|#1| |#1| "right")) (-15 -2343 (|#1| |#1| "left")) (-15 -4200 (|#2| |#1| "value" |#2|)) (-15 -4188 ((-112) |#1| |#1|)) (-15 -4008 ((-639 |#2|) |#1|)) (-15 -2473 ((-112) |#1|)) (-15 -2343 (|#2| |#1| "value")) (-15 -3179 ((-112) |#1|)) (-15 -2409 ((-639 |#1|) |#1|)) (-15 -3643 ((-639 |#1|) |#1|)) (-15 -1733 ((-112) |#1| |#1|)) (-15 -1572 ((-112) |#2| |#1|)) (-15 -3492 ((-766) |#1|))) -((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-2533 ((|#1| $) 48)) (-3735 (((-112) $ (-766)) 8)) (-2677 ((|#1| $ |#1|) 39 (|has| $ (-6 -4404)))) (-3853 (($ $ $) 52 (|has| $ (-6 -4404)))) (-2861 (($ $ $) 54 (|has| $ (-6 -4404)))) (-4200 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4404))) (($ $ "left" $) 55 (|has| $ (-6 -4404))) (($ $ "right" $) 53 (|has| $ (-6 -4404)))) (-3742 (($ $ (-639 $)) 41 (|has| $ (-6 -4404)))) (-3329 (($) 7 T CONST)) (-1603 (($ $) 57)) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4403)))) (-2409 (((-639 $) $) 50)) (-4188 (((-112) $ $) 42 (|has| |#1| (-1092)))) (-4172 (((-112) $ (-766)) 9)) (-2123 (((-639 |#1|) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1491 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-4147 (((-112) $ (-766)) 10)) (-1589 (($ $) 59)) (-4008 (((-639 |#1|) $) 45)) (-3179 (((-112) $) 49)) (-3696 (((-1150) $) 22 (|has| |#1| (-1092)))) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-3008 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) 14)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-2343 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1423 (((-562) $ $) 44)) (-2473 (((-112) $) 46)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4403))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-4220 (($ $) 13)) (-4053 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-3643 (((-639 $) $) 51)) (-2985 (((-112) $ $) 43 (|has| |#1| (-1092)))) (-2879 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-119 |#1|) (-139) (-1207)) (T -119)) -((-1589 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1207)))) (-2343 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1207)))) (-1603 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1207)))) (-2343 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1207)))) (-4200 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4404)) (-4 *1 (-119 *3)) (-4 *3 (-1207)))) (-2861 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4404)) (-4 *1 (-119 *2)) (-4 *2 (-1207)))) (-4200 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4404)) (-4 *1 (-119 *3)) (-4 *3 (-1207)))) (-3853 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4404)) (-4 *1 (-119 *2)) (-4 *2 (-1207))))) -(-13 (-1005 |t#1|) (-10 -8 (-15 -1589 ($ $)) (-15 -2343 ($ $ "left")) (-15 -1603 ($ $)) (-15 -2343 ($ $ "right")) (IF (|has| $ (-6 -4404)) (PROGN (-15 -4200 ($ $ "left" $)) (-15 -2861 ($ $ $)) (-15 -4200 ($ $ "right" $)) (-15 -3853 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1005 |#1|) . T) ((-1092) |has| |#1| (-1092)) ((-1207) . T)) -((-3857 (((-112) |#1|) 24)) (-2126 (((-766) (-766)) 23) (((-766)) 22)) (-2737 (((-112) |#1| (-112)) 25) (((-112) |#1|) 26))) -(((-120 |#1|) (-10 -7 (-15 -2737 ((-112) |#1|)) (-15 -2737 ((-112) |#1| (-112))) (-15 -2126 ((-766))) (-15 -2126 ((-766) (-766))) (-15 -3857 ((-112) |#1|))) (-1232 (-562))) (T -120)) -((-3857 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1232 (-562))))) (-2126 (*1 *2 *2) (-12 (-5 *2 (-766)) (-5 *1 (-120 *3)) (-4 *3 (-1232 (-562))))) (-2126 (*1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-120 *3)) (-4 *3 (-1232 (-562))))) (-2737 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1232 (-562))))) (-2737 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1232 (-562)))))) -(-10 -7 (-15 -2737 ((-112) |#1|)) (-15 -2737 ((-112) |#1| (-112))) (-15 -2126 ((-766))) (-15 -2126 ((-766) (-766))) (-15 -3857 ((-112) |#1|))) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2533 ((|#1| $) 15)) (-1841 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-3735 (((-112) $ (-766)) NIL)) (-2677 ((|#1| $ |#1|) NIL (|has| $ (-6 -4404)))) (-3853 (($ $ $) 18 (|has| $ (-6 -4404)))) (-2861 (($ $ $) 20 (|has| $ (-6 -4404)))) (-4200 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4404))) (($ $ "left" $) NIL (|has| $ (-6 -4404))) (($ $ "right" $) NIL (|has| $ (-6 -4404)))) (-3742 (($ $ (-639 $)) NIL (|has| $ (-6 -4404)))) (-3329 (($) NIL T CONST)) (-1603 (($ $) 17)) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-2409 (((-639 $) $) NIL)) (-4188 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3532 (($ $ |#1| $) 23)) (-4172 (((-112) $ (-766)) NIL)) (-2123 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1491 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-1589 (($ $) 19)) (-4008 (((-639 |#1|) $) NIL)) (-3179 (((-112) $) NIL)) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1943 (($ |#1| $) 24)) (-1581 (($ |#1| $) 10)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-3008 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) NIL)) (-3087 (((-112) $) 14)) (-1663 (($) 8)) (-2343 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1423 (((-562) $ $) NIL)) (-2473 (((-112) $) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-4220 (($ $) NIL)) (-4053 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-3643 (((-639 $) $) NIL)) (-2985 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1931 (($ (-639 |#1|)) 12)) (-2879 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4404) (-6 -4403) (-15 -1931 ($ (-639 |#1|))) (-15 -1581 ($ |#1| $)) (-15 -1943 ($ |#1| $)) (-15 -1841 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-845)) (T -121)) -((-1931 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-845)) (-5 *1 (-121 *3)))) (-1581 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-845)))) (-1943 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-845)))) (-1841 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-845))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4404) (-6 -4403) (-15 -1931 ($ (-639 |#1|))) (-15 -1581 ($ |#1| $)) (-15 -1943 ($ |#1| $)) (-15 -1841 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-3294 (($ $) 12)) (-2234 (($ $) 10)) (-1886 (($ $ $) 22)) (-2618 (($ $ $) 20)) (-2306 (($ $ $) 18)) (-2297 (($ $ $) 16))) -(((-122 |#1|) (-10 -8 (-15 -1886 (|#1| |#1| |#1|)) (-15 -2618 (|#1| |#1| |#1|)) (-15 -2234 (|#1| |#1|)) (-15 -3294 (|#1| |#1|)) (-15 -2297 (|#1| |#1| |#1|)) (-15 -2306 (|#1| |#1| |#1|))) (-123)) (T -122)) -NIL -(-10 -8 (-15 -1886 (|#1| |#1| |#1|)) (-15 -2618 (|#1| |#1| |#1|)) (-15 -2234 (|#1| |#1|)) (-15 -3294 (|#1| |#1|)) (-15 -2297 (|#1| |#1| |#1|)) (-15 -2306 (|#1| |#1| |#1|))) -((-4041 (((-112) $ $) 7)) (-3294 (($ $) 103)) (-2264 (($ $ $) 25)) (-3655 (((-1261) $ (-562) (-562)) 66 (|has| $ (-6 -4404)))) (-1706 (((-112) $) 98 (|has| (-112) (-845))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-3737 (($ $) 102 (-12 (|has| (-112) (-845)) (|has| $ (-6 -4404)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4404)))) (-1395 (($ $) 97 (|has| (-112) (-845))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-3735 (((-112) $ (-766)) 37)) (-4200 (((-112) $ (-1223 (-562)) (-112)) 88 (|has| $ (-6 -4404))) (((-112) $ (-562) (-112)) 54 (|has| $ (-6 -4404)))) (-3556 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4403)))) (-3329 (($) 38 T CONST)) (-2673 (($ $) 100 (|has| $ (-6 -4404)))) (-2676 (($ $) 90)) (-1459 (($ $) 68 (-12 (|has| (-112) (-1092)) (|has| $ (-6 -4403))))) (-1475 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4403))) (($ (-112) $) 69 (-12 (|has| (-112) (-1092)) (|has| $ (-6 -4403))))) (-1954 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4403))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4403))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1092)) (|has| $ (-6 -4403))))) (-1507 (((-112) $ (-562) (-112)) 53 (|has| $ (-6 -4404)))) (-1420 (((-112) $ (-562)) 55)) (-4265 (((-562) (-112) $ (-562)) 95 (|has| (-112) (-1092))) (((-562) (-112) $) 94 (|has| (-112) (-1092))) (((-562) (-1 (-112) (-112)) $) 93)) (-1720 (((-639 (-112)) $) 45 (|has| $ (-6 -4403)))) (-2256 (($ $ $) 26)) (-2234 (($ $) 30)) (-1886 (($ $ $) 28)) (-1458 (($ (-766) (-112)) 77)) (-2618 (($ $ $) 29)) (-4172 (((-112) $ (-766)) 36)) (-1849 (((-562) $) 63 (|has| (-562) (-845)))) (-1551 (($ $ $) 13)) (-4103 (($ $ $) 96 (|has| (-112) (-845))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-2123 (((-639 (-112)) $) 46 (|has| $ (-6 -4403)))) (-1572 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1092)) (|has| $ (-6 -4403))))) (-1929 (((-562) $) 62 (|has| (-562) (-845)))) (-2993 (($ $ $) 14)) (-1491 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4404)))) (-4152 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-4147 (((-112) $ (-766)) 35)) (-3696 (((-1150) $) 9)) (-3295 (($ $ $ (-562)) 87) (($ (-112) $ (-562)) 86)) (-3336 (((-639 (-562)) $) 60)) (-1987 (((-112) (-562) $) 59)) (-1709 (((-1112) $) 10)) (-1421 (((-112) $) 64 (|has| (-562) (-845)))) (-1963 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-3510 (($ $ (-112)) 65 (|has| $ (-6 -4404)))) (-3008 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-112)) (-639 (-112))) 52 (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1092)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1092)))) (($ $ (-293 (-112))) 50 (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1092)))) (($ $ (-639 (-293 (-112)))) 49 (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1092))))) (-1452 (((-112) $ $) 31)) (-2716 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4403)) (|has| (-112) (-1092))))) (-2366 (((-639 (-112)) $) 58)) (-3087 (((-112) $) 34)) (-1663 (($) 33)) (-2343 (($ $ (-1223 (-562))) 83) (((-112) $ (-562)) 57) (((-112) $ (-562) (-112)) 56)) (-2880 (($ $ (-1223 (-562))) 85) (($ $ (-562)) 84)) (-1723 (((-766) (-112) $) 47 (-12 (|has| (-112) (-1092)) (|has| $ (-6 -4403)))) (((-766) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4403)))) (-2694 (($ $ $ (-562)) 99 (|has| $ (-6 -4404)))) (-4220 (($ $) 32)) (-4208 (((-535) $) 67 (|has| (-112) (-610 (-535))))) (-4064 (($ (-639 (-112))) 76)) (-2767 (($ (-639 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-4053 (((-857) $) 11)) (-2879 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4403)))) (-2245 (($ $ $) 27)) (-2306 (($ $ $) 105)) (-1798 (((-112) $ $) 16)) (-1771 (((-112) $ $) 17)) (-1733 (((-112) $ $) 6)) (-1785 (((-112) $ $) 15)) (-1761 (((-112) $ $) 18)) (-2297 (($ $ $) 104)) (-3492 (((-766) $) 39 (|has| $ (-6 -4403))))) -(((-123) (-139)) (T -123)) -((-2234 (*1 *1 *1) (-4 *1 (-123))) (-2618 (*1 *1 *1 *1) (-4 *1 (-123))) (-1886 (*1 *1 *1 *1) (-4 *1 (-123))) (-2245 (*1 *1 *1 *1) (-4 *1 (-123))) (-2256 (*1 *1 *1 *1) (-4 *1 (-123))) (-2264 (*1 *1 *1 *1) (-4 *1 (-123)))) -(-13 (-845) (-655) (-19 (-112)) (-10 -8 (-15 -2234 ($ $)) (-15 -2618 ($ $ $)) (-15 -1886 ($ $ $)) (-15 -2245 ($ $ $)) (-15 -2256 ($ $ $)) (-15 -2264 ($ $ $)))) -(((-34) . T) ((-102) . T) ((-609 (-857)) . T) ((-150 #0=(-112)) . T) ((-610 (-535)) |has| (-112) (-610 (-535))) ((-285 #1=(-562) #0#) . T) ((-287 #1# #0#) . T) ((-308 #0#) -12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1092))) ((-372 #0#) . T) ((-488 #0#) . T) ((-600 #1# #0#) . T) ((-513 #0# #0#) -12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1092))) ((-645 #0#) . T) ((-655) . T) ((-19 #0#) . T) ((-845) . T) ((-1092) . T) ((-1207) . T)) -((-1491 (($ (-1 |#2| |#2|) $) 22)) (-4220 (($ $) 16)) (-3492 (((-766) $) 24))) -(((-124 |#1| |#2|) (-10 -8 (-15 -1491 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3492 ((-766) |#1|)) (-15 -4220 (|#1| |#1|))) (-125 |#2|) (-1092)) (T -124)) -NIL -(-10 -8 (-15 -1491 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3492 ((-766) |#1|)) (-15 -4220 (|#1| |#1|))) -((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-2533 ((|#1| $) 48)) (-3735 (((-112) $ (-766)) 8)) (-2677 ((|#1| $ |#1|) 39 (|has| $ (-6 -4404)))) (-3853 (($ $ $) 52 (|has| $ (-6 -4404)))) (-2861 (($ $ $) 54 (|has| $ (-6 -4404)))) (-4200 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4404))) (($ $ "left" $) 55 (|has| $ (-6 -4404))) (($ $ "right" $) 53 (|has| $ (-6 -4404)))) (-3742 (($ $ (-639 $)) 41 (|has| $ (-6 -4404)))) (-3329 (($) 7 T CONST)) (-1603 (($ $) 57)) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4403)))) (-2409 (((-639 $) $) 50)) (-4188 (((-112) $ $) 42 (|has| |#1| (-1092)))) (-3532 (($ $ |#1| $) 60)) (-4172 (((-112) $ (-766)) 9)) (-2123 (((-639 |#1|) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1491 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-4147 (((-112) $ (-766)) 10)) (-1589 (($ $) 59)) (-4008 (((-639 |#1|) $) 45)) (-3179 (((-112) $) 49)) (-3696 (((-1150) $) 22 (|has| |#1| (-1092)))) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-3008 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) 14)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-2343 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1423 (((-562) $ $) 44)) (-2473 (((-112) $) 46)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4403))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-4220 (($ $) 13)) (-4053 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-3643 (((-639 $) $) 51)) (-2985 (((-112) $ $) 43 (|has| |#1| (-1092)))) (-2879 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-125 |#1|) (-139) (-1092)) (T -125)) -((-3532 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1092))))) -(-13 (-119 |t#1|) (-10 -8 (-6 -4404) (-6 -4403) (-15 -3532 ($ $ |t#1| $)))) -(((-34) . T) ((-102) |has| |#1| (-1092)) ((-119 |#1|) . T) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1005 |#1|) . T) ((-1092) |has| |#1| (-1092)) ((-1207) . T)) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2533 ((|#1| $) 15)) (-3735 (((-112) $ (-766)) NIL)) (-2677 ((|#1| $ |#1|) 19 (|has| $ (-6 -4404)))) (-3853 (($ $ $) 20 (|has| $ (-6 -4404)))) (-2861 (($ $ $) 18 (|has| $ (-6 -4404)))) (-4200 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4404))) (($ $ "left" $) NIL (|has| $ (-6 -4404))) (($ $ "right" $) NIL (|has| $ (-6 -4404)))) (-3742 (($ $ (-639 $)) NIL (|has| $ (-6 -4404)))) (-3329 (($) NIL T CONST)) (-1603 (($ $) 21)) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-2409 (((-639 $) $) NIL)) (-4188 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3532 (($ $ |#1| $) NIL)) (-4172 (((-112) $ (-766)) NIL)) (-2123 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1491 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-1589 (($ $) NIL)) (-4008 (((-639 |#1|) $) NIL)) (-3179 (((-112) $) NIL)) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1581 (($ |#1| $) 10)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-3008 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) NIL)) (-3087 (((-112) $) 14)) (-1663 (($) 8)) (-2343 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1423 (((-562) $ $) NIL)) (-2473 (((-112) $) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-4220 (($ $) 17)) (-4053 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-3643 (((-639 $) $) NIL)) (-2985 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1325 (($ (-639 |#1|)) 12)) (-2879 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4404) (-15 -1325 ($ (-639 |#1|))) (-15 -1581 ($ |#1| $)))) (-845)) (T -126)) -((-1325 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-845)) (-5 *1 (-126 *3)))) (-1581 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-845))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4404) (-15 -1325 ($ (-639 |#1|))) (-15 -1581 ($ |#1| $)))) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2533 ((|#1| $) 24)) (-3735 (((-112) $ (-766)) NIL)) (-2677 ((|#1| $ |#1|) 26 (|has| $ (-6 -4404)))) (-3853 (($ $ $) 30 (|has| $ (-6 -4404)))) (-2861 (($ $ $) 28 (|has| $ (-6 -4404)))) (-4200 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4404))) (($ $ "left" $) NIL (|has| $ (-6 -4404))) (($ $ "right" $) NIL (|has| $ (-6 -4404)))) (-3742 (($ $ (-639 $)) NIL (|has| $ (-6 -4404)))) (-3329 (($) NIL T CONST)) (-1603 (($ $) 20)) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-2409 (((-639 $) $) NIL)) (-4188 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3532 (($ $ |#1| $) 15)) (-4172 (((-112) $ (-766)) NIL)) (-2123 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1491 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-1589 (($ $) 19)) (-4008 (((-639 |#1|) $) NIL)) (-3179 (((-112) $) 21)) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-3008 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) NIL)) (-3087 (((-112) $) 18)) (-1663 (($) 11)) (-2343 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1423 (((-562) $ $) NIL)) (-2473 (((-112) $) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-4220 (($ $) NIL)) (-4053 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-3643 (((-639 $) $) NIL)) (-2985 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3931 (($ |#1|) 17) (($ $ |#1| $) 16)) (-2879 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 10 (|has| |#1| (-1092)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -3931 ($ |#1|)) (-15 -3931 ($ $ |#1| $)))) (-1092)) (T -127)) -((-3931 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1092)))) (-3931 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1092))))) -(-13 (-125 |#1|) (-10 -8 (-15 -3931 ($ |#1|)) (-15 -3931 ($ $ |#1| $)))) -((-4041 (((-112) $ $) NIL (|has| (-129) (-1092)))) (-3655 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4404)))) (-1706 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-845)))) (-3737 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4404))) (($ $) NIL (-12 (|has| $ (-6 -4404)) (|has| (-129) (-845))))) (-1395 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-845)))) (-3735 (((-112) $ (-766)) NIL)) (-4200 (((-129) $ (-562) (-129)) 17 (|has| $ (-6 -4404))) (((-129) $ (-1223 (-562)) (-129)) NIL (|has| $ (-6 -4404)))) (-2476 (((-766) $ (-766)) 7)) (-3556 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4403)))) (-3329 (($) NIL T CONST)) (-2673 (($ $) NIL (|has| $ (-6 -4404)))) (-2676 (($ $) NIL)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-129) (-1092))))) (-1475 (($ (-129) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-129) (-1092)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4403)))) (-1954 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4403)) (|has| (-129) (-1092)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4403))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4403)))) (-1507 (((-129) $ (-562) (-129)) 16 (|has| $ (-6 -4404)))) (-1420 (((-129) $ (-562)) 13)) (-4265 (((-562) (-1 (-112) (-129)) $) NIL) (((-562) (-129) $) NIL (|has| (-129) (-1092))) (((-562) (-129) $ (-562)) NIL (|has| (-129) (-1092)))) (-1720 (((-639 (-129)) $) NIL (|has| $ (-6 -4403)))) (-1458 (($ (-766) (-129)) 11)) (-4172 (((-112) $ (-766)) NIL)) (-1849 (((-562) $) 18 (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (|has| (-129) (-845)))) (-4103 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-845)))) (-2123 (((-639 (-129)) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-129) (-1092))))) (-1929 (((-562) $) 19 (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| (-129) (-845)))) (-1491 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL (|has| (-129) (-1092)))) (-3295 (($ (-129) $ (-562)) NIL) (($ $ $ (-562)) NIL)) (-3336 (((-639 (-562)) $) NIL)) (-1987 (((-112) (-562) $) NIL)) (-1709 (((-1112) $) NIL (|has| (-129) (-1092)))) (-1421 (((-129) $) NIL (|has| (-562) (-845)))) (-1963 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-3510 (($ $ (-129)) NIL (|has| $ (-6 -4404)))) (-3008 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 (-129)))) NIL (-12 (|has| (-129) (-308 (-129))) (|has| (-129) (-1092)))) (($ $ (-293 (-129))) NIL (-12 (|has| (-129) (-308 (-129))) (|has| (-129) (-1092)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-308 (-129))) (|has| (-129) (-1092)))) (($ $ (-639 (-129)) (-639 (-129))) NIL (-12 (|has| (-129) (-308 (-129))) (|has| (-129) (-1092))))) (-1452 (((-112) $ $) NIL)) (-2716 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-129) (-1092))))) (-2366 (((-639 (-129)) $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) 9)) (-2343 (((-129) $ (-562) (-129)) NIL) (((-129) $ (-562)) 15) (($ $ (-1223 (-562))) NIL)) (-2880 (($ $ (-562)) NIL) (($ $ (-1223 (-562))) NIL)) (-1723 (((-766) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4403))) (((-766) (-129) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-129) (-1092))))) (-2694 (($ $ $ (-562)) NIL (|has| $ (-6 -4404)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| (-129) (-610 (-535))))) (-4064 (($ (-639 (-129))) 29)) (-2767 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) 30) (($ (-639 $)) NIL)) (-4053 (((-1150) $) 27) (((-857) $) NIL (|has| (-129) (-609 (-857))))) (-1505 (((-766) $) 14)) (-2117 (($ (-766)) 8)) (-2879 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4403)))) (-1798 (((-112) $ $) NIL (|has| (-129) (-845)))) (-1771 (((-112) $ $) NIL (|has| (-129) (-845)))) (-1733 (((-112) $ $) 22 (|has| (-129) (-1092)))) (-1785 (((-112) $ $) NIL (|has| (-129) (-845)))) (-1761 (((-112) $ $) NIL (|has| (-129) (-845)))) (-3492 (((-766) $) 20))) -(((-128) (-13 (-19 (-129)) (-609 (-1150)) (-10 -8 (-15 -2117 ($ (-766))) (-15 -3492 ((-766) $)) (-15 -1505 ((-766) $)) (-15 -2476 ((-766) $ (-766)))))) (T -128)) -((-2117 (*1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-128)))) (-3492 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-128)))) (-1505 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-128)))) (-2476 (*1 *2 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-128))))) -(-13 (-19 (-129)) (-609 (-1150)) (-10 -8 (-15 -2117 ($ (-766))) (-15 -3492 ((-766) $)) (-15 -1505 ((-766) $)) (-15 -2476 ((-766) $ (-766))))) -((-4041 (((-112) $ $) NIL)) (-1382 (((-766)) NIL)) (-3329 (($) NIL)) (-1447 (($) NIL)) (-1551 (($ $ $) NIL) (($) 15 T CONST)) (-2993 (($ $ $) NIL) (($) 16 T CONST)) (-3549 (((-916) $) NIL)) (-3696 (((-1150) $) NIL)) (-2464 (($ (-916)) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL) (($ (-143)) 9) (((-143) $) 11)) (-1298 (($ (-766)) 6)) (-3009 (($ $ $) 18)) (-2997 (($ $ $) 17)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 13)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) 14))) -(((-129) (-13 (-839) (-489 (-143)) (-10 -8 (-15 -1298 ($ (-766))) (-15 -2997 ($ $ $)) (-15 -3009 ($ $ $)) (-15 -3329 ($))))) (T -129)) -((-1298 (*1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-129)))) (-2997 (*1 *1 *1 *1) (-5 *1 (-129))) (-3009 (*1 *1 *1 *1) (-5 *1 (-129))) (-3329 (*1 *1) (-5 *1 (-129)))) -(-13 (-839) (-489 (-143)) (-10 -8 (-15 -1298 ($ (-766))) (-15 -2997 ($ $ $)) (-15 -3009 ($ $ $)) (-15 -3329 ($)))) +((-3920 (((-112) $) 12)) (-2240 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-407 (-563)) $) 25) (($ $ (-407 (-563))) NIL))) +(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-407 (-563)))) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 -3920 ((-112) |#1|)) (-15 -2240 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) (-47 |#2| |#3|) (-1045) (-788)) (T -46)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-407 (-563)))) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 -3920 ((-112) |#1|)) (-15 -2240 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 54 (|has| |#1| (-555)))) (-4223 (($ $) 55 (|has| |#1| (-555)))) (-3156 (((-112) $) 57 (|has| |#1| (-555)))) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-2751 (($ $) 63)) (-3400 (((-3 $ "failed") $) 33)) (-3827 (((-112) $) 31)) (-3920 (((-112) $) 65)) (-2588 (($ |#1| |#2|) 64)) (-2240 (($ (-1 |#1| |#1|) $) 66)) (-2716 (($ $) 68)) (-2726 ((|#1| $) 69)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-3008 (((-3 $ "failed") $ $) 53 (|has| |#1| (-555)))) (-4167 ((|#2| $) 67)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ (-407 (-563))) 60 (|has| |#1| (-38 (-407 (-563))))) (($ $) 52 (|has| |#1| (-555))) (($ |#1|) 50 (|has| |#1| (-172)))) (-4319 ((|#1| $ |#2|) 62)) (-2779 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-1675 (((-767)) 28)) (-2126 (((-112) $ $) 56 (|has| |#1| (-555)))) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1837 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-563)) $) 59 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 58 (|has| |#1| (-38 (-407 (-563))))))) +(((-47 |#1| |#2|) (-140) (-1045) (-788)) (T -47)) +((-2726 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) (-2716 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))) (-4167 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-2240 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)))) (-3920 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-112)))) (-2588 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))) (-2751 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))) (-4319 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) (-1837 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)) (-4 *2 (-363))))) +(-13 (-1045) (-111 |t#1| |t#1|) (-10 -8 (-15 -2726 (|t#1| $)) (-15 -2716 ($ $)) (-15 -4167 (|t#2| $)) (-15 -2240 ($ (-1 |t#1| |t#1|) $)) (-15 -3920 ((-112) $)) (-15 -2588 ($ |t#1| |t#2|)) (-15 -2751 ($ $)) (-15 -4319 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-363)) (-15 -1837 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-6 (-172)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-555)) (-6 (-555)) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-563)))) (-6 (-38 (-407 (-563)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-555)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-563)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4032 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0#) |has| |#1| (-38 (-407 (-563)))) ((-613 (-563)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-613 $) |has| |#1| (-555)) ((-610 (-858)) . T) ((-172) -4032 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-290) |has| |#1| (-555)) ((-555) |has| |#1| (-555)) ((-643 #0#) |has| |#1| (-38 (-407 (-563)))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-563)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-555)) ((-722) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-563)))) ((-1051 |#1|) . T) ((-1051 $) -4032 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) +((-1677 (((-112) $ $) NIL)) (-2802 (((-640 $) (-1165 $) (-1169)) NIL) (((-640 $) (-1165 $)) NIL) (((-640 $) (-948 $)) NIL)) (-3070 (($ (-1165 $) (-1169)) NIL) (($ (-1165 $)) NIL) (($ (-948 $)) NIL)) (-3411 (((-112) $) 11)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-2059 (((-640 (-609 $)) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4132 (($ $ (-294 $)) NIL) (($ $ (-640 (-294 $))) NIL) (($ $ (-640 (-609 $)) (-640 $)) NIL)) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-2186 (($ $) NIL)) (-1919 (((-112) $ $) NIL)) (-4239 (($) NIL T CONST)) (-4144 (((-640 $) (-1165 $) (-1169)) NIL) (((-640 $) (-1165 $)) NIL) (((-640 $) (-948 $)) NIL)) (-3457 (($ (-1165 $) (-1169)) NIL) (($ (-1165 $)) NIL) (($ (-948 $)) NIL)) (-2131 (((-3 (-609 $) "failed") $) NIL) (((-3 (-563) "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL)) (-2058 (((-609 $) $) NIL) (((-563) $) NIL) (((-407 (-563)) $) NIL)) (-3090 (($ $ $) NIL)) (-2950 (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-684 (-563)) (-684 $)) NIL) (((-2 (|:| -2835 (-684 (-407 (-563)))) (|:| |vec| (-1257 (-407 (-563))))) (-684 $) (-1257 $)) NIL) (((-684 (-407 (-563))) (-684 $)) NIL)) (-2444 (($ $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-2468 (((-112) $) NIL)) (-3968 (($ $) NIL) (($ (-640 $)) NIL)) (-3804 (((-640 (-114)) $) NIL)) (-2361 (((-114) (-114)) NIL)) (-3827 (((-112) $) 14)) (-3131 (((-112) $) NIL (|has| $ (-1034 (-563))))) (-2143 (((-1118 (-563) (-609 $)) $) NIL)) (-1645 (($ $ (-563)) NIL)) (-3793 (((-1165 $) (-1165 $) (-609 $)) NIL) (((-1165 $) (-1165 $) (-640 (-609 $))) NIL) (($ $ (-609 $)) NIL) (($ $ (-640 (-609 $))) NIL)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3180 (((-1165 $) (-609 $)) NIL (|has| $ (-1045)))) (-3084 (($ $ $) NIL)) (-1777 (($ $ $) NIL)) (-2240 (($ (-1 $ $) (-609 $)) NIL)) (-2875 (((-3 (-609 $) "failed") $) NIL)) (-3513 (($ (-640 $)) NIL) (($ $ $) NIL)) (-3573 (((-1151) $) NIL)) (-2127 (((-640 (-609 $)) $) NIL)) (-2227 (($ (-114) $) NIL) (($ (-114) (-640 $)) NIL)) (-2799 (((-112) $ (-114)) NIL) (((-112) $ (-1169)) NIL)) (-2688 (($ $) NIL)) (-4236 (((-767) $) NIL)) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ (-640 $)) NIL) (($ $ $) NIL)) (-1372 (((-112) $ $) NIL) (((-112) $ (-1169)) NIL)) (-2174 (((-418 $) $) NIL)) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2359 (((-112) $) NIL (|has| $ (-1034 (-563))))) (-1540 (($ $ (-609 $) $) NIL) (($ $ (-640 (-609 $)) (-640 $)) NIL) (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-640 (-1169)) (-640 (-1 $ $))) NIL) (($ $ (-640 (-1169)) (-640 (-1 $ (-640 $)))) NIL) (($ $ (-1169) (-1 $ (-640 $))) NIL) (($ $ (-1169) (-1 $ $)) NIL) (($ $ (-640 (-114)) (-640 (-1 $ $))) NIL) (($ $ (-640 (-114)) (-640 (-1 $ (-640 $)))) NIL) (($ $ (-114) (-1 $ (-640 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2628 (((-767) $) NIL)) (-2309 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-640 $)) NIL)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-3071 (($ $) NIL) (($ $ $) NIL)) (-4202 (($ $ (-767)) NIL) (($ $) NIL)) (-2154 (((-1118 (-563) (-609 $)) $) NIL)) (-3390 (($ $) NIL (|has| $ (-1045)))) (-2220 (((-379) $) NIL) (((-225) $) NIL) (((-169 (-379)) $) NIL)) (-1693 (((-858) $) NIL) (($ (-609 $)) NIL) (($ (-407 (-563))) NIL) (($ $) NIL) (($ (-563)) NIL) (($ (-1118 (-563) (-609 $))) NIL)) (-1675 (((-767)) NIL)) (-3079 (($ $) NIL) (($ (-640 $)) NIL)) (-3734 (((-112) (-114)) NIL)) (-2126 (((-112) $ $) NIL)) (-2241 (($) 7 T CONST)) (-2254 (($) 12 T CONST)) (-3209 (($ $ (-767)) NIL) (($ $) NIL)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 16)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) NIL)) (-1837 (($ $ $) NIL)) (-1826 (($ $ $) 15) (($ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-407 (-563))) NIL) (($ $ (-563)) NIL) (($ $ (-767)) NIL) (($ $ (-917)) NIL)) (* (($ (-407 (-563)) $) NIL) (($ $ (-407 (-563))) NIL) (($ $ $) NIL) (($ (-563) $) NIL) (($ (-767) $) NIL) (($ (-917) $) NIL))) +(((-48) (-13 (-302) (-27) (-1034 (-563)) (-1034 (-407 (-563))) (-636 (-563)) (-1018) (-636 (-407 (-563))) (-147) (-611 (-169 (-379))) (-233) (-10 -8 (-15 -1693 ($ (-1118 (-563) (-609 $)))) (-15 -2143 ((-1118 (-563) (-609 $)) $)) (-15 -2154 ((-1118 (-563) (-609 $)) $)) (-15 -2444 ($ $)) (-15 -3793 ((-1165 $) (-1165 $) (-609 $))) (-15 -3793 ((-1165 $) (-1165 $) (-640 (-609 $)))) (-15 -3793 ($ $ (-609 $))) (-15 -3793 ($ $ (-640 (-609 $))))))) (T -48)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-1118 (-563) (-609 (-48)))) (-5 *1 (-48)))) (-2143 (*1 *2 *1) (-12 (-5 *2 (-1118 (-563) (-609 (-48)))) (-5 *1 (-48)))) (-2154 (*1 *2 *1) (-12 (-5 *2 (-1118 (-563) (-609 (-48)))) (-5 *1 (-48)))) (-2444 (*1 *1 *1) (-5 *1 (-48))) (-3793 (*1 *2 *2 *3) (-12 (-5 *2 (-1165 (-48))) (-5 *3 (-609 (-48))) (-5 *1 (-48)))) (-3793 (*1 *2 *2 *3) (-12 (-5 *2 (-1165 (-48))) (-5 *3 (-640 (-609 (-48)))) (-5 *1 (-48)))) (-3793 (*1 *1 *1 *2) (-12 (-5 *2 (-609 (-48))) (-5 *1 (-48)))) (-3793 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-609 (-48)))) (-5 *1 (-48))))) +(-13 (-302) (-27) (-1034 (-563)) (-1034 (-407 (-563))) (-636 (-563)) (-1018) (-636 (-407 (-563))) (-147) (-611 (-169 (-379))) (-233) (-10 -8 (-15 -1693 ($ (-1118 (-563) (-609 $)))) (-15 -2143 ((-1118 (-563) (-609 $)) $)) (-15 -2154 ((-1118 (-563) (-609 $)) $)) (-15 -2444 ($ $)) (-15 -3793 ((-1165 $) (-1165 $) (-609 $))) (-15 -3793 ((-1165 $) (-1165 $) (-640 (-609 $)))) (-15 -3793 ($ $ (-609 $))) (-15 -3793 ($ $ (-640 (-609 $)))))) +((-1677 (((-112) $ $) NIL)) (-3387 (((-640 (-1169)) $) 17)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 7)) (-3359 (((-1174) $) 18)) (-1718 (((-112) $ $) NIL))) +(((-49) (-13 (-1093) (-10 -8 (-15 -3387 ((-640 (-1169)) $)) (-15 -3359 ((-1174) $))))) (T -49)) +((-3387 (*1 *2 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-49)))) (-3359 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-49))))) +(-13 (-1093) (-10 -8 (-15 -3387 ((-640 (-1169)) $)) (-15 -3359 ((-1174) $)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) 61)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4239 (($) NIL T CONST)) (-4134 (((-112) $) 20)) (-2131 (((-3 |#1| "failed") $) 23)) (-2058 ((|#1| $) 24)) (-2751 (($ $) 28)) (-3400 (((-3 $ "failed") $) NIL)) (-3827 (((-112) $) NIL)) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-2726 ((|#1| $) 21)) (-1947 (($ $) 50)) (-3573 (((-1151) $) NIL)) (-4177 (((-112) $) 30)) (-1694 (((-1113) $) NIL)) (-4333 (($ (-767)) 48)) (-3368 (($ (-640 (-563))) 49)) (-4167 (((-767) $) 31)) (-1693 (((-858) $) 64) (($ (-563)) 45) (($ |#1|) 43)) (-4319 ((|#1| $ $) 19)) (-1675 (((-767)) 47)) (-2241 (($) 32 T CONST)) (-2254 (($) 14 T CONST)) (-1718 (((-112) $ $) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) 40)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 41) (($ |#1| $) 35))) +(((-50 |#1| |#2|) (-13 (-617 |#1|) (-1034 |#1|) (-10 -8 (-15 -2726 (|#1| $)) (-15 -1947 ($ $)) (-15 -2751 ($ $)) (-15 -4319 (|#1| $ $)) (-15 -4333 ($ (-767))) (-15 -3368 ($ (-640 (-563)))) (-15 -4177 ((-112) $)) (-15 -4134 ((-112) $)) (-15 -4167 ((-767) $)) (-15 -2240 ($ (-1 |#1| |#1|) $)))) (-1045) (-640 (-1169))) (T -50)) +((-2726 (*1 *2 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-50 *2 *3)) (-14 *3 (-640 (-1169))))) (-1947 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1045)) (-14 *3 (-640 (-1169))))) (-2751 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1045)) (-14 *3 (-640 (-1169))))) (-4319 (*1 *2 *1 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-50 *2 *3)) (-14 *3 (-640 (-1169))))) (-4333 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) (-14 *4 (-640 (-1169))))) (-3368 (*1 *1 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) (-14 *4 (-640 (-1169))))) (-4177 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) (-14 *4 (-640 (-1169))))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) (-14 *4 (-640 (-1169))))) (-4167 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) (-14 *4 (-640 (-1169))))) (-2240 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-50 *3 *4)) (-14 *4 (-640 (-1169)))))) +(-13 (-617 |#1|) (-1034 |#1|) (-10 -8 (-15 -2726 (|#1| $)) (-15 -1947 ($ $)) (-15 -2751 ($ $)) (-15 -4319 (|#1| $ $)) (-15 -4333 ($ (-767))) (-15 -3368 ($ (-640 (-563)))) (-15 -4177 ((-112) $)) (-15 -4134 ((-112) $)) (-15 -4167 ((-767) $)) (-15 -2240 ($ (-1 |#1| |#1|) $)))) +((-4134 (((-112) (-52)) 13)) (-2131 (((-3 |#1| "failed") (-52)) 21)) (-2058 ((|#1| (-52)) 22)) (-1693 (((-52) |#1|) 18))) +(((-51 |#1|) (-10 -7 (-15 -1693 ((-52) |#1|)) (-15 -2131 ((-3 |#1| "failed") (-52))) (-15 -4134 ((-112) (-52))) (-15 -2058 (|#1| (-52)))) (-1208)) (T -51)) +((-2058 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1208)))) (-4134 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1208)))) (-2131 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1208)))) (-1693 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1208))))) +(-10 -7 (-15 -1693 ((-52) |#1|)) (-15 -2131 ((-3 |#1| "failed") (-52))) (-15 -4134 ((-112) (-52))) (-15 -2058 (|#1| (-52)))) +((-1677 (((-112) $ $) NIL)) (-2007 (((-1151) (-112)) 25)) (-3475 (((-858) $) 24)) (-1572 (((-770) $) 12)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1558 (((-858) $) 16)) (-3631 (((-1097) $) 14)) (-1693 (((-858) $) 32)) (-3225 (($ (-1097) (-770)) 33)) (-1718 (((-112) $ $) 18))) +(((-52) (-13 (-1093) (-10 -8 (-15 -3225 ($ (-1097) (-770))) (-15 -1558 ((-858) $)) (-15 -3475 ((-858) $)) (-15 -3631 ((-1097) $)) (-15 -1572 ((-770) $)) (-15 -2007 ((-1151) (-112)))))) (T -52)) +((-3225 (*1 *1 *2 *3) (-12 (-5 *2 (-1097)) (-5 *3 (-770)) (-5 *1 (-52)))) (-1558 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-52)))) (-3475 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-52)))) (-3631 (*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-52)))) (-1572 (*1 *2 *1) (-12 (-5 *2 (-770)) (-5 *1 (-52)))) (-2007 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1151)) (-5 *1 (-52))))) +(-13 (-1093) (-10 -8 (-15 -3225 ($ (-1097) (-770))) (-15 -1558 ((-858) $)) (-15 -3475 ((-858) $)) (-15 -3631 ((-1097) $)) (-15 -1572 ((-770) $)) (-15 -2007 ((-1151) (-112))))) +((-3726 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3726 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1045) (-643 |#1|) (-848 |#1|)) (T -53)) +((-3726 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-643 *5)) (-4 *5 (-1045)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-848 *5))))) +(-10 -7 (-15 -3726 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-2423 ((|#3| |#3| (-640 (-1169))) 35)) (-1553 ((|#3| (-640 (-1069 |#1| |#2| |#3|)) |#3| (-917)) 22) ((|#3| (-640 (-1069 |#1| |#2| |#3|)) |#3|) 20))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1553 (|#3| (-640 (-1069 |#1| |#2| |#3|)) |#3|)) (-15 -1553 (|#3| (-640 (-1069 |#1| |#2| |#3|)) |#3| (-917))) (-15 -2423 (|#3| |#3| (-640 (-1169))))) (-1093) (-13 (-1045) (-882 |#1|) (-846) (-611 (-888 |#1|))) (-13 (-430 |#2|) (-882 |#1|) (-611 (-888 |#1|)))) (T -54)) +((-2423 (*1 *2 *2 *3) (-12 (-5 *3 (-640 (-1169))) (-4 *4 (-1093)) (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-882 *4) (-611 (-888 *4)))))) (-1553 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-640 (-1069 *5 *6 *2))) (-5 *4 (-917)) (-4 *5 (-1093)) (-4 *6 (-13 (-1045) (-882 *5) (-846) (-611 (-888 *5)))) (-4 *2 (-13 (-430 *6) (-882 *5) (-611 (-888 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1553 (*1 *2 *3 *2) (-12 (-5 *3 (-640 (-1069 *4 *5 *2))) (-4 *4 (-1093)) (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4)))) (-4 *2 (-13 (-430 *5) (-882 *4) (-611 (-888 *4)))) (-5 *1 (-54 *4 *5 *2))))) +(-10 -7 (-15 -1553 (|#3| (-640 (-1069 |#1| |#2| |#3|)) |#3|)) (-15 -1553 (|#3| (-640 (-1069 |#1| |#2| |#3|)) |#3| (-917))) (-15 -2423 (|#3| |#3| (-640 (-1169))))) +((-1677 (((-112) $ $) NIL)) (-2131 (((-3 (-767) "failed") $) 22)) (-2058 (((-767) $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) 9)) (-1693 (((-858) $) 16) (($ (-767)) 20)) (-2427 (($) 7 T CONST)) (-1718 (((-112) $ $) 11))) +(((-55) (-13 (-1093) (-1034 (-767)) (-10 -8 (-15 -2427 ($) -2669)))) (T -55)) +((-2427 (*1 *1) (-5 *1 (-55)))) +(-13 (-1093) (-1034 (-767)) (-10 -8 (-15 -2427 ($) -2669))) +((-2759 (((-112) $ (-767)) 23)) (-4327 (($ $ (-563) |#3|) 47)) (-4175 (($ $ (-563) |#4|) 51)) (-2368 ((|#3| $ (-563)) 60)) (-2659 (((-640 |#2|) $) 30)) (-2581 (((-112) $ (-767)) 25)) (-1729 (((-112) |#2| $) 55)) (-4345 (($ (-1 |#2| |#2|) $) 38)) (-2240 (($ (-1 |#2| |#2|) $) 37) (($ (-1 |#2| |#2| |#2|) $ $) 41) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 43)) (-2382 (((-112) $ (-767)) 24)) (-2358 (($ $ |#2|) 35)) (-3138 (((-112) (-1 (-112) |#2|) $) 19)) (-2309 ((|#2| $ (-563) (-563)) NIL) ((|#2| $ (-563) (-563) |#2|) 27)) (-1709 (((-767) (-1 (-112) |#2|) $) 28) (((-767) |#2| $) 57)) (-1872 (($ $) 34)) (-1912 ((|#4| $ (-563)) 63)) (-1693 (((-858) $) 69)) (-4383 (((-112) (-1 (-112) |#2|) $) 18)) (-1718 (((-112) $ $) 54)) (-3608 (((-767) $) 26))) +(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1693 ((-858) |#1|)) (-15 -2240 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2240 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4345 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4175 (|#1| |#1| (-563) |#4|)) (-15 -4327 (|#1| |#1| (-563) |#3|)) (-15 -2659 ((-640 |#2|) |#1|)) (-15 -1912 (|#4| |#1| (-563))) (-15 -2368 (|#3| |#1| (-563))) (-15 -2309 (|#2| |#1| (-563) (-563) |#2|)) (-15 -2309 (|#2| |#1| (-563) (-563))) (-15 -2358 (|#1| |#1| |#2|)) (-15 -1718 ((-112) |#1| |#1|)) (-15 -1729 ((-112) |#2| |#1|)) (-15 -1709 ((-767) |#2| |#1|)) (-15 -1709 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -3138 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4383 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2240 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3608 ((-767) |#1|)) (-15 -2759 ((-112) |#1| (-767))) (-15 -2581 ((-112) |#1| (-767))) (-15 -2382 ((-112) |#1| (-767))) (-15 -1872 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1208) (-373 |#2|) (-373 |#2|)) (T -56)) +NIL +(-10 -8 (-15 -1693 ((-858) |#1|)) (-15 -2240 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2240 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4345 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4175 (|#1| |#1| (-563) |#4|)) (-15 -4327 (|#1| |#1| (-563) |#3|)) (-15 -2659 ((-640 |#2|) |#1|)) (-15 -1912 (|#4| |#1| (-563))) (-15 -2368 (|#3| |#1| (-563))) (-15 -2309 (|#2| |#1| (-563) (-563) |#2|)) (-15 -2309 (|#2| |#1| (-563) (-563))) (-15 -2358 (|#1| |#1| |#2|)) (-15 -1718 ((-112) |#1| |#1|)) (-15 -1729 ((-112) |#2| |#1|)) (-15 -1709 ((-767) |#2| |#1|)) (-15 -1709 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -3138 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4383 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2240 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3608 ((-767) |#1|)) (-15 -2759 ((-112) |#1| (-767))) (-15 -2581 ((-112) |#1| (-767))) (-15 -2382 ((-112) |#1| (-767))) (-15 -1872 (|#1| |#1|))) +((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-2759 (((-112) $ (-767)) 8)) (-1849 ((|#1| $ (-563) (-563) |#1|) 44)) (-4327 (($ $ (-563) |#2|) 42)) (-4175 (($ $ (-563) |#3|) 41)) (-4239 (($) 7 T CONST)) (-2368 ((|#2| $ (-563)) 46)) (-4355 ((|#1| $ (-563) (-563) |#1|) 43)) (-4293 ((|#1| $ (-563) (-563)) 48)) (-2659 (((-640 |#1|) $) 30)) (-2381 (((-767) $) 51)) (-1566 (($ (-767) (-767) |#1|) 57)) (-2393 (((-767) $) 50)) (-2581 (((-112) $ (-767)) 9)) (-2013 (((-563) $) 55)) (-3650 (((-563) $) 53)) (-2259 (((-640 |#1|) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1859 (((-563) $) 54)) (-2207 (((-563) $) 52)) (-4345 (($ (-1 |#1| |#1|) $) 34)) (-2240 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2382 (((-112) $ (-767)) 10)) (-3573 (((-1151) $) 22 (|has| |#1| (-1093)))) (-1694 (((-1113) $) 21 (|has| |#1| (-1093)))) (-2358 (($ $ |#1|) 56)) (-3138 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) 14)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-2309 ((|#1| $ (-563) (-563)) 49) ((|#1| $ (-563) (-563) |#1|) 47)) (-1709 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4407))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1872 (($ $) 13)) (-1912 ((|#3| $ (-563)) 45)) (-1693 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-4383 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-57 |#1| |#2| |#3|) (-140) (-1208) (-373 |t#1|) (-373 |t#1|)) (T -57)) +((-2240 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1566 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-767)) (-4 *3 (-1208)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2358 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1208)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-2013 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-563)))) (-1859 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-563)))) (-3650 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-563)))) (-2207 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-563)))) (-2381 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-767)))) (-2393 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-767)))) (-2309 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-563)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-1208)))) (-4293 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-563)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-1208)))) (-2309 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-563)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1208)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) (-2368 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1208)) (-4 *5 (-373 *4)) (-4 *2 (-373 *4)))) (-1912 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1208)) (-4 *5 (-373 *4)) (-4 *2 (-373 *4)))) (-2659 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-640 *3)))) (-1849 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-563)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1208)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) (-4355 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-563)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1208)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) (-4327 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-563)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1208)) (-4 *3 (-373 *4)) (-4 *5 (-373 *4)))) (-4175 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-563)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1208)) (-4 *5 (-373 *4)) (-4 *3 (-373 *4)))) (-4345 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2240 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2240 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))) +(-13 (-489 |t#1|) (-10 -8 (-6 -4408) (-6 -4407) (-15 -1566 ($ (-767) (-767) |t#1|)) (-15 -2358 ($ $ |t#1|)) (-15 -2013 ((-563) $)) (-15 -1859 ((-563) $)) (-15 -3650 ((-563) $)) (-15 -2207 ((-563) $)) (-15 -2381 ((-767) $)) (-15 -2393 ((-767) $)) (-15 -2309 (|t#1| $ (-563) (-563))) (-15 -4293 (|t#1| $ (-563) (-563))) (-15 -2309 (|t#1| $ (-563) (-563) |t#1|)) (-15 -2368 (|t#2| $ (-563))) (-15 -1912 (|t#3| $ (-563))) (-15 -2659 ((-640 |t#1|) $)) (-15 -1849 (|t#1| $ (-563) (-563) |t#1|)) (-15 -4355 (|t#1| $ (-563) (-563) |t#1|)) (-15 -4327 ($ $ (-563) |t#2|)) (-15 -4175 ($ $ (-563) |t#3|)) (-15 -2240 ($ (-1 |t#1| |t#1|) $)) (-15 -4345 ($ (-1 |t#1| |t#1|) $)) (-15 -2240 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2240 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4032 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T)) +((-1567 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-2444 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-2240 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) +(((-58 |#1| |#2|) (-10 -7 (-15 -1567 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2444 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2240 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1208) (-1208)) (T -58)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-2444 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1208)) (-4 *2 (-1208)) (-5 *1 (-58 *5 *2)))) (-1567 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1208)) (-4 *5 (-1208)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) +(-10 -7 (-15 -1567 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2444 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2240 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-4378 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4408)))) (-3523 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-2770 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4408))) (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-846))))) (-1642 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-2759 (((-112) $ (-767)) NIL)) (-1849 ((|#1| $ (-563) |#1|) 11 (|has| $ (-6 -4408))) ((|#1| $ (-1224 (-563)) |#1|) NIL (|has| $ (-6 -4408)))) (-2256 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-4239 (($) NIL T CONST)) (-2907 (($ $) NIL (|has| $ (-6 -4408)))) (-4382 (($ $) NIL)) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1459 (($ |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-4355 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4408)))) (-4293 ((|#1| $ (-563)) NIL)) (-4368 (((-563) (-1 (-112) |#1|) $) NIL) (((-563) |#1| $) NIL (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) NIL (|has| |#1| (-1093)))) (-2659 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-2661 (($ (-640 |#1|)) 13) (($ (-767) |#1|) 14)) (-1566 (($ (-767) |#1|) 9)) (-2581 (((-112) $ (-767)) NIL)) (-2411 (((-563) $) NIL (|has| (-563) (-846)))) (-3084 (($ $ $) NIL (|has| |#1| (-846)))) (-3164 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-2259 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-3860 (((-563) $) NIL (|has| (-563) (-846)))) (-1777 (($ $ $) NIL (|has| |#1| (-846)))) (-4345 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3396 (($ |#1| $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-4318 (((-640 (-563)) $) NIL)) (-3192 (((-112) (-563) $) NIL)) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3781 ((|#1| $) NIL (|has| (-563) (-846)))) (-4203 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2358 (($ $ |#1|) NIL (|has| $ (-6 -4408)))) (-3138 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) NIL)) (-2105 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2836 (((-640 |#1|) $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) 7)) (-2309 ((|#1| $ (-563) |#1|) NIL) ((|#1| $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-2963 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-1709 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-3076 (($ $ $ (-563)) NIL (|has| $ (-6 -4408)))) (-1872 (($ $) NIL)) (-2220 (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-1707 (($ (-640 |#1|)) NIL)) (-2853 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-640 $)) NIL)) (-1693 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-4383 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1778 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1756 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1768 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1744 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2661 ($ (-640 |#1|))) (-15 -2661 ($ (-767) |#1|)))) (-1208)) (T -59)) +((-2661 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-59 *3)))) (-2661 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *1 (-59 *3)) (-4 *3 (-1208))))) +(-13 (-19 |#1|) (-10 -8 (-15 -2661 ($ (-640 |#1|))) (-15 -2661 ($ (-767) |#1|)))) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2759 (((-112) $ (-767)) NIL)) (-1849 ((|#1| $ (-563) (-563) |#1|) NIL)) (-4327 (($ $ (-563) (-59 |#1|)) NIL)) (-4175 (($ $ (-563) (-59 |#1|)) NIL)) (-4239 (($) NIL T CONST)) (-2368 (((-59 |#1|) $ (-563)) NIL)) (-4355 ((|#1| $ (-563) (-563) |#1|) NIL)) (-4293 ((|#1| $ (-563) (-563)) NIL)) (-2659 (((-640 |#1|) $) NIL)) (-2381 (((-767) $) NIL)) (-1566 (($ (-767) (-767) |#1|) NIL)) (-2393 (((-767) $) NIL)) (-2581 (((-112) $ (-767)) NIL)) (-2013 (((-563) $) NIL)) (-3650 (((-563) $) NIL)) (-2259 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1859 (((-563) $) NIL)) (-2207 (((-563) $) NIL)) (-4345 (($ (-1 |#1| |#1|) $) NIL)) (-2240 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-2358 (($ $ |#1|) NIL)) (-3138 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) NIL)) (-2309 ((|#1| $ (-563) (-563)) NIL) ((|#1| $ (-563) (-563) |#1|) NIL)) (-1709 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1872 (($ $) NIL)) (-1912 (((-59 |#1|) $ (-563)) NIL)) (-1693 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-4383 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4408))) (-1208)) (T -60)) +NIL +(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4408))) +((-2131 (((-3 $ "failed") (-1257 (-316 (-379)))) 74) (((-3 $ "failed") (-1257 (-316 (-563)))) 63) (((-3 $ "failed") (-1257 (-948 (-379)))) 94) (((-3 $ "failed") (-1257 (-948 (-563)))) 84) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 52) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 39)) (-2058 (($ (-1257 (-316 (-379)))) 70) (($ (-1257 (-316 (-563)))) 59) (($ (-1257 (-948 (-379)))) 90) (($ (-1257 (-948 (-563)))) 80) (($ (-1257 (-407 (-948 (-379))))) 48) (($ (-1257 (-407 (-948 (-563))))) 32)) (-2615 (((-1262) $) 120)) (-1693 (((-858) $) 113) (($ (-640 (-330))) 103) (($ (-330)) 97) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) 101) (($ (-1257 (-339 (-1707 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1707) (-694)))) 31))) +(((-61 |#1|) (-13 (-441) (-10 -8 (-15 -1693 ($ (-1257 (-339 (-1707 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1707) (-694))))))) (-1169)) (T -61)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-1257 (-339 (-1707 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1707) (-694)))) (-5 *1 (-61 *3)) (-14 *3 (-1169))))) +(-13 (-441) (-10 -8 (-15 -1693 ($ (-1257 (-339 (-1707 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1707) (-694))))))) +((-2615 (((-1262) $) 53) (((-1262)) 54)) (-1693 (((-858) $) 50))) +(((-62 |#1|) (-13 (-395) (-10 -7 (-15 -2615 ((-1262))))) (-1169)) (T -62)) +((-2615 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-62 *3)) (-14 *3 (-1169))))) +(-13 (-395) (-10 -7 (-15 -2615 ((-1262))))) +((-2131 (((-3 $ "failed") (-1257 (-316 (-379)))) 145) (((-3 $ "failed") (-1257 (-316 (-563)))) 135) (((-3 $ "failed") (-1257 (-948 (-379)))) 165) (((-3 $ "failed") (-1257 (-948 (-563)))) 155) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 124) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 112)) (-2058 (($ (-1257 (-316 (-379)))) 141) (($ (-1257 (-316 (-563)))) 131) (($ (-1257 (-948 (-379)))) 161) (($ (-1257 (-948 (-563)))) 151) (($ (-1257 (-407 (-948 (-379))))) 120) (($ (-1257 (-407 (-948 (-563))))) 105)) (-2615 (((-1262) $) 98)) (-1693 (((-858) $) 92) (($ (-640 (-330))) 29) (($ (-330)) 34) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) 32) (($ (-1257 (-339 (-1707) (-1707 (QUOTE XC)) (-694)))) 90))) +(((-63 |#1|) (-13 (-441) (-10 -8 (-15 -1693 ($ (-1257 (-339 (-1707) (-1707 (QUOTE XC)) (-694))))))) (-1169)) (T -63)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-1257 (-339 (-1707) (-1707 (QUOTE XC)) (-694)))) (-5 *1 (-63 *3)) (-14 *3 (-1169))))) +(-13 (-441) (-10 -8 (-15 -1693 ($ (-1257 (-339 (-1707) (-1707 (QUOTE XC)) (-694))))))) +((-2131 (((-3 $ "failed") (-316 (-379))) 41) (((-3 $ "failed") (-316 (-563))) 46) (((-3 $ "failed") (-948 (-379))) 50) (((-3 $ "failed") (-948 (-563))) 54) (((-3 $ "failed") (-407 (-948 (-379)))) 36) (((-3 $ "failed") (-407 (-948 (-563)))) 29)) (-2058 (($ (-316 (-379))) 39) (($ (-316 (-563))) 44) (($ (-948 (-379))) 48) (($ (-948 (-563))) 52) (($ (-407 (-948 (-379)))) 34) (($ (-407 (-948 (-563)))) 26)) (-2615 (((-1262) $) 76)) (-1693 (((-858) $) 69) (($ (-640 (-330))) 61) (($ (-330)) 66) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) 64) (($ (-339 (-1707 (QUOTE X)) (-1707) (-694))) 25))) +(((-64 |#1|) (-13 (-396) (-10 -8 (-15 -1693 ($ (-339 (-1707 (QUOTE X)) (-1707) (-694)))))) (-1169)) (T -64)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-339 (-1707 (QUOTE X)) (-1707) (-694))) (-5 *1 (-64 *3)) (-14 *3 (-1169))))) +(-13 (-396) (-10 -8 (-15 -1693 ($ (-339 (-1707 (QUOTE X)) (-1707) (-694)))))) +((-2131 (((-3 $ "failed") (-684 (-316 (-379)))) 109) (((-3 $ "failed") (-684 (-316 (-563)))) 97) (((-3 $ "failed") (-684 (-948 (-379)))) 131) (((-3 $ "failed") (-684 (-948 (-563)))) 120) (((-3 $ "failed") (-684 (-407 (-948 (-379))))) 85) (((-3 $ "failed") (-684 (-407 (-948 (-563))))) 71)) (-2058 (($ (-684 (-316 (-379)))) 105) (($ (-684 (-316 (-563)))) 93) (($ (-684 (-948 (-379)))) 127) (($ (-684 (-948 (-563)))) 116) (($ (-684 (-407 (-948 (-379))))) 81) (($ (-684 (-407 (-948 (-563))))) 64)) (-2615 (((-1262) $) 139)) (-1693 (((-858) $) 133) (($ (-640 (-330))) 28) (($ (-330)) 33) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) 31) (($ (-684 (-339 (-1707) (-1707 (QUOTE X) (QUOTE HESS)) (-694)))) 54))) +(((-65 |#1|) (-13 (-384) (-613 (-684 (-339 (-1707) (-1707 (QUOTE X) (QUOTE HESS)) (-694))))) (-1169)) (T -65)) +NIL +(-13 (-384) (-613 (-684 (-339 (-1707) (-1707 (QUOTE X) (QUOTE HESS)) (-694))))) +((-2131 (((-3 $ "failed") (-316 (-379))) 59) (((-3 $ "failed") (-316 (-563))) 64) (((-3 $ "failed") (-948 (-379))) 68) (((-3 $ "failed") (-948 (-563))) 72) (((-3 $ "failed") (-407 (-948 (-379)))) 54) (((-3 $ "failed") (-407 (-948 (-563)))) 47)) (-2058 (($ (-316 (-379))) 57) (($ (-316 (-563))) 62) (($ (-948 (-379))) 66) (($ (-948 (-563))) 70) (($ (-407 (-948 (-379)))) 52) (($ (-407 (-948 (-563)))) 44)) (-2615 (((-1262) $) 81)) (-1693 (((-858) $) 75) (($ (-640 (-330))) 28) (($ (-330)) 33) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) 31) (($ (-339 (-1707) (-1707 (QUOTE XC)) (-694))) 39))) +(((-66 |#1|) (-13 (-396) (-10 -8 (-15 -1693 ($ (-339 (-1707) (-1707 (QUOTE XC)) (-694)))))) (-1169)) (T -66)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-339 (-1707) (-1707 (QUOTE XC)) (-694))) (-5 *1 (-66 *3)) (-14 *3 (-1169))))) +(-13 (-396) (-10 -8 (-15 -1693 ($ (-339 (-1707) (-1707 (QUOTE XC)) (-694)))))) +((-2615 (((-1262) $) 63)) (-1693 (((-858) $) 57) (($ (-684 (-694))) 49) (($ (-640 (-330))) 48) (($ (-330)) 55) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) 53))) +(((-67 |#1|) (-383) (-1169)) (T -67)) +NIL +(-383) +((-2615 (((-1262) $) 64)) (-1693 (((-858) $) 58) (($ (-684 (-694))) 50) (($ (-640 (-330))) 49) (($ (-330)) 52) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) 55))) +(((-68 |#1|) (-383) (-1169)) (T -68)) +NIL +(-383) +((-2615 (((-1262) $) NIL) (((-1262)) 32)) (-1693 (((-858) $) NIL))) +(((-69 |#1|) (-13 (-395) (-10 -7 (-15 -2615 ((-1262))))) (-1169)) (T -69)) +((-2615 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-69 *3)) (-14 *3 (-1169))))) +(-13 (-395) (-10 -7 (-15 -2615 ((-1262))))) +((-2615 (((-1262) $) 73)) (-1693 (((-858) $) 67) (($ (-684 (-694))) 59) (($ (-640 (-330))) 61) (($ (-330)) 64) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) 58))) +(((-70 |#1|) (-383) (-1169)) (T -70)) +NIL +(-383) +((-2131 (((-3 $ "failed") (-1257 (-316 (-379)))) 103) (((-3 $ "failed") (-1257 (-316 (-563)))) 92) (((-3 $ "failed") (-1257 (-948 (-379)))) 123) (((-3 $ "failed") (-1257 (-948 (-563)))) 113) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 81) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 68)) (-2058 (($ (-1257 (-316 (-379)))) 99) (($ (-1257 (-316 (-563)))) 88) (($ (-1257 (-948 (-379)))) 119) (($ (-1257 (-948 (-563)))) 109) (($ (-1257 (-407 (-948 (-379))))) 77) (($ (-1257 (-407 (-948 (-563))))) 61)) (-2615 (((-1262) $) 136)) (-1693 (((-858) $) 130) (($ (-640 (-330))) 125) (($ (-330)) 128) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) 53) (($ (-1257 (-339 (-1707 (QUOTE X)) (-1707 (QUOTE -3170)) (-694)))) 54))) +(((-71 |#1|) (-13 (-441) (-10 -8 (-15 -1693 ($ (-1257 (-339 (-1707 (QUOTE X)) (-1707 (QUOTE -3170)) (-694))))))) (-1169)) (T -71)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-1257 (-339 (-1707 (QUOTE X)) (-1707 (QUOTE -3170)) (-694)))) (-5 *1 (-71 *3)) (-14 *3 (-1169))))) +(-13 (-441) (-10 -8 (-15 -1693 ($ (-1257 (-339 (-1707 (QUOTE X)) (-1707 (QUOTE -3170)) (-694))))))) +((-2615 (((-1262) $) 32) (((-1262)) 31)) (-1693 (((-858) $) 35))) +(((-72 |#1|) (-13 (-395) (-10 -7 (-15 -2615 ((-1262))))) (-1169)) (T -72)) +((-2615 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-72 *3)) (-14 *3 (-1169))))) +(-13 (-395) (-10 -7 (-15 -2615 ((-1262))))) +((-2615 (((-1262) $) 63)) (-1693 (((-858) $) 57) (($ (-684 (-694))) 49) (($ (-640 (-330))) 51) (($ (-330)) 54) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) 48))) +(((-73 |#1|) (-383) (-1169)) (T -73)) +NIL +(-383) +((-2131 (((-3 $ "failed") (-1257 (-316 (-379)))) 125) (((-3 $ "failed") (-1257 (-316 (-563)))) 115) (((-3 $ "failed") (-1257 (-948 (-379)))) 145) (((-3 $ "failed") (-1257 (-948 (-563)))) 135) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 105) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 93)) (-2058 (($ (-1257 (-316 (-379)))) 121) (($ (-1257 (-316 (-563)))) 111) (($ (-1257 (-948 (-379)))) 141) (($ (-1257 (-948 (-563)))) 131) (($ (-1257 (-407 (-948 (-379))))) 101) (($ (-1257 (-407 (-948 (-563))))) 86)) (-2615 (((-1262) $) 78)) (-1693 (((-858) $) 27) (($ (-640 (-330))) 68) (($ (-330)) 64) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) 71) (($ (-1257 (-339 (-1707) (-1707 (QUOTE X)) (-694)))) 65))) +(((-74 |#1|) (-13 (-441) (-10 -8 (-15 -1693 ($ (-1257 (-339 (-1707) (-1707 (QUOTE X)) (-694))))))) (-1169)) (T -74)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-1257 (-339 (-1707) (-1707 (QUOTE X)) (-694)))) (-5 *1 (-74 *3)) (-14 *3 (-1169))))) +(-13 (-441) (-10 -8 (-15 -1693 ($ (-1257 (-339 (-1707) (-1707 (QUOTE X)) (-694))))))) +((-2131 (((-3 $ "failed") (-1257 (-316 (-379)))) 130) (((-3 $ "failed") (-1257 (-316 (-563)))) 119) (((-3 $ "failed") (-1257 (-948 (-379)))) 150) (((-3 $ "failed") (-1257 (-948 (-563)))) 140) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 108) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 95)) (-2058 (($ (-1257 (-316 (-379)))) 126) (($ (-1257 (-316 (-563)))) 115) (($ (-1257 (-948 (-379)))) 146) (($ (-1257 (-948 (-563)))) 136) (($ (-1257 (-407 (-948 (-379))))) 104) (($ (-1257 (-407 (-948 (-563))))) 88)) (-2615 (((-1262) $) 79)) (-1693 (((-858) $) 71) (($ (-640 (-330))) NIL) (($ (-330)) NIL) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) NIL) (($ (-1257 (-339 (-1707 (QUOTE X) (QUOTE EPS)) (-1707 (QUOTE -3170)) (-694)))) 66))) +(((-75 |#1| |#2| |#3|) (-13 (-441) (-10 -8 (-15 -1693 ($ (-1257 (-339 (-1707 (QUOTE X) (QUOTE EPS)) (-1707 (QUOTE -3170)) (-694))))))) (-1169) (-1169) (-1169)) (T -75)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-1257 (-339 (-1707 (QUOTE X) (QUOTE EPS)) (-1707 (QUOTE -3170)) (-694)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1169)) (-14 *4 (-1169)) (-14 *5 (-1169))))) +(-13 (-441) (-10 -8 (-15 -1693 ($ (-1257 (-339 (-1707 (QUOTE X) (QUOTE EPS)) (-1707 (QUOTE -3170)) (-694))))))) +((-2131 (((-3 $ "failed") (-1257 (-316 (-379)))) 134) (((-3 $ "failed") (-1257 (-316 (-563)))) 123) (((-3 $ "failed") (-1257 (-948 (-379)))) 154) (((-3 $ "failed") (-1257 (-948 (-563)))) 144) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 112) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 99)) (-2058 (($ (-1257 (-316 (-379)))) 130) (($ (-1257 (-316 (-563)))) 119) (($ (-1257 (-948 (-379)))) 150) (($ (-1257 (-948 (-563)))) 140) (($ (-1257 (-407 (-948 (-379))))) 108) (($ (-1257 (-407 (-948 (-563))))) 92)) (-2615 (((-1262) $) 83)) (-1693 (((-858) $) 75) (($ (-640 (-330))) NIL) (($ (-330)) NIL) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) NIL) (($ (-1257 (-339 (-1707 (QUOTE EPS)) (-1707 (QUOTE YA) (QUOTE YB)) (-694)))) 70))) +(((-76 |#1| |#2| |#3|) (-13 (-441) (-10 -8 (-15 -1693 ($ (-1257 (-339 (-1707 (QUOTE EPS)) (-1707 (QUOTE YA) (QUOTE YB)) (-694))))))) (-1169) (-1169) (-1169)) (T -76)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-1257 (-339 (-1707 (QUOTE EPS)) (-1707 (QUOTE YA) (QUOTE YB)) (-694)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1169)) (-14 *4 (-1169)) (-14 *5 (-1169))))) +(-13 (-441) (-10 -8 (-15 -1693 ($ (-1257 (-339 (-1707 (QUOTE EPS)) (-1707 (QUOTE YA) (QUOTE YB)) (-694))))))) +((-2131 (((-3 $ "failed") (-316 (-379))) 82) (((-3 $ "failed") (-316 (-563))) 87) (((-3 $ "failed") (-948 (-379))) 91) (((-3 $ "failed") (-948 (-563))) 95) (((-3 $ "failed") (-407 (-948 (-379)))) 77) (((-3 $ "failed") (-407 (-948 (-563)))) 70)) (-2058 (($ (-316 (-379))) 80) (($ (-316 (-563))) 85) (($ (-948 (-379))) 89) (($ (-948 (-563))) 93) (($ (-407 (-948 (-379)))) 75) (($ (-407 (-948 (-563)))) 67)) (-2615 (((-1262) $) 62)) (-1693 (((-858) $) 50) (($ (-640 (-330))) 46) (($ (-330)) 56) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) 54) (($ (-339 (-1707) (-1707 (QUOTE X)) (-694))) 47))) +(((-77 |#1|) (-13 (-396) (-10 -8 (-15 -1693 ($ (-339 (-1707) (-1707 (QUOTE X)) (-694)))))) (-1169)) (T -77)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-339 (-1707) (-1707 (QUOTE X)) (-694))) (-5 *1 (-77 *3)) (-14 *3 (-1169))))) +(-13 (-396) (-10 -8 (-15 -1693 ($ (-339 (-1707) (-1707 (QUOTE X)) (-694)))))) +((-2131 (((-3 $ "failed") (-316 (-379))) 46) (((-3 $ "failed") (-316 (-563))) 51) (((-3 $ "failed") (-948 (-379))) 55) (((-3 $ "failed") (-948 (-563))) 59) (((-3 $ "failed") (-407 (-948 (-379)))) 41) (((-3 $ "failed") (-407 (-948 (-563)))) 34)) (-2058 (($ (-316 (-379))) 44) (($ (-316 (-563))) 49) (($ (-948 (-379))) 53) (($ (-948 (-563))) 57) (($ (-407 (-948 (-379)))) 39) (($ (-407 (-948 (-563)))) 31)) (-2615 (((-1262) $) 80)) (-1693 (((-858) $) 74) (($ (-640 (-330))) 66) (($ (-330)) 71) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) 69) (($ (-339 (-1707) (-1707 (QUOTE X)) (-694))) 30))) +(((-78 |#1|) (-13 (-396) (-10 -8 (-15 -1693 ($ (-339 (-1707) (-1707 (QUOTE X)) (-694)))))) (-1169)) (T -78)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-339 (-1707) (-1707 (QUOTE X)) (-694))) (-5 *1 (-78 *3)) (-14 *3 (-1169))))) +(-13 (-396) (-10 -8 (-15 -1693 ($ (-339 (-1707) (-1707 (QUOTE X)) (-694)))))) +((-2131 (((-3 $ "failed") (-1257 (-316 (-379)))) 89) (((-3 $ "failed") (-1257 (-316 (-563)))) 78) (((-3 $ "failed") (-1257 (-948 (-379)))) 109) (((-3 $ "failed") (-1257 (-948 (-563)))) 99) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 67) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 54)) (-2058 (($ (-1257 (-316 (-379)))) 85) (($ (-1257 (-316 (-563)))) 74) (($ (-1257 (-948 (-379)))) 105) (($ (-1257 (-948 (-563)))) 95) (($ (-1257 (-407 (-948 (-379))))) 63) (($ (-1257 (-407 (-948 (-563))))) 47)) (-2615 (((-1262) $) 125)) (-1693 (((-858) $) 119) (($ (-640 (-330))) 112) (($ (-330)) 37) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) 115) (($ (-1257 (-339 (-1707) (-1707 (QUOTE XC)) (-694)))) 38))) +(((-79 |#1|) (-13 (-441) (-10 -8 (-15 -1693 ($ (-1257 (-339 (-1707) (-1707 (QUOTE XC)) (-694))))))) (-1169)) (T -79)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-1257 (-339 (-1707) (-1707 (QUOTE XC)) (-694)))) (-5 *1 (-79 *3)) (-14 *3 (-1169))))) +(-13 (-441) (-10 -8 (-15 -1693 ($ (-1257 (-339 (-1707) (-1707 (QUOTE XC)) (-694))))))) +((-2131 (((-3 $ "failed") (-1257 (-316 (-379)))) 143) (((-3 $ "failed") (-1257 (-316 (-563)))) 133) (((-3 $ "failed") (-1257 (-948 (-379)))) 163) (((-3 $ "failed") (-1257 (-948 (-563)))) 153) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 123) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 111)) (-2058 (($ (-1257 (-316 (-379)))) 139) (($ (-1257 (-316 (-563)))) 129) (($ (-1257 (-948 (-379)))) 159) (($ (-1257 (-948 (-563)))) 149) (($ (-1257 (-407 (-948 (-379))))) 119) (($ (-1257 (-407 (-948 (-563))))) 104)) (-2615 (((-1262) $) 97)) (-1693 (((-858) $) 91) (($ (-640 (-330))) 82) (($ (-330)) 89) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) 87) (($ (-1257 (-339 (-1707) (-1707 (QUOTE X)) (-694)))) 83))) +(((-80 |#1|) (-13 (-441) (-10 -8 (-15 -1693 ($ (-1257 (-339 (-1707) (-1707 (QUOTE X)) (-694))))))) (-1169)) (T -80)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-1257 (-339 (-1707) (-1707 (QUOTE X)) (-694)))) (-5 *1 (-80 *3)) (-14 *3 (-1169))))) +(-13 (-441) (-10 -8 (-15 -1693 ($ (-1257 (-339 (-1707) (-1707 (QUOTE X)) (-694))))))) +((-2131 (((-3 $ "failed") (-1257 (-316 (-379)))) 78) (((-3 $ "failed") (-1257 (-316 (-563)))) 67) (((-3 $ "failed") (-1257 (-948 (-379)))) 98) (((-3 $ "failed") (-1257 (-948 (-563)))) 88) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 56) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 43)) (-2058 (($ (-1257 (-316 (-379)))) 74) (($ (-1257 (-316 (-563)))) 63) (($ (-1257 (-948 (-379)))) 94) (($ (-1257 (-948 (-563)))) 84) (($ (-1257 (-407 (-948 (-379))))) 52) (($ (-1257 (-407 (-948 (-563))))) 36)) (-2615 (((-1262) $) 124)) (-1693 (((-858) $) 118) (($ (-640 (-330))) 109) (($ (-330)) 115) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) 113) (($ (-1257 (-339 (-1707) (-1707 (QUOTE X)) (-694)))) 35))) +(((-81 |#1|) (-13 (-441) (-613 (-1257 (-339 (-1707) (-1707 (QUOTE X)) (-694))))) (-1169)) (T -81)) +NIL +(-13 (-441) (-613 (-1257 (-339 (-1707) (-1707 (QUOTE X)) (-694))))) +((-2131 (((-3 $ "failed") (-1257 (-316 (-379)))) 95) (((-3 $ "failed") (-1257 (-316 (-563)))) 84) (((-3 $ "failed") (-1257 (-948 (-379)))) 115) (((-3 $ "failed") (-1257 (-948 (-563)))) 105) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 73) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 60)) (-2058 (($ (-1257 (-316 (-379)))) 91) (($ (-1257 (-316 (-563)))) 80) (($ (-1257 (-948 (-379)))) 111) (($ (-1257 (-948 (-563)))) 101) (($ (-1257 (-407 (-948 (-379))))) 69) (($ (-1257 (-407 (-948 (-563))))) 53)) (-2615 (((-1262) $) 45)) (-1693 (((-858) $) 39) (($ (-640 (-330))) 29) (($ (-330)) 32) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) 35) (($ (-1257 (-339 (-1707 (QUOTE X) (QUOTE -3170)) (-1707) (-694)))) 30))) +(((-82 |#1|) (-13 (-441) (-10 -8 (-15 -1693 ($ (-1257 (-339 (-1707 (QUOTE X) (QUOTE -3170)) (-1707) (-694))))))) (-1169)) (T -82)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-1257 (-339 (-1707 (QUOTE X) (QUOTE -3170)) (-1707) (-694)))) (-5 *1 (-82 *3)) (-14 *3 (-1169))))) +(-13 (-441) (-10 -8 (-15 -1693 ($ (-1257 (-339 (-1707 (QUOTE X) (QUOTE -3170)) (-1707) (-694))))))) +((-2131 (((-3 $ "failed") (-684 (-316 (-379)))) 115) (((-3 $ "failed") (-684 (-316 (-563)))) 104) (((-3 $ "failed") (-684 (-948 (-379)))) 137) (((-3 $ "failed") (-684 (-948 (-563)))) 126) (((-3 $ "failed") (-684 (-407 (-948 (-379))))) 93) (((-3 $ "failed") (-684 (-407 (-948 (-563))))) 80)) (-2058 (($ (-684 (-316 (-379)))) 111) (($ (-684 (-316 (-563)))) 100) (($ (-684 (-948 (-379)))) 133) (($ (-684 (-948 (-563)))) 122) (($ (-684 (-407 (-948 (-379))))) 89) (($ (-684 (-407 (-948 (-563))))) 73)) (-2615 (((-1262) $) 63)) (-1693 (((-858) $) 50) (($ (-640 (-330))) 57) (($ (-330)) 46) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) 55) (($ (-684 (-339 (-1707 (QUOTE X) (QUOTE -3170)) (-1707) (-694)))) 47))) +(((-83 |#1|) (-13 (-384) (-10 -8 (-15 -1693 ($ (-684 (-339 (-1707 (QUOTE X) (QUOTE -3170)) (-1707) (-694))))))) (-1169)) (T -83)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-684 (-339 (-1707 (QUOTE X) (QUOTE -3170)) (-1707) (-694)))) (-5 *1 (-83 *3)) (-14 *3 (-1169))))) +(-13 (-384) (-10 -8 (-15 -1693 ($ (-684 (-339 (-1707 (QUOTE X) (QUOTE -3170)) (-1707) (-694))))))) +((-2131 (((-3 $ "failed") (-684 (-316 (-379)))) 112) (((-3 $ "failed") (-684 (-316 (-563)))) 100) (((-3 $ "failed") (-684 (-948 (-379)))) 134) (((-3 $ "failed") (-684 (-948 (-563)))) 123) (((-3 $ "failed") (-684 (-407 (-948 (-379))))) 88) (((-3 $ "failed") (-684 (-407 (-948 (-563))))) 74)) (-2058 (($ (-684 (-316 (-379)))) 108) (($ (-684 (-316 (-563)))) 96) (($ (-684 (-948 (-379)))) 130) (($ (-684 (-948 (-563)))) 119) (($ (-684 (-407 (-948 (-379))))) 84) (($ (-684 (-407 (-948 (-563))))) 67)) (-2615 (((-1262) $) 59)) (-1693 (((-858) $) 53) (($ (-640 (-330))) 47) (($ (-330)) 50) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) 44) (($ (-684 (-339 (-1707 (QUOTE X)) (-1707) (-694)))) 45))) +(((-84 |#1|) (-13 (-384) (-10 -8 (-15 -1693 ($ (-684 (-339 (-1707 (QUOTE X)) (-1707) (-694))))))) (-1169)) (T -84)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-684 (-339 (-1707 (QUOTE X)) (-1707) (-694)))) (-5 *1 (-84 *3)) (-14 *3 (-1169))))) +(-13 (-384) (-10 -8 (-15 -1693 ($ (-684 (-339 (-1707 (QUOTE X)) (-1707) (-694))))))) +((-2131 (((-3 $ "failed") (-1257 (-316 (-379)))) 104) (((-3 $ "failed") (-1257 (-316 (-563)))) 93) (((-3 $ "failed") (-1257 (-948 (-379)))) 124) (((-3 $ "failed") (-1257 (-948 (-563)))) 114) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 82) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 69)) (-2058 (($ (-1257 (-316 (-379)))) 100) (($ (-1257 (-316 (-563)))) 89) (($ (-1257 (-948 (-379)))) 120) (($ (-1257 (-948 (-563)))) 110) (($ (-1257 (-407 (-948 (-379))))) 78) (($ (-1257 (-407 (-948 (-563))))) 62)) (-2615 (((-1262) $) 46)) (-1693 (((-858) $) 40) (($ (-640 (-330))) 49) (($ (-330)) 36) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) 52) (($ (-1257 (-339 (-1707 (QUOTE X)) (-1707) (-694)))) 37))) +(((-85 |#1|) (-13 (-441) (-10 -8 (-15 -1693 ($ (-1257 (-339 (-1707 (QUOTE X)) (-1707) (-694))))))) (-1169)) (T -85)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-1257 (-339 (-1707 (QUOTE X)) (-1707) (-694)))) (-5 *1 (-85 *3)) (-14 *3 (-1169))))) +(-13 (-441) (-10 -8 (-15 -1693 ($ (-1257 (-339 (-1707 (QUOTE X)) (-1707) (-694))))))) +((-2131 (((-3 $ "failed") (-1257 (-316 (-379)))) 79) (((-3 $ "failed") (-1257 (-316 (-563)))) 68) (((-3 $ "failed") (-1257 (-948 (-379)))) 99) (((-3 $ "failed") (-1257 (-948 (-563)))) 89) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 57) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 44)) (-2058 (($ (-1257 (-316 (-379)))) 75) (($ (-1257 (-316 (-563)))) 64) (($ (-1257 (-948 (-379)))) 95) (($ (-1257 (-948 (-563)))) 85) (($ (-1257 (-407 (-948 (-379))))) 53) (($ (-1257 (-407 (-948 (-563))))) 37)) (-2615 (((-1262) $) 125)) (-1693 (((-858) $) 119) (($ (-640 (-330))) 110) (($ (-330)) 116) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) 114) (($ (-1257 (-339 (-1707 (QUOTE X)) (-1707 (QUOTE -3170)) (-694)))) 36))) +(((-86 |#1|) (-13 (-441) (-10 -8 (-15 -1693 ($ (-1257 (-339 (-1707 (QUOTE X)) (-1707 (QUOTE -3170)) (-694))))))) (-1169)) (T -86)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-1257 (-339 (-1707 (QUOTE X)) (-1707 (QUOTE -3170)) (-694)))) (-5 *1 (-86 *3)) (-14 *3 (-1169))))) +(-13 (-441) (-10 -8 (-15 -1693 ($ (-1257 (-339 (-1707 (QUOTE X)) (-1707 (QUOTE -3170)) (-694))))))) +((-2131 (((-3 $ "failed") (-684 (-316 (-379)))) 113) (((-3 $ "failed") (-684 (-316 (-563)))) 101) (((-3 $ "failed") (-684 (-948 (-379)))) 135) (((-3 $ "failed") (-684 (-948 (-563)))) 124) (((-3 $ "failed") (-684 (-407 (-948 (-379))))) 89) (((-3 $ "failed") (-684 (-407 (-948 (-563))))) 75)) (-2058 (($ (-684 (-316 (-379)))) 109) (($ (-684 (-316 (-563)))) 97) (($ (-684 (-948 (-379)))) 131) (($ (-684 (-948 (-563)))) 120) (($ (-684 (-407 (-948 (-379))))) 85) (($ (-684 (-407 (-948 (-563))))) 68)) (-2615 (((-1262) $) 59)) (-1693 (((-858) $) 53) (($ (-640 (-330))) 43) (($ (-330)) 50) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) 48) (($ (-684 (-339 (-1707 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1707) (-694)))) 44))) +(((-87 |#1|) (-13 (-384) (-10 -8 (-15 -1693 ($ (-684 (-339 (-1707 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1707) (-694))))))) (-1169)) (T -87)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-684 (-339 (-1707 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1707) (-694)))) (-5 *1 (-87 *3)) (-14 *3 (-1169))))) +(-13 (-384) (-10 -8 (-15 -1693 ($ (-684 (-339 (-1707 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1707) (-694))))))) +((-2615 (((-1262) $) 44)) (-1693 (((-858) $) 38) (($ (-1257 (-694))) 93) (($ (-640 (-330))) 30) (($ (-330)) 35) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) 33))) +(((-88 |#1|) (-440) (-1169)) (T -88)) +NIL +(-440) +((-2131 (((-3 $ "failed") (-316 (-379))) 47) (((-3 $ "failed") (-316 (-563))) 52) (((-3 $ "failed") (-948 (-379))) 56) (((-3 $ "failed") (-948 (-563))) 60) (((-3 $ "failed") (-407 (-948 (-379)))) 42) (((-3 $ "failed") (-407 (-948 (-563)))) 35)) (-2058 (($ (-316 (-379))) 45) (($ (-316 (-563))) 50) (($ (-948 (-379))) 54) (($ (-948 (-563))) 58) (($ (-407 (-948 (-379)))) 40) (($ (-407 (-948 (-563)))) 32)) (-2615 (((-1262) $) 90)) (-1693 (((-858) $) 84) (($ (-640 (-330))) 78) (($ (-330)) 81) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) 76) (($ (-339 (-1707 (QUOTE X)) (-1707 (QUOTE -3170)) (-694))) 31))) +(((-89 |#1|) (-13 (-396) (-10 -8 (-15 -1693 ($ (-339 (-1707 (QUOTE X)) (-1707 (QUOTE -3170)) (-694)))))) (-1169)) (T -89)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-339 (-1707 (QUOTE X)) (-1707 (QUOTE -3170)) (-694))) (-5 *1 (-89 *3)) (-14 *3 (-1169))))) +(-13 (-396) (-10 -8 (-15 -1693 ($ (-339 (-1707 (QUOTE X)) (-1707 (QUOTE -3170)) (-694)))))) +((-2879 (((-1257 (-684 |#1|)) (-684 |#1|)) 54)) (-4180 (((-2 (|:| -2835 (-684 |#1|)) (|:| |vec| (-1257 (-640 (-917))))) |#2| (-917)) 44)) (-1702 (((-2 (|:| |minor| (-640 (-917))) (|:| -1420 |#2|) (|:| |minors| (-640 (-640 (-917)))) (|:| |ops| (-640 |#2|))) |#2| (-917)) 65 (|has| |#1| (-363))))) +(((-90 |#1| |#2|) (-10 -7 (-15 -4180 ((-2 (|:| -2835 (-684 |#1|)) (|:| |vec| (-1257 (-640 (-917))))) |#2| (-917))) (-15 -2879 ((-1257 (-684 |#1|)) (-684 |#1|))) (IF (|has| |#1| (-363)) (-15 -1702 ((-2 (|:| |minor| (-640 (-917))) (|:| -1420 |#2|) (|:| |minors| (-640 (-640 (-917)))) (|:| |ops| (-640 |#2|))) |#2| (-917))) |%noBranch|)) (-555) (-651 |#1|)) (T -90)) +((-1702 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *5 (-555)) (-5 *2 (-2 (|:| |minor| (-640 (-917))) (|:| -1420 *3) (|:| |minors| (-640 (-640 (-917)))) (|:| |ops| (-640 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-917)) (-4 *3 (-651 *5)))) (-2879 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-1257 (-684 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-684 *4)) (-4 *5 (-651 *4)))) (-4180 (*1 *2 *3 *4) (-12 (-4 *5 (-555)) (-5 *2 (-2 (|:| -2835 (-684 *5)) (|:| |vec| (-1257 (-640 (-917)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-917)) (-4 *3 (-651 *5))))) +(-10 -7 (-15 -4180 ((-2 (|:| -2835 (-684 |#1|)) (|:| |vec| (-1257 (-640 (-917))))) |#2| (-917))) (-15 -2879 ((-1257 (-684 |#1|)) (-684 |#1|))) (IF (|has| |#1| (-363)) (-15 -1702 ((-2 (|:| |minor| (-640 (-917))) (|:| -1420 |#2|) (|:| |minors| (-640 (-640 (-917)))) (|:| |ops| (-640 |#2|))) |#2| (-917))) |%noBranch|)) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2636 ((|#1| $) 35)) (-2759 (((-112) $ (-767)) NIL)) (-4239 (($) NIL T CONST)) (-4325 ((|#1| |#1| $) 30)) (-3017 ((|#1| $) 28)) (-2659 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-2581 (((-112) $ (-767)) NIL)) (-2259 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-4345 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-2964 ((|#1| $) NIL)) (-1812 (($ |#1| $) 31)) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3755 ((|#1| $) 29)) (-3138 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) NIL)) (-3756 (((-112) $) 16)) (-3135 (($) 39)) (-2370 (((-767) $) 26)) (-1709 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1872 (($ $) 15)) (-1693 (((-858) $) 25 (|has| |#1| (-610 (-858))))) (-2233 (($ (-640 |#1|)) NIL)) (-3487 (($ (-640 |#1|)) 37)) (-4383 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 13 (|has| |#1| (-1093)))) (-3608 (((-767) $) 10 (|has| $ (-6 -4407))))) +(((-91 |#1|) (-13 (-1114 |#1|) (-10 -8 (-15 -3487 ($ (-640 |#1|))))) (-1093)) (T -91)) +((-3487 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-91 *3))))) +(-13 (-1114 |#1|) (-10 -8 (-15 -3487 ($ (-640 |#1|))))) +((-1693 (((-858) $) 13) (($ (-1174)) 9) (((-1174) $) 8))) +(((-92 |#1|) (-10 -8 (-15 -1693 ((-1174) |#1|)) (-15 -1693 (|#1| (-1174))) (-15 -1693 ((-858) |#1|))) (-93)) (T -92)) +NIL +(-10 -8 (-15 -1693 ((-1174) |#1|)) (-15 -1693 (|#1| (-1174))) (-15 -1693 ((-858) |#1|))) +((-1677 (((-112) $ $) 7)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11) (($ (-1174)) 16) (((-1174) $) 15)) (-1718 (((-112) $ $) 6))) +(((-93) (-140)) (T -93)) +NIL +(-13 (-1093) (-490 (-1174))) +(((-102) . T) ((-613 #0=(-1174)) . T) ((-610 (-858)) . T) ((-610 #0#) . T) ((-490 #0#) . T) ((-1093) . T)) +((-1722 (($ $) 10)) (-1735 (($ $) 12))) +(((-94 |#1|) (-10 -8 (-15 -1735 (|#1| |#1|)) (-15 -1722 (|#1| |#1|))) (-95)) (T -94)) +NIL +(-10 -8 (-15 -1735 (|#1| |#1|)) (-15 -1722 (|#1| |#1|))) +((-1695 (($ $) 11)) (-1667 (($ $) 10)) (-1722 (($ $) 9)) (-1735 (($ $) 8)) (-1710 (($ $) 7)) (-1680 (($ $) 6))) +(((-95) (-140)) (T -95)) +((-1695 (*1 *1 *1) (-4 *1 (-95))) (-1667 (*1 *1 *1) (-4 *1 (-95))) (-1722 (*1 *1 *1) (-4 *1 (-95))) (-1735 (*1 *1 *1) (-4 *1 (-95))) (-1710 (*1 *1 *1) (-4 *1 (-95))) (-1680 (*1 *1 *1) (-4 *1 (-95)))) +(-13 (-10 -8 (-15 -1680 ($ $)) (-15 -1710 ($ $)) (-15 -1735 ($ $)) (-15 -1722 ($ $)) (-15 -1667 ($ $)) (-15 -1695 ($ $)))) +((-1677 (((-112) $ $) NIL)) (-3348 (((-1128) $) 9)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 17) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-96) (-13 (-1076) (-10 -8 (-15 -3348 ((-1128) $))))) (T -96)) +((-3348 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-96))))) +(-13 (-1076) (-10 -8 (-15 -3348 ((-1128) $)))) +((-1677 (((-112) $ $) NIL)) (-2855 (((-379) (-1151) (-379)) 42) (((-379) (-1151) (-1151) (-379)) 41)) (-2481 (((-379) (-379)) 33)) (-2656 (((-1262)) 36)) (-3573 (((-1151) $) NIL)) (-1831 (((-379) (-1151) (-1151)) 46) (((-379) (-1151)) 48)) (-1694 (((-1113) $) NIL)) (-3449 (((-379) (-1151) (-1151)) 47)) (-2097 (((-379) (-1151) (-1151)) 49) (((-379) (-1151)) 50)) (-1693 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-97) (-13 (-1093) (-10 -7 (-15 -1831 ((-379) (-1151) (-1151))) (-15 -1831 ((-379) (-1151))) (-15 -2097 ((-379) (-1151) (-1151))) (-15 -2097 ((-379) (-1151))) (-15 -3449 ((-379) (-1151) (-1151))) (-15 -2656 ((-1262))) (-15 -2481 ((-379) (-379))) (-15 -2855 ((-379) (-1151) (-379))) (-15 -2855 ((-379) (-1151) (-1151) (-379))) (-6 -4407)))) (T -97)) +((-1831 (*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-97)))) (-1831 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-97)))) (-2097 (*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-97)))) (-2097 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-97)))) (-3449 (*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-97)))) (-2656 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-97)))) (-2481 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-97)))) (-2855 (*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1151)) (-5 *1 (-97)))) (-2855 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1151)) (-5 *1 (-97))))) +(-13 (-1093) (-10 -7 (-15 -1831 ((-379) (-1151) (-1151))) (-15 -1831 ((-379) (-1151))) (-15 -2097 ((-379) (-1151) (-1151))) (-15 -2097 ((-379) (-1151))) (-15 -3449 ((-379) (-1151) (-1151))) (-15 -2656 ((-1262))) (-15 -2481 ((-379) (-379))) (-15 -2855 ((-379) (-1151) (-379))) (-15 -2855 ((-379) (-1151) (-1151) (-379))) (-6 -4407))) +NIL +(((-98) (-140)) (T -98)) +NIL +(-13 (-10 -7 (-6 -4407) (-6 (-4409 "*")) (-6 -4408) (-6 -4404) (-6 -4402) (-6 -4401) (-6 -4400) (-6 -4405) (-6 -4399) (-6 -4398) (-6 -4397) (-6 -4396) (-6 -4395) (-6 -4403) (-6 -4406) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4394))) +((-1677 (((-112) $ $) NIL)) (-4239 (($) NIL T CONST)) (-3400 (((-3 $ "failed") $) NIL)) (-3827 (((-112) $) NIL)) (-4098 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-563))) 22)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) 14)) (-1694 (((-1113) $) NIL)) (-2309 ((|#1| $ |#1|) 11)) (-4339 (($ $ $) NIL)) (-2146 (($ $ $) NIL)) (-1693 (((-858) $) 20)) (-2254 (($) 8 T CONST)) (-1718 (((-112) $ $) 10)) (-1837 (($ $ $) NIL)) (** (($ $ (-917)) 27) (($ $ (-767)) NIL) (($ $ (-563)) 16)) (* (($ $ $) 28))) +(((-99 |#1|) (-13 (-473) (-286 |#1| |#1|) (-10 -8 (-15 -4098 ($ (-1 |#1| |#1|))) (-15 -4098 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4098 ($ (-1 |#1| |#1| (-563)))))) (-1045)) (T -99)) +((-4098 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-99 *3)))) (-4098 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-99 *3)))) (-4098 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-563))) (-4 *3 (-1045)) (-5 *1 (-99 *3))))) +(-13 (-473) (-286 |#1| |#1|) (-10 -8 (-15 -4098 ($ (-1 |#1| |#1|))) (-15 -4098 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4098 ($ (-1 |#1| |#1| (-563)))))) +((-3202 (((-418 |#2|) |#2| (-640 |#2|)) 10) (((-418 |#2|) |#2| |#2|) 11))) +(((-100 |#1| |#2|) (-10 -7 (-15 -3202 ((-418 |#2|) |#2| |#2|)) (-15 -3202 ((-418 |#2|) |#2| (-640 |#2|)))) (-13 (-452) (-147)) (-1233 |#1|)) (T -100)) +((-3202 (*1 *2 *3 *4) (-12 (-5 *4 (-640 *3)) (-4 *3 (-1233 *5)) (-4 *5 (-13 (-452) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-100 *5 *3)))) (-3202 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-452) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1233 *4))))) +(-10 -7 (-15 -3202 ((-418 |#2|) |#2| |#2|)) (-15 -3202 ((-418 |#2|) |#2| (-640 |#2|)))) +((-1677 (((-112) $ $) 9))) +(((-101 |#1|) (-10 -8 (-15 -1677 ((-112) |#1| |#1|))) (-102)) (T -101)) +NIL +(-10 -8 (-15 -1677 ((-112) |#1| |#1|))) +((-1677 (((-112) $ $) 7)) (-1718 (((-112) $ $) 6))) +(((-102) (-140)) (T -102)) +((-1677 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-1718 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) +(-13 (-10 -8 (-15 -1718 ((-112) $ $)) (-15 -1677 ((-112) $ $)))) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2619 ((|#1| $) NIL)) (-2759 (((-112) $ (-767)) NIL)) (-2936 ((|#1| $ |#1|) 13 (|has| $ (-6 -4408)))) (-2641 (($ $ $) NIL (|has| $ (-6 -4408)))) (-4190 (($ $ $) NIL (|has| $ (-6 -4408)))) (-3520 (($ $ (-640 |#1|)) 15)) (-1849 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4408))) (($ $ "left" $) NIL (|has| $ (-6 -4408))) (($ $ "right" $) NIL (|has| $ (-6 -4408)))) (-2811 (($ $ (-640 $)) NIL (|has| $ (-6 -4408)))) (-4239 (($) NIL T CONST)) (-1701 (($ $) 11)) (-2659 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-2071 (((-640 $) $) NIL)) (-1469 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2219 (($ $ |#1| $) 17)) (-2581 (((-112) $ (-767)) NIL)) (-2259 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2009 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-1522 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-640 |#1|) |#1| |#1| |#1|)) 35)) (-4345 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-1686 (($ $) 10)) (-2512 (((-640 |#1|) $) NIL)) (-2194 (((-112) $) 12)) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3138 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) NIL)) (-3756 (((-112) $) 9)) (-3135 (($) 16)) (-2309 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4071 (((-563) $ $) NIL)) (-1434 (((-112) $) NIL)) (-1709 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1872 (($ $) NIL)) (-1693 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-4258 (((-640 $) $) NIL)) (-2962 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2276 (($ (-767) |#1|) 19)) (-4383 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4407) (-6 -4408) (-15 -2276 ($ (-767) |#1|)) (-15 -3520 ($ $ (-640 |#1|))) (-15 -2009 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2009 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1522 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1522 ($ $ |#1| (-1 (-640 |#1|) |#1| |#1| |#1|))))) (-1093)) (T -103)) +((-2276 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *1 (-103 *3)) (-4 *3 (-1093)))) (-3520 (*1 *1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-103 *3)))) (-2009 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1093)))) (-2009 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1093)) (-5 *1 (-103 *3)))) (-1522 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1093)) (-5 *1 (-103 *2)))) (-1522 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-640 *2) *2 *2 *2)) (-4 *2 (-1093)) (-5 *1 (-103 *2))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4407) (-6 -4408) (-15 -2276 ($ (-767) |#1|)) (-15 -3520 ($ $ (-640 |#1|))) (-15 -2009 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2009 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1522 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1522 ($ $ |#1| (-1 (-640 |#1|) |#1| |#1| |#1|))))) +((-2772 ((|#3| |#2| |#2|) 28)) (-1486 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4409 "*"))))) (-1632 ((|#3| |#2| |#2|) 29)) (-2080 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4409 "*")))))) +(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2772 (|#3| |#2| |#2|)) (-15 -1632 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4409 "*"))) (PROGN (-15 -1486 (|#1| |#2| |#2|)) (-15 -2080 (|#1| |#2|))) |%noBranch|)) (-1045) (-1233 |#1|) (-682 |#1| |#4| |#5|) (-373 |#1|) (-373 |#1|)) (T -104)) +((-2080 (*1 *2 *3) (-12 (|has| *2 (-6 (-4409 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2)) (-4 *2 (-1045)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1233 *2)) (-4 *4 (-682 *2 *5 *6)))) (-1486 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4409 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2)) (-4 *2 (-1045)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1233 *2)) (-4 *4 (-682 *2 *5 *6)))) (-1632 (*1 *2 *3 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-682 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1233 *4)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)))) (-2772 (*1 *2 *3 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-682 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1233 *4)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))))) +(-10 -7 (-15 -2772 (|#3| |#2| |#2|)) (-15 -1632 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4409 "*"))) (PROGN (-15 -1486 (|#1| |#2| |#2|)) (-15 -2080 (|#1| |#2|))) |%noBranch|)) +((-1677 (((-112) $ $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-4165 (((-640 (-1169))) 33)) (-1703 (((-2 (|:| |zeros| (-1149 (-225))) (|:| |ones| (-1149 (-225))) (|:| |singularities| (-1149 (-225)))) (-1169)) 35)) (-1718 (((-112) $ $) NIL))) +(((-105) (-13 (-1093) (-10 -7 (-15 -4165 ((-640 (-1169)))) (-15 -1703 ((-2 (|:| |zeros| (-1149 (-225))) (|:| |ones| (-1149 (-225))) (|:| |singularities| (-1149 (-225)))) (-1169))) (-6 -4407)))) (T -105)) +((-4165 (*1 *2) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-105)))) (-1703 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-2 (|:| |zeros| (-1149 (-225))) (|:| |ones| (-1149 (-225))) (|:| |singularities| (-1149 (-225))))) (-5 *1 (-105))))) +(-13 (-1093) (-10 -7 (-15 -4165 ((-640 (-1169)))) (-15 -1703 ((-2 (|:| |zeros| (-1149 (-225))) (|:| |ones| (-1149 (-225))) (|:| |singularities| (-1149 (-225)))) (-1169))) (-6 -4407))) +((-2233 (($ (-640 |#2|)) 11))) +(((-106 |#1| |#2|) (-10 -8 (-15 -2233 (|#1| (-640 |#2|)))) (-107 |#2|) (-1208)) (T -106)) +NIL +(-10 -8 (-15 -2233 (|#1| (-640 |#2|)))) +((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-2759 (((-112) $ (-767)) 8)) (-4239 (($) 7 T CONST)) (-2659 (((-640 |#1|) $) 30 (|has| $ (-6 -4407)))) (-2581 (((-112) $ (-767)) 9)) (-2259 (((-640 |#1|) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-4345 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 35)) (-2382 (((-112) $ (-767)) 10)) (-3573 (((-1151) $) 22 (|has| |#1| (-1093)))) (-2964 ((|#1| $) 39)) (-1812 (($ |#1| $) 40)) (-1694 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3755 ((|#1| $) 41)) (-3138 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) 14)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-1709 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4407))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1872 (($ $) 13)) (-1693 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-2233 (($ (-640 |#1|)) 42)) (-4383 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-107 |#1|) (-140) (-1208)) (T -107)) +((-2233 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-4 *1 (-107 *3)))) (-3755 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1208)))) (-1812 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1208)))) (-2964 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1208))))) +(-13 (-489 |t#1|) (-10 -8 (-6 -4408) (-15 -2233 ($ (-640 |t#1|))) (-15 -3755 (|t#1| $)) (-15 -1812 ($ |t#1| $)) (-15 -2964 (|t#1| $)))) +(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4032 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T)) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-3401 (((-563) $) NIL (|has| (-563) (-307)))) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-2424 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-1919 (((-112) $ $) NIL)) (-1857 (((-563) $) NIL (|has| (-563) (-816)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-563) "failed") $) NIL) (((-3 (-1169) "failed") $) NIL (|has| (-563) (-1034 (-1169)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| (-563) (-1034 (-563)))) (((-3 (-563) "failed") $) NIL (|has| (-563) (-1034 (-563))))) (-2058 (((-563) $) NIL) (((-1169) $) NIL (|has| (-563) (-1034 (-1169)))) (((-407 (-563)) $) NIL (|has| (-563) (-1034 (-563)))) (((-563) $) NIL (|has| (-563) (-1034 (-563))))) (-3090 (($ $ $) NIL)) (-2950 (((-684 (-563)) (-684 $)) NIL (|has| (-563) (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| (-563) (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-684 (-563)) (-684 $)) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-1691 (($) NIL (|has| (-563) (-545)))) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-2468 (((-112) $) NIL)) (-3101 (((-112) $) NIL (|has| (-563) (-816)))) (-3787 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (|has| (-563) (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-563) (-882 (-379))))) (-3827 (((-112) $) NIL)) (-2711 (($ $) NIL)) (-2143 (((-563) $) NIL)) (-2408 (((-3 $ "failed") $) NIL (|has| (-563) (-1144)))) (-1419 (((-112) $) NIL (|has| (-563) (-816)))) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3084 (($ $ $) NIL (|has| (-563) (-846)))) (-1777 (($ $ $) NIL (|has| (-563) (-846)))) (-2240 (($ (-1 (-563) (-563)) $) NIL)) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) NIL)) (-2523 (($) NIL (|has| (-563) (-1144)) CONST)) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ $ $) NIL) (($ (-640 $)) NIL)) (-4215 (($ $) NIL (|has| (-563) (-307))) (((-407 (-563)) $) NIL)) (-1583 (((-563) $) NIL (|has| (-563) (-545)))) (-1876 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-3116 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-2174 (((-418 $) $) NIL)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1540 (($ $ (-640 (-563)) (-640 (-563))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-563) (-563)) NIL (|has| (-563) (-309 (-563)))) (($ $ (-294 (-563))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-640 (-294 (-563)))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-640 (-1169)) (-640 (-563))) NIL (|has| (-563) (-514 (-1169) (-563)))) (($ $ (-1169) (-563)) NIL (|has| (-563) (-514 (-1169) (-563))))) (-2628 (((-767) $) NIL)) (-2309 (($ $ (-563)) NIL (|has| (-563) (-286 (-563) (-563))))) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-4202 (($ $) NIL (|has| (-563) (-233))) (($ $ (-767)) NIL (|has| (-563) (-233))) (($ $ (-1169)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1 (-563) (-563)) (-767)) NIL) (($ $ (-1 (-563) (-563))) NIL)) (-1801 (($ $) NIL)) (-2154 (((-563) $) NIL)) (-2220 (((-888 (-563)) $) NIL (|has| (-563) (-611 (-888 (-563))))) (((-888 (-379)) $) NIL (|has| (-563) (-611 (-888 (-379))))) (((-536) $) NIL (|has| (-563) (-611 (-536)))) (((-379) $) NIL (|has| (-563) (-1018))) (((-225) $) NIL (|has| (-563) (-1018)))) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-563) (-905))))) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) 8) (($ (-563)) NIL) (($ (-1169)) NIL (|has| (-563) (-1034 (-1169)))) (((-407 (-563)) $) NIL) (((-1000 2) $) 10)) (-2779 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| $ (-145)) (|has| (-563) (-905))) (|has| (-563) (-145))))) (-1675 (((-767)) NIL)) (-4194 (((-563) $) NIL (|has| (-563) (-545)))) (-3330 (($ (-407 (-563))) 9)) (-2126 (((-112) $ $) NIL)) (-2509 (($ $) NIL (|has| (-563) (-816)))) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-3209 (($ $) NIL (|has| (-563) (-233))) (($ $ (-767)) NIL (|has| (-563) (-233))) (($ $ (-1169)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1 (-563) (-563)) (-767)) NIL) (($ $ (-1 (-563) (-563))) NIL)) (-1778 (((-112) $ $) NIL (|has| (-563) (-846)))) (-1756 (((-112) $ $) NIL (|has| (-563) (-846)))) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL (|has| (-563) (-846)))) (-1744 (((-112) $ $) NIL (|has| (-563) (-846)))) (-1837 (($ $ $) NIL) (($ (-563) (-563)) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ (-563) $) NIL) (($ $ (-563)) NIL))) +(((-108) (-13 (-988 (-563)) (-610 (-407 (-563))) (-610 (-1000 2)) (-10 -8 (-15 -4215 ((-407 (-563)) $)) (-15 -3330 ($ (-407 (-563))))))) (T -108)) +((-4215 (*1 *2 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-108)))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-108))))) +(-13 (-988 (-563)) (-610 (-407 (-563))) (-610 (-1000 2)) (-10 -8 (-15 -4215 ((-407 (-563)) $)) (-15 -3330 ($ (-407 (-563)))))) +((-1933 (((-640 (-961)) $) 14)) (-3348 (((-1169) $) 10)) (-1693 (((-858) $) 23)) (-1666 (($ (-1169) (-640 (-961))) 15))) +(((-109) (-13 (-610 (-858)) (-10 -8 (-15 -3348 ((-1169) $)) (-15 -1933 ((-640 (-961)) $)) (-15 -1666 ($ (-1169) (-640 (-961))))))) (T -109)) +((-3348 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-109)))) (-1933 (*1 *2 *1) (-12 (-5 *2 (-640 (-961))) (-5 *1 (-109)))) (-1666 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-961))) (-5 *1 (-109))))) +(-13 (-610 (-858)) (-10 -8 (-15 -3348 ((-1169) $)) (-15 -1933 ((-640 (-961)) $)) (-15 -1666 ($ (-1169) (-640 (-961)))))) +((-1677 (((-112) $ $) NIL)) (-3380 (($ $) NIL)) (-2212 (($ $ $) NIL)) (-4378 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4408)))) (-3523 (((-112) $) NIL (|has| (-112) (-846))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2770 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-846)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4408)))) (-1642 (($ $) NIL (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2759 (((-112) $ (-767)) NIL)) (-1849 (((-112) $ (-1224 (-563)) (-112)) NIL (|has| $ (-6 -4408))) (((-112) $ (-563) (-112)) NIL (|has| $ (-6 -4408)))) (-2256 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4407)))) (-4239 (($) NIL T CONST)) (-2907 (($ $) NIL (|has| $ (-6 -4408)))) (-4382 (($ $) NIL)) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-112) (-1093))))) (-1459 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4407))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-112) (-1093))))) (-2444 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4407)) (|has| (-112) (-1093))))) (-4355 (((-112) $ (-563) (-112)) NIL (|has| $ (-6 -4408)))) (-4293 (((-112) $ (-563)) NIL)) (-4368 (((-563) (-112) $ (-563)) NIL (|has| (-112) (-1093))) (((-563) (-112) $) NIL (|has| (-112) (-1093))) (((-563) (-1 (-112) (-112)) $) NIL)) (-2659 (((-640 (-112)) $) NIL (|has| $ (-6 -4407)))) (-2202 (($ $ $) NIL)) (-2176 (($ $) NIL)) (-1546 (($ $ $) NIL)) (-1566 (($ (-767) (-112)) 8)) (-3572 (($ $ $) NIL)) (-2581 (((-112) $ (-767)) NIL)) (-2411 (((-563) $) NIL (|has| (-563) (-846)))) (-3084 (($ $ $) NIL)) (-3164 (($ $ $) NIL (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2259 (((-640 (-112)) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-112) (-1093))))) (-3860 (((-563) $) NIL (|has| (-563) (-846)))) (-1777 (($ $ $) NIL)) (-4345 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL)) (-3396 (($ $ $ (-563)) NIL) (($ (-112) $ (-563)) NIL)) (-4318 (((-640 (-563)) $) NIL)) (-3192 (((-112) (-563) $) NIL)) (-1694 (((-1113) $) NIL)) (-3781 (((-112) $) NIL (|has| (-563) (-846)))) (-4203 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2358 (($ $ (-112)) NIL (|has| $ (-6 -4408)))) (-3138 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-112)) (-640 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093)))) (($ $ (-294 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093)))) (($ $ (-640 (-294 (-112)))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093))))) (-2026 (((-112) $ $) NIL)) (-2105 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-112) (-1093))))) (-2836 (((-640 (-112)) $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) NIL)) (-2309 (($ $ (-1224 (-563))) NIL) (((-112) $ (-563)) NIL) (((-112) $ (-563) (-112)) NIL)) (-2963 (($ $ (-1224 (-563))) NIL) (($ $ (-563)) NIL)) (-1709 (((-767) (-112) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-112) (-1093)))) (((-767) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4407)))) (-3076 (($ $ $ (-563)) NIL (|has| $ (-6 -4408)))) (-1872 (($ $) NIL)) (-2220 (((-536) $) NIL (|has| (-112) (-611 (-536))))) (-1707 (($ (-640 (-112))) NIL)) (-2853 (($ (-640 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-1693 (((-858) $) NIL)) (-1734 (($ (-767) (-112)) 9)) (-4383 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4407)))) (-2190 (($ $ $) NIL)) (-1534 (($ $ $) NIL)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) NIL)) (-1521 (($ $ $) NIL)) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-110) (-13 (-123) (-10 -8 (-15 -1734 ($ (-767) (-112)))))) (T -110)) +((-1734 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *3 (-112)) (-5 *1 (-110))))) +(-13 (-123) (-10 -8 (-15 -1734 ($ (-767) (-112))))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11)) (-2241 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) +(((-111 |#1| |#2|) (-140) (-1045) (-1045)) (T -111)) +NIL +(-13 (-643 |t#1|) (-1051 |t#2|) (-10 -7 (-6 -4402) (-6 -4401))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-1051 |#2|) . T) ((-1093) . T)) +((-1677 (((-112) $ $) NIL)) (-3380 (($ $) 10)) (-2212 (($ $ $) 15)) (-1674 (($) 7 T CONST)) (-3217 (($ $) 6)) (-3749 (((-767)) 24)) (-1691 (($) 30)) (-2202 (($ $ $) 13)) (-2176 (($ $) 9)) (-1546 (($ $ $) 16)) (-3572 (($ $ $) 17)) (-3084 (($ $ $) NIL) (($) NIL T CONST)) (-1777 (($ $ $) NIL) (($) NIL T CONST)) (-1476 (((-917) $) 29)) (-3573 (((-1151) $) NIL)) (-2555 (($ (-917)) 28)) (-3234 (($ $ $) 20)) (-1694 (((-1113) $) NIL)) (-3563 (($) 8 T CONST)) (-2515 (($ $ $) 21)) (-2220 (((-536) $) 34)) (-1693 (((-858) $) 37)) (-2190 (($ $ $) 11)) (-1534 (($ $ $) 14)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 19)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) 22)) (-1521 (($ $ $) 12))) +(((-112) (-13 (-840) (-656) (-963) (-611 (-536)) (-10 -8 (-15 -1674 ($) -2669) (-15 -3563 ($) -2669) (-15 -2212 ($ $ $)) (-15 -3572 ($ $ $)) (-15 -1546 ($ $ $)) (-15 -3217 ($ $))))) (T -112)) +((-1674 (*1 *1) (-5 *1 (-112))) (-3563 (*1 *1) (-5 *1 (-112))) (-2212 (*1 *1 *1 *1) (-5 *1 (-112))) (-3572 (*1 *1 *1 *1) (-5 *1 (-112))) (-1546 (*1 *1 *1 *1) (-5 *1 (-112))) (-3217 (*1 *1 *1) (-5 *1 (-112)))) +(-13 (-840) (-656) (-963) (-611 (-536)) (-10 -8 (-15 -1674 ($) -2669) (-15 -3563 ($) -2669) (-15 -2212 ($ $ $)) (-15 -3572 ($ $ $)) (-15 -1546 ($ $ $)) (-15 -3217 ($ $)))) +((-3934 (((-3 (-1 |#1| (-640 |#1|)) "failed") (-114)) 19) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-640 |#1|))) 11) (((-3 |#1| "failed") (-114) (-640 |#1|)) 21)) (-1644 (((-3 (-640 (-1 |#1| (-640 |#1|))) "failed") (-114)) 25) (((-114) (-114) (-1 |#1| |#1|)) 30) (((-114) (-114) (-640 (-1 |#1| (-640 |#1|)))) 26)) (-2582 (((-114) |#1|) 54 (|has| |#1| (-846)))) (-3292 (((-3 |#1| "failed") (-114)) 48 (|has| |#1| (-846))))) +(((-113 |#1|) (-10 -7 (-15 -3934 ((-3 |#1| "failed") (-114) (-640 |#1|))) (-15 -3934 ((-114) (-114) (-1 |#1| (-640 |#1|)))) (-15 -3934 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3934 ((-3 (-1 |#1| (-640 |#1|)) "failed") (-114))) (-15 -1644 ((-114) (-114) (-640 (-1 |#1| (-640 |#1|))))) (-15 -1644 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1644 ((-3 (-640 (-1 |#1| (-640 |#1|))) "failed") (-114))) (IF (|has| |#1| (-846)) (PROGN (-15 -2582 ((-114) |#1|)) (-15 -3292 ((-3 |#1| "failed") (-114)))) |%noBranch|)) (-1093)) (T -113)) +((-3292 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1093)) (-4 *2 (-846)) (-5 *1 (-113 *2)))) (-2582 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-846)) (-4 *3 (-1093)))) (-1644 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-640 (-1 *4 (-640 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1093)))) (-1644 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1093)) (-5 *1 (-113 *4)))) (-1644 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-640 (-1 *4 (-640 *4)))) (-4 *4 (-1093)) (-5 *1 (-113 *4)))) (-3934 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-640 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1093)))) (-3934 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1093)) (-5 *1 (-113 *4)))) (-3934 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-640 *4))) (-4 *4 (-1093)) (-5 *1 (-113 *4)))) (-3934 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-640 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1093))))) +(-10 -7 (-15 -3934 ((-3 |#1| "failed") (-114) (-640 |#1|))) (-15 -3934 ((-114) (-114) (-1 |#1| (-640 |#1|)))) (-15 -3934 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3934 ((-3 (-1 |#1| (-640 |#1|)) "failed") (-114))) (-15 -1644 ((-114) (-114) (-640 (-1 |#1| (-640 |#1|))))) (-15 -1644 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1644 ((-3 (-640 (-1 |#1| (-640 |#1|))) "failed") (-114))) (IF (|has| |#1| (-846)) (PROGN (-15 -2582 ((-114) |#1|)) (-15 -3292 ((-3 |#1| "failed") (-114)))) |%noBranch|)) +((-1677 (((-112) $ $) NIL)) (-1326 (((-767) $) 72) (($ $ (-767)) 30)) (-1687 (((-112) $) 32)) (-2662 (($ $ (-1151) (-770)) 26)) (-1960 (($ $ (-45 (-1151) (-770))) 15)) (-3495 (((-3 (-770) "failed") $ (-1151)) 25)) (-1933 (((-45 (-1151) (-770)) $) 14)) (-2361 (($ (-1169)) 17) (($ (-1169) (-767)) 22)) (-1985 (((-112) $) 31)) (-3987 (((-112) $) 33)) (-3348 (((-1169) $) 8)) (-3084 (($ $ $) NIL)) (-1777 (($ $ $) NIL)) (-3573 (((-1151) $) NIL)) (-2799 (((-112) $ (-1169)) 10)) (-1520 (($ $ (-1 (-536) (-640 (-536)))) 52) (((-3 (-1 (-536) (-640 (-536))) "failed") $) 56)) (-1694 (((-1113) $) NIL)) (-1579 (((-112) $ (-1151)) 29)) (-1998 (($ $ (-1 (-112) $ $)) 35)) (-1463 (((-3 (-1 (-858) (-640 (-858))) "failed") $) 54) (($ $ (-1 (-858) (-640 (-858)))) 41) (($ $ (-1 (-858) (-858))) 43)) (-2429 (($ $ (-1151)) 45)) (-1872 (($ $) 63)) (-2249 (($ $ (-1 (-112) $ $)) 36)) (-1693 (((-858) $) 48)) (-2295 (($ $ (-1151)) 27)) (-1396 (((-3 (-767) "failed") $) 58)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 71)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) 78))) +(((-114) (-13 (-846) (-10 -8 (-15 -3348 ((-1169) $)) (-15 -1933 ((-45 (-1151) (-770)) $)) (-15 -1872 ($ $)) (-15 -2361 ($ (-1169))) (-15 -2361 ($ (-1169) (-767))) (-15 -1396 ((-3 (-767) "failed") $)) (-15 -1985 ((-112) $)) (-15 -1687 ((-112) $)) (-15 -3987 ((-112) $)) (-15 -1326 ((-767) $)) (-15 -1326 ($ $ (-767))) (-15 -1998 ($ $ (-1 (-112) $ $))) (-15 -2249 ($ $ (-1 (-112) $ $))) (-15 -1463 ((-3 (-1 (-858) (-640 (-858))) "failed") $)) (-15 -1463 ($ $ (-1 (-858) (-640 (-858))))) (-15 -1463 ($ $ (-1 (-858) (-858)))) (-15 -1520 ($ $ (-1 (-536) (-640 (-536))))) (-15 -1520 ((-3 (-1 (-536) (-640 (-536))) "failed") $)) (-15 -2799 ((-112) $ (-1169))) (-15 -1579 ((-112) $ (-1151))) (-15 -2295 ($ $ (-1151))) (-15 -2429 ($ $ (-1151))) (-15 -3495 ((-3 (-770) "failed") $ (-1151))) (-15 -2662 ($ $ (-1151) (-770))) (-15 -1960 ($ $ (-45 (-1151) (-770))))))) (T -114)) +((-3348 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-114)))) (-1933 (*1 *2 *1) (-12 (-5 *2 (-45 (-1151) (-770))) (-5 *1 (-114)))) (-1872 (*1 *1 *1) (-5 *1 (-114))) (-2361 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-114)))) (-2361 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-767)) (-5 *1 (-114)))) (-1396 (*1 *2 *1) (|partial| -12 (-5 *2 (-767)) (-5 *1 (-114)))) (-1985 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1687 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3987 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1326 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-114)))) (-1326 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-114)))) (-1998 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-2249 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-1463 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-858) (-640 (-858)))) (-5 *1 (-114)))) (-1463 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-858) (-640 (-858)))) (-5 *1 (-114)))) (-1463 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-858) (-858))) (-5 *1 (-114)))) (-1520 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-536) (-640 (-536)))) (-5 *1 (-114)))) (-1520 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-536) (-640 (-536)))) (-5 *1 (-114)))) (-2799 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-112)) (-5 *1 (-114)))) (-1579 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-112)) (-5 *1 (-114)))) (-2295 (*1 *1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-114)))) (-2429 (*1 *1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-114)))) (-3495 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1151)) (-5 *2 (-770)) (-5 *1 (-114)))) (-2662 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1151)) (-5 *3 (-770)) (-5 *1 (-114)))) (-1960 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1151) (-770))) (-5 *1 (-114))))) +(-13 (-846) (-10 -8 (-15 -3348 ((-1169) $)) (-15 -1933 ((-45 (-1151) (-770)) $)) (-15 -1872 ($ $)) (-15 -2361 ($ (-1169))) (-15 -2361 ($ (-1169) (-767))) (-15 -1396 ((-3 (-767) "failed") $)) (-15 -1985 ((-112) $)) (-15 -1687 ((-112) $)) (-15 -3987 ((-112) $)) (-15 -1326 ((-767) $)) (-15 -1326 ($ $ (-767))) (-15 -1998 ($ $ (-1 (-112) $ $))) (-15 -2249 ($ $ (-1 (-112) $ $))) (-15 -1463 ((-3 (-1 (-858) (-640 (-858))) "failed") $)) (-15 -1463 ($ $ (-1 (-858) (-640 (-858))))) (-15 -1463 ($ $ (-1 (-858) (-858)))) (-15 -1520 ($ $ (-1 (-536) (-640 (-536))))) (-15 -1520 ((-3 (-1 (-536) (-640 (-536))) "failed") $)) (-15 -2799 ((-112) $ (-1169))) (-15 -1579 ((-112) $ (-1151))) (-15 -2295 ($ $ (-1151))) (-15 -2429 ($ $ (-1151))) (-15 -3495 ((-3 (-770) "failed") $ (-1151))) (-15 -2662 ($ $ (-1151) (-770))) (-15 -1960 ($ $ (-45 (-1151) (-770)))))) +((-4329 (((-563) |#2|) 37))) +(((-115 |#1| |#2|) (-10 -7 (-15 -4329 ((-563) |#2|))) (-13 (-363) (-1034 (-407 (-563)))) (-1233 |#1|)) (T -115)) +((-4329 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-1034 (-407 *2)))) (-5 *2 (-563)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1233 *4))))) +(-10 -7 (-15 -4329 ((-563) |#2|))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-2186 (($ $ (-563)) NIL)) (-1919 (((-112) $ $) NIL)) (-4239 (($) NIL T CONST)) (-3853 (($ (-1165 (-563)) (-563)) NIL)) (-3090 (($ $ $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-2840 (($ $) NIL)) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-3254 (((-767) $) NIL)) (-3827 (((-112) $) NIL)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2995 (((-563)) NIL)) (-3553 (((-563) $) NIL)) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3320 (($ $ (-563)) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2628 (((-767) $) NIL)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-4113 (((-1149 (-563)) $) NIL)) (-1741 (($ $) NIL)) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL)) (-1675 (((-767)) NIL)) (-2126 (((-112) $ $) NIL)) (-1403 (((-563) $ (-563)) NIL)) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-1718 (((-112) $ $) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL))) +(((-116 |#1|) (-865 |#1|) (-563)) (T -116)) +NIL +(-865 |#1|) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-3401 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-307)))) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-2424 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-116 |#1|) (-905)))) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| (-116 |#1|) (-905)))) (-1919 (((-112) $ $) NIL)) (-1857 (((-563) $) NIL (|has| (-116 |#1|) (-816)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1169) "failed") $) NIL (|has| (-116 |#1|) (-1034 (-1169)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| (-116 |#1|) (-1034 (-563)))) (((-3 (-563) "failed") $) NIL (|has| (-116 |#1|) (-1034 (-563))))) (-2058 (((-116 |#1|) $) NIL) (((-1169) $) NIL (|has| (-116 |#1|) (-1034 (-1169)))) (((-407 (-563)) $) NIL (|has| (-116 |#1|) (-1034 (-563)))) (((-563) $) NIL (|has| (-116 |#1|) (-1034 (-563))))) (-2457 (($ $) NIL) (($ (-563) $) NIL)) (-3090 (($ $ $) NIL)) (-2950 (((-684 (-563)) (-684 $)) NIL (|has| (-116 |#1|) (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| (-116 |#1|) (-636 (-563)))) (((-2 (|:| -2835 (-684 (-116 |#1|))) (|:| |vec| (-1257 (-116 |#1|)))) (-684 $) (-1257 $)) NIL) (((-684 (-116 |#1|)) (-684 $)) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-1691 (($) NIL (|has| (-116 |#1|) (-545)))) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-2468 (((-112) $) NIL)) (-3101 (((-112) $) NIL (|has| (-116 |#1|) (-816)))) (-3787 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (|has| (-116 |#1|) (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-116 |#1|) (-882 (-379))))) (-3827 (((-112) $) NIL)) (-2711 (($ $) NIL)) (-2143 (((-116 |#1|) $) NIL)) (-2408 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1144)))) (-1419 (((-112) $) NIL (|has| (-116 |#1|) (-816)))) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3084 (($ $ $) NIL (|has| (-116 |#1|) (-846)))) (-1777 (($ $ $) NIL (|has| (-116 |#1|) (-846)))) (-2240 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) NIL)) (-2523 (($) NIL (|has| (-116 |#1|) (-1144)) CONST)) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ $ $) NIL) (($ (-640 $)) NIL)) (-4215 (($ $) NIL (|has| (-116 |#1|) (-307)))) (-1583 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-545)))) (-1876 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-116 |#1|) (-905)))) (-3116 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-116 |#1|) (-905)))) (-2174 (((-418 $) $) NIL)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1540 (($ $ (-640 (-116 |#1|)) (-640 (-116 |#1|))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-294 (-116 |#1|))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-640 (-294 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-640 (-1169)) (-640 (-116 |#1|))) NIL (|has| (-116 |#1|) (-514 (-1169) (-116 |#1|)))) (($ $ (-1169) (-116 |#1|)) NIL (|has| (-116 |#1|) (-514 (-1169) (-116 |#1|))))) (-2628 (((-767) $) NIL)) (-2309 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-286 (-116 |#1|) (-116 |#1|))))) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-4202 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-767)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1169)) NIL (|has| (-116 |#1|) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-116 |#1|) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-116 |#1|) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-116 |#1|) (-896 (-1169)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-767)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-1801 (($ $) NIL)) (-2154 (((-116 |#1|) $) NIL)) (-2220 (((-888 (-563)) $) NIL (|has| (-116 |#1|) (-611 (-888 (-563))))) (((-888 (-379)) $) NIL (|has| (-116 |#1|) (-611 (-888 (-379))))) (((-536) $) NIL (|has| (-116 |#1|) (-611 (-536)))) (((-379) $) NIL (|has| (-116 |#1|) (-1018))) (((-225) $) NIL (|has| (-116 |#1|) (-1018)))) (-2192 (((-174 (-407 (-563))) $) NIL)) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-905))))) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ (-116 |#1|)) NIL) (($ (-1169)) NIL (|has| (-116 |#1|) (-1034 (-1169))))) (-2779 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-905))) (|has| (-116 |#1|) (-145))))) (-1675 (((-767)) NIL)) (-4194 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-545)))) (-2126 (((-112) $ $) NIL)) (-1403 (((-407 (-563)) $ (-563)) NIL)) (-2509 (($ $) NIL (|has| (-116 |#1|) (-816)))) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-3209 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-767)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1169)) NIL (|has| (-116 |#1|) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-116 |#1|) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-116 |#1|) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-116 |#1|) (-896 (-1169)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-767)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-1778 (((-112) $ $) NIL (|has| (-116 |#1|) (-846)))) (-1756 (((-112) $ $) NIL (|has| (-116 |#1|) (-846)))) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL (|has| (-116 |#1|) (-846)))) (-1744 (((-112) $ $) NIL (|has| (-116 |#1|) (-846)))) (-1837 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL))) +(((-117 |#1|) (-13 (-988 (-116 |#1|)) (-10 -8 (-15 -1403 ((-407 (-563)) $ (-563))) (-15 -2192 ((-174 (-407 (-563))) $)) (-15 -2457 ($ $)) (-15 -2457 ($ (-563) $)))) (-563)) (T -117)) +((-1403 (*1 *2 *1 *3) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-563)))) (-2192 (*1 *2 *1) (-12 (-5 *2 (-174 (-407 (-563)))) (-5 *1 (-117 *3)) (-14 *3 (-563)))) (-2457 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-563)))) (-2457 (*1 *1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-117 *3)) (-14 *3 *2)))) +(-13 (-988 (-116 |#1|)) (-10 -8 (-15 -1403 ((-407 (-563)) $ (-563))) (-15 -2192 ((-174 (-407 (-563))) $)) (-15 -2457 ($ $)) (-15 -2457 ($ (-563) $)))) +((-1849 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 48) (($ $ "right" $) 50)) (-2071 (((-640 $) $) 27)) (-1469 (((-112) $ $) 32)) (-1729 (((-112) |#2| $) 36)) (-2512 (((-640 |#2|) $) 22)) (-2194 (((-112) $) 16)) (-2309 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-1434 (((-112) $) 45)) (-1693 (((-858) $) 41)) (-4258 (((-640 $) $) 28)) (-1718 (((-112) $ $) 34)) (-3608 (((-767) $) 43))) +(((-118 |#1| |#2|) (-10 -8 (-15 -1693 ((-858) |#1|)) (-15 -1849 (|#1| |#1| "right" |#1|)) (-15 -1849 (|#1| |#1| "left" |#1|)) (-15 -2309 (|#1| |#1| "right")) (-15 -2309 (|#1| |#1| "left")) (-15 -1849 (|#2| |#1| "value" |#2|)) (-15 -1469 ((-112) |#1| |#1|)) (-15 -2512 ((-640 |#2|) |#1|)) (-15 -1434 ((-112) |#1|)) (-15 -2309 (|#2| |#1| "value")) (-15 -2194 ((-112) |#1|)) (-15 -2071 ((-640 |#1|) |#1|)) (-15 -4258 ((-640 |#1|) |#1|)) (-15 -1718 ((-112) |#1| |#1|)) (-15 -1729 ((-112) |#2| |#1|)) (-15 -3608 ((-767) |#1|))) (-119 |#2|) (-1208)) (T -118)) +NIL +(-10 -8 (-15 -1693 ((-858) |#1|)) (-15 -1849 (|#1| |#1| "right" |#1|)) (-15 -1849 (|#1| |#1| "left" |#1|)) (-15 -2309 (|#1| |#1| "right")) (-15 -2309 (|#1| |#1| "left")) (-15 -1849 (|#2| |#1| "value" |#2|)) (-15 -1469 ((-112) |#1| |#1|)) (-15 -2512 ((-640 |#2|) |#1|)) (-15 -1434 ((-112) |#1|)) (-15 -2309 (|#2| |#1| "value")) (-15 -2194 ((-112) |#1|)) (-15 -2071 ((-640 |#1|) |#1|)) (-15 -4258 ((-640 |#1|) |#1|)) (-15 -1718 ((-112) |#1| |#1|)) (-15 -1729 ((-112) |#2| |#1|)) (-15 -3608 ((-767) |#1|))) +((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-2619 ((|#1| $) 48)) (-2759 (((-112) $ (-767)) 8)) (-2936 ((|#1| $ |#1|) 39 (|has| $ (-6 -4408)))) (-2641 (($ $ $) 52 (|has| $ (-6 -4408)))) (-4190 (($ $ $) 54 (|has| $ (-6 -4408)))) (-1849 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4408))) (($ $ "left" $) 55 (|has| $ (-6 -4408))) (($ $ "right" $) 53 (|has| $ (-6 -4408)))) (-2811 (($ $ (-640 $)) 41 (|has| $ (-6 -4408)))) (-4239 (($) 7 T CONST)) (-1701 (($ $) 57)) (-2659 (((-640 |#1|) $) 30 (|has| $ (-6 -4407)))) (-2071 (((-640 $) $) 50)) (-1469 (((-112) $ $) 42 (|has| |#1| (-1093)))) (-2581 (((-112) $ (-767)) 9)) (-2259 (((-640 |#1|) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-4345 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 35)) (-2382 (((-112) $ (-767)) 10)) (-1686 (($ $) 59)) (-2512 (((-640 |#1|) $) 45)) (-2194 (((-112) $) 49)) (-3573 (((-1151) $) 22 (|has| |#1| (-1093)))) (-1694 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3138 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) 14)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-2309 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-4071 (((-563) $ $) 44)) (-1434 (((-112) $) 46)) (-1709 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4407))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1872 (($ $) 13)) (-1693 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-4258 (((-640 $) $) 51)) (-2962 (((-112) $ $) 43 (|has| |#1| (-1093)))) (-4383 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-119 |#1|) (-140) (-1208)) (T -119)) +((-1686 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1208)))) (-2309 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1208)))) (-1701 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1208)))) (-2309 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1208)))) (-1849 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4408)) (-4 *1 (-119 *3)) (-4 *3 (-1208)))) (-4190 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-119 *2)) (-4 *2 (-1208)))) (-1849 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4408)) (-4 *1 (-119 *3)) (-4 *3 (-1208)))) (-2641 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-119 *2)) (-4 *2 (-1208))))) +(-13 (-1006 |t#1|) (-10 -8 (-15 -1686 ($ $)) (-15 -2309 ($ $ "left")) (-15 -1701 ($ $)) (-15 -2309 ($ $ "right")) (IF (|has| $ (-6 -4408)) (PROGN (-15 -1849 ($ $ "left" $)) (-15 -4190 ($ $ $)) (-15 -1849 ($ $ "right" $)) (-15 -2641 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4032 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1006 |#1|) . T) ((-1093) |has| |#1| (-1093)) ((-1208) . T)) +((-1437 (((-112) |#1|) 24)) (-2289 (((-767) (-767)) 23) (((-767)) 22)) (-2324 (((-112) |#1| (-112)) 25) (((-112) |#1|) 26))) +(((-120 |#1|) (-10 -7 (-15 -2324 ((-112) |#1|)) (-15 -2324 ((-112) |#1| (-112))) (-15 -2289 ((-767))) (-15 -2289 ((-767) (-767))) (-15 -1437 ((-112) |#1|))) (-1233 (-563))) (T -120)) +((-1437 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1233 (-563))))) (-2289 (*1 *2 *2) (-12 (-5 *2 (-767)) (-5 *1 (-120 *3)) (-4 *3 (-1233 (-563))))) (-2289 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-120 *3)) (-4 *3 (-1233 (-563))))) (-2324 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1233 (-563))))) (-2324 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1233 (-563)))))) +(-10 -7 (-15 -2324 ((-112) |#1|)) (-15 -2324 ((-112) |#1| (-112))) (-15 -2289 ((-767))) (-15 -2289 ((-767) (-767))) (-15 -1437 ((-112) |#1|))) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2619 ((|#1| $) 15)) (-2335 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-2759 (((-112) $ (-767)) NIL)) (-2936 ((|#1| $ |#1|) NIL (|has| $ (-6 -4408)))) (-2641 (($ $ $) 18 (|has| $ (-6 -4408)))) (-4190 (($ $ $) 20 (|has| $ (-6 -4408)))) (-1849 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4408))) (($ $ "left" $) NIL (|has| $ (-6 -4408))) (($ $ "right" $) NIL (|has| $ (-6 -4408)))) (-2811 (($ $ (-640 $)) NIL (|has| $ (-6 -4408)))) (-4239 (($) NIL T CONST)) (-1701 (($ $) 17)) (-2659 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-2071 (((-640 $) $) NIL)) (-1469 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2219 (($ $ |#1| $) 23)) (-2581 (((-112) $ (-767)) NIL)) (-2259 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-4345 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-1686 (($ $) 19)) (-2512 (((-640 |#1|) $) NIL)) (-2194 (((-112) $) NIL)) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3994 (($ |#1| $) 24)) (-1812 (($ |#1| $) 10)) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3138 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) NIL)) (-3756 (((-112) $) 14)) (-3135 (($) 8)) (-2309 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4071 (((-563) $ $) NIL)) (-1434 (((-112) $) NIL)) (-1709 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1872 (($ $) NIL)) (-1693 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-4258 (((-640 $) $) NIL)) (-2962 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3878 (($ (-640 |#1|)) 12)) (-4383 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4408) (-6 -4407) (-15 -3878 ($ (-640 |#1|))) (-15 -1812 ($ |#1| $)) (-15 -3994 ($ |#1| $)) (-15 -2335 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-846)) (T -121)) +((-3878 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-121 *3)))) (-1812 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-846)))) (-3994 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-846)))) (-2335 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-846))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4408) (-6 -4407) (-15 -3878 ($ (-640 |#1|))) (-15 -1812 ($ |#1| $)) (-15 -3994 ($ |#1| $)) (-15 -2335 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-3380 (($ $) 12)) (-2176 (($ $) 10)) (-1546 (($ $ $) 22)) (-3572 (($ $ $) 20)) (-1534 (($ $ $) 18)) (-1521 (($ $ $) 16))) +(((-122 |#1|) (-10 -8 (-15 -1546 (|#1| |#1| |#1|)) (-15 -3572 (|#1| |#1| |#1|)) (-15 -2176 (|#1| |#1|)) (-15 -3380 (|#1| |#1|)) (-15 -1521 (|#1| |#1| |#1|)) (-15 -1534 (|#1| |#1| |#1|))) (-123)) (T -122)) +NIL +(-10 -8 (-15 -1546 (|#1| |#1| |#1|)) (-15 -3572 (|#1| |#1| |#1|)) (-15 -2176 (|#1| |#1|)) (-15 -3380 (|#1| |#1|)) (-15 -1521 (|#1| |#1| |#1|)) (-15 -1534 (|#1| |#1| |#1|))) +((-1677 (((-112) $ $) 7)) (-3380 (($ $) 103)) (-2212 (($ $ $) 25)) (-4378 (((-1262) $ (-563) (-563)) 66 (|has| $ (-6 -4408)))) (-3523 (((-112) $) 98 (|has| (-112) (-846))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-2770 (($ $) 102 (-12 (|has| (-112) (-846)) (|has| $ (-6 -4408)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4408)))) (-1642 (($ $) 97 (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-2759 (((-112) $ (-767)) 37)) (-1849 (((-112) $ (-1224 (-563)) (-112)) 88 (|has| $ (-6 -4408))) (((-112) $ (-563) (-112)) 54 (|has| $ (-6 -4408)))) (-2256 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4407)))) (-4239 (($) 38 T CONST)) (-2907 (($ $) 100 (|has| $ (-6 -4408)))) (-4382 (($ $) 90)) (-3813 (($ $) 68 (-12 (|has| (-112) (-1093)) (|has| $ (-6 -4407))))) (-1459 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4407))) (($ (-112) $) 69 (-12 (|has| (-112) (-1093)) (|has| $ (-6 -4407))))) (-2444 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1093)) (|has| $ (-6 -4407))))) (-4355 (((-112) $ (-563) (-112)) 53 (|has| $ (-6 -4408)))) (-4293 (((-112) $ (-563)) 55)) (-4368 (((-563) (-112) $ (-563)) 95 (|has| (-112) (-1093))) (((-563) (-112) $) 94 (|has| (-112) (-1093))) (((-563) (-1 (-112) (-112)) $) 93)) (-2659 (((-640 (-112)) $) 45 (|has| $ (-6 -4407)))) (-2202 (($ $ $) 26)) (-2176 (($ $) 30)) (-1546 (($ $ $) 28)) (-1566 (($ (-767) (-112)) 77)) (-3572 (($ $ $) 29)) (-2581 (((-112) $ (-767)) 36)) (-2411 (((-563) $) 63 (|has| (-563) (-846)))) (-3084 (($ $ $) 13)) (-3164 (($ $ $) 96 (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-2259 (((-640 (-112)) $) 46 (|has| $ (-6 -4407)))) (-1729 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1093)) (|has| $ (-6 -4407))))) (-3860 (((-563) $) 62 (|has| (-563) (-846)))) (-1777 (($ $ $) 14)) (-4345 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4408)))) (-2240 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-2382 (((-112) $ (-767)) 35)) (-3573 (((-1151) $) 9)) (-3396 (($ $ $ (-563)) 87) (($ (-112) $ (-563)) 86)) (-4318 (((-640 (-563)) $) 60)) (-3192 (((-112) (-563) $) 59)) (-1694 (((-1113) $) 10)) (-3781 (((-112) $) 64 (|has| (-563) (-846)))) (-4203 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-2358 (($ $ (-112)) 65 (|has| $ (-6 -4408)))) (-3138 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-112)) (-640 (-112))) 52 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093)))) (($ $ (-294 (-112))) 50 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093)))) (($ $ (-640 (-294 (-112)))) 49 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093))))) (-2026 (((-112) $ $) 31)) (-2105 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4407)) (|has| (-112) (-1093))))) (-2836 (((-640 (-112)) $) 58)) (-3756 (((-112) $) 34)) (-3135 (($) 33)) (-2309 (($ $ (-1224 (-563))) 83) (((-112) $ (-563)) 57) (((-112) $ (-563) (-112)) 56)) (-2963 (($ $ (-1224 (-563))) 85) (($ $ (-563)) 84)) (-1709 (((-767) (-112) $) 47 (-12 (|has| (-112) (-1093)) (|has| $ (-6 -4407)))) (((-767) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4407)))) (-3076 (($ $ $ (-563)) 99 (|has| $ (-6 -4408)))) (-1872 (($ $) 32)) (-2220 (((-536) $) 67 (|has| (-112) (-611 (-536))))) (-1707 (($ (-640 (-112))) 76)) (-2853 (($ (-640 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-1693 (((-858) $) 11)) (-4383 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4407)))) (-2190 (($ $ $) 27)) (-1534 (($ $ $) 105)) (-1778 (((-112) $ $) 16)) (-1756 (((-112) $ $) 17)) (-1718 (((-112) $ $) 6)) (-1768 (((-112) $ $) 15)) (-1744 (((-112) $ $) 18)) (-1521 (($ $ $) 104)) (-3608 (((-767) $) 39 (|has| $ (-6 -4407))))) +(((-123) (-140)) (T -123)) +((-2176 (*1 *1 *1) (-4 *1 (-123))) (-3572 (*1 *1 *1 *1) (-4 *1 (-123))) (-1546 (*1 *1 *1 *1) (-4 *1 (-123))) (-2190 (*1 *1 *1 *1) (-4 *1 (-123))) (-2202 (*1 *1 *1 *1) (-4 *1 (-123))) (-2212 (*1 *1 *1 *1) (-4 *1 (-123)))) +(-13 (-846) (-656) (-19 (-112)) (-10 -8 (-15 -2176 ($ $)) (-15 -3572 ($ $ $)) (-15 -1546 ($ $ $)) (-15 -2190 ($ $ $)) (-15 -2202 ($ $ $)) (-15 -2212 ($ $ $)))) +(((-34) . T) ((-102) . T) ((-610 (-858)) . T) ((-151 #0=(-112)) . T) ((-611 (-536)) |has| (-112) (-611 (-536))) ((-286 #1=(-563) #0#) . T) ((-288 #1# #0#) . T) ((-309 #0#) -12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093))) ((-373 #0#) . T) ((-489 #0#) . T) ((-601 #1# #0#) . T) ((-514 #0# #0#) -12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093))) ((-646 #0#) . T) ((-656) . T) ((-19 #0#) . T) ((-846) . T) ((-1093) . T) ((-1208) . T)) +((-4345 (($ (-1 |#2| |#2|) $) 22)) (-1872 (($ $) 16)) (-3608 (((-767) $) 24))) +(((-124 |#1| |#2|) (-10 -8 (-15 -4345 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3608 ((-767) |#1|)) (-15 -1872 (|#1| |#1|))) (-125 |#2|) (-1093)) (T -124)) +NIL +(-10 -8 (-15 -4345 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3608 ((-767) |#1|)) (-15 -1872 (|#1| |#1|))) +((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-2619 ((|#1| $) 48)) (-2759 (((-112) $ (-767)) 8)) (-2936 ((|#1| $ |#1|) 39 (|has| $ (-6 -4408)))) (-2641 (($ $ $) 52 (|has| $ (-6 -4408)))) (-4190 (($ $ $) 54 (|has| $ (-6 -4408)))) (-1849 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4408))) (($ $ "left" $) 55 (|has| $ (-6 -4408))) (($ $ "right" $) 53 (|has| $ (-6 -4408)))) (-2811 (($ $ (-640 $)) 41 (|has| $ (-6 -4408)))) (-4239 (($) 7 T CONST)) (-1701 (($ $) 57)) (-2659 (((-640 |#1|) $) 30 (|has| $ (-6 -4407)))) (-2071 (((-640 $) $) 50)) (-1469 (((-112) $ $) 42 (|has| |#1| (-1093)))) (-2219 (($ $ |#1| $) 60)) (-2581 (((-112) $ (-767)) 9)) (-2259 (((-640 |#1|) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-4345 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 35)) (-2382 (((-112) $ (-767)) 10)) (-1686 (($ $) 59)) (-2512 (((-640 |#1|) $) 45)) (-2194 (((-112) $) 49)) (-3573 (((-1151) $) 22 (|has| |#1| (-1093)))) (-1694 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3138 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) 14)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-2309 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-4071 (((-563) $ $) 44)) (-1434 (((-112) $) 46)) (-1709 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4407))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1872 (($ $) 13)) (-1693 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-4258 (((-640 $) $) 51)) (-2962 (((-112) $ $) 43 (|has| |#1| (-1093)))) (-4383 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-125 |#1|) (-140) (-1093)) (T -125)) +((-2219 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1093))))) +(-13 (-119 |t#1|) (-10 -8 (-6 -4408) (-6 -4407) (-15 -2219 ($ $ |t#1| $)))) +(((-34) . T) ((-102) |has| |#1| (-1093)) ((-119 |#1|) . T) ((-610 (-858)) -4032 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1006 |#1|) . T) ((-1093) |has| |#1| (-1093)) ((-1208) . T)) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2619 ((|#1| $) 15)) (-2759 (((-112) $ (-767)) NIL)) (-2936 ((|#1| $ |#1|) 19 (|has| $ (-6 -4408)))) (-2641 (($ $ $) 20 (|has| $ (-6 -4408)))) (-4190 (($ $ $) 18 (|has| $ (-6 -4408)))) (-1849 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4408))) (($ $ "left" $) NIL (|has| $ (-6 -4408))) (($ $ "right" $) NIL (|has| $ (-6 -4408)))) (-2811 (($ $ (-640 $)) NIL (|has| $ (-6 -4408)))) (-4239 (($) NIL T CONST)) (-1701 (($ $) 21)) (-2659 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-2071 (((-640 $) $) NIL)) (-1469 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2219 (($ $ |#1| $) NIL)) (-2581 (((-112) $ (-767)) NIL)) (-2259 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-4345 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-1686 (($ $) NIL)) (-2512 (((-640 |#1|) $) NIL)) (-2194 (((-112) $) NIL)) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1812 (($ |#1| $) 10)) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3138 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) NIL)) (-3756 (((-112) $) 14)) (-3135 (($) 8)) (-2309 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4071 (((-563) $ $) NIL)) (-1434 (((-112) $) NIL)) (-1709 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1872 (($ $) 17)) (-1693 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-4258 (((-640 $) $) NIL)) (-2962 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1508 (($ (-640 |#1|)) 12)) (-4383 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4408) (-15 -1508 ($ (-640 |#1|))) (-15 -1812 ($ |#1| $)))) (-846)) (T -126)) +((-1508 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-126 *3)))) (-1812 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-846))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4408) (-15 -1508 ($ (-640 |#1|))) (-15 -1812 ($ |#1| $)))) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2619 ((|#1| $) 24)) (-2759 (((-112) $ (-767)) NIL)) (-2936 ((|#1| $ |#1|) 26 (|has| $ (-6 -4408)))) (-2641 (($ $ $) 30 (|has| $ (-6 -4408)))) (-4190 (($ $ $) 28 (|has| $ (-6 -4408)))) (-1849 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4408))) (($ $ "left" $) NIL (|has| $ (-6 -4408))) (($ $ "right" $) NIL (|has| $ (-6 -4408)))) (-2811 (($ $ (-640 $)) NIL (|has| $ (-6 -4408)))) (-4239 (($) NIL T CONST)) (-1701 (($ $) 20)) (-2659 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-2071 (((-640 $) $) NIL)) (-1469 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2219 (($ $ |#1| $) 15)) (-2581 (((-112) $ (-767)) NIL)) (-2259 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-4345 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-1686 (($ $) 19)) (-2512 (((-640 |#1|) $) NIL)) (-2194 (((-112) $) 21)) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3138 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) NIL)) (-3756 (((-112) $) 18)) (-3135 (($) 11)) (-2309 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4071 (((-563) $ $) NIL)) (-1434 (((-112) $) NIL)) (-1709 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1872 (($ $) NIL)) (-1693 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-4258 (((-640 $) $) NIL)) (-2962 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-4066 (($ |#1|) 17) (($ $ |#1| $) 16)) (-4383 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 10 (|has| |#1| (-1093)))) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -4066 ($ |#1|)) (-15 -4066 ($ $ |#1| $)))) (-1093)) (T -127)) +((-4066 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1093)))) (-4066 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1093))))) +(-13 (-125 |#1|) (-10 -8 (-15 -4066 ($ |#1|)) (-15 -4066 ($ $ |#1| $)))) +((-1677 (((-112) $ $) NIL (|has| (-129) (-1093)))) (-4378 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4408)))) (-3523 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-846)))) (-2770 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4408))) (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-129) (-846))))) (-1642 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-846)))) (-2759 (((-112) $ (-767)) NIL)) (-1849 (((-129) $ (-563) (-129)) 17 (|has| $ (-6 -4408))) (((-129) $ (-1224 (-563)) (-129)) NIL (|has| $ (-6 -4408)))) (-1466 (((-767) $ (-767)) 7)) (-2256 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4407)))) (-4239 (($) NIL T CONST)) (-2907 (($ $) NIL (|has| $ (-6 -4408)))) (-4382 (($ $) NIL)) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-129) (-1093))))) (-1459 (($ (-129) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-129) (-1093)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4407)))) (-2444 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4407)) (|has| (-129) (-1093)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4407))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4407)))) (-4355 (((-129) $ (-563) (-129)) 16 (|has| $ (-6 -4408)))) (-4293 (((-129) $ (-563)) 13)) (-4368 (((-563) (-1 (-112) (-129)) $) NIL) (((-563) (-129) $) NIL (|has| (-129) (-1093))) (((-563) (-129) $ (-563)) NIL (|has| (-129) (-1093)))) (-2659 (((-640 (-129)) $) NIL (|has| $ (-6 -4407)))) (-1566 (($ (-767) (-129)) 11)) (-2581 (((-112) $ (-767)) NIL)) (-2411 (((-563) $) 18 (|has| (-563) (-846)))) (-3084 (($ $ $) NIL (|has| (-129) (-846)))) (-3164 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-846)))) (-2259 (((-640 (-129)) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-129) (-1093))))) (-3860 (((-563) $) 19 (|has| (-563) (-846)))) (-1777 (($ $ $) NIL (|has| (-129) (-846)))) (-4345 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL (|has| (-129) (-1093)))) (-3396 (($ (-129) $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-4318 (((-640 (-563)) $) NIL)) (-3192 (((-112) (-563) $) NIL)) (-1694 (((-1113) $) NIL (|has| (-129) (-1093)))) (-3781 (((-129) $) NIL (|has| (-563) (-846)))) (-4203 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-2358 (($ $ (-129)) NIL (|has| $ (-6 -4408)))) (-3138 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 (-129)))) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1093)))) (($ $ (-294 (-129))) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1093)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1093)))) (($ $ (-640 (-129)) (-640 (-129))) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1093))))) (-2026 (((-112) $ $) NIL)) (-2105 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-129) (-1093))))) (-2836 (((-640 (-129)) $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) 9)) (-2309 (((-129) $ (-563) (-129)) NIL) (((-129) $ (-563)) 15) (($ $ (-1224 (-563))) NIL)) (-2963 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-1709 (((-767) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4407))) (((-767) (-129) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-129) (-1093))))) (-3076 (($ $ $ (-563)) NIL (|has| $ (-6 -4408)))) (-1872 (($ $) NIL)) (-2220 (((-536) $) NIL (|has| (-129) (-611 (-536))))) (-1707 (($ (-640 (-129))) 29)) (-2853 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) 30) (($ (-640 $)) NIL)) (-1693 (((-1151) $) 27) (((-858) $) NIL (|has| (-129) (-610 (-858))))) (-2371 (((-767) $) 14)) (-2181 (($ (-767)) 8)) (-4383 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4407)))) (-1778 (((-112) $ $) NIL (|has| (-129) (-846)))) (-1756 (((-112) $ $) NIL (|has| (-129) (-846)))) (-1718 (((-112) $ $) 22 (|has| (-129) (-1093)))) (-1768 (((-112) $ $) NIL (|has| (-129) (-846)))) (-1744 (((-112) $ $) NIL (|has| (-129) (-846)))) (-3608 (((-767) $) 20))) +(((-128) (-13 (-19 (-129)) (-610 (-1151)) (-10 -8 (-15 -2181 ($ (-767))) (-15 -3608 ((-767) $)) (-15 -2371 ((-767) $)) (-15 -1466 ((-767) $ (-767)))))) (T -128)) +((-2181 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-128)))) (-3608 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-128)))) (-2371 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-128)))) (-1466 (*1 *2 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-128))))) +(-13 (-19 (-129)) (-610 (-1151)) (-10 -8 (-15 -2181 ($ (-767))) (-15 -3608 ((-767) $)) (-15 -2371 ((-767) $)) (-15 -1466 ((-767) $ (-767))))) +((-1677 (((-112) $ $) NIL)) (-3749 (((-767)) NIL)) (-4239 (($) NIL)) (-1691 (($) NIL)) (-3084 (($ $ $) NIL) (($) 15 T CONST)) (-1777 (($ $ $) NIL) (($) 16 T CONST)) (-1476 (((-917) $) NIL)) (-3573 (((-1151) $) NIL)) (-2555 (($ (-917)) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL) (($ (-144)) 9) (((-144) $) 11)) (-2947 (($ (-767)) 6)) (-3119 (($ $ $) 18)) (-3109 (($ $ $) 17)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 13)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) 14))) +(((-129) (-13 (-840) (-490 (-144)) (-10 -8 (-15 -2947 ($ (-767))) (-15 -3109 ($ $ $)) (-15 -3119 ($ $ $)) (-15 -4239 ($))))) (T -129)) +((-2947 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-129)))) (-3109 (*1 *1 *1 *1) (-5 *1 (-129))) (-3119 (*1 *1 *1 *1) (-5 *1 (-129))) (-4239 (*1 *1) (-5 *1 (-129)))) +(-13 (-840) (-490 (-144)) (-10 -8 (-15 -2947 ($ (-767))) (-15 -3109 ($ $ $)) (-15 -3119 ($ $ $)) (-15 -4239 ($)))) ((|NonNegativeInteger|) (< |#1| 256)) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11)) (-2285 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1836 (($ $ $) 14)) (* (($ (-916) $) 13) (($ (-766) $) 15))) -(((-130) (-139)) (T -130)) -((-2781 (*1 *1 *1 *1) (|partial| -4 *1 (-130)))) -(-13 (-23) (-10 -8 (-15 -2781 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) -((-4041 (((-112) $ $) 7)) (-2389 (((-1261) $ (-766)) 19)) (-4265 (((-766) $) 20)) (-1551 (($ $ $) 13)) (-2993 (($ $ $) 14)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11)) (-1798 (((-112) $ $) 16)) (-1771 (((-112) $ $) 17)) (-1733 (((-112) $ $) 6)) (-1785 (((-112) $ $) 15)) (-1761 (((-112) $ $) 18))) -(((-131) (-139)) (T -131)) -((-4265 (*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-766)))) (-2389 (*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-766)) (-5 *2 (-1261))))) -(-13 (-845) (-10 -8 (-15 -4265 ((-766) $)) (-15 -2389 ((-1261) $ (-766))))) -(((-102) . T) ((-609 (-857)) . T) ((-845) . T) ((-1092) . T)) -((-4041 (((-112) $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 18) (($ (-1173)) NIL) (((-1173) $) NIL)) (-3265 (((-639 (-1127)) $) 10)) (-1733 (((-112) $ $) NIL))) -(((-132) (-13 (-1075) (-10 -8 (-15 -3265 ((-639 (-1127)) $))))) (T -132)) -((-3265 (*1 *2 *1) (-12 (-5 *2 (-639 (-1127))) (-5 *1 (-132))))) -(-13 (-1075) (-10 -8 (-15 -3265 ((-639 (-1127)) $)))) -((-4041 (((-112) $ $) 34)) (-4325 (((-112) $) NIL)) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-766) "failed") $) 41)) (-3960 (((-766) $) 39)) (-1694 (((-3 $ "failed") $) NIL)) (-4367 (((-112) $) NIL)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) 27)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-3614 (((-112)) 42)) (-3422 (((-112) (-112)) 44)) (-3973 (((-112) $) 24)) (-3469 (((-112) $) 38)) (-4053 (((-857) $) 22) (($ (-766)) 14)) (-2285 (($) 11 T CONST)) (-2294 (($) 12 T CONST)) (-1438 (($ (-766)) 15)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 25)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) 26)) (-1847 (((-3 $ "failed") $ $) 30)) (-1836 (($ $ $) 28)) (** (($ $ (-766)) NIL) (($ $ (-916)) NIL) (($ $ $) 37)) (* (($ (-766) $) 33) (($ (-916) $) NIL) (($ $ $) 31))) -(((-133) (-13 (-845) (-23) (-721) (-1033 (-766)) (-10 -8 (-6 (-4405 "*")) (-15 -1847 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1438 ($ (-766))) (-15 -3973 ((-112) $)) (-15 -3469 ((-112) $)) (-15 -3614 ((-112))) (-15 -3422 ((-112) (-112)))))) (T -133)) -((-1847 (*1 *1 *1 *1) (|partial| -5 *1 (-133))) (** (*1 *1 *1 *1) (-5 *1 (-133))) (-1438 (*1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-133)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-3469 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-3614 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-3422 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) -(-13 (-845) (-23) (-721) (-1033 (-766)) (-10 -8 (-6 (-4405 "*")) (-15 -1847 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1438 ($ (-766))) (-15 -3973 ((-112) $)) (-15 -3469 ((-112) $)) (-15 -3614 ((-112))) (-15 -3422 ((-112) (-112))))) -((-4162 (((-135 |#1| |#2| |#4|) (-639 |#4|) (-135 |#1| |#2| |#3|)) 14)) (-4152 (((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)) 18))) -(((-134 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4162 ((-135 |#1| |#2| |#4|) (-639 |#4|) (-135 |#1| |#2| |#3|))) (-15 -4152 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) (-562) (-766) (-171) (-171)) (T -134)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-562)) (-14 *6 (-766)) (-4 *7 (-171)) (-4 *8 (-171)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) (-4162 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-562)) (-14 *6 (-766)) (-4 *7 (-171)) (-4 *8 (-171)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8))))) -(-10 -7 (-15 -4162 ((-135 |#1| |#2| |#4|) (-639 |#4|) (-135 |#1| |#2| |#3|))) (-15 -4152 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) -((-4041 (((-112) $ $) NIL)) (-2865 (($ (-639 |#3|)) 40)) (-2309 (($ $) 99) (($ $ (-562) (-562)) 98)) (-3329 (($) 17)) (-4048 (((-3 |#3| "failed") $) 60)) (-3960 ((|#3| $) NIL)) (-4193 (($ $ (-639 (-562))) 100)) (-4148 (((-639 |#3|) $) 36)) (-2172 (((-766) $) 44)) (-3912 (($ $ $) 93)) (-2873 (($) 43)) (-3696 (((-1150) $) NIL)) (-2129 (($) 16)) (-1709 (((-1112) $) NIL)) (-2343 ((|#3| $) 46) ((|#3| $ (-562)) 47) ((|#3| $ (-562) (-562)) 48) ((|#3| $ (-562) (-562) (-562)) 49) ((|#3| $ (-562) (-562) (-562) (-562)) 50) ((|#3| $ (-639 (-562))) 52)) (-2250 (((-766) $) 45)) (-3474 (($ $ (-562) $ (-562)) 94) (($ $ (-562) (-562)) 96)) (-4053 (((-857) $) 67) (($ |#3|) 68) (($ (-239 |#2| |#3|)) 75) (($ (-1134 |#2| |#3|)) 78) (($ (-639 |#3|)) 53) (($ (-639 $)) 58)) (-2285 (($) 69 T CONST)) (-2294 (($) 70 T CONST)) (-1733 (((-112) $ $) 80)) (-1847 (($ $) 86) (($ $ $) 84)) (-1836 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-562)) 89) (($ (-562) $) 88) (($ $ $) 95))) -(((-135 |#1| |#2| |#3|) (-13 (-464 |#3| (-766)) (-469 (-562) (-766)) (-10 -8 (-15 -4053 ($ (-239 |#2| |#3|))) (-15 -4053 ($ (-1134 |#2| |#3|))) (-15 -4053 ($ (-639 |#3|))) (-15 -4053 ($ (-639 $))) (-15 -2172 ((-766) $)) (-15 -2343 (|#3| $)) (-15 -2343 (|#3| $ (-562))) (-15 -2343 (|#3| $ (-562) (-562))) (-15 -2343 (|#3| $ (-562) (-562) (-562))) (-15 -2343 (|#3| $ (-562) (-562) (-562) (-562))) (-15 -2343 (|#3| $ (-639 (-562)))) (-15 -3912 ($ $ $)) (-15 * ($ $ $)) (-15 -3474 ($ $ (-562) $ (-562))) (-15 -3474 ($ $ (-562) (-562))) (-15 -2309 ($ $)) (-15 -2309 ($ $ (-562) (-562))) (-15 -4193 ($ $ (-639 (-562)))) (-15 -2129 ($)) (-15 -2873 ($)) (-15 -4148 ((-639 |#3|) $)) (-15 -2865 ($ (-639 |#3|))) (-15 -3329 ($)))) (-562) (-766) (-171)) (T -135)) -((-3912 (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-562)) (-14 *3 (-766)) (-4 *4 (-171)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-239 *4 *5)) (-14 *4 (-766)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-562)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-1134 *4 *5)) (-14 *4 (-766)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-562)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-639 *5)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-562)) (-14 *4 (-766)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-639 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-562)) (-14 *4 (-766)) (-4 *5 (-171)))) (-2172 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-562)) (-14 *4 *2) (-4 *5 (-171)))) (-2343 (*1 *2 *1) (-12 (-4 *2 (-171)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-562)) (-14 *4 (-766)))) (-2343 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-766)))) (-2343 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-562)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-766)))) (-2343 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-562)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-766)))) (-2343 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-562)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-766)))) (-2343 (*1 *2 *1 *3) (-12 (-5 *3 (-639 (-562))) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 (-562)) (-14 *5 (-766)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-562)) (-14 *3 (-766)) (-4 *4 (-171)))) (-3474 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-766)) (-4 *5 (-171)))) (-3474 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-766)) (-4 *5 (-171)))) (-2309 (*1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-562)) (-14 *3 (-766)) (-4 *4 (-171)))) (-2309 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-766)) (-4 *5 (-171)))) (-4193 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-562)) (-14 *4 (-766)) (-4 *5 (-171)))) (-2129 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-562)) (-14 *3 (-766)) (-4 *4 (-171)))) (-2873 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-562)) (-14 *3 (-766)) (-4 *4 (-171)))) (-4148 (*1 *2 *1) (-12 (-5 *2 (-639 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-562)) (-14 *4 (-766)) (-4 *5 (-171)))) (-2865 (*1 *1 *2) (-12 (-5 *2 (-639 *5)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-562)) (-14 *4 (-766)))) (-3329 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-562)) (-14 *3 (-766)) (-4 *4 (-171))))) -(-13 (-464 |#3| (-766)) (-469 (-562) (-766)) (-10 -8 (-15 -4053 ($ (-239 |#2| |#3|))) (-15 -4053 ($ (-1134 |#2| |#3|))) (-15 -4053 ($ (-639 |#3|))) (-15 -4053 ($ (-639 $))) (-15 -2172 ((-766) $)) (-15 -2343 (|#3| $)) (-15 -2343 (|#3| $ (-562))) (-15 -2343 (|#3| $ (-562) (-562))) (-15 -2343 (|#3| $ (-562) (-562) (-562))) (-15 -2343 (|#3| $ (-562) (-562) (-562) (-562))) (-15 -2343 (|#3| $ (-639 (-562)))) (-15 -3912 ($ $ $)) (-15 * ($ $ $)) (-15 -3474 ($ $ (-562) $ (-562))) (-15 -3474 ($ $ (-562) (-562))) (-15 -2309 ($ $)) (-15 -2309 ($ $ (-562) (-562))) (-15 -4193 ($ $ (-639 (-562)))) (-15 -2129 ($)) (-15 -2873 ($)) (-15 -4148 ((-639 |#3|) $)) (-15 -2865 ($ (-639 |#3|))) (-15 -3329 ($)))) -((-4041 (((-112) $ $) NIL)) (-4330 (((-1127) $) 11)) (-4318 (((-1127) $) 9)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 19) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-136) (-13 (-1075) (-10 -8 (-15 -4318 ((-1127) $)) (-15 -4330 ((-1127) $))))) (T -136)) -((-4318 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-136)))) (-4330 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-136))))) -(-13 (-1075) (-10 -8 (-15 -4318 ((-1127) $)) (-15 -4330 ((-1127) $)))) -((-4041 (((-112) $ $) NIL)) (-3696 (((-1150) $) NIL)) (-2420 (((-1168) $) 10)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 19) (($ (-1173)) NIL) (((-1173) $) NIL)) (-3265 (((-639 (-1127)) $) 12)) (-1733 (((-112) $ $) NIL))) -(((-137) (-13 (-1075) (-10 -8 (-15 -2420 ((-1168) $)) (-15 -3265 ((-639 (-1127)) $))))) (T -137)) -((-2420 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-137)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-639 (-1127))) (-5 *1 (-137))))) -(-13 (-1075) (-10 -8 (-15 -2420 ((-1168) $)) (-15 -3265 ((-639 (-1127)) $)))) -((-4041 (((-112) $ $) NIL)) (-3360 (((-639 (-860)) $) NIL)) (-3253 (((-505) $) NIL)) (-3696 (((-1150) $) NIL)) (-2420 (((-185) $) NIL)) (-1709 (((-1112) $) NIL)) (-2760 (((-639 (-112)) $) NIL)) (-4053 (((-857) $) NIL) (((-186) $) 6)) (-3975 (((-55) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-138) (-13 (-184) (-609 (-186)))) (T -138)) -NIL -(-13 (-184) (-609 (-186))) -((-2417 (((-639 (-182)) $) 13)) (-2738 (((-639 (-182)) $) 14)) (-2789 (((-639 (-833)) $) 10)) (-1875 (((-138) $) 7)) (-4053 (((-857) $) 16))) -(((-139) (-13 (-609 (-857)) (-10 -8 (-15 -1875 ((-138) $)) (-15 -2789 ((-639 (-833)) $)) (-15 -2417 ((-639 (-182)) $)) (-15 -2738 ((-639 (-182)) $))))) (T -139)) -((-1875 (*1 *2 *1) (-12 (-5 *2 (-138)) (-5 *1 (-139)))) (-2789 (*1 *2 *1) (-12 (-5 *2 (-639 (-833))) (-5 *1 (-139)))) (-2417 (*1 *2 *1) (-12 (-5 *2 (-639 (-182))) (-5 *1 (-139)))) (-2738 (*1 *2 *1) (-12 (-5 *2 (-639 (-182))) (-5 *1 (-139))))) -(-13 (-609 (-857)) (-10 -8 (-15 -1875 ((-138) $)) (-15 -2789 ((-639 (-833)) $)) (-15 -2417 ((-639 (-182)) $)) (-15 -2738 ((-639 (-182)) $)))) -((-4041 (((-112) $ $) NIL)) (-2033 (($) 15 T CONST)) (-4076 (($) NIL (|has| (-143) (-367)))) (-2492 (($ $ $) 17) (($ $ (-143)) NIL) (($ (-143) $) NIL)) (-2570 (($ $ $) NIL)) (-3938 (((-112) $ $) NIL)) (-3735 (((-112) $ (-766)) NIL)) (-1382 (((-766)) NIL (|has| (-143) (-367)))) (-1607 (($) NIL) (($ (-639 (-143))) NIL)) (-2968 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4403)))) (-3329 (($) NIL T CONST)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-143) (-1092))))) (-3729 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4403))) (($ (-143) $) 51 (|has| $ (-6 -4403)))) (-1475 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4403))) (($ (-143) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-143) (-1092))))) (-1954 (((-143) (-1 (-143) (-143) (-143)) $) NIL (|has| $ (-6 -4403))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) NIL (|has| $ (-6 -4403))) (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) NIL (-12 (|has| $ (-6 -4403)) (|has| (-143) (-1092))))) (-1447 (($) NIL (|has| (-143) (-367)))) (-1720 (((-639 (-143)) $) 60 (|has| $ (-6 -4403)))) (-3528 (((-112) $ $) NIL)) (-4172 (((-112) $ (-766)) NIL)) (-1551 (((-143) $) NIL (|has| (-143) (-845)))) (-2123 (((-639 (-143)) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) (-143) $) 26 (-12 (|has| $ (-6 -4403)) (|has| (-143) (-1092))))) (-2993 (((-143) $) NIL (|has| (-143) (-845)))) (-1491 (($ (-1 (-143) (-143)) $) 59 (|has| $ (-6 -4404)))) (-4152 (($ (-1 (-143) (-143)) $) 55)) (-3249 (($) 16 T CONST)) (-3549 (((-916) $) NIL (|has| (-143) (-367)))) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL)) (-4169 (($ $ $) 29)) (-2078 (((-143) $) 52)) (-1581 (($ (-143) $) 50)) (-2464 (($ (-916)) NIL (|has| (-143) (-367)))) (-4116 (($) 14 T CONST)) (-1709 (((-1112) $) NIL)) (-1963 (((-3 (-143) "failed") (-1 (-112) (-143)) $) NIL)) (-2038 (((-143) $) 53)) (-3008 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-143)) (-639 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092)))) (($ $ (-143) (-143)) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092)))) (($ $ (-293 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092)))) (($ $ (-639 (-293 (-143)))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092))))) (-1452 (((-112) $ $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) 48)) (-2768 (($) 13 T CONST)) (-3874 (($ $ $) 31) (($ $ (-143)) NIL)) (-1932 (($ (-639 (-143))) NIL) (($) NIL)) (-1723 (((-766) (-143) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-143) (-1092)))) (((-766) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4403)))) (-4220 (($ $) NIL)) (-4208 (((-1150) $) 36) (((-535) $) NIL (|has| (-143) (-610 (-535)))) (((-639 (-143)) $) 34)) (-4064 (($ (-639 (-143))) NIL)) (-2695 (($ $) 32 (|has| (-143) (-367)))) (-4053 (((-857) $) 46)) (-2218 (($ (-1150)) 12) (($ (-639 (-143))) 43)) (-2186 (((-766) $) NIL)) (-1702 (($) 49) (($ (-639 (-143))) NIL)) (-4131 (($ (-639 (-143))) NIL)) (-2879 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4403)))) (-2489 (($) 19 T CONST)) (-3049 (($) 18 T CONST)) (-1733 (((-112) $ $) 22)) (-3492 (((-766) $) 47 (|has| $ (-6 -4403))))) -(((-140) (-13 (-1092) (-610 (-1150)) (-424 (-143)) (-610 (-639 (-143))) (-10 -8 (-15 -2218 ($ (-1150))) (-15 -2218 ($ (-639 (-143)))) (-15 -2768 ($) -1497) (-15 -4116 ($) -1497) (-15 -2033 ($) -1497) (-15 -3249 ($) -1497) (-15 -3049 ($) -1497) (-15 -2489 ($) -1497)))) (T -140)) -((-2218 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-140)))) (-2218 (*1 *1 *2) (-12 (-5 *2 (-639 (-143))) (-5 *1 (-140)))) (-2768 (*1 *1) (-5 *1 (-140))) (-4116 (*1 *1) (-5 *1 (-140))) (-2033 (*1 *1) (-5 *1 (-140))) (-3249 (*1 *1) (-5 *1 (-140))) (-3049 (*1 *1) (-5 *1 (-140))) (-2489 (*1 *1) (-5 *1 (-140)))) -(-13 (-1092) (-610 (-1150)) (-424 (-143)) (-610 (-639 (-143))) (-10 -8 (-15 -2218 ($ (-1150))) (-15 -2218 ($ (-639 (-143)))) (-15 -2768 ($) -1497) (-15 -4116 ($) -1497) (-15 -2033 ($) -1497) (-15 -3249 ($) -1497) (-15 -3049 ($) -1497) (-15 -2489 ($) -1497))) -((-3358 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-2162 ((|#1| |#3|) 9)) (-2414 ((|#3| |#3|) 15))) -(((-141 |#1| |#2| |#3|) (-10 -7 (-15 -2162 (|#1| |#3|)) (-15 -2414 (|#3| |#3|)) (-15 -3358 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-554) (-987 |#1|) (-372 |#2|)) (T -141)) -((-3358 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-987 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-372 *5)))) (-2414 (*1 *2 *2) (-12 (-4 *3 (-554)) (-4 *4 (-987 *3)) (-5 *1 (-141 *3 *4 *2)) (-4 *2 (-372 *4)))) (-2162 (*1 *2 *3) (-12 (-4 *4 (-987 *2)) (-4 *2 (-554)) (-5 *1 (-141 *2 *4 *3)) (-4 *3 (-372 *4))))) -(-10 -7 (-15 -2162 (|#1| |#3|)) (-15 -2414 (|#3| |#3|)) (-15 -3358 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-1940 (($ $ $) 8)) (-3350 (($ $) 7)) (-2068 (($ $ $) 6))) -(((-142) (-139)) (T -142)) -((-1940 (*1 *1 *1 *1) (-4 *1 (-142))) (-3350 (*1 *1 *1) (-4 *1 (-142))) (-2068 (*1 *1 *1 *1) (-4 *1 (-142)))) -(-13 (-10 -8 (-15 -2068 ($ $ $)) (-15 -3350 ($ $)) (-15 -1940 ($ $ $)))) -((-4041 (((-112) $ $) NIL)) (-2517 (((-112) $) 30)) (-2033 (($ $) 43)) (-1957 (($) 17)) (-1382 (((-766)) 10)) (-1447 (($) 16)) (-3436 (($) 18)) (-3980 (((-766) $) 14)) (-1551 (($ $ $) NIL) (($) NIL T CONST)) (-2993 (($ $ $) NIL) (($) NIL T CONST)) (-1945 (((-112) $) 32)) (-3249 (($ $) 44)) (-3549 (((-916) $) 15)) (-3696 (((-1150) $) 38)) (-2464 (($ (-916)) 13)) (-2868 (((-112) $) 28)) (-1709 (((-1112) $) NIL)) (-2762 (($) 19)) (-2940 (((-112) $) 26)) (-4053 (((-857) $) 21)) (-4184 (($ (-766)) 11) (($ (-1150)) 42)) (-2472 (((-112) $) 36)) (-4056 (((-112) $) 34)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 7)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) 8))) -(((-143) (-13 (-839) (-10 -8 (-15 -3980 ((-766) $)) (-15 -4184 ($ (-766))) (-15 -4184 ($ (-1150))) (-15 -1957 ($)) (-15 -3436 ($)) (-15 -2762 ($)) (-15 -2033 ($ $)) (-15 -3249 ($ $)) (-15 -2940 ((-112) $)) (-15 -2868 ((-112) $)) (-15 -4056 ((-112) $)) (-15 -2517 ((-112) $)) (-15 -1945 ((-112) $)) (-15 -2472 ((-112) $))))) (T -143)) -((-3980 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-143)))) (-4184 (*1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-143)))) (-4184 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-143)))) (-1957 (*1 *1) (-5 *1 (-143))) (-3436 (*1 *1) (-5 *1 (-143))) (-2762 (*1 *1) (-5 *1 (-143))) (-2033 (*1 *1 *1) (-5 *1 (-143))) (-3249 (*1 *1 *1) (-5 *1 (-143))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-2868 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-4056 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-2517 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-1945 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143)))) (-2472 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143))))) -(-13 (-839) (-10 -8 (-15 -3980 ((-766) $)) (-15 -4184 ($ (-766))) (-15 -4184 ($ (-1150))) (-15 -1957 ($)) (-15 -3436 ($)) (-15 -2762 ($)) (-15 -2033 ($ $)) (-15 -3249 ($ $)) (-15 -2940 ((-112) $)) (-15 -2868 ((-112) $)) (-15 -4056 ((-112) $)) (-15 -2517 ((-112) $)) (-15 -1945 ((-112) $)) (-15 -2472 ((-112) $)))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-1694 (((-3 $ "failed") $) 33)) (-4367 (((-112) $) 31)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11) (($ (-562)) 29)) (-2059 (((-3 $ "failed") $) 35)) (-1568 (((-766)) 28)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) -(((-144) (-139)) (T -144)) -((-2059 (*1 *1 *1) (|partial| -4 *1 (-144)))) -(-13 (-1044) (-10 -8 (-15 -2059 ((-3 $ "failed") $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-612 (-562)) . T) ((-609 (-857)) . T) ((-642 $) . T) ((-721) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) -((-3683 ((|#1| (-683 |#1|) |#1|) 19))) -(((-145 |#1|) (-10 -7 (-15 -3683 (|#1| (-683 |#1|) |#1|))) (-171)) (T -145)) -((-3683 (*1 *2 *3 *2) (-12 (-5 *3 (-683 *2)) (-4 *2 (-171)) (-5 *1 (-145 *2))))) -(-10 -7 (-15 -3683 (|#1| (-683 |#1|) |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-1694 (((-3 $ "failed") $) 33)) (-4367 (((-112) $) 31)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11) (($ (-562)) 29)) (-1568 (((-766)) 28)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) -(((-146) (-139)) (T -146)) -NIL -(-13 (-1044)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-612 (-562)) . T) ((-609 (-857)) . T) ((-642 $) . T) ((-721) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) -((-2356 (((-2 (|:| -1300 (-766)) (|:| -4221 (-406 |#2|)) (|:| |radicand| |#2|)) (-406 |#2|) (-766)) 69)) (-3104 (((-3 (-2 (|:| |radicand| (-406 |#2|)) (|:| |deg| (-766))) "failed") |#3|) 51)) (-1783 (((-2 (|:| -4221 (-406 |#2|)) (|:| |poly| |#3|)) |#3|) 36)) (-3228 ((|#1| |#3| |#3|) 39)) (-1433 ((|#3| |#3| (-406 |#2|) (-406 |#2|)) 19)) (-1801 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| |deg| (-766))) |#3| |#3|) 48))) -(((-147 |#1| |#2| |#3|) (-10 -7 (-15 -1783 ((-2 (|:| -4221 (-406 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3104 ((-3 (-2 (|:| |radicand| (-406 |#2|)) (|:| |deg| (-766))) "failed") |#3|)) (-15 -2356 ((-2 (|:| -1300 (-766)) (|:| -4221 (-406 |#2|)) (|:| |radicand| |#2|)) (-406 |#2|) (-766))) (-15 -3228 (|#1| |#3| |#3|)) (-15 -1433 (|#3| |#3| (-406 |#2|) (-406 |#2|))) (-15 -1801 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| |deg| (-766))) |#3| |#3|))) (-1211) (-1232 |#1|) (-1232 (-406 |#2|))) (T -147)) -((-1801 (*1 *2 *3 *3) (-12 (-4 *4 (-1211)) (-4 *5 (-1232 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-406 *5)) (|:| |c2| (-406 *5)) (|:| |deg| (-766)))) (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1232 (-406 *5))))) (-1433 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-406 *5)) (-4 *4 (-1211)) (-4 *5 (-1232 *4)) (-5 *1 (-147 *4 *5 *2)) (-4 *2 (-1232 *3)))) (-3228 (*1 *2 *3 *3) (-12 (-4 *4 (-1232 *2)) (-4 *2 (-1211)) (-5 *1 (-147 *2 *4 *3)) (-4 *3 (-1232 (-406 *4))))) (-2356 (*1 *2 *3 *4) (-12 (-5 *3 (-406 *6)) (-4 *5 (-1211)) (-4 *6 (-1232 *5)) (-5 *2 (-2 (|:| -1300 (-766)) (|:| -4221 *3) (|:| |radicand| *6))) (-5 *1 (-147 *5 *6 *7)) (-5 *4 (-766)) (-4 *7 (-1232 *3)))) (-3104 (*1 *2 *3) (|partial| -12 (-4 *4 (-1211)) (-4 *5 (-1232 *4)) (-5 *2 (-2 (|:| |radicand| (-406 *5)) (|:| |deg| (-766)))) (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1232 (-406 *5))))) (-1783 (*1 *2 *3) (-12 (-4 *4 (-1211)) (-4 *5 (-1232 *4)) (-5 *2 (-2 (|:| -4221 (-406 *5)) (|:| |poly| *3))) (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1232 (-406 *5)))))) -(-10 -7 (-15 -1783 ((-2 (|:| -4221 (-406 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3104 ((-3 (-2 (|:| |radicand| (-406 |#2|)) (|:| |deg| (-766))) "failed") |#3|)) (-15 -2356 ((-2 (|:| -1300 (-766)) (|:| -4221 (-406 |#2|)) (|:| |radicand| |#2|)) (-406 |#2|) (-766))) (-15 -3228 (|#1| |#3| |#3|)) (-15 -1433 (|#3| |#3| (-406 |#2|) (-406 |#2|))) (-15 -1801 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| |deg| (-766))) |#3| |#3|))) -((-2654 (((-3 (-639 (-1164 |#2|)) "failed") (-639 (-1164 |#2|)) (-1164 |#2|)) 31))) -(((-148 |#1| |#2|) (-10 -7 (-15 -2654 ((-3 (-639 (-1164 |#2|)) "failed") (-639 (-1164 |#2|)) (-1164 |#2|)))) (-544) (-165 |#1|)) (T -148)) -((-2654 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-639 (-1164 *5))) (-5 *3 (-1164 *5)) (-4 *5 (-165 *4)) (-4 *4 (-544)) (-5 *1 (-148 *4 *5))))) -(-10 -7 (-15 -2654 ((-3 (-639 (-1164 |#2|)) "failed") (-639 (-1164 |#2|)) (-1164 |#2|)))) -((-3556 (($ (-1 (-112) |#2|) $) 29)) (-1459 (($ $) 36)) (-1475 (($ (-1 (-112) |#2|) $) 27) (($ |#2| $) 32)) (-1954 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-1963 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 19)) (-3008 (((-112) (-1 (-112) |#2|) $) 16)) (-1723 (((-766) (-1 (-112) |#2|) $) 14) (((-766) |#2| $) NIL)) (-2879 (((-112) (-1 (-112) |#2|) $) 15)) (-3492 (((-766) $) 11))) -(((-149 |#1| |#2|) (-10 -8 (-15 -1459 (|#1| |#1|)) (-15 -1475 (|#1| |#2| |#1|)) (-15 -1954 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3556 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1475 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1954 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1954 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1963 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1723 ((-766) |#2| |#1|)) (-15 -1723 ((-766) (-1 (-112) |#2|) |#1|)) (-15 -3008 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2879 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3492 ((-766) |#1|))) (-150 |#2|) (-1207)) (T -149)) -NIL -(-10 -8 (-15 -1459 (|#1| |#1|)) (-15 -1475 (|#1| |#2| |#1|)) (-15 -1954 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3556 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1475 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1954 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1954 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1963 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1723 ((-766) |#2| |#1|)) (-15 -1723 ((-766) (-1 (-112) |#2|) |#1|)) (-15 -3008 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2879 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3492 ((-766) |#1|))) -((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-3735 (((-112) $ (-766)) 8)) (-3556 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4403)))) (-3329 (($) 7 T CONST)) (-1459 (($ $) 41 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1475 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4403))) (($ |#1| $) 42 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1954 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4403)))) (-4172 (((-112) $ (-766)) 9)) (-2123 (((-639 |#1|) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1491 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-4147 (((-112) $ (-766)) 10)) (-3696 (((-1150) $) 22 (|has| |#1| (-1092)))) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-1963 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-3008 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) 14)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4403))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-4220 (($ $) 13)) (-4208 (((-535) $) 40 (|has| |#1| (-610 (-535))))) (-4064 (($ (-639 |#1|)) 49)) (-4053 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-2879 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-150 |#1|) (-139) (-1207)) (T -150)) -((-4064 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-4 *1 (-150 *3)))) (-1963 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-150 *2)) (-4 *2 (-1207)))) (-1954 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4403)) (-4 *1 (-150 *2)) (-4 *2 (-1207)))) (-1954 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4403)) (-4 *1 (-150 *2)) (-4 *2 (-1207)))) (-1475 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4403)) (-4 *1 (-150 *3)) (-4 *3 (-1207)))) (-3556 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4403)) (-4 *1 (-150 *3)) (-4 *3 (-1207)))) (-1954 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1092)) (|has| *1 (-6 -4403)) (-4 *1 (-150 *2)) (-4 *2 (-1207)))) (-1475 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4403)) (-4 *1 (-150 *2)) (-4 *2 (-1207)) (-4 *2 (-1092)))) (-1459 (*1 *1 *1) (-12 (|has| *1 (-6 -4403)) (-4 *1 (-150 *2)) (-4 *2 (-1207)) (-4 *2 (-1092))))) -(-13 (-488 |t#1|) (-10 -8 (-15 -4064 ($ (-639 |t#1|))) (-15 -1963 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4403)) (PROGN (-15 -1954 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -1954 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1475 ($ (-1 (-112) |t#1|) $)) (-15 -3556 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1092)) (PROGN (-15 -1954 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -1475 ($ |t#1| $)) (-15 -1459 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-610 (-535))) (-6 (-610 (-535))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1092) |has| |#1| (-1092)) ((-1207) . T)) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3329 (($) NIL T CONST)) (-1694 (((-3 $ "failed") $) 85)) (-4367 (((-112) $) NIL)) (-1377 (($ |#2| (-639 (-916))) 55)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-3591 (($ (-916)) 47)) (-4340 (((-133)) 23)) (-4053 (((-857) $) 68) (($ (-562)) 45) (($ |#2|) 46)) (-2266 ((|#2| $ (-639 (-916))) 58)) (-1568 (((-766)) 20)) (-2285 (($) 40 T CONST)) (-2294 (($) 43 T CONST)) (-1733 (((-112) $ $) 26)) (-1859 (($ $ |#2|) NIL)) (-1847 (($ $) 34) (($ $ $) 32)) (-1836 (($ $ $) 30)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL))) -(((-151 |#1| |#2| |#3|) (-13 (-1044) (-38 |#2|) (-1263 |#2|) (-10 -8 (-15 -3591 ($ (-916))) (-15 -1377 ($ |#2| (-639 (-916)))) (-15 -2266 (|#2| $ (-639 (-916)))) (-15 -1694 ((-3 $ "failed") $)))) (-916) (-362) (-988 |#1| |#2|)) (T -151)) -((-1694 (*1 *1 *1) (|partial| -12 (-5 *1 (-151 *2 *3 *4)) (-14 *2 (-916)) (-4 *3 (-362)) (-14 *4 (-988 *2 *3)))) (-3591 (*1 *1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-151 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-362)) (-14 *5 (-988 *3 *4)))) (-1377 (*1 *1 *2 *3) (-12 (-5 *3 (-639 (-916))) (-5 *1 (-151 *4 *2 *5)) (-14 *4 (-916)) (-4 *2 (-362)) (-14 *5 (-988 *4 *2)))) (-2266 (*1 *2 *1 *3) (-12 (-5 *3 (-639 (-916))) (-4 *2 (-362)) (-5 *1 (-151 *4 *2 *5)) (-14 *4 (-916)) (-14 *5 (-988 *4 *2))))) -(-13 (-1044) (-38 |#2|) (-1263 |#2|) (-10 -8 (-15 -3591 ($ (-916))) (-15 -1377 ($ |#2| (-639 (-916)))) (-15 -2266 (|#2| $ (-639 (-916)))) (-15 -1694 ((-3 $ "failed") $)))) -((-1404 (((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-639 (-639 (-938 (-224)))) (-224) (-224) (-224) (-224)) 37)) (-2869 (((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-922) (-406 (-562)) (-406 (-562))) 64) (((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-922)) 65)) (-2657 (((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-639 (-639 (-938 (-224))))) 68) (((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-639 (-938 (-224)))) 67) (((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-922) (-406 (-562)) (-406 (-562))) 59) (((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-922)) 60))) -(((-152) (-10 -7 (-15 -2657 ((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-922))) (-15 -2657 ((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-922) (-406 (-562)) (-406 (-562)))) (-15 -2869 ((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-922))) (-15 -2869 ((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-922) (-406 (-562)) (-406 (-562)))) (-15 -1404 ((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-639 (-639 (-938 (-224)))) (-224) (-224) (-224) (-224))) (-15 -2657 ((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-639 (-938 (-224))))) (-15 -2657 ((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-639 (-639 (-938 (-224)))))))) (T -152)) -((-2657 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224))))) (-5 *1 (-152)) (-5 *3 (-639 (-639 (-938 (-224))))))) (-2657 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224))))) (-5 *1 (-152)) (-5 *3 (-639 (-938 (-224)))))) (-1404 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-224)) (-5 *2 (-2 (|:| |brans| (-639 (-639 (-938 *4)))) (|:| |xValues| (-1086 *4)) (|:| |yValues| (-1086 *4)))) (-5 *1 (-152)) (-5 *3 (-639 (-639 (-938 *4)))))) (-2869 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-922)) (-5 *4 (-406 (-562))) (-5 *2 (-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224))))) (-5 *1 (-152)))) (-2869 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224))))) (-5 *1 (-152)))) (-2657 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-922)) (-5 *4 (-406 (-562))) (-5 *2 (-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224))))) (-5 *1 (-152)))) (-2657 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224))))) (-5 *1 (-152))))) -(-10 -7 (-15 -2657 ((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-922))) (-15 -2657 ((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-922) (-406 (-562)) (-406 (-562)))) (-15 -2869 ((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-922))) (-15 -2869 ((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-922) (-406 (-562)) (-406 (-562)))) (-15 -1404 ((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-639 (-639 (-938 (-224)))) (-224) (-224) (-224) (-224))) (-15 -2657 ((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-639 (-938 (-224))))) (-15 -2657 ((-2 (|:| |brans| (-639 (-639 (-938 (-224))))) (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224)))) (-639 (-639 (-938 (-224))))))) -((-4041 (((-112) $ $) NIL)) (-3696 (((-1150) $) NIL)) (-2453 (((-639 (-1127)) $) 15)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 24) (($ (-1173)) NIL) (((-1173) $) NIL)) (-3265 (((-1127) $) 9)) (-1733 (((-112) $ $) NIL))) -(((-153) (-13 (-1075) (-10 -8 (-15 -2453 ((-639 (-1127)) $)) (-15 -3265 ((-1127) $))))) (T -153)) -((-2453 (*1 *2 *1) (-12 (-5 *2 (-639 (-1127))) (-5 *1 (-153)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-153))))) -(-13 (-1075) (-10 -8 (-15 -2453 ((-639 (-1127)) $)) (-15 -3265 ((-1127) $)))) -((-1318 (((-639 (-168 |#2|)) |#1| |#2|) 45))) -(((-154 |#1| |#2|) (-10 -7 (-15 -1318 ((-639 (-168 |#2|)) |#1| |#2|))) (-1232 (-168 (-562))) (-13 (-362) (-843))) (T -154)) -((-1318 (*1 *2 *3 *4) (-12 (-5 *2 (-639 (-168 *4))) (-5 *1 (-154 *3 *4)) (-4 *3 (-1232 (-168 (-562)))) (-4 *4 (-13 (-362) (-843)))))) -(-10 -7 (-15 -1318 ((-639 (-168 |#2|)) |#1| |#2|))) -((-4041 (((-112) $ $) NIL)) (-4330 (((-1206) $) 12)) (-4318 (((-1127) $) 9)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 21) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-155) (-13 (-1075) (-10 -8 (-15 -4318 ((-1127) $)) (-15 -4330 ((-1206) $))))) (T -155)) -((-4318 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-155)))) (-4330 (*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-155))))) -(-13 (-1075) (-10 -8 (-15 -4318 ((-1127) $)) (-15 -4330 ((-1206) $)))) -((-4041 (((-112) $ $) NIL)) (-2504 (($) 15)) (-2821 (($) 14)) (-2812 (((-916)) 22)) (-3696 (((-1150) $) NIL)) (-4031 (((-562) $) 19)) (-1709 (((-1112) $) NIL)) (-2894 (($) 16)) (-2581 (($ (-562)) 23)) (-4053 (((-857) $) 29)) (-3381 (($) 17)) (-1733 (((-112) $ $) 13)) (-1836 (($ $ $) 11)) (* (($ (-916) $) 21) (($ (-224) $) 8))) -(((-156) (-13 (-25) (-10 -8 (-15 * ($ (-916) $)) (-15 * ($ (-224) $)) (-15 -1836 ($ $ $)) (-15 -2821 ($)) (-15 -2504 ($)) (-15 -2894 ($)) (-15 -3381 ($)) (-15 -4031 ((-562) $)) (-15 -2812 ((-916))) (-15 -2581 ($ (-562)))))) (T -156)) -((-1836 (*1 *1 *1 *1) (-5 *1 (-156))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-916)) (-5 *1 (-156)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-156)))) (-2821 (*1 *1) (-5 *1 (-156))) (-2504 (*1 *1) (-5 *1 (-156))) (-2894 (*1 *1) (-5 *1 (-156))) (-3381 (*1 *1) (-5 *1 (-156))) (-4031 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-156)))) (-2812 (*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-156)))) (-2581 (*1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-156))))) -(-13 (-25) (-10 -8 (-15 * ($ (-916) $)) (-15 * ($ (-224) $)) (-15 -1836 ($ $ $)) (-15 -2821 ($)) (-15 -2504 ($)) (-15 -2894 ($)) (-15 -3381 ($)) (-15 -4031 ((-562) $)) (-15 -2812 ((-916))) (-15 -2581 ($ (-562))))) -((-4026 ((|#2| |#2| (-1084 |#2|)) 88) ((|#2| |#2| (-1168)) 68)) (-3912 ((|#2| |#2| (-1084 |#2|)) 87) ((|#2| |#2| (-1168)) 67)) (-1940 ((|#2| |#2| |#2|) 27)) (-1502 (((-114) (-114)) 99)) (-1652 ((|#2| (-639 |#2|)) 117)) (-3615 ((|#2| (-639 |#2|)) 135)) (-2691 ((|#2| (-639 |#2|)) 125)) (-3522 ((|#2| |#2|) 123)) (-2680 ((|#2| (-639 |#2|)) 111)) (-1411 ((|#2| (-639 |#2|)) 112)) (-2770 ((|#2| (-639 |#2|)) 133)) (-3836 ((|#2| |#2| (-1168)) 56) ((|#2| |#2|) 55)) (-3350 ((|#2| |#2|) 23)) (-2068 ((|#2| |#2| |#2|) 26)) (-2036 (((-112) (-114)) 49)) (** ((|#2| |#2| |#2|) 41))) -(((-157 |#1| |#2|) (-10 -7 (-15 -2036 ((-112) (-114))) (-15 -1502 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -2068 (|#2| |#2| |#2|)) (-15 -1940 (|#2| |#2| |#2|)) (-15 -3350 (|#2| |#2|)) (-15 -3836 (|#2| |#2|)) (-15 -3836 (|#2| |#2| (-1168))) (-15 -4026 (|#2| |#2| (-1168))) (-15 -4026 (|#2| |#2| (-1084 |#2|))) (-15 -3912 (|#2| |#2| (-1168))) (-15 -3912 (|#2| |#2| (-1084 |#2|))) (-15 -3522 (|#2| |#2|)) (-15 -2770 (|#2| (-639 |#2|))) (-15 -2691 (|#2| (-639 |#2|))) (-15 -3615 (|#2| (-639 |#2|))) (-15 -2680 (|#2| (-639 |#2|))) (-15 -1411 (|#2| (-639 |#2|))) (-15 -1652 (|#2| (-639 |#2|)))) (-13 (-845) (-554)) (-429 |#1|)) (T -157)) -((-1652 (*1 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-845) (-554))))) (-1411 (*1 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-845) (-554))))) (-2680 (*1 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-845) (-554))))) (-3615 (*1 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-845) (-554))))) (-2691 (*1 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-845) (-554))))) (-2770 (*1 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-845) (-554))))) (-3522 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (-3912 (*1 *2 *2 *3) (-12 (-5 *3 (-1084 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-845) (-554))) (-5 *1 (-157 *4 *2)))) (-3912 (*1 *2 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-845) (-554))) (-5 *1 (-157 *4 *2)) (-4 *2 (-429 *4)))) (-4026 (*1 *2 *2 *3) (-12 (-5 *3 (-1084 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-845) (-554))) (-5 *1 (-157 *4 *2)))) (-4026 (*1 *2 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-845) (-554))) (-5 *1 (-157 *4 *2)) (-4 *2 (-429 *4)))) (-3836 (*1 *2 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-845) (-554))) (-5 *1 (-157 *4 *2)) (-4 *2 (-429 *4)))) (-3836 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (-3350 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (-1940 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (-2068 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-157 *3 *2)) (-4 *2 (-429 *3)))) (-1502 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-845) (-554))) (-5 *1 (-157 *3 *4)) (-4 *4 (-429 *3)))) (-2036 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-845) (-554))) (-5 *2 (-112)) (-5 *1 (-157 *4 *5)) (-4 *5 (-429 *4))))) -(-10 -7 (-15 -2036 ((-112) (-114))) (-15 -1502 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -2068 (|#2| |#2| |#2|)) (-15 -1940 (|#2| |#2| |#2|)) (-15 -3350 (|#2| |#2|)) (-15 -3836 (|#2| |#2|)) (-15 -3836 (|#2| |#2| (-1168))) (-15 -4026 (|#2| |#2| (-1168))) (-15 -4026 (|#2| |#2| (-1084 |#2|))) (-15 -3912 (|#2| |#2| (-1168))) (-15 -3912 (|#2| |#2| (-1084 |#2|))) (-15 -3522 (|#2| |#2|)) (-15 -2770 (|#2| (-639 |#2|))) (-15 -2691 (|#2| (-639 |#2|))) (-15 -3615 (|#2| (-639 |#2|))) (-15 -2680 (|#2| (-639 |#2|))) (-15 -1411 (|#2| (-639 |#2|))) (-15 -1652 (|#2| (-639 |#2|)))) -((-3894 ((|#1| |#1| |#1|) 53)) (-4351 ((|#1| |#1| |#1|) 50)) (-1940 ((|#1| |#1| |#1|) 44)) (-3004 ((|#1| |#1|) 35)) (-3149 ((|#1| |#1| (-639 |#1|)) 43)) (-3350 ((|#1| |#1|) 37)) (-2068 ((|#1| |#1| |#1|) 40))) -(((-158 |#1|) (-10 -7 (-15 -2068 (|#1| |#1| |#1|)) (-15 -3350 (|#1| |#1|)) (-15 -3149 (|#1| |#1| (-639 |#1|))) (-15 -3004 (|#1| |#1|)) (-15 -1940 (|#1| |#1| |#1|)) (-15 -4351 (|#1| |#1| |#1|)) (-15 -3894 (|#1| |#1| |#1|))) (-544)) (T -158)) -((-3894 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-544)))) (-4351 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-544)))) (-1940 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-544)))) (-3004 (*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-544)))) (-3149 (*1 *2 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-544)) (-5 *1 (-158 *2)))) (-3350 (*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-544)))) (-2068 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-544))))) -(-10 -7 (-15 -2068 (|#1| |#1| |#1|)) (-15 -3350 (|#1| |#1|)) (-15 -3149 (|#1| |#1| (-639 |#1|))) (-15 -3004 (|#1| |#1|)) (-15 -1940 (|#1| |#1| |#1|)) (-15 -4351 (|#1| |#1| |#1|)) (-15 -3894 (|#1| |#1| |#1|))) -((-4026 (($ $ (-1168)) 12) (($ $ (-1084 $)) 11)) (-3912 (($ $ (-1168)) 10) (($ $ (-1084 $)) 9)) (-1940 (($ $ $) 8)) (-3836 (($ $) 14) (($ $ (-1168)) 13)) (-3350 (($ $) 7)) (-2068 (($ $ $) 6))) -(((-159) (-139)) (T -159)) -((-3836 (*1 *1 *1) (-4 *1 (-159))) (-3836 (*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1168)))) (-4026 (*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1168)))) (-4026 (*1 *1 *1 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-159)))) (-3912 (*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1168)))) (-3912 (*1 *1 *1 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-159))))) -(-13 (-142) (-10 -8 (-15 -3836 ($ $)) (-15 -3836 ($ $ (-1168))) (-15 -4026 ($ $ (-1168))) (-15 -4026 ($ $ (-1084 $))) (-15 -3912 ($ $ (-1168))) (-15 -3912 ($ $ (-1084 $))))) -(((-142) . T)) -((-4041 (((-112) $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 17) (($ (-1173)) NIL) (((-1173) $) NIL)) (-3265 (((-639 (-1127)) $) 9)) (-1733 (((-112) $ $) NIL))) -(((-160) (-13 (-1075) (-10 -8 (-15 -3265 ((-639 (-1127)) $))))) (T -160)) -((-3265 (*1 *2 *1) (-12 (-5 *2 (-639 (-1127))) (-5 *1 (-160))))) -(-13 (-1075) (-10 -8 (-15 -3265 ((-639 (-1127)) $)))) -((-4041 (((-112) $ $) NIL)) (-2732 (($ (-562)) 13) (($ $ $) 14)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 17)) (-1733 (((-112) $ $) 9))) -(((-161) (-13 (-1092) (-10 -8 (-15 -2732 ($ (-562))) (-15 -2732 ($ $ $))))) (T -161)) -((-2732 (*1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-161)))) (-2732 (*1 *1 *1 *1) (-5 *1 (-161)))) -(-13 (-1092) (-10 -8 (-15 -2732 ($ (-562))) (-15 -2732 ($ $ $)))) -((-1502 (((-114) (-1168)) 97))) -(((-162) (-10 -7 (-15 -1502 ((-114) (-1168))))) (T -162)) -((-1502 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-114)) (-5 *1 (-162))))) -(-10 -7 (-15 -1502 ((-114) (-1168)))) -((-3554 ((|#3| |#3|) 19))) -(((-163 |#1| |#2| |#3|) (-10 -7 (-15 -3554 (|#3| |#3|))) (-1044) (-1232 |#1|) (-1232 |#2|)) (T -163)) -((-3554 (*1 *2 *2) (-12 (-4 *3 (-1044)) (-4 *4 (-1232 *3)) (-5 *1 (-163 *3 *4 *2)) (-4 *2 (-1232 *4))))) -(-10 -7 (-15 -3554 (|#3| |#3|))) -((-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 216)) (-1748 ((|#2| $) 95)) (-2987 (($ $) 246)) (-4098 (($ $) 240)) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) 39)) (-4206 (($ $) 244)) (-4074 (($ $) 238)) (-4048 (((-3 (-562) "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL) (((-3 |#2| "failed") $) 140)) (-3960 (((-562) $) NIL) (((-406 (-562)) $) NIL) ((|#2| $) 138)) (-1810 (($ $ $) 221)) (-3449 (((-683 (-562)) (-683 $)) NIL) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL) (((-2 (|:| -1767 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) 154) (((-683 |#2|) (-683 $)) 148)) (-1954 (($ (-1164 |#2|)) 118) (((-3 $ "failed") (-406 (-1164 |#2|))) NIL)) (-1694 (((-3 $ "failed") $) 208)) (-3913 (((-3 (-406 (-562)) "failed") $) 198)) (-3498 (((-112) $) 193)) (-3854 (((-406 (-562)) $) 196)) (-2172 (((-916)) 88)) (-1787 (($ $ $) 223)) (-2994 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 260)) (-4100 (($) 235)) (-2337 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) 185) (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 190)) (-4363 ((|#2| $) 93)) (-1937 (((-1164 |#2|) $) 120)) (-4152 (($ (-1 |#2| |#2|) $) 101)) (-4366 (($ $) 237)) (-1942 (((-1164 |#2|) $) 119)) (-1525 (($ $) 201)) (-2396 (($) 96)) (-3586 (((-417 (-1164 $)) (-1164 $)) 87)) (-3468 (((-417 (-1164 $)) (-1164 $)) 56)) (-1762 (((-3 $ "failed") $ |#2|) 203) (((-3 $ "failed") $ $) 206)) (-3430 (($ $) 236)) (-2044 (((-766) $) 218)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 228)) (-2736 ((|#2| (-1256 $)) NIL) ((|#2|) 90)) (-4029 (($ $ (-1 |#2| |#2|) (-766)) NIL) (($ $ (-1 |#2| |#2|)) 112) (($ $ (-639 (-1168)) (-639 (-766))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168)) NIL) (($ $ (-766)) NIL) (($ $) NIL)) (-3371 (((-1164 |#2|)) 113)) (-2977 (($ $) 245)) (-4087 (($ $) 239)) (-2205 (((-1256 |#2|) $ (-1256 $)) 127) (((-683 |#2|) (-1256 $) (-1256 $)) NIL) (((-1256 |#2|) $) 109) (((-683 |#2|) (-1256 $)) NIL)) (-4208 (((-1256 |#2|) $) NIL) (($ (-1256 |#2|)) NIL) (((-1164 |#2|) $) NIL) (($ (-1164 |#2|)) NIL) (((-887 (-562)) $) 176) (((-887 (-378)) $) 180) (((-168 (-378)) $) 166) (((-168 (-224)) $) 161) (((-535) $) 172)) (-1660 (($ $) 97)) (-4053 (((-857) $) 137) (($ (-562)) NIL) (($ |#2|) NIL) (($ (-406 (-562))) NIL) (($ $) NIL)) (-3683 (((-1164 |#2|) $) 23)) (-1568 (((-766)) 99)) (-3054 (($ $) 249)) (-4165 (($ $) 243)) (-3033 (($ $) 247)) (-4139 (($ $) 241)) (-2282 ((|#2| $) 232)) (-3040 (($ $) 248)) (-4151 (($ $) 242)) (-2757 (($ $) 156)) (-1733 (((-112) $ $) 103)) (-1761 (((-112) $ $) 192)) (-1847 (($ $) 105) (($ $ $) NIL)) (-1836 (($ $ $) 104)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-406 (-562))) 266) (($ $ $) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 111) (($ $ $) 141) (($ $ |#2|) NIL) (($ |#2| $) 107) (($ (-406 (-562)) $) NIL) (($ $ (-406 (-562))) NIL))) -(((-164 |#1| |#2|) (-10 -8 (-15 -4029 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -4053 (|#1| |#1|)) (-15 -1762 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2271 ((-2 (|:| -4310 |#1|) (|:| -4390 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -2044 ((-766) |#1|)) (-15 -3204 ((-2 (|:| -3380 |#1|) (|:| -1441 |#1|)) |#1| |#1|)) (-15 -1787 (|#1| |#1| |#1|)) (-15 -1810 (|#1| |#1| |#1|)) (-15 -1525 (|#1| |#1|)) (-15 ** (|#1| |#1| (-562))) (-15 * (|#1| |#1| (-406 (-562)))) (-15 * (|#1| (-406 (-562)) |#1|)) (-15 -4053 (|#1| (-406 (-562)))) (-15 -1761 ((-112) |#1| |#1|)) (-15 -4208 ((-535) |#1|)) (-15 -4208 ((-168 (-224)) |#1|)) (-15 -4208 ((-168 (-378)) |#1|)) (-15 -4098 (|#1| |#1|)) (-15 -4074 (|#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -4139 (|#1| |#1|)) (-15 -4165 (|#1| |#1|)) (-15 -2977 (|#1| |#1|)) (-15 -4206 (|#1| |#1|)) (-15 -2987 (|#1| |#1|)) (-15 -3040 (|#1| |#1|)) (-15 -3033 (|#1| |#1|)) (-15 -3054 (|#1| |#1|)) (-15 -4366 (|#1| |#1|)) (-15 -3430 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4100 (|#1|)) (-15 ** (|#1| |#1| (-406 (-562)))) (-15 -3468 ((-417 (-1164 |#1|)) (-1164 |#1|))) (-15 -3586 ((-417 (-1164 |#1|)) (-1164 |#1|))) (-15 -2654 ((-3 (-639 (-1164 |#1|)) "failed") (-639 (-1164 |#1|)) (-1164 |#1|))) (-15 -3913 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3854 ((-406 (-562)) |#1|)) (-15 -3498 ((-112) |#1|)) (-15 -2994 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2282 (|#2| |#1|)) (-15 -2757 (|#1| |#1|)) (-15 -1762 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1660 (|#1| |#1|)) (-15 -2396 (|#1|)) (-15 -4208 ((-887 (-378)) |#1|)) (-15 -4208 ((-887 (-562)) |#1|)) (-15 -2337 ((-884 (-378) |#1|) |#1| (-887 (-378)) (-884 (-378) |#1|))) (-15 -2337 ((-884 (-562) |#1|) |#1| (-887 (-562)) (-884 (-562) |#1|))) (-15 -4152 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|) (-766))) (-15 -1954 ((-3 |#1| "failed") (-406 (-1164 |#2|)))) (-15 -1942 ((-1164 |#2|) |#1|)) (-15 -4208 (|#1| (-1164 |#2|))) (-15 -1954 (|#1| (-1164 |#2|))) (-15 -3371 ((-1164 |#2|))) (-15 -3449 ((-683 |#2|) (-683 |#1|))) (-15 -3449 ((-2 (|:| -1767 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 |#1|) (-1256 |#1|))) (-15 -3449 ((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 |#1|) (-1256 |#1|))) (-15 -3449 ((-683 (-562)) (-683 |#1|))) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -3960 (|#2| |#1|)) (-15 -3960 ((-406 (-562)) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3960 ((-562) |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -4208 ((-1164 |#2|) |#1|)) (-15 -2736 (|#2|)) (-15 -4208 (|#1| (-1256 |#2|))) (-15 -4208 ((-1256 |#2|) |#1|)) (-15 -2205 ((-683 |#2|) (-1256 |#1|))) (-15 -2205 ((-1256 |#2|) |#1|)) (-15 -1937 ((-1164 |#2|) |#1|)) (-15 -3683 ((-1164 |#2|) |#1|)) (-15 -2736 (|#2| (-1256 |#1|))) (-15 -2205 ((-683 |#2|) (-1256 |#1|) (-1256 |#1|))) (-15 -2205 ((-1256 |#2|) |#1| (-1256 |#1|))) (-15 -4363 (|#2| |#1|)) (-15 -1748 (|#2| |#1|)) (-15 -2172 ((-916))) (-15 -4053 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1568 ((-766))) (-15 -4053 (|#1| (-562))) (-15 ** (|#1| |#1| (-766))) (-15 -1694 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-916))) (-15 * (|#1| (-562) |#1|)) (-15 -1847 (|#1| |#1| |#1|)) (-15 -1847 (|#1| |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 * (|#1| (-916) |#1|)) (-15 -1836 (|#1| |#1| |#1|)) (-15 -4053 ((-857) |#1|)) (-15 -1733 ((-112) |#1| |#1|))) (-165 |#2|) (-171)) (T -164)) -((-1568 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-766)) (-5 *1 (-164 *3 *4)) (-4 *3 (-165 *4)))) (-2172 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-916)) (-5 *1 (-164 *3 *4)) (-4 *3 (-165 *4)))) (-2736 (*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-164 *3 *2)) (-4 *3 (-165 *2)))) (-3371 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-1164 *4)) (-5 *1 (-164 *3 *4)) (-4 *3 (-165 *4))))) -(-10 -8 (-15 -4029 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -4053 (|#1| |#1|)) (-15 -1762 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2271 ((-2 (|:| -4310 |#1|) (|:| -4390 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -2044 ((-766) |#1|)) (-15 -3204 ((-2 (|:| -3380 |#1|) (|:| -1441 |#1|)) |#1| |#1|)) (-15 -1787 (|#1| |#1| |#1|)) (-15 -1810 (|#1| |#1| |#1|)) (-15 -1525 (|#1| |#1|)) (-15 ** (|#1| |#1| (-562))) (-15 * (|#1| |#1| (-406 (-562)))) (-15 * (|#1| (-406 (-562)) |#1|)) (-15 -4053 (|#1| (-406 (-562)))) (-15 -1761 ((-112) |#1| |#1|)) (-15 -4208 ((-535) |#1|)) (-15 -4208 ((-168 (-224)) |#1|)) (-15 -4208 ((-168 (-378)) |#1|)) (-15 -4098 (|#1| |#1|)) (-15 -4074 (|#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -4139 (|#1| |#1|)) (-15 -4165 (|#1| |#1|)) (-15 -2977 (|#1| |#1|)) (-15 -4206 (|#1| |#1|)) (-15 -2987 (|#1| |#1|)) (-15 -3040 (|#1| |#1|)) (-15 -3033 (|#1| |#1|)) (-15 -3054 (|#1| |#1|)) (-15 -4366 (|#1| |#1|)) (-15 -3430 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4100 (|#1|)) (-15 ** (|#1| |#1| (-406 (-562)))) (-15 -3468 ((-417 (-1164 |#1|)) (-1164 |#1|))) (-15 -3586 ((-417 (-1164 |#1|)) (-1164 |#1|))) (-15 -2654 ((-3 (-639 (-1164 |#1|)) "failed") (-639 (-1164 |#1|)) (-1164 |#1|))) (-15 -3913 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3854 ((-406 (-562)) |#1|)) (-15 -3498 ((-112) |#1|)) (-15 -2994 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2282 (|#2| |#1|)) (-15 -2757 (|#1| |#1|)) (-15 -1762 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1660 (|#1| |#1|)) (-15 -2396 (|#1|)) (-15 -4208 ((-887 (-378)) |#1|)) (-15 -4208 ((-887 (-562)) |#1|)) (-15 -2337 ((-884 (-378) |#1|) |#1| (-887 (-378)) (-884 (-378) |#1|))) (-15 -2337 ((-884 (-562) |#1|) |#1| (-887 (-562)) (-884 (-562) |#1|))) (-15 -4152 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|) (-766))) (-15 -1954 ((-3 |#1| "failed") (-406 (-1164 |#2|)))) (-15 -1942 ((-1164 |#2|) |#1|)) (-15 -4208 (|#1| (-1164 |#2|))) (-15 -1954 (|#1| (-1164 |#2|))) (-15 -3371 ((-1164 |#2|))) (-15 -3449 ((-683 |#2|) (-683 |#1|))) (-15 -3449 ((-2 (|:| -1767 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 |#1|) (-1256 |#1|))) (-15 -3449 ((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 |#1|) (-1256 |#1|))) (-15 -3449 ((-683 (-562)) (-683 |#1|))) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -3960 (|#2| |#1|)) (-15 -3960 ((-406 (-562)) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3960 ((-562) |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -4208 ((-1164 |#2|) |#1|)) (-15 -2736 (|#2|)) (-15 -4208 (|#1| (-1256 |#2|))) (-15 -4208 ((-1256 |#2|) |#1|)) (-15 -2205 ((-683 |#2|) (-1256 |#1|))) (-15 -2205 ((-1256 |#2|) |#1|)) (-15 -1937 ((-1164 |#2|) |#1|)) (-15 -3683 ((-1164 |#2|) |#1|)) (-15 -2736 (|#2| (-1256 |#1|))) (-15 -2205 ((-683 |#2|) (-1256 |#1|) (-1256 |#1|))) (-15 -2205 ((-1256 |#2|) |#1| (-1256 |#1|))) (-15 -4363 (|#2| |#1|)) (-15 -1748 (|#2| |#1|)) (-15 -2172 ((-916))) (-15 -4053 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1568 ((-766))) (-15 -4053 (|#1| (-562))) (-15 ** (|#1| |#1| (-766))) (-15 -1694 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-916))) (-15 * (|#1| (-562) |#1|)) (-15 -1847 (|#1| |#1| |#1|)) (-15 -1847 (|#1| |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 * (|#1| (-916) |#1|)) (-15 -1836 (|#1| |#1| |#1|)) (-15 -4053 ((-857) |#1|)) (-15 -1733 ((-112) |#1| |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 93 (-4037 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904)))))) (-1965 (($ $) 94 (-4037 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904)))))) (-4102 (((-112) $) 96 (-4037 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904)))))) (-4342 (((-683 |#1|) (-1256 $)) 47) (((-683 |#1|)) 62)) (-1748 ((|#1| $) 53)) (-2987 (($ $) 227 (|has| |#1| (-1192)))) (-4098 (($ $) 210 (|has| |#1| (-1192)))) (-1755 (((-1180 (-916) (-766)) (-562)) 146 (|has| |#1| (-348)))) (-2781 (((-3 $ "failed") $ $) 19)) (-3517 (((-417 (-1164 $)) (-1164 $)) 241 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))))) (-1977 (($ $) 113 (-4037 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))) (|has| |#1| (-362))))) (-3788 (((-417 $) $) 114 (-4037 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))) (|has| |#1| (-362))))) (-1644 (($ $) 240 (-12 (|has| |#1| (-997)) (|has| |#1| (-1192))))) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) 244 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))))) (-1436 (((-112) $ $) 104 (|has| |#1| (-306)))) (-1382 (((-766)) 87 (|has| |#1| (-367)))) (-4206 (($ $) 226 (|has| |#1| (-1192)))) (-4074 (($ $) 211 (|has| |#1| (-1192)))) (-3013 (($ $) 225 (|has| |#1| (-1192)))) (-4120 (($ $) 212 (|has| |#1| (-1192)))) (-3329 (($) 17 T CONST)) (-4048 (((-3 (-562) "failed") $) 169 (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) 167 (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) 164)) (-3960 (((-562) $) 168 (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) 166 (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) 165)) (-3916 (($ (-1256 |#1|) (-1256 $)) 49) (($ (-1256 |#1|)) 65)) (-3082 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-348)))) (-1810 (($ $ $) 108 (|has| |#1| (-306)))) (-4376 (((-683 |#1|) $ (-1256 $)) 54) (((-683 |#1|) $) 60)) (-3449 (((-683 (-562)) (-683 $)) 163 (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 162 (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) 161) (((-683 |#1|) (-683 $)) 160)) (-1954 (($ (-1164 |#1|)) 157) (((-3 $ "failed") (-406 (-1164 |#1|))) 154 (|has| |#1| (-362)))) (-1694 (((-3 $ "failed") $) 33)) (-1657 ((|#1| $) 252)) (-3913 (((-3 (-406 (-562)) "failed") $) 245 (|has| |#1| (-544)))) (-3498 (((-112) $) 247 (|has| |#1| (-544)))) (-3854 (((-406 (-562)) $) 246 (|has| |#1| (-544)))) (-2172 (((-916)) 55)) (-1447 (($) 90 (|has| |#1| (-367)))) (-1787 (($ $ $) 107 (|has| |#1| (-306)))) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) 102 (|has| |#1| (-306)))) (-2787 (($) 148 (|has| |#1| (-348)))) (-1844 (((-112) $) 149 (|has| |#1| (-348)))) (-2184 (($ $ (-766)) 140 (|has| |#1| (-348))) (($ $) 139 (|has| |#1| (-348)))) (-3521 (((-112) $) 115 (-4037 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))) (|has| |#1| (-362))))) (-2994 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 248 (-12 (|has| |#1| (-1053)) (|has| |#1| (-1192))))) (-4100 (($) 237 (|has| |#1| (-1192)))) (-2337 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) 260 (|has| |#1| (-881 (-562)))) (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 259 (|has| |#1| (-881 (-378))))) (-1993 (((-916) $) 151 (|has| |#1| (-348))) (((-828 (-916)) $) 137 (|has| |#1| (-348)))) (-4367 (((-112) $) 31)) (-1895 (($ $ (-562)) 239 (-12 (|has| |#1| (-997)) (|has| |#1| (-1192))))) (-4363 ((|#1| $) 52)) (-3828 (((-3 $ "failed") $) 141 (|has| |#1| (-348)))) (-1719 (((-3 (-639 $) "failed") (-639 $) $) 111 (|has| |#1| (-306)))) (-1937 (((-1164 |#1|) $) 45 (|has| |#1| (-362)))) (-1551 (($ $ $) 206 (|has| |#1| (-845)))) (-2993 (($ $ $) 205 (|has| |#1| (-845)))) (-4152 (($ (-1 |#1| |#1|) $) 261)) (-3549 (((-916) $) 89 (|has| |#1| (-367)))) (-4366 (($ $) 234 (|has| |#1| (-1192)))) (-1942 (((-1164 |#1|) $) 155)) (-1564 (($ (-639 $)) 100 (-4037 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904))))) (($ $ $) 99 (-4037 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904)))))) (-3696 (((-1150) $) 9)) (-1525 (($ $) 116 (|has| |#1| (-362)))) (-3730 (($) 142 (|has| |#1| (-348)) CONST)) (-2464 (($ (-916)) 88 (|has| |#1| (-367)))) (-2396 (($) 256)) (-1670 ((|#1| $) 253)) (-1709 (((-1112) $) 10)) (-3147 (($) 159)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 101 (-4037 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904)))))) (-1606 (($ (-639 $)) 98 (-4037 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904))))) (($ $ $) 97 (-4037 (|has| |#1| (-306)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904)))))) (-1753 (((-639 (-2 (|:| -1635 (-562)) (|:| -1300 (-562))))) 145 (|has| |#1| (-348)))) (-3586 (((-417 (-1164 $)) (-1164 $)) 243 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))))) (-3468 (((-417 (-1164 $)) (-1164 $)) 242 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))))) (-1635 (((-417 $) $) 112 (-4037 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))) (|has| |#1| (-362))))) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-306))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) 109 (|has| |#1| (-306)))) (-1762 (((-3 $ "failed") $ |#1|) 251 (|has| |#1| (-554))) (((-3 $ "failed") $ $) 92 (-4037 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904)))))) (-1879 (((-3 (-639 $) "failed") (-639 $) $) 103 (|has| |#1| (-306)))) (-3430 (($ $) 235 (|has| |#1| (-1192)))) (-1433 (($ $ (-639 |#1|) (-639 |#1|)) 267 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 266 (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) 265 (|has| |#1| (-308 |#1|))) (($ $ (-639 (-293 |#1|))) 264 (|has| |#1| (-308 |#1|))) (($ $ (-639 (-1168)) (-639 |#1|)) 263 (|has| |#1| (-513 (-1168) |#1|))) (($ $ (-1168) |#1|) 262 (|has| |#1| (-513 (-1168) |#1|)))) (-2044 (((-766) $) 105 (|has| |#1| (-306)))) (-2343 (($ $ |#1|) 268 (|has| |#1| (-285 |#1| |#1|)))) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 106 (|has| |#1| (-306)))) (-2736 ((|#1| (-1256 $)) 48) ((|#1|) 61)) (-3543 (((-766) $) 150 (|has| |#1| (-348))) (((-3 (-766) "failed") $ $) 138 (|has| |#1| (-348)))) (-4029 (($ $ (-1 |#1| |#1|) (-766)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-639 (-1168)) (-639 (-766))) 129 (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) 130 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) 131 (|has| |#1| (-895 (-1168)))) (($ $ (-1168)) 132 (|has| |#1| (-895 (-1168)))) (($ $ (-766)) 134 (-4037 (-2245 (|has| |#1| (-362)) (|has| |#1| (-232))) (|has| |#1| (-232)) (-2245 (|has| |#1| (-232)) (|has| |#1| (-362))))) (($ $) 136 (-4037 (-2245 (|has| |#1| (-362)) (|has| |#1| (-232))) (|has| |#1| (-232)) (-2245 (|has| |#1| (-232)) (|has| |#1| (-362)))))) (-2539 (((-683 |#1|) (-1256 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-362)))) (-3371 (((-1164 |#1|)) 158)) (-3022 (($ $) 224 (|has| |#1| (-1192)))) (-4130 (($ $) 213 (|has| |#1| (-1192)))) (-1653 (($) 147 (|has| |#1| (-348)))) (-3000 (($ $) 223 (|has| |#1| (-1192)))) (-4108 (($ $) 214 (|has| |#1| (-1192)))) (-2977 (($ $) 222 (|has| |#1| (-1192)))) (-4087 (($ $) 215 (|has| |#1| (-1192)))) (-2205 (((-1256 |#1|) $ (-1256 $)) 51) (((-683 |#1|) (-1256 $) (-1256 $)) 50) (((-1256 |#1|) $) 67) (((-683 |#1|) (-1256 $)) 66)) (-4208 (((-1256 |#1|) $) 64) (($ (-1256 |#1|)) 63) (((-1164 |#1|) $) 170) (($ (-1164 |#1|)) 156) (((-887 (-562)) $) 258 (|has| |#1| (-610 (-887 (-562))))) (((-887 (-378)) $) 257 (|has| |#1| (-610 (-887 (-378))))) (((-168 (-378)) $) 209 (|has| |#1| (-1017))) (((-168 (-224)) $) 208 (|has| |#1| (-1017))) (((-535) $) 207 (|has| |#1| (-610 (-535))))) (-1660 (($ $) 255)) (-1870 (((-3 (-1256 $) "failed") (-683 $)) 144 (-4037 (-2245 (|has| $ (-144)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904)))) (|has| |#1| (-348))))) (-1418 (($ |#1| |#1|) 254)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 38) (($ (-406 (-562))) 86 (-4037 (|has| |#1| (-362)) (|has| |#1| (-1033 (-406 (-562)))))) (($ $) 91 (-4037 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904)))))) (-2059 (($ $) 143 (|has| |#1| (-348))) (((-3 $ "failed") $) 44 (-4037 (-2245 (|has| $ (-144)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904)))) (|has| |#1| (-144))))) (-3683 (((-1164 |#1|) $) 46)) (-1568 (((-766)) 28)) (-4291 (((-1256 $)) 68)) (-3054 (($ $) 233 (|has| |#1| (-1192)))) (-4165 (($ $) 221 (|has| |#1| (-1192)))) (-3799 (((-112) $ $) 95 (-4037 (|has| |#1| (-554)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904)))))) (-3033 (($ $) 232 (|has| |#1| (-1192)))) (-4139 (($ $) 220 (|has| |#1| (-1192)))) (-3077 (($ $) 231 (|has| |#1| (-1192)))) (-4183 (($ $) 219 (|has| |#1| (-1192)))) (-2282 ((|#1| $) 249 (|has| |#1| (-1192)))) (-1567 (($ $) 230 (|has| |#1| (-1192)))) (-4195 (($ $) 218 (|has| |#1| (-1192)))) (-3065 (($ $) 229 (|has| |#1| (-1192)))) (-4175 (($ $) 217 (|has| |#1| (-1192)))) (-3040 (($ $) 228 (|has| |#1| (-1192)))) (-4151 (($ $) 216 (|has| |#1| (-1192)))) (-2757 (($ $) 250 (|has| |#1| (-1053)))) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3113 (($ $ (-1 |#1| |#1|) (-766)) 124) (($ $ (-1 |#1| |#1|)) 123) (($ $ (-639 (-1168)) (-639 (-766))) 125 (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) 126 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) 127 (|has| |#1| (-895 (-1168)))) (($ $ (-1168)) 128 (|has| |#1| (-895 (-1168)))) (($ $ (-766)) 133 (-4037 (-2245 (|has| |#1| (-362)) (|has| |#1| (-232))) (|has| |#1| (-232)) (-2245 (|has| |#1| (-232)) (|has| |#1| (-362))))) (($ $) 135 (-4037 (-2245 (|has| |#1| (-362)) (|has| |#1| (-232))) (|has| |#1| (-232)) (-2245 (|has| |#1| (-232)) (|has| |#1| (-362)))))) (-1798 (((-112) $ $) 203 (|has| |#1| (-845)))) (-1771 (((-112) $ $) 202 (|has| |#1| (-845)))) (-1733 (((-112) $ $) 6)) (-1785 (((-112) $ $) 204 (|has| |#1| (-845)))) (-1761 (((-112) $ $) 201 (|has| |#1| (-845)))) (-1859 (($ $ $) 120 (|has| |#1| (-362)))) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-406 (-562))) 238 (-12 (|has| |#1| (-997)) (|has| |#1| (-1192)))) (($ $ $) 236 (|has| |#1| (-1192))) (($ $ (-562)) 117 (|has| |#1| (-362)))) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-406 (-562)) $) 119 (|has| |#1| (-362))) (($ $ (-406 (-562))) 118 (|has| |#1| (-362))))) -(((-165 |#1|) (-139) (-171)) (T -165)) -((-4363 (*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-2396 (*1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-1660 (*1 *1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-1418 (*1 *1 *2 *2) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-1670 (*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-1657 (*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) (-1762 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-554)))) (-2757 (*1 *1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-1053)))) (-2282 (*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-1192)))) (-2994 (*1 *2 *1) (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-1053)) (-4 *3 (-1192)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3498 (*1 *2 *1) (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-544)) (-5 *2 (-112)))) (-3854 (*1 *2 *1) (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-544)) (-5 *2 (-406 (-562))))) (-3913 (*1 *2 *1) (|partial| -12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-544)) (-5 *2 (-406 (-562)))))) -(-13 (-719 |t#1| (-1164 |t#1|)) (-410 |t#1|) (-230 |t#1|) (-337 |t#1|) (-399 |t#1|) (-879 |t#1|) (-376 |t#1|) (-171) (-10 -8 (-15 -2396 ($)) (-15 -1660 ($ $)) (-15 -1418 ($ |t#1| |t#1|)) (-15 -1670 (|t#1| $)) (-15 -1657 (|t#1| $)) (-15 -4363 (|t#1| $)) (IF (|has| |t#1| (-845)) (-6 (-845)) |%noBranch|) (IF (|has| |t#1| (-554)) (PROGN (-6 (-554)) (-15 -1762 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-306)) (-6 (-306)) |%noBranch|) (IF (|has| |t#1| (-6 -4402)) (-6 -4402) |%noBranch|) (IF (|has| |t#1| (-6 -4399)) (-6 -4399) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-362)) |%noBranch|) (IF (|has| |t#1| (-610 (-535))) (-6 (-610 (-535))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-1017)) (PROGN (-6 (-610 (-168 (-224)))) (-6 (-610 (-168 (-378))))) |%noBranch|) (IF (|has| |t#1| (-1053)) (-15 -2757 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1192)) (PROGN (-6 (-1192)) (-15 -2282 (|t#1| $)) (IF (|has| |t#1| (-997)) (-6 (-997)) |%noBranch|) (IF (|has| |t#1| (-1053)) (-15 -2994 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-15 -3498 ((-112) $)) (-15 -3854 ((-406 (-562)) $)) (-15 -3913 ((-3 (-406 (-562)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-904)) (IF (|has| |t#1| (-306)) (-6 (-904)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-562))) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-38 |#1|) . T) ((-38 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-35) |has| |#1| (-1192)) ((-95) |has| |#1| (-1192)) ((-102) . T) ((-111 #0# #0#) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -4037 (|has| |#1| (-348)) (|has| |#1| (-144))) ((-146) |has| |#1| (-146)) ((-612 #0#) -4037 (|has| |#1| (-1033 (-406 (-562)))) (|has| |#1| (-348)) (|has| |#1| (-362))) ((-612 (-562)) . T) ((-612 |#1|) . T) ((-612 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-609 (-857)) . T) ((-171) . T) ((-610 (-168 (-224))) |has| |#1| (-1017)) ((-610 (-168 (-378))) |has| |#1| (-1017)) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-610 (-887 (-378))) |has| |#1| (-610 (-887 (-378)))) ((-610 (-887 (-562))) |has| |#1| (-610 (-887 (-562)))) ((-610 #1=(-1164 |#1|)) . T) ((-230 |#1|) . T) ((-232) -4037 (|has| |#1| (-348)) (|has| |#1| (-232))) ((-242) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-283) |has| |#1| (-1192)) ((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-289) -4037 (|has| |#1| (-554)) (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-306) -4037 (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-362) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-401) |has| |#1| (-348)) ((-367) -4037 (|has| |#1| (-367)) (|has| |#1| (-348))) ((-348) |has| |#1| (-348)) ((-369 |#1| #1#) . T) ((-408 |#1| #1#) . T) ((-337 |#1|) . T) ((-376 |#1|) . T) ((-399 |#1|) . T) ((-410 |#1|) . T) ((-451) -4037 (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-492) |has| |#1| (-1192)) ((-513 (-1168) |#1|) |has| |#1| (-513 (-1168) |#1|)) ((-513 |#1| |#1|) |has| |#1| (-308 |#1|)) ((-554) -4037 (|has| |#1| (-554)) (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-642 #0#) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-642 |#1|) . T) ((-642 $) . T) ((-635 (-562)) |has| |#1| (-635 (-562))) ((-635 |#1|) . T) ((-712 #0#) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-712 |#1|) . T) ((-712 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-719 |#1| #1#) . T) ((-721) . T) ((-845) |has| |#1| (-845)) ((-895 (-1168)) |has| |#1| (-895 (-1168))) ((-881 (-378)) |has| |#1| (-881 (-378))) ((-881 (-562)) |has| |#1| (-881 (-562))) ((-879 |#1|) . T) ((-904) -12 (|has| |#1| (-306)) (|has| |#1| (-904))) ((-915) -4037 (|has| |#1| (-348)) (|has| |#1| (-362)) (|has| |#1| (-306))) ((-997) -12 (|has| |#1| (-997)) (|has| |#1| (-1192))) ((-1033 (-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((-1033 (-562)) |has| |#1| (-1033 (-562))) ((-1033 |#1|) . T) ((-1050 #0#) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-1050 |#1|) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1143) |has| |#1| (-348)) ((-1192) |has| |#1| (-1192)) ((-1195) |has| |#1| (-1192)) ((-1207) . T) ((-1211) -4037 (|has| |#1| (-348)) (|has| |#1| (-362)) (-12 (|has| |#1| (-306)) (|has| |#1| (-904))))) -((-1635 (((-417 |#2|) |#2|) 63))) -(((-166 |#1| |#2|) (-10 -7 (-15 -1635 ((-417 |#2|) |#2|))) (-306) (-1232 (-168 |#1|))) (T -166)) -((-1635 (*1 *2 *3) (-12 (-4 *4 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-166 *4 *3)) (-4 *3 (-1232 (-168 *4)))))) -(-10 -7 (-15 -1635 ((-417 |#2|) |#2|))) -((-4152 (((-168 |#2|) (-1 |#2| |#1|) (-168 |#1|)) 14))) -(((-167 |#1| |#2|) (-10 -7 (-15 -4152 ((-168 |#2|) (-1 |#2| |#1|) (-168 |#1|)))) (-171) (-171)) (T -167)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-168 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-5 *2 (-168 *6)) (-5 *1 (-167 *5 *6))))) -(-10 -7 (-15 -4152 ((-168 |#2|) (-1 |#2| |#1|) (-168 |#1|)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) 33)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL (-4037 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))) (|has| |#1| (-554))))) (-1965 (($ $) NIL (-4037 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))) (|has| |#1| (-554))))) (-4102 (((-112) $) NIL (-4037 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))) (|has| |#1| (-554))))) (-4342 (((-683 |#1|) (-1256 $)) NIL) (((-683 |#1|)) NIL)) (-1748 ((|#1| $) NIL)) (-2987 (($ $) NIL (|has| |#1| (-1192)))) (-4098 (($ $) NIL (|has| |#1| (-1192)))) (-1755 (((-1180 (-916) (-766)) (-562)) NIL (|has| |#1| (-348)))) (-2781 (((-3 $ "failed") $ $) NIL)) (-3517 (((-417 (-1164 $)) (-1164 $)) NIL (-12 (|has| |#1| (-306)) (|has| |#1| (-904))))) (-1977 (($ $) NIL (-4037 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))) (|has| |#1| (-362))))) (-3788 (((-417 $) $) NIL (-4037 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))) (|has| |#1| (-362))))) (-1644 (($ $) NIL (-12 (|has| |#1| (-997)) (|has| |#1| (-1192))))) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (-12 (|has| |#1| (-306)) (|has| |#1| (-904))))) (-1436 (((-112) $ $) NIL (|has| |#1| (-306)))) (-1382 (((-766)) NIL (|has| |#1| (-367)))) (-4206 (($ $) NIL (|has| |#1| (-1192)))) (-4074 (($ $) NIL (|has| |#1| (-1192)))) (-3013 (($ $) NIL (|has| |#1| (-1192)))) (-4120 (($ $) NIL (|has| |#1| (-1192)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) NIL)) (-3960 (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) NIL)) (-3916 (($ (-1256 |#1|) (-1256 $)) NIL) (($ (-1256 |#1|)) NIL)) (-3082 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-348)))) (-1810 (($ $ $) NIL (|has| |#1| (-306)))) (-4376 (((-683 |#1|) $ (-1256 $)) NIL) (((-683 |#1|) $) NIL)) (-3449 (((-683 (-562)) (-683 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) NIL) (((-683 |#1|) (-683 $)) NIL)) (-1954 (($ (-1164 |#1|)) NIL) (((-3 $ "failed") (-406 (-1164 |#1|))) NIL (|has| |#1| (-362)))) (-1694 (((-3 $ "failed") $) NIL)) (-1657 ((|#1| $) 13)) (-3913 (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-544)))) (-3498 (((-112) $) NIL (|has| |#1| (-544)))) (-3854 (((-406 (-562)) $) NIL (|has| |#1| (-544)))) (-2172 (((-916)) NIL)) (-1447 (($) NIL (|has| |#1| (-367)))) (-1787 (($ $ $) NIL (|has| |#1| (-306)))) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL (|has| |#1| (-306)))) (-2787 (($) NIL (|has| |#1| (-348)))) (-1844 (((-112) $) NIL (|has| |#1| (-348)))) (-2184 (($ $ (-766)) NIL (|has| |#1| (-348))) (($ $) NIL (|has| |#1| (-348)))) (-3521 (((-112) $) NIL (-4037 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))) (|has| |#1| (-362))))) (-2994 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1053)) (|has| |#1| (-1192))))) (-4100 (($) NIL (|has| |#1| (-1192)))) (-2337 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (|has| |#1| (-881 (-562)))) (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (|has| |#1| (-881 (-378))))) (-1993 (((-916) $) NIL (|has| |#1| (-348))) (((-828 (-916)) $) NIL (|has| |#1| (-348)))) (-4367 (((-112) $) 35)) (-1895 (($ $ (-562)) NIL (-12 (|has| |#1| (-997)) (|has| |#1| (-1192))))) (-4363 ((|#1| $) 46)) (-3828 (((-3 $ "failed") $) NIL (|has| |#1| (-348)))) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-306)))) (-1937 (((-1164 |#1|) $) NIL (|has| |#1| (-362)))) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-3549 (((-916) $) NIL (|has| |#1| (-367)))) (-4366 (($ $) NIL (|has| |#1| (-1192)))) (-1942 (((-1164 |#1|) $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-306))) (($ $ $) NIL (|has| |#1| (-306)))) (-3696 (((-1150) $) NIL)) (-1525 (($ $) NIL (|has| |#1| (-362)))) (-3730 (($) NIL (|has| |#1| (-348)) CONST)) (-2464 (($ (-916)) NIL (|has| |#1| (-367)))) (-2396 (($) NIL)) (-1670 ((|#1| $) 15)) (-1709 (((-1112) $) NIL)) (-3147 (($) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-306)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-306))) (($ $ $) NIL (|has| |#1| (-306)))) (-1753 (((-639 (-2 (|:| -1635 (-562)) (|:| -1300 (-562))))) NIL (|has| |#1| (-348)))) (-3586 (((-417 (-1164 $)) (-1164 $)) NIL (-12 (|has| |#1| (-306)) (|has| |#1| (-904))))) (-3468 (((-417 (-1164 $)) (-1164 $)) NIL (-12 (|has| |#1| (-306)) (|has| |#1| (-904))))) (-1635 (((-417 $) $) NIL (-4037 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))) (|has| |#1| (-362))))) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-306))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL (|has| |#1| (-306)))) (-1762 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-554))) (((-3 $ "failed") $ $) 47 (-4037 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))) (|has| |#1| (-554))))) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-306)))) (-3430 (($ $) NIL (|has| |#1| (-1192)))) (-1433 (($ $ (-639 |#1|) (-639 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-639 (-293 |#1|))) NIL (|has| |#1| (-308 |#1|))) (($ $ (-639 (-1168)) (-639 |#1|)) NIL (|has| |#1| (-513 (-1168) |#1|))) (($ $ (-1168) |#1|) NIL (|has| |#1| (-513 (-1168) |#1|)))) (-2044 (((-766) $) NIL (|has| |#1| (-306)))) (-2343 (($ $ |#1|) NIL (|has| |#1| (-285 |#1| |#1|)))) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| |#1| (-306)))) (-2736 ((|#1| (-1256 $)) NIL) ((|#1|) NIL)) (-3543 (((-766) $) NIL (|has| |#1| (-348))) (((-3 (-766) "failed") $ $) NIL (|has| |#1| (-348)))) (-4029 (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-766)) NIL (|has| |#1| (-232))) (($ $) NIL (|has| |#1| (-232)))) (-2539 (((-683 |#1|) (-1256 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-362)))) (-3371 (((-1164 |#1|)) NIL)) (-3022 (($ $) NIL (|has| |#1| (-1192)))) (-4130 (($ $) NIL (|has| |#1| (-1192)))) (-1653 (($) NIL (|has| |#1| (-348)))) (-3000 (($ $) NIL (|has| |#1| (-1192)))) (-4108 (($ $) NIL (|has| |#1| (-1192)))) (-2977 (($ $) NIL (|has| |#1| (-1192)))) (-4087 (($ $) NIL (|has| |#1| (-1192)))) (-2205 (((-1256 |#1|) $ (-1256 $)) NIL) (((-683 |#1|) (-1256 $) (-1256 $)) NIL) (((-1256 |#1|) $) NIL) (((-683 |#1|) (-1256 $)) NIL)) (-4208 (((-1256 |#1|) $) NIL) (($ (-1256 |#1|)) NIL) (((-1164 |#1|) $) NIL) (($ (-1164 |#1|)) NIL) (((-887 (-562)) $) NIL (|has| |#1| (-610 (-887 (-562))))) (((-887 (-378)) $) NIL (|has| |#1| (-610 (-887 (-378))))) (((-168 (-378)) $) NIL (|has| |#1| (-1017))) (((-168 (-224)) $) NIL (|has| |#1| (-1017))) (((-535) $) NIL (|has| |#1| (-610 (-535))))) (-1660 (($ $) 45)) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#1| (-306)) (|has| |#1| (-904))) (|has| |#1| (-348))))) (-1418 (($ |#1| |#1|) 37)) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ |#1|) 36) (($ (-406 (-562))) NIL (-4037 (|has| |#1| (-362)) (|has| |#1| (-1033 (-406 (-562)))))) (($ $) NIL (-4037 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))) (|has| |#1| (-554))))) (-2059 (($ $) NIL (|has| |#1| (-348))) (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#1| (-306)) (|has| |#1| (-904))) (|has| |#1| (-144))))) (-3683 (((-1164 |#1|) $) NIL)) (-1568 (((-766)) NIL)) (-4291 (((-1256 $)) NIL)) (-3054 (($ $) NIL (|has| |#1| (-1192)))) (-4165 (($ $) NIL (|has| |#1| (-1192)))) (-3799 (((-112) $ $) NIL (-4037 (-12 (|has| |#1| (-306)) (|has| |#1| (-904))) (|has| |#1| (-554))))) (-3033 (($ $) NIL (|has| |#1| (-1192)))) (-4139 (($ $) NIL (|has| |#1| (-1192)))) (-3077 (($ $) NIL (|has| |#1| (-1192)))) (-4183 (($ $) NIL (|has| |#1| (-1192)))) (-2282 ((|#1| $) NIL (|has| |#1| (-1192)))) (-1567 (($ $) NIL (|has| |#1| (-1192)))) (-4195 (($ $) NIL (|has| |#1| (-1192)))) (-3065 (($ $) NIL (|has| |#1| (-1192)))) (-4175 (($ $) NIL (|has| |#1| (-1192)))) (-3040 (($ $) NIL (|has| |#1| (-1192)))) (-4151 (($ $) NIL (|has| |#1| (-1192)))) (-2757 (($ $) NIL (|has| |#1| (-1053)))) (-2285 (($) 28 T CONST)) (-2294 (($) 30 T CONST)) (-2332 (((-1150) $) 23 (|has| |#1| (-823))) (((-1150) $ (-112)) 25 (|has| |#1| (-823))) (((-1261) (-817) $) 26 (|has| |#1| (-823))) (((-1261) (-817) $ (-112)) 27 (|has| |#1| (-823)))) (-3113 (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-766)) NIL (|has| |#1| (-232))) (($ $) NIL (|has| |#1| (-232)))) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1771 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1761 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1859 (($ $ $) NIL (|has| |#1| (-362)))) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) 39)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-406 (-562))) NIL (-12 (|has| |#1| (-997)) (|has| |#1| (-1192)))) (($ $ $) NIL (|has| |#1| (-1192))) (($ $ (-562)) NIL (|has| |#1| (-362)))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-562)) $) NIL (|has| |#1| (-362))) (($ $ (-406 (-562))) NIL (|has| |#1| (-362))))) -(((-168 |#1|) (-13 (-165 |#1|) (-10 -7 (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|))) (-171)) (T -168)) -NIL -(-13 (-165 |#1|) (-10 -7 (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|))) -((-4208 (((-887 |#1|) |#3|) 22))) -(((-169 |#1| |#2| |#3|) (-10 -7 (-15 -4208 ((-887 |#1|) |#3|))) (-1092) (-13 (-610 (-887 |#1|)) (-171)) (-165 |#2|)) (T -169)) -((-4208 (*1 *2 *3) (-12 (-4 *5 (-13 (-610 *2) (-171))) (-5 *2 (-887 *4)) (-5 *1 (-169 *4 *5 *3)) (-4 *4 (-1092)) (-4 *3 (-165 *5))))) -(-10 -7 (-15 -4208 ((-887 |#1|) |#3|))) -((-4041 (((-112) $ $) NIL)) (-3848 (((-112) $) 9)) (-2665 (((-112) $ (-112)) 11)) (-1458 (($) 12)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4220 (($ $) 13)) (-4053 (((-857) $) 17)) (-4231 (((-112) $) 8)) (-1449 (((-112) $ (-112)) 10)) (-1733 (((-112) $ $) NIL))) -(((-170) (-13 (-1092) (-10 -8 (-15 -1458 ($)) (-15 -4231 ((-112) $)) (-15 -3848 ((-112) $)) (-15 -1449 ((-112) $ (-112))) (-15 -2665 ((-112) $ (-112))) (-15 -4220 ($ $))))) (T -170)) -((-1458 (*1 *1) (-5 *1 (-170))) (-4231 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) (-3848 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) (-1449 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) (-2665 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) (-4220 (*1 *1 *1) (-5 *1 (-170)))) -(-13 (-1092) (-10 -8 (-15 -1458 ($)) (-15 -4231 ((-112) $)) (-15 -3848 ((-112) $)) (-15 -1449 ((-112) $ (-112))) (-15 -2665 ((-112) $ (-112))) (-15 -4220 ($ $)))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-1694 (((-3 $ "failed") $) 33)) (-4367 (((-112) $) 31)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11) (($ (-562)) 29)) (-1568 (((-766)) 28)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) -(((-171) (-139)) (T -171)) -NIL -(-13 (-1044) (-111 $ $) (-10 -7 (-6 (-4405 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-612 (-562)) . T) ((-609 (-857)) . T) ((-642 $) . T) ((-721) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) -((-1380 (($ $) 6))) -(((-172) (-139)) (T -172)) -((-1380 (*1 *1 *1) (-4 *1 (-172)))) -(-13 (-10 -8 (-15 -1380 ($ $)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2300 ((|#1| $) 74)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-1436 (((-112) $ $) NIL)) (-3329 (($) NIL T CONST)) (-1810 (($ $ $) NIL)) (-4111 (($ $) 19)) (-2709 (($ |#1| (-1148 |#1|)) 47)) (-1694 (((-3 $ "failed") $) 116)) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-3521 (((-112) $) NIL)) (-3971 (((-1148 |#1|) $) 81)) (-2550 (((-1148 |#1|) $) 78)) (-1364 (((-1148 |#1|) $) 79)) (-4367 (((-112) $) NIL)) (-1665 (((-1148 |#1|) $) 87)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1564 (($ (-639 $)) NIL) (($ $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ (-639 $)) NIL) (($ $ $) NIL)) (-1635 (((-417 $) $) NIL)) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL)) (-4316 (($ $ (-562)) 90)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2044 (((-766) $) NIL)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-1296 (((-1148 |#1|) $) 88)) (-2567 (((-1148 (-406 |#1|)) $) 14)) (-1477 (($ (-406 |#1|)) 17) (($ |#1| (-1148 |#1|) (-1148 |#1|)) 37)) (-1345 (($ $) 92)) (-4053 (((-857) $) 126) (($ (-562)) 50) (($ |#1|) 51) (($ (-406 |#1|)) 35) (($ (-406 (-562))) NIL) (($ $) NIL)) (-1568 (((-766)) 63)) (-3799 (((-112) $ $) NIL)) (-4033 (((-1148 (-406 |#1|)) $) 18)) (-2285 (($) 25 T CONST)) (-2294 (($) 28 T CONST)) (-1733 (((-112) $ $) 34)) (-1859 (($ $ $) 114)) (-1847 (($ $) 105) (($ $ $) 102)) (-1836 (($ $ $) 100)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 112) (($ $ $) 107) (($ $ |#1|) NIL) (($ |#1| $) 109) (($ (-406 |#1|) $) 110) (($ $ (-406 |#1|)) NIL) (($ (-406 (-562)) $) NIL) (($ $ (-406 (-562))) NIL))) -(((-173 |#1|) (-13 (-38 |#1|) (-38 (-406 |#1|)) (-362) (-10 -8 (-15 -1477 ($ (-406 |#1|))) (-15 -1477 ($ |#1| (-1148 |#1|) (-1148 |#1|))) (-15 -2709 ($ |#1| (-1148 |#1|))) (-15 -2550 ((-1148 |#1|) $)) (-15 -1364 ((-1148 |#1|) $)) (-15 -3971 ((-1148 |#1|) $)) (-15 -2300 (|#1| $)) (-15 -4111 ($ $)) (-15 -4033 ((-1148 (-406 |#1|)) $)) (-15 -2567 ((-1148 (-406 |#1|)) $)) (-15 -1665 ((-1148 |#1|) $)) (-15 -1296 ((-1148 |#1|) $)) (-15 -4316 ($ $ (-562))) (-15 -1345 ($ $)))) (-306)) (T -173)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-406 *3)) (-4 *3 (-306)) (-5 *1 (-173 *3)))) (-1477 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1148 *2)) (-4 *2 (-306)) (-5 *1 (-173 *2)))) (-2709 (*1 *1 *2 *3) (-12 (-5 *3 (-1148 *2)) (-4 *2 (-306)) (-5 *1 (-173 *2)))) (-2550 (*1 *2 *1) (-12 (-5 *2 (-1148 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-1364 (*1 *2 *1) (-12 (-5 *2 (-1148 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-3971 (*1 *2 *1) (-12 (-5 *2 (-1148 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-2300 (*1 *2 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306)))) (-4111 (*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306)))) (-4033 (*1 *2 *1) (-12 (-5 *2 (-1148 (-406 *3))) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-2567 (*1 *2 *1) (-12 (-5 *2 (-1148 (-406 *3))) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-1665 (*1 *2 *1) (-12 (-5 *2 (-1148 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-1296 (*1 *2 *1) (-12 (-5 *2 (-1148 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-4316 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) (-1345 (*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306))))) -(-13 (-38 |#1|) (-38 (-406 |#1|)) (-362) (-10 -8 (-15 -1477 ($ (-406 |#1|))) (-15 -1477 ($ |#1| (-1148 |#1|) (-1148 |#1|))) (-15 -2709 ($ |#1| (-1148 |#1|))) (-15 -2550 ((-1148 |#1|) $)) (-15 -1364 ((-1148 |#1|) $)) (-15 -3971 ((-1148 |#1|) $)) (-15 -2300 (|#1| $)) (-15 -4111 ($ $)) (-15 -4033 ((-1148 (-406 |#1|)) $)) (-15 -2567 ((-1148 (-406 |#1|)) $)) (-15 -1665 ((-1148 |#1|) $)) (-15 -1296 ((-1148 |#1|) $)) (-15 -4316 ($ $ (-562))) (-15 -1345 ($ $)))) -((-3533 (($ (-109) $) 13)) (-1817 (((-3 (-109) "failed") (-1168) $) 12)) (-4053 (((-857) $) 16)) (-4075 (((-639 (-109)) $) 8))) -(((-174) (-13 (-609 (-857)) (-10 -8 (-15 -4075 ((-639 (-109)) $)) (-15 -3533 ($ (-109) $)) (-15 -1817 ((-3 (-109) "failed") (-1168) $))))) (T -174)) -((-4075 (*1 *2 *1) (-12 (-5 *2 (-639 (-109))) (-5 *1 (-174)))) (-3533 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-174)))) (-1817 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1168)) (-5 *2 (-109)) (-5 *1 (-174))))) -(-13 (-609 (-857)) (-10 -8 (-15 -4075 ((-639 (-109)) $)) (-15 -3533 ($ (-109) $)) (-15 -1817 ((-3 (-109) "failed") (-1168) $)))) -((-3704 (((-1 (-938 |#1|) (-938 |#1|)) |#1|) 40)) (-1396 (((-938 |#1|) (-938 |#1|)) 19)) (-4197 (((-1 (-938 |#1|) (-938 |#1|)) |#1|) 36)) (-4357 (((-938 |#1|) (-938 |#1|)) 17)) (-2301 (((-938 |#1|) (-938 |#1|)) 25)) (-2451 (((-938 |#1|) (-938 |#1|)) 24)) (-1796 (((-938 |#1|) (-938 |#1|)) 23)) (-3749 (((-1 (-938 |#1|) (-938 |#1|)) |#1|) 37)) (-3359 (((-1 (-938 |#1|) (-938 |#1|)) |#1|) 35)) (-3092 (((-1 (-938 |#1|) (-938 |#1|)) |#1|) 34)) (-2466 (((-938 |#1|) (-938 |#1|)) 18)) (-3071 (((-1 (-938 |#1|) (-938 |#1|)) |#1| |#1|) 43)) (-2726 (((-938 |#1|) (-938 |#1|)) 8)) (-4368 (((-1 (-938 |#1|) (-938 |#1|)) |#1|) 39)) (-2978 (((-1 (-938 |#1|) (-938 |#1|)) |#1|) 38))) -(((-175 |#1|) (-10 -7 (-15 -2726 ((-938 |#1|) (-938 |#1|))) (-15 -4357 ((-938 |#1|) (-938 |#1|))) (-15 -2466 ((-938 |#1|) (-938 |#1|))) (-15 -1396 ((-938 |#1|) (-938 |#1|))) (-15 -1796 ((-938 |#1|) (-938 |#1|))) (-15 -2451 ((-938 |#1|) (-938 |#1|))) (-15 -2301 ((-938 |#1|) (-938 |#1|))) (-15 -3092 ((-1 (-938 |#1|) (-938 |#1|)) |#1|)) (-15 -3359 ((-1 (-938 |#1|) (-938 |#1|)) |#1|)) (-15 -4197 ((-1 (-938 |#1|) (-938 |#1|)) |#1|)) (-15 -3749 ((-1 (-938 |#1|) (-938 |#1|)) |#1|)) (-15 -2978 ((-1 (-938 |#1|) (-938 |#1|)) |#1|)) (-15 -4368 ((-1 (-938 |#1|) (-938 |#1|)) |#1|)) (-15 -3704 ((-1 (-938 |#1|) (-938 |#1|)) |#1|)) (-15 -3071 ((-1 (-938 |#1|) (-938 |#1|)) |#1| |#1|))) (-13 (-362) (-1192) (-997))) (T -175)) -((-3071 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-938 *3) (-938 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1192) (-997))))) (-3704 (*1 *2 *3) (-12 (-5 *2 (-1 (-938 *3) (-938 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1192) (-997))))) (-4368 (*1 *2 *3) (-12 (-5 *2 (-1 (-938 *3) (-938 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1192) (-997))))) (-2978 (*1 *2 *3) (-12 (-5 *2 (-1 (-938 *3) (-938 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1192) (-997))))) (-3749 (*1 *2 *3) (-12 (-5 *2 (-1 (-938 *3) (-938 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1192) (-997))))) (-4197 (*1 *2 *3) (-12 (-5 *2 (-1 (-938 *3) (-938 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1192) (-997))))) (-3359 (*1 *2 *3) (-12 (-5 *2 (-1 (-938 *3) (-938 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1192) (-997))))) (-3092 (*1 *2 *3) (-12 (-5 *2 (-1 (-938 *3) (-938 *3))) (-5 *1 (-175 *3)) (-4 *3 (-13 (-362) (-1192) (-997))))) (-2301 (*1 *2 *2) (-12 (-5 *2 (-938 *3)) (-4 *3 (-13 (-362) (-1192) (-997))) (-5 *1 (-175 *3)))) (-2451 (*1 *2 *2) (-12 (-5 *2 (-938 *3)) (-4 *3 (-13 (-362) (-1192) (-997))) (-5 *1 (-175 *3)))) (-1796 (*1 *2 *2) (-12 (-5 *2 (-938 *3)) (-4 *3 (-13 (-362) (-1192) (-997))) (-5 *1 (-175 *3)))) (-1396 (*1 *2 *2) (-12 (-5 *2 (-938 *3)) (-4 *3 (-13 (-362) (-1192) (-997))) (-5 *1 (-175 *3)))) (-2466 (*1 *2 *2) (-12 (-5 *2 (-938 *3)) (-4 *3 (-13 (-362) (-1192) (-997))) (-5 *1 (-175 *3)))) (-4357 (*1 *2 *2) (-12 (-5 *2 (-938 *3)) (-4 *3 (-13 (-362) (-1192) (-997))) (-5 *1 (-175 *3)))) (-2726 (*1 *2 *2) (-12 (-5 *2 (-938 *3)) (-4 *3 (-13 (-362) (-1192) (-997))) (-5 *1 (-175 *3))))) -(-10 -7 (-15 -2726 ((-938 |#1|) (-938 |#1|))) (-15 -4357 ((-938 |#1|) (-938 |#1|))) (-15 -2466 ((-938 |#1|) (-938 |#1|))) (-15 -1396 ((-938 |#1|) (-938 |#1|))) (-15 -1796 ((-938 |#1|) (-938 |#1|))) (-15 -2451 ((-938 |#1|) (-938 |#1|))) (-15 -2301 ((-938 |#1|) (-938 |#1|))) (-15 -3092 ((-1 (-938 |#1|) (-938 |#1|)) |#1|)) (-15 -3359 ((-1 (-938 |#1|) (-938 |#1|)) |#1|)) (-15 -4197 ((-1 (-938 |#1|) (-938 |#1|)) |#1|)) (-15 -3749 ((-1 (-938 |#1|) (-938 |#1|)) |#1|)) (-15 -2978 ((-1 (-938 |#1|) (-938 |#1|)) |#1|)) (-15 -4368 ((-1 (-938 |#1|) (-938 |#1|)) |#1|)) (-15 -3704 ((-1 (-938 |#1|) (-938 |#1|)) |#1|)) (-15 -3071 ((-1 (-938 |#1|) (-938 |#1|)) |#1| |#1|))) -((-3683 ((|#2| |#3|) 27))) -(((-176 |#1| |#2| |#3|) (-10 -7 (-15 -3683 (|#2| |#3|))) (-171) (-1232 |#1|) (-719 |#1| |#2|)) (T -176)) -((-3683 (*1 *2 *3) (-12 (-4 *4 (-171)) (-4 *2 (-1232 *4)) (-5 *1 (-176 *4 *2 *3)) (-4 *3 (-719 *4 *2))))) -(-10 -7 (-15 -3683 (|#2| |#3|))) -((-2337 (((-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|)) 47 (|has| (-947 |#2|) (-881 |#1|))))) -(((-177 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-947 |#2|) (-881 |#1|)) (-15 -2337 ((-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|))) |%noBranch|)) (-1092) (-13 (-881 |#1|) (-171)) (-165 |#2|)) (T -177)) -((-2337 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 *3)) (-5 *4 (-887 *5)) (-4 *5 (-1092)) (-4 *3 (-165 *6)) (-4 (-947 *6) (-881 *5)) (-4 *6 (-13 (-881 *5) (-171))) (-5 *1 (-177 *5 *6 *3))))) -(-10 -7 (IF (|has| (-947 |#2|) (-881 |#1|)) (-15 -2337 ((-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|))) |%noBranch|)) -((-3724 (((-639 |#1|) (-639 |#1|) |#1|) 38)) (-3933 (((-639 |#1|) |#1| (-639 |#1|)) 19)) (-3143 (((-639 |#1|) (-639 (-639 |#1|)) (-639 |#1|)) 33) ((|#1| (-639 |#1|) (-639 |#1|)) 31))) -(((-178 |#1|) (-10 -7 (-15 -3933 ((-639 |#1|) |#1| (-639 |#1|))) (-15 -3143 (|#1| (-639 |#1|) (-639 |#1|))) (-15 -3143 ((-639 |#1|) (-639 (-639 |#1|)) (-639 |#1|))) (-15 -3724 ((-639 |#1|) (-639 |#1|) |#1|))) (-306)) (T -178)) -((-3724 (*1 *2 *2 *3) (-12 (-5 *2 (-639 *3)) (-4 *3 (-306)) (-5 *1 (-178 *3)))) (-3143 (*1 *2 *3 *2) (-12 (-5 *3 (-639 (-639 *4))) (-5 *2 (-639 *4)) (-4 *4 (-306)) (-5 *1 (-178 *4)))) (-3143 (*1 *2 *3 *3) (-12 (-5 *3 (-639 *2)) (-5 *1 (-178 *2)) (-4 *2 (-306)))) (-3933 (*1 *2 *3 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-306)) (-5 *1 (-178 *3))))) -(-10 -7 (-15 -3933 ((-639 |#1|) |#1| (-639 |#1|))) (-15 -3143 (|#1| (-639 |#1|) (-639 |#1|))) (-15 -3143 ((-639 |#1|) (-639 (-639 |#1|)) (-639 |#1|))) (-15 -3724 ((-639 |#1|) (-639 |#1|) |#1|))) -((-4041 (((-112) $ $) NIL)) (-4084 (((-1206) $) 13)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1743 (((-1127) $) 10)) (-4053 (((-857) $) 22) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-179) (-13 (-1075) (-10 -8 (-15 -1743 ((-1127) $)) (-15 -4084 ((-1206) $))))) (T -179)) -((-1743 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-179)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-179))))) -(-13 (-1075) (-10 -8 (-15 -1743 ((-1127) $)) (-15 -4084 ((-1206) $)))) -((-1451 (((-2 (|:| |start| |#2|) (|:| -2656 (-417 |#2|))) |#2|) 61)) (-2047 ((|#1| |#1|) 54)) (-2893 (((-168 |#1|) |#2|) 84)) (-2242 ((|#1| |#2|) 124) ((|#1| |#2| |#1|) 82)) (-2071 ((|#2| |#2|) 83)) (-3785 (((-417 |#2|) |#2| |#1|) 114) (((-417 |#2|) |#2| |#1| (-112)) 81)) (-4363 ((|#1| |#2|) 113)) (-3226 ((|#2| |#2|) 120)) (-1635 (((-417 |#2|) |#2|) 135) (((-417 |#2|) |#2| |#1|) 32) (((-417 |#2|) |#2| |#1| (-112)) 134)) (-4115 (((-639 (-2 (|:| -2656 (-639 |#2|)) (|:| -3964 |#1|))) |#2| |#2|) 133) (((-639 (-2 (|:| -2656 (-639 |#2|)) (|:| -3964 |#1|))) |#2| |#2| (-112)) 76)) (-1318 (((-639 (-168 |#1|)) |#2| |#1|) 40) (((-639 (-168 |#1|)) |#2|) 41))) -(((-180 |#1| |#2|) (-10 -7 (-15 -1318 ((-639 (-168 |#1|)) |#2|)) (-15 -1318 ((-639 (-168 |#1|)) |#2| |#1|)) (-15 -4115 ((-639 (-2 (|:| -2656 (-639 |#2|)) (|:| -3964 |#1|))) |#2| |#2| (-112))) (-15 -4115 ((-639 (-2 (|:| -2656 (-639 |#2|)) (|:| -3964 |#1|))) |#2| |#2|)) (-15 -1635 ((-417 |#2|) |#2| |#1| (-112))) (-15 -1635 ((-417 |#2|) |#2| |#1|)) (-15 -1635 ((-417 |#2|) |#2|)) (-15 -3226 (|#2| |#2|)) (-15 -4363 (|#1| |#2|)) (-15 -3785 ((-417 |#2|) |#2| |#1| (-112))) (-15 -3785 ((-417 |#2|) |#2| |#1|)) (-15 -2071 (|#2| |#2|)) (-15 -2242 (|#1| |#2| |#1|)) (-15 -2242 (|#1| |#2|)) (-15 -2893 ((-168 |#1|) |#2|)) (-15 -2047 (|#1| |#1|)) (-15 -1451 ((-2 (|:| |start| |#2|) (|:| -2656 (-417 |#2|))) |#2|))) (-13 (-362) (-843)) (-1232 (-168 |#1|))) (T -180)) -((-1451 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-843))) (-5 *2 (-2 (|:| |start| *3) (|:| -2656 (-417 *3)))) (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4))))) (-2047 (*1 *2 *2) (-12 (-4 *2 (-13 (-362) (-843))) (-5 *1 (-180 *2 *3)) (-4 *3 (-1232 (-168 *2))))) (-2893 (*1 *2 *3) (-12 (-5 *2 (-168 *4)) (-5 *1 (-180 *4 *3)) (-4 *4 (-13 (-362) (-843))) (-4 *3 (-1232 *2)))) (-2242 (*1 *2 *3) (-12 (-4 *2 (-13 (-362) (-843))) (-5 *1 (-180 *2 *3)) (-4 *3 (-1232 (-168 *2))))) (-2242 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-362) (-843))) (-5 *1 (-180 *2 *3)) (-4 *3 (-1232 (-168 *2))))) (-2071 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-843))) (-5 *1 (-180 *3 *2)) (-4 *2 (-1232 (-168 *3))))) (-3785 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-362) (-843))) (-5 *2 (-417 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4))))) (-3785 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-362) (-843))) (-5 *2 (-417 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4))))) (-4363 (*1 *2 *3) (-12 (-4 *2 (-13 (-362) (-843))) (-5 *1 (-180 *2 *3)) (-4 *3 (-1232 (-168 *2))))) (-3226 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-843))) (-5 *1 (-180 *3 *2)) (-4 *2 (-1232 (-168 *3))))) (-1635 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-843))) (-5 *2 (-417 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4))))) (-1635 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-362) (-843))) (-5 *2 (-417 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4))))) (-1635 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-362) (-843))) (-5 *2 (-417 *3)) (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4))))) (-4115 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-362) (-843))) (-5 *2 (-639 (-2 (|:| -2656 (-639 *3)) (|:| -3964 *4)))) (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4))))) (-4115 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-362) (-843))) (-5 *2 (-639 (-2 (|:| -2656 (-639 *3)) (|:| -3964 *5)))) (-5 *1 (-180 *5 *3)) (-4 *3 (-1232 (-168 *5))))) (-1318 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-362) (-843))) (-5 *2 (-639 (-168 *4))) (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4))))) (-1318 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-843))) (-5 *2 (-639 (-168 *4))) (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4)))))) -(-10 -7 (-15 -1318 ((-639 (-168 |#1|)) |#2|)) (-15 -1318 ((-639 (-168 |#1|)) |#2| |#1|)) (-15 -4115 ((-639 (-2 (|:| -2656 (-639 |#2|)) (|:| -3964 |#1|))) |#2| |#2| (-112))) (-15 -4115 ((-639 (-2 (|:| -2656 (-639 |#2|)) (|:| -3964 |#1|))) |#2| |#2|)) (-15 -1635 ((-417 |#2|) |#2| |#1| (-112))) (-15 -1635 ((-417 |#2|) |#2| |#1|)) (-15 -1635 ((-417 |#2|) |#2|)) (-15 -3226 (|#2| |#2|)) (-15 -4363 (|#1| |#2|)) (-15 -3785 ((-417 |#2|) |#2| |#1| (-112))) (-15 -3785 ((-417 |#2|) |#2| |#1|)) (-15 -2071 (|#2| |#2|)) (-15 -2242 (|#1| |#2| |#1|)) (-15 -2242 (|#1| |#2|)) (-15 -2893 ((-168 |#1|) |#2|)) (-15 -2047 (|#1| |#1|)) (-15 -1451 ((-2 (|:| |start| |#2|) (|:| -2656 (-417 |#2|))) |#2|))) -((-1866 (((-3 |#2| "failed") |#2|) 14)) (-2082 (((-766) |#2|) 16)) (-1770 ((|#2| |#2| |#2|) 18))) -(((-181 |#1| |#2|) (-10 -7 (-15 -1866 ((-3 |#2| "failed") |#2|)) (-15 -2082 ((-766) |#2|)) (-15 -1770 (|#2| |#2| |#2|))) (-1207) (-668 |#1|)) (T -181)) -((-1770 (*1 *2 *2 *2) (-12 (-4 *3 (-1207)) (-5 *1 (-181 *3 *2)) (-4 *2 (-668 *3)))) (-2082 (*1 *2 *3) (-12 (-4 *4 (-1207)) (-5 *2 (-766)) (-5 *1 (-181 *4 *3)) (-4 *3 (-668 *4)))) (-1866 (*1 *2 *2) (|partial| -12 (-4 *3 (-1207)) (-5 *1 (-181 *3 *2)) (-4 *2 (-668 *3))))) -(-10 -7 (-15 -1866 ((-3 |#2| "failed") |#2|)) (-15 -2082 ((-766) |#2|)) (-15 -1770 (|#2| |#2| |#2|))) -((-4041 (((-112) $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1875 (((-186) $) 7)) (-4053 (((-857) $) 14)) (-3433 (((-639 (-1173)) $) 10)) (-1733 (((-112) $ $) 12))) -(((-182) (-13 (-1092) (-10 -8 (-15 -1875 ((-186) $)) (-15 -3433 ((-639 (-1173)) $))))) (T -182)) -((-1875 (*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-182)))) (-3433 (*1 *2 *1) (-12 (-5 *2 (-639 (-1173))) (-5 *1 (-182))))) -(-13 (-1092) (-10 -8 (-15 -1875 ((-186) $)) (-15 -3433 ((-639 (-1173)) $)))) -((-3360 (((-639 (-860)) $) 16)) (-2420 (((-185) $) 8)) (-2760 (((-639 (-112)) $) 13)) (-3975 (((-55) $) 10))) -(((-183 |#1|) (-10 -8 (-15 -3360 ((-639 (-860)) |#1|)) (-15 -2760 ((-639 (-112)) |#1|)) (-15 -2420 ((-185) |#1|)) (-15 -3975 ((-55) |#1|))) (-184)) (T -183)) -NIL -(-10 -8 (-15 -3360 ((-639 (-860)) |#1|)) (-15 -2760 ((-639 (-112)) |#1|)) (-15 -2420 ((-185) |#1|)) (-15 -3975 ((-55) |#1|))) -((-4041 (((-112) $ $) 7)) (-3360 (((-639 (-860)) $) 17)) (-3253 (((-505) $) 14)) (-3696 (((-1150) $) 9)) (-2420 (((-185) $) 19)) (-1709 (((-1112) $) 10)) (-2760 (((-639 (-112)) $) 18)) (-4053 (((-857) $) 11)) (-3975 (((-55) $) 13)) (-1733 (((-112) $ $) 6))) -(((-184) (-139)) (T -184)) -((-2420 (*1 *2 *1) (-12 (-4 *1 (-184)) (-5 *2 (-185)))) (-2760 (*1 *2 *1) (-12 (-4 *1 (-184)) (-5 *2 (-639 (-112))))) (-3360 (*1 *2 *1) (-12 (-4 *1 (-184)) (-5 *2 (-639 (-860)))))) -(-13 (-830 (-505)) (-10 -8 (-15 -2420 ((-185) $)) (-15 -2760 ((-639 (-112)) $)) (-15 -3360 ((-639 (-860)) $)))) -(((-102) . T) ((-609 (-857)) . T) ((-830 (-505)) . T) ((-1092) . T)) -((-4041 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-8 (($) 7 T CONST)) (-4053 (((-857) $) 12)) (-9 (($) 6 T CONST)) (-1733 (((-112) $ $) 10))) -(((-185) (-13 (-1092) (-10 -8 (-15 -9 ($) -1497) (-15 -8 ($) -1497) (-15 -7 ($) -1497)))) (T -185)) -((-9 (*1 *1) (-5 *1 (-185))) (-8 (*1 *1) (-5 *1 (-185))) (-7 (*1 *1) (-5 *1 (-185)))) -(-13 (-1092) (-10 -8 (-15 -9 ($) -1497) (-15 -8 ($) -1497) (-15 -7 ($) -1497))) -((-4041 (((-112) $ $) NIL)) (-3360 (((-639 (-860)) $) NIL)) (-3253 (((-505) $) 8)) (-3696 (((-1150) $) NIL)) (-2420 (((-185) $) 10)) (-1709 (((-1112) $) NIL)) (-3209 (((-685 $) (-1168)) 18)) (-2760 (((-639 (-112)) $) NIL)) (-4053 (((-857) $) NIL)) (-3975 (((-55) $) 12)) (-1733 (((-112) $ $) NIL))) -(((-186) (-13 (-184) (-10 -8 (-15 -3209 ((-685 $) (-1168)))))) (T -186)) -((-3209 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-685 (-186))) (-5 *1 (-186))))) -(-13 (-184) (-10 -8 (-15 -3209 ((-685 $) (-1168))))) -((-3456 ((|#2| |#2|) 28)) (-2091 (((-112) |#2|) 19)) (-1657 (((-315 |#1|) |#2|) 12)) (-1670 (((-315 |#1|) |#2|) 14)) (-2402 ((|#2| |#2| (-1168)) 68) ((|#2| |#2|) 69)) (-2050 (((-168 (-315 |#1|)) |#2|) 10)) (-1553 ((|#2| |#2| (-1168)) 65) ((|#2| |#2|) 59))) -(((-187 |#1| |#2|) (-10 -7 (-15 -2402 (|#2| |#2|)) (-15 -2402 (|#2| |#2| (-1168))) (-15 -1553 (|#2| |#2|)) (-15 -1553 (|#2| |#2| (-1168))) (-15 -1657 ((-315 |#1|) |#2|)) (-15 -1670 ((-315 |#1|) |#2|)) (-15 -2091 ((-112) |#2|)) (-15 -3456 (|#2| |#2|)) (-15 -2050 ((-168 (-315 |#1|)) |#2|))) (-13 (-554) (-845) (-1033 (-562))) (-13 (-27) (-1192) (-429 (-168 |#1|)))) (T -187)) -((-2050 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) (-5 *2 (-168 (-315 *4))) (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1192) (-429 (-168 *4)))))) (-3456 (*1 *2 *2) (-12 (-4 *3 (-13 (-554) (-845) (-1033 (-562)))) (-5 *1 (-187 *3 *2)) (-4 *2 (-13 (-27) (-1192) (-429 (-168 *3)))))) (-2091 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) (-5 *2 (-112)) (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1192) (-429 (-168 *4)))))) (-1670 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) (-5 *2 (-315 *4)) (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1192) (-429 (-168 *4)))))) (-1657 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) (-5 *2 (-315 *4)) (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1192) (-429 (-168 *4)))))) (-1553 (*1 *2 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) (-5 *1 (-187 *4 *2)) (-4 *2 (-13 (-27) (-1192) (-429 (-168 *4)))))) (-1553 (*1 *2 *2) (-12 (-4 *3 (-13 (-554) (-845) (-1033 (-562)))) (-5 *1 (-187 *3 *2)) (-4 *2 (-13 (-27) (-1192) (-429 (-168 *3)))))) (-2402 (*1 *2 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) (-5 *1 (-187 *4 *2)) (-4 *2 (-13 (-27) (-1192) (-429 (-168 *4)))))) (-2402 (*1 *2 *2) (-12 (-4 *3 (-13 (-554) (-845) (-1033 (-562)))) (-5 *1 (-187 *3 *2)) (-4 *2 (-13 (-27) (-1192) (-429 (-168 *3))))))) -(-10 -7 (-15 -2402 (|#2| |#2|)) (-15 -2402 (|#2| |#2| (-1168))) (-15 -1553 (|#2| |#2|)) (-15 -1553 (|#2| |#2| (-1168))) (-15 -1657 ((-315 |#1|) |#2|)) (-15 -1670 ((-315 |#1|) |#2|)) (-15 -2091 ((-112) |#2|)) (-15 -3456 (|#2| |#2|)) (-15 -2050 ((-168 (-315 |#1|)) |#2|))) -((-1317 (((-1256 (-683 (-947 |#1|))) (-1256 (-683 |#1|))) 24)) (-4053 (((-1256 (-683 (-406 (-947 |#1|)))) (-1256 (-683 |#1|))) 33))) -(((-188 |#1|) (-10 -7 (-15 -1317 ((-1256 (-683 (-947 |#1|))) (-1256 (-683 |#1|)))) (-15 -4053 ((-1256 (-683 (-406 (-947 |#1|)))) (-1256 (-683 |#1|))))) (-171)) (T -188)) -((-4053 (*1 *2 *3) (-12 (-5 *3 (-1256 (-683 *4))) (-4 *4 (-171)) (-5 *2 (-1256 (-683 (-406 (-947 *4))))) (-5 *1 (-188 *4)))) (-1317 (*1 *2 *3) (-12 (-5 *3 (-1256 (-683 *4))) (-4 *4 (-171)) (-5 *2 (-1256 (-683 (-947 *4)))) (-5 *1 (-188 *4))))) -(-10 -7 (-15 -1317 ((-1256 (-683 (-947 |#1|))) (-1256 (-683 |#1|)))) (-15 -4053 ((-1256 (-683 (-406 (-947 |#1|)))) (-1256 (-683 |#1|))))) -((-4271 (((-1170 (-406 (-562))) (-1170 (-406 (-562))) (-1170 (-406 (-562)))) 66)) (-3348 (((-1170 (-406 (-562))) (-639 (-562)) (-639 (-562))) 75)) (-1629 (((-1170 (-406 (-562))) (-562)) 40)) (-1880 (((-1170 (-406 (-562))) (-562)) 52)) (-1433 (((-406 (-562)) (-1170 (-406 (-562)))) 62)) (-1728 (((-1170 (-406 (-562))) (-562)) 32)) (-1998 (((-1170 (-406 (-562))) (-562)) 48)) (-1310 (((-1170 (-406 (-562))) (-562)) 46)) (-2434 (((-1170 (-406 (-562))) (-1170 (-406 (-562))) (-1170 (-406 (-562)))) 60)) (-1345 (((-1170 (-406 (-562))) (-562)) 25)) (-2080 (((-406 (-562)) (-1170 (-406 (-562))) (-1170 (-406 (-562)))) 64)) (-1292 (((-1170 (-406 (-562))) (-562)) 30)) (-1339 (((-1170 (-406 (-562))) (-639 (-562))) 72))) -(((-189) (-10 -7 (-15 -1345 ((-1170 (-406 (-562))) (-562))) (-15 -1629 ((-1170 (-406 (-562))) (-562))) (-15 -1728 ((-1170 (-406 (-562))) (-562))) (-15 -1292 ((-1170 (-406 (-562))) (-562))) (-15 -1310 ((-1170 (-406 (-562))) (-562))) (-15 -1998 ((-1170 (-406 (-562))) (-562))) (-15 -1880 ((-1170 (-406 (-562))) (-562))) (-15 -2080 ((-406 (-562)) (-1170 (-406 (-562))) (-1170 (-406 (-562))))) (-15 -2434 ((-1170 (-406 (-562))) (-1170 (-406 (-562))) (-1170 (-406 (-562))))) (-15 -1433 ((-406 (-562)) (-1170 (-406 (-562))))) (-15 -4271 ((-1170 (-406 (-562))) (-1170 (-406 (-562))) (-1170 (-406 (-562))))) (-15 -1339 ((-1170 (-406 (-562))) (-639 (-562)))) (-15 -3348 ((-1170 (-406 (-562))) (-639 (-562)) (-639 (-562)))))) (T -189)) -((-3348 (*1 *2 *3 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)))) (-1339 (*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)))) (-4271 (*1 *2 *2 *2) (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-1170 (-406 (-562)))) (-5 *2 (-406 (-562))) (-5 *1 (-189)))) (-2434 (*1 *2 *2 *2) (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)))) (-2080 (*1 *2 *3 *3) (-12 (-5 *3 (-1170 (-406 (-562)))) (-5 *2 (-406 (-562))) (-5 *1 (-189)))) (-1880 (*1 *2 *3) (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)) (-5 *3 (-562)))) (-1998 (*1 *2 *3) (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)) (-5 *3 (-562)))) (-1310 (*1 *2 *3) (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)) (-5 *3 (-562)))) (-1292 (*1 *2 *3) (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)) (-5 *3 (-562)))) (-1728 (*1 *2 *3) (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)) (-5 *3 (-562)))) (-1629 (*1 *2 *3) (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)) (-5 *3 (-562)))) (-1345 (*1 *2 *3) (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)) (-5 *3 (-562))))) -(-10 -7 (-15 -1345 ((-1170 (-406 (-562))) (-562))) (-15 -1629 ((-1170 (-406 (-562))) (-562))) (-15 -1728 ((-1170 (-406 (-562))) (-562))) (-15 -1292 ((-1170 (-406 (-562))) (-562))) (-15 -1310 ((-1170 (-406 (-562))) (-562))) (-15 -1998 ((-1170 (-406 (-562))) (-562))) (-15 -1880 ((-1170 (-406 (-562))) (-562))) (-15 -2080 ((-406 (-562)) (-1170 (-406 (-562))) (-1170 (-406 (-562))))) (-15 -2434 ((-1170 (-406 (-562))) (-1170 (-406 (-562))) (-1170 (-406 (-562))))) (-15 -1433 ((-406 (-562)) (-1170 (-406 (-562))))) (-15 -4271 ((-1170 (-406 (-562))) (-1170 (-406 (-562))) (-1170 (-406 (-562))))) (-15 -1339 ((-1170 (-406 (-562))) (-639 (-562)))) (-15 -3348 ((-1170 (-406 (-562))) (-639 (-562)) (-639 (-562))))) -((-3285 (((-417 (-1164 (-562))) (-562)) 28)) (-3910 (((-639 (-1164 (-562))) (-562)) 23)) (-3612 (((-1164 (-562)) (-562)) 21))) -(((-190) (-10 -7 (-15 -3910 ((-639 (-1164 (-562))) (-562))) (-15 -3612 ((-1164 (-562)) (-562))) (-15 -3285 ((-417 (-1164 (-562))) (-562))))) (T -190)) -((-3285 (*1 *2 *3) (-12 (-5 *2 (-417 (-1164 (-562)))) (-5 *1 (-190)) (-5 *3 (-562)))) (-3612 (*1 *2 *3) (-12 (-5 *2 (-1164 (-562))) (-5 *1 (-190)) (-5 *3 (-562)))) (-3910 (*1 *2 *3) (-12 (-5 *2 (-639 (-1164 (-562)))) (-5 *1 (-190)) (-5 *3 (-562))))) -(-10 -7 (-15 -3910 ((-639 (-1164 (-562))) (-562))) (-15 -3612 ((-1164 (-562)) (-562))) (-15 -3285 ((-417 (-1164 (-562))) (-562)))) -((-2748 (((-1148 (-224)) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 103)) (-3906 (((-639 (-1150)) (-1148 (-224))) NIL)) (-3420 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 79)) (-3837 (((-639 (-224)) (-315 (-224)) (-1168) (-1086 (-838 (-224)))) NIL)) (-2793 (((-639 (-1150)) (-639 (-224))) NIL)) (-1516 (((-224) (-1086 (-838 (-224)))) 24)) (-3628 (((-224) (-1086 (-838 (-224)))) 25)) (-1295 (((-378) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 96)) (-4043 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 42)) (-1682 (((-1150) (-224)) NIL)) (-2975 (((-1150) (-639 (-1150))) 20)) (-2103 (((-1030) (-1168) (-1168) (-1030)) 13))) -(((-191) (-10 -7 (-15 -3420 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4043 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1516 ((-224) (-1086 (-838 (-224))))) (-15 -3628 ((-224) (-1086 (-838 (-224))))) (-15 -1295 ((-378) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3837 ((-639 (-224)) (-315 (-224)) (-1168) (-1086 (-838 (-224))))) (-15 -2748 ((-1148 (-224)) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1682 ((-1150) (-224))) (-15 -2793 ((-639 (-1150)) (-639 (-224)))) (-15 -3906 ((-639 (-1150)) (-1148 (-224)))) (-15 -2975 ((-1150) (-639 (-1150)))) (-15 -2103 ((-1030) (-1168) (-1168) (-1030))))) (T -191)) -((-2103 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1030)) (-5 *3 (-1168)) (-5 *1 (-191)))) (-2975 (*1 *2 *3) (-12 (-5 *3 (-639 (-1150))) (-5 *2 (-1150)) (-5 *1 (-191)))) (-3906 (*1 *2 *3) (-12 (-5 *3 (-1148 (-224))) (-5 *2 (-639 (-1150))) (-5 *1 (-191)))) (-2793 (*1 *2 *3) (-12 (-5 *3 (-639 (-224))) (-5 *2 (-639 (-1150))) (-5 *1 (-191)))) (-1682 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1150)) (-5 *1 (-191)))) (-2748 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-1148 (-224))) (-5 *1 (-191)))) (-3837 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-224))) (-5 *4 (-1168)) (-5 *5 (-1086 (-838 (-224)))) (-5 *2 (-639 (-224))) (-5 *1 (-191)))) (-1295 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-378)) (-5 *1 (-191)))) (-3628 (*1 *2 *3) (-12 (-5 *3 (-1086 (-838 (-224)))) (-5 *2 (-224)) (-5 *1 (-191)))) (-1516 (*1 *2 *3) (-12 (-5 *3 (-1086 (-838 (-224)))) (-5 *2 (-224)) (-5 *1 (-191)))) (-4043 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-191)))) (-3420 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-191))))) -(-10 -7 (-15 -3420 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4043 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1516 ((-224) (-1086 (-838 (-224))))) (-15 -3628 ((-224) (-1086 (-838 (-224))))) (-15 -1295 ((-378) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3837 ((-639 (-224)) (-315 (-224)) (-1168) (-1086 (-838 (-224))))) (-15 -2748 ((-1148 (-224)) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1682 ((-1150) (-224))) (-15 -2793 ((-639 (-1150)) (-639 (-224)))) (-15 -3906 ((-639 (-1150)) (-1148 (-224)))) (-15 -2975 ((-1150) (-639 (-1150)))) (-15 -2103 ((-1030) (-1168) (-1168) (-1030)))) -((-4041 (((-112) $ $) NIL)) (-1908 (((-1030) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) 55) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) NIL)) (-1806 (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 32) (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-192) (-782)) (T -192)) -NIL -(-782) -((-4041 (((-112) $ $) NIL)) (-1908 (((-1030) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) 60) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) NIL)) (-1806 (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 41) (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-193) (-782)) (T -193)) -NIL -(-782) -((-4041 (((-112) $ $) NIL)) (-1908 (((-1030) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) 69) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) NIL)) (-1806 (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 40) (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-194) (-782)) (T -194)) -NIL -(-782) -((-4041 (((-112) $ $) NIL)) (-1908 (((-1030) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) 56) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) NIL)) (-1806 (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 34) (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-195) (-782)) (T -195)) -NIL -(-782) -((-4041 (((-112) $ $) NIL)) (-1908 (((-1030) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) 67) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) NIL)) (-1806 (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 38) (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-196) (-782)) (T -196)) -NIL -(-782) -((-4041 (((-112) $ $) NIL)) (-1908 (((-1030) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) 73) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) NIL)) (-1806 (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 36) (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-197) (-782)) (T -197)) -NIL -(-782) -((-4041 (((-112) $ $) NIL)) (-1908 (((-1030) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) 80) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) NIL)) (-1806 (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 44) (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-198) (-782)) (T -198)) -NIL -(-782) -((-4041 (((-112) $ $) NIL)) (-1908 (((-1030) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) 70) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) NIL)) (-1806 (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 40) (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-199) (-782)) (T -199)) -NIL -(-782) -((-4041 (((-112) $ $) NIL)) (-1908 (((-1030) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) NIL) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) 65)) (-1806 (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL) (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 32)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-200) (-782)) (T -200)) -NIL -(-782) -((-4041 (((-112) $ $) NIL)) (-1908 (((-1030) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) NIL) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) 63)) (-1806 (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL) (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 34)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-201) (-782)) (T -201)) -NIL -(-782) -((-4041 (((-112) $ $) NIL)) (-1908 (((-1030) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) 90) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) NIL)) (-1806 (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 78) (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-202) (-782)) (T -202)) -NIL -(-782) -((-4186 (((-3 (-2 (|:| -2429 (-114)) (|:| |w| (-224))) "failed") (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 84)) (-3088 (((-562) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 42)) (-3957 (((-3 (-639 (-224)) "failed") (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 73))) -(((-203) (-10 -7 (-15 -4186 ((-3 (-2 (|:| -2429 (-114)) (|:| |w| (-224))) "failed") (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3957 ((-3 (-639 (-224)) "failed") (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3088 ((-562) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (T -203)) -((-3088 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-562)) (-5 *1 (-203)))) (-3957 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-639 (-224))) (-5 *1 (-203)))) (-4186 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| -2429 (-114)) (|:| |w| (-224)))) (-5 *1 (-203))))) -(-10 -7 (-15 -4186 ((-3 (-2 (|:| -2429 (-114)) (|:| |w| (-224))) "failed") (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3957 ((-3 (-639 (-224)) "failed") (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3088 ((-562) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) -((-2214 (((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 39)) (-2431 (((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 128)) (-2638 (((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-683 (-315 (-224)))) 87)) (-3990 (((-378) (-683 (-315 (-224)))) 111)) (-3648 (((-683 (-315 (-224))) (-1256 (-315 (-224))) (-639 (-1168))) 108)) (-2379 (((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 30)) (-4222 (((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 43)) (-1433 (((-683 (-315 (-224))) (-683 (-315 (-224))) (-639 (-1168)) (-1256 (-315 (-224)))) 100)) (-2594 (((-378) (-378) (-639 (-378))) 105) (((-378) (-378) (-378)) 103)) (-3585 (((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 36))) -(((-204) (-10 -7 (-15 -2594 ((-378) (-378) (-378))) (-15 -2594 ((-378) (-378) (-639 (-378)))) (-15 -3990 ((-378) (-683 (-315 (-224))))) (-15 -3648 ((-683 (-315 (-224))) (-1256 (-315 (-224))) (-639 (-1168)))) (-15 -1433 ((-683 (-315 (-224))) (-683 (-315 (-224))) (-639 (-1168)) (-1256 (-315 (-224))))) (-15 -2638 ((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-683 (-315 (-224))))) (-15 -2431 ((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2214 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4222 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3585 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2379 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (T -204)) -((-2379 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-378)) (-5 *1 (-204)))) (-3585 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-378)) (-5 *1 (-204)))) (-4222 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-378)) (-5 *1 (-204)))) (-2214 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-378)) (-5 *1 (-204)))) (-2431 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378)))) (-5 *1 (-204)))) (-2638 (*1 *2 *3) (-12 (-5 *3 (-683 (-315 (-224)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378)))) (-5 *1 (-204)))) (-1433 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-683 (-315 (-224)))) (-5 *3 (-639 (-1168))) (-5 *4 (-1256 (-315 (-224)))) (-5 *1 (-204)))) (-3648 (*1 *2 *3 *4) (-12 (-5 *3 (-1256 (-315 (-224)))) (-5 *4 (-639 (-1168))) (-5 *2 (-683 (-315 (-224)))) (-5 *1 (-204)))) (-3990 (*1 *2 *3) (-12 (-5 *3 (-683 (-315 (-224)))) (-5 *2 (-378)) (-5 *1 (-204)))) (-2594 (*1 *2 *2 *3) (-12 (-5 *3 (-639 (-378))) (-5 *2 (-378)) (-5 *1 (-204)))) (-2594 (*1 *2 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-204))))) -(-10 -7 (-15 -2594 ((-378) (-378) (-378))) (-15 -2594 ((-378) (-378) (-639 (-378)))) (-15 -3990 ((-378) (-683 (-315 (-224))))) (-15 -3648 ((-683 (-315 (-224))) (-1256 (-315 (-224))) (-639 (-1168)))) (-15 -1433 ((-683 (-315 (-224))) (-683 (-315 (-224))) (-639 (-1168)) (-1256 (-315 (-224))))) (-15 -2638 ((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-683 (-315 (-224))))) (-15 -2431 ((-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378))) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2214 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4222 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3585 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2379 ((-378) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) -((-4041 (((-112) $ $) NIL)) (-1806 (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 41)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-3069 (((-1030) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 64)) (-1733 (((-112) $ $) NIL))) -(((-205) (-795)) (T -205)) -NIL -(-795) -((-4041 (((-112) $ $) NIL)) (-1806 (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 41)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-3069 (((-1030) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 62)) (-1733 (((-112) $ $) NIL))) -(((-206) (-795)) (T -206)) -NIL -(-795) -((-4041 (((-112) $ $) NIL)) (-1806 (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 40)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-3069 (((-1030) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 66)) (-1733 (((-112) $ $) NIL))) -(((-207) (-795)) (T -207)) -NIL -(-795) -((-4041 (((-112) $ $) NIL)) (-1806 (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 46)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-3069 (((-1030) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 75)) (-1733 (((-112) $ $) NIL))) -(((-208) (-795)) (T -208)) -NIL -(-795) -((-2850 (((-639 (-1168)) (-1168) (-766)) 23)) (-3438 (((-315 (-224)) (-315 (-224))) 31)) (-2666 (((-112) (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224)))) 73)) (-3490 (((-112) (-224) (-224) (-639 (-315 (-224)))) 44))) -(((-209) (-10 -7 (-15 -2850 ((-639 (-1168)) (-1168) (-766))) (-15 -3438 ((-315 (-224)) (-315 (-224)))) (-15 -3490 ((-112) (-224) (-224) (-639 (-315 (-224))))) (-15 -2666 ((-112) (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224))))))) (T -209)) -((-2666 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224)))) (-5 *2 (-112)) (-5 *1 (-209)))) (-3490 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-639 (-315 (-224)))) (-5 *3 (-224)) (-5 *2 (-112)) (-5 *1 (-209)))) (-3438 (*1 *2 *2) (-12 (-5 *2 (-315 (-224))) (-5 *1 (-209)))) (-2850 (*1 *2 *3 *4) (-12 (-5 *4 (-766)) (-5 *2 (-639 (-1168))) (-5 *1 (-209)) (-5 *3 (-1168))))) -(-10 -7 (-15 -2850 ((-639 (-1168)) (-1168) (-766))) (-15 -3438 ((-315 (-224)) (-315 (-224)))) (-15 -3490 ((-112) (-224) (-224) (-639 (-315 (-224))))) (-15 -2666 ((-112) (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224)))))) -((-4041 (((-112) $ $) NIL)) (-1806 (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224)))) 26)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-1727 (((-1030) (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224)))) 57)) (-1733 (((-112) $ $) NIL))) -(((-210) (-890)) (T -210)) -NIL -(-890) -((-4041 (((-112) $ $) NIL)) (-1806 (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224)))) 21)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-1727 (((-1030) (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224)))) NIL)) (-1733 (((-112) $ $) NIL))) -(((-211) (-890)) (T -211)) -NIL -(-890) -((-4041 (((-112) $ $) NIL)) (-1435 ((|#2| $ (-766) |#2|) 11)) (-1420 ((|#2| $ (-766)) 10)) (-1458 (($) 8)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 18)) (-1733 (((-112) $ $) 13))) -(((-212 |#1| |#2|) (-13 (-1092) (-10 -8 (-15 -1458 ($)) (-15 -1420 (|#2| $ (-766))) (-15 -1435 (|#2| $ (-766) |#2|)))) (-916) (-1092)) (T -212)) -((-1458 (*1 *1) (-12 (-5 *1 (-212 *2 *3)) (-14 *2 (-916)) (-4 *3 (-1092)))) (-1420 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-4 *2 (-1092)) (-5 *1 (-212 *4 *2)) (-14 *4 (-916)))) (-1435 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-766)) (-5 *1 (-212 *4 *2)) (-14 *4 (-916)) (-4 *2 (-1092))))) -(-13 (-1092) (-10 -8 (-15 -1458 ($)) (-15 -1420 (|#2| $ (-766))) (-15 -1435 (|#2| $ (-766) |#2|)))) -((-4041 (((-112) $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1359 (((-1261) $) 36) (((-1261) $ (-916) (-916)) 38)) (-2343 (($ $ (-984)) 19) (((-244 (-1150)) $ (-1168)) 15)) (-1479 (((-1261) $) 34)) (-4053 (((-857) $) 31) (($ (-639 |#1|)) 8)) (-1733 (((-112) $ $) NIL)) (-1847 (($ $ $) 27)) (-1836 (($ $ $) 22))) -(((-213 |#1|) (-13 (-1092) (-612 (-639 |#1|)) (-10 -8 (-15 -2343 ($ $ (-984))) (-15 -2343 ((-244 (-1150)) $ (-1168))) (-15 -1836 ($ $ $)) (-15 -1847 ($ $ $)) (-15 -1479 ((-1261) $)) (-15 -1359 ((-1261) $)) (-15 -1359 ((-1261) $ (-916) (-916))))) (-13 (-845) (-10 -8 (-15 -2343 ((-1150) $ (-1168))) (-15 -1479 ((-1261) $)) (-15 -1359 ((-1261) $))))) (T -213)) -((-2343 (*1 *1 *1 *2) (-12 (-5 *2 (-984)) (-5 *1 (-213 *3)) (-4 *3 (-13 (-845) (-10 -8 (-15 -2343 ((-1150) $ (-1168))) (-15 -1479 ((-1261) $)) (-15 -1359 ((-1261) $))))))) (-2343 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-244 (-1150))) (-5 *1 (-213 *4)) (-4 *4 (-13 (-845) (-10 -8 (-15 -2343 ((-1150) $ *3)) (-15 -1479 ((-1261) $)) (-15 -1359 ((-1261) $))))))) (-1836 (*1 *1 *1 *1) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-845) (-10 -8 (-15 -2343 ((-1150) $ (-1168))) (-15 -1479 ((-1261) $)) (-15 -1359 ((-1261) $))))))) (-1847 (*1 *1 *1 *1) (-12 (-5 *1 (-213 *2)) (-4 *2 (-13 (-845) (-10 -8 (-15 -2343 ((-1150) $ (-1168))) (-15 -1479 ((-1261) $)) (-15 -1359 ((-1261) $))))))) (-1479 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-213 *3)) (-4 *3 (-13 (-845) (-10 -8 (-15 -2343 ((-1150) $ (-1168))) (-15 -1479 (*2 $)) (-15 -1359 (*2 $))))))) (-1359 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-213 *3)) (-4 *3 (-13 (-845) (-10 -8 (-15 -2343 ((-1150) $ (-1168))) (-15 -1479 (*2 $)) (-15 -1359 (*2 $))))))) (-1359 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1261)) (-5 *1 (-213 *4)) (-4 *4 (-13 (-845) (-10 -8 (-15 -2343 ((-1150) $ (-1168))) (-15 -1479 (*2 $)) (-15 -1359 (*2 $)))))))) -(-13 (-1092) (-612 (-639 |#1|)) (-10 -8 (-15 -2343 ($ $ (-984))) (-15 -2343 ((-244 (-1150)) $ (-1168))) (-15 -1836 ($ $ $)) (-15 -1847 ($ $ $)) (-15 -1479 ((-1261) $)) (-15 -1359 ((-1261) $)) (-15 -1359 ((-1261) $ (-916) (-916))))) -((-3072 ((|#2| |#4| (-1 |#2| |#2|)) 46))) -(((-214 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3072 (|#2| |#4| (-1 |#2| |#2|)))) (-362) (-1232 |#1|) (-1232 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -214)) -((-3072 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-362)) (-4 *6 (-1232 (-406 *2))) (-4 *2 (-1232 *5)) (-5 *1 (-214 *5 *2 *6 *3)) (-4 *3 (-341 *5 *2 *6))))) -(-10 -7 (-15 -3072 (|#2| |#4| (-1 |#2| |#2|)))) -((-2883 ((|#2| |#2| (-766) |#2|) 42)) (-3210 ((|#2| |#2| (-766) |#2|) 38)) (-3317 (((-639 |#2|) (-639 (-2 (|:| |deg| (-766)) (|:| -2723 |#2|)))) 56)) (-3318 (((-639 (-2 (|:| |deg| (-766)) (|:| -2723 |#2|))) |#2|) 52)) (-3811 (((-112) |#2|) 49)) (-3805 (((-417 |#2|) |#2|) 76)) (-1635 (((-417 |#2|) |#2|) 75)) (-3880 ((|#2| |#2| (-766) |#2|) 36)) (-1467 (((-2 (|:| |cont| |#1|) (|:| -2656 (-639 (-2 (|:| |irr| |#2|) (|:| -2794 (-562)))))) |#2| (-112)) 68))) -(((-215 |#1| |#2|) (-10 -7 (-15 -1635 ((-417 |#2|) |#2|)) (-15 -3805 ((-417 |#2|) |#2|)) (-15 -1467 ((-2 (|:| |cont| |#1|) (|:| -2656 (-639 (-2 (|:| |irr| |#2|) (|:| -2794 (-562)))))) |#2| (-112))) (-15 -3318 ((-639 (-2 (|:| |deg| (-766)) (|:| -2723 |#2|))) |#2|)) (-15 -3317 ((-639 |#2|) (-639 (-2 (|:| |deg| (-766)) (|:| -2723 |#2|))))) (-15 -3880 (|#2| |#2| (-766) |#2|)) (-15 -3210 (|#2| |#2| (-766) |#2|)) (-15 -2883 (|#2| |#2| (-766) |#2|)) (-15 -3811 ((-112) |#2|))) (-348) (-1232 |#1|)) (T -215)) -((-3811 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-112)) (-5 *1 (-215 *4 *3)) (-4 *3 (-1232 *4)))) (-2883 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-766)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2)) (-4 *2 (-1232 *4)))) (-3210 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-766)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2)) (-4 *2 (-1232 *4)))) (-3880 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-766)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2)) (-4 *2 (-1232 *4)))) (-3317 (*1 *2 *3) (-12 (-5 *3 (-639 (-2 (|:| |deg| (-766)) (|:| -2723 *5)))) (-4 *5 (-1232 *4)) (-4 *4 (-348)) (-5 *2 (-639 *5)) (-5 *1 (-215 *4 *5)))) (-3318 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-639 (-2 (|:| |deg| (-766)) (|:| -2723 *3)))) (-5 *1 (-215 *4 *3)) (-4 *3 (-1232 *4)))) (-1467 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-348)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2656 (-639 (-2 (|:| |irr| *3) (|:| -2794 (-562))))))) (-5 *1 (-215 *5 *3)) (-4 *3 (-1232 *5)))) (-3805 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-417 *3)) (-5 *1 (-215 *4 *3)) (-4 *3 (-1232 *4)))) (-1635 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-417 *3)) (-5 *1 (-215 *4 *3)) (-4 *3 (-1232 *4))))) -(-10 -7 (-15 -1635 ((-417 |#2|) |#2|)) (-15 -3805 ((-417 |#2|) |#2|)) (-15 -1467 ((-2 (|:| |cont| |#1|) (|:| -2656 (-639 (-2 (|:| |irr| |#2|) (|:| -2794 (-562)))))) |#2| (-112))) (-15 -3318 ((-639 (-2 (|:| |deg| (-766)) (|:| -2723 |#2|))) |#2|)) (-15 -3317 ((-639 |#2|) (-639 (-2 (|:| |deg| (-766)) (|:| -2723 |#2|))))) (-15 -3880 (|#2| |#2| (-766) |#2|)) (-15 -3210 (|#2| |#2| (-766) |#2|)) (-15 -2883 (|#2| |#2| (-766) |#2|)) (-15 -3811 ((-112) |#2|))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2300 (((-562) $) NIL (|has| (-562) (-306)))) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3517 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-562) (-904)))) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| (-562) (-904)))) (-1436 (((-112) $ $) NIL)) (-1587 (((-562) $) NIL (|has| (-562) (-815)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL) (((-3 (-1168) "failed") $) NIL (|has| (-562) (-1033 (-1168)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| (-562) (-1033 (-562)))) (((-3 (-562) "failed") $) NIL (|has| (-562) (-1033 (-562))))) (-3960 (((-562) $) NIL) (((-1168) $) NIL (|has| (-562) (-1033 (-1168)))) (((-406 (-562)) $) NIL (|has| (-562) (-1033 (-562)))) (((-562) $) NIL (|has| (-562) (-1033 (-562))))) (-1810 (($ $ $) NIL)) (-3449 (((-683 (-562)) (-683 $)) NIL (|has| (-562) (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| (-562) (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL) (((-683 (-562)) (-683 $)) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-1447 (($) NIL (|has| (-562) (-544)))) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-3521 (((-112) $) NIL)) (-2696 (((-112) $) NIL (|has| (-562) (-815)))) (-2337 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (|has| (-562) (-881 (-562)))) (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (|has| (-562) (-881 (-378))))) (-4367 (((-112) $) NIL)) (-2957 (($ $) NIL)) (-4063 (((-562) $) NIL)) (-3828 (((-3 $ "failed") $) NIL (|has| (-562) (-1143)))) (-3855 (((-112) $) NIL (|has| (-562) (-815)))) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1551 (($ $ $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| (-562) (-845)))) (-4152 (($ (-1 (-562) (-562)) $) NIL)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3730 (($) NIL (|has| (-562) (-1143)) CONST)) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2561 (($ $) NIL (|has| (-562) (-306))) (((-406 (-562)) $) NIL)) (-3870 (((-562) $) NIL (|has| (-562) (-544)))) (-3586 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-562) (-904)))) (-3468 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-562) (-904)))) (-1635 (((-417 $) $) NIL)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1433 (($ $ (-639 (-562)) (-639 (-562))) NIL (|has| (-562) (-308 (-562)))) (($ $ (-562) (-562)) NIL (|has| (-562) (-308 (-562)))) (($ $ (-293 (-562))) NIL (|has| (-562) (-308 (-562)))) (($ $ (-639 (-293 (-562)))) NIL (|has| (-562) (-308 (-562)))) (($ $ (-639 (-1168)) (-639 (-562))) NIL (|has| (-562) (-513 (-1168) (-562)))) (($ $ (-1168) (-562)) NIL (|has| (-562) (-513 (-1168) (-562))))) (-2044 (((-766) $) NIL)) (-2343 (($ $ (-562)) NIL (|has| (-562) (-285 (-562) (-562))))) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-4029 (($ $) NIL (|has| (-562) (-232))) (($ $ (-766)) NIL (|has| (-562) (-232))) (($ $ (-1168)) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-1 (-562) (-562)) (-766)) NIL) (($ $ (-1 (-562) (-562))) NIL)) (-1580 (($ $) NIL)) (-4079 (((-562) $) NIL)) (-3700 (($ (-406 (-562))) 9)) (-4208 (((-887 (-562)) $) NIL (|has| (-562) (-610 (-887 (-562))))) (((-887 (-378)) $) NIL (|has| (-562) (-610 (-887 (-378))))) (((-535) $) NIL (|has| (-562) (-610 (-535)))) (((-378) $) NIL (|has| (-562) (-1017))) (((-224) $) NIL (|has| (-562) (-1017)))) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| (-562) (-904))))) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) 8) (($ (-562)) NIL) (($ (-1168)) NIL (|has| (-562) (-1033 (-1168)))) (((-406 (-562)) $) NIL) (((-999 10) $) 10)) (-2059 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| (-562) (-904))) (|has| (-562) (-144))))) (-1568 (((-766)) NIL)) (-3636 (((-562) $) NIL (|has| (-562) (-544)))) (-3799 (((-112) $ $) NIL)) (-2757 (($ $) NIL (|has| (-562) (-815)))) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3113 (($ $) NIL (|has| (-562) (-232))) (($ $ (-766)) NIL (|has| (-562) (-232))) (($ $ (-1168)) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-1 (-562) (-562)) (-766)) NIL) (($ $ (-1 (-562) (-562))) NIL)) (-1798 (((-112) $ $) NIL (|has| (-562) (-845)))) (-1771 (((-112) $ $) NIL (|has| (-562) (-845)))) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| (-562) (-845)))) (-1761 (((-112) $ $) NIL (|has| (-562) (-845)))) (-1859 (($ $ $) NIL) (($ (-562) (-562)) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ (-562) $) NIL) (($ $ (-562)) NIL))) -(((-216) (-13 (-987 (-562)) (-609 (-406 (-562))) (-609 (-999 10)) (-10 -8 (-15 -2561 ((-406 (-562)) $)) (-15 -3700 ($ (-406 (-562))))))) (T -216)) -((-2561 (*1 *2 *1) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-216)))) (-3700 (*1 *1 *2) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-216))))) -(-13 (-987 (-562)) (-609 (-406 (-562))) (-609 (-999 10)) (-10 -8 (-15 -2561 ((-406 (-562)) $)) (-15 -3700 ($ (-406 (-562)))))) -((-4041 (((-112) $ $) NIL)) (-2844 (((-1110) $) 13)) (-3696 (((-1150) $) NIL)) (-3757 (((-482) $) 10)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 25) (($ (-1173)) NIL) (((-1173) $) NIL)) (-3265 (((-1127) $) 15)) (-1733 (((-112) $ $) NIL))) -(((-217) (-13 (-1075) (-10 -8 (-15 -3757 ((-482) $)) (-15 -2844 ((-1110) $)) (-15 -3265 ((-1127) $))))) (T -217)) -((-3757 (*1 *2 *1) (-12 (-5 *2 (-482)) (-5 *1 (-217)))) (-2844 (*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-217)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-217))))) -(-13 (-1075) (-10 -8 (-15 -3757 ((-482) $)) (-15 -2844 ((-1110) $)) (-15 -3265 ((-1127) $)))) -((-3081 (((-3 (|:| |f1| (-838 |#2|)) (|:| |f2| (-639 (-838 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1084 (-838 |#2|)) (-1150)) 28) (((-3 (|:| |f1| (-838 |#2|)) (|:| |f2| (-639 (-838 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1084 (-838 |#2|))) 24)) (-3457 (((-3 (|:| |f1| (-838 |#2|)) (|:| |f2| (-639 (-838 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1168) (-838 |#2|) (-838 |#2|) (-112)) 17))) -(((-218 |#1| |#2|) (-10 -7 (-15 -3081 ((-3 (|:| |f1| (-838 |#2|)) (|:| |f2| (-639 (-838 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1084 (-838 |#2|)))) (-15 -3081 ((-3 (|:| |f1| (-838 |#2|)) (|:| |f2| (-639 (-838 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1084 (-838 |#2|)) (-1150))) (-15 -3457 ((-3 (|:| |f1| (-838 |#2|)) (|:| |f2| (-639 (-838 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1168) (-838 |#2|) (-838 |#2|) (-112)))) (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562))) (-13 (-1192) (-954) (-29 |#1|))) (T -218)) -((-3457 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1168)) (-5 *6 (-112)) (-4 *7 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-4 *3 (-13 (-1192) (-954) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-838 *3)) (|:| |f2| (-639 (-838 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-218 *7 *3)) (-5 *5 (-838 *3)))) (-3081 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1084 (-838 *3))) (-5 *5 (-1150)) (-4 *3 (-13 (-1192) (-954) (-29 *6))) (-4 *6 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-3 (|:| |f1| (-838 *3)) (|:| |f2| (-639 (-838 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-218 *6 *3)))) (-3081 (*1 *2 *3 *4) (-12 (-5 *4 (-1084 (-838 *3))) (-4 *3 (-13 (-1192) (-954) (-29 *5))) (-4 *5 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-3 (|:| |f1| (-838 *3)) (|:| |f2| (-639 (-838 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-218 *5 *3))))) -(-10 -7 (-15 -3081 ((-3 (|:| |f1| (-838 |#2|)) (|:| |f2| (-639 (-838 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1084 (-838 |#2|)))) (-15 -3081 ((-3 (|:| |f1| (-838 |#2|)) (|:| |f2| (-639 (-838 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1084 (-838 |#2|)) (-1150))) (-15 -3457 ((-3 (|:| |f1| (-838 |#2|)) (|:| |f2| (-639 (-838 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1168) (-838 |#2|) (-838 |#2|) (-112)))) -((-3081 (((-3 (|:| |f1| (-838 (-315 |#1|))) (|:| |f2| (-639 (-838 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-947 |#1|)) (-1084 (-838 (-406 (-947 |#1|)))) (-1150)) 46) (((-3 (|:| |f1| (-838 (-315 |#1|))) (|:| |f2| (-639 (-838 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-947 |#1|)) (-1084 (-838 (-406 (-947 |#1|))))) 43) (((-3 (|:| |f1| (-838 (-315 |#1|))) (|:| |f2| (-639 (-838 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-947 |#1|)) (-1084 (-838 (-315 |#1|))) (-1150)) 47) (((-3 (|:| |f1| (-838 (-315 |#1|))) (|:| |f2| (-639 (-838 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-947 |#1|)) (-1084 (-838 (-315 |#1|)))) 20))) -(((-219 |#1|) (-10 -7 (-15 -3081 ((-3 (|:| |f1| (-838 (-315 |#1|))) (|:| |f2| (-639 (-838 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-947 |#1|)) (-1084 (-838 (-315 |#1|))))) (-15 -3081 ((-3 (|:| |f1| (-838 (-315 |#1|))) (|:| |f2| (-639 (-838 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-947 |#1|)) (-1084 (-838 (-315 |#1|))) (-1150))) (-15 -3081 ((-3 (|:| |f1| (-838 (-315 |#1|))) (|:| |f2| (-639 (-838 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-947 |#1|)) (-1084 (-838 (-406 (-947 |#1|)))))) (-15 -3081 ((-3 (|:| |f1| (-838 (-315 |#1|))) (|:| |f2| (-639 (-838 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-947 |#1|)) (-1084 (-838 (-406 (-947 |#1|)))) (-1150)))) (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (T -219)) -((-3081 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1084 (-838 (-406 (-947 *6))))) (-5 *5 (-1150)) (-5 *3 (-406 (-947 *6))) (-4 *6 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-3 (|:| |f1| (-838 (-315 *6))) (|:| |f2| (-639 (-838 (-315 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *6)))) (-3081 (*1 *2 *3 *4) (-12 (-5 *4 (-1084 (-838 (-406 (-947 *5))))) (-5 *3 (-406 (-947 *5))) (-4 *5 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-3 (|:| |f1| (-838 (-315 *5))) (|:| |f2| (-639 (-838 (-315 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *5)))) (-3081 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-406 (-947 *6))) (-5 *4 (-1084 (-838 (-315 *6)))) (-5 *5 (-1150)) (-4 *6 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-3 (|:| |f1| (-838 (-315 *6))) (|:| |f2| (-639 (-838 (-315 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *6)))) (-3081 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-1084 (-838 (-315 *5)))) (-4 *5 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-3 (|:| |f1| (-838 (-315 *5))) (|:| |f2| (-639 (-838 (-315 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *5))))) -(-10 -7 (-15 -3081 ((-3 (|:| |f1| (-838 (-315 |#1|))) (|:| |f2| (-639 (-838 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-947 |#1|)) (-1084 (-838 (-315 |#1|))))) (-15 -3081 ((-3 (|:| |f1| (-838 (-315 |#1|))) (|:| |f2| (-639 (-838 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-947 |#1|)) (-1084 (-838 (-315 |#1|))) (-1150))) (-15 -3081 ((-3 (|:| |f1| (-838 (-315 |#1|))) (|:| |f2| (-639 (-838 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-947 |#1|)) (-1084 (-838 (-406 (-947 |#1|)))))) (-15 -3081 ((-3 (|:| |f1| (-838 (-315 |#1|))) (|:| |f2| (-639 (-838 (-315 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-406 (-947 |#1|)) (-1084 (-838 (-406 (-947 |#1|)))) (-1150)))) -((-1954 (((-2 (|:| -4201 (-1164 |#1|)) (|:| |deg| (-916))) (-1164 |#1|)) 21)) (-3525 (((-639 (-315 |#2|)) (-315 |#2|) (-916)) 42))) -(((-220 |#1| |#2|) (-10 -7 (-15 -1954 ((-2 (|:| -4201 (-1164 |#1|)) (|:| |deg| (-916))) (-1164 |#1|))) (-15 -3525 ((-639 (-315 |#2|)) (-315 |#2|) (-916)))) (-1044) (-13 (-554) (-845))) (T -220)) -((-3525 (*1 *2 *3 *4) (-12 (-5 *4 (-916)) (-4 *6 (-13 (-554) (-845))) (-5 *2 (-639 (-315 *6))) (-5 *1 (-220 *5 *6)) (-5 *3 (-315 *6)) (-4 *5 (-1044)))) (-1954 (*1 *2 *3) (-12 (-4 *4 (-1044)) (-5 *2 (-2 (|:| -4201 (-1164 *4)) (|:| |deg| (-916)))) (-5 *1 (-220 *4 *5)) (-5 *3 (-1164 *4)) (-4 *5 (-13 (-554) (-845)))))) -(-10 -7 (-15 -1954 ((-2 (|:| -4201 (-1164 |#1|)) (|:| |deg| (-916))) (-1164 |#1|))) (-15 -3525 ((-639 (-315 |#2|)) (-315 |#2|) (-916)))) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1768 ((|#1| $) NIL)) (-2774 ((|#1| $) 25)) (-3735 (((-112) $ (-766)) NIL)) (-3329 (($) NIL T CONST)) (-2953 (($ $) NIL)) (-2673 (($ $) 31)) (-2571 ((|#1| |#1| $) NIL)) (-3767 ((|#1| $) NIL)) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-4172 (((-112) $ (-766)) NIL)) (-2123 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1491 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3641 (((-766) $) NIL)) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-2078 ((|#1| $) NIL)) (-3607 ((|#1| |#1| $) 28)) (-2216 ((|#1| |#1| $) 30)) (-1581 (($ |#1| $) NIL)) (-3059 (((-766) $) 27)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-2662 ((|#1| $) NIL)) (-4234 ((|#1| $) 26)) (-2712 ((|#1| $) 24)) (-2038 ((|#1| $) NIL)) (-3008 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) NIL)) (-3297 ((|#1| |#1| $) NIL)) (-3087 (((-112) $) 9)) (-1663 (($) NIL)) (-1903 ((|#1| $) NIL)) (-2891 (($) NIL) (($ (-639 |#1|)) 16)) (-2191 (((-766) $) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-4220 (($ $) NIL)) (-4053 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-4311 ((|#1| $) 13)) (-4131 (($ (-639 |#1|)) NIL)) (-3690 ((|#1| $) NIL)) (-2879 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-221 |#1|) (-13 (-253 |#1|) (-10 -8 (-15 -2891 ($ (-639 |#1|))))) (-1092)) (T -221)) -((-2891 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-5 *1 (-221 *3))))) -(-13 (-253 |#1|) (-10 -8 (-15 -2891 ($ (-639 |#1|))))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-4136 (($ (-315 |#1|)) 23)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3329 (($) NIL T CONST)) (-1638 (((-112) $) NIL)) (-4048 (((-3 (-315 |#1|) "failed") $) NIL)) (-3960 (((-315 |#1|) $) NIL)) (-1600 (($ $) 31)) (-1694 (((-3 $ "failed") $) NIL)) (-4367 (((-112) $) NIL)) (-4152 (($ (-1 (-315 |#1|) (-315 |#1|)) $) NIL)) (-1573 (((-315 |#1|) $) NIL)) (-2820 (($ $) 30)) (-3696 (((-1150) $) NIL)) (-3941 (((-112) $) NIL)) (-1709 (((-1112) $) NIL)) (-3147 (($ (-766)) NIL)) (-2717 (($ $) 32)) (-2250 (((-562) $) NIL)) (-4053 (((-857) $) 57) (($ (-562)) NIL) (($ (-315 |#1|)) NIL)) (-2266 (((-315 |#1|) $ $) NIL)) (-1568 (((-766)) NIL)) (-2285 (($) 25 T CONST)) (-2294 (($) 50 T CONST)) (-1733 (((-112) $ $) 28)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) 19)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 24) (($ (-315 |#1|) $) 18))) -(((-222 |#1| |#2|) (-13 (-616 (-315 |#1|)) (-1033 (-315 |#1|)) (-10 -8 (-15 -1573 ((-315 |#1|) $)) (-15 -2820 ($ $)) (-15 -1600 ($ $)) (-15 -2266 ((-315 |#1|) $ $)) (-15 -3147 ($ (-766))) (-15 -3941 ((-112) $)) (-15 -1638 ((-112) $)) (-15 -2250 ((-562) $)) (-15 -4152 ($ (-1 (-315 |#1|) (-315 |#1|)) $)) (-15 -4136 ($ (-315 |#1|))) (-15 -2717 ($ $)))) (-13 (-1044) (-845)) (-639 (-1168))) (T -222)) -((-1573 (*1 *2 *1) (-12 (-5 *2 (-315 *3)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1044) (-845))) (-14 *4 (-639 (-1168))))) (-2820 (*1 *1 *1) (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1044) (-845))) (-14 *3 (-639 (-1168))))) (-1600 (*1 *1 *1) (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1044) (-845))) (-14 *3 (-639 (-1168))))) (-2266 (*1 *2 *1 *1) (-12 (-5 *2 (-315 *3)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1044) (-845))) (-14 *4 (-639 (-1168))))) (-3147 (*1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1044) (-845))) (-14 *4 (-639 (-1168))))) (-3941 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1044) (-845))) (-14 *4 (-639 (-1168))))) (-1638 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1044) (-845))) (-14 *4 (-639 (-1168))))) (-2250 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1044) (-845))) (-14 *4 (-639 (-1168))))) (-4152 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-315 *3) (-315 *3))) (-4 *3 (-13 (-1044) (-845))) (-5 *1 (-222 *3 *4)) (-14 *4 (-639 (-1168))))) (-4136 (*1 *1 *2) (-12 (-5 *2 (-315 *3)) (-4 *3 (-13 (-1044) (-845))) (-5 *1 (-222 *3 *4)) (-14 *4 (-639 (-1168))))) (-2717 (*1 *1 *1) (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1044) (-845))) (-14 *3 (-639 (-1168)))))) -(-13 (-616 (-315 |#1|)) (-1033 (-315 |#1|)) (-10 -8 (-15 -1573 ((-315 |#1|) $)) (-15 -2820 ($ $)) (-15 -1600 ($ $)) (-15 -2266 ((-315 |#1|) $ $)) (-15 -3147 ($ (-766))) (-15 -3941 ((-112) $)) (-15 -1638 ((-112) $)) (-15 -2250 ((-562) $)) (-15 -4152 ($ (-1 (-315 |#1|) (-315 |#1|)) $)) (-15 -4136 ($ (-315 |#1|))) (-15 -2717 ($ $)))) -((-1813 (((-112) (-1150)) 22)) (-3158 (((-3 (-838 |#2|) "failed") (-608 |#2|) |#2| (-838 |#2|) (-838 |#2|) (-112)) 32)) (-3289 (((-3 (-112) "failed") (-1164 |#2|) (-838 |#2|) (-838 |#2|) (-112)) 73) (((-3 (-112) "failed") (-947 |#1|) (-1168) (-838 |#2|) (-838 |#2|) (-112)) 74))) -(((-223 |#1| |#2|) (-10 -7 (-15 -1813 ((-112) (-1150))) (-15 -3158 ((-3 (-838 |#2|) "failed") (-608 |#2|) |#2| (-838 |#2|) (-838 |#2|) (-112))) (-15 -3289 ((-3 (-112) "failed") (-947 |#1|) (-1168) (-838 |#2|) (-838 |#2|) (-112))) (-15 -3289 ((-3 (-112) "failed") (-1164 |#2|) (-838 |#2|) (-838 |#2|) (-112)))) (-13 (-451) (-845) (-1033 (-562)) (-635 (-562))) (-13 (-1192) (-29 |#1|))) (T -223)) -((-3289 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1164 *6)) (-5 *4 (-838 *6)) (-4 *6 (-13 (-1192) (-29 *5))) (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-223 *5 *6)))) (-3289 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-947 *6)) (-5 *4 (-1168)) (-5 *5 (-838 *7)) (-4 *6 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-4 *7 (-13 (-1192) (-29 *6))) (-5 *1 (-223 *6 *7)))) (-3158 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-838 *4)) (-5 *3 (-608 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1192) (-29 *6))) (-4 *6 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-223 *6 *4)))) (-1813 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-112)) (-5 *1 (-223 *4 *5)) (-4 *5 (-13 (-1192) (-29 *4)))))) -(-10 -7 (-15 -1813 ((-112) (-1150))) (-15 -3158 ((-3 (-838 |#2|) "failed") (-608 |#2|) |#2| (-838 |#2|) (-838 |#2|) (-112))) (-15 -3289 ((-3 (-112) "failed") (-947 |#1|) (-1168) (-838 |#2|) (-838 |#2|) (-112))) (-15 -3289 ((-3 (-112) "failed") (-1164 |#2|) (-838 |#2|) (-838 |#2|) (-112)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) 87)) (-2300 (((-562) $) 98)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-1302 (($ $) NIL)) (-2987 (($ $) 75)) (-4098 (($ $) 63)) (-2781 (((-3 $ "failed") $ $) NIL)) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-1644 (($ $) 54)) (-1436 (((-112) $ $) NIL)) (-4206 (($ $) 73)) (-4074 (($ $) 61)) (-1587 (((-562) $) 115)) (-3013 (($ $) 78)) (-4120 (($ $) 65)) (-3329 (($) NIL T CONST)) (-3410 (($ $) NIL)) (-4048 (((-3 (-562) "failed") $) 114) (((-3 (-406 (-562)) "failed") $) 111)) (-3960 (((-562) $) 112) (((-406 (-562)) $) 109)) (-1810 (($ $ $) NIL)) (-1694 (((-3 $ "failed") $) 91)) (-2310 (((-406 (-562)) $ (-766)) 107) (((-406 (-562)) $ (-766) (-766)) 106)) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-3521 (((-112) $) NIL)) (-3326 (((-916)) 27) (((-916) (-916)) NIL (|has| $ (-6 -4394)))) (-2696 (((-112) $) NIL)) (-4100 (($) 37)) (-2337 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL)) (-1993 (((-562) $) 33)) (-4367 (((-112) $) NIL)) (-1895 (($ $ (-562)) NIL)) (-4363 (($ $) NIL)) (-3855 (((-112) $) 86)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1551 (($ $ $) 51) (($) 32 (-12 (-2234 (|has| $ (-6 -4386))) (-2234 (|has| $ (-6 -4394)))))) (-2993 (($ $ $) 50) (($) 31 (-12 (-2234 (|has| $ (-6 -4386))) (-2234 (|has| $ (-6 -4394)))))) (-3946 (((-562) $) 25)) (-1474 (($ $) 28)) (-2982 (($ $) 55)) (-4366 (($ $) 60)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-2898 (((-916) (-562)) NIL (|has| $ (-6 -4394)))) (-1709 (((-1112) $) 89)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2561 (($ $) NIL)) (-3870 (($ $) NIL)) (-4237 (($ (-562) (-562)) NIL) (($ (-562) (-562) (-916)) 99)) (-1635 (((-417 $) $) NIL)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1300 (((-562) $) 26)) (-1701 (($) 36)) (-3430 (($ $) 59)) (-2044 (((-766) $) NIL)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-2244 (((-916)) NIL) (((-916) (-916)) NIL (|has| $ (-6 -4394)))) (-4029 (($ $ (-766)) NIL) (($ $) 92)) (-3719 (((-916) (-562)) NIL (|has| $ (-6 -4394)))) (-3022 (($ $) 76)) (-4130 (($ $) 66)) (-3000 (($ $) 77)) (-4108 (($ $) 64)) (-2977 (($ $) 74)) (-4087 (($ $) 62)) (-4208 (((-378) $) 103) (((-224) $) 100) (((-887 (-378)) $) NIL) (((-535) $) 43)) (-4053 (((-857) $) 40) (($ (-562)) 58) (($ $) NIL) (($ (-406 (-562))) NIL) (($ (-562)) 58) (($ (-406 (-562))) NIL)) (-1568 (((-766)) NIL)) (-3636 (($ $) NIL)) (-3573 (((-916)) 30) (((-916) (-916)) NIL (|has| $ (-6 -4394)))) (-3240 (((-916)) 23)) (-3054 (($ $) 81)) (-4165 (($ $) 69) (($ $ $) 108)) (-3799 (((-112) $ $) NIL)) (-3033 (($ $) 79)) (-4139 (($ $) 67)) (-3077 (($ $) 84)) (-4183 (($ $) 72)) (-1567 (($ $) 82)) (-4195 (($ $) 70)) (-3065 (($ $) 83)) (-4175 (($ $) 71)) (-3040 (($ $) 80)) (-4151 (($ $) 68)) (-2757 (($ $) 116)) (-2285 (($) 34 T CONST)) (-2294 (($) 35 T CONST)) (-2332 (((-1150) $) 17) (((-1150) $ (-112)) 19) (((-1261) (-817) $) 20) (((-1261) (-817) $ (-112)) 21)) (-2582 (($ $) 95)) (-3113 (($ $ (-766)) NIL) (($ $) NIL)) (-3291 (($ $ $) 97)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 52)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) 44)) (-1859 (($ $ $) 85) (($ $ (-562)) 53)) (-1847 (($ $) 45) (($ $ $) 47)) (-1836 (($ $ $) 46)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) 56) (($ $ (-406 (-562))) 127) (($ $ $) 57)) (* (($ (-916) $) 29) (($ (-766) $) NIL) (($ (-562) $) 49) (($ $ $) 48) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL))) -(((-224) (-13 (-403) (-232) (-823) (-1192) (-610 (-535)) (-10 -8 (-15 -1859 ($ $ (-562))) (-15 ** ($ $ $)) (-15 -1701 ($)) (-15 -1474 ($ $)) (-15 -2982 ($ $)) (-15 -4165 ($ $ $)) (-15 -2582 ($ $)) (-15 -3291 ($ $ $)) (-15 -2310 ((-406 (-562)) $ (-766))) (-15 -2310 ((-406 (-562)) $ (-766) (-766)))))) (T -224)) -((** (*1 *1 *1 *1) (-5 *1 (-224))) (-1859 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-224)))) (-1701 (*1 *1) (-5 *1 (-224))) (-1474 (*1 *1 *1) (-5 *1 (-224))) (-2982 (*1 *1 *1) (-5 *1 (-224))) (-4165 (*1 *1 *1 *1) (-5 *1 (-224))) (-2582 (*1 *1 *1) (-5 *1 (-224))) (-3291 (*1 *1 *1 *1) (-5 *1 (-224))) (-2310 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-5 *2 (-406 (-562))) (-5 *1 (-224)))) (-2310 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-766)) (-5 *2 (-406 (-562))) (-5 *1 (-224))))) -(-13 (-403) (-232) (-823) (-1192) (-610 (-535)) (-10 -8 (-15 -1859 ($ $ (-562))) (-15 ** ($ $ $)) (-15 -1701 ($)) (-15 -1474 ($ $)) (-15 -2982 ($ $)) (-15 -4165 ($ $ $)) (-15 -2582 ($ $)) (-15 -3291 ($ $ $)) (-15 -2310 ((-406 (-562)) $ (-766))) (-15 -2310 ((-406 (-562)) $ (-766) (-766))))) -((-2146 (((-168 (-224)) (-766) (-168 (-224))) 11) (((-224) (-766) (-224)) 12)) (-3018 (((-168 (-224)) (-168 (-224))) 13) (((-224) (-224)) 14)) (-4009 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 19) (((-224) (-224) (-224)) 22)) (-1904 (((-168 (-224)) (-168 (-224))) 25) (((-224) (-224)) 24)) (-3733 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 43) (((-224) (-224) (-224)) 35)) (-2831 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 48) (((-224) (-224) (-224)) 45)) (-4287 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 15) (((-224) (-224) (-224)) 16)) (-1623 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 17) (((-224) (-224) (-224)) 18)) (-2001 (((-168 (-224)) (-168 (-224))) 60) (((-224) (-224)) 59)) (-3950 (((-224) (-224)) 54) (((-168 (-224)) (-168 (-224))) 58)) (-2582 (((-168 (-224)) (-168 (-224))) 8) (((-224) (-224)) 9)) (-3291 (((-168 (-224)) (-168 (-224)) (-168 (-224))) 30) (((-224) (-224) (-224)) 26))) -(((-225) (-10 -7 (-15 -2582 ((-224) (-224))) (-15 -2582 ((-168 (-224)) (-168 (-224)))) (-15 -3291 ((-224) (-224) (-224))) (-15 -3291 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -3018 ((-224) (-224))) (-15 -3018 ((-168 (-224)) (-168 (-224)))) (-15 -1904 ((-224) (-224))) (-15 -1904 ((-168 (-224)) (-168 (-224)))) (-15 -2146 ((-224) (-766) (-224))) (-15 -2146 ((-168 (-224)) (-766) (-168 (-224)))) (-15 -4287 ((-224) (-224) (-224))) (-15 -4287 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -3733 ((-224) (-224) (-224))) (-15 -3733 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -1623 ((-224) (-224) (-224))) (-15 -1623 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -2831 ((-224) (-224) (-224))) (-15 -2831 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -3950 ((-168 (-224)) (-168 (-224)))) (-15 -3950 ((-224) (-224))) (-15 -2001 ((-224) (-224))) (-15 -2001 ((-168 (-224)) (-168 (-224)))) (-15 -4009 ((-224) (-224) (-224))) (-15 -4009 ((-168 (-224)) (-168 (-224)) (-168 (-224)))))) (T -225)) -((-4009 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-4009 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-2001 (*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-2001 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3950 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3950 (*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-2831 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-2831 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-1623 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-1623 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3733 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-3733 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-4287 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-4287 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-2146 (*1 *2 *3 *2) (-12 (-5 *2 (-168 (-224))) (-5 *3 (-766)) (-5 *1 (-225)))) (-2146 (*1 *2 *3 *2) (-12 (-5 *2 (-224)) (-5 *3 (-766)) (-5 *1 (-225)))) (-1904 (*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-1904 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3018 (*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-3018 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-3291 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-3291 (*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) (-2582 (*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) (-2582 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225))))) -(-10 -7 (-15 -2582 ((-224) (-224))) (-15 -2582 ((-168 (-224)) (-168 (-224)))) (-15 -3291 ((-224) (-224) (-224))) (-15 -3291 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -3018 ((-224) (-224))) (-15 -3018 ((-168 (-224)) (-168 (-224)))) (-15 -1904 ((-224) (-224))) (-15 -1904 ((-168 (-224)) (-168 (-224)))) (-15 -2146 ((-224) (-766) (-224))) (-15 -2146 ((-168 (-224)) (-766) (-168 (-224)))) (-15 -4287 ((-224) (-224) (-224))) (-15 -4287 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -3733 ((-224) (-224) (-224))) (-15 -3733 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -1623 ((-224) (-224) (-224))) (-15 -1623 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -2831 ((-224) (-224) (-224))) (-15 -2831 ((-168 (-224)) (-168 (-224)) (-168 (-224)))) (-15 -3950 ((-168 (-224)) (-168 (-224)))) (-15 -3950 ((-224) (-224))) (-15 -2001 ((-224) (-224))) (-15 -2001 ((-168 (-224)) (-168 (-224)))) (-15 -4009 ((-224) (-224) (-224))) (-15 -4009 ((-168 (-224)) (-168 (-224)) (-168 (-224))))) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2910 (($ (-766) (-766)) NIL)) (-2955 (($ $ $) NIL)) (-2309 (($ (-1256 |#1|)) NIL) (($ $) NIL)) (-3818 (($ |#1| |#1| |#1|) 32)) (-4097 (((-112) $) NIL)) (-1975 (($ $ (-562) (-562)) NIL)) (-2842 (($ $ (-562) (-562)) NIL)) (-2167 (($ $ (-562) (-562) (-562) (-562)) NIL)) (-2058 (($ $) NIL)) (-2819 (((-112) $) NIL)) (-3735 (((-112) $ (-766)) NIL)) (-1980 (($ $ (-562) (-562) $) NIL)) (-4200 ((|#1| $ (-562) (-562) |#1|) NIL) (($ $ (-639 (-562)) (-639 (-562)) $) NIL)) (-2267 (($ $ (-562) (-1256 |#1|)) NIL)) (-3320 (($ $ (-562) (-1256 |#1|)) NIL)) (-1978 (($ |#1| |#1| |#1|) 31)) (-4369 (($ (-766) |#1|) NIL)) (-3329 (($) NIL T CONST)) (-2239 (($ $) NIL (|has| |#1| (-306)))) (-3511 (((-1256 |#1|) $ (-562)) NIL)) (-3313 (($ |#1|) 30)) (-1802 (($ |#1|) 29)) (-3896 (($ |#1|) 28)) (-2172 (((-766) $) NIL (|has| |#1| (-554)))) (-1507 ((|#1| $ (-562) (-562) |#1|) NIL)) (-1420 ((|#1| $ (-562) (-562)) NIL)) (-1720 (((-639 |#1|) $) NIL)) (-4244 (((-766) $) NIL (|has| |#1| (-554)))) (-3821 (((-639 (-1256 |#1|)) $) NIL (|has| |#1| (-554)))) (-2698 (((-766) $) NIL)) (-1458 (($ (-766) (-766) |#1|) NIL)) (-2708 (((-766) $) NIL)) (-4172 (((-112) $ (-766)) NIL)) (-1622 ((|#1| $) NIL (|has| |#1| (-6 (-4405 "*"))))) (-1808 (((-562) $) NIL)) (-2028 (((-562) $) NIL)) (-2123 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-3269 (((-562) $) NIL)) (-2727 (((-562) $) NIL)) (-2884 (($ (-639 (-639 |#1|))) 11)) (-1491 (($ (-1 |#1| |#1|) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2247 (((-639 (-639 |#1|)) $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-2463 (((-3 $ "failed") $) NIL (|has| |#1| (-362)))) (-3050 (($) 12)) (-3713 (($ $ $) NIL)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-3510 (($ $ |#1|) NIL)) (-1762 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554)))) (-3008 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) NIL)) (-2343 ((|#1| $ (-562) (-562)) NIL) ((|#1| $ (-562) (-562) |#1|) NIL) (($ $ (-639 (-562)) (-639 (-562))) NIL)) (-3168 (($ (-639 |#1|)) NIL) (($ (-639 $)) NIL)) (-1752 (((-112) $) NIL)) (-3282 ((|#1| $) NIL (|has| |#1| (-6 (-4405 "*"))))) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-4220 (($ $) NIL)) (-2208 (((-1256 |#1|) $ (-562)) NIL)) (-4053 (($ (-1256 |#1|)) NIL) (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-2879 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1996 (((-112) $) NIL)) (-1733 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1847 (($ $ $) NIL) (($ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-766)) NIL) (($ $ (-562)) NIL (|has| |#1| (-362)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-562) $) NIL) (((-1256 |#1|) $ (-1256 |#1|)) 15) (((-1256 |#1|) (-1256 |#1|) $) NIL) (((-938 |#1|) $ (-938 |#1|)) 20)) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-226 |#1|) (-13 (-681 |#1| (-1256 |#1|) (-1256 |#1|)) (-10 -8 (-15 * ((-938 |#1|) $ (-938 |#1|))) (-15 -3050 ($)) (-15 -3896 ($ |#1|)) (-15 -1802 ($ |#1|)) (-15 -3313 ($ |#1|)) (-15 -1978 ($ |#1| |#1| |#1|)) (-15 -3818 ($ |#1| |#1| |#1|)))) (-13 (-362) (-1192))) (T -226)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-938 *3)) (-4 *3 (-13 (-362) (-1192))) (-5 *1 (-226 *3)))) (-3050 (*1 *1) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1192))))) (-3896 (*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1192))))) (-1802 (*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1192))))) (-3313 (*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1192))))) (-1978 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1192))))) (-3818 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1192)))))) -(-13 (-681 |#1| (-1256 |#1|) (-1256 |#1|)) (-10 -8 (-15 * ((-938 |#1|) $ (-938 |#1|))) (-15 -3050 ($)) (-15 -3896 ($ |#1|)) (-15 -1802 ($ |#1|)) (-15 -3313 ($ |#1|)) (-15 -1978 ($ |#1| |#1| |#1|)) (-15 -3818 ($ |#1| |#1| |#1|)))) -((-2968 (($ (-1 (-112) |#2|) $) 15)) (-3729 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 24)) (-1932 (($) NIL) (($ (-639 |#2|)) 11)) (-1733 (((-112) $ $) 22))) -(((-227 |#1| |#2|) (-10 -8 (-15 -2968 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3729 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3729 (|#1| |#2| |#1|)) (-15 -1932 (|#1| (-639 |#2|))) (-15 -1932 (|#1|)) (-15 -1733 ((-112) |#1| |#1|))) (-228 |#2|) (-1092)) (T -227)) -NIL -(-10 -8 (-15 -2968 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3729 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3729 (|#1| |#2| |#1|)) (-15 -1932 (|#1| (-639 |#2|))) (-15 -1932 (|#1|)) (-15 -1733 ((-112) |#1| |#1|))) -((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-3735 (((-112) $ (-766)) 8)) (-2968 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4403)))) (-3329 (($) 7 T CONST)) (-1459 (($ $) 58 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-3729 (($ |#1| $) 47 (|has| $ (-6 -4403))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4403)))) (-1475 (($ |#1| $) 57 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4403)))) (-1954 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4403)))) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4403)))) (-4172 (((-112) $ (-766)) 9)) (-2123 (((-639 |#1|) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1491 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-4147 (((-112) $ (-766)) 10)) (-3696 (((-1150) $) 22 (|has| |#1| (-1092)))) (-2078 ((|#1| $) 39)) (-1581 (($ |#1| $) 40)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-1963 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2038 ((|#1| $) 41)) (-3008 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) 14)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-1932 (($) 49) (($ (-639 |#1|)) 48)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4403))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-4220 (($ $) 13)) (-4208 (((-535) $) 59 (|has| |#1| (-610 (-535))))) (-4064 (($ (-639 |#1|)) 50)) (-4053 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-4131 (($ (-639 |#1|)) 42)) (-2879 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-228 |#1|) (-139) (-1092)) (T -228)) -NIL -(-13 (-234 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-150 |#1|) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1092) |has| |#1| (-1092)) ((-1207) . T)) -((-4029 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-766)) 11) (($ $ (-639 (-1168)) (-639 (-766))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168)) 19) (($ $ (-766)) NIL) (($ $) 16)) (-3113 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-766)) 14) (($ $ (-639 (-1168)) (-639 (-766))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168)) NIL) (($ $ (-766)) NIL) (($ $) NIL))) -(((-229 |#1| |#2|) (-10 -8 (-15 -4029 (|#1| |#1|)) (-15 -3113 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -3113 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -3113 (|#1| |#1| (-1168))) (-15 -3113 (|#1| |#1| (-639 (-1168)))) (-15 -3113 (|#1| |#1| (-1168) (-766))) (-15 -3113 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -3113 (|#1| |#1| (-1 |#2| |#2|) (-766))) (-15 -3113 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|) (-766))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|)))) (-230 |#2|) (-1044)) (T -229)) -NIL -(-10 -8 (-15 -4029 (|#1| |#1|)) (-15 -3113 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -3113 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -3113 (|#1| |#1| (-1168))) (-15 -3113 (|#1| |#1| (-639 (-1168)))) (-15 -3113 (|#1| |#1| (-1168) (-766))) (-15 -3113 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -3113 (|#1| |#1| (-1 |#2| |#2|) (-766))) (-15 -3113 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|) (-766))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|)))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-1694 (((-3 $ "failed") $) 33)) (-4367 (((-112) $) 31)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4029 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-766)) 51) (($ $ (-639 (-1168)) (-639 (-766))) 44 (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) 43 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) 42 (|has| |#1| (-895 (-1168)))) (($ $ (-1168)) 41 (|has| |#1| (-895 (-1168)))) (($ $ (-766)) 39 (|has| |#1| (-232))) (($ $) 37 (|has| |#1| (-232)))) (-4053 (((-857) $) 11) (($ (-562)) 29)) (-1568 (((-766)) 28)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3113 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-766)) 49) (($ $ (-639 (-1168)) (-639 (-766))) 48 (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) 47 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) 46 (|has| |#1| (-895 (-1168)))) (($ $ (-1168)) 45 (|has| |#1| (-895 (-1168)))) (($ $ (-766)) 40 (|has| |#1| (-232))) (($ $) 38 (|has| |#1| (-232)))) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) -(((-230 |#1|) (-139) (-1044)) (T -230)) -((-4029 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-230 *3)) (-4 *3 (-1044)))) (-4029 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-766)) (-4 *1 (-230 *4)) (-4 *4 (-1044)))) (-3113 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-230 *3)) (-4 *3 (-1044)))) (-3113 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-766)) (-4 *1 (-230 *4)) (-4 *4 (-1044))))) -(-13 (-1044) (-10 -8 (-15 -4029 ($ $ (-1 |t#1| |t#1|))) (-15 -4029 ($ $ (-1 |t#1| |t#1|) (-766))) (-15 -3113 ($ $ (-1 |t#1| |t#1|))) (-15 -3113 ($ $ (-1 |t#1| |t#1|) (-766))) (IF (|has| |t#1| (-232)) (-6 (-232)) |%noBranch|) (IF (|has| |t#1| (-895 (-1168))) (-6 (-895 (-1168))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-612 (-562)) . T) ((-609 (-857)) . T) ((-232) |has| |#1| (-232)) ((-642 $) . T) ((-721) . T) ((-895 (-1168)) |has| |#1| (-895 (-1168))) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) -((-4029 (($ $) NIL) (($ $ (-766)) 10)) (-3113 (($ $) 8) (($ $ (-766)) 12))) -(((-231 |#1|) (-10 -8 (-15 -3113 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1| (-766))) (-15 -3113 (|#1| |#1|)) (-15 -4029 (|#1| |#1|))) (-232)) (T -231)) -NIL -(-10 -8 (-15 -3113 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1| (-766))) (-15 -3113 (|#1| |#1|)) (-15 -4029 (|#1| |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-1694 (((-3 $ "failed") $) 33)) (-4367 (((-112) $) 31)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4029 (($ $) 38) (($ $ (-766)) 36)) (-4053 (((-857) $) 11) (($ (-562)) 29)) (-1568 (((-766)) 28)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3113 (($ $) 37) (($ $ (-766)) 35)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) -(((-232) (-139)) (T -232)) -((-4029 (*1 *1 *1) (-4 *1 (-232))) (-3113 (*1 *1 *1) (-4 *1 (-232))) (-4029 (*1 *1 *1 *2) (-12 (-4 *1 (-232)) (-5 *2 (-766)))) (-3113 (*1 *1 *1 *2) (-12 (-4 *1 (-232)) (-5 *2 (-766))))) -(-13 (-1044) (-10 -8 (-15 -4029 ($ $)) (-15 -3113 ($ $)) (-15 -4029 ($ $ (-766))) (-15 -3113 ($ $ (-766))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-612 (-562)) . T) ((-609 (-857)) . T) ((-642 $) . T) ((-721) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) -((-1932 (($) 12) (($ (-639 |#2|)) NIL)) (-4220 (($ $) 14)) (-4064 (($ (-639 |#2|)) 10)) (-4053 (((-857) $) 21))) -(((-233 |#1| |#2|) (-10 -8 (-15 -4053 ((-857) |#1|)) (-15 -1932 (|#1| (-639 |#2|))) (-15 -1932 (|#1|)) (-15 -4064 (|#1| (-639 |#2|))) (-15 -4220 (|#1| |#1|))) (-234 |#2|) (-1092)) (T -233)) -NIL -(-10 -8 (-15 -4053 ((-857) |#1|)) (-15 -1932 (|#1| (-639 |#2|))) (-15 -1932 (|#1|)) (-15 -4064 (|#1| (-639 |#2|))) (-15 -4220 (|#1| |#1|))) -((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-3735 (((-112) $ (-766)) 8)) (-2968 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4403)))) (-3329 (($) 7 T CONST)) (-1459 (($ $) 58 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-3729 (($ |#1| $) 47 (|has| $ (-6 -4403))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4403)))) (-1475 (($ |#1| $) 57 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4403)))) (-1954 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4403)))) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4403)))) (-4172 (((-112) $ (-766)) 9)) (-2123 (((-639 |#1|) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1491 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-4147 (((-112) $ (-766)) 10)) (-3696 (((-1150) $) 22 (|has| |#1| (-1092)))) (-2078 ((|#1| $) 39)) (-1581 (($ |#1| $) 40)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-1963 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2038 ((|#1| $) 41)) (-3008 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) 14)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-1932 (($) 49) (($ (-639 |#1|)) 48)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4403))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-4220 (($ $) 13)) (-4208 (((-535) $) 59 (|has| |#1| (-610 (-535))))) (-4064 (($ (-639 |#1|)) 50)) (-4053 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-4131 (($ (-639 |#1|)) 42)) (-2879 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-234 |#1|) (-139) (-1092)) (T -234)) -((-1932 (*1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1092)))) (-1932 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-4 *1 (-234 *3)))) (-3729 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4403)) (-4 *1 (-234 *2)) (-4 *2 (-1092)))) (-3729 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4403)) (-4 *1 (-234 *3)) (-4 *3 (-1092)))) (-2968 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4403)) (-4 *1 (-234 *3)) (-4 *3 (-1092))))) -(-13 (-107 |t#1|) (-150 |t#1|) (-10 -8 (-15 -1932 ($)) (-15 -1932 ($ (-639 |t#1|))) (IF (|has| $ (-6 -4403)) (PROGN (-15 -3729 ($ |t#1| $)) (-15 -3729 ($ (-1 (-112) |t#1|) $)) (-15 -2968 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-150 |#1|) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1092) |has| |#1| (-1092)) ((-1207) . T)) -((-2750 (((-2 (|:| |varOrder| (-639 (-1168))) (|:| |inhom| (-3 (-639 (-1256 (-766))) "failed")) (|:| |hom| (-639 (-1256 (-766))))) (-293 (-947 (-562)))) 27))) -(((-235) (-10 -7 (-15 -2750 ((-2 (|:| |varOrder| (-639 (-1168))) (|:| |inhom| (-3 (-639 (-1256 (-766))) "failed")) (|:| |hom| (-639 (-1256 (-766))))) (-293 (-947 (-562))))))) (T -235)) -((-2750 (*1 *2 *3) (-12 (-5 *3 (-293 (-947 (-562)))) (-5 *2 (-2 (|:| |varOrder| (-639 (-1168))) (|:| |inhom| (-3 (-639 (-1256 (-766))) "failed")) (|:| |hom| (-639 (-1256 (-766)))))) (-5 *1 (-235))))) -(-10 -7 (-15 -2750 ((-2 (|:| |varOrder| (-639 (-1168))) (|:| |inhom| (-3 (-639 (-1256 (-766))) "failed")) (|:| |hom| (-639 (-1256 (-766))))) (-293 (-947 (-562)))))) -((-1382 (((-766)) 51)) (-3449 (((-2 (|:| -1767 (-683 |#3|)) (|:| |vec| (-1256 |#3|))) (-683 $) (-1256 $)) 49) (((-683 |#3|) (-683 $)) 41) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL) (((-683 (-562)) (-683 $)) NIL)) (-4340 (((-133)) 57)) (-4029 (($ $ (-1 |#3| |#3|) (-766)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-639 (-1168)) (-639 (-766))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168)) NIL) (($ $ (-766)) NIL) (($ $) NIL)) (-4053 (((-1256 |#3|) $) NIL) (($ |#3|) NIL) (((-857) $) NIL) (($ (-562)) 12) (($ (-406 (-562))) NIL)) (-1568 (((-766)) 15)) (-1859 (($ $ |#3|) 54))) -(((-236 |#1| |#2| |#3|) (-10 -8 (-15 -4053 (|#1| (-406 (-562)))) (-15 -4053 (|#1| (-562))) (-15 -4053 ((-857) |#1|)) (-15 -1568 ((-766))) (-15 -4029 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -3449 ((-683 (-562)) (-683 |#1|))) (-15 -3449 ((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 |#1|) (-1256 |#1|))) (-15 -4053 (|#1| |#3|)) (-15 -4029 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4029 (|#1| |#1| (-1 |#3| |#3|) (-766))) (-15 -3449 ((-683 |#3|) (-683 |#1|))) (-15 -3449 ((-2 (|:| -1767 (-683 |#3|)) (|:| |vec| (-1256 |#3|))) (-683 |#1|) (-1256 |#1|))) (-15 -1382 ((-766))) (-15 -1859 (|#1| |#1| |#3|)) (-15 -4340 ((-133))) (-15 -4053 ((-1256 |#3|) |#1|))) (-237 |#2| |#3|) (-766) (-1207)) (T -236)) -((-4340 (*1 *2) (-12 (-14 *4 (-766)) (-4 *5 (-1207)) (-5 *2 (-133)) (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5)))) (-1382 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1207)) (-5 *2 (-766)) (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5)))) (-1568 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1207)) (-5 *2 (-766)) (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5))))) -(-10 -8 (-15 -4053 (|#1| (-406 (-562)))) (-15 -4053 (|#1| (-562))) (-15 -4053 ((-857) |#1|)) (-15 -1568 ((-766))) (-15 -4029 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -3449 ((-683 (-562)) (-683 |#1|))) (-15 -3449 ((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 |#1|) (-1256 |#1|))) (-15 -4053 (|#1| |#3|)) (-15 -4029 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4029 (|#1| |#1| (-1 |#3| |#3|) (-766))) (-15 -3449 ((-683 |#3|) (-683 |#1|))) (-15 -3449 ((-2 (|:| -1767 (-683 |#3|)) (|:| |vec| (-1256 |#3|))) (-683 |#1|) (-1256 |#1|))) (-15 -1382 ((-766))) (-15 -1859 (|#1| |#1| |#3|)) (-15 -4340 ((-133))) (-15 -4053 ((-1256 |#3|) |#1|))) -((-4041 (((-112) $ $) 19 (|has| |#2| (-1092)))) (-4325 (((-112) $) 72 (|has| |#2| (-130)))) (-2211 (($ (-916)) 125 (|has| |#2| (-1044)))) (-3655 (((-1261) $ (-562) (-562)) 40 (|has| $ (-6 -4404)))) (-1593 (($ $ $) 121 (|has| |#2| (-788)))) (-2781 (((-3 $ "failed") $ $) 74 (|has| |#2| (-130)))) (-3735 (((-112) $ (-766)) 8)) (-1382 (((-766)) 107 (|has| |#2| (-367)))) (-1587 (((-562) $) 119 (|has| |#2| (-843)))) (-4200 ((|#2| $ (-562) |#2|) 52 (|has| $ (-6 -4404)))) (-3329 (($) 7 T CONST)) (-4048 (((-3 (-562) "failed") $) 67 (-2245 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092)))) (((-3 (-406 (-562)) "failed") $) 64 (-2245 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1092)))) (-3960 (((-562) $) 66 (-2245 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092)))) (((-406 (-562)) $) 63 (-2245 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) ((|#2| $) 62 (|has| |#2| (-1092)))) (-3449 (((-683 (-562)) (-683 $)) 106 (-2245 (|has| |#2| (-635 (-562))) (|has| |#2| (-1044)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 105 (-2245 (|has| |#2| (-635 (-562))) (|has| |#2| (-1044)))) (((-2 (|:| -1767 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) 104 (|has| |#2| (-1044))) (((-683 |#2|) (-683 $)) 103 (|has| |#2| (-1044)))) (-1694 (((-3 $ "failed") $) 79 (|has| |#2| (-721)))) (-1447 (($) 110 (|has| |#2| (-367)))) (-1507 ((|#2| $ (-562) |#2|) 53 (|has| $ (-6 -4404)))) (-1420 ((|#2| $ (-562)) 51)) (-2696 (((-112) $) 117 (|has| |#2| (-843)))) (-1720 (((-639 |#2|) $) 30 (|has| $ (-6 -4403)))) (-4367 (((-112) $) 81 (|has| |#2| (-721)))) (-3855 (((-112) $) 118 (|has| |#2| (-843)))) (-4172 (((-112) $ (-766)) 9)) (-1849 (((-562) $) 43 (|has| (-562) (-845)))) (-1551 (($ $ $) 116 (-4037 (|has| |#2| (-843)) (|has| |#2| (-788))))) (-2123 (((-639 |#2|) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1092)) (|has| $ (-6 -4403))))) (-1929 (((-562) $) 44 (|has| (-562) (-845)))) (-2993 (($ $ $) 115 (-4037 (|has| |#2| (-843)) (|has| |#2| (-788))))) (-1491 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#2| |#2|) $) 35)) (-3549 (((-916) $) 109 (|has| |#2| (-367)))) (-4147 (((-112) $ (-766)) 10)) (-3696 (((-1150) $) 22 (|has| |#2| (-1092)))) (-3336 (((-639 (-562)) $) 46)) (-1987 (((-112) (-562) $) 47)) (-2464 (($ (-916)) 108 (|has| |#2| (-367)))) (-1709 (((-1112) $) 21 (|has| |#2| (-1092)))) (-1421 ((|#2| $) 42 (|has| (-562) (-845)))) (-3510 (($ $ |#2|) 41 (|has| $ (-6 -4404)))) (-3008 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#2|))) 26 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-293 |#2|)) 25 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 |#2|) (-639 |#2|)) 23 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))))) (-1452 (((-112) $ $) 14)) (-2716 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092))))) (-2366 (((-639 |#2|) $) 48)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-2343 ((|#2| $ (-562) |#2|) 50) ((|#2| $ (-562)) 49)) (-2852 ((|#2| $ $) 124 (|has| |#2| (-1044)))) (-1678 (($ (-1256 |#2|)) 126)) (-4340 (((-133)) 123 (|has| |#2| (-362)))) (-4029 (($ $) 98 (-2245 (|has| |#2| (-232)) (|has| |#2| (-1044)))) (($ $ (-766)) 96 (-2245 (|has| |#2| (-232)) (|has| |#2| (-1044)))) (($ $ (-1168)) 94 (-2245 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-639 (-1168))) 93 (-2245 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-1168) (-766)) 92 (-2245 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-639 (-1168)) (-639 (-766))) 91 (-2245 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-1 |#2| |#2|) (-766)) 84 (|has| |#2| (-1044))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1044)))) (-1723 (((-766) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4403))) (((-766) |#2| $) 28 (-12 (|has| |#2| (-1092)) (|has| $ (-6 -4403))))) (-4220 (($ $) 13)) (-4053 (((-1256 |#2|) $) 127) (($ (-562)) 68 (-4037 (-2245 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092))) (|has| |#2| (-1044)))) (($ (-406 (-562))) 65 (-2245 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) (($ |#2|) 60 (|has| |#2| (-1092))) (((-857) $) 18 (|has| |#2| (-609 (-857))))) (-1568 (((-766)) 102 (|has| |#2| (-1044)))) (-2879 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4403)))) (-2757 (($ $) 120 (|has| |#2| (-843)))) (-2285 (($) 71 (|has| |#2| (-130)) CONST)) (-2294 (($) 82 (|has| |#2| (-721)) CONST)) (-3113 (($ $) 97 (-2245 (|has| |#2| (-232)) (|has| |#2| (-1044)))) (($ $ (-766)) 95 (-2245 (|has| |#2| (-232)) (|has| |#2| (-1044)))) (($ $ (-1168)) 90 (-2245 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-639 (-1168))) 89 (-2245 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-1168) (-766)) 88 (-2245 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-639 (-1168)) (-639 (-766))) 87 (-2245 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-1 |#2| |#2|) (-766)) 86 (|has| |#2| (-1044))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1044)))) (-1798 (((-112) $ $) 113 (-4037 (|has| |#2| (-843)) (|has| |#2| (-788))))) (-1771 (((-112) $ $) 112 (-4037 (|has| |#2| (-843)) (|has| |#2| (-788))))) (-1733 (((-112) $ $) 20 (|has| |#2| (-1092)))) (-1785 (((-112) $ $) 114 (-4037 (|has| |#2| (-843)) (|has| |#2| (-788))))) (-1761 (((-112) $ $) 111 (-4037 (|has| |#2| (-843)) (|has| |#2| (-788))))) (-1859 (($ $ |#2|) 122 (|has| |#2| (-362)))) (-1847 (($ $ $) 100 (|has| |#2| (-1044))) (($ $) 99 (|has| |#2| (-1044)))) (-1836 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-766)) 80 (|has| |#2| (-721))) (($ $ (-916)) 77 (|has| |#2| (-721)))) (* (($ (-562) $) 101 (|has| |#2| (-1044))) (($ $ $) 78 (|has| |#2| (-721))) (($ $ |#2|) 76 (|has| |#2| (-721))) (($ |#2| $) 75 (|has| |#2| (-721))) (($ (-766) $) 73 (|has| |#2| (-130))) (($ (-916) $) 70 (|has| |#2| (-25)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-237 |#1| |#2|) (-139) (-766) (-1207)) (T -237)) -((-1678 (*1 *1 *2) (-12 (-5 *2 (-1256 *4)) (-4 *4 (-1207)) (-4 *1 (-237 *3 *4)))) (-2211 (*1 *1 *2) (-12 (-5 *2 (-916)) (-4 *1 (-237 *3 *4)) (-4 *4 (-1044)) (-4 *4 (-1207)))) (-2852 (*1 *2 *1 *1) (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1207)) (-4 *2 (-1044)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1207)) (-4 *2 (-721)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1207)) (-4 *2 (-721))))) -(-13 (-600 (-562) |t#2|) (-609 (-1256 |t#2|)) (-10 -8 (-6 -4403) (-15 -1678 ($ (-1256 |t#2|))) (IF (|has| |t#2| (-1092)) (-6 (-410 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1044)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-230 |t#2|)) (-6 (-376 |t#2|)) (-15 -2211 ($ (-916))) (-15 -2852 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-130)) (-6 (-130)) |%noBranch|) (IF (|has| |t#2| (-721)) (PROGN (-6 (-721)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-367)) (-6 (-367)) |%noBranch|) (IF (|has| |t#2| (-171)) (PROGN (-6 (-38 |t#2|)) (-6 (-171))) |%noBranch|) (IF (|has| |t#2| (-6 -4400)) (-6 -4400) |%noBranch|) (IF (|has| |t#2| (-843)) (-6 (-843)) |%noBranch|) (IF (|has| |t#2| (-788)) (-6 (-788)) |%noBranch|) (IF (|has| |t#2| (-362)) (-6 (-1263 |t#2|)) |%noBranch|))) -(((-21) -4037 (|has| |#2| (-1044)) (|has| |#2| (-843)) (|has| |#2| (-362)) (|has| |#2| (-171))) ((-23) -4037 (|has| |#2| (-1044)) (|has| |#2| (-843)) (|has| |#2| (-788)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130))) ((-25) -4037 (|has| |#2| (-1044)) (|has| |#2| (-843)) (|has| |#2| (-788)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-171)) ((-102) -4037 (|has| |#2| (-1092)) (|has| |#2| (-1044)) (|has| |#2| (-843)) (|has| |#2| (-788)) (|has| |#2| (-721)) (|has| |#2| (-367)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -4037 (|has| |#2| (-1044)) (|has| |#2| (-362)) (|has| |#2| (-171))) ((-111 $ $) |has| |#2| (-171)) ((-130) -4037 (|has| |#2| (-1044)) (|has| |#2| (-843)) (|has| |#2| (-788)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130))) ((-612 #0=(-406 (-562))) -12 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092))) ((-612 (-562)) -4037 (|has| |#2| (-1044)) (-12 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092))) (|has| |#2| (-843)) (|has| |#2| (-171))) ((-612 |#2|) -4037 (|has| |#2| (-1092)) (|has| |#2| (-171))) ((-609 (-857)) -4037 (|has| |#2| (-1092)) (|has| |#2| (-1044)) (|has| |#2| (-843)) (|has| |#2| (-788)) (|has| |#2| (-721)) (|has| |#2| (-367)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-609 (-857))) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-609 (-1256 |#2|)) . T) ((-171) |has| |#2| (-171)) ((-230 |#2|) |has| |#2| (-1044)) ((-232) -12 (|has| |#2| (-232)) (|has| |#2| (-1044))) ((-285 #1=(-562) |#2|) . T) ((-287 #1# |#2|) . T) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) ((-367) |has| |#2| (-367)) ((-376 |#2|) |has| |#2| (-1044)) ((-410 |#2|) |has| |#2| (-1092)) ((-488 |#2|) . T) ((-600 #1# |#2|) . T) ((-513 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) ((-642 |#2|) -4037 (|has| |#2| (-1044)) (|has| |#2| (-362)) (|has| |#2| (-171))) ((-642 $) -4037 (|has| |#2| (-1044)) (|has| |#2| (-843)) (|has| |#2| (-171))) ((-635 (-562)) -12 (|has| |#2| (-635 (-562))) (|has| |#2| (-1044))) ((-635 |#2|) |has| |#2| (-1044)) ((-712 |#2|) -4037 (|has| |#2| (-362)) (|has| |#2| (-171))) ((-721) -4037 (|has| |#2| (-1044)) (|has| |#2| (-843)) (|has| |#2| (-721)) (|has| |#2| (-171))) ((-786) |has| |#2| (-843)) ((-787) -4037 (|has| |#2| (-843)) (|has| |#2| (-788))) ((-788) |has| |#2| (-788)) ((-789) -4037 (|has| |#2| (-843)) (|has| |#2| (-788))) ((-790) -4037 (|has| |#2| (-843)) (|has| |#2| (-788))) ((-843) |has| |#2| (-843)) ((-845) -4037 (|has| |#2| (-843)) (|has| |#2| (-788))) ((-895 (-1168)) -12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044))) ((-1033 #0#) -12 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092))) ((-1033 (-562)) -12 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092))) ((-1033 |#2|) |has| |#2| (-1092)) ((-1050 |#2|) -4037 (|has| |#2| (-1044)) (|has| |#2| (-362)) (|has| |#2| (-171))) ((-1050 $) |has| |#2| (-171)) ((-1044) -4037 (|has| |#2| (-1044)) (|has| |#2| (-843)) (|has| |#2| (-171))) ((-1051) -4037 (|has| |#2| (-1044)) (|has| |#2| (-843)) (|has| |#2| (-171))) ((-1104) -4037 (|has| |#2| (-1044)) (|has| |#2| (-843)) (|has| |#2| (-721)) (|has| |#2| (-171))) ((-1092) -4037 (|has| |#2| (-1092)) (|has| |#2| (-1044)) (|has| |#2| (-843)) (|has| |#2| (-788)) (|has| |#2| (-721)) (|has| |#2| (-367)) (|has| |#2| (-362)) (|has| |#2| (-171)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-1207) . T) ((-1263 |#2|) |has| |#2| (-362))) -((-1555 (((-239 |#1| |#3|) (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|) 21)) (-1954 ((|#3| (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|) 23)) (-4152 (((-239 |#1| |#3|) (-1 |#3| |#2|) (-239 |#1| |#2|)) 18))) -(((-238 |#1| |#2| |#3|) (-10 -7 (-15 -1555 ((-239 |#1| |#3|) (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -1954 (|#3| (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -4152 ((-239 |#1| |#3|) (-1 |#3| |#2|) (-239 |#1| |#2|)))) (-766) (-1207) (-1207)) (T -238)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-239 *5 *6)) (-14 *5 (-766)) (-4 *6 (-1207)) (-4 *7 (-1207)) (-5 *2 (-239 *5 *7)) (-5 *1 (-238 *5 *6 *7)))) (-1954 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-239 *5 *6)) (-14 *5 (-766)) (-4 *6 (-1207)) (-4 *2 (-1207)) (-5 *1 (-238 *5 *6 *2)))) (-1555 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-239 *6 *7)) (-14 *6 (-766)) (-4 *7 (-1207)) (-4 *5 (-1207)) (-5 *2 (-239 *6 *5)) (-5 *1 (-238 *6 *7 *5))))) -(-10 -7 (-15 -1555 ((-239 |#1| |#3|) (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -1954 (|#3| (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -4152 ((-239 |#1| |#3|) (-1 |#3| |#2|) (-239 |#1| |#2|)))) -((-4041 (((-112) $ $) NIL (|has| |#2| (-1092)))) (-4325 (((-112) $) NIL (|has| |#2| (-130)))) (-2211 (($ (-916)) 56 (|has| |#2| (-1044)))) (-3655 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4404)))) (-1593 (($ $ $) 60 (|has| |#2| (-788)))) (-2781 (((-3 $ "failed") $ $) 49 (|has| |#2| (-130)))) (-3735 (((-112) $ (-766)) 17)) (-1382 (((-766)) NIL (|has| |#2| (-367)))) (-1587 (((-562) $) NIL (|has| |#2| (-843)))) (-4200 ((|#2| $ (-562) |#2|) NIL (|has| $ (-6 -4404)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL (-12 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092)))) (((-3 (-406 (-562)) "failed") $) NIL (-12 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1092)))) (-3960 (((-562) $) NIL (-12 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092)))) (((-406 (-562)) $) NIL (-12 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) ((|#2| $) 27 (|has| |#2| (-1092)))) (-3449 (((-683 (-562)) (-683 $)) NIL (-12 (|has| |#2| (-635 (-562))) (|has| |#2| (-1044)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (-12 (|has| |#2| (-635 (-562))) (|has| |#2| (-1044)))) (((-2 (|:| -1767 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) NIL (|has| |#2| (-1044))) (((-683 |#2|) (-683 $)) NIL (|has| |#2| (-1044)))) (-1694 (((-3 $ "failed") $) 53 (|has| |#2| (-721)))) (-1447 (($) NIL (|has| |#2| (-367)))) (-1507 ((|#2| $ (-562) |#2|) NIL (|has| $ (-6 -4404)))) (-1420 ((|#2| $ (-562)) 51)) (-2696 (((-112) $) NIL (|has| |#2| (-843)))) (-1720 (((-639 |#2|) $) 15 (|has| $ (-6 -4403)))) (-4367 (((-112) $) NIL (|has| |#2| (-721)))) (-3855 (((-112) $) NIL (|has| |#2| (-843)))) (-4172 (((-112) $ (-766)) NIL)) (-1849 (((-562) $) 20 (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-2123 (((-639 |#2|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092))))) (-1929 (((-562) $) 50 (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-1491 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#2| |#2|) $) 41)) (-3549 (((-916) $) NIL (|has| |#2| (-367)))) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL (|has| |#2| (-1092)))) (-3336 (((-639 (-562)) $) NIL)) (-1987 (((-112) (-562) $) NIL)) (-2464 (($ (-916)) NIL (|has| |#2| (-367)))) (-1709 (((-1112) $) NIL (|has| |#2| (-1092)))) (-1421 ((|#2| $) NIL (|has| (-562) (-845)))) (-3510 (($ $ |#2|) NIL (|has| $ (-6 -4404)))) (-3008 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 |#2|) (-639 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))))) (-1452 (((-112) $ $) NIL)) (-2716 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092))))) (-2366 (((-639 |#2|) $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) NIL)) (-2343 ((|#2| $ (-562) |#2|) NIL) ((|#2| $ (-562)) 21)) (-2852 ((|#2| $ $) NIL (|has| |#2| (-1044)))) (-1678 (($ (-1256 |#2|)) 18)) (-4340 (((-133)) NIL (|has| |#2| (-362)))) (-4029 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1044)))) (($ $ (-766)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1044)))) (($ $ (-1168)) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-1 |#2| |#2|) (-766)) NIL (|has| |#2| (-1044))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1044)))) (-1723 (((-766) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403))) (((-766) |#2| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092))))) (-4220 (($ $) NIL)) (-4053 (((-1256 |#2|) $) 10) (($ (-562)) NIL (-4037 (-12 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092))) (|has| |#2| (-1044)))) (($ (-406 (-562))) NIL (-12 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) (($ |#2|) 13 (|has| |#2| (-1092))) (((-857) $) NIL (|has| |#2| (-609 (-857))))) (-1568 (((-766)) NIL (|has| |#2| (-1044)))) (-2879 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403)))) (-2757 (($ $) NIL (|has| |#2| (-843)))) (-2285 (($) 35 (|has| |#2| (-130)) CONST)) (-2294 (($) 38 (|has| |#2| (-721)) CONST)) (-3113 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1044)))) (($ $ (-766)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1044)))) (($ $ (-1168)) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-1 |#2| |#2|) (-766)) NIL (|has| |#2| (-1044))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1044)))) (-1798 (((-112) $ $) NIL (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-1771 (((-112) $ $) NIL (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-1733 (((-112) $ $) 26 (|has| |#2| (-1092)))) (-1785 (((-112) $ $) NIL (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-1761 (((-112) $ $) 58 (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-1859 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1847 (($ $ $) NIL (|has| |#2| (-1044))) (($ $) NIL (|has| |#2| (-1044)))) (-1836 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-766)) NIL (|has| |#2| (-721))) (($ $ (-916)) NIL (|has| |#2| (-721)))) (* (($ (-562) $) NIL (|has| |#2| (-1044))) (($ $ $) 44 (|has| |#2| (-721))) (($ $ |#2|) 42 (|has| |#2| (-721))) (($ |#2| $) 43 (|has| |#2| (-721))) (($ (-766) $) NIL (|has| |#2| (-130))) (($ (-916) $) NIL (|has| |#2| (-25)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-239 |#1| |#2|) (-237 |#1| |#2|) (-766) (-1207)) (T -239)) -NIL -(-237 |#1| |#2|) -((-2980 (((-562) (-639 (-1150))) 24) (((-562) (-1150)) 19)) (-2593 (((-1261) (-639 (-1150))) 29) (((-1261) (-1150)) 28)) (-3029 (((-1150)) 14)) (-3051 (((-1150) (-562) (-1150)) 16)) (-2328 (((-639 (-1150)) (-639 (-1150)) (-562) (-1150)) 25) (((-1150) (-1150) (-562) (-1150)) 23)) (-3982 (((-639 (-1150)) (-639 (-1150))) 13) (((-639 (-1150)) (-1150)) 11))) -(((-240) (-10 -7 (-15 -3982 ((-639 (-1150)) (-1150))) (-15 -3982 ((-639 (-1150)) (-639 (-1150)))) (-15 -3029 ((-1150))) (-15 -3051 ((-1150) (-562) (-1150))) (-15 -2328 ((-1150) (-1150) (-562) (-1150))) (-15 -2328 ((-639 (-1150)) (-639 (-1150)) (-562) (-1150))) (-15 -2593 ((-1261) (-1150))) (-15 -2593 ((-1261) (-639 (-1150)))) (-15 -2980 ((-562) (-1150))) (-15 -2980 ((-562) (-639 (-1150)))))) (T -240)) -((-2980 (*1 *2 *3) (-12 (-5 *3 (-639 (-1150))) (-5 *2 (-562)) (-5 *1 (-240)))) (-2980 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-562)) (-5 *1 (-240)))) (-2593 (*1 *2 *3) (-12 (-5 *3 (-639 (-1150))) (-5 *2 (-1261)) (-5 *1 (-240)))) (-2593 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-240)))) (-2328 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-639 (-1150))) (-5 *3 (-562)) (-5 *4 (-1150)) (-5 *1 (-240)))) (-2328 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1150)) (-5 *3 (-562)) (-5 *1 (-240)))) (-3051 (*1 *2 *3 *2) (-12 (-5 *2 (-1150)) (-5 *3 (-562)) (-5 *1 (-240)))) (-3029 (*1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-240)))) (-3982 (*1 *2 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-240)))) (-3982 (*1 *2 *3) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-240)) (-5 *3 (-1150))))) -(-10 -7 (-15 -3982 ((-639 (-1150)) (-1150))) (-15 -3982 ((-639 (-1150)) (-639 (-1150)))) (-15 -3029 ((-1150))) (-15 -3051 ((-1150) (-562) (-1150))) (-15 -2328 ((-1150) (-1150) (-562) (-1150))) (-15 -2328 ((-639 (-1150)) (-639 (-1150)) (-562) (-1150))) (-15 -2593 ((-1261) (-1150))) (-15 -2593 ((-1261) (-639 (-1150)))) (-15 -2980 ((-562) (-1150))) (-15 -2980 ((-562) (-639 (-1150))))) -((** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) 16)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ (-406 (-562)) $) 23) (($ $ (-406 (-562))) NIL))) -(((-241 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-562))) (-15 * (|#1| |#1| (-406 (-562)))) (-15 * (|#1| (-406 (-562)) |#1|)) (-15 ** (|#1| |#1| (-766))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-916))) (-15 * (|#1| (-562) |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 * (|#1| (-916) |#1|))) (-242)) (T -241)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-562))) (-15 * (|#1| |#1| (-406 (-562)))) (-15 * (|#1| (-406 (-562)) |#1|)) (-15 ** (|#1| |#1| (-766))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-916))) (-15 * (|#1| (-562) |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 * (|#1| (-916) |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-1694 (((-3 $ "failed") $) 33)) (-4367 (((-112) $) 31)) (-3696 (((-1150) $) 9)) (-1525 (($ $) 40)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ (-406 (-562))) 44)) (-1568 (((-766)) 28)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 41)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ (-406 (-562)) $) 43) (($ $ (-406 (-562))) 42))) -(((-242) (-139)) (T -242)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-242)) (-5 *2 (-562)))) (-1525 (*1 *1 *1) (-4 *1 (-242)))) -(-13 (-289) (-38 (-406 (-562))) (-10 -8 (-15 ** ($ $ (-562))) (-15 -1525 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-562))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-612 #0#) . T) ((-612 (-562)) . T) ((-609 (-857)) . T) ((-289) . T) ((-642 #0#) . T) ((-642 $) . T) ((-712 #0#) . T) ((-721) . T) ((-1050 #0#) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) -((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-2533 ((|#1| $) 48)) (-3120 (($ $) 57)) (-3735 (((-112) $ (-766)) 8)) (-2677 ((|#1| $ |#1|) 39 (|has| $ (-6 -4404)))) (-2342 (($ $ $) 53 (|has| $ (-6 -4404)))) (-1777 (($ $ $) 52 (|has| $ (-6 -4404)))) (-4200 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4404)))) (-3742 (($ $ (-639 $)) 41 (|has| $ (-6 -4404)))) (-3329 (($) 7 T CONST)) (-3364 (($ $) 56)) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4403)))) (-2409 (((-639 $) $) 50)) (-4188 (((-112) $ $) 42 (|has| |#1| (-1092)))) (-4336 (($ $) 55)) (-4172 (((-112) $ (-766)) 9)) (-2123 (((-639 |#1|) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1491 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-4147 (((-112) $ (-766)) 10)) (-4008 (((-639 |#1|) $) 45)) (-3179 (((-112) $) 49)) (-3696 (((-1150) $) 22 (|has| |#1| (-1092)))) (-1504 ((|#1| $) 59)) (-3757 (($ $) 58)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-3008 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) 14)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-2343 ((|#1| $ "value") 47)) (-1423 (((-562) $ $) 44)) (-2473 (((-112) $) 46)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4403))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-4220 (($ $) 13)) (-2587 (($ $ $) 54 (|has| $ (-6 -4404)))) (-4053 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-3643 (((-639 $) $) 51)) (-2985 (((-112) $ $) 43 (|has| |#1| (-1092)))) (-2879 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-243 |#1|) (-139) (-1207)) (T -243)) -((-1504 (*1 *2 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1207)))) (-3757 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1207)))) (-3120 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1207)))) (-3364 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1207)))) (-4336 (*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1207)))) (-2587 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4404)) (-4 *1 (-243 *2)) (-4 *2 (-1207)))) (-2342 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4404)) (-4 *1 (-243 *2)) (-4 *2 (-1207)))) (-1777 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4404)) (-4 *1 (-243 *2)) (-4 *2 (-1207))))) -(-13 (-1005 |t#1|) (-10 -8 (-15 -1504 (|t#1| $)) (-15 -3757 ($ $)) (-15 -3120 ($ $)) (-15 -3364 ($ $)) (-15 -4336 ($ $)) (IF (|has| $ (-6 -4404)) (PROGN (-15 -2587 ($ $ $)) (-15 -2342 ($ $ $)) (-15 -1777 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1005 |#1|) . T) ((-1092) |has| |#1| (-1092)) ((-1207) . T)) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2533 ((|#1| $) NIL)) (-2358 ((|#1| $) NIL)) (-3120 (($ $) NIL)) (-3655 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4404)))) (-1335 (($ $ (-562)) NIL (|has| $ (-6 -4404)))) (-1706 (((-112) $) NIL (|has| |#1| (-845))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3737 (($ $) NIL (-12 (|has| $ (-6 -4404)) (|has| |#1| (-845)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4404)))) (-1395 (($ $) 10 (|has| |#1| (-845))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3735 (((-112) $ (-766)) NIL)) (-2677 ((|#1| $ |#1|) NIL (|has| $ (-6 -4404)))) (-3400 (($ $ $) NIL (|has| $ (-6 -4404)))) (-1393 ((|#1| $ |#1|) NIL (|has| $ (-6 -4404)))) (-3239 ((|#1| $ |#1|) NIL (|has| $ (-6 -4404)))) (-4200 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4404))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4404))) (($ $ "rest" $) NIL (|has| $ (-6 -4404))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4404))) ((|#1| $ (-1223 (-562)) |#1|) NIL (|has| $ (-6 -4404))) ((|#1| $ (-562) |#1|) NIL (|has| $ (-6 -4404)))) (-3742 (($ $ (-639 $)) NIL (|has| $ (-6 -4404)))) (-2968 (($ (-1 (-112) |#1|) $) NIL)) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-2349 ((|#1| $) NIL)) (-3329 (($) NIL T CONST)) (-2673 (($ $) NIL (|has| $ (-6 -4404)))) (-2676 (($ $) NIL)) (-1434 (($ $) NIL) (($ $ (-766)) NIL)) (-3923 (($ $) NIL (|has| |#1| (-1092)))) (-1459 (($ $) 7 (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-3729 (($ |#1| $) NIL (|has| |#1| (-1092))) (($ (-1 (-112) |#1|) $) NIL)) (-1475 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1954 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1507 ((|#1| $ (-562) |#1|) NIL (|has| $ (-6 -4404)))) (-1420 ((|#1| $ (-562)) NIL)) (-2101 (((-112) $) NIL)) (-4265 (((-562) |#1| $ (-562)) NIL (|has| |#1| (-1092))) (((-562) |#1| $) NIL (|has| |#1| (-1092))) (((-562) (-1 (-112) |#1|) $) NIL)) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-2409 (((-639 $) $) NIL)) (-4188 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1458 (($ (-766) |#1|) NIL)) (-4172 (((-112) $ (-766)) NIL)) (-1849 (((-562) $) NIL (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-3124 (($ $ $) NIL (|has| |#1| (-845))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4103 (($ $ $) NIL (|has| |#1| (-845))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2123 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1929 (((-562) $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-1491 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3716 (($ |#1|) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-4008 (((-639 |#1|) $) NIL)) (-3179 (((-112) $) NIL)) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1504 ((|#1| $) NIL) (($ $ (-766)) NIL)) (-1581 (($ $ $ (-562)) NIL) (($ |#1| $ (-562)) NIL)) (-3295 (($ $ $ (-562)) NIL) (($ |#1| $ (-562)) NIL)) (-3336 (((-639 (-562)) $) NIL)) (-1987 (((-112) (-562) $) NIL)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-1421 ((|#1| $) NIL) (($ $ (-766)) NIL)) (-1963 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3510 (($ $ |#1|) NIL (|has| $ (-6 -4404)))) (-3745 (((-112) $) NIL)) (-3008 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) NIL)) (-2716 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2366 (((-639 |#1|) $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) NIL)) (-2343 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1223 (-562))) NIL) ((|#1| $ (-562)) NIL) ((|#1| $ (-562) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-766) $ "count") 16)) (-1423 (((-562) $ $) NIL)) (-1527 (($ $ (-1223 (-562))) NIL) (($ $ (-562)) NIL)) (-2880 (($ $ (-1223 (-562))) NIL) (($ $ (-562)) NIL)) (-3263 (($ (-639 |#1|)) 22)) (-2473 (((-112) $) NIL)) (-3734 (($ $) NIL)) (-3659 (($ $) NIL (|has| $ (-6 -4404)))) (-3595 (((-766) $) NIL)) (-2333 (($ $) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2694 (($ $ $ (-562)) NIL (|has| $ (-6 -4404)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| |#1| (-610 (-535))))) (-4064 (($ (-639 |#1|)) NIL)) (-2587 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2767 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-639 $)) NIL) (($ $ |#1|) NIL)) (-4053 (($ (-639 |#1|)) 17) (((-639 |#1|) $) 18) (((-857) $) 21 (|has| |#1| (-609 (-857))))) (-3643 (((-639 $) $) NIL)) (-2985 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2879 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1771 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1761 (((-112) $ $) NIL (|has| |#1| (-845)))) (-3492 (((-766) $) 14 (|has| $ (-6 -4403))))) -(((-244 |#1|) (-13 (-660 |#1|) (-489 (-639 |#1|)) (-10 -8 (-15 -3263 ($ (-639 |#1|))) (-15 -2343 ($ $ "unique")) (-15 -2343 ($ $ "sort")) (-15 -2343 ((-766) $ "count")))) (-845)) (T -244)) -((-3263 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-845)) (-5 *1 (-244 *3)))) (-2343 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-244 *3)) (-4 *3 (-845)))) (-2343 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-244 *3)) (-4 *3 (-845)))) (-2343 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-766)) (-5 *1 (-244 *4)) (-4 *4 (-845))))) -(-13 (-660 |#1|) (-489 (-639 |#1|)) (-10 -8 (-15 -3263 ($ (-639 |#1|))) (-15 -2343 ($ $ "unique")) (-15 -2343 ($ $ "sort")) (-15 -2343 ((-766) $ "count")))) -((-2376 (((-3 (-766) "failed") |#1| |#1| (-766)) 26))) -(((-245 |#1|) (-10 -7 (-15 -2376 ((-3 (-766) "failed") |#1| |#1| (-766)))) (-13 (-721) (-367) (-10 -7 (-15 ** (|#1| |#1| (-562)))))) (T -245)) -((-2376 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-766)) (-4 *3 (-13 (-721) (-367) (-10 -7 (-15 ** (*3 *3 (-562)))))) (-5 *1 (-245 *3))))) -(-10 -7 (-15 -2376 ((-3 (-766) "failed") |#1| |#1| (-766)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-1401 (((-639 (-859 |#1|)) $) NIL)) (-1602 (((-1164 $) $ (-859 |#1|)) NIL) (((-1164 |#2|) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL (|has| |#2| (-554)))) (-1965 (($ $) NIL (|has| |#2| (-554)))) (-4102 (((-112) $) NIL (|has| |#2| (-554)))) (-1578 (((-766) $) NIL) (((-766) $ (-639 (-859 |#1|))) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3517 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-1977 (($ $) NIL (|has| |#2| (-451)))) (-3788 (((-417 $) $) NIL (|has| |#2| (-451)))) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#2| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) NIL (|has| |#2| (-1033 (-562)))) (((-3 (-859 |#1|) "failed") $) NIL)) (-3960 ((|#2| $) NIL) (((-406 (-562)) $) NIL (|has| |#2| (-1033 (-406 (-562))))) (((-562) $) NIL (|has| |#2| (-1033 (-562)))) (((-859 |#1|) $) NIL)) (-2355 (($ $ $ (-859 |#1|)) NIL (|has| |#2| (-171)))) (-3999 (($ $ (-639 (-562))) NIL)) (-1600 (($ $) NIL)) (-3449 (((-683 (-562)) (-683 $)) NIL (|has| |#2| (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#2| (-635 (-562)))) (((-2 (|:| -1767 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) NIL) (((-683 |#2|) (-683 $)) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-2578 (($ $) NIL (|has| |#2| (-451))) (($ $ (-859 |#1|)) NIL (|has| |#2| (-451)))) (-1585 (((-639 $) $) NIL)) (-3521 (((-112) $) NIL (|has| |#2| (-904)))) (-3066 (($ $ |#2| (-239 (-3492 |#1|) (-766)) $) NIL)) (-2337 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-859 |#1|) (-881 (-378))) (|has| |#2| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (-12 (|has| (-859 |#1|) (-881 (-562))) (|has| |#2| (-881 (-562)))))) (-4367 (((-112) $) NIL)) (-3627 (((-766) $) NIL)) (-1389 (($ (-1164 |#2|) (-859 |#1|)) NIL) (($ (-1164 $) (-859 |#1|)) NIL)) (-1869 (((-639 $) $) NIL)) (-2833 (((-112) $) NIL)) (-1377 (($ |#2| (-239 (-3492 |#1|) (-766))) NIL) (($ $ (-859 |#1|) (-766)) NIL) (($ $ (-639 (-859 |#1|)) (-639 (-766))) NIL)) (-3851 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $ (-859 |#1|)) NIL)) (-3161 (((-239 (-3492 |#1|) (-766)) $) NIL) (((-766) $ (-859 |#1|)) NIL) (((-639 (-766)) $ (-639 (-859 |#1|))) NIL)) (-1551 (($ $ $) NIL (|has| |#2| (-845)))) (-2993 (($ $ $) NIL (|has| |#2| (-845)))) (-2363 (($ (-1 (-239 (-3492 |#1|) (-766)) (-239 (-3492 |#1|) (-766))) $) NIL)) (-4152 (($ (-1 |#2| |#2|) $) NIL)) (-3640 (((-3 (-859 |#1|) "failed") $) NIL)) (-1560 (($ $) NIL)) (-1573 ((|#2| $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#2| (-451))) (($ $ $) NIL (|has| |#2| (-451)))) (-3696 (((-1150) $) NIL)) (-4025 (((-3 (-639 $) "failed") $) NIL)) (-1778 (((-3 (-639 $) "failed") $) NIL)) (-4270 (((-3 (-2 (|:| |var| (-859 |#1|)) (|:| -1300 (-766))) "failed") $) NIL)) (-1709 (((-1112) $) NIL)) (-1534 (((-112) $) NIL)) (-1547 ((|#2| $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#2| (-451)))) (-1606 (($ (-639 $)) NIL (|has| |#2| (-451))) (($ $ $) NIL (|has| |#2| (-451)))) (-3586 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-3468 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-1635 (((-417 $) $) NIL (|has| |#2| (-904)))) (-1762 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-554)))) (-1433 (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-859 |#1|) |#2|) NIL) (($ $ (-639 (-859 |#1|)) (-639 |#2|)) NIL) (($ $ (-859 |#1|) $) NIL) (($ $ (-639 (-859 |#1|)) (-639 $)) NIL)) (-2736 (($ $ (-859 |#1|)) NIL (|has| |#2| (-171)))) (-4029 (($ $ (-859 |#1|)) NIL) (($ $ (-639 (-859 |#1|))) NIL) (($ $ (-859 |#1|) (-766)) NIL) (($ $ (-639 (-859 |#1|)) (-639 (-766))) NIL)) (-2250 (((-239 (-3492 |#1|) (-766)) $) NIL) (((-766) $ (-859 |#1|)) NIL) (((-639 (-766)) $ (-639 (-859 |#1|))) NIL)) (-4208 (((-887 (-378)) $) NIL (-12 (|has| (-859 |#1|) (-610 (-887 (-378)))) (|has| |#2| (-610 (-887 (-378)))))) (((-887 (-562)) $) NIL (-12 (|has| (-859 |#1|) (-610 (-887 (-562)))) (|has| |#2| (-610 (-887 (-562)))))) (((-535) $) NIL (-12 (|has| (-859 |#1|) (-610 (-535))) (|has| |#2| (-610 (-535)))))) (-2201 ((|#2| $) NIL (|has| |#2| (-451))) (($ $ (-859 |#1|)) NIL (|has| |#2| (-451)))) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-904))))) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ |#2|) NIL) (($ (-859 |#1|)) NIL) (($ (-406 (-562))) NIL (-4037 (|has| |#2| (-38 (-406 (-562)))) (|has| |#2| (-1033 (-406 (-562)))))) (($ $) NIL (|has| |#2| (-554)))) (-3969 (((-639 |#2|) $) NIL)) (-2266 ((|#2| $ (-239 (-3492 |#1|) (-766))) NIL) (($ $ (-859 |#1|) (-766)) NIL) (($ $ (-639 (-859 |#1|)) (-639 (-766))) NIL)) (-2059 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#2| (-904))) (|has| |#2| (-144))))) (-1568 (((-766)) NIL)) (-1760 (($ $ $ (-766)) NIL (|has| |#2| (-171)))) (-3799 (((-112) $ $) NIL (|has| |#2| (-554)))) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3113 (($ $ (-859 |#1|)) NIL) (($ $ (-639 (-859 |#1|))) NIL) (($ $ (-859 |#1|) (-766)) NIL) (($ $ (-639 (-859 |#1|)) (-639 (-766))) NIL)) (-1798 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1771 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1761 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1859 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL (|has| |#2| (-38 (-406 (-562))))) (($ (-406 (-562)) $) NIL (|has| |#2| (-38 (-406 (-562))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-246 |#1| |#2|) (-13 (-944 |#2| (-239 (-3492 |#1|) (-766)) (-859 |#1|)) (-10 -8 (-15 -3999 ($ $ (-639 (-562)))))) (-639 (-1168)) (-1044)) (T -246)) -((-3999 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-246 *3 *4)) (-14 *3 (-639 (-1168))) (-4 *4 (-1044))))) -(-13 (-944 |#2| (-239 (-3492 |#1|) (-766)) (-859 |#1|)) (-10 -8 (-15 -3999 ($ $ (-639 (-562)))))) -((-4041 (((-112) $ $) NIL)) (-1686 (((-1261) $) 17)) (-1955 (((-182) $) 11)) (-2946 (($ (-182)) 12)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1875 (((-248) $) 7)) (-4053 (((-857) $) 9)) (-1733 (((-112) $ $) 15))) -(((-247) (-13 (-1092) (-10 -8 (-15 -1875 ((-248) $)) (-15 -1955 ((-182) $)) (-15 -2946 ($ (-182))) (-15 -1686 ((-1261) $))))) (T -247)) -((-1875 (*1 *2 *1) (-12 (-5 *2 (-248)) (-5 *1 (-247)))) (-1955 (*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-247)))) (-2946 (*1 *1 *2) (-12 (-5 *2 (-182)) (-5 *1 (-247)))) (-1686 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-247))))) -(-13 (-1092) (-10 -8 (-15 -1875 ((-248) $)) (-15 -1955 ((-182) $)) (-15 -2946 ($ (-182))) (-15 -1686 ((-1261) $)))) -((-4041 (((-112) $ $) NIL)) (-3360 (((-639 (-860)) $) NIL)) (-3253 (((-505) $) NIL)) (-3696 (((-1150) $) NIL)) (-2420 (((-185) $) NIL)) (-1709 (((-1112) $) NIL)) (-2760 (((-639 (-112)) $) NIL)) (-4053 (((-857) $) NIL) (((-186) $) 6)) (-3975 (((-55) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-248) (-13 (-184) (-609 (-186)))) (T -248)) -NIL -(-13 (-184) (-609 (-186))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2211 (($ (-916)) NIL (|has| |#4| (-1044)))) (-3655 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4404)))) (-1593 (($ $ $) NIL (|has| |#4| (-788)))) (-2781 (((-3 $ "failed") $ $) NIL)) (-3735 (((-112) $ (-766)) NIL)) (-1382 (((-766)) NIL (|has| |#4| (-367)))) (-1587 (((-562) $) NIL (|has| |#4| (-843)))) (-4200 ((|#4| $ (-562) |#4|) NIL (|has| $ (-6 -4404)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1092))) (((-3 (-562) "failed") $) NIL (-12 (|has| |#4| (-1033 (-562))) (|has| |#4| (-1092)))) (((-3 (-406 (-562)) "failed") $) NIL (-12 (|has| |#4| (-1033 (-406 (-562)))) (|has| |#4| (-1092))))) (-3960 ((|#4| $) NIL (|has| |#4| (-1092))) (((-562) $) NIL (-12 (|has| |#4| (-1033 (-562))) (|has| |#4| (-1092)))) (((-406 (-562)) $) NIL (-12 (|has| |#4| (-1033 (-406 (-562)))) (|has| |#4| (-1092))))) (-3449 (((-2 (|:| -1767 (-683 |#4|)) (|:| |vec| (-1256 |#4|))) (-683 $) (-1256 $)) NIL (|has| |#4| (-1044))) (((-683 |#4|) (-683 $)) NIL (|has| |#4| (-1044))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (-12 (|has| |#4| (-635 (-562))) (|has| |#4| (-1044)))) (((-683 (-562)) (-683 $)) NIL (-12 (|has| |#4| (-635 (-562))) (|has| |#4| (-1044))))) (-1694 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| |#4| (-232)) (|has| |#4| (-1044))) (-12 (|has| |#4| (-635 (-562))) (|has| |#4| (-1044))) (|has| |#4| (-721)) (-12 (|has| |#4| (-895 (-1168))) (|has| |#4| (-1044)))))) (-1447 (($) NIL (|has| |#4| (-367)))) (-1507 ((|#4| $ (-562) |#4|) NIL (|has| $ (-6 -4404)))) (-1420 ((|#4| $ (-562)) NIL)) (-2696 (((-112) $) NIL (|has| |#4| (-843)))) (-1720 (((-639 |#4|) $) NIL (|has| $ (-6 -4403)))) (-4367 (((-112) $) NIL (-4037 (-12 (|has| |#4| (-232)) (|has| |#4| (-1044))) (-12 (|has| |#4| (-635 (-562))) (|has| |#4| (-1044))) (|has| |#4| (-721)) (-12 (|has| |#4| (-895 (-1168))) (|has| |#4| (-1044)))))) (-3855 (((-112) $) NIL (|has| |#4| (-843)))) (-4172 (((-112) $ (-766)) NIL)) (-1849 (((-562) $) NIL (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (-4037 (|has| |#4| (-788)) (|has| |#4| (-843))))) (-2123 (((-639 |#4|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#4| (-1092))))) (-1929 (((-562) $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (-4037 (|has| |#4| (-788)) (|has| |#4| (-843))))) (-1491 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#4| |#4|) $) NIL)) (-3549 (((-916) $) NIL (|has| |#4| (-367)))) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL)) (-3336 (((-639 (-562)) $) NIL)) (-1987 (((-112) (-562) $) NIL)) (-2464 (($ (-916)) NIL (|has| |#4| (-367)))) (-1709 (((-1112) $) NIL)) (-1421 ((|#4| $) NIL (|has| (-562) (-845)))) (-3510 (($ $ |#4|) NIL (|has| $ (-6 -4404)))) (-3008 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-639 |#4|) (-639 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))))) (-1452 (((-112) $ $) NIL)) (-2716 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#4| (-1092))))) (-2366 (((-639 |#4|) $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) NIL)) (-2343 ((|#4| $ (-562) |#4|) NIL) ((|#4| $ (-562)) 12)) (-2852 ((|#4| $ $) NIL (|has| |#4| (-1044)))) (-1678 (($ (-1256 |#4|)) NIL)) (-4340 (((-133)) NIL (|has| |#4| (-362)))) (-4029 (($ $ (-1 |#4| |#4|) (-766)) NIL (|has| |#4| (-1044))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1044))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#4| (-895 (-1168))) (|has| |#4| (-1044)))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#4| (-895 (-1168))) (|has| |#4| (-1044)))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#4| (-895 (-1168))) (|has| |#4| (-1044)))) (($ $ (-1168)) NIL (-12 (|has| |#4| (-895 (-1168))) (|has| |#4| (-1044)))) (($ $ (-766)) NIL (-12 (|has| |#4| (-232)) (|has| |#4| (-1044)))) (($ $) NIL (-12 (|has| |#4| (-232)) (|has| |#4| (-1044))))) (-1723 (((-766) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4403))) (((-766) |#4| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#4| (-1092))))) (-4220 (($ $) NIL)) (-4053 (((-1256 |#4|) $) NIL) (((-857) $) NIL) (($ |#4|) NIL (|has| |#4| (-1092))) (($ (-562)) NIL (-4037 (-12 (|has| |#4| (-1033 (-562))) (|has| |#4| (-1092))) (|has| |#4| (-1044)))) (($ (-406 (-562))) NIL (-12 (|has| |#4| (-1033 (-406 (-562)))) (|has| |#4| (-1092))))) (-1568 (((-766)) NIL (|has| |#4| (-1044)))) (-2879 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4403)))) (-2757 (($ $) NIL (|has| |#4| (-843)))) (-2285 (($) NIL T CONST)) (-2294 (($) NIL (-4037 (-12 (|has| |#4| (-232)) (|has| |#4| (-1044))) (-12 (|has| |#4| (-635 (-562))) (|has| |#4| (-1044))) (|has| |#4| (-721)) (-12 (|has| |#4| (-895 (-1168))) (|has| |#4| (-1044)))) CONST)) (-3113 (($ $ (-1 |#4| |#4|) (-766)) NIL (|has| |#4| (-1044))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1044))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#4| (-895 (-1168))) (|has| |#4| (-1044)))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#4| (-895 (-1168))) (|has| |#4| (-1044)))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#4| (-895 (-1168))) (|has| |#4| (-1044)))) (($ $ (-1168)) NIL (-12 (|has| |#4| (-895 (-1168))) (|has| |#4| (-1044)))) (($ $ (-766)) NIL (-12 (|has| |#4| (-232)) (|has| |#4| (-1044)))) (($ $) NIL (-12 (|has| |#4| (-232)) (|has| |#4| (-1044))))) (-1798 (((-112) $ $) NIL (-4037 (|has| |#4| (-788)) (|has| |#4| (-843))))) (-1771 (((-112) $ $) NIL (-4037 (|has| |#4| (-788)) (|has| |#4| (-843))))) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (-4037 (|has| |#4| (-788)) (|has| |#4| (-843))))) (-1761 (((-112) $ $) NIL (-4037 (|has| |#4| (-788)) (|has| |#4| (-843))))) (-1859 (($ $ |#4|) NIL (|has| |#4| (-362)))) (-1847 (($ $ $) NIL) (($ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-766)) NIL (-4037 (-12 (|has| |#4| (-232)) (|has| |#4| (-1044))) (-12 (|has| |#4| (-635 (-562))) (|has| |#4| (-1044))) (|has| |#4| (-721)) (-12 (|has| |#4| (-895 (-1168))) (|has| |#4| (-1044))))) (($ $ (-916)) NIL (-4037 (-12 (|has| |#4| (-232)) (|has| |#4| (-1044))) (-12 (|has| |#4| (-635 (-562))) (|has| |#4| (-1044))) (|has| |#4| (-721)) (-12 (|has| |#4| (-895 (-1168))) (|has| |#4| (-1044)))))) (* (($ |#2| $) 14) (($ (-562) $) NIL) (($ (-766) $) NIL) (($ (-916) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-721))) (($ |#4| $) NIL (|has| |#4| (-721))) (($ $ $) NIL (-4037 (-12 (|has| |#4| (-232)) (|has| |#4| (-1044))) (-12 (|has| |#4| (-635 (-562))) (|has| |#4| (-1044))) (|has| |#4| (-721)) (-12 (|has| |#4| (-895 (-1168))) (|has| |#4| (-1044)))))) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-249 |#1| |#2| |#3| |#4|) (-13 (-237 |#1| |#4|) (-642 |#2|) (-642 |#3|)) (-916) (-1044) (-1115 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-642 |#2|)) (T -249)) -NIL -(-13 (-237 |#1| |#4|) (-642 |#2|) (-642 |#3|)) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2211 (($ (-916)) NIL (|has| |#3| (-1044)))) (-3655 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4404)))) (-1593 (($ $ $) NIL (|has| |#3| (-788)))) (-2781 (((-3 $ "failed") $ $) NIL)) (-3735 (((-112) $ (-766)) NIL)) (-1382 (((-766)) NIL (|has| |#3| (-367)))) (-1587 (((-562) $) NIL (|has| |#3| (-843)))) (-4200 ((|#3| $ (-562) |#3|) NIL (|has| $ (-6 -4404)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1092))) (((-3 (-562) "failed") $) NIL (-12 (|has| |#3| (-1033 (-562))) (|has| |#3| (-1092)))) (((-3 (-406 (-562)) "failed") $) NIL (-12 (|has| |#3| (-1033 (-406 (-562)))) (|has| |#3| (-1092))))) (-3960 ((|#3| $) NIL (|has| |#3| (-1092))) (((-562) $) NIL (-12 (|has| |#3| (-1033 (-562))) (|has| |#3| (-1092)))) (((-406 (-562)) $) NIL (-12 (|has| |#3| (-1033 (-406 (-562)))) (|has| |#3| (-1092))))) (-3449 (((-2 (|:| -1767 (-683 |#3|)) (|:| |vec| (-1256 |#3|))) (-683 $) (-1256 $)) NIL (|has| |#3| (-1044))) (((-683 |#3|) (-683 $)) NIL (|has| |#3| (-1044))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (-12 (|has| |#3| (-635 (-562))) (|has| |#3| (-1044)))) (((-683 (-562)) (-683 $)) NIL (-12 (|has| |#3| (-635 (-562))) (|has| |#3| (-1044))))) (-1694 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| |#3| (-232)) (|has| |#3| (-1044))) (-12 (|has| |#3| (-635 (-562))) (|has| |#3| (-1044))) (|has| |#3| (-721)) (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))))) (-1447 (($) NIL (|has| |#3| (-367)))) (-1507 ((|#3| $ (-562) |#3|) NIL (|has| $ (-6 -4404)))) (-1420 ((|#3| $ (-562)) NIL)) (-2696 (((-112) $) NIL (|has| |#3| (-843)))) (-1720 (((-639 |#3|) $) NIL (|has| $ (-6 -4403)))) (-4367 (((-112) $) NIL (-4037 (-12 (|has| |#3| (-232)) (|has| |#3| (-1044))) (-12 (|has| |#3| (-635 (-562))) (|has| |#3| (-1044))) (|has| |#3| (-721)) (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))))) (-3855 (((-112) $) NIL (|has| |#3| (-843)))) (-4172 (((-112) $ (-766)) NIL)) (-1849 (((-562) $) NIL (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (-4037 (|has| |#3| (-788)) (|has| |#3| (-843))))) (-2123 (((-639 |#3|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#3| (-1092))))) (-1929 (((-562) $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (-4037 (|has| |#3| (-788)) (|has| |#3| (-843))))) (-1491 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#3| |#3|) $) NIL)) (-3549 (((-916) $) NIL (|has| |#3| (-367)))) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL)) (-3336 (((-639 (-562)) $) NIL)) (-1987 (((-112) (-562) $) NIL)) (-2464 (($ (-916)) NIL (|has| |#3| (-367)))) (-1709 (((-1112) $) NIL)) (-1421 ((|#3| $) NIL (|has| (-562) (-845)))) (-3510 (($ $ |#3|) NIL (|has| $ (-6 -4404)))) (-3008 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#3|))) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) (($ $ (-293 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) (($ $ (-639 |#3|) (-639 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092))))) (-1452 (((-112) $ $) NIL)) (-2716 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#3| (-1092))))) (-2366 (((-639 |#3|) $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) NIL)) (-2343 ((|#3| $ (-562) |#3|) NIL) ((|#3| $ (-562)) 11)) (-2852 ((|#3| $ $) NIL (|has| |#3| (-1044)))) (-1678 (($ (-1256 |#3|)) NIL)) (-4340 (((-133)) NIL (|has| |#3| (-362)))) (-4029 (($ $ (-1 |#3| |#3|) (-766)) NIL (|has| |#3| (-1044))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1044))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) (($ $ (-1168)) NIL (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) (($ $ (-766)) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1044)))) (($ $) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1044))))) (-1723 (((-766) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4403))) (((-766) |#3| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#3| (-1092))))) (-4220 (($ $) NIL)) (-4053 (((-1256 |#3|) $) NIL) (((-857) $) NIL) (($ |#3|) NIL (|has| |#3| (-1092))) (($ (-562)) NIL (-4037 (-12 (|has| |#3| (-1033 (-562))) (|has| |#3| (-1092))) (|has| |#3| (-1044)))) (($ (-406 (-562))) NIL (-12 (|has| |#3| (-1033 (-406 (-562)))) (|has| |#3| (-1092))))) (-1568 (((-766)) NIL (|has| |#3| (-1044)))) (-2879 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4403)))) (-2757 (($ $) NIL (|has| |#3| (-843)))) (-2285 (($) NIL T CONST)) (-2294 (($) NIL (-4037 (-12 (|has| |#3| (-232)) (|has| |#3| (-1044))) (-12 (|has| |#3| (-635 (-562))) (|has| |#3| (-1044))) (|has| |#3| (-721)) (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) CONST)) (-3113 (($ $ (-1 |#3| |#3|) (-766)) NIL (|has| |#3| (-1044))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1044))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) (($ $ (-1168)) NIL (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) (($ $ (-766)) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1044)))) (($ $) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1044))))) (-1798 (((-112) $ $) NIL (-4037 (|has| |#3| (-788)) (|has| |#3| (-843))))) (-1771 (((-112) $ $) NIL (-4037 (|has| |#3| (-788)) (|has| |#3| (-843))))) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (-4037 (|has| |#3| (-788)) (|has| |#3| (-843))))) (-1761 (((-112) $ $) NIL (-4037 (|has| |#3| (-788)) (|has| |#3| (-843))))) (-1859 (($ $ |#3|) NIL (|has| |#3| (-362)))) (-1847 (($ $ $) NIL) (($ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-766)) NIL (-4037 (-12 (|has| |#3| (-232)) (|has| |#3| (-1044))) (-12 (|has| |#3| (-635 (-562))) (|has| |#3| (-1044))) (|has| |#3| (-721)) (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044))))) (($ $ (-916)) NIL (-4037 (-12 (|has| |#3| (-232)) (|has| |#3| (-1044))) (-12 (|has| |#3| (-635 (-562))) (|has| |#3| (-1044))) (|has| |#3| (-721)) (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))))) (* (($ |#2| $) 13) (($ (-562) $) NIL) (($ (-766) $) NIL) (($ (-916) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-721))) (($ |#3| $) NIL (|has| |#3| (-721))) (($ $ $) NIL (-4037 (-12 (|has| |#3| (-232)) (|has| |#3| (-1044))) (-12 (|has| |#3| (-635 (-562))) (|has| |#3| (-1044))) (|has| |#3| (-721)) (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))))) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-250 |#1| |#2| |#3|) (-13 (-237 |#1| |#3|) (-642 |#2|)) (-766) (-1044) (-642 |#2|)) (T -250)) -NIL -(-13 (-237 |#1| |#3|) (-642 |#2|)) -((-1759 (((-639 (-766)) $) 47) (((-639 (-766)) $ |#3|) 50)) (-2277 (((-766) $) 49) (((-766) $ |#3|) 52)) (-3611 (($ $) 65)) (-4048 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL) (((-3 (-562) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-1993 (((-766) $ |#3|) 39) (((-766) $) 36)) (-2298 (((-1 $ (-766)) |#3|) 15) (((-1 $ (-766)) $) 77)) (-3736 ((|#4| $) 58)) (-1611 (((-112) $) 56)) (-3592 (($ $) 64)) (-1433 (($ $ (-639 (-293 $))) 97) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-639 |#4|) (-639 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-639 |#4|) (-639 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-639 |#3|) (-639 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-639 |#3|) (-639 |#2|)) 84)) (-4029 (($ $ |#4|) NIL) (($ $ (-639 |#4|)) NIL) (($ $ |#4| (-766)) NIL) (($ $ (-639 |#4|) (-639 (-766))) NIL) (($ $) NIL) (($ $ (-766)) NIL) (($ $ (-1168)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL) (($ $ (-1 |#2| |#2|) (-766)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-3712 (((-639 |#3|) $) 75)) (-2250 ((|#5| $) NIL) (((-766) $ |#4|) NIL) (((-639 (-766)) $ (-639 |#4|)) NIL) (((-766) $ |#3|) 44)) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-406 (-562))) NIL) (($ $) NIL))) -(((-251 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4053 (|#1| |#1|)) (-15 -4053 (|#1| (-406 (-562)))) (-15 -1433 (|#1| |#1| (-639 |#3|) (-639 |#2|))) (-15 -1433 (|#1| |#1| |#3| |#2|)) (-15 -1433 (|#1| |#1| (-639 |#3|) (-639 |#1|))) (-15 -1433 (|#1| |#1| |#3| |#1|)) (-15 -2298 ((-1 |#1| (-766)) |#1|)) (-15 -3611 (|#1| |#1|)) (-15 -3592 (|#1| |#1|)) (-15 -3736 (|#4| |#1|)) (-15 -1611 ((-112) |#1|)) (-15 -2277 ((-766) |#1| |#3|)) (-15 -1759 ((-639 (-766)) |#1| |#3|)) (-15 -2277 ((-766) |#1|)) (-15 -1759 ((-639 (-766)) |#1|)) (-15 -2250 ((-766) |#1| |#3|)) (-15 -1993 ((-766) |#1|)) (-15 -1993 ((-766) |#1| |#3|)) (-15 -3712 ((-639 |#3|) |#1|)) (-15 -2298 ((-1 |#1| (-766)) |#3|)) (-15 -4053 (|#1| |#3|)) (-15 -4048 ((-3 |#3| "failed") |#1|)) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1|)) (-15 -2250 ((-639 (-766)) |#1| (-639 |#4|))) (-15 -2250 ((-766) |#1| |#4|)) (-15 -4053 (|#1| |#4|)) (-15 -4048 ((-3 |#4| "failed") |#1|)) (-15 -1433 (|#1| |#1| (-639 |#4|) (-639 |#1|))) (-15 -1433 (|#1| |#1| |#4| |#1|)) (-15 -1433 (|#1| |#1| (-639 |#4|) (-639 |#2|))) (-15 -1433 (|#1| |#1| |#4| |#2|)) (-15 -1433 (|#1| |#1| (-639 |#1|) (-639 |#1|))) (-15 -1433 (|#1| |#1| |#1| |#1|)) (-15 -1433 (|#1| |#1| (-293 |#1|))) (-15 -1433 (|#1| |#1| (-639 (-293 |#1|)))) (-15 -2250 (|#5| |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -4053 (|#1| |#2|)) (-15 -4029 (|#1| |#1| (-639 |#4|) (-639 (-766)))) (-15 -4029 (|#1| |#1| |#4| (-766))) (-15 -4029 (|#1| |#1| (-639 |#4|))) (-15 -4029 (|#1| |#1| |#4|)) (-15 -4053 (|#1| (-562))) (-15 -4053 ((-857) |#1|))) (-252 |#2| |#3| |#4| |#5|) (-1044) (-845) (-265 |#3|) (-788)) (T -251)) -NIL -(-10 -8 (-15 -4053 (|#1| |#1|)) (-15 -4053 (|#1| (-406 (-562)))) (-15 -1433 (|#1| |#1| (-639 |#3|) (-639 |#2|))) (-15 -1433 (|#1| |#1| |#3| |#2|)) (-15 -1433 (|#1| |#1| (-639 |#3|) (-639 |#1|))) (-15 -1433 (|#1| |#1| |#3| |#1|)) (-15 -2298 ((-1 |#1| (-766)) |#1|)) (-15 -3611 (|#1| |#1|)) (-15 -3592 (|#1| |#1|)) (-15 -3736 (|#4| |#1|)) (-15 -1611 ((-112) |#1|)) (-15 -2277 ((-766) |#1| |#3|)) (-15 -1759 ((-639 (-766)) |#1| |#3|)) (-15 -2277 ((-766) |#1|)) (-15 -1759 ((-639 (-766)) |#1|)) (-15 -2250 ((-766) |#1| |#3|)) (-15 -1993 ((-766) |#1|)) (-15 -1993 ((-766) |#1| |#3|)) (-15 -3712 ((-639 |#3|) |#1|)) (-15 -2298 ((-1 |#1| (-766)) |#3|)) (-15 -4053 (|#1| |#3|)) (-15 -4048 ((-3 |#3| "failed") |#1|)) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1|)) (-15 -2250 ((-639 (-766)) |#1| (-639 |#4|))) (-15 -2250 ((-766) |#1| |#4|)) (-15 -4053 (|#1| |#4|)) (-15 -4048 ((-3 |#4| "failed") |#1|)) (-15 -1433 (|#1| |#1| (-639 |#4|) (-639 |#1|))) (-15 -1433 (|#1| |#1| |#4| |#1|)) (-15 -1433 (|#1| |#1| (-639 |#4|) (-639 |#2|))) (-15 -1433 (|#1| |#1| |#4| |#2|)) (-15 -1433 (|#1| |#1| (-639 |#1|) (-639 |#1|))) (-15 -1433 (|#1| |#1| |#1| |#1|)) (-15 -1433 (|#1| |#1| (-293 |#1|))) (-15 -1433 (|#1| |#1| (-639 (-293 |#1|)))) (-15 -2250 (|#5| |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -4053 (|#1| |#2|)) (-15 -4029 (|#1| |#1| (-639 |#4|) (-639 (-766)))) (-15 -4029 (|#1| |#1| |#4| (-766))) (-15 -4029 (|#1| |#1| (-639 |#4|))) (-15 -4029 (|#1| |#1| |#4|)) (-15 -4053 (|#1| (-562))) (-15 -4053 ((-857) |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-1759 (((-639 (-766)) $) 214) (((-639 (-766)) $ |#2|) 212)) (-2277 (((-766) $) 213) (((-766) $ |#2|) 211)) (-1401 (((-639 |#3|) $) 110)) (-1602 (((-1164 $) $ |#3|) 125) (((-1164 |#1|) $) 124)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 87 (|has| |#1| (-554)))) (-1965 (($ $) 88 (|has| |#1| (-554)))) (-4102 (((-112) $) 90 (|has| |#1| (-554)))) (-1578 (((-766) $) 112) (((-766) $ (-639 |#3|)) 111)) (-2781 (((-3 $ "failed") $ $) 19)) (-3517 (((-417 (-1164 $)) (-1164 $)) 100 (|has| |#1| (-904)))) (-1977 (($ $) 98 (|has| |#1| (-451)))) (-3788 (((-417 $) $) 97 (|has| |#1| (-451)))) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) 103 (|has| |#1| (-904)))) (-3611 (($ $) 207)) (-3329 (($) 17 T CONST)) (-4048 (((-3 |#1| "failed") $) 164) (((-3 (-406 (-562)) "failed") $) 161 (|has| |#1| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) 159 (|has| |#1| (-1033 (-562)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-3960 ((|#1| $) 163) (((-406 (-562)) $) 162 (|has| |#1| (-1033 (-406 (-562))))) (((-562) $) 160 (|has| |#1| (-1033 (-562)))) ((|#3| $) 137) ((|#2| $) 222)) (-2355 (($ $ $ |#3|) 108 (|has| |#1| (-171)))) (-1600 (($ $) 154)) (-3449 (((-683 (-562)) (-683 $)) 134 (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 133 (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) 132) (((-683 |#1|) (-683 $)) 131)) (-1694 (((-3 $ "failed") $) 33)) (-2578 (($ $) 176 (|has| |#1| (-451))) (($ $ |#3|) 105 (|has| |#1| (-451)))) (-1585 (((-639 $) $) 109)) (-3521 (((-112) $) 96 (|has| |#1| (-904)))) (-3066 (($ $ |#1| |#4| $) 172)) (-2337 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 84 (-12 (|has| |#3| (-881 (-378))) (|has| |#1| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) 83 (-12 (|has| |#3| (-881 (-562))) (|has| |#1| (-881 (-562)))))) (-1993 (((-766) $ |#2|) 217) (((-766) $) 216)) (-4367 (((-112) $) 31)) (-3627 (((-766) $) 169)) (-1389 (($ (-1164 |#1|) |#3|) 117) (($ (-1164 $) |#3|) 116)) (-1869 (((-639 $) $) 126)) (-2833 (((-112) $) 152)) (-1377 (($ |#1| |#4|) 153) (($ $ |#3| (-766)) 119) (($ $ (-639 |#3|) (-639 (-766))) 118)) (-3851 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $ |#3|) 120)) (-3161 ((|#4| $) 170) (((-766) $ |#3|) 122) (((-639 (-766)) $ (-639 |#3|)) 121)) (-1551 (($ $ $) 79 (|has| |#1| (-845)))) (-2993 (($ $ $) 78 (|has| |#1| (-845)))) (-2363 (($ (-1 |#4| |#4|) $) 171)) (-4152 (($ (-1 |#1| |#1|) $) 151)) (-2298 (((-1 $ (-766)) |#2|) 219) (((-1 $ (-766)) $) 206 (|has| |#1| (-232)))) (-3640 (((-3 |#3| "failed") $) 123)) (-1560 (($ $) 149)) (-1573 ((|#1| $) 148)) (-3736 ((|#3| $) 209)) (-1564 (($ (-639 $)) 94 (|has| |#1| (-451))) (($ $ $) 93 (|has| |#1| (-451)))) (-3696 (((-1150) $) 9)) (-1611 (((-112) $) 210)) (-4025 (((-3 (-639 $) "failed") $) 114)) (-1778 (((-3 (-639 $) "failed") $) 115)) (-4270 (((-3 (-2 (|:| |var| |#3|) (|:| -1300 (-766))) "failed") $) 113)) (-3592 (($ $) 208)) (-1709 (((-1112) $) 10)) (-1534 (((-112) $) 166)) (-1547 ((|#1| $) 167)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 95 (|has| |#1| (-451)))) (-1606 (($ (-639 $)) 92 (|has| |#1| (-451))) (($ $ $) 91 (|has| |#1| (-451)))) (-3586 (((-417 (-1164 $)) (-1164 $)) 102 (|has| |#1| (-904)))) (-3468 (((-417 (-1164 $)) (-1164 $)) 101 (|has| |#1| (-904)))) (-1635 (((-417 $) $) 99 (|has| |#1| (-904)))) (-1762 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-554))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-554)))) (-1433 (($ $ (-639 (-293 $))) 145) (($ $ (-293 $)) 144) (($ $ $ $) 143) (($ $ (-639 $) (-639 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-639 |#3|) (-639 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-639 |#3|) (-639 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-232))) (($ $ (-639 |#2|) (-639 $)) 204 (|has| |#1| (-232))) (($ $ |#2| |#1|) 203 (|has| |#1| (-232))) (($ $ (-639 |#2|) (-639 |#1|)) 202 (|has| |#1| (-232)))) (-2736 (($ $ |#3|) 107 (|has| |#1| (-171)))) (-4029 (($ $ |#3|) 42) (($ $ (-639 |#3|)) 41) (($ $ |#3| (-766)) 40) (($ $ (-639 |#3|) (-639 (-766))) 39) (($ $) 238 (|has| |#1| (-232))) (($ $ (-766)) 236 (|has| |#1| (-232))) (($ $ (-1168)) 234 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) 233 (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) 232 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) 231 (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-3712 (((-639 |#2|) $) 218)) (-2250 ((|#4| $) 150) (((-766) $ |#3|) 130) (((-639 (-766)) $ (-639 |#3|)) 129) (((-766) $ |#2|) 215)) (-4208 (((-887 (-378)) $) 82 (-12 (|has| |#3| (-610 (-887 (-378)))) (|has| |#1| (-610 (-887 (-378)))))) (((-887 (-562)) $) 81 (-12 (|has| |#3| (-610 (-887 (-562)))) (|has| |#1| (-610 (-887 (-562)))))) (((-535) $) 80 (-12 (|has| |#3| (-610 (-535))) (|has| |#1| (-610 (-535)))))) (-2201 ((|#1| $) 175 (|has| |#1| (-451))) (($ $ |#3|) 106 (|has| |#1| (-451)))) (-1870 (((-3 (-1256 $) "failed") (-683 $)) 104 (-2245 (|has| $ (-144)) (|has| |#1| (-904))))) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ |#2|) 220) (($ (-406 (-562))) 72 (-4037 (|has| |#1| (-1033 (-406 (-562)))) (|has| |#1| (-38 (-406 (-562)))))) (($ $) 85 (|has| |#1| (-554)))) (-3969 (((-639 |#1|) $) 168)) (-2266 ((|#1| $ |#4|) 155) (($ $ |#3| (-766)) 128) (($ $ (-639 |#3|) (-639 (-766))) 127)) (-2059 (((-3 $ "failed") $) 73 (-4037 (-2245 (|has| $ (-144)) (|has| |#1| (-904))) (|has| |#1| (-144))))) (-1568 (((-766)) 28)) (-1760 (($ $ $ (-766)) 173 (|has| |#1| (-171)))) (-3799 (((-112) $ $) 89 (|has| |#1| (-554)))) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3113 (($ $ |#3|) 38) (($ $ (-639 |#3|)) 37) (($ $ |#3| (-766)) 36) (($ $ (-639 |#3|) (-639 (-766))) 35) (($ $) 237 (|has| |#1| (-232))) (($ $ (-766)) 235 (|has| |#1| (-232))) (($ $ (-1168)) 230 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) 229 (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) 228 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) 227 (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1798 (((-112) $ $) 76 (|has| |#1| (-845)))) (-1771 (((-112) $ $) 75 (|has| |#1| (-845)))) (-1733 (((-112) $ $) 6)) (-1785 (((-112) $ $) 77 (|has| |#1| (-845)))) (-1761 (((-112) $ $) 74 (|has| |#1| (-845)))) (-1859 (($ $ |#1|) 156 (|has| |#1| (-362)))) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ (-406 (-562))) 158 (|has| |#1| (-38 (-406 (-562))))) (($ (-406 (-562)) $) 157 (|has| |#1| (-38 (-406 (-562))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-252 |#1| |#2| |#3| |#4|) (-139) (-1044) (-845) (-265 |t#2|) (-788)) (T -252)) -((-2298 (*1 *2 *3) (-12 (-4 *4 (-1044)) (-4 *3 (-845)) (-4 *5 (-265 *3)) (-4 *6 (-788)) (-5 *2 (-1 *1 (-766))) (-4 *1 (-252 *4 *3 *5 *6)))) (-3712 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-845)) (-4 *5 (-265 *4)) (-4 *6 (-788)) (-5 *2 (-639 *4)))) (-1993 (*1 *2 *1 *3) (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1044)) (-4 *3 (-845)) (-4 *5 (-265 *3)) (-4 *6 (-788)) (-5 *2 (-766)))) (-1993 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-845)) (-4 *5 (-265 *4)) (-4 *6 (-788)) (-5 *2 (-766)))) (-2250 (*1 *2 *1 *3) (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1044)) (-4 *3 (-845)) (-4 *5 (-265 *3)) (-4 *6 (-788)) (-5 *2 (-766)))) (-1759 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-845)) (-4 *5 (-265 *4)) (-4 *6 (-788)) (-5 *2 (-639 (-766))))) (-2277 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-845)) (-4 *5 (-265 *4)) (-4 *6 (-788)) (-5 *2 (-766)))) (-1759 (*1 *2 *1 *3) (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1044)) (-4 *3 (-845)) (-4 *5 (-265 *3)) (-4 *6 (-788)) (-5 *2 (-639 (-766))))) (-2277 (*1 *2 *1 *3) (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1044)) (-4 *3 (-845)) (-4 *5 (-265 *3)) (-4 *6 (-788)) (-5 *2 (-766)))) (-1611 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-845)) (-4 *5 (-265 *4)) (-4 *6 (-788)) (-5 *2 (-112)))) (-3736 (*1 *2 *1) (-12 (-4 *1 (-252 *3 *4 *2 *5)) (-4 *3 (-1044)) (-4 *4 (-845)) (-4 *5 (-788)) (-4 *2 (-265 *4)))) (-3592 (*1 *1 *1) (-12 (-4 *1 (-252 *2 *3 *4 *5)) (-4 *2 (-1044)) (-4 *3 (-845)) (-4 *4 (-265 *3)) (-4 *5 (-788)))) (-3611 (*1 *1 *1) (-12 (-4 *1 (-252 *2 *3 *4 *5)) (-4 *2 (-1044)) (-4 *3 (-845)) (-4 *4 (-265 *3)) (-4 *5 (-788)))) (-2298 (*1 *2 *1) (-12 (-4 *3 (-232)) (-4 *3 (-1044)) (-4 *4 (-845)) (-4 *5 (-265 *4)) (-4 *6 (-788)) (-5 *2 (-1 *1 (-766))) (-4 *1 (-252 *3 *4 *5 *6))))) -(-13 (-944 |t#1| |t#4| |t#3|) (-230 |t#1|) (-1033 |t#2|) (-10 -8 (-15 -2298 ((-1 $ (-766)) |t#2|)) (-15 -3712 ((-639 |t#2|) $)) (-15 -1993 ((-766) $ |t#2|)) (-15 -1993 ((-766) $)) (-15 -2250 ((-766) $ |t#2|)) (-15 -1759 ((-639 (-766)) $)) (-15 -2277 ((-766) $)) (-15 -1759 ((-639 (-766)) $ |t#2|)) (-15 -2277 ((-766) $ |t#2|)) (-15 -1611 ((-112) $)) (-15 -3736 (|t#3| $)) (-15 -3592 ($ $)) (-15 -3611 ($ $)) (IF (|has| |t#1| (-232)) (PROGN (-6 (-513 |t#2| |t#1|)) (-6 (-513 |t#2| $)) (-6 (-308 $)) (-15 -2298 ((-1 $ (-766)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-562)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #0#) -4037 (|has| |#1| (-1033 (-406 (-562)))) (|has| |#1| (-38 (-406 (-562))))) ((-612 (-562)) . T) ((-612 |#1|) . T) ((-612 |#2|) . T) ((-612 |#3|) . T) ((-612 $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451))) ((-609 (-857)) . T) ((-171) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451)) (|has| |#1| (-171))) ((-610 (-535)) -12 (|has| |#1| (-610 (-535))) (|has| |#3| (-610 (-535)))) ((-610 (-887 (-378))) -12 (|has| |#1| (-610 (-887 (-378)))) (|has| |#3| (-610 (-887 (-378))))) ((-610 (-887 (-562))) -12 (|has| |#1| (-610 (-887 (-562)))) (|has| |#3| (-610 (-887 (-562))))) ((-230 |#1|) . T) ((-232) |has| |#1| (-232)) ((-289) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451))) ((-308 $) . T) ((-325 |#1| |#4|) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-451) -4037 (|has| |#1| (-904)) (|has| |#1| (-451))) ((-513 |#2| |#1|) |has| |#1| (-232)) ((-513 |#2| $) |has| |#1| (-232)) ((-513 |#3| |#1|) . T) ((-513 |#3| $) . T) ((-513 $ $) . T) ((-554) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451))) ((-642 #0#) |has| |#1| (-38 (-406 (-562)))) ((-642 |#1|) . T) ((-642 $) . T) ((-635 (-562)) |has| |#1| (-635 (-562))) ((-635 |#1|) . T) ((-712 #0#) |has| |#1| (-38 (-406 (-562)))) ((-712 |#1|) |has| |#1| (-171)) ((-712 $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451))) ((-721) . T) ((-845) |has| |#1| (-845)) ((-895 (-1168)) |has| |#1| (-895 (-1168))) ((-895 |#3|) . T) ((-881 (-378)) -12 (|has| |#1| (-881 (-378))) (|has| |#3| (-881 (-378)))) ((-881 (-562)) -12 (|has| |#1| (-881 (-562))) (|has| |#3| (-881 (-562)))) ((-944 |#1| |#4| |#3|) . T) ((-904) |has| |#1| (-904)) ((-1033 (-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((-1033 (-562)) |has| |#1| (-1033 (-562))) ((-1033 |#1|) . T) ((-1033 |#2|) . T) ((-1033 |#3|) . T) ((-1050 #0#) |has| |#1| (-38 (-406 (-562)))) ((-1050 |#1|) . T) ((-1050 $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451)) (|has| |#1| (-171))) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1211) |has| |#1| (-904))) -((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-1768 ((|#1| $) 54)) (-2774 ((|#1| $) 44)) (-3735 (((-112) $ (-766)) 8)) (-3329 (($) 7 T CONST)) (-2953 (($ $) 60)) (-2673 (($ $) 48)) (-2571 ((|#1| |#1| $) 46)) (-3767 ((|#1| $) 45)) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4403)))) (-4172 (((-112) $ (-766)) 9)) (-2123 (((-639 |#1|) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1491 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-4147 (((-112) $ (-766)) 10)) (-3641 (((-766) $) 61)) (-3696 (((-1150) $) 22 (|has| |#1| (-1092)))) (-2078 ((|#1| $) 39)) (-3607 ((|#1| |#1| $) 52)) (-2216 ((|#1| |#1| $) 51)) (-1581 (($ |#1| $) 40)) (-3059 (((-766) $) 55)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-2662 ((|#1| $) 62)) (-4234 ((|#1| $) 50)) (-2712 ((|#1| $) 49)) (-2038 ((|#1| $) 41)) (-3008 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) 14)) (-3297 ((|#1| |#1| $) 58)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-1903 ((|#1| $) 59)) (-2891 (($) 57) (($ (-639 |#1|)) 56)) (-2191 (((-766) $) 43)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4403))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-4220 (($ $) 13)) (-4053 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-4311 ((|#1| $) 53)) (-4131 (($ (-639 |#1|)) 42)) (-3690 ((|#1| $) 63)) (-2879 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-253 |#1|) (-139) (-1207)) (T -253)) -((-2891 (*1 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1207)))) (-2891 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-4 *1 (-253 *3)))) (-3059 (*1 *2 *1) (-12 (-4 *1 (-253 *3)) (-4 *3 (-1207)) (-5 *2 (-766)))) (-1768 (*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1207)))) (-4311 (*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1207)))) (-3607 (*1 *2 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1207)))) (-2216 (*1 *2 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1207)))) (-4234 (*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1207)))) (-2712 (*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1207)))) (-2673 (*1 *1 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1207))))) -(-13 (-1113 |t#1|) (-990 |t#1|) (-10 -8 (-15 -2891 ($)) (-15 -2891 ($ (-639 |t#1|))) (-15 -3059 ((-766) $)) (-15 -1768 (|t#1| $)) (-15 -4311 (|t#1| $)) (-15 -3607 (|t#1| |t#1| $)) (-15 -2216 (|t#1| |t#1| $)) (-15 -4234 (|t#1| $)) (-15 -2712 (|t#1| $)) (-15 -2673 ($ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-990 |#1|) . T) ((-1092) |has| |#1| (-1092)) ((-1113 |#1|) . T) ((-1207) . T)) -((-2380 (((-1 (-938 (-224)) (-224) (-224)) (-1 (-938 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224) (-224))) 139)) (-4199 (((-1125 (-224)) (-877 (-1 (-224) (-224) (-224))) (-1086 (-378)) (-1086 (-378))) 160) (((-1125 (-224)) (-877 (-1 (-224) (-224) (-224))) (-1086 (-378)) (-1086 (-378)) (-639 (-262))) 158) (((-1125 (-224)) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-378)) (-1086 (-378))) 163) (((-1125 (-224)) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-378)) (-1086 (-378)) (-639 (-262))) 159) (((-1125 (-224)) (-1 (-224) (-224) (-224)) (-1086 (-378)) (-1086 (-378))) 150) (((-1125 (-224)) (-1 (-224) (-224) (-224)) (-1086 (-378)) (-1086 (-378)) (-639 (-262))) 149) (((-1125 (-224)) (-1 (-938 (-224)) (-224)) (-1086 (-378))) 129) (((-1125 (-224)) (-1 (-938 (-224)) (-224)) (-1086 (-378)) (-639 (-262))) 127) (((-1125 (-224)) (-874 (-1 (-224) (-224))) (-1086 (-378))) 128) (((-1125 (-224)) (-874 (-1 (-224) (-224))) (-1086 (-378)) (-639 (-262))) 125)) (-4155 (((-1258) (-877 (-1 (-224) (-224) (-224))) (-1086 (-378)) (-1086 (-378))) 162) (((-1258) (-877 (-1 (-224) (-224) (-224))) (-1086 (-378)) (-1086 (-378)) (-639 (-262))) 161) (((-1258) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-378)) (-1086 (-378))) 165) (((-1258) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-378)) (-1086 (-378)) (-639 (-262))) 164) (((-1258) (-1 (-224) (-224) (-224)) (-1086 (-378)) (-1086 (-378))) 152) (((-1258) (-1 (-224) (-224) (-224)) (-1086 (-378)) (-1086 (-378)) (-639 (-262))) 151) (((-1258) (-1 (-938 (-224)) (-224)) (-1086 (-378))) 135) (((-1258) (-1 (-938 (-224)) (-224)) (-1086 (-378)) (-639 (-262))) 134) (((-1258) (-874 (-1 (-224) (-224))) (-1086 (-378))) 133) (((-1258) (-874 (-1 (-224) (-224))) (-1086 (-378)) (-639 (-262))) 132) (((-1257) (-872 (-1 (-224) (-224))) (-1086 (-378))) 100) (((-1257) (-872 (-1 (-224) (-224))) (-1086 (-378)) (-639 (-262))) 99) (((-1257) (-1 (-224) (-224)) (-1086 (-378))) 96) (((-1257) (-1 (-224) (-224)) (-1086 (-378)) (-639 (-262))) 95))) -(((-254) (-10 -7 (-15 -4155 ((-1257) (-1 (-224) (-224)) (-1086 (-378)) (-639 (-262)))) (-15 -4155 ((-1257) (-1 (-224) (-224)) (-1086 (-378)))) (-15 -4155 ((-1257) (-872 (-1 (-224) (-224))) (-1086 (-378)) (-639 (-262)))) (-15 -4155 ((-1257) (-872 (-1 (-224) (-224))) (-1086 (-378)))) (-15 -4155 ((-1258) (-874 (-1 (-224) (-224))) (-1086 (-378)) (-639 (-262)))) (-15 -4155 ((-1258) (-874 (-1 (-224) (-224))) (-1086 (-378)))) (-15 -4155 ((-1258) (-1 (-938 (-224)) (-224)) (-1086 (-378)) (-639 (-262)))) (-15 -4155 ((-1258) (-1 (-938 (-224)) (-224)) (-1086 (-378)))) (-15 -4199 ((-1125 (-224)) (-874 (-1 (-224) (-224))) (-1086 (-378)) (-639 (-262)))) (-15 -4199 ((-1125 (-224)) (-874 (-1 (-224) (-224))) (-1086 (-378)))) (-15 -4199 ((-1125 (-224)) (-1 (-938 (-224)) (-224)) (-1086 (-378)) (-639 (-262)))) (-15 -4199 ((-1125 (-224)) (-1 (-938 (-224)) (-224)) (-1086 (-378)))) (-15 -4155 ((-1258) (-1 (-224) (-224) (-224)) (-1086 (-378)) (-1086 (-378)) (-639 (-262)))) (-15 -4155 ((-1258) (-1 (-224) (-224) (-224)) (-1086 (-378)) (-1086 (-378)))) (-15 -4199 ((-1125 (-224)) (-1 (-224) (-224) (-224)) (-1086 (-378)) (-1086 (-378)) (-639 (-262)))) (-15 -4199 ((-1125 (-224)) (-1 (-224) (-224) (-224)) (-1086 (-378)) (-1086 (-378)))) (-15 -4155 ((-1258) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-378)) (-1086 (-378)) (-639 (-262)))) (-15 -4155 ((-1258) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-378)) (-1086 (-378)))) (-15 -4199 ((-1125 (-224)) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-378)) (-1086 (-378)) (-639 (-262)))) (-15 -4199 ((-1125 (-224)) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-378)) (-1086 (-378)))) (-15 -4155 ((-1258) (-877 (-1 (-224) (-224) (-224))) (-1086 (-378)) (-1086 (-378)) (-639 (-262)))) (-15 -4155 ((-1258) (-877 (-1 (-224) (-224) (-224))) (-1086 (-378)) (-1086 (-378)))) (-15 -4199 ((-1125 (-224)) (-877 (-1 (-224) (-224) (-224))) (-1086 (-378)) (-1086 (-378)) (-639 (-262)))) (-15 -4199 ((-1125 (-224)) (-877 (-1 (-224) (-224) (-224))) (-1086 (-378)) (-1086 (-378)))) (-15 -2380 ((-1 (-938 (-224)) (-224) (-224)) (-1 (-938 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224) (-224)))))) (T -254)) -((-2380 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-938 (-224)) (-224) (-224))) (-5 *3 (-1 (-224) (-224) (-224) (-224))) (-5 *1 (-254)))) (-4199 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-877 (-1 (-224) (-224) (-224)))) (-5 *4 (-1086 (-378))) (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) (-4199 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-877 (-1 (-224) (-224) (-224)))) (-5 *4 (-1086 (-378))) (-5 *5 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) (-4155 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-877 (-1 (-224) (-224) (-224)))) (-5 *4 (-1086 (-378))) (-5 *2 (-1258)) (-5 *1 (-254)))) (-4155 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-877 (-1 (-224) (-224) (-224)))) (-5 *4 (-1086 (-378))) (-5 *5 (-639 (-262))) (-5 *2 (-1258)) (-5 *1 (-254)))) (-4199 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-938 (-224)) (-224) (-224))) (-5 *4 (-1086 (-378))) (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) (-4199 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-938 (-224)) (-224) (-224))) (-5 *4 (-1086 (-378))) (-5 *5 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) (-4155 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-938 (-224)) (-224) (-224))) (-5 *4 (-1086 (-378))) (-5 *2 (-1258)) (-5 *1 (-254)))) (-4155 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-938 (-224)) (-224) (-224))) (-5 *4 (-1086 (-378))) (-5 *5 (-639 (-262))) (-5 *2 (-1258)) (-5 *1 (-254)))) (-4199 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1086 (-378))) (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) (-4199 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1086 (-378))) (-5 *5 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) (-4155 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1086 (-378))) (-5 *2 (-1258)) (-5 *1 (-254)))) (-4155 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1086 (-378))) (-5 *5 (-639 (-262))) (-5 *2 (-1258)) (-5 *1 (-254)))) (-4199 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-938 (-224)) (-224))) (-5 *4 (-1086 (-378))) (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) (-4199 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-938 (-224)) (-224))) (-5 *4 (-1086 (-378))) (-5 *5 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) (-4199 (*1 *2 *3 *4) (-12 (-5 *3 (-874 (-1 (-224) (-224)))) (-5 *4 (-1086 (-378))) (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) (-4199 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-874 (-1 (-224) (-224)))) (-5 *4 (-1086 (-378))) (-5 *5 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-938 (-224)) (-224))) (-5 *4 (-1086 (-378))) (-5 *2 (-1258)) (-5 *1 (-254)))) (-4155 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-938 (-224)) (-224))) (-5 *4 (-1086 (-378))) (-5 *5 (-639 (-262))) (-5 *2 (-1258)) (-5 *1 (-254)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *3 (-874 (-1 (-224) (-224)))) (-5 *4 (-1086 (-378))) (-5 *2 (-1258)) (-5 *1 (-254)))) (-4155 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-874 (-1 (-224) (-224)))) (-5 *4 (-1086 (-378))) (-5 *5 (-639 (-262))) (-5 *2 (-1258)) (-5 *1 (-254)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1086 (-378))) (-5 *2 (-1257)) (-5 *1 (-254)))) (-4155 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1086 (-378))) (-5 *5 (-639 (-262))) (-5 *2 (-1257)) (-5 *1 (-254)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-224) (-224))) (-5 *4 (-1086 (-378))) (-5 *2 (-1257)) (-5 *1 (-254)))) (-4155 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-224) (-224))) (-5 *4 (-1086 (-378))) (-5 *5 (-639 (-262))) (-5 *2 (-1257)) (-5 *1 (-254))))) -(-10 -7 (-15 -4155 ((-1257) (-1 (-224) (-224)) (-1086 (-378)) (-639 (-262)))) (-15 -4155 ((-1257) (-1 (-224) (-224)) (-1086 (-378)))) (-15 -4155 ((-1257) (-872 (-1 (-224) (-224))) (-1086 (-378)) (-639 (-262)))) (-15 -4155 ((-1257) (-872 (-1 (-224) (-224))) (-1086 (-378)))) (-15 -4155 ((-1258) (-874 (-1 (-224) (-224))) (-1086 (-378)) (-639 (-262)))) (-15 -4155 ((-1258) (-874 (-1 (-224) (-224))) (-1086 (-378)))) (-15 -4155 ((-1258) (-1 (-938 (-224)) (-224)) (-1086 (-378)) (-639 (-262)))) (-15 -4155 ((-1258) (-1 (-938 (-224)) (-224)) (-1086 (-378)))) (-15 -4199 ((-1125 (-224)) (-874 (-1 (-224) (-224))) (-1086 (-378)) (-639 (-262)))) (-15 -4199 ((-1125 (-224)) (-874 (-1 (-224) (-224))) (-1086 (-378)))) (-15 -4199 ((-1125 (-224)) (-1 (-938 (-224)) (-224)) (-1086 (-378)) (-639 (-262)))) (-15 -4199 ((-1125 (-224)) (-1 (-938 (-224)) (-224)) (-1086 (-378)))) (-15 -4155 ((-1258) (-1 (-224) (-224) (-224)) (-1086 (-378)) (-1086 (-378)) (-639 (-262)))) (-15 -4155 ((-1258) (-1 (-224) (-224) (-224)) (-1086 (-378)) (-1086 (-378)))) (-15 -4199 ((-1125 (-224)) (-1 (-224) (-224) (-224)) (-1086 (-378)) (-1086 (-378)) (-639 (-262)))) (-15 -4199 ((-1125 (-224)) (-1 (-224) (-224) (-224)) (-1086 (-378)) (-1086 (-378)))) (-15 -4155 ((-1258) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-378)) (-1086 (-378)) (-639 (-262)))) (-15 -4155 ((-1258) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-378)) (-1086 (-378)))) (-15 -4199 ((-1125 (-224)) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-378)) (-1086 (-378)) (-639 (-262)))) (-15 -4199 ((-1125 (-224)) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-378)) (-1086 (-378)))) (-15 -4155 ((-1258) (-877 (-1 (-224) (-224) (-224))) (-1086 (-378)) (-1086 (-378)) (-639 (-262)))) (-15 -4155 ((-1258) (-877 (-1 (-224) (-224) (-224))) (-1086 (-378)) (-1086 (-378)))) (-15 -4199 ((-1125 (-224)) (-877 (-1 (-224) (-224) (-224))) (-1086 (-378)) (-1086 (-378)) (-639 (-262)))) (-15 -4199 ((-1125 (-224)) (-877 (-1 (-224) (-224) (-224))) (-1086 (-378)) (-1086 (-378)))) (-15 -2380 ((-1 (-938 (-224)) (-224) (-224)) (-1 (-938 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224) (-224))))) -((-4155 (((-1257) (-293 |#2|) (-1168) (-1168) (-639 (-262))) 96))) -(((-255 |#1| |#2|) (-10 -7 (-15 -4155 ((-1257) (-293 |#2|) (-1168) (-1168) (-639 (-262))))) (-13 (-554) (-845) (-1033 (-562))) (-429 |#1|)) (T -255)) -((-4155 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-293 *7)) (-5 *4 (-1168)) (-5 *5 (-639 (-262))) (-4 *7 (-429 *6)) (-4 *6 (-13 (-554) (-845) (-1033 (-562)))) (-5 *2 (-1257)) (-5 *1 (-255 *6 *7))))) -(-10 -7 (-15 -4155 ((-1257) (-293 |#2|) (-1168) (-1168) (-639 (-262))))) -((-2870 (((-562) (-562)) 50)) (-4001 (((-562) (-562)) 51)) (-2860 (((-224) (-224)) 52)) (-1964 (((-1258) (-1 (-168 (-224)) (-168 (-224))) (-1086 (-224)) (-1086 (-224))) 49)) (-2644 (((-1258) (-1 (-168 (-224)) (-168 (-224))) (-1086 (-224)) (-1086 (-224)) (-112)) 47))) -(((-256) (-10 -7 (-15 -2644 ((-1258) (-1 (-168 (-224)) (-168 (-224))) (-1086 (-224)) (-1086 (-224)) (-112))) (-15 -1964 ((-1258) (-1 (-168 (-224)) (-168 (-224))) (-1086 (-224)) (-1086 (-224)))) (-15 -2870 ((-562) (-562))) (-15 -4001 ((-562) (-562))) (-15 -2860 ((-224) (-224))))) (T -256)) -((-2860 (*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-256)))) (-4001 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-256)))) (-2870 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-256)))) (-1964 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-168 (-224)) (-168 (-224)))) (-5 *4 (-1086 (-224))) (-5 *2 (-1258)) (-5 *1 (-256)))) (-2644 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-168 (-224)) (-168 (-224)))) (-5 *4 (-1086 (-224))) (-5 *5 (-112)) (-5 *2 (-1258)) (-5 *1 (-256))))) -(-10 -7 (-15 -2644 ((-1258) (-1 (-168 (-224)) (-168 (-224))) (-1086 (-224)) (-1086 (-224)) (-112))) (-15 -1964 ((-1258) (-1 (-168 (-224)) (-168 (-224))) (-1086 (-224)) (-1086 (-224)))) (-15 -2870 ((-562) (-562))) (-15 -4001 ((-562) (-562))) (-15 -2860 ((-224) (-224)))) -((-4053 (((-1084 (-378)) (-1084 (-315 |#1|))) 16))) -(((-257 |#1|) (-10 -7 (-15 -4053 ((-1084 (-378)) (-1084 (-315 |#1|))))) (-13 (-845) (-554) (-610 (-378)))) (T -257)) -((-4053 (*1 *2 *3) (-12 (-5 *3 (-1084 (-315 *4))) (-4 *4 (-13 (-845) (-554) (-610 (-378)))) (-5 *2 (-1084 (-378))) (-5 *1 (-257 *4))))) -(-10 -7 (-15 -4053 ((-1084 (-378)) (-1084 (-315 |#1|))))) -((-4199 (((-1125 (-224)) (-877 |#1|) (-1084 (-378)) (-1084 (-378))) 71) (((-1125 (-224)) (-877 |#1|) (-1084 (-378)) (-1084 (-378)) (-639 (-262))) 70) (((-1125 (-224)) |#1| (-1084 (-378)) (-1084 (-378))) 61) (((-1125 (-224)) |#1| (-1084 (-378)) (-1084 (-378)) (-639 (-262))) 60) (((-1125 (-224)) (-874 |#1|) (-1084 (-378))) 52) (((-1125 (-224)) (-874 |#1|) (-1084 (-378)) (-639 (-262))) 51)) (-4155 (((-1258) (-877 |#1|) (-1084 (-378)) (-1084 (-378))) 74) (((-1258) (-877 |#1|) (-1084 (-378)) (-1084 (-378)) (-639 (-262))) 73) (((-1258) |#1| (-1084 (-378)) (-1084 (-378))) 64) (((-1258) |#1| (-1084 (-378)) (-1084 (-378)) (-639 (-262))) 63) (((-1258) (-874 |#1|) (-1084 (-378))) 56) (((-1258) (-874 |#1|) (-1084 (-378)) (-639 (-262))) 55) (((-1257) (-872 |#1|) (-1084 (-378))) 43) (((-1257) (-872 |#1|) (-1084 (-378)) (-639 (-262))) 42) (((-1257) |#1| (-1084 (-378))) 35) (((-1257) |#1| (-1084 (-378)) (-639 (-262))) 34))) -(((-258 |#1|) (-10 -7 (-15 -4155 ((-1257) |#1| (-1084 (-378)) (-639 (-262)))) (-15 -4155 ((-1257) |#1| (-1084 (-378)))) (-15 -4155 ((-1257) (-872 |#1|) (-1084 (-378)) (-639 (-262)))) (-15 -4155 ((-1257) (-872 |#1|) (-1084 (-378)))) (-15 -4155 ((-1258) (-874 |#1|) (-1084 (-378)) (-639 (-262)))) (-15 -4155 ((-1258) (-874 |#1|) (-1084 (-378)))) (-15 -4199 ((-1125 (-224)) (-874 |#1|) (-1084 (-378)) (-639 (-262)))) (-15 -4199 ((-1125 (-224)) (-874 |#1|) (-1084 (-378)))) (-15 -4155 ((-1258) |#1| (-1084 (-378)) (-1084 (-378)) (-639 (-262)))) (-15 -4155 ((-1258) |#1| (-1084 (-378)) (-1084 (-378)))) (-15 -4199 ((-1125 (-224)) |#1| (-1084 (-378)) (-1084 (-378)) (-639 (-262)))) (-15 -4199 ((-1125 (-224)) |#1| (-1084 (-378)) (-1084 (-378)))) (-15 -4155 ((-1258) (-877 |#1|) (-1084 (-378)) (-1084 (-378)) (-639 (-262)))) (-15 -4155 ((-1258) (-877 |#1|) (-1084 (-378)) (-1084 (-378)))) (-15 -4199 ((-1125 (-224)) (-877 |#1|) (-1084 (-378)) (-1084 (-378)) (-639 (-262)))) (-15 -4199 ((-1125 (-224)) (-877 |#1|) (-1084 (-378)) (-1084 (-378))))) (-13 (-610 (-535)) (-1092))) (T -258)) -((-4199 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-877 *5)) (-5 *4 (-1084 (-378))) (-4 *5 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1125 (-224))) (-5 *1 (-258 *5)))) (-4199 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-877 *6)) (-5 *4 (-1084 (-378))) (-5 *5 (-639 (-262))) (-4 *6 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1125 (-224))) (-5 *1 (-258 *6)))) (-4155 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-877 *5)) (-5 *4 (-1084 (-378))) (-4 *5 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1258)) (-5 *1 (-258 *5)))) (-4155 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-877 *6)) (-5 *4 (-1084 (-378))) (-5 *5 (-639 (-262))) (-4 *6 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1258)) (-5 *1 (-258 *6)))) (-4199 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1084 (-378))) (-5 *2 (-1125 (-224))) (-5 *1 (-258 *3)) (-4 *3 (-13 (-610 (-535)) (-1092))))) (-4199 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1084 (-378))) (-5 *5 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-258 *3)) (-4 *3 (-13 (-610 (-535)) (-1092))))) (-4155 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1084 (-378))) (-5 *2 (-1258)) (-5 *1 (-258 *3)) (-4 *3 (-13 (-610 (-535)) (-1092))))) (-4155 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1084 (-378))) (-5 *5 (-639 (-262))) (-5 *2 (-1258)) (-5 *1 (-258 *3)) (-4 *3 (-13 (-610 (-535)) (-1092))))) (-4199 (*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-1084 (-378))) (-4 *5 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1125 (-224))) (-5 *1 (-258 *5)))) (-4199 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-874 *6)) (-5 *4 (-1084 (-378))) (-5 *5 (-639 (-262))) (-4 *6 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1125 (-224))) (-5 *1 (-258 *6)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-1084 (-378))) (-4 *5 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1258)) (-5 *1 (-258 *5)))) (-4155 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-874 *6)) (-5 *4 (-1084 (-378))) (-5 *5 (-639 (-262))) (-4 *6 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1258)) (-5 *1 (-258 *6)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *3 (-872 *5)) (-5 *4 (-1084 (-378))) (-4 *5 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1257)) (-5 *1 (-258 *5)))) (-4155 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-872 *6)) (-5 *4 (-1084 (-378))) (-5 *5 (-639 (-262))) (-4 *6 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1257)) (-5 *1 (-258 *6)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *4 (-1084 (-378))) (-5 *2 (-1257)) (-5 *1 (-258 *3)) (-4 *3 (-13 (-610 (-535)) (-1092))))) (-4155 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1084 (-378))) (-5 *5 (-639 (-262))) (-5 *2 (-1257)) (-5 *1 (-258 *3)) (-4 *3 (-13 (-610 (-535)) (-1092)))))) -(-10 -7 (-15 -4155 ((-1257) |#1| (-1084 (-378)) (-639 (-262)))) (-15 -4155 ((-1257) |#1| (-1084 (-378)))) (-15 -4155 ((-1257) (-872 |#1|) (-1084 (-378)) (-639 (-262)))) (-15 -4155 ((-1257) (-872 |#1|) (-1084 (-378)))) (-15 -4155 ((-1258) (-874 |#1|) (-1084 (-378)) (-639 (-262)))) (-15 -4155 ((-1258) (-874 |#1|) (-1084 (-378)))) (-15 -4199 ((-1125 (-224)) (-874 |#1|) (-1084 (-378)) (-639 (-262)))) (-15 -4199 ((-1125 (-224)) (-874 |#1|) (-1084 (-378)))) (-15 -4155 ((-1258) |#1| (-1084 (-378)) (-1084 (-378)) (-639 (-262)))) (-15 -4155 ((-1258) |#1| (-1084 (-378)) (-1084 (-378)))) (-15 -4199 ((-1125 (-224)) |#1| (-1084 (-378)) (-1084 (-378)) (-639 (-262)))) (-15 -4199 ((-1125 (-224)) |#1| (-1084 (-378)) (-1084 (-378)))) (-15 -4155 ((-1258) (-877 |#1|) (-1084 (-378)) (-1084 (-378)) (-639 (-262)))) (-15 -4155 ((-1258) (-877 |#1|) (-1084 (-378)) (-1084 (-378)))) (-15 -4199 ((-1125 (-224)) (-877 |#1|) (-1084 (-378)) (-1084 (-378)) (-639 (-262)))) (-15 -4199 ((-1125 (-224)) (-877 |#1|) (-1084 (-378)) (-1084 (-378))))) -((-4155 (((-1258) (-639 (-224)) (-639 (-224)) (-639 (-224)) (-639 (-262))) 23) (((-1258) (-639 (-224)) (-639 (-224)) (-639 (-224))) 24) (((-1257) (-639 (-938 (-224))) (-639 (-262))) 16) (((-1257) (-639 (-938 (-224)))) 17) (((-1257) (-639 (-224)) (-639 (-224)) (-639 (-262))) 20) (((-1257) (-639 (-224)) (-639 (-224))) 21))) -(((-259) (-10 -7 (-15 -4155 ((-1257) (-639 (-224)) (-639 (-224)))) (-15 -4155 ((-1257) (-639 (-224)) (-639 (-224)) (-639 (-262)))) (-15 -4155 ((-1257) (-639 (-938 (-224))))) (-15 -4155 ((-1257) (-639 (-938 (-224))) (-639 (-262)))) (-15 -4155 ((-1258) (-639 (-224)) (-639 (-224)) (-639 (-224)))) (-15 -4155 ((-1258) (-639 (-224)) (-639 (-224)) (-639 (-224)) (-639 (-262)))))) (T -259)) -((-4155 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-639 (-224))) (-5 *4 (-639 (-262))) (-5 *2 (-1258)) (-5 *1 (-259)))) (-4155 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-639 (-224))) (-5 *2 (-1258)) (-5 *1 (-259)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-938 (-224)))) (-5 *4 (-639 (-262))) (-5 *2 (-1257)) (-5 *1 (-259)))) (-4155 (*1 *2 *3) (-12 (-5 *3 (-639 (-938 (-224)))) (-5 *2 (-1257)) (-5 *1 (-259)))) (-4155 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-639 (-224))) (-5 *4 (-639 (-262))) (-5 *2 (-1257)) (-5 *1 (-259)))) (-4155 (*1 *2 *3 *3) (-12 (-5 *3 (-639 (-224))) (-5 *2 (-1257)) (-5 *1 (-259))))) -(-10 -7 (-15 -4155 ((-1257) (-639 (-224)) (-639 (-224)))) (-15 -4155 ((-1257) (-639 (-224)) (-639 (-224)) (-639 (-262)))) (-15 -4155 ((-1257) (-639 (-938 (-224))))) (-15 -4155 ((-1257) (-639 (-938 (-224))) (-639 (-262)))) (-15 -4155 ((-1258) (-639 (-224)) (-639 (-224)) (-639 (-224)))) (-15 -4155 ((-1258) (-639 (-224)) (-639 (-224)) (-639 (-224)) (-639 (-262))))) -((-2113 (((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -1978 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) (-639 (-262)) (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -1978 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) 26)) (-3431 (((-916) (-639 (-262)) (-916)) 53)) (-2280 (((-916) (-639 (-262)) (-916)) 52)) (-3426 (((-639 (-378)) (-639 (-262)) (-639 (-378))) 69)) (-1827 (((-378) (-639 (-262)) (-378)) 58)) (-4379 (((-916) (-639 (-262)) (-916)) 54)) (-2156 (((-112) (-639 (-262)) (-112)) 28)) (-3563 (((-1150) (-639 (-262)) (-1150)) 20)) (-1506 (((-1150) (-639 (-262)) (-1150)) 27)) (-1957 (((-1125 (-224)) (-639 (-262))) 47)) (-1732 (((-639 (-1086 (-378))) (-639 (-262)) (-639 (-1086 (-378)))) 41)) (-4112 (((-869) (-639 (-262)) (-869)) 33)) (-3232 (((-869) (-639 (-262)) (-869)) 34)) (-3830 (((-1 (-938 (-224)) (-938 (-224))) (-639 (-262)) (-1 (-938 (-224)) (-938 (-224)))) 64)) (-4334 (((-112) (-639 (-262)) (-112)) 16)) (-3376 (((-112) (-639 (-262)) (-112)) 15))) -(((-260) (-10 -7 (-15 -3376 ((-112) (-639 (-262)) (-112))) (-15 -4334 ((-112) (-639 (-262)) (-112))) (-15 -2113 ((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -1978 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) (-639 (-262)) (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -1978 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -3563 ((-1150) (-639 (-262)) (-1150))) (-15 -1506 ((-1150) (-639 (-262)) (-1150))) (-15 -2156 ((-112) (-639 (-262)) (-112))) (-15 -4112 ((-869) (-639 (-262)) (-869))) (-15 -3232 ((-869) (-639 (-262)) (-869))) (-15 -1732 ((-639 (-1086 (-378))) (-639 (-262)) (-639 (-1086 (-378))))) (-15 -2280 ((-916) (-639 (-262)) (-916))) (-15 -3431 ((-916) (-639 (-262)) (-916))) (-15 -1957 ((-1125 (-224)) (-639 (-262)))) (-15 -4379 ((-916) (-639 (-262)) (-916))) (-15 -1827 ((-378) (-639 (-262)) (-378))) (-15 -3830 ((-1 (-938 (-224)) (-938 (-224))) (-639 (-262)) (-1 (-938 (-224)) (-938 (-224))))) (-15 -3426 ((-639 (-378)) (-639 (-262)) (-639 (-378)))))) (T -260)) -((-3426 (*1 *2 *3 *2) (-12 (-5 *2 (-639 (-378))) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) (-3830 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-938 (-224)) (-938 (-224)))) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) (-1827 (*1 *2 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) (-4379 (*1 *2 *3 *2) (-12 (-5 *2 (-916)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) (-1957 (*1 *2 *3) (-12 (-5 *3 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-260)))) (-3431 (*1 *2 *3 *2) (-12 (-5 *2 (-916)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) (-2280 (*1 *2 *3 *2) (-12 (-5 *2 (-916)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) (-1732 (*1 *2 *3 *2) (-12 (-5 *2 (-639 (-1086 (-378)))) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) (-3232 (*1 *2 *3 *2) (-12 (-5 *2 (-869)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) (-4112 (*1 *2 *3 *2) (-12 (-5 *2 (-869)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) (-2156 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) (-1506 (*1 *2 *3 *2) (-12 (-5 *2 (-1150)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) (-3563 (*1 *2 *3 *2) (-12 (-5 *2 (-1150)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) (-2113 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -1978 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) (-4334 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) (-3376 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-639 (-262))) (-5 *1 (-260))))) -(-10 -7 (-15 -3376 ((-112) (-639 (-262)) (-112))) (-15 -4334 ((-112) (-639 (-262)) (-112))) (-15 -2113 ((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -1978 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) (-639 (-262)) (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -1978 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -3563 ((-1150) (-639 (-262)) (-1150))) (-15 -1506 ((-1150) (-639 (-262)) (-1150))) (-15 -2156 ((-112) (-639 (-262)) (-112))) (-15 -4112 ((-869) (-639 (-262)) (-869))) (-15 -3232 ((-869) (-639 (-262)) (-869))) (-15 -1732 ((-639 (-1086 (-378))) (-639 (-262)) (-639 (-1086 (-378))))) (-15 -2280 ((-916) (-639 (-262)) (-916))) (-15 -3431 ((-916) (-639 (-262)) (-916))) (-15 -1957 ((-1125 (-224)) (-639 (-262)))) (-15 -4379 ((-916) (-639 (-262)) (-916))) (-15 -1827 ((-378) (-639 (-262)) (-378))) (-15 -3830 ((-1 (-938 (-224)) (-938 (-224))) (-639 (-262)) (-1 (-938 (-224)) (-938 (-224))))) (-15 -3426 ((-639 (-378)) (-639 (-262)) (-639 (-378))))) -((-1893 (((-3 |#1| "failed") (-639 (-262)) (-1168)) 17))) -(((-261 |#1|) (-10 -7 (-15 -1893 ((-3 |#1| "failed") (-639 (-262)) (-1168)))) (-1207)) (T -261)) -((-1893 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-639 (-262))) (-5 *4 (-1168)) (-5 *1 (-261 *2)) (-4 *2 (-1207))))) -(-10 -7 (-15 -1893 ((-3 |#1| "failed") (-639 (-262)) (-1168)))) -((-4041 (((-112) $ $) NIL)) (-2113 (($ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -1978 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) 15)) (-3431 (($ (-916)) 76)) (-2280 (($ (-916)) 75)) (-4310 (($ (-639 (-378))) 82)) (-1827 (($ (-378)) 58)) (-4379 (($ (-916)) 77)) (-2156 (($ (-112)) 23)) (-3563 (($ (-1150)) 18)) (-1506 (($ (-1150)) 19)) (-1957 (($ (-1125 (-224))) 71)) (-1732 (($ (-639 (-1086 (-378)))) 67)) (-2147 (($ (-639 (-1086 (-378)))) 59) (($ (-639 (-1086 (-406 (-562))))) 66)) (-4135 (($ (-378)) 29) (($ (-869)) 33)) (-3775 (((-112) (-639 $) (-1168)) 91)) (-1893 (((-3 (-52) "failed") (-639 $) (-1168)) 93)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-3406 (($ (-378)) 34) (($ (-869)) 35)) (-2205 (($ (-1 (-938 (-224)) (-938 (-224)))) 57)) (-3830 (($ (-1 (-938 (-224)) (-938 (-224)))) 78)) (-2519 (($ (-1 (-224) (-224))) 39) (($ (-1 (-224) (-224) (-224))) 43) (($ (-1 (-224) (-224) (-224) (-224))) 47)) (-4053 (((-857) $) 87)) (-2657 (($ (-112)) 24) (($ (-639 (-1086 (-378)))) 52)) (-3376 (($ (-112)) 25)) (-1733 (((-112) $ $) 89))) -(((-262) (-13 (-1092) (-10 -8 (-15 -3376 ($ (-112))) (-15 -2657 ($ (-112))) (-15 -2113 ($ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -1978 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -3563 ($ (-1150))) (-15 -1506 ($ (-1150))) (-15 -2156 ($ (-112))) (-15 -2657 ($ (-639 (-1086 (-378))))) (-15 -2205 ($ (-1 (-938 (-224)) (-938 (-224))))) (-15 -4135 ($ (-378))) (-15 -4135 ($ (-869))) (-15 -3406 ($ (-378))) (-15 -3406 ($ (-869))) (-15 -2519 ($ (-1 (-224) (-224)))) (-15 -2519 ($ (-1 (-224) (-224) (-224)))) (-15 -2519 ($ (-1 (-224) (-224) (-224) (-224)))) (-15 -1827 ($ (-378))) (-15 -2147 ($ (-639 (-1086 (-378))))) (-15 -2147 ($ (-639 (-1086 (-406 (-562)))))) (-15 -1732 ($ (-639 (-1086 (-378))))) (-15 -1957 ($ (-1125 (-224)))) (-15 -2280 ($ (-916))) (-15 -3431 ($ (-916))) (-15 -4379 ($ (-916))) (-15 -3830 ($ (-1 (-938 (-224)) (-938 (-224))))) (-15 -4310 ($ (-639 (-378)))) (-15 -1893 ((-3 (-52) "failed") (-639 $) (-1168))) (-15 -3775 ((-112) (-639 $) (-1168)))))) (T -262)) -((-3376 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))) (-2657 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))) (-2113 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -1978 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) (-5 *1 (-262)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-262)))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-262)))) (-2156 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))) (-2657 (*1 *1 *2) (-12 (-5 *2 (-639 (-1086 (-378)))) (-5 *1 (-262)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-1 (-938 (-224)) (-938 (-224)))) (-5 *1 (-262)))) (-4135 (*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262)))) (-4135 (*1 *1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-262)))) (-3406 (*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262)))) (-3406 (*1 *1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-262)))) (-2519 (*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-262)))) (-2519 (*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224) (-224))) (-5 *1 (-262)))) (-2519 (*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224) (-224) (-224))) (-5 *1 (-262)))) (-1827 (*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262)))) (-2147 (*1 *1 *2) (-12 (-5 *2 (-639 (-1086 (-378)))) (-5 *1 (-262)))) (-2147 (*1 *1 *2) (-12 (-5 *2 (-639 (-1086 (-406 (-562))))) (-5 *1 (-262)))) (-1732 (*1 *1 *2) (-12 (-5 *2 (-639 (-1086 (-378)))) (-5 *1 (-262)))) (-1957 (*1 *1 *2) (-12 (-5 *2 (-1125 (-224))) (-5 *1 (-262)))) (-2280 (*1 *1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-262)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-262)))) (-4379 (*1 *1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-262)))) (-3830 (*1 *1 *2) (-12 (-5 *2 (-1 (-938 (-224)) (-938 (-224)))) (-5 *1 (-262)))) (-4310 (*1 *1 *2) (-12 (-5 *2 (-639 (-378))) (-5 *1 (-262)))) (-1893 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-639 (-262))) (-5 *4 (-1168)) (-5 *2 (-52)) (-5 *1 (-262)))) (-3775 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-262))) (-5 *4 (-1168)) (-5 *2 (-112)) (-5 *1 (-262))))) -(-13 (-1092) (-10 -8 (-15 -3376 ($ (-112))) (-15 -2657 ($ (-112))) (-15 -2113 ($ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -1978 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -3563 ($ (-1150))) (-15 -1506 ($ (-1150))) (-15 -2156 ($ (-112))) (-15 -2657 ($ (-639 (-1086 (-378))))) (-15 -2205 ($ (-1 (-938 (-224)) (-938 (-224))))) (-15 -4135 ($ (-378))) (-15 -4135 ($ (-869))) (-15 -3406 ($ (-378))) (-15 -3406 ($ (-869))) (-15 -2519 ($ (-1 (-224) (-224)))) (-15 -2519 ($ (-1 (-224) (-224) (-224)))) (-15 -2519 ($ (-1 (-224) (-224) (-224) (-224)))) (-15 -1827 ($ (-378))) (-15 -2147 ($ (-639 (-1086 (-378))))) (-15 -2147 ($ (-639 (-1086 (-406 (-562)))))) (-15 -1732 ($ (-639 (-1086 (-378))))) (-15 -1957 ($ (-1125 (-224)))) (-15 -2280 ($ (-916))) (-15 -3431 ($ (-916))) (-15 -4379 ($ (-916))) (-15 -3830 ($ (-1 (-938 (-224)) (-938 (-224))))) (-15 -4310 ($ (-639 (-378)))) (-15 -1893 ((-3 (-52) "failed") (-639 $) (-1168))) (-15 -3775 ((-112) (-639 $) (-1168))))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-1759 (((-639 (-766)) $) NIL) (((-639 (-766)) $ |#2|) NIL)) (-2277 (((-766) $) NIL) (((-766) $ |#2|) NIL)) (-1401 (((-639 |#3|) $) NIL)) (-1602 (((-1164 $) $ |#3|) NIL) (((-1164 |#1|) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-1965 (($ $) NIL (|has| |#1| (-554)))) (-4102 (((-112) $) NIL (|has| |#1| (-554)))) (-1578 (((-766) $) NIL) (((-766) $ (-639 |#3|)) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3517 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-1977 (($ $) NIL (|has| |#1| (-451)))) (-3788 (((-417 $) $) NIL (|has| |#1| (-451)))) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-3611 (($ $) NIL)) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1117 |#1| |#2|) "failed") $) 21)) (-3960 ((|#1| $) NIL) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-562) $) NIL (|has| |#1| (-1033 (-562)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1117 |#1| |#2|) $) NIL)) (-2355 (($ $ $ |#3|) NIL (|has| |#1| (-171)))) (-1600 (($ $) NIL)) (-3449 (((-683 (-562)) (-683 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) NIL) (((-683 |#1|) (-683 $)) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-2578 (($ $) NIL (|has| |#1| (-451))) (($ $ |#3|) NIL (|has| |#1| (-451)))) (-1585 (((-639 $) $) NIL)) (-3521 (((-112) $) NIL (|has| |#1| (-904)))) (-3066 (($ $ |#1| (-530 |#3|) $) NIL)) (-2337 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (-12 (|has| |#1| (-881 (-378))) (|has| |#3| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (-12 (|has| |#1| (-881 (-562))) (|has| |#3| (-881 (-562)))))) (-1993 (((-766) $ |#2|) NIL) (((-766) $) 10)) (-4367 (((-112) $) NIL)) (-3627 (((-766) $) NIL)) (-1389 (($ (-1164 |#1|) |#3|) NIL) (($ (-1164 $) |#3|) NIL)) (-1869 (((-639 $) $) NIL)) (-2833 (((-112) $) NIL)) (-1377 (($ |#1| (-530 |#3|)) NIL) (($ $ |#3| (-766)) NIL) (($ $ (-639 |#3|) (-639 (-766))) NIL)) (-3851 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $ |#3|) NIL)) (-3161 (((-530 |#3|) $) NIL) (((-766) $ |#3|) NIL) (((-639 (-766)) $ (-639 |#3|)) NIL)) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-2363 (($ (-1 (-530 |#3|) (-530 |#3|)) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-2298 (((-1 $ (-766)) |#2|) NIL) (((-1 $ (-766)) $) NIL (|has| |#1| (-232)))) (-3640 (((-3 |#3| "failed") $) NIL)) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-3736 ((|#3| $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) NIL (|has| |#1| (-451)))) (-3696 (((-1150) $) NIL)) (-1611 (((-112) $) NIL)) (-4025 (((-3 (-639 $) "failed") $) NIL)) (-1778 (((-3 (-639 $) "failed") $) NIL)) (-4270 (((-3 (-2 (|:| |var| |#3|) (|:| -1300 (-766))) "failed") $) NIL)) (-3592 (($ $) NIL)) (-1709 (((-1112) $) NIL)) (-1534 (((-112) $) NIL)) (-1547 ((|#1| $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-451)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) NIL (|has| |#1| (-451)))) (-3586 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-3468 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-1635 (((-417 $) $) NIL (|has| |#1| (-904)))) (-1762 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-1433 (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-639 |#3|) (-639 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-639 |#3|) (-639 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-232))) (($ $ (-639 |#2|) (-639 $)) NIL (|has| |#1| (-232))) (($ $ |#2| |#1|) NIL (|has| |#1| (-232))) (($ $ (-639 |#2|) (-639 |#1|)) NIL (|has| |#1| (-232)))) (-2736 (($ $ |#3|) NIL (|has| |#1| (-171)))) (-4029 (($ $ |#3|) NIL) (($ $ (-639 |#3|)) NIL) (($ $ |#3| (-766)) NIL) (($ $ (-639 |#3|) (-639 (-766))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-766)) NIL (|has| |#1| (-232))) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3712 (((-639 |#2|) $) NIL)) (-2250 (((-530 |#3|) $) NIL) (((-766) $ |#3|) NIL) (((-639 (-766)) $ (-639 |#3|)) NIL) (((-766) $ |#2|) NIL)) (-4208 (((-887 (-378)) $) NIL (-12 (|has| |#1| (-610 (-887 (-378)))) (|has| |#3| (-610 (-887 (-378)))))) (((-887 (-562)) $) NIL (-12 (|has| |#1| (-610 (-887 (-562)))) (|has| |#3| (-610 (-887 (-562)))))) (((-535) $) NIL (-12 (|has| |#1| (-610 (-535))) (|has| |#3| (-610 (-535)))))) (-2201 ((|#1| $) NIL (|has| |#1| (-451))) (($ $ |#3|) NIL (|has| |#1| (-451)))) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-904))))) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1117 |#1| |#2|)) 30) (($ (-406 (-562))) NIL (-4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562)))))) (($ $) NIL (|has| |#1| (-554)))) (-3969 (((-639 |#1|) $) NIL)) (-2266 ((|#1| $ (-530 |#3|)) NIL) (($ $ |#3| (-766)) NIL) (($ $ (-639 |#3|) (-639 (-766))) NIL)) (-2059 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#1| (-904))) (|has| |#1| (-144))))) (-1568 (((-766)) NIL)) (-1760 (($ $ $ (-766)) NIL (|has| |#1| (-171)))) (-3799 (((-112) $ $) NIL (|has| |#1| (-554)))) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3113 (($ $ |#3|) NIL) (($ $ (-639 |#3|)) NIL) (($ $ |#3| (-766)) NIL) (($ $ (-639 |#3|) (-639 (-766))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-766)) NIL (|has| |#1| (-232))) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1771 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1761 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-263 |#1| |#2| |#3|) (-13 (-252 |#1| |#2| |#3| (-530 |#3|)) (-1033 (-1117 |#1| |#2|))) (-1044) (-845) (-265 |#2|)) (T -263)) -NIL -(-13 (-252 |#1| |#2| |#3| (-530 |#3|)) (-1033 (-1117 |#1| |#2|))) -((-2277 (((-766) $) 30)) (-4048 (((-3 |#2| "failed") $) 17)) (-3960 ((|#2| $) 27)) (-4029 (($ $) 12) (($ $ (-766)) 15)) (-4053 (((-857) $) 26) (($ |#2|) 10)) (-1733 (((-112) $ $) 20)) (-1761 (((-112) $ $) 29))) -(((-264 |#1| |#2|) (-10 -8 (-15 -4029 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1|)) (-15 -2277 ((-766) |#1|)) (-15 -4053 (|#1| |#2|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -3960 (|#2| |#1|)) (-15 -1761 ((-112) |#1| |#1|)) (-15 -4053 ((-857) |#1|)) (-15 -1733 ((-112) |#1| |#1|))) (-265 |#2|) (-845)) (T -264)) -NIL -(-10 -8 (-15 -4029 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1|)) (-15 -2277 ((-766) |#1|)) (-15 -4053 (|#1| |#2|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -3960 (|#2| |#1|)) (-15 -1761 ((-112) |#1| |#1|)) (-15 -4053 ((-857) |#1|)) (-15 -1733 ((-112) |#1| |#1|))) -((-4041 (((-112) $ $) 7)) (-2277 (((-766) $) 22)) (-2443 ((|#1| $) 23)) (-4048 (((-3 |#1| "failed") $) 27)) (-3960 ((|#1| $) 28)) (-1993 (((-766) $) 24)) (-1551 (($ $ $) 13)) (-2993 (($ $ $) 14)) (-2298 (($ |#1| (-766)) 25)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4029 (($ $) 21) (($ $ (-766)) 20)) (-4053 (((-857) $) 11) (($ |#1|) 26)) (-1798 (((-112) $ $) 16)) (-1771 (((-112) $ $) 17)) (-1733 (((-112) $ $) 6)) (-1785 (((-112) $ $) 15)) (-1761 (((-112) $ $) 18))) -(((-265 |#1|) (-139) (-845)) (T -265)) -((-4053 (*1 *1 *2) (-12 (-4 *1 (-265 *2)) (-4 *2 (-845)))) (-2298 (*1 *1 *2 *3) (-12 (-5 *3 (-766)) (-4 *1 (-265 *2)) (-4 *2 (-845)))) (-1993 (*1 *2 *1) (-12 (-4 *1 (-265 *3)) (-4 *3 (-845)) (-5 *2 (-766)))) (-2443 (*1 *2 *1) (-12 (-4 *1 (-265 *2)) (-4 *2 (-845)))) (-2277 (*1 *2 *1) (-12 (-4 *1 (-265 *3)) (-4 *3 (-845)) (-5 *2 (-766)))) (-4029 (*1 *1 *1) (-12 (-4 *1 (-265 *2)) (-4 *2 (-845)))) (-4029 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-265 *3)) (-4 *3 (-845))))) -(-13 (-845) (-1033 |t#1|) (-10 -8 (-15 -2298 ($ |t#1| (-766))) (-15 -1993 ((-766) $)) (-15 -2443 (|t#1| $)) (-15 -2277 ((-766) $)) (-15 -4029 ($ $)) (-15 -4029 ($ $ (-766))) (-15 -4053 ($ |t#1|)))) -(((-102) . T) ((-612 |#1|) . T) ((-609 (-857)) . T) ((-845) . T) ((-1033 |#1|) . T) ((-1092) . T)) -((-1401 (((-639 (-1168)) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))) 41)) (-2850 (((-639 (-1168)) (-315 (-224)) (-766)) 80)) (-2919 (((-3 (-315 (-224)) "failed") (-315 (-224))) 51)) (-1304 (((-315 (-224)) (-315 (-224))) 67)) (-2243 (((-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224))))) (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 26)) (-4049 (((-112) (-639 (-315 (-224)))) 84)) (-1705 (((-112) (-315 (-224))) 24)) (-3905 (((-639 (-1150)) (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))))) 105)) (-3741 (((-639 (-315 (-224))) (-639 (-315 (-224)))) 87)) (-1609 (((-639 (-315 (-224))) (-639 (-315 (-224)))) 86)) (-2742 (((-683 (-224)) (-639 (-315 (-224))) (-766)) 94)) (-3647 (((-112) (-315 (-224))) 20) (((-112) (-639 (-315 (-224)))) 85)) (-3809 (((-639 (-224)) (-639 (-838 (-224))) (-224)) 14)) (-1854 (((-378) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))) 100)) (-1312 (((-1030) (-1168) (-1030)) 34))) -(((-266) (-10 -7 (-15 -3809 ((-639 (-224)) (-639 (-838 (-224))) (-224))) (-15 -2243 ((-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224))))) (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224))))))) (-15 -2919 ((-3 (-315 (-224)) "failed") (-315 (-224)))) (-15 -1304 ((-315 (-224)) (-315 (-224)))) (-15 -4049 ((-112) (-639 (-315 (-224))))) (-15 -3647 ((-112) (-639 (-315 (-224))))) (-15 -3647 ((-112) (-315 (-224)))) (-15 -2742 ((-683 (-224)) (-639 (-315 (-224))) (-766))) (-15 -1609 ((-639 (-315 (-224))) (-639 (-315 (-224))))) (-15 -3741 ((-639 (-315 (-224))) (-639 (-315 (-224))))) (-15 -1705 ((-112) (-315 (-224)))) (-15 -1401 ((-639 (-1168)) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224)))))) (-15 -2850 ((-639 (-1168)) (-315 (-224)) (-766))) (-15 -1312 ((-1030) (-1168) (-1030))) (-15 -1854 ((-378) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224)))))) (-15 -3905 ((-639 (-1150)) (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224)))))))))) (T -266)) -((-3905 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))))) (-5 *2 (-639 (-1150))) (-5 *1 (-266)))) (-1854 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))) (-5 *2 (-378)) (-5 *1 (-266)))) (-1312 (*1 *2 *3 *2) (-12 (-5 *2 (-1030)) (-5 *3 (-1168)) (-5 *1 (-266)))) (-2850 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-224))) (-5 *4 (-766)) (-5 *2 (-639 (-1168))) (-5 *1 (-266)))) (-1401 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))) (-5 *2 (-639 (-1168))) (-5 *1 (-266)))) (-1705 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-112)) (-5 *1 (-266)))) (-3741 (*1 *2 *2) (-12 (-5 *2 (-639 (-315 (-224)))) (-5 *1 (-266)))) (-1609 (*1 *2 *2) (-12 (-5 *2 (-639 (-315 (-224)))) (-5 *1 (-266)))) (-2742 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-315 (-224)))) (-5 *4 (-766)) (-5 *2 (-683 (-224))) (-5 *1 (-266)))) (-3647 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-112)) (-5 *1 (-266)))) (-3647 (*1 *2 *3) (-12 (-5 *3 (-639 (-315 (-224)))) (-5 *2 (-112)) (-5 *1 (-266)))) (-4049 (*1 *2 *3) (-12 (-5 *3 (-639 (-315 (-224)))) (-5 *2 (-112)) (-5 *1 (-266)))) (-1304 (*1 *2 *2) (-12 (-5 *2 (-315 (-224))) (-5 *1 (-266)))) (-2919 (*1 *2 *2) (|partial| -12 (-5 *2 (-315 (-224))) (-5 *1 (-266)))) (-2243 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) (-5 *1 (-266)))) (-3809 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-838 (-224)))) (-5 *4 (-224)) (-5 *2 (-639 *4)) (-5 *1 (-266))))) -(-10 -7 (-15 -3809 ((-639 (-224)) (-639 (-838 (-224))) (-224))) (-15 -2243 ((-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224))))) (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224))))))) (-15 -2919 ((-3 (-315 (-224)) "failed") (-315 (-224)))) (-15 -1304 ((-315 (-224)) (-315 (-224)))) (-15 -4049 ((-112) (-639 (-315 (-224))))) (-15 -3647 ((-112) (-639 (-315 (-224))))) (-15 -3647 ((-112) (-315 (-224)))) (-15 -2742 ((-683 (-224)) (-639 (-315 (-224))) (-766))) (-15 -1609 ((-639 (-315 (-224))) (-639 (-315 (-224))))) (-15 -3741 ((-639 (-315 (-224))) (-639 (-315 (-224))))) (-15 -1705 ((-112) (-315 (-224)))) (-15 -1401 ((-639 (-1168)) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224)))))) (-15 -2850 ((-639 (-1168)) (-315 (-224)) (-766))) (-15 -1312 ((-1030) (-1168) (-1030))) (-15 -1854 ((-378) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224)))))) (-15 -3905 ((-639 (-1150)) (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))))))) -((-4041 (((-112) $ $) NIL)) (-2605 (((-1030) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))) NIL) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 44)) (-1806 (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 26) (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-267) (-834)) (T -267)) -NIL -(-834) -((-4041 (((-112) $ $) NIL)) (-2605 (((-1030) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))) 58) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 54)) (-1806 (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 34) (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))) 36)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-268) (-834)) (T -268)) -NIL -(-834) -((-4041 (((-112) $ $) NIL)) (-2605 (((-1030) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))) 76) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 73)) (-1806 (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 44) (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))) 55)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-269) (-834)) (T -269)) -NIL -(-834) -((-4041 (((-112) $ $) NIL)) (-2605 (((-1030) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))) NIL) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 50)) (-1806 (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 31) (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-270) (-834)) (T -270)) -NIL -(-834) -((-4041 (((-112) $ $) NIL)) (-2605 (((-1030) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))) NIL) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 50)) (-1806 (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 28) (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-271) (-834)) (T -271)) -NIL -(-834) -((-4041 (((-112) $ $) NIL)) (-2605 (((-1030) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))) NIL) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 73)) (-1806 (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 28) (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-272) (-834)) (T -272)) -NIL -(-834) -((-4041 (((-112) $ $) NIL)) (-2605 (((-1030) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))) NIL) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 77)) (-1806 (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 25) (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-273) (-834)) (T -273)) -NIL -(-834) -((-4041 (((-112) $ $) NIL)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1920 (((-639 (-562)) $) 18)) (-2250 (((-766) $) 16)) (-4053 (((-857) $) 22) (($ (-639 (-562))) 14)) (-3213 (($ (-766)) 19)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 9)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) 10))) -(((-274) (-13 (-845) (-10 -8 (-15 -4053 ($ (-639 (-562)))) (-15 -2250 ((-766) $)) (-15 -1920 ((-639 (-562)) $)) (-15 -3213 ($ (-766)))))) (T -274)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-274)))) (-2250 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-274)))) (-1920 (*1 *2 *1) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-274)))) (-3213 (*1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-274))))) -(-13 (-845) (-10 -8 (-15 -4053 ($ (-639 (-562)))) (-15 -2250 ((-766) $)) (-15 -1920 ((-639 (-562)) $)) (-15 -3213 ($ (-766))))) -((-2987 ((|#2| |#2|) 77)) (-4098 ((|#2| |#2|) 65)) (-3703 (((-3 |#2| "failed") |#2| (-639 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 116)) (-4206 ((|#2| |#2|) 75)) (-4074 ((|#2| |#2|) 63)) (-3013 ((|#2| |#2|) 79)) (-4120 ((|#2| |#2|) 67)) (-4100 ((|#2|) 46)) (-1502 (((-114) (-114)) 95)) (-4366 ((|#2| |#2|) 61)) (-3810 (((-112) |#2|) 134)) (-2806 ((|#2| |#2|) 181)) (-3301 ((|#2| |#2|) 157)) (-1301 ((|#2|) 59)) (-2500 ((|#2|) 58)) (-2931 ((|#2| |#2|) 177)) (-3220 ((|#2| |#2|) 153)) (-4218 ((|#2| |#2|) 185)) (-2907 ((|#2| |#2|) 161)) (-1731 ((|#2| |#2|) 149)) (-4249 ((|#2| |#2|) 151)) (-4035 ((|#2| |#2|) 187)) (-1781 ((|#2| |#2|) 163)) (-3859 ((|#2| |#2|) 183)) (-2170 ((|#2| |#2|) 159)) (-2961 ((|#2| |#2|) 179)) (-3505 ((|#2| |#2|) 155)) (-2981 ((|#2| |#2|) 193)) (-1876 ((|#2| |#2|) 169)) (-4044 ((|#2| |#2|) 189)) (-2866 ((|#2| |#2|) 165)) (-3708 ((|#2| |#2|) 197)) (-4179 ((|#2| |#2|) 173)) (-3165 ((|#2| |#2|) 199)) (-1311 ((|#2| |#2|) 175)) (-1821 ((|#2| |#2|) 195)) (-4104 ((|#2| |#2|) 171)) (-2761 ((|#2| |#2|) 191)) (-3214 ((|#2| |#2|) 167)) (-3430 ((|#2| |#2|) 62)) (-3022 ((|#2| |#2|) 80)) (-4130 ((|#2| |#2|) 68)) (-3000 ((|#2| |#2|) 78)) (-4108 ((|#2| |#2|) 66)) (-2977 ((|#2| |#2|) 76)) (-4087 ((|#2| |#2|) 64)) (-2036 (((-112) (-114)) 93)) (-3054 ((|#2| |#2|) 83)) (-4165 ((|#2| |#2|) 71)) (-3033 ((|#2| |#2|) 81)) (-4139 ((|#2| |#2|) 69)) (-3077 ((|#2| |#2|) 85)) (-4183 ((|#2| |#2|) 73)) (-1567 ((|#2| |#2|) 86)) (-4195 ((|#2| |#2|) 74)) (-3065 ((|#2| |#2|) 84)) (-4175 ((|#2| |#2|) 72)) (-3040 ((|#2| |#2|) 82)) (-4151 ((|#2| |#2|) 70))) -(((-275 |#1| |#2|) (-10 -7 (-15 -3430 (|#2| |#2|)) (-15 -4366 (|#2| |#2|)) (-15 -4074 (|#2| |#2|)) (-15 -4087 (|#2| |#2|)) (-15 -4098 (|#2| |#2|)) (-15 -4108 (|#2| |#2|)) (-15 -4120 (|#2| |#2|)) (-15 -4130 (|#2| |#2|)) (-15 -4139 (|#2| |#2|)) (-15 -4151 (|#2| |#2|)) (-15 -4165 (|#2| |#2|)) (-15 -4175 (|#2| |#2|)) (-15 -4183 (|#2| |#2|)) (-15 -4195 (|#2| |#2|)) (-15 -4206 (|#2| |#2|)) (-15 -2977 (|#2| |#2|)) (-15 -2987 (|#2| |#2|)) (-15 -3000 (|#2| |#2|)) (-15 -3013 (|#2| |#2|)) (-15 -3022 (|#2| |#2|)) (-15 -3033 (|#2| |#2|)) (-15 -3040 (|#2| |#2|)) (-15 -3054 (|#2| |#2|)) (-15 -3065 (|#2| |#2|)) (-15 -3077 (|#2| |#2|)) (-15 -1567 (|#2| |#2|)) (-15 -4100 (|#2|)) (-15 -2036 ((-112) (-114))) (-15 -1502 ((-114) (-114))) (-15 -2500 (|#2|)) (-15 -1301 (|#2|)) (-15 -4249 (|#2| |#2|)) (-15 -1731 (|#2| |#2|)) (-15 -3220 (|#2| |#2|)) (-15 -3505 (|#2| |#2|)) (-15 -3301 (|#2| |#2|)) (-15 -2170 (|#2| |#2|)) (-15 -2907 (|#2| |#2|)) (-15 -1781 (|#2| |#2|)) (-15 -2866 (|#2| |#2|)) (-15 -3214 (|#2| |#2|)) (-15 -1876 (|#2| |#2|)) (-15 -4104 (|#2| |#2|)) (-15 -4179 (|#2| |#2|)) (-15 -1311 (|#2| |#2|)) (-15 -2931 (|#2| |#2|)) (-15 -2961 (|#2| |#2|)) (-15 -2806 (|#2| |#2|)) (-15 -3859 (|#2| |#2|)) (-15 -4218 (|#2| |#2|)) (-15 -4035 (|#2| |#2|)) (-15 -4044 (|#2| |#2|)) (-15 -2761 (|#2| |#2|)) (-15 -2981 (|#2| |#2|)) (-15 -1821 (|#2| |#2|)) (-15 -3708 (|#2| |#2|)) (-15 -3165 (|#2| |#2|)) (-15 -3703 ((-3 |#2| "failed") |#2| (-639 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3810 ((-112) |#2|))) (-13 (-845) (-554)) (-13 (-429 |#1|) (-997))) (T -275)) -((-3810 (*1 *2 *3) (-12 (-4 *4 (-13 (-845) (-554))) (-5 *2 (-112)) (-5 *1 (-275 *4 *3)) (-4 *3 (-13 (-429 *4) (-997))))) (-3703 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-639 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-429 *4) (-997))) (-4 *4 (-13 (-845) (-554))) (-5 *1 (-275 *4 *2)))) (-3165 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-3708 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-1821 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-2981 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-2761 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4044 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4035 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4218 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-3859 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-2806 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-2961 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-2931 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-1311 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4179 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4104 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-1876 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-3214 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-2866 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-1781 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-2907 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-2170 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-3301 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-3505 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-3220 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-1731 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4249 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-1301 (*1 *2) (-12 (-4 *2 (-13 (-429 *3) (-997))) (-5 *1 (-275 *3 *2)) (-4 *3 (-13 (-845) (-554))))) (-2500 (*1 *2) (-12 (-4 *2 (-13 (-429 *3) (-997))) (-5 *1 (-275 *3 *2)) (-4 *3 (-13 (-845) (-554))))) (-1502 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *4)) (-4 *4 (-13 (-429 *3) (-997))))) (-2036 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-845) (-554))) (-5 *2 (-112)) (-5 *1 (-275 *4 *5)) (-4 *5 (-13 (-429 *4) (-997))))) (-4100 (*1 *2) (-12 (-4 *2 (-13 (-429 *3) (-997))) (-5 *1 (-275 *3 *2)) (-4 *3 (-13 (-845) (-554))))) (-1567 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-3077 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-3065 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-3054 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-3040 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-3033 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-3022 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-3013 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-3000 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-2987 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-2977 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4206 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4195 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4183 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4175 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4165 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4151 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4139 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4130 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4120 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4108 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4098 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4087 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4074 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-4366 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997))))) (-3430 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) (-4 *2 (-13 (-429 *3) (-997)))))) -(-10 -7 (-15 -3430 (|#2| |#2|)) (-15 -4366 (|#2| |#2|)) (-15 -4074 (|#2| |#2|)) (-15 -4087 (|#2| |#2|)) (-15 -4098 (|#2| |#2|)) (-15 -4108 (|#2| |#2|)) (-15 -4120 (|#2| |#2|)) (-15 -4130 (|#2| |#2|)) (-15 -4139 (|#2| |#2|)) (-15 -4151 (|#2| |#2|)) (-15 -4165 (|#2| |#2|)) (-15 -4175 (|#2| |#2|)) (-15 -4183 (|#2| |#2|)) (-15 -4195 (|#2| |#2|)) (-15 -4206 (|#2| |#2|)) (-15 -2977 (|#2| |#2|)) (-15 -2987 (|#2| |#2|)) (-15 -3000 (|#2| |#2|)) (-15 -3013 (|#2| |#2|)) (-15 -3022 (|#2| |#2|)) (-15 -3033 (|#2| |#2|)) (-15 -3040 (|#2| |#2|)) (-15 -3054 (|#2| |#2|)) (-15 -3065 (|#2| |#2|)) (-15 -3077 (|#2| |#2|)) (-15 -1567 (|#2| |#2|)) (-15 -4100 (|#2|)) (-15 -2036 ((-112) (-114))) (-15 -1502 ((-114) (-114))) (-15 -2500 (|#2|)) (-15 -1301 (|#2|)) (-15 -4249 (|#2| |#2|)) (-15 -1731 (|#2| |#2|)) (-15 -3220 (|#2| |#2|)) (-15 -3505 (|#2| |#2|)) (-15 -3301 (|#2| |#2|)) (-15 -2170 (|#2| |#2|)) (-15 -2907 (|#2| |#2|)) (-15 -1781 (|#2| |#2|)) (-15 -2866 (|#2| |#2|)) (-15 -3214 (|#2| |#2|)) (-15 -1876 (|#2| |#2|)) (-15 -4104 (|#2| |#2|)) (-15 -4179 (|#2| |#2|)) (-15 -1311 (|#2| |#2|)) (-15 -2931 (|#2| |#2|)) (-15 -2961 (|#2| |#2|)) (-15 -2806 (|#2| |#2|)) (-15 -3859 (|#2| |#2|)) (-15 -4218 (|#2| |#2|)) (-15 -4035 (|#2| |#2|)) (-15 -4044 (|#2| |#2|)) (-15 -2761 (|#2| |#2|)) (-15 -2981 (|#2| |#2|)) (-15 -1821 (|#2| |#2|)) (-15 -3708 (|#2| |#2|)) (-15 -3165 (|#2| |#2|)) (-15 -3703 ((-3 |#2| "failed") |#2| (-639 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3810 ((-112) |#2|))) -((-2226 (((-3 |#2| "failed") (-639 (-608 |#2|)) |#2| (-1168)) 135)) (-1495 ((|#2| (-406 (-562)) |#2|) 51)) (-2808 ((|#2| |#2| (-608 |#2|)) 128)) (-3633 (((-2 (|:| |func| |#2|) (|:| |kers| (-639 (-608 |#2|))) (|:| |vals| (-639 |#2|))) |#2| (-1168)) 127)) (-2382 ((|#2| |#2| (-1168)) 20) ((|#2| |#2|) 23)) (-2140 ((|#2| |#2| (-1168)) 141) ((|#2| |#2|) 139))) -(((-276 |#1| |#2|) (-10 -7 (-15 -2140 (|#2| |#2|)) (-15 -2140 (|#2| |#2| (-1168))) (-15 -3633 ((-2 (|:| |func| |#2|) (|:| |kers| (-639 (-608 |#2|))) (|:| |vals| (-639 |#2|))) |#2| (-1168))) (-15 -2382 (|#2| |#2|)) (-15 -2382 (|#2| |#2| (-1168))) (-15 -2226 ((-3 |#2| "failed") (-639 (-608 |#2|)) |#2| (-1168))) (-15 -2808 (|#2| |#2| (-608 |#2|))) (-15 -1495 (|#2| (-406 (-562)) |#2|))) (-13 (-554) (-845) (-1033 (-562)) (-635 (-562))) (-13 (-27) (-1192) (-429 |#1|))) (T -276)) -((-1495 (*1 *2 *3 *2) (-12 (-5 *3 (-406 (-562))) (-4 *4 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *4))))) (-2808 (*1 *2 *2 *3) (-12 (-5 *3 (-608 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *4))) (-4 *4 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-276 *4 *2)))) (-2226 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-639 (-608 *2))) (-5 *4 (-1168)) (-4 *2 (-13 (-27) (-1192) (-429 *5))) (-4 *5 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-276 *5 *2)))) (-2382 (*1 *2 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *4))))) (-2382 (*1 *2 *2) (-12 (-4 *3 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *3))))) (-3633 (*1 *2 *3 *4) (-12 (-5 *4 (-1168)) (-4 *5 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-639 (-608 *3))) (|:| |vals| (-639 *3)))) (-5 *1 (-276 *5 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5))))) (-2140 (*1 *2 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *4))))) (-2140 (*1 *2 *2) (-12 (-4 *3 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *3)))))) -(-10 -7 (-15 -2140 (|#2| |#2|)) (-15 -2140 (|#2| |#2| (-1168))) (-15 -3633 ((-2 (|:| |func| |#2|) (|:| |kers| (-639 (-608 |#2|))) (|:| |vals| (-639 |#2|))) |#2| (-1168))) (-15 -2382 (|#2| |#2|)) (-15 -2382 (|#2| |#2| (-1168))) (-15 -2226 ((-3 |#2| "failed") (-639 (-608 |#2|)) |#2| (-1168))) (-15 -2808 (|#2| |#2| (-608 |#2|))) (-15 -1495 (|#2| (-406 (-562)) |#2|))) -((-2647 (((-3 |#3| "failed") |#3|) 110)) (-2987 ((|#3| |#3|) 131)) (-1969 (((-3 |#3| "failed") |#3|) 82)) (-4098 ((|#3| |#3|) 121)) (-3911 (((-3 |#3| "failed") |#3|) 58)) (-4206 ((|#3| |#3|) 129)) (-3275 (((-3 |#3| "failed") |#3|) 46)) (-4074 ((|#3| |#3|) 119)) (-1710 (((-3 |#3| "failed") |#3|) 112)) (-3013 ((|#3| |#3|) 133)) (-3290 (((-3 |#3| "failed") |#3|) 84)) (-4120 ((|#3| |#3|) 123)) (-1464 (((-3 |#3| "failed") |#3| (-766)) 36)) (-2501 (((-3 |#3| "failed") |#3|) 74)) (-4366 ((|#3| |#3|) 118)) (-3774 (((-3 |#3| "failed") |#3|) 44)) (-3430 ((|#3| |#3|) 117)) (-3986 (((-3 |#3| "failed") |#3|) 113)) (-3022 ((|#3| |#3|) 134)) (-3882 (((-3 |#3| "failed") |#3|) 85)) (-4130 ((|#3| |#3|) 124)) (-2904 (((-3 |#3| "failed") |#3|) 111)) (-3000 ((|#3| |#3|) 132)) (-1738 (((-3 |#3| "failed") |#3|) 83)) (-4108 ((|#3| |#3|) 122)) (-3021 (((-3 |#3| "failed") |#3|) 60)) (-2977 ((|#3| |#3|) 130)) (-3797 (((-3 |#3| "failed") |#3|) 48)) (-4087 ((|#3| |#3|) 120)) (-3963 (((-3 |#3| "failed") |#3|) 66)) (-3054 ((|#3| |#3|) 137)) (-1308 (((-3 |#3| "failed") |#3|) 104)) (-4165 ((|#3| |#3|) 142)) (-3625 (((-3 |#3| "failed") |#3|) 62)) (-3033 ((|#3| |#3|) 135)) (-2099 (((-3 |#3| "failed") |#3|) 50)) (-4139 ((|#3| |#3|) 125)) (-2073 (((-3 |#3| "failed") |#3|) 70)) (-3077 ((|#3| |#3|) 139)) (-3908 (((-3 |#3| "failed") |#3|) 54)) (-4183 ((|#3| |#3|) 127)) (-3286 (((-3 |#3| "failed") |#3|) 72)) (-1567 ((|#3| |#3|) 140)) (-3682 (((-3 |#3| "failed") |#3|) 56)) (-4195 ((|#3| |#3|) 128)) (-2984 (((-3 |#3| "failed") |#3|) 68)) (-3065 ((|#3| |#3|) 138)) (-2585 (((-3 |#3| "failed") |#3|) 107)) (-4175 ((|#3| |#3|) 143)) (-3117 (((-3 |#3| "failed") |#3|) 64)) (-3040 ((|#3| |#3|) 136)) (-2397 (((-3 |#3| "failed") |#3|) 52)) (-4151 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-406 (-562))) 40 (|has| |#1| (-362))))) -(((-277 |#1| |#2| |#3|) (-13 (-978 |#3|) (-10 -7 (IF (|has| |#1| (-362)) (-15 ** (|#3| |#3| (-406 (-562)))) |%noBranch|) (-15 -3430 (|#3| |#3|)) (-15 -4366 (|#3| |#3|)) (-15 -4074 (|#3| |#3|)) (-15 -4087 (|#3| |#3|)) (-15 -4098 (|#3| |#3|)) (-15 -4108 (|#3| |#3|)) (-15 -4120 (|#3| |#3|)) (-15 -4130 (|#3| |#3|)) (-15 -4139 (|#3| |#3|)) (-15 -4151 (|#3| |#3|)) (-15 -4165 (|#3| |#3|)) (-15 -4175 (|#3| |#3|)) (-15 -4183 (|#3| |#3|)) (-15 -4195 (|#3| |#3|)) (-15 -4206 (|#3| |#3|)) (-15 -2977 (|#3| |#3|)) (-15 -2987 (|#3| |#3|)) (-15 -3000 (|#3| |#3|)) (-15 -3013 (|#3| |#3|)) (-15 -3022 (|#3| |#3|)) (-15 -3033 (|#3| |#3|)) (-15 -3040 (|#3| |#3|)) (-15 -3054 (|#3| |#3|)) (-15 -3065 (|#3| |#3|)) (-15 -3077 (|#3| |#3|)) (-15 -1567 (|#3| |#3|)))) (-38 (-406 (-562))) (-1247 |#1|) (-1218 |#1| |#2|)) (T -277)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-406 (-562))) (-4 *4 (-362)) (-4 *4 (-38 *3)) (-4 *5 (-1247 *4)) (-5 *1 (-277 *4 *5 *2)) (-4 *2 (-1218 *4 *5)))) (-3430 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-4366 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-4074 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-4087 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-4098 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-4108 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-4120 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-4130 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-4139 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-4151 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-4165 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-4175 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-4183 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-4195 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-4206 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-2977 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-2987 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-3000 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-3013 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-3022 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-3033 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-3040 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-3054 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-3065 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-3077 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) (-1567 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4))))) -(-13 (-978 |#3|) (-10 -7 (IF (|has| |#1| (-362)) (-15 ** (|#3| |#3| (-406 (-562)))) |%noBranch|) (-15 -3430 (|#3| |#3|)) (-15 -4366 (|#3| |#3|)) (-15 -4074 (|#3| |#3|)) (-15 -4087 (|#3| |#3|)) (-15 -4098 (|#3| |#3|)) (-15 -4108 (|#3| |#3|)) (-15 -4120 (|#3| |#3|)) (-15 -4130 (|#3| |#3|)) (-15 -4139 (|#3| |#3|)) (-15 -4151 (|#3| |#3|)) (-15 -4165 (|#3| |#3|)) (-15 -4175 (|#3| |#3|)) (-15 -4183 (|#3| |#3|)) (-15 -4195 (|#3| |#3|)) (-15 -4206 (|#3| |#3|)) (-15 -2977 (|#3| |#3|)) (-15 -2987 (|#3| |#3|)) (-15 -3000 (|#3| |#3|)) (-15 -3013 (|#3| |#3|)) (-15 -3022 (|#3| |#3|)) (-15 -3033 (|#3| |#3|)) (-15 -3040 (|#3| |#3|)) (-15 -3054 (|#3| |#3|)) (-15 -3065 (|#3| |#3|)) (-15 -3077 (|#3| |#3|)) (-15 -1567 (|#3| |#3|)))) -((-2647 (((-3 |#3| "failed") |#3|) 66)) (-2987 ((|#3| |#3|) 129)) (-1969 (((-3 |#3| "failed") |#3|) 50)) (-4098 ((|#3| |#3|) 117)) (-3911 (((-3 |#3| "failed") |#3|) 62)) (-4206 ((|#3| |#3|) 127)) (-3275 (((-3 |#3| "failed") |#3|) 46)) (-4074 ((|#3| |#3|) 115)) (-1710 (((-3 |#3| "failed") |#3|) 70)) (-3013 ((|#3| |#3|) 131)) (-3290 (((-3 |#3| "failed") |#3|) 54)) (-4120 ((|#3| |#3|) 119)) (-1464 (((-3 |#3| "failed") |#3| (-766)) 35)) (-2501 (((-3 |#3| "failed") |#3|) 44)) (-4366 ((|#3| |#3|) 104)) (-3774 (((-3 |#3| "failed") |#3|) 42)) (-3430 ((|#3| |#3|) 114)) (-3986 (((-3 |#3| "failed") |#3|) 72)) (-3022 ((|#3| |#3|) 132)) (-3882 (((-3 |#3| "failed") |#3|) 56)) (-4130 ((|#3| |#3|) 120)) (-2904 (((-3 |#3| "failed") |#3|) 68)) (-3000 ((|#3| |#3|) 130)) (-1738 (((-3 |#3| "failed") |#3|) 52)) (-4108 ((|#3| |#3|) 118)) (-3021 (((-3 |#3| "failed") |#3|) 64)) (-2977 ((|#3| |#3|) 128)) (-3797 (((-3 |#3| "failed") |#3|) 48)) (-4087 ((|#3| |#3|) 116)) (-3963 (((-3 |#3| "failed") |#3|) 74)) (-3054 ((|#3| |#3|) 135)) (-1308 (((-3 |#3| "failed") |#3|) 58)) (-4165 ((|#3| |#3|) 123)) (-3625 (((-3 |#3| "failed") |#3|) 105)) (-3033 ((|#3| |#3|) 133)) (-2099 (((-3 |#3| "failed") |#3|) 94)) (-4139 ((|#3| |#3|) 121)) (-2073 (((-3 |#3| "failed") |#3|) 109)) (-3077 ((|#3| |#3|) 137)) (-3908 (((-3 |#3| "failed") |#3|) 101)) (-4183 ((|#3| |#3|) 125)) (-3286 (((-3 |#3| "failed") |#3|) 110)) (-1567 ((|#3| |#3|) 138)) (-3682 (((-3 |#3| "failed") |#3|) 103)) (-4195 ((|#3| |#3|) 126)) (-2984 (((-3 |#3| "failed") |#3|) 76)) (-3065 ((|#3| |#3|) 136)) (-2585 (((-3 |#3| "failed") |#3|) 60)) (-4175 ((|#3| |#3|) 124)) (-3117 (((-3 |#3| "failed") |#3|) 106)) (-3040 ((|#3| |#3|) 134)) (-2397 (((-3 |#3| "failed") |#3|) 97)) (-4151 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-406 (-562))) 40 (|has| |#1| (-362))))) -(((-278 |#1| |#2| |#3| |#4|) (-13 (-978 |#3|) (-10 -7 (IF (|has| |#1| (-362)) (-15 ** (|#3| |#3| (-406 (-562)))) |%noBranch|) (-15 -3430 (|#3| |#3|)) (-15 -4366 (|#3| |#3|)) (-15 -4074 (|#3| |#3|)) (-15 -4087 (|#3| |#3|)) (-15 -4098 (|#3| |#3|)) (-15 -4108 (|#3| |#3|)) (-15 -4120 (|#3| |#3|)) (-15 -4130 (|#3| |#3|)) (-15 -4139 (|#3| |#3|)) (-15 -4151 (|#3| |#3|)) (-15 -4165 (|#3| |#3|)) (-15 -4175 (|#3| |#3|)) (-15 -4183 (|#3| |#3|)) (-15 -4195 (|#3| |#3|)) (-15 -4206 (|#3| |#3|)) (-15 -2977 (|#3| |#3|)) (-15 -2987 (|#3| |#3|)) (-15 -3000 (|#3| |#3|)) (-15 -3013 (|#3| |#3|)) (-15 -3022 (|#3| |#3|)) (-15 -3033 (|#3| |#3|)) (-15 -3040 (|#3| |#3|)) (-15 -3054 (|#3| |#3|)) (-15 -3065 (|#3| |#3|)) (-15 -3077 (|#3| |#3|)) (-15 -1567 (|#3| |#3|)))) (-38 (-406 (-562))) (-1216 |#1|) (-1239 |#1| |#2|) (-978 |#2|)) (T -278)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-406 (-562))) (-4 *4 (-362)) (-4 *4 (-38 *3)) (-4 *5 (-1216 *4)) (-5 *1 (-278 *4 *5 *2 *6)) (-4 *2 (-1239 *4 *5)) (-4 *6 (-978 *5)))) (-3430 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-4366 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-4074 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-4087 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-4098 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-4108 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-4120 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-4130 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-4139 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-4151 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-4165 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-4175 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-4183 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-4195 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-4206 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-2977 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-2987 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-3000 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-3013 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-3022 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-3033 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-3040 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-3054 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-3065 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-3077 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) (-1567 (*1 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4))))) -(-13 (-978 |#3|) (-10 -7 (IF (|has| |#1| (-362)) (-15 ** (|#3| |#3| (-406 (-562)))) |%noBranch|) (-15 -3430 (|#3| |#3|)) (-15 -4366 (|#3| |#3|)) (-15 -4074 (|#3| |#3|)) (-15 -4087 (|#3| |#3|)) (-15 -4098 (|#3| |#3|)) (-15 -4108 (|#3| |#3|)) (-15 -4120 (|#3| |#3|)) (-15 -4130 (|#3| |#3|)) (-15 -4139 (|#3| |#3|)) (-15 -4151 (|#3| |#3|)) (-15 -4165 (|#3| |#3|)) (-15 -4175 (|#3| |#3|)) (-15 -4183 (|#3| |#3|)) (-15 -4195 (|#3| |#3|)) (-15 -4206 (|#3| |#3|)) (-15 -2977 (|#3| |#3|)) (-15 -2987 (|#3| |#3|)) (-15 -3000 (|#3| |#3|)) (-15 -3013 (|#3| |#3|)) (-15 -3022 (|#3| |#3|)) (-15 -3033 (|#3| |#3|)) (-15 -3040 (|#3| |#3|)) (-15 -3054 (|#3| |#3|)) (-15 -3065 (|#3| |#3|)) (-15 -3077 (|#3| |#3|)) (-15 -1567 (|#3| |#3|)))) -((-3927 (((-112) $) 18)) (-3681 (((-182) $) 7)) (-3098 (((-3 (-1168) "failed") $) 14)) (-3075 (((-3 (-639 $) "failed") $) NIL)) (-1379 (((-3 (-1168) "failed") $) 20)) (-2445 (((-3 (-1096) "failed") $) 17)) (-3620 (((-112) $) 15)) (-4053 (((-857) $) NIL)) (-2268 (((-112) $) 9))) -(((-279) (-13 (-609 (-857)) (-10 -8 (-15 -3681 ((-182) $)) (-15 -3620 ((-112) $)) (-15 -2445 ((-3 (-1096) "failed") $)) (-15 -3927 ((-112) $)) (-15 -1379 ((-3 (-1168) "failed") $)) (-15 -2268 ((-112) $)) (-15 -3098 ((-3 (-1168) "failed") $)) (-15 -3075 ((-3 (-639 $) "failed") $))))) (T -279)) -((-3681 (*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-279)))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))) (-2445 (*1 *2 *1) (|partial| -12 (-5 *2 (-1096)) (-5 *1 (-279)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))) (-1379 (*1 *2 *1) (|partial| -12 (-5 *2 (-1168)) (-5 *1 (-279)))) (-2268 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))) (-3098 (*1 *2 *1) (|partial| -12 (-5 *2 (-1168)) (-5 *1 (-279)))) (-3075 (*1 *2 *1) (|partial| -12 (-5 *2 (-639 (-279))) (-5 *1 (-279))))) -(-13 (-609 (-857)) (-10 -8 (-15 -3681 ((-182) $)) (-15 -3620 ((-112) $)) (-15 -2445 ((-3 (-1096) "failed") $)) (-15 -3927 ((-112) $)) (-15 -1379 ((-3 (-1168) "failed") $)) (-15 -2268 ((-112) $)) (-15 -3098 ((-3 (-1168) "failed") $)) (-15 -3075 ((-3 (-639 $) "failed") $)))) -((-3556 (($ (-1 (-112) |#2|) $) 24)) (-1459 (($ $) 36)) (-3729 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 34)) (-1475 (($ |#2| $) 32) (($ (-1 (-112) |#2|) $) 18)) (-3124 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-3295 (($ |#2| $ (-562)) 20) (($ $ $ (-562)) 22)) (-2880 (($ $ (-562)) 11) (($ $ (-1223 (-562))) 14)) (-2587 (($ $ |#2|) 30) (($ $ $) NIL)) (-2767 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-639 $)) NIL))) -(((-280 |#1| |#2|) (-10 -8 (-15 -3124 (|#1| |#1| |#1|)) (-15 -3729 (|#1| |#2| |#1|)) (-15 -3124 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3729 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2587 (|#1| |#1| |#1|)) (-15 -2587 (|#1| |#1| |#2|)) (-15 -3295 (|#1| |#1| |#1| (-562))) (-15 -3295 (|#1| |#2| |#1| (-562))) (-15 -2880 (|#1| |#1| (-1223 (-562)))) (-15 -2880 (|#1| |#1| (-562))) (-15 -2767 (|#1| (-639 |#1|))) (-15 -2767 (|#1| |#1| |#1|)) (-15 -2767 (|#1| |#2| |#1|)) (-15 -2767 (|#1| |#1| |#2|)) (-15 -1475 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3556 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1475 (|#1| |#2| |#1|)) (-15 -1459 (|#1| |#1|))) (-281 |#2|) (-1207)) (T -280)) -NIL -(-10 -8 (-15 -3124 (|#1| |#1| |#1|)) (-15 -3729 (|#1| |#2| |#1|)) (-15 -3124 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3729 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2587 (|#1| |#1| |#1|)) (-15 -2587 (|#1| |#1| |#2|)) (-15 -3295 (|#1| |#1| |#1| (-562))) (-15 -3295 (|#1| |#2| |#1| (-562))) (-15 -2880 (|#1| |#1| (-1223 (-562)))) (-15 -2880 (|#1| |#1| (-562))) (-15 -2767 (|#1| (-639 |#1|))) (-15 -2767 (|#1| |#1| |#1|)) (-15 -2767 (|#1| |#2| |#1|)) (-15 -2767 (|#1| |#1| |#2|)) (-15 -1475 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3556 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1475 (|#1| |#2| |#1|)) (-15 -1459 (|#1| |#1|))) -((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-3655 (((-1261) $ (-562) (-562)) 40 (|has| $ (-6 -4404)))) (-3735 (((-112) $ (-766)) 8)) (-4200 ((|#1| $ (-562) |#1|) 52 (|has| $ (-6 -4404))) ((|#1| $ (-1223 (-562)) |#1|) 58 (|has| $ (-6 -4404)))) (-2968 (($ (-1 (-112) |#1|) $) 85)) (-3556 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4403)))) (-3329 (($) 7 T CONST)) (-3923 (($ $) 83 (|has| |#1| (-1092)))) (-1459 (($ $) 78 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-3729 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1092)))) (-1475 (($ |#1| $) 77 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4403)))) (-1954 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4403)))) (-1507 ((|#1| $ (-562) |#1|) 53 (|has| $ (-6 -4404)))) (-1420 ((|#1| $ (-562)) 51)) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4403)))) (-1458 (($ (-766) |#1|) 69)) (-4172 (((-112) $ (-766)) 9)) (-1849 (((-562) $) 43 (|has| (-562) (-845)))) (-3124 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-845)))) (-2123 (((-639 |#1|) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1929 (((-562) $) 44 (|has| (-562) (-845)))) (-1491 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4147 (((-112) $ (-766)) 10)) (-3696 (((-1150) $) 22 (|has| |#1| (-1092)))) (-1581 (($ |#1| $ (-562)) 88) (($ $ $ (-562)) 87)) (-3295 (($ |#1| $ (-562)) 60) (($ $ $ (-562)) 59)) (-3336 (((-639 (-562)) $) 46)) (-1987 (((-112) (-562) $) 47)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-1421 ((|#1| $) 42 (|has| (-562) (-845)))) (-1963 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3510 (($ $ |#1|) 41 (|has| $ (-6 -4404)))) (-3008 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) 14)) (-2716 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2366 (((-639 |#1|) $) 48)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-2343 ((|#1| $ (-562) |#1|) 50) ((|#1| $ (-562)) 49) (($ $ (-1223 (-562))) 63)) (-1527 (($ $ (-562)) 91) (($ $ (-1223 (-562))) 90)) (-2880 (($ $ (-562)) 62) (($ $ (-1223 (-562))) 61)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4403))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-4220 (($ $) 13)) (-4208 (((-535) $) 79 (|has| |#1| (-610 (-535))))) (-4064 (($ (-639 |#1|)) 70)) (-2587 (($ $ |#1|) 93) (($ $ $) 92)) (-2767 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-639 $)) 65)) (-4053 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-2879 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-281 |#1|) (-139) (-1207)) (T -281)) -((-2587 (*1 *1 *1 *2) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1207)))) (-2587 (*1 *1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1207)))) (-1527 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-281 *3)) (-4 *3 (-1207)))) (-1527 (*1 *1 *1 *2) (-12 (-5 *2 (-1223 (-562))) (-4 *1 (-281 *3)) (-4 *3 (-1207)))) (-3729 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-281 *3)) (-4 *3 (-1207)))) (-1581 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-562)) (-4 *1 (-281 *2)) (-4 *2 (-1207)))) (-1581 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-281 *3)) (-4 *3 (-1207)))) (-3124 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-281 *3)) (-4 *3 (-1207)))) (-2968 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-281 *3)) (-4 *3 (-1207)))) (-3729 (*1 *1 *2 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1207)) (-4 *2 (-1092)))) (-3923 (*1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1207)) (-4 *2 (-1092)))) (-3124 (*1 *1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1207)) (-4 *2 (-845))))) -(-13 (-645 |t#1|) (-10 -8 (-6 -4404) (-15 -2587 ($ $ |t#1|)) (-15 -2587 ($ $ $)) (-15 -1527 ($ $ (-562))) (-15 -1527 ($ $ (-1223 (-562)))) (-15 -3729 ($ (-1 (-112) |t#1|) $)) (-15 -1581 ($ |t#1| $ (-562))) (-15 -1581 ($ $ $ (-562))) (-15 -3124 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2968 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1092)) (PROGN (-15 -3729 ($ |t#1| $)) (-15 -3923 ($ $))) |%noBranch|) (IF (|has| |t#1| (-845)) (-15 -3124 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-150 |#1|) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-285 #0=(-562) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-600 #0# |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-645 |#1|) . T) ((-1092) |has| |#1| (-1092)) ((-1207) . T)) +((-1677 (((-112) $ $) NIL)) (-3534 (($) 6 T CONST)) (-3547 (($) 7 T CONST)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 14)) (-3568 (($) 8 T CONST)) (-1718 (((-112) $ $) 10))) +(((-130) (-13 (-1093) (-10 -8 (-15 -3547 ($) -2669) (-15 -3568 ($) -2669) (-15 -3534 ($) -2669)))) (T -130)) +((-3547 (*1 *1) (-5 *1 (-130))) (-3568 (*1 *1) (-5 *1 (-130))) (-3534 (*1 *1) (-5 *1 (-130)))) +(-13 (-1093) (-10 -8 (-15 -3547 ($) -2669) (-15 -3568 ($) -2669) (-15 -3534 ($) -2669))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11)) (-2241 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1814 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15))) +(((-131) (-140)) (T -131)) +((-1495 (*1 *1 *1 *1) (|partial| -4 *1 (-131)))) +(-13 (-23) (-10 -8 (-15 -1495 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) +((-1677 (((-112) $ $) 7)) (-3052 (((-1262) $ (-767)) 19)) (-4368 (((-767) $) 20)) (-3084 (($ $ $) 13)) (-1777 (($ $ $) 14)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11)) (-1778 (((-112) $ $) 16)) (-1756 (((-112) $ $) 17)) (-1718 (((-112) $ $) 6)) (-1768 (((-112) $ $) 15)) (-1744 (((-112) $ $) 18))) +(((-132) (-140)) (T -132)) +((-4368 (*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-767)))) (-3052 (*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-767)) (-5 *2 (-1262))))) +(-13 (-846) (-10 -8 (-15 -4368 ((-767) $)) (-15 -3052 ((-1262) $ (-767))))) +(((-102) . T) ((-610 (-858)) . T) ((-846) . T) ((-1093) . T)) +((-1677 (((-112) $ $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 18) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3359 (((-640 (-1128)) $) 10)) (-1718 (((-112) $ $) NIL))) +(((-133) (-13 (-1076) (-10 -8 (-15 -3359 ((-640 (-1128)) $))))) (T -133)) +((-3359 (*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-133))))) +(-13 (-1076) (-10 -8 (-15 -3359 ((-640 (-1128)) $)))) +((-1677 (((-112) $ $) 34)) (-3411 (((-112) $) NIL)) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-767) "failed") $) 41)) (-2058 (((-767) $) 39)) (-3400 (((-3 $ "failed") $) NIL)) (-3827 (((-112) $) NIL)) (-3084 (($ $ $) NIL)) (-1777 (($ $ $) 27)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-3973 (((-112)) 42)) (-2708 (((-112) (-112)) 44)) (-1376 (((-112) $) 24)) (-3126 (((-112) $) 38)) (-1693 (((-858) $) 22) (($ (-767)) 14)) (-2241 (($) 11 T CONST)) (-2254 (($) 12 T CONST)) (-1943 (($ (-767)) 15)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 25)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) 26)) (-1826 (((-3 $ "failed") $ $) 30)) (-1814 (($ $ $) 28)) (** (($ $ (-767)) NIL) (($ $ (-917)) NIL) (($ $ $) 37)) (* (($ (-767) $) 33) (($ (-917) $) NIL) (($ $ $) 31))) +(((-134) (-13 (-846) (-23) (-722) (-1034 (-767)) (-10 -8 (-6 (-4409 "*")) (-15 -1826 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1943 ($ (-767))) (-15 -1376 ((-112) $)) (-15 -3126 ((-112) $)) (-15 -3973 ((-112))) (-15 -2708 ((-112) (-112)))))) (T -134)) +((-1826 (*1 *1 *1 *1) (|partial| -5 *1 (-134))) (** (*1 *1 *1 *1) (-5 *1 (-134))) (-1943 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-134)))) (-1376 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-3126 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-3973 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-2708 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) +(-13 (-846) (-23) (-722) (-1034 (-767)) (-10 -8 (-6 (-4409 "*")) (-15 -1826 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1943 ($ (-767))) (-15 -1376 ((-112) $)) (-15 -3126 ((-112) $)) (-15 -3973 ((-112))) (-15 -2708 ((-112) (-112))))) +((-4256 (((-136 |#1| |#2| |#4|) (-640 |#4|) (-136 |#1| |#2| |#3|)) 14)) (-2240 (((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)) 18))) +(((-135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4256 ((-136 |#1| |#2| |#4|) (-640 |#4|) (-136 |#1| |#2| |#3|))) (-15 -2240 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) (-563) (-767) (-172) (-172)) (T -135)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-563)) (-14 *6 (-767)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) (-4256 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-563)) (-14 *6 (-767)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8))))) +(-10 -7 (-15 -4256 ((-136 |#1| |#2| |#4|) (-640 |#4|) (-136 |#1| |#2| |#3|))) (-15 -2240 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) +((-1677 (((-112) $ $) NIL)) (-4230 (($ (-640 |#3|)) 40)) (-3493 (($ $) 99) (($ $ (-563) (-563)) 98)) (-4239 (($) 17)) (-2131 (((-3 |#3| "failed") $) 60)) (-2058 ((|#3| $) NIL)) (-1512 (($ $ (-640 (-563))) 100)) (-4246 (((-640 |#3|) $) 36)) (-2522 (((-767) $) 44)) (-2041 (($ $ $) 93)) (-4320 (($) 43)) (-3573 (((-1151) $) NIL)) (-2322 (($) 16)) (-1694 (((-1113) $) NIL)) (-2309 ((|#3| $) 46) ((|#3| $ (-563)) 47) ((|#3| $ (-563) (-563)) 48) ((|#3| $ (-563) (-563) (-563)) 49) ((|#3| $ (-563) (-563) (-563) (-563)) 50) ((|#3| $ (-640 (-563))) 52)) (-4167 (((-767) $) 45)) (-3161 (($ $ (-563) $ (-563)) 94) (($ $ (-563) (-563)) 96)) (-1693 (((-858) $) 67) (($ |#3|) 68) (($ (-240 |#2| |#3|)) 75) (($ (-1135 |#2| |#3|)) 78) (($ (-640 |#3|)) 53) (($ (-640 $)) 58)) (-2241 (($) 69 T CONST)) (-2254 (($) 70 T CONST)) (-1718 (((-112) $ $) 80)) (-1826 (($ $) 86) (($ $ $) 84)) (-1814 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-563)) 89) (($ (-563) $) 88) (($ $ $) 95))) +(((-136 |#1| |#2| |#3|) (-13 (-465 |#3| (-767)) (-470 (-563) (-767)) (-10 -8 (-15 -1693 ($ (-240 |#2| |#3|))) (-15 -1693 ($ (-1135 |#2| |#3|))) (-15 -1693 ($ (-640 |#3|))) (-15 -1693 ($ (-640 $))) (-15 -2522 ((-767) $)) (-15 -2309 (|#3| $)) (-15 -2309 (|#3| $ (-563))) (-15 -2309 (|#3| $ (-563) (-563))) (-15 -2309 (|#3| $ (-563) (-563) (-563))) (-15 -2309 (|#3| $ (-563) (-563) (-563) (-563))) (-15 -2309 (|#3| $ (-640 (-563)))) (-15 -2041 ($ $ $)) (-15 * ($ $ $)) (-15 -3161 ($ $ (-563) $ (-563))) (-15 -3161 ($ $ (-563) (-563))) (-15 -3493 ($ $)) (-15 -3493 ($ $ (-563) (-563))) (-15 -1512 ($ $ (-640 (-563)))) (-15 -2322 ($)) (-15 -4320 ($)) (-15 -4246 ((-640 |#3|) $)) (-15 -4230 ($ (-640 |#3|))) (-15 -4239 ($)))) (-563) (-767) (-172)) (T -136)) +((-2041 (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767)) (-4 *4 (-172)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-767)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-1135 *4 *5)) (-14 *4 (-767)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-640 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563)) (-14 *4 (-767)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-640 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563)) (-14 *4 (-767)) (-4 *5 (-172)))) (-2522 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563)) (-14 *4 *2) (-4 *5 (-172)))) (-2309 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-563)) (-14 *4 (-767)))) (-2309 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-767)))) (-2309 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-563)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-767)))) (-2309 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-563)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-767)))) (-2309 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-563)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-767)))) (-2309 (*1 *2 *1 *3) (-12 (-5 *3 (-640 (-563))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 (-563)) (-14 *5 (-767)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767)) (-4 *4 (-172)))) (-3161 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-767)) (-4 *5 (-172)))) (-3161 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-767)) (-4 *5 (-172)))) (-3493 (*1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767)) (-4 *4 (-172)))) (-3493 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-767)) (-4 *5 (-172)))) (-1512 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563)) (-14 *4 (-767)) (-4 *5 (-172)))) (-2322 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767)) (-4 *4 (-172)))) (-4320 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767)) (-4 *4 (-172)))) (-4246 (*1 *2 *1) (-12 (-5 *2 (-640 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563)) (-14 *4 (-767)) (-4 *5 (-172)))) (-4230 (*1 *1 *2) (-12 (-5 *2 (-640 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563)) (-14 *4 (-767)))) (-4239 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767)) (-4 *4 (-172))))) +(-13 (-465 |#3| (-767)) (-470 (-563) (-767)) (-10 -8 (-15 -1693 ($ (-240 |#2| |#3|))) (-15 -1693 ($ (-1135 |#2| |#3|))) (-15 -1693 ($ (-640 |#3|))) (-15 -1693 ($ (-640 $))) (-15 -2522 ((-767) $)) (-15 -2309 (|#3| $)) (-15 -2309 (|#3| $ (-563))) (-15 -2309 (|#3| $ (-563) (-563))) (-15 -2309 (|#3| $ (-563) (-563) (-563))) (-15 -2309 (|#3| $ (-563) (-563) (-563) (-563))) (-15 -2309 (|#3| $ (-640 (-563)))) (-15 -2041 ($ $ $)) (-15 * ($ $ $)) (-15 -3161 ($ $ (-563) $ (-563))) (-15 -3161 ($ $ (-563) (-563))) (-15 -3493 ($ $)) (-15 -3493 ($ $ (-563) (-563))) (-15 -1512 ($ $ (-640 (-563)))) (-15 -2322 ($)) (-15 -4320 ($)) (-15 -4246 ((-640 |#3|) $)) (-15 -4230 ($ (-640 |#3|))) (-15 -4239 ($)))) +((-1677 (((-112) $ $) NIL)) (-2351 (((-1128) $) 11)) (-2340 (((-1128) $) 9)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 19) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-137) (-13 (-1076) (-10 -8 (-15 -2340 ((-1128) $)) (-15 -2351 ((-1128) $))))) (T -137)) +((-2340 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-137)))) (-2351 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-137))))) +(-13 (-1076) (-10 -8 (-15 -2340 ((-1128) $)) (-15 -2351 ((-1128) $)))) +((-1677 (((-112) $ $) NIL)) (-3573 (((-1151) $) NIL)) (-2504 (((-1169) $) 10)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 19) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3359 (((-640 (-1128)) $) 12)) (-1718 (((-112) $ $) NIL))) +(((-138) (-13 (-1076) (-10 -8 (-15 -2504 ((-1169) $)) (-15 -3359 ((-640 (-1128)) $))))) (T -138)) +((-2504 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-138)))) (-3359 (*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-138))))) +(-13 (-1076) (-10 -8 (-15 -2504 ((-1169) $)) (-15 -3359 ((-640 (-1128)) $)))) +((-1677 (((-112) $ $) NIL)) (-3453 (((-640 (-861)) $) NIL)) (-3348 (((-506) $) NIL)) (-3573 (((-1151) $) NIL)) (-2504 (((-186) $) NIL)) (-1694 (((-1113) $) NIL)) (-2544 (((-640 (-112)) $) NIL)) (-1693 (((-858) $) NIL) (((-187) $) 6)) (-1396 (((-55) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-139) (-13 (-185) (-610 (-187)))) (T -139)) +NIL +(-13 (-185) (-610 (-187))) +((-2150 (((-640 (-183)) $) 13)) (-1856 (((-640 (-183)) $) 14)) (-1595 (((-640 (-834)) $) 10)) (-3762 (((-139) $) 7)) (-1693 (((-858) $) 16))) +(((-140) (-13 (-610 (-858)) (-10 -8 (-15 -3762 ((-139) $)) (-15 -1595 ((-640 (-834)) $)) (-15 -2150 ((-640 (-183)) $)) (-15 -1856 ((-640 (-183)) $))))) (T -140)) +((-3762 (*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) (-1595 (*1 *2 *1) (-12 (-5 *2 (-640 (-834))) (-5 *1 (-140)))) (-2150 (*1 *2 *1) (-12 (-5 *2 (-640 (-183))) (-5 *1 (-140)))) (-1856 (*1 *2 *1) (-12 (-5 *2 (-640 (-183))) (-5 *1 (-140))))) +(-13 (-610 (-858)) (-10 -8 (-15 -3762 ((-139) $)) (-15 -1595 ((-640 (-834)) $)) (-15 -2150 ((-640 (-183)) $)) (-15 -1856 ((-640 (-183)) $)))) +((-1677 (((-112) $ $) NIL)) (-3697 (($) 15 T CONST)) (-2941 (($) NIL (|has| (-144) (-368)))) (-2583 (($ $ $) 17) (($ $ (-144)) NIL) (($ (-144) $) NIL)) (-4314 (($ $ $) NIL)) (-4149 (((-112) $ $) NIL)) (-2759 (((-112) $ (-767)) NIL)) (-3749 (((-767)) NIL (|has| (-144) (-368)))) (-1584 (($) NIL) (($ (-640 (-144))) NIL)) (-2812 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4407)))) (-2256 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4407)))) (-4239 (($) NIL T CONST)) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1093))))) (-2705 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4407))) (($ (-144) $) 51 (|has| $ (-6 -4407)))) (-1459 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4407))) (($ (-144) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1093))))) (-2444 (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4407))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4407))) (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1093))))) (-1691 (($) NIL (|has| (-144) (-368)))) (-2659 (((-640 (-144)) $) 60 (|has| $ (-6 -4407)))) (-2539 (((-112) $ $) NIL)) (-2581 (((-112) $ (-767)) NIL)) (-3084 (((-144) $) NIL (|has| (-144) (-846)))) (-2259 (((-640 (-144)) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) (-144) $) 26 (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1093))))) (-1777 (((-144) $) NIL (|has| (-144) (-846)))) (-4345 (($ (-1 (-144) (-144)) $) 59 (|has| $ (-6 -4408)))) (-2240 (($ (-1 (-144) (-144)) $) 55)) (-1652 (($) 16 T CONST)) (-1476 (((-917) $) NIL (|has| (-144) (-368)))) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL)) (-2550 (($ $ $) 29)) (-2964 (((-144) $) 52)) (-1812 (($ (-144) $) 50)) (-2555 (($ (-917)) NIL (|has| (-144) (-368)))) (-2090 (($) 14 T CONST)) (-1694 (((-1113) $) NIL)) (-4203 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-3755 (((-144) $) 53)) (-3138 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-144)) (-640 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-640 (-294 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093))))) (-2026 (((-112) $ $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) 48)) (-2613 (($) 13 T CONST)) (-1629 (($ $ $) 31) (($ $ (-144)) NIL)) (-3890 (($ (-640 (-144))) NIL) (($) NIL)) (-1709 (((-767) (-144) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1093)))) (((-767) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4407)))) (-1872 (($ $) NIL)) (-2220 (((-1151) $) 36) (((-536) $) NIL (|has| (-144) (-611 (-536)))) (((-640 (-144)) $) 34)) (-1707 (($ (-640 (-144))) NIL)) (-3085 (($ $) 32 (|has| (-144) (-368)))) (-1693 (((-858) $) 46)) (-3863 (($ (-1151)) 12) (($ (-640 (-144))) 43)) (-1663 (((-767) $) NIL)) (-2534 (($) 49) (($ (-640 (-144))) NIL)) (-2233 (($ (-640 (-144))) NIL)) (-4383 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4407)))) (-1610 (($) 19 T CONST)) (-3393 (($) 18 T CONST)) (-1718 (((-112) $ $) 22)) (-3608 (((-767) $) 47 (|has| $ (-6 -4407))))) +(((-141) (-13 (-1093) (-611 (-1151)) (-425 (-144)) (-611 (-640 (-144))) (-10 -8 (-15 -3863 ($ (-1151))) (-15 -3863 ($ (-640 (-144)))) (-15 -2613 ($) -2669) (-15 -2090 ($) -2669) (-15 -3697 ($) -2669) (-15 -1652 ($) -2669) (-15 -3393 ($) -2669) (-15 -1610 ($) -2669)))) (T -141)) +((-3863 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-141)))) (-3863 (*1 *1 *2) (-12 (-5 *2 (-640 (-144))) (-5 *1 (-141)))) (-2613 (*1 *1) (-5 *1 (-141))) (-2090 (*1 *1) (-5 *1 (-141))) (-3697 (*1 *1) (-5 *1 (-141))) (-1652 (*1 *1) (-5 *1 (-141))) (-3393 (*1 *1) (-5 *1 (-141))) (-1610 (*1 *1) (-5 *1 (-141)))) +(-13 (-1093) (-611 (-1151)) (-425 (-144)) (-611 (-640 (-144))) (-10 -8 (-15 -3863 ($ (-1151))) (-15 -3863 ($ (-640 (-144)))) (-15 -2613 ($) -2669) (-15 -2090 ($) -2669) (-15 -3697 ($) -2669) (-15 -1652 ($) -2669) (-15 -3393 ($) -2669) (-15 -1610 ($) -2669))) +((-3266 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-1417 ((|#1| |#3|) 9)) (-2119 ((|#3| |#3|) 15))) +(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -1417 (|#1| |#3|)) (-15 -2119 (|#3| |#3|)) (-15 -3266 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-555) (-988 |#1|) (-373 |#2|)) (T -142)) +((-3266 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-988 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-373 *5)))) (-2119 (*1 *2 *2) (-12 (-4 *3 (-555)) (-4 *4 (-988 *3)) (-5 *1 (-142 *3 *4 *2)) (-4 *2 (-373 *4)))) (-1417 (*1 *2 *3) (-12 (-4 *4 (-988 *2)) (-4 *2 (-555)) (-5 *1 (-142 *2 *4 *3)) (-4 *3 (-373 *4))))) +(-10 -7 (-15 -1417 (|#1| |#3|)) (-15 -2119 (|#3| |#3|)) (-15 -3266 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-3972 (($ $ $) 8)) (-3219 (($ $) 7)) (-2869 (($ $ $) 6))) +(((-143) (-140)) (T -143)) +((-3972 (*1 *1 *1 *1) (-4 *1 (-143))) (-3219 (*1 *1 *1) (-4 *1 (-143))) (-2869 (*1 *1 *1 *1) (-4 *1 (-143)))) +(-13 (-10 -8 (-15 -2869 ($ $ $)) (-15 -3219 ($ $)) (-15 -3972 ($ $ $)))) +((-1677 (((-112) $ $) NIL)) (-1917 (((-112) $) 30)) (-3697 (($ $) 43)) (-4140 (($) 17)) (-3749 (((-767)) 10)) (-1691 (($) 16)) (-2827 (($) 18)) (-3294 (((-767) $) 14)) (-3084 (($ $ $) NIL) (($) NIL T CONST)) (-1777 (($ $ $) NIL) (($) NIL T CONST)) (-4016 (((-112) $) 32)) (-1652 (($ $) 44)) (-1476 (((-917) $) 15)) (-3573 (((-1151) $) 38)) (-2555 (($ (-917)) 13)) (-4265 (((-112) $) 28)) (-1694 (((-1113) $) NIL)) (-2562 (($) 19)) (-2953 (((-112) $) 26)) (-1693 (((-858) $) 21)) (-4283 (($ (-767)) 11) (($ (-1151)) 42)) (-1422 (((-112) $) 36)) (-2787 (((-112) $) 34)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 7)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) 8))) +(((-144) (-13 (-840) (-10 -8 (-15 -3294 ((-767) $)) (-15 -4283 ($ (-767))) (-15 -4283 ($ (-1151))) (-15 -4140 ($)) (-15 -2827 ($)) (-15 -2562 ($)) (-15 -3697 ($ $)) (-15 -1652 ($ $)) (-15 -2953 ((-112) $)) (-15 -4265 ((-112) $)) (-15 -2787 ((-112) $)) (-15 -1917 ((-112) $)) (-15 -4016 ((-112) $)) (-15 -1422 ((-112) $))))) (T -144)) +((-3294 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-144)))) (-4283 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-144)))) (-4283 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-144)))) (-4140 (*1 *1) (-5 *1 (-144))) (-2827 (*1 *1) (-5 *1 (-144))) (-2562 (*1 *1) (-5 *1 (-144))) (-3697 (*1 *1 *1) (-5 *1 (-144))) (-1652 (*1 *1 *1) (-5 *1 (-144))) (-2953 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-4265 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2787 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1917 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-4016 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1422 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(-13 (-840) (-10 -8 (-15 -3294 ((-767) $)) (-15 -4283 ($ (-767))) (-15 -4283 ($ (-1151))) (-15 -4140 ($)) (-15 -2827 ($)) (-15 -2562 ($)) (-15 -3697 ($ $)) (-15 -1652 ($ $)) (-15 -2953 ((-112) $)) (-15 -4265 ((-112) $)) (-15 -2787 ((-112) $)) (-15 -1917 ((-112) $)) (-15 -4016 ((-112) $)) (-15 -1422 ((-112) $)))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-3400 (((-3 $ "failed") $) 33)) (-3827 (((-112) $) 31)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11) (($ (-563)) 29)) (-2779 (((-3 $ "failed") $) 35)) (-1675 (((-767)) 28)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) +(((-145) (-140)) (T -145)) +((-2779 (*1 *1 *1) (|partial| -4 *1 (-145)))) +(-13 (-1045) (-10 -8 (-15 -2779 ((-3 $ "failed") $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-643 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) +((-3421 ((|#1| (-684 |#1|) |#1|) 19))) +(((-146 |#1|) (-10 -7 (-15 -3421 (|#1| (-684 |#1|) |#1|))) (-172)) (T -146)) +((-3421 (*1 *2 *3 *2) (-12 (-5 *3 (-684 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2))))) +(-10 -7 (-15 -3421 (|#1| (-684 |#1|) |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-3400 (((-3 $ "failed") $) 33)) (-3827 (((-112) $) 31)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11) (($ (-563)) 29)) (-1675 (((-767)) 28)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) +(((-147) (-140)) (T -147)) +NIL +(-13 (-1045)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-643 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) +((-2753 (((-2 (|:| -1654 (-767)) (|:| -2311 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-767)) 69)) (-2702 (((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-767))) "failed") |#3|) 51)) (-2968 (((-2 (|:| -2311 (-407 |#2|)) (|:| |poly| |#3|)) |#3|) 36)) (-1427 ((|#1| |#3| |#3|) 39)) (-1540 ((|#3| |#3| (-407 |#2|) (-407 |#2|)) 19)) (-3114 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-767))) |#3| |#3|) 48))) +(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -2968 ((-2 (|:| -2311 (-407 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2702 ((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-767))) "failed") |#3|)) (-15 -2753 ((-2 (|:| -1654 (-767)) (|:| -2311 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-767))) (-15 -1427 (|#1| |#3| |#3|)) (-15 -1540 (|#3| |#3| (-407 |#2|) (-407 |#2|))) (-15 -3114 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-767))) |#3| |#3|))) (-1212) (-1233 |#1|) (-1233 (-407 |#2|))) (T -148)) +((-3114 (*1 *2 *3 *3) (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-407 *5)) (|:| |c2| (-407 *5)) (|:| |deg| (-767)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1233 (-407 *5))))) (-1540 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-407 *5)) (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1233 *3)))) (-1427 (*1 *2 *3 *3) (-12 (-4 *4 (-1233 *2)) (-4 *2 (-1212)) (-5 *1 (-148 *2 *4 *3)) (-4 *3 (-1233 (-407 *4))))) (-2753 (*1 *2 *3 *4) (-12 (-5 *3 (-407 *6)) (-4 *5 (-1212)) (-4 *6 (-1233 *5)) (-5 *2 (-2 (|:| -1654 (-767)) (|:| -2311 *3) (|:| |radicand| *6))) (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-767)) (-4 *7 (-1233 *3)))) (-2702 (*1 *2 *3) (|partial| -12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-5 *2 (-2 (|:| |radicand| (-407 *5)) (|:| |deg| (-767)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1233 (-407 *5))))) (-2968 (*1 *2 *3) (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-5 *2 (-2 (|:| -2311 (-407 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1233 (-407 *5)))))) +(-10 -7 (-15 -2968 ((-2 (|:| -2311 (-407 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2702 ((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-767))) "failed") |#3|)) (-15 -2753 ((-2 (|:| -1654 (-767)) (|:| -2311 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-767))) (-15 -1427 (|#1| |#3| |#3|)) (-15 -1540 (|#3| |#3| (-407 |#2|) (-407 |#2|))) (-15 -3114 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-767))) |#3| |#3|))) +((-2748 (((-3 (-640 (-1165 |#2|)) "failed") (-640 (-1165 |#2|)) (-1165 |#2|)) 31))) +(((-149 |#1| |#2|) (-10 -7 (-15 -2748 ((-3 (-640 (-1165 |#2|)) "failed") (-640 (-1165 |#2|)) (-1165 |#2|)))) (-545) (-166 |#1|)) (T -149)) +((-2748 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-640 (-1165 *5))) (-5 *3 (-1165 *5)) (-4 *5 (-166 *4)) (-4 *4 (-545)) (-5 *1 (-149 *4 *5))))) +(-10 -7 (-15 -2748 ((-3 (-640 (-1165 |#2|)) "failed") (-640 (-1165 |#2|)) (-1165 |#2|)))) +((-2256 (($ (-1 (-112) |#2|) $) 29)) (-3813 (($ $) 36)) (-1459 (($ (-1 (-112) |#2|) $) 27) (($ |#2| $) 32)) (-2444 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-4203 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 19)) (-3138 (((-112) (-1 (-112) |#2|) $) 16)) (-1709 (((-767) (-1 (-112) |#2|) $) 14) (((-767) |#2| $) NIL)) (-4383 (((-112) (-1 (-112) |#2|) $) 15)) (-3608 (((-767) $) 11))) +(((-150 |#1| |#2|) (-10 -8 (-15 -3813 (|#1| |#1|)) (-15 -1459 (|#1| |#2| |#1|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2256 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1459 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4203 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1709 ((-767) |#2| |#1|)) (-15 -1709 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -3138 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4383 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3608 ((-767) |#1|))) (-151 |#2|) (-1208)) (T -150)) +NIL +(-10 -8 (-15 -3813 (|#1| |#1|)) (-15 -1459 (|#1| |#2| |#1|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2256 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1459 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4203 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1709 ((-767) |#2| |#1|)) (-15 -1709 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -3138 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4383 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3608 ((-767) |#1|))) +((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-2759 (((-112) $ (-767)) 8)) (-2256 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4407)))) (-4239 (($) 7 T CONST)) (-3813 (($ $) 41 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1459 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4407))) (($ |#1| $) 42 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-2659 (((-640 |#1|) $) 30 (|has| $ (-6 -4407)))) (-2581 (((-112) $ (-767)) 9)) (-2259 (((-640 |#1|) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-4345 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 35)) (-2382 (((-112) $ (-767)) 10)) (-3573 (((-1151) $) 22 (|has| |#1| (-1093)))) (-1694 (((-1113) $) 21 (|has| |#1| (-1093)))) (-4203 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-3138 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) 14)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-1709 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4407))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1872 (($ $) 13)) (-2220 (((-536) $) 40 (|has| |#1| (-611 (-536))))) (-1707 (($ (-640 |#1|)) 49)) (-1693 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-4383 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-151 |#1|) (-140) (-1208)) (T -151)) +((-1707 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-4 *1 (-151 *3)))) (-4203 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1208)))) (-2444 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4407)) (-4 *1 (-151 *2)) (-4 *2 (-1208)))) (-2444 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4407)) (-4 *1 (-151 *2)) (-4 *2 (-1208)))) (-1459 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4407)) (-4 *1 (-151 *3)) (-4 *3 (-1208)))) (-2256 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4407)) (-4 *1 (-151 *3)) (-4 *3 (-1208)))) (-2444 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1093)) (|has| *1 (-6 -4407)) (-4 *1 (-151 *2)) (-4 *2 (-1208)))) (-1459 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-151 *2)) (-4 *2 (-1208)) (-4 *2 (-1093)))) (-3813 (*1 *1 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-151 *2)) (-4 *2 (-1208)) (-4 *2 (-1093))))) +(-13 (-489 |t#1|) (-10 -8 (-15 -1707 ($ (-640 |t#1|))) (-15 -4203 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4407)) (PROGN (-15 -2444 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2444 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1459 ($ (-1 (-112) |t#1|) $)) (-15 -2256 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1093)) (PROGN (-15 -2444 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -1459 ($ |t#1| $)) (-15 -3813 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4032 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T)) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4239 (($) NIL T CONST)) (-3400 (((-3 $ "failed") $) 85)) (-3827 (((-112) $) NIL)) (-2588 (($ |#2| (-640 (-917))) 55)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-3728 (($ (-917)) 47)) (-3533 (((-134)) 23)) (-1693 (((-858) $) 68) (($ (-563)) 45) (($ |#2|) 46)) (-4319 ((|#2| $ (-640 (-917))) 58)) (-1675 (((-767)) 20)) (-2241 (($) 40 T CONST)) (-2254 (($) 43 T CONST)) (-1718 (((-112) $ $) 26)) (-1837 (($ $ |#2|) NIL)) (-1826 (($ $) 34) (($ $ $) 32)) (-1814 (($ $ $) 30)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL))) +(((-152 |#1| |#2| |#3|) (-13 (-1045) (-38 |#2|) (-1264 |#2|) (-10 -8 (-15 -3728 ($ (-917))) (-15 -2588 ($ |#2| (-640 (-917)))) (-15 -4319 (|#2| $ (-640 (-917)))) (-15 -3400 ((-3 $ "failed") $)))) (-917) (-363) (-989 |#1| |#2|)) (T -152)) +((-3400 (*1 *1 *1) (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-917)) (-4 *3 (-363)) (-14 *4 (-989 *2 *3)))) (-3728 (*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-363)) (-14 *5 (-989 *3 *4)))) (-2588 (*1 *1 *2 *3) (-12 (-5 *3 (-640 (-917))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-917)) (-4 *2 (-363)) (-14 *5 (-989 *4 *2)))) (-4319 (*1 *2 *1 *3) (-12 (-5 *3 (-640 (-917))) (-4 *2 (-363)) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-917)) (-14 *5 (-989 *4 *2))))) +(-13 (-1045) (-38 |#2|) (-1264 |#2|) (-10 -8 (-15 -3728 ($ (-917))) (-15 -2588 ($ |#2| (-640 (-917)))) (-15 -4319 (|#2| $ (-640 (-917)))) (-15 -3400 ((-3 $ "failed") $)))) +((-3926 (((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-640 (-640 (-939 (-225)))) (-225) (-225) (-225) (-225)) 37)) (-4276 (((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923) (-407 (-563)) (-407 (-563))) 64) (((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923)) 65)) (-2769 (((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-640 (-640 (-939 (-225))))) 68) (((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-640 (-939 (-225)))) 67) (((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923) (-407 (-563)) (-407 (-563))) 59) (((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923)) 60))) +(((-153) (-10 -7 (-15 -2769 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923))) (-15 -2769 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923) (-407 (-563)) (-407 (-563)))) (-15 -4276 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923))) (-15 -4276 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923) (-407 (-563)) (-407 (-563)))) (-15 -3926 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-640 (-640 (-939 (-225)))) (-225) (-225) (-225) (-225))) (-15 -2769 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-640 (-939 (-225))))) (-15 -2769 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-640 (-640 (-939 (-225)))))))) (T -153)) +((-2769 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225))))) (-5 *1 (-153)) (-5 *3 (-640 (-640 (-939 (-225))))))) (-2769 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225))))) (-5 *1 (-153)) (-5 *3 (-640 (-939 (-225)))))) (-3926 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-225)) (-5 *2 (-2 (|:| |brans| (-640 (-640 (-939 *4)))) (|:| |xValues| (-1087 *4)) (|:| |yValues| (-1087 *4)))) (-5 *1 (-153)) (-5 *3 (-640 (-640 (-939 *4)))))) (-4276 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-923)) (-5 *4 (-407 (-563))) (-5 *2 (-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225))))) (-5 *1 (-153)))) (-4276 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225))))) (-5 *1 (-153)))) (-2769 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-923)) (-5 *4 (-407 (-563))) (-5 *2 (-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225))))) (-5 *1 (-153)))) (-2769 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225))))) (-5 *1 (-153))))) +(-10 -7 (-15 -2769 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923))) (-15 -2769 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923) (-407 (-563)) (-407 (-563)))) (-15 -4276 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923))) (-15 -4276 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923) (-407 (-563)) (-407 (-563)))) (-15 -3926 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-640 (-640 (-939 (-225)))) (-225) (-225) (-225) (-225))) (-15 -2769 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-640 (-939 (-225))))) (-15 -2769 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-640 (-640 (-939 (-225))))))) +((-1677 (((-112) $ $) NIL)) (-3573 (((-1151) $) NIL)) (-2530 (((-640 (-1128)) $) 15)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 24) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3359 (((-1128) $) 9)) (-1718 (((-112) $ $) NIL))) +(((-154) (-13 (-1076) (-10 -8 (-15 -2530 ((-640 (-1128)) $)) (-15 -3359 ((-1128) $))))) (T -154)) +((-2530 (*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-154)))) (-3359 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-154))))) +(-13 (-1076) (-10 -8 (-15 -2530 ((-640 (-1128)) $)) (-15 -3359 ((-1128) $)))) +((-1435 (((-640 (-169 |#2|)) |#1| |#2|) 45))) +(((-155 |#1| |#2|) (-10 -7 (-15 -1435 ((-640 (-169 |#2|)) |#1| |#2|))) (-1233 (-169 (-563))) (-13 (-363) (-844))) (T -155)) +((-1435 (*1 *2 *3 *4) (-12 (-5 *2 (-640 (-169 *4))) (-5 *1 (-155 *3 *4)) (-4 *3 (-1233 (-169 (-563)))) (-4 *4 (-13 (-363) (-844)))))) +(-10 -7 (-15 -1435 ((-640 (-169 |#2|)) |#1| |#2|))) +((-1677 (((-112) $ $) NIL)) (-2351 (((-1207) $) 12)) (-2340 (((-1128) $) 9)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 21) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-156) (-13 (-1076) (-10 -8 (-15 -2340 ((-1128) $)) (-15 -2351 ((-1207) $))))) (T -156)) +((-2340 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-156)))) (-2351 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-156))))) +(-13 (-1076) (-10 -8 (-15 -2340 ((-1128) $)) (-15 -2351 ((-1207) $)))) +((-1677 (((-112) $ $) NIL)) (-1773 (($) 15)) (-1957 (($) 14)) (-1860 (((-917)) 22)) (-3573 (((-1151) $) NIL)) (-3788 (((-563) $) 19)) (-1694 (((-1113) $) NIL)) (-3278 (($) 16)) (-1332 (($ (-563)) 23)) (-1693 (((-858) $) 29)) (-3504 (($) 17)) (-1718 (((-112) $ $) 13)) (-1814 (($ $ $) 11)) (* (($ (-917) $) 21) (($ (-225) $) 8))) +(((-157) (-13 (-25) (-10 -8 (-15 * ($ (-917) $)) (-15 * ($ (-225) $)) (-15 -1814 ($ $ $)) (-15 -1957 ($)) (-15 -1773 ($)) (-15 -3278 ($)) (-15 -3504 ($)) (-15 -3788 ((-563) $)) (-15 -1860 ((-917))) (-15 -1332 ($ (-563)))))) (T -157)) +((-1814 (*1 *1 *1 *1) (-5 *1 (-157))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-157)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157)))) (-1957 (*1 *1) (-5 *1 (-157))) (-1773 (*1 *1) (-5 *1 (-157))) (-3278 (*1 *1) (-5 *1 (-157))) (-3504 (*1 *1) (-5 *1 (-157))) (-3788 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-157)))) (-1860 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-157)))) (-1332 (*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-157))))) +(-13 (-25) (-10 -8 (-15 * ($ (-917) $)) (-15 * ($ (-225) $)) (-15 -1814 ($ $ $)) (-15 -1957 ($)) (-15 -1773 ($)) (-15 -3278 ($)) (-15 -3504 ($)) (-15 -3788 ((-563) $)) (-15 -1860 ((-917))) (-15 -1332 ($ (-563))))) +((-3743 ((|#2| |#2| (-1085 |#2|)) 87) ((|#2| |#2| (-1169)) 67)) (-2041 ((|#2| |#2| (-1085 |#2|)) 86) ((|#2| |#2| (-1169)) 66)) (-3972 ((|#2| |#2| |#2|) 25)) (-2361 (((-114) (-114)) 98)) (-4272 ((|#2| (-640 |#2|)) 116)) (-3984 ((|#2| (-640 |#2|)) 134)) (-3058 ((|#2| (-640 |#2|)) 124)) (-2479 ((|#2| |#2|) 122)) (-2966 ((|#2| (-640 |#2|)) 110)) (-3976 ((|#2| (-640 |#2|)) 111)) (-2631 ((|#2| (-640 |#2|)) 132)) (-2487 ((|#2| |#2| (-1169)) 55) ((|#2| |#2|) 54)) (-3219 ((|#2| |#2|) 21)) (-2869 ((|#2| |#2| |#2|) 24)) (-3734 (((-112) (-114)) 48)) (** ((|#2| |#2| |#2|) 39))) +(((-158 |#1| |#2|) (-10 -7 (-15 -3734 ((-112) (-114))) (-15 -2361 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -2869 (|#2| |#2| |#2|)) (-15 -3972 (|#2| |#2| |#2|)) (-15 -3219 (|#2| |#2|)) (-15 -2487 (|#2| |#2|)) (-15 -2487 (|#2| |#2| (-1169))) (-15 -3743 (|#2| |#2| (-1169))) (-15 -3743 (|#2| |#2| (-1085 |#2|))) (-15 -2041 (|#2| |#2| (-1169))) (-15 -2041 (|#2| |#2| (-1085 |#2|))) (-15 -2479 (|#2| |#2|)) (-15 -2631 (|#2| (-640 |#2|))) (-15 -3058 (|#2| (-640 |#2|))) (-15 -3984 (|#2| (-640 |#2|))) (-15 -2966 (|#2| (-640 |#2|))) (-15 -3976 (|#2| (-640 |#2|))) (-15 -4272 (|#2| (-640 |#2|)))) (-13 (-846) (-555)) (-430 |#1|)) (T -158)) +((-4272 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-846) (-555))))) (-3976 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-846) (-555))))) (-2966 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-846) (-555))))) (-3984 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-846) (-555))))) (-3058 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-846) (-555))))) (-2631 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-846) (-555))))) (-2479 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-2041 (*1 *2 *2 *3) (-12 (-5 *3 (-1085 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-158 *4 *2)))) (-2041 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-158 *4 *2)) (-4 *2 (-430 *4)))) (-3743 (*1 *2 *2 *3) (-12 (-5 *3 (-1085 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-158 *4 *2)))) (-3743 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-158 *4 *2)) (-4 *2 (-430 *4)))) (-2487 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-158 *4 *2)) (-4 *2 (-430 *4)))) (-2487 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-3219 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-3972 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-2869 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-2361 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *4)) (-4 *4 (-430 *3)))) (-3734 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112)) (-5 *1 (-158 *4 *5)) (-4 *5 (-430 *4))))) +(-10 -7 (-15 -3734 ((-112) (-114))) (-15 -2361 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -2869 (|#2| |#2| |#2|)) (-15 -3972 (|#2| |#2| |#2|)) (-15 -3219 (|#2| |#2|)) (-15 -2487 (|#2| |#2|)) (-15 -2487 (|#2| |#2| (-1169))) (-15 -3743 (|#2| |#2| (-1169))) (-15 -3743 (|#2| |#2| (-1085 |#2|))) (-15 -2041 (|#2| |#2| (-1169))) (-15 -2041 (|#2| |#2| (-1085 |#2|))) (-15 -2479 (|#2| |#2|)) (-15 -2631 (|#2| (-640 |#2|))) (-15 -3058 (|#2| (-640 |#2|))) (-15 -3984 (|#2| (-640 |#2|))) (-15 -2966 (|#2| (-640 |#2|))) (-15 -3976 (|#2| (-640 |#2|))) (-15 -4272 (|#2| (-640 |#2|)))) +((-1861 ((|#1| |#1| |#1|) 53)) (-3653 ((|#1| |#1| |#1|) 50)) (-3972 ((|#1| |#1| |#1|) 44)) (-3106 ((|#1| |#1|) 35)) (-3096 ((|#1| |#1| (-640 |#1|)) 43)) (-3219 ((|#1| |#1|) 37)) (-2869 ((|#1| |#1| |#1|) 40))) +(((-159 |#1|) (-10 -7 (-15 -2869 (|#1| |#1| |#1|)) (-15 -3219 (|#1| |#1|)) (-15 -3096 (|#1| |#1| (-640 |#1|))) (-15 -3106 (|#1| |#1|)) (-15 -3972 (|#1| |#1| |#1|)) (-15 -3653 (|#1| |#1| |#1|)) (-15 -1861 (|#1| |#1| |#1|))) (-545)) (T -159)) +((-1861 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-3653 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-3972 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-3106 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-3096 (*1 *2 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-545)) (-5 *1 (-159 *2)))) (-3219 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-2869 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))) +(-10 -7 (-15 -2869 (|#1| |#1| |#1|)) (-15 -3219 (|#1| |#1|)) (-15 -3096 (|#1| |#1| (-640 |#1|))) (-15 -3106 (|#1| |#1|)) (-15 -3972 (|#1| |#1| |#1|)) (-15 -3653 (|#1| |#1| |#1|)) (-15 -1861 (|#1| |#1| |#1|))) +((-3743 (($ $ (-1169)) 12) (($ $ (-1085 $)) 11)) (-2041 (($ $ (-1169)) 10) (($ $ (-1085 $)) 9)) (-3972 (($ $ $) 8)) (-2487 (($ $) 14) (($ $ (-1169)) 13)) (-3219 (($ $) 7)) (-2869 (($ $ $) 6))) +(((-160) (-140)) (T -160)) +((-2487 (*1 *1 *1) (-4 *1 (-160))) (-2487 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1169)))) (-3743 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1169)))) (-3743 (*1 *1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-160)))) (-2041 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1169)))) (-2041 (*1 *1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-160))))) +(-13 (-143) (-10 -8 (-15 -2487 ($ $)) (-15 -2487 ($ $ (-1169))) (-15 -3743 ($ $ (-1169))) (-15 -3743 ($ $ (-1085 $))) (-15 -2041 ($ $ (-1169))) (-15 -2041 ($ $ (-1085 $))))) +(((-143) . T)) +((-1677 (((-112) $ $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 17) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3359 (((-640 (-1128)) $) 9)) (-1718 (((-112) $ $) NIL))) +(((-161) (-13 (-1076) (-10 -8 (-15 -3359 ((-640 (-1128)) $))))) (T -161)) +((-3359 (*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-161))))) +(-13 (-1076) (-10 -8 (-15 -3359 ((-640 (-1128)) $)))) +((-1677 (((-112) $ $) NIL)) (-2270 (($ (-563)) 13) (($ $ $) 14)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 17)) (-1718 (((-112) $ $) 9))) +(((-162) (-13 (-1093) (-10 -8 (-15 -2270 ($ (-563))) (-15 -2270 ($ $ $))))) (T -162)) +((-2270 (*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-162)))) (-2270 (*1 *1 *1 *1) (-5 *1 (-162)))) +(-13 (-1093) (-10 -8 (-15 -2270 ($ (-563))) (-15 -2270 ($ $ $)))) +((-2361 (((-114) (-1169)) 95))) +(((-163) (-10 -7 (-15 -2361 ((-114) (-1169))))) (T -163)) +((-2361 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-114)) (-5 *1 (-163))))) +(-10 -7 (-15 -2361 ((-114) (-1169)))) +((-1536 ((|#3| |#3|) 19))) +(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -1536 (|#3| |#3|))) (-1045) (-1233 |#1|) (-1233 |#2|)) (T -164)) +((-1536 (*1 *2 *2) (-12 (-4 *3 (-1045)) (-4 *4 (-1233 *3)) (-5 *1 (-164 *3 *4 *2)) (-4 *2 (-1233 *4))))) +(-10 -7 (-15 -1536 (|#3| |#3|))) +((-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 214)) (-1733 ((|#2| $) 95)) (-1771 (($ $) 244)) (-1619 (($ $) 238)) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 39)) (-1748 (($ $) 242)) (-1597 (($ $) 236)) (-2131 (((-3 (-563) "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 |#2| "failed") $) 138)) (-2058 (((-563) $) NIL) (((-407 (-563)) $) NIL) ((|#2| $) 136)) (-3090 (($ $ $) 219)) (-2950 (((-684 (-563)) (-684 $)) NIL) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-2 (|:| -2835 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) 152) (((-684 |#2|) (-684 $)) 146)) (-2444 (($ (-1165 |#2|)) 118) (((-3 $ "failed") (-407 (-1165 |#2|))) NIL)) (-3400 (((-3 $ "failed") $) 206)) (-3909 (((-3 (-407 (-563)) "failed") $) 196)) (-2239 (((-112) $) 191)) (-2651 (((-407 (-563)) $) 194)) (-2522 (((-917)) 88)) (-3050 (($ $ $) 221)) (-3032 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 258)) (-2180 (($) 233)) (-3787 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 183) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 188)) (-3793 ((|#2| $) 93)) (-3941 (((-1165 |#2|) $) 120)) (-2240 (($ (-1 |#2| |#2|) $) 101)) (-4371 (($ $) 235)) (-2433 (((-1165 |#2|) $) 119)) (-2688 (($ $) 199)) (-3127 (($) 96)) (-1876 (((-418 (-1165 $)) (-1165 $)) 87)) (-3116 (((-418 (-1165 $)) (-1165 $)) 56)) (-3008 (((-3 $ "failed") $ |#2|) 201) (((-3 $ "failed") $ $) 204)) (-3368 (($ $) 234)) (-2628 (((-767) $) 216)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 226)) (-2315 ((|#2| (-1257 $)) NIL) ((|#2|) 90)) (-4202 (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 112) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169)) NIL) (($ $ (-767)) NIL) (($ $) NIL)) (-3390 (((-1165 |#2|)) 113)) (-1759 (($ $) 243)) (-1608 (($ $) 237)) (-1880 (((-1257 |#2|) $ (-1257 $)) 127) (((-684 |#2|) (-1257 $) (-1257 $)) NIL) (((-1257 |#2|) $) 109) (((-684 |#2|) (-1257 $)) NIL)) (-2220 (((-1257 |#2|) $) NIL) (($ (-1257 |#2|)) NIL) (((-1165 |#2|) $) NIL) (($ (-1165 |#2|)) NIL) (((-888 (-563)) $) 174) (((-888 (-379)) $) 178) (((-169 (-379)) $) 164) (((-169 (-225)) $) 159) (((-536) $) 170)) (-4339 (($ $) 97)) (-1693 (((-858) $) 135) (($ (-563)) NIL) (($ |#2|) NIL) (($ (-407 (-563))) NIL) (($ $) NIL)) (-3421 (((-1165 |#2|) $) 23)) (-1675 (((-767)) 99)) (-1840 (($ $) 247)) (-1695 (($ $) 241)) (-1817 (($ $) 245)) (-1667 (($ $) 239)) (-3237 ((|#2| $) 230)) (-1829 (($ $) 246)) (-1680 (($ $) 240)) (-2509 (($ $) 154)) (-1718 (((-112) $ $) 103)) (-1744 (((-112) $ $) 190)) (-1826 (($ $) 105) (($ $ $) NIL)) (-1814 (($ $ $) 104)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-407 (-563))) 264) (($ $ $) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 111) (($ $ $) 139) (($ $ |#2|) NIL) (($ |#2| $) 107) (($ (-407 (-563)) $) NIL) (($ $ (-407 (-563))) NIL))) +(((-165 |#1| |#2|) (-10 -8 (-15 -4202 (|#1| |#1|)) (-15 -4202 (|#1| |#1| (-767))) (-15 -1693 (|#1| |#1|)) (-15 -3008 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4372 ((-2 (|:| -1414 |#1|) (|:| -4394 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4202 (|#1| |#1| (-1169))) (-15 -4202 (|#1| |#1| (-640 (-1169)))) (-15 -4202 (|#1| |#1| (-1169) (-767))) (-15 -4202 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -2628 ((-767) |#1|)) (-15 -2452 ((-2 (|:| -3490 |#1|) (|:| -1972 |#1|)) |#1| |#1|)) (-15 -3050 (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1| |#1|)) (-15 -2688 (|#1| |#1|)) (-15 ** (|#1| |#1| (-563))) (-15 * (|#1| |#1| (-407 (-563)))) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 -1693 (|#1| (-407 (-563)))) (-15 -1744 ((-112) |#1| |#1|)) (-15 -2220 ((-536) |#1|)) (-15 -2220 ((-169 (-225)) |#1|)) (-15 -2220 ((-169 (-379)) |#1|)) (-15 -1619 (|#1| |#1|)) (-15 -1597 (|#1| |#1|)) (-15 -1608 (|#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 -1667 (|#1| |#1|)) (-15 -1695 (|#1| |#1|)) (-15 -1759 (|#1| |#1|)) (-15 -1748 (|#1| |#1|)) (-15 -1771 (|#1| |#1|)) (-15 -1829 (|#1| |#1|)) (-15 -1817 (|#1| |#1|)) (-15 -1840 (|#1| |#1|)) (-15 -4371 (|#1| |#1|)) (-15 -3368 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2180 (|#1|)) (-15 ** (|#1| |#1| (-407 (-563)))) (-15 -3116 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -1876 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -2748 ((-3 (-640 (-1165 |#1|)) "failed") (-640 (-1165 |#1|)) (-1165 |#1|))) (-15 -3909 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2651 ((-407 (-563)) |#1|)) (-15 -2239 ((-112) |#1|)) (-15 -3032 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3237 (|#2| |#1|)) (-15 -2509 (|#1| |#1|)) (-15 -3008 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4339 (|#1| |#1|)) (-15 -3127 (|#1|)) (-15 -2220 ((-888 (-379)) |#1|)) (-15 -2220 ((-888 (-563)) |#1|)) (-15 -3787 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -3787 ((-885 (-563) |#1|) |#1| (-888 (-563)) (-885 (-563) |#1|))) (-15 -2240 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4202 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4202 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -2444 ((-3 |#1| "failed") (-407 (-1165 |#2|)))) (-15 -2433 ((-1165 |#2|) |#1|)) (-15 -2220 (|#1| (-1165 |#2|))) (-15 -2444 (|#1| (-1165 |#2|))) (-15 -3390 ((-1165 |#2|))) (-15 -2950 ((-684 |#2|) (-684 |#1|))) (-15 -2950 ((-2 (|:| -2835 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 |#1|) (-1257 |#1|))) (-15 -2950 ((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -2950 ((-684 (-563)) (-684 |#1|))) (-15 -2131 ((-3 |#2| "failed") |#1|)) (-15 -2058 (|#2| |#1|)) (-15 -2058 ((-407 (-563)) |#1|)) (-15 -2131 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2058 ((-563) |#1|)) (-15 -2131 ((-3 (-563) "failed") |#1|)) (-15 -2220 ((-1165 |#2|) |#1|)) (-15 -2315 (|#2|)) (-15 -2220 (|#1| (-1257 |#2|))) (-15 -2220 ((-1257 |#2|) |#1|)) (-15 -1880 ((-684 |#2|) (-1257 |#1|))) (-15 -1880 ((-1257 |#2|) |#1|)) (-15 -3941 ((-1165 |#2|) |#1|)) (-15 -3421 ((-1165 |#2|) |#1|)) (-15 -2315 (|#2| (-1257 |#1|))) (-15 -1880 ((-684 |#2|) (-1257 |#1|) (-1257 |#1|))) (-15 -1880 ((-1257 |#2|) |#1| (-1257 |#1|))) (-15 -3793 (|#2| |#1|)) (-15 -1733 (|#2| |#1|)) (-15 -2522 ((-917))) (-15 -1693 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1675 ((-767))) (-15 -1693 (|#1| (-563))) (-15 ** (|#1| |#1| (-767))) (-15 -3400 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 * (|#1| (-563) |#1|)) (-15 -1826 (|#1| |#1| |#1|)) (-15 -1826 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -1814 (|#1| |#1| |#1|)) (-15 -1693 ((-858) |#1|)) (-15 -1718 ((-112) |#1| |#1|))) (-166 |#2|) (-172)) (T -165)) +((-1675 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-2522 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-917)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-2315 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) (-3390 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1165 *4)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4))))) +(-10 -8 (-15 -4202 (|#1| |#1|)) (-15 -4202 (|#1| |#1| (-767))) (-15 -1693 (|#1| |#1|)) (-15 -3008 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4372 ((-2 (|:| -1414 |#1|) (|:| -4394 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4202 (|#1| |#1| (-1169))) (-15 -4202 (|#1| |#1| (-640 (-1169)))) (-15 -4202 (|#1| |#1| (-1169) (-767))) (-15 -4202 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -2628 ((-767) |#1|)) (-15 -2452 ((-2 (|:| -3490 |#1|) (|:| -1972 |#1|)) |#1| |#1|)) (-15 -3050 (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1| |#1|)) (-15 -2688 (|#1| |#1|)) (-15 ** (|#1| |#1| (-563))) (-15 * (|#1| |#1| (-407 (-563)))) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 -1693 (|#1| (-407 (-563)))) (-15 -1744 ((-112) |#1| |#1|)) (-15 -2220 ((-536) |#1|)) (-15 -2220 ((-169 (-225)) |#1|)) (-15 -2220 ((-169 (-379)) |#1|)) (-15 -1619 (|#1| |#1|)) (-15 -1597 (|#1| |#1|)) (-15 -1608 (|#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 -1667 (|#1| |#1|)) (-15 -1695 (|#1| |#1|)) (-15 -1759 (|#1| |#1|)) (-15 -1748 (|#1| |#1|)) (-15 -1771 (|#1| |#1|)) (-15 -1829 (|#1| |#1|)) (-15 -1817 (|#1| |#1|)) (-15 -1840 (|#1| |#1|)) (-15 -4371 (|#1| |#1|)) (-15 -3368 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2180 (|#1|)) (-15 ** (|#1| |#1| (-407 (-563)))) (-15 -3116 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -1876 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -2748 ((-3 (-640 (-1165 |#1|)) "failed") (-640 (-1165 |#1|)) (-1165 |#1|))) (-15 -3909 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2651 ((-407 (-563)) |#1|)) (-15 -2239 ((-112) |#1|)) (-15 -3032 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3237 (|#2| |#1|)) (-15 -2509 (|#1| |#1|)) (-15 -3008 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4339 (|#1| |#1|)) (-15 -3127 (|#1|)) (-15 -2220 ((-888 (-379)) |#1|)) (-15 -2220 ((-888 (-563)) |#1|)) (-15 -3787 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -3787 ((-885 (-563) |#1|) |#1| (-888 (-563)) (-885 (-563) |#1|))) (-15 -2240 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4202 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4202 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -2444 ((-3 |#1| "failed") (-407 (-1165 |#2|)))) (-15 -2433 ((-1165 |#2|) |#1|)) (-15 -2220 (|#1| (-1165 |#2|))) (-15 -2444 (|#1| (-1165 |#2|))) (-15 -3390 ((-1165 |#2|))) (-15 -2950 ((-684 |#2|) (-684 |#1|))) (-15 -2950 ((-2 (|:| -2835 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 |#1|) (-1257 |#1|))) (-15 -2950 ((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -2950 ((-684 (-563)) (-684 |#1|))) (-15 -2131 ((-3 |#2| "failed") |#1|)) (-15 -2058 (|#2| |#1|)) (-15 -2058 ((-407 (-563)) |#1|)) (-15 -2131 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2058 ((-563) |#1|)) (-15 -2131 ((-3 (-563) "failed") |#1|)) (-15 -2220 ((-1165 |#2|) |#1|)) (-15 -2315 (|#2|)) (-15 -2220 (|#1| (-1257 |#2|))) (-15 -2220 ((-1257 |#2|) |#1|)) (-15 -1880 ((-684 |#2|) (-1257 |#1|))) (-15 -1880 ((-1257 |#2|) |#1|)) (-15 -3941 ((-1165 |#2|) |#1|)) (-15 -3421 ((-1165 |#2|) |#1|)) (-15 -2315 (|#2| (-1257 |#1|))) (-15 -1880 ((-684 |#2|) (-1257 |#1|) (-1257 |#1|))) (-15 -1880 ((-1257 |#2|) |#1| (-1257 |#1|))) (-15 -3793 (|#2| |#1|)) (-15 -1733 (|#2| |#1|)) (-15 -2522 ((-917))) (-15 -1693 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1675 ((-767))) (-15 -1693 (|#1| (-563))) (-15 ** (|#1| |#1| (-767))) (-15 -3400 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 * (|#1| (-563) |#1|)) (-15 -1826 (|#1| |#1| |#1|)) (-15 -1826 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -1814 (|#1| |#1| |#1|)) (-15 -1693 ((-858) |#1|)) (-15 -1718 ((-112) |#1| |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 93 (-4032 (|has| |#1| (-555)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-4223 (($ $) 94 (-4032 (|has| |#1| (-555)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-3156 (((-112) $) 96 (-4032 (|has| |#1| (-555)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-3561 (((-684 |#1|) (-1257 $)) 47) (((-684 |#1|)) 62)) (-1733 ((|#1| $) 53)) (-1771 (($ $) 227 (|has| |#1| (-1193)))) (-1619 (($ $) 210 (|has| |#1| (-1193)))) (-2752 (((-1181 (-917) (-767)) (-563)) 146 (|has| |#1| (-349)))) (-1495 (((-3 $ "failed") $ $) 19)) (-2424 (((-418 (-1165 $)) (-1165 $)) 241 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-4335 (($ $) 113 (-4032 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-3205 (((-418 $) $) 114 (-4032 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-2186 (($ $) 240 (-12 (|has| |#1| (-998)) (|has| |#1| (-1193))))) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 244 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-1919 (((-112) $ $) 104 (|has| |#1| (-307)))) (-3749 (((-767)) 87 (|has| |#1| (-368)))) (-1748 (($ $) 226 (|has| |#1| (-1193)))) (-1597 (($ $) 211 (|has| |#1| (-1193)))) (-1794 (($ $) 225 (|has| |#1| (-1193)))) (-1643 (($ $) 212 (|has| |#1| (-1193)))) (-4239 (($) 17 T CONST)) (-2131 (((-3 (-563) "failed") $) 169 (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) 167 (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 164)) (-2058 (((-563) $) 168 (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) 166 (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) 165)) (-3937 (($ (-1257 |#1|) (-1257 $)) 49) (($ (-1257 |#1|)) 65)) (-3711 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-349)))) (-3090 (($ $ $) 108 (|has| |#1| (-307)))) (-3914 (((-684 |#1|) $ (-1257 $)) 54) (((-684 |#1|) $) 60)) (-2950 (((-684 (-563)) (-684 $)) 163 (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 162 (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 161) (((-684 |#1|) (-684 $)) 160)) (-2444 (($ (-1165 |#1|)) 157) (((-3 $ "failed") (-407 (-1165 |#1|))) 154 (|has| |#1| (-363)))) (-3400 (((-3 $ "failed") $) 33)) (-2489 ((|#1| $) 252)) (-3909 (((-3 (-407 (-563)) "failed") $) 245 (|has| |#1| (-545)))) (-2239 (((-112) $) 247 (|has| |#1| (-545)))) (-2651 (((-407 (-563)) $) 246 (|has| |#1| (-545)))) (-2522 (((-917)) 55)) (-1691 (($) 90 (|has| |#1| (-368)))) (-3050 (($ $ $) 107 (|has| |#1| (-307)))) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) 102 (|has| |#1| (-307)))) (-1571 (($) 148 (|has| |#1| (-349)))) (-2366 (((-112) $) 149 (|has| |#1| (-349)))) (-1637 (($ $ (-767)) 140 (|has| |#1| (-349))) (($ $) 139 (|has| |#1| (-349)))) (-2468 (((-112) $) 115 (-4032 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-3032 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 248 (-12 (|has| |#1| (-1054)) (|has| |#1| (-1193))))) (-2180 (($) 237 (|has| |#1| (-1193)))) (-3787 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 260 (|has| |#1| (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 259 (|has| |#1| (-882 (-379))))) (-3254 (((-917) $) 151 (|has| |#1| (-349))) (((-829 (-917)) $) 137 (|has| |#1| (-349)))) (-3827 (((-112) $) 31)) (-1645 (($ $ (-563)) 239 (-12 (|has| |#1| (-998)) (|has| |#1| (-1193))))) (-3793 ((|#1| $) 52)) (-2408 (((-3 $ "failed") $) 141 (|has| |#1| (-349)))) (-3643 (((-3 (-640 $) "failed") (-640 $) $) 111 (|has| |#1| (-307)))) (-3941 (((-1165 |#1|) $) 45 (|has| |#1| (-363)))) (-3084 (($ $ $) 206 (|has| |#1| (-846)))) (-1777 (($ $ $) 205 (|has| |#1| (-846)))) (-2240 (($ (-1 |#1| |#1|) $) 261)) (-1476 (((-917) $) 89 (|has| |#1| (-368)))) (-4371 (($ $) 234 (|has| |#1| (-1193)))) (-2433 (((-1165 |#1|) $) 155)) (-3513 (($ (-640 $)) 100 (-4032 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (($ $ $) 99 (-4032 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-3573 (((-1151) $) 9)) (-2688 (($ $) 116 (|has| |#1| (-363)))) (-2523 (($) 142 (|has| |#1| (-349)) CONST)) (-2555 (($ (-917)) 88 (|has| |#1| (-368)))) (-3127 (($) 256)) (-2499 ((|#1| $) 253)) (-1694 (((-1113) $) 10)) (-4333 (($) 159)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 101 (-4032 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-3548 (($ (-640 $)) 98 (-4032 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (($ $ $) 97 (-4032 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-2727 (((-640 (-2 (|:| -2174 (-563)) (|:| -1654 (-563))))) 145 (|has| |#1| (-349)))) (-1876 (((-418 (-1165 $)) (-1165 $)) 243 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-3116 (((-418 (-1165 $)) (-1165 $)) 242 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-2174 (((-418 $) $) 112 (-4032 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) 109 (|has| |#1| (-307)))) (-3008 (((-3 $ "failed") $ |#1|) 251 (|has| |#1| (-555))) (((-3 $ "failed") $ $) 92 (-4032 (|has| |#1| (-555)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-1465 (((-3 (-640 $) "failed") (-640 $) $) 103 (|has| |#1| (-307)))) (-3368 (($ $) 235 (|has| |#1| (-1193)))) (-1540 (($ $ (-640 |#1|) (-640 |#1|)) 267 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 266 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 265 (|has| |#1| (-309 |#1|))) (($ $ (-640 (-294 |#1|))) 264 (|has| |#1| (-309 |#1|))) (($ $ (-640 (-1169)) (-640 |#1|)) 263 (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) 262 (|has| |#1| (-514 (-1169) |#1|)))) (-2628 (((-767) $) 105 (|has| |#1| (-307)))) (-2309 (($ $ |#1|) 268 (|has| |#1| (-286 |#1| |#1|)))) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 106 (|has| |#1| (-307)))) (-2315 ((|#1| (-1257 $)) 48) ((|#1|) 61)) (-1423 (((-767) $) 150 (|has| |#1| (-349))) (((-3 (-767) "failed") $ $) 138 (|has| |#1| (-349)))) (-4202 (($ $ (-1 |#1| |#1|) (-767)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-640 (-1169)) (-640 (-767))) 129 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 130 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 131 (|has| |#1| (-896 (-1169)))) (($ $ (-1169)) 132 (|has| |#1| (-896 (-1169)))) (($ $ (-767)) 134 (-4032 (-2190 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2190 (|has| |#1| (-233)) (|has| |#1| (-363))))) (($ $) 136 (-4032 (-2190 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2190 (|has| |#1| (-233)) (|has| |#1| (-363)))))) (-3974 (((-684 |#1|) (-1257 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-363)))) (-3390 (((-1165 |#1|)) 158)) (-1806 (($ $) 224 (|has| |#1| (-1193)))) (-1656 (($ $) 213 (|has| |#1| (-1193)))) (-4284 (($) 147 (|has| |#1| (-349)))) (-1784 (($ $) 223 (|has| |#1| (-1193)))) (-1630 (($ $) 214 (|has| |#1| (-1193)))) (-1759 (($ $) 222 (|has| |#1| (-1193)))) (-1608 (($ $) 215 (|has| |#1| (-1193)))) (-1880 (((-1257 |#1|) $ (-1257 $)) 51) (((-684 |#1|) (-1257 $) (-1257 $)) 50) (((-1257 |#1|) $) 67) (((-684 |#1|) (-1257 $)) 66)) (-2220 (((-1257 |#1|) $) 64) (($ (-1257 |#1|)) 63) (((-1165 |#1|) $) 170) (($ (-1165 |#1|)) 156) (((-888 (-563)) $) 258 (|has| |#1| (-611 (-888 (-563))))) (((-888 (-379)) $) 257 (|has| |#1| (-611 (-888 (-379))))) (((-169 (-379)) $) 209 (|has| |#1| (-1018))) (((-169 (-225)) $) 208 (|has| |#1| (-1018))) (((-536) $) 207 (|has| |#1| (-611 (-536))))) (-4339 (($ $) 255)) (-1377 (((-3 (-1257 $) "failed") (-684 $)) 144 (-4032 (-2190 (|has| $ (-145)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))) (|has| |#1| (-349))))) (-1413 (($ |#1| |#1|) 254)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 38) (($ (-407 (-563))) 86 (-4032 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-563)))))) (($ $) 91 (-4032 (|has| |#1| (-555)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-2779 (($ $) 143 (|has| |#1| (-349))) (((-3 $ "failed") $) 44 (-4032 (-2190 (|has| $ (-145)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))) (|has| |#1| (-145))))) (-3421 (((-1165 |#1|) $) 46)) (-1675 (((-767)) 28)) (-4315 (((-1257 $)) 68)) (-1840 (($ $) 233 (|has| |#1| (-1193)))) (-1695 (($ $) 221 (|has| |#1| (-1193)))) (-2126 (((-112) $ $) 95 (-4032 (|has| |#1| (-555)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-1817 (($ $) 232 (|has| |#1| (-1193)))) (-1667 (($ $) 220 (|has| |#1| (-1193)))) (-1862 (($ $) 231 (|has| |#1| (-1193)))) (-1722 (($ $) 219 (|has| |#1| (-1193)))) (-3237 ((|#1| $) 249 (|has| |#1| (-1193)))) (-1311 (($ $) 230 (|has| |#1| (-1193)))) (-1735 (($ $) 218 (|has| |#1| (-1193)))) (-1851 (($ $) 229 (|has| |#1| (-1193)))) (-1710 (($ $) 217 (|has| |#1| (-1193)))) (-1829 (($ $) 228 (|has| |#1| (-1193)))) (-1680 (($ $) 216 (|has| |#1| (-1193)))) (-2509 (($ $) 250 (|has| |#1| (-1054)))) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-3209 (($ $ (-1 |#1| |#1|) (-767)) 124) (($ $ (-1 |#1| |#1|)) 123) (($ $ (-640 (-1169)) (-640 (-767))) 125 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 126 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 127 (|has| |#1| (-896 (-1169)))) (($ $ (-1169)) 128 (|has| |#1| (-896 (-1169)))) (($ $ (-767)) 133 (-4032 (-2190 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2190 (|has| |#1| (-233)) (|has| |#1| (-363))))) (($ $) 135 (-4032 (-2190 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2190 (|has| |#1| (-233)) (|has| |#1| (-363)))))) (-1778 (((-112) $ $) 203 (|has| |#1| (-846)))) (-1756 (((-112) $ $) 202 (|has| |#1| (-846)))) (-1718 (((-112) $ $) 6)) (-1768 (((-112) $ $) 204 (|has| |#1| (-846)))) (-1744 (((-112) $ $) 201 (|has| |#1| (-846)))) (-1837 (($ $ $) 120 (|has| |#1| (-363)))) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-407 (-563))) 238 (-12 (|has| |#1| (-998)) (|has| |#1| (-1193)))) (($ $ $) 236 (|has| |#1| (-1193))) (($ $ (-563)) 117 (|has| |#1| (-363)))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-407 (-563)) $) 119 (|has| |#1| (-363))) (($ $ (-407 (-563))) 118 (|has| |#1| (-363))))) +(((-166 |#1|) (-140) (-172)) (T -166)) +((-3793 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3127 (*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-4339 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-1413 (*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2499 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2489 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3008 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-555)))) (-2509 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1054)))) (-3237 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1193)))) (-3032 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1054)) (-4 *3 (-1193)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-2239 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-2651 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-563))))) (-3909 (*1 *2 *1) (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-563)))))) +(-13 (-720 |t#1| (-1165 |t#1|)) (-411 |t#1|) (-231 |t#1|) (-338 |t#1|) (-400 |t#1|) (-880 |t#1|) (-377 |t#1|) (-172) (-10 -8 (-6 -1413) (-15 -3127 ($)) (-15 -4339 ($ $)) (-15 -1413 ($ |t#1| |t#1|)) (-15 -2499 (|t#1| $)) (-15 -2489 (|t#1| $)) (-15 -3793 (|t#1| $)) (IF (|has| |t#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-6 (-555)) (-15 -3008 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-307)) (-6 (-307)) |%noBranch|) (IF (|has| |t#1| (-6 -4406)) (-6 -4406) |%noBranch|) (IF (|has| |t#1| (-6 -4403)) (-6 -4403) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|) (IF (|has| |t#1| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1018)) (PROGN (-6 (-611 (-169 (-225)))) (-6 (-611 (-169 (-379))))) |%noBranch|) (IF (|has| |t#1| (-1054)) (-15 -2509 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1193)) (PROGN (-6 (-1193)) (-15 -3237 (|t#1| $)) (IF (|has| |t#1| (-998)) (-6 (-998)) |%noBranch|) (IF (|has| |t#1| (-1054)) (-15 -3032 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -2239 ((-112) $)) (-15 -2651 ((-407 (-563)) $)) (-15 -3909 ((-3 (-407 (-563)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-905)) (IF (|has| |t#1| (-307)) (-6 (-905)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) -4032 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-38 |#1|) . T) ((-38 $) -4032 (|has| |#1| (-555)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-35) |has| |#1| (-1193)) ((-95) |has| |#1| (-1193)) ((-102) . T) ((-111 #0# #0#) -4032 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -4032 (|has| |#1| (-349)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-613 #0#) -4032 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-349)) (|has| |#1| (-363))) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-613 $) -4032 (|has| |#1| (-555)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-610 (-858)) . T) ((-172) . T) ((-611 (-169 (-225))) |has| |#1| (-1018)) ((-611 (-169 (-379))) |has| |#1| (-1018)) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-611 (-888 (-379))) |has| |#1| (-611 (-888 (-379)))) ((-611 (-888 (-563))) |has| |#1| (-611 (-888 (-563)))) ((-611 #1=(-1165 |#1|)) . T) ((-231 |#1|) . T) ((-233) -4032 (|has| |#1| (-349)) (|has| |#1| (-233))) ((-243) -4032 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-284) |has| |#1| (-1193)) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) -4032 (|has| |#1| (-555)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-307) -4032 (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-363) -4032 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-402) |has| |#1| (-349)) ((-368) -4032 (|has| |#1| (-368)) (|has| |#1| (-349))) ((-349) |has| |#1| (-349)) ((-370 |#1| #1#) . T) ((-409 |#1| #1#) . T) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-400 |#1|) . T) ((-411 |#1|) . T) ((-452) -4032 (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-493) |has| |#1| (-1193)) ((-514 (-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-555) -4032 (|has| |#1| (-555)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-643 #0#) -4032 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-643 |#1|) . T) ((-643 $) . T) ((-636 (-563)) |has| |#1| (-636 (-563))) ((-636 |#1|) . T) ((-713 #0#) -4032 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-713 |#1|) . T) ((-713 $) -4032 (|has| |#1| (-555)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-720 |#1| #1#) . T) ((-722) . T) ((-846) |has| |#1| (-846)) ((-896 (-1169)) |has| |#1| (-896 (-1169))) ((-882 (-379)) |has| |#1| (-882 (-379))) ((-882 (-563)) |has| |#1| (-882 (-563))) ((-880 |#1|) . T) ((-905) -12 (|has| |#1| (-307)) (|has| |#1| (-905))) ((-916) -4032 (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-998) -12 (|has| |#1| (-998)) (|has| |#1| (-1193))) ((-1034 (-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 |#1|) . T) ((-1051 #0#) -4032 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1144) |has| |#1| (-349)) ((-1193) |has| |#1| (-1193)) ((-1196) |has| |#1| (-1193)) ((-1208) . T) ((-1212) -4032 (|has| |#1| (-349)) (|has| |#1| (-363)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) +((-2174 (((-418 |#2|) |#2|) 63))) +(((-167 |#1| |#2|) (-10 -7 (-15 -2174 ((-418 |#2|) |#2|))) (-307) (-1233 (-169 |#1|))) (T -167)) +((-2174 (*1 *2 *3) (-12 (-4 *4 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1233 (-169 *4)))))) +(-10 -7 (-15 -2174 ((-418 |#2|) |#2|))) +((-2240 (((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)) 14))) +(((-168 |#1| |#2|) (-10 -7 (-15 -2240 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) (-172) (-172)) (T -168)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-5 *2 (-169 *6)) (-5 *1 (-168 *5 *6))))) +(-10 -7 (-15 -2240 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) 33)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (-4032 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-555))))) (-4223 (($ $) NIL (-4032 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-555))))) (-3156 (((-112) $) NIL (-4032 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-555))))) (-3561 (((-684 |#1|) (-1257 $)) NIL) (((-684 |#1|)) NIL)) (-1733 ((|#1| $) NIL)) (-1771 (($ $) NIL (|has| |#1| (-1193)))) (-1619 (($ $) NIL (|has| |#1| (-1193)))) (-2752 (((-1181 (-917) (-767)) (-563)) NIL (|has| |#1| (-349)))) (-1495 (((-3 $ "failed") $ $) NIL)) (-2424 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-4335 (($ $) NIL (-4032 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-3205 (((-418 $) $) NIL (-4032 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-2186 (($ $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1193))))) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-1919 (((-112) $ $) NIL (|has| |#1| (-307)))) (-3749 (((-767)) NIL (|has| |#1| (-368)))) (-1748 (($ $) NIL (|has| |#1| (-1193)))) (-1597 (($ $) NIL (|has| |#1| (-1193)))) (-1794 (($ $) NIL (|has| |#1| (-1193)))) (-1643 (($ $) NIL (|has| |#1| (-1193)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) NIL)) (-2058 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) NIL)) (-3937 (($ (-1257 |#1|) (-1257 $)) NIL) (($ (-1257 |#1|)) NIL)) (-3711 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-3090 (($ $ $) NIL (|has| |#1| (-307)))) (-3914 (((-684 |#1|) $ (-1257 $)) NIL) (((-684 |#1|) $) NIL)) (-2950 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-2444 (($ (-1165 |#1|)) NIL) (((-3 $ "failed") (-407 (-1165 |#1|))) NIL (|has| |#1| (-363)))) (-3400 (((-3 $ "failed") $) NIL)) (-2489 ((|#1| $) 13)) (-3909 (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-545)))) (-2239 (((-112) $) NIL (|has| |#1| (-545)))) (-2651 (((-407 (-563)) $) NIL (|has| |#1| (-545)))) (-2522 (((-917)) NIL)) (-1691 (($) NIL (|has| |#1| (-368)))) (-3050 (($ $ $) NIL (|has| |#1| (-307)))) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL (|has| |#1| (-307)))) (-1571 (($) NIL (|has| |#1| (-349)))) (-2366 (((-112) $) NIL (|has| |#1| (-349)))) (-1637 (($ $ (-767)) NIL (|has| |#1| (-349))) (($ $) NIL (|has| |#1| (-349)))) (-2468 (((-112) $) NIL (-4032 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-3032 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1054)) (|has| |#1| (-1193))))) (-2180 (($) NIL (|has| |#1| (-1193)))) (-3787 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (|has| |#1| (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| |#1| (-882 (-379))))) (-3254 (((-917) $) NIL (|has| |#1| (-349))) (((-829 (-917)) $) NIL (|has| |#1| (-349)))) (-3827 (((-112) $) 35)) (-1645 (($ $ (-563)) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1193))))) (-3793 ((|#1| $) 46)) (-2408 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-307)))) (-3941 (((-1165 |#1|) $) NIL (|has| |#1| (-363)))) (-3084 (($ $ $) NIL (|has| |#1| (-846)))) (-1777 (($ $ $) NIL (|has| |#1| (-846)))) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-1476 (((-917) $) NIL (|has| |#1| (-368)))) (-4371 (($ $) NIL (|has| |#1| (-1193)))) (-2433 (((-1165 |#1|) $) NIL)) (-3513 (($ (-640 $)) NIL (|has| |#1| (-307))) (($ $ $) NIL (|has| |#1| (-307)))) (-3573 (((-1151) $) NIL)) (-2688 (($ $) NIL (|has| |#1| (-363)))) (-2523 (($) NIL (|has| |#1| (-349)) CONST)) (-2555 (($ (-917)) NIL (|has| |#1| (-368)))) (-3127 (($) NIL)) (-2499 ((|#1| $) 15)) (-1694 (((-1113) $) NIL)) (-4333 (($) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-307)))) (-3548 (($ (-640 $)) NIL (|has| |#1| (-307))) (($ $ $) NIL (|has| |#1| (-307)))) (-2727 (((-640 (-2 (|:| -2174 (-563)) (|:| -1654 (-563))))) NIL (|has| |#1| (-349)))) (-1876 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-3116 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-2174 (((-418 $) $) NIL (-4032 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL (|has| |#1| (-307)))) (-3008 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-555))) (((-3 $ "failed") $ $) 47 (-4032 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-555))))) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-307)))) (-3368 (($ $) NIL (|has| |#1| (-1193)))) (-1540 (($ $ (-640 |#1|) (-640 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-640 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-640 (-1169)) (-640 |#1|)) NIL (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) NIL (|has| |#1| (-514 (-1169) |#1|)))) (-2628 (((-767) $) NIL (|has| |#1| (-307)))) (-2309 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| |#1| (-307)))) (-2315 ((|#1| (-1257 $)) NIL) ((|#1|) NIL)) (-1423 (((-767) $) NIL (|has| |#1| (-349))) (((-3 (-767) "failed") $ $) NIL (|has| |#1| (-349)))) (-4202 (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-3974 (((-684 |#1|) (-1257 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-3390 (((-1165 |#1|)) NIL)) (-1806 (($ $) NIL (|has| |#1| (-1193)))) (-1656 (($ $) NIL (|has| |#1| (-1193)))) (-4284 (($) NIL (|has| |#1| (-349)))) (-1784 (($ $) NIL (|has| |#1| (-1193)))) (-1630 (($ $) NIL (|has| |#1| (-1193)))) (-1759 (($ $) NIL (|has| |#1| (-1193)))) (-1608 (($ $) NIL (|has| |#1| (-1193)))) (-1880 (((-1257 |#1|) $ (-1257 $)) NIL) (((-684 |#1|) (-1257 $) (-1257 $)) NIL) (((-1257 |#1|) $) NIL) (((-684 |#1|) (-1257 $)) NIL)) (-2220 (((-1257 |#1|) $) NIL) (($ (-1257 |#1|)) NIL) (((-1165 |#1|) $) NIL) (($ (-1165 |#1|)) NIL) (((-888 (-563)) $) NIL (|has| |#1| (-611 (-888 (-563))))) (((-888 (-379)) $) NIL (|has| |#1| (-611 (-888 (-379))))) (((-169 (-379)) $) NIL (|has| |#1| (-1018))) (((-169 (-225)) $) NIL (|has| |#1| (-1018))) (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-4339 (($ $) 45)) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (-4032 (-12 (|has| $ (-145)) (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-349))))) (-1413 (($ |#1| |#1|) 37)) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) 36) (($ (-407 (-563))) NIL (-4032 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-563)))))) (($ $) NIL (-4032 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-555))))) (-2779 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-4032 (-12 (|has| $ (-145)) (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3421 (((-1165 |#1|) $) NIL)) (-1675 (((-767)) NIL)) (-4315 (((-1257 $)) NIL)) (-1840 (($ $) NIL (|has| |#1| (-1193)))) (-1695 (($ $) NIL (|has| |#1| (-1193)))) (-2126 (((-112) $ $) NIL (-4032 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-555))))) (-1817 (($ $) NIL (|has| |#1| (-1193)))) (-1667 (($ $) NIL (|has| |#1| (-1193)))) (-1862 (($ $) NIL (|has| |#1| (-1193)))) (-1722 (($ $) NIL (|has| |#1| (-1193)))) (-3237 ((|#1| $) NIL (|has| |#1| (-1193)))) (-1311 (($ $) NIL (|has| |#1| (-1193)))) (-1735 (($ $) NIL (|has| |#1| (-1193)))) (-1851 (($ $) NIL (|has| |#1| (-1193)))) (-1710 (($ $) NIL (|has| |#1| (-1193)))) (-1829 (($ $) NIL (|has| |#1| (-1193)))) (-1680 (($ $) NIL (|has| |#1| (-1193)))) (-2509 (($ $) NIL (|has| |#1| (-1054)))) (-2241 (($) 28 T CONST)) (-2254 (($) 30 T CONST)) (-3741 (((-1151) $) 23 (|has| |#1| (-824))) (((-1151) $ (-112)) 25 (|has| |#1| (-824))) (((-1262) (-818) $) 26 (|has| |#1| (-824))) (((-1262) (-818) $ (-112)) 27 (|has| |#1| (-824)))) (-3209 (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-1778 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1756 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1744 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1837 (($ $ $) NIL (|has| |#1| (-363)))) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) 39)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-407 (-563))) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1193)))) (($ $ $) NIL (|has| |#1| (-1193))) (($ $ (-563)) NIL (|has| |#1| (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-563)) $) NIL (|has| |#1| (-363))) (($ $ (-407 (-563))) NIL (|has| |#1| (-363))))) +(((-169 |#1|) (-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|))) (-172)) (T -169)) +NIL +(-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|))) +((-2220 (((-888 |#1|) |#3|) 20))) +(((-170 |#1| |#2| |#3|) (-10 -7 (-15 -2220 ((-888 |#1|) |#3|))) (-1093) (-13 (-611 (-888 |#1|)) (-172)) (-166 |#2|)) (T -170)) +((-2220 (*1 *2 *3) (-12 (-4 *5 (-13 (-611 *2) (-172))) (-5 *2 (-888 *4)) (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1093)) (-4 *3 (-166 *5))))) +(-10 -7 (-15 -2220 ((-888 |#1|) |#3|))) +((-1677 (((-112) $ $) NIL)) (-2593 (((-112) $) 9)) (-2849 (((-112) $ (-112)) 11)) (-1566 (($) 12)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1872 (($ $) 13)) (-1693 (((-858) $) 17)) (-1877 (((-112) $) 8)) (-1442 (((-112) $ (-112)) 10)) (-1718 (((-112) $ $) NIL))) +(((-171) (-13 (-1093) (-10 -8 (-15 -1566 ($)) (-15 -1877 ((-112) $)) (-15 -2593 ((-112) $)) (-15 -1442 ((-112) $ (-112))) (-15 -2849 ((-112) $ (-112))) (-15 -1872 ($ $))))) (T -171)) +((-1566 (*1 *1) (-5 *1 (-171))) (-1877 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-2593 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-1442 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-2849 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-1872 (*1 *1 *1) (-5 *1 (-171)))) +(-13 (-1093) (-10 -8 (-15 -1566 ($)) (-15 -1877 ((-112) $)) (-15 -2593 ((-112) $)) (-15 -1442 ((-112) $ (-112))) (-15 -2849 ((-112) $ (-112))) (-15 -1872 ($ $)))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-3400 (((-3 $ "failed") $) 33)) (-3827 (((-112) $) 31)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11) (($ (-563)) 29)) (-1675 (((-767)) 28)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) +(((-172) (-140)) (T -172)) +NIL +(-13 (-1045) (-111 $ $) (-10 -7 (-6 (-4409 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-643 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) +((-3004 (($ $) 6))) +(((-173) (-140)) (T -173)) +((-3004 (*1 *1 *1) (-4 *1 (-173)))) +(-13 (-10 -8 (-15 -3004 ($ $)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-3401 ((|#1| $) 74)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-1919 (((-112) $ $) NIL)) (-4239 (($) NIL T CONST)) (-3090 (($ $ $) NIL)) (-3221 (($ $) 19)) (-3204 (($ |#1| (-1149 |#1|)) 47)) (-3400 (((-3 $ "failed") $) 116)) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-2468 (((-112) $) NIL)) (-1357 (((-1149 |#1|) $) 81)) (-4095 (((-1149 |#1|) $) 78)) (-2541 (((-1149 |#1|) $) 79)) (-3827 (((-112) $) NIL)) (-3153 (((-1149 |#1|) $) 87)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3513 (($ (-640 $)) NIL) (($ $ $) NIL)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) NIL)) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ (-640 $)) NIL) (($ $ $) NIL)) (-2174 (((-418 $) $) NIL)) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL)) (-3320 (($ $ (-563)) 90)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2628 (((-767) $) NIL)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-2997 (((-1149 |#1|) $) 88)) (-4280 (((-1149 (-407 |#1|)) $) 14)) (-2192 (($ (-407 |#1|)) 17) (($ |#1| (-1149 |#1|) (-1149 |#1|)) 37)) (-1741 (($ $) 92)) (-1693 (((-858) $) 126) (($ (-563)) 50) (($ |#1|) 51) (($ (-407 |#1|)) 35) (($ (-407 (-563))) NIL) (($ $) NIL)) (-1675 (((-767)) 63)) (-2126 (((-112) $ $) NIL)) (-3810 (((-1149 (-407 |#1|)) $) 18)) (-2241 (($) 25 T CONST)) (-2254 (($) 28 T CONST)) (-1718 (((-112) $ $) 34)) (-1837 (($ $ $) 114)) (-1826 (($ $) 105) (($ $ $) 102)) (-1814 (($ $ $) 100)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 112) (($ $ $) 107) (($ $ |#1|) NIL) (($ |#1| $) 109) (($ (-407 |#1|) $) 110) (($ $ (-407 |#1|)) NIL) (($ (-407 (-563)) $) NIL) (($ $ (-407 (-563))) NIL))) +(((-174 |#1|) (-13 (-38 |#1|) (-38 (-407 |#1|)) (-363) (-10 -8 (-15 -2192 ($ (-407 |#1|))) (-15 -2192 ($ |#1| (-1149 |#1|) (-1149 |#1|))) (-15 -3204 ($ |#1| (-1149 |#1|))) (-15 -4095 ((-1149 |#1|) $)) (-15 -2541 ((-1149 |#1|) $)) (-15 -1357 ((-1149 |#1|) $)) (-15 -3401 (|#1| $)) (-15 -3221 ($ $)) (-15 -3810 ((-1149 (-407 |#1|)) $)) (-15 -4280 ((-1149 (-407 |#1|)) $)) (-15 -3153 ((-1149 |#1|) $)) (-15 -2997 ((-1149 |#1|) $)) (-15 -3320 ($ $ (-563))) (-15 -1741 ($ $)))) (-307)) (T -174)) +((-2192 (*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-307)) (-5 *1 (-174 *3)))) (-2192 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1149 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))) (-3204 (*1 *1 *2 *3) (-12 (-5 *3 (-1149 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))) (-4095 (*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-2541 (*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-1357 (*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-3401 (*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) (-3221 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) (-3810 (*1 *2 *1) (-12 (-5 *2 (-1149 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-4280 (*1 *2 *1) (-12 (-5 *2 (-1149 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-3153 (*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-2997 (*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-3320 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-1741 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307))))) +(-13 (-38 |#1|) (-38 (-407 |#1|)) (-363) (-10 -8 (-15 -2192 ($ (-407 |#1|))) (-15 -2192 ($ |#1| (-1149 |#1|) (-1149 |#1|))) (-15 -3204 ($ |#1| (-1149 |#1|))) (-15 -4095 ((-1149 |#1|) $)) (-15 -2541 ((-1149 |#1|) $)) (-15 -1357 ((-1149 |#1|) $)) (-15 -3401 (|#1| $)) (-15 -3221 ($ $)) (-15 -3810 ((-1149 (-407 |#1|)) $)) (-15 -4280 ((-1149 (-407 |#1|)) $)) (-15 -3153 ((-1149 |#1|) $)) (-15 -2997 ((-1149 |#1|) $)) (-15 -3320 ($ $ (-563))) (-15 -1741 ($ $)))) +((-2578 (($ (-109) $) 13)) (-2087 (((-3 (-109) "failed") (-1169) $) 12)) (-1693 (((-858) $) 16)) (-2931 (((-640 (-109)) $) 8))) +(((-175) (-13 (-610 (-858)) (-10 -8 (-15 -2931 ((-640 (-109)) $)) (-15 -2578 ($ (-109) $)) (-15 -2087 ((-3 (-109) "failed") (-1169) $))))) (T -175)) +((-2931 (*1 *2 *1) (-12 (-5 *2 (-640 (-109))) (-5 *1 (-175)))) (-2578 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175)))) (-2087 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1169)) (-5 *2 (-109)) (-5 *1 (-175))))) +(-13 (-610 (-858)) (-10 -8 (-15 -2931 ((-640 (-109)) $)) (-15 -2578 ($ (-109) $)) (-15 -2087 ((-3 (-109) "failed") (-1169) $)))) +((-3648 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 40)) (-3910 (((-939 |#1|) (-939 |#1|)) 19)) (-1547 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 36)) (-3727 (((-939 |#1|) (-939 |#1|)) 17)) (-3412 (((-939 |#1|) (-939 |#1|)) 25)) (-2467 (((-939 |#1|) (-939 |#1|)) 24)) (-3078 (((-939 |#1|) (-939 |#1|)) 23)) (-2870 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 37)) (-3275 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 35)) (-2621 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 34)) (-2608 (((-939 |#1|) (-939 |#1|)) 18)) (-3603 (((-1 (-939 |#1|) (-939 |#1|)) |#1| |#1|) 43)) (-2195 (((-939 |#1|) (-939 |#1|)) 8)) (-3834 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 39)) (-2902 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 38))) +(((-176 |#1|) (-10 -7 (-15 -2195 ((-939 |#1|) (-939 |#1|))) (-15 -3727 ((-939 |#1|) (-939 |#1|))) (-15 -2608 ((-939 |#1|) (-939 |#1|))) (-15 -3910 ((-939 |#1|) (-939 |#1|))) (-15 -3078 ((-939 |#1|) (-939 |#1|))) (-15 -2467 ((-939 |#1|) (-939 |#1|))) (-15 -3412 ((-939 |#1|) (-939 |#1|))) (-15 -2621 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3275 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -1547 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -2870 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -2902 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3834 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3648 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3603 ((-1 (-939 |#1|) (-939 |#1|)) |#1| |#1|))) (-13 (-363) (-1193) (-998))) (T -176)) +((-3603 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1193) (-998))))) (-3648 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1193) (-998))))) (-3834 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1193) (-998))))) (-2902 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1193) (-998))))) (-2870 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1193) (-998))))) (-1547 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1193) (-998))))) (-3275 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1193) (-998))))) (-2621 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1193) (-998))))) (-3412 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) (-5 *1 (-176 *3)))) (-2467 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) (-5 *1 (-176 *3)))) (-3078 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) (-5 *1 (-176 *3)))) (-3910 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) (-5 *1 (-176 *3)))) (-2608 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) (-5 *1 (-176 *3)))) (-3727 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) (-5 *1 (-176 *3)))) (-2195 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) (-5 *1 (-176 *3))))) +(-10 -7 (-15 -2195 ((-939 |#1|) (-939 |#1|))) (-15 -3727 ((-939 |#1|) (-939 |#1|))) (-15 -2608 ((-939 |#1|) (-939 |#1|))) (-15 -3910 ((-939 |#1|) (-939 |#1|))) (-15 -3078 ((-939 |#1|) (-939 |#1|))) (-15 -2467 ((-939 |#1|) (-939 |#1|))) (-15 -3412 ((-939 |#1|) (-939 |#1|))) (-15 -2621 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3275 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -1547 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -2870 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -2902 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3834 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3648 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3603 ((-1 (-939 |#1|) (-939 |#1|)) |#1| |#1|))) +((-3421 ((|#2| |#3|) 27))) +(((-177 |#1| |#2| |#3|) (-10 -7 (-15 -3421 (|#2| |#3|))) (-172) (-1233 |#1|) (-720 |#1| |#2|)) (T -177)) +((-3421 (*1 *2 *3) (-12 (-4 *4 (-172)) (-4 *2 (-1233 *4)) (-5 *1 (-177 *4 *2 *3)) (-4 *3 (-720 *4 *2))))) +(-10 -7 (-15 -3421 (|#2| |#3|))) +((-3787 (((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)) 45 (|has| (-948 |#2|) (-882 |#1|))))) +(((-178 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-948 |#2|) (-882 |#1|)) (-15 -3787 ((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|))) |%noBranch|)) (-1093) (-13 (-882 |#1|) (-172)) (-166 |#2|)) (T -178)) +((-3787 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 *3)) (-5 *4 (-888 *5)) (-4 *5 (-1093)) (-4 *3 (-166 *6)) (-4 (-948 *6) (-882 *5)) (-4 *6 (-13 (-882 *5) (-172))) (-5 *1 (-178 *5 *6 *3))))) +(-10 -7 (IF (|has| (-948 |#2|) (-882 |#1|)) (-15 -3787 ((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|))) |%noBranch|)) +((-2667 (((-640 |#1|) (-640 |#1|) |#1|) 38)) (-4087 (((-640 |#1|) |#1| (-640 |#1|)) 19)) (-3046 (((-640 |#1|) (-640 (-640 |#1|)) (-640 |#1|)) 33) ((|#1| (-640 |#1|) (-640 |#1|)) 31))) +(((-179 |#1|) (-10 -7 (-15 -4087 ((-640 |#1|) |#1| (-640 |#1|))) (-15 -3046 (|#1| (-640 |#1|) (-640 |#1|))) (-15 -3046 ((-640 |#1|) (-640 (-640 |#1|)) (-640 |#1|))) (-15 -2667 ((-640 |#1|) (-640 |#1|) |#1|))) (-307)) (T -179)) +((-2667 (*1 *2 *2 *3) (-12 (-5 *2 (-640 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3)))) (-3046 (*1 *2 *3 *2) (-12 (-5 *3 (-640 (-640 *4))) (-5 *2 (-640 *4)) (-4 *4 (-307)) (-5 *1 (-179 *4)))) (-3046 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *2)) (-5 *1 (-179 *2)) (-4 *2 (-307)))) (-4087 (*1 *2 *3 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3))))) +(-10 -7 (-15 -4087 ((-640 |#1|) |#1| (-640 |#1|))) (-15 -3046 (|#1| (-640 |#1|) (-640 |#1|))) (-15 -3046 ((-640 |#1|) (-640 (-640 |#1|)) (-640 |#1|))) (-15 -2667 ((-640 |#1|) (-640 |#1|) |#1|))) +((-1677 (((-112) $ $) NIL)) (-4183 (((-1207) $) 13)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-3685 (((-1128) $) 10)) (-1693 (((-858) $) 22) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-180) (-13 (-1076) (-10 -8 (-15 -3685 ((-1128) $)) (-15 -4183 ((-1207) $))))) (T -180)) +((-3685 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-180)))) (-4183 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-180))))) +(-13 (-1076) (-10 -8 (-15 -3685 ((-1128) $)) (-15 -4183 ((-1207) $)))) +((-2015 (((-2 (|:| |start| |#2|) (|:| -2760 (-418 |#2|))) |#2|) 61)) (-2657 ((|#1| |#1|) 54)) (-3267 (((-169 |#1|) |#2|) 84)) (-4089 ((|#1| |#2|) 124) ((|#1| |#2| |#1|) 82)) (-2895 ((|#2| |#2|) 83)) (-3177 (((-418 |#2|) |#2| |#1|) 114) (((-418 |#2|) |#2| |#1| (-112)) 81)) (-3793 ((|#1| |#2|) 113)) (-1405 ((|#2| |#2|) 120)) (-2174 (((-418 |#2|) |#2|) 135) (((-418 |#2|) |#2| |#1|) 32) (((-418 |#2|) |#2| |#1| (-112)) 134)) (-3250 (((-640 (-2 (|:| -2760 (-640 |#2|)) (|:| -4076 |#1|))) |#2| |#2|) 133) (((-640 (-2 (|:| -2760 (-640 |#2|)) (|:| -4076 |#1|))) |#2| |#2| (-112)) 76)) (-1435 (((-640 (-169 |#1|)) |#2| |#1|) 40) (((-640 (-169 |#1|)) |#2|) 41))) +(((-181 |#1| |#2|) (-10 -7 (-15 -1435 ((-640 (-169 |#1|)) |#2|)) (-15 -1435 ((-640 (-169 |#1|)) |#2| |#1|)) (-15 -3250 ((-640 (-2 (|:| -2760 (-640 |#2|)) (|:| -4076 |#1|))) |#2| |#2| (-112))) (-15 -3250 ((-640 (-2 (|:| -2760 (-640 |#2|)) (|:| -4076 |#1|))) |#2| |#2|)) (-15 -2174 ((-418 |#2|) |#2| |#1| (-112))) (-15 -2174 ((-418 |#2|) |#2| |#1|)) (-15 -2174 ((-418 |#2|) |#2|)) (-15 -1405 (|#2| |#2|)) (-15 -3793 (|#1| |#2|)) (-15 -3177 ((-418 |#2|) |#2| |#1| (-112))) (-15 -3177 ((-418 |#2|) |#2| |#1|)) (-15 -2895 (|#2| |#2|)) (-15 -4089 (|#1| |#2| |#1|)) (-15 -4089 (|#1| |#2|)) (-15 -3267 ((-169 |#1|) |#2|)) (-15 -2657 (|#1| |#1|)) (-15 -2015 ((-2 (|:| |start| |#2|) (|:| -2760 (-418 |#2|))) |#2|))) (-13 (-363) (-844)) (-1233 (-169 |#1|))) (T -181)) +((-2015 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-2 (|:| |start| *3) (|:| -2760 (-418 *3)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))) (-2657 (*1 *2 *2) (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1233 (-169 *2))))) (-3267 (*1 *2 *3) (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3)) (-4 *4 (-13 (-363) (-844))) (-4 *3 (-1233 *2)))) (-4089 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1233 (-169 *2))))) (-4089 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1233 (-169 *2))))) (-2895 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-844))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1233 (-169 *3))))) (-3177 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))) (-3177 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))) (-3793 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1233 (-169 *2))))) (-1405 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-844))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1233 (-169 *3))))) (-2174 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))) (-2174 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))) (-2174 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))) (-3250 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-640 (-2 (|:| -2760 (-640 *3)) (|:| -4076 *4)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))) (-3250 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-363) (-844))) (-5 *2 (-640 (-2 (|:| -2760 (-640 *3)) (|:| -4076 *5)))) (-5 *1 (-181 *5 *3)) (-4 *3 (-1233 (-169 *5))))) (-1435 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-640 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))) (-1435 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-640 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4)))))) +(-10 -7 (-15 -1435 ((-640 (-169 |#1|)) |#2|)) (-15 -1435 ((-640 (-169 |#1|)) |#2| |#1|)) (-15 -3250 ((-640 (-2 (|:| -2760 (-640 |#2|)) (|:| -4076 |#1|))) |#2| |#2| (-112))) (-15 -3250 ((-640 (-2 (|:| -2760 (-640 |#2|)) (|:| -4076 |#1|))) |#2| |#2|)) (-15 -2174 ((-418 |#2|) |#2| |#1| (-112))) (-15 -2174 ((-418 |#2|) |#2| |#1|)) (-15 -2174 ((-418 |#2|) |#2|)) (-15 -1405 (|#2| |#2|)) (-15 -3793 (|#1| |#2|)) (-15 -3177 ((-418 |#2|) |#2| |#1| (-112))) (-15 -3177 ((-418 |#2|) |#2| |#1|)) (-15 -2895 (|#2| |#2|)) (-15 -4089 (|#1| |#2| |#1|)) (-15 -4089 (|#1| |#2|)) (-15 -3267 ((-169 |#1|) |#2|)) (-15 -2657 (|#1| |#1|)) (-15 -2015 ((-2 (|:| |start| |#2|) (|:| -2760 (-418 |#2|))) |#2|))) +((-1339 (((-3 |#2| "failed") |#2|) 14)) (-3003 (((-767) |#2|) 16)) (-2863 ((|#2| |#2| |#2|) 18))) +(((-182 |#1| |#2|) (-10 -7 (-15 -1339 ((-3 |#2| "failed") |#2|)) (-15 -3003 ((-767) |#2|)) (-15 -2863 (|#2| |#2| |#2|))) (-1208) (-669 |#1|)) (T -182)) +((-2863 (*1 *2 *2 *2) (-12 (-4 *3 (-1208)) (-5 *1 (-182 *3 *2)) (-4 *2 (-669 *3)))) (-3003 (*1 *2 *3) (-12 (-4 *4 (-1208)) (-5 *2 (-767)) (-5 *1 (-182 *4 *3)) (-4 *3 (-669 *4)))) (-1339 (*1 *2 *2) (|partial| -12 (-4 *3 (-1208)) (-5 *1 (-182 *3 *2)) (-4 *2 (-669 *3))))) +(-10 -7 (-15 -1339 ((-3 |#2| "failed") |#2|)) (-15 -3003 ((-767) |#2|)) (-15 -2863 (|#2| |#2| |#2|))) +((-1677 (((-112) $ $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-3762 (((-187) $) 7)) (-1693 (((-858) $) 14)) (-4093 (((-640 (-1174)) $) 10)) (-1718 (((-112) $ $) 12))) +(((-183) (-13 (-1093) (-10 -8 (-15 -3762 ((-187) $)) (-15 -4093 ((-640 (-1174)) $))))) (T -183)) +((-3762 (*1 *2 *1) (-12 (-5 *2 (-187)) (-5 *1 (-183)))) (-4093 (*1 *2 *1) (-12 (-5 *2 (-640 (-1174))) (-5 *1 (-183))))) +(-13 (-1093) (-10 -8 (-15 -3762 ((-187) $)) (-15 -4093 ((-640 (-1174)) $)))) +((-3453 (((-640 (-861)) $) 16)) (-2504 (((-186) $) 8)) (-2544 (((-640 (-112)) $) 13)) (-1396 (((-55) $) 10))) +(((-184 |#1|) (-10 -8 (-15 -3453 ((-640 (-861)) |#1|)) (-15 -2544 ((-640 (-112)) |#1|)) (-15 -2504 ((-186) |#1|)) (-15 -1396 ((-55) |#1|))) (-185)) (T -184)) +NIL +(-10 -8 (-15 -3453 ((-640 (-861)) |#1|)) (-15 -2544 ((-640 (-112)) |#1|)) (-15 -2504 ((-186) |#1|)) (-15 -1396 ((-55) |#1|))) +((-1677 (((-112) $ $) 7)) (-3453 (((-640 (-861)) $) 17)) (-3348 (((-506) $) 14)) (-3573 (((-1151) $) 9)) (-2504 (((-186) $) 19)) (-1694 (((-1113) $) 10)) (-2544 (((-640 (-112)) $) 18)) (-1693 (((-858) $) 11)) (-1396 (((-55) $) 13)) (-1718 (((-112) $ $) 6))) +(((-185) (-140)) (T -185)) +((-2504 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186)))) (-2544 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-640 (-112))))) (-3453 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-640 (-861)))))) +(-13 (-831 (-506)) (-10 -8 (-15 -2504 ((-186) $)) (-15 -2544 ((-640 (-112)) $)) (-15 -3453 ((-640 (-861)) $)))) +(((-102) . T) ((-610 (-858)) . T) ((-831 (-506)) . T) ((-1093) . T)) +((-1677 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-8 (($) 7 T CONST)) (-1693 (((-858) $) 12)) (-9 (($) 6 T CONST)) (-1718 (((-112) $ $) 10))) +(((-186) (-13 (-1093) (-10 -8 (-15 -9 ($) -2669) (-15 -8 ($) -2669) (-15 -7 ($) -2669)))) (T -186)) +((-9 (*1 *1) (-5 *1 (-186))) (-8 (*1 *1) (-5 *1 (-186))) (-7 (*1 *1) (-5 *1 (-186)))) +(-13 (-1093) (-10 -8 (-15 -9 ($) -2669) (-15 -8 ($) -2669) (-15 -7 ($) -2669))) +((-1677 (((-112) $ $) NIL)) (-3453 (((-640 (-861)) $) NIL)) (-3348 (((-506) $) 8)) (-3573 (((-1151) $) NIL)) (-2504 (((-186) $) 10)) (-1694 (((-1113) $) NIL)) (-2495 (((-686 $) (-1169)) 18)) (-2544 (((-640 (-112)) $) NIL)) (-1693 (((-858) $) NIL)) (-1396 (((-55) $) 12)) (-1718 (((-112) $ $) NIL))) +(((-187) (-13 (-185) (-10 -8 (-15 -2495 ((-686 $) (-1169)))))) (T -187)) +((-2495 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-686 (-187))) (-5 *1 (-187))))) +(-13 (-185) (-10 -8 (-15 -2495 ((-686 $) (-1169))))) +((-3021 ((|#2| |#2|) 28)) (-3087 (((-112) |#2|) 19)) (-2489 (((-316 |#1|) |#2|) 12)) (-2499 (((-316 |#1|) |#2|) 14)) (-3172 ((|#2| |#2| (-1169)) 68) ((|#2| |#2|) 69)) (-2685 (((-169 (-316 |#1|)) |#2|) 10)) (-1541 ((|#2| |#2| (-1169)) 65) ((|#2| |#2|) 59))) +(((-188 |#1| |#2|) (-10 -7 (-15 -3172 (|#2| |#2|)) (-15 -3172 (|#2| |#2| (-1169))) (-15 -1541 (|#2| |#2|)) (-15 -1541 (|#2| |#2| (-1169))) (-15 -2489 ((-316 |#1|) |#2|)) (-15 -2499 ((-316 |#1|) |#2|)) (-15 -3087 ((-112) |#2|)) (-15 -3021 (|#2| |#2|)) (-15 -2685 ((-169 (-316 |#1|)) |#2|))) (-13 (-555) (-846) (-1034 (-563))) (-13 (-27) (-1193) (-430 (-169 |#1|)))) (T -188)) +((-2685 (*1 *2 *3) (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-169 (-316 *4))) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 (-169 *4)))))) (-3021 (*1 *2 *2) (-12 (-4 *3 (-13 (-555) (-846) (-1034 (-563)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 (-169 *3)))))) (-3087 (*1 *2 *3) (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-112)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 (-169 *4)))))) (-2499 (*1 *2 *3) (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-316 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 (-169 *4)))))) (-2489 (*1 *2 *3) (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-316 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 (-169 *4)))))) (-1541 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 (-169 *4)))))) (-1541 (*1 *2 *2) (-12 (-4 *3 (-13 (-555) (-846) (-1034 (-563)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 (-169 *3)))))) (-3172 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 (-169 *4)))))) (-3172 (*1 *2 *2) (-12 (-4 *3 (-13 (-555) (-846) (-1034 (-563)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 (-169 *3))))))) +(-10 -7 (-15 -3172 (|#2| |#2|)) (-15 -3172 (|#2| |#2| (-1169))) (-15 -1541 (|#2| |#2|)) (-15 -1541 (|#2| |#2| (-1169))) (-15 -2489 ((-316 |#1|) |#2|)) (-15 -2499 ((-316 |#1|) |#2|)) (-15 -3087 ((-112) |#2|)) (-15 -3021 (|#2| |#2|)) (-15 -2685 ((-169 (-316 |#1|)) |#2|))) +((-1424 (((-1257 (-684 (-948 |#1|))) (-1257 (-684 |#1|))) 24)) (-1693 (((-1257 (-684 (-407 (-948 |#1|)))) (-1257 (-684 |#1|))) 33))) +(((-189 |#1|) (-10 -7 (-15 -1424 ((-1257 (-684 (-948 |#1|))) (-1257 (-684 |#1|)))) (-15 -1693 ((-1257 (-684 (-407 (-948 |#1|)))) (-1257 (-684 |#1|))))) (-172)) (T -189)) +((-1693 (*1 *2 *3) (-12 (-5 *3 (-1257 (-684 *4))) (-4 *4 (-172)) (-5 *2 (-1257 (-684 (-407 (-948 *4))))) (-5 *1 (-189 *4)))) (-1424 (*1 *2 *3) (-12 (-5 *3 (-1257 (-684 *4))) (-4 *4 (-172)) (-5 *2 (-1257 (-684 (-948 *4)))) (-5 *1 (-189 *4))))) +(-10 -7 (-15 -1424 ((-1257 (-684 (-948 |#1|))) (-1257 (-684 |#1|)))) (-15 -1693 ((-1257 (-684 (-407 (-948 |#1|)))) (-1257 (-684 |#1|))))) +((-4097 (((-1171 (-407 (-563))) (-1171 (-407 (-563))) (-1171 (-407 (-563)))) 66)) (-3197 (((-1171 (-407 (-563))) (-640 (-563)) (-640 (-563))) 75)) (-4043 (((-1171 (-407 (-563))) (-563)) 40)) (-1475 (((-1171 (-407 (-563))) (-563)) 52)) (-1540 (((-407 (-563)) (-1171 (-407 (-563)))) 62)) (-3715 (((-1171 (-407 (-563))) (-563)) 32)) (-3305 (((-1171 (-407 (-563))) (-563)) 48)) (-2823 (((-1171 (-407 (-563))) (-563)) 46)) (-2317 (((-1171 (-407 (-563))) (-1171 (-407 (-563))) (-1171 (-407 (-563)))) 60)) (-1741 (((-1171 (-407 (-563))) (-563)) 25)) (-2982 (((-407 (-563)) (-1171 (-407 (-563))) (-1171 (-407 (-563)))) 64)) (-4261 (((-1171 (-407 (-563))) (-563)) 30)) (-1671 (((-1171 (-407 (-563))) (-640 (-563))) 72))) +(((-190) (-10 -7 (-15 -1741 ((-1171 (-407 (-563))) (-563))) (-15 -4043 ((-1171 (-407 (-563))) (-563))) (-15 -3715 ((-1171 (-407 (-563))) (-563))) (-15 -4261 ((-1171 (-407 (-563))) (-563))) (-15 -2823 ((-1171 (-407 (-563))) (-563))) (-15 -3305 ((-1171 (-407 (-563))) (-563))) (-15 -1475 ((-1171 (-407 (-563))) (-563))) (-15 -2982 ((-407 (-563)) (-1171 (-407 (-563))) (-1171 (-407 (-563))))) (-15 -2317 ((-1171 (-407 (-563))) (-1171 (-407 (-563))) (-1171 (-407 (-563))))) (-15 -1540 ((-407 (-563)) (-1171 (-407 (-563))))) (-15 -4097 ((-1171 (-407 (-563))) (-1171 (-407 (-563))) (-1171 (-407 (-563))))) (-15 -1671 ((-1171 (-407 (-563))) (-640 (-563)))) (-15 -3197 ((-1171 (-407 (-563))) (-640 (-563)) (-640 (-563)))))) (T -190)) +((-3197 (*1 *2 *3 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)))) (-1671 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)))) (-4097 (*1 *2 *2 *2) (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)))) (-1540 (*1 *2 *3) (-12 (-5 *3 (-1171 (-407 (-563)))) (-5 *2 (-407 (-563))) (-5 *1 (-190)))) (-2317 (*1 *2 *2 *2) (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)))) (-2982 (*1 *2 *3 *3) (-12 (-5 *3 (-1171 (-407 (-563)))) (-5 *2 (-407 (-563))) (-5 *1 (-190)))) (-1475 (*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563)))) (-3305 (*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563)))) (-2823 (*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563)))) (-4261 (*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563)))) (-3715 (*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563)))) (-4043 (*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563)))) (-1741 (*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563))))) +(-10 -7 (-15 -1741 ((-1171 (-407 (-563))) (-563))) (-15 -4043 ((-1171 (-407 (-563))) (-563))) (-15 -3715 ((-1171 (-407 (-563))) (-563))) (-15 -4261 ((-1171 (-407 (-563))) (-563))) (-15 -2823 ((-1171 (-407 (-563))) (-563))) (-15 -3305 ((-1171 (-407 (-563))) (-563))) (-15 -1475 ((-1171 (-407 (-563))) (-563))) (-15 -2982 ((-407 (-563)) (-1171 (-407 (-563))) (-1171 (-407 (-563))))) (-15 -2317 ((-1171 (-407 (-563))) (-1171 (-407 (-563))) (-1171 (-407 (-563))))) (-15 -1540 ((-407 (-563)) (-1171 (-407 (-563))))) (-15 -4097 ((-1171 (-407 (-563))) (-1171 (-407 (-563))) (-1171 (-407 (-563))))) (-15 -1671 ((-1171 (-407 (-563))) (-640 (-563)))) (-15 -3197 ((-1171 (-407 (-563))) (-640 (-563)) (-640 (-563))))) +((-3864 (((-418 (-1165 (-563))) (-563)) 28)) (-2019 (((-640 (-1165 (-563))) (-563)) 23)) (-3952 (((-1165 (-563)) (-563)) 21))) +(((-191) (-10 -7 (-15 -2019 ((-640 (-1165 (-563))) (-563))) (-15 -3952 ((-1165 (-563)) (-563))) (-15 -3864 ((-418 (-1165 (-563))) (-563))))) (T -191)) +((-3864 (*1 *2 *3) (-12 (-5 *2 (-418 (-1165 (-563)))) (-5 *1 (-191)) (-5 *3 (-563)))) (-3952 (*1 *2 *3) (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-191)) (-5 *3 (-563)))) (-2019 (*1 *2 *3) (-12 (-5 *2 (-640 (-1165 (-563)))) (-5 *1 (-191)) (-5 *3 (-563))))) +(-10 -7 (-15 -2019 ((-640 (-1165 (-563))) (-563))) (-15 -3952 ((-1165 (-563)) (-563))) (-15 -3864 ((-418 (-1165 (-563))) (-563)))) +((-2415 (((-1149 (-225)) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 103)) (-1983 (((-640 (-1151)) (-1149 (-225))) NIL)) (-2690 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 79)) (-2497 (((-640 (-225)) (-316 (-225)) (-1169) (-1087 (-839 (-225)))) NIL)) (-1636 (((-640 (-1151)) (-640 (-225))) NIL)) (-2471 (((-225) (-1087 (-839 (-225)))) 24)) (-4107 (((-225) (-1087 (-839 (-225)))) 25)) (-2986 (((-379) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 96)) (-3876 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 42)) (-3274 (((-1151) (-225)) NIL)) (-2885 (((-1151) (-640 (-1151))) 20)) (-2038 (((-1031) (-1169) (-1169) (-1031)) 13))) +(((-192) (-10 -7 (-15 -2690 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3876 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2471 ((-225) (-1087 (-839 (-225))))) (-15 -4107 ((-225) (-1087 (-839 (-225))))) (-15 -2986 ((-379) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2497 ((-640 (-225)) (-316 (-225)) (-1169) (-1087 (-839 (-225))))) (-15 -2415 ((-1149 (-225)) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3274 ((-1151) (-225))) (-15 -1636 ((-640 (-1151)) (-640 (-225)))) (-15 -1983 ((-640 (-1151)) (-1149 (-225)))) (-15 -2885 ((-1151) (-640 (-1151)))) (-15 -2038 ((-1031) (-1169) (-1169) (-1031))))) (T -192)) +((-2038 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1031)) (-5 *3 (-1169)) (-5 *1 (-192)))) (-2885 (*1 *2 *3) (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-1151)) (-5 *1 (-192)))) (-1983 (*1 *2 *3) (-12 (-5 *3 (-1149 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-192)))) (-1636 (*1 *2 *3) (-12 (-5 *3 (-640 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-192)))) (-3274 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1151)) (-5 *1 (-192)))) (-2415 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1149 (-225))) (-5 *1 (-192)))) (-2497 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1169)) (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-640 (-225))) (-5 *1 (-192)))) (-2986 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-192)))) (-4107 (*1 *2 *3) (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-2471 (*1 *2 *3) (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-3876 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-192)))) (-2690 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-192))))) +(-10 -7 (-15 -2690 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3876 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2471 ((-225) (-1087 (-839 (-225))))) (-15 -4107 ((-225) (-1087 (-839 (-225))))) (-15 -2986 ((-379) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2497 ((-640 (-225)) (-316 (-225)) (-1169) (-1087 (-839 (-225))))) (-15 -2415 ((-1149 (-225)) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3274 ((-1151) (-225))) (-15 -1636 ((-640 (-1151)) (-640 (-225)))) (-15 -1983 ((-640 (-1151)) (-1149 (-225)))) (-15 -2885 ((-1151) (-640 (-1151)))) (-15 -2038 ((-1031) (-1169) (-1169) (-1031)))) +((-1677 (((-112) $ $) NIL)) (-1807 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 55) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-1994 (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 32) (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-193) (-783)) (T -193)) +NIL +(-783) +((-1677 (((-112) $ $) NIL)) (-1807 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 60) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-1994 (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 41) (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-194) (-783)) (T -194)) +NIL +(-783) +((-1677 (((-112) $ $) NIL)) (-1807 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 69) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-1994 (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40) (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-195) (-783)) (T -195)) +NIL +(-783) +((-1677 (((-112) $ $) NIL)) (-1807 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 56) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-1994 (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 34) (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-196) (-783)) (T -196)) +NIL +(-783) +((-1677 (((-112) $ $) NIL)) (-1807 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 67) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-1994 (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 38) (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-197) (-783)) (T -197)) +NIL +(-783) +((-1677 (((-112) $ $) NIL)) (-1807 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 73) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-1994 (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 36) (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-198) (-783)) (T -198)) +NIL +(-783) +((-1677 (((-112) $ $) NIL)) (-1807 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 80) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-1994 (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44) (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-199) (-783)) (T -199)) +NIL +(-783) +((-1677 (((-112) $ $) NIL)) (-1807 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 70) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-1994 (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40) (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-200) (-783)) (T -200)) +NIL +(-783) +((-1677 (((-112) $ $) NIL)) (-1807 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 65)) (-1994 (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 32)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-201) (-783)) (T -201)) +NIL +(-783) +((-1677 (((-112) $ $) NIL)) (-1807 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 63)) (-1994 (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 34)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-202) (-783)) (T -202)) +NIL +(-783) +((-1677 (((-112) $ $) NIL)) (-1807 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 90) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-1994 (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 78) (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-203) (-783)) (T -203)) +NIL +(-783) +((-2683 (((-3 (-2 (|:| -2517 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 84)) (-3767 (((-563) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 42)) (-4330 (((-3 (-640 (-225)) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 73))) +(((-204) (-10 -7 (-15 -2683 ((-3 (-2 (|:| -2517 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4330 ((-3 (-640 (-225)) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3767 ((-563) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -204)) +((-3767 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-563)) (-5 *1 (-204)))) (-4330 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-640 (-225))) (-5 *1 (-204)))) (-2683 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -2517 (-114)) (|:| |w| (-225)))) (-5 *1 (-204))))) +(-10 -7 (-15 -2683 ((-3 (-2 (|:| -2517 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4330 ((-3 (-640 (-225)) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3767 ((-563) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) +((-1973 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 39)) (-2283 (((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 128)) (-3801 (((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-684 (-316 (-225)))) 87)) (-3391 (((-379) (-684 (-316 (-225)))) 111)) (-4312 (((-684 (-316 (-225))) (-1257 (-316 (-225))) (-640 (-1169))) 108)) (-2949 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 30)) (-1775 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-1540 (((-684 (-316 (-225))) (-684 (-316 (-225))) (-640 (-1169)) (-1257 (-316 (-225)))) 100)) (-3307 (((-379) (-379) (-640 (-379))) 105) (((-379) (-379) (-379)) 103)) (-1864 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 36))) +(((-205) (-10 -7 (-15 -3307 ((-379) (-379) (-379))) (-15 -3307 ((-379) (-379) (-640 (-379)))) (-15 -3391 ((-379) (-684 (-316 (-225))))) (-15 -4312 ((-684 (-316 (-225))) (-1257 (-316 (-225))) (-640 (-1169)))) (-15 -1540 ((-684 (-316 (-225))) (-684 (-316 (-225))) (-640 (-1169)) (-1257 (-316 (-225))))) (-15 -3801 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-684 (-316 (-225))))) (-15 -2283 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1973 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1775 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1864 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2949 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -205)) +((-2949 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-1864 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-1775 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-1973 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-2283 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379)))) (-5 *1 (-205)))) (-3801 (*1 *2 *3) (-12 (-5 *3 (-684 (-316 (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379)))) (-5 *1 (-205)))) (-1540 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-684 (-316 (-225)))) (-5 *3 (-640 (-1169))) (-5 *4 (-1257 (-316 (-225)))) (-5 *1 (-205)))) (-4312 (*1 *2 *3 *4) (-12 (-5 *3 (-1257 (-316 (-225)))) (-5 *4 (-640 (-1169))) (-5 *2 (-684 (-316 (-225)))) (-5 *1 (-205)))) (-3391 (*1 *2 *3) (-12 (-5 *3 (-684 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-3307 (*1 *2 *2 *3) (-12 (-5 *3 (-640 (-379))) (-5 *2 (-379)) (-5 *1 (-205)))) (-3307 (*1 *2 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-205))))) +(-10 -7 (-15 -3307 ((-379) (-379) (-379))) (-15 -3307 ((-379) (-379) (-640 (-379)))) (-15 -3391 ((-379) (-684 (-316 (-225))))) (-15 -4312 ((-684 (-316 (-225))) (-1257 (-316 (-225))) (-640 (-1169)))) (-15 -1540 ((-684 (-316 (-225))) (-684 (-316 (-225))) (-640 (-1169)) (-1257 (-316 (-225))))) (-15 -3801 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-684 (-316 (-225))))) (-15 -2283 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1973 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1775 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1864 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2949 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) +((-1677 (((-112) $ $) NIL)) (-1994 (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 41)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-3591 (((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 64)) (-1718 (((-112) $ $) NIL))) +(((-206) (-796)) (T -206)) +NIL +(-796) +((-1677 (((-112) $ $) NIL)) (-1994 (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 41)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-3591 (((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 62)) (-1718 (((-112) $ $) NIL))) +(((-207) (-796)) (T -207)) +NIL +(-796) +((-1677 (((-112) $ $) NIL)) (-1994 (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-3591 (((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 66)) (-1718 (((-112) $ $) NIL))) +(((-208) (-796)) (T -208)) +NIL +(-796) +((-1677 (((-112) $ $) NIL)) (-1994 (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 46)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-3591 (((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 75)) (-1718 (((-112) $ $) NIL))) +(((-209) (-796)) (T -209)) +NIL +(-796) +((-3993 (((-640 (-1169)) (-1169) (-767)) 23)) (-2845 (((-316 (-225)) (-316 (-225))) 31)) (-2861 (((-112) (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) 73)) (-2151 (((-112) (-225) (-225) (-640 (-316 (-225)))) 44))) +(((-210) (-10 -7 (-15 -3993 ((-640 (-1169)) (-1169) (-767))) (-15 -2845 ((-316 (-225)) (-316 (-225)))) (-15 -2151 ((-112) (-225) (-225) (-640 (-316 (-225))))) (-15 -2861 ((-112) (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225))))))) (T -210)) +((-2861 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) (-5 *2 (-112)) (-5 *1 (-210)))) (-2151 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-640 (-316 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-210)))) (-2845 (*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-210)))) (-3993 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-5 *2 (-640 (-1169))) (-5 *1 (-210)) (-5 *3 (-1169))))) +(-10 -7 (-15 -3993 ((-640 (-1169)) (-1169) (-767))) (-15 -2845 ((-316 (-225)) (-316 (-225)))) (-15 -2151 ((-112) (-225) (-225) (-640 (-316 (-225))))) (-15 -2861 ((-112) (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))))) +((-1677 (((-112) $ $) NIL)) (-1994 (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) 26)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-3703 (((-1031) (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) 57)) (-1718 (((-112) $ $) NIL))) +(((-211) (-891)) (T -211)) +NIL +(-891) +((-1677 (((-112) $ $) NIL)) (-1994 (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) 21)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-3703 (((-1031) (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) NIL)) (-1718 (((-112) $ $) NIL))) +(((-212) (-891)) (T -212)) +NIL +(-891) +((-1677 (((-112) $ $) NIL)) (-4300 ((|#2| $ (-767) |#2|) 11)) (-4293 ((|#2| $ (-767)) 10)) (-1566 (($) 8)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 18)) (-1718 (((-112) $ $) 13))) +(((-213 |#1| |#2|) (-13 (-1093) (-10 -8 (-15 -1566 ($)) (-15 -4293 (|#2| $ (-767))) (-15 -4300 (|#2| $ (-767) |#2|)))) (-917) (-1093)) (T -213)) +((-1566 (*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1093)))) (-4293 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *2 (-1093)) (-5 *1 (-213 *4 *2)) (-14 *4 (-917)))) (-4300 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-213 *4 *2)) (-14 *4 (-917)) (-4 *2 (-1093))))) +(-13 (-1093) (-10 -8 (-15 -1566 ($)) (-15 -4293 (|#2| $ (-767))) (-15 -4300 (|#2| $ (-767) |#2|)))) +((-1677 (((-112) $ $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-2807 (((-1262) $) 36) (((-1262) $ (-917) (-917)) 38)) (-2309 (($ $ (-985)) 19) (((-245 (-1151)) $ (-1169)) 15)) (-1463 (((-1262) $) 34)) (-1693 (((-858) $) 31) (($ (-640 |#1|)) 8)) (-1718 (((-112) $ $) NIL)) (-1826 (($ $ $) 27)) (-1814 (($ $ $) 22))) +(((-214 |#1|) (-13 (-1093) (-613 (-640 |#1|)) (-10 -8 (-15 -2309 ($ $ (-985))) (-15 -2309 ((-245 (-1151)) $ (-1169))) (-15 -1814 ($ $ $)) (-15 -1826 ($ $ $)) (-15 -1463 ((-1262) $)) (-15 -2807 ((-1262) $)) (-15 -2807 ((-1262) $ (-917) (-917))))) (-13 (-846) (-10 -8 (-15 -2309 ((-1151) $ (-1169))) (-15 -1463 ((-1262) $)) (-15 -2807 ((-1262) $))))) (T -214)) +((-2309 (*1 *1 *1 *2) (-12 (-5 *2 (-985)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-846) (-10 -8 (-15 -2309 ((-1151) $ (-1169))) (-15 -1463 ((-1262) $)) (-15 -2807 ((-1262) $))))))) (-2309 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-245 (-1151))) (-5 *1 (-214 *4)) (-4 *4 (-13 (-846) (-10 -8 (-15 -2309 ((-1151) $ *3)) (-15 -1463 ((-1262) $)) (-15 -2807 ((-1262) $))))))) (-1814 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-846) (-10 -8 (-15 -2309 ((-1151) $ (-1169))) (-15 -1463 ((-1262) $)) (-15 -2807 ((-1262) $))))))) (-1826 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-846) (-10 -8 (-15 -2309 ((-1151) $ (-1169))) (-15 -1463 ((-1262) $)) (-15 -2807 ((-1262) $))))))) (-1463 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-846) (-10 -8 (-15 -2309 ((-1151) $ (-1169))) (-15 -1463 (*2 $)) (-15 -2807 (*2 $))))))) (-2807 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-846) (-10 -8 (-15 -2309 ((-1151) $ (-1169))) (-15 -1463 (*2 $)) (-15 -2807 (*2 $))))))) (-2807 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1262)) (-5 *1 (-214 *4)) (-4 *4 (-13 (-846) (-10 -8 (-15 -2309 ((-1151) $ (-1169))) (-15 -1463 (*2 $)) (-15 -2807 (*2 $)))))))) +(-13 (-1093) (-613 (-640 |#1|)) (-10 -8 (-15 -2309 ($ $ (-985))) (-15 -2309 ((-245 (-1151)) $ (-1169))) (-15 -1814 ($ $ $)) (-15 -1826 ($ $ $)) (-15 -1463 ((-1262) $)) (-15 -2807 ((-1262) $)) (-15 -2807 ((-1262) $ (-917) (-917))))) +((-3614 ((|#2| |#4| (-1 |#2| |#2|)) 46))) +(((-215 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3614 (|#2| |#4| (-1 |#2| |#2|)))) (-363) (-1233 |#1|) (-1233 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -215)) +((-3614 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-363)) (-4 *6 (-1233 (-407 *2))) (-4 *2 (-1233 *5)) (-5 *1 (-215 *5 *2 *6 *3)) (-4 *3 (-342 *5 *2 *6))))) +(-10 -7 (-15 -3614 (|#2| |#4| (-1 |#2| |#2|)))) +((-1317 ((|#2| |#2| (-767) |#2|) 42)) (-2506 ((|#2| |#2| (-767) |#2|) 38)) (-4147 (((-640 |#2|) (-640 (-2 (|:| |deg| (-767)) (|:| -2169 |#2|)))) 56)) (-4155 (((-640 (-2 (|:| |deg| (-767)) (|:| -2169 |#2|))) |#2|) 52)) (-2247 (((-112) |#2|) 49)) (-2184 (((-418 |#2|) |#2|) 76)) (-2174 (((-418 |#2|) |#2|) 75)) (-1704 ((|#2| |#2| (-767) |#2|) 36)) (-2112 (((-2 (|:| |cont| |#1|) (|:| -2760 (-640 (-2 (|:| |irr| |#2|) (|:| -1650 (-563)))))) |#2| (-112)) 68))) +(((-216 |#1| |#2|) (-10 -7 (-15 -2174 ((-418 |#2|) |#2|)) (-15 -2184 ((-418 |#2|) |#2|)) (-15 -2112 ((-2 (|:| |cont| |#1|) (|:| -2760 (-640 (-2 (|:| |irr| |#2|) (|:| -1650 (-563)))))) |#2| (-112))) (-15 -4155 ((-640 (-2 (|:| |deg| (-767)) (|:| -2169 |#2|))) |#2|)) (-15 -4147 ((-640 |#2|) (-640 (-2 (|:| |deg| (-767)) (|:| -2169 |#2|))))) (-15 -1704 (|#2| |#2| (-767) |#2|)) (-15 -2506 (|#2| |#2| (-767) |#2|)) (-15 -1317 (|#2| |#2| (-767) |#2|)) (-15 -2247 ((-112) |#2|))) (-349) (-1233 |#1|)) (T -216)) +((-2247 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1233 *4)))) (-1317 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1233 *4)))) (-2506 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1233 *4)))) (-1704 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1233 *4)))) (-4147 (*1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| |deg| (-767)) (|:| -2169 *5)))) (-4 *5 (-1233 *4)) (-4 *4 (-349)) (-5 *2 (-640 *5)) (-5 *1 (-216 *4 *5)))) (-4155 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-640 (-2 (|:| |deg| (-767)) (|:| -2169 *3)))) (-5 *1 (-216 *4 *3)) (-4 *3 (-1233 *4)))) (-2112 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-349)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2760 (-640 (-2 (|:| |irr| *3) (|:| -1650 (-563))))))) (-5 *1 (-216 *5 *3)) (-4 *3 (-1233 *5)))) (-2184 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1233 *4)))) (-2174 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1233 *4))))) +(-10 -7 (-15 -2174 ((-418 |#2|) |#2|)) (-15 -2184 ((-418 |#2|) |#2|)) (-15 -2112 ((-2 (|:| |cont| |#1|) (|:| -2760 (-640 (-2 (|:| |irr| |#2|) (|:| -1650 (-563)))))) |#2| (-112))) (-15 -4155 ((-640 (-2 (|:| |deg| (-767)) (|:| -2169 |#2|))) |#2|)) (-15 -4147 ((-640 |#2|) (-640 (-2 (|:| |deg| (-767)) (|:| -2169 |#2|))))) (-15 -1704 (|#2| |#2| (-767) |#2|)) (-15 -2506 (|#2| |#2| (-767) |#2|)) (-15 -1317 (|#2| |#2| (-767) |#2|)) (-15 -2247 ((-112) |#2|))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-3401 (((-563) $) NIL (|has| (-563) (-307)))) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-2424 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-1919 (((-112) $ $) NIL)) (-1857 (((-563) $) NIL (|has| (-563) (-816)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-563) "failed") $) NIL) (((-3 (-1169) "failed") $) NIL (|has| (-563) (-1034 (-1169)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| (-563) (-1034 (-563)))) (((-3 (-563) "failed") $) NIL (|has| (-563) (-1034 (-563))))) (-2058 (((-563) $) NIL) (((-1169) $) NIL (|has| (-563) (-1034 (-1169)))) (((-407 (-563)) $) NIL (|has| (-563) (-1034 (-563)))) (((-563) $) NIL (|has| (-563) (-1034 (-563))))) (-3090 (($ $ $) NIL)) (-2950 (((-684 (-563)) (-684 $)) NIL (|has| (-563) (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| (-563) (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-684 (-563)) (-684 $)) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-1691 (($) NIL (|has| (-563) (-545)))) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-2468 (((-112) $) NIL)) (-3101 (((-112) $) NIL (|has| (-563) (-816)))) (-3787 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (|has| (-563) (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-563) (-882 (-379))))) (-3827 (((-112) $) NIL)) (-2711 (($ $) NIL)) (-2143 (((-563) $) NIL)) (-2408 (((-3 $ "failed") $) NIL (|has| (-563) (-1144)))) (-1419 (((-112) $) NIL (|has| (-563) (-816)))) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3084 (($ $ $) NIL (|has| (-563) (-846)))) (-1777 (($ $ $) NIL (|has| (-563) (-846)))) (-2240 (($ (-1 (-563) (-563)) $) NIL)) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) NIL)) (-2523 (($) NIL (|has| (-563) (-1144)) CONST)) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ $ $) NIL) (($ (-640 $)) NIL)) (-4215 (($ $) NIL (|has| (-563) (-307))) (((-407 (-563)) $) NIL)) (-1583 (((-563) $) NIL (|has| (-563) (-545)))) (-1876 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-3116 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-2174 (((-418 $) $) NIL)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1540 (($ $ (-640 (-563)) (-640 (-563))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-563) (-563)) NIL (|has| (-563) (-309 (-563)))) (($ $ (-294 (-563))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-640 (-294 (-563)))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-640 (-1169)) (-640 (-563))) NIL (|has| (-563) (-514 (-1169) (-563)))) (($ $ (-1169) (-563)) NIL (|has| (-563) (-514 (-1169) (-563))))) (-2628 (((-767) $) NIL)) (-2309 (($ $ (-563)) NIL (|has| (-563) (-286 (-563) (-563))))) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-4202 (($ $) NIL (|has| (-563) (-233))) (($ $ (-767)) NIL (|has| (-563) (-233))) (($ $ (-1169)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1 (-563) (-563)) (-767)) NIL) (($ $ (-1 (-563) (-563))) NIL)) (-1801 (($ $) NIL)) (-2154 (((-563) $) NIL)) (-3605 (($ (-407 (-563))) 9)) (-2220 (((-888 (-563)) $) NIL (|has| (-563) (-611 (-888 (-563))))) (((-888 (-379)) $) NIL (|has| (-563) (-611 (-888 (-379))))) (((-536) $) NIL (|has| (-563) (-611 (-536)))) (((-379) $) NIL (|has| (-563) (-1018))) (((-225) $) NIL (|has| (-563) (-1018)))) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-563) (-905))))) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) 8) (($ (-563)) NIL) (($ (-1169)) NIL (|has| (-563) (-1034 (-1169)))) (((-407 (-563)) $) NIL) (((-1000 10) $) 10)) (-2779 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| $ (-145)) (|has| (-563) (-905))) (|has| (-563) (-145))))) (-1675 (((-767)) NIL)) (-4194 (((-563) $) NIL (|has| (-563) (-545)))) (-2126 (((-112) $ $) NIL)) (-2509 (($ $) NIL (|has| (-563) (-816)))) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-3209 (($ $) NIL (|has| (-563) (-233))) (($ $ (-767)) NIL (|has| (-563) (-233))) (($ $ (-1169)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1 (-563) (-563)) (-767)) NIL) (($ $ (-1 (-563) (-563))) NIL)) (-1778 (((-112) $ $) NIL (|has| (-563) (-846)))) (-1756 (((-112) $ $) NIL (|has| (-563) (-846)))) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL (|has| (-563) (-846)))) (-1744 (((-112) $ $) NIL (|has| (-563) (-846)))) (-1837 (($ $ $) NIL) (($ (-563) (-563)) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ (-563) $) NIL) (($ $ (-563)) NIL))) +(((-217) (-13 (-988 (-563)) (-610 (-407 (-563))) (-610 (-1000 10)) (-10 -8 (-15 -4215 ((-407 (-563)) $)) (-15 -3605 ($ (-407 (-563))))))) (T -217)) +((-4215 (*1 *2 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-217)))) (-3605 (*1 *1 *2) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-217))))) +(-13 (-988 (-563)) (-610 (-407 (-563))) (-610 (-1000 10)) (-10 -8 (-15 -4215 ((-407 (-563)) $)) (-15 -3605 ($ (-407 (-563)))))) +((-1677 (((-112) $ $) NIL)) (-2918 (((-1111) $) 13)) (-3573 (((-1151) $) NIL)) (-2917 (((-483) $) 10)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 25) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3359 (((-1128) $) 15)) (-1718 (((-112) $ $) NIL))) +(((-218) (-13 (-1076) (-10 -8 (-15 -2917 ((-483) $)) (-15 -2918 ((-1111) $)) (-15 -3359 ((-1128) $))))) (T -218)) +((-2917 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-218)))) (-2918 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-218)))) (-3359 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-218))))) +(-13 (-1076) (-10 -8 (-15 -2917 ((-483) $)) (-15 -2918 ((-1111) $)) (-15 -3359 ((-1128) $)))) +((-3698 (((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-640 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1085 (-839 |#2|)) (-1151)) 28) (((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-640 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1085 (-839 |#2|))) 24)) (-3030 (((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-640 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1169) (-839 |#2|) (-839 |#2|) (-112)) 17))) +(((-219 |#1| |#2|) (-10 -7 (-15 -3698 ((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-640 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1085 (-839 |#2|)))) (-15 -3698 ((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-640 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1085 (-839 |#2|)) (-1151))) (-15 -3030 ((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-640 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1169) (-839 |#2|) (-839 |#2|) (-112)))) (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563))) (-13 (-1193) (-955) (-29 |#1|))) (T -219)) +((-3030 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1169)) (-5 *6 (-112)) (-4 *7 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-4 *3 (-13 (-1193) (-955) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-839 *3)) (|:| |f2| (-640 (-839 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *7 *3)) (-5 *5 (-839 *3)))) (-3698 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1085 (-839 *3))) (-5 *5 (-1151)) (-4 *3 (-13 (-1193) (-955) (-29 *6))) (-4 *6 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-3 (|:| |f1| (-839 *3)) (|:| |f2| (-640 (-839 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *6 *3)))) (-3698 (*1 *2 *3 *4) (-12 (-5 *4 (-1085 (-839 *3))) (-4 *3 (-13 (-1193) (-955) (-29 *5))) (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-3 (|:| |f1| (-839 *3)) (|:| |f2| (-640 (-839 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *5 *3))))) +(-10 -7 (-15 -3698 ((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-640 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1085 (-839 |#2|)))) (-15 -3698 ((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-640 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1085 (-839 |#2|)) (-1151))) (-15 -3030 ((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-640 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1169) (-839 |#2|) (-839 |#2|) (-112)))) +((-3698 (((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-407 (-948 |#1|)))) (-1151)) 46) (((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-407 (-948 |#1|))))) 43) (((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-316 |#1|))) (-1151)) 47) (((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-316 |#1|)))) 20))) +(((-220 |#1|) (-10 -7 (-15 -3698 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-316 |#1|))))) (-15 -3698 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-316 |#1|))) (-1151))) (-15 -3698 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-407 (-948 |#1|)))))) (-15 -3698 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-407 (-948 |#1|)))) (-1151)))) (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (T -220)) +((-3698 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1085 (-839 (-407 (-948 *6))))) (-5 *5 (-1151)) (-5 *3 (-407 (-948 *6))) (-4 *6 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-3 (|:| |f1| (-839 (-316 *6))) (|:| |f2| (-640 (-839 (-316 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-3698 (*1 *2 *3 *4) (-12 (-5 *4 (-1085 (-839 (-407 (-948 *5))))) (-5 *3 (-407 (-948 *5))) (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-3 (|:| |f1| (-839 (-316 *5))) (|:| |f2| (-640 (-839 (-316 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5)))) (-3698 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-407 (-948 *6))) (-5 *4 (-1085 (-839 (-316 *6)))) (-5 *5 (-1151)) (-4 *6 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-3 (|:| |f1| (-839 (-316 *6))) (|:| |f2| (-640 (-839 (-316 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-3698 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1085 (-839 (-316 *5)))) (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-3 (|:| |f1| (-839 (-316 *5))) (|:| |f2| (-640 (-839 (-316 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5))))) +(-10 -7 (-15 -3698 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-316 |#1|))))) (-15 -3698 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-316 |#1|))) (-1151))) (-15 -3698 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-407 (-948 |#1|)))))) (-15 -3698 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-407 (-948 |#1|)))) (-1151)))) +((-2444 (((-2 (|:| -1574 (-1165 |#1|)) (|:| |deg| (-917))) (-1165 |#1|)) 21)) (-2213 (((-640 (-316 |#2|)) (-316 |#2|) (-917)) 42))) +(((-221 |#1| |#2|) (-10 -7 (-15 -2444 ((-2 (|:| -1574 (-1165 |#1|)) (|:| |deg| (-917))) (-1165 |#1|))) (-15 -2213 ((-640 (-316 |#2|)) (-316 |#2|) (-917)))) (-1045) (-13 (-555) (-846))) (T -221)) +((-2213 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *6 (-13 (-555) (-846))) (-5 *2 (-640 (-316 *6))) (-5 *1 (-221 *5 *6)) (-5 *3 (-316 *6)) (-4 *5 (-1045)))) (-2444 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-5 *2 (-2 (|:| -1574 (-1165 *4)) (|:| |deg| (-917)))) (-5 *1 (-221 *4 *5)) (-5 *3 (-1165 *4)) (-4 *5 (-13 (-555) (-846)))))) +(-10 -7 (-15 -2444 ((-2 (|:| -1574 (-1165 |#1|)) (|:| |deg| (-917))) (-1165 |#1|))) (-15 -2213 ((-640 (-316 |#2|)) (-316 |#2|) (-917)))) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2844 ((|#1| $) NIL)) (-2636 ((|#1| $) 25)) (-2759 (((-112) $ (-767)) NIL)) (-4239 (($) NIL T CONST)) (-3866 (($ $) NIL)) (-2907 (($ $) 31)) (-4325 ((|#1| |#1| $) NIL)) (-3017 ((|#1| $) NIL)) (-2659 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-2581 (((-112) $ (-767)) NIL)) (-2259 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-4345 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3415 (((-767) $) NIL)) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-2964 ((|#1| $) NIL)) (-3900 ((|#1| |#1| $) 28)) (-3847 ((|#1| |#1| $) 30)) (-1812 (($ |#1| $) NIL)) (-4236 (((-767) $) 27)) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-2822 ((|#1| $) NIL)) (-1910 ((|#1| $) 26)) (-2068 ((|#1| $) 24)) (-3755 ((|#1| $) NIL)) (-3138 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) NIL)) (-3958 ((|#1| |#1| $) NIL)) (-3756 (((-112) $) 9)) (-3135 (($) NIL)) (-1749 ((|#1| $) NIL)) (-1385 (($) NIL) (($ (-640 |#1|)) 16)) (-2370 (((-767) $) NIL)) (-1709 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1872 (($ $) NIL)) (-1693 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-1425 ((|#1| $) 13)) (-2233 (($ (-640 |#1|)) NIL)) (-3498 ((|#1| $) NIL)) (-4383 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-222 |#1|) (-13 (-254 |#1|) (-10 -8 (-15 -1385 ($ (-640 |#1|))))) (-1093)) (T -222)) +((-1385 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-222 *3))))) +(-13 (-254 |#1|) (-10 -8 (-15 -1385 ($ (-640 |#1|))))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-2298 (($ (-316 |#1|)) 23)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4239 (($) NIL T CONST)) (-4134 (((-112) $) NIL)) (-2131 (((-3 (-316 |#1|) "failed") $) NIL)) (-2058 (((-316 |#1|) $) NIL)) (-2751 (($ $) 31)) (-3400 (((-3 $ "failed") $) NIL)) (-3827 (((-112) $) NIL)) (-2240 (($ (-1 (-316 |#1|) (-316 |#1|)) $) NIL)) (-2726 (((-316 |#1|) $) NIL)) (-1947 (($ $) 30)) (-3573 (((-1151) $) NIL)) (-4177 (((-112) $) NIL)) (-1694 (((-1113) $) NIL)) (-4333 (($ (-767)) NIL)) (-2115 (($ $) 32)) (-4167 (((-563) $) NIL)) (-1693 (((-858) $) 57) (($ (-563)) NIL) (($ (-316 |#1|)) NIL)) (-4319 (((-316 |#1|) $ $) NIL)) (-1675 (((-767)) NIL)) (-2241 (($) 25 T CONST)) (-2254 (($) 50 T CONST)) (-1718 (((-112) $ $) 28)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) 19)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 24) (($ (-316 |#1|) $) 18))) +(((-223 |#1| |#2|) (-13 (-617 (-316 |#1|)) (-1034 (-316 |#1|)) (-10 -8 (-15 -2726 ((-316 |#1|) $)) (-15 -1947 ($ $)) (-15 -2751 ($ $)) (-15 -4319 ((-316 |#1|) $ $)) (-15 -4333 ($ (-767))) (-15 -4177 ((-112) $)) (-15 -4134 ((-112) $)) (-15 -4167 ((-563) $)) (-15 -2240 ($ (-1 (-316 |#1|) (-316 |#1|)) $)) (-15 -2298 ($ (-316 |#1|))) (-15 -2115 ($ $)))) (-13 (-1045) (-846)) (-640 (-1169))) (T -223)) +((-2726 (*1 *2 *1) (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-640 (-1169))))) (-1947 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846))) (-14 *3 (-640 (-1169))))) (-2751 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846))) (-14 *3 (-640 (-1169))))) (-4319 (*1 *2 *1 *1) (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-640 (-1169))))) (-4333 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-640 (-1169))))) (-4177 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-640 (-1169))))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-640 (-1169))))) (-4167 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-640 (-1169))))) (-2240 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-316 *3) (-316 *3))) (-4 *3 (-13 (-1045) (-846))) (-5 *1 (-223 *3 *4)) (-14 *4 (-640 (-1169))))) (-2298 (*1 *1 *2) (-12 (-5 *2 (-316 *3)) (-4 *3 (-13 (-1045) (-846))) (-5 *1 (-223 *3 *4)) (-14 *4 (-640 (-1169))))) (-2115 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846))) (-14 *3 (-640 (-1169)))))) +(-13 (-617 (-316 |#1|)) (-1034 (-316 |#1|)) (-10 -8 (-15 -2726 ((-316 |#1|) $)) (-15 -1947 ($ $)) (-15 -2751 ($ $)) (-15 -4319 ((-316 |#1|) $ $)) (-15 -4333 ($ (-767))) (-15 -4177 ((-112) $)) (-15 -4134 ((-112) $)) (-15 -4167 ((-563) $)) (-15 -2240 ($ (-1 (-316 |#1|) (-316 |#1|)) $)) (-15 -2298 ($ (-316 |#1|))) (-15 -2115 ($ $)))) +((-2049 (((-112) (-1151)) 22)) (-2016 (((-3 (-839 |#2|) "failed") (-609 |#2|) |#2| (-839 |#2|) (-839 |#2|) (-112)) 32)) (-3904 (((-3 (-112) "failed") (-1165 |#2|) (-839 |#2|) (-839 |#2|) (-112)) 73) (((-3 (-112) "failed") (-948 |#1|) (-1169) (-839 |#2|) (-839 |#2|) (-112)) 74))) +(((-224 |#1| |#2|) (-10 -7 (-15 -2049 ((-112) (-1151))) (-15 -2016 ((-3 (-839 |#2|) "failed") (-609 |#2|) |#2| (-839 |#2|) (-839 |#2|) (-112))) (-15 -3904 ((-3 (-112) "failed") (-948 |#1|) (-1169) (-839 |#2|) (-839 |#2|) (-112))) (-15 -3904 ((-3 (-112) "failed") (-1165 |#2|) (-839 |#2|) (-839 |#2|) (-112)))) (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))) (-13 (-1193) (-29 |#1|))) (T -224)) +((-3904 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1165 *6)) (-5 *4 (-839 *6)) (-4 *6 (-13 (-1193) (-29 *5))) (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-224 *5 *6)))) (-3904 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-948 *6)) (-5 *4 (-1169)) (-5 *5 (-839 *7)) (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-4 *7 (-13 (-1193) (-29 *6))) (-5 *1 (-224 *6 *7)))) (-2016 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-839 *4)) (-5 *3 (-609 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1193) (-29 *6))) (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-224 *6 *4)))) (-2049 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1193) (-29 *4)))))) +(-10 -7 (-15 -2049 ((-112) (-1151))) (-15 -2016 ((-3 (-839 |#2|) "failed") (-609 |#2|) |#2| (-839 |#2|) (-839 |#2|) (-112))) (-15 -3904 ((-3 (-112) "failed") (-948 |#1|) (-1169) (-839 |#2|) (-839 |#2|) (-112))) (-15 -3904 ((-3 (-112) "failed") (-1165 |#2|) (-839 |#2|) (-839 |#2|) (-112)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) 87)) (-3401 (((-563) $) 98)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-2421 (($ $) NIL)) (-1771 (($ $) 75)) (-1619 (($ $) 63)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-2186 (($ $) 54)) (-1919 (((-112) $ $) NIL)) (-1748 (($ $) 73)) (-1597 (($ $) 61)) (-1857 (((-563) $) 115)) (-1794 (($ $) 78)) (-1643 (($ $) 65)) (-4239 (($) NIL T CONST)) (-3796 (($ $) NIL)) (-2131 (((-3 (-563) "failed") $) 114) (((-3 (-407 (-563)) "failed") $) 111)) (-2058 (((-563) $) 112) (((-407 (-563)) $) 109)) (-3090 (($ $ $) NIL)) (-3400 (((-3 $ "failed") $) 91)) (-3503 (((-407 (-563)) $ (-767)) 107) (((-407 (-563)) $ (-767) (-767)) 106)) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-2468 (((-112) $) NIL)) (-3102 (((-917)) 27) (((-917) (-917)) NIL (|has| $ (-6 -4398)))) (-3101 (((-112) $) NIL)) (-2180 (($) 37)) (-3787 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL)) (-3254 (((-563) $) 33)) (-3827 (((-112) $) NIL)) (-1645 (($ $ (-563)) NIL)) (-3793 (($ $) NIL)) (-1419 (((-112) $) 86)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3084 (($ $ $) 51) (($) 32 (-12 (-2176 (|has| $ (-6 -4390))) (-2176 (|has| $ (-6 -4398)))))) (-1777 (($ $ $) 50) (($) 31 (-12 (-2176 (|has| $ (-6 -4390))) (-2176 (|has| $ (-6 -4398)))))) (-4050 (((-563) $) 25)) (-2165 (($ $) 28)) (-3097 (($ $) 55)) (-4371 (($ $) 60)) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) NIL)) (-3324 (((-917) (-563)) NIL (|has| $ (-6 -4398)))) (-1694 (((-1113) $) 89)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ $ $) NIL) (($ (-640 $)) NIL)) (-4215 (($ $) NIL)) (-1583 (($ $) NIL)) (-4340 (($ (-563) (-563)) NIL) (($ (-563) (-563) (-917)) 99)) (-2174 (((-418 $) $) NIL)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1654 (((-563) $) 26)) (-3480 (($) 36)) (-3368 (($ $) 59)) (-2628 (((-767) $) NIL)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-4113 (((-917)) NIL) (((-917) (-917)) NIL (|has| $ (-6 -4398)))) (-4202 (($ $ (-767)) NIL) (($ $) 92)) (-3814 (((-917) (-563)) NIL (|has| $ (-6 -4398)))) (-1806 (($ $) 76)) (-1656 (($ $) 66)) (-1784 (($ $) 77)) (-1630 (($ $) 64)) (-1759 (($ $) 74)) (-1608 (($ $) 62)) (-2220 (((-379) $) 103) (((-225) $) 100) (((-888 (-379)) $) NIL) (((-536) $) 43)) (-1693 (((-858) $) 40) (($ (-563)) 58) (($ $) NIL) (($ (-407 (-563))) NIL) (($ (-563)) 58) (($ (-407 (-563))) NIL)) (-1675 (((-767)) NIL)) (-4194 (($ $) NIL)) (-1734 (((-917)) 30) (((-917) (-917)) NIL (|has| $ (-6 -4398)))) (-4211 (((-917)) 23)) (-1840 (($ $) 81)) (-1695 (($ $) 69) (($ $ $) 108)) (-2126 (((-112) $ $) NIL)) (-1817 (($ $) 79)) (-1667 (($ $) 67)) (-1862 (($ $) 84)) (-1722 (($ $) 72)) (-1311 (($ $) 82)) (-1735 (($ $) 70)) (-1851 (($ $) 83)) (-1710 (($ $) 71)) (-1829 (($ $) 80)) (-1680 (($ $) 68)) (-2509 (($ $) 116)) (-2241 (($) 34 T CONST)) (-2254 (($) 35 T CONST)) (-3741 (((-1151) $) 17) (((-1151) $ (-112)) 19) (((-1262) (-818) $) 20) (((-1262) (-818) $ (-112)) 21)) (-1341 (($ $) 95)) (-3209 (($ $ (-767)) NIL) (($ $) NIL)) (-3929 (($ $ $) 97)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 52)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) 44)) (-1837 (($ $ $) 85) (($ $ (-563)) 53)) (-1826 (($ $) 45) (($ $ $) 47)) (-1814 (($ $ $) 46)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) 56) (($ $ (-407 (-563))) 127) (($ $ $) 57)) (* (($ (-917) $) 29) (($ (-767) $) NIL) (($ (-563) $) 49) (($ $ $) 48) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL))) +(((-225) (-13 (-404) (-233) (-824) (-1193) (-611 (-536)) (-10 -8 (-15 -1837 ($ $ (-563))) (-15 ** ($ $ $)) (-15 -3480 ($)) (-15 -2165 ($ $)) (-15 -3097 ($ $)) (-15 -1695 ($ $ $)) (-15 -1341 ($ $)) (-15 -3929 ($ $ $)) (-15 -3503 ((-407 (-563)) $ (-767))) (-15 -3503 ((-407 (-563)) $ (-767) (-767)))))) (T -225)) +((** (*1 *1 *1 *1) (-5 *1 (-225))) (-1837 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-225)))) (-3480 (*1 *1) (-5 *1 (-225))) (-2165 (*1 *1 *1) (-5 *1 (-225))) (-3097 (*1 *1 *1) (-5 *1 (-225))) (-1695 (*1 *1 *1 *1) (-5 *1 (-225))) (-1341 (*1 *1 *1) (-5 *1 (-225))) (-3929 (*1 *1 *1 *1) (-5 *1 (-225))) (-3503 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-407 (-563))) (-5 *1 (-225)))) (-3503 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-407 (-563))) (-5 *1 (-225))))) +(-13 (-404) (-233) (-824) (-1193) (-611 (-536)) (-10 -8 (-15 -1837 ($ $ (-563))) (-15 ** ($ $ $)) (-15 -3480 ($)) (-15 -2165 ($ $)) (-15 -3097 ($ $)) (-15 -1695 ($ $ $)) (-15 -1341 ($ $)) (-15 -3929 ($ $ $)) (-15 -3503 ((-407 (-563)) $ (-767))) (-15 -3503 ((-407 (-563)) $ (-767) (-767))))) +((-2507 (((-169 (-225)) (-767) (-169 (-225))) 11) (((-225) (-767) (-225)) 12)) (-3210 (((-169 (-225)) (-169 (-225))) 13) (((-225) (-225)) 14)) (-3579 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 19) (((-225) (-225) (-225)) 22)) (-1760 (((-169 (-225)) (-169 (-225))) 25) (((-225) (-225)) 24)) (-2736 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 43) (((-225) (-225) (-225)) 35)) (-2040 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 48) (((-225) (-225) (-225)) 45)) (-4271 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 15) (((-225) (-225) (-225)) 16)) (-3988 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 17) (((-225) (-225) (-225)) 18)) (-3336 (((-169 (-225)) (-169 (-225))) 60) (((-225) (-225)) 59)) (-4252 (((-225) (-225)) 54) (((-169 (-225)) (-169 (-225))) 58)) (-1341 (((-169 (-225)) (-169 (-225))) 8) (((-225) (-225)) 9)) (-3929 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 30) (((-225) (-225) (-225)) 26))) +(((-226) (-10 -7 (-15 -1341 ((-225) (-225))) (-15 -1341 ((-169 (-225)) (-169 (-225)))) (-15 -3929 ((-225) (-225) (-225))) (-15 -3929 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3210 ((-225) (-225))) (-15 -3210 ((-169 (-225)) (-169 (-225)))) (-15 -1760 ((-225) (-225))) (-15 -1760 ((-169 (-225)) (-169 (-225)))) (-15 -2507 ((-225) (-767) (-225))) (-15 -2507 ((-169 (-225)) (-767) (-169 (-225)))) (-15 -4271 ((-225) (-225) (-225))) (-15 -4271 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2736 ((-225) (-225) (-225))) (-15 -2736 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3988 ((-225) (-225) (-225))) (-15 -3988 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2040 ((-225) (-225) (-225))) (-15 -2040 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -4252 ((-169 (-225)) (-169 (-225)))) (-15 -4252 ((-225) (-225))) (-15 -3336 ((-225) (-225))) (-15 -3336 ((-169 (-225)) (-169 (-225)))) (-15 -3579 ((-225) (-225) (-225))) (-15 -3579 ((-169 (-225)) (-169 (-225)) (-169 (-225)))))) (T -226)) +((-3579 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3579 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3336 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3336 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-4252 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-4252 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2040 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2040 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3988 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3988 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2736 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2736 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-4271 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-4271 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2507 (*1 *2 *3 *2) (-12 (-5 *2 (-169 (-225))) (-5 *3 (-767)) (-5 *1 (-226)))) (-2507 (*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-767)) (-5 *1 (-226)))) (-1760 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1760 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3210 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3210 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3929 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3929 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1341 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1341 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))) +(-10 -7 (-15 -1341 ((-225) (-225))) (-15 -1341 ((-169 (-225)) (-169 (-225)))) (-15 -3929 ((-225) (-225) (-225))) (-15 -3929 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3210 ((-225) (-225))) (-15 -3210 ((-169 (-225)) (-169 (-225)))) (-15 -1760 ((-225) (-225))) (-15 -1760 ((-169 (-225)) (-169 (-225)))) (-15 -2507 ((-225) (-767) (-225))) (-15 -2507 ((-169 (-225)) (-767) (-169 (-225)))) (-15 -4271 ((-225) (-225) (-225))) (-15 -4271 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2736 ((-225) (-225) (-225))) (-15 -2736 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3988 ((-225) (-225) (-225))) (-15 -3988 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2040 ((-225) (-225) (-225))) (-15 -2040 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -4252 ((-169 (-225)) (-169 (-225)))) (-15 -4252 ((-225) (-225))) (-15 -3336 ((-225) (-225))) (-15 -3336 ((-169 (-225)) (-169 (-225)))) (-15 -3579 ((-225) (-225) (-225))) (-15 -3579 ((-169 (-225)) (-169 (-225)) (-169 (-225))))) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3212 (($ (-767) (-767)) NIL)) (-3888 (($ $ $) NIL)) (-3493 (($ (-1257 |#1|)) NIL) (($ $) NIL)) (-1944 (($ |#1| |#1| |#1|) 32)) (-3129 (((-112) $) NIL)) (-4311 (($ $ (-563) (-563)) NIL)) (-4004 (($ $ (-563) (-563)) NIL)) (-1461 (($ $ (-563) (-563) (-563) (-563)) NIL)) (-2767 (($ $) NIL)) (-1937 (((-112) $) NIL)) (-2759 (((-112) $ (-767)) NIL)) (-4356 (($ $ (-563) (-563) $) NIL)) (-1849 ((|#1| $ (-563) (-563) |#1|) NIL) (($ $ (-640 (-563)) (-640 (-563)) $) NIL)) (-4327 (($ $ (-563) (-1257 |#1|)) NIL)) (-4175 (($ $ (-563) (-1257 |#1|)) NIL)) (-4346 (($ |#1| |#1| |#1|) 31)) (-3845 (($ (-767) |#1|) NIL)) (-4239 (($) NIL T CONST)) (-4069 (($ $) NIL (|has| |#1| (-307)))) (-2368 (((-1257 |#1|) $ (-563)) NIL)) (-4121 (($ |#1|) 30)) (-1958 (($ |#1|) 29)) (-1881 (($ |#1|) 28)) (-2522 (((-767) $) NIL (|has| |#1| (-555)))) (-4355 ((|#1| $ (-563) (-563) |#1|) NIL)) (-4293 ((|#1| $ (-563) (-563)) NIL)) (-2659 (((-640 |#1|) $) NIL)) (-1997 (((-767) $) NIL (|has| |#1| (-555)))) (-2345 (((-640 (-1257 |#1|)) $) NIL (|has| |#1| (-555)))) (-2381 (((-767) $) NIL)) (-1566 (($ (-767) (-767) |#1|) NIL)) (-2393 (((-767) $) NIL)) (-2581 (((-112) $ (-767)) NIL)) (-3977 ((|#1| $) NIL (|has| |#1| (-6 (-4409 "*"))))) (-2013 (((-563) $) NIL)) (-3650 (((-563) $) NIL)) (-2259 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1859 (((-563) $) NIL)) (-2207 (((-563) $) NIL)) (-4038 (($ (-640 (-640 |#1|))) 11)) (-4345 (($ (-1 |#1| |#1|) $) NIL)) (-2240 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4136 (((-640 (-640 |#1|)) $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-2591 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-3406 (($) 12)) (-3757 (($ $ $) NIL)) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-2358 (($ $ |#1|) NIL)) (-3008 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555)))) (-3138 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) NIL)) (-2309 ((|#1| $ (-563) (-563)) NIL) ((|#1| $ (-563) (-563) |#1|) NIL) (($ $ (-640 (-563)) (-640 (-563))) NIL)) (-2104 (($ (-640 |#1|)) NIL) (($ (-640 $)) NIL)) (-2717 (((-112) $) NIL)) (-3848 ((|#1| $) NIL (|has| |#1| (-6 (-4409 "*"))))) (-1709 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1872 (($ $) NIL)) (-1912 (((-1257 |#1|) $ (-563)) NIL)) (-1693 (($ (-1257 |#1|)) NIL) (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-4383 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3280 (((-112) $) NIL)) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1837 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1826 (($ $ $) NIL) (($ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| |#1| (-363)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-563) $) NIL) (((-1257 |#1|) $ (-1257 |#1|)) 15) (((-1257 |#1|) (-1257 |#1|) $) NIL) (((-939 |#1|) $ (-939 |#1|)) 20)) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-227 |#1|) (-13 (-682 |#1| (-1257 |#1|) (-1257 |#1|)) (-10 -8 (-15 * ((-939 |#1|) $ (-939 |#1|))) (-15 -3406 ($)) (-15 -1881 ($ |#1|)) (-15 -1958 ($ |#1|)) (-15 -4121 ($ |#1|)) (-15 -4346 ($ |#1| |#1| |#1|)) (-15 -1944 ($ |#1| |#1| |#1|)))) (-13 (-363) (-1193))) (T -227)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193))) (-5 *1 (-227 *3)))) (-3406 (*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193))))) (-1881 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193))))) (-1958 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193))))) (-4121 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193))))) (-4346 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193))))) (-1944 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193)))))) +(-13 (-682 |#1| (-1257 |#1|) (-1257 |#1|)) (-10 -8 (-15 * ((-939 |#1|) $ (-939 |#1|))) (-15 -3406 ($)) (-15 -1881 ($ |#1|)) (-15 -1958 ($ |#1|)) (-15 -4121 ($ |#1|)) (-15 -4346 ($ |#1| |#1| |#1|)) (-15 -1944 ($ |#1| |#1| |#1|)))) +((-2812 (($ (-1 (-112) |#2|) $) 15)) (-2705 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 24)) (-3890 (($) NIL) (($ (-640 |#2|)) 11)) (-1718 (((-112) $ $) 22))) +(((-228 |#1| |#2|) (-10 -8 (-15 -2812 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2705 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2705 (|#1| |#2| |#1|)) (-15 -3890 (|#1| (-640 |#2|))) (-15 -3890 (|#1|)) (-15 -1718 ((-112) |#1| |#1|))) (-229 |#2|) (-1093)) (T -228)) +NIL +(-10 -8 (-15 -2812 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2705 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2705 (|#1| |#2| |#1|)) (-15 -3890 (|#1| (-640 |#2|))) (-15 -3890 (|#1|)) (-15 -1718 ((-112) |#1| |#1|))) +((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-2759 (((-112) $ (-767)) 8)) (-2812 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4407)))) (-2256 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4407)))) (-4239 (($) 7 T CONST)) (-3813 (($ $) 58 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-2705 (($ |#1| $) 47 (|has| $ (-6 -4407))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4407)))) (-1459 (($ |#1| $) 57 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4407)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4407)))) (-2659 (((-640 |#1|) $) 30 (|has| $ (-6 -4407)))) (-2581 (((-112) $ (-767)) 9)) (-2259 (((-640 |#1|) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-4345 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 35)) (-2382 (((-112) $ (-767)) 10)) (-3573 (((-1151) $) 22 (|has| |#1| (-1093)))) (-2964 ((|#1| $) 39)) (-1812 (($ |#1| $) 40)) (-1694 (((-1113) $) 21 (|has| |#1| (-1093)))) (-4203 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3755 ((|#1| $) 41)) (-3138 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) 14)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-3890 (($) 49) (($ (-640 |#1|)) 48)) (-1709 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4407))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1872 (($ $) 13)) (-2220 (((-536) $) 59 (|has| |#1| (-611 (-536))))) (-1707 (($ (-640 |#1|)) 50)) (-1693 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-2233 (($ (-640 |#1|)) 42)) (-4383 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-229 |#1|) (-140) (-1093)) (T -229)) +NIL +(-13 (-235 |t#1|)) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4032 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T)) +((-4202 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) 11) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169)) 19) (($ $ (-767)) NIL) (($ $) 16)) (-3209 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-767)) 14) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169)) NIL) (($ $ (-767)) NIL) (($ $) NIL))) +(((-230 |#1| |#2|) (-10 -8 (-15 -4202 (|#1| |#1|)) (-15 -3209 (|#1| |#1|)) (-15 -4202 (|#1| |#1| (-767))) (-15 -3209 (|#1| |#1| (-767))) (-15 -4202 (|#1| |#1| (-1169))) (-15 -4202 (|#1| |#1| (-640 (-1169)))) (-15 -4202 (|#1| |#1| (-1169) (-767))) (-15 -4202 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -3209 (|#1| |#1| (-1169))) (-15 -3209 (|#1| |#1| (-640 (-1169)))) (-15 -3209 (|#1| |#1| (-1169) (-767))) (-15 -3209 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -3209 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -3209 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4202 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4202 (|#1| |#1| (-1 |#2| |#2|)))) (-231 |#2|) (-1045)) (T -230)) +NIL +(-10 -8 (-15 -4202 (|#1| |#1|)) (-15 -3209 (|#1| |#1|)) (-15 -4202 (|#1| |#1| (-767))) (-15 -3209 (|#1| |#1| (-767))) (-15 -4202 (|#1| |#1| (-1169))) (-15 -4202 (|#1| |#1| (-640 (-1169)))) (-15 -4202 (|#1| |#1| (-1169) (-767))) (-15 -4202 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -3209 (|#1| |#1| (-1169))) (-15 -3209 (|#1| |#1| (-640 (-1169)))) (-15 -3209 (|#1| |#1| (-1169) (-767))) (-15 -3209 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -3209 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -3209 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4202 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4202 (|#1| |#1| (-1 |#2| |#2|)))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-3400 (((-3 $ "failed") $) 33)) (-3827 (((-112) $) 31)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-4202 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-767)) 51) (($ $ (-640 (-1169)) (-640 (-767))) 44 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 43 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 42 (|has| |#1| (-896 (-1169)))) (($ $ (-1169)) 41 (|has| |#1| (-896 (-1169)))) (($ $ (-767)) 39 (|has| |#1| (-233))) (($ $) 37 (|has| |#1| (-233)))) (-1693 (((-858) $) 11) (($ (-563)) 29)) (-1675 (((-767)) 28)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-3209 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-767)) 49) (($ $ (-640 (-1169)) (-640 (-767))) 48 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 47 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 46 (|has| |#1| (-896 (-1169)))) (($ $ (-1169)) 45 (|has| |#1| (-896 (-1169)))) (($ $ (-767)) 40 (|has| |#1| (-233))) (($ $) 38 (|has| |#1| (-233)))) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) +(((-231 |#1|) (-140) (-1045)) (T -231)) +((-4202 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1045)))) (-4202 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *1 (-231 *4)) (-4 *4 (-1045)))) (-3209 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1045)))) (-3209 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *1 (-231 *4)) (-4 *4 (-1045))))) +(-13 (-1045) (-10 -8 (-15 -4202 ($ $ (-1 |t#1| |t#1|))) (-15 -4202 ($ $ (-1 |t#1| |t#1|) (-767))) (-15 -3209 ($ $ (-1 |t#1| |t#1|))) (-15 -3209 ($ $ (-1 |t#1| |t#1|) (-767))) (IF (|has| |t#1| (-233)) (-6 (-233)) |%noBranch|) (IF (|has| |t#1| (-896 (-1169))) (-6 (-896 (-1169))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-233) |has| |#1| (-233)) ((-643 $) . T) ((-722) . T) ((-896 (-1169)) |has| |#1| (-896 (-1169))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) +((-4202 (($ $) NIL) (($ $ (-767)) 10)) (-3209 (($ $) 8) (($ $ (-767)) 12))) +(((-232 |#1|) (-10 -8 (-15 -3209 (|#1| |#1| (-767))) (-15 -4202 (|#1| |#1| (-767))) (-15 -3209 (|#1| |#1|)) (-15 -4202 (|#1| |#1|))) (-233)) (T -232)) +NIL +(-10 -8 (-15 -3209 (|#1| |#1| (-767))) (-15 -4202 (|#1| |#1| (-767))) (-15 -3209 (|#1| |#1|)) (-15 -4202 (|#1| |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-3400 (((-3 $ "failed") $) 33)) (-3827 (((-112) $) 31)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-4202 (($ $) 38) (($ $ (-767)) 36)) (-1693 (((-858) $) 11) (($ (-563)) 29)) (-1675 (((-767)) 28)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-3209 (($ $) 37) (($ $ (-767)) 35)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) +(((-233) (-140)) (T -233)) +((-4202 (*1 *1 *1) (-4 *1 (-233))) (-3209 (*1 *1 *1) (-4 *1 (-233))) (-4202 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-767)))) (-3209 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-767))))) +(-13 (-1045) (-10 -8 (-15 -4202 ($ $)) (-15 -3209 ($ $)) (-15 -4202 ($ $ (-767))) (-15 -3209 ($ $ (-767))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-643 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) +((-3890 (($) 12) (($ (-640 |#2|)) NIL)) (-1872 (($ $) 14)) (-1707 (($ (-640 |#2|)) 10)) (-1693 (((-858) $) 21))) +(((-234 |#1| |#2|) (-10 -8 (-15 -1693 ((-858) |#1|)) (-15 -3890 (|#1| (-640 |#2|))) (-15 -3890 (|#1|)) (-15 -1707 (|#1| (-640 |#2|))) (-15 -1872 (|#1| |#1|))) (-235 |#2|) (-1093)) (T -234)) +NIL +(-10 -8 (-15 -1693 ((-858) |#1|)) (-15 -3890 (|#1| (-640 |#2|))) (-15 -3890 (|#1|)) (-15 -1707 (|#1| (-640 |#2|))) (-15 -1872 (|#1| |#1|))) +((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-2759 (((-112) $ (-767)) 8)) (-2812 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4407)))) (-2256 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4407)))) (-4239 (($) 7 T CONST)) (-3813 (($ $) 58 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-2705 (($ |#1| $) 47 (|has| $ (-6 -4407))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4407)))) (-1459 (($ |#1| $) 57 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4407)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4407)))) (-2659 (((-640 |#1|) $) 30 (|has| $ (-6 -4407)))) (-2581 (((-112) $ (-767)) 9)) (-2259 (((-640 |#1|) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-4345 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 35)) (-2382 (((-112) $ (-767)) 10)) (-3573 (((-1151) $) 22 (|has| |#1| (-1093)))) (-2964 ((|#1| $) 39)) (-1812 (($ |#1| $) 40)) (-1694 (((-1113) $) 21 (|has| |#1| (-1093)))) (-4203 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3755 ((|#1| $) 41)) (-3138 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) 14)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-3890 (($) 49) (($ (-640 |#1|)) 48)) (-1709 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4407))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1872 (($ $) 13)) (-2220 (((-536) $) 59 (|has| |#1| (-611 (-536))))) (-1707 (($ (-640 |#1|)) 50)) (-1693 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-2233 (($ (-640 |#1|)) 42)) (-4383 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-235 |#1|) (-140) (-1093)) (T -235)) +((-3890 (*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1093)))) (-3890 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-4 *1 (-235 *3)))) (-2705 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-235 *2)) (-4 *2 (-1093)))) (-2705 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4407)) (-4 *1 (-235 *3)) (-4 *3 (-1093)))) (-2812 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4407)) (-4 *1 (-235 *3)) (-4 *3 (-1093))))) +(-13 (-107 |t#1|) (-151 |t#1|) (-10 -8 (-15 -3890 ($)) (-15 -3890 ($ (-640 |t#1|))) (IF (|has| $ (-6 -4407)) (PROGN (-15 -2705 ($ |t#1| $)) (-15 -2705 ($ (-1 (-112) |t#1|) $)) (-15 -2812 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4032 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T)) +((-2438 (((-2 (|:| |varOrder| (-640 (-1169))) (|:| |inhom| (-3 (-640 (-1257 (-767))) "failed")) (|:| |hom| (-640 (-1257 (-767))))) (-294 (-948 (-563)))) 27))) +(((-236) (-10 -7 (-15 -2438 ((-2 (|:| |varOrder| (-640 (-1169))) (|:| |inhom| (-3 (-640 (-1257 (-767))) "failed")) (|:| |hom| (-640 (-1257 (-767))))) (-294 (-948 (-563))))))) (T -236)) +((-2438 (*1 *2 *3) (-12 (-5 *3 (-294 (-948 (-563)))) (-5 *2 (-2 (|:| |varOrder| (-640 (-1169))) (|:| |inhom| (-3 (-640 (-1257 (-767))) "failed")) (|:| |hom| (-640 (-1257 (-767)))))) (-5 *1 (-236))))) +(-10 -7 (-15 -2438 ((-2 (|:| |varOrder| (-640 (-1169))) (|:| |inhom| (-3 (-640 (-1257 (-767))) "failed")) (|:| |hom| (-640 (-1257 (-767))))) (-294 (-948 (-563)))))) +((-3749 (((-767)) 51)) (-2950 (((-2 (|:| -2835 (-684 |#3|)) (|:| |vec| (-1257 |#3|))) (-684 $) (-1257 $)) 49) (((-684 |#3|) (-684 $)) 41) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-684 (-563)) (-684 $)) NIL)) (-3533 (((-134)) 57)) (-4202 (($ $ (-1 |#3| |#3|) (-767)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169)) NIL) (($ $ (-767)) NIL) (($ $) NIL)) (-1693 (((-1257 |#3|) $) NIL) (($ |#3|) NIL) (((-858) $) NIL) (($ (-563)) 12) (($ (-407 (-563))) NIL)) (-1675 (((-767)) 15)) (-1837 (($ $ |#3|) 54))) +(((-237 |#1| |#2| |#3|) (-10 -8 (-15 -1693 (|#1| (-407 (-563)))) (-15 -1693 (|#1| (-563))) (-15 -1693 ((-858) |#1|)) (-15 -1675 ((-767))) (-15 -4202 (|#1| |#1|)) (-15 -4202 (|#1| |#1| (-767))) (-15 -4202 (|#1| |#1| (-1169))) (-15 -4202 (|#1| |#1| (-640 (-1169)))) (-15 -4202 (|#1| |#1| (-1169) (-767))) (-15 -4202 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -2950 ((-684 (-563)) (-684 |#1|))) (-15 -2950 ((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -1693 (|#1| |#3|)) (-15 -4202 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4202 (|#1| |#1| (-1 |#3| |#3|) (-767))) (-15 -2950 ((-684 |#3|) (-684 |#1|))) (-15 -2950 ((-2 (|:| -2835 (-684 |#3|)) (|:| |vec| (-1257 |#3|))) (-684 |#1|) (-1257 |#1|))) (-15 -3749 ((-767))) (-15 -1837 (|#1| |#1| |#3|)) (-15 -3533 ((-134))) (-15 -1693 ((-1257 |#3|) |#1|))) (-238 |#2| |#3|) (-767) (-1208)) (T -237)) +((-3533 (*1 *2) (-12 (-14 *4 (-767)) (-4 *5 (-1208)) (-5 *2 (-134)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-3749 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1208)) (-5 *2 (-767)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-1675 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1208)) (-5 *2 (-767)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))) +(-10 -8 (-15 -1693 (|#1| (-407 (-563)))) (-15 -1693 (|#1| (-563))) (-15 -1693 ((-858) |#1|)) (-15 -1675 ((-767))) (-15 -4202 (|#1| |#1|)) (-15 -4202 (|#1| |#1| (-767))) (-15 -4202 (|#1| |#1| (-1169))) (-15 -4202 (|#1| |#1| (-640 (-1169)))) (-15 -4202 (|#1| |#1| (-1169) (-767))) (-15 -4202 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -2950 ((-684 (-563)) (-684 |#1|))) (-15 -2950 ((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -1693 (|#1| |#3|)) (-15 -4202 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4202 (|#1| |#1| (-1 |#3| |#3|) (-767))) (-15 -2950 ((-684 |#3|) (-684 |#1|))) (-15 -2950 ((-2 (|:| -2835 (-684 |#3|)) (|:| |vec| (-1257 |#3|))) (-684 |#1|) (-1257 |#1|))) (-15 -3749 ((-767))) (-15 -1837 (|#1| |#1| |#3|)) (-15 -3533 ((-134))) (-15 -1693 ((-1257 |#3|) |#1|))) +((-1677 (((-112) $ $) 19 (|has| |#2| (-1093)))) (-3411 (((-112) $) 72 (|has| |#2| (-131)))) (-1946 (($ (-917)) 125 (|has| |#2| (-1045)))) (-4378 (((-1262) $ (-563) (-563)) 40 (|has| $ (-6 -4408)))) (-1901 (($ $ $) 121 (|has| |#2| (-789)))) (-1495 (((-3 $ "failed") $ $) 74 (|has| |#2| (-131)))) (-2759 (((-112) $ (-767)) 8)) (-3749 (((-767)) 107 (|has| |#2| (-368)))) (-1857 (((-563) $) 119 (|has| |#2| (-844)))) (-1849 ((|#2| $ (-563) |#2|) 52 (|has| $ (-6 -4408)))) (-4239 (($) 7 T CONST)) (-2131 (((-3 (-563) "failed") $) 67 (-2190 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093)))) (((-3 (-407 (-563)) "failed") $) 64 (-2190 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1093)))) (-2058 (((-563) $) 66 (-2190 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093)))) (((-407 (-563)) $) 63 (-2190 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) ((|#2| $) 62 (|has| |#2| (-1093)))) (-2950 (((-684 (-563)) (-684 $)) 106 (-2190 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 105 (-2190 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045)))) (((-2 (|:| -2835 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) 104 (|has| |#2| (-1045))) (((-684 |#2|) (-684 $)) 103 (|has| |#2| (-1045)))) (-3400 (((-3 $ "failed") $) 79 (|has| |#2| (-722)))) (-1691 (($) 110 (|has| |#2| (-368)))) (-4355 ((|#2| $ (-563) |#2|) 53 (|has| $ (-6 -4408)))) (-4293 ((|#2| $ (-563)) 51)) (-3101 (((-112) $) 117 (|has| |#2| (-844)))) (-2659 (((-640 |#2|) $) 30 (|has| $ (-6 -4407)))) (-3827 (((-112) $) 81 (|has| |#2| (-722)))) (-1419 (((-112) $) 118 (|has| |#2| (-844)))) (-2581 (((-112) $ (-767)) 9)) (-2411 (((-563) $) 43 (|has| (-563) (-846)))) (-3084 (($ $ $) 116 (-4032 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-2259 (((-640 |#2|) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1093)) (|has| $ (-6 -4407))))) (-3860 (((-563) $) 44 (|has| (-563) (-846)))) (-1777 (($ $ $) 115 (-4032 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-4345 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#2| |#2|) $) 35)) (-1476 (((-917) $) 109 (|has| |#2| (-368)))) (-2382 (((-112) $ (-767)) 10)) (-3573 (((-1151) $) 22 (|has| |#2| (-1093)))) (-4318 (((-640 (-563)) $) 46)) (-3192 (((-112) (-563) $) 47)) (-2555 (($ (-917)) 108 (|has| |#2| (-368)))) (-1694 (((-1113) $) 21 (|has| |#2| (-1093)))) (-3781 ((|#2| $) 42 (|has| (-563) (-846)))) (-2358 (($ $ |#2|) 41 (|has| $ (-6 -4408)))) (-3138 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#2|))) 26 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) 25 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) 23 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-2026 (((-112) $ $) 14)) (-2105 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093))))) (-2836 (((-640 |#2|) $) 48)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-2309 ((|#2| $ (-563) |#2|) 50) ((|#2| $ (-563)) 49)) (-4092 ((|#2| $ $) 124 (|has| |#2| (-1045)))) (-2510 (($ (-1257 |#2|)) 126)) (-3533 (((-134)) 123 (|has| |#2| (-363)))) (-4202 (($ $) 98 (-2190 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) 96 (-2190 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1169)) 94 (-2190 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169))) 93 (-2190 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1169) (-767)) 92 (-2190 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169)) (-640 (-767))) 91 (-2190 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) 84 (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1045)))) (-1709 (((-767) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4407))) (((-767) |#2| $) 28 (-12 (|has| |#2| (-1093)) (|has| $ (-6 -4407))))) (-1872 (($ $) 13)) (-1693 (((-1257 |#2|) $) 127) (($ (-563)) 68 (-4032 (-2190 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) (|has| |#2| (-1045)))) (($ (-407 (-563))) 65 (-2190 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) (($ |#2|) 60 (|has| |#2| (-1093))) (((-858) $) 18 (|has| |#2| (-610 (-858))))) (-1675 (((-767)) 102 (|has| |#2| (-1045)))) (-4383 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4407)))) (-2509 (($ $) 120 (|has| |#2| (-844)))) (-2241 (($) 71 (|has| |#2| (-131)) CONST)) (-2254 (($) 82 (|has| |#2| (-722)) CONST)) (-3209 (($ $) 97 (-2190 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) 95 (-2190 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1169)) 90 (-2190 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169))) 89 (-2190 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1169) (-767)) 88 (-2190 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169)) (-640 (-767))) 87 (-2190 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) 86 (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1045)))) (-1778 (((-112) $ $) 113 (-4032 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-1756 (((-112) $ $) 112 (-4032 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-1718 (((-112) $ $) 20 (|has| |#2| (-1093)))) (-1768 (((-112) $ $) 114 (-4032 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-1744 (((-112) $ $) 111 (-4032 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-1837 (($ $ |#2|) 122 (|has| |#2| (-363)))) (-1826 (($ $ $) 100 (|has| |#2| (-1045))) (($ $) 99 (|has| |#2| (-1045)))) (-1814 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-767)) 80 (|has| |#2| (-722))) (($ $ (-917)) 77 (|has| |#2| (-722)))) (* (($ (-563) $) 101 (|has| |#2| (-1045))) (($ $ $) 78 (|has| |#2| (-722))) (($ $ |#2|) 76 (|has| |#2| (-722))) (($ |#2| $) 75 (|has| |#2| (-722))) (($ (-767) $) 73 (|has| |#2| (-131))) (($ (-917) $) 70 (|has| |#2| (-25)))) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-238 |#1| |#2|) (-140) (-767) (-1208)) (T -238)) +((-2510 (*1 *1 *2) (-12 (-5 *2 (-1257 *4)) (-4 *4 (-1208)) (-4 *1 (-238 *3 *4)))) (-1946 (*1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1045)) (-4 *4 (-1208)))) (-4092 (*1 *2 *1 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1208)) (-4 *2 (-1045)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1208)) (-4 *2 (-722)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1208)) (-4 *2 (-722))))) +(-13 (-601 (-563) |t#2|) (-610 (-1257 |t#2|)) (-10 -8 (-6 -4407) (-15 -2510 ($ (-1257 |t#2|))) (IF (|has| |t#2| (-1093)) (-6 (-411 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1045)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-231 |t#2|)) (-6 (-377 |t#2|)) (-15 -1946 ($ (-917))) (-15 -4092 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-131)) (-6 (-131)) |%noBranch|) (IF (|has| |t#2| (-722)) (PROGN (-6 (-722)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#2| (-172)) (PROGN (-6 (-38 |t#2|)) (-6 (-172))) |%noBranch|) (IF (|has| |t#2| (-6 -4404)) (-6 -4404) |%noBranch|) (IF (|has| |t#2| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |t#2| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#2| (-363)) (-6 (-1264 |t#2|)) |%noBranch|))) +(((-21) -4032 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-23) -4032 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-25) -4032 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) -4032 (|has| |#2| (-1093)) (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-722)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -4032 (|has| |#2| (-1045)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-111 $ $) |has| |#2| (-172)) ((-131) -4032 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-613 #0=(-407 (-563))) -12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093))) ((-613 (-563)) -4032 (|has| |#2| (-1045)) (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) (|has| |#2| (-844)) (|has| |#2| (-172))) ((-613 |#2|) -4032 (|has| |#2| (-1093)) (|has| |#2| (-172))) ((-610 (-858)) -4032 (|has| |#2| (-1093)) (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-722)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-610 (-858))) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-610 (-1257 |#2|)) . T) ((-172) |has| |#2| (-172)) ((-231 |#2|) |has| |#2| (-1045)) ((-233) -12 (|has| |#2| (-233)) (|has| |#2| (-1045))) ((-286 #1=(-563) |#2|) . T) ((-288 #1# |#2|) . T) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((-368) |has| |#2| (-368)) ((-377 |#2|) |has| |#2| (-1045)) ((-411 |#2|) |has| |#2| (-1093)) ((-489 |#2|) . T) ((-601 #1# |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((-643 |#2|) -4032 (|has| |#2| (-1045)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-643 $) -4032 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-172))) ((-636 (-563)) -12 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045))) ((-636 |#2|) |has| |#2| (-1045)) ((-713 |#2|) -4032 (|has| |#2| (-363)) (|has| |#2| (-172))) ((-722) -4032 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-722)) (|has| |#2| (-172))) ((-787) |has| |#2| (-844)) ((-788) -4032 (|has| |#2| (-844)) (|has| |#2| (-789))) ((-789) |has| |#2| (-789)) ((-790) -4032 (|has| |#2| (-844)) (|has| |#2| (-789))) ((-791) -4032 (|has| |#2| (-844)) (|has| |#2| (-789))) ((-844) |has| |#2| (-844)) ((-846) -4032 (|has| |#2| (-844)) (|has| |#2| (-789))) ((-896 (-1169)) -12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045))) ((-1034 #0#) -12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093))) ((-1034 (-563)) -12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) ((-1034 |#2|) |has| |#2| (-1093)) ((-1051 |#2|) -4032 (|has| |#2| (-1045)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-1051 $) |has| |#2| (-172)) ((-1045) -4032 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-172))) ((-1052) -4032 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-172))) ((-1105) -4032 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-722)) (|has| |#2| (-172))) ((-1093) -4032 (|has| |#2| (-1093)) (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-722)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-1208) . T) ((-1264 |#2|) |has| |#2| (-363))) +((-1567 (((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 21)) (-2444 ((|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 23)) (-2240 (((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)) 18))) +(((-239 |#1| |#2| |#3|) (-10 -7 (-15 -1567 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2444 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2240 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) (-767) (-1208) (-1208)) (T -239)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-767)) (-4 *6 (-1208)) (-4 *7 (-1208)) (-5 *2 (-240 *5 *7)) (-5 *1 (-239 *5 *6 *7)))) (-2444 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-767)) (-4 *6 (-1208)) (-4 *2 (-1208)) (-5 *1 (-239 *5 *6 *2)))) (-1567 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-767)) (-4 *7 (-1208)) (-4 *5 (-1208)) (-5 *2 (-240 *6 *5)) (-5 *1 (-239 *6 *7 *5))))) +(-10 -7 (-15 -1567 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2444 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2240 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) +((-1677 (((-112) $ $) NIL (|has| |#2| (-1093)))) (-3411 (((-112) $) NIL (|has| |#2| (-131)))) (-1946 (($ (-917)) 56 (|has| |#2| (-1045)))) (-4378 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4408)))) (-1901 (($ $ $) 60 (|has| |#2| (-789)))) (-1495 (((-3 $ "failed") $ $) 49 (|has| |#2| (-131)))) (-2759 (((-112) $ (-767)) 17)) (-3749 (((-767)) NIL (|has| |#2| (-368)))) (-1857 (((-563) $) NIL (|has| |#2| (-844)))) (-1849 ((|#2| $ (-563) |#2|) NIL (|has| $ (-6 -4408)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-563) "failed") $) NIL (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093)))) (((-3 (-407 (-563)) "failed") $) NIL (-12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1093)))) (-2058 (((-563) $) NIL (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093)))) (((-407 (-563)) $) NIL (-12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) ((|#2| $) 27 (|has| |#2| (-1093)))) (-2950 (((-684 (-563)) (-684 $)) NIL (-12 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (-12 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045)))) (((-2 (|:| -2835 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL (|has| |#2| (-1045))) (((-684 |#2|) (-684 $)) NIL (|has| |#2| (-1045)))) (-3400 (((-3 $ "failed") $) 53 (|has| |#2| (-722)))) (-1691 (($) NIL (|has| |#2| (-368)))) (-4355 ((|#2| $ (-563) |#2|) NIL (|has| $ (-6 -4408)))) (-4293 ((|#2| $ (-563)) 51)) (-3101 (((-112) $) NIL (|has| |#2| (-844)))) (-2659 (((-640 |#2|) $) 15 (|has| $ (-6 -4407)))) (-3827 (((-112) $) NIL (|has| |#2| (-722)))) (-1419 (((-112) $) NIL (|has| |#2| (-844)))) (-2581 (((-112) $ (-767)) NIL)) (-2411 (((-563) $) 20 (|has| (-563) (-846)))) (-3084 (($ $ $) NIL (-4032 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2259 (((-640 |#2|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093))))) (-3860 (((-563) $) 50 (|has| (-563) (-846)))) (-1777 (($ $ $) NIL (-4032 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-4345 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#2| |#2|) $) 41)) (-1476 (((-917) $) NIL (|has| |#2| (-368)))) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL (|has| |#2| (-1093)))) (-4318 (((-640 (-563)) $) NIL)) (-3192 (((-112) (-563) $) NIL)) (-2555 (($ (-917)) NIL (|has| |#2| (-368)))) (-1694 (((-1113) $) NIL (|has| |#2| (-1093)))) (-3781 ((|#2| $) NIL (|has| (-563) (-846)))) (-2358 (($ $ |#2|) NIL (|has| $ (-6 -4408)))) (-3138 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-2026 (((-112) $ $) NIL)) (-2105 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093))))) (-2836 (((-640 |#2|) $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) NIL)) (-2309 ((|#2| $ (-563) |#2|) NIL) ((|#2| $ (-563)) 21)) (-4092 ((|#2| $ $) NIL (|has| |#2| (-1045)))) (-2510 (($ (-1257 |#2|)) 18)) (-3533 (((-134)) NIL (|has| |#2| (-363)))) (-4202 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-1709 (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093))))) (-1872 (($ $) NIL)) (-1693 (((-1257 |#2|) $) 10) (($ (-563)) NIL (-4032 (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) (|has| |#2| (-1045)))) (($ (-407 (-563))) NIL (-12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) (($ |#2|) 13 (|has| |#2| (-1093))) (((-858) $) NIL (|has| |#2| (-610 (-858))))) (-1675 (((-767)) NIL (|has| |#2| (-1045)))) (-4383 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-2509 (($ $) NIL (|has| |#2| (-844)))) (-2241 (($) 35 (|has| |#2| (-131)) CONST)) (-2254 (($) 38 (|has| |#2| (-722)) CONST)) (-3209 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-1778 (((-112) $ $) NIL (-4032 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1756 (((-112) $ $) NIL (-4032 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1718 (((-112) $ $) 26 (|has| |#2| (-1093)))) (-1768 (((-112) $ $) NIL (-4032 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1744 (((-112) $ $) 58 (-4032 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1837 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1826 (($ $ $) NIL (|has| |#2| (-1045))) (($ $) NIL (|has| |#2| (-1045)))) (-1814 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-767)) NIL (|has| |#2| (-722))) (($ $ (-917)) NIL (|has| |#2| (-722)))) (* (($ (-563) $) NIL (|has| |#2| (-1045))) (($ $ $) 44 (|has| |#2| (-722))) (($ $ |#2|) 42 (|has| |#2| (-722))) (($ |#2| $) 43 (|has| |#2| (-722))) (($ (-767) $) NIL (|has| |#2| (-131))) (($ (-917) $) NIL (|has| |#2| (-25)))) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-240 |#1| |#2|) (-238 |#1| |#2|) (-767) (-1208)) (T -240)) +NIL +(-238 |#1| |#2|) +((-2922 (((-563) (-640 (-1151))) 24) (((-563) (-1151)) 19)) (-3716 (((-1262) (-640 (-1151))) 29) (((-1262) (-1151)) 28)) (-3213 (((-1151)) 14)) (-3418 (((-1151) (-563) (-1151)) 16)) (-3408 (((-640 (-1151)) (-640 (-1151)) (-563) (-1151)) 25) (((-1151) (-1151) (-563) (-1151)) 23)) (-3995 (((-640 (-1151)) (-640 (-1151))) 13) (((-640 (-1151)) (-1151)) 11))) +(((-241) (-10 -7 (-15 -3995 ((-640 (-1151)) (-1151))) (-15 -3995 ((-640 (-1151)) (-640 (-1151)))) (-15 -3213 ((-1151))) (-15 -3418 ((-1151) (-563) (-1151))) (-15 -3408 ((-1151) (-1151) (-563) (-1151))) (-15 -3408 ((-640 (-1151)) (-640 (-1151)) (-563) (-1151))) (-15 -3716 ((-1262) (-1151))) (-15 -3716 ((-1262) (-640 (-1151)))) (-15 -2922 ((-563) (-1151))) (-15 -2922 ((-563) (-640 (-1151)))))) (T -241)) +((-2922 (*1 *2 *3) (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-563)) (-5 *1 (-241)))) (-2922 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-563)) (-5 *1 (-241)))) (-3716 (*1 *2 *3) (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-1262)) (-5 *1 (-241)))) (-3716 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-241)))) (-3408 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-640 (-1151))) (-5 *3 (-563)) (-5 *4 (-1151)) (-5 *1 (-241)))) (-3408 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1151)) (-5 *3 (-563)) (-5 *1 (-241)))) (-3418 (*1 *2 *3 *2) (-12 (-5 *2 (-1151)) (-5 *3 (-563)) (-5 *1 (-241)))) (-3213 (*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-241)))) (-3995 (*1 *2 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-241)))) (-3995 (*1 *2 *3) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-241)) (-5 *3 (-1151))))) +(-10 -7 (-15 -3995 ((-640 (-1151)) (-1151))) (-15 -3995 ((-640 (-1151)) (-640 (-1151)))) (-15 -3213 ((-1151))) (-15 -3418 ((-1151) (-563) (-1151))) (-15 -3408 ((-1151) (-1151) (-563) (-1151))) (-15 -3408 ((-640 (-1151)) (-640 (-1151)) (-563) (-1151))) (-15 -3716 ((-1262) (-1151))) (-15 -3716 ((-1262) (-640 (-1151)))) (-15 -2922 ((-563) (-1151))) (-15 -2922 ((-563) (-640 (-1151))))) +((** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) 16)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ (-407 (-563)) $) 23) (($ $ (-407 (-563))) NIL))) +(((-242 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-563))) (-15 * (|#1| |#1| (-407 (-563)))) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) (-243)) (T -242)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-563))) (-15 * (|#1| |#1| (-407 (-563)))) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-3400 (((-3 $ "failed") $) 33)) (-3827 (((-112) $) 31)) (-3573 (((-1151) $) 9)) (-2688 (($ $) 40)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ (-407 (-563))) 44)) (-1675 (((-767)) 28)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 41)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ (-407 (-563)) $) 43) (($ $ (-407 (-563))) 42))) +(((-243) (-140)) (T -243)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-563)))) (-2688 (*1 *1 *1) (-4 *1 (-243)))) +(-13 (-290) (-38 (-407 (-563))) (-10 -8 (-15 ** ($ $ (-563))) (-15 -2688 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-613 #0#) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-290) . T) ((-643 #0#) . T) ((-643 $) . T) ((-713 #0#) . T) ((-722) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) +((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-2619 ((|#1| $) 48)) (-4302 (($ $) 57)) (-2759 (((-112) $ (-767)) 8)) (-2936 ((|#1| $ |#1|) 39 (|has| $ (-6 -4408)))) (-2644 (($ $ $) 53 (|has| $ (-6 -4408)))) (-2909 (($ $ $) 52 (|has| $ (-6 -4408)))) (-1849 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4408)))) (-2811 (($ $ (-640 $)) 41 (|has| $ (-6 -4408)))) (-4239 (($) 7 T CONST)) (-4331 (($ $) 56)) (-2659 (((-640 |#1|) $) 30 (|has| $ (-6 -4407)))) (-2071 (((-640 $) $) 50)) (-1469 (((-112) $ $) 42 (|has| |#1| (-1093)))) (-1333 (($ $) 55)) (-2581 (((-112) $ (-767)) 9)) (-2259 (((-640 |#1|) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-4345 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 35)) (-2382 (((-112) $ (-767)) 10)) (-2512 (((-640 |#1|) $) 45)) (-2194 (((-112) $) 49)) (-3573 (((-1151) $) 22 (|has| |#1| (-1093)))) (-1481 ((|#1| $) 59)) (-2917 (($ $) 58)) (-1694 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3138 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) 14)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-2309 ((|#1| $ "value") 47)) (-4071 (((-563) $ $) 44)) (-1434 (((-112) $) 46)) (-1709 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4407))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1872 (($ $) 13)) (-3245 (($ $ $) 54 (|has| $ (-6 -4408)))) (-1693 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-4258 (((-640 $) $) 51)) (-2962 (((-112) $ $) 43 (|has| |#1| (-1093)))) (-4383 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-244 |#1|) (-140) (-1208)) (T -244)) +((-1481 (*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1208)))) (-2917 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1208)))) (-4302 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1208)))) (-4331 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1208)))) (-1333 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1208)))) (-3245 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-244 *2)) (-4 *2 (-1208)))) (-2644 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-244 *2)) (-4 *2 (-1208)))) (-2909 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-244 *2)) (-4 *2 (-1208))))) +(-13 (-1006 |t#1|) (-10 -8 (-15 -1481 (|t#1| $)) (-15 -2917 ($ $)) (-15 -4302 ($ $)) (-15 -4331 ($ $)) (-15 -1333 ($ $)) (IF (|has| $ (-6 -4408)) (PROGN (-15 -3245 ($ $ $)) (-15 -2644 ($ $ $)) (-15 -2909 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4032 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1006 |#1|) . T) ((-1093) |has| |#1| (-1093)) ((-1208) . T)) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2619 ((|#1| $) NIL)) (-3442 ((|#1| $) NIL)) (-4302 (($ $) NIL)) (-4378 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4408)))) (-1624 (($ $ (-563)) NIL (|has| $ (-6 -4408)))) (-3523 (((-112) $) NIL (|has| |#1| (-846))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2770 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-846)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-1642 (($ $) 10 (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2759 (((-112) $ (-767)) NIL)) (-2936 ((|#1| $ |#1|) NIL (|has| $ (-6 -4408)))) (-3692 (($ $ $) NIL (|has| $ (-6 -4408)))) (-3889 ((|#1| $ |#1|) NIL (|has| $ (-6 -4408)))) (-1543 ((|#1| $ |#1|) NIL (|has| $ (-6 -4408)))) (-1849 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4408))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4408))) (($ $ "rest" $) NIL (|has| $ (-6 -4408))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4408))) ((|#1| $ (-1224 (-563)) |#1|) NIL (|has| $ (-6 -4408))) ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4408)))) (-2811 (($ $ (-640 $)) NIL (|has| $ (-6 -4408)))) (-2812 (($ (-1 (-112) |#1|) $) NIL)) (-2256 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3431 ((|#1| $) NIL)) (-4239 (($) NIL T CONST)) (-2907 (($ $) NIL (|has| $ (-6 -4408)))) (-4382 (($ $) NIL)) (-3792 (($ $) NIL) (($ $ (-767)) NIL)) (-4005 (($ $) NIL (|has| |#1| (-1093)))) (-3813 (($ $) 7 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2705 (($ |#1| $) NIL (|has| |#1| (-1093))) (($ (-1 (-112) |#1|) $) NIL)) (-1459 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-4355 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4408)))) (-4293 ((|#1| $ (-563)) NIL)) (-2018 (((-112) $) NIL)) (-4368 (((-563) |#1| $ (-563)) NIL (|has| |#1| (-1093))) (((-563) |#1| $) NIL (|has| |#1| (-1093))) (((-563) (-1 (-112) |#1|) $) NIL)) (-2659 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-2071 (((-640 $) $) NIL)) (-1469 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1566 (($ (-767) |#1|) NIL)) (-2581 (((-112) $ (-767)) NIL)) (-2411 (((-563) $) NIL (|has| (-563) (-846)))) (-3084 (($ $ $) NIL (|has| |#1| (-846)))) (-2878 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3164 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2259 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-3860 (((-563) $) NIL (|has| (-563) (-846)))) (-1777 (($ $ $) NIL (|has| |#1| (-846)))) (-4345 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3651 (($ |#1|) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-2512 (((-640 |#1|) $) NIL)) (-2194 (((-112) $) NIL)) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1481 ((|#1| $) NIL) (($ $ (-767)) NIL)) (-1812 (($ $ $ (-563)) NIL) (($ |#1| $ (-563)) NIL)) (-3396 (($ $ $ (-563)) NIL) (($ |#1| $ (-563)) NIL)) (-4318 (((-640 (-563)) $) NIL)) (-3192 (((-112) (-563) $) NIL)) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3781 ((|#1| $) NIL) (($ $ (-767)) NIL)) (-4203 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2358 (($ $ |#1|) NIL (|has| $ (-6 -4408)))) (-2833 (((-112) $) NIL)) (-3138 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) NIL)) (-2105 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2836 (((-640 |#1|) $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) NIL)) (-2309 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1224 (-563))) NIL) ((|#1| $ (-563)) NIL) ((|#1| $ (-563) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-767) $ "count") 16)) (-4071 (((-563) $ $) NIL)) (-1314 (($ $ (-1224 (-563))) NIL) (($ $ (-563)) NIL)) (-2963 (($ $ (-1224 (-563))) NIL) (($ $ (-563)) NIL)) (-3038 (($ (-640 |#1|)) 22)) (-1434 (((-112) $) NIL)) (-2749 (($ $) NIL)) (-1322 (($ $) NIL (|has| $ (-6 -4408)))) (-1950 (((-767) $) NIL)) (-3752 (($ $) NIL)) (-1709 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-3076 (($ $ $ (-563)) NIL (|has| $ (-6 -4408)))) (-1872 (($ $) NIL)) (-2220 (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-1707 (($ (-640 |#1|)) NIL)) (-3245 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2853 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-640 $)) NIL) (($ $ |#1|) NIL)) (-1693 (($ (-640 |#1|)) 17) (((-640 |#1|) $) 18) (((-858) $) 21 (|has| |#1| (-610 (-858))))) (-4258 (((-640 $) $) NIL)) (-2962 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-4383 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1778 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1756 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1768 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1744 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3608 (((-767) $) 14 (|has| $ (-6 -4407))))) +(((-245 |#1|) (-13 (-661 |#1|) (-490 (-640 |#1|)) (-10 -8 (-15 -3038 ($ (-640 |#1|))) (-15 -2309 ($ $ "unique")) (-15 -2309 ($ $ "sort")) (-15 -2309 ((-767) $ "count")))) (-846)) (T -245)) +((-3038 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-245 *3)))) (-2309 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-846)))) (-2309 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-846)))) (-2309 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-767)) (-5 *1 (-245 *4)) (-4 *4 (-846))))) +(-13 (-661 |#1|) (-490 (-640 |#1|)) (-10 -8 (-15 -3038 ($ (-640 |#1|))) (-15 -2309 ($ $ "unique")) (-15 -2309 ($ $ "sort")) (-15 -2309 ((-767) $ "count")))) +((-2920 (((-3 (-767) "failed") |#1| |#1| (-767)) 26))) +(((-246 |#1|) (-10 -7 (-15 -2920 ((-3 (-767) "failed") |#1| |#1| (-767)))) (-13 (-722) (-368) (-10 -7 (-15 ** (|#1| |#1| (-563)))))) (T -246)) +((-2920 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-767)) (-4 *3 (-13 (-722) (-368) (-10 -7 (-15 ** (*3 *3 (-563)))))) (-5 *1 (-246 *3))))) +(-10 -7 (-15 -2920 ((-3 (-767) "failed") |#1| |#1| (-767)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-2606 (((-640 (-860 |#1|)) $) NIL)) (-2139 (((-1165 $) $ (-860 |#1|)) NIL) (((-1165 |#2|) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#2| (-555)))) (-4223 (($ $) NIL (|has| |#2| (-555)))) (-3156 (((-112) $) NIL (|has| |#2| (-555)))) (-1779 (((-767) $) NIL) (((-767) $ (-640 (-860 |#1|))) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-2424 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-4335 (($ $) NIL (|has| |#2| (-452)))) (-3205 (((-418 $) $) NIL (|has| |#2| (-452)))) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#2| (-1034 (-563)))) (((-3 (-860 |#1|) "failed") $) NIL)) (-2058 ((|#2| $) NIL) (((-407 (-563)) $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#2| (-1034 (-563)))) (((-860 |#1|) $) NIL)) (-2742 (($ $ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-3483 (($ $ (-640 (-563))) NIL)) (-2751 (($ $) NIL)) (-2950 (((-684 (-563)) (-684 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -2835 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL) (((-684 |#2|) (-684 $)) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-1300 (($ $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-2739 (((-640 $) $) NIL)) (-2468 (((-112) $) NIL (|has| |#2| (-905)))) (-3554 (($ $ |#2| (-240 (-3608 |#1|) (-767)) $) NIL)) (-3787 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-563))) (|has| |#2| (-882 (-563)))))) (-3827 (((-112) $) NIL)) (-4096 (((-767) $) NIL)) (-2596 (($ (-1165 |#2|) (-860 |#1|)) NIL) (($ (-1165 $) (-860 |#1|)) NIL)) (-1368 (((-640 $) $) NIL)) (-3920 (((-112) $) NIL)) (-2588 (($ |#2| (-240 (-3608 |#1|) (-767))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-2625 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $ (-860 |#1|)) NIL)) (-2048 (((-240 (-3608 |#1|) (-767)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-640 (-767)) $ (-640 (-860 |#1|))) NIL)) (-3084 (($ $ $) NIL (|has| |#2| (-846)))) (-1777 (($ $ $) NIL (|has| |#2| (-846)))) (-2803 (($ (-1 (-240 (-3608 |#1|) (-767)) (-240 (-3608 |#1|) (-767))) $) NIL)) (-2240 (($ (-1 |#2| |#2|) $) NIL)) (-4234 (((-3 (-860 |#1|) "failed") $) NIL)) (-2716 (($ $) NIL)) (-2726 ((|#2| $) NIL)) (-3513 (($ (-640 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3573 (((-1151) $) NIL)) (-3733 (((-3 (-640 $) "failed") $) NIL)) (-2919 (((-3 (-640 $) "failed") $) NIL)) (-4086 (((-3 (-2 (|:| |var| (-860 |#1|)) (|:| -1654 (-767))) "failed") $) NIL)) (-1694 (((-1113) $) NIL)) (-2696 (((-112) $) NIL)) (-2706 ((|#2| $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#2| (-452)))) (-3548 (($ (-640 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-1876 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-3116 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2174 (((-418 $) $) NIL (|has| |#2| (-905)))) (-3008 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-555))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-555)))) (-1540 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-860 |#1|) |#2|) NIL) (($ $ (-640 (-860 |#1|)) (-640 |#2|)) NIL) (($ $ (-860 |#1|) $) NIL) (($ $ (-640 (-860 |#1|)) (-640 $)) NIL)) (-2315 (($ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-4202 (($ $ (-860 |#1|)) NIL) (($ $ (-640 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-4167 (((-240 (-3608 |#1|) (-767)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-640 (-767)) $ (-640 (-860 |#1|))) NIL)) (-2220 (((-888 (-379)) $) NIL (-12 (|has| (-860 |#1|) (-611 (-888 (-379)))) (|has| |#2| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| (-860 |#1|) (-611 (-888 (-563)))) (|has| |#2| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| (-860 |#1|) (-611 (-536))) (|has| |#2| (-611 (-536)))))) (-1836 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905))))) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ |#2|) NIL) (($ (-860 |#1|)) NIL) (($ (-407 (-563))) NIL (-4032 (|has| |#2| (-38 (-407 (-563)))) (|has| |#2| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#2| (-555)))) (-1337 (((-640 |#2|) $) NIL)) (-4319 ((|#2| $ (-240 (-3608 |#1|) (-767))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-2779 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#2| (-145))))) (-1675 (((-767)) NIL)) (-2793 (($ $ $ (-767)) NIL (|has| |#2| (-172)))) (-2126 (((-112) $ $) NIL (|has| |#2| (-555)))) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-3209 (($ $ (-860 |#1|)) NIL) (($ $ (-640 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-1778 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1756 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1744 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1837 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL (|has| |#2| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#2| (-38 (-407 (-563))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-247 |#1| |#2|) (-13 (-945 |#2| (-240 (-3608 |#1|) (-767)) (-860 |#1|)) (-10 -8 (-15 -3483 ($ $ (-640 (-563)))))) (-640 (-1169)) (-1045)) (T -247)) +((-3483 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-247 *3 *4)) (-14 *3 (-640 (-1169))) (-4 *4 (-1045))))) +(-13 (-945 |#2| (-240 (-3608 |#1|) (-767)) (-860 |#1|)) (-10 -8 (-15 -3483 ($ $ (-640 (-563)))))) +((-1677 (((-112) $ $) NIL)) (-1795 (((-1262) $) 17)) (-4117 (((-183) $) 11)) (-3797 (($ (-183)) 12)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-3762 (((-249) $) 7)) (-1693 (((-858) $) 9)) (-1718 (((-112) $ $) 15))) +(((-248) (-13 (-1093) (-10 -8 (-15 -3762 ((-249) $)) (-15 -4117 ((-183) $)) (-15 -3797 ($ (-183))) (-15 -1795 ((-1262) $))))) (T -248)) +((-3762 (*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248)))) (-4117 (*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-248)))) (-3797 (*1 *1 *2) (-12 (-5 *2 (-183)) (-5 *1 (-248)))) (-1795 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-248))))) +(-13 (-1093) (-10 -8 (-15 -3762 ((-249) $)) (-15 -4117 ((-183) $)) (-15 -3797 ($ (-183))) (-15 -1795 ((-1262) $)))) +((-1677 (((-112) $ $) NIL)) (-3453 (((-640 (-861)) $) NIL)) (-3348 (((-506) $) NIL)) (-3573 (((-1151) $) NIL)) (-2504 (((-186) $) NIL)) (-1694 (((-1113) $) NIL)) (-2544 (((-640 (-112)) $) NIL)) (-1693 (((-858) $) NIL) (((-187) $) 6)) (-1396 (((-55) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-249) (-13 (-185) (-610 (-187)))) (T -249)) +NIL +(-13 (-185) (-610 (-187))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1946 (($ (-917)) NIL (|has| |#4| (-1045)))) (-4378 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4408)))) (-1901 (($ $ $) NIL (|has| |#4| (-789)))) (-1495 (((-3 $ "failed") $ $) NIL)) (-2759 (((-112) $ (-767)) NIL)) (-3749 (((-767)) NIL (|has| |#4| (-368)))) (-1857 (((-563) $) NIL (|has| |#4| (-844)))) (-1849 ((|#4| $ (-563) |#4|) NIL (|has| $ (-6 -4408)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1093))) (((-3 (-563) "failed") $) NIL (-12 (|has| |#4| (-1034 (-563))) (|has| |#4| (-1093)))) (((-3 (-407 (-563)) "failed") $) NIL (-12 (|has| |#4| (-1034 (-407 (-563)))) (|has| |#4| (-1093))))) (-2058 ((|#4| $) NIL (|has| |#4| (-1093))) (((-563) $) NIL (-12 (|has| |#4| (-1034 (-563))) (|has| |#4| (-1093)))) (((-407 (-563)) $) NIL (-12 (|has| |#4| (-1034 (-407 (-563)))) (|has| |#4| (-1093))))) (-2950 (((-2 (|:| -2835 (-684 |#4|)) (|:| |vec| (-1257 |#4|))) (-684 $) (-1257 $)) NIL (|has| |#4| (-1045))) (((-684 |#4|) (-684 $)) NIL (|has| |#4| (-1045))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (-12 (|has| |#4| (-636 (-563))) (|has| |#4| (-1045)))) (((-684 (-563)) (-684 $)) NIL (-12 (|has| |#4| (-636 (-563))) (|has| |#4| (-1045))))) (-3400 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-636 (-563))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))))) (-1691 (($) NIL (|has| |#4| (-368)))) (-4355 ((|#4| $ (-563) |#4|) NIL (|has| $ (-6 -4408)))) (-4293 ((|#4| $ (-563)) NIL)) (-3101 (((-112) $) NIL (|has| |#4| (-844)))) (-2659 (((-640 |#4|) $) NIL (|has| $ (-6 -4407)))) (-3827 (((-112) $) NIL (-4032 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-636 (-563))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))))) (-1419 (((-112) $) NIL (|has| |#4| (-844)))) (-2581 (((-112) $ (-767)) NIL)) (-2411 (((-563) $) NIL (|has| (-563) (-846)))) (-3084 (($ $ $) NIL (-4032 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-2259 (((-640 |#4|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1093))))) (-3860 (((-563) $) NIL (|has| (-563) (-846)))) (-1777 (($ $ $) NIL (-4032 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-4345 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#4| |#4|) $) NIL)) (-1476 (((-917) $) NIL (|has| |#4| (-368)))) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL)) (-4318 (((-640 (-563)) $) NIL)) (-3192 (((-112) (-563) $) NIL)) (-2555 (($ (-917)) NIL (|has| |#4| (-368)))) (-1694 (((-1113) $) NIL)) (-3781 ((|#4| $) NIL (|has| (-563) (-846)))) (-2358 (($ $ |#4|) NIL (|has| $ (-6 -4408)))) (-3138 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 |#4|) (-640 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-2026 (((-112) $ $) NIL)) (-2105 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1093))))) (-2836 (((-640 |#4|) $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) NIL)) (-2309 ((|#4| $ (-563) |#4|) NIL) ((|#4| $ (-563)) 12)) (-4092 ((|#4| $ $) NIL (|has| |#4| (-1045)))) (-2510 (($ (-1257 |#4|)) NIL)) (-3533 (((-134)) NIL (|has| |#4| (-363)))) (-4202 (($ $ (-1 |#4| |#4|) (-767)) NIL (|has| |#4| (-1045))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1045))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1045)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))))) (-1709 (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407))) (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1093))))) (-1872 (($ $) NIL)) (-1693 (((-1257 |#4|) $) NIL) (((-858) $) NIL) (($ |#4|) NIL (|has| |#4| (-1093))) (($ (-563)) NIL (-4032 (-12 (|has| |#4| (-1034 (-563))) (|has| |#4| (-1093))) (|has| |#4| (-1045)))) (($ (-407 (-563))) NIL (-12 (|has| |#4| (-1034 (-407 (-563)))) (|has| |#4| (-1093))))) (-1675 (((-767)) NIL (|has| |#4| (-1045)))) (-4383 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-2509 (($ $) NIL (|has| |#4| (-844)))) (-2241 (($) NIL T CONST)) (-2254 (($) NIL (-4032 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-636 (-563))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) CONST)) (-3209 (($ $ (-1 |#4| |#4|) (-767)) NIL (|has| |#4| (-1045))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1045))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1045)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))))) (-1778 (((-112) $ $) NIL (-4032 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-1756 (((-112) $ $) NIL (-4032 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL (-4032 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-1744 (((-112) $ $) NIL (-4032 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-1837 (($ $ |#4|) NIL (|has| |#4| (-363)))) (-1826 (($ $ $) NIL) (($ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-767)) NIL (-4032 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-636 (-563))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045))))) (($ $ (-917)) NIL (-4032 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-636 (-563))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))))) (* (($ |#2| $) 14) (($ (-563) $) NIL) (($ (-767) $) NIL) (($ (-917) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-722))) (($ |#4| $) NIL (|has| |#4| (-722))) (($ $ $) NIL (-4032 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-636 (-563))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))))) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-250 |#1| |#2| |#3| |#4|) (-13 (-238 |#1| |#4|) (-643 |#2|) (-643 |#3|)) (-917) (-1045) (-1116 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-643 |#2|)) (T -250)) +NIL +(-13 (-238 |#1| |#4|) (-643 |#2|) (-643 |#3|)) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1946 (($ (-917)) NIL (|has| |#3| (-1045)))) (-4378 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4408)))) (-1901 (($ $ $) NIL (|has| |#3| (-789)))) (-1495 (((-3 $ "failed") $ $) NIL)) (-2759 (((-112) $ (-767)) NIL)) (-3749 (((-767)) NIL (|has| |#3| (-368)))) (-1857 (((-563) $) NIL (|has| |#3| (-844)))) (-1849 ((|#3| $ (-563) |#3|) NIL (|has| $ (-6 -4408)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1093))) (((-3 (-563) "failed") $) NIL (-12 (|has| |#3| (-1034 (-563))) (|has| |#3| (-1093)))) (((-3 (-407 (-563)) "failed") $) NIL (-12 (|has| |#3| (-1034 (-407 (-563)))) (|has| |#3| (-1093))))) (-2058 ((|#3| $) NIL (|has| |#3| (-1093))) (((-563) $) NIL (-12 (|has| |#3| (-1034 (-563))) (|has| |#3| (-1093)))) (((-407 (-563)) $) NIL (-12 (|has| |#3| (-1034 (-407 (-563)))) (|has| |#3| (-1093))))) (-2950 (((-2 (|:| -2835 (-684 |#3|)) (|:| |vec| (-1257 |#3|))) (-684 $) (-1257 $)) NIL (|has| |#3| (-1045))) (((-684 |#3|) (-684 $)) NIL (|has| |#3| (-1045))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (-12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045)))) (((-684 (-563)) (-684 $)) NIL (-12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045))))) (-3400 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))))) (-1691 (($) NIL (|has| |#3| (-368)))) (-4355 ((|#3| $ (-563) |#3|) NIL (|has| $ (-6 -4408)))) (-4293 ((|#3| $ (-563)) NIL)) (-3101 (((-112) $) NIL (|has| |#3| (-844)))) (-2659 (((-640 |#3|) $) NIL (|has| $ (-6 -4407)))) (-3827 (((-112) $) NIL (-4032 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))))) (-1419 (((-112) $) NIL (|has| |#3| (-844)))) (-2581 (((-112) $ (-767)) NIL)) (-2411 (((-563) $) NIL (|has| (-563) (-846)))) (-3084 (($ $ $) NIL (-4032 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-2259 (((-640 |#3|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#3| (-1093))))) (-3860 (((-563) $) NIL (|has| (-563) (-846)))) (-1777 (($ $ $) NIL (-4032 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-4345 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#3| |#3|) $) NIL)) (-1476 (((-917) $) NIL (|has| |#3| (-368)))) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL)) (-4318 (((-640 (-563)) $) NIL)) (-3192 (((-112) (-563) $) NIL)) (-2555 (($ (-917)) NIL (|has| |#3| (-368)))) (-1694 (((-1113) $) NIL)) (-3781 ((|#3| $) NIL (|has| (-563) (-846)))) (-2358 (($ $ |#3|) NIL (|has| $ (-6 -4408)))) (-3138 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ (-640 |#3|) (-640 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093))))) (-2026 (((-112) $ $) NIL)) (-2105 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#3| (-1093))))) (-2836 (((-640 |#3|) $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) NIL)) (-2309 ((|#3| $ (-563) |#3|) NIL) ((|#3| $ (-563)) 11)) (-4092 ((|#3| $ $) NIL (|has| |#3| (-1045)))) (-2510 (($ (-1257 |#3|)) NIL)) (-3533 (((-134)) NIL (|has| |#3| (-363)))) (-4202 (($ $ (-1 |#3| |#3|) (-767)) NIL (|has| |#3| (-1045))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1045))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))))) (-1709 (((-767) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4407))) (((-767) |#3| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#3| (-1093))))) (-1872 (($ $) NIL)) (-1693 (((-1257 |#3|) $) NIL) (((-858) $) NIL) (($ |#3|) NIL (|has| |#3| (-1093))) (($ (-563)) NIL (-4032 (-12 (|has| |#3| (-1034 (-563))) (|has| |#3| (-1093))) (|has| |#3| (-1045)))) (($ (-407 (-563))) NIL (-12 (|has| |#3| (-1034 (-407 (-563)))) (|has| |#3| (-1093))))) (-1675 (((-767)) NIL (|has| |#3| (-1045)))) (-4383 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4407)))) (-2509 (($ $) NIL (|has| |#3| (-844)))) (-2241 (($) NIL T CONST)) (-2254 (($) NIL (-4032 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) CONST)) (-3209 (($ $ (-1 |#3| |#3|) (-767)) NIL (|has| |#3| (-1045))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1045))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))))) (-1778 (((-112) $ $) NIL (-4032 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-1756 (((-112) $ $) NIL (-4032 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL (-4032 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-1744 (((-112) $ $) NIL (-4032 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-1837 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-1826 (($ $ $) NIL) (($ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-767)) NIL (-4032 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045))))) (($ $ (-917)) NIL (-4032 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))))) (* (($ |#2| $) 13) (($ (-563) $) NIL) (($ (-767) $) NIL) (($ (-917) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-722))) (($ |#3| $) NIL (|has| |#3| (-722))) (($ $ $) NIL (-4032 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))))) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-251 |#1| |#2| |#3|) (-13 (-238 |#1| |#3|) (-643 |#2|)) (-767) (-1045) (-643 |#2|)) (T -251)) +NIL +(-13 (-238 |#1| |#3|) (-643 |#2|)) +((-2784 (((-640 (-767)) $) 47) (((-640 (-767)) $ |#3|) 50)) (-1326 (((-767) $) 49) (((-767) $ |#3|) 52)) (-3942 (($ $) 65)) (-2131 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 (-563) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-3254 (((-767) $ |#3|) 39) (((-767) $) 36)) (-3376 (((-1 $ (-767)) |#3|) 15) (((-1 $ (-767)) $) 77)) (-3759 ((|#4| $) 58)) (-3871 (((-112) $) 56)) (-3562 (($ $) 64)) (-1540 (($ $ (-640 (-294 $))) 97) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-640 |#4|) (-640 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-640 |#4|) (-640 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-640 |#3|) (-640 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-640 |#3|) (-640 |#2|)) 84)) (-4202 (($ $ |#4|) NIL) (($ $ (-640 |#4|)) NIL) (($ $ |#4| (-767)) NIL) (($ $ (-640 |#4|) (-640 (-767))) NIL) (($ $) NIL) (($ $ (-767)) NIL) (($ $ (-1169)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-3745 (((-640 |#3|) $) 75)) (-4167 ((|#5| $) NIL) (((-767) $ |#4|) NIL) (((-640 (-767)) $ (-640 |#4|)) NIL) (((-767) $ |#3|) 44)) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-407 (-563))) NIL) (($ $) NIL))) +(((-252 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1693 (|#1| |#1|)) (-15 -1693 (|#1| (-407 (-563)))) (-15 -1540 (|#1| |#1| (-640 |#3|) (-640 |#2|))) (-15 -1540 (|#1| |#1| |#3| |#2|)) (-15 -1540 (|#1| |#1| (-640 |#3|) (-640 |#1|))) (-15 -1540 (|#1| |#1| |#3| |#1|)) (-15 -3376 ((-1 |#1| (-767)) |#1|)) (-15 -3942 (|#1| |#1|)) (-15 -3562 (|#1| |#1|)) (-15 -3759 (|#4| |#1|)) (-15 -3871 ((-112) |#1|)) (-15 -1326 ((-767) |#1| |#3|)) (-15 -2784 ((-640 (-767)) |#1| |#3|)) (-15 -1326 ((-767) |#1|)) (-15 -2784 ((-640 (-767)) |#1|)) (-15 -4167 ((-767) |#1| |#3|)) (-15 -3254 ((-767) |#1|)) (-15 -3254 ((-767) |#1| |#3|)) (-15 -3745 ((-640 |#3|) |#1|)) (-15 -3376 ((-1 |#1| (-767)) |#3|)) (-15 -1693 (|#1| |#3|)) (-15 -2131 ((-3 |#3| "failed") |#1|)) (-15 -4202 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4202 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4202 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -4202 (|#1| |#1| (-1169) (-767))) (-15 -4202 (|#1| |#1| (-640 (-1169)))) (-15 -4202 (|#1| |#1| (-1169))) (-15 -4202 (|#1| |#1| (-767))) (-15 -4202 (|#1| |#1|)) (-15 -4167 ((-640 (-767)) |#1| (-640 |#4|))) (-15 -4167 ((-767) |#1| |#4|)) (-15 -1693 (|#1| |#4|)) (-15 -2131 ((-3 |#4| "failed") |#1|)) (-15 -1540 (|#1| |#1| (-640 |#4|) (-640 |#1|))) (-15 -1540 (|#1| |#1| |#4| |#1|)) (-15 -1540 (|#1| |#1| (-640 |#4|) (-640 |#2|))) (-15 -1540 (|#1| |#1| |#4| |#2|)) (-15 -1540 (|#1| |#1| (-640 |#1|) (-640 |#1|))) (-15 -1540 (|#1| |#1| |#1| |#1|)) (-15 -1540 (|#1| |#1| (-294 |#1|))) (-15 -1540 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -4167 (|#5| |#1|)) (-15 -2131 ((-3 (-563) "failed") |#1|)) (-15 -2131 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2131 ((-3 |#2| "failed") |#1|)) (-15 -1693 (|#1| |#2|)) (-15 -4202 (|#1| |#1| (-640 |#4|) (-640 (-767)))) (-15 -4202 (|#1| |#1| |#4| (-767))) (-15 -4202 (|#1| |#1| (-640 |#4|))) (-15 -4202 (|#1| |#1| |#4|)) (-15 -1693 (|#1| (-563))) (-15 -1693 ((-858) |#1|))) (-253 |#2| |#3| |#4| |#5|) (-1045) (-846) (-266 |#3|) (-789)) (T -252)) +NIL +(-10 -8 (-15 -1693 (|#1| |#1|)) (-15 -1693 (|#1| (-407 (-563)))) (-15 -1540 (|#1| |#1| (-640 |#3|) (-640 |#2|))) (-15 -1540 (|#1| |#1| |#3| |#2|)) (-15 -1540 (|#1| |#1| (-640 |#3|) (-640 |#1|))) (-15 -1540 (|#1| |#1| |#3| |#1|)) (-15 -3376 ((-1 |#1| (-767)) |#1|)) (-15 -3942 (|#1| |#1|)) (-15 -3562 (|#1| |#1|)) (-15 -3759 (|#4| |#1|)) (-15 -3871 ((-112) |#1|)) (-15 -1326 ((-767) |#1| |#3|)) (-15 -2784 ((-640 (-767)) |#1| |#3|)) (-15 -1326 ((-767) |#1|)) (-15 -2784 ((-640 (-767)) |#1|)) (-15 -4167 ((-767) |#1| |#3|)) (-15 -3254 ((-767) |#1|)) (-15 -3254 ((-767) |#1| |#3|)) (-15 -3745 ((-640 |#3|) |#1|)) (-15 -3376 ((-1 |#1| (-767)) |#3|)) (-15 -1693 (|#1| |#3|)) (-15 -2131 ((-3 |#3| "failed") |#1|)) (-15 -4202 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4202 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4202 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -4202 (|#1| |#1| (-1169) (-767))) (-15 -4202 (|#1| |#1| (-640 (-1169)))) (-15 -4202 (|#1| |#1| (-1169))) (-15 -4202 (|#1| |#1| (-767))) (-15 -4202 (|#1| |#1|)) (-15 -4167 ((-640 (-767)) |#1| (-640 |#4|))) (-15 -4167 ((-767) |#1| |#4|)) (-15 -1693 (|#1| |#4|)) (-15 -2131 ((-3 |#4| "failed") |#1|)) (-15 -1540 (|#1| |#1| (-640 |#4|) (-640 |#1|))) (-15 -1540 (|#1| |#1| |#4| |#1|)) (-15 -1540 (|#1| |#1| (-640 |#4|) (-640 |#2|))) (-15 -1540 (|#1| |#1| |#4| |#2|)) (-15 -1540 (|#1| |#1| (-640 |#1|) (-640 |#1|))) (-15 -1540 (|#1| |#1| |#1| |#1|)) (-15 -1540 (|#1| |#1| (-294 |#1|))) (-15 -1540 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -4167 (|#5| |#1|)) (-15 -2131 ((-3 (-563) "failed") |#1|)) (-15 -2131 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2131 ((-3 |#2| "failed") |#1|)) (-15 -1693 (|#1| |#2|)) (-15 -4202 (|#1| |#1| (-640 |#4|) (-640 (-767)))) (-15 -4202 (|#1| |#1| |#4| (-767))) (-15 -4202 (|#1| |#1| (-640 |#4|))) (-15 -4202 (|#1| |#1| |#4|)) (-15 -1693 (|#1| (-563))) (-15 -1693 ((-858) |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-2784 (((-640 (-767)) $) 214) (((-640 (-767)) $ |#2|) 212)) (-1326 (((-767) $) 213) (((-767) $ |#2|) 211)) (-2606 (((-640 |#3|) $) 110)) (-2139 (((-1165 $) $ |#3|) 125) (((-1165 |#1|) $) 124)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 87 (|has| |#1| (-555)))) (-4223 (($ $) 88 (|has| |#1| (-555)))) (-3156 (((-112) $) 90 (|has| |#1| (-555)))) (-1779 (((-767) $) 112) (((-767) $ (-640 |#3|)) 111)) (-1495 (((-3 $ "failed") $ $) 19)) (-2424 (((-418 (-1165 $)) (-1165 $)) 100 (|has| |#1| (-905)))) (-4335 (($ $) 98 (|has| |#1| (-452)))) (-3205 (((-418 $) $) 97 (|has| |#1| (-452)))) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 103 (|has| |#1| (-905)))) (-3942 (($ $) 207)) (-4239 (($) 17 T CONST)) (-2131 (((-3 |#1| "failed") $) 164) (((-3 (-407 (-563)) "failed") $) 161 (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) 159 (|has| |#1| (-1034 (-563)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-2058 ((|#1| $) 163) (((-407 (-563)) $) 162 (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) 160 (|has| |#1| (-1034 (-563)))) ((|#3| $) 137) ((|#2| $) 222)) (-2742 (($ $ $ |#3|) 108 (|has| |#1| (-172)))) (-2751 (($ $) 154)) (-2950 (((-684 (-563)) (-684 $)) 134 (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 133 (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 132) (((-684 |#1|) (-684 $)) 131)) (-3400 (((-3 $ "failed") $) 33)) (-1300 (($ $) 176 (|has| |#1| (-452))) (($ $ |#3|) 105 (|has| |#1| (-452)))) (-2739 (((-640 $) $) 109)) (-2468 (((-112) $) 96 (|has| |#1| (-905)))) (-3554 (($ $ |#1| |#4| $) 172)) (-3787 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 84 (-12 (|has| |#3| (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 83 (-12 (|has| |#3| (-882 (-563))) (|has| |#1| (-882 (-563)))))) (-3254 (((-767) $ |#2|) 217) (((-767) $) 216)) (-3827 (((-112) $) 31)) (-4096 (((-767) $) 169)) (-2596 (($ (-1165 |#1|) |#3|) 117) (($ (-1165 $) |#3|) 116)) (-1368 (((-640 $) $) 126)) (-3920 (((-112) $) 152)) (-2588 (($ |#1| |#4|) 153) (($ $ |#3| (-767)) 119) (($ $ (-640 |#3|) (-640 (-767))) 118)) (-2625 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $ |#3|) 120)) (-2048 ((|#4| $) 170) (((-767) $ |#3|) 122) (((-640 (-767)) $ (-640 |#3|)) 121)) (-3084 (($ $ $) 79 (|has| |#1| (-846)))) (-1777 (($ $ $) 78 (|has| |#1| (-846)))) (-2803 (($ (-1 |#4| |#4|) $) 171)) (-2240 (($ (-1 |#1| |#1|) $) 151)) (-3376 (((-1 $ (-767)) |#2|) 219) (((-1 $ (-767)) $) 206 (|has| |#1| (-233)))) (-4234 (((-3 |#3| "failed") $) 123)) (-2716 (($ $) 149)) (-2726 ((|#1| $) 148)) (-3759 ((|#3| $) 209)) (-3513 (($ (-640 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-3573 (((-1151) $) 9)) (-3871 (((-112) $) 210)) (-3733 (((-3 (-640 $) "failed") $) 114)) (-2919 (((-3 (-640 $) "failed") $) 115)) (-4086 (((-3 (-2 (|:| |var| |#3|) (|:| -1654 (-767))) "failed") $) 113)) (-3562 (($ $) 208)) (-1694 (((-1113) $) 10)) (-2696 (((-112) $) 166)) (-2706 ((|#1| $) 167)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 95 (|has| |#1| (-452)))) (-3548 (($ (-640 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-1876 (((-418 (-1165 $)) (-1165 $)) 102 (|has| |#1| (-905)))) (-3116 (((-418 (-1165 $)) (-1165 $)) 101 (|has| |#1| (-905)))) (-2174 (((-418 $) $) 99 (|has| |#1| (-905)))) (-3008 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-555))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-555)))) (-1540 (($ $ (-640 (-294 $))) 145) (($ $ (-294 $)) 144) (($ $ $ $) 143) (($ $ (-640 $) (-640 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-640 |#3|) (-640 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-640 |#3|) (-640 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-233))) (($ $ (-640 |#2|) (-640 $)) 204 (|has| |#1| (-233))) (($ $ |#2| |#1|) 203 (|has| |#1| (-233))) (($ $ (-640 |#2|) (-640 |#1|)) 202 (|has| |#1| (-233)))) (-2315 (($ $ |#3|) 107 (|has| |#1| (-172)))) (-4202 (($ $ |#3|) 42) (($ $ (-640 |#3|)) 41) (($ $ |#3| (-767)) 40) (($ $ (-640 |#3|) (-640 (-767))) 39) (($ $) 238 (|has| |#1| (-233))) (($ $ (-767)) 236 (|has| |#1| (-233))) (($ $ (-1169)) 234 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 233 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 232 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) 231 (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-3745 (((-640 |#2|) $) 218)) (-4167 ((|#4| $) 150) (((-767) $ |#3|) 130) (((-640 (-767)) $ (-640 |#3|)) 129) (((-767) $ |#2|) 215)) (-2220 (((-888 (-379)) $) 82 (-12 (|has| |#3| (-611 (-888 (-379)))) (|has| |#1| (-611 (-888 (-379)))))) (((-888 (-563)) $) 81 (-12 (|has| |#3| (-611 (-888 (-563)))) (|has| |#1| (-611 (-888 (-563)))))) (((-536) $) 80 (-12 (|has| |#3| (-611 (-536))) (|has| |#1| (-611 (-536)))))) (-1836 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ |#3|) 106 (|has| |#1| (-452)))) (-1377 (((-3 (-1257 $) "failed") (-684 $)) 104 (-2190 (|has| $ (-145)) (|has| |#1| (-905))))) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ |#2|) 220) (($ (-407 (-563))) 72 (-4032 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-38 (-407 (-563)))))) (($ $) 85 (|has| |#1| (-555)))) (-1337 (((-640 |#1|) $) 168)) (-4319 ((|#1| $ |#4|) 155) (($ $ |#3| (-767)) 128) (($ $ (-640 |#3|) (-640 (-767))) 127)) (-2779 (((-3 $ "failed") $) 73 (-4032 (-2190 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-1675 (((-767)) 28)) (-2793 (($ $ $ (-767)) 173 (|has| |#1| (-172)))) (-2126 (((-112) $ $) 89 (|has| |#1| (-555)))) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-3209 (($ $ |#3|) 38) (($ $ (-640 |#3|)) 37) (($ $ |#3| (-767)) 36) (($ $ (-640 |#3|) (-640 (-767))) 35) (($ $) 237 (|has| |#1| (-233))) (($ $ (-767)) 235 (|has| |#1| (-233))) (($ $ (-1169)) 230 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 229 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 228 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) 227 (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1778 (((-112) $ $) 76 (|has| |#1| (-846)))) (-1756 (((-112) $ $) 75 (|has| |#1| (-846)))) (-1718 (((-112) $ $) 6)) (-1768 (((-112) $ $) 77 (|has| |#1| (-846)))) (-1744 (((-112) $ $) 74 (|has| |#1| (-846)))) (-1837 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 158 (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) 157 (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-253 |#1| |#2| |#3| |#4|) (-140) (-1045) (-846) (-266 |t#2|) (-789)) (T -253)) +((-3376 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-1 *1 (-767))) (-4 *1 (-253 *4 *3 *5 *6)))) (-3745 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-640 *4)))) (-3254 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-767)))) (-4167 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767)))) (-2784 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-640 (-767))))) (-1326 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-767)))) (-2784 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-640 (-767))))) (-1326 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767)))) (-3871 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-112)))) (-3759 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-789)) (-4 *2 (-266 *4)))) (-3562 (*1 *1 *1) (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1045)) (-4 *3 (-846)) (-4 *4 (-266 *3)) (-4 *5 (-789)))) (-3942 (*1 *1 *1) (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1045)) (-4 *3 (-846)) (-4 *4 (-266 *3)) (-4 *5 (-789)))) (-3376 (*1 *2 *1) (-12 (-4 *3 (-233)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-1 *1 (-767))) (-4 *1 (-253 *3 *4 *5 *6))))) +(-13 (-945 |t#1| |t#4| |t#3|) (-231 |t#1|) (-1034 |t#2|) (-10 -8 (-15 -3376 ((-1 $ (-767)) |t#2|)) (-15 -3745 ((-640 |t#2|) $)) (-15 -3254 ((-767) $ |t#2|)) (-15 -3254 ((-767) $)) (-15 -4167 ((-767) $ |t#2|)) (-15 -2784 ((-640 (-767)) $)) (-15 -1326 ((-767) $)) (-15 -2784 ((-640 (-767)) $ |t#2|)) (-15 -1326 ((-767) $ |t#2|)) (-15 -3871 ((-112) $)) (-15 -3759 (|t#3| $)) (-15 -3562 ($ $)) (-15 -3942 ($ $)) (IF (|has| |t#1| (-233)) (PROGN (-6 (-514 |t#2| |t#1|)) (-6 (-514 |t#2| $)) (-6 (-309 $)) (-15 -3376 ((-1 $ (-767)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4032 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-563)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4032 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0#) -4032 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-38 (-407 (-563))))) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-613 |#2|) . T) ((-613 |#3|) . T) ((-613 $) -4032 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-610 (-858)) . T) ((-172) -4032 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-611 (-536)) -12 (|has| |#1| (-611 (-536))) (|has| |#3| (-611 (-536)))) ((-611 (-888 (-379))) -12 (|has| |#1| (-611 (-888 (-379)))) (|has| |#3| (-611 (-888 (-379))))) ((-611 (-888 (-563))) -12 (|has| |#1| (-611 (-888 (-563)))) (|has| |#3| (-611 (-888 (-563))))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-290) -4032 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#4|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -4032 (|has| |#1| (-905)) (|has| |#1| (-452))) ((-514 |#2| |#1|) |has| |#1| (-233)) ((-514 |#2| $) |has| |#1| (-233)) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-555) -4032 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-643 #0#) |has| |#1| (-38 (-407 (-563)))) ((-643 |#1|) . T) ((-643 $) . T) ((-636 (-563)) |has| |#1| (-636 (-563))) ((-636 |#1|) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-563)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -4032 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-722) . T) ((-846) |has| |#1| (-846)) ((-896 (-1169)) |has| |#1| (-896 (-1169))) ((-896 |#3|) . T) ((-882 (-379)) -12 (|has| |#1| (-882 (-379))) (|has| |#3| (-882 (-379)))) ((-882 (-563)) -12 (|has| |#1| (-882 (-563))) (|has| |#3| (-882 (-563)))) ((-945 |#1| |#4| |#3|) . T) ((-905) |has| |#1| (-905)) ((-1034 (-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 |#1|) . T) ((-1034 |#2|) . T) ((-1034 |#3|) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-563)))) ((-1051 |#1|) . T) ((-1051 $) -4032 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1212) |has| |#1| (-905))) +((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-2844 ((|#1| $) 54)) (-2636 ((|#1| $) 44)) (-2759 (((-112) $ (-767)) 8)) (-4239 (($) 7 T CONST)) (-3866 (($ $) 60)) (-2907 (($ $) 48)) (-4325 ((|#1| |#1| $) 46)) (-3017 ((|#1| $) 45)) (-2659 (((-640 |#1|) $) 30 (|has| $ (-6 -4407)))) (-2581 (((-112) $ (-767)) 9)) (-2259 (((-640 |#1|) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-4345 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 35)) (-2382 (((-112) $ (-767)) 10)) (-3415 (((-767) $) 61)) (-3573 (((-1151) $) 22 (|has| |#1| (-1093)))) (-2964 ((|#1| $) 39)) (-3900 ((|#1| |#1| $) 52)) (-3847 ((|#1| |#1| $) 51)) (-1812 (($ |#1| $) 40)) (-4236 (((-767) $) 55)) (-1694 (((-1113) $) 21 (|has| |#1| (-1093)))) (-2822 ((|#1| $) 62)) (-1910 ((|#1| $) 50)) (-2068 ((|#1| $) 49)) (-3755 ((|#1| $) 41)) (-3138 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) 14)) (-3958 ((|#1| |#1| $) 58)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-1749 ((|#1| $) 59)) (-1385 (($) 57) (($ (-640 |#1|)) 56)) (-2370 (((-767) $) 43)) (-1709 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4407))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1872 (($ $) 13)) (-1693 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-1425 ((|#1| $) 53)) (-2233 (($ (-640 |#1|)) 42)) (-3498 ((|#1| $) 63)) (-4383 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-254 |#1|) (-140) (-1208)) (T -254)) +((-1385 (*1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208)))) (-1385 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-4 *1 (-254 *3)))) (-4236 (*1 *2 *1) (-12 (-4 *1 (-254 *3)) (-4 *3 (-1208)) (-5 *2 (-767)))) (-2844 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208)))) (-1425 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208)))) (-3900 (*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208)))) (-3847 (*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208)))) (-1910 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208)))) (-2068 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208)))) (-2907 (*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208))))) +(-13 (-1114 |t#1|) (-991 |t#1|) (-10 -8 (-15 -1385 ($)) (-15 -1385 ($ (-640 |t#1|))) (-15 -4236 ((-767) $)) (-15 -2844 (|t#1| $)) (-15 -1425 (|t#1| $)) (-15 -3900 (|t#1| |t#1| $)) (-15 -3847 (|t#1| |t#1| $)) (-15 -1910 (|t#1| $)) (-15 -2068 (|t#1| $)) (-15 -2907 ($ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4032 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-991 |#1|) . T) ((-1093) |has| |#1| (-1093)) ((-1114 |#1|) . T) ((-1208) . T)) +((-2959 (((-1 (-939 (-225)) (-225) (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 139)) (-2286 (((-1126 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379))) 160) (((-1126 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379)) (-640 (-263))) 158) (((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379))) 163) (((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263))) 159) (((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379))) 150) (((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263))) 149) (((-1126 (-225)) (-1 (-939 (-225)) (-225)) (-1087 (-379))) 129) (((-1126 (-225)) (-1 (-939 (-225)) (-225)) (-1087 (-379)) (-640 (-263))) 127) (((-1126 (-225)) (-875 (-1 (-225) (-225))) (-1087 (-379))) 128) (((-1126 (-225)) (-875 (-1 (-225) (-225))) (-1087 (-379)) (-640 (-263))) 125)) (-2243 (((-1259) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379))) 162) (((-1259) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379)) (-640 (-263))) 161) (((-1259) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379))) 165) (((-1259) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263))) 164) (((-1259) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379))) 152) (((-1259) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263))) 151) (((-1259) (-1 (-939 (-225)) (-225)) (-1087 (-379))) 135) (((-1259) (-1 (-939 (-225)) (-225)) (-1087 (-379)) (-640 (-263))) 134) (((-1259) (-875 (-1 (-225) (-225))) (-1087 (-379))) 133) (((-1259) (-875 (-1 (-225) (-225))) (-1087 (-379)) (-640 (-263))) 132) (((-1258) (-873 (-1 (-225) (-225))) (-1087 (-379))) 100) (((-1258) (-873 (-1 (-225) (-225))) (-1087 (-379)) (-640 (-263))) 99) (((-1258) (-1 (-225) (-225)) (-1087 (-379))) 96) (((-1258) (-1 (-225) (-225)) (-1087 (-379)) (-640 (-263))) 95))) +(((-255) (-10 -7 (-15 -2243 ((-1258) (-1 (-225) (-225)) (-1087 (-379)) (-640 (-263)))) (-15 -2243 ((-1258) (-1 (-225) (-225)) (-1087 (-379)))) (-15 -2243 ((-1258) (-873 (-1 (-225) (-225))) (-1087 (-379)) (-640 (-263)))) (-15 -2243 ((-1258) (-873 (-1 (-225) (-225))) (-1087 (-379)))) (-15 -2243 ((-1259) (-875 (-1 (-225) (-225))) (-1087 (-379)) (-640 (-263)))) (-15 -2243 ((-1259) (-875 (-1 (-225) (-225))) (-1087 (-379)))) (-15 -2243 ((-1259) (-1 (-939 (-225)) (-225)) (-1087 (-379)) (-640 (-263)))) (-15 -2243 ((-1259) (-1 (-939 (-225)) (-225)) (-1087 (-379)))) (-15 -2286 ((-1126 (-225)) (-875 (-1 (-225) (-225))) (-1087 (-379)) (-640 (-263)))) (-15 -2286 ((-1126 (-225)) (-875 (-1 (-225) (-225))) (-1087 (-379)))) (-15 -2286 ((-1126 (-225)) (-1 (-939 (-225)) (-225)) (-1087 (-379)) (-640 (-263)))) (-15 -2286 ((-1126 (-225)) (-1 (-939 (-225)) (-225)) (-1087 (-379)))) (-15 -2243 ((-1259) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2243 ((-1259) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379)))) (-15 -2286 ((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2286 ((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379)))) (-15 -2243 ((-1259) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2243 ((-1259) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379)))) (-15 -2286 ((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2286 ((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379)))) (-15 -2243 ((-1259) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2243 ((-1259) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379)))) (-15 -2286 ((-1126 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2286 ((-1126 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379)))) (-15 -2959 ((-1 (-939 (-225)) (-225) (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -255)) +((-2959 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-939 (-225)) (-225) (-225))) (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-255)))) (-2286 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1087 (-379))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) (-2286 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) (-2243 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1087 (-379))) (-5 *2 (-1259)) (-5 *1 (-255)))) (-2243 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-255)))) (-2286 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1087 (-379))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) (-2286 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) (-2243 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1087 (-379))) (-5 *2 (-1259)) (-5 *1 (-255)))) (-2243 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-255)))) (-2286 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1087 (-379))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) (-2286 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) (-2243 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1087 (-379))) (-5 *2 (-1259)) (-5 *1 (-255)))) (-2243 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-255)))) (-2286 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1087 (-379))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) (-2286 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) (-2286 (*1 *2 *3 *4) (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) (-2286 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) (-2243 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1087 (-379))) (-5 *2 (-1259)) (-5 *1 (-255)))) (-2243 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-255)))) (-2243 (*1 *2 *3 *4) (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379))) (-5 *2 (-1259)) (-5 *1 (-255)))) (-2243 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-255)))) (-2243 (*1 *2 *3 *4) (-12 (-5 *3 (-873 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379))) (-5 *2 (-1258)) (-5 *1 (-255)))) (-2243 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-873 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1258)) (-5 *1 (-255)))) (-2243 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1087 (-379))) (-5 *2 (-1258)) (-5 *1 (-255)))) (-2243 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1258)) (-5 *1 (-255))))) +(-10 -7 (-15 -2243 ((-1258) (-1 (-225) (-225)) (-1087 (-379)) (-640 (-263)))) (-15 -2243 ((-1258) (-1 (-225) (-225)) (-1087 (-379)))) (-15 -2243 ((-1258) (-873 (-1 (-225) (-225))) (-1087 (-379)) (-640 (-263)))) (-15 -2243 ((-1258) (-873 (-1 (-225) (-225))) (-1087 (-379)))) (-15 -2243 ((-1259) (-875 (-1 (-225) (-225))) (-1087 (-379)) (-640 (-263)))) (-15 -2243 ((-1259) (-875 (-1 (-225) (-225))) (-1087 (-379)))) (-15 -2243 ((-1259) (-1 (-939 (-225)) (-225)) (-1087 (-379)) (-640 (-263)))) (-15 -2243 ((-1259) (-1 (-939 (-225)) (-225)) (-1087 (-379)))) (-15 -2286 ((-1126 (-225)) (-875 (-1 (-225) (-225))) (-1087 (-379)) (-640 (-263)))) (-15 -2286 ((-1126 (-225)) (-875 (-1 (-225) (-225))) (-1087 (-379)))) (-15 -2286 ((-1126 (-225)) (-1 (-939 (-225)) (-225)) (-1087 (-379)) (-640 (-263)))) (-15 -2286 ((-1126 (-225)) (-1 (-939 (-225)) (-225)) (-1087 (-379)))) (-15 -2243 ((-1259) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2243 ((-1259) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379)))) (-15 -2286 ((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2286 ((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379)))) (-15 -2243 ((-1259) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2243 ((-1259) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379)))) (-15 -2286 ((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2286 ((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379)))) (-15 -2243 ((-1259) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2243 ((-1259) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379)))) (-15 -2286 ((-1126 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2286 ((-1126 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379)))) (-15 -2959 ((-1 (-939 (-225)) (-225) (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))))) +((-2243 (((-1258) (-294 |#2|) (-1169) (-1169) (-640 (-263))) 96))) +(((-256 |#1| |#2|) (-10 -7 (-15 -2243 ((-1258) (-294 |#2|) (-1169) (-1169) (-640 (-263))))) (-13 (-555) (-846) (-1034 (-563))) (-430 |#1|)) (T -256)) +((-2243 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-1169)) (-5 *5 (-640 (-263))) (-4 *7 (-430 *6)) (-4 *6 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-1258)) (-5 *1 (-256 *6 *7))))) +(-10 -7 (-15 -2243 ((-1258) (-294 |#2|) (-1169) (-1169) (-640 (-263))))) +((-4288 (((-563) (-563)) 50)) (-3505 (((-563) (-563)) 51)) (-4178 (((-225) (-225)) 52)) (-4213 (((-1259) (-1 (-169 (-225)) (-169 (-225))) (-1087 (-225)) (-1087 (-225))) 49)) (-2668 (((-1259) (-1 (-169 (-225)) (-169 (-225))) (-1087 (-225)) (-1087 (-225)) (-112)) 47))) +(((-257) (-10 -7 (-15 -2668 ((-1259) (-1 (-169 (-225)) (-169 (-225))) (-1087 (-225)) (-1087 (-225)) (-112))) (-15 -4213 ((-1259) (-1 (-169 (-225)) (-169 (-225))) (-1087 (-225)) (-1087 (-225)))) (-15 -4288 ((-563) (-563))) (-15 -3505 ((-563) (-563))) (-15 -4178 ((-225) (-225))))) (T -257)) +((-4178 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-257)))) (-3505 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-257)))) (-4288 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-257)))) (-4213 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1087 (-225))) (-5 *2 (-1259)) (-5 *1 (-257)))) (-2668 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1087 (-225))) (-5 *5 (-112)) (-5 *2 (-1259)) (-5 *1 (-257))))) +(-10 -7 (-15 -2668 ((-1259) (-1 (-169 (-225)) (-169 (-225))) (-1087 (-225)) (-1087 (-225)) (-112))) (-15 -4213 ((-1259) (-1 (-169 (-225)) (-169 (-225))) (-1087 (-225)) (-1087 (-225)))) (-15 -4288 ((-563) (-563))) (-15 -3505 ((-563) (-563))) (-15 -4178 ((-225) (-225)))) +((-1693 (((-1085 (-379)) (-1085 (-316 |#1|))) 16))) +(((-258 |#1|) (-10 -7 (-15 -1693 ((-1085 (-379)) (-1085 (-316 |#1|))))) (-13 (-846) (-555) (-611 (-379)))) (T -258)) +((-1693 (*1 *2 *3) (-12 (-5 *3 (-1085 (-316 *4))) (-4 *4 (-13 (-846) (-555) (-611 (-379)))) (-5 *2 (-1085 (-379))) (-5 *1 (-258 *4))))) +(-10 -7 (-15 -1693 ((-1085 (-379)) (-1085 (-316 |#1|))))) +((-2286 (((-1126 (-225)) (-878 |#1|) (-1085 (-379)) (-1085 (-379))) 71) (((-1126 (-225)) (-878 |#1|) (-1085 (-379)) (-1085 (-379)) (-640 (-263))) 70) (((-1126 (-225)) |#1| (-1085 (-379)) (-1085 (-379))) 61) (((-1126 (-225)) |#1| (-1085 (-379)) (-1085 (-379)) (-640 (-263))) 60) (((-1126 (-225)) (-875 |#1|) (-1085 (-379))) 52) (((-1126 (-225)) (-875 |#1|) (-1085 (-379)) (-640 (-263))) 51)) (-2243 (((-1259) (-878 |#1|) (-1085 (-379)) (-1085 (-379))) 74) (((-1259) (-878 |#1|) (-1085 (-379)) (-1085 (-379)) (-640 (-263))) 73) (((-1259) |#1| (-1085 (-379)) (-1085 (-379))) 64) (((-1259) |#1| (-1085 (-379)) (-1085 (-379)) (-640 (-263))) 63) (((-1259) (-875 |#1|) (-1085 (-379))) 56) (((-1259) (-875 |#1|) (-1085 (-379)) (-640 (-263))) 55) (((-1258) (-873 |#1|) (-1085 (-379))) 43) (((-1258) (-873 |#1|) (-1085 (-379)) (-640 (-263))) 42) (((-1258) |#1| (-1085 (-379))) 35) (((-1258) |#1| (-1085 (-379)) (-640 (-263))) 34))) +(((-259 |#1|) (-10 -7 (-15 -2243 ((-1258) |#1| (-1085 (-379)) (-640 (-263)))) (-15 -2243 ((-1258) |#1| (-1085 (-379)))) (-15 -2243 ((-1258) (-873 |#1|) (-1085 (-379)) (-640 (-263)))) (-15 -2243 ((-1258) (-873 |#1|) (-1085 (-379)))) (-15 -2243 ((-1259) (-875 |#1|) (-1085 (-379)) (-640 (-263)))) (-15 -2243 ((-1259) (-875 |#1|) (-1085 (-379)))) (-15 -2286 ((-1126 (-225)) (-875 |#1|) (-1085 (-379)) (-640 (-263)))) (-15 -2286 ((-1126 (-225)) (-875 |#1|) (-1085 (-379)))) (-15 -2243 ((-1259) |#1| (-1085 (-379)) (-1085 (-379)) (-640 (-263)))) (-15 -2243 ((-1259) |#1| (-1085 (-379)) (-1085 (-379)))) (-15 -2286 ((-1126 (-225)) |#1| (-1085 (-379)) (-1085 (-379)) (-640 (-263)))) (-15 -2286 ((-1126 (-225)) |#1| (-1085 (-379)) (-1085 (-379)))) (-15 -2243 ((-1259) (-878 |#1|) (-1085 (-379)) (-1085 (-379)) (-640 (-263)))) (-15 -2243 ((-1259) (-878 |#1|) (-1085 (-379)) (-1085 (-379)))) (-15 -2286 ((-1126 (-225)) (-878 |#1|) (-1085 (-379)) (-1085 (-379)) (-640 (-263)))) (-15 -2286 ((-1126 (-225)) (-878 |#1|) (-1085 (-379)) (-1085 (-379))))) (-13 (-611 (-536)) (-1093))) (T -259)) +((-2286 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-878 *5)) (-5 *4 (-1085 (-379))) (-4 *5 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1126 (-225))) (-5 *1 (-259 *5)))) (-2286 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-878 *6)) (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) (-4 *6 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1126 (-225))) (-5 *1 (-259 *6)))) (-2243 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-878 *5)) (-5 *4 (-1085 (-379))) (-4 *5 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1259)) (-5 *1 (-259 *5)))) (-2243 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-878 *6)) (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) (-4 *6 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1259)) (-5 *1 (-259 *6)))) (-2286 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1085 (-379))) (-5 *2 (-1126 (-225))) (-5 *1 (-259 *3)) (-4 *3 (-13 (-611 (-536)) (-1093))))) (-2286 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-259 *3)) (-4 *3 (-13 (-611 (-536)) (-1093))))) (-2243 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1085 (-379))) (-5 *2 (-1259)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-611 (-536)) (-1093))))) (-2243 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-611 (-536)) (-1093))))) (-2286 (*1 *2 *3 *4) (-12 (-5 *3 (-875 *5)) (-5 *4 (-1085 (-379))) (-4 *5 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1126 (-225))) (-5 *1 (-259 *5)))) (-2286 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 *6)) (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) (-4 *6 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1126 (-225))) (-5 *1 (-259 *6)))) (-2243 (*1 *2 *3 *4) (-12 (-5 *3 (-875 *5)) (-5 *4 (-1085 (-379))) (-4 *5 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1259)) (-5 *1 (-259 *5)))) (-2243 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 *6)) (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) (-4 *6 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1259)) (-5 *1 (-259 *6)))) (-2243 (*1 *2 *3 *4) (-12 (-5 *3 (-873 *5)) (-5 *4 (-1085 (-379))) (-4 *5 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1258)) (-5 *1 (-259 *5)))) (-2243 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-873 *6)) (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) (-4 *6 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1258)) (-5 *1 (-259 *6)))) (-2243 (*1 *2 *3 *4) (-12 (-5 *4 (-1085 (-379))) (-5 *2 (-1258)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-611 (-536)) (-1093))))) (-2243 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1258)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-611 (-536)) (-1093)))))) +(-10 -7 (-15 -2243 ((-1258) |#1| (-1085 (-379)) (-640 (-263)))) (-15 -2243 ((-1258) |#1| (-1085 (-379)))) (-15 -2243 ((-1258) (-873 |#1|) (-1085 (-379)) (-640 (-263)))) (-15 -2243 ((-1258) (-873 |#1|) (-1085 (-379)))) (-15 -2243 ((-1259) (-875 |#1|) (-1085 (-379)) (-640 (-263)))) (-15 -2243 ((-1259) (-875 |#1|) (-1085 (-379)))) (-15 -2286 ((-1126 (-225)) (-875 |#1|) (-1085 (-379)) (-640 (-263)))) (-15 -2286 ((-1126 (-225)) (-875 |#1|) (-1085 (-379)))) (-15 -2243 ((-1259) |#1| (-1085 (-379)) (-1085 (-379)) (-640 (-263)))) (-15 -2243 ((-1259) |#1| (-1085 (-379)) (-1085 (-379)))) (-15 -2286 ((-1126 (-225)) |#1| (-1085 (-379)) (-1085 (-379)) (-640 (-263)))) (-15 -2286 ((-1126 (-225)) |#1| (-1085 (-379)) (-1085 (-379)))) (-15 -2243 ((-1259) (-878 |#1|) (-1085 (-379)) (-1085 (-379)) (-640 (-263)))) (-15 -2243 ((-1259) (-878 |#1|) (-1085 (-379)) (-1085 (-379)))) (-15 -2286 ((-1126 (-225)) (-878 |#1|) (-1085 (-379)) (-1085 (-379)) (-640 (-263)))) (-15 -2286 ((-1126 (-225)) (-878 |#1|) (-1085 (-379)) (-1085 (-379))))) +((-2243 (((-1259) (-640 (-225)) (-640 (-225)) (-640 (-225)) (-640 (-263))) 23) (((-1259) (-640 (-225)) (-640 (-225)) (-640 (-225))) 24) (((-1258) (-640 (-939 (-225))) (-640 (-263))) 16) (((-1258) (-640 (-939 (-225)))) 17) (((-1258) (-640 (-225)) (-640 (-225)) (-640 (-263))) 20) (((-1258) (-640 (-225)) (-640 (-225))) 21))) +(((-260) (-10 -7 (-15 -2243 ((-1258) (-640 (-225)) (-640 (-225)))) (-15 -2243 ((-1258) (-640 (-225)) (-640 (-225)) (-640 (-263)))) (-15 -2243 ((-1258) (-640 (-939 (-225))))) (-15 -2243 ((-1258) (-640 (-939 (-225))) (-640 (-263)))) (-15 -2243 ((-1259) (-640 (-225)) (-640 (-225)) (-640 (-225)))) (-15 -2243 ((-1259) (-640 (-225)) (-640 (-225)) (-640 (-225)) (-640 (-263)))))) (T -260)) +((-2243 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-640 (-225))) (-5 *4 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-260)))) (-2243 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-640 (-225))) (-5 *2 (-1259)) (-5 *1 (-260)))) (-2243 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-939 (-225)))) (-5 *4 (-640 (-263))) (-5 *2 (-1258)) (-5 *1 (-260)))) (-2243 (*1 *2 *3) (-12 (-5 *3 (-640 (-939 (-225)))) (-5 *2 (-1258)) (-5 *1 (-260)))) (-2243 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-640 (-225))) (-5 *4 (-640 (-263))) (-5 *2 (-1258)) (-5 *1 (-260)))) (-2243 (*1 *2 *3 *3) (-12 (-5 *3 (-640 (-225))) (-5 *2 (-1258)) (-5 *1 (-260))))) +(-10 -7 (-15 -2243 ((-1258) (-640 (-225)) (-640 (-225)))) (-15 -2243 ((-1258) (-640 (-225)) (-640 (-225)) (-640 (-263)))) (-15 -2243 ((-1258) (-640 (-939 (-225))))) (-15 -2243 ((-1258) (-640 (-939 (-225))) (-640 (-263)))) (-15 -2243 ((-1259) (-640 (-225)) (-640 (-225)) (-640 (-225)))) (-15 -2243 ((-1259) (-640 (-225)) (-640 (-225)) (-640 (-225)) (-640 (-263))))) +((-2135 (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4346 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-640 (-263)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4346 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 25)) (-2786 (((-917) (-640 (-263)) (-917)) 52)) (-3220 (((-917) (-640 (-263)) (-917)) 51)) (-3528 (((-640 (-379)) (-640 (-263)) (-640 (-379))) 68)) (-2185 (((-379) (-640 (-263)) (-379)) 57)) (-2750 (((-917) (-640 (-263)) (-917)) 53)) (-1353 (((-112) (-640 (-263)) (-112)) 27)) (-3694 (((-1151) (-640 (-263)) (-1151)) 19)) (-2383 (((-1151) (-640 (-263)) (-1151)) 26)) (-4140 (((-1126 (-225)) (-640 (-263))) 46)) (-2567 (((-640 (-1087 (-379))) (-640 (-263)) (-640 (-1087 (-379)))) 40)) (-3229 (((-870) (-640 (-263)) (-870)) 32)) (-1457 (((-870) (-640 (-263)) (-870)) 33)) (-2430 (((-1 (-939 (-225)) (-939 (-225))) (-640 (-263)) (-1 (-939 (-225)) (-939 (-225)))) 63)) (-3489 (((-112) (-640 (-263)) (-112)) 14)) (-3450 (((-112) (-640 (-263)) (-112)) 13))) +(((-261) (-10 -7 (-15 -3450 ((-112) (-640 (-263)) (-112))) (-15 -3489 ((-112) (-640 (-263)) (-112))) (-15 -2135 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4346 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-640 (-263)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4346 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3694 ((-1151) (-640 (-263)) (-1151))) (-15 -2383 ((-1151) (-640 (-263)) (-1151))) (-15 -1353 ((-112) (-640 (-263)) (-112))) (-15 -3229 ((-870) (-640 (-263)) (-870))) (-15 -1457 ((-870) (-640 (-263)) (-870))) (-15 -2567 ((-640 (-1087 (-379))) (-640 (-263)) (-640 (-1087 (-379))))) (-15 -3220 ((-917) (-640 (-263)) (-917))) (-15 -2786 ((-917) (-640 (-263)) (-917))) (-15 -4140 ((-1126 (-225)) (-640 (-263)))) (-15 -2750 ((-917) (-640 (-263)) (-917))) (-15 -2185 ((-379) (-640 (-263)) (-379))) (-15 -2430 ((-1 (-939 (-225)) (-939 (-225))) (-640 (-263)) (-1 (-939 (-225)) (-939 (-225))))) (-15 -3528 ((-640 (-379)) (-640 (-263)) (-640 (-379)))))) (T -261)) +((-3528 (*1 *2 *3 *2) (-12 (-5 *2 (-640 (-379))) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-2430 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-2185 (*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-2750 (*1 *2 *3 *2) (-12 (-5 *2 (-917)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-4140 (*1 *2 *3) (-12 (-5 *3 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-261)))) (-2786 (*1 *2 *3 *2) (-12 (-5 *2 (-917)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-3220 (*1 *2 *3 *2) (-12 (-5 *2 (-917)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-2567 (*1 *2 *3 *2) (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-1457 (*1 *2 *3 *2) (-12 (-5 *2 (-870)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-3229 (*1 *2 *3 *2) (-12 (-5 *2 (-870)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-1353 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-2383 (*1 *2 *3 *2) (-12 (-5 *2 (-1151)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-3694 (*1 *2 *3 *2) (-12 (-5 *2 (-1151)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-2135 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4346 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-3489 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-3450 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-640 (-263))) (-5 *1 (-261))))) +(-10 -7 (-15 -3450 ((-112) (-640 (-263)) (-112))) (-15 -3489 ((-112) (-640 (-263)) (-112))) (-15 -2135 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4346 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-640 (-263)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4346 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3694 ((-1151) (-640 (-263)) (-1151))) (-15 -2383 ((-1151) (-640 (-263)) (-1151))) (-15 -1353 ((-112) (-640 (-263)) (-112))) (-15 -3229 ((-870) (-640 (-263)) (-870))) (-15 -1457 ((-870) (-640 (-263)) (-870))) (-15 -2567 ((-640 (-1087 (-379))) (-640 (-263)) (-640 (-1087 (-379))))) (-15 -3220 ((-917) (-640 (-263)) (-917))) (-15 -2786 ((-917) (-640 (-263)) (-917))) (-15 -4140 ((-1126 (-225)) (-640 (-263)))) (-15 -2750 ((-917) (-640 (-263)) (-917))) (-15 -2185 ((-379) (-640 (-263)) (-379))) (-15 -2430 ((-1 (-939 (-225)) (-939 (-225))) (-640 (-263)) (-1 (-939 (-225)) (-939 (-225))))) (-15 -3528 ((-640 (-379)) (-640 (-263)) (-640 (-379))))) +((-1974 (((-3 |#1| "failed") (-640 (-263)) (-1169)) 17))) +(((-262 |#1|) (-10 -7 (-15 -1974 ((-3 |#1| "failed") (-640 (-263)) (-1169)))) (-1208)) (T -262)) +((-1974 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-640 (-263))) (-5 *4 (-1169)) (-5 *1 (-262 *2)) (-4 *2 (-1208))))) +(-10 -7 (-15 -1974 ((-3 |#1| "failed") (-640 (-263)) (-1169)))) +((-1677 (((-112) $ $) NIL)) (-2135 (($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4346 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 12)) (-2786 (($ (-917)) 74)) (-3220 (($ (-917)) 73)) (-1414 (($ (-640 (-379))) 80)) (-2185 (($ (-379)) 56)) (-2750 (($ (-917)) 75)) (-1353 (($ (-112)) 21)) (-3694 (($ (-1151)) 16)) (-2383 (($ (-1151)) 17)) (-4140 (($ (-1126 (-225))) 69)) (-2567 (($ (-640 (-1087 (-379)))) 65)) (-2516 (($ (-640 (-1087 (-379)))) 57) (($ (-640 (-1087 (-407 (-563))))) 64)) (-2285 (($ (-379)) 27) (($ (-870)) 31)) (-3098 (((-112) (-640 $) (-1169)) 90)) (-1974 (((-3 (-52) "failed") (-640 $) (-1169)) 92)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-3751 (($ (-379)) 32) (($ (-870)) 33)) (-1880 (($ (-1 (-939 (-225)) (-939 (-225)))) 55)) (-2430 (($ (-1 (-939 (-225)) (-939 (-225)))) 76)) (-1940 (($ (-1 (-225) (-225))) 37) (($ (-1 (-225) (-225) (-225))) 41) (($ (-1 (-225) (-225) (-225) (-225))) 45)) (-1693 (((-858) $) 86)) (-2769 (($ (-112)) 22) (($ (-640 (-1087 (-379)))) 50)) (-3450 (($ (-112)) 23)) (-1718 (((-112) $ $) 88))) +(((-263) (-13 (-1093) (-10 -8 (-15 -3450 ($ (-112))) (-15 -2769 ($ (-112))) (-15 -2135 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4346 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3694 ($ (-1151))) (-15 -2383 ($ (-1151))) (-15 -1353 ($ (-112))) (-15 -2769 ($ (-640 (-1087 (-379))))) (-15 -1880 ($ (-1 (-939 (-225)) (-939 (-225))))) (-15 -2285 ($ (-379))) (-15 -2285 ($ (-870))) (-15 -3751 ($ (-379))) (-15 -3751 ($ (-870))) (-15 -1940 ($ (-1 (-225) (-225)))) (-15 -1940 ($ (-1 (-225) (-225) (-225)))) (-15 -1940 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -2185 ($ (-379))) (-15 -2516 ($ (-640 (-1087 (-379))))) (-15 -2516 ($ (-640 (-1087 (-407 (-563)))))) (-15 -2567 ($ (-640 (-1087 (-379))))) (-15 -4140 ($ (-1126 (-225)))) (-15 -3220 ($ (-917))) (-15 -2786 ($ (-917))) (-15 -2750 ($ (-917))) (-15 -2430 ($ (-1 (-939 (-225)) (-939 (-225))))) (-15 -1414 ($ (-640 (-379)))) (-15 -1974 ((-3 (-52) "failed") (-640 $) (-1169))) (-15 -3098 ((-112) (-640 $) (-1169)))))) (T -263)) +((-3450 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-2769 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-2135 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4346 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-263)))) (-3694 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-263)))) (-2383 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-263)))) (-1353 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-2769 (*1 *1 *2) (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *1 (-263)))) (-1880 (*1 *1 *2) (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *1 (-263)))) (-2285 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))) (-2285 (*1 *1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-263)))) (-3751 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))) (-3751 (*1 *1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-263)))) (-1940 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-263)))) (-1940 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-263)))) (-1940 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-263)))) (-2185 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))) (-2516 (*1 *1 *2) (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *1 (-263)))) (-2516 (*1 *1 *2) (-12 (-5 *2 (-640 (-1087 (-407 (-563))))) (-5 *1 (-263)))) (-2567 (*1 *1 *2) (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *1 (-263)))) (-4140 (*1 *1 *2) (-12 (-5 *2 (-1126 (-225))) (-5 *1 (-263)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-263)))) (-2786 (*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-263)))) (-2750 (*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-263)))) (-2430 (*1 *1 *2) (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *1 (-263)))) (-1414 (*1 *1 *2) (-12 (-5 *2 (-640 (-379))) (-5 *1 (-263)))) (-1974 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-640 (-263))) (-5 *4 (-1169)) (-5 *2 (-52)) (-5 *1 (-263)))) (-3098 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-263))) (-5 *4 (-1169)) (-5 *2 (-112)) (-5 *1 (-263))))) +(-13 (-1093) (-10 -8 (-15 -3450 ($ (-112))) (-15 -2769 ($ (-112))) (-15 -2135 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4346 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3694 ($ (-1151))) (-15 -2383 ($ (-1151))) (-15 -1353 ($ (-112))) (-15 -2769 ($ (-640 (-1087 (-379))))) (-15 -1880 ($ (-1 (-939 (-225)) (-939 (-225))))) (-15 -2285 ($ (-379))) (-15 -2285 ($ (-870))) (-15 -3751 ($ (-379))) (-15 -3751 ($ (-870))) (-15 -1940 ($ (-1 (-225) (-225)))) (-15 -1940 ($ (-1 (-225) (-225) (-225)))) (-15 -1940 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -2185 ($ (-379))) (-15 -2516 ($ (-640 (-1087 (-379))))) (-15 -2516 ($ (-640 (-1087 (-407 (-563)))))) (-15 -2567 ($ (-640 (-1087 (-379))))) (-15 -4140 ($ (-1126 (-225)))) (-15 -3220 ($ (-917))) (-15 -2786 ($ (-917))) (-15 -2750 ($ (-917))) (-15 -2430 ($ (-1 (-939 (-225)) (-939 (-225))))) (-15 -1414 ($ (-640 (-379)))) (-15 -1974 ((-3 (-52) "failed") (-640 $) (-1169))) (-15 -3098 ((-112) (-640 $) (-1169))))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-2784 (((-640 (-767)) $) NIL) (((-640 (-767)) $ |#2|) NIL)) (-1326 (((-767) $) NIL) (((-767) $ |#2|) NIL)) (-2606 (((-640 |#3|) $) NIL)) (-2139 (((-1165 $) $ |#3|) NIL) (((-1165 |#1|) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-4223 (($ $) NIL (|has| |#1| (-555)))) (-3156 (((-112) $) NIL (|has| |#1| (-555)))) (-1779 (((-767) $) NIL) (((-767) $ (-640 |#3|)) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-2424 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-4335 (($ $) NIL (|has| |#1| (-452)))) (-3205 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-3942 (($ $) NIL)) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1118 |#1| |#2|) "failed") $) 21)) (-2058 ((|#1| $) NIL) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#1| (-1034 (-563)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1118 |#1| |#2|) $) NIL)) (-2742 (($ $ $ |#3|) NIL (|has| |#1| (-172)))) (-2751 (($ $) NIL)) (-2950 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-1300 (($ $) NIL (|has| |#1| (-452))) (($ $ |#3|) NIL (|has| |#1| (-452)))) (-2739 (((-640 $) $) NIL)) (-2468 (((-112) $) NIL (|has| |#1| (-905)))) (-3554 (($ $ |#1| (-531 |#3|) $) NIL)) (-3787 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| |#1| (-882 (-379))) (|has| |#3| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| |#1| (-882 (-563))) (|has| |#3| (-882 (-563)))))) (-3254 (((-767) $ |#2|) NIL) (((-767) $) 10)) (-3827 (((-112) $) NIL)) (-4096 (((-767) $) NIL)) (-2596 (($ (-1165 |#1|) |#3|) NIL) (($ (-1165 $) |#3|) NIL)) (-1368 (((-640 $) $) NIL)) (-3920 (((-112) $) NIL)) (-2588 (($ |#1| (-531 |#3|)) NIL) (($ $ |#3| (-767)) NIL) (($ $ (-640 |#3|) (-640 (-767))) NIL)) (-2625 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $ |#3|) NIL)) (-2048 (((-531 |#3|) $) NIL) (((-767) $ |#3|) NIL) (((-640 (-767)) $ (-640 |#3|)) NIL)) (-3084 (($ $ $) NIL (|has| |#1| (-846)))) (-1777 (($ $ $) NIL (|has| |#1| (-846)))) (-2803 (($ (-1 (-531 |#3|) (-531 |#3|)) $) NIL)) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-3376 (((-1 $ (-767)) |#2|) NIL) (((-1 $ (-767)) $) NIL (|has| |#1| (-233)))) (-4234 (((-3 |#3| "failed") $) NIL)) (-2716 (($ $) NIL)) (-2726 ((|#1| $) NIL)) (-3759 ((|#3| $) NIL)) (-3513 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3573 (((-1151) $) NIL)) (-3871 (((-112) $) NIL)) (-3733 (((-3 (-640 $) "failed") $) NIL)) (-2919 (((-3 (-640 $) "failed") $) NIL)) (-4086 (((-3 (-2 (|:| |var| |#3|) (|:| -1654 (-767))) "failed") $) NIL)) (-3562 (($ $) NIL)) (-1694 (((-1113) $) NIL)) (-2696 (((-112) $) NIL)) (-2706 ((|#1| $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-452)))) (-3548 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1876 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-3116 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2174 (((-418 $) $) NIL (|has| |#1| (-905)))) (-3008 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-1540 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-640 |#3|) (-640 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-640 |#3|) (-640 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-233))) (($ $ (-640 |#2|) (-640 $)) NIL (|has| |#1| (-233))) (($ $ |#2| |#1|) NIL (|has| |#1| (-233))) (($ $ (-640 |#2|) (-640 |#1|)) NIL (|has| |#1| (-233)))) (-2315 (($ $ |#3|) NIL (|has| |#1| (-172)))) (-4202 (($ $ |#3|) NIL) (($ $ (-640 |#3|)) NIL) (($ $ |#3| (-767)) NIL) (($ $ (-640 |#3|) (-640 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3745 (((-640 |#2|) $) NIL)) (-4167 (((-531 |#3|) $) NIL) (((-767) $ |#3|) NIL) (((-640 (-767)) $ (-640 |#3|)) NIL) (((-767) $ |#2|) NIL)) (-2220 (((-888 (-379)) $) NIL (-12 (|has| |#1| (-611 (-888 (-379)))) (|has| |#3| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| |#1| (-611 (-888 (-563)))) (|has| |#3| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| |#1| (-611 (-536))) (|has| |#3| (-611 (-536)))))) (-1836 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ |#3|) NIL (|has| |#1| (-452)))) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1118 |#1| |#2|)) 30) (($ (-407 (-563))) NIL (-4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#1| (-555)))) (-1337 (((-640 |#1|) $) NIL)) (-4319 ((|#1| $ (-531 |#3|)) NIL) (($ $ |#3| (-767)) NIL) (($ $ (-640 |#3|) (-640 (-767))) NIL)) (-2779 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-1675 (((-767)) NIL)) (-2793 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-2126 (((-112) $ $) NIL (|has| |#1| (-555)))) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-3209 (($ $ |#3|) NIL) (($ $ (-640 |#3|)) NIL) (($ $ |#3| (-767)) NIL) (($ $ (-640 |#3|) (-640 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1778 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1756 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1744 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1837 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-264 |#1| |#2| |#3|) (-13 (-253 |#1| |#2| |#3| (-531 |#3|)) (-1034 (-1118 |#1| |#2|))) (-1045) (-846) (-266 |#2|)) (T -264)) +NIL +(-13 (-253 |#1| |#2| |#3| (-531 |#3|)) (-1034 (-1118 |#1| |#2|))) +((-1326 (((-767) $) 30)) (-2131 (((-3 |#2| "failed") $) 17)) (-2058 ((|#2| $) 27)) (-4202 (($ $) 12) (($ $ (-767)) 15)) (-1693 (((-858) $) 26) (($ |#2|) 10)) (-1718 (((-112) $ $) 20)) (-1744 (((-112) $ $) 29))) +(((-265 |#1| |#2|) (-10 -8 (-15 -4202 (|#1| |#1| (-767))) (-15 -4202 (|#1| |#1|)) (-15 -1326 ((-767) |#1|)) (-15 -1693 (|#1| |#2|)) (-15 -2131 ((-3 |#2| "failed") |#1|)) (-15 -2058 (|#2| |#1|)) (-15 -1744 ((-112) |#1| |#1|)) (-15 -1693 ((-858) |#1|)) (-15 -1718 ((-112) |#1| |#1|))) (-266 |#2|) (-846)) (T -265)) +NIL +(-10 -8 (-15 -4202 (|#1| |#1| (-767))) (-15 -4202 (|#1| |#1|)) (-15 -1326 ((-767) |#1|)) (-15 -1693 (|#1| |#2|)) (-15 -2131 ((-3 |#2| "failed") |#1|)) (-15 -2058 (|#2| |#1|)) (-15 -1744 ((-112) |#1| |#1|)) (-15 -1693 ((-858) |#1|)) (-15 -1718 ((-112) |#1| |#1|))) +((-1677 (((-112) $ $) 7)) (-1326 (((-767) $) 22)) (-2518 ((|#1| $) 23)) (-2131 (((-3 |#1| "failed") $) 27)) (-2058 ((|#1| $) 28)) (-3254 (((-767) $) 24)) (-3084 (($ $ $) 13)) (-1777 (($ $ $) 14)) (-3376 (($ |#1| (-767)) 25)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-4202 (($ $) 21) (($ $ (-767)) 20)) (-1693 (((-858) $) 11) (($ |#1|) 26)) (-1778 (((-112) $ $) 16)) (-1756 (((-112) $ $) 17)) (-1718 (((-112) $ $) 6)) (-1768 (((-112) $ $) 15)) (-1744 (((-112) $ $) 18))) +(((-266 |#1|) (-140) (-846)) (T -266)) +((-1693 (*1 *1 *2) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846)))) (-3376 (*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-266 *2)) (-4 *2 (-846)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-846)) (-5 *2 (-767)))) (-2518 (*1 *2 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846)))) (-1326 (*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-846)) (-5 *2 (-767)))) (-4202 (*1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846)))) (-4202 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-266 *3)) (-4 *3 (-846))))) +(-13 (-846) (-1034 |t#1|) (-10 -8 (-15 -3376 ($ |t#1| (-767))) (-15 -3254 ((-767) $)) (-15 -2518 (|t#1| $)) (-15 -1326 ((-767) $)) (-15 -4202 ($ $)) (-15 -4202 ($ $ (-767))) (-15 -1693 ($ |t#1|)))) +(((-102) . T) ((-613 |#1|) . T) ((-610 (-858)) . T) ((-846) . T) ((-1034 |#1|) . T) ((-1093) . T)) +((-2606 (((-640 (-1169)) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))) 41)) (-3993 (((-640 (-1169)) (-316 (-225)) (-767)) 80)) (-3540 (((-3 (-316 (-225)) "failed") (-316 (-225))) 51)) (-2442 (((-316 (-225)) (-316 (-225))) 67)) (-4100 (((-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225))))) (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 26)) (-2731 (((-112) (-640 (-316 (-225)))) 84)) (-3512 (((-112) (-316 (-225))) 24)) (-1976 (((-640 (-1151)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))))) 105)) (-2800 (((-640 (-316 (-225))) (-640 (-316 (-225)))) 87)) (-3855 (((-640 (-316 (-225))) (-640 (-316 (-225)))) 86)) (-2364 (((-684 (-225)) (-640 (-316 (-225))) (-767)) 94)) (-4304 (((-112) (-316 (-225))) 20) (((-112) (-640 (-316 (-225)))) 85)) (-2217 (((-640 (-225)) (-640 (-839 (-225))) (-225)) 14)) (-2466 (((-379) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))) 100)) (-1369 (((-1031) (-1169) (-1031)) 34))) +(((-267) (-10 -7 (-15 -2217 ((-640 (-225)) (-640 (-839 (-225))) (-225))) (-15 -4100 ((-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225))))) (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225))))))) (-15 -3540 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -2442 ((-316 (-225)) (-316 (-225)))) (-15 -2731 ((-112) (-640 (-316 (-225))))) (-15 -4304 ((-112) (-640 (-316 (-225))))) (-15 -4304 ((-112) (-316 (-225)))) (-15 -2364 ((-684 (-225)) (-640 (-316 (-225))) (-767))) (-15 -3855 ((-640 (-316 (-225))) (-640 (-316 (-225))))) (-15 -2800 ((-640 (-316 (-225))) (-640 (-316 (-225))))) (-15 -3512 ((-112) (-316 (-225)))) (-15 -2606 ((-640 (-1169)) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225)))))) (-15 -3993 ((-640 (-1169)) (-316 (-225)) (-767))) (-15 -1369 ((-1031) (-1169) (-1031))) (-15 -2466 ((-379) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225)))))) (-15 -1976 ((-640 (-1151)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225)))))))))) (T -267)) +((-1976 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))))) (-5 *2 (-640 (-1151))) (-5 *1 (-267)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))) (-5 *2 (-379)) (-5 *1 (-267)))) (-1369 (*1 *2 *3 *2) (-12 (-5 *2 (-1031)) (-5 *3 (-1169)) (-5 *1 (-267)))) (-3993 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-767)) (-5 *2 (-640 (-1169))) (-5 *1 (-267)))) (-2606 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))) (-5 *2 (-640 (-1169))) (-5 *1 (-267)))) (-3512 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))) (-2800 (*1 *2 *2) (-12 (-5 *2 (-640 (-316 (-225)))) (-5 *1 (-267)))) (-3855 (*1 *2 *2) (-12 (-5 *2 (-640 (-316 (-225)))) (-5 *1 (-267)))) (-2364 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-316 (-225)))) (-5 *4 (-767)) (-5 *2 (-684 (-225))) (-5 *1 (-267)))) (-4304 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))) (-4304 (*1 *2 *3) (-12 (-5 *3 (-640 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-640 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))) (-2442 (*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-267)))) (-3540 (*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-267)))) (-4100 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (-5 *1 (-267)))) (-2217 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-839 (-225)))) (-5 *4 (-225)) (-5 *2 (-640 *4)) (-5 *1 (-267))))) +(-10 -7 (-15 -2217 ((-640 (-225)) (-640 (-839 (-225))) (-225))) (-15 -4100 ((-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225))))) (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225))))))) (-15 -3540 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -2442 ((-316 (-225)) (-316 (-225)))) (-15 -2731 ((-112) (-640 (-316 (-225))))) (-15 -4304 ((-112) (-640 (-316 (-225))))) (-15 -4304 ((-112) (-316 (-225)))) (-15 -2364 ((-684 (-225)) (-640 (-316 (-225))) (-767))) (-15 -3855 ((-640 (-316 (-225))) (-640 (-316 (-225))))) (-15 -2800 ((-640 (-316 (-225))) (-640 (-316 (-225))))) (-15 -3512 ((-112) (-316 (-225)))) (-15 -2606 ((-640 (-1169)) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225)))))) (-15 -3993 ((-640 (-1169)) (-316 (-225)) (-767))) (-15 -1369 ((-1031) (-1169) (-1031))) (-15 -2466 ((-379) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225)))))) (-15 -1976 ((-640 (-1151)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))))))) +((-1677 (((-112) $ $) NIL)) (-3422 (((-1031) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 44)) (-1994 (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 26) (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-268) (-835)) (T -268)) +NIL +(-835) +((-1677 (((-112) $ $) NIL)) (-3422 (((-1031) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))) 58) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 54)) (-1994 (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 34) (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))) 36)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-269) (-835)) (T -269)) +NIL +(-835) +((-1677 (((-112) $ $) NIL)) (-3422 (((-1031) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))) 76) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 73)) (-1994 (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 44) (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))) 55)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-270) (-835)) (T -270)) +NIL +(-835) +((-1677 (((-112) $ $) NIL)) (-3422 (((-1031) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 50)) (-1994 (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 31) (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-271) (-835)) (T -271)) +NIL +(-835) +((-1677 (((-112) $ $) NIL)) (-3422 (((-1031) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 50)) (-1994 (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 28) (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-272) (-835)) (T -272)) +NIL +(-835) +((-1677 (((-112) $ $) NIL)) (-3422 (((-1031) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 73)) (-1994 (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 28) (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-273) (-835)) (T -273)) +NIL +(-835) +((-1677 (((-112) $ $) NIL)) (-3422 (((-1031) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 77)) (-1994 (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 25) (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-274) (-835)) (T -274)) +NIL +(-835) +((-1677 (((-112) $ $) NIL)) (-3084 (($ $ $) NIL)) (-1777 (($ $ $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1915 (((-640 (-563)) $) 18)) (-4167 (((-767) $) 16)) (-1693 (((-858) $) 22) (($ (-640 (-563))) 14)) (-2542 (($ (-767)) 19)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 9)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) 10))) +(((-275) (-13 (-846) (-10 -8 (-15 -1693 ($ (-640 (-563)))) (-15 -4167 ((-767) $)) (-15 -1915 ((-640 (-563)) $)) (-15 -2542 ($ (-767)))))) (T -275)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-275)))) (-4167 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-275)))) (-1915 (*1 *2 *1) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-275)))) (-2542 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-275))))) +(-13 (-846) (-10 -8 (-15 -1693 ($ (-640 (-563)))) (-15 -4167 ((-767) $)) (-15 -1915 ((-640 (-563)) $)) (-15 -2542 ($ (-767))))) +((-1771 ((|#2| |#2|) 75)) (-1619 ((|#2| |#2|) 63)) (-3640 (((-3 |#2| "failed") |#2| (-640 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 115)) (-1748 ((|#2| |#2|) 73)) (-1597 ((|#2| |#2|) 61)) (-1794 ((|#2| |#2|) 77)) (-1643 ((|#2| |#2|) 65)) (-2180 ((|#2|) 44)) (-2361 (((-114) (-114)) 94)) (-4371 ((|#2| |#2|) 59)) (-2231 (((-112) |#2|) 133)) (-1792 ((|#2| |#2|) 180)) (-3999 ((|#2| |#2|) 156)) (-2403 ((|#2|) 57)) (-1724 ((|#2|) 56)) (-3668 ((|#2| |#2|) 176)) (-1343 ((|#2| |#2|) 152)) (-1752 ((|#2| |#2|) 184)) (-3416 ((|#2| |#2|) 160)) (-3740 ((|#2| |#2|) 148)) (-2035 ((|#2| |#2|) 150)) (-3829 ((|#2| |#2|) 186)) (-2948 ((|#2| |#2|) 162)) (-1460 ((|#2| |#2|) 182)) (-1493 ((|#2| |#2|) 158)) (-2743 ((|#2| |#2|) 178)) (-2318 ((|#2| |#2|) 154)) (-2932 ((|#2| |#2|) 192)) (-1432 ((|#2| |#2|) 168)) (-3886 ((|#2| |#2|) 188)) (-4240 ((|#2| |#2|) 164)) (-3695 ((|#2| |#2|) 196)) (-2638 ((|#2| |#2|) 172)) (-2075 ((|#2| |#2|) 198)) (-2834 ((|#2| |#2|) 174)) (-2117 ((|#2| |#2|) 194)) (-3173 ((|#2| |#2|) 170)) (-2552 ((|#2| |#2|) 190)) (-2551 ((|#2| |#2|) 166)) (-3368 ((|#2| |#2|) 60)) (-1806 ((|#2| |#2|) 78)) (-1656 ((|#2| |#2|) 66)) (-1784 ((|#2| |#2|) 76)) (-1630 ((|#2| |#2|) 64)) (-1759 ((|#2| |#2|) 74)) (-1608 ((|#2| |#2|) 62)) (-3734 (((-112) (-114)) 92)) (-1840 ((|#2| |#2|) 81)) (-1695 ((|#2| |#2|) 69)) (-1817 ((|#2| |#2|) 79)) (-1667 ((|#2| |#2|) 67)) (-1862 ((|#2| |#2|) 83)) (-1722 ((|#2| |#2|) 71)) (-1311 ((|#2| |#2|) 84)) (-1735 ((|#2| |#2|) 72)) (-1851 ((|#2| |#2|) 82)) (-1710 ((|#2| |#2|) 70)) (-1829 ((|#2| |#2|) 80)) (-1680 ((|#2| |#2|) 68))) +(((-276 |#1| |#2|) (-10 -7 (-15 -3368 (|#2| |#2|)) (-15 -4371 (|#2| |#2|)) (-15 -1597 (|#2| |#2|)) (-15 -1608 (|#2| |#2|)) (-15 -1619 (|#2| |#2|)) (-15 -1630 (|#2| |#2|)) (-15 -1643 (|#2| |#2|)) (-15 -1656 (|#2| |#2|)) (-15 -1667 (|#2| |#2|)) (-15 -1680 (|#2| |#2|)) (-15 -1695 (|#2| |#2|)) (-15 -1710 (|#2| |#2|)) (-15 -1722 (|#2| |#2|)) (-15 -1735 (|#2| |#2|)) (-15 -1748 (|#2| |#2|)) (-15 -1759 (|#2| |#2|)) (-15 -1771 (|#2| |#2|)) (-15 -1784 (|#2| |#2|)) (-15 -1794 (|#2| |#2|)) (-15 -1806 (|#2| |#2|)) (-15 -1817 (|#2| |#2|)) (-15 -1829 (|#2| |#2|)) (-15 -1840 (|#2| |#2|)) (-15 -1851 (|#2| |#2|)) (-15 -1862 (|#2| |#2|)) (-15 -1311 (|#2| |#2|)) (-15 -2180 (|#2|)) (-15 -3734 ((-112) (-114))) (-15 -2361 ((-114) (-114))) (-15 -1724 (|#2|)) (-15 -2403 (|#2|)) (-15 -2035 (|#2| |#2|)) (-15 -3740 (|#2| |#2|)) (-15 -1343 (|#2| |#2|)) (-15 -2318 (|#2| |#2|)) (-15 -3999 (|#2| |#2|)) (-15 -1493 (|#2| |#2|)) (-15 -3416 (|#2| |#2|)) (-15 -2948 (|#2| |#2|)) (-15 -4240 (|#2| |#2|)) (-15 -2551 (|#2| |#2|)) (-15 -1432 (|#2| |#2|)) (-15 -3173 (|#2| |#2|)) (-15 -2638 (|#2| |#2|)) (-15 -2834 (|#2| |#2|)) (-15 -3668 (|#2| |#2|)) (-15 -2743 (|#2| |#2|)) (-15 -1792 (|#2| |#2|)) (-15 -1460 (|#2| |#2|)) (-15 -1752 (|#2| |#2|)) (-15 -3829 (|#2| |#2|)) (-15 -3886 (|#2| |#2|)) (-15 -2552 (|#2| |#2|)) (-15 -2932 (|#2| |#2|)) (-15 -2117 (|#2| |#2|)) (-15 -3695 (|#2| |#2|)) (-15 -2075 (|#2| |#2|)) (-15 -3640 ((-3 |#2| "failed") |#2| (-640 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2231 ((-112) |#2|))) (-13 (-846) (-555)) (-13 (-430 |#1|) (-998))) (T -276)) +((-2231 (*1 *2 *3) (-12 (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112)) (-5 *1 (-276 *4 *3)) (-4 *3 (-13 (-430 *4) (-998))))) (-3640 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-640 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-430 *4) (-998))) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-276 *4 *2)))) (-2075 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3695 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2117 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2932 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2552 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3886 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3829 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1752 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1460 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1792 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2743 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3668 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2834 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2638 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3173 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1432 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2551 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-4240 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2948 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3416 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1493 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3999 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2318 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1343 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3740 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2035 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2403 (*1 *2) (-12 (-4 *2 (-13 (-430 *3) (-998))) (-5 *1 (-276 *3 *2)) (-4 *3 (-13 (-846) (-555))))) (-1724 (*1 *2) (-12 (-4 *2 (-13 (-430 *3) (-998))) (-5 *1 (-276 *3 *2)) (-4 *3 (-13 (-846) (-555))))) (-2361 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *4)) (-4 *4 (-13 (-430 *3) (-998))))) (-3734 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112)) (-5 *1 (-276 *4 *5)) (-4 *5 (-13 (-430 *4) (-998))))) (-2180 (*1 *2) (-12 (-4 *2 (-13 (-430 *3) (-998))) (-5 *1 (-276 *3 *2)) (-4 *3 (-13 (-846) (-555))))) (-1311 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1862 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1851 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1840 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1829 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1817 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1806 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1794 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1784 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1771 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1759 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1748 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1735 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1722 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1710 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1695 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1680 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1667 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1656 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1643 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1630 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1619 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1608 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1597 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-4371 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3368 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998)))))) +(-10 -7 (-15 -3368 (|#2| |#2|)) (-15 -4371 (|#2| |#2|)) (-15 -1597 (|#2| |#2|)) (-15 -1608 (|#2| |#2|)) (-15 -1619 (|#2| |#2|)) (-15 -1630 (|#2| |#2|)) (-15 -1643 (|#2| |#2|)) (-15 -1656 (|#2| |#2|)) (-15 -1667 (|#2| |#2|)) (-15 -1680 (|#2| |#2|)) (-15 -1695 (|#2| |#2|)) (-15 -1710 (|#2| |#2|)) (-15 -1722 (|#2| |#2|)) (-15 -1735 (|#2| |#2|)) (-15 -1748 (|#2| |#2|)) (-15 -1759 (|#2| |#2|)) (-15 -1771 (|#2| |#2|)) (-15 -1784 (|#2| |#2|)) (-15 -1794 (|#2| |#2|)) (-15 -1806 (|#2| |#2|)) (-15 -1817 (|#2| |#2|)) (-15 -1829 (|#2| |#2|)) (-15 -1840 (|#2| |#2|)) (-15 -1851 (|#2| |#2|)) (-15 -1862 (|#2| |#2|)) (-15 -1311 (|#2| |#2|)) (-15 -2180 (|#2|)) (-15 -3734 ((-112) (-114))) (-15 -2361 ((-114) (-114))) (-15 -1724 (|#2|)) (-15 -2403 (|#2|)) (-15 -2035 (|#2| |#2|)) (-15 -3740 (|#2| |#2|)) (-15 -1343 (|#2| |#2|)) (-15 -2318 (|#2| |#2|)) (-15 -3999 (|#2| |#2|)) (-15 -1493 (|#2| |#2|)) (-15 -3416 (|#2| |#2|)) (-15 -2948 (|#2| |#2|)) (-15 -4240 (|#2| |#2|)) (-15 -2551 (|#2| |#2|)) (-15 -1432 (|#2| |#2|)) (-15 -3173 (|#2| |#2|)) (-15 -2638 (|#2| |#2|)) (-15 -2834 (|#2| |#2|)) (-15 -3668 (|#2| |#2|)) (-15 -2743 (|#2| |#2|)) (-15 -1792 (|#2| |#2|)) (-15 -1460 (|#2| |#2|)) (-15 -1752 (|#2| |#2|)) (-15 -3829 (|#2| |#2|)) (-15 -3886 (|#2| |#2|)) (-15 -2552 (|#2| |#2|)) (-15 -2932 (|#2| |#2|)) (-15 -2117 (|#2| |#2|)) (-15 -3695 (|#2| |#2|)) (-15 -2075 (|#2| |#2|)) (-15 -3640 ((-3 |#2| "failed") |#2| (-640 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2231 ((-112) |#2|))) +((-3935 (((-3 |#2| "failed") (-640 (-609 |#2|)) |#2| (-1169)) 135)) (-2321 ((|#2| (-407 (-563)) |#2|) 51)) (-1815 ((|#2| |#2| (-609 |#2|)) 128)) (-4162 (((-2 (|:| |func| |#2|) (|:| |kers| (-640 (-609 |#2|))) (|:| |vals| (-640 |#2|))) |#2| (-1169)) 127)) (-2978 ((|#2| |#2| (-1169)) 20) ((|#2| |#2|) 23)) (-2441 ((|#2| |#2| (-1169)) 141) ((|#2| |#2|) 139))) +(((-277 |#1| |#2|) (-10 -7 (-15 -2441 (|#2| |#2|)) (-15 -2441 (|#2| |#2| (-1169))) (-15 -4162 ((-2 (|:| |func| |#2|) (|:| |kers| (-640 (-609 |#2|))) (|:| |vals| (-640 |#2|))) |#2| (-1169))) (-15 -2978 (|#2| |#2|)) (-15 -2978 (|#2| |#2| (-1169))) (-15 -3935 ((-3 |#2| "failed") (-640 (-609 |#2|)) |#2| (-1169))) (-15 -1815 (|#2| |#2| (-609 |#2|))) (-15 -2321 (|#2| (-407 (-563)) |#2|))) (-13 (-555) (-846) (-1034 (-563)) (-636 (-563))) (-13 (-27) (-1193) (-430 |#1|))) (T -277)) +((-2321 (*1 *2 *3 *2) (-12 (-5 *3 (-407 (-563))) (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4))))) (-1815 (*1 *2 *2 *3) (-12 (-5 *3 (-609 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4))) (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-277 *4 *2)))) (-3935 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-640 (-609 *2))) (-5 *4 (-1169)) (-4 *2 (-13 (-27) (-1193) (-430 *5))) (-4 *5 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-277 *5 *2)))) (-2978 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4))))) (-2978 (*1 *2 *2) (-12 (-4 *3 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3))))) (-4162 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-640 (-609 *3))) (|:| |vals| (-640 *3)))) (-5 *1 (-277 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))))) (-2441 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4))))) (-2441 (*1 *2 *2) (-12 (-4 *3 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3)))))) +(-10 -7 (-15 -2441 (|#2| |#2|)) (-15 -2441 (|#2| |#2| (-1169))) (-15 -4162 ((-2 (|:| |func| |#2|) (|:| |kers| (-640 (-609 |#2|))) (|:| |vals| (-640 |#2|))) |#2| (-1169))) (-15 -2978 (|#2| |#2|)) (-15 -2978 (|#2| |#2| (-1169))) (-15 -3935 ((-3 |#2| "failed") (-640 (-609 |#2|)) |#2| (-1169))) (-15 -1815 (|#2| |#2| (-609 |#2|))) (-15 -2321 (|#2| (-407 (-563)) |#2|))) +((-2695 (((-3 |#3| "failed") |#3|) 110)) (-1771 ((|#3| |#3|) 131)) (-4243 (((-3 |#3| "failed") |#3|) 82)) (-1619 ((|#3| |#3|) 121)) (-2030 (((-3 |#3| "failed") |#3|) 58)) (-1748 ((|#3| |#3|) 129)) (-1923 (((-3 |#3| "failed") |#3|) 46)) (-1597 ((|#3| |#3|) 119)) (-3565 (((-3 |#3| "failed") |#3|) 112)) (-1794 ((|#3| |#3|) 133)) (-3918 (((-3 |#3| "failed") |#3|) 84)) (-1643 ((|#3| |#3|) 123)) (-2092 (((-3 |#3| "failed") |#3| (-767)) 36)) (-1739 (((-3 |#3| "failed") |#3|) 74)) (-4371 ((|#3| |#3|) 118)) (-3089 (((-3 |#3| "failed") |#3|) 44)) (-3368 ((|#3| |#3|) 117)) (-3344 (((-3 |#3| "failed") |#3|) 113)) (-1806 ((|#3| |#3|) 134)) (-1732 (((-3 |#3| "failed") |#3|) 85)) (-1656 ((|#3| |#3|) 124)) (-3392 (((-3 |#3| "failed") |#3|) 111)) (-1784 ((|#3| |#3|) 132)) (-2616 (((-3 |#3| "failed") |#3|) 83)) (-1630 ((|#3| |#3|) 122)) (-3240 (((-3 |#3| "failed") |#3|) 60)) (-1759 ((|#3| |#3|) 130)) (-2106 (((-3 |#3| "failed") |#3|) 48)) (-1608 ((|#3| |#3|) 120)) (-4385 (((-3 |#3| "failed") |#3|) 66)) (-1840 ((|#3| |#3|) 137)) (-2566 (((-3 |#3| "failed") |#3|) 104)) (-1695 ((|#3| |#3|) 142)) (-4074 (((-3 |#3| "failed") |#3|) 62)) (-1817 ((|#3| |#3|) 135)) (-2000 (((-3 |#3| "failed") |#3|) 50)) (-1667 ((|#3| |#3|) 125)) (-2915 (((-3 |#3| "failed") |#3|) 70)) (-1862 ((|#3| |#3|) 139)) (-2002 (((-3 |#3| "failed") |#3|) 54)) (-1722 ((|#3| |#3|) 127)) (-3874 (((-3 |#3| "failed") |#3|) 72)) (-1311 ((|#3| |#3|) 140)) (-3409 (((-3 |#3| "failed") |#3|) 56)) (-1735 ((|#3| |#3|) 128)) (-2951 (((-3 |#3| "failed") |#3|) 68)) (-1851 ((|#3| |#3|) 138)) (-3235 (((-3 |#3| "failed") |#3|) 107)) (-1710 ((|#3| |#3|) 143)) (-2819 (((-3 |#3| "failed") |#3|) 64)) (-1829 ((|#3| |#3|) 136)) (-3137 (((-3 |#3| "failed") |#3|) 52)) (-1680 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-407 (-563))) 40 (|has| |#1| (-363))))) +(((-278 |#1| |#2| |#3|) (-13 (-979 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-563)))) |%noBranch|) (-15 -3368 (|#3| |#3|)) (-15 -4371 (|#3| |#3|)) (-15 -1597 (|#3| |#3|)) (-15 -1608 (|#3| |#3|)) (-15 -1619 (|#3| |#3|)) (-15 -1630 (|#3| |#3|)) (-15 -1643 (|#3| |#3|)) (-15 -1656 (|#3| |#3|)) (-15 -1667 (|#3| |#3|)) (-15 -1680 (|#3| |#3|)) (-15 -1695 (|#3| |#3|)) (-15 -1710 (|#3| |#3|)) (-15 -1722 (|#3| |#3|)) (-15 -1735 (|#3| |#3|)) (-15 -1748 (|#3| |#3|)) (-15 -1759 (|#3| |#3|)) (-15 -1771 (|#3| |#3|)) (-15 -1784 (|#3| |#3|)) (-15 -1794 (|#3| |#3|)) (-15 -1806 (|#3| |#3|)) (-15 -1817 (|#3| |#3|)) (-15 -1829 (|#3| |#3|)) (-15 -1840 (|#3| |#3|)) (-15 -1851 (|#3| |#3|)) (-15 -1862 (|#3| |#3|)) (-15 -1311 (|#3| |#3|)))) (-38 (-407 (-563))) (-1248 |#1|) (-1219 |#1| |#2|)) (T -278)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-563))) (-4 *4 (-363)) (-4 *4 (-38 *3)) (-4 *5 (-1248 *4)) (-5 *1 (-278 *4 *5 *2)) (-4 *2 (-1219 *4 *5)))) (-3368 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-4371 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1597 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1608 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1619 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1630 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1643 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1656 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1667 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1680 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1695 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1710 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1722 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1735 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1748 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1759 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1771 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1784 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1794 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1806 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1817 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1829 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1840 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1851 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1862 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-1311 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4))))) +(-13 (-979 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-563)))) |%noBranch|) (-15 -3368 (|#3| |#3|)) (-15 -4371 (|#3| |#3|)) (-15 -1597 (|#3| |#3|)) (-15 -1608 (|#3| |#3|)) (-15 -1619 (|#3| |#3|)) (-15 -1630 (|#3| |#3|)) (-15 -1643 (|#3| |#3|)) (-15 -1656 (|#3| |#3|)) (-15 -1667 (|#3| |#3|)) (-15 -1680 (|#3| |#3|)) (-15 -1695 (|#3| |#3|)) (-15 -1710 (|#3| |#3|)) (-15 -1722 (|#3| |#3|)) (-15 -1735 (|#3| |#3|)) (-15 -1748 (|#3| |#3|)) (-15 -1759 (|#3| |#3|)) (-15 -1771 (|#3| |#3|)) (-15 -1784 (|#3| |#3|)) (-15 -1794 (|#3| |#3|)) (-15 -1806 (|#3| |#3|)) (-15 -1817 (|#3| |#3|)) (-15 -1829 (|#3| |#3|)) (-15 -1840 (|#3| |#3|)) (-15 -1851 (|#3| |#3|)) (-15 -1862 (|#3| |#3|)) (-15 -1311 (|#3| |#3|)))) +((-2695 (((-3 |#3| "failed") |#3|) 66)) (-1771 ((|#3| |#3|) 129)) (-4243 (((-3 |#3| "failed") |#3|) 50)) (-1619 ((|#3| |#3|) 117)) (-2030 (((-3 |#3| "failed") |#3|) 62)) (-1748 ((|#3| |#3|) 127)) (-1923 (((-3 |#3| "failed") |#3|) 46)) (-1597 ((|#3| |#3|) 115)) (-3565 (((-3 |#3| "failed") |#3|) 70)) (-1794 ((|#3| |#3|) 131)) (-3918 (((-3 |#3| "failed") |#3|) 54)) (-1643 ((|#3| |#3|) 119)) (-2092 (((-3 |#3| "failed") |#3| (-767)) 35)) (-1739 (((-3 |#3| "failed") |#3|) 44)) (-4371 ((|#3| |#3|) 104)) (-3089 (((-3 |#3| "failed") |#3|) 42)) (-3368 ((|#3| |#3|) 114)) (-3344 (((-3 |#3| "failed") |#3|) 72)) (-1806 ((|#3| |#3|) 132)) (-1732 (((-3 |#3| "failed") |#3|) 56)) (-1656 ((|#3| |#3|) 120)) (-3392 (((-3 |#3| "failed") |#3|) 68)) (-1784 ((|#3| |#3|) 130)) (-2616 (((-3 |#3| "failed") |#3|) 52)) (-1630 ((|#3| |#3|) 118)) (-3240 (((-3 |#3| "failed") |#3|) 64)) (-1759 ((|#3| |#3|) 128)) (-2106 (((-3 |#3| "failed") |#3|) 48)) (-1608 ((|#3| |#3|) 116)) (-4385 (((-3 |#3| "failed") |#3|) 74)) (-1840 ((|#3| |#3|) 135)) (-2566 (((-3 |#3| "failed") |#3|) 58)) (-1695 ((|#3| |#3|) 123)) (-4074 (((-3 |#3| "failed") |#3|) 105)) (-1817 ((|#3| |#3|) 133)) (-2000 (((-3 |#3| "failed") |#3|) 94)) (-1667 ((|#3| |#3|) 121)) (-2915 (((-3 |#3| "failed") |#3|) 109)) (-1862 ((|#3| |#3|) 137)) (-2002 (((-3 |#3| "failed") |#3|) 101)) (-1722 ((|#3| |#3|) 125)) (-3874 (((-3 |#3| "failed") |#3|) 110)) (-1311 ((|#3| |#3|) 138)) (-3409 (((-3 |#3| "failed") |#3|) 103)) (-1735 ((|#3| |#3|) 126)) (-2951 (((-3 |#3| "failed") |#3|) 76)) (-1851 ((|#3| |#3|) 136)) (-3235 (((-3 |#3| "failed") |#3|) 60)) (-1710 ((|#3| |#3|) 124)) (-2819 (((-3 |#3| "failed") |#3|) 106)) (-1829 ((|#3| |#3|) 134)) (-3137 (((-3 |#3| "failed") |#3|) 97)) (-1680 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-407 (-563))) 40 (|has| |#1| (-363))))) +(((-279 |#1| |#2| |#3| |#4|) (-13 (-979 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-563)))) |%noBranch|) (-15 -3368 (|#3| |#3|)) (-15 -4371 (|#3| |#3|)) (-15 -1597 (|#3| |#3|)) (-15 -1608 (|#3| |#3|)) (-15 -1619 (|#3| |#3|)) (-15 -1630 (|#3| |#3|)) (-15 -1643 (|#3| |#3|)) (-15 -1656 (|#3| |#3|)) (-15 -1667 (|#3| |#3|)) (-15 -1680 (|#3| |#3|)) (-15 -1695 (|#3| |#3|)) (-15 -1710 (|#3| |#3|)) (-15 -1722 (|#3| |#3|)) (-15 -1735 (|#3| |#3|)) (-15 -1748 (|#3| |#3|)) (-15 -1759 (|#3| |#3|)) (-15 -1771 (|#3| |#3|)) (-15 -1784 (|#3| |#3|)) (-15 -1794 (|#3| |#3|)) (-15 -1806 (|#3| |#3|)) (-15 -1817 (|#3| |#3|)) (-15 -1829 (|#3| |#3|)) (-15 -1840 (|#3| |#3|)) (-15 -1851 (|#3| |#3|)) (-15 -1862 (|#3| |#3|)) (-15 -1311 (|#3| |#3|)))) (-38 (-407 (-563))) (-1217 |#1|) (-1240 |#1| |#2|) (-979 |#2|)) (T -279)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-563))) (-4 *4 (-363)) (-4 *4 (-38 *3)) (-4 *5 (-1217 *4)) (-5 *1 (-279 *4 *5 *2 *6)) (-4 *2 (-1240 *4 *5)) (-4 *6 (-979 *5)))) (-3368 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-4371 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1597 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1608 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1619 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1630 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1643 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1656 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1667 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1680 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1695 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1710 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1722 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1735 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1748 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1759 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1771 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1784 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1794 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1806 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1817 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1829 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1840 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1851 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1862 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-1311 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4))))) +(-13 (-979 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-563)))) |%noBranch|) (-15 -3368 (|#3| |#3|)) (-15 -4371 (|#3| |#3|)) (-15 -1597 (|#3| |#3|)) (-15 -1608 (|#3| |#3|)) (-15 -1619 (|#3| |#3|)) (-15 -1630 (|#3| |#3|)) (-15 -1643 (|#3| |#3|)) (-15 -1656 (|#3| |#3|)) (-15 -1667 (|#3| |#3|)) (-15 -1680 (|#3| |#3|)) (-15 -1695 (|#3| |#3|)) (-15 -1710 (|#3| |#3|)) (-15 -1722 (|#3| |#3|)) (-15 -1735 (|#3| |#3|)) (-15 -1748 (|#3| |#3|)) (-15 -1759 (|#3| |#3|)) (-15 -1771 (|#3| |#3|)) (-15 -1784 (|#3| |#3|)) (-15 -1794 (|#3| |#3|)) (-15 -1806 (|#3| |#3|)) (-15 -1817 (|#3| |#3|)) (-15 -1829 (|#3| |#3|)) (-15 -1840 (|#3| |#3|)) (-15 -1851 (|#3| |#3|)) (-15 -1862 (|#3| |#3|)) (-15 -1311 (|#3| |#3|)))) +((-4036 (((-112) $) 18)) (-3721 (((-183) $) 7)) (-2658 (((-3 (-1169) "failed") $) 14)) (-3639 (((-3 (-640 $) "failed") $) NIL)) (-2992 (((-3 (-1169) "failed") $) 20)) (-2410 (((-3 (-1097) "failed") $) 17)) (-4018 (((-112) $) 15)) (-1693 (((-858) $) NIL)) (-4341 (((-112) $) 9))) +(((-280) (-13 (-610 (-858)) (-10 -8 (-15 -3721 ((-183) $)) (-15 -4018 ((-112) $)) (-15 -2410 ((-3 (-1097) "failed") $)) (-15 -4036 ((-112) $)) (-15 -2992 ((-3 (-1169) "failed") $)) (-15 -4341 ((-112) $)) (-15 -2658 ((-3 (-1169) "failed") $)) (-15 -3639 ((-3 (-640 $) "failed") $))))) (T -280)) +((-3721 (*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-280)))) (-4018 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-2410 (*1 *2 *1) (|partial| -12 (-5 *2 (-1097)) (-5 *1 (-280)))) (-4036 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-2992 (*1 *2 *1) (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-280)))) (-4341 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-2658 (*1 *2 *1) (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-280)))) (-3639 (*1 *2 *1) (|partial| -12 (-5 *2 (-640 (-280))) (-5 *1 (-280))))) +(-13 (-610 (-858)) (-10 -8 (-15 -3721 ((-183) $)) (-15 -4018 ((-112) $)) (-15 -2410 ((-3 (-1097) "failed") $)) (-15 -4036 ((-112) $)) (-15 -2992 ((-3 (-1169) "failed") $)) (-15 -4341 ((-112) $)) (-15 -2658 ((-3 (-1169) "failed") $)) (-15 -3639 ((-3 (-640 $) "failed") $)))) +((-2256 (($ (-1 (-112) |#2|) $) 24)) (-3813 (($ $) 36)) (-2705 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 34)) (-1459 (($ |#2| $) 32) (($ (-1 (-112) |#2|) $) 18)) (-2878 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-3396 (($ |#2| $ (-563)) 20) (($ $ $ (-563)) 22)) (-2963 (($ $ (-563)) 11) (($ $ (-1224 (-563))) 14)) (-3245 (($ $ |#2|) 30) (($ $ $) NIL)) (-2853 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-640 $)) NIL))) +(((-281 |#1| |#2|) (-10 -8 (-15 -2878 (|#1| |#1| |#1|)) (-15 -2705 (|#1| |#2| |#1|)) (-15 -2878 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2705 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3245 (|#1| |#1| |#1|)) (-15 -3245 (|#1| |#1| |#2|)) (-15 -3396 (|#1| |#1| |#1| (-563))) (-15 -3396 (|#1| |#2| |#1| (-563))) (-15 -2963 (|#1| |#1| (-1224 (-563)))) (-15 -2963 (|#1| |#1| (-563))) (-15 -2853 (|#1| (-640 |#1|))) (-15 -2853 (|#1| |#1| |#1|)) (-15 -2853 (|#1| |#2| |#1|)) (-15 -2853 (|#1| |#1| |#2|)) (-15 -1459 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2256 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1459 (|#1| |#2| |#1|)) (-15 -3813 (|#1| |#1|))) (-282 |#2|) (-1208)) (T -281)) +NIL +(-10 -8 (-15 -2878 (|#1| |#1| |#1|)) (-15 -2705 (|#1| |#2| |#1|)) (-15 -2878 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2705 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3245 (|#1| |#1| |#1|)) (-15 -3245 (|#1| |#1| |#2|)) (-15 -3396 (|#1| |#1| |#1| (-563))) (-15 -3396 (|#1| |#2| |#1| (-563))) (-15 -2963 (|#1| |#1| (-1224 (-563)))) (-15 -2963 (|#1| |#1| (-563))) (-15 -2853 (|#1| (-640 |#1|))) (-15 -2853 (|#1| |#1| |#1|)) (-15 -2853 (|#1| |#2| |#1|)) (-15 -2853 (|#1| |#1| |#2|)) (-15 -1459 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2256 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1459 (|#1| |#2| |#1|)) (-15 -3813 (|#1| |#1|))) +((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-4378 (((-1262) $ (-563) (-563)) 40 (|has| $ (-6 -4408)))) (-2759 (((-112) $ (-767)) 8)) (-1849 ((|#1| $ (-563) |#1|) 52 (|has| $ (-6 -4408))) ((|#1| $ (-1224 (-563)) |#1|) 58 (|has| $ (-6 -4408)))) (-2812 (($ (-1 (-112) |#1|) $) 85)) (-2256 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4407)))) (-4239 (($) 7 T CONST)) (-4005 (($ $) 83 (|has| |#1| (-1093)))) (-3813 (($ $) 78 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-2705 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1093)))) (-1459 (($ |#1| $) 77 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4407)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4407)))) (-4355 ((|#1| $ (-563) |#1|) 53 (|has| $ (-6 -4408)))) (-4293 ((|#1| $ (-563)) 51)) (-2659 (((-640 |#1|) $) 30 (|has| $ (-6 -4407)))) (-1566 (($ (-767) |#1|) 69)) (-2581 (((-112) $ (-767)) 9)) (-2411 (((-563) $) 43 (|has| (-563) (-846)))) (-2878 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-846)))) (-2259 (((-640 |#1|) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-3860 (((-563) $) 44 (|has| (-563) (-846)))) (-4345 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2382 (((-112) $ (-767)) 10)) (-3573 (((-1151) $) 22 (|has| |#1| (-1093)))) (-1812 (($ |#1| $ (-563)) 88) (($ $ $ (-563)) 87)) (-3396 (($ |#1| $ (-563)) 60) (($ $ $ (-563)) 59)) (-4318 (((-640 (-563)) $) 46)) (-3192 (((-112) (-563) $) 47)) (-1694 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3781 ((|#1| $) 42 (|has| (-563) (-846)))) (-4203 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2358 (($ $ |#1|) 41 (|has| $ (-6 -4408)))) (-3138 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) 14)) (-2105 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2836 (((-640 |#1|) $) 48)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-2309 ((|#1| $ (-563) |#1|) 50) ((|#1| $ (-563)) 49) (($ $ (-1224 (-563))) 63)) (-1314 (($ $ (-563)) 91) (($ $ (-1224 (-563))) 90)) (-2963 (($ $ (-563)) 62) (($ $ (-1224 (-563))) 61)) (-1709 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4407))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1872 (($ $) 13)) (-2220 (((-536) $) 79 (|has| |#1| (-611 (-536))))) (-1707 (($ (-640 |#1|)) 70)) (-3245 (($ $ |#1|) 93) (($ $ $) 92)) (-2853 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-640 $)) 65)) (-1693 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-4383 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-282 |#1|) (-140) (-1208)) (T -282)) +((-3245 (*1 *1 *1 *2) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1208)))) (-3245 (*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1208)))) (-1314 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-282 *3)) (-4 *3 (-1208)))) (-1314 (*1 *1 *1 *2) (-12 (-5 *2 (-1224 (-563))) (-4 *1 (-282 *3)) (-4 *3 (-1208)))) (-2705 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1208)))) (-1812 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *1 (-282 *2)) (-4 *2 (-1208)))) (-1812 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-282 *3)) (-4 *3 (-1208)))) (-2878 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-282 *3)) (-4 *3 (-1208)))) (-2812 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1208)))) (-2705 (*1 *1 *2 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1208)) (-4 *2 (-1093)))) (-4005 (*1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1208)) (-4 *2 (-1093)))) (-2878 (*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1208)) (-4 *2 (-846))))) +(-13 (-646 |t#1|) (-10 -8 (-6 -4408) (-15 -3245 ($ $ |t#1|)) (-15 -3245 ($ $ $)) (-15 -1314 ($ $ (-563))) (-15 -1314 ($ $ (-1224 (-563)))) (-15 -2705 ($ (-1 (-112) |t#1|) $)) (-15 -1812 ($ |t#1| $ (-563))) (-15 -1812 ($ $ $ (-563))) (-15 -2878 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2812 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1093)) (PROGN (-15 -2705 ($ |t#1| $)) (-15 -4005 ($ $))) |%noBranch|) (IF (|has| |t#1| (-846)) (-15 -2878 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4032 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-286 #0=(-563) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-601 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-646 |#1|) . T) ((-1093) |has| |#1| (-1093)) ((-1208) . T)) ((** (($ $ $) 10))) -(((-282 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-283)) (T -282)) +(((-283 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-284)) (T -283)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-4366 (($ $) 6)) (-3430 (($ $) 7)) (** (($ $ $) 8))) -(((-283) (-139)) (T -283)) -((** (*1 *1 *1 *1) (-4 *1 (-283))) (-3430 (*1 *1 *1) (-4 *1 (-283))) (-4366 (*1 *1 *1) (-4 *1 (-283)))) -(-13 (-10 -8 (-15 -4366 ($ $)) (-15 -3430 ($ $)) (-15 ** ($ $ $)))) -((-2039 (((-639 (-1148 |#1|)) (-1148 |#1|) |#1|) 35)) (-2049 ((|#2| |#2| |#1|) 38)) (-3995 ((|#2| |#2| |#1|) 40)) (-3070 ((|#2| |#2| |#1|) 39))) -(((-284 |#1| |#2|) (-10 -7 (-15 -2049 (|#2| |#2| |#1|)) (-15 -3070 (|#2| |#2| |#1|)) (-15 -3995 (|#2| |#2| |#1|)) (-15 -2039 ((-639 (-1148 |#1|)) (-1148 |#1|) |#1|))) (-362) (-1247 |#1|)) (T -284)) -((-2039 (*1 *2 *3 *4) (-12 (-4 *4 (-362)) (-5 *2 (-639 (-1148 *4))) (-5 *1 (-284 *4 *5)) (-5 *3 (-1148 *4)) (-4 *5 (-1247 *4)))) (-3995 (*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1247 *3)))) (-3070 (*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1247 *3)))) (-2049 (*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1247 *3))))) -(-10 -7 (-15 -2049 (|#2| |#2| |#1|)) (-15 -3070 (|#2| |#2| |#1|)) (-15 -3995 (|#2| |#2| |#1|)) (-15 -2039 ((-639 (-1148 |#1|)) (-1148 |#1|) |#1|))) -((-2343 ((|#2| $ |#1|) 6))) -(((-285 |#1| |#2|) (-139) (-1092) (-1207)) (T -285)) -((-2343 (*1 *2 *1 *3) (-12 (-4 *1 (-285 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1207))))) -(-13 (-10 -8 (-15 -2343 (|t#2| $ |t#1|)))) -((-1507 ((|#3| $ |#2| |#3|) 12)) (-1420 ((|#3| $ |#2|) 10))) -(((-286 |#1| |#2| |#3|) (-10 -8 (-15 -1507 (|#3| |#1| |#2| |#3|)) (-15 -1420 (|#3| |#1| |#2|))) (-287 |#2| |#3|) (-1092) (-1207)) (T -286)) -NIL -(-10 -8 (-15 -1507 (|#3| |#1| |#2| |#3|)) (-15 -1420 (|#3| |#1| |#2|))) -((-4200 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4404)))) (-1507 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4404)))) (-1420 ((|#2| $ |#1|) 11)) (-2343 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) -(((-287 |#1| |#2|) (-139) (-1092) (-1207)) (T -287)) -((-2343 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1207)))) (-1420 (*1 *2 *1 *3) (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1207)))) (-4200 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4404)) (-4 *1 (-287 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1207)))) (-1507 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4404)) (-4 *1 (-287 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1207))))) -(-13 (-285 |t#1| |t#2|) (-10 -8 (-15 -2343 (|t#2| $ |t#1| |t#2|)) (-15 -1420 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4404)) (PROGN (-15 -4200 (|t#2| $ |t#1| |t#2|)) (-15 -1507 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) -(((-285 |#1| |#2|) . T)) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) 34)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 39)) (-1965 (($ $) 37)) (-4102 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-1436 (((-112) $ $) NIL)) (-3329 (($) NIL T CONST)) (-1810 (($ $ $) 32)) (-1954 (($ |#2| |#3|) 19)) (-1694 (((-3 $ "failed") $) NIL)) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-4367 (((-112) $) NIL)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2685 ((|#3| $) NIL)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) 20)) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-3649 (((-3 $ "failed") $ $) NIL)) (-2044 (((-766) $) 33)) (-2343 ((|#2| $ |#2|) 41)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 24)) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-1568 (((-766)) NIL)) (-3799 (((-112) $ $) NIL)) (-2285 (($) 28 T CONST)) (-2294 (($) 35 T CONST)) (-1733 (((-112) $ $) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 36))) -(((-288 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-306) (-10 -8 (-15 -2685 (|#3| $)) (-15 -4053 (|#2| $)) (-15 -1954 ($ |#2| |#3|)) (-15 -3649 ((-3 $ "failed") $ $)) (-15 -1694 ((-3 $ "failed") $)) (-15 -1525 ($ $)) (-15 -2343 (|#2| $ |#2|)))) (-171) (-1232 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -288)) -((-1694 (*1 *1 *1) (|partial| -12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1232 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2685 (*1 *2 *1) (-12 (-4 *3 (-171)) (-4 *2 (-23)) (-5 *1 (-288 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1232 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-4053 (*1 *2 *1) (-12 (-4 *2 (-1232 *3)) (-5 *1 (-288 *3 *2 *4 *5 *6 *7)) (-4 *3 (-171)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-1954 (*1 *1 *2 *3) (-12 (-4 *4 (-171)) (-5 *1 (-288 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1232 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3649 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1232 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1525 (*1 *1 *1) (-12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1232 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2343 (*1 *2 *1 *2) (-12 (-4 *3 (-171)) (-5 *1 (-288 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1232 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) -(-13 (-306) (-10 -8 (-15 -2685 (|#3| $)) (-15 -4053 (|#2| $)) (-15 -1954 ($ |#2| |#3|)) (-15 -3649 ((-3 $ "failed") $ $)) (-15 -1694 ((-3 $ "failed") $)) (-15 -1525 ($ $)) (-15 -2343 (|#2| $ |#2|)))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-1694 (((-3 $ "failed") $) 33)) (-4367 (((-112) $) 31)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11) (($ (-562)) 29)) (-1568 (((-766)) 28)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) -(((-289) (-139)) (T -289)) -NIL -(-13 (-1044) (-111 $ $) (-10 -7 (-6 -4396))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-612 (-562)) . T) ((-609 (-857)) . T) ((-642 $) . T) ((-721) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) -((-3638 (($ (-1168) (-1168) (-1096) $) 17)) (-2187 (($ (-1168) (-639 (-960)) $) 22)) (-2809 (((-639 (-1077)) $) 10)) (-2314 (((-3 (-1096) "failed") (-1168) (-1168) $) 16)) (-1819 (((-3 (-639 (-960)) "failed") (-1168) $) 21)) (-1663 (($) 7)) (-1368 (($) 23)) (-4053 (((-857) $) 27)) (-3947 (($) 24))) -(((-290) (-13 (-609 (-857)) (-10 -8 (-15 -1663 ($)) (-15 -2809 ((-639 (-1077)) $)) (-15 -2314 ((-3 (-1096) "failed") (-1168) (-1168) $)) (-15 -3638 ($ (-1168) (-1168) (-1096) $)) (-15 -1819 ((-3 (-639 (-960)) "failed") (-1168) $)) (-15 -2187 ($ (-1168) (-639 (-960)) $)) (-15 -1368 ($)) (-15 -3947 ($))))) (T -290)) -((-1663 (*1 *1) (-5 *1 (-290))) (-2809 (*1 *2 *1) (-12 (-5 *2 (-639 (-1077))) (-5 *1 (-290)))) (-2314 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1168)) (-5 *2 (-1096)) (-5 *1 (-290)))) (-3638 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1168)) (-5 *3 (-1096)) (-5 *1 (-290)))) (-1819 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1168)) (-5 *2 (-639 (-960))) (-5 *1 (-290)))) (-2187 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-960))) (-5 *1 (-290)))) (-1368 (*1 *1) (-5 *1 (-290))) (-3947 (*1 *1) (-5 *1 (-290)))) -(-13 (-609 (-857)) (-10 -8 (-15 -1663 ($)) (-15 -2809 ((-639 (-1077)) $)) (-15 -2314 ((-3 (-1096) "failed") (-1168) (-1168) $)) (-15 -3638 ($ (-1168) (-1168) (-1096) $)) (-15 -1819 ((-3 (-639 (-960)) "failed") (-1168) $)) (-15 -2187 ($ (-1168) (-639 (-960)) $)) (-15 -1368 ($)) (-15 -3947 ($)))) -((-2719 (((-639 (-2 (|:| |eigval| (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|)))) (|:| |geneigvec| (-639 (-683 (-406 (-947 |#1|))))))) (-683 (-406 (-947 |#1|)))) 85)) (-4259 (((-639 (-683 (-406 (-947 |#1|)))) (-2 (|:| |eigval| (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|)))) (|:| |eigmult| (-766)) (|:| |eigvec| (-639 (-683 (-406 (-947 |#1|)))))) (-683 (-406 (-947 |#1|)))) 80) (((-639 (-683 (-406 (-947 |#1|)))) (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|))) (-683 (-406 (-947 |#1|))) (-766) (-766)) 38)) (-1711 (((-639 (-2 (|:| |eigval| (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|)))) (|:| |eigmult| (-766)) (|:| |eigvec| (-639 (-683 (-406 (-947 |#1|))))))) (-683 (-406 (-947 |#1|)))) 82)) (-2455 (((-639 (-683 (-406 (-947 |#1|)))) (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|))) (-683 (-406 (-947 |#1|)))) 62)) (-1992 (((-639 (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|)))) (-683 (-406 (-947 |#1|)))) 61)) (-3683 (((-947 |#1|) (-683 (-406 (-947 |#1|)))) 50) (((-947 |#1|) (-683 (-406 (-947 |#1|))) (-1168)) 51))) -(((-291 |#1|) (-10 -7 (-15 -3683 ((-947 |#1|) (-683 (-406 (-947 |#1|))) (-1168))) (-15 -3683 ((-947 |#1|) (-683 (-406 (-947 |#1|))))) (-15 -1992 ((-639 (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|)))) (-683 (-406 (-947 |#1|))))) (-15 -2455 ((-639 (-683 (-406 (-947 |#1|)))) (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|))) (-683 (-406 (-947 |#1|))))) (-15 -4259 ((-639 (-683 (-406 (-947 |#1|)))) (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|))) (-683 (-406 (-947 |#1|))) (-766) (-766))) (-15 -4259 ((-639 (-683 (-406 (-947 |#1|)))) (-2 (|:| |eigval| (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|)))) (|:| |eigmult| (-766)) (|:| |eigvec| (-639 (-683 (-406 (-947 |#1|)))))) (-683 (-406 (-947 |#1|))))) (-15 -2719 ((-639 (-2 (|:| |eigval| (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|)))) (|:| |geneigvec| (-639 (-683 (-406 (-947 |#1|))))))) (-683 (-406 (-947 |#1|))))) (-15 -1711 ((-639 (-2 (|:| |eigval| (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|)))) (|:| |eigmult| (-766)) (|:| |eigvec| (-639 (-683 (-406 (-947 |#1|))))))) (-683 (-406 (-947 |#1|)))))) (-451)) (T -291)) -((-1711 (*1 *2 *3) (-12 (-4 *4 (-451)) (-5 *2 (-639 (-2 (|:| |eigval| (-3 (-406 (-947 *4)) (-1157 (-1168) (-947 *4)))) (|:| |eigmult| (-766)) (|:| |eigvec| (-639 (-683 (-406 (-947 *4)))))))) (-5 *1 (-291 *4)) (-5 *3 (-683 (-406 (-947 *4)))))) (-2719 (*1 *2 *3) (-12 (-4 *4 (-451)) (-5 *2 (-639 (-2 (|:| |eigval| (-3 (-406 (-947 *4)) (-1157 (-1168) (-947 *4)))) (|:| |geneigvec| (-639 (-683 (-406 (-947 *4)))))))) (-5 *1 (-291 *4)) (-5 *3 (-683 (-406 (-947 *4)))))) (-4259 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-406 (-947 *5)) (-1157 (-1168) (-947 *5)))) (|:| |eigmult| (-766)) (|:| |eigvec| (-639 *4)))) (-4 *5 (-451)) (-5 *2 (-639 (-683 (-406 (-947 *5))))) (-5 *1 (-291 *5)) (-5 *4 (-683 (-406 (-947 *5)))))) (-4259 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-406 (-947 *6)) (-1157 (-1168) (-947 *6)))) (-5 *5 (-766)) (-4 *6 (-451)) (-5 *2 (-639 (-683 (-406 (-947 *6))))) (-5 *1 (-291 *6)) (-5 *4 (-683 (-406 (-947 *6)))))) (-2455 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-406 (-947 *5)) (-1157 (-1168) (-947 *5)))) (-4 *5 (-451)) (-5 *2 (-639 (-683 (-406 (-947 *5))))) (-5 *1 (-291 *5)) (-5 *4 (-683 (-406 (-947 *5)))))) (-1992 (*1 *2 *3) (-12 (-5 *3 (-683 (-406 (-947 *4)))) (-4 *4 (-451)) (-5 *2 (-639 (-3 (-406 (-947 *4)) (-1157 (-1168) (-947 *4))))) (-5 *1 (-291 *4)))) (-3683 (*1 *2 *3) (-12 (-5 *3 (-683 (-406 (-947 *4)))) (-5 *2 (-947 *4)) (-5 *1 (-291 *4)) (-4 *4 (-451)))) (-3683 (*1 *2 *3 *4) (-12 (-5 *3 (-683 (-406 (-947 *5)))) (-5 *4 (-1168)) (-5 *2 (-947 *5)) (-5 *1 (-291 *5)) (-4 *5 (-451))))) -(-10 -7 (-15 -3683 ((-947 |#1|) (-683 (-406 (-947 |#1|))) (-1168))) (-15 -3683 ((-947 |#1|) (-683 (-406 (-947 |#1|))))) (-15 -1992 ((-639 (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|)))) (-683 (-406 (-947 |#1|))))) (-15 -2455 ((-639 (-683 (-406 (-947 |#1|)))) (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|))) (-683 (-406 (-947 |#1|))))) (-15 -4259 ((-639 (-683 (-406 (-947 |#1|)))) (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|))) (-683 (-406 (-947 |#1|))) (-766) (-766))) (-15 -4259 ((-639 (-683 (-406 (-947 |#1|)))) (-2 (|:| |eigval| (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|)))) (|:| |eigmult| (-766)) (|:| |eigvec| (-639 (-683 (-406 (-947 |#1|)))))) (-683 (-406 (-947 |#1|))))) (-15 -2719 ((-639 (-2 (|:| |eigval| (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|)))) (|:| |geneigvec| (-639 (-683 (-406 (-947 |#1|))))))) (-683 (-406 (-947 |#1|))))) (-15 -1711 ((-639 (-2 (|:| |eigval| (-3 (-406 (-947 |#1|)) (-1157 (-1168) (-947 |#1|)))) (|:| |eigmult| (-766)) (|:| |eigvec| (-639 (-683 (-406 (-947 |#1|))))))) (-683 (-406 (-947 |#1|)))))) -((-4152 (((-293 |#2|) (-1 |#2| |#1|) (-293 |#1|)) 14))) -(((-292 |#1| |#2|) (-10 -7 (-15 -4152 ((-293 |#2|) (-1 |#2| |#1|) (-293 |#1|)))) (-1207) (-1207)) (T -292)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-293 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-293 *6)) (-5 *1 (-292 *5 *6))))) -(-10 -7 (-15 -4152 ((-293 |#2|) (-1 |#2| |#1|) (-293 |#1|)))) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-4325 (((-112) $) NIL (|has| |#1| (-21)))) (-3554 (($ $) 12)) (-2781 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3164 (($ $ $) 94 (|has| |#1| (-301)))) (-3329 (($) NIL (-4037 (|has| |#1| (-21)) (|has| |#1| (-721))) CONST)) (-2444 (($ $) 50 (|has| |#1| (-21)))) (-3790 (((-3 $ "failed") $) 61 (|has| |#1| (-721)))) (-4330 ((|#1| $) 11)) (-1694 (((-3 $ "failed") $) 59 (|has| |#1| (-721)))) (-4367 (((-112) $) NIL (|has| |#1| (-721)))) (-4152 (($ (-1 |#1| |#1|) $) 14)) (-4318 ((|#1| $) 10)) (-1440 (($ $) 49 (|has| |#1| (-21)))) (-2574 (((-3 $ "failed") $) 60 (|has| |#1| (-721)))) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1525 (($ $) 63 (-4037 (|has| |#1| (-362)) (|has| |#1| (-472))))) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-3709 (((-639 $) $) 84 (|has| |#1| (-554)))) (-1433 (($ $ $) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 $)) 28 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-1168) |#1|) 17 (|has| |#1| (-513 (-1168) |#1|))) (($ $ (-639 (-1168)) (-639 |#1|)) 21 (|has| |#1| (-513 (-1168) |#1|)))) (-3680 (($ |#1| |#1|) 9)) (-4340 (((-133)) 89 (|has| |#1| (-362)))) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168)) 86 (|has| |#1| (-895 (-1168))))) (-1660 (($ $ $) NIL (|has| |#1| (-472)))) (-2114 (($ $ $) NIL (|has| |#1| (-472)))) (-4053 (($ (-562)) NIL (|has| |#1| (-1044))) (((-112) $) 36 (|has| |#1| (-1092))) (((-857) $) 35 (|has| |#1| (-1092)))) (-1568 (((-766)) 66 (|has| |#1| (-1044)))) (-2285 (($) 46 (|has| |#1| (-21)) CONST)) (-2294 (($) 56 (|has| |#1| (-721)) CONST)) (-3113 (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168))))) (-1733 (($ |#1| |#1|) 8) (((-112) $ $) 31 (|has| |#1| (-1092)))) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) 91 (-4037 (|has| |#1| (-362)) (|has| |#1| (-472))))) (-1847 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-1836 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-562)) NIL (|has| |#1| (-472))) (($ $ (-766)) NIL (|has| |#1| (-721))) (($ $ (-916)) NIL (|has| |#1| (-1104)))) (* (($ $ |#1|) 54 (|has| |#1| (-1104))) (($ |#1| $) 53 (|has| |#1| (-1104))) (($ $ $) 52 (|has| |#1| (-1104))) (($ (-562) $) 69 (|has| |#1| (-21))) (($ (-766) $) NIL (|has| |#1| (-21))) (($ (-916) $) NIL (|has| |#1| (-25))))) -(((-293 |#1|) (-13 (-1207) (-10 -8 (-15 -1733 ($ |#1| |#1|)) (-15 -3680 ($ |#1| |#1|)) (-15 -3554 ($ $)) (-15 -4318 (|#1| $)) (-15 -4330 (|#1| $)) (-15 -4152 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-513 (-1168) |#1|)) (-6 (-513 (-1168) |#1|)) |%noBranch|) (IF (|has| |#1| (-1092)) (PROGN (-6 (-1092)) (-6 (-609 (-112))) (IF (|has| |#1| (-308 |#1|)) (PROGN (-15 -1433 ($ $ $)) (-15 -1433 ($ $ (-639 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1836 ($ |#1| $)) (-15 -1836 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1440 ($ $)) (-15 -2444 ($ $)) (-15 -1847 ($ |#1| $)) (-15 -1847 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1104)) (PROGN (-6 (-1104)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-721)) (PROGN (-6 (-721)) (-15 -2574 ((-3 $ "failed") $)) (-15 -3790 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-472)) (PROGN (-6 (-472)) (-15 -2574 ((-3 $ "failed") $)) (-15 -3790 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1044)) (PROGN (-6 (-1044)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-171)) (-6 (-712 |#1|)) |%noBranch|) (IF (|has| |#1| (-554)) (-15 -3709 ((-639 $) $)) |%noBranch|) (IF (|has| |#1| (-895 (-1168))) (-6 (-895 (-1168))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-6 (-1263 |#1|)) (-15 -1859 ($ $ $)) (-15 -1525 ($ $))) |%noBranch|) (IF (|has| |#1| (-301)) (-15 -3164 ($ $ $)) |%noBranch|))) (-1207)) (T -293)) -((-1733 (*1 *1 *2 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1207)))) (-3680 (*1 *1 *2 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1207)))) (-3554 (*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1207)))) (-4318 (*1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1207)))) (-4330 (*1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1207)))) (-4152 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1207)) (-5 *1 (-293 *3)))) (-1433 (*1 *1 *1 *1) (-12 (-4 *2 (-308 *2)) (-4 *2 (-1092)) (-4 *2 (-1207)) (-5 *1 (-293 *2)))) (-1433 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-293 *3))) (-4 *3 (-308 *3)) (-4 *3 (-1092)) (-4 *3 (-1207)) (-5 *1 (-293 *3)))) (-1836 (*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-25)) (-4 *2 (-1207)))) (-1836 (*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-25)) (-4 *2 (-1207)))) (-1440 (*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1207)))) (-2444 (*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1207)))) (-1847 (*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1207)))) (-1847 (*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1207)))) (-2574 (*1 *1 *1) (|partial| -12 (-5 *1 (-293 *2)) (-4 *2 (-721)) (-4 *2 (-1207)))) (-3790 (*1 *1 *1) (|partial| -12 (-5 *1 (-293 *2)) (-4 *2 (-721)) (-4 *2 (-1207)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-639 (-293 *3))) (-5 *1 (-293 *3)) (-4 *3 (-554)) (-4 *3 (-1207)))) (-3164 (*1 *1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-301)) (-4 *2 (-1207)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1104)) (-4 *2 (-1207)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1104)) (-4 *2 (-1207)))) (-1859 (*1 *1 *1 *1) (-4037 (-12 (-5 *1 (-293 *2)) (-4 *2 (-362)) (-4 *2 (-1207))) (-12 (-5 *1 (-293 *2)) (-4 *2 (-472)) (-4 *2 (-1207))))) (-1525 (*1 *1 *1) (-4037 (-12 (-5 *1 (-293 *2)) (-4 *2 (-362)) (-4 *2 (-1207))) (-12 (-5 *1 (-293 *2)) (-4 *2 (-472)) (-4 *2 (-1207)))))) -(-13 (-1207) (-10 -8 (-15 -1733 ($ |#1| |#1|)) (-15 -3680 ($ |#1| |#1|)) (-15 -3554 ($ $)) (-15 -4318 (|#1| $)) (-15 -4330 (|#1| $)) (-15 -4152 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-513 (-1168) |#1|)) (-6 (-513 (-1168) |#1|)) |%noBranch|) (IF (|has| |#1| (-1092)) (PROGN (-6 (-1092)) (-6 (-609 (-112))) (IF (|has| |#1| (-308 |#1|)) (PROGN (-15 -1433 ($ $ $)) (-15 -1433 ($ $ (-639 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1836 ($ |#1| $)) (-15 -1836 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1440 ($ $)) (-15 -2444 ($ $)) (-15 -1847 ($ |#1| $)) (-15 -1847 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1104)) (PROGN (-6 (-1104)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-721)) (PROGN (-6 (-721)) (-15 -2574 ((-3 $ "failed") $)) (-15 -3790 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-472)) (PROGN (-6 (-472)) (-15 -2574 ((-3 $ "failed") $)) (-15 -3790 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1044)) (PROGN (-6 (-1044)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-171)) (-6 (-712 |#1|)) |%noBranch|) (IF (|has| |#1| (-554)) (-15 -3709 ((-639 $) $)) |%noBranch|) (IF (|has| |#1| (-895 (-1168))) (-6 (-895 (-1168))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-6 (-1263 |#1|)) (-15 -1859 ($ $ $)) (-15 -1525 ($ $))) |%noBranch|) (IF (|has| |#1| (-301)) (-15 -3164 ($ $ $)) |%noBranch|))) -((-4041 (((-112) $ $) NIL (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1443 (($) NIL) (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL)) (-3655 (((-1261) $ |#1| |#1|) NIL (|has| $ (-6 -4404)))) (-3735 (((-112) $ (-766)) NIL)) (-4200 ((|#2| $ |#1| |#2|) NIL)) (-2968 (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-1472 (((-3 |#2| "failed") |#1| $) NIL)) (-3329 (($) NIL T CONST)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092))))) (-3729 (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL (|has| $ (-6 -4403))) (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-3 |#2| "failed") |#1| $) NIL)) (-1475 (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-1954 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL (|has| $ (-6 -4403))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-1507 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4404)))) (-1420 ((|#2| $ |#1|) NIL)) (-1720 (((-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-639 |#2|) $) NIL (|has| $ (-6 -4403)))) (-4172 (((-112) $ (-766)) NIL)) (-1849 ((|#1| $) NIL (|has| |#1| (-845)))) (-2123 (((-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-639 |#2|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092))))) (-1929 ((|#1| $) NIL (|has| |#1| (-845)))) (-1491 (($ (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4404))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1521 (((-639 |#1|) $) NIL)) (-4278 (((-112) |#1| $) NIL)) (-2078 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL)) (-1581 (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL)) (-3336 (((-639 |#1|) $) NIL)) (-1987 (((-112) |#1| $) NIL)) (-1709 (((-1112) $) NIL (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1421 ((|#2| $) NIL (|has| |#1| (-845)))) (-1963 (((-3 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) "failed") (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL)) (-3510 (($ $ |#2|) NIL (|has| $ (-6 -4404)))) (-2038 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL)) (-3008 (((-112) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))))) NIL (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-293 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-639 |#2|) (-639 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))))) (-1452 (((-112) $ $) NIL)) (-2716 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092))))) (-2366 (((-639 |#2|) $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) NIL)) (-2343 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1932 (($) NIL) (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL)) (-1723 (((-766) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-766) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (((-766) |#2| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092)))) (((-766) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-610 (-535))))) (-4064 (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL)) (-4053 (((-857) $) NIL (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-609 (-857))) (|has| |#2| (-609 (-857)))))) (-4131 (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL)) (-2879 (((-112) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) NIL (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-294 |#1| |#2|) (-13 (-1183 |#1| |#2|) (-10 -7 (-6 -4403))) (-1092) (-1092)) (T -294)) -NIL -(-13 (-1183 |#1| |#2|) (-10 -7 (-6 -4403))) -((-3964 (((-311) (-1150) (-639 (-1150))) 16) (((-311) (-1150) (-1150)) 15) (((-311) (-639 (-1150))) 14) (((-311) (-1150)) 12))) -(((-295) (-10 -7 (-15 -3964 ((-311) (-1150))) (-15 -3964 ((-311) (-639 (-1150)))) (-15 -3964 ((-311) (-1150) (-1150))) (-15 -3964 ((-311) (-1150) (-639 (-1150)))))) (T -295)) -((-3964 (*1 *2 *3 *4) (-12 (-5 *4 (-639 (-1150))) (-5 *3 (-1150)) (-5 *2 (-311)) (-5 *1 (-295)))) (-3964 (*1 *2 *3 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-311)) (-5 *1 (-295)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-639 (-1150))) (-5 *2 (-311)) (-5 *1 (-295)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-311)) (-5 *1 (-295))))) -(-10 -7 (-15 -3964 ((-311) (-1150))) (-15 -3964 ((-311) (-639 (-1150)))) (-15 -3964 ((-311) (-1150) (-1150))) (-15 -3964 ((-311) (-1150) (-639 (-1150))))) -((-4152 ((|#2| (-1 |#2| |#1|) (-1150) (-608 |#1|)) 18))) -(((-296 |#1| |#2|) (-10 -7 (-15 -4152 (|#2| (-1 |#2| |#1|) (-1150) (-608 |#1|)))) (-301) (-1207)) (T -296)) -((-4152 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1150)) (-5 *5 (-608 *6)) (-4 *6 (-301)) (-4 *2 (-1207)) (-5 *1 (-296 *6 *2))))) -(-10 -7 (-15 -4152 (|#2| (-1 |#2| |#1|) (-1150) (-608 |#1|)))) -((-4152 ((|#2| (-1 |#2| |#1|) (-608 |#1|)) 17))) -(((-297 |#1| |#2|) (-10 -7 (-15 -4152 (|#2| (-1 |#2| |#1|) (-608 |#1|)))) (-301) (-301)) (T -297)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-608 *5)) (-4 *5 (-301)) (-4 *2 (-301)) (-5 *1 (-297 *5 *2))))) -(-10 -7 (-15 -4152 (|#2| (-1 |#2| |#1|) (-608 |#1|)))) -((-2278 (((-112) (-224)) 10))) -(((-298 |#1| |#2|) (-10 -7 (-15 -2278 ((-112) (-224)))) (-224) (-224)) (T -298)) -((-2278 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-112)) (-5 *1 (-298 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -2278 ((-112) (-224)))) -((-1763 (((-1148 (-224)) (-315 (-224)) (-639 (-1168)) (-1086 (-838 (-224)))) 92)) (-2748 (((-1148 (-224)) (-1256 (-315 (-224))) (-639 (-1168)) (-1086 (-838 (-224)))) 106) (((-1148 (-224)) (-315 (-224)) (-639 (-1168)) (-1086 (-838 (-224)))) 61)) (-3906 (((-639 (-1150)) (-1148 (-224))) NIL)) (-3837 (((-639 (-224)) (-315 (-224)) (-1168) (-1086 (-838 (-224)))) 58)) (-1293 (((-639 (-224)) (-947 (-406 (-562))) (-1168) (-1086 (-838 (-224)))) 49)) (-2793 (((-639 (-1150)) (-639 (-224))) NIL)) (-1516 (((-224) (-1086 (-838 (-224)))) 25)) (-3628 (((-224) (-1086 (-838 (-224)))) 26)) (-3135 (((-112) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 54)) (-1682 (((-1150) (-224)) NIL))) -(((-299) (-10 -7 (-15 -1516 ((-224) (-1086 (-838 (-224))))) (-15 -3628 ((-224) (-1086 (-838 (-224))))) (-15 -3135 ((-112) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3837 ((-639 (-224)) (-315 (-224)) (-1168) (-1086 (-838 (-224))))) (-15 -1763 ((-1148 (-224)) (-315 (-224)) (-639 (-1168)) (-1086 (-838 (-224))))) (-15 -2748 ((-1148 (-224)) (-315 (-224)) (-639 (-1168)) (-1086 (-838 (-224))))) (-15 -2748 ((-1148 (-224)) (-1256 (-315 (-224))) (-639 (-1168)) (-1086 (-838 (-224))))) (-15 -1293 ((-639 (-224)) (-947 (-406 (-562))) (-1168) (-1086 (-838 (-224))))) (-15 -1682 ((-1150) (-224))) (-15 -2793 ((-639 (-1150)) (-639 (-224)))) (-15 -3906 ((-639 (-1150)) (-1148 (-224)))))) (T -299)) -((-3906 (*1 *2 *3) (-12 (-5 *3 (-1148 (-224))) (-5 *2 (-639 (-1150))) (-5 *1 (-299)))) (-2793 (*1 *2 *3) (-12 (-5 *3 (-639 (-224))) (-5 *2 (-639 (-1150))) (-5 *1 (-299)))) (-1682 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1150)) (-5 *1 (-299)))) (-1293 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-947 (-406 (-562)))) (-5 *4 (-1168)) (-5 *5 (-1086 (-838 (-224)))) (-5 *2 (-639 (-224))) (-5 *1 (-299)))) (-2748 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1256 (-315 (-224)))) (-5 *4 (-639 (-1168))) (-5 *5 (-1086 (-838 (-224)))) (-5 *2 (-1148 (-224))) (-5 *1 (-299)))) (-2748 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-224))) (-5 *4 (-639 (-1168))) (-5 *5 (-1086 (-838 (-224)))) (-5 *2 (-1148 (-224))) (-5 *1 (-299)))) (-1763 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-224))) (-5 *4 (-639 (-1168))) (-5 *5 (-1086 (-838 (-224)))) (-5 *2 (-1148 (-224))) (-5 *1 (-299)))) (-3837 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-224))) (-5 *4 (-1168)) (-5 *5 (-1086 (-838 (-224)))) (-5 *2 (-639 (-224))) (-5 *1 (-299)))) (-3135 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-112)) (-5 *1 (-299)))) (-3628 (*1 *2 *3) (-12 (-5 *3 (-1086 (-838 (-224)))) (-5 *2 (-224)) (-5 *1 (-299)))) (-1516 (*1 *2 *3) (-12 (-5 *3 (-1086 (-838 (-224)))) (-5 *2 (-224)) (-5 *1 (-299))))) -(-10 -7 (-15 -1516 ((-224) (-1086 (-838 (-224))))) (-15 -3628 ((-224) (-1086 (-838 (-224))))) (-15 -3135 ((-112) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3837 ((-639 (-224)) (-315 (-224)) (-1168) (-1086 (-838 (-224))))) (-15 -1763 ((-1148 (-224)) (-315 (-224)) (-639 (-1168)) (-1086 (-838 (-224))))) (-15 -2748 ((-1148 (-224)) (-315 (-224)) (-639 (-1168)) (-1086 (-838 (-224))))) (-15 -2748 ((-1148 (-224)) (-1256 (-315 (-224))) (-639 (-1168)) (-1086 (-838 (-224))))) (-15 -1293 ((-639 (-224)) (-947 (-406 (-562))) (-1168) (-1086 (-838 (-224))))) (-15 -1682 ((-1150) (-224))) (-15 -2793 ((-639 (-1150)) (-639 (-224)))) (-15 -3906 ((-639 (-1150)) (-1148 (-224))))) -((-1501 (((-639 (-608 $)) $) 30)) (-3164 (($ $ (-293 $)) 80) (($ $ (-639 (-293 $))) 122) (($ $ (-639 (-608 $)) (-639 $)) NIL)) (-4048 (((-3 (-608 $) "failed") $) 112)) (-3960 (((-608 $) $) 111)) (-2229 (($ $) 19) (($ (-639 $)) 55)) (-4364 (((-639 (-114)) $) 38)) (-1502 (((-114) (-114)) 90)) (-3152 (((-112) $) 130)) (-4152 (($ (-1 $ $) (-608 $)) 88)) (-4068 (((-3 (-608 $) "failed") $) 92)) (-4141 (($ (-114) $) 60) (($ (-114) (-639 $)) 99)) (-3115 (((-112) $ (-114)) 116) (((-112) $ (-1168)) 115)) (-3059 (((-766) $) 46)) (-1533 (((-112) $ $) 58) (((-112) $ (-1168)) 50)) (-2438 (((-112) $) 128)) (-1433 (($ $ (-608 $) $) NIL) (($ $ (-639 (-608 $)) (-639 $)) NIL) (($ $ (-639 (-293 $))) 120) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-639 (-1168)) (-639 (-1 $ $))) 83) (($ $ (-639 (-1168)) (-639 (-1 $ (-639 $)))) NIL) (($ $ (-1168) (-1 $ (-639 $))) 68) (($ $ (-1168) (-1 $ $)) 74) (($ $ (-639 (-114)) (-639 (-1 $ $))) 82) (($ $ (-639 (-114)) (-639 (-1 $ (-639 $)))) 84) (($ $ (-114) (-1 $ (-639 $))) 70) (($ $ (-114) (-1 $ $)) 76)) (-2343 (($ (-114) $) 61) (($ (-114) $ $) 62) (($ (-114) $ $ $) 63) (($ (-114) $ $ $ $) 64) (($ (-114) (-639 $)) 108)) (-3461 (($ $) 52) (($ $ $) 118)) (-2745 (($ $) 17) (($ (-639 $)) 54)) (-2036 (((-112) (-114)) 22))) -(((-300 |#1|) (-10 -8 (-15 -3152 ((-112) |#1|)) (-15 -2438 ((-112) |#1|)) (-15 -1433 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1433 (|#1| |#1| (-114) (-1 |#1| (-639 |#1|)))) (-15 -1433 (|#1| |#1| (-639 (-114)) (-639 (-1 |#1| (-639 |#1|))))) (-15 -1433 (|#1| |#1| (-639 (-114)) (-639 (-1 |#1| |#1|)))) (-15 -1433 (|#1| |#1| (-1168) (-1 |#1| |#1|))) (-15 -1433 (|#1| |#1| (-1168) (-1 |#1| (-639 |#1|)))) (-15 -1433 (|#1| |#1| (-639 (-1168)) (-639 (-1 |#1| (-639 |#1|))))) (-15 -1433 (|#1| |#1| (-639 (-1168)) (-639 (-1 |#1| |#1|)))) (-15 -1533 ((-112) |#1| (-1168))) (-15 -1533 ((-112) |#1| |#1|)) (-15 -4152 (|#1| (-1 |#1| |#1|) (-608 |#1|))) (-15 -4141 (|#1| (-114) (-639 |#1|))) (-15 -4141 (|#1| (-114) |#1|)) (-15 -3115 ((-112) |#1| (-1168))) (-15 -3115 ((-112) |#1| (-114))) (-15 -2036 ((-112) (-114))) (-15 -1502 ((-114) (-114))) (-15 -4364 ((-639 (-114)) |#1|)) (-15 -1501 ((-639 (-608 |#1|)) |#1|)) (-15 -4068 ((-3 (-608 |#1|) "failed") |#1|)) (-15 -3059 ((-766) |#1|)) (-15 -3461 (|#1| |#1| |#1|)) (-15 -3461 (|#1| |#1|)) (-15 -2229 (|#1| (-639 |#1|))) (-15 -2229 (|#1| |#1|)) (-15 -2745 (|#1| (-639 |#1|))) (-15 -2745 (|#1| |#1|)) (-15 -3164 (|#1| |#1| (-639 (-608 |#1|)) (-639 |#1|))) (-15 -3164 (|#1| |#1| (-639 (-293 |#1|)))) (-15 -3164 (|#1| |#1| (-293 |#1|))) (-15 -2343 (|#1| (-114) (-639 |#1|))) (-15 -2343 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2343 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2343 (|#1| (-114) |#1| |#1|)) (-15 -2343 (|#1| (-114) |#1|)) (-15 -1433 (|#1| |#1| (-639 |#1|) (-639 |#1|))) (-15 -1433 (|#1| |#1| |#1| |#1|)) (-15 -1433 (|#1| |#1| (-293 |#1|))) (-15 -1433 (|#1| |#1| (-639 (-293 |#1|)))) (-15 -1433 (|#1| |#1| (-639 (-608 |#1|)) (-639 |#1|))) (-15 -1433 (|#1| |#1| (-608 |#1|) |#1|)) (-15 -4048 ((-3 (-608 |#1|) "failed") |#1|)) (-15 -3960 ((-608 |#1|) |#1|))) (-301)) (T -300)) -((-1502 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-300 *3)) (-4 *3 (-301)))) (-2036 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-300 *4)) (-4 *4 (-301))))) -(-10 -8 (-15 -3152 ((-112) |#1|)) (-15 -2438 ((-112) |#1|)) (-15 -1433 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1433 (|#1| |#1| (-114) (-1 |#1| (-639 |#1|)))) (-15 -1433 (|#1| |#1| (-639 (-114)) (-639 (-1 |#1| (-639 |#1|))))) (-15 -1433 (|#1| |#1| (-639 (-114)) (-639 (-1 |#1| |#1|)))) (-15 -1433 (|#1| |#1| (-1168) (-1 |#1| |#1|))) (-15 -1433 (|#1| |#1| (-1168) (-1 |#1| (-639 |#1|)))) (-15 -1433 (|#1| |#1| (-639 (-1168)) (-639 (-1 |#1| (-639 |#1|))))) (-15 -1433 (|#1| |#1| (-639 (-1168)) (-639 (-1 |#1| |#1|)))) (-15 -1533 ((-112) |#1| (-1168))) (-15 -1533 ((-112) |#1| |#1|)) (-15 -4152 (|#1| (-1 |#1| |#1|) (-608 |#1|))) (-15 -4141 (|#1| (-114) (-639 |#1|))) (-15 -4141 (|#1| (-114) |#1|)) (-15 -3115 ((-112) |#1| (-1168))) (-15 -3115 ((-112) |#1| (-114))) (-15 -2036 ((-112) (-114))) (-15 -1502 ((-114) (-114))) (-15 -4364 ((-639 (-114)) |#1|)) (-15 -1501 ((-639 (-608 |#1|)) |#1|)) (-15 -4068 ((-3 (-608 |#1|) "failed") |#1|)) (-15 -3059 ((-766) |#1|)) (-15 -3461 (|#1| |#1| |#1|)) (-15 -3461 (|#1| |#1|)) (-15 -2229 (|#1| (-639 |#1|))) (-15 -2229 (|#1| |#1|)) (-15 -2745 (|#1| (-639 |#1|))) (-15 -2745 (|#1| |#1|)) (-15 -3164 (|#1| |#1| (-639 (-608 |#1|)) (-639 |#1|))) (-15 -3164 (|#1| |#1| (-639 (-293 |#1|)))) (-15 -3164 (|#1| |#1| (-293 |#1|))) (-15 -2343 (|#1| (-114) (-639 |#1|))) (-15 -2343 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2343 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2343 (|#1| (-114) |#1| |#1|)) (-15 -2343 (|#1| (-114) |#1|)) (-15 -1433 (|#1| |#1| (-639 |#1|) (-639 |#1|))) (-15 -1433 (|#1| |#1| |#1| |#1|)) (-15 -1433 (|#1| |#1| (-293 |#1|))) (-15 -1433 (|#1| |#1| (-639 (-293 |#1|)))) (-15 -1433 (|#1| |#1| (-639 (-608 |#1|)) (-639 |#1|))) (-15 -1433 (|#1| |#1| (-608 |#1|) |#1|)) (-15 -4048 ((-3 (-608 |#1|) "failed") |#1|)) (-15 -3960 ((-608 |#1|) |#1|))) -((-4041 (((-112) $ $) 7)) (-1501 (((-639 (-608 $)) $) 44)) (-3164 (($ $ (-293 $)) 56) (($ $ (-639 (-293 $))) 55) (($ $ (-639 (-608 $)) (-639 $)) 54)) (-4048 (((-3 (-608 $) "failed") $) 69)) (-3960 (((-608 $) $) 70)) (-2229 (($ $) 51) (($ (-639 $)) 50)) (-4364 (((-639 (-114)) $) 43)) (-1502 (((-114) (-114)) 42)) (-3152 (((-112) $) 22 (|has| $ (-1033 (-562))))) (-3476 (((-1164 $) (-608 $)) 25 (|has| $ (-1044)))) (-1551 (($ $ $) 13)) (-2993 (($ $ $) 14)) (-4152 (($ (-1 $ $) (-608 $)) 36)) (-4068 (((-3 (-608 $) "failed") $) 46)) (-3696 (((-1150) $) 9)) (-1582 (((-639 (-608 $)) $) 45)) (-4141 (($ (-114) $) 38) (($ (-114) (-639 $)) 37)) (-3115 (((-112) $ (-114)) 40) (((-112) $ (-1168)) 39)) (-3059 (((-766) $) 47)) (-1709 (((-1112) $) 10)) (-1533 (((-112) $ $) 35) (((-112) $ (-1168)) 34)) (-2438 (((-112) $) 23 (|has| $ (-1033 (-562))))) (-1433 (($ $ (-608 $) $) 67) (($ $ (-639 (-608 $)) (-639 $)) 66) (($ $ (-639 (-293 $))) 65) (($ $ (-293 $)) 64) (($ $ $ $) 63) (($ $ (-639 $) (-639 $)) 62) (($ $ (-639 (-1168)) (-639 (-1 $ $))) 33) (($ $ (-639 (-1168)) (-639 (-1 $ (-639 $)))) 32) (($ $ (-1168) (-1 $ (-639 $))) 31) (($ $ (-1168) (-1 $ $)) 30) (($ $ (-639 (-114)) (-639 (-1 $ $))) 29) (($ $ (-639 (-114)) (-639 (-1 $ (-639 $)))) 28) (($ $ (-114) (-1 $ (-639 $))) 27) (($ $ (-114) (-1 $ $)) 26)) (-2343 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-639 $)) 57)) (-3461 (($ $) 49) (($ $ $) 48)) (-3371 (($ $) 24 (|has| $ (-1044)))) (-4053 (((-857) $) 11) (($ (-608 $)) 68)) (-2745 (($ $) 53) (($ (-639 $)) 52)) (-2036 (((-112) (-114)) 41)) (-1798 (((-112) $ $) 16)) (-1771 (((-112) $ $) 17)) (-1733 (((-112) $ $) 6)) (-1785 (((-112) $ $) 15)) (-1761 (((-112) $ $) 18))) -(((-301) (-139)) (T -301)) -((-2343 (*1 *1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-2343 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-2343 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-2343 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-2343 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-639 *1)) (-4 *1 (-301)))) (-3164 (*1 *1 *1 *2) (-12 (-5 *2 (-293 *1)) (-4 *1 (-301)))) (-3164 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-293 *1))) (-4 *1 (-301)))) (-3164 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 (-608 *1))) (-5 *3 (-639 *1)) (-4 *1 (-301)))) (-2745 (*1 *1 *1) (-4 *1 (-301))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-639 *1)) (-4 *1 (-301)))) (-2229 (*1 *1 *1) (-4 *1 (-301))) (-2229 (*1 *1 *2) (-12 (-5 *2 (-639 *1)) (-4 *1 (-301)))) (-3461 (*1 *1 *1) (-4 *1 (-301))) (-3461 (*1 *1 *1 *1) (-4 *1 (-301))) (-3059 (*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-766)))) (-4068 (*1 *2 *1) (|partial| -12 (-5 *2 (-608 *1)) (-4 *1 (-301)))) (-1582 (*1 *2 *1) (-12 (-5 *2 (-639 (-608 *1))) (-4 *1 (-301)))) (-1501 (*1 *2 *1) (-12 (-5 *2 (-639 (-608 *1))) (-4 *1 (-301)))) (-4364 (*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-639 (-114))))) (-1502 (*1 *2 *2) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-2036 (*1 *2 *3) (-12 (-4 *1 (-301)) (-5 *3 (-114)) (-5 *2 (-112)))) (-3115 (*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-114)) (-5 *2 (-112)))) (-3115 (*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-1168)) (-5 *2 (-112)))) (-4141 (*1 *1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) (-4141 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-639 *1)) (-4 *1 (-301)))) (-4152 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-608 *1)) (-4 *1 (-301)))) (-1533 (*1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-112)))) (-1533 (*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-1168)) (-5 *2 (-112)))) (-1433 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 (-1168))) (-5 *3 (-639 (-1 *1 *1))) (-4 *1 (-301)))) (-1433 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 (-1168))) (-5 *3 (-639 (-1 *1 (-639 *1)))) (-4 *1 (-301)))) (-1433 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1 *1 (-639 *1))) (-4 *1 (-301)))) (-1433 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1 *1 *1)) (-4 *1 (-301)))) (-1433 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 (-114))) (-5 *3 (-639 (-1 *1 *1))) (-4 *1 (-301)))) (-1433 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 (-114))) (-5 *3 (-639 (-1 *1 (-639 *1)))) (-4 *1 (-301)))) (-1433 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-639 *1))) (-4 *1 (-301)))) (-1433 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-301)))) (-3476 (*1 *2 *3) (-12 (-5 *3 (-608 *1)) (-4 *1 (-1044)) (-4 *1 (-301)) (-5 *2 (-1164 *1)))) (-3371 (*1 *1 *1) (-12 (-4 *1 (-1044)) (-4 *1 (-301)))) (-2438 (*1 *2 *1) (-12 (-4 *1 (-1033 (-562))) (-4 *1 (-301)) (-5 *2 (-112)))) (-3152 (*1 *2 *1) (-12 (-4 *1 (-1033 (-562))) (-4 *1 (-301)) (-5 *2 (-112))))) -(-13 (-845) (-1033 (-608 $)) (-513 (-608 $) $) (-308 $) (-10 -8 (-15 -2343 ($ (-114) $)) (-15 -2343 ($ (-114) $ $)) (-15 -2343 ($ (-114) $ $ $)) (-15 -2343 ($ (-114) $ $ $ $)) (-15 -2343 ($ (-114) (-639 $))) (-15 -3164 ($ $ (-293 $))) (-15 -3164 ($ $ (-639 (-293 $)))) (-15 -3164 ($ $ (-639 (-608 $)) (-639 $))) (-15 -2745 ($ $)) (-15 -2745 ($ (-639 $))) (-15 -2229 ($ $)) (-15 -2229 ($ (-639 $))) (-15 -3461 ($ $)) (-15 -3461 ($ $ $)) (-15 -3059 ((-766) $)) (-15 -4068 ((-3 (-608 $) "failed") $)) (-15 -1582 ((-639 (-608 $)) $)) (-15 -1501 ((-639 (-608 $)) $)) (-15 -4364 ((-639 (-114)) $)) (-15 -1502 ((-114) (-114))) (-15 -2036 ((-112) (-114))) (-15 -3115 ((-112) $ (-114))) (-15 -3115 ((-112) $ (-1168))) (-15 -4141 ($ (-114) $)) (-15 -4141 ($ (-114) (-639 $))) (-15 -4152 ($ (-1 $ $) (-608 $))) (-15 -1533 ((-112) $ $)) (-15 -1533 ((-112) $ (-1168))) (-15 -1433 ($ $ (-639 (-1168)) (-639 (-1 $ $)))) (-15 -1433 ($ $ (-639 (-1168)) (-639 (-1 $ (-639 $))))) (-15 -1433 ($ $ (-1168) (-1 $ (-639 $)))) (-15 -1433 ($ $ (-1168) (-1 $ $))) (-15 -1433 ($ $ (-639 (-114)) (-639 (-1 $ $)))) (-15 -1433 ($ $ (-639 (-114)) (-639 (-1 $ (-639 $))))) (-15 -1433 ($ $ (-114) (-1 $ (-639 $)))) (-15 -1433 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1044)) (PROGN (-15 -3476 ((-1164 $) (-608 $))) (-15 -3371 ($ $))) |%noBranch|) (IF (|has| $ (-1033 (-562))) (PROGN (-15 -2438 ((-112) $)) (-15 -3152 ((-112) $))) |%noBranch|))) -(((-102) . T) ((-612 #0=(-608 $)) . T) ((-609 (-857)) . T) ((-308 $) . T) ((-513 (-608 $) $) . T) ((-513 $ $) . T) ((-845) . T) ((-1033 #0#) . T) ((-1092) . T)) -((-3928 (((-639 |#1|) (-639 |#1|)) 10))) -(((-302 |#1|) (-10 -7 (-15 -3928 ((-639 |#1|) (-639 |#1|)))) (-843)) (T -302)) -((-3928 (*1 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-843)) (-5 *1 (-302 *3))))) -(-10 -7 (-15 -3928 ((-639 |#1|) (-639 |#1|)))) -((-4152 (((-683 |#2|) (-1 |#2| |#1|) (-683 |#1|)) 17))) -(((-303 |#1| |#2|) (-10 -7 (-15 -4152 ((-683 |#2|) (-1 |#2| |#1|) (-683 |#1|)))) (-1044) (-1044)) (T -303)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-683 *5)) (-4 *5 (-1044)) (-4 *6 (-1044)) (-5 *2 (-683 *6)) (-5 *1 (-303 *5 *6))))) -(-10 -7 (-15 -4152 ((-683 |#2|) (-1 |#2| |#1|) (-683 |#1|)))) -((-1690 (((-1256 (-315 (-378))) (-1256 (-315 (-224)))) 105)) (-3813 (((-1086 (-838 (-224))) (-1086 (-838 (-378)))) 40)) (-3906 (((-639 (-1150)) (-1148 (-224))) 87)) (-3414 (((-315 (-378)) (-947 (-224))) 50)) (-2351 (((-224) (-947 (-224))) 46)) (-2448 (((-1150) (-378)) 169)) (-3020 (((-838 (-224)) (-838 (-378))) 34)) (-1374 (((-2 (|:| |additions| (-562)) (|:| |multiplications| (-562)) (|:| |exponentiations| (-562)) (|:| |functionCalls| (-562))) (-1256 (-315 (-224)))) 143)) (-2432 (((-1030) (-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150))) (|:| |extra| (-1030)))) 181) (((-1030) (-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150))))) 179)) (-1767 (((-683 (-224)) (-639 (-224)) (-766)) 14)) (-3123 (((-1256 (-693)) (-639 (-224))) 94)) (-2793 (((-639 (-1150)) (-639 (-224))) 75)) (-3006 (((-3 (-315 (-224)) "failed") (-315 (-224))) 120)) (-2278 (((-112) (-224) (-1086 (-838 (-224)))) 109)) (-2219 (((-1030) (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))) 198)) (-1516 (((-224) (-1086 (-838 (-224)))) 107)) (-3628 (((-224) (-1086 (-838 (-224)))) 108)) (-1745 (((-224) (-406 (-562))) 27)) (-2876 (((-1150) (-378)) 73)) (-2771 (((-224) (-378)) 17)) (-1854 (((-378) (-1256 (-315 (-224)))) 154)) (-4167 (((-315 (-224)) (-315 (-378))) 23)) (-2548 (((-406 (-562)) (-315 (-224))) 53)) (-3060 (((-315 (-406 (-562))) (-315 (-224))) 69)) (-1314 (((-315 (-378)) (-315 (-224))) 98)) (-4243 (((-224) (-315 (-224))) 54)) (-1676 (((-639 (-224)) (-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))))) 64)) (-3934 (((-1086 (-838 (-224))) (-1086 (-838 (-224)))) 61)) (-1682 (((-1150) (-224)) 72)) (-3118 (((-693) (-224)) 90)) (-1413 (((-406 (-562)) (-224)) 55)) (-4343 (((-315 (-378)) (-224)) 49)) (-4208 (((-639 (-1086 (-838 (-224)))) (-639 (-1086 (-838 (-378))))) 43)) (-2767 (((-1030) (-639 (-1030))) 165) (((-1030) (-1030) (-1030)) 162)) (-2110 (((-1030) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2147 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195))) -(((-304) (-10 -7 (-15 -2771 ((-224) (-378))) (-15 -4167 ((-315 (-224)) (-315 (-378)))) (-15 -3020 ((-838 (-224)) (-838 (-378)))) (-15 -3813 ((-1086 (-838 (-224))) (-1086 (-838 (-378))))) (-15 -4208 ((-639 (-1086 (-838 (-224)))) (-639 (-1086 (-838 (-378)))))) (-15 -1413 ((-406 (-562)) (-224))) (-15 -2548 ((-406 (-562)) (-315 (-224)))) (-15 -4243 ((-224) (-315 (-224)))) (-15 -3006 ((-3 (-315 (-224)) "failed") (-315 (-224)))) (-15 -1854 ((-378) (-1256 (-315 (-224))))) (-15 -1374 ((-2 (|:| |additions| (-562)) (|:| |multiplications| (-562)) (|:| |exponentiations| (-562)) (|:| |functionCalls| (-562))) (-1256 (-315 (-224))))) (-15 -3060 ((-315 (-406 (-562))) (-315 (-224)))) (-15 -3934 ((-1086 (-838 (-224))) (-1086 (-838 (-224))))) (-15 -1676 ((-639 (-224)) (-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))))) (-15 -3118 ((-693) (-224))) (-15 -3123 ((-1256 (-693)) (-639 (-224)))) (-15 -1314 ((-315 (-378)) (-315 (-224)))) (-15 -1690 ((-1256 (-315 (-378))) (-1256 (-315 (-224))))) (-15 -2278 ((-112) (-224) (-1086 (-838 (-224))))) (-15 -1682 ((-1150) (-224))) (-15 -2876 ((-1150) (-378))) (-15 -2793 ((-639 (-1150)) (-639 (-224)))) (-15 -3906 ((-639 (-1150)) (-1148 (-224)))) (-15 -1516 ((-224) (-1086 (-838 (-224))))) (-15 -3628 ((-224) (-1086 (-838 (-224))))) (-15 -2767 ((-1030) (-1030) (-1030))) (-15 -2767 ((-1030) (-639 (-1030)))) (-15 -2448 ((-1150) (-378))) (-15 -2432 ((-1030) (-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150)))))) (-15 -2432 ((-1030) (-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150))) (|:| |extra| (-1030))))) (-15 -2110 ((-1030) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2147 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2219 ((-1030) (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))) (-15 -3414 ((-315 (-378)) (-947 (-224)))) (-15 -2351 ((-224) (-947 (-224)))) (-15 -4343 ((-315 (-378)) (-224))) (-15 -1745 ((-224) (-406 (-562)))) (-15 -1767 ((-683 (-224)) (-639 (-224)) (-766))))) (T -304)) -((-1767 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-224))) (-5 *4 (-766)) (-5 *2 (-683 (-224))) (-5 *1 (-304)))) (-1745 (*1 *2 *3) (-12 (-5 *3 (-406 (-562))) (-5 *2 (-224)) (-5 *1 (-304)))) (-4343 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-315 (-378))) (-5 *1 (-304)))) (-2351 (*1 *2 *3) (-12 (-5 *3 (-947 (-224))) (-5 *2 (-224)) (-5 *1 (-304)))) (-3414 (*1 *2 *3) (-12 (-5 *3 (-947 (-224))) (-5 *2 (-315 (-378))) (-5 *1 (-304)))) (-2219 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))) (-5 *2 (-1030)) (-5 *1 (-304)))) (-2110 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2147 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1030)) (-5 *1 (-304)))) (-2432 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150))) (|:| |extra| (-1030)))) (-5 *2 (-1030)) (-5 *1 (-304)))) (-2432 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150))))) (-5 *2 (-1030)) (-5 *1 (-304)))) (-2448 (*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1150)) (-5 *1 (-304)))) (-2767 (*1 *2 *3) (-12 (-5 *3 (-639 (-1030))) (-5 *2 (-1030)) (-5 *1 (-304)))) (-2767 (*1 *2 *2 *2) (-12 (-5 *2 (-1030)) (-5 *1 (-304)))) (-3628 (*1 *2 *3) (-12 (-5 *3 (-1086 (-838 (-224)))) (-5 *2 (-224)) (-5 *1 (-304)))) (-1516 (*1 *2 *3) (-12 (-5 *3 (-1086 (-838 (-224)))) (-5 *2 (-224)) (-5 *1 (-304)))) (-3906 (*1 *2 *3) (-12 (-5 *3 (-1148 (-224))) (-5 *2 (-639 (-1150))) (-5 *1 (-304)))) (-2793 (*1 *2 *3) (-12 (-5 *3 (-639 (-224))) (-5 *2 (-639 (-1150))) (-5 *1 (-304)))) (-2876 (*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1150)) (-5 *1 (-304)))) (-1682 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1150)) (-5 *1 (-304)))) (-2278 (*1 *2 *3 *4) (-12 (-5 *4 (-1086 (-838 (-224)))) (-5 *3 (-224)) (-5 *2 (-112)) (-5 *1 (-304)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-1256 (-315 (-224)))) (-5 *2 (-1256 (-315 (-378)))) (-5 *1 (-304)))) (-1314 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-315 (-378))) (-5 *1 (-304)))) (-3123 (*1 *2 *3) (-12 (-5 *3 (-639 (-224))) (-5 *2 (-1256 (-693))) (-5 *1 (-304)))) (-3118 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-693)) (-5 *1 (-304)))) (-1676 (*1 *2 *3) (-12 (-5 *3 (-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))))) (-5 *2 (-639 (-224))) (-5 *1 (-304)))) (-3934 (*1 *2 *2) (-12 (-5 *2 (-1086 (-838 (-224)))) (-5 *1 (-304)))) (-3060 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-315 (-406 (-562)))) (-5 *1 (-304)))) (-1374 (*1 *2 *3) (-12 (-5 *3 (-1256 (-315 (-224)))) (-5 *2 (-2 (|:| |additions| (-562)) (|:| |multiplications| (-562)) (|:| |exponentiations| (-562)) (|:| |functionCalls| (-562)))) (-5 *1 (-304)))) (-1854 (*1 *2 *3) (-12 (-5 *3 (-1256 (-315 (-224)))) (-5 *2 (-378)) (-5 *1 (-304)))) (-3006 (*1 *2 *2) (|partial| -12 (-5 *2 (-315 (-224))) (-5 *1 (-304)))) (-4243 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-224)) (-5 *1 (-304)))) (-2548 (*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-406 (-562))) (-5 *1 (-304)))) (-1413 (*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-406 (-562))) (-5 *1 (-304)))) (-4208 (*1 *2 *3) (-12 (-5 *3 (-639 (-1086 (-838 (-378))))) (-5 *2 (-639 (-1086 (-838 (-224))))) (-5 *1 (-304)))) (-3813 (*1 *2 *3) (-12 (-5 *3 (-1086 (-838 (-378)))) (-5 *2 (-1086 (-838 (-224)))) (-5 *1 (-304)))) (-3020 (*1 *2 *3) (-12 (-5 *3 (-838 (-378))) (-5 *2 (-838 (-224))) (-5 *1 (-304)))) (-4167 (*1 *2 *3) (-12 (-5 *3 (-315 (-378))) (-5 *2 (-315 (-224))) (-5 *1 (-304)))) (-2771 (*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-224)) (-5 *1 (-304))))) -(-10 -7 (-15 -2771 ((-224) (-378))) (-15 -4167 ((-315 (-224)) (-315 (-378)))) (-15 -3020 ((-838 (-224)) (-838 (-378)))) (-15 -3813 ((-1086 (-838 (-224))) (-1086 (-838 (-378))))) (-15 -4208 ((-639 (-1086 (-838 (-224)))) (-639 (-1086 (-838 (-378)))))) (-15 -1413 ((-406 (-562)) (-224))) (-15 -2548 ((-406 (-562)) (-315 (-224)))) (-15 -4243 ((-224) (-315 (-224)))) (-15 -3006 ((-3 (-315 (-224)) "failed") (-315 (-224)))) (-15 -1854 ((-378) (-1256 (-315 (-224))))) (-15 -1374 ((-2 (|:| |additions| (-562)) (|:| |multiplications| (-562)) (|:| |exponentiations| (-562)) (|:| |functionCalls| (-562))) (-1256 (-315 (-224))))) (-15 -3060 ((-315 (-406 (-562))) (-315 (-224)))) (-15 -3934 ((-1086 (-838 (-224))) (-1086 (-838 (-224))))) (-15 -1676 ((-639 (-224)) (-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))))) (-15 -3118 ((-693) (-224))) (-15 -3123 ((-1256 (-693)) (-639 (-224)))) (-15 -1314 ((-315 (-378)) (-315 (-224)))) (-15 -1690 ((-1256 (-315 (-378))) (-1256 (-315 (-224))))) (-15 -2278 ((-112) (-224) (-1086 (-838 (-224))))) (-15 -1682 ((-1150) (-224))) (-15 -2876 ((-1150) (-378))) (-15 -2793 ((-639 (-1150)) (-639 (-224)))) (-15 -3906 ((-639 (-1150)) (-1148 (-224)))) (-15 -1516 ((-224) (-1086 (-838 (-224))))) (-15 -3628 ((-224) (-1086 (-838 (-224))))) (-15 -2767 ((-1030) (-1030) (-1030))) (-15 -2767 ((-1030) (-639 (-1030)))) (-15 -2448 ((-1150) (-378))) (-15 -2432 ((-1030) (-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150)))))) (-15 -2432 ((-1030) (-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150))) (|:| |extra| (-1030))))) (-15 -2110 ((-1030) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2147 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2219 ((-1030) (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))) (-15 -3414 ((-315 (-378)) (-947 (-224)))) (-15 -2351 ((-224) (-947 (-224)))) (-15 -4343 ((-315 (-378)) (-224))) (-15 -1745 ((-224) (-406 (-562)))) (-15 -1767 ((-683 (-224)) (-639 (-224)) (-766)))) -((-1436 (((-112) $ $) 11)) (-1810 (($ $ $) 15)) (-1787 (($ $ $) 14)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) 43)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) 52)) (-1606 (($ $ $) 20) (($ (-639 $)) NIL)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) 31) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 36)) (-1762 (((-3 $ "failed") $ $) 17)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) 45))) -(((-305 |#1|) (-10 -8 (-15 -1719 ((-3 (-639 |#1|) "failed") (-639 |#1|) |#1|)) (-15 -3399 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3399 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3147 |#1|)) |#1| |#1|)) (-15 -1810 (|#1| |#1| |#1|)) (-15 -1787 (|#1| |#1| |#1|)) (-15 -1436 ((-112) |#1| |#1|)) (-15 -1879 ((-3 (-639 |#1|) "failed") (-639 |#1|) |#1|)) (-15 -2288 ((-2 (|:| -4221 (-639 |#1|)) (|:| -3147 |#1|)) (-639 |#1|))) (-15 -1606 (|#1| (-639 |#1|))) (-15 -1606 (|#1| |#1| |#1|)) (-15 -1762 ((-3 |#1| "failed") |#1| |#1|))) (-306)) (T -305)) -NIL -(-10 -8 (-15 -1719 ((-3 (-639 |#1|) "failed") (-639 |#1|) |#1|)) (-15 -3399 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3399 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3147 |#1|)) |#1| |#1|)) (-15 -1810 (|#1| |#1| |#1|)) (-15 -1787 (|#1| |#1| |#1|)) (-15 -1436 ((-112) |#1| |#1|)) (-15 -1879 ((-3 (-639 |#1|) "failed") (-639 |#1|) |#1|)) (-15 -2288 ((-2 (|:| -4221 (-639 |#1|)) (|:| -3147 |#1|)) (-639 |#1|))) (-15 -1606 (|#1| (-639 |#1|))) (-15 -1606 (|#1| |#1| |#1|)) (-15 -1762 ((-3 |#1| "failed") |#1| |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 42)) (-1965 (($ $) 41)) (-4102 (((-112) $) 39)) (-2781 (((-3 $ "failed") $ $) 19)) (-1436 (((-112) $ $) 60)) (-3329 (($) 17 T CONST)) (-1810 (($ $ $) 56)) (-1694 (((-3 $ "failed") $) 33)) (-1787 (($ $ $) 57)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) 52)) (-4367 (((-112) $) 31)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) 53)) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1762 (((-3 $ "failed") $ $) 43)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) 51)) (-2044 (((-766) $) 59)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 58)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ $) 44)) (-1568 (((-766)) 28)) (-3799 (((-112) $ $) 40)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) -(((-306) (-139)) (T -306)) -((-1436 (*1 *2 *1 *1) (-12 (-4 *1 (-306)) (-5 *2 (-112)))) (-2044 (*1 *2 *1) (-12 (-4 *1 (-306)) (-5 *2 (-766)))) (-3204 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3380 *1) (|:| -1441 *1))) (-4 *1 (-306)))) (-1787 (*1 *1 *1 *1) (-4 *1 (-306))) (-1810 (*1 *1 *1 *1) (-4 *1 (-306))) (-3399 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3147 *1))) (-4 *1 (-306)))) (-3399 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-306)))) (-1719 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-639 *1)) (-4 *1 (-306))))) -(-13 (-915) (-10 -8 (-15 -1436 ((-112) $ $)) (-15 -2044 ((-766) $)) (-15 -3204 ((-2 (|:| -3380 $) (|:| -1441 $)) $ $)) (-15 -1787 ($ $ $)) (-15 -1810 ($ $ $)) (-15 -3399 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $)) (-15 -3399 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1719 ((-3 (-639 $) "failed") (-639 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-289) . T) ((-451) . T) ((-554) . T) ((-642 $) . T) ((-712 $) . T) ((-721) . T) ((-915) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) -((-1433 (($ $ (-639 |#2|) (-639 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-293 |#2|)) 11) (($ $ (-639 (-293 |#2|))) NIL))) -(((-307 |#1| |#2|) (-10 -8 (-15 -1433 (|#1| |#1| (-639 (-293 |#2|)))) (-15 -1433 (|#1| |#1| (-293 |#2|))) (-15 -1433 (|#1| |#1| |#2| |#2|)) (-15 -1433 (|#1| |#1| (-639 |#2|) (-639 |#2|)))) (-308 |#2|) (-1092)) (T -307)) -NIL -(-10 -8 (-15 -1433 (|#1| |#1| (-639 (-293 |#2|)))) (-15 -1433 (|#1| |#1| (-293 |#2|))) (-15 -1433 (|#1| |#1| |#2| |#2|)) (-15 -1433 (|#1| |#1| (-639 |#2|) (-639 |#2|)))) -((-1433 (($ $ (-639 |#1|) (-639 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-293 |#1|)) 11) (($ $ (-639 (-293 |#1|))) 10))) -(((-308 |#1|) (-139) (-1092)) (T -308)) -((-1433 (*1 *1 *1 *2) (-12 (-5 *2 (-293 *3)) (-4 *1 (-308 *3)) (-4 *3 (-1092)))) (-1433 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-293 *3))) (-4 *1 (-308 *3)) (-4 *3 (-1092))))) -(-13 (-513 |t#1| |t#1|) (-10 -8 (-15 -1433 ($ $ (-293 |t#1|))) (-15 -1433 ($ $ (-639 (-293 |t#1|)))))) -(((-513 |#1| |#1|) . T)) -((-1433 ((|#1| (-1 |#1| (-562)) (-1170 (-406 (-562)))) 25))) -(((-309 |#1|) (-10 -7 (-15 -1433 (|#1| (-1 |#1| (-562)) (-1170 (-406 (-562)))))) (-38 (-406 (-562)))) (T -309)) -((-1433 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-562))) (-5 *4 (-1170 (-406 (-562)))) (-5 *1 (-309 *2)) (-4 *2 (-38 (-406 (-562))))))) -(-10 -7 (-15 -1433 (|#1| (-1 |#1| (-562)) (-1170 (-406 (-562)))))) -((-4041 (((-112) $ $) NIL)) (-3327 (((-562) $) 12)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1743 (((-1127) $) 9)) (-4053 (((-857) $) 21) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-310) (-13 (-1075) (-10 -8 (-15 -1743 ((-1127) $)) (-15 -3327 ((-562) $))))) (T -310)) -((-1743 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-310)))) (-3327 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-310))))) -(-13 (-1075) (-10 -8 (-15 -1743 ((-1127) $)) (-15 -3327 ((-562) $)))) -((-4041 (((-112) $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 7)) (-1733 (((-112) $ $) 9))) -(((-311) (-1092)) (T -311)) -NIL -(-1092) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) 62)) (-2300 (((-1242 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-306)))) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3517 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-904)))) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-904)))) (-1436 (((-112) $ $) NIL)) (-1587 (((-562) $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-815)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-1242 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1168) "failed") $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-1033 (-1168)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-1033 (-562)))) (((-3 (-562) "failed") $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-1033 (-562)))) (((-3 (-1241 |#2| |#3| |#4|) "failed") $) 25)) (-3960 (((-1242 |#1| |#2| |#3| |#4|) $) NIL) (((-1168) $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-1033 (-1168)))) (((-406 (-562)) $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-1033 (-562)))) (((-562) $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-1033 (-562)))) (((-1241 |#2| |#3| |#4|) $) NIL)) (-1810 (($ $ $) NIL)) (-3449 (((-683 (-562)) (-683 $)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-635 (-562)))) (((-2 (|:| -1767 (-683 (-1242 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1256 (-1242 |#1| |#2| |#3| |#4|)))) (-683 $) (-1256 $)) NIL) (((-683 (-1242 |#1| |#2| |#3| |#4|)) (-683 $)) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-1447 (($) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-544)))) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-3521 (((-112) $) NIL)) (-2696 (((-112) $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-815)))) (-2337 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-881 (-562)))) (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-881 (-378))))) (-4367 (((-112) $) NIL)) (-2957 (($ $) NIL)) (-4063 (((-1242 |#1| |#2| |#3| |#4|) $) 21)) (-3828 (((-3 $ "failed") $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-1143)))) (-3855 (((-112) $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-815)))) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1551 (($ $ $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-845)))) (-2993 (($ $ $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-845)))) (-4152 (($ (-1 (-1242 |#1| |#2| |#3| |#4|) (-1242 |#1| |#2| |#3| |#4|)) $) NIL)) (-3961 (((-3 (-838 |#2|) "failed") $) 78)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3730 (($) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-1143)) CONST)) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2561 (($ $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-306)))) (-3870 (((-1242 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-544)))) (-3586 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-904)))) (-3468 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-904)))) (-1635 (((-417 $) $) NIL)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1433 (($ $ (-639 (-1242 |#1| |#2| |#3| |#4|)) (-639 (-1242 |#1| |#2| |#3| |#4|))) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-308 (-1242 |#1| |#2| |#3| |#4|)))) (($ $ (-1242 |#1| |#2| |#3| |#4|) (-1242 |#1| |#2| |#3| |#4|)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-308 (-1242 |#1| |#2| |#3| |#4|)))) (($ $ (-293 (-1242 |#1| |#2| |#3| |#4|))) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-308 (-1242 |#1| |#2| |#3| |#4|)))) (($ $ (-639 (-293 (-1242 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-308 (-1242 |#1| |#2| |#3| |#4|)))) (($ $ (-639 (-1168)) (-639 (-1242 |#1| |#2| |#3| |#4|))) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-513 (-1168) (-1242 |#1| |#2| |#3| |#4|)))) (($ $ (-1168) (-1242 |#1| |#2| |#3| |#4|)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-513 (-1168) (-1242 |#1| |#2| |#3| |#4|))))) (-2044 (((-766) $) NIL)) (-2343 (($ $ (-1242 |#1| |#2| |#3| |#4|)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-285 (-1242 |#1| |#2| |#3| |#4|) (-1242 |#1| |#2| |#3| |#4|))))) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-4029 (($ $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-232))) (($ $ (-766)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-232))) (($ $ (-1168)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-895 (-1168)))) (($ $ (-1 (-1242 |#1| |#2| |#3| |#4|) (-1242 |#1| |#2| |#3| |#4|)) (-766)) NIL) (($ $ (-1 (-1242 |#1| |#2| |#3| |#4|) (-1242 |#1| |#2| |#3| |#4|))) NIL)) (-1580 (($ $) NIL)) (-4079 (((-1242 |#1| |#2| |#3| |#4|) $) 17)) (-4208 (((-887 (-562)) $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-610 (-887 (-562))))) (((-887 (-378)) $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-610 (-887 (-378))))) (((-535) $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-610 (-535)))) (((-378) $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-1017))) (((-224) $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-1017)))) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| (-1242 |#1| |#2| |#3| |#4|) (-904))))) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL) (($ (-1242 |#1| |#2| |#3| |#4|)) 29) (($ (-1168)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-1033 (-1168)))) (($ (-1241 |#2| |#3| |#4|)) 36)) (-2059 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| (-1242 |#1| |#2| |#3| |#4|) (-904))) (|has| (-1242 |#1| |#2| |#3| |#4|) (-144))))) (-1568 (((-766)) NIL)) (-3636 (((-1242 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-544)))) (-3799 (((-112) $ $) NIL)) (-2757 (($ $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-815)))) (-2285 (($) 41 T CONST)) (-2294 (($) NIL T CONST)) (-3113 (($ $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-232))) (($ $ (-766)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-232))) (($ $ (-1168)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-895 (-1168)))) (($ $ (-1 (-1242 |#1| |#2| |#3| |#4|) (-1242 |#1| |#2| |#3| |#4|)) (-766)) NIL) (($ $ (-1 (-1242 |#1| |#2| |#3| |#4|) (-1242 |#1| |#2| |#3| |#4|))) NIL)) (-1798 (((-112) $ $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-845)))) (-1771 (((-112) $ $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-845)))) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-845)))) (-1761 (((-112) $ $) NIL (|has| (-1242 |#1| |#2| |#3| |#4|) (-845)))) (-1859 (($ $ $) 34) (($ (-1242 |#1| |#2| |#3| |#4|) (-1242 |#1| |#2| |#3| |#4|)) 31)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ (-1242 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1242 |#1| |#2| |#3| |#4|)) NIL))) -(((-312 |#1| |#2| |#3| |#4|) (-13 (-987 (-1242 |#1| |#2| |#3| |#4|)) (-1033 (-1241 |#2| |#3| |#4|)) (-10 -8 (-15 -3961 ((-3 (-838 |#2|) "failed") $)) (-15 -4053 ($ (-1241 |#2| |#3| |#4|))))) (-13 (-845) (-1033 (-562)) (-635 (-562)) (-451)) (-13 (-27) (-1192) (-429 |#1|)) (-1168) |#2|) (T -312)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-1241 *4 *5 *6)) (-4 *4 (-13 (-27) (-1192) (-429 *3))) (-14 *5 (-1168)) (-14 *6 *4) (-4 *3 (-13 (-845) (-1033 (-562)) (-635 (-562)) (-451))) (-5 *1 (-312 *3 *4 *5 *6)))) (-3961 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-845) (-1033 (-562)) (-635 (-562)) (-451))) (-5 *2 (-838 *4)) (-5 *1 (-312 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1192) (-429 *3))) (-14 *5 (-1168)) (-14 *6 *4)))) -(-13 (-987 (-1242 |#1| |#2| |#3| |#4|)) (-1033 (-1241 |#2| |#3| |#4|)) (-10 -8 (-15 -3961 ((-3 (-838 |#2|) "failed") $)) (-15 -4053 ($ (-1241 |#2| |#3| |#4|))))) -((-4152 (((-315 |#2|) (-1 |#2| |#1|) (-315 |#1|)) 13))) -(((-313 |#1| |#2|) (-10 -7 (-15 -4152 ((-315 |#2|) (-1 |#2| |#1|) (-315 |#1|)))) (-845) (-845)) (T -313)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-315 *5)) (-4 *5 (-845)) (-4 *6 (-845)) (-5 *2 (-315 *6)) (-5 *1 (-313 *5 *6))))) -(-10 -7 (-15 -4152 ((-315 |#2|) (-1 |#2| |#1|) (-315 |#1|)))) -((-1470 (((-52) |#2| (-293 |#2|) (-766)) 33) (((-52) |#2| (-293 |#2|)) 24) (((-52) |#2| (-766)) 28) (((-52) |#2|) 25) (((-52) (-1168)) 21)) (-1503 (((-52) |#2| (-293 |#2|) (-406 (-562))) 51) (((-52) |#2| (-293 |#2|)) 48) (((-52) |#2| (-406 (-562))) 50) (((-52) |#2|) 49) (((-52) (-1168)) 47)) (-1499 (((-52) |#2| (-293 |#2|) (-406 (-562))) 46) (((-52) |#2| (-293 |#2|)) 43) (((-52) |#2| (-406 (-562))) 45) (((-52) |#2|) 44) (((-52) (-1168)) 42)) (-1487 (((-52) |#2| (-293 |#2|) (-562)) 39) (((-52) |#2| (-293 |#2|)) 35) (((-52) |#2| (-562)) 38) (((-52) |#2|) 36) (((-52) (-1168)) 34))) -(((-314 |#1| |#2|) (-10 -7 (-15 -1470 ((-52) (-1168))) (-15 -1470 ((-52) |#2|)) (-15 -1470 ((-52) |#2| (-766))) (-15 -1470 ((-52) |#2| (-293 |#2|))) (-15 -1470 ((-52) |#2| (-293 |#2|) (-766))) (-15 -1487 ((-52) (-1168))) (-15 -1487 ((-52) |#2|)) (-15 -1487 ((-52) |#2| (-562))) (-15 -1487 ((-52) |#2| (-293 |#2|))) (-15 -1487 ((-52) |#2| (-293 |#2|) (-562))) (-15 -1499 ((-52) (-1168))) (-15 -1499 ((-52) |#2|)) (-15 -1499 ((-52) |#2| (-406 (-562)))) (-15 -1499 ((-52) |#2| (-293 |#2|))) (-15 -1499 ((-52) |#2| (-293 |#2|) (-406 (-562)))) (-15 -1503 ((-52) (-1168))) (-15 -1503 ((-52) |#2|)) (-15 -1503 ((-52) |#2| (-406 (-562)))) (-15 -1503 ((-52) |#2| (-293 |#2|))) (-15 -1503 ((-52) |#2| (-293 |#2|) (-406 (-562))))) (-13 (-451) (-845) (-1033 (-562)) (-635 (-562))) (-13 (-27) (-1192) (-429 |#1|))) (T -314)) -((-1503 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-293 *3)) (-5 *5 (-406 (-562))) (-4 *3 (-13 (-27) (-1192) (-429 *6))) (-4 *6 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *6 *3)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5))) (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *4 (-406 (-562))) (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5))))) (-1503 (*1 *2 *3) (-12 (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *4))))) (-1503 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *5)) (-4 *5 (-13 (-27) (-1192) (-429 *4))))) (-1499 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-293 *3)) (-5 *5 (-406 (-562))) (-4 *3 (-13 (-27) (-1192) (-429 *6))) (-4 *6 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *6 *3)))) (-1499 (*1 *2 *3 *4) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5))) (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)))) (-1499 (*1 *2 *3 *4) (-12 (-5 *4 (-406 (-562))) (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5))))) (-1499 (*1 *2 *3) (-12 (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *4))))) (-1499 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *5)) (-4 *5 (-13 (-27) (-1192) (-429 *4))))) (-1487 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *6))) (-4 *6 (-13 (-451) (-845) (-1033 *5) (-635 *5))) (-5 *5 (-562)) (-5 *2 (-52)) (-5 *1 (-314 *6 *3)))) (-1487 (*1 *2 *3 *4) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5))) (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)))) (-1487 (*1 *2 *3 *4) (-12 (-5 *4 (-562)) (-4 *5 (-13 (-451) (-845) (-1033 *4) (-635 *4))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5))))) (-1487 (*1 *2 *3) (-12 (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *4))))) (-1487 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *5)) (-4 *5 (-13 (-27) (-1192) (-429 *4))))) (-1470 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-293 *3)) (-5 *5 (-766)) (-4 *3 (-13 (-27) (-1192) (-429 *6))) (-4 *6 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *6 *3)))) (-1470 (*1 *2 *3 *4) (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5))) (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)))) (-1470 (*1 *2 *3 *4) (-12 (-5 *4 (-766)) (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *5 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5))))) (-1470 (*1 *2 *3) (-12 (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *4))))) (-1470 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-314 *4 *5)) (-4 *5 (-13 (-27) (-1192) (-429 *4)))))) -(-10 -7 (-15 -1470 ((-52) (-1168))) (-15 -1470 ((-52) |#2|)) (-15 -1470 ((-52) |#2| (-766))) (-15 -1470 ((-52) |#2| (-293 |#2|))) (-15 -1470 ((-52) |#2| (-293 |#2|) (-766))) (-15 -1487 ((-52) (-1168))) (-15 -1487 ((-52) |#2|)) (-15 -1487 ((-52) |#2| (-562))) (-15 -1487 ((-52) |#2| (-293 |#2|))) (-15 -1487 ((-52) |#2| (-293 |#2|) (-562))) (-15 -1499 ((-52) (-1168))) (-15 -1499 ((-52) |#2|)) (-15 -1499 ((-52) |#2| (-406 (-562)))) (-15 -1499 ((-52) |#2| (-293 |#2|))) (-15 -1499 ((-52) |#2| (-293 |#2|) (-406 (-562)))) (-15 -1503 ((-52) (-1168))) (-15 -1503 ((-52) |#2|)) (-15 -1503 ((-52) |#2| (-406 (-562)))) (-15 -1503 ((-52) |#2| (-293 |#2|))) (-15 -1503 ((-52) |#2| (-293 |#2|) (-406 (-562))))) -((-4041 (((-112) $ $) NIL)) (-1763 (((-639 $) $ (-1168)) NIL (|has| |#1| (-554))) (((-639 $) $) NIL (|has| |#1| (-554))) (((-639 $) (-1164 $) (-1168)) NIL (|has| |#1| (-554))) (((-639 $) (-1164 $)) NIL (|has| |#1| (-554))) (((-639 $) (-947 $)) NIL (|has| |#1| (-554)))) (-2391 (($ $ (-1168)) NIL (|has| |#1| (-554))) (($ $) NIL (|has| |#1| (-554))) (($ (-1164 $) (-1168)) NIL (|has| |#1| (-554))) (($ (-1164 $)) NIL (|has| |#1| (-554))) (($ (-947 $)) NIL (|has| |#1| (-554)))) (-4325 (((-112) $) 27 (-4037 (|has| |#1| (-25)) (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044)))))) (-1401 (((-639 (-1168)) $) 349)) (-1602 (((-406 (-1164 $)) $ (-608 $)) NIL (|has| |#1| (-554)))) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-1965 (($ $) NIL (|has| |#1| (-554)))) (-4102 (((-112) $) NIL (|has| |#1| (-554)))) (-1501 (((-639 (-608 $)) $) NIL)) (-2987 (($ $) 159 (|has| |#1| (-554)))) (-4098 (($ $) 135 (|has| |#1| (-554)))) (-4026 (($ $ (-1084 $)) 220 (|has| |#1| (-554))) (($ $ (-1168)) 216 (|has| |#1| (-554)))) (-2781 (((-3 $ "failed") $ $) NIL (-4037 (|has| |#1| (-21)) (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044)))))) (-3164 (($ $ (-293 $)) NIL) (($ $ (-639 (-293 $))) 366) (($ $ (-639 (-608 $)) (-639 $)) 410)) (-3517 (((-417 (-1164 $)) (-1164 $)) 294 (-12 (|has| |#1| (-451)) (|has| |#1| (-554))))) (-1977 (($ $) NIL (|has| |#1| (-554)))) (-3788 (((-417 $) $) NIL (|has| |#1| (-554)))) (-1644 (($ $) NIL (|has| |#1| (-554)))) (-1436 (((-112) $ $) NIL (|has| |#1| (-554)))) (-4206 (($ $) 155 (|has| |#1| (-554)))) (-4074 (($ $) 131 (|has| |#1| (-554)))) (-1639 (($ $ (-562)) 69 (|has| |#1| (-554)))) (-3013 (($ $) 163 (|has| |#1| (-554)))) (-4120 (($ $) 139 (|has| |#1| (-554)))) (-3329 (($) NIL (-4037 (|has| |#1| (-25)) (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044))) (|has| |#1| (-1104))) CONST)) (-1431 (((-639 $) $ (-1168)) NIL (|has| |#1| (-554))) (((-639 $) $) NIL (|has| |#1| (-554))) (((-639 $) (-1164 $) (-1168)) NIL (|has| |#1| (-554))) (((-639 $) (-1164 $)) NIL (|has| |#1| (-554))) (((-639 $) (-947 $)) NIL (|has| |#1| (-554)))) (-2608 (($ $ (-1168)) NIL (|has| |#1| (-554))) (($ $) NIL (|has| |#1| (-554))) (($ (-1164 $) (-1168)) 122 (|has| |#1| (-554))) (($ (-1164 $)) NIL (|has| |#1| (-554))) (($ (-947 $)) NIL (|has| |#1| (-554)))) (-4048 (((-3 (-608 $) "failed") $) 17) (((-3 (-1168) "failed") $) NIL) (((-3 |#1| "failed") $) 419) (((-3 (-48) "failed") $) 322 (-12 (|has| |#1| (-554)) (|has| |#1| (-1033 (-562))))) (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-947 |#1|)) "failed") $) NIL (|has| |#1| (-554))) (((-3 (-947 |#1|) "failed") $) NIL (|has| |#1| (-1044))) (((-3 (-406 (-562)) "failed") $) 46 (-4037 (-12 (|has| |#1| (-554)) (|has| |#1| (-1033 (-562)))) (|has| |#1| (-1033 (-406 (-562))))))) (-3960 (((-608 $) $) 11) (((-1168) $) NIL) ((|#1| $) 401) (((-48) $) NIL (-12 (|has| |#1| (-554)) (|has| |#1| (-1033 (-562))))) (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-406 (-947 |#1|)) $) NIL (|has| |#1| (-554))) (((-947 |#1|) $) NIL (|has| |#1| (-1044))) (((-406 (-562)) $) 305 (-4037 (-12 (|has| |#1| (-554)) (|has| |#1| (-1033 (-562)))) (|has| |#1| (-1033 (-406 (-562))))))) (-1810 (($ $ $) NIL (|has| |#1| (-554)))) (-3449 (((-2 (|:| -1767 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) 115 (|has| |#1| (-1044))) (((-683 |#1|) (-683 $)) 105 (|has| |#1| (-1044))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044)))) (((-683 (-562)) (-683 $)) NIL (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044))))) (-1954 (($ $) 87 (|has| |#1| (-554)))) (-1694 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044))) (|has| |#1| (-1104))))) (-1787 (($ $ $) NIL (|has| |#1| (-554)))) (-3912 (($ $ (-1084 $)) 224 (|has| |#1| (-554))) (($ $ (-1168)) 222 (|has| |#1| (-554)))) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL (|has| |#1| (-554)))) (-3521 (((-112) $) NIL (|has| |#1| (-554)))) (-2146 (($ $ $) 190 (|has| |#1| (-554)))) (-4100 (($) 125 (|has| |#1| (-554)))) (-1940 (($ $ $) 210 (|has| |#1| (-554)))) (-2337 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) 372 (|has| |#1| (-881 (-562)))) (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 379 (|has| |#1| (-881 (-378))))) (-2229 (($ $) NIL) (($ (-639 $)) NIL)) (-4364 (((-639 (-114)) $) NIL)) (-1502 (((-114) (-114)) 265)) (-4367 (((-112) $) 25 (-4037 (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044))) (|has| |#1| (-1104))))) (-3152 (((-112) $) NIL (|has| $ (-1033 (-562))))) (-2957 (($ $) 68 (|has| |#1| (-1044)))) (-4063 (((-1117 |#1| (-608 $)) $) 82 (|has| |#1| (-1044)))) (-4153 (((-112) $) 61 (|has| |#1| (-554)))) (-1895 (($ $ (-562)) NIL (|has| |#1| (-554)))) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-554)))) (-3476 (((-1164 $) (-608 $)) 266 (|has| $ (-1044)))) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-4152 (($ (-1 $ $) (-608 $)) 406)) (-4068 (((-3 (-608 $) "failed") $) NIL)) (-4366 (($ $) 129 (|has| |#1| (-554)))) (-2032 (($ $) 235 (|has| |#1| (-554)))) (-1564 (($ (-639 $)) NIL (|has| |#1| (-554))) (($ $ $) NIL (|has| |#1| (-554)))) (-3696 (((-1150) $) NIL)) (-1582 (((-639 (-608 $)) $) 49)) (-4141 (($ (-114) $) NIL) (($ (-114) (-639 $)) 411)) (-4025 (((-3 (-639 $) "failed") $) NIL (|has| |#1| (-1104)))) (-2811 (((-3 (-2 (|:| |val| $) (|:| -1300 (-562))) "failed") $) NIL (|has| |#1| (-1044)))) (-1778 (((-3 (-639 $) "failed") $) 414 (|has| |#1| (-25)))) (-2871 (((-3 (-2 (|:| -4221 (-562)) (|:| |var| (-608 $))) "failed") $) 418 (|has| |#1| (-25)))) (-4270 (((-3 (-2 (|:| |var| (-608 $)) (|:| -1300 (-562))) "failed") $) NIL (|has| |#1| (-1104))) (((-3 (-2 (|:| |var| (-608 $)) (|:| -1300 (-562))) "failed") $ (-114)) NIL (|has| |#1| (-1044))) (((-3 (-2 (|:| |var| (-608 $)) (|:| -1300 (-562))) "failed") $ (-1168)) NIL (|has| |#1| (-1044)))) (-3115 (((-112) $ (-114)) NIL) (((-112) $ (-1168)) 53)) (-1525 (($ $) NIL (-4037 (|has| |#1| (-472)) (|has| |#1| (-554))))) (-1529 (($ $ (-1168)) 239 (|has| |#1| (-554))) (($ $ (-1084 $)) 241 (|has| |#1| (-554)))) (-3059 (((-766) $) NIL)) (-1709 (((-1112) $) NIL)) (-1534 (((-112) $) 43)) (-1547 ((|#1| $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 287 (|has| |#1| (-554)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-554))) (($ $ $) NIL (|has| |#1| (-554)))) (-1533 (((-112) $ $) NIL) (((-112) $ (-1168)) NIL)) (-3836 (($ $ (-1168)) 214 (|has| |#1| (-554))) (($ $) 212 (|has| |#1| (-554)))) (-3350 (($ $) 206 (|has| |#1| (-554)))) (-3468 (((-417 (-1164 $)) (-1164 $)) 292 (-12 (|has| |#1| (-451)) (|has| |#1| (-554))))) (-1635 (((-417 $) $) NIL (|has| |#1| (-554)))) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-554))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL (|has| |#1| (-554)))) (-1762 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-554)))) (-3430 (($ $) 127 (|has| |#1| (-554)))) (-2438 (((-112) $) NIL (|has| $ (-1033 (-562))))) (-1433 (($ $ (-608 $) $) NIL) (($ $ (-639 (-608 $)) (-639 $)) 405) (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-639 (-1168)) (-639 (-1 $ $))) NIL) (($ $ (-639 (-1168)) (-639 (-1 $ (-639 $)))) NIL) (($ $ (-1168) (-1 $ (-639 $))) NIL) (($ $ (-1168) (-1 $ $)) NIL) (($ $ (-639 (-114)) (-639 (-1 $ $))) 359) (($ $ (-639 (-114)) (-639 (-1 $ (-639 $)))) NIL) (($ $ (-114) (-1 $ (-639 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1168)) NIL (|has| |#1| (-610 (-535)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-610 (-535)))) (($ $) NIL (|has| |#1| (-610 (-535)))) (($ $ (-114) $ (-1168)) 347 (|has| |#1| (-610 (-535)))) (($ $ (-639 (-114)) (-639 $) (-1168)) 346 (|has| |#1| (-610 (-535)))) (($ $ (-639 (-1168)) (-639 (-766)) (-639 (-1 $ $))) NIL (|has| |#1| (-1044))) (($ $ (-639 (-1168)) (-639 (-766)) (-639 (-1 $ (-639 $)))) NIL (|has| |#1| (-1044))) (($ $ (-1168) (-766) (-1 $ (-639 $))) NIL (|has| |#1| (-1044))) (($ $ (-1168) (-766) (-1 $ $)) NIL (|has| |#1| (-1044)))) (-2044 (((-766) $) NIL (|has| |#1| (-554)))) (-4021 (($ $) 227 (|has| |#1| (-554)))) (-2343 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-639 $)) NIL)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| |#1| (-554)))) (-3461 (($ $) NIL) (($ $ $) NIL)) (-4057 (($ $) 237 (|has| |#1| (-554)))) (-1904 (($ $) 188 (|has| |#1| (-554)))) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-1044))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-1044))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-1044))) (($ $ (-1168)) NIL (|has| |#1| (-1044)))) (-1580 (($ $) 70 (|has| |#1| (-554)))) (-4079 (((-1117 |#1| (-608 $)) $) 84 (|has| |#1| (-554)))) (-3371 (($ $) 303 (|has| $ (-1044)))) (-3022 (($ $) 165 (|has| |#1| (-554)))) (-4130 (($ $) 141 (|has| |#1| (-554)))) (-3000 (($ $) 161 (|has| |#1| (-554)))) (-4108 (($ $) 137 (|has| |#1| (-554)))) (-2977 (($ $) 157 (|has| |#1| (-554)))) (-4087 (($ $) 133 (|has| |#1| (-554)))) (-4208 (((-887 (-562)) $) NIL (|has| |#1| (-610 (-887 (-562))))) (((-887 (-378)) $) NIL (|has| |#1| (-610 (-887 (-378))))) (($ (-417 $)) NIL (|has| |#1| (-554))) (((-535) $) 344 (|has| |#1| (-610 (-535))))) (-1660 (($ $ $) NIL (|has| |#1| (-472)))) (-2114 (($ $ $) NIL (|has| |#1| (-472)))) (-4053 (((-857) $) 404) (($ (-608 $)) 395) (($ (-1168)) 361) (($ |#1|) 323) (($ $) NIL (|has| |#1| (-554))) (($ (-48)) 298 (-12 (|has| |#1| (-554)) (|has| |#1| (-1033 (-562))))) (($ (-1117 |#1| (-608 $))) 86 (|has| |#1| (-1044))) (($ (-406 |#1|)) NIL (|has| |#1| (-554))) (($ (-947 (-406 |#1|))) NIL (|has| |#1| (-554))) (($ (-406 (-947 (-406 |#1|)))) NIL (|has| |#1| (-554))) (($ (-406 (-947 |#1|))) NIL (|has| |#1| (-554))) (($ (-947 |#1|)) NIL (|has| |#1| (-1044))) (($ (-406 (-562))) NIL (-4037 (|has| |#1| (-554)) (|has| |#1| (-1033 (-406 (-562)))))) (($ (-562)) 34 (-4037 (|has| |#1| (-1033 (-562))) (|has| |#1| (-1044))))) (-2059 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-1568 (((-766)) NIL (|has| |#1| (-1044)))) (-2745 (($ $) NIL) (($ (-639 $)) NIL)) (-2068 (($ $ $) 208 (|has| |#1| (-554)))) (-3733 (($ $ $) 194 (|has| |#1| (-554)))) (-2831 (($ $ $) 198 (|has| |#1| (-554)))) (-4287 (($ $ $) 192 (|has| |#1| (-554)))) (-1623 (($ $ $) 196 (|has| |#1| (-554)))) (-2036 (((-112) (-114)) 9)) (-3054 (($ $) 171 (|has| |#1| (-554)))) (-4165 (($ $) 147 (|has| |#1| (-554)))) (-3799 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3033 (($ $) 167 (|has| |#1| (-554)))) (-4139 (($ $) 143 (|has| |#1| (-554)))) (-3077 (($ $) 175 (|has| |#1| (-554)))) (-4183 (($ $) 151 (|has| |#1| (-554)))) (-3105 (($ (-1168) $) NIL) (($ (-1168) $ $) NIL) (($ (-1168) $ $ $) NIL) (($ (-1168) $ $ $ $) NIL) (($ (-1168) (-639 $)) NIL)) (-2001 (($ $) 202 (|has| |#1| (-554)))) (-3950 (($ $) 200 (|has| |#1| (-554)))) (-1567 (($ $) 177 (|has| |#1| (-554)))) (-4195 (($ $) 153 (|has| |#1| (-554)))) (-3065 (($ $) 173 (|has| |#1| (-554)))) (-4175 (($ $) 149 (|has| |#1| (-554)))) (-3040 (($ $) 169 (|has| |#1| (-554)))) (-4151 (($ $) 145 (|has| |#1| (-554)))) (-2757 (($ $) 180 (|has| |#1| (-554)))) (-2285 (($) 20 (-4037 (|has| |#1| (-25)) (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044)))) CONST)) (-3234 (($ $) 231 (|has| |#1| (-554)))) (-2294 (($) 22 (-4037 (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044))) (|has| |#1| (-1104))) CONST)) (-2582 (($ $) 182 (|has| |#1| (-554))) (($ $ $) 184 (|has| |#1| (-554)))) (-4198 (($ $) 229 (|has| |#1| (-554)))) (-3113 (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-1044))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-1044))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-1044))) (($ $ (-1168)) NIL (|has| |#1| (-1044)))) (-4003 (($ $) 233 (|has| |#1| (-554)))) (-3291 (($ $ $) 186 (|has| |#1| (-554)))) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 79)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) 78)) (-1859 (($ (-1117 |#1| (-608 $)) (-1117 |#1| (-608 $))) 96 (|has| |#1| (-554))) (($ $ $) 42 (-4037 (|has| |#1| (-472)) (|has| |#1| (-554))))) (-1847 (($ $ $) 40 (-4037 (|has| |#1| (-21)) (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044))))) (($ $) 29 (-4037 (|has| |#1| (-21)) (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044)))))) (-1836 (($ $ $) 38 (-4037 (|has| |#1| (-25)) (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044)))))) (** (($ $ $) 63 (|has| |#1| (-554))) (($ $ (-406 (-562))) 300 (|has| |#1| (-554))) (($ $ (-562)) 74 (-4037 (|has| |#1| (-472)) (|has| |#1| (-554)))) (($ $ (-766)) 71 (-4037 (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044))) (|has| |#1| (-1104)))) (($ $ (-916)) 76 (-4037 (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044))) (|has| |#1| (-1104))))) (* (($ (-406 (-562)) $) NIL (|has| |#1| (-554))) (($ $ (-406 (-562))) NIL (|has| |#1| (-554))) (($ |#1| $) NIL (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171))) (($ $ $) 36 (-4037 (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044))) (|has| |#1| (-1104)))) (($ (-562) $) 32 (-4037 (|has| |#1| (-21)) (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044))))) (($ (-766) $) NIL (-4037 (|has| |#1| (-25)) (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044))))) (($ (-916) $) NIL (-4037 (|has| |#1| (-25)) (-12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044))))))) -(((-315 |#1|) (-13 (-429 |#1|) (-10 -8 (IF (|has| |#1| (-554)) (PROGN (-6 (-29 |#1|)) (-6 (-1192)) (-6 (-159)) (-6 (-625)) (-6 (-1131)) (-15 -1954 ($ $)) (-15 -4153 ((-112) $)) (-15 -1639 ($ $ (-562))) (IF (|has| |#1| (-451)) (PROGN (-15 -3468 ((-417 (-1164 $)) (-1164 $))) (-15 -3517 ((-417 (-1164 $)) (-1164 $)))) |%noBranch|) (IF (|has| |#1| (-1033 (-562))) (-6 (-1033 (-48))) |%noBranch|)) |%noBranch|))) (-845)) (T -315)) -((-1954 (*1 *1 *1) (-12 (-5 *1 (-315 *2)) (-4 *2 (-554)) (-4 *2 (-845)))) (-4153 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-315 *3)) (-4 *3 (-554)) (-4 *3 (-845)))) (-1639 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-315 *3)) (-4 *3 (-554)) (-4 *3 (-845)))) (-3468 (*1 *2 *3) (-12 (-5 *2 (-417 (-1164 *1))) (-5 *1 (-315 *4)) (-5 *3 (-1164 *1)) (-4 *4 (-451)) (-4 *4 (-554)) (-4 *4 (-845)))) (-3517 (*1 *2 *3) (-12 (-5 *2 (-417 (-1164 *1))) (-5 *1 (-315 *4)) (-5 *3 (-1164 *1)) (-4 *4 (-451)) (-4 *4 (-554)) (-4 *4 (-845))))) -(-13 (-429 |#1|) (-10 -8 (IF (|has| |#1| (-554)) (PROGN (-6 (-29 |#1|)) (-6 (-1192)) (-6 (-159)) (-6 (-625)) (-6 (-1131)) (-15 -1954 ($ $)) (-15 -4153 ((-112) $)) (-15 -1639 ($ $ (-562))) (IF (|has| |#1| (-451)) (PROGN (-15 -3468 ((-417 (-1164 $)) (-1164 $))) (-15 -3517 ((-417 (-1164 $)) (-1164 $)))) |%noBranch|) (IF (|has| |#1| (-1033 (-562))) (-6 (-1033 (-48))) |%noBranch|)) |%noBranch|))) -((-4170 (((-52) |#2| (-114) (-293 |#2|) (-639 |#2|)) 88) (((-52) |#2| (-114) (-293 |#2|) (-293 |#2|)) 84) (((-52) |#2| (-114) (-293 |#2|) |#2|) 86) (((-52) (-293 |#2|) (-114) (-293 |#2|) |#2|) 87) (((-52) (-639 |#2|) (-639 (-114)) (-293 |#2|) (-639 (-293 |#2|))) 80) (((-52) (-639 |#2|) (-639 (-114)) (-293 |#2|) (-639 |#2|)) 82) (((-52) (-639 (-293 |#2|)) (-639 (-114)) (-293 |#2|) (-639 |#2|)) 83) (((-52) (-639 (-293 |#2|)) (-639 (-114)) (-293 |#2|) (-639 (-293 |#2|))) 81) (((-52) (-293 |#2|) (-114) (-293 |#2|) (-639 |#2|)) 89) (((-52) (-293 |#2|) (-114) (-293 |#2|) (-293 |#2|)) 85))) -(((-316 |#1| |#2|) (-10 -7 (-15 -4170 ((-52) (-293 |#2|) (-114) (-293 |#2|) (-293 |#2|))) (-15 -4170 ((-52) (-293 |#2|) (-114) (-293 |#2|) (-639 |#2|))) (-15 -4170 ((-52) (-639 (-293 |#2|)) (-639 (-114)) (-293 |#2|) (-639 (-293 |#2|)))) (-15 -4170 ((-52) (-639 (-293 |#2|)) (-639 (-114)) (-293 |#2|) (-639 |#2|))) (-15 -4170 ((-52) (-639 |#2|) (-639 (-114)) (-293 |#2|) (-639 |#2|))) (-15 -4170 ((-52) (-639 |#2|) (-639 (-114)) (-293 |#2|) (-639 (-293 |#2|)))) (-15 -4170 ((-52) (-293 |#2|) (-114) (-293 |#2|) |#2|)) (-15 -4170 ((-52) |#2| (-114) (-293 |#2|) |#2|)) (-15 -4170 ((-52) |#2| (-114) (-293 |#2|) (-293 |#2|))) (-15 -4170 ((-52) |#2| (-114) (-293 |#2|) (-639 |#2|)))) (-13 (-845) (-554) (-610 (-535))) (-429 |#1|)) (T -316)) -((-4170 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-5 *6 (-639 *3)) (-4 *3 (-429 *7)) (-4 *7 (-13 (-845) (-554) (-610 (-535)))) (-5 *2 (-52)) (-5 *1 (-316 *7 *3)))) (-4170 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-4 *3 (-429 *6)) (-4 *6 (-13 (-845) (-554) (-610 (-535)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-4170 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-4 *3 (-429 *6)) (-4 *6 (-13 (-845) (-554) (-610 (-535)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-4170 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-293 *5)) (-5 *4 (-114)) (-4 *5 (-429 *6)) (-4 *6 (-13 (-845) (-554) (-610 (-535)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *5)))) (-4170 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-639 *8)) (-5 *4 (-639 (-114))) (-5 *6 (-639 (-293 *8))) (-4 *8 (-429 *7)) (-5 *5 (-293 *8)) (-4 *7 (-13 (-845) (-554) (-610 (-535)))) (-5 *2 (-52)) (-5 *1 (-316 *7 *8)))) (-4170 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-639 *7)) (-5 *4 (-639 (-114))) (-5 *5 (-293 *7)) (-4 *7 (-429 *6)) (-4 *6 (-13 (-845) (-554) (-610 (-535)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *7)))) (-4170 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-639 (-293 *8))) (-5 *4 (-639 (-114))) (-5 *5 (-293 *8)) (-5 *6 (-639 *8)) (-4 *8 (-429 *7)) (-4 *7 (-13 (-845) (-554) (-610 (-535)))) (-5 *2 (-52)) (-5 *1 (-316 *7 *8)))) (-4170 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-639 (-293 *7))) (-5 *4 (-639 (-114))) (-5 *5 (-293 *7)) (-4 *7 (-429 *6)) (-4 *6 (-13 (-845) (-554) (-610 (-535)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *7)))) (-4170 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-293 *7)) (-5 *4 (-114)) (-5 *5 (-639 *7)) (-4 *7 (-429 *6)) (-4 *6 (-13 (-845) (-554) (-610 (-535)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *7)))) (-4170 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-293 *6)) (-5 *4 (-114)) (-4 *6 (-429 *5)) (-4 *5 (-13 (-845) (-554) (-610 (-535)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *6))))) -(-10 -7 (-15 -4170 ((-52) (-293 |#2|) (-114) (-293 |#2|) (-293 |#2|))) (-15 -4170 ((-52) (-293 |#2|) (-114) (-293 |#2|) (-639 |#2|))) (-15 -4170 ((-52) (-639 (-293 |#2|)) (-639 (-114)) (-293 |#2|) (-639 (-293 |#2|)))) (-15 -4170 ((-52) (-639 (-293 |#2|)) (-639 (-114)) (-293 |#2|) (-639 |#2|))) (-15 -4170 ((-52) (-639 |#2|) (-639 (-114)) (-293 |#2|) (-639 |#2|))) (-15 -4170 ((-52) (-639 |#2|) (-639 (-114)) (-293 |#2|) (-639 (-293 |#2|)))) (-15 -4170 ((-52) (-293 |#2|) (-114) (-293 |#2|) |#2|)) (-15 -4170 ((-52) |#2| (-114) (-293 |#2|) |#2|)) (-15 -4170 ((-52) |#2| (-114) (-293 |#2|) (-293 |#2|))) (-15 -4170 ((-52) |#2| (-114) (-293 |#2|) (-639 |#2|)))) -((-2365 (((-1202 (-921)) (-315 (-562)) (-315 (-562)) (-315 (-562)) (-1 (-224) (-224)) (-1086 (-224)) (-224) (-562) (-1150)) 45) (((-1202 (-921)) (-315 (-562)) (-315 (-562)) (-315 (-562)) (-1 (-224) (-224)) (-1086 (-224)) (-224) (-562)) 46) (((-1202 (-921)) (-315 (-562)) (-315 (-562)) (-315 (-562)) (-1 (-224) (-224)) (-1086 (-224)) (-1 (-224) (-224)) (-562) (-1150)) 42) (((-1202 (-921)) (-315 (-562)) (-315 (-562)) (-315 (-562)) (-1 (-224) (-224)) (-1086 (-224)) (-1 (-224) (-224)) (-562)) 43)) (-2678 (((-1 (-224) (-224)) (-224)) 44))) -(((-317) (-10 -7 (-15 -2678 ((-1 (-224) (-224)) (-224))) (-15 -2365 ((-1202 (-921)) (-315 (-562)) (-315 (-562)) (-315 (-562)) (-1 (-224) (-224)) (-1086 (-224)) (-1 (-224) (-224)) (-562))) (-15 -2365 ((-1202 (-921)) (-315 (-562)) (-315 (-562)) (-315 (-562)) (-1 (-224) (-224)) (-1086 (-224)) (-1 (-224) (-224)) (-562) (-1150))) (-15 -2365 ((-1202 (-921)) (-315 (-562)) (-315 (-562)) (-315 (-562)) (-1 (-224) (-224)) (-1086 (-224)) (-224) (-562))) (-15 -2365 ((-1202 (-921)) (-315 (-562)) (-315 (-562)) (-315 (-562)) (-1 (-224) (-224)) (-1086 (-224)) (-224) (-562) (-1150))))) (T -317)) -((-2365 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-315 (-562))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1086 (-224))) (-5 *6 (-224)) (-5 *7 (-562)) (-5 *8 (-1150)) (-5 *2 (-1202 (-921))) (-5 *1 (-317)))) (-2365 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-315 (-562))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1086 (-224))) (-5 *6 (-224)) (-5 *7 (-562)) (-5 *2 (-1202 (-921))) (-5 *1 (-317)))) (-2365 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-315 (-562))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1086 (-224))) (-5 *6 (-562)) (-5 *7 (-1150)) (-5 *2 (-1202 (-921))) (-5 *1 (-317)))) (-2365 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-315 (-562))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1086 (-224))) (-5 *6 (-562)) (-5 *2 (-1202 (-921))) (-5 *1 (-317)))) (-2678 (*1 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-317)) (-5 *3 (-224))))) -(-10 -7 (-15 -2678 ((-1 (-224) (-224)) (-224))) (-15 -2365 ((-1202 (-921)) (-315 (-562)) (-315 (-562)) (-315 (-562)) (-1 (-224) (-224)) (-1086 (-224)) (-1 (-224) (-224)) (-562))) (-15 -2365 ((-1202 (-921)) (-315 (-562)) (-315 (-562)) (-315 (-562)) (-1 (-224) (-224)) (-1086 (-224)) (-1 (-224) (-224)) (-562) (-1150))) (-15 -2365 ((-1202 (-921)) (-315 (-562)) (-315 (-562)) (-315 (-562)) (-1 (-224) (-224)) (-1086 (-224)) (-224) (-562))) (-15 -2365 ((-1202 (-921)) (-315 (-562)) (-315 (-562)) (-315 (-562)) (-1 (-224) (-224)) (-1086 (-224)) (-224) (-562) (-1150)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) 25)) (-1401 (((-639 (-1074)) $) NIL)) (-2443 (((-1168) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-1965 (($ $) NIL (|has| |#1| (-554)))) (-4102 (((-112) $) NIL (|has| |#1| (-554)))) (-1302 (($ $ (-406 (-562))) NIL) (($ $ (-406 (-562)) (-406 (-562))) NIL)) (-4196 (((-1148 (-2 (|:| |k| (-406 (-562))) (|:| |c| |#1|))) $) 20)) (-2987 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4098 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2781 (((-3 $ "failed") $ $) NIL)) (-1977 (($ $) NIL (|has| |#1| (-362)))) (-3788 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1644 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1436 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4206 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1503 (($ (-766) (-1148 (-2 (|:| |k| (-406 (-562))) (|:| |c| |#1|)))) NIL)) (-3013 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4120 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3329 (($) NIL T CONST)) (-1810 (($ $ $) NIL (|has| |#1| (-362)))) (-1600 (($ $) 31)) (-1694 (((-3 $ "failed") $) NIL)) (-1787 (($ $ $) NIL (|has| |#1| (-362)))) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL (|has| |#1| (-362)))) (-3521 (((-112) $) NIL (|has| |#1| (-362)))) (-2965 (((-112) $) NIL)) (-4100 (($) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1993 (((-406 (-562)) $) NIL) (((-406 (-562)) $ (-406 (-562))) 16)) (-4367 (((-112) $) NIL)) (-1895 (($ $ (-562)) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3662 (($ $ (-916)) NIL) (($ $ (-406 (-562))) NIL)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-2833 (((-112) $) NIL)) (-1377 (($ |#1| (-406 (-562))) NIL) (($ $ (-1074) (-406 (-562))) NIL) (($ $ (-639 (-1074)) (-639 (-406 (-562)))) NIL)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-4366 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3696 (((-1150) $) NIL)) (-1525 (($ $) NIL (|has| |#1| (-362)))) (-3081 (($ $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-1168)) NIL (-4037 (-12 (|has| |#1| (-15 -3081 (|#1| |#1| (-1168)))) (|has| |#1| (-15 -1401 ((-639 (-1168)) |#1|))) (|has| |#1| (-38 (-406 (-562))))) (-12 (|has| |#1| (-29 (-562))) (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-954)) (|has| |#1| (-1192)))))) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-362)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1635 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL (|has| |#1| (-362)))) (-4316 (($ $ (-406 (-562))) NIL)) (-1762 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-4297 (((-406 (-562)) $) 17)) (-1952 (($ (-1241 |#1| |#2| |#3|)) 11)) (-1300 (((-1241 |#1| |#2| |#3|) $) 12)) (-3430 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1433 (((-1148 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-406 (-562))))))) (-2044 (((-766) $) NIL (|has| |#1| (-362)))) (-2343 ((|#1| $ (-406 (-562))) NIL) (($ $ $) NIL (|has| (-406 (-562)) (-1104)))) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| |#1| (-362)))) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-766)) NIL (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (-2250 (((-406 (-562)) $) NIL)) (-3022 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3000 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2977 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1345 (($ $) 10)) (-4053 (((-857) $) 37) (($ (-562)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $) NIL (|has| |#1| (-554)))) (-2266 ((|#1| $ (-406 (-562))) 29)) (-2059 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-1568 (((-766)) NIL)) (-2328 ((|#1| $) NIL)) (-3054 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3799 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3033 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4139 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3077 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4183 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1406 ((|#1| $ (-406 (-562))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-562))))) (|has| |#1| (-15 -4053 (|#1| (-1168))))))) (-1567 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3065 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4175 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3040 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3113 (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-766)) NIL (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 27)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) 32)) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))))) -(((-318 |#1| |#2| |#3|) (-13 (-1237 |#1|) (-787) (-10 -8 (-15 -1952 ($ (-1241 |#1| |#2| |#3|))) (-15 -1300 ((-1241 |#1| |#2| |#3|) $)) (-15 -4297 ((-406 (-562)) $)))) (-13 (-362) (-845)) (-1168) |#1|) (T -318)) -((-1952 (*1 *1 *2) (-12 (-5 *2 (-1241 *3 *4 *5)) (-4 *3 (-13 (-362) (-845))) (-14 *4 (-1168)) (-14 *5 *3) (-5 *1 (-318 *3 *4 *5)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-1241 *3 *4 *5)) (-5 *1 (-318 *3 *4 *5)) (-4 *3 (-13 (-362) (-845))) (-14 *4 (-1168)) (-14 *5 *3))) (-4297 (*1 *2 *1) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-318 *3 *4 *5)) (-4 *3 (-13 (-362) (-845))) (-14 *4 (-1168)) (-14 *5 *3)))) -(-13 (-1237 |#1|) (-787) (-10 -8 (-15 -1952 ($ (-1241 |#1| |#2| |#3|))) (-15 -1300 ((-1241 |#1| |#2| |#3|) $)) (-15 -4297 ((-406 (-562)) $)))) -((-1895 (((-2 (|:| -1300 (-766)) (|:| -4221 |#1|) (|:| |radicand| (-639 |#1|))) (-417 |#1|) (-766)) 24)) (-4366 (((-639 (-2 (|:| -4221 (-766)) (|:| |logand| |#1|))) (-417 |#1|)) 28))) -(((-319 |#1|) (-10 -7 (-15 -1895 ((-2 (|:| -1300 (-766)) (|:| -4221 |#1|) (|:| |radicand| (-639 |#1|))) (-417 |#1|) (-766))) (-15 -4366 ((-639 (-2 (|:| -4221 (-766)) (|:| |logand| |#1|))) (-417 |#1|)))) (-554)) (T -319)) -((-4366 (*1 *2 *3) (-12 (-5 *3 (-417 *4)) (-4 *4 (-554)) (-5 *2 (-639 (-2 (|:| -4221 (-766)) (|:| |logand| *4)))) (-5 *1 (-319 *4)))) (-1895 (*1 *2 *3 *4) (-12 (-5 *3 (-417 *5)) (-4 *5 (-554)) (-5 *2 (-2 (|:| -1300 (-766)) (|:| -4221 *5) (|:| |radicand| (-639 *5)))) (-5 *1 (-319 *5)) (-5 *4 (-766))))) -(-10 -7 (-15 -1895 ((-2 (|:| -1300 (-766)) (|:| -4221 |#1|) (|:| |radicand| (-639 |#1|))) (-417 |#1|) (-766))) (-15 -4366 ((-639 (-2 (|:| -4221 (-766)) (|:| |logand| |#1|))) (-417 |#1|)))) -((-1401 (((-639 |#2|) (-1164 |#4|)) 43)) (-1590 ((|#3| (-562)) 46)) (-3272 (((-1164 |#4|) (-1164 |#3|)) 30)) (-2705 (((-1164 |#4|) (-1164 |#4|) (-562)) 55)) (-2252 (((-1164 |#3|) (-1164 |#4|)) 21)) (-2250 (((-639 (-766)) (-1164 |#4|) (-639 |#2|)) 40)) (-1414 (((-1164 |#3|) (-1164 |#4|) (-639 |#2|) (-639 |#3|)) 35))) -(((-320 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1414 ((-1164 |#3|) (-1164 |#4|) (-639 |#2|) (-639 |#3|))) (-15 -2250 ((-639 (-766)) (-1164 |#4|) (-639 |#2|))) (-15 -1401 ((-639 |#2|) (-1164 |#4|))) (-15 -2252 ((-1164 |#3|) (-1164 |#4|))) (-15 -3272 ((-1164 |#4|) (-1164 |#3|))) (-15 -2705 ((-1164 |#4|) (-1164 |#4|) (-562))) (-15 -1590 (|#3| (-562)))) (-788) (-845) (-1044) (-944 |#3| |#1| |#2|)) (T -320)) -((-1590 (*1 *2 *3) (-12 (-5 *3 (-562)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *2 (-1044)) (-5 *1 (-320 *4 *5 *2 *6)) (-4 *6 (-944 *2 *4 *5)))) (-2705 (*1 *2 *2 *3) (-12 (-5 *2 (-1164 *7)) (-5 *3 (-562)) (-4 *7 (-944 *6 *4 *5)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1044)) (-5 *1 (-320 *4 *5 *6 *7)))) (-3272 (*1 *2 *3) (-12 (-5 *3 (-1164 *6)) (-4 *6 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-1164 *7)) (-5 *1 (-320 *4 *5 *6 *7)) (-4 *7 (-944 *6 *4 *5)))) (-2252 (*1 *2 *3) (-12 (-5 *3 (-1164 *7)) (-4 *7 (-944 *6 *4 *5)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1044)) (-5 *2 (-1164 *6)) (-5 *1 (-320 *4 *5 *6 *7)))) (-1401 (*1 *2 *3) (-12 (-5 *3 (-1164 *7)) (-4 *7 (-944 *6 *4 *5)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1044)) (-5 *2 (-639 *5)) (-5 *1 (-320 *4 *5 *6 *7)))) (-2250 (*1 *2 *3 *4) (-12 (-5 *3 (-1164 *8)) (-5 *4 (-639 *6)) (-4 *6 (-845)) (-4 *8 (-944 *7 *5 *6)) (-4 *5 (-788)) (-4 *7 (-1044)) (-5 *2 (-639 (-766))) (-5 *1 (-320 *5 *6 *7 *8)))) (-1414 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1164 *9)) (-5 *4 (-639 *7)) (-5 *5 (-639 *8)) (-4 *7 (-845)) (-4 *8 (-1044)) (-4 *9 (-944 *8 *6 *7)) (-4 *6 (-788)) (-5 *2 (-1164 *8)) (-5 *1 (-320 *6 *7 *8 *9))))) -(-10 -7 (-15 -1414 ((-1164 |#3|) (-1164 |#4|) (-639 |#2|) (-639 |#3|))) (-15 -2250 ((-639 (-766)) (-1164 |#4|) (-639 |#2|))) (-15 -1401 ((-639 |#2|) (-1164 |#4|))) (-15 -2252 ((-1164 |#3|) (-1164 |#4|))) (-15 -3272 ((-1164 |#4|) (-1164 |#3|))) (-15 -2705 ((-1164 |#4|) (-1164 |#4|) (-562))) (-15 -1590 (|#3| (-562)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) 14)) (-4196 (((-639 (-2 (|:| |gen| |#1|) (|:| -3430 (-562)))) $) 18)) (-2781 (((-3 $ "failed") $ $) NIL)) (-1382 (((-766) $) NIL)) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) NIL)) (-3960 ((|#1| $) NIL)) (-3111 ((|#1| $ (-562)) NIL)) (-2826 (((-562) $ (-562)) NIL)) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-2491 (($ (-1 |#1| |#1|) $) NIL)) (-1545 (($ (-1 (-562) (-562)) $) 10)) (-3696 (((-1150) $) NIL)) (-2956 (($ $ $) NIL (|has| (-562) (-787)))) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL) (($ |#1|) NIL)) (-2266 (((-562) |#1| $) NIL)) (-2285 (($) 15 T CONST)) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1771 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1761 (((-112) $ $) 21 (|has| |#1| (-845)))) (-1847 (($ $) 11) (($ $ $) 20)) (-1836 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ (-562)) NIL) (($ (-562) |#1|) 19))) -(((-321 |#1|) (-13 (-21) (-712 (-562)) (-322 |#1| (-562)) (-10 -7 (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|))) (-1092)) (T -321)) -NIL -(-13 (-21) (-712 (-562)) (-322 |#1| (-562)) (-10 -7 (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-4196 (((-639 (-2 (|:| |gen| |#1|) (|:| -3430 |#2|))) $) 27)) (-2781 (((-3 $ "failed") $ $) 19)) (-1382 (((-766) $) 28)) (-3329 (($) 17 T CONST)) (-4048 (((-3 |#1| "failed") $) 32)) (-3960 ((|#1| $) 33)) (-3111 ((|#1| $ (-562)) 25)) (-2826 ((|#2| $ (-562)) 26)) (-2491 (($ (-1 |#1| |#1|) $) 22)) (-1545 (($ (-1 |#2| |#2|) $) 23)) (-3696 (((-1150) $) 9)) (-2956 (($ $ $) 21 (|has| |#2| (-787)))) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11) (($ |#1|) 31)) (-2266 ((|#2| |#1| $) 24)) (-2285 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1836 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ |#2| |#1|) 29))) -(((-322 |#1| |#2|) (-139) (-1092) (-130)) (T -322)) -((-1836 (*1 *1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-130)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-130)))) (-1382 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-130)) (-5 *2 (-766)))) (-4196 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-130)) (-5 *2 (-639 (-2 (|:| |gen| *3) (|:| -3430 *4)))))) (-2826 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-4 *1 (-322 *4 *2)) (-4 *4 (-1092)) (-4 *2 (-130)))) (-3111 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-4 *1 (-322 *2 *4)) (-4 *4 (-130)) (-4 *2 (-1092)))) (-2266 (*1 *2 *3 *1) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-130)))) (-1545 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-322 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-130)))) (-2491 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-322 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-130)))) (-2956 (*1 *1 *1 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-130)) (-4 *3 (-787))))) -(-13 (-130) (-1033 |t#1|) (-10 -8 (-15 -1836 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1382 ((-766) $)) (-15 -4196 ((-639 (-2 (|:| |gen| |t#1|) (|:| -3430 |t#2|))) $)) (-15 -2826 (|t#2| $ (-562))) (-15 -3111 (|t#1| $ (-562))) (-15 -2266 (|t#2| |t#1| $)) (-15 -1545 ($ (-1 |t#2| |t#2|) $)) (-15 -2491 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-787)) (-15 -2956 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-612 |#1|) . T) ((-609 (-857)) . T) ((-1033 |#1|) . T) ((-1092) . T)) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-4196 (((-639 (-2 (|:| |gen| |#1|) (|:| -3430 (-766)))) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-1382 (((-766) $) NIL)) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) NIL)) (-3960 ((|#1| $) NIL)) (-3111 ((|#1| $ (-562)) NIL)) (-2826 (((-766) $ (-562)) NIL)) (-2491 (($ (-1 |#1| |#1|) $) NIL)) (-1545 (($ (-1 (-766) (-766)) $) NIL)) (-3696 (((-1150) $) NIL)) (-2956 (($ $ $) NIL (|has| (-766) (-787)))) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL) (($ |#1|) NIL)) (-2266 (((-766) |#1| $) NIL)) (-2285 (($) NIL T CONST)) (-1733 (((-112) $ $) NIL)) (-1836 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-766) |#1|) NIL))) -(((-323 |#1|) (-322 |#1| (-766)) (-1092)) (T -323)) -NIL -(-322 |#1| (-766)) -((-2578 (($ $) 52)) (-3066 (($ $ |#2| |#3| $) 14)) (-2363 (($ (-1 |#3| |#3|) $) 33)) (-1534 (((-112) $) 24)) (-1547 ((|#2| $) 26)) (-1762 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 43)) (-2201 ((|#2| $) 48)) (-3969 (((-639 |#2|) $) 36)) (-1760 (($ $ $ (-766)) 20)) (-1859 (($ $ |#2|) 40))) -(((-324 |#1| |#2| |#3|) (-10 -8 (-15 -2578 (|#1| |#1|)) (-15 -2201 (|#2| |#1|)) (-15 -1762 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1760 (|#1| |#1| |#1| (-766))) (-15 -3066 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2363 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3969 ((-639 |#2|) |#1|)) (-15 -1547 (|#2| |#1|)) (-15 -1534 ((-112) |#1|)) (-15 -1762 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1859 (|#1| |#1| |#2|))) (-325 |#2| |#3|) (-1044) (-787)) (T -324)) -NIL -(-10 -8 (-15 -2578 (|#1| |#1|)) (-15 -2201 (|#2| |#1|)) (-15 -1762 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1760 (|#1| |#1| |#1| (-766))) (-15 -3066 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2363 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3969 ((-639 |#2|) |#1|)) (-15 -1547 (|#2| |#1|)) (-15 -1534 ((-112) |#1|)) (-15 -1762 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1859 (|#1| |#1| |#2|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-1965 (($ $) 55 (|has| |#1| (-554)))) (-4102 (((-112) $) 57 (|has| |#1| (-554)))) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-4048 (((-3 (-562) "failed") $) 91 (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) 89 (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) 86)) (-3960 (((-562) $) 90 (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) 88 (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) 87)) (-1600 (($ $) 63)) (-1694 (((-3 $ "failed") $) 33)) (-2578 (($ $) 75 (|has| |#1| (-451)))) (-3066 (($ $ |#1| |#2| $) 79)) (-4367 (((-112) $) 31)) (-3627 (((-766) $) 82)) (-2833 (((-112) $) 65)) (-1377 (($ |#1| |#2|) 64)) (-3161 ((|#2| $) 81)) (-2363 (($ (-1 |#2| |#2|) $) 80)) (-4152 (($ (-1 |#1| |#1|) $) 66)) (-1560 (($ $) 68)) (-1573 ((|#1| $) 69)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-1534 (((-112) $) 85)) (-1547 ((|#1| $) 84)) (-1762 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-554)))) (-2250 ((|#2| $) 67)) (-2201 ((|#1| $) 76 (|has| |#1| (-451)))) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ $) 52 (|has| |#1| (-554))) (($ |#1|) 50) (($ (-406 (-562))) 60 (-4037 (|has| |#1| (-1033 (-406 (-562)))) (|has| |#1| (-38 (-406 (-562))))))) (-3969 (((-639 |#1|) $) 83)) (-2266 ((|#1| $ |#2|) 62)) (-2059 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-1568 (((-766)) 28)) (-1760 (($ $ $ (-766)) 78 (|has| |#1| (-171)))) (-3799 (((-112) $ $) 56 (|has| |#1| (-554)))) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1859 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-562)) $) 59 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 58 (|has| |#1| (-38 (-406 (-562))))))) -(((-325 |#1| |#2|) (-139) (-1044) (-787)) (T -325)) -((-1534 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)) (-5 *2 (-112)))) (-1547 (*1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1044)))) (-3969 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)) (-5 *2 (-639 *3)))) (-3627 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)) (-5 *2 (-766)))) (-3161 (*1 *2 *1) (-12 (-4 *1 (-325 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-787)))) (-2363 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)))) (-3066 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-787)))) (-1760 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)) (-4 *3 (-171)))) (-1762 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-787)) (-4 *2 (-554)))) (-2201 (*1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1044)) (-4 *2 (-451)))) (-2578 (*1 *1 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-787)) (-4 *2 (-451))))) -(-13 (-47 |t#1| |t#2|) (-410 |t#1|) (-10 -8 (-15 -1534 ((-112) $)) (-15 -1547 (|t#1| $)) (-15 -3969 ((-639 |t#1|) $)) (-15 -3627 ((-766) $)) (-15 -3161 (|t#2| $)) (-15 -2363 ($ (-1 |t#2| |t#2|) $)) (-15 -3066 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-171)) (-15 -1760 ($ $ $ (-766))) |%noBranch|) (IF (|has| |t#1| (-554)) (-15 -1762 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-451)) (PROGN (-15 -2201 (|t#1| $)) (-15 -2578 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-554)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-562)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #0#) -4037 (|has| |#1| (-1033 (-406 (-562)))) (|has| |#1| (-38 (-406 (-562))))) ((-612 (-562)) . T) ((-612 |#1|) . T) ((-612 $) |has| |#1| (-554)) ((-609 (-857)) . T) ((-171) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-289) |has| |#1| (-554)) ((-410 |#1|) . T) ((-554) |has| |#1| (-554)) ((-642 #0#) |has| |#1| (-38 (-406 (-562)))) ((-642 |#1|) . T) ((-642 $) . T) ((-712 #0#) |has| |#1| (-38 (-406 (-562)))) ((-712 |#1|) |has| |#1| (-171)) ((-712 $) |has| |#1| (-554)) ((-721) . T) ((-1033 (-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((-1033 (-562)) |has| |#1| (-1033 (-562))) ((-1033 |#1|) . T) ((-1050 #0#) |has| |#1| (-38 (-406 (-562)))) ((-1050 |#1|) . T) ((-1050 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3655 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4404)))) (-1706 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-845)))) (-3737 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4404))) (($ $) NIL (-12 (|has| $ (-6 -4404)) (|has| |#1| (-845))))) (-1395 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-845)))) (-3735 (((-112) $ (-766)) NIL)) (-2327 (((-112) (-112)) NIL)) (-4200 ((|#1| $ (-562) |#1|) NIL (|has| $ (-6 -4404))) ((|#1| $ (-1223 (-562)) |#1|) NIL (|has| $ (-6 -4404)))) (-2968 (($ (-1 (-112) |#1|) $) NIL)) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-3329 (($) NIL T CONST)) (-2673 (($ $) NIL (|has| $ (-6 -4404)))) (-2676 (($ $) NIL)) (-3923 (($ $) NIL (|has| |#1| (-1092)))) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-3729 (($ |#1| $) NIL (|has| |#1| (-1092))) (($ (-1 (-112) |#1|) $) NIL)) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1954 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4403)))) (-1507 ((|#1| $ (-562) |#1|) NIL (|has| $ (-6 -4404)))) (-1420 ((|#1| $ (-562)) NIL)) (-4265 (((-562) (-1 (-112) |#1|) $) NIL) (((-562) |#1| $) NIL (|has| |#1| (-1092))) (((-562) |#1| $ (-562)) NIL (|has| |#1| (-1092)))) (-3917 (($ $ (-562)) NIL)) (-2558 (((-766) $) NIL)) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1458 (($ (-766) |#1|) NIL)) (-4172 (((-112) $ (-766)) NIL)) (-1849 (((-562) $) NIL (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-3124 (($ $ $) NIL (|has| |#1| (-845))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4103 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-845)))) (-2123 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1929 (((-562) $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-1491 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1581 (($ $ $ (-562)) NIL) (($ |#1| $ (-562)) NIL)) (-3295 (($ |#1| $ (-562)) NIL) (($ $ $ (-562)) NIL)) (-3336 (((-639 (-562)) $) NIL)) (-1987 (((-112) (-562) $) NIL)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-4322 (($ (-639 |#1|)) NIL)) (-1421 ((|#1| $) NIL (|has| (-562) (-845)))) (-1963 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3510 (($ $ |#1|) NIL (|has| $ (-6 -4404)))) (-3008 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) NIL)) (-2716 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2366 (((-639 |#1|) $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) NIL)) (-2343 ((|#1| $ (-562) |#1|) NIL) ((|#1| $ (-562)) NIL) (($ $ (-1223 (-562))) NIL)) (-1527 (($ $ (-1223 (-562))) NIL) (($ $ (-562)) NIL)) (-2880 (($ $ (-562)) NIL) (($ $ (-1223 (-562))) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2694 (($ $ $ (-562)) NIL (|has| $ (-6 -4404)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| |#1| (-610 (-535))))) (-4064 (($ (-639 |#1|)) NIL)) (-2587 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2767 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-639 $)) NIL)) (-4053 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-2879 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1771 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1761 (((-112) $ $) NIL (|has| |#1| (-845)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-326 |#1|) (-13 (-19 |#1|) (-281 |#1|) (-10 -8 (-15 -4322 ($ (-639 |#1|))) (-15 -2558 ((-766) $)) (-15 -3917 ($ $ (-562))) (-15 -2327 ((-112) (-112))))) (-1207)) (T -326)) -((-4322 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-5 *1 (-326 *3)))) (-2558 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-326 *3)) (-4 *3 (-1207)))) (-3917 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-326 *3)) (-4 *3 (-1207)))) (-2327 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-1207))))) -(-13 (-19 |#1|) (-281 |#1|) (-10 -8 (-15 -4322 ($ (-639 |#1|))) (-15 -2558 ((-766) $)) (-15 -3917 ($ $ (-562))) (-15 -2327 ((-112) (-112))))) -((-3826 (((-112) $) 42)) (-2284 (((-766)) 22)) (-1748 ((|#2| $) 46) (($ $ (-916)) 100)) (-1382 (((-766)) 101)) (-3916 (($ (-1256 |#2|)) 20)) (-1775 (((-112) $) 114)) (-4363 ((|#2| $) 48) (($ $ (-916)) 98)) (-1937 (((-1164 |#2|) $) NIL) (((-1164 $) $ (-916)) 94)) (-2121 (((-1164 |#2|) $) 82)) (-1894 (((-1164 |#2|) $) 79) (((-3 (-1164 |#2|) "failed") $ $) 76)) (-3319 (($ $ (-1164 |#2|)) 53)) (-3548 (((-828 (-916))) 28) (((-916)) 43)) (-4340 (((-133)) 25)) (-2250 (((-828 (-916)) $) 30) (((-916) $) 116)) (-3861 (($) 107)) (-2205 (((-1256 |#2|) $) NIL) (((-683 |#2|) (-1256 $)) 39)) (-2059 (($ $) NIL) (((-3 $ "failed") $) 85)) (-3782 (((-112) $) 41))) -(((-327 |#1| |#2|) (-10 -8 (-15 -2059 ((-3 |#1| "failed") |#1|)) (-15 -1382 ((-766))) (-15 -2059 (|#1| |#1|)) (-15 -1894 ((-3 (-1164 |#2|) "failed") |#1| |#1|)) (-15 -1894 ((-1164 |#2|) |#1|)) (-15 -2121 ((-1164 |#2|) |#1|)) (-15 -3319 (|#1| |#1| (-1164 |#2|))) (-15 -1775 ((-112) |#1|)) (-15 -3861 (|#1|)) (-15 -1748 (|#1| |#1| (-916))) (-15 -4363 (|#1| |#1| (-916))) (-15 -1937 ((-1164 |#1|) |#1| (-916))) (-15 -1748 (|#2| |#1|)) (-15 -4363 (|#2| |#1|)) (-15 -2250 ((-916) |#1|)) (-15 -3548 ((-916))) (-15 -1937 ((-1164 |#2|) |#1|)) (-15 -3916 (|#1| (-1256 |#2|))) (-15 -2205 ((-683 |#2|) (-1256 |#1|))) (-15 -2205 ((-1256 |#2|) |#1|)) (-15 -2284 ((-766))) (-15 -3548 ((-828 (-916)))) (-15 -2250 ((-828 (-916)) |#1|)) (-15 -3826 ((-112) |#1|)) (-15 -3782 ((-112) |#1|)) (-15 -4340 ((-133)))) (-328 |#2|) (-362)) (T -327)) -((-4340 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-133)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) (-3548 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-828 (-916))) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) (-2284 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-766)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) (-3548 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-916)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4)))) (-1382 (*1 *2) (-12 (-4 *4 (-362)) (-5 *2 (-766)) (-5 *1 (-327 *3 *4)) (-4 *3 (-328 *4))))) -(-10 -8 (-15 -2059 ((-3 |#1| "failed") |#1|)) (-15 -1382 ((-766))) (-15 -2059 (|#1| |#1|)) (-15 -1894 ((-3 (-1164 |#2|) "failed") |#1| |#1|)) (-15 -1894 ((-1164 |#2|) |#1|)) (-15 -2121 ((-1164 |#2|) |#1|)) (-15 -3319 (|#1| |#1| (-1164 |#2|))) (-15 -1775 ((-112) |#1|)) (-15 -3861 (|#1|)) (-15 -1748 (|#1| |#1| (-916))) (-15 -4363 (|#1| |#1| (-916))) (-15 -1937 ((-1164 |#1|) |#1| (-916))) (-15 -1748 (|#2| |#1|)) (-15 -4363 (|#2| |#1|)) (-15 -2250 ((-916) |#1|)) (-15 -3548 ((-916))) (-15 -1937 ((-1164 |#2|) |#1|)) (-15 -3916 (|#1| (-1256 |#2|))) (-15 -2205 ((-683 |#2|) (-1256 |#1|))) (-15 -2205 ((-1256 |#2|) |#1|)) (-15 -2284 ((-766))) (-15 -3548 ((-828 (-916)))) (-15 -2250 ((-828 (-916)) |#1|)) (-15 -3826 ((-112) |#1|)) (-15 -3782 ((-112) |#1|)) (-15 -4340 ((-133)))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 42)) (-1965 (($ $) 41)) (-4102 (((-112) $) 39)) (-3826 (((-112) $) 95)) (-2284 (((-766)) 91)) (-1748 ((|#1| $) 141) (($ $ (-916)) 138 (|has| |#1| (-367)))) (-1755 (((-1180 (-916) (-766)) (-562)) 123 (|has| |#1| (-367)))) (-2781 (((-3 $ "failed") $ $) 19)) (-1977 (($ $) 74)) (-3788 (((-417 $) $) 73)) (-1436 (((-112) $ $) 60)) (-1382 (((-766)) 113 (|has| |#1| (-367)))) (-3329 (($) 17 T CONST)) (-4048 (((-3 |#1| "failed") $) 102)) (-3960 ((|#1| $) 103)) (-3916 (($ (-1256 |#1|)) 147)) (-3082 (((-3 "prime" "polynomial" "normal" "cyclic")) 129 (|has| |#1| (-367)))) (-1810 (($ $ $) 56)) (-1694 (((-3 $ "failed") $) 33)) (-1447 (($) 110 (|has| |#1| (-367)))) (-1787 (($ $ $) 57)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) 52)) (-2787 (($) 125 (|has| |#1| (-367)))) (-1844 (((-112) $) 126 (|has| |#1| (-367)))) (-2184 (($ $ (-766)) 88 (-4037 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) 87 (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3521 (((-112) $) 72)) (-1993 (((-916) $) 128 (|has| |#1| (-367))) (((-828 (-916)) $) 85 (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4367 (((-112) $) 31)) (-2631 (($) 136 (|has| |#1| (-367)))) (-1775 (((-112) $) 135 (|has| |#1| (-367)))) (-4363 ((|#1| $) 142) (($ $ (-916)) 139 (|has| |#1| (-367)))) (-3828 (((-3 $ "failed") $) 114 (|has| |#1| (-367)))) (-1719 (((-3 (-639 $) "failed") (-639 $) $) 53)) (-1937 (((-1164 |#1|) $) 146) (((-1164 $) $ (-916)) 140 (|has| |#1| (-367)))) (-3549 (((-916) $) 111 (|has| |#1| (-367)))) (-2121 (((-1164 |#1|) $) 132 (|has| |#1| (-367)))) (-1894 (((-1164 |#1|) $) 131 (|has| |#1| (-367))) (((-3 (-1164 |#1|) "failed") $ $) 130 (|has| |#1| (-367)))) (-3319 (($ $ (-1164 |#1|)) 133 (|has| |#1| (-367)))) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-3696 (((-1150) $) 9)) (-1525 (($ $) 71)) (-3730 (($) 115 (|has| |#1| (-367)) CONST)) (-2464 (($ (-916)) 112 (|has| |#1| (-367)))) (-2991 (((-112) $) 94)) (-1709 (((-1112) $) 10)) (-3147 (($) 134 (|has| |#1| (-367)))) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-1753 (((-639 (-2 (|:| -1635 (-562)) (|:| -1300 (-562))))) 122 (|has| |#1| (-367)))) (-1635 (((-417 $) $) 75)) (-3548 (((-828 (-916))) 92) (((-916)) 144)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1762 (((-3 $ "failed") $ $) 43)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) 51)) (-2044 (((-766) $) 59)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 58)) (-3543 (((-766) $) 127 (|has| |#1| (-367))) (((-3 (-766) "failed") $ $) 86 (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4340 (((-133)) 100)) (-4029 (($ $) 119 (|has| |#1| (-367))) (($ $ (-766)) 117 (|has| |#1| (-367)))) (-2250 (((-828 (-916)) $) 93) (((-916) $) 143)) (-3371 (((-1164 |#1|)) 145)) (-1653 (($) 124 (|has| |#1| (-367)))) (-3861 (($) 137 (|has| |#1| (-367)))) (-2205 (((-1256 |#1|) $) 149) (((-683 |#1|) (-1256 $)) 148)) (-1870 (((-3 (-1256 $) "failed") (-683 $)) 121 (|has| |#1| (-367)))) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ $) 44) (($ (-406 (-562))) 67) (($ |#1|) 101)) (-2059 (($ $) 120 (|has| |#1| (-367))) (((-3 $ "failed") $) 84 (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-1568 (((-766)) 28)) (-4291 (((-1256 $)) 151) (((-1256 $) (-916)) 150)) (-3799 (((-112) $ $) 40)) (-3782 (((-112) $) 96)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-4144 (($ $) 90 (|has| |#1| (-367))) (($ $ (-766)) 89 (|has| |#1| (-367)))) (-3113 (($ $) 118 (|has| |#1| (-367))) (($ $ (-766)) 116 (|has| |#1| (-367)))) (-1733 (((-112) $ $) 6)) (-1859 (($ $ $) 66) (($ $ |#1|) 99)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 70)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ (-406 (-562))) 69) (($ (-406 (-562)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97))) -(((-328 |#1|) (-139) (-362)) (T -328)) -((-4291 (*1 *2) (-12 (-4 *3 (-362)) (-5 *2 (-1256 *1)) (-4 *1 (-328 *3)))) (-4291 (*1 *2 *3) (-12 (-5 *3 (-916)) (-4 *4 (-362)) (-5 *2 (-1256 *1)) (-4 *1 (-328 *4)))) (-2205 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1256 *3)))) (-2205 (*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-328 *4)) (-4 *4 (-362)) (-5 *2 (-683 *4)))) (-3916 (*1 *1 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-362)) (-4 *1 (-328 *3)))) (-1937 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1164 *3)))) (-3371 (*1 *2) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1164 *3)))) (-3548 (*1 *2) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-916)))) (-2250 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-916)))) (-4363 (*1 *2 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-362)))) (-1748 (*1 *2 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-362)))) (-1937 (*1 *2 *1 *3) (-12 (-5 *3 (-916)) (-4 *4 (-367)) (-4 *4 (-362)) (-5 *2 (-1164 *1)) (-4 *1 (-328 *4)))) (-4363 (*1 *1 *1 *2) (-12 (-5 *2 (-916)) (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)))) (-1748 (*1 *1 *1 *2) (-12 (-5 *2 (-916)) (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)))) (-3861 (*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))) (-2631 (*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))) (-1775 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-112)))) (-3147 (*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))) (-3319 (*1 *1 *1 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-367)) (-4 *1 (-328 *3)) (-4 *3 (-362)))) (-2121 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-1164 *3)))) (-1894 (*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-1164 *3)))) (-1894 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-1164 *3))))) -(-13 (-1275 |t#1|) (-1033 |t#1|) (-10 -8 (-15 -4291 ((-1256 $))) (-15 -4291 ((-1256 $) (-916))) (-15 -2205 ((-1256 |t#1|) $)) (-15 -2205 ((-683 |t#1|) (-1256 $))) (-15 -3916 ($ (-1256 |t#1|))) (-15 -1937 ((-1164 |t#1|) $)) (-15 -3371 ((-1164 |t#1|))) (-15 -3548 ((-916))) (-15 -2250 ((-916) $)) (-15 -4363 (|t#1| $)) (-15 -1748 (|t#1| $)) (IF (|has| |t#1| (-367)) (PROGN (-6 (-348)) (-15 -1937 ((-1164 $) $ (-916))) (-15 -4363 ($ $ (-916))) (-15 -1748 ($ $ (-916))) (-15 -3861 ($)) (-15 -2631 ($)) (-15 -1775 ((-112) $)) (-15 -3147 ($)) (-15 -3319 ($ $ (-1164 |t#1|))) (-15 -2121 ((-1164 |t#1|) $)) (-15 -1894 ((-1164 |t#1|) $)) (-15 -1894 ((-3 (-1164 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-562))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -4037 (|has| |#1| (-367)) (|has| |#1| (-144))) ((-146) |has| |#1| (-146)) ((-612 #0#) . T) ((-612 (-562)) . T) ((-612 |#1|) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-232) |has| |#1| (-367)) ((-242) . T) ((-289) . T) ((-306) . T) ((-1275 |#1|) . T) ((-362) . T) ((-401) -4037 (|has| |#1| (-367)) (|has| |#1| (-144))) ((-367) |has| |#1| (-367)) ((-348) |has| |#1| (-367)) ((-451) . T) ((-554) . T) ((-642 #0#) . T) ((-642 |#1|) . T) ((-642 $) . T) ((-712 #0#) . T) ((-712 |#1|) . T) ((-712 $) . T) ((-721) . T) ((-915) . T) ((-1033 |#1|) . T) ((-1050 #0#) . T) ((-1050 |#1|) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1143) |has| |#1| (-367)) ((-1211) . T) ((-1263 |#1|) . T)) -((-4041 (((-112) $ $) NIL)) (-2511 (($ (-1167) $) 87)) (-3292 (($) 76)) (-1496 (((-1112) (-1112)) 9)) (-2682 (($) 77)) (-3705 (($) 89) (($ (-315 (-693))) 97) (($ (-315 (-695))) 93) (($ (-315 (-688))) 101) (($ (-315 (-378))) 108) (($ (-315 (-562))) 104) (($ (-315 (-168 (-378)))) 112)) (-3833 (($ (-1167) $) 88)) (-3471 (($ (-639 (-857))) 78)) (-2932 (((-1261) $) 74)) (-3582 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 26)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2506 (($ (-1112)) 50)) (-3162 (((-1096) $) 24)) (-1327 (($ (-1084 (-947 (-562))) $) 84) (($ (-1084 (-947 (-562))) (-947 (-562)) $) 85)) (-4109 (($ (-1112)) 86)) (-2942 (($ (-1167) $) 114) (($ (-1167) $ $) 115)) (-3073 (($ (-1168) (-639 (-1168))) 75)) (-2718 (($ (-1150)) 81) (($ (-639 (-1150))) 79)) (-4053 (((-857) $) 117)) (-3473 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1168)) (|:| |arrayIndex| (-639 (-947 (-562)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2400 (-857)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1168)) (|:| |rand| (-857)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1167)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3087 (-112)) (|:| -2533 (-2 (|:| |ints2Floats?| (-112)) (|:| -2400 (-857)))))) (|:| |blockBranch| (-639 $)) (|:| |commentBranch| (-639 (-1150))) (|:| |callBranch| (-1150)) (|:| |forBranch| (-2 (|:| -2147 (-1084 (-947 (-562)))) (|:| |span| (-947 (-562))) (|:| -3265 $))) (|:| |labelBranch| (-1112)) (|:| |loopBranch| (-2 (|:| |switch| (-1167)) (|:| -3265 $))) (|:| |commonBranch| (-2 (|:| -3253 (-1168)) (|:| |contents| (-639 (-1168))))) (|:| |printBranch| (-639 (-857)))) $) 43)) (-1385 (($ (-1150)) 186)) (-2508 (($ (-639 $)) 113)) (-2714 (($ (-1168) (-1150)) 119) (($ (-1168) (-315 (-695))) 159) (($ (-1168) (-315 (-693))) 160) (($ (-1168) (-315 (-688))) 161) (($ (-1168) (-683 (-695))) 122) (($ (-1168) (-683 (-693))) 125) (($ (-1168) (-683 (-688))) 128) (($ (-1168) (-1256 (-695))) 131) (($ (-1168) (-1256 (-693))) 134) (($ (-1168) (-1256 (-688))) 137) (($ (-1168) (-683 (-315 (-695)))) 140) (($ (-1168) (-683 (-315 (-693)))) 143) (($ (-1168) (-683 (-315 (-688)))) 146) (($ (-1168) (-1256 (-315 (-695)))) 149) (($ (-1168) (-1256 (-315 (-693)))) 152) (($ (-1168) (-1256 (-315 (-688)))) 155) (($ (-1168) (-639 (-947 (-562))) (-315 (-695))) 156) (($ (-1168) (-639 (-947 (-562))) (-315 (-693))) 157) (($ (-1168) (-639 (-947 (-562))) (-315 (-688))) 158) (($ (-1168) (-315 (-562))) 183) (($ (-1168) (-315 (-378))) 184) (($ (-1168) (-315 (-168 (-378)))) 185) (($ (-1168) (-683 (-315 (-562)))) 164) (($ (-1168) (-683 (-315 (-378)))) 167) (($ (-1168) (-683 (-315 (-168 (-378))))) 170) (($ (-1168) (-1256 (-315 (-562)))) 173) (($ (-1168) (-1256 (-315 (-378)))) 176) (($ (-1168) (-1256 (-315 (-168 (-378))))) 179) (($ (-1168) (-639 (-947 (-562))) (-315 (-562))) 180) (($ (-1168) (-639 (-947 (-562))) (-315 (-378))) 181) (($ (-1168) (-639 (-947 (-562))) (-315 (-168 (-378)))) 182)) (-1733 (((-112) $ $) NIL))) -(((-329) (-13 (-1092) (-10 -8 (-15 -1327 ($ (-1084 (-947 (-562))) $)) (-15 -1327 ($ (-1084 (-947 (-562))) (-947 (-562)) $)) (-15 -2511 ($ (-1167) $)) (-15 -3833 ($ (-1167) $)) (-15 -2506 ($ (-1112))) (-15 -4109 ($ (-1112))) (-15 -2718 ($ (-1150))) (-15 -2718 ($ (-639 (-1150)))) (-15 -1385 ($ (-1150))) (-15 -3705 ($)) (-15 -3705 ($ (-315 (-693)))) (-15 -3705 ($ (-315 (-695)))) (-15 -3705 ($ (-315 (-688)))) (-15 -3705 ($ (-315 (-378)))) (-15 -3705 ($ (-315 (-562)))) (-15 -3705 ($ (-315 (-168 (-378))))) (-15 -2942 ($ (-1167) $)) (-15 -2942 ($ (-1167) $ $)) (-15 -2714 ($ (-1168) (-1150))) (-15 -2714 ($ (-1168) (-315 (-695)))) (-15 -2714 ($ (-1168) (-315 (-693)))) (-15 -2714 ($ (-1168) (-315 (-688)))) (-15 -2714 ($ (-1168) (-683 (-695)))) (-15 -2714 ($ (-1168) (-683 (-693)))) (-15 -2714 ($ (-1168) (-683 (-688)))) (-15 -2714 ($ (-1168) (-1256 (-695)))) (-15 -2714 ($ (-1168) (-1256 (-693)))) (-15 -2714 ($ (-1168) (-1256 (-688)))) (-15 -2714 ($ (-1168) (-683 (-315 (-695))))) (-15 -2714 ($ (-1168) (-683 (-315 (-693))))) (-15 -2714 ($ (-1168) (-683 (-315 (-688))))) (-15 -2714 ($ (-1168) (-1256 (-315 (-695))))) (-15 -2714 ($ (-1168) (-1256 (-315 (-693))))) (-15 -2714 ($ (-1168) (-1256 (-315 (-688))))) (-15 -2714 ($ (-1168) (-639 (-947 (-562))) (-315 (-695)))) (-15 -2714 ($ (-1168) (-639 (-947 (-562))) (-315 (-693)))) (-15 -2714 ($ (-1168) (-639 (-947 (-562))) (-315 (-688)))) (-15 -2714 ($ (-1168) (-315 (-562)))) (-15 -2714 ($ (-1168) (-315 (-378)))) (-15 -2714 ($ (-1168) (-315 (-168 (-378))))) (-15 -2714 ($ (-1168) (-683 (-315 (-562))))) (-15 -2714 ($ (-1168) (-683 (-315 (-378))))) (-15 -2714 ($ (-1168) (-683 (-315 (-168 (-378)))))) (-15 -2714 ($ (-1168) (-1256 (-315 (-562))))) (-15 -2714 ($ (-1168) (-1256 (-315 (-378))))) (-15 -2714 ($ (-1168) (-1256 (-315 (-168 (-378)))))) (-15 -2714 ($ (-1168) (-639 (-947 (-562))) (-315 (-562)))) (-15 -2714 ($ (-1168) (-639 (-947 (-562))) (-315 (-378)))) (-15 -2714 ($ (-1168) (-639 (-947 (-562))) (-315 (-168 (-378))))) (-15 -2508 ($ (-639 $))) (-15 -3292 ($)) (-15 -2682 ($)) (-15 -3471 ($ (-639 (-857)))) (-15 -3073 ($ (-1168) (-639 (-1168)))) (-15 -3582 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3473 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1168)) (|:| |arrayIndex| (-639 (-947 (-562)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2400 (-857)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1168)) (|:| |rand| (-857)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1167)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3087 (-112)) (|:| -2533 (-2 (|:| |ints2Floats?| (-112)) (|:| -2400 (-857)))))) (|:| |blockBranch| (-639 $)) (|:| |commentBranch| (-639 (-1150))) (|:| |callBranch| (-1150)) (|:| |forBranch| (-2 (|:| -2147 (-1084 (-947 (-562)))) (|:| |span| (-947 (-562))) (|:| -3265 $))) (|:| |labelBranch| (-1112)) (|:| |loopBranch| (-2 (|:| |switch| (-1167)) (|:| -3265 $))) (|:| |commonBranch| (-2 (|:| -3253 (-1168)) (|:| |contents| (-639 (-1168))))) (|:| |printBranch| (-639 (-857)))) $)) (-15 -2932 ((-1261) $)) (-15 -3162 ((-1096) $)) (-15 -1496 ((-1112) (-1112)))))) (T -329)) -((-1327 (*1 *1 *2 *1) (-12 (-5 *2 (-1084 (-947 (-562)))) (-5 *1 (-329)))) (-1327 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1084 (-947 (-562)))) (-5 *3 (-947 (-562))) (-5 *1 (-329)))) (-2511 (*1 *1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-329)))) (-3833 (*1 *1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-329)))) (-2506 (*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-329)))) (-4109 (*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-329)))) (-2718 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-329)))) (-2718 (*1 *1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-329)))) (-1385 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-329)))) (-3705 (*1 *1) (-5 *1 (-329))) (-3705 (*1 *1 *2) (-12 (-5 *2 (-315 (-693))) (-5 *1 (-329)))) (-3705 (*1 *1 *2) (-12 (-5 *2 (-315 (-695))) (-5 *1 (-329)))) (-3705 (*1 *1 *2) (-12 (-5 *2 (-315 (-688))) (-5 *1 (-329)))) (-3705 (*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-5 *1 (-329)))) (-3705 (*1 *1 *2) (-12 (-5 *2 (-315 (-562))) (-5 *1 (-329)))) (-3705 (*1 *1 *2) (-12 (-5 *2 (-315 (-168 (-378)))) (-5 *1 (-329)))) (-2942 (*1 *1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-329)))) (-2942 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-329)))) (-2714 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1150)) (-5 *1 (-329)))) (-2714 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-315 (-695))) (-5 *1 (-329)))) (-2714 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-315 (-693))) (-5 *1 (-329)))) (-2714 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-315 (-688))) (-5 *1 (-329)))) (-2714 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-695))) (-5 *1 (-329)))) (-2714 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-693))) (-5 *1 (-329)))) (-2714 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-688))) (-5 *1 (-329)))) (-2714 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-695))) (-5 *1 (-329)))) (-2714 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-693))) (-5 *1 (-329)))) (-2714 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-688))) (-5 *1 (-329)))) (-2714 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-315 (-695)))) (-5 *1 (-329)))) (-2714 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-315 (-693)))) (-5 *1 (-329)))) (-2714 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-315 (-688)))) (-5 *1 (-329)))) (-2714 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-315 (-695)))) (-5 *1 (-329)))) (-2714 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-315 (-693)))) (-5 *1 (-329)))) (-2714 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-315 (-688)))) (-5 *1 (-329)))) (-2714 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-947 (-562)))) (-5 *4 (-315 (-695))) (-5 *1 (-329)))) (-2714 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-947 (-562)))) (-5 *4 (-315 (-693))) (-5 *1 (-329)))) (-2714 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-947 (-562)))) (-5 *4 (-315 (-688))) (-5 *1 (-329)))) (-2714 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-315 (-562))) (-5 *1 (-329)))) (-2714 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-315 (-378))) (-5 *1 (-329)))) (-2714 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-315 (-168 (-378)))) (-5 *1 (-329)))) (-2714 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-315 (-562)))) (-5 *1 (-329)))) (-2714 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-315 (-378)))) (-5 *1 (-329)))) (-2714 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-315 (-168 (-378))))) (-5 *1 (-329)))) (-2714 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-315 (-562)))) (-5 *1 (-329)))) (-2714 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-315 (-378)))) (-5 *1 (-329)))) (-2714 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-315 (-168 (-378))))) (-5 *1 (-329)))) (-2714 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-947 (-562)))) (-5 *4 (-315 (-562))) (-5 *1 (-329)))) (-2714 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-947 (-562)))) (-5 *4 (-315 (-378))) (-5 *1 (-329)))) (-2714 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-947 (-562)))) (-5 *4 (-315 (-168 (-378)))) (-5 *1 (-329)))) (-2508 (*1 *1 *2) (-12 (-5 *2 (-639 (-329))) (-5 *1 (-329)))) (-3292 (*1 *1) (-5 *1 (-329))) (-2682 (*1 *1) (-5 *1 (-329))) (-3471 (*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-329)))) (-3073 (*1 *1 *2 *3) (-12 (-5 *3 (-639 (-1168))) (-5 *2 (-1168)) (-5 *1 (-329)))) (-3582 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-329)))) (-3473 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1168)) (|:| |arrayIndex| (-639 (-947 (-562)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2400 (-857)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1168)) (|:| |rand| (-857)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1167)) (|:| |thenClause| (-329)) (|:| |elseClause| (-329)))) (|:| |returnBranch| (-2 (|:| -3087 (-112)) (|:| -2533 (-2 (|:| |ints2Floats?| (-112)) (|:| -2400 (-857)))))) (|:| |blockBranch| (-639 (-329))) (|:| |commentBranch| (-639 (-1150))) (|:| |callBranch| (-1150)) (|:| |forBranch| (-2 (|:| -2147 (-1084 (-947 (-562)))) (|:| |span| (-947 (-562))) (|:| -3265 (-329)))) (|:| |labelBranch| (-1112)) (|:| |loopBranch| (-2 (|:| |switch| (-1167)) (|:| -3265 (-329)))) (|:| |commonBranch| (-2 (|:| -3253 (-1168)) (|:| |contents| (-639 (-1168))))) (|:| |printBranch| (-639 (-857))))) (-5 *1 (-329)))) (-2932 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-329)))) (-3162 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-329)))) (-1496 (*1 *2 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-329))))) -(-13 (-1092) (-10 -8 (-15 -1327 ($ (-1084 (-947 (-562))) $)) (-15 -1327 ($ (-1084 (-947 (-562))) (-947 (-562)) $)) (-15 -2511 ($ (-1167) $)) (-15 -3833 ($ (-1167) $)) (-15 -2506 ($ (-1112))) (-15 -4109 ($ (-1112))) (-15 -2718 ($ (-1150))) (-15 -2718 ($ (-639 (-1150)))) (-15 -1385 ($ (-1150))) (-15 -3705 ($)) (-15 -3705 ($ (-315 (-693)))) (-15 -3705 ($ (-315 (-695)))) (-15 -3705 ($ (-315 (-688)))) (-15 -3705 ($ (-315 (-378)))) (-15 -3705 ($ (-315 (-562)))) (-15 -3705 ($ (-315 (-168 (-378))))) (-15 -2942 ($ (-1167) $)) (-15 -2942 ($ (-1167) $ $)) (-15 -2714 ($ (-1168) (-1150))) (-15 -2714 ($ (-1168) (-315 (-695)))) (-15 -2714 ($ (-1168) (-315 (-693)))) (-15 -2714 ($ (-1168) (-315 (-688)))) (-15 -2714 ($ (-1168) (-683 (-695)))) (-15 -2714 ($ (-1168) (-683 (-693)))) (-15 -2714 ($ (-1168) (-683 (-688)))) (-15 -2714 ($ (-1168) (-1256 (-695)))) (-15 -2714 ($ (-1168) (-1256 (-693)))) (-15 -2714 ($ (-1168) (-1256 (-688)))) (-15 -2714 ($ (-1168) (-683 (-315 (-695))))) (-15 -2714 ($ (-1168) (-683 (-315 (-693))))) (-15 -2714 ($ (-1168) (-683 (-315 (-688))))) (-15 -2714 ($ (-1168) (-1256 (-315 (-695))))) (-15 -2714 ($ (-1168) (-1256 (-315 (-693))))) (-15 -2714 ($ (-1168) (-1256 (-315 (-688))))) (-15 -2714 ($ (-1168) (-639 (-947 (-562))) (-315 (-695)))) (-15 -2714 ($ (-1168) (-639 (-947 (-562))) (-315 (-693)))) (-15 -2714 ($ (-1168) (-639 (-947 (-562))) (-315 (-688)))) (-15 -2714 ($ (-1168) (-315 (-562)))) (-15 -2714 ($ (-1168) (-315 (-378)))) (-15 -2714 ($ (-1168) (-315 (-168 (-378))))) (-15 -2714 ($ (-1168) (-683 (-315 (-562))))) (-15 -2714 ($ (-1168) (-683 (-315 (-378))))) (-15 -2714 ($ (-1168) (-683 (-315 (-168 (-378)))))) (-15 -2714 ($ (-1168) (-1256 (-315 (-562))))) (-15 -2714 ($ (-1168) (-1256 (-315 (-378))))) (-15 -2714 ($ (-1168) (-1256 (-315 (-168 (-378)))))) (-15 -2714 ($ (-1168) (-639 (-947 (-562))) (-315 (-562)))) (-15 -2714 ($ (-1168) (-639 (-947 (-562))) (-315 (-378)))) (-15 -2714 ($ (-1168) (-639 (-947 (-562))) (-315 (-168 (-378))))) (-15 -2508 ($ (-639 $))) (-15 -3292 ($)) (-15 -2682 ($)) (-15 -3471 ($ (-639 (-857)))) (-15 -3073 ($ (-1168) (-639 (-1168)))) (-15 -3582 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3473 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1168)) (|:| |arrayIndex| (-639 (-947 (-562)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2400 (-857)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1168)) (|:| |rand| (-857)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1167)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3087 (-112)) (|:| -2533 (-2 (|:| |ints2Floats?| (-112)) (|:| -2400 (-857)))))) (|:| |blockBranch| (-639 $)) (|:| |commentBranch| (-639 (-1150))) (|:| |callBranch| (-1150)) (|:| |forBranch| (-2 (|:| -2147 (-1084 (-947 (-562)))) (|:| |span| (-947 (-562))) (|:| -3265 $))) (|:| |labelBranch| (-1112)) (|:| |loopBranch| (-2 (|:| |switch| (-1167)) (|:| -3265 $))) (|:| |commonBranch| (-2 (|:| -3253 (-1168)) (|:| |contents| (-639 (-1168))))) (|:| |printBranch| (-639 (-857)))) $)) (-15 -2932 ((-1261) $)) (-15 -3162 ((-1096) $)) (-15 -1496 ((-1112) (-1112))))) -((-4041 (((-112) $ $) NIL)) (-3787 (((-112) $) 11)) (-4074 (($ |#1|) 8)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4087 (($ |#1|) 9)) (-4053 (((-857) $) 17)) (-2282 ((|#1| $) 12)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) 19))) -(((-330 |#1|) (-13 (-845) (-10 -8 (-15 -4074 ($ |#1|)) (-15 -4087 ($ |#1|)) (-15 -3787 ((-112) $)) (-15 -2282 (|#1| $)))) (-845)) (T -330)) -((-4074 (*1 *1 *2) (-12 (-5 *1 (-330 *2)) (-4 *2 (-845)))) (-4087 (*1 *1 *2) (-12 (-5 *1 (-330 *2)) (-4 *2 (-845)))) (-3787 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-330 *3)) (-4 *3 (-845)))) (-2282 (*1 *2 *1) (-12 (-5 *1 (-330 *2)) (-4 *2 (-845))))) -(-13 (-845) (-10 -8 (-15 -4074 ($ |#1|)) (-15 -4087 ($ |#1|)) (-15 -3787 ((-112) $)) (-15 -2282 (|#1| $)))) -((-2972 (((-329) (-1168) (-947 (-562))) 23)) (-2772 (((-329) (-1168) (-947 (-562))) 27)) (-1970 (((-329) (-1168) (-1084 (-947 (-562))) (-1084 (-947 (-562)))) 26) (((-329) (-1168) (-947 (-562)) (-947 (-562))) 24)) (-2230 (((-329) (-1168) (-947 (-562))) 31))) -(((-331) (-10 -7 (-15 -2972 ((-329) (-1168) (-947 (-562)))) (-15 -1970 ((-329) (-1168) (-947 (-562)) (-947 (-562)))) (-15 -1970 ((-329) (-1168) (-1084 (-947 (-562))) (-1084 (-947 (-562))))) (-15 -2772 ((-329) (-1168) (-947 (-562)))) (-15 -2230 ((-329) (-1168) (-947 (-562)))))) (T -331)) -((-2230 (*1 *2 *3 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-947 (-562))) (-5 *2 (-329)) (-5 *1 (-331)))) (-2772 (*1 *2 *3 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-947 (-562))) (-5 *2 (-329)) (-5 *1 (-331)))) (-1970 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-1084 (-947 (-562)))) (-5 *2 (-329)) (-5 *1 (-331)))) (-1970 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-947 (-562))) (-5 *2 (-329)) (-5 *1 (-331)))) (-2972 (*1 *2 *3 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-947 (-562))) (-5 *2 (-329)) (-5 *1 (-331))))) -(-10 -7 (-15 -2972 ((-329) (-1168) (-947 (-562)))) (-15 -1970 ((-329) (-1168) (-947 (-562)) (-947 (-562)))) (-15 -1970 ((-329) (-1168) (-1084 (-947 (-562))) (-1084 (-947 (-562))))) (-15 -2772 ((-329) (-1168) (-947 (-562)))) (-15 -2230 ((-329) (-1168) (-947 (-562))))) -((-4152 (((-335 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-335 |#1| |#2| |#3| |#4|)) 33))) -(((-332 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4152 ((-335 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-335 |#1| |#2| |#3| |#4|)))) (-362) (-1232 |#1|) (-1232 (-406 |#2|)) (-341 |#1| |#2| |#3|) (-362) (-1232 |#5|) (-1232 (-406 |#6|)) (-341 |#5| |#6| |#7|)) (T -332)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-335 *5 *6 *7 *8)) (-4 *5 (-362)) (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) (-4 *9 (-362)) (-4 *10 (-1232 *9)) (-4 *11 (-1232 (-406 *10))) (-5 *2 (-335 *9 *10 *11 *12)) (-5 *1 (-332 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-341 *9 *10 *11))))) -(-10 -7 (-15 -4152 ((-335 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-335 |#1| |#2| |#3| |#4|)))) -((-1488 (((-112) $) 14))) -(((-333 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1488 ((-112) |#1|))) (-334 |#2| |#3| |#4| |#5|) (-362) (-1232 |#2|) (-1232 (-406 |#3|)) (-341 |#2| |#3| |#4|)) (T -333)) -NIL -(-10 -8 (-15 -1488 ((-112) |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-1954 (($ $) 26)) (-1488 (((-112) $) 25)) (-3696 (((-1150) $) 9)) (-1387 (((-412 |#2| (-406 |#2|) |#3| |#4|) $) 32)) (-1709 (((-1112) $) 10)) (-3147 (((-3 |#4| "failed") $) 24)) (-1933 (($ (-412 |#2| (-406 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-562)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-3758 (((-2 (|:| -1416 (-412 |#2| (-406 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-4053 (((-857) $) 11)) (-2285 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20))) -(((-334 |#1| |#2| |#3| |#4|) (-139) (-362) (-1232 |t#1|) (-1232 (-406 |t#2|)) (-341 |t#1| |t#2| |t#3|)) (T -334)) -((-1387 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-5 *2 (-412 *4 (-406 *4) *5 *6)))) (-1933 (*1 *1 *2) (-12 (-5 *2 (-412 *4 (-406 *4) *5 *6)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-4 *3 (-362)) (-4 *1 (-334 *3 *4 *5 *6)))) (-1933 (*1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-4 *1 (-334 *3 *4 *5 *2)) (-4 *2 (-341 *3 *4 *5)))) (-1933 (*1 *1 *2 *2) (-12 (-4 *2 (-362)) (-4 *3 (-1232 *2)) (-4 *4 (-1232 (-406 *3))) (-4 *1 (-334 *2 *3 *4 *5)) (-4 *5 (-341 *2 *3 *4)))) (-1933 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-562)) (-4 *2 (-362)) (-4 *4 (-1232 *2)) (-4 *5 (-1232 (-406 *4))) (-4 *1 (-334 *2 *4 *5 *6)) (-4 *6 (-341 *2 *4 *5)))) (-3758 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-5 *2 (-2 (|:| -1416 (-412 *4 (-406 *4) *5 *6)) (|:| |principalPart| *6))))) (-1954 (*1 *1 *1) (-12 (-4 *1 (-334 *2 *3 *4 *5)) (-4 *2 (-362)) (-4 *3 (-1232 *2)) (-4 *4 (-1232 (-406 *3))) (-4 *5 (-341 *2 *3 *4)))) (-1488 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-5 *2 (-112)))) (-3147 (*1 *2 *1) (|partial| -12 (-4 *1 (-334 *3 *4 *5 *2)) (-4 *3 (-362)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-4 *2 (-341 *3 *4 *5)))) (-1933 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-362)) (-4 *3 (-1232 *4)) (-4 *5 (-1232 (-406 *3))) (-4 *1 (-334 *4 *3 *5 *2)) (-4 *2 (-341 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -1387 ((-412 |t#2| (-406 |t#2|) |t#3| |t#4|) $)) (-15 -1933 ($ (-412 |t#2| (-406 |t#2|) |t#3| |t#4|))) (-15 -1933 ($ |t#4|)) (-15 -1933 ($ |t#1| |t#1|)) (-15 -1933 ($ |t#1| |t#1| (-562))) (-15 -3758 ((-2 (|:| -1416 (-412 |t#2| (-406 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -1954 ($ $)) (-15 -1488 ((-112) $)) (-15 -3147 ((-3 |t#4| "failed") $)) (-15 -1933 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-609 (-857)) . T) ((-1092) . T)) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3329 (($) NIL T CONST)) (-1954 (($ $) 33)) (-1488 (((-112) $) NIL)) (-3696 (((-1150) $) NIL)) (-2204 (((-1256 |#4|) $) 125)) (-1387 (((-412 |#2| (-406 |#2|) |#3| |#4|) $) 31)) (-1709 (((-1112) $) NIL)) (-3147 (((-3 |#4| "failed") $) 36)) (-2707 (((-1256 |#4|) $) 118)) (-1933 (($ (-412 |#2| (-406 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-562)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3758 (((-2 (|:| -1416 (-412 |#2| (-406 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-4053 (((-857) $) 17)) (-2285 (($) 14 T CONST)) (-1733 (((-112) $ $) 20)) (-1847 (($ $) 27) (($ $ $) NIL)) (-1836 (($ $ $) 25)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 23))) -(((-335 |#1| |#2| |#3| |#4|) (-13 (-334 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2707 ((-1256 |#4|) $)) (-15 -2204 ((-1256 |#4|) $)))) (-362) (-1232 |#1|) (-1232 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -335)) -((-2707 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-1256 *6)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *6 (-341 *3 *4 *5)))) (-2204 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-1256 *6)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *6 (-341 *3 *4 *5))))) -(-13 (-334 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2707 ((-1256 |#4|) $)) (-15 -2204 ((-1256 |#4|) $)))) -((-1433 (($ $ (-1168) |#2|) NIL) (($ $ (-639 (-1168)) (-639 |#2|)) 20) (($ $ (-639 (-293 |#2|))) 15) (($ $ (-293 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-639 |#2|) (-639 |#2|)) NIL)) (-2343 (($ $ |#2|) 11))) -(((-336 |#1| |#2|) (-10 -8 (-15 -2343 (|#1| |#1| |#2|)) (-15 -1433 (|#1| |#1| (-639 |#2|) (-639 |#2|))) (-15 -1433 (|#1| |#1| |#2| |#2|)) (-15 -1433 (|#1| |#1| (-293 |#2|))) (-15 -1433 (|#1| |#1| (-639 (-293 |#2|)))) (-15 -1433 (|#1| |#1| (-639 (-1168)) (-639 |#2|))) (-15 -1433 (|#1| |#1| (-1168) |#2|))) (-337 |#2|) (-1092)) (T -336)) -NIL -(-10 -8 (-15 -2343 (|#1| |#1| |#2|)) (-15 -1433 (|#1| |#1| (-639 |#2|) (-639 |#2|))) (-15 -1433 (|#1| |#1| |#2| |#2|)) (-15 -1433 (|#1| |#1| (-293 |#2|))) (-15 -1433 (|#1| |#1| (-639 (-293 |#2|)))) (-15 -1433 (|#1| |#1| (-639 (-1168)) (-639 |#2|))) (-15 -1433 (|#1| |#1| (-1168) |#2|))) -((-4152 (($ (-1 |#1| |#1|) $) 6)) (-1433 (($ $ (-1168) |#1|) 17 (|has| |#1| (-513 (-1168) |#1|))) (($ $ (-639 (-1168)) (-639 |#1|)) 16 (|has| |#1| (-513 (-1168) |#1|))) (($ $ (-639 (-293 |#1|))) 15 (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) 14 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-308 |#1|))) (($ $ (-639 |#1|) (-639 |#1|)) 12 (|has| |#1| (-308 |#1|)))) (-2343 (($ $ |#1|) 11 (|has| |#1| (-285 |#1| |#1|))))) -(((-337 |#1|) (-139) (-1092)) (T -337)) -((-4152 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-337 *3)) (-4 *3 (-1092))))) -(-13 (-10 -8 (-15 -4152 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-285 |t#1| |t#1|)) (-6 (-285 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-308 |t#1|)) (-6 (-308 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-513 (-1168) |t#1|)) (-6 (-513 (-1168) |t#1|)) |%noBranch|))) -(((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-513 (-1168) |#1|) |has| |#1| (-513 (-1168) |#1|)) ((-513 |#1| |#1|) |has| |#1| (-308 |#1|))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-1401 (((-639 (-1168)) $) NIL)) (-4126 (((-112)) 90) (((-112) (-112)) 91)) (-1501 (((-639 (-608 $)) $) NIL)) (-2987 (($ $) NIL)) (-4098 (($ $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3164 (($ $ (-293 $)) NIL) (($ $ (-639 (-293 $))) NIL) (($ $ (-639 (-608 $)) (-639 $)) NIL)) (-1644 (($ $) NIL)) (-4206 (($ $) NIL)) (-4074 (($ $) NIL)) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-608 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-315 |#3|)) 70) (((-3 $ "failed") (-1168)) 96) (((-3 $ "failed") (-315 (-562))) 58 (|has| |#3| (-1033 (-562)))) (((-3 $ "failed") (-406 (-947 (-562)))) 64 (|has| |#3| (-1033 (-562)))) (((-3 $ "failed") (-947 (-562))) 59 (|has| |#3| (-1033 (-562)))) (((-3 $ "failed") (-315 (-378))) 88 (|has| |#3| (-1033 (-378)))) (((-3 $ "failed") (-406 (-947 (-378)))) 82 (|has| |#3| (-1033 (-378)))) (((-3 $ "failed") (-947 (-378))) 77 (|has| |#3| (-1033 (-378))))) (-3960 (((-608 $) $) NIL) ((|#3| $) NIL) (($ (-315 |#3|)) 71) (($ (-1168)) 97) (($ (-315 (-562))) 60 (|has| |#3| (-1033 (-562)))) (($ (-406 (-947 (-562)))) 65 (|has| |#3| (-1033 (-562)))) (($ (-947 (-562))) 61 (|has| |#3| (-1033 (-562)))) (($ (-315 (-378))) 89 (|has| |#3| (-1033 (-378)))) (($ (-406 (-947 (-378)))) 83 (|has| |#3| (-1033 (-378)))) (($ (-947 (-378))) 79 (|has| |#3| (-1033 (-378))))) (-1694 (((-3 $ "failed") $) NIL)) (-4100 (($) 10)) (-2229 (($ $) NIL) (($ (-639 $)) NIL)) (-4364 (((-639 (-114)) $) NIL)) (-1502 (((-114) (-114)) NIL)) (-4367 (((-112) $) NIL)) (-3152 (((-112) $) NIL (|has| $ (-1033 (-562))))) (-3476 (((-1164 $) (-608 $)) NIL (|has| $ (-1044)))) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-4152 (($ (-1 $ $) (-608 $)) NIL)) (-4068 (((-3 (-608 $) "failed") $) NIL)) (-2982 (($ $) 93)) (-4366 (($ $) NIL)) (-3696 (((-1150) $) NIL)) (-1582 (((-639 (-608 $)) $) NIL)) (-4141 (($ (-114) $) 92) (($ (-114) (-639 $)) NIL)) (-3115 (((-112) $ (-114)) NIL) (((-112) $ (-1168)) NIL)) (-3059 (((-766) $) NIL)) (-1709 (((-1112) $) NIL)) (-1533 (((-112) $ $) NIL) (((-112) $ (-1168)) NIL)) (-3430 (($ $) NIL)) (-2438 (((-112) $) NIL (|has| $ (-1033 (-562))))) (-1433 (($ $ (-608 $) $) NIL) (($ $ (-639 (-608 $)) (-639 $)) NIL) (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-639 (-1168)) (-639 (-1 $ $))) NIL) (($ $ (-639 (-1168)) (-639 (-1 $ (-639 $)))) NIL) (($ $ (-1168) (-1 $ (-639 $))) NIL) (($ $ (-1168) (-1 $ $)) NIL) (($ $ (-639 (-114)) (-639 (-1 $ $))) NIL) (($ $ (-639 (-114)) (-639 (-1 $ (-639 $)))) NIL) (($ $ (-114) (-1 $ (-639 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2343 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-639 $)) NIL)) (-3461 (($ $) NIL) (($ $ $) NIL)) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168)) NIL)) (-3371 (($ $) NIL (|has| $ (-1044)))) (-2977 (($ $) NIL)) (-4087 (($ $) NIL)) (-4053 (((-857) $) NIL) (($ (-608 $)) NIL) (($ |#3|) NIL) (($ (-562)) NIL) (((-315 |#3|) $) 95)) (-1568 (((-766)) NIL)) (-2745 (($ $) NIL) (($ (-639 $)) NIL)) (-2036 (((-112) (-114)) NIL)) (-4165 (($ $) NIL)) (-4139 (($ $) NIL)) (-4151 (($ $) NIL)) (-2757 (($ $) NIL)) (-2285 (($) 94 T CONST)) (-2294 (($) 24 T CONST)) (-3113 (($ $ (-639 (-1168)) (-639 (-766))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168)) NIL)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) NIL)) (-1847 (($ $ $) NIL) (($ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-766)) NIL) (($ $ (-916)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-562) $) NIL) (($ (-766) $) NIL) (($ (-916) $) NIL))) -(((-338 |#1| |#2| |#3|) (-13 (-301) (-38 |#3|) (-1033 |#3|) (-895 (-1168)) (-10 -8 (-15 -3960 ($ (-315 |#3|))) (-15 -4048 ((-3 $ "failed") (-315 |#3|))) (-15 -3960 ($ (-1168))) (-15 -4048 ((-3 $ "failed") (-1168))) (-15 -4053 ((-315 |#3|) $)) (IF (|has| |#3| (-1033 (-562))) (PROGN (-15 -3960 ($ (-315 (-562)))) (-15 -4048 ((-3 $ "failed") (-315 (-562)))) (-15 -3960 ($ (-406 (-947 (-562))))) (-15 -4048 ((-3 $ "failed") (-406 (-947 (-562))))) (-15 -3960 ($ (-947 (-562)))) (-15 -4048 ((-3 $ "failed") (-947 (-562))))) |%noBranch|) (IF (|has| |#3| (-1033 (-378))) (PROGN (-15 -3960 ($ (-315 (-378)))) (-15 -4048 ((-3 $ "failed") (-315 (-378)))) (-15 -3960 ($ (-406 (-947 (-378))))) (-15 -4048 ((-3 $ "failed") (-406 (-947 (-378))))) (-15 -3960 ($ (-947 (-378)))) (-15 -4048 ((-3 $ "failed") (-947 (-378))))) |%noBranch|) (-15 -2757 ($ $)) (-15 -1644 ($ $)) (-15 -3430 ($ $)) (-15 -4366 ($ $)) (-15 -2982 ($ $)) (-15 -4074 ($ $)) (-15 -4087 ($ $)) (-15 -4098 ($ $)) (-15 -4139 ($ $)) (-15 -4151 ($ $)) (-15 -4165 ($ $)) (-15 -4206 ($ $)) (-15 -2977 ($ $)) (-15 -2987 ($ $)) (-15 -4100 ($)) (-15 -1401 ((-639 (-1168)) $)) (-15 -4126 ((-112))) (-15 -4126 ((-112) (-112))))) (-639 (-1168)) (-639 (-1168)) (-386)) (T -338)) -((-3960 (*1 *1 *2) (-12 (-5 *2 (-315 *5)) (-4 *5 (-386)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 *5)) (-4 *5 (-386)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))))) (-3960 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-639 *2)) (-14 *4 (-639 *2)) (-4 *5 (-386)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-1168)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-639 *2)) (-14 *4 (-639 *2)) (-4 *5 (-386)))) (-4053 (*1 *2 *1) (-12 (-5 *2 (-315 *5)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) (-3960 (*1 *1 *2) (-12 (-5 *2 (-315 (-562))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1033 (-562))) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-562))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1033 (-562))) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) (-3960 (*1 *1 *2) (-12 (-5 *2 (-406 (-947 (-562)))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1033 (-562))) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-947 (-562)))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1033 (-562))) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) (-3960 (*1 *1 *2) (-12 (-5 *2 (-947 (-562))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1033 (-562))) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-947 (-562))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1033 (-562))) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) (-3960 (*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1033 (-378))) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-378))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1033 (-378))) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) (-3960 (*1 *1 *2) (-12 (-5 *2 (-406 (-947 (-378)))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1033 (-378))) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-947 (-378)))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1033 (-378))) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) (-3960 (*1 *1 *2) (-12 (-5 *2 (-947 (-378))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1033 (-378))) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-947 (-378))) (-5 *1 (-338 *3 *4 *5)) (-4 *5 (-1033 (-378))) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) (-2757 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) (-1644 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) (-3430 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) (-4366 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) (-2982 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) (-4074 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) (-4087 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) (-4098 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) (-4139 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) (-4151 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) (-4165 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) (-4206 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) (-2977 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) (-2987 (*1 *1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) (-4100 (*1 *1) (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) (-1401 (*1 *2 *1) (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-338 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-386)))) (-4126 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) (-4126 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))) (-4 *5 (-386))))) -(-13 (-301) (-38 |#3|) (-1033 |#3|) (-895 (-1168)) (-10 -8 (-15 -3960 ($ (-315 |#3|))) (-15 -4048 ((-3 $ "failed") (-315 |#3|))) (-15 -3960 ($ (-1168))) (-15 -4048 ((-3 $ "failed") (-1168))) (-15 -4053 ((-315 |#3|) $)) (IF (|has| |#3| (-1033 (-562))) (PROGN (-15 -3960 ($ (-315 (-562)))) (-15 -4048 ((-3 $ "failed") (-315 (-562)))) (-15 -3960 ($ (-406 (-947 (-562))))) (-15 -4048 ((-3 $ "failed") (-406 (-947 (-562))))) (-15 -3960 ($ (-947 (-562)))) (-15 -4048 ((-3 $ "failed") (-947 (-562))))) |%noBranch|) (IF (|has| |#3| (-1033 (-378))) (PROGN (-15 -3960 ($ (-315 (-378)))) (-15 -4048 ((-3 $ "failed") (-315 (-378)))) (-15 -3960 ($ (-406 (-947 (-378))))) (-15 -4048 ((-3 $ "failed") (-406 (-947 (-378))))) (-15 -3960 ($ (-947 (-378)))) (-15 -4048 ((-3 $ "failed") (-947 (-378))))) |%noBranch|) (-15 -2757 ($ $)) (-15 -1644 ($ $)) (-15 -3430 ($ $)) (-15 -4366 ($ $)) (-15 -2982 ($ $)) (-15 -4074 ($ $)) (-15 -4087 ($ $)) (-15 -4098 ($ $)) (-15 -4139 ($ $)) (-15 -4151 ($ $)) (-15 -4165 ($ $)) (-15 -4206 ($ $)) (-15 -2977 ($ $)) (-15 -2987 ($ $)) (-15 -4100 ($)) (-15 -1401 ((-639 (-1168)) $)) (-15 -4126 ((-112))) (-15 -4126 ((-112) (-112))))) -((-4152 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-339 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4152 (|#8| (-1 |#5| |#1|) |#4|))) (-1211) (-1232 |#1|) (-1232 (-406 |#2|)) (-341 |#1| |#2| |#3|) (-1211) (-1232 |#5|) (-1232 (-406 |#6|)) (-341 |#5| |#6| |#7|)) (T -339)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1211)) (-4 *8 (-1211)) (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-406 *6))) (-4 *9 (-1232 *8)) (-4 *2 (-341 *8 *9 *10)) (-5 *1 (-339 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-341 *5 *6 *7)) (-4 *10 (-1232 (-406 *9)))))) -(-10 -7 (-15 -4152 (|#8| (-1 |#5| |#1|) |#4|))) -((-1631 (((-2 (|:| |num| (-1256 |#3|)) (|:| |den| |#3|)) $) 38)) (-3916 (($ (-1256 (-406 |#3|)) (-1256 $)) NIL) (($ (-1256 (-406 |#3|))) NIL) (($ (-1256 |#3|) |#3|) 160)) (-2575 (((-1256 $) (-1256 $)) 144)) (-2713 (((-639 (-639 |#2|))) 118)) (-1718 (((-112) |#2| |#2|) 73)) (-2578 (($ $) 138)) (-3668 (((-766)) 31)) (-2700 (((-1256 $) (-1256 $)) 197)) (-2004 (((-639 (-947 |#2|)) (-1168)) 110)) (-3841 (((-112) $) 157)) (-2881 (((-112) $) 25) (((-112) $ |#2|) 29) (((-112) $ |#3|) 201)) (-3153 (((-3 |#3| "failed")) 50)) (-2435 (((-766)) 169)) (-2343 ((|#2| $ |#2| |#2|) 131)) (-3092 (((-3 |#3| "failed")) 68)) (-4029 (($ $ (-1 (-406 |#3|) (-406 |#3|)) (-766)) NIL) (($ $ (-1 (-406 |#3|) (-406 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 205) (($ $ (-639 (-1168)) (-639 (-766))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168)) NIL) (($ $ (-766)) NIL) (($ $) NIL)) (-4240 (((-1256 $) (-1256 $)) 150)) (-2960 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-3243 (((-112)) 33))) -(((-340 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4029 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -2713 ((-639 (-639 |#2|)))) (-15 -2004 ((-639 (-947 |#2|)) (-1168))) (-15 -2960 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3153 ((-3 |#3| "failed"))) (-15 -3092 ((-3 |#3| "failed"))) (-15 -2343 (|#2| |#1| |#2| |#2|)) (-15 -2578 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2881 ((-112) |#1| |#3|)) (-15 -2881 ((-112) |#1| |#2|)) (-15 -3916 (|#1| (-1256 |#3|) |#3|)) (-15 -1631 ((-2 (|:| |num| (-1256 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2575 ((-1256 |#1|) (-1256 |#1|))) (-15 -2700 ((-1256 |#1|) (-1256 |#1|))) (-15 -4240 ((-1256 |#1|) (-1256 |#1|))) (-15 -2881 ((-112) |#1|)) (-15 -3841 ((-112) |#1|)) (-15 -1718 ((-112) |#2| |#2|)) (-15 -3243 ((-112))) (-15 -2435 ((-766))) (-15 -3668 ((-766))) (-15 -4029 (|#1| |#1| (-1 (-406 |#3|) (-406 |#3|)))) (-15 -4029 (|#1| |#1| (-1 (-406 |#3|) (-406 |#3|)) (-766))) (-15 -3916 (|#1| (-1256 (-406 |#3|)))) (-15 -3916 (|#1| (-1256 (-406 |#3|)) (-1256 |#1|)))) (-341 |#2| |#3| |#4|) (-1211) (-1232 |#2|) (-1232 (-406 |#3|))) (T -340)) -((-3668 (*1 *2) (-12 (-4 *4 (-1211)) (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-406 *5))) (-5 *2 (-766)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))) (-2435 (*1 *2) (-12 (-4 *4 (-1211)) (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-406 *5))) (-5 *2 (-766)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))) (-3243 (*1 *2) (-12 (-4 *4 (-1211)) (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-406 *5))) (-5 *2 (-112)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))) (-1718 (*1 *2 *3 *3) (-12 (-4 *3 (-1211)) (-4 *5 (-1232 *3)) (-4 *6 (-1232 (-406 *5))) (-5 *2 (-112)) (-5 *1 (-340 *4 *3 *5 *6)) (-4 *4 (-341 *3 *5 *6)))) (-3092 (*1 *2) (|partial| -12 (-4 *4 (-1211)) (-4 *5 (-1232 (-406 *2))) (-4 *2 (-1232 *4)) (-5 *1 (-340 *3 *4 *2 *5)) (-4 *3 (-341 *4 *2 *5)))) (-3153 (*1 *2) (|partial| -12 (-4 *4 (-1211)) (-4 *5 (-1232 (-406 *2))) (-4 *2 (-1232 *4)) (-5 *1 (-340 *3 *4 *2 *5)) (-4 *3 (-341 *4 *2 *5)))) (-2004 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-4 *5 (-1211)) (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-406 *6))) (-5 *2 (-639 (-947 *5))) (-5 *1 (-340 *4 *5 *6 *7)) (-4 *4 (-341 *5 *6 *7)))) (-2713 (*1 *2) (-12 (-4 *4 (-1211)) (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-406 *5))) (-5 *2 (-639 (-639 *4))) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6))))) -(-10 -8 (-15 -4029 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -2713 ((-639 (-639 |#2|)))) (-15 -2004 ((-639 (-947 |#2|)) (-1168))) (-15 -2960 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3153 ((-3 |#3| "failed"))) (-15 -3092 ((-3 |#3| "failed"))) (-15 -2343 (|#2| |#1| |#2| |#2|)) (-15 -2578 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2881 ((-112) |#1| |#3|)) (-15 -2881 ((-112) |#1| |#2|)) (-15 -3916 (|#1| (-1256 |#3|) |#3|)) (-15 -1631 ((-2 (|:| |num| (-1256 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2575 ((-1256 |#1|) (-1256 |#1|))) (-15 -2700 ((-1256 |#1|) (-1256 |#1|))) (-15 -4240 ((-1256 |#1|) (-1256 |#1|))) (-15 -2881 ((-112) |#1|)) (-15 -3841 ((-112) |#1|)) (-15 -1718 ((-112) |#2| |#2|)) (-15 -3243 ((-112))) (-15 -2435 ((-766))) (-15 -3668 ((-766))) (-15 -4029 (|#1| |#1| (-1 (-406 |#3|) (-406 |#3|)))) (-15 -4029 (|#1| |#1| (-1 (-406 |#3|) (-406 |#3|)) (-766))) (-15 -3916 (|#1| (-1256 (-406 |#3|)))) (-15 -3916 (|#1| (-1256 (-406 |#3|)) (-1256 |#1|)))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-1631 (((-2 (|:| |num| (-1256 |#2|)) (|:| |den| |#2|)) $) 195)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 93 (|has| (-406 |#2|) (-362)))) (-1965 (($ $) 94 (|has| (-406 |#2|) (-362)))) (-4102 (((-112) $) 96 (|has| (-406 |#2|) (-362)))) (-4342 (((-683 (-406 |#2|)) (-1256 $)) 47) (((-683 (-406 |#2|))) 62)) (-1748 (((-406 |#2|) $) 53)) (-1755 (((-1180 (-916) (-766)) (-562)) 146 (|has| (-406 |#2|) (-348)))) (-2781 (((-3 $ "failed") $ $) 19)) (-1977 (($ $) 113 (|has| (-406 |#2|) (-362)))) (-3788 (((-417 $) $) 114 (|has| (-406 |#2|) (-362)))) (-1436 (((-112) $ $) 104 (|has| (-406 |#2|) (-362)))) (-1382 (((-766)) 87 (|has| (-406 |#2|) (-367)))) (-3236 (((-112)) 212)) (-3520 (((-112) |#1|) 211) (((-112) |#2|) 210)) (-3329 (($) 17 T CONST)) (-4048 (((-3 (-562) "failed") $) 169 (|has| (-406 |#2|) (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) 167 (|has| (-406 |#2|) (-1033 (-406 (-562))))) (((-3 (-406 |#2|) "failed") $) 164)) (-3960 (((-562) $) 168 (|has| (-406 |#2|) (-1033 (-562)))) (((-406 (-562)) $) 166 (|has| (-406 |#2|) (-1033 (-406 (-562))))) (((-406 |#2|) $) 165)) (-3916 (($ (-1256 (-406 |#2|)) (-1256 $)) 49) (($ (-1256 (-406 |#2|))) 65) (($ (-1256 |#2|) |#2|) 194)) (-3082 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| (-406 |#2|) (-348)))) (-1810 (($ $ $) 108 (|has| (-406 |#2|) (-362)))) (-4376 (((-683 (-406 |#2|)) $ (-1256 $)) 54) (((-683 (-406 |#2|)) $) 60)) (-3449 (((-683 (-562)) (-683 $)) 163 (|has| (-406 |#2|) (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 162 (|has| (-406 |#2|) (-635 (-562)))) (((-2 (|:| -1767 (-683 (-406 |#2|))) (|:| |vec| (-1256 (-406 |#2|)))) (-683 $) (-1256 $)) 161) (((-683 (-406 |#2|)) (-683 $)) 160)) (-2575 (((-1256 $) (-1256 $)) 200)) (-1954 (($ |#3|) 157) (((-3 $ "failed") (-406 |#3|)) 154 (|has| (-406 |#2|) (-362)))) (-1694 (((-3 $ "failed") $) 33)) (-2713 (((-639 (-639 |#1|))) 181 (|has| |#1| (-367)))) (-1718 (((-112) |#1| |#1|) 216)) (-2172 (((-916)) 55)) (-1447 (($) 90 (|has| (-406 |#2|) (-367)))) (-2241 (((-112)) 209)) (-1912 (((-112) |#1|) 208) (((-112) |#2|) 207)) (-1787 (($ $ $) 107 (|has| (-406 |#2|) (-362)))) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) 102 (|has| (-406 |#2|) (-362)))) (-2578 (($ $) 187)) (-2787 (($) 148 (|has| (-406 |#2|) (-348)))) (-1844 (((-112) $) 149 (|has| (-406 |#2|) (-348)))) (-2184 (($ $ (-766)) 140 (|has| (-406 |#2|) (-348))) (($ $) 139 (|has| (-406 |#2|) (-348)))) (-3521 (((-112) $) 115 (|has| (-406 |#2|) (-362)))) (-1993 (((-916) $) 151 (|has| (-406 |#2|) (-348))) (((-828 (-916)) $) 137 (|has| (-406 |#2|) (-348)))) (-4367 (((-112) $) 31)) (-3668 (((-766)) 219)) (-2700 (((-1256 $) (-1256 $)) 201)) (-4363 (((-406 |#2|) $) 52)) (-2004 (((-639 (-947 |#1|)) (-1168)) 182 (|has| |#1| (-362)))) (-3828 (((-3 $ "failed") $) 141 (|has| (-406 |#2|) (-348)))) (-1719 (((-3 (-639 $) "failed") (-639 $) $) 111 (|has| (-406 |#2|) (-362)))) (-1937 ((|#3| $) 45 (|has| (-406 |#2|) (-362)))) (-3549 (((-916) $) 89 (|has| (-406 |#2|) (-367)))) (-1942 ((|#3| $) 155)) (-1564 (($ (-639 $)) 100 (|has| (-406 |#2|) (-362))) (($ $ $) 99 (|has| (-406 |#2|) (-362)))) (-3696 (((-1150) $) 9)) (-2715 (((-683 (-406 |#2|))) 196)) (-2289 (((-683 (-406 |#2|))) 198)) (-1525 (($ $) 116 (|has| (-406 |#2|) (-362)))) (-3174 (($ (-1256 |#2|) |#2|) 192)) (-3324 (((-683 (-406 |#2|))) 197)) (-4335 (((-683 (-406 |#2|))) 199)) (-3128 (((-2 (|:| |num| (-683 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 191)) (-4329 (((-2 (|:| |num| (-1256 |#2|)) (|:| |den| |#2|)) $) 193)) (-3137 (((-1256 $)) 205)) (-2639 (((-1256 $)) 206)) (-3841 (((-112) $) 204)) (-2881 (((-112) $) 203) (((-112) $ |#1|) 190) (((-112) $ |#2|) 189)) (-3730 (($) 142 (|has| (-406 |#2|) (-348)) CONST)) (-2464 (($ (-916)) 88 (|has| (-406 |#2|) (-367)))) (-3153 (((-3 |#2| "failed")) 184)) (-1709 (((-1112) $) 10)) (-2435 (((-766)) 218)) (-3147 (($) 159)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 101 (|has| (-406 |#2|) (-362)))) (-1606 (($ (-639 $)) 98 (|has| (-406 |#2|) (-362))) (($ $ $) 97 (|has| (-406 |#2|) (-362)))) (-1753 (((-639 (-2 (|:| -1635 (-562)) (|:| -1300 (-562))))) 145 (|has| (-406 |#2|) (-348)))) (-1635 (((-417 $) $) 112 (|has| (-406 |#2|) (-362)))) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-406 |#2|) (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) 109 (|has| (-406 |#2|) (-362)))) (-1762 (((-3 $ "failed") $ $) 92 (|has| (-406 |#2|) (-362)))) (-1879 (((-3 (-639 $) "failed") (-639 $) $) 103 (|has| (-406 |#2|) (-362)))) (-2044 (((-766) $) 105 (|has| (-406 |#2|) (-362)))) (-2343 ((|#1| $ |#1| |#1|) 186)) (-3092 (((-3 |#2| "failed")) 185)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 106 (|has| (-406 |#2|) (-362)))) (-2736 (((-406 |#2|) (-1256 $)) 48) (((-406 |#2|)) 61)) (-3543 (((-766) $) 150 (|has| (-406 |#2|) (-348))) (((-3 (-766) "failed") $ $) 138 (|has| (-406 |#2|) (-348)))) (-4029 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-766)) 122 (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) 121 (|has| (-406 |#2|) (-362))) (($ $ (-1 |#2| |#2|)) 188) (($ $ (-639 (-1168)) (-639 (-766))) 129 (-4037 (-2245 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168)))) (-2245 (|has| (-406 |#2|) (-895 (-1168))) (|has| (-406 |#2|) (-362))))) (($ $ (-1168) (-766)) 130 (-4037 (-2245 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168)))) (-2245 (|has| (-406 |#2|) (-895 (-1168))) (|has| (-406 |#2|) (-362))))) (($ $ (-639 (-1168))) 131 (-4037 (-2245 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168)))) (-2245 (|has| (-406 |#2|) (-895 (-1168))) (|has| (-406 |#2|) (-362))))) (($ $ (-1168)) 132 (-4037 (-2245 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168)))) (-2245 (|has| (-406 |#2|) (-895 (-1168))) (|has| (-406 |#2|) (-362))))) (($ $ (-766)) 134 (-4037 (-2245 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-232))) (-2245 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) 136 (-4037 (-2245 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-232))) (-2245 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-2539 (((-683 (-406 |#2|)) (-1256 $) (-1 (-406 |#2|) (-406 |#2|))) 153 (|has| (-406 |#2|) (-362)))) (-3371 ((|#3|) 158)) (-1653 (($) 147 (|has| (-406 |#2|) (-348)))) (-2205 (((-1256 (-406 |#2|)) $ (-1256 $)) 51) (((-683 (-406 |#2|)) (-1256 $) (-1256 $)) 50) (((-1256 (-406 |#2|)) $) 67) (((-683 (-406 |#2|)) (-1256 $)) 66)) (-4208 (((-1256 (-406 |#2|)) $) 64) (($ (-1256 (-406 |#2|))) 63) ((|#3| $) 170) (($ |#3|) 156)) (-1870 (((-3 (-1256 $) "failed") (-683 $)) 144 (|has| (-406 |#2|) (-348)))) (-4240 (((-1256 $) (-1256 $)) 202)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ (-406 |#2|)) 38) (($ (-406 (-562))) 86 (-4037 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-1033 (-406 (-562)))))) (($ $) 91 (|has| (-406 |#2|) (-362)))) (-2059 (($ $) 143 (|has| (-406 |#2|) (-348))) (((-3 $ "failed") $) 44 (|has| (-406 |#2|) (-144)))) (-3683 ((|#3| $) 46)) (-1568 (((-766)) 28)) (-4266 (((-112)) 215)) (-3866 (((-112) |#1|) 214) (((-112) |#2|) 213)) (-4291 (((-1256 $)) 68)) (-3799 (((-112) $ $) 95 (|has| (-406 |#2|) (-362)))) (-2960 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 183)) (-3243 (((-112)) 217)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3113 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-766)) 124 (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) 123 (|has| (-406 |#2|) (-362))) (($ $ (-639 (-1168)) (-639 (-766))) 125 (-4037 (-2245 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168)))) (-2245 (|has| (-406 |#2|) (-895 (-1168))) (|has| (-406 |#2|) (-362))))) (($ $ (-1168) (-766)) 126 (-4037 (-2245 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168)))) (-2245 (|has| (-406 |#2|) (-895 (-1168))) (|has| (-406 |#2|) (-362))))) (($ $ (-639 (-1168))) 127 (-4037 (-2245 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168)))) (-2245 (|has| (-406 |#2|) (-895 (-1168))) (|has| (-406 |#2|) (-362))))) (($ $ (-1168)) 128 (-4037 (-2245 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168)))) (-2245 (|has| (-406 |#2|) (-895 (-1168))) (|has| (-406 |#2|) (-362))))) (($ $ (-766)) 133 (-4037 (-2245 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-232))) (-2245 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) 135 (-4037 (-2245 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-232))) (-2245 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-1733 (((-112) $ $) 6)) (-1859 (($ $ $) 120 (|has| (-406 |#2|) (-362)))) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 117 (|has| (-406 |#2|) (-362)))) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ (-406 |#2|)) 40) (($ (-406 |#2|) $) 39) (($ (-406 (-562)) $) 119 (|has| (-406 |#2|) (-362))) (($ $ (-406 (-562))) 118 (|has| (-406 |#2|) (-362))))) -(((-341 |#1| |#2| |#3|) (-139) (-1211) (-1232 |t#1|) (-1232 (-406 |t#2|))) (T -341)) -((-3668 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-766)))) (-2435 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-766)))) (-3243 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112)))) (-1718 (*1 *2 *3 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112)))) (-4266 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112)))) (-3866 (*1 *2 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112)))) (-3866 (*1 *2 *3) (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1211)) (-4 *3 (-1232 *4)) (-4 *5 (-1232 (-406 *3))) (-5 *2 (-112)))) (-3236 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112)))) (-3520 (*1 *2 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112)))) (-3520 (*1 *2 *3) (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1211)) (-4 *3 (-1232 *4)) (-4 *5 (-1232 (-406 *3))) (-5 *2 (-112)))) (-2241 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112)))) (-1912 (*1 *2 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112)))) (-1912 (*1 *2 *3) (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1211)) (-4 *3 (-1232 *4)) (-4 *5 (-1232 (-406 *3))) (-5 *2 (-112)))) (-2639 (*1 *2) (-12 (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-1256 *1)) (-4 *1 (-341 *3 *4 *5)))) (-3137 (*1 *2) (-12 (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-1256 *1)) (-4 *1 (-341 *3 *4 *5)))) (-3841 (*1 *2 *1) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112)))) (-2881 (*1 *2 *1) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112)))) (-4240 (*1 *2 *2) (-12 (-5 *2 (-1256 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))))) (-2700 (*1 *2 *2) (-12 (-5 *2 (-1256 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))))) (-2575 (*1 *2 *2) (-12 (-5 *2 (-1256 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))))) (-4335 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-683 (-406 *4))))) (-2289 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-683 (-406 *4))))) (-3324 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-683 (-406 *4))))) (-2715 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-683 (-406 *4))))) (-1631 (*1 *2 *1) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-2 (|:| |num| (-1256 *4)) (|:| |den| *4))))) (-3916 (*1 *1 *2 *3) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-1232 *4)) (-4 *4 (-1211)) (-4 *1 (-341 *4 *3 *5)) (-4 *5 (-1232 (-406 *3))))) (-4329 (*1 *2 *1) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-2 (|:| |num| (-1256 *4)) (|:| |den| *4))))) (-3174 (*1 *1 *2 *3) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-1232 *4)) (-4 *4 (-1211)) (-4 *1 (-341 *4 *3 *5)) (-4 *5 (-1232 (-406 *3))))) (-3128 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-341 *4 *5 *6)) (-4 *4 (-1211)) (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-406 *5))) (-5 *2 (-2 (|:| |num| (-683 *5)) (|:| |den| *5))))) (-2881 (*1 *2 *1 *3) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112)))) (-2881 (*1 *2 *1 *3) (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1211)) (-4 *3 (-1232 *4)) (-4 *5 (-1232 (-406 *3))) (-5 *2 (-112)))) (-4029 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))))) (-2578 (*1 *1 *1) (-12 (-4 *1 (-341 *2 *3 *4)) (-4 *2 (-1211)) (-4 *3 (-1232 *2)) (-4 *4 (-1232 (-406 *3))))) (-2343 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-341 *2 *3 *4)) (-4 *2 (-1211)) (-4 *3 (-1232 *2)) (-4 *4 (-1232 (-406 *3))))) (-3092 (*1 *2) (|partial| -12 (-4 *1 (-341 *3 *2 *4)) (-4 *3 (-1211)) (-4 *4 (-1232 (-406 *2))) (-4 *2 (-1232 *3)))) (-3153 (*1 *2) (|partial| -12 (-4 *1 (-341 *3 *2 *4)) (-4 *3 (-1211)) (-4 *4 (-1232 (-406 *2))) (-4 *2 (-1232 *3)))) (-2960 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1232 *4)) (-4 *4 (-1211)) (-4 *6 (-1232 (-406 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-341 *4 *5 *6)))) (-2004 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-4 *1 (-341 *4 *5 *6)) (-4 *4 (-1211)) (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-406 *5))) (-4 *4 (-362)) (-5 *2 (-639 (-947 *4))))) (-2713 (*1 *2) (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) (-4 *3 (-367)) (-5 *2 (-639 (-639 *3)))))) -(-13 (-719 (-406 |t#2|) |t#3|) (-10 -8 (-15 -3668 ((-766))) (-15 -2435 ((-766))) (-15 -3243 ((-112))) (-15 -1718 ((-112) |t#1| |t#1|)) (-15 -4266 ((-112))) (-15 -3866 ((-112) |t#1|)) (-15 -3866 ((-112) |t#2|)) (-15 -3236 ((-112))) (-15 -3520 ((-112) |t#1|)) (-15 -3520 ((-112) |t#2|)) (-15 -2241 ((-112))) (-15 -1912 ((-112) |t#1|)) (-15 -1912 ((-112) |t#2|)) (-15 -2639 ((-1256 $))) (-15 -3137 ((-1256 $))) (-15 -3841 ((-112) $)) (-15 -2881 ((-112) $)) (-15 -4240 ((-1256 $) (-1256 $))) (-15 -2700 ((-1256 $) (-1256 $))) (-15 -2575 ((-1256 $) (-1256 $))) (-15 -4335 ((-683 (-406 |t#2|)))) (-15 -2289 ((-683 (-406 |t#2|)))) (-15 -3324 ((-683 (-406 |t#2|)))) (-15 -2715 ((-683 (-406 |t#2|)))) (-15 -1631 ((-2 (|:| |num| (-1256 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3916 ($ (-1256 |t#2|) |t#2|)) (-15 -4329 ((-2 (|:| |num| (-1256 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3174 ($ (-1256 |t#2|) |t#2|)) (-15 -3128 ((-2 (|:| |num| (-683 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -2881 ((-112) $ |t#1|)) (-15 -2881 ((-112) $ |t#2|)) (-15 -4029 ($ $ (-1 |t#2| |t#2|))) (-15 -2578 ($ $)) (-15 -2343 (|t#1| $ |t#1| |t#1|)) (-15 -3092 ((-3 |t#2| "failed"))) (-15 -3153 ((-3 |t#2| "failed"))) (-15 -2960 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-362)) (-15 -2004 ((-639 (-947 |t#1|)) (-1168))) |%noBranch|) (IF (|has| |t#1| (-367)) (-15 -2713 ((-639 (-639 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-562))) -4037 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-38 #1=(-406 |#2|)) . T) ((-38 $) -4037 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-102) . T) ((-111 #0# #0#) -4037 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -4037 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-144))) ((-146) |has| (-406 |#2|) (-146)) ((-612 #0#) -4037 (|has| (-406 |#2|) (-1033 (-406 (-562)))) (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-612 #1#) . T) ((-612 (-562)) . T) ((-612 $) -4037 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-609 (-857)) . T) ((-171) . T) ((-610 |#3|) . T) ((-230 #1#) |has| (-406 |#2|) (-362)) ((-232) -4037 (|has| (-406 |#2|) (-348)) (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362)))) ((-242) -4037 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-289) -4037 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-306) -4037 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-362) -4037 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-401) |has| (-406 |#2|) (-348)) ((-367) -4037 (|has| (-406 |#2|) (-367)) (|has| (-406 |#2|) (-348))) ((-348) |has| (-406 |#2|) (-348)) ((-369 #1# |#3|) . T) ((-408 #1# |#3|) . T) ((-376 #1#) . T) ((-410 #1#) . T) ((-451) -4037 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-554) -4037 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-642 #0#) -4037 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-642 #1#) . T) ((-642 $) . T) ((-635 #1#) . T) ((-635 (-562)) |has| (-406 |#2|) (-635 (-562))) ((-712 #0#) -4037 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-712 #1#) . T) ((-712 $) -4037 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-719 #1# |#3|) . T) ((-721) . T) ((-895 (-1168)) -12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168)))) ((-915) -4037 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-1033 (-406 (-562))) |has| (-406 |#2|) (-1033 (-406 (-562)))) ((-1033 #1#) . T) ((-1033 (-562)) |has| (-406 |#2|) (-1033 (-562))) ((-1050 #0#) -4037 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362))) ((-1050 #1#) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1143) |has| (-406 |#2|) (-348)) ((-1211) -4037 (|has| (-406 |#2|) (-348)) (|has| (-406 |#2|) (-362)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-3826 (((-112) $) NIL)) (-2284 (((-766)) NIL)) (-1748 (((-905 |#1|) $) NIL) (($ $ (-916)) NIL (|has| (-905 |#1|) (-367)))) (-1755 (((-1180 (-916) (-766)) (-562)) NIL (|has| (-905 |#1|) (-367)))) (-2781 (((-3 $ "failed") $ $) NIL)) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-1436 (((-112) $ $) NIL)) (-1382 (((-766)) NIL (|has| (-905 |#1|) (-367)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-905 |#1|) "failed") $) NIL)) (-3960 (((-905 |#1|) $) NIL)) (-3916 (($ (-1256 (-905 |#1|))) NIL)) (-3082 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-905 |#1|) (-367)))) (-1810 (($ $ $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-1447 (($) NIL (|has| (-905 |#1|) (-367)))) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-2787 (($) NIL (|has| (-905 |#1|) (-367)))) (-1844 (((-112) $) NIL (|has| (-905 |#1|) (-367)))) (-2184 (($ $ (-766)) NIL (-4037 (|has| (-905 |#1|) (-144)) (|has| (-905 |#1|) (-367)))) (($ $) NIL (-4037 (|has| (-905 |#1|) (-144)) (|has| (-905 |#1|) (-367))))) (-3521 (((-112) $) NIL)) (-1993 (((-916) $) NIL (|has| (-905 |#1|) (-367))) (((-828 (-916)) $) NIL (-4037 (|has| (-905 |#1|) (-144)) (|has| (-905 |#1|) (-367))))) (-4367 (((-112) $) NIL)) (-2631 (($) NIL (|has| (-905 |#1|) (-367)))) (-1775 (((-112) $) NIL (|has| (-905 |#1|) (-367)))) (-4363 (((-905 |#1|) $) NIL) (($ $ (-916)) NIL (|has| (-905 |#1|) (-367)))) (-3828 (((-3 $ "failed") $) NIL (|has| (-905 |#1|) (-367)))) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1937 (((-1164 (-905 |#1|)) $) NIL) (((-1164 $) $ (-916)) NIL (|has| (-905 |#1|) (-367)))) (-3549 (((-916) $) NIL (|has| (-905 |#1|) (-367)))) (-2121 (((-1164 (-905 |#1|)) $) NIL (|has| (-905 |#1|) (-367)))) (-1894 (((-1164 (-905 |#1|)) $) NIL (|has| (-905 |#1|) (-367))) (((-3 (-1164 (-905 |#1|)) "failed") $ $) NIL (|has| (-905 |#1|) (-367)))) (-3319 (($ $ (-1164 (-905 |#1|))) NIL (|has| (-905 |#1|) (-367)))) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3730 (($) NIL (|has| (-905 |#1|) (-367)) CONST)) (-2464 (($ (-916)) NIL (|has| (-905 |#1|) (-367)))) (-2991 (((-112) $) NIL)) (-1709 (((-1112) $) NIL)) (-1913 (((-953 (-1112))) NIL)) (-3147 (($) NIL (|has| (-905 |#1|) (-367)))) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-1753 (((-639 (-2 (|:| -1635 (-562)) (|:| -1300 (-562))))) NIL (|has| (-905 |#1|) (-367)))) (-1635 (((-417 $) $) NIL)) (-3548 (((-828 (-916))) NIL) (((-916)) NIL)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2044 (((-766) $) NIL)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-3543 (((-766) $) NIL (|has| (-905 |#1|) (-367))) (((-3 (-766) "failed") $ $) NIL (-4037 (|has| (-905 |#1|) (-144)) (|has| (-905 |#1|) (-367))))) (-4340 (((-133)) NIL)) (-4029 (($ $) NIL (|has| (-905 |#1|) (-367))) (($ $ (-766)) NIL (|has| (-905 |#1|) (-367)))) (-2250 (((-828 (-916)) $) NIL) (((-916) $) NIL)) (-3371 (((-1164 (-905 |#1|))) NIL)) (-1653 (($) NIL (|has| (-905 |#1|) (-367)))) (-3861 (($) NIL (|has| (-905 |#1|) (-367)))) (-2205 (((-1256 (-905 |#1|)) $) NIL) (((-683 (-905 |#1|)) (-1256 $)) NIL)) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (|has| (-905 |#1|) (-367)))) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL) (($ (-905 |#1|)) NIL)) (-2059 (($ $) NIL (|has| (-905 |#1|) (-367))) (((-3 $ "failed") $) NIL (-4037 (|has| (-905 |#1|) (-144)) (|has| (-905 |#1|) (-367))))) (-1568 (((-766)) NIL)) (-4291 (((-1256 $)) NIL) (((-1256 $) (-916)) NIL)) (-3799 (((-112) $ $) NIL)) (-3782 (((-112) $) NIL)) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-4144 (($ $) NIL (|has| (-905 |#1|) (-367))) (($ $ (-766)) NIL (|has| (-905 |#1|) (-367)))) (-3113 (($ $) NIL (|has| (-905 |#1|) (-367))) (($ $ (-766)) NIL (|has| (-905 |#1|) (-367)))) (-1733 (((-112) $ $) NIL)) (-1859 (($ $ $) NIL) (($ $ (-905 |#1|)) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ $ (-905 |#1|)) NIL) (($ (-905 |#1|) $) NIL))) -(((-342 |#1| |#2|) (-13 (-328 (-905 |#1|)) (-10 -7 (-15 -1913 ((-953 (-1112)))))) (-916) (-916)) (T -342)) -((-1913 (*1 *2) (-12 (-5 *2 (-953 (-1112))) (-5 *1 (-342 *3 *4)) (-14 *3 (-916)) (-14 *4 (-916))))) -(-13 (-328 (-905 |#1|)) (-10 -7 (-15 -1913 ((-953 (-1112)))))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) 43)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-3826 (((-112) $) NIL)) (-2284 (((-766)) NIL)) (-1748 ((|#1| $) NIL) (($ $ (-916)) NIL (|has| |#1| (-367)))) (-1755 (((-1180 (-916) (-766)) (-562)) 40 (|has| |#1| (-367)))) (-2781 (((-3 $ "failed") $ $) NIL)) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-1436 (((-112) $ $) NIL)) (-1382 (((-766)) NIL (|has| |#1| (-367)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) 114)) (-3960 ((|#1| $) 85)) (-3916 (($ (-1256 |#1|)) 103)) (-3082 (((-3 "prime" "polynomial" "normal" "cyclic")) 94 (|has| |#1| (-367)))) (-1810 (($ $ $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-1447 (($) 97 (|has| |#1| (-367)))) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-2787 (($) 128 (|has| |#1| (-367)))) (-1844 (((-112) $) 47 (|has| |#1| (-367)))) (-2184 (($ $ (-766)) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3521 (((-112) $) NIL)) (-1993 (((-916) $) 44 (|has| |#1| (-367))) (((-828 (-916)) $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4367 (((-112) $) NIL)) (-2631 (($) 130 (|has| |#1| (-367)))) (-1775 (((-112) $) NIL (|has| |#1| (-367)))) (-4363 ((|#1| $) NIL) (($ $ (-916)) NIL (|has| |#1| (-367)))) (-3828 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1937 (((-1164 |#1|) $) 89) (((-1164 $) $ (-916)) NIL (|has| |#1| (-367)))) (-3549 (((-916) $) 138 (|has| |#1| (-367)))) (-2121 (((-1164 |#1|) $) NIL (|has| |#1| (-367)))) (-1894 (((-1164 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1164 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-3319 (($ $ (-1164 |#1|)) NIL (|has| |#1| (-367)))) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) 145)) (-3730 (($) NIL (|has| |#1| (-367)) CONST)) (-2464 (($ (-916)) 70 (|has| |#1| (-367)))) (-2991 (((-112) $) 117)) (-1709 (((-1112) $) NIL)) (-1913 (((-953 (-1112))) 41)) (-3147 (($) 126 (|has| |#1| (-367)))) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-1753 (((-639 (-2 (|:| -1635 (-562)) (|:| -1300 (-562))))) 92 (|has| |#1| (-367)))) (-1635 (((-417 $) $) NIL)) (-3548 (((-828 (-916))) 66) (((-916)) 67)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2044 (((-766) $) NIL)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-3543 (((-766) $) 129 (|has| |#1| (-367))) (((-3 (-766) "failed") $ $) 124 (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4340 (((-133)) NIL)) (-4029 (($ $) NIL (|has| |#1| (-367))) (($ $ (-766)) NIL (|has| |#1| (-367)))) (-2250 (((-828 (-916)) $) NIL) (((-916) $) NIL)) (-3371 (((-1164 |#1|)) 95)) (-1653 (($) 127 (|has| |#1| (-367)))) (-3861 (($) 135 (|has| |#1| (-367)))) (-2205 (((-1256 |#1|) $) 58) (((-683 |#1|) (-1256 $)) NIL)) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (|has| |#1| (-367)))) (-4053 (((-857) $) 141) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL) (($ |#1|) 74)) (-2059 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-1568 (((-766)) 137)) (-4291 (((-1256 $)) 116) (((-1256 $) (-916)) 72)) (-3799 (((-112) $ $) NIL)) (-3782 (((-112) $) NIL)) (-2285 (($) 48 T CONST)) (-2294 (($) 45 T CONST)) (-4144 (($ $) 80 (|has| |#1| (-367))) (($ $ (-766)) NIL (|has| |#1| (-367)))) (-3113 (($ $) NIL (|has| |#1| (-367))) (($ $ (-766)) NIL (|has| |#1| (-367)))) (-1733 (((-112) $ $) 46)) (-1859 (($ $ $) 143) (($ $ |#1|) 144)) (-1847 (($ $) 125) (($ $ $) NIL)) (-1836 (($ $ $) 60)) (** (($ $ (-916)) 147) (($ $ (-766)) 148) (($ $ (-562)) 146)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 76) (($ $ $) 75) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 142))) -(((-343 |#1| |#2|) (-13 (-328 |#1|) (-10 -7 (-15 -1913 ((-953 (-1112)))))) (-348) (-1164 |#1|)) (T -343)) -((-1913 (*1 *2) (-12 (-5 *2 (-953 (-1112))) (-5 *1 (-343 *3 *4)) (-4 *3 (-348)) (-14 *4 (-1164 *3))))) -(-13 (-328 |#1|) (-10 -7 (-15 -1913 ((-953 (-1112)))))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-3826 (((-112) $) NIL)) (-2284 (((-766)) NIL)) (-1748 ((|#1| $) NIL) (($ $ (-916)) NIL (|has| |#1| (-367)))) (-1755 (((-1180 (-916) (-766)) (-562)) NIL (|has| |#1| (-367)))) (-2781 (((-3 $ "failed") $ $) NIL)) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-1436 (((-112) $ $) NIL)) (-1382 (((-766)) NIL (|has| |#1| (-367)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) NIL)) (-3960 ((|#1| $) NIL)) (-3916 (($ (-1256 |#1|)) NIL)) (-3082 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-367)))) (-1810 (($ $ $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-1447 (($) NIL (|has| |#1| (-367)))) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-2787 (($) NIL (|has| |#1| (-367)))) (-1844 (((-112) $) NIL (|has| |#1| (-367)))) (-2184 (($ $ (-766)) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3521 (((-112) $) NIL)) (-1993 (((-916) $) NIL (|has| |#1| (-367))) (((-828 (-916)) $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4367 (((-112) $) NIL)) (-2631 (($) NIL (|has| |#1| (-367)))) (-1775 (((-112) $) NIL (|has| |#1| (-367)))) (-4363 ((|#1| $) NIL) (($ $ (-916)) NIL (|has| |#1| (-367)))) (-3828 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1937 (((-1164 |#1|) $) NIL) (((-1164 $) $ (-916)) NIL (|has| |#1| (-367)))) (-3549 (((-916) $) NIL (|has| |#1| (-367)))) (-2121 (((-1164 |#1|) $) NIL (|has| |#1| (-367)))) (-1894 (((-1164 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1164 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-3319 (($ $ (-1164 |#1|)) NIL (|has| |#1| (-367)))) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3730 (($) NIL (|has| |#1| (-367)) CONST)) (-2464 (($ (-916)) NIL (|has| |#1| (-367)))) (-2991 (((-112) $) NIL)) (-1709 (((-1112) $) NIL)) (-1913 (((-953 (-1112))) NIL)) (-3147 (($) NIL (|has| |#1| (-367)))) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-1753 (((-639 (-2 (|:| -1635 (-562)) (|:| -1300 (-562))))) NIL (|has| |#1| (-367)))) (-1635 (((-417 $) $) NIL)) (-3548 (((-828 (-916))) NIL) (((-916)) NIL)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2044 (((-766) $) NIL)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-3543 (((-766) $) NIL (|has| |#1| (-367))) (((-3 (-766) "failed") $ $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4340 (((-133)) NIL)) (-4029 (($ $) NIL (|has| |#1| (-367))) (($ $ (-766)) NIL (|has| |#1| (-367)))) (-2250 (((-828 (-916)) $) NIL) (((-916) $) NIL)) (-3371 (((-1164 |#1|)) NIL)) (-1653 (($) NIL (|has| |#1| (-367)))) (-3861 (($) NIL (|has| |#1| (-367)))) (-2205 (((-1256 |#1|) $) NIL) (((-683 |#1|) (-1256 $)) NIL)) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (|has| |#1| (-367)))) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL) (($ |#1|) NIL)) (-2059 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-1568 (((-766)) NIL)) (-4291 (((-1256 $)) NIL) (((-1256 $) (-916)) NIL)) (-3799 (((-112) $ $) NIL)) (-3782 (((-112) $) NIL)) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-4144 (($ $) NIL (|has| |#1| (-367))) (($ $ (-766)) NIL (|has| |#1| (-367)))) (-3113 (($ $) NIL (|has| |#1| (-367))) (($ $ (-766)) NIL (|has| |#1| (-367)))) (-1733 (((-112) $ $) NIL)) (-1859 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-344 |#1| |#2|) (-13 (-328 |#1|) (-10 -7 (-15 -1913 ((-953 (-1112)))))) (-348) (-916)) (T -344)) -((-1913 (*1 *2) (-12 (-5 *2 (-953 (-1112))) (-5 *1 (-344 *3 *4)) (-4 *3 (-348)) (-14 *4 (-916))))) -(-13 (-328 |#1|) (-10 -7 (-15 -1913 ((-953 (-1112)))))) -((-2901 (((-766) (-1256 (-639 (-2 (|:| -2533 |#1|) (|:| -2464 (-1112)))))) 42)) (-3193 (((-953 (-1112)) (-1164 |#1|)) 85)) (-4028 (((-1256 (-639 (-2 (|:| -2533 |#1|) (|:| -2464 (-1112))))) (-1164 |#1|)) 78)) (-2388 (((-683 |#1|) (-1256 (-639 (-2 (|:| -2533 |#1|) (|:| -2464 (-1112)))))) 86)) (-2643 (((-3 (-1256 (-639 (-2 (|:| -2533 |#1|) (|:| -2464 (-1112))))) "failed") (-916)) 13)) (-1409 (((-3 (-1164 |#1|) (-1256 (-639 (-2 (|:| -2533 |#1|) (|:| -2464 (-1112)))))) (-916)) 18))) -(((-345 |#1|) (-10 -7 (-15 -3193 ((-953 (-1112)) (-1164 |#1|))) (-15 -4028 ((-1256 (-639 (-2 (|:| -2533 |#1|) (|:| -2464 (-1112))))) (-1164 |#1|))) (-15 -2388 ((-683 |#1|) (-1256 (-639 (-2 (|:| -2533 |#1|) (|:| -2464 (-1112))))))) (-15 -2901 ((-766) (-1256 (-639 (-2 (|:| -2533 |#1|) (|:| -2464 (-1112))))))) (-15 -2643 ((-3 (-1256 (-639 (-2 (|:| -2533 |#1|) (|:| -2464 (-1112))))) "failed") (-916))) (-15 -1409 ((-3 (-1164 |#1|) (-1256 (-639 (-2 (|:| -2533 |#1|) (|:| -2464 (-1112)))))) (-916)))) (-348)) (T -345)) -((-1409 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-3 (-1164 *4) (-1256 (-639 (-2 (|:| -2533 *4) (|:| -2464 (-1112))))))) (-5 *1 (-345 *4)) (-4 *4 (-348)))) (-2643 (*1 *2 *3) (|partial| -12 (-5 *3 (-916)) (-5 *2 (-1256 (-639 (-2 (|:| -2533 *4) (|:| -2464 (-1112)))))) (-5 *1 (-345 *4)) (-4 *4 (-348)))) (-2901 (*1 *2 *3) (-12 (-5 *3 (-1256 (-639 (-2 (|:| -2533 *4) (|:| -2464 (-1112)))))) (-4 *4 (-348)) (-5 *2 (-766)) (-5 *1 (-345 *4)))) (-2388 (*1 *2 *3) (-12 (-5 *3 (-1256 (-639 (-2 (|:| -2533 *4) (|:| -2464 (-1112)))))) (-4 *4 (-348)) (-5 *2 (-683 *4)) (-5 *1 (-345 *4)))) (-4028 (*1 *2 *3) (-12 (-5 *3 (-1164 *4)) (-4 *4 (-348)) (-5 *2 (-1256 (-639 (-2 (|:| -2533 *4) (|:| -2464 (-1112)))))) (-5 *1 (-345 *4)))) (-3193 (*1 *2 *3) (-12 (-5 *3 (-1164 *4)) (-4 *4 (-348)) (-5 *2 (-953 (-1112))) (-5 *1 (-345 *4))))) -(-10 -7 (-15 -3193 ((-953 (-1112)) (-1164 |#1|))) (-15 -4028 ((-1256 (-639 (-2 (|:| -2533 |#1|) (|:| -2464 (-1112))))) (-1164 |#1|))) (-15 -2388 ((-683 |#1|) (-1256 (-639 (-2 (|:| -2533 |#1|) (|:| -2464 (-1112))))))) (-15 -2901 ((-766) (-1256 (-639 (-2 (|:| -2533 |#1|) (|:| -2464 (-1112))))))) (-15 -2643 ((-3 (-1256 (-639 (-2 (|:| -2533 |#1|) (|:| -2464 (-1112))))) "failed") (-916))) (-15 -1409 ((-3 (-1164 |#1|) (-1256 (-639 (-2 (|:| -2533 |#1|) (|:| -2464 (-1112)))))) (-916)))) -((-4053 ((|#1| |#3|) 86) ((|#3| |#1|) 69))) -(((-346 |#1| |#2| |#3|) (-10 -7 (-15 -4053 (|#3| |#1|)) (-15 -4053 (|#1| |#3|))) (-328 |#2|) (-348) (-328 |#2|)) (T -346)) -((-4053 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *2 (-328 *4)) (-5 *1 (-346 *2 *4 *3)) (-4 *3 (-328 *4)))) (-4053 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *2 (-328 *4)) (-5 *1 (-346 *3 *4 *2)) (-4 *3 (-328 *4))))) -(-10 -7 (-15 -4053 (|#3| |#1|)) (-15 -4053 (|#1| |#3|))) -((-1844 (((-112) $) 50)) (-1993 (((-828 (-916)) $) 21) (((-916) $) 51)) (-3828 (((-3 $ "failed") $) 16)) (-3730 (($) 9)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 92)) (-3543 (((-3 (-766) "failed") $ $) 70) (((-766) $) 59)) (-4029 (($ $ (-766)) NIL) (($ $) 8)) (-1653 (($) 43)) (-1870 (((-3 (-1256 $) "failed") (-683 $)) 34)) (-2059 (((-3 $ "failed") $) 38) (($ $) 37))) -(((-347 |#1|) (-10 -8 (-15 -1993 ((-916) |#1|)) (-15 -3543 ((-766) |#1|)) (-15 -1844 ((-112) |#1|)) (-15 -1653 (|#1|)) (-15 -1870 ((-3 (-1256 |#1|) "failed") (-683 |#1|))) (-15 -2059 (|#1| |#1|)) (-15 -4029 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -3730 (|#1|)) (-15 -3828 ((-3 |#1| "failed") |#1|)) (-15 -3543 ((-3 (-766) "failed") |#1| |#1|)) (-15 -1993 ((-828 (-916)) |#1|)) (-15 -2059 ((-3 |#1| "failed") |#1|)) (-15 -2602 ((-1164 |#1|) (-1164 |#1|) (-1164 |#1|)))) (-348)) (T -347)) -NIL -(-10 -8 (-15 -1993 ((-916) |#1|)) (-15 -3543 ((-766) |#1|)) (-15 -1844 ((-112) |#1|)) (-15 -1653 (|#1|)) (-15 -1870 ((-3 (-1256 |#1|) "failed") (-683 |#1|))) (-15 -2059 (|#1| |#1|)) (-15 -4029 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -3730 (|#1|)) (-15 -3828 ((-3 |#1| "failed") |#1|)) (-15 -3543 ((-3 (-766) "failed") |#1| |#1|)) (-15 -1993 ((-828 (-916)) |#1|)) (-15 -2059 ((-3 |#1| "failed") |#1|)) (-15 -2602 ((-1164 |#1|) (-1164 |#1|) (-1164 |#1|)))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 42)) (-1965 (($ $) 41)) (-4102 (((-112) $) 39)) (-1755 (((-1180 (-916) (-766)) (-562)) 94)) (-2781 (((-3 $ "failed") $ $) 19)) (-1977 (($ $) 74)) (-3788 (((-417 $) $) 73)) (-1436 (((-112) $ $) 60)) (-1382 (((-766)) 104)) (-3329 (($) 17 T CONST)) (-3082 (((-3 "prime" "polynomial" "normal" "cyclic")) 88)) (-1810 (($ $ $) 56)) (-1694 (((-3 $ "failed") $) 33)) (-1447 (($) 107)) (-1787 (($ $ $) 57)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) 52)) (-2787 (($) 92)) (-1844 (((-112) $) 91)) (-2184 (($ $) 80) (($ $ (-766)) 79)) (-3521 (((-112) $) 72)) (-1993 (((-828 (-916)) $) 82) (((-916) $) 89)) (-4367 (((-112) $) 31)) (-3828 (((-3 $ "failed") $) 103)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) 53)) (-3549 (((-916) $) 106)) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-3696 (((-1150) $) 9)) (-1525 (($ $) 71)) (-3730 (($) 102 T CONST)) (-2464 (($ (-916)) 105)) (-1709 (((-1112) $) 10)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-1753 (((-639 (-2 (|:| -1635 (-562)) (|:| -1300 (-562))))) 95)) (-1635 (((-417 $) $) 75)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1762 (((-3 $ "failed") $ $) 43)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) 51)) (-2044 (((-766) $) 59)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 58)) (-3543 (((-3 (-766) "failed") $ $) 81) (((-766) $) 90)) (-4029 (($ $ (-766)) 100) (($ $) 98)) (-1653 (($) 93)) (-1870 (((-3 (-1256 $) "failed") (-683 $)) 96)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ $) 44) (($ (-406 (-562))) 67)) (-2059 (((-3 $ "failed") $) 83) (($ $) 97)) (-1568 (((-766)) 28)) (-3799 (((-112) $ $) 40)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3113 (($ $ (-766)) 101) (($ $) 99)) (-1733 (((-112) $ $) 6)) (-1859 (($ $ $) 66)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 70)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ (-406 (-562))) 69) (($ (-406 (-562)) $) 68))) -(((-348) (-139)) (T -348)) -((-2059 (*1 *1 *1) (-4 *1 (-348))) (-1870 (*1 *2 *3) (|partial| -12 (-5 *3 (-683 *1)) (-4 *1 (-348)) (-5 *2 (-1256 *1)))) (-1753 (*1 *2) (-12 (-4 *1 (-348)) (-5 *2 (-639 (-2 (|:| -1635 (-562)) (|:| -1300 (-562))))))) (-1755 (*1 *2 *3) (-12 (-4 *1 (-348)) (-5 *3 (-562)) (-5 *2 (-1180 (-916) (-766))))) (-1653 (*1 *1) (-4 *1 (-348))) (-2787 (*1 *1) (-4 *1 (-348))) (-1844 (*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-112)))) (-3543 (*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-766)))) (-1993 (*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-916)))) (-3082 (*1 *2) (-12 (-4 *1 (-348)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-401) (-367) (-1143) (-232) (-10 -8 (-15 -2059 ($ $)) (-15 -1870 ((-3 (-1256 $) "failed") (-683 $))) (-15 -1753 ((-639 (-2 (|:| -1635 (-562)) (|:| -1300 (-562)))))) (-15 -1755 ((-1180 (-916) (-766)) (-562))) (-15 -1653 ($)) (-15 -2787 ($)) (-15 -1844 ((-112) $)) (-15 -3543 ((-766) $)) (-15 -1993 ((-916) $)) (-15 -3082 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-562))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-144) . T) ((-612 #0#) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-232) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-401) . T) ((-367) . T) ((-451) . T) ((-554) . T) ((-642 #0#) . T) ((-642 $) . T) ((-712 #0#) . T) ((-712 $) . T) ((-721) . T) ((-915) . T) ((-1050 #0#) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1143) . T) ((-1211) . T)) -((-2606 (((-2 (|:| -4291 (-683 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-683 |#1|))) |#1|) 53)) (-2639 (((-2 (|:| -4291 (-683 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-683 |#1|)))) 51))) -(((-349 |#1| |#2| |#3|) (-10 -7 (-15 -2639 ((-2 (|:| -4291 (-683 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-683 |#1|))))) (-15 -2606 ((-2 (|:| -4291 (-683 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-683 |#1|))) |#1|))) (-13 (-306) (-10 -8 (-15 -3788 ((-417 $) $)))) (-1232 |#1|) (-408 |#1| |#2|)) (T -349)) -((-2606 (*1 *2 *3) (-12 (-4 *3 (-13 (-306) (-10 -8 (-15 -3788 ((-417 $) $))))) (-4 *4 (-1232 *3)) (-5 *2 (-2 (|:| -4291 (-683 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-683 *3)))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-2639 (*1 *2) (-12 (-4 *3 (-13 (-306) (-10 -8 (-15 -3788 ((-417 $) $))))) (-4 *4 (-1232 *3)) (-5 *2 (-2 (|:| -4291 (-683 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-683 *3)))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-408 *3 *4))))) -(-10 -7 (-15 -2639 ((-2 (|:| -4291 (-683 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-683 |#1|))))) (-15 -2606 ((-2 (|:| -4291 (-683 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-683 |#1|))) |#1|))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-3826 (((-112) $) NIL)) (-2284 (((-766)) NIL)) (-1748 (((-905 |#1|) $) NIL) (($ $ (-916)) NIL (|has| (-905 |#1|) (-367)))) (-1755 (((-1180 (-916) (-766)) (-562)) NIL (|has| (-905 |#1|) (-367)))) (-2781 (((-3 $ "failed") $ $) NIL)) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-2901 (((-766)) NIL)) (-1436 (((-112) $ $) NIL)) (-1382 (((-766)) NIL (|has| (-905 |#1|) (-367)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-905 |#1|) "failed") $) NIL)) (-3960 (((-905 |#1|) $) NIL)) (-3916 (($ (-1256 (-905 |#1|))) NIL)) (-3082 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-905 |#1|) (-367)))) (-1810 (($ $ $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-1447 (($) NIL (|has| (-905 |#1|) (-367)))) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-2787 (($) NIL (|has| (-905 |#1|) (-367)))) (-1844 (((-112) $) NIL (|has| (-905 |#1|) (-367)))) (-2184 (($ $ (-766)) NIL (-4037 (|has| (-905 |#1|) (-144)) (|has| (-905 |#1|) (-367)))) (($ $) NIL (-4037 (|has| (-905 |#1|) (-144)) (|has| (-905 |#1|) (-367))))) (-3521 (((-112) $) NIL)) (-1993 (((-916) $) NIL (|has| (-905 |#1|) (-367))) (((-828 (-916)) $) NIL (-4037 (|has| (-905 |#1|) (-144)) (|has| (-905 |#1|) (-367))))) (-4367 (((-112) $) NIL)) (-2631 (($) NIL (|has| (-905 |#1|) (-367)))) (-1775 (((-112) $) NIL (|has| (-905 |#1|) (-367)))) (-4363 (((-905 |#1|) $) NIL) (($ $ (-916)) NIL (|has| (-905 |#1|) (-367)))) (-3828 (((-3 $ "failed") $) NIL (|has| (-905 |#1|) (-367)))) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1937 (((-1164 (-905 |#1|)) $) NIL) (((-1164 $) $ (-916)) NIL (|has| (-905 |#1|) (-367)))) (-3549 (((-916) $) NIL (|has| (-905 |#1|) (-367)))) (-2121 (((-1164 (-905 |#1|)) $) NIL (|has| (-905 |#1|) (-367)))) (-1894 (((-1164 (-905 |#1|)) $) NIL (|has| (-905 |#1|) (-367))) (((-3 (-1164 (-905 |#1|)) "failed") $ $) NIL (|has| (-905 |#1|) (-367)))) (-3319 (($ $ (-1164 (-905 |#1|))) NIL (|has| (-905 |#1|) (-367)))) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3730 (($) NIL (|has| (-905 |#1|) (-367)) CONST)) (-2464 (($ (-916)) NIL (|has| (-905 |#1|) (-367)))) (-2991 (((-112) $) NIL)) (-1709 (((-1112) $) NIL)) (-4339 (((-1256 (-639 (-2 (|:| -2533 (-905 |#1|)) (|:| -2464 (-1112)))))) NIL)) (-2847 (((-683 (-905 |#1|))) NIL)) (-3147 (($) NIL (|has| (-905 |#1|) (-367)))) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-1753 (((-639 (-2 (|:| -1635 (-562)) (|:| -1300 (-562))))) NIL (|has| (-905 |#1|) (-367)))) (-1635 (((-417 $) $) NIL)) (-3548 (((-828 (-916))) NIL) (((-916)) NIL)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2044 (((-766) $) NIL)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-3543 (((-766) $) NIL (|has| (-905 |#1|) (-367))) (((-3 (-766) "failed") $ $) NIL (-4037 (|has| (-905 |#1|) (-144)) (|has| (-905 |#1|) (-367))))) (-4340 (((-133)) NIL)) (-4029 (($ $) NIL (|has| (-905 |#1|) (-367))) (($ $ (-766)) NIL (|has| (-905 |#1|) (-367)))) (-2250 (((-828 (-916)) $) NIL) (((-916) $) NIL)) (-3371 (((-1164 (-905 |#1|))) NIL)) (-1653 (($) NIL (|has| (-905 |#1|) (-367)))) (-3861 (($) NIL (|has| (-905 |#1|) (-367)))) (-2205 (((-1256 (-905 |#1|)) $) NIL) (((-683 (-905 |#1|)) (-1256 $)) NIL)) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (|has| (-905 |#1|) (-367)))) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL) (($ (-905 |#1|)) NIL)) (-2059 (($ $) NIL (|has| (-905 |#1|) (-367))) (((-3 $ "failed") $) NIL (-4037 (|has| (-905 |#1|) (-144)) (|has| (-905 |#1|) (-367))))) (-1568 (((-766)) NIL)) (-4291 (((-1256 $)) NIL) (((-1256 $) (-916)) NIL)) (-3799 (((-112) $ $) NIL)) (-3782 (((-112) $) NIL)) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-4144 (($ $) NIL (|has| (-905 |#1|) (-367))) (($ $ (-766)) NIL (|has| (-905 |#1|) (-367)))) (-3113 (($ $) NIL (|has| (-905 |#1|) (-367))) (($ $ (-766)) NIL (|has| (-905 |#1|) (-367)))) (-1733 (((-112) $ $) NIL)) (-1859 (($ $ $) NIL) (($ $ (-905 |#1|)) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ $ (-905 |#1|)) NIL) (($ (-905 |#1|) $) NIL))) -(((-350 |#1| |#2|) (-13 (-328 (-905 |#1|)) (-10 -7 (-15 -4339 ((-1256 (-639 (-2 (|:| -2533 (-905 |#1|)) (|:| -2464 (-1112))))))) (-15 -2847 ((-683 (-905 |#1|)))) (-15 -2901 ((-766))))) (-916) (-916)) (T -350)) -((-4339 (*1 *2) (-12 (-5 *2 (-1256 (-639 (-2 (|:| -2533 (-905 *3)) (|:| -2464 (-1112)))))) (-5 *1 (-350 *3 *4)) (-14 *3 (-916)) (-14 *4 (-916)))) (-2847 (*1 *2) (-12 (-5 *2 (-683 (-905 *3))) (-5 *1 (-350 *3 *4)) (-14 *3 (-916)) (-14 *4 (-916)))) (-2901 (*1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-350 *3 *4)) (-14 *3 (-916)) (-14 *4 (-916))))) -(-13 (-328 (-905 |#1|)) (-10 -7 (-15 -4339 ((-1256 (-639 (-2 (|:| -2533 (-905 |#1|)) (|:| -2464 (-1112))))))) (-15 -2847 ((-683 (-905 |#1|)))) (-15 -2901 ((-766))))) -((-4041 (((-112) $ $) 61)) (-4325 (((-112) $) 74)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-3826 (((-112) $) NIL)) (-2284 (((-766)) NIL)) (-1748 ((|#1| $) 92) (($ $ (-916)) 90 (|has| |#1| (-367)))) (-1755 (((-1180 (-916) (-766)) (-562)) 148 (|has| |#1| (-367)))) (-2781 (((-3 $ "failed") $ $) NIL)) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-2901 (((-766)) 89)) (-1436 (((-112) $ $) NIL)) (-1382 (((-766)) 162 (|has| |#1| (-367)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) 112)) (-3960 ((|#1| $) 91)) (-3916 (($ (-1256 |#1|)) 58)) (-3082 (((-3 "prime" "polynomial" "normal" "cyclic")) 188 (|has| |#1| (-367)))) (-1810 (($ $ $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-1447 (($) 158 (|has| |#1| (-367)))) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-2787 (($) 149 (|has| |#1| (-367)))) (-1844 (((-112) $) NIL (|has| |#1| (-367)))) (-2184 (($ $ (-766)) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3521 (((-112) $) NIL)) (-1993 (((-916) $) NIL (|has| |#1| (-367))) (((-828 (-916)) $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4367 (((-112) $) NIL)) (-2631 (($) 98 (|has| |#1| (-367)))) (-1775 (((-112) $) 175 (|has| |#1| (-367)))) (-4363 ((|#1| $) 94) (($ $ (-916)) 93 (|has| |#1| (-367)))) (-3828 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1937 (((-1164 |#1|) $) 189) (((-1164 $) $ (-916)) NIL (|has| |#1| (-367)))) (-3549 (((-916) $) 134 (|has| |#1| (-367)))) (-2121 (((-1164 |#1|) $) 73 (|has| |#1| (-367)))) (-1894 (((-1164 |#1|) $) 70 (|has| |#1| (-367))) (((-3 (-1164 |#1|) "failed") $ $) 82 (|has| |#1| (-367)))) (-3319 (($ $ (-1164 |#1|)) 69 (|has| |#1| (-367)))) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) 192)) (-3730 (($) NIL (|has| |#1| (-367)) CONST)) (-2464 (($ (-916)) 137 (|has| |#1| (-367)))) (-2991 (((-112) $) 108)) (-1709 (((-1112) $) NIL)) (-4339 (((-1256 (-639 (-2 (|:| -2533 |#1|) (|:| -2464 (-1112)))))) 83)) (-2847 (((-683 |#1|)) 87)) (-3147 (($) 96 (|has| |#1| (-367)))) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-1753 (((-639 (-2 (|:| -1635 (-562)) (|:| -1300 (-562))))) 150 (|has| |#1| (-367)))) (-1635 (((-417 $) $) NIL)) (-3548 (((-828 (-916))) NIL) (((-916)) 151)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2044 (((-766) $) NIL)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-3543 (((-766) $) NIL (|has| |#1| (-367))) (((-3 (-766) "failed") $ $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4340 (((-133)) NIL)) (-4029 (($ $) NIL (|has| |#1| (-367))) (($ $ (-766)) NIL (|has| |#1| (-367)))) (-2250 (((-828 (-916)) $) NIL) (((-916) $) 62)) (-3371 (((-1164 |#1|)) 152)) (-1653 (($) 133 (|has| |#1| (-367)))) (-3861 (($) NIL (|has| |#1| (-367)))) (-2205 (((-1256 |#1|) $) 106) (((-683 |#1|) (-1256 $)) NIL)) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (|has| |#1| (-367)))) (-4053 (((-857) $) 124) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL) (($ |#1|) 57)) (-2059 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-1568 (((-766)) 156)) (-4291 (((-1256 $)) 172) (((-1256 $) (-916)) 101)) (-3799 (((-112) $ $) NIL)) (-3782 (((-112) $) NIL)) (-2285 (($) 117 T CONST)) (-2294 (($) 33 T CONST)) (-4144 (($ $) 107 (|has| |#1| (-367))) (($ $ (-766)) 99 (|has| |#1| (-367)))) (-3113 (($ $) NIL (|has| |#1| (-367))) (($ $ (-766)) NIL (|has| |#1| (-367)))) (-1733 (((-112) $ $) 183)) (-1859 (($ $ $) 104) (($ $ |#1|) 105)) (-1847 (($ $) 177) (($ $ $) 181)) (-1836 (($ $ $) 179)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) 138)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 186) (($ $ $) 142) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103))) -(((-351 |#1| |#2|) (-13 (-328 |#1|) (-10 -7 (-15 -4339 ((-1256 (-639 (-2 (|:| -2533 |#1|) (|:| -2464 (-1112))))))) (-15 -2847 ((-683 |#1|))) (-15 -2901 ((-766))))) (-348) (-3 (-1164 |#1|) (-1256 (-639 (-2 (|:| -2533 |#1|) (|:| -2464 (-1112))))))) (T -351)) -((-4339 (*1 *2) (-12 (-5 *2 (-1256 (-639 (-2 (|:| -2533 *3) (|:| -2464 (-1112)))))) (-5 *1 (-351 *3 *4)) (-4 *3 (-348)) (-14 *4 (-3 (-1164 *3) *2)))) (-2847 (*1 *2) (-12 (-5 *2 (-683 *3)) (-5 *1 (-351 *3 *4)) (-4 *3 (-348)) (-14 *4 (-3 (-1164 *3) (-1256 (-639 (-2 (|:| -2533 *3) (|:| -2464 (-1112))))))))) (-2901 (*1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-351 *3 *4)) (-4 *3 (-348)) (-14 *4 (-3 (-1164 *3) (-1256 (-639 (-2 (|:| -2533 *3) (|:| -2464 (-1112)))))))))) -(-13 (-328 |#1|) (-10 -7 (-15 -4339 ((-1256 (-639 (-2 (|:| -2533 |#1|) (|:| -2464 (-1112))))))) (-15 -2847 ((-683 |#1|))) (-15 -2901 ((-766))))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-3826 (((-112) $) NIL)) (-2284 (((-766)) NIL)) (-1748 ((|#1| $) NIL) (($ $ (-916)) NIL (|has| |#1| (-367)))) (-1755 (((-1180 (-916) (-766)) (-562)) NIL (|has| |#1| (-367)))) (-2781 (((-3 $ "failed") $ $) NIL)) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-2901 (((-766)) NIL)) (-1436 (((-112) $ $) NIL)) (-1382 (((-766)) NIL (|has| |#1| (-367)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) NIL)) (-3960 ((|#1| $) NIL)) (-3916 (($ (-1256 |#1|)) NIL)) (-3082 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-367)))) (-1810 (($ $ $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-1447 (($) NIL (|has| |#1| (-367)))) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-2787 (($) NIL (|has| |#1| (-367)))) (-1844 (((-112) $) NIL (|has| |#1| (-367)))) (-2184 (($ $ (-766)) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3521 (((-112) $) NIL)) (-1993 (((-916) $) NIL (|has| |#1| (-367))) (((-828 (-916)) $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4367 (((-112) $) NIL)) (-2631 (($) NIL (|has| |#1| (-367)))) (-1775 (((-112) $) NIL (|has| |#1| (-367)))) (-4363 ((|#1| $) NIL) (($ $ (-916)) NIL (|has| |#1| (-367)))) (-3828 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1937 (((-1164 |#1|) $) NIL) (((-1164 $) $ (-916)) NIL (|has| |#1| (-367)))) (-3549 (((-916) $) NIL (|has| |#1| (-367)))) (-2121 (((-1164 |#1|) $) NIL (|has| |#1| (-367)))) (-1894 (((-1164 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1164 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-3319 (($ $ (-1164 |#1|)) NIL (|has| |#1| (-367)))) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3730 (($) NIL (|has| |#1| (-367)) CONST)) (-2464 (($ (-916)) NIL (|has| |#1| (-367)))) (-2991 (((-112) $) NIL)) (-1709 (((-1112) $) NIL)) (-4339 (((-1256 (-639 (-2 (|:| -2533 |#1|) (|:| -2464 (-1112)))))) NIL)) (-2847 (((-683 |#1|)) NIL)) (-3147 (($) NIL (|has| |#1| (-367)))) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-1753 (((-639 (-2 (|:| -1635 (-562)) (|:| -1300 (-562))))) NIL (|has| |#1| (-367)))) (-1635 (((-417 $) $) NIL)) (-3548 (((-828 (-916))) NIL) (((-916)) NIL)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2044 (((-766) $) NIL)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-3543 (((-766) $) NIL (|has| |#1| (-367))) (((-3 (-766) "failed") $ $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4340 (((-133)) NIL)) (-4029 (($ $) NIL (|has| |#1| (-367))) (($ $ (-766)) NIL (|has| |#1| (-367)))) (-2250 (((-828 (-916)) $) NIL) (((-916) $) NIL)) (-3371 (((-1164 |#1|)) NIL)) (-1653 (($) NIL (|has| |#1| (-367)))) (-3861 (($) NIL (|has| |#1| (-367)))) (-2205 (((-1256 |#1|) $) NIL) (((-683 |#1|) (-1256 $)) NIL)) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (|has| |#1| (-367)))) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL) (($ |#1|) NIL)) (-2059 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-1568 (((-766)) NIL)) (-4291 (((-1256 $)) NIL) (((-1256 $) (-916)) NIL)) (-3799 (((-112) $ $) NIL)) (-3782 (((-112) $) NIL)) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-4144 (($ $) NIL (|has| |#1| (-367))) (($ $ (-766)) NIL (|has| |#1| (-367)))) (-3113 (($ $) NIL (|has| |#1| (-367))) (($ $ (-766)) NIL (|has| |#1| (-367)))) (-1733 (((-112) $ $) NIL)) (-1859 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-352 |#1| |#2|) (-13 (-328 |#1|) (-10 -7 (-15 -4339 ((-1256 (-639 (-2 (|:| -2533 |#1|) (|:| -2464 (-1112))))))) (-15 -2847 ((-683 |#1|))) (-15 -2901 ((-766))))) (-348) (-916)) (T -352)) -((-4339 (*1 *2) (-12 (-5 *2 (-1256 (-639 (-2 (|:| -2533 *3) (|:| -2464 (-1112)))))) (-5 *1 (-352 *3 *4)) (-4 *3 (-348)) (-14 *4 (-916)))) (-2847 (*1 *2) (-12 (-5 *2 (-683 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-348)) (-14 *4 (-916)))) (-2901 (*1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-352 *3 *4)) (-4 *3 (-348)) (-14 *4 (-916))))) -(-13 (-328 |#1|) (-10 -7 (-15 -4339 ((-1256 (-639 (-2 (|:| -2533 |#1|) (|:| -2464 (-1112))))))) (-15 -2847 ((-683 |#1|))) (-15 -2901 ((-766))))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-3826 (((-112) $) NIL)) (-2284 (((-766)) NIL)) (-1748 (((-905 |#1|) $) NIL) (($ $ (-916)) NIL (|has| (-905 |#1|) (-367)))) (-1755 (((-1180 (-916) (-766)) (-562)) NIL (|has| (-905 |#1|) (-367)))) (-2781 (((-3 $ "failed") $ $) NIL)) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-1436 (((-112) $ $) NIL)) (-1382 (((-766)) NIL (|has| (-905 |#1|) (-367)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-905 |#1|) "failed") $) NIL)) (-3960 (((-905 |#1|) $) NIL)) (-3916 (($ (-1256 (-905 |#1|))) NIL)) (-3082 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-905 |#1|) (-367)))) (-1810 (($ $ $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-1447 (($) NIL (|has| (-905 |#1|) (-367)))) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-2787 (($) NIL (|has| (-905 |#1|) (-367)))) (-1844 (((-112) $) NIL (|has| (-905 |#1|) (-367)))) (-2184 (($ $ (-766)) NIL (-4037 (|has| (-905 |#1|) (-144)) (|has| (-905 |#1|) (-367)))) (($ $) NIL (-4037 (|has| (-905 |#1|) (-144)) (|has| (-905 |#1|) (-367))))) (-3521 (((-112) $) NIL)) (-1993 (((-916) $) NIL (|has| (-905 |#1|) (-367))) (((-828 (-916)) $) NIL (-4037 (|has| (-905 |#1|) (-144)) (|has| (-905 |#1|) (-367))))) (-4367 (((-112) $) NIL)) (-2631 (($) NIL (|has| (-905 |#1|) (-367)))) (-1775 (((-112) $) NIL (|has| (-905 |#1|) (-367)))) (-4363 (((-905 |#1|) $) NIL) (($ $ (-916)) NIL (|has| (-905 |#1|) (-367)))) (-3828 (((-3 $ "failed") $) NIL (|has| (-905 |#1|) (-367)))) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1937 (((-1164 (-905 |#1|)) $) NIL) (((-1164 $) $ (-916)) NIL (|has| (-905 |#1|) (-367)))) (-3549 (((-916) $) NIL (|has| (-905 |#1|) (-367)))) (-2121 (((-1164 (-905 |#1|)) $) NIL (|has| (-905 |#1|) (-367)))) (-1894 (((-1164 (-905 |#1|)) $) NIL (|has| (-905 |#1|) (-367))) (((-3 (-1164 (-905 |#1|)) "failed") $ $) NIL (|has| (-905 |#1|) (-367)))) (-3319 (($ $ (-1164 (-905 |#1|))) NIL (|has| (-905 |#1|) (-367)))) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3730 (($) NIL (|has| (-905 |#1|) (-367)) CONST)) (-2464 (($ (-916)) NIL (|has| (-905 |#1|) (-367)))) (-2991 (((-112) $) NIL)) (-1709 (((-1112) $) NIL)) (-3147 (($) NIL (|has| (-905 |#1|) (-367)))) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-1753 (((-639 (-2 (|:| -1635 (-562)) (|:| -1300 (-562))))) NIL (|has| (-905 |#1|) (-367)))) (-1635 (((-417 $) $) NIL)) (-3548 (((-828 (-916))) NIL) (((-916)) NIL)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2044 (((-766) $) NIL)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-3543 (((-766) $) NIL (|has| (-905 |#1|) (-367))) (((-3 (-766) "failed") $ $) NIL (-4037 (|has| (-905 |#1|) (-144)) (|has| (-905 |#1|) (-367))))) (-4340 (((-133)) NIL)) (-4029 (($ $) NIL (|has| (-905 |#1|) (-367))) (($ $ (-766)) NIL (|has| (-905 |#1|) (-367)))) (-2250 (((-828 (-916)) $) NIL) (((-916) $) NIL)) (-3371 (((-1164 (-905 |#1|))) NIL)) (-1653 (($) NIL (|has| (-905 |#1|) (-367)))) (-3861 (($) NIL (|has| (-905 |#1|) (-367)))) (-2205 (((-1256 (-905 |#1|)) $) NIL) (((-683 (-905 |#1|)) (-1256 $)) NIL)) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (|has| (-905 |#1|) (-367)))) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL) (($ (-905 |#1|)) NIL)) (-2059 (($ $) NIL (|has| (-905 |#1|) (-367))) (((-3 $ "failed") $) NIL (-4037 (|has| (-905 |#1|) (-144)) (|has| (-905 |#1|) (-367))))) (-1568 (((-766)) NIL)) (-4291 (((-1256 $)) NIL) (((-1256 $) (-916)) NIL)) (-3799 (((-112) $ $) NIL)) (-3782 (((-112) $) NIL)) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-4144 (($ $) NIL (|has| (-905 |#1|) (-367))) (($ $ (-766)) NIL (|has| (-905 |#1|) (-367)))) (-3113 (($ $) NIL (|has| (-905 |#1|) (-367))) (($ $ (-766)) NIL (|has| (-905 |#1|) (-367)))) (-1733 (((-112) $ $) NIL)) (-1859 (($ $ $) NIL) (($ $ (-905 |#1|)) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ $ (-905 |#1|)) NIL) (($ (-905 |#1|) $) NIL))) -(((-353 |#1| |#2|) (-328 (-905 |#1|)) (-916) (-916)) (T -353)) -NIL -(-328 (-905 |#1|)) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-3826 (((-112) $) NIL)) (-2284 (((-766)) NIL)) (-1748 ((|#1| $) NIL) (($ $ (-916)) NIL (|has| |#1| (-367)))) (-1755 (((-1180 (-916) (-766)) (-562)) 120 (|has| |#1| (-367)))) (-2781 (((-3 $ "failed") $ $) NIL)) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-1436 (((-112) $ $) NIL)) (-1382 (((-766)) 139 (|has| |#1| (-367)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) 93)) (-3960 ((|#1| $) 90)) (-3916 (($ (-1256 |#1|)) 85)) (-3082 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-367)))) (-1810 (($ $ $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-1447 (($) 82 (|has| |#1| (-367)))) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-2787 (($) 42 (|has| |#1| (-367)))) (-1844 (((-112) $) NIL (|has| |#1| (-367)))) (-2184 (($ $ (-766)) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3521 (((-112) $) NIL)) (-1993 (((-916) $) NIL (|has| |#1| (-367))) (((-828 (-916)) $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4367 (((-112) $) NIL)) (-2631 (($) 121 (|has| |#1| (-367)))) (-1775 (((-112) $) 74 (|has| |#1| (-367)))) (-4363 ((|#1| $) 39) (($ $ (-916)) 43 (|has| |#1| (-367)))) (-3828 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1937 (((-1164 |#1|) $) 65) (((-1164 $) $ (-916)) NIL (|has| |#1| (-367)))) (-3549 (((-916) $) 97 (|has| |#1| (-367)))) (-2121 (((-1164 |#1|) $) NIL (|has| |#1| (-367)))) (-1894 (((-1164 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1164 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-3319 (($ $ (-1164 |#1|)) NIL (|has| |#1| (-367)))) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3730 (($) NIL (|has| |#1| (-367)) CONST)) (-2464 (($ (-916)) 95 (|has| |#1| (-367)))) (-2991 (((-112) $) 141)) (-1709 (((-1112) $) NIL)) (-3147 (($) 36 (|has| |#1| (-367)))) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-1753 (((-639 (-2 (|:| -1635 (-562)) (|:| -1300 (-562))))) 115 (|has| |#1| (-367)))) (-1635 (((-417 $) $) NIL)) (-3548 (((-828 (-916))) NIL) (((-916)) 138)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2044 (((-766) $) NIL)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-3543 (((-766) $) NIL (|has| |#1| (-367))) (((-3 (-766) "failed") $ $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4340 (((-133)) NIL)) (-4029 (($ $) NIL (|has| |#1| (-367))) (($ $ (-766)) NIL (|has| |#1| (-367)))) (-2250 (((-828 (-916)) $) NIL) (((-916) $) 59)) (-3371 (((-1164 |#1|)) 88)) (-1653 (($) 126 (|has| |#1| (-367)))) (-3861 (($) NIL (|has| |#1| (-367)))) (-2205 (((-1256 |#1|) $) 53) (((-683 |#1|) (-1256 $)) NIL)) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (|has| |#1| (-367)))) (-4053 (((-857) $) 137) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL) (($ |#1|) 87)) (-2059 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-1568 (((-766)) 143)) (-4291 (((-1256 $)) 109) (((-1256 $) (-916)) 49)) (-3799 (((-112) $ $) NIL)) (-3782 (((-112) $) NIL)) (-2285 (($) 111 T CONST)) (-2294 (($) 32 T CONST)) (-4144 (($ $) 68 (|has| |#1| (-367))) (($ $ (-766)) NIL (|has| |#1| (-367)))) (-3113 (($ $) NIL (|has| |#1| (-367))) (($ $ (-766)) NIL (|has| |#1| (-367)))) (-1733 (((-112) $ $) 107)) (-1859 (($ $ $) 99) (($ $ |#1|) 100)) (-1847 (($ $) 80) (($ $ $) 105)) (-1836 (($ $ $) 103)) (** (($ $ (-916)) NIL) (($ $ (-766)) 44) (($ $ (-562)) 129)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 78) (($ $ $) 56) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76))) -(((-354 |#1| |#2|) (-328 |#1|) (-348) (-1164 |#1|)) (T -354)) -NIL -(-328 |#1|) -((-1425 ((|#1| (-1164 |#2|)) 52))) -(((-355 |#1| |#2|) (-10 -7 (-15 -1425 (|#1| (-1164 |#2|)))) (-13 (-401) (-10 -7 (-15 -4053 (|#1| |#2|)) (-15 -3549 ((-916) |#1|)) (-15 -4291 ((-1256 |#1|) (-916))) (-15 -4144 (|#1| |#1|)))) (-348)) (T -355)) -((-1425 (*1 *2 *3) (-12 (-5 *3 (-1164 *4)) (-4 *4 (-348)) (-4 *2 (-13 (-401) (-10 -7 (-15 -4053 (*2 *4)) (-15 -3549 ((-916) *2)) (-15 -4291 ((-1256 *2) (-916))) (-15 -4144 (*2 *2))))) (-5 *1 (-355 *2 *4))))) -(-10 -7 (-15 -1425 (|#1| (-1164 |#2|)))) -((-2237 (((-953 (-1164 |#1|)) (-1164 |#1|)) 36)) (-1447 (((-1164 |#1|) (-916) (-916)) 112) (((-1164 |#1|) (-916)) 111)) (-1844 (((-112) (-1164 |#1|)) 84)) (-2576 (((-916) (-916)) 71)) (-3078 (((-916) (-916)) 74)) (-4289 (((-916) (-916)) 69)) (-1775 (((-112) (-1164 |#1|)) 88)) (-2544 (((-3 (-1164 |#1|) "failed") (-1164 |#1|)) 100)) (-3776 (((-3 (-1164 |#1|) "failed") (-1164 |#1|)) 103)) (-2778 (((-3 (-1164 |#1|) "failed") (-1164 |#1|)) 102)) (-4127 (((-3 (-1164 |#1|) "failed") (-1164 |#1|)) 101)) (-3362 (((-3 (-1164 |#1|) "failed") (-1164 |#1|)) 97)) (-2325 (((-1164 |#1|) (-1164 |#1|)) 62)) (-2083 (((-1164 |#1|) (-916)) 106)) (-2094 (((-1164 |#1|) (-916)) 109)) (-4355 (((-1164 |#1|) (-916)) 108)) (-1523 (((-1164 |#1|) (-916)) 107)) (-3942 (((-1164 |#1|) (-916)) 104))) -(((-356 |#1|) (-10 -7 (-15 -1844 ((-112) (-1164 |#1|))) (-15 -1775 ((-112) (-1164 |#1|))) (-15 -4289 ((-916) (-916))) (-15 -2576 ((-916) (-916))) (-15 -3078 ((-916) (-916))) (-15 -3942 ((-1164 |#1|) (-916))) (-15 -2083 ((-1164 |#1|) (-916))) (-15 -1523 ((-1164 |#1|) (-916))) (-15 -4355 ((-1164 |#1|) (-916))) (-15 -2094 ((-1164 |#1|) (-916))) (-15 -3362 ((-3 (-1164 |#1|) "failed") (-1164 |#1|))) (-15 -2544 ((-3 (-1164 |#1|) "failed") (-1164 |#1|))) (-15 -4127 ((-3 (-1164 |#1|) "failed") (-1164 |#1|))) (-15 -2778 ((-3 (-1164 |#1|) "failed") (-1164 |#1|))) (-15 -3776 ((-3 (-1164 |#1|) "failed") (-1164 |#1|))) (-15 -1447 ((-1164 |#1|) (-916))) (-15 -1447 ((-1164 |#1|) (-916) (-916))) (-15 -2325 ((-1164 |#1|) (-1164 |#1|))) (-15 -2237 ((-953 (-1164 |#1|)) (-1164 |#1|)))) (-348)) (T -356)) -((-2237 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-953 (-1164 *4))) (-5 *1 (-356 *4)) (-5 *3 (-1164 *4)))) (-2325 (*1 *2 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-1447 (*1 *2 *3 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1164 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-1447 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1164 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-3776 (*1 *2 *2) (|partial| -12 (-5 *2 (-1164 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-2778 (*1 *2 *2) (|partial| -12 (-5 *2 (-1164 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-4127 (*1 *2 *2) (|partial| -12 (-5 *2 (-1164 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-2544 (*1 *2 *2) (|partial| -12 (-5 *2 (-1164 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-3362 (*1 *2 *2) (|partial| -12 (-5 *2 (-1164 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3)))) (-2094 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1164 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-4355 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1164 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1164 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-2083 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1164 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-3942 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1164 *4)) (-5 *1 (-356 *4)) (-4 *4 (-348)))) (-3078 (*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-356 *3)) (-4 *3 (-348)))) (-2576 (*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-356 *3)) (-4 *3 (-348)))) (-4289 (*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-356 *3)) (-4 *3 (-348)))) (-1775 (*1 *2 *3) (-12 (-5 *3 (-1164 *4)) (-4 *4 (-348)) (-5 *2 (-112)) (-5 *1 (-356 *4)))) (-1844 (*1 *2 *3) (-12 (-5 *3 (-1164 *4)) (-4 *4 (-348)) (-5 *2 (-112)) (-5 *1 (-356 *4))))) -(-10 -7 (-15 -1844 ((-112) (-1164 |#1|))) (-15 -1775 ((-112) (-1164 |#1|))) (-15 -4289 ((-916) (-916))) (-15 -2576 ((-916) (-916))) (-15 -3078 ((-916) (-916))) (-15 -3942 ((-1164 |#1|) (-916))) (-15 -2083 ((-1164 |#1|) (-916))) (-15 -1523 ((-1164 |#1|) (-916))) (-15 -4355 ((-1164 |#1|) (-916))) (-15 -2094 ((-1164 |#1|) (-916))) (-15 -3362 ((-3 (-1164 |#1|) "failed") (-1164 |#1|))) (-15 -2544 ((-3 (-1164 |#1|) "failed") (-1164 |#1|))) (-15 -4127 ((-3 (-1164 |#1|) "failed") (-1164 |#1|))) (-15 -2778 ((-3 (-1164 |#1|) "failed") (-1164 |#1|))) (-15 -3776 ((-3 (-1164 |#1|) "failed") (-1164 |#1|))) (-15 -1447 ((-1164 |#1|) (-916))) (-15 -1447 ((-1164 |#1|) (-916) (-916))) (-15 -2325 ((-1164 |#1|) (-1164 |#1|))) (-15 -2237 ((-953 (-1164 |#1|)) (-1164 |#1|)))) -((-2654 (((-3 (-639 |#3|) "failed") (-639 |#3|) |#3|) 33))) -(((-357 |#1| |#2| |#3|) (-10 -7 (-15 -2654 ((-3 (-639 |#3|) "failed") (-639 |#3|) |#3|))) (-348) (-1232 |#1|) (-1232 |#2|)) (T -357)) -((-2654 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-639 *3)) (-4 *3 (-1232 *5)) (-4 *5 (-1232 *4)) (-4 *4 (-348)) (-5 *1 (-357 *4 *5 *3))))) -(-10 -7 (-15 -2654 ((-3 (-639 |#3|) "failed") (-639 |#3|) |#3|))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-3826 (((-112) $) NIL)) (-2284 (((-766)) NIL)) (-1748 ((|#1| $) NIL) (($ $ (-916)) NIL (|has| |#1| (-367)))) (-1755 (((-1180 (-916) (-766)) (-562)) NIL (|has| |#1| (-367)))) (-2781 (((-3 $ "failed") $ $) NIL)) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-1436 (((-112) $ $) NIL)) (-1382 (((-766)) NIL (|has| |#1| (-367)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) NIL)) (-3960 ((|#1| $) NIL)) (-3916 (($ (-1256 |#1|)) NIL)) (-3082 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-367)))) (-1810 (($ $ $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-1447 (($) NIL (|has| |#1| (-367)))) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-2787 (($) NIL (|has| |#1| (-367)))) (-1844 (((-112) $) NIL (|has| |#1| (-367)))) (-2184 (($ $ (-766)) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3521 (((-112) $) NIL)) (-1993 (((-916) $) NIL (|has| |#1| (-367))) (((-828 (-916)) $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4367 (((-112) $) NIL)) (-2631 (($) NIL (|has| |#1| (-367)))) (-1775 (((-112) $) NIL (|has| |#1| (-367)))) (-4363 ((|#1| $) NIL) (($ $ (-916)) NIL (|has| |#1| (-367)))) (-3828 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1937 (((-1164 |#1|) $) NIL) (((-1164 $) $ (-916)) NIL (|has| |#1| (-367)))) (-3549 (((-916) $) NIL (|has| |#1| (-367)))) (-2121 (((-1164 |#1|) $) NIL (|has| |#1| (-367)))) (-1894 (((-1164 |#1|) $) NIL (|has| |#1| (-367))) (((-3 (-1164 |#1|) "failed") $ $) NIL (|has| |#1| (-367)))) (-3319 (($ $ (-1164 |#1|)) NIL (|has| |#1| (-367)))) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3730 (($) NIL (|has| |#1| (-367)) CONST)) (-2464 (($ (-916)) NIL (|has| |#1| (-367)))) (-2991 (((-112) $) NIL)) (-1709 (((-1112) $) NIL)) (-3147 (($) NIL (|has| |#1| (-367)))) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-1753 (((-639 (-2 (|:| -1635 (-562)) (|:| -1300 (-562))))) NIL (|has| |#1| (-367)))) (-1635 (((-417 $) $) NIL)) (-3548 (((-828 (-916))) NIL) (((-916)) NIL)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2044 (((-766) $) NIL)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-3543 (((-766) $) NIL (|has| |#1| (-367))) (((-3 (-766) "failed") $ $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4340 (((-133)) NIL)) (-4029 (($ $) NIL (|has| |#1| (-367))) (($ $ (-766)) NIL (|has| |#1| (-367)))) (-2250 (((-828 (-916)) $) NIL) (((-916) $) NIL)) (-3371 (((-1164 |#1|)) NIL)) (-1653 (($) NIL (|has| |#1| (-367)))) (-3861 (($) NIL (|has| |#1| (-367)))) (-2205 (((-1256 |#1|) $) NIL) (((-683 |#1|) (-1256 $)) NIL)) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (|has| |#1| (-367)))) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL) (($ |#1|) NIL)) (-2059 (($ $) NIL (|has| |#1| (-367))) (((-3 $ "failed") $) NIL (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-1568 (((-766)) NIL)) (-4291 (((-1256 $)) NIL) (((-1256 $) (-916)) NIL)) (-3799 (((-112) $ $) NIL)) (-3782 (((-112) $) NIL)) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-4144 (($ $) NIL (|has| |#1| (-367))) (($ $ (-766)) NIL (|has| |#1| (-367)))) (-3113 (($ $) NIL (|has| |#1| (-367))) (($ $ (-766)) NIL (|has| |#1| (-367)))) (-1733 (((-112) $ $) NIL)) (-1859 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-358 |#1| |#2|) (-328 |#1|) (-348) (-916)) (T -358)) -NIL -(-328 |#1|) -((-2311 (((-112) (-639 (-947 |#1|))) 33)) (-2848 (((-639 (-947 |#1|)) (-639 (-947 |#1|))) 45)) (-3779 (((-3 (-639 (-947 |#1|)) "failed") (-639 (-947 |#1|))) 40))) -(((-359 |#1| |#2|) (-10 -7 (-15 -2311 ((-112) (-639 (-947 |#1|)))) (-15 -3779 ((-3 (-639 (-947 |#1|)) "failed") (-639 (-947 |#1|)))) (-15 -2848 ((-639 (-947 |#1|)) (-639 (-947 |#1|))))) (-451) (-639 (-1168))) (T -359)) -((-2848 (*1 *2 *2) (-12 (-5 *2 (-639 (-947 *3))) (-4 *3 (-451)) (-5 *1 (-359 *3 *4)) (-14 *4 (-639 (-1168))))) (-3779 (*1 *2 *2) (|partial| -12 (-5 *2 (-639 (-947 *3))) (-4 *3 (-451)) (-5 *1 (-359 *3 *4)) (-14 *4 (-639 (-1168))))) (-2311 (*1 *2 *3) (-12 (-5 *3 (-639 (-947 *4))) (-4 *4 (-451)) (-5 *2 (-112)) (-5 *1 (-359 *4 *5)) (-14 *5 (-639 (-1168)))))) -(-10 -7 (-15 -2311 ((-112) (-639 (-947 |#1|)))) (-15 -3779 ((-3 (-639 (-947 |#1|)) "failed") (-639 (-947 |#1|)))) (-15 -2848 ((-639 (-947 |#1|)) (-639 (-947 |#1|))))) -((-4041 (((-112) $ $) NIL)) (-1382 (((-766) $) NIL)) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) NIL)) (-3960 ((|#1| $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-4367 (((-112) $) 15)) (-3111 ((|#1| $ (-562)) NIL)) (-1646 (((-562) $ (-562)) NIL)) (-2491 (($ (-1 |#1| |#1|) $) 32)) (-1369 (($ (-1 (-562) (-562)) $) 24)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) 26)) (-1709 (((-1112) $) NIL)) (-2656 (((-639 (-2 (|:| |gen| |#1|) (|:| -3430 (-562)))) $) 28)) (-1660 (($ $ $) NIL)) (-2114 (($ $ $) NIL)) (-4053 (((-857) $) 38) (($ |#1|) NIL)) (-2294 (($) 9 T CONST)) (-1733 (((-112) $ $) NIL)) (-1859 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL) (($ |#1| (-562)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) -(((-360 |#1|) (-13 (-472) (-1033 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-562))) (-15 -1382 ((-766) $)) (-15 -1646 ((-562) $ (-562))) (-15 -3111 (|#1| $ (-562))) (-15 -1369 ($ (-1 (-562) (-562)) $)) (-15 -2491 ($ (-1 |#1| |#1|) $)) (-15 -2656 ((-639 (-2 (|:| |gen| |#1|) (|:| -3430 (-562)))) $)))) (-1092)) (T -360)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1092)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1092)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-562)) (-5 *1 (-360 *2)) (-4 *2 (-1092)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-360 *3)) (-4 *3 (-1092)))) (-1646 (*1 *2 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-360 *3)) (-4 *3 (-1092)))) (-3111 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *1 (-360 *2)) (-4 *2 (-1092)))) (-1369 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-562) (-562))) (-5 *1 (-360 *3)) (-4 *3 (-1092)))) (-2491 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1092)) (-5 *1 (-360 *3)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| |gen| *3) (|:| -3430 (-562))))) (-5 *1 (-360 *3)) (-4 *3 (-1092))))) -(-13 (-472) (-1033 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-562))) (-15 -1382 ((-766) $)) (-15 -1646 ((-562) $ (-562))) (-15 -3111 (|#1| $ (-562))) (-15 -1369 ($ (-1 (-562) (-562)) $)) (-15 -2491 ($ (-1 |#1| |#1|) $)) (-15 -2656 ((-639 (-2 (|:| |gen| |#1|) (|:| -3430 (-562)))) $)))) -((-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 13)) (-1965 (($ $) 14)) (-3788 (((-417 $) $) 29)) (-3521 (((-112) $) 25)) (-1525 (($ $) 18)) (-1606 (($ $ $) 22) (($ (-639 $)) NIL)) (-1635 (((-417 $) $) 30)) (-1762 (((-3 $ "failed") $ $) 21)) (-2044 (((-766) $) 24)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 34)) (-3799 (((-112) $ $) 15)) (-1859 (($ $ $) 32))) -(((-361 |#1|) (-10 -8 (-15 -1859 (|#1| |#1| |#1|)) (-15 -1525 (|#1| |#1|)) (-15 -3521 ((-112) |#1|)) (-15 -3788 ((-417 |#1|) |#1|)) (-15 -1635 ((-417 |#1|) |#1|)) (-15 -3204 ((-2 (|:| -3380 |#1|) (|:| -1441 |#1|)) |#1| |#1|)) (-15 -2044 ((-766) |#1|)) (-15 -1606 (|#1| (-639 |#1|))) (-15 -1606 (|#1| |#1| |#1|)) (-15 -3799 ((-112) |#1| |#1|)) (-15 -1965 (|#1| |#1|)) (-15 -2271 ((-2 (|:| -4310 |#1|) (|:| -4390 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1762 ((-3 |#1| "failed") |#1| |#1|))) (-362)) (T -361)) -NIL -(-10 -8 (-15 -1859 (|#1| |#1| |#1|)) (-15 -1525 (|#1| |#1|)) (-15 -3521 ((-112) |#1|)) (-15 -3788 ((-417 |#1|) |#1|)) (-15 -1635 ((-417 |#1|) |#1|)) (-15 -3204 ((-2 (|:| -3380 |#1|) (|:| -1441 |#1|)) |#1| |#1|)) (-15 -2044 ((-766) |#1|)) (-15 -1606 (|#1| (-639 |#1|))) (-15 -1606 (|#1| |#1| |#1|)) (-15 -3799 ((-112) |#1| |#1|)) (-15 -1965 (|#1| |#1|)) (-15 -2271 ((-2 (|:| -4310 |#1|) (|:| -4390 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1762 ((-3 |#1| "failed") |#1| |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 42)) (-1965 (($ $) 41)) (-4102 (((-112) $) 39)) (-2781 (((-3 $ "failed") $ $) 19)) (-1977 (($ $) 74)) (-3788 (((-417 $) $) 73)) (-1436 (((-112) $ $) 60)) (-3329 (($) 17 T CONST)) (-1810 (($ $ $) 56)) (-1694 (((-3 $ "failed") $) 33)) (-1787 (($ $ $) 57)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) 52)) (-3521 (((-112) $) 72)) (-4367 (((-112) $) 31)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) 53)) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-3696 (((-1150) $) 9)) (-1525 (($ $) 71)) (-1709 (((-1112) $) 10)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-1635 (((-417 $) $) 75)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1762 (((-3 $ "failed") $ $) 43)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) 51)) (-2044 (((-766) $) 59)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 58)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ $) 44) (($ (-406 (-562))) 67)) (-1568 (((-766)) 28)) (-3799 (((-112) $ $) 40)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1859 (($ $ $) 66)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 70)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ (-406 (-562))) 69) (($ (-406 (-562)) $) 68))) -(((-362) (-139)) (T -362)) -((-1859 (*1 *1 *1 *1) (-4 *1 (-362)))) -(-13 (-306) (-1211) (-242) (-10 -8 (-15 -1859 ($ $ $)) (-6 -4401) (-6 -4395))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-562))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-612 #0#) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-451) . T) ((-554) . T) ((-642 #0#) . T) ((-642 $) . T) ((-712 #0#) . T) ((-712 $) . T) ((-721) . T) ((-915) . T) ((-1050 #0#) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1211) . T)) -((-4041 (((-112) $ $) 7)) (-3791 ((|#2| $ |#2|) 13)) (-2385 (($ $ (-1150)) 18)) (-3385 ((|#2| $) 14)) (-3315 (($ |#1|) 20) (($ |#1| (-1150)) 19)) (-3253 ((|#1| $) 16)) (-3696 (((-1150) $) 9)) (-2735 (((-1150) $) 15)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11)) (-1380 (($ $) 17)) (-1733 (((-112) $ $) 6))) -(((-363 |#1| |#2|) (-139) (-1092) (-1092)) (T -363)) -((-3315 (*1 *1 *2) (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092)))) (-3315 (*1 *1 *2 *3) (-12 (-5 *3 (-1150)) (-4 *1 (-363 *2 *4)) (-4 *2 (-1092)) (-4 *4 (-1092)))) (-2385 (*1 *1 *1 *2) (-12 (-5 *2 (-1150)) (-4 *1 (-363 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)))) (-1380 (*1 *1 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092)))) (-3253 (*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1092)) (-4 *2 (-1092)))) (-2735 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-5 *2 (-1150)))) (-3385 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1092)))) (-3791 (*1 *2 *1 *2) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1092))))) -(-13 (-1092) (-10 -8 (-15 -3315 ($ |t#1|)) (-15 -3315 ($ |t#1| (-1150))) (-15 -2385 ($ $ (-1150))) (-15 -1380 ($ $)) (-15 -3253 (|t#1| $)) (-15 -2735 ((-1150) $)) (-15 -3385 (|t#2| $)) (-15 -3791 (|t#2| $ |t#2|)))) -(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) -((-4041 (((-112) $ $) NIL)) (-3791 ((|#1| $ |#1|) 30)) (-2385 (($ $ (-1150)) 22)) (-2765 (((-3 |#1| "failed") $) 29)) (-3385 ((|#1| $) 27)) (-3315 (($ (-387)) 21) (($ (-387) (-1150)) 20)) (-3253 (((-387) $) 24)) (-3696 (((-1150) $) NIL)) (-2735 (((-1150) $) 25)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 19)) (-1380 (($ $) 23)) (-1733 (((-112) $ $) 18))) -(((-364 |#1|) (-13 (-363 (-387) |#1|) (-10 -8 (-15 -2765 ((-3 |#1| "failed") $)))) (-1092)) (T -364)) -((-2765 (*1 *2 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1092))))) -(-13 (-363 (-387) |#1|) (-10 -8 (-15 -2765 ((-3 |#1| "failed") $)))) -((-2016 (((-1256 (-683 |#2|)) (-1256 $)) 61)) (-3945 (((-683 |#2|) (-1256 $)) 120)) (-2452 ((|#2| $) 32)) (-2995 (((-683 |#2|) $ (-1256 $)) 123)) (-4276 (((-3 $ "failed") $) 75)) (-2949 ((|#2| $) 35)) (-3407 (((-1164 |#2|) $) 83)) (-2200 ((|#2| (-1256 $)) 106)) (-2974 (((-1164 |#2|) $) 28)) (-3178 (((-112)) 100)) (-3916 (($ (-1256 |#2|) (-1256 $)) 113)) (-1694 (((-3 $ "failed") $) 79)) (-2531 (((-112)) 95)) (-3671 (((-112)) 90)) (-2394 (((-112)) 53)) (-3506 (((-683 |#2|) (-1256 $)) 118)) (-2664 ((|#2| $) 31)) (-1583 (((-683 |#2|) $ (-1256 $)) 122)) (-2217 (((-3 $ "failed") $) 73)) (-3495 ((|#2| $) 34)) (-3849 (((-1164 |#2|) $) 82)) (-1636 ((|#2| (-1256 $)) 104)) (-3099 (((-1164 |#2|) $) 26)) (-3302 (((-112)) 99)) (-2720 (((-112)) 92)) (-1579 (((-112)) 51)) (-2104 (((-112)) 87)) (-3626 (((-112)) 101)) (-2205 (((-1256 |#2|) $ (-1256 $)) NIL) (((-683 |#2|) (-1256 $) (-1256 $)) 111)) (-3901 (((-112)) 97)) (-1823 (((-639 (-1256 |#2|))) 86)) (-4309 (((-112)) 98)) (-1517 (((-112)) 96)) (-2636 (((-112)) 46)) (-3488 (((-112)) 102))) -(((-365 |#1| |#2|) (-10 -8 (-15 -3407 ((-1164 |#2|) |#1|)) (-15 -3849 ((-1164 |#2|) |#1|)) (-15 -1823 ((-639 (-1256 |#2|)))) (-15 -4276 ((-3 |#1| "failed") |#1|)) (-15 -2217 ((-3 |#1| "failed") |#1|)) (-15 -1694 ((-3 |#1| "failed") |#1|)) (-15 -3671 ((-112))) (-15 -2720 ((-112))) (-15 -2531 ((-112))) (-15 -1579 ((-112))) (-15 -2394 ((-112))) (-15 -2104 ((-112))) (-15 -3488 ((-112))) (-15 -3626 ((-112))) (-15 -3178 ((-112))) (-15 -3302 ((-112))) (-15 -2636 ((-112))) (-15 -4309 ((-112))) (-15 -1517 ((-112))) (-15 -3901 ((-112))) (-15 -2974 ((-1164 |#2|) |#1|)) (-15 -3099 ((-1164 |#2|) |#1|)) (-15 -3945 ((-683 |#2|) (-1256 |#1|))) (-15 -3506 ((-683 |#2|) (-1256 |#1|))) (-15 -2200 (|#2| (-1256 |#1|))) (-15 -1636 (|#2| (-1256 |#1|))) (-15 -3916 (|#1| (-1256 |#2|) (-1256 |#1|))) (-15 -2205 ((-683 |#2|) (-1256 |#1|) (-1256 |#1|))) (-15 -2205 ((-1256 |#2|) |#1| (-1256 |#1|))) (-15 -2949 (|#2| |#1|)) (-15 -3495 (|#2| |#1|)) (-15 -2452 (|#2| |#1|)) (-15 -2664 (|#2| |#1|)) (-15 -2995 ((-683 |#2|) |#1| (-1256 |#1|))) (-15 -1583 ((-683 |#2|) |#1| (-1256 |#1|))) (-15 -2016 ((-1256 (-683 |#2|)) (-1256 |#1|)))) (-366 |#2|) (-171)) (T -365)) -((-3901 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1517 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-4309 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2636 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-3302 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-3178 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-3626 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-3488 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2104 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2394 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1579 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2531 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-2720 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-3671 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))) (-1823 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-639 (-1256 *4))) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4))))) -(-10 -8 (-15 -3407 ((-1164 |#2|) |#1|)) (-15 -3849 ((-1164 |#2|) |#1|)) (-15 -1823 ((-639 (-1256 |#2|)))) (-15 -4276 ((-3 |#1| "failed") |#1|)) (-15 -2217 ((-3 |#1| "failed") |#1|)) (-15 -1694 ((-3 |#1| "failed") |#1|)) (-15 -3671 ((-112))) (-15 -2720 ((-112))) (-15 -2531 ((-112))) (-15 -1579 ((-112))) (-15 -2394 ((-112))) (-15 -2104 ((-112))) (-15 -3488 ((-112))) (-15 -3626 ((-112))) (-15 -3178 ((-112))) (-15 -3302 ((-112))) (-15 -2636 ((-112))) (-15 -4309 ((-112))) (-15 -1517 ((-112))) (-15 -3901 ((-112))) (-15 -2974 ((-1164 |#2|) |#1|)) (-15 -3099 ((-1164 |#2|) |#1|)) (-15 -3945 ((-683 |#2|) (-1256 |#1|))) (-15 -3506 ((-683 |#2|) (-1256 |#1|))) (-15 -2200 (|#2| (-1256 |#1|))) (-15 -1636 (|#2| (-1256 |#1|))) (-15 -3916 (|#1| (-1256 |#2|) (-1256 |#1|))) (-15 -2205 ((-683 |#2|) (-1256 |#1|) (-1256 |#1|))) (-15 -2205 ((-1256 |#2|) |#1| (-1256 |#1|))) (-15 -2949 (|#2| |#1|)) (-15 -3495 (|#2| |#1|)) (-15 -2452 (|#2| |#1|)) (-15 -2664 (|#2| |#1|)) (-15 -2995 ((-683 |#2|) |#1| (-1256 |#1|))) (-15 -1583 ((-683 |#2|) |#1| (-1256 |#1|))) (-15 -2016 ((-1256 (-683 |#2|)) (-1256 |#1|)))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-4310 (((-3 $ "failed")) 37 (|has| |#1| (-554)))) (-2781 (((-3 $ "failed") $ $) 19)) (-2016 (((-1256 (-683 |#1|)) (-1256 $)) 78)) (-1540 (((-1256 $)) 81)) (-3329 (($) 17 T CONST)) (-1469 (((-3 (-2 (|:| |particular| $) (|:| -4291 (-639 $))) "failed")) 40 (|has| |#1| (-554)))) (-2447 (((-3 $ "failed")) 38 (|has| |#1| (-554)))) (-3945 (((-683 |#1|) (-1256 $)) 65)) (-2452 ((|#1| $) 74)) (-2995 (((-683 |#1|) $ (-1256 $)) 76)) (-4276 (((-3 $ "failed") $) 45 (|has| |#1| (-554)))) (-2127 (($ $ (-916)) 28)) (-2949 ((|#1| $) 72)) (-3407 (((-1164 |#1|) $) 42 (|has| |#1| (-554)))) (-2200 ((|#1| (-1256 $)) 67)) (-2974 (((-1164 |#1|) $) 63)) (-3178 (((-112)) 57)) (-3916 (($ (-1256 |#1|) (-1256 $)) 69)) (-1694 (((-3 $ "failed") $) 47 (|has| |#1| (-554)))) (-2172 (((-916)) 80)) (-1832 (((-112)) 54)) (-1492 (($ $ (-916)) 33)) (-2531 (((-112)) 50)) (-3671 (((-112)) 48)) (-2394 (((-112)) 52)) (-3502 (((-3 (-2 (|:| |particular| $) (|:| -4291 (-639 $))) "failed")) 41 (|has| |#1| (-554)))) (-3839 (((-3 $ "failed")) 39 (|has| |#1| (-554)))) (-3506 (((-683 |#1|) (-1256 $)) 66)) (-2664 ((|#1| $) 75)) (-1583 (((-683 |#1|) $ (-1256 $)) 77)) (-2217 (((-3 $ "failed") $) 46 (|has| |#1| (-554)))) (-3235 (($ $ (-916)) 29)) (-3495 ((|#1| $) 73)) (-3849 (((-1164 |#1|) $) 43 (|has| |#1| (-554)))) (-1636 ((|#1| (-1256 $)) 68)) (-3099 (((-1164 |#1|) $) 64)) (-3302 (((-112)) 58)) (-3696 (((-1150) $) 9)) (-2720 (((-112)) 49)) (-1579 (((-112)) 51)) (-2104 (((-112)) 53)) (-1709 (((-1112) $) 10)) (-3626 (((-112)) 56)) (-2205 (((-1256 |#1|) $ (-1256 $)) 71) (((-683 |#1|) (-1256 $) (-1256 $)) 70)) (-2555 (((-639 (-947 |#1|)) (-1256 $)) 79)) (-2114 (($ $ $) 25)) (-3901 (((-112)) 62)) (-4053 (((-857) $) 11)) (-1823 (((-639 (-1256 |#1|))) 44 (|has| |#1| (-554)))) (-2584 (($ $ $ $) 26)) (-4309 (((-112)) 60)) (-4324 (($ $ $) 24)) (-1517 (((-112)) 61)) (-2636 (((-112)) 59)) (-3488 (((-112)) 55)) (-2285 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 30)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-366 |#1|) (-139) (-171)) (T -366)) -((-1540 (*1 *2) (-12 (-4 *3 (-171)) (-5 *2 (-1256 *1)) (-4 *1 (-366 *3)))) (-2172 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-916)))) (-2555 (*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-639 (-947 *4))))) (-2016 (*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-1256 (-683 *4))))) (-1583 (*1 *2 *1 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-683 *4)))) (-2995 (*1 *2 *1 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-683 *4)))) (-2664 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-2452 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-3495 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-2949 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-2205 (*1 *2 *1 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-1256 *4)))) (-2205 (*1 *2 *3 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-683 *4)))) (-3916 (*1 *1 *2 *3) (-12 (-5 *2 (-1256 *4)) (-5 *3 (-1256 *1)) (-4 *4 (-171)) (-4 *1 (-366 *4)))) (-1636 (*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-2200 (*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *2)) (-4 *2 (-171)))) (-3506 (*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-683 *4)))) (-3945 (*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) (-5 *2 (-683 *4)))) (-3099 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-1164 *3)))) (-2974 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-1164 *3)))) (-3901 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1517 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-4309 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2636 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-3302 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-3178 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-3626 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-3488 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1832 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2104 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2394 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1579 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2531 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-2720 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-3671 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112)))) (-1694 (*1 *1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-554)))) (-2217 (*1 *1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-554)))) (-4276 (*1 *1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-554)))) (-1823 (*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-554)) (-5 *2 (-639 (-1256 *3))))) (-3849 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-554)) (-5 *2 (-1164 *3)))) (-3407 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-554)) (-5 *2 (-1164 *3)))) (-3502 (*1 *2) (|partial| -12 (-4 *3 (-554)) (-4 *3 (-171)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4291 (-639 *1)))) (-4 *1 (-366 *3)))) (-1469 (*1 *2) (|partial| -12 (-4 *3 (-554)) (-4 *3 (-171)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4291 (-639 *1)))) (-4 *1 (-366 *3)))) (-3839 (*1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-554)) (-4 *2 (-171)))) (-2447 (*1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-554)) (-4 *2 (-171)))) (-4310 (*1 *1) (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-554)) (-4 *2 (-171))))) -(-13 (-739 |t#1|) (-10 -8 (-15 -1540 ((-1256 $))) (-15 -2172 ((-916))) (-15 -2555 ((-639 (-947 |t#1|)) (-1256 $))) (-15 -2016 ((-1256 (-683 |t#1|)) (-1256 $))) (-15 -1583 ((-683 |t#1|) $ (-1256 $))) (-15 -2995 ((-683 |t#1|) $ (-1256 $))) (-15 -2664 (|t#1| $)) (-15 -2452 (|t#1| $)) (-15 -3495 (|t#1| $)) (-15 -2949 (|t#1| $)) (-15 -2205 ((-1256 |t#1|) $ (-1256 $))) (-15 -2205 ((-683 |t#1|) (-1256 $) (-1256 $))) (-15 -3916 ($ (-1256 |t#1|) (-1256 $))) (-15 -1636 (|t#1| (-1256 $))) (-15 -2200 (|t#1| (-1256 $))) (-15 -3506 ((-683 |t#1|) (-1256 $))) (-15 -3945 ((-683 |t#1|) (-1256 $))) (-15 -3099 ((-1164 |t#1|) $)) (-15 -2974 ((-1164 |t#1|) $)) (-15 -3901 ((-112))) (-15 -1517 ((-112))) (-15 -4309 ((-112))) (-15 -2636 ((-112))) (-15 -3302 ((-112))) (-15 -3178 ((-112))) (-15 -3626 ((-112))) (-15 -3488 ((-112))) (-15 -1832 ((-112))) (-15 -2104 ((-112))) (-15 -2394 ((-112))) (-15 -1579 ((-112))) (-15 -2531 ((-112))) (-15 -2720 ((-112))) (-15 -3671 ((-112))) (IF (|has| |t#1| (-554)) (PROGN (-15 -1694 ((-3 $ "failed") $)) (-15 -2217 ((-3 $ "failed") $)) (-15 -4276 ((-3 $ "failed") $)) (-15 -1823 ((-639 (-1256 |t#1|)))) (-15 -3849 ((-1164 |t#1|) $)) (-15 -3407 ((-1164 |t#1|) $)) (-15 -3502 ((-3 (-2 (|:| |particular| $) (|:| -4291 (-639 $))) "failed"))) (-15 -1469 ((-3 (-2 (|:| |particular| $) (|:| -4291 (-639 $))) "failed"))) (-15 -3839 ((-3 $ "failed"))) (-15 -2447 ((-3 $ "failed"))) (-15 -4310 ((-3 $ "failed"))) (-6 -4400)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-609 (-857)) . T) ((-642 |#1|) . T) ((-712 |#1|) . T) ((-715) . T) ((-739 |#1|) . T) ((-756) . T) ((-1050 |#1|) . T) ((-1092) . T)) -((-4041 (((-112) $ $) 7)) (-1382 (((-766)) 16)) (-1447 (($) 13)) (-3549 (((-916) $) 14)) (-3696 (((-1150) $) 9)) (-2464 (($ (-916)) 15)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11)) (-1733 (((-112) $ $) 6))) -(((-367) (-139)) (T -367)) -((-1382 (*1 *2) (-12 (-4 *1 (-367)) (-5 *2 (-766)))) (-2464 (*1 *1 *2) (-12 (-5 *2 (-916)) (-4 *1 (-367)))) (-3549 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-916)))) (-1447 (*1 *1) (-4 *1 (-367)))) -(-13 (-1092) (-10 -8 (-15 -1382 ((-766))) (-15 -2464 ($ (-916))) (-15 -3549 ((-916) $)) (-15 -1447 ($)))) -(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) -((-4342 (((-683 |#2|) (-1256 $)) 40)) (-3916 (($ (-1256 |#2|) (-1256 $)) 34)) (-4376 (((-683 |#2|) $ (-1256 $)) 42)) (-2736 ((|#2| (-1256 $)) 13)) (-2205 (((-1256 |#2|) $ (-1256 $)) NIL) (((-683 |#2|) (-1256 $) (-1256 $)) 25))) -(((-368 |#1| |#2| |#3|) (-10 -8 (-15 -4342 ((-683 |#2|) (-1256 |#1|))) (-15 -2736 (|#2| (-1256 |#1|))) (-15 -3916 (|#1| (-1256 |#2|) (-1256 |#1|))) (-15 -2205 ((-683 |#2|) (-1256 |#1|) (-1256 |#1|))) (-15 -2205 ((-1256 |#2|) |#1| (-1256 |#1|))) (-15 -4376 ((-683 |#2|) |#1| (-1256 |#1|)))) (-369 |#2| |#3|) (-171) (-1232 |#2|)) (T -368)) -NIL -(-10 -8 (-15 -4342 ((-683 |#2|) (-1256 |#1|))) (-15 -2736 (|#2| (-1256 |#1|))) (-15 -3916 (|#1| (-1256 |#2|) (-1256 |#1|))) (-15 -2205 ((-683 |#2|) (-1256 |#1|) (-1256 |#1|))) (-15 -2205 ((-1256 |#2|) |#1| (-1256 |#1|))) (-15 -4376 ((-683 |#2|) |#1| (-1256 |#1|)))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-4342 (((-683 |#1|) (-1256 $)) 47)) (-1748 ((|#1| $) 53)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-3916 (($ (-1256 |#1|) (-1256 $)) 49)) (-4376 (((-683 |#1|) $ (-1256 $)) 54)) (-1694 (((-3 $ "failed") $) 33)) (-2172 (((-916)) 55)) (-4367 (((-112) $) 31)) (-4363 ((|#1| $) 52)) (-1937 ((|#2| $) 45 (|has| |#1| (-362)))) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-2736 ((|#1| (-1256 $)) 48)) (-2205 (((-1256 |#1|) $ (-1256 $)) 51) (((-683 |#1|) (-1256 $) (-1256 $)) 50)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 38)) (-2059 (((-3 $ "failed") $) 44 (|has| |#1| (-144)))) (-3683 ((|#2| $) 46)) (-1568 (((-766)) 28)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-369 |#1| |#2|) (-139) (-171) (-1232 |t#1|)) (T -369)) -((-2172 (*1 *2) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1232 *3)) (-5 *2 (-916)))) (-4376 (*1 *2 *1 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1232 *4)) (-5 *2 (-683 *4)))) (-1748 (*1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1232 *2)) (-4 *2 (-171)))) (-4363 (*1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1232 *2)) (-4 *2 (-171)))) (-2205 (*1 *2 *1 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1232 *4)) (-5 *2 (-1256 *4)))) (-2205 (*1 *2 *3 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1232 *4)) (-5 *2 (-683 *4)))) (-3916 (*1 *1 *2 *3) (-12 (-5 *2 (-1256 *4)) (-5 *3 (-1256 *1)) (-4 *4 (-171)) (-4 *1 (-369 *4 *5)) (-4 *5 (-1232 *4)))) (-2736 (*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-369 *2 *4)) (-4 *4 (-1232 *2)) (-4 *2 (-171)))) (-4342 (*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1232 *4)) (-5 *2 (-683 *4)))) (-3683 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1232 *3)))) (-1937 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-171)) (-4 *3 (-362)) (-4 *2 (-1232 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -2172 ((-916))) (-15 -4376 ((-683 |t#1|) $ (-1256 $))) (-15 -1748 (|t#1| $)) (-15 -4363 (|t#1| $)) (-15 -2205 ((-1256 |t#1|) $ (-1256 $))) (-15 -2205 ((-683 |t#1|) (-1256 $) (-1256 $))) (-15 -3916 ($ (-1256 |t#1|) (-1256 $))) (-15 -2736 (|t#1| (-1256 $))) (-15 -4342 ((-683 |t#1|) (-1256 $))) (-15 -3683 (|t#2| $)) (IF (|has| |t#1| (-362)) (-15 -1937 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 (-562)) . T) ((-612 |#1|) . T) ((-609 (-857)) . T) ((-642 |#1|) . T) ((-642 $) . T) ((-712 |#1|) . T) ((-721) . T) ((-1050 |#1|) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) -((-1555 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-1954 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-4152 ((|#4| (-1 |#3| |#1|) |#2|) 21))) -(((-370 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4152 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1954 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1555 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1207) (-372 |#1|) (-1207) (-372 |#3|)) (T -370)) -((-1555 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1207)) (-4 *5 (-1207)) (-4 *2 (-372 *5)) (-5 *1 (-370 *6 *4 *5 *2)) (-4 *4 (-372 *6)))) (-1954 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1207)) (-4 *2 (-1207)) (-5 *1 (-370 *5 *4 *2 *6)) (-4 *4 (-372 *5)) (-4 *6 (-372 *2)))) (-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-4 *2 (-372 *6)) (-5 *1 (-370 *5 *4 *6 *2)) (-4 *4 (-372 *5))))) -(-10 -7 (-15 -4152 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1954 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1555 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-1706 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-3737 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-1395 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-2676 (($ $) 25)) (-4265 (((-562) (-1 (-112) |#2|) $) NIL) (((-562) |#2| $) 11) (((-562) |#2| $ (-562)) NIL)) (-4103 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-371 |#1| |#2|) (-10 -8 (-15 -3737 (|#1| |#1|)) (-15 -3737 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1706 ((-112) |#1|)) (-15 -1395 (|#1| |#1|)) (-15 -4103 (|#1| |#1| |#1|)) (-15 -4265 ((-562) |#2| |#1| (-562))) (-15 -4265 ((-562) |#2| |#1|)) (-15 -4265 ((-562) (-1 (-112) |#2|) |#1|)) (-15 -1706 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1395 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2676 (|#1| |#1|)) (-15 -4103 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-372 |#2|) (-1207)) (T -371)) -NIL -(-10 -8 (-15 -3737 (|#1| |#1|)) (-15 -3737 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1706 ((-112) |#1|)) (-15 -1395 (|#1| |#1|)) (-15 -4103 (|#1| |#1| |#1|)) (-15 -4265 ((-562) |#2| |#1| (-562))) (-15 -4265 ((-562) |#2| |#1|)) (-15 -4265 ((-562) (-1 (-112) |#2|) |#1|)) (-15 -1706 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1395 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2676 (|#1| |#1|)) (-15 -4103 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) -((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-3655 (((-1261) $ (-562) (-562)) 40 (|has| $ (-6 -4404)))) (-1706 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-845)))) (-3737 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4404))) (($ $) 88 (-12 (|has| |#1| (-845)) (|has| $ (-6 -4404))))) (-1395 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-845)))) (-3735 (((-112) $ (-766)) 8)) (-4200 ((|#1| $ (-562) |#1|) 52 (|has| $ (-6 -4404))) ((|#1| $ (-1223 (-562)) |#1|) 58 (|has| $ (-6 -4404)))) (-3556 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4403)))) (-3329 (($) 7 T CONST)) (-2673 (($ $) 90 (|has| $ (-6 -4404)))) (-2676 (($ $) 100)) (-1459 (($ $) 78 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1475 (($ |#1| $) 77 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4403)))) (-1954 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4403)))) (-1507 ((|#1| $ (-562) |#1|) 53 (|has| $ (-6 -4404)))) (-1420 ((|#1| $ (-562)) 51)) (-4265 (((-562) (-1 (-112) |#1|) $) 97) (((-562) |#1| $) 96 (|has| |#1| (-1092))) (((-562) |#1| $ (-562)) 95 (|has| |#1| (-1092)))) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4403)))) (-1458 (($ (-766) |#1|) 69)) (-4172 (((-112) $ (-766)) 9)) (-1849 (((-562) $) 43 (|has| (-562) (-845)))) (-1551 (($ $ $) 87 (|has| |#1| (-845)))) (-4103 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-845)))) (-2123 (((-639 |#1|) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1929 (((-562) $) 44 (|has| (-562) (-845)))) (-2993 (($ $ $) 86 (|has| |#1| (-845)))) (-1491 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4147 (((-112) $ (-766)) 10)) (-3696 (((-1150) $) 22 (|has| |#1| (-1092)))) (-3295 (($ |#1| $ (-562)) 60) (($ $ $ (-562)) 59)) (-3336 (((-639 (-562)) $) 46)) (-1987 (((-112) (-562) $) 47)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-1421 ((|#1| $) 42 (|has| (-562) (-845)))) (-1963 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3510 (($ $ |#1|) 41 (|has| $ (-6 -4404)))) (-3008 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) 14)) (-2716 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2366 (((-639 |#1|) $) 48)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-2343 ((|#1| $ (-562) |#1|) 50) ((|#1| $ (-562)) 49) (($ $ (-1223 (-562))) 63)) (-2880 (($ $ (-562)) 62) (($ $ (-1223 (-562))) 61)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4403))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-2694 (($ $ $ (-562)) 91 (|has| $ (-6 -4404)))) (-4220 (($ $) 13)) (-4208 (((-535) $) 79 (|has| |#1| (-610 (-535))))) (-4064 (($ (-639 |#1|)) 70)) (-2767 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-639 $)) 65)) (-4053 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-2879 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4403)))) (-1798 (((-112) $ $) 84 (|has| |#1| (-845)))) (-1771 (((-112) $ $) 83 (|has| |#1| (-845)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-1785 (((-112) $ $) 85 (|has| |#1| (-845)))) (-1761 (((-112) $ $) 82 (|has| |#1| (-845)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-372 |#1|) (-139) (-1207)) (T -372)) -((-4103 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-372 *3)) (-4 *3 (-1207)))) (-2676 (*1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1207)))) (-1395 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-372 *3)) (-4 *3 (-1207)))) (-1706 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-372 *4)) (-4 *4 (-1207)) (-5 *2 (-112)))) (-4265 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-372 *4)) (-4 *4 (-1207)) (-5 *2 (-562)))) (-4265 (*1 *2 *3 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-1207)) (-4 *3 (-1092)) (-5 *2 (-562)))) (-4265 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-372 *3)) (-4 *3 (-1207)) (-4 *3 (-1092)))) (-4103 (*1 *1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1207)) (-4 *2 (-845)))) (-1395 (*1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1207)) (-4 *2 (-845)))) (-1706 (*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-1207)) (-4 *3 (-845)) (-5 *2 (-112)))) (-2694 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-562)) (|has| *1 (-6 -4404)) (-4 *1 (-372 *3)) (-4 *3 (-1207)))) (-2673 (*1 *1 *1) (-12 (|has| *1 (-6 -4404)) (-4 *1 (-372 *2)) (-4 *2 (-1207)))) (-3737 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4404)) (-4 *1 (-372 *3)) (-4 *3 (-1207)))) (-3737 (*1 *1 *1) (-12 (|has| *1 (-6 -4404)) (-4 *1 (-372 *2)) (-4 *2 (-1207)) (-4 *2 (-845))))) -(-13 (-645 |t#1|) (-10 -8 (-6 -4403) (-15 -4103 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2676 ($ $)) (-15 -1395 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1706 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -4265 ((-562) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1092)) (PROGN (-15 -4265 ((-562) |t#1| $)) (-15 -4265 ((-562) |t#1| $ (-562)))) |%noBranch|) (IF (|has| |t#1| (-845)) (PROGN (-6 (-845)) (-15 -4103 ($ $ $)) (-15 -1395 ($ $)) (-15 -1706 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4404)) (PROGN (-15 -2694 ($ $ $ (-562))) (-15 -2673 ($ $)) (-15 -3737 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-845)) (-15 -3737 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) -4037 (|has| |#1| (-1092)) (|has| |#1| (-845))) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-845)) (|has| |#1| (-609 (-857)))) ((-150 |#1|) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-285 #0=(-562) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-600 #0# |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-645 |#1|) . T) ((-845) |has| |#1| (-845)) ((-1092) -4037 (|has| |#1| (-1092)) (|has| |#1| (-845))) ((-1207) . T)) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2850 (((-639 |#1|) $) 32)) (-1772 (($ $ (-766)) 33)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-2403 (((-1280 |#1| |#2|) (-1280 |#1| |#2|) $) 36)) (-2572 (($ $) 34)) (-2303 (((-1280 |#1| |#2|) (-1280 |#1| |#2|) $) 37)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-1433 (($ $ |#1| $) 31) (($ $ (-639 |#1|) (-639 $)) 30)) (-2250 (((-766) $) 38)) (-4064 (($ $ $) 29)) (-4053 (((-857) $) 11) (($ |#1|) 41) (((-1271 |#1| |#2|) $) 40) (((-1280 |#1| |#2|) $) 39)) (-4221 ((|#2| (-1280 |#1| |#2|) $) 42)) (-2285 (($) 18 T CONST)) (-4016 (($ (-666 |#1|)) 35)) (-1733 (((-112) $ $) 6)) (-1859 (($ $ |#2|) 28 (|has| |#2| (-362)))) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) -(((-373 |#1| |#2|) (-139) (-845) (-171)) (T -373)) -((-4221 (*1 *2 *3 *1) (-12 (-5 *3 (-1280 *4 *2)) (-4 *1 (-373 *4 *2)) (-4 *4 (-845)) (-4 *2 (-171)))) (-4053 (*1 *1 *2) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-845)) (-4 *3 (-171)))) (-4053 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)) (-5 *2 (-1271 *3 *4)))) (-4053 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)) (-5 *2 (-1280 *3 *4)))) (-2250 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)) (-5 *2 (-766)))) (-2303 (*1 *2 *2 *1) (-12 (-5 *2 (-1280 *3 *4)) (-4 *1 (-373 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)))) (-2403 (*1 *2 *2 *1) (-12 (-5 *2 (-1280 *3 *4)) (-4 *1 (-373 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)))) (-4016 (*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-845)) (-4 *1 (-373 *3 *4)) (-4 *4 (-171)))) (-2572 (*1 *1 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-845)) (-4 *3 (-171)))) (-1772 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-373 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)))) (-2850 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)) (-5 *2 (-639 *3)))) (-1433 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-845)) (-4 *3 (-171)))) (-1433 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 *4)) (-5 *3 (-639 *1)) (-4 *1 (-373 *4 *5)) (-4 *4 (-845)) (-4 *5 (-171))))) -(-13 (-630 |t#2|) (-10 -8 (-15 -4221 (|t#2| (-1280 |t#1| |t#2|) $)) (-15 -4053 ($ |t#1|)) (-15 -4053 ((-1271 |t#1| |t#2|) $)) (-15 -4053 ((-1280 |t#1| |t#2|) $)) (-15 -2250 ((-766) $)) (-15 -2303 ((-1280 |t#1| |t#2|) (-1280 |t#1| |t#2|) $)) (-15 -2403 ((-1280 |t#1| |t#2|) (-1280 |t#1| |t#2|) $)) (-15 -4016 ($ (-666 |t#1|))) (-15 -2572 ($ $)) (-15 -1772 ($ $ (-766))) (-15 -2850 ((-639 |t#1|) $)) (-15 -1433 ($ $ |t#1| $)) (-15 -1433 ($ $ (-639 |t#1|) (-639 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-609 (-857)) . T) ((-642 |#2|) . T) ((-630 |#2|) . T) ((-712 |#2|) . T) ((-1050 |#2|) . T) ((-1092) . T)) -((-3045 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 23)) (-3166 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-1807 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 22))) -(((-374 |#1| |#2|) (-10 -7 (-15 -3166 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1807 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3045 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1207) (-13 (-372 |#1|) (-10 -7 (-6 -4404)))) (T -374)) -((-3045 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1207)) (-5 *1 (-374 *4 *2)) (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4404)))))) (-1807 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1207)) (-5 *1 (-374 *4 *2)) (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4404)))))) (-3166 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1207)) (-5 *1 (-374 *4 *2)) (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4404))))))) -(-10 -7 (-15 -3166 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1807 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3045 (|#2| (-1 (-112) |#1| |#1|) |#2|))) -((-3449 (((-683 |#2|) (-683 $)) NIL) (((-2 (|:| -1767 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) NIL) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 22) (((-683 (-562)) (-683 $)) 14))) -(((-375 |#1| |#2|) (-10 -8 (-15 -3449 ((-683 (-562)) (-683 |#1|))) (-15 -3449 ((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 |#1|) (-1256 |#1|))) (-15 -3449 ((-2 (|:| -1767 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 |#1|) (-1256 |#1|))) (-15 -3449 ((-683 |#2|) (-683 |#1|)))) (-376 |#2|) (-1044)) (T -375)) -NIL -(-10 -8 (-15 -3449 ((-683 (-562)) (-683 |#1|))) (-15 -3449 ((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 |#1|) (-1256 |#1|))) (-15 -3449 ((-2 (|:| -1767 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 |#1|) (-1256 |#1|))) (-15 -3449 ((-683 |#2|) (-683 |#1|)))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-3449 (((-683 |#1|) (-683 $)) 36) (((-2 (|:| -1767 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) 35) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 43 (|has| |#1| (-635 (-562)))) (((-683 (-562)) (-683 $)) 42 (|has| |#1| (-635 (-562))))) (-1694 (((-3 $ "failed") $) 33)) (-4367 (((-112) $) 31)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11) (($ (-562)) 29)) (-1568 (((-766)) 28)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) -(((-376 |#1|) (-139) (-1044)) (T -376)) -NIL -(-13 (-635 |t#1|) (-10 -7 (IF (|has| |t#1| (-635 (-562))) (-6 (-635 (-562))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-612 (-562)) . T) ((-609 (-857)) . T) ((-642 $) . T) ((-635 (-562)) |has| |#1| (-635 (-562))) ((-635 |#1|) . T) ((-721) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) -((-4210 (((-639 (-293 (-947 (-168 |#1|)))) (-293 (-406 (-947 (-168 (-562))))) |#1|) 51) (((-639 (-293 (-947 (-168 |#1|)))) (-406 (-947 (-168 (-562)))) |#1|) 50) (((-639 (-639 (-293 (-947 (-168 |#1|))))) (-639 (-293 (-406 (-947 (-168 (-562)))))) |#1|) 47) (((-639 (-639 (-293 (-947 (-168 |#1|))))) (-639 (-406 (-947 (-168 (-562))))) |#1|) 41)) (-1333 (((-639 (-639 (-168 |#1|))) (-639 (-406 (-947 (-168 (-562))))) (-639 (-1168)) |#1|) 30) (((-639 (-168 |#1|)) (-406 (-947 (-168 (-562)))) |#1|) 18))) -(((-377 |#1|) (-10 -7 (-15 -4210 ((-639 (-639 (-293 (-947 (-168 |#1|))))) (-639 (-406 (-947 (-168 (-562))))) |#1|)) (-15 -4210 ((-639 (-639 (-293 (-947 (-168 |#1|))))) (-639 (-293 (-406 (-947 (-168 (-562)))))) |#1|)) (-15 -4210 ((-639 (-293 (-947 (-168 |#1|)))) (-406 (-947 (-168 (-562)))) |#1|)) (-15 -4210 ((-639 (-293 (-947 (-168 |#1|)))) (-293 (-406 (-947 (-168 (-562))))) |#1|)) (-15 -1333 ((-639 (-168 |#1|)) (-406 (-947 (-168 (-562)))) |#1|)) (-15 -1333 ((-639 (-639 (-168 |#1|))) (-639 (-406 (-947 (-168 (-562))))) (-639 (-1168)) |#1|))) (-13 (-362) (-843))) (T -377)) -((-1333 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 (-406 (-947 (-168 (-562)))))) (-5 *4 (-639 (-1168))) (-5 *2 (-639 (-639 (-168 *5)))) (-5 *1 (-377 *5)) (-4 *5 (-13 (-362) (-843))))) (-1333 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-947 (-168 (-562))))) (-5 *2 (-639 (-168 *4))) (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-843))))) (-4210 (*1 *2 *3 *4) (-12 (-5 *3 (-293 (-406 (-947 (-168 (-562)))))) (-5 *2 (-639 (-293 (-947 (-168 *4))))) (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-843))))) (-4210 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-947 (-168 (-562))))) (-5 *2 (-639 (-293 (-947 (-168 *4))))) (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-843))))) (-4210 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-293 (-406 (-947 (-168 (-562))))))) (-5 *2 (-639 (-639 (-293 (-947 (-168 *4)))))) (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-843))))) (-4210 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-406 (-947 (-168 (-562)))))) (-5 *2 (-639 (-639 (-293 (-947 (-168 *4)))))) (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-843)))))) -(-10 -7 (-15 -4210 ((-639 (-639 (-293 (-947 (-168 |#1|))))) (-639 (-406 (-947 (-168 (-562))))) |#1|)) (-15 -4210 ((-639 (-639 (-293 (-947 (-168 |#1|))))) (-639 (-293 (-406 (-947 (-168 (-562)))))) |#1|)) (-15 -4210 ((-639 (-293 (-947 (-168 |#1|)))) (-406 (-947 (-168 (-562)))) |#1|)) (-15 -4210 ((-639 (-293 (-947 (-168 |#1|)))) (-293 (-406 (-947 (-168 (-562))))) |#1|)) (-15 -1333 ((-639 (-168 |#1|)) (-406 (-947 (-168 (-562)))) |#1|)) (-15 -1333 ((-639 (-639 (-168 |#1|))) (-639 (-406 (-947 (-168 (-562))))) (-639 (-1168)) |#1|))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) 33)) (-2300 (((-562) $) 55)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-1302 (($ $) 110)) (-2987 (($ $) 82)) (-4098 (($ $) 71)) (-2781 (((-3 $ "failed") $ $) NIL)) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-1644 (($ $) 44)) (-1436 (((-112) $ $) NIL)) (-4206 (($ $) 80)) (-4074 (($ $) 69)) (-1587 (((-562) $) 64)) (-3355 (($ $ (-562)) 62)) (-3013 (($ $) NIL)) (-4120 (($ $) NIL)) (-3329 (($) NIL T CONST)) (-3410 (($ $) 112)) (-4048 (((-3 (-562) "failed") $) 189) (((-3 (-406 (-562)) "failed") $) 185)) (-3960 (((-562) $) 187) (((-406 (-562)) $) 183)) (-1810 (($ $ $) NIL)) (-3695 (((-562) $ $) 102)) (-1694 (((-3 $ "failed") $) 114)) (-2310 (((-406 (-562)) $ (-766)) 190) (((-406 (-562)) $ (-766) (-766)) 182)) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-3521 (((-112) $) NIL)) (-3326 (((-916)) 73) (((-916) (-916)) 98 (|has| $ (-6 -4394)))) (-2696 (((-112) $) 106)) (-4100 (($) 40)) (-2337 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL)) (-1642 (((-1261) (-766)) 152)) (-1328 (((-1261)) 157) (((-1261) (-766)) 158)) (-2042 (((-1261)) 159) (((-1261) (-766)) 160)) (-2815 (((-1261)) 155) (((-1261) (-766)) 156)) (-1993 (((-562) $) 58)) (-4367 (((-112) $) 104)) (-1895 (($ $ (-562)) NIL)) (-2140 (($ $) 48)) (-4363 (($ $) NIL)) (-3855 (((-112) $) 35)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1551 (($ $ $) NIL) (($) NIL (-12 (-2234 (|has| $ (-6 -4386))) (-2234 (|has| $ (-6 -4394)))))) (-2993 (($ $ $) NIL) (($) 99 (-12 (-2234 (|has| $ (-6 -4386))) (-2234 (|has| $ (-6 -4394)))))) (-3946 (((-562) $) 17)) (-1474 (($) 87) (($ $) 92)) (-2982 (($) 91) (($ $) 93)) (-4366 (($ $) 83)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) 116)) (-2898 (((-916) (-562)) 43 (|has| $ (-6 -4394)))) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2561 (($ $) 53)) (-3870 (($ $) 109)) (-4237 (($ (-562) (-562)) 107) (($ (-562) (-562) (-916)) 108)) (-1635 (((-417 $) $) NIL)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1300 (((-562) $) 19)) (-1701 (($) 94)) (-3430 (($ $) 79)) (-2044 (((-766) $) NIL)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-2244 (((-916)) 100) (((-916) (-916)) 101 (|has| $ (-6 -4394)))) (-4029 (($ $ (-766)) NIL) (($ $) 115)) (-3719 (((-916) (-562)) 47 (|has| $ (-6 -4394)))) (-3022 (($ $) NIL)) (-4130 (($ $) NIL)) (-3000 (($ $) NIL)) (-4108 (($ $) NIL)) (-2977 (($ $) 81)) (-4087 (($ $) 70)) (-4208 (((-378) $) 175) (((-224) $) 177) (((-887 (-378)) $) NIL) (((-1150) $) 162) (((-535) $) 173) (($ (-224)) 181)) (-4053 (((-857) $) 164) (($ (-562)) 186) (($ $) NIL) (($ (-406 (-562))) NIL) (($ (-562)) 186) (($ (-406 (-562))) NIL) (((-224) $) 178)) (-1568 (((-766)) NIL)) (-3636 (($ $) 111)) (-3573 (((-916)) 54) (((-916) (-916)) 66 (|has| $ (-6 -4394)))) (-3240 (((-916)) 103)) (-3054 (($ $) 86)) (-4165 (($ $) 46) (($ $ $) 52)) (-3799 (((-112) $ $) NIL)) (-3033 (($ $) 84)) (-4139 (($ $) 37)) (-3077 (($ $) NIL)) (-4183 (($ $) NIL)) (-1567 (($ $) NIL)) (-4195 (($ $) NIL)) (-3065 (($ $) NIL)) (-4175 (($ $) NIL)) (-3040 (($ $) 85)) (-4151 (($ $) 49)) (-2757 (($ $) 51)) (-2285 (($) 34 T CONST)) (-2294 (($) 38 T CONST)) (-2332 (((-1150) $) 27) (((-1150) $ (-112)) 29) (((-1261) (-817) $) 30) (((-1261) (-817) $ (-112)) 31)) (-3113 (($ $ (-766)) NIL) (($ $) NIL)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 39)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) 42)) (-1859 (($ $ $) 45) (($ $ (-562)) 41)) (-1847 (($ $) 36) (($ $ $) 50)) (-1836 (($ $ $) 61)) (** (($ $ (-916)) 67) (($ $ (-766)) NIL) (($ $ (-562)) 88) (($ $ (-406 (-562))) 125) (($ $ $) 117)) (* (($ (-916) $) 65) (($ (-766) $) NIL) (($ (-562) $) 68) (($ $ $) 60) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL))) -(((-378) (-13 (-403) (-232) (-610 (-1150)) (-823) (-609 (-224)) (-1192) (-610 (-535)) (-614 (-224)) (-10 -8 (-15 -1859 ($ $ (-562))) (-15 ** ($ $ $)) (-15 -2140 ($ $)) (-15 -3695 ((-562) $ $)) (-15 -3355 ($ $ (-562))) (-15 -2310 ((-406 (-562)) $ (-766))) (-15 -2310 ((-406 (-562)) $ (-766) (-766))) (-15 -1474 ($)) (-15 -2982 ($)) (-15 -1701 ($)) (-15 -4165 ($ $ $)) (-15 -1474 ($ $)) (-15 -2982 ($ $)) (-15 -2042 ((-1261))) (-15 -2042 ((-1261) (-766))) (-15 -2815 ((-1261))) (-15 -2815 ((-1261) (-766))) (-15 -1328 ((-1261))) (-15 -1328 ((-1261) (-766))) (-15 -1642 ((-1261) (-766))) (-6 -4394) (-6 -4386)))) (T -378)) -((** (*1 *1 *1 *1) (-5 *1 (-378))) (-1859 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-378)))) (-2140 (*1 *1 *1) (-5 *1 (-378))) (-3695 (*1 *2 *1 *1) (-12 (-5 *2 (-562)) (-5 *1 (-378)))) (-3355 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-378)))) (-2310 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-5 *2 (-406 (-562))) (-5 *1 (-378)))) (-2310 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-766)) (-5 *2 (-406 (-562))) (-5 *1 (-378)))) (-1474 (*1 *1) (-5 *1 (-378))) (-2982 (*1 *1) (-5 *1 (-378))) (-1701 (*1 *1) (-5 *1 (-378))) (-4165 (*1 *1 *1 *1) (-5 *1 (-378))) (-1474 (*1 *1 *1) (-5 *1 (-378))) (-2982 (*1 *1 *1) (-5 *1 (-378))) (-2042 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-378)))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1261)) (-5 *1 (-378)))) (-2815 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-378)))) (-2815 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1261)) (-5 *1 (-378)))) (-1328 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-378)))) (-1328 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1261)) (-5 *1 (-378)))) (-1642 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1261)) (-5 *1 (-378))))) -(-13 (-403) (-232) (-610 (-1150)) (-823) (-609 (-224)) (-1192) (-610 (-535)) (-614 (-224)) (-10 -8 (-15 -1859 ($ $ (-562))) (-15 ** ($ $ $)) (-15 -2140 ($ $)) (-15 -3695 ((-562) $ $)) (-15 -3355 ($ $ (-562))) (-15 -2310 ((-406 (-562)) $ (-766))) (-15 -2310 ((-406 (-562)) $ (-766) (-766))) (-15 -1474 ($)) (-15 -2982 ($)) (-15 -1701 ($)) (-15 -4165 ($ $ $)) (-15 -1474 ($ $)) (-15 -2982 ($ $)) (-15 -2042 ((-1261))) (-15 -2042 ((-1261) (-766))) (-15 -2815 ((-1261))) (-15 -2815 ((-1261) (-766))) (-15 -1328 ((-1261))) (-15 -1328 ((-1261) (-766))) (-15 -1642 ((-1261) (-766))) (-6 -4394) (-6 -4386))) -((-3888 (((-639 (-293 (-947 |#1|))) (-293 (-406 (-947 (-562)))) |#1|) 46) (((-639 (-293 (-947 |#1|))) (-406 (-947 (-562))) |#1|) 45) (((-639 (-639 (-293 (-947 |#1|)))) (-639 (-293 (-406 (-947 (-562))))) |#1|) 42) (((-639 (-639 (-293 (-947 |#1|)))) (-639 (-406 (-947 (-562)))) |#1|) 36)) (-3732 (((-639 |#1|) (-406 (-947 (-562))) |#1|) 20) (((-639 (-639 |#1|)) (-639 (-406 (-947 (-562)))) (-639 (-1168)) |#1|) 30))) -(((-379 |#1|) (-10 -7 (-15 -3888 ((-639 (-639 (-293 (-947 |#1|)))) (-639 (-406 (-947 (-562)))) |#1|)) (-15 -3888 ((-639 (-639 (-293 (-947 |#1|)))) (-639 (-293 (-406 (-947 (-562))))) |#1|)) (-15 -3888 ((-639 (-293 (-947 |#1|))) (-406 (-947 (-562))) |#1|)) (-15 -3888 ((-639 (-293 (-947 |#1|))) (-293 (-406 (-947 (-562)))) |#1|)) (-15 -3732 ((-639 (-639 |#1|)) (-639 (-406 (-947 (-562)))) (-639 (-1168)) |#1|)) (-15 -3732 ((-639 |#1|) (-406 (-947 (-562))) |#1|))) (-13 (-843) (-362))) (T -379)) -((-3732 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-947 (-562)))) (-5 *2 (-639 *4)) (-5 *1 (-379 *4)) (-4 *4 (-13 (-843) (-362))))) (-3732 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 (-406 (-947 (-562))))) (-5 *4 (-639 (-1168))) (-5 *2 (-639 (-639 *5))) (-5 *1 (-379 *5)) (-4 *5 (-13 (-843) (-362))))) (-3888 (*1 *2 *3 *4) (-12 (-5 *3 (-293 (-406 (-947 (-562))))) (-5 *2 (-639 (-293 (-947 *4)))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-843) (-362))))) (-3888 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-947 (-562)))) (-5 *2 (-639 (-293 (-947 *4)))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-843) (-362))))) (-3888 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-293 (-406 (-947 (-562)))))) (-5 *2 (-639 (-639 (-293 (-947 *4))))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-843) (-362))))) (-3888 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-406 (-947 (-562))))) (-5 *2 (-639 (-639 (-293 (-947 *4))))) (-5 *1 (-379 *4)) (-4 *4 (-13 (-843) (-362)))))) -(-10 -7 (-15 -3888 ((-639 (-639 (-293 (-947 |#1|)))) (-639 (-406 (-947 (-562)))) |#1|)) (-15 -3888 ((-639 (-639 (-293 (-947 |#1|)))) (-639 (-293 (-406 (-947 (-562))))) |#1|)) (-15 -3888 ((-639 (-293 (-947 |#1|))) (-406 (-947 (-562))) |#1|)) (-15 -3888 ((-639 (-293 (-947 |#1|))) (-293 (-406 (-947 (-562)))) |#1|)) (-15 -3732 ((-639 (-639 |#1|)) (-639 (-406 (-947 (-562)))) (-639 (-1168)) |#1|)) (-15 -3732 ((-639 |#1|) (-406 (-947 (-562))) |#1|))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#2| "failed") $) 26)) (-3960 ((|#2| $) 28)) (-1600 (($ $) NIL)) (-3627 (((-766) $) 10)) (-1869 (((-639 $) $) 20)) (-2833 (((-112) $) NIL)) (-3044 (($ |#2| |#1|) 18)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-2395 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-1560 ((|#2| $) 15)) (-1573 ((|#1| $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 44) (($ |#2|) 27)) (-3969 (((-639 |#1|) $) 17)) (-2266 ((|#1| $ |#2|) 46)) (-2285 (($) 29 T CONST)) (-2174 (((-639 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-1733 (((-112) $ $) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 34) (($ |#2| |#1|) 35))) -(((-380 |#1| |#2|) (-13 (-381 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1044) (-845)) (T -380)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-380 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-845))))) -(-13 (-381 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-4048 (((-3 |#2| "failed") $) 44)) (-3960 ((|#2| $) 45)) (-1600 (($ $) 30)) (-3627 (((-766) $) 34)) (-1869 (((-639 $) $) 35)) (-2833 (((-112) $) 38)) (-3044 (($ |#2| |#1|) 39)) (-4152 (($ (-1 |#1| |#1|) $) 40)) (-2395 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-1560 ((|#2| $) 33)) (-1573 ((|#1| $) 32)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11) (($ |#2|) 43)) (-3969 (((-639 |#1|) $) 36)) (-2266 ((|#1| $ |#2|) 41)) (-2285 (($) 18 T CONST)) (-2174 (((-639 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) -(((-381 |#1| |#2|) (-139) (-1044) (-1092)) (T -381)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-1092)))) (-2266 (*1 *2 *1 *3) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1092)) (-4 *2 (-1044)))) (-4152 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-381 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1092)))) (-3044 (*1 *1 *2 *3) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-1092)))) (-2833 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1092)) (-5 *2 (-112)))) (-2174 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1092)) (-5 *2 (-639 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3969 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1092)) (-5 *2 (-639 *3)))) (-1869 (*1 *2 *1) (-12 (-4 *3 (-1044)) (-4 *4 (-1092)) (-5 *2 (-639 *1)) (-4 *1 (-381 *3 *4)))) (-3627 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1092)) (-5 *2 (-766)))) (-1560 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-1092)))) (-1573 (*1 *2 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1092)) (-4 *2 (-1044)))) (-2395 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1092)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1600 (*1 *1 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-1092))))) -(-13 (-111 |t#1| |t#1|) (-1033 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2266 (|t#1| $ |t#2|)) (-15 -4152 ($ (-1 |t#1| |t#1|) $)) (-15 -3044 ($ |t#2| |t#1|)) (-15 -2833 ((-112) $)) (-15 -2174 ((-639 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3969 ((-639 |t#1|) $)) (-15 -1869 ((-639 $) $)) (-15 -3627 ((-766) $)) (-15 -1560 (|t#2| $)) (-15 -1573 (|t#1| $)) (-15 -2395 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1600 ($ $)) (IF (|has| |t#1| (-171)) (-6 (-712 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-612 |#2|) . T) ((-609 (-857)) . T) ((-642 |#1|) . T) ((-712 |#1|) |has| |#1| (-171)) ((-1033 |#2|) . T) ((-1050 |#1|) . T) ((-1092) . T)) -((-3218 (((-1261) $) 7)) (-4053 (((-857) $) 8) (($ (-683 (-693))) 14) (($ (-639 (-329))) 13) (($ (-329)) 12) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 11))) -(((-382) (-139)) (T -382)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-683 (-693))) (-4 *1 (-382)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-639 (-329))) (-4 *1 (-382)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-382)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) (-4 *1 (-382))))) -(-13 (-394) (-10 -8 (-15 -4053 ($ (-683 (-693)))) (-15 -4053 ($ (-639 (-329)))) (-15 -4053 ($ (-329))) (-15 -4053 ($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329)))))))) -(((-609 (-857)) . T) ((-394) . T) ((-1207) . T)) -((-4048 (((-3 $ "failed") (-683 (-315 (-378)))) 21) (((-3 $ "failed") (-683 (-315 (-562)))) 19) (((-3 $ "failed") (-683 (-947 (-378)))) 17) (((-3 $ "failed") (-683 (-947 (-562)))) 15) (((-3 $ "failed") (-683 (-406 (-947 (-378))))) 13) (((-3 $ "failed") (-683 (-406 (-947 (-562))))) 11)) (-3960 (($ (-683 (-315 (-378)))) 22) (($ (-683 (-315 (-562)))) 20) (($ (-683 (-947 (-378)))) 18) (($ (-683 (-947 (-562)))) 16) (($ (-683 (-406 (-947 (-378))))) 14) (($ (-683 (-406 (-947 (-562))))) 12)) (-3218 (((-1261) $) 7)) (-4053 (((-857) $) 8) (($ (-639 (-329))) 25) (($ (-329)) 24) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 23))) -(((-383) (-139)) (T -383)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-639 (-329))) (-4 *1 (-383)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-383)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) (-4 *1 (-383)))) (-3960 (*1 *1 *2) (-12 (-5 *2 (-683 (-315 (-378)))) (-4 *1 (-383)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-683 (-315 (-378)))) (-4 *1 (-383)))) (-3960 (*1 *1 *2) (-12 (-5 *2 (-683 (-315 (-562)))) (-4 *1 (-383)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-683 (-315 (-562)))) (-4 *1 (-383)))) (-3960 (*1 *1 *2) (-12 (-5 *2 (-683 (-947 (-378)))) (-4 *1 (-383)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-683 (-947 (-378)))) (-4 *1 (-383)))) (-3960 (*1 *1 *2) (-12 (-5 *2 (-683 (-947 (-562)))) (-4 *1 (-383)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-683 (-947 (-562)))) (-4 *1 (-383)))) (-3960 (*1 *1 *2) (-12 (-5 *2 (-683 (-406 (-947 (-378))))) (-4 *1 (-383)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-683 (-406 (-947 (-378))))) (-4 *1 (-383)))) (-3960 (*1 *1 *2) (-12 (-5 *2 (-683 (-406 (-947 (-562))))) (-4 *1 (-383)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-683 (-406 (-947 (-562))))) (-4 *1 (-383))))) -(-13 (-394) (-10 -8 (-15 -4053 ($ (-639 (-329)))) (-15 -4053 ($ (-329))) (-15 -4053 ($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329)))))) (-15 -3960 ($ (-683 (-315 (-378))))) (-15 -4048 ((-3 $ "failed") (-683 (-315 (-378))))) (-15 -3960 ($ (-683 (-315 (-562))))) (-15 -4048 ((-3 $ "failed") (-683 (-315 (-562))))) (-15 -3960 ($ (-683 (-947 (-378))))) (-15 -4048 ((-3 $ "failed") (-683 (-947 (-378))))) (-15 -3960 ($ (-683 (-947 (-562))))) (-15 -4048 ((-3 $ "failed") (-683 (-947 (-562))))) (-15 -3960 ($ (-683 (-406 (-947 (-378)))))) (-15 -4048 ((-3 $ "failed") (-683 (-406 (-947 (-378)))))) (-15 -3960 ($ (-683 (-406 (-947 (-562)))))) (-15 -4048 ((-3 $ "failed") (-683 (-406 (-947 (-562)))))))) -(((-609 (-857)) . T) ((-394) . T) ((-1207) . T)) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3329 (($) NIL T CONST)) (-1600 (($ $) NIL)) (-1377 (($ |#1| |#2|) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-2006 ((|#2| $) NIL)) (-1573 ((|#1| $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 28)) (-2285 (($) 12 T CONST)) (-1733 (((-112) $ $) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19))) -(((-384 |#1| |#2|) (-13 (-111 |#1| |#1|) (-508 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-171)) (-6 (-712 |#1|)) |%noBranch|))) (-1044) (-845)) (T -384)) -NIL -(-13 (-111 |#1| |#1|) (-508 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-171)) (-6 (-712 |#1|)) |%noBranch|))) -((-4041 (((-112) $ $) NIL)) (-1382 (((-766) $) 58)) (-3329 (($) NIL T CONST)) (-2403 (((-3 $ "failed") $ $) 60)) (-4048 (((-3 |#1| "failed") $) NIL)) (-3960 ((|#1| $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-4069 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 52)) (-4367 (((-112) $) 15)) (-3111 ((|#1| $ (-562)) NIL)) (-1646 (((-766) $ (-562)) NIL)) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-2491 (($ (-1 |#1| |#1|) $) 38)) (-1369 (($ (-1 (-766) (-766)) $) 35)) (-2303 (((-3 $ "failed") $ $) 49)) (-3696 (((-1150) $) NIL)) (-2938 (($ $ $) 26)) (-1616 (($ $ $) 24)) (-1709 (((-1112) $) NIL)) (-2656 (((-639 (-2 (|:| |gen| |#1|) (|:| -3430 (-766)))) $) 32)) (-3204 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 55)) (-4053 (((-857) $) 22) (($ |#1|) NIL)) (-2294 (($) 9 T CONST)) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1771 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1733 (((-112) $ $) 41)) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1761 (((-112) $ $) 62 (|has| |#1| (-845)))) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ |#1| (-766)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28))) -(((-385 |#1|) (-13 (-721) (-1033 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-766))) (-15 -1616 ($ $ $)) (-15 -2938 ($ $ $)) (-15 -2303 ((-3 $ "failed") $ $)) (-15 -2403 ((-3 $ "failed") $ $)) (-15 -3204 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4069 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1382 ((-766) $)) (-15 -2656 ((-639 (-2 (|:| |gen| |#1|) (|:| -3430 (-766)))) $)) (-15 -1646 ((-766) $ (-562))) (-15 -3111 (|#1| $ (-562))) (-15 -1369 ($ (-1 (-766) (-766)) $)) (-15 -2491 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|))) (-1092)) (T -385)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1092)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1092)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-766)) (-5 *1 (-385 *2)) (-4 *2 (-1092)))) (-1616 (*1 *1 *1 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1092)))) (-2938 (*1 *1 *1 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1092)))) (-2303 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-385 *2)) (-4 *2 (-1092)))) (-2403 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-385 *2)) (-4 *2 (-1092)))) (-3204 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-385 *3)) (|:| |rm| (-385 *3)))) (-5 *1 (-385 *3)) (-4 *3 (-1092)))) (-4069 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-385 *3)) (|:| |mm| (-385 *3)) (|:| |rm| (-385 *3)))) (-5 *1 (-385 *3)) (-4 *3 (-1092)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-385 *3)) (-4 *3 (-1092)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| |gen| *3) (|:| -3430 (-766))))) (-5 *1 (-385 *3)) (-4 *3 (-1092)))) (-1646 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *2 (-766)) (-5 *1 (-385 *4)) (-4 *4 (-1092)))) (-3111 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *1 (-385 *2)) (-4 *2 (-1092)))) (-1369 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-766) (-766))) (-5 *1 (-385 *3)) (-4 *3 (-1092)))) (-2491 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1092)) (-5 *1 (-385 *3))))) -(-13 (-721) (-1033 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-766))) (-15 -1616 ($ $ $)) (-15 -2938 ($ $ $)) (-15 -2303 ((-3 $ "failed") $ $)) (-15 -2403 ((-3 $ "failed") $ $)) (-15 -3204 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4069 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1382 ((-766) $)) (-15 -2656 ((-639 (-2 (|:| |gen| |#1|) (|:| -3430 (-766)))) $)) (-15 -1646 ((-766) $ (-562))) (-15 -3111 (|#1| $ (-562))) (-15 -1369 ($ (-1 (-766) (-766)) $)) (-15 -2491 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 42)) (-1965 (($ $) 41)) (-4102 (((-112) $) 39)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-4048 (((-3 (-562) "failed") $) 48)) (-3960 (((-562) $) 49)) (-1694 (((-3 $ "failed") $) 33)) (-4367 (((-112) $) 31)) (-1551 (($ $ $) 55)) (-2993 (($ $ $) 54)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-1762 (((-3 $ "failed") $ $) 43)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ $) 44) (($ (-562)) 47)) (-1568 (((-766)) 28)) (-3799 (((-112) $ $) 40)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1798 (((-112) $ $) 52)) (-1771 (((-112) $ $) 51)) (-1733 (((-112) $ $) 6)) (-1785 (((-112) $ $) 53)) (-1761 (((-112) $ $) 50)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) -(((-386) (-139)) (T -386)) -NIL -(-13 (-554) (-845) (-1033 (-562))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-289) . T) ((-554) . T) ((-642 $) . T) ((-712 $) . T) ((-721) . T) ((-845) . T) ((-1033 (-562)) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) -((-4041 (((-112) $ $) NIL)) (-4062 (((-112) $) 20)) (-4140 (((-112) $) 19)) (-1458 (($ (-1150) (-1150) (-1150)) 21)) (-3253 (((-1150) $) 16)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2335 (($ (-1150) (-1150) (-1150)) 14)) (-2181 (((-1150) $) 17)) (-2947 (((-112) $) 18)) (-2683 (((-1150) $) 15)) (-4053 (((-857) $) 12) (($ (-1150)) 13) (((-1150) $) 9)) (-1733 (((-112) $ $) 7))) -(((-387) (-388)) (T -387)) -NIL -(-388) -((-4041 (((-112) $ $) 7)) (-4062 (((-112) $) 16)) (-4140 (((-112) $) 17)) (-1458 (($ (-1150) (-1150) (-1150)) 15)) (-3253 (((-1150) $) 20)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-2335 (($ (-1150) (-1150) (-1150)) 22)) (-2181 (((-1150) $) 19)) (-2947 (((-112) $) 18)) (-2683 (((-1150) $) 21)) (-4053 (((-857) $) 11) (($ (-1150)) 24) (((-1150) $) 23)) (-1733 (((-112) $ $) 6))) -(((-388) (-139)) (T -388)) -((-2335 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1150)) (-4 *1 (-388)))) (-2683 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1150)))) (-3253 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1150)))) (-2181 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1150)))) (-2947 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))) (-4140 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))) (-4062 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112)))) (-1458 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1150)) (-4 *1 (-388))))) -(-13 (-1092) (-489 (-1150)) (-10 -8 (-15 -2335 ($ (-1150) (-1150) (-1150))) (-15 -2683 ((-1150) $)) (-15 -3253 ((-1150) $)) (-15 -2181 ((-1150) $)) (-15 -2947 ((-112) $)) (-15 -4140 ((-112) $)) (-15 -4062 ((-112) $)) (-15 -1458 ($ (-1150) (-1150) (-1150))))) -(((-102) . T) ((-612 #0=(-1150)) . T) ((-609 (-857)) . T) ((-609 #0#) . T) ((-489 #0#) . T) ((-1092) . T)) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-2072 (((-857) $) 50)) (-3329 (($) NIL T CONST)) (-2127 (($ $ (-916)) NIL)) (-1492 (($ $ (-916)) NIL)) (-3235 (($ $ (-916)) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-3147 (($ (-766)) 26)) (-4340 (((-766)) 17)) (-3738 (((-857) $) 52)) (-2114 (($ $ $) NIL)) (-4053 (((-857) $) NIL)) (-2584 (($ $ $ $) NIL)) (-4324 (($ $ $) NIL)) (-2285 (($) 20 T CONST)) (-1733 (((-112) $ $) 28)) (-1847 (($ $) 34) (($ $ $) 36)) (-1836 (($ $ $) 37)) (** (($ $ (-916)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) -(((-389 |#1| |#2| |#3|) (-13 (-739 |#3|) (-10 -8 (-15 -4340 ((-766))) (-15 -3738 ((-857) $)) (-15 -2072 ((-857) $)) (-15 -3147 ($ (-766))))) (-766) (-766) (-171)) (T -389)) -((-4340 (*1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-171)))) (-3738 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 (-766)) (-14 *4 (-766)) (-4 *5 (-171)))) (-2072 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 (-766)) (-14 *4 (-766)) (-4 *5 (-171)))) (-3147 (*1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-171))))) -(-13 (-739 |#3|) (-10 -8 (-15 -4340 ((-766))) (-15 -3738 ((-857) $)) (-15 -2072 ((-857) $)) (-15 -3147 ($ (-766))))) -((-3268 (((-1150)) 10)) (-2704 (((-1139 (-1150))) 28)) (-3176 (((-1261) (-1150)) 25) (((-1261) (-387)) 24)) (-3195 (((-1261)) 26)) (-1319 (((-1139 (-1150))) 27))) -(((-390) (-10 -7 (-15 -1319 ((-1139 (-1150)))) (-15 -2704 ((-1139 (-1150)))) (-15 -3195 ((-1261))) (-15 -3176 ((-1261) (-387))) (-15 -3176 ((-1261) (-1150))) (-15 -3268 ((-1150))))) (T -390)) -((-3268 (*1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-390)))) (-3176 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-390)))) (-3176 (*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1261)) (-5 *1 (-390)))) (-3195 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-390)))) (-2704 (*1 *2) (-12 (-5 *2 (-1139 (-1150))) (-5 *1 (-390)))) (-1319 (*1 *2) (-12 (-5 *2 (-1139 (-1150))) (-5 *1 (-390))))) -(-10 -7 (-15 -1319 ((-1139 (-1150)))) (-15 -2704 ((-1139 (-1150)))) (-15 -3195 ((-1261))) (-15 -3176 ((-1261) (-387))) (-15 -3176 ((-1261) (-1150))) (-15 -3268 ((-1150)))) -((-1993 (((-766) (-335 |#1| |#2| |#3| |#4|)) 16))) -(((-391 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1993 ((-766) (-335 |#1| |#2| |#3| |#4|)))) (-13 (-367) (-362)) (-1232 |#1|) (-1232 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -391)) -((-1993 (*1 *2 *3) (-12 (-5 *3 (-335 *4 *5 *6 *7)) (-4 *4 (-13 (-367) (-362))) (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-406 *5))) (-4 *7 (-341 *4 *5 *6)) (-5 *2 (-766)) (-5 *1 (-391 *4 *5 *6 *7))))) -(-10 -7 (-15 -1993 ((-766) (-335 |#1| |#2| |#3| |#4|)))) -((-4053 (((-393) |#1|) 11))) -(((-392 |#1|) (-10 -7 (-15 -4053 ((-393) |#1|))) (-1092)) (T -392)) -((-4053 (*1 *2 *3) (-12 (-5 *2 (-393)) (-5 *1 (-392 *3)) (-4 *3 (-1092))))) -(-10 -7 (-15 -4053 ((-393) |#1|))) -((-4041 (((-112) $ $) NIL)) (-2442 (((-639 (-1150)) $ (-639 (-1150))) 38)) (-3603 (((-639 (-1150)) $ (-639 (-1150))) 39)) (-2153 (((-639 (-1150)) $ (-639 (-1150))) 40)) (-2653 (((-639 (-1150)) $) 35)) (-1458 (($) 23)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2655 (((-639 (-1150)) $) 36)) (-2945 (((-639 (-1150)) $) 37)) (-1479 (((-1261) $ (-562)) 33) (((-1261) $) 34)) (-4208 (($ (-857) (-562)) 30)) (-4053 (((-857) $) 42) (($ (-857)) 25)) (-1733 (((-112) $ $) NIL))) -(((-393) (-13 (-1092) (-612 (-857)) (-10 -8 (-15 -4208 ($ (-857) (-562))) (-15 -1479 ((-1261) $ (-562))) (-15 -1479 ((-1261) $)) (-15 -2945 ((-639 (-1150)) $)) (-15 -2655 ((-639 (-1150)) $)) (-15 -1458 ($)) (-15 -2653 ((-639 (-1150)) $)) (-15 -2153 ((-639 (-1150)) $ (-639 (-1150)))) (-15 -3603 ((-639 (-1150)) $ (-639 (-1150)))) (-15 -2442 ((-639 (-1150)) $ (-639 (-1150))))))) (T -393)) -((-4208 (*1 *1 *2 *3) (-12 (-5 *2 (-857)) (-5 *3 (-562)) (-5 *1 (-393)))) (-1479 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *2 (-1261)) (-5 *1 (-393)))) (-1479 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-393)))) (-2945 (*1 *2 *1) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-393)))) (-2655 (*1 *2 *1) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-393)))) (-1458 (*1 *1) (-5 *1 (-393))) (-2653 (*1 *2 *1) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-393)))) (-2153 (*1 *2 *1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-393)))) (-3603 (*1 *2 *1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-393)))) (-2442 (*1 *2 *1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-393))))) -(-13 (-1092) (-612 (-857)) (-10 -8 (-15 -4208 ($ (-857) (-562))) (-15 -1479 ((-1261) $ (-562))) (-15 -1479 ((-1261) $)) (-15 -2945 ((-639 (-1150)) $)) (-15 -2655 ((-639 (-1150)) $)) (-15 -1458 ($)) (-15 -2653 ((-639 (-1150)) $)) (-15 -2153 ((-639 (-1150)) $ (-639 (-1150)))) (-15 -3603 ((-639 (-1150)) $ (-639 (-1150)))) (-15 -2442 ((-639 (-1150)) $ (-639 (-1150)))))) -((-3218 (((-1261) $) 7)) (-4053 (((-857) $) 8))) -(((-394) (-139)) (T -394)) -((-3218 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1261))))) -(-13 (-1207) (-609 (-857)) (-10 -8 (-15 -3218 ((-1261) $)))) -(((-609 (-857)) . T) ((-1207) . T)) -((-4048 (((-3 $ "failed") (-315 (-378))) 21) (((-3 $ "failed") (-315 (-562))) 19) (((-3 $ "failed") (-947 (-378))) 17) (((-3 $ "failed") (-947 (-562))) 15) (((-3 $ "failed") (-406 (-947 (-378)))) 13) (((-3 $ "failed") (-406 (-947 (-562)))) 11)) (-3960 (($ (-315 (-378))) 22) (($ (-315 (-562))) 20) (($ (-947 (-378))) 18) (($ (-947 (-562))) 16) (($ (-406 (-947 (-378)))) 14) (($ (-406 (-947 (-562)))) 12)) (-3218 (((-1261) $) 7)) (-4053 (((-857) $) 8) (($ (-639 (-329))) 25) (($ (-329)) 24) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 23))) -(((-395) (-139)) (T -395)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-639 (-329))) (-4 *1 (-395)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-395)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) (-4 *1 (-395)))) (-3960 (*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-4 *1 (-395)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-378))) (-4 *1 (-395)))) (-3960 (*1 *1 *2) (-12 (-5 *2 (-315 (-562))) (-4 *1 (-395)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-562))) (-4 *1 (-395)))) (-3960 (*1 *1 *2) (-12 (-5 *2 (-947 (-378))) (-4 *1 (-395)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-947 (-378))) (-4 *1 (-395)))) (-3960 (*1 *1 *2) (-12 (-5 *2 (-947 (-562))) (-4 *1 (-395)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-947 (-562))) (-4 *1 (-395)))) (-3960 (*1 *1 *2) (-12 (-5 *2 (-406 (-947 (-378)))) (-4 *1 (-395)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-947 (-378)))) (-4 *1 (-395)))) (-3960 (*1 *1 *2) (-12 (-5 *2 (-406 (-947 (-562)))) (-4 *1 (-395)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 (-947 (-562)))) (-4 *1 (-395))))) -(-13 (-394) (-10 -8 (-15 -4053 ($ (-639 (-329)))) (-15 -4053 ($ (-329))) (-15 -4053 ($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329)))))) (-15 -3960 ($ (-315 (-378)))) (-15 -4048 ((-3 $ "failed") (-315 (-378)))) (-15 -3960 ($ (-315 (-562)))) (-15 -4048 ((-3 $ "failed") (-315 (-562)))) (-15 -3960 ($ (-947 (-378)))) (-15 -4048 ((-3 $ "failed") (-947 (-378)))) (-15 -3960 ($ (-947 (-562)))) (-15 -4048 ((-3 $ "failed") (-947 (-562)))) (-15 -3960 ($ (-406 (-947 (-378))))) (-15 -4048 ((-3 $ "failed") (-406 (-947 (-378))))) (-15 -3960 ($ (-406 (-947 (-562))))) (-15 -4048 ((-3 $ "failed") (-406 (-947 (-562))))))) -(((-609 (-857)) . T) ((-394) . T) ((-1207) . T)) -((-2056 (((-639 (-1150)) (-639 (-1150))) 9)) (-3218 (((-1261) (-387)) 27)) (-1712 (((-1096) (-1168) (-639 (-1168)) (-1171) (-639 (-1168))) 60) (((-1096) (-1168) (-639 (-3 (|:| |array| (-639 (-1168))) (|:| |scalar| (-1168)))) (-639 (-639 (-3 (|:| |array| (-639 (-1168))) (|:| |scalar| (-1168))))) (-639 (-1168)) (-1168)) 35) (((-1096) (-1168) (-639 (-3 (|:| |array| (-639 (-1168))) (|:| |scalar| (-1168)))) (-639 (-639 (-3 (|:| |array| (-639 (-1168))) (|:| |scalar| (-1168))))) (-639 (-1168))) 34))) -(((-396) (-10 -7 (-15 -1712 ((-1096) (-1168) (-639 (-3 (|:| |array| (-639 (-1168))) (|:| |scalar| (-1168)))) (-639 (-639 (-3 (|:| |array| (-639 (-1168))) (|:| |scalar| (-1168))))) (-639 (-1168)))) (-15 -1712 ((-1096) (-1168) (-639 (-3 (|:| |array| (-639 (-1168))) (|:| |scalar| (-1168)))) (-639 (-639 (-3 (|:| |array| (-639 (-1168))) (|:| |scalar| (-1168))))) (-639 (-1168)) (-1168))) (-15 -1712 ((-1096) (-1168) (-639 (-1168)) (-1171) (-639 (-1168)))) (-15 -3218 ((-1261) (-387))) (-15 -2056 ((-639 (-1150)) (-639 (-1150)))))) (T -396)) -((-2056 (*1 *2 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-396)))) (-3218 (*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1261)) (-5 *1 (-396)))) (-1712 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-639 (-1168))) (-5 *5 (-1171)) (-5 *3 (-1168)) (-5 *2 (-1096)) (-5 *1 (-396)))) (-1712 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-639 (-639 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-639 (-3 (|:| |array| (-639 *3)) (|:| |scalar| (-1168))))) (-5 *6 (-639 (-1168))) (-5 *3 (-1168)) (-5 *2 (-1096)) (-5 *1 (-396)))) (-1712 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-639 (-639 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-639 (-3 (|:| |array| (-639 *3)) (|:| |scalar| (-1168))))) (-5 *6 (-639 (-1168))) (-5 *3 (-1168)) (-5 *2 (-1096)) (-5 *1 (-396))))) -(-10 -7 (-15 -1712 ((-1096) (-1168) (-639 (-3 (|:| |array| (-639 (-1168))) (|:| |scalar| (-1168)))) (-639 (-639 (-3 (|:| |array| (-639 (-1168))) (|:| |scalar| (-1168))))) (-639 (-1168)))) (-15 -1712 ((-1096) (-1168) (-639 (-3 (|:| |array| (-639 (-1168))) (|:| |scalar| (-1168)))) (-639 (-639 (-3 (|:| |array| (-639 (-1168))) (|:| |scalar| (-1168))))) (-639 (-1168)) (-1168))) (-15 -1712 ((-1096) (-1168) (-639 (-1168)) (-1171) (-639 (-1168)))) (-15 -3218 ((-1261) (-387))) (-15 -2056 ((-639 (-1150)) (-639 (-1150))))) -((-3218 (((-1261) $) 36)) (-4053 (((-857) $) 96) (($ (-329)) 98) (($ (-639 (-329))) 97) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 95) (($ (-315 (-695))) 52) (($ (-315 (-693))) 71) (($ (-315 (-688))) 84) (($ (-293 (-315 (-695)))) 66) (($ (-293 (-315 (-693)))) 79) (($ (-293 (-315 (-688)))) 92) (($ (-315 (-562))) 103) (($ (-315 (-378))) 116) (($ (-315 (-168 (-378)))) 129) (($ (-293 (-315 (-562)))) 111) (($ (-293 (-315 (-378)))) 124) (($ (-293 (-315 (-168 (-378))))) 137))) -(((-397 |#1| |#2| |#3| |#4|) (-13 (-394) (-10 -8 (-15 -4053 ($ (-329))) (-15 -4053 ($ (-639 (-329)))) (-15 -4053 ($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329)))))) (-15 -4053 ($ (-315 (-695)))) (-15 -4053 ($ (-315 (-693)))) (-15 -4053 ($ (-315 (-688)))) (-15 -4053 ($ (-293 (-315 (-695))))) (-15 -4053 ($ (-293 (-315 (-693))))) (-15 -4053 ($ (-293 (-315 (-688))))) (-15 -4053 ($ (-315 (-562)))) (-15 -4053 ($ (-315 (-378)))) (-15 -4053 ($ (-315 (-168 (-378))))) (-15 -4053 ($ (-293 (-315 (-562))))) (-15 -4053 ($ (-293 (-315 (-378))))) (-15 -4053 ($ (-293 (-315 (-168 (-378)))))))) (-1168) (-3 (|:| |fst| (-433)) (|:| -2649 "void")) (-639 (-1168)) (-1172)) (T -397)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-329)) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-639 (-329))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-315 (-695))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-315 (-693))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-315 (-688))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-695)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-693)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-688)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-315 (-562))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-315 (-168 (-378)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-562)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-378)))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-293 (-315 (-168 (-378))))) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) (-14 *5 (-639 (-1168))) (-14 *6 (-1172))))) -(-13 (-394) (-10 -8 (-15 -4053 ($ (-329))) (-15 -4053 ($ (-639 (-329)))) (-15 -4053 ($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329)))))) (-15 -4053 ($ (-315 (-695)))) (-15 -4053 ($ (-315 (-693)))) (-15 -4053 ($ (-315 (-688)))) (-15 -4053 ($ (-293 (-315 (-695))))) (-15 -4053 ($ (-293 (-315 (-693))))) (-15 -4053 ($ (-293 (-315 (-688))))) (-15 -4053 ($ (-315 (-562)))) (-15 -4053 ($ (-315 (-378)))) (-15 -4053 ($ (-315 (-168 (-378))))) (-15 -4053 ($ (-293 (-315 (-562))))) (-15 -4053 ($ (-293 (-315 (-378))))) (-15 -4053 ($ (-293 (-315 (-168 (-378)))))))) -((-4041 (((-112) $ $) NIL)) (-3408 ((|#2| $) 36)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2352 (($ (-406 |#2|)) 85)) (-4374 (((-639 (-2 (|:| -1300 (-766)) (|:| -2328 |#2|) (|:| |num| |#2|))) $) 37)) (-4029 (($ $) 32) (($ $ (-766)) 34)) (-4208 (((-406 |#2|) $) 46)) (-4064 (($ (-639 (-2 (|:| -1300 (-766)) (|:| -2328 |#2|) (|:| |num| |#2|)))) 31)) (-4053 (((-857) $) 120)) (-3113 (($ $) 33) (($ $ (-766)) 35)) (-1733 (((-112) $ $) NIL)) (-1836 (($ |#2| $) 39))) -(((-398 |#1| |#2|) (-13 (-1092) (-610 (-406 |#2|)) (-10 -8 (-15 -1836 ($ |#2| $)) (-15 -2352 ($ (-406 |#2|))) (-15 -3408 (|#2| $)) (-15 -4374 ((-639 (-2 (|:| -1300 (-766)) (|:| -2328 |#2|) (|:| |num| |#2|))) $)) (-15 -4064 ($ (-639 (-2 (|:| -1300 (-766)) (|:| -2328 |#2|) (|:| |num| |#2|))))) (-15 -4029 ($ $)) (-15 -3113 ($ $)) (-15 -4029 ($ $ (-766))) (-15 -3113 ($ $ (-766))))) (-13 (-362) (-146)) (-1232 |#1|)) (T -398)) -((-1836 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *2)) (-4 *2 (-1232 *3)))) (-2352 (*1 *1 *2) (-12 (-5 *2 (-406 *4)) (-4 *4 (-1232 *3)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)))) (-3408 (*1 *2 *1) (-12 (-4 *2 (-1232 *3)) (-5 *1 (-398 *3 *2)) (-4 *3 (-13 (-362) (-146))))) (-4374 (*1 *2 *1) (-12 (-4 *3 (-13 (-362) (-146))) (-5 *2 (-639 (-2 (|:| -1300 (-766)) (|:| -2328 *4) (|:| |num| *4)))) (-5 *1 (-398 *3 *4)) (-4 *4 (-1232 *3)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-639 (-2 (|:| -1300 (-766)) (|:| -2328 *4) (|:| |num| *4)))) (-4 *4 (-1232 *3)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)))) (-4029 (*1 *1 *1) (-12 (-4 *2 (-13 (-362) (-146))) (-5 *1 (-398 *2 *3)) (-4 *3 (-1232 *2)))) (-3113 (*1 *1 *1) (-12 (-4 *2 (-13 (-362) (-146))) (-5 *1 (-398 *2 *3)) (-4 *3 (-1232 *2)))) (-4029 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)) (-4 *4 (-1232 *3)))) (-3113 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)) (-4 *4 (-1232 *3))))) -(-13 (-1092) (-610 (-406 |#2|)) (-10 -8 (-15 -1836 ($ |#2| $)) (-15 -2352 ($ (-406 |#2|))) (-15 -3408 (|#2| $)) (-15 -4374 ((-639 (-2 (|:| -1300 (-766)) (|:| -2328 |#2|) (|:| |num| |#2|))) $)) (-15 -4064 ($ (-639 (-2 (|:| -1300 (-766)) (|:| -2328 |#2|) (|:| |num| |#2|))))) (-15 -4029 ($ $)) (-15 -3113 ($ $)) (-15 -4029 ($ $ (-766))) (-15 -3113 ($ $ (-766))))) -((-4041 (((-112) $ $) 9 (-4037 (|has| |#1| (-881 (-562))) (|has| |#1| (-881 (-378)))))) (-2337 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 15 (|has| |#1| (-881 (-378)))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) 14 (|has| |#1| (-881 (-562))))) (-3696 (((-1150) $) 13 (-4037 (|has| |#1| (-881 (-562))) (|has| |#1| (-881 (-378)))))) (-1709 (((-1112) $) 12 (-4037 (|has| |#1| (-881 (-562))) (|has| |#1| (-881 (-378)))))) (-4053 (((-857) $) 11 (-4037 (|has| |#1| (-881 (-562))) (|has| |#1| (-881 (-378)))))) (-1733 (((-112) $ $) 10 (-4037 (|has| |#1| (-881 (-562))) (|has| |#1| (-881 (-378))))))) -(((-399 |#1|) (-139) (-1207)) (T -399)) -NIL -(-13 (-1207) (-10 -7 (IF (|has| |t#1| (-881 (-562))) (-6 (-881 (-562))) |%noBranch|) (IF (|has| |t#1| (-881 (-378))) (-6 (-881 (-378))) |%noBranch|))) -(((-102) -4037 (|has| |#1| (-881 (-562))) (|has| |#1| (-881 (-378)))) ((-609 (-857)) -4037 (|has| |#1| (-881 (-562))) (|has| |#1| (-881 (-378)))) ((-881 (-378)) |has| |#1| (-881 (-378))) ((-881 (-562)) |has| |#1| (-881 (-562))) ((-1092) -4037 (|has| |#1| (-881 (-562))) (|has| |#1| (-881 (-378)))) ((-1207) . T)) -((-2184 (($ $) 10) (($ $ (-766)) 11))) -(((-400 |#1|) (-10 -8 (-15 -2184 (|#1| |#1| (-766))) (-15 -2184 (|#1| |#1|))) (-401)) (T -400)) -NIL -(-10 -8 (-15 -2184 (|#1| |#1| (-766))) (-15 -2184 (|#1| |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 42)) (-1965 (($ $) 41)) (-4102 (((-112) $) 39)) (-2781 (((-3 $ "failed") $ $) 19)) (-1977 (($ $) 74)) (-3788 (((-417 $) $) 73)) (-1436 (((-112) $ $) 60)) (-3329 (($) 17 T CONST)) (-1810 (($ $ $) 56)) (-1694 (((-3 $ "failed") $) 33)) (-1787 (($ $ $) 57)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) 52)) (-2184 (($ $) 80) (($ $ (-766)) 79)) (-3521 (((-112) $) 72)) (-1993 (((-828 (-916)) $) 82)) (-4367 (((-112) $) 31)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) 53)) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-3696 (((-1150) $) 9)) (-1525 (($ $) 71)) (-1709 (((-1112) $) 10)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-1635 (((-417 $) $) 75)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1762 (((-3 $ "failed") $ $) 43)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) 51)) (-2044 (((-766) $) 59)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 58)) (-3543 (((-3 (-766) "failed") $ $) 81)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ $) 44) (($ (-406 (-562))) 67)) (-2059 (((-3 $ "failed") $) 83)) (-1568 (((-766)) 28)) (-3799 (((-112) $ $) 40)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1859 (($ $ $) 66)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 70)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ (-406 (-562))) 69) (($ (-406 (-562)) $) 68))) -(((-401) (-139)) (T -401)) -((-1993 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-828 (-916))))) (-3543 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-401)) (-5 *2 (-766)))) (-2184 (*1 *1 *1) (-4 *1 (-401))) (-2184 (*1 *1 *1 *2) (-12 (-4 *1 (-401)) (-5 *2 (-766))))) -(-13 (-362) (-144) (-10 -8 (-15 -1993 ((-828 (-916)) $)) (-15 -3543 ((-3 (-766) "failed") $ $)) (-15 -2184 ($ $)) (-15 -2184 ($ $ (-766))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-562))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-144) . T) ((-612 #0#) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-451) . T) ((-554) . T) ((-642 #0#) . T) ((-642 $) . T) ((-712 #0#) . T) ((-712 $) . T) ((-721) . T) ((-915) . T) ((-1050 #0#) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1211) . T)) -((-4237 (($ (-562) (-562)) 11) (($ (-562) (-562) (-916)) NIL)) (-2244 (((-916)) 16) (((-916) (-916)) NIL))) -(((-402 |#1|) (-10 -8 (-15 -2244 ((-916) (-916))) (-15 -2244 ((-916))) (-15 -4237 (|#1| (-562) (-562) (-916))) (-15 -4237 (|#1| (-562) (-562)))) (-403)) (T -402)) -((-2244 (*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-402 *3)) (-4 *3 (-403)))) (-2244 (*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-402 *3)) (-4 *3 (-403))))) -(-10 -8 (-15 -2244 ((-916) (-916))) (-15 -2244 ((-916))) (-15 -4237 (|#1| (-562) (-562) (-916))) (-15 -4237 (|#1| (-562) (-562)))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2300 (((-562) $) 90)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 42)) (-1965 (($ $) 41)) (-4102 (((-112) $) 39)) (-1302 (($ $) 88)) (-2781 (((-3 $ "failed") $ $) 19)) (-1977 (($ $) 74)) (-3788 (((-417 $) $) 73)) (-1644 (($ $) 98)) (-1436 (((-112) $ $) 60)) (-1587 (((-562) $) 115)) (-3329 (($) 17 T CONST)) (-3410 (($ $) 87)) (-4048 (((-3 (-562) "failed") $) 103) (((-3 (-406 (-562)) "failed") $) 100)) (-3960 (((-562) $) 104) (((-406 (-562)) $) 101)) (-1810 (($ $ $) 56)) (-1694 (((-3 $ "failed") $) 33)) (-1787 (($ $ $) 57)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) 52)) (-3521 (((-112) $) 72)) (-3326 (((-916)) 131) (((-916) (-916)) 128 (|has| $ (-6 -4394)))) (-2696 (((-112) $) 113)) (-2337 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 94)) (-1993 (((-562) $) 137)) (-4367 (((-112) $) 31)) (-1895 (($ $ (-562)) 97)) (-4363 (($ $) 93)) (-3855 (((-112) $) 114)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) 53)) (-1551 (($ $ $) 112) (($) 125 (-12 (-2234 (|has| $ (-6 -4394))) (-2234 (|has| $ (-6 -4386)))))) (-2993 (($ $ $) 111) (($) 124 (-12 (-2234 (|has| $ (-6 -4394))) (-2234 (|has| $ (-6 -4386)))))) (-3946 (((-562) $) 134)) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-3696 (((-1150) $) 9)) (-1525 (($ $) 71)) (-2898 (((-916) (-562)) 127 (|has| $ (-6 -4394)))) (-1709 (((-1112) $) 10)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-2561 (($ $) 89)) (-3870 (($ $) 91)) (-4237 (($ (-562) (-562)) 139) (($ (-562) (-562) (-916)) 138)) (-1635 (((-417 $) $) 75)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1762 (((-3 $ "failed") $ $) 43)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) 51)) (-1300 (((-562) $) 135)) (-2044 (((-766) $) 59)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 58)) (-2244 (((-916)) 132) (((-916) (-916)) 129 (|has| $ (-6 -4394)))) (-3719 (((-916) (-562)) 126 (|has| $ (-6 -4394)))) (-4208 (((-378) $) 106) (((-224) $) 105) (((-887 (-378)) $) 95)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ $) 44) (($ (-406 (-562))) 67) (($ (-562)) 102) (($ (-406 (-562))) 99)) (-1568 (((-766)) 28)) (-3636 (($ $) 92)) (-3573 (((-916)) 133) (((-916) (-916)) 130 (|has| $ (-6 -4394)))) (-3240 (((-916)) 136)) (-3799 (((-112) $ $) 40)) (-2757 (($ $) 116)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1798 (((-112) $ $) 109)) (-1771 (((-112) $ $) 108)) (-1733 (((-112) $ $) 6)) (-1785 (((-112) $ $) 110)) (-1761 (((-112) $ $) 107)) (-1859 (($ $ $) 66)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 70) (($ $ (-406 (-562))) 96)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ (-406 (-562))) 69) (($ (-406 (-562)) $) 68))) -(((-403) (-139)) (T -403)) -((-4237 (*1 *1 *2 *2) (-12 (-5 *2 (-562)) (-4 *1 (-403)))) (-4237 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-562)) (-5 *3 (-916)) (-4 *1 (-403)))) (-1993 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-562)))) (-3240 (*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-916)))) (-1300 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-562)))) (-3946 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-562)))) (-3573 (*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-916)))) (-2244 (*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-916)))) (-3326 (*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-916)))) (-3573 (*1 *2 *2) (-12 (-5 *2 (-916)) (|has| *1 (-6 -4394)) (-4 *1 (-403)))) (-2244 (*1 *2 *2) (-12 (-5 *2 (-916)) (|has| *1 (-6 -4394)) (-4 *1 (-403)))) (-3326 (*1 *2 *2) (-12 (-5 *2 (-916)) (|has| *1 (-6 -4394)) (-4 *1 (-403)))) (-2898 (*1 *2 *3) (-12 (-5 *3 (-562)) (|has| *1 (-6 -4394)) (-4 *1 (-403)) (-5 *2 (-916)))) (-3719 (*1 *2 *3) (-12 (-5 *3 (-562)) (|has| *1 (-6 -4394)) (-4 *1 (-403)) (-5 *2 (-916)))) (-1551 (*1 *1) (-12 (-4 *1 (-403)) (-2234 (|has| *1 (-6 -4394))) (-2234 (|has| *1 (-6 -4386))))) (-2993 (*1 *1) (-12 (-4 *1 (-403)) (-2234 (|has| *1 (-6 -4394))) (-2234 (|has| *1 (-6 -4386)))))) -(-13 (-1053) (-10 -8 (-6 -1406) (-15 -4237 ($ (-562) (-562))) (-15 -4237 ($ (-562) (-562) (-916))) (-15 -1993 ((-562) $)) (-15 -3240 ((-916))) (-15 -1300 ((-562) $)) (-15 -3946 ((-562) $)) (-15 -3573 ((-916))) (-15 -2244 ((-916))) (-15 -3326 ((-916))) (IF (|has| $ (-6 -4394)) (PROGN (-15 -3573 ((-916) (-916))) (-15 -2244 ((-916) (-916))) (-15 -3326 ((-916) (-916))) (-15 -2898 ((-916) (-562))) (-15 -3719 ((-916) (-562)))) |%noBranch|) (IF (|has| $ (-6 -4386)) |%noBranch| (IF (|has| $ (-6 -4394)) |%noBranch| (PROGN (-15 -1551 ($)) (-15 -2993 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-562))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-612 #0#) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-610 (-224)) . T) ((-610 (-378)) . T) ((-610 (-887 (-378))) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-451) . T) ((-554) . T) ((-642 #0#) . T) ((-642 $) . T) ((-712 #0#) . T) ((-712 $) . T) ((-721) . T) ((-786) . T) ((-787) . T) ((-789) . T) ((-790) . T) ((-843) . T) ((-845) . T) ((-881 (-378)) . T) ((-915) . T) ((-997) . T) ((-1017) . T) ((-1053) . T) ((-1033 (-406 (-562))) . T) ((-1033 (-562)) . T) ((-1050 #0#) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1211) . T)) -((-4152 (((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)) 20))) -(((-404 |#1| |#2|) (-10 -7 (-15 -4152 ((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)))) (-554) (-554)) (T -404)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-417 *5)) (-4 *5 (-554)) (-4 *6 (-554)) (-5 *2 (-417 *6)) (-5 *1 (-404 *5 *6))))) -(-10 -7 (-15 -4152 ((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)))) -((-4152 (((-406 |#2|) (-1 |#2| |#1|) (-406 |#1|)) 13))) -(((-405 |#1| |#2|) (-10 -7 (-15 -4152 ((-406 |#2|) (-1 |#2| |#1|) (-406 |#1|)))) (-554) (-554)) (T -405)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-406 *5)) (-4 *5 (-554)) (-4 *6 (-554)) (-5 *2 (-406 *6)) (-5 *1 (-405 *5 *6))))) -(-10 -7 (-15 -4152 ((-406 |#2|) (-1 |#2| |#1|) (-406 |#1|)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) 13)) (-2300 ((|#1| $) 21 (|has| |#1| (-306)))) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3517 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-1436 (((-112) $ $) NIL)) (-1587 (((-562) $) NIL (|has| |#1| (-815)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) 17) (((-3 (-1168) "failed") $) NIL (|has| |#1| (-1033 (-1168)))) (((-3 (-406 (-562)) "failed") $) 70 (|has| |#1| (-1033 (-562)))) (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562))))) (-3960 ((|#1| $) 15) (((-1168) $) NIL (|has| |#1| (-1033 (-1168)))) (((-406 (-562)) $) 67 (|has| |#1| (-1033 (-562)))) (((-562) $) NIL (|has| |#1| (-1033 (-562))))) (-1810 (($ $ $) NIL)) (-3449 (((-683 (-562)) (-683 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) NIL) (((-683 |#1|) (-683 $)) NIL)) (-1694 (((-3 $ "failed") $) 50)) (-1447 (($) NIL (|has| |#1| (-544)))) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-3521 (((-112) $) NIL)) (-2696 (((-112) $) NIL (|has| |#1| (-815)))) (-2337 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (|has| |#1| (-881 (-562)))) (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (|has| |#1| (-881 (-378))))) (-4367 (((-112) $) 64)) (-2957 (($ $) NIL)) (-4063 ((|#1| $) 71)) (-3828 (((-3 $ "failed") $) NIL (|has| |#1| (-1143)))) (-3855 (((-112) $) NIL (|has| |#1| (-815)))) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3730 (($) NIL (|has| |#1| (-1143)) CONST)) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 97)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2561 (($ $) NIL (|has| |#1| (-306)))) (-3870 ((|#1| $) 28 (|has| |#1| (-544)))) (-3586 (((-417 (-1164 $)) (-1164 $)) 135 (|has| |#1| (-904)))) (-3468 (((-417 (-1164 $)) (-1164 $)) 131 (|has| |#1| (-904)))) (-1635 (((-417 $) $) NIL)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1433 (($ $ (-639 |#1|) (-639 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-639 (-293 |#1|))) NIL (|has| |#1| (-308 |#1|))) (($ $ (-639 (-1168)) (-639 |#1|)) NIL (|has| |#1| (-513 (-1168) |#1|))) (($ $ (-1168) |#1|) NIL (|has| |#1| (-513 (-1168) |#1|)))) (-2044 (((-766) $) NIL)) (-2343 (($ $ |#1|) NIL (|has| |#1| (-285 |#1| |#1|)))) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-4029 (($ $) NIL (|has| |#1| (-232))) (($ $ (-766)) NIL (|has| |#1| (-232))) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-1580 (($ $) NIL)) (-4079 ((|#1| $) 73)) (-4208 (((-887 (-562)) $) NIL (|has| |#1| (-610 (-887 (-562))))) (((-887 (-378)) $) NIL (|has| |#1| (-610 (-887 (-378))))) (((-535) $) NIL (|has| |#1| (-610 (-535)))) (((-378) $) NIL (|has| |#1| (-1017))) (((-224) $) NIL (|has| |#1| (-1017)))) (-1870 (((-3 (-1256 $) "failed") (-683 $)) 115 (-12 (|has| $ (-144)) (|has| |#1| (-904))))) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL) (($ |#1|) 10) (($ (-1168)) NIL (|has| |#1| (-1033 (-1168))))) (-2059 (((-3 $ "failed") $) 99 (-4037 (-12 (|has| $ (-144)) (|has| |#1| (-904))) (|has| |#1| (-144))))) (-1568 (((-766)) 100)) (-3636 ((|#1| $) 26 (|has| |#1| (-544)))) (-3799 (((-112) $ $) NIL)) (-2757 (($ $) NIL (|has| |#1| (-815)))) (-2285 (($) 22 T CONST)) (-2294 (($) 8 T CONST)) (-2332 (((-1150) $) 43 (-12 (|has| |#1| (-544)) (|has| |#1| (-823)))) (((-1150) $ (-112)) 44 (-12 (|has| |#1| (-544)) (|has| |#1| (-823)))) (((-1261) (-817) $) 45 (-12 (|has| |#1| (-544)) (|has| |#1| (-823)))) (((-1261) (-817) $ (-112)) 46 (-12 (|has| |#1| (-544)) (|has| |#1| (-823))))) (-3113 (($ $) NIL (|has| |#1| (-232))) (($ $ (-766)) NIL (|has| |#1| (-232))) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1771 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1733 (((-112) $ $) 56)) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1761 (((-112) $ $) 24 (|has| |#1| (-845)))) (-1859 (($ $ $) 126) (($ |#1| |#1|) 52)) (-1847 (($ $) 25) (($ $ $) 55)) (-1836 (($ $ $) 53)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) 125)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 60) (($ $ $) 57) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) -(((-406 |#1|) (-13 (-987 |#1|) (-10 -7 (IF (|has| |#1| (-544)) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4390)) (IF (|has| |#1| (-451)) (IF (|has| |#1| (-6 -4401)) (-6 -4390) |%noBranch|) |%noBranch|) |%noBranch|))) (-554)) (T -406)) -NIL -(-13 (-987 |#1|) (-10 -7 (IF (|has| |#1| (-544)) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4390)) (IF (|has| |#1| (-451)) (IF (|has| |#1| (-6 -4401)) (-6 -4390) |%noBranch|) |%noBranch|) |%noBranch|))) -((-4342 (((-683 |#2|) (-1256 $)) NIL) (((-683 |#2|)) 18)) (-3916 (($ (-1256 |#2|) (-1256 $)) NIL) (($ (-1256 |#2|)) 24)) (-4376 (((-683 |#2|) $ (-1256 $)) NIL) (((-683 |#2|) $) 38)) (-1937 ((|#3| $) 60)) (-2736 ((|#2| (-1256 $)) NIL) ((|#2|) 20)) (-2205 (((-1256 |#2|) $ (-1256 $)) NIL) (((-683 |#2|) (-1256 $) (-1256 $)) NIL) (((-1256 |#2|) $) 22) (((-683 |#2|) (-1256 $)) 36)) (-4208 (((-1256 |#2|) $) 11) (($ (-1256 |#2|)) 13)) (-3683 ((|#3| $) 52))) -(((-407 |#1| |#2| |#3|) (-10 -8 (-15 -4376 ((-683 |#2|) |#1|)) (-15 -2736 (|#2|)) (-15 -4342 ((-683 |#2|))) (-15 -4208 (|#1| (-1256 |#2|))) (-15 -4208 ((-1256 |#2|) |#1|)) (-15 -3916 (|#1| (-1256 |#2|))) (-15 -2205 ((-683 |#2|) (-1256 |#1|))) (-15 -2205 ((-1256 |#2|) |#1|)) (-15 -1937 (|#3| |#1|)) (-15 -3683 (|#3| |#1|)) (-15 -4342 ((-683 |#2|) (-1256 |#1|))) (-15 -2736 (|#2| (-1256 |#1|))) (-15 -3916 (|#1| (-1256 |#2|) (-1256 |#1|))) (-15 -2205 ((-683 |#2|) (-1256 |#1|) (-1256 |#1|))) (-15 -2205 ((-1256 |#2|) |#1| (-1256 |#1|))) (-15 -4376 ((-683 |#2|) |#1| (-1256 |#1|)))) (-408 |#2| |#3|) (-171) (-1232 |#2|)) (T -407)) -((-4342 (*1 *2) (-12 (-4 *4 (-171)) (-4 *5 (-1232 *4)) (-5 *2 (-683 *4)) (-5 *1 (-407 *3 *4 *5)) (-4 *3 (-408 *4 *5)))) (-2736 (*1 *2) (-12 (-4 *4 (-1232 *2)) (-4 *2 (-171)) (-5 *1 (-407 *3 *2 *4)) (-4 *3 (-408 *2 *4))))) -(-10 -8 (-15 -4376 ((-683 |#2|) |#1|)) (-15 -2736 (|#2|)) (-15 -4342 ((-683 |#2|))) (-15 -4208 (|#1| (-1256 |#2|))) (-15 -4208 ((-1256 |#2|) |#1|)) (-15 -3916 (|#1| (-1256 |#2|))) (-15 -2205 ((-683 |#2|) (-1256 |#1|))) (-15 -2205 ((-1256 |#2|) |#1|)) (-15 -1937 (|#3| |#1|)) (-15 -3683 (|#3| |#1|)) (-15 -4342 ((-683 |#2|) (-1256 |#1|))) (-15 -2736 (|#2| (-1256 |#1|))) (-15 -3916 (|#1| (-1256 |#2|) (-1256 |#1|))) (-15 -2205 ((-683 |#2|) (-1256 |#1|) (-1256 |#1|))) (-15 -2205 ((-1256 |#2|) |#1| (-1256 |#1|))) (-15 -4376 ((-683 |#2|) |#1| (-1256 |#1|)))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-4342 (((-683 |#1|) (-1256 $)) 47) (((-683 |#1|)) 62)) (-1748 ((|#1| $) 53)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-3916 (($ (-1256 |#1|) (-1256 $)) 49) (($ (-1256 |#1|)) 65)) (-4376 (((-683 |#1|) $ (-1256 $)) 54) (((-683 |#1|) $) 60)) (-1694 (((-3 $ "failed") $) 33)) (-2172 (((-916)) 55)) (-4367 (((-112) $) 31)) (-4363 ((|#1| $) 52)) (-1937 ((|#2| $) 45 (|has| |#1| (-362)))) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-2736 ((|#1| (-1256 $)) 48) ((|#1|) 61)) (-2205 (((-1256 |#1|) $ (-1256 $)) 51) (((-683 |#1|) (-1256 $) (-1256 $)) 50) (((-1256 |#1|) $) 67) (((-683 |#1|) (-1256 $)) 66)) (-4208 (((-1256 |#1|) $) 64) (($ (-1256 |#1|)) 63)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 38)) (-2059 (((-3 $ "failed") $) 44 (|has| |#1| (-144)))) (-3683 ((|#2| $) 46)) (-1568 (((-766)) 28)) (-4291 (((-1256 $)) 68)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-408 |#1| |#2|) (-139) (-171) (-1232 |t#1|)) (T -408)) -((-4291 (*1 *2) (-12 (-4 *3 (-171)) (-4 *4 (-1232 *3)) (-5 *2 (-1256 *1)) (-4 *1 (-408 *3 *4)))) (-2205 (*1 *2 *1) (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1232 *3)) (-5 *2 (-1256 *3)))) (-2205 (*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-408 *4 *5)) (-4 *4 (-171)) (-4 *5 (-1232 *4)) (-5 *2 (-683 *4)))) (-3916 (*1 *1 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-171)) (-4 *1 (-408 *3 *4)) (-4 *4 (-1232 *3)))) (-4208 (*1 *2 *1) (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1232 *3)) (-5 *2 (-1256 *3)))) (-4208 (*1 *1 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-171)) (-4 *1 (-408 *3 *4)) (-4 *4 (-1232 *3)))) (-4342 (*1 *2) (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1232 *3)) (-5 *2 (-683 *3)))) (-2736 (*1 *2) (-12 (-4 *1 (-408 *2 *3)) (-4 *3 (-1232 *2)) (-4 *2 (-171)))) (-4376 (*1 *2 *1) (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1232 *3)) (-5 *2 (-683 *3))))) -(-13 (-369 |t#1| |t#2|) (-10 -8 (-15 -4291 ((-1256 $))) (-15 -2205 ((-1256 |t#1|) $)) (-15 -2205 ((-683 |t#1|) (-1256 $))) (-15 -3916 ($ (-1256 |t#1|))) (-15 -4208 ((-1256 |t#1|) $)) (-15 -4208 ($ (-1256 |t#1|))) (-15 -4342 ((-683 |t#1|))) (-15 -2736 (|t#1|)) (-15 -4376 ((-683 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 (-562)) . T) ((-612 |#1|) . T) ((-609 (-857)) . T) ((-369 |#1| |#2|) . T) ((-642 |#1|) . T) ((-642 $) . T) ((-712 |#1|) . T) ((-721) . T) ((-1050 |#1|) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) -((-4048 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) 27) (((-3 (-562) "failed") $) 19)) (-3960 ((|#2| $) NIL) (((-406 (-562)) $) 24) (((-562) $) 14)) (-4053 (($ |#2|) NIL) (($ (-406 (-562))) 22) (($ (-562)) 11))) -(((-409 |#1| |#2|) (-10 -8 (-15 -4053 (|#1| (-562))) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -3960 ((-562) |#1|)) (-15 -4053 (|#1| (-406 (-562)))) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3960 ((-406 (-562)) |#1|)) (-15 -3960 (|#2| |#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -4053 (|#1| |#2|))) (-410 |#2|) (-1207)) (T -409)) -NIL -(-10 -8 (-15 -4053 (|#1| (-562))) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -3960 ((-562) |#1|)) (-15 -4053 (|#1| (-406 (-562)))) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3960 ((-406 (-562)) |#1|)) (-15 -3960 (|#2| |#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -4053 (|#1| |#2|))) -((-4048 (((-3 |#1| "failed") $) 9) (((-3 (-406 (-562)) "failed") $) 16 (|has| |#1| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) 13 (|has| |#1| (-1033 (-562))))) (-3960 ((|#1| $) 8) (((-406 (-562)) $) 17 (|has| |#1| (-1033 (-406 (-562))))) (((-562) $) 14 (|has| |#1| (-1033 (-562))))) (-4053 (($ |#1|) 6) (($ (-406 (-562))) 15 (|has| |#1| (-1033 (-406 (-562))))) (($ (-562)) 12 (|has| |#1| (-1033 (-562)))))) -(((-410 |#1|) (-139) (-1207)) (T -410)) -NIL -(-13 (-1033 |t#1|) (-10 -7 (IF (|has| |t#1| (-1033 (-562))) (-6 (-1033 (-562))) |%noBranch|) (IF (|has| |t#1| (-1033 (-406 (-562)))) (-6 (-1033 (-406 (-562)))) |%noBranch|))) -(((-612 #0=(-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((-612 #1=(-562)) |has| |#1| (-1033 (-562))) ((-612 |#1|) . T) ((-1033 #0#) |has| |#1| (-1033 (-406 (-562)))) ((-1033 #1#) |has| |#1| (-1033 (-562))) ((-1033 |#1|) . T)) -((-4152 (((-412 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-412 |#1| |#2| |#3| |#4|)) 33))) -(((-411 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4152 ((-412 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-412 |#1| |#2| |#3| |#4|)))) (-306) (-987 |#1|) (-1232 |#2|) (-13 (-408 |#2| |#3|) (-1033 |#2|)) (-306) (-987 |#5|) (-1232 |#6|) (-13 (-408 |#6| |#7|) (-1033 |#6|))) (T -411)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-412 *5 *6 *7 *8)) (-4 *5 (-306)) (-4 *6 (-987 *5)) (-4 *7 (-1232 *6)) (-4 *8 (-13 (-408 *6 *7) (-1033 *6))) (-4 *9 (-306)) (-4 *10 (-987 *9)) (-4 *11 (-1232 *10)) (-5 *2 (-412 *9 *10 *11 *12)) (-5 *1 (-411 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-408 *10 *11) (-1033 *10)))))) -(-10 -7 (-15 -4152 ((-412 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-412 |#1| |#2| |#3| |#4|)))) -((-4041 (((-112) $ $) NIL)) (-3329 (($) NIL T CONST)) (-1694 (((-3 $ "failed") $) NIL)) (-3182 ((|#4| (-766) (-1256 |#4|)) 56)) (-4367 (((-112) $) NIL)) (-4063 (((-1256 |#4|) $) 17)) (-4363 ((|#2| $) 54)) (-3619 (($ $) 139)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) 100)) (-1387 (($ (-1256 |#4|)) 99)) (-1709 (((-1112) $) NIL)) (-4079 ((|#1| $) 18)) (-1660 (($ $ $) NIL)) (-2114 (($ $ $) NIL)) (-4053 (((-857) $) 134)) (-4291 (((-1256 |#4|) $) 129)) (-2294 (($) 11 T CONST)) (-1733 (((-112) $ $) 40)) (-1859 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) 122)) (* (($ $ $) 121))) -(((-412 |#1| |#2| |#3| |#4|) (-13 (-472) (-10 -8 (-15 -1387 ($ (-1256 |#4|))) (-15 -4291 ((-1256 |#4|) $)) (-15 -4363 (|#2| $)) (-15 -4063 ((-1256 |#4|) $)) (-15 -4079 (|#1| $)) (-15 -3619 ($ $)) (-15 -3182 (|#4| (-766) (-1256 |#4|))))) (-306) (-987 |#1|) (-1232 |#2|) (-13 (-408 |#2| |#3|) (-1033 |#2|))) (T -412)) -((-1387 (*1 *1 *2) (-12 (-5 *2 (-1256 *6)) (-4 *6 (-13 (-408 *4 *5) (-1033 *4))) (-4 *4 (-987 *3)) (-4 *5 (-1232 *4)) (-4 *3 (-306)) (-5 *1 (-412 *3 *4 *5 *6)))) (-4291 (*1 *2 *1) (-12 (-4 *3 (-306)) (-4 *4 (-987 *3)) (-4 *5 (-1232 *4)) (-5 *2 (-1256 *6)) (-5 *1 (-412 *3 *4 *5 *6)) (-4 *6 (-13 (-408 *4 *5) (-1033 *4))))) (-4363 (*1 *2 *1) (-12 (-4 *4 (-1232 *2)) (-4 *2 (-987 *3)) (-5 *1 (-412 *3 *2 *4 *5)) (-4 *3 (-306)) (-4 *5 (-13 (-408 *2 *4) (-1033 *2))))) (-4063 (*1 *2 *1) (-12 (-4 *3 (-306)) (-4 *4 (-987 *3)) (-4 *5 (-1232 *4)) (-5 *2 (-1256 *6)) (-5 *1 (-412 *3 *4 *5 *6)) (-4 *6 (-13 (-408 *4 *5) (-1033 *4))))) (-4079 (*1 *2 *1) (-12 (-4 *3 (-987 *2)) (-4 *4 (-1232 *3)) (-4 *2 (-306)) (-5 *1 (-412 *2 *3 *4 *5)) (-4 *5 (-13 (-408 *3 *4) (-1033 *3))))) (-3619 (*1 *1 *1) (-12 (-4 *2 (-306)) (-4 *3 (-987 *2)) (-4 *4 (-1232 *3)) (-5 *1 (-412 *2 *3 *4 *5)) (-4 *5 (-13 (-408 *3 *4) (-1033 *3))))) (-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-766)) (-5 *4 (-1256 *2)) (-4 *5 (-306)) (-4 *6 (-987 *5)) (-4 *2 (-13 (-408 *6 *7) (-1033 *6))) (-5 *1 (-412 *5 *6 *7 *2)) (-4 *7 (-1232 *6))))) -(-13 (-472) (-10 -8 (-15 -1387 ($ (-1256 |#4|))) (-15 -4291 ((-1256 |#4|) $)) (-15 -4363 (|#2| $)) (-15 -4063 ((-1256 |#4|) $)) (-15 -4079 (|#1| $)) (-15 -3619 ($ $)) (-15 -3182 (|#4| (-766) (-1256 |#4|))))) -((-4041 (((-112) $ $) NIL)) (-3329 (($) NIL T CONST)) (-1694 (((-3 $ "failed") $) NIL)) (-4367 (((-112) $) NIL)) (-4363 ((|#2| $) 61)) (-1685 (($ (-1256 |#4|)) 25) (($ (-412 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-1033 |#2|)))) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 34)) (-4291 (((-1256 |#4|) $) 26)) (-2294 (($) 23 T CONST)) (-1733 (((-112) $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ $ $) 72))) -(((-413 |#1| |#2| |#3| |#4| |#5|) (-13 (-721) (-10 -8 (-15 -4291 ((-1256 |#4|) $)) (-15 -4363 (|#2| $)) (-15 -1685 ($ (-1256 |#4|))) (IF (|has| |#4| (-1033 |#2|)) (-15 -1685 ($ (-412 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-306) (-987 |#1|) (-1232 |#2|) (-408 |#2| |#3|) (-1256 |#4|)) (T -413)) -((-4291 (*1 *2 *1) (-12 (-4 *3 (-306)) (-4 *4 (-987 *3)) (-4 *5 (-1232 *4)) (-5 *2 (-1256 *6)) (-5 *1 (-413 *3 *4 *5 *6 *7)) (-4 *6 (-408 *4 *5)) (-14 *7 *2))) (-4363 (*1 *2 *1) (-12 (-4 *4 (-1232 *2)) (-4 *2 (-987 *3)) (-5 *1 (-413 *3 *2 *4 *5 *6)) (-4 *3 (-306)) (-4 *5 (-408 *2 *4)) (-14 *6 (-1256 *5)))) (-1685 (*1 *1 *2) (-12 (-5 *2 (-1256 *6)) (-4 *6 (-408 *4 *5)) (-4 *4 (-987 *3)) (-4 *5 (-1232 *4)) (-4 *3 (-306)) (-5 *1 (-413 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1685 (*1 *1 *2) (-12 (-5 *2 (-412 *3 *4 *5 *6)) (-4 *6 (-1033 *4)) (-4 *3 (-306)) (-4 *4 (-987 *3)) (-4 *5 (-1232 *4)) (-4 *6 (-408 *4 *5)) (-14 *7 (-1256 *6)) (-5 *1 (-413 *3 *4 *5 *6 *7))))) -(-13 (-721) (-10 -8 (-15 -4291 ((-1256 |#4|) $)) (-15 -4363 (|#2| $)) (-15 -1685 ($ (-1256 |#4|))) (IF (|has| |#4| (-1033 |#2|)) (-15 -1685 ($ (-412 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-4152 ((|#3| (-1 |#4| |#2|) |#1|) 26))) -(((-414 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4152 (|#3| (-1 |#4| |#2|) |#1|))) (-416 |#2|) (-171) (-416 |#4|) (-171)) (T -414)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-4 *2 (-416 *6)) (-5 *1 (-414 *4 *5 *2 *6)) (-4 *4 (-416 *5))))) -(-10 -7 (-15 -4152 (|#3| (-1 |#4| |#2|) |#1|))) -((-4310 (((-3 $ "failed")) 86)) (-2016 (((-1256 (-683 |#2|)) (-1256 $)) NIL) (((-1256 (-683 |#2|))) 91)) (-1469 (((-3 (-2 (|:| |particular| $) (|:| -4291 (-639 $))) "failed")) 85)) (-2447 (((-3 $ "failed")) 84)) (-3945 (((-683 |#2|) (-1256 $)) NIL) (((-683 |#2|)) 102)) (-2995 (((-683 |#2|) $ (-1256 $)) NIL) (((-683 |#2|) $) 110)) (-3996 (((-1164 (-947 |#2|))) 55)) (-2200 ((|#2| (-1256 $)) NIL) ((|#2|) 106)) (-3916 (($ (-1256 |#2|) (-1256 $)) NIL) (($ (-1256 |#2|)) 112)) (-3502 (((-3 (-2 (|:| |particular| $) (|:| -4291 (-639 $))) "failed")) 83)) (-3839 (((-3 $ "failed")) 75)) (-3506 (((-683 |#2|) (-1256 $)) NIL) (((-683 |#2|)) 100)) (-1583 (((-683 |#2|) $ (-1256 $)) NIL) (((-683 |#2|) $) 108)) (-2620 (((-1164 (-947 |#2|))) 54)) (-1636 ((|#2| (-1256 $)) NIL) ((|#2|) 104)) (-2205 (((-1256 |#2|) $ (-1256 $)) NIL) (((-683 |#2|) (-1256 $) (-1256 $)) NIL) (((-1256 |#2|) $) 111) (((-683 |#2|) (-1256 $)) 118)) (-4208 (((-1256 |#2|) $) 96) (($ (-1256 |#2|)) 98)) (-2555 (((-639 (-947 |#2|)) (-1256 $)) NIL) (((-639 (-947 |#2|))) 94)) (-1360 (($ (-683 |#2|) $) 90))) -(((-415 |#1| |#2|) (-10 -8 (-15 -1360 (|#1| (-683 |#2|) |#1|)) (-15 -3996 ((-1164 (-947 |#2|)))) (-15 -2620 ((-1164 (-947 |#2|)))) (-15 -2995 ((-683 |#2|) |#1|)) (-15 -1583 ((-683 |#2|) |#1|)) (-15 -3945 ((-683 |#2|))) (-15 -3506 ((-683 |#2|))) (-15 -2200 (|#2|)) (-15 -1636 (|#2|)) (-15 -4208 (|#1| (-1256 |#2|))) (-15 -4208 ((-1256 |#2|) |#1|)) (-15 -3916 (|#1| (-1256 |#2|))) (-15 -2555 ((-639 (-947 |#2|)))) (-15 -2016 ((-1256 (-683 |#2|)))) (-15 -2205 ((-683 |#2|) (-1256 |#1|))) (-15 -2205 ((-1256 |#2|) |#1|)) (-15 -4310 ((-3 |#1| "failed"))) (-15 -2447 ((-3 |#1| "failed"))) (-15 -3839 ((-3 |#1| "failed"))) (-15 -1469 ((-3 (-2 (|:| |particular| |#1|) (|:| -4291 (-639 |#1|))) "failed"))) (-15 -3502 ((-3 (-2 (|:| |particular| |#1|) (|:| -4291 (-639 |#1|))) "failed"))) (-15 -3945 ((-683 |#2|) (-1256 |#1|))) (-15 -3506 ((-683 |#2|) (-1256 |#1|))) (-15 -2200 (|#2| (-1256 |#1|))) (-15 -1636 (|#2| (-1256 |#1|))) (-15 -3916 (|#1| (-1256 |#2|) (-1256 |#1|))) (-15 -2205 ((-683 |#2|) (-1256 |#1|) (-1256 |#1|))) (-15 -2205 ((-1256 |#2|) |#1| (-1256 |#1|))) (-15 -2995 ((-683 |#2|) |#1| (-1256 |#1|))) (-15 -1583 ((-683 |#2|) |#1| (-1256 |#1|))) (-15 -2016 ((-1256 (-683 |#2|)) (-1256 |#1|))) (-15 -2555 ((-639 (-947 |#2|)) (-1256 |#1|)))) (-416 |#2|) (-171)) (T -415)) -((-2016 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-1256 (-683 *4))) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))) (-2555 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-639 (-947 *4))) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))) (-1636 (*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-415 *3 *2)) (-4 *3 (-416 *2)))) (-2200 (*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-415 *3 *2)) (-4 *3 (-416 *2)))) (-3506 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-683 *4)) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))) (-3945 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-683 *4)) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))) (-2620 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-1164 (-947 *4))) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))) (-3996 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-1164 (-947 *4))) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4))))) -(-10 -8 (-15 -1360 (|#1| (-683 |#2|) |#1|)) (-15 -3996 ((-1164 (-947 |#2|)))) (-15 -2620 ((-1164 (-947 |#2|)))) (-15 -2995 ((-683 |#2|) |#1|)) (-15 -1583 ((-683 |#2|) |#1|)) (-15 -3945 ((-683 |#2|))) (-15 -3506 ((-683 |#2|))) (-15 -2200 (|#2|)) (-15 -1636 (|#2|)) (-15 -4208 (|#1| (-1256 |#2|))) (-15 -4208 ((-1256 |#2|) |#1|)) (-15 -3916 (|#1| (-1256 |#2|))) (-15 -2555 ((-639 (-947 |#2|)))) (-15 -2016 ((-1256 (-683 |#2|)))) (-15 -2205 ((-683 |#2|) (-1256 |#1|))) (-15 -2205 ((-1256 |#2|) |#1|)) (-15 -4310 ((-3 |#1| "failed"))) (-15 -2447 ((-3 |#1| "failed"))) (-15 -3839 ((-3 |#1| "failed"))) (-15 -1469 ((-3 (-2 (|:| |particular| |#1|) (|:| -4291 (-639 |#1|))) "failed"))) (-15 -3502 ((-3 (-2 (|:| |particular| |#1|) (|:| -4291 (-639 |#1|))) "failed"))) (-15 -3945 ((-683 |#2|) (-1256 |#1|))) (-15 -3506 ((-683 |#2|) (-1256 |#1|))) (-15 -2200 (|#2| (-1256 |#1|))) (-15 -1636 (|#2| (-1256 |#1|))) (-15 -3916 (|#1| (-1256 |#2|) (-1256 |#1|))) (-15 -2205 ((-683 |#2|) (-1256 |#1|) (-1256 |#1|))) (-15 -2205 ((-1256 |#2|) |#1| (-1256 |#1|))) (-15 -2995 ((-683 |#2|) |#1| (-1256 |#1|))) (-15 -1583 ((-683 |#2|) |#1| (-1256 |#1|))) (-15 -2016 ((-1256 (-683 |#2|)) (-1256 |#1|))) (-15 -2555 ((-639 (-947 |#2|)) (-1256 |#1|)))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-4310 (((-3 $ "failed")) 37 (|has| |#1| (-554)))) (-2781 (((-3 $ "failed") $ $) 19)) (-2016 (((-1256 (-683 |#1|)) (-1256 $)) 78) (((-1256 (-683 |#1|))) 100)) (-1540 (((-1256 $)) 81)) (-3329 (($) 17 T CONST)) (-1469 (((-3 (-2 (|:| |particular| $) (|:| -4291 (-639 $))) "failed")) 40 (|has| |#1| (-554)))) (-2447 (((-3 $ "failed")) 38 (|has| |#1| (-554)))) (-3945 (((-683 |#1|) (-1256 $)) 65) (((-683 |#1|)) 92)) (-2452 ((|#1| $) 74)) (-2995 (((-683 |#1|) $ (-1256 $)) 76) (((-683 |#1|) $) 90)) (-4276 (((-3 $ "failed") $) 45 (|has| |#1| (-554)))) (-3996 (((-1164 (-947 |#1|))) 88 (|has| |#1| (-362)))) (-2127 (($ $ (-916)) 28)) (-2949 ((|#1| $) 72)) (-3407 (((-1164 |#1|) $) 42 (|has| |#1| (-554)))) (-2200 ((|#1| (-1256 $)) 67) ((|#1|) 94)) (-2974 (((-1164 |#1|) $) 63)) (-3178 (((-112)) 57)) (-3916 (($ (-1256 |#1|) (-1256 $)) 69) (($ (-1256 |#1|)) 98)) (-1694 (((-3 $ "failed") $) 47 (|has| |#1| (-554)))) (-2172 (((-916)) 80)) (-1832 (((-112)) 54)) (-1492 (($ $ (-916)) 33)) (-2531 (((-112)) 50)) (-3671 (((-112)) 48)) (-2394 (((-112)) 52)) (-3502 (((-3 (-2 (|:| |particular| $) (|:| -4291 (-639 $))) "failed")) 41 (|has| |#1| (-554)))) (-3839 (((-3 $ "failed")) 39 (|has| |#1| (-554)))) (-3506 (((-683 |#1|) (-1256 $)) 66) (((-683 |#1|)) 93)) (-2664 ((|#1| $) 75)) (-1583 (((-683 |#1|) $ (-1256 $)) 77) (((-683 |#1|) $) 91)) (-2217 (((-3 $ "failed") $) 46 (|has| |#1| (-554)))) (-2620 (((-1164 (-947 |#1|))) 89 (|has| |#1| (-362)))) (-3235 (($ $ (-916)) 29)) (-3495 ((|#1| $) 73)) (-3849 (((-1164 |#1|) $) 43 (|has| |#1| (-554)))) (-1636 ((|#1| (-1256 $)) 68) ((|#1|) 95)) (-3099 (((-1164 |#1|) $) 64)) (-3302 (((-112)) 58)) (-3696 (((-1150) $) 9)) (-2720 (((-112)) 49)) (-1579 (((-112)) 51)) (-2104 (((-112)) 53)) (-1709 (((-1112) $) 10)) (-3626 (((-112)) 56)) (-2343 ((|#1| $ (-562)) 101)) (-2205 (((-1256 |#1|) $ (-1256 $)) 71) (((-683 |#1|) (-1256 $) (-1256 $)) 70) (((-1256 |#1|) $) 103) (((-683 |#1|) (-1256 $)) 102)) (-4208 (((-1256 |#1|) $) 97) (($ (-1256 |#1|)) 96)) (-2555 (((-639 (-947 |#1|)) (-1256 $)) 79) (((-639 (-947 |#1|))) 99)) (-2114 (($ $ $) 25)) (-3901 (((-112)) 62)) (-4053 (((-857) $) 11)) (-4291 (((-1256 $)) 104)) (-1823 (((-639 (-1256 |#1|))) 44 (|has| |#1| (-554)))) (-2584 (($ $ $ $) 26)) (-4309 (((-112)) 60)) (-1360 (($ (-683 |#1|) $) 87)) (-4324 (($ $ $) 24)) (-1517 (((-112)) 61)) (-2636 (((-112)) 59)) (-3488 (((-112)) 55)) (-2285 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 30)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-416 |#1|) (-139) (-171)) (T -416)) -((-4291 (*1 *2) (-12 (-4 *3 (-171)) (-5 *2 (-1256 *1)) (-4 *1 (-416 *3)))) (-2205 (*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1256 *3)))) (-2205 (*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-416 *4)) (-4 *4 (-171)) (-5 *2 (-683 *4)))) (-2343 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-4 *1 (-416 *2)) (-4 *2 (-171)))) (-2016 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1256 (-683 *3))))) (-2555 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-639 (-947 *3))))) (-3916 (*1 *1 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-171)) (-4 *1 (-416 *3)))) (-4208 (*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1256 *3)))) (-4208 (*1 *1 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-171)) (-4 *1 (-416 *3)))) (-1636 (*1 *2) (-12 (-4 *1 (-416 *2)) (-4 *2 (-171)))) (-2200 (*1 *2) (-12 (-4 *1 (-416 *2)) (-4 *2 (-171)))) (-3506 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-683 *3)))) (-3945 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-683 *3)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-683 *3)))) (-2995 (*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-683 *3)))) (-2620 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-4 *3 (-362)) (-5 *2 (-1164 (-947 *3))))) (-3996 (*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-4 *3 (-362)) (-5 *2 (-1164 (-947 *3))))) (-1360 (*1 *1 *2 *1) (-12 (-5 *2 (-683 *3)) (-4 *1 (-416 *3)) (-4 *3 (-171))))) -(-13 (-366 |t#1|) (-10 -8 (-15 -4291 ((-1256 $))) (-15 -2205 ((-1256 |t#1|) $)) (-15 -2205 ((-683 |t#1|) (-1256 $))) (-15 -2343 (|t#1| $ (-562))) (-15 -2016 ((-1256 (-683 |t#1|)))) (-15 -2555 ((-639 (-947 |t#1|)))) (-15 -3916 ($ (-1256 |t#1|))) (-15 -4208 ((-1256 |t#1|) $)) (-15 -4208 ($ (-1256 |t#1|))) (-15 -1636 (|t#1|)) (-15 -2200 (|t#1|)) (-15 -3506 ((-683 |t#1|))) (-15 -3945 ((-683 |t#1|))) (-15 -1583 ((-683 |t#1|) $)) (-15 -2995 ((-683 |t#1|) $)) (IF (|has| |t#1| (-362)) (PROGN (-15 -2620 ((-1164 (-947 |t#1|)))) (-15 -3996 ((-1164 (-947 |t#1|))))) |%noBranch|) (-15 -1360 ($ (-683 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-609 (-857)) . T) ((-366 |#1|) . T) ((-642 |#1|) . T) ((-712 |#1|) . T) ((-715) . T) ((-739 |#1|) . T) ((-756) . T) ((-1050 |#1|) . T) ((-1092) . T)) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) 44)) (-2810 (($ $) 59)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 147)) (-1965 (($ $) NIL)) (-4102 (((-112) $) 38)) (-4310 ((|#1| $) 13)) (-2781 (((-3 $ "failed") $ $) NIL)) (-1977 (($ $) NIL (|has| |#1| (-1211)))) (-3788 (((-417 $) $) NIL (|has| |#1| (-1211)))) (-3661 (($ |#1| (-562)) 34)) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) 117)) (-3960 (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) 57)) (-1694 (((-3 $ "failed") $) 132)) (-3913 (((-3 (-406 (-562)) "failed") $) 65 (|has| |#1| (-544)))) (-3498 (((-112) $) 61 (|has| |#1| (-544)))) (-3854 (((-406 (-562)) $) 72 (|has| |#1| (-544)))) (-4294 (($ |#1| (-562)) 36)) (-3521 (((-112) $) 153 (|has| |#1| (-1211)))) (-4367 (((-112) $) 45)) (-3423 (((-766) $) 40)) (-2645 (((-3 "nil" "sqfr" "irred" "prime") $ (-562)) 138)) (-3111 ((|#1| $ (-562)) 137)) (-3657 (((-562) $ (-562)) 136)) (-2816 (($ |#1| (-562)) 33)) (-4152 (($ (-1 |#1| |#1|) $) 144)) (-2858 (($ |#1| (-639 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-562))))) 60)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) NIL (|has| |#1| (-451)))) (-3696 (((-1150) $) NIL)) (-1511 (($ |#1| (-562)) 35)) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-451)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) 148 (|has| |#1| (-451)))) (-3068 (($ |#1| (-562) (-3 "nil" "sqfr" "irred" "prime")) 32)) (-2656 (((-639 (-2 (|:| -1635 |#1|) (|:| -1300 (-562)))) $) 56)) (-4072 (((-639 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-562)))) $) 12)) (-1635 (((-417 $) $) NIL (|has| |#1| (-1211)))) (-1762 (((-3 $ "failed") $ $) 139)) (-1300 (((-562) $) 133)) (-3525 ((|#1| $) 58)) (-1433 (($ $ (-639 |#1|) (-639 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-639 (-293 |#1|))) 81 (|has| |#1| (-308 |#1|))) (($ $ (-639 (-1168)) (-639 |#1|)) 87 (|has| |#1| (-513 (-1168) |#1|))) (($ $ (-1168) |#1|) NIL (|has| |#1| (-513 (-1168) |#1|))) (($ $ (-1168) $) NIL (|has| |#1| (-513 (-1168) $))) (($ $ (-639 (-1168)) (-639 $)) 88 (|has| |#1| (-513 (-1168) $))) (($ $ (-639 (-293 $))) 84 (|has| |#1| (-308 $))) (($ $ (-293 $)) NIL (|has| |#1| (-308 $))) (($ $ $ $) NIL (|has| |#1| (-308 $))) (($ $ (-639 $) (-639 $)) NIL (|has| |#1| (-308 $)))) (-2343 (($ $ |#1|) 73 (|has| |#1| (-285 |#1| |#1|))) (($ $ $) 74 (|has| |#1| (-285 $ $)))) (-4029 (($ $) NIL (|has| |#1| (-232))) (($ $ (-766)) NIL (|has| |#1| (-232))) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) 143)) (-4208 (((-535) $) 30 (|has| |#1| (-610 (-535)))) (((-378) $) 94 (|has| |#1| (-1017))) (((-224) $) 97 (|has| |#1| (-1017)))) (-4053 (((-857) $) 115) (($ (-562)) 48) (($ $) NIL) (($ |#1|) 47) (($ (-406 (-562))) NIL (|has| |#1| (-1033 (-406 (-562)))))) (-1568 (((-766)) 50)) (-3799 (((-112) $ $) NIL)) (-2285 (($) 42 T CONST)) (-2294 (($) 41 T CONST)) (-3113 (($ $) NIL (|has| |#1| (-232))) (($ $ (-766)) NIL (|has| |#1| (-232))) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1733 (((-112) $ $) 98)) (-1847 (($ $) 129) (($ $ $) NIL)) (-1836 (($ $ $) 141)) (** (($ $ (-916)) NIL) (($ $ (-766)) 104)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 52) (($ $ $) 51) (($ |#1| $) 53) (($ $ |#1|) NIL))) -(((-417 |#1|) (-13 (-554) (-230 |#1|) (-38 |#1|) (-337 |#1|) (-410 |#1|) (-10 -8 (-15 -3525 (|#1| $)) (-15 -1300 ((-562) $)) (-15 -2858 ($ |#1| (-639 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-562)))))) (-15 -4072 ((-639 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-562)))) $)) (-15 -2816 ($ |#1| (-562))) (-15 -2656 ((-639 (-2 (|:| -1635 |#1|) (|:| -1300 (-562)))) $)) (-15 -1511 ($ |#1| (-562))) (-15 -3657 ((-562) $ (-562))) (-15 -3111 (|#1| $ (-562))) (-15 -2645 ((-3 "nil" "sqfr" "irred" "prime") $ (-562))) (-15 -3423 ((-766) $)) (-15 -4294 ($ |#1| (-562))) (-15 -3661 ($ |#1| (-562))) (-15 -3068 ($ |#1| (-562) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -4310 (|#1| $)) (-15 -2810 ($ $)) (-15 -4152 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-451)) (-6 (-451)) |%noBranch|) (IF (|has| |#1| (-1017)) (-6 (-1017)) |%noBranch|) (IF (|has| |#1| (-1211)) (-6 (-1211)) |%noBranch|) (IF (|has| |#1| (-610 (-535))) (-6 (-610 (-535))) |%noBranch|) (IF (|has| |#1| (-544)) (PROGN (-15 -3498 ((-112) $)) (-15 -3854 ((-406 (-562)) $)) (-15 -3913 ((-3 (-406 (-562)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-285 $ $)) (-6 (-285 $ $)) |%noBranch|) (IF (|has| |#1| (-308 $)) (-6 (-308 $)) |%noBranch|) (IF (|has| |#1| (-513 (-1168) $)) (-6 (-513 (-1168) $)) |%noBranch|))) (-554)) (T -417)) -((-4152 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-554)) (-5 *1 (-417 *3)))) (-3525 (*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-554)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-417 *3)) (-4 *3 (-554)))) (-2858 (*1 *1 *2 *3) (-12 (-5 *3 (-639 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-562))))) (-4 *2 (-554)) (-5 *1 (-417 *2)))) (-4072 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-562))))) (-5 *1 (-417 *3)) (-4 *3 (-554)))) (-2816 (*1 *1 *2 *3) (-12 (-5 *3 (-562)) (-5 *1 (-417 *2)) (-4 *2 (-554)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| -1635 *3) (|:| -1300 (-562))))) (-5 *1 (-417 *3)) (-4 *3 (-554)))) (-1511 (*1 *1 *2 *3) (-12 (-5 *3 (-562)) (-5 *1 (-417 *2)) (-4 *2 (-554)))) (-3657 (*1 *2 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-417 *3)) (-4 *3 (-554)))) (-3111 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *1 (-417 *2)) (-4 *2 (-554)))) (-2645 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-417 *4)) (-4 *4 (-554)))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-417 *3)) (-4 *3 (-554)))) (-4294 (*1 *1 *2 *3) (-12 (-5 *3 (-562)) (-5 *1 (-417 *2)) (-4 *2 (-554)))) (-3661 (*1 *1 *2 *3) (-12 (-5 *3 (-562)) (-5 *1 (-417 *2)) (-4 *2 (-554)))) (-3068 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-562)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-417 *2)) (-4 *2 (-554)))) (-4310 (*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-554)))) (-2810 (*1 *1 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-554)))) (-3498 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-417 *3)) (-4 *3 (-544)) (-4 *3 (-554)))) (-3854 (*1 *2 *1) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-417 *3)) (-4 *3 (-544)) (-4 *3 (-554)))) (-3913 (*1 *2 *1) (|partial| -12 (-5 *2 (-406 (-562))) (-5 *1 (-417 *3)) (-4 *3 (-544)) (-4 *3 (-554))))) -(-13 (-554) (-230 |#1|) (-38 |#1|) (-337 |#1|) (-410 |#1|) (-10 -8 (-15 -3525 (|#1| $)) (-15 -1300 ((-562) $)) (-15 -2858 ($ |#1| (-639 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-562)))))) (-15 -4072 ((-639 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-562)))) $)) (-15 -2816 ($ |#1| (-562))) (-15 -2656 ((-639 (-2 (|:| -1635 |#1|) (|:| -1300 (-562)))) $)) (-15 -1511 ($ |#1| (-562))) (-15 -3657 ((-562) $ (-562))) (-15 -3111 (|#1| $ (-562))) (-15 -2645 ((-3 "nil" "sqfr" "irred" "prime") $ (-562))) (-15 -3423 ((-766) $)) (-15 -4294 ($ |#1| (-562))) (-15 -3661 ($ |#1| (-562))) (-15 -3068 ($ |#1| (-562) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -4310 (|#1| $)) (-15 -2810 ($ $)) (-15 -4152 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-451)) (-6 (-451)) |%noBranch|) (IF (|has| |#1| (-1017)) (-6 (-1017)) |%noBranch|) (IF (|has| |#1| (-1211)) (-6 (-1211)) |%noBranch|) (IF (|has| |#1| (-610 (-535))) (-6 (-610 (-535))) |%noBranch|) (IF (|has| |#1| (-544)) (PROGN (-15 -3498 ((-112) $)) (-15 -3854 ((-406 (-562)) $)) (-15 -3913 ((-3 (-406 (-562)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-285 $ $)) (-6 (-285 $ $)) |%noBranch|) (IF (|has| |#1| (-308 $)) (-6 (-308 $)) |%noBranch|) (IF (|has| |#1| (-513 (-1168) $)) (-6 (-513 (-1168) $)) |%noBranch|))) -((-2776 (((-417 |#1|) (-417 |#1|) (-1 (-417 |#1|) |#1|)) 21)) (-4092 (((-417 |#1|) (-417 |#1|) (-417 |#1|)) 16))) -(((-418 |#1|) (-10 -7 (-15 -2776 ((-417 |#1|) (-417 |#1|) (-1 (-417 |#1|) |#1|))) (-15 -4092 ((-417 |#1|) (-417 |#1|) (-417 |#1|)))) (-554)) (T -418)) -((-4092 (*1 *2 *2 *2) (-12 (-5 *2 (-417 *3)) (-4 *3 (-554)) (-5 *1 (-418 *3)))) (-2776 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-417 *4) *4)) (-4 *4 (-554)) (-5 *2 (-417 *4)) (-5 *1 (-418 *4))))) -(-10 -7 (-15 -2776 ((-417 |#1|) (-417 |#1|) (-1 (-417 |#1|) |#1|))) (-15 -4092 ((-417 |#1|) (-417 |#1|) (-417 |#1|)))) -((-2362 ((|#2| |#2|) 165)) (-2092 (((-3 (|:| |%expansion| (-312 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1150)) (|:| |prob| (-1150))))) |#2| (-112)) 57))) -(((-419 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2092 ((-3 (|:| |%expansion| (-312 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1150)) (|:| |prob| (-1150))))) |#2| (-112))) (-15 -2362 (|#2| |#2|))) (-13 (-451) (-845) (-1033 (-562)) (-635 (-562))) (-13 (-27) (-1192) (-429 |#1|)) (-1168) |#2|) (T -419)) -((-2362 (*1 *2 *2) (-12 (-4 *3 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-419 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1192) (-429 *3))) (-14 *4 (-1168)) (-14 *5 *2))) (-2092 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-3 (|:| |%expansion| (-312 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1150)) (|:| |prob| (-1150)))))) (-5 *1 (-419 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1192) (-429 *5))) (-14 *6 (-1168)) (-14 *7 *3)))) -(-10 -7 (-15 -2092 ((-3 (|:| |%expansion| (-312 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1150)) (|:| |prob| (-1150))))) |#2| (-112))) (-15 -2362 (|#2| |#2|))) -((-4152 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-420 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4152 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1044) (-845)) (-429 |#1|) (-13 (-1044) (-845)) (-429 |#3|)) (T -420)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1044) (-845))) (-4 *6 (-13 (-1044) (-845))) (-4 *2 (-429 *6)) (-5 *1 (-420 *5 *4 *6 *2)) (-4 *4 (-429 *5))))) -(-10 -7 (-15 -4152 (|#4| (-1 |#3| |#1|) |#2|))) -((-2362 ((|#2| |#2|) 89)) (-2013 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1150)) (|:| |prob| (-1150))))) |#2| (-112) (-1150)) 48)) (-1968 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1150)) (|:| |prob| (-1150))))) |#2| (-112) (-1150)) 153))) -(((-421 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2013 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1150)) (|:| |prob| (-1150))))) |#2| (-112) (-1150))) (-15 -1968 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1150)) (|:| |prob| (-1150))))) |#2| (-112) (-1150))) (-15 -2362 (|#2| |#2|))) (-13 (-451) (-845) (-1033 (-562)) (-635 (-562))) (-13 (-27) (-1192) (-429 |#1|) (-10 -8 (-15 -4053 ($ |#3|)))) (-843) (-13 (-1234 |#2| |#3|) (-362) (-1192) (-10 -8 (-15 -4029 ($ $)) (-15 -3081 ($ $)))) (-978 |#4|) (-1168)) (T -421)) -((-2362 (*1 *2 *2) (-12 (-4 *3 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-4 *2 (-13 (-27) (-1192) (-429 *3) (-10 -8 (-15 -4053 ($ *4))))) (-4 *4 (-843)) (-4 *5 (-13 (-1234 *2 *4) (-362) (-1192) (-10 -8 (-15 -4029 ($ $)) (-15 -3081 ($ $))))) (-5 *1 (-421 *3 *2 *4 *5 *6 *7)) (-4 *6 (-978 *5)) (-14 *7 (-1168)))) (-1968 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-4 *3 (-13 (-27) (-1192) (-429 *6) (-10 -8 (-15 -4053 ($ *7))))) (-4 *7 (-843)) (-4 *8 (-13 (-1234 *3 *7) (-362) (-1192) (-10 -8 (-15 -4029 ($ $)) (-15 -3081 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1150)) (|:| |prob| (-1150)))))) (-5 *1 (-421 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1150)) (-4 *9 (-978 *8)) (-14 *10 (-1168)))) (-2013 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-4 *3 (-13 (-27) (-1192) (-429 *6) (-10 -8 (-15 -4053 ($ *7))))) (-4 *7 (-843)) (-4 *8 (-13 (-1234 *3 *7) (-362) (-1192) (-10 -8 (-15 -4029 ($ $)) (-15 -3081 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1150)) (|:| |prob| (-1150)))))) (-5 *1 (-421 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1150)) (-4 *9 (-978 *8)) (-14 *10 (-1168))))) -(-10 -7 (-15 -2013 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1150)) (|:| |prob| (-1150))))) |#2| (-112) (-1150))) (-15 -1968 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1150)) (|:| |prob| (-1150))))) |#2| (-112) (-1150))) (-15 -2362 (|#2| |#2|))) -((-1555 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-1954 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-4152 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-422 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4152 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1954 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1555 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1092) (-424 |#1|) (-1092) (-424 |#3|)) (T -422)) -((-1555 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1092)) (-4 *5 (-1092)) (-4 *2 (-424 *5)) (-5 *1 (-422 *6 *4 *5 *2)) (-4 *4 (-424 *6)))) (-1954 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1092)) (-4 *2 (-1092)) (-5 *1 (-422 *5 *4 *2 *6)) (-4 *4 (-424 *5)) (-4 *6 (-424 *2)))) (-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *2 (-424 *6)) (-5 *1 (-422 *5 *4 *6 *2)) (-4 *4 (-424 *5))))) -(-10 -7 (-15 -4152 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1954 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1555 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-4076 (($) 44)) (-2492 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-2570 (($ $ $) 39)) (-3938 (((-112) $ $) 28)) (-1382 (((-766)) 47)) (-1607 (($ (-639 |#2|)) 20) (($) NIL)) (-1447 (($) 53)) (-3528 (((-112) $ $) 13)) (-1551 ((|#2| $) 61)) (-2993 ((|#2| $) 59)) (-3549 (((-916) $) 55)) (-4169 (($ $ $) 35)) (-2464 (($ (-916)) 50)) (-3874 (($ $ |#2|) NIL) (($ $ $) 38)) (-1723 (((-766) (-1 (-112) |#2|) $) NIL) (((-766) |#2| $) 26)) (-4064 (($ (-639 |#2|)) 24)) (-2695 (($ $) 46)) (-4053 (((-857) $) 33)) (-2186 (((-766) $) 21)) (-1702 (($ (-639 |#2|)) 19) (($) NIL)) (-1733 (((-112) $ $) 16))) -(((-423 |#1| |#2|) (-10 -8 (-15 -1382 ((-766))) (-15 -2464 (|#1| (-916))) (-15 -3549 ((-916) |#1|)) (-15 -1447 (|#1|)) (-15 -1551 (|#2| |#1|)) (-15 -2993 (|#2| |#1|)) (-15 -4076 (|#1|)) (-15 -2695 (|#1| |#1|)) (-15 -2186 ((-766) |#1|)) (-15 -1733 ((-112) |#1| |#1|)) (-15 -4053 ((-857) |#1|)) (-15 -3528 ((-112) |#1| |#1|)) (-15 -1702 (|#1|)) (-15 -1702 (|#1| (-639 |#2|))) (-15 -1607 (|#1|)) (-15 -1607 (|#1| (-639 |#2|))) (-15 -4169 (|#1| |#1| |#1|)) (-15 -3874 (|#1| |#1| |#1|)) (-15 -3874 (|#1| |#1| |#2|)) (-15 -2570 (|#1| |#1| |#1|)) (-15 -3938 ((-112) |#1| |#1|)) (-15 -2492 (|#1| |#1| |#1|)) (-15 -2492 (|#1| |#1| |#2|)) (-15 -2492 (|#1| |#2| |#1|)) (-15 -4064 (|#1| (-639 |#2|))) (-15 -1723 ((-766) |#2| |#1|)) (-15 -1723 ((-766) (-1 (-112) |#2|) |#1|))) (-424 |#2|) (-1092)) (T -423)) -((-1382 (*1 *2) (-12 (-4 *4 (-1092)) (-5 *2 (-766)) (-5 *1 (-423 *3 *4)) (-4 *3 (-424 *4))))) -(-10 -8 (-15 -1382 ((-766))) (-15 -2464 (|#1| (-916))) (-15 -3549 ((-916) |#1|)) (-15 -1447 (|#1|)) (-15 -1551 (|#2| |#1|)) (-15 -2993 (|#2| |#1|)) (-15 -4076 (|#1|)) (-15 -2695 (|#1| |#1|)) (-15 -2186 ((-766) |#1|)) (-15 -1733 ((-112) |#1| |#1|)) (-15 -4053 ((-857) |#1|)) (-15 -3528 ((-112) |#1| |#1|)) (-15 -1702 (|#1|)) (-15 -1702 (|#1| (-639 |#2|))) (-15 -1607 (|#1|)) (-15 -1607 (|#1| (-639 |#2|))) (-15 -4169 (|#1| |#1| |#1|)) (-15 -3874 (|#1| |#1| |#1|)) (-15 -3874 (|#1| |#1| |#2|)) (-15 -2570 (|#1| |#1| |#1|)) (-15 -3938 ((-112) |#1| |#1|)) (-15 -2492 (|#1| |#1| |#1|)) (-15 -2492 (|#1| |#1| |#2|)) (-15 -2492 (|#1| |#2| |#1|)) (-15 -4064 (|#1| (-639 |#2|))) (-15 -1723 ((-766) |#2| |#1|)) (-15 -1723 ((-766) (-1 (-112) |#2|) |#1|))) -((-4041 (((-112) $ $) 19)) (-4076 (($) 67 (|has| |#1| (-367)))) (-2492 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-2570 (($ $ $) 78)) (-3938 (((-112) $ $) 79)) (-3735 (((-112) $ (-766)) 8)) (-1382 (((-766)) 61 (|has| |#1| (-367)))) (-1607 (($ (-639 |#1|)) 74) (($) 73)) (-2968 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4403)))) (-3329 (($) 7 T CONST)) (-1459 (($ $) 58 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-3729 (($ |#1| $) 47 (|has| $ (-6 -4403))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4403)))) (-1475 (($ |#1| $) 57 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4403)))) (-1954 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4403)))) (-1447 (($) 64 (|has| |#1| (-367)))) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4403)))) (-3528 (((-112) $ $) 70)) (-4172 (((-112) $ (-766)) 9)) (-1551 ((|#1| $) 65 (|has| |#1| (-845)))) (-2123 (((-639 |#1|) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-2993 ((|#1| $) 66 (|has| |#1| (-845)))) (-1491 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-3549 (((-916) $) 63 (|has| |#1| (-367)))) (-4147 (((-112) $ (-766)) 10)) (-3696 (((-1150) $) 22)) (-4169 (($ $ $) 75)) (-2078 ((|#1| $) 39)) (-1581 (($ |#1| $) 40)) (-2464 (($ (-916)) 62 (|has| |#1| (-367)))) (-1709 (((-1112) $) 21)) (-1963 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2038 ((|#1| $) 41)) (-3008 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) 14)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-3874 (($ $ |#1|) 77) (($ $ $) 76)) (-1932 (($) 49) (($ (-639 |#1|)) 48)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4403))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-4220 (($ $) 13)) (-4208 (((-535) $) 59 (|has| |#1| (-610 (-535))))) (-4064 (($ (-639 |#1|)) 50)) (-2695 (($ $) 68 (|has| |#1| (-367)))) (-4053 (((-857) $) 18)) (-2186 (((-766) $) 69)) (-1702 (($ (-639 |#1|)) 72) (($) 71)) (-4131 (($ (-639 |#1|)) 42)) (-2879 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 20)) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-424 |#1|) (-139) (-1092)) (T -424)) -((-2186 (*1 *2 *1) (-12 (-4 *1 (-424 *3)) (-4 *3 (-1092)) (-5 *2 (-766)))) (-2695 (*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1092)) (-4 *2 (-367)))) (-4076 (*1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-367)) (-4 *2 (-1092)))) (-2993 (*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1092)) (-4 *2 (-845)))) (-1551 (*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1092)) (-4 *2 (-845))))) -(-13 (-228 |t#1|) (-1090 |t#1|) (-10 -8 (-6 -4403) (-15 -2186 ((-766) $)) (IF (|has| |t#1| (-367)) (PROGN (-6 (-367)) (-15 -2695 ($ $)) (-15 -4076 ($))) |%noBranch|) (IF (|has| |t#1| (-845)) (PROGN (-15 -2993 (|t#1| $)) (-15 -1551 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-609 (-857)) . T) ((-150 |#1|) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-228 |#1|) . T) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-367) |has| |#1| (-367)) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1090 |#1|) . T) ((-1092) . T) ((-1207) . T)) -((-3223 (((-583 |#2|) |#2| (-1168)) 35)) (-2710 (((-583 |#2|) |#2| (-1168)) 20)) (-1788 ((|#2| |#2| (-1168)) 25))) -(((-425 |#1| |#2|) (-10 -7 (-15 -2710 ((-583 |#2|) |#2| (-1168))) (-15 -3223 ((-583 |#2|) |#2| (-1168))) (-15 -1788 (|#2| |#2| (-1168)))) (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562))) (-13 (-1192) (-29 |#1|))) (T -425)) -((-1788 (*1 *2 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-425 *4 *2)) (-4 *2 (-13 (-1192) (-29 *4))))) (-3223 (*1 *2 *3 *4) (-12 (-5 *4 (-1168)) (-4 *5 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-583 *3)) (-5 *1 (-425 *5 *3)) (-4 *3 (-13 (-1192) (-29 *5))))) (-2710 (*1 *2 *3 *4) (-12 (-5 *4 (-1168)) (-4 *5 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-583 *3)) (-5 *1 (-425 *5 *3)) (-4 *3 (-13 (-1192) (-29 *5)))))) -(-10 -7 (-15 -2710 ((-583 |#2|) |#2| (-1168))) (-15 -3223 ((-583 |#2|) |#2| (-1168))) (-15 -1788 (|#2| |#2| (-1168)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3329 (($) NIL T CONST)) (-1694 (((-3 $ "failed") $) NIL)) (-4367 (((-112) $) NIL)) (-2764 (($ |#2| |#1|) 35)) (-3250 (($ |#2| |#1|) 33)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ |#1|) NIL) (($ (-330 |#2|)) 25)) (-1568 (((-766)) NIL)) (-2285 (($) 10 T CONST)) (-2294 (($) 16 T CONST)) (-1733 (((-112) $ $) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) 34)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-426 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4390)) (IF (|has| |#1| (-6 -4390)) (-6 -4390) |%noBranch|) |%noBranch|) (-15 -4053 ($ |#1|)) (-15 -4053 ($ (-330 |#2|))) (-15 -2764 ($ |#2| |#1|)) (-15 -3250 ($ |#2| |#1|)))) (-13 (-171) (-38 (-406 (-562)))) (-13 (-845) (-21))) (T -426)) -((-4053 (*1 *1 *2) (-12 (-5 *1 (-426 *2 *3)) (-4 *2 (-13 (-171) (-38 (-406 (-562))))) (-4 *3 (-13 (-845) (-21))))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-330 *4)) (-4 *4 (-13 (-845) (-21))) (-5 *1 (-426 *3 *4)) (-4 *3 (-13 (-171) (-38 (-406 (-562))))))) (-2764 (*1 *1 *2 *3) (-12 (-5 *1 (-426 *3 *2)) (-4 *3 (-13 (-171) (-38 (-406 (-562))))) (-4 *2 (-13 (-845) (-21))))) (-3250 (*1 *1 *2 *3) (-12 (-5 *1 (-426 *3 *2)) (-4 *3 (-13 (-171) (-38 (-406 (-562))))) (-4 *2 (-13 (-845) (-21)))))) -(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4390)) (IF (|has| |#1| (-6 -4390)) (-6 -4390) |%noBranch|) |%noBranch|) (-15 -4053 ($ |#1|)) (-15 -4053 ($ (-330 |#2|))) (-15 -2764 ($ |#2| |#1|)) (-15 -3250 ($ |#2| |#1|)))) -((-3081 (((-3 |#2| (-639 |#2|)) |#2| (-1168)) 108))) -(((-427 |#1| |#2|) (-10 -7 (-15 -3081 ((-3 |#2| (-639 |#2|)) |#2| (-1168)))) (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562))) (-13 (-1192) (-954) (-29 |#1|))) (T -427)) -((-3081 (*1 *2 *3 *4) (-12 (-5 *4 (-1168)) (-4 *5 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-3 *3 (-639 *3))) (-5 *1 (-427 *5 *3)) (-4 *3 (-13 (-1192) (-954) (-29 *5)))))) -(-10 -7 (-15 -3081 ((-3 |#2| (-639 |#2|)) |#2| (-1168)))) -((-1401 (((-639 (-1168)) $) 72)) (-1602 (((-406 (-1164 $)) $ (-608 $)) 273)) (-3164 (($ $ (-293 $)) NIL) (($ $ (-639 (-293 $))) NIL) (($ $ (-639 (-608 $)) (-639 $)) 237)) (-4048 (((-3 (-608 $) "failed") $) NIL) (((-3 (-1168) "failed") $) 75) (((-3 (-562) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-406 (-947 |#2|)) "failed") $) 324) (((-3 (-947 |#2|) "failed") $) 235) (((-3 (-406 (-562)) "failed") $) NIL)) (-3960 (((-608 $) $) NIL) (((-1168) $) 30) (((-562) $) NIL) ((|#2| $) 231) (((-406 (-947 |#2|)) $) 305) (((-947 |#2|) $) 232) (((-406 (-562)) $) NIL)) (-1502 (((-114) (-114)) 47)) (-2957 (($ $) 87)) (-4068 (((-3 (-608 $) "failed") $) 228)) (-1582 (((-639 (-608 $)) $) 229)) (-4025 (((-3 (-639 $) "failed") $) 247)) (-2811 (((-3 (-2 (|:| |val| $) (|:| -1300 (-562))) "failed") $) 254)) (-1778 (((-3 (-639 $) "failed") $) 245)) (-2871 (((-3 (-2 (|:| -4221 (-562)) (|:| |var| (-608 $))) "failed") $) 264)) (-4270 (((-3 (-2 (|:| |var| (-608 $)) (|:| -1300 (-562))) "failed") $) 251) (((-3 (-2 (|:| |var| (-608 $)) (|:| -1300 (-562))) "failed") $ (-114)) 217) (((-3 (-2 (|:| |var| (-608 $)) (|:| -1300 (-562))) "failed") $ (-1168)) 219)) (-1534 (((-112) $) 19)) (-1547 ((|#2| $) 21)) (-1433 (($ $ (-608 $) $) NIL) (($ $ (-639 (-608 $)) (-639 $)) 236) (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-639 (-1168)) (-639 (-1 $ $))) NIL) (($ $ (-639 (-1168)) (-639 (-1 $ (-639 $)))) 96) (($ $ (-1168) (-1 $ (-639 $))) NIL) (($ $ (-1168) (-1 $ $)) NIL) (($ $ (-639 (-114)) (-639 (-1 $ $))) NIL) (($ $ (-639 (-114)) (-639 (-1 $ (-639 $)))) NIL) (($ $ (-114) (-1 $ (-639 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1168)) 57) (($ $ (-639 (-1168))) 240) (($ $) 241) (($ $ (-114) $ (-1168)) 60) (($ $ (-639 (-114)) (-639 $) (-1168)) 67) (($ $ (-639 (-1168)) (-639 (-766)) (-639 (-1 $ $))) 107) (($ $ (-639 (-1168)) (-639 (-766)) (-639 (-1 $ (-639 $)))) 242) (($ $ (-1168) (-766) (-1 $ (-639 $))) 94) (($ $ (-1168) (-766) (-1 $ $)) 93)) (-2343 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-639 $)) 106)) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168)) 238)) (-1580 (($ $) 284)) (-4208 (((-887 (-562)) $) 257) (((-887 (-378)) $) 261) (($ (-417 $)) 320) (((-535) $) NIL)) (-4053 (((-857) $) 239) (($ (-608 $)) 84) (($ (-1168)) 26) (($ |#2|) NIL) (($ (-1117 |#2| (-608 $))) NIL) (($ (-406 |#2|)) 289) (($ (-947 (-406 |#2|))) 329) (($ (-406 (-947 (-406 |#2|)))) 301) (($ (-406 (-947 |#2|))) 295) (($ $) NIL) (($ (-947 |#2|)) 185) (($ (-406 (-562))) 334) (($ (-562)) NIL)) (-1568 (((-766)) 79)) (-2036 (((-112) (-114)) 41)) (-3105 (($ (-1168) $) 33) (($ (-1168) $ $) 34) (($ (-1168) $ $ $) 35) (($ (-1168) $ $ $ $) 36) (($ (-1168) (-639 $)) 39)) (* (($ (-406 (-562)) $) NIL) (($ $ (-406 (-562))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-562) $) NIL) (($ (-766) $) NIL) (($ (-916) $) NIL))) -(((-428 |#1| |#2|) (-10 -8 (-15 * (|#1| (-916) |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 * (|#1| (-562) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4053 (|#1| (-562))) (-15 -1568 ((-766))) (-15 -4053 (|#1| (-406 (-562)))) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3960 ((-406 (-562)) |#1|)) (-15 -4208 ((-535) |#1|)) (-15 -4053 (|#1| (-947 |#2|))) (-15 -4048 ((-3 (-947 |#2|) "failed") |#1|)) (-15 -3960 ((-947 |#2|) |#1|)) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4053 (|#1| |#1|)) (-15 * (|#1| |#1| (-406 (-562)))) (-15 * (|#1| (-406 (-562)) |#1|)) (-15 -4053 (|#1| (-406 (-947 |#2|)))) (-15 -4048 ((-3 (-406 (-947 |#2|)) "failed") |#1|)) (-15 -3960 ((-406 (-947 |#2|)) |#1|)) (-15 -1602 ((-406 (-1164 |#1|)) |#1| (-608 |#1|))) (-15 -4053 (|#1| (-406 (-947 (-406 |#2|))))) (-15 -4053 (|#1| (-947 (-406 |#2|)))) (-15 -4053 (|#1| (-406 |#2|))) (-15 -1580 (|#1| |#1|)) (-15 -4208 (|#1| (-417 |#1|))) (-15 -1433 (|#1| |#1| (-1168) (-766) (-1 |#1| |#1|))) (-15 -1433 (|#1| |#1| (-1168) (-766) (-1 |#1| (-639 |#1|)))) (-15 -1433 (|#1| |#1| (-639 (-1168)) (-639 (-766)) (-639 (-1 |#1| (-639 |#1|))))) (-15 -1433 (|#1| |#1| (-639 (-1168)) (-639 (-766)) (-639 (-1 |#1| |#1|)))) (-15 -2811 ((-3 (-2 (|:| |val| |#1|) (|:| -1300 (-562))) "failed") |#1|)) (-15 -4270 ((-3 (-2 (|:| |var| (-608 |#1|)) (|:| -1300 (-562))) "failed") |#1| (-1168))) (-15 -4270 ((-3 (-2 (|:| |var| (-608 |#1|)) (|:| -1300 (-562))) "failed") |#1| (-114))) (-15 -2957 (|#1| |#1|)) (-15 -4053 (|#1| (-1117 |#2| (-608 |#1|)))) (-15 -2871 ((-3 (-2 (|:| -4221 (-562)) (|:| |var| (-608 |#1|))) "failed") |#1|)) (-15 -1778 ((-3 (-639 |#1|) "failed") |#1|)) (-15 -4270 ((-3 (-2 (|:| |var| (-608 |#1|)) (|:| -1300 (-562))) "failed") |#1|)) (-15 -4025 ((-3 (-639 |#1|) "failed") |#1|)) (-15 -1433 (|#1| |#1| (-639 (-114)) (-639 |#1|) (-1168))) (-15 -1433 (|#1| |#1| (-114) |#1| (-1168))) (-15 -1433 (|#1| |#1|)) (-15 -1433 (|#1| |#1| (-639 (-1168)))) (-15 -1433 (|#1| |#1| (-1168))) (-15 -3105 (|#1| (-1168) (-639 |#1|))) (-15 -3105 (|#1| (-1168) |#1| |#1| |#1| |#1|)) (-15 -3105 (|#1| (-1168) |#1| |#1| |#1|)) (-15 -3105 (|#1| (-1168) |#1| |#1|)) (-15 -3105 (|#1| (-1168) |#1|)) (-15 -1401 ((-639 (-1168)) |#1|)) (-15 -1547 (|#2| |#1|)) (-15 -1534 ((-112) |#1|)) (-15 -4053 (|#1| |#2|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -3960 (|#2| |#1|)) (-15 -3960 ((-562) |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -4208 ((-887 (-378)) |#1|)) (-15 -4208 ((-887 (-562)) |#1|)) (-15 -4053 (|#1| (-1168))) (-15 -4048 ((-3 (-1168) "failed") |#1|)) (-15 -3960 ((-1168) |#1|)) (-15 -1433 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1433 (|#1| |#1| (-114) (-1 |#1| (-639 |#1|)))) (-15 -1433 (|#1| |#1| (-639 (-114)) (-639 (-1 |#1| (-639 |#1|))))) (-15 -1433 (|#1| |#1| (-639 (-114)) (-639 (-1 |#1| |#1|)))) (-15 -1433 (|#1| |#1| (-1168) (-1 |#1| |#1|))) (-15 -1433 (|#1| |#1| (-1168) (-1 |#1| (-639 |#1|)))) (-15 -1433 (|#1| |#1| (-639 (-1168)) (-639 (-1 |#1| (-639 |#1|))))) (-15 -1433 (|#1| |#1| (-639 (-1168)) (-639 (-1 |#1| |#1|)))) (-15 -2036 ((-112) (-114))) (-15 -1502 ((-114) (-114))) (-15 -1582 ((-639 (-608 |#1|)) |#1|)) (-15 -4068 ((-3 (-608 |#1|) "failed") |#1|)) (-15 -3164 (|#1| |#1| (-639 (-608 |#1|)) (-639 |#1|))) (-15 -3164 (|#1| |#1| (-639 (-293 |#1|)))) (-15 -3164 (|#1| |#1| (-293 |#1|))) (-15 -2343 (|#1| (-114) (-639 |#1|))) (-15 -2343 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2343 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2343 (|#1| (-114) |#1| |#1|)) (-15 -2343 (|#1| (-114) |#1|)) (-15 -1433 (|#1| |#1| (-639 |#1|) (-639 |#1|))) (-15 -1433 (|#1| |#1| |#1| |#1|)) (-15 -1433 (|#1| |#1| (-293 |#1|))) (-15 -1433 (|#1| |#1| (-639 (-293 |#1|)))) (-15 -1433 (|#1| |#1| (-639 (-608 |#1|)) (-639 |#1|))) (-15 -1433 (|#1| |#1| (-608 |#1|) |#1|)) (-15 -4053 (|#1| (-608 |#1|))) (-15 -4048 ((-3 (-608 |#1|) "failed") |#1|)) (-15 -3960 ((-608 |#1|) |#1|)) (-15 -4053 ((-857) |#1|))) (-429 |#2|) (-845)) (T -428)) -((-1502 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-845)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-2036 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-845)) (-5 *2 (-112)) (-5 *1 (-428 *4 *5)) (-4 *4 (-429 *5)))) (-1568 (*1 *2) (-12 (-4 *4 (-845)) (-5 *2 (-766)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4))))) -(-10 -8 (-15 * (|#1| (-916) |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 * (|#1| (-562) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4053 (|#1| (-562))) (-15 -1568 ((-766))) (-15 -4053 (|#1| (-406 (-562)))) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3960 ((-406 (-562)) |#1|)) (-15 -4208 ((-535) |#1|)) (-15 -4053 (|#1| (-947 |#2|))) (-15 -4048 ((-3 (-947 |#2|) "failed") |#1|)) (-15 -3960 ((-947 |#2|) |#1|)) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4053 (|#1| |#1|)) (-15 * (|#1| |#1| (-406 (-562)))) (-15 * (|#1| (-406 (-562)) |#1|)) (-15 -4053 (|#1| (-406 (-947 |#2|)))) (-15 -4048 ((-3 (-406 (-947 |#2|)) "failed") |#1|)) (-15 -3960 ((-406 (-947 |#2|)) |#1|)) (-15 -1602 ((-406 (-1164 |#1|)) |#1| (-608 |#1|))) (-15 -4053 (|#1| (-406 (-947 (-406 |#2|))))) (-15 -4053 (|#1| (-947 (-406 |#2|)))) (-15 -4053 (|#1| (-406 |#2|))) (-15 -1580 (|#1| |#1|)) (-15 -4208 (|#1| (-417 |#1|))) (-15 -1433 (|#1| |#1| (-1168) (-766) (-1 |#1| |#1|))) (-15 -1433 (|#1| |#1| (-1168) (-766) (-1 |#1| (-639 |#1|)))) (-15 -1433 (|#1| |#1| (-639 (-1168)) (-639 (-766)) (-639 (-1 |#1| (-639 |#1|))))) (-15 -1433 (|#1| |#1| (-639 (-1168)) (-639 (-766)) (-639 (-1 |#1| |#1|)))) (-15 -2811 ((-3 (-2 (|:| |val| |#1|) (|:| -1300 (-562))) "failed") |#1|)) (-15 -4270 ((-3 (-2 (|:| |var| (-608 |#1|)) (|:| -1300 (-562))) "failed") |#1| (-1168))) (-15 -4270 ((-3 (-2 (|:| |var| (-608 |#1|)) (|:| -1300 (-562))) "failed") |#1| (-114))) (-15 -2957 (|#1| |#1|)) (-15 -4053 (|#1| (-1117 |#2| (-608 |#1|)))) (-15 -2871 ((-3 (-2 (|:| -4221 (-562)) (|:| |var| (-608 |#1|))) "failed") |#1|)) (-15 -1778 ((-3 (-639 |#1|) "failed") |#1|)) (-15 -4270 ((-3 (-2 (|:| |var| (-608 |#1|)) (|:| -1300 (-562))) "failed") |#1|)) (-15 -4025 ((-3 (-639 |#1|) "failed") |#1|)) (-15 -1433 (|#1| |#1| (-639 (-114)) (-639 |#1|) (-1168))) (-15 -1433 (|#1| |#1| (-114) |#1| (-1168))) (-15 -1433 (|#1| |#1|)) (-15 -1433 (|#1| |#1| (-639 (-1168)))) (-15 -1433 (|#1| |#1| (-1168))) (-15 -3105 (|#1| (-1168) (-639 |#1|))) (-15 -3105 (|#1| (-1168) |#1| |#1| |#1| |#1|)) (-15 -3105 (|#1| (-1168) |#1| |#1| |#1|)) (-15 -3105 (|#1| (-1168) |#1| |#1|)) (-15 -3105 (|#1| (-1168) |#1|)) (-15 -1401 ((-639 (-1168)) |#1|)) (-15 -1547 (|#2| |#1|)) (-15 -1534 ((-112) |#1|)) (-15 -4053 (|#1| |#2|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -3960 (|#2| |#1|)) (-15 -3960 ((-562) |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -4208 ((-887 (-378)) |#1|)) (-15 -4208 ((-887 (-562)) |#1|)) (-15 -4053 (|#1| (-1168))) (-15 -4048 ((-3 (-1168) "failed") |#1|)) (-15 -3960 ((-1168) |#1|)) (-15 -1433 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1433 (|#1| |#1| (-114) (-1 |#1| (-639 |#1|)))) (-15 -1433 (|#1| |#1| (-639 (-114)) (-639 (-1 |#1| (-639 |#1|))))) (-15 -1433 (|#1| |#1| (-639 (-114)) (-639 (-1 |#1| |#1|)))) (-15 -1433 (|#1| |#1| (-1168) (-1 |#1| |#1|))) (-15 -1433 (|#1| |#1| (-1168) (-1 |#1| (-639 |#1|)))) (-15 -1433 (|#1| |#1| (-639 (-1168)) (-639 (-1 |#1| (-639 |#1|))))) (-15 -1433 (|#1| |#1| (-639 (-1168)) (-639 (-1 |#1| |#1|)))) (-15 -2036 ((-112) (-114))) (-15 -1502 ((-114) (-114))) (-15 -1582 ((-639 (-608 |#1|)) |#1|)) (-15 -4068 ((-3 (-608 |#1|) "failed") |#1|)) (-15 -3164 (|#1| |#1| (-639 (-608 |#1|)) (-639 |#1|))) (-15 -3164 (|#1| |#1| (-639 (-293 |#1|)))) (-15 -3164 (|#1| |#1| (-293 |#1|))) (-15 -2343 (|#1| (-114) (-639 |#1|))) (-15 -2343 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2343 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2343 (|#1| (-114) |#1| |#1|)) (-15 -2343 (|#1| (-114) |#1|)) (-15 -1433 (|#1| |#1| (-639 |#1|) (-639 |#1|))) (-15 -1433 (|#1| |#1| |#1| |#1|)) (-15 -1433 (|#1| |#1| (-293 |#1|))) (-15 -1433 (|#1| |#1| (-639 (-293 |#1|)))) (-15 -1433 (|#1| |#1| (-639 (-608 |#1|)) (-639 |#1|))) (-15 -1433 (|#1| |#1| (-608 |#1|) |#1|)) (-15 -4053 (|#1| (-608 |#1|))) (-15 -4048 ((-3 (-608 |#1|) "failed") |#1|)) (-15 -3960 ((-608 |#1|) |#1|)) (-15 -4053 ((-857) |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 114 (|has| |#1| (-25)))) (-1401 (((-639 (-1168)) $) 201)) (-1602 (((-406 (-1164 $)) $ (-608 $)) 169 (|has| |#1| (-554)))) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 141 (|has| |#1| (-554)))) (-1965 (($ $) 142 (|has| |#1| (-554)))) (-4102 (((-112) $) 144 (|has| |#1| (-554)))) (-1501 (((-639 (-608 $)) $) 44)) (-2781 (((-3 $ "failed") $ $) 116 (|has| |#1| (-21)))) (-3164 (($ $ (-293 $)) 56) (($ $ (-639 (-293 $))) 55) (($ $ (-639 (-608 $)) (-639 $)) 54)) (-1977 (($ $) 161 (|has| |#1| (-554)))) (-3788 (((-417 $) $) 162 (|has| |#1| (-554)))) (-1436 (((-112) $ $) 152 (|has| |#1| (-554)))) (-3329 (($) 102 (-4037 (|has| |#1| (-1104)) (|has| |#1| (-25))) CONST)) (-4048 (((-3 (-608 $) "failed") $) 69) (((-3 (-1168) "failed") $) 214) (((-3 (-562) "failed") $) 208 (|has| |#1| (-1033 (-562)))) (((-3 |#1| "failed") $) 205) (((-3 (-406 (-947 |#1|)) "failed") $) 167 (|has| |#1| (-554))) (((-3 (-947 |#1|) "failed") $) 121 (|has| |#1| (-1044))) (((-3 (-406 (-562)) "failed") $) 96 (-4037 (-12 (|has| |#1| (-1033 (-562))) (|has| |#1| (-554))) (|has| |#1| (-1033 (-406 (-562))))))) (-3960 (((-608 $) $) 70) (((-1168) $) 215) (((-562) $) 207 (|has| |#1| (-1033 (-562)))) ((|#1| $) 206) (((-406 (-947 |#1|)) $) 168 (|has| |#1| (-554))) (((-947 |#1|) $) 122 (|has| |#1| (-1044))) (((-406 (-562)) $) 97 (-4037 (-12 (|has| |#1| (-1033 (-562))) (|has| |#1| (-554))) (|has| |#1| (-1033 (-406 (-562))))))) (-1810 (($ $ $) 156 (|has| |#1| (-554)))) (-3449 (((-683 (-562)) (-683 $)) 135 (-2245 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 134 (-2245 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044)))) (((-2 (|:| -1767 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) 133 (|has| |#1| (-1044))) (((-683 |#1|) (-683 $)) 132 (|has| |#1| (-1044)))) (-1694 (((-3 $ "failed") $) 104 (|has| |#1| (-1104)))) (-1787 (($ $ $) 155 (|has| |#1| (-554)))) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) 150 (|has| |#1| (-554)))) (-3521 (((-112) $) 163 (|has| |#1| (-554)))) (-2337 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) 210 (|has| |#1| (-881 (-562)))) (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 209 (|has| |#1| (-881 (-378))))) (-2229 (($ $) 51) (($ (-639 $)) 50)) (-4364 (((-639 (-114)) $) 43)) (-1502 (((-114) (-114)) 42)) (-4367 (((-112) $) 103 (|has| |#1| (-1104)))) (-3152 (((-112) $) 22 (|has| $ (-1033 (-562))))) (-2957 (($ $) 184 (|has| |#1| (-1044)))) (-4063 (((-1117 |#1| (-608 $)) $) 185 (|has| |#1| (-1044)))) (-1719 (((-3 (-639 $) "failed") (-639 $) $) 159 (|has| |#1| (-554)))) (-3476 (((-1164 $) (-608 $)) 25 (|has| $ (-1044)))) (-1551 (($ $ $) 13)) (-2993 (($ $ $) 14)) (-4152 (($ (-1 $ $) (-608 $)) 36)) (-4068 (((-3 (-608 $) "failed") $) 46)) (-1564 (($ (-639 $)) 148 (|has| |#1| (-554))) (($ $ $) 147 (|has| |#1| (-554)))) (-3696 (((-1150) $) 9)) (-1582 (((-639 (-608 $)) $) 45)) (-4141 (($ (-114) $) 38) (($ (-114) (-639 $)) 37)) (-4025 (((-3 (-639 $) "failed") $) 190 (|has| |#1| (-1104)))) (-2811 (((-3 (-2 (|:| |val| $) (|:| -1300 (-562))) "failed") $) 181 (|has| |#1| (-1044)))) (-1778 (((-3 (-639 $) "failed") $) 188 (|has| |#1| (-25)))) (-2871 (((-3 (-2 (|:| -4221 (-562)) (|:| |var| (-608 $))) "failed") $) 187 (|has| |#1| (-25)))) (-4270 (((-3 (-2 (|:| |var| (-608 $)) (|:| -1300 (-562))) "failed") $) 189 (|has| |#1| (-1104))) (((-3 (-2 (|:| |var| (-608 $)) (|:| -1300 (-562))) "failed") $ (-114)) 183 (|has| |#1| (-1044))) (((-3 (-2 (|:| |var| (-608 $)) (|:| -1300 (-562))) "failed") $ (-1168)) 182 (|has| |#1| (-1044)))) (-3115 (((-112) $ (-114)) 40) (((-112) $ (-1168)) 39)) (-1525 (($ $) 106 (-4037 (|has| |#1| (-472)) (|has| |#1| (-554))))) (-3059 (((-766) $) 47)) (-1709 (((-1112) $) 10)) (-1534 (((-112) $) 203)) (-1547 ((|#1| $) 202)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 149 (|has| |#1| (-554)))) (-1606 (($ (-639 $)) 146 (|has| |#1| (-554))) (($ $ $) 145 (|has| |#1| (-554)))) (-1533 (((-112) $ $) 35) (((-112) $ (-1168)) 34)) (-1635 (((-417 $) $) 160 (|has| |#1| (-554)))) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 158 (|has| |#1| (-554))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) 157 (|has| |#1| (-554)))) (-1762 (((-3 $ "failed") $ $) 140 (|has| |#1| (-554)))) (-1879 (((-3 (-639 $) "failed") (-639 $) $) 151 (|has| |#1| (-554)))) (-2438 (((-112) $) 23 (|has| $ (-1033 (-562))))) (-1433 (($ $ (-608 $) $) 67) (($ $ (-639 (-608 $)) (-639 $)) 66) (($ $ (-639 (-293 $))) 65) (($ $ (-293 $)) 64) (($ $ $ $) 63) (($ $ (-639 $) (-639 $)) 62) (($ $ (-639 (-1168)) (-639 (-1 $ $))) 33) (($ $ (-639 (-1168)) (-639 (-1 $ (-639 $)))) 32) (($ $ (-1168) (-1 $ (-639 $))) 31) (($ $ (-1168) (-1 $ $)) 30) (($ $ (-639 (-114)) (-639 (-1 $ $))) 29) (($ $ (-639 (-114)) (-639 (-1 $ (-639 $)))) 28) (($ $ (-114) (-1 $ (-639 $))) 27) (($ $ (-114) (-1 $ $)) 26) (($ $ (-1168)) 195 (|has| |#1| (-610 (-535)))) (($ $ (-639 (-1168))) 194 (|has| |#1| (-610 (-535)))) (($ $) 193 (|has| |#1| (-610 (-535)))) (($ $ (-114) $ (-1168)) 192 (|has| |#1| (-610 (-535)))) (($ $ (-639 (-114)) (-639 $) (-1168)) 191 (|has| |#1| (-610 (-535)))) (($ $ (-639 (-1168)) (-639 (-766)) (-639 (-1 $ $))) 180 (|has| |#1| (-1044))) (($ $ (-639 (-1168)) (-639 (-766)) (-639 (-1 $ (-639 $)))) 179 (|has| |#1| (-1044))) (($ $ (-1168) (-766) (-1 $ (-639 $))) 178 (|has| |#1| (-1044))) (($ $ (-1168) (-766) (-1 $ $)) 177 (|has| |#1| (-1044)))) (-2044 (((-766) $) 153 (|has| |#1| (-554)))) (-2343 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-639 $)) 57)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 154 (|has| |#1| (-554)))) (-3461 (($ $) 49) (($ $ $) 48)) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) 126 (|has| |#1| (-1044))) (($ $ (-1168) (-766)) 125 (|has| |#1| (-1044))) (($ $ (-639 (-1168))) 124 (|has| |#1| (-1044))) (($ $ (-1168)) 123 (|has| |#1| (-1044)))) (-1580 (($ $) 174 (|has| |#1| (-554)))) (-4079 (((-1117 |#1| (-608 $)) $) 175 (|has| |#1| (-554)))) (-3371 (($ $) 24 (|has| $ (-1044)))) (-4208 (((-887 (-562)) $) 212 (|has| |#1| (-610 (-887 (-562))))) (((-887 (-378)) $) 211 (|has| |#1| (-610 (-887 (-378))))) (($ (-417 $)) 176 (|has| |#1| (-554))) (((-535) $) 98 (|has| |#1| (-610 (-535))))) (-1660 (($ $ $) 109 (|has| |#1| (-472)))) (-2114 (($ $ $) 110 (|has| |#1| (-472)))) (-4053 (((-857) $) 11) (($ (-608 $)) 68) (($ (-1168)) 213) (($ |#1|) 204) (($ (-1117 |#1| (-608 $))) 186 (|has| |#1| (-1044))) (($ (-406 |#1|)) 172 (|has| |#1| (-554))) (($ (-947 (-406 |#1|))) 171 (|has| |#1| (-554))) (($ (-406 (-947 (-406 |#1|)))) 170 (|has| |#1| (-554))) (($ (-406 (-947 |#1|))) 166 (|has| |#1| (-554))) (($ $) 139 (|has| |#1| (-554))) (($ (-947 |#1|)) 120 (|has| |#1| (-1044))) (($ (-406 (-562))) 95 (-4037 (|has| |#1| (-554)) (-12 (|has| |#1| (-1033 (-562))) (|has| |#1| (-554))) (|has| |#1| (-1033 (-406 (-562)))))) (($ (-562)) 94 (-4037 (|has| |#1| (-1044)) (|has| |#1| (-1033 (-562)))))) (-2059 (((-3 $ "failed") $) 136 (|has| |#1| (-144)))) (-1568 (((-766)) 131 (|has| |#1| (-1044)))) (-2745 (($ $) 53) (($ (-639 $)) 52)) (-2036 (((-112) (-114)) 41)) (-3799 (((-112) $ $) 143 (|has| |#1| (-554)))) (-3105 (($ (-1168) $) 200) (($ (-1168) $ $) 199) (($ (-1168) $ $ $) 198) (($ (-1168) $ $ $ $) 197) (($ (-1168) (-639 $)) 196)) (-2285 (($) 113 (|has| |#1| (-25)) CONST)) (-2294 (($) 101 (|has| |#1| (-1104)) CONST)) (-3113 (($ $ (-639 (-1168)) (-639 (-766))) 130 (|has| |#1| (-1044))) (($ $ (-1168) (-766)) 129 (|has| |#1| (-1044))) (($ $ (-639 (-1168))) 128 (|has| |#1| (-1044))) (($ $ (-1168)) 127 (|has| |#1| (-1044)))) (-1798 (((-112) $ $) 16)) (-1771 (((-112) $ $) 17)) (-1733 (((-112) $ $) 6)) (-1785 (((-112) $ $) 15)) (-1761 (((-112) $ $) 18)) (-1859 (($ (-1117 |#1| (-608 $)) (-1117 |#1| (-608 $))) 173 (|has| |#1| (-554))) (($ $ $) 107 (-4037 (|has| |#1| (-472)) (|has| |#1| (-554))))) (-1847 (($ $ $) 118 (|has| |#1| (-21))) (($ $) 117 (|has| |#1| (-21)))) (-1836 (($ $ $) 111 (|has| |#1| (-25)))) (** (($ $ (-562)) 108 (-4037 (|has| |#1| (-472)) (|has| |#1| (-554)))) (($ $ (-766)) 105 (|has| |#1| (-1104))) (($ $ (-916)) 100 (|has| |#1| (-1104)))) (* (($ (-406 (-562)) $) 165 (|has| |#1| (-554))) (($ $ (-406 (-562))) 164 (|has| |#1| (-554))) (($ |#1| $) 138 (|has| |#1| (-171))) (($ $ |#1|) 137 (|has| |#1| (-171))) (($ (-562) $) 119 (|has| |#1| (-21))) (($ (-766) $) 115 (|has| |#1| (-25))) (($ (-916) $) 112 (|has| |#1| (-25))) (($ $ $) 99 (|has| |#1| (-1104))))) -(((-429 |#1|) (-139) (-845)) (T -429)) -((-1534 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-845)) (-5 *2 (-112)))) (-1547 (*1 *2 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-845)))) (-1401 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-845)) (-5 *2 (-639 (-1168))))) (-3105 (*1 *1 *2 *1) (-12 (-5 *2 (-1168)) (-4 *1 (-429 *3)) (-4 *3 (-845)))) (-3105 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1168)) (-4 *1 (-429 *3)) (-4 *3 (-845)))) (-3105 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1168)) (-4 *1 (-429 *3)) (-4 *3 (-845)))) (-3105 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1168)) (-4 *1 (-429 *3)) (-4 *3 (-845)))) (-3105 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-639 *1)) (-4 *1 (-429 *4)) (-4 *4 (-845)))) (-1433 (*1 *1 *1 *2) (-12 (-5 *2 (-1168)) (-4 *1 (-429 *3)) (-4 *3 (-845)) (-4 *3 (-610 (-535))))) (-1433 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-1168))) (-4 *1 (-429 *3)) (-4 *3 (-845)) (-4 *3 (-610 (-535))))) (-1433 (*1 *1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-845)) (-4 *2 (-610 (-535))))) (-1433 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1168)) (-4 *1 (-429 *4)) (-4 *4 (-845)) (-4 *4 (-610 (-535))))) (-1433 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-639 (-114))) (-5 *3 (-639 *1)) (-5 *4 (-1168)) (-4 *1 (-429 *5)) (-4 *5 (-845)) (-4 *5 (-610 (-535))))) (-4025 (*1 *2 *1) (|partial| -12 (-4 *3 (-1104)) (-4 *3 (-845)) (-5 *2 (-639 *1)) (-4 *1 (-429 *3)))) (-4270 (*1 *2 *1) (|partial| -12 (-4 *3 (-1104)) (-4 *3 (-845)) (-5 *2 (-2 (|:| |var| (-608 *1)) (|:| -1300 (-562)))) (-4 *1 (-429 *3)))) (-1778 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-845)) (-5 *2 (-639 *1)) (-4 *1 (-429 *3)))) (-2871 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-845)) (-5 *2 (-2 (|:| -4221 (-562)) (|:| |var| (-608 *1)))) (-4 *1 (-429 *3)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-1117 *3 (-608 *1))) (-4 *3 (-1044)) (-4 *3 (-845)) (-4 *1 (-429 *3)))) (-4063 (*1 *2 *1) (-12 (-4 *3 (-1044)) (-4 *3 (-845)) (-5 *2 (-1117 *3 (-608 *1))) (-4 *1 (-429 *3)))) (-2957 (*1 *1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-845)) (-4 *2 (-1044)))) (-4270 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1044)) (-4 *4 (-845)) (-5 *2 (-2 (|:| |var| (-608 *1)) (|:| -1300 (-562)))) (-4 *1 (-429 *4)))) (-4270 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1168)) (-4 *4 (-1044)) (-4 *4 (-845)) (-5 *2 (-2 (|:| |var| (-608 *1)) (|:| -1300 (-562)))) (-4 *1 (-429 *4)))) (-2811 (*1 *2 *1) (|partial| -12 (-4 *3 (-1044)) (-4 *3 (-845)) (-5 *2 (-2 (|:| |val| *1) (|:| -1300 (-562)))) (-4 *1 (-429 *3)))) (-1433 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-639 (-1168))) (-5 *3 (-639 (-766))) (-5 *4 (-639 (-1 *1 *1))) (-4 *1 (-429 *5)) (-4 *5 (-845)) (-4 *5 (-1044)))) (-1433 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-639 (-1168))) (-5 *3 (-639 (-766))) (-5 *4 (-639 (-1 *1 (-639 *1)))) (-4 *1 (-429 *5)) (-4 *5 (-845)) (-4 *5 (-1044)))) (-1433 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1168)) (-5 *3 (-766)) (-5 *4 (-1 *1 (-639 *1))) (-4 *1 (-429 *5)) (-4 *5 (-845)) (-4 *5 (-1044)))) (-1433 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1168)) (-5 *3 (-766)) (-5 *4 (-1 *1 *1)) (-4 *1 (-429 *5)) (-4 *5 (-845)) (-4 *5 (-1044)))) (-4208 (*1 *1 *2) (-12 (-5 *2 (-417 *1)) (-4 *1 (-429 *3)) (-4 *3 (-554)) (-4 *3 (-845)))) (-4079 (*1 *2 *1) (-12 (-4 *3 (-554)) (-4 *3 (-845)) (-5 *2 (-1117 *3 (-608 *1))) (-4 *1 (-429 *3)))) (-1580 (*1 *1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-845)) (-4 *2 (-554)))) (-1859 (*1 *1 *2 *2) (-12 (-5 *2 (-1117 *3 (-608 *1))) (-4 *3 (-554)) (-4 *3 (-845)) (-4 *1 (-429 *3)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-406 *3)) (-4 *3 (-554)) (-4 *3 (-845)) (-4 *1 (-429 *3)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-947 (-406 *3))) (-4 *3 (-554)) (-4 *3 (-845)) (-4 *1 (-429 *3)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-406 (-947 (-406 *3)))) (-4 *3 (-554)) (-4 *3 (-845)) (-4 *1 (-429 *3)))) (-1602 (*1 *2 *1 *3) (-12 (-5 *3 (-608 *1)) (-4 *1 (-429 *4)) (-4 *4 (-845)) (-4 *4 (-554)) (-5 *2 (-406 (-1164 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-429 *3)) (-4 *3 (-845)) (-4 *3 (-1104))))) -(-13 (-301) (-1033 (-1168)) (-879 |t#1|) (-399 |t#1|) (-410 |t#1|) (-10 -8 (-15 -1534 ((-112) $)) (-15 -1547 (|t#1| $)) (-15 -1401 ((-639 (-1168)) $)) (-15 -3105 ($ (-1168) $)) (-15 -3105 ($ (-1168) $ $)) (-15 -3105 ($ (-1168) $ $ $)) (-15 -3105 ($ (-1168) $ $ $ $)) (-15 -3105 ($ (-1168) (-639 $))) (IF (|has| |t#1| (-610 (-535))) (PROGN (-6 (-610 (-535))) (-15 -1433 ($ $ (-1168))) (-15 -1433 ($ $ (-639 (-1168)))) (-15 -1433 ($ $)) (-15 -1433 ($ $ (-114) $ (-1168))) (-15 -1433 ($ $ (-639 (-114)) (-639 $) (-1168)))) |%noBranch|) (IF (|has| |t#1| (-1104)) (PROGN (-6 (-721)) (-15 ** ($ $ (-766))) (-15 -4025 ((-3 (-639 $) "failed") $)) (-15 -4270 ((-3 (-2 (|:| |var| (-608 $)) (|:| -1300 (-562))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-472)) (-6 (-472)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -1778 ((-3 (-639 $) "failed") $)) (-15 -2871 ((-3 (-2 (|:| -4221 (-562)) (|:| |var| (-608 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1044)) (PROGN (-6 (-1044)) (-6 (-1033 (-947 |t#1|))) (-6 (-895 (-1168))) (-6 (-376 |t#1|)) (-15 -4053 ($ (-1117 |t#1| (-608 $)))) (-15 -4063 ((-1117 |t#1| (-608 $)) $)) (-15 -2957 ($ $)) (-15 -4270 ((-3 (-2 (|:| |var| (-608 $)) (|:| -1300 (-562))) "failed") $ (-114))) (-15 -4270 ((-3 (-2 (|:| |var| (-608 $)) (|:| -1300 (-562))) "failed") $ (-1168))) (-15 -2811 ((-3 (-2 (|:| |val| $) (|:| -1300 (-562))) "failed") $)) (-15 -1433 ($ $ (-639 (-1168)) (-639 (-766)) (-639 (-1 $ $)))) (-15 -1433 ($ $ (-639 (-1168)) (-639 (-766)) (-639 (-1 $ (-639 $))))) (-15 -1433 ($ $ (-1168) (-766) (-1 $ (-639 $)))) (-15 -1433 ($ $ (-1168) (-766) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-171)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-554)) (PROGN (-6 (-362)) (-6 (-1033 (-406 (-947 |t#1|)))) (-15 -4208 ($ (-417 $))) (-15 -4079 ((-1117 |t#1| (-608 $)) $)) (-15 -1580 ($ $)) (-15 -1859 ($ (-1117 |t#1| (-608 $)) (-1117 |t#1| (-608 $)))) (-15 -4053 ($ (-406 |t#1|))) (-15 -4053 ($ (-947 (-406 |t#1|)))) (-15 -4053 ($ (-406 (-947 (-406 |t#1|))))) (-15 -1602 ((-406 (-1164 $)) $ (-608 $))) (IF (|has| |t#1| (-1033 (-562))) (-6 (-1033 (-406 (-562)))) |%noBranch|)) |%noBranch|))) -(((-21) -4037 (|has| |#1| (-1044)) (|has| |#1| (-554)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144)) (|has| |#1| (-21))) ((-23) -4037 (|has| |#1| (-1044)) (|has| |#1| (-554)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -4037 (|has| |#1| (-1044)) (|has| |#1| (-554)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-406 (-562))) |has| |#1| (-554)) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-554)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-554)) ((-111 |#1| |#1|) |has| |#1| (-171)) ((-111 $ $) |has| |#1| (-554)) ((-130) -4037 (|has| |#1| (-1044)) (|has| |#1| (-554)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144)) (|has| |#1| (-21))) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #0#) -4037 (|has| |#1| (-1033 (-406 (-562)))) (|has| |#1| (-554))) ((-612 #1=(-406 (-947 |#1|))) |has| |#1| (-554)) ((-612 (-562)) -4037 (|has| |#1| (-1044)) (|has| |#1| (-1033 (-562))) (|has| |#1| (-554)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-612 #2=(-608 $)) . T) ((-612 #3=(-947 |#1|)) |has| |#1| (-1044)) ((-612 #4=(-1168)) . T) ((-612 |#1|) . T) ((-612 $) |has| |#1| (-554)) ((-609 (-857)) . T) ((-171) |has| |#1| (-554)) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-610 (-887 (-378))) |has| |#1| (-610 (-887 (-378)))) ((-610 (-887 (-562))) |has| |#1| (-610 (-887 (-562)))) ((-242) |has| |#1| (-554)) ((-289) |has| |#1| (-554)) ((-306) |has| |#1| (-554)) ((-308 $) . T) ((-301) . T) ((-362) |has| |#1| (-554)) ((-376 |#1|) |has| |#1| (-1044)) ((-399 |#1|) . T) ((-410 |#1|) . T) ((-451) |has| |#1| (-554)) ((-472) |has| |#1| (-472)) ((-513 (-608 $) $) . T) ((-513 $ $) . T) ((-554) |has| |#1| (-554)) ((-642 #0#) |has| |#1| (-554)) ((-642 |#1|) |has| |#1| (-171)) ((-642 $) -4037 (|has| |#1| (-1044)) (|has| |#1| (-554)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-635 (-562)) -12 (|has| |#1| (-635 (-562))) (|has| |#1| (-1044))) ((-635 |#1|) |has| |#1| (-1044)) ((-712 #0#) |has| |#1| (-554)) ((-712 |#1|) |has| |#1| (-171)) ((-712 $) |has| |#1| (-554)) ((-721) -4037 (|has| |#1| (-1104)) (|has| |#1| (-1044)) (|has| |#1| (-554)) (|has| |#1| (-472)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-845) . T) ((-895 (-1168)) |has| |#1| (-1044)) ((-881 (-378)) |has| |#1| (-881 (-378))) ((-881 (-562)) |has| |#1| (-881 (-562))) ((-879 |#1|) . T) ((-915) |has| |#1| (-554)) ((-1033 (-406 (-562))) -4037 (|has| |#1| (-1033 (-406 (-562)))) (-12 (|has| |#1| (-554)) (|has| |#1| (-1033 (-562))))) ((-1033 #1#) |has| |#1| (-554)) ((-1033 (-562)) |has| |#1| (-1033 (-562))) ((-1033 #2#) . T) ((-1033 #3#) |has| |#1| (-1044)) ((-1033 #4#) . T) ((-1033 |#1|) . T) ((-1050 #0#) |has| |#1| (-554)) ((-1050 |#1|) |has| |#1| (-171)) ((-1050 $) |has| |#1| (-554)) ((-1044) -4037 (|has| |#1| (-1044)) (|has| |#1| (-554)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-1051) -4037 (|has| |#1| (-1044)) (|has| |#1| (-554)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-1104) -4037 (|has| |#1| (-1104)) (|has| |#1| (-1044)) (|has| |#1| (-554)) (|has| |#1| (-472)) (|has| |#1| (-171)) (|has| |#1| (-146)) (|has| |#1| (-144))) ((-1092) . T) ((-1207) . T) ((-1211) |has| |#1| (-554))) -((-2146 ((|#2| |#2| |#2|) 33)) (-1502 (((-114) (-114)) 44)) (-2461 ((|#2| |#2|) 66)) (-2509 ((|#2| |#2|) 69)) (-1904 ((|#2| |#2|) 32)) (-3733 ((|#2| |#2| |#2|) 35)) (-2831 ((|#2| |#2| |#2|) 37)) (-4287 ((|#2| |#2| |#2|) 34)) (-1623 ((|#2| |#2| |#2|) 36)) (-2036 (((-112) (-114)) 42)) (-2001 ((|#2| |#2|) 39)) (-3950 ((|#2| |#2|) 38)) (-2757 ((|#2| |#2|) 27)) (-2582 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-3291 ((|#2| |#2| |#2|) 31))) -(((-430 |#1| |#2|) (-10 -7 (-15 -2036 ((-112) (-114))) (-15 -1502 ((-114) (-114))) (-15 -2757 (|#2| |#2|)) (-15 -2582 (|#2| |#2|)) (-15 -2582 (|#2| |#2| |#2|)) (-15 -3291 (|#2| |#2| |#2|)) (-15 -1904 (|#2| |#2|)) (-15 -2146 (|#2| |#2| |#2|)) (-15 -4287 (|#2| |#2| |#2|)) (-15 -3733 (|#2| |#2| |#2|)) (-15 -1623 (|#2| |#2| |#2|)) (-15 -2831 (|#2| |#2| |#2|)) (-15 -3950 (|#2| |#2|)) (-15 -2001 (|#2| |#2|)) (-15 -2509 (|#2| |#2|)) (-15 -2461 (|#2| |#2|))) (-13 (-845) (-554)) (-429 |#1|)) (T -430)) -((-2461 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-2509 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-2001 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3950 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-2831 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-1623 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3733 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-4287 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-2146 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-1904 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-3291 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-2582 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-2582 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-2757 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) (-4 *2 (-429 *3)))) (-1502 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *4)) (-4 *4 (-429 *3)))) (-2036 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-845) (-554))) (-5 *2 (-112)) (-5 *1 (-430 *4 *5)) (-4 *5 (-429 *4))))) -(-10 -7 (-15 -2036 ((-112) (-114))) (-15 -1502 ((-114) (-114))) (-15 -2757 (|#2| |#2|)) (-15 -2582 (|#2| |#2|)) (-15 -2582 (|#2| |#2| |#2|)) (-15 -3291 (|#2| |#2| |#2|)) (-15 -1904 (|#2| |#2|)) (-15 -2146 (|#2| |#2| |#2|)) (-15 -4287 (|#2| |#2| |#2|)) (-15 -3733 (|#2| |#2| |#2|)) (-15 -1623 (|#2| |#2| |#2|)) (-15 -2831 (|#2| |#2| |#2|)) (-15 -3950 (|#2| |#2|)) (-15 -2001 (|#2| |#2|)) (-15 -2509 (|#2| |#2|)) (-15 -2461 (|#2| |#2|))) -((-2787 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1164 |#2|)) (|:| |pol2| (-1164 |#2|)) (|:| |prim| (-1164 |#2|))) |#2| |#2|) 96 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-639 (-1164 |#2|))) (|:| |prim| (-1164 |#2|))) (-639 |#2|)) 61))) -(((-431 |#1| |#2|) (-10 -7 (-15 -2787 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-639 (-1164 |#2|))) (|:| |prim| (-1164 |#2|))) (-639 |#2|))) (IF (|has| |#2| (-27)) (-15 -2787 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1164 |#2|)) (|:| |pol2| (-1164 |#2|)) (|:| |prim| (-1164 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-554) (-845) (-146)) (-429 |#1|)) (T -431)) -((-2787 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-554) (-845) (-146))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1164 *3)) (|:| |pol2| (-1164 *3)) (|:| |prim| (-1164 *3)))) (-5 *1 (-431 *4 *3)) (-4 *3 (-27)) (-4 *3 (-429 *4)))) (-2787 (*1 *2 *3) (-12 (-5 *3 (-639 *5)) (-4 *5 (-429 *4)) (-4 *4 (-13 (-554) (-845) (-146))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-639 (-1164 *5))) (|:| |prim| (-1164 *5)))) (-5 *1 (-431 *4 *5))))) -(-10 -7 (-15 -2787 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-639 (-1164 |#2|))) (|:| |prim| (-1164 |#2|))) (-639 |#2|))) (IF (|has| |#2| (-27)) (-15 -2787 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1164 |#2|)) (|:| |pol2| (-1164 |#2|)) (|:| |prim| (-1164 |#2|))) |#2| |#2|)) |%noBranch|)) -((-1769 (((-1261)) 19)) (-4223 (((-1164 (-406 (-562))) |#2| (-608 |#2|)) 41) (((-406 (-562)) |#2|) 25))) -(((-432 |#1| |#2|) (-10 -7 (-15 -4223 ((-406 (-562)) |#2|)) (-15 -4223 ((-1164 (-406 (-562))) |#2| (-608 |#2|))) (-15 -1769 ((-1261)))) (-13 (-845) (-554) (-1033 (-562))) (-429 |#1|)) (T -432)) -((-1769 (*1 *2) (-12 (-4 *3 (-13 (-845) (-554) (-1033 (-562)))) (-5 *2 (-1261)) (-5 *1 (-432 *3 *4)) (-4 *4 (-429 *3)))) (-4223 (*1 *2 *3 *4) (-12 (-5 *4 (-608 *3)) (-4 *3 (-429 *5)) (-4 *5 (-13 (-845) (-554) (-1033 (-562)))) (-5 *2 (-1164 (-406 (-562)))) (-5 *1 (-432 *5 *3)))) (-4223 (*1 *2 *3) (-12 (-4 *4 (-13 (-845) (-554) (-1033 (-562)))) (-5 *2 (-406 (-562))) (-5 *1 (-432 *4 *3)) (-4 *3 (-429 *4))))) -(-10 -7 (-15 -4223 ((-406 (-562)) |#2|)) (-15 -4223 ((-1164 (-406 (-562))) |#2| (-608 |#2|))) (-15 -1769 ((-1261)))) -((-2091 (((-112) $) 28)) (-2553 (((-112) $) 30)) (-3693 (((-112) $) 31)) (-2646 (((-112) $) 34)) (-2291 (((-112) $) 29)) (-2706 (((-112) $) 33)) (-4053 (((-857) $) 18) (($ (-1150)) 27) (($ (-1168)) 23) (((-1168) $) 22) (((-1096) $) 21)) (-4290 (((-112) $) 32)) (-1733 (((-112) $ $) 15))) -(((-433) (-13 (-609 (-857)) (-10 -8 (-15 -4053 ($ (-1150))) (-15 -4053 ($ (-1168))) (-15 -4053 ((-1168) $)) (-15 -4053 ((-1096) $)) (-15 -2091 ((-112) $)) (-15 -2291 ((-112) $)) (-15 -3693 ((-112) $)) (-15 -2706 ((-112) $)) (-15 -2646 ((-112) $)) (-15 -4290 ((-112) $)) (-15 -2553 ((-112) $)) (-15 -1733 ((-112) $ $))))) (T -433)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-433)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-433)))) (-4053 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-433)))) (-4053 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-433)))) (-2091 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-2291 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-3693 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-2706 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-2646 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-4290 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-2553 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) (-1733 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433))))) -(-13 (-609 (-857)) (-10 -8 (-15 -4053 ($ (-1150))) (-15 -4053 ($ (-1168))) (-15 -4053 ((-1168) $)) (-15 -4053 ((-1096) $)) (-15 -2091 ((-112) $)) (-15 -2291 ((-112) $)) (-15 -3693 ((-112) $)) (-15 -2706 ((-112) $)) (-15 -2646 ((-112) $)) (-15 -4290 ((-112) $)) (-15 -2553 ((-112) $)) (-15 -1733 ((-112) $ $)))) -((-3083 (((-3 (-417 (-1164 (-406 (-562)))) "failed") |#3|) 70)) (-3677 (((-417 |#3|) |#3|) 34)) (-2024 (((-3 (-417 (-1164 (-48))) "failed") |#3|) 46 (|has| |#2| (-1033 (-48))))) (-2743 (((-3 (|:| |overq| (-1164 (-406 (-562)))) (|:| |overan| (-1164 (-48))) (|:| -4254 (-112))) |#3|) 37))) -(((-434 |#1| |#2| |#3|) (-10 -7 (-15 -3677 ((-417 |#3|) |#3|)) (-15 -3083 ((-3 (-417 (-1164 (-406 (-562)))) "failed") |#3|)) (-15 -2743 ((-3 (|:| |overq| (-1164 (-406 (-562)))) (|:| |overan| (-1164 (-48))) (|:| -4254 (-112))) |#3|)) (IF (|has| |#2| (-1033 (-48))) (-15 -2024 ((-3 (-417 (-1164 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-554) (-845) (-1033 (-562))) (-429 |#1|) (-1232 |#2|)) (T -434)) -((-2024 (*1 *2 *3) (|partial| -12 (-4 *5 (-1033 (-48))) (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) (-4 *5 (-429 *4)) (-5 *2 (-417 (-1164 (-48)))) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1232 *5)))) (-2743 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) (-4 *5 (-429 *4)) (-5 *2 (-3 (|:| |overq| (-1164 (-406 (-562)))) (|:| |overan| (-1164 (-48))) (|:| -4254 (-112)))) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1232 *5)))) (-3083 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) (-4 *5 (-429 *4)) (-5 *2 (-417 (-1164 (-406 (-562))))) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1232 *5)))) (-3677 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) (-4 *5 (-429 *4)) (-5 *2 (-417 *3)) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1232 *5))))) -(-10 -7 (-15 -3677 ((-417 |#3|) |#3|)) (-15 -3083 ((-3 (-417 (-1164 (-406 (-562)))) "failed") |#3|)) (-15 -2743 ((-3 (|:| |overq| (-1164 (-406 (-562)))) (|:| |overan| (-1164 (-48))) (|:| -4254 (-112))) |#3|)) (IF (|has| |#2| (-1033 (-48))) (-15 -2024 ((-3 (-417 (-1164 (-48))) "failed") |#3|)) |%noBranch|)) -((-4041 (((-112) $ $) NIL)) (-3791 (((-1150) $ (-1150)) NIL)) (-2385 (($ $ (-1150)) NIL)) (-3385 (((-1150) $) NIL)) (-2273 (((-387) (-387) (-387)) 17) (((-387) (-387)) 15)) (-3315 (($ (-387)) NIL) (($ (-387) (-1150)) NIL)) (-3253 (((-387) $) NIL)) (-3696 (((-1150) $) NIL)) (-2735 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-3277 (((-1261) (-1150)) 9)) (-1338 (((-1261) (-1150)) 10)) (-3721 (((-1261)) 11)) (-4053 (((-857) $) NIL)) (-1380 (($ $) 34)) (-1733 (((-112) $ $) NIL))) -(((-435) (-13 (-363 (-387) (-1150)) (-10 -7 (-15 -2273 ((-387) (-387) (-387))) (-15 -2273 ((-387) (-387))) (-15 -3277 ((-1261) (-1150))) (-15 -1338 ((-1261) (-1150))) (-15 -3721 ((-1261)))))) (T -435)) -((-2273 (*1 *2 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-435)))) (-2273 (*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-435)))) (-3277 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-435)))) (-1338 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-435)))) (-3721 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-435))))) -(-13 (-363 (-387) (-1150)) (-10 -7 (-15 -2273 ((-387) (-387) (-387))) (-15 -2273 ((-387) (-387))) (-15 -3277 ((-1261) (-1150))) (-15 -1338 ((-1261) (-1150))) (-15 -3721 ((-1261))))) -((-4041 (((-112) $ $) NIL)) (-2292 (((-3 (|:| |fst| (-433)) (|:| -2649 "void")) $) 11)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2759 (($) 32)) (-1344 (($) 38)) (-2421 (($) 34)) (-3024 (($) 36)) (-3252 (($) 33)) (-1863 (($) 35)) (-2084 (($) 37)) (-4307 (((-112) $) 8)) (-2220 (((-639 (-947 (-562))) $) 19)) (-4064 (($ (-3 (|:| |fst| (-433)) (|:| -2649 "void")) (-639 (-1168)) (-112)) 27) (($ (-3 (|:| |fst| (-433)) (|:| -2649 "void")) (-639 (-947 (-562))) (-112)) 28)) (-4053 (((-857) $) 23) (($ (-433)) 29)) (-1733 (((-112) $ $) NIL))) -(((-436) (-13 (-1092) (-10 -8 (-15 -4053 ($ (-433))) (-15 -2292 ((-3 (|:| |fst| (-433)) (|:| -2649 "void")) $)) (-15 -2220 ((-639 (-947 (-562))) $)) (-15 -4307 ((-112) $)) (-15 -4064 ($ (-3 (|:| |fst| (-433)) (|:| -2649 "void")) (-639 (-1168)) (-112))) (-15 -4064 ($ (-3 (|:| |fst| (-433)) (|:| -2649 "void")) (-639 (-947 (-562))) (-112))) (-15 -2759 ($)) (-15 -3252 ($)) (-15 -2421 ($)) (-15 -1344 ($)) (-15 -1863 ($)) (-15 -3024 ($)) (-15 -2084 ($))))) (T -436)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-433)) (-5 *1 (-436)))) (-2292 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) (-5 *1 (-436)))) (-2220 (*1 *2 *1) (-12 (-5 *2 (-639 (-947 (-562)))) (-5 *1 (-436)))) (-4307 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-4064 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) (-5 *3 (-639 (-1168))) (-5 *4 (-112)) (-5 *1 (-436)))) (-4064 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) (-5 *3 (-639 (-947 (-562)))) (-5 *4 (-112)) (-5 *1 (-436)))) (-2759 (*1 *1) (-5 *1 (-436))) (-3252 (*1 *1) (-5 *1 (-436))) (-2421 (*1 *1) (-5 *1 (-436))) (-1344 (*1 *1) (-5 *1 (-436))) (-1863 (*1 *1) (-5 *1 (-436))) (-3024 (*1 *1) (-5 *1 (-436))) (-2084 (*1 *1) (-5 *1 (-436)))) -(-13 (-1092) (-10 -8 (-15 -4053 ($ (-433))) (-15 -2292 ((-3 (|:| |fst| (-433)) (|:| -2649 "void")) $)) (-15 -2220 ((-639 (-947 (-562))) $)) (-15 -4307 ((-112) $)) (-15 -4064 ($ (-3 (|:| |fst| (-433)) (|:| -2649 "void")) (-639 (-1168)) (-112))) (-15 -4064 ($ (-3 (|:| |fst| (-433)) (|:| -2649 "void")) (-639 (-947 (-562))) (-112))) (-15 -2759 ($)) (-15 -3252 ($)) (-15 -2421 ($)) (-15 -1344 ($)) (-15 -1863 ($)) (-15 -3024 ($)) (-15 -2084 ($)))) -((-4041 (((-112) $ $) NIL)) (-3253 (((-1168) $) 8)) (-3696 (((-1150) $) 16)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 11)) (-1733 (((-112) $ $) 13))) -(((-437 |#1|) (-13 (-1092) (-10 -8 (-15 -3253 ((-1168) $)))) (-1168)) (T -437)) -((-3253 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-437 *3)) (-14 *3 *2)))) -(-13 (-1092) (-10 -8 (-15 -3253 ((-1168) $)))) -((-4041 (((-112) $ $) NIL)) (-2844 (((-1110) $) 7)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 13)) (-1733 (((-112) $ $) 9))) -(((-438) (-13 (-1092) (-10 -8 (-15 -2844 ((-1110) $))))) (T -438)) -((-2844 (*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-438))))) -(-13 (-1092) (-10 -8 (-15 -2844 ((-1110) $)))) -((-3218 (((-1261) $) 7)) (-4053 (((-857) $) 8) (($ (-1256 (-693))) 14) (($ (-639 (-329))) 13) (($ (-329)) 12) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 11))) -(((-439) (-139)) (T -439)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-1256 (-693))) (-4 *1 (-439)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-639 (-329))) (-4 *1 (-439)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-439)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) (-4 *1 (-439))))) -(-13 (-394) (-10 -8 (-15 -4053 ($ (-1256 (-693)))) (-15 -4053 ($ (-639 (-329)))) (-15 -4053 ($ (-329))) (-15 -4053 ($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329)))))))) -(((-609 (-857)) . T) ((-394) . T) ((-1207) . T)) -((-4048 (((-3 $ "failed") (-1256 (-315 (-378)))) 21) (((-3 $ "failed") (-1256 (-315 (-562)))) 19) (((-3 $ "failed") (-1256 (-947 (-378)))) 17) (((-3 $ "failed") (-1256 (-947 (-562)))) 15) (((-3 $ "failed") (-1256 (-406 (-947 (-378))))) 13) (((-3 $ "failed") (-1256 (-406 (-947 (-562))))) 11)) (-3960 (($ (-1256 (-315 (-378)))) 22) (($ (-1256 (-315 (-562)))) 20) (($ (-1256 (-947 (-378)))) 18) (($ (-1256 (-947 (-562)))) 16) (($ (-1256 (-406 (-947 (-378))))) 14) (($ (-1256 (-406 (-947 (-562))))) 12)) (-3218 (((-1261) $) 7)) (-4053 (((-857) $) 8) (($ (-639 (-329))) 25) (($ (-329)) 24) (($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) 23))) -(((-440) (-139)) (T -440)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-639 (-329))) (-4 *1 (-440)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-440)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) (-4 *1 (-440)))) (-3960 (*1 *1 *2) (-12 (-5 *2 (-1256 (-315 (-378)))) (-4 *1 (-440)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-1256 (-315 (-378)))) (-4 *1 (-440)))) (-3960 (*1 *1 *2) (-12 (-5 *2 (-1256 (-315 (-562)))) (-4 *1 (-440)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-1256 (-315 (-562)))) (-4 *1 (-440)))) (-3960 (*1 *1 *2) (-12 (-5 *2 (-1256 (-947 (-378)))) (-4 *1 (-440)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-1256 (-947 (-378)))) (-4 *1 (-440)))) (-3960 (*1 *1 *2) (-12 (-5 *2 (-1256 (-947 (-562)))) (-4 *1 (-440)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-1256 (-947 (-562)))) (-4 *1 (-440)))) (-3960 (*1 *1 *2) (-12 (-5 *2 (-1256 (-406 (-947 (-378))))) (-4 *1 (-440)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-1256 (-406 (-947 (-378))))) (-4 *1 (-440)))) (-3960 (*1 *1 *2) (-12 (-5 *2 (-1256 (-406 (-947 (-562))))) (-4 *1 (-440)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-1256 (-406 (-947 (-562))))) (-4 *1 (-440))))) -(-13 (-394) (-10 -8 (-15 -4053 ($ (-639 (-329)))) (-15 -4053 ($ (-329))) (-15 -4053 ($ (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329)))))) (-15 -3960 ($ (-1256 (-315 (-378))))) (-15 -4048 ((-3 $ "failed") (-1256 (-315 (-378))))) (-15 -3960 ($ (-1256 (-315 (-562))))) (-15 -4048 ((-3 $ "failed") (-1256 (-315 (-562))))) (-15 -3960 ($ (-1256 (-947 (-378))))) (-15 -4048 ((-3 $ "failed") (-1256 (-947 (-378))))) (-15 -3960 ($ (-1256 (-947 (-562))))) (-15 -4048 ((-3 $ "failed") (-1256 (-947 (-562))))) (-15 -3960 ($ (-1256 (-406 (-947 (-378)))))) (-15 -4048 ((-3 $ "failed") (-1256 (-406 (-947 (-378)))))) (-15 -3960 ($ (-1256 (-406 (-947 (-562)))))) (-15 -4048 ((-3 $ "failed") (-1256 (-406 (-947 (-562)))))))) -(((-609 (-857)) . T) ((-394) . T) ((-1207) . T)) -((-2730 (((-112)) 17)) (-1620 (((-112) (-112)) 18)) (-3441 (((-112)) 13)) (-3483 (((-112) (-112)) 14)) (-3921 (((-112)) 15)) (-1654 (((-112) (-112)) 16)) (-3953 (((-916) (-916)) 21) (((-916)) 20)) (-3423 (((-766) (-639 (-2 (|:| -1635 |#1|) (|:| -2250 (-562))))) 41)) (-1468 (((-916) (-916)) 23) (((-916)) 22)) (-3428 (((-2 (|:| -4066 (-562)) (|:| -2656 (-639 |#1|))) |#1|) 61)) (-2858 (((-417 |#1|) (-2 (|:| |contp| (-562)) (|:| -2656 (-639 (-2 (|:| |irr| |#1|) (|:| -2794 (-562))))))) 126)) (-2323 (((-2 (|:| |contp| (-562)) (|:| -2656 (-639 (-2 (|:| |irr| |#1|) (|:| -2794 (-562)))))) |#1| (-112)) 152)) (-3805 (((-417 |#1|) |#1| (-766) (-766)) 165) (((-417 |#1|) |#1| (-639 (-766)) (-766)) 162) (((-417 |#1|) |#1| (-639 (-766))) 164) (((-417 |#1|) |#1| (-766)) 163) (((-417 |#1|) |#1|) 161)) (-3555 (((-3 |#1| "failed") (-916) |#1| (-639 (-766)) (-766) (-112)) 167) (((-3 |#1| "failed") (-916) |#1| (-639 (-766)) (-766)) 168) (((-3 |#1| "failed") (-916) |#1| (-639 (-766))) 170) (((-3 |#1| "failed") (-916) |#1| (-766)) 169) (((-3 |#1| "failed") (-916) |#1|) 171)) (-1635 (((-417 |#1|) |#1| (-766) (-766)) 160) (((-417 |#1|) |#1| (-639 (-766)) (-766)) 156) (((-417 |#1|) |#1| (-639 (-766))) 158) (((-417 |#1|) |#1| (-766)) 157) (((-417 |#1|) |#1|) 155)) (-1466 (((-112) |#1|) 36)) (-2194 (((-732 (-766)) (-639 (-2 (|:| -1635 |#1|) (|:| -2250 (-562))))) 66)) (-1584 (((-2 (|:| |contp| (-562)) (|:| -2656 (-639 (-2 (|:| |irr| |#1|) (|:| -2794 (-562)))))) |#1| (-112) (-1094 (-766)) (-766)) 154))) -(((-441 |#1|) (-10 -7 (-15 -2858 ((-417 |#1|) (-2 (|:| |contp| (-562)) (|:| -2656 (-639 (-2 (|:| |irr| |#1|) (|:| -2794 (-562)))))))) (-15 -2194 ((-732 (-766)) (-639 (-2 (|:| -1635 |#1|) (|:| -2250 (-562)))))) (-15 -1468 ((-916))) (-15 -1468 ((-916) (-916))) (-15 -3953 ((-916))) (-15 -3953 ((-916) (-916))) (-15 -3423 ((-766) (-639 (-2 (|:| -1635 |#1|) (|:| -2250 (-562)))))) (-15 -3428 ((-2 (|:| -4066 (-562)) (|:| -2656 (-639 |#1|))) |#1|)) (-15 -2730 ((-112))) (-15 -1620 ((-112) (-112))) (-15 -3441 ((-112))) (-15 -3483 ((-112) (-112))) (-15 -1466 ((-112) |#1|)) (-15 -3921 ((-112))) (-15 -1654 ((-112) (-112))) (-15 -1635 ((-417 |#1|) |#1|)) (-15 -1635 ((-417 |#1|) |#1| (-766))) (-15 -1635 ((-417 |#1|) |#1| (-639 (-766)))) (-15 -1635 ((-417 |#1|) |#1| (-639 (-766)) (-766))) (-15 -1635 ((-417 |#1|) |#1| (-766) (-766))) (-15 -3805 ((-417 |#1|) |#1|)) (-15 -3805 ((-417 |#1|) |#1| (-766))) (-15 -3805 ((-417 |#1|) |#1| (-639 (-766)))) (-15 -3805 ((-417 |#1|) |#1| (-639 (-766)) (-766))) (-15 -3805 ((-417 |#1|) |#1| (-766) (-766))) (-15 -3555 ((-3 |#1| "failed") (-916) |#1|)) (-15 -3555 ((-3 |#1| "failed") (-916) |#1| (-766))) (-15 -3555 ((-3 |#1| "failed") (-916) |#1| (-639 (-766)))) (-15 -3555 ((-3 |#1| "failed") (-916) |#1| (-639 (-766)) (-766))) (-15 -3555 ((-3 |#1| "failed") (-916) |#1| (-639 (-766)) (-766) (-112))) (-15 -2323 ((-2 (|:| |contp| (-562)) (|:| -2656 (-639 (-2 (|:| |irr| |#1|) (|:| -2794 (-562)))))) |#1| (-112))) (-15 -1584 ((-2 (|:| |contp| (-562)) (|:| -2656 (-639 (-2 (|:| |irr| |#1|) (|:| -2794 (-562)))))) |#1| (-112) (-1094 (-766)) (-766)))) (-1232 (-562))) (T -441)) -((-1584 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1094 (-766))) (-5 *6 (-766)) (-5 *2 (-2 (|:| |contp| (-562)) (|:| -2656 (-639 (-2 (|:| |irr| *3) (|:| -2794 (-562))))))) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-2323 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-562)) (|:| -2656 (-639 (-2 (|:| |irr| *3) (|:| -2794 (-562))))))) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-3555 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-916)) (-5 *4 (-639 (-766))) (-5 *5 (-766)) (-5 *6 (-112)) (-5 *1 (-441 *2)) (-4 *2 (-1232 (-562))))) (-3555 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-916)) (-5 *4 (-639 (-766))) (-5 *5 (-766)) (-5 *1 (-441 *2)) (-4 *2 (-1232 (-562))))) (-3555 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-916)) (-5 *4 (-639 (-766))) (-5 *1 (-441 *2)) (-4 *2 (-1232 (-562))))) (-3555 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-916)) (-5 *4 (-766)) (-5 *1 (-441 *2)) (-4 *2 (-1232 (-562))))) (-3555 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-916)) (-5 *1 (-441 *2)) (-4 *2 (-1232 (-562))))) (-3805 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-766)) (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-3805 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-639 (-766))) (-5 *5 (-766)) (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-3805 (*1 *2 *3 *4) (-12 (-5 *4 (-639 (-766))) (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-3805 (*1 *2 *3 *4) (-12 (-5 *4 (-766)) (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-3805 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-1635 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-766)) (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-1635 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-639 (-766))) (-5 *5 (-766)) (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-1635 (*1 *2 *3 *4) (-12 (-5 *4 (-639 (-766))) (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-1635 (*1 *2 *3 *4) (-12 (-5 *4 (-766)) (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-1635 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-1654 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-3921 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-1466 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-3483 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-3441 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-1620 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-2730 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-3428 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4066 (-562)) (|:| -2656 (-639 *3)))) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-3423 (*1 *2 *3) (-12 (-5 *3 (-639 (-2 (|:| -1635 *4) (|:| -2250 (-562))))) (-4 *4 (-1232 (-562))) (-5 *2 (-766)) (-5 *1 (-441 *4)))) (-3953 (*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-3953 (*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-1468 (*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-1468 (*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) (-2194 (*1 *2 *3) (-12 (-5 *3 (-639 (-2 (|:| -1635 *4) (|:| -2250 (-562))))) (-4 *4 (-1232 (-562))) (-5 *2 (-732 (-766))) (-5 *1 (-441 *4)))) (-2858 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-562)) (|:| -2656 (-639 (-2 (|:| |irr| *4) (|:| -2794 (-562))))))) (-4 *4 (-1232 (-562))) (-5 *2 (-417 *4)) (-5 *1 (-441 *4))))) -(-10 -7 (-15 -2858 ((-417 |#1|) (-2 (|:| |contp| (-562)) (|:| -2656 (-639 (-2 (|:| |irr| |#1|) (|:| -2794 (-562)))))))) (-15 -2194 ((-732 (-766)) (-639 (-2 (|:| -1635 |#1|) (|:| -2250 (-562)))))) (-15 -1468 ((-916))) (-15 -1468 ((-916) (-916))) (-15 -3953 ((-916))) (-15 -3953 ((-916) (-916))) (-15 -3423 ((-766) (-639 (-2 (|:| -1635 |#1|) (|:| -2250 (-562)))))) (-15 -3428 ((-2 (|:| -4066 (-562)) (|:| -2656 (-639 |#1|))) |#1|)) (-15 -2730 ((-112))) (-15 -1620 ((-112) (-112))) (-15 -3441 ((-112))) (-15 -3483 ((-112) (-112))) (-15 -1466 ((-112) |#1|)) (-15 -3921 ((-112))) (-15 -1654 ((-112) (-112))) (-15 -1635 ((-417 |#1|) |#1|)) (-15 -1635 ((-417 |#1|) |#1| (-766))) (-15 -1635 ((-417 |#1|) |#1| (-639 (-766)))) (-15 -1635 ((-417 |#1|) |#1| (-639 (-766)) (-766))) (-15 -1635 ((-417 |#1|) |#1| (-766) (-766))) (-15 -3805 ((-417 |#1|) |#1|)) (-15 -3805 ((-417 |#1|) |#1| (-766))) (-15 -3805 ((-417 |#1|) |#1| (-639 (-766)))) (-15 -3805 ((-417 |#1|) |#1| (-639 (-766)) (-766))) (-15 -3805 ((-417 |#1|) |#1| (-766) (-766))) (-15 -3555 ((-3 |#1| "failed") (-916) |#1|)) (-15 -3555 ((-3 |#1| "failed") (-916) |#1| (-766))) (-15 -3555 ((-3 |#1| "failed") (-916) |#1| (-639 (-766)))) (-15 -3555 ((-3 |#1| "failed") (-916) |#1| (-639 (-766)) (-766))) (-15 -3555 ((-3 |#1| "failed") (-916) |#1| (-639 (-766)) (-766) (-112))) (-15 -2323 ((-2 (|:| |contp| (-562)) (|:| -2656 (-639 (-2 (|:| |irr| |#1|) (|:| -2794 (-562)))))) |#1| (-112))) (-15 -1584 ((-2 (|:| |contp| (-562)) (|:| -2656 (-639 (-2 (|:| |irr| |#1|) (|:| -2794 (-562)))))) |#1| (-112) (-1094 (-766)) (-766)))) -((-3691 (((-562) |#2|) 48) (((-562) |#2| (-766)) 47)) (-2783 (((-562) |#2|) 55)) (-3929 ((|#3| |#2|) 25)) (-4363 ((|#3| |#2| (-916)) 14)) (-3641 ((|#3| |#2|) 15)) (-1833 ((|#3| |#2|) 9)) (-3059 ((|#3| |#2|) 10)) (-3587 ((|#3| |#2| (-916)) 62) ((|#3| |#2|) 30)) (-3367 (((-562) |#2|) 57))) -(((-442 |#1| |#2| |#3|) (-10 -7 (-15 -3367 ((-562) |#2|)) (-15 -3587 (|#3| |#2|)) (-15 -3587 (|#3| |#2| (-916))) (-15 -2783 ((-562) |#2|)) (-15 -3691 ((-562) |#2| (-766))) (-15 -3691 ((-562) |#2|)) (-15 -4363 (|#3| |#2| (-916))) (-15 -3929 (|#3| |#2|)) (-15 -1833 (|#3| |#2|)) (-15 -3059 (|#3| |#2|)) (-15 -3641 (|#3| |#2|))) (-1044) (-1232 |#1|) (-13 (-403) (-1033 |#1|) (-362) (-1192) (-283))) (T -442)) -((-3641 (*1 *2 *3) (-12 (-4 *4 (-1044)) (-4 *2 (-13 (-403) (-1033 *4) (-362) (-1192) (-283))) (-5 *1 (-442 *4 *3 *2)) (-4 *3 (-1232 *4)))) (-3059 (*1 *2 *3) (-12 (-4 *4 (-1044)) (-4 *2 (-13 (-403) (-1033 *4) (-362) (-1192) (-283))) (-5 *1 (-442 *4 *3 *2)) (-4 *3 (-1232 *4)))) (-1833 (*1 *2 *3) (-12 (-4 *4 (-1044)) (-4 *2 (-13 (-403) (-1033 *4) (-362) (-1192) (-283))) (-5 *1 (-442 *4 *3 *2)) (-4 *3 (-1232 *4)))) (-3929 (*1 *2 *3) (-12 (-4 *4 (-1044)) (-4 *2 (-13 (-403) (-1033 *4) (-362) (-1192) (-283))) (-5 *1 (-442 *4 *3 *2)) (-4 *3 (-1232 *4)))) (-4363 (*1 *2 *3 *4) (-12 (-5 *4 (-916)) (-4 *5 (-1044)) (-4 *2 (-13 (-403) (-1033 *5) (-362) (-1192) (-283))) (-5 *1 (-442 *5 *3 *2)) (-4 *3 (-1232 *5)))) (-3691 (*1 *2 *3) (-12 (-4 *4 (-1044)) (-5 *2 (-562)) (-5 *1 (-442 *4 *3 *5)) (-4 *3 (-1232 *4)) (-4 *5 (-13 (-403) (-1033 *4) (-362) (-1192) (-283))))) (-3691 (*1 *2 *3 *4) (-12 (-5 *4 (-766)) (-4 *5 (-1044)) (-5 *2 (-562)) (-5 *1 (-442 *5 *3 *6)) (-4 *3 (-1232 *5)) (-4 *6 (-13 (-403) (-1033 *5) (-362) (-1192) (-283))))) (-2783 (*1 *2 *3) (-12 (-4 *4 (-1044)) (-5 *2 (-562)) (-5 *1 (-442 *4 *3 *5)) (-4 *3 (-1232 *4)) (-4 *5 (-13 (-403) (-1033 *4) (-362) (-1192) (-283))))) (-3587 (*1 *2 *3 *4) (-12 (-5 *4 (-916)) (-4 *5 (-1044)) (-4 *2 (-13 (-403) (-1033 *5) (-362) (-1192) (-283))) (-5 *1 (-442 *5 *3 *2)) (-4 *3 (-1232 *5)))) (-3587 (*1 *2 *3) (-12 (-4 *4 (-1044)) (-4 *2 (-13 (-403) (-1033 *4) (-362) (-1192) (-283))) (-5 *1 (-442 *4 *3 *2)) (-4 *3 (-1232 *4)))) (-3367 (*1 *2 *3) (-12 (-4 *4 (-1044)) (-5 *2 (-562)) (-5 *1 (-442 *4 *3 *5)) (-4 *3 (-1232 *4)) (-4 *5 (-13 (-403) (-1033 *4) (-362) (-1192) (-283)))))) -(-10 -7 (-15 -3367 ((-562) |#2|)) (-15 -3587 (|#3| |#2|)) (-15 -3587 (|#3| |#2| (-916))) (-15 -2783 ((-562) |#2|)) (-15 -3691 ((-562) |#2| (-766))) (-15 -3691 ((-562) |#2|)) (-15 -4363 (|#3| |#2| (-916))) (-15 -3929 (|#3| |#2|)) (-15 -1833 (|#3| |#2|)) (-15 -3059 (|#3| |#2|)) (-15 -3641 (|#3| |#2|))) -((-3017 ((|#2| (-1256 |#1|)) 36)) (-3121 ((|#2| |#2| |#1|) 49)) (-2623 ((|#2| |#2| |#1|) 41)) (-2676 ((|#2| |#2|) 38)) (-3739 (((-112) |#2|) 30)) (-3965 (((-639 |#2|) (-916) (-417 |#2|)) 17)) (-3555 ((|#2| (-916) (-417 |#2|)) 21)) (-2194 (((-732 (-766)) (-417 |#2|)) 25))) -(((-443 |#1| |#2|) (-10 -7 (-15 -3739 ((-112) |#2|)) (-15 -3017 (|#2| (-1256 |#1|))) (-15 -2676 (|#2| |#2|)) (-15 -2623 (|#2| |#2| |#1|)) (-15 -3121 (|#2| |#2| |#1|)) (-15 -2194 ((-732 (-766)) (-417 |#2|))) (-15 -3555 (|#2| (-916) (-417 |#2|))) (-15 -3965 ((-639 |#2|) (-916) (-417 |#2|)))) (-1044) (-1232 |#1|)) (T -443)) -((-3965 (*1 *2 *3 *4) (-12 (-5 *3 (-916)) (-5 *4 (-417 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-1044)) (-5 *2 (-639 *6)) (-5 *1 (-443 *5 *6)))) (-3555 (*1 *2 *3 *4) (-12 (-5 *3 (-916)) (-5 *4 (-417 *2)) (-4 *2 (-1232 *5)) (-5 *1 (-443 *5 *2)) (-4 *5 (-1044)))) (-2194 (*1 *2 *3) (-12 (-5 *3 (-417 *5)) (-4 *5 (-1232 *4)) (-4 *4 (-1044)) (-5 *2 (-732 (-766))) (-5 *1 (-443 *4 *5)))) (-3121 (*1 *2 *2 *3) (-12 (-4 *3 (-1044)) (-5 *1 (-443 *3 *2)) (-4 *2 (-1232 *3)))) (-2623 (*1 *2 *2 *3) (-12 (-4 *3 (-1044)) (-5 *1 (-443 *3 *2)) (-4 *2 (-1232 *3)))) (-2676 (*1 *2 *2) (-12 (-4 *3 (-1044)) (-5 *1 (-443 *3 *2)) (-4 *2 (-1232 *3)))) (-3017 (*1 *2 *3) (-12 (-5 *3 (-1256 *4)) (-4 *4 (-1044)) (-4 *2 (-1232 *4)) (-5 *1 (-443 *4 *2)))) (-3739 (*1 *2 *3) (-12 (-4 *4 (-1044)) (-5 *2 (-112)) (-5 *1 (-443 *4 *3)) (-4 *3 (-1232 *4))))) -(-10 -7 (-15 -3739 ((-112) |#2|)) (-15 -3017 (|#2| (-1256 |#1|))) (-15 -2676 (|#2| |#2|)) (-15 -2623 (|#2| |#2| |#1|)) (-15 -3121 (|#2| |#2| |#1|)) (-15 -2194 ((-732 (-766)) (-417 |#2|))) (-15 -3555 (|#2| (-916) (-417 |#2|))) (-15 -3965 ((-639 |#2|) (-916) (-417 |#2|)))) -((-1825 (((-766)) 41)) (-2207 (((-766)) 23 (|has| |#1| (-403))) (((-766) (-766)) 22 (|has| |#1| (-403)))) (-4217 (((-562) |#1|) 18 (|has| |#1| (-403)))) (-3629 (((-562) |#1|) 20 (|has| |#1| (-403)))) (-2197 (((-766)) 40) (((-766) (-766)) 39)) (-4256 ((|#1| (-766) (-562)) 29)) (-3815 (((-1261)) 43))) -(((-444 |#1|) (-10 -7 (-15 -4256 (|#1| (-766) (-562))) (-15 -2197 ((-766) (-766))) (-15 -2197 ((-766))) (-15 -1825 ((-766))) (-15 -3815 ((-1261))) (IF (|has| |#1| (-403)) (PROGN (-15 -3629 ((-562) |#1|)) (-15 -4217 ((-562) |#1|)) (-15 -2207 ((-766) (-766))) (-15 -2207 ((-766)))) |%noBranch|)) (-1044)) (T -444)) -((-2207 (*1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-444 *3)) (-4 *3 (-403)) (-4 *3 (-1044)))) (-2207 (*1 *2 *2) (-12 (-5 *2 (-766)) (-5 *1 (-444 *3)) (-4 *3 (-403)) (-4 *3 (-1044)))) (-4217 (*1 *2 *3) (-12 (-5 *2 (-562)) (-5 *1 (-444 *3)) (-4 *3 (-403)) (-4 *3 (-1044)))) (-3629 (*1 *2 *3) (-12 (-5 *2 (-562)) (-5 *1 (-444 *3)) (-4 *3 (-403)) (-4 *3 (-1044)))) (-3815 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-444 *3)) (-4 *3 (-1044)))) (-1825 (*1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-444 *3)) (-4 *3 (-1044)))) (-2197 (*1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-444 *3)) (-4 *3 (-1044)))) (-2197 (*1 *2 *2) (-12 (-5 *2 (-766)) (-5 *1 (-444 *3)) (-4 *3 (-1044)))) (-4256 (*1 *2 *3 *4) (-12 (-5 *3 (-766)) (-5 *4 (-562)) (-5 *1 (-444 *2)) (-4 *2 (-1044))))) -(-10 -7 (-15 -4256 (|#1| (-766) (-562))) (-15 -2197 ((-766) (-766))) (-15 -2197 ((-766))) (-15 -1825 ((-766))) (-15 -3815 ((-1261))) (IF (|has| |#1| (-403)) (PROGN (-15 -3629 ((-562) |#1|)) (-15 -4217 ((-562) |#1|)) (-15 -2207 ((-766) (-766))) (-15 -2207 ((-766)))) |%noBranch|)) -((-3034 (((-639 (-562)) (-562)) 60)) (-3521 (((-112) (-168 (-562))) 64)) (-1635 (((-417 (-168 (-562))) (-168 (-562))) 59))) -(((-445) (-10 -7 (-15 -1635 ((-417 (-168 (-562))) (-168 (-562)))) (-15 -3034 ((-639 (-562)) (-562))) (-15 -3521 ((-112) (-168 (-562)))))) (T -445)) -((-3521 (*1 *2 *3) (-12 (-5 *3 (-168 (-562))) (-5 *2 (-112)) (-5 *1 (-445)))) (-3034 (*1 *2 *3) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-445)) (-5 *3 (-562)))) (-1635 (*1 *2 *3) (-12 (-5 *2 (-417 (-168 (-562)))) (-5 *1 (-445)) (-5 *3 (-168 (-562)))))) -(-10 -7 (-15 -1635 ((-417 (-168 (-562))) (-168 (-562)))) (-15 -3034 ((-639 (-562)) (-562))) (-15 -3521 ((-112) (-168 (-562))))) -((-3583 ((|#4| |#4| (-639 |#4|)) 60)) (-1822 (((-639 |#4|) (-639 |#4|) (-1150) (-1150)) 17) (((-639 |#4|) (-639 |#4|) (-1150)) 16) (((-639 |#4|) (-639 |#4|)) 11))) -(((-446 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3583 (|#4| |#4| (-639 |#4|))) (-15 -1822 ((-639 |#4|) (-639 |#4|))) (-15 -1822 ((-639 |#4|) (-639 |#4|) (-1150))) (-15 -1822 ((-639 |#4|) (-639 |#4|) (-1150) (-1150)))) (-306) (-788) (-845) (-944 |#1| |#2| |#3|)) (T -446)) -((-1822 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-639 *7)) (-5 *3 (-1150)) (-4 *7 (-944 *4 *5 *6)) (-4 *4 (-306)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-446 *4 *5 *6 *7)))) (-1822 (*1 *2 *2 *3) (-12 (-5 *2 (-639 *7)) (-5 *3 (-1150)) (-4 *7 (-944 *4 *5 *6)) (-4 *4 (-306)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-446 *4 *5 *6 *7)))) (-1822 (*1 *2 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-944 *3 *4 *5)) (-4 *3 (-306)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-446 *3 *4 *5 *6)))) (-3583 (*1 *2 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-944 *4 *5 *6)) (-4 *4 (-306)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-446 *4 *5 *6 *2))))) -(-10 -7 (-15 -3583 (|#4| |#4| (-639 |#4|))) (-15 -1822 ((-639 |#4|) (-639 |#4|))) (-15 -1822 ((-639 |#4|) (-639 |#4|) (-1150))) (-15 -1822 ((-639 |#4|) (-639 |#4|) (-1150) (-1150)))) -((-3814 (((-639 (-639 |#4|)) (-639 |#4|) (-112)) 72) (((-639 (-639 |#4|)) (-639 |#4|)) 71) (((-639 (-639 |#4|)) (-639 |#4|) (-639 |#4|) (-112)) 65) (((-639 (-639 |#4|)) (-639 |#4|) (-639 |#4|)) 66)) (-2066 (((-639 (-639 |#4|)) (-639 |#4|) (-112)) 41) (((-639 (-639 |#4|)) (-639 |#4|)) 62))) -(((-447 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2066 ((-639 (-639 |#4|)) (-639 |#4|))) (-15 -2066 ((-639 (-639 |#4|)) (-639 |#4|) (-112))) (-15 -3814 ((-639 (-639 |#4|)) (-639 |#4|) (-639 |#4|))) (-15 -3814 ((-639 (-639 |#4|)) (-639 |#4|) (-639 |#4|) (-112))) (-15 -3814 ((-639 (-639 |#4|)) (-639 |#4|))) (-15 -3814 ((-639 (-639 |#4|)) (-639 |#4|) (-112)))) (-13 (-306) (-146)) (-788) (-845) (-944 |#1| |#2| |#3|)) (T -447)) -((-3814 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *8 (-944 *5 *6 *7)) (-5 *2 (-639 (-639 *8))) (-5 *1 (-447 *5 *6 *7 *8)) (-5 *3 (-639 *8)))) (-3814 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-944 *4 *5 *6)) (-5 *2 (-639 (-639 *7))) (-5 *1 (-447 *4 *5 *6 *7)) (-5 *3 (-639 *7)))) (-3814 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *8 (-944 *5 *6 *7)) (-5 *2 (-639 (-639 *8))) (-5 *1 (-447 *5 *6 *7 *8)) (-5 *3 (-639 *8)))) (-3814 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-944 *4 *5 *6)) (-5 *2 (-639 (-639 *7))) (-5 *1 (-447 *4 *5 *6 *7)) (-5 *3 (-639 *7)))) (-2066 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *8 (-944 *5 *6 *7)) (-5 *2 (-639 (-639 *8))) (-5 *1 (-447 *5 *6 *7 *8)) (-5 *3 (-639 *8)))) (-2066 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-944 *4 *5 *6)) (-5 *2 (-639 (-639 *7))) (-5 *1 (-447 *4 *5 *6 *7)) (-5 *3 (-639 *7))))) -(-10 -7 (-15 -2066 ((-639 (-639 |#4|)) (-639 |#4|))) (-15 -2066 ((-639 (-639 |#4|)) (-639 |#4|) (-112))) (-15 -3814 ((-639 (-639 |#4|)) (-639 |#4|) (-639 |#4|))) (-15 -3814 ((-639 (-639 |#4|)) (-639 |#4|) (-639 |#4|) (-112))) (-15 -3814 ((-639 (-639 |#4|)) (-639 |#4|))) (-15 -3814 ((-639 (-639 |#4|)) (-639 |#4|) (-112)))) -((-4134 (((-766) |#4|) 12)) (-2917 (((-639 (-2 (|:| |totdeg| (-766)) (|:| -4201 |#4|))) |#4| (-766) (-639 (-2 (|:| |totdeg| (-766)) (|:| -4201 |#4|)))) 31)) (-3967 (((-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-1604 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 38)) (-1837 ((|#4| |#4| (-639 |#4|)) 39)) (-3635 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-639 |#4|)) 69)) (-3541 (((-1261) |#4|) 41)) (-2512 (((-1261) (-639 |#4|)) 50)) (-1343 (((-562) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-562) (-562) (-562)) 47)) (-3605 (((-1261) (-562)) 78)) (-2136 (((-639 |#4|) (-639 |#4|)) 76)) (-4013 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-766)) (|:| -4201 |#4|)) |#4| (-766)) 25)) (-3753 (((-562) |#4|) 77)) (-2613 ((|#4| |#4|) 29)) (-1986 (((-639 |#4|) (-639 |#4|) (-562) (-562)) 55)) (-4046 (((-562) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-562) (-562) (-562) (-562)) 88)) (-3939 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-1484 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 58)) (-4214 (((-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 57)) (-3887 (((-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 35)) (-3159 (((-112) |#2| |#2|) 56)) (-4341 (((-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-3184 (((-112) |#2| |#2| |#2| |#2|) 59)) (-1347 ((|#4| |#4| (-639 |#4|)) 70))) -(((-448 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1347 (|#4| |#4| (-639 |#4|))) (-15 -1837 (|#4| |#4| (-639 |#4|))) (-15 -1986 ((-639 |#4|) (-639 |#4|) (-562) (-562))) (-15 -1484 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3159 ((-112) |#2| |#2|)) (-15 -3184 ((-112) |#2| |#2| |#2| |#2|)) (-15 -4341 ((-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3887 ((-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4214 ((-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3635 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-639 |#4|))) (-15 -2613 (|#4| |#4|)) (-15 -2917 ((-639 (-2 (|:| |totdeg| (-766)) (|:| -4201 |#4|))) |#4| (-766) (-639 (-2 (|:| |totdeg| (-766)) (|:| -4201 |#4|))))) (-15 -1604 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3967 ((-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2136 ((-639 |#4|) (-639 |#4|))) (-15 -3753 ((-562) |#4|)) (-15 -3541 ((-1261) |#4|)) (-15 -1343 ((-562) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-562) (-562) (-562))) (-15 -4046 ((-562) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-562) (-562) (-562) (-562))) (-15 -2512 ((-1261) (-639 |#4|))) (-15 -3605 ((-1261) (-562))) (-15 -3939 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4013 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-766)) (|:| -4201 |#4|)) |#4| (-766))) (-15 -4134 ((-766) |#4|))) (-451) (-788) (-845) (-944 |#1| |#2| |#3|)) (T -448)) -((-4134 (*1 *2 *3) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-766)) (-5 *1 (-448 *4 *5 *6 *3)) (-4 *3 (-944 *4 *5 *6)))) (-4013 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-766)) (|:| -4201 *4))) (-5 *5 (-766)) (-4 *4 (-944 *6 *7 *8)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-448 *6 *7 *8 *4)))) (-3939 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-766)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-788)) (-4 *7 (-944 *4 *5 *6)) (-4 *4 (-451)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-448 *4 *5 *6 *7)))) (-3605 (*1 *2 *3) (-12 (-5 *3 (-562)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-1261)) (-5 *1 (-448 *4 *5 *6 *7)) (-4 *7 (-944 *4 *5 *6)))) (-2512 (*1 *2 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-944 *4 *5 *6)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-1261)) (-5 *1 (-448 *4 *5 *6 *7)))) (-4046 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-562)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-766)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-788)) (-4 *4 (-944 *5 *6 *7)) (-4 *5 (-451)) (-4 *7 (-845)) (-5 *1 (-448 *5 *6 *7 *4)))) (-1343 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-562)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-766)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-788)) (-4 *4 (-944 *5 *6 *7)) (-4 *5 (-451)) (-4 *7 (-845)) (-5 *1 (-448 *5 *6 *7 *4)))) (-3541 (*1 *2 *3) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-1261)) (-5 *1 (-448 *4 *5 *6 *3)) (-4 *3 (-944 *4 *5 *6)))) (-3753 (*1 *2 *3) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-562)) (-5 *1 (-448 *4 *5 *6 *3)) (-4 *3 (-944 *4 *5 *6)))) (-2136 (*1 *2 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-944 *3 *4 *5)) (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-448 *3 *4 *5 *6)))) (-3967 (*1 *2 *2 *2) (-12 (-5 *2 (-639 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-766)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-788)) (-4 *6 (-944 *3 *4 *5)) (-4 *3 (-451)) (-4 *5 (-845)) (-5 *1 (-448 *3 *4 *5 *6)))) (-1604 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-766)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-788)) (-4 *2 (-944 *4 *5 *6)) (-5 *1 (-448 *4 *5 *6 *2)) (-4 *4 (-451)) (-4 *6 (-845)))) (-2917 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-639 (-2 (|:| |totdeg| (-766)) (|:| -4201 *3)))) (-5 *4 (-766)) (-4 *3 (-944 *5 *6 *7)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *1 (-448 *5 *6 *7 *3)))) (-2613 (*1 *2 *2) (-12 (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-448 *3 *4 *5 *2)) (-4 *2 (-944 *3 *4 *5)))) (-3635 (*1 *2 *3 *4) (-12 (-5 *4 (-639 *3)) (-4 *3 (-944 *5 *6 *7)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-448 *5 *6 *7 *3)))) (-4214 (*1 *2 *3 *2) (-12 (-5 *2 (-639 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-766)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-788)) (-4 *6 (-944 *4 *3 *5)) (-4 *4 (-451)) (-4 *5 (-845)) (-5 *1 (-448 *4 *3 *5 *6)))) (-3887 (*1 *2 *2) (-12 (-5 *2 (-639 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-766)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-788)) (-4 *6 (-944 *3 *4 *5)) (-4 *3 (-451)) (-4 *5 (-845)) (-5 *1 (-448 *3 *4 *5 *6)))) (-4341 (*1 *2 *3 *2) (-12 (-5 *2 (-639 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-766)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-788)) (-4 *3 (-944 *4 *5 *6)) (-4 *4 (-451)) (-4 *6 (-845)) (-5 *1 (-448 *4 *5 *6 *3)))) (-3184 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-451)) (-4 *3 (-788)) (-4 *5 (-845)) (-5 *2 (-112)) (-5 *1 (-448 *4 *3 *5 *6)) (-4 *6 (-944 *4 *3 *5)))) (-3159 (*1 *2 *3 *3) (-12 (-4 *4 (-451)) (-4 *3 (-788)) (-4 *5 (-845)) (-5 *2 (-112)) (-5 *1 (-448 *4 *3 *5 *6)) (-4 *6 (-944 *4 *3 *5)))) (-1484 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-766)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-788)) (-4 *7 (-944 *4 *5 *6)) (-4 *4 (-451)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-448 *4 *5 *6 *7)))) (-1986 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-639 *7)) (-5 *3 (-562)) (-4 *7 (-944 *4 *5 *6)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-448 *4 *5 *6 *7)))) (-1837 (*1 *2 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-944 *4 *5 *6)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-448 *4 *5 *6 *2)))) (-1347 (*1 *2 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-944 *4 *5 *6)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-448 *4 *5 *6 *2))))) -(-10 -7 (-15 -1347 (|#4| |#4| (-639 |#4|))) (-15 -1837 (|#4| |#4| (-639 |#4|))) (-15 -1986 ((-639 |#4|) (-639 |#4|) (-562) (-562))) (-15 -1484 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3159 ((-112) |#2| |#2|)) (-15 -3184 ((-112) |#2| |#2| |#2| |#2|)) (-15 -4341 ((-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3887 ((-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4214 ((-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3635 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-639 |#4|))) (-15 -2613 (|#4| |#4|)) (-15 -2917 ((-639 (-2 (|:| |totdeg| (-766)) (|:| -4201 |#4|))) |#4| (-766) (-639 (-2 (|:| |totdeg| (-766)) (|:| -4201 |#4|))))) (-15 -1604 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3967 ((-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-639 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2136 ((-639 |#4|) (-639 |#4|))) (-15 -3753 ((-562) |#4|)) (-15 -3541 ((-1261) |#4|)) (-15 -1343 ((-562) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-562) (-562) (-562))) (-15 -4046 ((-562) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-562) (-562) (-562) (-562))) (-15 -2512 ((-1261) (-639 |#4|))) (-15 -3605 ((-1261) (-562))) (-15 -3939 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4013 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-766)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-766)) (|:| -4201 |#4|)) |#4| (-766))) (-15 -4134 ((-766) |#4|))) -((-1791 ((|#4| |#4| (-639 |#4|)) 22 (|has| |#1| (-362)))) (-2848 (((-639 |#4|) (-639 |#4|) (-1150) (-1150)) 41) (((-639 |#4|) (-639 |#4|) (-1150)) 40) (((-639 |#4|) (-639 |#4|)) 35))) -(((-449 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2848 ((-639 |#4|) (-639 |#4|))) (-15 -2848 ((-639 |#4|) (-639 |#4|) (-1150))) (-15 -2848 ((-639 |#4|) (-639 |#4|) (-1150) (-1150))) (IF (|has| |#1| (-362)) (-15 -1791 (|#4| |#4| (-639 |#4|))) |%noBranch|)) (-451) (-788) (-845) (-944 |#1| |#2| |#3|)) (T -449)) -((-1791 (*1 *2 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-944 *4 *5 *6)) (-4 *4 (-362)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-449 *4 *5 *6 *2)))) (-2848 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-639 *7)) (-5 *3 (-1150)) (-4 *7 (-944 *4 *5 *6)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-449 *4 *5 *6 *7)))) (-2848 (*1 *2 *2 *3) (-12 (-5 *2 (-639 *7)) (-5 *3 (-1150)) (-4 *7 (-944 *4 *5 *6)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-449 *4 *5 *6 *7)))) (-2848 (*1 *2 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-944 *3 *4 *5)) (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-449 *3 *4 *5 *6))))) -(-10 -7 (-15 -2848 ((-639 |#4|) (-639 |#4|))) (-15 -2848 ((-639 |#4|) (-639 |#4|) (-1150))) (-15 -2848 ((-639 |#4|) (-639 |#4|) (-1150) (-1150))) (IF (|has| |#1| (-362)) (-15 -1791 (|#4| |#4| (-639 |#4|))) |%noBranch|)) -((-1564 (($ $ $) 14) (($ (-639 $)) 21)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 41)) (-1606 (($ $ $) NIL) (($ (-639 $)) 22))) -(((-450 |#1|) (-10 -8 (-15 -2602 ((-1164 |#1|) (-1164 |#1|) (-1164 |#1|))) (-15 -1564 (|#1| (-639 |#1|))) (-15 -1564 (|#1| |#1| |#1|)) (-15 -1606 (|#1| (-639 |#1|))) (-15 -1606 (|#1| |#1| |#1|))) (-451)) (T -450)) -NIL -(-10 -8 (-15 -2602 ((-1164 |#1|) (-1164 |#1|) (-1164 |#1|))) (-15 -1564 (|#1| (-639 |#1|))) (-15 -1564 (|#1| |#1| |#1|)) (-15 -1606 (|#1| (-639 |#1|))) (-15 -1606 (|#1| |#1| |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 42)) (-1965 (($ $) 41)) (-4102 (((-112) $) 39)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-1694 (((-3 $ "failed") $) 33)) (-4367 (((-112) $) 31)) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-1762 (((-3 $ "failed") $ $) 43)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ $) 44)) (-1568 (((-766)) 28)) (-3799 (((-112) $ $) 40)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) -(((-451) (-139)) (T -451)) -((-1606 (*1 *1 *1 *1) (-4 *1 (-451))) (-1606 (*1 *1 *2) (-12 (-5 *2 (-639 *1)) (-4 *1 (-451)))) (-1564 (*1 *1 *1 *1) (-4 *1 (-451))) (-1564 (*1 *1 *2) (-12 (-5 *2 (-639 *1)) (-4 *1 (-451)))) (-2602 (*1 *2 *2 *2) (-12 (-5 *2 (-1164 *1)) (-4 *1 (-451))))) -(-13 (-554) (-10 -8 (-15 -1606 ($ $ $)) (-15 -1606 ($ (-639 $))) (-15 -1564 ($ $ $)) (-15 -1564 ($ (-639 $))) (-15 -2602 ((-1164 $) (-1164 $) (-1164 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-289) . T) ((-554) . T) ((-642 $) . T) ((-712 $) . T) ((-721) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-4310 (((-3 $ "failed")) NIL (|has| (-406 (-947 |#1|)) (-554)))) (-2781 (((-3 $ "failed") $ $) NIL)) (-2016 (((-1256 (-683 (-406 (-947 |#1|)))) (-1256 $)) NIL) (((-1256 (-683 (-406 (-947 |#1|))))) NIL)) (-1540 (((-1256 $)) NIL)) (-3329 (($) NIL T CONST)) (-1469 (((-3 (-2 (|:| |particular| $) (|:| -4291 (-639 $))) "failed")) NIL)) (-2447 (((-3 $ "failed")) NIL (|has| (-406 (-947 |#1|)) (-554)))) (-3945 (((-683 (-406 (-947 |#1|))) (-1256 $)) NIL) (((-683 (-406 (-947 |#1|)))) NIL)) (-2452 (((-406 (-947 |#1|)) $) NIL)) (-2995 (((-683 (-406 (-947 |#1|))) $ (-1256 $)) NIL) (((-683 (-406 (-947 |#1|))) $) NIL)) (-4276 (((-3 $ "failed") $) NIL (|has| (-406 (-947 |#1|)) (-554)))) (-3996 (((-1164 (-947 (-406 (-947 |#1|))))) NIL (|has| (-406 (-947 |#1|)) (-362))) (((-1164 (-406 (-947 |#1|)))) 84 (|has| |#1| (-554)))) (-2127 (($ $ (-916)) NIL)) (-2949 (((-406 (-947 |#1|)) $) NIL)) (-3407 (((-1164 (-406 (-947 |#1|))) $) 82 (|has| (-406 (-947 |#1|)) (-554)))) (-2200 (((-406 (-947 |#1|)) (-1256 $)) NIL) (((-406 (-947 |#1|))) NIL)) (-2974 (((-1164 (-406 (-947 |#1|))) $) NIL)) (-3178 (((-112)) NIL)) (-3916 (($ (-1256 (-406 (-947 |#1|))) (-1256 $)) 103) (($ (-1256 (-406 (-947 |#1|)))) NIL)) (-1694 (((-3 $ "failed") $) NIL (|has| (-406 (-947 |#1|)) (-554)))) (-2172 (((-916)) NIL)) (-1832 (((-112)) NIL)) (-1492 (($ $ (-916)) NIL)) (-2531 (((-112)) NIL)) (-3671 (((-112)) NIL)) (-2394 (((-112)) NIL)) (-3502 (((-3 (-2 (|:| |particular| $) (|:| -4291 (-639 $))) "failed")) NIL)) (-3839 (((-3 $ "failed")) NIL (|has| (-406 (-947 |#1|)) (-554)))) (-3506 (((-683 (-406 (-947 |#1|))) (-1256 $)) NIL) (((-683 (-406 (-947 |#1|)))) NIL)) (-2664 (((-406 (-947 |#1|)) $) NIL)) (-1583 (((-683 (-406 (-947 |#1|))) $ (-1256 $)) NIL) (((-683 (-406 (-947 |#1|))) $) NIL)) (-2217 (((-3 $ "failed") $) NIL (|has| (-406 (-947 |#1|)) (-554)))) (-2620 (((-1164 (-947 (-406 (-947 |#1|))))) NIL (|has| (-406 (-947 |#1|)) (-362))) (((-1164 (-406 (-947 |#1|)))) 83 (|has| |#1| (-554)))) (-3235 (($ $ (-916)) NIL)) (-3495 (((-406 (-947 |#1|)) $) NIL)) (-3849 (((-1164 (-406 (-947 |#1|))) $) 77 (|has| (-406 (-947 |#1|)) (-554)))) (-1636 (((-406 (-947 |#1|)) (-1256 $)) NIL) (((-406 (-947 |#1|))) NIL)) (-3099 (((-1164 (-406 (-947 |#1|))) $) NIL)) (-3302 (((-112)) NIL)) (-3696 (((-1150) $) NIL)) (-2720 (((-112)) NIL)) (-1579 (((-112)) NIL)) (-2104 (((-112)) NIL)) (-1709 (((-1112) $) NIL)) (-2569 (((-406 (-947 |#1|)) $ $) 71 (|has| |#1| (-554)))) (-1535 (((-406 (-947 |#1|)) $) 93 (|has| |#1| (-554)))) (-2090 (((-406 (-947 |#1|)) $) 95 (|has| |#1| (-554)))) (-2390 (((-1164 (-406 (-947 |#1|))) $) 88 (|has| |#1| (-554)))) (-2611 (((-406 (-947 |#1|))) 72 (|has| |#1| (-554)))) (-2766 (((-406 (-947 |#1|)) $ $) 64 (|has| |#1| (-554)))) (-2729 (((-406 (-947 |#1|)) $) 92 (|has| |#1| (-554)))) (-2513 (((-406 (-947 |#1|)) $) 94 (|has| |#1| (-554)))) (-3518 (((-1164 (-406 (-947 |#1|))) $) 87 (|has| |#1| (-554)))) (-1429 (((-406 (-947 |#1|))) 68 (|has| |#1| (-554)))) (-2260 (($) 101) (($ (-1168)) 107) (($ (-1256 (-1168))) 106) (($ (-1256 $)) 96) (($ (-1168) (-1256 $)) 105) (($ (-1256 (-1168)) (-1256 $)) 104)) (-3626 (((-112)) NIL)) (-2343 (((-406 (-947 |#1|)) $ (-562)) NIL)) (-2205 (((-1256 (-406 (-947 |#1|))) $ (-1256 $)) 98) (((-683 (-406 (-947 |#1|))) (-1256 $) (-1256 $)) NIL) (((-1256 (-406 (-947 |#1|))) $) 40) (((-683 (-406 (-947 |#1|))) (-1256 $)) NIL)) (-4208 (((-1256 (-406 (-947 |#1|))) $) NIL) (($ (-1256 (-406 (-947 |#1|)))) 37)) (-2555 (((-639 (-947 (-406 (-947 |#1|)))) (-1256 $)) NIL) (((-639 (-947 (-406 (-947 |#1|))))) NIL) (((-639 (-947 |#1|)) (-1256 $)) 99 (|has| |#1| (-554))) (((-639 (-947 |#1|))) 100 (|has| |#1| (-554)))) (-2114 (($ $ $) NIL)) (-3901 (((-112)) NIL)) (-4053 (((-857) $) NIL) (($ (-1256 (-406 (-947 |#1|)))) NIL)) (-4291 (((-1256 $)) 60)) (-1823 (((-639 (-1256 (-406 (-947 |#1|))))) NIL (|has| (-406 (-947 |#1|)) (-554)))) (-2584 (($ $ $ $) NIL)) (-4309 (((-112)) NIL)) (-1360 (($ (-683 (-406 (-947 |#1|))) $) NIL)) (-4324 (($ $ $) NIL)) (-1517 (((-112)) NIL)) (-2636 (((-112)) NIL)) (-3488 (((-112)) NIL)) (-2285 (($) NIL T CONST)) (-1733 (((-112) $ $) NIL)) (-1847 (($ $) NIL) (($ $ $) 97)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 56) (($ $ (-406 (-947 |#1|))) NIL) (($ (-406 (-947 |#1|)) $) NIL) (($ (-1134 |#2| (-406 (-947 |#1|))) $) NIL))) -(((-452 |#1| |#2| |#3| |#4|) (-13 (-416 (-406 (-947 |#1|))) (-642 (-1134 |#2| (-406 (-947 |#1|)))) (-10 -8 (-15 -4053 ($ (-1256 (-406 (-947 |#1|))))) (-15 -3502 ((-3 (-2 (|:| |particular| $) (|:| -4291 (-639 $))) "failed"))) (-15 -1469 ((-3 (-2 (|:| |particular| $) (|:| -4291 (-639 $))) "failed"))) (-15 -2260 ($)) (-15 -2260 ($ (-1168))) (-15 -2260 ($ (-1256 (-1168)))) (-15 -2260 ($ (-1256 $))) (-15 -2260 ($ (-1168) (-1256 $))) (-15 -2260 ($ (-1256 (-1168)) (-1256 $))) (IF (|has| |#1| (-554)) (PROGN (-15 -2620 ((-1164 (-406 (-947 |#1|))))) (-15 -3518 ((-1164 (-406 (-947 |#1|))) $)) (-15 -2729 ((-406 (-947 |#1|)) $)) (-15 -2513 ((-406 (-947 |#1|)) $)) (-15 -3996 ((-1164 (-406 (-947 |#1|))))) (-15 -2390 ((-1164 (-406 (-947 |#1|))) $)) (-15 -1535 ((-406 (-947 |#1|)) $)) (-15 -2090 ((-406 (-947 |#1|)) $)) (-15 -2766 ((-406 (-947 |#1|)) $ $)) (-15 -1429 ((-406 (-947 |#1|)))) (-15 -2569 ((-406 (-947 |#1|)) $ $)) (-15 -2611 ((-406 (-947 |#1|)))) (-15 -2555 ((-639 (-947 |#1|)) (-1256 $))) (-15 -2555 ((-639 (-947 |#1|))))) |%noBranch|))) (-171) (-916) (-639 (-1168)) (-1256 (-683 |#1|))) (T -452)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-1256 (-406 (-947 *3)))) (-4 *3 (-171)) (-14 *6 (-1256 (-683 *3))) (-5 *1 (-452 *3 *4 *5 *6)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))))) (-3502 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-452 *3 *4 *5 *6)) (|:| -4291 (-639 (-452 *3 *4 *5 *6))))) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3))))) (-1469 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-452 *3 *4 *5 *6)) (|:| -4291 (-639 (-452 *3 *4 *5 *6))))) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3))))) (-2260 (*1 *1) (-12 (-5 *1 (-452 *2 *3 *4 *5)) (-4 *2 (-171)) (-14 *3 (-916)) (-14 *4 (-639 (-1168))) (-14 *5 (-1256 (-683 *2))))) (-2260 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 *2)) (-14 *6 (-1256 (-683 *3))))) (-2260 (*1 *1 *2) (-12 (-5 *2 (-1256 (-1168))) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3))))) (-2260 (*1 *1 *2) (-12 (-5 *2 (-1256 (-452 *3 *4 *5 *6))) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3))))) (-2260 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-452 *4 *5 *6 *7))) (-5 *1 (-452 *4 *5 *6 *7)) (-4 *4 (-171)) (-14 *5 (-916)) (-14 *6 (-639 *2)) (-14 *7 (-1256 (-683 *4))))) (-2260 (*1 *1 *2 *3) (-12 (-5 *2 (-1256 (-1168))) (-5 *3 (-1256 (-452 *4 *5 *6 *7))) (-5 *1 (-452 *4 *5 *6 *7)) (-4 *4 (-171)) (-14 *5 (-916)) (-14 *6 (-639 (-1168))) (-14 *7 (-1256 (-683 *4))))) (-2620 (*1 *2) (-12 (-5 *2 (-1164 (-406 (-947 *3)))) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3))))) (-3518 (*1 *2 *1) (-12 (-5 *2 (-1164 (-406 (-947 *3)))) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3))))) (-2729 (*1 *2 *1) (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3))))) (-2513 (*1 *2 *1) (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3))))) (-3996 (*1 *2) (-12 (-5 *2 (-1164 (-406 (-947 *3)))) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3))))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-1164 (-406 (-947 *3)))) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3))))) (-1535 (*1 *2 *1) (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3))))) (-2090 (*1 *2 *1) (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3))))) (-2766 (*1 *2 *1 *1) (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3))))) (-1429 (*1 *2) (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3))))) (-2569 (*1 *2 *1 *1) (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3))))) (-2611 (*1 *2) (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3))))) (-2555 (*1 *2 *3) (-12 (-5 *3 (-1256 (-452 *4 *5 *6 *7))) (-5 *2 (-639 (-947 *4))) (-5 *1 (-452 *4 *5 *6 *7)) (-4 *4 (-554)) (-4 *4 (-171)) (-14 *5 (-916)) (-14 *6 (-639 (-1168))) (-14 *7 (-1256 (-683 *4))))) (-2555 (*1 *2) (-12 (-5 *2 (-639 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3)))))) -(-13 (-416 (-406 (-947 |#1|))) (-642 (-1134 |#2| (-406 (-947 |#1|)))) (-10 -8 (-15 -4053 ($ (-1256 (-406 (-947 |#1|))))) (-15 -3502 ((-3 (-2 (|:| |particular| $) (|:| -4291 (-639 $))) "failed"))) (-15 -1469 ((-3 (-2 (|:| |particular| $) (|:| -4291 (-639 $))) "failed"))) (-15 -2260 ($)) (-15 -2260 ($ (-1168))) (-15 -2260 ($ (-1256 (-1168)))) (-15 -2260 ($ (-1256 $))) (-15 -2260 ($ (-1168) (-1256 $))) (-15 -2260 ($ (-1256 (-1168)) (-1256 $))) (IF (|has| |#1| (-554)) (PROGN (-15 -2620 ((-1164 (-406 (-947 |#1|))))) (-15 -3518 ((-1164 (-406 (-947 |#1|))) $)) (-15 -2729 ((-406 (-947 |#1|)) $)) (-15 -2513 ((-406 (-947 |#1|)) $)) (-15 -3996 ((-1164 (-406 (-947 |#1|))))) (-15 -2390 ((-1164 (-406 (-947 |#1|))) $)) (-15 -1535 ((-406 (-947 |#1|)) $)) (-15 -2090 ((-406 (-947 |#1|)) $)) (-15 -2766 ((-406 (-947 |#1|)) $ $)) (-15 -1429 ((-406 (-947 |#1|)))) (-15 -2569 ((-406 (-947 |#1|)) $ $)) (-15 -2611 ((-406 (-947 |#1|)))) (-15 -2555 ((-639 (-947 |#1|)) (-1256 $))) (-15 -2555 ((-639 (-947 |#1|))))) |%noBranch|))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) 13)) (-1401 (((-639 (-859 |#1|)) $) 74)) (-1602 (((-1164 $) $ (-859 |#1|)) 46) (((-1164 |#2|) $) 117)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL (|has| |#2| (-554)))) (-1965 (($ $) NIL (|has| |#2| (-554)))) (-4102 (((-112) $) NIL (|has| |#2| (-554)))) (-1578 (((-766) $) 21) (((-766) $ (-639 (-859 |#1|))) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3517 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-1977 (($ $) NIL (|has| |#2| (-451)))) (-3788 (((-417 $) $) NIL (|has| |#2| (-451)))) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#2| "failed") $) 44) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#2| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) NIL (|has| |#2| (-1033 (-562)))) (((-3 (-859 |#1|) "failed") $) NIL)) (-3960 ((|#2| $) 42) (((-406 (-562)) $) NIL (|has| |#2| (-1033 (-406 (-562))))) (((-562) $) NIL (|has| |#2| (-1033 (-562)))) (((-859 |#1|) $) NIL)) (-2355 (($ $ $ (-859 |#1|)) NIL (|has| |#2| (-171)))) (-3999 (($ $ (-639 (-562))) 79)) (-1600 (($ $) 67)) (-3449 (((-683 (-562)) (-683 $)) NIL (|has| |#2| (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#2| (-635 (-562)))) (((-2 (|:| -1767 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) NIL) (((-683 |#2|) (-683 $)) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-2578 (($ $) NIL (|has| |#2| (-451))) (($ $ (-859 |#1|)) NIL (|has| |#2| (-451)))) (-1585 (((-639 $) $) NIL)) (-3521 (((-112) $) NIL (|has| |#2| (-904)))) (-3066 (($ $ |#2| |#3| $) NIL)) (-2337 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-859 |#1|) (-881 (-378))) (|has| |#2| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (-12 (|has| (-859 |#1|) (-881 (-562))) (|has| |#2| (-881 (-562)))))) (-4367 (((-112) $) NIL)) (-3627 (((-766) $) 58)) (-1389 (($ (-1164 |#2|) (-859 |#1|)) 122) (($ (-1164 $) (-859 |#1|)) 52)) (-1869 (((-639 $) $) NIL)) (-2833 (((-112) $) 59)) (-1377 (($ |#2| |#3|) 28) (($ $ (-859 |#1|) (-766)) 30) (($ $ (-639 (-859 |#1|)) (-639 (-766))) NIL)) (-3851 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $ (-859 |#1|)) NIL)) (-3161 ((|#3| $) NIL) (((-766) $ (-859 |#1|)) 50) (((-639 (-766)) $ (-639 (-859 |#1|))) 57)) (-1551 (($ $ $) NIL (|has| |#2| (-845)))) (-2993 (($ $ $) NIL (|has| |#2| (-845)))) (-2363 (($ (-1 |#3| |#3|) $) NIL)) (-4152 (($ (-1 |#2| |#2|) $) NIL)) (-3640 (((-3 (-859 |#1|) "failed") $) 39)) (-1560 (($ $) NIL)) (-1573 ((|#2| $) 41)) (-1564 (($ (-639 $)) NIL (|has| |#2| (-451))) (($ $ $) NIL (|has| |#2| (-451)))) (-3696 (((-1150) $) NIL)) (-4025 (((-3 (-639 $) "failed") $) NIL)) (-1778 (((-3 (-639 $) "failed") $) NIL)) (-4270 (((-3 (-2 (|:| |var| (-859 |#1|)) (|:| -1300 (-766))) "failed") $) NIL)) (-1709 (((-1112) $) NIL)) (-1534 (((-112) $) 40)) (-1547 ((|#2| $) 115)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#2| (-451)))) (-1606 (($ (-639 $)) NIL (|has| |#2| (-451))) (($ $ $) 127 (|has| |#2| (-451)))) (-3586 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-3468 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-1635 (((-417 $) $) NIL (|has| |#2| (-904)))) (-1762 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-554)))) (-1433 (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-859 |#1|) |#2|) 86) (($ $ (-639 (-859 |#1|)) (-639 |#2|)) 89) (($ $ (-859 |#1|) $) 84) (($ $ (-639 (-859 |#1|)) (-639 $)) 105)) (-2736 (($ $ (-859 |#1|)) NIL (|has| |#2| (-171)))) (-4029 (($ $ (-859 |#1|)) 53) (($ $ (-639 (-859 |#1|))) NIL) (($ $ (-859 |#1|) (-766)) NIL) (($ $ (-639 (-859 |#1|)) (-639 (-766))) NIL)) (-2250 ((|#3| $) 66) (((-766) $ (-859 |#1|)) 37) (((-639 (-766)) $ (-639 (-859 |#1|))) 56)) (-4208 (((-887 (-378)) $) NIL (-12 (|has| (-859 |#1|) (-610 (-887 (-378)))) (|has| |#2| (-610 (-887 (-378)))))) (((-887 (-562)) $) NIL (-12 (|has| (-859 |#1|) (-610 (-887 (-562)))) (|has| |#2| (-610 (-887 (-562)))))) (((-535) $) NIL (-12 (|has| (-859 |#1|) (-610 (-535))) (|has| |#2| (-610 (-535)))))) (-2201 ((|#2| $) 124 (|has| |#2| (-451))) (($ $ (-859 |#1|)) NIL (|has| |#2| (-451)))) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-904))))) (-4053 (((-857) $) 144) (($ (-562)) NIL) (($ |#2|) 85) (($ (-859 |#1|)) 31) (($ (-406 (-562))) NIL (-4037 (|has| |#2| (-38 (-406 (-562)))) (|has| |#2| (-1033 (-406 (-562)))))) (($ $) NIL (|has| |#2| (-554)))) (-3969 (((-639 |#2|) $) NIL)) (-2266 ((|#2| $ |#3|) NIL) (($ $ (-859 |#1|) (-766)) NIL) (($ $ (-639 (-859 |#1|)) (-639 (-766))) NIL)) (-2059 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#2| (-904))) (|has| |#2| (-144))))) (-1568 (((-766)) NIL)) (-1760 (($ $ $ (-766)) NIL (|has| |#2| (-171)))) (-3799 (((-112) $ $) NIL (|has| |#2| (-554)))) (-2285 (($) 17 T CONST)) (-2294 (($) 25 T CONST)) (-3113 (($ $ (-859 |#1|)) NIL) (($ $ (-639 (-859 |#1|))) NIL) (($ $ (-859 |#1|) (-766)) NIL) (($ $ (-639 (-859 |#1|)) (-639 (-766))) NIL)) (-1798 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1771 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1761 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1859 (($ $ |#2|) 64 (|has| |#2| (-362)))) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) 110)) (** (($ $ (-916)) NIL) (($ $ (-766)) 108)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 29) (($ $ (-406 (-562))) NIL (|has| |#2| (-38 (-406 (-562))))) (($ (-406 (-562)) $) NIL (|has| |#2| (-38 (-406 (-562))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) -(((-453 |#1| |#2| |#3|) (-13 (-944 |#2| |#3| (-859 |#1|)) (-10 -8 (-15 -3999 ($ $ (-639 (-562)))))) (-639 (-1168)) (-1044) (-237 (-3492 |#1|) (-766))) (T -453)) -((-3999 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-562))) (-14 *3 (-639 (-1168))) (-5 *1 (-453 *3 *4 *5)) (-4 *4 (-1044)) (-4 *5 (-237 (-3492 *3) (-766)))))) -(-13 (-944 |#2| |#3| (-859 |#1|)) (-10 -8 (-15 -3999 ($ $ (-639 (-562)))))) -((-4229 (((-112) |#1| (-639 |#2|)) 68)) (-3007 (((-3 (-1256 (-639 |#2|)) "failed") (-766) |#1| (-639 |#2|)) 77)) (-2782 (((-3 (-639 |#2|) "failed") |#2| |#1| (-1256 (-639 |#2|))) 79)) (-3834 ((|#2| |#2| |#1|) 28)) (-2514 (((-766) |#2| (-639 |#2|)) 20))) -(((-454 |#1| |#2|) (-10 -7 (-15 -3834 (|#2| |#2| |#1|)) (-15 -2514 ((-766) |#2| (-639 |#2|))) (-15 -3007 ((-3 (-1256 (-639 |#2|)) "failed") (-766) |#1| (-639 |#2|))) (-15 -2782 ((-3 (-639 |#2|) "failed") |#2| |#1| (-1256 (-639 |#2|)))) (-15 -4229 ((-112) |#1| (-639 |#2|)))) (-306) (-1232 |#1|)) (T -454)) -((-4229 (*1 *2 *3 *4) (-12 (-5 *4 (-639 *5)) (-4 *5 (-1232 *3)) (-4 *3 (-306)) (-5 *2 (-112)) (-5 *1 (-454 *3 *5)))) (-2782 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1256 (-639 *3))) (-4 *4 (-306)) (-5 *2 (-639 *3)) (-5 *1 (-454 *4 *3)) (-4 *3 (-1232 *4)))) (-3007 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-766)) (-4 *4 (-306)) (-4 *6 (-1232 *4)) (-5 *2 (-1256 (-639 *6))) (-5 *1 (-454 *4 *6)) (-5 *5 (-639 *6)))) (-2514 (*1 *2 *3 *4) (-12 (-5 *4 (-639 *3)) (-4 *3 (-1232 *5)) (-4 *5 (-306)) (-5 *2 (-766)) (-5 *1 (-454 *5 *3)))) (-3834 (*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1232 *3))))) -(-10 -7 (-15 -3834 (|#2| |#2| |#1|)) (-15 -2514 ((-766) |#2| (-639 |#2|))) (-15 -3007 ((-3 (-1256 (-639 |#2|)) "failed") (-766) |#1| (-639 |#2|))) (-15 -2782 ((-3 (-639 |#2|) "failed") |#2| |#1| (-1256 (-639 |#2|)))) (-15 -4229 ((-112) |#1| (-639 |#2|)))) -((-1635 (((-417 |#5|) |#5|) 24))) -(((-455 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1635 ((-417 |#5|) |#5|))) (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $)) (-15 -2443 ((-3 $ "failed") (-1168))))) (-788) (-554) (-554) (-944 |#4| |#2| |#1|)) (T -455)) -((-1635 (*1 *2 *3) (-12 (-4 *4 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $)) (-15 -2443 ((-3 $ "failed") (-1168)))))) (-4 *5 (-788)) (-4 *7 (-554)) (-5 *2 (-417 *3)) (-5 *1 (-455 *4 *5 *6 *7 *3)) (-4 *6 (-554)) (-4 *3 (-944 *7 *5 *4))))) -(-10 -7 (-15 -1635 ((-417 |#5|) |#5|))) -((-3852 ((|#3|) 37)) (-2602 (((-1164 |#4|) (-1164 |#4|) (-1164 |#4|)) 33))) -(((-456 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2602 ((-1164 |#4|) (-1164 |#4|) (-1164 |#4|))) (-15 -3852 (|#3|))) (-788) (-845) (-904) (-944 |#3| |#1| |#2|)) (T -456)) -((-3852 (*1 *2) (-12 (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-904)) (-5 *1 (-456 *3 *4 *2 *5)) (-4 *5 (-944 *2 *3 *4)))) (-2602 (*1 *2 *2 *2) (-12 (-5 *2 (-1164 *6)) (-4 *6 (-944 *5 *3 *4)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *5 (-904)) (-5 *1 (-456 *3 *4 *5 *6))))) -(-10 -7 (-15 -2602 ((-1164 |#4|) (-1164 |#4|) (-1164 |#4|))) (-15 -3852 (|#3|))) -((-1635 (((-417 (-1164 |#1|)) (-1164 |#1|)) 43))) -(((-457 |#1|) (-10 -7 (-15 -1635 ((-417 (-1164 |#1|)) (-1164 |#1|)))) (-306)) (T -457)) -((-1635 (*1 *2 *3) (-12 (-4 *4 (-306)) (-5 *2 (-417 (-1164 *4))) (-5 *1 (-457 *4)) (-5 *3 (-1164 *4))))) -(-10 -7 (-15 -1635 ((-417 (-1164 |#1|)) (-1164 |#1|)))) -((-1470 (((-52) |#2| (-1168) (-293 |#2|) (-1223 (-766))) 42) (((-52) (-1 |#2| (-562)) (-293 |#2|) (-1223 (-766))) 41) (((-52) |#2| (-1168) (-293 |#2|)) 35) (((-52) (-1 |#2| (-562)) (-293 |#2|)) 28)) (-1503 (((-52) |#2| (-1168) (-293 |#2|) (-1223 (-406 (-562))) (-406 (-562))) 80) (((-52) (-1 |#2| (-406 (-562))) (-293 |#2|) (-1223 (-406 (-562))) (-406 (-562))) 79) (((-52) |#2| (-1168) (-293 |#2|) (-1223 (-562))) 78) (((-52) (-1 |#2| (-562)) (-293 |#2|) (-1223 (-562))) 77) (((-52) |#2| (-1168) (-293 |#2|)) 72) (((-52) (-1 |#2| (-562)) (-293 |#2|)) 71)) (-1499 (((-52) |#2| (-1168) (-293 |#2|) (-1223 (-406 (-562))) (-406 (-562))) 66) (((-52) (-1 |#2| (-406 (-562))) (-293 |#2|) (-1223 (-406 (-562))) (-406 (-562))) 64)) (-1487 (((-52) |#2| (-1168) (-293 |#2|) (-1223 (-562))) 48) (((-52) (-1 |#2| (-562)) (-293 |#2|) (-1223 (-562))) 47))) -(((-458 |#1| |#2|) (-10 -7 (-15 -1470 ((-52) (-1 |#2| (-562)) (-293 |#2|))) (-15 -1470 ((-52) |#2| (-1168) (-293 |#2|))) (-15 -1470 ((-52) (-1 |#2| (-562)) (-293 |#2|) (-1223 (-766)))) (-15 -1470 ((-52) |#2| (-1168) (-293 |#2|) (-1223 (-766)))) (-15 -1487 ((-52) (-1 |#2| (-562)) (-293 |#2|) (-1223 (-562)))) (-15 -1487 ((-52) |#2| (-1168) (-293 |#2|) (-1223 (-562)))) (-15 -1499 ((-52) (-1 |#2| (-406 (-562))) (-293 |#2|) (-1223 (-406 (-562))) (-406 (-562)))) (-15 -1499 ((-52) |#2| (-1168) (-293 |#2|) (-1223 (-406 (-562))) (-406 (-562)))) (-15 -1503 ((-52) (-1 |#2| (-562)) (-293 |#2|))) (-15 -1503 ((-52) |#2| (-1168) (-293 |#2|))) (-15 -1503 ((-52) (-1 |#2| (-562)) (-293 |#2|) (-1223 (-562)))) (-15 -1503 ((-52) |#2| (-1168) (-293 |#2|) (-1223 (-562)))) (-15 -1503 ((-52) (-1 |#2| (-406 (-562))) (-293 |#2|) (-1223 (-406 (-562))) (-406 (-562)))) (-15 -1503 ((-52) |#2| (-1168) (-293 |#2|) (-1223 (-406 (-562))) (-406 (-562))))) (-13 (-554) (-845) (-1033 (-562)) (-635 (-562))) (-13 (-27) (-1192) (-429 |#1|))) (T -458)) -((-1503 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1168)) (-5 *5 (-293 *3)) (-5 *6 (-1223 (-406 (-562)))) (-5 *7 (-406 (-562))) (-4 *3 (-13 (-27) (-1192) (-429 *8))) (-4 *8 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-458 *8 *3)))) (-1503 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-406 (-562)))) (-5 *4 (-293 *8)) (-5 *5 (-1223 (-406 (-562)))) (-5 *6 (-406 (-562))) (-4 *8 (-13 (-27) (-1192) (-429 *7))) (-4 *7 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-458 *7 *8)))) (-1503 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1168)) (-5 *5 (-293 *3)) (-5 *6 (-1223 (-562))) (-4 *3 (-13 (-27) (-1192) (-429 *7))) (-4 *7 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-458 *7 *3)))) (-1503 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-562))) (-5 *4 (-293 *7)) (-5 *5 (-1223 (-562))) (-4 *7 (-13 (-27) (-1192) (-429 *6))) (-4 *6 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-458 *6 *7)))) (-1503 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1168)) (-5 *5 (-293 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *6))) (-4 *6 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-458 *6 *3)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-562))) (-5 *4 (-293 *6)) (-4 *6 (-13 (-27) (-1192) (-429 *5))) (-4 *5 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-458 *5 *6)))) (-1499 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1168)) (-5 *5 (-293 *3)) (-5 *6 (-1223 (-406 (-562)))) (-5 *7 (-406 (-562))) (-4 *3 (-13 (-27) (-1192) (-429 *8))) (-4 *8 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-458 *8 *3)))) (-1499 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-406 (-562)))) (-5 *4 (-293 *8)) (-5 *5 (-1223 (-406 (-562)))) (-5 *6 (-406 (-562))) (-4 *8 (-13 (-27) (-1192) (-429 *7))) (-4 *7 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-458 *7 *8)))) (-1487 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1168)) (-5 *5 (-293 *3)) (-5 *6 (-1223 (-562))) (-4 *3 (-13 (-27) (-1192) (-429 *7))) (-4 *7 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-458 *7 *3)))) (-1487 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-562))) (-5 *4 (-293 *7)) (-5 *5 (-1223 (-562))) (-4 *7 (-13 (-27) (-1192) (-429 *6))) (-4 *6 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-458 *6 *7)))) (-1470 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1168)) (-5 *5 (-293 *3)) (-5 *6 (-1223 (-766))) (-4 *3 (-13 (-27) (-1192) (-429 *7))) (-4 *7 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-458 *7 *3)))) (-1470 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-562))) (-5 *4 (-293 *7)) (-5 *5 (-1223 (-766))) (-4 *7 (-13 (-27) (-1192) (-429 *6))) (-4 *6 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-458 *6 *7)))) (-1470 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1168)) (-5 *5 (-293 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *6))) (-4 *6 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-458 *6 *3)))) (-1470 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-562))) (-5 *4 (-293 *6)) (-4 *6 (-13 (-27) (-1192) (-429 *5))) (-4 *5 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-52)) (-5 *1 (-458 *5 *6))))) -(-10 -7 (-15 -1470 ((-52) (-1 |#2| (-562)) (-293 |#2|))) (-15 -1470 ((-52) |#2| (-1168) (-293 |#2|))) (-15 -1470 ((-52) (-1 |#2| (-562)) (-293 |#2|) (-1223 (-766)))) (-15 -1470 ((-52) |#2| (-1168) (-293 |#2|) (-1223 (-766)))) (-15 -1487 ((-52) (-1 |#2| (-562)) (-293 |#2|) (-1223 (-562)))) (-15 -1487 ((-52) |#2| (-1168) (-293 |#2|) (-1223 (-562)))) (-15 -1499 ((-52) (-1 |#2| (-406 (-562))) (-293 |#2|) (-1223 (-406 (-562))) (-406 (-562)))) (-15 -1499 ((-52) |#2| (-1168) (-293 |#2|) (-1223 (-406 (-562))) (-406 (-562)))) (-15 -1503 ((-52) (-1 |#2| (-562)) (-293 |#2|))) (-15 -1503 ((-52) |#2| (-1168) (-293 |#2|))) (-15 -1503 ((-52) (-1 |#2| (-562)) (-293 |#2|) (-1223 (-562)))) (-15 -1503 ((-52) |#2| (-1168) (-293 |#2|) (-1223 (-562)))) (-15 -1503 ((-52) (-1 |#2| (-406 (-562))) (-293 |#2|) (-1223 (-406 (-562))) (-406 (-562)))) (-15 -1503 ((-52) |#2| (-1168) (-293 |#2|) (-1223 (-406 (-562))) (-406 (-562))))) -((-3834 ((|#2| |#2| |#1|) 15)) (-2188 (((-639 |#2|) |#2| (-639 |#2|) |#1| (-916)) 68)) (-4051 (((-2 (|:| |plist| (-639 |#2|)) (|:| |modulo| |#1|)) |#2| (-639 |#2|) |#1| (-916)) 59))) -(((-459 |#1| |#2|) (-10 -7 (-15 -4051 ((-2 (|:| |plist| (-639 |#2|)) (|:| |modulo| |#1|)) |#2| (-639 |#2|) |#1| (-916))) (-15 -2188 ((-639 |#2|) |#2| (-639 |#2|) |#1| (-916))) (-15 -3834 (|#2| |#2| |#1|))) (-306) (-1232 |#1|)) (T -459)) -((-3834 (*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-5 *1 (-459 *3 *2)) (-4 *2 (-1232 *3)))) (-2188 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-639 *3)) (-5 *5 (-916)) (-4 *3 (-1232 *4)) (-4 *4 (-306)) (-5 *1 (-459 *4 *3)))) (-4051 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-916)) (-4 *5 (-306)) (-4 *3 (-1232 *5)) (-5 *2 (-2 (|:| |plist| (-639 *3)) (|:| |modulo| *5))) (-5 *1 (-459 *5 *3)) (-5 *4 (-639 *3))))) -(-10 -7 (-15 -4051 ((-2 (|:| |plist| (-639 |#2|)) (|:| |modulo| |#1|)) |#2| (-639 |#2|) |#1| (-916))) (-15 -2188 ((-639 |#2|) |#2| (-639 |#2|) |#1| (-916))) (-15 -3834 (|#2| |#2| |#1|))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) 28)) (-2211 (($ |#3|) 25)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3329 (($) NIL T CONST)) (-1600 (($ $) 32)) (-3512 (($ |#2| |#4| $) 33)) (-1377 (($ |#2| (-708 |#3| |#4| |#5|)) 24)) (-1560 (((-708 |#3| |#4| |#5|) $) 15)) (-2257 ((|#3| $) 19)) (-2109 ((|#4| $) 17)) (-1573 ((|#2| $) 29)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-3609 (($ |#2| |#3| |#4|) 26)) (-2285 (($) 36 T CONST)) (-1733 (((-112) $ $) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) 34)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-460 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-712 |#6|) (-712 |#2|) (-10 -8 (-15 -1573 (|#2| $)) (-15 -1560 ((-708 |#3| |#4| |#5|) $)) (-15 -2109 (|#4| $)) (-15 -2257 (|#3| $)) (-15 -1600 ($ $)) (-15 -1377 ($ |#2| (-708 |#3| |#4| |#5|))) (-15 -2211 ($ |#3|)) (-15 -3609 ($ |#2| |#3| |#4|)) (-15 -3512 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-639 (-1168)) (-171) (-845) (-237 (-3492 |#1|) (-766)) (-1 (-112) (-2 (|:| -2464 |#3|) (|:| -1300 |#4|)) (-2 (|:| -2464 |#3|) (|:| -1300 |#4|))) (-944 |#2| |#4| (-859 |#1|))) (T -460)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-639 (-1168))) (-4 *4 (-171)) (-4 *6 (-237 (-3492 *3) (-766))) (-14 *7 (-1 (-112) (-2 (|:| -2464 *5) (|:| -1300 *6)) (-2 (|:| -2464 *5) (|:| -1300 *6)))) (-5 *1 (-460 *3 *4 *5 *6 *7 *2)) (-4 *5 (-845)) (-4 *2 (-944 *4 *6 (-859 *3))))) (-1573 (*1 *2 *1) (-12 (-14 *3 (-639 (-1168))) (-4 *5 (-237 (-3492 *3) (-766))) (-14 *6 (-1 (-112) (-2 (|:| -2464 *4) (|:| -1300 *5)) (-2 (|:| -2464 *4) (|:| -1300 *5)))) (-4 *2 (-171)) (-5 *1 (-460 *3 *2 *4 *5 *6 *7)) (-4 *4 (-845)) (-4 *7 (-944 *2 *5 (-859 *3))))) (-1560 (*1 *2 *1) (-12 (-14 *3 (-639 (-1168))) (-4 *4 (-171)) (-4 *6 (-237 (-3492 *3) (-766))) (-14 *7 (-1 (-112) (-2 (|:| -2464 *5) (|:| -1300 *6)) (-2 (|:| -2464 *5) (|:| -1300 *6)))) (-5 *2 (-708 *5 *6 *7)) (-5 *1 (-460 *3 *4 *5 *6 *7 *8)) (-4 *5 (-845)) (-4 *8 (-944 *4 *6 (-859 *3))))) (-2109 (*1 *2 *1) (-12 (-14 *3 (-639 (-1168))) (-4 *4 (-171)) (-14 *6 (-1 (-112) (-2 (|:| -2464 *5) (|:| -1300 *2)) (-2 (|:| -2464 *5) (|:| -1300 *2)))) (-4 *2 (-237 (-3492 *3) (-766))) (-5 *1 (-460 *3 *4 *5 *2 *6 *7)) (-4 *5 (-845)) (-4 *7 (-944 *4 *2 (-859 *3))))) (-2257 (*1 *2 *1) (-12 (-14 *3 (-639 (-1168))) (-4 *4 (-171)) (-4 *5 (-237 (-3492 *3) (-766))) (-14 *6 (-1 (-112) (-2 (|:| -2464 *2) (|:| -1300 *5)) (-2 (|:| -2464 *2) (|:| -1300 *5)))) (-4 *2 (-845)) (-5 *1 (-460 *3 *4 *2 *5 *6 *7)) (-4 *7 (-944 *4 *5 (-859 *3))))) (-1600 (*1 *1 *1) (-12 (-14 *2 (-639 (-1168))) (-4 *3 (-171)) (-4 *5 (-237 (-3492 *2) (-766))) (-14 *6 (-1 (-112) (-2 (|:| -2464 *4) (|:| -1300 *5)) (-2 (|:| -2464 *4) (|:| -1300 *5)))) (-5 *1 (-460 *2 *3 *4 *5 *6 *7)) (-4 *4 (-845)) (-4 *7 (-944 *3 *5 (-859 *2))))) (-1377 (*1 *1 *2 *3) (-12 (-5 *3 (-708 *5 *6 *7)) (-4 *5 (-845)) (-4 *6 (-237 (-3492 *4) (-766))) (-14 *7 (-1 (-112) (-2 (|:| -2464 *5) (|:| -1300 *6)) (-2 (|:| -2464 *5) (|:| -1300 *6)))) (-14 *4 (-639 (-1168))) (-4 *2 (-171)) (-5 *1 (-460 *4 *2 *5 *6 *7 *8)) (-4 *8 (-944 *2 *6 (-859 *4))))) (-2211 (*1 *1 *2) (-12 (-14 *3 (-639 (-1168))) (-4 *4 (-171)) (-4 *5 (-237 (-3492 *3) (-766))) (-14 *6 (-1 (-112) (-2 (|:| -2464 *2) (|:| -1300 *5)) (-2 (|:| -2464 *2) (|:| -1300 *5)))) (-5 *1 (-460 *3 *4 *2 *5 *6 *7)) (-4 *2 (-845)) (-4 *7 (-944 *4 *5 (-859 *3))))) (-3609 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-639 (-1168))) (-4 *2 (-171)) (-4 *4 (-237 (-3492 *5) (-766))) (-14 *6 (-1 (-112) (-2 (|:| -2464 *3) (|:| -1300 *4)) (-2 (|:| -2464 *3) (|:| -1300 *4)))) (-5 *1 (-460 *5 *2 *3 *4 *6 *7)) (-4 *3 (-845)) (-4 *7 (-944 *2 *4 (-859 *5))))) (-3512 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-639 (-1168))) (-4 *2 (-171)) (-4 *3 (-237 (-3492 *4) (-766))) (-14 *6 (-1 (-112) (-2 (|:| -2464 *5) (|:| -1300 *3)) (-2 (|:| -2464 *5) (|:| -1300 *3)))) (-5 *1 (-460 *4 *2 *5 *3 *6 *7)) (-4 *5 (-845)) (-4 *7 (-944 *2 *3 (-859 *4)))))) -(-13 (-712 |#6|) (-712 |#2|) (-10 -8 (-15 -1573 (|#2| $)) (-15 -1560 ((-708 |#3| |#4| |#5|) $)) (-15 -2109 (|#4| $)) (-15 -2257 (|#3| $)) (-15 -1600 ($ $)) (-15 -1377 ($ |#2| (-708 |#3| |#4| |#5|))) (-15 -2211 ($ |#3|)) (-15 -3609 ($ |#2| |#3| |#4|)) (-15 -3512 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-1938 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37))) -(((-461 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1938 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-788) (-845) (-554) (-944 |#3| |#1| |#2|) (-13 (-1033 (-406 (-562))) (-362) (-10 -8 (-15 -4053 ($ |#4|)) (-15 -4063 (|#4| $)) (-15 -4079 (|#4| $))))) (T -461)) -((-1938 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-845)) (-4 *5 (-788)) (-4 *6 (-554)) (-4 *7 (-944 *6 *5 *3)) (-5 *1 (-461 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1033 (-406 (-562))) (-362) (-10 -8 (-15 -4053 ($ *7)) (-15 -4063 (*7 $)) (-15 -4079 (*7 $)))))))) -(-10 -7 (-15 -1938 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-4041 (((-112) $ $) NIL)) (-1401 (((-639 |#3|) $) 41)) (-2799 (((-112) $) NIL)) (-4370 (((-112) $) NIL (|has| |#1| (-554)))) (-1395 (((-2 (|:| |under| $) (|:| -3870 $) (|:| |upper| $)) $ |#3|) NIL)) (-3735 (((-112) $ (-766)) NIL)) (-3556 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4403)))) (-3329 (($) NIL T CONST)) (-2169 (((-112) $) NIL (|has| |#1| (-554)))) (-2183 (((-112) $ $) NIL (|has| |#1| (-554)))) (-2864 (((-112) $ $) NIL (|has| |#1| (-554)))) (-4219 (((-112) $) NIL (|has| |#1| (-554)))) (-2037 (((-639 |#4|) (-639 |#4|) $) NIL (|has| |#1| (-554)))) (-4230 (((-639 |#4|) (-639 |#4|) $) NIL (|has| |#1| (-554)))) (-4048 (((-3 $ "failed") (-639 |#4|)) 48)) (-3960 (($ (-639 |#4|)) NIL)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#4| (-1092))))) (-1475 (($ |#4| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#4| (-1092)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4403)))) (-1441 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-554)))) (-1954 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4403)) (|has| |#4| (-1092)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4403))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4403)))) (-1720 (((-639 |#4|) $) 18 (|has| $ (-6 -4403)))) (-3761 ((|#3| $) 46)) (-4172 (((-112) $ (-766)) NIL)) (-2123 (((-639 |#4|) $) 14 (|has| $ (-6 -4403)))) (-1572 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4403)) (|has| |#4| (-1092))))) (-1491 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#4| |#4|) $) 21)) (-3133 (((-639 |#3|) $) NIL)) (-3112 (((-112) |#3| $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL)) (-4123 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-554)))) (-1709 (((-1112) $) NIL)) (-1963 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3008 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 |#4|) (-639 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-639 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))))) (-1452 (((-112) $ $) NIL)) (-3087 (((-112) $) 39)) (-1663 (($) 17)) (-1723 (((-766) |#4| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#4| (-1092)))) (((-766) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4403)))) (-4220 (($ $) 16)) (-4208 (((-535) $) NIL (|has| |#4| (-610 (-535)))) (($ (-639 |#4|)) 50)) (-4064 (($ (-639 |#4|)) 13)) (-2316 (($ $ |#3|) NIL)) (-2180 (($ $ |#3|) NIL)) (-1962 (($ $ |#3|) NIL)) (-4053 (((-857) $) 38) (((-639 |#4|) $) 49)) (-2879 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 30)) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-462 |#1| |#2| |#3| |#4|) (-13 (-971 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4208 ($ (-639 |#4|))) (-6 -4403) (-6 -4404))) (-1044) (-788) (-845) (-1058 |#1| |#2| |#3|)) (T -462)) -((-4208 (*1 *1 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-462 *3 *4 *5 *6))))) -(-13 (-971 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4208 ($ (-639 |#4|))) (-6 -4403) (-6 -4404))) -((-2285 (($) 11)) (-2294 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-463 |#1| |#2| |#3|) (-10 -8 (-15 -2294 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2285 (|#1|))) (-464 |#2| |#3|) (-171) (-23)) (T -463)) -NIL -(-10 -8 (-15 -2294 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2285 (|#1|))) -((-4041 (((-112) $ $) 7)) (-4048 (((-3 |#1| "failed") $) 26)) (-3960 ((|#1| $) 27)) (-3912 (($ $ $) 23)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-2250 ((|#2| $) 19)) (-4053 (((-857) $) 11) (($ |#1|) 25)) (-2285 (($) 18 T CONST)) (-2294 (($) 24 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 15) (($ $ $) 13)) (-1836 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) -(((-464 |#1| |#2|) (-139) (-171) (-23)) (T -464)) -((-2294 (*1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (-3912 (*1 *1 *1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))) -(-13 (-469 |t#1| |t#2|) (-1033 |t#1|) (-10 -8 (-15 (-2294) ($) -1497) (-15 -3912 ($ $ $)))) -(((-102) . T) ((-612 |#1|) . T) ((-609 (-857)) . T) ((-469 |#1| |#2|) . T) ((-1033 |#1|) . T) ((-1092) . T)) -((-2954 (((-1256 (-1256 (-562))) (-1256 (-1256 (-562))) (-916)) 18)) (-3418 (((-1256 (-1256 (-562))) (-916)) 16))) -(((-465) (-10 -7 (-15 -2954 ((-1256 (-1256 (-562))) (-1256 (-1256 (-562))) (-916))) (-15 -3418 ((-1256 (-1256 (-562))) (-916))))) (T -465)) -((-3418 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1256 (-1256 (-562)))) (-5 *1 (-465)))) (-2954 (*1 *2 *2 *3) (-12 (-5 *2 (-1256 (-1256 (-562)))) (-5 *3 (-916)) (-5 *1 (-465))))) -(-10 -7 (-15 -2954 ((-1256 (-1256 (-562))) (-1256 (-1256 (-562))) (-916))) (-15 -3418 ((-1256 (-1256 (-562))) (-916)))) -((-3822 (((-562) (-562)) 30) (((-562)) 22)) (-1626 (((-562) (-562)) 26) (((-562)) 18)) (-1885 (((-562) (-562)) 28) (((-562)) 20)) (-3016 (((-112) (-112)) 12) (((-112)) 10)) (-1901 (((-112) (-112)) 11) (((-112)) 9)) (-3376 (((-112) (-112)) 24) (((-112)) 15))) -(((-466) (-10 -7 (-15 -1901 ((-112))) (-15 -3016 ((-112))) (-15 -1901 ((-112) (-112))) (-15 -3016 ((-112) (-112))) (-15 -3376 ((-112))) (-15 -1885 ((-562))) (-15 -1626 ((-562))) (-15 -3822 ((-562))) (-15 -3376 ((-112) (-112))) (-15 -1885 ((-562) (-562))) (-15 -1626 ((-562) (-562))) (-15 -3822 ((-562) (-562))))) (T -466)) -((-3822 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-466)))) (-1626 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-466)))) (-1885 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-466)))) (-3376 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-466)))) (-3822 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-466)))) (-1626 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-466)))) (-1885 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-466)))) (-3376 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-466)))) (-3016 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-466)))) (-1901 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-466)))) (-3016 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-466)))) (-1901 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-466))))) -(-10 -7 (-15 -1901 ((-112))) (-15 -3016 ((-112))) (-15 -1901 ((-112) (-112))) (-15 -3016 ((-112) (-112))) (-15 -3376 ((-112))) (-15 -1885 ((-562))) (-15 -1626 ((-562))) (-15 -3822 ((-562))) (-15 -3376 ((-112) (-112))) (-15 -1885 ((-562) (-562))) (-15 -1626 ((-562) (-562))) (-15 -3822 ((-562) (-562)))) -((-4041 (((-112) $ $) NIL)) (-3426 (((-639 (-378)) $) 28) (((-639 (-378)) $ (-639 (-378))) 94)) (-1732 (((-639 (-1086 (-378))) $) 16) (((-639 (-1086 (-378))) $ (-639 (-1086 (-378)))) 91)) (-2541 (((-639 (-639 (-938 (-224)))) (-639 (-639 (-938 (-224)))) (-639 (-869))) 44)) (-1877 (((-639 (-639 (-938 (-224)))) $) 87)) (-1460 (((-1261) $ (-938 (-224)) (-869)) 106)) (-3448 (($ $) 86) (($ (-639 (-639 (-938 (-224))))) 97) (($ (-639 (-639 (-938 (-224)))) (-639 (-869)) (-639 (-869)) (-639 (-916))) 96) (($ (-639 (-639 (-938 (-224)))) (-639 (-869)) (-639 (-869)) (-639 (-916)) (-639 (-262))) 98)) (-3696 (((-1150) $) NIL)) (-2319 (((-562) $) 68)) (-1709 (((-1112) $) NIL)) (-3883 (($) 95)) (-3744 (((-639 (-224)) (-639 (-639 (-938 (-224))))) 54)) (-3191 (((-1261) $ (-639 (-938 (-224))) (-869) (-869) (-916)) 100) (((-1261) $ (-938 (-224))) 102) (((-1261) $ (-938 (-224)) (-869) (-869) (-916)) 101)) (-4053 (((-857) $) 112) (($ (-639 (-639 (-938 (-224))))) 107)) (-4070 (((-1261) $ (-938 (-224))) 105)) (-1733 (((-112) $ $) NIL))) -(((-467) (-13 (-1092) (-10 -8 (-15 -3883 ($)) (-15 -3448 ($ $)) (-15 -3448 ($ (-639 (-639 (-938 (-224)))))) (-15 -3448 ($ (-639 (-639 (-938 (-224)))) (-639 (-869)) (-639 (-869)) (-639 (-916)))) (-15 -3448 ($ (-639 (-639 (-938 (-224)))) (-639 (-869)) (-639 (-869)) (-639 (-916)) (-639 (-262)))) (-15 -1877 ((-639 (-639 (-938 (-224)))) $)) (-15 -2319 ((-562) $)) (-15 -1732 ((-639 (-1086 (-378))) $)) (-15 -1732 ((-639 (-1086 (-378))) $ (-639 (-1086 (-378))))) (-15 -3426 ((-639 (-378)) $)) (-15 -3426 ((-639 (-378)) $ (-639 (-378)))) (-15 -3191 ((-1261) $ (-639 (-938 (-224))) (-869) (-869) (-916))) (-15 -3191 ((-1261) $ (-938 (-224)))) (-15 -3191 ((-1261) $ (-938 (-224)) (-869) (-869) (-916))) (-15 -4070 ((-1261) $ (-938 (-224)))) (-15 -1460 ((-1261) $ (-938 (-224)) (-869))) (-15 -4053 ($ (-639 (-639 (-938 (-224)))))) (-15 -4053 ((-857) $)) (-15 -2541 ((-639 (-639 (-938 (-224)))) (-639 (-639 (-938 (-224)))) (-639 (-869)))) (-15 -3744 ((-639 (-224)) (-639 (-639 (-938 (-224))))))))) (T -467)) -((-4053 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-467)))) (-3883 (*1 *1) (-5 *1 (-467))) (-3448 (*1 *1 *1) (-5 *1 (-467))) (-3448 (*1 *1 *2) (-12 (-5 *2 (-639 (-639 (-938 (-224))))) (-5 *1 (-467)))) (-3448 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-639 (-639 (-938 (-224))))) (-5 *3 (-639 (-869))) (-5 *4 (-639 (-916))) (-5 *1 (-467)))) (-3448 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-639 (-639 (-938 (-224))))) (-5 *3 (-639 (-869))) (-5 *4 (-639 (-916))) (-5 *5 (-639 (-262))) (-5 *1 (-467)))) (-1877 (*1 *2 *1) (-12 (-5 *2 (-639 (-639 (-938 (-224))))) (-5 *1 (-467)))) (-2319 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-467)))) (-1732 (*1 *2 *1) (-12 (-5 *2 (-639 (-1086 (-378)))) (-5 *1 (-467)))) (-1732 (*1 *2 *1 *2) (-12 (-5 *2 (-639 (-1086 (-378)))) (-5 *1 (-467)))) (-3426 (*1 *2 *1) (-12 (-5 *2 (-639 (-378))) (-5 *1 (-467)))) (-3426 (*1 *2 *1 *2) (-12 (-5 *2 (-639 (-378))) (-5 *1 (-467)))) (-3191 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-639 (-938 (-224)))) (-5 *4 (-869)) (-5 *5 (-916)) (-5 *2 (-1261)) (-5 *1 (-467)))) (-3191 (*1 *2 *1 *3) (-12 (-5 *3 (-938 (-224))) (-5 *2 (-1261)) (-5 *1 (-467)))) (-3191 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-938 (-224))) (-5 *4 (-869)) (-5 *5 (-916)) (-5 *2 (-1261)) (-5 *1 (-467)))) (-4070 (*1 *2 *1 *3) (-12 (-5 *3 (-938 (-224))) (-5 *2 (-1261)) (-5 *1 (-467)))) (-1460 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-938 (-224))) (-5 *4 (-869)) (-5 *2 (-1261)) (-5 *1 (-467)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-639 (-639 (-938 (-224))))) (-5 *1 (-467)))) (-2541 (*1 *2 *2 *3) (-12 (-5 *2 (-639 (-639 (-938 (-224))))) (-5 *3 (-639 (-869))) (-5 *1 (-467)))) (-3744 (*1 *2 *3) (-12 (-5 *3 (-639 (-639 (-938 (-224))))) (-5 *2 (-639 (-224))) (-5 *1 (-467))))) -(-13 (-1092) (-10 -8 (-15 -3883 ($)) (-15 -3448 ($ $)) (-15 -3448 ($ (-639 (-639 (-938 (-224)))))) (-15 -3448 ($ (-639 (-639 (-938 (-224)))) (-639 (-869)) (-639 (-869)) (-639 (-916)))) (-15 -3448 ($ (-639 (-639 (-938 (-224)))) (-639 (-869)) (-639 (-869)) (-639 (-916)) (-639 (-262)))) (-15 -1877 ((-639 (-639 (-938 (-224)))) $)) (-15 -2319 ((-562) $)) (-15 -1732 ((-639 (-1086 (-378))) $)) (-15 -1732 ((-639 (-1086 (-378))) $ (-639 (-1086 (-378))))) (-15 -3426 ((-639 (-378)) $)) (-15 -3426 ((-639 (-378)) $ (-639 (-378)))) (-15 -3191 ((-1261) $ (-639 (-938 (-224))) (-869) (-869) (-916))) (-15 -3191 ((-1261) $ (-938 (-224)))) (-15 -3191 ((-1261) $ (-938 (-224)) (-869) (-869) (-916))) (-15 -4070 ((-1261) $ (-938 (-224)))) (-15 -1460 ((-1261) $ (-938 (-224)) (-869))) (-15 -4053 ($ (-639 (-639 (-938 (-224)))))) (-15 -4053 ((-857) $)) (-15 -2541 ((-639 (-639 (-938 (-224)))) (-639 (-639 (-938 (-224)))) (-639 (-869)))) (-15 -3744 ((-639 (-224)) (-639 (-639 (-938 (-224)))))))) -((-1847 (($ $) NIL) (($ $ $) 11))) -(((-468 |#1| |#2| |#3|) (-10 -8 (-15 -1847 (|#1| |#1| |#1|)) (-15 -1847 (|#1| |#1|))) (-469 |#2| |#3|) (-171) (-23)) (T -468)) -NIL -(-10 -8 (-15 -1847 (|#1| |#1| |#1|)) (-15 -1847 (|#1| |#1|))) -((-4041 (((-112) $ $) 7)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-2250 ((|#2| $) 19)) (-4053 (((-857) $) 11)) (-2285 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 15) (($ $ $) 13)) (-1836 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) -(((-469 |#1| |#2|) (-139) (-171) (-23)) (T -469)) -((-2250 (*1 *2 *1) (-12 (-4 *1 (-469 *3 *2)) (-4 *3 (-171)) (-4 *2 (-23)))) (-2285 (*1 *1) (-12 (-4 *1 (-469 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-469 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-469 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (-1847 (*1 *1 *1) (-12 (-4 *1 (-469 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (-1836 (*1 *1 *1 *1) (-12 (-4 *1 (-469 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) (-1847 (*1 *1 *1 *1) (-12 (-4 *1 (-469 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23))))) -(-13 (-1092) (-10 -8 (-15 -2250 (|t#2| $)) (-15 (-2285) ($) -1497) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -1847 ($ $)) (-15 -1836 ($ $ $)) (-15 -1847 ($ $ $)))) -(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) -((-2609 (((-3 (-639 (-480 |#1| |#2|)) "failed") (-639 (-480 |#1| |#2|)) (-639 (-859 |#1|))) 91)) (-3750 (((-639 (-639 (-246 |#1| |#2|))) (-639 (-246 |#1| |#2|)) (-639 (-859 |#1|))) 89)) (-1621 (((-2 (|:| |dpolys| (-639 (-246 |#1| |#2|))) (|:| |coords| (-639 (-562)))) (-639 (-246 |#1| |#2|)) (-639 (-859 |#1|))) 61))) -(((-470 |#1| |#2| |#3|) (-10 -7 (-15 -3750 ((-639 (-639 (-246 |#1| |#2|))) (-639 (-246 |#1| |#2|)) (-639 (-859 |#1|)))) (-15 -2609 ((-3 (-639 (-480 |#1| |#2|)) "failed") (-639 (-480 |#1| |#2|)) (-639 (-859 |#1|)))) (-15 -1621 ((-2 (|:| |dpolys| (-639 (-246 |#1| |#2|))) (|:| |coords| (-639 (-562)))) (-639 (-246 |#1| |#2|)) (-639 (-859 |#1|))))) (-639 (-1168)) (-451) (-451)) (T -470)) -((-1621 (*1 *2 *3 *4) (-12 (-5 *4 (-639 (-859 *5))) (-14 *5 (-639 (-1168))) (-4 *6 (-451)) (-5 *2 (-2 (|:| |dpolys| (-639 (-246 *5 *6))) (|:| |coords| (-639 (-562))))) (-5 *1 (-470 *5 *6 *7)) (-5 *3 (-639 (-246 *5 *6))) (-4 *7 (-451)))) (-2609 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-639 (-480 *4 *5))) (-5 *3 (-639 (-859 *4))) (-14 *4 (-639 (-1168))) (-4 *5 (-451)) (-5 *1 (-470 *4 *5 *6)) (-4 *6 (-451)))) (-3750 (*1 *2 *3 *4) (-12 (-5 *4 (-639 (-859 *5))) (-14 *5 (-639 (-1168))) (-4 *6 (-451)) (-5 *2 (-639 (-639 (-246 *5 *6)))) (-5 *1 (-470 *5 *6 *7)) (-5 *3 (-639 (-246 *5 *6))) (-4 *7 (-451))))) -(-10 -7 (-15 -3750 ((-639 (-639 (-246 |#1| |#2|))) (-639 (-246 |#1| |#2|)) (-639 (-859 |#1|)))) (-15 -2609 ((-3 (-639 (-480 |#1| |#2|)) "failed") (-639 (-480 |#1| |#2|)) (-639 (-859 |#1|)))) (-15 -1621 ((-2 (|:| |dpolys| (-639 (-246 |#1| |#2|))) (|:| |coords| (-639 (-562)))) (-639 (-246 |#1| |#2|)) (-639 (-859 |#1|))))) -((-1694 (((-3 $ "failed") $) 11)) (-1660 (($ $ $) 18)) (-2114 (($ $ $) 19)) (-1859 (($ $ $) 9)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) 17))) -(((-471 |#1|) (-10 -8 (-15 -2114 (|#1| |#1| |#1|)) (-15 -1660 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-562))) (-15 -1859 (|#1| |#1| |#1|)) (-15 -1694 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-766))) (-15 ** (|#1| |#1| (-916)))) (-472)) (T -471)) -NIL -(-10 -8 (-15 -2114 (|#1| |#1| |#1|)) (-15 -1660 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-562))) (-15 -1859 (|#1| |#1| |#1|)) (-15 -1694 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-766))) (-15 ** (|#1| |#1| (-916)))) -((-4041 (((-112) $ $) 7)) (-3329 (($) 18 T CONST)) (-1694 (((-3 $ "failed") $) 15)) (-4367 (((-112) $) 17)) (-3696 (((-1150) $) 9)) (-1525 (($ $) 24)) (-1709 (((-1112) $) 10)) (-1660 (($ $ $) 21)) (-2114 (($ $ $) 20)) (-4053 (((-857) $) 11)) (-2294 (($) 19 T CONST)) (-1733 (((-112) $ $) 6)) (-1859 (($ $ $) 23)) (** (($ $ (-916)) 13) (($ $ (-766)) 16) (($ $ (-562)) 22)) (* (($ $ $) 14))) -(((-472) (-139)) (T -472)) -((-1525 (*1 *1 *1) (-4 *1 (-472))) (-1859 (*1 *1 *1 *1) (-4 *1 (-472))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-472)) (-5 *2 (-562)))) (-1660 (*1 *1 *1 *1) (-4 *1 (-472))) (-2114 (*1 *1 *1 *1) (-4 *1 (-472)))) -(-13 (-721) (-10 -8 (-15 -1525 ($ $)) (-15 -1859 ($ $ $)) (-15 ** ($ $ (-562))) (-6 -4400) (-15 -1660 ($ $ $)) (-15 -2114 ($ $ $)))) -(((-102) . T) ((-609 (-857)) . T) ((-721) . T) ((-1104) . T) ((-1092) . T)) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-1401 (((-639 (-1074)) $) NIL)) (-2443 (((-1168) $) 17)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-1965 (($ $) NIL (|has| |#1| (-554)))) (-4102 (((-112) $) NIL (|has| |#1| (-554)))) (-1302 (($ $ (-406 (-562))) NIL) (($ $ (-406 (-562)) (-406 (-562))) NIL)) (-4196 (((-1148 (-2 (|:| |k| (-406 (-562))) (|:| |c| |#1|))) $) NIL)) (-2987 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4098 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2781 (((-3 $ "failed") $ $) NIL)) (-1977 (($ $) NIL (|has| |#1| (-362)))) (-3788 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1644 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1436 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4206 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1503 (($ (-766) (-1148 (-2 (|:| |k| (-406 (-562))) (|:| |c| |#1|)))) NIL)) (-3013 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4120 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3329 (($) NIL T CONST)) (-1810 (($ $ $) NIL (|has| |#1| (-362)))) (-1600 (($ $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-1787 (($ $ $) NIL (|has| |#1| (-362)))) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL (|has| |#1| (-362)))) (-3521 (((-112) $) NIL (|has| |#1| (-362)))) (-2965 (((-112) $) NIL)) (-4100 (($) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1993 (((-406 (-562)) $) NIL) (((-406 (-562)) $ (-406 (-562))) NIL)) (-4367 (((-112) $) NIL)) (-1895 (($ $ (-562)) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3662 (($ $ (-916)) NIL) (($ $ (-406 (-562))) NIL)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-2833 (((-112) $) NIL)) (-1377 (($ |#1| (-406 (-562))) NIL) (($ $ (-1074) (-406 (-562))) NIL) (($ $ (-639 (-1074)) (-639 (-406 (-562)))) NIL)) (-4152 (($ (-1 |#1| |#1|) $) 22)) (-4366 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3696 (((-1150) $) NIL)) (-1525 (($ $) NIL (|has| |#1| (-362)))) (-3081 (($ $) 26 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-1168)) 33 (-4037 (-12 (|has| |#1| (-15 -3081 (|#1| |#1| (-1168)))) (|has| |#1| (-15 -1401 ((-639 (-1168)) |#1|))) (|has| |#1| (-38 (-406 (-562))))) (-12 (|has| |#1| (-29 (-562))) (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-954)) (|has| |#1| (-1192))))) (($ $ (-1252 |#2|)) 27 (|has| |#1| (-38 (-406 (-562)))))) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-362)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1635 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL (|has| |#1| (-362)))) (-4316 (($ $ (-406 (-562))) NIL)) (-1762 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-3430 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1433 (((-1148 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-406 (-562))))))) (-2044 (((-766) $) NIL (|has| |#1| (-362)))) (-2343 ((|#1| $ (-406 (-562))) NIL) (($ $ $) NIL (|has| (-406 (-562)) (-1104)))) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| |#1| (-362)))) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168)) 25 (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-766)) NIL (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|)))) (($ $ (-1252 |#2|)) 15)) (-2250 (((-406 (-562)) $) NIL)) (-3022 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3000 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2977 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1345 (($ $) NIL)) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1252 |#2|)) NIL) (($ (-1241 |#1| |#2| |#3|)) 9) (($ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $) NIL (|has| |#1| (-554)))) (-2266 ((|#1| $ (-406 (-562))) NIL)) (-2059 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-1568 (((-766)) NIL)) (-2328 ((|#1| $) 18)) (-3054 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3799 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3033 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4139 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3077 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4183 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1406 ((|#1| $ (-406 (-562))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-562))))) (|has| |#1| (-15 -4053 (|#1| (-1168))))))) (-1567 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3065 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4175 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3040 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3113 (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-766)) NIL (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (-1733 (((-112) $ $) NIL)) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1847 (($ $) NIL) (($ $ $) 24)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))))) -(((-473 |#1| |#2| |#3|) (-13 (-1237 |#1|) (-10 -8 (-15 -4053 ($ (-1252 |#2|))) (-15 -4053 ($ (-1241 |#1| |#2| |#3|))) (-15 -4029 ($ $ (-1252 |#2|))) (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -3081 ($ $ (-1252 |#2|))) |%noBranch|))) (-1044) (-1168) |#1|) (T -473)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-473 *3 *4 *5)) (-4 *3 (-1044)) (-14 *5 *3))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-1241 *3 *4 *5)) (-4 *3 (-1044)) (-14 *4 (-1168)) (-14 *5 *3) (-5 *1 (-473 *3 *4 *5)))) (-4029 (*1 *1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-473 *3 *4 *5)) (-4 *3 (-1044)) (-14 *5 *3))) (-3081 (*1 *1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-473 *3 *4 *5)) (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) (-14 *5 *3)))) -(-13 (-1237 |#1|) (-10 -8 (-15 -4053 ($ (-1252 |#2|))) (-15 -4053 ($ (-1241 |#1| |#2| |#3|))) (-15 -4029 ($ $ (-1252 |#2|))) (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -3081 ($ $ (-1252 |#2|))) |%noBranch|))) -((-4041 (((-112) $ $) NIL (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1443 (($) NIL) (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL)) (-3655 (((-1261) $ |#1| |#1|) NIL (|has| $ (-6 -4404)))) (-3735 (((-112) $ (-766)) NIL)) (-4200 ((|#2| $ |#1| |#2|) 18)) (-2968 (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-1472 (((-3 |#2| "failed") |#1| $) 19)) (-3329 (($) NIL T CONST)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092))))) (-3729 (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL (|has| $ (-6 -4403))) (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-3 |#2| "failed") |#1| $) 16)) (-1475 (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-1954 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL (|has| $ (-6 -4403))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-1507 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4404)))) (-1420 ((|#2| $ |#1|) NIL)) (-1720 (((-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-639 |#2|) $) NIL (|has| $ (-6 -4403)))) (-4172 (((-112) $ (-766)) NIL)) (-1849 ((|#1| $) NIL (|has| |#1| (-845)))) (-2123 (((-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-639 |#2|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092))))) (-1929 ((|#1| $) NIL (|has| |#1| (-845)))) (-1491 (($ (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4404))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1521 (((-639 |#1|) $) NIL)) (-4278 (((-112) |#1| $) NIL)) (-2078 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL)) (-1581 (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL)) (-3336 (((-639 |#1|) $) NIL)) (-1987 (((-112) |#1| $) NIL)) (-1709 (((-1112) $) NIL (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1421 ((|#2| $) NIL (|has| |#1| (-845)))) (-1963 (((-3 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) "failed") (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL)) (-3510 (($ $ |#2|) NIL (|has| $ (-6 -4404)))) (-2038 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL)) (-3008 (((-112) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))))) NIL (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-293 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-639 |#2|) (-639 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))))) (-1452 (((-112) $ $) NIL)) (-2716 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092))))) (-2366 (((-639 |#2|) $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) NIL)) (-2343 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1932 (($) NIL) (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL)) (-1723 (((-766) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-766) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (((-766) |#2| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092)))) (((-766) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-610 (-535))))) (-4064 (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL)) (-4053 (((-857) $) NIL (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-609 (-857))) (|has| |#2| (-609 (-857)))))) (-4131 (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL)) (-2879 (((-112) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) NIL (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-474 |#1| |#2| |#3| |#4|) (-1183 |#1| |#2|) (-1092) (-1092) (-1183 |#1| |#2|) |#2|) (T -474)) -NIL -(-1183 |#1| |#2|) -((-4041 (((-112) $ $) NIL)) (-1330 (((-639 (-2 (|:| -1449 $) (|:| -3315 (-639 |#4|)))) (-639 |#4|)) NIL)) (-3672 (((-639 $) (-639 |#4|)) NIL)) (-1401 (((-639 |#3|) $) NIL)) (-2799 (((-112) $) NIL)) (-4370 (((-112) $) NIL (|has| |#1| (-554)))) (-4177 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3623 ((|#4| |#4| $) NIL)) (-1395 (((-2 (|:| |under| $) (|:| -3870 $) (|:| |upper| $)) $ |#3|) NIL)) (-3735 (((-112) $ (-766)) NIL)) (-3556 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4403))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3329 (($) NIL T CONST)) (-2169 (((-112) $) 27 (|has| |#1| (-554)))) (-2183 (((-112) $ $) NIL (|has| |#1| (-554)))) (-2864 (((-112) $ $) NIL (|has| |#1| (-554)))) (-4219 (((-112) $) NIL (|has| |#1| (-554)))) (-4227 (((-639 |#4|) (-639 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2037 (((-639 |#4|) (-639 |#4|) $) NIL (|has| |#1| (-554)))) (-4230 (((-639 |#4|) (-639 |#4|) $) NIL (|has| |#1| (-554)))) (-4048 (((-3 $ "failed") (-639 |#4|)) NIL)) (-3960 (($ (-639 |#4|)) NIL)) (-1434 (((-3 $ "failed") $) 40)) (-3255 ((|#4| |#4| $) NIL)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#4| (-1092))))) (-1475 (($ |#4| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#4| (-1092)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4403)))) (-1441 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-554)))) (-3300 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2227 ((|#4| |#4| $) NIL)) (-1954 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4403)) (|has| |#4| (-1092)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4403))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4403))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1471 (((-2 (|:| -1449 (-639 |#4|)) (|:| -3315 (-639 |#4|))) $) NIL)) (-1720 (((-639 |#4|) $) 17 (|has| $ (-6 -4403)))) (-1493 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3761 ((|#3| $) 34)) (-4172 (((-112) $ (-766)) NIL)) (-2123 (((-639 |#4|) $) 18 (|has| $ (-6 -4403)))) (-1572 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4403)) (|has| |#4| (-1092))))) (-1491 (($ (-1 |#4| |#4|) $) 24 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#4| |#4|) $) 22)) (-3133 (((-639 |#3|) $) NIL)) (-3112 (((-112) |#3| $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL)) (-1504 (((-3 |#4| "failed") $) 38)) (-2063 (((-639 |#4|) $) NIL)) (-1645 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2651 ((|#4| |#4| $) NIL)) (-1789 (((-112) $ $) NIL)) (-4123 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-554)))) (-2830 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1630 ((|#4| |#4| $) NIL)) (-1709 (((-1112) $) NIL)) (-1421 (((-3 |#4| "failed") $) 36)) (-1963 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4333 (((-3 $ "failed") $ |#4|) 47)) (-4316 (($ $ |#4|) NIL)) (-3008 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 |#4|) (-639 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-639 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))))) (-1452 (((-112) $ $) NIL)) (-3087 (((-112) $) 16)) (-1663 (($) 14)) (-2250 (((-766) $) NIL)) (-1723 (((-766) |#4| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#4| (-1092)))) (((-766) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4403)))) (-4220 (($ $) 13)) (-4208 (((-535) $) NIL (|has| |#4| (-610 (-535))))) (-4064 (($ (-639 |#4|)) 21)) (-2316 (($ $ |#3|) 43)) (-2180 (($ $ |#3|) 44)) (-2209 (($ $) NIL)) (-1962 (($ $ |#3|) NIL)) (-4053 (((-857) $) 32) (((-639 |#4|) $) 41)) (-4157 (((-766) $) NIL (|has| |#3| (-367)))) (-4168 (((-3 (-2 (|:| |bas| $) (|:| -2774 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2774 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2350 (((-112) $ (-1 (-112) |#4| (-639 |#4|))) NIL)) (-2879 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4403)))) (-3278 (((-639 |#3|) $) NIL)) (-3782 (((-112) |#3| $) NIL)) (-1733 (((-112) $ $) NIL)) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-475 |#1| |#2| |#3| |#4|) (-1200 |#1| |#2| |#3| |#4|) (-554) (-788) (-845) (-1058 |#1| |#2| |#3|)) (T -475)) -NIL -(-1200 |#1| |#2| |#3| |#4|) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-1436 (((-112) $ $) NIL)) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL)) (-3960 (((-562) $) NIL) (((-406 (-562)) $) NIL)) (-1810 (($ $ $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-3521 (((-112) $) NIL)) (-4100 (($) 18)) (-4367 (((-112) $) NIL)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-1635 (((-417 $) $) NIL)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2044 (((-766) $) NIL)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-4208 (((-378) $) 22) (((-224) $) 25) (((-406 (-1164 (-562))) $) 19) (((-535) $) 52)) (-4053 (((-857) $) 50) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL) (((-224) $) 24) (((-378) $) 21)) (-1568 (((-766)) NIL)) (-3799 (((-112) $ $) NIL)) (-2285 (($) 36 T CONST)) (-2294 (($) 11 T CONST)) (-1733 (((-112) $ $) NIL)) (-1859 (($ $ $) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL))) -(((-476) (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))) (-1017) (-609 (-224)) (-609 (-378)) (-610 (-406 (-1164 (-562)))) (-610 (-535)) (-10 -8 (-15 -4100 ($))))) (T -476)) -((-4100 (*1 *1) (-5 *1 (-476)))) -(-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))) (-1017) (-609 (-224)) (-609 (-378)) (-610 (-406 (-1164 (-562)))) (-610 (-535)) (-10 -8 (-15 -4100 ($)))) -((-4041 (((-112) $ $) NIL)) (-4330 (((-1127) $) 11)) (-4318 (((-1127) $) 9)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 19) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-477) (-13 (-1075) (-10 -8 (-15 -4318 ((-1127) $)) (-15 -4330 ((-1127) $))))) (T -477)) -((-4318 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-477)))) (-4330 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-477))))) -(-13 (-1075) (-10 -8 (-15 -4318 ((-1127) $)) (-15 -4330 ((-1127) $)))) -((-4041 (((-112) $ $) NIL (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1443 (($) NIL) (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL)) (-3655 (((-1261) $ |#1| |#1|) NIL (|has| $ (-6 -4404)))) (-3735 (((-112) $ (-766)) NIL)) (-4200 ((|#2| $ |#1| |#2|) 16)) (-2968 (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-1472 (((-3 |#2| "failed") |#1| $) 20)) (-3329 (($) NIL T CONST)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092))))) (-3729 (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL (|has| $ (-6 -4403))) (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-3 |#2| "failed") |#1| $) 18)) (-1475 (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-1954 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL (|has| $ (-6 -4403))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-1507 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4404)))) (-1420 ((|#2| $ |#1|) NIL)) (-1720 (((-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-639 |#2|) $) NIL (|has| $ (-6 -4403)))) (-4172 (((-112) $ (-766)) NIL)) (-1849 ((|#1| $) NIL (|has| |#1| (-845)))) (-2123 (((-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-639 |#2|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092))))) (-1929 ((|#1| $) NIL (|has| |#1| (-845)))) (-1491 (($ (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4404))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1521 (((-639 |#1|) $) 13)) (-4278 (((-112) |#1| $) NIL)) (-2078 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL)) (-1581 (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL)) (-3336 (((-639 |#1|) $) NIL)) (-1987 (((-112) |#1| $) NIL)) (-1709 (((-1112) $) NIL (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1421 ((|#2| $) NIL (|has| |#1| (-845)))) (-1963 (((-3 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) "failed") (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL)) (-3510 (($ $ |#2|) NIL (|has| $ (-6 -4404)))) (-2038 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL)) (-3008 (((-112) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))))) NIL (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-293 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-639 |#2|) (-639 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))))) (-1452 (((-112) $ $) NIL)) (-2716 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092))))) (-2366 (((-639 |#2|) $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) 19)) (-2343 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1932 (($) NIL) (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL)) (-1723 (((-766) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-766) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (((-766) |#2| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092)))) (((-766) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-610 (-535))))) (-4064 (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL)) (-4053 (((-857) $) NIL (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-609 (-857))) (|has| |#2| (-609 (-857)))))) (-4131 (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL)) (-2879 (((-112) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 11 (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-3492 (((-766) $) 15 (|has| $ (-6 -4403))))) -(((-478 |#1| |#2| |#3|) (-13 (-1183 |#1| |#2|) (-10 -7 (-6 -4403))) (-1092) (-1092) (-1150)) (T -478)) -NIL -(-13 (-1183 |#1| |#2|) (-10 -7 (-6 -4403))) -((-4042 (((-562) (-562) (-562)) 7)) (-3401 (((-112) (-562) (-562) (-562) (-562)) 11)) (-2166 (((-1256 (-639 (-562))) (-766) (-766)) 22))) -(((-479) (-10 -7 (-15 -4042 ((-562) (-562) (-562))) (-15 -3401 ((-112) (-562) (-562) (-562) (-562))) (-15 -2166 ((-1256 (-639 (-562))) (-766) (-766))))) (T -479)) -((-2166 (*1 *2 *3 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1256 (-639 (-562)))) (-5 *1 (-479)))) (-3401 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-562)) (-5 *2 (-112)) (-5 *1 (-479)))) (-4042 (*1 *2 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-479))))) -(-10 -7 (-15 -4042 ((-562) (-562) (-562))) (-15 -3401 ((-112) (-562) (-562) (-562) (-562))) (-15 -2166 ((-1256 (-639 (-562))) (-766) (-766)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-1401 (((-639 (-859 |#1|)) $) NIL)) (-1602 (((-1164 $) $ (-859 |#1|)) NIL) (((-1164 |#2|) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL (|has| |#2| (-554)))) (-1965 (($ $) NIL (|has| |#2| (-554)))) (-4102 (((-112) $) NIL (|has| |#2| (-554)))) (-1578 (((-766) $) NIL) (((-766) $ (-639 (-859 |#1|))) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3517 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-1977 (($ $) NIL (|has| |#2| (-451)))) (-3788 (((-417 $) $) NIL (|has| |#2| (-451)))) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#2| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) NIL (|has| |#2| (-1033 (-562)))) (((-3 (-859 |#1|) "failed") $) NIL)) (-3960 ((|#2| $) NIL) (((-406 (-562)) $) NIL (|has| |#2| (-1033 (-406 (-562))))) (((-562) $) NIL (|has| |#2| (-1033 (-562)))) (((-859 |#1|) $) NIL)) (-2355 (($ $ $ (-859 |#1|)) NIL (|has| |#2| (-171)))) (-3999 (($ $ (-639 (-562))) NIL)) (-1600 (($ $) NIL)) (-3449 (((-683 (-562)) (-683 $)) NIL (|has| |#2| (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#2| (-635 (-562)))) (((-2 (|:| -1767 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) NIL) (((-683 |#2|) (-683 $)) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-2578 (($ $) NIL (|has| |#2| (-451))) (($ $ (-859 |#1|)) NIL (|has| |#2| (-451)))) (-1585 (((-639 $) $) NIL)) (-3521 (((-112) $) NIL (|has| |#2| (-904)))) (-3066 (($ $ |#2| (-481 (-3492 |#1|) (-766)) $) NIL)) (-2337 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-859 |#1|) (-881 (-378))) (|has| |#2| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (-12 (|has| (-859 |#1|) (-881 (-562))) (|has| |#2| (-881 (-562)))))) (-4367 (((-112) $) NIL)) (-3627 (((-766) $) NIL)) (-1389 (($ (-1164 |#2|) (-859 |#1|)) NIL) (($ (-1164 $) (-859 |#1|)) NIL)) (-1869 (((-639 $) $) NIL)) (-2833 (((-112) $) NIL)) (-1377 (($ |#2| (-481 (-3492 |#1|) (-766))) NIL) (($ $ (-859 |#1|) (-766)) NIL) (($ $ (-639 (-859 |#1|)) (-639 (-766))) NIL)) (-3851 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $ (-859 |#1|)) NIL)) (-3161 (((-481 (-3492 |#1|) (-766)) $) NIL) (((-766) $ (-859 |#1|)) NIL) (((-639 (-766)) $ (-639 (-859 |#1|))) NIL)) (-1551 (($ $ $) NIL (|has| |#2| (-845)))) (-2993 (($ $ $) NIL (|has| |#2| (-845)))) (-2363 (($ (-1 (-481 (-3492 |#1|) (-766)) (-481 (-3492 |#1|) (-766))) $) NIL)) (-4152 (($ (-1 |#2| |#2|) $) NIL)) (-3640 (((-3 (-859 |#1|) "failed") $) NIL)) (-1560 (($ $) NIL)) (-1573 ((|#2| $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#2| (-451))) (($ $ $) NIL (|has| |#2| (-451)))) (-3696 (((-1150) $) NIL)) (-4025 (((-3 (-639 $) "failed") $) NIL)) (-1778 (((-3 (-639 $) "failed") $) NIL)) (-4270 (((-3 (-2 (|:| |var| (-859 |#1|)) (|:| -1300 (-766))) "failed") $) NIL)) (-1709 (((-1112) $) NIL)) (-1534 (((-112) $) NIL)) (-1547 ((|#2| $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#2| (-451)))) (-1606 (($ (-639 $)) NIL (|has| |#2| (-451))) (($ $ $) NIL (|has| |#2| (-451)))) (-3586 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-3468 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-1635 (((-417 $) $) NIL (|has| |#2| (-904)))) (-1762 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-554)))) (-1433 (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-859 |#1|) |#2|) NIL) (($ $ (-639 (-859 |#1|)) (-639 |#2|)) NIL) (($ $ (-859 |#1|) $) NIL) (($ $ (-639 (-859 |#1|)) (-639 $)) NIL)) (-2736 (($ $ (-859 |#1|)) NIL (|has| |#2| (-171)))) (-4029 (($ $ (-859 |#1|)) NIL) (($ $ (-639 (-859 |#1|))) NIL) (($ $ (-859 |#1|) (-766)) NIL) (($ $ (-639 (-859 |#1|)) (-639 (-766))) NIL)) (-2250 (((-481 (-3492 |#1|) (-766)) $) NIL) (((-766) $ (-859 |#1|)) NIL) (((-639 (-766)) $ (-639 (-859 |#1|))) NIL)) (-4208 (((-887 (-378)) $) NIL (-12 (|has| (-859 |#1|) (-610 (-887 (-378)))) (|has| |#2| (-610 (-887 (-378)))))) (((-887 (-562)) $) NIL (-12 (|has| (-859 |#1|) (-610 (-887 (-562)))) (|has| |#2| (-610 (-887 (-562)))))) (((-535) $) NIL (-12 (|has| (-859 |#1|) (-610 (-535))) (|has| |#2| (-610 (-535)))))) (-2201 ((|#2| $) NIL (|has| |#2| (-451))) (($ $ (-859 |#1|)) NIL (|has| |#2| (-451)))) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-904))))) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ |#2|) NIL) (($ (-859 |#1|)) NIL) (($ (-406 (-562))) NIL (-4037 (|has| |#2| (-38 (-406 (-562)))) (|has| |#2| (-1033 (-406 (-562)))))) (($ $) NIL (|has| |#2| (-554)))) (-3969 (((-639 |#2|) $) NIL)) (-2266 ((|#2| $ (-481 (-3492 |#1|) (-766))) NIL) (($ $ (-859 |#1|) (-766)) NIL) (($ $ (-639 (-859 |#1|)) (-639 (-766))) NIL)) (-2059 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#2| (-904))) (|has| |#2| (-144))))) (-1568 (((-766)) NIL)) (-1760 (($ $ $ (-766)) NIL (|has| |#2| (-171)))) (-3799 (((-112) $ $) NIL (|has| |#2| (-554)))) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3113 (($ $ (-859 |#1|)) NIL) (($ $ (-639 (-859 |#1|))) NIL) (($ $ (-859 |#1|) (-766)) NIL) (($ $ (-639 (-859 |#1|)) (-639 (-766))) NIL)) (-1798 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1771 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1761 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1859 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL (|has| |#2| (-38 (-406 (-562))))) (($ (-406 (-562)) $) NIL (|has| |#2| (-38 (-406 (-562))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-480 |#1| |#2|) (-13 (-944 |#2| (-481 (-3492 |#1|) (-766)) (-859 |#1|)) (-10 -8 (-15 -3999 ($ $ (-639 (-562)))))) (-639 (-1168)) (-1044)) (T -480)) -((-3999 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-480 *3 *4)) (-14 *3 (-639 (-1168))) (-4 *4 (-1044))))) -(-13 (-944 |#2| (-481 (-3492 |#1|) (-766)) (-859 |#1|)) (-10 -8 (-15 -3999 ($ $ (-639 (-562)))))) -((-4041 (((-112) $ $) NIL (|has| |#2| (-1092)))) (-4325 (((-112) $) NIL (|has| |#2| (-130)))) (-2211 (($ (-916)) NIL (|has| |#2| (-1044)))) (-3655 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4404)))) (-1593 (($ $ $) NIL (|has| |#2| (-788)))) (-2781 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-3735 (((-112) $ (-766)) NIL)) (-1382 (((-766)) NIL (|has| |#2| (-367)))) (-1587 (((-562) $) NIL (|has| |#2| (-843)))) (-4200 ((|#2| $ (-562) |#2|) NIL (|has| $ (-6 -4404)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL (-12 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092)))) (((-3 (-406 (-562)) "failed") $) NIL (-12 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1092)))) (-3960 (((-562) $) NIL (-12 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092)))) (((-406 (-562)) $) NIL (-12 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) ((|#2| $) NIL (|has| |#2| (-1092)))) (-3449 (((-683 (-562)) (-683 $)) NIL (-12 (|has| |#2| (-635 (-562))) (|has| |#2| (-1044)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (-12 (|has| |#2| (-635 (-562))) (|has| |#2| (-1044)))) (((-2 (|:| -1767 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) NIL (|has| |#2| (-1044))) (((-683 |#2|) (-683 $)) NIL (|has| |#2| (-1044)))) (-1694 (((-3 $ "failed") $) NIL (|has| |#2| (-721)))) (-1447 (($) NIL (|has| |#2| (-367)))) (-1507 ((|#2| $ (-562) |#2|) NIL (|has| $ (-6 -4404)))) (-1420 ((|#2| $ (-562)) 11)) (-2696 (((-112) $) NIL (|has| |#2| (-843)))) (-1720 (((-639 |#2|) $) NIL (|has| $ (-6 -4403)))) (-4367 (((-112) $) NIL (|has| |#2| (-721)))) (-3855 (((-112) $) NIL (|has| |#2| (-843)))) (-4172 (((-112) $ (-766)) NIL)) (-1849 (((-562) $) NIL (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-2123 (((-639 |#2|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092))))) (-1929 (((-562) $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-1491 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#2| |#2|) $) NIL)) (-3549 (((-916) $) NIL (|has| |#2| (-367)))) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL (|has| |#2| (-1092)))) (-3336 (((-639 (-562)) $) NIL)) (-1987 (((-112) (-562) $) NIL)) (-2464 (($ (-916)) NIL (|has| |#2| (-367)))) (-1709 (((-1112) $) NIL (|has| |#2| (-1092)))) (-1421 ((|#2| $) NIL (|has| (-562) (-845)))) (-3510 (($ $ |#2|) NIL (|has| $ (-6 -4404)))) (-3008 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 |#2|) (-639 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))))) (-1452 (((-112) $ $) NIL)) (-2716 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092))))) (-2366 (((-639 |#2|) $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) NIL)) (-2343 ((|#2| $ (-562) |#2|) NIL) ((|#2| $ (-562)) NIL)) (-2852 ((|#2| $ $) NIL (|has| |#2| (-1044)))) (-1678 (($ (-1256 |#2|)) NIL)) (-4340 (((-133)) NIL (|has| |#2| (-362)))) (-4029 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1044)))) (($ $ (-766)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1044)))) (($ $ (-1168)) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-1 |#2| |#2|) (-766)) NIL (|has| |#2| (-1044))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1044)))) (-1723 (((-766) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403))) (((-766) |#2| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092))))) (-4220 (($ $) NIL)) (-4053 (((-1256 |#2|) $) NIL) (($ (-562)) NIL (-4037 (-12 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092))) (|has| |#2| (-1044)))) (($ (-406 (-562))) NIL (-12 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) (($ |#2|) NIL (|has| |#2| (-1092))) (((-857) $) NIL (|has| |#2| (-609 (-857))))) (-1568 (((-766)) NIL (|has| |#2| (-1044)))) (-2879 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403)))) (-2757 (($ $) NIL (|has| |#2| (-843)))) (-2285 (($) NIL (|has| |#2| (-130)) CONST)) (-2294 (($) NIL (|has| |#2| (-721)) CONST)) (-3113 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1044)))) (($ $ (-766)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1044)))) (($ $ (-1168)) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-1 |#2| |#2|) (-766)) NIL (|has| |#2| (-1044))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1044)))) (-1798 (((-112) $ $) NIL (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-1771 (((-112) $ $) NIL (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-1733 (((-112) $ $) NIL (|has| |#2| (-1092)))) (-1785 (((-112) $ $) NIL (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-1761 (((-112) $ $) 15 (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-1859 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1847 (($ $ $) NIL (|has| |#2| (-1044))) (($ $) NIL (|has| |#2| (-1044)))) (-1836 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-766)) NIL (|has| |#2| (-721))) (($ $ (-916)) NIL (|has| |#2| (-721)))) (* (($ (-562) $) NIL (|has| |#2| (-1044))) (($ $ $) NIL (|has| |#2| (-721))) (($ $ |#2|) NIL (|has| |#2| (-721))) (($ |#2| $) NIL (|has| |#2| (-721))) (($ (-766) $) NIL (|has| |#2| (-130))) (($ (-916) $) NIL (|has| |#2| (-25)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-481 |#1| |#2|) (-237 |#1| |#2|) (-766) (-788)) (T -481)) -NIL -(-237 |#1| |#2|) -((-4041 (((-112) $ $) NIL)) (-1917 (((-639 (-505)) $) 11)) (-3253 (((-505) $) 10)) (-3696 (((-1150) $) NIL)) (-3943 (($ (-505) (-639 (-505))) 9)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 20) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-482) (-13 (-1075) (-10 -8 (-15 -3943 ($ (-505) (-639 (-505)))) (-15 -3253 ((-505) $)) (-15 -1917 ((-639 (-505)) $))))) (T -482)) -((-3943 (*1 *1 *2 *3) (-12 (-5 *3 (-639 (-505))) (-5 *2 (-505)) (-5 *1 (-482)))) (-3253 (*1 *2 *1) (-12 (-5 *2 (-505)) (-5 *1 (-482)))) (-1917 (*1 *2 *1) (-12 (-5 *2 (-639 (-505))) (-5 *1 (-482))))) -(-13 (-1075) (-10 -8 (-15 -3943 ($ (-505) (-639 (-505)))) (-15 -3253 ((-505) $)) (-15 -1917 ((-639 (-505)) $)))) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3735 (((-112) $ (-766)) NIL)) (-3329 (($) NIL T CONST)) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-4172 (((-112) $ (-766)) NIL)) (-3124 (($ $ $) 32)) (-4103 (($ $ $) 31)) (-2123 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2993 ((|#1| $) 26)) (-1491 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-2078 ((|#1| $) 27)) (-1581 (($ |#1| $) 10)) (-3467 (($ (-639 |#1|)) 12)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-2038 ((|#1| $) 23)) (-3008 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) 9)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-4220 (($ $) NIL)) (-4053 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-4131 (($ (-639 |#1|)) 29)) (-2879 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3492 (((-766) $) 21 (|has| $ (-6 -4403))))) -(((-483 |#1|) (-13 (-963 |#1|) (-10 -8 (-15 -3467 ($ (-639 |#1|))))) (-845)) (T -483)) -((-3467 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-845)) (-5 *1 (-483 *3))))) -(-13 (-963 |#1|) (-10 -8 (-15 -3467 ($ (-639 |#1|))))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3329 (($) NIL T CONST)) (-1954 (($ $) 69)) (-1488 (((-112) $) NIL)) (-3696 (((-1150) $) NIL)) (-1387 (((-412 |#2| (-406 |#2|) |#3| |#4|) $) 44)) (-1709 (((-1112) $) NIL)) (-3147 (((-3 |#4| "failed") $) 107)) (-1933 (($ (-412 |#2| (-406 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-562)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-3758 (((-2 (|:| -1416 (-412 |#2| (-406 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-4053 (((-857) $) 102)) (-2285 (($) 33 T CONST)) (-1733 (((-112) $ $) 109)) (-1847 (($ $) 72) (($ $ $) NIL)) (-1836 (($ $ $) 70)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 73))) -(((-484 |#1| |#2| |#3| |#4|) (-334 |#1| |#2| |#3| |#4|) (-362) (-1232 |#1|) (-1232 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -484)) -NIL -(-334 |#1| |#2| |#3| |#4|) -((-3266 (((-562) (-639 (-562))) 29)) (-1461 ((|#1| (-639 |#1|)) 55)) (-4071 (((-639 |#1|) (-639 |#1|)) 56)) (-1888 (((-639 |#1|) (-639 |#1|)) 58)) (-1606 ((|#1| (-639 |#1|)) 57)) (-2201 (((-639 (-562)) (-639 |#1|)) 32))) -(((-485 |#1|) (-10 -7 (-15 -1606 (|#1| (-639 |#1|))) (-15 -1461 (|#1| (-639 |#1|))) (-15 -1888 ((-639 |#1|) (-639 |#1|))) (-15 -4071 ((-639 |#1|) (-639 |#1|))) (-15 -2201 ((-639 (-562)) (-639 |#1|))) (-15 -3266 ((-562) (-639 (-562))))) (-1232 (-562))) (T -485)) -((-3266 (*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-562)) (-5 *1 (-485 *4)) (-4 *4 (-1232 *2)))) (-2201 (*1 *2 *3) (-12 (-5 *3 (-639 *4)) (-4 *4 (-1232 (-562))) (-5 *2 (-639 (-562))) (-5 *1 (-485 *4)))) (-4071 (*1 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1232 (-562))) (-5 *1 (-485 *3)))) (-1888 (*1 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1232 (-562))) (-5 *1 (-485 *3)))) (-1461 (*1 *2 *3) (-12 (-5 *3 (-639 *2)) (-5 *1 (-485 *2)) (-4 *2 (-1232 (-562))))) (-1606 (*1 *2 *3) (-12 (-5 *3 (-639 *2)) (-5 *1 (-485 *2)) (-4 *2 (-1232 (-562)))))) -(-10 -7 (-15 -1606 (|#1| (-639 |#1|))) (-15 -1461 (|#1| (-639 |#1|))) (-15 -1888 ((-639 |#1|) (-639 |#1|))) (-15 -4071 ((-639 |#1|) (-639 |#1|))) (-15 -2201 ((-639 (-562)) (-639 |#1|))) (-15 -3266 ((-562) (-639 (-562))))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2300 (((-562) $) NIL (|has| (-562) (-306)))) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3517 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-562) (-904)))) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| (-562) (-904)))) (-1436 (((-112) $ $) NIL)) (-1587 (((-562) $) NIL (|has| (-562) (-815)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL) (((-3 (-1168) "failed") $) NIL (|has| (-562) (-1033 (-1168)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| (-562) (-1033 (-562)))) (((-3 (-562) "failed") $) NIL (|has| (-562) (-1033 (-562))))) (-3960 (((-562) $) NIL) (((-1168) $) NIL (|has| (-562) (-1033 (-1168)))) (((-406 (-562)) $) NIL (|has| (-562) (-1033 (-562)))) (((-562) $) NIL (|has| (-562) (-1033 (-562))))) (-1810 (($ $ $) NIL)) (-3449 (((-683 (-562)) (-683 $)) NIL (|has| (-562) (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| (-562) (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL) (((-683 (-562)) (-683 $)) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-1447 (($) NIL (|has| (-562) (-544)))) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-3521 (((-112) $) NIL)) (-2696 (((-112) $) NIL (|has| (-562) (-815)))) (-2337 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (|has| (-562) (-881 (-562)))) (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (|has| (-562) (-881 (-378))))) (-4367 (((-112) $) NIL)) (-2957 (($ $) NIL)) (-4063 (((-562) $) NIL)) (-3828 (((-3 $ "failed") $) NIL (|has| (-562) (-1143)))) (-3855 (((-112) $) NIL (|has| (-562) (-815)))) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1551 (($ $ $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| (-562) (-845)))) (-4152 (($ (-1 (-562) (-562)) $) NIL)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3730 (($) NIL (|has| (-562) (-1143)) CONST)) (-3862 (($ (-406 (-562))) 9)) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2561 (($ $) NIL (|has| (-562) (-306))) (((-406 (-562)) $) NIL)) (-3870 (((-562) $) NIL (|has| (-562) (-544)))) (-3586 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-562) (-904)))) (-3468 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-562) (-904)))) (-1635 (((-417 $) $) NIL)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1433 (($ $ (-639 (-562)) (-639 (-562))) NIL (|has| (-562) (-308 (-562)))) (($ $ (-562) (-562)) NIL (|has| (-562) (-308 (-562)))) (($ $ (-293 (-562))) NIL (|has| (-562) (-308 (-562)))) (($ $ (-639 (-293 (-562)))) NIL (|has| (-562) (-308 (-562)))) (($ $ (-639 (-1168)) (-639 (-562))) NIL (|has| (-562) (-513 (-1168) (-562)))) (($ $ (-1168) (-562)) NIL (|has| (-562) (-513 (-1168) (-562))))) (-2044 (((-766) $) NIL)) (-2343 (($ $ (-562)) NIL (|has| (-562) (-285 (-562) (-562))))) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-4029 (($ $) NIL (|has| (-562) (-232))) (($ $ (-766)) NIL (|has| (-562) (-232))) (($ $ (-1168)) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-1 (-562) (-562)) (-766)) NIL) (($ $ (-1 (-562) (-562))) NIL)) (-1580 (($ $) NIL)) (-4079 (((-562) $) NIL)) (-4208 (((-887 (-562)) $) NIL (|has| (-562) (-610 (-887 (-562))))) (((-887 (-378)) $) NIL (|has| (-562) (-610 (-887 (-378))))) (((-535) $) NIL (|has| (-562) (-610 (-535)))) (((-378) $) NIL (|has| (-562) (-1017))) (((-224) $) NIL (|has| (-562) (-1017)))) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| (-562) (-904))))) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) 8) (($ (-562)) NIL) (($ (-1168)) NIL (|has| (-562) (-1033 (-1168)))) (((-406 (-562)) $) NIL) (((-999 16) $) 10)) (-2059 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| (-562) (-904))) (|has| (-562) (-144))))) (-1568 (((-766)) NIL)) (-3636 (((-562) $) NIL (|has| (-562) (-544)))) (-3799 (((-112) $ $) NIL)) (-2757 (($ $) NIL (|has| (-562) (-815)))) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3113 (($ $) NIL (|has| (-562) (-232))) (($ $ (-766)) NIL (|has| (-562) (-232))) (($ $ (-1168)) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-1 (-562) (-562)) (-766)) NIL) (($ $ (-1 (-562) (-562))) NIL)) (-1798 (((-112) $ $) NIL (|has| (-562) (-845)))) (-1771 (((-112) $ $) NIL (|has| (-562) (-845)))) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| (-562) (-845)))) (-1761 (((-112) $ $) NIL (|has| (-562) (-845)))) (-1859 (($ $ $) NIL) (($ (-562) (-562)) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ (-562) $) NIL) (($ $ (-562)) NIL))) -(((-486) (-13 (-987 (-562)) (-609 (-406 (-562))) (-609 (-999 16)) (-10 -8 (-15 -2561 ((-406 (-562)) $)) (-15 -3862 ($ (-406 (-562))))))) (T -486)) -((-2561 (*1 *2 *1) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-486)))) (-3862 (*1 *1 *2) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-486))))) -(-13 (-987 (-562)) (-609 (-406 (-562))) (-609 (-999 16)) (-10 -8 (-15 -2561 ((-406 (-562)) $)) (-15 -3862 ($ (-406 (-562)))))) -((-2123 (((-639 |#2|) $) 23)) (-1572 (((-112) |#2| $) 28)) (-3008 (((-112) (-1 (-112) |#2|) $) 21)) (-1433 (($ $ (-639 (-293 |#2|))) 13) (($ $ (-293 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-639 |#2|) (-639 |#2|)) NIL)) (-1723 (((-766) (-1 (-112) |#2|) $) 22) (((-766) |#2| $) 26)) (-4053 (((-857) $) 37)) (-2879 (((-112) (-1 (-112) |#2|) $) 20)) (-1733 (((-112) $ $) 31)) (-3492 (((-766) $) 17))) -(((-487 |#1| |#2|) (-10 -8 (-15 -4053 ((-857) |#1|)) (-15 -1733 ((-112) |#1| |#1|)) (-15 -1433 (|#1| |#1| (-639 |#2|) (-639 |#2|))) (-15 -1433 (|#1| |#1| |#2| |#2|)) (-15 -1433 (|#1| |#1| (-293 |#2|))) (-15 -1433 (|#1| |#1| (-639 (-293 |#2|)))) (-15 -1572 ((-112) |#2| |#1|)) (-15 -1723 ((-766) |#2| |#1|)) (-15 -2123 ((-639 |#2|) |#1|)) (-15 -1723 ((-766) (-1 (-112) |#2|) |#1|)) (-15 -3008 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2879 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3492 ((-766) |#1|))) (-488 |#2|) (-1207)) (T -487)) -NIL -(-10 -8 (-15 -4053 ((-857) |#1|)) (-15 -1733 ((-112) |#1| |#1|)) (-15 -1433 (|#1| |#1| (-639 |#2|) (-639 |#2|))) (-15 -1433 (|#1| |#1| |#2| |#2|)) (-15 -1433 (|#1| |#1| (-293 |#2|))) (-15 -1433 (|#1| |#1| (-639 (-293 |#2|)))) (-15 -1572 ((-112) |#2| |#1|)) (-15 -1723 ((-766) |#2| |#1|)) (-15 -2123 ((-639 |#2|) |#1|)) (-15 -1723 ((-766) (-1 (-112) |#2|) |#1|)) (-15 -3008 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2879 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3492 ((-766) |#1|))) -((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-3735 (((-112) $ (-766)) 8)) (-3329 (($) 7 T CONST)) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4403)))) (-4172 (((-112) $ (-766)) 9)) (-2123 (((-639 |#1|) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1491 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-4147 (((-112) $ (-766)) 10)) (-3696 (((-1150) $) 22 (|has| |#1| (-1092)))) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-3008 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) 14)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4403))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-4220 (($ $) 13)) (-4053 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-2879 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-488 |#1|) (-139) (-1207)) (T -488)) -((-4152 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-488 *3)) (-4 *3 (-1207)))) (-1491 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4404)) (-4 *1 (-488 *3)) (-4 *3 (-1207)))) (-2879 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4403)) (-4 *1 (-488 *4)) (-4 *4 (-1207)) (-5 *2 (-112)))) (-3008 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4403)) (-4 *1 (-488 *4)) (-4 *4 (-1207)) (-5 *2 (-112)))) (-1723 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4403)) (-4 *1 (-488 *4)) (-4 *4 (-1207)) (-5 *2 (-766)))) (-1720 (*1 *2 *1) (-12 (|has| *1 (-6 -4403)) (-4 *1 (-488 *3)) (-4 *3 (-1207)) (-5 *2 (-639 *3)))) (-2123 (*1 *2 *1) (-12 (|has| *1 (-6 -4403)) (-4 *1 (-488 *3)) (-4 *3 (-1207)) (-5 *2 (-639 *3)))) (-1723 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4403)) (-4 *1 (-488 *3)) (-4 *3 (-1207)) (-4 *3 (-1092)) (-5 *2 (-766)))) (-1572 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4403)) (-4 *1 (-488 *3)) (-4 *3 (-1207)) (-4 *3 (-1092)) (-5 *2 (-112))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-609 (-857))) (-6 (-609 (-857))) |%noBranch|) (IF (|has| |t#1| (-1092)) (-6 (-1092)) |%noBranch|) (IF (|has| |t#1| (-1092)) (IF (|has| |t#1| (-308 |t#1|)) (-6 (-308 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4152 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4404)) (-15 -1491 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4403)) (PROGN (-15 -2879 ((-112) (-1 (-112) |t#1|) $)) (-15 -3008 ((-112) (-1 (-112) |t#1|) $)) (-15 -1723 ((-766) (-1 (-112) |t#1|) $)) (-15 -1720 ((-639 |t#1|) $)) (-15 -2123 ((-639 |t#1|) $)) (IF (|has| |t#1| (-1092)) (PROGN (-15 -1723 ((-766) |t#1| $)) (-15 -1572 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1092) |has| |#1| (-1092)) ((-1207) . T)) -((-4053 ((|#1| $) 6) (($ |#1|) 9))) -(((-489 |#1|) (-139) (-1207)) (T -489)) -NIL -(-13 (-609 |t#1|) (-612 |t#1|)) -(((-612 |#1|) . T) ((-609 |#1|) . T)) -((-4041 (((-112) $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1756 (($ (-1150)) 8)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 14) (((-1150) $) 11)) (-1733 (((-112) $ $) 10))) -(((-490) (-13 (-1092) (-609 (-1150)) (-10 -8 (-15 -1756 ($ (-1150)))))) (T -490)) -((-1756 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-490))))) -(-13 (-1092) (-609 (-1150)) (-10 -8 (-15 -1756 ($ (-1150))))) -((-2987 (($ $) 15)) (-4206 (($ $) 24)) (-3013 (($ $) 12)) (-3022 (($ $) 10)) (-3000 (($ $) 17)) (-2977 (($ $) 22))) -(((-491 |#1|) (-10 -8 (-15 -2977 (|#1| |#1|)) (-15 -3000 (|#1| |#1|)) (-15 -3022 (|#1| |#1|)) (-15 -3013 (|#1| |#1|)) (-15 -4206 (|#1| |#1|)) (-15 -2987 (|#1| |#1|))) (-492)) (T -491)) -NIL -(-10 -8 (-15 -2977 (|#1| |#1|)) (-15 -3000 (|#1| |#1|)) (-15 -3022 (|#1| |#1|)) (-15 -3013 (|#1| |#1|)) (-15 -4206 (|#1| |#1|)) (-15 -2987 (|#1| |#1|))) -((-2987 (($ $) 11)) (-4206 (($ $) 10)) (-3013 (($ $) 9)) (-3022 (($ $) 8)) (-3000 (($ $) 7)) (-2977 (($ $) 6))) -(((-492) (-139)) (T -492)) -((-2987 (*1 *1 *1) (-4 *1 (-492))) (-4206 (*1 *1 *1) (-4 *1 (-492))) (-3013 (*1 *1 *1) (-4 *1 (-492))) (-3022 (*1 *1 *1) (-4 *1 (-492))) (-3000 (*1 *1 *1) (-4 *1 (-492))) (-2977 (*1 *1 *1) (-4 *1 (-492)))) -(-13 (-10 -8 (-15 -2977 ($ $)) (-15 -3000 ($ $)) (-15 -3022 ($ $)) (-15 -3013 ($ $)) (-15 -4206 ($ $)) (-15 -2987 ($ $)))) -((-1635 (((-417 |#4|) |#4| (-1 (-417 |#2|) |#2|)) 42))) -(((-493 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1635 ((-417 |#4|) |#4| (-1 (-417 |#2|) |#2|)))) (-362) (-1232 |#1|) (-13 (-362) (-146) (-719 |#1| |#2|)) (-1232 |#3|)) (T -493)) -((-1635 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1232 *5)) (-4 *5 (-362)) (-4 *7 (-13 (-362) (-146) (-719 *5 *6))) (-5 *2 (-417 *3)) (-5 *1 (-493 *5 *6 *7 *3)) (-4 *3 (-1232 *7))))) -(-10 -7 (-15 -1635 ((-417 |#4|) |#4| (-1 (-417 |#2|) |#2|)))) -((-4041 (((-112) $ $) NIL)) (-1763 (((-639 $) (-1164 $) (-1168)) NIL) (((-639 $) (-1164 $)) NIL) (((-639 $) (-947 $)) NIL)) (-2391 (($ (-1164 $) (-1168)) NIL) (($ (-1164 $)) NIL) (($ (-947 $)) NIL)) (-4325 (((-112) $) 38)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-4081 (((-112) $ $) 63)) (-1501 (((-639 (-608 $)) $) 47)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3164 (($ $ (-293 $)) NIL) (($ $ (-639 (-293 $))) NIL) (($ $ (-639 (-608 $)) (-639 $)) NIL)) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-1644 (($ $) NIL)) (-1436 (((-112) $ $) NIL)) (-3329 (($) NIL T CONST)) (-1431 (((-639 $) (-1164 $) (-1168)) NIL) (((-639 $) (-1164 $)) NIL) (((-639 $) (-947 $)) NIL)) (-2608 (($ (-1164 $) (-1168)) NIL) (($ (-1164 $)) NIL) (($ (-947 $)) NIL)) (-4048 (((-3 (-608 $) "failed") $) NIL) (((-3 (-562) "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL)) (-3960 (((-608 $) $) NIL) (((-562) $) NIL) (((-406 (-562)) $) 49)) (-1810 (($ $ $) NIL)) (-3449 (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL) (((-683 (-562)) (-683 $)) NIL) (((-2 (|:| -1767 (-683 (-406 (-562)))) (|:| |vec| (-1256 (-406 (-562))))) (-683 $) (-1256 $)) NIL) (((-683 (-406 (-562))) (-683 $)) NIL)) (-1954 (($ $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-3521 (((-112) $) NIL)) (-2229 (($ $) NIL) (($ (-639 $)) NIL)) (-4364 (((-639 (-114)) $) NIL)) (-1502 (((-114) (-114)) NIL)) (-4367 (((-112) $) 41)) (-3152 (((-112) $) NIL (|has| $ (-1033 (-562))))) (-4063 (((-1117 (-562) (-608 $)) $) 36)) (-1895 (($ $ (-562)) NIL)) (-4363 (((-1164 $) (-1164 $) (-608 $)) 77) (((-1164 $) (-1164 $) (-639 (-608 $))) 54) (($ $ (-608 $)) 66) (($ $ (-639 (-608 $))) 67)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-3476 (((-1164 $) (-608 $)) 64 (|has| $ (-1044)))) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-4152 (($ (-1 $ $) (-608 $)) NIL)) (-4068 (((-3 (-608 $) "failed") $) NIL)) (-1564 (($ (-639 $)) NIL) (($ $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1582 (((-639 (-608 $)) $) NIL)) (-4141 (($ (-114) $) NIL) (($ (-114) (-639 $)) NIL)) (-3115 (((-112) $ (-114)) NIL) (((-112) $ (-1168)) NIL)) (-1525 (($ $) NIL)) (-3059 (((-766) $) NIL)) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ (-639 $)) NIL) (($ $ $) NIL)) (-1533 (((-112) $ $) NIL) (((-112) $ (-1168)) NIL)) (-1635 (((-417 $) $) NIL)) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2438 (((-112) $) NIL (|has| $ (-1033 (-562))))) (-1433 (($ $ (-608 $) $) NIL) (($ $ (-639 (-608 $)) (-639 $)) NIL) (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-639 (-1168)) (-639 (-1 $ $))) NIL) (($ $ (-639 (-1168)) (-639 (-1 $ (-639 $)))) NIL) (($ $ (-1168) (-1 $ (-639 $))) NIL) (($ $ (-1168) (-1 $ $)) NIL) (($ $ (-639 (-114)) (-639 (-1 $ $))) NIL) (($ $ (-639 (-114)) (-639 (-1 $ (-639 $)))) NIL) (($ $ (-114) (-1 $ (-639 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2044 (((-766) $) NIL)) (-2343 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-639 $)) NIL)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-3461 (($ $) NIL) (($ $ $) NIL)) (-4029 (($ $ (-766)) NIL) (($ $) 35)) (-4079 (((-1117 (-562) (-608 $)) $) 19)) (-3371 (($ $) NIL (|has| $ (-1044)))) (-4208 (((-378) $) 91) (((-224) $) 99) (((-168 (-378)) $) 107)) (-4053 (((-857) $) NIL) (($ (-608 $)) NIL) (($ (-406 (-562))) NIL) (($ $) NIL) (($ (-562)) NIL) (($ (-1117 (-562) (-608 $))) 20)) (-1568 (((-766)) NIL)) (-2745 (($ $) NIL) (($ (-639 $)) NIL)) (-2036 (((-112) (-114)) 83)) (-3799 (((-112) $ $) NIL)) (-2285 (($) 10 T CONST)) (-2294 (($) 21 T CONST)) (-3113 (($ $ (-766)) NIL) (($ $) NIL)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 23)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) NIL)) (-1859 (($ $ $) 43)) (-1847 (($ $ $) NIL) (($ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-406 (-562))) NIL) (($ $ (-562)) 45) (($ $ (-766)) NIL) (($ $ (-916)) NIL)) (* (($ (-406 (-562)) $) NIL) (($ $ (-406 (-562))) NIL) (($ $ $) 26) (($ (-562) $) NIL) (($ (-766) $) NIL) (($ (-916) $) NIL))) -(((-494) (-13 (-301) (-27) (-1033 (-562)) (-1033 (-406 (-562))) (-635 (-562)) (-1017) (-635 (-406 (-562))) (-146) (-610 (-168 (-378))) (-232) (-10 -8 (-15 -4053 ($ (-1117 (-562) (-608 $)))) (-15 -4063 ((-1117 (-562) (-608 $)) $)) (-15 -4079 ((-1117 (-562) (-608 $)) $)) (-15 -1954 ($ $)) (-15 -4081 ((-112) $ $)) (-15 -4363 ((-1164 $) (-1164 $) (-608 $))) (-15 -4363 ((-1164 $) (-1164 $) (-639 (-608 $)))) (-15 -4363 ($ $ (-608 $))) (-15 -4363 ($ $ (-639 (-608 $))))))) (T -494)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-1117 (-562) (-608 (-494)))) (-5 *1 (-494)))) (-4063 (*1 *2 *1) (-12 (-5 *2 (-1117 (-562) (-608 (-494)))) (-5 *1 (-494)))) (-4079 (*1 *2 *1) (-12 (-5 *2 (-1117 (-562) (-608 (-494)))) (-5 *1 (-494)))) (-1954 (*1 *1 *1) (-5 *1 (-494))) (-4081 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-494)))) (-4363 (*1 *2 *2 *3) (-12 (-5 *2 (-1164 (-494))) (-5 *3 (-608 (-494))) (-5 *1 (-494)))) (-4363 (*1 *2 *2 *3) (-12 (-5 *2 (-1164 (-494))) (-5 *3 (-639 (-608 (-494)))) (-5 *1 (-494)))) (-4363 (*1 *1 *1 *2) (-12 (-5 *2 (-608 (-494))) (-5 *1 (-494)))) (-4363 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-608 (-494)))) (-5 *1 (-494))))) -(-13 (-301) (-27) (-1033 (-562)) (-1033 (-406 (-562))) (-635 (-562)) (-1017) (-635 (-406 (-562))) (-146) (-610 (-168 (-378))) (-232) (-10 -8 (-15 -4053 ($ (-1117 (-562) (-608 $)))) (-15 -4063 ((-1117 (-562) (-608 $)) $)) (-15 -4079 ((-1117 (-562) (-608 $)) $)) (-15 -1954 ($ $)) (-15 -4081 ((-112) $ $)) (-15 -4363 ((-1164 $) (-1164 $) (-608 $))) (-15 -4363 ((-1164 $) (-1164 $) (-639 (-608 $)))) (-15 -4363 ($ $ (-608 $))) (-15 -4363 ($ $ (-639 (-608 $)))))) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3655 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4404)))) (-1706 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-845)))) (-3737 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4404))) (($ $) NIL (-12 (|has| $ (-6 -4404)) (|has| |#1| (-845))))) (-1395 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-845)))) (-3735 (((-112) $ (-766)) NIL)) (-4200 ((|#1| $ (-562) |#1|) 25 (|has| $ (-6 -4404))) ((|#1| $ (-1223 (-562)) |#1|) NIL (|has| $ (-6 -4404)))) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-3329 (($) NIL T CONST)) (-2673 (($ $) NIL (|has| $ (-6 -4404)))) (-2676 (($ $) NIL)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1954 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4403)))) (-1507 ((|#1| $ (-562) |#1|) 22 (|has| $ (-6 -4404)))) (-1420 ((|#1| $ (-562)) 21)) (-4265 (((-562) (-1 (-112) |#1|) $) NIL) (((-562) |#1| $) NIL (|has| |#1| (-1092))) (((-562) |#1| $ (-562)) NIL (|has| |#1| (-1092)))) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1458 (($ (-766) |#1|) 14)) (-4172 (((-112) $ (-766)) NIL)) (-1849 (((-562) $) 12 (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-4103 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-845)))) (-2123 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1929 (((-562) $) 23 (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-1491 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-3295 (($ |#1| $ (-562)) NIL) (($ $ $ (-562)) NIL)) (-3336 (((-639 (-562)) $) NIL)) (-1987 (((-112) (-562) $) NIL)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-1421 ((|#1| $) NIL (|has| (-562) (-845)))) (-1963 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3510 (($ $ |#1|) 10 (|has| $ (-6 -4404)))) (-3008 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) NIL)) (-2716 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2366 (((-639 |#1|) $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) 13)) (-2343 ((|#1| $ (-562) |#1|) NIL) ((|#1| $ (-562)) 24) (($ $ (-1223 (-562))) NIL)) (-2880 (($ $ (-562)) NIL) (($ $ (-1223 (-562))) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2694 (($ $ $ (-562)) NIL (|has| $ (-6 -4404)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| |#1| (-610 (-535))))) (-4064 (($ (-639 |#1|)) NIL)) (-2767 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-639 $)) NIL)) (-4053 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-2879 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1771 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1761 (((-112) $ $) NIL (|has| |#1| (-845)))) (-3492 (((-766) $) 9 (|has| $ (-6 -4403))))) -(((-495 |#1| |#2|) (-19 |#1|) (-1207) (-562)) (T -495)) +((-4371 (($ $) 6)) (-3368 (($ $) 7)) (** (($ $ $) 8))) +(((-284) (-140)) (T -284)) +((** (*1 *1 *1 *1) (-4 *1 (-284))) (-3368 (*1 *1 *1) (-4 *1 (-284))) (-4371 (*1 *1 *1) (-4 *1 (-284)))) +(-13 (-10 -8 (-15 -4371 ($ $)) (-15 -3368 ($ $)) (-15 ** ($ $ $)))) +((-3768 (((-640 (-1149 |#1|)) (-1149 |#1|) |#1|) 35)) (-2676 ((|#2| |#2| |#1|) 38)) (-3440 ((|#2| |#2| |#1|) 40)) (-1800 ((|#2| |#2| |#1|) 39))) +(((-285 |#1| |#2|) (-10 -7 (-15 -2676 (|#2| |#2| |#1|)) (-15 -1800 (|#2| |#2| |#1|)) (-15 -3440 (|#2| |#2| |#1|)) (-15 -3768 ((-640 (-1149 |#1|)) (-1149 |#1|) |#1|))) (-363) (-1248 |#1|)) (T -285)) +((-3768 (*1 *2 *3 *4) (-12 (-4 *4 (-363)) (-5 *2 (-640 (-1149 *4))) (-5 *1 (-285 *4 *5)) (-5 *3 (-1149 *4)) (-4 *5 (-1248 *4)))) (-3440 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1248 *3)))) (-1800 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1248 *3)))) (-2676 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1248 *3))))) +(-10 -7 (-15 -2676 (|#2| |#2| |#1|)) (-15 -1800 (|#2| |#2| |#1|)) (-15 -3440 (|#2| |#2| |#1|)) (-15 -3768 ((-640 (-1149 |#1|)) (-1149 |#1|) |#1|))) +((-2309 ((|#2| $ |#1|) 6))) +(((-286 |#1| |#2|) (-140) (-1093) (-1208)) (T -286)) +((-2309 (*1 *2 *1 *3) (-12 (-4 *1 (-286 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1208))))) +(-13 (-10 -8 (-15 -2309 (|t#2| $ |t#1|)))) +((-4355 ((|#3| $ |#2| |#3|) 12)) (-4293 ((|#3| $ |#2|) 10))) +(((-287 |#1| |#2| |#3|) (-10 -8 (-15 -4355 (|#3| |#1| |#2| |#3|)) (-15 -4293 (|#3| |#1| |#2|))) (-288 |#2| |#3|) (-1093) (-1208)) (T -287)) +NIL +(-10 -8 (-15 -4355 (|#3| |#1| |#2| |#3|)) (-15 -4293 (|#3| |#1| |#2|))) +((-1849 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4408)))) (-4355 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4408)))) (-4293 ((|#2| $ |#1|) 11)) (-2309 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) +(((-288 |#1| |#2|) (-140) (-1093) (-1208)) (T -288)) +((-2309 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1208)))) (-4293 (*1 *2 *1 *3) (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1208)))) (-1849 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1208)))) (-4355 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1208))))) +(-13 (-286 |t#1| |t#2|) (-10 -8 (-15 -2309 (|t#2| $ |t#1| |t#2|)) (-15 -4293 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4408)) (PROGN (-15 -1849 (|t#2| $ |t#1| |t#2|)) (-15 -4355 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +(((-286 |#1| |#2|) . T)) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) 34)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 39)) (-4223 (($ $) 37)) (-3156 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-1919 (((-112) $ $) NIL)) (-4239 (($) NIL T CONST)) (-3090 (($ $ $) 32)) (-2444 (($ |#2| |#3|) 19)) (-3400 (((-3 $ "failed") $) NIL)) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-3827 (((-112) $) NIL)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2995 ((|#3| $) NIL)) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) 20)) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4322 (((-3 $ "failed") $ $) NIL)) (-2628 (((-767) $) 33)) (-2309 ((|#2| $ |#2|) 41)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 24)) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-1675 (((-767)) NIL)) (-2126 (((-112) $ $) NIL)) (-2241 (($) 28 T CONST)) (-2254 (($) 35 T CONST)) (-1718 (((-112) $ $) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 36))) +(((-289 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-307) (-10 -8 (-15 -2995 (|#3| $)) (-15 -1693 (|#2| $)) (-15 -2444 ($ |#2| |#3|)) (-15 -4322 ((-3 $ "failed") $ $)) (-15 -3400 ((-3 $ "failed") $)) (-15 -2688 ($ $)) (-15 -2309 (|#2| $ |#2|)))) (-172) (-1233 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -289)) +((-3400 (*1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1233 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2995 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-289 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1233 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-1693 (*1 *2 *1) (-12 (-4 *2 (-1233 *3)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2444 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-289 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1233 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4322 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1233 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2688 (*1 *1 *1) (-12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1233 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2309 (*1 *2 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1233 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) +(-13 (-307) (-10 -8 (-15 -2995 (|#3| $)) (-15 -1693 (|#2| $)) (-15 -2444 ($ |#2| |#3|)) (-15 -4322 ((-3 $ "failed") $ $)) (-15 -3400 ((-3 $ "failed") $)) (-15 -2688 ($ $)) (-15 -2309 (|#2| $ |#2|)))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-3400 (((-3 $ "failed") $) 33)) (-3827 (((-112) $) 31)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11) (($ (-563)) 29)) (-1675 (((-767)) 28)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) +(((-290) (-140)) (T -290)) +NIL +(-13 (-1045) (-111 $ $) (-10 -7 (-6 -4400))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-643 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) +((-4214 (($ (-1169) (-1169) (-1097) $) 17)) (-1673 (($ (-1169) (-640 (-961)) $) 22)) (-1827 (((-640 (-1078)) $) 10)) (-3550 (((-3 (-1097) "failed") (-1169) (-1169) $) 16)) (-2107 (((-3 (-640 (-961)) "failed") (-1169) $) 21)) (-3135 (($) 7)) (-2576 (($) 23)) (-1693 (((-858) $) 27)) (-4231 (($) 24))) +(((-291) (-13 (-610 (-858)) (-10 -8 (-15 -3135 ($)) (-15 -1827 ((-640 (-1078)) $)) (-15 -3550 ((-3 (-1097) "failed") (-1169) (-1169) $)) (-15 -4214 ($ (-1169) (-1169) (-1097) $)) (-15 -2107 ((-3 (-640 (-961)) "failed") (-1169) $)) (-15 -1673 ($ (-1169) (-640 (-961)) $)) (-15 -2576 ($)) (-15 -4231 ($))))) (T -291)) +((-3135 (*1 *1) (-5 *1 (-291))) (-1827 (*1 *2 *1) (-12 (-5 *2 (-640 (-1078))) (-5 *1 (-291)))) (-3550 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1169)) (-5 *2 (-1097)) (-5 *1 (-291)))) (-4214 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1169)) (-5 *3 (-1097)) (-5 *1 (-291)))) (-2107 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1169)) (-5 *2 (-640 (-961))) (-5 *1 (-291)))) (-1673 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-961))) (-5 *1 (-291)))) (-2576 (*1 *1) (-5 *1 (-291))) (-4231 (*1 *1) (-5 *1 (-291)))) +(-13 (-610 (-858)) (-10 -8 (-15 -3135 ($)) (-15 -1827 ((-640 (-1078)) $)) (-15 -3550 ((-3 (-1097) "failed") (-1169) (-1169) $)) (-15 -4214 ($ (-1169) (-1169) (-1097) $)) (-15 -2107 ((-3 (-640 (-961)) "failed") (-1169) $)) (-15 -1673 ($ (-1169) (-640 (-961)) $)) (-15 -2576 ($)) (-15 -4231 ($)))) +((-2125 (((-640 (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (|:| |geneigvec| (-640 (-684 (-407 (-948 |#1|))))))) (-684 (-407 (-948 |#1|)))) 85)) (-3986 (((-640 (-684 (-407 (-948 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-640 (-684 (-407 (-948 |#1|)))))) (-684 (-407 (-948 |#1|)))) 80) (((-640 (-684 (-407 (-948 |#1|)))) (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|))) (-684 (-407 (-948 |#1|))) (-767) (-767)) 38)) (-3575 (((-640 (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-640 (-684 (-407 (-948 |#1|))))))) (-684 (-407 (-948 |#1|)))) 82)) (-2501 (((-640 (-684 (-407 (-948 |#1|)))) (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|))) (-684 (-407 (-948 |#1|)))) 62)) (-3241 (((-640 (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (-684 (-407 (-948 |#1|)))) 61)) (-3421 (((-948 |#1|) (-684 (-407 (-948 |#1|)))) 50) (((-948 |#1|) (-684 (-407 (-948 |#1|))) (-1169)) 51))) +(((-292 |#1|) (-10 -7 (-15 -3421 ((-948 |#1|) (-684 (-407 (-948 |#1|))) (-1169))) (-15 -3421 ((-948 |#1|) (-684 (-407 (-948 |#1|))))) (-15 -3241 ((-640 (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (-684 (-407 (-948 |#1|))))) (-15 -2501 ((-640 (-684 (-407 (-948 |#1|)))) (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|))) (-684 (-407 (-948 |#1|))))) (-15 -3986 ((-640 (-684 (-407 (-948 |#1|)))) (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|))) (-684 (-407 (-948 |#1|))) (-767) (-767))) (-15 -3986 ((-640 (-684 (-407 (-948 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-640 (-684 (-407 (-948 |#1|)))))) (-684 (-407 (-948 |#1|))))) (-15 -2125 ((-640 (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (|:| |geneigvec| (-640 (-684 (-407 (-948 |#1|))))))) (-684 (-407 (-948 |#1|))))) (-15 -3575 ((-640 (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-640 (-684 (-407 (-948 |#1|))))))) (-684 (-407 (-948 |#1|)))))) (-452)) (T -292)) +((-3575 (*1 *2 *3) (-12 (-4 *4 (-452)) (-5 *2 (-640 (-2 (|:| |eigval| (-3 (-407 (-948 *4)) (-1158 (-1169) (-948 *4)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-640 (-684 (-407 (-948 *4)))))))) (-5 *1 (-292 *4)) (-5 *3 (-684 (-407 (-948 *4)))))) (-2125 (*1 *2 *3) (-12 (-4 *4 (-452)) (-5 *2 (-640 (-2 (|:| |eigval| (-3 (-407 (-948 *4)) (-1158 (-1169) (-948 *4)))) (|:| |geneigvec| (-640 (-684 (-407 (-948 *4)))))))) (-5 *1 (-292 *4)) (-5 *3 (-684 (-407 (-948 *4)))))) (-3986 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-407 (-948 *5)) (-1158 (-1169) (-948 *5)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-640 *4)))) (-4 *5 (-452)) (-5 *2 (-640 (-684 (-407 (-948 *5))))) (-5 *1 (-292 *5)) (-5 *4 (-684 (-407 (-948 *5)))))) (-3986 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-407 (-948 *6)) (-1158 (-1169) (-948 *6)))) (-5 *5 (-767)) (-4 *6 (-452)) (-5 *2 (-640 (-684 (-407 (-948 *6))))) (-5 *1 (-292 *6)) (-5 *4 (-684 (-407 (-948 *6)))))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-407 (-948 *5)) (-1158 (-1169) (-948 *5)))) (-4 *5 (-452)) (-5 *2 (-640 (-684 (-407 (-948 *5))))) (-5 *1 (-292 *5)) (-5 *4 (-684 (-407 (-948 *5)))))) (-3241 (*1 *2 *3) (-12 (-5 *3 (-684 (-407 (-948 *4)))) (-4 *4 (-452)) (-5 *2 (-640 (-3 (-407 (-948 *4)) (-1158 (-1169) (-948 *4))))) (-5 *1 (-292 *4)))) (-3421 (*1 *2 *3) (-12 (-5 *3 (-684 (-407 (-948 *4)))) (-5 *2 (-948 *4)) (-5 *1 (-292 *4)) (-4 *4 (-452)))) (-3421 (*1 *2 *3 *4) (-12 (-5 *3 (-684 (-407 (-948 *5)))) (-5 *4 (-1169)) (-5 *2 (-948 *5)) (-5 *1 (-292 *5)) (-4 *5 (-452))))) +(-10 -7 (-15 -3421 ((-948 |#1|) (-684 (-407 (-948 |#1|))) (-1169))) (-15 -3421 ((-948 |#1|) (-684 (-407 (-948 |#1|))))) (-15 -3241 ((-640 (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (-684 (-407 (-948 |#1|))))) (-15 -2501 ((-640 (-684 (-407 (-948 |#1|)))) (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|))) (-684 (-407 (-948 |#1|))))) (-15 -3986 ((-640 (-684 (-407 (-948 |#1|)))) (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|))) (-684 (-407 (-948 |#1|))) (-767) (-767))) (-15 -3986 ((-640 (-684 (-407 (-948 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-640 (-684 (-407 (-948 |#1|)))))) (-684 (-407 (-948 |#1|))))) (-15 -2125 ((-640 (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (|:| |geneigvec| (-640 (-684 (-407 (-948 |#1|))))))) (-684 (-407 (-948 |#1|))))) (-15 -3575 ((-640 (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-640 (-684 (-407 (-948 |#1|))))))) (-684 (-407 (-948 |#1|)))))) +((-2240 (((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)) 14))) +(((-293 |#1| |#2|) (-10 -7 (-15 -2240 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)))) (-1208) (-1208)) (T -293)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-294 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-294 *6)) (-5 *1 (-293 *5 *6))))) +(-10 -7 (-15 -2240 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)))) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3411 (((-112) $) NIL (|has| |#1| (-21)))) (-1536 (($ $) 12)) (-1495 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4132 (($ $ $) 94 (|has| |#1| (-302)))) (-4239 (($) NIL (-4032 (|has| |#1| (-21)) (|has| |#1| (-722))) CONST)) (-2400 (($ $) 50 (|has| |#1| (-21)))) (-3215 (((-3 $ "failed") $) 61 (|has| |#1| (-722)))) (-2351 ((|#1| $) 11)) (-3400 (((-3 $ "failed") $) 59 (|has| |#1| (-722)))) (-3827 (((-112) $) NIL (|has| |#1| (-722)))) (-2240 (($ (-1 |#1| |#1|) $) 14)) (-2340 ((|#1| $) 10)) (-1963 (($ $) 49 (|has| |#1| (-21)))) (-4357 (((-3 $ "failed") $) 60 (|has| |#1| (-722)))) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-2688 (($ $) 63 (-4032 (|has| |#1| (-363)) (|has| |#1| (-473))))) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3710 (((-640 $) $) 84 (|has| |#1| (-555)))) (-1540 (($ $ $) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 $)) 28 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-1169) |#1|) 17 (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-640 (-1169)) (-640 |#1|)) 21 (|has| |#1| (-514 (-1169) |#1|)))) (-2378 (($ |#1| |#1|) 9)) (-3533 (((-134)) 89 (|has| |#1| (-363)))) (-4202 (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169)) 86 (|has| |#1| (-896 (-1169))))) (-4339 (($ $ $) NIL (|has| |#1| (-473)))) (-2146 (($ $ $) NIL (|has| |#1| (-473)))) (-1693 (($ (-563)) NIL (|has| |#1| (-1045))) (((-112) $) 36 (|has| |#1| (-1093))) (((-858) $) 35 (|has| |#1| (-1093)))) (-1675 (((-767)) 66 (|has| |#1| (-1045)))) (-2241 (($) 46 (|has| |#1| (-21)) CONST)) (-2254 (($) 56 (|has| |#1| (-722)) CONST)) (-3209 (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169))))) (-1718 (($ |#1| |#1|) 8) (((-112) $ $) 31 (|has| |#1| (-1093)))) (-1837 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 91 (-4032 (|has| |#1| (-363)) (|has| |#1| (-473))))) (-1826 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-1814 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-563)) NIL (|has| |#1| (-473))) (($ $ (-767)) NIL (|has| |#1| (-722))) (($ $ (-917)) NIL (|has| |#1| (-1105)))) (* (($ $ |#1|) 54 (|has| |#1| (-1105))) (($ |#1| $) 53 (|has| |#1| (-1105))) (($ $ $) 52 (|has| |#1| (-1105))) (($ (-563) $) 69 (|has| |#1| (-21))) (($ (-767) $) NIL (|has| |#1| (-21))) (($ (-917) $) NIL (|has| |#1| (-25))))) +(((-294 |#1|) (-13 (-1208) (-10 -8 (-15 -1718 ($ |#1| |#1|)) (-15 -2378 ($ |#1| |#1|)) (-15 -1536 ($ $)) (-15 -2340 (|#1| $)) (-15 -2351 (|#1| $)) (-15 -2240 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-514 (-1169) |#1|)) (-6 (-514 (-1169) |#1|)) |%noBranch|) (IF (|has| |#1| (-1093)) (PROGN (-6 (-1093)) (-6 (-610 (-112))) (IF (|has| |#1| (-309 |#1|)) (PROGN (-15 -1540 ($ $ $)) (-15 -1540 ($ $ (-640 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1814 ($ |#1| $)) (-15 -1814 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1963 ($ $)) (-15 -2400 ($ $)) (-15 -1826 ($ |#1| $)) (-15 -1826 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1105)) (PROGN (-6 (-1105)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-722)) (PROGN (-6 (-722)) (-15 -4357 ((-3 $ "failed") $)) (-15 -3215 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-473)) (PROGN (-6 (-473)) (-15 -4357 ((-3 $ "failed") $)) (-15 -3215 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-6 (-1045)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-713 |#1|)) |%noBranch|) (IF (|has| |#1| (-555)) (-15 -3710 ((-640 $) $)) |%noBranch|) (IF (|has| |#1| (-896 (-1169))) (-6 (-896 (-1169))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-1264 |#1|)) (-15 -1837 ($ $ $)) (-15 -2688 ($ $))) |%noBranch|) (IF (|has| |#1| (-302)) (-15 -4132 ($ $ $)) |%noBranch|))) (-1208)) (T -294)) +((-1718 (*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1208)))) (-2378 (*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1208)))) (-1536 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1208)))) (-2340 (*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1208)))) (-2351 (*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1208)))) (-2240 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1208)) (-5 *1 (-294 *3)))) (-1540 (*1 *1 *1 *1) (-12 (-4 *2 (-309 *2)) (-4 *2 (-1093)) (-4 *2 (-1208)) (-5 *1 (-294 *2)))) (-1540 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-294 *3))) (-4 *3 (-309 *3)) (-4 *3 (-1093)) (-4 *3 (-1208)) (-5 *1 (-294 *3)))) (-1814 (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1208)))) (-1814 (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1208)))) (-1963 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1208)))) (-2400 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1208)))) (-1826 (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1208)))) (-1826 (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1208)))) (-4357 (*1 *1 *1) (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-722)) (-4 *2 (-1208)))) (-3215 (*1 *1 *1) (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-722)) (-4 *2 (-1208)))) (-3710 (*1 *2 *1) (-12 (-5 *2 (-640 (-294 *3))) (-5 *1 (-294 *3)) (-4 *3 (-555)) (-4 *3 (-1208)))) (-4132 (*1 *1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-302)) (-4 *2 (-1208)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1105)) (-4 *2 (-1208)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1105)) (-4 *2 (-1208)))) (-1837 (*1 *1 *1 *1) (-4032 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1208))) (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1208))))) (-2688 (*1 *1 *1) (-4032 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1208))) (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1208)))))) +(-13 (-1208) (-10 -8 (-15 -1718 ($ |#1| |#1|)) (-15 -2378 ($ |#1| |#1|)) (-15 -1536 ($ $)) (-15 -2340 (|#1| $)) (-15 -2351 (|#1| $)) (-15 -2240 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-514 (-1169) |#1|)) (-6 (-514 (-1169) |#1|)) |%noBranch|) (IF (|has| |#1| (-1093)) (PROGN (-6 (-1093)) (-6 (-610 (-112))) (IF (|has| |#1| (-309 |#1|)) (PROGN (-15 -1540 ($ $ $)) (-15 -1540 ($ $ (-640 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1814 ($ |#1| $)) (-15 -1814 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1963 ($ $)) (-15 -2400 ($ $)) (-15 -1826 ($ |#1| $)) (-15 -1826 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1105)) (PROGN (-6 (-1105)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-722)) (PROGN (-6 (-722)) (-15 -4357 ((-3 $ "failed") $)) (-15 -3215 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-473)) (PROGN (-6 (-473)) (-15 -4357 ((-3 $ "failed") $)) (-15 -3215 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-6 (-1045)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-713 |#1|)) |%noBranch|) (IF (|has| |#1| (-555)) (-15 -3710 ((-640 $) $)) |%noBranch|) (IF (|has| |#1| (-896 (-1169))) (-6 (-896 (-1169))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-1264 |#1|)) (-15 -1837 ($ $ $)) (-15 -2688 ($ $))) |%noBranch|) (IF (|has| |#1| (-302)) (-15 -4132 ($ $ $)) |%noBranch|))) +((-1677 (((-112) $ $) NIL (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1552 (($) NIL) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL)) (-4378 (((-1262) $ |#1| |#1|) NIL (|has| $ (-6 -4408)))) (-2759 (((-112) $ (-767)) NIL)) (-1849 ((|#2| $ |#1| |#2|) NIL)) (-2812 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-2256 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-1577 (((-3 |#2| "failed") |#1| $) NIL)) (-4239 (($) NIL T CONST)) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093))))) (-2705 (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-3 |#2| "failed") |#1| $) NIL)) (-1459 (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-2444 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL (|has| $ (-6 -4407))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-4355 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4408)))) (-4293 ((|#2| $ |#1|) NIL)) (-2659 (((-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-640 |#2|) $) NIL (|has| $ (-6 -4407)))) (-2581 (((-112) $ (-767)) NIL)) (-2411 ((|#1| $) NIL (|has| |#1| (-846)))) (-2259 (((-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-640 |#2|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093))))) (-3860 ((|#1| $) NIL (|has| |#1| (-846)))) (-4345 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4408))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1303 (((-640 |#1|) $) NIL)) (-4173 (((-112) |#1| $) NIL)) (-2964 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL)) (-1812 (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL)) (-4318 (((-640 |#1|) $) NIL)) (-3192 (((-112) |#1| $) NIL)) (-1694 (((-1113) $) NIL (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-3781 ((|#2| $) NIL (|has| |#1| (-846)))) (-4203 (((-3 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) "failed") (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL)) (-2358 (($ $ |#2|) NIL (|has| $ (-6 -4408)))) (-3755 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL)) (-3138 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-2026 (((-112) $ $) NIL)) (-2105 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093))))) (-2836 (((-640 |#2|) $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) NIL)) (-2309 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3890 (($) NIL) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL)) (-1709 (((-767) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-767) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-1872 (($ $) NIL)) (-2220 (((-536) $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-611 (-536))))) (-1707 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL)) (-1693 (((-858) $) NIL (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-610 (-858))) (|has| |#2| (-610 (-858)))))) (-2233 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL)) (-4383 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) NIL (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-295 |#1| |#2|) (-13 (-1184 |#1| |#2|) (-10 -7 (-6 -4407))) (-1093) (-1093)) (T -295)) +NIL +(-13 (-1184 |#1| |#2|) (-10 -7 (-6 -4407))) +((-4076 (((-312) (-1151) (-640 (-1151))) 16) (((-312) (-1151) (-1151)) 15) (((-312) (-640 (-1151))) 14) (((-312) (-1151)) 12))) +(((-296) (-10 -7 (-15 -4076 ((-312) (-1151))) (-15 -4076 ((-312) (-640 (-1151)))) (-15 -4076 ((-312) (-1151) (-1151))) (-15 -4076 ((-312) (-1151) (-640 (-1151)))))) (T -296)) +((-4076 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-1151))) (-5 *3 (-1151)) (-5 *2 (-312)) (-5 *1 (-296)))) (-4076 (*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-312)) (-5 *1 (-296)))) (-4076 (*1 *2 *3) (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-312)) (-5 *1 (-296)))) (-4076 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-312)) (-5 *1 (-296))))) +(-10 -7 (-15 -4076 ((-312) (-1151))) (-15 -4076 ((-312) (-640 (-1151)))) (-15 -4076 ((-312) (-1151) (-1151))) (-15 -4076 ((-312) (-1151) (-640 (-1151))))) +((-2240 ((|#2| (-1 |#2| |#1|) (-1151) (-609 |#1|)) 18))) +(((-297 |#1| |#2|) (-10 -7 (-15 -2240 (|#2| (-1 |#2| |#1|) (-1151) (-609 |#1|)))) (-302) (-1208)) (T -297)) +((-2240 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1151)) (-5 *5 (-609 *6)) (-4 *6 (-302)) (-4 *2 (-1208)) (-5 *1 (-297 *6 *2))))) +(-10 -7 (-15 -2240 (|#2| (-1 |#2| |#1|) (-1151) (-609 |#1|)))) +((-2240 ((|#2| (-1 |#2| |#1|) (-609 |#1|)) 17))) +(((-298 |#1| |#2|) (-10 -7 (-15 -2240 (|#2| (-1 |#2| |#1|) (-609 |#1|)))) (-302) (-302)) (T -298)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-609 *5)) (-4 *5 (-302)) (-4 *2 (-302)) (-5 *1 (-298 *5 *2))))) +(-10 -7 (-15 -2240 (|#2| (-1 |#2| |#1|) (-609 |#1|)))) +((-3198 (((-112) (-225)) 10))) +(((-299 |#1| |#2|) (-10 -7 (-15 -3198 ((-112) (-225)))) (-225) (-225)) (T -299)) +((-3198 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-299 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -3198 ((-112) (-225)))) +((-2802 (((-1149 (-225)) (-316 (-225)) (-640 (-1169)) (-1087 (-839 (-225)))) 92)) (-2415 (((-1149 (-225)) (-1257 (-316 (-225))) (-640 (-1169)) (-1087 (-839 (-225)))) 106) (((-1149 (-225)) (-316 (-225)) (-640 (-1169)) (-1087 (-839 (-225)))) 61)) (-1983 (((-640 (-1151)) (-1149 (-225))) NIL)) (-2497 (((-640 (-225)) (-316 (-225)) (-1169) (-1087 (-839 (-225)))) 58)) (-4273 (((-640 (-225)) (-948 (-407 (-563))) (-1169) (-1087 (-839 (-225)))) 49)) (-1636 (((-640 (-1151)) (-640 (-225))) NIL)) (-2471 (((-225) (-1087 (-839 (-225)))) 25)) (-4107 (((-225) (-1087 (-839 (-225)))) 26)) (-2973 (((-112) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 54)) (-3274 (((-1151) (-225)) NIL))) +(((-300) (-10 -7 (-15 -2471 ((-225) (-1087 (-839 (-225))))) (-15 -4107 ((-225) (-1087 (-839 (-225))))) (-15 -2973 ((-112) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2497 ((-640 (-225)) (-316 (-225)) (-1169) (-1087 (-839 (-225))))) (-15 -2802 ((-1149 (-225)) (-316 (-225)) (-640 (-1169)) (-1087 (-839 (-225))))) (-15 -2415 ((-1149 (-225)) (-316 (-225)) (-640 (-1169)) (-1087 (-839 (-225))))) (-15 -2415 ((-1149 (-225)) (-1257 (-316 (-225))) (-640 (-1169)) (-1087 (-839 (-225))))) (-15 -4273 ((-640 (-225)) (-948 (-407 (-563))) (-1169) (-1087 (-839 (-225))))) (-15 -3274 ((-1151) (-225))) (-15 -1636 ((-640 (-1151)) (-640 (-225)))) (-15 -1983 ((-640 (-1151)) (-1149 (-225)))))) (T -300)) +((-1983 (*1 *2 *3) (-12 (-5 *3 (-1149 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-300)))) (-1636 (*1 *2 *3) (-12 (-5 *3 (-640 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-300)))) (-3274 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1151)) (-5 *1 (-300)))) (-4273 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-948 (-407 (-563)))) (-5 *4 (-1169)) (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-640 (-225))) (-5 *1 (-300)))) (-2415 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1257 (-316 (-225)))) (-5 *4 (-640 (-1169))) (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-1149 (-225))) (-5 *1 (-300)))) (-2415 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-640 (-1169))) (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-1149 (-225))) (-5 *1 (-300)))) (-2802 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-640 (-1169))) (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-1149 (-225))) (-5 *1 (-300)))) (-2497 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1169)) (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-640 (-225))) (-5 *1 (-300)))) (-2973 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-112)) (-5 *1 (-300)))) (-4107 (*1 *2 *3) (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-300)))) (-2471 (*1 *2 *3) (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-300))))) +(-10 -7 (-15 -2471 ((-225) (-1087 (-839 (-225))))) (-15 -4107 ((-225) (-1087 (-839 (-225))))) (-15 -2973 ((-112) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2497 ((-640 (-225)) (-316 (-225)) (-1169) (-1087 (-839 (-225))))) (-15 -2802 ((-1149 (-225)) (-316 (-225)) (-640 (-1169)) (-1087 (-839 (-225))))) (-15 -2415 ((-1149 (-225)) (-316 (-225)) (-640 (-1169)) (-1087 (-839 (-225))))) (-15 -2415 ((-1149 (-225)) (-1257 (-316 (-225))) (-640 (-1169)) (-1087 (-839 (-225))))) (-15 -4273 ((-640 (-225)) (-948 (-407 (-563))) (-1169) (-1087 (-839 (-225))))) (-15 -3274 ((-1151) (-225))) (-15 -1636 ((-640 (-1151)) (-640 (-225)))) (-15 -1983 ((-640 (-1151)) (-1149 (-225))))) +((-2059 (((-640 (-609 $)) $) 30)) (-4132 (($ $ (-294 $)) 80) (($ $ (-640 (-294 $))) 122) (($ $ (-640 (-609 $)) (-640 $)) NIL)) (-2131 (((-3 (-609 $) "failed") $) 112)) (-2058 (((-609 $) $) 111)) (-3968 (($ $) 19) (($ (-640 $)) 55)) (-3804 (((-640 (-114)) $) 38)) (-2361 (((-114) (-114)) 90)) (-3131 (((-112) $) 130)) (-2240 (($ (-1 $ $) (-609 $)) 88)) (-2875 (((-3 (-609 $) "failed") $) 92)) (-2227 (($ (-114) $) 60) (($ (-114) (-640 $)) 99)) (-2799 (((-112) $ (-114)) 116) (((-112) $ (-1169)) 115)) (-4236 (((-767) $) 46)) (-1372 (((-112) $ $) 58) (((-112) $ (-1169)) 50)) (-2359 (((-112) $) 128)) (-1540 (($ $ (-609 $) $) NIL) (($ $ (-640 (-609 $)) (-640 $)) NIL) (($ $ (-640 (-294 $))) 120) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-640 (-1169)) (-640 (-1 $ $))) 83) (($ $ (-640 (-1169)) (-640 (-1 $ (-640 $)))) NIL) (($ $ (-1169) (-1 $ (-640 $))) 68) (($ $ (-1169) (-1 $ $)) 74) (($ $ (-640 (-114)) (-640 (-1 $ $))) 82) (($ $ (-640 (-114)) (-640 (-1 $ (-640 $)))) 84) (($ $ (-114) (-1 $ (-640 $))) 70) (($ $ (-114) (-1 $ $)) 76)) (-2309 (($ (-114) $) 61) (($ (-114) $ $) 62) (($ (-114) $ $ $) 63) (($ (-114) $ $ $ $) 64) (($ (-114) (-640 $)) 108)) (-3071 (($ $) 52) (($ $ $) 118)) (-3079 (($ $) 17) (($ (-640 $)) 54)) (-3734 (((-112) (-114)) 22))) +(((-301 |#1|) (-10 -8 (-15 -3131 ((-112) |#1|)) (-15 -2359 ((-112) |#1|)) (-15 -1540 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1540 (|#1| |#1| (-114) (-1 |#1| (-640 |#1|)))) (-15 -1540 (|#1| |#1| (-640 (-114)) (-640 (-1 |#1| (-640 |#1|))))) (-15 -1540 (|#1| |#1| (-640 (-114)) (-640 (-1 |#1| |#1|)))) (-15 -1540 (|#1| |#1| (-1169) (-1 |#1| |#1|))) (-15 -1540 (|#1| |#1| (-1169) (-1 |#1| (-640 |#1|)))) (-15 -1540 (|#1| |#1| (-640 (-1169)) (-640 (-1 |#1| (-640 |#1|))))) (-15 -1540 (|#1| |#1| (-640 (-1169)) (-640 (-1 |#1| |#1|)))) (-15 -1372 ((-112) |#1| (-1169))) (-15 -1372 ((-112) |#1| |#1|)) (-15 -2240 (|#1| (-1 |#1| |#1|) (-609 |#1|))) (-15 -2227 (|#1| (-114) (-640 |#1|))) (-15 -2227 (|#1| (-114) |#1|)) (-15 -2799 ((-112) |#1| (-1169))) (-15 -2799 ((-112) |#1| (-114))) (-15 -3734 ((-112) (-114))) (-15 -2361 ((-114) (-114))) (-15 -3804 ((-640 (-114)) |#1|)) (-15 -2059 ((-640 (-609 |#1|)) |#1|)) (-15 -2875 ((-3 (-609 |#1|) "failed") |#1|)) (-15 -4236 ((-767) |#1|)) (-15 -3071 (|#1| |#1| |#1|)) (-15 -3071 (|#1| |#1|)) (-15 -3968 (|#1| (-640 |#1|))) (-15 -3968 (|#1| |#1|)) (-15 -3079 (|#1| (-640 |#1|))) (-15 -3079 (|#1| |#1|)) (-15 -4132 (|#1| |#1| (-640 (-609 |#1|)) (-640 |#1|))) (-15 -4132 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -4132 (|#1| |#1| (-294 |#1|))) (-15 -2309 (|#1| (-114) (-640 |#1|))) (-15 -2309 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2309 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2309 (|#1| (-114) |#1| |#1|)) (-15 -2309 (|#1| (-114) |#1|)) (-15 -1540 (|#1| |#1| (-640 |#1|) (-640 |#1|))) (-15 -1540 (|#1| |#1| |#1| |#1|)) (-15 -1540 (|#1| |#1| (-294 |#1|))) (-15 -1540 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -1540 (|#1| |#1| (-640 (-609 |#1|)) (-640 |#1|))) (-15 -1540 (|#1| |#1| (-609 |#1|) |#1|)) (-15 -2131 ((-3 (-609 |#1|) "failed") |#1|)) (-15 -2058 ((-609 |#1|) |#1|))) (-302)) (T -301)) +((-2361 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-301 *3)) (-4 *3 (-302)))) (-3734 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-301 *4)) (-4 *4 (-302))))) +(-10 -8 (-15 -3131 ((-112) |#1|)) (-15 -2359 ((-112) |#1|)) (-15 -1540 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1540 (|#1| |#1| (-114) (-1 |#1| (-640 |#1|)))) (-15 -1540 (|#1| |#1| (-640 (-114)) (-640 (-1 |#1| (-640 |#1|))))) (-15 -1540 (|#1| |#1| (-640 (-114)) (-640 (-1 |#1| |#1|)))) (-15 -1540 (|#1| |#1| (-1169) (-1 |#1| |#1|))) (-15 -1540 (|#1| |#1| (-1169) (-1 |#1| (-640 |#1|)))) (-15 -1540 (|#1| |#1| (-640 (-1169)) (-640 (-1 |#1| (-640 |#1|))))) (-15 -1540 (|#1| |#1| (-640 (-1169)) (-640 (-1 |#1| |#1|)))) (-15 -1372 ((-112) |#1| (-1169))) (-15 -1372 ((-112) |#1| |#1|)) (-15 -2240 (|#1| (-1 |#1| |#1|) (-609 |#1|))) (-15 -2227 (|#1| (-114) (-640 |#1|))) (-15 -2227 (|#1| (-114) |#1|)) (-15 -2799 ((-112) |#1| (-1169))) (-15 -2799 ((-112) |#1| (-114))) (-15 -3734 ((-112) (-114))) (-15 -2361 ((-114) (-114))) (-15 -3804 ((-640 (-114)) |#1|)) (-15 -2059 ((-640 (-609 |#1|)) |#1|)) (-15 -2875 ((-3 (-609 |#1|) "failed") |#1|)) (-15 -4236 ((-767) |#1|)) (-15 -3071 (|#1| |#1| |#1|)) (-15 -3071 (|#1| |#1|)) (-15 -3968 (|#1| (-640 |#1|))) (-15 -3968 (|#1| |#1|)) (-15 -3079 (|#1| (-640 |#1|))) (-15 -3079 (|#1| |#1|)) (-15 -4132 (|#1| |#1| (-640 (-609 |#1|)) (-640 |#1|))) (-15 -4132 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -4132 (|#1| |#1| (-294 |#1|))) (-15 -2309 (|#1| (-114) (-640 |#1|))) (-15 -2309 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2309 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2309 (|#1| (-114) |#1| |#1|)) (-15 -2309 (|#1| (-114) |#1|)) (-15 -1540 (|#1| |#1| (-640 |#1|) (-640 |#1|))) (-15 -1540 (|#1| |#1| |#1| |#1|)) (-15 -1540 (|#1| |#1| (-294 |#1|))) (-15 -1540 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -1540 (|#1| |#1| (-640 (-609 |#1|)) (-640 |#1|))) (-15 -1540 (|#1| |#1| (-609 |#1|) |#1|)) (-15 -2131 ((-3 (-609 |#1|) "failed") |#1|)) (-15 -2058 ((-609 |#1|) |#1|))) +((-1677 (((-112) $ $) 7)) (-2059 (((-640 (-609 $)) $) 44)) (-4132 (($ $ (-294 $)) 56) (($ $ (-640 (-294 $))) 55) (($ $ (-640 (-609 $)) (-640 $)) 54)) (-2131 (((-3 (-609 $) "failed") $) 69)) (-2058 (((-609 $) $) 70)) (-3968 (($ $) 51) (($ (-640 $)) 50)) (-3804 (((-640 (-114)) $) 43)) (-2361 (((-114) (-114)) 42)) (-3131 (((-112) $) 22 (|has| $ (-1034 (-563))))) (-3180 (((-1165 $) (-609 $)) 25 (|has| $ (-1045)))) (-3084 (($ $ $) 13)) (-1777 (($ $ $) 14)) (-2240 (($ (-1 $ $) (-609 $)) 36)) (-2875 (((-3 (-609 $) "failed") $) 46)) (-3573 (((-1151) $) 9)) (-2127 (((-640 (-609 $)) $) 45)) (-2227 (($ (-114) $) 38) (($ (-114) (-640 $)) 37)) (-2799 (((-112) $ (-114)) 40) (((-112) $ (-1169)) 39)) (-4236 (((-767) $) 47)) (-1694 (((-1113) $) 10)) (-1372 (((-112) $ $) 35) (((-112) $ (-1169)) 34)) (-2359 (((-112) $) 23 (|has| $ (-1034 (-563))))) (-1540 (($ $ (-609 $) $) 67) (($ $ (-640 (-609 $)) (-640 $)) 66) (($ $ (-640 (-294 $))) 65) (($ $ (-294 $)) 64) (($ $ $ $) 63) (($ $ (-640 $) (-640 $)) 62) (($ $ (-640 (-1169)) (-640 (-1 $ $))) 33) (($ $ (-640 (-1169)) (-640 (-1 $ (-640 $)))) 32) (($ $ (-1169) (-1 $ (-640 $))) 31) (($ $ (-1169) (-1 $ $)) 30) (($ $ (-640 (-114)) (-640 (-1 $ $))) 29) (($ $ (-640 (-114)) (-640 (-1 $ (-640 $)))) 28) (($ $ (-114) (-1 $ (-640 $))) 27) (($ $ (-114) (-1 $ $)) 26)) (-2309 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-640 $)) 57)) (-3071 (($ $) 49) (($ $ $) 48)) (-3390 (($ $) 24 (|has| $ (-1045)))) (-1693 (((-858) $) 11) (($ (-609 $)) 68)) (-3079 (($ $) 53) (($ (-640 $)) 52)) (-3734 (((-112) (-114)) 41)) (-1778 (((-112) $ $) 16)) (-1756 (((-112) $ $) 17)) (-1718 (((-112) $ $) 6)) (-1768 (((-112) $ $) 15)) (-1744 (((-112) $ $) 18))) +(((-302) (-140)) (T -302)) +((-2309 (*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-2309 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-2309 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-2309 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-2309 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-640 *1)) (-4 *1 (-302)))) (-4132 (*1 *1 *1 *2) (-12 (-5 *2 (-294 *1)) (-4 *1 (-302)))) (-4132 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-294 *1))) (-4 *1 (-302)))) (-4132 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-609 *1))) (-5 *3 (-640 *1)) (-4 *1 (-302)))) (-3079 (*1 *1 *1) (-4 *1 (-302))) (-3079 (*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-302)))) (-3968 (*1 *1 *1) (-4 *1 (-302))) (-3968 (*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-302)))) (-3071 (*1 *1 *1) (-4 *1 (-302))) (-3071 (*1 *1 *1 *1) (-4 *1 (-302))) (-4236 (*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-767)))) (-2875 (*1 *2 *1) (|partial| -12 (-5 *2 (-609 *1)) (-4 *1 (-302)))) (-2127 (*1 *2 *1) (-12 (-5 *2 (-640 (-609 *1))) (-4 *1 (-302)))) (-2059 (*1 *2 *1) (-12 (-5 *2 (-640 (-609 *1))) (-4 *1 (-302)))) (-3804 (*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-640 (-114))))) (-2361 (*1 *2 *2) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-3734 (*1 *2 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112)))) (-2799 (*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112)))) (-2799 (*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1169)) (-5 *2 (-112)))) (-2227 (*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-2227 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-640 *1)) (-4 *1 (-302)))) (-2240 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-609 *1)) (-4 *1 (-302)))) (-1372 (*1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-112)))) (-1372 (*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1169)) (-5 *2 (-112)))) (-1540 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-640 (-1 *1 *1))) (-4 *1 (-302)))) (-1540 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-640 (-1 *1 (-640 *1)))) (-4 *1 (-302)))) (-1540 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1 *1 (-640 *1))) (-4 *1 (-302)))) (-1540 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302)))) (-1540 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-114))) (-5 *3 (-640 (-1 *1 *1))) (-4 *1 (-302)))) (-1540 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-114))) (-5 *3 (-640 (-1 *1 (-640 *1)))) (-4 *1 (-302)))) (-1540 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-640 *1))) (-4 *1 (-302)))) (-1540 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302)))) (-3180 (*1 *2 *3) (-12 (-5 *3 (-609 *1)) (-4 *1 (-1045)) (-4 *1 (-302)) (-5 *2 (-1165 *1)))) (-3390 (*1 *1 *1) (-12 (-4 *1 (-1045)) (-4 *1 (-302)))) (-2359 (*1 *2 *1) (-12 (-4 *1 (-1034 (-563))) (-4 *1 (-302)) (-5 *2 (-112)))) (-3131 (*1 *2 *1) (-12 (-4 *1 (-1034 (-563))) (-4 *1 (-302)) (-5 *2 (-112))))) +(-13 (-846) (-1034 (-609 $)) (-514 (-609 $) $) (-309 $) (-10 -8 (-15 -2309 ($ (-114) $)) (-15 -2309 ($ (-114) $ $)) (-15 -2309 ($ (-114) $ $ $)) (-15 -2309 ($ (-114) $ $ $ $)) (-15 -2309 ($ (-114) (-640 $))) (-15 -4132 ($ $ (-294 $))) (-15 -4132 ($ $ (-640 (-294 $)))) (-15 -4132 ($ $ (-640 (-609 $)) (-640 $))) (-15 -3079 ($ $)) (-15 -3079 ($ (-640 $))) (-15 -3968 ($ $)) (-15 -3968 ($ (-640 $))) (-15 -3071 ($ $)) (-15 -3071 ($ $ $)) (-15 -4236 ((-767) $)) (-15 -2875 ((-3 (-609 $) "failed") $)) (-15 -2127 ((-640 (-609 $)) $)) (-15 -2059 ((-640 (-609 $)) $)) (-15 -3804 ((-640 (-114)) $)) (-15 -2361 ((-114) (-114))) (-15 -3734 ((-112) (-114))) (-15 -2799 ((-112) $ (-114))) (-15 -2799 ((-112) $ (-1169))) (-15 -2227 ($ (-114) $)) (-15 -2227 ($ (-114) (-640 $))) (-15 -2240 ($ (-1 $ $) (-609 $))) (-15 -1372 ((-112) $ $)) (-15 -1372 ((-112) $ (-1169))) (-15 -1540 ($ $ (-640 (-1169)) (-640 (-1 $ $)))) (-15 -1540 ($ $ (-640 (-1169)) (-640 (-1 $ (-640 $))))) (-15 -1540 ($ $ (-1169) (-1 $ (-640 $)))) (-15 -1540 ($ $ (-1169) (-1 $ $))) (-15 -1540 ($ $ (-640 (-114)) (-640 (-1 $ $)))) (-15 -1540 ($ $ (-640 (-114)) (-640 (-1 $ (-640 $))))) (-15 -1540 ($ $ (-114) (-1 $ (-640 $)))) (-15 -1540 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1045)) (PROGN (-15 -3180 ((-1165 $) (-609 $))) (-15 -3390 ($ $))) |%noBranch|) (IF (|has| $ (-1034 (-563))) (PROGN (-15 -2359 ((-112) $)) (-15 -3131 ((-112) $))) |%noBranch|))) +(((-102) . T) ((-613 #0=(-609 $)) . T) ((-610 (-858)) . T) ((-309 $) . T) ((-514 (-609 $) $) . T) ((-514 $ $) . T) ((-846) . T) ((-1034 #0#) . T) ((-1093) . T)) +((-4044 (((-640 |#1|) (-640 |#1|)) 10))) +(((-303 |#1|) (-10 -7 (-15 -4044 ((-640 |#1|) (-640 |#1|)))) (-844)) (T -303)) +((-4044 (*1 *2 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-844)) (-5 *1 (-303 *3))))) +(-10 -7 (-15 -4044 ((-640 |#1|) (-640 |#1|)))) +((-2240 (((-684 |#2|) (-1 |#2| |#1|) (-684 |#1|)) 17))) +(((-304 |#1| |#2|) (-10 -7 (-15 -2240 ((-684 |#2|) (-1 |#2| |#1|) (-684 |#1|)))) (-1045) (-1045)) (T -304)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-684 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-684 *6)) (-5 *1 (-304 *5 *6))))) +(-10 -7 (-15 -2240 ((-684 |#2|) (-1 |#2| |#1|) (-684 |#1|)))) +((-3352 (((-1257 (-316 (-379))) (-1257 (-316 (-225)))) 105)) (-2271 (((-1087 (-839 (-225))) (-1087 (-839 (-379)))) 40)) (-1983 (((-640 (-1151)) (-1149 (-225))) 87)) (-2633 (((-316 (-379)) (-948 (-225))) 50)) (-2698 (((-225) (-948 (-225))) 46)) (-2446 (((-1151) (-379)) 169)) (-3230 (((-839 (-225)) (-839 (-379))) 34)) (-2469 (((-2 (|:| |additions| (-563)) (|:| |multiplications| (-563)) (|:| |exponentiations| (-563)) (|:| |functionCalls| (-563))) (-1257 (-316 (-225)))) 143)) (-2296 (((-1031) (-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031)))) 181) (((-1031) (-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151))))) 179)) (-2835 (((-684 (-225)) (-640 (-225)) (-767)) 14)) (-2868 (((-1257 (-694)) (-640 (-225))) 94)) (-1636 (((-640 (-1151)) (-640 (-225))) 75)) (-4187 (((-3 (-316 (-225)) "failed") (-316 (-225))) 120)) (-3198 (((-112) (-225) (-1087 (-839 (-225)))) 109)) (-3873 (((-1031) (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))) 198)) (-2471 (((-225) (-1087 (-839 (-225)))) 107)) (-4107 (((-225) (-1087 (-839 (-225)))) 108)) (-2671 (((-225) (-407 (-563))) 27)) (-4353 (((-1151) (-379)) 73)) (-2642 (((-225) (-379)) 17)) (-2466 (((-379) (-1257 (-316 (-225)))) 154)) (-2528 (((-316 (-225)) (-316 (-379))) 23)) (-4073 (((-407 (-563)) (-316 (-225))) 53)) (-3496 (((-316 (-407 (-563))) (-316 (-225))) 69)) (-1390 (((-316 (-379)) (-316 (-225))) 98)) (-1988 (((-225) (-316 (-225))) 54)) (-3226 (((-640 (-225)) (-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))))) 64)) (-4102 (((-1087 (-839 (-225))) (-1087 (-839 (-225)))) 61)) (-3274 (((-1151) (-225)) 72)) (-2830 (((-694) (-225)) 90)) (-4000 (((-407 (-563)) (-225)) 55)) (-3574 (((-316 (-379)) (-225)) 49)) (-2220 (((-640 (-1087 (-839 (-225)))) (-640 (-1087 (-839 (-379))))) 43)) (-2853 (((-1031) (-640 (-1031))) 165) (((-1031) (-1031) (-1031)) 162)) (-2103 (((-1031) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2516 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195))) +(((-305) (-10 -7 (-15 -2642 ((-225) (-379))) (-15 -2528 ((-316 (-225)) (-316 (-379)))) (-15 -3230 ((-839 (-225)) (-839 (-379)))) (-15 -2271 ((-1087 (-839 (-225))) (-1087 (-839 (-379))))) (-15 -2220 ((-640 (-1087 (-839 (-225)))) (-640 (-1087 (-839 (-379)))))) (-15 -4000 ((-407 (-563)) (-225))) (-15 -4073 ((-407 (-563)) (-316 (-225)))) (-15 -1988 ((-225) (-316 (-225)))) (-15 -4187 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -2466 ((-379) (-1257 (-316 (-225))))) (-15 -2469 ((-2 (|:| |additions| (-563)) (|:| |multiplications| (-563)) (|:| |exponentiations| (-563)) (|:| |functionCalls| (-563))) (-1257 (-316 (-225))))) (-15 -3496 ((-316 (-407 (-563))) (-316 (-225)))) (-15 -4102 ((-1087 (-839 (-225))) (-1087 (-839 (-225))))) (-15 -3226 ((-640 (-225)) (-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))))) (-15 -2830 ((-694) (-225))) (-15 -2868 ((-1257 (-694)) (-640 (-225)))) (-15 -1390 ((-316 (-379)) (-316 (-225)))) (-15 -3352 ((-1257 (-316 (-379))) (-1257 (-316 (-225))))) (-15 -3198 ((-112) (-225) (-1087 (-839 (-225))))) (-15 -3274 ((-1151) (-225))) (-15 -4353 ((-1151) (-379))) (-15 -1636 ((-640 (-1151)) (-640 (-225)))) (-15 -1983 ((-640 (-1151)) (-1149 (-225)))) (-15 -2471 ((-225) (-1087 (-839 (-225))))) (-15 -4107 ((-225) (-1087 (-839 (-225))))) (-15 -2853 ((-1031) (-1031) (-1031))) (-15 -2853 ((-1031) (-640 (-1031)))) (-15 -2446 ((-1151) (-379))) (-15 -2296 ((-1031) (-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151)))))) (-15 -2296 ((-1031) (-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031))))) (-15 -2103 ((-1031) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2516 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3873 ((-1031) (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))) (-15 -2633 ((-316 (-379)) (-948 (-225)))) (-15 -2698 ((-225) (-948 (-225)))) (-15 -3574 ((-316 (-379)) (-225))) (-15 -2671 ((-225) (-407 (-563)))) (-15 -2835 ((-684 (-225)) (-640 (-225)) (-767))))) (T -305)) +((-2835 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-225))) (-5 *4 (-767)) (-5 *2 (-684 (-225))) (-5 *1 (-305)))) (-2671 (*1 *2 *3) (-12 (-5 *3 (-407 (-563))) (-5 *2 (-225)) (-5 *1 (-305)))) (-3574 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-316 (-379))) (-5 *1 (-305)))) (-2698 (*1 *2 *3) (-12 (-5 *3 (-948 (-225))) (-5 *2 (-225)) (-5 *1 (-305)))) (-2633 (*1 *2 *3) (-12 (-5 *3 (-948 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305)))) (-3873 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))) (-5 *2 (-1031)) (-5 *1 (-305)))) (-2103 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2516 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1031)) (-5 *1 (-305)))) (-2296 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031)))) (-5 *2 (-1031)) (-5 *1 (-305)))) (-2296 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151))))) (-5 *2 (-1031)) (-5 *1 (-305)))) (-2446 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1151)) (-5 *1 (-305)))) (-2853 (*1 *2 *3) (-12 (-5 *3 (-640 (-1031))) (-5 *2 (-1031)) (-5 *1 (-305)))) (-2853 (*1 *2 *2 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-305)))) (-4107 (*1 *2 *3) (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-305)))) (-2471 (*1 *2 *3) (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-305)))) (-1983 (*1 *2 *3) (-12 (-5 *3 (-1149 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-305)))) (-1636 (*1 *2 *3) (-12 (-5 *3 (-640 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-305)))) (-4353 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1151)) (-5 *1 (-305)))) (-3274 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1151)) (-5 *1 (-305)))) (-3198 (*1 *2 *3 *4) (-12 (-5 *4 (-1087 (-839 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-305)))) (-3352 (*1 *2 *3) (-12 (-5 *3 (-1257 (-316 (-225)))) (-5 *2 (-1257 (-316 (-379)))) (-5 *1 (-305)))) (-1390 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305)))) (-2868 (*1 *2 *3) (-12 (-5 *3 (-640 (-225))) (-5 *2 (-1257 (-694))) (-5 *1 (-305)))) (-2830 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-694)) (-5 *1 (-305)))) (-3226 (*1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))))) (-5 *2 (-640 (-225))) (-5 *1 (-305)))) (-4102 (*1 *2 *2) (-12 (-5 *2 (-1087 (-839 (-225)))) (-5 *1 (-305)))) (-3496 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-407 (-563)))) (-5 *1 (-305)))) (-2469 (*1 *2 *3) (-12 (-5 *3 (-1257 (-316 (-225)))) (-5 *2 (-2 (|:| |additions| (-563)) (|:| |multiplications| (-563)) (|:| |exponentiations| (-563)) (|:| |functionCalls| (-563)))) (-5 *1 (-305)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-1257 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-305)))) (-4187 (*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-305)))) (-1988 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-225)) (-5 *1 (-305)))) (-4073 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-407 (-563))) (-5 *1 (-305)))) (-4000 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-407 (-563))) (-5 *1 (-305)))) (-2220 (*1 *2 *3) (-12 (-5 *3 (-640 (-1087 (-839 (-379))))) (-5 *2 (-640 (-1087 (-839 (-225))))) (-5 *1 (-305)))) (-2271 (*1 *2 *3) (-12 (-5 *3 (-1087 (-839 (-379)))) (-5 *2 (-1087 (-839 (-225)))) (-5 *1 (-305)))) (-3230 (*1 *2 *3) (-12 (-5 *3 (-839 (-379))) (-5 *2 (-839 (-225))) (-5 *1 (-305)))) (-2528 (*1 *2 *3) (-12 (-5 *3 (-316 (-379))) (-5 *2 (-316 (-225))) (-5 *1 (-305)))) (-2642 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-305))))) +(-10 -7 (-15 -2642 ((-225) (-379))) (-15 -2528 ((-316 (-225)) (-316 (-379)))) (-15 -3230 ((-839 (-225)) (-839 (-379)))) (-15 -2271 ((-1087 (-839 (-225))) (-1087 (-839 (-379))))) (-15 -2220 ((-640 (-1087 (-839 (-225)))) (-640 (-1087 (-839 (-379)))))) (-15 -4000 ((-407 (-563)) (-225))) (-15 -4073 ((-407 (-563)) (-316 (-225)))) (-15 -1988 ((-225) (-316 (-225)))) (-15 -4187 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -2466 ((-379) (-1257 (-316 (-225))))) (-15 -2469 ((-2 (|:| |additions| (-563)) (|:| |multiplications| (-563)) (|:| |exponentiations| (-563)) (|:| |functionCalls| (-563))) (-1257 (-316 (-225))))) (-15 -3496 ((-316 (-407 (-563))) (-316 (-225)))) (-15 -4102 ((-1087 (-839 (-225))) (-1087 (-839 (-225))))) (-15 -3226 ((-640 (-225)) (-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))))) (-15 -2830 ((-694) (-225))) (-15 -2868 ((-1257 (-694)) (-640 (-225)))) (-15 -1390 ((-316 (-379)) (-316 (-225)))) (-15 -3352 ((-1257 (-316 (-379))) (-1257 (-316 (-225))))) (-15 -3198 ((-112) (-225) (-1087 (-839 (-225))))) (-15 -3274 ((-1151) (-225))) (-15 -4353 ((-1151) (-379))) (-15 -1636 ((-640 (-1151)) (-640 (-225)))) (-15 -1983 ((-640 (-1151)) (-1149 (-225)))) (-15 -2471 ((-225) (-1087 (-839 (-225))))) (-15 -4107 ((-225) (-1087 (-839 (-225))))) (-15 -2853 ((-1031) (-1031) (-1031))) (-15 -2853 ((-1031) (-640 (-1031)))) (-15 -2446 ((-1151) (-379))) (-15 -2296 ((-1031) (-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151)))))) (-15 -2296 ((-1031) (-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031))))) (-15 -2103 ((-1031) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2516 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3873 ((-1031) (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))) (-15 -2633 ((-316 (-379)) (-948 (-225)))) (-15 -2698 ((-225) (-948 (-225)))) (-15 -3574 ((-316 (-379)) (-225))) (-15 -2671 ((-225) (-407 (-563)))) (-15 -2835 ((-684 (-225)) (-640 (-225)) (-767)))) +((-1919 (((-112) $ $) 11)) (-3090 (($ $ $) 15)) (-3050 (($ $ $) 14)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) 43)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) 52)) (-3548 (($ $ $) 20) (($ (-640 $)) NIL)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) 31) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 36)) (-3008 (((-3 $ "failed") $ $) 17)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) 45))) +(((-306 |#1|) (-10 -8 (-15 -3643 ((-3 (-640 |#1|) "failed") (-640 |#1|) |#1|)) (-15 -3678 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3678 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4333 |#1|)) |#1| |#1|)) (-15 -3090 (|#1| |#1| |#1|)) (-15 -3050 (|#1| |#1| |#1|)) (-15 -1919 ((-112) |#1| |#1|)) (-15 -1465 ((-3 (-640 |#1|) "failed") (-640 |#1|) |#1|)) (-15 -3286 ((-2 (|:| -2311 (-640 |#1|)) (|:| -4333 |#1|)) (-640 |#1|))) (-15 -3548 (|#1| (-640 |#1|))) (-15 -3548 (|#1| |#1| |#1|)) (-15 -3008 ((-3 |#1| "failed") |#1| |#1|))) (-307)) (T -306)) +NIL +(-10 -8 (-15 -3643 ((-3 (-640 |#1|) "failed") (-640 |#1|) |#1|)) (-15 -3678 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3678 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4333 |#1|)) |#1| |#1|)) (-15 -3090 (|#1| |#1| |#1|)) (-15 -3050 (|#1| |#1| |#1|)) (-15 -1919 ((-112) |#1| |#1|)) (-15 -1465 ((-3 (-640 |#1|) "failed") (-640 |#1|) |#1|)) (-15 -3286 ((-2 (|:| -2311 (-640 |#1|)) (|:| -4333 |#1|)) (-640 |#1|))) (-15 -3548 (|#1| (-640 |#1|))) (-15 -3548 (|#1| |#1| |#1|)) (-15 -3008 ((-3 |#1| "failed") |#1| |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 42)) (-4223 (($ $) 41)) (-3156 (((-112) $) 39)) (-1495 (((-3 $ "failed") $ $) 19)) (-1919 (((-112) $ $) 60)) (-4239 (($) 17 T CONST)) (-3090 (($ $ $) 56)) (-3400 (((-3 $ "failed") $) 33)) (-3050 (($ $ $) 57)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) 52)) (-3827 (((-112) $) 31)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-3513 (($ $ $) 47) (($ (-640 $)) 46)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3548 (($ $ $) 49) (($ (-640 $)) 48)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3008 (((-3 $ "failed") $ $) 43)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-2628 (((-767) $) 59)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 58)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ $) 44)) (-1675 (((-767)) 28)) (-2126 (((-112) $ $) 40)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) +(((-307) (-140)) (T -307)) +((-1919 (*1 *2 *1 *1) (-12 (-4 *1 (-307)) (-5 *2 (-112)))) (-2628 (*1 *2 *1) (-12 (-4 *1 (-307)) (-5 *2 (-767)))) (-2452 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3490 *1) (|:| -1972 *1))) (-4 *1 (-307)))) (-3050 (*1 *1 *1 *1) (-4 *1 (-307))) (-3090 (*1 *1 *1 *1) (-4 *1 (-307))) (-3678 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4333 *1))) (-4 *1 (-307)))) (-3678 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-307)))) (-3643 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-640 *1)) (-4 *1 (-307))))) +(-13 (-916) (-10 -8 (-15 -1919 ((-112) $ $)) (-15 -2628 ((-767) $)) (-15 -2452 ((-2 (|:| -3490 $) (|:| -1972 $)) $ $)) (-15 -3050 ($ $ $)) (-15 -3090 ($ $ $)) (-15 -3678 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $)) (-15 -3678 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3643 ((-3 (-640 $) "failed") (-640 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-555) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) +((-1540 (($ $ (-640 |#2|) (-640 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-294 |#2|)) 11) (($ $ (-640 (-294 |#2|))) NIL))) +(((-308 |#1| |#2|) (-10 -8 (-15 -1540 (|#1| |#1| (-640 (-294 |#2|)))) (-15 -1540 (|#1| |#1| (-294 |#2|))) (-15 -1540 (|#1| |#1| |#2| |#2|)) (-15 -1540 (|#1| |#1| (-640 |#2|) (-640 |#2|)))) (-309 |#2|) (-1093)) (T -308)) +NIL +(-10 -8 (-15 -1540 (|#1| |#1| (-640 (-294 |#2|)))) (-15 -1540 (|#1| |#1| (-294 |#2|))) (-15 -1540 (|#1| |#1| |#2| |#2|)) (-15 -1540 (|#1| |#1| (-640 |#2|) (-640 |#2|)))) +((-1540 (($ $ (-640 |#1|) (-640 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-294 |#1|)) 11) (($ $ (-640 (-294 |#1|))) 10))) +(((-309 |#1|) (-140) (-1093)) (T -309)) +((-1540 (*1 *1 *1 *2) (-12 (-5 *2 (-294 *3)) (-4 *1 (-309 *3)) (-4 *3 (-1093)))) (-1540 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-294 *3))) (-4 *1 (-309 *3)) (-4 *3 (-1093))))) +(-13 (-514 |t#1| |t#1|) (-10 -8 (-15 -1540 ($ $ (-294 |t#1|))) (-15 -1540 ($ $ (-640 (-294 |t#1|)))))) +(((-514 |#1| |#1|) . T)) +((-1540 ((|#1| (-1 |#1| (-563)) (-1171 (-407 (-563)))) 25))) +(((-310 |#1|) (-10 -7 (-15 -1540 (|#1| (-1 |#1| (-563)) (-1171 (-407 (-563)))))) (-38 (-407 (-563)))) (T -310)) +((-1540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-563))) (-5 *4 (-1171 (-407 (-563)))) (-5 *1 (-310 *2)) (-4 *2 (-38 (-407 (-563))))))) +(-10 -7 (-15 -1540 (|#1| (-1 |#1| (-563)) (-1171 (-407 (-563)))))) +((-1677 (((-112) $ $) NIL)) (-1407 (((-563) $) 12)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-3685 (((-1128) $) 9)) (-1693 (((-858) $) 21) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-311) (-13 (-1076) (-10 -8 (-15 -3685 ((-1128) $)) (-15 -1407 ((-563) $))))) (T -311)) +((-3685 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-311)))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-311))))) +(-13 (-1076) (-10 -8 (-15 -3685 ((-1128) $)) (-15 -1407 ((-563) $)))) +((-1677 (((-112) $ $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 7)) (-1718 (((-112) $ $) 9))) +(((-312) (-1093)) (T -312)) +NIL +(-1093) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) 62)) (-3401 (((-1243 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-307)))) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-2424 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-905)))) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-905)))) (-1919 (((-112) $ $) NIL)) (-1857 (((-563) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-816)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-1243 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1169) "failed") $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1034 (-1169)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1034 (-563)))) (((-3 (-563) "failed") $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1034 (-563)))) (((-3 (-1242 |#2| |#3| |#4|) "failed") $) 25)) (-2058 (((-1243 |#1| |#2| |#3| |#4|) $) NIL) (((-1169) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1034 (-1169)))) (((-407 (-563)) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1034 (-563)))) (((-563) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1034 (-563)))) (((-1242 |#2| |#3| |#4|) $) NIL)) (-3090 (($ $ $) NIL)) (-2950 (((-684 (-563)) (-684 $)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-636 (-563)))) (((-2 (|:| -2835 (-684 (-1243 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1257 (-1243 |#1| |#2| |#3| |#4|)))) (-684 $) (-1257 $)) NIL) (((-684 (-1243 |#1| |#2| |#3| |#4|)) (-684 $)) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-1691 (($) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-545)))) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-2468 (((-112) $) NIL)) (-3101 (((-112) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-816)))) (-3787 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-882 (-379))))) (-3827 (((-112) $) NIL)) (-2711 (($ $) NIL)) (-2143 (((-1243 |#1| |#2| |#3| |#4|) $) 21)) (-2408 (((-3 $ "failed") $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1144)))) (-1419 (((-112) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-816)))) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3084 (($ $ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-846)))) (-1777 (($ $ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-846)))) (-2240 (($ (-1 (-1243 |#1| |#2| |#3| |#4|) (-1243 |#1| |#2| |#3| |#4|)) $) NIL)) (-4363 (((-3 (-839 |#2|) "failed") $) 78)) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) NIL)) (-2523 (($) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1144)) CONST)) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ $ $) NIL) (($ (-640 $)) NIL)) (-4215 (($ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-307)))) (-1583 (((-1243 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-545)))) (-1876 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-905)))) (-3116 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-905)))) (-2174 (((-418 $) $) NIL)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1540 (($ $ (-640 (-1243 |#1| |#2| |#3| |#4|)) (-640 (-1243 |#1| |#2| |#3| |#4|))) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-309 (-1243 |#1| |#2| |#3| |#4|)))) (($ $ (-1243 |#1| |#2| |#3| |#4|) (-1243 |#1| |#2| |#3| |#4|)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-309 (-1243 |#1| |#2| |#3| |#4|)))) (($ $ (-294 (-1243 |#1| |#2| |#3| |#4|))) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-309 (-1243 |#1| |#2| |#3| |#4|)))) (($ $ (-640 (-294 (-1243 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-309 (-1243 |#1| |#2| |#3| |#4|)))) (($ $ (-640 (-1169)) (-640 (-1243 |#1| |#2| |#3| |#4|))) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-514 (-1169) (-1243 |#1| |#2| |#3| |#4|)))) (($ $ (-1169) (-1243 |#1| |#2| |#3| |#4|)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-514 (-1169) (-1243 |#1| |#2| |#3| |#4|))))) (-2628 (((-767) $) NIL)) (-2309 (($ $ (-1243 |#1| |#2| |#3| |#4|)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-286 (-1243 |#1| |#2| |#3| |#4|) (-1243 |#1| |#2| |#3| |#4|))))) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-4202 (($ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-767)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1169)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-896 (-1169)))) (($ $ (-1 (-1243 |#1| |#2| |#3| |#4|) (-1243 |#1| |#2| |#3| |#4|)) (-767)) NIL) (($ $ (-1 (-1243 |#1| |#2| |#3| |#4|) (-1243 |#1| |#2| |#3| |#4|))) NIL)) (-1801 (($ $) NIL)) (-2154 (((-1243 |#1| |#2| |#3| |#4|) $) 17)) (-2220 (((-888 (-563)) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-611 (-888 (-563))))) (((-888 (-379)) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-611 (-888 (-379))))) (((-536) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-611 (-536)))) (((-379) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1018))) (((-225) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1018)))) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-1243 |#1| |#2| |#3| |#4|) (-905))))) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ (-1243 |#1| |#2| |#3| |#4|)) 29) (($ (-1169)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1034 (-1169)))) (($ (-1242 |#2| |#3| |#4|)) 36)) (-2779 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| $ (-145)) (|has| (-1243 |#1| |#2| |#3| |#4|) (-905))) (|has| (-1243 |#1| |#2| |#3| |#4|) (-145))))) (-1675 (((-767)) NIL)) (-4194 (((-1243 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-545)))) (-2126 (((-112) $ $) NIL)) (-2509 (($ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-816)))) (-2241 (($) 41 T CONST)) (-2254 (($) NIL T CONST)) (-3209 (($ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-767)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1169)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-896 (-1169)))) (($ $ (-1 (-1243 |#1| |#2| |#3| |#4|) (-1243 |#1| |#2| |#3| |#4|)) (-767)) NIL) (($ $ (-1 (-1243 |#1| |#2| |#3| |#4|) (-1243 |#1| |#2| |#3| |#4|))) NIL)) (-1778 (((-112) $ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-846)))) (-1756 (((-112) $ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-846)))) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-846)))) (-1744 (((-112) $ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-846)))) (-1837 (($ $ $) 34) (($ (-1243 |#1| |#2| |#3| |#4|) (-1243 |#1| |#2| |#3| |#4|)) 31)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ (-1243 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1243 |#1| |#2| |#3| |#4|)) NIL))) +(((-313 |#1| |#2| |#3| |#4|) (-13 (-988 (-1243 |#1| |#2| |#3| |#4|)) (-1034 (-1242 |#2| |#3| |#4|)) (-10 -8 (-15 -4363 ((-3 (-839 |#2|) "failed") $)) (-15 -1693 ($ (-1242 |#2| |#3| |#4|))))) (-13 (-846) (-1034 (-563)) (-636 (-563)) (-452)) (-13 (-27) (-1193) (-430 |#1|)) (-1169) |#2|) (T -313)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-1242 *4 *5 *6)) (-4 *4 (-13 (-27) (-1193) (-430 *3))) (-14 *5 (-1169)) (-14 *6 *4) (-4 *3 (-13 (-846) (-1034 (-563)) (-636 (-563)) (-452))) (-5 *1 (-313 *3 *4 *5 *6)))) (-4363 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-846) (-1034 (-563)) (-636 (-563)) (-452))) (-5 *2 (-839 *4)) (-5 *1 (-313 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1193) (-430 *3))) (-14 *5 (-1169)) (-14 *6 *4)))) +(-13 (-988 (-1243 |#1| |#2| |#3| |#4|)) (-1034 (-1242 |#2| |#3| |#4|)) (-10 -8 (-15 -4363 ((-3 (-839 |#2|) "failed") $)) (-15 -1693 ($ (-1242 |#2| |#3| |#4|))))) +((-2240 (((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|)) 13))) +(((-314 |#1| |#2|) (-10 -7 (-15 -2240 ((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|)))) (-846) (-846)) (T -314)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-316 *5)) (-4 *5 (-846)) (-4 *6 (-846)) (-5 *2 (-316 *6)) (-5 *1 (-314 *5 *6))))) +(-10 -7 (-15 -2240 ((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|)))) +((-2652 (((-52) |#2| (-294 |#2|) (-767)) 33) (((-52) |#2| (-294 |#2|)) 24) (((-52) |#2| (-767)) 28) (((-52) |#2|) 25) (((-52) (-1169)) 21)) (-3045 (((-52) |#2| (-294 |#2|) (-407 (-563))) 51) (((-52) |#2| (-294 |#2|)) 48) (((-52) |#2| (-407 (-563))) 50) (((-52) |#2|) 49) (((-52) (-1169)) 47)) (-2670 (((-52) |#2| (-294 |#2|) (-407 (-563))) 46) (((-52) |#2| (-294 |#2|)) 43) (((-52) |#2| (-407 (-563))) 45) (((-52) |#2|) 44) (((-52) (-1169)) 42)) (-2660 (((-52) |#2| (-294 |#2|) (-563)) 39) (((-52) |#2| (-294 |#2|)) 35) (((-52) |#2| (-563)) 38) (((-52) |#2|) 36) (((-52) (-1169)) 34))) +(((-315 |#1| |#2|) (-10 -7 (-15 -2652 ((-52) (-1169))) (-15 -2652 ((-52) |#2|)) (-15 -2652 ((-52) |#2| (-767))) (-15 -2652 ((-52) |#2| (-294 |#2|))) (-15 -2652 ((-52) |#2| (-294 |#2|) (-767))) (-15 -2660 ((-52) (-1169))) (-15 -2660 ((-52) |#2|)) (-15 -2660 ((-52) |#2| (-563))) (-15 -2660 ((-52) |#2| (-294 |#2|))) (-15 -2660 ((-52) |#2| (-294 |#2|) (-563))) (-15 -2670 ((-52) (-1169))) (-15 -2670 ((-52) |#2|)) (-15 -2670 ((-52) |#2| (-407 (-563)))) (-15 -2670 ((-52) |#2| (-294 |#2|))) (-15 -2670 ((-52) |#2| (-294 |#2|) (-407 (-563)))) (-15 -3045 ((-52) (-1169))) (-15 -3045 ((-52) |#2|)) (-15 -3045 ((-52) |#2| (-407 (-563)))) (-15 -3045 ((-52) |#2| (-294 |#2|))) (-15 -3045 ((-52) |#2| (-294 |#2|) (-407 (-563))))) (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))) (-13 (-27) (-1193) (-430 |#1|))) (T -315)) +((-3045 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-563))) (-4 *3 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-3045 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))) (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-3045 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-563))) (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))))) (-3045 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *4))))) (-3045 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1193) (-430 *4))))) (-2670 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-563))) (-4 *3 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-2670 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))) (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-2670 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-563))) (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))))) (-2670 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *4))))) (-2670 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1193) (-430 *4))))) (-2660 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-452) (-846) (-1034 *5) (-636 *5))) (-5 *5 (-563)) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-2660 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))) (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-2660 (*1 *2 *3 *4) (-12 (-5 *4 (-563)) (-4 *5 (-13 (-452) (-846) (-1034 *4) (-636 *4))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))))) (-2660 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *4))))) (-2660 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1193) (-430 *4))))) (-2652 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-767)) (-4 *3 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-2652 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))) (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-2652 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))))) (-2652 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *4))))) (-2652 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1193) (-430 *4)))))) +(-10 -7 (-15 -2652 ((-52) (-1169))) (-15 -2652 ((-52) |#2|)) (-15 -2652 ((-52) |#2| (-767))) (-15 -2652 ((-52) |#2| (-294 |#2|))) (-15 -2652 ((-52) |#2| (-294 |#2|) (-767))) (-15 -2660 ((-52) (-1169))) (-15 -2660 ((-52) |#2|)) (-15 -2660 ((-52) |#2| (-563))) (-15 -2660 ((-52) |#2| (-294 |#2|))) (-15 -2660 ((-52) |#2| (-294 |#2|) (-563))) (-15 -2670 ((-52) (-1169))) (-15 -2670 ((-52) |#2|)) (-15 -2670 ((-52) |#2| (-407 (-563)))) (-15 -2670 ((-52) |#2| (-294 |#2|))) (-15 -2670 ((-52) |#2| (-294 |#2|) (-407 (-563)))) (-15 -3045 ((-52) (-1169))) (-15 -3045 ((-52) |#2|)) (-15 -3045 ((-52) |#2| (-407 (-563)))) (-15 -3045 ((-52) |#2| (-294 |#2|))) (-15 -3045 ((-52) |#2| (-294 |#2|) (-407 (-563))))) +((-1677 (((-112) $ $) NIL)) (-2802 (((-640 $) $ (-1169)) NIL (|has| |#1| (-555))) (((-640 $) $) NIL (|has| |#1| (-555))) (((-640 $) (-1165 $) (-1169)) NIL (|has| |#1| (-555))) (((-640 $) (-1165 $)) NIL (|has| |#1| (-555))) (((-640 $) (-948 $)) NIL (|has| |#1| (-555)))) (-3070 (($ $ (-1169)) NIL (|has| |#1| (-555))) (($ $) NIL (|has| |#1| (-555))) (($ (-1165 $) (-1169)) NIL (|has| |#1| (-555))) (($ (-1165 $)) NIL (|has| |#1| (-555))) (($ (-948 $)) NIL (|has| |#1| (-555)))) (-3411 (((-112) $) 27 (-4032 (|has| |#1| (-25)) (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045)))))) (-2606 (((-640 (-1169)) $) 348)) (-2139 (((-407 (-1165 $)) $ (-609 $)) NIL (|has| |#1| (-555)))) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-4223 (($ $) NIL (|has| |#1| (-555)))) (-3156 (((-112) $) NIL (|has| |#1| (-555)))) (-2059 (((-640 (-609 $)) $) NIL)) (-1771 (($ $) 158 (|has| |#1| (-555)))) (-1619 (($ $) 134 (|has| |#1| (-555)))) (-3743 (($ $ (-1085 $)) 219 (|has| |#1| (-555))) (($ $ (-1169)) 215 (|has| |#1| (-555)))) (-1495 (((-3 $ "failed") $ $) NIL (-4032 (|has| |#1| (-21)) (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045)))))) (-4132 (($ $ (-294 $)) NIL) (($ $ (-640 (-294 $))) 365) (($ $ (-640 (-609 $)) (-640 $)) 409)) (-2424 (((-418 (-1165 $)) (-1165 $)) 293 (-12 (|has| |#1| (-452)) (|has| |#1| (-555))))) (-4335 (($ $) NIL (|has| |#1| (-555)))) (-3205 (((-418 $) $) NIL (|has| |#1| (-555)))) (-2186 (($ $) NIL (|has| |#1| (-555)))) (-1919 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1748 (($ $) 154 (|has| |#1| (-555)))) (-1597 (($ $) 130 (|has| |#1| (-555)))) (-4145 (($ $ (-563)) 67 (|has| |#1| (-555)))) (-1794 (($ $) 162 (|has| |#1| (-555)))) (-1643 (($ $) 138 (|has| |#1| (-555)))) (-4239 (($) NIL (-4032 (|has| |#1| (-25)) (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))) (|has| |#1| (-1105))) CONST)) (-4144 (((-640 $) $ (-1169)) NIL (|has| |#1| (-555))) (((-640 $) $) NIL (|has| |#1| (-555))) (((-640 $) (-1165 $) (-1169)) NIL (|has| |#1| (-555))) (((-640 $) (-1165 $)) NIL (|has| |#1| (-555))) (((-640 $) (-948 $)) NIL (|has| |#1| (-555)))) (-3457 (($ $ (-1169)) NIL (|has| |#1| (-555))) (($ $) NIL (|has| |#1| (-555))) (($ (-1165 $) (-1169)) 121 (|has| |#1| (-555))) (($ (-1165 $)) NIL (|has| |#1| (-555))) (($ (-948 $)) NIL (|has| |#1| (-555)))) (-2131 (((-3 (-609 $) "failed") $) 17) (((-3 (-1169) "failed") $) NIL) (((-3 |#1| "failed") $) 418) (((-3 (-48) "failed") $) 321 (-12 (|has| |#1| (-555)) (|has| |#1| (-1034 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-948 |#1|)) "failed") $) NIL (|has| |#1| (-555))) (((-3 (-948 |#1|) "failed") $) NIL (|has| |#1| (-1045))) (((-3 (-407 (-563)) "failed") $) 46 (-4032 (-12 (|has| |#1| (-555)) (|has| |#1| (-1034 (-563)))) (|has| |#1| (-1034 (-407 (-563))))))) (-2058 (((-609 $) $) 11) (((-1169) $) NIL) ((|#1| $) 400) (((-48) $) NIL (-12 (|has| |#1| (-555)) (|has| |#1| (-1034 (-563))))) (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-948 |#1|)) $) NIL (|has| |#1| (-555))) (((-948 |#1|) $) NIL (|has| |#1| (-1045))) (((-407 (-563)) $) 304 (-4032 (-12 (|has| |#1| (-555)) (|has| |#1| (-1034 (-563)))) (|has| |#1| (-1034 (-407 (-563))))))) (-3090 (($ $ $) NIL (|has| |#1| (-555)))) (-2950 (((-2 (|:| -2835 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 114 (|has| |#1| (-1045))) (((-684 |#1|) (-684 $)) 104 (|has| |#1| (-1045))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045)))) (((-684 (-563)) (-684 $)) NIL (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))))) (-2444 (($ $) 85 (|has| |#1| (-555)))) (-3400 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))) (|has| |#1| (-1105))))) (-3050 (($ $ $) NIL (|has| |#1| (-555)))) (-2041 (($ $ (-1085 $)) 223 (|has| |#1| (-555))) (($ $ (-1169)) 221 (|has| |#1| (-555)))) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL (|has| |#1| (-555)))) (-2468 (((-112) $) NIL (|has| |#1| (-555)))) (-2507 (($ $ $) 189 (|has| |#1| (-555)))) (-2180 (($) 124 (|has| |#1| (-555)))) (-3972 (($ $ $) 209 (|has| |#1| (-555)))) (-3787 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 371 (|has| |#1| (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 378 (|has| |#1| (-882 (-379))))) (-3968 (($ $) NIL) (($ (-640 $)) NIL)) (-3804 (((-640 (-114)) $) NIL)) (-2361 (((-114) (-114)) 264)) (-3827 (((-112) $) 25 (-4032 (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))) (|has| |#1| (-1105))))) (-3131 (((-112) $) NIL (|has| $ (-1034 (-563))))) (-2711 (($ $) 66 (|has| |#1| (-1045)))) (-2143 (((-1118 |#1| (-609 $)) $) 80 (|has| |#1| (-1045)))) (-2414 (((-112) $) 59 (|has| |#1| (-555)))) (-1645 (($ $ (-563)) NIL (|has| |#1| (-555)))) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-555)))) (-3180 (((-1165 $) (-609 $)) 265 (|has| $ (-1045)))) (-3084 (($ $ $) NIL)) (-1777 (($ $ $) NIL)) (-2240 (($ (-1 $ $) (-609 $)) 405)) (-2875 (((-3 (-609 $) "failed") $) NIL)) (-4371 (($ $) 128 (|has| |#1| (-555)))) (-3108 (($ $) 234 (|has| |#1| (-555)))) (-3513 (($ (-640 $)) NIL (|has| |#1| (-555))) (($ $ $) NIL (|has| |#1| (-555)))) (-3573 (((-1151) $) NIL)) (-2127 (((-640 (-609 $)) $) 49)) (-2227 (($ (-114) $) NIL) (($ (-114) (-640 $)) 410)) (-3733 (((-3 (-640 $) "failed") $) NIL (|has| |#1| (-1105)))) (-1848 (((-3 (-2 (|:| |val| $) (|:| -1654 (-563))) "failed") $) NIL (|has| |#1| (-1045)))) (-2919 (((-3 (-640 $) "failed") $) 413 (|has| |#1| (-25)))) (-4298 (((-3 (-2 (|:| -2311 (-563)) (|:| |var| (-609 $))) "failed") $) 417 (|has| |#1| (-25)))) (-4086 (((-3 (-2 (|:| |var| (-609 $)) (|:| -1654 (-563))) "failed") $) NIL (|has| |#1| (-1105))) (((-3 (-2 (|:| |var| (-609 $)) (|:| -1654 (-563))) "failed") $ (-114)) NIL (|has| |#1| (-1045))) (((-3 (-2 (|:| |var| (-609 $)) (|:| -1654 (-563))) "failed") $ (-1169)) NIL (|has| |#1| (-1045)))) (-2799 (((-112) $ (-114)) NIL) (((-112) $ (-1169)) 51)) (-2688 (($ $) NIL (-4032 (|has| |#1| (-473)) (|has| |#1| (-555))))) (-1335 (($ $ (-1169)) 238 (|has| |#1| (-555))) (($ $ (-1085 $)) 240 (|has| |#1| (-555)))) (-4236 (((-767) $) NIL)) (-1694 (((-1113) $) NIL)) (-2696 (((-112) $) 43)) (-2706 ((|#1| $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 286 (|has| |#1| (-555)))) (-3548 (($ (-640 $)) NIL (|has| |#1| (-555))) (($ $ $) NIL (|has| |#1| (-555)))) (-1372 (((-112) $ $) NIL) (((-112) $ (-1169)) NIL)) (-2487 (($ $ (-1169)) 213 (|has| |#1| (-555))) (($ $) 211 (|has| |#1| (-555)))) (-3219 (($ $) 205 (|has| |#1| (-555)))) (-3116 (((-418 (-1165 $)) (-1165 $)) 291 (-12 (|has| |#1| (-452)) (|has| |#1| (-555))))) (-2174 (((-418 $) $) NIL (|has| |#1| (-555)))) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-555))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL (|has| |#1| (-555)))) (-3008 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-555)))) (-3368 (($ $) 126 (|has| |#1| (-555)))) (-2359 (((-112) $) NIL (|has| $ (-1034 (-563))))) (-1540 (($ $ (-609 $) $) NIL) (($ $ (-640 (-609 $)) (-640 $)) 404) (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-640 (-1169)) (-640 (-1 $ $))) NIL) (($ $ (-640 (-1169)) (-640 (-1 $ (-640 $)))) NIL) (($ $ (-1169) (-1 $ (-640 $))) NIL) (($ $ (-1169) (-1 $ $)) NIL) (($ $ (-640 (-114)) (-640 (-1 $ $))) 358) (($ $ (-640 (-114)) (-640 (-1 $ (-640 $)))) NIL) (($ $ (-114) (-1 $ (-640 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1169)) NIL (|has| |#1| (-611 (-536)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-611 (-536)))) (($ $) NIL (|has| |#1| (-611 (-536)))) (($ $ (-114) $ (-1169)) 346 (|has| |#1| (-611 (-536)))) (($ $ (-640 (-114)) (-640 $) (-1169)) 345 (|has| |#1| (-611 (-536)))) (($ $ (-640 (-1169)) (-640 (-767)) (-640 (-1 $ $))) NIL (|has| |#1| (-1045))) (($ $ (-640 (-1169)) (-640 (-767)) (-640 (-1 $ (-640 $)))) NIL (|has| |#1| (-1045))) (($ $ (-1169) (-767) (-1 $ (-640 $))) NIL (|has| |#1| (-1045))) (($ $ (-1169) (-767) (-1 $ $)) NIL (|has| |#1| (-1045)))) (-2628 (((-767) $) NIL (|has| |#1| (-555)))) (-2773 (($ $) 226 (|has| |#1| (-555)))) (-2309 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-640 $)) NIL)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| |#1| (-555)))) (-3071 (($ $) NIL) (($ $ $) NIL)) (-1586 (($ $) 236 (|has| |#1| (-555)))) (-1760 (($ $) 187 (|has| |#1| (-555)))) (-4202 (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-1045))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-1045))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-1045))) (($ $ (-1169)) NIL (|has| |#1| (-1045)))) (-1801 (($ $) 68 (|has| |#1| (-555)))) (-2154 (((-1118 |#1| (-609 $)) $) 82 (|has| |#1| (-555)))) (-3390 (($ $) 302 (|has| $ (-1045)))) (-1806 (($ $) 164 (|has| |#1| (-555)))) (-1656 (($ $) 140 (|has| |#1| (-555)))) (-1784 (($ $) 160 (|has| |#1| (-555)))) (-1630 (($ $) 136 (|has| |#1| (-555)))) (-1759 (($ $) 156 (|has| |#1| (-555)))) (-1608 (($ $) 132 (|has| |#1| (-555)))) (-2220 (((-888 (-563)) $) NIL (|has| |#1| (-611 (-888 (-563))))) (((-888 (-379)) $) NIL (|has| |#1| (-611 (-888 (-379))))) (($ (-418 $)) NIL (|has| |#1| (-555))) (((-536) $) 343 (|has| |#1| (-611 (-536))))) (-4339 (($ $ $) NIL (|has| |#1| (-473)))) (-2146 (($ $ $) NIL (|has| |#1| (-473)))) (-1693 (((-858) $) 403) (($ (-609 $)) 394) (($ (-1169)) 360) (($ |#1|) 322) (($ $) NIL (|has| |#1| (-555))) (($ (-48)) 297 (-12 (|has| |#1| (-555)) (|has| |#1| (-1034 (-563))))) (($ (-1118 |#1| (-609 $))) 84 (|has| |#1| (-1045))) (($ (-407 |#1|)) NIL (|has| |#1| (-555))) (($ (-948 (-407 |#1|))) NIL (|has| |#1| (-555))) (($ (-407 (-948 (-407 |#1|)))) NIL (|has| |#1| (-555))) (($ (-407 (-948 |#1|))) NIL (|has| |#1| (-555))) (($ (-948 |#1|)) NIL (|has| |#1| (-1045))) (($ (-407 (-563))) NIL (-4032 (|has| |#1| (-555)) (|has| |#1| (-1034 (-407 (-563)))))) (($ (-563)) 34 (-4032 (|has| |#1| (-1034 (-563))) (|has| |#1| (-1045))))) (-2779 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1675 (((-767)) NIL (|has| |#1| (-1045)))) (-3079 (($ $) NIL) (($ (-640 $)) NIL)) (-2869 (($ $ $) 207 (|has| |#1| (-555)))) (-2736 (($ $ $) 193 (|has| |#1| (-555)))) (-2040 (($ $ $) 197 (|has| |#1| (-555)))) (-4271 (($ $ $) 191 (|has| |#1| (-555)))) (-3988 (($ $ $) 195 (|has| |#1| (-555)))) (-3734 (((-112) (-114)) 9)) (-1840 (($ $) 170 (|has| |#1| (-555)))) (-1695 (($ $) 146 (|has| |#1| (-555)))) (-2126 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1817 (($ $) 166 (|has| |#1| (-555)))) (-1667 (($ $) 142 (|has| |#1| (-555)))) (-1862 (($ $) 174 (|has| |#1| (-555)))) (-1722 (($ $) 150 (|has| |#1| (-555)))) (-1895 (($ (-1169) $) NIL) (($ (-1169) $ $) NIL) (($ (-1169) $ $ $) NIL) (($ (-1169) $ $ $ $) NIL) (($ (-1169) (-640 $)) NIL)) (-3336 (($ $) 201 (|has| |#1| (-555)))) (-4252 (($ $) 199 (|has| |#1| (-555)))) (-1311 (($ $) 176 (|has| |#1| (-555)))) (-1735 (($ $) 152 (|has| |#1| (-555)))) (-1851 (($ $) 172 (|has| |#1| (-555)))) (-1710 (($ $) 148 (|has| |#1| (-555)))) (-1829 (($ $) 168 (|has| |#1| (-555)))) (-1680 (($ $) 144 (|has| |#1| (-555)))) (-2509 (($ $) 179 (|has| |#1| (-555)))) (-2241 (($) 20 (-4032 (|has| |#1| (-25)) (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045)))) CONST)) (-1482 (($ $) 230 (|has| |#1| (-555)))) (-2254 (($) 22 (-4032 (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))) (|has| |#1| (-1105))) CONST)) (-1341 (($ $) 181 (|has| |#1| (-555))) (($ $ $) 183 (|has| |#1| (-555)))) (-1561 (($ $) 228 (|has| |#1| (-555)))) (-3209 (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-1045))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-1045))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-1045))) (($ $ (-1169)) NIL (|has| |#1| (-1045)))) (-3525 (($ $) 232 (|has| |#1| (-555)))) (-3929 (($ $ $) 185 (|has| |#1| (-555)))) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 77)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) 76)) (-1837 (($ (-1118 |#1| (-609 $)) (-1118 |#1| (-609 $))) 95 (|has| |#1| (-555))) (($ $ $) 42 (-4032 (|has| |#1| (-473)) (|has| |#1| (-555))))) (-1826 (($ $ $) 40 (-4032 (|has| |#1| (-21)) (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))))) (($ $) 29 (-4032 (|has| |#1| (-21)) (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045)))))) (-1814 (($ $ $) 38 (-4032 (|has| |#1| (-25)) (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045)))))) (** (($ $ $) 61 (|has| |#1| (-555))) (($ $ (-407 (-563))) 299 (|has| |#1| (-555))) (($ $ (-563)) 72 (-4032 (|has| |#1| (-473)) (|has| |#1| (-555)))) (($ $ (-767)) 69 (-4032 (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))) (|has| |#1| (-1105)))) (($ $ (-917)) 74 (-4032 (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))) (|has| |#1| (-1105))))) (* (($ (-407 (-563)) $) NIL (|has| |#1| (-555))) (($ $ (-407 (-563))) NIL (|has| |#1| (-555))) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))) (($ $ $) 36 (-4032 (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))) (|has| |#1| (-1105)))) (($ (-563) $) 32 (-4032 (|has| |#1| (-21)) (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))))) (($ (-767) $) NIL (-4032 (|has| |#1| (-25)) (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))))) (($ (-917) $) NIL (-4032 (|has| |#1| (-25)) (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))))))) +(((-316 |#1|) (-13 (-430 |#1|) (-10 -8 (IF (|has| |#1| (-555)) (PROGN (-6 (-29 |#1|)) (-6 (-1193)) (-6 (-160)) (-6 (-626)) (-6 (-1132)) (-15 -2444 ($ $)) (-15 -2414 ((-112) $)) (-15 -4145 ($ $ (-563))) (IF (|has| |#1| (-452)) (PROGN (-15 -3116 ((-418 (-1165 $)) (-1165 $))) (-15 -2424 ((-418 (-1165 $)) (-1165 $)))) |%noBranch|) (IF (|has| |#1| (-1034 (-563))) (-6 (-1034 (-48))) |%noBranch|)) |%noBranch|))) (-846)) (T -316)) +((-2444 (*1 *1 *1) (-12 (-5 *1 (-316 *2)) (-4 *2 (-555)) (-4 *2 (-846)))) (-2414 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-316 *3)) (-4 *3 (-555)) (-4 *3 (-846)))) (-4145 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-316 *3)) (-4 *3 (-555)) (-4 *3 (-846)))) (-3116 (*1 *2 *3) (-12 (-5 *2 (-418 (-1165 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1165 *1)) (-4 *4 (-452)) (-4 *4 (-555)) (-4 *4 (-846)))) (-2424 (*1 *2 *3) (-12 (-5 *2 (-418 (-1165 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1165 *1)) (-4 *4 (-452)) (-4 *4 (-555)) (-4 *4 (-846))))) +(-13 (-430 |#1|) (-10 -8 (IF (|has| |#1| (-555)) (PROGN (-6 (-29 |#1|)) (-6 (-1193)) (-6 (-160)) (-6 (-626)) (-6 (-1132)) (-15 -2444 ($ $)) (-15 -2414 ((-112) $)) (-15 -4145 ($ $ (-563))) (IF (|has| |#1| (-452)) (PROGN (-15 -3116 ((-418 (-1165 $)) (-1165 $))) (-15 -2424 ((-418 (-1165 $)) (-1165 $)))) |%noBranch|) (IF (|has| |#1| (-1034 (-563))) (-6 (-1034 (-48))) |%noBranch|)) |%noBranch|))) +((-2561 (((-52) |#2| (-114) (-294 |#2|) (-640 |#2|)) 88) (((-52) |#2| (-114) (-294 |#2|) (-294 |#2|)) 84) (((-52) |#2| (-114) (-294 |#2|) |#2|) 86) (((-52) (-294 |#2|) (-114) (-294 |#2|) |#2|) 87) (((-52) (-640 |#2|) (-640 (-114)) (-294 |#2|) (-640 (-294 |#2|))) 80) (((-52) (-640 |#2|) (-640 (-114)) (-294 |#2|) (-640 |#2|)) 82) (((-52) (-640 (-294 |#2|)) (-640 (-114)) (-294 |#2|) (-640 |#2|)) 83) (((-52) (-640 (-294 |#2|)) (-640 (-114)) (-294 |#2|) (-640 (-294 |#2|))) 81) (((-52) (-294 |#2|) (-114) (-294 |#2|) (-640 |#2|)) 89) (((-52) (-294 |#2|) (-114) (-294 |#2|) (-294 |#2|)) 85))) +(((-317 |#1| |#2|) (-10 -7 (-15 -2561 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-294 |#2|))) (-15 -2561 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-640 |#2|))) (-15 -2561 ((-52) (-640 (-294 |#2|)) (-640 (-114)) (-294 |#2|) (-640 (-294 |#2|)))) (-15 -2561 ((-52) (-640 (-294 |#2|)) (-640 (-114)) (-294 |#2|) (-640 |#2|))) (-15 -2561 ((-52) (-640 |#2|) (-640 (-114)) (-294 |#2|) (-640 |#2|))) (-15 -2561 ((-52) (-640 |#2|) (-640 (-114)) (-294 |#2|) (-640 (-294 |#2|)))) (-15 -2561 ((-52) (-294 |#2|) (-114) (-294 |#2|) |#2|)) (-15 -2561 ((-52) |#2| (-114) (-294 |#2|) |#2|)) (-15 -2561 ((-52) |#2| (-114) (-294 |#2|) (-294 |#2|))) (-15 -2561 ((-52) |#2| (-114) (-294 |#2|) (-640 |#2|)))) (-13 (-846) (-555) (-611 (-536))) (-430 |#1|)) (T -317)) +((-2561 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-5 *6 (-640 *3)) (-4 *3 (-430 *7)) (-4 *7 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *7 *3)))) (-2561 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6)) (-4 *6 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *3)))) (-2561 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6)) (-4 *6 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *3)))) (-2561 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-294 *5)) (-5 *4 (-114)) (-4 *5 (-430 *6)) (-4 *6 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *5)))) (-2561 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 (-114))) (-5 *6 (-640 (-294 *8))) (-4 *8 (-430 *7)) (-5 *5 (-294 *8)) (-4 *7 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *7 *8)))) (-2561 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-640 *7)) (-5 *4 (-640 (-114))) (-5 *5 (-294 *7)) (-4 *7 (-430 *6)) (-4 *6 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) (-2561 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-640 (-294 *8))) (-5 *4 (-640 (-114))) (-5 *5 (-294 *8)) (-5 *6 (-640 *8)) (-4 *8 (-430 *7)) (-4 *7 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *7 *8)))) (-2561 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-640 (-294 *7))) (-5 *4 (-640 (-114))) (-5 *5 (-294 *7)) (-4 *7 (-430 *6)) (-4 *6 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) (-2561 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-640 *7)) (-4 *7 (-430 *6)) (-4 *6 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) (-2561 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-294 *6)) (-5 *4 (-114)) (-4 *6 (-430 *5)) (-4 *5 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *5 *6))))) +(-10 -7 (-15 -2561 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-294 |#2|))) (-15 -2561 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-640 |#2|))) (-15 -2561 ((-52) (-640 (-294 |#2|)) (-640 (-114)) (-294 |#2|) (-640 (-294 |#2|)))) (-15 -2561 ((-52) (-640 (-294 |#2|)) (-640 (-114)) (-294 |#2|) (-640 |#2|))) (-15 -2561 ((-52) (-640 |#2|) (-640 (-114)) (-294 |#2|) (-640 |#2|))) (-15 -2561 ((-52) (-640 |#2|) (-640 (-114)) (-294 |#2|) (-640 (-294 |#2|)))) (-15 -2561 ((-52) (-294 |#2|) (-114) (-294 |#2|) |#2|)) (-15 -2561 ((-52) |#2| (-114) (-294 |#2|) |#2|)) (-15 -2561 ((-52) |#2| (-114) (-294 |#2|) (-294 |#2|))) (-15 -2561 ((-52) |#2| (-114) (-294 |#2|) (-640 |#2|)))) +((-2826 (((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-225) (-563) (-1151)) 45) (((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-225) (-563)) 46) (((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-1 (-225) (-225)) (-563) (-1151)) 42) (((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-1 (-225) (-225)) (-563)) 43)) (-2945 (((-1 (-225) (-225)) (-225)) 44))) +(((-318) (-10 -7 (-15 -2945 ((-1 (-225) (-225)) (-225))) (-15 -2826 ((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-1 (-225) (-225)) (-563))) (-15 -2826 ((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-1 (-225) (-225)) (-563) (-1151))) (-15 -2826 ((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-225) (-563))) (-15 -2826 ((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-225) (-563) (-1151))))) (T -318)) +((-2826 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-316 (-563))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1087 (-225))) (-5 *6 (-225)) (-5 *7 (-563)) (-5 *8 (-1151)) (-5 *2 (-1203 (-922))) (-5 *1 (-318)))) (-2826 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-316 (-563))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1087 (-225))) (-5 *6 (-225)) (-5 *7 (-563)) (-5 *2 (-1203 (-922))) (-5 *1 (-318)))) (-2826 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-316 (-563))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1087 (-225))) (-5 *6 (-563)) (-5 *7 (-1151)) (-5 *2 (-1203 (-922))) (-5 *1 (-318)))) (-2826 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-316 (-563))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1087 (-225))) (-5 *6 (-563)) (-5 *2 (-1203 (-922))) (-5 *1 (-318)))) (-2945 (*1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-318)) (-5 *3 (-225))))) +(-10 -7 (-15 -2945 ((-1 (-225) (-225)) (-225))) (-15 -2826 ((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-1 (-225) (-225)) (-563))) (-15 -2826 ((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-1 (-225) (-225)) (-563) (-1151))) (-15 -2826 ((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-225) (-563))) (-15 -2826 ((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-225) (-563) (-1151)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) 25)) (-2606 (((-640 (-1075)) $) NIL)) (-2518 (((-1169) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-4223 (($ $) NIL (|has| |#1| (-555)))) (-3156 (((-112) $) NIL (|has| |#1| (-555)))) (-2421 (($ $ (-407 (-563))) NIL) (($ $ (-407 (-563)) (-407 (-563))) NIL)) (-1539 (((-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|))) $) 20)) (-1771 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1619 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1495 (((-3 $ "failed") $ $) NIL)) (-4335 (($ $) NIL (|has| |#1| (-363)))) (-3205 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2186 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1919 (((-112) $ $) NIL (|has| |#1| (-363)))) (-1748 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1597 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3045 (($ (-767) (-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|)))) NIL)) (-1794 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1643 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-4239 (($) NIL T CONST)) (-3090 (($ $ $) NIL (|has| |#1| (-363)))) (-2751 (($ $) 31)) (-3400 (((-3 $ "failed") $) NIL)) (-3050 (($ $ $) NIL (|has| |#1| (-363)))) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-2468 (((-112) $) NIL (|has| |#1| (-363)))) (-2788 (((-112) $) NIL)) (-2180 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3254 (((-407 (-563)) $) NIL) (((-407 (-563)) $ (-407 (-563))) 16)) (-3827 (((-112) $) NIL)) (-1645 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1351 (($ $ (-917)) NIL) (($ $ (-407 (-563))) NIL)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3920 (((-112) $) NIL)) (-2588 (($ |#1| (-407 (-563))) NIL) (($ $ (-1075) (-407 (-563))) NIL) (($ $ (-640 (-1075)) (-640 (-407 (-563)))) NIL)) (-3084 (($ $ $) NIL)) (-1777 (($ $ $) NIL)) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-4371 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2716 (($ $) NIL)) (-2726 ((|#1| $) NIL)) (-3513 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3573 (((-1151) $) NIL)) (-2688 (($ $) NIL (|has| |#1| (-363)))) (-3698 (($ $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) NIL (-4032 (-12 (|has| |#1| (-15 -3698 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -2606 ((-640 (-1169)) |#1|))) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-955)) (|has| |#1| (-1193)))))) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-363)))) (-3548 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2174 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL (|has| |#1| (-363)))) (-3320 (($ $ (-407 (-563))) NIL)) (-3008 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-4379 (((-407 (-563)) $) 17)) (-4094 (($ (-1242 |#1| |#2| |#3|)) 11)) (-1654 (((-1242 |#1| |#2| |#3|) $) 12)) (-3368 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1540 (((-1149 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))))) (-2628 (((-767) $) NIL (|has| |#1| (-363)))) (-2309 ((|#1| $ (-407 (-563))) NIL) (($ $ $) NIL (|has| (-407 (-563)) (-1105)))) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| |#1| (-363)))) (-4202 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (-4167 (((-407 (-563)) $) NIL)) (-1806 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1656 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1784 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1630 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1759 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1608 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1741 (($ $) 10)) (-1693 (((-858) $) 37) (($ (-563)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $) NIL (|has| |#1| (-555)))) (-4319 ((|#1| $ (-407 (-563))) 29)) (-2779 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1675 (((-767)) NIL)) (-3408 ((|#1| $) NIL)) (-1840 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1695 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2126 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1817 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1667 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1862 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1722 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1403 ((|#1| $ (-407 (-563))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))) (|has| |#1| (-15 -1693 (|#1| (-1169))))))) (-1311 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1735 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1851 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1710 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1829 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1680 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-3209 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 27)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) 32)) (-1837 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))))) +(((-319 |#1| |#2| |#3|) (-13 (-1238 |#1|) (-788) (-10 -8 (-15 -4094 ($ (-1242 |#1| |#2| |#3|))) (-15 -1654 ((-1242 |#1| |#2| |#3|) $)) (-15 -4379 ((-407 (-563)) $)))) (-13 (-363) (-846)) (-1169) |#1|) (T -319)) +((-4094 (*1 *1 *2) (-12 (-5 *2 (-1242 *3 *4 *5)) (-4 *3 (-13 (-363) (-846))) (-14 *4 (-1169)) (-14 *5 *3) (-5 *1 (-319 *3 *4 *5)))) (-1654 (*1 *2 *1) (-12 (-5 *2 (-1242 *3 *4 *5)) (-5 *1 (-319 *3 *4 *5)) (-4 *3 (-13 (-363) (-846))) (-14 *4 (-1169)) (-14 *5 *3))) (-4379 (*1 *2 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-319 *3 *4 *5)) (-4 *3 (-13 (-363) (-846))) (-14 *4 (-1169)) (-14 *5 *3)))) +(-13 (-1238 |#1|) (-788) (-10 -8 (-15 -4094 ($ (-1242 |#1| |#2| |#3|))) (-15 -1654 ((-1242 |#1| |#2| |#3|) $)) (-15 -4379 ((-407 (-563)) $)))) +((-1645 (((-2 (|:| -1654 (-767)) (|:| -2311 |#1|) (|:| |radicand| (-640 |#1|))) (-418 |#1|) (-767)) 24)) (-4371 (((-640 (-2 (|:| -2311 (-767)) (|:| |logand| |#1|))) (-418 |#1|)) 28))) +(((-320 |#1|) (-10 -7 (-15 -1645 ((-2 (|:| -1654 (-767)) (|:| -2311 |#1|) (|:| |radicand| (-640 |#1|))) (-418 |#1|) (-767))) (-15 -4371 ((-640 (-2 (|:| -2311 (-767)) (|:| |logand| |#1|))) (-418 |#1|)))) (-555)) (T -320)) +((-4371 (*1 *2 *3) (-12 (-5 *3 (-418 *4)) (-4 *4 (-555)) (-5 *2 (-640 (-2 (|:| -2311 (-767)) (|:| |logand| *4)))) (-5 *1 (-320 *4)))) (-1645 (*1 *2 *3 *4) (-12 (-5 *3 (-418 *5)) (-4 *5 (-555)) (-5 *2 (-2 (|:| -1654 (-767)) (|:| -2311 *5) (|:| |radicand| (-640 *5)))) (-5 *1 (-320 *5)) (-5 *4 (-767))))) +(-10 -7 (-15 -1645 ((-2 (|:| -1654 (-767)) (|:| -2311 |#1|) (|:| |radicand| (-640 |#1|))) (-418 |#1|) (-767))) (-15 -4371 ((-640 (-2 (|:| -2311 (-767)) (|:| |logand| |#1|))) (-418 |#1|)))) +((-2606 (((-640 |#2|) (-1165 |#4|)) 43)) (-1878 ((|#3| (-563)) 46)) (-1889 (((-1165 |#4|) (-1165 |#3|)) 30)) (-3178 (((-1165 |#4|) (-1165 |#4|) (-563)) 55)) (-4188 (((-1165 |#3|) (-1165 |#4|)) 21)) (-4167 (((-640 (-767)) (-1165 |#4|) (-640 |#2|)) 40)) (-4010 (((-1165 |#3|) (-1165 |#4|) (-640 |#2|) (-640 |#3|)) 35))) +(((-321 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4010 ((-1165 |#3|) (-1165 |#4|) (-640 |#2|) (-640 |#3|))) (-15 -4167 ((-640 (-767)) (-1165 |#4|) (-640 |#2|))) (-15 -2606 ((-640 |#2|) (-1165 |#4|))) (-15 -4188 ((-1165 |#3|) (-1165 |#4|))) (-15 -1889 ((-1165 |#4|) (-1165 |#3|))) (-15 -3178 ((-1165 |#4|) (-1165 |#4|) (-563))) (-15 -1878 (|#3| (-563)))) (-789) (-846) (-1045) (-945 |#3| |#1| |#2|)) (T -321)) +((-1878 (*1 *2 *3) (-12 (-5 *3 (-563)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1045)) (-5 *1 (-321 *4 *5 *2 *6)) (-4 *6 (-945 *2 *4 *5)))) (-3178 (*1 *2 *2 *3) (-12 (-5 *2 (-1165 *7)) (-5 *3 (-563)) (-4 *7 (-945 *6 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-5 *1 (-321 *4 *5 *6 *7)))) (-1889 (*1 *2 *3) (-12 (-5 *3 (-1165 *6)) (-4 *6 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-1165 *7)) (-5 *1 (-321 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5)))) (-4188 (*1 *2 *3) (-12 (-5 *3 (-1165 *7)) (-4 *7 (-945 *6 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-5 *2 (-1165 *6)) (-5 *1 (-321 *4 *5 *6 *7)))) (-2606 (*1 *2 *3) (-12 (-5 *3 (-1165 *7)) (-4 *7 (-945 *6 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-5 *2 (-640 *5)) (-5 *1 (-321 *4 *5 *6 *7)))) (-4167 (*1 *2 *3 *4) (-12 (-5 *3 (-1165 *8)) (-5 *4 (-640 *6)) (-4 *6 (-846)) (-4 *8 (-945 *7 *5 *6)) (-4 *5 (-789)) (-4 *7 (-1045)) (-5 *2 (-640 (-767))) (-5 *1 (-321 *5 *6 *7 *8)))) (-4010 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1165 *9)) (-5 *4 (-640 *7)) (-5 *5 (-640 *8)) (-4 *7 (-846)) (-4 *8 (-1045)) (-4 *9 (-945 *8 *6 *7)) (-4 *6 (-789)) (-5 *2 (-1165 *8)) (-5 *1 (-321 *6 *7 *8 *9))))) +(-10 -7 (-15 -4010 ((-1165 |#3|) (-1165 |#4|) (-640 |#2|) (-640 |#3|))) (-15 -4167 ((-640 (-767)) (-1165 |#4|) (-640 |#2|))) (-15 -2606 ((-640 |#2|) (-1165 |#4|))) (-15 -4188 ((-1165 |#3|) (-1165 |#4|))) (-15 -1889 ((-1165 |#4|) (-1165 |#3|))) (-15 -3178 ((-1165 |#4|) (-1165 |#4|) (-563))) (-15 -1878 (|#3| (-563)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) 14)) (-1539 (((-640 (-2 (|:| |gen| |#1|) (|:| -3368 (-563)))) $) 18)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3749 (((-767) $) NIL)) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#1| "failed") $) NIL)) (-2058 ((|#1| $) NIL)) (-2768 ((|#1| $ (-563)) NIL)) (-1992 (((-563) $ (-563)) NIL)) (-3084 (($ $ $) NIL (|has| |#1| (-846)))) (-1777 (($ $ $) NIL (|has| |#1| (-846)))) (-1633 (($ (-1 |#1| |#1|) $) NIL)) (-1480 (($ (-1 (-563) (-563)) $) 10)) (-3573 (((-1151) $) NIL)) (-2700 (($ $ $) NIL (|has| (-563) (-788)))) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL) (($ |#1|) NIL)) (-4319 (((-563) |#1| $) NIL)) (-2241 (($) 15 T CONST)) (-1778 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1756 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1744 (((-112) $ $) 21 (|has| |#1| (-846)))) (-1826 (($ $) 11) (($ $ $) 20)) (-1814 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ (-563)) NIL) (($ (-563) |#1|) 19))) +(((-322 |#1|) (-13 (-21) (-713 (-563)) (-323 |#1| (-563)) (-10 -7 (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|))) (-1093)) (T -322)) +NIL +(-13 (-21) (-713 (-563)) (-323 |#1| (-563)) (-10 -7 (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1539 (((-640 (-2 (|:| |gen| |#1|) (|:| -3368 |#2|))) $) 27)) (-1495 (((-3 $ "failed") $ $) 19)) (-3749 (((-767) $) 28)) (-4239 (($) 17 T CONST)) (-2131 (((-3 |#1| "failed") $) 32)) (-2058 ((|#1| $) 33)) (-2768 ((|#1| $ (-563)) 25)) (-1992 ((|#2| $ (-563)) 26)) (-1633 (($ (-1 |#1| |#1|) $) 22)) (-1480 (($ (-1 |#2| |#2|) $) 23)) (-3573 (((-1151) $) 9)) (-2700 (($ $ $) 21 (|has| |#2| (-788)))) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11) (($ |#1|) 31)) (-4319 ((|#2| |#1| $) 24)) (-2241 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1814 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ |#2| |#1|) 29))) +(((-323 |#1| |#2|) (-140) (-1093) (-131)) (T -323)) +((-1814 (*1 *1 *2 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-131)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-131)))) (-3749 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-131)) (-5 *2 (-767)))) (-1539 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-131)) (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3368 *4)))))) (-1992 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *1 (-323 *4 *2)) (-4 *4 (-1093)) (-4 *2 (-131)))) (-2768 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *1 (-323 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1093)))) (-4319 (*1 *2 *3 *1) (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-131)))) (-1480 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-131)))) (-1633 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-131)))) (-2700 (*1 *1 *1 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-131)) (-4 *3 (-788))))) +(-13 (-131) (-1034 |t#1|) (-10 -8 (-15 -1814 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3749 ((-767) $)) (-15 -1539 ((-640 (-2 (|:| |gen| |t#1|) (|:| -3368 |t#2|))) $)) (-15 -1992 (|t#2| $ (-563))) (-15 -2768 (|t#1| $ (-563))) (-15 -4319 (|t#2| |t#1| $)) (-15 -1480 ($ (-1 |t#2| |t#2|) $)) (-15 -1633 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-788)) (-15 -2700 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 |#1|) . T) ((-610 (-858)) . T) ((-1034 |#1|) . T) ((-1093) . T)) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1539 (((-640 (-2 (|:| |gen| |#1|) (|:| -3368 (-767)))) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3749 (((-767) $) NIL)) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#1| "failed") $) NIL)) (-2058 ((|#1| $) NIL)) (-2768 ((|#1| $ (-563)) NIL)) (-1992 (((-767) $ (-563)) NIL)) (-1633 (($ (-1 |#1| |#1|) $) NIL)) (-1480 (($ (-1 (-767) (-767)) $) NIL)) (-3573 (((-1151) $) NIL)) (-2700 (($ $ $) NIL (|has| (-767) (-788)))) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL) (($ |#1|) NIL)) (-4319 (((-767) |#1| $) NIL)) (-2241 (($) NIL T CONST)) (-1718 (((-112) $ $) NIL)) (-1814 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-767) |#1|) NIL))) +(((-324 |#1|) (-323 |#1| (-767)) (-1093)) (T -324)) +NIL +(-323 |#1| (-767)) +((-1300 (($ $) 52)) (-3554 (($ $ |#2| |#3| $) 14)) (-2803 (($ (-1 |#3| |#3|) $) 33)) (-2696 (((-112) $) 24)) (-2706 ((|#2| $) 26)) (-3008 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 43)) (-1836 ((|#2| $) 48)) (-1337 (((-640 |#2|) $) 36)) (-2793 (($ $ $ (-767)) 20)) (-1837 (($ $ |#2|) 40))) +(((-325 |#1| |#2| |#3|) (-10 -8 (-15 -1300 (|#1| |#1|)) (-15 -1836 (|#2| |#1|)) (-15 -3008 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2793 (|#1| |#1| |#1| (-767))) (-15 -3554 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2803 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1337 ((-640 |#2|) |#1|)) (-15 -2706 (|#2| |#1|)) (-15 -2696 ((-112) |#1|)) (-15 -3008 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1837 (|#1| |#1| |#2|))) (-326 |#2| |#3|) (-1045) (-788)) (T -325)) +NIL +(-10 -8 (-15 -1300 (|#1| |#1|)) (-15 -1836 (|#2| |#1|)) (-15 -3008 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2793 (|#1| |#1| |#1| (-767))) (-15 -3554 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2803 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1337 ((-640 |#2|) |#1|)) (-15 -2706 (|#2| |#1|)) (-15 -2696 ((-112) |#1|)) (-15 -3008 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1837 (|#1| |#1| |#2|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 54 (|has| |#1| (-555)))) (-4223 (($ $) 55 (|has| |#1| (-555)))) (-3156 (((-112) $) 57 (|has| |#1| (-555)))) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-2131 (((-3 (-563) "failed") $) 91 (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) 89 (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 86)) (-2058 (((-563) $) 90 (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) 88 (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) 87)) (-2751 (($ $) 63)) (-3400 (((-3 $ "failed") $) 33)) (-1300 (($ $) 75 (|has| |#1| (-452)))) (-3554 (($ $ |#1| |#2| $) 79)) (-3827 (((-112) $) 31)) (-4096 (((-767) $) 82)) (-3920 (((-112) $) 65)) (-2588 (($ |#1| |#2|) 64)) (-2048 ((|#2| $) 81)) (-2803 (($ (-1 |#2| |#2|) $) 80)) (-2240 (($ (-1 |#1| |#1|) $) 66)) (-2716 (($ $) 68)) (-2726 ((|#1| $) 69)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-2696 (((-112) $) 85)) (-2706 ((|#1| $) 84)) (-3008 (((-3 $ "failed") $ $) 53 (|has| |#1| (-555))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-555)))) (-4167 ((|#2| $) 67)) (-1836 ((|#1| $) 76 (|has| |#1| (-452)))) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ $) 52 (|has| |#1| (-555))) (($ |#1|) 50) (($ (-407 (-563))) 60 (-4032 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-38 (-407 (-563))))))) (-1337 (((-640 |#1|) $) 83)) (-4319 ((|#1| $ |#2|) 62)) (-2779 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-1675 (((-767)) 28)) (-2793 (($ $ $ (-767)) 78 (|has| |#1| (-172)))) (-2126 (((-112) $ $) 56 (|has| |#1| (-555)))) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1837 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-563)) $) 59 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 58 (|has| |#1| (-38 (-407 (-563))))))) +(((-326 |#1| |#2|) (-140) (-1045) (-788)) (T -326)) +((-2696 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-112)))) (-2706 (*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-640 *3)))) (-4096 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-767)))) (-2048 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-2803 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)))) (-3554 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))) (-2793 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-4 *3 (-172)))) (-3008 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)) (-4 *2 (-555)))) (-1836 (*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)) (-4 *2 (-452)))) (-1300 (*1 *1 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)) (-4 *2 (-452))))) +(-13 (-47 |t#1| |t#2|) (-411 |t#1|) (-10 -8 (-15 -2696 ((-112) $)) (-15 -2706 (|t#1| $)) (-15 -1337 ((-640 |t#1|) $)) (-15 -4096 ((-767) $)) (-15 -2048 (|t#2| $)) (-15 -2803 ($ (-1 |t#2| |t#2|) $)) (-15 -3554 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-172)) (-15 -2793 ($ $ $ (-767))) |%noBranch|) (IF (|has| |t#1| (-555)) (-15 -3008 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -1836 (|t#1| $)) (-15 -1300 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-555)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-563)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4032 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0#) -4032 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-38 (-407 (-563))))) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-613 $) |has| |#1| (-555)) ((-610 (-858)) . T) ((-172) -4032 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-290) |has| |#1| (-555)) ((-411 |#1|) . T) ((-555) |has| |#1| (-555)) ((-643 #0#) |has| |#1| (-38 (-407 (-563)))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-563)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-555)) ((-722) . T) ((-1034 (-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 |#1|) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-563)))) ((-1051 |#1|) . T) ((-1051 $) -4032 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-4378 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4408)))) (-3523 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-2770 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4408))) (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-846))))) (-1642 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-2759 (((-112) $ (-767)) NIL)) (-3689 (((-112) (-112)) NIL)) (-1849 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4408))) ((|#1| $ (-1224 (-563)) |#1|) NIL (|has| $ (-6 -4408)))) (-2812 (($ (-1 (-112) |#1|) $) NIL)) (-2256 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-4239 (($) NIL T CONST)) (-2907 (($ $) NIL (|has| $ (-6 -4408)))) (-4382 (($ $) NIL)) (-4005 (($ $) NIL (|has| |#1| (-1093)))) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2705 (($ |#1| $) NIL (|has| |#1| (-1093))) (($ (-1 (-112) |#1|) $) NIL)) (-1459 (($ |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-4355 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4408)))) (-4293 ((|#1| $ (-563)) NIL)) (-4368 (((-563) (-1 (-112) |#1|) $) NIL) (((-563) |#1| $) NIL (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) NIL (|has| |#1| (-1093)))) (-3945 (($ $ (-563)) NIL)) (-4182 (((-767) $) NIL)) (-2659 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1566 (($ (-767) |#1|) NIL)) (-2581 (((-112) $ (-767)) NIL)) (-2411 (((-563) $) NIL (|has| (-563) (-846)))) (-3084 (($ $ $) NIL (|has| |#1| (-846)))) (-2878 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3164 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-2259 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-3860 (((-563) $) NIL (|has| (-563) (-846)))) (-1777 (($ $ $) NIL (|has| |#1| (-846)))) (-4345 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1812 (($ $ $ (-563)) NIL) (($ |#1| $ (-563)) NIL)) (-3396 (($ |#1| $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-4318 (((-640 (-563)) $) NIL)) (-3192 (((-112) (-563) $) NIL)) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3374 (($ (-640 |#1|)) NIL)) (-3781 ((|#1| $) NIL (|has| (-563) (-846)))) (-4203 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2358 (($ $ |#1|) NIL (|has| $ (-6 -4408)))) (-3138 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) NIL)) (-2105 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2836 (((-640 |#1|) $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) NIL)) (-2309 ((|#1| $ (-563) |#1|) NIL) ((|#1| $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-1314 (($ $ (-1224 (-563))) NIL) (($ $ (-563)) NIL)) (-2963 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-1709 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-3076 (($ $ $ (-563)) NIL (|has| $ (-6 -4408)))) (-1872 (($ $) NIL)) (-2220 (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-1707 (($ (-640 |#1|)) NIL)) (-3245 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2853 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-640 $)) NIL)) (-1693 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-4383 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1778 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1756 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1768 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1744 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-327 |#1|) (-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -3374 ($ (-640 |#1|))) (-15 -4182 ((-767) $)) (-15 -3945 ($ $ (-563))) (-15 -3689 ((-112) (-112))))) (-1208)) (T -327)) +((-3374 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-327 *3)))) (-4182 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-327 *3)) (-4 *3 (-1208)))) (-3945 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-327 *3)) (-4 *3 (-1208)))) (-3689 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-327 *3)) (-4 *3 (-1208))))) +(-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -3374 ($ (-640 |#1|))) (-15 -4182 ((-767) $)) (-15 -3945 ($ $ (-563))) (-15 -3689 ((-112) (-112))))) +((-2388 (((-112) $) 42)) (-3259 (((-767)) 22)) (-1733 ((|#2| $) 46) (($ $ (-917)) 100)) (-3749 (((-767)) 101)) (-3937 (($ (-1257 |#2|)) 20)) (-2890 (((-112) $) 114)) (-3793 ((|#2| $) 48) (($ $ (-917)) 98)) (-3941 (((-1165 |#2|) $) NIL) (((-1165 $) $ (-917)) 94)) (-2229 (((-1165 |#2|) $) 82)) (-1631 (((-1165 |#2|) $) 79) (((-3 (-1165 |#2|) "failed") $ $) 76)) (-4166 (($ $ (-1165 |#2|)) 53)) (-1467 (((-829 (-917))) 28) (((-917)) 43)) (-3533 (((-134)) 25)) (-4167 (((-829 (-917)) $) 30) (((-917) $) 116)) (-1484 (($) 107)) (-1880 (((-1257 |#2|) $) NIL) (((-684 |#2|) (-1257 $)) 39)) (-2779 (($ $) NIL) (((-3 $ "failed") $) 85)) (-3152 (((-112) $) 41))) +(((-328 |#1| |#2|) (-10 -8 (-15 -2779 ((-3 |#1| "failed") |#1|)) (-15 -3749 ((-767))) (-15 -2779 (|#1| |#1|)) (-15 -1631 ((-3 (-1165 |#2|) "failed") |#1| |#1|)) (-15 -1631 ((-1165 |#2|) |#1|)) (-15 -2229 ((-1165 |#2|) |#1|)) (-15 -4166 (|#1| |#1| (-1165 |#2|))) (-15 -2890 ((-112) |#1|)) (-15 -1484 (|#1|)) (-15 -1733 (|#1| |#1| (-917))) (-15 -3793 (|#1| |#1| (-917))) (-15 -3941 ((-1165 |#1|) |#1| (-917))) (-15 -1733 (|#2| |#1|)) (-15 -3793 (|#2| |#1|)) (-15 -4167 ((-917) |#1|)) (-15 -1467 ((-917))) (-15 -3941 ((-1165 |#2|) |#1|)) (-15 -3937 (|#1| (-1257 |#2|))) (-15 -1880 ((-684 |#2|) (-1257 |#1|))) (-15 -1880 ((-1257 |#2|) |#1|)) (-15 -3259 ((-767))) (-15 -1467 ((-829 (-917)))) (-15 -4167 ((-829 (-917)) |#1|)) (-15 -2388 ((-112) |#1|)) (-15 -3152 ((-112) |#1|)) (-15 -3533 ((-134)))) (-329 |#2|) (-363)) (T -328)) +((-3533 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-134)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-1467 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-829 (-917))) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-3259 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-767)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-1467 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-917)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-3749 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-767)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4))))) +(-10 -8 (-15 -2779 ((-3 |#1| "failed") |#1|)) (-15 -3749 ((-767))) (-15 -2779 (|#1| |#1|)) (-15 -1631 ((-3 (-1165 |#2|) "failed") |#1| |#1|)) (-15 -1631 ((-1165 |#2|) |#1|)) (-15 -2229 ((-1165 |#2|) |#1|)) (-15 -4166 (|#1| |#1| (-1165 |#2|))) (-15 -2890 ((-112) |#1|)) (-15 -1484 (|#1|)) (-15 -1733 (|#1| |#1| (-917))) (-15 -3793 (|#1| |#1| (-917))) (-15 -3941 ((-1165 |#1|) |#1| (-917))) (-15 -1733 (|#2| |#1|)) (-15 -3793 (|#2| |#1|)) (-15 -4167 ((-917) |#1|)) (-15 -1467 ((-917))) (-15 -3941 ((-1165 |#2|) |#1|)) (-15 -3937 (|#1| (-1257 |#2|))) (-15 -1880 ((-684 |#2|) (-1257 |#1|))) (-15 -1880 ((-1257 |#2|) |#1|)) (-15 -3259 ((-767))) (-15 -1467 ((-829 (-917)))) (-15 -4167 ((-829 (-917)) |#1|)) (-15 -2388 ((-112) |#1|)) (-15 -3152 ((-112) |#1|)) (-15 -3533 ((-134)))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 42)) (-4223 (($ $) 41)) (-3156 (((-112) $) 39)) (-2388 (((-112) $) 95)) (-3259 (((-767)) 91)) (-1733 ((|#1| $) 141) (($ $ (-917)) 138 (|has| |#1| (-368)))) (-2752 (((-1181 (-917) (-767)) (-563)) 123 (|has| |#1| (-368)))) (-1495 (((-3 $ "failed") $ $) 19)) (-4335 (($ $) 74)) (-3205 (((-418 $) $) 73)) (-1919 (((-112) $ $) 60)) (-3749 (((-767)) 113 (|has| |#1| (-368)))) (-4239 (($) 17 T CONST)) (-2131 (((-3 |#1| "failed") $) 102)) (-2058 ((|#1| $) 103)) (-3937 (($ (-1257 |#1|)) 147)) (-3711 (((-3 "prime" "polynomial" "normal" "cyclic")) 129 (|has| |#1| (-368)))) (-3090 (($ $ $) 56)) (-3400 (((-3 $ "failed") $) 33)) (-1691 (($) 110 (|has| |#1| (-368)))) (-3050 (($ $ $) 57)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) 52)) (-1571 (($) 125 (|has| |#1| (-368)))) (-2366 (((-112) $) 126 (|has| |#1| (-368)))) (-1637 (($ $ (-767)) 88 (-4032 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) 87 (-4032 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2468 (((-112) $) 72)) (-3254 (((-917) $) 128 (|has| |#1| (-368))) (((-829 (-917)) $) 85 (-4032 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3827 (((-112) $) 31)) (-3723 (($) 136 (|has| |#1| (-368)))) (-2890 (((-112) $) 135 (|has| |#1| (-368)))) (-3793 ((|#1| $) 142) (($ $ (-917)) 139 (|has| |#1| (-368)))) (-2408 (((-3 $ "failed") $) 114 (|has| |#1| (-368)))) (-3643 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-3941 (((-1165 |#1|) $) 146) (((-1165 $) $ (-917)) 140 (|has| |#1| (-368)))) (-1476 (((-917) $) 111 (|has| |#1| (-368)))) (-2229 (((-1165 |#1|) $) 132 (|has| |#1| (-368)))) (-1631 (((-1165 |#1|) $) 131 (|has| |#1| (-368))) (((-3 (-1165 |#1|) "failed") $ $) 130 (|has| |#1| (-368)))) (-4166 (($ $ (-1165 |#1|)) 133 (|has| |#1| (-368)))) (-3513 (($ $ $) 47) (($ (-640 $)) 46)) (-3573 (((-1151) $) 9)) (-2688 (($ $) 71)) (-2523 (($) 115 (|has| |#1| (-368)) CONST)) (-2555 (($ (-917)) 112 (|has| |#1| (-368)))) (-3013 (((-112) $) 94)) (-1694 (((-1113) $) 10)) (-4333 (($) 134 (|has| |#1| (-368)))) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3548 (($ $ $) 49) (($ (-640 $)) 48)) (-2727 (((-640 (-2 (|:| -2174 (-563)) (|:| -1654 (-563))))) 122 (|has| |#1| (-368)))) (-2174 (((-418 $) $) 75)) (-1467 (((-829 (-917))) 92) (((-917)) 144)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3008 (((-3 $ "failed") $ $) 43)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-2628 (((-767) $) 59)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 58)) (-1423 (((-767) $) 127 (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) 86 (-4032 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3533 (((-134)) 100)) (-4202 (($ $) 119 (|has| |#1| (-368))) (($ $ (-767)) 117 (|has| |#1| (-368)))) (-4167 (((-829 (-917)) $) 93) (((-917) $) 143)) (-3390 (((-1165 |#1|)) 145)) (-4284 (($) 124 (|has| |#1| (-368)))) (-1484 (($) 137 (|has| |#1| (-368)))) (-1880 (((-1257 |#1|) $) 149) (((-684 |#1|) (-1257 $)) 148)) (-1377 (((-3 (-1257 $) "failed") (-684 $)) 121 (|has| |#1| (-368)))) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-407 (-563))) 67) (($ |#1|) 101)) (-2779 (($ $) 120 (|has| |#1| (-368))) (((-3 $ "failed") $) 84 (-4032 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1675 (((-767)) 28)) (-4315 (((-1257 $)) 151) (((-1257 $) (-917)) 150)) (-2126 (((-112) $ $) 40)) (-3152 (((-112) $) 96)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-2350 (($ $) 90 (|has| |#1| (-368))) (($ $ (-767)) 89 (|has| |#1| (-368)))) (-3209 (($ $) 118 (|has| |#1| (-368))) (($ $ (-767)) 116 (|has| |#1| (-368)))) (-1718 (((-112) $ $) 6)) (-1837 (($ $ $) 66) (($ $ |#1|) 99)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 70)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 69) (($ (-407 (-563)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97))) +(((-329 |#1|) (-140) (-363)) (T -329)) +((-4315 (*1 *2) (-12 (-4 *3 (-363)) (-5 *2 (-1257 *1)) (-4 *1 (-329 *3)))) (-4315 (*1 *2 *3) (-12 (-5 *3 (-917)) (-4 *4 (-363)) (-5 *2 (-1257 *1)) (-4 *1 (-329 *4)))) (-1880 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1257 *3)))) (-1880 (*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-329 *4)) (-4 *4 (-363)) (-5 *2 (-684 *4)))) (-3937 (*1 *1 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-363)) (-4 *1 (-329 *3)))) (-3941 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1165 *3)))) (-3390 (*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1165 *3)))) (-1467 (*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-917)))) (-4167 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-917)))) (-3793 (*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) (-1733 (*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) (-3941 (*1 *2 *1 *3) (-12 (-5 *3 (-917)) (-4 *4 (-368)) (-4 *4 (-363)) (-5 *2 (-1165 *1)) (-4 *1 (-329 *4)))) (-3793 (*1 *1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) (-1733 (*1 *1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) (-1484 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-3723 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-2890 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-112)))) (-4333 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-4166 (*1 *1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-368)) (-4 *1 (-329 *3)) (-4 *3 (-363)))) (-2229 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1165 *3)))) (-1631 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1165 *3)))) (-1631 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1165 *3))))) +(-13 (-1276 |t#1|) (-1034 |t#1|) (-10 -8 (-15 -4315 ((-1257 $))) (-15 -4315 ((-1257 $) (-917))) (-15 -1880 ((-1257 |t#1|) $)) (-15 -1880 ((-684 |t#1|) (-1257 $))) (-15 -3937 ($ (-1257 |t#1|))) (-15 -3941 ((-1165 |t#1|) $)) (-15 -3390 ((-1165 |t#1|))) (-15 -1467 ((-917))) (-15 -4167 ((-917) $)) (-15 -3793 (|t#1| $)) (-15 -1733 (|t#1| $)) (IF (|has| |t#1| (-368)) (PROGN (-6 (-349)) (-15 -3941 ((-1165 $) $ (-917))) (-15 -3793 ($ $ (-917))) (-15 -1733 ($ $ (-917))) (-15 -1484 ($)) (-15 -3723 ($)) (-15 -2890 ((-112) $)) (-15 -4333 ($)) (-15 -4166 ($ $ (-1165 |t#1|))) (-15 -2229 ((-1165 |t#1|) $)) (-15 -1631 ((-1165 |t#1|) $)) (-15 -1631 ((-3 (-1165 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -4032 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-613 #0#) . T) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-233) |has| |#1| (-368)) ((-243) . T) ((-290) . T) ((-307) . T) ((-1276 |#1|) . T) ((-363) . T) ((-402) -4032 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-368) |has| |#1| (-368)) ((-349) |has| |#1| (-368)) ((-452) . T) ((-555) . T) ((-643 #0#) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #0#) . T) ((-713 |#1|) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1034 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1144) |has| |#1| (-368)) ((-1212) . T) ((-1264 |#1|) . T)) +((-1677 (((-112) $ $) NIL)) (-1853 (($ (-1168) $) 87)) (-2064 (($) 76)) (-2330 (((-1113) (-1113)) 9)) (-3818 (($) 77)) (-3659 (($) 89) (($ (-316 (-694))) 97) (($ (-316 (-696))) 93) (($ (-316 (-689))) 101) (($ (-316 (-379))) 108) (($ (-316 (-563))) 104) (($ (-316 (-169 (-379)))) 112)) (-2459 (($ (-1168) $) 88)) (-3145 (($ (-640 (-858))) 78)) (-3680 (((-1262) $) 74)) (-2745 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 26)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1797 (($ (-1113)) 50)) (-2054 (((-1097) $) 24)) (-1538 (($ (-1085 (-948 (-563))) $) 84) (($ (-1085 (-948 (-563))) (-948 (-563)) $) 85)) (-2099 (($ (-1113)) 86)) (-3039 (($ (-1168) $) 114) (($ (-1168) $ $) 115)) (-4254 (($ (-1169) (-640 (-1169))) 75)) (-1408 (($ (-1151)) 81) (($ (-640 (-1151))) 79)) (-1693 (((-858) $) 117)) (-2412 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1169)) (|:| |arrayIndex| (-640 (-948 (-563)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2474 (-858)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1169)) (|:| |rand| (-858)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1168)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3756 (-112)) (|:| -2619 (-2 (|:| |ints2Floats?| (-112)) (|:| -2474 (-858)))))) (|:| |blockBranch| (-640 $)) (|:| |commentBranch| (-640 (-1151))) (|:| |callBranch| (-1151)) (|:| |forBranch| (-2 (|:| -2516 (-1085 (-948 (-563)))) (|:| |span| (-948 (-563))) (|:| -3359 $))) (|:| |labelBranch| (-1113)) (|:| |loopBranch| (-2 (|:| |switch| (-1168)) (|:| -3359 $))) (|:| |commonBranch| (-2 (|:| -3348 (-1169)) (|:| |contents| (-640 (-1169))))) (|:| |printBranch| (-640 (-858)))) $) 43)) (-3836 (($ (-1151)) 186)) (-1820 (($ (-640 $)) 113)) (-2085 (($ (-1169) (-1151)) 119) (($ (-1169) (-316 (-696))) 159) (($ (-1169) (-316 (-694))) 160) (($ (-1169) (-316 (-689))) 161) (($ (-1169) (-684 (-696))) 122) (($ (-1169) (-684 (-694))) 125) (($ (-1169) (-684 (-689))) 128) (($ (-1169) (-1257 (-696))) 131) (($ (-1169) (-1257 (-694))) 134) (($ (-1169) (-1257 (-689))) 137) (($ (-1169) (-684 (-316 (-696)))) 140) (($ (-1169) (-684 (-316 (-694)))) 143) (($ (-1169) (-684 (-316 (-689)))) 146) (($ (-1169) (-1257 (-316 (-696)))) 149) (($ (-1169) (-1257 (-316 (-694)))) 152) (($ (-1169) (-1257 (-316 (-689)))) 155) (($ (-1169) (-640 (-948 (-563))) (-316 (-696))) 156) (($ (-1169) (-640 (-948 (-563))) (-316 (-694))) 157) (($ (-1169) (-640 (-948 (-563))) (-316 (-689))) 158) (($ (-1169) (-316 (-563))) 183) (($ (-1169) (-316 (-379))) 184) (($ (-1169) (-316 (-169 (-379)))) 185) (($ (-1169) (-684 (-316 (-563)))) 164) (($ (-1169) (-684 (-316 (-379)))) 167) (($ (-1169) (-684 (-316 (-169 (-379))))) 170) (($ (-1169) (-1257 (-316 (-563)))) 173) (($ (-1169) (-1257 (-316 (-379)))) 176) (($ (-1169) (-1257 (-316 (-169 (-379))))) 179) (($ (-1169) (-640 (-948 (-563))) (-316 (-563))) 180) (($ (-1169) (-640 (-948 (-563))) (-316 (-379))) 181) (($ (-1169) (-640 (-948 (-563))) (-316 (-169 (-379)))) 182)) (-1718 (((-112) $ $) NIL))) +(((-330) (-13 (-1093) (-10 -8 (-15 -1538 ($ (-1085 (-948 (-563))) $)) (-15 -1538 ($ (-1085 (-948 (-563))) (-948 (-563)) $)) (-15 -1853 ($ (-1168) $)) (-15 -2459 ($ (-1168) $)) (-15 -1797 ($ (-1113))) (-15 -2099 ($ (-1113))) (-15 -1408 ($ (-1151))) (-15 -1408 ($ (-640 (-1151)))) (-15 -3836 ($ (-1151))) (-15 -3659 ($)) (-15 -3659 ($ (-316 (-694)))) (-15 -3659 ($ (-316 (-696)))) (-15 -3659 ($ (-316 (-689)))) (-15 -3659 ($ (-316 (-379)))) (-15 -3659 ($ (-316 (-563)))) (-15 -3659 ($ (-316 (-169 (-379))))) (-15 -3039 ($ (-1168) $)) (-15 -3039 ($ (-1168) $ $)) (-15 -2085 ($ (-1169) (-1151))) (-15 -2085 ($ (-1169) (-316 (-696)))) (-15 -2085 ($ (-1169) (-316 (-694)))) (-15 -2085 ($ (-1169) (-316 (-689)))) (-15 -2085 ($ (-1169) (-684 (-696)))) (-15 -2085 ($ (-1169) (-684 (-694)))) (-15 -2085 ($ (-1169) (-684 (-689)))) (-15 -2085 ($ (-1169) (-1257 (-696)))) (-15 -2085 ($ (-1169) (-1257 (-694)))) (-15 -2085 ($ (-1169) (-1257 (-689)))) (-15 -2085 ($ (-1169) (-684 (-316 (-696))))) (-15 -2085 ($ (-1169) (-684 (-316 (-694))))) (-15 -2085 ($ (-1169) (-684 (-316 (-689))))) (-15 -2085 ($ (-1169) (-1257 (-316 (-696))))) (-15 -2085 ($ (-1169) (-1257 (-316 (-694))))) (-15 -2085 ($ (-1169) (-1257 (-316 (-689))))) (-15 -2085 ($ (-1169) (-640 (-948 (-563))) (-316 (-696)))) (-15 -2085 ($ (-1169) (-640 (-948 (-563))) (-316 (-694)))) (-15 -2085 ($ (-1169) (-640 (-948 (-563))) (-316 (-689)))) (-15 -2085 ($ (-1169) (-316 (-563)))) (-15 -2085 ($ (-1169) (-316 (-379)))) (-15 -2085 ($ (-1169) (-316 (-169 (-379))))) (-15 -2085 ($ (-1169) (-684 (-316 (-563))))) (-15 -2085 ($ (-1169) (-684 (-316 (-379))))) (-15 -2085 ($ (-1169) (-684 (-316 (-169 (-379)))))) (-15 -2085 ($ (-1169) (-1257 (-316 (-563))))) (-15 -2085 ($ (-1169) (-1257 (-316 (-379))))) (-15 -2085 ($ (-1169) (-1257 (-316 (-169 (-379)))))) (-15 -2085 ($ (-1169) (-640 (-948 (-563))) (-316 (-563)))) (-15 -2085 ($ (-1169) (-640 (-948 (-563))) (-316 (-379)))) (-15 -2085 ($ (-1169) (-640 (-948 (-563))) (-316 (-169 (-379))))) (-15 -1820 ($ (-640 $))) (-15 -2064 ($)) (-15 -3818 ($)) (-15 -3145 ($ (-640 (-858)))) (-15 -4254 ($ (-1169) (-640 (-1169)))) (-15 -2745 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2412 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1169)) (|:| |arrayIndex| (-640 (-948 (-563)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2474 (-858)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1169)) (|:| |rand| (-858)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1168)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3756 (-112)) (|:| -2619 (-2 (|:| |ints2Floats?| (-112)) (|:| -2474 (-858)))))) (|:| |blockBranch| (-640 $)) (|:| |commentBranch| (-640 (-1151))) (|:| |callBranch| (-1151)) (|:| |forBranch| (-2 (|:| -2516 (-1085 (-948 (-563)))) (|:| |span| (-948 (-563))) (|:| -3359 $))) (|:| |labelBranch| (-1113)) (|:| |loopBranch| (-2 (|:| |switch| (-1168)) (|:| -3359 $))) (|:| |commonBranch| (-2 (|:| -3348 (-1169)) (|:| |contents| (-640 (-1169))))) (|:| |printBranch| (-640 (-858)))) $)) (-15 -3680 ((-1262) $)) (-15 -2054 ((-1097) $)) (-15 -2330 ((-1113) (-1113)))))) (T -330)) +((-1538 (*1 *1 *2 *1) (-12 (-5 *2 (-1085 (-948 (-563)))) (-5 *1 (-330)))) (-1538 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1085 (-948 (-563)))) (-5 *3 (-948 (-563))) (-5 *1 (-330)))) (-1853 (*1 *1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-330)))) (-2459 (*1 *1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-330)))) (-1797 (*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-330)))) (-2099 (*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-330)))) (-1408 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-330)))) (-1408 (*1 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-330)))) (-3836 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-330)))) (-3659 (*1 *1) (-5 *1 (-330))) (-3659 (*1 *1 *2) (-12 (-5 *2 (-316 (-694))) (-5 *1 (-330)))) (-3659 (*1 *1 *2) (-12 (-5 *2 (-316 (-696))) (-5 *1 (-330)))) (-3659 (*1 *1 *2) (-12 (-5 *2 (-316 (-689))) (-5 *1 (-330)))) (-3659 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-330)))) (-3659 (*1 *1 *2) (-12 (-5 *2 (-316 (-563))) (-5 *1 (-330)))) (-3659 (*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-330)))) (-3039 (*1 *1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-330)))) (-3039 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-330)))) (-2085 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1151)) (-5 *1 (-330)))) (-2085 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-696))) (-5 *1 (-330)))) (-2085 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-694))) (-5 *1 (-330)))) (-2085 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-689))) (-5 *1 (-330)))) (-2085 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-696))) (-5 *1 (-330)))) (-2085 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-694))) (-5 *1 (-330)))) (-2085 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-689))) (-5 *1 (-330)))) (-2085 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-696))) (-5 *1 (-330)))) (-2085 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-694))) (-5 *1 (-330)))) (-2085 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-689))) (-5 *1 (-330)))) (-2085 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-696)))) (-5 *1 (-330)))) (-2085 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-694)))) (-5 *1 (-330)))) (-2085 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-689)))) (-5 *1 (-330)))) (-2085 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-696)))) (-5 *1 (-330)))) (-2085 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-694)))) (-5 *1 (-330)))) (-2085 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-689)))) (-5 *1 (-330)))) (-2085 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563)))) (-5 *4 (-316 (-696))) (-5 *1 (-330)))) (-2085 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563)))) (-5 *4 (-316 (-694))) (-5 *1 (-330)))) (-2085 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563)))) (-5 *4 (-316 (-689))) (-5 *1 (-330)))) (-2085 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-563))) (-5 *1 (-330)))) (-2085 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-379))) (-5 *1 (-330)))) (-2085 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-169 (-379)))) (-5 *1 (-330)))) (-2085 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-563)))) (-5 *1 (-330)))) (-2085 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-379)))) (-5 *1 (-330)))) (-2085 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-169 (-379))))) (-5 *1 (-330)))) (-2085 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-563)))) (-5 *1 (-330)))) (-2085 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-379)))) (-5 *1 (-330)))) (-2085 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-169 (-379))))) (-5 *1 (-330)))) (-2085 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563)))) (-5 *4 (-316 (-563))) (-5 *1 (-330)))) (-2085 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563)))) (-5 *4 (-316 (-379))) (-5 *1 (-330)))) (-2085 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563)))) (-5 *4 (-316 (-169 (-379)))) (-5 *1 (-330)))) (-1820 (*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-5 *1 (-330)))) (-2064 (*1 *1) (-5 *1 (-330))) (-3818 (*1 *1) (-5 *1 (-330))) (-3145 (*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-330)))) (-4254 (*1 *1 *2 *3) (-12 (-5 *3 (-640 (-1169))) (-5 *2 (-1169)) (-5 *1 (-330)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-330)))) (-2412 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1169)) (|:| |arrayIndex| (-640 (-948 (-563)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2474 (-858)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1169)) (|:| |rand| (-858)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1168)) (|:| |thenClause| (-330)) (|:| |elseClause| (-330)))) (|:| |returnBranch| (-2 (|:| -3756 (-112)) (|:| -2619 (-2 (|:| |ints2Floats?| (-112)) (|:| -2474 (-858)))))) (|:| |blockBranch| (-640 (-330))) (|:| |commentBranch| (-640 (-1151))) (|:| |callBranch| (-1151)) (|:| |forBranch| (-2 (|:| -2516 (-1085 (-948 (-563)))) (|:| |span| (-948 (-563))) (|:| -3359 (-330)))) (|:| |labelBranch| (-1113)) (|:| |loopBranch| (-2 (|:| |switch| (-1168)) (|:| -3359 (-330)))) (|:| |commonBranch| (-2 (|:| -3348 (-1169)) (|:| |contents| (-640 (-1169))))) (|:| |printBranch| (-640 (-858))))) (-5 *1 (-330)))) (-3680 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-330)))) (-2054 (*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-330)))) (-2330 (*1 *2 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-330))))) +(-13 (-1093) (-10 -8 (-15 -1538 ($ (-1085 (-948 (-563))) $)) (-15 -1538 ($ (-1085 (-948 (-563))) (-948 (-563)) $)) (-15 -1853 ($ (-1168) $)) (-15 -2459 ($ (-1168) $)) (-15 -1797 ($ (-1113))) (-15 -2099 ($ (-1113))) (-15 -1408 ($ (-1151))) (-15 -1408 ($ (-640 (-1151)))) (-15 -3836 ($ (-1151))) (-15 -3659 ($)) (-15 -3659 ($ (-316 (-694)))) (-15 -3659 ($ (-316 (-696)))) (-15 -3659 ($ (-316 (-689)))) (-15 -3659 ($ (-316 (-379)))) (-15 -3659 ($ (-316 (-563)))) (-15 -3659 ($ (-316 (-169 (-379))))) (-15 -3039 ($ (-1168) $)) (-15 -3039 ($ (-1168) $ $)) (-15 -2085 ($ (-1169) (-1151))) (-15 -2085 ($ (-1169) (-316 (-696)))) (-15 -2085 ($ (-1169) (-316 (-694)))) (-15 -2085 ($ (-1169) (-316 (-689)))) (-15 -2085 ($ (-1169) (-684 (-696)))) (-15 -2085 ($ (-1169) (-684 (-694)))) (-15 -2085 ($ (-1169) (-684 (-689)))) (-15 -2085 ($ (-1169) (-1257 (-696)))) (-15 -2085 ($ (-1169) (-1257 (-694)))) (-15 -2085 ($ (-1169) (-1257 (-689)))) (-15 -2085 ($ (-1169) (-684 (-316 (-696))))) (-15 -2085 ($ (-1169) (-684 (-316 (-694))))) (-15 -2085 ($ (-1169) (-684 (-316 (-689))))) (-15 -2085 ($ (-1169) (-1257 (-316 (-696))))) (-15 -2085 ($ (-1169) (-1257 (-316 (-694))))) (-15 -2085 ($ (-1169) (-1257 (-316 (-689))))) (-15 -2085 ($ (-1169) (-640 (-948 (-563))) (-316 (-696)))) (-15 -2085 ($ (-1169) (-640 (-948 (-563))) (-316 (-694)))) (-15 -2085 ($ (-1169) (-640 (-948 (-563))) (-316 (-689)))) (-15 -2085 ($ (-1169) (-316 (-563)))) (-15 -2085 ($ (-1169) (-316 (-379)))) (-15 -2085 ($ (-1169) (-316 (-169 (-379))))) (-15 -2085 ($ (-1169) (-684 (-316 (-563))))) (-15 -2085 ($ (-1169) (-684 (-316 (-379))))) (-15 -2085 ($ (-1169) (-684 (-316 (-169 (-379)))))) (-15 -2085 ($ (-1169) (-1257 (-316 (-563))))) (-15 -2085 ($ (-1169) (-1257 (-316 (-379))))) (-15 -2085 ($ (-1169) (-1257 (-316 (-169 (-379)))))) (-15 -2085 ($ (-1169) (-640 (-948 (-563))) (-316 (-563)))) (-15 -2085 ($ (-1169) (-640 (-948 (-563))) (-316 (-379)))) (-15 -2085 ($ (-1169) (-640 (-948 (-563))) (-316 (-169 (-379))))) (-15 -1820 ($ (-640 $))) (-15 -2064 ($)) (-15 -3818 ($)) (-15 -3145 ($ (-640 (-858)))) (-15 -4254 ($ (-1169) (-640 (-1169)))) (-15 -2745 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2412 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1169)) (|:| |arrayIndex| (-640 (-948 (-563)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2474 (-858)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1169)) (|:| |rand| (-858)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1168)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3756 (-112)) (|:| -2619 (-2 (|:| |ints2Floats?| (-112)) (|:| -2474 (-858)))))) (|:| |blockBranch| (-640 $)) (|:| |commentBranch| (-640 (-1151))) (|:| |callBranch| (-1151)) (|:| |forBranch| (-2 (|:| -2516 (-1085 (-948 (-563)))) (|:| |span| (-948 (-563))) (|:| -3359 $))) (|:| |labelBranch| (-1113)) (|:| |loopBranch| (-2 (|:| |switch| (-1168)) (|:| -3359 $))) (|:| |commonBranch| (-2 (|:| -3348 (-1169)) (|:| |contents| (-640 (-1169))))) (|:| |printBranch| (-640 (-858)))) $)) (-15 -3680 ((-1262) $)) (-15 -2054 ((-1097) $)) (-15 -2330 ((-1113) (-1113))))) +((-1677 (((-112) $ $) NIL)) (-3194 (((-112) $) 11)) (-1597 (($ |#1|) 8)) (-3084 (($ $ $) NIL)) (-1777 (($ $ $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1608 (($ |#1|) 9)) (-1693 (((-858) $) 17)) (-3237 ((|#1| $) 12)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) 19))) +(((-331 |#1|) (-13 (-846) (-10 -8 (-15 -1597 ($ |#1|)) (-15 -1608 ($ |#1|)) (-15 -3194 ((-112) $)) (-15 -3237 (|#1| $)))) (-846)) (T -331)) +((-1597 (*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846)))) (-1608 (*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846)))) (-3194 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-331 *3)) (-4 *3 (-846)))) (-3237 (*1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846))))) +(-13 (-846) (-10 -8 (-15 -1597 ($ |#1|)) (-15 -1608 ($ |#1|)) (-15 -3194 ((-112) $)) (-15 -3237 (|#1| $)))) +((-2857 (((-330) (-1169) (-948 (-563))) 23)) (-2650 (((-330) (-1169) (-948 (-563))) 27)) (-4255 (((-330) (-1169) (-1085 (-948 (-563))) (-1085 (-948 (-563)))) 26) (((-330) (-1169) (-948 (-563)) (-948 (-563))) 24)) (-3978 (((-330) (-1169) (-948 (-563))) 31))) +(((-332) (-10 -7 (-15 -2857 ((-330) (-1169) (-948 (-563)))) (-15 -4255 ((-330) (-1169) (-948 (-563)) (-948 (-563)))) (-15 -4255 ((-330) (-1169) (-1085 (-948 (-563))) (-1085 (-948 (-563))))) (-15 -2650 ((-330) (-1169) (-948 (-563)))) (-15 -3978 ((-330) (-1169) (-948 (-563)))))) (T -332)) +((-3978 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-948 (-563))) (-5 *2 (-330)) (-5 *1 (-332)))) (-2650 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-948 (-563))) (-5 *2 (-330)) (-5 *1 (-332)))) (-4255 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-1085 (-948 (-563)))) (-5 *2 (-330)) (-5 *1 (-332)))) (-4255 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-948 (-563))) (-5 *2 (-330)) (-5 *1 (-332)))) (-2857 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-948 (-563))) (-5 *2 (-330)) (-5 *1 (-332))))) +(-10 -7 (-15 -2857 ((-330) (-1169) (-948 (-563)))) (-15 -4255 ((-330) (-1169) (-948 (-563)) (-948 (-563)))) (-15 -4255 ((-330) (-1169) (-1085 (-948 (-563))) (-1085 (-948 (-563))))) (-15 -2650 ((-330) (-1169) (-948 (-563)))) (-15 -3978 ((-330) (-1169) (-948 (-563))))) +((-2240 (((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|)) 33))) +(((-333 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2240 ((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|)))) (-363) (-1233 |#1|) (-1233 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-363) (-1233 |#5|) (-1233 (-407 |#6|)) (-342 |#5| |#6| |#7|)) (T -333)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-336 *5 *6 *7 *8)) (-4 *5 (-363)) (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *9 (-363)) (-4 *10 (-1233 *9)) (-4 *11 (-1233 (-407 *10))) (-5 *2 (-336 *9 *10 *11 *12)) (-5 *1 (-333 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-342 *9 *10 *11))))) +(-10 -7 (-15 -2240 ((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|)))) +((-2257 (((-112) $) 14))) +(((-334 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2257 ((-112) |#1|))) (-335 |#2| |#3| |#4| |#5|) (-363) (-1233 |#2|) (-1233 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -334)) +NIL +(-10 -8 (-15 -2257 ((-112) |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-2444 (($ $) 26)) (-2257 (((-112) $) 25)) (-3573 (((-1151) $) 9)) (-1776 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 32)) (-1694 (((-1113) $) 10)) (-4333 (((-3 |#4| "failed") $) 24)) (-3899 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-563)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-2927 (((-2 (|:| -1524 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-1693 (((-858) $) 11)) (-2241 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20))) +(((-335 |#1| |#2| |#3| |#4|) (-140) (-363) (-1233 |t#1|) (-1233 (-407 |t#2|)) (-342 |t#1| |t#2| |t#3|)) (T -335)) +((-1776 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-413 *4 (-407 *4) *5 *6)))) (-3899 (*1 *1 *2) (-12 (-5 *2 (-413 *4 (-407 *4) *5 *6)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-4 *3 (-363)) (-4 *1 (-335 *3 *4 *5 *6)))) (-3899 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-4 *1 (-335 *3 *4 *5 *2)) (-4 *2 (-342 *3 *4 *5)))) (-3899 (*1 *1 *2 *2) (-12 (-4 *2 (-363)) (-4 *3 (-1233 *2)) (-4 *4 (-1233 (-407 *3))) (-4 *1 (-335 *2 *3 *4 *5)) (-4 *5 (-342 *2 *3 *4)))) (-3899 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-563)) (-4 *2 (-363)) (-4 *4 (-1233 *2)) (-4 *5 (-1233 (-407 *4))) (-4 *1 (-335 *2 *4 *5 *6)) (-4 *6 (-342 *2 *4 *5)))) (-2927 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-2 (|:| -1524 (-413 *4 (-407 *4) *5 *6)) (|:| |principalPart| *6))))) (-2444 (*1 *1 *1) (-12 (-4 *1 (-335 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *3 (-1233 *2)) (-4 *4 (-1233 (-407 *3))) (-4 *5 (-342 *2 *3 *4)))) (-2257 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-112)))) (-4333 (*1 *2 *1) (|partial| -12 (-4 *1 (-335 *3 *4 *5 *2)) (-4 *3 (-363)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-4 *2 (-342 *3 *4 *5)))) (-3899 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-363)) (-4 *3 (-1233 *4)) (-4 *5 (-1233 (-407 *3))) (-4 *1 (-335 *4 *3 *5 *2)) (-4 *2 (-342 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -1776 ((-413 |t#2| (-407 |t#2|) |t#3| |t#4|) $)) (-15 -3899 ($ (-413 |t#2| (-407 |t#2|) |t#3| |t#4|))) (-15 -3899 ($ |t#4|)) (-15 -3899 ($ |t#1| |t#1|)) (-15 -3899 ($ |t#1| |t#1| (-563))) (-15 -2927 ((-2 (|:| -1524 (-413 |t#2| (-407 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2444 ($ $)) (-15 -2257 ((-112) $)) (-15 -4333 ((-3 |t#4| "failed") $)) (-15 -3899 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-858)) . T) ((-1093) . T)) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4239 (($) NIL T CONST)) (-2444 (($ $) 33)) (-2257 (((-112) $) NIL)) (-3573 (((-1151) $) NIL)) (-1867 (((-1257 |#4|) $) 125)) (-1776 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 31)) (-1694 (((-1113) $) NIL)) (-4333 (((-3 |#4| "failed") $) 36)) (-3195 (((-1257 |#4|) $) 118)) (-3899 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-563)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-2927 (((-2 (|:| -1524 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-1693 (((-858) $) 17)) (-2241 (($) 14 T CONST)) (-1718 (((-112) $ $) 20)) (-1826 (($ $) 27) (($ $ $) NIL)) (-1814 (($ $ $) 25)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 23))) +(((-336 |#1| |#2| |#3| |#4|) (-13 (-335 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3195 ((-1257 |#4|) $)) (-15 -1867 ((-1257 |#4|) $)))) (-363) (-1233 |#1|) (-1233 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -336)) +((-3195 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-1257 *6)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *6 (-342 *3 *4 *5)))) (-1867 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-1257 *6)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *6 (-342 *3 *4 *5))))) +(-13 (-335 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3195 ((-1257 |#4|) $)) (-15 -1867 ((-1257 |#4|) $)))) +((-1540 (($ $ (-1169) |#2|) NIL) (($ $ (-640 (-1169)) (-640 |#2|)) 20) (($ $ (-640 (-294 |#2|))) 15) (($ $ (-294 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-640 |#2|) (-640 |#2|)) NIL)) (-2309 (($ $ |#2|) 11))) +(((-337 |#1| |#2|) (-10 -8 (-15 -2309 (|#1| |#1| |#2|)) (-15 -1540 (|#1| |#1| (-640 |#2|) (-640 |#2|))) (-15 -1540 (|#1| |#1| |#2| |#2|)) (-15 -1540 (|#1| |#1| (-294 |#2|))) (-15 -1540 (|#1| |#1| (-640 (-294 |#2|)))) (-15 -1540 (|#1| |#1| (-640 (-1169)) (-640 |#2|))) (-15 -1540 (|#1| |#1| (-1169) |#2|))) (-338 |#2|) (-1093)) (T -337)) +NIL +(-10 -8 (-15 -2309 (|#1| |#1| |#2|)) (-15 -1540 (|#1| |#1| (-640 |#2|) (-640 |#2|))) (-15 -1540 (|#1| |#1| |#2| |#2|)) (-15 -1540 (|#1| |#1| (-294 |#2|))) (-15 -1540 (|#1| |#1| (-640 (-294 |#2|)))) (-15 -1540 (|#1| |#1| (-640 (-1169)) (-640 |#2|))) (-15 -1540 (|#1| |#1| (-1169) |#2|))) +((-2240 (($ (-1 |#1| |#1|) $) 6)) (-1540 (($ $ (-1169) |#1|) 17 (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-640 (-1169)) (-640 |#1|)) 16 (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-640 (-294 |#1|))) 15 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 14 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-309 |#1|))) (($ $ (-640 |#1|) (-640 |#1|)) 12 (|has| |#1| (-309 |#1|)))) (-2309 (($ $ |#1|) 11 (|has| |#1| (-286 |#1| |#1|))))) +(((-338 |#1|) (-140) (-1093)) (T -338)) +((-2240 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-338 *3)) (-4 *3 (-1093))))) +(-13 (-10 -8 (-15 -2240 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-286 |t#1| |t#1|)) (-6 (-286 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-309 |t#1|)) (-6 (-309 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-514 (-1169) |t#1|)) (-6 (-514 (-1169) |t#1|)) |%noBranch|))) +(((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-514 (-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-2606 (((-640 (-1169)) $) NIL)) (-2189 (((-112)) 90) (((-112) (-112)) 91)) (-2059 (((-640 (-609 $)) $) NIL)) (-1771 (($ $) NIL)) (-1619 (($ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4132 (($ $ (-294 $)) NIL) (($ $ (-640 (-294 $))) NIL) (($ $ (-640 (-609 $)) (-640 $)) NIL)) (-2186 (($ $) NIL)) (-1748 (($ $) NIL)) (-1597 (($ $) NIL)) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-609 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-316 |#3|)) 70) (((-3 $ "failed") (-1169)) 96) (((-3 $ "failed") (-316 (-563))) 58 (|has| |#3| (-1034 (-563)))) (((-3 $ "failed") (-407 (-948 (-563)))) 64 (|has| |#3| (-1034 (-563)))) (((-3 $ "failed") (-948 (-563))) 59 (|has| |#3| (-1034 (-563)))) (((-3 $ "failed") (-316 (-379))) 88 (|has| |#3| (-1034 (-379)))) (((-3 $ "failed") (-407 (-948 (-379)))) 82 (|has| |#3| (-1034 (-379)))) (((-3 $ "failed") (-948 (-379))) 77 (|has| |#3| (-1034 (-379))))) (-2058 (((-609 $) $) NIL) ((|#3| $) NIL) (($ (-316 |#3|)) 71) (($ (-1169)) 97) (($ (-316 (-563))) 60 (|has| |#3| (-1034 (-563)))) (($ (-407 (-948 (-563)))) 65 (|has| |#3| (-1034 (-563)))) (($ (-948 (-563))) 61 (|has| |#3| (-1034 (-563)))) (($ (-316 (-379))) 89 (|has| |#3| (-1034 (-379)))) (($ (-407 (-948 (-379)))) 83 (|has| |#3| (-1034 (-379)))) (($ (-948 (-379))) 79 (|has| |#3| (-1034 (-379))))) (-3400 (((-3 $ "failed") $) NIL)) (-2180 (($) 10)) (-3968 (($ $) NIL) (($ (-640 $)) NIL)) (-3804 (((-640 (-114)) $) NIL)) (-2361 (((-114) (-114)) NIL)) (-3827 (((-112) $) NIL)) (-3131 (((-112) $) NIL (|has| $ (-1034 (-563))))) (-3180 (((-1165 $) (-609 $)) NIL (|has| $ (-1045)))) (-3084 (($ $ $) NIL)) (-1777 (($ $ $) NIL)) (-2240 (($ (-1 $ $) (-609 $)) NIL)) (-2875 (((-3 (-609 $) "failed") $) NIL)) (-3097 (($ $) 93)) (-4371 (($ $) NIL)) (-3573 (((-1151) $) NIL)) (-2127 (((-640 (-609 $)) $) NIL)) (-2227 (($ (-114) $) 92) (($ (-114) (-640 $)) NIL)) (-2799 (((-112) $ (-114)) NIL) (((-112) $ (-1169)) NIL)) (-4236 (((-767) $) NIL)) (-1694 (((-1113) $) NIL)) (-1372 (((-112) $ $) NIL) (((-112) $ (-1169)) NIL)) (-3368 (($ $) NIL)) (-2359 (((-112) $) NIL (|has| $ (-1034 (-563))))) (-1540 (($ $ (-609 $) $) NIL) (($ $ (-640 (-609 $)) (-640 $)) NIL) (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-640 (-1169)) (-640 (-1 $ $))) NIL) (($ $ (-640 (-1169)) (-640 (-1 $ (-640 $)))) NIL) (($ $ (-1169) (-1 $ (-640 $))) NIL) (($ $ (-1169) (-1 $ $)) NIL) (($ $ (-640 (-114)) (-640 (-1 $ $))) NIL) (($ $ (-640 (-114)) (-640 (-1 $ (-640 $)))) NIL) (($ $ (-114) (-1 $ (-640 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2309 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-640 $)) NIL)) (-3071 (($ $) NIL) (($ $ $) NIL)) (-4202 (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169)) NIL)) (-3390 (($ $) NIL (|has| $ (-1045)))) (-1759 (($ $) NIL)) (-1608 (($ $) NIL)) (-1693 (((-858) $) NIL) (($ (-609 $)) NIL) (($ |#3|) NIL) (($ (-563)) NIL) (((-316 |#3|) $) 95)) (-1675 (((-767)) NIL)) (-3079 (($ $) NIL) (($ (-640 $)) NIL)) (-3734 (((-112) (-114)) NIL)) (-1695 (($ $) NIL)) (-1667 (($ $) NIL)) (-1680 (($ $) NIL)) (-2509 (($ $) NIL)) (-2241 (($) 94 T CONST)) (-2254 (($) 24 T CONST)) (-3209 (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169)) NIL)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) NIL)) (-1826 (($ $ $) NIL) (($ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-917)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-563) $) NIL) (($ (-767) $) NIL) (($ (-917) $) NIL))) +(((-339 |#1| |#2| |#3|) (-13 (-302) (-38 |#3|) (-1034 |#3|) (-896 (-1169)) (-10 -8 (-15 -2058 ($ (-316 |#3|))) (-15 -2131 ((-3 $ "failed") (-316 |#3|))) (-15 -2058 ($ (-1169))) (-15 -2131 ((-3 $ "failed") (-1169))) (-15 -1693 ((-316 |#3|) $)) (IF (|has| |#3| (-1034 (-563))) (PROGN (-15 -2058 ($ (-316 (-563)))) (-15 -2131 ((-3 $ "failed") (-316 (-563)))) (-15 -2058 ($ (-407 (-948 (-563))))) (-15 -2131 ((-3 $ "failed") (-407 (-948 (-563))))) (-15 -2058 ($ (-948 (-563)))) (-15 -2131 ((-3 $ "failed") (-948 (-563))))) |%noBranch|) (IF (|has| |#3| (-1034 (-379))) (PROGN (-15 -2058 ($ (-316 (-379)))) (-15 -2131 ((-3 $ "failed") (-316 (-379)))) (-15 -2058 ($ (-407 (-948 (-379))))) (-15 -2131 ((-3 $ "failed") (-407 (-948 (-379))))) (-15 -2058 ($ (-948 (-379)))) (-15 -2131 ((-3 $ "failed") (-948 (-379))))) |%noBranch|) (-15 -2509 ($ $)) (-15 -2186 ($ $)) (-15 -3368 ($ $)) (-15 -4371 ($ $)) (-15 -3097 ($ $)) (-15 -1597 ($ $)) (-15 -1608 ($ $)) (-15 -1619 ($ $)) (-15 -1667 ($ $)) (-15 -1680 ($ $)) (-15 -1695 ($ $)) (-15 -1748 ($ $)) (-15 -1759 ($ $)) (-15 -1771 ($ $)) (-15 -2180 ($)) (-15 -2606 ((-640 (-1169)) $)) (-15 -2189 ((-112))) (-15 -2189 ((-112) (-112))))) (-640 (-1169)) (-640 (-1169)) (-387)) (T -339)) +((-2058 (*1 *1 *2) (-12 (-5 *2 (-316 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))))) (-2131 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-640 *2)) (-14 *4 (-640 *2)) (-4 *5 (-387)))) (-2131 (*1 *1 *2) (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-640 *2)) (-14 *4 (-640 *2)) (-4 *5 (-387)))) (-1693 (*1 *2 *1) (-12 (-5 *2 (-316 *5)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-316 (-563))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2131 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-563))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-563)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2131 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-948 (-563)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-948 (-563))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2131 (*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-563))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2131 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-379)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2131 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-948 (-379)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-948 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2131 (*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2509 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-2186 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-3368 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-4371 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-3097 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-1597 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-1608 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-1619 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-1667 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-1680 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-1695 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-1748 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-1759 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-1771 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-2180 (*1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-2606 (*1 *2 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-339 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-387)))) (-2189 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2189 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387))))) +(-13 (-302) (-38 |#3|) (-1034 |#3|) (-896 (-1169)) (-10 -8 (-15 -2058 ($ (-316 |#3|))) (-15 -2131 ((-3 $ "failed") (-316 |#3|))) (-15 -2058 ($ (-1169))) (-15 -2131 ((-3 $ "failed") (-1169))) (-15 -1693 ((-316 |#3|) $)) (IF (|has| |#3| (-1034 (-563))) (PROGN (-15 -2058 ($ (-316 (-563)))) (-15 -2131 ((-3 $ "failed") (-316 (-563)))) (-15 -2058 ($ (-407 (-948 (-563))))) (-15 -2131 ((-3 $ "failed") (-407 (-948 (-563))))) (-15 -2058 ($ (-948 (-563)))) (-15 -2131 ((-3 $ "failed") (-948 (-563))))) |%noBranch|) (IF (|has| |#3| (-1034 (-379))) (PROGN (-15 -2058 ($ (-316 (-379)))) (-15 -2131 ((-3 $ "failed") (-316 (-379)))) (-15 -2058 ($ (-407 (-948 (-379))))) (-15 -2131 ((-3 $ "failed") (-407 (-948 (-379))))) (-15 -2058 ($ (-948 (-379)))) (-15 -2131 ((-3 $ "failed") (-948 (-379))))) |%noBranch|) (-15 -2509 ($ $)) (-15 -2186 ($ $)) (-15 -3368 ($ $)) (-15 -4371 ($ $)) (-15 -3097 ($ $)) (-15 -1597 ($ $)) (-15 -1608 ($ $)) (-15 -1619 ($ $)) (-15 -1667 ($ $)) (-15 -1680 ($ $)) (-15 -1695 ($ $)) (-15 -1748 ($ $)) (-15 -1759 ($ $)) (-15 -1771 ($ $)) (-15 -2180 ($)) (-15 -2606 ((-640 (-1169)) $)) (-15 -2189 ((-112))) (-15 -2189 ((-112) (-112))))) +((-2240 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-340 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2240 (|#8| (-1 |#5| |#1|) |#4|))) (-1212) (-1233 |#1|) (-1233 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-1212) (-1233 |#5|) (-1233 (-407 |#6|)) (-342 |#5| |#6| |#7|)) (T -340)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1212)) (-4 *8 (-1212)) (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6))) (-4 *9 (-1233 *8)) (-4 *2 (-342 *8 *9 *10)) (-5 *1 (-340 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-342 *5 *6 *7)) (-4 *10 (-1233 (-407 *9)))))) +(-10 -7 (-15 -2240 (|#8| (-1 |#5| |#1|) |#4|))) +((-4067 (((-2 (|:| |num| (-1257 |#3|)) (|:| |den| |#3|)) $) 38)) (-3937 (($ (-1257 (-407 |#3|)) (-1257 $)) NIL) (($ (-1257 (-407 |#3|))) NIL) (($ (-1257 |#3|) |#3|) 160)) (-4364 (((-1257 $) (-1257 $)) 144)) (-2077 (((-640 (-640 |#2|))) 118)) (-3632 (((-112) |#2| |#2|) 73)) (-1300 (($ $) 138)) (-3273 (((-767)) 31)) (-3132 (((-1257 $) (-1257 $)) 197)) (-3370 (((-640 (-948 |#2|)) (-1169)) 110)) (-2532 (((-112) $) 157)) (-1294 (((-112) $) 25) (((-112) $ |#2|) 29) (((-112) $ |#3|) 201)) (-3140 (((-3 |#3| "failed")) 50)) (-2327 (((-767)) 169)) (-2309 ((|#2| $ |#2| |#2|) 131)) (-2621 (((-3 |#3| "failed")) 68)) (-4202 (($ $ (-1 (-407 |#3|) (-407 |#3|)) (-767)) NIL) (($ $ (-1 (-407 |#3|) (-407 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 205) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169)) NIL) (($ $ (-767)) NIL) (($ $) NIL)) (-1962 (((-1257 $) (-1257 $)) 150)) (-2732 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-1581 (((-112)) 33))) +(((-341 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4202 (|#1| |#1|)) (-15 -4202 (|#1| |#1| (-767))) (-15 -4202 (|#1| |#1| (-1169))) (-15 -4202 (|#1| |#1| (-640 (-1169)))) (-15 -4202 (|#1| |#1| (-1169) (-767))) (-15 -4202 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -2077 ((-640 (-640 |#2|)))) (-15 -3370 ((-640 (-948 |#2|)) (-1169))) (-15 -2732 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3140 ((-3 |#3| "failed"))) (-15 -2621 ((-3 |#3| "failed"))) (-15 -2309 (|#2| |#1| |#2| |#2|)) (-15 -1300 (|#1| |#1|)) (-15 -4202 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1294 ((-112) |#1| |#3|)) (-15 -1294 ((-112) |#1| |#2|)) (-15 -3937 (|#1| (-1257 |#3|) |#3|)) (-15 -4067 ((-2 (|:| |num| (-1257 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -4364 ((-1257 |#1|) (-1257 |#1|))) (-15 -3132 ((-1257 |#1|) (-1257 |#1|))) (-15 -1962 ((-1257 |#1|) (-1257 |#1|))) (-15 -1294 ((-112) |#1|)) (-15 -2532 ((-112) |#1|)) (-15 -3632 ((-112) |#2| |#2|)) (-15 -1581 ((-112))) (-15 -2327 ((-767))) (-15 -3273 ((-767))) (-15 -4202 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)))) (-15 -4202 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)) (-767))) (-15 -3937 (|#1| (-1257 (-407 |#3|)))) (-15 -3937 (|#1| (-1257 (-407 |#3|)) (-1257 |#1|)))) (-342 |#2| |#3| |#4|) (-1212) (-1233 |#2|) (-1233 (-407 |#3|))) (T -341)) +((-3273 (*1 *2) (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) (-5 *2 (-767)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-2327 (*1 *2) (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) (-5 *2 (-767)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-1581 (*1 *2) (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-3632 (*1 *2 *3 *3) (-12 (-4 *3 (-1212)) (-4 *5 (-1233 *3)) (-4 *6 (-1233 (-407 *5))) (-5 *2 (-112)) (-5 *1 (-341 *4 *3 *5 *6)) (-4 *4 (-342 *3 *5 *6)))) (-2621 (*1 *2) (|partial| -12 (-4 *4 (-1212)) (-4 *5 (-1233 (-407 *2))) (-4 *2 (-1233 *4)) (-5 *1 (-341 *3 *4 *2 *5)) (-4 *3 (-342 *4 *2 *5)))) (-3140 (*1 *2) (|partial| -12 (-4 *4 (-1212)) (-4 *5 (-1233 (-407 *2))) (-4 *2 (-1233 *4)) (-5 *1 (-341 *3 *4 *2 *5)) (-4 *3 (-342 *4 *2 *5)))) (-3370 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-4 *5 (-1212)) (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6))) (-5 *2 (-640 (-948 *5))) (-5 *1 (-341 *4 *5 *6 *7)) (-4 *4 (-342 *5 *6 *7)))) (-2077 (*1 *2) (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) (-5 *2 (-640 (-640 *4))) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6))))) +(-10 -8 (-15 -4202 (|#1| |#1|)) (-15 -4202 (|#1| |#1| (-767))) (-15 -4202 (|#1| |#1| (-1169))) (-15 -4202 (|#1| |#1| (-640 (-1169)))) (-15 -4202 (|#1| |#1| (-1169) (-767))) (-15 -4202 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -2077 ((-640 (-640 |#2|)))) (-15 -3370 ((-640 (-948 |#2|)) (-1169))) (-15 -2732 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3140 ((-3 |#3| "failed"))) (-15 -2621 ((-3 |#3| "failed"))) (-15 -2309 (|#2| |#1| |#2| |#2|)) (-15 -1300 (|#1| |#1|)) (-15 -4202 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1294 ((-112) |#1| |#3|)) (-15 -1294 ((-112) |#1| |#2|)) (-15 -3937 (|#1| (-1257 |#3|) |#3|)) (-15 -4067 ((-2 (|:| |num| (-1257 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -4364 ((-1257 |#1|) (-1257 |#1|))) (-15 -3132 ((-1257 |#1|) (-1257 |#1|))) (-15 -1962 ((-1257 |#1|) (-1257 |#1|))) (-15 -1294 ((-112) |#1|)) (-15 -2532 ((-112) |#1|)) (-15 -3632 ((-112) |#2| |#2|)) (-15 -1581 ((-112))) (-15 -2327 ((-767))) (-15 -3273 ((-767))) (-15 -4202 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)))) (-15 -4202 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)) (-767))) (-15 -3937 (|#1| (-1257 (-407 |#3|)))) (-15 -3937 (|#1| (-1257 (-407 |#3|)) (-1257 |#1|)))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-4067 (((-2 (|:| |num| (-1257 |#2|)) (|:| |den| |#2|)) $) 195)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 93 (|has| (-407 |#2|) (-363)))) (-4223 (($ $) 94 (|has| (-407 |#2|) (-363)))) (-3156 (((-112) $) 96 (|has| (-407 |#2|) (-363)))) (-3561 (((-684 (-407 |#2|)) (-1257 $)) 47) (((-684 (-407 |#2|))) 62)) (-1733 (((-407 |#2|) $) 53)) (-2752 (((-1181 (-917) (-767)) (-563)) 146 (|has| (-407 |#2|) (-349)))) (-1495 (((-3 $ "failed") $ $) 19)) (-4335 (($ $) 113 (|has| (-407 |#2|) (-363)))) (-3205 (((-418 $) $) 114 (|has| (-407 |#2|) (-363)))) (-1919 (((-112) $ $) 104 (|has| (-407 |#2|) (-363)))) (-3749 (((-767)) 87 (|has| (-407 |#2|) (-368)))) (-1504 (((-112)) 212)) (-2456 (((-112) |#1|) 211) (((-112) |#2|) 210)) (-4239 (($) 17 T CONST)) (-2131 (((-3 (-563) "failed") $) 169 (|has| (-407 |#2|) (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) 167 (|has| (-407 |#2|) (-1034 (-407 (-563))))) (((-3 (-407 |#2|) "failed") $) 164)) (-2058 (((-563) $) 168 (|has| (-407 |#2|) (-1034 (-563)))) (((-407 (-563)) $) 166 (|has| (-407 |#2|) (-1034 (-407 (-563))))) (((-407 |#2|) $) 165)) (-3937 (($ (-1257 (-407 |#2|)) (-1257 $)) 49) (($ (-1257 (-407 |#2|))) 65) (($ (-1257 |#2|) |#2|) 194)) (-3711 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| (-407 |#2|) (-349)))) (-3090 (($ $ $) 108 (|has| (-407 |#2|) (-363)))) (-3914 (((-684 (-407 |#2|)) $ (-1257 $)) 54) (((-684 (-407 |#2|)) $) 60)) (-2950 (((-684 (-563)) (-684 $)) 163 (|has| (-407 |#2|) (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 162 (|has| (-407 |#2|) (-636 (-563)))) (((-2 (|:| -2835 (-684 (-407 |#2|))) (|:| |vec| (-1257 (-407 |#2|)))) (-684 $) (-1257 $)) 161) (((-684 (-407 |#2|)) (-684 $)) 160)) (-4364 (((-1257 $) (-1257 $)) 200)) (-2444 (($ |#3|) 157) (((-3 $ "failed") (-407 |#3|)) 154 (|has| (-407 |#2|) (-363)))) (-3400 (((-3 $ "failed") $) 33)) (-2077 (((-640 (-640 |#1|))) 181 (|has| |#1| (-368)))) (-3632 (((-112) |#1| |#1|) 216)) (-2522 (((-917)) 55)) (-1691 (($) 90 (|has| (-407 |#2|) (-368)))) (-4077 (((-112)) 209)) (-1852 (((-112) |#1|) 208) (((-112) |#2|) 207)) (-3050 (($ $ $) 107 (|has| (-407 |#2|) (-363)))) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) 102 (|has| (-407 |#2|) (-363)))) (-1300 (($ $) 187)) (-1571 (($) 148 (|has| (-407 |#2|) (-349)))) (-2366 (((-112) $) 149 (|has| (-407 |#2|) (-349)))) (-1637 (($ $ (-767)) 140 (|has| (-407 |#2|) (-349))) (($ $) 139 (|has| (-407 |#2|) (-349)))) (-2468 (((-112) $) 115 (|has| (-407 |#2|) (-363)))) (-3254 (((-917) $) 151 (|has| (-407 |#2|) (-349))) (((-829 (-917)) $) 137 (|has| (-407 |#2|) (-349)))) (-3827 (((-112) $) 31)) (-3273 (((-767)) 219)) (-3132 (((-1257 $) (-1257 $)) 201)) (-3793 (((-407 |#2|) $) 52)) (-3370 (((-640 (-948 |#1|)) (-1169)) 182 (|has| |#1| (-363)))) (-2408 (((-3 $ "failed") $) 141 (|has| (-407 |#2|) (-349)))) (-3643 (((-3 (-640 $) "failed") (-640 $) $) 111 (|has| (-407 |#2|) (-363)))) (-3941 ((|#3| $) 45 (|has| (-407 |#2|) (-363)))) (-1476 (((-917) $) 89 (|has| (-407 |#2|) (-368)))) (-2433 ((|#3| $) 155)) (-3513 (($ (-640 $)) 100 (|has| (-407 |#2|) (-363))) (($ $ $) 99 (|has| (-407 |#2|) (-363)))) (-3573 (((-1151) $) 9)) (-2095 (((-684 (-407 |#2|))) 196)) (-3295 (((-684 (-407 |#2|))) 198)) (-2688 (($ $) 116 (|has| (-407 |#2|) (-363)))) (-2145 (($ (-1257 |#2|) |#2|) 192)) (-4218 (((-684 (-407 |#2|))) 197)) (-3500 (((-684 (-407 |#2|))) 199)) (-2914 (((-2 (|:| |num| (-684 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 191)) (-3447 (((-2 (|:| |num| (-1257 |#2|)) (|:| |den| |#2|)) $) 193)) (-2993 (((-1257 $)) 205)) (-3815 (((-1257 $)) 206)) (-2532 (((-112) $) 204)) (-1294 (((-112) $) 203) (((-112) $ |#1|) 190) (((-112) $ |#2|) 189)) (-2523 (($) 142 (|has| (-407 |#2|) (-349)) CONST)) (-2555 (($ (-917)) 88 (|has| (-407 |#2|) (-368)))) (-3140 (((-3 |#2| "failed")) 184)) (-1694 (((-1113) $) 10)) (-2327 (((-767)) 218)) (-4333 (($) 159)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 101 (|has| (-407 |#2|) (-363)))) (-3548 (($ (-640 $)) 98 (|has| (-407 |#2|) (-363))) (($ $ $) 97 (|has| (-407 |#2|) (-363)))) (-2727 (((-640 (-2 (|:| -2174 (-563)) (|:| -1654 (-563))))) 145 (|has| (-407 |#2|) (-349)))) (-2174 (((-418 $) $) 112 (|has| (-407 |#2|) (-363)))) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) 109 (|has| (-407 |#2|) (-363)))) (-3008 (((-3 $ "failed") $ $) 92 (|has| (-407 |#2|) (-363)))) (-1465 (((-3 (-640 $) "failed") (-640 $) $) 103 (|has| (-407 |#2|) (-363)))) (-2628 (((-767) $) 105 (|has| (-407 |#2|) (-363)))) (-2309 ((|#1| $ |#1| |#1|) 186)) (-2621 (((-3 |#2| "failed")) 185)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 106 (|has| (-407 |#2|) (-363)))) (-2315 (((-407 |#2|) (-1257 $)) 48) (((-407 |#2|)) 61)) (-1423 (((-767) $) 150 (|has| (-407 |#2|) (-349))) (((-3 (-767) "failed") $ $) 138 (|has| (-407 |#2|) (-349)))) (-4202 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) 122 (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) 121 (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) 188) (($ $ (-640 (-1169)) (-640 (-767))) 129 (-4032 (-2190 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) (-2190 (|has| (-407 |#2|) (-896 (-1169))) (|has| (-407 |#2|) (-363))))) (($ $ (-1169) (-767)) 130 (-4032 (-2190 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) (-2190 (|has| (-407 |#2|) (-896 (-1169))) (|has| (-407 |#2|) (-363))))) (($ $ (-640 (-1169))) 131 (-4032 (-2190 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) (-2190 (|has| (-407 |#2|) (-896 (-1169))) (|has| (-407 |#2|) (-363))))) (($ $ (-1169)) 132 (-4032 (-2190 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) (-2190 (|has| (-407 |#2|) (-896 (-1169))) (|has| (-407 |#2|) (-363))))) (($ $ (-767)) 134 (-4032 (-2190 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-2190 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) 136 (-4032 (-2190 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-2190 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-3974 (((-684 (-407 |#2|)) (-1257 $) (-1 (-407 |#2|) (-407 |#2|))) 153 (|has| (-407 |#2|) (-363)))) (-3390 ((|#3|) 158)) (-4284 (($) 147 (|has| (-407 |#2|) (-349)))) (-1880 (((-1257 (-407 |#2|)) $ (-1257 $)) 51) (((-684 (-407 |#2|)) (-1257 $) (-1257 $)) 50) (((-1257 (-407 |#2|)) $) 67) (((-684 (-407 |#2|)) (-1257 $)) 66)) (-2220 (((-1257 (-407 |#2|)) $) 64) (($ (-1257 (-407 |#2|))) 63) ((|#3| $) 170) (($ |#3|) 156)) (-1377 (((-3 (-1257 $) "failed") (-684 $)) 144 (|has| (-407 |#2|) (-349)))) (-1962 (((-1257 $) (-1257 $)) 202)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ (-407 |#2|)) 38) (($ (-407 (-563))) 86 (-4032 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-1034 (-407 (-563)))))) (($ $) 91 (|has| (-407 |#2|) (-363)))) (-2779 (($ $) 143 (|has| (-407 |#2|) (-349))) (((-3 $ "failed") $) 44 (|has| (-407 |#2|) (-145)))) (-3421 ((|#3| $) 46)) (-1675 (((-767)) 28)) (-4042 (((-112)) 215)) (-1528 (((-112) |#1|) 214) (((-112) |#2|) 213)) (-4315 (((-1257 $)) 68)) (-2126 (((-112) $ $) 95 (|has| (-407 |#2|) (-363)))) (-2732 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 183)) (-1581 (((-112)) 217)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-3209 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) 124 (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) 123 (|has| (-407 |#2|) (-363))) (($ $ (-640 (-1169)) (-640 (-767))) 125 (-4032 (-2190 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) (-2190 (|has| (-407 |#2|) (-896 (-1169))) (|has| (-407 |#2|) (-363))))) (($ $ (-1169) (-767)) 126 (-4032 (-2190 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) (-2190 (|has| (-407 |#2|) (-896 (-1169))) (|has| (-407 |#2|) (-363))))) (($ $ (-640 (-1169))) 127 (-4032 (-2190 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) (-2190 (|has| (-407 |#2|) (-896 (-1169))) (|has| (-407 |#2|) (-363))))) (($ $ (-1169)) 128 (-4032 (-2190 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) (-2190 (|has| (-407 |#2|) (-896 (-1169))) (|has| (-407 |#2|) (-363))))) (($ $ (-767)) 133 (-4032 (-2190 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-2190 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) 135 (-4032 (-2190 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-2190 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-1718 (((-112) $ $) 6)) (-1837 (($ $ $) 120 (|has| (-407 |#2|) (-363)))) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 117 (|has| (-407 |#2|) (-363)))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 |#2|)) 40) (($ (-407 |#2|) $) 39) (($ (-407 (-563)) $) 119 (|has| (-407 |#2|) (-363))) (($ $ (-407 (-563))) 118 (|has| (-407 |#2|) (-363))))) +(((-342 |#1| |#2| |#3|) (-140) (-1212) (-1233 |t#1|) (-1233 (-407 |t#2|))) (T -342)) +((-3273 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-767)))) (-2327 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-767)))) (-1581 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) (-3632 (*1 *2 *3 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) (-4042 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) (-1528 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) (-1528 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1212)) (-4 *3 (-1233 *4)) (-4 *5 (-1233 (-407 *3))) (-5 *2 (-112)))) (-1504 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) (-2456 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) (-2456 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1212)) (-4 *3 (-1233 *4)) (-4 *5 (-1233 (-407 *3))) (-5 *2 (-112)))) (-4077 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) (-1852 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) (-1852 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1212)) (-4 *3 (-1233 *4)) (-4 *5 (-1233 (-407 *3))) (-5 *2 (-112)))) (-3815 (*1 *2) (-12 (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-1257 *1)) (-4 *1 (-342 *3 *4 *5)))) (-2993 (*1 *2) (-12 (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-1257 *1)) (-4 *1 (-342 *3 *4 *5)))) (-2532 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) (-1294 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) (-1962 (*1 *2 *2) (-12 (-5 *2 (-1257 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))))) (-3132 (*1 *2 *2) (-12 (-5 *2 (-1257 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))))) (-4364 (*1 *2 *2) (-12 (-5 *2 (-1257 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))))) (-3500 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-684 (-407 *4))))) (-3295 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-684 (-407 *4))))) (-4218 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-684 (-407 *4))))) (-2095 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-684 (-407 *4))))) (-4067 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-2 (|:| |num| (-1257 *4)) (|:| |den| *4))))) (-3937 (*1 *1 *2 *3) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-1233 *4)) (-4 *4 (-1212)) (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1233 (-407 *3))))) (-3447 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-2 (|:| |num| (-1257 *4)) (|:| |den| *4))))) (-2145 (*1 *1 *2 *3) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-1233 *4)) (-4 *4 (-1212)) (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1233 (-407 *3))))) (-2914 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) (-5 *2 (-2 (|:| |num| (-684 *5)) (|:| |den| *5))))) (-1294 (*1 *2 *1 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) (-1294 (*1 *2 *1 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1212)) (-4 *3 (-1233 *4)) (-4 *5 (-1233 (-407 *3))) (-5 *2 (-112)))) (-4202 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))))) (-1300 (*1 *1 *1) (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1212)) (-4 *3 (-1233 *2)) (-4 *4 (-1233 (-407 *3))))) (-2309 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1212)) (-4 *3 (-1233 *2)) (-4 *4 (-1233 (-407 *3))))) (-2621 (*1 *2) (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1212)) (-4 *4 (-1233 (-407 *2))) (-4 *2 (-1233 *3)))) (-3140 (*1 *2) (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1212)) (-4 *4 (-1233 (-407 *2))) (-4 *2 (-1233 *3)))) (-2732 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1233 *4)) (-4 *4 (-1212)) (-4 *6 (-1233 (-407 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-342 *4 *5 *6)))) (-3370 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) (-4 *4 (-363)) (-5 *2 (-640 (-948 *4))))) (-2077 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-4 *3 (-368)) (-5 *2 (-640 (-640 *3)))))) +(-13 (-720 (-407 |t#2|) |t#3|) (-10 -8 (-15 -3273 ((-767))) (-15 -2327 ((-767))) (-15 -1581 ((-112))) (-15 -3632 ((-112) |t#1| |t#1|)) (-15 -4042 ((-112))) (-15 -1528 ((-112) |t#1|)) (-15 -1528 ((-112) |t#2|)) (-15 -1504 ((-112))) (-15 -2456 ((-112) |t#1|)) (-15 -2456 ((-112) |t#2|)) (-15 -4077 ((-112))) (-15 -1852 ((-112) |t#1|)) (-15 -1852 ((-112) |t#2|)) (-15 -3815 ((-1257 $))) (-15 -2993 ((-1257 $))) (-15 -2532 ((-112) $)) (-15 -1294 ((-112) $)) (-15 -1962 ((-1257 $) (-1257 $))) (-15 -3132 ((-1257 $) (-1257 $))) (-15 -4364 ((-1257 $) (-1257 $))) (-15 -3500 ((-684 (-407 |t#2|)))) (-15 -3295 ((-684 (-407 |t#2|)))) (-15 -4218 ((-684 (-407 |t#2|)))) (-15 -2095 ((-684 (-407 |t#2|)))) (-15 -4067 ((-2 (|:| |num| (-1257 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3937 ($ (-1257 |t#2|) |t#2|)) (-15 -3447 ((-2 (|:| |num| (-1257 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2145 ($ (-1257 |t#2|) |t#2|)) (-15 -2914 ((-2 (|:| |num| (-684 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1294 ((-112) $ |t#1|)) (-15 -1294 ((-112) $ |t#2|)) (-15 -4202 ($ $ (-1 |t#2| |t#2|))) (-15 -1300 ($ $)) (-15 -2309 (|t#1| $ |t#1| |t#1|)) (-15 -2621 ((-3 |t#2| "failed"))) (-15 -3140 ((-3 |t#2| "failed"))) (-15 -2732 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-363)) (-15 -3370 ((-640 (-948 |t#1|)) (-1169))) |%noBranch|) (IF (|has| |t#1| (-368)) (-15 -2077 ((-640 (-640 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) -4032 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-38 #1=(-407 |#2|)) . T) ((-38 $) -4032 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-102) . T) ((-111 #0# #0#) -4032 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -4032 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-145))) ((-147) |has| (-407 |#2|) (-147)) ((-613 #0#) -4032 (|has| (-407 |#2|) (-1034 (-407 (-563)))) (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-613 #1#) . T) ((-613 (-563)) . T) ((-613 $) -4032 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-610 (-858)) . T) ((-172) . T) ((-611 |#3|) . T) ((-231 #1#) |has| (-407 |#2|) (-363)) ((-233) -4032 (|has| (-407 |#2|) (-349)) (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363)))) ((-243) -4032 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-290) -4032 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-307) -4032 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-363) -4032 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-402) |has| (-407 |#2|) (-349)) ((-368) -4032 (|has| (-407 |#2|) (-368)) (|has| (-407 |#2|) (-349))) ((-349) |has| (-407 |#2|) (-349)) ((-370 #1# |#3|) . T) ((-409 #1# |#3|) . T) ((-377 #1#) . T) ((-411 #1#) . T) ((-452) -4032 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-555) -4032 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-643 #0#) -4032 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-643 #1#) . T) ((-643 $) . T) ((-636 #1#) . T) ((-636 (-563)) |has| (-407 |#2|) (-636 (-563))) ((-713 #0#) -4032 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-713 #1#) . T) ((-713 $) -4032 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-720 #1# |#3|) . T) ((-722) . T) ((-896 (-1169)) -12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) ((-916) -4032 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-1034 (-407 (-563))) |has| (-407 |#2|) (-1034 (-407 (-563)))) ((-1034 #1#) . T) ((-1034 (-563)) |has| (-407 |#2|) (-1034 (-563))) ((-1051 #0#) -4032 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-1051 #1#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1144) |has| (-407 |#2|) (-349)) ((-1212) -4032 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-2388 (((-112) $) NIL)) (-3259 (((-767)) NIL)) (-1733 (((-906 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-2752 (((-1181 (-917) (-767)) (-563)) NIL (|has| (-906 |#1|) (-368)))) (-1495 (((-3 $ "failed") $ $) NIL)) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-1919 (((-112) $ $) NIL)) (-3749 (((-767)) NIL (|has| (-906 |#1|) (-368)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-906 |#1|) "failed") $) NIL)) (-2058 (((-906 |#1|) $) NIL)) (-3937 (($ (-1257 (-906 |#1|))) NIL)) (-3711 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-906 |#1|) (-368)))) (-3090 (($ $ $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-1691 (($) NIL (|has| (-906 |#1|) (-368)))) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-1571 (($) NIL (|has| (-906 |#1|) (-368)))) (-2366 (((-112) $) NIL (|has| (-906 |#1|) (-368)))) (-1637 (($ $ (-767)) NIL (-4032 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368)))) (($ $) NIL (-4032 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-2468 (((-112) $) NIL)) (-3254 (((-917) $) NIL (|has| (-906 |#1|) (-368))) (((-829 (-917)) $) NIL (-4032 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-3827 (((-112) $) NIL)) (-3723 (($) NIL (|has| (-906 |#1|) (-368)))) (-2890 (((-112) $) NIL (|has| (-906 |#1|) (-368)))) (-3793 (((-906 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-2408 (((-3 $ "failed") $) NIL (|has| (-906 |#1|) (-368)))) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3941 (((-1165 (-906 |#1|)) $) NIL) (((-1165 $) $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-1476 (((-917) $) NIL (|has| (-906 |#1|) (-368)))) (-2229 (((-1165 (-906 |#1|)) $) NIL (|has| (-906 |#1|) (-368)))) (-1631 (((-1165 (-906 |#1|)) $) NIL (|has| (-906 |#1|) (-368))) (((-3 (-1165 (-906 |#1|)) "failed") $ $) NIL (|has| (-906 |#1|) (-368)))) (-4166 (($ $ (-1165 (-906 |#1|))) NIL (|has| (-906 |#1|) (-368)))) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) NIL)) (-2523 (($) NIL (|has| (-906 |#1|) (-368)) CONST)) (-2555 (($ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-3013 (((-112) $) NIL)) (-1694 (((-1113) $) NIL)) (-1863 (((-954 (-1113))) NIL)) (-4333 (($) NIL (|has| (-906 |#1|) (-368)))) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ $ $) NIL) (($ (-640 $)) NIL)) (-2727 (((-640 (-2 (|:| -2174 (-563)) (|:| -1654 (-563))))) NIL (|has| (-906 |#1|) (-368)))) (-2174 (((-418 $) $) NIL)) (-1467 (((-829 (-917))) NIL) (((-917)) NIL)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2628 (((-767) $) NIL)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-1423 (((-767) $) NIL (|has| (-906 |#1|) (-368))) (((-3 (-767) "failed") $ $) NIL (-4032 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-3533 (((-134)) NIL)) (-4202 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-4167 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-3390 (((-1165 (-906 |#1|))) NIL)) (-4284 (($) NIL (|has| (-906 |#1|) (-368)))) (-1484 (($) NIL (|has| (-906 |#1|) (-368)))) (-1880 (((-1257 (-906 |#1|)) $) NIL) (((-684 (-906 |#1|)) (-1257 $)) NIL)) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| (-906 |#1|) (-368)))) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ (-906 |#1|)) NIL)) (-2779 (($ $) NIL (|has| (-906 |#1|) (-368))) (((-3 $ "failed") $) NIL (-4032 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-1675 (((-767)) NIL)) (-4315 (((-1257 $)) NIL) (((-1257 $) (-917)) NIL)) (-2126 (((-112) $ $) NIL)) (-3152 (((-112) $) NIL)) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-2350 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-3209 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-1718 (((-112) $ $) NIL)) (-1837 (($ $ $) NIL) (($ $ (-906 |#1|)) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ $ (-906 |#1|)) NIL) (($ (-906 |#1|) $) NIL))) +(((-343 |#1| |#2|) (-13 (-329 (-906 |#1|)) (-10 -7 (-15 -1863 ((-954 (-1113)))))) (-917) (-917)) (T -343)) +((-1863 (*1 *2) (-12 (-5 *2 (-954 (-1113))) (-5 *1 (-343 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917))))) +(-13 (-329 (-906 |#1|)) (-10 -7 (-15 -1863 ((-954 (-1113)))))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) 43)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-2388 (((-112) $) NIL)) (-3259 (((-767)) NIL)) (-1733 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-2752 (((-1181 (-917) (-767)) (-563)) 40 (|has| |#1| (-368)))) (-1495 (((-3 $ "failed") $ $) NIL)) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-1919 (((-112) $ $) NIL)) (-3749 (((-767)) NIL (|has| |#1| (-368)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#1| "failed") $) 114)) (-2058 ((|#1| $) 85)) (-3937 (($ (-1257 |#1|)) 103)) (-3711 (((-3 "prime" "polynomial" "normal" "cyclic")) 94 (|has| |#1| (-368)))) (-3090 (($ $ $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-1691 (($) 97 (|has| |#1| (-368)))) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-1571 (($) 128 (|has| |#1| (-368)))) (-2366 (((-112) $) 47 (|has| |#1| (-368)))) (-1637 (($ $ (-767)) NIL (-4032 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4032 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2468 (((-112) $) NIL)) (-3254 (((-917) $) 44 (|has| |#1| (-368))) (((-829 (-917)) $) NIL (-4032 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3827 (((-112) $) NIL)) (-3723 (($) 130 (|has| |#1| (-368)))) (-2890 (((-112) $) NIL (|has| |#1| (-368)))) (-3793 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-2408 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3941 (((-1165 |#1|) $) 89) (((-1165 $) $ (-917)) NIL (|has| |#1| (-368)))) (-1476 (((-917) $) 138 (|has| |#1| (-368)))) (-2229 (((-1165 |#1|) $) NIL (|has| |#1| (-368)))) (-1631 (((-1165 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1165 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-4166 (($ $ (-1165 |#1|)) NIL (|has| |#1| (-368)))) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) 145)) (-2523 (($) NIL (|has| |#1| (-368)) CONST)) (-2555 (($ (-917)) 70 (|has| |#1| (-368)))) (-3013 (((-112) $) 117)) (-1694 (((-1113) $) NIL)) (-1863 (((-954 (-1113))) 41)) (-4333 (($) 126 (|has| |#1| (-368)))) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ $ $) NIL) (($ (-640 $)) NIL)) (-2727 (((-640 (-2 (|:| -2174 (-563)) (|:| -1654 (-563))))) 92 (|has| |#1| (-368)))) (-2174 (((-418 $) $) NIL)) (-1467 (((-829 (-917))) 66) (((-917)) 67)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2628 (((-767) $) NIL)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-1423 (((-767) $) 129 (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) 124 (-4032 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3533 (((-134)) NIL)) (-4202 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-4167 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-3390 (((-1165 |#1|)) 95)) (-4284 (($) 127 (|has| |#1| (-368)))) (-1484 (($) 135 (|has| |#1| (-368)))) (-1880 (((-1257 |#1|) $) 58) (((-684 |#1|) (-1257 $)) NIL)) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| |#1| (-368)))) (-1693 (((-858) $) 141) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ |#1|) 74)) (-2779 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4032 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1675 (((-767)) 137)) (-4315 (((-1257 $)) 116) (((-1257 $) (-917)) 72)) (-2126 (((-112) $ $) NIL)) (-3152 (((-112) $) NIL)) (-2241 (($) 48 T CONST)) (-2254 (($) 45 T CONST)) (-2350 (($ $) 80 (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-3209 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-1718 (((-112) $ $) 46)) (-1837 (($ $ $) 143) (($ $ |#1|) 144)) (-1826 (($ $) 125) (($ $ $) NIL)) (-1814 (($ $ $) 60)) (** (($ $ (-917)) 147) (($ $ (-767)) 148) (($ $ (-563)) 146)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 76) (($ $ $) 75) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 142))) +(((-344 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -1863 ((-954 (-1113)))))) (-349) (-1165 |#1|)) (T -344)) +((-1863 (*1 *2) (-12 (-5 *2 (-954 (-1113))) (-5 *1 (-344 *3 *4)) (-4 *3 (-349)) (-14 *4 (-1165 *3))))) +(-13 (-329 |#1|) (-10 -7 (-15 -1863 ((-954 (-1113)))))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-2388 (((-112) $) NIL)) (-3259 (((-767)) NIL)) (-1733 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-2752 (((-1181 (-917) (-767)) (-563)) NIL (|has| |#1| (-368)))) (-1495 (((-3 $ "failed") $ $) NIL)) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-1919 (((-112) $ $) NIL)) (-3749 (((-767)) NIL (|has| |#1| (-368)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#1| "failed") $) NIL)) (-2058 ((|#1| $) NIL)) (-3937 (($ (-1257 |#1|)) NIL)) (-3711 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-3090 (($ $ $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-1691 (($) NIL (|has| |#1| (-368)))) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-1571 (($) NIL (|has| |#1| (-368)))) (-2366 (((-112) $) NIL (|has| |#1| (-368)))) (-1637 (($ $ (-767)) NIL (-4032 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4032 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2468 (((-112) $) NIL)) (-3254 (((-917) $) NIL (|has| |#1| (-368))) (((-829 (-917)) $) NIL (-4032 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3827 (((-112) $) NIL)) (-3723 (($) NIL (|has| |#1| (-368)))) (-2890 (((-112) $) NIL (|has| |#1| (-368)))) (-3793 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-2408 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3941 (((-1165 |#1|) $) NIL) (((-1165 $) $ (-917)) NIL (|has| |#1| (-368)))) (-1476 (((-917) $) NIL (|has| |#1| (-368)))) (-2229 (((-1165 |#1|) $) NIL (|has| |#1| (-368)))) (-1631 (((-1165 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1165 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-4166 (($ $ (-1165 |#1|)) NIL (|has| |#1| (-368)))) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) NIL)) (-2523 (($) NIL (|has| |#1| (-368)) CONST)) (-2555 (($ (-917)) NIL (|has| |#1| (-368)))) (-3013 (((-112) $) NIL)) (-1694 (((-1113) $) NIL)) (-1863 (((-954 (-1113))) NIL)) (-4333 (($) NIL (|has| |#1| (-368)))) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ $ $) NIL) (($ (-640 $)) NIL)) (-2727 (((-640 (-2 (|:| -2174 (-563)) (|:| -1654 (-563))))) NIL (|has| |#1| (-368)))) (-2174 (((-418 $) $) NIL)) (-1467 (((-829 (-917))) NIL) (((-917)) NIL)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2628 (((-767) $) NIL)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-1423 (((-767) $) NIL (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) NIL (-4032 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3533 (((-134)) NIL)) (-4202 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-4167 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-3390 (((-1165 |#1|)) NIL)) (-4284 (($) NIL (|has| |#1| (-368)))) (-1484 (($) NIL (|has| |#1| (-368)))) (-1880 (((-1257 |#1|) $) NIL) (((-684 |#1|) (-1257 $)) NIL)) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| |#1| (-368)))) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ |#1|) NIL)) (-2779 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4032 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1675 (((-767)) NIL)) (-4315 (((-1257 $)) NIL) (((-1257 $) (-917)) NIL)) (-2126 (((-112) $ $) NIL)) (-3152 (((-112) $) NIL)) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-2350 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-3209 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-1718 (((-112) $ $) NIL)) (-1837 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-345 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -1863 ((-954 (-1113)))))) (-349) (-917)) (T -345)) +((-1863 (*1 *2) (-12 (-5 *2 (-954 (-1113))) (-5 *1 (-345 *3 *4)) (-4 *3 (-349)) (-14 *4 (-917))))) +(-13 (-329 |#1|) (-10 -7 (-15 -1863 ((-954 (-1113)))))) +((-3355 (((-767) (-1257 (-640 (-2 (|:| -2619 |#1|) (|:| -2555 (-1113)))))) 42)) (-2353 (((-954 (-1113)) (-1165 |#1|)) 85)) (-3765 (((-1257 (-640 (-2 (|:| -2619 |#1|) (|:| -2555 (-1113))))) (-1165 |#1|)) 78)) (-3041 (((-684 |#1|) (-1257 (-640 (-2 (|:| -2619 |#1|) (|:| -2555 (-1113)))))) 86)) (-3852 (((-3 (-1257 (-640 (-2 (|:| -2619 |#1|) (|:| -2555 (-1113))))) "failed") (-917)) 13)) (-3955 (((-3 (-1165 |#1|) (-1257 (-640 (-2 (|:| -2619 |#1|) (|:| -2555 (-1113)))))) (-917)) 18))) +(((-346 |#1|) (-10 -7 (-15 -2353 ((-954 (-1113)) (-1165 |#1|))) (-15 -3765 ((-1257 (-640 (-2 (|:| -2619 |#1|) (|:| -2555 (-1113))))) (-1165 |#1|))) (-15 -3041 ((-684 |#1|) (-1257 (-640 (-2 (|:| -2619 |#1|) (|:| -2555 (-1113))))))) (-15 -3355 ((-767) (-1257 (-640 (-2 (|:| -2619 |#1|) (|:| -2555 (-1113))))))) (-15 -3852 ((-3 (-1257 (-640 (-2 (|:| -2619 |#1|) (|:| -2555 (-1113))))) "failed") (-917))) (-15 -3955 ((-3 (-1165 |#1|) (-1257 (-640 (-2 (|:| -2619 |#1|) (|:| -2555 (-1113)))))) (-917)))) (-349)) (T -346)) +((-3955 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-3 (-1165 *4) (-1257 (-640 (-2 (|:| -2619 *4) (|:| -2555 (-1113))))))) (-5 *1 (-346 *4)) (-4 *4 (-349)))) (-3852 (*1 *2 *3) (|partial| -12 (-5 *3 (-917)) (-5 *2 (-1257 (-640 (-2 (|:| -2619 *4) (|:| -2555 (-1113)))))) (-5 *1 (-346 *4)) (-4 *4 (-349)))) (-3355 (*1 *2 *3) (-12 (-5 *3 (-1257 (-640 (-2 (|:| -2619 *4) (|:| -2555 (-1113)))))) (-4 *4 (-349)) (-5 *2 (-767)) (-5 *1 (-346 *4)))) (-3041 (*1 *2 *3) (-12 (-5 *3 (-1257 (-640 (-2 (|:| -2619 *4) (|:| -2555 (-1113)))))) (-4 *4 (-349)) (-5 *2 (-684 *4)) (-5 *1 (-346 *4)))) (-3765 (*1 *2 *3) (-12 (-5 *3 (-1165 *4)) (-4 *4 (-349)) (-5 *2 (-1257 (-640 (-2 (|:| -2619 *4) (|:| -2555 (-1113)))))) (-5 *1 (-346 *4)))) (-2353 (*1 *2 *3) (-12 (-5 *3 (-1165 *4)) (-4 *4 (-349)) (-5 *2 (-954 (-1113))) (-5 *1 (-346 *4))))) +(-10 -7 (-15 -2353 ((-954 (-1113)) (-1165 |#1|))) (-15 -3765 ((-1257 (-640 (-2 (|:| -2619 |#1|) (|:| -2555 (-1113))))) (-1165 |#1|))) (-15 -3041 ((-684 |#1|) (-1257 (-640 (-2 (|:| -2619 |#1|) (|:| -2555 (-1113))))))) (-15 -3355 ((-767) (-1257 (-640 (-2 (|:| -2619 |#1|) (|:| -2555 (-1113))))))) (-15 -3852 ((-3 (-1257 (-640 (-2 (|:| -2619 |#1|) (|:| -2555 (-1113))))) "failed") (-917))) (-15 -3955 ((-3 (-1165 |#1|) (-1257 (-640 (-2 (|:| -2619 |#1|) (|:| -2555 (-1113)))))) (-917)))) +((-1693 ((|#1| |#3|) 86) ((|#3| |#1|) 69))) +(((-347 |#1| |#2| |#3|) (-10 -7 (-15 -1693 (|#3| |#1|)) (-15 -1693 (|#1| |#3|))) (-329 |#2|) (-349) (-329 |#2|)) (T -347)) +((-1693 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *2 *4 *3)) (-4 *3 (-329 *4)))) (-1693 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *3 *4 *2)) (-4 *3 (-329 *4))))) +(-10 -7 (-15 -1693 (|#3| |#1|)) (-15 -1693 (|#1| |#3|))) +((-2366 (((-112) $) 50)) (-3254 (((-829 (-917)) $) 21) (((-917) $) 51)) (-2408 (((-3 $ "failed") $) 16)) (-2523 (($) 9)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 92)) (-1423 (((-3 (-767) "failed") $ $) 70) (((-767) $) 59)) (-4202 (($ $ (-767)) NIL) (($ $) 8)) (-4284 (($) 43)) (-1377 (((-3 (-1257 $) "failed") (-684 $)) 34)) (-2779 (((-3 $ "failed") $) 38) (($ $) 37))) +(((-348 |#1|) (-10 -8 (-15 -3254 ((-917) |#1|)) (-15 -1423 ((-767) |#1|)) (-15 -2366 ((-112) |#1|)) (-15 -4284 (|#1|)) (-15 -1377 ((-3 (-1257 |#1|) "failed") (-684 |#1|))) (-15 -2779 (|#1| |#1|)) (-15 -4202 (|#1| |#1|)) (-15 -4202 (|#1| |#1| (-767))) (-15 -2523 (|#1|)) (-15 -2408 ((-3 |#1| "failed") |#1|)) (-15 -1423 ((-3 (-767) "failed") |#1| |#1|)) (-15 -3254 ((-829 (-917)) |#1|)) (-15 -2779 ((-3 |#1| "failed") |#1|)) (-15 -3385 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|)))) (-349)) (T -348)) +NIL +(-10 -8 (-15 -3254 ((-917) |#1|)) (-15 -1423 ((-767) |#1|)) (-15 -2366 ((-112) |#1|)) (-15 -4284 (|#1|)) (-15 -1377 ((-3 (-1257 |#1|) "failed") (-684 |#1|))) (-15 -2779 (|#1| |#1|)) (-15 -4202 (|#1| |#1|)) (-15 -4202 (|#1| |#1| (-767))) (-15 -2523 (|#1|)) (-15 -2408 ((-3 |#1| "failed") |#1|)) (-15 -1423 ((-3 (-767) "failed") |#1| |#1|)) (-15 -3254 ((-829 (-917)) |#1|)) (-15 -2779 ((-3 |#1| "failed") |#1|)) (-15 -3385 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|)))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 42)) (-4223 (($ $) 41)) (-3156 (((-112) $) 39)) (-2752 (((-1181 (-917) (-767)) (-563)) 94)) (-1495 (((-3 $ "failed") $ $) 19)) (-4335 (($ $) 74)) (-3205 (((-418 $) $) 73)) (-1919 (((-112) $ $) 60)) (-3749 (((-767)) 104)) (-4239 (($) 17 T CONST)) (-3711 (((-3 "prime" "polynomial" "normal" "cyclic")) 88)) (-3090 (($ $ $) 56)) (-3400 (((-3 $ "failed") $) 33)) (-1691 (($) 107)) (-3050 (($ $ $) 57)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) 52)) (-1571 (($) 92)) (-2366 (((-112) $) 91)) (-1637 (($ $) 80) (($ $ (-767)) 79)) (-2468 (((-112) $) 72)) (-3254 (((-829 (-917)) $) 82) (((-917) $) 89)) (-3827 (((-112) $) 31)) (-2408 (((-3 $ "failed") $) 103)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-1476 (((-917) $) 106)) (-3513 (($ $ $) 47) (($ (-640 $)) 46)) (-3573 (((-1151) $) 9)) (-2688 (($ $) 71)) (-2523 (($) 102 T CONST)) (-2555 (($ (-917)) 105)) (-1694 (((-1113) $) 10)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3548 (($ $ $) 49) (($ (-640 $)) 48)) (-2727 (((-640 (-2 (|:| -2174 (-563)) (|:| -1654 (-563))))) 95)) (-2174 (((-418 $) $) 75)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3008 (((-3 $ "failed") $ $) 43)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-2628 (((-767) $) 59)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 58)) (-1423 (((-3 (-767) "failed") $ $) 81) (((-767) $) 90)) (-4202 (($ $ (-767)) 100) (($ $) 98)) (-4284 (($) 93)) (-1377 (((-3 (-1257 $) "failed") (-684 $)) 96)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-407 (-563))) 67)) (-2779 (((-3 $ "failed") $) 83) (($ $) 97)) (-1675 (((-767)) 28)) (-2126 (((-112) $ $) 40)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-3209 (($ $ (-767)) 101) (($ $) 99)) (-1718 (((-112) $ $) 6)) (-1837 (($ $ $) 66)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 70)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 69) (($ (-407 (-563)) $) 68))) +(((-349) (-140)) (T -349)) +((-2779 (*1 *1 *1) (-4 *1 (-349))) (-1377 (*1 *2 *3) (|partial| -12 (-5 *3 (-684 *1)) (-4 *1 (-349)) (-5 *2 (-1257 *1)))) (-2727 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-640 (-2 (|:| -2174 (-563)) (|:| -1654 (-563))))))) (-2752 (*1 *2 *3) (-12 (-4 *1 (-349)) (-5 *3 (-563)) (-5 *2 (-1181 (-917) (-767))))) (-4284 (*1 *1) (-4 *1 (-349))) (-1571 (*1 *1) (-4 *1 (-349))) (-2366 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-112)))) (-1423 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-767)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-917)))) (-3711 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-402) (-368) (-1144) (-233) (-10 -8 (-15 -2779 ($ $)) (-15 -1377 ((-3 (-1257 $) "failed") (-684 $))) (-15 -2727 ((-640 (-2 (|:| -2174 (-563)) (|:| -1654 (-563)))))) (-15 -2752 ((-1181 (-917) (-767)) (-563))) (-15 -4284 ($)) (-15 -1571 ($)) (-15 -2366 ((-112) $)) (-15 -1423 ((-767) $)) (-15 -3254 ((-917) $)) (-15 -3711 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-613 #0#) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-233) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-402) . T) ((-368) . T) ((-452) . T) ((-555) . T) ((-643 #0#) . T) ((-643 $) . T) ((-713 #0#) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1144) . T) ((-1212) . T)) +((-3435 (((-2 (|:| -4315 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) |#1|) 53)) (-3815 (((-2 (|:| -4315 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|)))) 51))) +(((-350 |#1| |#2| |#3|) (-10 -7 (-15 -3815 ((-2 (|:| -4315 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))))) (-15 -3435 ((-2 (|:| -4315 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) |#1|))) (-13 (-307) (-10 -8 (-15 -3205 ((-418 $) $)))) (-1233 |#1|) (-409 |#1| |#2|)) (T -350)) +((-3435 (*1 *2 *3) (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -3205 ((-418 $) $))))) (-4 *4 (-1233 *3)) (-5 *2 (-2 (|:| -4315 (-684 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-684 *3)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-3815 (*1 *2) (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -3205 ((-418 $) $))))) (-4 *4 (-1233 *3)) (-5 *2 (-2 (|:| -4315 (-684 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-684 *3)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) +(-10 -7 (-15 -3815 ((-2 (|:| -4315 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))))) (-15 -3435 ((-2 (|:| -4315 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) |#1|))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-2388 (((-112) $) NIL)) (-3259 (((-767)) NIL)) (-1733 (((-906 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-2752 (((-1181 (-917) (-767)) (-563)) NIL (|has| (-906 |#1|) (-368)))) (-1495 (((-3 $ "failed") $ $) NIL)) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-3355 (((-767)) NIL)) (-1919 (((-112) $ $) NIL)) (-3749 (((-767)) NIL (|has| (-906 |#1|) (-368)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-906 |#1|) "failed") $) NIL)) (-2058 (((-906 |#1|) $) NIL)) (-3937 (($ (-1257 (-906 |#1|))) NIL)) (-3711 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-906 |#1|) (-368)))) (-3090 (($ $ $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-1691 (($) NIL (|has| (-906 |#1|) (-368)))) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-1571 (($) NIL (|has| (-906 |#1|) (-368)))) (-2366 (((-112) $) NIL (|has| (-906 |#1|) (-368)))) (-1637 (($ $ (-767)) NIL (-4032 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368)))) (($ $) NIL (-4032 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-2468 (((-112) $) NIL)) (-3254 (((-917) $) NIL (|has| (-906 |#1|) (-368))) (((-829 (-917)) $) NIL (-4032 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-3827 (((-112) $) NIL)) (-3723 (($) NIL (|has| (-906 |#1|) (-368)))) (-2890 (((-112) $) NIL (|has| (-906 |#1|) (-368)))) (-3793 (((-906 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-2408 (((-3 $ "failed") $) NIL (|has| (-906 |#1|) (-368)))) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3941 (((-1165 (-906 |#1|)) $) NIL) (((-1165 $) $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-1476 (((-917) $) NIL (|has| (-906 |#1|) (-368)))) (-2229 (((-1165 (-906 |#1|)) $) NIL (|has| (-906 |#1|) (-368)))) (-1631 (((-1165 (-906 |#1|)) $) NIL (|has| (-906 |#1|) (-368))) (((-3 (-1165 (-906 |#1|)) "failed") $ $) NIL (|has| (-906 |#1|) (-368)))) (-4166 (($ $ (-1165 (-906 |#1|))) NIL (|has| (-906 |#1|) (-368)))) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) NIL)) (-2523 (($) NIL (|has| (-906 |#1|) (-368)) CONST)) (-2555 (($ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-3013 (((-112) $) NIL)) (-1694 (((-1113) $) NIL)) (-3522 (((-1257 (-640 (-2 (|:| -2619 (-906 |#1|)) (|:| -2555 (-1113)))))) NIL)) (-4048 (((-684 (-906 |#1|))) NIL)) (-4333 (($) NIL (|has| (-906 |#1|) (-368)))) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ $ $) NIL) (($ (-640 $)) NIL)) (-2727 (((-640 (-2 (|:| -2174 (-563)) (|:| -1654 (-563))))) NIL (|has| (-906 |#1|) (-368)))) (-2174 (((-418 $) $) NIL)) (-1467 (((-829 (-917))) NIL) (((-917)) NIL)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2628 (((-767) $) NIL)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-1423 (((-767) $) NIL (|has| (-906 |#1|) (-368))) (((-3 (-767) "failed") $ $) NIL (-4032 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-3533 (((-134)) NIL)) (-4202 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-4167 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-3390 (((-1165 (-906 |#1|))) NIL)) (-4284 (($) NIL (|has| (-906 |#1|) (-368)))) (-1484 (($) NIL (|has| (-906 |#1|) (-368)))) (-1880 (((-1257 (-906 |#1|)) $) NIL) (((-684 (-906 |#1|)) (-1257 $)) NIL)) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| (-906 |#1|) (-368)))) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ (-906 |#1|)) NIL)) (-2779 (($ $) NIL (|has| (-906 |#1|) (-368))) (((-3 $ "failed") $) NIL (-4032 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-1675 (((-767)) NIL)) (-4315 (((-1257 $)) NIL) (((-1257 $) (-917)) NIL)) (-2126 (((-112) $ $) NIL)) (-3152 (((-112) $) NIL)) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-2350 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-3209 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-1718 (((-112) $ $) NIL)) (-1837 (($ $ $) NIL) (($ $ (-906 |#1|)) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ $ (-906 |#1|)) NIL) (($ (-906 |#1|) $) NIL))) +(((-351 |#1| |#2|) (-13 (-329 (-906 |#1|)) (-10 -7 (-15 -3522 ((-1257 (-640 (-2 (|:| -2619 (-906 |#1|)) (|:| -2555 (-1113))))))) (-15 -4048 ((-684 (-906 |#1|)))) (-15 -3355 ((-767))))) (-917) (-917)) (T -351)) +((-3522 (*1 *2) (-12 (-5 *2 (-1257 (-640 (-2 (|:| -2619 (-906 *3)) (|:| -2555 (-1113)))))) (-5 *1 (-351 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) (-4048 (*1 *2) (-12 (-5 *2 (-684 (-906 *3))) (-5 *1 (-351 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) (-3355 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-351 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917))))) +(-13 (-329 (-906 |#1|)) (-10 -7 (-15 -3522 ((-1257 (-640 (-2 (|:| -2619 (-906 |#1|)) (|:| -2555 (-1113))))))) (-15 -4048 ((-684 (-906 |#1|)))) (-15 -3355 ((-767))))) +((-1677 (((-112) $ $) 61)) (-3411 (((-112) $) 74)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-2388 (((-112) $) NIL)) (-3259 (((-767)) NIL)) (-1733 ((|#1| $) 92) (($ $ (-917)) 90 (|has| |#1| (-368)))) (-2752 (((-1181 (-917) (-767)) (-563)) 148 (|has| |#1| (-368)))) (-1495 (((-3 $ "failed") $ $) NIL)) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-3355 (((-767)) 89)) (-1919 (((-112) $ $) NIL)) (-3749 (((-767)) 162 (|has| |#1| (-368)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#1| "failed") $) 112)) (-2058 ((|#1| $) 91)) (-3937 (($ (-1257 |#1|)) 58)) (-3711 (((-3 "prime" "polynomial" "normal" "cyclic")) 188 (|has| |#1| (-368)))) (-3090 (($ $ $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-1691 (($) 158 (|has| |#1| (-368)))) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-1571 (($) 149 (|has| |#1| (-368)))) (-2366 (((-112) $) NIL (|has| |#1| (-368)))) (-1637 (($ $ (-767)) NIL (-4032 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4032 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2468 (((-112) $) NIL)) (-3254 (((-917) $) NIL (|has| |#1| (-368))) (((-829 (-917)) $) NIL (-4032 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3827 (((-112) $) NIL)) (-3723 (($) 98 (|has| |#1| (-368)))) (-2890 (((-112) $) 175 (|has| |#1| (-368)))) (-3793 ((|#1| $) 94) (($ $ (-917)) 93 (|has| |#1| (-368)))) (-2408 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3941 (((-1165 |#1|) $) 189) (((-1165 $) $ (-917)) NIL (|has| |#1| (-368)))) (-1476 (((-917) $) 134 (|has| |#1| (-368)))) (-2229 (((-1165 |#1|) $) 73 (|has| |#1| (-368)))) (-1631 (((-1165 |#1|) $) 70 (|has| |#1| (-368))) (((-3 (-1165 |#1|) "failed") $ $) 82 (|has| |#1| (-368)))) (-4166 (($ $ (-1165 |#1|)) 69 (|has| |#1| (-368)))) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) 192)) (-2523 (($) NIL (|has| |#1| (-368)) CONST)) (-2555 (($ (-917)) 137 (|has| |#1| (-368)))) (-3013 (((-112) $) 108)) (-1694 (((-1113) $) NIL)) (-3522 (((-1257 (-640 (-2 (|:| -2619 |#1|) (|:| -2555 (-1113)))))) 83)) (-4048 (((-684 |#1|)) 87)) (-4333 (($) 96 (|has| |#1| (-368)))) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ $ $) NIL) (($ (-640 $)) NIL)) (-2727 (((-640 (-2 (|:| -2174 (-563)) (|:| -1654 (-563))))) 150 (|has| |#1| (-368)))) (-2174 (((-418 $) $) NIL)) (-1467 (((-829 (-917))) NIL) (((-917)) 151)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2628 (((-767) $) NIL)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-1423 (((-767) $) NIL (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) NIL (-4032 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3533 (((-134)) NIL)) (-4202 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-4167 (((-829 (-917)) $) NIL) (((-917) $) 62)) (-3390 (((-1165 |#1|)) 152)) (-4284 (($) 133 (|has| |#1| (-368)))) (-1484 (($) NIL (|has| |#1| (-368)))) (-1880 (((-1257 |#1|) $) 106) (((-684 |#1|) (-1257 $)) NIL)) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| |#1| (-368)))) (-1693 (((-858) $) 124) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ |#1|) 57)) (-2779 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4032 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1675 (((-767)) 156)) (-4315 (((-1257 $)) 172) (((-1257 $) (-917)) 101)) (-2126 (((-112) $ $) NIL)) (-3152 (((-112) $) NIL)) (-2241 (($) 117 T CONST)) (-2254 (($) 33 T CONST)) (-2350 (($ $) 107 (|has| |#1| (-368))) (($ $ (-767)) 99 (|has| |#1| (-368)))) (-3209 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-1718 (((-112) $ $) 183)) (-1837 (($ $ $) 104) (($ $ |#1|) 105)) (-1826 (($ $) 177) (($ $ $) 181)) (-1814 (($ $ $) 179)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) 138)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 186) (($ $ $) 142) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103))) +(((-352 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -3522 ((-1257 (-640 (-2 (|:| -2619 |#1|) (|:| -2555 (-1113))))))) (-15 -4048 ((-684 |#1|))) (-15 -3355 ((-767))))) (-349) (-3 (-1165 |#1|) (-1257 (-640 (-2 (|:| -2619 |#1|) (|:| -2555 (-1113))))))) (T -352)) +((-3522 (*1 *2) (-12 (-5 *2 (-1257 (-640 (-2 (|:| -2619 *3) (|:| -2555 (-1113)))))) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1165 *3) *2)))) (-4048 (*1 *2) (-12 (-5 *2 (-684 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1165 *3) (-1257 (-640 (-2 (|:| -2619 *3) (|:| -2555 (-1113))))))))) (-3355 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1165 *3) (-1257 (-640 (-2 (|:| -2619 *3) (|:| -2555 (-1113)))))))))) +(-13 (-329 |#1|) (-10 -7 (-15 -3522 ((-1257 (-640 (-2 (|:| -2619 |#1|) (|:| -2555 (-1113))))))) (-15 -4048 ((-684 |#1|))) (-15 -3355 ((-767))))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-2388 (((-112) $) NIL)) (-3259 (((-767)) NIL)) (-1733 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-2752 (((-1181 (-917) (-767)) (-563)) NIL (|has| |#1| (-368)))) (-1495 (((-3 $ "failed") $ $) NIL)) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-3355 (((-767)) NIL)) (-1919 (((-112) $ $) NIL)) (-3749 (((-767)) NIL (|has| |#1| (-368)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#1| "failed") $) NIL)) (-2058 ((|#1| $) NIL)) (-3937 (($ (-1257 |#1|)) NIL)) (-3711 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-3090 (($ $ $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-1691 (($) NIL (|has| |#1| (-368)))) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-1571 (($) NIL (|has| |#1| (-368)))) (-2366 (((-112) $) NIL (|has| |#1| (-368)))) (-1637 (($ $ (-767)) NIL (-4032 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4032 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2468 (((-112) $) NIL)) (-3254 (((-917) $) NIL (|has| |#1| (-368))) (((-829 (-917)) $) NIL (-4032 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3827 (((-112) $) NIL)) (-3723 (($) NIL (|has| |#1| (-368)))) (-2890 (((-112) $) NIL (|has| |#1| (-368)))) (-3793 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-2408 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3941 (((-1165 |#1|) $) NIL) (((-1165 $) $ (-917)) NIL (|has| |#1| (-368)))) (-1476 (((-917) $) NIL (|has| |#1| (-368)))) (-2229 (((-1165 |#1|) $) NIL (|has| |#1| (-368)))) (-1631 (((-1165 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1165 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-4166 (($ $ (-1165 |#1|)) NIL (|has| |#1| (-368)))) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) NIL)) (-2523 (($) NIL (|has| |#1| (-368)) CONST)) (-2555 (($ (-917)) NIL (|has| |#1| (-368)))) (-3013 (((-112) $) NIL)) (-1694 (((-1113) $) NIL)) (-3522 (((-1257 (-640 (-2 (|:| -2619 |#1|) (|:| -2555 (-1113)))))) NIL)) (-4048 (((-684 |#1|)) NIL)) (-4333 (($) NIL (|has| |#1| (-368)))) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ $ $) NIL) (($ (-640 $)) NIL)) (-2727 (((-640 (-2 (|:| -2174 (-563)) (|:| -1654 (-563))))) NIL (|has| |#1| (-368)))) (-2174 (((-418 $) $) NIL)) (-1467 (((-829 (-917))) NIL) (((-917)) NIL)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2628 (((-767) $) NIL)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-1423 (((-767) $) NIL (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) NIL (-4032 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3533 (((-134)) NIL)) (-4202 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-4167 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-3390 (((-1165 |#1|)) NIL)) (-4284 (($) NIL (|has| |#1| (-368)))) (-1484 (($) NIL (|has| |#1| (-368)))) (-1880 (((-1257 |#1|) $) NIL) (((-684 |#1|) (-1257 $)) NIL)) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| |#1| (-368)))) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ |#1|) NIL)) (-2779 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4032 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1675 (((-767)) NIL)) (-4315 (((-1257 $)) NIL) (((-1257 $) (-917)) NIL)) (-2126 (((-112) $ $) NIL)) (-3152 (((-112) $) NIL)) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-2350 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-3209 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-1718 (((-112) $ $) NIL)) (-1837 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-353 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -3522 ((-1257 (-640 (-2 (|:| -2619 |#1|) (|:| -2555 (-1113))))))) (-15 -4048 ((-684 |#1|))) (-15 -3355 ((-767))))) (-349) (-917)) (T -353)) +((-3522 (*1 *2) (-12 (-5 *2 (-1257 (-640 (-2 (|:| -2619 *3) (|:| -2555 (-1113)))))) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-917)))) (-4048 (*1 *2) (-12 (-5 *2 (-684 *3)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-917)))) (-3355 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-917))))) +(-13 (-329 |#1|) (-10 -7 (-15 -3522 ((-1257 (-640 (-2 (|:| -2619 |#1|) (|:| -2555 (-1113))))))) (-15 -4048 ((-684 |#1|))) (-15 -3355 ((-767))))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-2388 (((-112) $) NIL)) (-3259 (((-767)) NIL)) (-1733 (((-906 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-2752 (((-1181 (-917) (-767)) (-563)) NIL (|has| (-906 |#1|) (-368)))) (-1495 (((-3 $ "failed") $ $) NIL)) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-1919 (((-112) $ $) NIL)) (-3749 (((-767)) NIL (|has| (-906 |#1|) (-368)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-906 |#1|) "failed") $) NIL)) (-2058 (((-906 |#1|) $) NIL)) (-3937 (($ (-1257 (-906 |#1|))) NIL)) (-3711 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-906 |#1|) (-368)))) (-3090 (($ $ $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-1691 (($) NIL (|has| (-906 |#1|) (-368)))) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-1571 (($) NIL (|has| (-906 |#1|) (-368)))) (-2366 (((-112) $) NIL (|has| (-906 |#1|) (-368)))) (-1637 (($ $ (-767)) NIL (-4032 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368)))) (($ $) NIL (-4032 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-2468 (((-112) $) NIL)) (-3254 (((-917) $) NIL (|has| (-906 |#1|) (-368))) (((-829 (-917)) $) NIL (-4032 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-3827 (((-112) $) NIL)) (-3723 (($) NIL (|has| (-906 |#1|) (-368)))) (-2890 (((-112) $) NIL (|has| (-906 |#1|) (-368)))) (-3793 (((-906 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-2408 (((-3 $ "failed") $) NIL (|has| (-906 |#1|) (-368)))) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3941 (((-1165 (-906 |#1|)) $) NIL) (((-1165 $) $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-1476 (((-917) $) NIL (|has| (-906 |#1|) (-368)))) (-2229 (((-1165 (-906 |#1|)) $) NIL (|has| (-906 |#1|) (-368)))) (-1631 (((-1165 (-906 |#1|)) $) NIL (|has| (-906 |#1|) (-368))) (((-3 (-1165 (-906 |#1|)) "failed") $ $) NIL (|has| (-906 |#1|) (-368)))) (-4166 (($ $ (-1165 (-906 |#1|))) NIL (|has| (-906 |#1|) (-368)))) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) NIL)) (-2523 (($) NIL (|has| (-906 |#1|) (-368)) CONST)) (-2555 (($ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-3013 (((-112) $) NIL)) (-1694 (((-1113) $) NIL)) (-4333 (($) NIL (|has| (-906 |#1|) (-368)))) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ $ $) NIL) (($ (-640 $)) NIL)) (-2727 (((-640 (-2 (|:| -2174 (-563)) (|:| -1654 (-563))))) NIL (|has| (-906 |#1|) (-368)))) (-2174 (((-418 $) $) NIL)) (-1467 (((-829 (-917))) NIL) (((-917)) NIL)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2628 (((-767) $) NIL)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-1423 (((-767) $) NIL (|has| (-906 |#1|) (-368))) (((-3 (-767) "failed") $ $) NIL (-4032 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-3533 (((-134)) NIL)) (-4202 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-4167 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-3390 (((-1165 (-906 |#1|))) NIL)) (-4284 (($) NIL (|has| (-906 |#1|) (-368)))) (-1484 (($) NIL (|has| (-906 |#1|) (-368)))) (-1880 (((-1257 (-906 |#1|)) $) NIL) (((-684 (-906 |#1|)) (-1257 $)) NIL)) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| (-906 |#1|) (-368)))) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ (-906 |#1|)) NIL)) (-2779 (($ $) NIL (|has| (-906 |#1|) (-368))) (((-3 $ "failed") $) NIL (-4032 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-1675 (((-767)) NIL)) (-4315 (((-1257 $)) NIL) (((-1257 $) (-917)) NIL)) (-2126 (((-112) $ $) NIL)) (-3152 (((-112) $) NIL)) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-2350 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-3209 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-1718 (((-112) $ $) NIL)) (-1837 (($ $ $) NIL) (($ $ (-906 |#1|)) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ $ (-906 |#1|)) NIL) (($ (-906 |#1|) $) NIL))) +(((-354 |#1| |#2|) (-329 (-906 |#1|)) (-917) (-917)) (T -354)) +NIL +(-329 (-906 |#1|)) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-2388 (((-112) $) NIL)) (-3259 (((-767)) NIL)) (-1733 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-2752 (((-1181 (-917) (-767)) (-563)) 120 (|has| |#1| (-368)))) (-1495 (((-3 $ "failed") $ $) NIL)) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-1919 (((-112) $ $) NIL)) (-3749 (((-767)) 139 (|has| |#1| (-368)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#1| "failed") $) 93)) (-2058 ((|#1| $) 90)) (-3937 (($ (-1257 |#1|)) 85)) (-3711 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-368)))) (-3090 (($ $ $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-1691 (($) 82 (|has| |#1| (-368)))) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-1571 (($) 42 (|has| |#1| (-368)))) (-2366 (((-112) $) NIL (|has| |#1| (-368)))) (-1637 (($ $ (-767)) NIL (-4032 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4032 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2468 (((-112) $) NIL)) (-3254 (((-917) $) NIL (|has| |#1| (-368))) (((-829 (-917)) $) NIL (-4032 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3827 (((-112) $) NIL)) (-3723 (($) 121 (|has| |#1| (-368)))) (-2890 (((-112) $) 74 (|has| |#1| (-368)))) (-3793 ((|#1| $) 39) (($ $ (-917)) 43 (|has| |#1| (-368)))) (-2408 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3941 (((-1165 |#1|) $) 65) (((-1165 $) $ (-917)) NIL (|has| |#1| (-368)))) (-1476 (((-917) $) 97 (|has| |#1| (-368)))) (-2229 (((-1165 |#1|) $) NIL (|has| |#1| (-368)))) (-1631 (((-1165 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1165 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-4166 (($ $ (-1165 |#1|)) NIL (|has| |#1| (-368)))) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) NIL)) (-2523 (($) NIL (|has| |#1| (-368)) CONST)) (-2555 (($ (-917)) 95 (|has| |#1| (-368)))) (-3013 (((-112) $) 141)) (-1694 (((-1113) $) NIL)) (-4333 (($) 36 (|has| |#1| (-368)))) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ $ $) NIL) (($ (-640 $)) NIL)) (-2727 (((-640 (-2 (|:| -2174 (-563)) (|:| -1654 (-563))))) 115 (|has| |#1| (-368)))) (-2174 (((-418 $) $) NIL)) (-1467 (((-829 (-917))) NIL) (((-917)) 138)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2628 (((-767) $) NIL)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-1423 (((-767) $) NIL (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) NIL (-4032 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3533 (((-134)) NIL)) (-4202 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-4167 (((-829 (-917)) $) NIL) (((-917) $) 59)) (-3390 (((-1165 |#1|)) 88)) (-4284 (($) 126 (|has| |#1| (-368)))) (-1484 (($) NIL (|has| |#1| (-368)))) (-1880 (((-1257 |#1|) $) 53) (((-684 |#1|) (-1257 $)) NIL)) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| |#1| (-368)))) (-1693 (((-858) $) 137) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ |#1|) 87)) (-2779 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4032 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1675 (((-767)) 143)) (-4315 (((-1257 $)) 109) (((-1257 $) (-917)) 49)) (-2126 (((-112) $ $) NIL)) (-3152 (((-112) $) NIL)) (-2241 (($) 111 T CONST)) (-2254 (($) 32 T CONST)) (-2350 (($ $) 68 (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-3209 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-1718 (((-112) $ $) 107)) (-1837 (($ $ $) 99) (($ $ |#1|) 100)) (-1826 (($ $) 80) (($ $ $) 105)) (-1814 (($ $ $) 103)) (** (($ $ (-917)) NIL) (($ $ (-767)) 44) (($ $ (-563)) 129)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 78) (($ $ $) 56) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76))) +(((-355 |#1| |#2|) (-329 |#1|) (-349) (-1165 |#1|)) (T -355)) +NIL +(-329 |#1|) +((-4091 ((|#1| (-1165 |#2|)) 52))) +(((-356 |#1| |#2|) (-10 -7 (-15 -4091 (|#1| (-1165 |#2|)))) (-13 (-402) (-10 -7 (-15 -1693 (|#1| |#2|)) (-15 -1476 ((-917) |#1|)) (-15 -4315 ((-1257 |#1|) (-917))) (-15 -2350 (|#1| |#1|)))) (-349)) (T -356)) +((-4091 (*1 *2 *3) (-12 (-5 *3 (-1165 *4)) (-4 *4 (-349)) (-4 *2 (-13 (-402) (-10 -7 (-15 -1693 (*2 *4)) (-15 -1476 ((-917) *2)) (-15 -4315 ((-1257 *2) (-917))) (-15 -2350 (*2 *2))))) (-5 *1 (-356 *2 *4))))) +(-10 -7 (-15 -4091 (|#1| (-1165 |#2|)))) +((-4046 (((-954 (-1165 |#1|)) (-1165 |#1|)) 36)) (-1691 (((-1165 |#1|) (-917) (-917)) 112) (((-1165 |#1|) (-917)) 111)) (-2366 (((-112) (-1165 |#1|)) 84)) (-4377 (((-917) (-917)) 71)) (-3660 (((-917) (-917)) 74)) (-4294 (((-917) (-917)) 69)) (-2890 (((-112) (-1165 |#1|)) 88)) (-4028 (((-3 (-1165 |#1|) "failed") (-1165 |#1|)) 100)) (-3113 (((-3 (-1165 |#1|) "failed") (-1165 |#1|)) 103)) (-1462 (((-3 (-1165 |#1|) "failed") (-1165 |#1|)) 102)) (-2197 (((-3 (-1165 |#1|) "failed") (-1165 |#1|)) 101)) (-3296 (((-3 (-1165 |#1|) "failed") (-1165 |#1|)) 97)) (-3666 (((-1165 |#1|) (-1165 |#1|)) 62)) (-3015 (((-1165 |#1|) (-917)) 106)) (-3120 (((-1165 |#1|) (-917)) 109)) (-3702 (((-1165 |#1|) (-917)) 108)) (-4380 (((-1165 |#1|) (-917)) 107)) (-4191 (((-1165 |#1|) (-917)) 104))) +(((-357 |#1|) (-10 -7 (-15 -2366 ((-112) (-1165 |#1|))) (-15 -2890 ((-112) (-1165 |#1|))) (-15 -4294 ((-917) (-917))) (-15 -4377 ((-917) (-917))) (-15 -3660 ((-917) (-917))) (-15 -4191 ((-1165 |#1|) (-917))) (-15 -3015 ((-1165 |#1|) (-917))) (-15 -4380 ((-1165 |#1|) (-917))) (-15 -3702 ((-1165 |#1|) (-917))) (-15 -3120 ((-1165 |#1|) (-917))) (-15 -3296 ((-3 (-1165 |#1|) "failed") (-1165 |#1|))) (-15 -4028 ((-3 (-1165 |#1|) "failed") (-1165 |#1|))) (-15 -2197 ((-3 (-1165 |#1|) "failed") (-1165 |#1|))) (-15 -1462 ((-3 (-1165 |#1|) "failed") (-1165 |#1|))) (-15 -3113 ((-3 (-1165 |#1|) "failed") (-1165 |#1|))) (-15 -1691 ((-1165 |#1|) (-917))) (-15 -1691 ((-1165 |#1|) (-917) (-917))) (-15 -3666 ((-1165 |#1|) (-1165 |#1|))) (-15 -4046 ((-954 (-1165 |#1|)) (-1165 |#1|)))) (-349)) (T -357)) +((-4046 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-954 (-1165 *4))) (-5 *1 (-357 *4)) (-5 *3 (-1165 *4)))) (-3666 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-1691 (*1 *2 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-3113 (*1 *2 *2) (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-1462 (*1 *2 *2) (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-2197 (*1 *2 *2) (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-4028 (*1 *2 *2) (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-3296 (*1 *2 *2) (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-3120 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-3702 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-4380 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-3015 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-4191 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-3660 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-357 *3)) (-4 *3 (-349)))) (-4377 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-357 *3)) (-4 *3 (-349)))) (-4294 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-357 *3)) (-4 *3 (-349)))) (-2890 (*1 *2 *3) (-12 (-5 *3 (-1165 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-357 *4)))) (-2366 (*1 *2 *3) (-12 (-5 *3 (-1165 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-357 *4))))) +(-10 -7 (-15 -2366 ((-112) (-1165 |#1|))) (-15 -2890 ((-112) (-1165 |#1|))) (-15 -4294 ((-917) (-917))) (-15 -4377 ((-917) (-917))) (-15 -3660 ((-917) (-917))) (-15 -4191 ((-1165 |#1|) (-917))) (-15 -3015 ((-1165 |#1|) (-917))) (-15 -4380 ((-1165 |#1|) (-917))) (-15 -3702 ((-1165 |#1|) (-917))) (-15 -3120 ((-1165 |#1|) (-917))) (-15 -3296 ((-3 (-1165 |#1|) "failed") (-1165 |#1|))) (-15 -4028 ((-3 (-1165 |#1|) "failed") (-1165 |#1|))) (-15 -2197 ((-3 (-1165 |#1|) "failed") (-1165 |#1|))) (-15 -1462 ((-3 (-1165 |#1|) "failed") (-1165 |#1|))) (-15 -3113 ((-3 (-1165 |#1|) "failed") (-1165 |#1|))) (-15 -1691 ((-1165 |#1|) (-917))) (-15 -1691 ((-1165 |#1|) (-917) (-917))) (-15 -3666 ((-1165 |#1|) (-1165 |#1|))) (-15 -4046 ((-954 (-1165 |#1|)) (-1165 |#1|)))) +((-2748 (((-3 (-640 |#3|) "failed") (-640 |#3|) |#3|) 33))) +(((-358 |#1| |#2| |#3|) (-10 -7 (-15 -2748 ((-3 (-640 |#3|) "failed") (-640 |#3|) |#3|))) (-349) (-1233 |#1|) (-1233 |#2|)) (T -358)) +((-2748 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-640 *3)) (-4 *3 (-1233 *5)) (-4 *5 (-1233 *4)) (-4 *4 (-349)) (-5 *1 (-358 *4 *5 *3))))) +(-10 -7 (-15 -2748 ((-3 (-640 |#3|) "failed") (-640 |#3|) |#3|))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-2388 (((-112) $) NIL)) (-3259 (((-767)) NIL)) (-1733 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-2752 (((-1181 (-917) (-767)) (-563)) NIL (|has| |#1| (-368)))) (-1495 (((-3 $ "failed") $ $) NIL)) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-1919 (((-112) $ $) NIL)) (-3749 (((-767)) NIL (|has| |#1| (-368)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#1| "failed") $) NIL)) (-2058 ((|#1| $) NIL)) (-3937 (($ (-1257 |#1|)) NIL)) (-3711 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-3090 (($ $ $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-1691 (($) NIL (|has| |#1| (-368)))) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-1571 (($) NIL (|has| |#1| (-368)))) (-2366 (((-112) $) NIL (|has| |#1| (-368)))) (-1637 (($ $ (-767)) NIL (-4032 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4032 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2468 (((-112) $) NIL)) (-3254 (((-917) $) NIL (|has| |#1| (-368))) (((-829 (-917)) $) NIL (-4032 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3827 (((-112) $) NIL)) (-3723 (($) NIL (|has| |#1| (-368)))) (-2890 (((-112) $) NIL (|has| |#1| (-368)))) (-3793 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-2408 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3941 (((-1165 |#1|) $) NIL) (((-1165 $) $ (-917)) NIL (|has| |#1| (-368)))) (-1476 (((-917) $) NIL (|has| |#1| (-368)))) (-2229 (((-1165 |#1|) $) NIL (|has| |#1| (-368)))) (-1631 (((-1165 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1165 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-4166 (($ $ (-1165 |#1|)) NIL (|has| |#1| (-368)))) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) NIL)) (-2523 (($) NIL (|has| |#1| (-368)) CONST)) (-2555 (($ (-917)) NIL (|has| |#1| (-368)))) (-3013 (((-112) $) NIL)) (-1694 (((-1113) $) NIL)) (-4333 (($) NIL (|has| |#1| (-368)))) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ $ $) NIL) (($ (-640 $)) NIL)) (-2727 (((-640 (-2 (|:| -2174 (-563)) (|:| -1654 (-563))))) NIL (|has| |#1| (-368)))) (-2174 (((-418 $) $) NIL)) (-1467 (((-829 (-917))) NIL) (((-917)) NIL)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2628 (((-767) $) NIL)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-1423 (((-767) $) NIL (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) NIL (-4032 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3533 (((-134)) NIL)) (-4202 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-4167 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-3390 (((-1165 |#1|)) NIL)) (-4284 (($) NIL (|has| |#1| (-368)))) (-1484 (($) NIL (|has| |#1| (-368)))) (-1880 (((-1257 |#1|) $) NIL) (((-684 |#1|) (-1257 $)) NIL)) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| |#1| (-368)))) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ |#1|) NIL)) (-2779 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4032 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1675 (((-767)) NIL)) (-4315 (((-1257 $)) NIL) (((-1257 $) (-917)) NIL)) (-2126 (((-112) $ $) NIL)) (-3152 (((-112) $) NIL)) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-2350 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-3209 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-1718 (((-112) $ $) NIL)) (-1837 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-359 |#1| |#2|) (-329 |#1|) (-349) (-917)) (T -359)) +NIL +(-329 |#1|) +((-3515 (((-112) (-640 (-948 |#1|))) 33)) (-4059 (((-640 (-948 |#1|)) (-640 (-948 |#1|))) 45)) (-3122 (((-3 (-640 (-948 |#1|)) "failed") (-640 (-948 |#1|))) 40))) +(((-360 |#1| |#2|) (-10 -7 (-15 -3515 ((-112) (-640 (-948 |#1|)))) (-15 -3122 ((-3 (-640 (-948 |#1|)) "failed") (-640 (-948 |#1|)))) (-15 -4059 ((-640 (-948 |#1|)) (-640 (-948 |#1|))))) (-452) (-640 (-1169))) (T -360)) +((-4059 (*1 *2 *2) (-12 (-5 *2 (-640 (-948 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4)) (-14 *4 (-640 (-1169))))) (-3122 (*1 *2 *2) (|partial| -12 (-5 *2 (-640 (-948 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4)) (-14 *4 (-640 (-1169))))) (-3515 (*1 *2 *3) (-12 (-5 *3 (-640 (-948 *4))) (-4 *4 (-452)) (-5 *2 (-112)) (-5 *1 (-360 *4 *5)) (-14 *5 (-640 (-1169)))))) +(-10 -7 (-15 -3515 ((-112) (-640 (-948 |#1|)))) (-15 -3122 ((-3 (-640 (-948 |#1|)) "failed") (-640 (-948 |#1|)))) (-15 -4059 ((-640 (-948 |#1|)) (-640 (-948 |#1|))))) +((-1677 (((-112) $ $) NIL)) (-3749 (((-767) $) NIL)) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#1| "failed") $) NIL)) (-2058 ((|#1| $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-3827 (((-112) $) 15)) (-2768 ((|#1| $ (-563)) NIL)) (-4208 (((-563) $ (-563)) NIL)) (-1633 (($ (-1 |#1| |#1|) $) 32)) (-2163 (($ (-1 (-563) (-563)) $) 24)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) 26)) (-1694 (((-1113) $) NIL)) (-2760 (((-640 (-2 (|:| |gen| |#1|) (|:| -3368 (-563)))) $) 28)) (-4339 (($ $ $) NIL)) (-2146 (($ $ $) NIL)) (-1693 (((-858) $) 38) (($ |#1|) NIL)) (-2254 (($) 9 T CONST)) (-1718 (((-112) $ $) NIL)) (-1837 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL) (($ |#1| (-563)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) +(((-361 |#1|) (-13 (-473) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-563))) (-15 -3749 ((-767) $)) (-15 -4208 ((-563) $ (-563))) (-15 -2768 (|#1| $ (-563))) (-15 -2163 ($ (-1 (-563) (-563)) $)) (-15 -1633 ($ (-1 |#1| |#1|) $)) (-15 -2760 ((-640 (-2 (|:| |gen| |#1|) (|:| -3368 (-563)))) $)))) (-1093)) (T -361)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1093)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1093)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-361 *2)) (-4 *2 (-1093)))) (-3749 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-361 *3)) (-4 *3 (-1093)))) (-4208 (*1 *2 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-361 *3)) (-4 *3 (-1093)))) (-2768 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *1 (-361 *2)) (-4 *2 (-1093)))) (-2163 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-563) (-563))) (-5 *1 (-361 *3)) (-4 *3 (-1093)))) (-1633 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1093)) (-5 *1 (-361 *3)))) (-2760 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3368 (-563))))) (-5 *1 (-361 *3)) (-4 *3 (-1093))))) +(-13 (-473) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-563))) (-15 -3749 ((-767) $)) (-15 -4208 ((-563) $ (-563))) (-15 -2768 (|#1| $ (-563))) (-15 -2163 ($ (-1 (-563) (-563)) $)) (-15 -1633 ($ (-1 |#1| |#1|) $)) (-15 -2760 ((-640 (-2 (|:| |gen| |#1|) (|:| -3368 (-563)))) $)))) +((-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 13)) (-4223 (($ $) 14)) (-3205 (((-418 $) $) 29)) (-2468 (((-112) $) 25)) (-2688 (($ $) 18)) (-3548 (($ $ $) 22) (($ (-640 $)) NIL)) (-2174 (((-418 $) $) 30)) (-3008 (((-3 $ "failed") $ $) 21)) (-2628 (((-767) $) 24)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 34)) (-2126 (((-112) $ $) 15)) (-1837 (($ $ $) 32))) +(((-362 |#1|) (-10 -8 (-15 -1837 (|#1| |#1| |#1|)) (-15 -2688 (|#1| |#1|)) (-15 -2468 ((-112) |#1|)) (-15 -3205 ((-418 |#1|) |#1|)) (-15 -2174 ((-418 |#1|) |#1|)) (-15 -2452 ((-2 (|:| -3490 |#1|) (|:| -1972 |#1|)) |#1| |#1|)) (-15 -2628 ((-767) |#1|)) (-15 -3548 (|#1| (-640 |#1|))) (-15 -3548 (|#1| |#1| |#1|)) (-15 -2126 ((-112) |#1| |#1|)) (-15 -4223 (|#1| |#1|)) (-15 -4372 ((-2 (|:| -1414 |#1|) (|:| -4394 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3008 ((-3 |#1| "failed") |#1| |#1|))) (-363)) (T -362)) +NIL +(-10 -8 (-15 -1837 (|#1| |#1| |#1|)) (-15 -2688 (|#1| |#1|)) (-15 -2468 ((-112) |#1|)) (-15 -3205 ((-418 |#1|) |#1|)) (-15 -2174 ((-418 |#1|) |#1|)) (-15 -2452 ((-2 (|:| -3490 |#1|) (|:| -1972 |#1|)) |#1| |#1|)) (-15 -2628 ((-767) |#1|)) (-15 -3548 (|#1| (-640 |#1|))) (-15 -3548 (|#1| |#1| |#1|)) (-15 -2126 ((-112) |#1| |#1|)) (-15 -4223 (|#1| |#1|)) (-15 -4372 ((-2 (|:| -1414 |#1|) (|:| -4394 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3008 ((-3 |#1| "failed") |#1| |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 42)) (-4223 (($ $) 41)) (-3156 (((-112) $) 39)) (-1495 (((-3 $ "failed") $ $) 19)) (-4335 (($ $) 74)) (-3205 (((-418 $) $) 73)) (-1919 (((-112) $ $) 60)) (-4239 (($) 17 T CONST)) (-3090 (($ $ $) 56)) (-3400 (((-3 $ "failed") $) 33)) (-3050 (($ $ $) 57)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) 52)) (-2468 (((-112) $) 72)) (-3827 (((-112) $) 31)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-3513 (($ $ $) 47) (($ (-640 $)) 46)) (-3573 (((-1151) $) 9)) (-2688 (($ $) 71)) (-1694 (((-1113) $) 10)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3548 (($ $ $) 49) (($ (-640 $)) 48)) (-2174 (((-418 $) $) 75)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3008 (((-3 $ "failed") $ $) 43)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-2628 (((-767) $) 59)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 58)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-407 (-563))) 67)) (-1675 (((-767)) 28)) (-2126 (((-112) $ $) 40)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1837 (($ $ $) 66)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 70)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 69) (($ (-407 (-563)) $) 68))) +(((-363) (-140)) (T -363)) +((-1837 (*1 *1 *1 *1) (-4 *1 (-363)))) +(-13 (-307) (-1212) (-243) (-10 -8 (-15 -1837 ($ $ $)) (-6 -4405) (-6 -4399))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-613 #0#) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-452) . T) ((-555) . T) ((-643 #0#) . T) ((-643 $) . T) ((-713 #0#) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1212) . T)) +((-1677 (((-112) $ $) 7)) (-2056 ((|#2| $ |#2|) 13)) (-3010 (($ $ (-1151)) 18)) (-3538 ((|#2| $) 14)) (-3405 (($ |#1|) 20) (($ |#1| (-1151)) 19)) (-3348 ((|#1| $) 16)) (-3573 (((-1151) $) 9)) (-2302 (((-1151) $) 15)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11)) (-3004 (($ $) 17)) (-1718 (((-112) $ $) 6))) +(((-364 |#1| |#2|) (-140) (-1093) (-1093)) (T -364)) +((-3405 (*1 *1 *2) (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))) (-3405 (*1 *1 *2 *3) (-12 (-5 *3 (-1151)) (-4 *1 (-364 *2 *4)) (-4 *2 (-1093)) (-4 *4 (-1093)))) (-3010 (*1 *1 *1 *2) (-12 (-5 *2 (-1151)) (-4 *1 (-364 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)))) (-3004 (*1 *1 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))) (-3348 (*1 *2 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1093)) (-4 *2 (-1093)))) (-2302 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-5 *2 (-1151)))) (-3538 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093)))) (-2056 (*1 *2 *1 *2) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093))))) +(-13 (-1093) (-10 -8 (-15 -3405 ($ |t#1|)) (-15 -3405 ($ |t#1| (-1151))) (-15 -3010 ($ $ (-1151))) (-15 -3004 ($ $)) (-15 -3348 (|t#1| $)) (-15 -2302 ((-1151) $)) (-15 -3538 (|t#2| $)) (-15 -2056 (|t#2| $ |t#2|)))) +(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) +((-1677 (((-112) $ $) NIL)) (-2056 ((|#1| $ |#1|) 30)) (-3010 (($ $ (-1151)) 22)) (-2594 (((-3 |#1| "failed") $) 29)) (-3538 ((|#1| $) 27)) (-3405 (($ (-388)) 21) (($ (-388) (-1151)) 20)) (-3348 (((-388) $) 24)) (-3573 (((-1151) $) NIL)) (-2302 (((-1151) $) 25)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 19)) (-3004 (($ $) 23)) (-1718 (((-112) $ $) 18))) +(((-365 |#1|) (-13 (-364 (-388) |#1|) (-10 -8 (-15 -2594 ((-3 |#1| "failed") $)))) (-1093)) (T -365)) +((-2594 (*1 *2 *1) (|partial| -12 (-5 *1 (-365 *2)) (-4 *2 (-1093))))) +(-13 (-364 (-388) |#1|) (-10 -8 (-15 -2594 ((-3 |#1| "failed") $)))) +((-3507 (((-1257 (-684 |#2|)) (-1257 $)) 61)) (-4220 (((-684 |#2|) (-1257 $)) 120)) (-2480 ((|#2| $) 32)) (-3043 (((-684 |#2|) $ (-1257 $)) 123)) (-4154 (((-3 $ "failed") $) 75)) (-3830 ((|#2| $) 35)) (-3763 (((-1165 |#2|) $) 83)) (-1824 ((|#2| (-1257 $)) 106)) (-2876 (((-1165 |#2|) $) 28)) (-2182 (((-112)) 100)) (-3937 (($ (-1257 |#2|) (-1257 $)) 113)) (-3400 (((-3 $ "failed") $) 79)) (-3901 (((-112)) 95)) (-3308 (((-112)) 90)) (-3104 (((-112)) 53)) (-2328 (((-684 |#2|) (-1257 $)) 118)) (-2842 ((|#2| $) 31)) (-1823 (((-684 |#2|) $ (-1257 $)) 122)) (-3856 (((-3 $ "failed") $) 73)) (-2199 ((|#2| $) 34)) (-2604 (((-1165 |#2|) $) 82)) (-4111 ((|#2| (-1257 $)) 104)) (-2665 (((-1165 |#2|) $) 26)) (-4012 (((-112)) 99)) (-2136 (((-112)) 92)) (-1789 (((-112)) 51)) (-2047 (((-112)) 87)) (-4084 (((-112)) 101)) (-1880 (((-1257 |#2|) $ (-1257 $)) NIL) (((-684 |#2|) (-1257 $) (-1257 $)) 111)) (-1936 (((-112)) 97)) (-2138 (((-640 (-1257 |#2|))) 86)) (-1402 (((-112)) 98)) (-2483 (((-112)) 96)) (-3777 (((-112)) 46)) (-2128 (((-112)) 102))) +(((-366 |#1| |#2|) (-10 -8 (-15 -3763 ((-1165 |#2|) |#1|)) (-15 -2604 ((-1165 |#2|) |#1|)) (-15 -2138 ((-640 (-1257 |#2|)))) (-15 -4154 ((-3 |#1| "failed") |#1|)) (-15 -3856 ((-3 |#1| "failed") |#1|)) (-15 -3400 ((-3 |#1| "failed") |#1|)) (-15 -3308 ((-112))) (-15 -2136 ((-112))) (-15 -3901 ((-112))) (-15 -1789 ((-112))) (-15 -3104 ((-112))) (-15 -2047 ((-112))) (-15 -2128 ((-112))) (-15 -4084 ((-112))) (-15 -2182 ((-112))) (-15 -4012 ((-112))) (-15 -3777 ((-112))) (-15 -1402 ((-112))) (-15 -2483 ((-112))) (-15 -1936 ((-112))) (-15 -2876 ((-1165 |#2|) |#1|)) (-15 -2665 ((-1165 |#2|) |#1|)) (-15 -4220 ((-684 |#2|) (-1257 |#1|))) (-15 -2328 ((-684 |#2|) (-1257 |#1|))) (-15 -1824 (|#2| (-1257 |#1|))) (-15 -4111 (|#2| (-1257 |#1|))) (-15 -3937 (|#1| (-1257 |#2|) (-1257 |#1|))) (-15 -1880 ((-684 |#2|) (-1257 |#1|) (-1257 |#1|))) (-15 -1880 ((-1257 |#2|) |#1| (-1257 |#1|))) (-15 -3830 (|#2| |#1|)) (-15 -2199 (|#2| |#1|)) (-15 -2480 (|#2| |#1|)) (-15 -2842 (|#2| |#1|)) (-15 -3043 ((-684 |#2|) |#1| (-1257 |#1|))) (-15 -1823 ((-684 |#2|) |#1| (-1257 |#1|))) (-15 -3507 ((-1257 (-684 |#2|)) (-1257 |#1|)))) (-367 |#2|) (-172)) (T -366)) +((-1936 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2483 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1402 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3777 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-4012 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2182 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-4084 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2128 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2047 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3104 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1789 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3901 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2136 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3308 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2138 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-640 (-1257 *4))) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4))))) +(-10 -8 (-15 -3763 ((-1165 |#2|) |#1|)) (-15 -2604 ((-1165 |#2|) |#1|)) (-15 -2138 ((-640 (-1257 |#2|)))) (-15 -4154 ((-3 |#1| "failed") |#1|)) (-15 -3856 ((-3 |#1| "failed") |#1|)) (-15 -3400 ((-3 |#1| "failed") |#1|)) (-15 -3308 ((-112))) (-15 -2136 ((-112))) (-15 -3901 ((-112))) (-15 -1789 ((-112))) (-15 -3104 ((-112))) (-15 -2047 ((-112))) (-15 -2128 ((-112))) (-15 -4084 ((-112))) (-15 -2182 ((-112))) (-15 -4012 ((-112))) (-15 -3777 ((-112))) (-15 -1402 ((-112))) (-15 -2483 ((-112))) (-15 -1936 ((-112))) (-15 -2876 ((-1165 |#2|) |#1|)) (-15 -2665 ((-1165 |#2|) |#1|)) (-15 -4220 ((-684 |#2|) (-1257 |#1|))) (-15 -2328 ((-684 |#2|) (-1257 |#1|))) (-15 -1824 (|#2| (-1257 |#1|))) (-15 -4111 (|#2| (-1257 |#1|))) (-15 -3937 (|#1| (-1257 |#2|) (-1257 |#1|))) (-15 -1880 ((-684 |#2|) (-1257 |#1|) (-1257 |#1|))) (-15 -1880 ((-1257 |#2|) |#1| (-1257 |#1|))) (-15 -3830 (|#2| |#1|)) (-15 -2199 (|#2| |#1|)) (-15 -2480 (|#2| |#1|)) (-15 -2842 (|#2| |#1|)) (-15 -3043 ((-684 |#2|) |#1| (-1257 |#1|))) (-15 -1823 ((-684 |#2|) |#1| (-1257 |#1|))) (-15 -3507 ((-1257 (-684 |#2|)) (-1257 |#1|)))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1414 (((-3 $ "failed")) 37 (|has| |#1| (-555)))) (-1495 (((-3 $ "failed") $ $) 19)) (-3507 (((-1257 (-684 |#1|)) (-1257 $)) 78)) (-1438 (((-1257 $)) 81)) (-4239 (($) 17 T CONST)) (-2133 (((-3 (-2 (|:| |particular| $) (|:| -4315 (-640 $))) "failed")) 40 (|has| |#1| (-555)))) (-2435 (((-3 $ "failed")) 38 (|has| |#1| (-555)))) (-4220 (((-684 |#1|) (-1257 $)) 65)) (-2480 ((|#1| $) 74)) (-3043 (((-684 |#1|) $ (-1257 $)) 76)) (-4154 (((-3 $ "failed") $) 45 (|has| |#1| (-555)))) (-2300 (($ $ (-917)) 28)) (-3830 ((|#1| $) 72)) (-3763 (((-1165 |#1|) $) 42 (|has| |#1| (-555)))) (-1824 ((|#1| (-1257 $)) 67)) (-2876 (((-1165 |#1|) $) 63)) (-2182 (((-112)) 57)) (-3937 (($ (-1257 |#1|) (-1257 $)) 69)) (-3400 (((-3 $ "failed") $) 47 (|has| |#1| (-555)))) (-2522 (((-917)) 80)) (-2250 (((-112)) 54)) (-2287 (($ $ (-917)) 33)) (-3901 (((-112)) 50)) (-3308 (((-112)) 48)) (-3104 (((-112)) 52)) (-2284 (((-3 (-2 (|:| |particular| $) (|:| -4315 (-640 $))) "failed")) 41 (|has| |#1| (-555)))) (-2508 (((-3 $ "failed")) 39 (|has| |#1| (-555)))) (-2328 (((-684 |#1|) (-1257 $)) 66)) (-2842 ((|#1| $) 75)) (-1823 (((-684 |#1|) $ (-1257 $)) 77)) (-3856 (((-3 $ "failed") $) 46 (|has| |#1| (-555)))) (-1494 (($ $ (-917)) 29)) (-2199 ((|#1| $) 73)) (-2604 (((-1165 |#1|) $) 43 (|has| |#1| (-555)))) (-4111 ((|#1| (-1257 $)) 68)) (-2665 (((-1165 |#1|) $) 64)) (-4012 (((-112)) 58)) (-3573 (((-1151) $) 9)) (-2136 (((-112)) 49)) (-1789 (((-112)) 51)) (-2047 (((-112)) 53)) (-1694 (((-1113) $) 10)) (-4084 (((-112)) 56)) (-1880 (((-1257 |#1|) $ (-1257 $)) 71) (((-684 |#1|) (-1257 $) (-1257 $)) 70)) (-4152 (((-640 (-948 |#1|)) (-1257 $)) 79)) (-2146 (($ $ $) 25)) (-1936 (((-112)) 62)) (-1693 (((-858) $) 11)) (-2138 (((-640 (-1257 |#1|))) 44 (|has| |#1| (-555)))) (-1361 (($ $ $ $) 26)) (-1402 (((-112)) 60)) (-3399 (($ $ $) 24)) (-2483 (((-112)) 61)) (-3777 (((-112)) 59)) (-2128 (((-112)) 55)) (-2241 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 30)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-367 |#1|) (-140) (-172)) (T -367)) +((-1438 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1257 *1)) (-4 *1 (-367 *3)))) (-2522 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-917)))) (-4152 (*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-640 (-948 *4))))) (-3507 (*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-1257 (-684 *4))))) (-1823 (*1 *2 *1 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-684 *4)))) (-3043 (*1 *2 *1 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-684 *4)))) (-2842 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-2480 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-2199 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-3830 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-1880 (*1 *2 *1 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-1257 *4)))) (-1880 (*1 *2 *3 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-684 *4)))) (-3937 (*1 *1 *2 *3) (-12 (-5 *2 (-1257 *4)) (-5 *3 (-1257 *1)) (-4 *4 (-172)) (-4 *1 (-367 *4)))) (-4111 (*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-1824 (*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-2328 (*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-684 *4)))) (-4220 (*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-684 *4)))) (-2665 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1165 *3)))) (-2876 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1165 *3)))) (-1936 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2483 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1402 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3777 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-4012 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2182 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-4084 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2128 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2250 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2047 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3104 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1789 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3901 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2136 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3308 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3400 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-555)))) (-3856 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-555)))) (-4154 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-555)))) (-2138 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-555)) (-5 *2 (-640 (-1257 *3))))) (-2604 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-555)) (-5 *2 (-1165 *3)))) (-3763 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-555)) (-5 *2 (-1165 *3)))) (-2284 (*1 *2) (|partial| -12 (-4 *3 (-555)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4315 (-640 *1)))) (-4 *1 (-367 *3)))) (-2133 (*1 *2) (|partial| -12 (-4 *3 (-555)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4315 (-640 *1)))) (-4 *1 (-367 *3)))) (-2508 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-555)) (-4 *2 (-172)))) (-2435 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-555)) (-4 *2 (-172)))) (-1414 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-555)) (-4 *2 (-172))))) +(-13 (-740 |t#1|) (-10 -8 (-15 -1438 ((-1257 $))) (-15 -2522 ((-917))) (-15 -4152 ((-640 (-948 |t#1|)) (-1257 $))) (-15 -3507 ((-1257 (-684 |t#1|)) (-1257 $))) (-15 -1823 ((-684 |t#1|) $ (-1257 $))) (-15 -3043 ((-684 |t#1|) $ (-1257 $))) (-15 -2842 (|t#1| $)) (-15 -2480 (|t#1| $)) (-15 -2199 (|t#1| $)) (-15 -3830 (|t#1| $)) (-15 -1880 ((-1257 |t#1|) $ (-1257 $))) (-15 -1880 ((-684 |t#1|) (-1257 $) (-1257 $))) (-15 -3937 ($ (-1257 |t#1|) (-1257 $))) (-15 -4111 (|t#1| (-1257 $))) (-15 -1824 (|t#1| (-1257 $))) (-15 -2328 ((-684 |t#1|) (-1257 $))) (-15 -4220 ((-684 |t#1|) (-1257 $))) (-15 -2665 ((-1165 |t#1|) $)) (-15 -2876 ((-1165 |t#1|) $)) (-15 -1936 ((-112))) (-15 -2483 ((-112))) (-15 -1402 ((-112))) (-15 -3777 ((-112))) (-15 -4012 ((-112))) (-15 -2182 ((-112))) (-15 -4084 ((-112))) (-15 -2128 ((-112))) (-15 -2250 ((-112))) (-15 -2047 ((-112))) (-15 -3104 ((-112))) (-15 -1789 ((-112))) (-15 -3901 ((-112))) (-15 -2136 ((-112))) (-15 -3308 ((-112))) (IF (|has| |t#1| (-555)) (PROGN (-15 -3400 ((-3 $ "failed") $)) (-15 -3856 ((-3 $ "failed") $)) (-15 -4154 ((-3 $ "failed") $)) (-15 -2138 ((-640 (-1257 |t#1|)))) (-15 -2604 ((-1165 |t#1|) $)) (-15 -3763 ((-1165 |t#1|) $)) (-15 -2284 ((-3 (-2 (|:| |particular| $) (|:| -4315 (-640 $))) "failed"))) (-15 -2133 ((-3 (-2 (|:| |particular| $) (|:| -4315 (-640 $))) "failed"))) (-15 -2508 ((-3 $ "failed"))) (-15 -2435 ((-3 $ "failed"))) (-15 -1414 ((-3 $ "failed"))) (-6 -4404)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-713 |#1|) . T) ((-716) . T) ((-740 |#1|) . T) ((-757) . T) ((-1051 |#1|) . T) ((-1093) . T)) +((-1677 (((-112) $ $) 7)) (-3749 (((-767)) 16)) (-1691 (($) 13)) (-1476 (((-917) $) 14)) (-3573 (((-1151) $) 9)) (-2555 (($ (-917)) 15)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11)) (-1718 (((-112) $ $) 6))) +(((-368) (-140)) (T -368)) +((-3749 (*1 *2) (-12 (-4 *1 (-368)) (-5 *2 (-767)))) (-2555 (*1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-368)))) (-1476 (*1 *2 *1) (-12 (-4 *1 (-368)) (-5 *2 (-917)))) (-1691 (*1 *1) (-4 *1 (-368)))) +(-13 (-1093) (-10 -8 (-15 -3749 ((-767))) (-15 -2555 ($ (-917))) (-15 -1476 ((-917) $)) (-15 -1691 ($)))) +(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) +((-3561 (((-684 |#2|) (-1257 $)) 40)) (-3937 (($ (-1257 |#2|) (-1257 $)) 34)) (-3914 (((-684 |#2|) $ (-1257 $)) 42)) (-2315 ((|#2| (-1257 $)) 13)) (-1880 (((-1257 |#2|) $ (-1257 $)) NIL) (((-684 |#2|) (-1257 $) (-1257 $)) 25))) +(((-369 |#1| |#2| |#3|) (-10 -8 (-15 -3561 ((-684 |#2|) (-1257 |#1|))) (-15 -2315 (|#2| (-1257 |#1|))) (-15 -3937 (|#1| (-1257 |#2|) (-1257 |#1|))) (-15 -1880 ((-684 |#2|) (-1257 |#1|) (-1257 |#1|))) (-15 -1880 ((-1257 |#2|) |#1| (-1257 |#1|))) (-15 -3914 ((-684 |#2|) |#1| (-1257 |#1|)))) (-370 |#2| |#3|) (-172) (-1233 |#2|)) (T -369)) +NIL +(-10 -8 (-15 -3561 ((-684 |#2|) (-1257 |#1|))) (-15 -2315 (|#2| (-1257 |#1|))) (-15 -3937 (|#1| (-1257 |#2|) (-1257 |#1|))) (-15 -1880 ((-684 |#2|) (-1257 |#1|) (-1257 |#1|))) (-15 -1880 ((-1257 |#2|) |#1| (-1257 |#1|))) (-15 -3914 ((-684 |#2|) |#1| (-1257 |#1|)))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-3561 (((-684 |#1|) (-1257 $)) 47)) (-1733 ((|#1| $) 53)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-3937 (($ (-1257 |#1|) (-1257 $)) 49)) (-3914 (((-684 |#1|) $ (-1257 $)) 54)) (-3400 (((-3 $ "failed") $) 33)) (-2522 (((-917)) 55)) (-3827 (((-112) $) 31)) (-3793 ((|#1| $) 52)) (-3941 ((|#2| $) 45 (|has| |#1| (-363)))) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-2315 ((|#1| (-1257 $)) 48)) (-1880 (((-1257 |#1|) $ (-1257 $)) 51) (((-684 |#1|) (-1257 $) (-1257 $)) 50)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 38)) (-2779 (((-3 $ "failed") $) 44 (|has| |#1| (-145)))) (-3421 ((|#2| $) 46)) (-1675 (((-767)) 28)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-370 |#1| |#2|) (-140) (-172) (-1233 |t#1|)) (T -370)) +((-2522 (*1 *2) (-12 (-4 *1 (-370 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1233 *3)) (-5 *2 (-917)))) (-3914 (*1 *2 *1 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1233 *4)) (-5 *2 (-684 *4)))) (-1733 (*1 *2 *1) (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1233 *2)) (-4 *2 (-172)))) (-3793 (*1 *2 *1) (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1233 *2)) (-4 *2 (-172)))) (-1880 (*1 *2 *1 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1233 *4)) (-5 *2 (-1257 *4)))) (-1880 (*1 *2 *3 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1233 *4)) (-5 *2 (-684 *4)))) (-3937 (*1 *1 *2 *3) (-12 (-5 *2 (-1257 *4)) (-5 *3 (-1257 *1)) (-4 *4 (-172)) (-4 *1 (-370 *4 *5)) (-4 *5 (-1233 *4)))) (-2315 (*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-370 *2 *4)) (-4 *4 (-1233 *2)) (-4 *2 (-172)))) (-3561 (*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1233 *4)) (-5 *2 (-684 *4)))) (-3421 (*1 *2 *1) (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1233 *3)))) (-3941 (*1 *2 *1) (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *3 (-363)) (-4 *2 (-1233 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -2522 ((-917))) (-15 -3914 ((-684 |t#1|) $ (-1257 $))) (-15 -1733 (|t#1| $)) (-15 -3793 (|t#1| $)) (-15 -1880 ((-1257 |t#1|) $ (-1257 $))) (-15 -1880 ((-684 |t#1|) (-1257 $) (-1257 $))) (-15 -3937 ($ (-1257 |t#1|) (-1257 $))) (-15 -2315 (|t#1| (-1257 $))) (-15 -3561 ((-684 |t#1|) (-1257 $))) (-15 -3421 (|t#2| $)) (IF (|has| |t#1| (-363)) (-15 -3941 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 |#1|) . T) ((-722) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) +((-1567 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-2444 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-2240 ((|#4| (-1 |#3| |#1|) |#2|) 21))) +(((-371 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2240 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2444 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1567 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1208) (-373 |#1|) (-1208) (-373 |#3|)) (T -371)) +((-1567 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1208)) (-4 *5 (-1208)) (-4 *2 (-373 *5)) (-5 *1 (-371 *6 *4 *5 *2)) (-4 *4 (-373 *6)))) (-2444 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1208)) (-4 *2 (-1208)) (-5 *1 (-371 *5 *4 *2 *6)) (-4 *4 (-373 *5)) (-4 *6 (-373 *2)))) (-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-4 *2 (-373 *6)) (-5 *1 (-371 *5 *4 *6 *2)) (-4 *4 (-373 *5))))) +(-10 -7 (-15 -2240 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2444 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1567 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-3523 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-2770 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-1642 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-4382 (($ $) 25)) (-4368 (((-563) (-1 (-112) |#2|) $) NIL) (((-563) |#2| $) 11) (((-563) |#2| $ (-563)) NIL)) (-3164 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-372 |#1| |#2|) (-10 -8 (-15 -2770 (|#1| |#1|)) (-15 -2770 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3523 ((-112) |#1|)) (-15 -1642 (|#1| |#1|)) (-15 -3164 (|#1| |#1| |#1|)) (-15 -4368 ((-563) |#2| |#1| (-563))) (-15 -4368 ((-563) |#2| |#1|)) (-15 -4368 ((-563) (-1 (-112) |#2|) |#1|)) (-15 -3523 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1642 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4382 (|#1| |#1|)) (-15 -3164 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-373 |#2|) (-1208)) (T -372)) +NIL +(-10 -8 (-15 -2770 (|#1| |#1|)) (-15 -2770 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3523 ((-112) |#1|)) (-15 -1642 (|#1| |#1|)) (-15 -3164 (|#1| |#1| |#1|)) (-15 -4368 ((-563) |#2| |#1| (-563))) (-15 -4368 ((-563) |#2| |#1|)) (-15 -4368 ((-563) (-1 (-112) |#2|) |#1|)) (-15 -3523 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1642 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4382 (|#1| |#1|)) (-15 -3164 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) +((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-4378 (((-1262) $ (-563) (-563)) 40 (|has| $ (-6 -4408)))) (-3523 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-846)))) (-2770 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4408))) (($ $) 88 (-12 (|has| |#1| (-846)) (|has| $ (-6 -4408))))) (-1642 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-846)))) (-2759 (((-112) $ (-767)) 8)) (-1849 ((|#1| $ (-563) |#1|) 52 (|has| $ (-6 -4408))) ((|#1| $ (-1224 (-563)) |#1|) 58 (|has| $ (-6 -4408)))) (-2256 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4407)))) (-4239 (($) 7 T CONST)) (-2907 (($ $) 90 (|has| $ (-6 -4408)))) (-4382 (($ $) 100)) (-3813 (($ $) 78 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1459 (($ |#1| $) 77 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4407)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4407)))) (-4355 ((|#1| $ (-563) |#1|) 53 (|has| $ (-6 -4408)))) (-4293 ((|#1| $ (-563)) 51)) (-4368 (((-563) (-1 (-112) |#1|) $) 97) (((-563) |#1| $) 96 (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) 95 (|has| |#1| (-1093)))) (-2659 (((-640 |#1|) $) 30 (|has| $ (-6 -4407)))) (-1566 (($ (-767) |#1|) 69)) (-2581 (((-112) $ (-767)) 9)) (-2411 (((-563) $) 43 (|has| (-563) (-846)))) (-3084 (($ $ $) 87 (|has| |#1| (-846)))) (-3164 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-846)))) (-2259 (((-640 |#1|) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-3860 (((-563) $) 44 (|has| (-563) (-846)))) (-1777 (($ $ $) 86 (|has| |#1| (-846)))) (-4345 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2382 (((-112) $ (-767)) 10)) (-3573 (((-1151) $) 22 (|has| |#1| (-1093)))) (-3396 (($ |#1| $ (-563)) 60) (($ $ $ (-563)) 59)) (-4318 (((-640 (-563)) $) 46)) (-3192 (((-112) (-563) $) 47)) (-1694 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3781 ((|#1| $) 42 (|has| (-563) (-846)))) (-4203 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2358 (($ $ |#1|) 41 (|has| $ (-6 -4408)))) (-3138 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) 14)) (-2105 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2836 (((-640 |#1|) $) 48)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-2309 ((|#1| $ (-563) |#1|) 50) ((|#1| $ (-563)) 49) (($ $ (-1224 (-563))) 63)) (-2963 (($ $ (-563)) 62) (($ $ (-1224 (-563))) 61)) (-1709 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4407))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-3076 (($ $ $ (-563)) 91 (|has| $ (-6 -4408)))) (-1872 (($ $) 13)) (-2220 (((-536) $) 79 (|has| |#1| (-611 (-536))))) (-1707 (($ (-640 |#1|)) 70)) (-2853 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-640 $)) 65)) (-1693 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-4383 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-1778 (((-112) $ $) 84 (|has| |#1| (-846)))) (-1756 (((-112) $ $) 83 (|has| |#1| (-846)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-1768 (((-112) $ $) 85 (|has| |#1| (-846)))) (-1744 (((-112) $ $) 82 (|has| |#1| (-846)))) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-373 |#1|) (-140) (-1208)) (T -373)) +((-3164 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1208)))) (-4382 (*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1208)))) (-1642 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1208)))) (-3523 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-373 *4)) (-4 *4 (-1208)) (-5 *2 (-112)))) (-4368 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-373 *4)) (-4 *4 (-1208)) (-5 *2 (-563)))) (-4368 (*1 *2 *3 *1) (-12 (-4 *1 (-373 *3)) (-4 *3 (-1208)) (-4 *3 (-1093)) (-5 *2 (-563)))) (-4368 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-373 *3)) (-4 *3 (-1208)) (-4 *3 (-1093)))) (-3164 (*1 *1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1208)) (-4 *2 (-846)))) (-1642 (*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1208)) (-4 *2 (-846)))) (-3523 (*1 *2 *1) (-12 (-4 *1 (-373 *3)) (-4 *3 (-1208)) (-4 *3 (-846)) (-5 *2 (-112)))) (-3076 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-563)) (|has| *1 (-6 -4408)) (-4 *1 (-373 *3)) (-4 *3 (-1208)))) (-2907 (*1 *1 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-373 *2)) (-4 *2 (-1208)))) (-2770 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4408)) (-4 *1 (-373 *3)) (-4 *3 (-1208)))) (-2770 (*1 *1 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-373 *2)) (-4 *2 (-1208)) (-4 *2 (-846))))) +(-13 (-646 |t#1|) (-10 -8 (-6 -4407) (-15 -3164 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -4382 ($ $)) (-15 -1642 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -3523 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -4368 ((-563) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1093)) (PROGN (-15 -4368 ((-563) |t#1| $)) (-15 -4368 ((-563) |t#1| $ (-563)))) |%noBranch|) (IF (|has| |t#1| (-846)) (PROGN (-6 (-846)) (-15 -3164 ($ $ $)) (-15 -1642 ($ $)) (-15 -3523 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4408)) (PROGN (-15 -3076 ($ $ $ (-563))) (-15 -2907 ($ $)) (-15 -2770 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-846)) (-15 -2770 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) -4032 (|has| |#1| (-1093)) (|has| |#1| (-846))) ((-610 (-858)) -4032 (|has| |#1| (-1093)) (|has| |#1| (-846)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-286 #0=(-563) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-601 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-646 |#1|) . T) ((-846) |has| |#1| (-846)) ((-1093) -4032 (|has| |#1| (-1093)) (|has| |#1| (-846))) ((-1208) . T)) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-3993 (((-640 |#1|) $) 32)) (-2872 (($ $ (-767)) 33)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-3181 (((-1281 |#1| |#2|) (-1281 |#1| |#2|) $) 36)) (-4337 (($ $) 34)) (-3439 (((-1281 |#1| |#2|) (-1281 |#1| |#2|) $) 37)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1540 (($ $ |#1| $) 31) (($ $ (-640 |#1|) (-640 $)) 30)) (-4167 (((-767) $) 38)) (-1707 (($ $ $) 29)) (-1693 (((-858) $) 11) (($ |#1|) 41) (((-1272 |#1| |#2|) $) 40) (((-1281 |#1| |#2|) $) 39)) (-2311 ((|#2| (-1281 |#1| |#2|) $) 42)) (-2241 (($) 18 T CONST)) (-3657 (($ (-667 |#1|)) 35)) (-1718 (((-112) $ $) 6)) (-1837 (($ $ |#2|) 28 (|has| |#2| (-363)))) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) +(((-374 |#1| |#2|) (-140) (-846) (-172)) (T -374)) +((-2311 (*1 *2 *3 *1) (-12 (-5 *3 (-1281 *4 *2)) (-4 *1 (-374 *4 *2)) (-4 *4 (-846)) (-4 *2 (-172)))) (-1693 (*1 *1 *2) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172)))) (-1693 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *2 (-1272 *3 *4)))) (-1693 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *2 (-1281 *3 *4)))) (-4167 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *2 (-767)))) (-3439 (*1 *2 *2 *1) (-12 (-5 *2 (-1281 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-3181 (*1 *2 *2 *1) (-12 (-5 *2 (-1281 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-3657 (*1 *1 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-846)) (-4 *1 (-374 *3 *4)) (-4 *4 (-172)))) (-4337 (*1 *1 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172)))) (-2872 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *2 (-640 *3)))) (-1540 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172)))) (-1540 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 *4)) (-5 *3 (-640 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-846)) (-4 *5 (-172))))) +(-13 (-631 |t#2|) (-10 -8 (-15 -2311 (|t#2| (-1281 |t#1| |t#2|) $)) (-15 -1693 ($ |t#1|)) (-15 -1693 ((-1272 |t#1| |t#2|) $)) (-15 -1693 ((-1281 |t#1| |t#2|) $)) (-15 -4167 ((-767) $)) (-15 -3439 ((-1281 |t#1| |t#2|) (-1281 |t#1| |t#2|) $)) (-15 -3181 ((-1281 |t#1| |t#2|) (-1281 |t#1| |t#2|) $)) (-15 -3657 ($ (-667 |t#1|))) (-15 -4337 ($ $)) (-15 -2872 ($ $ (-767))) (-15 -3993 ((-640 |t#1|) $)) (-15 -1540 ($ $ |t#1| $)) (-15 -1540 ($ $ (-640 |t#1|) (-640 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-610 (-858)) . T) ((-643 |#2|) . T) ((-631 |#2|) . T) ((-713 |#2|) . T) ((-1051 |#2|) . T) ((-1093) . T)) +((-3346 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 23)) (-2083 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-2004 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 22))) +(((-375 |#1| |#2|) (-10 -7 (-15 -2083 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2004 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3346 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1208) (-13 (-373 |#1|) (-10 -7 (-6 -4408)))) (T -375)) +((-3346 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1208)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4408)))))) (-2004 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1208)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4408)))))) (-2083 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1208)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4408))))))) +(-10 -7 (-15 -2083 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2004 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3346 (|#2| (-1 (-112) |#1| |#1|) |#2|))) +((-2950 (((-684 |#2|) (-684 $)) NIL) (((-2 (|:| -2835 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 22) (((-684 (-563)) (-684 $)) 14))) +(((-376 |#1| |#2|) (-10 -8 (-15 -2950 ((-684 (-563)) (-684 |#1|))) (-15 -2950 ((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -2950 ((-2 (|:| -2835 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 |#1|) (-1257 |#1|))) (-15 -2950 ((-684 |#2|) (-684 |#1|)))) (-377 |#2|) (-1045)) (T -376)) +NIL +(-10 -8 (-15 -2950 ((-684 (-563)) (-684 |#1|))) (-15 -2950 ((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -2950 ((-2 (|:| -2835 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 |#1|) (-1257 |#1|))) (-15 -2950 ((-684 |#2|) (-684 |#1|)))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-2950 (((-684 |#1|) (-684 $)) 36) (((-2 (|:| -2835 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 35) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 43 (|has| |#1| (-636 (-563)))) (((-684 (-563)) (-684 $)) 42 (|has| |#1| (-636 (-563))))) (-3400 (((-3 $ "failed") $) 33)) (-3827 (((-112) $) 31)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11) (($ (-563)) 29)) (-1675 (((-767)) 28)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) +(((-377 |#1|) (-140) (-1045)) (T -377)) +NIL +(-13 (-636 |t#1|) (-10 -7 (IF (|has| |t#1| (-636 (-563))) (-6 (-636 (-563))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-643 $) . T) ((-636 (-563)) |has| |#1| (-636 (-563))) ((-636 |#1|) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) +((-1660 (((-640 (-294 (-948 (-169 |#1|)))) (-294 (-407 (-948 (-169 (-563))))) |#1|) 51) (((-640 (-294 (-948 (-169 |#1|)))) (-407 (-948 (-169 (-563)))) |#1|) 50) (((-640 (-640 (-294 (-948 (-169 |#1|))))) (-640 (-294 (-407 (-948 (-169 (-563)))))) |#1|) 47) (((-640 (-640 (-294 (-948 (-169 |#1|))))) (-640 (-407 (-948 (-169 (-563))))) |#1|) 41)) (-1602 (((-640 (-640 (-169 |#1|))) (-640 (-407 (-948 (-169 (-563))))) (-640 (-1169)) |#1|) 30) (((-640 (-169 |#1|)) (-407 (-948 (-169 (-563)))) |#1|) 18))) +(((-378 |#1|) (-10 -7 (-15 -1660 ((-640 (-640 (-294 (-948 (-169 |#1|))))) (-640 (-407 (-948 (-169 (-563))))) |#1|)) (-15 -1660 ((-640 (-640 (-294 (-948 (-169 |#1|))))) (-640 (-294 (-407 (-948 (-169 (-563)))))) |#1|)) (-15 -1660 ((-640 (-294 (-948 (-169 |#1|)))) (-407 (-948 (-169 (-563)))) |#1|)) (-15 -1660 ((-640 (-294 (-948 (-169 |#1|)))) (-294 (-407 (-948 (-169 (-563))))) |#1|)) (-15 -1602 ((-640 (-169 |#1|)) (-407 (-948 (-169 (-563)))) |#1|)) (-15 -1602 ((-640 (-640 (-169 |#1|))) (-640 (-407 (-948 (-169 (-563))))) (-640 (-1169)) |#1|))) (-13 (-363) (-844))) (T -378)) +((-1602 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-640 (-407 (-948 (-169 (-563)))))) (-5 *4 (-640 (-1169))) (-5 *2 (-640 (-640 (-169 *5)))) (-5 *1 (-378 *5)) (-4 *5 (-13 (-363) (-844))))) (-1602 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 (-169 (-563))))) (-5 *2 (-640 (-169 *4))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-844))))) (-1660 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-948 (-169 (-563)))))) (-5 *2 (-640 (-294 (-948 (-169 *4))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-844))))) (-1660 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 (-169 (-563))))) (-5 *2 (-640 (-294 (-948 (-169 *4))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-844))))) (-1660 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-294 (-407 (-948 (-169 (-563))))))) (-5 *2 (-640 (-640 (-294 (-948 (-169 *4)))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-844))))) (-1660 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-407 (-948 (-169 (-563)))))) (-5 *2 (-640 (-640 (-294 (-948 (-169 *4)))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-844)))))) +(-10 -7 (-15 -1660 ((-640 (-640 (-294 (-948 (-169 |#1|))))) (-640 (-407 (-948 (-169 (-563))))) |#1|)) (-15 -1660 ((-640 (-640 (-294 (-948 (-169 |#1|))))) (-640 (-294 (-407 (-948 (-169 (-563)))))) |#1|)) (-15 -1660 ((-640 (-294 (-948 (-169 |#1|)))) (-407 (-948 (-169 (-563)))) |#1|)) (-15 -1660 ((-640 (-294 (-948 (-169 |#1|)))) (-294 (-407 (-948 (-169 (-563))))) |#1|)) (-15 -1602 ((-640 (-169 |#1|)) (-407 (-948 (-169 (-563)))) |#1|)) (-15 -1602 ((-640 (-640 (-169 |#1|))) (-640 (-407 (-948 (-169 (-563))))) (-640 (-1169)) |#1|))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) 33)) (-3401 (((-563) $) 55)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-2421 (($ $) 110)) (-1771 (($ $) 82)) (-1619 (($ $) 71)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-2186 (($ $) 44)) (-1919 (((-112) $ $) NIL)) (-1748 (($ $) 80)) (-1597 (($ $) 69)) (-1857 (((-563) $) 64)) (-3458 (($ $ (-563)) 62)) (-1794 (($ $) NIL)) (-1643 (($ $) NIL)) (-4239 (($) NIL T CONST)) (-3796 (($ $) 112)) (-2131 (((-3 (-563) "failed") $) 188) (((-3 (-407 (-563)) "failed") $) 184)) (-2058 (((-563) $) 186) (((-407 (-563)) $) 182)) (-3090 (($ $ $) NIL)) (-3558 (((-563) $ $) 102)) (-3400 (((-3 $ "failed") $) 114)) (-3503 (((-407 (-563)) $ (-767)) 189) (((-407 (-563)) $ (-767) (-767)) 181)) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-2468 (((-112) $) NIL)) (-3102 (((-917)) 73) (((-917) (-917)) 98 (|has| $ (-6 -4398)))) (-3101 (((-112) $) 106)) (-2180 (($) 40)) (-3787 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL)) (-4174 (((-1262) (-767)) 152)) (-1551 (((-1262)) 157) (((-1262) (-767)) 158)) (-2611 (((-1262)) 159) (((-1262) (-767)) 160)) (-1893 (((-1262)) 155) (((-1262) (-767)) 156)) (-3254 (((-563) $) 58)) (-3827 (((-112) $) 104)) (-1645 (($ $ (-563)) NIL)) (-2441 (($ $) 48)) (-3793 (($ $) NIL)) (-1419 (((-112) $) 35)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3084 (($ $ $) NIL) (($) NIL (-12 (-2176 (|has| $ (-6 -4390))) (-2176 (|has| $ (-6 -4398)))))) (-1777 (($ $ $) NIL) (($) 99 (-12 (-2176 (|has| $ (-6 -4390))) (-2176 (|has| $ (-6 -4398)))))) (-4050 (((-563) $) 17)) (-2165 (($) 87) (($ $) 92)) (-3097 (($) 91) (($ $) 93)) (-4371 (($ $) 83)) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) 116)) (-3324 (((-917) (-563)) 43 (|has| $ (-6 -4398)))) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ $ $) NIL) (($ (-640 $)) NIL)) (-4215 (($ $) 53)) (-1583 (($ $) 109)) (-4340 (($ (-563) (-563)) 107) (($ (-563) (-563) (-917)) 108)) (-2174 (((-418 $) $) NIL)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1654 (((-563) $) 19)) (-3480 (($) 94)) (-3368 (($ $) 79)) (-2628 (((-767) $) NIL)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-4113 (((-917)) 100) (((-917) (-917)) 101 (|has| $ (-6 -4398)))) (-4202 (($ $ (-767)) NIL) (($ $) 115)) (-3814 (((-917) (-563)) 47 (|has| $ (-6 -4398)))) (-1806 (($ $) NIL)) (-1656 (($ $) NIL)) (-1784 (($ $) NIL)) (-1630 (($ $) NIL)) (-1759 (($ $) 81)) (-1608 (($ $) 70)) (-2220 (((-379) $) 174) (((-225) $) 176) (((-888 (-379)) $) NIL) (((-1151) $) 162) (((-536) $) 172) (($ (-225)) 180)) (-1693 (((-858) $) 164) (($ (-563)) 185) (($ $) NIL) (($ (-407 (-563))) NIL) (($ (-563)) 185) (($ (-407 (-563))) NIL) (((-225) $) 177)) (-1675 (((-767)) NIL)) (-4194 (($ $) 111)) (-1734 (((-917)) 54) (((-917) (-917)) 66 (|has| $ (-6 -4398)))) (-4211 (((-917)) 103)) (-1840 (($ $) 86)) (-1695 (($ $) 46) (($ $ $) 52)) (-2126 (((-112) $ $) NIL)) (-1817 (($ $) 84)) (-1667 (($ $) 37)) (-1862 (($ $) NIL)) (-1722 (($ $) NIL)) (-1311 (($ $) NIL)) (-1735 (($ $) NIL)) (-1851 (($ $) NIL)) (-1710 (($ $) NIL)) (-1829 (($ $) 85)) (-1680 (($ $) 49)) (-2509 (($ $) 51)) (-2241 (($) 34 T CONST)) (-2254 (($) 38 T CONST)) (-3741 (((-1151) $) 27) (((-1151) $ (-112)) 29) (((-1262) (-818) $) 30) (((-1262) (-818) $ (-112)) 31)) (-3209 (($ $ (-767)) NIL) (($ $) NIL)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 39)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) 42)) (-1837 (($ $ $) 45) (($ $ (-563)) 41)) (-1826 (($ $) 36) (($ $ $) 50)) (-1814 (($ $ $) 61)) (** (($ $ (-917)) 67) (($ $ (-767)) NIL) (($ $ (-563)) 88) (($ $ (-407 (-563))) 125) (($ $ $) 117)) (* (($ (-917) $) 65) (($ (-767) $) NIL) (($ (-563) $) 68) (($ $ $) 60) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL))) +(((-379) (-13 (-404) (-233) (-611 (-1151)) (-824) (-610 (-225)) (-1193) (-611 (-536)) (-615 (-225)) (-10 -8 (-15 -1837 ($ $ (-563))) (-15 ** ($ $ $)) (-15 -2441 ($ $)) (-15 -3558 ((-563) $ $)) (-15 -3458 ($ $ (-563))) (-15 -3503 ((-407 (-563)) $ (-767))) (-15 -3503 ((-407 (-563)) $ (-767) (-767))) (-15 -2165 ($)) (-15 -3097 ($)) (-15 -3480 ($)) (-15 -1695 ($ $ $)) (-15 -2165 ($ $)) (-15 -3097 ($ $)) (-15 -2611 ((-1262))) (-15 -2611 ((-1262) (-767))) (-15 -1893 ((-1262))) (-15 -1893 ((-1262) (-767))) (-15 -1551 ((-1262))) (-15 -1551 ((-1262) (-767))) (-15 -4174 ((-1262) (-767))) (-6 -4398) (-6 -4390)))) (T -379)) +((** (*1 *1 *1 *1) (-5 *1 (-379))) (-1837 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-379)))) (-2441 (*1 *1 *1) (-5 *1 (-379))) (-3558 (*1 *2 *1 *1) (-12 (-5 *2 (-563)) (-5 *1 (-379)))) (-3458 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-379)))) (-3503 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-407 (-563))) (-5 *1 (-379)))) (-3503 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-407 (-563))) (-5 *1 (-379)))) (-2165 (*1 *1) (-5 *1 (-379))) (-3097 (*1 *1) (-5 *1 (-379))) (-3480 (*1 *1) (-5 *1 (-379))) (-1695 (*1 *1 *1 *1) (-5 *1 (-379))) (-2165 (*1 *1 *1) (-5 *1 (-379))) (-3097 (*1 *1 *1) (-5 *1 (-379))) (-2611 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-379)))) (-2611 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-379)))) (-1893 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-379)))) (-1893 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-379)))) (-1551 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-379)))) (-1551 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-379)))) (-4174 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-379))))) +(-13 (-404) (-233) (-611 (-1151)) (-824) (-610 (-225)) (-1193) (-611 (-536)) (-615 (-225)) (-10 -8 (-15 -1837 ($ $ (-563))) (-15 ** ($ $ $)) (-15 -2441 ($ $)) (-15 -3558 ((-563) $ $)) (-15 -3458 ($ $ (-563))) (-15 -3503 ((-407 (-563)) $ (-767))) (-15 -3503 ((-407 (-563)) $ (-767) (-767))) (-15 -2165 ($)) (-15 -3097 ($)) (-15 -3480 ($)) (-15 -1695 ($ $ $)) (-15 -2165 ($ $)) (-15 -3097 ($ $)) (-15 -2611 ((-1262))) (-15 -2611 ((-1262) (-767))) (-15 -1893 ((-1262))) (-15 -1893 ((-1262) (-767))) (-15 -1551 ((-1262))) (-15 -1551 ((-1262) (-767))) (-15 -4174 ((-1262) (-767))) (-6 -4398) (-6 -4390))) +((-1793 (((-640 (-294 (-948 |#1|))) (-294 (-407 (-948 (-563)))) |#1|) 46) (((-640 (-294 (-948 |#1|))) (-407 (-948 (-563))) |#1|) 45) (((-640 (-640 (-294 (-948 |#1|)))) (-640 (-294 (-407 (-948 (-563))))) |#1|) 42) (((-640 (-640 (-294 (-948 |#1|)))) (-640 (-407 (-948 (-563)))) |#1|) 36)) (-2724 (((-640 |#1|) (-407 (-948 (-563))) |#1|) 20) (((-640 (-640 |#1|)) (-640 (-407 (-948 (-563)))) (-640 (-1169)) |#1|) 30))) +(((-380 |#1|) (-10 -7 (-15 -1793 ((-640 (-640 (-294 (-948 |#1|)))) (-640 (-407 (-948 (-563)))) |#1|)) (-15 -1793 ((-640 (-640 (-294 (-948 |#1|)))) (-640 (-294 (-407 (-948 (-563))))) |#1|)) (-15 -1793 ((-640 (-294 (-948 |#1|))) (-407 (-948 (-563))) |#1|)) (-15 -1793 ((-640 (-294 (-948 |#1|))) (-294 (-407 (-948 (-563)))) |#1|)) (-15 -2724 ((-640 (-640 |#1|)) (-640 (-407 (-948 (-563)))) (-640 (-1169)) |#1|)) (-15 -2724 ((-640 |#1|) (-407 (-948 (-563))) |#1|))) (-13 (-844) (-363))) (T -380)) +((-2724 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 (-563)))) (-5 *2 (-640 *4)) (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363))))) (-2724 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-640 (-407 (-948 (-563))))) (-5 *4 (-640 (-1169))) (-5 *2 (-640 (-640 *5))) (-5 *1 (-380 *5)) (-4 *5 (-13 (-844) (-363))))) (-1793 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-948 (-563))))) (-5 *2 (-640 (-294 (-948 *4)))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363))))) (-1793 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 (-563)))) (-5 *2 (-640 (-294 (-948 *4)))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363))))) (-1793 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-294 (-407 (-948 (-563)))))) (-5 *2 (-640 (-640 (-294 (-948 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363))))) (-1793 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-407 (-948 (-563))))) (-5 *2 (-640 (-640 (-294 (-948 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363)))))) +(-10 -7 (-15 -1793 ((-640 (-640 (-294 (-948 |#1|)))) (-640 (-407 (-948 (-563)))) |#1|)) (-15 -1793 ((-640 (-640 (-294 (-948 |#1|)))) (-640 (-294 (-407 (-948 (-563))))) |#1|)) (-15 -1793 ((-640 (-294 (-948 |#1|))) (-407 (-948 (-563))) |#1|)) (-15 -1793 ((-640 (-294 (-948 |#1|))) (-294 (-407 (-948 (-563)))) |#1|)) (-15 -2724 ((-640 (-640 |#1|)) (-640 (-407 (-948 (-563)))) (-640 (-1169)) |#1|)) (-15 -2724 ((-640 |#1|) (-407 (-948 (-563))) |#1|))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#2| "failed") $) 26)) (-2058 ((|#2| $) 28)) (-2751 (($ $) NIL)) (-4096 (((-767) $) 10)) (-1368 (((-640 $) $) 20)) (-3920 (((-112) $) NIL)) (-4222 (($ |#2| |#1|) 18)) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-3115 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-2716 ((|#2| $) 15)) (-2726 ((|#1| $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 44) (($ |#2|) 27)) (-1337 (((-640 |#1|) $) 17)) (-4319 ((|#1| $ |#2|) 46)) (-2241 (($) 29 T CONST)) (-1531 (((-640 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-1718 (((-112) $ $) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 34) (($ |#2| |#1|) 35))) +(((-381 |#1| |#2|) (-13 (-382 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1045) (-846)) (T -381)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-381 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-846))))) +(-13 (-382 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-2131 (((-3 |#2| "failed") $) 44)) (-2058 ((|#2| $) 45)) (-2751 (($ $) 30)) (-4096 (((-767) $) 34)) (-1368 (((-640 $) $) 35)) (-3920 (((-112) $) 38)) (-4222 (($ |#2| |#1|) 39)) (-2240 (($ (-1 |#1| |#1|) $) 40)) (-3115 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-2716 ((|#2| $) 33)) (-2726 ((|#1| $) 32)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11) (($ |#2|) 43)) (-1337 (((-640 |#1|) $) 36)) (-4319 ((|#1| $ |#2|) 41)) (-2241 (($) 18 T CONST)) (-1531 (((-640 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) +(((-382 |#1| |#2|) (-140) (-1045) (-1093)) (T -382)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1093)))) (-4319 (*1 *2 *1 *3) (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1093)) (-4 *2 (-1045)))) (-2240 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1093)))) (-4222 (*1 *1 *2 *3) (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1093)))) (-3920 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1093)) (-5 *2 (-112)))) (-1531 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1093)) (-5 *2 (-640 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1093)) (-5 *2 (-640 *3)))) (-1368 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-1093)) (-5 *2 (-640 *1)) (-4 *1 (-382 *3 *4)))) (-4096 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1093)) (-5 *2 (-767)))) (-2716 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1093)))) (-2726 (*1 *2 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1093)) (-4 *2 (-1045)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1093)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-2751 (*1 *1 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1093))))) +(-13 (-111 |t#1| |t#1|) (-1034 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4319 (|t#1| $ |t#2|)) (-15 -2240 ($ (-1 |t#1| |t#1|) $)) (-15 -4222 ($ |t#2| |t#1|)) (-15 -3920 ((-112) $)) (-15 -1531 ((-640 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1337 ((-640 |t#1|) $)) (-15 -1368 ((-640 $) $)) (-15 -4096 ((-767) $)) (-15 -2716 (|t#2| $)) (-15 -2726 (|t#1| $)) (-15 -3115 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -2751 ($ $)) (IF (|has| |t#1| (-172)) (-6 (-713 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 |#2|) . T) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-713 |#1|) |has| |#1| (-172)) ((-1034 |#2|) . T) ((-1051 |#1|) . T) ((-1093) . T)) +((-2615 (((-1262) $) 7)) (-1693 (((-858) $) 8) (($ (-684 (-694))) 14) (($ (-640 (-330))) 13) (($ (-330)) 12) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) 11))) +(((-383) (-140)) (T -383)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-684 (-694))) (-4 *1 (-383)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-4 *1 (-383)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-383)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) (-4 *1 (-383))))) +(-13 (-395) (-10 -8 (-15 -1693 ($ (-684 (-694)))) (-15 -1693 ($ (-640 (-330)))) (-15 -1693 ($ (-330))) (-15 -1693 ($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330)))))))) +(((-610 (-858)) . T) ((-395) . T) ((-1208) . T)) +((-2131 (((-3 $ "failed") (-684 (-316 (-379)))) 21) (((-3 $ "failed") (-684 (-316 (-563)))) 19) (((-3 $ "failed") (-684 (-948 (-379)))) 17) (((-3 $ "failed") (-684 (-948 (-563)))) 15) (((-3 $ "failed") (-684 (-407 (-948 (-379))))) 13) (((-3 $ "failed") (-684 (-407 (-948 (-563))))) 11)) (-2058 (($ (-684 (-316 (-379)))) 22) (($ (-684 (-316 (-563)))) 20) (($ (-684 (-948 (-379)))) 18) (($ (-684 (-948 (-563)))) 16) (($ (-684 (-407 (-948 (-379))))) 14) (($ (-684 (-407 (-948 (-563))))) 12)) (-2615 (((-1262) $) 7)) (-1693 (((-858) $) 8) (($ (-640 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) 23))) +(((-384) (-140)) (T -384)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-4 *1 (-384)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-384)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) (-4 *1 (-384)))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-684 (-316 (-379)))) (-4 *1 (-384)))) (-2131 (*1 *1 *2) (|partial| -12 (-5 *2 (-684 (-316 (-379)))) (-4 *1 (-384)))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-684 (-316 (-563)))) (-4 *1 (-384)))) (-2131 (*1 *1 *2) (|partial| -12 (-5 *2 (-684 (-316 (-563)))) (-4 *1 (-384)))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-684 (-948 (-379)))) (-4 *1 (-384)))) (-2131 (*1 *1 *2) (|partial| -12 (-5 *2 (-684 (-948 (-379)))) (-4 *1 (-384)))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-684 (-948 (-563)))) (-4 *1 (-384)))) (-2131 (*1 *1 *2) (|partial| -12 (-5 *2 (-684 (-948 (-563)))) (-4 *1 (-384)))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-684 (-407 (-948 (-379))))) (-4 *1 (-384)))) (-2131 (*1 *1 *2) (|partial| -12 (-5 *2 (-684 (-407 (-948 (-379))))) (-4 *1 (-384)))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-684 (-407 (-948 (-563))))) (-4 *1 (-384)))) (-2131 (*1 *1 *2) (|partial| -12 (-5 *2 (-684 (-407 (-948 (-563))))) (-4 *1 (-384))))) +(-13 (-395) (-10 -8 (-15 -1693 ($ (-640 (-330)))) (-15 -1693 ($ (-330))) (-15 -1693 ($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330)))))) (-15 -2058 ($ (-684 (-316 (-379))))) (-15 -2131 ((-3 $ "failed") (-684 (-316 (-379))))) (-15 -2058 ($ (-684 (-316 (-563))))) (-15 -2131 ((-3 $ "failed") (-684 (-316 (-563))))) (-15 -2058 ($ (-684 (-948 (-379))))) (-15 -2131 ((-3 $ "failed") (-684 (-948 (-379))))) (-15 -2058 ($ (-684 (-948 (-563))))) (-15 -2131 ((-3 $ "failed") (-684 (-948 (-563))))) (-15 -2058 ($ (-684 (-407 (-948 (-379)))))) (-15 -2131 ((-3 $ "failed") (-684 (-407 (-948 (-379)))))) (-15 -2058 ($ (-684 (-407 (-948 (-563)))))) (-15 -2131 ((-3 $ "failed") (-684 (-407 (-948 (-563)))))))) +(((-610 (-858)) . T) ((-395) . T) ((-1208) . T)) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4239 (($) NIL T CONST)) (-2751 (($ $) NIL)) (-2588 (($ |#1| |#2|) NIL)) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-3395 ((|#2| $) NIL)) (-2726 ((|#1| $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 28)) (-2241 (($) 12 T CONST)) (-1718 (((-112) $ $) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19))) +(((-385 |#1| |#2|) (-13 (-111 |#1| |#1|) (-509 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-713 |#1|)) |%noBranch|))) (-1045) (-846)) (T -385)) +NIL +(-13 (-111 |#1| |#1|) (-509 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-713 |#1|)) |%noBranch|))) +((-1677 (((-112) $ $) NIL)) (-3749 (((-767) $) 58)) (-4239 (($) NIL T CONST)) (-3181 (((-3 $ "failed") $ $) 60)) (-2131 (((-3 |#1| "failed") $) NIL)) (-2058 ((|#1| $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-2884 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 52)) (-3827 (((-112) $) 15)) (-2768 ((|#1| $ (-563)) NIL)) (-4208 (((-767) $ (-563)) NIL)) (-3084 (($ $ $) NIL (|has| |#1| (-846)))) (-1777 (($ $ $) NIL (|has| |#1| (-846)))) (-1633 (($ (-1 |#1| |#1|) $) 38)) (-2163 (($ (-1 (-767) (-767)) $) 35)) (-3439 (((-3 $ "failed") $ $) 49)) (-3573 (((-1151) $) NIL)) (-3744 (($ $ $) 26)) (-3916 (($ $ $) 24)) (-1694 (((-1113) $) NIL)) (-2760 (((-640 (-2 (|:| |gen| |#1|) (|:| -3368 (-767)))) $) 32)) (-2452 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 55)) (-1693 (((-858) $) 22) (($ |#1|) NIL)) (-2254 (($) 9 T CONST)) (-1778 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1756 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) 41)) (-1768 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1744 (((-112) $ $) 62 (|has| |#1| (-846)))) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ |#1| (-767)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28))) +(((-386 |#1|) (-13 (-722) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-767))) (-15 -3916 ($ $ $)) (-15 -3744 ($ $ $)) (-15 -3439 ((-3 $ "failed") $ $)) (-15 -3181 ((-3 $ "failed") $ $)) (-15 -2452 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2884 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3749 ((-767) $)) (-15 -2760 ((-640 (-2 (|:| |gen| |#1|) (|:| -3368 (-767)))) $)) (-15 -4208 ((-767) $ (-563))) (-15 -2768 (|#1| $ (-563))) (-15 -2163 ($ (-1 (-767) (-767)) $)) (-15 -1633 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|))) (-1093)) (T -386)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1093)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1093)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-386 *2)) (-4 *2 (-1093)))) (-3916 (*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1093)))) (-3744 (*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1093)))) (-3439 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1093)))) (-3181 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1093)))) (-2452 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |rm| (-386 *3)))) (-5 *1 (-386 *3)) (-4 *3 (-1093)))) (-2884 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |mm| (-386 *3)) (|:| |rm| (-386 *3)))) (-5 *1 (-386 *3)) (-4 *3 (-1093)))) (-3749 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-386 *3)) (-4 *3 (-1093)))) (-2760 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3368 (-767))))) (-5 *1 (-386 *3)) (-4 *3 (-1093)))) (-4208 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *2 (-767)) (-5 *1 (-386 *4)) (-4 *4 (-1093)))) (-2768 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *1 (-386 *2)) (-4 *2 (-1093)))) (-2163 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-767) (-767))) (-5 *1 (-386 *3)) (-4 *3 (-1093)))) (-1633 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1093)) (-5 *1 (-386 *3))))) +(-13 (-722) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-767))) (-15 -3916 ($ $ $)) (-15 -3744 ($ $ $)) (-15 -3439 ((-3 $ "failed") $ $)) (-15 -3181 ((-3 $ "failed") $ $)) (-15 -2452 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2884 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3749 ((-767) $)) (-15 -2760 ((-640 (-2 (|:| |gen| |#1|) (|:| -3368 (-767)))) $)) (-15 -4208 ((-767) $ (-563))) (-15 -2768 (|#1| $ (-563))) (-15 -2163 ($ (-1 (-767) (-767)) $)) (-15 -1633 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 42)) (-4223 (($ $) 41)) (-3156 (((-112) $) 39)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-2131 (((-3 (-563) "failed") $) 48)) (-2058 (((-563) $) 49)) (-3400 (((-3 $ "failed") $) 33)) (-3827 (((-112) $) 31)) (-3084 (($ $ $) 55)) (-1777 (($ $ $) 54)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-3008 (((-3 $ "failed") $ $) 43)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-563)) 47)) (-1675 (((-767)) 28)) (-2126 (((-112) $ $) 40)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1778 (((-112) $ $) 52)) (-1756 (((-112) $ $) 51)) (-1718 (((-112) $ $) 6)) (-1768 (((-112) $ $) 53)) (-1744 (((-112) $ $) 50)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) +(((-387) (-140)) (T -387)) +NIL +(-13 (-555) (-846) (-1034 (-563))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-290) . T) ((-555) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-846) . T) ((-1034 (-563)) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) +((-1677 (((-112) $ $) NIL)) (-2838 (((-112) $) 20)) (-2319 (((-112) $) 19)) (-1566 (($ (-1151) (-1151) (-1151)) 21)) (-3348 (((-1151) $) 16)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-2404 (($ (-1151) (-1151) (-1151)) 14)) (-1604 (((-1151) $) 17)) (-3811 (((-112) $) 18)) (-2091 (((-1151) $) 15)) (-1693 (((-858) $) 12) (($ (-1151)) 13) (((-1151) $) 9)) (-1718 (((-112) $ $) 7))) +(((-388) (-389)) (T -388)) +NIL +(-389) +((-1677 (((-112) $ $) 7)) (-2838 (((-112) $) 16)) (-2319 (((-112) $) 17)) (-1566 (($ (-1151) (-1151) (-1151)) 15)) (-3348 (((-1151) $) 20)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-2404 (($ (-1151) (-1151) (-1151)) 22)) (-1604 (((-1151) $) 19)) (-3811 (((-112) $) 18)) (-2091 (((-1151) $) 21)) (-1693 (((-858) $) 11) (($ (-1151)) 24) (((-1151) $) 23)) (-1718 (((-112) $ $) 6))) +(((-389) (-140)) (T -389)) +((-2404 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1151)) (-4 *1 (-389)))) (-2091 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1151)))) (-3348 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1151)))) (-1604 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1151)))) (-3811 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-2319 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-2838 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-1566 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1151)) (-4 *1 (-389))))) +(-13 (-1093) (-490 (-1151)) (-10 -8 (-15 -2404 ($ (-1151) (-1151) (-1151))) (-15 -2091 ((-1151) $)) (-15 -3348 ((-1151) $)) (-15 -1604 ((-1151) $)) (-15 -3811 ((-112) $)) (-15 -2319 ((-112) $)) (-15 -2838 ((-112) $)) (-15 -1566 ($ (-1151) (-1151) (-1151))))) +(((-102) . T) ((-613 #0=(-1151)) . T) ((-610 (-858)) . T) ((-610 #0#) . T) ((-490 #0#) . T) ((-1093) . T)) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-2904 (((-858) $) 50)) (-4239 (($) NIL T CONST)) (-2300 (($ $ (-917)) NIL)) (-2287 (($ $ (-917)) NIL)) (-1494 (($ $ (-917)) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-4333 (($ (-767)) 26)) (-3533 (((-767)) 17)) (-2781 (((-858) $) 52)) (-2146 (($ $ $) NIL)) (-1693 (((-858) $) NIL)) (-1361 (($ $ $ $) NIL)) (-3399 (($ $ $) NIL)) (-2241 (($) 20 T CONST)) (-1718 (((-112) $ $) 28)) (-1826 (($ $) 34) (($ $ $) 36)) (-1814 (($ $ $) 37)) (** (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) +(((-390 |#1| |#2| |#3|) (-13 (-740 |#3|) (-10 -8 (-15 -3533 ((-767))) (-15 -2781 ((-858) $)) (-15 -2904 ((-858) $)) (-15 -4333 ($ (-767))))) (-767) (-767) (-172)) (T -390)) +((-3533 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))) (-2781 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-767)) (-14 *4 (-767)) (-4 *5 (-172)))) (-2904 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-767)) (-14 *4 (-767)) (-4 *5 (-172)))) (-4333 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172))))) +(-13 (-740 |#3|) (-10 -8 (-15 -3533 ((-767))) (-15 -2781 ((-858) $)) (-15 -2904 ((-858) $)) (-15 -4333 ($ (-767))))) +((-1845 (((-1151)) 10)) (-3167 (((-1140 (-1151))) 28)) (-1308 (((-1262) (-1151)) 25) (((-1262) (-388)) 24)) (-1319 (((-1262)) 26)) (-1446 (((-1140 (-1151))) 27))) +(((-391) (-10 -7 (-15 -1446 ((-1140 (-1151)))) (-15 -3167 ((-1140 (-1151)))) (-15 -1319 ((-1262))) (-15 -1308 ((-1262) (-388))) (-15 -1308 ((-1262) (-1151))) (-15 -1845 ((-1151))))) (T -391)) +((-1845 (*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-391)))) (-1308 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-391)))) (-1308 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1262)) (-5 *1 (-391)))) (-1319 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-391)))) (-3167 (*1 *2) (-12 (-5 *2 (-1140 (-1151))) (-5 *1 (-391)))) (-1446 (*1 *2) (-12 (-5 *2 (-1140 (-1151))) (-5 *1 (-391))))) +(-10 -7 (-15 -1446 ((-1140 (-1151)))) (-15 -3167 ((-1140 (-1151)))) (-15 -1319 ((-1262))) (-15 -1308 ((-1262) (-388))) (-15 -1308 ((-1262) (-1151))) (-15 -1845 ((-1151)))) +((-3254 (((-767) (-336 |#1| |#2| |#3| |#4|)) 16))) +(((-392 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3254 ((-767) (-336 |#1| |#2| |#3| |#4|)))) (-13 (-368) (-363)) (-1233 |#1|) (-1233 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -392)) +((-3254 (*1 *2 *3) (-12 (-5 *3 (-336 *4 *5 *6 *7)) (-4 *4 (-13 (-368) (-363))) (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) (-4 *7 (-342 *4 *5 *6)) (-5 *2 (-767)) (-5 *1 (-392 *4 *5 *6 *7))))) +(-10 -7 (-15 -3254 ((-767) (-336 |#1| |#2| |#3| |#4|)))) +((-1693 (((-394) |#1|) 11))) +(((-393 |#1|) (-10 -7 (-15 -1693 ((-394) |#1|))) (-1093)) (T -393)) +((-1693 (*1 *2 *3) (-12 (-5 *2 (-394)) (-5 *1 (-393 *3)) (-4 *3 (-1093))))) +(-10 -7 (-15 -1693 ((-394) |#1|))) +((-1677 (((-112) $ $) NIL)) (-2391 (((-640 (-1151)) $ (-640 (-1151))) 38)) (-3868 (((-640 (-1151)) $ (-640 (-1151))) 39)) (-2573 (((-640 (-1151)) $ (-640 (-1151))) 40)) (-2737 (((-640 (-1151)) $) 35)) (-1566 (($) 23)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-2338 (((-640 (-1151)) $) 36)) (-3789 (((-640 (-1151)) $) 37)) (-1463 (((-1262) $ (-563)) 33) (((-1262) $) 34)) (-2220 (($ (-858) (-563)) 30)) (-1693 (((-858) $) 42) (($ (-858)) 25)) (-1718 (((-112) $ $) NIL))) +(((-394) (-13 (-1093) (-613 (-858)) (-10 -8 (-15 -2220 ($ (-858) (-563))) (-15 -1463 ((-1262) $ (-563))) (-15 -1463 ((-1262) $)) (-15 -3789 ((-640 (-1151)) $)) (-15 -2338 ((-640 (-1151)) $)) (-15 -1566 ($)) (-15 -2737 ((-640 (-1151)) $)) (-15 -2573 ((-640 (-1151)) $ (-640 (-1151)))) (-15 -3868 ((-640 (-1151)) $ (-640 (-1151)))) (-15 -2391 ((-640 (-1151)) $ (-640 (-1151))))))) (T -394)) +((-2220 (*1 *1 *2 *3) (-12 (-5 *2 (-858)) (-5 *3 (-563)) (-5 *1 (-394)))) (-1463 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-394)))) (-1463 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-394)))) (-3789 (*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394)))) (-2338 (*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394)))) (-1566 (*1 *1) (-5 *1 (-394))) (-2737 (*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394)))) (-2573 (*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394)))) (-3868 (*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394)))) (-2391 (*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394))))) +(-13 (-1093) (-613 (-858)) (-10 -8 (-15 -2220 ($ (-858) (-563))) (-15 -1463 ((-1262) $ (-563))) (-15 -1463 ((-1262) $)) (-15 -3789 ((-640 (-1151)) $)) (-15 -2338 ((-640 (-1151)) $)) (-15 -1566 ($)) (-15 -2737 ((-640 (-1151)) $)) (-15 -2573 ((-640 (-1151)) $ (-640 (-1151)))) (-15 -3868 ((-640 (-1151)) $ (-640 (-1151)))) (-15 -2391 ((-640 (-1151)) $ (-640 (-1151)))))) +((-2615 (((-1262) $) 7)) (-1693 (((-858) $) 8))) +(((-395) (-140)) (T -395)) +((-2615 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1262))))) +(-13 (-1208) (-610 (-858)) (-10 -8 (-15 -2615 ((-1262) $)))) +(((-610 (-858)) . T) ((-1208) . T)) +((-2131 (((-3 $ "failed") (-316 (-379))) 21) (((-3 $ "failed") (-316 (-563))) 19) (((-3 $ "failed") (-948 (-379))) 17) (((-3 $ "failed") (-948 (-563))) 15) (((-3 $ "failed") (-407 (-948 (-379)))) 13) (((-3 $ "failed") (-407 (-948 (-563)))) 11)) (-2058 (($ (-316 (-379))) 22) (($ (-316 (-563))) 20) (($ (-948 (-379))) 18) (($ (-948 (-563))) 16) (($ (-407 (-948 (-379)))) 14) (($ (-407 (-948 (-563)))) 12)) (-2615 (((-1262) $) 7)) (-1693 (((-858) $) 8) (($ (-640 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) 23))) +(((-396) (-140)) (T -396)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-4 *1 (-396)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-396)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) (-4 *1 (-396)))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-4 *1 (-396)))) (-2131 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-379))) (-4 *1 (-396)))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-316 (-563))) (-4 *1 (-396)))) (-2131 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-563))) (-4 *1 (-396)))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-948 (-379))) (-4 *1 (-396)))) (-2131 (*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-379))) (-4 *1 (-396)))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-948 (-563))) (-4 *1 (-396)))) (-2131 (*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-563))) (-4 *1 (-396)))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-379)))) (-4 *1 (-396)))) (-2131 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-948 (-379)))) (-4 *1 (-396)))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-563)))) (-4 *1 (-396)))) (-2131 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-948 (-563)))) (-4 *1 (-396))))) +(-13 (-395) (-10 -8 (-15 -1693 ($ (-640 (-330)))) (-15 -1693 ($ (-330))) (-15 -1693 ($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330)))))) (-15 -2058 ($ (-316 (-379)))) (-15 -2131 ((-3 $ "failed") (-316 (-379)))) (-15 -2058 ($ (-316 (-563)))) (-15 -2131 ((-3 $ "failed") (-316 (-563)))) (-15 -2058 ($ (-948 (-379)))) (-15 -2131 ((-3 $ "failed") (-948 (-379)))) (-15 -2058 ($ (-948 (-563)))) (-15 -2131 ((-3 $ "failed") (-948 (-563)))) (-15 -2058 ($ (-407 (-948 (-379))))) (-15 -2131 ((-3 $ "failed") (-407 (-948 (-379))))) (-15 -2058 ($ (-407 (-948 (-563))))) (-15 -2131 ((-3 $ "failed") (-407 (-948 (-563))))))) +(((-610 (-858)) . T) ((-395) . T) ((-1208) . T)) +((-2746 (((-640 (-1151)) (-640 (-1151))) 9)) (-2615 (((-1262) (-388)) 27)) (-3586 (((-1097) (-1169) (-640 (-1169)) (-1172) (-640 (-1169))) 60) (((-1097) (-1169) (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169)))) (-640 (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169))))) (-640 (-1169)) (-1169)) 35) (((-1097) (-1169) (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169)))) (-640 (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169))))) (-640 (-1169))) 34))) +(((-397) (-10 -7 (-15 -3586 ((-1097) (-1169) (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169)))) (-640 (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169))))) (-640 (-1169)))) (-15 -3586 ((-1097) (-1169) (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169)))) (-640 (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169))))) (-640 (-1169)) (-1169))) (-15 -3586 ((-1097) (-1169) (-640 (-1169)) (-1172) (-640 (-1169)))) (-15 -2615 ((-1262) (-388))) (-15 -2746 ((-640 (-1151)) (-640 (-1151)))))) (T -397)) +((-2746 (*1 *2 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-397)))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1262)) (-5 *1 (-397)))) (-3586 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-640 (-1169))) (-5 *5 (-1172)) (-5 *3 (-1169)) (-5 *2 (-1097)) (-5 *1 (-397)))) (-3586 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-640 (-640 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-640 (-3 (|:| |array| (-640 *3)) (|:| |scalar| (-1169))))) (-5 *6 (-640 (-1169))) (-5 *3 (-1169)) (-5 *2 (-1097)) (-5 *1 (-397)))) (-3586 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-640 (-640 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-640 (-3 (|:| |array| (-640 *3)) (|:| |scalar| (-1169))))) (-5 *6 (-640 (-1169))) (-5 *3 (-1169)) (-5 *2 (-1097)) (-5 *1 (-397))))) +(-10 -7 (-15 -3586 ((-1097) (-1169) (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169)))) (-640 (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169))))) (-640 (-1169)))) (-15 -3586 ((-1097) (-1169) (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169)))) (-640 (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169))))) (-640 (-1169)) (-1169))) (-15 -3586 ((-1097) (-1169) (-640 (-1169)) (-1172) (-640 (-1169)))) (-15 -2615 ((-1262) (-388))) (-15 -2746 ((-640 (-1151)) (-640 (-1151))))) +((-2615 (((-1262) $) 36)) (-1693 (((-858) $) 96) (($ (-330)) 98) (($ (-640 (-330))) 97) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) 95) (($ (-316 (-696))) 52) (($ (-316 (-694))) 71) (($ (-316 (-689))) 84) (($ (-294 (-316 (-696)))) 66) (($ (-294 (-316 (-694)))) 79) (($ (-294 (-316 (-689)))) 92) (($ (-316 (-563))) 103) (($ (-316 (-379))) 116) (($ (-316 (-169 (-379)))) 129) (($ (-294 (-316 (-563)))) 111) (($ (-294 (-316 (-379)))) 124) (($ (-294 (-316 (-169 (-379))))) 137))) +(((-398 |#1| |#2| |#3| |#4|) (-13 (-395) (-10 -8 (-15 -1693 ($ (-330))) (-15 -1693 ($ (-640 (-330)))) (-15 -1693 ($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330)))))) (-15 -1693 ($ (-316 (-696)))) (-15 -1693 ($ (-316 (-694)))) (-15 -1693 ($ (-316 (-689)))) (-15 -1693 ($ (-294 (-316 (-696))))) (-15 -1693 ($ (-294 (-316 (-694))))) (-15 -1693 ($ (-294 (-316 (-689))))) (-15 -1693 ($ (-316 (-563)))) (-15 -1693 ($ (-316 (-379)))) (-15 -1693 ($ (-316 (-169 (-379))))) (-15 -1693 ($ (-294 (-316 (-563))))) (-15 -1693 ($ (-294 (-316 (-379))))) (-15 -1693 ($ (-294 (-316 (-169 (-379)))))))) (-1169) (-3 (|:| |fst| (-434)) (|:| -3784 "void")) (-640 (-1169)) (-1173)) (T -398)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-316 (-696))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-316 (-694))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-316 (-689))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-696)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-694)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-689)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-316 (-563))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-563)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-379)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-169 (-379))))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173))))) +(-13 (-395) (-10 -8 (-15 -1693 ($ (-330))) (-15 -1693 ($ (-640 (-330)))) (-15 -1693 ($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330)))))) (-15 -1693 ($ (-316 (-696)))) (-15 -1693 ($ (-316 (-694)))) (-15 -1693 ($ (-316 (-689)))) (-15 -1693 ($ (-294 (-316 (-696))))) (-15 -1693 ($ (-294 (-316 (-694))))) (-15 -1693 ($ (-294 (-316 (-689))))) (-15 -1693 ($ (-316 (-563)))) (-15 -1693 ($ (-316 (-379)))) (-15 -1693 ($ (-316 (-169 (-379))))) (-15 -1693 ($ (-294 (-316 (-563))))) (-15 -1693 ($ (-294 (-316 (-379))))) (-15 -1693 ($ (-294 (-316 (-169 (-379)))))))) +((-1677 (((-112) $ $) NIL)) (-3773 ((|#2| $) 36)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-2709 (($ (-407 |#2|)) 85)) (-3893 (((-640 (-2 (|:| -1654 (-767)) (|:| -3408 |#2|) (|:| |num| |#2|))) $) 37)) (-4202 (($ $) 32) (($ $ (-767)) 34)) (-2220 (((-407 |#2|) $) 46)) (-1707 (($ (-640 (-2 (|:| -1654 (-767)) (|:| -3408 |#2|) (|:| |num| |#2|)))) 31)) (-1693 (((-858) $) 120)) (-3209 (($ $) 33) (($ $ (-767)) 35)) (-1718 (((-112) $ $) NIL)) (-1814 (($ |#2| $) 39))) +(((-399 |#1| |#2|) (-13 (-1093) (-611 (-407 |#2|)) (-10 -8 (-15 -1814 ($ |#2| $)) (-15 -2709 ($ (-407 |#2|))) (-15 -3773 (|#2| $)) (-15 -3893 ((-640 (-2 (|:| -1654 (-767)) (|:| -3408 |#2|) (|:| |num| |#2|))) $)) (-15 -1707 ($ (-640 (-2 (|:| -1654 (-767)) (|:| -3408 |#2|) (|:| |num| |#2|))))) (-15 -4202 ($ $)) (-15 -3209 ($ $)) (-15 -4202 ($ $ (-767))) (-15 -3209 ($ $ (-767))))) (-13 (-363) (-147)) (-1233 |#1|)) (T -399)) +((-1814 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *2)) (-4 *2 (-1233 *3)))) (-2709 (*1 *1 *2) (-12 (-5 *2 (-407 *4)) (-4 *4 (-1233 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)))) (-3773 (*1 *2 *1) (-12 (-4 *2 (-1233 *3)) (-5 *1 (-399 *3 *2)) (-4 *3 (-13 (-363) (-147))))) (-3893 (*1 *2 *1) (-12 (-4 *3 (-13 (-363) (-147))) (-5 *2 (-640 (-2 (|:| -1654 (-767)) (|:| -3408 *4) (|:| |num| *4)))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1233 *3)))) (-1707 (*1 *1 *2) (-12 (-5 *2 (-640 (-2 (|:| -1654 (-767)) (|:| -3408 *4) (|:| |num| *4)))) (-4 *4 (-1233 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)))) (-4202 (*1 *1 *1) (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) (-4 *3 (-1233 *2)))) (-3209 (*1 *1 *1) (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) (-4 *3 (-1233 *2)))) (-4202 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1233 *3)))) (-3209 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1233 *3))))) +(-13 (-1093) (-611 (-407 |#2|)) (-10 -8 (-15 -1814 ($ |#2| $)) (-15 -2709 ($ (-407 |#2|))) (-15 -3773 (|#2| $)) (-15 -3893 ((-640 (-2 (|:| -1654 (-767)) (|:| -3408 |#2|) (|:| |num| |#2|))) $)) (-15 -1707 ($ (-640 (-2 (|:| -1654 (-767)) (|:| -3408 |#2|) (|:| |num| |#2|))))) (-15 -4202 ($ $)) (-15 -3209 ($ $)) (-15 -4202 ($ $ (-767))) (-15 -3209 ($ $ (-767))))) +((-1677 (((-112) $ $) 9 (-4032 (|has| |#1| (-882 (-563))) (|has| |#1| (-882 (-379)))))) (-3787 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 15 (|has| |#1| (-882 (-379)))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 14 (|has| |#1| (-882 (-563))))) (-3573 (((-1151) $) 13 (-4032 (|has| |#1| (-882 (-563))) (|has| |#1| (-882 (-379)))))) (-1694 (((-1113) $) 12 (-4032 (|has| |#1| (-882 (-563))) (|has| |#1| (-882 (-379)))))) (-1693 (((-858) $) 11 (-4032 (|has| |#1| (-882 (-563))) (|has| |#1| (-882 (-379)))))) (-1718 (((-112) $ $) 10 (-4032 (|has| |#1| (-882 (-563))) (|has| |#1| (-882 (-379))))))) +(((-400 |#1|) (-140) (-1208)) (T -400)) +NIL +(-13 (-1208) (-10 -7 (IF (|has| |t#1| (-882 (-563))) (-6 (-882 (-563))) |%noBranch|) (IF (|has| |t#1| (-882 (-379))) (-6 (-882 (-379))) |%noBranch|))) +(((-102) -4032 (|has| |#1| (-882 (-563))) (|has| |#1| (-882 (-379)))) ((-610 (-858)) -4032 (|has| |#1| (-882 (-563))) (|has| |#1| (-882 (-379)))) ((-882 (-379)) |has| |#1| (-882 (-379))) ((-882 (-563)) |has| |#1| (-882 (-563))) ((-1093) -4032 (|has| |#1| (-882 (-563))) (|has| |#1| (-882 (-379)))) ((-1208) . T)) +((-1637 (($ $) 10) (($ $ (-767)) 11))) +(((-401 |#1|) (-10 -8 (-15 -1637 (|#1| |#1| (-767))) (-15 -1637 (|#1| |#1|))) (-402)) (T -401)) +NIL +(-10 -8 (-15 -1637 (|#1| |#1| (-767))) (-15 -1637 (|#1| |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 42)) (-4223 (($ $) 41)) (-3156 (((-112) $) 39)) (-1495 (((-3 $ "failed") $ $) 19)) (-4335 (($ $) 74)) (-3205 (((-418 $) $) 73)) (-1919 (((-112) $ $) 60)) (-4239 (($) 17 T CONST)) (-3090 (($ $ $) 56)) (-3400 (((-3 $ "failed") $) 33)) (-3050 (($ $ $) 57)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) 52)) (-1637 (($ $) 80) (($ $ (-767)) 79)) (-2468 (((-112) $) 72)) (-3254 (((-829 (-917)) $) 82)) (-3827 (((-112) $) 31)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-3513 (($ $ $) 47) (($ (-640 $)) 46)) (-3573 (((-1151) $) 9)) (-2688 (($ $) 71)) (-1694 (((-1113) $) 10)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3548 (($ $ $) 49) (($ (-640 $)) 48)) (-2174 (((-418 $) $) 75)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3008 (((-3 $ "failed") $ $) 43)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-2628 (((-767) $) 59)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 58)) (-1423 (((-3 (-767) "failed") $ $) 81)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-407 (-563))) 67)) (-2779 (((-3 $ "failed") $) 83)) (-1675 (((-767)) 28)) (-2126 (((-112) $ $) 40)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1837 (($ $ $) 66)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 70)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 69) (($ (-407 (-563)) $) 68))) +(((-402) (-140)) (T -402)) +((-3254 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-829 (-917))))) (-1423 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-402)) (-5 *2 (-767)))) (-1637 (*1 *1 *1) (-4 *1 (-402))) (-1637 (*1 *1 *1 *2) (-12 (-4 *1 (-402)) (-5 *2 (-767))))) +(-13 (-363) (-145) (-10 -8 (-15 -3254 ((-829 (-917)) $)) (-15 -1423 ((-3 (-767) "failed") $ $)) (-15 -1637 ($ $)) (-15 -1637 ($ $ (-767))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-613 #0#) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-555) . T) ((-643 #0#) . T) ((-643 $) . T) ((-713 #0#) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1212) . T)) +((-4340 (($ (-563) (-563)) 11) (($ (-563) (-563) (-917)) NIL)) (-4113 (((-917)) 16) (((-917) (-917)) NIL))) +(((-403 |#1|) (-10 -8 (-15 -4113 ((-917) (-917))) (-15 -4113 ((-917))) (-15 -4340 (|#1| (-563) (-563) (-917))) (-15 -4340 (|#1| (-563) (-563)))) (-404)) (T -403)) +((-4113 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-403 *3)) (-4 *3 (-404)))) (-4113 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-403 *3)) (-4 *3 (-404))))) +(-10 -8 (-15 -4113 ((-917) (-917))) (-15 -4113 ((-917))) (-15 -4340 (|#1| (-563) (-563) (-917))) (-15 -4340 (|#1| (-563) (-563)))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-3401 (((-563) $) 90)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 42)) (-4223 (($ $) 41)) (-3156 (((-112) $) 39)) (-2421 (($ $) 88)) (-1495 (((-3 $ "failed") $ $) 19)) (-4335 (($ $) 74)) (-3205 (((-418 $) $) 73)) (-2186 (($ $) 98)) (-1919 (((-112) $ $) 60)) (-1857 (((-563) $) 115)) (-4239 (($) 17 T CONST)) (-3796 (($ $) 87)) (-2131 (((-3 (-563) "failed") $) 103) (((-3 (-407 (-563)) "failed") $) 100)) (-2058 (((-563) $) 104) (((-407 (-563)) $) 101)) (-3090 (($ $ $) 56)) (-3400 (((-3 $ "failed") $) 33)) (-3050 (($ $ $) 57)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) 52)) (-2468 (((-112) $) 72)) (-3102 (((-917)) 131) (((-917) (-917)) 128 (|has| $ (-6 -4398)))) (-3101 (((-112) $) 113)) (-3787 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 94)) (-3254 (((-563) $) 137)) (-3827 (((-112) $) 31)) (-1645 (($ $ (-563)) 97)) (-3793 (($ $) 93)) (-1419 (((-112) $) 114)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-3084 (($ $ $) 112) (($) 125 (-12 (-2176 (|has| $ (-6 -4398))) (-2176 (|has| $ (-6 -4390)))))) (-1777 (($ $ $) 111) (($) 124 (-12 (-2176 (|has| $ (-6 -4398))) (-2176 (|has| $ (-6 -4390)))))) (-4050 (((-563) $) 134)) (-3513 (($ $ $) 47) (($ (-640 $)) 46)) (-3573 (((-1151) $) 9)) (-2688 (($ $) 71)) (-3324 (((-917) (-563)) 127 (|has| $ (-6 -4398)))) (-1694 (((-1113) $) 10)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3548 (($ $ $) 49) (($ (-640 $)) 48)) (-4215 (($ $) 89)) (-1583 (($ $) 91)) (-4340 (($ (-563) (-563)) 139) (($ (-563) (-563) (-917)) 138)) (-2174 (((-418 $) $) 75)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3008 (((-3 $ "failed") $ $) 43)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-1654 (((-563) $) 135)) (-2628 (((-767) $) 59)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 58)) (-4113 (((-917)) 132) (((-917) (-917)) 129 (|has| $ (-6 -4398)))) (-3814 (((-917) (-563)) 126 (|has| $ (-6 -4398)))) (-2220 (((-379) $) 106) (((-225) $) 105) (((-888 (-379)) $) 95)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-407 (-563))) 67) (($ (-563)) 102) (($ (-407 (-563))) 99)) (-1675 (((-767)) 28)) (-4194 (($ $) 92)) (-1734 (((-917)) 133) (((-917) (-917)) 130 (|has| $ (-6 -4398)))) (-4211 (((-917)) 136)) (-2126 (((-112) $ $) 40)) (-2509 (($ $) 116)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1778 (((-112) $ $) 109)) (-1756 (((-112) $ $) 108)) (-1718 (((-112) $ $) 6)) (-1768 (((-112) $ $) 110)) (-1744 (((-112) $ $) 107)) (-1837 (($ $ $) 66)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 70) (($ $ (-407 (-563))) 96)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 69) (($ (-407 (-563)) $) 68))) +(((-404) (-140)) (T -404)) +((-4340 (*1 *1 *2 *2) (-12 (-5 *2 (-563)) (-4 *1 (-404)))) (-4340 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-563)) (-5 *3 (-917)) (-4 *1 (-404)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-563)))) (-4211 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917)))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-563)))) (-4050 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-563)))) (-1734 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917)))) (-4113 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917)))) (-3102 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917)))) (-1734 (*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4398)) (-4 *1 (-404)))) (-4113 (*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4398)) (-4 *1 (-404)))) (-3102 (*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4398)) (-4 *1 (-404)))) (-3324 (*1 *2 *3) (-12 (-5 *3 (-563)) (|has| *1 (-6 -4398)) (-4 *1 (-404)) (-5 *2 (-917)))) (-3814 (*1 *2 *3) (-12 (-5 *3 (-563)) (|has| *1 (-6 -4398)) (-4 *1 (-404)) (-5 *2 (-917)))) (-3084 (*1 *1) (-12 (-4 *1 (-404)) (-2176 (|has| *1 (-6 -4398))) (-2176 (|has| *1 (-6 -4390))))) (-1777 (*1 *1) (-12 (-4 *1 (-404)) (-2176 (|has| *1 (-6 -4398))) (-2176 (|has| *1 (-6 -4390)))))) +(-13 (-1054) (-10 -8 (-6 -1403) (-15 -4340 ($ (-563) (-563))) (-15 -4340 ($ (-563) (-563) (-917))) (-15 -3254 ((-563) $)) (-15 -4211 ((-917))) (-15 -1654 ((-563) $)) (-15 -4050 ((-563) $)) (-15 -1734 ((-917))) (-15 -4113 ((-917))) (-15 -3102 ((-917))) (IF (|has| $ (-6 -4398)) (PROGN (-15 -1734 ((-917) (-917))) (-15 -4113 ((-917) (-917))) (-15 -3102 ((-917) (-917))) (-15 -3324 ((-917) (-563))) (-15 -3814 ((-917) (-563)))) |%noBranch|) (IF (|has| $ (-6 -4390)) |%noBranch| (IF (|has| $ (-6 -4398)) |%noBranch| (PROGN (-15 -3084 ($)) (-15 -1777 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-613 #0#) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-611 (-225)) . T) ((-611 (-379)) . T) ((-611 (-888 (-379))) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-555) . T) ((-643 #0#) . T) ((-643 $) . T) ((-713 #0#) . T) ((-713 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-844) . T) ((-846) . T) ((-882 (-379)) . T) ((-916) . T) ((-998) . T) ((-1018) . T) ((-1054) . T) ((-1034 (-407 (-563))) . T) ((-1034 (-563)) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1212) . T)) +((-2240 (((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|)) 20))) +(((-405 |#1| |#2|) (-10 -7 (-15 -2240 ((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|)))) (-555) (-555)) (T -405)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-418 *5)) (-4 *5 (-555)) (-4 *6 (-555)) (-5 *2 (-418 *6)) (-5 *1 (-405 *5 *6))))) +(-10 -7 (-15 -2240 ((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|)))) +((-2240 (((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|)) 13))) +(((-406 |#1| |#2|) (-10 -7 (-15 -2240 ((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|)))) (-555) (-555)) (T -406)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-407 *5)) (-4 *5 (-555)) (-4 *6 (-555)) (-5 *2 (-407 *6)) (-5 *1 (-406 *5 *6))))) +(-10 -7 (-15 -2240 ((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) 13)) (-3401 ((|#1| $) 21 (|has| |#1| (-307)))) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-2424 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-1919 (((-112) $ $) NIL)) (-1857 (((-563) $) NIL (|has| |#1| (-816)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#1| "failed") $) 17) (((-3 (-1169) "failed") $) NIL (|has| |#1| (-1034 (-1169)))) (((-3 (-407 (-563)) "failed") $) 70 (|has| |#1| (-1034 (-563)))) (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563))))) (-2058 ((|#1| $) 15) (((-1169) $) NIL (|has| |#1| (-1034 (-1169)))) (((-407 (-563)) $) 67 (|has| |#1| (-1034 (-563)))) (((-563) $) NIL (|has| |#1| (-1034 (-563))))) (-3090 (($ $ $) NIL)) (-2950 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3400 (((-3 $ "failed") $) 50)) (-1691 (($) NIL (|has| |#1| (-545)))) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-2468 (((-112) $) NIL)) (-3101 (((-112) $) NIL (|has| |#1| (-816)))) (-3787 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (|has| |#1| (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| |#1| (-882 (-379))))) (-3827 (((-112) $) 64)) (-2711 (($ $) NIL)) (-2143 ((|#1| $) 71)) (-2408 (((-3 $ "failed") $) NIL (|has| |#1| (-1144)))) (-1419 (((-112) $) NIL (|has| |#1| (-816)))) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3084 (($ $ $) NIL (|has| |#1| (-846)))) (-1777 (($ $ $) NIL (|has| |#1| (-846)))) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) NIL)) (-2523 (($) NIL (|has| |#1| (-1144)) CONST)) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 97)) (-3548 (($ $ $) NIL) (($ (-640 $)) NIL)) (-4215 (($ $) NIL (|has| |#1| (-307)))) (-1583 ((|#1| $) 28 (|has| |#1| (-545)))) (-1876 (((-418 (-1165 $)) (-1165 $)) 135 (|has| |#1| (-905)))) (-3116 (((-418 (-1165 $)) (-1165 $)) 131 (|has| |#1| (-905)))) (-2174 (((-418 $) $) NIL)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1540 (($ $ (-640 |#1|) (-640 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-640 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-640 (-1169)) (-640 |#1|)) NIL (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) NIL (|has| |#1| (-514 (-1169) |#1|)))) (-2628 (((-767) $) NIL)) (-2309 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-4202 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-1801 (($ $) NIL)) (-2154 ((|#1| $) 73)) (-2220 (((-888 (-563)) $) NIL (|has| |#1| (-611 (-888 (-563))))) (((-888 (-379)) $) NIL (|has| |#1| (-611 (-888 (-379))))) (((-536) $) NIL (|has| |#1| (-611 (-536)))) (((-379) $) NIL (|has| |#1| (-1018))) (((-225) $) NIL (|has| |#1| (-1018)))) (-1377 (((-3 (-1257 $) "failed") (-684 $)) 115 (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ |#1|) 10) (($ (-1169)) NIL (|has| |#1| (-1034 (-1169))))) (-2779 (((-3 $ "failed") $) 99 (-4032 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-1675 (((-767)) 100)) (-4194 ((|#1| $) 26 (|has| |#1| (-545)))) (-2126 (((-112) $ $) NIL)) (-2509 (($ $) NIL (|has| |#1| (-816)))) (-2241 (($) 22 T CONST)) (-2254 (($) 8 T CONST)) (-3741 (((-1151) $) 43 (-12 (|has| |#1| (-545)) (|has| |#1| (-824)))) (((-1151) $ (-112)) 44 (-12 (|has| |#1| (-545)) (|has| |#1| (-824)))) (((-1262) (-818) $) 45 (-12 (|has| |#1| (-545)) (|has| |#1| (-824)))) (((-1262) (-818) $ (-112)) 46 (-12 (|has| |#1| (-545)) (|has| |#1| (-824))))) (-3209 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1778 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1756 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) 56)) (-1768 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1744 (((-112) $ $) 24 (|has| |#1| (-846)))) (-1837 (($ $ $) 126) (($ |#1| |#1|) 52)) (-1826 (($ $) 25) (($ $ $) 55)) (-1814 (($ $ $) 53)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) 125)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 60) (($ $ $) 57) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) +(((-407 |#1|) (-13 (-988 |#1|) (-10 -7 (IF (|has| |#1| (-545)) (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4394)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-6 -4405)) (-6 -4394) |%noBranch|) |%noBranch|) |%noBranch|))) (-555)) (T -407)) +NIL +(-13 (-988 |#1|) (-10 -7 (IF (|has| |#1| (-545)) (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4394)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-6 -4405)) (-6 -4394) |%noBranch|) |%noBranch|) |%noBranch|))) +((-3561 (((-684 |#2|) (-1257 $)) NIL) (((-684 |#2|)) 18)) (-3937 (($ (-1257 |#2|) (-1257 $)) NIL) (($ (-1257 |#2|)) 24)) (-3914 (((-684 |#2|) $ (-1257 $)) NIL) (((-684 |#2|) $) 38)) (-3941 ((|#3| $) 60)) (-2315 ((|#2| (-1257 $)) NIL) ((|#2|) 20)) (-1880 (((-1257 |#2|) $ (-1257 $)) NIL) (((-684 |#2|) (-1257 $) (-1257 $)) NIL) (((-1257 |#2|) $) 22) (((-684 |#2|) (-1257 $)) 36)) (-2220 (((-1257 |#2|) $) 11) (($ (-1257 |#2|)) 13)) (-3421 ((|#3| $) 52))) +(((-408 |#1| |#2| |#3|) (-10 -8 (-15 -3914 ((-684 |#2|) |#1|)) (-15 -2315 (|#2|)) (-15 -3561 ((-684 |#2|))) (-15 -2220 (|#1| (-1257 |#2|))) (-15 -2220 ((-1257 |#2|) |#1|)) (-15 -3937 (|#1| (-1257 |#2|))) (-15 -1880 ((-684 |#2|) (-1257 |#1|))) (-15 -1880 ((-1257 |#2|) |#1|)) (-15 -3941 (|#3| |#1|)) (-15 -3421 (|#3| |#1|)) (-15 -3561 ((-684 |#2|) (-1257 |#1|))) (-15 -2315 (|#2| (-1257 |#1|))) (-15 -3937 (|#1| (-1257 |#2|) (-1257 |#1|))) (-15 -1880 ((-684 |#2|) (-1257 |#1|) (-1257 |#1|))) (-15 -1880 ((-1257 |#2|) |#1| (-1257 |#1|))) (-15 -3914 ((-684 |#2|) |#1| (-1257 |#1|)))) (-409 |#2| |#3|) (-172) (-1233 |#2|)) (T -408)) +((-3561 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1233 *4)) (-5 *2 (-684 *4)) (-5 *1 (-408 *3 *4 *5)) (-4 *3 (-409 *4 *5)))) (-2315 (*1 *2) (-12 (-4 *4 (-1233 *2)) (-4 *2 (-172)) (-5 *1 (-408 *3 *2 *4)) (-4 *3 (-409 *2 *4))))) +(-10 -8 (-15 -3914 ((-684 |#2|) |#1|)) (-15 -2315 (|#2|)) (-15 -3561 ((-684 |#2|))) (-15 -2220 (|#1| (-1257 |#2|))) (-15 -2220 ((-1257 |#2|) |#1|)) (-15 -3937 (|#1| (-1257 |#2|))) (-15 -1880 ((-684 |#2|) (-1257 |#1|))) (-15 -1880 ((-1257 |#2|) |#1|)) (-15 -3941 (|#3| |#1|)) (-15 -3421 (|#3| |#1|)) (-15 -3561 ((-684 |#2|) (-1257 |#1|))) (-15 -2315 (|#2| (-1257 |#1|))) (-15 -3937 (|#1| (-1257 |#2|) (-1257 |#1|))) (-15 -1880 ((-684 |#2|) (-1257 |#1|) (-1257 |#1|))) (-15 -1880 ((-1257 |#2|) |#1| (-1257 |#1|))) (-15 -3914 ((-684 |#2|) |#1| (-1257 |#1|)))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-3561 (((-684 |#1|) (-1257 $)) 47) (((-684 |#1|)) 62)) (-1733 ((|#1| $) 53)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-3937 (($ (-1257 |#1|) (-1257 $)) 49) (($ (-1257 |#1|)) 65)) (-3914 (((-684 |#1|) $ (-1257 $)) 54) (((-684 |#1|) $) 60)) (-3400 (((-3 $ "failed") $) 33)) (-2522 (((-917)) 55)) (-3827 (((-112) $) 31)) (-3793 ((|#1| $) 52)) (-3941 ((|#2| $) 45 (|has| |#1| (-363)))) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-2315 ((|#1| (-1257 $)) 48) ((|#1|) 61)) (-1880 (((-1257 |#1|) $ (-1257 $)) 51) (((-684 |#1|) (-1257 $) (-1257 $)) 50) (((-1257 |#1|) $) 67) (((-684 |#1|) (-1257 $)) 66)) (-2220 (((-1257 |#1|) $) 64) (($ (-1257 |#1|)) 63)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 38)) (-2779 (((-3 $ "failed") $) 44 (|has| |#1| (-145)))) (-3421 ((|#2| $) 46)) (-1675 (((-767)) 28)) (-4315 (((-1257 $)) 68)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-409 |#1| |#2|) (-140) (-172) (-1233 |t#1|)) (T -409)) +((-4315 (*1 *2) (-12 (-4 *3 (-172)) (-4 *4 (-1233 *3)) (-5 *2 (-1257 *1)) (-4 *1 (-409 *3 *4)))) (-1880 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1233 *3)) (-5 *2 (-1257 *3)))) (-1880 (*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-409 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1233 *4)) (-5 *2 (-684 *4)))) (-3937 (*1 *1 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4)) (-4 *4 (-1233 *3)))) (-2220 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1233 *3)) (-5 *2 (-1257 *3)))) (-2220 (*1 *1 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4)) (-4 *4 (-1233 *3)))) (-3561 (*1 *2) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1233 *3)) (-5 *2 (-684 *3)))) (-2315 (*1 *2) (-12 (-4 *1 (-409 *2 *3)) (-4 *3 (-1233 *2)) (-4 *2 (-172)))) (-3914 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1233 *3)) (-5 *2 (-684 *3))))) +(-13 (-370 |t#1| |t#2|) (-10 -8 (-15 -4315 ((-1257 $))) (-15 -1880 ((-1257 |t#1|) $)) (-15 -1880 ((-684 |t#1|) (-1257 $))) (-15 -3937 ($ (-1257 |t#1|))) (-15 -2220 ((-1257 |t#1|) $)) (-15 -2220 ($ (-1257 |t#1|))) (-15 -3561 ((-684 |t#1|))) (-15 -2315 (|t#1|)) (-15 -3914 ((-684 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-610 (-858)) . T) ((-370 |#1| |#2|) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 |#1|) . T) ((-722) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) +((-2131 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) 27) (((-3 (-563) "failed") $) 19)) (-2058 ((|#2| $) NIL) (((-407 (-563)) $) 24) (((-563) $) 14)) (-1693 (($ |#2|) NIL) (($ (-407 (-563))) 22) (($ (-563)) 11))) +(((-410 |#1| |#2|) (-10 -8 (-15 -1693 (|#1| (-563))) (-15 -2131 ((-3 (-563) "failed") |#1|)) (-15 -2058 ((-563) |#1|)) (-15 -1693 (|#1| (-407 (-563)))) (-15 -2131 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2058 ((-407 (-563)) |#1|)) (-15 -2058 (|#2| |#1|)) (-15 -2131 ((-3 |#2| "failed") |#1|)) (-15 -1693 (|#1| |#2|))) (-411 |#2|) (-1208)) (T -410)) +NIL +(-10 -8 (-15 -1693 (|#1| (-563))) (-15 -2131 ((-3 (-563) "failed") |#1|)) (-15 -2058 ((-563) |#1|)) (-15 -1693 (|#1| (-407 (-563)))) (-15 -2131 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2058 ((-407 (-563)) |#1|)) (-15 -2058 (|#2| |#1|)) (-15 -2131 ((-3 |#2| "failed") |#1|)) (-15 -1693 (|#1| |#2|))) +((-2131 (((-3 |#1| "failed") $) 9) (((-3 (-407 (-563)) "failed") $) 16 (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) 13 (|has| |#1| (-1034 (-563))))) (-2058 ((|#1| $) 8) (((-407 (-563)) $) 17 (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) 14 (|has| |#1| (-1034 (-563))))) (-1693 (($ |#1|) 6) (($ (-407 (-563))) 15 (|has| |#1| (-1034 (-407 (-563))))) (($ (-563)) 12 (|has| |#1| (-1034 (-563)))))) +(((-411 |#1|) (-140) (-1208)) (T -411)) +NIL +(-13 (-1034 |t#1|) (-10 -7 (IF (|has| |t#1| (-1034 (-563))) (-6 (-1034 (-563))) |%noBranch|) (IF (|has| |t#1| (-1034 (-407 (-563)))) (-6 (-1034 (-407 (-563)))) |%noBranch|))) +(((-613 #0=(-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-613 #1=(-563)) |has| |#1| (-1034 (-563))) ((-613 |#1|) . T) ((-1034 #0#) |has| |#1| (-1034 (-407 (-563)))) ((-1034 #1#) |has| |#1| (-1034 (-563))) ((-1034 |#1|) . T)) +((-2240 (((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|)) 33))) +(((-412 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2240 ((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|)))) (-307) (-988 |#1|) (-1233 |#2|) (-13 (-409 |#2| |#3|) (-1034 |#2|)) (-307) (-988 |#5|) (-1233 |#6|) (-13 (-409 |#6| |#7|) (-1034 |#6|))) (T -412)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-413 *5 *6 *7 *8)) (-4 *5 (-307)) (-4 *6 (-988 *5)) (-4 *7 (-1233 *6)) (-4 *8 (-13 (-409 *6 *7) (-1034 *6))) (-4 *9 (-307)) (-4 *10 (-988 *9)) (-4 *11 (-1233 *10)) (-5 *2 (-413 *9 *10 *11 *12)) (-5 *1 (-412 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-409 *10 *11) (-1034 *10)))))) +(-10 -7 (-15 -2240 ((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|)))) +((-1677 (((-112) $ $) NIL)) (-4239 (($) NIL T CONST)) (-3400 (((-3 $ "failed") $) NIL)) (-2230 ((|#4| (-767) (-1257 |#4|)) 56)) (-3827 (((-112) $) NIL)) (-2143 (((-1257 |#4|) $) 17)) (-3793 ((|#2| $) 54)) (-4007 (($ $) 139)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) 100)) (-1776 (($ (-1257 |#4|)) 99)) (-1694 (((-1113) $) NIL)) (-2154 ((|#1| $) 18)) (-4339 (($ $ $) NIL)) (-2146 (($ $ $) NIL)) (-1693 (((-858) $) 134)) (-4315 (((-1257 |#4|) $) 129)) (-2254 (($) 11 T CONST)) (-1718 (((-112) $ $) 40)) (-1837 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) 122)) (* (($ $ $) 121))) +(((-413 |#1| |#2| |#3| |#4|) (-13 (-473) (-10 -8 (-15 -1776 ($ (-1257 |#4|))) (-15 -4315 ((-1257 |#4|) $)) (-15 -3793 (|#2| $)) (-15 -2143 ((-1257 |#4|) $)) (-15 -2154 (|#1| $)) (-15 -4007 ($ $)) (-15 -2230 (|#4| (-767) (-1257 |#4|))))) (-307) (-988 |#1|) (-1233 |#2|) (-13 (-409 |#2| |#3|) (-1034 |#2|))) (T -413)) +((-1776 (*1 *1 *2) (-12 (-5 *2 (-1257 *6)) (-4 *6 (-13 (-409 *4 *5) (-1034 *4))) (-4 *4 (-988 *3)) (-4 *5 (-1233 *4)) (-4 *3 (-307)) (-5 *1 (-413 *3 *4 *5 *6)))) (-4315 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1233 *4)) (-5 *2 (-1257 *6)) (-5 *1 (-413 *3 *4 *5 *6)) (-4 *6 (-13 (-409 *4 *5) (-1034 *4))))) (-3793 (*1 *2 *1) (-12 (-4 *4 (-1233 *2)) (-4 *2 (-988 *3)) (-5 *1 (-413 *3 *2 *4 *5)) (-4 *3 (-307)) (-4 *5 (-13 (-409 *2 *4) (-1034 *2))))) (-2143 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1233 *4)) (-5 *2 (-1257 *6)) (-5 *1 (-413 *3 *4 *5 *6)) (-4 *6 (-13 (-409 *4 *5) (-1034 *4))))) (-2154 (*1 *2 *1) (-12 (-4 *3 (-988 *2)) (-4 *4 (-1233 *3)) (-4 *2 (-307)) (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1034 *3))))) (-4007 (*1 *1 *1) (-12 (-4 *2 (-307)) (-4 *3 (-988 *2)) (-4 *4 (-1233 *3)) (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1034 *3))))) (-2230 (*1 *2 *3 *4) (-12 (-5 *3 (-767)) (-5 *4 (-1257 *2)) (-4 *5 (-307)) (-4 *6 (-988 *5)) (-4 *2 (-13 (-409 *6 *7) (-1034 *6))) (-5 *1 (-413 *5 *6 *7 *2)) (-4 *7 (-1233 *6))))) +(-13 (-473) (-10 -8 (-15 -1776 ($ (-1257 |#4|))) (-15 -4315 ((-1257 |#4|) $)) (-15 -3793 (|#2| $)) (-15 -2143 ((-1257 |#4|) $)) (-15 -2154 (|#1| $)) (-15 -4007 ($ $)) (-15 -2230 (|#4| (-767) (-1257 |#4|))))) +((-1677 (((-112) $ $) NIL)) (-4239 (($) NIL T CONST)) (-3400 (((-3 $ "failed") $) NIL)) (-3827 (((-112) $) NIL)) (-3793 ((|#2| $) 61)) (-3310 (($ (-1257 |#4|)) 25) (($ (-413 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-1034 |#2|)))) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 34)) (-4315 (((-1257 |#4|) $) 26)) (-2254 (($) 23 T CONST)) (-1718 (((-112) $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ $ $) 72))) +(((-414 |#1| |#2| |#3| |#4| |#5|) (-13 (-722) (-10 -8 (-15 -4315 ((-1257 |#4|) $)) (-15 -3793 (|#2| $)) (-15 -3310 ($ (-1257 |#4|))) (IF (|has| |#4| (-1034 |#2|)) (-15 -3310 ($ (-413 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-307) (-988 |#1|) (-1233 |#2|) (-409 |#2| |#3|) (-1257 |#4|)) (T -414)) +((-4315 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1233 *4)) (-5 *2 (-1257 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7)) (-4 *6 (-409 *4 *5)) (-14 *7 *2))) (-3793 (*1 *2 *1) (-12 (-4 *4 (-1233 *2)) (-4 *2 (-988 *3)) (-5 *1 (-414 *3 *2 *4 *5 *6)) (-4 *3 (-307)) (-4 *5 (-409 *2 *4)) (-14 *6 (-1257 *5)))) (-3310 (*1 *1 *2) (-12 (-5 *2 (-1257 *6)) (-4 *6 (-409 *4 *5)) (-4 *4 (-988 *3)) (-4 *5 (-1233 *4)) (-4 *3 (-307)) (-5 *1 (-414 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3310 (*1 *1 *2) (-12 (-5 *2 (-413 *3 *4 *5 *6)) (-4 *6 (-1034 *4)) (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1233 *4)) (-4 *6 (-409 *4 *5)) (-14 *7 (-1257 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7))))) +(-13 (-722) (-10 -8 (-15 -4315 ((-1257 |#4|) $)) (-15 -3793 (|#2| $)) (-15 -3310 ($ (-1257 |#4|))) (IF (|has| |#4| (-1034 |#2|)) (-15 -3310 ($ (-413 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-2240 ((|#3| (-1 |#4| |#2|) |#1|) 26))) +(((-415 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2240 (|#3| (-1 |#4| |#2|) |#1|))) (-417 |#2|) (-172) (-417 |#4|) (-172)) (T -415)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-417 *6)) (-5 *1 (-415 *4 *5 *2 *6)) (-4 *4 (-417 *5))))) +(-10 -7 (-15 -2240 (|#3| (-1 |#4| |#2|) |#1|))) +((-1414 (((-3 $ "failed")) 86)) (-3507 (((-1257 (-684 |#2|)) (-1257 $)) NIL) (((-1257 (-684 |#2|))) 91)) (-2133 (((-3 (-2 (|:| |particular| $) (|:| -4315 (-640 $))) "failed")) 85)) (-2435 (((-3 $ "failed")) 84)) (-4220 (((-684 |#2|) (-1257 $)) NIL) (((-684 |#2|)) 102)) (-3043 (((-684 |#2|) $ (-1257 $)) NIL) (((-684 |#2|) $) 110)) (-3451 (((-1165 (-948 |#2|))) 55)) (-1824 ((|#2| (-1257 $)) NIL) ((|#2|) 106)) (-3937 (($ (-1257 |#2|) (-1257 $)) NIL) (($ (-1257 |#2|)) 112)) (-2284 (((-3 (-2 (|:| |particular| $) (|:| -4315 (-640 $))) "failed")) 83)) (-2508 (((-3 $ "failed")) 75)) (-2328 (((-684 |#2|) (-1257 $)) NIL) (((-684 |#2|)) 100)) (-1823 (((-684 |#2|) $ (-1257 $)) NIL) (((-684 |#2|) $) 108)) (-3594 (((-1165 (-948 |#2|))) 54)) (-4111 ((|#2| (-1257 $)) NIL) ((|#2|) 104)) (-1880 (((-1257 |#2|) $ (-1257 $)) NIL) (((-684 |#2|) (-1257 $) (-1257 $)) NIL) (((-1257 |#2|) $) 111) (((-684 |#2|) (-1257 $)) 118)) (-2220 (((-1257 |#2|) $) 96) (($ (-1257 |#2|)) 98)) (-4152 (((-640 (-948 |#2|)) (-1257 $)) NIL) (((-640 (-948 |#2|))) 94)) (-3726 (($ (-684 |#2|) $) 90))) +(((-416 |#1| |#2|) (-10 -8 (-15 -3726 (|#1| (-684 |#2|) |#1|)) (-15 -3451 ((-1165 (-948 |#2|)))) (-15 -3594 ((-1165 (-948 |#2|)))) (-15 -3043 ((-684 |#2|) |#1|)) (-15 -1823 ((-684 |#2|) |#1|)) (-15 -4220 ((-684 |#2|))) (-15 -2328 ((-684 |#2|))) (-15 -1824 (|#2|)) (-15 -4111 (|#2|)) (-15 -2220 (|#1| (-1257 |#2|))) (-15 -2220 ((-1257 |#2|) |#1|)) (-15 -3937 (|#1| (-1257 |#2|))) (-15 -4152 ((-640 (-948 |#2|)))) (-15 -3507 ((-1257 (-684 |#2|)))) (-15 -1880 ((-684 |#2|) (-1257 |#1|))) (-15 -1880 ((-1257 |#2|) |#1|)) (-15 -1414 ((-3 |#1| "failed"))) (-15 -2435 ((-3 |#1| "failed"))) (-15 -2508 ((-3 |#1| "failed"))) (-15 -2133 ((-3 (-2 (|:| |particular| |#1|) (|:| -4315 (-640 |#1|))) "failed"))) (-15 -2284 ((-3 (-2 (|:| |particular| |#1|) (|:| -4315 (-640 |#1|))) "failed"))) (-15 -4220 ((-684 |#2|) (-1257 |#1|))) (-15 -2328 ((-684 |#2|) (-1257 |#1|))) (-15 -1824 (|#2| (-1257 |#1|))) (-15 -4111 (|#2| (-1257 |#1|))) (-15 -3937 (|#1| (-1257 |#2|) (-1257 |#1|))) (-15 -1880 ((-684 |#2|) (-1257 |#1|) (-1257 |#1|))) (-15 -1880 ((-1257 |#2|) |#1| (-1257 |#1|))) (-15 -3043 ((-684 |#2|) |#1| (-1257 |#1|))) (-15 -1823 ((-684 |#2|) |#1| (-1257 |#1|))) (-15 -3507 ((-1257 (-684 |#2|)) (-1257 |#1|))) (-15 -4152 ((-640 (-948 |#2|)) (-1257 |#1|)))) (-417 |#2|) (-172)) (T -416)) +((-3507 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1257 (-684 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-4152 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-640 (-948 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-4111 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) (-1824 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) (-2328 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-684 *4)) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-4220 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-684 *4)) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-3594 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1165 (-948 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-3451 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1165 (-948 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4))))) +(-10 -8 (-15 -3726 (|#1| (-684 |#2|) |#1|)) (-15 -3451 ((-1165 (-948 |#2|)))) (-15 -3594 ((-1165 (-948 |#2|)))) (-15 -3043 ((-684 |#2|) |#1|)) (-15 -1823 ((-684 |#2|) |#1|)) (-15 -4220 ((-684 |#2|))) (-15 -2328 ((-684 |#2|))) (-15 -1824 (|#2|)) (-15 -4111 (|#2|)) (-15 -2220 (|#1| (-1257 |#2|))) (-15 -2220 ((-1257 |#2|) |#1|)) (-15 -3937 (|#1| (-1257 |#2|))) (-15 -4152 ((-640 (-948 |#2|)))) (-15 -3507 ((-1257 (-684 |#2|)))) (-15 -1880 ((-684 |#2|) (-1257 |#1|))) (-15 -1880 ((-1257 |#2|) |#1|)) (-15 -1414 ((-3 |#1| "failed"))) (-15 -2435 ((-3 |#1| "failed"))) (-15 -2508 ((-3 |#1| "failed"))) (-15 -2133 ((-3 (-2 (|:| |particular| |#1|) (|:| -4315 (-640 |#1|))) "failed"))) (-15 -2284 ((-3 (-2 (|:| |particular| |#1|) (|:| -4315 (-640 |#1|))) "failed"))) (-15 -4220 ((-684 |#2|) (-1257 |#1|))) (-15 -2328 ((-684 |#2|) (-1257 |#1|))) (-15 -1824 (|#2| (-1257 |#1|))) (-15 -4111 (|#2| (-1257 |#1|))) (-15 -3937 (|#1| (-1257 |#2|) (-1257 |#1|))) (-15 -1880 ((-684 |#2|) (-1257 |#1|) (-1257 |#1|))) (-15 -1880 ((-1257 |#2|) |#1| (-1257 |#1|))) (-15 -3043 ((-684 |#2|) |#1| (-1257 |#1|))) (-15 -1823 ((-684 |#2|) |#1| (-1257 |#1|))) (-15 -3507 ((-1257 (-684 |#2|)) (-1257 |#1|))) (-15 -4152 ((-640 (-948 |#2|)) (-1257 |#1|)))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1414 (((-3 $ "failed")) 37 (|has| |#1| (-555)))) (-1495 (((-3 $ "failed") $ $) 19)) (-3507 (((-1257 (-684 |#1|)) (-1257 $)) 78) (((-1257 (-684 |#1|))) 100)) (-1438 (((-1257 $)) 81)) (-4239 (($) 17 T CONST)) (-2133 (((-3 (-2 (|:| |particular| $) (|:| -4315 (-640 $))) "failed")) 40 (|has| |#1| (-555)))) (-2435 (((-3 $ "failed")) 38 (|has| |#1| (-555)))) (-4220 (((-684 |#1|) (-1257 $)) 65) (((-684 |#1|)) 92)) (-2480 ((|#1| $) 74)) (-3043 (((-684 |#1|) $ (-1257 $)) 76) (((-684 |#1|) $) 90)) (-4154 (((-3 $ "failed") $) 45 (|has| |#1| (-555)))) (-3451 (((-1165 (-948 |#1|))) 88 (|has| |#1| (-363)))) (-2300 (($ $ (-917)) 28)) (-3830 ((|#1| $) 72)) (-3763 (((-1165 |#1|) $) 42 (|has| |#1| (-555)))) (-1824 ((|#1| (-1257 $)) 67) ((|#1|) 94)) (-2876 (((-1165 |#1|) $) 63)) (-2182 (((-112)) 57)) (-3937 (($ (-1257 |#1|) (-1257 $)) 69) (($ (-1257 |#1|)) 98)) (-3400 (((-3 $ "failed") $) 47 (|has| |#1| (-555)))) (-2522 (((-917)) 80)) (-2250 (((-112)) 54)) (-2287 (($ $ (-917)) 33)) (-3901 (((-112)) 50)) (-3308 (((-112)) 48)) (-3104 (((-112)) 52)) (-2284 (((-3 (-2 (|:| |particular| $) (|:| -4315 (-640 $))) "failed")) 41 (|has| |#1| (-555)))) (-2508 (((-3 $ "failed")) 39 (|has| |#1| (-555)))) (-2328 (((-684 |#1|) (-1257 $)) 66) (((-684 |#1|)) 93)) (-2842 ((|#1| $) 75)) (-1823 (((-684 |#1|) $ (-1257 $)) 77) (((-684 |#1|) $) 91)) (-3856 (((-3 $ "failed") $) 46 (|has| |#1| (-555)))) (-3594 (((-1165 (-948 |#1|))) 89 (|has| |#1| (-363)))) (-1494 (($ $ (-917)) 29)) (-2199 ((|#1| $) 73)) (-2604 (((-1165 |#1|) $) 43 (|has| |#1| (-555)))) (-4111 ((|#1| (-1257 $)) 68) ((|#1|) 95)) (-2665 (((-1165 |#1|) $) 64)) (-4012 (((-112)) 58)) (-3573 (((-1151) $) 9)) (-2136 (((-112)) 49)) (-1789 (((-112)) 51)) (-2047 (((-112)) 53)) (-1694 (((-1113) $) 10)) (-4084 (((-112)) 56)) (-2309 ((|#1| $ (-563)) 101)) (-1880 (((-1257 |#1|) $ (-1257 $)) 71) (((-684 |#1|) (-1257 $) (-1257 $)) 70) (((-1257 |#1|) $) 103) (((-684 |#1|) (-1257 $)) 102)) (-2220 (((-1257 |#1|) $) 97) (($ (-1257 |#1|)) 96)) (-4152 (((-640 (-948 |#1|)) (-1257 $)) 79) (((-640 (-948 |#1|))) 99)) (-2146 (($ $ $) 25)) (-1936 (((-112)) 62)) (-1693 (((-858) $) 11)) (-4315 (((-1257 $)) 104)) (-2138 (((-640 (-1257 |#1|))) 44 (|has| |#1| (-555)))) (-1361 (($ $ $ $) 26)) (-1402 (((-112)) 60)) (-3726 (($ (-684 |#1|) $) 87)) (-3399 (($ $ $) 24)) (-2483 (((-112)) 61)) (-3777 (((-112)) 59)) (-2128 (((-112)) 55)) (-2241 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 30)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-417 |#1|) (-140) (-172)) (T -417)) +((-4315 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1257 *1)) (-4 *1 (-417 *3)))) (-1880 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1257 *3)))) (-1880 (*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-417 *4)) (-4 *4 (-172)) (-5 *2 (-684 *4)))) (-2309 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *1 (-417 *2)) (-4 *2 (-172)))) (-3507 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1257 (-684 *3))))) (-4152 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-640 (-948 *3))))) (-3937 (*1 *1 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3)))) (-2220 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1257 *3)))) (-2220 (*1 *1 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3)))) (-4111 (*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172)))) (-1824 (*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172)))) (-2328 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-684 *3)))) (-4220 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-684 *3)))) (-1823 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-684 *3)))) (-3043 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-684 *3)))) (-3594 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363)) (-5 *2 (-1165 (-948 *3))))) (-3451 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363)) (-5 *2 (-1165 (-948 *3))))) (-3726 (*1 *1 *2 *1) (-12 (-5 *2 (-684 *3)) (-4 *1 (-417 *3)) (-4 *3 (-172))))) +(-13 (-367 |t#1|) (-10 -8 (-15 -4315 ((-1257 $))) (-15 -1880 ((-1257 |t#1|) $)) (-15 -1880 ((-684 |t#1|) (-1257 $))) (-15 -2309 (|t#1| $ (-563))) (-15 -3507 ((-1257 (-684 |t#1|)))) (-15 -4152 ((-640 (-948 |t#1|)))) (-15 -3937 ($ (-1257 |t#1|))) (-15 -2220 ((-1257 |t#1|) $)) (-15 -2220 ($ (-1257 |t#1|))) (-15 -4111 (|t#1|)) (-15 -1824 (|t#1|)) (-15 -2328 ((-684 |t#1|))) (-15 -4220 ((-684 |t#1|))) (-15 -1823 ((-684 |t#1|) $)) (-15 -3043 ((-684 |t#1|) $)) (IF (|has| |t#1| (-363)) (PROGN (-15 -3594 ((-1165 (-948 |t#1|)))) (-15 -3451 ((-1165 (-948 |t#1|))))) |%noBranch|) (-15 -3726 ($ (-684 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-610 (-858)) . T) ((-367 |#1|) . T) ((-643 |#1|) . T) ((-713 |#1|) . T) ((-716) . T) ((-740 |#1|) . T) ((-757) . T) ((-1051 |#1|) . T) ((-1093) . T)) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) 44)) (-1838 (($ $) 59)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 147)) (-4223 (($ $) NIL)) (-3156 (((-112) $) 38)) (-1414 ((|#1| $) 13)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4335 (($ $) NIL (|has| |#1| (-1212)))) (-3205 (((-418 $) $) NIL (|has| |#1| (-1212)))) (-1340 (($ |#1| (-563)) 34)) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 117)) (-2058 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) 57)) (-3400 (((-3 $ "failed") $) 132)) (-3909 (((-3 (-407 (-563)) "failed") $) 65 (|has| |#1| (-545)))) (-2239 (((-112) $) 61 (|has| |#1| (-545)))) (-2651 (((-407 (-563)) $) 72 (|has| |#1| (-545)))) (-4349 (($ |#1| (-563)) 36)) (-2468 (((-112) $) 153 (|has| |#1| (-1212)))) (-3827 (((-112) $) 45)) (-2718 (((-767) $) 40)) (-2678 (((-3 "nil" "sqfr" "irred" "prime") $ (-563)) 138)) (-2768 ((|#1| $ (-563)) 137)) (-1299 (((-563) $ (-563)) 136)) (-1900 (($ |#1| (-563)) 33)) (-2240 (($ (-1 |#1| |#1|) $) 144)) (-4157 (($ |#1| (-640 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-563))))) 60)) (-3513 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3573 (((-1151) $) NIL)) (-2428 (($ |#1| (-563)) 35)) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-452)))) (-3548 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) 148 (|has| |#1| (-452)))) (-3581 (($ |#1| (-563) (-3 "nil" "sqfr" "irred" "prime")) 32)) (-2760 (((-640 (-2 (|:| -2174 |#1|) (|:| -1654 (-563)))) $) 56)) (-2912 (((-640 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-563)))) $) 12)) (-2174 (((-418 $) $) NIL (|has| |#1| (-1212)))) (-3008 (((-3 $ "failed") $ $) 139)) (-1654 (((-563) $) 133)) (-2213 ((|#1| $) 58)) (-1540 (($ $ (-640 |#1|) (-640 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-640 (-294 |#1|))) 81 (|has| |#1| (-309 |#1|))) (($ $ (-640 (-1169)) (-640 |#1|)) 87 (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) NIL (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) $) NIL (|has| |#1| (-514 (-1169) $))) (($ $ (-640 (-1169)) (-640 $)) 88 (|has| |#1| (-514 (-1169) $))) (($ $ (-640 (-294 $))) 84 (|has| |#1| (-309 $))) (($ $ (-294 $)) NIL (|has| |#1| (-309 $))) (($ $ $ $) NIL (|has| |#1| (-309 $))) (($ $ (-640 $) (-640 $)) NIL (|has| |#1| (-309 $)))) (-2309 (($ $ |#1|) 73 (|has| |#1| (-286 |#1| |#1|))) (($ $ $) 74 (|has| |#1| (-286 $ $)))) (-4202 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) 143)) (-2220 (((-536) $) 30 (|has| |#1| (-611 (-536)))) (((-379) $) 94 (|has| |#1| (-1018))) (((-225) $) 97 (|has| |#1| (-1018)))) (-1693 (((-858) $) 115) (($ (-563)) 48) (($ $) NIL) (($ |#1|) 47) (($ (-407 (-563))) NIL (|has| |#1| (-1034 (-407 (-563)))))) (-1675 (((-767)) 50)) (-2126 (((-112) $ $) NIL)) (-2241 (($) 42 T CONST)) (-2254 (($) 41 T CONST)) (-3209 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1718 (((-112) $ $) 98)) (-1826 (($ $) 129) (($ $ $) NIL)) (-1814 (($ $ $) 141)) (** (($ $ (-917)) NIL) (($ $ (-767)) 104)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 52) (($ $ $) 51) (($ |#1| $) 53) (($ $ |#1|) NIL))) +(((-418 |#1|) (-13 (-555) (-231 |#1|) (-38 |#1|) (-338 |#1|) (-411 |#1|) (-10 -8 (-15 -2213 (|#1| $)) (-15 -1654 ((-563) $)) (-15 -4157 ($ |#1| (-640 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-563)))))) (-15 -2912 ((-640 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-563)))) $)) (-15 -1900 ($ |#1| (-563))) (-15 -2760 ((-640 (-2 (|:| -2174 |#1|) (|:| -1654 (-563)))) $)) (-15 -2428 ($ |#1| (-563))) (-15 -1299 ((-563) $ (-563))) (-15 -2768 (|#1| $ (-563))) (-15 -2678 ((-3 "nil" "sqfr" "irred" "prime") $ (-563))) (-15 -2718 ((-767) $)) (-15 -4349 ($ |#1| (-563))) (-15 -1340 ($ |#1| (-563))) (-15 -3581 ($ |#1| (-563) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1414 (|#1| $)) (-15 -1838 ($ $)) (-15 -2240 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-452)) (-6 (-452)) |%noBranch|) (IF (|has| |#1| (-1018)) (-6 (-1018)) |%noBranch|) (IF (|has| |#1| (-1212)) (-6 (-1212)) |%noBranch|) (IF (|has| |#1| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2239 ((-112) $)) (-15 -2651 ((-407 (-563)) $)) (-15 -3909 ((-3 (-407 (-563)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-286 $ $)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |#1| (-309 $)) (-6 (-309 $)) |%noBranch|) (IF (|has| |#1| (-514 (-1169) $)) (-6 (-514 (-1169) $)) |%noBranch|))) (-555)) (T -418)) +((-2240 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-555)) (-5 *1 (-418 *3)))) (-2213 (*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-555)))) (-1654 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-418 *3)) (-4 *3 (-555)))) (-4157 (*1 *1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-563))))) (-4 *2 (-555)) (-5 *1 (-418 *2)))) (-2912 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-563))))) (-5 *1 (-418 *3)) (-4 *3 (-555)))) (-1900 (*1 *1 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-418 *2)) (-4 *2 (-555)))) (-2760 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| -2174 *3) (|:| -1654 (-563))))) (-5 *1 (-418 *3)) (-4 *3 (-555)))) (-2428 (*1 *1 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-418 *2)) (-4 *2 (-555)))) (-1299 (*1 *2 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-418 *3)) (-4 *3 (-555)))) (-2768 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *1 (-418 *2)) (-4 *2 (-555)))) (-2678 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-418 *4)) (-4 *4 (-555)))) (-2718 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-418 *3)) (-4 *3 (-555)))) (-4349 (*1 *1 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-418 *2)) (-4 *2 (-555)))) (-1340 (*1 *1 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-418 *2)) (-4 *2 (-555)))) (-3581 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-563)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-418 *2)) (-4 *2 (-555)))) (-1414 (*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-555)))) (-1838 (*1 *1 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-555)))) (-2239 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-555)))) (-2651 (*1 *2 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-555)))) (-3909 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-563))) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-555))))) +(-13 (-555) (-231 |#1|) (-38 |#1|) (-338 |#1|) (-411 |#1|) (-10 -8 (-15 -2213 (|#1| $)) (-15 -1654 ((-563) $)) (-15 -4157 ($ |#1| (-640 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-563)))))) (-15 -2912 ((-640 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-563)))) $)) (-15 -1900 ($ |#1| (-563))) (-15 -2760 ((-640 (-2 (|:| -2174 |#1|) (|:| -1654 (-563)))) $)) (-15 -2428 ($ |#1| (-563))) (-15 -1299 ((-563) $ (-563))) (-15 -2768 (|#1| $ (-563))) (-15 -2678 ((-3 "nil" "sqfr" "irred" "prime") $ (-563))) (-15 -2718 ((-767) $)) (-15 -4349 ($ |#1| (-563))) (-15 -1340 ($ |#1| (-563))) (-15 -3581 ($ |#1| (-563) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1414 (|#1| $)) (-15 -1838 ($ $)) (-15 -2240 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-452)) (-6 (-452)) |%noBranch|) (IF (|has| |#1| (-1018)) (-6 (-1018)) |%noBranch|) (IF (|has| |#1| (-1212)) (-6 (-1212)) |%noBranch|) (IF (|has| |#1| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2239 ((-112) $)) (-15 -2651 ((-407 (-563)) $)) (-15 -3909 ((-3 (-407 (-563)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-286 $ $)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |#1| (-309 $)) (-6 (-309 $)) |%noBranch|) (IF (|has| |#1| (-514 (-1169) $)) (-6 (-514 (-1169) $)) |%noBranch|))) +((-1441 (((-418 |#1|) (-418 |#1|) (-1 (-418 |#1|) |#1|)) 21)) (-3072 (((-418 |#1|) (-418 |#1|) (-418 |#1|)) 16))) +(((-419 |#1|) (-10 -7 (-15 -1441 ((-418 |#1|) (-418 |#1|) (-1 (-418 |#1|) |#1|))) (-15 -3072 ((-418 |#1|) (-418 |#1|) (-418 |#1|)))) (-555)) (T -419)) +((-3072 (*1 *2 *2 *2) (-12 (-5 *2 (-418 *3)) (-4 *3 (-555)) (-5 *1 (-419 *3)))) (-1441 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-418 *4) *4)) (-4 *4 (-555)) (-5 *2 (-418 *4)) (-5 *1 (-419 *4))))) +(-10 -7 (-15 -1441 ((-418 |#1|) (-418 |#1|) (-1 (-418 |#1|) |#1|))) (-15 -3072 ((-418 |#1|) (-418 |#1|) (-418 |#1|)))) +((-2794 ((|#2| |#2|) 165)) (-3099 (((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112)) 57))) +(((-420 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3099 ((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112))) (-15 -2794 (|#2| |#2|))) (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))) (-13 (-27) (-1193) (-430 |#1|)) (-1169) |#2|) (T -420)) +((-2794 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-420 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1193) (-430 *3))) (-14 *4 (-1169)) (-14 *5 *2))) (-3099 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-3 (|:| |%expansion| (-313 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151)))))) (-5 *1 (-420 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1193) (-430 *5))) (-14 *6 (-1169)) (-14 *7 *3)))) +(-10 -7 (-15 -3099 ((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112))) (-15 -2794 (|#2| |#2|))) +((-2240 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-421 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2240 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1045) (-846)) (-430 |#1|) (-13 (-1045) (-846)) (-430 |#3|)) (T -421)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1045) (-846))) (-4 *6 (-13 (-1045) (-846))) (-4 *2 (-430 *6)) (-5 *1 (-421 *5 *4 *6 *2)) (-4 *4 (-430 *5))))) +(-10 -7 (-15 -2240 (|#4| (-1 |#3| |#1|) |#2|))) +((-2794 ((|#2| |#2|) 89)) (-3476 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112) (-1151)) 48)) (-4232 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112) (-1151)) 153))) +(((-422 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3476 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112) (-1151))) (-15 -4232 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112) (-1151))) (-15 -2794 (|#2| |#2|))) (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))) (-13 (-27) (-1193) (-430 |#1|) (-10 -8 (-15 -1693 ($ |#3|)))) (-844) (-13 (-1235 |#2| |#3|) (-363) (-1193) (-10 -8 (-15 -4202 ($ $)) (-15 -3698 ($ $)))) (-979 |#4|) (-1169)) (T -422)) +((-2794 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-4 *2 (-13 (-27) (-1193) (-430 *3) (-10 -8 (-15 -1693 ($ *4))))) (-4 *4 (-844)) (-4 *5 (-13 (-1235 *2 *4) (-363) (-1193) (-10 -8 (-15 -4202 ($ $)) (-15 -3698 ($ $))))) (-5 *1 (-422 *3 *2 *4 *5 *6 *7)) (-4 *6 (-979 *5)) (-14 *7 (-1169)))) (-4232 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-4 *3 (-13 (-27) (-1193) (-430 *6) (-10 -8 (-15 -1693 ($ *7))))) (-4 *7 (-844)) (-4 *8 (-13 (-1235 *3 *7) (-363) (-1193) (-10 -8 (-15 -4202 ($ $)) (-15 -3698 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151)))))) (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1151)) (-4 *9 (-979 *8)) (-14 *10 (-1169)))) (-3476 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-4 *3 (-13 (-27) (-1193) (-430 *6) (-10 -8 (-15 -1693 ($ *7))))) (-4 *7 (-844)) (-4 *8 (-13 (-1235 *3 *7) (-363) (-1193) (-10 -8 (-15 -4202 ($ $)) (-15 -3698 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151)))))) (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1151)) (-4 *9 (-979 *8)) (-14 *10 (-1169))))) +(-10 -7 (-15 -3476 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112) (-1151))) (-15 -4232 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112) (-1151))) (-15 -2794 (|#2| |#2|))) +((-1567 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2444 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-2240 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-423 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2240 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2444 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1567 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1093) (-425 |#1|) (-1093) (-425 |#3|)) (T -423)) +((-1567 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1093)) (-4 *5 (-1093)) (-4 *2 (-425 *5)) (-5 *1 (-423 *6 *4 *5 *2)) (-4 *4 (-425 *6)))) (-2444 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1093)) (-4 *2 (-1093)) (-5 *1 (-423 *5 *4 *2 *6)) (-4 *4 (-425 *5)) (-4 *6 (-425 *2)))) (-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-425 *6)) (-5 *1 (-423 *5 *4 *6 *2)) (-4 *4 (-425 *5))))) +(-10 -7 (-15 -2240 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2444 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1567 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-2941 (($) 44)) (-2583 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-4314 (($ $ $) 39)) (-4149 (((-112) $ $) 28)) (-3749 (((-767)) 47)) (-1584 (($ (-640 |#2|)) 20) (($) NIL)) (-1691 (($) 53)) (-2539 (((-112) $ $) 13)) (-3084 ((|#2| $) 61)) (-1777 ((|#2| $) 59)) (-1476 (((-917) $) 55)) (-2550 (($ $ $) 35)) (-2555 (($ (-917)) 50)) (-1629 (($ $ |#2|) NIL) (($ $ $) 38)) (-1709 (((-767) (-1 (-112) |#2|) $) NIL) (((-767) |#2| $) 26)) (-1707 (($ (-640 |#2|)) 24)) (-3085 (($ $) 46)) (-1693 (((-858) $) 33)) (-1663 (((-767) $) 21)) (-2534 (($ (-640 |#2|)) 19) (($) NIL)) (-1718 (((-112) $ $) 16))) +(((-424 |#1| |#2|) (-10 -8 (-15 -3749 ((-767))) (-15 -2555 (|#1| (-917))) (-15 -1476 ((-917) |#1|)) (-15 -1691 (|#1|)) (-15 -3084 (|#2| |#1|)) (-15 -1777 (|#2| |#1|)) (-15 -2941 (|#1|)) (-15 -3085 (|#1| |#1|)) (-15 -1663 ((-767) |#1|)) (-15 -1718 ((-112) |#1| |#1|)) (-15 -1693 ((-858) |#1|)) (-15 -2539 ((-112) |#1| |#1|)) (-15 -2534 (|#1|)) (-15 -2534 (|#1| (-640 |#2|))) (-15 -1584 (|#1|)) (-15 -1584 (|#1| (-640 |#2|))) (-15 -2550 (|#1| |#1| |#1|)) (-15 -1629 (|#1| |#1| |#1|)) (-15 -1629 (|#1| |#1| |#2|)) (-15 -4314 (|#1| |#1| |#1|)) (-15 -4149 ((-112) |#1| |#1|)) (-15 -2583 (|#1| |#1| |#1|)) (-15 -2583 (|#1| |#1| |#2|)) (-15 -2583 (|#1| |#2| |#1|)) (-15 -1707 (|#1| (-640 |#2|))) (-15 -1709 ((-767) |#2| |#1|)) (-15 -1709 ((-767) (-1 (-112) |#2|) |#1|))) (-425 |#2|) (-1093)) (T -424)) +((-3749 (*1 *2) (-12 (-4 *4 (-1093)) (-5 *2 (-767)) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4))))) +(-10 -8 (-15 -3749 ((-767))) (-15 -2555 (|#1| (-917))) (-15 -1476 ((-917) |#1|)) (-15 -1691 (|#1|)) (-15 -3084 (|#2| |#1|)) (-15 -1777 (|#2| |#1|)) (-15 -2941 (|#1|)) (-15 -3085 (|#1| |#1|)) (-15 -1663 ((-767) |#1|)) (-15 -1718 ((-112) |#1| |#1|)) (-15 -1693 ((-858) |#1|)) (-15 -2539 ((-112) |#1| |#1|)) (-15 -2534 (|#1|)) (-15 -2534 (|#1| (-640 |#2|))) (-15 -1584 (|#1|)) (-15 -1584 (|#1| (-640 |#2|))) (-15 -2550 (|#1| |#1| |#1|)) (-15 -1629 (|#1| |#1| |#1|)) (-15 -1629 (|#1| |#1| |#2|)) (-15 -4314 (|#1| |#1| |#1|)) (-15 -4149 ((-112) |#1| |#1|)) (-15 -2583 (|#1| |#1| |#1|)) (-15 -2583 (|#1| |#1| |#2|)) (-15 -2583 (|#1| |#2| |#1|)) (-15 -1707 (|#1| (-640 |#2|))) (-15 -1709 ((-767) |#2| |#1|)) (-15 -1709 ((-767) (-1 (-112) |#2|) |#1|))) +((-1677 (((-112) $ $) 19)) (-2941 (($) 67 (|has| |#1| (-368)))) (-2583 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-4314 (($ $ $) 78)) (-4149 (((-112) $ $) 79)) (-2759 (((-112) $ (-767)) 8)) (-3749 (((-767)) 61 (|has| |#1| (-368)))) (-1584 (($ (-640 |#1|)) 74) (($) 73)) (-2812 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4407)))) (-2256 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4407)))) (-4239 (($) 7 T CONST)) (-3813 (($ $) 58 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-2705 (($ |#1| $) 47 (|has| $ (-6 -4407))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4407)))) (-1459 (($ |#1| $) 57 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4407)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4407)))) (-1691 (($) 64 (|has| |#1| (-368)))) (-2659 (((-640 |#1|) $) 30 (|has| $ (-6 -4407)))) (-2539 (((-112) $ $) 70)) (-2581 (((-112) $ (-767)) 9)) (-3084 ((|#1| $) 65 (|has| |#1| (-846)))) (-2259 (((-640 |#1|) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1777 ((|#1| $) 66 (|has| |#1| (-846)))) (-4345 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 35)) (-1476 (((-917) $) 63 (|has| |#1| (-368)))) (-2382 (((-112) $ (-767)) 10)) (-3573 (((-1151) $) 22)) (-2550 (($ $ $) 75)) (-2964 ((|#1| $) 39)) (-1812 (($ |#1| $) 40)) (-2555 (($ (-917)) 62 (|has| |#1| (-368)))) (-1694 (((-1113) $) 21)) (-4203 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3755 ((|#1| $) 41)) (-3138 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) 14)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-1629 (($ $ |#1|) 77) (($ $ $) 76)) (-3890 (($) 49) (($ (-640 |#1|)) 48)) (-1709 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4407))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1872 (($ $) 13)) (-2220 (((-536) $) 59 (|has| |#1| (-611 (-536))))) (-1707 (($ (-640 |#1|)) 50)) (-3085 (($ $) 68 (|has| |#1| (-368)))) (-1693 (((-858) $) 18)) (-1663 (((-767) $) 69)) (-2534 (($ (-640 |#1|)) 72) (($) 71)) (-2233 (($ (-640 |#1|)) 42)) (-4383 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 20)) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-425 |#1|) (-140) (-1093)) (T -425)) +((-1663 (*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-1093)) (-5 *2 (-767)))) (-3085 (*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1093)) (-4 *2 (-368)))) (-2941 (*1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-368)) (-4 *2 (-1093)))) (-1777 (*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1093)) (-4 *2 (-846)))) (-3084 (*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1093)) (-4 *2 (-846))))) +(-13 (-229 |t#1|) (-1091 |t#1|) (-10 -8 (-6 -4407) (-15 -1663 ((-767) $)) (IF (|has| |t#1| (-368)) (PROGN (-6 (-368)) (-15 -3085 ($ $)) (-15 -2941 ($))) |%noBranch|) (IF (|has| |t#1| (-846)) (PROGN (-15 -1777 (|t#1| $)) (-15 -3084 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-610 (-858)) . T) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-229 |#1|) . T) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-368) |has| |#1| (-368)) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1091 |#1|) . T) ((-1093) . T) ((-1208) . T)) +((-1373 (((-584 |#2|) |#2| (-1169)) 35)) (-3216 (((-584 |#2|) |#2| (-1169)) 20)) (-2998 ((|#2| |#2| (-1169)) 25))) +(((-426 |#1| |#2|) (-10 -7 (-15 -3216 ((-584 |#2|) |#2| (-1169))) (-15 -1373 ((-584 |#2|) |#2| (-1169))) (-15 -2998 (|#2| |#2| (-1169)))) (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563))) (-13 (-1193) (-29 |#1|))) (T -426)) +((-2998 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-426 *4 *2)) (-4 *2 (-13 (-1193) (-29 *4))))) (-1373 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-584 *3)) (-5 *1 (-426 *5 *3)) (-4 *3 (-13 (-1193) (-29 *5))))) (-3216 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-584 *3)) (-5 *1 (-426 *5 *3)) (-4 *3 (-13 (-1193) (-29 *5)))))) +(-10 -7 (-15 -3216 ((-584 |#2|) |#2| (-1169))) (-15 -1373 ((-584 |#2|) |#2| (-1169))) (-15 -2998 (|#2| |#2| (-1169)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4239 (($) NIL T CONST)) (-3400 (((-3 $ "failed") $) NIL)) (-3827 (((-112) $) NIL)) (-2584 (($ |#2| |#1|) 35)) (-1664 (($ |#2| |#1|) 33)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL) (($ (-331 |#2|)) 25)) (-1675 (((-767)) NIL)) (-2241 (($) 10 T CONST)) (-2254 (($) 16 T CONST)) (-1718 (((-112) $ $) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) 34)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-427 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4394)) (IF (|has| |#1| (-6 -4394)) (-6 -4394) |%noBranch|) |%noBranch|) (-15 -1693 ($ |#1|)) (-15 -1693 ($ (-331 |#2|))) (-15 -2584 ($ |#2| |#1|)) (-15 -1664 ($ |#2| |#1|)))) (-13 (-172) (-38 (-407 (-563)))) (-13 (-846) (-21))) (T -427)) +((-1693 (*1 *1 *2) (-12 (-5 *1 (-427 *2 *3)) (-4 *2 (-13 (-172) (-38 (-407 (-563))))) (-4 *3 (-13 (-846) (-21))))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-331 *4)) (-4 *4 (-13 (-846) (-21))) (-5 *1 (-427 *3 *4)) (-4 *3 (-13 (-172) (-38 (-407 (-563))))))) (-2584 (*1 *1 *2 *3) (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-563))))) (-4 *2 (-13 (-846) (-21))))) (-1664 (*1 *1 *2 *3) (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-563))))) (-4 *2 (-13 (-846) (-21)))))) +(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4394)) (IF (|has| |#1| (-6 -4394)) (-6 -4394) |%noBranch|) |%noBranch|) (-15 -1693 ($ |#1|)) (-15 -1693 ($ (-331 |#2|))) (-15 -2584 ($ |#2| |#1|)) (-15 -1664 ($ |#2| |#1|)))) +((-3698 (((-3 |#2| (-640 |#2|)) |#2| (-1169)) 108))) +(((-428 |#1| |#2|) (-10 -7 (-15 -3698 ((-3 |#2| (-640 |#2|)) |#2| (-1169)))) (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563))) (-13 (-1193) (-955) (-29 |#1|))) (T -428)) +((-3698 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-3 *3 (-640 *3))) (-5 *1 (-428 *5 *3)) (-4 *3 (-13 (-1193) (-955) (-29 *5)))))) +(-10 -7 (-15 -3698 ((-3 |#2| (-640 |#2|)) |#2| (-1169)))) +((-2606 (((-640 (-1169)) $) 72)) (-2139 (((-407 (-1165 $)) $ (-609 $)) 273)) (-4132 (($ $ (-294 $)) NIL) (($ $ (-640 (-294 $))) NIL) (($ $ (-640 (-609 $)) (-640 $)) 237)) (-2131 (((-3 (-609 $) "failed") $) NIL) (((-3 (-1169) "failed") $) 75) (((-3 (-563) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-407 (-948 |#2|)) "failed") $) 324) (((-3 (-948 |#2|) "failed") $) 235) (((-3 (-407 (-563)) "failed") $) NIL)) (-2058 (((-609 $) $) NIL) (((-1169) $) 30) (((-563) $) NIL) ((|#2| $) 231) (((-407 (-948 |#2|)) $) 305) (((-948 |#2|) $) 232) (((-407 (-563)) $) NIL)) (-2361 (((-114) (-114)) 47)) (-2711 (($ $) 87)) (-2875 (((-3 (-609 $) "failed") $) 228)) (-2127 (((-640 (-609 $)) $) 229)) (-3733 (((-3 (-640 $) "failed") $) 247)) (-1848 (((-3 (-2 (|:| |val| $) (|:| -1654 (-563))) "failed") $) 254)) (-2919 (((-3 (-640 $) "failed") $) 245)) (-4298 (((-3 (-2 (|:| -2311 (-563)) (|:| |var| (-609 $))) "failed") $) 264)) (-4086 (((-3 (-2 (|:| |var| (-609 $)) (|:| -1654 (-563))) "failed") $) 251) (((-3 (-2 (|:| |var| (-609 $)) (|:| -1654 (-563))) "failed") $ (-114)) 217) (((-3 (-2 (|:| |var| (-609 $)) (|:| -1654 (-563))) "failed") $ (-1169)) 219)) (-2696 (((-112) $) 19)) (-2706 ((|#2| $) 21)) (-1540 (($ $ (-609 $) $) NIL) (($ $ (-640 (-609 $)) (-640 $)) 236) (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-640 (-1169)) (-640 (-1 $ $))) NIL) (($ $ (-640 (-1169)) (-640 (-1 $ (-640 $)))) 96) (($ $ (-1169) (-1 $ (-640 $))) NIL) (($ $ (-1169) (-1 $ $)) NIL) (($ $ (-640 (-114)) (-640 (-1 $ $))) NIL) (($ $ (-640 (-114)) (-640 (-1 $ (-640 $)))) NIL) (($ $ (-114) (-1 $ (-640 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1169)) 57) (($ $ (-640 (-1169))) 240) (($ $) 241) (($ $ (-114) $ (-1169)) 60) (($ $ (-640 (-114)) (-640 $) (-1169)) 67) (($ $ (-640 (-1169)) (-640 (-767)) (-640 (-1 $ $))) 107) (($ $ (-640 (-1169)) (-640 (-767)) (-640 (-1 $ (-640 $)))) 242) (($ $ (-1169) (-767) (-1 $ (-640 $))) 94) (($ $ (-1169) (-767) (-1 $ $)) 93)) (-2309 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-640 $)) 106)) (-4202 (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169)) 238)) (-1801 (($ $) 284)) (-2220 (((-888 (-563)) $) 257) (((-888 (-379)) $) 261) (($ (-418 $)) 320) (((-536) $) NIL)) (-1693 (((-858) $) 239) (($ (-609 $)) 84) (($ (-1169)) 26) (($ |#2|) NIL) (($ (-1118 |#2| (-609 $))) NIL) (($ (-407 |#2|)) 289) (($ (-948 (-407 |#2|))) 329) (($ (-407 (-948 (-407 |#2|)))) 301) (($ (-407 (-948 |#2|))) 295) (($ $) NIL) (($ (-948 |#2|)) 185) (($ (-407 (-563))) 334) (($ (-563)) NIL)) (-1675 (((-767)) 79)) (-3734 (((-112) (-114)) 41)) (-1895 (($ (-1169) $) 33) (($ (-1169) $ $) 34) (($ (-1169) $ $ $) 35) (($ (-1169) $ $ $ $) 36) (($ (-1169) (-640 $)) 39)) (* (($ (-407 (-563)) $) NIL) (($ $ (-407 (-563))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-563) $) NIL) (($ (-767) $) NIL) (($ (-917) $) NIL))) +(((-429 |#1| |#2|) (-10 -8 (-15 * (|#1| (-917) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1693 (|#1| (-563))) (-15 -1675 ((-767))) (-15 -1693 (|#1| (-407 (-563)))) (-15 -2131 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2058 ((-407 (-563)) |#1|)) (-15 -2220 ((-536) |#1|)) (-15 -1693 (|#1| (-948 |#2|))) (-15 -2131 ((-3 (-948 |#2|) "failed") |#1|)) (-15 -2058 ((-948 |#2|) |#1|)) (-15 -4202 (|#1| |#1| (-1169))) (-15 -4202 (|#1| |#1| (-640 (-1169)))) (-15 -4202 (|#1| |#1| (-1169) (-767))) (-15 -4202 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1693 (|#1| |#1|)) (-15 * (|#1| |#1| (-407 (-563)))) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 -1693 (|#1| (-407 (-948 |#2|)))) (-15 -2131 ((-3 (-407 (-948 |#2|)) "failed") |#1|)) (-15 -2058 ((-407 (-948 |#2|)) |#1|)) (-15 -2139 ((-407 (-1165 |#1|)) |#1| (-609 |#1|))) (-15 -1693 (|#1| (-407 (-948 (-407 |#2|))))) (-15 -1693 (|#1| (-948 (-407 |#2|)))) (-15 -1693 (|#1| (-407 |#2|))) (-15 -1801 (|#1| |#1|)) (-15 -2220 (|#1| (-418 |#1|))) (-15 -1540 (|#1| |#1| (-1169) (-767) (-1 |#1| |#1|))) (-15 -1540 (|#1| |#1| (-1169) (-767) (-1 |#1| (-640 |#1|)))) (-15 -1540 (|#1| |#1| (-640 (-1169)) (-640 (-767)) (-640 (-1 |#1| (-640 |#1|))))) (-15 -1540 (|#1| |#1| (-640 (-1169)) (-640 (-767)) (-640 (-1 |#1| |#1|)))) (-15 -1848 ((-3 (-2 (|:| |val| |#1|) (|:| -1654 (-563))) "failed") |#1|)) (-15 -4086 ((-3 (-2 (|:| |var| (-609 |#1|)) (|:| -1654 (-563))) "failed") |#1| (-1169))) (-15 -4086 ((-3 (-2 (|:| |var| (-609 |#1|)) (|:| -1654 (-563))) "failed") |#1| (-114))) (-15 -2711 (|#1| |#1|)) (-15 -1693 (|#1| (-1118 |#2| (-609 |#1|)))) (-15 -4298 ((-3 (-2 (|:| -2311 (-563)) (|:| |var| (-609 |#1|))) "failed") |#1|)) (-15 -2919 ((-3 (-640 |#1|) "failed") |#1|)) (-15 -4086 ((-3 (-2 (|:| |var| (-609 |#1|)) (|:| -1654 (-563))) "failed") |#1|)) (-15 -3733 ((-3 (-640 |#1|) "failed") |#1|)) (-15 -1540 (|#1| |#1| (-640 (-114)) (-640 |#1|) (-1169))) (-15 -1540 (|#1| |#1| (-114) |#1| (-1169))) (-15 -1540 (|#1| |#1|)) (-15 -1540 (|#1| |#1| (-640 (-1169)))) (-15 -1540 (|#1| |#1| (-1169))) (-15 -1895 (|#1| (-1169) (-640 |#1|))) (-15 -1895 (|#1| (-1169) |#1| |#1| |#1| |#1|)) (-15 -1895 (|#1| (-1169) |#1| |#1| |#1|)) (-15 -1895 (|#1| (-1169) |#1| |#1|)) (-15 -1895 (|#1| (-1169) |#1|)) (-15 -2606 ((-640 (-1169)) |#1|)) (-15 -2706 (|#2| |#1|)) (-15 -2696 ((-112) |#1|)) (-15 -1693 (|#1| |#2|)) (-15 -2131 ((-3 |#2| "failed") |#1|)) (-15 -2058 (|#2| |#1|)) (-15 -2058 ((-563) |#1|)) (-15 -2131 ((-3 (-563) "failed") |#1|)) (-15 -2220 ((-888 (-379)) |#1|)) (-15 -2220 ((-888 (-563)) |#1|)) (-15 -1693 (|#1| (-1169))) (-15 -2131 ((-3 (-1169) "failed") |#1|)) (-15 -2058 ((-1169) |#1|)) (-15 -1540 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1540 (|#1| |#1| (-114) (-1 |#1| (-640 |#1|)))) (-15 -1540 (|#1| |#1| (-640 (-114)) (-640 (-1 |#1| (-640 |#1|))))) (-15 -1540 (|#1| |#1| (-640 (-114)) (-640 (-1 |#1| |#1|)))) (-15 -1540 (|#1| |#1| (-1169) (-1 |#1| |#1|))) (-15 -1540 (|#1| |#1| (-1169) (-1 |#1| (-640 |#1|)))) (-15 -1540 (|#1| |#1| (-640 (-1169)) (-640 (-1 |#1| (-640 |#1|))))) (-15 -1540 (|#1| |#1| (-640 (-1169)) (-640 (-1 |#1| |#1|)))) (-15 -3734 ((-112) (-114))) (-15 -2361 ((-114) (-114))) (-15 -2127 ((-640 (-609 |#1|)) |#1|)) (-15 -2875 ((-3 (-609 |#1|) "failed") |#1|)) (-15 -4132 (|#1| |#1| (-640 (-609 |#1|)) (-640 |#1|))) (-15 -4132 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -4132 (|#1| |#1| (-294 |#1|))) (-15 -2309 (|#1| (-114) (-640 |#1|))) (-15 -2309 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2309 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2309 (|#1| (-114) |#1| |#1|)) (-15 -2309 (|#1| (-114) |#1|)) (-15 -1540 (|#1| |#1| (-640 |#1|) (-640 |#1|))) (-15 -1540 (|#1| |#1| |#1| |#1|)) (-15 -1540 (|#1| |#1| (-294 |#1|))) (-15 -1540 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -1540 (|#1| |#1| (-640 (-609 |#1|)) (-640 |#1|))) (-15 -1540 (|#1| |#1| (-609 |#1|) |#1|)) (-15 -1693 (|#1| (-609 |#1|))) (-15 -2131 ((-3 (-609 |#1|) "failed") |#1|)) (-15 -2058 ((-609 |#1|) |#1|)) (-15 -1693 ((-858) |#1|))) (-430 |#2|) (-846)) (T -429)) +((-2361 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-846)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-3734 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-429 *4 *5)) (-4 *4 (-430 *5)))) (-1675 (*1 *2) (-12 (-4 *4 (-846)) (-5 *2 (-767)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4))))) +(-10 -8 (-15 * (|#1| (-917) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1693 (|#1| (-563))) (-15 -1675 ((-767))) (-15 -1693 (|#1| (-407 (-563)))) (-15 -2131 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2058 ((-407 (-563)) |#1|)) (-15 -2220 ((-536) |#1|)) (-15 -1693 (|#1| (-948 |#2|))) (-15 -2131 ((-3 (-948 |#2|) "failed") |#1|)) (-15 -2058 ((-948 |#2|) |#1|)) (-15 -4202 (|#1| |#1| (-1169))) (-15 -4202 (|#1| |#1| (-640 (-1169)))) (-15 -4202 (|#1| |#1| (-1169) (-767))) (-15 -4202 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1693 (|#1| |#1|)) (-15 * (|#1| |#1| (-407 (-563)))) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 -1693 (|#1| (-407 (-948 |#2|)))) (-15 -2131 ((-3 (-407 (-948 |#2|)) "failed") |#1|)) (-15 -2058 ((-407 (-948 |#2|)) |#1|)) (-15 -2139 ((-407 (-1165 |#1|)) |#1| (-609 |#1|))) (-15 -1693 (|#1| (-407 (-948 (-407 |#2|))))) (-15 -1693 (|#1| (-948 (-407 |#2|)))) (-15 -1693 (|#1| (-407 |#2|))) (-15 -1801 (|#1| |#1|)) (-15 -2220 (|#1| (-418 |#1|))) (-15 -1540 (|#1| |#1| (-1169) (-767) (-1 |#1| |#1|))) (-15 -1540 (|#1| |#1| (-1169) (-767) (-1 |#1| (-640 |#1|)))) (-15 -1540 (|#1| |#1| (-640 (-1169)) (-640 (-767)) (-640 (-1 |#1| (-640 |#1|))))) (-15 -1540 (|#1| |#1| (-640 (-1169)) (-640 (-767)) (-640 (-1 |#1| |#1|)))) (-15 -1848 ((-3 (-2 (|:| |val| |#1|) (|:| -1654 (-563))) "failed") |#1|)) (-15 -4086 ((-3 (-2 (|:| |var| (-609 |#1|)) (|:| -1654 (-563))) "failed") |#1| (-1169))) (-15 -4086 ((-3 (-2 (|:| |var| (-609 |#1|)) (|:| -1654 (-563))) "failed") |#1| (-114))) (-15 -2711 (|#1| |#1|)) (-15 -1693 (|#1| (-1118 |#2| (-609 |#1|)))) (-15 -4298 ((-3 (-2 (|:| -2311 (-563)) (|:| |var| (-609 |#1|))) "failed") |#1|)) (-15 -2919 ((-3 (-640 |#1|) "failed") |#1|)) (-15 -4086 ((-3 (-2 (|:| |var| (-609 |#1|)) (|:| -1654 (-563))) "failed") |#1|)) (-15 -3733 ((-3 (-640 |#1|) "failed") |#1|)) (-15 -1540 (|#1| |#1| (-640 (-114)) (-640 |#1|) (-1169))) (-15 -1540 (|#1| |#1| (-114) |#1| (-1169))) (-15 -1540 (|#1| |#1|)) (-15 -1540 (|#1| |#1| (-640 (-1169)))) (-15 -1540 (|#1| |#1| (-1169))) (-15 -1895 (|#1| (-1169) (-640 |#1|))) (-15 -1895 (|#1| (-1169) |#1| |#1| |#1| |#1|)) (-15 -1895 (|#1| (-1169) |#1| |#1| |#1|)) (-15 -1895 (|#1| (-1169) |#1| |#1|)) (-15 -1895 (|#1| (-1169) |#1|)) (-15 -2606 ((-640 (-1169)) |#1|)) (-15 -2706 (|#2| |#1|)) (-15 -2696 ((-112) |#1|)) (-15 -1693 (|#1| |#2|)) (-15 -2131 ((-3 |#2| "failed") |#1|)) (-15 -2058 (|#2| |#1|)) (-15 -2058 ((-563) |#1|)) (-15 -2131 ((-3 (-563) "failed") |#1|)) (-15 -2220 ((-888 (-379)) |#1|)) (-15 -2220 ((-888 (-563)) |#1|)) (-15 -1693 (|#1| (-1169))) (-15 -2131 ((-3 (-1169) "failed") |#1|)) (-15 -2058 ((-1169) |#1|)) (-15 -1540 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1540 (|#1| |#1| (-114) (-1 |#1| (-640 |#1|)))) (-15 -1540 (|#1| |#1| (-640 (-114)) (-640 (-1 |#1| (-640 |#1|))))) (-15 -1540 (|#1| |#1| (-640 (-114)) (-640 (-1 |#1| |#1|)))) (-15 -1540 (|#1| |#1| (-1169) (-1 |#1| |#1|))) (-15 -1540 (|#1| |#1| (-1169) (-1 |#1| (-640 |#1|)))) (-15 -1540 (|#1| |#1| (-640 (-1169)) (-640 (-1 |#1| (-640 |#1|))))) (-15 -1540 (|#1| |#1| (-640 (-1169)) (-640 (-1 |#1| |#1|)))) (-15 -3734 ((-112) (-114))) (-15 -2361 ((-114) (-114))) (-15 -2127 ((-640 (-609 |#1|)) |#1|)) (-15 -2875 ((-3 (-609 |#1|) "failed") |#1|)) (-15 -4132 (|#1| |#1| (-640 (-609 |#1|)) (-640 |#1|))) (-15 -4132 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -4132 (|#1| |#1| (-294 |#1|))) (-15 -2309 (|#1| (-114) (-640 |#1|))) (-15 -2309 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2309 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2309 (|#1| (-114) |#1| |#1|)) (-15 -2309 (|#1| (-114) |#1|)) (-15 -1540 (|#1| |#1| (-640 |#1|) (-640 |#1|))) (-15 -1540 (|#1| |#1| |#1| |#1|)) (-15 -1540 (|#1| |#1| (-294 |#1|))) (-15 -1540 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -1540 (|#1| |#1| (-640 (-609 |#1|)) (-640 |#1|))) (-15 -1540 (|#1| |#1| (-609 |#1|) |#1|)) (-15 -1693 (|#1| (-609 |#1|))) (-15 -2131 ((-3 (-609 |#1|) "failed") |#1|)) (-15 -2058 ((-609 |#1|) |#1|)) (-15 -1693 ((-858) |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 114 (|has| |#1| (-25)))) (-2606 (((-640 (-1169)) $) 201)) (-2139 (((-407 (-1165 $)) $ (-609 $)) 169 (|has| |#1| (-555)))) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 141 (|has| |#1| (-555)))) (-4223 (($ $) 142 (|has| |#1| (-555)))) (-3156 (((-112) $) 144 (|has| |#1| (-555)))) (-2059 (((-640 (-609 $)) $) 44)) (-1495 (((-3 $ "failed") $ $) 116 (|has| |#1| (-21)))) (-4132 (($ $ (-294 $)) 56) (($ $ (-640 (-294 $))) 55) (($ $ (-640 (-609 $)) (-640 $)) 54)) (-4335 (($ $) 161 (|has| |#1| (-555)))) (-3205 (((-418 $) $) 162 (|has| |#1| (-555)))) (-1919 (((-112) $ $) 152 (|has| |#1| (-555)))) (-4239 (($) 102 (-4032 (|has| |#1| (-1105)) (|has| |#1| (-25))) CONST)) (-2131 (((-3 (-609 $) "failed") $) 69) (((-3 (-1169) "failed") $) 214) (((-3 (-563) "failed") $) 208 (|has| |#1| (-1034 (-563)))) (((-3 |#1| "failed") $) 205) (((-3 (-407 (-948 |#1|)) "failed") $) 167 (|has| |#1| (-555))) (((-3 (-948 |#1|) "failed") $) 121 (|has| |#1| (-1045))) (((-3 (-407 (-563)) "failed") $) 96 (-4032 (-12 (|has| |#1| (-1034 (-563))) (|has| |#1| (-555))) (|has| |#1| (-1034 (-407 (-563))))))) (-2058 (((-609 $) $) 70) (((-1169) $) 215) (((-563) $) 207 (|has| |#1| (-1034 (-563)))) ((|#1| $) 206) (((-407 (-948 |#1|)) $) 168 (|has| |#1| (-555))) (((-948 |#1|) $) 122 (|has| |#1| (-1045))) (((-407 (-563)) $) 97 (-4032 (-12 (|has| |#1| (-1034 (-563))) (|has| |#1| (-555))) (|has| |#1| (-1034 (-407 (-563))))))) (-3090 (($ $ $) 156 (|has| |#1| (-555)))) (-2950 (((-684 (-563)) (-684 $)) 135 (-2190 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 134 (-2190 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045)))) (((-2 (|:| -2835 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 133 (|has| |#1| (-1045))) (((-684 |#1|) (-684 $)) 132 (|has| |#1| (-1045)))) (-3400 (((-3 $ "failed") $) 104 (|has| |#1| (-1105)))) (-3050 (($ $ $) 155 (|has| |#1| (-555)))) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) 150 (|has| |#1| (-555)))) (-2468 (((-112) $) 163 (|has| |#1| (-555)))) (-3787 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 210 (|has| |#1| (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 209 (|has| |#1| (-882 (-379))))) (-3968 (($ $) 51) (($ (-640 $)) 50)) (-3804 (((-640 (-114)) $) 43)) (-2361 (((-114) (-114)) 42)) (-3827 (((-112) $) 103 (|has| |#1| (-1105)))) (-3131 (((-112) $) 22 (|has| $ (-1034 (-563))))) (-2711 (($ $) 184 (|has| |#1| (-1045)))) (-2143 (((-1118 |#1| (-609 $)) $) 185 (|has| |#1| (-1045)))) (-3643 (((-3 (-640 $) "failed") (-640 $) $) 159 (|has| |#1| (-555)))) (-3180 (((-1165 $) (-609 $)) 25 (|has| $ (-1045)))) (-3084 (($ $ $) 13)) (-1777 (($ $ $) 14)) (-2240 (($ (-1 $ $) (-609 $)) 36)) (-2875 (((-3 (-609 $) "failed") $) 46)) (-3513 (($ (-640 $)) 148 (|has| |#1| (-555))) (($ $ $) 147 (|has| |#1| (-555)))) (-3573 (((-1151) $) 9)) (-2127 (((-640 (-609 $)) $) 45)) (-2227 (($ (-114) $) 38) (($ (-114) (-640 $)) 37)) (-3733 (((-3 (-640 $) "failed") $) 190 (|has| |#1| (-1105)))) (-1848 (((-3 (-2 (|:| |val| $) (|:| -1654 (-563))) "failed") $) 181 (|has| |#1| (-1045)))) (-2919 (((-3 (-640 $) "failed") $) 188 (|has| |#1| (-25)))) (-4298 (((-3 (-2 (|:| -2311 (-563)) (|:| |var| (-609 $))) "failed") $) 187 (|has| |#1| (-25)))) (-4086 (((-3 (-2 (|:| |var| (-609 $)) (|:| -1654 (-563))) "failed") $) 189 (|has| |#1| (-1105))) (((-3 (-2 (|:| |var| (-609 $)) (|:| -1654 (-563))) "failed") $ (-114)) 183 (|has| |#1| (-1045))) (((-3 (-2 (|:| |var| (-609 $)) (|:| -1654 (-563))) "failed") $ (-1169)) 182 (|has| |#1| (-1045)))) (-2799 (((-112) $ (-114)) 40) (((-112) $ (-1169)) 39)) (-2688 (($ $) 106 (-4032 (|has| |#1| (-473)) (|has| |#1| (-555))))) (-4236 (((-767) $) 47)) (-1694 (((-1113) $) 10)) (-2696 (((-112) $) 203)) (-2706 ((|#1| $) 202)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 149 (|has| |#1| (-555)))) (-3548 (($ (-640 $)) 146 (|has| |#1| (-555))) (($ $ $) 145 (|has| |#1| (-555)))) (-1372 (((-112) $ $) 35) (((-112) $ (-1169)) 34)) (-2174 (((-418 $) $) 160 (|has| |#1| (-555)))) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 158 (|has| |#1| (-555))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) 157 (|has| |#1| (-555)))) (-3008 (((-3 $ "failed") $ $) 140 (|has| |#1| (-555)))) (-1465 (((-3 (-640 $) "failed") (-640 $) $) 151 (|has| |#1| (-555)))) (-2359 (((-112) $) 23 (|has| $ (-1034 (-563))))) (-1540 (($ $ (-609 $) $) 67) (($ $ (-640 (-609 $)) (-640 $)) 66) (($ $ (-640 (-294 $))) 65) (($ $ (-294 $)) 64) (($ $ $ $) 63) (($ $ (-640 $) (-640 $)) 62) (($ $ (-640 (-1169)) (-640 (-1 $ $))) 33) (($ $ (-640 (-1169)) (-640 (-1 $ (-640 $)))) 32) (($ $ (-1169) (-1 $ (-640 $))) 31) (($ $ (-1169) (-1 $ $)) 30) (($ $ (-640 (-114)) (-640 (-1 $ $))) 29) (($ $ (-640 (-114)) (-640 (-1 $ (-640 $)))) 28) (($ $ (-114) (-1 $ (-640 $))) 27) (($ $ (-114) (-1 $ $)) 26) (($ $ (-1169)) 195 (|has| |#1| (-611 (-536)))) (($ $ (-640 (-1169))) 194 (|has| |#1| (-611 (-536)))) (($ $) 193 (|has| |#1| (-611 (-536)))) (($ $ (-114) $ (-1169)) 192 (|has| |#1| (-611 (-536)))) (($ $ (-640 (-114)) (-640 $) (-1169)) 191 (|has| |#1| (-611 (-536)))) (($ $ (-640 (-1169)) (-640 (-767)) (-640 (-1 $ $))) 180 (|has| |#1| (-1045))) (($ $ (-640 (-1169)) (-640 (-767)) (-640 (-1 $ (-640 $)))) 179 (|has| |#1| (-1045))) (($ $ (-1169) (-767) (-1 $ (-640 $))) 178 (|has| |#1| (-1045))) (($ $ (-1169) (-767) (-1 $ $)) 177 (|has| |#1| (-1045)))) (-2628 (((-767) $) 153 (|has| |#1| (-555)))) (-2309 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-640 $)) 57)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 154 (|has| |#1| (-555)))) (-3071 (($ $) 49) (($ $ $) 48)) (-4202 (($ $ (-640 (-1169)) (-640 (-767))) 126 (|has| |#1| (-1045))) (($ $ (-1169) (-767)) 125 (|has| |#1| (-1045))) (($ $ (-640 (-1169))) 124 (|has| |#1| (-1045))) (($ $ (-1169)) 123 (|has| |#1| (-1045)))) (-1801 (($ $) 174 (|has| |#1| (-555)))) (-2154 (((-1118 |#1| (-609 $)) $) 175 (|has| |#1| (-555)))) (-3390 (($ $) 24 (|has| $ (-1045)))) (-2220 (((-888 (-563)) $) 212 (|has| |#1| (-611 (-888 (-563))))) (((-888 (-379)) $) 211 (|has| |#1| (-611 (-888 (-379))))) (($ (-418 $)) 176 (|has| |#1| (-555))) (((-536) $) 98 (|has| |#1| (-611 (-536))))) (-4339 (($ $ $) 109 (|has| |#1| (-473)))) (-2146 (($ $ $) 110 (|has| |#1| (-473)))) (-1693 (((-858) $) 11) (($ (-609 $)) 68) (($ (-1169)) 213) (($ |#1|) 204) (($ (-1118 |#1| (-609 $))) 186 (|has| |#1| (-1045))) (($ (-407 |#1|)) 172 (|has| |#1| (-555))) (($ (-948 (-407 |#1|))) 171 (|has| |#1| (-555))) (($ (-407 (-948 (-407 |#1|)))) 170 (|has| |#1| (-555))) (($ (-407 (-948 |#1|))) 166 (|has| |#1| (-555))) (($ $) 139 (|has| |#1| (-555))) (($ (-948 |#1|)) 120 (|has| |#1| (-1045))) (($ (-407 (-563))) 95 (-4032 (|has| |#1| (-555)) (-12 (|has| |#1| (-1034 (-563))) (|has| |#1| (-555))) (|has| |#1| (-1034 (-407 (-563)))))) (($ (-563)) 94 (-4032 (|has| |#1| (-1045)) (|has| |#1| (-1034 (-563)))))) (-2779 (((-3 $ "failed") $) 136 (|has| |#1| (-145)))) (-1675 (((-767)) 131 (|has| |#1| (-1045)))) (-3079 (($ $) 53) (($ (-640 $)) 52)) (-3734 (((-112) (-114)) 41)) (-2126 (((-112) $ $) 143 (|has| |#1| (-555)))) (-1895 (($ (-1169) $) 200) (($ (-1169) $ $) 199) (($ (-1169) $ $ $) 198) (($ (-1169) $ $ $ $) 197) (($ (-1169) (-640 $)) 196)) (-2241 (($) 113 (|has| |#1| (-25)) CONST)) (-2254 (($) 101 (|has| |#1| (-1105)) CONST)) (-3209 (($ $ (-640 (-1169)) (-640 (-767))) 130 (|has| |#1| (-1045))) (($ $ (-1169) (-767)) 129 (|has| |#1| (-1045))) (($ $ (-640 (-1169))) 128 (|has| |#1| (-1045))) (($ $ (-1169)) 127 (|has| |#1| (-1045)))) (-1778 (((-112) $ $) 16)) (-1756 (((-112) $ $) 17)) (-1718 (((-112) $ $) 6)) (-1768 (((-112) $ $) 15)) (-1744 (((-112) $ $) 18)) (-1837 (($ (-1118 |#1| (-609 $)) (-1118 |#1| (-609 $))) 173 (|has| |#1| (-555))) (($ $ $) 107 (-4032 (|has| |#1| (-473)) (|has| |#1| (-555))))) (-1826 (($ $ $) 118 (|has| |#1| (-21))) (($ $) 117 (|has| |#1| (-21)))) (-1814 (($ $ $) 111 (|has| |#1| (-25)))) (** (($ $ (-563)) 108 (-4032 (|has| |#1| (-473)) (|has| |#1| (-555)))) (($ $ (-767)) 105 (|has| |#1| (-1105))) (($ $ (-917)) 100 (|has| |#1| (-1105)))) (* (($ (-407 (-563)) $) 165 (|has| |#1| (-555))) (($ $ (-407 (-563))) 164 (|has| |#1| (-555))) (($ |#1| $) 138 (|has| |#1| (-172))) (($ $ |#1|) 137 (|has| |#1| (-172))) (($ (-563) $) 119 (|has| |#1| (-21))) (($ (-767) $) 115 (|has| |#1| (-25))) (($ (-917) $) 112 (|has| |#1| (-25))) (($ $ $) 99 (|has| |#1| (-1105))))) +(((-430 |#1|) (-140) (-846)) (T -430)) +((-2696 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-846)) (-5 *2 (-112)))) (-2706 (*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-846)))) (-2606 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-846)) (-5 *2 (-640 (-1169))))) (-1895 (*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-4 *1 (-430 *3)) (-4 *3 (-846)))) (-1895 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1169)) (-4 *1 (-430 *3)) (-4 *3 (-846)))) (-1895 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1169)) (-4 *1 (-430 *3)) (-4 *3 (-846)))) (-1895 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1169)) (-4 *1 (-430 *3)) (-4 *3 (-846)))) (-1895 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-640 *1)) (-4 *1 (-430 *4)) (-4 *4 (-846)))) (-1540 (*1 *1 *1 *2) (-12 (-5 *2 (-1169)) (-4 *1 (-430 *3)) (-4 *3 (-846)) (-4 *3 (-611 (-536))))) (-1540 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-1169))) (-4 *1 (-430 *3)) (-4 *3 (-846)) (-4 *3 (-611 (-536))))) (-1540 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-846)) (-4 *2 (-611 (-536))))) (-1540 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1169)) (-4 *1 (-430 *4)) (-4 *4 (-846)) (-4 *4 (-611 (-536))))) (-1540 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-640 (-114))) (-5 *3 (-640 *1)) (-5 *4 (-1169)) (-4 *1 (-430 *5)) (-4 *5 (-846)) (-4 *5 (-611 (-536))))) (-3733 (*1 *2 *1) (|partial| -12 (-4 *3 (-1105)) (-4 *3 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-430 *3)))) (-4086 (*1 *2 *1) (|partial| -12 (-4 *3 (-1105)) (-4 *3 (-846)) (-5 *2 (-2 (|:| |var| (-609 *1)) (|:| -1654 (-563)))) (-4 *1 (-430 *3)))) (-2919 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-430 *3)))) (-4298 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-846)) (-5 *2 (-2 (|:| -2311 (-563)) (|:| |var| (-609 *1)))) (-4 *1 (-430 *3)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-1118 *3 (-609 *1))) (-4 *3 (-1045)) (-4 *3 (-846)) (-4 *1 (-430 *3)))) (-2143 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *3 (-846)) (-5 *2 (-1118 *3 (-609 *1))) (-4 *1 (-430 *3)))) (-2711 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-846)) (-4 *2 (-1045)))) (-4086 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1045)) (-4 *4 (-846)) (-5 *2 (-2 (|:| |var| (-609 *1)) (|:| -1654 (-563)))) (-4 *1 (-430 *4)))) (-4086 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1169)) (-4 *4 (-1045)) (-4 *4 (-846)) (-5 *2 (-2 (|:| |var| (-609 *1)) (|:| -1654 (-563)))) (-4 *1 (-430 *4)))) (-1848 (*1 *2 *1) (|partial| -12 (-4 *3 (-1045)) (-4 *3 (-846)) (-5 *2 (-2 (|:| |val| *1) (|:| -1654 (-563)))) (-4 *1 (-430 *3)))) (-1540 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-640 (-767))) (-5 *4 (-640 (-1 *1 *1))) (-4 *1 (-430 *5)) (-4 *5 (-846)) (-4 *5 (-1045)))) (-1540 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-640 (-767))) (-5 *4 (-640 (-1 *1 (-640 *1)))) (-4 *1 (-430 *5)) (-4 *5 (-846)) (-4 *5 (-1045)))) (-1540 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-767)) (-5 *4 (-1 *1 (-640 *1))) (-4 *1 (-430 *5)) (-4 *5 (-846)) (-4 *5 (-1045)))) (-1540 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-767)) (-5 *4 (-1 *1 *1)) (-4 *1 (-430 *5)) (-4 *5 (-846)) (-4 *5 (-1045)))) (-2220 (*1 *1 *2) (-12 (-5 *2 (-418 *1)) (-4 *1 (-430 *3)) (-4 *3 (-555)) (-4 *3 (-846)))) (-2154 (*1 *2 *1) (-12 (-4 *3 (-555)) (-4 *3 (-846)) (-5 *2 (-1118 *3 (-609 *1))) (-4 *1 (-430 *3)))) (-1801 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-846)) (-4 *2 (-555)))) (-1837 (*1 *1 *2 *2) (-12 (-5 *2 (-1118 *3 (-609 *1))) (-4 *3 (-555)) (-4 *3 (-846)) (-4 *1 (-430 *3)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-555)) (-4 *3 (-846)) (-4 *1 (-430 *3)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-948 (-407 *3))) (-4 *3 (-555)) (-4 *3 (-846)) (-4 *1 (-430 *3)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-407 *3)))) (-4 *3 (-555)) (-4 *3 (-846)) (-4 *1 (-430 *3)))) (-2139 (*1 *2 *1 *3) (-12 (-5 *3 (-609 *1)) (-4 *1 (-430 *4)) (-4 *4 (-846)) (-4 *4 (-555)) (-5 *2 (-407 (-1165 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-430 *3)) (-4 *3 (-846)) (-4 *3 (-1105))))) +(-13 (-302) (-1034 (-1169)) (-880 |t#1|) (-400 |t#1|) (-411 |t#1|) (-10 -8 (-15 -2696 ((-112) $)) (-15 -2706 (|t#1| $)) (-15 -2606 ((-640 (-1169)) $)) (-15 -1895 ($ (-1169) $)) (-15 -1895 ($ (-1169) $ $)) (-15 -1895 ($ (-1169) $ $ $)) (-15 -1895 ($ (-1169) $ $ $ $)) (-15 -1895 ($ (-1169) (-640 $))) (IF (|has| |t#1| (-611 (-536))) (PROGN (-6 (-611 (-536))) (-15 -1540 ($ $ (-1169))) (-15 -1540 ($ $ (-640 (-1169)))) (-15 -1540 ($ $)) (-15 -1540 ($ $ (-114) $ (-1169))) (-15 -1540 ($ $ (-640 (-114)) (-640 $) (-1169)))) |%noBranch|) (IF (|has| |t#1| (-1105)) (PROGN (-6 (-722)) (-15 ** ($ $ (-767))) (-15 -3733 ((-3 (-640 $) "failed") $)) (-15 -4086 ((-3 (-2 (|:| |var| (-609 $)) (|:| -1654 (-563))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-473)) (-6 (-473)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2919 ((-3 (-640 $) "failed") $)) (-15 -4298 ((-3 (-2 (|:| -2311 (-563)) (|:| |var| (-609 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1045)) (PROGN (-6 (-1045)) (-6 (-1034 (-948 |t#1|))) (-6 (-896 (-1169))) (-6 (-377 |t#1|)) (-15 -1693 ($ (-1118 |t#1| (-609 $)))) (-15 -2143 ((-1118 |t#1| (-609 $)) $)) (-15 -2711 ($ $)) (-15 -4086 ((-3 (-2 (|:| |var| (-609 $)) (|:| -1654 (-563))) "failed") $ (-114))) (-15 -4086 ((-3 (-2 (|:| |var| (-609 $)) (|:| -1654 (-563))) "failed") $ (-1169))) (-15 -1848 ((-3 (-2 (|:| |val| $) (|:| -1654 (-563))) "failed") $)) (-15 -1540 ($ $ (-640 (-1169)) (-640 (-767)) (-640 (-1 $ $)))) (-15 -1540 ($ $ (-640 (-1169)) (-640 (-767)) (-640 (-1 $ (-640 $))))) (-15 -1540 ($ $ (-1169) (-767) (-1 $ (-640 $)))) (-15 -1540 ($ $ (-1169) (-767) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-6 (-363)) (-6 (-1034 (-407 (-948 |t#1|)))) (-15 -2220 ($ (-418 $))) (-15 -2154 ((-1118 |t#1| (-609 $)) $)) (-15 -1801 ($ $)) (-15 -1837 ($ (-1118 |t#1| (-609 $)) (-1118 |t#1| (-609 $)))) (-15 -1693 ($ (-407 |t#1|))) (-15 -1693 ($ (-948 (-407 |t#1|)))) (-15 -1693 ($ (-407 (-948 (-407 |t#1|))))) (-15 -2139 ((-407 (-1165 $)) $ (-609 $))) (IF (|has| |t#1| (-1034 (-563))) (-6 (-1034 (-407 (-563)))) |%noBranch|)) |%noBranch|))) +(((-21) -4032 (|has| |#1| (-1045)) (|has| |#1| (-555)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-23) -4032 (|has| |#1| (-1045)) (|has| |#1| (-555)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -4032 (|has| |#1| (-1045)) (|has| |#1| (-555)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-407 (-563))) |has| |#1| (-555)) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-555)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-555)) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) |has| |#1| (-555)) ((-131) -4032 (|has| |#1| (-1045)) (|has| |#1| (-555)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0#) -4032 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-555))) ((-613 #1=(-407 (-948 |#1|))) |has| |#1| (-555)) ((-613 (-563)) -4032 (|has| |#1| (-1045)) (|has| |#1| (-1034 (-563))) (|has| |#1| (-555)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-613 #2=(-609 $)) . T) ((-613 #3=(-948 |#1|)) |has| |#1| (-1045)) ((-613 #4=(-1169)) . T) ((-613 |#1|) . T) ((-613 $) |has| |#1| (-555)) ((-610 (-858)) . T) ((-172) |has| |#1| (-555)) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-611 (-888 (-379))) |has| |#1| (-611 (-888 (-379)))) ((-611 (-888 (-563))) |has| |#1| (-611 (-888 (-563)))) ((-243) |has| |#1| (-555)) ((-290) |has| |#1| (-555)) ((-307) |has| |#1| (-555)) ((-309 $) . T) ((-302) . T) ((-363) |has| |#1| (-555)) ((-377 |#1|) |has| |#1| (-1045)) ((-400 |#1|) . T) ((-411 |#1|) . T) ((-452) |has| |#1| (-555)) ((-473) |has| |#1| (-473)) ((-514 (-609 $) $) . T) ((-514 $ $) . T) ((-555) |has| |#1| (-555)) ((-643 #0#) |has| |#1| (-555)) ((-643 |#1|) |has| |#1| (-172)) ((-643 $) -4032 (|has| |#1| (-1045)) (|has| |#1| (-555)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-636 (-563)) -12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))) ((-636 |#1|) |has| |#1| (-1045)) ((-713 #0#) |has| |#1| (-555)) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-555)) ((-722) -4032 (|has| |#1| (-1105)) (|has| |#1| (-1045)) (|has| |#1| (-555)) (|has| |#1| (-473)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-846) . T) ((-896 (-1169)) |has| |#1| (-1045)) ((-882 (-379)) |has| |#1| (-882 (-379))) ((-882 (-563)) |has| |#1| (-882 (-563))) ((-880 |#1|) . T) ((-916) |has| |#1| (-555)) ((-1034 (-407 (-563))) -4032 (|has| |#1| (-1034 (-407 (-563)))) (-12 (|has| |#1| (-555)) (|has| |#1| (-1034 (-563))))) ((-1034 #1#) |has| |#1| (-555)) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 #2#) . T) ((-1034 #3#) |has| |#1| (-1045)) ((-1034 #4#) . T) ((-1034 |#1|) . T) ((-1051 #0#) |has| |#1| (-555)) ((-1051 |#1|) |has| |#1| (-172)) ((-1051 $) |has| |#1| (-555)) ((-1045) -4032 (|has| |#1| (-1045)) (|has| |#1| (-555)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1052) -4032 (|has| |#1| (-1045)) (|has| |#1| (-555)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1105) -4032 (|has| |#1| (-1105)) (|has| |#1| (-1045)) (|has| |#1| (-555)) (|has| |#1| (-473)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1093) . T) ((-1208) . T) ((-1212) |has| |#1| (-555))) +((-2507 ((|#2| |#2| |#2|) 31)) (-2361 (((-114) (-114)) 43)) (-2569 ((|#2| |#2|) 65)) (-1832 ((|#2| |#2|) 68)) (-1760 ((|#2| |#2|) 30)) (-2736 ((|#2| |#2| |#2|) 33)) (-2040 ((|#2| |#2| |#2|) 35)) (-4271 ((|#2| |#2| |#2|) 32)) (-3988 ((|#2| |#2| |#2|) 34)) (-3734 (((-112) (-114)) 41)) (-3336 ((|#2| |#2|) 37)) (-4252 ((|#2| |#2|) 36)) (-2509 ((|#2| |#2|) 25)) (-1341 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-3929 ((|#2| |#2| |#2|) 29))) +(((-431 |#1| |#2|) (-10 -7 (-15 -3734 ((-112) (-114))) (-15 -2361 ((-114) (-114))) (-15 -2509 (|#2| |#2|)) (-15 -1341 (|#2| |#2|)) (-15 -1341 (|#2| |#2| |#2|)) (-15 -3929 (|#2| |#2| |#2|)) (-15 -1760 (|#2| |#2|)) (-15 -2507 (|#2| |#2| |#2|)) (-15 -4271 (|#2| |#2| |#2|)) (-15 -2736 (|#2| |#2| |#2|)) (-15 -3988 (|#2| |#2| |#2|)) (-15 -2040 (|#2| |#2| |#2|)) (-15 -4252 (|#2| |#2|)) (-15 -3336 (|#2| |#2|)) (-15 -1832 (|#2| |#2|)) (-15 -2569 (|#2| |#2|))) (-13 (-846) (-555)) (-430 |#1|)) (T -431)) +((-2569 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1832 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3336 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-4252 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2040 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3988 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2736 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-4271 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2507 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1760 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3929 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1341 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1341 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2509 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2361 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *4)) (-4 *4 (-430 *3)))) (-3734 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112)) (-5 *1 (-431 *4 *5)) (-4 *5 (-430 *4))))) +(-10 -7 (-15 -3734 ((-112) (-114))) (-15 -2361 ((-114) (-114))) (-15 -2509 (|#2| |#2|)) (-15 -1341 (|#2| |#2|)) (-15 -1341 (|#2| |#2| |#2|)) (-15 -3929 (|#2| |#2| |#2|)) (-15 -1760 (|#2| |#2|)) (-15 -2507 (|#2| |#2| |#2|)) (-15 -4271 (|#2| |#2| |#2|)) (-15 -2736 (|#2| |#2| |#2|)) (-15 -3988 (|#2| |#2| |#2|)) (-15 -2040 (|#2| |#2| |#2|)) (-15 -4252 (|#2| |#2|)) (-15 -3336 (|#2| |#2|)) (-15 -1832 (|#2| |#2|)) (-15 -2569 (|#2| |#2|))) +((-1571 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1165 |#2|)) (|:| |pol2| (-1165 |#2|)) (|:| |prim| (-1165 |#2|))) |#2| |#2|) 96 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-640 (-1165 |#2|))) (|:| |prim| (-1165 |#2|))) (-640 |#2|)) 61))) +(((-432 |#1| |#2|) (-10 -7 (-15 -1571 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-640 (-1165 |#2|))) (|:| |prim| (-1165 |#2|))) (-640 |#2|))) (IF (|has| |#2| (-27)) (-15 -1571 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1165 |#2|)) (|:| |pol2| (-1165 |#2|)) (|:| |prim| (-1165 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-555) (-846) (-147)) (-430 |#1|)) (T -432)) +((-1571 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-555) (-846) (-147))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1165 *3)) (|:| |pol2| (-1165 *3)) (|:| |prim| (-1165 *3)))) (-5 *1 (-432 *4 *3)) (-4 *3 (-27)) (-4 *3 (-430 *4)))) (-1571 (*1 *2 *3) (-12 (-5 *3 (-640 *5)) (-4 *5 (-430 *4)) (-4 *4 (-13 (-555) (-846) (-147))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-640 (-1165 *5))) (|:| |prim| (-1165 *5)))) (-5 *1 (-432 *4 *5))))) +(-10 -7 (-15 -1571 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-640 (-1165 |#2|))) (|:| |prim| (-1165 |#2|))) (-640 |#2|))) (IF (|has| |#2| (-27)) (-15 -1571 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1165 |#2|)) (|:| |pol2| (-1165 |#2|)) (|:| |prim| (-1165 |#2|))) |#2| |#2|)) |%noBranch|)) +((-2854 (((-1262)) 19)) (-1788 (((-1165 (-407 (-563))) |#2| (-609 |#2|)) 41) (((-407 (-563)) |#2|) 25))) +(((-433 |#1| |#2|) (-10 -7 (-15 -1788 ((-407 (-563)) |#2|)) (-15 -1788 ((-1165 (-407 (-563))) |#2| (-609 |#2|))) (-15 -2854 ((-1262)))) (-13 (-846) (-555) (-1034 (-563))) (-430 |#1|)) (T -433)) +((-2854 (*1 *2) (-12 (-4 *3 (-13 (-846) (-555) (-1034 (-563)))) (-5 *2 (-1262)) (-5 *1 (-433 *3 *4)) (-4 *4 (-430 *3)))) (-1788 (*1 *2 *3 *4) (-12 (-5 *4 (-609 *3)) (-4 *3 (-430 *5)) (-4 *5 (-13 (-846) (-555) (-1034 (-563)))) (-5 *2 (-1165 (-407 (-563)))) (-5 *1 (-433 *5 *3)))) (-1788 (*1 *2 *3) (-12 (-4 *4 (-13 (-846) (-555) (-1034 (-563)))) (-5 *2 (-407 (-563))) (-5 *1 (-433 *4 *3)) (-4 *3 (-430 *4))))) +(-10 -7 (-15 -1788 ((-407 (-563)) |#2|)) (-15 -1788 ((-1165 (-407 (-563))) |#2| (-609 |#2|))) (-15 -2854 ((-1262)))) +((-3087 (((-112) $) 28)) (-4129 (((-112) $) 30)) (-3532 (((-112) $) 31)) (-2686 (((-112) $) 34)) (-3322 (((-112) $) 29)) (-3186 (((-112) $) 33)) (-1693 (((-858) $) 18) (($ (-1151)) 27) (($ (-1169)) 23) (((-1169) $) 22) (((-1097) $) 21)) (-4305 (((-112) $) 32)) (-1718 (((-112) $ $) 15))) +(((-434) (-13 (-610 (-858)) (-10 -8 (-15 -1693 ($ (-1151))) (-15 -1693 ($ (-1169))) (-15 -1693 ((-1169) $)) (-15 -1693 ((-1097) $)) (-15 -3087 ((-112) $)) (-15 -3322 ((-112) $)) (-15 -3532 ((-112) $)) (-15 -3186 ((-112) $)) (-15 -2686 ((-112) $)) (-15 -4305 ((-112) $)) (-15 -4129 ((-112) $)) (-15 -1718 ((-112) $ $))))) (T -434)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-434)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-434)))) (-1693 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-434)))) (-1693 (*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-434)))) (-3087 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-3322 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-3532 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-3186 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-4305 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-1718 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) +(-13 (-610 (-858)) (-10 -8 (-15 -1693 ($ (-1151))) (-15 -1693 ($ (-1169))) (-15 -1693 ((-1169) $)) (-15 -1693 ((-1097) $)) (-15 -3087 ((-112) $)) (-15 -3322 ((-112) $)) (-15 -3532 ((-112) $)) (-15 -3186 ((-112) $)) (-15 -2686 ((-112) $)) (-15 -4305 ((-112) $)) (-15 -4129 ((-112) $)) (-15 -1718 ((-112) $ $)))) +((-3722 (((-3 (-418 (-1165 (-407 (-563)))) "failed") |#3|) 70)) (-3372 (((-418 |#3|) |#3|) 34)) (-3604 (((-3 (-418 (-1165 (-48))) "failed") |#3|) 46 (|has| |#2| (-1034 (-48))))) (-2374 (((-3 (|:| |overq| (-1165 (-407 (-563)))) (|:| |overan| (-1165 (-48))) (|:| -4244 (-112))) |#3|) 37))) +(((-435 |#1| |#2| |#3|) (-10 -7 (-15 -3372 ((-418 |#3|) |#3|)) (-15 -3722 ((-3 (-418 (-1165 (-407 (-563)))) "failed") |#3|)) (-15 -2374 ((-3 (|:| |overq| (-1165 (-407 (-563)))) (|:| |overan| (-1165 (-48))) (|:| -4244 (-112))) |#3|)) (IF (|has| |#2| (-1034 (-48))) (-15 -3604 ((-3 (-418 (-1165 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-555) (-846) (-1034 (-563))) (-430 |#1|) (-1233 |#2|)) (T -435)) +((-3604 (*1 *2 *3) (|partial| -12 (-4 *5 (-1034 (-48))) (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-4 *5 (-430 *4)) (-5 *2 (-418 (-1165 (-48)))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1233 *5)))) (-2374 (*1 *2 *3) (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-4 *5 (-430 *4)) (-5 *2 (-3 (|:| |overq| (-1165 (-407 (-563)))) (|:| |overan| (-1165 (-48))) (|:| -4244 (-112)))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1233 *5)))) (-3722 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-4 *5 (-430 *4)) (-5 *2 (-418 (-1165 (-407 (-563))))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1233 *5)))) (-3372 (*1 *2 *3) (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-4 *5 (-430 *4)) (-5 *2 (-418 *3)) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1233 *5))))) +(-10 -7 (-15 -3372 ((-418 |#3|) |#3|)) (-15 -3722 ((-3 (-418 (-1165 (-407 (-563)))) "failed") |#3|)) (-15 -2374 ((-3 (|:| |overq| (-1165 (-407 (-563)))) (|:| |overan| (-1165 (-48))) (|:| -4244 (-112))) |#3|)) (IF (|has| |#2| (-1034 (-48))) (-15 -3604 ((-3 (-418 (-1165 (-48))) "failed") |#3|)) |%noBranch|)) +((-1677 (((-112) $ $) NIL)) (-2056 (((-1151) $ (-1151)) NIL)) (-3010 (($ $ (-1151)) NIL)) (-3538 (((-1151) $) NIL)) (-1295 (((-388) (-388) (-388)) 17) (((-388) (-388)) 15)) (-3405 (($ (-388)) NIL) (($ (-388) (-1151)) NIL)) (-3348 (((-388) $) NIL)) (-3573 (((-1151) $) NIL)) (-2302 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1945 (((-1262) (-1151)) 9)) (-1661 (((-1262) (-1151)) 10)) (-3832 (((-1262)) 11)) (-1693 (((-858) $) NIL)) (-3004 (($ $) 34)) (-1718 (((-112) $ $) NIL))) +(((-436) (-13 (-364 (-388) (-1151)) (-10 -7 (-15 -1295 ((-388) (-388) (-388))) (-15 -1295 ((-388) (-388))) (-15 -1945 ((-1262) (-1151))) (-15 -1661 ((-1262) (-1151))) (-15 -3832 ((-1262)))))) (T -436)) +((-1295 (*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436)))) (-1295 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436)))) (-1945 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-436)))) (-1661 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-436)))) (-3832 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-436))))) +(-13 (-364 (-388) (-1151)) (-10 -7 (-15 -1295 ((-388) (-388) (-388))) (-15 -1295 ((-388) (-388))) (-15 -1945 ((-1262) (-1151))) (-15 -1661 ((-1262) (-1151))) (-15 -3832 ((-1262))))) +((-1677 (((-112) $ $) NIL)) (-3332 (((-3 (|:| |fst| (-434)) (|:| -3784 "void")) $) 11)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-2533 (($) 32)) (-1726 (($) 38)) (-2170 (($) 34)) (-3165 (($) 36)) (-1688 (($) 33)) (-1309 (($) 35)) (-3024 (($) 37)) (-1381 (((-112) $) 8)) (-3884 (((-640 (-948 (-563))) $) 19)) (-1707 (($ (-3 (|:| |fst| (-434)) (|:| -3784 "void")) (-640 (-1169)) (-112)) 27) (($ (-3 (|:| |fst| (-434)) (|:| -3784 "void")) (-640 (-948 (-563))) (-112)) 28)) (-1693 (((-858) $) 23) (($ (-434)) 29)) (-1718 (((-112) $ $) NIL))) +(((-437) (-13 (-1093) (-10 -8 (-15 -1693 ($ (-434))) (-15 -3332 ((-3 (|:| |fst| (-434)) (|:| -3784 "void")) $)) (-15 -3884 ((-640 (-948 (-563))) $)) (-15 -1381 ((-112) $)) (-15 -1707 ($ (-3 (|:| |fst| (-434)) (|:| -3784 "void")) (-640 (-1169)) (-112))) (-15 -1707 ($ (-3 (|:| |fst| (-434)) (|:| -3784 "void")) (-640 (-948 (-563))) (-112))) (-15 -2533 ($)) (-15 -1688 ($)) (-15 -2170 ($)) (-15 -1726 ($)) (-15 -1309 ($)) (-15 -3165 ($)) (-15 -3024 ($))))) (T -437)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-434)) (-5 *1 (-437)))) (-3332 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) (-5 *1 (-437)))) (-3884 (*1 *2 *1) (-12 (-5 *2 (-640 (-948 (-563)))) (-5 *1 (-437)))) (-1381 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-1707 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) (-5 *3 (-640 (-1169))) (-5 *4 (-112)) (-5 *1 (-437)))) (-1707 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) (-5 *3 (-640 (-948 (-563)))) (-5 *4 (-112)) (-5 *1 (-437)))) (-2533 (*1 *1) (-5 *1 (-437))) (-1688 (*1 *1) (-5 *1 (-437))) (-2170 (*1 *1) (-5 *1 (-437))) (-1726 (*1 *1) (-5 *1 (-437))) (-1309 (*1 *1) (-5 *1 (-437))) (-3165 (*1 *1) (-5 *1 (-437))) (-3024 (*1 *1) (-5 *1 (-437)))) +(-13 (-1093) (-10 -8 (-15 -1693 ($ (-434))) (-15 -3332 ((-3 (|:| |fst| (-434)) (|:| -3784 "void")) $)) (-15 -3884 ((-640 (-948 (-563))) $)) (-15 -1381 ((-112) $)) (-15 -1707 ($ (-3 (|:| |fst| (-434)) (|:| -3784 "void")) (-640 (-1169)) (-112))) (-15 -1707 ($ (-3 (|:| |fst| (-434)) (|:| -3784 "void")) (-640 (-948 (-563))) (-112))) (-15 -2533 ($)) (-15 -1688 ($)) (-15 -2170 ($)) (-15 -1726 ($)) (-15 -1309 ($)) (-15 -3165 ($)) (-15 -3024 ($)))) +((-1677 (((-112) $ $) NIL)) (-3348 (((-1169) $) 8)) (-3573 (((-1151) $) 16)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 11)) (-1718 (((-112) $ $) 13))) +(((-438 |#1|) (-13 (-1093) (-10 -8 (-15 -3348 ((-1169) $)))) (-1169)) (T -438)) +((-3348 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-438 *3)) (-14 *3 *2)))) +(-13 (-1093) (-10 -8 (-15 -3348 ((-1169) $)))) +((-1677 (((-112) $ $) NIL)) (-2918 (((-1111) $) 7)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 13)) (-1718 (((-112) $ $) 9))) +(((-439) (-13 (-1093) (-10 -8 (-15 -2918 ((-1111) $))))) (T -439)) +((-2918 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-439))))) +(-13 (-1093) (-10 -8 (-15 -2918 ((-1111) $)))) +((-2615 (((-1262) $) 7)) (-1693 (((-858) $) 8) (($ (-1257 (-694))) 14) (($ (-640 (-330))) 13) (($ (-330)) 12) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) 11))) +(((-440) (-140)) (T -440)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-1257 (-694))) (-4 *1 (-440)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-4 *1 (-440)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-440)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) (-4 *1 (-440))))) +(-13 (-395) (-10 -8 (-15 -1693 ($ (-1257 (-694)))) (-15 -1693 ($ (-640 (-330)))) (-15 -1693 ($ (-330))) (-15 -1693 ($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330)))))))) +(((-610 (-858)) . T) ((-395) . T) ((-1208) . T)) +((-2131 (((-3 $ "failed") (-1257 (-316 (-379)))) 21) (((-3 $ "failed") (-1257 (-316 (-563)))) 19) (((-3 $ "failed") (-1257 (-948 (-379)))) 17) (((-3 $ "failed") (-1257 (-948 (-563)))) 15) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 13) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 11)) (-2058 (($ (-1257 (-316 (-379)))) 22) (($ (-1257 (-316 (-563)))) 20) (($ (-1257 (-948 (-379)))) 18) (($ (-1257 (-948 (-563)))) 16) (($ (-1257 (-407 (-948 (-379))))) 14) (($ (-1257 (-407 (-948 (-563))))) 12)) (-2615 (((-1262) $) 7)) (-1693 (((-858) $) 8) (($ (-640 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) 23))) +(((-441) (-140)) (T -441)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-4 *1 (-441)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-441)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) (-4 *1 (-441)))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-1257 (-316 (-379)))) (-4 *1 (-441)))) (-2131 (*1 *1 *2) (|partial| -12 (-5 *2 (-1257 (-316 (-379)))) (-4 *1 (-441)))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-1257 (-316 (-563)))) (-4 *1 (-441)))) (-2131 (*1 *1 *2) (|partial| -12 (-5 *2 (-1257 (-316 (-563)))) (-4 *1 (-441)))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-1257 (-948 (-379)))) (-4 *1 (-441)))) (-2131 (*1 *1 *2) (|partial| -12 (-5 *2 (-1257 (-948 (-379)))) (-4 *1 (-441)))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-1257 (-948 (-563)))) (-4 *1 (-441)))) (-2131 (*1 *1 *2) (|partial| -12 (-5 *2 (-1257 (-948 (-563)))) (-4 *1 (-441)))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-1257 (-407 (-948 (-379))))) (-4 *1 (-441)))) (-2131 (*1 *1 *2) (|partial| -12 (-5 *2 (-1257 (-407 (-948 (-379))))) (-4 *1 (-441)))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-1257 (-407 (-948 (-563))))) (-4 *1 (-441)))) (-2131 (*1 *1 *2) (|partial| -12 (-5 *2 (-1257 (-407 (-948 (-563))))) (-4 *1 (-441))))) +(-13 (-395) (-10 -8 (-15 -1693 ($ (-640 (-330)))) (-15 -1693 ($ (-330))) (-15 -1693 ($ (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330)))))) (-15 -2058 ($ (-1257 (-316 (-379))))) (-15 -2131 ((-3 $ "failed") (-1257 (-316 (-379))))) (-15 -2058 ($ (-1257 (-316 (-563))))) (-15 -2131 ((-3 $ "failed") (-1257 (-316 (-563))))) (-15 -2058 ($ (-1257 (-948 (-379))))) (-15 -2131 ((-3 $ "failed") (-1257 (-948 (-379))))) (-15 -2058 ($ (-1257 (-948 (-563))))) (-15 -2131 ((-3 $ "failed") (-1257 (-948 (-563))))) (-15 -2058 ($ (-1257 (-407 (-948 (-379)))))) (-15 -2131 ((-3 $ "failed") (-1257 (-407 (-948 (-379)))))) (-15 -2058 ($ (-1257 (-407 (-948 (-563)))))) (-15 -2131 ((-3 $ "failed") (-1257 (-407 (-948 (-563)))))))) +(((-610 (-858)) . T) ((-395) . T) ((-1208) . T)) +((-2248 (((-112)) 17)) (-3956 (((-112) (-112)) 18)) (-2873 (((-112)) 13)) (-2081 (((-112) (-112)) 14)) (-3980 (((-112)) 15)) (-4295 (((-112) (-112)) 16)) (-4289 (((-917) (-917)) 21) (((-917)) 20)) (-2718 (((-767) (-640 (-2 (|:| -2174 |#1|) (|:| -4167 (-563))))) 41)) (-2121 (((-917) (-917)) 23) (((-917)) 22)) (-2763 (((-2 (|:| -2858 (-563)) (|:| -2760 (-640 |#1|))) |#1|) 61)) (-4157 (((-418 |#1|) (-2 (|:| |contp| (-563)) (|:| -2760 (-640 (-2 (|:| |irr| |#1|) (|:| -1650 (-563))))))) 126)) (-3645 (((-2 (|:| |contp| (-563)) (|:| -2760 (-640 (-2 (|:| |irr| |#1|) (|:| -1650 (-563)))))) |#1| (-112)) 152)) (-2184 (((-418 |#1|) |#1| (-767) (-767)) 165) (((-418 |#1|) |#1| (-640 (-767)) (-767)) 162) (((-418 |#1|) |#1| (-640 (-767))) 164) (((-418 |#1|) |#1| (-767)) 163) (((-418 |#1|) |#1|) 161)) (-1549 (((-3 |#1| "failed") (-917) |#1| (-640 (-767)) (-767) (-112)) 167) (((-3 |#1| "failed") (-917) |#1| (-640 (-767)) (-767)) 168) (((-3 |#1| "failed") (-917) |#1| (-640 (-767))) 170) (((-3 |#1| "failed") (-917) |#1| (-767)) 169) (((-3 |#1| "failed") (-917) |#1|) 171)) (-2174 (((-418 |#1|) |#1| (-767) (-767)) 160) (((-418 |#1|) |#1| (-640 (-767)) (-767)) 156) (((-418 |#1|) |#1| (-640 (-767))) 158) (((-418 |#1|) |#1| (-767)) 157) (((-418 |#1|) |#1|) 155)) (-2102 (((-112) |#1|) 36)) (-1753 (((-733 (-767)) (-640 (-2 (|:| -2174 |#1|) (|:| -4167 (-563))))) 66)) (-1834 (((-2 (|:| |contp| (-563)) (|:| -2760 (-640 (-2 (|:| |irr| |#1|) (|:| -1650 (-563)))))) |#1| (-112) (-1095 (-767)) (-767)) 154))) +(((-442 |#1|) (-10 -7 (-15 -4157 ((-418 |#1|) (-2 (|:| |contp| (-563)) (|:| -2760 (-640 (-2 (|:| |irr| |#1|) (|:| -1650 (-563)))))))) (-15 -1753 ((-733 (-767)) (-640 (-2 (|:| -2174 |#1|) (|:| -4167 (-563)))))) (-15 -2121 ((-917))) (-15 -2121 ((-917) (-917))) (-15 -4289 ((-917))) (-15 -4289 ((-917) (-917))) (-15 -2718 ((-767) (-640 (-2 (|:| -2174 |#1|) (|:| -4167 (-563)))))) (-15 -2763 ((-2 (|:| -2858 (-563)) (|:| -2760 (-640 |#1|))) |#1|)) (-15 -2248 ((-112))) (-15 -3956 ((-112) (-112))) (-15 -2873 ((-112))) (-15 -2081 ((-112) (-112))) (-15 -2102 ((-112) |#1|)) (-15 -3980 ((-112))) (-15 -4295 ((-112) (-112))) (-15 -2174 ((-418 |#1|) |#1|)) (-15 -2174 ((-418 |#1|) |#1| (-767))) (-15 -2174 ((-418 |#1|) |#1| (-640 (-767)))) (-15 -2174 ((-418 |#1|) |#1| (-640 (-767)) (-767))) (-15 -2174 ((-418 |#1|) |#1| (-767) (-767))) (-15 -2184 ((-418 |#1|) |#1|)) (-15 -2184 ((-418 |#1|) |#1| (-767))) (-15 -2184 ((-418 |#1|) |#1| (-640 (-767)))) (-15 -2184 ((-418 |#1|) |#1| (-640 (-767)) (-767))) (-15 -2184 ((-418 |#1|) |#1| (-767) (-767))) (-15 -1549 ((-3 |#1| "failed") (-917) |#1|)) (-15 -1549 ((-3 |#1| "failed") (-917) |#1| (-767))) (-15 -1549 ((-3 |#1| "failed") (-917) |#1| (-640 (-767)))) (-15 -1549 ((-3 |#1| "failed") (-917) |#1| (-640 (-767)) (-767))) (-15 -1549 ((-3 |#1| "failed") (-917) |#1| (-640 (-767)) (-767) (-112))) (-15 -3645 ((-2 (|:| |contp| (-563)) (|:| -2760 (-640 (-2 (|:| |irr| |#1|) (|:| -1650 (-563)))))) |#1| (-112))) (-15 -1834 ((-2 (|:| |contp| (-563)) (|:| -2760 (-640 (-2 (|:| |irr| |#1|) (|:| -1650 (-563)))))) |#1| (-112) (-1095 (-767)) (-767)))) (-1233 (-563))) (T -442)) +((-1834 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1095 (-767))) (-5 *6 (-767)) (-5 *2 (-2 (|:| |contp| (-563)) (|:| -2760 (-640 (-2 (|:| |irr| *3) (|:| -1650 (-563))))))) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-3645 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-563)) (|:| -2760 (-640 (-2 (|:| |irr| *3) (|:| -1650 (-563))))))) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-1549 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-917)) (-5 *4 (-640 (-767))) (-5 *5 (-767)) (-5 *6 (-112)) (-5 *1 (-442 *2)) (-4 *2 (-1233 (-563))))) (-1549 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-917)) (-5 *4 (-640 (-767))) (-5 *5 (-767)) (-5 *1 (-442 *2)) (-4 *2 (-1233 (-563))))) (-1549 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-917)) (-5 *4 (-640 (-767))) (-5 *1 (-442 *2)) (-4 *2 (-1233 (-563))))) (-1549 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-917)) (-5 *4 (-767)) (-5 *1 (-442 *2)) (-4 *2 (-1233 (-563))))) (-1549 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-917)) (-5 *1 (-442 *2)) (-4 *2 (-1233 (-563))))) (-2184 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2184 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-640 (-767))) (-5 *5 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2184 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-767))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2184 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2184 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2174 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2174 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-640 (-767))) (-5 *5 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2174 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-767))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2174 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2174 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-4295 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-3980 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2102 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2081 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2873 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-3956 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2248 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2763 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2858 (-563)) (|:| -2760 (-640 *3)))) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2718 (*1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| -2174 *4) (|:| -4167 (-563))))) (-4 *4 (-1233 (-563))) (-5 *2 (-767)) (-5 *1 (-442 *4)))) (-4289 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-4289 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2121 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2121 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-1753 (*1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| -2174 *4) (|:| -4167 (-563))))) (-4 *4 (-1233 (-563))) (-5 *2 (-733 (-767))) (-5 *1 (-442 *4)))) (-4157 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-563)) (|:| -2760 (-640 (-2 (|:| |irr| *4) (|:| -1650 (-563))))))) (-4 *4 (-1233 (-563))) (-5 *2 (-418 *4)) (-5 *1 (-442 *4))))) +(-10 -7 (-15 -4157 ((-418 |#1|) (-2 (|:| |contp| (-563)) (|:| -2760 (-640 (-2 (|:| |irr| |#1|) (|:| -1650 (-563)))))))) (-15 -1753 ((-733 (-767)) (-640 (-2 (|:| -2174 |#1|) (|:| -4167 (-563)))))) (-15 -2121 ((-917))) (-15 -2121 ((-917) (-917))) (-15 -4289 ((-917))) (-15 -4289 ((-917) (-917))) (-15 -2718 ((-767) (-640 (-2 (|:| -2174 |#1|) (|:| -4167 (-563)))))) (-15 -2763 ((-2 (|:| -2858 (-563)) (|:| -2760 (-640 |#1|))) |#1|)) (-15 -2248 ((-112))) (-15 -3956 ((-112) (-112))) (-15 -2873 ((-112))) (-15 -2081 ((-112) (-112))) (-15 -2102 ((-112) |#1|)) (-15 -3980 ((-112))) (-15 -4295 ((-112) (-112))) (-15 -2174 ((-418 |#1|) |#1|)) (-15 -2174 ((-418 |#1|) |#1| (-767))) (-15 -2174 ((-418 |#1|) |#1| (-640 (-767)))) (-15 -2174 ((-418 |#1|) |#1| (-640 (-767)) (-767))) (-15 -2174 ((-418 |#1|) |#1| (-767) (-767))) (-15 -2184 ((-418 |#1|) |#1|)) (-15 -2184 ((-418 |#1|) |#1| (-767))) (-15 -2184 ((-418 |#1|) |#1| (-640 (-767)))) (-15 -2184 ((-418 |#1|) |#1| (-640 (-767)) (-767))) (-15 -2184 ((-418 |#1|) |#1| (-767) (-767))) (-15 -1549 ((-3 |#1| "failed") (-917) |#1|)) (-15 -1549 ((-3 |#1| "failed") (-917) |#1| (-767))) (-15 -1549 ((-3 |#1| "failed") (-917) |#1| (-640 (-767)))) (-15 -1549 ((-3 |#1| "failed") (-917) |#1| (-640 (-767)) (-767))) (-15 -1549 ((-3 |#1| "failed") (-917) |#1| (-640 (-767)) (-767) (-112))) (-15 -3645 ((-2 (|:| |contp| (-563)) (|:| -2760 (-640 (-2 (|:| |irr| |#1|) (|:| -1650 (-563)))))) |#1| (-112))) (-15 -1834 ((-2 (|:| |contp| (-563)) (|:| -2760 (-640 (-2 (|:| |irr| |#1|) (|:| -1650 (-563)))))) |#1| (-112) (-1095 (-767)) (-767)))) +((-3509 (((-563) |#2|) 48) (((-563) |#2| (-767)) 47)) (-1515 (((-563) |#2|) 55)) (-4057 ((|#3| |#2|) 25)) (-3793 ((|#3| |#2| (-917)) 14)) (-3415 ((|#3| |#2|) 15)) (-2262 ((|#3| |#2|) 9)) (-4236 ((|#3| |#2|) 10)) (-1886 ((|#3| |#2| (-917)) 62) ((|#3| |#2|) 30)) (-3342 (((-563) |#2|) 57))) +(((-443 |#1| |#2| |#3|) (-10 -7 (-15 -3342 ((-563) |#2|)) (-15 -1886 (|#3| |#2|)) (-15 -1886 (|#3| |#2| (-917))) (-15 -1515 ((-563) |#2|)) (-15 -3509 ((-563) |#2| (-767))) (-15 -3509 ((-563) |#2|)) (-15 -3793 (|#3| |#2| (-917))) (-15 -4057 (|#3| |#2|)) (-15 -2262 (|#3| |#2|)) (-15 -4236 (|#3| |#2|)) (-15 -3415 (|#3| |#2|))) (-1045) (-1233 |#1|) (-13 (-404) (-1034 |#1|) (-363) (-1193) (-284))) (T -443)) +((-3415 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1233 *4)))) (-4236 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1233 *4)))) (-2262 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1233 *4)))) (-4057 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1233 *4)))) (-3793 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *5 (-1045)) (-4 *2 (-13 (-404) (-1034 *5) (-363) (-1193) (-284))) (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1233 *5)))) (-3509 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-5 *2 (-563)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1233 *4)) (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))))) (-3509 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-1045)) (-5 *2 (-563)) (-5 *1 (-443 *5 *3 *6)) (-4 *3 (-1233 *5)) (-4 *6 (-13 (-404) (-1034 *5) (-363) (-1193) (-284))))) (-1515 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-5 *2 (-563)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1233 *4)) (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))))) (-1886 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *5 (-1045)) (-4 *2 (-13 (-404) (-1034 *5) (-363) (-1193) (-284))) (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1233 *5)))) (-1886 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1233 *4)))) (-3342 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-5 *2 (-563)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1233 *4)) (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1193) (-284)))))) +(-10 -7 (-15 -3342 ((-563) |#2|)) (-15 -1886 (|#3| |#2|)) (-15 -1886 (|#3| |#2| (-917))) (-15 -1515 ((-563) |#2|)) (-15 -3509 ((-563) |#2| (-767))) (-15 -3509 ((-563) |#2|)) (-15 -3793 (|#3| |#2| (-917))) (-15 -4057 (|#3| |#2|)) (-15 -2262 (|#3| |#2|)) (-15 -4236 (|#3| |#2|)) (-15 -3415 (|#3| |#2|))) +((-3201 ((|#2| (-1257 |#1|)) 36)) (-2850 ((|#2| |#2| |#1|) 49)) (-3628 ((|#2| |#2| |#1|) 41)) (-4382 ((|#2| |#2|) 38)) (-2792 (((-112) |#2|) 30)) (-1297 (((-640 |#2|) (-917) (-418 |#2|)) 17)) (-1549 ((|#2| (-917) (-418 |#2|)) 21)) (-1753 (((-733 (-767)) (-418 |#2|)) 25))) +(((-444 |#1| |#2|) (-10 -7 (-15 -2792 ((-112) |#2|)) (-15 -3201 (|#2| (-1257 |#1|))) (-15 -4382 (|#2| |#2|)) (-15 -3628 (|#2| |#2| |#1|)) (-15 -2850 (|#2| |#2| |#1|)) (-15 -1753 ((-733 (-767)) (-418 |#2|))) (-15 -1549 (|#2| (-917) (-418 |#2|))) (-15 -1297 ((-640 |#2|) (-917) (-418 |#2|)))) (-1045) (-1233 |#1|)) (T -444)) +((-1297 (*1 *2 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-418 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-1045)) (-5 *2 (-640 *6)) (-5 *1 (-444 *5 *6)))) (-1549 (*1 *2 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-418 *2)) (-4 *2 (-1233 *5)) (-5 *1 (-444 *5 *2)) (-4 *5 (-1045)))) (-1753 (*1 *2 *3) (-12 (-5 *3 (-418 *5)) (-4 *5 (-1233 *4)) (-4 *4 (-1045)) (-5 *2 (-733 (-767))) (-5 *1 (-444 *4 *5)))) (-2850 (*1 *2 *2 *3) (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1233 *3)))) (-3628 (*1 *2 *2 *3) (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1233 *3)))) (-4382 (*1 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1233 *3)))) (-3201 (*1 *2 *3) (-12 (-5 *3 (-1257 *4)) (-4 *4 (-1045)) (-4 *2 (-1233 *4)) (-5 *1 (-444 *4 *2)))) (-2792 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-5 *2 (-112)) (-5 *1 (-444 *4 *3)) (-4 *3 (-1233 *4))))) +(-10 -7 (-15 -2792 ((-112) |#2|)) (-15 -3201 (|#2| (-1257 |#1|))) (-15 -4382 (|#2| |#2|)) (-15 -3628 (|#2| |#2| |#1|)) (-15 -2850 (|#2| |#2| |#1|)) (-15 -1753 ((-733 (-767)) (-418 |#2|))) (-15 -1549 (|#2| (-917) (-418 |#2|))) (-15 -1297 ((-640 |#2|) (-917) (-418 |#2|)))) +((-2159 (((-767)) 41)) (-1902 (((-767)) 23 (|has| |#1| (-404))) (((-767) (-767)) 22 (|has| |#1| (-404)))) (-1736 (((-563) |#1|) 18 (|has| |#1| (-404)))) (-4118 (((-563) |#1|) 20 (|has| |#1| (-404)))) (-1790 (((-767)) 40) (((-767) (-767)) 39)) (-3954 ((|#1| (-767) (-563)) 29)) (-2291 (((-1262)) 43))) +(((-445 |#1|) (-10 -7 (-15 -3954 (|#1| (-767) (-563))) (-15 -1790 ((-767) (-767))) (-15 -1790 ((-767))) (-15 -2159 ((-767))) (-15 -2291 ((-1262))) (IF (|has| |#1| (-404)) (PROGN (-15 -4118 ((-563) |#1|)) (-15 -1736 ((-563) |#1|)) (-15 -1902 ((-767) (-767))) (-15 -1902 ((-767)))) |%noBranch|)) (-1045)) (T -445)) +((-1902 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))) (-1902 (*1 *2 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))) (-1736 (*1 *2 *3) (-12 (-5 *2 (-563)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))) (-4118 (*1 *2 *3) (-12 (-5 *2 (-563)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))) (-2291 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))) (-2159 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))) (-1790 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))) (-1790 (*1 *2 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))) (-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-767)) (-5 *4 (-563)) (-5 *1 (-445 *2)) (-4 *2 (-1045))))) +(-10 -7 (-15 -3954 (|#1| (-767) (-563))) (-15 -1790 ((-767) (-767))) (-15 -1790 ((-767))) (-15 -2159 ((-767))) (-15 -2291 ((-1262))) (IF (|has| |#1| (-404)) (PROGN (-15 -4118 ((-563) |#1|)) (-15 -1736 ((-563) |#1|)) (-15 -1902 ((-767) (-767))) (-15 -1902 ((-767)))) |%noBranch|)) +((-3253 (((-640 (-563)) (-563)) 60)) (-2468 (((-112) (-169 (-563))) 64)) (-2174 (((-418 (-169 (-563))) (-169 (-563))) 59))) +(((-446) (-10 -7 (-15 -2174 ((-418 (-169 (-563))) (-169 (-563)))) (-15 -3253 ((-640 (-563)) (-563))) (-15 -2468 ((-112) (-169 (-563)))))) (T -446)) +((-2468 (*1 *2 *3) (-12 (-5 *3 (-169 (-563))) (-5 *2 (-112)) (-5 *1 (-446)))) (-3253 (*1 *2 *3) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-446)) (-5 *3 (-563)))) (-2174 (*1 *2 *3) (-12 (-5 *2 (-418 (-169 (-563)))) (-5 *1 (-446)) (-5 *3 (-169 (-563)))))) +(-10 -7 (-15 -2174 ((-418 (-169 (-563))) (-169 (-563)))) (-15 -3253 ((-640 (-563)) (-563))) (-15 -2468 ((-112) (-169 (-563))))) +((-1842 ((|#4| |#4| (-640 |#4|)) 60)) (-2129 (((-640 |#4|) (-640 |#4|) (-1151) (-1151)) 17) (((-640 |#4|) (-640 |#4|) (-1151)) 16) (((-640 |#4|) (-640 |#4|)) 11))) +(((-447 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1842 (|#4| |#4| (-640 |#4|))) (-15 -2129 ((-640 |#4|) (-640 |#4|))) (-15 -2129 ((-640 |#4|) (-640 |#4|) (-1151))) (-15 -2129 ((-640 |#4|) (-640 |#4|) (-1151) (-1151)))) (-307) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -447)) +((-2129 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-640 *7)) (-5 *3 (-1151)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-447 *4 *5 *6 *7)))) (-2129 (*1 *2 *2 *3) (-12 (-5 *2 (-640 *7)) (-5 *3 (-1151)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-447 *4 *5 *6 *7)))) (-2129 (*1 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-447 *3 *4 *5 *6)))) (-1842 (*1 *2 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-447 *4 *5 *6 *2))))) +(-10 -7 (-15 -1842 (|#4| |#4| (-640 |#4|))) (-15 -2129 ((-640 |#4|) (-640 |#4|))) (-15 -2129 ((-640 |#4|) (-640 |#4|) (-1151))) (-15 -2129 ((-640 |#4|) (-640 |#4|) (-1151) (-1151)))) +((-2280 (((-640 (-640 |#4|)) (-640 |#4|) (-112)) 72) (((-640 (-640 |#4|)) (-640 |#4|)) 71) (((-640 (-640 |#4|)) (-640 |#4|) (-640 |#4|) (-112)) 65) (((-640 (-640 |#4|)) (-640 |#4|) (-640 |#4|)) 66)) (-2851 (((-640 (-640 |#4|)) (-640 |#4|) (-112)) 41) (((-640 (-640 |#4|)) (-640 |#4|)) 62))) +(((-448 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2851 ((-640 (-640 |#4|)) (-640 |#4|))) (-15 -2851 ((-640 (-640 |#4|)) (-640 |#4|) (-112))) (-15 -2280 ((-640 (-640 |#4|)) (-640 |#4|) (-640 |#4|))) (-15 -2280 ((-640 (-640 |#4|)) (-640 |#4|) (-640 |#4|) (-112))) (-15 -2280 ((-640 (-640 |#4|)) (-640 |#4|))) (-15 -2280 ((-640 (-640 |#4|)) (-640 |#4|) (-112)))) (-13 (-307) (-147)) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -448)) +((-2280 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-640 (-640 *8))) (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-640 *8)))) (-2280 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-640 (-640 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-640 *7)))) (-2280 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-640 (-640 *8))) (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-640 *8)))) (-2280 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-640 (-640 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-640 *7)))) (-2851 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-640 (-640 *8))) (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-640 *8)))) (-2851 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-640 (-640 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-640 *7))))) +(-10 -7 (-15 -2851 ((-640 (-640 |#4|)) (-640 |#4|))) (-15 -2851 ((-640 (-640 |#4|)) (-640 |#4|) (-112))) (-15 -2280 ((-640 (-640 |#4|)) (-640 |#4|) (-640 |#4|))) (-15 -2280 ((-640 (-640 |#4|)) (-640 |#4|) (-640 |#4|) (-112))) (-15 -2280 ((-640 (-640 |#4|)) (-640 |#4|))) (-15 -2280 ((-640 (-640 |#4|)) (-640 |#4|) (-112)))) +((-2275 (((-767) |#4|) 12)) (-3516 (((-640 (-2 (|:| |totdeg| (-767)) (|:| -1574 |#4|))) |#4| (-767) (-640 (-2 (|:| |totdeg| (-767)) (|:| -1574 |#4|)))) 31)) (-1318 (((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-3828 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 38)) (-2293 ((|#4| |#4| (-640 |#4|)) 39)) (-4181 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-640 |#4|)) 69)) (-1399 (((-1262) |#4|) 41)) (-1865 (((-1262) (-640 |#4|)) 50)) (-1715 (((-563) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-563) (-563) (-563)) 47)) (-3879 (((-1262) (-563)) 78)) (-2395 (((-640 |#4|) (-640 |#4|)) 76)) (-3623 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-767)) (|:| -1574 |#4|)) |#4| (-767)) 25)) (-2897 (((-563) |#4|) 77)) (-3510 ((|#4| |#4|) 29)) (-3184 (((-640 |#4|) (-640 |#4|) (-563) (-563)) 55)) (-2710 (((-563) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-563) (-563) (-563) (-563)) 88)) (-4159 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-2214 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 58)) (-1714 (((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 57)) (-1782 (((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 35)) (-2027 (((-112) |#2| |#2|) 56)) (-3546 (((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-2258 (((-112) |#2| |#2| |#2| |#2|) 59)) (-3300 ((|#4| |#4| (-640 |#4|)) 70))) +(((-449 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3300 (|#4| |#4| (-640 |#4|))) (-15 -2293 (|#4| |#4| (-640 |#4|))) (-15 -3184 ((-640 |#4|) (-640 |#4|) (-563) (-563))) (-15 -2214 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2027 ((-112) |#2| |#2|)) (-15 -2258 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3546 ((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1782 ((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1714 ((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4181 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-640 |#4|))) (-15 -3510 (|#4| |#4|)) (-15 -3516 ((-640 (-2 (|:| |totdeg| (-767)) (|:| -1574 |#4|))) |#4| (-767) (-640 (-2 (|:| |totdeg| (-767)) (|:| -1574 |#4|))))) (-15 -3828 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1318 ((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2395 ((-640 |#4|) (-640 |#4|))) (-15 -2897 ((-563) |#4|)) (-15 -1399 ((-1262) |#4|)) (-15 -1715 ((-563) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-563) (-563) (-563))) (-15 -2710 ((-563) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-563) (-563) (-563) (-563))) (-15 -1865 ((-1262) (-640 |#4|))) (-15 -3879 ((-1262) (-563))) (-15 -4159 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3623 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-767)) (|:| -1574 |#4|)) |#4| (-767))) (-15 -2275 ((-767) |#4|))) (-452) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -449)) +((-2275 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-767)) (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))) (-3623 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-767)) (|:| -1574 *4))) (-5 *5 (-767)) (-4 *4 (-945 *6 *7 *8)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-449 *6 *7 *8 *4)))) (-4159 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-789)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7)))) (-3879 (*1 *2 *3) (-12 (-5 *3 (-563)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1262)) (-5 *1 (-449 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6)))) (-1865 (*1 *2 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1262)) (-5 *1 (-449 *4 *5 *6 *7)))) (-2710 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-767)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-789)) (-4 *4 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-846)) (-5 *1 (-449 *5 *6 *7 *4)))) (-1715 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-767)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-789)) (-4 *4 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-846)) (-5 *1 (-449 *5 *6 *7 *4)))) (-1399 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1262)) (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))) (-2897 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-563)) (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))) (-2395 (*1 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-449 *3 *4 *5 *6)))) (-1318 (*1 *2 *2 *2) (-12 (-5 *2 (-640 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-767)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-789)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-846)) (-5 *1 (-449 *3 *4 *5 *6)))) (-3828 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-789)) (-4 *2 (-945 *4 *5 *6)) (-5 *1 (-449 *4 *5 *6 *2)) (-4 *4 (-452)) (-4 *6 (-846)))) (-3516 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-640 (-2 (|:| |totdeg| (-767)) (|:| -1574 *3)))) (-5 *4 (-767)) (-4 *3 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-449 *5 *6 *7 *3)))) (-3510 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-449 *3 *4 *5 *2)) (-4 *2 (-945 *3 *4 *5)))) (-4181 (*1 *2 *3 *4) (-12 (-5 *4 (-640 *3)) (-4 *3 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-449 *5 *6 *7 *3)))) (-1714 (*1 *2 *3 *2) (-12 (-5 *2 (-640 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-767)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-789)) (-4 *6 (-945 *4 *3 *5)) (-4 *4 (-452)) (-4 *5 (-846)) (-5 *1 (-449 *4 *3 *5 *6)))) (-1782 (*1 *2 *2) (-12 (-5 *2 (-640 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-767)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-789)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-846)) (-5 *1 (-449 *3 *4 *5 *6)))) (-3546 (*1 *2 *3 *2) (-12 (-5 *2 (-640 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-789)) (-4 *3 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846)) (-5 *1 (-449 *4 *5 *6 *3)))) (-2258 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-452)) (-4 *3 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-945 *4 *3 *5)))) (-2027 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *3 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-945 *4 *3 *5)))) (-2214 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-789)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7)))) (-3184 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-640 *7)) (-5 *3 (-563)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-449 *4 *5 *6 *7)))) (-2293 (*1 *2 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-449 *4 *5 *6 *2)))) (-3300 (*1 *2 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-449 *4 *5 *6 *2))))) +(-10 -7 (-15 -3300 (|#4| |#4| (-640 |#4|))) (-15 -2293 (|#4| |#4| (-640 |#4|))) (-15 -3184 ((-640 |#4|) (-640 |#4|) (-563) (-563))) (-15 -2214 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2027 ((-112) |#2| |#2|)) (-15 -2258 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3546 ((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1782 ((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1714 ((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4181 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-640 |#4|))) (-15 -3510 (|#4| |#4|)) (-15 -3516 ((-640 (-2 (|:| |totdeg| (-767)) (|:| -1574 |#4|))) |#4| (-767) (-640 (-2 (|:| |totdeg| (-767)) (|:| -1574 |#4|))))) (-15 -3828 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1318 ((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2395 ((-640 |#4|) (-640 |#4|))) (-15 -2897 ((-563) |#4|)) (-15 -1399 ((-1262) |#4|)) (-15 -1715 ((-563) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-563) (-563) (-563))) (-15 -2710 ((-563) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-563) (-563) (-563) (-563))) (-15 -1865 ((-1262) (-640 |#4|))) (-15 -3879 ((-1262) (-563))) (-15 -4159 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3623 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-767)) (|:| -1574 |#4|)) |#4| (-767))) (-15 -2275 ((-767) |#4|))) +((-3029 ((|#4| |#4| (-640 |#4|)) 22 (|has| |#1| (-363)))) (-4059 (((-640 |#4|) (-640 |#4|) (-1151) (-1151)) 41) (((-640 |#4|) (-640 |#4|) (-1151)) 40) (((-640 |#4|) (-640 |#4|)) 35))) +(((-450 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4059 ((-640 |#4|) (-640 |#4|))) (-15 -4059 ((-640 |#4|) (-640 |#4|) (-1151))) (-15 -4059 ((-640 |#4|) (-640 |#4|) (-1151) (-1151))) (IF (|has| |#1| (-363)) (-15 -3029 (|#4| |#4| (-640 |#4|))) |%noBranch|)) (-452) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -450)) +((-3029 (*1 *2 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-363)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-450 *4 *5 *6 *2)))) (-4059 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-640 *7)) (-5 *3 (-1151)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-450 *4 *5 *6 *7)))) (-4059 (*1 *2 *2 *3) (-12 (-5 *2 (-640 *7)) (-5 *3 (-1151)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-450 *4 *5 *6 *7)))) (-4059 (*1 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-450 *3 *4 *5 *6))))) +(-10 -7 (-15 -4059 ((-640 |#4|) (-640 |#4|))) (-15 -4059 ((-640 |#4|) (-640 |#4|) (-1151))) (-15 -4059 ((-640 |#4|) (-640 |#4|) (-1151) (-1151))) (IF (|has| |#1| (-363)) (-15 -3029 (|#4| |#4| (-640 |#4|))) |%noBranch|)) +((-3513 (($ $ $) 14) (($ (-640 $)) 21)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 41)) (-3548 (($ $ $) NIL) (($ (-640 $)) 22))) +(((-451 |#1|) (-10 -8 (-15 -3385 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -3513 (|#1| (-640 |#1|))) (-15 -3513 (|#1| |#1| |#1|)) (-15 -3548 (|#1| (-640 |#1|))) (-15 -3548 (|#1| |#1| |#1|))) (-452)) (T -451)) +NIL +(-10 -8 (-15 -3385 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -3513 (|#1| (-640 |#1|))) (-15 -3513 (|#1| |#1| |#1|)) (-15 -3548 (|#1| (-640 |#1|))) (-15 -3548 (|#1| |#1| |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 42)) (-4223 (($ $) 41)) (-3156 (((-112) $) 39)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-3400 (((-3 $ "failed") $) 33)) (-3827 (((-112) $) 31)) (-3513 (($ $ $) 47) (($ (-640 $)) 46)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3548 (($ $ $) 49) (($ (-640 $)) 48)) (-3008 (((-3 $ "failed") $ $) 43)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ $) 44)) (-1675 (((-767)) 28)) (-2126 (((-112) $ $) 40)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) +(((-452) (-140)) (T -452)) +((-3548 (*1 *1 *1 *1) (-4 *1 (-452))) (-3548 (*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-452)))) (-3513 (*1 *1 *1 *1) (-4 *1 (-452))) (-3513 (*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-452)))) (-3385 (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *1)) (-4 *1 (-452))))) +(-13 (-555) (-10 -8 (-15 -3548 ($ $ $)) (-15 -3548 ($ (-640 $))) (-15 -3513 ($ $ $)) (-15 -3513 ($ (-640 $))) (-15 -3385 ((-1165 $) (-1165 $) (-1165 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-290) . T) ((-555) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1414 (((-3 $ "failed")) NIL (|has| (-407 (-948 |#1|)) (-555)))) (-1495 (((-3 $ "failed") $ $) NIL)) (-3507 (((-1257 (-684 (-407 (-948 |#1|)))) (-1257 $)) NIL) (((-1257 (-684 (-407 (-948 |#1|))))) NIL)) (-1438 (((-1257 $)) NIL)) (-4239 (($) NIL T CONST)) (-2133 (((-3 (-2 (|:| |particular| $) (|:| -4315 (-640 $))) "failed")) NIL)) (-2435 (((-3 $ "failed")) NIL (|has| (-407 (-948 |#1|)) (-555)))) (-4220 (((-684 (-407 (-948 |#1|))) (-1257 $)) NIL) (((-684 (-407 (-948 |#1|)))) NIL)) (-2480 (((-407 (-948 |#1|)) $) NIL)) (-3043 (((-684 (-407 (-948 |#1|))) $ (-1257 $)) NIL) (((-684 (-407 (-948 |#1|))) $) NIL)) (-4154 (((-3 $ "failed") $) NIL (|has| (-407 (-948 |#1|)) (-555)))) (-3451 (((-1165 (-948 (-407 (-948 |#1|))))) NIL (|has| (-407 (-948 |#1|)) (-363))) (((-1165 (-407 (-948 |#1|)))) 84 (|has| |#1| (-555)))) (-2300 (($ $ (-917)) NIL)) (-3830 (((-407 (-948 |#1|)) $) NIL)) (-3763 (((-1165 (-407 (-948 |#1|))) $) 82 (|has| (-407 (-948 |#1|)) (-555)))) (-1824 (((-407 (-948 |#1|)) (-1257 $)) NIL) (((-407 (-948 |#1|))) NIL)) (-2876 (((-1165 (-407 (-948 |#1|))) $) NIL)) (-2182 (((-112)) NIL)) (-3937 (($ (-1257 (-407 (-948 |#1|))) (-1257 $)) 103) (($ (-1257 (-407 (-948 |#1|)))) NIL)) (-3400 (((-3 $ "failed") $) NIL (|has| (-407 (-948 |#1|)) (-555)))) (-2522 (((-917)) NIL)) (-2250 (((-112)) NIL)) (-2287 (($ $ (-917)) NIL)) (-3901 (((-112)) NIL)) (-3308 (((-112)) NIL)) (-3104 (((-112)) NIL)) (-2284 (((-3 (-2 (|:| |particular| $) (|:| -4315 (-640 $))) "failed")) NIL)) (-2508 (((-3 $ "failed")) NIL (|has| (-407 (-948 |#1|)) (-555)))) (-2328 (((-684 (-407 (-948 |#1|))) (-1257 $)) NIL) (((-684 (-407 (-948 |#1|)))) NIL)) (-2842 (((-407 (-948 |#1|)) $) NIL)) (-1823 (((-684 (-407 (-948 |#1|))) $ (-1257 $)) NIL) (((-684 (-407 (-948 |#1|))) $) NIL)) (-3856 (((-3 $ "failed") $) NIL (|has| (-407 (-948 |#1|)) (-555)))) (-3594 (((-1165 (-948 (-407 (-948 |#1|))))) NIL (|has| (-407 (-948 |#1|)) (-363))) (((-1165 (-407 (-948 |#1|)))) 83 (|has| |#1| (-555)))) (-1494 (($ $ (-917)) NIL)) (-2199 (((-407 (-948 |#1|)) $) NIL)) (-2604 (((-1165 (-407 (-948 |#1|))) $) 77 (|has| (-407 (-948 |#1|)) (-555)))) (-4111 (((-407 (-948 |#1|)) (-1257 $)) NIL) (((-407 (-948 |#1|))) NIL)) (-2665 (((-1165 (-407 (-948 |#1|))) $) NIL)) (-4012 (((-112)) NIL)) (-3573 (((-1151) $) NIL)) (-2136 (((-112)) NIL)) (-1789 (((-112)) NIL)) (-2047 (((-112)) NIL)) (-1694 (((-1113) $) NIL)) (-4303 (((-407 (-948 |#1|)) $ $) 71 (|has| |#1| (-555)))) (-1382 (((-407 (-948 |#1|)) $) 93 (|has| |#1| (-555)))) (-3074 (((-407 (-948 |#1|)) $) 95 (|has| |#1| (-555)))) (-3061 (((-1165 (-407 (-948 |#1|))) $) 88 (|has| |#1| (-555)))) (-3488 (((-407 (-948 |#1|))) 72 (|has| |#1| (-555)))) (-2605 (((-407 (-948 |#1|)) $ $) 64 (|has| |#1| (-555)))) (-2232 (((-407 (-948 |#1|)) $) 92 (|has| |#1| (-555)))) (-1875 (((-407 (-948 |#1|)) $) 94 (|has| |#1| (-555)))) (-2436 (((-1165 (-407 (-948 |#1|))) $) 87 (|has| |#1| (-555)))) (-4123 (((-407 (-948 |#1|))) 68 (|has| |#1| (-555)))) (-4263 (($) 101) (($ (-1169)) 107) (($ (-1257 (-1169))) 106) (($ (-1257 $)) 96) (($ (-1169) (-1257 $)) 105) (($ (-1257 (-1169)) (-1257 $)) 104)) (-4084 (((-112)) NIL)) (-2309 (((-407 (-948 |#1|)) $ (-563)) NIL)) (-1880 (((-1257 (-407 (-948 |#1|))) $ (-1257 $)) 98) (((-684 (-407 (-948 |#1|))) (-1257 $) (-1257 $)) NIL) (((-1257 (-407 (-948 |#1|))) $) 40) (((-684 (-407 (-948 |#1|))) (-1257 $)) NIL)) (-2220 (((-1257 (-407 (-948 |#1|))) $) NIL) (($ (-1257 (-407 (-948 |#1|)))) 37)) (-4152 (((-640 (-948 (-407 (-948 |#1|)))) (-1257 $)) NIL) (((-640 (-948 (-407 (-948 |#1|))))) NIL) (((-640 (-948 |#1|)) (-1257 $)) 99 (|has| |#1| (-555))) (((-640 (-948 |#1|))) 100 (|has| |#1| (-555)))) (-2146 (($ $ $) NIL)) (-1936 (((-112)) NIL)) (-1693 (((-858) $) NIL) (($ (-1257 (-407 (-948 |#1|)))) NIL)) (-4315 (((-1257 $)) 60)) (-2138 (((-640 (-1257 (-407 (-948 |#1|))))) NIL (|has| (-407 (-948 |#1|)) (-555)))) (-1361 (($ $ $ $) NIL)) (-1402 (((-112)) NIL)) (-3726 (($ (-684 (-407 (-948 |#1|))) $) NIL)) (-3399 (($ $ $) NIL)) (-2483 (((-112)) NIL)) (-3777 (((-112)) NIL)) (-2128 (((-112)) NIL)) (-2241 (($) NIL T CONST)) (-1718 (((-112) $ $) NIL)) (-1826 (($ $) NIL) (($ $ $) 97)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 56) (($ $ (-407 (-948 |#1|))) NIL) (($ (-407 (-948 |#1|)) $) NIL) (($ (-1135 |#2| (-407 (-948 |#1|))) $) NIL))) +(((-453 |#1| |#2| |#3| |#4|) (-13 (-417 (-407 (-948 |#1|))) (-643 (-1135 |#2| (-407 (-948 |#1|)))) (-10 -8 (-15 -1693 ($ (-1257 (-407 (-948 |#1|))))) (-15 -2284 ((-3 (-2 (|:| |particular| $) (|:| -4315 (-640 $))) "failed"))) (-15 -2133 ((-3 (-2 (|:| |particular| $) (|:| -4315 (-640 $))) "failed"))) (-15 -4263 ($)) (-15 -4263 ($ (-1169))) (-15 -4263 ($ (-1257 (-1169)))) (-15 -4263 ($ (-1257 $))) (-15 -4263 ($ (-1169) (-1257 $))) (-15 -4263 ($ (-1257 (-1169)) (-1257 $))) (IF (|has| |#1| (-555)) (PROGN (-15 -3594 ((-1165 (-407 (-948 |#1|))))) (-15 -2436 ((-1165 (-407 (-948 |#1|))) $)) (-15 -2232 ((-407 (-948 |#1|)) $)) (-15 -1875 ((-407 (-948 |#1|)) $)) (-15 -3451 ((-1165 (-407 (-948 |#1|))))) (-15 -3061 ((-1165 (-407 (-948 |#1|))) $)) (-15 -1382 ((-407 (-948 |#1|)) $)) (-15 -3074 ((-407 (-948 |#1|)) $)) (-15 -2605 ((-407 (-948 |#1|)) $ $)) (-15 -4123 ((-407 (-948 |#1|)))) (-15 -4303 ((-407 (-948 |#1|)) $ $)) (-15 -3488 ((-407 (-948 |#1|)))) (-15 -4152 ((-640 (-948 |#1|)) (-1257 $))) (-15 -4152 ((-640 (-948 |#1|))))) |%noBranch|))) (-172) (-917) (-640 (-1169)) (-1257 (-684 |#1|))) (T -453)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-1257 (-407 (-948 *3)))) (-4 *3 (-172)) (-14 *6 (-1257 (-684 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))))) (-2284 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-453 *3 *4 *5 *6)) (|:| -4315 (-640 (-453 *3 *4 *5 *6))))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-2133 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-453 *3 *4 *5 *6)) (|:| -4315 (-640 (-453 *3 *4 *5 *6))))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-4263 (*1 *1) (-12 (-5 *1 (-453 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-917)) (-14 *4 (-640 (-1169))) (-14 *5 (-1257 (-684 *2))))) (-4263 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 *2)) (-14 *6 (-1257 (-684 *3))))) (-4263 (*1 *1 *2) (-12 (-5 *2 (-1257 (-1169))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-4263 (*1 *1 *2) (-12 (-5 *2 (-1257 (-453 *3 *4 *5 *6))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-4263 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-453 *4 *5 *6 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-917)) (-14 *6 (-640 *2)) (-14 *7 (-1257 (-684 *4))))) (-4263 (*1 *1 *2 *3) (-12 (-5 *2 (-1257 (-1169))) (-5 *3 (-1257 (-453 *4 *5 *6 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-917)) (-14 *6 (-640 (-1169))) (-14 *7 (-1257 (-684 *4))))) (-3594 (*1 *2) (-12 (-5 *2 (-1165 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-2436 (*1 *2 *1) (-12 (-5 *2 (-1165 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-2232 (*1 *2 *1) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-1875 (*1 *2 *1) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-3451 (*1 *2) (-12 (-5 *2 (-1165 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-3061 (*1 *2 *1) (-12 (-5 *2 (-1165 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-3074 (*1 *2 *1) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-2605 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-4123 (*1 *2) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-4303 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-3488 (*1 *2) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-4152 (*1 *2 *3) (-12 (-5 *3 (-1257 (-453 *4 *5 *6 *7))) (-5 *2 (-640 (-948 *4))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-555)) (-4 *4 (-172)) (-14 *5 (-917)) (-14 *6 (-640 (-1169))) (-14 *7 (-1257 (-684 *4))))) (-4152 (*1 *2) (-12 (-5 *2 (-640 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3)))))) +(-13 (-417 (-407 (-948 |#1|))) (-643 (-1135 |#2| (-407 (-948 |#1|)))) (-10 -8 (-15 -1693 ($ (-1257 (-407 (-948 |#1|))))) (-15 -2284 ((-3 (-2 (|:| |particular| $) (|:| -4315 (-640 $))) "failed"))) (-15 -2133 ((-3 (-2 (|:| |particular| $) (|:| -4315 (-640 $))) "failed"))) (-15 -4263 ($)) (-15 -4263 ($ (-1169))) (-15 -4263 ($ (-1257 (-1169)))) (-15 -4263 ($ (-1257 $))) (-15 -4263 ($ (-1169) (-1257 $))) (-15 -4263 ($ (-1257 (-1169)) (-1257 $))) (IF (|has| |#1| (-555)) (PROGN (-15 -3594 ((-1165 (-407 (-948 |#1|))))) (-15 -2436 ((-1165 (-407 (-948 |#1|))) $)) (-15 -2232 ((-407 (-948 |#1|)) $)) (-15 -1875 ((-407 (-948 |#1|)) $)) (-15 -3451 ((-1165 (-407 (-948 |#1|))))) (-15 -3061 ((-1165 (-407 (-948 |#1|))) $)) (-15 -1382 ((-407 (-948 |#1|)) $)) (-15 -3074 ((-407 (-948 |#1|)) $)) (-15 -2605 ((-407 (-948 |#1|)) $ $)) (-15 -4123 ((-407 (-948 |#1|)))) (-15 -4303 ((-407 (-948 |#1|)) $ $)) (-15 -3488 ((-407 (-948 |#1|)))) (-15 -4152 ((-640 (-948 |#1|)) (-1257 $))) (-15 -4152 ((-640 (-948 |#1|))))) |%noBranch|))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) 13)) (-2606 (((-640 (-860 |#1|)) $) 74)) (-2139 (((-1165 $) $ (-860 |#1|)) 46) (((-1165 |#2|) $) 117)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#2| (-555)))) (-4223 (($ $) NIL (|has| |#2| (-555)))) (-3156 (((-112) $) NIL (|has| |#2| (-555)))) (-1779 (((-767) $) 21) (((-767) $ (-640 (-860 |#1|))) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-2424 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-4335 (($ $) NIL (|has| |#2| (-452)))) (-3205 (((-418 $) $) NIL (|has| |#2| (-452)))) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#2| "failed") $) 44) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#2| (-1034 (-563)))) (((-3 (-860 |#1|) "failed") $) NIL)) (-2058 ((|#2| $) 42) (((-407 (-563)) $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#2| (-1034 (-563)))) (((-860 |#1|) $) NIL)) (-2742 (($ $ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-3483 (($ $ (-640 (-563))) 79)) (-2751 (($ $) 67)) (-2950 (((-684 (-563)) (-684 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -2835 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL) (((-684 |#2|) (-684 $)) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-1300 (($ $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-2739 (((-640 $) $) NIL)) (-2468 (((-112) $) NIL (|has| |#2| (-905)))) (-3554 (($ $ |#2| |#3| $) NIL)) (-3787 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-563))) (|has| |#2| (-882 (-563)))))) (-3827 (((-112) $) NIL)) (-4096 (((-767) $) 58)) (-2596 (($ (-1165 |#2|) (-860 |#1|)) 122) (($ (-1165 $) (-860 |#1|)) 52)) (-1368 (((-640 $) $) NIL)) (-3920 (((-112) $) 59)) (-2588 (($ |#2| |#3|) 28) (($ $ (-860 |#1|) (-767)) 30) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-2625 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $ (-860 |#1|)) NIL)) (-2048 ((|#3| $) NIL) (((-767) $ (-860 |#1|)) 50) (((-640 (-767)) $ (-640 (-860 |#1|))) 57)) (-3084 (($ $ $) NIL (|has| |#2| (-846)))) (-1777 (($ $ $) NIL (|has| |#2| (-846)))) (-2803 (($ (-1 |#3| |#3|) $) NIL)) (-2240 (($ (-1 |#2| |#2|) $) NIL)) (-4234 (((-3 (-860 |#1|) "failed") $) 39)) (-2716 (($ $) NIL)) (-2726 ((|#2| $) 41)) (-3513 (($ (-640 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3573 (((-1151) $) NIL)) (-3733 (((-3 (-640 $) "failed") $) NIL)) (-2919 (((-3 (-640 $) "failed") $) NIL)) (-4086 (((-3 (-2 (|:| |var| (-860 |#1|)) (|:| -1654 (-767))) "failed") $) NIL)) (-1694 (((-1113) $) NIL)) (-2696 (((-112) $) 40)) (-2706 ((|#2| $) 115)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#2| (-452)))) (-3548 (($ (-640 $)) NIL (|has| |#2| (-452))) (($ $ $) 127 (|has| |#2| (-452)))) (-1876 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-3116 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2174 (((-418 $) $) NIL (|has| |#2| (-905)))) (-3008 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-555))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-555)))) (-1540 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-860 |#1|) |#2|) 86) (($ $ (-640 (-860 |#1|)) (-640 |#2|)) 89) (($ $ (-860 |#1|) $) 84) (($ $ (-640 (-860 |#1|)) (-640 $)) 105)) (-2315 (($ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-4202 (($ $ (-860 |#1|)) 53) (($ $ (-640 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-4167 ((|#3| $) 66) (((-767) $ (-860 |#1|)) 37) (((-640 (-767)) $ (-640 (-860 |#1|))) 56)) (-2220 (((-888 (-379)) $) NIL (-12 (|has| (-860 |#1|) (-611 (-888 (-379)))) (|has| |#2| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| (-860 |#1|) (-611 (-888 (-563)))) (|has| |#2| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| (-860 |#1|) (-611 (-536))) (|has| |#2| (-611 (-536)))))) (-1836 ((|#2| $) 124 (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905))))) (-1693 (((-858) $) 144) (($ (-563)) NIL) (($ |#2|) 85) (($ (-860 |#1|)) 31) (($ (-407 (-563))) NIL (-4032 (|has| |#2| (-38 (-407 (-563)))) (|has| |#2| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#2| (-555)))) (-1337 (((-640 |#2|) $) NIL)) (-4319 ((|#2| $ |#3|) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-2779 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#2| (-145))))) (-1675 (((-767)) NIL)) (-2793 (($ $ $ (-767)) NIL (|has| |#2| (-172)))) (-2126 (((-112) $ $) NIL (|has| |#2| (-555)))) (-2241 (($) 17 T CONST)) (-2254 (($) 25 T CONST)) (-3209 (($ $ (-860 |#1|)) NIL) (($ $ (-640 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-1778 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1756 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1744 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1837 (($ $ |#2|) 64 (|has| |#2| (-363)))) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) 110)) (** (($ $ (-917)) NIL) (($ $ (-767)) 108)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 29) (($ $ (-407 (-563))) NIL (|has| |#2| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#2| (-38 (-407 (-563))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) +(((-454 |#1| |#2| |#3|) (-13 (-945 |#2| |#3| (-860 |#1|)) (-10 -8 (-15 -3483 ($ $ (-640 (-563)))))) (-640 (-1169)) (-1045) (-238 (-3608 |#1|) (-767))) (T -454)) +((-3483 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-563))) (-14 *3 (-640 (-1169))) (-5 *1 (-454 *3 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-238 (-3608 *3) (-767)))))) +(-13 (-945 |#2| |#3| (-860 |#1|)) (-10 -8 (-15 -3483 ($ $ (-640 (-563)))))) +((-1855 (((-112) |#1| (-640 |#2|)) 68)) (-3128 (((-3 (-1257 (-640 |#2|)) "failed") (-767) |#1| (-640 |#2|)) 77)) (-1506 (((-3 (-640 |#2|) "failed") |#2| |#1| (-1257 (-640 |#2|))) 79)) (-2472 ((|#2| |#2| |#1|) 28)) (-1887 (((-767) |#2| (-640 |#2|)) 20))) +(((-455 |#1| |#2|) (-10 -7 (-15 -2472 (|#2| |#2| |#1|)) (-15 -1887 ((-767) |#2| (-640 |#2|))) (-15 -3128 ((-3 (-1257 (-640 |#2|)) "failed") (-767) |#1| (-640 |#2|))) (-15 -1506 ((-3 (-640 |#2|) "failed") |#2| |#1| (-1257 (-640 |#2|)))) (-15 -1855 ((-112) |#1| (-640 |#2|)))) (-307) (-1233 |#1|)) (T -455)) +((-1855 (*1 *2 *3 *4) (-12 (-5 *4 (-640 *5)) (-4 *5 (-1233 *3)) (-4 *3 (-307)) (-5 *2 (-112)) (-5 *1 (-455 *3 *5)))) (-1506 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1257 (-640 *3))) (-4 *4 (-307)) (-5 *2 (-640 *3)) (-5 *1 (-455 *4 *3)) (-4 *3 (-1233 *4)))) (-3128 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-767)) (-4 *4 (-307)) (-4 *6 (-1233 *4)) (-5 *2 (-1257 (-640 *6))) (-5 *1 (-455 *4 *6)) (-5 *5 (-640 *6)))) (-1887 (*1 *2 *3 *4) (-12 (-5 *4 (-640 *3)) (-4 *3 (-1233 *5)) (-4 *5 (-307)) (-5 *2 (-767)) (-5 *1 (-455 *5 *3)))) (-2472 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1233 *3))))) +(-10 -7 (-15 -2472 (|#2| |#2| |#1|)) (-15 -1887 ((-767) |#2| (-640 |#2|))) (-15 -3128 ((-3 (-1257 (-640 |#2|)) "failed") (-767) |#1| (-640 |#2|))) (-15 -1506 ((-3 (-640 |#2|) "failed") |#2| |#1| (-1257 (-640 |#2|)))) (-15 -1855 ((-112) |#1| (-640 |#2|)))) +((-2174 (((-418 |#5|) |#5|) 24))) +(((-456 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2174 ((-418 |#5|) |#5|))) (-13 (-846) (-10 -8 (-15 -2220 ((-1169) $)) (-15 -2518 ((-3 $ "failed") (-1169))))) (-789) (-555) (-555) (-945 |#4| |#2| |#1|)) (T -456)) +((-2174 (*1 *2 *3) (-12 (-4 *4 (-13 (-846) (-10 -8 (-15 -2220 ((-1169) $)) (-15 -2518 ((-3 $ "failed") (-1169)))))) (-4 *5 (-789)) (-4 *7 (-555)) (-5 *2 (-418 *3)) (-5 *1 (-456 *4 *5 *6 *7 *3)) (-4 *6 (-555)) (-4 *3 (-945 *7 *5 *4))))) +(-10 -7 (-15 -2174 ((-418 |#5|) |#5|))) +((-2632 ((|#3|) 37)) (-3385 (((-1165 |#4|) (-1165 |#4|) (-1165 |#4|)) 33))) +(((-457 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3385 ((-1165 |#4|) (-1165 |#4|) (-1165 |#4|))) (-15 -2632 (|#3|))) (-789) (-846) (-905) (-945 |#3| |#1| |#2|)) (T -457)) +((-2632 (*1 *2) (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-905)) (-5 *1 (-457 *3 *4 *2 *5)) (-4 *5 (-945 *2 *3 *4)))) (-3385 (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *6)) (-4 *6 (-945 *5 *3 *4)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-905)) (-5 *1 (-457 *3 *4 *5 *6))))) +(-10 -7 (-15 -3385 ((-1165 |#4|) (-1165 |#4|) (-1165 |#4|))) (-15 -2632 (|#3|))) +((-2174 (((-418 (-1165 |#1|)) (-1165 |#1|)) 43))) +(((-458 |#1|) (-10 -7 (-15 -2174 ((-418 (-1165 |#1|)) (-1165 |#1|)))) (-307)) (T -458)) +((-2174 (*1 *2 *3) (-12 (-4 *4 (-307)) (-5 *2 (-418 (-1165 *4))) (-5 *1 (-458 *4)) (-5 *3 (-1165 *4))))) +(-10 -7 (-15 -2174 ((-418 (-1165 |#1|)) (-1165 |#1|)))) +((-2652 (((-52) |#2| (-1169) (-294 |#2|) (-1224 (-767))) 42) (((-52) (-1 |#2| (-563)) (-294 |#2|) (-1224 (-767))) 41) (((-52) |#2| (-1169) (-294 |#2|)) 35) (((-52) (-1 |#2| (-563)) (-294 |#2|)) 28)) (-3045 (((-52) |#2| (-1169) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563))) 80) (((-52) (-1 |#2| (-407 (-563))) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563))) 79) (((-52) |#2| (-1169) (-294 |#2|) (-1224 (-563))) 78) (((-52) (-1 |#2| (-563)) (-294 |#2|) (-1224 (-563))) 77) (((-52) |#2| (-1169) (-294 |#2|)) 72) (((-52) (-1 |#2| (-563)) (-294 |#2|)) 71)) (-2670 (((-52) |#2| (-1169) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563))) 66) (((-52) (-1 |#2| (-407 (-563))) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563))) 64)) (-2660 (((-52) |#2| (-1169) (-294 |#2|) (-1224 (-563))) 48) (((-52) (-1 |#2| (-563)) (-294 |#2|) (-1224 (-563))) 47))) +(((-459 |#1| |#2|) (-10 -7 (-15 -2652 ((-52) (-1 |#2| (-563)) (-294 |#2|))) (-15 -2652 ((-52) |#2| (-1169) (-294 |#2|))) (-15 -2652 ((-52) (-1 |#2| (-563)) (-294 |#2|) (-1224 (-767)))) (-15 -2652 ((-52) |#2| (-1169) (-294 |#2|) (-1224 (-767)))) (-15 -2660 ((-52) (-1 |#2| (-563)) (-294 |#2|) (-1224 (-563)))) (-15 -2660 ((-52) |#2| (-1169) (-294 |#2|) (-1224 (-563)))) (-15 -2670 ((-52) (-1 |#2| (-407 (-563))) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563)))) (-15 -2670 ((-52) |#2| (-1169) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563)))) (-15 -3045 ((-52) (-1 |#2| (-563)) (-294 |#2|))) (-15 -3045 ((-52) |#2| (-1169) (-294 |#2|))) (-15 -3045 ((-52) (-1 |#2| (-563)) (-294 |#2|) (-1224 (-563)))) (-15 -3045 ((-52) |#2| (-1169) (-294 |#2|) (-1224 (-563)))) (-15 -3045 ((-52) (-1 |#2| (-407 (-563))) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563)))) (-15 -3045 ((-52) |#2| (-1169) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563))))) (-13 (-555) (-846) (-1034 (-563)) (-636 (-563))) (-13 (-27) (-1193) (-430 |#1|))) (T -459)) +((-3045 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-5 *6 (-1224 (-407 (-563)))) (-5 *7 (-407 (-563))) (-4 *3 (-13 (-27) (-1193) (-430 *8))) (-4 *8 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *8 *3)))) (-3045 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-407 (-563)))) (-5 *4 (-294 *8)) (-5 *5 (-1224 (-407 (-563)))) (-5 *6 (-407 (-563))) (-4 *8 (-13 (-27) (-1193) (-430 *7))) (-4 *7 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *8)))) (-3045 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-5 *6 (-1224 (-563))) (-4 *3 (-13 (-27) (-1193) (-430 *7))) (-4 *7 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) (-3045 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-563))) (-5 *4 (-294 *7)) (-5 *5 (-1224 (-563))) (-4 *7 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) (-3045 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *3)))) (-3045 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-563))) (-5 *4 (-294 *6)) (-4 *6 (-13 (-27) (-1193) (-430 *5))) (-4 *5 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *5 *6)))) (-2670 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-5 *6 (-1224 (-407 (-563)))) (-5 *7 (-407 (-563))) (-4 *3 (-13 (-27) (-1193) (-430 *8))) (-4 *8 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *8 *3)))) (-2670 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-407 (-563)))) (-5 *4 (-294 *8)) (-5 *5 (-1224 (-407 (-563)))) (-5 *6 (-407 (-563))) (-4 *8 (-13 (-27) (-1193) (-430 *7))) (-4 *7 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *8)))) (-2660 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-5 *6 (-1224 (-563))) (-4 *3 (-13 (-27) (-1193) (-430 *7))) (-4 *7 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) (-2660 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-563))) (-5 *4 (-294 *7)) (-5 *5 (-1224 (-563))) (-4 *7 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) (-2652 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-5 *6 (-1224 (-767))) (-4 *3 (-13 (-27) (-1193) (-430 *7))) (-4 *7 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) (-2652 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-563))) (-5 *4 (-294 *7)) (-5 *5 (-1224 (-767))) (-4 *7 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) (-2652 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *3)))) (-2652 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-563))) (-5 *4 (-294 *6)) (-4 *6 (-13 (-27) (-1193) (-430 *5))) (-4 *5 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *5 *6))))) +(-10 -7 (-15 -2652 ((-52) (-1 |#2| (-563)) (-294 |#2|))) (-15 -2652 ((-52) |#2| (-1169) (-294 |#2|))) (-15 -2652 ((-52) (-1 |#2| (-563)) (-294 |#2|) (-1224 (-767)))) (-15 -2652 ((-52) |#2| (-1169) (-294 |#2|) (-1224 (-767)))) (-15 -2660 ((-52) (-1 |#2| (-563)) (-294 |#2|) (-1224 (-563)))) (-15 -2660 ((-52) |#2| (-1169) (-294 |#2|) (-1224 (-563)))) (-15 -2670 ((-52) (-1 |#2| (-407 (-563))) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563)))) (-15 -2670 ((-52) |#2| (-1169) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563)))) (-15 -3045 ((-52) (-1 |#2| (-563)) (-294 |#2|))) (-15 -3045 ((-52) |#2| (-1169) (-294 |#2|))) (-15 -3045 ((-52) (-1 |#2| (-563)) (-294 |#2|) (-1224 (-563)))) (-15 -3045 ((-52) |#2| (-1169) (-294 |#2|) (-1224 (-563)))) (-15 -3045 ((-52) (-1 |#2| (-407 (-563))) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563)))) (-15 -3045 ((-52) |#2| (-1169) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563))))) +((-2472 ((|#2| |#2| |#1|) 15)) (-1690 (((-640 |#2|) |#2| (-640 |#2|) |#1| (-917)) 68)) (-2744 (((-2 (|:| |plist| (-640 |#2|)) (|:| |modulo| |#1|)) |#2| (-640 |#2|) |#1| (-917)) 59))) +(((-460 |#1| |#2|) (-10 -7 (-15 -2744 ((-2 (|:| |plist| (-640 |#2|)) (|:| |modulo| |#1|)) |#2| (-640 |#2|) |#1| (-917))) (-15 -1690 ((-640 |#2|) |#2| (-640 |#2|) |#1| (-917))) (-15 -2472 (|#2| |#2| |#1|))) (-307) (-1233 |#1|)) (T -460)) +((-2472 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-5 *1 (-460 *3 *2)) (-4 *2 (-1233 *3)))) (-1690 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-640 *3)) (-5 *5 (-917)) (-4 *3 (-1233 *4)) (-4 *4 (-307)) (-5 *1 (-460 *4 *3)))) (-2744 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-917)) (-4 *5 (-307)) (-4 *3 (-1233 *5)) (-5 *2 (-2 (|:| |plist| (-640 *3)) (|:| |modulo| *5))) (-5 *1 (-460 *5 *3)) (-5 *4 (-640 *3))))) +(-10 -7 (-15 -2744 ((-2 (|:| |plist| (-640 |#2|)) (|:| |modulo| |#1|)) |#2| (-640 |#2|) |#1| (-917))) (-15 -1690 ((-640 |#2|) |#2| (-640 |#2|) |#1| (-917))) (-15 -2472 (|#2| |#2| |#1|))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) 28)) (-1946 (($ |#3|) 25)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4239 (($) NIL T CONST)) (-2751 (($ $) 32)) (-2379 (($ |#2| |#4| $) 33)) (-2588 (($ |#2| (-709 |#3| |#4| |#5|)) 24)) (-2716 (((-709 |#3| |#4| |#5|) $) 15)) (-4228 ((|#3| $) 19)) (-2093 ((|#4| $) 17)) (-2726 ((|#2| $) 29)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-3923 (($ |#2| |#3| |#4|) 26)) (-2241 (($) 36 T CONST)) (-1718 (((-112) $ $) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) 34)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-461 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-713 |#6|) (-713 |#2|) (-10 -8 (-15 -2726 (|#2| $)) (-15 -2716 ((-709 |#3| |#4| |#5|) $)) (-15 -2093 (|#4| $)) (-15 -4228 (|#3| $)) (-15 -2751 ($ $)) (-15 -2588 ($ |#2| (-709 |#3| |#4| |#5|))) (-15 -1946 ($ |#3|)) (-15 -3923 ($ |#2| |#3| |#4|)) (-15 -2379 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-640 (-1169)) (-172) (-846) (-238 (-3608 |#1|) (-767)) (-1 (-112) (-2 (|:| -2555 |#3|) (|:| -1654 |#4|)) (-2 (|:| -2555 |#3|) (|:| -1654 |#4|))) (-945 |#2| |#4| (-860 |#1|))) (T -461)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-640 (-1169))) (-4 *4 (-172)) (-4 *6 (-238 (-3608 *3) (-767))) (-14 *7 (-1 (-112) (-2 (|:| -2555 *5) (|:| -1654 *6)) (-2 (|:| -2555 *5) (|:| -1654 *6)))) (-5 *1 (-461 *3 *4 *5 *6 *7 *2)) (-4 *5 (-846)) (-4 *2 (-945 *4 *6 (-860 *3))))) (-2726 (*1 *2 *1) (-12 (-14 *3 (-640 (-1169))) (-4 *5 (-238 (-3608 *3) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -2555 *4) (|:| -1654 *5)) (-2 (|:| -2555 *4) (|:| -1654 *5)))) (-4 *2 (-172)) (-5 *1 (-461 *3 *2 *4 *5 *6 *7)) (-4 *4 (-846)) (-4 *7 (-945 *2 *5 (-860 *3))))) (-2716 (*1 *2 *1) (-12 (-14 *3 (-640 (-1169))) (-4 *4 (-172)) (-4 *6 (-238 (-3608 *3) (-767))) (-14 *7 (-1 (-112) (-2 (|:| -2555 *5) (|:| -1654 *6)) (-2 (|:| -2555 *5) (|:| -1654 *6)))) (-5 *2 (-709 *5 *6 *7)) (-5 *1 (-461 *3 *4 *5 *6 *7 *8)) (-4 *5 (-846)) (-4 *8 (-945 *4 *6 (-860 *3))))) (-2093 (*1 *2 *1) (-12 (-14 *3 (-640 (-1169))) (-4 *4 (-172)) (-14 *6 (-1 (-112) (-2 (|:| -2555 *5) (|:| -1654 *2)) (-2 (|:| -2555 *5) (|:| -1654 *2)))) (-4 *2 (-238 (-3608 *3) (-767))) (-5 *1 (-461 *3 *4 *5 *2 *6 *7)) (-4 *5 (-846)) (-4 *7 (-945 *4 *2 (-860 *3))))) (-4228 (*1 *2 *1) (-12 (-14 *3 (-640 (-1169))) (-4 *4 (-172)) (-4 *5 (-238 (-3608 *3) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -2555 *2) (|:| -1654 *5)) (-2 (|:| -2555 *2) (|:| -1654 *5)))) (-4 *2 (-846)) (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *7 (-945 *4 *5 (-860 *3))))) (-2751 (*1 *1 *1) (-12 (-14 *2 (-640 (-1169))) (-4 *3 (-172)) (-4 *5 (-238 (-3608 *2) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -2555 *4) (|:| -1654 *5)) (-2 (|:| -2555 *4) (|:| -1654 *5)))) (-5 *1 (-461 *2 *3 *4 *5 *6 *7)) (-4 *4 (-846)) (-4 *7 (-945 *3 *5 (-860 *2))))) (-2588 (*1 *1 *2 *3) (-12 (-5 *3 (-709 *5 *6 *7)) (-4 *5 (-846)) (-4 *6 (-238 (-3608 *4) (-767))) (-14 *7 (-1 (-112) (-2 (|:| -2555 *5) (|:| -1654 *6)) (-2 (|:| -2555 *5) (|:| -1654 *6)))) (-14 *4 (-640 (-1169))) (-4 *2 (-172)) (-5 *1 (-461 *4 *2 *5 *6 *7 *8)) (-4 *8 (-945 *2 *6 (-860 *4))))) (-1946 (*1 *1 *2) (-12 (-14 *3 (-640 (-1169))) (-4 *4 (-172)) (-4 *5 (-238 (-3608 *3) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -2555 *2) (|:| -1654 *5)) (-2 (|:| -2555 *2) (|:| -1654 *5)))) (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *2 (-846)) (-4 *7 (-945 *4 *5 (-860 *3))))) (-3923 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-640 (-1169))) (-4 *2 (-172)) (-4 *4 (-238 (-3608 *5) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -2555 *3) (|:| -1654 *4)) (-2 (|:| -2555 *3) (|:| -1654 *4)))) (-5 *1 (-461 *5 *2 *3 *4 *6 *7)) (-4 *3 (-846)) (-4 *7 (-945 *2 *4 (-860 *5))))) (-2379 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-640 (-1169))) (-4 *2 (-172)) (-4 *3 (-238 (-3608 *4) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -2555 *5) (|:| -1654 *3)) (-2 (|:| -2555 *5) (|:| -1654 *3)))) (-5 *1 (-461 *4 *2 *5 *3 *6 *7)) (-4 *5 (-846)) (-4 *7 (-945 *2 *3 (-860 *4)))))) +(-13 (-713 |#6|) (-713 |#2|) (-10 -8 (-15 -2726 (|#2| $)) (-15 -2716 ((-709 |#3| |#4| |#5|) $)) (-15 -2093 (|#4| $)) (-15 -4228 (|#3| $)) (-15 -2751 ($ $)) (-15 -2588 ($ |#2| (-709 |#3| |#4| |#5|))) (-15 -1946 ($ |#3|)) (-15 -3923 ($ |#2| |#3| |#4|)) (-15 -2379 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-3951 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37))) +(((-462 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3951 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-789) (-846) (-555) (-945 |#3| |#1| |#2|) (-13 (-1034 (-407 (-563))) (-363) (-10 -8 (-15 -1693 ($ |#4|)) (-15 -2143 (|#4| $)) (-15 -2154 (|#4| $))))) (T -462)) +((-3951 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-846)) (-4 *5 (-789)) (-4 *6 (-555)) (-4 *7 (-945 *6 *5 *3)) (-5 *1 (-462 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1034 (-407 (-563))) (-363) (-10 -8 (-15 -1693 ($ *7)) (-15 -2143 (*7 $)) (-15 -2154 (*7 $)))))))) +(-10 -7 (-15 -3951 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-1677 (((-112) $ $) NIL)) (-2606 (((-640 |#3|) $) 41)) (-1706 (((-112) $) NIL)) (-3854 (((-112) $) NIL (|has| |#1| (-555)))) (-1642 (((-2 (|:| |under| $) (|:| -1583 $) (|:| |upper| $)) $ |#3|) NIL)) (-2759 (((-112) $ (-767)) NIL)) (-2256 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-4239 (($) NIL T CONST)) (-1483 (((-112) $) NIL (|has| |#1| (-555)))) (-1626 (((-112) $ $) NIL (|has| |#1| (-555)))) (-4221 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1763 (((-112) $) NIL (|has| |#1| (-555)))) (-3746 (((-640 |#4|) (-640 |#4|) $) NIL (|has| |#1| (-555)))) (-1866 (((-640 |#4|) (-640 |#4|) $) NIL (|has| |#1| (-555)))) (-2131 (((-3 $ "failed") (-640 |#4|)) 48)) (-2058 (($ (-640 |#4|)) NIL)) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1093))))) (-1459 (($ |#4| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1093)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-1972 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-555)))) (-2444 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1093)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4407))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4407)))) (-2659 (((-640 |#4|) $) 18 (|has| $ (-6 -4407)))) (-2957 ((|#3| $) 46)) (-2581 (((-112) $ (-767)) NIL)) (-2259 (((-640 |#4|) $) 14 (|has| $ (-6 -4407)))) (-1729 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1093))))) (-4345 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#4| |#4|) $) 21)) (-2965 (((-640 |#3|) $) NIL)) (-2780 (((-112) |#3| $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL)) (-2152 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-555)))) (-1694 (((-1113) $) NIL)) (-4203 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3138 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 |#4|) (-640 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-2026 (((-112) $ $) NIL)) (-3756 (((-112) $) 39)) (-3135 (($) 17)) (-1709 (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1093)))) (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-1872 (($ $) 16)) (-2220 (((-536) $) NIL (|has| |#4| (-611 (-536)))) (($ (-640 |#4|)) 50)) (-1707 (($ (-640 |#4|)) 13)) (-3577 (($ $ |#3|) NIL)) (-1593 (($ $ |#3|) NIL)) (-4192 (($ $ |#3|) NIL)) (-1693 (((-858) $) 38) (((-640 |#4|) $) 49)) (-4383 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 30)) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-463 |#1| |#2| |#3| |#4|) (-13 (-972 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2220 ($ (-640 |#4|))) (-6 -4407) (-6 -4408))) (-1045) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -463)) +((-2220 (*1 *1 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-463 *3 *4 *5 *6))))) +(-13 (-972 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2220 ($ (-640 |#4|))) (-6 -4407) (-6 -4408))) +((-2241 (($) 11)) (-2254 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-464 |#1| |#2| |#3|) (-10 -8 (-15 -2254 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2241 (|#1|))) (-465 |#2| |#3|) (-172) (-23)) (T -464)) +NIL +(-10 -8 (-15 -2254 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2241 (|#1|))) +((-1677 (((-112) $ $) 7)) (-2131 (((-3 |#1| "failed") $) 26)) (-2058 ((|#1| $) 27)) (-2041 (($ $ $) 23)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-4167 ((|#2| $) 19)) (-1693 (((-858) $) 11) (($ |#1|) 25)) (-2241 (($) 18 T CONST)) (-2254 (($) 24 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 15) (($ $ $) 13)) (-1814 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +(((-465 |#1| |#2|) (-140) (-172) (-23)) (T -465)) +((-2254 (*1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-2041 (*1 *1 *1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))) +(-13 (-470 |t#1| |t#2|) (-1034 |t#1|) (-10 -8 (-15 (-2254) ($) -2669) (-15 -2041 ($ $ $)))) +(((-102) . T) ((-613 |#1|) . T) ((-610 (-858)) . T) ((-470 |#1| |#2|) . T) ((-1034 |#1|) . T) ((-1093) . T)) +((-3877 (((-1257 (-1257 (-563))) (-1257 (-1257 (-563))) (-917)) 18)) (-2674 (((-1257 (-1257 (-563))) (-917)) 16))) +(((-466) (-10 -7 (-15 -3877 ((-1257 (-1257 (-563))) (-1257 (-1257 (-563))) (-917))) (-15 -2674 ((-1257 (-1257 (-563))) (-917))))) (T -466)) +((-2674 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1257 (-1257 (-563)))) (-5 *1 (-466)))) (-3877 (*1 *2 *2 *3) (-12 (-5 *2 (-1257 (-1257 (-563)))) (-5 *3 (-917)) (-5 *1 (-466))))) +(-10 -7 (-15 -3877 ((-1257 (-1257 (-563))) (-1257 (-1257 (-563))) (-917))) (-15 -2674 ((-1257 (-1257 (-563))) (-917)))) +((-2355 (((-563) (-563)) 30) (((-563)) 22)) (-4011 (((-563) (-563)) 26) (((-563)) 18)) (-1535 (((-563) (-563)) 28) (((-563)) 20)) (-3189 (((-112) (-112)) 12) (((-112)) 10)) (-1723 (((-112) (-112)) 11) (((-112)) 9)) (-3450 (((-112) (-112)) 24) (((-112)) 15))) +(((-467) (-10 -7 (-15 -1723 ((-112))) (-15 -3189 ((-112))) (-15 -1723 ((-112) (-112))) (-15 -3189 ((-112) (-112))) (-15 -3450 ((-112))) (-15 -1535 ((-563))) (-15 -4011 ((-563))) (-15 -2355 ((-563))) (-15 -3450 ((-112) (-112))) (-15 -1535 ((-563) (-563))) (-15 -4011 ((-563) (-563))) (-15 -2355 ((-563) (-563))))) (T -467)) +((-2355 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467)))) (-4011 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467)))) (-1535 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467)))) (-3450 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-2355 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467)))) (-4011 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467)))) (-1535 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467)))) (-3450 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-3189 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-1723 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-3189 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-1723 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))) +(-10 -7 (-15 -1723 ((-112))) (-15 -3189 ((-112))) (-15 -1723 ((-112) (-112))) (-15 -3189 ((-112) (-112))) (-15 -3450 ((-112))) (-15 -1535 ((-563))) (-15 -4011 ((-563))) (-15 -2355 ((-563))) (-15 -3450 ((-112) (-112))) (-15 -1535 ((-563) (-563))) (-15 -4011 ((-563) (-563))) (-15 -2355 ((-563) (-563)))) +((-1677 (((-112) $ $) NIL)) (-3528 (((-640 (-379)) $) 28) (((-640 (-379)) $ (-640 (-379))) 94)) (-2567 (((-640 (-1087 (-379))) $) 16) (((-640 (-1087 (-379))) $ (-640 (-1087 (-379)))) 91)) (-3996 (((-640 (-640 (-939 (-225)))) (-640 (-640 (-939 (-225)))) (-640 (-870))) 44)) (-1443 (((-640 (-640 (-939 (-225)))) $) 87)) (-3014 (((-1262) $ (-939 (-225)) (-870)) 106)) (-2939 (($ $) 86) (($ (-640 (-640 (-939 (-225))))) 97) (($ (-640 (-640 (-939 (-225)))) (-640 (-870)) (-640 (-870)) (-640 (-917))) 96) (($ (-640 (-640 (-939 (-225)))) (-640 (-870)) (-640 (-870)) (-640 (-917)) (-640 (-263))) 98)) (-3573 (((-1151) $) NIL)) (-2387 (((-563) $) 68)) (-1694 (((-1113) $) NIL)) (-1746 (($) 95)) (-2821 (((-640 (-225)) (-640 (-640 (-939 (-225))))) 54)) (-2331 (((-1262) $ (-640 (-939 (-225))) (-870) (-870) (-917)) 100) (((-1262) $ (-939 (-225))) 102) (((-1262) $ (-939 (-225)) (-870) (-870) (-917)) 101)) (-1693 (((-858) $) 112) (($ (-640 (-640 (-939 (-225))))) 107)) (-2893 (((-1262) $ (-939 (-225))) 105)) (-1718 (((-112) $ $) NIL))) +(((-468) (-13 (-1093) (-10 -8 (-15 -1746 ($)) (-15 -2939 ($ $)) (-15 -2939 ($ (-640 (-640 (-939 (-225)))))) (-15 -2939 ($ (-640 (-640 (-939 (-225)))) (-640 (-870)) (-640 (-870)) (-640 (-917)))) (-15 -2939 ($ (-640 (-640 (-939 (-225)))) (-640 (-870)) (-640 (-870)) (-640 (-917)) (-640 (-263)))) (-15 -1443 ((-640 (-640 (-939 (-225)))) $)) (-15 -2387 ((-563) $)) (-15 -2567 ((-640 (-1087 (-379))) $)) (-15 -2567 ((-640 (-1087 (-379))) $ (-640 (-1087 (-379))))) (-15 -3528 ((-640 (-379)) $)) (-15 -3528 ((-640 (-379)) $ (-640 (-379)))) (-15 -2331 ((-1262) $ (-640 (-939 (-225))) (-870) (-870) (-917))) (-15 -2331 ((-1262) $ (-939 (-225)))) (-15 -2331 ((-1262) $ (-939 (-225)) (-870) (-870) (-917))) (-15 -2893 ((-1262) $ (-939 (-225)))) (-15 -3014 ((-1262) $ (-939 (-225)) (-870))) (-15 -1693 ($ (-640 (-640 (-939 (-225)))))) (-15 -1693 ((-858) $)) (-15 -3996 ((-640 (-640 (-939 (-225)))) (-640 (-640 (-939 (-225)))) (-640 (-870)))) (-15 -2821 ((-640 (-225)) (-640 (-640 (-939 (-225))))))))) (T -468)) +((-1693 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-468)))) (-1746 (*1 *1) (-5 *1 (-468))) (-2939 (*1 *1 *1) (-5 *1 (-468))) (-2939 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *1 (-468)))) (-2939 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *3 (-640 (-870))) (-5 *4 (-640 (-917))) (-5 *1 (-468)))) (-2939 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *3 (-640 (-870))) (-5 *4 (-640 (-917))) (-5 *5 (-640 (-263))) (-5 *1 (-468)))) (-1443 (*1 *2 *1) (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *1 (-468)))) (-2387 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-468)))) (-2567 (*1 *2 *1) (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *1 (-468)))) (-2567 (*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *1 (-468)))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-640 (-379))) (-5 *1 (-468)))) (-3528 (*1 *2 *1 *2) (-12 (-5 *2 (-640 (-379))) (-5 *1 (-468)))) (-2331 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-640 (-939 (-225)))) (-5 *4 (-870)) (-5 *5 (-917)) (-5 *2 (-1262)) (-5 *1 (-468)))) (-2331 (*1 *2 *1 *3) (-12 (-5 *3 (-939 (-225))) (-5 *2 (-1262)) (-5 *1 (-468)))) (-2331 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-939 (-225))) (-5 *4 (-870)) (-5 *5 (-917)) (-5 *2 (-1262)) (-5 *1 (-468)))) (-2893 (*1 *2 *1 *3) (-12 (-5 *3 (-939 (-225))) (-5 *2 (-1262)) (-5 *1 (-468)))) (-3014 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-939 (-225))) (-5 *4 (-870)) (-5 *2 (-1262)) (-5 *1 (-468)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *1 (-468)))) (-3996 (*1 *2 *2 *3) (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *3 (-640 (-870))) (-5 *1 (-468)))) (-2821 (*1 *2 *3) (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *2 (-640 (-225))) (-5 *1 (-468))))) +(-13 (-1093) (-10 -8 (-15 -1746 ($)) (-15 -2939 ($ $)) (-15 -2939 ($ (-640 (-640 (-939 (-225)))))) (-15 -2939 ($ (-640 (-640 (-939 (-225)))) (-640 (-870)) (-640 (-870)) (-640 (-917)))) (-15 -2939 ($ (-640 (-640 (-939 (-225)))) (-640 (-870)) (-640 (-870)) (-640 (-917)) (-640 (-263)))) (-15 -1443 ((-640 (-640 (-939 (-225)))) $)) (-15 -2387 ((-563) $)) (-15 -2567 ((-640 (-1087 (-379))) $)) (-15 -2567 ((-640 (-1087 (-379))) $ (-640 (-1087 (-379))))) (-15 -3528 ((-640 (-379)) $)) (-15 -3528 ((-640 (-379)) $ (-640 (-379)))) (-15 -2331 ((-1262) $ (-640 (-939 (-225))) (-870) (-870) (-917))) (-15 -2331 ((-1262) $ (-939 (-225)))) (-15 -2331 ((-1262) $ (-939 (-225)) (-870) (-870) (-917))) (-15 -2893 ((-1262) $ (-939 (-225)))) (-15 -3014 ((-1262) $ (-939 (-225)) (-870))) (-15 -1693 ($ (-640 (-640 (-939 (-225)))))) (-15 -1693 ((-858) $)) (-15 -3996 ((-640 (-640 (-939 (-225)))) (-640 (-640 (-939 (-225)))) (-640 (-870)))) (-15 -2821 ((-640 (-225)) (-640 (-640 (-939 (-225)))))))) +((-1826 (($ $) NIL) (($ $ $) 11))) +(((-469 |#1| |#2| |#3|) (-10 -8 (-15 -1826 (|#1| |#1| |#1|)) (-15 -1826 (|#1| |#1|))) (-470 |#2| |#3|) (-172) (-23)) (T -469)) +NIL +(-10 -8 (-15 -1826 (|#1| |#1| |#1|)) (-15 -1826 (|#1| |#1|))) +((-1677 (((-112) $ $) 7)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-4167 ((|#2| $) 19)) (-1693 (((-858) $) 11)) (-2241 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 15) (($ $ $) 13)) (-1814 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +(((-470 |#1| |#2|) (-140) (-172) (-23)) (T -470)) +((-4167 (*1 *2 *1) (-12 (-4 *1 (-470 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) (-2241 (*1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-1826 (*1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-1814 (*1 *1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-1826 (*1 *1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))) +(-13 (-1093) (-10 -8 (-15 -4167 (|t#2| $)) (-15 (-2241) ($) -2669) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -1826 ($ $)) (-15 -1814 ($ $ $)) (-15 -1826 ($ $ $)))) +(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) +((-3467 (((-3 (-640 (-481 |#1| |#2|)) "failed") (-640 (-481 |#1| |#2|)) (-640 (-860 |#1|))) 91)) (-2880 (((-640 (-640 (-247 |#1| |#2|))) (-640 (-247 |#1| |#2|)) (-640 (-860 |#1|))) 89)) (-3966 (((-2 (|:| |dpolys| (-640 (-247 |#1| |#2|))) (|:| |coords| (-640 (-563)))) (-640 (-247 |#1| |#2|)) (-640 (-860 |#1|))) 61))) +(((-471 |#1| |#2| |#3|) (-10 -7 (-15 -2880 ((-640 (-640 (-247 |#1| |#2|))) (-640 (-247 |#1| |#2|)) (-640 (-860 |#1|)))) (-15 -3467 ((-3 (-640 (-481 |#1| |#2|)) "failed") (-640 (-481 |#1| |#2|)) (-640 (-860 |#1|)))) (-15 -3966 ((-2 (|:| |dpolys| (-640 (-247 |#1| |#2|))) (|:| |coords| (-640 (-563)))) (-640 (-247 |#1| |#2|)) (-640 (-860 |#1|))))) (-640 (-1169)) (-452) (-452)) (T -471)) +((-3966 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-860 *5))) (-14 *5 (-640 (-1169))) (-4 *6 (-452)) (-5 *2 (-2 (|:| |dpolys| (-640 (-247 *5 *6))) (|:| |coords| (-640 (-563))))) (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-640 (-247 *5 *6))) (-4 *7 (-452)))) (-3467 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-640 (-481 *4 *5))) (-5 *3 (-640 (-860 *4))) (-14 *4 (-640 (-1169))) (-4 *5 (-452)) (-5 *1 (-471 *4 *5 *6)) (-4 *6 (-452)))) (-2880 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-860 *5))) (-14 *5 (-640 (-1169))) (-4 *6 (-452)) (-5 *2 (-640 (-640 (-247 *5 *6)))) (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-640 (-247 *5 *6))) (-4 *7 (-452))))) +(-10 -7 (-15 -2880 ((-640 (-640 (-247 |#1| |#2|))) (-640 (-247 |#1| |#2|)) (-640 (-860 |#1|)))) (-15 -3467 ((-3 (-640 (-481 |#1| |#2|)) "failed") (-640 (-481 |#1| |#2|)) (-640 (-860 |#1|)))) (-15 -3966 ((-2 (|:| |dpolys| (-640 (-247 |#1| |#2|))) (|:| |coords| (-640 (-563)))) (-640 (-247 |#1| |#2|)) (-640 (-860 |#1|))))) +((-3400 (((-3 $ "failed") $) 11)) (-4339 (($ $ $) 18)) (-2146 (($ $ $) 19)) (-1837 (($ $ $) 9)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) 17))) +(((-472 |#1|) (-10 -8 (-15 -2146 (|#1| |#1| |#1|)) (-15 -4339 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-563))) (-15 -1837 (|#1| |#1| |#1|)) (-15 -3400 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917)))) (-473)) (T -472)) +NIL +(-10 -8 (-15 -2146 (|#1| |#1| |#1|)) (-15 -4339 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-563))) (-15 -1837 (|#1| |#1| |#1|)) (-15 -3400 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917)))) +((-1677 (((-112) $ $) 7)) (-4239 (($) 18 T CONST)) (-3400 (((-3 $ "failed") $) 15)) (-3827 (((-112) $) 17)) (-3573 (((-1151) $) 9)) (-2688 (($ $) 24)) (-1694 (((-1113) $) 10)) (-4339 (($ $ $) 21)) (-2146 (($ $ $) 20)) (-1693 (((-858) $) 11)) (-2254 (($) 19 T CONST)) (-1718 (((-112) $ $) 6)) (-1837 (($ $ $) 23)) (** (($ $ (-917)) 13) (($ $ (-767)) 16) (($ $ (-563)) 22)) (* (($ $ $) 14))) +(((-473) (-140)) (T -473)) +((-2688 (*1 *1 *1) (-4 *1 (-473))) (-1837 (*1 *1 *1 *1) (-4 *1 (-473))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-473)) (-5 *2 (-563)))) (-4339 (*1 *1 *1 *1) (-4 *1 (-473))) (-2146 (*1 *1 *1 *1) (-4 *1 (-473)))) +(-13 (-722) (-10 -8 (-15 -2688 ($ $)) (-15 -1837 ($ $ $)) (-15 ** ($ $ (-563))) (-6 -4404) (-15 -4339 ($ $ $)) (-15 -2146 ($ $ $)))) +(((-102) . T) ((-610 (-858)) . T) ((-722) . T) ((-1105) . T) ((-1093) . T)) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-2606 (((-640 (-1075)) $) NIL)) (-2518 (((-1169) $) 17)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-4223 (($ $) NIL (|has| |#1| (-555)))) (-3156 (((-112) $) NIL (|has| |#1| (-555)))) (-2421 (($ $ (-407 (-563))) NIL) (($ $ (-407 (-563)) (-407 (-563))) NIL)) (-1539 (((-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|))) $) NIL)) (-1771 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1619 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1495 (((-3 $ "failed") $ $) NIL)) (-4335 (($ $) NIL (|has| |#1| (-363)))) (-3205 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2186 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1919 (((-112) $ $) NIL (|has| |#1| (-363)))) (-1748 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1597 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3045 (($ (-767) (-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|)))) NIL)) (-1794 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1643 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-4239 (($) NIL T CONST)) (-3090 (($ $ $) NIL (|has| |#1| (-363)))) (-2751 (($ $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-3050 (($ $ $) NIL (|has| |#1| (-363)))) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-2468 (((-112) $) NIL (|has| |#1| (-363)))) (-2788 (((-112) $) NIL)) (-2180 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3254 (((-407 (-563)) $) NIL) (((-407 (-563)) $ (-407 (-563))) NIL)) (-3827 (((-112) $) NIL)) (-1645 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1351 (($ $ (-917)) NIL) (($ $ (-407 (-563))) NIL)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3920 (((-112) $) NIL)) (-2588 (($ |#1| (-407 (-563))) NIL) (($ $ (-1075) (-407 (-563))) NIL) (($ $ (-640 (-1075)) (-640 (-407 (-563)))) NIL)) (-2240 (($ (-1 |#1| |#1|) $) 22)) (-4371 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2716 (($ $) NIL)) (-2726 ((|#1| $) NIL)) (-3513 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3573 (((-1151) $) NIL)) (-2688 (($ $) NIL (|has| |#1| (-363)))) (-3698 (($ $) 26 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) 33 (-4032 (-12 (|has| |#1| (-15 -3698 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -2606 ((-640 (-1169)) |#1|))) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-955)) (|has| |#1| (-1193))))) (($ $ (-1253 |#2|)) 27 (|has| |#1| (-38 (-407 (-563)))))) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-363)))) (-3548 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2174 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL (|has| |#1| (-363)))) (-3320 (($ $ (-407 (-563))) NIL)) (-3008 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3368 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1540 (((-1149 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))))) (-2628 (((-767) $) NIL (|has| |#1| (-363)))) (-2309 ((|#1| $ (-407 (-563))) NIL) (($ $ $) NIL (|has| (-407 (-563)) (-1105)))) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| |#1| (-363)))) (-4202 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) 25 (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $ (-1253 |#2|)) 15)) (-4167 (((-407 (-563)) $) NIL)) (-1806 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1656 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1784 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1630 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1759 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1608 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1741 (($ $) NIL)) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1253 |#2|)) NIL) (($ (-1242 |#1| |#2| |#3|)) 9) (($ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $) NIL (|has| |#1| (-555)))) (-4319 ((|#1| $ (-407 (-563))) NIL)) (-2779 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1675 (((-767)) NIL)) (-3408 ((|#1| $) 18)) (-1840 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1695 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2126 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1817 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1667 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1862 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1722 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1403 ((|#1| $ (-407 (-563))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))) (|has| |#1| (-15 -1693 (|#1| (-1169))))))) (-1311 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1735 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1851 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1710 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1829 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1680 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-3209 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (-1718 (((-112) $ $) NIL)) (-1837 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1826 (($ $) NIL) (($ $ $) 24)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))))) +(((-474 |#1| |#2| |#3|) (-13 (-1238 |#1|) (-10 -8 (-15 -1693 ($ (-1253 |#2|))) (-15 -1693 ($ (-1242 |#1| |#2| |#3|))) (-15 -4202 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -3698 ($ $ (-1253 |#2|))) |%noBranch|))) (-1045) (-1169) |#1|) (T -474)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-1242 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-1169)) (-14 *5 *3) (-5 *1 (-474 *3 *4 *5)))) (-4202 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-3698 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3)))) +(-13 (-1238 |#1|) (-10 -8 (-15 -1693 ($ (-1253 |#2|))) (-15 -1693 ($ (-1242 |#1| |#2| |#3|))) (-15 -4202 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -3698 ($ $ (-1253 |#2|))) |%noBranch|))) +((-1677 (((-112) $ $) NIL (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1552 (($) NIL) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL)) (-4378 (((-1262) $ |#1| |#1|) NIL (|has| $ (-6 -4408)))) (-2759 (((-112) $ (-767)) NIL)) (-1849 ((|#2| $ |#1| |#2|) 18)) (-2812 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-2256 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-1577 (((-3 |#2| "failed") |#1| $) 19)) (-4239 (($) NIL T CONST)) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093))))) (-2705 (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-3 |#2| "failed") |#1| $) 16)) (-1459 (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-2444 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL (|has| $ (-6 -4407))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-4355 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4408)))) (-4293 ((|#2| $ |#1|) NIL)) (-2659 (((-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-640 |#2|) $) NIL (|has| $ (-6 -4407)))) (-2581 (((-112) $ (-767)) NIL)) (-2411 ((|#1| $) NIL (|has| |#1| (-846)))) (-2259 (((-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-640 |#2|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093))))) (-3860 ((|#1| $) NIL (|has| |#1| (-846)))) (-4345 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4408))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1303 (((-640 |#1|) $) NIL)) (-4173 (((-112) |#1| $) NIL)) (-2964 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL)) (-1812 (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL)) (-4318 (((-640 |#1|) $) NIL)) (-3192 (((-112) |#1| $) NIL)) (-1694 (((-1113) $) NIL (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-3781 ((|#2| $) NIL (|has| |#1| (-846)))) (-4203 (((-3 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) "failed") (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL)) (-2358 (($ $ |#2|) NIL (|has| $ (-6 -4408)))) (-3755 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL)) (-3138 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-2026 (((-112) $ $) NIL)) (-2105 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093))))) (-2836 (((-640 |#2|) $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) NIL)) (-2309 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3890 (($) NIL) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL)) (-1709 (((-767) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-767) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-1872 (($ $) NIL)) (-2220 (((-536) $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-611 (-536))))) (-1707 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL)) (-1693 (((-858) $) NIL (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-610 (-858))) (|has| |#2| (-610 (-858)))))) (-2233 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL)) (-4383 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) NIL (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-475 |#1| |#2| |#3| |#4|) (-1184 |#1| |#2|) (-1093) (-1093) (-1184 |#1| |#2|) |#2|) (T -475)) +NIL +(-1184 |#1| |#2|) +((-1677 (((-112) $ $) NIL)) (-1578 (((-640 (-2 (|:| -1442 $) (|:| -3405 (-640 |#4|)))) (-640 |#4|)) NIL)) (-3319 (((-640 $) (-640 |#4|)) NIL)) (-2606 (((-640 |#3|) $) NIL)) (-1706 (((-112) $) NIL)) (-3854 (((-112) $) NIL (|has| |#1| (-555)))) (-2620 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4053 ((|#4| |#4| $) NIL)) (-1642 (((-2 (|:| |under| $) (|:| -1583 $) (|:| |upper| $)) $ |#3|) NIL)) (-2759 (((-112) $ (-767)) NIL)) (-2256 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407))) (((-3 |#4| "failed") $ |#3|) NIL)) (-4239 (($) NIL T CONST)) (-1483 (((-112) $) 27 (|has| |#1| (-555)))) (-1626 (((-112) $ $) NIL (|has| |#1| (-555)))) (-4221 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1763 (((-112) $) NIL (|has| |#1| (-555)))) (-1833 (((-640 |#4|) (-640 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3746 (((-640 |#4|) (-640 |#4|) $) NIL (|has| |#1| (-555)))) (-1866 (((-640 |#4|) (-640 |#4|) $) NIL (|has| |#1| (-555)))) (-2131 (((-3 $ "failed") (-640 |#4|)) NIL)) (-2058 (($ (-640 |#4|)) NIL)) (-3792 (((-3 $ "failed") $) 40)) (-1719 ((|#4| |#4| $) NIL)) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1093))))) (-1459 (($ |#4| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1093)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-1972 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-555)))) (-3990 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3948 ((|#4| |#4| $) NIL)) (-2444 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1093)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4407))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4407))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2144 (((-2 (|:| -1442 (-640 |#4|)) (|:| -3405 (-640 |#4|))) $) NIL)) (-2659 (((-640 |#4|) $) 17 (|has| $ (-6 -4407)))) (-2299 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2957 ((|#3| $) 34)) (-2581 (((-112) $ (-767)) NIL)) (-2259 (((-640 |#4|) $) 18 (|has| $ (-6 -4407)))) (-1729 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1093))))) (-4345 (($ (-1 |#4| |#4|) $) 24 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#4| |#4|) $) 22)) (-2965 (((-640 |#3|) $) NIL)) (-2780 (((-112) |#3| $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL)) (-1481 (((-3 |#4| "failed") $) 38)) (-2820 (((-640 |#4|) $) NIL)) (-4197 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2715 ((|#4| |#4| $) NIL)) (-3009 (((-112) $ $) NIL)) (-2152 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-555)))) (-2031 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4056 ((|#4| |#4| $) NIL)) (-1694 (((-1113) $) NIL)) (-3781 (((-3 |#4| "failed") $) 36)) (-4203 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3479 (((-3 $ "failed") $ |#4|) 47)) (-3320 (($ $ |#4|) NIL)) (-3138 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 |#4|) (-640 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-2026 (((-112) $ $) NIL)) (-3756 (((-112) $) 16)) (-3135 (($) 14)) (-4167 (((-767) $) NIL)) (-1709 (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1093)))) (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-1872 (($ $) 13)) (-2220 (((-536) $) NIL (|has| |#4| (-611 (-536))))) (-1707 (($ (-640 |#4|)) 21)) (-3577 (($ $ |#3|) 43)) (-1593 (($ $ |#3|) 44)) (-1924 (($ $) NIL)) (-4192 (($ $ |#3|) NIL)) (-1693 (((-858) $) 32) (((-640 |#4|) $) 41)) (-2437 (((-767) $) NIL (|has| |#3| (-368)))) (-2540 (((-3 (-2 (|:| |bas| $) (|:| -2636 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2636 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2691 (((-112) $ (-1 (-112) |#4| (-640 |#4|))) NIL)) (-4383 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-1955 (((-640 |#3|) $) NIL)) (-3152 (((-112) |#3| $) NIL)) (-1718 (((-112) $ $) NIL)) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-476 |#1| |#2| |#3| |#4|) (-1201 |#1| |#2| |#3| |#4|) (-555) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -476)) +NIL +(-1201 |#1| |#2| |#3| |#4|) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-1919 (((-112) $ $) NIL)) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-563) "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL)) (-2058 (((-563) $) NIL) (((-407 (-563)) $) NIL)) (-3090 (($ $ $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-2468 (((-112) $) NIL)) (-2180 (($) 15)) (-3827 (((-112) $) NIL)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) NIL)) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ $ $) NIL) (($ (-640 $)) NIL)) (-2174 (((-418 $) $) NIL)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2628 (((-767) $) NIL)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-2220 (((-379) $) 19) (((-225) $) 22) (((-407 (-1165 (-563))) $) 16) (((-536) $) 50)) (-1693 (((-858) $) 48) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (((-225) $) 21) (((-379) $) 18)) (-1675 (((-767)) NIL)) (-2126 (((-112) $ $) NIL)) (-2241 (($) 34 T CONST)) (-2254 (($) 8 T CONST)) (-1718 (((-112) $ $) NIL)) (-1837 (($ $ $) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL))) +(((-477) (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))) (-1018) (-610 (-225)) (-610 (-379)) (-611 (-407 (-1165 (-563)))) (-611 (-536)) (-10 -8 (-15 -2180 ($))))) (T -477)) +((-2180 (*1 *1) (-5 *1 (-477)))) +(-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))) (-1018) (-610 (-225)) (-610 (-379)) (-611 (-407 (-1165 (-563)))) (-611 (-536)) (-10 -8 (-15 -2180 ($)))) +((-1677 (((-112) $ $) NIL)) (-2351 (((-1128) $) 11)) (-2340 (((-1128) $) 9)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 19) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-478) (-13 (-1076) (-10 -8 (-15 -2340 ((-1128) $)) (-15 -2351 ((-1128) $))))) (T -478)) +((-2340 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-478)))) (-2351 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-478))))) +(-13 (-1076) (-10 -8 (-15 -2340 ((-1128) $)) (-15 -2351 ((-1128) $)))) +((-1677 (((-112) $ $) NIL (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1552 (($) NIL) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL)) (-4378 (((-1262) $ |#1| |#1|) NIL (|has| $ (-6 -4408)))) (-2759 (((-112) $ (-767)) NIL)) (-1849 ((|#2| $ |#1| |#2|) 16)) (-2812 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-2256 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-1577 (((-3 |#2| "failed") |#1| $) 20)) (-4239 (($) NIL T CONST)) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093))))) (-2705 (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-3 |#2| "failed") |#1| $) 18)) (-1459 (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-2444 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL (|has| $ (-6 -4407))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-4355 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4408)))) (-4293 ((|#2| $ |#1|) NIL)) (-2659 (((-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-640 |#2|) $) NIL (|has| $ (-6 -4407)))) (-2581 (((-112) $ (-767)) NIL)) (-2411 ((|#1| $) NIL (|has| |#1| (-846)))) (-2259 (((-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-640 |#2|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093))))) (-3860 ((|#1| $) NIL (|has| |#1| (-846)))) (-4345 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4408))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1303 (((-640 |#1|) $) 13)) (-4173 (((-112) |#1| $) NIL)) (-2964 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL)) (-1812 (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL)) (-4318 (((-640 |#1|) $) NIL)) (-3192 (((-112) |#1| $) NIL)) (-1694 (((-1113) $) NIL (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-3781 ((|#2| $) NIL (|has| |#1| (-846)))) (-4203 (((-3 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) "failed") (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL)) (-2358 (($ $ |#2|) NIL (|has| $ (-6 -4408)))) (-3755 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL)) (-3138 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-2026 (((-112) $ $) NIL)) (-2105 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093))))) (-2836 (((-640 |#2|) $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) 19)) (-2309 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3890 (($) NIL) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL)) (-1709 (((-767) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-767) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-1872 (($ $) NIL)) (-2220 (((-536) $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-611 (-536))))) (-1707 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL)) (-1693 (((-858) $) NIL (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-610 (-858))) (|has| |#2| (-610 (-858)))))) (-2233 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL)) (-4383 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 11 (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-3608 (((-767) $) 15 (|has| $ (-6 -4407))))) +(((-479 |#1| |#2| |#3|) (-13 (-1184 |#1| |#2|) (-10 -7 (-6 -4407))) (-1093) (-1093) (-1151)) (T -479)) +NIL +(-13 (-1184 |#1| |#2|) (-10 -7 (-6 -4407))) +((-3865 (((-563) (-563) (-563)) 7)) (-3704 (((-112) (-563) (-563) (-563) (-563)) 11)) (-2177 (((-1257 (-640 (-563))) (-767) (-767)) 22))) +(((-480) (-10 -7 (-15 -3865 ((-563) (-563) (-563))) (-15 -3704 ((-112) (-563) (-563) (-563) (-563))) (-15 -2177 ((-1257 (-640 (-563))) (-767) (-767))))) (T -480)) +((-2177 (*1 *2 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1257 (-640 (-563)))) (-5 *1 (-480)))) (-3704 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-563)) (-5 *2 (-112)) (-5 *1 (-480)))) (-3865 (*1 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-480))))) +(-10 -7 (-15 -3865 ((-563) (-563) (-563))) (-15 -3704 ((-112) (-563) (-563) (-563) (-563))) (-15 -2177 ((-1257 (-640 (-563))) (-767) (-767)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-2606 (((-640 (-860 |#1|)) $) NIL)) (-2139 (((-1165 $) $ (-860 |#1|)) NIL) (((-1165 |#2|) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#2| (-555)))) (-4223 (($ $) NIL (|has| |#2| (-555)))) (-3156 (((-112) $) NIL (|has| |#2| (-555)))) (-1779 (((-767) $) NIL) (((-767) $ (-640 (-860 |#1|))) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-2424 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-4335 (($ $) NIL (|has| |#2| (-452)))) (-3205 (((-418 $) $) NIL (|has| |#2| (-452)))) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#2| (-1034 (-563)))) (((-3 (-860 |#1|) "failed") $) NIL)) (-2058 ((|#2| $) NIL) (((-407 (-563)) $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#2| (-1034 (-563)))) (((-860 |#1|) $) NIL)) (-2742 (($ $ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-3483 (($ $ (-640 (-563))) NIL)) (-2751 (($ $) NIL)) (-2950 (((-684 (-563)) (-684 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -2835 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL) (((-684 |#2|) (-684 $)) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-1300 (($ $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-2739 (((-640 $) $) NIL)) (-2468 (((-112) $) NIL (|has| |#2| (-905)))) (-3554 (($ $ |#2| (-482 (-3608 |#1|) (-767)) $) NIL)) (-3787 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-563))) (|has| |#2| (-882 (-563)))))) (-3827 (((-112) $) NIL)) (-4096 (((-767) $) NIL)) (-2596 (($ (-1165 |#2|) (-860 |#1|)) NIL) (($ (-1165 $) (-860 |#1|)) NIL)) (-1368 (((-640 $) $) NIL)) (-3920 (((-112) $) NIL)) (-2588 (($ |#2| (-482 (-3608 |#1|) (-767))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-2625 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $ (-860 |#1|)) NIL)) (-2048 (((-482 (-3608 |#1|) (-767)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-640 (-767)) $ (-640 (-860 |#1|))) NIL)) (-3084 (($ $ $) NIL (|has| |#2| (-846)))) (-1777 (($ $ $) NIL (|has| |#2| (-846)))) (-2803 (($ (-1 (-482 (-3608 |#1|) (-767)) (-482 (-3608 |#1|) (-767))) $) NIL)) (-2240 (($ (-1 |#2| |#2|) $) NIL)) (-4234 (((-3 (-860 |#1|) "failed") $) NIL)) (-2716 (($ $) NIL)) (-2726 ((|#2| $) NIL)) (-3513 (($ (-640 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3573 (((-1151) $) NIL)) (-3733 (((-3 (-640 $) "failed") $) NIL)) (-2919 (((-3 (-640 $) "failed") $) NIL)) (-4086 (((-3 (-2 (|:| |var| (-860 |#1|)) (|:| -1654 (-767))) "failed") $) NIL)) (-1694 (((-1113) $) NIL)) (-2696 (((-112) $) NIL)) (-2706 ((|#2| $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#2| (-452)))) (-3548 (($ (-640 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-1876 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-3116 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2174 (((-418 $) $) NIL (|has| |#2| (-905)))) (-3008 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-555))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-555)))) (-1540 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-860 |#1|) |#2|) NIL) (($ $ (-640 (-860 |#1|)) (-640 |#2|)) NIL) (($ $ (-860 |#1|) $) NIL) (($ $ (-640 (-860 |#1|)) (-640 $)) NIL)) (-2315 (($ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-4202 (($ $ (-860 |#1|)) NIL) (($ $ (-640 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-4167 (((-482 (-3608 |#1|) (-767)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-640 (-767)) $ (-640 (-860 |#1|))) NIL)) (-2220 (((-888 (-379)) $) NIL (-12 (|has| (-860 |#1|) (-611 (-888 (-379)))) (|has| |#2| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| (-860 |#1|) (-611 (-888 (-563)))) (|has| |#2| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| (-860 |#1|) (-611 (-536))) (|has| |#2| (-611 (-536)))))) (-1836 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905))))) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ |#2|) NIL) (($ (-860 |#1|)) NIL) (($ (-407 (-563))) NIL (-4032 (|has| |#2| (-38 (-407 (-563)))) (|has| |#2| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#2| (-555)))) (-1337 (((-640 |#2|) $) NIL)) (-4319 ((|#2| $ (-482 (-3608 |#1|) (-767))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-2779 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#2| (-145))))) (-1675 (((-767)) NIL)) (-2793 (($ $ $ (-767)) NIL (|has| |#2| (-172)))) (-2126 (((-112) $ $) NIL (|has| |#2| (-555)))) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-3209 (($ $ (-860 |#1|)) NIL) (($ $ (-640 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-1778 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1756 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1744 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1837 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL (|has| |#2| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#2| (-38 (-407 (-563))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-481 |#1| |#2|) (-13 (-945 |#2| (-482 (-3608 |#1|) (-767)) (-860 |#1|)) (-10 -8 (-15 -3483 ($ $ (-640 (-563)))))) (-640 (-1169)) (-1045)) (T -481)) +((-3483 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-481 *3 *4)) (-14 *3 (-640 (-1169))) (-4 *4 (-1045))))) +(-13 (-945 |#2| (-482 (-3608 |#1|) (-767)) (-860 |#1|)) (-10 -8 (-15 -3483 ($ $ (-640 (-563)))))) +((-1677 (((-112) $ $) NIL (|has| |#2| (-1093)))) (-3411 (((-112) $) NIL (|has| |#2| (-131)))) (-1946 (($ (-917)) NIL (|has| |#2| (-1045)))) (-4378 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4408)))) (-1901 (($ $ $) NIL (|has| |#2| (-789)))) (-1495 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-2759 (((-112) $ (-767)) NIL)) (-3749 (((-767)) NIL (|has| |#2| (-368)))) (-1857 (((-563) $) NIL (|has| |#2| (-844)))) (-1849 ((|#2| $ (-563) |#2|) NIL (|has| $ (-6 -4408)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-563) "failed") $) NIL (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093)))) (((-3 (-407 (-563)) "failed") $) NIL (-12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1093)))) (-2058 (((-563) $) NIL (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093)))) (((-407 (-563)) $) NIL (-12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) ((|#2| $) NIL (|has| |#2| (-1093)))) (-2950 (((-684 (-563)) (-684 $)) NIL (-12 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (-12 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045)))) (((-2 (|:| -2835 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL (|has| |#2| (-1045))) (((-684 |#2|) (-684 $)) NIL (|has| |#2| (-1045)))) (-3400 (((-3 $ "failed") $) NIL (|has| |#2| (-722)))) (-1691 (($) NIL (|has| |#2| (-368)))) (-4355 ((|#2| $ (-563) |#2|) NIL (|has| $ (-6 -4408)))) (-4293 ((|#2| $ (-563)) 11)) (-3101 (((-112) $) NIL (|has| |#2| (-844)))) (-2659 (((-640 |#2|) $) NIL (|has| $ (-6 -4407)))) (-3827 (((-112) $) NIL (|has| |#2| (-722)))) (-1419 (((-112) $) NIL (|has| |#2| (-844)))) (-2581 (((-112) $ (-767)) NIL)) (-2411 (((-563) $) NIL (|has| (-563) (-846)))) (-3084 (($ $ $) NIL (-4032 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2259 (((-640 |#2|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093))))) (-3860 (((-563) $) NIL (|has| (-563) (-846)))) (-1777 (($ $ $) NIL (-4032 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-4345 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#2| |#2|) $) NIL)) (-1476 (((-917) $) NIL (|has| |#2| (-368)))) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL (|has| |#2| (-1093)))) (-4318 (((-640 (-563)) $) NIL)) (-3192 (((-112) (-563) $) NIL)) (-2555 (($ (-917)) NIL (|has| |#2| (-368)))) (-1694 (((-1113) $) NIL (|has| |#2| (-1093)))) (-3781 ((|#2| $) NIL (|has| (-563) (-846)))) (-2358 (($ $ |#2|) NIL (|has| $ (-6 -4408)))) (-3138 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-2026 (((-112) $ $) NIL)) (-2105 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093))))) (-2836 (((-640 |#2|) $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) NIL)) (-2309 ((|#2| $ (-563) |#2|) NIL) ((|#2| $ (-563)) NIL)) (-4092 ((|#2| $ $) NIL (|has| |#2| (-1045)))) (-2510 (($ (-1257 |#2|)) NIL)) (-3533 (((-134)) NIL (|has| |#2| (-363)))) (-4202 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-1709 (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093))))) (-1872 (($ $) NIL)) (-1693 (((-1257 |#2|) $) NIL) (($ (-563)) NIL (-4032 (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) (|has| |#2| (-1045)))) (($ (-407 (-563))) NIL (-12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) (($ |#2|) NIL (|has| |#2| (-1093))) (((-858) $) NIL (|has| |#2| (-610 (-858))))) (-1675 (((-767)) NIL (|has| |#2| (-1045)))) (-4383 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-2509 (($ $) NIL (|has| |#2| (-844)))) (-2241 (($) NIL (|has| |#2| (-131)) CONST)) (-2254 (($) NIL (|has| |#2| (-722)) CONST)) (-3209 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-1778 (((-112) $ $) NIL (-4032 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1756 (((-112) $ $) NIL (-4032 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1718 (((-112) $ $) NIL (|has| |#2| (-1093)))) (-1768 (((-112) $ $) NIL (-4032 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1744 (((-112) $ $) 15 (-4032 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1837 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1826 (($ $ $) NIL (|has| |#2| (-1045))) (($ $) NIL (|has| |#2| (-1045)))) (-1814 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-767)) NIL (|has| |#2| (-722))) (($ $ (-917)) NIL (|has| |#2| (-722)))) (* (($ (-563) $) NIL (|has| |#2| (-1045))) (($ $ $) NIL (|has| |#2| (-722))) (($ $ |#2|) NIL (|has| |#2| (-722))) (($ |#2| $) NIL (|has| |#2| (-722))) (($ (-767) $) NIL (|has| |#2| (-131))) (($ (-917) $) NIL (|has| |#2| (-25)))) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-482 |#1| |#2|) (-238 |#1| |#2|) (-767) (-789)) (T -482)) +NIL +(-238 |#1| |#2|) +((-1677 (((-112) $ $) NIL)) (-3387 (((-640 (-506)) $) 11)) (-3348 (((-506) $) 10)) (-3573 (((-1151) $) NIL)) (-4196 (($ (-506) (-640 (-506))) 9)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 20) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-483) (-13 (-1076) (-10 -8 (-15 -4196 ($ (-506) (-640 (-506)))) (-15 -3348 ((-506) $)) (-15 -3387 ((-640 (-506)) $))))) (T -483)) +((-4196 (*1 *1 *2 *3) (-12 (-5 *3 (-640 (-506))) (-5 *2 (-506)) (-5 *1 (-483)))) (-3348 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-483)))) (-3387 (*1 *2 *1) (-12 (-5 *2 (-640 (-506))) (-5 *1 (-483))))) +(-13 (-1076) (-10 -8 (-15 -4196 ($ (-506) (-640 (-506)))) (-15 -3348 ((-506) $)) (-15 -3387 ((-640 (-506)) $)))) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2759 (((-112) $ (-767)) NIL)) (-4239 (($) NIL T CONST)) (-2659 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-2581 (((-112) $ (-767)) NIL)) (-2878 (($ $ $) 32)) (-3164 (($ $ $) 31)) (-2259 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1777 ((|#1| $) 26)) (-4345 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-2964 ((|#1| $) 27)) (-1812 (($ |#1| $) 10)) (-3105 (($ (-640 |#1|)) 12)) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3755 ((|#1| $) 23)) (-3138 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) 9)) (-1709 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1872 (($ $) NIL)) (-1693 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-2233 (($ (-640 |#1|)) 29)) (-4383 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3608 (((-767) $) 21 (|has| $ (-6 -4407))))) +(((-484 |#1|) (-13 (-964 |#1|) (-10 -8 (-15 -3105 ($ (-640 |#1|))))) (-846)) (T -484)) +((-3105 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-484 *3))))) +(-13 (-964 |#1|) (-10 -8 (-15 -3105 ($ (-640 |#1|))))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4239 (($) NIL T CONST)) (-2444 (($ $) 69)) (-2257 (((-112) $) NIL)) (-3573 (((-1151) $) NIL)) (-1776 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 44)) (-1694 (((-1113) $) NIL)) (-4333 (((-3 |#4| "failed") $) 107)) (-3899 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-563)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-2927 (((-2 (|:| -1524 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-1693 (((-858) $) 102)) (-2241 (($) 33 T CONST)) (-1718 (((-112) $ $) 109)) (-1826 (($ $) 72) (($ $ $) NIL)) (-1814 (($ $ $) 70)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 73))) +(((-485 |#1| |#2| |#3| |#4|) (-335 |#1| |#2| |#3| |#4|) (-363) (-1233 |#1|) (-1233 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -485)) +NIL +(-335 |#1| |#2| |#3| |#4|) +((-1825 (((-563) (-640 (-563))) 29)) (-2074 ((|#1| (-640 |#1|)) 55)) (-2903 (((-640 |#1|) (-640 |#1|)) 56)) (-1573 (((-640 |#1|) (-640 |#1|)) 58)) (-3548 ((|#1| (-640 |#1|)) 57)) (-1836 (((-640 (-563)) (-640 |#1|)) 32))) +(((-486 |#1|) (-10 -7 (-15 -3548 (|#1| (-640 |#1|))) (-15 -2074 (|#1| (-640 |#1|))) (-15 -1573 ((-640 |#1|) (-640 |#1|))) (-15 -2903 ((-640 |#1|) (-640 |#1|))) (-15 -1836 ((-640 (-563)) (-640 |#1|))) (-15 -1825 ((-563) (-640 (-563))))) (-1233 (-563))) (T -486)) +((-1825 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-563)) (-5 *1 (-486 *4)) (-4 *4 (-1233 *2)))) (-1836 (*1 *2 *3) (-12 (-5 *3 (-640 *4)) (-4 *4 (-1233 (-563))) (-5 *2 (-640 (-563))) (-5 *1 (-486 *4)))) (-2903 (*1 *2 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1233 (-563))) (-5 *1 (-486 *3)))) (-1573 (*1 *2 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1233 (-563))) (-5 *1 (-486 *3)))) (-2074 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1233 (-563))))) (-3548 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1233 (-563)))))) +(-10 -7 (-15 -3548 (|#1| (-640 |#1|))) (-15 -2074 (|#1| (-640 |#1|))) (-15 -1573 ((-640 |#1|) (-640 |#1|))) (-15 -2903 ((-640 |#1|) (-640 |#1|))) (-15 -1836 ((-640 (-563)) (-640 |#1|))) (-15 -1825 ((-563) (-640 (-563))))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-3401 (((-563) $) NIL (|has| (-563) (-307)))) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-2424 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-1919 (((-112) $ $) NIL)) (-1857 (((-563) $) NIL (|has| (-563) (-816)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-563) "failed") $) NIL) (((-3 (-1169) "failed") $) NIL (|has| (-563) (-1034 (-1169)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| (-563) (-1034 (-563)))) (((-3 (-563) "failed") $) NIL (|has| (-563) (-1034 (-563))))) (-2058 (((-563) $) NIL) (((-1169) $) NIL (|has| (-563) (-1034 (-1169)))) (((-407 (-563)) $) NIL (|has| (-563) (-1034 (-563)))) (((-563) $) NIL (|has| (-563) (-1034 (-563))))) (-3090 (($ $ $) NIL)) (-2950 (((-684 (-563)) (-684 $)) NIL (|has| (-563) (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| (-563) (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-684 (-563)) (-684 $)) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-1691 (($) NIL (|has| (-563) (-545)))) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-2468 (((-112) $) NIL)) (-3101 (((-112) $) NIL (|has| (-563) (-816)))) (-3787 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (|has| (-563) (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-563) (-882 (-379))))) (-3827 (((-112) $) NIL)) (-2711 (($ $) NIL)) (-2143 (((-563) $) NIL)) (-2408 (((-3 $ "failed") $) NIL (|has| (-563) (-1144)))) (-1419 (((-112) $) NIL (|has| (-563) (-816)))) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3084 (($ $ $) NIL (|has| (-563) (-846)))) (-1777 (($ $ $) NIL (|has| (-563) (-846)))) (-2240 (($ (-1 (-563) (-563)) $) NIL)) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) NIL)) (-2523 (($) NIL (|has| (-563) (-1144)) CONST)) (-1496 (($ (-407 (-563))) 9)) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ $ $) NIL) (($ (-640 $)) NIL)) (-4215 (($ $) NIL (|has| (-563) (-307))) (((-407 (-563)) $) NIL)) (-1583 (((-563) $) NIL (|has| (-563) (-545)))) (-1876 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-3116 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-2174 (((-418 $) $) NIL)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1540 (($ $ (-640 (-563)) (-640 (-563))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-563) (-563)) NIL (|has| (-563) (-309 (-563)))) (($ $ (-294 (-563))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-640 (-294 (-563)))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-640 (-1169)) (-640 (-563))) NIL (|has| (-563) (-514 (-1169) (-563)))) (($ $ (-1169) (-563)) NIL (|has| (-563) (-514 (-1169) (-563))))) (-2628 (((-767) $) NIL)) (-2309 (($ $ (-563)) NIL (|has| (-563) (-286 (-563) (-563))))) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-4202 (($ $) NIL (|has| (-563) (-233))) (($ $ (-767)) NIL (|has| (-563) (-233))) (($ $ (-1169)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1 (-563) (-563)) (-767)) NIL) (($ $ (-1 (-563) (-563))) NIL)) (-1801 (($ $) NIL)) (-2154 (((-563) $) NIL)) (-2220 (((-888 (-563)) $) NIL (|has| (-563) (-611 (-888 (-563))))) (((-888 (-379)) $) NIL (|has| (-563) (-611 (-888 (-379))))) (((-536) $) NIL (|has| (-563) (-611 (-536)))) (((-379) $) NIL (|has| (-563) (-1018))) (((-225) $) NIL (|has| (-563) (-1018)))) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-563) (-905))))) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) 8) (($ (-563)) NIL) (($ (-1169)) NIL (|has| (-563) (-1034 (-1169)))) (((-407 (-563)) $) NIL) (((-1000 16) $) 10)) (-2779 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| $ (-145)) (|has| (-563) (-905))) (|has| (-563) (-145))))) (-1675 (((-767)) NIL)) (-4194 (((-563) $) NIL (|has| (-563) (-545)))) (-2126 (((-112) $ $) NIL)) (-2509 (($ $) NIL (|has| (-563) (-816)))) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-3209 (($ $) NIL (|has| (-563) (-233))) (($ $ (-767)) NIL (|has| (-563) (-233))) (($ $ (-1169)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1 (-563) (-563)) (-767)) NIL) (($ $ (-1 (-563) (-563))) NIL)) (-1778 (((-112) $ $) NIL (|has| (-563) (-846)))) (-1756 (((-112) $ $) NIL (|has| (-563) (-846)))) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL (|has| (-563) (-846)))) (-1744 (((-112) $ $) NIL (|has| (-563) (-846)))) (-1837 (($ $ $) NIL) (($ (-563) (-563)) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ (-563) $) NIL) (($ $ (-563)) NIL))) +(((-487) (-13 (-988 (-563)) (-610 (-407 (-563))) (-610 (-1000 16)) (-10 -8 (-15 -4215 ((-407 (-563)) $)) (-15 -1496 ($ (-407 (-563))))))) (T -487)) +((-4215 (*1 *2 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-487)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-487))))) +(-13 (-988 (-563)) (-610 (-407 (-563))) (-610 (-1000 16)) (-10 -8 (-15 -4215 ((-407 (-563)) $)) (-15 -1496 ($ (-407 (-563)))))) +((-2259 (((-640 |#2|) $) 23)) (-1729 (((-112) |#2| $) 28)) (-3138 (((-112) (-1 (-112) |#2|) $) 21)) (-1540 (($ $ (-640 (-294 |#2|))) 13) (($ $ (-294 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-640 |#2|) (-640 |#2|)) NIL)) (-1709 (((-767) (-1 (-112) |#2|) $) 22) (((-767) |#2| $) 26)) (-1693 (((-858) $) 37)) (-4383 (((-112) (-1 (-112) |#2|) $) 20)) (-1718 (((-112) $ $) 31)) (-3608 (((-767) $) 17))) +(((-488 |#1| |#2|) (-10 -8 (-15 -1693 ((-858) |#1|)) (-15 -1718 ((-112) |#1| |#1|)) (-15 -1540 (|#1| |#1| (-640 |#2|) (-640 |#2|))) (-15 -1540 (|#1| |#1| |#2| |#2|)) (-15 -1540 (|#1| |#1| (-294 |#2|))) (-15 -1540 (|#1| |#1| (-640 (-294 |#2|)))) (-15 -1729 ((-112) |#2| |#1|)) (-15 -1709 ((-767) |#2| |#1|)) (-15 -2259 ((-640 |#2|) |#1|)) (-15 -1709 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -3138 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4383 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3608 ((-767) |#1|))) (-489 |#2|) (-1208)) (T -488)) +NIL +(-10 -8 (-15 -1693 ((-858) |#1|)) (-15 -1718 ((-112) |#1| |#1|)) (-15 -1540 (|#1| |#1| (-640 |#2|) (-640 |#2|))) (-15 -1540 (|#1| |#1| |#2| |#2|)) (-15 -1540 (|#1| |#1| (-294 |#2|))) (-15 -1540 (|#1| |#1| (-640 (-294 |#2|)))) (-15 -1729 ((-112) |#2| |#1|)) (-15 -1709 ((-767) |#2| |#1|)) (-15 -2259 ((-640 |#2|) |#1|)) (-15 -1709 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -3138 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4383 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3608 ((-767) |#1|))) +((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-2759 (((-112) $ (-767)) 8)) (-4239 (($) 7 T CONST)) (-2659 (((-640 |#1|) $) 30 (|has| $ (-6 -4407)))) (-2581 (((-112) $ (-767)) 9)) (-2259 (((-640 |#1|) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-4345 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 35)) (-2382 (((-112) $ (-767)) 10)) (-3573 (((-1151) $) 22 (|has| |#1| (-1093)))) (-1694 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3138 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) 14)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-1709 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4407))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1872 (($ $) 13)) (-1693 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-4383 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-489 |#1|) (-140) (-1208)) (T -489)) +((-2240 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-489 *3)) (-4 *3 (-1208)))) (-4345 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4408)) (-4 *1 (-489 *3)) (-4 *3 (-1208)))) (-4383 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4407)) (-4 *1 (-489 *4)) (-4 *4 (-1208)) (-5 *2 (-112)))) (-3138 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4407)) (-4 *1 (-489 *4)) (-4 *4 (-1208)) (-5 *2 (-112)))) (-1709 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4407)) (-4 *1 (-489 *4)) (-4 *4 (-1208)) (-5 *2 (-767)))) (-2659 (*1 *2 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-489 *3)) (-4 *3 (-1208)) (-5 *2 (-640 *3)))) (-2259 (*1 *2 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-489 *3)) (-4 *3 (-1208)) (-5 *2 (-640 *3)))) (-1709 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-489 *3)) (-4 *3 (-1208)) (-4 *3 (-1093)) (-5 *2 (-767)))) (-1729 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-489 *3)) (-4 *3 (-1208)) (-4 *3 (-1093)) (-5 *2 (-112))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-610 (-858))) (-6 (-610 (-858))) |%noBranch|) (IF (|has| |t#1| (-1093)) (-6 (-1093)) |%noBranch|) (IF (|has| |t#1| (-1093)) (IF (|has| |t#1| (-309 |t#1|)) (-6 (-309 |t#1|)) |%noBranch|) |%noBranch|) (-15 -2240 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4408)) (-15 -4345 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4407)) (PROGN (-15 -4383 ((-112) (-1 (-112) |t#1|) $)) (-15 -3138 ((-112) (-1 (-112) |t#1|) $)) (-15 -1709 ((-767) (-1 (-112) |t#1|) $)) (-15 -2659 ((-640 |t#1|) $)) (-15 -2259 ((-640 |t#1|) $)) (IF (|has| |t#1| (-1093)) (PROGN (-15 -1709 ((-767) |t#1| $)) (-15 -1729 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4032 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T)) +((-1693 ((|#1| $) 6) (($ |#1|) 9))) +(((-490 |#1|) (-140) (-1208)) (T -490)) +NIL +(-13 (-610 |t#1|) (-613 |t#1|)) +(((-613 |#1|) . T) ((-610 |#1|) . T)) +((-1677 (((-112) $ $) NIL)) (-3573 (((-1151) $) NIL)) (-2762 (($ (-1151)) 8)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 14) (((-1151) $) 11)) (-1718 (((-112) $ $) 10))) +(((-491) (-13 (-1093) (-610 (-1151)) (-10 -8 (-15 -2762 ($ (-1151)))))) (T -491)) +((-2762 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-491))))) +(-13 (-1093) (-610 (-1151)) (-10 -8 (-15 -2762 ($ (-1151))))) +((-1771 (($ $) 15)) (-1748 (($ $) 24)) (-1794 (($ $) 12)) (-1806 (($ $) 10)) (-1784 (($ $) 17)) (-1759 (($ $) 22))) +(((-492 |#1|) (-10 -8 (-15 -1759 (|#1| |#1|)) (-15 -1784 (|#1| |#1|)) (-15 -1806 (|#1| |#1|)) (-15 -1794 (|#1| |#1|)) (-15 -1748 (|#1| |#1|)) (-15 -1771 (|#1| |#1|))) (-493)) (T -492)) +NIL +(-10 -8 (-15 -1759 (|#1| |#1|)) (-15 -1784 (|#1| |#1|)) (-15 -1806 (|#1| |#1|)) (-15 -1794 (|#1| |#1|)) (-15 -1748 (|#1| |#1|)) (-15 -1771 (|#1| |#1|))) +((-1771 (($ $) 11)) (-1748 (($ $) 10)) (-1794 (($ $) 9)) (-1806 (($ $) 8)) (-1784 (($ $) 7)) (-1759 (($ $) 6))) +(((-493) (-140)) (T -493)) +((-1771 (*1 *1 *1) (-4 *1 (-493))) (-1748 (*1 *1 *1) (-4 *1 (-493))) (-1794 (*1 *1 *1) (-4 *1 (-493))) (-1806 (*1 *1 *1) (-4 *1 (-493))) (-1784 (*1 *1 *1) (-4 *1 (-493))) (-1759 (*1 *1 *1) (-4 *1 (-493)))) +(-13 (-10 -8 (-15 -1759 ($ $)) (-15 -1784 ($ $)) (-15 -1806 ($ $)) (-15 -1794 ($ $)) (-15 -1748 ($ $)) (-15 -1771 ($ $)))) +((-2174 (((-418 |#4|) |#4| (-1 (-418 |#2|) |#2|)) 42))) +(((-494 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2174 ((-418 |#4|) |#4| (-1 (-418 |#2|) |#2|)))) (-363) (-1233 |#1|) (-13 (-363) (-147) (-720 |#1| |#2|)) (-1233 |#3|)) (T -494)) +((-2174 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363)) (-4 *7 (-13 (-363) (-147) (-720 *5 *6))) (-5 *2 (-418 *3)) (-5 *1 (-494 *5 *6 *7 *3)) (-4 *3 (-1233 *7))))) +(-10 -7 (-15 -2174 ((-418 |#4|) |#4| (-1 (-418 |#2|) |#2|)))) +((-1677 (((-112) $ $) NIL)) (-2802 (((-640 $) (-1165 $) (-1169)) NIL) (((-640 $) (-1165 $)) NIL) (((-640 $) (-948 $)) NIL)) (-3070 (($ (-1165 $) (-1169)) NIL) (($ (-1165 $)) NIL) (($ (-948 $)) NIL)) (-3411 (((-112) $) 38)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-2980 (((-112) $ $) 63)) (-2059 (((-640 (-609 $)) $) 47)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4132 (($ $ (-294 $)) NIL) (($ $ (-640 (-294 $))) NIL) (($ $ (-640 (-609 $)) (-640 $)) NIL)) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-2186 (($ $) NIL)) (-1919 (((-112) $ $) NIL)) (-4239 (($) NIL T CONST)) (-4144 (((-640 $) (-1165 $) (-1169)) NIL) (((-640 $) (-1165 $)) NIL) (((-640 $) (-948 $)) NIL)) (-3457 (($ (-1165 $) (-1169)) NIL) (($ (-1165 $)) NIL) (($ (-948 $)) NIL)) (-2131 (((-3 (-609 $) "failed") $) NIL) (((-3 (-563) "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL)) (-2058 (((-609 $) $) NIL) (((-563) $) NIL) (((-407 (-563)) $) 49)) (-3090 (($ $ $) NIL)) (-2950 (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-684 (-563)) (-684 $)) NIL) (((-2 (|:| -2835 (-684 (-407 (-563)))) (|:| |vec| (-1257 (-407 (-563))))) (-684 $) (-1257 $)) NIL) (((-684 (-407 (-563))) (-684 $)) NIL)) (-2444 (($ $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-2468 (((-112) $) NIL)) (-3968 (($ $) NIL) (($ (-640 $)) NIL)) (-3804 (((-640 (-114)) $) NIL)) (-2361 (((-114) (-114)) NIL)) (-3827 (((-112) $) 41)) (-3131 (((-112) $) NIL (|has| $ (-1034 (-563))))) (-2143 (((-1118 (-563) (-609 $)) $) 36)) (-1645 (($ $ (-563)) NIL)) (-3793 (((-1165 $) (-1165 $) (-609 $)) 77) (((-1165 $) (-1165 $) (-640 (-609 $))) 54) (($ $ (-609 $)) 66) (($ $ (-640 (-609 $))) 67)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3180 (((-1165 $) (-609 $)) 64 (|has| $ (-1045)))) (-3084 (($ $ $) NIL)) (-1777 (($ $ $) NIL)) (-2240 (($ (-1 $ $) (-609 $)) NIL)) (-2875 (((-3 (-609 $) "failed") $) NIL)) (-3513 (($ (-640 $)) NIL) (($ $ $) NIL)) (-3573 (((-1151) $) NIL)) (-2127 (((-640 (-609 $)) $) NIL)) (-2227 (($ (-114) $) NIL) (($ (-114) (-640 $)) NIL)) (-2799 (((-112) $ (-114)) NIL) (((-112) $ (-1169)) NIL)) (-2688 (($ $) NIL)) (-4236 (((-767) $) NIL)) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ (-640 $)) NIL) (($ $ $) NIL)) (-1372 (((-112) $ $) NIL) (((-112) $ (-1169)) NIL)) (-2174 (((-418 $) $) NIL)) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2359 (((-112) $) NIL (|has| $ (-1034 (-563))))) (-1540 (($ $ (-609 $) $) NIL) (($ $ (-640 (-609 $)) (-640 $)) NIL) (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-640 (-1169)) (-640 (-1 $ $))) NIL) (($ $ (-640 (-1169)) (-640 (-1 $ (-640 $)))) NIL) (($ $ (-1169) (-1 $ (-640 $))) NIL) (($ $ (-1169) (-1 $ $)) NIL) (($ $ (-640 (-114)) (-640 (-1 $ $))) NIL) (($ $ (-640 (-114)) (-640 (-1 $ (-640 $)))) NIL) (($ $ (-114) (-1 $ (-640 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2628 (((-767) $) NIL)) (-2309 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-640 $)) NIL)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-3071 (($ $) NIL) (($ $ $) NIL)) (-4202 (($ $ (-767)) NIL) (($ $) 35)) (-2154 (((-1118 (-563) (-609 $)) $) 19)) (-3390 (($ $) NIL (|has| $ (-1045)))) (-2220 (((-379) $) 91) (((-225) $) 99) (((-169 (-379)) $) 107)) (-1693 (((-858) $) NIL) (($ (-609 $)) NIL) (($ (-407 (-563))) NIL) (($ $) NIL) (($ (-563)) NIL) (($ (-1118 (-563) (-609 $))) 20)) (-1675 (((-767)) NIL)) (-3079 (($ $) NIL) (($ (-640 $)) NIL)) (-3734 (((-112) (-114)) 83)) (-2126 (((-112) $ $) NIL)) (-2241 (($) 10 T CONST)) (-2254 (($) 21 T CONST)) (-3209 (($ $ (-767)) NIL) (($ $) NIL)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 23)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) NIL)) (-1837 (($ $ $) 43)) (-1826 (($ $ $) NIL) (($ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-407 (-563))) NIL) (($ $ (-563)) 45) (($ $ (-767)) NIL) (($ $ (-917)) NIL)) (* (($ (-407 (-563)) $) NIL) (($ $ (-407 (-563))) NIL) (($ $ $) 26) (($ (-563) $) NIL) (($ (-767) $) NIL) (($ (-917) $) NIL))) +(((-495) (-13 (-302) (-27) (-1034 (-563)) (-1034 (-407 (-563))) (-636 (-563)) (-1018) (-636 (-407 (-563))) (-147) (-611 (-169 (-379))) (-233) (-10 -8 (-15 -1693 ($ (-1118 (-563) (-609 $)))) (-15 -2143 ((-1118 (-563) (-609 $)) $)) (-15 -2154 ((-1118 (-563) (-609 $)) $)) (-15 -2444 ($ $)) (-15 -2980 ((-112) $ $)) (-15 -3793 ((-1165 $) (-1165 $) (-609 $))) (-15 -3793 ((-1165 $) (-1165 $) (-640 (-609 $)))) (-15 -3793 ($ $ (-609 $))) (-15 -3793 ($ $ (-640 (-609 $))))))) (T -495)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-1118 (-563) (-609 (-495)))) (-5 *1 (-495)))) (-2143 (*1 *2 *1) (-12 (-5 *2 (-1118 (-563) (-609 (-495)))) (-5 *1 (-495)))) (-2154 (*1 *2 *1) (-12 (-5 *2 (-1118 (-563) (-609 (-495)))) (-5 *1 (-495)))) (-2444 (*1 *1 *1) (-5 *1 (-495))) (-2980 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-495)))) (-3793 (*1 *2 *2 *3) (-12 (-5 *2 (-1165 (-495))) (-5 *3 (-609 (-495))) (-5 *1 (-495)))) (-3793 (*1 *2 *2 *3) (-12 (-5 *2 (-1165 (-495))) (-5 *3 (-640 (-609 (-495)))) (-5 *1 (-495)))) (-3793 (*1 *1 *1 *2) (-12 (-5 *2 (-609 (-495))) (-5 *1 (-495)))) (-3793 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-609 (-495)))) (-5 *1 (-495))))) +(-13 (-302) (-27) (-1034 (-563)) (-1034 (-407 (-563))) (-636 (-563)) (-1018) (-636 (-407 (-563))) (-147) (-611 (-169 (-379))) (-233) (-10 -8 (-15 -1693 ($ (-1118 (-563) (-609 $)))) (-15 -2143 ((-1118 (-563) (-609 $)) $)) (-15 -2154 ((-1118 (-563) (-609 $)) $)) (-15 -2444 ($ $)) (-15 -2980 ((-112) $ $)) (-15 -3793 ((-1165 $) (-1165 $) (-609 $))) (-15 -3793 ((-1165 $) (-1165 $) (-640 (-609 $)))) (-15 -3793 ($ $ (-609 $))) (-15 -3793 ($ $ (-640 (-609 $)))))) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-4378 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4408)))) (-3523 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-2770 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4408))) (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-846))))) (-1642 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-2759 (((-112) $ (-767)) NIL)) (-1849 ((|#1| $ (-563) |#1|) 25 (|has| $ (-6 -4408))) ((|#1| $ (-1224 (-563)) |#1|) NIL (|has| $ (-6 -4408)))) (-2256 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-4239 (($) NIL T CONST)) (-2907 (($ $) NIL (|has| $ (-6 -4408)))) (-4382 (($ $) NIL)) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1459 (($ |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-4355 ((|#1| $ (-563) |#1|) 22 (|has| $ (-6 -4408)))) (-4293 ((|#1| $ (-563)) 21)) (-4368 (((-563) (-1 (-112) |#1|) $) NIL) (((-563) |#1| $) NIL (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) NIL (|has| |#1| (-1093)))) (-2659 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1566 (($ (-767) |#1|) 14)) (-2581 (((-112) $ (-767)) NIL)) (-2411 (((-563) $) 12 (|has| (-563) (-846)))) (-3084 (($ $ $) NIL (|has| |#1| (-846)))) (-3164 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-2259 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-3860 (((-563) $) 23 (|has| (-563) (-846)))) (-1777 (($ $ $) NIL (|has| |#1| (-846)))) (-4345 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3396 (($ |#1| $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-4318 (((-640 (-563)) $) NIL)) (-3192 (((-112) (-563) $) NIL)) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3781 ((|#1| $) NIL (|has| (-563) (-846)))) (-4203 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2358 (($ $ |#1|) 10 (|has| $ (-6 -4408)))) (-3138 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) NIL)) (-2105 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2836 (((-640 |#1|) $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) 13)) (-2309 ((|#1| $ (-563) |#1|) NIL) ((|#1| $ (-563)) 24) (($ $ (-1224 (-563))) NIL)) (-2963 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-1709 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-3076 (($ $ $ (-563)) NIL (|has| $ (-6 -4408)))) (-1872 (($ $) NIL)) (-2220 (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-1707 (($ (-640 |#1|)) NIL)) (-2853 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-640 $)) NIL)) (-1693 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-4383 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1778 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1756 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1768 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1744 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3608 (((-767) $) 9 (|has| $ (-6 -4407))))) +(((-496 |#1| |#2|) (-19 |#1|) (-1208) (-563)) (T -496)) NIL (-19 |#1|) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3735 (((-112) $ (-766)) NIL)) (-4200 ((|#1| $ (-562) (-562) |#1|) NIL)) (-2267 (($ $ (-562) (-495 |#1| |#3|)) NIL)) (-3320 (($ $ (-562) (-495 |#1| |#2|)) NIL)) (-3329 (($) NIL T CONST)) (-3511 (((-495 |#1| |#3|) $ (-562)) NIL)) (-1507 ((|#1| $ (-562) (-562) |#1|) NIL)) (-1420 ((|#1| $ (-562) (-562)) NIL)) (-1720 (((-639 |#1|) $) NIL)) (-2698 (((-766) $) NIL)) (-1458 (($ (-766) (-766) |#1|) NIL)) (-2708 (((-766) $) NIL)) (-4172 (((-112) $ (-766)) NIL)) (-1808 (((-562) $) NIL)) (-2028 (((-562) $) NIL)) (-2123 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-3269 (((-562) $) NIL)) (-2727 (((-562) $) NIL)) (-1491 (($ (-1 |#1| |#1|) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-3510 (($ $ |#1|) NIL)) (-3008 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) NIL)) (-2343 ((|#1| $ (-562) (-562)) NIL) ((|#1| $ (-562) (-562) |#1|) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-4220 (($ $) NIL)) (-2208 (((-495 |#1| |#2|) $ (-562)) NIL)) (-4053 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-2879 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-496 |#1| |#2| |#3|) (-57 |#1| (-495 |#1| |#3|) (-495 |#1| |#2|)) (-1207) (-562) (-562)) (T -496)) -NIL -(-57 |#1| (-495 |#1| |#3|) (-495 |#1| |#2|)) -((-3452 (((-639 (-2 (|:| -4291 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|)))) (-2 (|:| -4291 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|))) (-766) (-766)) 27)) (-4072 (((-639 (-1164 |#1|)) |#1| (-766) (-766) (-766)) 34)) (-3143 (((-2 (|:| -4291 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|))) (-639 |#3|) (-639 (-2 (|:| -4291 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|)))) (-766)) 84))) -(((-497 |#1| |#2| |#3|) (-10 -7 (-15 -4072 ((-639 (-1164 |#1|)) |#1| (-766) (-766) (-766))) (-15 -3452 ((-639 (-2 (|:| -4291 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|)))) (-2 (|:| -4291 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|))) (-766) (-766))) (-15 -3143 ((-2 (|:| -4291 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|))) (-639 |#3|) (-639 (-2 (|:| -4291 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|)))) (-766)))) (-348) (-1232 |#1|) (-1232 |#2|)) (T -497)) -((-3143 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 *8)) (-5 *4 (-639 (-2 (|:| -4291 (-683 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-683 *7))))) (-5 *5 (-766)) (-4 *8 (-1232 *7)) (-4 *7 (-1232 *6)) (-4 *6 (-348)) (-5 *2 (-2 (|:| -4291 (-683 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-683 *7)))) (-5 *1 (-497 *6 *7 *8)))) (-3452 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-766)) (-4 *5 (-348)) (-4 *6 (-1232 *5)) (-5 *2 (-639 (-2 (|:| -4291 (-683 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-683 *6))))) (-5 *1 (-497 *5 *6 *7)) (-5 *3 (-2 (|:| -4291 (-683 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-683 *6)))) (-4 *7 (-1232 *6)))) (-4072 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-766)) (-4 *3 (-348)) (-4 *5 (-1232 *3)) (-5 *2 (-639 (-1164 *3))) (-5 *1 (-497 *3 *5 *6)) (-4 *6 (-1232 *5))))) -(-10 -7 (-15 -4072 ((-639 (-1164 |#1|)) |#1| (-766) (-766) (-766))) (-15 -3452 ((-639 (-2 (|:| -4291 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|)))) (-2 (|:| -4291 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|))) (-766) (-766))) (-15 -3143 ((-2 (|:| -4291 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|))) (-639 |#3|) (-639 (-2 (|:| -4291 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|)))) (-766)))) -((-2026 (((-2 (|:| -4291 (-683 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-683 |#1|))) (-2 (|:| -4291 (-683 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-683 |#1|))) (-2 (|:| -4291 (-683 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-683 |#1|)))) 62)) (-2141 ((|#1| (-683 |#1|) |#1| (-766)) 25)) (-1856 (((-766) (-766) (-766)) 30)) (-2805 (((-683 |#1|) (-683 |#1|) (-683 |#1|)) 42)) (-2979 (((-683 |#1|) (-683 |#1|) (-683 |#1|) |#1|) 50) (((-683 |#1|) (-683 |#1|) (-683 |#1|)) 47)) (-2408 ((|#1| (-683 |#1|) (-683 |#1|) |#1| (-562)) 29)) (-3042 ((|#1| (-683 |#1|)) 18))) -(((-498 |#1| |#2| |#3|) (-10 -7 (-15 -3042 (|#1| (-683 |#1|))) (-15 -2141 (|#1| (-683 |#1|) |#1| (-766))) (-15 -2408 (|#1| (-683 |#1|) (-683 |#1|) |#1| (-562))) (-15 -1856 ((-766) (-766) (-766))) (-15 -2979 ((-683 |#1|) (-683 |#1|) (-683 |#1|))) (-15 -2979 ((-683 |#1|) (-683 |#1|) (-683 |#1|) |#1|)) (-15 -2805 ((-683 |#1|) (-683 |#1|) (-683 |#1|))) (-15 -2026 ((-2 (|:| -4291 (-683 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-683 |#1|))) (-2 (|:| -4291 (-683 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-683 |#1|))) (-2 (|:| -4291 (-683 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-683 |#1|)))))) (-13 (-306) (-10 -8 (-15 -3788 ((-417 $) $)))) (-1232 |#1|) (-408 |#1| |#2|)) (T -498)) -((-2026 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -4291 (-683 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-683 *3)))) (-4 *3 (-13 (-306) (-10 -8 (-15 -3788 ((-417 $) $))))) (-4 *4 (-1232 *3)) (-5 *1 (-498 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-2805 (*1 *2 *2 *2) (-12 (-5 *2 (-683 *3)) (-4 *3 (-13 (-306) (-10 -8 (-15 -3788 ((-417 $) $))))) (-4 *4 (-1232 *3)) (-5 *1 (-498 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-2979 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-683 *3)) (-4 *3 (-13 (-306) (-10 -8 (-15 -3788 ((-417 $) $))))) (-4 *4 (-1232 *3)) (-5 *1 (-498 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-2979 (*1 *2 *2 *2) (-12 (-5 *2 (-683 *3)) (-4 *3 (-13 (-306) (-10 -8 (-15 -3788 ((-417 $) $))))) (-4 *4 (-1232 *3)) (-5 *1 (-498 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-1856 (*1 *2 *2 *2) (-12 (-5 *2 (-766)) (-4 *3 (-13 (-306) (-10 -8 (-15 -3788 ((-417 $) $))))) (-4 *4 (-1232 *3)) (-5 *1 (-498 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) (-2408 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-683 *2)) (-5 *4 (-562)) (-4 *2 (-13 (-306) (-10 -8 (-15 -3788 ((-417 $) $))))) (-4 *5 (-1232 *2)) (-5 *1 (-498 *2 *5 *6)) (-4 *6 (-408 *2 *5)))) (-2141 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-683 *2)) (-5 *4 (-766)) (-4 *2 (-13 (-306) (-10 -8 (-15 -3788 ((-417 $) $))))) (-4 *5 (-1232 *2)) (-5 *1 (-498 *2 *5 *6)) (-4 *6 (-408 *2 *5)))) (-3042 (*1 *2 *3) (-12 (-5 *3 (-683 *2)) (-4 *4 (-1232 *2)) (-4 *2 (-13 (-306) (-10 -8 (-15 -3788 ((-417 $) $))))) (-5 *1 (-498 *2 *4 *5)) (-4 *5 (-408 *2 *4))))) -(-10 -7 (-15 -3042 (|#1| (-683 |#1|))) (-15 -2141 (|#1| (-683 |#1|) |#1| (-766))) (-15 -2408 (|#1| (-683 |#1|) (-683 |#1|) |#1| (-562))) (-15 -1856 ((-766) (-766) (-766))) (-15 -2979 ((-683 |#1|) (-683 |#1|) (-683 |#1|))) (-15 -2979 ((-683 |#1|) (-683 |#1|) (-683 |#1|) |#1|)) (-15 -2805 ((-683 |#1|) (-683 |#1|) (-683 |#1|))) (-15 -2026 ((-2 (|:| -4291 (-683 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-683 |#1|))) (-2 (|:| -4291 (-683 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-683 |#1|))) (-2 (|:| -4291 (-683 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-683 |#1|)))))) -((-4041 (((-112) $ $) NIL)) (-3294 (($ $) NIL)) (-2264 (($ $ $) 35)) (-3655 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4404)))) (-1706 (((-112) $) NIL (|has| (-112) (-845))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3737 (($ $) NIL (-12 (|has| $ (-6 -4404)) (|has| (-112) (-845)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4404)))) (-1395 (($ $) NIL (|has| (-112) (-845))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3735 (((-112) $ (-766)) NIL)) (-4200 (((-112) $ (-1223 (-562)) (-112)) NIL (|has| $ (-6 -4404))) (((-112) $ (-562) (-112)) 36 (|has| $ (-6 -4404)))) (-3556 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4403)))) (-3329 (($) NIL T CONST)) (-2673 (($ $) NIL (|has| $ (-6 -4404)))) (-2676 (($ $) NIL)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-112) (-1092))))) (-1475 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4403))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-112) (-1092))))) (-1954 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4403))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4403))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4403)) (|has| (-112) (-1092))))) (-1507 (((-112) $ (-562) (-112)) NIL (|has| $ (-6 -4404)))) (-1420 (((-112) $ (-562)) NIL)) (-4265 (((-562) (-112) $ (-562)) NIL (|has| (-112) (-1092))) (((-562) (-112) $) NIL (|has| (-112) (-1092))) (((-562) (-1 (-112) (-112)) $) NIL)) (-1720 (((-639 (-112)) $) NIL (|has| $ (-6 -4403)))) (-2256 (($ $ $) 33)) (-2234 (($ $) NIL)) (-1886 (($ $ $) NIL)) (-1458 (($ (-766) (-112)) 23)) (-2618 (($ $ $) NIL)) (-4172 (((-112) $ (-766)) NIL)) (-1849 (((-562) $) 8 (|has| (-562) (-845)))) (-1551 (($ $ $) NIL)) (-4103 (($ $ $) NIL (|has| (-112) (-845))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2123 (((-639 (-112)) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-112) (-1092))))) (-1929 (((-562) $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL)) (-1491 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 (-112) (-112) (-112)) $ $) 30) (($ (-1 (-112) (-112)) $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL)) (-3295 (($ $ $ (-562)) NIL) (($ (-112) $ (-562)) NIL)) (-3336 (((-639 (-562)) $) NIL)) (-1987 (((-112) (-562) $) NIL)) (-1709 (((-1112) $) NIL)) (-1421 (((-112) $) NIL (|has| (-562) (-845)))) (-1963 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3510 (($ $ (-112)) NIL (|has| $ (-6 -4404)))) (-3008 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-112)) (-639 (-112))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1092)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1092)))) (($ $ (-293 (-112))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1092)))) (($ $ (-639 (-293 (-112)))) NIL (-12 (|has| (-112) (-308 (-112))) (|has| (-112) (-1092))))) (-1452 (((-112) $ $) NIL)) (-2716 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-112) (-1092))))) (-2366 (((-639 (-112)) $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) 24)) (-2343 (($ $ (-1223 (-562))) NIL) (((-112) $ (-562)) 18) (((-112) $ (-562) (-112)) NIL)) (-2880 (($ $ (-1223 (-562))) NIL) (($ $ (-562)) NIL)) (-1723 (((-766) (-112) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-112) (-1092)))) (((-766) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4403)))) (-2694 (($ $ $ (-562)) NIL (|has| $ (-6 -4404)))) (-4220 (($ $) 25)) (-4208 (((-535) $) NIL (|has| (-112) (-610 (-535))))) (-4064 (($ (-639 (-112))) NIL)) (-2767 (($ (-639 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4053 (((-857) $) 22)) (-2879 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4403)))) (-2245 (($ $ $) 31)) (-2306 (($ $ $) NIL)) (-2935 (($ $ $) 39)) (-2943 (($ $) 37)) (-2927 (($ $ $) 38)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 26)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) 27)) (-2297 (($ $ $) NIL)) (-3492 (((-766) $) 10 (|has| $ (-6 -4403))))) -(((-499 |#1|) (-13 (-123) (-10 -8 (-15 -2943 ($ $)) (-15 -2935 ($ $ $)) (-15 -2927 ($ $ $)))) (-562)) (T -499)) -((-2943 (*1 *1 *1) (-12 (-5 *1 (-499 *2)) (-14 *2 (-562)))) (-2935 (*1 *1 *1 *1) (-12 (-5 *1 (-499 *2)) (-14 *2 (-562)))) (-2927 (*1 *1 *1 *1) (-12 (-5 *1 (-499 *2)) (-14 *2 (-562))))) -(-13 (-123) (-10 -8 (-15 -2943 ($ $)) (-15 -2935 ($ $ $)) (-15 -2927 ($ $ $)))) -((-3978 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1164 |#4|)) 34)) (-3673 (((-1164 |#4|) (-1 |#4| |#1|) |#2|) 30) ((|#2| (-1 |#1| |#4|) (-1164 |#4|)) 21)) (-1919 (((-3 (-683 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-683 (-1164 |#4|))) 45)) (-2791 (((-1164 (-1164 |#4|)) (-1 |#4| |#1|) |#3|) 54))) -(((-500 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3673 (|#2| (-1 |#1| |#4|) (-1164 |#4|))) (-15 -3673 ((-1164 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3978 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1164 |#4|))) (-15 -1919 ((-3 (-683 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-683 (-1164 |#4|)))) (-15 -2791 ((-1164 (-1164 |#4|)) (-1 |#4| |#1|) |#3|))) (-1044) (-1232 |#1|) (-1232 |#2|) (-1044)) (T -500)) -((-2791 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1044)) (-4 *7 (-1044)) (-4 *6 (-1232 *5)) (-5 *2 (-1164 (-1164 *7))) (-5 *1 (-500 *5 *6 *4 *7)) (-4 *4 (-1232 *6)))) (-1919 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-683 (-1164 *8))) (-4 *5 (-1044)) (-4 *8 (-1044)) (-4 *6 (-1232 *5)) (-5 *2 (-683 *6)) (-5 *1 (-500 *5 *6 *7 *8)) (-4 *7 (-1232 *6)))) (-3978 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1164 *7)) (-4 *5 (-1044)) (-4 *7 (-1044)) (-4 *2 (-1232 *5)) (-5 *1 (-500 *5 *2 *6 *7)) (-4 *6 (-1232 *2)))) (-3673 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1044)) (-4 *7 (-1044)) (-4 *4 (-1232 *5)) (-5 *2 (-1164 *7)) (-5 *1 (-500 *5 *4 *6 *7)) (-4 *6 (-1232 *4)))) (-3673 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1164 *7)) (-4 *5 (-1044)) (-4 *7 (-1044)) (-4 *2 (-1232 *5)) (-5 *1 (-500 *5 *2 *6 *7)) (-4 *6 (-1232 *2))))) -(-10 -7 (-15 -3673 (|#2| (-1 |#1| |#4|) (-1164 |#4|))) (-15 -3673 ((-1164 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3978 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1164 |#4|))) (-15 -1919 ((-3 (-683 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-683 (-1164 |#4|)))) (-15 -2791 ((-1164 (-1164 |#4|)) (-1 |#4| |#1|) |#3|))) -((-4041 (((-112) $ $) NIL)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1359 (((-1261) $) 19)) (-2343 (((-1150) $ (-1168)) 23)) (-1479 (((-1261) $) 15)) (-4053 (((-857) $) 21) (($ (-1150)) 20)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 9)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) 8))) -(((-501) (-13 (-845) (-10 -8 (-15 -2343 ((-1150) $ (-1168))) (-15 -1479 ((-1261) $)) (-15 -1359 ((-1261) $)) (-15 -4053 ($ (-1150)))))) (T -501)) -((-2343 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1150)) (-5 *1 (-501)))) (-1479 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-501)))) (-1359 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-501)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-501))))) -(-13 (-845) (-10 -8 (-15 -2343 ((-1150) $ (-1168))) (-15 -1479 ((-1261) $)) (-15 -1359 ((-1261) $)) (-15 -4053 ($ (-1150))))) -((-3358 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-2162 ((|#1| |#4|) 10)) (-2414 ((|#3| |#4|) 17))) -(((-502 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2162 (|#1| |#4|)) (-15 -2414 (|#3| |#4|)) (-15 -3358 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-554) (-987 |#1|) (-372 |#1|) (-372 |#2|)) (T -502)) -((-3358 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-987 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-502 *4 *5 *6 *3)) (-4 *6 (-372 *4)) (-4 *3 (-372 *5)))) (-2414 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-987 *4)) (-4 *2 (-372 *4)) (-5 *1 (-502 *4 *5 *2 *3)) (-4 *3 (-372 *5)))) (-2162 (*1 *2 *3) (-12 (-4 *4 (-987 *2)) (-4 *2 (-554)) (-5 *1 (-502 *2 *4 *5 *3)) (-4 *5 (-372 *2)) (-4 *3 (-372 *4))))) -(-10 -7 (-15 -2162 (|#1| |#4|)) (-15 -2414 (|#3| |#4|)) (-15 -3358 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-4041 (((-112) $ $) NIL)) (-4232 (((-112) $ (-639 |#3|)) 103) (((-112) $) 104)) (-4325 (((-112) $) 147)) (-1453 (($ $ |#4|) 95) (($ $ |#4| (-639 |#3|)) 99)) (-2784 (((-1157 (-639 (-947 |#1|)) (-639 (-293 (-947 |#1|)))) (-639 |#4|)) 140 (|has| |#3| (-610 (-1168))))) (-3380 (($ $ $) 89) (($ $ |#4|) 87)) (-4367 (((-112) $) 146)) (-2543 (($ $) 107)) (-3696 (((-1150) $) NIL)) (-4169 (($ $ $) 81) (($ (-639 $)) 83)) (-1834 (((-112) |#4| $) 106)) (-2278 (((-112) $ $) 70)) (-1387 (($ (-639 |#4|)) 88)) (-1709 (((-1112) $) NIL)) (-3804 (($ (-639 |#4|)) 144)) (-4285 (((-112) $) 145)) (-2848 (($ $) 72)) (-3501 (((-639 |#4|) $) 56)) (-3231 (((-2 (|:| |mval| (-683 |#1|)) (|:| |invmval| (-683 |#1|)) (|:| |genIdeal| $)) $ (-639 |#3|)) NIL)) (-2515 (((-112) |#4| $) 75)) (-4340 (((-562) $ (-639 |#3|)) 108) (((-562) $) 109)) (-4053 (((-857) $) 143) (($ (-639 |#4|)) 84)) (-2089 (($ (-2 (|:| |mval| (-683 |#1|)) (|:| |invmval| (-683 |#1|)) (|:| |genIdeal| $))) NIL)) (-1733 (((-112) $ $) 71)) (-1836 (($ $ $) 91)) (** (($ $ (-766)) 94)) (* (($ $ $) 93))) -(((-503 |#1| |#2| |#3| |#4|) (-13 (-1092) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-766))) (-15 -1836 ($ $ $)) (-15 -4367 ((-112) $)) (-15 -4325 ((-112) $)) (-15 -2515 ((-112) |#4| $)) (-15 -2278 ((-112) $ $)) (-15 -1834 ((-112) |#4| $)) (-15 -4232 ((-112) $ (-639 |#3|))) (-15 -4232 ((-112) $)) (-15 -4169 ($ $ $)) (-15 -4169 ($ (-639 $))) (-15 -3380 ($ $ $)) (-15 -3380 ($ $ |#4|)) (-15 -2848 ($ $)) (-15 -3231 ((-2 (|:| |mval| (-683 |#1|)) (|:| |invmval| (-683 |#1|)) (|:| |genIdeal| $)) $ (-639 |#3|))) (-15 -2089 ($ (-2 (|:| |mval| (-683 |#1|)) (|:| |invmval| (-683 |#1|)) (|:| |genIdeal| $)))) (-15 -4340 ((-562) $ (-639 |#3|))) (-15 -4340 ((-562) $)) (-15 -2543 ($ $)) (-15 -1387 ($ (-639 |#4|))) (-15 -3804 ($ (-639 |#4|))) (-15 -4285 ((-112) $)) (-15 -3501 ((-639 |#4|) $)) (-15 -4053 ($ (-639 |#4|))) (-15 -1453 ($ $ |#4|)) (-15 -1453 ($ $ |#4| (-639 |#3|))) (IF (|has| |#3| (-610 (-1168))) (-15 -2784 ((-1157 (-639 (-947 |#1|)) (-639 (-293 (-947 |#1|)))) (-639 |#4|))) |%noBranch|))) (-362) (-788) (-845) (-944 |#1| |#2| |#3|)) (T -503)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-788)) (-4 *4 (-845)) (-5 *1 (-503 *2 *3 *4 *5)) (-4 *5 (-944 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5)))) (-1836 (*1 *1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-788)) (-4 *4 (-845)) (-5 *1 (-503 *2 *3 *4 *5)) (-4 *5 (-944 *2 *3 *4)))) (-4367 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)) (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5)))) (-4325 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)) (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5)))) (-2515 (*1 *2 *3 *1) (-12 (-4 *4 (-362)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-503 *4 *5 *6 *3)) (-4 *3 (-944 *4 *5 *6)))) (-2278 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)) (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5)))) (-1834 (*1 *2 *3 *1) (-12 (-4 *4 (-362)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-503 *4 *5 *6 *3)) (-4 *3 (-944 *4 *5 *6)))) (-4232 (*1 *2 *1 *3) (-12 (-5 *3 (-639 *6)) (-4 *6 (-845)) (-4 *4 (-362)) (-4 *5 (-788)) (-5 *2 (-112)) (-5 *1 (-503 *4 *5 *6 *7)) (-4 *7 (-944 *4 *5 *6)))) (-4232 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)) (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5)))) (-4169 (*1 *1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-788)) (-4 *4 (-845)) (-5 *1 (-503 *2 *3 *4 *5)) (-4 *5 (-944 *2 *3 *4)))) (-4169 (*1 *1 *2) (-12 (-5 *2 (-639 (-503 *3 *4 *5 *6))) (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5)))) (-3380 (*1 *1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-788)) (-4 *4 (-845)) (-5 *1 (-503 *2 *3 *4 *5)) (-4 *5 (-944 *2 *3 *4)))) (-3380 (*1 *1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-503 *3 *4 *5 *2)) (-4 *2 (-944 *3 *4 *5)))) (-2848 (*1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-788)) (-4 *4 (-845)) (-5 *1 (-503 *2 *3 *4 *5)) (-4 *5 (-944 *2 *3 *4)))) (-3231 (*1 *2 *1 *3) (-12 (-5 *3 (-639 *6)) (-4 *6 (-845)) (-4 *4 (-362)) (-4 *5 (-788)) (-5 *2 (-2 (|:| |mval| (-683 *4)) (|:| |invmval| (-683 *4)) (|:| |genIdeal| (-503 *4 *5 *6 *7)))) (-5 *1 (-503 *4 *5 *6 *7)) (-4 *7 (-944 *4 *5 *6)))) (-2089 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-683 *3)) (|:| |invmval| (-683 *3)) (|:| |genIdeal| (-503 *3 *4 *5 *6)))) (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5)))) (-4340 (*1 *2 *1 *3) (-12 (-5 *3 (-639 *6)) (-4 *6 (-845)) (-4 *4 (-362)) (-4 *5 (-788)) (-5 *2 (-562)) (-5 *1 (-503 *4 *5 *6 *7)) (-4 *7 (-944 *4 *5 *6)))) (-4340 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-562)) (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5)))) (-2543 (*1 *1 *1) (-12 (-4 *2 (-362)) (-4 *3 (-788)) (-4 *4 (-845)) (-5 *1 (-503 *2 *3 *4 *5)) (-4 *5 (-944 *2 *3 *4)))) (-1387 (*1 *1 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-944 *3 *4 *5)) (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-503 *3 *4 *5 *6)))) (-3804 (*1 *1 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-944 *3 *4 *5)) (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-503 *3 *4 *5 *6)))) (-4285 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)) (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5)))) (-3501 (*1 *2 *1) (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-639 *6)) (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-944 *3 *4 *5)) (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-503 *3 *4 *5 *6)))) (-1453 (*1 *1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-503 *3 *4 *5 *2)) (-4 *2 (-944 *3 *4 *5)))) (-1453 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-639 *6)) (-4 *6 (-845)) (-4 *4 (-362)) (-4 *5 (-788)) (-5 *1 (-503 *4 *5 *6 *2)) (-4 *2 (-944 *4 *5 *6)))) (-2784 (*1 *2 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-944 *4 *5 *6)) (-4 *6 (-610 (-1168))) (-4 *4 (-362)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-1157 (-639 (-947 *4)) (-639 (-293 (-947 *4))))) (-5 *1 (-503 *4 *5 *6 *7))))) -(-13 (-1092) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-766))) (-15 -1836 ($ $ $)) (-15 -4367 ((-112) $)) (-15 -4325 ((-112) $)) (-15 -2515 ((-112) |#4| $)) (-15 -2278 ((-112) $ $)) (-15 -1834 ((-112) |#4| $)) (-15 -4232 ((-112) $ (-639 |#3|))) (-15 -4232 ((-112) $)) (-15 -4169 ($ $ $)) (-15 -4169 ($ (-639 $))) (-15 -3380 ($ $ $)) (-15 -3380 ($ $ |#4|)) (-15 -2848 ($ $)) (-15 -3231 ((-2 (|:| |mval| (-683 |#1|)) (|:| |invmval| (-683 |#1|)) (|:| |genIdeal| $)) $ (-639 |#3|))) (-15 -2089 ($ (-2 (|:| |mval| (-683 |#1|)) (|:| |invmval| (-683 |#1|)) (|:| |genIdeal| $)))) (-15 -4340 ((-562) $ (-639 |#3|))) (-15 -4340 ((-562) $)) (-15 -2543 ($ $)) (-15 -1387 ($ (-639 |#4|))) (-15 -3804 ($ (-639 |#4|))) (-15 -4285 ((-112) $)) (-15 -3501 ((-639 |#4|) $)) (-15 -4053 ($ (-639 |#4|))) (-15 -1453 ($ $ |#4|)) (-15 -1453 ($ $ |#4| (-639 |#3|))) (IF (|has| |#3| (-610 (-1168))) (-15 -2784 ((-1157 (-639 (-947 |#1|)) (-639 (-293 (-947 |#1|)))) (-639 |#4|))) |%noBranch|))) -((-1803 (((-112) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562))))) 148)) (-3675 (((-112) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562))))) 149)) (-1666 (((-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562))))) 107)) (-3521 (((-112) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562))))) NIL)) (-3421 (((-639 (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562))))) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562))))) 151)) (-3474 (((-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))) (-639 (-859 |#1|))) 163))) -(((-504 |#1| |#2|) (-10 -7 (-15 -1803 ((-112) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))))) (-15 -3675 ((-112) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))))) (-15 -3521 ((-112) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))))) (-15 -1666 ((-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))))) (-15 -3421 ((-639 (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562))))) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))))) (-15 -3474 ((-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))) (-639 (-859 |#1|))))) (-639 (-1168)) (-766)) (T -504)) -((-3474 (*1 *2 *2 *3) (-12 (-5 *2 (-503 (-406 (-562)) (-239 *5 (-766)) (-859 *4) (-246 *4 (-406 (-562))))) (-5 *3 (-639 (-859 *4))) (-14 *4 (-639 (-1168))) (-14 *5 (-766)) (-5 *1 (-504 *4 *5)))) (-3421 (*1 *2 *3) (-12 (-14 *4 (-639 (-1168))) (-14 *5 (-766)) (-5 *2 (-639 (-503 (-406 (-562)) (-239 *5 (-766)) (-859 *4) (-246 *4 (-406 (-562)))))) (-5 *1 (-504 *4 *5)) (-5 *3 (-503 (-406 (-562)) (-239 *5 (-766)) (-859 *4) (-246 *4 (-406 (-562))))))) (-1666 (*1 *2 *2) (-12 (-5 *2 (-503 (-406 (-562)) (-239 *4 (-766)) (-859 *3) (-246 *3 (-406 (-562))))) (-14 *3 (-639 (-1168))) (-14 *4 (-766)) (-5 *1 (-504 *3 *4)))) (-3521 (*1 *2 *3) (-12 (-5 *3 (-503 (-406 (-562)) (-239 *5 (-766)) (-859 *4) (-246 *4 (-406 (-562))))) (-14 *4 (-639 (-1168))) (-14 *5 (-766)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5)))) (-3675 (*1 *2 *3) (-12 (-5 *3 (-503 (-406 (-562)) (-239 *5 (-766)) (-859 *4) (-246 *4 (-406 (-562))))) (-14 *4 (-639 (-1168))) (-14 *5 (-766)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5)))) (-1803 (*1 *2 *3) (-12 (-5 *3 (-503 (-406 (-562)) (-239 *5 (-766)) (-859 *4) (-246 *4 (-406 (-562))))) (-14 *4 (-639 (-1168))) (-14 *5 (-766)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5))))) -(-10 -7 (-15 -1803 ((-112) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))))) (-15 -3675 ((-112) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))))) (-15 -3521 ((-112) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))))) (-15 -1666 ((-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))))) (-15 -3421 ((-639 (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562))))) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))))) (-15 -3474 ((-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))) (-503 (-406 (-562)) (-239 |#2| (-766)) (-859 |#1|) (-246 |#1| (-406 (-562)))) (-639 (-859 |#1|))))) -((-4041 (((-112) $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 11) (((-1168) $) 9)) (-1733 (((-112) $ $) 7))) -(((-505) (-13 (-1092) (-609 (-1168)))) (T -505)) -NIL -(-13 (-1092) (-609 (-1168))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3329 (($) NIL T CONST)) (-1600 (($ $) NIL)) (-1377 (($ |#1| |#2|) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-2006 ((|#2| $) NIL)) (-1573 ((|#1| $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-2285 (($) 12 T CONST)) (-1733 (((-112) $ $) NIL)) (-1847 (($ $) 11) (($ $ $) 23)) (-1836 (($ $ $) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 18))) -(((-506 |#1| |#2|) (-13 (-21) (-508 |#1| |#2|)) (-21) (-845)) (T -506)) -NIL -(-13 (-21) (-508 |#1| |#2|)) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) 12)) (-3329 (($) NIL T CONST)) (-1600 (($ $) 27)) (-1377 (($ |#1| |#2|) 24)) (-4152 (($ (-1 |#1| |#1|) $) 26)) (-2006 ((|#2| $) NIL)) (-1573 ((|#1| $) 28)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-2285 (($) 10 T CONST)) (-1733 (((-112) $ $) NIL)) (-1836 (($ $ $) 17)) (* (($ (-916) $) NIL) (($ (-766) $) 22))) -(((-507 |#1| |#2|) (-13 (-23) (-508 |#1| |#2|)) (-23) (-845)) (T -507)) -NIL -(-13 (-23) (-508 |#1| |#2|)) -((-4041 (((-112) $ $) 7)) (-1600 (($ $) 13)) (-1377 (($ |#1| |#2|) 16)) (-4152 (($ (-1 |#1| |#1|) $) 17)) (-2006 ((|#2| $) 14)) (-1573 ((|#1| $) 15)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11)) (-1733 (((-112) $ $) 6))) -(((-508 |#1| |#2|) (-139) (-1092) (-845)) (T -508)) -((-4152 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-508 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-845)))) (-1377 (*1 *1 *2 *3) (-12 (-4 *1 (-508 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-845)))) (-1573 (*1 *2 *1) (-12 (-4 *1 (-508 *2 *3)) (-4 *3 (-845)) (-4 *2 (-1092)))) (-2006 (*1 *2 *1) (-12 (-4 *1 (-508 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-845)))) (-1600 (*1 *1 *1) (-12 (-4 *1 (-508 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-845))))) -(-13 (-1092) (-10 -8 (-15 -4152 ($ (-1 |t#1| |t#1|) $)) (-15 -1377 ($ |t#1| |t#2|)) (-15 -1573 (|t#1| $)) (-15 -2006 (|t#2| $)) (-15 -1600 ($ $)))) -(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-3329 (($) NIL T CONST)) (-1600 (($ $) NIL)) (-1377 (($ |#1| |#2|) NIL)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-2006 ((|#2| $) NIL)) (-1573 ((|#1| $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-2285 (($) NIL T CONST)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) 13)) (-1836 (($ $ $) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL))) -(((-509 |#1| |#2|) (-13 (-787) (-508 |#1| |#2|)) (-787) (-845)) (T -509)) -NIL -(-13 (-787) (-508 |#1| |#2|)) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-1593 (($ $ $) 16)) (-2781 (((-3 $ "failed") $ $) 13)) (-3329 (($) NIL T CONST)) (-1600 (($ $) NIL)) (-1377 (($ |#1| |#2|) NIL)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-2006 ((|#2| $) NIL)) (-1573 ((|#1| $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-2285 (($) NIL T CONST)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) NIL)) (-1836 (($ $ $) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL))) -(((-510 |#1| |#2|) (-13 (-788) (-508 |#1| |#2|)) (-788) (-845)) (T -510)) -NIL -(-13 (-788) (-508 |#1| |#2|)) -((-4041 (((-112) $ $) NIL)) (-1600 (($ $) 24)) (-1377 (($ |#1| |#2|) 21)) (-4152 (($ (-1 |#1| |#1|) $) 23)) (-2006 ((|#2| $) 26)) (-1573 ((|#1| $) 25)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 20)) (-1733 (((-112) $ $) 13))) -(((-511 |#1| |#2|) (-508 |#1| |#2|) (-1092) (-845)) (T -511)) -NIL -(-508 |#1| |#2|) -((-1433 (($ $ (-639 |#2|) (-639 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-512 |#1| |#2| |#3|) (-10 -8 (-15 -1433 (|#1| |#1| |#2| |#3|)) (-15 -1433 (|#1| |#1| (-639 |#2|) (-639 |#3|)))) (-513 |#2| |#3|) (-1092) (-1207)) (T -512)) -NIL -(-10 -8 (-15 -1433 (|#1| |#1| |#2| |#3|)) (-15 -1433 (|#1| |#1| (-639 |#2|) (-639 |#3|)))) -((-1433 (($ $ (-639 |#1|) (-639 |#2|)) 7) (($ $ |#1| |#2|) 6))) -(((-513 |#1| |#2|) (-139) (-1092) (-1207)) (T -513)) -((-1433 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 *4)) (-5 *3 (-639 *5)) (-4 *1 (-513 *4 *5)) (-4 *4 (-1092)) (-4 *5 (-1207)))) (-1433 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-513 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1207))))) -(-13 (-10 -8 (-15 -1433 ($ $ |t#1| |t#2|)) (-15 -1433 ($ $ (-639 |t#1|) (-639 |t#2|))))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) 16)) (-4196 (((-639 (-2 (|:| |gen| |#1|) (|:| -3430 |#2|))) $) 18)) (-2781 (((-3 $ "failed") $ $) NIL)) (-1382 (((-766) $) NIL)) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) NIL)) (-3960 ((|#1| $) NIL)) (-3111 ((|#1| $ (-562)) 23)) (-2826 ((|#2| $ (-562)) 21)) (-2491 (($ (-1 |#1| |#1|) $) 46)) (-1545 (($ (-1 |#2| |#2|) $) 43)) (-3696 (((-1150) $) NIL)) (-2956 (($ $ $) 53 (|has| |#2| (-787)))) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 42) (($ |#1|) NIL)) (-2266 ((|#2| |#1| $) 49)) (-2285 (($) 11 T CONST)) (-1733 (((-112) $ $) 29)) (-1836 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-916) $) NIL) (($ (-766) $) 36) (($ |#2| |#1|) 31))) -(((-514 |#1| |#2| |#3|) (-322 |#1| |#2|) (-1092) (-130) |#2|) (T -514)) -NIL -(-322 |#1| |#2|) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3655 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4404)))) (-1706 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-845)))) (-3737 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4404))) (($ $) NIL (-12 (|has| $ (-6 -4404)) (|has| |#1| (-845))))) (-1395 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-845)))) (-3735 (((-112) $ (-766)) NIL)) (-2327 (((-112) (-112)) 25)) (-4200 ((|#1| $ (-562) |#1|) 28 (|has| $ (-6 -4404))) ((|#1| $ (-1223 (-562)) |#1|) NIL (|has| $ (-6 -4404)))) (-2968 (($ (-1 (-112) |#1|) $) 52)) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-3329 (($) NIL T CONST)) (-2673 (($ $) NIL (|has| $ (-6 -4404)))) (-2676 (($ $) NIL)) (-3923 (($ $) 56 (|has| |#1| (-1092)))) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-3729 (($ |#1| $) NIL (|has| |#1| (-1092))) (($ (-1 (-112) |#1|) $) 44)) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1954 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4403)))) (-1507 ((|#1| $ (-562) |#1|) NIL (|has| $ (-6 -4404)))) (-1420 ((|#1| $ (-562)) NIL)) (-4265 (((-562) (-1 (-112) |#1|) $) NIL) (((-562) |#1| $) NIL (|has| |#1| (-1092))) (((-562) |#1| $ (-562)) NIL (|has| |#1| (-1092)))) (-3917 (($ $ (-562)) 13)) (-2558 (((-766) $) 11)) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1458 (($ (-766) |#1|) 23)) (-4172 (((-112) $ (-766)) NIL)) (-1849 (((-562) $) 21 (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-3124 (($ $ $) NIL (|has| |#1| (-845))) (($ (-1 (-112) |#1| |#1|) $ $) 35)) (-4103 (($ (-1 (-112) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-845)))) (-2123 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1929 (((-562) $) 20 (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-1491 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1581 (($ $ $ (-562)) 51) (($ |#1| $ (-562)) 37)) (-3295 (($ |#1| $ (-562)) NIL) (($ $ $ (-562)) NIL)) (-3336 (((-639 (-562)) $) NIL)) (-1987 (((-112) (-562) $) NIL)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-4322 (($ (-639 |#1|)) 29)) (-1421 ((|#1| $) NIL (|has| (-562) (-845)))) (-1963 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3510 (($ $ |#1|) 19 (|has| $ (-6 -4404)))) (-3008 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) 40)) (-2716 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2366 (((-639 |#1|) $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) 16)) (-2343 ((|#1| $ (-562) |#1|) NIL) ((|#1| $ (-562)) 33) (($ $ (-1223 (-562))) NIL)) (-1527 (($ $ (-1223 (-562))) 50) (($ $ (-562)) 45)) (-2880 (($ $ (-562)) NIL) (($ $ (-1223 (-562))) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2694 (($ $ $ (-562)) 41 (|has| $ (-6 -4404)))) (-4220 (($ $) 32)) (-4208 (((-535) $) NIL (|has| |#1| (-610 (-535))))) (-4064 (($ (-639 |#1|)) NIL)) (-2587 (($ $ $) 42) (($ $ |#1|) 39)) (-2767 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-639 $)) NIL)) (-4053 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-2879 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1771 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1761 (((-112) $ $) NIL (|has| |#1| (-845)))) (-3492 (((-766) $) 17 (|has| $ (-6 -4403))))) -(((-515 |#1| |#2|) (-13 (-19 |#1|) (-281 |#1|) (-10 -8 (-15 -4322 ($ (-639 |#1|))) (-15 -2558 ((-766) $)) (-15 -3917 ($ $ (-562))) (-15 -2327 ((-112) (-112))))) (-1207) (-562)) (T -515)) -((-4322 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-5 *1 (-515 *3 *4)) (-14 *4 (-562)))) (-2558 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-515 *3 *4)) (-4 *3 (-1207)) (-14 *4 (-562)))) (-3917 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-515 *3 *4)) (-4 *3 (-1207)) (-14 *4 *2))) (-2327 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-515 *3 *4)) (-4 *3 (-1207)) (-14 *4 (-562))))) -(-13 (-19 |#1|) (-281 |#1|) (-10 -8 (-15 -4322 ($ (-639 |#1|))) (-15 -2558 ((-766) $)) (-15 -3917 ($ $ (-562))) (-15 -2327 ((-112) (-112))))) -((-4041 (((-112) $ $) NIL)) (-4024 (((-1127) $) 11)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2261 (((-1127) $) 13)) (-3316 (((-1127) $) 9)) (-4053 (((-857) $) 21) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-516) (-13 (-1075) (-10 -8 (-15 -3316 ((-1127) $)) (-15 -4024 ((-1127) $)) (-15 -2261 ((-1127) $))))) (T -516)) -((-3316 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-516)))) (-4024 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-516)))) (-2261 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-516))))) -(-13 (-1075) (-10 -8 (-15 -3316 ((-1127) $)) (-15 -4024 ((-1127) $)) (-15 -2261 ((-1127) $)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-3826 (((-112) $) NIL)) (-2284 (((-766)) NIL)) (-1748 (((-579 |#1|) $) NIL) (($ $ (-916)) NIL (|has| (-579 |#1|) (-367)))) (-1755 (((-1180 (-916) (-766)) (-562)) NIL (|has| (-579 |#1|) (-367)))) (-2781 (((-3 $ "failed") $ $) NIL)) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-1436 (((-112) $ $) NIL)) (-1382 (((-766)) NIL (|has| (-579 |#1|) (-367)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-579 |#1|) "failed") $) NIL)) (-3960 (((-579 |#1|) $) NIL)) (-3916 (($ (-1256 (-579 |#1|))) NIL)) (-3082 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-579 |#1|) (-367)))) (-1810 (($ $ $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-1447 (($) NIL (|has| (-579 |#1|) (-367)))) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-2787 (($) NIL (|has| (-579 |#1|) (-367)))) (-1844 (((-112) $) NIL (|has| (-579 |#1|) (-367)))) (-2184 (($ $ (-766)) NIL (-4037 (|has| (-579 |#1|) (-144)) (|has| (-579 |#1|) (-367)))) (($ $) NIL (-4037 (|has| (-579 |#1|) (-144)) (|has| (-579 |#1|) (-367))))) (-3521 (((-112) $) NIL)) (-1993 (((-916) $) NIL (|has| (-579 |#1|) (-367))) (((-828 (-916)) $) NIL (-4037 (|has| (-579 |#1|) (-144)) (|has| (-579 |#1|) (-367))))) (-4367 (((-112) $) NIL)) (-2631 (($) NIL (|has| (-579 |#1|) (-367)))) (-1775 (((-112) $) NIL (|has| (-579 |#1|) (-367)))) (-4363 (((-579 |#1|) $) NIL) (($ $ (-916)) NIL (|has| (-579 |#1|) (-367)))) (-3828 (((-3 $ "failed") $) NIL (|has| (-579 |#1|) (-367)))) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1937 (((-1164 (-579 |#1|)) $) NIL) (((-1164 $) $ (-916)) NIL (|has| (-579 |#1|) (-367)))) (-3549 (((-916) $) NIL (|has| (-579 |#1|) (-367)))) (-2121 (((-1164 (-579 |#1|)) $) NIL (|has| (-579 |#1|) (-367)))) (-1894 (((-1164 (-579 |#1|)) $) NIL (|has| (-579 |#1|) (-367))) (((-3 (-1164 (-579 |#1|)) "failed") $ $) NIL (|has| (-579 |#1|) (-367)))) (-3319 (($ $ (-1164 (-579 |#1|))) NIL (|has| (-579 |#1|) (-367)))) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3730 (($) NIL (|has| (-579 |#1|) (-367)) CONST)) (-2464 (($ (-916)) NIL (|has| (-579 |#1|) (-367)))) (-2991 (((-112) $) NIL)) (-1709 (((-1112) $) NIL)) (-3147 (($) NIL (|has| (-579 |#1|) (-367)))) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-1753 (((-639 (-2 (|:| -1635 (-562)) (|:| -1300 (-562))))) NIL (|has| (-579 |#1|) (-367)))) (-1635 (((-417 $) $) NIL)) (-3548 (((-828 (-916))) NIL) (((-916)) NIL)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2044 (((-766) $) NIL)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-3543 (((-766) $) NIL (|has| (-579 |#1|) (-367))) (((-3 (-766) "failed") $ $) NIL (-4037 (|has| (-579 |#1|) (-144)) (|has| (-579 |#1|) (-367))))) (-4340 (((-133)) NIL)) (-4029 (($ $) NIL (|has| (-579 |#1|) (-367))) (($ $ (-766)) NIL (|has| (-579 |#1|) (-367)))) (-2250 (((-828 (-916)) $) NIL) (((-916) $) NIL)) (-3371 (((-1164 (-579 |#1|))) NIL)) (-1653 (($) NIL (|has| (-579 |#1|) (-367)))) (-3861 (($) NIL (|has| (-579 |#1|) (-367)))) (-2205 (((-1256 (-579 |#1|)) $) NIL) (((-683 (-579 |#1|)) (-1256 $)) NIL)) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (|has| (-579 |#1|) (-367)))) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL) (($ (-579 |#1|)) NIL)) (-2059 (($ $) NIL (|has| (-579 |#1|) (-367))) (((-3 $ "failed") $) NIL (-4037 (|has| (-579 |#1|) (-144)) (|has| (-579 |#1|) (-367))))) (-1568 (((-766)) NIL)) (-4291 (((-1256 $)) NIL) (((-1256 $) (-916)) NIL)) (-3799 (((-112) $ $) NIL)) (-3782 (((-112) $) NIL)) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-4144 (($ $) NIL (|has| (-579 |#1|) (-367))) (($ $ (-766)) NIL (|has| (-579 |#1|) (-367)))) (-3113 (($ $) NIL (|has| (-579 |#1|) (-367))) (($ $ (-766)) NIL (|has| (-579 |#1|) (-367)))) (-1733 (((-112) $ $) NIL)) (-1859 (($ $ $) NIL) (($ $ (-579 |#1|)) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ $ (-579 |#1|)) NIL) (($ (-579 |#1|) $) NIL))) -(((-517 |#1| |#2|) (-328 (-579 |#1|)) (-916) (-916)) (T -517)) -NIL -(-328 (-579 |#1|)) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3735 (((-112) $ (-766)) NIL)) (-4200 ((|#1| $ (-562) (-562) |#1|) 35)) (-2267 (($ $ (-562) |#4|) NIL)) (-3320 (($ $ (-562) |#5|) NIL)) (-3329 (($) NIL T CONST)) (-3511 ((|#4| $ (-562)) NIL)) (-1507 ((|#1| $ (-562) (-562) |#1|) 34)) (-1420 ((|#1| $ (-562) (-562)) 32)) (-1720 (((-639 |#1|) $) NIL)) (-2698 (((-766) $) 28)) (-1458 (($ (-766) (-766) |#1|) 25)) (-2708 (((-766) $) 30)) (-4172 (((-112) $ (-766)) NIL)) (-1808 (((-562) $) 26)) (-2028 (((-562) $) 27)) (-2123 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-3269 (((-562) $) 29)) (-2727 (((-562) $) 31)) (-1491 (($ (-1 |#1| |#1|) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) 38 (|has| |#1| (-1092)))) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-3510 (($ $ |#1|) NIL)) (-3008 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) NIL)) (-3087 (((-112) $) 14)) (-1663 (($) 16)) (-2343 ((|#1| $ (-562) (-562)) 33) ((|#1| $ (-562) (-562) |#1|) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-4220 (($ $) NIL)) (-2208 ((|#5| $ (-562)) NIL)) (-4053 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-2879 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-518 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1207) (-562) (-562) (-372 |#1|) (-372 |#1|)) (T -518)) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2759 (((-112) $ (-767)) NIL)) (-1849 ((|#1| $ (-563) (-563) |#1|) NIL)) (-4327 (($ $ (-563) (-496 |#1| |#3|)) NIL)) (-4175 (($ $ (-563) (-496 |#1| |#2|)) NIL)) (-4239 (($) NIL T CONST)) (-2368 (((-496 |#1| |#3|) $ (-563)) NIL)) (-4355 ((|#1| $ (-563) (-563) |#1|) NIL)) (-4293 ((|#1| $ (-563) (-563)) NIL)) (-2659 (((-640 |#1|) $) NIL)) (-2381 (((-767) $) NIL)) (-1566 (($ (-767) (-767) |#1|) NIL)) (-2393 (((-767) $) NIL)) (-2581 (((-112) $ (-767)) NIL)) (-2013 (((-563) $) NIL)) (-3650 (((-563) $) NIL)) (-2259 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1859 (((-563) $) NIL)) (-2207 (((-563) $) NIL)) (-4345 (($ (-1 |#1| |#1|) $) NIL)) (-2240 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-2358 (($ $ |#1|) NIL)) (-3138 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) NIL)) (-2309 ((|#1| $ (-563) (-563)) NIL) ((|#1| $ (-563) (-563) |#1|) NIL)) (-1709 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1872 (($ $) NIL)) (-1912 (((-496 |#1| |#2|) $ (-563)) NIL)) (-1693 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-4383 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-497 |#1| |#2| |#3|) (-57 |#1| (-496 |#1| |#3|) (-496 |#1| |#2|)) (-1208) (-563) (-563)) (T -497)) +NIL +(-57 |#1| (-496 |#1| |#3|) (-496 |#1| |#2|)) +((-2979 (((-640 (-2 (|:| -4315 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|)))) (-2 (|:| -4315 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) (-767) (-767)) 27)) (-2912 (((-640 (-1165 |#1|)) |#1| (-767) (-767) (-767)) 34)) (-3046 (((-2 (|:| -4315 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) (-640 |#3|) (-640 (-2 (|:| -4315 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|)))) (-767)) 84))) +(((-498 |#1| |#2| |#3|) (-10 -7 (-15 -2912 ((-640 (-1165 |#1|)) |#1| (-767) (-767) (-767))) (-15 -2979 ((-640 (-2 (|:| -4315 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|)))) (-2 (|:| -4315 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) (-767) (-767))) (-15 -3046 ((-2 (|:| -4315 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) (-640 |#3|) (-640 (-2 (|:| -4315 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|)))) (-767)))) (-349) (-1233 |#1|) (-1233 |#2|)) (T -498)) +((-3046 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 (-2 (|:| -4315 (-684 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-684 *7))))) (-5 *5 (-767)) (-4 *8 (-1233 *7)) (-4 *7 (-1233 *6)) (-4 *6 (-349)) (-5 *2 (-2 (|:| -4315 (-684 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-684 *7)))) (-5 *1 (-498 *6 *7 *8)))) (-2979 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-767)) (-4 *5 (-349)) (-4 *6 (-1233 *5)) (-5 *2 (-640 (-2 (|:| -4315 (-684 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-684 *6))))) (-5 *1 (-498 *5 *6 *7)) (-5 *3 (-2 (|:| -4315 (-684 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-684 *6)))) (-4 *7 (-1233 *6)))) (-2912 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-767)) (-4 *3 (-349)) (-4 *5 (-1233 *3)) (-5 *2 (-640 (-1165 *3))) (-5 *1 (-498 *3 *5 *6)) (-4 *6 (-1233 *5))))) +(-10 -7 (-15 -2912 ((-640 (-1165 |#1|)) |#1| (-767) (-767) (-767))) (-15 -2979 ((-640 (-2 (|:| -4315 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|)))) (-2 (|:| -4315 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) (-767) (-767))) (-15 -3046 ((-2 (|:| -4315 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) (-640 |#3|) (-640 (-2 (|:| -4315 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|)))) (-767)))) +((-3626 (((-2 (|:| -4315 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) (-2 (|:| -4315 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) (-2 (|:| -4315 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|)))) 62)) (-2449 ((|#1| (-684 |#1|) |#1| (-767)) 25)) (-2490 (((-767) (-767) (-767)) 30)) (-1783 (((-684 |#1|) (-684 |#1|) (-684 |#1|)) 42)) (-2913 (((-684 |#1|) (-684 |#1|) (-684 |#1|) |#1|) 50) (((-684 |#1|) (-684 |#1|) (-684 |#1|)) 47)) (-2061 ((|#1| (-684 |#1|) (-684 |#1|) |#1| (-563)) 29)) (-3327 ((|#1| (-684 |#1|)) 18))) +(((-499 |#1| |#2| |#3|) (-10 -7 (-15 -3327 (|#1| (-684 |#1|))) (-15 -2449 (|#1| (-684 |#1|) |#1| (-767))) (-15 -2061 (|#1| (-684 |#1|) (-684 |#1|) |#1| (-563))) (-15 -2490 ((-767) (-767) (-767))) (-15 -2913 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -2913 ((-684 |#1|) (-684 |#1|) (-684 |#1|) |#1|)) (-15 -1783 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -3626 ((-2 (|:| -4315 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) (-2 (|:| -4315 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) (-2 (|:| -4315 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|)))))) (-13 (-307) (-10 -8 (-15 -3205 ((-418 $) $)))) (-1233 |#1|) (-409 |#1| |#2|)) (T -499)) +((-3626 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -4315 (-684 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-684 *3)))) (-4 *3 (-13 (-307) (-10 -8 (-15 -3205 ((-418 $) $))))) (-4 *4 (-1233 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-1783 (*1 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -3205 ((-418 $) $))))) (-4 *4 (-1233 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2913 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-684 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -3205 ((-418 $) $))))) (-4 *4 (-1233 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2913 (*1 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -3205 ((-418 $) $))))) (-4 *4 (-1233 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2490 (*1 *2 *2 *2) (-12 (-5 *2 (-767)) (-4 *3 (-13 (-307) (-10 -8 (-15 -3205 ((-418 $) $))))) (-4 *4 (-1233 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2061 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-684 *2)) (-5 *4 (-563)) (-4 *2 (-13 (-307) (-10 -8 (-15 -3205 ((-418 $) $))))) (-4 *5 (-1233 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5)))) (-2449 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-684 *2)) (-5 *4 (-767)) (-4 *2 (-13 (-307) (-10 -8 (-15 -3205 ((-418 $) $))))) (-4 *5 (-1233 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5)))) (-3327 (*1 *2 *3) (-12 (-5 *3 (-684 *2)) (-4 *4 (-1233 *2)) (-4 *2 (-13 (-307) (-10 -8 (-15 -3205 ((-418 $) $))))) (-5 *1 (-499 *2 *4 *5)) (-4 *5 (-409 *2 *4))))) +(-10 -7 (-15 -3327 (|#1| (-684 |#1|))) (-15 -2449 (|#1| (-684 |#1|) |#1| (-767))) (-15 -2061 (|#1| (-684 |#1|) (-684 |#1|) |#1| (-563))) (-15 -2490 ((-767) (-767) (-767))) (-15 -2913 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -2913 ((-684 |#1|) (-684 |#1|) (-684 |#1|) |#1|)) (-15 -1783 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -3626 ((-2 (|:| -4315 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) (-2 (|:| -4315 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) (-2 (|:| -4315 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|)))))) +((-1677 (((-112) $ $) NIL)) (-3380 (($ $) NIL)) (-2212 (($ $ $) 35)) (-4378 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4408)))) (-3523 (((-112) $) NIL (|has| (-112) (-846))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2770 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-846)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4408)))) (-1642 (($ $) NIL (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2759 (((-112) $ (-767)) NIL)) (-1849 (((-112) $ (-1224 (-563)) (-112)) NIL (|has| $ (-6 -4408))) (((-112) $ (-563) (-112)) 36 (|has| $ (-6 -4408)))) (-2256 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4407)))) (-4239 (($) NIL T CONST)) (-2907 (($ $) NIL (|has| $ (-6 -4408)))) (-4382 (($ $) NIL)) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-112) (-1093))))) (-1459 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4407))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-112) (-1093))))) (-2444 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4407)) (|has| (-112) (-1093))))) (-4355 (((-112) $ (-563) (-112)) NIL (|has| $ (-6 -4408)))) (-4293 (((-112) $ (-563)) NIL)) (-4368 (((-563) (-112) $ (-563)) NIL (|has| (-112) (-1093))) (((-563) (-112) $) NIL (|has| (-112) (-1093))) (((-563) (-1 (-112) (-112)) $) NIL)) (-2659 (((-640 (-112)) $) NIL (|has| $ (-6 -4407)))) (-2202 (($ $ $) 33)) (-2176 (($ $) NIL)) (-1546 (($ $ $) NIL)) (-1566 (($ (-767) (-112)) 23)) (-3572 (($ $ $) NIL)) (-2581 (((-112) $ (-767)) NIL)) (-2411 (((-563) $) 8 (|has| (-563) (-846)))) (-3084 (($ $ $) NIL)) (-3164 (($ $ $) NIL (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2259 (((-640 (-112)) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-112) (-1093))))) (-3860 (((-563) $) NIL (|has| (-563) (-846)))) (-1777 (($ $ $) NIL)) (-4345 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 (-112) (-112) (-112)) $ $) 30) (($ (-1 (-112) (-112)) $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL)) (-3396 (($ $ $ (-563)) NIL) (($ (-112) $ (-563)) NIL)) (-4318 (((-640 (-563)) $) NIL)) (-3192 (((-112) (-563) $) NIL)) (-1694 (((-1113) $) NIL)) (-3781 (((-112) $) NIL (|has| (-563) (-846)))) (-4203 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2358 (($ $ (-112)) NIL (|has| $ (-6 -4408)))) (-3138 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-112)) (-640 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093)))) (($ $ (-294 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093)))) (($ $ (-640 (-294 (-112)))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093))))) (-2026 (((-112) $ $) NIL)) (-2105 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-112) (-1093))))) (-2836 (((-640 (-112)) $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) 24)) (-2309 (($ $ (-1224 (-563))) NIL) (((-112) $ (-563)) 18) (((-112) $ (-563) (-112)) NIL)) (-2963 (($ $ (-1224 (-563))) NIL) (($ $ (-563)) NIL)) (-1709 (((-767) (-112) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-112) (-1093)))) (((-767) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4407)))) (-3076 (($ $ $ (-563)) NIL (|has| $ (-6 -4408)))) (-1872 (($ $) 25)) (-2220 (((-536) $) NIL (|has| (-112) (-611 (-536))))) (-1707 (($ (-640 (-112))) NIL)) (-2853 (($ (-640 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-1693 (((-858) $) 22)) (-4383 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4407)))) (-2190 (($ $ $) 31)) (-1534 (($ $ $) NIL)) (-3242 (($ $ $) 39)) (-3252 (($ $) 37)) (-3231 (($ $ $) 38)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 26)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) 27)) (-1521 (($ $ $) NIL)) (-3608 (((-767) $) 10 (|has| $ (-6 -4407))))) +(((-500 |#1|) (-13 (-123) (-10 -8 (-15 -3252 ($ $)) (-15 -3242 ($ $ $)) (-15 -3231 ($ $ $)))) (-563)) (T -500)) +((-3252 (*1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-563)))) (-3242 (*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-563)))) (-3231 (*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-563))))) +(-13 (-123) (-10 -8 (-15 -3252 ($ $)) (-15 -3242 ($ $ $)) (-15 -3231 ($ $ $)))) +((-3277 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1165 |#4|)) 34)) (-3328 (((-1165 |#4|) (-1 |#4| |#1|) |#2|) 30) ((|#2| (-1 |#1| |#4|) (-1165 |#4|)) 21)) (-1906 (((-3 (-684 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-684 (-1165 |#4|))) 45)) (-1617 (((-1165 (-1165 |#4|)) (-1 |#4| |#1|) |#3|) 54))) +(((-501 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3328 (|#2| (-1 |#1| |#4|) (-1165 |#4|))) (-15 -3328 ((-1165 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3277 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1165 |#4|))) (-15 -1906 ((-3 (-684 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-684 (-1165 |#4|)))) (-15 -1617 ((-1165 (-1165 |#4|)) (-1 |#4| |#1|) |#3|))) (-1045) (-1233 |#1|) (-1233 |#2|) (-1045)) (T -501)) +((-1617 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1045)) (-4 *7 (-1045)) (-4 *6 (-1233 *5)) (-5 *2 (-1165 (-1165 *7))) (-5 *1 (-501 *5 *6 *4 *7)) (-4 *4 (-1233 *6)))) (-1906 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-684 (-1165 *8))) (-4 *5 (-1045)) (-4 *8 (-1045)) (-4 *6 (-1233 *5)) (-5 *2 (-684 *6)) (-5 *1 (-501 *5 *6 *7 *8)) (-4 *7 (-1233 *6)))) (-3277 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1165 *7)) (-4 *5 (-1045)) (-4 *7 (-1045)) (-4 *2 (-1233 *5)) (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1233 *2)))) (-3328 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1045)) (-4 *7 (-1045)) (-4 *4 (-1233 *5)) (-5 *2 (-1165 *7)) (-5 *1 (-501 *5 *4 *6 *7)) (-4 *6 (-1233 *4)))) (-3328 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1165 *7)) (-4 *5 (-1045)) (-4 *7 (-1045)) (-4 *2 (-1233 *5)) (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1233 *2))))) +(-10 -7 (-15 -3328 (|#2| (-1 |#1| |#4|) (-1165 |#4|))) (-15 -3328 ((-1165 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3277 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1165 |#4|))) (-15 -1906 ((-3 (-684 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-684 (-1165 |#4|)))) (-15 -1617 ((-1165 (-1165 |#4|)) (-1 |#4| |#1|) |#3|))) +((-1677 (((-112) $ $) NIL)) (-3084 (($ $ $) NIL)) (-1777 (($ $ $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-2807 (((-1262) $) 19)) (-2309 (((-1151) $ (-1169)) 23)) (-1463 (((-1262) $) 15)) (-1693 (((-858) $) 21) (($ (-1151)) 20)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 9)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) 8))) +(((-502) (-13 (-846) (-10 -8 (-15 -2309 ((-1151) $ (-1169))) (-15 -1463 ((-1262) $)) (-15 -2807 ((-1262) $)) (-15 -1693 ($ (-1151)))))) (T -502)) +((-2309 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1151)) (-5 *1 (-502)))) (-1463 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-502)))) (-2807 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-502)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-502))))) +(-13 (-846) (-10 -8 (-15 -2309 ((-1151) $ (-1169))) (-15 -1463 ((-1262) $)) (-15 -2807 ((-1262) $)) (-15 -1693 ($ (-1151))))) +((-3266 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-1417 ((|#1| |#4|) 10)) (-2119 ((|#3| |#4|) 17))) +(((-503 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1417 (|#1| |#4|)) (-15 -2119 (|#3| |#4|)) (-15 -3266 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-555) (-988 |#1|) (-373 |#1|) (-373 |#2|)) (T -503)) +((-3266 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-988 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-503 *4 *5 *6 *3)) (-4 *6 (-373 *4)) (-4 *3 (-373 *5)))) (-2119 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-988 *4)) (-4 *2 (-373 *4)) (-5 *1 (-503 *4 *5 *2 *3)) (-4 *3 (-373 *5)))) (-1417 (*1 *2 *3) (-12 (-4 *4 (-988 *2)) (-4 *2 (-555)) (-5 *1 (-503 *2 *4 *5 *3)) (-4 *5 (-373 *2)) (-4 *3 (-373 *4))))) +(-10 -7 (-15 -1417 (|#1| |#4|)) (-15 -2119 (|#3| |#4|)) (-15 -3266 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-1677 (((-112) $ $) NIL)) (-1888 (((-112) $ (-640 |#3|)) 103) (((-112) $) 104)) (-3411 (((-112) $) 147)) (-2037 (($ $ |#4|) 95) (($ $ |#4| (-640 |#3|)) 99)) (-1529 (((-1158 (-640 (-948 |#1|)) (-640 (-294 (-948 |#1|)))) (-640 |#4|)) 140 (|has| |#3| (-611 (-1169))))) (-3490 (($ $ $) 89) (($ $ |#4|) 87)) (-3827 (((-112) $) 146)) (-4017 (($ $) 107)) (-3573 (((-1151) $) NIL)) (-2550 (($ $ $) 81) (($ (-640 $)) 83)) (-2272 (((-112) |#4| $) 106)) (-3198 (((-112) $ $) 70)) (-1776 (($ (-640 |#4|)) 88)) (-1694 (((-1113) $) NIL)) (-2168 (($ (-640 |#4|)) 144)) (-4247 (((-112) $) 145)) (-4059 (($ $) 72)) (-2274 (((-640 |#4|) $) 56)) (-1448 (((-2 (|:| |mval| (-684 |#1|)) (|:| |invmval| (-684 |#1|)) (|:| |genIdeal| $)) $ (-640 |#3|)) NIL)) (-1897 (((-112) |#4| $) 75)) (-3533 (((-563) $ (-640 |#3|)) 108) (((-563) $) 109)) (-1693 (((-858) $) 143) (($ (-640 |#4|)) 84)) (-3065 (($ (-2 (|:| |mval| (-684 |#1|)) (|:| |invmval| (-684 |#1|)) (|:| |genIdeal| $))) NIL)) (-1718 (((-112) $ $) 71)) (-1814 (($ $ $) 91)) (** (($ $ (-767)) 94)) (* (($ $ $) 93))) +(((-504 |#1| |#2| |#3| |#4|) (-13 (-1093) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-767))) (-15 -1814 ($ $ $)) (-15 -3827 ((-112) $)) (-15 -3411 ((-112) $)) (-15 -1897 ((-112) |#4| $)) (-15 -3198 ((-112) $ $)) (-15 -2272 ((-112) |#4| $)) (-15 -1888 ((-112) $ (-640 |#3|))) (-15 -1888 ((-112) $)) (-15 -2550 ($ $ $)) (-15 -2550 ($ (-640 $))) (-15 -3490 ($ $ $)) (-15 -3490 ($ $ |#4|)) (-15 -4059 ($ $)) (-15 -1448 ((-2 (|:| |mval| (-684 |#1|)) (|:| |invmval| (-684 |#1|)) (|:| |genIdeal| $)) $ (-640 |#3|))) (-15 -3065 ($ (-2 (|:| |mval| (-684 |#1|)) (|:| |invmval| (-684 |#1|)) (|:| |genIdeal| $)))) (-15 -3533 ((-563) $ (-640 |#3|))) (-15 -3533 ((-563) $)) (-15 -4017 ($ $)) (-15 -1776 ($ (-640 |#4|))) (-15 -2168 ($ (-640 |#4|))) (-15 -4247 ((-112) $)) (-15 -2274 ((-640 |#4|) $)) (-15 -1693 ($ (-640 |#4|))) (-15 -2037 ($ $ |#4|)) (-15 -2037 ($ $ |#4| (-640 |#3|))) (IF (|has| |#3| (-611 (-1169))) (-15 -1529 ((-1158 (-640 (-948 |#1|)) (-640 (-294 (-948 |#1|)))) (-640 |#4|))) |%noBranch|))) (-363) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -504)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-1814 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (-3827 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-3411 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-1897 (*1 *2 *3 *1) (-12 (-4 *4 (-363)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))) (-3198 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-2272 (*1 *2 *3 *1) (-12 (-4 *4 (-363)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))) (-1888 (*1 *2 *1 *3) (-12 (-5 *3 (-640 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6)))) (-1888 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-2550 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (-2550 (*1 *1 *2) (-12 (-5 *2 (-640 (-504 *3 *4 *5 *6))) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-3490 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (-3490 (*1 *1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-945 *3 *4 *5)))) (-4059 (*1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (-1448 (*1 *2 *1 *3) (-12 (-5 *3 (-640 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) (-5 *2 (-2 (|:| |mval| (-684 *4)) (|:| |invmval| (-684 *4)) (|:| |genIdeal| (-504 *4 *5 *6 *7)))) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6)))) (-3065 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-684 *3)) (|:| |invmval| (-684 *3)) (|:| |genIdeal| (-504 *3 *4 *5 *6)))) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-3533 (*1 *2 *1 *3) (-12 (-5 *3 (-640 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) (-5 *2 (-563)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6)))) (-3533 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-563)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-4017 (*1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (-1776 (*1 *1 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)))) (-2168 (*1 *1 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)))) (-4247 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-2274 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *6)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)))) (-2037 (*1 *1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-945 *3 *4 *5)))) (-2037 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-640 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) (-5 *1 (-504 *4 *5 *6 *2)) (-4 *2 (-945 *4 *5 *6)))) (-1529 (*1 *2 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-945 *4 *5 *6)) (-4 *6 (-611 (-1169))) (-4 *4 (-363)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1158 (-640 (-948 *4)) (-640 (-294 (-948 *4))))) (-5 *1 (-504 *4 *5 *6 *7))))) +(-13 (-1093) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-767))) (-15 -1814 ($ $ $)) (-15 -3827 ((-112) $)) (-15 -3411 ((-112) $)) (-15 -1897 ((-112) |#4| $)) (-15 -3198 ((-112) $ $)) (-15 -2272 ((-112) |#4| $)) (-15 -1888 ((-112) $ (-640 |#3|))) (-15 -1888 ((-112) $)) (-15 -2550 ($ $ $)) (-15 -2550 ($ (-640 $))) (-15 -3490 ($ $ $)) (-15 -3490 ($ $ |#4|)) (-15 -4059 ($ $)) (-15 -1448 ((-2 (|:| |mval| (-684 |#1|)) (|:| |invmval| (-684 |#1|)) (|:| |genIdeal| $)) $ (-640 |#3|))) (-15 -3065 ($ (-2 (|:| |mval| (-684 |#1|)) (|:| |invmval| (-684 |#1|)) (|:| |genIdeal| $)))) (-15 -3533 ((-563) $ (-640 |#3|))) (-15 -3533 ((-563) $)) (-15 -4017 ($ $)) (-15 -1776 ($ (-640 |#4|))) (-15 -2168 ($ (-640 |#4|))) (-15 -4247 ((-112) $)) (-15 -2274 ((-640 |#4|) $)) (-15 -1693 ($ (-640 |#4|))) (-15 -2037 ($ $ |#4|)) (-15 -2037 ($ $ |#4| (-640 |#3|))) (IF (|has| |#3| (-611 (-1169))) (-15 -1529 ((-1158 (-640 (-948 |#1|)) (-640 (-294 (-948 |#1|)))) (-640 |#4|))) |%noBranch|))) +((-1968 (((-112) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563))))) 148)) (-3349 (((-112) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563))))) 149)) (-3819 (((-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563))))) 107)) (-2468 (((-112) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563))))) NIL)) (-2699 (((-640 (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563))))) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563))))) 151)) (-3161 (((-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))) (-640 (-860 |#1|))) 163))) +(((-505 |#1| |#2|) (-10 -7 (-15 -1968 ((-112) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))))) (-15 -3349 ((-112) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))))) (-15 -2468 ((-112) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))))) (-15 -3819 ((-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))))) (-15 -2699 ((-640 (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563))))) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))))) (-15 -3161 ((-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))) (-640 (-860 |#1|))))) (-640 (-1169)) (-767)) (T -505)) +((-3161 (*1 *2 *2 *3) (-12 (-5 *2 (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4) (-247 *4 (-407 (-563))))) (-5 *3 (-640 (-860 *4))) (-14 *4 (-640 (-1169))) (-14 *5 (-767)) (-5 *1 (-505 *4 *5)))) (-2699 (*1 *2 *3) (-12 (-14 *4 (-640 (-1169))) (-14 *5 (-767)) (-5 *2 (-640 (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4) (-247 *4 (-407 (-563)))))) (-5 *1 (-505 *4 *5)) (-5 *3 (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4) (-247 *4 (-407 (-563))))))) (-3819 (*1 *2 *2) (-12 (-5 *2 (-504 (-407 (-563)) (-240 *4 (-767)) (-860 *3) (-247 *3 (-407 (-563))))) (-14 *3 (-640 (-1169))) (-14 *4 (-767)) (-5 *1 (-505 *3 *4)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4) (-247 *4 (-407 (-563))))) (-14 *4 (-640 (-1169))) (-14 *5 (-767)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5)))) (-3349 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4) (-247 *4 (-407 (-563))))) (-14 *4 (-640 (-1169))) (-14 *5 (-767)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5)))) (-1968 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4) (-247 *4 (-407 (-563))))) (-14 *4 (-640 (-1169))) (-14 *5 (-767)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5))))) +(-10 -7 (-15 -1968 ((-112) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))))) (-15 -3349 ((-112) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))))) (-15 -2468 ((-112) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))))) (-15 -3819 ((-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))))) (-15 -2699 ((-640 (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563))))) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))))) (-15 -3161 ((-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))) (-640 (-860 |#1|))))) +((-1677 (((-112) $ $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 11) (((-1169) $) 9)) (-1718 (((-112) $ $) 7))) +(((-506) (-13 (-1093) (-610 (-1169)))) (T -506)) +NIL +(-13 (-1093) (-610 (-1169))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4239 (($) NIL T CONST)) (-2751 (($ $) NIL)) (-2588 (($ |#1| |#2|) NIL)) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-3395 ((|#2| $) NIL)) (-2726 ((|#1| $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-2241 (($) 12 T CONST)) (-1718 (((-112) $ $) NIL)) (-1826 (($ $) 11) (($ $ $) 23)) (-1814 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 18))) +(((-507 |#1| |#2|) (-13 (-21) (-509 |#1| |#2|)) (-21) (-846)) (T -507)) +NIL +(-13 (-21) (-509 |#1| |#2|)) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) 12)) (-4239 (($) NIL T CONST)) (-2751 (($ $) 27)) (-2588 (($ |#1| |#2|) 24)) (-2240 (($ (-1 |#1| |#1|) $) 26)) (-3395 ((|#2| $) NIL)) (-2726 ((|#1| $) 28)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-2241 (($) 10 T CONST)) (-1718 (((-112) $ $) NIL)) (-1814 (($ $ $) 17)) (* (($ (-917) $) NIL) (($ (-767) $) 22))) +(((-508 |#1| |#2|) (-13 (-23) (-509 |#1| |#2|)) (-23) (-846)) (T -508)) +NIL +(-13 (-23) (-509 |#1| |#2|)) +((-1677 (((-112) $ $) 7)) (-2751 (($ $) 13)) (-2588 (($ |#1| |#2|) 16)) (-2240 (($ (-1 |#1| |#1|) $) 17)) (-3395 ((|#2| $) 14)) (-2726 ((|#1| $) 15)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11)) (-1718 (((-112) $ $) 6))) +(((-509 |#1| |#2|) (-140) (-1093) (-846)) (T -509)) +((-2240 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-509 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-846)))) (-2588 (*1 *1 *2 *3) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-846)))) (-2726 (*1 *2 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *3 (-846)) (-4 *2 (-1093)))) (-3395 (*1 *2 *1) (-12 (-4 *1 (-509 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-846)))) (-2751 (*1 *1 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-846))))) +(-13 (-1093) (-10 -8 (-15 -2240 ($ (-1 |t#1| |t#1|) $)) (-15 -2588 ($ |t#1| |t#2|)) (-15 -2726 (|t#1| $)) (-15 -3395 (|t#2| $)) (-15 -2751 ($ $)))) +(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-4239 (($) NIL T CONST)) (-2751 (($ $) NIL)) (-2588 (($ |#1| |#2|) NIL)) (-3084 (($ $ $) NIL)) (-1777 (($ $ $) NIL)) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-3395 ((|#2| $) NIL)) (-2726 ((|#1| $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-2241 (($) NIL T CONST)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) 13)) (-1814 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL))) +(((-510 |#1| |#2|) (-13 (-788) (-509 |#1| |#2|)) (-788) (-846)) (T -510)) +NIL +(-13 (-788) (-509 |#1| |#2|)) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1901 (($ $ $) 16)) (-1495 (((-3 $ "failed") $ $) 13)) (-4239 (($) NIL T CONST)) (-2751 (($ $) NIL)) (-2588 (($ |#1| |#2|) NIL)) (-3084 (($ $ $) NIL)) (-1777 (($ $ $) NIL)) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-3395 ((|#2| $) NIL)) (-2726 ((|#1| $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-2241 (($) NIL T CONST)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) NIL)) (-1814 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL))) +(((-511 |#1| |#2|) (-13 (-789) (-509 |#1| |#2|)) (-789) (-846)) (T -511)) +NIL +(-13 (-789) (-509 |#1| |#2|)) +((-1677 (((-112) $ $) NIL)) (-2751 (($ $) 24)) (-2588 (($ |#1| |#2|) 21)) (-2240 (($ (-1 |#1| |#1|) $) 23)) (-3395 ((|#2| $) 26)) (-2726 ((|#1| $) 25)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 20)) (-1718 (((-112) $ $) 13))) +(((-512 |#1| |#2|) (-509 |#1| |#2|) (-1093) (-846)) (T -512)) +NIL +(-509 |#1| |#2|) +((-1540 (($ $ (-640 |#2|) (-640 |#3|)) NIL) (($ $ |#2| |#3|) 12))) +(((-513 |#1| |#2| |#3|) (-10 -8 (-15 -1540 (|#1| |#1| |#2| |#3|)) (-15 -1540 (|#1| |#1| (-640 |#2|) (-640 |#3|)))) (-514 |#2| |#3|) (-1093) (-1208)) (T -513)) +NIL +(-10 -8 (-15 -1540 (|#1| |#1| |#2| |#3|)) (-15 -1540 (|#1| |#1| (-640 |#2|) (-640 |#3|)))) +((-1540 (($ $ (-640 |#1|) (-640 |#2|)) 7) (($ $ |#1| |#2|) 6))) +(((-514 |#1| |#2|) (-140) (-1093) (-1208)) (T -514)) +((-1540 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 *4)) (-5 *3 (-640 *5)) (-4 *1 (-514 *4 *5)) (-4 *4 (-1093)) (-4 *5 (-1208)))) (-1540 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1208))))) +(-13 (-10 -8 (-15 -1540 ($ $ |t#1| |t#2|)) (-15 -1540 ($ $ (-640 |t#1|) (-640 |t#2|))))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) 16)) (-1539 (((-640 (-2 (|:| |gen| |#1|) (|:| -3368 |#2|))) $) 18)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3749 (((-767) $) NIL)) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#1| "failed") $) NIL)) (-2058 ((|#1| $) NIL)) (-2768 ((|#1| $ (-563)) 23)) (-1992 ((|#2| $ (-563)) 21)) (-1633 (($ (-1 |#1| |#1|) $) 46)) (-1480 (($ (-1 |#2| |#2|) $) 43)) (-3573 (((-1151) $) NIL)) (-2700 (($ $ $) 53 (|has| |#2| (-788)))) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 42) (($ |#1|) NIL)) (-4319 ((|#2| |#1| $) 49)) (-2241 (($) 11 T CONST)) (-1718 (((-112) $ $) 29)) (-1814 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-917) $) NIL) (($ (-767) $) 36) (($ |#2| |#1|) 31))) +(((-515 |#1| |#2| |#3|) (-323 |#1| |#2|) (-1093) (-131) |#2|) (T -515)) +NIL +(-323 |#1| |#2|) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-4378 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4408)))) (-3523 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-2770 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4408))) (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-846))))) (-1642 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-2759 (((-112) $ (-767)) NIL)) (-3689 (((-112) (-112)) 25)) (-1849 ((|#1| $ (-563) |#1|) 28 (|has| $ (-6 -4408))) ((|#1| $ (-1224 (-563)) |#1|) NIL (|has| $ (-6 -4408)))) (-2812 (($ (-1 (-112) |#1|) $) 52)) (-2256 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-4239 (($) NIL T CONST)) (-2907 (($ $) NIL (|has| $ (-6 -4408)))) (-4382 (($ $) NIL)) (-4005 (($ $) 56 (|has| |#1| (-1093)))) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2705 (($ |#1| $) NIL (|has| |#1| (-1093))) (($ (-1 (-112) |#1|) $) 44)) (-1459 (($ |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-4355 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4408)))) (-4293 ((|#1| $ (-563)) NIL)) (-4368 (((-563) (-1 (-112) |#1|) $) NIL) (((-563) |#1| $) NIL (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) NIL (|has| |#1| (-1093)))) (-3945 (($ $ (-563)) 13)) (-4182 (((-767) $) 11)) (-2659 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1566 (($ (-767) |#1|) 23)) (-2581 (((-112) $ (-767)) NIL)) (-2411 (((-563) $) 21 (|has| (-563) (-846)))) (-3084 (($ $ $) NIL (|has| |#1| (-846)))) (-2878 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) 35)) (-3164 (($ (-1 (-112) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-846)))) (-2259 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-3860 (((-563) $) 20 (|has| (-563) (-846)))) (-1777 (($ $ $) NIL (|has| |#1| (-846)))) (-4345 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1812 (($ $ $ (-563)) 51) (($ |#1| $ (-563)) 37)) (-3396 (($ |#1| $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-4318 (((-640 (-563)) $) NIL)) (-3192 (((-112) (-563) $) NIL)) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3374 (($ (-640 |#1|)) 29)) (-3781 ((|#1| $) NIL (|has| (-563) (-846)))) (-4203 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2358 (($ $ |#1|) 19 (|has| $ (-6 -4408)))) (-3138 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) 40)) (-2105 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2836 (((-640 |#1|) $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) 16)) (-2309 ((|#1| $ (-563) |#1|) NIL) ((|#1| $ (-563)) 33) (($ $ (-1224 (-563))) NIL)) (-1314 (($ $ (-1224 (-563))) 50) (($ $ (-563)) 45)) (-2963 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-1709 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-3076 (($ $ $ (-563)) 41 (|has| $ (-6 -4408)))) (-1872 (($ $) 32)) (-2220 (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-1707 (($ (-640 |#1|)) NIL)) (-3245 (($ $ $) 42) (($ $ |#1|) 39)) (-2853 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-640 $)) NIL)) (-1693 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-4383 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1778 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1756 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1768 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1744 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3608 (((-767) $) 17 (|has| $ (-6 -4407))))) +(((-516 |#1| |#2|) (-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -3374 ($ (-640 |#1|))) (-15 -4182 ((-767) $)) (-15 -3945 ($ $ (-563))) (-15 -3689 ((-112) (-112))))) (-1208) (-563)) (T -516)) +((-3374 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-516 *3 *4)) (-14 *4 (-563)))) (-4182 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1208)) (-14 *4 (-563)))) (-3945 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1208)) (-14 *4 *2))) (-3689 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1208)) (-14 *4 (-563))))) +(-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -3374 ($ (-640 |#1|))) (-15 -4182 ((-767) $)) (-15 -3945 ($ $ (-563))) (-15 -3689 ((-112) (-112))))) +((-1677 (((-112) $ $) NIL)) (-3719 (((-1128) $) 11)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-4274 (((-1128) $) 13)) (-1394 (((-1128) $) 9)) (-1693 (((-858) $) 21) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-517) (-13 (-1076) (-10 -8 (-15 -1394 ((-1128) $)) (-15 -3719 ((-1128) $)) (-15 -4274 ((-1128) $))))) (T -517)) +((-1394 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-517)))) (-3719 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-517)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-517))))) +(-13 (-1076) (-10 -8 (-15 -1394 ((-1128) $)) (-15 -3719 ((-1128) $)) (-15 -4274 ((-1128) $)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-2388 (((-112) $) NIL)) (-3259 (((-767)) NIL)) (-1733 (((-580 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-580 |#1|) (-368)))) (-2752 (((-1181 (-917) (-767)) (-563)) NIL (|has| (-580 |#1|) (-368)))) (-1495 (((-3 $ "failed") $ $) NIL)) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-1919 (((-112) $ $) NIL)) (-3749 (((-767)) NIL (|has| (-580 |#1|) (-368)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-580 |#1|) "failed") $) NIL)) (-2058 (((-580 |#1|) $) NIL)) (-3937 (($ (-1257 (-580 |#1|))) NIL)) (-3711 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-580 |#1|) (-368)))) (-3090 (($ $ $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-1691 (($) NIL (|has| (-580 |#1|) (-368)))) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-1571 (($) NIL (|has| (-580 |#1|) (-368)))) (-2366 (((-112) $) NIL (|has| (-580 |#1|) (-368)))) (-1637 (($ $ (-767)) NIL (-4032 (|has| (-580 |#1|) (-145)) (|has| (-580 |#1|) (-368)))) (($ $) NIL (-4032 (|has| (-580 |#1|) (-145)) (|has| (-580 |#1|) (-368))))) (-2468 (((-112) $) NIL)) (-3254 (((-917) $) NIL (|has| (-580 |#1|) (-368))) (((-829 (-917)) $) NIL (-4032 (|has| (-580 |#1|) (-145)) (|has| (-580 |#1|) (-368))))) (-3827 (((-112) $) NIL)) (-3723 (($) NIL (|has| (-580 |#1|) (-368)))) (-2890 (((-112) $) NIL (|has| (-580 |#1|) (-368)))) (-3793 (((-580 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-580 |#1|) (-368)))) (-2408 (((-3 $ "failed") $) NIL (|has| (-580 |#1|) (-368)))) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3941 (((-1165 (-580 |#1|)) $) NIL) (((-1165 $) $ (-917)) NIL (|has| (-580 |#1|) (-368)))) (-1476 (((-917) $) NIL (|has| (-580 |#1|) (-368)))) (-2229 (((-1165 (-580 |#1|)) $) NIL (|has| (-580 |#1|) (-368)))) (-1631 (((-1165 (-580 |#1|)) $) NIL (|has| (-580 |#1|) (-368))) (((-3 (-1165 (-580 |#1|)) "failed") $ $) NIL (|has| (-580 |#1|) (-368)))) (-4166 (($ $ (-1165 (-580 |#1|))) NIL (|has| (-580 |#1|) (-368)))) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) NIL)) (-2523 (($) NIL (|has| (-580 |#1|) (-368)) CONST)) (-2555 (($ (-917)) NIL (|has| (-580 |#1|) (-368)))) (-3013 (((-112) $) NIL)) (-1694 (((-1113) $) NIL)) (-4333 (($) NIL (|has| (-580 |#1|) (-368)))) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ $ $) NIL) (($ (-640 $)) NIL)) (-2727 (((-640 (-2 (|:| -2174 (-563)) (|:| -1654 (-563))))) NIL (|has| (-580 |#1|) (-368)))) (-2174 (((-418 $) $) NIL)) (-1467 (((-829 (-917))) NIL) (((-917)) NIL)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2628 (((-767) $) NIL)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-1423 (((-767) $) NIL (|has| (-580 |#1|) (-368))) (((-3 (-767) "failed") $ $) NIL (-4032 (|has| (-580 |#1|) (-145)) (|has| (-580 |#1|) (-368))))) (-3533 (((-134)) NIL)) (-4202 (($ $) NIL (|has| (-580 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-580 |#1|) (-368)))) (-4167 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-3390 (((-1165 (-580 |#1|))) NIL)) (-4284 (($) NIL (|has| (-580 |#1|) (-368)))) (-1484 (($) NIL (|has| (-580 |#1|) (-368)))) (-1880 (((-1257 (-580 |#1|)) $) NIL) (((-684 (-580 |#1|)) (-1257 $)) NIL)) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| (-580 |#1|) (-368)))) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ (-580 |#1|)) NIL)) (-2779 (($ $) NIL (|has| (-580 |#1|) (-368))) (((-3 $ "failed") $) NIL (-4032 (|has| (-580 |#1|) (-145)) (|has| (-580 |#1|) (-368))))) (-1675 (((-767)) NIL)) (-4315 (((-1257 $)) NIL) (((-1257 $) (-917)) NIL)) (-2126 (((-112) $ $) NIL)) (-3152 (((-112) $) NIL)) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-2350 (($ $) NIL (|has| (-580 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-580 |#1|) (-368)))) (-3209 (($ $) NIL (|has| (-580 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-580 |#1|) (-368)))) (-1718 (((-112) $ $) NIL)) (-1837 (($ $ $) NIL) (($ $ (-580 |#1|)) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ $ (-580 |#1|)) NIL) (($ (-580 |#1|) $) NIL))) +(((-518 |#1| |#2|) (-329 (-580 |#1|)) (-917) (-917)) (T -518)) +NIL +(-329 (-580 |#1|)) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2759 (((-112) $ (-767)) NIL)) (-1849 ((|#1| $ (-563) (-563) |#1|) 35)) (-4327 (($ $ (-563) |#4|) NIL)) (-4175 (($ $ (-563) |#5|) NIL)) (-4239 (($) NIL T CONST)) (-2368 ((|#4| $ (-563)) NIL)) (-4355 ((|#1| $ (-563) (-563) |#1|) 34)) (-4293 ((|#1| $ (-563) (-563)) 32)) (-2659 (((-640 |#1|) $) NIL)) (-2381 (((-767) $) 28)) (-1566 (($ (-767) (-767) |#1|) 25)) (-2393 (((-767) $) 30)) (-2581 (((-112) $ (-767)) NIL)) (-2013 (((-563) $) 26)) (-3650 (((-563) $) 27)) (-2259 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1859 (((-563) $) 29)) (-2207 (((-563) $) 31)) (-4345 (($ (-1 |#1| |#1|) $) NIL)) (-2240 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) 38 (|has| |#1| (-1093)))) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-2358 (($ $ |#1|) NIL)) (-3138 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) NIL)) (-3756 (((-112) $) 14)) (-3135 (($) 16)) (-2309 ((|#1| $ (-563) (-563)) 33) ((|#1| $ (-563) (-563) |#1|) NIL)) (-1709 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1872 (($ $) NIL)) (-1912 ((|#5| $ (-563)) NIL)) (-1693 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-4383 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-519 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1208) (-563) (-563) (-373 |#1|) (-373 |#1|)) (T -519)) NIL (-57 |#1| |#4| |#5|) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2533 ((|#1| $) NIL)) (-2358 ((|#1| $) NIL)) (-3120 (($ $) NIL)) (-3655 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4404)))) (-1335 (($ $ (-562)) 58 (|has| $ (-6 -4404)))) (-1706 (((-112) $) NIL (|has| |#1| (-845))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3737 (($ $) NIL (-12 (|has| $ (-6 -4404)) (|has| |#1| (-845)))) (($ (-1 (-112) |#1| |#1|) $) 56 (|has| $ (-6 -4404)))) (-1395 (($ $) NIL (|has| |#1| (-845))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3735 (((-112) $ (-766)) NIL)) (-2677 ((|#1| $ |#1|) NIL (|has| $ (-6 -4404)))) (-3400 (($ $ $) 23 (|has| $ (-6 -4404)))) (-1393 ((|#1| $ |#1|) NIL (|has| $ (-6 -4404)))) (-3239 ((|#1| $ |#1|) 21 (|has| $ (-6 -4404)))) (-4200 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4404))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4404))) (($ $ "rest" $) 24 (|has| $ (-6 -4404))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4404))) ((|#1| $ (-1223 (-562)) |#1|) NIL (|has| $ (-6 -4404))) ((|#1| $ (-562) |#1|) NIL (|has| $ (-6 -4404)))) (-3742 (($ $ (-639 $)) NIL (|has| $ (-6 -4404)))) (-2968 (($ (-1 (-112) |#1|) $) NIL)) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-2349 ((|#1| $) NIL)) (-3329 (($) NIL T CONST)) (-2673 (($ $) 28 (|has| $ (-6 -4404)))) (-2676 (($ $) 29)) (-1434 (($ $) 18) (($ $ (-766)) 32)) (-3923 (($ $) 54 (|has| |#1| (-1092)))) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-3729 (($ |#1| $) NIL (|has| |#1| (-1092))) (($ (-1 (-112) |#1|) $) NIL)) (-1475 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1954 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1507 ((|#1| $ (-562) |#1|) NIL (|has| $ (-6 -4404)))) (-1420 ((|#1| $ (-562)) NIL)) (-2101 (((-112) $) NIL)) (-4265 (((-562) |#1| $ (-562)) NIL (|has| |#1| (-1092))) (((-562) |#1| $) NIL (|has| |#1| (-1092))) (((-562) (-1 (-112) |#1|) $) NIL)) (-1720 (((-639 |#1|) $) 27 (|has| $ (-6 -4403)))) (-2409 (((-639 $) $) NIL)) (-4188 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1458 (($ (-766) |#1|) NIL)) (-4172 (((-112) $ (-766)) NIL)) (-1849 (((-562) $) 31 (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-3124 (($ $ $) NIL (|has| |#1| (-845))) (($ (-1 (-112) |#1| |#1|) $ $) 57)) (-4103 (($ $ $) NIL (|has| |#1| (-845))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2123 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) 52 (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1929 (((-562) $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-1491 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3716 (($ |#1|) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-4008 (((-639 |#1|) $) NIL)) (-3179 (((-112) $) NIL)) (-3696 (((-1150) $) 50 (|has| |#1| (-1092)))) (-1504 ((|#1| $) NIL) (($ $ (-766)) NIL)) (-1581 (($ $ $ (-562)) NIL) (($ |#1| $ (-562)) NIL)) (-3295 (($ $ $ (-562)) NIL) (($ |#1| $ (-562)) NIL)) (-3336 (((-639 (-562)) $) NIL)) (-1987 (((-112) (-562) $) NIL)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-1421 ((|#1| $) 13) (($ $ (-766)) NIL)) (-1963 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3510 (($ $ |#1|) NIL (|has| $ (-6 -4404)))) (-3745 (((-112) $) NIL)) (-3008 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) 12)) (-2716 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2366 (((-639 |#1|) $) NIL)) (-3087 (((-112) $) 17)) (-1663 (($) 16)) (-2343 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1223 (-562))) NIL) ((|#1| $ (-562)) NIL) ((|#1| $ (-562) |#1|) NIL)) (-1423 (((-562) $ $) NIL)) (-1527 (($ $ (-1223 (-562))) NIL) (($ $ (-562)) NIL)) (-2880 (($ $ (-1223 (-562))) NIL) (($ $ (-562)) NIL)) (-2473 (((-112) $) 33)) (-3734 (($ $) NIL)) (-3659 (($ $) NIL (|has| $ (-6 -4404)))) (-3595 (((-766) $) NIL)) (-2333 (($ $) 35)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2694 (($ $ $ (-562)) NIL (|has| $ (-6 -4404)))) (-4220 (($ $) 34)) (-4208 (((-535) $) NIL (|has| |#1| (-610 (-535))))) (-4064 (($ (-639 |#1|)) 26)) (-2587 (($ $ $) 53) (($ $ |#1|) NIL)) (-2767 (($ $ $) NIL) (($ |#1| $) 10) (($ (-639 $)) NIL) (($ $ |#1|) NIL)) (-4053 (((-857) $) 45 (|has| |#1| (-609 (-857))))) (-3643 (((-639 $) $) NIL)) (-2985 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2879 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1771 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1733 (((-112) $ $) 47 (|has| |#1| (-1092)))) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1761 (((-112) $ $) NIL (|has| |#1| (-845)))) (-3492 (((-766) $) 9 (|has| $ (-6 -4403))))) -(((-519 |#1| |#2|) (-660 |#1|) (-1207) (-562)) (T -519)) -NIL -(-660 |#1|) -((-2239 ((|#4| |#4|) 27)) (-2172 (((-766) |#4|) 32)) (-4244 (((-766) |#4|) 33)) (-3821 (((-639 |#3|) |#4|) 39 (|has| |#3| (-6 -4404)))) (-2463 (((-3 |#4| "failed") |#4|) 50)) (-1830 ((|#4| |#4|) 43)) (-3282 ((|#1| |#4|) 42))) -(((-520 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2239 (|#4| |#4|)) (-15 -2172 ((-766) |#4|)) (-15 -4244 ((-766) |#4|)) (IF (|has| |#3| (-6 -4404)) (-15 -3821 ((-639 |#3|) |#4|)) |%noBranch|) (-15 -3282 (|#1| |#4|)) (-15 -1830 (|#4| |#4|)) (-15 -2463 ((-3 |#4| "failed") |#4|))) (-362) (-372 |#1|) (-372 |#1|) (-681 |#1| |#2| |#3|)) (T -520)) -((-2463 (*1 *2 *2) (|partial| -12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-520 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))) (-1830 (*1 *2 *2) (-12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-520 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))) (-3282 (*1 *2 *3) (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-362)) (-5 *1 (-520 *2 *4 *5 *3)) (-4 *3 (-681 *2 *4 *5)))) (-3821 (*1 *2 *3) (-12 (|has| *6 (-6 -4404)) (-4 *4 (-362)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-639 *6)) (-5 *1 (-520 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6)))) (-4244 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-766)) (-5 *1 (-520 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6)))) (-2172 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-766)) (-5 *1 (-520 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6)))) (-2239 (*1 *2 *2) (-12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-520 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5))))) -(-10 -7 (-15 -2239 (|#4| |#4|)) (-15 -2172 ((-766) |#4|)) (-15 -4244 ((-766) |#4|)) (IF (|has| |#3| (-6 -4404)) (-15 -3821 ((-639 |#3|) |#4|)) |%noBranch|) (-15 -3282 (|#1| |#4|)) (-15 -1830 (|#4| |#4|)) (-15 -2463 ((-3 |#4| "failed") |#4|))) -((-2239 ((|#8| |#4|) 20)) (-3821 (((-639 |#3|) |#4|) 29 (|has| |#7| (-6 -4404)))) (-2463 (((-3 |#8| "failed") |#4|) 23))) -(((-521 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2239 (|#8| |#4|)) (-15 -2463 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4404)) (-15 -3821 ((-639 |#3|) |#4|)) |%noBranch|)) (-554) (-372 |#1|) (-372 |#1|) (-681 |#1| |#2| |#3|) (-987 |#1|) (-372 |#5|) (-372 |#5|) (-681 |#5| |#6| |#7|)) (T -521)) -((-3821 (*1 *2 *3) (-12 (|has| *9 (-6 -4404)) (-4 *4 (-554)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-4 *7 (-987 *4)) (-4 *8 (-372 *7)) (-4 *9 (-372 *7)) (-5 *2 (-639 *6)) (-5 *1 (-521 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-681 *4 *5 *6)) (-4 *10 (-681 *7 *8 *9)))) (-2463 (*1 *2 *3) (|partial| -12 (-4 *4 (-554)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-4 *7 (-987 *4)) (-4 *2 (-681 *7 *8 *9)) (-5 *1 (-521 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-681 *4 *5 *6)) (-4 *8 (-372 *7)) (-4 *9 (-372 *7)))) (-2239 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-4 *7 (-987 *4)) (-4 *2 (-681 *7 *8 *9)) (-5 *1 (-521 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-681 *4 *5 *6)) (-4 *8 (-372 *7)) (-4 *9 (-372 *7))))) -(-10 -7 (-15 -2239 (|#8| |#4|)) (-15 -2463 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4404)) (-15 -3821 ((-639 |#3|) |#4|)) |%noBranch|)) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2910 (($ (-766) (-766)) NIL)) (-2955 (($ $ $) NIL)) (-2309 (($ (-598 |#1| |#3|)) NIL) (($ $) NIL)) (-4097 (((-112) $) NIL)) (-1975 (($ $ (-562) (-562)) 12)) (-2842 (($ $ (-562) (-562)) NIL)) (-2167 (($ $ (-562) (-562) (-562) (-562)) NIL)) (-2058 (($ $) NIL)) (-2819 (((-112) $) NIL)) (-3735 (((-112) $ (-766)) NIL)) (-1980 (($ $ (-562) (-562) $) NIL)) (-4200 ((|#1| $ (-562) (-562) |#1|) NIL) (($ $ (-639 (-562)) (-639 (-562)) $) NIL)) (-2267 (($ $ (-562) (-598 |#1| |#3|)) NIL)) (-3320 (($ $ (-562) (-598 |#1| |#2|)) NIL)) (-4369 (($ (-766) |#1|) NIL)) (-3329 (($) NIL T CONST)) (-2239 (($ $) 21 (|has| |#1| (-306)))) (-3511 (((-598 |#1| |#3|) $ (-562)) NIL)) (-2172 (((-766) $) 24 (|has| |#1| (-554)))) (-1507 ((|#1| $ (-562) (-562) |#1|) NIL)) (-1420 ((|#1| $ (-562) (-562)) NIL)) (-1720 (((-639 |#1|) $) NIL)) (-4244 (((-766) $) 26 (|has| |#1| (-554)))) (-3821 (((-639 (-598 |#1| |#2|)) $) 29 (|has| |#1| (-554)))) (-2698 (((-766) $) NIL)) (-1458 (($ (-766) (-766) |#1|) NIL)) (-2708 (((-766) $) NIL)) (-4172 (((-112) $ (-766)) NIL)) (-1622 ((|#1| $) 19 (|has| |#1| (-6 (-4405 "*"))))) (-1808 (((-562) $) 10)) (-2028 (((-562) $) NIL)) (-2123 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-3269 (((-562) $) 11)) (-2727 (((-562) $) NIL)) (-2884 (($ (-639 (-639 |#1|))) NIL)) (-1491 (($ (-1 |#1| |#1|) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2247 (((-639 (-639 |#1|)) $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-2463 (((-3 $ "failed") $) 33 (|has| |#1| (-362)))) (-3713 (($ $ $) NIL)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-3510 (($ $ |#1|) NIL)) (-1762 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554)))) (-3008 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) NIL)) (-2343 ((|#1| $ (-562) (-562)) NIL) ((|#1| $ (-562) (-562) |#1|) NIL) (($ $ (-639 (-562)) (-639 (-562))) NIL)) (-3168 (($ (-639 |#1|)) NIL) (($ (-639 $)) NIL)) (-1752 (((-112) $) NIL)) (-3282 ((|#1| $) 17 (|has| |#1| (-6 (-4405 "*"))))) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-4220 (($ $) NIL)) (-2208 (((-598 |#1| |#2|) $ (-562)) NIL)) (-4053 (($ (-598 |#1| |#2|)) NIL) (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-2879 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1996 (((-112) $) NIL)) (-1733 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1847 (($ $ $) NIL) (($ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-766)) NIL) (($ $ (-562)) NIL (|has| |#1| (-362)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-562) $) NIL) (((-598 |#1| |#2|) $ (-598 |#1| |#2|)) NIL) (((-598 |#1| |#3|) (-598 |#1| |#3|) $) NIL)) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-522 |#1| |#2| |#3|) (-681 |#1| (-598 |#1| |#3|) (-598 |#1| |#2|)) (-1044) (-562) (-562)) (T -522)) -NIL -(-681 |#1| (-598 |#1| |#3|) (-598 |#1| |#2|)) -((-4041 (((-112) $ $) NIL)) (-3696 (((-1150) $) NIL)) (-4360 (((-639 (-1206)) $) 13)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 20) (($ (-1173)) NIL) (((-1173) $) NIL) (($ (-639 (-1206))) 11)) (-1733 (((-112) $ $) NIL))) -(((-523) (-13 (-1075) (-10 -8 (-15 -4053 ($ (-639 (-1206)))) (-15 -4360 ((-639 (-1206)) $))))) (T -523)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-639 (-1206))) (-5 *1 (-523)))) (-4360 (*1 *2 *1) (-12 (-5 *2 (-639 (-1206))) (-5 *1 (-523))))) -(-13 (-1075) (-10 -8 (-15 -4053 ($ (-639 (-1206)))) (-15 -4360 ((-639 (-1206)) $)))) -((-4041 (((-112) $ $) NIL)) (-3895 (((-1127) $) 14)) (-3696 (((-1150) $) NIL)) (-2069 (((-1168) $) 11)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 21) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-524) (-13 (-1075) (-10 -8 (-15 -2069 ((-1168) $)) (-15 -3895 ((-1127) $))))) (T -524)) -((-2069 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-524)))) (-3895 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-524))))) -(-13 (-1075) (-10 -8 (-15 -2069 ((-1168) $)) (-15 -3895 ((-1127) $)))) -((-3746 (((-685 (-1214)) $) 15)) (-2589 (((-685 (-1213)) $) 35)) (-1617 (((-685 (-1212)) $) 26)) (-3994 (((-685 (-547)) $) 12)) (-1882 (((-685 (-546)) $) 39)) (-4320 (((-685 (-545)) $) 30)) (-2456 (((-766) $ (-128)) 49))) -(((-525 |#1|) (-10 -8 (-15 -2456 ((-766) |#1| (-128))) (-15 -2589 ((-685 (-1213)) |#1|)) (-15 -1882 ((-685 (-546)) |#1|)) (-15 -1617 ((-685 (-1212)) |#1|)) (-15 -4320 ((-685 (-545)) |#1|)) (-15 -3746 ((-685 (-1214)) |#1|)) (-15 -3994 ((-685 (-547)) |#1|))) (-526)) (T -525)) -NIL -(-10 -8 (-15 -2456 ((-766) |#1| (-128))) (-15 -2589 ((-685 (-1213)) |#1|)) (-15 -1882 ((-685 (-546)) |#1|)) (-15 -1617 ((-685 (-1212)) |#1|)) (-15 -4320 ((-685 (-545)) |#1|)) (-15 -3746 ((-685 (-1214)) |#1|)) (-15 -3994 ((-685 (-547)) |#1|))) -((-3746 (((-685 (-1214)) $) 12)) (-2589 (((-685 (-1213)) $) 8)) (-1617 (((-685 (-1212)) $) 10)) (-3994 (((-685 (-547)) $) 13)) (-1882 (((-685 (-546)) $) 9)) (-4320 (((-685 (-545)) $) 11)) (-2456 (((-766) $ (-128)) 7)) (-2661 (((-685 (-129)) $) 14)) (-1380 (($ $) 6))) -(((-526) (-139)) (T -526)) -((-2661 (*1 *2 *1) (-12 (-4 *1 (-526)) (-5 *2 (-685 (-129))))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-526)) (-5 *2 (-685 (-547))))) (-3746 (*1 *2 *1) (-12 (-4 *1 (-526)) (-5 *2 (-685 (-1214))))) (-4320 (*1 *2 *1) (-12 (-4 *1 (-526)) (-5 *2 (-685 (-545))))) (-1617 (*1 *2 *1) (-12 (-4 *1 (-526)) (-5 *2 (-685 (-1212))))) (-1882 (*1 *2 *1) (-12 (-4 *1 (-526)) (-5 *2 (-685 (-546))))) (-2589 (*1 *2 *1) (-12 (-4 *1 (-526)) (-5 *2 (-685 (-1213))))) (-2456 (*1 *2 *1 *3) (-12 (-4 *1 (-526)) (-5 *3 (-128)) (-5 *2 (-766))))) -(-13 (-172) (-10 -8 (-15 -2661 ((-685 (-129)) $)) (-15 -3994 ((-685 (-547)) $)) (-15 -3746 ((-685 (-1214)) $)) (-15 -4320 ((-685 (-545)) $)) (-15 -1617 ((-685 (-1212)) $)) (-15 -1882 ((-685 (-546)) $)) (-15 -2589 ((-685 (-1213)) $)) (-15 -2456 ((-766) $ (-128))))) -(((-172) . T)) -((-2622 (((-1164 |#1|) (-766)) 75)) (-1748 (((-1256 |#1|) (-1256 |#1|) (-916)) 68)) (-1388 (((-1261) (-1256 (-639 (-2 (|:| -2533 |#1|) (|:| -2464 (-1112))))) |#1|) 83)) (-4036 (((-1256 |#1|) (-1256 |#1|) (-766)) 36)) (-1447 (((-1256 |#1|) (-916)) 70)) (-3145 (((-1256 |#1|) (-1256 |#1|) (-562)) 24)) (-4201 (((-1164 |#1|) (-1256 |#1|)) 76)) (-2631 (((-1256 |#1|) (-916)) 94)) (-1775 (((-112) (-1256 |#1|)) 79)) (-4363 (((-1256 |#1|) (-1256 |#1|) (-916)) 61)) (-1937 (((-1164 |#1|) (-1256 |#1|)) 88)) (-3549 (((-916) (-1256 |#1|)) 58)) (-1525 (((-1256 |#1|) (-1256 |#1|)) 30)) (-2464 (((-1256 |#1|) (-916) (-916)) 96)) (-3382 (((-1256 |#1|) (-1256 |#1|) (-1112) (-1112)) 23)) (-2538 (((-1256 |#1|) (-1256 |#1|) (-766) (-1112)) 37)) (-4291 (((-1256 (-1256 |#1|)) (-916)) 93)) (-1859 (((-1256 |#1|) (-1256 |#1|) (-1256 |#1|)) 80)) (** (((-1256 |#1|) (-1256 |#1|) (-562)) 43)) (* (((-1256 |#1|) (-1256 |#1|) (-1256 |#1|)) 25))) -(((-527 |#1|) (-10 -7 (-15 -1388 ((-1261) (-1256 (-639 (-2 (|:| -2533 |#1|) (|:| -2464 (-1112))))) |#1|)) (-15 -1447 ((-1256 |#1|) (-916))) (-15 -2464 ((-1256 |#1|) (-916) (-916))) (-15 -4201 ((-1164 |#1|) (-1256 |#1|))) (-15 -2622 ((-1164 |#1|) (-766))) (-15 -2538 ((-1256 |#1|) (-1256 |#1|) (-766) (-1112))) (-15 -4036 ((-1256 |#1|) (-1256 |#1|) (-766))) (-15 -3382 ((-1256 |#1|) (-1256 |#1|) (-1112) (-1112))) (-15 -3145 ((-1256 |#1|) (-1256 |#1|) (-562))) (-15 ** ((-1256 |#1|) (-1256 |#1|) (-562))) (-15 * ((-1256 |#1|) (-1256 |#1|) (-1256 |#1|))) (-15 -1859 ((-1256 |#1|) (-1256 |#1|) (-1256 |#1|))) (-15 -4363 ((-1256 |#1|) (-1256 |#1|) (-916))) (-15 -1748 ((-1256 |#1|) (-1256 |#1|) (-916))) (-15 -1525 ((-1256 |#1|) (-1256 |#1|))) (-15 -3549 ((-916) (-1256 |#1|))) (-15 -1775 ((-112) (-1256 |#1|))) (-15 -4291 ((-1256 (-1256 |#1|)) (-916))) (-15 -2631 ((-1256 |#1|) (-916))) (-15 -1937 ((-1164 |#1|) (-1256 |#1|)))) (-348)) (T -527)) -((-1937 (*1 *2 *3) (-12 (-5 *3 (-1256 *4)) (-4 *4 (-348)) (-5 *2 (-1164 *4)) (-5 *1 (-527 *4)))) (-2631 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1256 *4)) (-5 *1 (-527 *4)) (-4 *4 (-348)))) (-4291 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1256 (-1256 *4))) (-5 *1 (-527 *4)) (-4 *4 (-348)))) (-1775 (*1 *2 *3) (-12 (-5 *3 (-1256 *4)) (-4 *4 (-348)) (-5 *2 (-112)) (-5 *1 (-527 *4)))) (-3549 (*1 *2 *3) (-12 (-5 *3 (-1256 *4)) (-4 *4 (-348)) (-5 *2 (-916)) (-5 *1 (-527 *4)))) (-1525 (*1 *2 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-348)) (-5 *1 (-527 *3)))) (-1748 (*1 *2 *2 *3) (-12 (-5 *2 (-1256 *4)) (-5 *3 (-916)) (-4 *4 (-348)) (-5 *1 (-527 *4)))) (-4363 (*1 *2 *2 *3) (-12 (-5 *2 (-1256 *4)) (-5 *3 (-916)) (-4 *4 (-348)) (-5 *1 (-527 *4)))) (-1859 (*1 *2 *2 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-348)) (-5 *1 (-527 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-348)) (-5 *1 (-527 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1256 *4)) (-5 *3 (-562)) (-4 *4 (-348)) (-5 *1 (-527 *4)))) (-3145 (*1 *2 *2 *3) (-12 (-5 *2 (-1256 *4)) (-5 *3 (-562)) (-4 *4 (-348)) (-5 *1 (-527 *4)))) (-3382 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1256 *4)) (-5 *3 (-1112)) (-4 *4 (-348)) (-5 *1 (-527 *4)))) (-4036 (*1 *2 *2 *3) (-12 (-5 *2 (-1256 *4)) (-5 *3 (-766)) (-4 *4 (-348)) (-5 *1 (-527 *4)))) (-2538 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1256 *5)) (-5 *3 (-766)) (-5 *4 (-1112)) (-4 *5 (-348)) (-5 *1 (-527 *5)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1164 *4)) (-5 *1 (-527 *4)) (-4 *4 (-348)))) (-4201 (*1 *2 *3) (-12 (-5 *3 (-1256 *4)) (-4 *4 (-348)) (-5 *2 (-1164 *4)) (-5 *1 (-527 *4)))) (-2464 (*1 *2 *3 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1256 *4)) (-5 *1 (-527 *4)) (-4 *4 (-348)))) (-1447 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1256 *4)) (-5 *1 (-527 *4)) (-4 *4 (-348)))) (-1388 (*1 *2 *3 *4) (-12 (-5 *3 (-1256 (-639 (-2 (|:| -2533 *4) (|:| -2464 (-1112)))))) (-4 *4 (-348)) (-5 *2 (-1261)) (-5 *1 (-527 *4))))) -(-10 -7 (-15 -1388 ((-1261) (-1256 (-639 (-2 (|:| -2533 |#1|) (|:| -2464 (-1112))))) |#1|)) (-15 -1447 ((-1256 |#1|) (-916))) (-15 -2464 ((-1256 |#1|) (-916) (-916))) (-15 -4201 ((-1164 |#1|) (-1256 |#1|))) (-15 -2622 ((-1164 |#1|) (-766))) (-15 -2538 ((-1256 |#1|) (-1256 |#1|) (-766) (-1112))) (-15 -4036 ((-1256 |#1|) (-1256 |#1|) (-766))) (-15 -3382 ((-1256 |#1|) (-1256 |#1|) (-1112) (-1112))) (-15 -3145 ((-1256 |#1|) (-1256 |#1|) (-562))) (-15 ** ((-1256 |#1|) (-1256 |#1|) (-562))) (-15 * ((-1256 |#1|) (-1256 |#1|) (-1256 |#1|))) (-15 -1859 ((-1256 |#1|) (-1256 |#1|) (-1256 |#1|))) (-15 -4363 ((-1256 |#1|) (-1256 |#1|) (-916))) (-15 -1748 ((-1256 |#1|) (-1256 |#1|) (-916))) (-15 -1525 ((-1256 |#1|) (-1256 |#1|))) (-15 -3549 ((-916) (-1256 |#1|))) (-15 -1775 ((-112) (-1256 |#1|))) (-15 -4291 ((-1256 (-1256 |#1|)) (-916))) (-15 -2631 ((-1256 |#1|) (-916))) (-15 -1937 ((-1164 |#1|) (-1256 |#1|)))) -((-3746 (((-685 (-1214)) $) NIL)) (-2589 (((-685 (-1213)) $) NIL)) (-1617 (((-685 (-1212)) $) NIL)) (-3994 (((-685 (-547)) $) NIL)) (-1882 (((-685 (-546)) $) NIL)) (-4320 (((-685 (-545)) $) NIL)) (-2456 (((-766) $ (-128)) NIL)) (-2661 (((-685 (-129)) $) 23)) (-3663 (((-1112) $ (-1112)) 28)) (-4265 (((-1112) $) 27)) (-2851 (((-112) $) 18)) (-1548 (($ (-387)) 12) (($ (-1150)) 14)) (-4132 (((-112) $) 24)) (-4053 (((-857) $) 31)) (-1380 (($ $) 25))) -(((-528) (-13 (-526) (-609 (-857)) (-10 -8 (-15 -1548 ($ (-387))) (-15 -1548 ($ (-1150))) (-15 -4132 ((-112) $)) (-15 -2851 ((-112) $)) (-15 -4265 ((-1112) $)) (-15 -3663 ((-1112) $ (-1112)))))) (T -528)) -((-1548 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-528)))) (-1548 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-528)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-528)))) (-2851 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-528)))) (-4265 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-528)))) (-3663 (*1 *2 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-528))))) -(-13 (-526) (-609 (-857)) (-10 -8 (-15 -1548 ($ (-387))) (-15 -1548 ($ (-1150))) (-15 -4132 ((-112) $)) (-15 -2851 ((-112) $)) (-15 -4265 ((-1112) $)) (-15 -3663 ((-1112) $ (-1112))))) -((-3513 (((-1 |#1| |#1|) |#1|) 11)) (-1351 (((-1 |#1| |#1|)) 10))) -(((-529 |#1|) (-10 -7 (-15 -1351 ((-1 |#1| |#1|))) (-15 -3513 ((-1 |#1| |#1|) |#1|))) (-13 (-721) (-25))) (T -529)) -((-3513 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-529 *3)) (-4 *3 (-13 (-721) (-25))))) (-1351 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-529 *3)) (-4 *3 (-13 (-721) (-25)))))) -(-10 -7 (-15 -1351 ((-1 |#1| |#1|))) (-15 -3513 ((-1 |#1| |#1|) |#1|))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-1593 (($ $ $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3329 (($) NIL T CONST)) (-1600 (($ $) NIL)) (-1377 (($ (-766) |#1|) NIL)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-4152 (($ (-1 (-766) (-766)) $) NIL)) (-2006 ((|#1| $) NIL)) (-1573 (((-766) $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 20)) (-2285 (($) NIL T CONST)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) NIL)) (-1836 (($ $ $) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL))) -(((-530 |#1|) (-13 (-788) (-508 (-766) |#1|)) (-845)) (T -530)) -NIL -(-13 (-788) (-508 (-766) |#1|)) -((-4189 (((-639 |#2|) (-1164 |#1|) |#3|) 83)) (-4241 (((-639 (-2 (|:| |outval| |#2|) (|:| |outmult| (-562)) (|:| |outvect| (-639 (-683 |#2|))))) (-683 |#1|) |#3| (-1 (-417 (-1164 |#1|)) (-1164 |#1|))) 100)) (-2111 (((-1164 |#1|) (-683 |#1|)) 95))) -(((-531 |#1| |#2| |#3|) (-10 -7 (-15 -2111 ((-1164 |#1|) (-683 |#1|))) (-15 -4189 ((-639 |#2|) (-1164 |#1|) |#3|)) (-15 -4241 ((-639 (-2 (|:| |outval| |#2|) (|:| |outmult| (-562)) (|:| |outvect| (-639 (-683 |#2|))))) (-683 |#1|) |#3| (-1 (-417 (-1164 |#1|)) (-1164 |#1|))))) (-362) (-362) (-13 (-362) (-843))) (T -531)) -((-4241 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-683 *6)) (-5 *5 (-1 (-417 (-1164 *6)) (-1164 *6))) (-4 *6 (-362)) (-5 *2 (-639 (-2 (|:| |outval| *7) (|:| |outmult| (-562)) (|:| |outvect| (-639 (-683 *7)))))) (-5 *1 (-531 *6 *7 *4)) (-4 *7 (-362)) (-4 *4 (-13 (-362) (-843))))) (-4189 (*1 *2 *3 *4) (-12 (-5 *3 (-1164 *5)) (-4 *5 (-362)) (-5 *2 (-639 *6)) (-5 *1 (-531 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-843))))) (-2111 (*1 *2 *3) (-12 (-5 *3 (-683 *4)) (-4 *4 (-362)) (-5 *2 (-1164 *4)) (-5 *1 (-531 *4 *5 *6)) (-4 *5 (-362)) (-4 *6 (-13 (-362) (-843)))))) -(-10 -7 (-15 -2111 ((-1164 |#1|) (-683 |#1|))) (-15 -4189 ((-639 |#2|) (-1164 |#1|) |#3|)) (-15 -4241 ((-639 (-2 (|:| |outval| |#2|) (|:| |outmult| (-562)) (|:| |outvect| (-639 (-683 |#2|))))) (-683 |#1|) |#3| (-1 (-417 (-1164 |#1|)) (-1164 |#1|))))) -((-1734 (((-685 (-1214)) $ (-1214)) NIL)) (-2667 (((-685 (-547)) $ (-547)) NIL)) (-3445 (((-766) $ (-128)) 39)) (-1571 (((-685 (-129)) $ (-129)) 40)) (-3746 (((-685 (-1214)) $) NIL)) (-2589 (((-685 (-1213)) $) NIL)) (-1617 (((-685 (-1212)) $) NIL)) (-3994 (((-685 (-547)) $) NIL)) (-1882 (((-685 (-546)) $) NIL)) (-4320 (((-685 (-545)) $) NIL)) (-2456 (((-766) $ (-128)) 34)) (-2661 (((-685 (-129)) $) 37)) (-2659 (((-112) $) 29)) (-4052 (((-685 $) (-577) (-949)) 19) (((-685 $) (-490) (-949)) 26)) (-4053 (((-857) $) 49)) (-1380 (($ $) 41))) -(((-532) (-13 (-762 (-577)) (-609 (-857)) (-10 -8 (-15 -4052 ((-685 $) (-490) (-949)))))) (T -532)) -((-4052 (*1 *2 *3 *4) (-12 (-5 *3 (-490)) (-5 *4 (-949)) (-5 *2 (-685 (-532))) (-5 *1 (-532))))) -(-13 (-762 (-577)) (-609 (-857)) (-10 -8 (-15 -4052 ((-685 $) (-490) (-949))))) -((-3604 (((-838 (-562))) 12)) (-3616 (((-838 (-562))) 14)) (-4113 (((-828 (-562))) 9))) -(((-533) (-10 -7 (-15 -4113 ((-828 (-562)))) (-15 -3604 ((-838 (-562)))) (-15 -3616 ((-838 (-562)))))) (T -533)) -((-3616 (*1 *2) (-12 (-5 *2 (-838 (-562))) (-5 *1 (-533)))) (-3604 (*1 *2) (-12 (-5 *2 (-838 (-562))) (-5 *1 (-533)))) (-4113 (*1 *2) (-12 (-5 *2 (-828 (-562))) (-5 *1 (-533))))) -(-10 -7 (-15 -4113 ((-828 (-562)))) (-15 -3604 ((-838 (-562)))) (-15 -3616 ((-838 (-562))))) -((-3706 (((-535) (-1168)) 15)) (-3924 ((|#1| (-535)) 20))) -(((-534 |#1|) (-10 -7 (-15 -3706 ((-535) (-1168))) (-15 -3924 (|#1| (-535)))) (-1207)) (T -534)) -((-3924 (*1 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-534 *2)) (-4 *2 (-1207)))) (-3706 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-535)) (-5 *1 (-534 *4)) (-4 *4 (-1207))))) -(-10 -7 (-15 -3706 ((-535) (-1168))) (-15 -3924 (|#1| (-535)))) -((-4041 (((-112) $ $) NIL)) (-2591 (((-1150) $) 47)) (-1681 (((-112) $) 43)) (-1729 (((-1168) $) 44)) (-1950 (((-112) $) 41)) (-3596 (((-1150) $) 42)) (-2322 (($ (-1150)) 48)) (-3391 (((-112) $) NIL)) (-3032 (((-112) $) NIL)) (-1498 (((-112) $) NIL)) (-3696 (((-1150) $) NIL)) (-3835 (($ $ (-639 (-1168))) 20)) (-3924 (((-52) $) 22)) (-3693 (((-112) $) NIL)) (-1757 (((-562) $) NIL)) (-1709 (((-1112) $) NIL)) (-1407 (($ $ (-639 (-1168)) (-1168)) 60)) (-4014 (((-112) $) NIL)) (-4237 (((-224) $) NIL)) (-2754 (($ $) 38)) (-2400 (((-857) $) NIL)) (-3339 (((-112) $ $) NIL)) (-2343 (($ $ (-562)) NIL) (($ $ (-639 (-562))) NIL)) (-1716 (((-639 $) $) 28)) (-3093 (((-1168) (-639 $)) 49)) (-4208 (($ (-1150)) NIL) (($ (-1168)) 18) (($ (-562)) 8) (($ (-224)) 25) (($ (-857)) NIL) (($ (-639 $)) 56) (((-1096) $) 11) (($ (-1096)) 12)) (-3464 (((-1168) (-1168) (-639 $)) 52)) (-4053 (((-857) $) 46)) (-3740 (($ $) 51)) (-3728 (($ $) 50)) (-4317 (($ $ (-639 $)) 57)) (-4301 (((-112) $) 27)) (-2285 (($) 9 T CONST)) (-2294 (($) 10 T CONST)) (-1733 (((-112) $ $) 61)) (-1859 (($ $ $) 66)) (-1836 (($ $ $) 62)) (** (($ $ (-766)) 65) (($ $ (-562)) 64)) (* (($ $ $) 63)) (-3492 (((-562) $) NIL))) -(((-535) (-13 (-1095 (-1150) (-1168) (-562) (-224) (-857)) (-610 (-1096)) (-10 -8 (-15 -3924 ((-52) $)) (-15 -4208 ($ (-1096))) (-15 -4317 ($ $ (-639 $))) (-15 -1407 ($ $ (-639 (-1168)) (-1168))) (-15 -3835 ($ $ (-639 (-1168)))) (-15 -1836 ($ $ $)) (-15 * ($ $ $)) (-15 -1859 ($ $ $)) (-15 ** ($ $ (-766))) (-15 ** ($ $ (-562))) (-15 0 ($) -1497) (-15 1 ($) -1497) (-15 -2754 ($ $)) (-15 -2591 ((-1150) $)) (-15 -2322 ($ (-1150))) (-15 -3093 ((-1168) (-639 $))) (-15 -3464 ((-1168) (-1168) (-639 $)))))) (T -535)) -((-3924 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-535)))) (-4208 (*1 *1 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-535)))) (-4317 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-535))) (-5 *1 (-535)))) (-1407 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 (-1168))) (-5 *3 (-1168)) (-5 *1 (-535)))) (-3835 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-535)))) (-1836 (*1 *1 *1 *1) (-5 *1 (-535))) (* (*1 *1 *1 *1) (-5 *1 (-535))) (-1859 (*1 *1 *1 *1) (-5 *1 (-535))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-535)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-535)))) (-2285 (*1 *1) (-5 *1 (-535))) (-2294 (*1 *1) (-5 *1 (-535))) (-2754 (*1 *1 *1) (-5 *1 (-535))) (-2591 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-535)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-535)))) (-3093 (*1 *2 *3) (-12 (-5 *3 (-639 (-535))) (-5 *2 (-1168)) (-5 *1 (-535)))) (-3464 (*1 *2 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-535))) (-5 *1 (-535))))) -(-13 (-1095 (-1150) (-1168) (-562) (-224) (-857)) (-610 (-1096)) (-10 -8 (-15 -3924 ((-52) $)) (-15 -4208 ($ (-1096))) (-15 -4317 ($ $ (-639 $))) (-15 -1407 ($ $ (-639 (-1168)) (-1168))) (-15 -3835 ($ $ (-639 (-1168)))) (-15 -1836 ($ $ $)) (-15 * ($ $ $)) (-15 -1859 ($ $ $)) (-15 ** ($ $ (-766))) (-15 ** ($ $ (-562))) (-15 (-2285) ($) -1497) (-15 (-2294) ($) -1497) (-15 -2754 ($ $)) (-15 -2591 ((-1150) $)) (-15 -2322 ($ (-1150))) (-15 -3093 ((-1168) (-639 $))) (-15 -3464 ((-1168) (-1168) (-639 $))))) -((-2490 ((|#2| |#2|) 17)) (-3377 ((|#2| |#2|) 13)) (-3669 ((|#2| |#2| (-562) (-562)) 20)) (-2102 ((|#2| |#2|) 15))) -(((-536 |#1| |#2|) (-10 -7 (-15 -3377 (|#2| |#2|)) (-15 -2102 (|#2| |#2|)) (-15 -2490 (|#2| |#2|)) (-15 -3669 (|#2| |#2| (-562) (-562)))) (-13 (-554) (-146)) (-1247 |#1|)) (T -536)) -((-3669 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-562)) (-4 *4 (-13 (-554) (-146))) (-5 *1 (-536 *4 *2)) (-4 *2 (-1247 *4)))) (-2490 (*1 *2 *2) (-12 (-4 *3 (-13 (-554) (-146))) (-5 *1 (-536 *3 *2)) (-4 *2 (-1247 *3)))) (-2102 (*1 *2 *2) (-12 (-4 *3 (-13 (-554) (-146))) (-5 *1 (-536 *3 *2)) (-4 *2 (-1247 *3)))) (-3377 (*1 *2 *2) (-12 (-4 *3 (-13 (-554) (-146))) (-5 *1 (-536 *3 *2)) (-4 *2 (-1247 *3))))) -(-10 -7 (-15 -3377 (|#2| |#2|)) (-15 -2102 (|#2| |#2|)) (-15 -2490 (|#2| |#2|)) (-15 -3669 (|#2| |#2| (-562) (-562)))) -((-4228 (((-639 (-293 (-947 |#2|))) (-639 |#2|) (-639 (-1168))) 32)) (-3762 (((-639 |#2|) (-947 |#1|) |#3|) 53) (((-639 |#2|) (-1164 |#1|) |#3|) 52)) (-4180 (((-639 (-639 |#2|)) (-639 (-947 |#1|)) (-639 (-947 |#1|)) (-639 (-1168)) |#3|) 88))) -(((-537 |#1| |#2| |#3|) (-10 -7 (-15 -3762 ((-639 |#2|) (-1164 |#1|) |#3|)) (-15 -3762 ((-639 |#2|) (-947 |#1|) |#3|)) (-15 -4180 ((-639 (-639 |#2|)) (-639 (-947 |#1|)) (-639 (-947 |#1|)) (-639 (-1168)) |#3|)) (-15 -4228 ((-639 (-293 (-947 |#2|))) (-639 |#2|) (-639 (-1168))))) (-451) (-362) (-13 (-362) (-843))) (T -537)) -((-4228 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *6)) (-5 *4 (-639 (-1168))) (-4 *6 (-362)) (-5 *2 (-639 (-293 (-947 *6)))) (-5 *1 (-537 *5 *6 *7)) (-4 *5 (-451)) (-4 *7 (-13 (-362) (-843))))) (-4180 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-639 (-947 *6))) (-5 *4 (-639 (-1168))) (-4 *6 (-451)) (-5 *2 (-639 (-639 *7))) (-5 *1 (-537 *6 *7 *5)) (-4 *7 (-362)) (-4 *5 (-13 (-362) (-843))))) (-3762 (*1 *2 *3 *4) (-12 (-5 *3 (-947 *5)) (-4 *5 (-451)) (-5 *2 (-639 *6)) (-5 *1 (-537 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-843))))) (-3762 (*1 *2 *3 *4) (-12 (-5 *3 (-1164 *5)) (-4 *5 (-451)) (-5 *2 (-639 *6)) (-5 *1 (-537 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-843)))))) -(-10 -7 (-15 -3762 ((-639 |#2|) (-1164 |#1|) |#3|)) (-15 -3762 ((-639 |#2|) (-947 |#1|) |#3|)) (-15 -4180 ((-639 (-639 |#2|)) (-639 (-947 |#1|)) (-639 (-947 |#1|)) (-639 (-1168)) |#3|)) (-15 -4228 ((-639 (-293 (-947 |#2|))) (-639 |#2|) (-639 (-1168))))) -((-3834 ((|#2| |#2| |#1|) 17)) (-3936 ((|#2| (-639 |#2|)) 26)) (-4321 ((|#2| (-639 |#2|)) 45))) -(((-538 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3936 (|#2| (-639 |#2|))) (-15 -4321 (|#2| (-639 |#2|))) (-15 -3834 (|#2| |#2| |#1|))) (-306) (-1232 |#1|) |#1| (-1 |#1| |#1| (-766))) (T -538)) -((-3834 (*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-766))) (-5 *1 (-538 *3 *2 *4 *5)) (-4 *2 (-1232 *3)))) (-4321 (*1 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-1232 *4)) (-5 *1 (-538 *4 *2 *5 *6)) (-4 *4 (-306)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-766))))) (-3936 (*1 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-1232 *4)) (-5 *1 (-538 *4 *2 *5 *6)) (-4 *4 (-306)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-766)))))) -(-10 -7 (-15 -3936 (|#2| (-639 |#2|))) (-15 -4321 (|#2| (-639 |#2|))) (-15 -3834 (|#2| |#2| |#1|))) -((-1635 (((-417 (-1164 |#4|)) (-1164 |#4|) (-1 (-417 (-1164 |#3|)) (-1164 |#3|))) 79) (((-417 |#4|) |#4| (-1 (-417 (-1164 |#3|)) (-1164 |#3|))) 167))) -(((-539 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1635 ((-417 |#4|) |#4| (-1 (-417 (-1164 |#3|)) (-1164 |#3|)))) (-15 -1635 ((-417 (-1164 |#4|)) (-1164 |#4|) (-1 (-417 (-1164 |#3|)) (-1164 |#3|))))) (-845) (-788) (-13 (-306) (-146)) (-944 |#3| |#2| |#1|)) (T -539)) -((-1635 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 (-1164 *7)) (-1164 *7))) (-4 *7 (-13 (-306) (-146))) (-4 *5 (-845)) (-4 *6 (-788)) (-4 *8 (-944 *7 *6 *5)) (-5 *2 (-417 (-1164 *8))) (-5 *1 (-539 *5 *6 *7 *8)) (-5 *3 (-1164 *8)))) (-1635 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 (-1164 *7)) (-1164 *7))) (-4 *7 (-13 (-306) (-146))) (-4 *5 (-845)) (-4 *6 (-788)) (-5 *2 (-417 *3)) (-5 *1 (-539 *5 *6 *7 *3)) (-4 *3 (-944 *7 *6 *5))))) -(-10 -7 (-15 -1635 ((-417 |#4|) |#4| (-1 (-417 (-1164 |#3|)) (-1164 |#3|)))) (-15 -1635 ((-417 (-1164 |#4|)) (-1164 |#4|) (-1 (-417 (-1164 |#3|)) (-1164 |#3|))))) -((-2490 ((|#4| |#4|) 73)) (-3377 ((|#4| |#4|) 69)) (-3669 ((|#4| |#4| (-562) (-562)) 75)) (-2102 ((|#4| |#4|) 71))) -(((-540 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3377 (|#4| |#4|)) (-15 -2102 (|#4| |#4|)) (-15 -2490 (|#4| |#4|)) (-15 -3669 (|#4| |#4| (-562) (-562)))) (-13 (-362) (-367) (-610 (-562))) (-1232 |#1|) (-719 |#1| |#2|) (-1247 |#3|)) (T -540)) -((-3669 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-562)) (-4 *4 (-13 (-362) (-367) (-610 *3))) (-4 *5 (-1232 *4)) (-4 *6 (-719 *4 *5)) (-5 *1 (-540 *4 *5 *6 *2)) (-4 *2 (-1247 *6)))) (-2490 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-610 (-562)))) (-4 *4 (-1232 *3)) (-4 *5 (-719 *3 *4)) (-5 *1 (-540 *3 *4 *5 *2)) (-4 *2 (-1247 *5)))) (-2102 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-610 (-562)))) (-4 *4 (-1232 *3)) (-4 *5 (-719 *3 *4)) (-5 *1 (-540 *3 *4 *5 *2)) (-4 *2 (-1247 *5)))) (-3377 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-610 (-562)))) (-4 *4 (-1232 *3)) (-4 *5 (-719 *3 *4)) (-5 *1 (-540 *3 *4 *5 *2)) (-4 *2 (-1247 *5))))) -(-10 -7 (-15 -3377 (|#4| |#4|)) (-15 -2102 (|#4| |#4|)) (-15 -2490 (|#4| |#4|)) (-15 -3669 (|#4| |#4| (-562) (-562)))) -((-2490 ((|#2| |#2|) 27)) (-3377 ((|#2| |#2|) 23)) (-3669 ((|#2| |#2| (-562) (-562)) 29)) (-2102 ((|#2| |#2|) 25))) -(((-541 |#1| |#2|) (-10 -7 (-15 -3377 (|#2| |#2|)) (-15 -2102 (|#2| |#2|)) (-15 -2490 (|#2| |#2|)) (-15 -3669 (|#2| |#2| (-562) (-562)))) (-13 (-362) (-367) (-610 (-562))) (-1247 |#1|)) (T -541)) -((-3669 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-562)) (-4 *4 (-13 (-362) (-367) (-610 *3))) (-5 *1 (-541 *4 *2)) (-4 *2 (-1247 *4)))) (-2490 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-610 (-562)))) (-5 *1 (-541 *3 *2)) (-4 *2 (-1247 *3)))) (-2102 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-610 (-562)))) (-5 *1 (-541 *3 *2)) (-4 *2 (-1247 *3)))) (-3377 (*1 *2 *2) (-12 (-4 *3 (-13 (-362) (-367) (-610 (-562)))) (-5 *1 (-541 *3 *2)) (-4 *2 (-1247 *3))))) -(-10 -7 (-15 -3377 (|#2| |#2|)) (-15 -2102 (|#2| |#2|)) (-15 -2490 (|#2| |#2|)) (-15 -3669 (|#2| |#2| (-562) (-562)))) -((-2406 (((-3 (-562) "failed") |#2| |#1| (-1 (-3 (-562) "failed") |#1|)) 14) (((-3 (-562) "failed") |#2| |#1| (-562) (-1 (-3 (-562) "failed") |#1|)) 13) (((-3 (-562) "failed") |#2| (-562) (-1 (-3 (-562) "failed") |#1|)) 26))) -(((-542 |#1| |#2|) (-10 -7 (-15 -2406 ((-3 (-562) "failed") |#2| (-562) (-1 (-3 (-562) "failed") |#1|))) (-15 -2406 ((-3 (-562) "failed") |#2| |#1| (-562) (-1 (-3 (-562) "failed") |#1|))) (-15 -2406 ((-3 (-562) "failed") |#2| |#1| (-1 (-3 (-562) "failed") |#1|)))) (-1044) (-1232 |#1|)) (T -542)) -((-2406 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-562) "failed") *4)) (-4 *4 (-1044)) (-5 *2 (-562)) (-5 *1 (-542 *4 *3)) (-4 *3 (-1232 *4)))) (-2406 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-562) "failed") *4)) (-4 *4 (-1044)) (-5 *2 (-562)) (-5 *1 (-542 *4 *3)) (-4 *3 (-1232 *4)))) (-2406 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-562) "failed") *5)) (-4 *5 (-1044)) (-5 *2 (-562)) (-5 *1 (-542 *5 *3)) (-4 *3 (-1232 *5))))) -(-10 -7 (-15 -2406 ((-3 (-562) "failed") |#2| (-562) (-1 (-3 (-562) "failed") |#1|))) (-15 -2406 ((-3 (-562) "failed") |#2| |#1| (-562) (-1 (-3 (-562) "failed") |#1|))) (-15 -2406 ((-3 (-562) "failed") |#2| |#1| (-1 (-3 (-562) "failed") |#1|)))) -((-3544 (($ $ $) 78)) (-3788 (((-417 $) $) 46)) (-4048 (((-3 (-562) "failed") $) 58)) (-3960 (((-562) $) 36)) (-3913 (((-3 (-406 (-562)) "failed") $) 73)) (-3498 (((-112) $) 23)) (-3854 (((-406 (-562)) $) 71)) (-3521 (((-112) $) 49)) (-2877 (($ $ $ $) 85)) (-2696 (((-112) $) 15)) (-1940 (($ $ $) 56)) (-2337 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) 68)) (-3828 (((-3 $ "failed") $) 63)) (-3930 (($ $) 22)) (-2296 (($ $ $) 83)) (-3730 (($) 59)) (-3350 (($ $) 52)) (-1635 (((-417 $) $) 44)) (-2438 (((-112) $) 13)) (-2044 (((-766) $) 27)) (-4029 (($ $ (-766)) NIL) (($ $) 10)) (-4220 (($ $) 16)) (-4208 (((-562) $) NIL) (((-535) $) 35) (((-887 (-562)) $) 39) (((-378) $) 30) (((-224) $) 32)) (-1568 (((-766)) 8)) (-3869 (((-112) $ $) 19)) (-2068 (($ $ $) 54))) -(((-543 |#1|) (-10 -8 (-15 -2296 (|#1| |#1| |#1|)) (-15 -2877 (|#1| |#1| |#1| |#1|)) (-15 -3930 (|#1| |#1|)) (-15 -4220 (|#1| |#1|)) (-15 -3913 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3854 ((-406 (-562)) |#1|)) (-15 -3498 ((-112) |#1|)) (-15 -3544 (|#1| |#1| |#1|)) (-15 -3869 ((-112) |#1| |#1|)) (-15 -2438 ((-112) |#1|)) (-15 -3730 (|#1|)) (-15 -3828 ((-3 |#1| "failed") |#1|)) (-15 -4208 ((-224) |#1|)) (-15 -4208 ((-378) |#1|)) (-15 -1940 (|#1| |#1| |#1|)) (-15 -3350 (|#1| |#1|)) (-15 -2068 (|#1| |#1| |#1|)) (-15 -2337 ((-884 (-562) |#1|) |#1| (-887 (-562)) (-884 (-562) |#1|))) (-15 -4208 ((-887 (-562)) |#1|)) (-15 -4208 ((-535) |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -3960 ((-562) |#1|)) (-15 -4208 ((-562) |#1|)) (-15 -4029 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -2696 ((-112) |#1|)) (-15 -2044 ((-766) |#1|)) (-15 -1635 ((-417 |#1|) |#1|)) (-15 -3788 ((-417 |#1|) |#1|)) (-15 -3521 ((-112) |#1|)) (-15 -1568 ((-766)))) (-544)) (T -543)) -((-1568 (*1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-543 *3)) (-4 *3 (-544))))) -(-10 -8 (-15 -2296 (|#1| |#1| |#1|)) (-15 -2877 (|#1| |#1| |#1| |#1|)) (-15 -3930 (|#1| |#1|)) (-15 -4220 (|#1| |#1|)) (-15 -3913 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3854 ((-406 (-562)) |#1|)) (-15 -3498 ((-112) |#1|)) (-15 -3544 (|#1| |#1| |#1|)) (-15 -3869 ((-112) |#1| |#1|)) (-15 -2438 ((-112) |#1|)) (-15 -3730 (|#1|)) (-15 -3828 ((-3 |#1| "failed") |#1|)) (-15 -4208 ((-224) |#1|)) (-15 -4208 ((-378) |#1|)) (-15 -1940 (|#1| |#1| |#1|)) (-15 -3350 (|#1| |#1|)) (-15 -2068 (|#1| |#1| |#1|)) (-15 -2337 ((-884 (-562) |#1|) |#1| (-887 (-562)) (-884 (-562) |#1|))) (-15 -4208 ((-887 (-562)) |#1|)) (-15 -4208 ((-535) |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -3960 ((-562) |#1|)) (-15 -4208 ((-562) |#1|)) (-15 -4029 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -2696 ((-112) |#1|)) (-15 -2044 ((-766) |#1|)) (-15 -1635 ((-417 |#1|) |#1|)) (-15 -3788 ((-417 |#1|) |#1|)) (-15 -3521 ((-112) |#1|)) (-15 -1568 ((-766)))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 42)) (-1965 (($ $) 41)) (-4102 (((-112) $) 39)) (-3544 (($ $ $) 85)) (-2781 (((-3 $ "failed") $ $) 19)) (-4158 (($ $ $ $) 74)) (-1977 (($ $) 52)) (-3788 (((-417 $) $) 53)) (-1436 (((-112) $ $) 125)) (-1587 (((-562) $) 114)) (-3355 (($ $ $) 88)) (-3329 (($) 17 T CONST)) (-4048 (((-3 (-562) "failed") $) 106)) (-3960 (((-562) $) 107)) (-1810 (($ $ $) 129)) (-3449 (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 104) (((-683 (-562)) (-683 $)) 103)) (-1694 (((-3 $ "failed") $) 33)) (-3913 (((-3 (-406 (-562)) "failed") $) 82)) (-3498 (((-112) $) 84)) (-3854 (((-406 (-562)) $) 83)) (-1447 (($) 81) (($ $) 80)) (-1787 (($ $ $) 128)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) 123)) (-3521 (((-112) $) 54)) (-2877 (($ $ $ $) 72)) (-3867 (($ $ $) 86)) (-2696 (((-112) $) 116)) (-1940 (($ $ $) 97)) (-2337 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) 100)) (-4367 (((-112) $) 31)) (-3152 (((-112) $) 92)) (-3828 (((-3 $ "failed") $) 94)) (-3855 (((-112) $) 115)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) 132)) (-2051 (($ $ $ $) 73)) (-1551 (($ $ $) 117)) (-2993 (($ $ $) 118)) (-3930 (($ $) 76)) (-3641 (($ $) 89)) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-3696 (((-1150) $) 9)) (-2296 (($ $ $) 71)) (-3730 (($) 93 T CONST)) (-4137 (($ $) 78)) (-1709 (((-1112) $) 10)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-3350 (($ $) 98)) (-1635 (((-417 $) $) 51)) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) 130)) (-1762 (((-3 $ "failed") $ $) 43)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) 124)) (-2438 (((-112) $) 91)) (-2044 (((-766) $) 126)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 127)) (-4029 (($ $ (-766)) 111) (($ $) 109)) (-2369 (($ $) 77)) (-4220 (($ $) 79)) (-4208 (((-562) $) 108) (((-535) $) 102) (((-887 (-562)) $) 101) (((-378) $) 96) (((-224) $) 95)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ $) 44) (($ (-562)) 105)) (-1568 (((-766)) 28)) (-3869 (((-112) $ $) 87)) (-2068 (($ $ $) 99)) (-3240 (($) 90)) (-3799 (((-112) $ $) 40)) (-3160 (($ $ $ $) 75)) (-2757 (($ $) 113)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3113 (($ $ (-766)) 112) (($ $) 110)) (-1798 (((-112) $ $) 120)) (-1771 (((-112) $ $) 121)) (-1733 (((-112) $ $) 6)) (-1785 (((-112) $ $) 119)) (-1761 (((-112) $ $) 122)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) -(((-544) (-139)) (T -544)) -((-3152 (*1 *2 *1) (-12 (-4 *1 (-544)) (-5 *2 (-112)))) (-2438 (*1 *2 *1) (-12 (-4 *1 (-544)) (-5 *2 (-112)))) (-3240 (*1 *1) (-4 *1 (-544))) (-3641 (*1 *1 *1) (-4 *1 (-544))) (-3355 (*1 *1 *1 *1) (-4 *1 (-544))) (-3869 (*1 *2 *1 *1) (-12 (-4 *1 (-544)) (-5 *2 (-112)))) (-3867 (*1 *1 *1 *1) (-4 *1 (-544))) (-3544 (*1 *1 *1 *1) (-4 *1 (-544))) (-3498 (*1 *2 *1) (-12 (-4 *1 (-544)) (-5 *2 (-112)))) (-3854 (*1 *2 *1) (-12 (-4 *1 (-544)) (-5 *2 (-406 (-562))))) (-3913 (*1 *2 *1) (|partial| -12 (-4 *1 (-544)) (-5 *2 (-406 (-562))))) (-1447 (*1 *1) (-4 *1 (-544))) (-1447 (*1 *1 *1) (-4 *1 (-544))) (-4220 (*1 *1 *1) (-4 *1 (-544))) (-4137 (*1 *1 *1) (-4 *1 (-544))) (-2369 (*1 *1 *1) (-4 *1 (-544))) (-3930 (*1 *1 *1) (-4 *1 (-544))) (-3160 (*1 *1 *1 *1 *1) (-4 *1 (-544))) (-4158 (*1 *1 *1 *1 *1) (-4 *1 (-544))) (-2051 (*1 *1 *1 *1 *1) (-4 *1 (-544))) (-2877 (*1 *1 *1 *1 *1) (-4 *1 (-544))) (-2296 (*1 *1 *1 *1) (-4 *1 (-544)))) -(-13 (-1211) (-306) (-815) (-232) (-610 (-562)) (-1033 (-562)) (-635 (-562)) (-610 (-535)) (-610 (-887 (-562))) (-881 (-562)) (-142) (-1017) (-146) (-1143) (-10 -8 (-15 -3152 ((-112) $)) (-15 -2438 ((-112) $)) (-6 -4402) (-15 -3240 ($)) (-15 -3641 ($ $)) (-15 -3355 ($ $ $)) (-15 -3869 ((-112) $ $)) (-15 -3867 ($ $ $)) (-15 -3544 ($ $ $)) (-15 -3498 ((-112) $)) (-15 -3854 ((-406 (-562)) $)) (-15 -3913 ((-3 (-406 (-562)) "failed") $)) (-15 -1447 ($)) (-15 -1447 ($ $)) (-15 -4220 ($ $)) (-15 -4137 ($ $)) (-15 -2369 ($ $)) (-15 -3930 ($ $)) (-15 -3160 ($ $ $ $)) (-15 -4158 ($ $ $ $)) (-15 -2051 ($ $ $ $)) (-15 -2877 ($ $ $ $)) (-15 -2296 ($ $ $)) (-6 -4401))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-142) . T) ((-171) . T) ((-610 (-224)) . T) ((-610 (-378)) . T) ((-610 (-535)) . T) ((-610 (-562)) . T) ((-610 (-887 (-562))) . T) ((-232) . T) ((-289) . T) ((-306) . T) ((-451) . T) ((-554) . T) ((-642 $) . T) ((-635 (-562)) . T) ((-712 $) . T) ((-721) . T) ((-786) . T) ((-787) . T) ((-789) . T) ((-790) . T) ((-815) . T) ((-843) . T) ((-845) . T) ((-881 (-562)) . T) ((-915) . T) ((-1017) . T) ((-1033 (-562)) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1143) . T) ((-1211) . T)) -((-4041 (((-112) $ $) NIL)) (-1382 (((-766)) NIL)) (-1447 (($) NIL)) (-1551 (($ $ $) NIL) (($) NIL T CONST)) (-2993 (($ $ $) NIL) (($) NIL T CONST)) (-3549 (((-916) $) NIL)) (-3696 (((-1150) $) NIL)) (-2464 (($ (-916)) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) NIL))) -(((-545) (-839)) (T -545)) -NIL -(-839) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2619 ((|#1| $) NIL)) (-3442 ((|#1| $) NIL)) (-4302 (($ $) NIL)) (-4378 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4408)))) (-1624 (($ $ (-563)) 58 (|has| $ (-6 -4408)))) (-3523 (((-112) $) NIL (|has| |#1| (-846))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2770 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-846)))) (($ (-1 (-112) |#1| |#1|) $) 56 (|has| $ (-6 -4408)))) (-1642 (($ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2759 (((-112) $ (-767)) NIL)) (-2936 ((|#1| $ |#1|) NIL (|has| $ (-6 -4408)))) (-3692 (($ $ $) 23 (|has| $ (-6 -4408)))) (-3889 ((|#1| $ |#1|) NIL (|has| $ (-6 -4408)))) (-1543 ((|#1| $ |#1|) 21 (|has| $ (-6 -4408)))) (-1849 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4408))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4408))) (($ $ "rest" $) 24 (|has| $ (-6 -4408))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4408))) ((|#1| $ (-1224 (-563)) |#1|) NIL (|has| $ (-6 -4408))) ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4408)))) (-2811 (($ $ (-640 $)) NIL (|has| $ (-6 -4408)))) (-2812 (($ (-1 (-112) |#1|) $) NIL)) (-2256 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3431 ((|#1| $) NIL)) (-4239 (($) NIL T CONST)) (-2907 (($ $) 28 (|has| $ (-6 -4408)))) (-4382 (($ $) 29)) (-3792 (($ $) 18) (($ $ (-767)) 32)) (-4005 (($ $) 54 (|has| |#1| (-1093)))) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2705 (($ |#1| $) NIL (|has| |#1| (-1093))) (($ (-1 (-112) |#1|) $) NIL)) (-1459 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-4355 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4408)))) (-4293 ((|#1| $ (-563)) NIL)) (-2018 (((-112) $) NIL)) (-4368 (((-563) |#1| $ (-563)) NIL (|has| |#1| (-1093))) (((-563) |#1| $) NIL (|has| |#1| (-1093))) (((-563) (-1 (-112) |#1|) $) NIL)) (-2659 (((-640 |#1|) $) 27 (|has| $ (-6 -4407)))) (-2071 (((-640 $) $) NIL)) (-1469 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1566 (($ (-767) |#1|) NIL)) (-2581 (((-112) $ (-767)) NIL)) (-2411 (((-563) $) 31 (|has| (-563) (-846)))) (-3084 (($ $ $) NIL (|has| |#1| (-846)))) (-2878 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) 57)) (-3164 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2259 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) 52 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-3860 (((-563) $) NIL (|has| (-563) (-846)))) (-1777 (($ $ $) NIL (|has| |#1| (-846)))) (-4345 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3651 (($ |#1|) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-2512 (((-640 |#1|) $) NIL)) (-2194 (((-112) $) NIL)) (-3573 (((-1151) $) 50 (|has| |#1| (-1093)))) (-1481 ((|#1| $) NIL) (($ $ (-767)) NIL)) (-1812 (($ $ $ (-563)) NIL) (($ |#1| $ (-563)) NIL)) (-3396 (($ $ $ (-563)) NIL) (($ |#1| $ (-563)) NIL)) (-4318 (((-640 (-563)) $) NIL)) (-3192 (((-112) (-563) $) NIL)) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3781 ((|#1| $) 13) (($ $ (-767)) NIL)) (-4203 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2358 (($ $ |#1|) NIL (|has| $ (-6 -4408)))) (-2833 (((-112) $) NIL)) (-3138 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) 12)) (-2105 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2836 (((-640 |#1|) $) NIL)) (-3756 (((-112) $) 17)) (-3135 (($) 16)) (-2309 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1224 (-563))) NIL) ((|#1| $ (-563)) NIL) ((|#1| $ (-563) |#1|) NIL)) (-4071 (((-563) $ $) NIL)) (-1314 (($ $ (-1224 (-563))) NIL) (($ $ (-563)) NIL)) (-2963 (($ $ (-1224 (-563))) NIL) (($ $ (-563)) NIL)) (-1434 (((-112) $) 33)) (-2749 (($ $) NIL)) (-1322 (($ $) NIL (|has| $ (-6 -4408)))) (-1950 (((-767) $) NIL)) (-3752 (($ $) 35)) (-1709 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-3076 (($ $ $ (-563)) NIL (|has| $ (-6 -4408)))) (-1872 (($ $) 34)) (-2220 (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-1707 (($ (-640 |#1|)) 26)) (-3245 (($ $ $) 53) (($ $ |#1|) NIL)) (-2853 (($ $ $) NIL) (($ |#1| $) 10) (($ (-640 $)) NIL) (($ $ |#1|) NIL)) (-1693 (((-858) $) 45 (|has| |#1| (-610 (-858))))) (-4258 (((-640 $) $) NIL)) (-2962 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-4383 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1778 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1756 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) 47 (|has| |#1| (-1093)))) (-1768 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1744 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3608 (((-767) $) 9 (|has| $ (-6 -4407))))) +(((-520 |#1| |#2|) (-661 |#1|) (-1208) (-563)) (T -520)) +NIL +(-661 |#1|) +((-4069 ((|#4| |#4|) 27)) (-2522 (((-767) |#4|) 32)) (-1997 (((-767) |#4|) 33)) (-2345 (((-640 |#3|) |#4|) 39 (|has| |#3| (-6 -4408)))) (-2591 (((-3 |#4| "failed") |#4|) 50)) (-2221 ((|#4| |#4|) 43)) (-3848 ((|#1| |#4|) 42))) +(((-521 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4069 (|#4| |#4|)) (-15 -2522 ((-767) |#4|)) (-15 -1997 ((-767) |#4|)) (IF (|has| |#3| (-6 -4408)) (-15 -2345 ((-640 |#3|) |#4|)) |%noBranch|) (-15 -3848 (|#1| |#4|)) (-15 -2221 (|#4| |#4|)) (-15 -2591 ((-3 |#4| "failed") |#4|))) (-363) (-373 |#1|) (-373 |#1|) (-682 |#1| |#2| |#3|)) (T -521)) +((-2591 (*1 *2 *2) (|partial| -12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))) (-2221 (*1 *2 *2) (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))) (-3848 (*1 *2 *3) (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-363)) (-5 *1 (-521 *2 *4 *5 *3)) (-4 *3 (-682 *2 *4 *5)))) (-2345 (*1 *2 *3) (-12 (|has| *6 (-6 -4408)) (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-640 *6)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))) (-1997 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-767)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))) (-2522 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-767)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))) (-4069 (*1 *2 *2) (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5))))) +(-10 -7 (-15 -4069 (|#4| |#4|)) (-15 -2522 ((-767) |#4|)) (-15 -1997 ((-767) |#4|)) (IF (|has| |#3| (-6 -4408)) (-15 -2345 ((-640 |#3|) |#4|)) |%noBranch|) (-15 -3848 (|#1| |#4|)) (-15 -2221 (|#4| |#4|)) (-15 -2591 ((-3 |#4| "failed") |#4|))) +((-4069 ((|#8| |#4|) 20)) (-2345 (((-640 |#3|) |#4|) 29 (|has| |#7| (-6 -4408)))) (-2591 (((-3 |#8| "failed") |#4|) 23))) +(((-522 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4069 (|#8| |#4|)) (-15 -2591 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4408)) (-15 -2345 ((-640 |#3|) |#4|)) |%noBranch|)) (-555) (-373 |#1|) (-373 |#1|) (-682 |#1| |#2| |#3|) (-988 |#1|) (-373 |#5|) (-373 |#5|) (-682 |#5| |#6| |#7|)) (T -522)) +((-2345 (*1 *2 *3) (-12 (|has| *9 (-6 -4408)) (-4 *4 (-555)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-4 *7 (-988 *4)) (-4 *8 (-373 *7)) (-4 *9 (-373 *7)) (-5 *2 (-640 *6)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-682 *4 *5 *6)) (-4 *10 (-682 *7 *8 *9)))) (-2591 (*1 *2 *3) (|partial| -12 (-4 *4 (-555)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-4 *7 (-988 *4)) (-4 *2 (-682 *7 *8 *9)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-682 *4 *5 *6)) (-4 *8 (-373 *7)) (-4 *9 (-373 *7)))) (-4069 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-4 *7 (-988 *4)) (-4 *2 (-682 *7 *8 *9)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-682 *4 *5 *6)) (-4 *8 (-373 *7)) (-4 *9 (-373 *7))))) +(-10 -7 (-15 -4069 (|#8| |#4|)) (-15 -2591 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4408)) (-15 -2345 ((-640 |#3|) |#4|)) |%noBranch|)) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3212 (($ (-767) (-767)) NIL)) (-3888 (($ $ $) NIL)) (-3493 (($ (-599 |#1| |#3|)) NIL) (($ $) NIL)) (-3129 (((-112) $) NIL)) (-4311 (($ $ (-563) (-563)) 12)) (-4004 (($ $ (-563) (-563)) NIL)) (-1461 (($ $ (-563) (-563) (-563) (-563)) NIL)) (-2767 (($ $) NIL)) (-1937 (((-112) $) NIL)) (-2759 (((-112) $ (-767)) NIL)) (-4356 (($ $ (-563) (-563) $) NIL)) (-1849 ((|#1| $ (-563) (-563) |#1|) NIL) (($ $ (-640 (-563)) (-640 (-563)) $) NIL)) (-4327 (($ $ (-563) (-599 |#1| |#3|)) NIL)) (-4175 (($ $ (-563) (-599 |#1| |#2|)) NIL)) (-3845 (($ (-767) |#1|) NIL)) (-4239 (($) NIL T CONST)) (-4069 (($ $) 21 (|has| |#1| (-307)))) (-2368 (((-599 |#1| |#3|) $ (-563)) NIL)) (-2522 (((-767) $) 24 (|has| |#1| (-555)))) (-4355 ((|#1| $ (-563) (-563) |#1|) NIL)) (-4293 ((|#1| $ (-563) (-563)) NIL)) (-2659 (((-640 |#1|) $) NIL)) (-1997 (((-767) $) 26 (|has| |#1| (-555)))) (-2345 (((-640 (-599 |#1| |#2|)) $) 29 (|has| |#1| (-555)))) (-2381 (((-767) $) NIL)) (-1566 (($ (-767) (-767) |#1|) NIL)) (-2393 (((-767) $) NIL)) (-2581 (((-112) $ (-767)) NIL)) (-3977 ((|#1| $) 19 (|has| |#1| (-6 (-4409 "*"))))) (-2013 (((-563) $) 10)) (-3650 (((-563) $) NIL)) (-2259 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1859 (((-563) $) 11)) (-2207 (((-563) $) NIL)) (-4038 (($ (-640 (-640 |#1|))) NIL)) (-4345 (($ (-1 |#1| |#1|) $) NIL)) (-2240 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4136 (((-640 (-640 |#1|)) $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-2591 (((-3 $ "failed") $) 33 (|has| |#1| (-363)))) (-3757 (($ $ $) NIL)) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-2358 (($ $ |#1|) NIL)) (-3008 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555)))) (-3138 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) NIL)) (-2309 ((|#1| $ (-563) (-563)) NIL) ((|#1| $ (-563) (-563) |#1|) NIL) (($ $ (-640 (-563)) (-640 (-563))) NIL)) (-2104 (($ (-640 |#1|)) NIL) (($ (-640 $)) NIL)) (-2717 (((-112) $) NIL)) (-3848 ((|#1| $) 17 (|has| |#1| (-6 (-4409 "*"))))) (-1709 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1872 (($ $) NIL)) (-1912 (((-599 |#1| |#2|) $ (-563)) NIL)) (-1693 (($ (-599 |#1| |#2|)) NIL) (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-4383 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3280 (((-112) $) NIL)) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1837 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1826 (($ $ $) NIL) (($ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| |#1| (-363)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-563) $) NIL) (((-599 |#1| |#2|) $ (-599 |#1| |#2|)) NIL) (((-599 |#1| |#3|) (-599 |#1| |#3|) $) NIL)) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-523 |#1| |#2| |#3|) (-682 |#1| (-599 |#1| |#3|) (-599 |#1| |#2|)) (-1045) (-563) (-563)) (T -523)) +NIL +(-682 |#1| (-599 |#1| |#3|) (-599 |#1| |#2|)) +((-1677 (((-112) $ $) NIL)) (-3573 (((-1151) $) NIL)) (-3760 (((-640 (-1207)) $) 13)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 20) (($ (-1174)) NIL) (((-1174) $) NIL) (($ (-640 (-1207))) 11)) (-1718 (((-112) $ $) NIL))) +(((-524) (-13 (-1076) (-10 -8 (-15 -1693 ($ (-640 (-1207)))) (-15 -3760 ((-640 (-1207)) $))))) (T -524)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-640 (-1207))) (-5 *1 (-524)))) (-3760 (*1 *2 *1) (-12 (-5 *2 (-640 (-1207))) (-5 *1 (-524))))) +(-13 (-1076) (-10 -8 (-15 -1693 ($ (-640 (-1207)))) (-15 -3760 ((-640 (-1207)) $)))) +((-1677 (((-112) $ $) NIL)) (-1869 (((-1128) $) 14)) (-3573 (((-1151) $) NIL)) (-2877 (((-1169) $) 11)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 21) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-525) (-13 (-1076) (-10 -8 (-15 -2877 ((-1169) $)) (-15 -1869 ((-1128) $))))) (T -525)) +((-2877 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-525)))) (-1869 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-525))))) +(-13 (-1076) (-10 -8 (-15 -2877 ((-1169) $)) (-15 -1869 ((-1128) $)))) +((-2843 (((-686 (-1215)) $) 15)) (-3262 (((-686 (-1214)) $) 35)) (-3927 (((-686 (-1213)) $) 26)) (-3429 (((-686 (-548)) $) 12)) (-1497 (((-686 (-547)) $) 39)) (-3351 (((-686 (-546)) $) 30)) (-2513 (((-767) $ (-128)) 49))) +(((-526 |#1|) (-10 -8 (-15 -2513 ((-767) |#1| (-128))) (-15 -3262 ((-686 (-1214)) |#1|)) (-15 -1497 ((-686 (-547)) |#1|)) (-15 -3927 ((-686 (-1213)) |#1|)) (-15 -3351 ((-686 (-546)) |#1|)) (-15 -2843 ((-686 (-1215)) |#1|)) (-15 -3429 ((-686 (-548)) |#1|))) (-527)) (T -526)) +NIL +(-10 -8 (-15 -2513 ((-767) |#1| (-128))) (-15 -3262 ((-686 (-1214)) |#1|)) (-15 -1497 ((-686 (-547)) |#1|)) (-15 -3927 ((-686 (-1213)) |#1|)) (-15 -3351 ((-686 (-546)) |#1|)) (-15 -2843 ((-686 (-1215)) |#1|)) (-15 -3429 ((-686 (-548)) |#1|))) +((-2843 (((-686 (-1215)) $) 12)) (-3262 (((-686 (-1214)) $) 8)) (-3927 (((-686 (-1213)) $) 10)) (-3429 (((-686 (-548)) $) 13)) (-1497 (((-686 (-547)) $) 9)) (-3351 (((-686 (-546)) $) 11)) (-2513 (((-767) $ (-128)) 7)) (-2810 (((-686 (-129)) $) 14)) (-3004 (($ $) 6))) +(((-527) (-140)) (T -527)) +((-2810 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-129))))) (-3429 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-548))))) (-2843 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-1215))))) (-3351 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-546))))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-1213))))) (-1497 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-547))))) (-3262 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-1214))))) (-2513 (*1 *2 *1 *3) (-12 (-4 *1 (-527)) (-5 *3 (-128)) (-5 *2 (-767))))) +(-13 (-173) (-10 -8 (-15 -2810 ((-686 (-129)) $)) (-15 -3429 ((-686 (-548)) $)) (-15 -2843 ((-686 (-1215)) $)) (-15 -3351 ((-686 (-546)) $)) (-15 -3927 ((-686 (-1213)) $)) (-15 -1497 ((-686 (-547)) $)) (-15 -3262 ((-686 (-1214)) $)) (-15 -2513 ((-767) $ (-128))))) +(((-173) . T)) +((-3616 (((-1165 |#1|) (-767)) 75)) (-1733 (((-1257 |#1|) (-1257 |#1|) (-917)) 68)) (-2294 (((-1262) (-1257 (-640 (-2 (|:| -2619 |#1|) (|:| -2555 (-1113))))) |#1|) 83)) (-3840 (((-1257 |#1|) (-1257 |#1|) (-767)) 36)) (-1691 (((-1257 |#1|) (-917)) 70)) (-3066 (((-1257 |#1|) (-1257 |#1|) (-563)) 24)) (-1574 (((-1165 |#1|) (-1257 |#1|)) 76)) (-3723 (((-1257 |#1|) (-917)) 94)) (-2890 (((-112) (-1257 |#1|)) 79)) (-3793 (((-1257 |#1|) (-1257 |#1|) (-917)) 61)) (-3941 (((-1165 |#1|) (-1257 |#1|)) 88)) (-1476 (((-917) (-1257 |#1|)) 58)) (-2688 (((-1257 |#1|) (-1257 |#1|)) 30)) (-2555 (((-1257 |#1|) (-917) (-917)) 96)) (-3514 (((-1257 |#1|) (-1257 |#1|) (-1113) (-1113)) 23)) (-3963 (((-1257 |#1|) (-1257 |#1|) (-767) (-1113)) 37)) (-4315 (((-1257 (-1257 |#1|)) (-917)) 93)) (-1837 (((-1257 |#1|) (-1257 |#1|) (-1257 |#1|)) 80)) (** (((-1257 |#1|) (-1257 |#1|) (-563)) 43)) (* (((-1257 |#1|) (-1257 |#1|) (-1257 |#1|)) 25))) +(((-528 |#1|) (-10 -7 (-15 -2294 ((-1262) (-1257 (-640 (-2 (|:| -2619 |#1|) (|:| -2555 (-1113))))) |#1|)) (-15 -1691 ((-1257 |#1|) (-917))) (-15 -2555 ((-1257 |#1|) (-917) (-917))) (-15 -1574 ((-1165 |#1|) (-1257 |#1|))) (-15 -3616 ((-1165 |#1|) (-767))) (-15 -3963 ((-1257 |#1|) (-1257 |#1|) (-767) (-1113))) (-15 -3840 ((-1257 |#1|) (-1257 |#1|) (-767))) (-15 -3514 ((-1257 |#1|) (-1257 |#1|) (-1113) (-1113))) (-15 -3066 ((-1257 |#1|) (-1257 |#1|) (-563))) (-15 ** ((-1257 |#1|) (-1257 |#1|) (-563))) (-15 * ((-1257 |#1|) (-1257 |#1|) (-1257 |#1|))) (-15 -1837 ((-1257 |#1|) (-1257 |#1|) (-1257 |#1|))) (-15 -3793 ((-1257 |#1|) (-1257 |#1|) (-917))) (-15 -1733 ((-1257 |#1|) (-1257 |#1|) (-917))) (-15 -2688 ((-1257 |#1|) (-1257 |#1|))) (-15 -1476 ((-917) (-1257 |#1|))) (-15 -2890 ((-112) (-1257 |#1|))) (-15 -4315 ((-1257 (-1257 |#1|)) (-917))) (-15 -3723 ((-1257 |#1|) (-917))) (-15 -3941 ((-1165 |#1|) (-1257 |#1|)))) (-349)) (T -528)) +((-3941 (*1 *2 *3) (-12 (-5 *3 (-1257 *4)) (-4 *4 (-349)) (-5 *2 (-1165 *4)) (-5 *1 (-528 *4)))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1257 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-4315 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1257 (-1257 *4))) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-2890 (*1 *2 *3) (-12 (-5 *3 (-1257 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-528 *4)))) (-1476 (*1 *2 *3) (-12 (-5 *3 (-1257 *4)) (-4 *4 (-349)) (-5 *2 (-917)) (-5 *1 (-528 *4)))) (-2688 (*1 *2 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) (-1733 (*1 *2 *2 *3) (-12 (-5 *2 (-1257 *4)) (-5 *3 (-917)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3793 (*1 *2 *2 *3) (-12 (-5 *2 (-1257 *4)) (-5 *3 (-917)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-1837 (*1 *2 *2 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1257 *4)) (-5 *3 (-563)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3066 (*1 *2 *2 *3) (-12 (-5 *2 (-1257 *4)) (-5 *3 (-563)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3514 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1257 *4)) (-5 *3 (-1113)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3840 (*1 *2 *2 *3) (-12 (-5 *2 (-1257 *4)) (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3963 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1257 *5)) (-5 *3 (-767)) (-5 *4 (-1113)) (-4 *5 (-349)) (-5 *1 (-528 *5)))) (-3616 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1165 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-1574 (*1 *2 *3) (-12 (-5 *3 (-1257 *4)) (-4 *4 (-349)) (-5 *2 (-1165 *4)) (-5 *1 (-528 *4)))) (-2555 (*1 *2 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1257 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1257 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-2294 (*1 *2 *3 *4) (-12 (-5 *3 (-1257 (-640 (-2 (|:| -2619 *4) (|:| -2555 (-1113)))))) (-4 *4 (-349)) (-5 *2 (-1262)) (-5 *1 (-528 *4))))) +(-10 -7 (-15 -2294 ((-1262) (-1257 (-640 (-2 (|:| -2619 |#1|) (|:| -2555 (-1113))))) |#1|)) (-15 -1691 ((-1257 |#1|) (-917))) (-15 -2555 ((-1257 |#1|) (-917) (-917))) (-15 -1574 ((-1165 |#1|) (-1257 |#1|))) (-15 -3616 ((-1165 |#1|) (-767))) (-15 -3963 ((-1257 |#1|) (-1257 |#1|) (-767) (-1113))) (-15 -3840 ((-1257 |#1|) (-1257 |#1|) (-767))) (-15 -3514 ((-1257 |#1|) (-1257 |#1|) (-1113) (-1113))) (-15 -3066 ((-1257 |#1|) (-1257 |#1|) (-563))) (-15 ** ((-1257 |#1|) (-1257 |#1|) (-563))) (-15 * ((-1257 |#1|) (-1257 |#1|) (-1257 |#1|))) (-15 -1837 ((-1257 |#1|) (-1257 |#1|) (-1257 |#1|))) (-15 -3793 ((-1257 |#1|) (-1257 |#1|) (-917))) (-15 -1733 ((-1257 |#1|) (-1257 |#1|) (-917))) (-15 -2688 ((-1257 |#1|) (-1257 |#1|))) (-15 -1476 ((-917) (-1257 |#1|))) (-15 -2890 ((-112) (-1257 |#1|))) (-15 -4315 ((-1257 (-1257 |#1|)) (-917))) (-15 -3723 ((-1257 |#1|) (-917))) (-15 -3941 ((-1165 |#1|) (-1257 |#1|)))) +((-2843 (((-686 (-1215)) $) NIL)) (-3262 (((-686 (-1214)) $) NIL)) (-3927 (((-686 (-1213)) $) NIL)) (-3429 (((-686 (-548)) $) NIL)) (-1497 (((-686 (-547)) $) NIL)) (-3351 (((-686 (-546)) $) NIL)) (-2513 (((-767) $ (-128)) NIL)) (-2810 (((-686 (-129)) $) 23)) (-1360 (((-1113) $ (-1113)) 28)) (-4368 (((-1113) $) 27)) (-4080 (((-112) $) 18)) (-1503 (($ (-388)) 12) (($ (-1151)) 14)) (-2251 (((-112) $) 24)) (-1693 (((-858) $) 31)) (-3004 (($ $) 25))) +(((-529) (-13 (-527) (-610 (-858)) (-10 -8 (-15 -1503 ($ (-388))) (-15 -1503 ($ (-1151))) (-15 -2251 ((-112) $)) (-15 -4080 ((-112) $)) (-15 -4368 ((-1113) $)) (-15 -1360 ((-1113) $ (-1113)))))) (T -529)) +((-1503 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-529)))) (-1503 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-529)))) (-2251 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))) (-4080 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))) (-4368 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-529)))) (-1360 (*1 *2 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-529))))) +(-13 (-527) (-610 (-858)) (-10 -8 (-15 -1503 ($ (-388))) (-15 -1503 ($ (-1151))) (-15 -2251 ((-112) $)) (-15 -4080 ((-112) $)) (-15 -4368 ((-1113) $)) (-15 -1360 ((-1113) $ (-1113))))) +((-2201 (((-1 |#1| |#1|) |#1|) 11)) (-3124 (((-1 |#1| |#1|)) 10))) +(((-530 |#1|) (-10 -7 (-15 -3124 ((-1 |#1| |#1|))) (-15 -2201 ((-1 |#1| |#1|) |#1|))) (-13 (-722) (-25))) (T -530)) +((-2201 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-722) (-25))))) (-3124 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-722) (-25)))))) +(-10 -7 (-15 -3124 ((-1 |#1| |#1|))) (-15 -2201 ((-1 |#1| |#1|) |#1|))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1901 (($ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4239 (($) NIL T CONST)) (-2751 (($ $) NIL)) (-2588 (($ (-767) |#1|) NIL)) (-3084 (($ $ $) NIL)) (-1777 (($ $ $) NIL)) (-2240 (($ (-1 (-767) (-767)) $) NIL)) (-3395 ((|#1| $) NIL)) (-2726 (((-767) $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 20)) (-2241 (($) NIL T CONST)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) NIL)) (-1814 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL))) +(((-531 |#1|) (-13 (-789) (-509 (-767) |#1|)) (-846)) (T -531)) +NIL +(-13 (-789) (-509 (-767) |#1|)) +((-1478 (((-640 |#2|) (-1165 |#1|) |#3|) 83)) (-1971 (((-640 (-2 (|:| |outval| |#2|) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 |#2|))))) (-684 |#1|) |#3| (-1 (-418 (-1165 |#1|)) (-1165 |#1|))) 100)) (-2113 (((-1165 |#1|) (-684 |#1|)) 95))) +(((-532 |#1| |#2| |#3|) (-10 -7 (-15 -2113 ((-1165 |#1|) (-684 |#1|))) (-15 -1478 ((-640 |#2|) (-1165 |#1|) |#3|)) (-15 -1971 ((-640 (-2 (|:| |outval| |#2|) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 |#2|))))) (-684 |#1|) |#3| (-1 (-418 (-1165 |#1|)) (-1165 |#1|))))) (-363) (-363) (-13 (-363) (-844))) (T -532)) +((-1971 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-684 *6)) (-5 *5 (-1 (-418 (-1165 *6)) (-1165 *6))) (-4 *6 (-363)) (-5 *2 (-640 (-2 (|:| |outval| *7) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 *7)))))) (-5 *1 (-532 *6 *7 *4)) (-4 *7 (-363)) (-4 *4 (-13 (-363) (-844))))) (-1478 (*1 *2 *3 *4) (-12 (-5 *3 (-1165 *5)) (-4 *5 (-363)) (-5 *2 (-640 *6)) (-5 *1 (-532 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844))))) (-2113 (*1 *2 *3) (-12 (-5 *3 (-684 *4)) (-4 *4 (-363)) (-5 *2 (-1165 *4)) (-5 *1 (-532 *4 *5 *6)) (-4 *5 (-363)) (-4 *6 (-13 (-363) (-844)))))) +(-10 -7 (-15 -2113 ((-1165 |#1|) (-684 |#1|))) (-15 -1478 ((-640 |#2|) (-1165 |#1|) |#3|)) (-15 -1971 ((-640 (-2 (|:| |outval| |#2|) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 |#2|))))) (-684 |#1|) |#3| (-1 (-418 (-1165 |#1|)) (-1165 |#1|))))) +((-2577 (((-686 (-1215)) $ (-1215)) NIL)) (-2871 (((-686 (-548)) $ (-548)) NIL)) (-2910 (((-767) $ (-128)) 39)) (-1717 (((-686 (-129)) $ (-129)) 40)) (-2843 (((-686 (-1215)) $) NIL)) (-3262 (((-686 (-1214)) $) NIL)) (-3927 (((-686 (-1213)) $) NIL)) (-3429 (((-686 (-548)) $) NIL)) (-1497 (((-686 (-547)) $) NIL)) (-3351 (((-686 (-546)) $) NIL)) (-2513 (((-767) $ (-128)) 34)) (-2810 (((-686 (-129)) $) 37)) (-2791 (((-112) $) 29)) (-2755 (((-686 $) (-578) (-950)) 19) (((-686 $) (-491) (-950)) 26)) (-1693 (((-858) $) 49)) (-3004 (($ $) 41))) +(((-533) (-13 (-763 (-578)) (-610 (-858)) (-10 -8 (-15 -2755 ((-686 $) (-491) (-950)))))) (T -533)) +((-2755 (*1 *2 *3 *4) (-12 (-5 *3 (-491)) (-5 *4 (-950)) (-5 *2 (-686 (-533))) (-5 *1 (-533))))) +(-13 (-763 (-578)) (-610 (-858)) (-10 -8 (-15 -2755 ((-686 $) (-491) (-950))))) +((-3625 (((-839 (-563))) 12)) (-3637 (((-839 (-563))) 14)) (-2191 (((-829 (-563))) 9))) +(((-534) (-10 -7 (-15 -2191 ((-829 (-563)))) (-15 -3625 ((-839 (-563)))) (-15 -3637 ((-839 (-563)))))) (T -534)) +((-3637 (*1 *2) (-12 (-5 *2 (-839 (-563))) (-5 *1 (-534)))) (-3625 (*1 *2) (-12 (-5 *2 (-839 (-563))) (-5 *1 (-534)))) (-2191 (*1 *2) (-12 (-5 *2 (-829 (-563))) (-5 *1 (-534))))) +(-10 -7 (-15 -2191 ((-829 (-563)))) (-15 -3625 ((-839 (-563)))) (-15 -3637 ((-839 (-563))))) +((-3670 (((-536) (-1169)) 15)) (-2029 ((|#1| (-536)) 20))) +(((-535 |#1|) (-10 -7 (-15 -3670 ((-536) (-1169))) (-15 -2029 (|#1| (-536)))) (-1208)) (T -535)) +((-2029 (*1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-535 *2)) (-4 *2 (-1208)))) (-3670 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-536)) (-5 *1 (-535 *4)) (-4 *4 (-1208))))) +(-10 -7 (-15 -3670 ((-536) (-1169))) (-15 -2029 (|#1| (-536)))) +((-1677 (((-112) $ $) NIL)) (-3281 (((-1151) $) 47)) (-3264 (((-112) $) 43)) (-3674 (((-1169) $) 44)) (-4072 (((-112) $) 41)) (-3736 (((-1151) $) 42)) (-3633 (($ (-1151)) 48)) (-3611 (((-112) $) NIL)) (-3243 (((-112) $) NIL)) (-2341 (((-112) $) NIL)) (-3573 (((-1151) $) NIL)) (-1738 (($ $ (-640 (-1169))) 20)) (-2029 (((-52) $) 22)) (-3532 (((-112) $) NIL)) (-3701 (((-563) $) NIL)) (-1694 (((-1113) $) NIL)) (-1516 (($ $ (-640 (-1169)) (-1169)) 60)) (-3636 (((-112) $) NIL)) (-4340 (((-225) $) NIL)) (-3887 (($ $) 38)) (-2474 (((-858) $) NIL)) (-1420 (((-112) $ $) NIL)) (-2309 (($ $ (-563)) NIL) (($ $ (-640 (-563))) NIL)) (-2546 (((-640 $) $) 28)) (-4278 (((-1169) (-640 $)) 49)) (-2220 (($ (-1151)) NIL) (($ (-1169)) 18) (($ (-563)) 8) (($ (-225)) 25) (($ (-858)) NIL) (($ (-640 $)) 56) (((-1097) $) 11) (($ (-1097)) 12)) (-1556 (((-1169) (-1169) (-640 $)) 52)) (-1693 (((-858) $) 46)) (-3673 (($ $) 51)) (-3662 (($ $) 50)) (-3330 (($ $ (-640 $)) 57)) (-1323 (((-112) $) 27)) (-2241 (($) 9 T CONST)) (-2254 (($) 10 T CONST)) (-1718 (((-112) $ $) 61)) (-1837 (($ $ $) 66)) (-1814 (($ $ $) 62)) (** (($ $ (-767)) 65) (($ $ (-563)) 64)) (* (($ $ $) 63)) (-3608 (((-563) $) NIL))) +(((-536) (-13 (-1096 (-1151) (-1169) (-563) (-225) (-858)) (-611 (-1097)) (-10 -8 (-15 -2029 ((-52) $)) (-15 -2220 ($ (-1097))) (-15 -3330 ($ $ (-640 $))) (-15 -1516 ($ $ (-640 (-1169)) (-1169))) (-15 -1738 ($ $ (-640 (-1169)))) (-15 -1814 ($ $ $)) (-15 * ($ $ $)) (-15 -1837 ($ $ $)) (-15 ** ($ $ (-767))) (-15 ** ($ $ (-563))) (-15 0 ($) -2669) (-15 1 ($) -2669) (-15 -3887 ($ $)) (-15 -3281 ((-1151) $)) (-15 -3633 ($ (-1151))) (-15 -4278 ((-1169) (-640 $))) (-15 -1556 ((-1169) (-1169) (-640 $)))))) (T -536)) +((-2029 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-536)))) (-2220 (*1 *1 *2) (-12 (-5 *2 (-1097)) (-5 *1 (-536)))) (-3330 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-536))) (-5 *1 (-536)))) (-1516 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-1169)) (-5 *1 (-536)))) (-1738 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-536)))) (-1814 (*1 *1 *1 *1) (-5 *1 (-536))) (* (*1 *1 *1 *1) (-5 *1 (-536))) (-1837 (*1 *1 *1 *1) (-5 *1 (-536))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-536)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-536)))) (-2241 (*1 *1) (-5 *1 (-536))) (-2254 (*1 *1) (-5 *1 (-536))) (-3887 (*1 *1 *1) (-5 *1 (-536))) (-3281 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-536)))) (-3633 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-536)))) (-4278 (*1 *2 *3) (-12 (-5 *3 (-640 (-536))) (-5 *2 (-1169)) (-5 *1 (-536)))) (-1556 (*1 *2 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-536))) (-5 *1 (-536))))) +(-13 (-1096 (-1151) (-1169) (-563) (-225) (-858)) (-611 (-1097)) (-10 -8 (-15 -2029 ((-52) $)) (-15 -2220 ($ (-1097))) (-15 -3330 ($ $ (-640 $))) (-15 -1516 ($ $ (-640 (-1169)) (-1169))) (-15 -1738 ($ $ (-640 (-1169)))) (-15 -1814 ($ $ $)) (-15 * ($ $ $)) (-15 -1837 ($ $ $)) (-15 ** ($ $ (-767))) (-15 ** ($ $ (-563))) (-15 (-2241) ($) -2669) (-15 (-2254) ($) -2669) (-15 -3887 ($ $)) (-15 -3281 ((-1151) $)) (-15 -3633 ($ (-1151))) (-15 -4278 ((-1169) (-640 $))) (-15 -1556 ((-1169) (-1169) (-640 $))))) +((-1622 ((|#2| |#2|) 17)) (-3462 ((|#2| |#2|) 13)) (-3282 ((|#2| |#2| (-563) (-563)) 20)) (-2028 ((|#2| |#2|) 15))) +(((-537 |#1| |#2|) (-10 -7 (-15 -3462 (|#2| |#2|)) (-15 -2028 (|#2| |#2|)) (-15 -1622 (|#2| |#2|)) (-15 -3282 (|#2| |#2| (-563) (-563)))) (-13 (-555) (-147)) (-1248 |#1|)) (T -537)) +((-3282 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-563)) (-4 *4 (-13 (-555) (-147))) (-5 *1 (-537 *4 *2)) (-4 *2 (-1248 *4)))) (-1622 (*1 *2 *2) (-12 (-4 *3 (-13 (-555) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1248 *3)))) (-2028 (*1 *2 *2) (-12 (-4 *3 (-13 (-555) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1248 *3)))) (-3462 (*1 *2 *2) (-12 (-4 *3 (-13 (-555) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1248 *3))))) +(-10 -7 (-15 -3462 (|#2| |#2|)) (-15 -2028 (|#2| |#2|)) (-15 -1622 (|#2| |#2|)) (-15 -3282 (|#2| |#2| (-563) (-563)))) +((-1844 (((-640 (-294 (-948 |#2|))) (-640 |#2|) (-640 (-1169))) 32)) (-2967 (((-640 |#2|) (-948 |#1|) |#3|) 53) (((-640 |#2|) (-1165 |#1|) |#3|) 52)) (-2647 (((-640 (-640 |#2|)) (-640 (-948 |#1|)) (-640 (-948 |#1|)) (-640 (-1169)) |#3|) 88))) +(((-538 |#1| |#2| |#3|) (-10 -7 (-15 -2967 ((-640 |#2|) (-1165 |#1|) |#3|)) (-15 -2967 ((-640 |#2|) (-948 |#1|) |#3|)) (-15 -2647 ((-640 (-640 |#2|)) (-640 (-948 |#1|)) (-640 (-948 |#1|)) (-640 (-1169)) |#3|)) (-15 -1844 ((-640 (-294 (-948 |#2|))) (-640 |#2|) (-640 (-1169))))) (-452) (-363) (-13 (-363) (-844))) (T -538)) +((-1844 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *6)) (-5 *4 (-640 (-1169))) (-4 *6 (-363)) (-5 *2 (-640 (-294 (-948 *6)))) (-5 *1 (-538 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-13 (-363) (-844))))) (-2647 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-640 (-948 *6))) (-5 *4 (-640 (-1169))) (-4 *6 (-452)) (-5 *2 (-640 (-640 *7))) (-5 *1 (-538 *6 *7 *5)) (-4 *7 (-363)) (-4 *5 (-13 (-363) (-844))))) (-2967 (*1 *2 *3 *4) (-12 (-5 *3 (-948 *5)) (-4 *5 (-452)) (-5 *2 (-640 *6)) (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844))))) (-2967 (*1 *2 *3 *4) (-12 (-5 *3 (-1165 *5)) (-4 *5 (-452)) (-5 *2 (-640 *6)) (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844)))))) +(-10 -7 (-15 -2967 ((-640 |#2|) (-1165 |#1|) |#3|)) (-15 -2967 ((-640 |#2|) (-948 |#1|) |#3|)) (-15 -2647 ((-640 (-640 |#2|)) (-640 (-948 |#1|)) (-640 (-948 |#1|)) (-640 (-1169)) |#3|)) (-15 -1844 ((-640 (-294 (-948 |#2|))) (-640 |#2|) (-640 (-1169))))) +((-2472 ((|#2| |#2| |#1|) 17)) (-4125 ((|#2| (-640 |#2|)) 26)) (-3362 ((|#2| (-640 |#2|)) 45))) +(((-539 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4125 (|#2| (-640 |#2|))) (-15 -3362 (|#2| (-640 |#2|))) (-15 -2472 (|#2| |#2| |#1|))) (-307) (-1233 |#1|) |#1| (-1 |#1| |#1| (-767))) (T -539)) +((-2472 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-767))) (-5 *1 (-539 *3 *2 *4 *5)) (-4 *2 (-1233 *3)))) (-3362 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-1233 *4)) (-5 *1 (-539 *4 *2 *5 *6)) (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-767))))) (-4125 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-1233 *4)) (-5 *1 (-539 *4 *2 *5 *6)) (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-767)))))) +(-10 -7 (-15 -4125 (|#2| (-640 |#2|))) (-15 -3362 (|#2| (-640 |#2|))) (-15 -2472 (|#2| |#2| |#1|))) +((-2174 (((-418 (-1165 |#4|)) (-1165 |#4|) (-1 (-418 (-1165 |#3|)) (-1165 |#3|))) 79) (((-418 |#4|) |#4| (-1 (-418 (-1165 |#3|)) (-1165 |#3|))) 167))) +(((-540 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2174 ((-418 |#4|) |#4| (-1 (-418 (-1165 |#3|)) (-1165 |#3|)))) (-15 -2174 ((-418 (-1165 |#4|)) (-1165 |#4|) (-1 (-418 (-1165 |#3|)) (-1165 |#3|))))) (-846) (-789) (-13 (-307) (-147)) (-945 |#3| |#2| |#1|)) (T -540)) +((-2174 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 (-1165 *7)) (-1165 *7))) (-4 *7 (-13 (-307) (-147))) (-4 *5 (-846)) (-4 *6 (-789)) (-4 *8 (-945 *7 *6 *5)) (-5 *2 (-418 (-1165 *8))) (-5 *1 (-540 *5 *6 *7 *8)) (-5 *3 (-1165 *8)))) (-2174 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 (-1165 *7)) (-1165 *7))) (-4 *7 (-13 (-307) (-147))) (-4 *5 (-846)) (-4 *6 (-789)) (-5 *2 (-418 *3)) (-5 *1 (-540 *5 *6 *7 *3)) (-4 *3 (-945 *7 *6 *5))))) +(-10 -7 (-15 -2174 ((-418 |#4|) |#4| (-1 (-418 (-1165 |#3|)) (-1165 |#3|)))) (-15 -2174 ((-418 (-1165 |#4|)) (-1165 |#4|) (-1 (-418 (-1165 |#3|)) (-1165 |#3|))))) +((-1622 ((|#4| |#4|) 73)) (-3462 ((|#4| |#4|) 69)) (-3282 ((|#4| |#4| (-563) (-563)) 75)) (-2028 ((|#4| |#4|) 71))) +(((-541 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3462 (|#4| |#4|)) (-15 -2028 (|#4| |#4|)) (-15 -1622 (|#4| |#4|)) (-15 -3282 (|#4| |#4| (-563) (-563)))) (-13 (-363) (-368) (-611 (-563))) (-1233 |#1|) (-720 |#1| |#2|) (-1248 |#3|)) (T -541)) +((-3282 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-563)) (-4 *4 (-13 (-363) (-368) (-611 *3))) (-4 *5 (-1233 *4)) (-4 *6 (-720 *4 *5)) (-5 *1 (-541 *4 *5 *6 *2)) (-4 *2 (-1248 *6)))) (-1622 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-4 *4 (-1233 *3)) (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1248 *5)))) (-2028 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-4 *4 (-1233 *3)) (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1248 *5)))) (-3462 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-4 *4 (-1233 *3)) (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1248 *5))))) +(-10 -7 (-15 -3462 (|#4| |#4|)) (-15 -2028 (|#4| |#4|)) (-15 -1622 (|#4| |#4|)) (-15 -3282 (|#4| |#4| (-563) (-563)))) +((-1622 ((|#2| |#2|) 27)) (-3462 ((|#2| |#2|) 23)) (-3282 ((|#2| |#2| (-563) (-563)) 29)) (-2028 ((|#2| |#2|) 25))) +(((-542 |#1| |#2|) (-10 -7 (-15 -3462 (|#2| |#2|)) (-15 -2028 (|#2| |#2|)) (-15 -1622 (|#2| |#2|)) (-15 -3282 (|#2| |#2| (-563) (-563)))) (-13 (-363) (-368) (-611 (-563))) (-1248 |#1|)) (T -542)) +((-3282 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-563)) (-4 *4 (-13 (-363) (-368) (-611 *3))) (-5 *1 (-542 *4 *2)) (-4 *2 (-1248 *4)))) (-1622 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1248 *3)))) (-2028 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1248 *3)))) (-3462 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1248 *3))))) +(-10 -7 (-15 -3462 (|#2| |#2|)) (-15 -2028 (|#2| |#2|)) (-15 -1622 (|#2| |#2|)) (-15 -3282 (|#2| |#2| (-563) (-563)))) +((-2043 (((-3 (-563) "failed") |#2| |#1| (-1 (-3 (-563) "failed") |#1|)) 14) (((-3 (-563) "failed") |#2| |#1| (-563) (-1 (-3 (-563) "failed") |#1|)) 13) (((-3 (-563) "failed") |#2| (-563) (-1 (-3 (-563) "failed") |#1|)) 26))) +(((-543 |#1| |#2|) (-10 -7 (-15 -2043 ((-3 (-563) "failed") |#2| (-563) (-1 (-3 (-563) "failed") |#1|))) (-15 -2043 ((-3 (-563) "failed") |#2| |#1| (-563) (-1 (-3 (-563) "failed") |#1|))) (-15 -2043 ((-3 (-563) "failed") |#2| |#1| (-1 (-3 (-563) "failed") |#1|)))) (-1045) (-1233 |#1|)) (T -543)) +((-2043 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-563) "failed") *4)) (-4 *4 (-1045)) (-5 *2 (-563)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1233 *4)))) (-2043 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-563) "failed") *4)) (-4 *4 (-1045)) (-5 *2 (-563)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1233 *4)))) (-2043 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-563) "failed") *5)) (-4 *5 (-1045)) (-5 *2 (-563)) (-5 *1 (-543 *5 *3)) (-4 *3 (-1233 *5))))) +(-10 -7 (-15 -2043 ((-3 (-563) "failed") |#2| (-563) (-1 (-3 (-563) "failed") |#1|))) (-15 -2043 ((-3 (-563) "failed") |#2| |#1| (-563) (-1 (-3 (-563) "failed") |#1|))) (-15 -2043 ((-3 (-563) "failed") |#2| |#1| (-1 (-3 (-563) "failed") |#1|)))) +((-1433 (($ $ $) 78)) (-3205 (((-418 $) $) 46)) (-2131 (((-3 (-563) "failed") $) 58)) (-2058 (((-563) $) 36)) (-3909 (((-3 (-407 (-563)) "failed") $) 73)) (-2239 (((-112) $) 23)) (-2651 (((-407 (-563)) $) 71)) (-2468 (((-112) $) 49)) (-4362 (($ $ $ $) 85)) (-3101 (((-112) $) 15)) (-3972 (($ $ $) 56)) (-3787 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 68)) (-2408 (((-3 $ "failed") $) 63)) (-2646 (($ $) 22)) (-3364 (($ $ $) 83)) (-2523 (($) 59)) (-3219 (($ $) 52)) (-2174 (((-418 $) $) 44)) (-2359 (((-112) $) 13)) (-2628 (((-767) $) 27)) (-4202 (($ $ (-767)) NIL) (($ $) 10)) (-1872 (($ $) 16)) (-2220 (((-563) $) NIL) (((-536) $) 35) (((-888 (-563)) $) 39) (((-379) $) 30) (((-225) $) 32)) (-1675 (((-767)) 8)) (-1570 (((-112) $ $) 19)) (-2869 (($ $ $) 54))) +(((-544 |#1|) (-10 -8 (-15 -3364 (|#1| |#1| |#1|)) (-15 -4362 (|#1| |#1| |#1| |#1|)) (-15 -2646 (|#1| |#1|)) (-15 -1872 (|#1| |#1|)) (-15 -3909 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2651 ((-407 (-563)) |#1|)) (-15 -2239 ((-112) |#1|)) (-15 -1433 (|#1| |#1| |#1|)) (-15 -1570 ((-112) |#1| |#1|)) (-15 -2359 ((-112) |#1|)) (-15 -2523 (|#1|)) (-15 -2408 ((-3 |#1| "failed") |#1|)) (-15 -2220 ((-225) |#1|)) (-15 -2220 ((-379) |#1|)) (-15 -3972 (|#1| |#1| |#1|)) (-15 -3219 (|#1| |#1|)) (-15 -2869 (|#1| |#1| |#1|)) (-15 -3787 ((-885 (-563) |#1|) |#1| (-888 (-563)) (-885 (-563) |#1|))) (-15 -2220 ((-888 (-563)) |#1|)) (-15 -2220 ((-536) |#1|)) (-15 -2131 ((-3 (-563) "failed") |#1|)) (-15 -2058 ((-563) |#1|)) (-15 -2220 ((-563) |#1|)) (-15 -4202 (|#1| |#1|)) (-15 -4202 (|#1| |#1| (-767))) (-15 -3101 ((-112) |#1|)) (-15 -2628 ((-767) |#1|)) (-15 -2174 ((-418 |#1|) |#1|)) (-15 -3205 ((-418 |#1|) |#1|)) (-15 -2468 ((-112) |#1|)) (-15 -1675 ((-767)))) (-545)) (T -544)) +((-1675 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-544 *3)) (-4 *3 (-545))))) +(-10 -8 (-15 -3364 (|#1| |#1| |#1|)) (-15 -4362 (|#1| |#1| |#1| |#1|)) (-15 -2646 (|#1| |#1|)) (-15 -1872 (|#1| |#1|)) (-15 -3909 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2651 ((-407 (-563)) |#1|)) (-15 -2239 ((-112) |#1|)) (-15 -1433 (|#1| |#1| |#1|)) (-15 -1570 ((-112) |#1| |#1|)) (-15 -2359 ((-112) |#1|)) (-15 -2523 (|#1|)) (-15 -2408 ((-3 |#1| "failed") |#1|)) (-15 -2220 ((-225) |#1|)) (-15 -2220 ((-379) |#1|)) (-15 -3972 (|#1| |#1| |#1|)) (-15 -3219 (|#1| |#1|)) (-15 -2869 (|#1| |#1| |#1|)) (-15 -3787 ((-885 (-563) |#1|) |#1| (-888 (-563)) (-885 (-563) |#1|))) (-15 -2220 ((-888 (-563)) |#1|)) (-15 -2220 ((-536) |#1|)) (-15 -2131 ((-3 (-563) "failed") |#1|)) (-15 -2058 ((-563) |#1|)) (-15 -2220 ((-563) |#1|)) (-15 -4202 (|#1| |#1|)) (-15 -4202 (|#1| |#1| (-767))) (-15 -3101 ((-112) |#1|)) (-15 -2628 ((-767) |#1|)) (-15 -2174 ((-418 |#1|) |#1|)) (-15 -3205 ((-418 |#1|) |#1|)) (-15 -2468 ((-112) |#1|)) (-15 -1675 ((-767)))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 42)) (-4223 (($ $) 41)) (-3156 (((-112) $) 39)) (-1433 (($ $ $) 85)) (-1495 (((-3 $ "failed") $ $) 19)) (-2448 (($ $ $ $) 74)) (-4335 (($ $) 52)) (-3205 (((-418 $) $) 53)) (-1919 (((-112) $ $) 125)) (-1857 (((-563) $) 114)) (-3458 (($ $ $) 88)) (-4239 (($) 17 T CONST)) (-2131 (((-3 (-563) "failed") $) 106)) (-2058 (((-563) $) 107)) (-3090 (($ $ $) 129)) (-2950 (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 104) (((-684 (-563)) (-684 $)) 103)) (-3400 (((-3 $ "failed") $) 33)) (-3909 (((-3 (-407 (-563)) "failed") $) 82)) (-2239 (((-112) $) 84)) (-2651 (((-407 (-563)) $) 83)) (-1691 (($) 81) (($ $) 80)) (-3050 (($ $ $) 128)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) 123)) (-2468 (((-112) $) 54)) (-4362 (($ $ $ $) 72)) (-1544 (($ $ $) 86)) (-3101 (((-112) $) 116)) (-3972 (($ $ $) 97)) (-3787 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 100)) (-3827 (((-112) $) 31)) (-3131 (((-112) $) 92)) (-2408 (((-3 $ "failed") $) 94)) (-1419 (((-112) $) 115)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) 132)) (-2692 (($ $ $ $) 73)) (-3084 (($ $ $) 117)) (-1777 (($ $ $) 118)) (-2646 (($ $) 76)) (-3415 (($ $) 89)) (-3513 (($ $ $) 47) (($ (-640 $)) 46)) (-3573 (((-1151) $) 9)) (-3364 (($ $ $) 71)) (-2523 (($) 93 T CONST)) (-2824 (($ $) 78)) (-1694 (((-1113) $) 10)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3548 (($ $ $) 49) (($ (-640 $)) 48)) (-3219 (($ $) 98)) (-2174 (((-418 $) $) 51)) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) 130)) (-3008 (((-3 $ "failed") $ $) 43)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) 124)) (-2359 (((-112) $) 91)) (-2628 (((-767) $) 126)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 127)) (-4202 (($ $ (-767)) 111) (($ $) 109)) (-3872 (($ $) 77)) (-1872 (($ $) 79)) (-2220 (((-563) $) 108) (((-536) $) 102) (((-888 (-563)) $) 101) (((-379) $) 96) (((-225) $) 95)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-563)) 105)) (-1675 (((-767)) 28)) (-1570 (((-112) $ $) 87)) (-2869 (($ $ $) 99)) (-4211 (($) 90)) (-2126 (((-112) $ $) 40)) (-2039 (($ $ $ $) 75)) (-2509 (($ $) 113)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-3209 (($ $ (-767)) 112) (($ $) 110)) (-1778 (((-112) $ $) 120)) (-1756 (((-112) $ $) 121)) (-1718 (((-112) $ $) 6)) (-1768 (((-112) $ $) 119)) (-1744 (((-112) $ $) 122)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) +(((-545) (-140)) (T -545)) +((-3131 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-2359 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-4211 (*1 *1) (-4 *1 (-545))) (-3415 (*1 *1 *1) (-4 *1 (-545))) (-3458 (*1 *1 *1 *1) (-4 *1 (-545))) (-1570 (*1 *2 *1 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-1544 (*1 *1 *1 *1) (-4 *1 (-545))) (-1433 (*1 *1 *1 *1) (-4 *1 (-545))) (-2239 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-2651 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-407 (-563))))) (-3909 (*1 *2 *1) (|partial| -12 (-4 *1 (-545)) (-5 *2 (-407 (-563))))) (-1691 (*1 *1) (-4 *1 (-545))) (-1691 (*1 *1 *1) (-4 *1 (-545))) (-1872 (*1 *1 *1) (-4 *1 (-545))) (-2824 (*1 *1 *1) (-4 *1 (-545))) (-3872 (*1 *1 *1) (-4 *1 (-545))) (-2646 (*1 *1 *1) (-4 *1 (-545))) (-2039 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-2448 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-2692 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-4362 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-3364 (*1 *1 *1 *1) (-4 *1 (-545)))) +(-13 (-1212) (-307) (-816) (-233) (-611 (-563)) (-1034 (-563)) (-636 (-563)) (-611 (-536)) (-611 (-888 (-563))) (-882 (-563)) (-143) (-1018) (-147) (-1144) (-10 -8 (-15 -3131 ((-112) $)) (-15 -2359 ((-112) $)) (-6 -4406) (-15 -4211 ($)) (-15 -3415 ($ $)) (-15 -3458 ($ $ $)) (-15 -1570 ((-112) $ $)) (-15 -1544 ($ $ $)) (-15 -1433 ($ $ $)) (-15 -2239 ((-112) $)) (-15 -2651 ((-407 (-563)) $)) (-15 -3909 ((-3 (-407 (-563)) "failed") $)) (-15 -1691 ($)) (-15 -1691 ($ $)) (-15 -1872 ($ $)) (-15 -2824 ($ $)) (-15 -3872 ($ $)) (-15 -2646 ($ $)) (-15 -2039 ($ $ $ $)) (-15 -2448 ($ $ $ $)) (-15 -2692 ($ $ $ $)) (-15 -4362 ($ $ $ $)) (-15 -3364 ($ $ $)) (-6 -4405))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-143) . T) ((-172) . T) ((-611 (-225)) . T) ((-611 (-379)) . T) ((-611 (-536)) . T) ((-611 (-563)) . T) ((-611 (-888 (-563))) . T) ((-233) . T) ((-290) . T) ((-307) . T) ((-452) . T) ((-555) . T) ((-643 $) . T) ((-636 (-563)) . T) ((-713 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-816) . T) ((-844) . T) ((-846) . T) ((-882 (-563)) . T) ((-916) . T) ((-1018) . T) ((-1034 (-563)) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1144) . T) ((-1212) . T)) +((-1677 (((-112) $ $) NIL)) (-3749 (((-767)) NIL)) (-1691 (($) NIL)) (-3084 (($ $ $) NIL) (($) NIL T CONST)) (-1777 (($ $ $) NIL) (($) NIL T CONST)) (-1476 (((-917) $) NIL)) (-3573 (((-1151) $) NIL)) (-2555 (($ (-917)) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) NIL))) +(((-546) (-840)) (T -546)) +NIL +(-840) ((|Integer|) (COND ((< 16 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) -((-4041 (((-112) $ $) NIL)) (-1382 (((-766)) NIL)) (-1447 (($) NIL)) (-1551 (($ $ $) NIL) (($) NIL T CONST)) (-2993 (($ $ $) NIL) (($) NIL T CONST)) (-3549 (((-916) $) NIL)) (-3696 (((-1150) $) NIL)) (-2464 (($ (-916)) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) NIL))) -(((-546) (-839)) (T -546)) +((-1677 (((-112) $ $) NIL)) (-3749 (((-767)) NIL)) (-1691 (($) NIL)) (-3084 (($ $ $) NIL) (($) NIL T CONST)) (-1777 (($ $ $) NIL) (($) NIL T CONST)) (-1476 (((-917) $) NIL)) (-3573 (((-1151) $) NIL)) (-2555 (($ (-917)) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) NIL))) +(((-547) (-840)) (T -547)) NIL -(-839) +(-840) ((|Integer|) (COND ((< 32 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) -((-4041 (((-112) $ $) NIL)) (-1382 (((-766)) NIL)) (-1447 (($) NIL)) (-1551 (($ $ $) NIL) (($) NIL T CONST)) (-2993 (($ $ $) NIL) (($) NIL T CONST)) (-3549 (((-916) $) NIL)) (-3696 (((-1150) $) NIL)) (-2464 (($ (-916)) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) NIL))) -(((-547) (-839)) (T -547)) +((-1677 (((-112) $ $) NIL)) (-3749 (((-767)) NIL)) (-1691 (($) NIL)) (-3084 (($ $ $) NIL) (($) NIL T CONST)) (-1777 (($ $ $) NIL) (($) NIL T CONST)) (-1476 (((-917) $) NIL)) (-3573 (((-1151) $) NIL)) (-2555 (($ (-917)) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) NIL))) +(((-548) (-840)) (T -548)) NIL -(-839) +(-840) ((|Integer|) (COND ((< 8 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) -((-4041 (((-112) $ $) NIL (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1443 (($) NIL) (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL)) (-3655 (((-1261) $ |#1| |#1|) NIL (|has| $ (-6 -4404)))) (-3735 (((-112) $ (-766)) NIL)) (-4200 ((|#2| $ |#1| |#2|) NIL)) (-2968 (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-1472 (((-3 |#2| "failed") |#1| $) NIL)) (-3329 (($) NIL T CONST)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092))))) (-3729 (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL (|has| $ (-6 -4403))) (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-3 |#2| "failed") |#1| $) NIL)) (-1475 (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-1954 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL (|has| $ (-6 -4403))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-1507 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4404)))) (-1420 ((|#2| $ |#1|) NIL)) (-1720 (((-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-639 |#2|) $) NIL (|has| $ (-6 -4403)))) (-4172 (((-112) $ (-766)) NIL)) (-1849 ((|#1| $) NIL (|has| |#1| (-845)))) (-2123 (((-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-639 |#2|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092))))) (-1929 ((|#1| $) NIL (|has| |#1| (-845)))) (-1491 (($ (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4404))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1521 (((-639 |#1|) $) NIL)) (-4278 (((-112) |#1| $) NIL)) (-2078 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL)) (-1581 (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL)) (-3336 (((-639 |#1|) $) NIL)) (-1987 (((-112) |#1| $) NIL)) (-1709 (((-1112) $) NIL (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1421 ((|#2| $) NIL (|has| |#1| (-845)))) (-1963 (((-3 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) "failed") (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL)) (-3510 (($ $ |#2|) NIL (|has| $ (-6 -4404)))) (-2038 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL)) (-3008 (((-112) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))))) NIL (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-293 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-639 |#2|) (-639 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))))) (-1452 (((-112) $ $) NIL)) (-2716 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092))))) (-2366 (((-639 |#2|) $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) NIL)) (-2343 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1932 (($) NIL) (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL)) (-1723 (((-766) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-766) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (((-766) |#2| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092)))) (((-766) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-610 (-535))))) (-4064 (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL)) (-4053 (((-857) $) NIL (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-609 (-857))) (|has| |#2| (-609 (-857)))))) (-4131 (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL)) (-2879 (((-112) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) NIL (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-548 |#1| |#2| |#3|) (-13 (-1183 |#1| |#2|) (-10 -7 (-6 -4403))) (-1092) (-1092) (-13 (-1183 |#1| |#2|) (-10 -7 (-6 -4403)))) (T -548)) -NIL -(-13 (-1183 |#1| |#2|) (-10 -7 (-6 -4403))) -((-4088 (((-583 |#2|) |#2| (-608 |#2|) (-608 |#2|) (-1 (-1164 |#2|) (-1164 |#2|))) 51))) -(((-549 |#1| |#2|) (-10 -7 (-15 -4088 ((-583 |#2|) |#2| (-608 |#2|) (-608 |#2|) (-1 (-1164 |#2|) (-1164 |#2|))))) (-13 (-845) (-554)) (-13 (-27) (-429 |#1|))) (T -549)) -((-4088 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-608 *3)) (-5 *5 (-1 (-1164 *3) (-1164 *3))) (-4 *3 (-13 (-27) (-429 *6))) (-4 *6 (-13 (-845) (-554))) (-5 *2 (-583 *3)) (-5 *1 (-549 *6 *3))))) -(-10 -7 (-15 -4088 ((-583 |#2|) |#2| (-608 |#2|) (-608 |#2|) (-1 (-1164 |#2|) (-1164 |#2|))))) -((-2535 (((-583 |#5|) |#5| (-1 |#3| |#3|)) 198)) (-2843 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 194)) (-3090 (((-583 |#5|) |#5| (-1 |#3| |#3|)) 201))) -(((-550 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3090 ((-583 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2535 ((-583 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2843 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-845) (-554) (-1033 (-562))) (-13 (-27) (-429 |#1|)) (-1232 |#2|) (-1232 (-406 |#3|)) (-341 |#2| |#3| |#4|)) (T -550)) -((-2843 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-13 (-27) (-429 *4))) (-4 *4 (-13 (-845) (-554) (-1033 (-562)))) (-4 *7 (-1232 (-406 *6))) (-5 *1 (-550 *4 *5 *6 *7 *2)) (-4 *2 (-341 *5 *6 *7)))) (-2535 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1232 *6)) (-4 *6 (-13 (-27) (-429 *5))) (-4 *5 (-13 (-845) (-554) (-1033 (-562)))) (-4 *8 (-1232 (-406 *7))) (-5 *2 (-583 *3)) (-5 *1 (-550 *5 *6 *7 *8 *3)) (-4 *3 (-341 *6 *7 *8)))) (-3090 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1232 *6)) (-4 *6 (-13 (-27) (-429 *5))) (-4 *5 (-13 (-845) (-554) (-1033 (-562)))) (-4 *8 (-1232 (-406 *7))) (-5 *2 (-583 *3)) (-5 *1 (-550 *5 *6 *7 *8 *3)) (-4 *3 (-341 *6 *7 *8))))) -(-10 -7 (-15 -3090 ((-583 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2535 ((-583 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2843 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-2457 (((-112) (-562) (-562)) 10)) (-4073 (((-562) (-562)) 7)) (-1835 (((-562) (-562) (-562)) 8))) -(((-551) (-10 -7 (-15 -4073 ((-562) (-562))) (-15 -1835 ((-562) (-562) (-562))) (-15 -2457 ((-112) (-562) (-562))))) (T -551)) -((-2457 (*1 *2 *3 *3) (-12 (-5 *3 (-562)) (-5 *2 (-112)) (-5 *1 (-551)))) (-1835 (*1 *2 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-551)))) (-4073 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-551))))) -(-10 -7 (-15 -4073 ((-562) (-562))) (-15 -1835 ((-562) (-562) (-562))) (-15 -2457 ((-112) (-562) (-562)))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-3697 ((|#1| $) 62)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 42)) (-1965 (($ $) 41)) (-4102 (((-112) $) 39)) (-2987 (($ $) 92)) (-4098 (($ $) 75)) (-1593 ((|#1| $) 63)) (-2781 (((-3 $ "failed") $ $) 19)) (-1644 (($ $) 74)) (-4206 (($ $) 91)) (-4074 (($ $) 76)) (-3013 (($ $) 90)) (-4120 (($ $) 77)) (-3329 (($) 17 T CONST)) (-4048 (((-3 (-562) "failed") $) 70)) (-3960 (((-562) $) 71)) (-1694 (((-3 $ "failed") $) 33)) (-3479 (($ |#1| |#1|) 67)) (-2696 (((-112) $) 61)) (-4100 (($) 102)) (-4367 (((-112) $) 31)) (-1895 (($ $ (-562)) 73)) (-3855 (((-112) $) 60)) (-1551 (($ $ $) 108)) (-2993 (($ $ $) 107)) (-4366 (($ $) 99)) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-3696 (((-1150) $) 9)) (-3203 (($ |#1| |#1|) 68) (($ |#1|) 66) (($ (-406 (-562))) 65)) (-1693 ((|#1| $) 64)) (-1709 (((-1112) $) 10)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-1762 (((-3 $ "failed") $ $) 43)) (-3430 (($ $) 100)) (-3022 (($ $) 89)) (-4130 (($ $) 78)) (-3000 (($ $) 88)) (-4108 (($ $) 79)) (-2977 (($ $) 87)) (-4087 (($ $) 80)) (-4251 (((-112) $ |#1|) 59)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ $) 44) (($ (-562)) 69)) (-1568 (((-766)) 28)) (-3054 (($ $) 98)) (-4165 (($ $) 86)) (-3799 (((-112) $ $) 40)) (-3033 (($ $) 97)) (-4139 (($ $) 85)) (-3077 (($ $) 96)) (-4183 (($ $) 84)) (-1567 (($ $) 95)) (-4195 (($ $) 83)) (-3065 (($ $) 94)) (-4175 (($ $) 82)) (-3040 (($ $) 93)) (-4151 (($ $) 81)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1798 (((-112) $ $) 105)) (-1771 (((-112) $ $) 104)) (-1733 (((-112) $ $) 6)) (-1785 (((-112) $ $) 106)) (-1761 (((-112) $ $) 103)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ $) 101) (($ $ (-406 (-562))) 72)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) -(((-552 |#1|) (-139) (-13 (-403) (-1192))) (T -552)) -((-3203 (*1 *1 *2 *2) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1192))))) (-3479 (*1 *1 *2 *2) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1192))))) (-3203 (*1 *1 *2) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1192))))) (-3203 (*1 *1 *2) (-12 (-5 *2 (-406 (-562))) (-4 *1 (-552 *3)) (-4 *3 (-13 (-403) (-1192))))) (-1693 (*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1192))))) (-1593 (*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1192))))) (-3697 (*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1192))))) (-2696 (*1 *2 *1) (-12 (-4 *1 (-552 *3)) (-4 *3 (-13 (-403) (-1192))) (-5 *2 (-112)))) (-3855 (*1 *2 *1) (-12 (-4 *1 (-552 *3)) (-4 *3 (-13 (-403) (-1192))) (-5 *2 (-112)))) (-4251 (*1 *2 *1 *3) (-12 (-4 *1 (-552 *3)) (-4 *3 (-13 (-403) (-1192))) (-5 *2 (-112))))) -(-13 (-451) (-845) (-1192) (-997) (-1033 (-562)) (-10 -8 (-6 -1406) (-15 -3203 ($ |t#1| |t#1|)) (-15 -3479 ($ |t#1| |t#1|)) (-15 -3203 ($ |t#1|)) (-15 -3203 ($ (-406 (-562)))) (-15 -1693 (|t#1| $)) (-15 -1593 (|t#1| $)) (-15 -3697 (|t#1| $)) (-15 -2696 ((-112) $)) (-15 -3855 ((-112) $)) (-15 -4251 ((-112) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-283) . T) ((-289) . T) ((-451) . T) ((-492) . T) ((-554) . T) ((-642 $) . T) ((-712 $) . T) ((-721) . T) ((-845) . T) ((-997) . T) ((-1033 (-562)) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1192) . T) ((-1195) . T)) -((-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 9)) (-1965 (($ $) 11)) (-4102 (((-112) $) 18)) (-1694 (((-3 $ "failed") $) 16)) (-3799 (((-112) $ $) 20))) -(((-553 |#1|) (-10 -8 (-15 -4102 ((-112) |#1|)) (-15 -3799 ((-112) |#1| |#1|)) (-15 -1965 (|#1| |#1|)) (-15 -2271 ((-2 (|:| -4310 |#1|) (|:| -4390 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1694 ((-3 |#1| "failed") |#1|))) (-554)) (T -553)) -NIL -(-10 -8 (-15 -4102 ((-112) |#1|)) (-15 -3799 ((-112) |#1| |#1|)) (-15 -1965 (|#1| |#1|)) (-15 -2271 ((-2 (|:| -4310 |#1|) (|:| -4390 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1694 ((-3 |#1| "failed") |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 42)) (-1965 (($ $) 41)) (-4102 (((-112) $) 39)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-1694 (((-3 $ "failed") $) 33)) (-4367 (((-112) $) 31)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-1762 (((-3 $ "failed") $ $) 43)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ $) 44)) (-1568 (((-766)) 28)) (-3799 (((-112) $ $) 40)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) -(((-554) (-139)) (T -554)) -((-1762 (*1 *1 *1 *1) (|partial| -4 *1 (-554))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -4310 *1) (|:| -4390 *1) (|:| |associate| *1))) (-4 *1 (-554)))) (-1965 (*1 *1 *1) (-4 *1 (-554))) (-3799 (*1 *2 *1 *1) (-12 (-4 *1 (-554)) (-5 *2 (-112)))) (-4102 (*1 *2 *1) (-12 (-4 *1 (-554)) (-5 *2 (-112))))) -(-13 (-171) (-38 $) (-289) (-10 -8 (-15 -1762 ((-3 $ "failed") $ $)) (-15 -2271 ((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $)) (-15 -1965 ($ $)) (-15 -3799 ((-112) $ $)) (-15 -4102 ((-112) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-289) . T) ((-642 $) . T) ((-712 $) . T) ((-721) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) -((-2814 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1168) (-639 |#2|)) 37)) (-3997 (((-583 |#2|) |#2| (-1168)) 62)) (-1323 (((-3 |#2| "failed") |#2| (-1168)) 151)) (-2480 (((-3 (-2 (|:| -2929 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1168) (-608 |#2|) (-639 (-608 |#2|))) 154)) (-4261 (((-3 (-2 (|:| -2929 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1168) |#2|) 40))) -(((-555 |#1| |#2|) (-10 -7 (-15 -4261 ((-3 (-2 (|:| -2929 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1168) |#2|)) (-15 -2814 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1168) (-639 |#2|))) (-15 -1323 ((-3 |#2| "failed") |#2| (-1168))) (-15 -3997 ((-583 |#2|) |#2| (-1168))) (-15 -2480 ((-3 (-2 (|:| -2929 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1168) (-608 |#2|) (-639 (-608 |#2|))))) (-13 (-451) (-845) (-146) (-1033 (-562)) (-635 (-562))) (-13 (-27) (-1192) (-429 |#1|))) (T -555)) -((-2480 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1168)) (-5 *6 (-639 (-608 *3))) (-5 *5 (-608 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *7))) (-4 *7 (-13 (-451) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-2 (|:| -2929 *3) (|:| |coeff| *3))) (-5 *1 (-555 *7 *3)))) (-3997 (*1 *2 *3 *4) (-12 (-5 *4 (-1168)) (-4 *5 (-13 (-451) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-583 *3)) (-5 *1 (-555 *5 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5))))) (-1323 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1168)) (-4 *4 (-13 (-451) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-555 *4 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *4))))) (-2814 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1168)) (-5 *5 (-639 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *6))) (-4 *6 (-13 (-451) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-555 *6 *3)))) (-4261 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1168)) (-4 *5 (-13 (-451) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-2 (|:| -2929 *3) (|:| |coeff| *3))) (-5 *1 (-555 *5 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5)))))) -(-10 -7 (-15 -4261 ((-3 (-2 (|:| -2929 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1168) |#2|)) (-15 -2814 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1168) (-639 |#2|))) (-15 -1323 ((-3 |#2| "failed") |#2| (-1168))) (-15 -3997 ((-583 |#2|) |#2| (-1168))) (-15 -2480 ((-3 (-2 (|:| -2929 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1168) (-608 |#2|) (-639 (-608 |#2|))))) -((-3788 (((-417 |#1|) |#1|) 18)) (-1635 (((-417 |#1|) |#1|) 33)) (-2928 (((-3 |#1| "failed") |#1|) 44)) (-3308 (((-417 |#1|) |#1|) 51))) -(((-556 |#1|) (-10 -7 (-15 -1635 ((-417 |#1|) |#1|)) (-15 -3788 ((-417 |#1|) |#1|)) (-15 -3308 ((-417 |#1|) |#1|)) (-15 -2928 ((-3 |#1| "failed") |#1|))) (-544)) (T -556)) -((-2928 (*1 *2 *2) (|partial| -12 (-5 *1 (-556 *2)) (-4 *2 (-544)))) (-3308 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-556 *3)) (-4 *3 (-544)))) (-3788 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-556 *3)) (-4 *3 (-544)))) (-1635 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-556 *3)) (-4 *3 (-544))))) -(-10 -7 (-15 -1635 ((-417 |#1|) |#1|)) (-15 -3788 ((-417 |#1|) |#1|)) (-15 -3308 ((-417 |#1|) |#1|)) (-15 -2928 ((-3 |#1| "failed") |#1|))) -((-4122 (($) 9)) (-1713 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2147 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 35)) (-1521 (((-639 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $) 32)) (-1581 (($ (-2 (|:| -2319 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2693 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2147 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-1588 (($ (-639 (-2 (|:| -2319 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2693 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2147 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-2693 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2147 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 39)) (-2366 (((-639 (-2 (|:| -2319 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2693 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2147 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-1294 (((-1261)) 12))) -(((-557) (-10 -8 (-15 -4122 ($)) (-15 -1294 ((-1261))) (-15 -1521 ((-639 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $)) (-15 -1588 ($ (-639 (-2 (|:| -2319 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2693 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2147 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1581 ($ (-2 (|:| -2319 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2693 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2147 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1713 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2147 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2366 ((-639 (-2 (|:| -2319 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2693 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2147 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2693 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2147 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (T -557)) -((-2693 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2147 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-557)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| -2319 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2693 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2147 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-557)))) (-1713 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2147 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-557)))) (-1581 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2319 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2693 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2147 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-557)))) (-1588 (*1 *1 *2) (-12 (-5 *2 (-639 (-2 (|:| -2319 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2693 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2147 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-557)))) (-1521 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-5 *1 (-557)))) (-1294 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-557)))) (-4122 (*1 *1) (-5 *1 (-557)))) -(-10 -8 (-15 -4122 ($)) (-15 -1294 ((-1261))) (-15 -1521 ((-639 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $)) (-15 -1588 ($ (-639 (-2 (|:| -2319 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2693 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2147 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1581 ($ (-2 (|:| -2319 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2693 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2147 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1713 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2147 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -2366 ((-639 (-2 (|:| -2319 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2693 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2147 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2693 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1148 (-224))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2147 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) -((-1602 (((-1164 (-406 (-1164 |#2|))) |#2| (-608 |#2|) (-608 |#2|) (-1164 |#2|)) 32)) (-1426 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-608 |#2|) (-608 |#2|) (-639 |#2|) (-608 |#2|) |#2| (-406 (-1164 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-608 |#2|) (-608 |#2|) (-639 |#2|) |#2| (-1164 |#2|)) 110)) (-1341 (((-583 |#2|) |#2| (-608 |#2|) (-608 |#2|) (-608 |#2|) |#2| (-406 (-1164 |#2|))) 80) (((-583 |#2|) |#2| (-608 |#2|) (-608 |#2|) |#2| (-1164 |#2|)) 52)) (-1792 (((-3 (-2 (|:| -2929 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-608 |#2|) (-608 |#2|) |#2| (-608 |#2|) |#2| (-406 (-1164 |#2|))) 87) (((-3 (-2 (|:| -2929 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-608 |#2|) (-608 |#2|) |#2| |#2| (-1164 |#2|)) 109)) (-3419 (((-3 |#2| "failed") |#2| |#2| (-608 |#2|) (-608 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1168)) (-608 |#2|) |#2| (-406 (-1164 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-608 |#2|) (-608 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1168)) |#2| (-1164 |#2|)) 111)) (-2758 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4291 (-639 |#2|))) |#3| |#2| (-608 |#2|) (-608 |#2|) (-608 |#2|) |#2| (-406 (-1164 |#2|))) 128 (|has| |#3| (-650 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4291 (-639 |#2|))) |#3| |#2| (-608 |#2|) (-608 |#2|) |#2| (-1164 |#2|)) 127 (|has| |#3| (-650 |#2|)))) (-1389 ((|#2| (-1164 (-406 (-1164 |#2|))) (-608 |#2|) |#2|) 50)) (-1942 (((-1164 (-406 (-1164 |#2|))) (-1164 |#2|) (-608 |#2|)) 31))) -(((-558 |#1| |#2| |#3|) (-10 -7 (-15 -1341 ((-583 |#2|) |#2| (-608 |#2|) (-608 |#2|) |#2| (-1164 |#2|))) (-15 -1341 ((-583 |#2|) |#2| (-608 |#2|) (-608 |#2|) (-608 |#2|) |#2| (-406 (-1164 |#2|)))) (-15 -1792 ((-3 (-2 (|:| -2929 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-608 |#2|) (-608 |#2|) |#2| |#2| (-1164 |#2|))) (-15 -1792 ((-3 (-2 (|:| -2929 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-608 |#2|) (-608 |#2|) |#2| (-608 |#2|) |#2| (-406 (-1164 |#2|)))) (-15 -1426 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-608 |#2|) (-608 |#2|) (-639 |#2|) |#2| (-1164 |#2|))) (-15 -1426 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-608 |#2|) (-608 |#2|) (-639 |#2|) (-608 |#2|) |#2| (-406 (-1164 |#2|)))) (-15 -3419 ((-3 |#2| "failed") |#2| |#2| (-608 |#2|) (-608 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1168)) |#2| (-1164 |#2|))) (-15 -3419 ((-3 |#2| "failed") |#2| |#2| (-608 |#2|) (-608 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1168)) (-608 |#2|) |#2| (-406 (-1164 |#2|)))) (-15 -1602 ((-1164 (-406 (-1164 |#2|))) |#2| (-608 |#2|) (-608 |#2|) (-1164 |#2|))) (-15 -1389 (|#2| (-1164 (-406 (-1164 |#2|))) (-608 |#2|) |#2|)) (-15 -1942 ((-1164 (-406 (-1164 |#2|))) (-1164 |#2|) (-608 |#2|))) (IF (|has| |#3| (-650 |#2|)) (PROGN (-15 -2758 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4291 (-639 |#2|))) |#3| |#2| (-608 |#2|) (-608 |#2|) |#2| (-1164 |#2|))) (-15 -2758 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4291 (-639 |#2|))) |#3| |#2| (-608 |#2|) (-608 |#2|) (-608 |#2|) |#2| (-406 (-1164 |#2|))))) |%noBranch|)) (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562))) (-13 (-429 |#1|) (-27) (-1192)) (-1092)) (T -558)) -((-2758 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-608 *4)) (-5 *6 (-406 (-1164 *4))) (-4 *4 (-13 (-429 *7) (-27) (-1192))) (-4 *7 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4291 (-639 *4)))) (-5 *1 (-558 *7 *4 *3)) (-4 *3 (-650 *4)) (-4 *3 (-1092)))) (-2758 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-608 *4)) (-5 *6 (-1164 *4)) (-4 *4 (-13 (-429 *7) (-27) (-1192))) (-4 *7 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4291 (-639 *4)))) (-5 *1 (-558 *7 *4 *3)) (-4 *3 (-650 *4)) (-4 *3 (-1092)))) (-1942 (*1 *2 *3 *4) (-12 (-5 *4 (-608 *6)) (-4 *6 (-13 (-429 *5) (-27) (-1192))) (-4 *5 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *2 (-1164 (-406 (-1164 *6)))) (-5 *1 (-558 *5 *6 *7)) (-5 *3 (-1164 *6)) (-4 *7 (-1092)))) (-1389 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1164 (-406 (-1164 *2)))) (-5 *4 (-608 *2)) (-4 *2 (-13 (-429 *5) (-27) (-1192))) (-4 *5 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *1 (-558 *5 *2 *6)) (-4 *6 (-1092)))) (-1602 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-608 *3)) (-4 *3 (-13 (-429 *6) (-27) (-1192))) (-4 *6 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *2 (-1164 (-406 (-1164 *3)))) (-5 *1 (-558 *6 *3 *7)) (-5 *5 (-1164 *3)) (-4 *7 (-1092)))) (-3419 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-608 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1168))) (-5 *5 (-406 (-1164 *2))) (-4 *2 (-13 (-429 *6) (-27) (-1192))) (-4 *6 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *1 (-558 *6 *2 *7)) (-4 *7 (-1092)))) (-3419 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-608 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1168))) (-5 *5 (-1164 *2)) (-4 *2 (-13 (-429 *6) (-27) (-1192))) (-4 *6 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *1 (-558 *6 *2 *7)) (-4 *7 (-1092)))) (-1426 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-608 *3)) (-5 *5 (-639 *3)) (-5 *6 (-406 (-1164 *3))) (-4 *3 (-13 (-429 *7) (-27) (-1192))) (-4 *7 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-558 *7 *3 *8)) (-4 *8 (-1092)))) (-1426 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-608 *3)) (-5 *5 (-639 *3)) (-5 *6 (-1164 *3)) (-4 *3 (-13 (-429 *7) (-27) (-1192))) (-4 *7 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-558 *7 *3 *8)) (-4 *8 (-1092)))) (-1792 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-608 *3)) (-5 *5 (-406 (-1164 *3))) (-4 *3 (-13 (-429 *6) (-27) (-1192))) (-4 *6 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *2 (-2 (|:| -2929 *3) (|:| |coeff| *3))) (-5 *1 (-558 *6 *3 *7)) (-4 *7 (-1092)))) (-1792 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-608 *3)) (-5 *5 (-1164 *3)) (-4 *3 (-13 (-429 *6) (-27) (-1192))) (-4 *6 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *2 (-2 (|:| -2929 *3) (|:| |coeff| *3))) (-5 *1 (-558 *6 *3 *7)) (-4 *7 (-1092)))) (-1341 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-608 *3)) (-5 *5 (-406 (-1164 *3))) (-4 *3 (-13 (-429 *6) (-27) (-1192))) (-4 *6 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *2 (-583 *3)) (-5 *1 (-558 *6 *3 *7)) (-4 *7 (-1092)))) (-1341 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-608 *3)) (-5 *5 (-1164 *3)) (-4 *3 (-13 (-429 *6) (-27) (-1192))) (-4 *6 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *2 (-583 *3)) (-5 *1 (-558 *6 *3 *7)) (-4 *7 (-1092))))) -(-10 -7 (-15 -1341 ((-583 |#2|) |#2| (-608 |#2|) (-608 |#2|) |#2| (-1164 |#2|))) (-15 -1341 ((-583 |#2|) |#2| (-608 |#2|) (-608 |#2|) (-608 |#2|) |#2| (-406 (-1164 |#2|)))) (-15 -1792 ((-3 (-2 (|:| -2929 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-608 |#2|) (-608 |#2|) |#2| |#2| (-1164 |#2|))) (-15 -1792 ((-3 (-2 (|:| -2929 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-608 |#2|) (-608 |#2|) |#2| (-608 |#2|) |#2| (-406 (-1164 |#2|)))) (-15 -1426 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-608 |#2|) (-608 |#2|) (-639 |#2|) |#2| (-1164 |#2|))) (-15 -1426 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-608 |#2|) (-608 |#2|) (-639 |#2|) (-608 |#2|) |#2| (-406 (-1164 |#2|)))) (-15 -3419 ((-3 |#2| "failed") |#2| |#2| (-608 |#2|) (-608 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1168)) |#2| (-1164 |#2|))) (-15 -3419 ((-3 |#2| "failed") |#2| |#2| (-608 |#2|) (-608 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1168)) (-608 |#2|) |#2| (-406 (-1164 |#2|)))) (-15 -1602 ((-1164 (-406 (-1164 |#2|))) |#2| (-608 |#2|) (-608 |#2|) (-1164 |#2|))) (-15 -1389 (|#2| (-1164 (-406 (-1164 |#2|))) (-608 |#2|) |#2|)) (-15 -1942 ((-1164 (-406 (-1164 |#2|))) (-1164 |#2|) (-608 |#2|))) (IF (|has| |#3| (-650 |#2|)) (PROGN (-15 -2758 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4291 (-639 |#2|))) |#3| |#2| (-608 |#2|) (-608 |#2|) |#2| (-1164 |#2|))) (-15 -2758 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4291 (-639 |#2|))) |#3| |#2| (-608 |#2|) (-608 |#2|) (-608 |#2|) |#2| (-406 (-1164 |#2|))))) |%noBranch|)) -((-1557 (((-562) (-562) (-766)) 66)) (-4332 (((-562) (-562)) 65)) (-2482 (((-562) (-562)) 64)) (-1632 (((-562) (-562)) 69)) (-2996 (((-562) (-562) (-562)) 49)) (-2970 (((-562) (-562) (-562)) 46)) (-2458 (((-406 (-562)) (-562)) 20)) (-4349 (((-562) (-562)) 21)) (-2854 (((-562) (-562)) 58)) (-3795 (((-562) (-562)) 32)) (-2595 (((-639 (-562)) (-562)) 63)) (-3143 (((-562) (-562) (-562) (-562) (-562)) 44)) (-3443 (((-406 (-562)) (-562)) 41))) -(((-559) (-10 -7 (-15 -3443 ((-406 (-562)) (-562))) (-15 -3143 ((-562) (-562) (-562) (-562) (-562))) (-15 -2595 ((-639 (-562)) (-562))) (-15 -3795 ((-562) (-562))) (-15 -2854 ((-562) (-562))) (-15 -4349 ((-562) (-562))) (-15 -2458 ((-406 (-562)) (-562))) (-15 -2970 ((-562) (-562) (-562))) (-15 -2996 ((-562) (-562) (-562))) (-15 -1632 ((-562) (-562))) (-15 -2482 ((-562) (-562))) (-15 -4332 ((-562) (-562))) (-15 -1557 ((-562) (-562) (-766))))) (T -559)) -((-1557 (*1 *2 *2 *3) (-12 (-5 *2 (-562)) (-5 *3 (-766)) (-5 *1 (-559)))) (-4332 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559)))) (-2482 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559)))) (-1632 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559)))) (-2996 (*1 *2 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559)))) (-2970 (*1 *2 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559)))) (-2458 (*1 *2 *3) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-559)) (-5 *3 (-562)))) (-4349 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559)))) (-2854 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559)))) (-3795 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559)))) (-2595 (*1 *2 *3) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-559)) (-5 *3 (-562)))) (-3143 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559)))) (-3443 (*1 *2 *3) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-559)) (-5 *3 (-562))))) -(-10 -7 (-15 -3443 ((-406 (-562)) (-562))) (-15 -3143 ((-562) (-562) (-562) (-562) (-562))) (-15 -2595 ((-639 (-562)) (-562))) (-15 -3795 ((-562) (-562))) (-15 -2854 ((-562) (-562))) (-15 -4349 ((-562) (-562))) (-15 -2458 ((-406 (-562)) (-562))) (-15 -2970 ((-562) (-562) (-562))) (-15 -2996 ((-562) (-562) (-562))) (-15 -1632 ((-562) (-562))) (-15 -2482 ((-562) (-562))) (-15 -4332 ((-562) (-562))) (-15 -1557 ((-562) (-562) (-766)))) -((-2015 (((-2 (|:| |answer| |#4|) (|:| -2312 |#4|)) |#4| (-1 |#2| |#2|)) 52))) -(((-560 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2015 ((-2 (|:| |answer| |#4|) (|:| -2312 |#4|)) |#4| (-1 |#2| |#2|)))) (-362) (-1232 |#1|) (-1232 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -560)) -((-2015 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-362)) (-4 *7 (-1232 (-406 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2312 *3))) (-5 *1 (-560 *5 *6 *7 *3)) (-4 *3 (-341 *5 *6 *7))))) -(-10 -7 (-15 -2015 ((-2 (|:| |answer| |#4|) (|:| -2312 |#4|)) |#4| (-1 |#2| |#2|)))) -((-2015 (((-2 (|:| |answer| (-406 |#2|)) (|:| -2312 (-406 |#2|)) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|)) 18))) -(((-561 |#1| |#2|) (-10 -7 (-15 -2015 ((-2 (|:| |answer| (-406 |#2|)) (|:| -2312 (-406 |#2|)) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|)))) (-362) (-1232 |#1|)) (T -561)) -((-2015 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |answer| (-406 *6)) (|:| -2312 (-406 *6)) (|:| |specpart| (-406 *6)) (|:| |polypart| *6))) (-5 *1 (-561 *5 *6)) (-5 *3 (-406 *6))))) -(-10 -7 (-15 -2015 ((-2 (|:| |answer| (-406 |#2|)) (|:| -2312 (-406 |#2|)) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) 25)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 88)) (-1965 (($ $) 89)) (-4102 (((-112) $) NIL)) (-3544 (($ $ $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-4158 (($ $ $ $) 43)) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-1436 (((-112) $ $) NIL)) (-1587 (((-562) $) NIL)) (-3355 (($ $ $) 82)) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL)) (-3960 (((-562) $) NIL)) (-1810 (($ $ $) 81)) (-3449 (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 62) (((-683 (-562)) (-683 $)) 58)) (-1694 (((-3 $ "failed") $) 85)) (-3913 (((-3 (-406 (-562)) "failed") $) NIL)) (-3498 (((-112) $) NIL)) (-3854 (((-406 (-562)) $) NIL)) (-1447 (($) 64) (($ $) 65)) (-1787 (($ $ $) 80)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-3521 (((-112) $) NIL)) (-2877 (($ $ $ $) NIL)) (-3867 (($ $ $) 55)) (-2696 (((-112) $) NIL)) (-1940 (($ $ $) NIL)) (-2337 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL)) (-4367 (((-112) $) 26)) (-3152 (((-112) $) 75)) (-3828 (((-3 $ "failed") $) NIL)) (-3855 (((-112) $) 35)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2051 (($ $ $ $) 44)) (-1551 (($ $ $) 77)) (-2993 (($ $ $) 76)) (-3930 (($ $) NIL)) (-3641 (($ $) 41)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) 54)) (-2296 (($ $ $) NIL)) (-3730 (($) NIL T CONST)) (-4137 (($ $) 31)) (-1709 (((-1112) $) 34)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 119)) (-1606 (($ $ $) 86) (($ (-639 $)) NIL)) (-3350 (($ $) NIL)) (-1635 (((-417 $) $) 105)) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL)) (-1762 (((-3 $ "failed") $ $) 84)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2438 (((-112) $) NIL)) (-2044 (((-766) $) NIL)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 79)) (-4029 (($ $ (-766)) NIL) (($ $) NIL)) (-2369 (($ $) 32)) (-4220 (($ $) 30)) (-4208 (((-562) $) 40) (((-535) $) 52) (((-887 (-562)) $) NIL) (((-378) $) 47) (((-224) $) 49) (((-1150) $) 53)) (-4053 (((-857) $) 38) (($ (-562)) 39) (($ $) NIL) (($ (-562)) 39)) (-1568 (((-766)) NIL)) (-3869 (((-112) $ $) NIL)) (-2068 (($ $ $) NIL)) (-3240 (($) 29)) (-3799 (((-112) $ $) NIL)) (-3160 (($ $ $ $) 42)) (-2757 (($ $) 63)) (-2285 (($) 27 T CONST)) (-2294 (($) 28 T CONST)) (-2332 (((-1150) $) 20) (((-1150) $ (-112)) 22) (((-1261) (-817) $) 23) (((-1261) (-817) $ (-112)) 24)) (-3113 (($ $ (-766)) NIL) (($ $) NIL)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 66)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) 67)) (-1847 (($ $) 68) (($ $ $) 70)) (-1836 (($ $ $) 69)) (** (($ $ (-916)) NIL) (($ $ (-766)) 74)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 72) (($ $ $) 71))) -(((-562) (-13 (-544) (-610 (-1150)) (-823) (-10 -8 (-15 -1447 ($ $)) (-6 -4390) (-6 -4395) (-6 -4391) (-6 -4385)))) (T -562)) -((-1447 (*1 *1 *1) (-5 *1 (-562)))) -(-13 (-544) (-610 (-1150)) (-823) (-10 -8 (-15 -1447 ($ $)) (-6 -4390) (-6 -4395) (-6 -4391) (-6 -4385))) -((-1806 (((-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150))) (|:| |extra| (-1030))) (-764) (-1056)) 108) (((-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150))) (|:| |extra| (-1030))) (-764)) 110)) (-3081 (((-3 (-1030) "failed") (-315 (-378)) (-1084 (-838 (-378))) (-1168)) 172) (((-3 (-1030) "failed") (-315 (-378)) (-1084 (-838 (-378))) (-1150)) 171) (((-1030) (-315 (-378)) (-639 (-1086 (-838 (-378)))) (-378) (-378) (-1056)) 176) (((-1030) (-315 (-378)) (-639 (-1086 (-838 (-378)))) (-378) (-378)) 177) (((-1030) (-315 (-378)) (-639 (-1086 (-838 (-378)))) (-378)) 178) (((-1030) (-315 (-378)) (-639 (-1086 (-838 (-378))))) 179) (((-1030) (-315 (-378)) (-1086 (-838 (-378)))) 167) (((-1030) (-315 (-378)) (-1086 (-838 (-378))) (-378)) 166) (((-1030) (-315 (-378)) (-1086 (-838 (-378))) (-378) (-378)) 162) (((-1030) (-764)) 155) (((-1030) (-315 (-378)) (-1086 (-838 (-378))) (-378) (-378) (-1056)) 161))) -(((-563) (-10 -7 (-15 -3081 ((-1030) (-315 (-378)) (-1086 (-838 (-378))) (-378) (-378) (-1056))) (-15 -3081 ((-1030) (-764))) (-15 -3081 ((-1030) (-315 (-378)) (-1086 (-838 (-378))) (-378) (-378))) (-15 -3081 ((-1030) (-315 (-378)) (-1086 (-838 (-378))) (-378))) (-15 -3081 ((-1030) (-315 (-378)) (-1086 (-838 (-378))))) (-15 -3081 ((-1030) (-315 (-378)) (-639 (-1086 (-838 (-378)))))) (-15 -3081 ((-1030) (-315 (-378)) (-639 (-1086 (-838 (-378)))) (-378))) (-15 -3081 ((-1030) (-315 (-378)) (-639 (-1086 (-838 (-378)))) (-378) (-378))) (-15 -3081 ((-1030) (-315 (-378)) (-639 (-1086 (-838 (-378)))) (-378) (-378) (-1056))) (-15 -1806 ((-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150))) (|:| |extra| (-1030))) (-764))) (-15 -1806 ((-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150))) (|:| |extra| (-1030))) (-764) (-1056))) (-15 -3081 ((-3 (-1030) "failed") (-315 (-378)) (-1084 (-838 (-378))) (-1150))) (-15 -3081 ((-3 (-1030) "failed") (-315 (-378)) (-1084 (-838 (-378))) (-1168))))) (T -563)) -((-3081 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-315 (-378))) (-5 *4 (-1084 (-838 (-378)))) (-5 *5 (-1168)) (-5 *2 (-1030)) (-5 *1 (-563)))) (-3081 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-315 (-378))) (-5 *4 (-1084 (-838 (-378)))) (-5 *5 (-1150)) (-5 *2 (-1030)) (-5 *1 (-563)))) (-1806 (*1 *2 *3 *4) (-12 (-5 *3 (-764)) (-5 *4 (-1056)) (-5 *2 (-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150))) (|:| |extra| (-1030)))) (-5 *1 (-563)))) (-1806 (*1 *2 *3) (-12 (-5 *3 (-764)) (-5 *2 (-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150))) (|:| |extra| (-1030)))) (-5 *1 (-563)))) (-3081 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-639 (-1086 (-838 (-378))))) (-5 *5 (-378)) (-5 *6 (-1056)) (-5 *2 (-1030)) (-5 *1 (-563)))) (-3081 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-639 (-1086 (-838 (-378))))) (-5 *5 (-378)) (-5 *2 (-1030)) (-5 *1 (-563)))) (-3081 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-639 (-1086 (-838 (-378))))) (-5 *5 (-378)) (-5 *2 (-1030)) (-5 *1 (-563)))) (-3081 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-639 (-1086 (-838 (-378))))) (-5 *2 (-1030)) (-5 *1 (-563)))) (-3081 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1086 (-838 (-378)))) (-5 *2 (-1030)) (-5 *1 (-563)))) (-3081 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1086 (-838 (-378)))) (-5 *5 (-378)) (-5 *2 (-1030)) (-5 *1 (-563)))) (-3081 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1086 (-838 (-378)))) (-5 *5 (-378)) (-5 *2 (-1030)) (-5 *1 (-563)))) (-3081 (*1 *2 *3) (-12 (-5 *3 (-764)) (-5 *2 (-1030)) (-5 *1 (-563)))) (-3081 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1086 (-838 (-378)))) (-5 *5 (-378)) (-5 *6 (-1056)) (-5 *2 (-1030)) (-5 *1 (-563))))) -(-10 -7 (-15 -3081 ((-1030) (-315 (-378)) (-1086 (-838 (-378))) (-378) (-378) (-1056))) (-15 -3081 ((-1030) (-764))) (-15 -3081 ((-1030) (-315 (-378)) (-1086 (-838 (-378))) (-378) (-378))) (-15 -3081 ((-1030) (-315 (-378)) (-1086 (-838 (-378))) (-378))) (-15 -3081 ((-1030) (-315 (-378)) (-1086 (-838 (-378))))) (-15 -3081 ((-1030) (-315 (-378)) (-639 (-1086 (-838 (-378)))))) (-15 -3081 ((-1030) (-315 (-378)) (-639 (-1086 (-838 (-378)))) (-378))) (-15 -3081 ((-1030) (-315 (-378)) (-639 (-1086 (-838 (-378)))) (-378) (-378))) (-15 -3081 ((-1030) (-315 (-378)) (-639 (-1086 (-838 (-378)))) (-378) (-378) (-1056))) (-15 -1806 ((-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150))) (|:| |extra| (-1030))) (-764))) (-15 -1806 ((-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150))) (|:| |extra| (-1030))) (-764) (-1056))) (-15 -3081 ((-3 (-1030) "failed") (-315 (-378)) (-1084 (-838 (-378))) (-1150))) (-15 -3081 ((-3 (-1030) "failed") (-315 (-378)) (-1084 (-838 (-378))) (-1168)))) -((-1383 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-608 |#2|) (-608 |#2|) (-639 |#2|)) 183)) (-2340 (((-583 |#2|) |#2| (-608 |#2|) (-608 |#2|)) 98)) (-2133 (((-3 (-2 (|:| -2929 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-608 |#2|) (-608 |#2|) |#2|) 179)) (-3458 (((-3 |#2| "failed") |#2| |#2| |#2| (-608 |#2|) (-608 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1168))) 188)) (-3335 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4291 (-639 |#2|))) |#3| |#2| (-608 |#2|) (-608 |#2|) (-1168)) 196 (|has| |#3| (-650 |#2|))))) -(((-564 |#1| |#2| |#3|) (-10 -7 (-15 -2340 ((-583 |#2|) |#2| (-608 |#2|) (-608 |#2|))) (-15 -2133 ((-3 (-2 (|:| -2929 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-608 |#2|) (-608 |#2|) |#2|)) (-15 -1383 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-608 |#2|) (-608 |#2|) (-639 |#2|))) (-15 -3458 ((-3 |#2| "failed") |#2| |#2| |#2| (-608 |#2|) (-608 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1168)))) (IF (|has| |#3| (-650 |#2|)) (-15 -3335 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4291 (-639 |#2|))) |#3| |#2| (-608 |#2|) (-608 |#2|) (-1168))) |%noBranch|)) (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562))) (-13 (-429 |#1|) (-27) (-1192)) (-1092)) (T -564)) -((-3335 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-608 *4)) (-5 *6 (-1168)) (-4 *4 (-13 (-429 *7) (-27) (-1192))) (-4 *7 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4291 (-639 *4)))) (-5 *1 (-564 *7 *4 *3)) (-4 *3 (-650 *4)) (-4 *3 (-1092)))) (-3458 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-608 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1168))) (-4 *2 (-13 (-429 *5) (-27) (-1192))) (-4 *5 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *1 (-564 *5 *2 *6)) (-4 *6 (-1092)))) (-1383 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-608 *3)) (-5 *5 (-639 *3)) (-4 *3 (-13 (-429 *6) (-27) (-1192))) (-4 *6 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-564 *6 *3 *7)) (-4 *7 (-1092)))) (-2133 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-608 *3)) (-4 *3 (-13 (-429 *5) (-27) (-1192))) (-4 *5 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *2 (-2 (|:| -2929 *3) (|:| |coeff| *3))) (-5 *1 (-564 *5 *3 *6)) (-4 *6 (-1092)))) (-2340 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-608 *3)) (-4 *3 (-13 (-429 *5) (-27) (-1192))) (-4 *5 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) (-5 *2 (-583 *3)) (-5 *1 (-564 *5 *3 *6)) (-4 *6 (-1092))))) -(-10 -7 (-15 -2340 ((-583 |#2|) |#2| (-608 |#2|) (-608 |#2|))) (-15 -2133 ((-3 (-2 (|:| -2929 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-608 |#2|) (-608 |#2|) |#2|)) (-15 -1383 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-608 |#2|) (-608 |#2|) (-639 |#2|))) (-15 -3458 ((-3 |#2| "failed") |#2| |#2| |#2| (-608 |#2|) (-608 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1168)))) (IF (|has| |#3| (-650 |#2|)) (-15 -3335 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4291 (-639 |#2|))) |#3| |#2| (-608 |#2|) (-608 |#2|) (-1168))) |%noBranch|)) -((-3951 (((-2 (|:| -3542 |#2|) (|:| |nconst| |#2|)) |#2| (-1168)) 63)) (-1321 (((-3 |#2| "failed") |#2| (-1168) (-838 |#2|) (-838 |#2|)) 163 (-12 (|has| |#2| (-1131)) (|has| |#1| (-610 (-887 (-562)))) (|has| |#1| (-881 (-562))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1168)) 146 (-12 (|has| |#2| (-625)) (|has| |#1| (-610 (-887 (-562)))) (|has| |#1| (-881 (-562)))))) (-3701 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1168)) 147 (-12 (|has| |#2| (-625)) (|has| |#1| (-610 (-887 (-562)))) (|has| |#1| (-881 (-562))))))) -(((-565 |#1| |#2|) (-10 -7 (-15 -3951 ((-2 (|:| -3542 |#2|) (|:| |nconst| |#2|)) |#2| (-1168))) (IF (|has| |#1| (-610 (-887 (-562)))) (IF (|has| |#1| (-881 (-562))) (PROGN (IF (|has| |#2| (-625)) (PROGN (-15 -3701 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1168))) (-15 -1321 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1168)))) |%noBranch|) (IF (|has| |#2| (-1131)) (-15 -1321 ((-3 |#2| "failed") |#2| (-1168) (-838 |#2|) (-838 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-845) (-1033 (-562)) (-451) (-635 (-562))) (-13 (-27) (-1192) (-429 |#1|))) (T -565)) -((-1321 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1168)) (-5 *4 (-838 *2)) (-4 *2 (-1131)) (-4 *2 (-13 (-27) (-1192) (-429 *5))) (-4 *5 (-610 (-887 (-562)))) (-4 *5 (-881 (-562))) (-4 *5 (-13 (-845) (-1033 (-562)) (-451) (-635 (-562)))) (-5 *1 (-565 *5 *2)))) (-1321 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1168)) (-4 *5 (-610 (-887 (-562)))) (-4 *5 (-881 (-562))) (-4 *5 (-13 (-845) (-1033 (-562)) (-451) (-635 (-562)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-565 *5 *3)) (-4 *3 (-625)) (-4 *3 (-13 (-27) (-1192) (-429 *5))))) (-3701 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1168)) (-4 *5 (-610 (-887 (-562)))) (-4 *5 (-881 (-562))) (-4 *5 (-13 (-845) (-1033 (-562)) (-451) (-635 (-562)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-565 *5 *3)) (-4 *3 (-625)) (-4 *3 (-13 (-27) (-1192) (-429 *5))))) (-3951 (*1 *2 *3 *4) (-12 (-5 *4 (-1168)) (-4 *5 (-13 (-845) (-1033 (-562)) (-451) (-635 (-562)))) (-5 *2 (-2 (|:| -3542 *3) (|:| |nconst| *3))) (-5 *1 (-565 *5 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5)))))) -(-10 -7 (-15 -3951 ((-2 (|:| -3542 |#2|) (|:| |nconst| |#2|)) |#2| (-1168))) (IF (|has| |#1| (-610 (-887 (-562)))) (IF (|has| |#1| (-881 (-562))) (PROGN (IF (|has| |#2| (-625)) (PROGN (-15 -3701 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1168))) (-15 -1321 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1168)))) |%noBranch|) (IF (|has| |#2| (-1131)) (-15 -1321 ((-3 |#2| "failed") |#2| (-1168) (-838 |#2|) (-838 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-3197 (((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-639 (-406 |#2|))) 41)) (-3081 (((-583 (-406 |#2|)) (-406 |#2|)) 28)) (-3129 (((-3 (-406 |#2|) "failed") (-406 |#2|)) 17)) (-3759 (((-3 (-2 (|:| -2929 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-406 |#2|)) 48))) -(((-566 |#1| |#2|) (-10 -7 (-15 -3081 ((-583 (-406 |#2|)) (-406 |#2|))) (-15 -3129 ((-3 (-406 |#2|) "failed") (-406 |#2|))) (-15 -3759 ((-3 (-2 (|:| -2929 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-406 |#2|))) (-15 -3197 ((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-639 (-406 |#2|))))) (-13 (-362) (-146) (-1033 (-562))) (-1232 |#1|)) (T -566)) -((-3197 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-639 (-406 *6))) (-5 *3 (-406 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-13 (-362) (-146) (-1033 (-562)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-566 *5 *6)))) (-3759 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-362) (-146) (-1033 (-562)))) (-4 *5 (-1232 *4)) (-5 *2 (-2 (|:| -2929 (-406 *5)) (|:| |coeff| (-406 *5)))) (-5 *1 (-566 *4 *5)) (-5 *3 (-406 *5)))) (-3129 (*1 *2 *2) (|partial| -12 (-5 *2 (-406 *4)) (-4 *4 (-1232 *3)) (-4 *3 (-13 (-362) (-146) (-1033 (-562)))) (-5 *1 (-566 *3 *4)))) (-3081 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1033 (-562)))) (-4 *5 (-1232 *4)) (-5 *2 (-583 (-406 *5))) (-5 *1 (-566 *4 *5)) (-5 *3 (-406 *5))))) -(-10 -7 (-15 -3081 ((-583 (-406 |#2|)) (-406 |#2|))) (-15 -3129 ((-3 (-406 |#2|) "failed") (-406 |#2|))) (-15 -3759 ((-3 (-2 (|:| -2929 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-406 |#2|))) (-15 -3197 ((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-639 (-406 |#2|))))) -((-4178 (((-3 (-562) "failed") |#1|) 14)) (-3693 (((-112) |#1|) 13)) (-1757 (((-562) |#1|) 9))) -(((-567 |#1|) (-10 -7 (-15 -1757 ((-562) |#1|)) (-15 -3693 ((-112) |#1|)) (-15 -4178 ((-3 (-562) "failed") |#1|))) (-1033 (-562))) (T -567)) -((-4178 (*1 *2 *3) (|partial| -12 (-5 *2 (-562)) (-5 *1 (-567 *3)) (-4 *3 (-1033 *2)))) (-3693 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-567 *3)) (-4 *3 (-1033 (-562))))) (-1757 (*1 *2 *3) (-12 (-5 *2 (-562)) (-5 *1 (-567 *3)) (-4 *3 (-1033 *2))))) -(-10 -7 (-15 -1757 ((-562) |#1|)) (-15 -3693 ((-112) |#1|)) (-15 -4178 ((-3 (-562) "failed") |#1|))) -((-2790 (((-3 (-2 (|:| |mainpart| (-406 (-947 |#1|))) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| (-406 (-947 |#1|))) (|:| |logand| (-406 (-947 |#1|))))))) "failed") (-406 (-947 |#1|)) (-1168) (-639 (-406 (-947 |#1|)))) 48)) (-2710 (((-583 (-406 (-947 |#1|))) (-406 (-947 |#1|)) (-1168)) 28)) (-2384 (((-3 (-406 (-947 |#1|)) "failed") (-406 (-947 |#1|)) (-1168)) 23)) (-1824 (((-3 (-2 (|:| -2929 (-406 (-947 |#1|))) (|:| |coeff| (-406 (-947 |#1|)))) "failed") (-406 (-947 |#1|)) (-1168) (-406 (-947 |#1|))) 35))) -(((-568 |#1|) (-10 -7 (-15 -2710 ((-583 (-406 (-947 |#1|))) (-406 (-947 |#1|)) (-1168))) (-15 -2384 ((-3 (-406 (-947 |#1|)) "failed") (-406 (-947 |#1|)) (-1168))) (-15 -2790 ((-3 (-2 (|:| |mainpart| (-406 (-947 |#1|))) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| (-406 (-947 |#1|))) (|:| |logand| (-406 (-947 |#1|))))))) "failed") (-406 (-947 |#1|)) (-1168) (-639 (-406 (-947 |#1|))))) (-15 -1824 ((-3 (-2 (|:| -2929 (-406 (-947 |#1|))) (|:| |coeff| (-406 (-947 |#1|)))) "failed") (-406 (-947 |#1|)) (-1168) (-406 (-947 |#1|))))) (-13 (-554) (-1033 (-562)) (-146))) (T -568)) -((-1824 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1168)) (-4 *5 (-13 (-554) (-1033 (-562)) (-146))) (-5 *2 (-2 (|:| -2929 (-406 (-947 *5))) (|:| |coeff| (-406 (-947 *5))))) (-5 *1 (-568 *5)) (-5 *3 (-406 (-947 *5))))) (-2790 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1168)) (-5 *5 (-639 (-406 (-947 *6)))) (-5 *3 (-406 (-947 *6))) (-4 *6 (-13 (-554) (-1033 (-562)) (-146))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-568 *6)))) (-2384 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-406 (-947 *4))) (-5 *3 (-1168)) (-4 *4 (-13 (-554) (-1033 (-562)) (-146))) (-5 *1 (-568 *4)))) (-2710 (*1 *2 *3 *4) (-12 (-5 *4 (-1168)) (-4 *5 (-13 (-554) (-1033 (-562)) (-146))) (-5 *2 (-583 (-406 (-947 *5)))) (-5 *1 (-568 *5)) (-5 *3 (-406 (-947 *5)))))) -(-10 -7 (-15 -2710 ((-583 (-406 (-947 |#1|))) (-406 (-947 |#1|)) (-1168))) (-15 -2384 ((-3 (-406 (-947 |#1|)) "failed") (-406 (-947 |#1|)) (-1168))) (-15 -2790 ((-3 (-2 (|:| |mainpart| (-406 (-947 |#1|))) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| (-406 (-947 |#1|))) (|:| |logand| (-406 (-947 |#1|))))))) "failed") (-406 (-947 |#1|)) (-1168) (-639 (-406 (-947 |#1|))))) (-15 -1824 ((-3 (-2 (|:| -2929 (-406 (-947 |#1|))) (|:| |coeff| (-406 (-947 |#1|)))) "failed") (-406 (-947 |#1|)) (-1168) (-406 (-947 |#1|))))) -((-4041 (((-112) $ $) 58)) (-4325 (((-112) $) 36)) (-3697 ((|#1| $) 30)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) 62)) (-2987 (($ $) 122)) (-4098 (($ $) 102)) (-1593 ((|#1| $) 28)) (-2781 (((-3 $ "failed") $ $) NIL)) (-1644 (($ $) NIL)) (-4206 (($ $) 124)) (-4074 (($ $) 98)) (-3013 (($ $) 126)) (-4120 (($ $) 106)) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) 77)) (-3960 (((-562) $) 79)) (-1694 (((-3 $ "failed") $) 61)) (-3479 (($ |#1| |#1|) 26)) (-2696 (((-112) $) 33)) (-4100 (($) 88)) (-4367 (((-112) $) 43)) (-1895 (($ $ (-562)) NIL)) (-3855 (((-112) $) 34)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-4366 (($ $) 90)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) NIL)) (-3203 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-406 (-562))) 76)) (-1693 ((|#1| $) 27)) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) 64) (($ (-639 $)) NIL)) (-1762 (((-3 $ "failed") $ $) 63)) (-3430 (($ $) 92)) (-3022 (($ $) 130)) (-4130 (($ $) 104)) (-3000 (($ $) 132)) (-4108 (($ $) 108)) (-2977 (($ $) 128)) (-4087 (($ $) 100)) (-4251 (((-112) $ |#1|) 31)) (-4053 (((-857) $) 84) (($ (-562)) 66) (($ $) NIL) (($ (-562)) 66)) (-1568 (((-766)) 86)) (-3054 (($ $) 144)) (-4165 (($ $) 114)) (-3799 (((-112) $ $) NIL)) (-3033 (($ $) 142)) (-4139 (($ $) 110)) (-3077 (($ $) 140)) (-4183 (($ $) 120)) (-1567 (($ $) 138)) (-4195 (($ $) 118)) (-3065 (($ $) 136)) (-4175 (($ $) 116)) (-3040 (($ $) 134)) (-4151 (($ $) 112)) (-2285 (($) 21 T CONST)) (-2294 (($) 10 T CONST)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 37)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) 35)) (-1847 (($ $) 41) (($ $ $) 42)) (-1836 (($ $ $) 40)) (** (($ $ (-916)) 54) (($ $ (-766)) NIL) (($ $ $) 94) (($ $ (-406 (-562))) 146)) (* (($ (-916) $) 51) (($ (-766) $) NIL) (($ (-562) $) 50) (($ $ $) 48))) -(((-569 |#1|) (-552 |#1|) (-13 (-403) (-1192))) (T -569)) -NIL -(-552 |#1|) -((-2654 (((-3 (-639 (-1164 (-562))) "failed") (-639 (-1164 (-562))) (-1164 (-562))) 24))) -(((-570) (-10 -7 (-15 -2654 ((-3 (-639 (-1164 (-562))) "failed") (-639 (-1164 (-562))) (-1164 (-562)))))) (T -570)) -((-2654 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-639 (-1164 (-562)))) (-5 *3 (-1164 (-562))) (-5 *1 (-570))))) -(-10 -7 (-15 -2654 ((-3 (-639 (-1164 (-562))) "failed") (-639 (-1164 (-562))) (-1164 (-562))))) -((-2527 (((-639 (-608 |#2|)) (-639 (-608 |#2|)) (-1168)) 19)) (-1643 (((-639 (-608 |#2|)) (-639 |#2|) (-1168)) 23)) (-2492 (((-639 (-608 |#2|)) (-639 (-608 |#2|)) (-639 (-608 |#2|))) 11)) (-2387 ((|#2| |#2| (-1168)) 53 (|has| |#1| (-554)))) (-3881 ((|#2| |#2| (-1168)) 77 (-12 (|has| |#2| (-283)) (|has| |#1| (-451))))) (-3763 (((-608 |#2|) (-608 |#2|) (-639 (-608 |#2|)) (-1168)) 25)) (-2411 (((-608 |#2|) (-639 (-608 |#2|))) 24)) (-3258 (((-583 |#2|) |#2| (-1168) (-1 (-583 |#2|) |#2| (-1168)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1168))) 101 (-12 (|has| |#2| (-283)) (|has| |#2| (-625)) (|has| |#2| (-1033 (-1168))) (|has| |#1| (-610 (-887 (-562)))) (|has| |#1| (-451)) (|has| |#1| (-881 (-562))))))) -(((-571 |#1| |#2|) (-10 -7 (-15 -2527 ((-639 (-608 |#2|)) (-639 (-608 |#2|)) (-1168))) (-15 -2411 ((-608 |#2|) (-639 (-608 |#2|)))) (-15 -3763 ((-608 |#2|) (-608 |#2|) (-639 (-608 |#2|)) (-1168))) (-15 -2492 ((-639 (-608 |#2|)) (-639 (-608 |#2|)) (-639 (-608 |#2|)))) (-15 -1643 ((-639 (-608 |#2|)) (-639 |#2|) (-1168))) (IF (|has| |#1| (-554)) (-15 -2387 (|#2| |#2| (-1168))) |%noBranch|) (IF (|has| |#1| (-451)) (IF (|has| |#2| (-283)) (PROGN (-15 -3881 (|#2| |#2| (-1168))) (IF (|has| |#1| (-610 (-887 (-562)))) (IF (|has| |#1| (-881 (-562))) (IF (|has| |#2| (-625)) (IF (|has| |#2| (-1033 (-1168))) (-15 -3258 ((-583 |#2|) |#2| (-1168) (-1 (-583 |#2|) |#2| (-1168)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1168)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-845) (-429 |#1|)) (T -571)) -((-3258 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-583 *3) *3 (-1168))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1168))) (-4 *3 (-283)) (-4 *3 (-625)) (-4 *3 (-1033 *4)) (-4 *3 (-429 *7)) (-5 *4 (-1168)) (-4 *7 (-610 (-887 (-562)))) (-4 *7 (-451)) (-4 *7 (-881 (-562))) (-4 *7 (-845)) (-5 *2 (-583 *3)) (-5 *1 (-571 *7 *3)))) (-3881 (*1 *2 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-451)) (-4 *4 (-845)) (-5 *1 (-571 *4 *2)) (-4 *2 (-283)) (-4 *2 (-429 *4)))) (-2387 (*1 *2 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-554)) (-4 *4 (-845)) (-5 *1 (-571 *4 *2)) (-4 *2 (-429 *4)))) (-1643 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *6)) (-5 *4 (-1168)) (-4 *6 (-429 *5)) (-4 *5 (-845)) (-5 *2 (-639 (-608 *6))) (-5 *1 (-571 *5 *6)))) (-2492 (*1 *2 *2 *2) (-12 (-5 *2 (-639 (-608 *4))) (-4 *4 (-429 *3)) (-4 *3 (-845)) (-5 *1 (-571 *3 *4)))) (-3763 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-639 (-608 *6))) (-5 *4 (-1168)) (-5 *2 (-608 *6)) (-4 *6 (-429 *5)) (-4 *5 (-845)) (-5 *1 (-571 *5 *6)))) (-2411 (*1 *2 *3) (-12 (-5 *3 (-639 (-608 *5))) (-4 *4 (-845)) (-5 *2 (-608 *5)) (-5 *1 (-571 *4 *5)) (-4 *5 (-429 *4)))) (-2527 (*1 *2 *2 *3) (-12 (-5 *2 (-639 (-608 *5))) (-5 *3 (-1168)) (-4 *5 (-429 *4)) (-4 *4 (-845)) (-5 *1 (-571 *4 *5))))) -(-10 -7 (-15 -2527 ((-639 (-608 |#2|)) (-639 (-608 |#2|)) (-1168))) (-15 -2411 ((-608 |#2|) (-639 (-608 |#2|)))) (-15 -3763 ((-608 |#2|) (-608 |#2|) (-639 (-608 |#2|)) (-1168))) (-15 -2492 ((-639 (-608 |#2|)) (-639 (-608 |#2|)) (-639 (-608 |#2|)))) (-15 -1643 ((-639 (-608 |#2|)) (-639 |#2|) (-1168))) (IF (|has| |#1| (-554)) (-15 -2387 (|#2| |#2| (-1168))) |%noBranch|) (IF (|has| |#1| (-451)) (IF (|has| |#2| (-283)) (PROGN (-15 -3881 (|#2| |#2| (-1168))) (IF (|has| |#1| (-610 (-887 (-562)))) (IF (|has| |#1| (-881 (-562))) (IF (|has| |#2| (-625)) (IF (|has| |#2| (-1033 (-1168))) (-15 -3258 ((-583 |#2|) |#2| (-1168) (-1 (-583 |#2|) |#2| (-1168)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1168)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-1289 (((-2 (|:| |answer| (-583 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-639 |#1|) "failed") (-562) |#1| |#1|)) 172)) (-2711 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2929 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-639 (-406 |#2|))) 148)) (-2221 (((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-639 (-406 |#2|))) 145)) (-4105 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2929 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-1673 (((-2 (|:| |answer| (-583 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2929 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-2832 (((-3 (-2 (|:| -2929 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-406 |#2|)) 175)) (-4352 (((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2929 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2929 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-406 |#2|)) 178)) (-1746 (((-2 (|:| |ir| (-583 (-406 |#2|))) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|)) 84)) (-4034 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-2521 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1603 |#1|) (|:| |sol?| (-112))) (-562) |#1|) (-639 (-406 |#2|))) 152)) (-2863 (((-3 (-619 |#1| |#2|) "failed") (-619 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1603 |#1|) (|:| |sol?| (-112))) (-562) |#1|)) 137)) (-1994 (((-2 (|:| |answer| (-583 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1603 |#1|) (|:| |sol?| (-112))) (-562) |#1|)) 162)) (-1486 (((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2929 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1603 |#1|) (|:| |sol?| (-112))) (-562) |#1|) (-406 |#2|)) 183))) -(((-572 |#1| |#2|) (-10 -7 (-15 -1673 ((-2 (|:| |answer| (-583 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2929 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1994 ((-2 (|:| |answer| (-583 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1603 |#1|) (|:| |sol?| (-112))) (-562) |#1|))) (-15 -1289 ((-2 (|:| |answer| (-583 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-639 |#1|) "failed") (-562) |#1| |#1|))) (-15 -4352 ((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2929 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2929 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-406 |#2|))) (-15 -1486 ((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2929 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1603 |#1|) (|:| |sol?| (-112))) (-562) |#1|) (-406 |#2|))) (-15 -2711 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2929 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-639 (-406 |#2|)))) (-15 -2521 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1603 |#1|) (|:| |sol?| (-112))) (-562) |#1|) (-639 (-406 |#2|)))) (-15 -2832 ((-3 (-2 (|:| -2929 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-406 |#2|))) (-15 -2221 ((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-639 (-406 |#2|)))) (-15 -4105 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2929 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2863 ((-3 (-619 |#1| |#2|) "failed") (-619 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1603 |#1|) (|:| |sol?| (-112))) (-562) |#1|))) (-15 -1746 ((-2 (|:| |ir| (-583 (-406 |#2|))) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|))) (-15 -4034 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-362) (-1232 |#1|)) (T -572)) -((-4034 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1232 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-572 *5 *3)))) (-1746 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |ir| (-583 (-406 *6))) (|:| |specpart| (-406 *6)) (|:| |polypart| *6))) (-5 *1 (-572 *5 *6)) (-5 *3 (-406 *6)))) (-2863 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -1603 *4) (|:| |sol?| (-112))) (-562) *4)) (-4 *4 (-362)) (-4 *5 (-1232 *4)) (-5 *1 (-572 *4 *5)))) (-4105 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2929 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-362)) (-5 *1 (-572 *4 *2)) (-4 *2 (-1232 *4)))) (-2221 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-639 (-406 *7))) (-4 *7 (-1232 *6)) (-5 *3 (-406 *7)) (-4 *6 (-362)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *6 *7)))) (-2832 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| -2929 (-406 *6)) (|:| |coeff| (-406 *6)))) (-5 *1 (-572 *5 *6)) (-5 *3 (-406 *6)))) (-2521 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -1603 *7) (|:| |sol?| (-112))) (-562) *7)) (-5 *6 (-639 (-406 *8))) (-4 *7 (-362)) (-4 *8 (-1232 *7)) (-5 *3 (-406 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-572 *7 *8)))) (-2711 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2929 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-639 (-406 *8))) (-4 *7 (-362)) (-4 *8 (-1232 *7)) (-5 *3 (-406 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-572 *7 *8)))) (-1486 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1603 *6) (|:| |sol?| (-112))) (-562) *6)) (-4 *6 (-362)) (-4 *7 (-1232 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-406 *7)) (|:| |a0| *6)) (-2 (|:| -2929 (-406 *7)) (|:| |coeff| (-406 *7))) "failed")) (-5 *1 (-572 *6 *7)) (-5 *3 (-406 *7)))) (-4352 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2929 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-362)) (-4 *7 (-1232 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-406 *7)) (|:| |a0| *6)) (-2 (|:| -2929 (-406 *7)) (|:| |coeff| (-406 *7))) "failed")) (-5 *1 (-572 *6 *7)) (-5 *3 (-406 *7)))) (-1289 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-639 *6) "failed") (-562) *6 *6)) (-4 *6 (-362)) (-4 *7 (-1232 *6)) (-5 *2 (-2 (|:| |answer| (-583 (-406 *7))) (|:| |a0| *6))) (-5 *1 (-572 *6 *7)) (-5 *3 (-406 *7)))) (-1994 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1603 *6) (|:| |sol?| (-112))) (-562) *6)) (-4 *6 (-362)) (-4 *7 (-1232 *6)) (-5 *2 (-2 (|:| |answer| (-583 (-406 *7))) (|:| |a0| *6))) (-5 *1 (-572 *6 *7)) (-5 *3 (-406 *7)))) (-1673 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2929 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-362)) (-4 *7 (-1232 *6)) (-5 *2 (-2 (|:| |answer| (-583 (-406 *7))) (|:| |a0| *6))) (-5 *1 (-572 *6 *7)) (-5 *3 (-406 *7))))) -(-10 -7 (-15 -1673 ((-2 (|:| |answer| (-583 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2929 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1994 ((-2 (|:| |answer| (-583 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1603 |#1|) (|:| |sol?| (-112))) (-562) |#1|))) (-15 -1289 ((-2 (|:| |answer| (-583 (-406 |#2|))) (|:| |a0| |#1|)) (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-639 |#1|) "failed") (-562) |#1| |#1|))) (-15 -4352 ((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2929 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2929 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-406 |#2|))) (-15 -1486 ((-3 (-2 (|:| |answer| (-406 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2929 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1603 |#1|) (|:| |sol?| (-112))) (-562) |#1|) (-406 |#2|))) (-15 -2711 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2929 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-639 (-406 |#2|)))) (-15 -2521 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|))))))) (|:| |a0| |#1|)) "failed") (-406 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1603 |#1|) (|:| |sol?| (-112))) (-562) |#1|) (-639 (-406 |#2|)))) (-15 -2832 ((-3 (-2 (|:| -2929 (-406 |#2|)) (|:| |coeff| (-406 |#2|))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-406 |#2|))) (-15 -2221 ((-3 (-2 (|:| |mainpart| (-406 |#2|)) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| (-406 |#2|)) (|:| |logand| (-406 |#2|)))))) "failed") (-406 |#2|) (-1 |#2| |#2|) (-639 (-406 |#2|)))) (-15 -4105 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2929 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2863 ((-3 (-619 |#1| |#2|) "failed") (-619 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1603 |#1|) (|:| |sol?| (-112))) (-562) |#1|))) (-15 -1746 ((-2 (|:| |ir| (-583 (-406 |#2|))) (|:| |specpart| (-406 |#2|)) (|:| |polypart| |#2|)) (-406 |#2|) (-1 |#2| |#2|))) (-15 -4034 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-1958 (((-3 |#2| "failed") |#2| (-1168) (-1168)) 10))) -(((-573 |#1| |#2|) (-10 -7 (-15 -1958 ((-3 |#2| "failed") |#2| (-1168) (-1168)))) (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562))) (-13 (-1192) (-954) (-1131) (-29 |#1|))) (T -573)) -((-1958 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1168)) (-4 *4 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-573 *4 *2)) (-4 *2 (-13 (-1192) (-954) (-1131) (-29 *4)))))) -(-10 -7 (-15 -1958 ((-3 |#2| "failed") |#2| (-1168) (-1168)))) -((-1734 (((-685 (-1214)) $ (-1214)) 26)) (-2667 (((-685 (-547)) $ (-547)) 25)) (-3445 (((-766) $ (-128)) 27)) (-1571 (((-685 (-129)) $ (-129)) 24)) (-3746 (((-685 (-1214)) $) 12)) (-2589 (((-685 (-1213)) $) 8)) (-1617 (((-685 (-1212)) $) 10)) (-3994 (((-685 (-547)) $) 13)) (-1882 (((-685 (-546)) $) 9)) (-4320 (((-685 (-545)) $) 11)) (-2456 (((-766) $ (-128)) 7)) (-2661 (((-685 (-129)) $) 14)) (-1380 (($ $) 6))) -(((-574) (-139)) (T -574)) -NIL -(-13 (-526) (-855)) -(((-172) . T) ((-526) . T) ((-855) . T)) -((-1734 (((-685 (-1214)) $ (-1214)) NIL)) (-2667 (((-685 (-547)) $ (-547)) NIL)) (-3445 (((-766) $ (-128)) NIL)) (-1571 (((-685 (-129)) $ (-129)) NIL)) (-3746 (((-685 (-1214)) $) NIL)) (-2589 (((-685 (-1213)) $) NIL)) (-1617 (((-685 (-1212)) $) NIL)) (-3994 (((-685 (-547)) $) NIL)) (-1882 (((-685 (-546)) $) NIL)) (-4320 (((-685 (-545)) $) NIL)) (-2456 (((-766) $ (-128)) NIL)) (-2661 (((-685 (-129)) $) NIL)) (-2851 (((-112) $) NIL)) (-2648 (($ (-387)) 14) (($ (-1150)) 16)) (-4053 (((-857) $) NIL)) (-1380 (($ $) NIL))) -(((-575) (-13 (-574) (-609 (-857)) (-10 -8 (-15 -2648 ($ (-387))) (-15 -2648 ($ (-1150))) (-15 -2851 ((-112) $))))) (T -575)) -((-2648 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-575)))) (-2648 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-575)))) (-2851 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-575))))) -(-13 (-574) (-609 (-857)) (-10 -8 (-15 -2648 ($ (-387))) (-15 -2648 ($ (-1150))) (-15 -2851 ((-112) $)))) -((-4041 (((-112) $ $) NIL)) (-3462 (($) 7 T CONST)) (-3696 (((-1150) $) NIL)) (-1542 (($) 6 T CONST)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 14)) (-4235 (($) 8 T CONST)) (-1733 (((-112) $ $) 10))) -(((-576) (-13 (-1092) (-10 -8 (-15 -1542 ($) -1497) (-15 -3462 ($) -1497) (-15 -4235 ($) -1497)))) (T -576)) -((-1542 (*1 *1) (-5 *1 (-576))) (-3462 (*1 *1) (-5 *1 (-576))) (-4235 (*1 *1) (-5 *1 (-576)))) -(-13 (-1092) (-10 -8 (-15 -1542 ($) -1497) (-15 -3462 ($) -1497) (-15 -4235 ($) -1497))) -((-4041 (((-112) $ $) NIL)) (-3216 (((-685 $) (-490)) 16)) (-3696 (((-1150) $) NIL)) (-2792 (($ (-1150)) 9)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 31)) (-3477 (((-212 4 (-129)) $) 19)) (-1733 (((-112) $ $) 22))) -(((-577) (-13 (-1092) (-10 -8 (-15 -2792 ($ (-1150))) (-15 -3477 ((-212 4 (-129)) $)) (-15 -3216 ((-685 $) (-490)))))) (T -577)) -((-2792 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-577)))) (-3477 (*1 *2 *1) (-12 (-5 *2 (-212 4 (-129))) (-5 *1 (-577)))) (-3216 (*1 *2 *3) (-12 (-5 *3 (-490)) (-5 *2 (-685 (-577))) (-5 *1 (-577))))) -(-13 (-1092) (-10 -8 (-15 -2792 ($ (-1150))) (-15 -3477 ((-212 4 (-129)) $)) (-15 -3216 ((-685 $) (-490))))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-1644 (($ $ (-562)) 66)) (-1436 (((-112) $ $) NIL)) (-3329 (($) NIL T CONST)) (-3723 (($ (-1164 (-562)) (-562)) 72)) (-1810 (($ $ $) NIL)) (-1694 (((-3 $ "failed") $) 58)) (-3119 (($ $) 34)) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-1993 (((-766) $) 15)) (-4367 (((-112) $) NIL)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2685 (((-562)) 29)) (-2920 (((-562) $) 32)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4316 (($ $ (-562)) 21)) (-1762 (((-3 $ "failed") $ $) 59)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2044 (((-766) $) 16)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 61)) (-2244 (((-1148 (-562)) $) 18)) (-1345 (($ $) 23)) (-4053 (((-857) $) 86) (($ (-562)) 52) (($ $) NIL)) (-1568 (((-766)) 14)) (-3799 (((-112) $ $) NIL)) (-1406 (((-562) $ (-562)) 36)) (-2285 (($) 35 T CONST)) (-2294 (($) 19 T CONST)) (-1733 (((-112) $ $) 39)) (-1847 (($ $) 51) (($ $ $) 37)) (-1836 (($ $ $) 50)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 54) (($ $ $) 55))) -(((-578 |#1| |#2|) (-864 |#1|) (-562) (-112)) (T -578)) -NIL -(-864 |#1|) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) 21)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-3826 (((-112) $) NIL)) (-2284 (((-766)) NIL)) (-1748 (($ $ (-916)) NIL (|has| $ (-367))) (($ $) NIL)) (-1755 (((-1180 (-916) (-766)) (-562)) 47)) (-2781 (((-3 $ "failed") $ $) NIL)) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-1436 (((-112) $ $) NIL)) (-1382 (((-766)) NIL)) (-3329 (($) NIL T CONST)) (-4048 (((-3 $ "failed") $) 75)) (-3960 (($ $) 74)) (-3916 (($ (-1256 $)) 73)) (-3082 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-1810 (($ $ $) NIL)) (-1694 (((-3 $ "failed") $) 32)) (-1447 (($) NIL)) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-2787 (($) 49)) (-1844 (((-112) $) NIL)) (-2184 (($ $) NIL) (($ $ (-766)) NIL)) (-3521 (((-112) $) NIL)) (-1993 (((-828 (-916)) $) NIL) (((-916) $) NIL)) (-4367 (((-112) $) NIL)) (-2631 (($) 37 (|has| $ (-367)))) (-1775 (((-112) $) NIL (|has| $ (-367)))) (-4363 (($ $ (-916)) NIL (|has| $ (-367))) (($ $) NIL)) (-3828 (((-3 $ "failed") $) NIL)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1937 (((-1164 $) $ (-916)) NIL (|has| $ (-367))) (((-1164 $) $) 83)) (-3549 (((-916) $) 55)) (-2121 (((-1164 $) $) NIL (|has| $ (-367)))) (-1894 (((-3 (-1164 $) "failed") $ $) NIL (|has| $ (-367))) (((-1164 $) $) NIL (|has| $ (-367)))) (-3319 (($ $ (-1164 $)) NIL (|has| $ (-367)))) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3730 (($) NIL T CONST)) (-2464 (($ (-916)) 48)) (-2991 (((-112) $) 67)) (-1709 (((-1112) $) NIL)) (-3147 (($) 19 (|has| $ (-367)))) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-1753 (((-639 (-2 (|:| -1635 (-562)) (|:| -1300 (-562))))) 42)) (-1635 (((-417 $) $) NIL)) (-3548 (((-916)) 66) (((-828 (-916))) NIL)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2044 (((-766) $) NIL)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-3543 (((-3 (-766) "failed") $ $) NIL) (((-766) $) NIL)) (-4340 (((-133)) NIL)) (-4029 (($ $ (-766)) NIL) (($ $) NIL)) (-2250 (((-916) $) 65) (((-828 (-916)) $) NIL)) (-3371 (((-1164 $)) 82)) (-1653 (($) 54)) (-3861 (($) 38 (|has| $ (-367)))) (-2205 (((-683 $) (-1256 $)) NIL) (((-1256 $) $) 71)) (-4208 (((-562) $) 28)) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL)) (-4053 (((-857) $) NIL) (($ (-562)) 30) (($ $) NIL) (($ (-406 (-562))) NIL)) (-2059 (((-3 $ "failed") $) NIL) (($ $) 84)) (-1568 (((-766)) 39)) (-4291 (((-1256 $) (-916)) 77) (((-1256 $)) 76)) (-3799 (((-112) $ $) NIL)) (-3782 (((-112) $) NIL)) (-2285 (($) 22 T CONST)) (-2294 (($) 18 T CONST)) (-4144 (($ $ (-766)) NIL (|has| $ (-367))) (($ $) NIL (|has| $ (-367)))) (-3113 (($ $ (-766)) NIL) (($ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1859 (($ $ $) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) 26)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 61) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL))) -(((-579 |#1|) (-13 (-348) (-328 $) (-610 (-562))) (-916)) (T -579)) -NIL -(-13 (-348) (-328 $) (-610 (-562))) -((-1687 (((-1261) (-1150)) 10))) -(((-580) (-10 -7 (-15 -1687 ((-1261) (-1150))))) (T -580)) -((-1687 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-580))))) -(-10 -7 (-15 -1687 ((-1261) (-1150)))) -((-1841 (((-583 |#2|) (-583 |#2|)) 39)) (-3525 (((-639 |#2|) (-583 |#2|)) 41)) (-2532 ((|#2| (-583 |#2|)) 47))) -(((-581 |#1| |#2|) (-10 -7 (-15 -1841 ((-583 |#2|) (-583 |#2|))) (-15 -3525 ((-639 |#2|) (-583 |#2|))) (-15 -2532 (|#2| (-583 |#2|)))) (-13 (-451) (-1033 (-562)) (-845) (-635 (-562))) (-13 (-29 |#1|) (-1192))) (T -581)) -((-2532 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-13 (-29 *4) (-1192))) (-5 *1 (-581 *4 *2)) (-4 *4 (-13 (-451) (-1033 (-562)) (-845) (-635 (-562)))))) (-3525 (*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-13 (-29 *4) (-1192))) (-4 *4 (-13 (-451) (-1033 (-562)) (-845) (-635 (-562)))) (-5 *2 (-639 *5)) (-5 *1 (-581 *4 *5)))) (-1841 (*1 *2 *2) (-12 (-5 *2 (-583 *4)) (-4 *4 (-13 (-29 *3) (-1192))) (-4 *3 (-13 (-451) (-1033 (-562)) (-845) (-635 (-562)))) (-5 *1 (-581 *3 *4))))) -(-10 -7 (-15 -1841 ((-583 |#2|) (-583 |#2|))) (-15 -3525 ((-639 |#2|) (-583 |#2|))) (-15 -2532 (|#2| (-583 |#2|)))) -((-4152 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2929 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2929 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)) 30))) -(((-582 |#1| |#2|) (-10 -7 (-15 -4152 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|))) (-15 -4152 ((-3 (-2 (|:| -2929 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2929 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4152 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4152 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-362) (-362)) (T -582)) -((-4152 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-362)) (-4 *6 (-362)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-582 *5 *6)))) (-4152 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-362)) (-4 *2 (-362)) (-5 *1 (-582 *5 *2)))) (-4152 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2929 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-362)) (-4 *6 (-362)) (-5 *2 (-2 (|:| -2929 *6) (|:| |coeff| *6))) (-5 *1 (-582 *5 *6)))) (-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-362)) (-4 *6 (-362)) (-5 *2 (-583 *6)) (-5 *1 (-582 *5 *6))))) -(-10 -7 (-15 -4152 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|))) (-15 -4152 ((-3 (-2 (|:| -2929 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2929 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4152 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4152 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) 69)) (-3960 ((|#1| $) NIL)) (-2929 ((|#1| $) 26)) (-4099 (((-639 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-3187 (($ |#1| (-639 (-2 (|:| |scalar| (-406 (-562))) (|:| |coeff| (-1164 |#1|)) (|:| |logand| (-1164 |#1|)))) (-639 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-2312 (((-639 (-2 (|:| |scalar| (-406 (-562))) (|:| |coeff| (-1164 |#1|)) (|:| |logand| (-1164 |#1|)))) $) 27)) (-3696 (((-1150) $) NIL)) (-1529 (($ |#1| |#1|) 33) (($ |#1| (-1168)) 44 (|has| |#1| (-1033 (-1168))))) (-1709 (((-1112) $) NIL)) (-3539 (((-112) $) 30)) (-4029 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1168)) 82 (|has| |#1| (-895 (-1168))))) (-4053 (((-857) $) 96) (($ |#1|) 25)) (-2285 (($) 16 T CONST)) (-1733 (((-112) $ $) NIL)) (-1847 (($ $) 15) (($ $ $) NIL)) (-1836 (($ $ $) 78)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 14) (($ (-406 (-562)) $) 36) (($ $ (-406 (-562))) NIL))) -(((-583 |#1|) (-13 (-712 (-406 (-562))) (-1033 |#1|) (-10 -8 (-15 -3187 ($ |#1| (-639 (-2 (|:| |scalar| (-406 (-562))) (|:| |coeff| (-1164 |#1|)) (|:| |logand| (-1164 |#1|)))) (-639 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2929 (|#1| $)) (-15 -2312 ((-639 (-2 (|:| |scalar| (-406 (-562))) (|:| |coeff| (-1164 |#1|)) (|:| |logand| (-1164 |#1|)))) $)) (-15 -4099 ((-639 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3539 ((-112) $)) (-15 -1529 ($ |#1| |#1|)) (-15 -4029 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-895 (-1168))) (-15 -4029 (|#1| $ (-1168))) |%noBranch|) (IF (|has| |#1| (-1033 (-1168))) (-15 -1529 ($ |#1| (-1168))) |%noBranch|))) (-362)) (T -583)) -((-3187 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-639 (-2 (|:| |scalar| (-406 (-562))) (|:| |coeff| (-1164 *2)) (|:| |logand| (-1164 *2))))) (-5 *4 (-639 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-362)) (-5 *1 (-583 *2)))) (-2929 (*1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-362)))) (-2312 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| |scalar| (-406 (-562))) (|:| |coeff| (-1164 *3)) (|:| |logand| (-1164 *3))))) (-5 *1 (-583 *3)) (-4 *3 (-362)))) (-4099 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-583 *3)) (-4 *3 (-362)))) (-3539 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-583 *3)) (-4 *3 (-362)))) (-1529 (*1 *1 *2 *2) (-12 (-5 *1 (-583 *2)) (-4 *2 (-362)))) (-4029 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-583 *2)) (-4 *2 (-362)))) (-4029 (*1 *2 *1 *3) (-12 (-4 *2 (-362)) (-4 *2 (-895 *3)) (-5 *1 (-583 *2)) (-5 *3 (-1168)))) (-1529 (*1 *1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *1 (-583 *2)) (-4 *2 (-1033 *3)) (-4 *2 (-362))))) -(-13 (-712 (-406 (-562))) (-1033 |#1|) (-10 -8 (-15 -3187 ($ |#1| (-639 (-2 (|:| |scalar| (-406 (-562))) (|:| |coeff| (-1164 |#1|)) (|:| |logand| (-1164 |#1|)))) (-639 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2929 (|#1| $)) (-15 -2312 ((-639 (-2 (|:| |scalar| (-406 (-562))) (|:| |coeff| (-1164 |#1|)) (|:| |logand| (-1164 |#1|)))) $)) (-15 -4099 ((-639 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3539 ((-112) $)) (-15 -1529 ($ |#1| |#1|)) (-15 -4029 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-895 (-1168))) (-15 -4029 (|#1| $ (-1168))) |%noBranch|) (IF (|has| |#1| (-1033 (-1168))) (-15 -1529 ($ |#1| (-1168))) |%noBranch|))) -((-2897 (((-112) |#1|) 16)) (-1392 (((-3 |#1| "failed") |#1|) 14)) (-2308 (((-2 (|:| -3240 |#1|) (|:| -1300 (-766))) |#1|) 30) (((-3 |#1| "failed") |#1| (-766)) 18)) (-2579 (((-112) |#1| (-766)) 19)) (-2223 ((|#1| |#1|) 31)) (-2293 ((|#1| |#1| (-766)) 33))) -(((-584 |#1|) (-10 -7 (-15 -2579 ((-112) |#1| (-766))) (-15 -2308 ((-3 |#1| "failed") |#1| (-766))) (-15 -2308 ((-2 (|:| -3240 |#1|) (|:| -1300 (-766))) |#1|)) (-15 -2293 (|#1| |#1| (-766))) (-15 -2897 ((-112) |#1|)) (-15 -1392 ((-3 |#1| "failed") |#1|)) (-15 -2223 (|#1| |#1|))) (-544)) (T -584)) -((-2223 (*1 *2 *2) (-12 (-5 *1 (-584 *2)) (-4 *2 (-544)))) (-1392 (*1 *2 *2) (|partial| -12 (-5 *1 (-584 *2)) (-4 *2 (-544)))) (-2897 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-584 *3)) (-4 *3 (-544)))) (-2293 (*1 *2 *2 *3) (-12 (-5 *3 (-766)) (-5 *1 (-584 *2)) (-4 *2 (-544)))) (-2308 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3240 *3) (|:| -1300 (-766)))) (-5 *1 (-584 *3)) (-4 *3 (-544)))) (-2308 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-766)) (-5 *1 (-584 *2)) (-4 *2 (-544)))) (-2579 (*1 *2 *3 *4) (-12 (-5 *4 (-766)) (-5 *2 (-112)) (-5 *1 (-584 *3)) (-4 *3 (-544))))) -(-10 -7 (-15 -2579 ((-112) |#1| (-766))) (-15 -2308 ((-3 |#1| "failed") |#1| (-766))) (-15 -2308 ((-2 (|:| -3240 |#1|) (|:| -1300 (-766))) |#1|)) (-15 -2293 (|#1| |#1| (-766))) (-15 -2897 ((-112) |#1|)) (-15 -1392 ((-3 |#1| "failed") |#1|)) (-15 -2223 (|#1| |#1|))) -((-4047 (((-1164 |#1|) (-916)) 26))) -(((-585 |#1|) (-10 -7 (-15 -4047 ((-1164 |#1|) (-916)))) (-348)) (T -585)) -((-4047 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1164 *4)) (-5 *1 (-585 *4)) (-4 *4 (-348))))) -(-10 -7 (-15 -4047 ((-1164 |#1|) (-916)))) -((-1841 (((-583 (-406 (-947 |#1|))) (-583 (-406 (-947 |#1|)))) 27)) (-3081 (((-3 (-315 |#1|) (-639 (-315 |#1|))) (-406 (-947 |#1|)) (-1168)) 34 (|has| |#1| (-146)))) (-3525 (((-639 (-315 |#1|)) (-583 (-406 (-947 |#1|)))) 19)) (-1788 (((-315 |#1|) (-406 (-947 |#1|)) (-1168)) 32 (|has| |#1| (-146)))) (-2532 (((-315 |#1|) (-583 (-406 (-947 |#1|)))) 21))) -(((-586 |#1|) (-10 -7 (-15 -1841 ((-583 (-406 (-947 |#1|))) (-583 (-406 (-947 |#1|))))) (-15 -3525 ((-639 (-315 |#1|)) (-583 (-406 (-947 |#1|))))) (-15 -2532 ((-315 |#1|) (-583 (-406 (-947 |#1|))))) (IF (|has| |#1| (-146)) (PROGN (-15 -3081 ((-3 (-315 |#1|) (-639 (-315 |#1|))) (-406 (-947 |#1|)) (-1168))) (-15 -1788 ((-315 |#1|) (-406 (-947 |#1|)) (-1168)))) |%noBranch|)) (-13 (-451) (-1033 (-562)) (-845) (-635 (-562)))) (T -586)) -((-1788 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-1168)) (-4 *5 (-146)) (-4 *5 (-13 (-451) (-1033 (-562)) (-845) (-635 (-562)))) (-5 *2 (-315 *5)) (-5 *1 (-586 *5)))) (-3081 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-1168)) (-4 *5 (-146)) (-4 *5 (-13 (-451) (-1033 (-562)) (-845) (-635 (-562)))) (-5 *2 (-3 (-315 *5) (-639 (-315 *5)))) (-5 *1 (-586 *5)))) (-2532 (*1 *2 *3) (-12 (-5 *3 (-583 (-406 (-947 *4)))) (-4 *4 (-13 (-451) (-1033 (-562)) (-845) (-635 (-562)))) (-5 *2 (-315 *4)) (-5 *1 (-586 *4)))) (-3525 (*1 *2 *3) (-12 (-5 *3 (-583 (-406 (-947 *4)))) (-4 *4 (-13 (-451) (-1033 (-562)) (-845) (-635 (-562)))) (-5 *2 (-639 (-315 *4))) (-5 *1 (-586 *4)))) (-1841 (*1 *2 *2) (-12 (-5 *2 (-583 (-406 (-947 *3)))) (-4 *3 (-13 (-451) (-1033 (-562)) (-845) (-635 (-562)))) (-5 *1 (-586 *3))))) -(-10 -7 (-15 -1841 ((-583 (-406 (-947 |#1|))) (-583 (-406 (-947 |#1|))))) (-15 -3525 ((-639 (-315 |#1|)) (-583 (-406 (-947 |#1|))))) (-15 -2532 ((-315 |#1|) (-583 (-406 (-947 |#1|))))) (IF (|has| |#1| (-146)) (PROGN (-15 -3081 ((-3 (-315 |#1|) (-639 (-315 |#1|))) (-406 (-947 |#1|)) (-1168))) (-15 -1788 ((-315 |#1|) (-406 (-947 |#1|)) (-1168)))) |%noBranch|)) -((-2903 (((-639 (-683 (-562))) (-639 (-562)) (-639 (-900 (-562)))) 45) (((-639 (-683 (-562))) (-639 (-562))) 46) (((-683 (-562)) (-639 (-562)) (-900 (-562))) 41)) (-1924 (((-766) (-639 (-562))) 39))) -(((-587) (-10 -7 (-15 -1924 ((-766) (-639 (-562)))) (-15 -2903 ((-683 (-562)) (-639 (-562)) (-900 (-562)))) (-15 -2903 ((-639 (-683 (-562))) (-639 (-562)))) (-15 -2903 ((-639 (-683 (-562))) (-639 (-562)) (-639 (-900 (-562))))))) (T -587)) -((-2903 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-562))) (-5 *4 (-639 (-900 (-562)))) (-5 *2 (-639 (-683 (-562)))) (-5 *1 (-587)))) (-2903 (*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-639 (-683 (-562)))) (-5 *1 (-587)))) (-2903 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-562))) (-5 *4 (-900 (-562))) (-5 *2 (-683 (-562))) (-5 *1 (-587)))) (-1924 (*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-766)) (-5 *1 (-587))))) -(-10 -7 (-15 -1924 ((-766) (-639 (-562)))) (-15 -2903 ((-683 (-562)) (-639 (-562)) (-900 (-562)))) (-15 -2903 ((-639 (-683 (-562))) (-639 (-562)))) (-15 -2903 ((-639 (-683 (-562))) (-639 (-562)) (-639 (-900 (-562)))))) -((-3437 (((-639 |#5|) |#5| (-112)) 72)) (-2914 (((-112) |#5| (-639 |#5|)) 30))) -(((-588 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3437 ((-639 |#5|) |#5| (-112))) (-15 -2914 ((-112) |#5| (-639 |#5|)))) (-13 (-306) (-146)) (-788) (-845) (-1058 |#1| |#2| |#3|) (-1101 |#1| |#2| |#3| |#4|)) (T -588)) -((-2914 (*1 *2 *3 *4) (-12 (-5 *4 (-639 *3)) (-4 *3 (-1101 *5 *6 *7 *8)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *8 (-1058 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-588 *5 *6 *7 *8 *3)))) (-3437 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *8 (-1058 *5 *6 *7)) (-5 *2 (-639 *3)) (-5 *1 (-588 *5 *6 *7 *8 *3)) (-4 *3 (-1101 *5 *6 *7 *8))))) -(-10 -7 (-15 -3437 ((-639 |#5|) |#5| (-112))) (-15 -2914 ((-112) |#5| (-639 |#5|)))) -((-4041 (((-112) $ $) NIL)) (-4330 (((-1127) $) 11)) (-4318 (((-1127) $) 9)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 19) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-589) (-13 (-1075) (-10 -8 (-15 -4318 ((-1127) $)) (-15 -4330 ((-1127) $))))) (T -589)) -((-4318 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-589)))) (-4330 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-589))))) -(-13 (-1075) (-10 -8 (-15 -4318 ((-1127) $)) (-15 -4330 ((-1127) $)))) -((-4041 (((-112) $ $) NIL (|has| (-143) (-1092)))) (-2629 (($ $) 34)) (-2033 (($ $) NIL)) (-3904 (($ $ (-143)) NIL) (($ $ (-140)) NIL)) (-3655 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4404)))) (-3824 (((-112) $ $) 51)) (-3801 (((-112) $ $ (-562)) 46)) (-1841 (((-639 $) $ (-143)) 59) (((-639 $) $ (-140)) 60)) (-1706 (((-112) (-1 (-112) (-143) (-143)) $) NIL) (((-112) $) NIL (|has| (-143) (-845)))) (-3737 (($ (-1 (-112) (-143) (-143)) $) NIL (|has| $ (-6 -4404))) (($ $) NIL (-12 (|has| $ (-6 -4404)) (|has| (-143) (-845))))) (-1395 (($ (-1 (-112) (-143) (-143)) $) NIL) (($ $) NIL (|has| (-143) (-845)))) (-3735 (((-112) $ (-766)) NIL)) (-4200 (((-143) $ (-562) (-143)) 45 (|has| $ (-6 -4404))) (((-143) $ (-1223 (-562)) (-143)) NIL (|has| $ (-6 -4404)))) (-3556 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4403)))) (-3329 (($) NIL T CONST)) (-1967 (($ $ (-143)) 63) (($ $ (-140)) 64)) (-2673 (($ $) NIL (|has| $ (-6 -4404)))) (-2676 (($ $) NIL)) (-1348 (($ $ (-1223 (-562)) $) 44)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-143) (-1092))))) (-1475 (($ (-143) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-143) (-1092)))) (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4403)))) (-1954 (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) NIL (-12 (|has| $ (-6 -4403)) (|has| (-143) (-1092)))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) NIL (|has| $ (-6 -4403))) (((-143) (-1 (-143) (-143) (-143)) $) NIL (|has| $ (-6 -4403)))) (-1507 (((-143) $ (-562) (-143)) NIL (|has| $ (-6 -4404)))) (-1420 (((-143) $ (-562)) NIL)) (-3847 (((-112) $ $) 71)) (-4265 (((-562) (-1 (-112) (-143)) $) NIL) (((-562) (-143) $) NIL (|has| (-143) (-1092))) (((-562) (-143) $ (-562)) 48 (|has| (-143) (-1092))) (((-562) $ $ (-562)) 47) (((-562) (-140) $ (-562)) 50)) (-1720 (((-639 (-143)) $) NIL (|has| $ (-6 -4403)))) (-1458 (($ (-766) (-143)) 9)) (-4172 (((-112) $ (-766)) NIL)) (-1849 (((-562) $) 28 (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (|has| (-143) (-845)))) (-4103 (($ (-1 (-112) (-143) (-143)) $ $) NIL) (($ $ $) NIL (|has| (-143) (-845)))) (-2123 (((-639 (-143)) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) (-143) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-143) (-1092))))) (-1929 (((-562) $) 42 (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| (-143) (-845)))) (-4264 (((-112) $ $ (-143)) 72)) (-3789 (((-766) $ $ (-143)) 69)) (-1491 (($ (-1 (-143) (-143)) $) 33 (|has| $ (-6 -4404)))) (-4152 (($ (-1 (-143) (-143)) $) NIL) (($ (-1 (-143) (-143) (-143)) $ $) NIL)) (-4145 (($ $) 37)) (-3249 (($ $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-1979 (($ $ (-143)) 61) (($ $ (-140)) 62)) (-3696 (((-1150) $) 38 (|has| (-143) (-1092)))) (-3295 (($ (-143) $ (-562)) NIL) (($ $ $ (-562)) 23)) (-3336 (((-639 (-562)) $) NIL)) (-1987 (((-112) (-562) $) NIL)) (-1709 (((-562) $) 68) (((-1112) $) NIL (|has| (-143) (-1092)))) (-1421 (((-143) $) NIL (|has| (-562) (-845)))) (-1963 (((-3 (-143) "failed") (-1 (-112) (-143)) $) NIL)) (-3510 (($ $ (-143)) NIL (|has| $ (-6 -4404)))) (-3008 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 (-143)))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092)))) (($ $ (-293 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092)))) (($ $ (-143) (-143)) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092)))) (($ $ (-639 (-143)) (-639 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092))))) (-1452 (((-112) $ $) NIL)) (-2716 (((-112) (-143) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-143) (-1092))))) (-2366 (((-639 (-143)) $) NIL)) (-3087 (((-112) $) 12)) (-1663 (($) 10)) (-2343 (((-143) $ (-562) (-143)) NIL) (((-143) $ (-562)) 52) (($ $ (-1223 (-562))) 21) (($ $ $) NIL)) (-2880 (($ $ (-562)) NIL) (($ $ (-1223 (-562))) NIL)) (-1723 (((-766) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4403))) (((-766) (-143) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-143) (-1092))))) (-2694 (($ $ $ (-562)) 65 (|has| $ (-6 -4404)))) (-4220 (($ $) 17)) (-4208 (((-535) $) NIL (|has| (-143) (-610 (-535))))) (-4064 (($ (-639 (-143))) NIL)) (-2767 (($ $ (-143)) NIL) (($ (-143) $) NIL) (($ $ $) 16) (($ (-639 $)) 66)) (-4053 (($ (-143)) NIL) (((-857) $) 27 (|has| (-143) (-609 (-857))))) (-2879 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4403)))) (-1798 (((-112) $ $) NIL (|has| (-143) (-845)))) (-1771 (((-112) $ $) NIL (|has| (-143) (-845)))) (-1733 (((-112) $ $) 14 (|has| (-143) (-1092)))) (-1785 (((-112) $ $) NIL (|has| (-143) (-845)))) (-1761 (((-112) $ $) 15 (|has| (-143) (-845)))) (-3492 (((-766) $) 13 (|has| $ (-6 -4403))))) -(((-590 |#1|) (-13 (-1136) (-10 -8 (-15 -1709 ((-562) $)))) (-562)) (T -590)) -((-1709 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-590 *3)) (-14 *3 *2)))) -(-13 (-1136) (-10 -8 (-15 -1709 ((-562) $)))) -((-1625 (((-2 (|:| |num| |#4|) (|:| |den| (-562))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-562))) |#4| |#2| (-1086 |#4|)) 32))) -(((-591 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1625 ((-2 (|:| |num| |#4|) (|:| |den| (-562))) |#4| |#2| (-1086 |#4|))) (-15 -1625 ((-2 (|:| |num| |#4|) (|:| |den| (-562))) |#4| |#2|))) (-788) (-845) (-554) (-944 |#3| |#1| |#2|)) (T -591)) -((-1625 (*1 *2 *3 *4) (-12 (-4 *5 (-788)) (-4 *4 (-845)) (-4 *6 (-554)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-562)))) (-5 *1 (-591 *5 *4 *6 *3)) (-4 *3 (-944 *6 *5 *4)))) (-1625 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1086 *3)) (-4 *3 (-944 *7 *6 *4)) (-4 *6 (-788)) (-4 *4 (-845)) (-4 *7 (-554)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-562)))) (-5 *1 (-591 *6 *4 *7 *3))))) -(-10 -7 (-15 -1625 ((-2 (|:| |num| |#4|) (|:| |den| (-562))) |#4| |#2| (-1086 |#4|))) (-15 -1625 ((-2 (|:| |num| |#4|) (|:| |den| (-562))) |#4| |#2|))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) 63)) (-1401 (((-639 (-1074)) $) NIL)) (-2443 (((-1168) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-1965 (($ $) NIL (|has| |#1| (-554)))) (-4102 (((-112) $) NIL (|has| |#1| (-554)))) (-1302 (($ $ (-562)) 54) (($ $ (-562) (-562)) 55)) (-4196 (((-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|))) $) 60)) (-4045 (($ $) 99)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3369 (((-857) (-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|))) (-1021 (-838 (-562))) (-1168) |#1| (-406 (-562))) 223)) (-1503 (($ (-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|)))) 34)) (-3329 (($) NIL T CONST)) (-1600 (($ $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-2965 (((-112) $) NIL)) (-1993 (((-562) $) 58) (((-562) $ (-562)) 59)) (-4367 (((-112) $) NIL)) (-3662 (($ $ (-916)) 76)) (-2064 (($ (-1 |#1| (-562)) $) 73)) (-2833 (((-112) $) 25)) (-1377 (($ |#1| (-562)) 22) (($ $ (-1074) (-562)) NIL) (($ $ (-639 (-1074)) (-639 (-562))) NIL)) (-4152 (($ (-1 |#1| |#1|) $) 67)) (-1889 (($ (-1021 (-838 (-562))) (-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|)))) 13)) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-3696 (((-1150) $) NIL)) (-3081 (($ $) 149 (|has| |#1| (-38 (-406 (-562)))))) (-3577 (((-3 $ "failed") $ $ (-112)) 98)) (-3154 (($ $ $) 107)) (-1709 (((-1112) $) NIL)) (-1988 (((-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|))) $) 15)) (-3095 (((-1021 (-838 (-562))) $) 14)) (-4316 (($ $ (-562)) 45)) (-1762 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-1433 (((-1148 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-562)))))) (-2343 ((|#1| $ (-562)) 57) (($ $ $) NIL (|has| (-562) (-1104)))) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168)) NIL (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-766)) NIL (|has| |#1| (-15 * (|#1| (-562) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (-2250 (((-562) $) NIL)) (-1345 (($ $) 46)) (-4053 (((-857) $) NIL) (($ (-562)) 28) (($ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $) NIL (|has| |#1| (-554))) (($ |#1|) 27 (|has| |#1| (-171)))) (-2266 ((|#1| $ (-562)) 56)) (-2059 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-1568 (((-766)) 37)) (-2328 ((|#1| $) NIL)) (-1667 (($ $) 185 (|has| |#1| (-38 (-406 (-562)))))) (-3207 (($ $) 157 (|has| |#1| (-38 (-406 (-562)))))) (-2160 (($ $) 189 (|has| |#1| (-38 (-406 (-562)))))) (-1797 (($ $) 162 (|has| |#1| (-38 (-406 (-562)))))) (-2305 (($ $) 188 (|has| |#1| (-38 (-406 (-562)))))) (-1891 (($ $) 161 (|has| |#1| (-38 (-406 (-562)))))) (-2052 (($ $ (-406 (-562))) 165 (|has| |#1| (-38 (-406 (-562)))))) (-2922 (($ $ |#1|) 145 (|has| |#1| (-38 (-406 (-562)))))) (-4362 (($ $) 191 (|has| |#1| (-38 (-406 (-562)))))) (-3588 (($ $) 148 (|has| |#1| (-38 (-406 (-562)))))) (-2206 (($ $) 190 (|has| |#1| (-38 (-406 (-562)))))) (-1868 (($ $) 163 (|has| |#1| (-38 (-406 (-562)))))) (-2134 (($ $) 186 (|has| |#1| (-38 (-406 (-562)))))) (-2971 (($ $) 159 (|has| |#1| (-38 (-406 (-562)))))) (-4129 (($ $) 187 (|has| |#1| (-38 (-406 (-562)))))) (-3897 (($ $) 160 (|has| |#1| (-38 (-406 (-562)))))) (-1290 (($ $) 196 (|has| |#1| (-38 (-406 (-562)))))) (-1546 (($ $) 172 (|has| |#1| (-38 (-406 (-562)))))) (-3132 (($ $) 193 (|has| |#1| (-38 (-406 (-562)))))) (-1826 (($ $) 167 (|has| |#1| (-38 (-406 (-562)))))) (-3273 (($ $) 200 (|has| |#1| (-38 (-406 (-562)))))) (-3030 (($ $) 176 (|has| |#1| (-38 (-406 (-562)))))) (-3224 (($ $) 202 (|has| |#1| (-38 (-406 (-562)))))) (-2157 (($ $) 178 (|has| |#1| (-38 (-406 (-562)))))) (-2413 (($ $) 198 (|has| |#1| (-38 (-406 (-562)))))) (-3568 (($ $) 174 (|has| |#1| (-38 (-406 (-562)))))) (-3287 (($ $) 195 (|has| |#1| (-38 (-406 (-562)))))) (-2095 (($ $) 170 (|has| |#1| (-38 (-406 (-562)))))) (-3799 (((-112) $ $) NIL (|has| |#1| (-554)))) (-1406 ((|#1| $ (-562)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-562)))) (|has| |#1| (-15 -4053 (|#1| (-1168))))))) (-2285 (($) 29 T CONST)) (-2294 (($) 38 T CONST)) (-3113 (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168)) NIL (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-766)) NIL (|has| |#1| (-15 * (|#1| (-562) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (-1733 (((-112) $ $) 65)) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1847 (($ $) 84) (($ $ $) 64)) (-1836 (($ $ $) 81)) (** (($ $ (-916)) NIL) (($ $ (-766)) 102)) (* (($ (-916) $) 89) (($ (-766) $) 87) (($ (-562) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 114) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))))) -(((-592 |#1|) (-13 (-1234 |#1| (-562)) (-10 -8 (-15 -1889 ($ (-1021 (-838 (-562))) (-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|))))) (-15 -3095 ((-1021 (-838 (-562))) $)) (-15 -1988 ((-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|))) $)) (-15 -1503 ($ (-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|))))) (-15 -2833 ((-112) $)) (-15 -2064 ($ (-1 |#1| (-562)) $)) (-15 -3577 ((-3 $ "failed") $ $ (-112))) (-15 -4045 ($ $)) (-15 -3154 ($ $ $)) (-15 -3369 ((-857) (-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|))) (-1021 (-838 (-562))) (-1168) |#1| (-406 (-562)))) (IF (|has| |#1| (-38 (-406 (-562)))) (PROGN (-15 -3081 ($ $)) (-15 -2922 ($ $ |#1|)) (-15 -2052 ($ $ (-406 (-562)))) (-15 -3588 ($ $)) (-15 -4362 ($ $)) (-15 -1797 ($ $)) (-15 -3897 ($ $)) (-15 -3207 ($ $)) (-15 -2971 ($ $)) (-15 -1891 ($ $)) (-15 -1868 ($ $)) (-15 -1826 ($ $)) (-15 -2095 ($ $)) (-15 -1546 ($ $)) (-15 -3568 ($ $)) (-15 -3030 ($ $)) (-15 -2157 ($ $)) (-15 -2160 ($ $)) (-15 -4129 ($ $)) (-15 -1667 ($ $)) (-15 -2134 ($ $)) (-15 -2305 ($ $)) (-15 -2206 ($ $)) (-15 -3132 ($ $)) (-15 -3287 ($ $)) (-15 -1290 ($ $)) (-15 -2413 ($ $)) (-15 -3273 ($ $)) (-15 -3224 ($ $))) |%noBranch|))) (-1044)) (T -592)) -((-2833 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-1044)))) (-1889 (*1 *1 *2 *3) (-12 (-5 *2 (-1021 (-838 (-562)))) (-5 *3 (-1148 (-2 (|:| |k| (-562)) (|:| |c| *4)))) (-4 *4 (-1044)) (-5 *1 (-592 *4)))) (-3095 (*1 *2 *1) (-12 (-5 *2 (-1021 (-838 (-562)))) (-5 *1 (-592 *3)) (-4 *3 (-1044)))) (-1988 (*1 *2 *1) (-12 (-5 *2 (-1148 (-2 (|:| |k| (-562)) (|:| |c| *3)))) (-5 *1 (-592 *3)) (-4 *3 (-1044)))) (-1503 (*1 *1 *2) (-12 (-5 *2 (-1148 (-2 (|:| |k| (-562)) (|:| |c| *3)))) (-4 *3 (-1044)) (-5 *1 (-592 *3)))) (-2064 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-562))) (-4 *3 (-1044)) (-5 *1 (-592 *3)))) (-3577 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-1044)))) (-4045 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1044)))) (-3154 (*1 *1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1044)))) (-3369 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1148 (-2 (|:| |k| (-562)) (|:| |c| *6)))) (-5 *4 (-1021 (-838 (-562)))) (-5 *5 (-1168)) (-5 *7 (-406 (-562))) (-4 *6 (-1044)) (-5 *2 (-857)) (-5 *1 (-592 *6)))) (-3081 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-2922 (*1 *1 *1 *2) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-2052 (*1 *1 *1 *2) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-592 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1044)))) (-3588 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-4362 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-1797 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-3897 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-3207 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-2971 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-1891 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-1868 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-1826 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-2095 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-1546 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-3568 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-3030 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-2157 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-2160 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-4129 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-1667 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-2134 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-2305 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-2206 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-3132 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-3287 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-1290 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-2413 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-3273 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) (-3224 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) -(-13 (-1234 |#1| (-562)) (-10 -8 (-15 -1889 ($ (-1021 (-838 (-562))) (-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|))))) (-15 -3095 ((-1021 (-838 (-562))) $)) (-15 -1988 ((-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|))) $)) (-15 -1503 ($ (-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|))))) (-15 -2833 ((-112) $)) (-15 -2064 ($ (-1 |#1| (-562)) $)) (-15 -3577 ((-3 $ "failed") $ $ (-112))) (-15 -4045 ($ $)) (-15 -3154 ($ $ $)) (-15 -3369 ((-857) (-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|))) (-1021 (-838 (-562))) (-1168) |#1| (-406 (-562)))) (IF (|has| |#1| (-38 (-406 (-562)))) (PROGN (-15 -3081 ($ $)) (-15 -2922 ($ $ |#1|)) (-15 -2052 ($ $ (-406 (-562)))) (-15 -3588 ($ $)) (-15 -4362 ($ $)) (-15 -1797 ($ $)) (-15 -3897 ($ $)) (-15 -3207 ($ $)) (-15 -2971 ($ $)) (-15 -1891 ($ $)) (-15 -1868 ($ $)) (-15 -1826 ($ $)) (-15 -2095 ($ $)) (-15 -1546 ($ $)) (-15 -3568 ($ $)) (-15 -3030 ($ $)) (-15 -2157 ($ $)) (-15 -2160 ($ $)) (-15 -4129 ($ $)) (-15 -1667 ($ $)) (-15 -2134 ($ $)) (-15 -2305 ($ $)) (-15 -2206 ($ $)) (-15 -3132 ($ $)) (-15 -3287 ($ $)) (-15 -1290 ($ $)) (-15 -2413 ($ $)) (-15 -3273 ($ $)) (-15 -3224 ($ $))) |%noBranch|))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-1965 (($ $) NIL (|has| |#1| (-554)))) (-4102 (((-112) $) NIL (|has| |#1| (-554)))) (-2781 (((-3 $ "failed") $ $) NIL)) (-1503 (($ (-1148 |#1|)) 9)) (-3329 (($) NIL T CONST)) (-1694 (((-3 $ "failed") $) 42)) (-2965 (((-112) $) 52)) (-1993 (((-766) $) 55) (((-766) $ (-766)) 54)) (-4367 (((-112) $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1762 (((-3 $ "failed") $ $) 44 (|has| |#1| (-554)))) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL (|has| |#1| (-554)))) (-3969 (((-1148 |#1|) $) 23)) (-1568 (((-766)) 51)) (-3799 (((-112) $ $) NIL (|has| |#1| (-554)))) (-2285 (($) 10 T CONST)) (-2294 (($) 14 T CONST)) (-1733 (((-112) $ $) 22)) (-1847 (($ $) 30) (($ $ $) 16)) (-1836 (($ $ $) 25)) (** (($ $ (-916)) NIL) (($ $ (-766)) 49)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-562)) 36))) -(((-593 |#1|) (-13 (-1044) (-10 -8 (-15 -3969 ((-1148 |#1|) $)) (-15 -1503 ($ (-1148 |#1|))) (-15 -2965 ((-112) $)) (-15 -1993 ((-766) $)) (-15 -1993 ((-766) $ (-766))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-562))) (IF (|has| |#1| (-554)) (-6 (-554)) |%noBranch|))) (-1044)) (T -593)) -((-3969 (*1 *2 *1) (-12 (-5 *2 (-1148 *3)) (-5 *1 (-593 *3)) (-4 *3 (-1044)))) (-1503 (*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-593 *3)))) (-2965 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-593 *3)) (-4 *3 (-1044)))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-593 *3)) (-4 *3 (-1044)))) (-1993 (*1 *2 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-593 *3)) (-4 *3 (-1044)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1044)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1044)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-593 *3)) (-4 *3 (-1044))))) -(-13 (-1044) (-10 -8 (-15 -3969 ((-1148 |#1|) $)) (-15 -1503 ($ (-1148 |#1|))) (-15 -2965 ((-112) $)) (-15 -1993 ((-766) $)) (-15 -1993 ((-766) $ (-766))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-562))) (IF (|has| |#1| (-554)) (-6 (-554)) |%noBranch|))) -((-4152 (((-597 |#2|) (-1 |#2| |#1|) (-597 |#1|)) 15))) -(((-594 |#1| |#2|) (-10 -7 (-15 -4152 ((-597 |#2|) (-1 |#2| |#1|) (-597 |#1|)))) (-1207) (-1207)) (T -594)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-597 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-597 *6)) (-5 *1 (-594 *5 *6))))) -(-10 -7 (-15 -4152 ((-597 |#2|) (-1 |#2| |#1|) (-597 |#1|)))) -((-4152 (((-1148 |#3|) (-1 |#3| |#1| |#2|) (-597 |#1|) (-1148 |#2|)) 20) (((-1148 |#3|) (-1 |#3| |#1| |#2|) (-1148 |#1|) (-597 |#2|)) 19) (((-597 |#3|) (-1 |#3| |#1| |#2|) (-597 |#1|) (-597 |#2|)) 18))) -(((-595 |#1| |#2| |#3|) (-10 -7 (-15 -4152 ((-597 |#3|) (-1 |#3| |#1| |#2|) (-597 |#1|) (-597 |#2|))) (-15 -4152 ((-1148 |#3|) (-1 |#3| |#1| |#2|) (-1148 |#1|) (-597 |#2|))) (-15 -4152 ((-1148 |#3|) (-1 |#3| |#1| |#2|) (-597 |#1|) (-1148 |#2|)))) (-1207) (-1207) (-1207)) (T -595)) -((-4152 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-597 *6)) (-5 *5 (-1148 *7)) (-4 *6 (-1207)) (-4 *7 (-1207)) (-4 *8 (-1207)) (-5 *2 (-1148 *8)) (-5 *1 (-595 *6 *7 *8)))) (-4152 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1148 *6)) (-5 *5 (-597 *7)) (-4 *6 (-1207)) (-4 *7 (-1207)) (-4 *8 (-1207)) (-5 *2 (-1148 *8)) (-5 *1 (-595 *6 *7 *8)))) (-4152 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-597 *6)) (-5 *5 (-597 *7)) (-4 *6 (-1207)) (-4 *7 (-1207)) (-4 *8 (-1207)) (-5 *2 (-597 *8)) (-5 *1 (-595 *6 *7 *8))))) -(-10 -7 (-15 -4152 ((-597 |#3|) (-1 |#3| |#1| |#2|) (-597 |#1|) (-597 |#2|))) (-15 -4152 ((-1148 |#3|) (-1 |#3| |#1| |#2|) (-1148 |#1|) (-597 |#2|))) (-15 -4152 ((-1148 |#3|) (-1 |#3| |#1| |#2|) (-597 |#1|) (-1148 |#2|)))) -((-3685 ((|#3| |#3| (-639 (-608 |#3|)) (-639 (-1168))) 55)) (-1544 (((-168 |#2|) |#3|) 117)) (-1784 ((|#3| (-168 |#2|)) 44)) (-2689 ((|#2| |#3|) 19)) (-2937 ((|#3| |#2|) 33))) -(((-596 |#1| |#2| |#3|) (-10 -7 (-15 -1784 (|#3| (-168 |#2|))) (-15 -2689 (|#2| |#3|)) (-15 -2937 (|#3| |#2|)) (-15 -1544 ((-168 |#2|) |#3|)) (-15 -3685 (|#3| |#3| (-639 (-608 |#3|)) (-639 (-1168))))) (-13 (-554) (-845)) (-13 (-429 |#1|) (-997) (-1192)) (-13 (-429 (-168 |#1|)) (-997) (-1192))) (T -596)) -((-3685 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-639 (-608 *2))) (-5 *4 (-639 (-1168))) (-4 *2 (-13 (-429 (-168 *5)) (-997) (-1192))) (-4 *5 (-13 (-554) (-845))) (-5 *1 (-596 *5 *6 *2)) (-4 *6 (-13 (-429 *5) (-997) (-1192))))) (-1544 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-845))) (-5 *2 (-168 *5)) (-5 *1 (-596 *4 *5 *3)) (-4 *5 (-13 (-429 *4) (-997) (-1192))) (-4 *3 (-13 (-429 (-168 *4)) (-997) (-1192))))) (-2937 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-845))) (-4 *2 (-13 (-429 (-168 *4)) (-997) (-1192))) (-5 *1 (-596 *4 *3 *2)) (-4 *3 (-13 (-429 *4) (-997) (-1192))))) (-2689 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-845))) (-4 *2 (-13 (-429 *4) (-997) (-1192))) (-5 *1 (-596 *4 *2 *3)) (-4 *3 (-13 (-429 (-168 *4)) (-997) (-1192))))) (-1784 (*1 *2 *3) (-12 (-5 *3 (-168 *5)) (-4 *5 (-13 (-429 *4) (-997) (-1192))) (-4 *4 (-13 (-554) (-845))) (-4 *2 (-13 (-429 (-168 *4)) (-997) (-1192))) (-5 *1 (-596 *4 *5 *2))))) -(-10 -7 (-15 -1784 (|#3| (-168 |#2|))) (-15 -2689 (|#2| |#3|)) (-15 -2937 (|#3| |#2|)) (-15 -1544 ((-168 |#2|) |#3|)) (-15 -3685 (|#3| |#3| (-639 (-608 |#3|)) (-639 (-1168))))) -((-3556 (($ (-1 (-112) |#1|) $) 17)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-2166 (($ (-1 |#1| |#1|) |#1|) 9)) (-3535 (($ (-1 (-112) |#1|) $) 13)) (-3546 (($ (-1 (-112) |#1|) $) 15)) (-4064 (((-1148 |#1|) $) 18)) (-4053 (((-857) $) NIL))) -(((-597 |#1|) (-13 (-609 (-857)) (-10 -8 (-15 -4152 ($ (-1 |#1| |#1|) $)) (-15 -3535 ($ (-1 (-112) |#1|) $)) (-15 -3546 ($ (-1 (-112) |#1|) $)) (-15 -3556 ($ (-1 (-112) |#1|) $)) (-15 -2166 ($ (-1 |#1| |#1|) |#1|)) (-15 -4064 ((-1148 |#1|) $)))) (-1207)) (T -597)) -((-4152 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1207)) (-5 *1 (-597 *3)))) (-3535 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1207)) (-5 *1 (-597 *3)))) (-3546 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1207)) (-5 *1 (-597 *3)))) (-3556 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1207)) (-5 *1 (-597 *3)))) (-2166 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1207)) (-5 *1 (-597 *3)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-1148 *3)) (-5 *1 (-597 *3)) (-4 *3 (-1207))))) -(-13 (-609 (-857)) (-10 -8 (-15 -4152 ($ (-1 |#1| |#1|) $)) (-15 -3535 ($ (-1 (-112) |#1|) $)) (-15 -3546 ($ (-1 (-112) |#1|) $)) (-15 -3556 ($ (-1 (-112) |#1|) $)) (-15 -2166 ($ (-1 |#1| |#1|) |#1|)) (-15 -4064 ((-1148 |#1|) $)))) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2910 (($ (-766)) NIL (|has| |#1| (-23)))) (-3655 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4404)))) (-1706 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-845)))) (-3737 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4404))) (($ $) NIL (-12 (|has| $ (-6 -4404)) (|has| |#1| (-845))))) (-1395 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-845)))) (-3735 (((-112) $ (-766)) NIL)) (-4200 ((|#1| $ (-562) |#1|) NIL (|has| $ (-6 -4404))) ((|#1| $ (-1223 (-562)) |#1|) NIL (|has| $ (-6 -4404)))) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-3329 (($) NIL T CONST)) (-2673 (($ $) NIL (|has| $ (-6 -4404)))) (-2676 (($ $) NIL)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1954 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4403)))) (-1507 ((|#1| $ (-562) |#1|) NIL (|has| $ (-6 -4404)))) (-1420 ((|#1| $ (-562)) NIL)) (-4265 (((-562) (-1 (-112) |#1|) $) NIL) (((-562) |#1| $) NIL (|has| |#1| (-1092))) (((-562) |#1| $ (-562)) NIL (|has| |#1| (-1092)))) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-2840 (((-683 |#1|) $ $) NIL (|has| |#1| (-1044)))) (-1458 (($ (-766) |#1|) NIL)) (-4172 (((-112) $ (-766)) NIL)) (-1849 (((-562) $) NIL (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-4103 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-845)))) (-2123 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1929 (((-562) $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-1491 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3872 ((|#1| $) NIL (-12 (|has| |#1| (-997)) (|has| |#1| (-1044))))) (-4147 (((-112) $ (-766)) NIL)) (-3641 ((|#1| $) NIL (-12 (|has| |#1| (-997)) (|has| |#1| (-1044))))) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-3295 (($ |#1| $ (-562)) NIL) (($ $ $ (-562)) NIL)) (-3336 (((-639 (-562)) $) NIL)) (-1987 (((-112) (-562) $) NIL)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-1421 ((|#1| $) NIL (|has| (-562) (-845)))) (-1963 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3510 (($ $ |#1|) NIL (|has| $ (-6 -4404)))) (-3008 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) NIL)) (-2716 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2366 (((-639 |#1|) $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) NIL)) (-2343 ((|#1| $ (-562) |#1|) NIL) ((|#1| $ (-562)) NIL) (($ $ (-1223 (-562))) NIL)) (-2852 ((|#1| $ $) NIL (|has| |#1| (-1044)))) (-2880 (($ $ (-562)) NIL) (($ $ (-1223 (-562))) NIL)) (-3247 (($ $ $) NIL (|has| |#1| (-1044)))) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2694 (($ $ $ (-562)) NIL (|has| $ (-6 -4404)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| |#1| (-610 (-535))))) (-4064 (($ (-639 |#1|)) NIL)) (-2767 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-639 $)) NIL)) (-4053 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-2879 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1771 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1761 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1847 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1836 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-562) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-721))) (($ $ |#1|) NIL (|has| |#1| (-721)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-598 |#1| |#2|) (-1254 |#1|) (-1207) (-562)) (T -598)) -NIL -(-1254 |#1|) -((-3655 (((-1261) $ |#2| |#2|) 36)) (-1849 ((|#2| $) 23)) (-1929 ((|#2| $) 21)) (-1491 (($ (-1 |#3| |#3|) $) 32)) (-4152 (($ (-1 |#3| |#3|) $) 30)) (-1421 ((|#3| $) 26)) (-3510 (($ $ |#3|) 33)) (-2716 (((-112) |#3| $) 17)) (-2366 (((-639 |#3|) $) 15)) (-2343 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-599 |#1| |#2| |#3|) (-10 -8 (-15 -3655 ((-1261) |#1| |#2| |#2|)) (-15 -3510 (|#1| |#1| |#3|)) (-15 -1421 (|#3| |#1|)) (-15 -1849 (|#2| |#1|)) (-15 -1929 (|#2| |#1|)) (-15 -2716 ((-112) |#3| |#1|)) (-15 -2366 ((-639 |#3|) |#1|)) (-15 -2343 (|#3| |#1| |#2|)) (-15 -2343 (|#3| |#1| |#2| |#3|)) (-15 -1491 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4152 (|#1| (-1 |#3| |#3|) |#1|))) (-600 |#2| |#3|) (-1092) (-1207)) (T -599)) -NIL -(-10 -8 (-15 -3655 ((-1261) |#1| |#2| |#2|)) (-15 -3510 (|#1| |#1| |#3|)) (-15 -1421 (|#3| |#1|)) (-15 -1849 (|#2| |#1|)) (-15 -1929 (|#2| |#1|)) (-15 -2716 ((-112) |#3| |#1|)) (-15 -2366 ((-639 |#3|) |#1|)) (-15 -2343 (|#3| |#1| |#2|)) (-15 -2343 (|#3| |#1| |#2| |#3|)) (-15 -1491 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4152 (|#1| (-1 |#3| |#3|) |#1|))) -((-4041 (((-112) $ $) 19 (|has| |#2| (-1092)))) (-3655 (((-1261) $ |#1| |#1|) 40 (|has| $ (-6 -4404)))) (-3735 (((-112) $ (-766)) 8)) (-4200 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4404)))) (-3329 (($) 7 T CONST)) (-1507 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4404)))) (-1420 ((|#2| $ |#1|) 51)) (-1720 (((-639 |#2|) $) 30 (|has| $ (-6 -4403)))) (-4172 (((-112) $ (-766)) 9)) (-1849 ((|#1| $) 43 (|has| |#1| (-845)))) (-2123 (((-639 |#2|) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1092)) (|has| $ (-6 -4403))))) (-1929 ((|#1| $) 44 (|has| |#1| (-845)))) (-1491 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#2| |#2|) $) 35)) (-4147 (((-112) $ (-766)) 10)) (-3696 (((-1150) $) 22 (|has| |#2| (-1092)))) (-3336 (((-639 |#1|) $) 46)) (-1987 (((-112) |#1| $) 47)) (-1709 (((-1112) $) 21 (|has| |#2| (-1092)))) (-1421 ((|#2| $) 42 (|has| |#1| (-845)))) (-3510 (($ $ |#2|) 41 (|has| $ (-6 -4404)))) (-3008 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#2|))) 26 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-293 |#2|)) 25 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 |#2|) (-639 |#2|)) 23 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))))) (-1452 (((-112) $ $) 14)) (-2716 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092))))) (-2366 (((-639 |#2|) $) 48)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-2343 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-1723 (((-766) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4403))) (((-766) |#2| $) 28 (-12 (|has| |#2| (-1092)) (|has| $ (-6 -4403))))) (-4220 (($ $) 13)) (-4053 (((-857) $) 18 (|has| |#2| (-609 (-857))))) (-2879 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 20 (|has| |#2| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-600 |#1| |#2|) (-139) (-1092) (-1207)) (T -600)) -((-2366 (*1 *2 *1) (-12 (-4 *1 (-600 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1207)) (-5 *2 (-639 *4)))) (-1987 (*1 *2 *3 *1) (-12 (-4 *1 (-600 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1207)) (-5 *2 (-112)))) (-3336 (*1 *2 *1) (-12 (-4 *1 (-600 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1207)) (-5 *2 (-639 *3)))) (-2716 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4403)) (-4 *1 (-600 *4 *3)) (-4 *4 (-1092)) (-4 *3 (-1207)) (-4 *3 (-1092)) (-5 *2 (-112)))) (-1929 (*1 *2 *1) (-12 (-4 *1 (-600 *2 *3)) (-4 *3 (-1207)) (-4 *2 (-1092)) (-4 *2 (-845)))) (-1849 (*1 *2 *1) (-12 (-4 *1 (-600 *2 *3)) (-4 *3 (-1207)) (-4 *2 (-1092)) (-4 *2 (-845)))) (-1421 (*1 *2 *1) (-12 (-4 *1 (-600 *3 *2)) (-4 *3 (-1092)) (-4 *3 (-845)) (-4 *2 (-1207)))) (-3510 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4404)) (-4 *1 (-600 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1207)))) (-3655 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4404)) (-4 *1 (-600 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1207)) (-5 *2 (-1261))))) -(-13 (-488 |t#2|) (-287 |t#1| |t#2|) (-10 -8 (-15 -2366 ((-639 |t#2|) $)) (-15 -1987 ((-112) |t#1| $)) (-15 -3336 ((-639 |t#1|) $)) (IF (|has| |t#2| (-1092)) (IF (|has| $ (-6 -4403)) (-15 -2716 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-845)) (PROGN (-15 -1929 (|t#1| $)) (-15 -1849 (|t#1| $)) (-15 -1421 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4404)) (PROGN (-15 -3510 ($ $ |t#2|)) (-15 -3655 ((-1261) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#2| (-1092)) ((-609 (-857)) -4037 (|has| |#2| (-1092)) (|has| |#2| (-609 (-857)))) ((-285 |#1| |#2|) . T) ((-287 |#1| |#2|) . T) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) ((-488 |#2|) . T) ((-513 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) ((-1092) |has| |#2| (-1092)) ((-1207) . T)) -((-4053 (((-857) $) 17) (($ (-129)) 13) (((-129) $) 14))) -(((-601) (-13 (-609 (-857)) (-489 (-129)))) (T -601)) -NIL -(-13 (-609 (-857)) (-489 (-129))) -((-4041 (((-112) $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL) (($ (-1173)) NIL) (((-1173) $) NIL) (((-1206) $) 14) (($ (-639 (-1206))) 13)) (-4038 (((-639 (-1206)) $) 10)) (-1733 (((-112) $ $) NIL))) -(((-602) (-13 (-1075) (-609 (-1206)) (-10 -8 (-15 -4053 ($ (-639 (-1206)))) (-15 -4038 ((-639 (-1206)) $))))) (T -602)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-639 (-1206))) (-5 *1 (-602)))) (-4038 (*1 *2 *1) (-12 (-5 *2 (-639 (-1206))) (-5 *1 (-602))))) -(-13 (-1075) (-609 (-1206)) (-10 -8 (-15 -4053 ($ (-639 (-1206)))) (-15 -4038 ((-639 (-1206)) $)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-4310 (((-3 $ "failed")) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-2781 (((-3 $ "failed") $ $) NIL)) (-2016 (((-1256 (-683 |#1|))) NIL (|has| |#2| (-416 |#1|))) (((-1256 (-683 |#1|)) (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-1540 (((-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-3329 (($) NIL T CONST)) (-1469 (((-3 (-2 (|:| |particular| $) (|:| -4291 (-639 $))) "failed")) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-2447 (((-3 $ "failed")) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-3945 (((-683 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-683 |#1|) (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-2452 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-2995 (((-683 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-683 |#1|) $ (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-4276 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-3996 (((-1164 (-947 |#1|))) NIL (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-362))))) (-2127 (($ $ (-916)) NIL)) (-2949 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-3407 (((-1164 |#1|) $) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-2200 ((|#1|) NIL (|has| |#2| (-416 |#1|))) ((|#1| (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-2974 (((-1164 |#1|) $) NIL (|has| |#2| (-366 |#1|)))) (-3178 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3916 (($ (-1256 |#1|)) NIL (|has| |#2| (-416 |#1|))) (($ (-1256 |#1|) (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-1694 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-2172 (((-916)) NIL (|has| |#2| (-366 |#1|)))) (-1832 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1492 (($ $ (-916)) NIL)) (-2531 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3671 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2394 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3502 (((-3 (-2 (|:| |particular| $) (|:| -4291 (-639 $))) "failed")) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-3839 (((-3 $ "failed")) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-3506 (((-683 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-683 |#1|) (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-2664 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-1583 (((-683 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-683 |#1|) $ (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-2217 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-2620 (((-1164 (-947 |#1|))) NIL (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-362))))) (-3235 (($ $ (-916)) NIL)) (-3495 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-3849 (((-1164 |#1|) $) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-1636 ((|#1|) NIL (|has| |#2| (-416 |#1|))) ((|#1| (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-3099 (((-1164 |#1|) $) NIL (|has| |#2| (-366 |#1|)))) (-3302 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3696 (((-1150) $) NIL)) (-2720 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1579 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2104 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1709 (((-1112) $) NIL)) (-3626 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2343 ((|#1| $ (-562)) NIL (|has| |#2| (-416 |#1|)))) (-2205 (((-683 |#1|) (-1256 $)) NIL (|has| |#2| (-416 |#1|))) (((-1256 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-683 |#1|) (-1256 $) (-1256 $)) NIL (|has| |#2| (-366 |#1|))) (((-1256 |#1|) $ (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-4208 (($ (-1256 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-1256 |#1|) $) NIL (|has| |#2| (-416 |#1|)))) (-2555 (((-639 (-947 |#1|))) NIL (|has| |#2| (-416 |#1|))) (((-639 (-947 |#1|)) (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-2114 (($ $ $) NIL)) (-3901 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-4053 (((-857) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-4291 (((-1256 $)) NIL (|has| |#2| (-416 |#1|)))) (-1823 (((-639 (-1256 |#1|))) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-2584 (($ $ $ $) NIL)) (-4309 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1360 (($ (-683 |#1|) $) NIL (|has| |#2| (-416 |#1|)))) (-4324 (($ $ $) NIL)) (-1517 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2636 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3488 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2285 (($) NIL T CONST)) (-1733 (((-112) $ $) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) 24)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-603 |#1| |#2|) (-13 (-739 |#1|) (-609 |#2|) (-10 -8 (-15 -4053 ($ |#2|)) (IF (|has| |#2| (-416 |#1|)) (-6 (-416 |#1|)) |%noBranch|) (IF (|has| |#2| (-366 |#1|)) (-6 (-366 |#1|)) |%noBranch|))) (-171) (-739 |#1|)) (T -603)) -((-4053 (*1 *1 *2) (-12 (-4 *3 (-171)) (-5 *1 (-603 *3 *2)) (-4 *2 (-739 *3))))) -(-13 (-739 |#1|) (-609 |#2|) (-10 -8 (-15 -4053 ($ |#2|)) (IF (|has| |#2| (-416 |#1|)) (-6 (-416 |#1|)) |%noBranch|) (IF (|has| |#2| (-366 |#1|)) (-6 (-366 |#1|)) |%noBranch|))) -((-4041 (((-112) $ $) NIL)) (-3791 (((-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) $ (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) 33)) (-1443 (($ (-639 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)))) NIL) (($) NIL)) (-3655 (((-1261) $ (-1150) (-1150)) NIL (|has| $ (-6 -4404)))) (-3735 (((-112) $ (-766)) NIL)) (-4200 ((|#1| $ (-1150) |#1|) 43)) (-2968 (($ (-1 (-112) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) $) NIL (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) $) NIL (|has| $ (-6 -4403)))) (-1472 (((-3 |#1| "failed") (-1150) $) 46)) (-3329 (($) NIL T CONST)) (-2385 (($ $ (-1150)) 24)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-1092))))) (-3729 (((-3 |#1| "failed") (-1150) $) 47) (($ (-1 (-112) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) $) NIL (|has| $ (-6 -4403))) (($ (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) $) NIL (|has| $ (-6 -4403)))) (-1475 (($ (-1 (-112) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) $) NIL (|has| $ (-6 -4403))) (($ (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-1092))))) (-1954 (((-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-1 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) $) NIL (|has| $ (-6 -4403))) (((-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-1 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) $ (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) NIL (|has| $ (-6 -4403))) (((-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-1 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) $ (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-1092))))) (-3385 (((-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) $) 32)) (-1507 ((|#1| $ (-1150) |#1|) NIL (|has| $ (-6 -4404)))) (-1420 ((|#1| $ (-1150)) NIL)) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4403))) (((-639 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) $) NIL (|has| $ (-6 -4403)))) (-3702 (($ $) 48)) (-3315 (($ (-387)) 22) (($ (-387) (-1150)) 21)) (-3253 (((-387) $) 34)) (-4172 (((-112) $ (-766)) NIL)) (-1849 (((-1150) $) NIL (|has| (-1150) (-845)))) (-2123 (((-639 |#1|) $) NIL (|has| $ (-6 -4403))) (((-639 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092)))) (((-112) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-1092))))) (-1929 (((-1150) $) NIL (|has| (-1150) (-845)))) (-1491 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4404))) (($ (-1 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL)) (-1521 (((-639 (-1150)) $) 39)) (-4278 (((-112) (-1150) $) NIL)) (-2735 (((-1150) $) 35)) (-2078 (((-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) $) NIL)) (-1581 (($ (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) $) NIL)) (-3336 (((-639 (-1150)) $) NIL)) (-1987 (((-112) (-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1421 ((|#1| $) NIL (|has| (-1150) (-845)))) (-1963 (((-3 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) "failed") (-1 (-112) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) $) NIL)) (-3510 (($ $ |#1|) NIL (|has| $ (-6 -4404)))) (-2038 (((-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) $) NIL)) (-3008 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-112) (-1 (-112) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) (-639 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)))) NIL (-12 (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-308 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)))) (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-1092)))) (($ $ (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) NIL (-12 (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-308 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)))) (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-1092)))) (($ $ (-293 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)))) NIL (-12 (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-308 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)))) (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-1092)))) (($ $ (-639 (-293 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))))) NIL (-12 (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-308 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)))) (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-1092))))) (-1452 (((-112) $ $) NIL)) (-2716 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2366 (((-639 |#1|) $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) 37)) (-2343 ((|#1| $ (-1150) |#1|) NIL) ((|#1| $ (-1150)) 42)) (-1932 (($ (-639 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)))) NIL) (($) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092)))) (((-766) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-1092)))) (((-766) (-1 (-112) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) $) NIL (|has| $ (-6 -4403)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-610 (-535))))) (-4064 (($ (-639 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)))) NIL)) (-4053 (((-857) $) 20)) (-1380 (($ $) 25)) (-4131 (($ (-639 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)))) NIL)) (-2879 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-112) (-1 (-112) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) $) NIL (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 19)) (-3492 (((-766) $) 41 (|has| $ (-6 -4403))))) -(((-604 |#1|) (-13 (-363 (-387) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) (-1183 (-1150) |#1|) (-10 -8 (-6 -4403) (-15 -3702 ($ $)))) (-1092)) (T -604)) -((-3702 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-1092))))) -(-13 (-363 (-387) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) (-1183 (-1150) |#1|) (-10 -8 (-6 -4403) (-15 -3702 ($ $)))) -((-1572 (((-112) (-2 (|:| -2319 |#2|) (|:| -2693 |#3|)) $) 15)) (-1521 (((-639 |#2|) $) 19)) (-4278 (((-112) |#2| $) 12))) -(((-605 |#1| |#2| |#3|) (-10 -8 (-15 -1521 ((-639 |#2|) |#1|)) (-15 -4278 ((-112) |#2| |#1|)) (-15 -1572 ((-112) (-2 (|:| -2319 |#2|) (|:| -2693 |#3|)) |#1|))) (-606 |#2| |#3|) (-1092) (-1092)) (T -605)) -NIL -(-10 -8 (-15 -1521 ((-639 |#2|) |#1|)) (-15 -4278 ((-112) |#2| |#1|)) (-15 -1572 ((-112) (-2 (|:| -2319 |#2|) (|:| -2693 |#3|)) |#1|))) -((-4041 (((-112) $ $) 19 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (-3735 (((-112) $ (-766)) 8)) (-2968 (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 45 (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 55 (|has| $ (-6 -4403)))) (-1472 (((-3 |#2| "failed") |#1| $) 61)) (-3329 (($) 7 T CONST)) (-1459 (($ $) 58 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| $ (-6 -4403))))) (-3729 (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 47 (|has| $ (-6 -4403))) (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 46 (|has| $ (-6 -4403))) (((-3 |#2| "failed") |#1| $) 62)) (-1475 (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| $ (-6 -4403)))) (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 54 (|has| $ (-6 -4403)))) (-1954 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) 56 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| $ (-6 -4403)))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) 53 (|has| $ (-6 -4403))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 52 (|has| $ (-6 -4403)))) (-1720 (((-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 30 (|has| $ (-6 -4403)))) (-4172 (((-112) $ (-766)) 9)) (-2123 (((-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| $ (-6 -4403))))) (-1491 (($ (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 34 (|has| $ (-6 -4404)))) (-4152 (($ (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 35)) (-4147 (((-112) $ (-766)) 10)) (-3696 (((-1150) $) 22 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (-1521 (((-639 |#1|) $) 63)) (-4278 (((-112) |#1| $) 64)) (-2078 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 39)) (-1581 (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 40)) (-1709 (((-1112) $) 21 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (-1963 (((-3 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) "failed") (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 51)) (-2038 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 41)) (-3008 (((-112) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 32 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))))) 26 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-293 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) 25 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) 24 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) 23 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092))))) (-1452 (((-112) $ $) 14)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-1932 (($) 49) (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) 48)) (-1723 (((-766) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 31 (|has| $ (-6 -4403))) (((-766) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| $ (-6 -4403))))) (-4220 (($ $) 13)) (-4208 (((-535) $) 59 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-610 (-535))))) (-4064 (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) 50)) (-4053 (((-857) $) 18 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-609 (-857))))) (-4131 (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) 42)) (-2879 (((-112) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 33 (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 20 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-606 |#1| |#2|) (-139) (-1092) (-1092)) (T -606)) -((-4278 (*1 *2 *3 *1) (-12 (-4 *1 (-606 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-5 *2 (-112)))) (-1521 (*1 *2 *1) (-12 (-4 *1 (-606 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-5 *2 (-639 *3)))) (-3729 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-606 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1092)))) (-1472 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-606 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1092))))) -(-13 (-228 (-2 (|:| -2319 |t#1|) (|:| -2693 |t#2|))) (-10 -8 (-15 -4278 ((-112) |t#1| $)) (-15 -1521 ((-639 |t#1|) $)) (-15 -3729 ((-3 |t#2| "failed") |t#1| $)) (-15 -1472 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T) ((-102) |has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) ((-609 (-857)) -4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-609 (-857)))) ((-150 #0#) . T) ((-610 (-535)) |has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-610 (-535))) ((-228 #0#) . T) ((-234 #0#) . T) ((-308 #0#) -12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092))) ((-488 #0#) . T) ((-513 #0# #0#) -12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092))) ((-1092) |has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) ((-1207) . T)) -((-3427 (((-608 |#2|) |#1|) 15)) (-3516 (((-3 |#1| "failed") (-608 |#2|)) 19))) -(((-607 |#1| |#2|) (-10 -7 (-15 -3427 ((-608 |#2|) |#1|)) (-15 -3516 ((-3 |#1| "failed") (-608 |#2|)))) (-845) (-845)) (T -607)) -((-3516 (*1 *2 *3) (|partial| -12 (-5 *3 (-608 *4)) (-4 *4 (-845)) (-4 *2 (-845)) (-5 *1 (-607 *2 *4)))) (-3427 (*1 *2 *3) (-12 (-5 *2 (-608 *4)) (-5 *1 (-607 *3 *4)) (-4 *3 (-845)) (-4 *4 (-845))))) -(-10 -7 (-15 -3427 ((-608 |#2|) |#1|)) (-15 -3516 ((-3 |#1| "failed") (-608 |#2|)))) -((-4041 (((-112) $ $) NIL)) (-3754 (((-3 (-1168) "failed") $) 37)) (-2389 (((-1261) $ (-766)) 26)) (-4265 (((-766) $) 25)) (-1502 (((-114) $) 12)) (-3253 (((-1168) $) 20)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-3696 (((-1150) $) NIL)) (-4141 (($ (-114) (-639 |#1|) (-766)) 30) (($ (-1168)) 31)) (-3115 (((-112) $ (-114)) 18) (((-112) $ (-1168)) 16)) (-3059 (((-766) $) 22)) (-1709 (((-1112) $) NIL)) (-4208 (((-887 (-562)) $) 77 (|has| |#1| (-610 (-887 (-562))))) (((-887 (-378)) $) 84 (|has| |#1| (-610 (-887 (-378))))) (((-535) $) 69 (|has| |#1| (-610 (-535))))) (-4053 (((-857) $) 55)) (-2282 (((-639 |#1|) $) 24)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 41)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) 42))) -(((-608 |#1|) (-13 (-131) (-879 |#1|) (-10 -8 (-15 -3253 ((-1168) $)) (-15 -1502 ((-114) $)) (-15 -2282 ((-639 |#1|) $)) (-15 -3059 ((-766) $)) (-15 -4141 ($ (-114) (-639 |#1|) (-766))) (-15 -4141 ($ (-1168))) (-15 -3754 ((-3 (-1168) "failed") $)) (-15 -3115 ((-112) $ (-114))) (-15 -3115 ((-112) $ (-1168))) (IF (|has| |#1| (-610 (-535))) (-6 (-610 (-535))) |%noBranch|))) (-845)) (T -608)) -((-3253 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-608 *3)) (-4 *3 (-845)))) (-1502 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-608 *3)) (-4 *3 (-845)))) (-2282 (*1 *2 *1) (-12 (-5 *2 (-639 *3)) (-5 *1 (-608 *3)) (-4 *3 (-845)))) (-3059 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-608 *3)) (-4 *3 (-845)))) (-4141 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-639 *5)) (-5 *4 (-766)) (-4 *5 (-845)) (-5 *1 (-608 *5)))) (-4141 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-608 *3)) (-4 *3 (-845)))) (-3754 (*1 *2 *1) (|partial| -12 (-5 *2 (-1168)) (-5 *1 (-608 *3)) (-4 *3 (-845)))) (-3115 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-608 *4)) (-4 *4 (-845)))) (-3115 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-112)) (-5 *1 (-608 *4)) (-4 *4 (-845))))) -(-13 (-131) (-879 |#1|) (-10 -8 (-15 -3253 ((-1168) $)) (-15 -1502 ((-114) $)) (-15 -2282 ((-639 |#1|) $)) (-15 -3059 ((-766) $)) (-15 -4141 ($ (-114) (-639 |#1|) (-766))) (-15 -4141 ($ (-1168))) (-15 -3754 ((-3 (-1168) "failed") $)) (-15 -3115 ((-112) $ (-114))) (-15 -3115 ((-112) $ (-1168))) (IF (|has| |#1| (-610 (-535))) (-6 (-610 (-535))) |%noBranch|))) -((-4053 ((|#1| $) 6))) -(((-609 |#1|) (-139) (-1207)) (T -609)) -((-4053 (*1 *2 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1207))))) -(-13 (-10 -8 (-15 -4053 (|t#1| $)))) -((-4208 ((|#1| $) 6))) -(((-610 |#1|) (-139) (-1207)) (T -610)) -((-4208 (*1 *2 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1207))))) -(-13 (-10 -8 (-15 -4208 (|t#1| $)))) -((-1398 (((-3 (-1164 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 (-417 |#2|) |#2|)) 15) (((-3 (-1164 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|)) 16))) -(((-611 |#1| |#2|) (-10 -7 (-15 -1398 ((-3 (-1164 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|))) (-15 -1398 ((-3 (-1164 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 (-417 |#2|) |#2|)))) (-13 (-146) (-27) (-1033 (-562)) (-1033 (-406 (-562)))) (-1232 |#1|)) (T -611)) -((-1398 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1232 *5)) (-4 *5 (-13 (-146) (-27) (-1033 (-562)) (-1033 (-406 (-562))))) (-5 *2 (-1164 (-406 *6))) (-5 *1 (-611 *5 *6)) (-5 *3 (-406 *6)))) (-1398 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-146) (-27) (-1033 (-562)) (-1033 (-406 (-562))))) (-4 *5 (-1232 *4)) (-5 *2 (-1164 (-406 *5))) (-5 *1 (-611 *4 *5)) (-5 *3 (-406 *5))))) -(-10 -7 (-15 -1398 ((-3 (-1164 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|))) (-15 -1398 ((-3 (-1164 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 (-417 |#2|) |#2|)))) -((-4053 (($ |#1|) 6))) -(((-612 |#1|) (-139) (-1207)) (T -612)) -((-4053 (*1 *1 *2) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1207))))) -(-13 (-10 -8 (-15 -4053 ($ |t#1|)))) -((-4041 (((-112) $ $) NIL)) (-4380 (($) 8 T CONST)) (-2796 (($) 9 T CONST)) (-2256 (($ $ $) 21)) (-2234 (($ $) 19)) (-3696 (((-1150) $) NIL)) (-3664 (($ $ $) 22)) (-1709 (((-1112) $) NIL)) (-1615 (($) 7 T CONST)) (-4166 (($ $ $) 23)) (-4053 (((-857) $) 27)) (-2276 (((-112) $ (|[\|\|]| -1615)) 16) (((-112) $ (|[\|\|]| -4380)) 18) (((-112) $ (|[\|\|]| -2796)) 14)) (-2245 (($ $ $) 20)) (-1733 (((-112) $ $) 12))) -(((-613) (-13 (-962) (-10 -8 (-15 -1615 ($) -1497) (-15 -4380 ($) -1497) (-15 -2796 ($) -1497) (-15 -2276 ((-112) $ (|[\|\|]| -1615))) (-15 -2276 ((-112) $ (|[\|\|]| -4380))) (-15 -2276 ((-112) $ (|[\|\|]| -2796)))))) (T -613)) -((-1615 (*1 *1) (-5 *1 (-613))) (-4380 (*1 *1) (-5 *1 (-613))) (-2796 (*1 *1) (-5 *1 (-613))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1615)) (-5 *2 (-112)) (-5 *1 (-613)))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -4380)) (-5 *2 (-112)) (-5 *1 (-613)))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2796)) (-5 *2 (-112)) (-5 *1 (-613))))) -(-13 (-962) (-10 -8 (-15 -1615 ($) -1497) (-15 -4380 ($) -1497) (-15 -2796 ($) -1497) (-15 -2276 ((-112) $ (|[\|\|]| -1615))) (-15 -2276 ((-112) $ (|[\|\|]| -4380))) (-15 -2276 ((-112) $ (|[\|\|]| -2796))))) -((-4208 (($ |#1|) 6))) -(((-614 |#1|) (-139) (-1207)) (T -614)) -((-4208 (*1 *1 *2) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1207))))) -(-13 (-10 -8 (-15 -4208 ($ |t#1|)))) -((-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ |#2|) 10))) -(((-615 |#1| |#2|) (-10 -8 (-15 -4053 (|#1| |#2|)) (-15 -4053 (|#1| (-562))) (-15 -4053 ((-857) |#1|))) (-616 |#2|) (-1044)) (T -615)) -NIL -(-10 -8 (-15 -4053 (|#1| |#2|)) (-15 -4053 (|#1| (-562))) (-15 -4053 ((-857) |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-1694 (((-3 $ "failed") $) 33)) (-4367 (((-112) $) 31)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 36)) (-1568 (((-766)) 28)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ |#1| $) 37))) -(((-616 |#1|) (-139) (-1044)) (T -616)) -((-4053 (*1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1044))))) -(-13 (-1044) (-642 |t#1|) (-10 -8 (-15 -4053 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-612 (-562)) . T) ((-609 (-857)) . T) ((-642 |#1|) . T) ((-642 $) . T) ((-721) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-1587 (((-562) $) NIL (|has| |#1| (-843)))) (-3329 (($) NIL T CONST)) (-1694 (((-3 $ "failed") $) NIL)) (-2696 (((-112) $) NIL (|has| |#1| (-843)))) (-4367 (((-112) $) NIL)) (-4063 ((|#1| $) 13)) (-3855 (((-112) $) NIL (|has| |#1| (-843)))) (-1551 (($ $ $) NIL (|has| |#1| (-843)))) (-2993 (($ $ $) NIL (|has| |#1| (-843)))) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4079 ((|#3| $) 15)) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ |#2|) NIL)) (-1568 (((-766)) 20)) (-2757 (($ $) NIL (|has| |#1| (-843)))) (-2285 (($) NIL T CONST)) (-2294 (($) 12 T CONST)) (-1798 (((-112) $ $) NIL (|has| |#1| (-843)))) (-1771 (((-112) $ $) NIL (|has| |#1| (-843)))) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#1| (-843)))) (-1761 (((-112) $ $) NIL (|has| |#1| (-843)))) (-1859 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-617 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-843)) (-6 (-843)) |%noBranch|) (-15 -1859 ($ $ |#3|)) (-15 -1859 ($ |#1| |#3|)) (-15 -4063 (|#1| $)) (-15 -4079 (|#3| $)))) (-38 |#2|) (-171) (|SubsetCategory| (-721) |#2|)) (T -617)) -((-1859 (*1 *1 *1 *2) (-12 (-4 *4 (-171)) (-5 *1 (-617 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-721) *4)))) (-1859 (*1 *1 *2 *3) (-12 (-4 *4 (-171)) (-5 *1 (-617 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-721) *4)))) (-4063 (*1 *2 *1) (-12 (-4 *3 (-171)) (-4 *2 (-38 *3)) (-5 *1 (-617 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-721) *3)))) (-4079 (*1 *2 *1) (-12 (-4 *4 (-171)) (-4 *2 (|SubsetCategory| (-721) *4)) (-5 *1 (-617 *3 *4 *2)) (-4 *3 (-38 *4))))) -(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-843)) (-6 (-843)) |%noBranch|) (-15 -1859 ($ $ |#3|)) (-15 -1859 ($ |#1| |#3|)) (-15 -4063 (|#1| $)) (-15 -4079 (|#3| $)))) -((-1357 ((|#2| |#2| (-1168) (-1168)) 18))) -(((-618 |#1| |#2|) (-10 -7 (-15 -1357 (|#2| |#2| (-1168) (-1168)))) (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562))) (-13 (-1192) (-954) (-29 |#1|))) (T -618)) -((-1357 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-618 *4 *2)) (-4 *2 (-13 (-1192) (-954) (-29 *4)))))) -(-10 -7 (-15 -1357 (|#2| |#2| (-1168) (-1168)))) -((-4041 (((-112) $ $) 56)) (-4325 (((-112) $) 52)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-2060 ((|#1| $) 49)) (-2781 (((-3 $ "failed") $ $) NIL)) (-1436 (((-112) $ $) NIL (|has| |#1| (-362)))) (-2687 (((-2 (|:| -3408 $) (|:| -4374 (-406 |#2|))) (-406 |#2|)) 97 (|has| |#1| (-362)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-3960 (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-1810 (($ $ $) NIL (|has| |#1| (-362)))) (-1600 (($ $) 24)) (-1694 (((-3 $ "failed") $) 75)) (-1787 (($ $ $) NIL (|has| |#1| (-362)))) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL (|has| |#1| (-362)))) (-1993 (((-562) $) 19)) (-4367 (((-112) $) NIL)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-2833 (((-112) $) 36)) (-1377 (($ |#1| (-562)) 21)) (-1573 ((|#1| $) 51)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-362)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) 87 (|has| |#1| (-362)))) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 101 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL (|has| |#1| (-362)))) (-1762 (((-3 $ "failed") $ $) 79)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-2044 (((-766) $) 100 (|has| |#1| (-362)))) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 99 (|has| |#1| (-362)))) (-4029 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1168)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-766)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-2250 (((-562) $) 34)) (-4208 (((-406 |#2|) $) 42)) (-4053 (((-857) $) 62) (($ (-562)) 32) (($ $) NIL) (($ (-406 (-562))) NIL (|has| |#1| (-1033 (-406 (-562))))) (($ |#1|) 31) (($ |#2|) 22)) (-2266 ((|#1| $ (-562)) 63)) (-2059 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-1568 (((-766)) 29)) (-3799 (((-112) $ $) NIL)) (-2285 (($) 9 T CONST)) (-2294 (($) 12 T CONST)) (-3113 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1168)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-766)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-1733 (((-112) $ $) 17)) (-1847 (($ $) 46) (($ $ $) NIL)) (-1836 (($ $ $) 76)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 26) (($ $ $) 44))) -(((-619 |#1| |#2|) (-13 (-230 |#2|) (-554) (-610 (-406 |#2|)) (-410 |#1|) (-1033 |#2|) (-10 -8 (-15 -2833 ((-112) $)) (-15 -2250 ((-562) $)) (-15 -1993 ((-562) $)) (-15 -1600 ($ $)) (-15 -1573 (|#1| $)) (-15 -2060 (|#1| $)) (-15 -2266 (|#1| $ (-562))) (-15 -1377 ($ |#1| (-562))) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-6 (-306)) (-15 -2687 ((-2 (|:| -3408 $) (|:| -4374 (-406 |#2|))) (-406 |#2|)))) |%noBranch|))) (-554) (-1232 |#1|)) (T -619)) -((-2833 (*1 *2 *1) (-12 (-4 *3 (-554)) (-5 *2 (-112)) (-5 *1 (-619 *3 *4)) (-4 *4 (-1232 *3)))) (-2250 (*1 *2 *1) (-12 (-4 *3 (-554)) (-5 *2 (-562)) (-5 *1 (-619 *3 *4)) (-4 *4 (-1232 *3)))) (-1993 (*1 *2 *1) (-12 (-4 *3 (-554)) (-5 *2 (-562)) (-5 *1 (-619 *3 *4)) (-4 *4 (-1232 *3)))) (-1600 (*1 *1 *1) (-12 (-4 *2 (-554)) (-5 *1 (-619 *2 *3)) (-4 *3 (-1232 *2)))) (-1573 (*1 *2 *1) (-12 (-4 *2 (-554)) (-5 *1 (-619 *2 *3)) (-4 *3 (-1232 *2)))) (-2060 (*1 *2 *1) (-12 (-4 *2 (-554)) (-5 *1 (-619 *2 *3)) (-4 *3 (-1232 *2)))) (-2266 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-4 *2 (-554)) (-5 *1 (-619 *2 *4)) (-4 *4 (-1232 *2)))) (-1377 (*1 *1 *2 *3) (-12 (-5 *3 (-562)) (-4 *2 (-554)) (-5 *1 (-619 *2 *4)) (-4 *4 (-1232 *2)))) (-2687 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *4 (-554)) (-4 *5 (-1232 *4)) (-5 *2 (-2 (|:| -3408 (-619 *4 *5)) (|:| -4374 (-406 *5)))) (-5 *1 (-619 *4 *5)) (-5 *3 (-406 *5))))) -(-13 (-230 |#2|) (-554) (-610 (-406 |#2|)) (-410 |#1|) (-1033 |#2|) (-10 -8 (-15 -2833 ((-112) $)) (-15 -2250 ((-562) $)) (-15 -1993 ((-562) $)) (-15 -1600 ($ $)) (-15 -1573 (|#1| $)) (-15 -2060 (|#1| $)) (-15 -2266 (|#1| $ (-562))) (-15 -1377 ($ |#1| (-562))) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-6 (-306)) (-15 -2687 ((-2 (|:| -3408 $) (|:| -4374 (-406 |#2|))) (-406 |#2|)))) |%noBranch|))) -((-3672 (((-639 |#6|) (-639 |#4|) (-112)) 46)) (-3793 ((|#6| |#6|) 39))) -(((-620 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3793 (|#6| |#6|)) (-15 -3672 ((-639 |#6|) (-639 |#4|) (-112)))) (-451) (-788) (-845) (-1058 |#1| |#2| |#3|) (-1064 |#1| |#2| |#3| |#4|) (-1101 |#1| |#2| |#3| |#4|)) (T -620)) -((-3672 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-639 *10)) (-5 *1 (-620 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1064 *5 *6 *7 *8)) (-4 *10 (-1101 *5 *6 *7 *8)))) (-3793 (*1 *2 *2) (-12 (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *1 (-620 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1064 *3 *4 *5 *6)) (-4 *2 (-1101 *3 *4 *5 *6))))) -(-10 -7 (-15 -3793 (|#6| |#6|)) (-15 -3672 ((-639 |#6|) (-639 |#4|) (-112)))) -((-2320 (((-112) |#3| (-766) (-639 |#3|)) 23)) (-3305 (((-3 (-2 (|:| |polfac| (-639 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-639 (-1164 |#3|)))) "failed") |#3| (-639 (-1164 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2656 (-639 (-2 (|:| |irr| |#4|) (|:| -2794 (-562)))))) (-639 |#3|) (-639 |#1|) (-639 |#3|)) 55))) -(((-621 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2320 ((-112) |#3| (-766) (-639 |#3|))) (-15 -3305 ((-3 (-2 (|:| |polfac| (-639 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-639 (-1164 |#3|)))) "failed") |#3| (-639 (-1164 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2656 (-639 (-2 (|:| |irr| |#4|) (|:| -2794 (-562)))))) (-639 |#3|) (-639 |#1|) (-639 |#3|)))) (-845) (-788) (-306) (-944 |#3| |#2| |#1|)) (T -621)) -((-3305 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2656 (-639 (-2 (|:| |irr| *10) (|:| -2794 (-562))))))) (-5 *6 (-639 *3)) (-5 *7 (-639 *8)) (-4 *8 (-845)) (-4 *3 (-306)) (-4 *10 (-944 *3 *9 *8)) (-4 *9 (-788)) (-5 *2 (-2 (|:| |polfac| (-639 *10)) (|:| |correct| *3) (|:| |corrfact| (-639 (-1164 *3))))) (-5 *1 (-621 *8 *9 *3 *10)) (-5 *4 (-639 (-1164 *3))))) (-2320 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-766)) (-5 *5 (-639 *3)) (-4 *3 (-306)) (-4 *6 (-845)) (-4 *7 (-788)) (-5 *2 (-112)) (-5 *1 (-621 *6 *7 *3 *8)) (-4 *8 (-944 *3 *7 *6))))) -(-10 -7 (-15 -2320 ((-112) |#3| (-766) (-639 |#3|))) (-15 -3305 ((-3 (-2 (|:| |polfac| (-639 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-639 (-1164 |#3|)))) "failed") |#3| (-639 (-1164 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2656 (-639 (-2 (|:| |irr| |#4|) (|:| -2794 (-562)))))) (-639 |#3|) (-639 |#1|) (-639 |#3|)))) -((-4041 (((-112) $ $) NIL)) (-4330 (((-1127) $) 11)) (-4318 (((-1127) $) 9)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 19) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-622) (-13 (-1075) (-10 -8 (-15 -4318 ((-1127) $)) (-15 -4330 ((-1127) $))))) (T -622)) -((-4318 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-622)))) (-4330 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-622))))) -(-13 (-1075) (-10 -8 (-15 -4318 ((-1127) $)) (-15 -4330 ((-1127) $)))) -((-4041 (((-112) $ $) NIL)) (-2850 (((-639 |#1|) $) NIL)) (-3329 (($) NIL T CONST)) (-1694 (((-3 $ "failed") $) NIL)) (-4367 (((-112) $) NIL)) (-2572 (($ $) 67)) (-4366 (((-658 |#1| |#2|) $) 52)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) 70)) (-2281 (((-639 (-293 |#2|)) $ $) 33)) (-1709 (((-1112) $) NIL)) (-3430 (($ (-658 |#1| |#2|)) 48)) (-1660 (($ $ $) NIL)) (-2114 (($ $ $) NIL)) (-4053 (((-857) $) 58) (((-1271 |#1| |#2|) $) NIL) (((-1276 |#1| |#2|) $) 66)) (-2294 (($) 53 T CONST)) (-3825 (((-639 (-2 (|:| |k| (-666 |#1|)) (|:| |c| |#2|))) $) 31)) (-4292 (((-639 (-658 |#1| |#2|)) (-639 |#1|)) 65)) (-2174 (((-639 (-2 (|:| |k| (-888 |#1|)) (|:| |c| |#2|))) $) 37)) (-1733 (((-112) $ $) 54)) (-1859 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ $ $) 44))) -(((-623 |#1| |#2| |#3|) (-13 (-472) (-10 -8 (-15 -3430 ($ (-658 |#1| |#2|))) (-15 -4366 ((-658 |#1| |#2|) $)) (-15 -2174 ((-639 (-2 (|:| |k| (-888 |#1|)) (|:| |c| |#2|))) $)) (-15 -4053 ((-1271 |#1| |#2|) $)) (-15 -4053 ((-1276 |#1| |#2|) $)) (-15 -2572 ($ $)) (-15 -2850 ((-639 |#1|) $)) (-15 -4292 ((-639 (-658 |#1| |#2|)) (-639 |#1|))) (-15 -3825 ((-639 (-2 (|:| |k| (-666 |#1|)) (|:| |c| |#2|))) $)) (-15 -2281 ((-639 (-293 |#2|)) $ $)))) (-845) (-13 (-171) (-712 (-406 (-562)))) (-916)) (T -623)) -((-3430 (*1 *1 *2) (-12 (-5 *2 (-658 *3 *4)) (-4 *3 (-845)) (-4 *4 (-13 (-171) (-712 (-406 (-562))))) (-5 *1 (-623 *3 *4 *5)) (-14 *5 (-916)))) (-4366 (*1 *2 *1) (-12 (-5 *2 (-658 *3 *4)) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-845)) (-4 *4 (-13 (-171) (-712 (-406 (-562))))) (-14 *5 (-916)))) (-2174 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| |k| (-888 *3)) (|:| |c| *4)))) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-845)) (-4 *4 (-13 (-171) (-712 (-406 (-562))))) (-14 *5 (-916)))) (-4053 (*1 *2 *1) (-12 (-5 *2 (-1271 *3 *4)) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-845)) (-4 *4 (-13 (-171) (-712 (-406 (-562))))) (-14 *5 (-916)))) (-4053 (*1 *2 *1) (-12 (-5 *2 (-1276 *3 *4)) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-845)) (-4 *4 (-13 (-171) (-712 (-406 (-562))))) (-14 *5 (-916)))) (-2572 (*1 *1 *1) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-845)) (-4 *3 (-13 (-171) (-712 (-406 (-562))))) (-14 *4 (-916)))) (-2850 (*1 *2 *1) (-12 (-5 *2 (-639 *3)) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-845)) (-4 *4 (-13 (-171) (-712 (-406 (-562))))) (-14 *5 (-916)))) (-4292 (*1 *2 *3) (-12 (-5 *3 (-639 *4)) (-4 *4 (-845)) (-5 *2 (-639 (-658 *4 *5))) (-5 *1 (-623 *4 *5 *6)) (-4 *5 (-13 (-171) (-712 (-406 (-562))))) (-14 *6 (-916)))) (-3825 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| |k| (-666 *3)) (|:| |c| *4)))) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-845)) (-4 *4 (-13 (-171) (-712 (-406 (-562))))) (-14 *5 (-916)))) (-2281 (*1 *2 *1 *1) (-12 (-5 *2 (-639 (-293 *4))) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-845)) (-4 *4 (-13 (-171) (-712 (-406 (-562))))) (-14 *5 (-916))))) -(-13 (-472) (-10 -8 (-15 -3430 ($ (-658 |#1| |#2|))) (-15 -4366 ((-658 |#1| |#2|) $)) (-15 -2174 ((-639 (-2 (|:| |k| (-888 |#1|)) (|:| |c| |#2|))) $)) (-15 -4053 ((-1271 |#1| |#2|) $)) (-15 -4053 ((-1276 |#1| |#2|) $)) (-15 -2572 ($ $)) (-15 -2850 ((-639 |#1|) $)) (-15 -4292 ((-639 (-658 |#1| |#2|)) (-639 |#1|))) (-15 -3825 ((-639 (-2 (|:| |k| (-666 |#1|)) (|:| |c| |#2|))) $)) (-15 -2281 ((-639 (-293 |#2|)) $ $)))) -((-3672 (((-639 (-1138 |#1| (-530 (-859 |#2|)) (-859 |#2|) (-775 |#1| (-859 |#2|)))) (-639 (-775 |#1| (-859 |#2|))) (-112)) 71) (((-639 (-1041 |#1| |#2|)) (-639 (-775 |#1| (-859 |#2|))) (-112)) 57)) (-2311 (((-112) (-639 (-775 |#1| (-859 |#2|)))) 23)) (-4000 (((-639 (-1138 |#1| (-530 (-859 |#2|)) (-859 |#2|) (-775 |#1| (-859 |#2|)))) (-639 (-775 |#1| (-859 |#2|))) (-112)) 70)) (-2841 (((-639 (-1041 |#1| |#2|)) (-639 (-775 |#1| (-859 |#2|))) (-112)) 56)) (-2848 (((-639 (-775 |#1| (-859 |#2|))) (-639 (-775 |#1| (-859 |#2|)))) 27)) (-3779 (((-3 (-639 (-775 |#1| (-859 |#2|))) "failed") (-639 (-775 |#1| (-859 |#2|)))) 26))) -(((-624 |#1| |#2|) (-10 -7 (-15 -2311 ((-112) (-639 (-775 |#1| (-859 |#2|))))) (-15 -3779 ((-3 (-639 (-775 |#1| (-859 |#2|))) "failed") (-639 (-775 |#1| (-859 |#2|))))) (-15 -2848 ((-639 (-775 |#1| (-859 |#2|))) (-639 (-775 |#1| (-859 |#2|))))) (-15 -2841 ((-639 (-1041 |#1| |#2|)) (-639 (-775 |#1| (-859 |#2|))) (-112))) (-15 -4000 ((-639 (-1138 |#1| (-530 (-859 |#2|)) (-859 |#2|) (-775 |#1| (-859 |#2|)))) (-639 (-775 |#1| (-859 |#2|))) (-112))) (-15 -3672 ((-639 (-1041 |#1| |#2|)) (-639 (-775 |#1| (-859 |#2|))) (-112))) (-15 -3672 ((-639 (-1138 |#1| (-530 (-859 |#2|)) (-859 |#2|) (-775 |#1| (-859 |#2|)))) (-639 (-775 |#1| (-859 |#2|))) (-112)))) (-451) (-639 (-1168))) (T -624)) -((-3672 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-775 *5 (-859 *6)))) (-5 *4 (-112)) (-4 *5 (-451)) (-14 *6 (-639 (-1168))) (-5 *2 (-639 (-1138 *5 (-530 (-859 *6)) (-859 *6) (-775 *5 (-859 *6))))) (-5 *1 (-624 *5 *6)))) (-3672 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-775 *5 (-859 *6)))) (-5 *4 (-112)) (-4 *5 (-451)) (-14 *6 (-639 (-1168))) (-5 *2 (-639 (-1041 *5 *6))) (-5 *1 (-624 *5 *6)))) (-4000 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-775 *5 (-859 *6)))) (-5 *4 (-112)) (-4 *5 (-451)) (-14 *6 (-639 (-1168))) (-5 *2 (-639 (-1138 *5 (-530 (-859 *6)) (-859 *6) (-775 *5 (-859 *6))))) (-5 *1 (-624 *5 *6)))) (-2841 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-775 *5 (-859 *6)))) (-5 *4 (-112)) (-4 *5 (-451)) (-14 *6 (-639 (-1168))) (-5 *2 (-639 (-1041 *5 *6))) (-5 *1 (-624 *5 *6)))) (-2848 (*1 *2 *2) (-12 (-5 *2 (-639 (-775 *3 (-859 *4)))) (-4 *3 (-451)) (-14 *4 (-639 (-1168))) (-5 *1 (-624 *3 *4)))) (-3779 (*1 *2 *2) (|partial| -12 (-5 *2 (-639 (-775 *3 (-859 *4)))) (-4 *3 (-451)) (-14 *4 (-639 (-1168))) (-5 *1 (-624 *3 *4)))) (-2311 (*1 *2 *3) (-12 (-5 *3 (-639 (-775 *4 (-859 *5)))) (-4 *4 (-451)) (-14 *5 (-639 (-1168))) (-5 *2 (-112)) (-5 *1 (-624 *4 *5))))) -(-10 -7 (-15 -2311 ((-112) (-639 (-775 |#1| (-859 |#2|))))) (-15 -3779 ((-3 (-639 (-775 |#1| (-859 |#2|))) "failed") (-639 (-775 |#1| (-859 |#2|))))) (-15 -2848 ((-639 (-775 |#1| (-859 |#2|))) (-639 (-775 |#1| (-859 |#2|))))) (-15 -2841 ((-639 (-1041 |#1| |#2|)) (-639 (-775 |#1| (-859 |#2|))) (-112))) (-15 -4000 ((-639 (-1138 |#1| (-530 (-859 |#2|)) (-859 |#2|) (-775 |#1| (-859 |#2|)))) (-639 (-775 |#1| (-859 |#2|))) (-112))) (-15 -3672 ((-639 (-1041 |#1| |#2|)) (-639 (-775 |#1| (-859 |#2|))) (-112))) (-15 -3672 ((-639 (-1138 |#1| (-530 (-859 |#2|)) (-859 |#2|) (-775 |#1| (-859 |#2|)))) (-639 (-775 |#1| (-859 |#2|))) (-112)))) -((-2987 (($ $) 38)) (-4098 (($ $) 21)) (-4206 (($ $) 37)) (-4074 (($ $) 22)) (-3013 (($ $) 36)) (-4120 (($ $) 23)) (-4100 (($) 48)) (-4366 (($ $) 45)) (-2032 (($ $) 17)) (-1529 (($ $ (-1084 $)) 7) (($ $ (-1168)) 6)) (-3430 (($ $) 46)) (-4021 (($ $) 15)) (-4057 (($ $) 16)) (-3022 (($ $) 35)) (-4130 (($ $) 24)) (-3000 (($ $) 34)) (-4108 (($ $) 25)) (-2977 (($ $) 33)) (-4087 (($ $) 26)) (-3054 (($ $) 44)) (-4165 (($ $) 32)) (-3033 (($ $) 43)) (-4139 (($ $) 31)) (-3077 (($ $) 42)) (-4183 (($ $) 30)) (-1567 (($ $) 41)) (-4195 (($ $) 29)) (-3065 (($ $) 40)) (-4175 (($ $) 28)) (-3040 (($ $) 39)) (-4151 (($ $) 27)) (-3234 (($ $) 19)) (-4198 (($ $) 20)) (-4003 (($ $) 18)) (** (($ $ $) 47))) -(((-625) (-139)) (T -625)) -((-4198 (*1 *1 *1) (-4 *1 (-625))) (-3234 (*1 *1 *1) (-4 *1 (-625))) (-4003 (*1 *1 *1) (-4 *1 (-625))) (-2032 (*1 *1 *1) (-4 *1 (-625))) (-4057 (*1 *1 *1) (-4 *1 (-625))) (-4021 (*1 *1 *1) (-4 *1 (-625)))) -(-13 (-954) (-1192) (-10 -8 (-15 -4198 ($ $)) (-15 -3234 ($ $)) (-15 -4003 ($ $)) (-15 -2032 ($ $)) (-15 -4057 ($ $)) (-15 -4021 ($ $)))) -(((-35) . T) ((-95) . T) ((-283) . T) ((-492) . T) ((-954) . T) ((-1192) . T) ((-1195) . T)) -((-1502 (((-114) (-114)) 83)) (-2032 ((|#2| |#2|) 30)) (-1529 ((|#2| |#2| (-1084 |#2|)) 79) ((|#2| |#2| (-1168)) 52)) (-4021 ((|#2| |#2|) 29)) (-4057 ((|#2| |#2|) 31)) (-2036 (((-112) (-114)) 34)) (-3234 ((|#2| |#2|) 26)) (-4198 ((|#2| |#2|) 28)) (-4003 ((|#2| |#2|) 27))) -(((-626 |#1| |#2|) (-10 -7 (-15 -2036 ((-112) (-114))) (-15 -1502 ((-114) (-114))) (-15 -4198 (|#2| |#2|)) (-15 -3234 (|#2| |#2|)) (-15 -4003 (|#2| |#2|)) (-15 -2032 (|#2| |#2|)) (-15 -4021 (|#2| |#2|)) (-15 -4057 (|#2| |#2|)) (-15 -1529 (|#2| |#2| (-1168))) (-15 -1529 (|#2| |#2| (-1084 |#2|)))) (-13 (-845) (-554)) (-13 (-429 |#1|) (-997) (-1192))) (T -626)) -((-1529 (*1 *2 *2 *3) (-12 (-5 *3 (-1084 *2)) (-4 *2 (-13 (-429 *4) (-997) (-1192))) (-4 *4 (-13 (-845) (-554))) (-5 *1 (-626 *4 *2)))) (-1529 (*1 *2 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-845) (-554))) (-5 *1 (-626 *4 *2)) (-4 *2 (-13 (-429 *4) (-997) (-1192))))) (-4057 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-626 *3 *2)) (-4 *2 (-13 (-429 *3) (-997) (-1192))))) (-4021 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-626 *3 *2)) (-4 *2 (-13 (-429 *3) (-997) (-1192))))) (-2032 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-626 *3 *2)) (-4 *2 (-13 (-429 *3) (-997) (-1192))))) (-4003 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-626 *3 *2)) (-4 *2 (-13 (-429 *3) (-997) (-1192))))) (-3234 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-626 *3 *2)) (-4 *2 (-13 (-429 *3) (-997) (-1192))))) (-4198 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-626 *3 *2)) (-4 *2 (-13 (-429 *3) (-997) (-1192))))) (-1502 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-845) (-554))) (-5 *1 (-626 *3 *4)) (-4 *4 (-13 (-429 *3) (-997) (-1192))))) (-2036 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-845) (-554))) (-5 *2 (-112)) (-5 *1 (-626 *4 *5)) (-4 *5 (-13 (-429 *4) (-997) (-1192)))))) -(-10 -7 (-15 -2036 ((-112) (-114))) (-15 -1502 ((-114) (-114))) (-15 -4198 (|#2| |#2|)) (-15 -3234 (|#2| |#2|)) (-15 -4003 (|#2| |#2|)) (-15 -2032 (|#2| |#2|)) (-15 -4021 (|#2| |#2|)) (-15 -4057 (|#2| |#2|)) (-15 -1529 (|#2| |#2| (-1168))) (-15 -1529 (|#2| |#2| (-1084 |#2|)))) -((-1430 (((-480 |#1| |#2|) (-246 |#1| |#2|)) 53)) (-4082 (((-639 (-246 |#1| |#2|)) (-639 (-480 |#1| |#2|))) 68)) (-2326 (((-480 |#1| |#2|) (-639 (-480 |#1| |#2|)) (-859 |#1|)) 70) (((-480 |#1| |#2|) (-639 (-480 |#1| |#2|)) (-639 (-480 |#1| |#2|)) (-859 |#1|)) 69)) (-1867 (((-2 (|:| |gblist| (-639 (-246 |#1| |#2|))) (|:| |gvlist| (-639 (-562)))) (-639 (-480 |#1| |#2|))) 108)) (-1905 (((-639 (-480 |#1| |#2|)) (-859 |#1|) (-639 (-480 |#1| |#2|)) (-639 (-480 |#1| |#2|))) 83)) (-3748 (((-2 (|:| |glbase| (-639 (-246 |#1| |#2|))) (|:| |glval| (-639 (-562)))) (-639 (-246 |#1| |#2|))) 118)) (-3830 (((-1256 |#2|) (-480 |#1| |#2|) (-639 (-480 |#1| |#2|))) 58)) (-4252 (((-639 (-480 |#1| |#2|)) (-639 (-480 |#1| |#2|))) 41)) (-2902 (((-246 |#1| |#2|) (-246 |#1| |#2|) (-639 (-246 |#1| |#2|))) 50)) (-3551 (((-246 |#1| |#2|) (-639 |#2|) (-246 |#1| |#2|) (-639 (-246 |#1| |#2|))) 91))) -(((-627 |#1| |#2|) (-10 -7 (-15 -1867 ((-2 (|:| |gblist| (-639 (-246 |#1| |#2|))) (|:| |gvlist| (-639 (-562)))) (-639 (-480 |#1| |#2|)))) (-15 -3748 ((-2 (|:| |glbase| (-639 (-246 |#1| |#2|))) (|:| |glval| (-639 (-562)))) (-639 (-246 |#1| |#2|)))) (-15 -4082 ((-639 (-246 |#1| |#2|)) (-639 (-480 |#1| |#2|)))) (-15 -2326 ((-480 |#1| |#2|) (-639 (-480 |#1| |#2|)) (-639 (-480 |#1| |#2|)) (-859 |#1|))) (-15 -2326 ((-480 |#1| |#2|) (-639 (-480 |#1| |#2|)) (-859 |#1|))) (-15 -4252 ((-639 (-480 |#1| |#2|)) (-639 (-480 |#1| |#2|)))) (-15 -3830 ((-1256 |#2|) (-480 |#1| |#2|) (-639 (-480 |#1| |#2|)))) (-15 -3551 ((-246 |#1| |#2|) (-639 |#2|) (-246 |#1| |#2|) (-639 (-246 |#1| |#2|)))) (-15 -1905 ((-639 (-480 |#1| |#2|)) (-859 |#1|) (-639 (-480 |#1| |#2|)) (-639 (-480 |#1| |#2|)))) (-15 -2902 ((-246 |#1| |#2|) (-246 |#1| |#2|) (-639 (-246 |#1| |#2|)))) (-15 -1430 ((-480 |#1| |#2|) (-246 |#1| |#2|)))) (-639 (-1168)) (-451)) (T -627)) -((-1430 (*1 *2 *3) (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-639 (-1168))) (-4 *5 (-451)) (-5 *2 (-480 *4 *5)) (-5 *1 (-627 *4 *5)))) (-2902 (*1 *2 *2 *3) (-12 (-5 *3 (-639 (-246 *4 *5))) (-5 *2 (-246 *4 *5)) (-14 *4 (-639 (-1168))) (-4 *5 (-451)) (-5 *1 (-627 *4 *5)))) (-1905 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-639 (-480 *4 *5))) (-5 *3 (-859 *4)) (-14 *4 (-639 (-1168))) (-4 *5 (-451)) (-5 *1 (-627 *4 *5)))) (-3551 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-639 *6)) (-5 *4 (-639 (-246 *5 *6))) (-4 *6 (-451)) (-5 *2 (-246 *5 *6)) (-14 *5 (-639 (-1168))) (-5 *1 (-627 *5 *6)))) (-3830 (*1 *2 *3 *4) (-12 (-5 *4 (-639 (-480 *5 *6))) (-5 *3 (-480 *5 *6)) (-14 *5 (-639 (-1168))) (-4 *6 (-451)) (-5 *2 (-1256 *6)) (-5 *1 (-627 *5 *6)))) (-4252 (*1 *2 *2) (-12 (-5 *2 (-639 (-480 *3 *4))) (-14 *3 (-639 (-1168))) (-4 *4 (-451)) (-5 *1 (-627 *3 *4)))) (-2326 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-480 *5 *6))) (-5 *4 (-859 *5)) (-14 *5 (-639 (-1168))) (-5 *2 (-480 *5 *6)) (-5 *1 (-627 *5 *6)) (-4 *6 (-451)))) (-2326 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-639 (-480 *5 *6))) (-5 *4 (-859 *5)) (-14 *5 (-639 (-1168))) (-5 *2 (-480 *5 *6)) (-5 *1 (-627 *5 *6)) (-4 *6 (-451)))) (-4082 (*1 *2 *3) (-12 (-5 *3 (-639 (-480 *4 *5))) (-14 *4 (-639 (-1168))) (-4 *5 (-451)) (-5 *2 (-639 (-246 *4 *5))) (-5 *1 (-627 *4 *5)))) (-3748 (*1 *2 *3) (-12 (-14 *4 (-639 (-1168))) (-4 *5 (-451)) (-5 *2 (-2 (|:| |glbase| (-639 (-246 *4 *5))) (|:| |glval| (-639 (-562))))) (-5 *1 (-627 *4 *5)) (-5 *3 (-639 (-246 *4 *5))))) (-1867 (*1 *2 *3) (-12 (-5 *3 (-639 (-480 *4 *5))) (-14 *4 (-639 (-1168))) (-4 *5 (-451)) (-5 *2 (-2 (|:| |gblist| (-639 (-246 *4 *5))) (|:| |gvlist| (-639 (-562))))) (-5 *1 (-627 *4 *5))))) -(-10 -7 (-15 -1867 ((-2 (|:| |gblist| (-639 (-246 |#1| |#2|))) (|:| |gvlist| (-639 (-562)))) (-639 (-480 |#1| |#2|)))) (-15 -3748 ((-2 (|:| |glbase| (-639 (-246 |#1| |#2|))) (|:| |glval| (-639 (-562)))) (-639 (-246 |#1| |#2|)))) (-15 -4082 ((-639 (-246 |#1| |#2|)) (-639 (-480 |#1| |#2|)))) (-15 -2326 ((-480 |#1| |#2|) (-639 (-480 |#1| |#2|)) (-639 (-480 |#1| |#2|)) (-859 |#1|))) (-15 -2326 ((-480 |#1| |#2|) (-639 (-480 |#1| |#2|)) (-859 |#1|))) (-15 -4252 ((-639 (-480 |#1| |#2|)) (-639 (-480 |#1| |#2|)))) (-15 -3830 ((-1256 |#2|) (-480 |#1| |#2|) (-639 (-480 |#1| |#2|)))) (-15 -3551 ((-246 |#1| |#2|) (-639 |#2|) (-246 |#1| |#2|) (-639 (-246 |#1| |#2|)))) (-15 -1905 ((-639 (-480 |#1| |#2|)) (-859 |#1|) (-639 (-480 |#1| |#2|)) (-639 (-480 |#1| |#2|)))) (-15 -2902 ((-246 |#1| |#2|) (-246 |#1| |#2|) (-639 (-246 |#1| |#2|)))) (-15 -1430 ((-480 |#1| |#2|) (-246 |#1| |#2|)))) -((-4041 (((-112) $ $) NIL (-4037 (|has| (-52) (-1092)) (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (-1092))))) (-1443 (($) NIL) (($ (-639 (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))))) NIL)) (-3655 (((-1261) $ (-1150) (-1150)) NIL (|has| $ (-6 -4404)))) (-3735 (((-112) $ (-766)) NIL)) (-4200 (((-52) $ (-1150) (-52)) 16) (((-52) $ (-1168) (-52)) 17)) (-2968 (($ (-1 (-112) (-2 (|:| -2319 (-1150)) (|:| -2693 (-52)))) $) NIL (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) (-2 (|:| -2319 (-1150)) (|:| -2693 (-52)))) $) NIL (|has| $ (-6 -4403)))) (-1472 (((-3 (-52) "failed") (-1150) $) NIL)) (-3329 (($) NIL T CONST)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (-1092))))) (-3729 (($ (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) $) NIL (|has| $ (-6 -4403))) (($ (-1 (-112) (-2 (|:| -2319 (-1150)) (|:| -2693 (-52)))) $) NIL (|has| $ (-6 -4403))) (((-3 (-52) "failed") (-1150) $) NIL)) (-1475 (($ (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (-1092)))) (($ (-1 (-112) (-2 (|:| -2319 (-1150)) (|:| -2693 (-52)))) $) NIL (|has| $ (-6 -4403)))) (-1954 (((-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (-1 (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (-2 (|:| -2319 (-1150)) (|:| -2693 (-52)))) $ (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (-2 (|:| -2319 (-1150)) (|:| -2693 (-52)))) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (-1092)))) (((-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (-1 (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (-2 (|:| -2319 (-1150)) (|:| -2693 (-52)))) $ (-2 (|:| -2319 (-1150)) (|:| -2693 (-52)))) NIL (|has| $ (-6 -4403))) (((-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (-1 (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (-2 (|:| -2319 (-1150)) (|:| -2693 (-52)))) $) NIL (|has| $ (-6 -4403)))) (-1507 (((-52) $ (-1150) (-52)) NIL (|has| $ (-6 -4404)))) (-1420 (((-52) $ (-1150)) NIL)) (-1720 (((-639 (-2 (|:| -2319 (-1150)) (|:| -2693 (-52)))) $) NIL (|has| $ (-6 -4403))) (((-639 (-52)) $) NIL (|has| $ (-6 -4403)))) (-3702 (($ $) NIL)) (-4172 (((-112) $ (-766)) NIL)) (-1849 (((-1150) $) NIL (|has| (-1150) (-845)))) (-2123 (((-639 (-2 (|:| -2319 (-1150)) (|:| -2693 (-52)))) $) NIL (|has| $ (-6 -4403))) (((-639 (-52)) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (-1092)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-52) (-1092))))) (-1929 (((-1150) $) NIL (|has| (-1150) (-845)))) (-1491 (($ (-1 (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (-2 (|:| -2319 (-1150)) (|:| -2693 (-52)))) $) NIL (|has| $ (-6 -4404))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (-2 (|:| -2319 (-1150)) (|:| -2693 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1552 (($ (-387)) 9)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL (-4037 (|has| (-52) (-1092)) (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (-1092))))) (-1521 (((-639 (-1150)) $) NIL)) (-4278 (((-112) (-1150) $) NIL)) (-2078 (((-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) $) NIL)) (-1581 (($ (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) $) NIL)) (-3336 (((-639 (-1150)) $) NIL)) (-1987 (((-112) (-1150) $) NIL)) (-1709 (((-1112) $) NIL (-4037 (|has| (-52) (-1092)) (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (-1092))))) (-1421 (((-52) $) NIL (|has| (-1150) (-845)))) (-1963 (((-3 (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) "failed") (-1 (-112) (-2 (|:| -2319 (-1150)) (|:| -2693 (-52)))) $) NIL)) (-3510 (($ $ (-52)) NIL (|has| $ (-6 -4404)))) (-2038 (((-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) $) NIL)) (-3008 (((-112) (-1 (-112) (-2 (|:| -2319 (-1150)) (|:| -2693 (-52)))) $) NIL (|has| $ (-6 -4403))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 (-2 (|:| -2319 (-1150)) (|:| -2693 (-52)))))) NIL (-12 (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (-308 (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))))) (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (-1092)))) (($ $ (-293 (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))))) NIL (-12 (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (-308 (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))))) (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (-1092)))) (($ $ (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (-2 (|:| -2319 (-1150)) (|:| -2693 (-52)))) NIL (-12 (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (-308 (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))))) (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (-1092)))) (($ $ (-639 (-2 (|:| -2319 (-1150)) (|:| -2693 (-52)))) (-639 (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))))) NIL (-12 (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (-308 (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))))) (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (-1092)))) (($ $ (-639 (-52)) (-639 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1092)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1092)))) (($ $ (-293 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1092)))) (($ $ (-639 (-293 (-52)))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1092))))) (-1452 (((-112) $ $) NIL)) (-2716 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-52) (-1092))))) (-2366 (((-639 (-52)) $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) NIL)) (-2343 (((-52) $ (-1150)) 14) (((-52) $ (-1150) (-52)) NIL) (((-52) $ (-1168)) 15)) (-1932 (($) NIL) (($ (-639 (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))))) NIL)) (-1723 (((-766) (-1 (-112) (-2 (|:| -2319 (-1150)) (|:| -2693 (-52)))) $) NIL (|has| $ (-6 -4403))) (((-766) (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (-1092)))) (((-766) (-52) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-52) (-1092)))) (((-766) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4403)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (-610 (-535))))) (-4064 (($ (-639 (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))))) NIL)) (-4053 (((-857) $) NIL (-4037 (|has| (-52) (-609 (-857))) (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (-609 (-857)))))) (-4131 (($ (-639 (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))))) NIL)) (-2879 (((-112) (-1 (-112) (-2 (|:| -2319 (-1150)) (|:| -2693 (-52)))) $) NIL (|has| $ (-6 -4403))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) NIL (-4037 (|has| (-52) (-1092)) (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 (-52))) (-1092))))) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-628) (-13 (-1183 (-1150) (-52)) (-10 -8 (-15 -1552 ($ (-387))) (-15 -3702 ($ $)) (-15 -2343 ((-52) $ (-1168))) (-15 -4200 ((-52) $ (-1168) (-52)))))) (T -628)) -((-1552 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-628)))) (-3702 (*1 *1 *1) (-5 *1 (-628))) (-2343 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-52)) (-5 *1 (-628)))) (-4200 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1168)) (-5 *1 (-628))))) -(-13 (-1183 (-1150) (-52)) (-10 -8 (-15 -1552 ($ (-387))) (-15 -3702 ($ $)) (-15 -2343 ((-52) $ (-1168))) (-15 -4200 ((-52) $ (-1168) (-52))))) -((-1859 (($ $ |#2|) 10))) -(((-629 |#1| |#2|) (-10 -8 (-15 -1859 (|#1| |#1| |#2|))) (-630 |#2|) (-171)) (T -629)) -NIL -(-10 -8 (-15 -1859 (|#1| |#1| |#2|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4064 (($ $ $) 29)) (-4053 (((-857) $) 11)) (-2285 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1859 (($ $ |#1|) 28 (|has| |#1| (-362)))) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-630 |#1|) (-139) (-171)) (T -630)) -((-4064 (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-171)))) (-1859 (*1 *1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-171)) (-4 *2 (-362))))) -(-13 (-712 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -4064 ($ $ $)) (IF (|has| |t#1| (-362)) (-15 -1859 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-609 (-857)) . T) ((-642 |#1|) . T) ((-712 |#1|) . T) ((-1050 |#1|) . T) ((-1092) . T)) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-4310 (((-3 $ "failed")) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-2781 (((-3 $ "failed") $ $) NIL)) (-2016 (((-1256 (-683 |#1|))) NIL (|has| |#2| (-416 |#1|))) (((-1256 (-683 |#1|)) (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-1540 (((-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-3329 (($) NIL T CONST)) (-1469 (((-3 (-2 (|:| |particular| $) (|:| -4291 (-639 $))) "failed")) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-2447 (((-3 $ "failed")) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-3945 (((-683 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-683 |#1|) (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-2452 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-2995 (((-683 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-683 |#1|) $ (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-4276 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-3996 (((-1164 (-947 |#1|))) NIL (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-362))))) (-2127 (($ $ (-916)) NIL)) (-2949 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-3407 (((-1164 |#1|) $) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-2200 ((|#1|) NIL (|has| |#2| (-416 |#1|))) ((|#1| (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-2974 (((-1164 |#1|) $) NIL (|has| |#2| (-366 |#1|)))) (-3178 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3916 (($ (-1256 |#1|)) NIL (|has| |#2| (-416 |#1|))) (($ (-1256 |#1|) (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-1694 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-2172 (((-916)) NIL (|has| |#2| (-366 |#1|)))) (-1832 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1492 (($ $ (-916)) NIL)) (-2531 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3671 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2394 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3502 (((-3 (-2 (|:| |particular| $) (|:| -4291 (-639 $))) "failed")) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-3839 (((-3 $ "failed")) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-3506 (((-683 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-683 |#1|) (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-2664 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-1583 (((-683 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-683 |#1|) $ (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-2217 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-2620 (((-1164 (-947 |#1|))) NIL (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-362))))) (-3235 (($ $ (-916)) NIL)) (-3495 ((|#1| $) NIL (|has| |#2| (-366 |#1|)))) (-3849 (((-1164 |#1|) $) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-1636 ((|#1|) NIL (|has| |#2| (-416 |#1|))) ((|#1| (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-3099 (((-1164 |#1|) $) NIL (|has| |#2| (-366 |#1|)))) (-3302 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3696 (((-1150) $) NIL)) (-2720 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1579 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2104 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1709 (((-1112) $) NIL)) (-3626 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2343 ((|#1| $ (-562)) NIL (|has| |#2| (-416 |#1|)))) (-2205 (((-683 |#1|) (-1256 $)) NIL (|has| |#2| (-416 |#1|))) (((-1256 |#1|) $) NIL (|has| |#2| (-416 |#1|))) (((-683 |#1|) (-1256 $) (-1256 $)) NIL (|has| |#2| (-366 |#1|))) (((-1256 |#1|) $ (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-4208 (($ (-1256 |#1|)) NIL (|has| |#2| (-416 |#1|))) (((-1256 |#1|) $) NIL (|has| |#2| (-416 |#1|)))) (-2555 (((-639 (-947 |#1|))) NIL (|has| |#2| (-416 |#1|))) (((-639 (-947 |#1|)) (-1256 $)) NIL (|has| |#2| (-366 |#1|)))) (-2114 (($ $ $) NIL)) (-3901 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-4053 (((-857) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-4291 (((-1256 $)) NIL (|has| |#2| (-416 |#1|)))) (-1823 (((-639 (-1256 |#1|))) NIL (-4037 (-12 (|has| |#2| (-366 |#1|)) (|has| |#1| (-554))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-554)))))) (-2584 (($ $ $ $) NIL)) (-4309 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-1360 (($ (-683 |#1|) $) NIL (|has| |#2| (-416 |#1|)))) (-4324 (($ $ $) NIL)) (-1517 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2636 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-3488 (((-112)) NIL (|has| |#2| (-366 |#1|)))) (-2285 (($) 15 T CONST)) (-1733 (((-112) $ $) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) 17)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-631 |#1| |#2|) (-13 (-739 |#1|) (-609 |#2|) (-10 -8 (-15 -4053 ($ |#2|)) (IF (|has| |#2| (-416 |#1|)) (-6 (-416 |#1|)) |%noBranch|) (IF (|has| |#2| (-366 |#1|)) (-6 (-366 |#1|)) |%noBranch|))) (-171) (-739 |#1|)) (T -631)) -((-4053 (*1 *1 *2) (-12 (-4 *3 (-171)) (-5 *1 (-631 *3 *2)) (-4 *2 (-739 *3))))) -(-13 (-739 |#1|) (-609 |#2|) (-10 -8 (-15 -4053 ($ |#2|)) (IF (|has| |#2| (-416 |#1|)) (-6 (-416 |#1|)) |%noBranch|) (IF (|has| |#2| (-366 |#1|)) (-6 (-366 |#1|)) |%noBranch|))) -((-1739 (((-3 (-838 |#2|) "failed") |#2| (-293 |#2|) (-1150)) 81) (((-3 (-838 |#2|) (-2 (|:| |leftHandLimit| (-3 (-838 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-838 |#2|) "failed"))) "failed") |#2| (-293 (-838 |#2|))) 103)) (-1990 (((-3 (-828 |#2|) "failed") |#2| (-293 (-828 |#2|))) 108))) -(((-632 |#1| |#2|) (-10 -7 (-15 -1739 ((-3 (-838 |#2|) (-2 (|:| |leftHandLimit| (-3 (-838 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-838 |#2|) "failed"))) "failed") |#2| (-293 (-838 |#2|)))) (-15 -1990 ((-3 (-828 |#2|) "failed") |#2| (-293 (-828 |#2|)))) (-15 -1739 ((-3 (-838 |#2|) "failed") |#2| (-293 |#2|) (-1150)))) (-13 (-451) (-845) (-1033 (-562)) (-635 (-562))) (-13 (-27) (-1192) (-429 |#1|))) (T -632)) -((-1739 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-293 *3)) (-5 *5 (-1150)) (-4 *3 (-13 (-27) (-1192) (-429 *6))) (-4 *6 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-838 *3)) (-5 *1 (-632 *6 *3)))) (-1990 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-293 (-828 *3))) (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-828 *3)) (-5 *1 (-632 *5 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5))))) (-1739 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-838 *3))) (-4 *3 (-13 (-27) (-1192) (-429 *5))) (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-3 (-838 *3) (-2 (|:| |leftHandLimit| (-3 (-838 *3) "failed")) (|:| |rightHandLimit| (-3 (-838 *3) "failed"))) "failed")) (-5 *1 (-632 *5 *3))))) -(-10 -7 (-15 -1739 ((-3 (-838 |#2|) (-2 (|:| |leftHandLimit| (-3 (-838 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-838 |#2|) "failed"))) "failed") |#2| (-293 (-838 |#2|)))) (-15 -1990 ((-3 (-828 |#2|) "failed") |#2| (-293 (-828 |#2|)))) (-15 -1739 ((-3 (-838 |#2|) "failed") |#2| (-293 |#2|) (-1150)))) -((-1739 (((-3 (-838 (-406 (-947 |#1|))) "failed") (-406 (-947 |#1|)) (-293 (-406 (-947 |#1|))) (-1150)) 80) (((-3 (-838 (-406 (-947 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-838 (-406 (-947 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-838 (-406 (-947 |#1|))) "failed"))) "failed") (-406 (-947 |#1|)) (-293 (-406 (-947 |#1|)))) 20) (((-3 (-838 (-406 (-947 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-838 (-406 (-947 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-838 (-406 (-947 |#1|))) "failed"))) "failed") (-406 (-947 |#1|)) (-293 (-838 (-947 |#1|)))) 35)) (-1990 (((-828 (-406 (-947 |#1|))) (-406 (-947 |#1|)) (-293 (-406 (-947 |#1|)))) 23) (((-828 (-406 (-947 |#1|))) (-406 (-947 |#1|)) (-293 (-828 (-947 |#1|)))) 43))) -(((-633 |#1|) (-10 -7 (-15 -1739 ((-3 (-838 (-406 (-947 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-838 (-406 (-947 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-838 (-406 (-947 |#1|))) "failed"))) "failed") (-406 (-947 |#1|)) (-293 (-838 (-947 |#1|))))) (-15 -1739 ((-3 (-838 (-406 (-947 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-838 (-406 (-947 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-838 (-406 (-947 |#1|))) "failed"))) "failed") (-406 (-947 |#1|)) (-293 (-406 (-947 |#1|))))) (-15 -1990 ((-828 (-406 (-947 |#1|))) (-406 (-947 |#1|)) (-293 (-828 (-947 |#1|))))) (-15 -1990 ((-828 (-406 (-947 |#1|))) (-406 (-947 |#1|)) (-293 (-406 (-947 |#1|))))) (-15 -1739 ((-3 (-838 (-406 (-947 |#1|))) "failed") (-406 (-947 |#1|)) (-293 (-406 (-947 |#1|))) (-1150)))) (-451)) (T -633)) -((-1739 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-293 (-406 (-947 *6)))) (-5 *5 (-1150)) (-5 *3 (-406 (-947 *6))) (-4 *6 (-451)) (-5 *2 (-838 *3)) (-5 *1 (-633 *6)))) (-1990 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-406 (-947 *5)))) (-5 *3 (-406 (-947 *5))) (-4 *5 (-451)) (-5 *2 (-828 *3)) (-5 *1 (-633 *5)))) (-1990 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-828 (-947 *5)))) (-4 *5 (-451)) (-5 *2 (-828 (-406 (-947 *5)))) (-5 *1 (-633 *5)) (-5 *3 (-406 (-947 *5))))) (-1739 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-406 (-947 *5)))) (-5 *3 (-406 (-947 *5))) (-4 *5 (-451)) (-5 *2 (-3 (-838 *3) (-2 (|:| |leftHandLimit| (-3 (-838 *3) "failed")) (|:| |rightHandLimit| (-3 (-838 *3) "failed"))) "failed")) (-5 *1 (-633 *5)))) (-1739 (*1 *2 *3 *4) (-12 (-5 *4 (-293 (-838 (-947 *5)))) (-4 *5 (-451)) (-5 *2 (-3 (-838 (-406 (-947 *5))) (-2 (|:| |leftHandLimit| (-3 (-838 (-406 (-947 *5))) "failed")) (|:| |rightHandLimit| (-3 (-838 (-406 (-947 *5))) "failed"))) "failed")) (-5 *1 (-633 *5)) (-5 *3 (-406 (-947 *5)))))) -(-10 -7 (-15 -1739 ((-3 (-838 (-406 (-947 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-838 (-406 (-947 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-838 (-406 (-947 |#1|))) "failed"))) "failed") (-406 (-947 |#1|)) (-293 (-838 (-947 |#1|))))) (-15 -1739 ((-3 (-838 (-406 (-947 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-838 (-406 (-947 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-838 (-406 (-947 |#1|))) "failed"))) "failed") (-406 (-947 |#1|)) (-293 (-406 (-947 |#1|))))) (-15 -1990 ((-828 (-406 (-947 |#1|))) (-406 (-947 |#1|)) (-293 (-828 (-947 |#1|))))) (-15 -1990 ((-828 (-406 (-947 |#1|))) (-406 (-947 |#1|)) (-293 (-406 (-947 |#1|))))) (-15 -1739 ((-3 (-838 (-406 (-947 |#1|))) "failed") (-406 (-947 |#1|)) (-293 (-406 (-947 |#1|))) (-1150)))) -((-1721 (((-3 (-1256 (-406 |#1|)) "failed") (-1256 |#2|) |#2|) 57 (-2234 (|has| |#1| (-362)))) (((-3 (-1256 |#1|) "failed") (-1256 |#2|) |#2|) 42 (|has| |#1| (-362)))) (-1974 (((-112) (-1256 |#2|)) 30)) (-2640 (((-3 (-1256 |#1|) "failed") (-1256 |#2|)) 33))) -(((-634 |#1| |#2|) (-10 -7 (-15 -1974 ((-112) (-1256 |#2|))) (-15 -2640 ((-3 (-1256 |#1|) "failed") (-1256 |#2|))) (IF (|has| |#1| (-362)) (-15 -1721 ((-3 (-1256 |#1|) "failed") (-1256 |#2|) |#2|)) (-15 -1721 ((-3 (-1256 (-406 |#1|)) "failed") (-1256 |#2|) |#2|)))) (-554) (-635 |#1|)) (T -634)) -((-1721 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1256 *4)) (-4 *4 (-635 *5)) (-2234 (-4 *5 (-362))) (-4 *5 (-554)) (-5 *2 (-1256 (-406 *5))) (-5 *1 (-634 *5 *4)))) (-1721 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1256 *4)) (-4 *4 (-635 *5)) (-4 *5 (-362)) (-4 *5 (-554)) (-5 *2 (-1256 *5)) (-5 *1 (-634 *5 *4)))) (-2640 (*1 *2 *3) (|partial| -12 (-5 *3 (-1256 *5)) (-4 *5 (-635 *4)) (-4 *4 (-554)) (-5 *2 (-1256 *4)) (-5 *1 (-634 *4 *5)))) (-1974 (*1 *2 *3) (-12 (-5 *3 (-1256 *5)) (-4 *5 (-635 *4)) (-4 *4 (-554)) (-5 *2 (-112)) (-5 *1 (-634 *4 *5))))) -(-10 -7 (-15 -1974 ((-112) (-1256 |#2|))) (-15 -2640 ((-3 (-1256 |#1|) "failed") (-1256 |#2|))) (IF (|has| |#1| (-362)) (-15 -1721 ((-3 (-1256 |#1|) "failed") (-1256 |#2|) |#2|)) (-15 -1721 ((-3 (-1256 (-406 |#1|)) "failed") (-1256 |#2|) |#2|)))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-3449 (((-683 |#1|) (-683 $)) 36) (((-2 (|:| -1767 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) 35)) (-1694 (((-3 $ "failed") $) 33)) (-4367 (((-112) $) 31)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11) (($ (-562)) 29)) (-1568 (((-766)) 28)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) -(((-635 |#1|) (-139) (-1044)) (T -635)) -((-3449 (*1 *2 *3) (-12 (-5 *3 (-683 *1)) (-4 *1 (-635 *4)) (-4 *4 (-1044)) (-5 *2 (-683 *4)))) (-3449 (*1 *2 *3 *4) (-12 (-5 *3 (-683 *1)) (-5 *4 (-1256 *1)) (-4 *1 (-635 *5)) (-4 *5 (-1044)) (-5 *2 (-2 (|:| -1767 (-683 *5)) (|:| |vec| (-1256 *5))))))) -(-13 (-1044) (-10 -8 (-15 -3449 ((-683 |t#1|) (-683 $))) (-15 -3449 ((-2 (|:| -1767 (-683 |t#1|)) (|:| |vec| (-1256 |t#1|))) (-683 $) (-1256 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-612 (-562)) . T) ((-609 (-857)) . T) ((-642 $) . T) ((-721) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) -((-3789 ((|#2| (-639 |#1|) (-639 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-639 |#1|) (-639 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-639 |#1|) (-639 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-639 |#1|) (-639 |#2|) |#2|) 17) ((|#2| (-639 |#1|) (-639 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-639 |#1|) (-639 |#2|)) 12))) -(((-636 |#1| |#2|) (-10 -7 (-15 -3789 ((-1 |#2| |#1|) (-639 |#1|) (-639 |#2|))) (-15 -3789 (|#2| (-639 |#1|) (-639 |#2|) |#1|)) (-15 -3789 ((-1 |#2| |#1|) (-639 |#1|) (-639 |#2|) |#2|)) (-15 -3789 (|#2| (-639 |#1|) (-639 |#2|) |#1| |#2|)) (-15 -3789 ((-1 |#2| |#1|) (-639 |#1|) (-639 |#2|) (-1 |#2| |#1|))) (-15 -3789 (|#2| (-639 |#1|) (-639 |#2|) |#1| (-1 |#2| |#1|)))) (-1092) (-1207)) (T -636)) -((-3789 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-639 *5)) (-5 *4 (-639 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1092)) (-4 *2 (-1207)) (-5 *1 (-636 *5 *2)))) (-3789 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-639 *5)) (-5 *4 (-639 *6)) (-4 *5 (-1092)) (-4 *6 (-1207)) (-5 *1 (-636 *5 *6)))) (-3789 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-639 *5)) (-5 *4 (-639 *2)) (-4 *5 (-1092)) (-4 *2 (-1207)) (-5 *1 (-636 *5 *2)))) (-3789 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 *6)) (-5 *4 (-639 *5)) (-4 *6 (-1092)) (-4 *5 (-1207)) (-5 *2 (-1 *5 *6)) (-5 *1 (-636 *6 *5)))) (-3789 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 *5)) (-5 *4 (-639 *2)) (-4 *5 (-1092)) (-4 *2 (-1207)) (-5 *1 (-636 *5 *2)))) (-3789 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *5)) (-5 *4 (-639 *6)) (-4 *5 (-1092)) (-4 *6 (-1207)) (-5 *2 (-1 *6 *5)) (-5 *1 (-636 *5 *6))))) -(-10 -7 (-15 -3789 ((-1 |#2| |#1|) (-639 |#1|) (-639 |#2|))) (-15 -3789 (|#2| (-639 |#1|) (-639 |#2|) |#1|)) (-15 -3789 ((-1 |#2| |#1|) (-639 |#1|) (-639 |#2|) |#2|)) (-15 -3789 (|#2| (-639 |#1|) (-639 |#2|) |#1| |#2|)) (-15 -3789 ((-1 |#2| |#1|) (-639 |#1|) (-639 |#2|) (-1 |#2| |#1|))) (-15 -3789 (|#2| (-639 |#1|) (-639 |#2|) |#1| (-1 |#2| |#1|)))) -((-1555 (((-639 |#2|) (-1 |#2| |#1| |#2|) (-639 |#1|) |#2|) 16)) (-1954 ((|#2| (-1 |#2| |#1| |#2|) (-639 |#1|) |#2|) 18)) (-4152 (((-639 |#2|) (-1 |#2| |#1|) (-639 |#1|)) 13))) -(((-637 |#1| |#2|) (-10 -7 (-15 -1555 ((-639 |#2|) (-1 |#2| |#1| |#2|) (-639 |#1|) |#2|)) (-15 -1954 (|#2| (-1 |#2| |#1| |#2|) (-639 |#1|) |#2|)) (-15 -4152 ((-639 |#2|) (-1 |#2| |#1|) (-639 |#1|)))) (-1207) (-1207)) (T -637)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-639 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-639 *6)) (-5 *1 (-637 *5 *6)))) (-1954 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-639 *5)) (-4 *5 (-1207)) (-4 *2 (-1207)) (-5 *1 (-637 *5 *2)))) (-1555 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-639 *6)) (-4 *6 (-1207)) (-4 *5 (-1207)) (-5 *2 (-639 *5)) (-5 *1 (-637 *6 *5))))) -(-10 -7 (-15 -1555 ((-639 |#2|) (-1 |#2| |#1| |#2|) (-639 |#1|) |#2|)) (-15 -1954 (|#2| (-1 |#2| |#1| |#2|) (-639 |#1|) |#2|)) (-15 -4152 ((-639 |#2|) (-1 |#2| |#1|) (-639 |#1|)))) -((-4152 (((-639 |#3|) (-1 |#3| |#1| |#2|) (-639 |#1|) (-639 |#2|)) 13))) -(((-638 |#1| |#2| |#3|) (-10 -7 (-15 -4152 ((-639 |#3|) (-1 |#3| |#1| |#2|) (-639 |#1|) (-639 |#2|)))) (-1207) (-1207) (-1207)) (T -638)) -((-4152 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-639 *6)) (-5 *5 (-639 *7)) (-4 *6 (-1207)) (-4 *7 (-1207)) (-4 *8 (-1207)) (-5 *2 (-639 *8)) (-5 *1 (-638 *6 *7 *8))))) -(-10 -7 (-15 -4152 ((-639 |#3|) (-1 |#3| |#1| |#2|) (-639 |#1|) (-639 |#2|)))) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2533 ((|#1| $) NIL)) (-2358 ((|#1| $) NIL)) (-3120 (($ $) NIL)) (-3655 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4404)))) (-1335 (($ $ (-562)) NIL (|has| $ (-6 -4404)))) (-1706 (((-112) $) NIL (|has| |#1| (-845))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3737 (($ $) NIL (-12 (|has| $ (-6 -4404)) (|has| |#1| (-845)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4404)))) (-1395 (($ $) NIL (|has| |#1| (-845))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3735 (((-112) $ (-766)) NIL)) (-2677 ((|#1| $ |#1|) NIL (|has| $ (-6 -4404)))) (-3400 (($ $ $) NIL (|has| $ (-6 -4404)))) (-1393 ((|#1| $ |#1|) NIL (|has| $ (-6 -4404)))) (-3239 ((|#1| $ |#1|) NIL (|has| $ (-6 -4404)))) (-4200 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4404))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4404))) (($ $ "rest" $) NIL (|has| $ (-6 -4404))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4404))) ((|#1| $ (-1223 (-562)) |#1|) NIL (|has| $ (-6 -4404))) ((|#1| $ (-562) |#1|) NIL (|has| $ (-6 -4404)))) (-3742 (($ $ (-639 $)) NIL (|has| $ (-6 -4404)))) (-1349 (($ $ $) 31 (|has| |#1| (-1092)))) (-1340 (($ $ $) 33 (|has| |#1| (-1092)))) (-3751 (($ $ $) 36 (|has| |#1| (-1092)))) (-2968 (($ (-1 (-112) |#1|) $) NIL)) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-2349 ((|#1| $) NIL)) (-3329 (($) NIL T CONST)) (-2673 (($ $) NIL (|has| $ (-6 -4404)))) (-2676 (($ $) NIL)) (-1434 (($ $) NIL) (($ $ (-766)) NIL)) (-3923 (($ $) NIL (|has| |#1| (-1092)))) (-1459 (($ $) 30 (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-3729 (($ |#1| $) NIL (|has| |#1| (-1092))) (($ (-1 (-112) |#1|) $) NIL)) (-1475 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1954 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1507 ((|#1| $ (-562) |#1|) NIL (|has| $ (-6 -4404)))) (-1420 ((|#1| $ (-562)) NIL)) (-2101 (((-112) $) NIL)) (-4265 (((-562) |#1| $ (-562)) NIL (|has| |#1| (-1092))) (((-562) |#1| $) NIL (|has| |#1| (-1092))) (((-562) (-1 (-112) |#1|) $) NIL)) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-2224 (((-112) $) 9)) (-2409 (((-639 $) $) NIL)) (-4188 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1370 (($) 7)) (-1458 (($ (-766) |#1|) NIL)) (-4172 (((-112) $ (-766)) NIL)) (-1849 (((-562) $) NIL (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-3124 (($ $ $) NIL (|has| |#1| (-845))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4103 (($ $ $) NIL (|has| |#1| (-845))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2123 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) 32 (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1929 (((-562) $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-1491 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3716 (($ |#1|) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-4008 (((-639 |#1|) $) NIL)) (-3179 (((-112) $) NIL)) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1504 ((|#1| $) NIL) (($ $ (-766)) NIL)) (-1581 (($ $ $ (-562)) NIL) (($ |#1| $ (-562)) NIL)) (-3295 (($ $ $ (-562)) NIL) (($ |#1| $ (-562)) NIL)) (-3336 (((-639 (-562)) $) NIL)) (-1987 (((-112) (-562) $) NIL)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-1421 ((|#1| $) NIL) (($ $ (-766)) NIL)) (-1963 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3510 (($ $ |#1|) NIL (|has| $ (-6 -4404)))) (-3745 (((-112) $) NIL)) (-3008 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) NIL)) (-2716 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2366 (((-639 |#1|) $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) NIL)) (-2343 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1223 (-562))) NIL) ((|#1| $ (-562)) 35) ((|#1| $ (-562) |#1|) NIL)) (-1423 (((-562) $ $) NIL)) (-1527 (($ $ (-1223 (-562))) NIL) (($ $ (-562)) NIL)) (-2880 (($ $ (-1223 (-562))) NIL) (($ $ (-562)) NIL)) (-2473 (((-112) $) NIL)) (-3734 (($ $) NIL)) (-3659 (($ $) NIL (|has| $ (-6 -4404)))) (-3595 (((-766) $) NIL)) (-2333 (($ $) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2694 (($ $ $ (-562)) NIL (|has| $ (-6 -4404)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) 44 (|has| |#1| (-610 (-535))))) (-4064 (($ (-639 |#1|)) NIL)) (-3949 (($ |#1| $) 10)) (-2587 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2767 (($ $ $) 29) (($ |#1| $) NIL) (($ (-639 $)) NIL) (($ $ |#1|) NIL)) (-4053 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-3643 (((-639 $) $) NIL)) (-2985 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1591 (($ $ $) 11)) (-2879 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-2332 (((-1150) $) 25 (|has| |#1| (-823))) (((-1150) $ (-112)) 26 (|has| |#1| (-823))) (((-1261) (-817) $) 27 (|has| |#1| (-823))) (((-1261) (-817) $ (-112)) 28 (|has| |#1| (-823)))) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1771 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1761 (((-112) $ $) NIL (|has| |#1| (-845)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-639 |#1|) (-13 (-660 |#1|) (-10 -8 (-15 -1370 ($)) (-15 -2224 ((-112) $)) (-15 -3949 ($ |#1| $)) (-15 -1591 ($ $ $)) (IF (|has| |#1| (-1092)) (PROGN (-15 -1349 ($ $ $)) (-15 -1340 ($ $ $)) (-15 -3751 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|))) (-1207)) (T -639)) -((-1370 (*1 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-1207)))) (-2224 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-639 *3)) (-4 *3 (-1207)))) (-3949 (*1 *1 *2 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-1207)))) (-1591 (*1 *1 *1 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-1207)))) (-1349 (*1 *1 *1 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-1092)) (-4 *2 (-1207)))) (-1340 (*1 *1 *1 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-1092)) (-4 *2 (-1207)))) (-3751 (*1 *1 *1 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-1092)) (-4 *2 (-1207))))) -(-13 (-660 |#1|) (-10 -8 (-15 -1370 ($)) (-15 -2224 ((-112) $)) (-15 -3949 ($ |#1| $)) (-15 -1591 ($ $ $)) (IF (|has| |#1| (-1092)) (PROGN (-15 -1349 ($ $ $)) (-15 -1340 ($ $ $)) (-15 -3751 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|))) -((-4041 (((-112) $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 11) (($ (-1173)) NIL) (((-1173) $) NIL) ((|#1| $) 8)) (-1733 (((-112) $ $) NIL))) -(((-640 |#1|) (-13 (-1075) (-609 |#1|)) (-1092)) (T -640)) -NIL -(-13 (-1075) (-609 |#1|)) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1446 (($ |#1| |#1| $) 43)) (-3735 (((-112) $ (-766)) NIL)) (-2968 (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-3329 (($) NIL T CONST)) (-3923 (($ $) 45)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-3729 (($ |#1| $) 51 (|has| $ (-6 -4403))) (($ (-1 (-112) |#1|) $) 53 (|has| $ (-6 -4403)))) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1954 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4403)))) (-1720 (((-639 |#1|) $) 9 (|has| $ (-6 -4403)))) (-4172 (((-112) $ (-766)) NIL)) (-2123 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1491 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 37)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-2078 ((|#1| $) 46)) (-1581 (($ |#1| $) 26) (($ |#1| $ (-766)) 42)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-1963 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2038 ((|#1| $) 48)) (-3008 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) NIL)) (-3087 (((-112) $) 21)) (-1663 (($) 25)) (-3375 (((-112) $) 49)) (-3110 (((-639 (-2 (|:| -2693 |#1|) (|:| -1723 (-766)))) $) 58)) (-1932 (($) 23) (($ (-639 |#1|)) 18)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-766) |#1| $) 55 (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-4220 (($ $) 19)) (-4208 (((-535) $) 34 (|has| |#1| (-610 (-535))))) (-4064 (($ (-639 |#1|)) NIL)) (-4053 (((-857) $) 14 (|has| |#1| (-609 (-857))))) (-4131 (($ (-639 |#1|)) 22)) (-2879 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 60 (|has| |#1| (-1092)))) (-3492 (((-766) $) 16 (|has| $ (-6 -4403))))) -(((-641 |#1|) (-13 (-689 |#1|) (-10 -8 (-6 -4403) (-15 -3375 ((-112) $)) (-15 -1446 ($ |#1| |#1| $)))) (-1092)) (T -641)) -((-3375 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-641 *3)) (-4 *3 (-1092)))) (-1446 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1092))))) -(-13 (-689 |#1|) (-10 -8 (-6 -4403) (-15 -3375 ((-112) $)) (-15 -1446 ($ |#1| |#1| $)))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11)) (-2285 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ |#1| $) 23))) -(((-642 |#1|) (-139) (-1051)) (T -642)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-1051))))) +((-1677 (((-112) $ $) NIL (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1552 (($) NIL) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL)) (-4378 (((-1262) $ |#1| |#1|) NIL (|has| $ (-6 -4408)))) (-2759 (((-112) $ (-767)) NIL)) (-1849 ((|#2| $ |#1| |#2|) NIL)) (-2812 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-2256 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-1577 (((-3 |#2| "failed") |#1| $) NIL)) (-4239 (($) NIL T CONST)) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093))))) (-2705 (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-3 |#2| "failed") |#1| $) NIL)) (-1459 (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-2444 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL (|has| $ (-6 -4407))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-4355 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4408)))) (-4293 ((|#2| $ |#1|) NIL)) (-2659 (((-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-640 |#2|) $) NIL (|has| $ (-6 -4407)))) (-2581 (((-112) $ (-767)) NIL)) (-2411 ((|#1| $) NIL (|has| |#1| (-846)))) (-2259 (((-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-640 |#2|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093))))) (-3860 ((|#1| $) NIL (|has| |#1| (-846)))) (-4345 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4408))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1303 (((-640 |#1|) $) NIL)) (-4173 (((-112) |#1| $) NIL)) (-2964 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL)) (-1812 (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL)) (-4318 (((-640 |#1|) $) NIL)) (-3192 (((-112) |#1| $) NIL)) (-1694 (((-1113) $) NIL (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-3781 ((|#2| $) NIL (|has| |#1| (-846)))) (-4203 (((-3 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) "failed") (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL)) (-2358 (($ $ |#2|) NIL (|has| $ (-6 -4408)))) (-3755 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL)) (-3138 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-2026 (((-112) $ $) NIL)) (-2105 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093))))) (-2836 (((-640 |#2|) $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) NIL)) (-2309 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3890 (($) NIL) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL)) (-1709 (((-767) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-767) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-1872 (($ $) NIL)) (-2220 (((-536) $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-611 (-536))))) (-1707 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL)) (-1693 (((-858) $) NIL (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-610 (-858))) (|has| |#2| (-610 (-858)))))) (-2233 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL)) (-4383 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) NIL (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-549 |#1| |#2| |#3|) (-13 (-1184 |#1| |#2|) (-10 -7 (-6 -4407))) (-1093) (-1093) (-13 (-1184 |#1| |#2|) (-10 -7 (-6 -4407)))) (T -549)) +NIL +(-13 (-1184 |#1| |#2|) (-10 -7 (-6 -4407))) +((-3033 (((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|) (-1 (-1165 |#2|) (-1165 |#2|))) 51))) +(((-550 |#1| |#2|) (-10 -7 (-15 -3033 ((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|) (-1 (-1165 |#2|) (-1165 |#2|))))) (-13 (-846) (-555)) (-13 (-27) (-430 |#1|))) (T -550)) +((-3033 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-609 *3)) (-5 *5 (-1 (-1165 *3) (-1165 *3))) (-4 *3 (-13 (-27) (-430 *6))) (-4 *6 (-13 (-846) (-555))) (-5 *2 (-584 *3)) (-5 *1 (-550 *6 *3))))) +(-10 -7 (-15 -3033 ((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|) (-1 (-1165 |#2|) (-1165 |#2|))))) +((-3933 (((-584 |#5|) |#5| (-1 |#3| |#3|)) 198)) (-4014 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 194)) (-2602 (((-584 |#5|) |#5| (-1 |#3| |#3|)) 201))) +(((-551 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2602 ((-584 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3933 ((-584 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4014 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-846) (-555) (-1034 (-563))) (-13 (-27) (-430 |#1|)) (-1233 |#2|) (-1233 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -551)) +((-4014 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-13 (-27) (-430 *4))) (-4 *4 (-13 (-846) (-555) (-1034 (-563)))) (-4 *7 (-1233 (-407 *6))) (-5 *1 (-551 *4 *5 *6 *7 *2)) (-4 *2 (-342 *5 *6 *7)))) (-3933 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1233 *6)) (-4 *6 (-13 (-27) (-430 *5))) (-4 *5 (-13 (-846) (-555) (-1034 (-563)))) (-4 *8 (-1233 (-407 *7))) (-5 *2 (-584 *3)) (-5 *1 (-551 *5 *6 *7 *8 *3)) (-4 *3 (-342 *6 *7 *8)))) (-2602 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1233 *6)) (-4 *6 (-13 (-27) (-430 *5))) (-4 *5 (-13 (-846) (-555) (-1034 (-563)))) (-4 *8 (-1233 (-407 *7))) (-5 *2 (-584 *3)) (-5 *1 (-551 *5 *6 *7 *8 *3)) (-4 *3 (-342 *6 *7 *8))))) +(-10 -7 (-15 -2602 ((-584 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3933 ((-584 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4014 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-2524 (((-112) (-563) (-563)) 10)) (-2923 (((-563) (-563)) 7)) (-2282 (((-563) (-563) (-563)) 8))) +(((-552) (-10 -7 (-15 -2923 ((-563) (-563))) (-15 -2282 ((-563) (-563) (-563))) (-15 -2524 ((-112) (-563) (-563))))) (T -552)) +((-2524 (*1 *2 *3 *3) (-12 (-5 *3 (-563)) (-5 *2 (-112)) (-5 *1 (-552)))) (-2282 (*1 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-552)))) (-2923 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-552))))) +(-10 -7 (-15 -2923 ((-563) (-563))) (-15 -2282 ((-563) (-563) (-563))) (-15 -2524 ((-112) (-563) (-563)))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-3835 ((|#1| $) 62)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 42)) (-4223 (($ $) 41)) (-3156 (((-112) $) 39)) (-1771 (($ $) 92)) (-1619 (($ $) 75)) (-1901 ((|#1| $) 63)) (-1495 (((-3 $ "failed") $ $) 19)) (-2186 (($ $) 74)) (-1748 (($ $) 91)) (-1597 (($ $) 76)) (-1794 (($ $) 90)) (-1643 (($ $) 77)) (-4239 (($) 17 T CONST)) (-2131 (((-3 (-563) "failed") $) 70)) (-2058 (((-563) $) 71)) (-3400 (((-3 $ "failed") $) 33)) (-2044 (($ |#1| |#1|) 67)) (-3101 (((-112) $) 61)) (-2180 (($) 102)) (-3827 (((-112) $) 31)) (-1645 (($ $ (-563)) 73)) (-1419 (((-112) $) 60)) (-3084 (($ $ $) 108)) (-1777 (($ $ $) 107)) (-4371 (($ $) 99)) (-3513 (($ $ $) 47) (($ (-640 $)) 46)) (-3573 (((-1151) $) 9)) (-2440 (($ |#1| |#1|) 68) (($ |#1|) 66) (($ (-407 (-563))) 65)) (-3388 ((|#1| $) 64)) (-1694 (((-1113) $) 10)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3548 (($ $ $) 49) (($ (-640 $)) 48)) (-3008 (((-3 $ "failed") $ $) 43)) (-3368 (($ $) 100)) (-1806 (($ $) 89)) (-1656 (($ $) 78)) (-1784 (($ $) 88)) (-1630 (($ $) 79)) (-1759 (($ $) 87)) (-1608 (($ $) 80)) (-2052 (((-112) $ |#1|) 59)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-563)) 69)) (-1675 (((-767)) 28)) (-1840 (($ $) 98)) (-1695 (($ $) 86)) (-2126 (((-112) $ $) 40)) (-1817 (($ $) 97)) (-1667 (($ $) 85)) (-1862 (($ $) 96)) (-1722 (($ $) 84)) (-1311 (($ $) 95)) (-1735 (($ $) 83)) (-1851 (($ $) 94)) (-1710 (($ $) 82)) (-1829 (($ $) 93)) (-1680 (($ $) 81)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1778 (((-112) $ $) 105)) (-1756 (((-112) $ $) 104)) (-1718 (((-112) $ $) 6)) (-1768 (((-112) $ $) 106)) (-1744 (((-112) $ $) 103)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ $) 101) (($ $ (-407 (-563))) 72)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) +(((-553 |#1|) (-140) (-13 (-404) (-1193))) (T -553)) +((-2440 (*1 *1 *2 *2) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193))))) (-2044 (*1 *1 *2 *2) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193))))) (-2440 (*1 *1 *2) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193))))) (-2440 (*1 *1 *2) (-12 (-5 *2 (-407 (-563))) (-4 *1 (-553 *3)) (-4 *3 (-13 (-404) (-1193))))) (-3388 (*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193))))) (-1901 (*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193))))) (-3835 (*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193))))) (-3101 (*1 *2 *1) (-12 (-4 *1 (-553 *3)) (-4 *3 (-13 (-404) (-1193))) (-5 *2 (-112)))) (-1419 (*1 *2 *1) (-12 (-4 *1 (-553 *3)) (-4 *3 (-13 (-404) (-1193))) (-5 *2 (-112)))) (-2052 (*1 *2 *1 *3) (-12 (-4 *1 (-553 *3)) (-4 *3 (-13 (-404) (-1193))) (-5 *2 (-112))))) +(-13 (-452) (-846) (-1193) (-998) (-1034 (-563)) (-10 -8 (-6 -1403) (-15 -2440 ($ |t#1| |t#1|)) (-15 -2044 ($ |t#1| |t#1|)) (-15 -2440 ($ |t#1|)) (-15 -2440 ($ (-407 (-563)))) (-15 -3388 (|t#1| $)) (-15 -1901 (|t#1| $)) (-15 -3835 (|t#1| $)) (-15 -3101 ((-112) $)) (-15 -1419 ((-112) $)) (-15 -2052 ((-112) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-284) . T) ((-290) . T) ((-452) . T) ((-493) . T) ((-555) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-846) . T) ((-998) . T) ((-1034 (-563)) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1193) . T) ((-1196) . T)) +((-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 9)) (-4223 (($ $) 11)) (-3156 (((-112) $) 18)) (-3400 (((-3 $ "failed") $) 16)) (-2126 (((-112) $ $) 20))) +(((-554 |#1|) (-10 -8 (-15 -3156 ((-112) |#1|)) (-15 -2126 ((-112) |#1| |#1|)) (-15 -4223 (|#1| |#1|)) (-15 -4372 ((-2 (|:| -1414 |#1|) (|:| -4394 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3400 ((-3 |#1| "failed") |#1|))) (-555)) (T -554)) +NIL +(-10 -8 (-15 -3156 ((-112) |#1|)) (-15 -2126 ((-112) |#1| |#1|)) (-15 -4223 (|#1| |#1|)) (-15 -4372 ((-2 (|:| -1414 |#1|) (|:| -4394 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3400 ((-3 |#1| "failed") |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 42)) (-4223 (($ $) 41)) (-3156 (((-112) $) 39)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-3400 (((-3 $ "failed") $) 33)) (-3827 (((-112) $) 31)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-3008 (((-3 $ "failed") $ $) 43)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ $) 44)) (-1675 (((-767)) 28)) (-2126 (((-112) $ $) 40)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) +(((-555) (-140)) (T -555)) +((-3008 (*1 *1 *1 *1) (|partial| -4 *1 (-555))) (-4372 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1414 *1) (|:| -4394 *1) (|:| |associate| *1))) (-4 *1 (-555)))) (-4223 (*1 *1 *1) (-4 *1 (-555))) (-2126 (*1 *2 *1 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) (-3156 (*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112))))) +(-13 (-172) (-38 $) (-290) (-10 -8 (-15 -3008 ((-3 $ "failed") $ $)) (-15 -4372 ((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $)) (-15 -4223 ($ $)) (-15 -2126 ((-112) $ $)) (-15 -3156 ((-112) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-290) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) +((-1882 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1169) (-640 |#2|)) 37)) (-3463 (((-584 |#2|) |#2| (-1169)) 62)) (-1489 (((-3 |#2| "failed") |#2| (-1169)) 151)) (-1510 (((-3 (-2 (|:| -3646 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1169) (-609 |#2|) (-640 (-609 |#2|))) 154)) (-4009 (((-3 (-2 (|:| -3646 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1169) |#2|) 40))) +(((-556 |#1| |#2|) (-10 -7 (-15 -4009 ((-3 (-2 (|:| -3646 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1169) |#2|)) (-15 -1882 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1169) (-640 |#2|))) (-15 -1489 ((-3 |#2| "failed") |#2| (-1169))) (-15 -3463 ((-584 |#2|) |#2| (-1169))) (-15 -1510 ((-3 (-2 (|:| -3646 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1169) (-609 |#2|) (-640 (-609 |#2|))))) (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563))) (-13 (-27) (-1193) (-430 |#1|))) (T -556)) +((-1510 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1169)) (-5 *6 (-640 (-609 *3))) (-5 *5 (-609 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *7))) (-4 *7 (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-2 (|:| -3646 *3) (|:| |coeff| *3))) (-5 *1 (-556 *7 *3)))) (-3463 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-584 *3)) (-5 *1 (-556 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))))) (-1489 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1169)) (-4 *4 (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-556 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4))))) (-1882 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-640 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-556 *6 *3)))) (-4009 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1169)) (-4 *5 (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-2 (|:| -3646 *3) (|:| |coeff| *3))) (-5 *1 (-556 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5)))))) +(-10 -7 (-15 -4009 ((-3 (-2 (|:| -3646 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1169) |#2|)) (-15 -1882 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1169) (-640 |#2|))) (-15 -1489 ((-3 |#2| "failed") |#2| (-1169))) (-15 -3463 ((-584 |#2|) |#2| (-1169))) (-15 -1510 ((-3 (-2 (|:| -3646 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1169) (-609 |#2|) (-640 (-609 |#2|))))) +((-3205 (((-418 |#1|) |#1|) 18)) (-2174 (((-418 |#1|) |#1|) 33)) (-3635 (((-3 |#1| "failed") |#1|) 44)) (-4079 (((-418 |#1|) |#1|) 51))) +(((-557 |#1|) (-10 -7 (-15 -2174 ((-418 |#1|) |#1|)) (-15 -3205 ((-418 |#1|) |#1|)) (-15 -4079 ((-418 |#1|) |#1|)) (-15 -3635 ((-3 |#1| "failed") |#1|))) (-545)) (T -557)) +((-3635 (*1 *2 *2) (|partial| -12 (-5 *1 (-557 *2)) (-4 *2 (-545)))) (-4079 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-557 *3)) (-4 *3 (-545)))) (-3205 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-557 *3)) (-4 *3 (-545)))) (-2174 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-557 *3)) (-4 *3 (-545))))) +(-10 -7 (-15 -2174 ((-418 |#1|) |#1|)) (-15 -3205 ((-418 |#1|) |#1|)) (-15 -4079 ((-418 |#1|) |#1|)) (-15 -3635 ((-3 |#1| "failed") |#1|))) +((-2142 (($) 9)) (-1818 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2516 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 35)) (-1303 (((-640 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 32)) (-1812 (($ (-2 (|:| -2387 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2557 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2516 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-1868 (($ (-640 (-2 (|:| -2387 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2557 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2516 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-2557 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2516 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 39)) (-2836 (((-640 (-2 (|:| -2387 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2557 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2516 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-4285 (((-1262)) 12))) +(((-558) (-10 -8 (-15 -2142 ($)) (-15 -4285 ((-1262))) (-15 -1303 ((-640 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -1868 ($ (-640 (-2 (|:| -2387 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2557 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2516 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1812 ($ (-2 (|:| -2387 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2557 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2516 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1818 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2516 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2836 ((-640 (-2 (|:| -2387 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2557 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2516 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2557 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2516 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -558)) +((-2557 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2516 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-558)))) (-2836 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| -2387 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2557 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2516 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-558)))) (-1818 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2516 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-558)))) (-1812 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2387 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2557 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2516 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-558)))) (-1868 (*1 *1 *2) (-12 (-5 *2 (-640 (-2 (|:| -2387 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2557 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2516 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-558)))) (-1303 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-558)))) (-4285 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-558)))) (-2142 (*1 *1) (-5 *1 (-558)))) +(-10 -8 (-15 -2142 ($)) (-15 -4285 ((-1262))) (-15 -1303 ((-640 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -1868 ($ (-640 (-2 (|:| -2387 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2557 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2516 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1812 ($ (-2 (|:| -2387 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2557 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2516 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1818 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2516 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2836 ((-640 (-2 (|:| -2387 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2557 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2516 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2557 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2516 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) +((-2139 (((-1165 (-407 (-1165 |#2|))) |#2| (-609 |#2|) (-609 |#2|) (-1165 |#2|)) 32)) (-4103 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-609 |#2|) (-609 |#2|) (-640 |#2|) (-609 |#2|) |#2| (-407 (-1165 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-609 |#2|) (-609 |#2|) (-640 |#2|) |#2| (-1165 |#2|)) 110)) (-1685 (((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|) (-609 |#2|) |#2| (-407 (-1165 |#2|))) 80) (((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|) |#2| (-1165 |#2|)) 52)) (-3040 (((-3 (-2 (|:| -3646 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-609 |#2|) (-609 |#2|) |#2| (-609 |#2|) |#2| (-407 (-1165 |#2|))) 87) (((-3 (-2 (|:| -3646 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-609 |#2|) (-609 |#2|) |#2| |#2| (-1165 |#2|)) 109)) (-2681 (((-3 |#2| "failed") |#2| |#2| (-609 |#2|) (-609 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1169)) (-609 |#2|) |#2| (-407 (-1165 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-609 |#2|) (-609 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1169)) |#2| (-1165 |#2|)) 111)) (-2520 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4315 (-640 |#2|))) |#3| |#2| (-609 |#2|) (-609 |#2|) (-609 |#2|) |#2| (-407 (-1165 |#2|))) 128 (|has| |#3| (-651 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4315 (-640 |#2|))) |#3| |#2| (-609 |#2|) (-609 |#2|) |#2| (-1165 |#2|)) 127 (|has| |#3| (-651 |#2|)))) (-2596 ((|#2| (-1165 (-407 (-1165 |#2|))) (-609 |#2|) |#2|) 50)) (-2433 (((-1165 (-407 (-1165 |#2|))) (-1165 |#2|) (-609 |#2|)) 31))) +(((-559 |#1| |#2| |#3|) (-10 -7 (-15 -1685 ((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|) |#2| (-1165 |#2|))) (-15 -1685 ((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|) (-609 |#2|) |#2| (-407 (-1165 |#2|)))) (-15 -3040 ((-3 (-2 (|:| -3646 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-609 |#2|) (-609 |#2|) |#2| |#2| (-1165 |#2|))) (-15 -3040 ((-3 (-2 (|:| -3646 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-609 |#2|) (-609 |#2|) |#2| (-609 |#2|) |#2| (-407 (-1165 |#2|)))) (-15 -4103 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-609 |#2|) (-609 |#2|) (-640 |#2|) |#2| (-1165 |#2|))) (-15 -4103 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-609 |#2|) (-609 |#2|) (-640 |#2|) (-609 |#2|) |#2| (-407 (-1165 |#2|)))) (-15 -2681 ((-3 |#2| "failed") |#2| |#2| (-609 |#2|) (-609 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1169)) |#2| (-1165 |#2|))) (-15 -2681 ((-3 |#2| "failed") |#2| |#2| (-609 |#2|) (-609 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1169)) (-609 |#2|) |#2| (-407 (-1165 |#2|)))) (-15 -2139 ((-1165 (-407 (-1165 |#2|))) |#2| (-609 |#2|) (-609 |#2|) (-1165 |#2|))) (-15 -2596 (|#2| (-1165 (-407 (-1165 |#2|))) (-609 |#2|) |#2|)) (-15 -2433 ((-1165 (-407 (-1165 |#2|))) (-1165 |#2|) (-609 |#2|))) (IF (|has| |#3| (-651 |#2|)) (PROGN (-15 -2520 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4315 (-640 |#2|))) |#3| |#2| (-609 |#2|) (-609 |#2|) |#2| (-1165 |#2|))) (-15 -2520 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4315 (-640 |#2|))) |#3| |#2| (-609 |#2|) (-609 |#2|) (-609 |#2|) |#2| (-407 (-1165 |#2|))))) |%noBranch|)) (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563))) (-13 (-430 |#1|) (-27) (-1193)) (-1093)) (T -559)) +((-2520 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-609 *4)) (-5 *6 (-407 (-1165 *4))) (-4 *4 (-13 (-430 *7) (-27) (-1193))) (-4 *7 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4315 (-640 *4)))) (-5 *1 (-559 *7 *4 *3)) (-4 *3 (-651 *4)) (-4 *3 (-1093)))) (-2520 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-609 *4)) (-5 *6 (-1165 *4)) (-4 *4 (-13 (-430 *7) (-27) (-1193))) (-4 *7 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4315 (-640 *4)))) (-5 *1 (-559 *7 *4 *3)) (-4 *3 (-651 *4)) (-4 *3 (-1093)))) (-2433 (*1 *2 *3 *4) (-12 (-5 *4 (-609 *6)) (-4 *6 (-13 (-430 *5) (-27) (-1193))) (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-1165 (-407 (-1165 *6)))) (-5 *1 (-559 *5 *6 *7)) (-5 *3 (-1165 *6)) (-4 *7 (-1093)))) (-2596 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1165 (-407 (-1165 *2)))) (-5 *4 (-609 *2)) (-4 *2 (-13 (-430 *5) (-27) (-1193))) (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *1 (-559 *5 *2 *6)) (-4 *6 (-1093)))) (-2139 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-609 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1193))) (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-1165 (-407 (-1165 *3)))) (-5 *1 (-559 *6 *3 *7)) (-5 *5 (-1165 *3)) (-4 *7 (-1093)))) (-2681 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-609 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1169))) (-5 *5 (-407 (-1165 *2))) (-4 *2 (-13 (-430 *6) (-27) (-1193))) (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *1 (-559 *6 *2 *7)) (-4 *7 (-1093)))) (-2681 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-609 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1169))) (-5 *5 (-1165 *2)) (-4 *2 (-13 (-430 *6) (-27) (-1193))) (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *1 (-559 *6 *2 *7)) (-4 *7 (-1093)))) (-4103 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-609 *3)) (-5 *5 (-640 *3)) (-5 *6 (-407 (-1165 *3))) (-4 *3 (-13 (-430 *7) (-27) (-1193))) (-4 *7 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-559 *7 *3 *8)) (-4 *8 (-1093)))) (-4103 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-609 *3)) (-5 *5 (-640 *3)) (-5 *6 (-1165 *3)) (-4 *3 (-13 (-430 *7) (-27) (-1193))) (-4 *7 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-559 *7 *3 *8)) (-4 *8 (-1093)))) (-3040 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-609 *3)) (-5 *5 (-407 (-1165 *3))) (-4 *3 (-13 (-430 *6) (-27) (-1193))) (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-2 (|:| -3646 *3) (|:| |coeff| *3))) (-5 *1 (-559 *6 *3 *7)) (-4 *7 (-1093)))) (-3040 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-609 *3)) (-5 *5 (-1165 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1193))) (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-2 (|:| -3646 *3) (|:| |coeff| *3))) (-5 *1 (-559 *6 *3 *7)) (-4 *7 (-1093)))) (-1685 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-609 *3)) (-5 *5 (-407 (-1165 *3))) (-4 *3 (-13 (-430 *6) (-27) (-1193))) (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-584 *3)) (-5 *1 (-559 *6 *3 *7)) (-4 *7 (-1093)))) (-1685 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-609 *3)) (-5 *5 (-1165 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1193))) (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-584 *3)) (-5 *1 (-559 *6 *3 *7)) (-4 *7 (-1093))))) +(-10 -7 (-15 -1685 ((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|) |#2| (-1165 |#2|))) (-15 -1685 ((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|) (-609 |#2|) |#2| (-407 (-1165 |#2|)))) (-15 -3040 ((-3 (-2 (|:| -3646 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-609 |#2|) (-609 |#2|) |#2| |#2| (-1165 |#2|))) (-15 -3040 ((-3 (-2 (|:| -3646 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-609 |#2|) (-609 |#2|) |#2| (-609 |#2|) |#2| (-407 (-1165 |#2|)))) (-15 -4103 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-609 |#2|) (-609 |#2|) (-640 |#2|) |#2| (-1165 |#2|))) (-15 -4103 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-609 |#2|) (-609 |#2|) (-640 |#2|) (-609 |#2|) |#2| (-407 (-1165 |#2|)))) (-15 -2681 ((-3 |#2| "failed") |#2| |#2| (-609 |#2|) (-609 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1169)) |#2| (-1165 |#2|))) (-15 -2681 ((-3 |#2| "failed") |#2| |#2| (-609 |#2|) (-609 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1169)) (-609 |#2|) |#2| (-407 (-1165 |#2|)))) (-15 -2139 ((-1165 (-407 (-1165 |#2|))) |#2| (-609 |#2|) (-609 |#2|) (-1165 |#2|))) (-15 -2596 (|#2| (-1165 (-407 (-1165 |#2|))) (-609 |#2|) |#2|)) (-15 -2433 ((-1165 (-407 (-1165 |#2|))) (-1165 |#2|) (-609 |#2|))) (IF (|has| |#3| (-651 |#2|)) (PROGN (-15 -2520 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4315 (-640 |#2|))) |#3| |#2| (-609 |#2|) (-609 |#2|) |#2| (-1165 |#2|))) (-15 -2520 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4315 (-640 |#2|))) |#3| |#2| (-609 |#2|) (-609 |#2|) (-609 |#2|) |#2| (-407 (-1165 |#2|))))) |%noBranch|)) +((-1592 (((-563) (-563) (-767)) 66)) (-3469 (((-563) (-563)) 65)) (-1537 (((-563) (-563)) 64)) (-4078 (((-563) (-563)) 69)) (-3055 (((-563) (-563) (-563)) 49)) (-2839 (((-563) (-563) (-563)) 46)) (-2535 (((-407 (-563)) (-563)) 20)) (-3630 (((-563) (-563)) 21)) (-4112 (((-563) (-563)) 58)) (-2086 (((-563) (-563)) 32)) (-3318 (((-640 (-563)) (-563)) 63)) (-3046 (((-563) (-563) (-563) (-563) (-563)) 44)) (-2892 (((-407 (-563)) (-563)) 41))) +(((-560) (-10 -7 (-15 -2892 ((-407 (-563)) (-563))) (-15 -3046 ((-563) (-563) (-563) (-563) (-563))) (-15 -3318 ((-640 (-563)) (-563))) (-15 -2086 ((-563) (-563))) (-15 -4112 ((-563) (-563))) (-15 -3630 ((-563) (-563))) (-15 -2535 ((-407 (-563)) (-563))) (-15 -2839 ((-563) (-563) (-563))) (-15 -3055 ((-563) (-563) (-563))) (-15 -4078 ((-563) (-563))) (-15 -1537 ((-563) (-563))) (-15 -3469 ((-563) (-563))) (-15 -1592 ((-563) (-563) (-767))))) (T -560)) +((-1592 (*1 *2 *2 *3) (-12 (-5 *2 (-563)) (-5 *3 (-767)) (-5 *1 (-560)))) (-3469 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))) (-1537 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))) (-4078 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))) (-3055 (*1 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))) (-2839 (*1 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))) (-2535 (*1 *2 *3) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-560)) (-5 *3 (-563)))) (-3630 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))) (-4112 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))) (-2086 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))) (-3318 (*1 *2 *3) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-560)) (-5 *3 (-563)))) (-3046 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))) (-2892 (*1 *2 *3) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-560)) (-5 *3 (-563))))) +(-10 -7 (-15 -2892 ((-407 (-563)) (-563))) (-15 -3046 ((-563) (-563) (-563) (-563) (-563))) (-15 -3318 ((-640 (-563)) (-563))) (-15 -2086 ((-563) (-563))) (-15 -4112 ((-563) (-563))) (-15 -3630 ((-563) (-563))) (-15 -2535 ((-407 (-563)) (-563))) (-15 -2839 ((-563) (-563) (-563))) (-15 -3055 ((-563) (-563) (-563))) (-15 -4078 ((-563) (-563))) (-15 -1537 ((-563) (-563))) (-15 -3469 ((-563) (-563))) (-15 -1592 ((-563) (-563) (-767)))) +((-3497 (((-2 (|:| |answer| |#4|) (|:| -3524 |#4|)) |#4| (-1 |#2| |#2|)) 52))) +(((-561 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3497 ((-2 (|:| |answer| |#4|) (|:| -3524 |#4|)) |#4| (-1 |#2| |#2|)))) (-363) (-1233 |#1|) (-1233 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -561)) +((-3497 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363)) (-4 *7 (-1233 (-407 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3524 *3))) (-5 *1 (-561 *5 *6 *7 *3)) (-4 *3 (-342 *5 *6 *7))))) +(-10 -7 (-15 -3497 ((-2 (|:| |answer| |#4|) (|:| -3524 |#4|)) |#4| (-1 |#2| |#2|)))) +((-3497 (((-2 (|:| |answer| (-407 |#2|)) (|:| -3524 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)) 18))) +(((-562 |#1| |#2|) (-10 -7 (-15 -3497 ((-2 (|:| |answer| (-407 |#2|)) (|:| -3524 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)))) (-363) (-1233 |#1|)) (T -562)) +((-3497 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |answer| (-407 *6)) (|:| -3524 (-407 *6)) (|:| |specpart| (-407 *6)) (|:| |polypart| *6))) (-5 *1 (-562 *5 *6)) (-5 *3 (-407 *6))))) +(-10 -7 (-15 -3497 ((-2 (|:| |answer| (-407 |#2|)) (|:| -3524 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) 25)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 88)) (-4223 (($ $) 89)) (-3156 (((-112) $) NIL)) (-1433 (($ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-2448 (($ $ $ $) 43)) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-1919 (((-112) $ $) NIL)) (-1857 (((-563) $) NIL)) (-3458 (($ $ $) 82)) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-563) "failed") $) NIL)) (-2058 (((-563) $) NIL)) (-3090 (($ $ $) 81)) (-2950 (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 62) (((-684 (-563)) (-684 $)) 58)) (-3400 (((-3 $ "failed") $) 85)) (-3909 (((-3 (-407 (-563)) "failed") $) NIL)) (-2239 (((-112) $) NIL)) (-2651 (((-407 (-563)) $) NIL)) (-1691 (($) 64) (($ $) 65)) (-3050 (($ $ $) 80)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-2468 (((-112) $) NIL)) (-4362 (($ $ $ $) NIL)) (-1544 (($ $ $) 55)) (-3101 (((-112) $) NIL)) (-3972 (($ $ $) NIL)) (-3787 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL)) (-3827 (((-112) $) 26)) (-3131 (((-112) $) 75)) (-2408 (((-3 $ "failed") $) NIL)) (-1419 (((-112) $) 35)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2692 (($ $ $ $) 44)) (-3084 (($ $ $) 77)) (-1777 (($ $ $) 76)) (-2646 (($ $) NIL)) (-3415 (($ $) 41)) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) 54)) (-3364 (($ $ $) NIL)) (-2523 (($) NIL T CONST)) (-2824 (($ $) 31)) (-1694 (((-1113) $) 34)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 119)) (-3548 (($ $ $) 86) (($ (-640 $)) NIL)) (-3219 (($ $) NIL)) (-2174 (((-418 $) $) 105)) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL)) (-3008 (((-3 $ "failed") $ $) 84)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2359 (((-112) $) NIL)) (-2628 (((-767) $) NIL)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 79)) (-4202 (($ $ (-767)) NIL) (($ $) NIL)) (-3872 (($ $) 32)) (-1872 (($ $) 30)) (-2220 (((-563) $) 40) (((-536) $) 52) (((-888 (-563)) $) NIL) (((-379) $) 47) (((-225) $) 49) (((-1151) $) 53)) (-1693 (((-858) $) 38) (($ (-563)) 39) (($ $) NIL) (($ (-563)) 39)) (-1675 (((-767)) NIL)) (-1570 (((-112) $ $) NIL)) (-2869 (($ $ $) NIL)) (-4211 (($) 29)) (-2126 (((-112) $ $) NIL)) (-2039 (($ $ $ $) 42)) (-2509 (($ $) 63)) (-2241 (($) 27 T CONST)) (-2254 (($) 28 T CONST)) (-3741 (((-1151) $) 20) (((-1151) $ (-112)) 22) (((-1262) (-818) $) 23) (((-1262) (-818) $ (-112)) 24)) (-3209 (($ $ (-767)) NIL) (($ $) NIL)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 66)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) 67)) (-1826 (($ $) 68) (($ $ $) 70)) (-1814 (($ $ $) 69)) (** (($ $ (-917)) NIL) (($ $ (-767)) 74)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 72) (($ $ $) 71))) +(((-563) (-13 (-545) (-611 (-1151)) (-824) (-10 -8 (-15 -1691 ($ $)) (-6 -4394) (-6 -4399) (-6 -4395) (-6 -4389)))) (T -563)) +((-1691 (*1 *1 *1) (-5 *1 (-563)))) +(-13 (-545) (-611 (-1151)) (-824) (-10 -8 (-15 -1691 ($ $)) (-6 -4394) (-6 -4399) (-6 -4395) (-6 -4389))) +((-1994 (((-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031))) (-765) (-1057)) 108) (((-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031))) (-765)) 110)) (-3698 (((-3 (-1031) "failed") (-316 (-379)) (-1085 (-839 (-379))) (-1169)) 172) (((-3 (-1031) "failed") (-316 (-379)) (-1085 (-839 (-379))) (-1151)) 171) (((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379)))) (-379) (-379) (-1057)) 176) (((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379)))) (-379) (-379)) 177) (((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379)))) (-379)) 178) (((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379))))) 179) (((-1031) (-316 (-379)) (-1087 (-839 (-379)))) 167) (((-1031) (-316 (-379)) (-1087 (-839 (-379))) (-379)) 166) (((-1031) (-316 (-379)) (-1087 (-839 (-379))) (-379) (-379)) 162) (((-1031) (-765)) 155) (((-1031) (-316 (-379)) (-1087 (-839 (-379))) (-379) (-379) (-1057)) 161))) +(((-564) (-10 -7 (-15 -3698 ((-1031) (-316 (-379)) (-1087 (-839 (-379))) (-379) (-379) (-1057))) (-15 -3698 ((-1031) (-765))) (-15 -3698 ((-1031) (-316 (-379)) (-1087 (-839 (-379))) (-379) (-379))) (-15 -3698 ((-1031) (-316 (-379)) (-1087 (-839 (-379))) (-379))) (-15 -3698 ((-1031) (-316 (-379)) (-1087 (-839 (-379))))) (-15 -3698 ((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379)))))) (-15 -3698 ((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379)))) (-379))) (-15 -3698 ((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379)))) (-379) (-379))) (-15 -3698 ((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379)))) (-379) (-379) (-1057))) (-15 -1994 ((-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031))) (-765))) (-15 -1994 ((-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031))) (-765) (-1057))) (-15 -3698 ((-3 (-1031) "failed") (-316 (-379)) (-1085 (-839 (-379))) (-1151))) (-15 -3698 ((-3 (-1031) "failed") (-316 (-379)) (-1085 (-839 (-379))) (-1169))))) (T -564)) +((-3698 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1085 (-839 (-379)))) (-5 *5 (-1169)) (-5 *2 (-1031)) (-5 *1 (-564)))) (-3698 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1085 (-839 (-379)))) (-5 *5 (-1151)) (-5 *2 (-1031)) (-5 *1 (-564)))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-765)) (-5 *4 (-1057)) (-5 *2 (-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031)))) (-5 *1 (-564)))) (-1994 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031)))) (-5 *1 (-564)))) (-3698 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-1087 (-839 (-379))))) (-5 *5 (-379)) (-5 *6 (-1057)) (-5 *2 (-1031)) (-5 *1 (-564)))) (-3698 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-1087 (-839 (-379))))) (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-564)))) (-3698 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-1087 (-839 (-379))))) (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-564)))) (-3698 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-1087 (-839 (-379))))) (-5 *2 (-1031)) (-5 *1 (-564)))) (-3698 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1087 (-839 (-379)))) (-5 *2 (-1031)) (-5 *1 (-564)))) (-3698 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1087 (-839 (-379)))) (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-564)))) (-3698 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1087 (-839 (-379)))) (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-564)))) (-3698 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1031)) (-5 *1 (-564)))) (-3698 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1087 (-839 (-379)))) (-5 *5 (-379)) (-5 *6 (-1057)) (-5 *2 (-1031)) (-5 *1 (-564))))) +(-10 -7 (-15 -3698 ((-1031) (-316 (-379)) (-1087 (-839 (-379))) (-379) (-379) (-1057))) (-15 -3698 ((-1031) (-765))) (-15 -3698 ((-1031) (-316 (-379)) (-1087 (-839 (-379))) (-379) (-379))) (-15 -3698 ((-1031) (-316 (-379)) (-1087 (-839 (-379))) (-379))) (-15 -3698 ((-1031) (-316 (-379)) (-1087 (-839 (-379))))) (-15 -3698 ((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379)))))) (-15 -3698 ((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379)))) (-379))) (-15 -3698 ((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379)))) (-379) (-379))) (-15 -3698 ((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379)))) (-379) (-379) (-1057))) (-15 -1994 ((-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031))) (-765))) (-15 -1994 ((-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031))) (-765) (-1057))) (-15 -3698 ((-3 (-1031) "failed") (-316 (-379)) (-1085 (-839 (-379))) (-1151))) (-15 -3698 ((-3 (-1031) "failed") (-316 (-379)) (-1085 (-839 (-379))) (-1169)))) +((-3100 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-609 |#2|) (-609 |#2|) (-640 |#2|)) 183)) (-3820 (((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|)) 98)) (-2362 (((-3 (-2 (|:| -3646 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-609 |#2|) (-609 |#2|) |#2|) 179)) (-3042 (((-3 |#2| "failed") |#2| |#2| |#2| (-609 |#2|) (-609 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1169))) 188)) (-4307 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4315 (-640 |#2|))) |#3| |#2| (-609 |#2|) (-609 |#2|) (-1169)) 196 (|has| |#3| (-651 |#2|))))) +(((-565 |#1| |#2| |#3|) (-10 -7 (-15 -3820 ((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|))) (-15 -2362 ((-3 (-2 (|:| -3646 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-609 |#2|) (-609 |#2|) |#2|)) (-15 -3100 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-609 |#2|) (-609 |#2|) (-640 |#2|))) (-15 -3042 ((-3 |#2| "failed") |#2| |#2| |#2| (-609 |#2|) (-609 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1169)))) (IF (|has| |#3| (-651 |#2|)) (-15 -4307 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4315 (-640 |#2|))) |#3| |#2| (-609 |#2|) (-609 |#2|) (-1169))) |%noBranch|)) (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563))) (-13 (-430 |#1|) (-27) (-1193)) (-1093)) (T -565)) +((-4307 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-609 *4)) (-5 *6 (-1169)) (-4 *4 (-13 (-430 *7) (-27) (-1193))) (-4 *7 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4315 (-640 *4)))) (-5 *1 (-565 *7 *4 *3)) (-4 *3 (-651 *4)) (-4 *3 (-1093)))) (-3042 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-609 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1169))) (-4 *2 (-13 (-430 *5) (-27) (-1193))) (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *1 (-565 *5 *2 *6)) (-4 *6 (-1093)))) (-3100 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-609 *3)) (-5 *5 (-640 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1193))) (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1093)))) (-2362 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-609 *3)) (-4 *3 (-13 (-430 *5) (-27) (-1193))) (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-2 (|:| -3646 *3) (|:| |coeff| *3))) (-5 *1 (-565 *5 *3 *6)) (-4 *6 (-1093)))) (-3820 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-609 *3)) (-4 *3 (-13 (-430 *5) (-27) (-1193))) (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-584 *3)) (-5 *1 (-565 *5 *3 *6)) (-4 *6 (-1093))))) +(-10 -7 (-15 -3820 ((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|))) (-15 -2362 ((-3 (-2 (|:| -3646 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-609 |#2|) (-609 |#2|) |#2|)) (-15 -3100 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-609 |#2|) (-609 |#2|) (-640 |#2|))) (-15 -3042 ((-3 |#2| "failed") |#2| |#2| |#2| (-609 |#2|) (-609 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1169)))) (IF (|has| |#3| (-651 |#2|)) (-15 -4307 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4315 (-640 |#2|))) |#3| |#2| (-609 |#2|) (-609 |#2|) (-1169))) |%noBranch|)) +((-4266 (((-2 (|:| -1410 |#2|) (|:| |nconst| |#2|)) |#2| (-1169)) 63)) (-1468 (((-3 |#2| "failed") |#2| (-1169) (-839 |#2|) (-839 |#2|)) 163 (-12 (|has| |#2| (-1132)) (|has| |#1| (-611 (-888 (-563)))) (|has| |#1| (-882 (-563))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169)) 146 (-12 (|has| |#2| (-626)) (|has| |#1| (-611 (-888 (-563)))) (|has| |#1| (-882 (-563)))))) (-3617 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169)) 147 (-12 (|has| |#2| (-626)) (|has| |#1| (-611 (-888 (-563)))) (|has| |#1| (-882 (-563))))))) +(((-566 |#1| |#2|) (-10 -7 (-15 -4266 ((-2 (|:| -1410 |#2|) (|:| |nconst| |#2|)) |#2| (-1169))) (IF (|has| |#1| (-611 (-888 (-563)))) (IF (|has| |#1| (-882 (-563))) (PROGN (IF (|has| |#2| (-626)) (PROGN (-15 -3617 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169))) (-15 -1468 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169)))) |%noBranch|) (IF (|has| |#2| (-1132)) (-15 -1468 ((-3 |#2| "failed") |#2| (-1169) (-839 |#2|) (-839 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-846) (-1034 (-563)) (-452) (-636 (-563))) (-13 (-27) (-1193) (-430 |#1|))) (T -566)) +((-1468 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1169)) (-5 *4 (-839 *2)) (-4 *2 (-1132)) (-4 *2 (-13 (-27) (-1193) (-430 *5))) (-4 *5 (-611 (-888 (-563)))) (-4 *5 (-882 (-563))) (-4 *5 (-13 (-846) (-1034 (-563)) (-452) (-636 (-563)))) (-5 *1 (-566 *5 *2)))) (-1468 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1169)) (-4 *5 (-611 (-888 (-563)))) (-4 *5 (-882 (-563))) (-4 *5 (-13 (-846) (-1034 (-563)) (-452) (-636 (-563)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-566 *5 *3)) (-4 *3 (-626)) (-4 *3 (-13 (-27) (-1193) (-430 *5))))) (-3617 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1169)) (-4 *5 (-611 (-888 (-563)))) (-4 *5 (-882 (-563))) (-4 *5 (-13 (-846) (-1034 (-563)) (-452) (-636 (-563)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-566 *5 *3)) (-4 *3 (-626)) (-4 *3 (-13 (-27) (-1193) (-430 *5))))) (-4266 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-846) (-1034 (-563)) (-452) (-636 (-563)))) (-5 *2 (-2 (|:| -1410 *3) (|:| |nconst| *3))) (-5 *1 (-566 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5)))))) +(-10 -7 (-15 -4266 ((-2 (|:| -1410 |#2|) (|:| |nconst| |#2|)) |#2| (-1169))) (IF (|has| |#1| (-611 (-888 (-563)))) (IF (|has| |#1| (-882 (-563))) (PROGN (IF (|has| |#2| (-626)) (PROGN (-15 -3617 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169))) (-15 -1468 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169)))) |%noBranch|) (IF (|has| |#2| (-1132)) (-15 -1468 ((-3 |#2| "failed") |#2| (-1169) (-839 |#2|) (-839 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2372 (((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-640 (-407 |#2|))) 41)) (-3698 (((-584 (-407 |#2|)) (-407 |#2|)) 28)) (-2924 (((-3 (-407 |#2|) "failed") (-407 |#2|)) 17)) (-2935 (((-3 (-2 (|:| -3646 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|)) 48))) +(((-567 |#1| |#2|) (-10 -7 (-15 -3698 ((-584 (-407 |#2|)) (-407 |#2|))) (-15 -2924 ((-3 (-407 |#2|) "failed") (-407 |#2|))) (-15 -2935 ((-3 (-2 (|:| -3646 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|))) (-15 -2372 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-640 (-407 |#2|))))) (-13 (-363) (-147) (-1034 (-563))) (-1233 |#1|)) (T -567)) +((-2372 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-640 (-407 *6))) (-5 *3 (-407 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-567 *5 *6)))) (-2935 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1034 (-563)))) (-4 *5 (-1233 *4)) (-5 *2 (-2 (|:| -3646 (-407 *5)) (|:| |coeff| (-407 *5)))) (-5 *1 (-567 *4 *5)) (-5 *3 (-407 *5)))) (-2924 (*1 *2 *2) (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1233 *3)) (-4 *3 (-13 (-363) (-147) (-1034 (-563)))) (-5 *1 (-567 *3 *4)))) (-3698 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-563)))) (-4 *5 (-1233 *4)) (-5 *2 (-584 (-407 *5))) (-5 *1 (-567 *4 *5)) (-5 *3 (-407 *5))))) +(-10 -7 (-15 -3698 ((-584 (-407 |#2|)) (-407 |#2|))) (-15 -2924 ((-3 (-407 |#2|) "failed") (-407 |#2|))) (-15 -2935 ((-3 (-2 (|:| -3646 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|))) (-15 -2372 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-640 (-407 |#2|))))) +((-2627 (((-3 (-563) "failed") |#1|) 14)) (-3532 (((-112) |#1|) 13)) (-3701 (((-563) |#1|) 9))) +(((-568 |#1|) (-10 -7 (-15 -3701 ((-563) |#1|)) (-15 -3532 ((-112) |#1|)) (-15 -2627 ((-3 (-563) "failed") |#1|))) (-1034 (-563))) (T -568)) +((-2627 (*1 *2 *3) (|partial| -12 (-5 *2 (-563)) (-5 *1 (-568 *3)) (-4 *3 (-1034 *2)))) (-3532 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-568 *3)) (-4 *3 (-1034 (-563))))) (-3701 (*1 *2 *3) (-12 (-5 *2 (-563)) (-5 *1 (-568 *3)) (-4 *3 (-1034 *2))))) +(-10 -7 (-15 -3701 ((-563) |#1|)) (-15 -3532 ((-112) |#1|)) (-15 -2627 ((-3 (-563) "failed") |#1|))) +((-1606 (((-3 (-2 (|:| |mainpart| (-407 (-948 |#1|))) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 (-948 |#1|))) (|:| |logand| (-407 (-948 |#1|))))))) "failed") (-407 (-948 |#1|)) (-1169) (-640 (-407 (-948 |#1|)))) 48)) (-3216 (((-584 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-1169)) 28)) (-2999 (((-3 (-407 (-948 |#1|)) "failed") (-407 (-948 |#1|)) (-1169)) 23)) (-2149 (((-3 (-2 (|:| -3646 (-407 (-948 |#1|))) (|:| |coeff| (-407 (-948 |#1|)))) "failed") (-407 (-948 |#1|)) (-1169) (-407 (-948 |#1|))) 35))) +(((-569 |#1|) (-10 -7 (-15 -3216 ((-584 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-1169))) (-15 -2999 ((-3 (-407 (-948 |#1|)) "failed") (-407 (-948 |#1|)) (-1169))) (-15 -1606 ((-3 (-2 (|:| |mainpart| (-407 (-948 |#1|))) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 (-948 |#1|))) (|:| |logand| (-407 (-948 |#1|))))))) "failed") (-407 (-948 |#1|)) (-1169) (-640 (-407 (-948 |#1|))))) (-15 -2149 ((-3 (-2 (|:| -3646 (-407 (-948 |#1|))) (|:| |coeff| (-407 (-948 |#1|)))) "failed") (-407 (-948 |#1|)) (-1169) (-407 (-948 |#1|))))) (-13 (-555) (-1034 (-563)) (-147))) (T -569)) +((-2149 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1169)) (-4 *5 (-13 (-555) (-1034 (-563)) (-147))) (-5 *2 (-2 (|:| -3646 (-407 (-948 *5))) (|:| |coeff| (-407 (-948 *5))))) (-5 *1 (-569 *5)) (-5 *3 (-407 (-948 *5))))) (-1606 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-640 (-407 (-948 *6)))) (-5 *3 (-407 (-948 *6))) (-4 *6 (-13 (-555) (-1034 (-563)) (-147))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-569 *6)))) (-2999 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-407 (-948 *4))) (-5 *3 (-1169)) (-4 *4 (-13 (-555) (-1034 (-563)) (-147))) (-5 *1 (-569 *4)))) (-3216 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-555) (-1034 (-563)) (-147))) (-5 *2 (-584 (-407 (-948 *5)))) (-5 *1 (-569 *5)) (-5 *3 (-407 (-948 *5)))))) +(-10 -7 (-15 -3216 ((-584 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-1169))) (-15 -2999 ((-3 (-407 (-948 |#1|)) "failed") (-407 (-948 |#1|)) (-1169))) (-15 -1606 ((-3 (-2 (|:| |mainpart| (-407 (-948 |#1|))) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 (-948 |#1|))) (|:| |logand| (-407 (-948 |#1|))))))) "failed") (-407 (-948 |#1|)) (-1169) (-640 (-407 (-948 |#1|))))) (-15 -2149 ((-3 (-2 (|:| -3646 (-407 (-948 |#1|))) (|:| |coeff| (-407 (-948 |#1|)))) "failed") (-407 (-948 |#1|)) (-1169) (-407 (-948 |#1|))))) +((-1677 (((-112) $ $) 58)) (-3411 (((-112) $) 36)) (-3835 ((|#1| $) 30)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) 62)) (-1771 (($ $) 122)) (-1619 (($ $) 102)) (-1901 ((|#1| $) 28)) (-1495 (((-3 $ "failed") $ $) NIL)) (-2186 (($ $) NIL)) (-1748 (($ $) 124)) (-1597 (($ $) 98)) (-1794 (($ $) 126)) (-1643 (($ $) 106)) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-563) "failed") $) 77)) (-2058 (((-563) $) 79)) (-3400 (((-3 $ "failed") $) 61)) (-2044 (($ |#1| |#1|) 26)) (-3101 (((-112) $) 33)) (-2180 (($) 88)) (-3827 (((-112) $) 43)) (-1645 (($ $ (-563)) NIL)) (-1419 (((-112) $) 34)) (-3084 (($ $ $) NIL)) (-1777 (($ $ $) NIL)) (-4371 (($ $) 90)) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) NIL)) (-2440 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-407 (-563))) 76)) (-3388 ((|#1| $) 27)) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ $ $) 64) (($ (-640 $)) NIL)) (-3008 (((-3 $ "failed") $ $) 63)) (-3368 (($ $) 92)) (-1806 (($ $) 130)) (-1656 (($ $) 104)) (-1784 (($ $) 132)) (-1630 (($ $) 108)) (-1759 (($ $) 128)) (-1608 (($ $) 100)) (-2052 (((-112) $ |#1|) 31)) (-1693 (((-858) $) 84) (($ (-563)) 66) (($ $) NIL) (($ (-563)) 66)) (-1675 (((-767)) 86)) (-1840 (($ $) 144)) (-1695 (($ $) 114)) (-2126 (((-112) $ $) NIL)) (-1817 (($ $) 142)) (-1667 (($ $) 110)) (-1862 (($ $) 140)) (-1722 (($ $) 120)) (-1311 (($ $) 138)) (-1735 (($ $) 118)) (-1851 (($ $) 136)) (-1710 (($ $) 116)) (-1829 (($ $) 134)) (-1680 (($ $) 112)) (-2241 (($) 21 T CONST)) (-2254 (($) 10 T CONST)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 37)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) 35)) (-1826 (($ $) 41) (($ $ $) 42)) (-1814 (($ $ $) 40)) (** (($ $ (-917)) 54) (($ $ (-767)) NIL) (($ $ $) 94) (($ $ (-407 (-563))) 146)) (* (($ (-917) $) 51) (($ (-767) $) NIL) (($ (-563) $) 50) (($ $ $) 48))) +(((-570 |#1|) (-553 |#1|) (-13 (-404) (-1193))) (T -570)) +NIL +(-553 |#1|) +((-2748 (((-3 (-640 (-1165 (-563))) "failed") (-640 (-1165 (-563))) (-1165 (-563))) 24))) +(((-571) (-10 -7 (-15 -2748 ((-3 (-640 (-1165 (-563))) "failed") (-640 (-1165 (-563))) (-1165 (-563)))))) (T -571)) +((-2748 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-640 (-1165 (-563)))) (-5 *3 (-1165 (-563))) (-5 *1 (-571))))) +(-10 -7 (-15 -2748 ((-3 (-640 (-1165 (-563))) "failed") (-640 (-1165 (-563))) (-1165 (-563))))) +((-3869 (((-640 (-609 |#2|)) (-640 (-609 |#2|)) (-1169)) 19)) (-4186 (((-640 (-609 |#2|)) (-640 |#2|) (-1169)) 23)) (-2583 (((-640 (-609 |#2|)) (-640 (-609 |#2|)) (-640 (-609 |#2|))) 11)) (-3031 ((|#2| |#2| (-1169)) 53 (|has| |#1| (-555)))) (-1720 ((|#2| |#2| (-1169)) 77 (-12 (|has| |#2| (-284)) (|has| |#1| (-452))))) (-2975 (((-609 |#2|) (-609 |#2|) (-640 (-609 |#2|)) (-1169)) 25)) (-2088 (((-609 |#2|) (-640 (-609 |#2|))) 24)) (-1755 (((-584 |#2|) |#2| (-1169) (-1 (-584 |#2|) |#2| (-1169)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169))) 101 (-12 (|has| |#2| (-284)) (|has| |#2| (-626)) (|has| |#2| (-1034 (-1169))) (|has| |#1| (-611 (-888 (-563)))) (|has| |#1| (-452)) (|has| |#1| (-882 (-563))))))) +(((-572 |#1| |#2|) (-10 -7 (-15 -3869 ((-640 (-609 |#2|)) (-640 (-609 |#2|)) (-1169))) (-15 -2088 ((-609 |#2|) (-640 (-609 |#2|)))) (-15 -2975 ((-609 |#2|) (-609 |#2|) (-640 (-609 |#2|)) (-1169))) (-15 -2583 ((-640 (-609 |#2|)) (-640 (-609 |#2|)) (-640 (-609 |#2|)))) (-15 -4186 ((-640 (-609 |#2|)) (-640 |#2|) (-1169))) (IF (|has| |#1| (-555)) (-15 -3031 (|#2| |#2| (-1169))) |%noBranch|) (IF (|has| |#1| (-452)) (IF (|has| |#2| (-284)) (PROGN (-15 -1720 (|#2| |#2| (-1169))) (IF (|has| |#1| (-611 (-888 (-563)))) (IF (|has| |#1| (-882 (-563))) (IF (|has| |#2| (-626)) (IF (|has| |#2| (-1034 (-1169))) (-15 -1755 ((-584 |#2|) |#2| (-1169) (-1 (-584 |#2|) |#2| (-1169)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-846) (-430 |#1|)) (T -572)) +((-1755 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-584 *3) *3 (-1169))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1169))) (-4 *3 (-284)) (-4 *3 (-626)) (-4 *3 (-1034 *4)) (-4 *3 (-430 *7)) (-5 *4 (-1169)) (-4 *7 (-611 (-888 (-563)))) (-4 *7 (-452)) (-4 *7 (-882 (-563))) (-4 *7 (-846)) (-5 *2 (-584 *3)) (-5 *1 (-572 *7 *3)))) (-1720 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-452)) (-4 *4 (-846)) (-5 *1 (-572 *4 *2)) (-4 *2 (-284)) (-4 *2 (-430 *4)))) (-3031 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-555)) (-4 *4 (-846)) (-5 *1 (-572 *4 *2)) (-4 *2 (-430 *4)))) (-4186 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *6)) (-5 *4 (-1169)) (-4 *6 (-430 *5)) (-4 *5 (-846)) (-5 *2 (-640 (-609 *6))) (-5 *1 (-572 *5 *6)))) (-2583 (*1 *2 *2 *2) (-12 (-5 *2 (-640 (-609 *4))) (-4 *4 (-430 *3)) (-4 *3 (-846)) (-5 *1 (-572 *3 *4)))) (-2975 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-640 (-609 *6))) (-5 *4 (-1169)) (-5 *2 (-609 *6)) (-4 *6 (-430 *5)) (-4 *5 (-846)) (-5 *1 (-572 *5 *6)))) (-2088 (*1 *2 *3) (-12 (-5 *3 (-640 (-609 *5))) (-4 *4 (-846)) (-5 *2 (-609 *5)) (-5 *1 (-572 *4 *5)) (-4 *5 (-430 *4)))) (-3869 (*1 *2 *2 *3) (-12 (-5 *2 (-640 (-609 *5))) (-5 *3 (-1169)) (-4 *5 (-430 *4)) (-4 *4 (-846)) (-5 *1 (-572 *4 *5))))) +(-10 -7 (-15 -3869 ((-640 (-609 |#2|)) (-640 (-609 |#2|)) (-1169))) (-15 -2088 ((-609 |#2|) (-640 (-609 |#2|)))) (-15 -2975 ((-609 |#2|) (-609 |#2|) (-640 (-609 |#2|)) (-1169))) (-15 -2583 ((-640 (-609 |#2|)) (-640 (-609 |#2|)) (-640 (-609 |#2|)))) (-15 -4186 ((-640 (-609 |#2|)) (-640 |#2|) (-1169))) (IF (|has| |#1| (-555)) (-15 -3031 (|#2| |#2| (-1169))) |%noBranch|) (IF (|has| |#1| (-452)) (IF (|has| |#2| (-284)) (PROGN (-15 -1720 (|#2| |#2| (-1169))) (IF (|has| |#1| (-611 (-888 (-563)))) (IF (|has| |#1| (-882 (-563))) (IF (|has| |#2| (-626)) (IF (|has| |#2| (-1034 (-1169))) (-15 -1755 ((-584 |#2|) |#2| (-1169) (-1 (-584 |#2|) |#2| (-1169)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-1548 (((-2 (|:| |answer| (-584 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-640 |#1|) "failed") (-563) |#1| |#1|)) 172)) (-2057 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3646 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-640 (-407 |#2|))) 148)) (-3895 (((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-640 (-407 |#2|))) 145)) (-3182 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3646 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-3196 (((-2 (|:| |answer| (-584 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3646 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-3906 (((-3 (-2 (|:| -3646 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|)) 175)) (-3664 (((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3646 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3646 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-407 |#2|)) 178)) (-2680 (((-2 (|:| |ir| (-584 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)) 84)) (-3822 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-1961 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1701 |#1|) (|:| |sol?| (-112))) (-563) |#1|) (-640 (-407 |#2|))) 152)) (-4207 (((-3 (-620 |#1| |#2|) "failed") (-620 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1701 |#1|) (|:| |sol?| (-112))) (-563) |#1|)) 137)) (-3260 (((-2 (|:| |answer| (-584 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1701 |#1|) (|:| |sol?| (-112))) (-563) |#1|)) 162)) (-2244 (((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3646 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1701 |#1|) (|:| |sol?| (-112))) (-563) |#1|) (-407 |#2|)) 183))) +(((-573 |#1| |#2|) (-10 -7 (-15 -3196 ((-2 (|:| |answer| (-584 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3646 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3260 ((-2 (|:| |answer| (-584 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1701 |#1|) (|:| |sol?| (-112))) (-563) |#1|))) (-15 -1548 ((-2 (|:| |answer| (-584 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-640 |#1|) "failed") (-563) |#1| |#1|))) (-15 -3664 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3646 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3646 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-407 |#2|))) (-15 -2244 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3646 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1701 |#1|) (|:| |sol?| (-112))) (-563) |#1|) (-407 |#2|))) (-15 -2057 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3646 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-640 (-407 |#2|)))) (-15 -1961 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1701 |#1|) (|:| |sol?| (-112))) (-563) |#1|) (-640 (-407 |#2|)))) (-15 -3906 ((-3 (-2 (|:| -3646 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|))) (-15 -3895 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-640 (-407 |#2|)))) (-15 -3182 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3646 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -4207 ((-3 (-620 |#1| |#2|) "failed") (-620 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1701 |#1|) (|:| |sol?| (-112))) (-563) |#1|))) (-15 -2680 ((-2 (|:| |ir| (-584 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3822 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-363) (-1233 |#1|)) (T -573)) +((-3822 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1233 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-573 *5 *3)))) (-2680 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |ir| (-584 (-407 *6))) (|:| |specpart| (-407 *6)) (|:| |polypart| *6))) (-5 *1 (-573 *5 *6)) (-5 *3 (-407 *6)))) (-4207 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-620 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -1701 *4) (|:| |sol?| (-112))) (-563) *4)) (-4 *4 (-363)) (-4 *5 (-1233 *4)) (-5 *1 (-573 *4 *5)))) (-3182 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -3646 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-363)) (-5 *1 (-573 *4 *2)) (-4 *2 (-1233 *4)))) (-3895 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-640 (-407 *7))) (-4 *7 (-1233 *6)) (-5 *3 (-407 *7)) (-4 *6 (-363)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-573 *6 *7)))) (-3906 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -3646 (-407 *6)) (|:| |coeff| (-407 *6)))) (-5 *1 (-573 *5 *6)) (-5 *3 (-407 *6)))) (-1961 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -1701 *7) (|:| |sol?| (-112))) (-563) *7)) (-5 *6 (-640 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1233 *7)) (-5 *3 (-407 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-573 *7 *8)))) (-2057 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -3646 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-640 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1233 *7)) (-5 *3 (-407 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-573 *7 *8)))) (-2244 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1701 *6) (|:| |sol?| (-112))) (-563) *6)) (-4 *6 (-363)) (-4 *7 (-1233 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) (-2 (|:| -3646 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7)))) (-3664 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3646 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-363)) (-4 *7 (-1233 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) (-2 (|:| -3646 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7)))) (-1548 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-640 *6) "failed") (-563) *6 *6)) (-4 *6 (-363)) (-4 *7 (-1233 *6)) (-5 *2 (-2 (|:| |answer| (-584 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7)))) (-3260 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1701 *6) (|:| |sol?| (-112))) (-563) *6)) (-4 *6 (-363)) (-4 *7 (-1233 *6)) (-5 *2 (-2 (|:| |answer| (-584 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7)))) (-3196 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3646 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-363)) (-4 *7 (-1233 *6)) (-5 *2 (-2 (|:| |answer| (-584 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7))))) +(-10 -7 (-15 -3196 ((-2 (|:| |answer| (-584 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3646 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3260 ((-2 (|:| |answer| (-584 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1701 |#1|) (|:| |sol?| (-112))) (-563) |#1|))) (-15 -1548 ((-2 (|:| |answer| (-584 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-640 |#1|) "failed") (-563) |#1| |#1|))) (-15 -3664 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3646 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3646 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-407 |#2|))) (-15 -2244 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3646 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1701 |#1|) (|:| |sol?| (-112))) (-563) |#1|) (-407 |#2|))) (-15 -2057 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3646 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-640 (-407 |#2|)))) (-15 -1961 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1701 |#1|) (|:| |sol?| (-112))) (-563) |#1|) (-640 (-407 |#2|)))) (-15 -3906 ((-3 (-2 (|:| -3646 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|))) (-15 -3895 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-640 (-407 |#2|)))) (-15 -3182 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3646 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -4207 ((-3 (-620 |#1| |#2|) "failed") (-620 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1701 |#1|) (|:| |sol?| (-112))) (-563) |#1|))) (-15 -2680 ((-2 (|:| |ir| (-584 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3822 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-4151 (((-3 |#2| "failed") |#2| (-1169) (-1169)) 10))) +(((-574 |#1| |#2|) (-10 -7 (-15 -4151 ((-3 |#2| "failed") |#2| (-1169) (-1169)))) (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563))) (-13 (-1193) (-955) (-1132) (-29 |#1|))) (T -574)) +((-4151 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1169)) (-4 *4 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-574 *4 *2)) (-4 *2 (-13 (-1193) (-955) (-1132) (-29 *4)))))) +(-10 -7 (-15 -4151 ((-3 |#2| "failed") |#2| (-1169) (-1169)))) +((-2577 (((-686 (-1215)) $ (-1215)) 26)) (-2871 (((-686 (-548)) $ (-548)) 25)) (-2910 (((-767) $ (-128)) 27)) (-1717 (((-686 (-129)) $ (-129)) 24)) (-2843 (((-686 (-1215)) $) 12)) (-3262 (((-686 (-1214)) $) 8)) (-3927 (((-686 (-1213)) $) 10)) (-3429 (((-686 (-548)) $) 13)) (-1497 (((-686 (-547)) $) 9)) (-3351 (((-686 (-546)) $) 11)) (-2513 (((-767) $ (-128)) 7)) (-2810 (((-686 (-129)) $) 14)) (-3004 (($ $) 6))) +(((-575) (-140)) (T -575)) +NIL +(-13 (-527) (-856)) +(((-173) . T) ((-527) . T) ((-856) . T)) +((-2577 (((-686 (-1215)) $ (-1215)) NIL)) (-2871 (((-686 (-548)) $ (-548)) NIL)) (-2910 (((-767) $ (-128)) NIL)) (-1717 (((-686 (-129)) $ (-129)) NIL)) (-2843 (((-686 (-1215)) $) NIL)) (-3262 (((-686 (-1214)) $) NIL)) (-3927 (((-686 (-1213)) $) NIL)) (-3429 (((-686 (-548)) $) NIL)) (-1497 (((-686 (-547)) $) NIL)) (-3351 (((-686 (-546)) $) NIL)) (-2513 (((-767) $ (-128)) NIL)) (-2810 (((-686 (-129)) $) NIL)) (-4080 (((-112) $) NIL)) (-2704 (($ (-388)) 14) (($ (-1151)) 16)) (-1693 (((-858) $) NIL)) (-3004 (($ $) NIL))) +(((-576) (-13 (-575) (-610 (-858)) (-10 -8 (-15 -2704 ($ (-388))) (-15 -2704 ($ (-1151))) (-15 -4080 ((-112) $))))) (T -576)) +((-2704 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-576)))) (-2704 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-576)))) (-4080 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-576))))) +(-13 (-575) (-610 (-858)) (-10 -8 (-15 -2704 ($ (-388))) (-15 -2704 ($ (-1151))) (-15 -4080 ((-112) $)))) +((-1677 (((-112) $ $) NIL)) (-1555 (($) 7 T CONST)) (-3573 (((-1151) $) NIL)) (-1520 (($) 6 T CONST)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 14)) (-1920 (($) 8 T CONST)) (-1718 (((-112) $ $) 10))) +(((-577) (-13 (-1093) (-10 -8 (-15 -1520 ($) -2669) (-15 -1555 ($) -2669) (-15 -1920 ($) -2669)))) (T -577)) +((-1520 (*1 *1) (-5 *1 (-577))) (-1555 (*1 *1) (-5 *1 (-577))) (-1920 (*1 *1) (-5 *1 (-577)))) +(-13 (-1093) (-10 -8 (-15 -1520 ($) -2669) (-15 -1555 ($) -2669) (-15 -1920 ($) -2669))) +((-1677 (((-112) $ $) NIL)) (-3311 (((-686 $) (-491)) 16)) (-3573 (((-1151) $) NIL)) (-1628 (($ (-1151)) 9)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 31)) (-2022 (((-213 4 (-129)) $) 19)) (-1718 (((-112) $ $) 22))) +(((-578) (-13 (-1093) (-10 -8 (-15 -1628 ($ (-1151))) (-15 -2022 ((-213 4 (-129)) $)) (-15 -3311 ((-686 $) (-491)))))) (T -578)) +((-1628 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-578)))) (-2022 (*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-578)))) (-3311 (*1 *2 *3) (-12 (-5 *3 (-491)) (-5 *2 (-686 (-578))) (-5 *1 (-578))))) +(-13 (-1093) (-10 -8 (-15 -1628 ($ (-1151))) (-15 -2022 ((-213 4 (-129)) $)) (-15 -3311 ((-686 $) (-491))))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-2186 (($ $ (-563)) 66)) (-1919 (((-112) $ $) NIL)) (-4239 (($) NIL T CONST)) (-3853 (($ (-1165 (-563)) (-563)) 72)) (-3090 (($ $ $) NIL)) (-3400 (((-3 $ "failed") $) 58)) (-2840 (($ $) 34)) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-3254 (((-767) $) 15)) (-3827 (((-112) $) NIL)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2995 (((-563)) 29)) (-3553 (((-563) $) 32)) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3320 (($ $ (-563)) 21)) (-3008 (((-3 $ "failed") $ $) 59)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2628 (((-767) $) 16)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 61)) (-4113 (((-1149 (-563)) $) 18)) (-1741 (($ $) 23)) (-1693 (((-858) $) 86) (($ (-563)) 52) (($ $) NIL)) (-1675 (((-767)) 14)) (-2126 (((-112) $ $) NIL)) (-1403 (((-563) $ (-563)) 36)) (-2241 (($) 35 T CONST)) (-2254 (($) 19 T CONST)) (-1718 (((-112) $ $) 39)) (-1826 (($ $) 51) (($ $ $) 37)) (-1814 (($ $ $) 50)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 54) (($ $ $) 55))) +(((-579 |#1| |#2|) (-865 |#1|) (-563) (-112)) (T -579)) +NIL +(-865 |#1|) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) 21)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-2388 (((-112) $) NIL)) (-3259 (((-767)) NIL)) (-1733 (($ $ (-917)) NIL (|has| $ (-368))) (($ $) NIL)) (-2752 (((-1181 (-917) (-767)) (-563)) 47)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-1919 (((-112) $ $) NIL)) (-3749 (((-767)) NIL)) (-4239 (($) NIL T CONST)) (-2131 (((-3 $ "failed") $) 75)) (-2058 (($ $) 74)) (-3937 (($ (-1257 $)) 73)) (-3711 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-3090 (($ $ $) NIL)) (-3400 (((-3 $ "failed") $) 32)) (-1691 (($) NIL)) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-1571 (($) 49)) (-2366 (((-112) $) NIL)) (-1637 (($ $) NIL) (($ $ (-767)) NIL)) (-2468 (((-112) $) NIL)) (-3254 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-3827 (((-112) $) NIL)) (-3723 (($) 37 (|has| $ (-368)))) (-2890 (((-112) $) NIL (|has| $ (-368)))) (-3793 (($ $ (-917)) NIL (|has| $ (-368))) (($ $) NIL)) (-2408 (((-3 $ "failed") $) NIL)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3941 (((-1165 $) $ (-917)) NIL (|has| $ (-368))) (((-1165 $) $) 83)) (-1476 (((-917) $) 55)) (-2229 (((-1165 $) $) NIL (|has| $ (-368)))) (-1631 (((-3 (-1165 $) "failed") $ $) NIL (|has| $ (-368))) (((-1165 $) $) NIL (|has| $ (-368)))) (-4166 (($ $ (-1165 $)) NIL (|has| $ (-368)))) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) NIL)) (-2523 (($) NIL T CONST)) (-2555 (($ (-917)) 48)) (-3013 (((-112) $) 67)) (-1694 (((-1113) $) NIL)) (-4333 (($) 19 (|has| $ (-368)))) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ $ $) NIL) (($ (-640 $)) NIL)) (-2727 (((-640 (-2 (|:| -2174 (-563)) (|:| -1654 (-563))))) 42)) (-2174 (((-418 $) $) NIL)) (-1467 (((-917)) 66) (((-829 (-917))) NIL)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2628 (((-767) $) NIL)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-1423 (((-3 (-767) "failed") $ $) NIL) (((-767) $) NIL)) (-3533 (((-134)) NIL)) (-4202 (($ $ (-767)) NIL) (($ $) NIL)) (-4167 (((-917) $) 65) (((-829 (-917)) $) NIL)) (-3390 (((-1165 $)) 82)) (-4284 (($) 54)) (-1484 (($) 38 (|has| $ (-368)))) (-1880 (((-684 $) (-1257 $)) NIL) (((-1257 $) $) 71)) (-2220 (((-563) $) 28)) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL)) (-1693 (((-858) $) NIL) (($ (-563)) 30) (($ $) NIL) (($ (-407 (-563))) NIL)) (-2779 (((-3 $ "failed") $) NIL) (($ $) 84)) (-1675 (((-767)) 39)) (-4315 (((-1257 $) (-917)) 77) (((-1257 $)) 76)) (-2126 (((-112) $ $) NIL)) (-3152 (((-112) $) NIL)) (-2241 (($) 22 T CONST)) (-2254 (($) 18 T CONST)) (-2350 (($ $ (-767)) NIL (|has| $ (-368))) (($ $) NIL (|has| $ (-368)))) (-3209 (($ $ (-767)) NIL) (($ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1837 (($ $ $) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) 26)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 61) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL))) +(((-580 |#1|) (-13 (-349) (-329 $) (-611 (-563))) (-917)) (T -580)) +NIL +(-13 (-349) (-329 $) (-611 (-563))) +((-3321 (((-1262) (-1151)) 10))) +(((-581) (-10 -7 (-15 -3321 ((-1262) (-1151))))) (T -581)) +((-3321 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-581))))) +(-10 -7 (-15 -3321 ((-1262) (-1151)))) +((-2335 (((-584 |#2|) (-584 |#2|)) 37)) (-2213 (((-640 |#2|) (-584 |#2|)) 39)) (-3912 ((|#2| (-584 |#2|)) 45))) +(((-582 |#1| |#2|) (-10 -7 (-15 -2335 ((-584 |#2|) (-584 |#2|))) (-15 -2213 ((-640 |#2|) (-584 |#2|))) (-15 -3912 (|#2| (-584 |#2|)))) (-13 (-452) (-1034 (-563)) (-846) (-636 (-563))) (-13 (-29 |#1|) (-1193))) (T -582)) +((-3912 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-13 (-29 *4) (-1193))) (-5 *1 (-582 *4 *2)) (-4 *4 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))))) (-2213 (*1 *2 *3) (-12 (-5 *3 (-584 *5)) (-4 *5 (-13 (-29 *4) (-1193))) (-4 *4 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) (-5 *2 (-640 *5)) (-5 *1 (-582 *4 *5)))) (-2335 (*1 *2 *2) (-12 (-5 *2 (-584 *4)) (-4 *4 (-13 (-29 *3) (-1193))) (-4 *3 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) (-5 *1 (-582 *3 *4))))) +(-10 -7 (-15 -2335 ((-584 |#2|) (-584 |#2|))) (-15 -2213 ((-640 |#2|) (-584 |#2|))) (-15 -3912 (|#2| (-584 |#2|)))) +((-2240 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -3646 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3646 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-584 |#2|) (-1 |#2| |#1|) (-584 |#1|)) 30))) +(((-583 |#1| |#2|) (-10 -7 (-15 -2240 ((-584 |#2|) (-1 |#2| |#1|) (-584 |#1|))) (-15 -2240 ((-3 (-2 (|:| -3646 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3646 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2240 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2240 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-363) (-363)) (T -583)) +((-2240 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-583 *5 *6)))) (-2240 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-363)) (-4 *2 (-363)) (-5 *1 (-583 *5 *2)))) (-2240 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -3646 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-2 (|:| -3646 *6) (|:| |coeff| *6))) (-5 *1 (-583 *5 *6)))) (-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-584 *5)) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-584 *6)) (-5 *1 (-583 *5 *6))))) +(-10 -7 (-15 -2240 ((-584 |#2|) (-1 |#2| |#1|) (-584 |#1|))) (-15 -2240 ((-3 (-2 (|:| -3646 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3646 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2240 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2240 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#1| "failed") $) 67)) (-2058 ((|#1| $) NIL)) (-3646 ((|#1| $) 26)) (-3139 (((-640 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-2290 (($ |#1| (-640 (-2 (|:| |scalar| (-407 (-563))) (|:| |coeff| (-1165 |#1|)) (|:| |logand| (-1165 |#1|)))) (-640 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-3524 (((-640 (-2 (|:| |scalar| (-407 (-563))) (|:| |coeff| (-1165 |#1|)) (|:| |logand| (-1165 |#1|)))) $) 27)) (-3573 (((-1151) $) NIL)) (-1335 (($ |#1| |#1|) 33) (($ |#1| (-1169)) 44 (|has| |#1| (-1034 (-1169))))) (-1694 (((-1113) $) NIL)) (-1378 (((-112) $) 30)) (-4202 ((|#1| $ (-1 |#1| |#1|)) 79) ((|#1| $ (-1169)) 80 (|has| |#1| (-896 (-1169))))) (-1693 (((-858) $) 94) (($ |#1|) 25)) (-2241 (($) 16 T CONST)) (-1718 (((-112) $ $) NIL)) (-1826 (($ $) 15) (($ $ $) NIL)) (-1814 (($ $ $) 76)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 14) (($ (-407 (-563)) $) 36) (($ $ (-407 (-563))) NIL))) +(((-584 |#1|) (-13 (-713 (-407 (-563))) (-1034 |#1|) (-10 -8 (-15 -2290 ($ |#1| (-640 (-2 (|:| |scalar| (-407 (-563))) (|:| |coeff| (-1165 |#1|)) (|:| |logand| (-1165 |#1|)))) (-640 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3646 (|#1| $)) (-15 -3524 ((-640 (-2 (|:| |scalar| (-407 (-563))) (|:| |coeff| (-1165 |#1|)) (|:| |logand| (-1165 |#1|)))) $)) (-15 -3139 ((-640 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1378 ((-112) $)) (-15 -1335 ($ |#1| |#1|)) (-15 -4202 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-896 (-1169))) (-15 -4202 (|#1| $ (-1169))) |%noBranch|) (IF (|has| |#1| (-1034 (-1169))) (-15 -1335 ($ |#1| (-1169))) |%noBranch|))) (-363)) (T -584)) +((-2290 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-640 (-2 (|:| |scalar| (-407 (-563))) (|:| |coeff| (-1165 *2)) (|:| |logand| (-1165 *2))))) (-5 *4 (-640 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-363)) (-5 *1 (-584 *2)))) (-3646 (*1 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-363)))) (-3524 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |scalar| (-407 (-563))) (|:| |coeff| (-1165 *3)) (|:| |logand| (-1165 *3))))) (-5 *1 (-584 *3)) (-4 *3 (-363)))) (-3139 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-584 *3)) (-4 *3 (-363)))) (-1378 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-584 *3)) (-4 *3 (-363)))) (-1335 (*1 *1 *2 *2) (-12 (-5 *1 (-584 *2)) (-4 *2 (-363)))) (-4202 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-584 *2)) (-4 *2 (-363)))) (-4202 (*1 *2 *1 *3) (-12 (-4 *2 (-363)) (-4 *2 (-896 *3)) (-5 *1 (-584 *2)) (-5 *3 (-1169)))) (-1335 (*1 *1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *1 (-584 *2)) (-4 *2 (-1034 *3)) (-4 *2 (-363))))) +(-13 (-713 (-407 (-563))) (-1034 |#1|) (-10 -8 (-15 -2290 ($ |#1| (-640 (-2 (|:| |scalar| (-407 (-563))) (|:| |coeff| (-1165 |#1|)) (|:| |logand| (-1165 |#1|)))) (-640 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3646 (|#1| $)) (-15 -3524 ((-640 (-2 (|:| |scalar| (-407 (-563))) (|:| |coeff| (-1165 |#1|)) (|:| |logand| (-1165 |#1|)))) $)) (-15 -3139 ((-640 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1378 ((-112) $)) (-15 -1335 ($ |#1| |#1|)) (-15 -4202 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-896 (-1169))) (-15 -4202 (|#1| $ (-1169))) |%noBranch|) (IF (|has| |#1| (-1034 (-1169))) (-15 -1335 ($ |#1| (-1169))) |%noBranch|))) +((-3314 (((-112) |#1|) 16)) (-2017 (((-3 |#1| "failed") |#1|) 14)) (-3481 (((-2 (|:| -4211 |#1|) (|:| -1654 (-767))) |#1|) 30) (((-3 |#1| "failed") |#1| (-767)) 18)) (-1310 (((-112) |#1| (-767)) 19)) (-3915 ((|#1| |#1|) 31)) (-3343 ((|#1| |#1| (-767)) 33))) +(((-585 |#1|) (-10 -7 (-15 -1310 ((-112) |#1| (-767))) (-15 -3481 ((-3 |#1| "failed") |#1| (-767))) (-15 -3481 ((-2 (|:| -4211 |#1|) (|:| -1654 (-767))) |#1|)) (-15 -3343 (|#1| |#1| (-767))) (-15 -3314 ((-112) |#1|)) (-15 -2017 ((-3 |#1| "failed") |#1|)) (-15 -3915 (|#1| |#1|))) (-545)) (T -585)) +((-3915 (*1 *2 *2) (-12 (-5 *1 (-585 *2)) (-4 *2 (-545)))) (-2017 (*1 *2 *2) (|partial| -12 (-5 *1 (-585 *2)) (-4 *2 (-545)))) (-3314 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-545)))) (-3343 (*1 *2 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-585 *2)) (-4 *2 (-545)))) (-3481 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4211 *3) (|:| -1654 (-767)))) (-5 *1 (-585 *3)) (-4 *3 (-545)))) (-3481 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-767)) (-5 *1 (-585 *2)) (-4 *2 (-545)))) (-1310 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-545))))) +(-10 -7 (-15 -1310 ((-112) |#1| (-767))) (-15 -3481 ((-3 |#1| "failed") |#1| (-767))) (-15 -3481 ((-2 (|:| -4211 |#1|) (|:| -1654 (-767))) |#1|)) (-15 -3343 (|#1| |#1| (-767))) (-15 -3314 ((-112) |#1|)) (-15 -2017 ((-3 |#1| "failed") |#1|)) (-15 -3915 (|#1| |#1|))) +((-2720 (((-1165 |#1|) (-917)) 26))) +(((-586 |#1|) (-10 -7 (-15 -2720 ((-1165 |#1|) (-917)))) (-349)) (T -586)) +((-2720 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-586 *4)) (-4 *4 (-349))))) +(-10 -7 (-15 -2720 ((-1165 |#1|) (-917)))) +((-2335 (((-584 (-407 (-948 |#1|))) (-584 (-407 (-948 |#1|)))) 27)) (-3698 (((-3 (-316 |#1|) (-640 (-316 |#1|))) (-407 (-948 |#1|)) (-1169)) 34 (|has| |#1| (-147)))) (-2213 (((-640 (-316 |#1|)) (-584 (-407 (-948 |#1|)))) 19)) (-2998 (((-316 |#1|) (-407 (-948 |#1|)) (-1169)) 32 (|has| |#1| (-147)))) (-3912 (((-316 |#1|) (-584 (-407 (-948 |#1|)))) 21))) +(((-587 |#1|) (-10 -7 (-15 -2335 ((-584 (-407 (-948 |#1|))) (-584 (-407 (-948 |#1|))))) (-15 -2213 ((-640 (-316 |#1|)) (-584 (-407 (-948 |#1|))))) (-15 -3912 ((-316 |#1|) (-584 (-407 (-948 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -3698 ((-3 (-316 |#1|) (-640 (-316 |#1|))) (-407 (-948 |#1|)) (-1169))) (-15 -2998 ((-316 |#1|) (-407 (-948 |#1|)) (-1169)))) |%noBranch|)) (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) (T -587)) +((-2998 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169)) (-4 *5 (-147)) (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) (-5 *2 (-316 *5)) (-5 *1 (-587 *5)))) (-3698 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169)) (-4 *5 (-147)) (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) (-5 *2 (-3 (-316 *5) (-640 (-316 *5)))) (-5 *1 (-587 *5)))) (-3912 (*1 *2 *3) (-12 (-5 *3 (-584 (-407 (-948 *4)))) (-4 *4 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) (-5 *2 (-316 *4)) (-5 *1 (-587 *4)))) (-2213 (*1 *2 *3) (-12 (-5 *3 (-584 (-407 (-948 *4)))) (-4 *4 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) (-5 *2 (-640 (-316 *4))) (-5 *1 (-587 *4)))) (-2335 (*1 *2 *2) (-12 (-5 *2 (-584 (-407 (-948 *3)))) (-4 *3 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) (-5 *1 (-587 *3))))) +(-10 -7 (-15 -2335 ((-584 (-407 (-948 |#1|))) (-584 (-407 (-948 |#1|))))) (-15 -2213 ((-640 (-316 |#1|)) (-584 (-407 (-948 |#1|))))) (-15 -3912 ((-316 |#1|) (-584 (-407 (-948 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -3698 ((-3 (-316 |#1|) (-640 (-316 |#1|))) (-407 (-948 |#1|)) (-1169))) (-15 -2998 ((-316 |#1|) (-407 (-948 |#1|)) (-1169)))) |%noBranch|)) +((-3378 (((-640 (-684 (-563))) (-640 (-563)) (-640 (-901 (-563)))) 45) (((-640 (-684 (-563))) (-640 (-563))) 46) (((-684 (-563)) (-640 (-563)) (-901 (-563))) 41)) (-3812 (((-767) (-640 (-563))) 39))) +(((-588) (-10 -7 (-15 -3812 ((-767) (-640 (-563)))) (-15 -3378 ((-684 (-563)) (-640 (-563)) (-901 (-563)))) (-15 -3378 ((-640 (-684 (-563))) (-640 (-563)))) (-15 -3378 ((-640 (-684 (-563))) (-640 (-563)) (-640 (-901 (-563))))))) (T -588)) +((-3378 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-563))) (-5 *4 (-640 (-901 (-563)))) (-5 *2 (-640 (-684 (-563)))) (-5 *1 (-588)))) (-3378 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-640 (-684 (-563)))) (-5 *1 (-588)))) (-3378 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-563))) (-5 *4 (-901 (-563))) (-5 *2 (-684 (-563))) (-5 *1 (-588)))) (-3812 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-767)) (-5 *1 (-588))))) +(-10 -7 (-15 -3812 ((-767) (-640 (-563)))) (-15 -3378 ((-684 (-563)) (-640 (-563)) (-901 (-563)))) (-15 -3378 ((-640 (-684 (-563))) (-640 (-563)))) (-15 -3378 ((-640 (-684 (-563))) (-640 (-563)) (-640 (-901 (-563)))))) +((-2837 (((-640 |#5|) |#5| (-112)) 72)) (-3484 (((-112) |#5| (-640 |#5|)) 30))) +(((-589 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2837 ((-640 |#5|) |#5| (-112))) (-15 -3484 ((-112) |#5| (-640 |#5|)))) (-13 (-307) (-147)) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1102 |#1| |#2| |#3| |#4|)) (T -589)) +((-3484 (*1 *2 *3 *4) (-12 (-5 *4 (-640 *3)) (-4 *3 (-1102 *5 *6 *7 *8)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-589 *5 *6 *7 *8 *3)))) (-2837 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-640 *3)) (-5 *1 (-589 *5 *6 *7 *8 *3)) (-4 *3 (-1102 *5 *6 *7 *8))))) +(-10 -7 (-15 -2837 ((-640 |#5|) |#5| (-112))) (-15 -3484 ((-112) |#5| (-640 |#5|)))) +((-1677 (((-112) $ $) NIL)) (-2351 (((-1128) $) 11)) (-2340 (((-1128) $) 9)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 19) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-590) (-13 (-1076) (-10 -8 (-15 -2340 ((-1128) $)) (-15 -2351 ((-1128) $))))) (T -590)) +((-2340 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-590)))) (-2351 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-590))))) +(-13 (-1076) (-10 -8 (-15 -2340 ((-1128) $)) (-15 -2351 ((-1128) $)))) +((-1677 (((-112) $ $) NIL (|has| (-144) (-1093)))) (-3700 (($ $) 34)) (-3697 (($ $) NIL)) (-1967 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-4378 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4408)))) (-2559 (((-112) $ $) 51)) (-2537 (((-112) $ $ (-563)) 46)) (-2335 (((-640 $) $ (-144)) 59) (((-640 $) $ (-141)) 60)) (-3523 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-846)))) (-2770 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4408))) (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-846))))) (-1642 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-846)))) (-2759 (((-112) $ (-767)) NIL)) (-1849 (((-144) $ (-563) (-144)) 45 (|has| $ (-6 -4408))) (((-144) $ (-1224 (-563)) (-144)) NIL (|has| $ (-6 -4408)))) (-2256 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4407)))) (-4239 (($) NIL T CONST)) (-2025 (($ $ (-144)) 63) (($ $ (-141)) 64)) (-2907 (($ $) NIL (|has| $ (-6 -4408)))) (-4382 (($ $) NIL)) (-1938 (($ $ (-1224 (-563)) $) 44)) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1093))))) (-1459 (($ (-144) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1093)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4407)))) (-2444 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1093)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4407))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4407)))) (-4355 (((-144) $ (-563) (-144)) NIL (|has| $ (-6 -4408)))) (-4293 (((-144) $ (-563)) NIL)) (-2580 (((-112) $ $) 71)) (-4368 (((-563) (-1 (-112) (-144)) $) NIL) (((-563) (-144) $) NIL (|has| (-144) (-1093))) (((-563) (-144) $ (-563)) 48 (|has| (-144) (-1093))) (((-563) $ $ (-563)) 47) (((-563) (-141) $ (-563)) 50)) (-2659 (((-640 (-144)) $) NIL (|has| $ (-6 -4407)))) (-1566 (($ (-767) (-144)) 9)) (-2581 (((-112) $ (-767)) NIL)) (-2411 (((-563) $) 28 (|has| (-563) (-846)))) (-3084 (($ $ $) NIL (|has| (-144) (-846)))) (-3164 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-846)))) (-2259 (((-640 (-144)) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1093))))) (-3860 (((-563) $) 42 (|has| (-563) (-846)))) (-1777 (($ $ $) NIL (|has| (-144) (-846)))) (-4367 (((-112) $ $ (-144)) 72)) (-1916 (((-767) $ $ (-144)) 69)) (-4345 (($ (-1 (-144) (-144)) $) 33 (|has| $ (-6 -4408)))) (-2240 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-2360 (($ $) 37)) (-1652 (($ $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-2036 (($ $ (-144)) 61) (($ $ (-141)) 62)) (-3573 (((-1151) $) 38 (|has| (-144) (-1093)))) (-3396 (($ (-144) $ (-563)) NIL) (($ $ $ (-563)) 23)) (-4318 (((-640 (-563)) $) NIL)) (-3192 (((-112) (-563) $) NIL)) (-1694 (((-563) $) 68) (((-1113) $) NIL (|has| (-144) (-1093)))) (-3781 (((-144) $) NIL (|has| (-563) (-846)))) (-4203 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-2358 (($ $ (-144)) NIL (|has| $ (-6 -4408)))) (-3138 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-640 (-144)) (-640 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093))))) (-2026 (((-112) $ $) NIL)) (-2105 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1093))))) (-2836 (((-640 (-144)) $) NIL)) (-3756 (((-112) $) 12)) (-3135 (($) 10)) (-2309 (((-144) $ (-563) (-144)) NIL) (((-144) $ (-563)) 52) (($ $ (-1224 (-563))) 21) (($ $ $) NIL)) (-2963 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-1709 (((-767) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4407))) (((-767) (-144) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1093))))) (-3076 (($ $ $ (-563)) 65 (|has| $ (-6 -4408)))) (-1872 (($ $) 17)) (-2220 (((-536) $) NIL (|has| (-144) (-611 (-536))))) (-1707 (($ (-640 (-144))) NIL)) (-2853 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) 16) (($ (-640 $)) 66)) (-1693 (($ (-144)) NIL) (((-858) $) 27 (|has| (-144) (-610 (-858))))) (-4383 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4407)))) (-1778 (((-112) $ $) NIL (|has| (-144) (-846)))) (-1756 (((-112) $ $) NIL (|has| (-144) (-846)))) (-1718 (((-112) $ $) 14 (|has| (-144) (-1093)))) (-1768 (((-112) $ $) NIL (|has| (-144) (-846)))) (-1744 (((-112) $ $) 15 (|has| (-144) (-846)))) (-3608 (((-767) $) 13 (|has| $ (-6 -4407))))) +(((-591 |#1|) (-13 (-1137) (-10 -8 (-15 -1694 ((-563) $)))) (-563)) (T -591)) +((-1694 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-591 *3)) (-14 *3 *2)))) +(-13 (-1137) (-10 -8 (-15 -1694 ((-563) $)))) +((-2236 (((-2 (|:| |num| |#4|) (|:| |den| (-563))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-563))) |#4| |#2| (-1087 |#4|)) 32))) +(((-592 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2236 ((-2 (|:| |num| |#4|) (|:| |den| (-563))) |#4| |#2| (-1087 |#4|))) (-15 -2236 ((-2 (|:| |num| |#4|) (|:| |den| (-563))) |#4| |#2|))) (-789) (-846) (-555) (-945 |#3| |#1| |#2|)) (T -592)) +((-2236 (*1 *2 *3 *4) (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-555)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-563)))) (-5 *1 (-592 *5 *4 *6 *3)) (-4 *3 (-945 *6 *5 *4)))) (-2236 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1087 *3)) (-4 *3 (-945 *7 *6 *4)) (-4 *6 (-789)) (-4 *4 (-846)) (-4 *7 (-555)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-563)))) (-5 *1 (-592 *6 *4 *7 *3))))) +(-10 -7 (-15 -2236 ((-2 (|:| |num| |#4|) (|:| |den| (-563))) |#4| |#2| (-1087 |#4|))) (-15 -2236 ((-2 (|:| |num| |#4|) (|:| |den| (-563))) |#4| |#2|))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) 63)) (-2606 (((-640 (-1075)) $) NIL)) (-2518 (((-1169) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-4223 (($ $) NIL (|has| |#1| (-555)))) (-3156 (((-112) $) NIL (|has| |#1| (-555)))) (-2421 (($ $ (-563)) 54) (($ $ (-563) (-563)) 55)) (-1539 (((-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) $) 60)) (-2701 (($ $) 99)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3365 (((-858) (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) (-1022 (-839 (-563))) (-1169) |#1| (-407 (-563))) 223)) (-3045 (($ (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|)))) 34)) (-4239 (($) NIL T CONST)) (-2751 (($ $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-2788 (((-112) $) NIL)) (-3254 (((-563) $) 58) (((-563) $ (-563)) 59)) (-3827 (((-112) $) NIL)) (-1351 (($ $ (-917)) 76)) (-2831 (($ (-1 |#1| (-563)) $) 73)) (-3920 (((-112) $) 25)) (-2588 (($ |#1| (-563)) 22) (($ $ (-1075) (-563)) NIL) (($ $ (-640 (-1075)) (-640 (-563))) NIL)) (-2240 (($ (-1 |#1| |#1|) $) 67)) (-1587 (($ (-1022 (-839 (-563))) (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|)))) 13)) (-2716 (($ $) NIL)) (-2726 ((|#1| $) NIL)) (-3573 (((-1151) $) NIL)) (-3698 (($ $) 149 (|has| |#1| (-38 (-407 (-563)))))) (-1786 (((-3 $ "failed") $ $ (-112)) 98)) (-3149 (($ $ $) 107)) (-1694 (((-1113) $) NIL)) (-3203 (((-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) $) 15)) (-2639 (((-1022 (-839 (-563))) $) 14)) (-3320 (($ $ (-563)) 45)) (-3008 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-1540 (((-1149 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-563)))))) (-2309 ((|#1| $ (-563)) 57) (($ $ $) NIL (|has| (-563) (-1105)))) (-4202 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-563) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (-4167 (((-563) $) NIL)) (-1741 (($ $) 46)) (-1693 (((-858) $) NIL) (($ (-563)) 28) (($ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $) NIL (|has| |#1| (-555))) (($ |#1|) 27 (|has| |#1| (-172)))) (-4319 ((|#1| $ (-563)) 56)) (-2779 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1675 (((-767)) 37)) (-3408 ((|#1| $) NIL)) (-3160 (($ $) 185 (|has| |#1| (-38 (-407 (-563)))))) (-2473 (($ $) 157 (|has| |#1| (-38 (-407 (-563)))))) (-1392 (($ $) 189 (|has| |#1| (-38 (-407 (-563)))))) (-3091 (($ $) 162 (|has| |#1| (-38 (-407 (-563)))))) (-3461 (($ $) 188 (|has| |#1| (-38 (-407 (-563)))))) (-1609 (($ $) 161 (|has| |#1| (-38 (-407 (-563)))))) (-2703 (($ $ (-407 (-563))) 165 (|has| |#1| (-38 (-407 (-563)))))) (-3580 (($ $ |#1|) 145 (|has| |#1| (-38 (-407 (-563)))))) (-3782 (($ $) 191 (|has| |#1| (-38 (-407 (-563)))))) (-1898 (($ $) 148 (|has| |#1| (-38 (-407 (-563)))))) (-1891 (($ $) 190 (|has| |#1| (-38 (-407 (-563)))))) (-1359 (($ $) 163 (|has| |#1| (-38 (-407 (-563)))))) (-2373 (($ $) 186 (|has| |#1| (-38 (-407 (-563)))))) (-2847 (($ $) 159 (|has| |#1| (-38 (-407 (-563)))))) (-2222 (($ $) 187 (|has| |#1| (-38 (-407 (-563)))))) (-1894 (($ $) 160 (|has| |#1| (-38 (-407 (-563)))))) (-1560 (($ $) 196 (|has| |#1| (-38 (-407 (-563)))))) (-1492 (($ $) 172 (|has| |#1| (-38 (-407 (-563)))))) (-2954 (($ $) 193 (|has| |#1| (-38 (-407 (-563)))))) (-2171 (($ $) 167 (|has| |#1| (-38 (-407 (-563)))))) (-1903 (($ $) 200 (|has| |#1| (-38 (-407 (-563)))))) (-3223 (($ $) 176 (|has| |#1| (-38 (-407 (-563)))))) (-1383 (($ $) 202 (|has| |#1| (-38 (-407 (-563)))))) (-1364 (($ $) 178 (|has| |#1| (-38 (-407 (-563)))))) (-2109 (($ $) 198 (|has| |#1| (-38 (-407 (-563)))))) (-1669 (($ $) 174 (|has| |#1| (-38 (-407 (-563)))))) (-3883 (($ $) 195 (|has| |#1| (-38 (-407 (-563)))))) (-3130 (($ $) 170 (|has| |#1| (-38 (-407 (-563)))))) (-2126 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1403 ((|#1| $ (-563)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-563)))) (|has| |#1| (-15 -1693 (|#1| (-1169))))))) (-2241 (($) 29 T CONST)) (-2254 (($) 38 T CONST)) (-3209 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-563) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (-1718 (((-112) $ $) 65)) (-1837 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1826 (($ $) 84) (($ $ $) 64)) (-1814 (($ $ $) 81)) (** (($ $ (-917)) NIL) (($ $ (-767)) 102)) (* (($ (-917) $) 89) (($ (-767) $) 87) (($ (-563) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 114) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))))) +(((-593 |#1|) (-13 (-1235 |#1| (-563)) (-10 -8 (-15 -1587 ($ (-1022 (-839 (-563))) (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))))) (-15 -2639 ((-1022 (-839 (-563))) $)) (-15 -3203 ((-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) $)) (-15 -3045 ($ (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))))) (-15 -3920 ((-112) $)) (-15 -2831 ($ (-1 |#1| (-563)) $)) (-15 -1786 ((-3 $ "failed") $ $ (-112))) (-15 -2701 ($ $)) (-15 -3149 ($ $ $)) (-15 -3365 ((-858) (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) (-1022 (-839 (-563))) (-1169) |#1| (-407 (-563)))) (IF (|has| |#1| (-38 (-407 (-563)))) (PROGN (-15 -3698 ($ $)) (-15 -3580 ($ $ |#1|)) (-15 -2703 ($ $ (-407 (-563)))) (-15 -1898 ($ $)) (-15 -3782 ($ $)) (-15 -3091 ($ $)) (-15 -1894 ($ $)) (-15 -2473 ($ $)) (-15 -2847 ($ $)) (-15 -1609 ($ $)) (-15 -1359 ($ $)) (-15 -2171 ($ $)) (-15 -3130 ($ $)) (-15 -1492 ($ $)) (-15 -1669 ($ $)) (-15 -3223 ($ $)) (-15 -1364 ($ $)) (-15 -1392 ($ $)) (-15 -2222 ($ $)) (-15 -3160 ($ $)) (-15 -2373 ($ $)) (-15 -3461 ($ $)) (-15 -1891 ($ $)) (-15 -2954 ($ $)) (-15 -3883 ($ $)) (-15 -1560 ($ $)) (-15 -2109 ($ $)) (-15 -1903 ($ $)) (-15 -1383 ($ $))) |%noBranch|))) (-1045)) (T -593)) +((-3920 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-593 *3)) (-4 *3 (-1045)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1022 (-839 (-563)))) (-5 *3 (-1149 (-2 (|:| |k| (-563)) (|:| |c| *4)))) (-4 *4 (-1045)) (-5 *1 (-593 *4)))) (-2639 (*1 *2 *1) (-12 (-5 *2 (-1022 (-839 (-563)))) (-5 *1 (-593 *3)) (-4 *3 (-1045)))) (-3203 (*1 *2 *1) (-12 (-5 *2 (-1149 (-2 (|:| |k| (-563)) (|:| |c| *3)))) (-5 *1 (-593 *3)) (-4 *3 (-1045)))) (-3045 (*1 *1 *2) (-12 (-5 *2 (-1149 (-2 (|:| |k| (-563)) (|:| |c| *3)))) (-4 *3 (-1045)) (-5 *1 (-593 *3)))) (-2831 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-563))) (-4 *3 (-1045)) (-5 *1 (-593 *3)))) (-1786 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-593 *3)) (-4 *3 (-1045)))) (-2701 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1045)))) (-3149 (*1 *1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1045)))) (-3365 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1149 (-2 (|:| |k| (-563)) (|:| |c| *6)))) (-5 *4 (-1022 (-839 (-563)))) (-5 *5 (-1169)) (-5 *7 (-407 (-563))) (-4 *6 (-1045)) (-5 *2 (-858)) (-5 *1 (-593 *6)))) (-3698 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-3580 (*1 *1 *1 *2) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-2703 (*1 *1 *1 *2) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-593 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1045)))) (-1898 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-3782 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-3091 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-1894 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-2473 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-2847 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-1609 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-1359 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-2171 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-3130 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-1492 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-1669 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-3223 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-1364 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-1392 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-2222 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-3160 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-2373 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-3461 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-1891 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-2954 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-3883 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-1560 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-2109 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-1903 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-1383 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) +(-13 (-1235 |#1| (-563)) (-10 -8 (-15 -1587 ($ (-1022 (-839 (-563))) (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))))) (-15 -2639 ((-1022 (-839 (-563))) $)) (-15 -3203 ((-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) $)) (-15 -3045 ($ (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))))) (-15 -3920 ((-112) $)) (-15 -2831 ($ (-1 |#1| (-563)) $)) (-15 -1786 ((-3 $ "failed") $ $ (-112))) (-15 -2701 ($ $)) (-15 -3149 ($ $ $)) (-15 -3365 ((-858) (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) (-1022 (-839 (-563))) (-1169) |#1| (-407 (-563)))) (IF (|has| |#1| (-38 (-407 (-563)))) (PROGN (-15 -3698 ($ $)) (-15 -3580 ($ $ |#1|)) (-15 -2703 ($ $ (-407 (-563)))) (-15 -1898 ($ $)) (-15 -3782 ($ $)) (-15 -3091 ($ $)) (-15 -1894 ($ $)) (-15 -2473 ($ $)) (-15 -2847 ($ $)) (-15 -1609 ($ $)) (-15 -1359 ($ $)) (-15 -2171 ($ $)) (-15 -3130 ($ $)) (-15 -1492 ($ $)) (-15 -1669 ($ $)) (-15 -3223 ($ $)) (-15 -1364 ($ $)) (-15 -1392 ($ $)) (-15 -2222 ($ $)) (-15 -3160 ($ $)) (-15 -2373 ($ $)) (-15 -3461 ($ $)) (-15 -1891 ($ $)) (-15 -2954 ($ $)) (-15 -3883 ($ $)) (-15 -1560 ($ $)) (-15 -2109 ($ $)) (-15 -1903 ($ $)) (-15 -1383 ($ $))) |%noBranch|))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-4223 (($ $) NIL (|has| |#1| (-555)))) (-3156 (((-112) $) NIL (|has| |#1| (-555)))) (-1495 (((-3 $ "failed") $ $) NIL)) (-3045 (($ (-1149 |#1|)) 9)) (-4239 (($) NIL T CONST)) (-3400 (((-3 $ "failed") $) 42)) (-2788 (((-112) $) 52)) (-3254 (((-767) $) 55) (((-767) $ (-767)) 54)) (-3827 (((-112) $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-3008 (((-3 $ "failed") $ $) 44 (|has| |#1| (-555)))) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL (|has| |#1| (-555)))) (-1337 (((-1149 |#1|) $) 23)) (-1675 (((-767)) 51)) (-2126 (((-112) $ $) NIL (|has| |#1| (-555)))) (-2241 (($) 10 T CONST)) (-2254 (($) 14 T CONST)) (-1718 (((-112) $ $) 22)) (-1826 (($ $) 30) (($ $ $) 16)) (-1814 (($ $ $) 25)) (** (($ $ (-917)) NIL) (($ $ (-767)) 49)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-563)) 36))) +(((-594 |#1|) (-13 (-1045) (-10 -8 (-15 -1337 ((-1149 |#1|) $)) (-15 -3045 ($ (-1149 |#1|))) (-15 -2788 ((-112) $)) (-15 -3254 ((-767) $)) (-15 -3254 ((-767) $ (-767))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-563))) (IF (|has| |#1| (-555)) (-6 (-555)) |%noBranch|))) (-1045)) (T -594)) +((-1337 (*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) (-3045 (*1 *1 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-594 *3)))) (-2788 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) (-3254 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) (-3254 (*1 *2 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1045)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1045)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-594 *3)) (-4 *3 (-1045))))) +(-13 (-1045) (-10 -8 (-15 -1337 ((-1149 |#1|) $)) (-15 -3045 ($ (-1149 |#1|))) (-15 -2788 ((-112) $)) (-15 -3254 ((-767) $)) (-15 -3254 ((-767) $ (-767))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-563))) (IF (|has| |#1| (-555)) (-6 (-555)) |%noBranch|))) +((-2240 (((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|)) 15))) +(((-595 |#1| |#2|) (-10 -7 (-15 -2240 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|)))) (-1208) (-1208)) (T -595)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-598 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-598 *6)) (-5 *1 (-595 *5 *6))))) +(-10 -7 (-15 -2240 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|)))) +((-2240 (((-1149 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-1149 |#2|)) 20) (((-1149 |#3|) (-1 |#3| |#1| |#2|) (-1149 |#1|) (-598 |#2|)) 19) (((-598 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-598 |#2|)) 18))) +(((-596 |#1| |#2| |#3|) (-10 -7 (-15 -2240 ((-598 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-598 |#2|))) (-15 -2240 ((-1149 |#3|) (-1 |#3| |#1| |#2|) (-1149 |#1|) (-598 |#2|))) (-15 -2240 ((-1149 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-1149 |#2|)))) (-1208) (-1208) (-1208)) (T -596)) +((-2240 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-598 *6)) (-5 *5 (-1149 *7)) (-4 *6 (-1208)) (-4 *7 (-1208)) (-4 *8 (-1208)) (-5 *2 (-1149 *8)) (-5 *1 (-596 *6 *7 *8)))) (-2240 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1149 *6)) (-5 *5 (-598 *7)) (-4 *6 (-1208)) (-4 *7 (-1208)) (-4 *8 (-1208)) (-5 *2 (-1149 *8)) (-5 *1 (-596 *6 *7 *8)))) (-2240 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-598 *6)) (-5 *5 (-598 *7)) (-4 *6 (-1208)) (-4 *7 (-1208)) (-4 *8 (-1208)) (-5 *2 (-598 *8)) (-5 *1 (-596 *6 *7 *8))))) +(-10 -7 (-15 -2240 ((-598 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-598 |#2|))) (-15 -2240 ((-1149 |#3|) (-1 |#3| |#1| |#2|) (-1149 |#1|) (-598 |#2|))) (-15 -2240 ((-1149 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-1149 |#2|)))) +((-3445 ((|#3| |#3| (-640 (-609 |#3|)) (-640 (-1169))) 55)) (-1470 (((-169 |#2|) |#3|) 117)) (-2977 ((|#3| (-169 |#2|)) 44)) (-3036 ((|#2| |#3|) 19)) (-3732 ((|#3| |#2|) 33))) +(((-597 |#1| |#2| |#3|) (-10 -7 (-15 -2977 (|#3| (-169 |#2|))) (-15 -3036 (|#2| |#3|)) (-15 -3732 (|#3| |#2|)) (-15 -1470 ((-169 |#2|) |#3|)) (-15 -3445 (|#3| |#3| (-640 (-609 |#3|)) (-640 (-1169))))) (-13 (-555) (-846)) (-13 (-430 |#1|) (-998) (-1193)) (-13 (-430 (-169 |#1|)) (-998) (-1193))) (T -597)) +((-3445 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-640 (-609 *2))) (-5 *4 (-640 (-1169))) (-4 *2 (-13 (-430 (-169 *5)) (-998) (-1193))) (-4 *5 (-13 (-555) (-846))) (-5 *1 (-597 *5 *6 *2)) (-4 *6 (-13 (-430 *5) (-998) (-1193))))) (-1470 (*1 *2 *3) (-12 (-4 *4 (-13 (-555) (-846))) (-5 *2 (-169 *5)) (-5 *1 (-597 *4 *5 *3)) (-4 *5 (-13 (-430 *4) (-998) (-1193))) (-4 *3 (-13 (-430 (-169 *4)) (-998) (-1193))))) (-3732 (*1 *2 *3) (-12 (-4 *4 (-13 (-555) (-846))) (-4 *2 (-13 (-430 (-169 *4)) (-998) (-1193))) (-5 *1 (-597 *4 *3 *2)) (-4 *3 (-13 (-430 *4) (-998) (-1193))))) (-3036 (*1 *2 *3) (-12 (-4 *4 (-13 (-555) (-846))) (-4 *2 (-13 (-430 *4) (-998) (-1193))) (-5 *1 (-597 *4 *2 *3)) (-4 *3 (-13 (-430 (-169 *4)) (-998) (-1193))))) (-2977 (*1 *2 *3) (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-430 *4) (-998) (-1193))) (-4 *4 (-13 (-555) (-846))) (-4 *2 (-13 (-430 (-169 *4)) (-998) (-1193))) (-5 *1 (-597 *4 *5 *2))))) +(-10 -7 (-15 -2977 (|#3| (-169 |#2|))) (-15 -3036 (|#2| |#3|)) (-15 -3732 (|#3| |#2|)) (-15 -1470 ((-169 |#2|) |#3|)) (-15 -3445 (|#3| |#3| (-640 (-609 |#3|)) (-640 (-1169))))) +((-2256 (($ (-1 (-112) |#1|) $) 17)) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-2177 (($ (-1 |#1| |#1|) |#1|) 9)) (-2225 (($ (-1 (-112) |#1|) $) 13)) (-2242 (($ (-1 (-112) |#1|) $) 15)) (-1707 (((-1149 |#1|) $) 18)) (-1693 (((-858) $) NIL))) +(((-598 |#1|) (-13 (-610 (-858)) (-10 -8 (-15 -2240 ($ (-1 |#1| |#1|) $)) (-15 -2225 ($ (-1 (-112) |#1|) $)) (-15 -2242 ($ (-1 (-112) |#1|) $)) (-15 -2256 ($ (-1 (-112) |#1|) $)) (-15 -2177 ($ (-1 |#1| |#1|) |#1|)) (-15 -1707 ((-1149 |#1|) $)))) (-1208)) (T -598)) +((-2240 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1208)) (-5 *1 (-598 *3)))) (-2225 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1208)) (-5 *1 (-598 *3)))) (-2242 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1208)) (-5 *1 (-598 *3)))) (-2256 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1208)) (-5 *1 (-598 *3)))) (-2177 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1208)) (-5 *1 (-598 *3)))) (-1707 (*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-598 *3)) (-4 *3 (-1208))))) +(-13 (-610 (-858)) (-10 -8 (-15 -2240 ($ (-1 |#1| |#1|) $)) (-15 -2225 ($ (-1 (-112) |#1|) $)) (-15 -2242 ($ (-1 (-112) |#1|) $)) (-15 -2256 ($ (-1 (-112) |#1|) $)) (-15 -2177 ($ (-1 |#1| |#1|) |#1|)) (-15 -1707 ((-1149 |#1|) $)))) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3212 (($ (-767)) NIL (|has| |#1| (-23)))) (-4378 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4408)))) (-3523 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-2770 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4408))) (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-846))))) (-1642 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-2759 (((-112) $ (-767)) NIL)) (-1849 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4408))) ((|#1| $ (-1224 (-563)) |#1|) NIL (|has| $ (-6 -4408)))) (-2256 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-4239 (($) NIL T CONST)) (-2907 (($ $) NIL (|has| $ (-6 -4408)))) (-4382 (($ $) NIL)) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1459 (($ |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-4355 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4408)))) (-4293 ((|#1| $ (-563)) NIL)) (-4368 (((-563) (-1 (-112) |#1|) $) NIL) (((-563) |#1| $) NIL (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) NIL (|has| |#1| (-1093)))) (-2659 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3982 (((-684 |#1|) $ $) NIL (|has| |#1| (-1045)))) (-1566 (($ (-767) |#1|) NIL)) (-2581 (((-112) $ (-767)) NIL)) (-2411 (((-563) $) NIL (|has| (-563) (-846)))) (-3084 (($ $ $) NIL (|has| |#1| (-846)))) (-3164 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-2259 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-3860 (((-563) $) NIL (|has| (-563) (-846)))) (-1777 (($ $ $) NIL (|has| |#1| (-846)))) (-4345 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1607 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-2382 (((-112) $ (-767)) NIL)) (-3415 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3396 (($ |#1| $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-4318 (((-640 (-563)) $) NIL)) (-3192 (((-112) (-563) $) NIL)) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3781 ((|#1| $) NIL (|has| (-563) (-846)))) (-4203 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2358 (($ $ |#1|) NIL (|has| $ (-6 -4408)))) (-3138 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) NIL)) (-2105 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2836 (((-640 |#1|) $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) NIL)) (-2309 ((|#1| $ (-563) |#1|) NIL) ((|#1| $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-4092 ((|#1| $ $) NIL (|has| |#1| (-1045)))) (-2963 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-1627 (($ $ $) NIL (|has| |#1| (-1045)))) (-1709 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-3076 (($ $ $ (-563)) NIL (|has| $ (-6 -4408)))) (-1872 (($ $) NIL)) (-2220 (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-1707 (($ (-640 |#1|)) NIL)) (-2853 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-640 $)) NIL)) (-1693 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-4383 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1778 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1756 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1768 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1744 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1826 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1814 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-563) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-722))) (($ $ |#1|) NIL (|has| |#1| (-722)))) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-599 |#1| |#2|) (-1255 |#1|) (-1208) (-563)) (T -599)) +NIL +(-1255 |#1|) +((-4378 (((-1262) $ |#2| |#2|) 36)) (-2411 ((|#2| $) 23)) (-3860 ((|#2| $) 21)) (-4345 (($ (-1 |#3| |#3|) $) 32)) (-2240 (($ (-1 |#3| |#3|) $) 30)) (-3781 ((|#3| $) 26)) (-2358 (($ $ |#3|) 33)) (-2105 (((-112) |#3| $) 17)) (-2836 (((-640 |#3|) $) 15)) (-2309 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-600 |#1| |#2| |#3|) (-10 -8 (-15 -4378 ((-1262) |#1| |#2| |#2|)) (-15 -2358 (|#1| |#1| |#3|)) (-15 -3781 (|#3| |#1|)) (-15 -2411 (|#2| |#1|)) (-15 -3860 (|#2| |#1|)) (-15 -2105 ((-112) |#3| |#1|)) (-15 -2836 ((-640 |#3|) |#1|)) (-15 -2309 (|#3| |#1| |#2|)) (-15 -2309 (|#3| |#1| |#2| |#3|)) (-15 -4345 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2240 (|#1| (-1 |#3| |#3|) |#1|))) (-601 |#2| |#3|) (-1093) (-1208)) (T -600)) +NIL +(-10 -8 (-15 -4378 ((-1262) |#1| |#2| |#2|)) (-15 -2358 (|#1| |#1| |#3|)) (-15 -3781 (|#3| |#1|)) (-15 -2411 (|#2| |#1|)) (-15 -3860 (|#2| |#1|)) (-15 -2105 ((-112) |#3| |#1|)) (-15 -2836 ((-640 |#3|) |#1|)) (-15 -2309 (|#3| |#1| |#2|)) (-15 -2309 (|#3| |#1| |#2| |#3|)) (-15 -4345 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2240 (|#1| (-1 |#3| |#3|) |#1|))) +((-1677 (((-112) $ $) 19 (|has| |#2| (-1093)))) (-4378 (((-1262) $ |#1| |#1|) 40 (|has| $ (-6 -4408)))) (-2759 (((-112) $ (-767)) 8)) (-1849 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4408)))) (-4239 (($) 7 T CONST)) (-4355 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4408)))) (-4293 ((|#2| $ |#1|) 51)) (-2659 (((-640 |#2|) $) 30 (|has| $ (-6 -4407)))) (-2581 (((-112) $ (-767)) 9)) (-2411 ((|#1| $) 43 (|has| |#1| (-846)))) (-2259 (((-640 |#2|) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1093)) (|has| $ (-6 -4407))))) (-3860 ((|#1| $) 44 (|has| |#1| (-846)))) (-4345 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#2| |#2|) $) 35)) (-2382 (((-112) $ (-767)) 10)) (-3573 (((-1151) $) 22 (|has| |#2| (-1093)))) (-4318 (((-640 |#1|) $) 46)) (-3192 (((-112) |#1| $) 47)) (-1694 (((-1113) $) 21 (|has| |#2| (-1093)))) (-3781 ((|#2| $) 42 (|has| |#1| (-846)))) (-2358 (($ $ |#2|) 41 (|has| $ (-6 -4408)))) (-3138 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#2|))) 26 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) 25 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) 23 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-2026 (((-112) $ $) 14)) (-2105 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093))))) (-2836 (((-640 |#2|) $) 48)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-2309 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-1709 (((-767) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4407))) (((-767) |#2| $) 28 (-12 (|has| |#2| (-1093)) (|has| $ (-6 -4407))))) (-1872 (($ $) 13)) (-1693 (((-858) $) 18 (|has| |#2| (-610 (-858))))) (-4383 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 20 (|has| |#2| (-1093)))) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-601 |#1| |#2|) (-140) (-1093) (-1208)) (T -601)) +((-2836 (*1 *2 *1) (-12 (-4 *1 (-601 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1208)) (-5 *2 (-640 *4)))) (-3192 (*1 *2 *3 *1) (-12 (-4 *1 (-601 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1208)) (-5 *2 (-112)))) (-4318 (*1 *2 *1) (-12 (-4 *1 (-601 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1208)) (-5 *2 (-640 *3)))) (-2105 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-601 *4 *3)) (-4 *4 (-1093)) (-4 *3 (-1208)) (-4 *3 (-1093)) (-5 *2 (-112)))) (-3860 (*1 *2 *1) (-12 (-4 *1 (-601 *2 *3)) (-4 *3 (-1208)) (-4 *2 (-1093)) (-4 *2 (-846)))) (-2411 (*1 *2 *1) (-12 (-4 *1 (-601 *2 *3)) (-4 *3 (-1208)) (-4 *2 (-1093)) (-4 *2 (-846)))) (-3781 (*1 *2 *1) (-12 (-4 *1 (-601 *3 *2)) (-4 *3 (-1093)) (-4 *3 (-846)) (-4 *2 (-1208)))) (-2358 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-601 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1208)))) (-4378 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-601 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1208)) (-5 *2 (-1262))))) +(-13 (-489 |t#2|) (-288 |t#1| |t#2|) (-10 -8 (-15 -2836 ((-640 |t#2|) $)) (-15 -3192 ((-112) |t#1| $)) (-15 -4318 ((-640 |t#1|) $)) (IF (|has| |t#2| (-1093)) (IF (|has| $ (-6 -4407)) (-15 -2105 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-846)) (PROGN (-15 -3860 (|t#1| $)) (-15 -2411 (|t#1| $)) (-15 -3781 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4408)) (PROGN (-15 -2358 ($ $ |t#2|)) (-15 -4378 ((-1262) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#2| (-1093)) ((-610 (-858)) -4032 (|has| |#2| (-1093)) (|has| |#2| (-610 (-858)))) ((-286 |#1| |#2|) . T) ((-288 |#1| |#2|) . T) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((-489 |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((-1093) |has| |#2| (-1093)) ((-1208) . T)) +((-1693 (((-858) $) 17) (($ (-129)) 13) (((-129) $) 14))) +(((-602) (-13 (-610 (-858)) (-490 (-129)))) (T -602)) +NIL +(-13 (-610 (-858)) (-490 (-129))) +((-1677 (((-112) $ $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL) (($ (-1174)) NIL) (((-1174) $) NIL) (((-1207) $) 14) (($ (-640 (-1207))) 13)) (-2122 (((-640 (-1207)) $) 10)) (-1718 (((-112) $ $) NIL))) +(((-603) (-13 (-1076) (-610 (-1207)) (-10 -8 (-15 -1693 ($ (-640 (-1207)))) (-15 -2122 ((-640 (-1207)) $))))) (T -603)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-640 (-1207))) (-5 *1 (-603)))) (-2122 (*1 *2 *1) (-12 (-5 *2 (-640 (-1207))) (-5 *1 (-603))))) +(-13 (-1076) (-610 (-1207)) (-10 -8 (-15 -1693 ($ (-640 (-1207)))) (-15 -2122 ((-640 (-1207)) $)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1414 (((-3 $ "failed")) NIL (-4032 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-1495 (((-3 $ "failed") $ $) NIL)) (-3507 (((-1257 (-684 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-1257 (-684 |#1|)) (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-1438 (((-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-4239 (($) NIL T CONST)) (-2133 (((-3 (-2 (|:| |particular| $) (|:| -4315 (-640 $))) "failed")) NIL (-4032 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-2435 (((-3 $ "failed")) NIL (-4032 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-4220 (((-684 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-684 |#1|) (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-2480 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-3043 (((-684 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-684 |#1|) $ (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-4154 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-3451 (((-1165 (-948 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-2300 (($ $ (-917)) NIL)) (-3830 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-3763 (((-1165 |#1|) $) NIL (-4032 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-1824 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-2876 (((-1165 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-2182 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3937 (($ (-1257 |#1|)) NIL (|has| |#2| (-417 |#1|))) (($ (-1257 |#1|) (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-3400 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-2522 (((-917)) NIL (|has| |#2| (-367 |#1|)))) (-2250 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2287 (($ $ (-917)) NIL)) (-3901 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3308 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3104 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2284 (((-3 (-2 (|:| |particular| $) (|:| -4315 (-640 $))) "failed")) NIL (-4032 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-2508 (((-3 $ "failed")) NIL (-4032 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-2328 (((-684 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-684 |#1|) (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-2842 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1823 (((-684 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-684 |#1|) $ (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-3856 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-3594 (((-1165 (-948 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-1494 (($ $ (-917)) NIL)) (-2199 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-2604 (((-1165 |#1|) $) NIL (-4032 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-4111 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-2665 (((-1165 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-4012 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3573 (((-1151) $) NIL)) (-2136 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1789 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2047 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1694 (((-1113) $) NIL)) (-4084 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2309 ((|#1| $ (-563)) NIL (|has| |#2| (-417 |#1|)))) (-1880 (((-684 |#1|) (-1257 $)) NIL (|has| |#2| (-417 |#1|))) (((-1257 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-684 |#1|) (-1257 $) (-1257 $)) NIL (|has| |#2| (-367 |#1|))) (((-1257 |#1|) $ (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-2220 (($ (-1257 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-1257 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-4152 (((-640 (-948 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-640 (-948 |#1|)) (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-2146 (($ $ $) NIL)) (-1936 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1693 (((-858) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-4315 (((-1257 $)) NIL (|has| |#2| (-417 |#1|)))) (-2138 (((-640 (-1257 |#1|))) NIL (-4032 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-1361 (($ $ $ $) NIL)) (-1402 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3726 (($ (-684 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-3399 (($ $ $) NIL)) (-2483 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3777 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2128 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2241 (($) NIL T CONST)) (-1718 (((-112) $ $) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) 24)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-604 |#1| |#2|) (-13 (-740 |#1|) (-610 |#2|) (-10 -8 (-15 -1693 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) (-172) (-740 |#1|)) (T -604)) +((-1693 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-604 *3 *2)) (-4 *2 (-740 *3))))) +(-13 (-740 |#1|) (-610 |#2|) (-10 -8 (-15 -1693 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) +((-1677 (((-112) $ $) NIL)) (-2056 (((-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) $ (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) 33)) (-1552 (($ (-640 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)))) NIL) (($) NIL)) (-4378 (((-1262) $ (-1151) (-1151)) NIL (|has| $ (-6 -4408)))) (-2759 (((-112) $ (-767)) NIL)) (-1849 ((|#1| $ (-1151) |#1|) 43)) (-2812 (($ (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) $) NIL (|has| $ (-6 -4407)))) (-2256 (($ (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) $) NIL (|has| $ (-6 -4407)))) (-1577 (((-3 |#1| "failed") (-1151) $) 46)) (-4239 (($) NIL T CONST)) (-3010 (($ $ (-1151)) 24)) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-1093))))) (-2705 (((-3 |#1| "failed") (-1151) $) 47) (($ (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) $) NIL (|has| $ (-6 -4407))) (($ (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) $) NIL (|has| $ (-6 -4407)))) (-1459 (($ (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) $) NIL (|has| $ (-6 -4407))) (($ (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-1093))))) (-2444 (((-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-1 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) $) NIL (|has| $ (-6 -4407))) (((-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-1 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) $ (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) NIL (|has| $ (-6 -4407))) (((-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-1 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) $ (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-1093))))) (-3538 (((-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) $) 32)) (-4355 ((|#1| $ (-1151) |#1|) NIL (|has| $ (-6 -4408)))) (-4293 ((|#1| $ (-1151)) NIL)) (-2659 (((-640 |#1|) $) NIL (|has| $ (-6 -4407))) (((-640 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) $) NIL (|has| $ (-6 -4407)))) (-3629 (($ $) 48)) (-3405 (($ (-388)) 22) (($ (-388) (-1151)) 21)) (-3348 (((-388) $) 34)) (-2581 (((-112) $ (-767)) NIL)) (-2411 (((-1151) $) NIL (|has| (-1151) (-846)))) (-2259 (((-640 |#1|) $) NIL (|has| $ (-6 -4407))) (((-640 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093)))) (((-112) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-1093))))) (-3860 (((-1151) $) NIL (|has| (-1151) (-846)))) (-4345 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL)) (-1303 (((-640 (-1151)) $) 39)) (-4173 (((-112) (-1151) $) NIL)) (-2302 (((-1151) $) 35)) (-2964 (((-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) $) NIL)) (-1812 (($ (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) $) NIL)) (-4318 (((-640 (-1151)) $) NIL)) (-3192 (((-112) (-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-3781 ((|#1| $) NIL (|has| (-1151) (-846)))) (-4203 (((-3 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) "failed") (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) $) NIL)) (-2358 (($ $ |#1|) NIL (|has| $ (-6 -4408)))) (-3755 (((-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) $) NIL)) (-3138 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) (-640 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)))) NIL (-12 (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-309 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)))) (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-1093)))) (($ $ (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) NIL (-12 (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-309 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)))) (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-1093)))) (($ $ (-294 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)))) NIL (-12 (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-309 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)))) (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-1093)))) (($ $ (-640 (-294 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))))) NIL (-12 (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-309 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)))) (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-1093))))) (-2026 (((-112) $ $) NIL)) (-2105 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2836 (((-640 |#1|) $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) 37)) (-2309 ((|#1| $ (-1151) |#1|) NIL) ((|#1| $ (-1151)) 42)) (-3890 (($ (-640 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)))) NIL) (($) NIL)) (-1709 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093)))) (((-767) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-1093)))) (((-767) (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) $) NIL (|has| $ (-6 -4407)))) (-1872 (($ $) NIL)) (-2220 (((-536) $) NIL (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-611 (-536))))) (-1707 (($ (-640 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)))) NIL)) (-1693 (((-858) $) 20)) (-3004 (($ $) 25)) (-2233 (($ (-640 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)))) NIL)) (-4383 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) $) NIL (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 19)) (-3608 (((-767) $) 41 (|has| $ (-6 -4407))))) +(((-605 |#1|) (-13 (-364 (-388) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) (-1184 (-1151) |#1|) (-10 -8 (-6 -4407) (-15 -3629 ($ $)))) (-1093)) (T -605)) +((-3629 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1093))))) +(-13 (-364 (-388) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) (-1184 (-1151) |#1|) (-10 -8 (-6 -4407) (-15 -3629 ($ $)))) +((-1729 (((-112) (-2 (|:| -2387 |#2|) (|:| -2557 |#3|)) $) 15)) (-1303 (((-640 |#2|) $) 19)) (-4173 (((-112) |#2| $) 12))) +(((-606 |#1| |#2| |#3|) (-10 -8 (-15 -1303 ((-640 |#2|) |#1|)) (-15 -4173 ((-112) |#2| |#1|)) (-15 -1729 ((-112) (-2 (|:| -2387 |#2|) (|:| -2557 |#3|)) |#1|))) (-607 |#2| |#3|) (-1093) (-1093)) (T -606)) +NIL +(-10 -8 (-15 -1303 ((-640 |#2|) |#1|)) (-15 -4173 ((-112) |#2| |#1|)) (-15 -1729 ((-112) (-2 (|:| -2387 |#2|) (|:| -2557 |#3|)) |#1|))) +((-1677 (((-112) $ $) 19 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (-2759 (((-112) $ (-767)) 8)) (-2812 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 45 (|has| $ (-6 -4407)))) (-2256 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 55 (|has| $ (-6 -4407)))) (-1577 (((-3 |#2| "failed") |#1| $) 61)) (-4239 (($) 7 T CONST)) (-3813 (($ $) 58 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| $ (-6 -4407))))) (-2705 (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 47 (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 46 (|has| $ (-6 -4407))) (((-3 |#2| "failed") |#1| $) 62)) (-1459 (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| $ (-6 -4407)))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 54 (|has| $ (-6 -4407)))) (-2444 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) 56 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| $ (-6 -4407)))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) 53 (|has| $ (-6 -4407))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 52 (|has| $ (-6 -4407)))) (-2659 (((-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 30 (|has| $ (-6 -4407)))) (-2581 (((-112) $ (-767)) 9)) (-2259 (((-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| $ (-6 -4407))))) (-4345 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 34 (|has| $ (-6 -4408)))) (-2240 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 35)) (-2382 (((-112) $ (-767)) 10)) (-3573 (((-1151) $) 22 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (-1303 (((-640 |#1|) $) 63)) (-4173 (((-112) |#1| $) 64)) (-2964 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 39)) (-1812 (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 40)) (-1694 (((-1113) $) 21 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (-4203 (((-3 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) "failed") (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 51)) (-3755 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 41)) (-3138 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 32 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))))) 26 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) 25 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) 24 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) 23 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093))))) (-2026 (((-112) $ $) 14)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-3890 (($) 49) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) 48)) (-1709 (((-767) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 31 (|has| $ (-6 -4407))) (((-767) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| $ (-6 -4407))))) (-1872 (($ $) 13)) (-2220 (((-536) $) 59 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-611 (-536))))) (-1707 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) 50)) (-1693 (((-858) $) 18 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-610 (-858))))) (-2233 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) 42)) (-4383 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 33 (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 20 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-607 |#1| |#2|) (-140) (-1093) (-1093)) (T -607)) +((-4173 (*1 *2 *3 *1) (-12 (-4 *1 (-607 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-5 *2 (-112)))) (-1303 (*1 *2 *1) (-12 (-4 *1 (-607 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-5 *2 (-640 *3)))) (-2705 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-607 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093)))) (-1577 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-607 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093))))) +(-13 (-229 (-2 (|:| -2387 |t#1|) (|:| -2557 |t#2|))) (-10 -8 (-15 -4173 ((-112) |t#1| $)) (-15 -1303 ((-640 |t#1|) $)) (-15 -2705 ((-3 |t#2| "failed") |t#1| $)) (-15 -1577 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T) ((-102) |has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) ((-610 (-858)) -4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-610 (-858)))) ((-151 #0#) . T) ((-611 (-536)) |has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-611 (-536))) ((-229 #0#) . T) ((-235 #0#) . T) ((-309 #0#) -12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093))) ((-489 #0#) . T) ((-514 #0# #0#) -12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093))) ((-1093) |has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) ((-1208) . T)) +((-2754 (((-609 |#2|) |#1|) 15)) (-2413 (((-3 |#1| "failed") (-609 |#2|)) 19))) +(((-608 |#1| |#2|) (-10 -7 (-15 -2754 ((-609 |#2|) |#1|)) (-15 -2413 ((-3 |#1| "failed") (-609 |#2|)))) (-846) (-846)) (T -608)) +((-2413 (*1 *2 *3) (|partial| -12 (-5 *3 (-609 *4)) (-4 *4 (-846)) (-4 *2 (-846)) (-5 *1 (-608 *2 *4)))) (-2754 (*1 *2 *3) (-12 (-5 *2 (-609 *4)) (-5 *1 (-608 *3 *4)) (-4 *3 (-846)) (-4 *4 (-846))))) +(-10 -7 (-15 -2754 ((-609 |#2|) |#1|)) (-15 -2413 ((-3 |#1| "failed") (-609 |#2|)))) +((-1677 (((-112) $ $) NIL)) (-2905 (((-3 (-1169) "failed") $) 37)) (-3052 (((-1262) $ (-767)) 26)) (-4368 (((-767) $) 25)) (-2361 (((-114) $) 12)) (-3348 (((-1169) $) 20)) (-3084 (($ $ $) NIL)) (-1777 (($ $ $) NIL)) (-3573 (((-1151) $) NIL)) (-2227 (($ (-114) (-640 |#1|) (-767)) 30) (($ (-1169)) 31)) (-2799 (((-112) $ (-114)) 18) (((-112) $ (-1169)) 16)) (-4236 (((-767) $) 22)) (-1694 (((-1113) $) NIL)) (-2220 (((-888 (-563)) $) 77 (|has| |#1| (-611 (-888 (-563))))) (((-888 (-379)) $) 84 (|has| |#1| (-611 (-888 (-379))))) (((-536) $) 69 (|has| |#1| (-611 (-536))))) (-1693 (((-858) $) 55)) (-3237 (((-640 |#1|) $) 24)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 41)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) 42))) +(((-609 |#1|) (-13 (-132) (-880 |#1|) (-10 -8 (-15 -3348 ((-1169) $)) (-15 -2361 ((-114) $)) (-15 -3237 ((-640 |#1|) $)) (-15 -4236 ((-767) $)) (-15 -2227 ($ (-114) (-640 |#1|) (-767))) (-15 -2227 ($ (-1169))) (-15 -2905 ((-3 (-1169) "failed") $)) (-15 -2799 ((-112) $ (-114))) (-15 -2799 ((-112) $ (-1169))) (IF (|has| |#1| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|))) (-846)) (T -609)) +((-3348 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-609 *3)) (-4 *3 (-846)))) (-2361 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-609 *3)) (-4 *3 (-846)))) (-3237 (*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-609 *3)) (-4 *3 (-846)))) (-4236 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-609 *3)) (-4 *3 (-846)))) (-2227 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-640 *5)) (-5 *4 (-767)) (-4 *5 (-846)) (-5 *1 (-609 *5)))) (-2227 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-609 *3)) (-4 *3 (-846)))) (-2905 (*1 *2 *1) (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-609 *3)) (-4 *3 (-846)))) (-2799 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-609 *4)) (-4 *4 (-846)))) (-2799 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-112)) (-5 *1 (-609 *4)) (-4 *4 (-846))))) +(-13 (-132) (-880 |#1|) (-10 -8 (-15 -3348 ((-1169) $)) (-15 -2361 ((-114) $)) (-15 -3237 ((-640 |#1|) $)) (-15 -4236 ((-767) $)) (-15 -2227 ($ (-114) (-640 |#1|) (-767))) (-15 -2227 ($ (-1169))) (-15 -2905 ((-3 (-1169) "failed") $)) (-15 -2799 ((-112) $ (-114))) (-15 -2799 ((-112) $ (-1169))) (IF (|has| |#1| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|))) +((-1693 ((|#1| $) 6))) +(((-610 |#1|) (-140) (-1208)) (T -610)) +((-1693 (*1 *2 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1208))))) +(-13 (-10 -8 (-15 -1693 (|t#1| $)))) +((-2220 ((|#1| $) 6))) +(((-611 |#1|) (-140) (-1208)) (T -611)) +((-2220 (*1 *2 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1208))))) +(-13 (-10 -8 (-15 -2220 (|t#1| $)))) +((-3875 (((-3 (-1165 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-418 |#2|) |#2|)) 15) (((-3 (-1165 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)) 16))) +(((-612 |#1| |#2|) (-10 -7 (-15 -3875 ((-3 (-1165 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|))) (-15 -3875 ((-3 (-1165 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-418 |#2|) |#2|)))) (-13 (-147) (-27) (-1034 (-563)) (-1034 (-407 (-563)))) (-1233 |#1|)) (T -612)) +((-3875 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1233 *5)) (-4 *5 (-13 (-147) (-27) (-1034 (-563)) (-1034 (-407 (-563))))) (-5 *2 (-1165 (-407 *6))) (-5 *1 (-612 *5 *6)) (-5 *3 (-407 *6)))) (-3875 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-147) (-27) (-1034 (-563)) (-1034 (-407 (-563))))) (-4 *5 (-1233 *4)) (-5 *2 (-1165 (-407 *5))) (-5 *1 (-612 *4 *5)) (-5 *3 (-407 *5))))) +(-10 -7 (-15 -3875 ((-3 (-1165 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|))) (-15 -3875 ((-3 (-1165 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-418 |#2|) |#2|)))) +((-1693 (($ |#1|) 6))) +(((-613 |#1|) (-140) (-1208)) (T -613)) +((-1693 (*1 *1 *2) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1208))))) +(-13 (-10 -8 (-15 -1693 ($ |t#1|)))) +((-1677 (((-112) $ $) NIL)) (-2484 (($) 8 T CONST)) (-1674 (($) 9 T CONST)) (-2202 (($ $ $) 21)) (-2176 (($ $) 19)) (-3573 (((-1151) $) NIL)) (-3234 (($ $ $) 22)) (-1694 (((-1113) $) NIL)) (-3563 (($) 7 T CONST)) (-2515 (($ $ $) 23)) (-1693 (((-858) $) 27)) (-2226 (((-112) $ (|[\|\|]| -3563)) 16) (((-112) $ (|[\|\|]| -2484)) 18) (((-112) $ (|[\|\|]| -1674)) 14)) (-2190 (($ $ $) 20)) (-1718 (((-112) $ $) 12))) +(((-614) (-13 (-963) (-10 -8 (-15 -3563 ($) -2669) (-15 -2484 ($) -2669) (-15 -1674 ($) -2669) (-15 -2226 ((-112) $ (|[\|\|]| -3563))) (-15 -2226 ((-112) $ (|[\|\|]| -2484))) (-15 -2226 ((-112) $ (|[\|\|]| -1674)))))) (T -614)) +((-3563 (*1 *1) (-5 *1 (-614))) (-2484 (*1 *1) (-5 *1 (-614))) (-1674 (*1 *1) (-5 *1 (-614))) (-2226 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3563)) (-5 *2 (-112)) (-5 *1 (-614)))) (-2226 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2484)) (-5 *2 (-112)) (-5 *1 (-614)))) (-2226 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1674)) (-5 *2 (-112)) (-5 *1 (-614))))) +(-13 (-963) (-10 -8 (-15 -3563 ($) -2669) (-15 -2484 ($) -2669) (-15 -1674 ($) -2669) (-15 -2226 ((-112) $ (|[\|\|]| -3563))) (-15 -2226 ((-112) $ (|[\|\|]| -2484))) (-15 -2226 ((-112) $ (|[\|\|]| -1674))))) +((-2220 (($ |#1|) 6))) +(((-615 |#1|) (-140) (-1208)) (T -615)) +((-2220 (*1 *1 *2) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1208))))) +(-13 (-10 -8 (-15 -2220 ($ |t#1|)))) +((-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ |#2|) 10))) +(((-616 |#1| |#2|) (-10 -8 (-15 -1693 (|#1| |#2|)) (-15 -1693 (|#1| (-563))) (-15 -1693 ((-858) |#1|))) (-617 |#2|) (-1045)) (T -616)) +NIL +(-10 -8 (-15 -1693 (|#1| |#2|)) (-15 -1693 (|#1| (-563))) (-15 -1693 ((-858) |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-3400 (((-3 $ "failed") $) 33)) (-3827 (((-112) $) 31)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 36)) (-1675 (((-767)) 28)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ |#1| $) 37))) +(((-617 |#1|) (-140) (-1045)) (T -617)) +((-1693 (*1 *1 *2) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1045))))) +(-13 (-1045) (-643 |t#1|) (-10 -8 (-15 -1693 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-1857 (((-563) $) NIL (|has| |#1| (-844)))) (-4239 (($) NIL T CONST)) (-3400 (((-3 $ "failed") $) NIL)) (-3101 (((-112) $) NIL (|has| |#1| (-844)))) (-3827 (((-112) $) NIL)) (-2143 ((|#1| $) 13)) (-1419 (((-112) $) NIL (|has| |#1| (-844)))) (-3084 (($ $ $) NIL (|has| |#1| (-844)))) (-1777 (($ $ $) NIL (|has| |#1| (-844)))) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-2154 ((|#3| $) 15)) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ |#2|) NIL)) (-1675 (((-767)) 20)) (-2509 (($ $) NIL (|has| |#1| (-844)))) (-2241 (($) NIL T CONST)) (-2254 (($) 12 T CONST)) (-1778 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1756 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1744 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1837 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-618 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (-15 -1837 ($ $ |#3|)) (-15 -1837 ($ |#1| |#3|)) (-15 -2143 (|#1| $)) (-15 -2154 (|#3| $)))) (-38 |#2|) (-172) (|SubsetCategory| (-722) |#2|)) (T -618)) +((-1837 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-618 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-722) *4)))) (-1837 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-618 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-722) *4)))) (-2143 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-618 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-722) *3)))) (-2154 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-722) *4)) (-5 *1 (-618 *3 *4 *2)) (-4 *3 (-38 *4))))) +(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (-15 -1837 ($ $ |#3|)) (-15 -1837 ($ |#1| |#3|)) (-15 -2143 (|#1| $)) (-15 -2154 (|#3| $)))) +((-2622 ((|#2| |#2| (-1169) (-1169)) 16))) +(((-619 |#1| |#2|) (-10 -7 (-15 -2622 (|#2| |#2| (-1169) (-1169)))) (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563))) (-13 (-1193) (-955) (-29 |#1|))) (T -619)) +((-2622 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-619 *4 *2)) (-4 *2 (-13 (-1193) (-955) (-29 *4)))))) +(-10 -7 (-15 -2622 (|#2| |#2| (-1169) (-1169)))) +((-1677 (((-112) $ $) 56)) (-3411 (((-112) $) 52)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-2789 ((|#1| $) 49)) (-1495 (((-3 $ "failed") $ $) NIL)) (-1919 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3018 (((-2 (|:| -3773 $) (|:| -3893 (-407 |#2|))) (-407 |#2|)) 97 (|has| |#1| (-363)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-2058 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-3090 (($ $ $) NIL (|has| |#1| (-363)))) (-2751 (($ $) 24)) (-3400 (((-3 $ "failed") $) 75)) (-3050 (($ $ $) NIL (|has| |#1| (-363)))) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-3254 (((-563) $) 19)) (-3827 (((-112) $) NIL)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3920 (((-112) $) 36)) (-2588 (($ |#1| (-563)) 21)) (-2726 ((|#1| $) 51)) (-3513 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-363)))) (-3548 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) 87 (|has| |#1| (-363)))) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 101 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL (|has| |#1| (-363)))) (-3008 (((-3 $ "failed") $ $) 79)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-2628 (((-767) $) 100 (|has| |#1| (-363)))) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 99 (|has| |#1| (-363)))) (-4202 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-4167 (((-563) $) 34)) (-2220 (((-407 |#2|) $) 42)) (-1693 (((-858) $) 62) (($ (-563)) 32) (($ $) NIL) (($ (-407 (-563))) NIL (|has| |#1| (-1034 (-407 (-563))))) (($ |#1|) 31) (($ |#2|) 22)) (-4319 ((|#1| $ (-563)) 63)) (-2779 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1675 (((-767)) 29)) (-2126 (((-112) $ $) NIL)) (-2241 (($) 9 T CONST)) (-2254 (($) 12 T CONST)) (-3209 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1718 (((-112) $ $) 17)) (-1826 (($ $) 46) (($ $ $) NIL)) (-1814 (($ $ $) 76)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 26) (($ $ $) 44))) +(((-620 |#1| |#2|) (-13 (-231 |#2|) (-555) (-611 (-407 |#2|)) (-411 |#1|) (-1034 |#2|) (-10 -8 (-15 -3920 ((-112) $)) (-15 -4167 ((-563) $)) (-15 -3254 ((-563) $)) (-15 -2751 ($ $)) (-15 -2726 (|#1| $)) (-15 -2789 (|#1| $)) (-15 -4319 (|#1| $ (-563))) (-15 -2588 ($ |#1| (-563))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-307)) (-15 -3018 ((-2 (|:| -3773 $) (|:| -3893 (-407 |#2|))) (-407 |#2|)))) |%noBranch|))) (-555) (-1233 |#1|)) (T -620)) +((-3920 (*1 *2 *1) (-12 (-4 *3 (-555)) (-5 *2 (-112)) (-5 *1 (-620 *3 *4)) (-4 *4 (-1233 *3)))) (-4167 (*1 *2 *1) (-12 (-4 *3 (-555)) (-5 *2 (-563)) (-5 *1 (-620 *3 *4)) (-4 *4 (-1233 *3)))) (-3254 (*1 *2 *1) (-12 (-4 *3 (-555)) (-5 *2 (-563)) (-5 *1 (-620 *3 *4)) (-4 *4 (-1233 *3)))) (-2751 (*1 *1 *1) (-12 (-4 *2 (-555)) (-5 *1 (-620 *2 *3)) (-4 *3 (-1233 *2)))) (-2726 (*1 *2 *1) (-12 (-4 *2 (-555)) (-5 *1 (-620 *2 *3)) (-4 *3 (-1233 *2)))) (-2789 (*1 *2 *1) (-12 (-4 *2 (-555)) (-5 *1 (-620 *2 *3)) (-4 *3 (-1233 *2)))) (-4319 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *2 (-555)) (-5 *1 (-620 *2 *4)) (-4 *4 (-1233 *2)))) (-2588 (*1 *1 *2 *3) (-12 (-5 *3 (-563)) (-4 *2 (-555)) (-5 *1 (-620 *2 *4)) (-4 *4 (-1233 *2)))) (-3018 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *4 (-555)) (-4 *5 (-1233 *4)) (-5 *2 (-2 (|:| -3773 (-620 *4 *5)) (|:| -3893 (-407 *5)))) (-5 *1 (-620 *4 *5)) (-5 *3 (-407 *5))))) +(-13 (-231 |#2|) (-555) (-611 (-407 |#2|)) (-411 |#1|) (-1034 |#2|) (-10 -8 (-15 -3920 ((-112) $)) (-15 -4167 ((-563) $)) (-15 -3254 ((-563) $)) (-15 -2751 ($ $)) (-15 -2726 (|#1| $)) (-15 -2789 (|#1| $)) (-15 -4319 (|#1| $ (-563))) (-15 -2588 ($ |#1| (-563))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-307)) (-15 -3018 ((-2 (|:| -3773 $) (|:| -3893 (-407 |#2|))) (-407 |#2|)))) |%noBranch|))) +((-3319 (((-640 |#6|) (-640 |#4|) (-112)) 46)) (-2078 ((|#6| |#6|) 39))) +(((-621 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2078 (|#6| |#6|)) (-15 -3319 ((-640 |#6|) (-640 |#4|) (-112)))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|) (-1102 |#1| |#2| |#3| |#4|)) (T -621)) +((-3319 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 *10)) (-5 *1 (-621 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *10 (-1102 *5 *6 *7 *8)))) (-2078 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-621 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *2 (-1102 *3 *4 *5 *6))))) +(-10 -7 (-15 -2078 (|#6| |#6|)) (-15 -3319 ((-640 |#6|) (-640 |#4|) (-112)))) +((-3610 (((-112) |#3| (-767) (-640 |#3|)) 23)) (-4047 (((-3 (-2 (|:| |polfac| (-640 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-640 (-1165 |#3|)))) "failed") |#3| (-640 (-1165 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2760 (-640 (-2 (|:| |irr| |#4|) (|:| -1650 (-563)))))) (-640 |#3|) (-640 |#1|) (-640 |#3|)) 55))) +(((-622 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3610 ((-112) |#3| (-767) (-640 |#3|))) (-15 -4047 ((-3 (-2 (|:| |polfac| (-640 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-640 (-1165 |#3|)))) "failed") |#3| (-640 (-1165 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2760 (-640 (-2 (|:| |irr| |#4|) (|:| -1650 (-563)))))) (-640 |#3|) (-640 |#1|) (-640 |#3|)))) (-846) (-789) (-307) (-945 |#3| |#2| |#1|)) (T -622)) +((-4047 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2760 (-640 (-2 (|:| |irr| *10) (|:| -1650 (-563))))))) (-5 *6 (-640 *3)) (-5 *7 (-640 *8)) (-4 *8 (-846)) (-4 *3 (-307)) (-4 *10 (-945 *3 *9 *8)) (-4 *9 (-789)) (-5 *2 (-2 (|:| |polfac| (-640 *10)) (|:| |correct| *3) (|:| |corrfact| (-640 (-1165 *3))))) (-5 *1 (-622 *8 *9 *3 *10)) (-5 *4 (-640 (-1165 *3))))) (-3610 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-767)) (-5 *5 (-640 *3)) (-4 *3 (-307)) (-4 *6 (-846)) (-4 *7 (-789)) (-5 *2 (-112)) (-5 *1 (-622 *6 *7 *3 *8)) (-4 *8 (-945 *3 *7 *6))))) +(-10 -7 (-15 -3610 ((-112) |#3| (-767) (-640 |#3|))) (-15 -4047 ((-3 (-2 (|:| |polfac| (-640 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-640 (-1165 |#3|)))) "failed") |#3| (-640 (-1165 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2760 (-640 (-2 (|:| |irr| |#4|) (|:| -1650 (-563)))))) (-640 |#3|) (-640 |#1|) (-640 |#3|)))) +((-1677 (((-112) $ $) NIL)) (-2351 (((-1128) $) 11)) (-2340 (((-1128) $) 9)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 19) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-623) (-13 (-1076) (-10 -8 (-15 -2340 ((-1128) $)) (-15 -2351 ((-1128) $))))) (T -623)) +((-2340 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-623)))) (-2351 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-623))))) +(-13 (-1076) (-10 -8 (-15 -2340 ((-1128) $)) (-15 -2351 ((-1128) $)))) +((-1677 (((-112) $ $) NIL)) (-3993 (((-640 |#1|) $) NIL)) (-4239 (($) NIL T CONST)) (-3400 (((-3 $ "failed") $) NIL)) (-3827 (((-112) $) NIL)) (-4337 (($ $) 67)) (-4371 (((-659 |#1| |#2|) $) 52)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) 70)) (-3227 (((-640 (-294 |#2|)) $ $) 33)) (-1694 (((-1113) $) NIL)) (-3368 (($ (-659 |#1| |#2|)) 48)) (-4339 (($ $ $) NIL)) (-2146 (($ $ $) NIL)) (-1693 (((-858) $) 58) (((-1272 |#1| |#2|) $) NIL) (((-1277 |#1| |#2|) $) 66)) (-2254 (($) 53 T CONST)) (-2375 (((-640 (-2 (|:| |k| (-667 |#1|)) (|:| |c| |#2|))) $) 31)) (-4326 (((-640 (-659 |#1| |#2|)) (-640 |#1|)) 65)) (-1531 (((-640 (-2 (|:| |k| (-889 |#1|)) (|:| |c| |#2|))) $) 37)) (-1718 (((-112) $ $) 54)) (-1837 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ $ $) 44))) +(((-624 |#1| |#2| |#3|) (-13 (-473) (-10 -8 (-15 -3368 ($ (-659 |#1| |#2|))) (-15 -4371 ((-659 |#1| |#2|) $)) (-15 -1531 ((-640 (-2 (|:| |k| (-889 |#1|)) (|:| |c| |#2|))) $)) (-15 -1693 ((-1272 |#1| |#2|) $)) (-15 -1693 ((-1277 |#1| |#2|) $)) (-15 -4337 ($ $)) (-15 -3993 ((-640 |#1|) $)) (-15 -4326 ((-640 (-659 |#1| |#2|)) (-640 |#1|))) (-15 -2375 ((-640 (-2 (|:| |k| (-667 |#1|)) (|:| |c| |#2|))) $)) (-15 -3227 ((-640 (-294 |#2|)) $ $)))) (-846) (-13 (-172) (-713 (-407 (-563)))) (-917)) (T -624)) +((-3368 (*1 *1 *2) (-12 (-5 *2 (-659 *3 *4)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-5 *1 (-624 *3 *4 *5)) (-14 *5 (-917)))) (-4371 (*1 *2 *1) (-12 (-5 *2 (-659 *3 *4)) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917)))) (-1531 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |k| (-889 *3)) (|:| |c| *4)))) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917)))) (-1693 (*1 *2 *1) (-12 (-5 *2 (-1272 *3 *4)) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917)))) (-1693 (*1 *2 *1) (-12 (-5 *2 (-1277 *3 *4)) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917)))) (-4337 (*1 *1 *1) (-12 (-5 *1 (-624 *2 *3 *4)) (-4 *2 (-846)) (-4 *3 (-13 (-172) (-713 (-407 (-563))))) (-14 *4 (-917)))) (-3993 (*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917)))) (-4326 (*1 *2 *3) (-12 (-5 *3 (-640 *4)) (-4 *4 (-846)) (-5 *2 (-640 (-659 *4 *5))) (-5 *1 (-624 *4 *5 *6)) (-4 *5 (-13 (-172) (-713 (-407 (-563))))) (-14 *6 (-917)))) (-2375 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |k| (-667 *3)) (|:| |c| *4)))) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917)))) (-3227 (*1 *2 *1 *1) (-12 (-5 *2 (-640 (-294 *4))) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917))))) +(-13 (-473) (-10 -8 (-15 -3368 ($ (-659 |#1| |#2|))) (-15 -4371 ((-659 |#1| |#2|) $)) (-15 -1531 ((-640 (-2 (|:| |k| (-889 |#1|)) (|:| |c| |#2|))) $)) (-15 -1693 ((-1272 |#1| |#2|) $)) (-15 -1693 ((-1277 |#1| |#2|) $)) (-15 -4337 ($ $)) (-15 -3993 ((-640 |#1|) $)) (-15 -4326 ((-640 (-659 |#1| |#2|)) (-640 |#1|))) (-15 -2375 ((-640 (-2 (|:| |k| (-667 |#1|)) (|:| |c| |#2|))) $)) (-15 -3227 ((-640 (-294 |#2|)) $ $)))) +((-3319 (((-640 (-1139 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-640 (-776 |#1| (-860 |#2|))) (-112)) 71) (((-640 (-1042 |#1| |#2|)) (-640 (-776 |#1| (-860 |#2|))) (-112)) 57)) (-3515 (((-112) (-640 (-776 |#1| (-860 |#2|)))) 23)) (-3492 (((-640 (-1139 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-640 (-776 |#1| (-860 |#2|))) (-112)) 70)) (-3991 (((-640 (-1042 |#1| |#2|)) (-640 (-776 |#1| (-860 |#2|))) (-112)) 56)) (-4059 (((-640 (-776 |#1| (-860 |#2|))) (-640 (-776 |#1| (-860 |#2|)))) 27)) (-3122 (((-3 (-640 (-776 |#1| (-860 |#2|))) "failed") (-640 (-776 |#1| (-860 |#2|)))) 26))) +(((-625 |#1| |#2|) (-10 -7 (-15 -3515 ((-112) (-640 (-776 |#1| (-860 |#2|))))) (-15 -3122 ((-3 (-640 (-776 |#1| (-860 |#2|))) "failed") (-640 (-776 |#1| (-860 |#2|))))) (-15 -4059 ((-640 (-776 |#1| (-860 |#2|))) (-640 (-776 |#1| (-860 |#2|))))) (-15 -3991 ((-640 (-1042 |#1| |#2|)) (-640 (-776 |#1| (-860 |#2|))) (-112))) (-15 -3492 ((-640 (-1139 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-640 (-776 |#1| (-860 |#2|))) (-112))) (-15 -3319 ((-640 (-1042 |#1| |#2|)) (-640 (-776 |#1| (-860 |#2|))) (-112))) (-15 -3319 ((-640 (-1139 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-640 (-776 |#1| (-860 |#2|))) (-112)))) (-452) (-640 (-1169))) (T -625)) +((-3319 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-640 (-1169))) (-5 *2 (-640 (-1139 *5 (-531 (-860 *6)) (-860 *6) (-776 *5 (-860 *6))))) (-5 *1 (-625 *5 *6)))) (-3319 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-640 (-1169))) (-5 *2 (-640 (-1042 *5 *6))) (-5 *1 (-625 *5 *6)))) (-3492 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-640 (-1169))) (-5 *2 (-640 (-1139 *5 (-531 (-860 *6)) (-860 *6) (-776 *5 (-860 *6))))) (-5 *1 (-625 *5 *6)))) (-3991 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-640 (-1169))) (-5 *2 (-640 (-1042 *5 *6))) (-5 *1 (-625 *5 *6)))) (-4059 (*1 *2 *2) (-12 (-5 *2 (-640 (-776 *3 (-860 *4)))) (-4 *3 (-452)) (-14 *4 (-640 (-1169))) (-5 *1 (-625 *3 *4)))) (-3122 (*1 *2 *2) (|partial| -12 (-5 *2 (-640 (-776 *3 (-860 *4)))) (-4 *3 (-452)) (-14 *4 (-640 (-1169))) (-5 *1 (-625 *3 *4)))) (-3515 (*1 *2 *3) (-12 (-5 *3 (-640 (-776 *4 (-860 *5)))) (-4 *4 (-452)) (-14 *5 (-640 (-1169))) (-5 *2 (-112)) (-5 *1 (-625 *4 *5))))) +(-10 -7 (-15 -3515 ((-112) (-640 (-776 |#1| (-860 |#2|))))) (-15 -3122 ((-3 (-640 (-776 |#1| (-860 |#2|))) "failed") (-640 (-776 |#1| (-860 |#2|))))) (-15 -4059 ((-640 (-776 |#1| (-860 |#2|))) (-640 (-776 |#1| (-860 |#2|))))) (-15 -3991 ((-640 (-1042 |#1| |#2|)) (-640 (-776 |#1| (-860 |#2|))) (-112))) (-15 -3492 ((-640 (-1139 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-640 (-776 |#1| (-860 |#2|))) (-112))) (-15 -3319 ((-640 (-1042 |#1| |#2|)) (-640 (-776 |#1| (-860 |#2|))) (-112))) (-15 -3319 ((-640 (-1139 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-640 (-776 |#1| (-860 |#2|))) (-112)))) +((-1771 (($ $) 38)) (-1619 (($ $) 21)) (-1748 (($ $) 37)) (-1597 (($ $) 22)) (-1794 (($ $) 36)) (-1643 (($ $) 23)) (-2180 (($) 48)) (-4371 (($ $) 45)) (-3108 (($ $) 17)) (-1335 (($ $ (-1085 $)) 7) (($ $ (-1169)) 6)) (-3368 (($ $) 46)) (-2773 (($ $) 15)) (-1586 (($ $) 16)) (-1806 (($ $) 35)) (-1656 (($ $) 24)) (-1784 (($ $) 34)) (-1630 (($ $) 25)) (-1759 (($ $) 33)) (-1608 (($ $) 26)) (-1840 (($ $) 44)) (-1695 (($ $) 32)) (-1817 (($ $) 43)) (-1667 (($ $) 31)) (-1862 (($ $) 42)) (-1722 (($ $) 30)) (-1311 (($ $) 41)) (-1735 (($ $) 29)) (-1851 (($ $) 40)) (-1710 (($ $) 28)) (-1829 (($ $) 39)) (-1680 (($ $) 27)) (-1482 (($ $) 19)) (-1561 (($ $) 20)) (-3525 (($ $) 18)) (** (($ $ $) 47))) +(((-626) (-140)) (T -626)) +((-1561 (*1 *1 *1) (-4 *1 (-626))) (-1482 (*1 *1 *1) (-4 *1 (-626))) (-3525 (*1 *1 *1) (-4 *1 (-626))) (-3108 (*1 *1 *1) (-4 *1 (-626))) (-1586 (*1 *1 *1) (-4 *1 (-626))) (-2773 (*1 *1 *1) (-4 *1 (-626)))) +(-13 (-955) (-1193) (-10 -8 (-15 -1561 ($ $)) (-15 -1482 ($ $)) (-15 -3525 ($ $)) (-15 -3108 ($ $)) (-15 -1586 ($ $)) (-15 -2773 ($ $)))) +(((-35) . T) ((-95) . T) ((-284) . T) ((-493) . T) ((-955) . T) ((-1193) . T) ((-1196) . T)) +((-2361 (((-114) (-114)) 83)) (-3108 ((|#2| |#2|) 28)) (-1335 ((|#2| |#2| (-1085 |#2|)) 79) ((|#2| |#2| (-1169)) 51)) (-2773 ((|#2| |#2|) 27)) (-1586 ((|#2| |#2|) 29)) (-3734 (((-112) (-114)) 33)) (-1482 ((|#2| |#2|) 24)) (-1561 ((|#2| |#2|) 26)) (-3525 ((|#2| |#2|) 25))) +(((-627 |#1| |#2|) (-10 -7 (-15 -3734 ((-112) (-114))) (-15 -2361 ((-114) (-114))) (-15 -1561 (|#2| |#2|)) (-15 -1482 (|#2| |#2|)) (-15 -3525 (|#2| |#2|)) (-15 -3108 (|#2| |#2|)) (-15 -2773 (|#2| |#2|)) (-15 -1586 (|#2| |#2|)) (-15 -1335 (|#2| |#2| (-1169))) (-15 -1335 (|#2| |#2| (-1085 |#2|)))) (-13 (-846) (-555)) (-13 (-430 |#1|) (-998) (-1193))) (T -627)) +((-1335 (*1 *2 *2 *3) (-12 (-5 *3 (-1085 *2)) (-4 *2 (-13 (-430 *4) (-998) (-1193))) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-627 *4 *2)))) (-1335 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-627 *4 *2)) (-4 *2 (-13 (-430 *4) (-998) (-1193))))) (-1586 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2)) (-4 *2 (-13 (-430 *3) (-998) (-1193))))) (-2773 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2)) (-4 *2 (-13 (-430 *3) (-998) (-1193))))) (-3108 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2)) (-4 *2 (-13 (-430 *3) (-998) (-1193))))) (-3525 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2)) (-4 *2 (-13 (-430 *3) (-998) (-1193))))) (-1482 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2)) (-4 *2 (-13 (-430 *3) (-998) (-1193))))) (-1561 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2)) (-4 *2 (-13 (-430 *3) (-998) (-1193))))) (-2361 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *4)) (-4 *4 (-13 (-430 *3) (-998) (-1193))))) (-3734 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112)) (-5 *1 (-627 *4 *5)) (-4 *5 (-13 (-430 *4) (-998) (-1193)))))) +(-10 -7 (-15 -3734 ((-112) (-114))) (-15 -2361 ((-114) (-114))) (-15 -1561 (|#2| |#2|)) (-15 -1482 (|#2| |#2|)) (-15 -3525 (|#2| |#2|)) (-15 -3108 (|#2| |#2|)) (-15 -2773 (|#2| |#2|)) (-15 -1586 (|#2| |#2|)) (-15 -1335 (|#2| |#2| (-1169))) (-15 -1335 (|#2| |#2| (-1085 |#2|)))) +((-4133 (((-481 |#1| |#2|) (-247 |#1| |#2|)) 53)) (-2990 (((-640 (-247 |#1| |#2|)) (-640 (-481 |#1| |#2|))) 68)) (-3679 (((-481 |#1| |#2|) (-640 (-481 |#1| |#2|)) (-860 |#1|)) 70) (((-481 |#1| |#2|) (-640 (-481 |#1| |#2|)) (-640 (-481 |#1| |#2|)) (-860 |#1|)) 69)) (-1349 (((-2 (|:| |gblist| (-640 (-247 |#1| |#2|))) (|:| |gvlist| (-640 (-563)))) (-640 (-481 |#1| |#2|))) 108)) (-1772 (((-640 (-481 |#1| |#2|)) (-860 |#1|) (-640 (-481 |#1| |#2|)) (-640 (-481 |#1| |#2|))) 83)) (-2862 (((-2 (|:| |glbase| (-640 (-247 |#1| |#2|))) (|:| |glval| (-640 (-563)))) (-640 (-247 |#1| |#2|))) 118)) (-2430 (((-1257 |#2|) (-481 |#1| |#2|) (-640 (-481 |#1| |#2|))) 58)) (-2063 (((-640 (-481 |#1| |#2|)) (-640 (-481 |#1| |#2|))) 41)) (-3367 (((-247 |#1| |#2|) (-247 |#1| |#2|) (-640 (-247 |#1| |#2|))) 50)) (-1498 (((-247 |#1| |#2|) (-640 |#2|) (-247 |#1| |#2|) (-640 (-247 |#1| |#2|))) 91))) +(((-628 |#1| |#2|) (-10 -7 (-15 -1349 ((-2 (|:| |gblist| (-640 (-247 |#1| |#2|))) (|:| |gvlist| (-640 (-563)))) (-640 (-481 |#1| |#2|)))) (-15 -2862 ((-2 (|:| |glbase| (-640 (-247 |#1| |#2|))) (|:| |glval| (-640 (-563)))) (-640 (-247 |#1| |#2|)))) (-15 -2990 ((-640 (-247 |#1| |#2|)) (-640 (-481 |#1| |#2|)))) (-15 -3679 ((-481 |#1| |#2|) (-640 (-481 |#1| |#2|)) (-640 (-481 |#1| |#2|)) (-860 |#1|))) (-15 -3679 ((-481 |#1| |#2|) (-640 (-481 |#1| |#2|)) (-860 |#1|))) (-15 -2063 ((-640 (-481 |#1| |#2|)) (-640 (-481 |#1| |#2|)))) (-15 -2430 ((-1257 |#2|) (-481 |#1| |#2|) (-640 (-481 |#1| |#2|)))) (-15 -1498 ((-247 |#1| |#2|) (-640 |#2|) (-247 |#1| |#2|) (-640 (-247 |#1| |#2|)))) (-15 -1772 ((-640 (-481 |#1| |#2|)) (-860 |#1|) (-640 (-481 |#1| |#2|)) (-640 (-481 |#1| |#2|)))) (-15 -3367 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-640 (-247 |#1| |#2|)))) (-15 -4133 ((-481 |#1| |#2|) (-247 |#1| |#2|)))) (-640 (-1169)) (-452)) (T -628)) +((-4133 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-640 (-1169))) (-4 *5 (-452)) (-5 *2 (-481 *4 *5)) (-5 *1 (-628 *4 *5)))) (-3367 (*1 *2 *2 *3) (-12 (-5 *3 (-640 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) (-14 *4 (-640 (-1169))) (-4 *5 (-452)) (-5 *1 (-628 *4 *5)))) (-1772 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-640 (-481 *4 *5))) (-5 *3 (-860 *4)) (-14 *4 (-640 (-1169))) (-4 *5 (-452)) (-5 *1 (-628 *4 *5)))) (-1498 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-640 *6)) (-5 *4 (-640 (-247 *5 *6))) (-4 *6 (-452)) (-5 *2 (-247 *5 *6)) (-14 *5 (-640 (-1169))) (-5 *1 (-628 *5 *6)))) (-2430 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-481 *5 *6))) (-5 *3 (-481 *5 *6)) (-14 *5 (-640 (-1169))) (-4 *6 (-452)) (-5 *2 (-1257 *6)) (-5 *1 (-628 *5 *6)))) (-2063 (*1 *2 *2) (-12 (-5 *2 (-640 (-481 *3 *4))) (-14 *3 (-640 (-1169))) (-4 *4 (-452)) (-5 *1 (-628 *3 *4)))) (-3679 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-481 *5 *6))) (-5 *4 (-860 *5)) (-14 *5 (-640 (-1169))) (-5 *2 (-481 *5 *6)) (-5 *1 (-628 *5 *6)) (-4 *6 (-452)))) (-3679 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-640 (-481 *5 *6))) (-5 *4 (-860 *5)) (-14 *5 (-640 (-1169))) (-5 *2 (-481 *5 *6)) (-5 *1 (-628 *5 *6)) (-4 *6 (-452)))) (-2990 (*1 *2 *3) (-12 (-5 *3 (-640 (-481 *4 *5))) (-14 *4 (-640 (-1169))) (-4 *5 (-452)) (-5 *2 (-640 (-247 *4 *5))) (-5 *1 (-628 *4 *5)))) (-2862 (*1 *2 *3) (-12 (-14 *4 (-640 (-1169))) (-4 *5 (-452)) (-5 *2 (-2 (|:| |glbase| (-640 (-247 *4 *5))) (|:| |glval| (-640 (-563))))) (-5 *1 (-628 *4 *5)) (-5 *3 (-640 (-247 *4 *5))))) (-1349 (*1 *2 *3) (-12 (-5 *3 (-640 (-481 *4 *5))) (-14 *4 (-640 (-1169))) (-4 *5 (-452)) (-5 *2 (-2 (|:| |gblist| (-640 (-247 *4 *5))) (|:| |gvlist| (-640 (-563))))) (-5 *1 (-628 *4 *5))))) +(-10 -7 (-15 -1349 ((-2 (|:| |gblist| (-640 (-247 |#1| |#2|))) (|:| |gvlist| (-640 (-563)))) (-640 (-481 |#1| |#2|)))) (-15 -2862 ((-2 (|:| |glbase| (-640 (-247 |#1| |#2|))) (|:| |glval| (-640 (-563)))) (-640 (-247 |#1| |#2|)))) (-15 -2990 ((-640 (-247 |#1| |#2|)) (-640 (-481 |#1| |#2|)))) (-15 -3679 ((-481 |#1| |#2|) (-640 (-481 |#1| |#2|)) (-640 (-481 |#1| |#2|)) (-860 |#1|))) (-15 -3679 ((-481 |#1| |#2|) (-640 (-481 |#1| |#2|)) (-860 |#1|))) (-15 -2063 ((-640 (-481 |#1| |#2|)) (-640 (-481 |#1| |#2|)))) (-15 -2430 ((-1257 |#2|) (-481 |#1| |#2|) (-640 (-481 |#1| |#2|)))) (-15 -1498 ((-247 |#1| |#2|) (-640 |#2|) (-247 |#1| |#2|) (-640 (-247 |#1| |#2|)))) (-15 -1772 ((-640 (-481 |#1| |#2|)) (-860 |#1|) (-640 (-481 |#1| |#2|)) (-640 (-481 |#1| |#2|)))) (-15 -3367 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-640 (-247 |#1| |#2|)))) (-15 -4133 ((-481 |#1| |#2|) (-247 |#1| |#2|)))) +((-1677 (((-112) $ $) NIL (-4032 (|has| (-52) (-1093)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (-1093))))) (-1552 (($) NIL) (($ (-640 (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))))) NIL)) (-4378 (((-1262) $ (-1151) (-1151)) NIL (|has| $ (-6 -4408)))) (-2759 (((-112) $ (-767)) NIL)) (-1849 (((-52) $ (-1151) (-52)) 16) (((-52) $ (-1169) (-52)) 17)) (-2812 (($ (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2557 (-52)))) $) NIL (|has| $ (-6 -4407)))) (-2256 (($ (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2557 (-52)))) $) NIL (|has| $ (-6 -4407)))) (-1577 (((-3 (-52) "failed") (-1151) $) NIL)) (-4239 (($) NIL T CONST)) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (-1093))))) (-2705 (($ (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) $) NIL (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2557 (-52)))) $) NIL (|has| $ (-6 -4407))) (((-3 (-52) "failed") (-1151) $) NIL)) (-1459 (($ (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (-1093)))) (($ (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2557 (-52)))) $) NIL (|has| $ (-6 -4407)))) (-2444 (((-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (-1 (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (-2 (|:| -2387 (-1151)) (|:| -2557 (-52)))) $ (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (-2 (|:| -2387 (-1151)) (|:| -2557 (-52)))) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (-1093)))) (((-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (-1 (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (-2 (|:| -2387 (-1151)) (|:| -2557 (-52)))) $ (-2 (|:| -2387 (-1151)) (|:| -2557 (-52)))) NIL (|has| $ (-6 -4407))) (((-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (-1 (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (-2 (|:| -2387 (-1151)) (|:| -2557 (-52)))) $) NIL (|has| $ (-6 -4407)))) (-4355 (((-52) $ (-1151) (-52)) NIL (|has| $ (-6 -4408)))) (-4293 (((-52) $ (-1151)) NIL)) (-2659 (((-640 (-2 (|:| -2387 (-1151)) (|:| -2557 (-52)))) $) NIL (|has| $ (-6 -4407))) (((-640 (-52)) $) NIL (|has| $ (-6 -4407)))) (-3629 (($ $) NIL)) (-2581 (((-112) $ (-767)) NIL)) (-2411 (((-1151) $) NIL (|has| (-1151) (-846)))) (-2259 (((-640 (-2 (|:| -2387 (-1151)) (|:| -2557 (-52)))) $) NIL (|has| $ (-6 -4407))) (((-640 (-52)) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (-1093)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-52) (-1093))))) (-3860 (((-1151) $) NIL (|has| (-1151) (-846)))) (-4345 (($ (-1 (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (-2 (|:| -2387 (-1151)) (|:| -2557 (-52)))) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (-2 (|:| -2387 (-1151)) (|:| -2557 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1533 (($ (-388)) 9)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL (-4032 (|has| (-52) (-1093)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (-1093))))) (-1303 (((-640 (-1151)) $) NIL)) (-4173 (((-112) (-1151) $) NIL)) (-2964 (((-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) $) NIL)) (-1812 (($ (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) $) NIL)) (-4318 (((-640 (-1151)) $) NIL)) (-3192 (((-112) (-1151) $) NIL)) (-1694 (((-1113) $) NIL (-4032 (|has| (-52) (-1093)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (-1093))))) (-3781 (((-52) $) NIL (|has| (-1151) (-846)))) (-4203 (((-3 (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) "failed") (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2557 (-52)))) $) NIL)) (-2358 (($ $ (-52)) NIL (|has| $ (-6 -4408)))) (-3755 (((-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) $) NIL)) (-3138 (((-112) (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2557 (-52)))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 (-2 (|:| -2387 (-1151)) (|:| -2557 (-52)))))) NIL (-12 (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (-309 (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))))) (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (-1093)))) (($ $ (-294 (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))))) NIL (-12 (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (-309 (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))))) (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (-1093)))) (($ $ (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (-2 (|:| -2387 (-1151)) (|:| -2557 (-52)))) NIL (-12 (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (-309 (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))))) (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (-1093)))) (($ $ (-640 (-2 (|:| -2387 (-1151)) (|:| -2557 (-52)))) (-640 (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))))) NIL (-12 (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (-309 (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))))) (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (-1093)))) (($ $ (-640 (-52)) (-640 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093)))) (($ $ (-294 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093)))) (($ $ (-640 (-294 (-52)))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093))))) (-2026 (((-112) $ $) NIL)) (-2105 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-52) (-1093))))) (-2836 (((-640 (-52)) $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) NIL)) (-2309 (((-52) $ (-1151)) 14) (((-52) $ (-1151) (-52)) NIL) (((-52) $ (-1169)) 15)) (-3890 (($) NIL) (($ (-640 (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))))) NIL)) (-1709 (((-767) (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2557 (-52)))) $) NIL (|has| $ (-6 -4407))) (((-767) (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (-1093)))) (((-767) (-52) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-52) (-1093)))) (((-767) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4407)))) (-1872 (($ $) NIL)) (-2220 (((-536) $) NIL (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (-611 (-536))))) (-1707 (($ (-640 (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))))) NIL)) (-1693 (((-858) $) NIL (-4032 (|has| (-52) (-610 (-858))) (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (-610 (-858)))))) (-2233 (($ (-640 (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))))) NIL)) (-4383 (((-112) (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2557 (-52)))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) NIL (-4032 (|has| (-52) (-1093)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (-1093))))) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-629) (-13 (-1184 (-1151) (-52)) (-10 -8 (-15 -1533 ($ (-388))) (-15 -3629 ($ $)) (-15 -2309 ((-52) $ (-1169))) (-15 -1849 ((-52) $ (-1169) (-52)))))) (T -629)) +((-1533 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-629)))) (-3629 (*1 *1 *1) (-5 *1 (-629))) (-2309 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-52)) (-5 *1 (-629)))) (-1849 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1169)) (-5 *1 (-629))))) +(-13 (-1184 (-1151) (-52)) (-10 -8 (-15 -1533 ($ (-388))) (-15 -3629 ($ $)) (-15 -2309 ((-52) $ (-1169))) (-15 -1849 ((-52) $ (-1169) (-52))))) +((-1837 (($ $ |#2|) 10))) +(((-630 |#1| |#2|) (-10 -8 (-15 -1837 (|#1| |#1| |#2|))) (-631 |#2|) (-172)) (T -630)) +NIL +(-10 -8 (-15 -1837 (|#1| |#1| |#2|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1707 (($ $ $) 29)) (-1693 (((-858) $) 11)) (-2241 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1837 (($ $ |#1|) 28 (|has| |#1| (-363)))) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-631 |#1|) (-140) (-172)) (T -631)) +((-1707 (*1 *1 *1 *1) (-12 (-4 *1 (-631 *2)) (-4 *2 (-172)))) (-1837 (*1 *1 *1 *2) (-12 (-4 *1 (-631 *2)) (-4 *2 (-172)) (-4 *2 (-363))))) +(-13 (-713 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -1707 ($ $ $)) (IF (|has| |t#1| (-363)) (-15 -1837 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-713 |#1|) . T) ((-1051 |#1|) . T) ((-1093) . T)) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1414 (((-3 $ "failed")) NIL (-4032 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-1495 (((-3 $ "failed") $ $) NIL)) (-3507 (((-1257 (-684 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-1257 (-684 |#1|)) (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-1438 (((-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-4239 (($) NIL T CONST)) (-2133 (((-3 (-2 (|:| |particular| $) (|:| -4315 (-640 $))) "failed")) NIL (-4032 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-2435 (((-3 $ "failed")) NIL (-4032 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-4220 (((-684 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-684 |#1|) (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-2480 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-3043 (((-684 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-684 |#1|) $ (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-4154 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-3451 (((-1165 (-948 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-2300 (($ $ (-917)) NIL)) (-3830 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-3763 (((-1165 |#1|) $) NIL (-4032 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-1824 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-2876 (((-1165 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-2182 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3937 (($ (-1257 |#1|)) NIL (|has| |#2| (-417 |#1|))) (($ (-1257 |#1|) (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-3400 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-2522 (((-917)) NIL (|has| |#2| (-367 |#1|)))) (-2250 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2287 (($ $ (-917)) NIL)) (-3901 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3308 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3104 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2284 (((-3 (-2 (|:| |particular| $) (|:| -4315 (-640 $))) "failed")) NIL (-4032 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-2508 (((-3 $ "failed")) NIL (-4032 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-2328 (((-684 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-684 |#1|) (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-2842 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1823 (((-684 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-684 |#1|) $ (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-3856 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-3594 (((-1165 (-948 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-1494 (($ $ (-917)) NIL)) (-2199 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-2604 (((-1165 |#1|) $) NIL (-4032 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-4111 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-2665 (((-1165 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-4012 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3573 (((-1151) $) NIL)) (-2136 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1789 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2047 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1694 (((-1113) $) NIL)) (-4084 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2309 ((|#1| $ (-563)) NIL (|has| |#2| (-417 |#1|)))) (-1880 (((-684 |#1|) (-1257 $)) NIL (|has| |#2| (-417 |#1|))) (((-1257 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-684 |#1|) (-1257 $) (-1257 $)) NIL (|has| |#2| (-367 |#1|))) (((-1257 |#1|) $ (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-2220 (($ (-1257 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-1257 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-4152 (((-640 (-948 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-640 (-948 |#1|)) (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-2146 (($ $ $) NIL)) (-1936 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1693 (((-858) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-4315 (((-1257 $)) NIL (|has| |#2| (-417 |#1|)))) (-2138 (((-640 (-1257 |#1|))) NIL (-4032 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-1361 (($ $ $ $) NIL)) (-1402 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3726 (($ (-684 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-3399 (($ $ $) NIL)) (-2483 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3777 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2128 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2241 (($) 15 T CONST)) (-1718 (((-112) $ $) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) 17)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-632 |#1| |#2|) (-13 (-740 |#1|) (-610 |#2|) (-10 -8 (-15 -1693 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) (-172) (-740 |#1|)) (T -632)) +((-1693 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-632 *3 *2)) (-4 *2 (-740 *3))))) +(-13 (-740 |#1|) (-610 |#2|) (-10 -8 (-15 -1693 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) +((-2626 (((-3 (-839 |#2|) "failed") |#2| (-294 |#2|) (-1151)) 81) (((-3 (-839 |#2|) (-2 (|:| |leftHandLimit| (-3 (-839 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-839 |#2|) "failed"))) "failed") |#2| (-294 (-839 |#2|))) 103)) (-3224 (((-3 (-829 |#2|) "failed") |#2| (-294 (-829 |#2|))) 108))) +(((-633 |#1| |#2|) (-10 -7 (-15 -2626 ((-3 (-839 |#2|) (-2 (|:| |leftHandLimit| (-3 (-839 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-839 |#2|) "failed"))) "failed") |#2| (-294 (-839 |#2|)))) (-15 -3224 ((-3 (-829 |#2|) "failed") |#2| (-294 (-829 |#2|)))) (-15 -2626 ((-3 (-839 |#2|) "failed") |#2| (-294 |#2|) (-1151)))) (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))) (-13 (-27) (-1193) (-430 |#1|))) (T -633)) +((-2626 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-294 *3)) (-5 *5 (-1151)) (-4 *3 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-839 *3)) (-5 *1 (-633 *6 *3)))) (-3224 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-294 (-829 *3))) (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-829 *3)) (-5 *1 (-633 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))))) (-2626 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-839 *3))) (-4 *3 (-13 (-27) (-1193) (-430 *5))) (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-3 (-839 *3) (-2 (|:| |leftHandLimit| (-3 (-839 *3) "failed")) (|:| |rightHandLimit| (-3 (-839 *3) "failed"))) "failed")) (-5 *1 (-633 *5 *3))))) +(-10 -7 (-15 -2626 ((-3 (-839 |#2|) (-2 (|:| |leftHandLimit| (-3 (-839 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-839 |#2|) "failed"))) "failed") |#2| (-294 (-839 |#2|)))) (-15 -3224 ((-3 (-829 |#2|) "failed") |#2| (-294 (-829 |#2|)))) (-15 -2626 ((-3 (-839 |#2|) "failed") |#2| (-294 |#2|) (-1151)))) +((-2626 (((-3 (-839 (-407 (-948 |#1|))) "failed") (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))) (-1151)) 80) (((-3 (-839 (-407 (-948 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed"))) "failed") (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|)))) 20) (((-3 (-839 (-407 (-948 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed"))) "failed") (-407 (-948 |#1|)) (-294 (-839 (-948 |#1|)))) 35)) (-3224 (((-829 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|)))) 23) (((-829 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-294 (-829 (-948 |#1|)))) 43))) +(((-634 |#1|) (-10 -7 (-15 -2626 ((-3 (-839 (-407 (-948 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed"))) "failed") (-407 (-948 |#1|)) (-294 (-839 (-948 |#1|))))) (-15 -2626 ((-3 (-839 (-407 (-948 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed"))) "failed") (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))))) (-15 -3224 ((-829 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-294 (-829 (-948 |#1|))))) (-15 -3224 ((-829 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))))) (-15 -2626 ((-3 (-839 (-407 (-948 |#1|))) "failed") (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))) (-1151)))) (-452)) (T -634)) +((-2626 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-294 (-407 (-948 *6)))) (-5 *5 (-1151)) (-5 *3 (-407 (-948 *6))) (-4 *6 (-452)) (-5 *2 (-839 *3)) (-5 *1 (-634 *6)))) (-3224 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-407 (-948 *5)))) (-5 *3 (-407 (-948 *5))) (-4 *5 (-452)) (-5 *2 (-829 *3)) (-5 *1 (-634 *5)))) (-3224 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-829 (-948 *5)))) (-4 *5 (-452)) (-5 *2 (-829 (-407 (-948 *5)))) (-5 *1 (-634 *5)) (-5 *3 (-407 (-948 *5))))) (-2626 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-407 (-948 *5)))) (-5 *3 (-407 (-948 *5))) (-4 *5 (-452)) (-5 *2 (-3 (-839 *3) (-2 (|:| |leftHandLimit| (-3 (-839 *3) "failed")) (|:| |rightHandLimit| (-3 (-839 *3) "failed"))) "failed")) (-5 *1 (-634 *5)))) (-2626 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-839 (-948 *5)))) (-4 *5 (-452)) (-5 *2 (-3 (-839 (-407 (-948 *5))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 *5))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 *5))) "failed"))) "failed")) (-5 *1 (-634 *5)) (-5 *3 (-407 (-948 *5)))))) +(-10 -7 (-15 -2626 ((-3 (-839 (-407 (-948 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed"))) "failed") (-407 (-948 |#1|)) (-294 (-839 (-948 |#1|))))) (-15 -2626 ((-3 (-839 (-407 (-948 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed"))) "failed") (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))))) (-15 -3224 ((-829 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-294 (-829 (-948 |#1|))))) (-15 -3224 ((-829 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))))) (-15 -2626 ((-3 (-839 (-407 (-948 |#1|))) "failed") (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))) (-1151)))) +((-3654 (((-3 (-1257 (-407 |#1|)) "failed") (-1257 |#2|) |#2|) 57 (-2176 (|has| |#1| (-363)))) (((-3 (-1257 |#1|) "failed") (-1257 |#2|) |#2|) 42 (|has| |#1| (-363)))) (-4301 (((-112) (-1257 |#2|)) 30)) (-3825 (((-3 (-1257 |#1|) "failed") (-1257 |#2|)) 33))) +(((-635 |#1| |#2|) (-10 -7 (-15 -4301 ((-112) (-1257 |#2|))) (-15 -3825 ((-3 (-1257 |#1|) "failed") (-1257 |#2|))) (IF (|has| |#1| (-363)) (-15 -3654 ((-3 (-1257 |#1|) "failed") (-1257 |#2|) |#2|)) (-15 -3654 ((-3 (-1257 (-407 |#1|)) "failed") (-1257 |#2|) |#2|)))) (-555) (-636 |#1|)) (T -635)) +((-3654 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1257 *4)) (-4 *4 (-636 *5)) (-2176 (-4 *5 (-363))) (-4 *5 (-555)) (-5 *2 (-1257 (-407 *5))) (-5 *1 (-635 *5 *4)))) (-3654 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1257 *4)) (-4 *4 (-636 *5)) (-4 *5 (-363)) (-4 *5 (-555)) (-5 *2 (-1257 *5)) (-5 *1 (-635 *5 *4)))) (-3825 (*1 *2 *3) (|partial| -12 (-5 *3 (-1257 *5)) (-4 *5 (-636 *4)) (-4 *4 (-555)) (-5 *2 (-1257 *4)) (-5 *1 (-635 *4 *5)))) (-4301 (*1 *2 *3) (-12 (-5 *3 (-1257 *5)) (-4 *5 (-636 *4)) (-4 *4 (-555)) (-5 *2 (-112)) (-5 *1 (-635 *4 *5))))) +(-10 -7 (-15 -4301 ((-112) (-1257 |#2|))) (-15 -3825 ((-3 (-1257 |#1|) "failed") (-1257 |#2|))) (IF (|has| |#1| (-363)) (-15 -3654 ((-3 (-1257 |#1|) "failed") (-1257 |#2|) |#2|)) (-15 -3654 ((-3 (-1257 (-407 |#1|)) "failed") (-1257 |#2|) |#2|)))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-2950 (((-684 |#1|) (-684 $)) 36) (((-2 (|:| -2835 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 35)) (-3400 (((-3 $ "failed") $) 33)) (-3827 (((-112) $) 31)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11) (($ (-563)) 29)) (-1675 (((-767)) 28)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) +(((-636 |#1|) (-140) (-1045)) (T -636)) +((-2950 (*1 *2 *3) (-12 (-5 *3 (-684 *1)) (-4 *1 (-636 *4)) (-4 *4 (-1045)) (-5 *2 (-684 *4)))) (-2950 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *1)) (-5 *4 (-1257 *1)) (-4 *1 (-636 *5)) (-4 *5 (-1045)) (-5 *2 (-2 (|:| -2835 (-684 *5)) (|:| |vec| (-1257 *5))))))) +(-13 (-1045) (-10 -8 (-15 -2950 ((-684 |t#1|) (-684 $))) (-15 -2950 ((-2 (|:| -2835 (-684 |t#1|)) (|:| |vec| (-1257 |t#1|))) (-684 $) (-1257 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-643 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) +((-1916 ((|#2| (-640 |#1|) (-640 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-640 |#1|) (-640 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-640 |#1|) (-640 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-640 |#1|) (-640 |#2|) |#2|) 17) ((|#2| (-640 |#1|) (-640 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-640 |#1|) (-640 |#2|)) 12))) +(((-637 |#1| |#2|) (-10 -7 (-15 -1916 ((-1 |#2| |#1|) (-640 |#1|) (-640 |#2|))) (-15 -1916 (|#2| (-640 |#1|) (-640 |#2|) |#1|)) (-15 -1916 ((-1 |#2| |#1|) (-640 |#1|) (-640 |#2|) |#2|)) (-15 -1916 (|#2| (-640 |#1|) (-640 |#2|) |#1| |#2|)) (-15 -1916 ((-1 |#2| |#1|) (-640 |#1|) (-640 |#2|) (-1 |#2| |#1|))) (-15 -1916 (|#2| (-640 |#1|) (-640 |#2|) |#1| (-1 |#2| |#1|)))) (-1093) (-1208)) (T -637)) +((-1916 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-640 *5)) (-5 *4 (-640 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1093)) (-4 *2 (-1208)) (-5 *1 (-637 *5 *2)))) (-1916 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-640 *5)) (-5 *4 (-640 *6)) (-4 *5 (-1093)) (-4 *6 (-1208)) (-5 *1 (-637 *5 *6)))) (-1916 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-640 *5)) (-5 *4 (-640 *2)) (-4 *5 (-1093)) (-4 *2 (-1208)) (-5 *1 (-637 *5 *2)))) (-1916 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-640 *6)) (-5 *4 (-640 *5)) (-4 *6 (-1093)) (-4 *5 (-1208)) (-5 *2 (-1 *5 *6)) (-5 *1 (-637 *6 *5)))) (-1916 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-640 *5)) (-5 *4 (-640 *2)) (-4 *5 (-1093)) (-4 *2 (-1208)) (-5 *1 (-637 *5 *2)))) (-1916 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *5)) (-5 *4 (-640 *6)) (-4 *5 (-1093)) (-4 *6 (-1208)) (-5 *2 (-1 *6 *5)) (-5 *1 (-637 *5 *6))))) +(-10 -7 (-15 -1916 ((-1 |#2| |#1|) (-640 |#1|) (-640 |#2|))) (-15 -1916 (|#2| (-640 |#1|) (-640 |#2|) |#1|)) (-15 -1916 ((-1 |#2| |#1|) (-640 |#1|) (-640 |#2|) |#2|)) (-15 -1916 (|#2| (-640 |#1|) (-640 |#2|) |#1| |#2|)) (-15 -1916 ((-1 |#2| |#1|) (-640 |#1|) (-640 |#2|) (-1 |#2| |#1|))) (-15 -1916 (|#2| (-640 |#1|) (-640 |#2|) |#1| (-1 |#2| |#1|)))) +((-1567 (((-640 |#2|) (-1 |#2| |#1| |#2|) (-640 |#1|) |#2|) 16)) (-2444 ((|#2| (-1 |#2| |#1| |#2|) (-640 |#1|) |#2|) 18)) (-2240 (((-640 |#2|) (-1 |#2| |#1|) (-640 |#1|)) 13))) +(((-638 |#1| |#2|) (-10 -7 (-15 -1567 ((-640 |#2|) (-1 |#2| |#1| |#2|) (-640 |#1|) |#2|)) (-15 -2444 (|#2| (-1 |#2| |#1| |#2|) (-640 |#1|) |#2|)) (-15 -2240 ((-640 |#2|) (-1 |#2| |#1|) (-640 |#1|)))) (-1208) (-1208)) (T -638)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-640 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-640 *6)) (-5 *1 (-638 *5 *6)))) (-2444 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-640 *5)) (-4 *5 (-1208)) (-4 *2 (-1208)) (-5 *1 (-638 *5 *2)))) (-1567 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-640 *6)) (-4 *6 (-1208)) (-4 *5 (-1208)) (-5 *2 (-640 *5)) (-5 *1 (-638 *6 *5))))) +(-10 -7 (-15 -1567 ((-640 |#2|) (-1 |#2| |#1| |#2|) (-640 |#1|) |#2|)) (-15 -2444 (|#2| (-1 |#2| |#1| |#2|) (-640 |#1|) |#2|)) (-15 -2240 ((-640 |#2|) (-1 |#2| |#1|) (-640 |#1|)))) +((-2240 (((-640 |#3|) (-1 |#3| |#1| |#2|) (-640 |#1|) (-640 |#2|)) 13))) +(((-639 |#1| |#2| |#3|) (-10 -7 (-15 -2240 ((-640 |#3|) (-1 |#3| |#1| |#2|) (-640 |#1|) (-640 |#2|)))) (-1208) (-1208) (-1208)) (T -639)) +((-2240 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-640 *6)) (-5 *5 (-640 *7)) (-4 *6 (-1208)) (-4 *7 (-1208)) (-4 *8 (-1208)) (-5 *2 (-640 *8)) (-5 *1 (-639 *6 *7 *8))))) +(-10 -7 (-15 -2240 ((-640 |#3|) (-1 |#3| |#1| |#2|) (-640 |#1|) (-640 |#2|)))) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2619 ((|#1| $) NIL)) (-3442 ((|#1| $) NIL)) (-4302 (($ $) NIL)) (-4378 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4408)))) (-1624 (($ $ (-563)) NIL (|has| $ (-6 -4408)))) (-3523 (((-112) $) NIL (|has| |#1| (-846))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2770 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-846)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-1642 (($ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2759 (((-112) $ (-767)) NIL)) (-2936 ((|#1| $ |#1|) NIL (|has| $ (-6 -4408)))) (-3692 (($ $ $) NIL (|has| $ (-6 -4408)))) (-3889 ((|#1| $ |#1|) NIL (|has| $ (-6 -4408)))) (-1543 ((|#1| $ |#1|) NIL (|has| $ (-6 -4408)))) (-1849 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4408))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4408))) (($ $ "rest" $) NIL (|has| $ (-6 -4408))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4408))) ((|#1| $ (-1224 (-563)) |#1|) NIL (|has| $ (-6 -4408))) ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4408)))) (-2811 (($ $ (-640 $)) NIL (|has| $ (-6 -4408)))) (-3712 (($ $ $) 31 (|has| |#1| (-1093)))) (-3696 (($ $ $) 33 (|has| |#1| (-1093)))) (-3682 (($ $ $) 36 (|has| |#1| (-1093)))) (-2812 (($ (-1 (-112) |#1|) $) NIL)) (-2256 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3431 ((|#1| $) NIL)) (-4239 (($) NIL T CONST)) (-2907 (($ $) NIL (|has| $ (-6 -4408)))) (-4382 (($ $) NIL)) (-3792 (($ $) NIL) (($ $ (-767)) NIL)) (-4005 (($ $) NIL (|has| |#1| (-1093)))) (-3813 (($ $) 30 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2705 (($ |#1| $) NIL (|has| |#1| (-1093))) (($ (-1 (-112) |#1|) $) NIL)) (-1459 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-4355 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4408)))) (-4293 ((|#1| $ (-563)) NIL)) (-2018 (((-112) $) NIL)) (-4368 (((-563) |#1| $ (-563)) NIL (|has| |#1| (-1093))) (((-563) |#1| $) NIL (|has| |#1| (-1093))) (((-563) (-1 (-112) |#1|) $) NIL)) (-2659 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-2160 (((-112) $) 9)) (-2071 (((-640 $) $) NIL)) (-1469 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1370 (($) 7)) (-1566 (($ (-767) |#1|) NIL)) (-2581 (((-112) $ (-767)) NIL)) (-2411 (((-563) $) NIL (|has| (-563) (-846)))) (-3084 (($ $ $) NIL (|has| |#1| (-846)))) (-2878 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3164 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2259 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) 32 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-3860 (((-563) $) NIL (|has| (-563) (-846)))) (-1777 (($ $ $) NIL (|has| |#1| (-846)))) (-4345 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3651 (($ |#1|) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-2512 (((-640 |#1|) $) NIL)) (-2194 (((-112) $) NIL)) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1481 ((|#1| $) NIL) (($ $ (-767)) NIL)) (-1812 (($ $ $ (-563)) NIL) (($ |#1| $ (-563)) NIL)) (-3396 (($ $ $ (-563)) NIL) (($ |#1| $ (-563)) NIL)) (-4318 (((-640 (-563)) $) NIL)) (-3192 (((-112) (-563) $) NIL)) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3781 ((|#1| $) NIL) (($ $ (-767)) NIL)) (-4203 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2358 (($ $ |#1|) NIL (|has| $ (-6 -4408)))) (-2833 (((-112) $) NIL)) (-3138 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) NIL)) (-2105 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2836 (((-640 |#1|) $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) NIL)) (-2309 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1224 (-563))) NIL) ((|#1| $ (-563)) 35) ((|#1| $ (-563) |#1|) NIL)) (-4071 (((-563) $ $) NIL)) (-1314 (($ $ (-1224 (-563))) NIL) (($ $ (-563)) NIL)) (-2963 (($ $ (-1224 (-563))) NIL) (($ $ (-563)) NIL)) (-1434 (((-112) $) NIL)) (-2749 (($ $) NIL)) (-1322 (($ $) NIL (|has| $ (-6 -4408)))) (-1950 (((-767) $) NIL)) (-3752 (($ $) NIL)) (-1709 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-3076 (($ $ $ (-563)) NIL (|has| $ (-6 -4408)))) (-1872 (($ $) NIL)) (-2220 (((-536) $) 43 (|has| |#1| (-611 (-536))))) (-1707 (($ (-640 |#1|)) NIL)) (-4063 (($ |#1| $) 10)) (-3245 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2853 (($ $ $) 29) (($ |#1| $) NIL) (($ (-640 $)) NIL) (($ $ |#1|) NIL)) (-1693 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-4258 (((-640 $) $) NIL)) (-2962 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3536 (($ $ $) 11)) (-4383 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3741 (((-1151) $) 25 (|has| |#1| (-824))) (((-1151) $ (-112)) 26 (|has| |#1| (-824))) (((-1262) (-818) $) 27 (|has| |#1| (-824))) (((-1262) (-818) $ (-112)) 28 (|has| |#1| (-824)))) (-1778 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1756 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1768 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1744 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-640 |#1|) (-13 (-661 |#1|) (-10 -8 (-15 -1370 ($)) (-15 -2160 ((-112) $)) (-15 -4063 ($ |#1| $)) (-15 -3536 ($ $ $)) (IF (|has| |#1| (-1093)) (PROGN (-15 -3712 ($ $ $)) (-15 -3696 ($ $ $)) (-15 -3682 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|))) (-1208)) (T -640)) +((-1370 (*1 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1208)))) (-2160 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-640 *3)) (-4 *3 (-1208)))) (-4063 (*1 *1 *2 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1208)))) (-3536 (*1 *1 *1 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1208)))) (-3712 (*1 *1 *1 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1093)) (-4 *2 (-1208)))) (-3696 (*1 *1 *1 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1093)) (-4 *2 (-1208)))) (-3682 (*1 *1 *1 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1093)) (-4 *2 (-1208))))) +(-13 (-661 |#1|) (-10 -8 (-15 -1370 ($)) (-15 -2160 ((-112) $)) (-15 -4063 ($ |#1| $)) (-15 -3536 ($ $ $)) (IF (|has| |#1| (-1093)) (PROGN (-15 -3712 ($ $ $)) (-15 -3696 ($ $ $)) (-15 -3682 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|))) +((-1677 (((-112) $ $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 11) (($ (-1174)) NIL) (((-1174) $) NIL) ((|#1| $) 8)) (-1718 (((-112) $ $) NIL))) +(((-641 |#1|) (-13 (-1076) (-610 |#1|)) (-1093)) (T -641)) +NIL +(-13 (-1076) (-610 |#1|)) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3802 (($ |#1| |#1| $) 41)) (-2759 (((-112) $ (-767)) NIL)) (-2812 (($ (-1 (-112) |#1|) $) 52 (|has| $ (-6 -4407)))) (-2256 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-4239 (($) NIL T CONST)) (-4005 (($ $) 43)) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2705 (($ |#1| $) 49 (|has| $ (-6 -4407))) (($ (-1 (-112) |#1|) $) 51 (|has| $ (-6 -4407)))) (-1459 (($ |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-2659 (((-640 |#1|) $) 9 (|has| $ (-6 -4407)))) (-2581 (((-112) $ (-767)) NIL)) (-2259 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-4345 (($ (-1 |#1| |#1|) $) 37 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 35)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-2964 ((|#1| $) 44)) (-1812 (($ |#1| $) 26) (($ |#1| $ (-767)) 40)) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-4203 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3755 ((|#1| $) 46)) (-3138 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) NIL)) (-3756 (((-112) $) 21)) (-3135 (($) 25)) (-3438 (((-112) $) 47)) (-2757 (((-640 (-2 (|:| -2557 |#1|) (|:| -1709 (-767)))) $) 56)) (-3890 (($) 23) (($ (-640 |#1|)) 18)) (-1709 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) 53 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1872 (($ $) 19)) (-2220 (((-536) $) 32 (|has| |#1| (-611 (-536))))) (-1707 (($ (-640 |#1|)) NIL)) (-1693 (((-858) $) 14 (|has| |#1| (-610 (-858))))) (-2233 (($ (-640 |#1|)) 22)) (-4383 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 58 (|has| |#1| (-1093)))) (-3608 (((-767) $) 16 (|has| $ (-6 -4407))))) +(((-642 |#1|) (-13 (-690 |#1|) (-10 -8 (-6 -4407) (-15 -3438 ((-112) $)) (-15 -3802 ($ |#1| |#1| $)))) (-1093)) (T -642)) +((-3438 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-642 *3)) (-4 *3 (-1093)))) (-3802 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-642 *2)) (-4 *2 (-1093))))) +(-13 (-690 |#1|) (-10 -8 (-6 -4407) (-15 -3438 ((-112) $)) (-15 -3802 ($ |#1| |#1| $)))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11)) (-2241 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ |#1| $) 23))) +(((-643 |#1|) (-140) (-1052)) (T -643)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-643 *2)) (-4 *2 (-1052))))) (-13 (-21) (-10 -8 (-15 * ($ |t#1| $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-609 (-857)) . T) ((-1092) . T)) -((-4041 (((-112) $ $) NIL)) (-1382 (((-766) $) 15)) (-3299 (($ $ |#1|) 56)) (-2673 (($ $) 32)) (-2676 (($ $) 31)) (-4048 (((-3 |#1| "failed") $) 48)) (-3960 ((|#1| $) NIL)) (-2959 (($ |#1| |#2| $) 62) (($ $ $) 63)) (-3508 (((-857) $ (-1 (-857) (-857) (-857)) (-1 (-857) (-857) (-857)) (-562)) 46)) (-3111 ((|#1| $ (-562)) 30)) (-1646 ((|#2| $ (-562)) 29)) (-2491 (($ (-1 |#1| |#1|) $) 34)) (-1369 (($ (-1 |#2| |#2|) $) 38)) (-3036 (($) 10)) (-3432 (($ |#1| |#2|) 22)) (-2008 (($ (-639 (-2 (|:| |gen| |#1|) (|:| -3430 |#2|)))) 23)) (-4298 (((-639 (-2 (|:| |gen| |#1|) (|:| -3430 |#2|))) $) 13)) (-1804 (($ |#1| $) 57)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2507 (((-112) $ $) 60)) (-4053 (((-857) $) 19) (($ |#1|) 16)) (-1733 (((-112) $ $) 25))) -(((-643 |#1| |#2| |#3|) (-13 (-1092) (-1033 |#1|) (-10 -8 (-15 -3508 ((-857) $ (-1 (-857) (-857) (-857)) (-1 (-857) (-857) (-857)) (-562))) (-15 -4298 ((-639 (-2 (|:| |gen| |#1|) (|:| -3430 |#2|))) $)) (-15 -3432 ($ |#1| |#2|)) (-15 -2008 ($ (-639 (-2 (|:| |gen| |#1|) (|:| -3430 |#2|))))) (-15 -1646 (|#2| $ (-562))) (-15 -3111 (|#1| $ (-562))) (-15 -2676 ($ $)) (-15 -2673 ($ $)) (-15 -1382 ((-766) $)) (-15 -3036 ($)) (-15 -3299 ($ $ |#1|)) (-15 -1804 ($ |#1| $)) (-15 -2959 ($ |#1| |#2| $)) (-15 -2959 ($ $ $)) (-15 -2507 ((-112) $ $)) (-15 -1369 ($ (-1 |#2| |#2|) $)) (-15 -2491 ($ (-1 |#1| |#1|) $)))) (-1092) (-23) |#2|) (T -643)) -((-3508 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-857) (-857) (-857))) (-5 *4 (-562)) (-5 *2 (-857)) (-5 *1 (-643 *5 *6 *7)) (-4 *5 (-1092)) (-4 *6 (-23)) (-14 *7 *6))) (-4298 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| |gen| *3) (|:| -3430 *4)))) (-5 *1 (-643 *3 *4 *5)) (-4 *3 (-1092)) (-4 *4 (-23)) (-14 *5 *4))) (-3432 (*1 *1 *2 *3) (-12 (-5 *1 (-643 *2 *3 *4)) (-4 *2 (-1092)) (-4 *3 (-23)) (-14 *4 *3))) (-2008 (*1 *1 *2) (-12 (-5 *2 (-639 (-2 (|:| |gen| *3) (|:| -3430 *4)))) (-4 *3 (-1092)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-643 *3 *4 *5)))) (-1646 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-4 *2 (-23)) (-5 *1 (-643 *4 *2 *5)) (-4 *4 (-1092)) (-14 *5 *2))) (-3111 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-4 *2 (-1092)) (-5 *1 (-643 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2676 (*1 *1 *1) (-12 (-5 *1 (-643 *2 *3 *4)) (-4 *2 (-1092)) (-4 *3 (-23)) (-14 *4 *3))) (-2673 (*1 *1 *1) (-12 (-5 *1 (-643 *2 *3 *4)) (-4 *2 (-1092)) (-4 *3 (-23)) (-14 *4 *3))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-643 *3 *4 *5)) (-4 *3 (-1092)) (-4 *4 (-23)) (-14 *5 *4))) (-3036 (*1 *1) (-12 (-5 *1 (-643 *2 *3 *4)) (-4 *2 (-1092)) (-4 *3 (-23)) (-14 *4 *3))) (-3299 (*1 *1 *1 *2) (-12 (-5 *1 (-643 *2 *3 *4)) (-4 *2 (-1092)) (-4 *3 (-23)) (-14 *4 *3))) (-1804 (*1 *1 *2 *1) (-12 (-5 *1 (-643 *2 *3 *4)) (-4 *2 (-1092)) (-4 *3 (-23)) (-14 *4 *3))) (-2959 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-643 *2 *3 *4)) (-4 *2 (-1092)) (-4 *3 (-23)) (-14 *4 *3))) (-2959 (*1 *1 *1 *1) (-12 (-5 *1 (-643 *2 *3 *4)) (-4 *2 (-1092)) (-4 *3 (-23)) (-14 *4 *3))) (-2507 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-643 *3 *4 *5)) (-4 *3 (-1092)) (-4 *4 (-23)) (-14 *5 *4))) (-1369 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-643 *3 *4 *5)) (-4 *3 (-1092)))) (-2491 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1092)) (-5 *1 (-643 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1092) (-1033 |#1|) (-10 -8 (-15 -3508 ((-857) $ (-1 (-857) (-857) (-857)) (-1 (-857) (-857) (-857)) (-562))) (-15 -4298 ((-639 (-2 (|:| |gen| |#1|) (|:| -3430 |#2|))) $)) (-15 -3432 ($ |#1| |#2|)) (-15 -2008 ($ (-639 (-2 (|:| |gen| |#1|) (|:| -3430 |#2|))))) (-15 -1646 (|#2| $ (-562))) (-15 -3111 (|#1| $ (-562))) (-15 -2676 ($ $)) (-15 -2673 ($ $)) (-15 -1382 ((-766) $)) (-15 -3036 ($)) (-15 -3299 ($ $ |#1|)) (-15 -1804 ($ |#1| $)) (-15 -2959 ($ |#1| |#2| $)) (-15 -2959 ($ $ $)) (-15 -2507 ((-112) $ $)) (-15 -1369 ($ (-1 |#2| |#2|) $)) (-15 -2491 ($ (-1 |#1| |#1|) $)))) -((-1929 (((-562) $) 23)) (-3295 (($ |#2| $ (-562)) 21) (($ $ $ (-562)) NIL)) (-3336 (((-639 (-562)) $) 12)) (-1987 (((-112) (-562) $) 14)) (-2767 (($ $ |#2|) 18) (($ |#2| $) 19) (($ $ $) NIL) (($ (-639 $)) NIL))) -(((-644 |#1| |#2|) (-10 -8 (-15 -3295 (|#1| |#1| |#1| (-562))) (-15 -3295 (|#1| |#2| |#1| (-562))) (-15 -2767 (|#1| (-639 |#1|))) (-15 -2767 (|#1| |#1| |#1|)) (-15 -2767 (|#1| |#2| |#1|)) (-15 -2767 (|#1| |#1| |#2|)) (-15 -1929 ((-562) |#1|)) (-15 -3336 ((-639 (-562)) |#1|)) (-15 -1987 ((-112) (-562) |#1|))) (-645 |#2|) (-1207)) (T -644)) -NIL -(-10 -8 (-15 -3295 (|#1| |#1| |#1| (-562))) (-15 -3295 (|#1| |#2| |#1| (-562))) (-15 -2767 (|#1| (-639 |#1|))) (-15 -2767 (|#1| |#1| |#1|)) (-15 -2767 (|#1| |#2| |#1|)) (-15 -2767 (|#1| |#1| |#2|)) (-15 -1929 ((-562) |#1|)) (-15 -3336 ((-639 (-562)) |#1|)) (-15 -1987 ((-112) (-562) |#1|))) -((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-3655 (((-1261) $ (-562) (-562)) 40 (|has| $ (-6 -4404)))) (-3735 (((-112) $ (-766)) 8)) (-4200 ((|#1| $ (-562) |#1|) 52 (|has| $ (-6 -4404))) ((|#1| $ (-1223 (-562)) |#1|) 58 (|has| $ (-6 -4404)))) (-3556 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4403)))) (-3329 (($) 7 T CONST)) (-1459 (($ $) 78 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1475 (($ |#1| $) 77 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4403)))) (-1954 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4403)))) (-1507 ((|#1| $ (-562) |#1|) 53 (|has| $ (-6 -4404)))) (-1420 ((|#1| $ (-562)) 51)) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4403)))) (-1458 (($ (-766) |#1|) 69)) (-4172 (((-112) $ (-766)) 9)) (-1849 (((-562) $) 43 (|has| (-562) (-845)))) (-2123 (((-639 |#1|) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1929 (((-562) $) 44 (|has| (-562) (-845)))) (-1491 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4147 (((-112) $ (-766)) 10)) (-3696 (((-1150) $) 22 (|has| |#1| (-1092)))) (-3295 (($ |#1| $ (-562)) 60) (($ $ $ (-562)) 59)) (-3336 (((-639 (-562)) $) 46)) (-1987 (((-112) (-562) $) 47)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-1421 ((|#1| $) 42 (|has| (-562) (-845)))) (-1963 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3510 (($ $ |#1|) 41 (|has| $ (-6 -4404)))) (-3008 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) 14)) (-2716 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2366 (((-639 |#1|) $) 48)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-2343 ((|#1| $ (-562) |#1|) 50) ((|#1| $ (-562)) 49) (($ $ (-1223 (-562))) 63)) (-2880 (($ $ (-562)) 62) (($ $ (-1223 (-562))) 61)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4403))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-4220 (($ $) 13)) (-4208 (((-535) $) 79 (|has| |#1| (-610 (-535))))) (-4064 (($ (-639 |#1|)) 70)) (-2767 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-639 $)) 65)) (-4053 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-2879 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-645 |#1|) (-139) (-1207)) (T -645)) -((-1458 (*1 *1 *2 *3) (-12 (-5 *2 (-766)) (-4 *1 (-645 *3)) (-4 *3 (-1207)))) (-2767 (*1 *1 *1 *2) (-12 (-4 *1 (-645 *2)) (-4 *2 (-1207)))) (-2767 (*1 *1 *2 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-1207)))) (-2767 (*1 *1 *1 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-1207)))) (-2767 (*1 *1 *2) (-12 (-5 *2 (-639 *1)) (-4 *1 (-645 *3)) (-4 *3 (-1207)))) (-4152 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-645 *3)) (-4 *3 (-1207)))) (-2343 (*1 *1 *1 *2) (-12 (-5 *2 (-1223 (-562))) (-4 *1 (-645 *3)) (-4 *3 (-1207)))) (-2880 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-645 *3)) (-4 *3 (-1207)))) (-2880 (*1 *1 *1 *2) (-12 (-5 *2 (-1223 (-562))) (-4 *1 (-645 *3)) (-4 *3 (-1207)))) (-3295 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-562)) (-4 *1 (-645 *2)) (-4 *2 (-1207)))) (-3295 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-645 *3)) (-4 *3 (-1207)))) (-4200 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1223 (-562))) (|has| *1 (-6 -4404)) (-4 *1 (-645 *2)) (-4 *2 (-1207))))) -(-13 (-600 (-562) |t#1|) (-150 |t#1|) (-10 -8 (-15 -1458 ($ (-766) |t#1|)) (-15 -2767 ($ $ |t#1|)) (-15 -2767 ($ |t#1| $)) (-15 -2767 ($ $ $)) (-15 -2767 ($ (-639 $))) (-15 -4152 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2343 ($ $ (-1223 (-562)))) (-15 -2880 ($ $ (-562))) (-15 -2880 ($ $ (-1223 (-562)))) (-15 -3295 ($ |t#1| $ (-562))) (-15 -3295 ($ $ $ (-562))) (IF (|has| $ (-6 -4404)) (-15 -4200 (|t#1| $ (-1223 (-562)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-150 |#1|) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-285 #0=(-562) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-600 #0# |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1092) |has| |#1| (-1092)) ((-1207) . T)) -((-3888 (((-3 |#2| "failed") |#3| |#2| (-1168) |#2| (-639 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -4291 (-639 |#2|))) "failed") |#3| |#2| (-1168)) 44))) -(((-646 |#1| |#2| |#3|) (-10 -7 (-15 -3888 ((-3 (-2 (|:| |particular| |#2|) (|:| -4291 (-639 |#2|))) "failed") |#3| |#2| (-1168))) (-15 -3888 ((-3 |#2| "failed") |#3| |#2| (-1168) |#2| (-639 |#2|)))) (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146)) (-13 (-29 |#1|) (-1192) (-954)) (-650 |#2|)) (T -646)) -((-3888 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1168)) (-5 *5 (-639 *2)) (-4 *2 (-13 (-29 *6) (-1192) (-954))) (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-5 *1 (-646 *6 *2 *3)) (-4 *3 (-650 *2)))) (-3888 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1168)) (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-4 *4 (-13 (-29 *6) (-1192) (-954))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4291 (-639 *4)))) (-5 *1 (-646 *6 *4 *3)) (-4 *3 (-650 *4))))) -(-10 -7 (-15 -3888 ((-3 (-2 (|:| |particular| |#2|) (|:| -4291 (-639 |#2|))) "failed") |#3| |#2| (-1168))) (-15 -3888 ((-3 |#2| "failed") |#3| |#2| (-1168) |#2| (-639 |#2|)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2818 (($ $) NIL (|has| |#1| (-362)))) (-4039 (($ $ $) NIL (|has| |#1| (-362)))) (-2061 (($ $ (-766)) NIL (|has| |#1| (-362)))) (-2781 (((-3 $ "failed") $ $) NIL)) (-3329 (($) NIL T CONST)) (-1944 (($ $ $) NIL (|has| |#1| (-362)))) (-3711 (($ $ $) NIL (|has| |#1| (-362)))) (-1884 (($ $ $) NIL (|has| |#1| (-362)))) (-1353 (($ $ $) NIL (|has| |#1| (-362)))) (-3392 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL (|has| |#1| (-362)))) (-3560 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-4190 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| |#1| (-362)))) (-4048 (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) NIL)) (-3960 (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) NIL)) (-1600 (($ $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-2578 (($ $) NIL (|has| |#1| (-451)))) (-4367 (((-112) $) NIL)) (-1377 (($ |#1| (-766)) NIL)) (-1524 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| |#1| (-554)))) (-4006 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| |#1| (-554)))) (-3161 (((-766) $) NIL)) (-4371 (($ $ $) NIL (|has| |#1| (-362)))) (-1934 (($ $ $) NIL (|has| |#1| (-362)))) (-2516 (($ $ $) NIL (|has| |#1| (-362)))) (-3552 (($ $ $) NIL (|has| |#1| (-362)))) (-1989 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL (|has| |#1| (-362)))) (-3151 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-1651 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| |#1| (-362)))) (-1573 ((|#1| $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1762 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554)))) (-2343 ((|#1| $ |#1|) NIL)) (-3606 (($ $ $) NIL (|has| |#1| (-362)))) (-2250 (((-766) $) NIL)) (-2201 ((|#1| $) NIL (|has| |#1| (-451)))) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ (-406 (-562))) NIL (|has| |#1| (-1033 (-406 (-562))))) (($ |#1|) NIL)) (-3969 (((-639 |#1|) $) NIL)) (-2266 ((|#1| $ (-766)) NIL)) (-1568 (((-766)) NIL)) (-1360 ((|#1| $ |#1| |#1|) NIL)) (-1926 (($ $) NIL)) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3113 (($) NIL)) (-1733 (((-112) $ $) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-647 |#1|) (-650 |#1|) (-232)) (T -647)) -NIL -(-650 |#1|) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2818 (($ $) NIL (|has| |#1| (-362)))) (-4039 (($ $ $) NIL (|has| |#1| (-362)))) (-2061 (($ $ (-766)) NIL (|has| |#1| (-362)))) (-2781 (((-3 $ "failed") $ $) NIL)) (-3329 (($) NIL T CONST)) (-1944 (($ $ $) NIL (|has| |#1| (-362)))) (-3711 (($ $ $) NIL (|has| |#1| (-362)))) (-1884 (($ $ $) NIL (|has| |#1| (-362)))) (-1353 (($ $ $) NIL (|has| |#1| (-362)))) (-3392 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL (|has| |#1| (-362)))) (-3560 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-4190 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| |#1| (-362)))) (-4048 (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) NIL)) (-3960 (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) NIL)) (-1600 (($ $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-2578 (($ $) NIL (|has| |#1| (-451)))) (-4367 (((-112) $) NIL)) (-1377 (($ |#1| (-766)) NIL)) (-1524 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| |#1| (-554)))) (-4006 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| |#1| (-554)))) (-3161 (((-766) $) NIL)) (-4371 (($ $ $) NIL (|has| |#1| (-362)))) (-1934 (($ $ $) NIL (|has| |#1| (-362)))) (-2516 (($ $ $) NIL (|has| |#1| (-362)))) (-3552 (($ $ $) NIL (|has| |#1| (-362)))) (-1989 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL (|has| |#1| (-362)))) (-3151 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-1651 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| |#1| (-362)))) (-1573 ((|#1| $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1762 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554)))) (-2343 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3606 (($ $ $) NIL (|has| |#1| (-362)))) (-2250 (((-766) $) NIL)) (-2201 ((|#1| $) NIL (|has| |#1| (-451)))) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ (-406 (-562))) NIL (|has| |#1| (-1033 (-406 (-562))))) (($ |#1|) NIL)) (-3969 (((-639 |#1|) $) NIL)) (-2266 ((|#1| $ (-766)) NIL)) (-1568 (((-766)) NIL)) (-1360 ((|#1| $ |#1| |#1|) NIL)) (-1926 (($ $) NIL)) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3113 (($) NIL)) (-1733 (((-112) $ $) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-648 |#1| |#2|) (-13 (-650 |#1|) (-285 |#2| |#2|)) (-232) (-13 (-642 |#1|) (-10 -8 (-15 -4029 ($ $))))) (T -648)) -NIL -(-13 (-650 |#1|) (-285 |#2| |#2|)) -((-2818 (($ $) 26)) (-1926 (($ $) 24)) (-3113 (($) 12))) -(((-649 |#1| |#2|) (-10 -8 (-15 -2818 (|#1| |#1|)) (-15 -1926 (|#1| |#1|)) (-15 -3113 (|#1|))) (-650 |#2|) (-1044)) (T -649)) -NIL -(-10 -8 (-15 -2818 (|#1| |#1|)) (-15 -1926 (|#1| |#1|)) (-15 -3113 (|#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2818 (($ $) 81 (|has| |#1| (-362)))) (-4039 (($ $ $) 83 (|has| |#1| (-362)))) (-2061 (($ $ (-766)) 82 (|has| |#1| (-362)))) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-1944 (($ $ $) 44 (|has| |#1| (-362)))) (-3711 (($ $ $) 45 (|has| |#1| (-362)))) (-1884 (($ $ $) 47 (|has| |#1| (-362)))) (-1353 (($ $ $) 42 (|has| |#1| (-362)))) (-3392 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) 41 (|has| |#1| (-362)))) (-3560 (((-3 $ "failed") $ $) 43 (|has| |#1| (-362)))) (-4190 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 46 (|has| |#1| (-362)))) (-4048 (((-3 (-562) "failed") $) 74 (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) 71 (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) 68)) (-3960 (((-562) $) 73 (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) 70 (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) 69)) (-1600 (($ $) 63)) (-1694 (((-3 $ "failed") $) 33)) (-2578 (($ $) 54 (|has| |#1| (-451)))) (-4367 (((-112) $) 31)) (-1377 (($ |#1| (-766)) 61)) (-1524 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 56 (|has| |#1| (-554)))) (-4006 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 57 (|has| |#1| (-554)))) (-3161 (((-766) $) 65)) (-4371 (($ $ $) 51 (|has| |#1| (-362)))) (-1934 (($ $ $) 52 (|has| |#1| (-362)))) (-2516 (($ $ $) 40 (|has| |#1| (-362)))) (-3552 (($ $ $) 49 (|has| |#1| (-362)))) (-1989 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) 48 (|has| |#1| (-362)))) (-3151 (((-3 $ "failed") $ $) 50 (|has| |#1| (-362)))) (-1651 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 53 (|has| |#1| (-362)))) (-1573 ((|#1| $) 64)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-1762 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-554)))) (-2343 ((|#1| $ |#1|) 86)) (-3606 (($ $ $) 80 (|has| |#1| (-362)))) (-2250 (((-766) $) 66)) (-2201 ((|#1| $) 55 (|has| |#1| (-451)))) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ (-406 (-562))) 72 (|has| |#1| (-1033 (-406 (-562))))) (($ |#1|) 67)) (-3969 (((-639 |#1|) $) 60)) (-2266 ((|#1| $ (-766)) 62)) (-1568 (((-766)) 28)) (-1360 ((|#1| $ |#1| |#1|) 59)) (-1926 (($ $) 84)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3113 (($) 85)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75))) -(((-650 |#1|) (-139) (-1044)) (T -650)) -((-3113 (*1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1044)))) (-1926 (*1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1044)))) (-4039 (*1 *1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1044)) (-4 *2 (-362)))) (-2061 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-650 *3)) (-4 *3 (-1044)) (-4 *3 (-362)))) (-2818 (*1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1044)) (-4 *2 (-362)))) (-3606 (*1 *1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1044)) (-4 *2 (-362))))) -(-13 (-847 |t#1|) (-285 |t#1| |t#1|) (-10 -8 (-15 -3113 ($)) (-15 -1926 ($ $)) (IF (|has| |t#1| (-362)) (PROGN (-15 -4039 ($ $ $)) (-15 -2061 ($ $ (-766))) (-15 -2818 ($ $)) (-15 -3606 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-171)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-612 #0=(-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((-612 (-562)) . T) ((-612 |#1|) . T) ((-609 (-857)) . T) ((-285 |#1| |#1|) . T) ((-410 |#1|) . T) ((-642 |#1|) . T) ((-642 $) . T) ((-712 |#1|) |has| |#1| (-171)) ((-721) . T) ((-1033 #0#) |has| |#1| (-1033 (-406 (-562)))) ((-1033 (-562)) |has| |#1| (-1033 (-562))) ((-1033 |#1|) . T) ((-1050 |#1|) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-847 |#1|) . T)) -((-1454 (((-639 (-647 (-406 |#2|))) (-647 (-406 |#2|))) 74 (|has| |#1| (-27)))) (-1635 (((-639 (-647 (-406 |#2|))) (-647 (-406 |#2|))) 73 (|has| |#1| (-27))) (((-639 (-647 (-406 |#2|))) (-647 (-406 |#2|)) (-1 (-639 |#1|) |#2|)) 17))) -(((-651 |#1| |#2|) (-10 -7 (-15 -1635 ((-639 (-647 (-406 |#2|))) (-647 (-406 |#2|)) (-1 (-639 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1635 ((-639 (-647 (-406 |#2|))) (-647 (-406 |#2|)))) (-15 -1454 ((-639 (-647 (-406 |#2|))) (-647 (-406 |#2|))))) |%noBranch|)) (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562)))) (-1232 |#1|)) (T -651)) -((-1454 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-4 *5 (-1232 *4)) (-5 *2 (-639 (-647 (-406 *5)))) (-5 *1 (-651 *4 *5)) (-5 *3 (-647 (-406 *5))))) (-1635 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-4 *5 (-1232 *4)) (-5 *2 (-639 (-647 (-406 *5)))) (-5 *1 (-651 *4 *5)) (-5 *3 (-647 (-406 *5))))) (-1635 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-639 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-4 *6 (-1232 *5)) (-5 *2 (-639 (-647 (-406 *6)))) (-5 *1 (-651 *5 *6)) (-5 *3 (-647 (-406 *6)))))) -(-10 -7 (-15 -1635 ((-639 (-647 (-406 |#2|))) (-647 (-406 |#2|)) (-1 (-639 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1635 ((-639 (-647 (-406 |#2|))) (-647 (-406 |#2|)))) (-15 -1454 ((-639 (-647 (-406 |#2|))) (-647 (-406 |#2|))))) |%noBranch|)) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2818 (($ $) NIL (|has| |#1| (-362)))) (-4039 (($ $ $) 28 (|has| |#1| (-362)))) (-2061 (($ $ (-766)) 31 (|has| |#1| (-362)))) (-2781 (((-3 $ "failed") $ $) NIL)) (-3329 (($) NIL T CONST)) (-1944 (($ $ $) NIL (|has| |#1| (-362)))) (-3711 (($ $ $) NIL (|has| |#1| (-362)))) (-1884 (($ $ $) NIL (|has| |#1| (-362)))) (-1353 (($ $ $) NIL (|has| |#1| (-362)))) (-3392 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL (|has| |#1| (-362)))) (-3560 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-4190 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| |#1| (-362)))) (-4048 (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) NIL)) (-3960 (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) NIL)) (-1600 (($ $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-2578 (($ $) NIL (|has| |#1| (-451)))) (-4367 (((-112) $) NIL)) (-1377 (($ |#1| (-766)) NIL)) (-1524 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| |#1| (-554)))) (-4006 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| |#1| (-554)))) (-3161 (((-766) $) NIL)) (-4371 (($ $ $) NIL (|has| |#1| (-362)))) (-1934 (($ $ $) NIL (|has| |#1| (-362)))) (-2516 (($ $ $) NIL (|has| |#1| (-362)))) (-3552 (($ $ $) NIL (|has| |#1| (-362)))) (-1989 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL (|has| |#1| (-362)))) (-3151 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-1651 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| |#1| (-362)))) (-1573 ((|#1| $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1762 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554)))) (-2343 ((|#1| $ |#1|) 24)) (-3606 (($ $ $) 33 (|has| |#1| (-362)))) (-2250 (((-766) $) NIL)) (-2201 ((|#1| $) NIL (|has| |#1| (-451)))) (-4053 (((-857) $) 20) (($ (-562)) NIL) (($ (-406 (-562))) NIL (|has| |#1| (-1033 (-406 (-562))))) (($ |#1|) NIL)) (-3969 (((-639 |#1|) $) NIL)) (-2266 ((|#1| $ (-766)) NIL)) (-1568 (((-766)) NIL)) (-1360 ((|#1| $ |#1| |#1|) 23)) (-1926 (($ $) NIL)) (-2285 (($) 21 T CONST)) (-2294 (($) 8 T CONST)) (-3113 (($) NIL)) (-1733 (((-112) $ $) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-652 |#1| |#2|) (-650 |#1|) (-1044) (-1 |#1| |#1|)) (T -652)) -NIL -(-650 |#1|) -((-4039 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-2061 ((|#2| |#2| (-766) (-1 |#1| |#1|)) 40)) (-3606 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61))) -(((-653 |#1| |#2|) (-10 -7 (-15 -4039 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2061 (|#2| |#2| (-766) (-1 |#1| |#1|))) (-15 -3606 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-362) (-650 |#1|)) (T -653)) -((-3606 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-362)) (-5 *1 (-653 *4 *2)) (-4 *2 (-650 *4)))) (-2061 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-766)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362)) (-5 *1 (-653 *5 *2)) (-4 *2 (-650 *5)))) (-4039 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-362)) (-5 *1 (-653 *4 *2)) (-4 *2 (-650 *4))))) -(-10 -7 (-15 -4039 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2061 (|#2| |#2| (-766) (-1 |#1| |#1|))) (-15 -3606 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-2306 (($ $ $) 9))) -(((-654 |#1|) (-10 -8 (-15 -2306 (|#1| |#1| |#1|))) (-655)) (T -654)) -NIL -(-10 -8 (-15 -2306 (|#1| |#1| |#1|))) -((-4041 (((-112) $ $) 7)) (-3294 (($ $) 10)) (-2306 (($ $ $) 8)) (-1733 (((-112) $ $) 6)) (-2297 (($ $ $) 9))) -(((-655) (-139)) (T -655)) -((-3294 (*1 *1 *1) (-4 *1 (-655))) (-2297 (*1 *1 *1 *1) (-4 *1 (-655))) (-2306 (*1 *1 *1 *1) (-4 *1 (-655)))) -(-13 (-102) (-10 -8 (-15 -3294 ($ $)) (-15 -2297 ($ $ $)) (-15 -2306 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-858)) . T) ((-1093) . T)) +((-1677 (((-112) $ $) NIL)) (-3749 (((-767) $) 15)) (-3979 (($ $ |#1|) 56)) (-2907 (($ $) 32)) (-4382 (($ $) 31)) (-2131 (((-3 |#1| "failed") $) 48)) (-2058 ((|#1| $) NIL)) (-4139 (($ |#1| |#2| $) 62) (($ $ $) 63)) (-2349 (((-858) $ (-1 (-858) (-858) (-858)) (-1 (-858) (-858) (-858)) (-563)) 46)) (-2768 ((|#1| $ (-563)) 30)) (-4208 ((|#2| $ (-563)) 29)) (-1633 (($ (-1 |#1| |#1|) $) 34)) (-2163 (($ (-1 |#2| |#2|) $) 38)) (-3270 (($) 10)) (-2795 (($ |#1| |#2|) 22)) (-3419 (($ (-640 (-2 (|:| |gen| |#1|) (|:| -3368 |#2|)))) 23)) (-1292 (((-640 (-2 (|:| |gen| |#1|) (|:| -3368 |#2|))) $) 13)) (-1978 (($ |#1| $) 57)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1808 (((-112) $ $) 60)) (-1693 (((-858) $) 19) (($ |#1|) 16)) (-1718 (((-112) $ $) 25))) +(((-644 |#1| |#2| |#3|) (-13 (-1093) (-1034 |#1|) (-10 -8 (-15 -2349 ((-858) $ (-1 (-858) (-858) (-858)) (-1 (-858) (-858) (-858)) (-563))) (-15 -1292 ((-640 (-2 (|:| |gen| |#1|) (|:| -3368 |#2|))) $)) (-15 -2795 ($ |#1| |#2|)) (-15 -3419 ($ (-640 (-2 (|:| |gen| |#1|) (|:| -3368 |#2|))))) (-15 -4208 (|#2| $ (-563))) (-15 -2768 (|#1| $ (-563))) (-15 -4382 ($ $)) (-15 -2907 ($ $)) (-15 -3749 ((-767) $)) (-15 -3270 ($)) (-15 -3979 ($ $ |#1|)) (-15 -1978 ($ |#1| $)) (-15 -4139 ($ |#1| |#2| $)) (-15 -4139 ($ $ $)) (-15 -1808 ((-112) $ $)) (-15 -2163 ($ (-1 |#2| |#2|) $)) (-15 -1633 ($ (-1 |#1| |#1|) $)))) (-1093) (-23) |#2|) (T -644)) +((-2349 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-858) (-858) (-858))) (-5 *4 (-563)) (-5 *2 (-858)) (-5 *1 (-644 *5 *6 *7)) (-4 *5 (-1093)) (-4 *6 (-23)) (-14 *7 *6))) (-1292 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3368 *4)))) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-1093)) (-4 *4 (-23)) (-14 *5 *4))) (-2795 (*1 *1 *2 *3) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) (-14 *4 *3))) (-3419 (*1 *1 *2) (-12 (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3368 *4)))) (-4 *3 (-1093)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-644 *3 *4 *5)))) (-4208 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *2 (-23)) (-5 *1 (-644 *4 *2 *5)) (-4 *4 (-1093)) (-14 *5 *2))) (-2768 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *2 (-1093)) (-5 *1 (-644 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-4382 (*1 *1 *1) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) (-14 *4 *3))) (-2907 (*1 *1 *1) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) (-14 *4 *3))) (-3749 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-1093)) (-4 *4 (-23)) (-14 *5 *4))) (-3270 (*1 *1) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) (-14 *4 *3))) (-3979 (*1 *1 *1 *2) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) (-14 *4 *3))) (-1978 (*1 *1 *2 *1) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) (-14 *4 *3))) (-4139 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) (-14 *4 *3))) (-4139 (*1 *1 *1 *1) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) (-14 *4 *3))) (-1808 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-1093)) (-4 *4 (-23)) (-14 *5 *4))) (-2163 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-1093)))) (-1633 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1093)) (-5 *1 (-644 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1093) (-1034 |#1|) (-10 -8 (-15 -2349 ((-858) $ (-1 (-858) (-858) (-858)) (-1 (-858) (-858) (-858)) (-563))) (-15 -1292 ((-640 (-2 (|:| |gen| |#1|) (|:| -3368 |#2|))) $)) (-15 -2795 ($ |#1| |#2|)) (-15 -3419 ($ (-640 (-2 (|:| |gen| |#1|) (|:| -3368 |#2|))))) (-15 -4208 (|#2| $ (-563))) (-15 -2768 (|#1| $ (-563))) (-15 -4382 ($ $)) (-15 -2907 ($ $)) (-15 -3749 ((-767) $)) (-15 -3270 ($)) (-15 -3979 ($ $ |#1|)) (-15 -1978 ($ |#1| $)) (-15 -4139 ($ |#1| |#2| $)) (-15 -4139 ($ $ $)) (-15 -1808 ((-112) $ $)) (-15 -2163 ($ (-1 |#2| |#2|) $)) (-15 -1633 ($ (-1 |#1| |#1|) $)))) +((-3860 (((-563) $) 23)) (-3396 (($ |#2| $ (-563)) 21) (($ $ $ (-563)) NIL)) (-4318 (((-640 (-563)) $) 12)) (-3192 (((-112) (-563) $) 14)) (-2853 (($ $ |#2|) 18) (($ |#2| $) 19) (($ $ $) NIL) (($ (-640 $)) NIL))) +(((-645 |#1| |#2|) (-10 -8 (-15 -3396 (|#1| |#1| |#1| (-563))) (-15 -3396 (|#1| |#2| |#1| (-563))) (-15 -2853 (|#1| (-640 |#1|))) (-15 -2853 (|#1| |#1| |#1|)) (-15 -2853 (|#1| |#2| |#1|)) (-15 -2853 (|#1| |#1| |#2|)) (-15 -3860 ((-563) |#1|)) (-15 -4318 ((-640 (-563)) |#1|)) (-15 -3192 ((-112) (-563) |#1|))) (-646 |#2|) (-1208)) (T -645)) +NIL +(-10 -8 (-15 -3396 (|#1| |#1| |#1| (-563))) (-15 -3396 (|#1| |#2| |#1| (-563))) (-15 -2853 (|#1| (-640 |#1|))) (-15 -2853 (|#1| |#1| |#1|)) (-15 -2853 (|#1| |#2| |#1|)) (-15 -2853 (|#1| |#1| |#2|)) (-15 -3860 ((-563) |#1|)) (-15 -4318 ((-640 (-563)) |#1|)) (-15 -3192 ((-112) (-563) |#1|))) +((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-4378 (((-1262) $ (-563) (-563)) 40 (|has| $ (-6 -4408)))) (-2759 (((-112) $ (-767)) 8)) (-1849 ((|#1| $ (-563) |#1|) 52 (|has| $ (-6 -4408))) ((|#1| $ (-1224 (-563)) |#1|) 58 (|has| $ (-6 -4408)))) (-2256 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4407)))) (-4239 (($) 7 T CONST)) (-3813 (($ $) 78 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1459 (($ |#1| $) 77 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4407)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4407)))) (-4355 ((|#1| $ (-563) |#1|) 53 (|has| $ (-6 -4408)))) (-4293 ((|#1| $ (-563)) 51)) (-2659 (((-640 |#1|) $) 30 (|has| $ (-6 -4407)))) (-1566 (($ (-767) |#1|) 69)) (-2581 (((-112) $ (-767)) 9)) (-2411 (((-563) $) 43 (|has| (-563) (-846)))) (-2259 (((-640 |#1|) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-3860 (((-563) $) 44 (|has| (-563) (-846)))) (-4345 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2382 (((-112) $ (-767)) 10)) (-3573 (((-1151) $) 22 (|has| |#1| (-1093)))) (-3396 (($ |#1| $ (-563)) 60) (($ $ $ (-563)) 59)) (-4318 (((-640 (-563)) $) 46)) (-3192 (((-112) (-563) $) 47)) (-1694 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3781 ((|#1| $) 42 (|has| (-563) (-846)))) (-4203 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2358 (($ $ |#1|) 41 (|has| $ (-6 -4408)))) (-3138 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) 14)) (-2105 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2836 (((-640 |#1|) $) 48)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-2309 ((|#1| $ (-563) |#1|) 50) ((|#1| $ (-563)) 49) (($ $ (-1224 (-563))) 63)) (-2963 (($ $ (-563)) 62) (($ $ (-1224 (-563))) 61)) (-1709 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4407))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1872 (($ $) 13)) (-2220 (((-536) $) 79 (|has| |#1| (-611 (-536))))) (-1707 (($ (-640 |#1|)) 70)) (-2853 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-640 $)) 65)) (-1693 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-4383 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-646 |#1|) (-140) (-1208)) (T -646)) +((-1566 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-4 *1 (-646 *3)) (-4 *3 (-1208)))) (-2853 (*1 *1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1208)))) (-2853 (*1 *1 *2 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1208)))) (-2853 (*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1208)))) (-2853 (*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-646 *3)) (-4 *3 (-1208)))) (-2240 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-646 *3)) (-4 *3 (-1208)))) (-2309 (*1 *1 *1 *2) (-12 (-5 *2 (-1224 (-563))) (-4 *1 (-646 *3)) (-4 *3 (-1208)))) (-2963 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-646 *3)) (-4 *3 (-1208)))) (-2963 (*1 *1 *1 *2) (-12 (-5 *2 (-1224 (-563))) (-4 *1 (-646 *3)) (-4 *3 (-1208)))) (-3396 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *1 (-646 *2)) (-4 *2 (-1208)))) (-3396 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-646 *3)) (-4 *3 (-1208)))) (-1849 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1224 (-563))) (|has| *1 (-6 -4408)) (-4 *1 (-646 *2)) (-4 *2 (-1208))))) +(-13 (-601 (-563) |t#1|) (-151 |t#1|) (-10 -8 (-15 -1566 ($ (-767) |t#1|)) (-15 -2853 ($ $ |t#1|)) (-15 -2853 ($ |t#1| $)) (-15 -2853 ($ $ $)) (-15 -2853 ($ (-640 $))) (-15 -2240 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2309 ($ $ (-1224 (-563)))) (-15 -2963 ($ $ (-563))) (-15 -2963 ($ $ (-1224 (-563)))) (-15 -3396 ($ |t#1| $ (-563))) (-15 -3396 ($ $ $ (-563))) (IF (|has| $ (-6 -4408)) (-15 -1849 (|t#1| $ (-1224 (-563)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4032 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-286 #0=(-563) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-601 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T)) +((-1793 (((-3 |#2| "failed") |#3| |#2| (-1169) |#2| (-640 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -4315 (-640 |#2|))) "failed") |#3| |#2| (-1169)) 44))) +(((-647 |#1| |#2| |#3|) (-10 -7 (-15 -1793 ((-3 (-2 (|:| |particular| |#2|) (|:| -4315 (-640 |#2|))) "failed") |#3| |#2| (-1169))) (-15 -1793 ((-3 |#2| "failed") |#3| |#2| (-1169) |#2| (-640 |#2|)))) (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)) (-13 (-29 |#1|) (-1193) (-955)) (-651 |#2|)) (T -647)) +((-1793 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-640 *2)) (-4 *2 (-13 (-29 *6) (-1193) (-955))) (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *1 (-647 *6 *2 *3)) (-4 *3 (-651 *2)))) (-1793 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1169)) (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-4 *4 (-13 (-29 *6) (-1193) (-955))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4315 (-640 *4)))) (-5 *1 (-647 *6 *4 *3)) (-4 *3 (-651 *4))))) +(-10 -7 (-15 -1793 ((-3 (-2 (|:| |particular| |#2|) (|:| -4315 (-640 |#2|))) "failed") |#3| |#2| (-1169))) (-15 -1793 ((-3 |#2| "failed") |#3| |#2| (-1169) |#2| (-640 |#2|)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1925 (($ $) NIL (|has| |#1| (-363)))) (-3849 (($ $ $) NIL (|has| |#1| (-363)))) (-2798 (($ $ (-767)) NIL (|has| |#1| (-363)))) (-1495 (((-3 $ "failed") $ $) NIL)) (-4239 (($) NIL T CONST)) (-4006 (($ $ $) NIL (|has| |#1| (-363)))) (-3737 (($ $ $) NIL (|has| |#1| (-363)))) (-1523 (($ $ $) NIL (|has| |#1| (-363)))) (-2237 (($ $ $) NIL (|has| |#1| (-363)))) (-3621 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL (|has| |#1| (-363)))) (-1599 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-1490 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| |#1| (-363)))) (-2131 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) NIL)) (-2058 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) NIL)) (-2751 (($ $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-1300 (($ $) NIL (|has| |#1| (-452)))) (-3827 (((-112) $) NIL)) (-2588 (($ |#1| (-767)) NIL)) (-1293 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| |#1| (-555)))) (-3552 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| |#1| (-555)))) (-2048 (((-767) $) NIL)) (-3861 (($ $ $) NIL (|has| |#1| (-363)))) (-3911 (($ $ $) NIL (|has| |#1| (-363)))) (-1909 (($ $ $) NIL (|has| |#1| (-363)))) (-1511 (($ $ $) NIL (|has| |#1| (-363)))) (-3214 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL (|has| |#1| (-363)))) (-3121 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-4262 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| |#1| (-363)))) (-2726 ((|#1| $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-3008 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555)))) (-2309 ((|#1| $ |#1|) NIL)) (-3891 (($ $ $) NIL (|has| |#1| (-363)))) (-4167 (((-767) $) NIL)) (-1836 ((|#1| $) NIL (|has| |#1| (-452)))) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ (-407 (-563))) NIL (|has| |#1| (-1034 (-407 (-563))))) (($ |#1|) NIL)) (-1337 (((-640 |#1|) $) NIL)) (-4319 ((|#1| $ (-767)) NIL)) (-1675 (((-767)) NIL)) (-3726 ((|#1| $ |#1| |#1|) NIL)) (-3831 (($ $) NIL)) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-3209 (($) NIL)) (-1718 (((-112) $ $) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-648 |#1|) (-651 |#1|) (-233)) (T -648)) +NIL +(-651 |#1|) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1925 (($ $) NIL (|has| |#1| (-363)))) (-3849 (($ $ $) NIL (|has| |#1| (-363)))) (-2798 (($ $ (-767)) NIL (|has| |#1| (-363)))) (-1495 (((-3 $ "failed") $ $) NIL)) (-4239 (($) NIL T CONST)) (-4006 (($ $ $) NIL (|has| |#1| (-363)))) (-3737 (($ $ $) NIL (|has| |#1| (-363)))) (-1523 (($ $ $) NIL (|has| |#1| (-363)))) (-2237 (($ $ $) NIL (|has| |#1| (-363)))) (-3621 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL (|has| |#1| (-363)))) (-1599 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-1490 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| |#1| (-363)))) (-2131 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) NIL)) (-2058 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) NIL)) (-2751 (($ $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-1300 (($ $) NIL (|has| |#1| (-452)))) (-3827 (((-112) $) NIL)) (-2588 (($ |#1| (-767)) NIL)) (-1293 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| |#1| (-555)))) (-3552 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| |#1| (-555)))) (-2048 (((-767) $) NIL)) (-3861 (($ $ $) NIL (|has| |#1| (-363)))) (-3911 (($ $ $) NIL (|has| |#1| (-363)))) (-1909 (($ $ $) NIL (|has| |#1| (-363)))) (-1511 (($ $ $) NIL (|has| |#1| (-363)))) (-3214 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL (|has| |#1| (-363)))) (-3121 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-4262 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| |#1| (-363)))) (-2726 ((|#1| $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-3008 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555)))) (-2309 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3891 (($ $ $) NIL (|has| |#1| (-363)))) (-4167 (((-767) $) NIL)) (-1836 ((|#1| $) NIL (|has| |#1| (-452)))) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ (-407 (-563))) NIL (|has| |#1| (-1034 (-407 (-563))))) (($ |#1|) NIL)) (-1337 (((-640 |#1|) $) NIL)) (-4319 ((|#1| $ (-767)) NIL)) (-1675 (((-767)) NIL)) (-3726 ((|#1| $ |#1| |#1|) NIL)) (-3831 (($ $) NIL)) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-3209 (($) NIL)) (-1718 (((-112) $ $) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-649 |#1| |#2|) (-13 (-651 |#1|) (-286 |#2| |#2|)) (-233) (-13 (-643 |#1|) (-10 -8 (-15 -4202 ($ $))))) (T -649)) +NIL +(-13 (-651 |#1|) (-286 |#2| |#2|)) +((-1925 (($ $) 26)) (-3831 (($ $) 24)) (-3209 (($) 12))) +(((-650 |#1| |#2|) (-10 -8 (-15 -1925 (|#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 -3209 (|#1|))) (-651 |#2|) (-1045)) (T -650)) +NIL +(-10 -8 (-15 -1925 (|#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 -3209 (|#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1925 (($ $) 81 (|has| |#1| (-363)))) (-3849 (($ $ $) 83 (|has| |#1| (-363)))) (-2798 (($ $ (-767)) 82 (|has| |#1| (-363)))) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-4006 (($ $ $) 44 (|has| |#1| (-363)))) (-3737 (($ $ $) 45 (|has| |#1| (-363)))) (-1523 (($ $ $) 47 (|has| |#1| (-363)))) (-2237 (($ $ $) 42 (|has| |#1| (-363)))) (-3621 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) 41 (|has| |#1| (-363)))) (-1599 (((-3 $ "failed") $ $) 43 (|has| |#1| (-363)))) (-1490 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 46 (|has| |#1| (-363)))) (-2131 (((-3 (-563) "failed") $) 74 (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) 71 (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 68)) (-2058 (((-563) $) 73 (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) 70 (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) 69)) (-2751 (($ $) 63)) (-3400 (((-3 $ "failed") $) 33)) (-1300 (($ $) 54 (|has| |#1| (-452)))) (-3827 (((-112) $) 31)) (-2588 (($ |#1| (-767)) 61)) (-1293 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 56 (|has| |#1| (-555)))) (-3552 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 57 (|has| |#1| (-555)))) (-2048 (((-767) $) 65)) (-3861 (($ $ $) 51 (|has| |#1| (-363)))) (-3911 (($ $ $) 52 (|has| |#1| (-363)))) (-1909 (($ $ $) 40 (|has| |#1| (-363)))) (-1511 (($ $ $) 49 (|has| |#1| (-363)))) (-3214 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) 48 (|has| |#1| (-363)))) (-3121 (((-3 $ "failed") $ $) 50 (|has| |#1| (-363)))) (-4262 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 53 (|has| |#1| (-363)))) (-2726 ((|#1| $) 64)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-3008 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-555)))) (-2309 ((|#1| $ |#1|) 86)) (-3891 (($ $ $) 80 (|has| |#1| (-363)))) (-4167 (((-767) $) 66)) (-1836 ((|#1| $) 55 (|has| |#1| (-452)))) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ (-407 (-563))) 72 (|has| |#1| (-1034 (-407 (-563))))) (($ |#1|) 67)) (-1337 (((-640 |#1|) $) 60)) (-4319 ((|#1| $ (-767)) 62)) (-1675 (((-767)) 28)) (-3726 ((|#1| $ |#1| |#1|) 59)) (-3831 (($ $) 84)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-3209 (($) 85)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75))) +(((-651 |#1|) (-140) (-1045)) (T -651)) +((-3209 (*1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1045)))) (-3831 (*1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1045)))) (-3849 (*1 *1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-2798 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-651 *3)) (-4 *3 (-1045)) (-4 *3 (-363)))) (-1925 (*1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-3891 (*1 *1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) +(-13 (-848 |t#1|) (-286 |t#1| |t#1|) (-10 -8 (-15 -3209 ($)) (-15 -3831 ($ $)) (IF (|has| |t#1| (-363)) (PROGN (-15 -3849 ($ $ $)) (-15 -2798 ($ $ (-767))) (-15 -1925 ($ $)) (-15 -3891 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 #0=(-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-610 (-858)) . T) ((-286 |#1| |#1|) . T) ((-411 |#1|) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 |#1|) |has| |#1| (-172)) ((-722) . T) ((-1034 #0#) |has| |#1| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 |#1|) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-848 |#1|) . T)) +((-2046 (((-640 (-648 (-407 |#2|))) (-648 (-407 |#2|))) 74 (|has| |#1| (-27)))) (-2174 (((-640 (-648 (-407 |#2|))) (-648 (-407 |#2|))) 73 (|has| |#1| (-27))) (((-640 (-648 (-407 |#2|))) (-648 (-407 |#2|)) (-1 (-640 |#1|) |#2|)) 17))) +(((-652 |#1| |#2|) (-10 -7 (-15 -2174 ((-640 (-648 (-407 |#2|))) (-648 (-407 |#2|)) (-1 (-640 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2174 ((-640 (-648 (-407 |#2|))) (-648 (-407 |#2|)))) (-15 -2046 ((-640 (-648 (-407 |#2|))) (-648 (-407 |#2|))))) |%noBranch|)) (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563)))) (-1233 |#1|)) (T -652)) +((-2046 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-4 *5 (-1233 *4)) (-5 *2 (-640 (-648 (-407 *5)))) (-5 *1 (-652 *4 *5)) (-5 *3 (-648 (-407 *5))))) (-2174 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-4 *5 (-1233 *4)) (-5 *2 (-640 (-648 (-407 *5)))) (-5 *1 (-652 *4 *5)) (-5 *3 (-648 (-407 *5))))) (-2174 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-640 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-4 *6 (-1233 *5)) (-5 *2 (-640 (-648 (-407 *6)))) (-5 *1 (-652 *5 *6)) (-5 *3 (-648 (-407 *6)))))) +(-10 -7 (-15 -2174 ((-640 (-648 (-407 |#2|))) (-648 (-407 |#2|)) (-1 (-640 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2174 ((-640 (-648 (-407 |#2|))) (-648 (-407 |#2|)))) (-15 -2046 ((-640 (-648 (-407 |#2|))) (-648 (-407 |#2|))))) |%noBranch|)) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1925 (($ $) NIL (|has| |#1| (-363)))) (-3849 (($ $ $) 28 (|has| |#1| (-363)))) (-2798 (($ $ (-767)) 31 (|has| |#1| (-363)))) (-1495 (((-3 $ "failed") $ $) NIL)) (-4239 (($) NIL T CONST)) (-4006 (($ $ $) NIL (|has| |#1| (-363)))) (-3737 (($ $ $) NIL (|has| |#1| (-363)))) (-1523 (($ $ $) NIL (|has| |#1| (-363)))) (-2237 (($ $ $) NIL (|has| |#1| (-363)))) (-3621 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL (|has| |#1| (-363)))) (-1599 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-1490 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| |#1| (-363)))) (-2131 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) NIL)) (-2058 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) NIL)) (-2751 (($ $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-1300 (($ $) NIL (|has| |#1| (-452)))) (-3827 (((-112) $) NIL)) (-2588 (($ |#1| (-767)) NIL)) (-1293 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| |#1| (-555)))) (-3552 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| |#1| (-555)))) (-2048 (((-767) $) NIL)) (-3861 (($ $ $) NIL (|has| |#1| (-363)))) (-3911 (($ $ $) NIL (|has| |#1| (-363)))) (-1909 (($ $ $) NIL (|has| |#1| (-363)))) (-1511 (($ $ $) NIL (|has| |#1| (-363)))) (-3214 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL (|has| |#1| (-363)))) (-3121 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-4262 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| |#1| (-363)))) (-2726 ((|#1| $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-3008 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555)))) (-2309 ((|#1| $ |#1|) 24)) (-3891 (($ $ $) 33 (|has| |#1| (-363)))) (-4167 (((-767) $) NIL)) (-1836 ((|#1| $) NIL (|has| |#1| (-452)))) (-1693 (((-858) $) 20) (($ (-563)) NIL) (($ (-407 (-563))) NIL (|has| |#1| (-1034 (-407 (-563))))) (($ |#1|) NIL)) (-1337 (((-640 |#1|) $) NIL)) (-4319 ((|#1| $ (-767)) NIL)) (-1675 (((-767)) NIL)) (-3726 ((|#1| $ |#1| |#1|) 23)) (-3831 (($ $) NIL)) (-2241 (($) 21 T CONST)) (-2254 (($) 8 T CONST)) (-3209 (($) NIL)) (-1718 (((-112) $ $) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-653 |#1| |#2|) (-651 |#1|) (-1045) (-1 |#1| |#1|)) (T -653)) +NIL +(-651 |#1|) +((-3849 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-2798 ((|#2| |#2| (-767) (-1 |#1| |#1|)) 40)) (-3891 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61))) +(((-654 |#1| |#2|) (-10 -7 (-15 -3849 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2798 (|#2| |#2| (-767) (-1 |#1| |#1|))) (-15 -3891 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-363) (-651 |#1|)) (T -654)) +((-3891 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-654 *4 *2)) (-4 *2 (-651 *4)))) (-2798 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-767)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-5 *1 (-654 *5 *2)) (-4 *2 (-651 *5)))) (-3849 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-654 *4 *2)) (-4 *2 (-651 *4))))) +(-10 -7 (-15 -3849 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2798 (|#2| |#2| (-767) (-1 |#1| |#1|))) (-15 -3891 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-1534 (($ $ $) 9))) +(((-655 |#1|) (-10 -8 (-15 -1534 (|#1| |#1| |#1|))) (-656)) (T -655)) +NIL +(-10 -8 (-15 -1534 (|#1| |#1| |#1|))) +((-1677 (((-112) $ $) 7)) (-3380 (($ $) 10)) (-1534 (($ $ $) 8)) (-1718 (((-112) $ $) 6)) (-1521 (($ $ $) 9))) +(((-656) (-140)) (T -656)) +((-3380 (*1 *1 *1) (-4 *1 (-656))) (-1521 (*1 *1 *1 *1) (-4 *1 (-656))) (-1534 (*1 *1 *1 *1) (-4 *1 (-656)))) +(-13 (-102) (-10 -8 (-15 -3380 ($ $)) (-15 -1521 ($ $ $)) (-15 -1534 ($ $ $)))) (((-102) . T)) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) 15)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3329 (($) NIL T CONST)) (-4063 ((|#1| $) 21)) (-1551 (($ $ $) NIL (|has| |#1| (-786)))) (-2993 (($ $ $) NIL (|has| |#1| (-786)))) (-3696 (((-1150) $) 46)) (-1709 (((-1112) $) NIL)) (-4079 ((|#3| $) 22)) (-4053 (((-857) $) 42)) (-2285 (($) 10 T CONST)) (-1798 (((-112) $ $) NIL (|has| |#1| (-786)))) (-1771 (((-112) $ $) NIL (|has| |#1| (-786)))) (-1733 (((-112) $ $) 20)) (-1785 (((-112) $ $) NIL (|has| |#1| (-786)))) (-1761 (((-112) $ $) 24 (|has| |#1| (-786)))) (-1859 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-1847 (($ $) 17) (($ $ $) NIL)) (-1836 (($ $ $) 27)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) -(((-656 |#1| |#2| |#3|) (-13 (-712 |#2|) (-10 -8 (IF (|has| |#1| (-786)) (-6 (-786)) |%noBranch|) (-15 -1859 ($ $ |#3|)) (-15 -1859 ($ |#1| |#3|)) (-15 -4063 (|#1| $)) (-15 -4079 (|#3| $)))) (-712 |#2|) (-171) (|SubsetCategory| (-721) |#2|)) (T -656)) -((-1859 (*1 *1 *1 *2) (-12 (-4 *4 (-171)) (-5 *1 (-656 *3 *4 *2)) (-4 *3 (-712 *4)) (-4 *2 (|SubsetCategory| (-721) *4)))) (-1859 (*1 *1 *2 *3) (-12 (-4 *4 (-171)) (-5 *1 (-656 *2 *4 *3)) (-4 *2 (-712 *4)) (-4 *3 (|SubsetCategory| (-721) *4)))) (-4063 (*1 *2 *1) (-12 (-4 *3 (-171)) (-4 *2 (-712 *3)) (-5 *1 (-656 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-721) *3)))) (-4079 (*1 *2 *1) (-12 (-4 *4 (-171)) (-4 *2 (|SubsetCategory| (-721) *4)) (-5 *1 (-656 *3 *4 *2)) (-4 *3 (-712 *4))))) -(-13 (-712 |#2|) (-10 -8 (IF (|has| |#1| (-786)) (-6 (-786)) |%noBranch|) (-15 -1859 ($ $ |#3|)) (-15 -1859 ($ |#1| |#3|)) (-15 -4063 (|#1| $)) (-15 -4079 (|#3| $)))) -((-2359 (((-3 (-639 (-1164 |#1|)) "failed") (-639 (-1164 |#1|)) (-1164 |#1|)) 33))) -(((-657 |#1|) (-10 -7 (-15 -2359 ((-3 (-639 (-1164 |#1|)) "failed") (-639 (-1164 |#1|)) (-1164 |#1|)))) (-904)) (T -657)) -((-2359 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-639 (-1164 *4))) (-5 *3 (-1164 *4)) (-4 *4 (-904)) (-5 *1 (-657 *4))))) -(-10 -7 (-15 -2359 ((-3 (-639 (-1164 |#1|)) "failed") (-639 (-1164 |#1|)) (-1164 |#1|)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2850 (((-639 |#1|) $) 82)) (-1772 (($ $ (-766)) 90)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3329 (($) NIL T CONST)) (-2403 (((-1280 |#1| |#2|) (-1280 |#1| |#2|) $) 48)) (-4048 (((-3 (-666 |#1|) "failed") $) NIL)) (-3960 (((-666 |#1|) $) NIL)) (-1600 (($ $) 89)) (-3627 (((-766) $) NIL)) (-1869 (((-639 $) $) NIL)) (-2833 (((-112) $) NIL)) (-3044 (($ (-666 |#1|) |#2|) 68)) (-2572 (($ $) 86)) (-4152 (($ (-1 |#2| |#2|) $) NIL)) (-2303 (((-1280 |#1| |#2|) (-1280 |#1| |#2|) $) 47)) (-2395 (((-2 (|:| |k| (-666 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1560 (((-666 |#1|) $) NIL)) (-1573 ((|#2| $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1433 (($ $ |#1| $) 30) (($ $ (-639 |#1|) (-639 $)) 32)) (-2250 (((-766) $) 88)) (-4064 (($ $ $) 20) (($ (-666 |#1|) (-666 |#1|)) 77) (($ (-666 |#1|) $) 75) (($ $ (-666 |#1|)) 76)) (-4053 (((-857) $) NIL) (($ |#1|) 74) (((-1271 |#1| |#2|) $) 58) (((-1280 |#1| |#2|) $) 41) (($ (-666 |#1|)) 25)) (-3969 (((-639 |#2|) $) NIL)) (-2266 ((|#2| $ (-666 |#1|)) NIL)) (-4221 ((|#2| (-1280 |#1| |#2|) $) 43)) (-2285 (($) 23 T CONST)) (-2174 (((-639 (-2 (|:| |k| (-666 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3192 (((-3 $ "failed") (-1271 |#1| |#2|)) 60)) (-4016 (($ (-666 |#1|)) 14)) (-1733 (((-112) $ $) 44)) (-1859 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1847 (($ $) 66) (($ $ $) NIL)) (-1836 (($ $ $) 29)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-666 |#1|)) NIL))) -(((-658 |#1| |#2|) (-13 (-373 |#1| |#2|) (-381 |#2| (-666 |#1|)) (-10 -8 (-15 -3192 ((-3 $ "failed") (-1271 |#1| |#2|))) (-15 -4064 ($ (-666 |#1|) (-666 |#1|))) (-15 -4064 ($ (-666 |#1|) $)) (-15 -4064 ($ $ (-666 |#1|))))) (-845) (-171)) (T -658)) -((-3192 (*1 *1 *2) (|partial| -12 (-5 *2 (-1271 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)) (-5 *1 (-658 *3 *4)))) (-4064 (*1 *1 *2 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-845)) (-5 *1 (-658 *3 *4)) (-4 *4 (-171)))) (-4064 (*1 *1 *2 *1) (-12 (-5 *2 (-666 *3)) (-4 *3 (-845)) (-5 *1 (-658 *3 *4)) (-4 *4 (-171)))) (-4064 (*1 *1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-845)) (-5 *1 (-658 *3 *4)) (-4 *4 (-171))))) -(-13 (-373 |#1| |#2|) (-381 |#2| (-666 |#1|)) (-10 -8 (-15 -3192 ((-3 $ "failed") (-1271 |#1| |#2|))) (-15 -4064 ($ (-666 |#1|) (-666 |#1|))) (-15 -4064 ($ (-666 |#1|) $)) (-15 -4064 ($ $ (-666 |#1|))))) -((-1706 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 49)) (-3737 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-2968 (($ (-1 (-112) |#2|) $) 27)) (-2673 (($ $) 55)) (-3923 (($ $) 63)) (-3729 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 36)) (-1954 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52)) (-4265 (((-562) |#2| $ (-562)) 60) (((-562) |#2| $) NIL) (((-562) (-1 (-112) |#2|) $) 46)) (-1458 (($ (-766) |#2|) 53)) (-3124 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 29)) (-4103 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-4152 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 54)) (-3716 (($ |#2|) 15)) (-1581 (($ $ $ (-562)) 35) (($ |#2| $ (-562)) 33)) (-1963 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 45)) (-1527 (($ $ (-1223 (-562))) 43) (($ $ (-562)) 37)) (-2694 (($ $ $ (-562)) 59)) (-4220 (($ $) 57)) (-1761 (((-112) $ $) 65))) -(((-659 |#1| |#2|) (-10 -8 (-15 -3716 (|#1| |#2|)) (-15 -1527 (|#1| |#1| (-562))) (-15 -1527 (|#1| |#1| (-1223 (-562)))) (-15 -3729 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1581 (|#1| |#2| |#1| (-562))) (-15 -1581 (|#1| |#1| |#1| (-562))) (-15 -3124 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2968 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3729 (|#1| |#2| |#1|)) (-15 -3923 (|#1| |#1|)) (-15 -3124 (|#1| |#1| |#1|)) (-15 -4103 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1706 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4265 ((-562) (-1 (-112) |#2|) |#1|)) (-15 -4265 ((-562) |#2| |#1|)) (-15 -4265 ((-562) |#2| |#1| (-562))) (-15 -4103 (|#1| |#1| |#1|)) (-15 -1706 ((-112) |#1|)) (-15 -2694 (|#1| |#1| |#1| (-562))) (-15 -2673 (|#1| |#1|)) (-15 -3737 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3737 (|#1| |#1|)) (-15 -1761 ((-112) |#1| |#1|)) (-15 -1954 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1954 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1954 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1963 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1458 (|#1| (-766) |#2|)) (-15 -4152 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4152 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4220 (|#1| |#1|))) (-660 |#2|) (-1207)) (T -659)) -NIL -(-10 -8 (-15 -3716 (|#1| |#2|)) (-15 -1527 (|#1| |#1| (-562))) (-15 -1527 (|#1| |#1| (-1223 (-562)))) (-15 -3729 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1581 (|#1| |#2| |#1| (-562))) (-15 -1581 (|#1| |#1| |#1| (-562))) (-15 -3124 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2968 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3729 (|#1| |#2| |#1|)) (-15 -3923 (|#1| |#1|)) (-15 -3124 (|#1| |#1| |#1|)) (-15 -4103 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1706 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4265 ((-562) (-1 (-112) |#2|) |#1|)) (-15 -4265 ((-562) |#2| |#1|)) (-15 -4265 ((-562) |#2| |#1| (-562))) (-15 -4103 (|#1| |#1| |#1|)) (-15 -1706 ((-112) |#1|)) (-15 -2694 (|#1| |#1| |#1| (-562))) (-15 -2673 (|#1| |#1|)) (-15 -3737 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3737 (|#1| |#1|)) (-15 -1761 ((-112) |#1| |#1|)) (-15 -1954 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1954 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1954 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1963 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1458 (|#1| (-766) |#2|)) (-15 -4152 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4152 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4220 (|#1| |#1|))) -((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-2533 ((|#1| $) 48)) (-2358 ((|#1| $) 65)) (-3120 (($ $) 67)) (-3655 (((-1261) $ (-562) (-562)) 97 (|has| $ (-6 -4404)))) (-1335 (($ $ (-562)) 52 (|has| $ (-6 -4404)))) (-1706 (((-112) $) 142 (|has| |#1| (-845))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-3737 (($ $) 146 (-12 (|has| |#1| (-845)) (|has| $ (-6 -4404)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4404)))) (-1395 (($ $) 141 (|has| |#1| (-845))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-3735 (((-112) $ (-766)) 8)) (-2677 ((|#1| $ |#1|) 39 (|has| $ (-6 -4404)))) (-3400 (($ $ $) 56 (|has| $ (-6 -4404)))) (-1393 ((|#1| $ |#1|) 54 (|has| $ (-6 -4404)))) (-3239 ((|#1| $ |#1|) 58 (|has| $ (-6 -4404)))) (-4200 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4404))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4404))) (($ $ "rest" $) 55 (|has| $ (-6 -4404))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4404))) ((|#1| $ (-1223 (-562)) |#1|) 117 (|has| $ (-6 -4404))) ((|#1| $ (-562) |#1|) 86 (|has| $ (-6 -4404)))) (-3742 (($ $ (-639 $)) 41 (|has| $ (-6 -4404)))) (-2968 (($ (-1 (-112) |#1|) $) 129)) (-3556 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4403)))) (-2349 ((|#1| $) 66)) (-3329 (($) 7 T CONST)) (-2673 (($ $) 144 (|has| $ (-6 -4404)))) (-2676 (($ $) 134)) (-1434 (($ $) 73) (($ $ (-766)) 71)) (-3923 (($ $) 131 (|has| |#1| (-1092)))) (-1459 (($ $) 99 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-3729 (($ |#1| $) 130 (|has| |#1| (-1092))) (($ (-1 (-112) |#1|) $) 125)) (-1475 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4403))) (($ |#1| $) 100 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1954 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1507 ((|#1| $ (-562) |#1|) 85 (|has| $ (-6 -4404)))) (-1420 ((|#1| $ (-562)) 87)) (-2101 (((-112) $) 83)) (-4265 (((-562) |#1| $ (-562)) 139 (|has| |#1| (-1092))) (((-562) |#1| $) 138 (|has| |#1| (-1092))) (((-562) (-1 (-112) |#1|) $) 137)) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4403)))) (-2409 (((-639 $) $) 50)) (-4188 (((-112) $ $) 42 (|has| |#1| (-1092)))) (-1458 (($ (-766) |#1|) 108)) (-4172 (((-112) $ (-766)) 9)) (-1849 (((-562) $) 95 (|has| (-562) (-845)))) (-1551 (($ $ $) 147 (|has| |#1| (-845)))) (-3124 (($ $ $) 132 (|has| |#1| (-845))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-4103 (($ $ $) 140 (|has| |#1| (-845))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-2123 (((-639 |#1|) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1929 (((-562) $) 94 (|has| (-562) (-845)))) (-2993 (($ $ $) 148 (|has| |#1| (-845)))) (-1491 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3716 (($ |#1|) 122)) (-4147 (((-112) $ (-766)) 10)) (-4008 (((-639 |#1|) $) 45)) (-3179 (((-112) $) 49)) (-3696 (((-1150) $) 22 (|has| |#1| (-1092)))) (-1504 ((|#1| $) 70) (($ $ (-766)) 68)) (-1581 (($ $ $ (-562)) 127) (($ |#1| $ (-562)) 126)) (-3295 (($ $ $ (-562)) 116) (($ |#1| $ (-562)) 115)) (-3336 (((-639 (-562)) $) 92)) (-1987 (((-112) (-562) $) 91)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-1421 ((|#1| $) 76) (($ $ (-766)) 74)) (-1963 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-3510 (($ $ |#1|) 96 (|has| $ (-6 -4404)))) (-3745 (((-112) $) 84)) (-3008 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) 14)) (-2716 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2366 (((-639 |#1|) $) 90)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-2343 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1223 (-562))) 112) ((|#1| $ (-562)) 89) ((|#1| $ (-562) |#1|) 88)) (-1423 (((-562) $ $) 44)) (-1527 (($ $ (-1223 (-562))) 124) (($ $ (-562)) 123)) (-2880 (($ $ (-1223 (-562))) 114) (($ $ (-562)) 113)) (-2473 (((-112) $) 46)) (-3734 (($ $) 62)) (-3659 (($ $) 59 (|has| $ (-6 -4404)))) (-3595 (((-766) $) 63)) (-2333 (($ $) 64)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4403))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-2694 (($ $ $ (-562)) 143 (|has| $ (-6 -4404)))) (-4220 (($ $) 13)) (-4208 (((-535) $) 98 (|has| |#1| (-610 (-535))))) (-4064 (($ (-639 |#1|)) 107)) (-2587 (($ $ $) 61) (($ $ |#1|) 60)) (-2767 (($ $ $) 78) (($ |#1| $) 77) (($ (-639 $)) 110) (($ $ |#1|) 109)) (-4053 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-3643 (((-639 $) $) 51)) (-2985 (((-112) $ $) 43 (|has| |#1| (-1092)))) (-2879 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4403)))) (-1798 (((-112) $ $) 150 (|has| |#1| (-845)))) (-1771 (((-112) $ $) 151 (|has| |#1| (-845)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-1785 (((-112) $ $) 149 (|has| |#1| (-845)))) (-1761 (((-112) $ $) 152 (|has| |#1| (-845)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-660 |#1|) (-139) (-1207)) (T -660)) -((-3716 (*1 *1 *2) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1207))))) -(-13 (-1141 |t#1|) (-372 |t#1|) (-281 |t#1|) (-10 -8 (-15 -3716 ($ |t#1|)))) -(((-34) . T) ((-102) -4037 (|has| |#1| (-1092)) (|has| |#1| (-845))) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-845)) (|has| |#1| (-609 (-857)))) ((-150 |#1|) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-285 #0=(-562) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-281 |#1|) . T) ((-372 |#1|) . T) ((-488 |#1|) . T) ((-600 #0# |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-645 |#1|) . T) ((-845) |has| |#1| (-845)) ((-1005 |#1|) . T) ((-1092) -4037 (|has| |#1| (-1092)) (|has| |#1| (-845))) ((-1141 |#1|) . T) ((-1207) . T) ((-1244 |#1|) . T)) -((-3888 (((-639 (-2 (|:| |particular| (-3 (-1256 |#1|) "failed")) (|:| -4291 (-639 (-1256 |#1|))))) (-639 (-639 |#1|)) (-639 (-1256 |#1|))) 22) (((-639 (-2 (|:| |particular| (-3 (-1256 |#1|) "failed")) (|:| -4291 (-639 (-1256 |#1|))))) (-683 |#1|) (-639 (-1256 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1256 |#1|) "failed")) (|:| -4291 (-639 (-1256 |#1|)))) (-639 (-639 |#1|)) (-1256 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1256 |#1|) "failed")) (|:| -4291 (-639 (-1256 |#1|)))) (-683 |#1|) (-1256 |#1|)) 14)) (-2172 (((-766) (-683 |#1|) (-1256 |#1|)) 30)) (-2341 (((-3 (-1256 |#1|) "failed") (-683 |#1|) (-1256 |#1|)) 24)) (-1939 (((-112) (-683 |#1|) (-1256 |#1|)) 27))) -(((-661 |#1|) (-10 -7 (-15 -3888 ((-2 (|:| |particular| (-3 (-1256 |#1|) "failed")) (|:| -4291 (-639 (-1256 |#1|)))) (-683 |#1|) (-1256 |#1|))) (-15 -3888 ((-2 (|:| |particular| (-3 (-1256 |#1|) "failed")) (|:| -4291 (-639 (-1256 |#1|)))) (-639 (-639 |#1|)) (-1256 |#1|))) (-15 -3888 ((-639 (-2 (|:| |particular| (-3 (-1256 |#1|) "failed")) (|:| -4291 (-639 (-1256 |#1|))))) (-683 |#1|) (-639 (-1256 |#1|)))) (-15 -3888 ((-639 (-2 (|:| |particular| (-3 (-1256 |#1|) "failed")) (|:| -4291 (-639 (-1256 |#1|))))) (-639 (-639 |#1|)) (-639 (-1256 |#1|)))) (-15 -2341 ((-3 (-1256 |#1|) "failed") (-683 |#1|) (-1256 |#1|))) (-15 -1939 ((-112) (-683 |#1|) (-1256 |#1|))) (-15 -2172 ((-766) (-683 |#1|) (-1256 |#1|)))) (-362)) (T -661)) -((-2172 (*1 *2 *3 *4) (-12 (-5 *3 (-683 *5)) (-5 *4 (-1256 *5)) (-4 *5 (-362)) (-5 *2 (-766)) (-5 *1 (-661 *5)))) (-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-683 *5)) (-5 *4 (-1256 *5)) (-4 *5 (-362)) (-5 *2 (-112)) (-5 *1 (-661 *5)))) (-2341 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1256 *4)) (-5 *3 (-683 *4)) (-4 *4 (-362)) (-5 *1 (-661 *4)))) (-3888 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-639 *5))) (-4 *5 (-362)) (-5 *2 (-639 (-2 (|:| |particular| (-3 (-1256 *5) "failed")) (|:| -4291 (-639 (-1256 *5)))))) (-5 *1 (-661 *5)) (-5 *4 (-639 (-1256 *5))))) (-3888 (*1 *2 *3 *4) (-12 (-5 *3 (-683 *5)) (-4 *5 (-362)) (-5 *2 (-639 (-2 (|:| |particular| (-3 (-1256 *5) "failed")) (|:| -4291 (-639 (-1256 *5)))))) (-5 *1 (-661 *5)) (-5 *4 (-639 (-1256 *5))))) (-3888 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-639 *5))) (-4 *5 (-362)) (-5 *2 (-2 (|:| |particular| (-3 (-1256 *5) "failed")) (|:| -4291 (-639 (-1256 *5))))) (-5 *1 (-661 *5)) (-5 *4 (-1256 *5)))) (-3888 (*1 *2 *3 *4) (-12 (-5 *3 (-683 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |particular| (-3 (-1256 *5) "failed")) (|:| -4291 (-639 (-1256 *5))))) (-5 *1 (-661 *5)) (-5 *4 (-1256 *5))))) -(-10 -7 (-15 -3888 ((-2 (|:| |particular| (-3 (-1256 |#1|) "failed")) (|:| -4291 (-639 (-1256 |#1|)))) (-683 |#1|) (-1256 |#1|))) (-15 -3888 ((-2 (|:| |particular| (-3 (-1256 |#1|) "failed")) (|:| -4291 (-639 (-1256 |#1|)))) (-639 (-639 |#1|)) (-1256 |#1|))) (-15 -3888 ((-639 (-2 (|:| |particular| (-3 (-1256 |#1|) "failed")) (|:| -4291 (-639 (-1256 |#1|))))) (-683 |#1|) (-639 (-1256 |#1|)))) (-15 -3888 ((-639 (-2 (|:| |particular| (-3 (-1256 |#1|) "failed")) (|:| -4291 (-639 (-1256 |#1|))))) (-639 (-639 |#1|)) (-639 (-1256 |#1|)))) (-15 -2341 ((-3 (-1256 |#1|) "failed") (-683 |#1|) (-1256 |#1|))) (-15 -1939 ((-112) (-683 |#1|) (-1256 |#1|))) (-15 -2172 ((-766) (-683 |#1|) (-1256 |#1|)))) -((-3888 (((-639 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4291 (-639 |#3|)))) |#4| (-639 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4291 (-639 |#3|))) |#4| |#3|) 45)) (-2172 (((-766) |#4| |#3|) 17)) (-2341 (((-3 |#3| "failed") |#4| |#3|) 20)) (-1939 (((-112) |#4| |#3|) 13))) -(((-662 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3888 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4291 (-639 |#3|))) |#4| |#3|)) (-15 -3888 ((-639 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4291 (-639 |#3|)))) |#4| (-639 |#3|))) (-15 -2341 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1939 ((-112) |#4| |#3|)) (-15 -2172 ((-766) |#4| |#3|))) (-362) (-13 (-372 |#1|) (-10 -7 (-6 -4404))) (-13 (-372 |#1|) (-10 -7 (-6 -4404))) (-681 |#1| |#2| |#3|)) (T -662)) -((-2172 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4404)))) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4404)))) (-5 *2 (-766)) (-5 *1 (-662 *5 *6 *4 *3)) (-4 *3 (-681 *5 *6 *4)))) (-1939 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4404)))) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4404)))) (-5 *2 (-112)) (-5 *1 (-662 *5 *6 *4 *3)) (-4 *3 (-681 *5 *6 *4)))) (-2341 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-362)) (-4 *5 (-13 (-372 *4) (-10 -7 (-6 -4404)))) (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4404)))) (-5 *1 (-662 *4 *5 *2 *3)) (-4 *3 (-681 *4 *5 *2)))) (-3888 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4404)))) (-4 *7 (-13 (-372 *5) (-10 -7 (-6 -4404)))) (-5 *2 (-639 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4291 (-639 *7))))) (-5 *1 (-662 *5 *6 *7 *3)) (-5 *4 (-639 *7)) (-4 *3 (-681 *5 *6 *7)))) (-3888 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4404)))) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4404)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4291 (-639 *4)))) (-5 *1 (-662 *5 *6 *4 *3)) (-4 *3 (-681 *5 *6 *4))))) -(-10 -7 (-15 -3888 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4291 (-639 |#3|))) |#4| |#3|)) (-15 -3888 ((-639 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4291 (-639 |#3|)))) |#4| (-639 |#3|))) (-15 -2341 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1939 ((-112) |#4| |#3|)) (-15 -2172 ((-766) |#4| |#3|))) -((-2679 (((-2 (|:| |particular| (-3 (-1256 (-406 |#4|)) "failed")) (|:| -4291 (-639 (-1256 (-406 |#4|))))) (-639 |#4|) (-639 |#3|)) 45))) -(((-663 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2679 ((-2 (|:| |particular| (-3 (-1256 (-406 |#4|)) "failed")) (|:| -4291 (-639 (-1256 (-406 |#4|))))) (-639 |#4|) (-639 |#3|)))) (-554) (-788) (-845) (-944 |#1| |#2| |#3|)) (T -663)) -((-2679 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-639 *7)) (-4 *7 (-845)) (-4 *8 (-944 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-788)) (-5 *2 (-2 (|:| |particular| (-3 (-1256 (-406 *8)) "failed")) (|:| -4291 (-639 (-1256 (-406 *8)))))) (-5 *1 (-663 *5 *6 *7 *8))))) -(-10 -7 (-15 -2679 ((-2 (|:| |particular| (-3 (-1256 (-406 |#4|)) "failed")) (|:| -4291 (-639 (-1256 (-406 |#4|))))) (-639 |#4|) (-639 |#3|)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-4310 (((-3 $ "failed")) NIL (|has| |#2| (-554)))) (-1748 ((|#2| $) NIL)) (-4097 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-2016 (((-1256 (-683 |#2|))) NIL) (((-1256 (-683 |#2|)) (-1256 $)) NIL)) (-2819 (((-112) $) NIL)) (-1540 (((-1256 $)) 37)) (-3735 (((-112) $ (-766)) NIL)) (-4369 (($ |#2|) NIL)) (-3329 (($) NIL T CONST)) (-2239 (($ $) NIL (|has| |#2| (-306)))) (-3511 (((-239 |#1| |#2|) $ (-562)) NIL)) (-1469 (((-3 (-2 (|:| |particular| $) (|:| -4291 (-639 $))) "failed")) NIL (|has| |#2| (-554)))) (-2447 (((-3 $ "failed")) NIL (|has| |#2| (-554)))) (-3945 (((-683 |#2|)) NIL) (((-683 |#2|) (-1256 $)) NIL)) (-2452 ((|#2| $) NIL)) (-2995 (((-683 |#2|) $) NIL) (((-683 |#2|) $ (-1256 $)) NIL)) (-4276 (((-3 $ "failed") $) NIL (|has| |#2| (-554)))) (-3996 (((-1164 (-947 |#2|))) NIL (|has| |#2| (-362)))) (-2127 (($ $ (-916)) NIL)) (-2949 ((|#2| $) NIL)) (-3407 (((-1164 |#2|) $) NIL (|has| |#2| (-554)))) (-2200 ((|#2|) NIL) ((|#2| (-1256 $)) NIL)) (-2974 (((-1164 |#2|) $) NIL)) (-3178 (((-112)) NIL)) (-4048 (((-3 (-562) "failed") $) NIL (|has| |#2| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#2| (-1033 (-406 (-562))))) (((-3 |#2| "failed") $) NIL)) (-3960 (((-562) $) NIL (|has| |#2| (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| |#2| (-1033 (-406 (-562))))) ((|#2| $) NIL)) (-3916 (($ (-1256 |#2|)) NIL) (($ (-1256 |#2|) (-1256 $)) NIL)) (-3449 (((-683 (-562)) (-683 $)) NIL (|has| |#2| (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#2| (-635 (-562)))) (((-2 (|:| -1767 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) NIL) (((-683 |#2|) (-683 $)) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-2172 (((-766) $) NIL (|has| |#2| (-554))) (((-916)) 38)) (-1420 ((|#2| $ (-562) (-562)) NIL)) (-1832 (((-112)) NIL)) (-1492 (($ $ (-916)) NIL)) (-1720 (((-639 |#2|) $) NIL (|has| $ (-6 -4403)))) (-4367 (((-112) $) NIL)) (-4244 (((-766) $) NIL (|has| |#2| (-554)))) (-3821 (((-639 (-239 |#1| |#2|)) $) NIL (|has| |#2| (-554)))) (-2698 (((-766) $) NIL)) (-2531 (((-112)) NIL)) (-2708 (((-766) $) NIL)) (-4172 (((-112) $ (-766)) NIL)) (-1622 ((|#2| $) NIL (|has| |#2| (-6 (-4405 "*"))))) (-1808 (((-562) $) NIL)) (-2028 (((-562) $) NIL)) (-2123 (((-639 |#2|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092))))) (-3269 (((-562) $) NIL)) (-2727 (((-562) $) NIL)) (-2884 (($ (-639 (-639 |#2|))) NIL)) (-1491 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2247 (((-639 (-639 |#2|)) $) NIL)) (-3671 (((-112)) NIL)) (-2394 (((-112)) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3502 (((-3 (-2 (|:| |particular| $) (|:| -4291 (-639 $))) "failed")) NIL (|has| |#2| (-554)))) (-3839 (((-3 $ "failed")) NIL (|has| |#2| (-554)))) (-3506 (((-683 |#2|)) NIL) (((-683 |#2|) (-1256 $)) NIL)) (-2664 ((|#2| $) NIL)) (-1583 (((-683 |#2|) $) NIL) (((-683 |#2|) $ (-1256 $)) NIL)) (-2217 (((-3 $ "failed") $) NIL (|has| |#2| (-554)))) (-2620 (((-1164 (-947 |#2|))) NIL (|has| |#2| (-362)))) (-3235 (($ $ (-916)) NIL)) (-3495 ((|#2| $) NIL)) (-3849 (((-1164 |#2|) $) NIL (|has| |#2| (-554)))) (-1636 ((|#2|) NIL) ((|#2| (-1256 $)) NIL)) (-3099 (((-1164 |#2|) $) NIL)) (-3302 (((-112)) NIL)) (-3696 (((-1150) $) NIL)) (-2720 (((-112)) NIL)) (-1579 (((-112)) NIL)) (-2104 (((-112)) NIL)) (-2463 (((-3 $ "failed") $) NIL (|has| |#2| (-362)))) (-1709 (((-1112) $) NIL)) (-3626 (((-112)) NIL)) (-1762 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-554)))) (-3008 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 |#2|) (-639 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))))) (-1452 (((-112) $ $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) NIL)) (-2343 ((|#2| $ (-562) (-562) |#2|) NIL) ((|#2| $ (-562) (-562)) 22) ((|#2| $ (-562)) NIL)) (-4029 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1168)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-766)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-3042 ((|#2| $) NIL)) (-3168 (($ (-639 |#2|)) NIL)) (-1752 (((-112) $) NIL)) (-2399 (((-239 |#1| |#2|) $) NIL)) (-3282 ((|#2| $) NIL (|has| |#2| (-6 (-4405 "*"))))) (-1723 (((-766) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403))) (((-766) |#2| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092))))) (-4220 (($ $) NIL)) (-2205 (((-683 |#2|) (-1256 $)) NIL) (((-1256 |#2|) $) NIL) (((-683 |#2|) (-1256 $) (-1256 $)) NIL) (((-1256 |#2|) $ (-1256 $)) 25)) (-4208 (($ (-1256 |#2|)) NIL) (((-1256 |#2|) $) NIL)) (-2555 (((-639 (-947 |#2|))) NIL) (((-639 (-947 |#2|)) (-1256 $)) NIL)) (-2114 (($ $ $) NIL)) (-3901 (((-112)) NIL)) (-2208 (((-239 |#1| |#2|) $ (-562)) NIL)) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ (-406 (-562))) NIL (|has| |#2| (-1033 (-406 (-562))))) (($ |#2|) NIL) (((-683 |#2|) $) NIL)) (-1568 (((-766)) NIL)) (-4291 (((-1256 $)) 36)) (-1823 (((-639 (-1256 |#2|))) NIL (|has| |#2| (-554)))) (-2584 (($ $ $ $) NIL)) (-4309 (((-112)) NIL)) (-1360 (($ (-683 |#2|) $) NIL)) (-2879 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403)))) (-1996 (((-112) $) NIL)) (-4324 (($ $ $) NIL)) (-1517 (((-112)) NIL)) (-2636 (((-112)) NIL)) (-3488 (((-112)) NIL)) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3113 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1168)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-766)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-1733 (((-112) $ $) NIL)) (-1859 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL (|has| |#2| (-362)))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-239 |#1| |#2|) $ (-239 |#1| |#2|)) NIL) (((-239 |#1| |#2|) (-239 |#1| |#2|) $) NIL)) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-664 |#1| |#2|) (-13 (-1115 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-609 (-683 |#2|)) (-416 |#2|)) (-916) (-171)) (T -664)) -NIL -(-13 (-1115 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-609 (-683 |#2|)) (-416 |#2|)) -((-4041 (((-112) $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2048 (((-639 (-1127)) $) 10)) (-4053 (((-857) $) 18) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-665) (-13 (-1075) (-10 -8 (-15 -2048 ((-639 (-1127)) $))))) (T -665)) -((-2048 (*1 *2 *1) (-12 (-5 *2 (-639 (-1127))) (-5 *1 (-665))))) -(-13 (-1075) (-10 -8 (-15 -2048 ((-639 (-1127)) $)))) -((-4041 (((-112) $ $) NIL)) (-2850 (((-639 |#1|) $) NIL)) (-1603 (($ $) 51)) (-1638 (((-112) $) NIL)) (-4048 (((-3 |#1| "failed") $) NIL)) (-3960 ((|#1| $) NIL)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-4117 (((-3 $ "failed") (-814 |#1|)) 23)) (-2112 (((-112) (-814 |#1|)) 15)) (-2658 (($ (-814 |#1|)) 24)) (-2483 (((-112) $ $) 29)) (-3641 (((-916) $) 36)) (-1589 (($ $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1635 (((-639 $) (-814 |#1|)) 17)) (-4053 (((-857) $) 42) (($ |#1|) 33) (((-814 |#1|) $) 38) (((-671 |#1|) $) 43)) (-2915 (((-59 (-639 $)) (-639 |#1|) (-916)) 56)) (-1543 (((-639 $) (-639 |#1|) (-916)) 59)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 52)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) 37))) -(((-666 |#1|) (-13 (-845) (-1033 |#1|) (-10 -8 (-15 -1638 ((-112) $)) (-15 -1589 ($ $)) (-15 -1603 ($ $)) (-15 -3641 ((-916) $)) (-15 -2483 ((-112) $ $)) (-15 -4053 ((-814 |#1|) $)) (-15 -4053 ((-671 |#1|) $)) (-15 -1635 ((-639 $) (-814 |#1|))) (-15 -2112 ((-112) (-814 |#1|))) (-15 -2658 ($ (-814 |#1|))) (-15 -4117 ((-3 $ "failed") (-814 |#1|))) (-15 -2850 ((-639 |#1|) $)) (-15 -2915 ((-59 (-639 $)) (-639 |#1|) (-916))) (-15 -1543 ((-639 $) (-639 |#1|) (-916))))) (-845)) (T -666)) -((-1638 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-666 *3)) (-4 *3 (-845)))) (-1589 (*1 *1 *1) (-12 (-5 *1 (-666 *2)) (-4 *2 (-845)))) (-1603 (*1 *1 *1) (-12 (-5 *1 (-666 *2)) (-4 *2 (-845)))) (-3641 (*1 *2 *1) (-12 (-5 *2 (-916)) (-5 *1 (-666 *3)) (-4 *3 (-845)))) (-2483 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-666 *3)) (-4 *3 (-845)))) (-4053 (*1 *2 *1) (-12 (-5 *2 (-814 *3)) (-5 *1 (-666 *3)) (-4 *3 (-845)))) (-4053 (*1 *2 *1) (-12 (-5 *2 (-671 *3)) (-5 *1 (-666 *3)) (-4 *3 (-845)))) (-1635 (*1 *2 *3) (-12 (-5 *3 (-814 *4)) (-4 *4 (-845)) (-5 *2 (-639 (-666 *4))) (-5 *1 (-666 *4)))) (-2112 (*1 *2 *3) (-12 (-5 *3 (-814 *4)) (-4 *4 (-845)) (-5 *2 (-112)) (-5 *1 (-666 *4)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-814 *3)) (-4 *3 (-845)) (-5 *1 (-666 *3)))) (-4117 (*1 *1 *2) (|partial| -12 (-5 *2 (-814 *3)) (-4 *3 (-845)) (-5 *1 (-666 *3)))) (-2850 (*1 *2 *1) (-12 (-5 *2 (-639 *3)) (-5 *1 (-666 *3)) (-4 *3 (-845)))) (-2915 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *5)) (-5 *4 (-916)) (-4 *5 (-845)) (-5 *2 (-59 (-639 (-666 *5)))) (-5 *1 (-666 *5)))) (-1543 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *5)) (-5 *4 (-916)) (-4 *5 (-845)) (-5 *2 (-639 (-666 *5))) (-5 *1 (-666 *5))))) -(-13 (-845) (-1033 |#1|) (-10 -8 (-15 -1638 ((-112) $)) (-15 -1589 ($ $)) (-15 -1603 ($ $)) (-15 -3641 ((-916) $)) (-15 -2483 ((-112) $ $)) (-15 -4053 ((-814 |#1|) $)) (-15 -4053 ((-671 |#1|) $)) (-15 -1635 ((-639 $) (-814 |#1|))) (-15 -2112 ((-112) (-814 |#1|))) (-15 -2658 ($ (-814 |#1|))) (-15 -4117 ((-3 $ "failed") (-814 |#1|))) (-15 -2850 ((-639 |#1|) $)) (-15 -2915 ((-59 (-639 $)) (-639 |#1|) (-916))) (-15 -1543 ((-639 $) (-639 |#1|) (-916))))) -((-2533 ((|#2| $) 76)) (-3120 (($ $) 96)) (-3735 (((-112) $ (-766)) 26)) (-1434 (($ $) 85) (($ $ (-766)) 88)) (-2101 (((-112) $) 97)) (-2409 (((-639 $) $) 72)) (-4188 (((-112) $ $) 71)) (-4172 (((-112) $ (-766)) 24)) (-1849 (((-562) $) 46)) (-1929 (((-562) $) 45)) (-4147 (((-112) $ (-766)) 22)) (-3179 (((-112) $) 74)) (-1504 ((|#2| $) 89) (($ $ (-766)) 92)) (-3295 (($ $ $ (-562)) 62) (($ |#2| $ (-562)) 61)) (-3336 (((-639 (-562)) $) 44)) (-1987 (((-112) (-562) $) 42)) (-1421 ((|#2| $) NIL) (($ $ (-766)) 84)) (-4316 (($ $ (-562)) 99)) (-3745 (((-112) $) 98)) (-3008 (((-112) (-1 (-112) |#2|) $) 32)) (-2366 (((-639 |#2|) $) 33)) (-2343 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1223 (-562))) 58) ((|#2| $ (-562)) 40) ((|#2| $ (-562) |#2|) 41)) (-1423 (((-562) $ $) 70)) (-2880 (($ $ (-1223 (-562))) 57) (($ $ (-562)) 51)) (-2473 (((-112) $) 66)) (-3734 (($ $) 81)) (-3595 (((-766) $) 80)) (-2333 (($ $) 79)) (-4064 (($ (-639 |#2|)) 37)) (-1345 (($ $) 100)) (-3643 (((-639 $) $) 69)) (-2985 (((-112) $ $) 68)) (-2879 (((-112) (-1 (-112) |#2|) $) 31)) (-1733 (((-112) $ $) 18)) (-3492 (((-766) $) 29))) -(((-667 |#1| |#2|) (-10 -8 (-15 -1345 (|#1| |#1|)) (-15 -4316 (|#1| |#1| (-562))) (-15 -2101 ((-112) |#1|)) (-15 -3745 ((-112) |#1|)) (-15 -2343 (|#2| |#1| (-562) |#2|)) (-15 -2343 (|#2| |#1| (-562))) (-15 -2366 ((-639 |#2|) |#1|)) (-15 -1987 ((-112) (-562) |#1|)) (-15 -3336 ((-639 (-562)) |#1|)) (-15 -1929 ((-562) |#1|)) (-15 -1849 ((-562) |#1|)) (-15 -4064 (|#1| (-639 |#2|))) (-15 -2343 (|#1| |#1| (-1223 (-562)))) (-15 -2880 (|#1| |#1| (-562))) (-15 -2880 (|#1| |#1| (-1223 (-562)))) (-15 -3295 (|#1| |#2| |#1| (-562))) (-15 -3295 (|#1| |#1| |#1| (-562))) (-15 -3734 (|#1| |#1|)) (-15 -3595 ((-766) |#1|)) (-15 -2333 (|#1| |#1|)) (-15 -3120 (|#1| |#1|)) (-15 -1504 (|#1| |#1| (-766))) (-15 -2343 (|#2| |#1| "last")) (-15 -1504 (|#2| |#1|)) (-15 -1434 (|#1| |#1| (-766))) (-15 -2343 (|#1| |#1| "rest")) (-15 -1434 (|#1| |#1|)) (-15 -1421 (|#1| |#1| (-766))) (-15 -2343 (|#2| |#1| "first")) (-15 -1421 (|#2| |#1|)) (-15 -4188 ((-112) |#1| |#1|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -1423 ((-562) |#1| |#1|)) (-15 -2473 ((-112) |#1|)) (-15 -2343 (|#2| |#1| "value")) (-15 -2533 (|#2| |#1|)) (-15 -3179 ((-112) |#1|)) (-15 -2409 ((-639 |#1|) |#1|)) (-15 -3643 ((-639 |#1|) |#1|)) (-15 -1733 ((-112) |#1| |#1|)) (-15 -3008 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2879 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3492 ((-766) |#1|)) (-15 -3735 ((-112) |#1| (-766))) (-15 -4172 ((-112) |#1| (-766))) (-15 -4147 ((-112) |#1| (-766)))) (-668 |#2|) (-1207)) (T -667)) -NIL -(-10 -8 (-15 -1345 (|#1| |#1|)) (-15 -4316 (|#1| |#1| (-562))) (-15 -2101 ((-112) |#1|)) (-15 -3745 ((-112) |#1|)) (-15 -2343 (|#2| |#1| (-562) |#2|)) (-15 -2343 (|#2| |#1| (-562))) (-15 -2366 ((-639 |#2|) |#1|)) (-15 -1987 ((-112) (-562) |#1|)) (-15 -3336 ((-639 (-562)) |#1|)) (-15 -1929 ((-562) |#1|)) (-15 -1849 ((-562) |#1|)) (-15 -4064 (|#1| (-639 |#2|))) (-15 -2343 (|#1| |#1| (-1223 (-562)))) (-15 -2880 (|#1| |#1| (-562))) (-15 -2880 (|#1| |#1| (-1223 (-562)))) (-15 -3295 (|#1| |#2| |#1| (-562))) (-15 -3295 (|#1| |#1| |#1| (-562))) (-15 -3734 (|#1| |#1|)) (-15 -3595 ((-766) |#1|)) (-15 -2333 (|#1| |#1|)) (-15 -3120 (|#1| |#1|)) (-15 -1504 (|#1| |#1| (-766))) (-15 -2343 (|#2| |#1| "last")) (-15 -1504 (|#2| |#1|)) (-15 -1434 (|#1| |#1| (-766))) (-15 -2343 (|#1| |#1| "rest")) (-15 -1434 (|#1| |#1|)) (-15 -1421 (|#1| |#1| (-766))) (-15 -2343 (|#2| |#1| "first")) (-15 -1421 (|#2| |#1|)) (-15 -4188 ((-112) |#1| |#1|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -1423 ((-562) |#1| |#1|)) (-15 -2473 ((-112) |#1|)) (-15 -2343 (|#2| |#1| "value")) (-15 -2533 (|#2| |#1|)) (-15 -3179 ((-112) |#1|)) (-15 -2409 ((-639 |#1|) |#1|)) (-15 -3643 ((-639 |#1|) |#1|)) (-15 -1733 ((-112) |#1| |#1|)) (-15 -3008 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2879 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3492 ((-766) |#1|)) (-15 -3735 ((-112) |#1| (-766))) (-15 -4172 ((-112) |#1| (-766))) (-15 -4147 ((-112) |#1| (-766)))) -((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-2533 ((|#1| $) 48)) (-2358 ((|#1| $) 65)) (-3120 (($ $) 67)) (-3655 (((-1261) $ (-562) (-562)) 97 (|has| $ (-6 -4404)))) (-1335 (($ $ (-562)) 52 (|has| $ (-6 -4404)))) (-3735 (((-112) $ (-766)) 8)) (-2677 ((|#1| $ |#1|) 39 (|has| $ (-6 -4404)))) (-3400 (($ $ $) 56 (|has| $ (-6 -4404)))) (-1393 ((|#1| $ |#1|) 54 (|has| $ (-6 -4404)))) (-3239 ((|#1| $ |#1|) 58 (|has| $ (-6 -4404)))) (-4200 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4404))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4404))) (($ $ "rest" $) 55 (|has| $ (-6 -4404))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4404))) ((|#1| $ (-1223 (-562)) |#1|) 117 (|has| $ (-6 -4404))) ((|#1| $ (-562) |#1|) 86 (|has| $ (-6 -4404)))) (-3742 (($ $ (-639 $)) 41 (|has| $ (-6 -4404)))) (-3556 (($ (-1 (-112) |#1|) $) 102)) (-2349 ((|#1| $) 66)) (-3329 (($) 7 T CONST)) (-1494 (($ $) 124)) (-1434 (($ $) 73) (($ $ (-766)) 71)) (-1459 (($ $) 99 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1475 (($ |#1| $) 100 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403)))) (($ (-1 (-112) |#1|) $) 103)) (-1954 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1507 ((|#1| $ (-562) |#1|) 85 (|has| $ (-6 -4404)))) (-1420 ((|#1| $ (-562)) 87)) (-2101 (((-112) $) 83)) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4403)))) (-2062 (((-766) $) 123)) (-2409 (((-639 $) $) 50)) (-4188 (((-112) $ $) 42 (|has| |#1| (-1092)))) (-1458 (($ (-766) |#1|) 108)) (-4172 (((-112) $ (-766)) 9)) (-1849 (((-562) $) 95 (|has| (-562) (-845)))) (-2123 (((-639 |#1|) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1929 (((-562) $) 94 (|has| (-562) (-845)))) (-1491 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4147 (((-112) $ (-766)) 10)) (-4008 (((-639 |#1|) $) 45)) (-3179 (((-112) $) 49)) (-1906 (($ $) 126)) (-4040 (((-112) $) 127)) (-3696 (((-1150) $) 22 (|has| |#1| (-1092)))) (-1504 ((|#1| $) 70) (($ $ (-766)) 68)) (-3295 (($ $ $ (-562)) 116) (($ |#1| $ (-562)) 115)) (-3336 (((-639 (-562)) $) 92)) (-1987 (((-112) (-562) $) 91)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-3529 ((|#1| $) 125)) (-1421 ((|#1| $) 76) (($ $ (-766)) 74)) (-1963 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-3510 (($ $ |#1|) 96 (|has| $ (-6 -4404)))) (-4316 (($ $ (-562)) 122)) (-3745 (((-112) $) 84)) (-1637 (((-112) $) 128)) (-2998 (((-112) $) 129)) (-3008 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) 14)) (-2716 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2366 (((-639 |#1|) $) 90)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-2343 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1223 (-562))) 112) ((|#1| $ (-562)) 89) ((|#1| $ (-562) |#1|) 88)) (-1423 (((-562) $ $) 44)) (-2880 (($ $ (-1223 (-562))) 114) (($ $ (-562)) 113)) (-2473 (((-112) $) 46)) (-3734 (($ $) 62)) (-3659 (($ $) 59 (|has| $ (-6 -4404)))) (-3595 (((-766) $) 63)) (-2333 (($ $) 64)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4403))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-4220 (($ $) 13)) (-4208 (((-535) $) 98 (|has| |#1| (-610 (-535))))) (-4064 (($ (-639 |#1|)) 107)) (-2587 (($ $ $) 61 (|has| $ (-6 -4404))) (($ $ |#1|) 60 (|has| $ (-6 -4404)))) (-2767 (($ $ $) 78) (($ |#1| $) 77) (($ (-639 $)) 110) (($ $ |#1|) 109)) (-1345 (($ $) 121)) (-4053 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-3643 (((-639 $) $) 51)) (-2985 (((-112) $ $) 43 (|has| |#1| (-1092)))) (-2879 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-668 |#1|) (-139) (-1207)) (T -668)) -((-1475 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-668 *3)) (-4 *3 (-1207)))) (-3556 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-668 *3)) (-4 *3 (-1207)))) (-2998 (*1 *2 *1) (-12 (-4 *1 (-668 *3)) (-4 *3 (-1207)) (-5 *2 (-112)))) (-1637 (*1 *2 *1) (-12 (-4 *1 (-668 *3)) (-4 *3 (-1207)) (-5 *2 (-112)))) (-4040 (*1 *2 *1) (-12 (-4 *1 (-668 *3)) (-4 *3 (-1207)) (-5 *2 (-112)))) (-1906 (*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1207)))) (-3529 (*1 *2 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1207)))) (-1494 (*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1207)))) (-2062 (*1 *2 *1) (-12 (-4 *1 (-668 *3)) (-4 *3 (-1207)) (-5 *2 (-766)))) (-4316 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-668 *3)) (-4 *3 (-1207)))) (-1345 (*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1207))))) -(-13 (-1141 |t#1|) (-10 -8 (-15 -1475 ($ (-1 (-112) |t#1|) $)) (-15 -3556 ($ (-1 (-112) |t#1|) $)) (-15 -2998 ((-112) $)) (-15 -1637 ((-112) $)) (-15 -4040 ((-112) $)) (-15 -1906 ($ $)) (-15 -3529 (|t#1| $)) (-15 -1494 ($ $)) (-15 -2062 ((-766) $)) (-15 -4316 ($ $ (-562))) (-15 -1345 ($ $)))) -(((-34) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-150 |#1|) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-285 #0=(-562) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-600 #0# |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-645 |#1|) . T) ((-1005 |#1|) . T) ((-1092) |has| |#1| (-1092)) ((-1141 |#1|) . T) ((-1207) . T) ((-1244 |#1|) . T)) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1970 (($ (-766) (-766) (-766)) 33 (|has| |#1| (-1044)))) (-3735 (((-112) $ (-766)) NIL)) (-4358 ((|#1| $ (-766) (-766) (-766) |#1|) 27)) (-3329 (($) NIL T CONST)) (-2959 (($ $ $) 37 (|has| |#1| (-1044)))) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-4172 (((-112) $ (-766)) NIL)) (-2123 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-3453 (((-1256 (-766)) $) 9)) (-4313 (($ (-1168) $ $) 22)) (-1491 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-2999 (($ (-766)) 35 (|has| |#1| (-1044)))) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-3008 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) NIL)) (-2343 ((|#1| $ (-766) (-766) (-766)) 25)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-4220 (($ $) NIL)) (-4064 (($ (-639 (-639 (-639 |#1|)))) 44)) (-4053 (($ (-953 (-953 (-953 |#1|)))) 15) (((-953 (-953 (-953 |#1|))) $) 12) (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-2879 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-669 |#1|) (-13 (-488 |#1|) (-10 -8 (IF (|has| |#1| (-1044)) (PROGN (-15 -1970 ($ (-766) (-766) (-766))) (-15 -2999 ($ (-766))) (-15 -2959 ($ $ $))) |%noBranch|) (-15 -4064 ($ (-639 (-639 (-639 |#1|))))) (-15 -2343 (|#1| $ (-766) (-766) (-766))) (-15 -4358 (|#1| $ (-766) (-766) (-766) |#1|)) (-15 -4053 ($ (-953 (-953 (-953 |#1|))))) (-15 -4053 ((-953 (-953 (-953 |#1|))) $)) (-15 -4313 ($ (-1168) $ $)) (-15 -3453 ((-1256 (-766)) $)))) (-1092)) (T -669)) -((-1970 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-766)) (-5 *1 (-669 *3)) (-4 *3 (-1044)) (-4 *3 (-1092)))) (-2999 (*1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-669 *3)) (-4 *3 (-1044)) (-4 *3 (-1092)))) (-2959 (*1 *1 *1 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-1044)) (-4 *2 (-1092)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-639 (-639 (-639 *3)))) (-4 *3 (-1092)) (-5 *1 (-669 *3)))) (-2343 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-766)) (-5 *1 (-669 *2)) (-4 *2 (-1092)))) (-4358 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-766)) (-5 *1 (-669 *2)) (-4 *2 (-1092)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-953 (-953 (-953 *3)))) (-4 *3 (-1092)) (-5 *1 (-669 *3)))) (-4053 (*1 *2 *1) (-12 (-5 *2 (-953 (-953 (-953 *3)))) (-5 *1 (-669 *3)) (-4 *3 (-1092)))) (-4313 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-669 *3)) (-4 *3 (-1092)))) (-3453 (*1 *2 *1) (-12 (-5 *2 (-1256 (-766))) (-5 *1 (-669 *3)) (-4 *3 (-1092))))) -(-13 (-488 |#1|) (-10 -8 (IF (|has| |#1| (-1044)) (PROGN (-15 -1970 ($ (-766) (-766) (-766))) (-15 -2999 ($ (-766))) (-15 -2959 ($ $ $))) |%noBranch|) (-15 -4064 ($ (-639 (-639 (-639 |#1|))))) (-15 -2343 (|#1| $ (-766) (-766) (-766))) (-15 -4358 (|#1| $ (-766) (-766) (-766) |#1|)) (-15 -4053 ($ (-953 (-953 (-953 |#1|))))) (-15 -4053 ((-953 (-953 (-953 |#1|))) $)) (-15 -4313 ($ (-1168) $ $)) (-15 -3453 ((-1256 (-766)) $)))) -((-4041 (((-112) $ $) NIL)) (-3696 (((-1150) $) NIL)) (-3757 (((-482) $) 10)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 21) (($ (-1173)) NIL) (((-1173) $) NIL)) (-3265 (((-1127) $) 12)) (-1733 (((-112) $ $) NIL))) -(((-670) (-13 (-1075) (-10 -8 (-15 -3757 ((-482) $)) (-15 -3265 ((-1127) $))))) (T -670)) -((-3757 (*1 *2 *1) (-12 (-5 *2 (-482)) (-5 *1 (-670)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-670))))) -(-13 (-1075) (-10 -8 (-15 -3757 ((-482) $)) (-15 -3265 ((-1127) $)))) -((-4041 (((-112) $ $) NIL)) (-2850 (((-639 |#1|) $) 14)) (-1603 (($ $) 18)) (-1638 (((-112) $) 19)) (-4048 (((-3 |#1| "failed") $) 22)) (-3960 ((|#1| $) 20)) (-1434 (($ $) 36)) (-2572 (($ $) 24)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-2483 (((-112) $ $) 41)) (-3641 (((-916) $) 38)) (-1589 (($ $) 17)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1421 ((|#1| $) 35)) (-4053 (((-857) $) 31) (($ |#1|) 23) (((-814 |#1|) $) 27)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 12)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) 40)) (* (($ $ $) 34))) -(((-671 |#1|) (-13 (-845) (-1033 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4053 ((-814 |#1|) $)) (-15 -1421 (|#1| $)) (-15 -1589 ($ $)) (-15 -3641 ((-916) $)) (-15 -2483 ((-112) $ $)) (-15 -2572 ($ $)) (-15 -1434 ($ $)) (-15 -1638 ((-112) $)) (-15 -1603 ($ $)) (-15 -2850 ((-639 |#1|) $)))) (-845)) (T -671)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-845)))) (-4053 (*1 *2 *1) (-12 (-5 *2 (-814 *3)) (-5 *1 (-671 *3)) (-4 *3 (-845)))) (-1421 (*1 *2 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-845)))) (-1589 (*1 *1 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-845)))) (-3641 (*1 *2 *1) (-12 (-5 *2 (-916)) (-5 *1 (-671 *3)) (-4 *3 (-845)))) (-2483 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-671 *3)) (-4 *3 (-845)))) (-2572 (*1 *1 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-845)))) (-1434 (*1 *1 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-845)))) (-1638 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-671 *3)) (-4 *3 (-845)))) (-1603 (*1 *1 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-845)))) (-2850 (*1 *2 *1) (-12 (-5 *2 (-639 *3)) (-5 *1 (-671 *3)) (-4 *3 (-845))))) -(-13 (-845) (-1033 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4053 ((-814 |#1|) $)) (-15 -1421 (|#1| $)) (-15 -1589 ($ $)) (-15 -3641 ((-916) $)) (-15 -2483 ((-112) $ $)) (-15 -2572 ($ $)) (-15 -1434 ($ $)) (-15 -1638 ((-112) $)) (-15 -1603 ($ $)) (-15 -2850 ((-639 |#1|) $)))) -((-2598 ((|#1| (-1 |#1| (-766) |#1|) (-766) |#1|) 11)) (-3351 ((|#1| (-1 |#1| |#1|) (-766) |#1|) 9))) -(((-672 |#1|) (-10 -7 (-15 -3351 (|#1| (-1 |#1| |#1|) (-766) |#1|)) (-15 -2598 (|#1| (-1 |#1| (-766) |#1|) (-766) |#1|))) (-1092)) (T -672)) -((-2598 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-766) *2)) (-5 *4 (-766)) (-4 *2 (-1092)) (-5 *1 (-672 *2)))) (-3351 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-766)) (-4 *2 (-1092)) (-5 *1 (-672 *2))))) -(-10 -7 (-15 -3351 (|#1| (-1 |#1| |#1|) (-766) |#1|)) (-15 -2598 (|#1| (-1 |#1| (-766) |#1|) (-766) |#1|))) -((-3755 ((|#2| |#1| |#2|) 9)) (-3743 ((|#1| |#1| |#2|) 8))) -(((-673 |#1| |#2|) (-10 -7 (-15 -3743 (|#1| |#1| |#2|)) (-15 -3755 (|#2| |#1| |#2|))) (-1092) (-1092)) (T -673)) -((-3755 (*1 *2 *3 *2) (-12 (-5 *1 (-673 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1092)))) (-3743 (*1 *2 *2 *3) (-12 (-5 *1 (-673 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092))))) -(-10 -7 (-15 -3743 (|#1| |#1| |#2|)) (-15 -3755 (|#2| |#1| |#2|))) -((-4312 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-674 |#1| |#2| |#3|) (-10 -7 (-15 -4312 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1092) (-1092) (-1092)) (T -674)) -((-4312 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *2 (-1092)) (-5 *1 (-674 *5 *6 *2))))) -(-10 -7 (-15 -4312 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-4041 (((-112) $ $) NIL)) (-4084 (((-1206) $) 20)) (-4017 (((-639 (-1206)) $) 18)) (-2262 (($ (-639 (-1206)) (-1206)) 13)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 29) (($ (-1173)) NIL) (((-1173) $) NIL) (((-1206) $) 21) (($ (-1110)) 10)) (-1733 (((-112) $ $) NIL))) -(((-675) (-13 (-1075) (-609 (-1206)) (-10 -8 (-15 -4053 ($ (-1110))) (-15 -2262 ($ (-639 (-1206)) (-1206))) (-15 -4017 ((-639 (-1206)) $)) (-15 -4084 ((-1206) $))))) (T -675)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-675)))) (-2262 (*1 *1 *2 *3) (-12 (-5 *2 (-639 (-1206))) (-5 *3 (-1206)) (-5 *1 (-675)))) (-4017 (*1 *2 *1) (-12 (-5 *2 (-639 (-1206))) (-5 *1 (-675)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-675))))) -(-13 (-1075) (-609 (-1206)) (-10 -8 (-15 -4053 ($ (-1110))) (-15 -2262 ($ (-639 (-1206)) (-1206))) (-15 -4017 ((-639 (-1206)) $)) (-15 -4084 ((-1206) $)))) -((-2598 (((-1 |#1| (-766) |#1|) (-1 |#1| (-766) |#1|)) 23)) (-2551 (((-1 |#1|) |#1|) 8)) (-1416 ((|#1| |#1|) 16)) (-2524 (((-639 |#1|) (-1 (-639 |#1|) (-639 |#1|)) (-562)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-4053 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-766)) 20))) -(((-676 |#1|) (-10 -7 (-15 -2551 ((-1 |#1|) |#1|)) (-15 -4053 ((-1 |#1|) |#1|)) (-15 -2524 (|#1| (-1 |#1| |#1|))) (-15 -2524 ((-639 |#1|) (-1 (-639 |#1|) (-639 |#1|)) (-562))) (-15 -1416 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-766))) (-15 -2598 ((-1 |#1| (-766) |#1|) (-1 |#1| (-766) |#1|)))) (-1092)) (T -676)) -((-2598 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-766) *3)) (-4 *3 (-1092)) (-5 *1 (-676 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-766)) (-4 *4 (-1092)) (-5 *1 (-676 *4)))) (-1416 (*1 *2 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-1092)))) (-2524 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-639 *5) (-639 *5))) (-5 *4 (-562)) (-5 *2 (-639 *5)) (-5 *1 (-676 *5)) (-4 *5 (-1092)))) (-2524 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-676 *2)) (-4 *2 (-1092)))) (-4053 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-676 *3)) (-4 *3 (-1092)))) (-2551 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-676 *3)) (-4 *3 (-1092))))) -(-10 -7 (-15 -2551 ((-1 |#1|) |#1|)) (-15 -4053 ((-1 |#1|) |#1|)) (-15 -2524 (|#1| (-1 |#1| |#1|))) (-15 -2524 ((-639 |#1|) (-1 (-639 |#1|) (-639 |#1|)) (-562))) (-15 -1416 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-766))) (-15 -2598 ((-1 |#1| (-766) |#1|) (-1 |#1| (-766) |#1|)))) -((-1596 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2966 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1497 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3542 (((-1 |#2| |#1|) |#2|) 11))) -(((-677 |#1| |#2|) (-10 -7 (-15 -3542 ((-1 |#2| |#1|) |#2|)) (-15 -2966 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1497 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1596 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1092) (-1092)) (T -677)) -((-1596 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-5 *2 (-1 *5 *4)) (-5 *1 (-677 *4 *5)))) (-1497 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1092)) (-5 *2 (-1 *5 *4)) (-5 *1 (-677 *4 *5)) (-4 *4 (-1092)))) (-2966 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-5 *2 (-1 *5)) (-5 *1 (-677 *4 *5)))) (-3542 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-677 *4 *3)) (-4 *4 (-1092)) (-4 *3 (-1092))))) -(-10 -7 (-15 -3542 ((-1 |#2| |#1|) |#2|)) (-15 -2966 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1497 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1596 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-1935 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-1442 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3281 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3900 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-1405 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-678 |#1| |#2| |#3|) (-10 -7 (-15 -1442 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3281 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3900 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1405 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1935 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1092) (-1092) (-1092)) (T -678)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-1 *7 *5)) (-5 *1 (-678 *5 *6 *7)))) (-1935 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-678 *4 *5 *6)))) (-1405 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-678 *4 *5 *6)) (-4 *4 (-1092)))) (-3900 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1092)) (-4 *6 (-1092)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-678 *4 *5 *6)) (-4 *5 (-1092)))) (-3281 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-5 *2 (-1 *6 *5)) (-5 *1 (-678 *4 *5 *6)))) (-1442 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1092)) (-4 *4 (-1092)) (-4 *6 (-1092)) (-5 *2 (-1 *6 *5)) (-5 *1 (-678 *5 *4 *6))))) -(-10 -7 (-15 -1442 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3281 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3900 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1405 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1935 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-1954 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-4152 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-679 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4152 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4152 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1954 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1044) (-372 |#1|) (-372 |#1|) (-681 |#1| |#2| |#3|) (-1044) (-372 |#5|) (-372 |#5|) (-681 |#5| |#6| |#7|)) (T -679)) -((-1954 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1044)) (-4 *2 (-1044)) (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) (-4 *8 (-372 *2)) (-4 *9 (-372 *2)) (-5 *1 (-679 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-681 *5 *6 *7)) (-4 *10 (-681 *2 *8 *9)))) (-4152 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1044)) (-4 *8 (-1044)) (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) (-4 *2 (-681 *8 *9 *10)) (-5 *1 (-679 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-681 *5 *6 *7)) (-4 *9 (-372 *8)) (-4 *10 (-372 *8)))) (-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1044)) (-4 *8 (-1044)) (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) (-4 *2 (-681 *8 *9 *10)) (-5 *1 (-679 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-681 *5 *6 *7)) (-4 *9 (-372 *8)) (-4 *10 (-372 *8))))) -(-10 -7 (-15 -4152 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4152 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1954 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-2910 (($ (-766) (-766)) 33)) (-2955 (($ $ $) 56)) (-2309 (($ |#3|) 52) (($ $) 53)) (-4097 (((-112) $) 28)) (-1975 (($ $ (-562) (-562)) 58)) (-2842 (($ $ (-562) (-562)) 59)) (-2167 (($ $ (-562) (-562) (-562) (-562)) 63)) (-2058 (($ $) 54)) (-2819 (((-112) $) 14)) (-1980 (($ $ (-562) (-562) $) 64)) (-4200 ((|#2| $ (-562) (-562) |#2|) NIL) (($ $ (-639 (-562)) (-639 (-562)) $) 62)) (-4369 (($ (-766) |#2|) 39)) (-2884 (($ (-639 (-639 |#2|))) 37)) (-2247 (((-639 (-639 |#2|)) $) 57)) (-3713 (($ $ $) 55)) (-1762 (((-3 $ "failed") $ |#2|) 91)) (-2343 ((|#2| $ (-562) (-562)) NIL) ((|#2| $ (-562) (-562) |#2|) NIL) (($ $ (-639 (-562)) (-639 (-562))) 61)) (-3168 (($ (-639 |#2|)) 40) (($ (-639 $)) 42)) (-1752 (((-112) $) 24)) (-4053 (($ |#4|) 47) (((-857) $) NIL)) (-1996 (((-112) $) 30)) (-1859 (($ $ |#2|) 93)) (-1847 (($ $ $) 68) (($ $) 71)) (-1836 (($ $ $) 66)) (** (($ $ (-766)) 80) (($ $ (-562)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-562) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88))) -(((-680 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4053 ((-857) |#1|)) (-15 ** (|#1| |#1| (-562))) (-15 -1859 (|#1| |#1| |#2|)) (-15 -1762 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-766))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-562) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1847 (|#1| |#1|)) (-15 -1847 (|#1| |#1| |#1|)) (-15 -1836 (|#1| |#1| |#1|)) (-15 -1980 (|#1| |#1| (-562) (-562) |#1|)) (-15 -2167 (|#1| |#1| (-562) (-562) (-562) (-562))) (-15 -2842 (|#1| |#1| (-562) (-562))) (-15 -1975 (|#1| |#1| (-562) (-562))) (-15 -4200 (|#1| |#1| (-639 (-562)) (-639 (-562)) |#1|)) (-15 -2343 (|#1| |#1| (-639 (-562)) (-639 (-562)))) (-15 -2247 ((-639 (-639 |#2|)) |#1|)) (-15 -2955 (|#1| |#1| |#1|)) (-15 -3713 (|#1| |#1| |#1|)) (-15 -2058 (|#1| |#1|)) (-15 -2309 (|#1| |#1|)) (-15 -2309 (|#1| |#3|)) (-15 -4053 (|#1| |#4|)) (-15 -3168 (|#1| (-639 |#1|))) (-15 -3168 (|#1| (-639 |#2|))) (-15 -4369 (|#1| (-766) |#2|)) (-15 -2884 (|#1| (-639 (-639 |#2|)))) (-15 -2910 (|#1| (-766) (-766))) (-15 -1996 ((-112) |#1|)) (-15 -4097 ((-112) |#1|)) (-15 -1752 ((-112) |#1|)) (-15 -2819 ((-112) |#1|)) (-15 -4200 (|#2| |#1| (-562) (-562) |#2|)) (-15 -2343 (|#2| |#1| (-562) (-562) |#2|)) (-15 -2343 (|#2| |#1| (-562) (-562)))) (-681 |#2| |#3| |#4|) (-1044) (-372 |#2|) (-372 |#2|)) (T -680)) -NIL -(-10 -8 (-15 -4053 ((-857) |#1|)) (-15 ** (|#1| |#1| (-562))) (-15 -1859 (|#1| |#1| |#2|)) (-15 -1762 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-766))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-562) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1847 (|#1| |#1|)) (-15 -1847 (|#1| |#1| |#1|)) (-15 -1836 (|#1| |#1| |#1|)) (-15 -1980 (|#1| |#1| (-562) (-562) |#1|)) (-15 -2167 (|#1| |#1| (-562) (-562) (-562) (-562))) (-15 -2842 (|#1| |#1| (-562) (-562))) (-15 -1975 (|#1| |#1| (-562) (-562))) (-15 -4200 (|#1| |#1| (-639 (-562)) (-639 (-562)) |#1|)) (-15 -2343 (|#1| |#1| (-639 (-562)) (-639 (-562)))) (-15 -2247 ((-639 (-639 |#2|)) |#1|)) (-15 -2955 (|#1| |#1| |#1|)) (-15 -3713 (|#1| |#1| |#1|)) (-15 -2058 (|#1| |#1|)) (-15 -2309 (|#1| |#1|)) (-15 -2309 (|#1| |#3|)) (-15 -4053 (|#1| |#4|)) (-15 -3168 (|#1| (-639 |#1|))) (-15 -3168 (|#1| (-639 |#2|))) (-15 -4369 (|#1| (-766) |#2|)) (-15 -2884 (|#1| (-639 (-639 |#2|)))) (-15 -2910 (|#1| (-766) (-766))) (-15 -1996 ((-112) |#1|)) (-15 -4097 ((-112) |#1|)) (-15 -1752 ((-112) |#1|)) (-15 -2819 ((-112) |#1|)) (-15 -4200 (|#2| |#1| (-562) (-562) |#2|)) (-15 -2343 (|#2| |#1| (-562) (-562) |#2|)) (-15 -2343 (|#2| |#1| (-562) (-562)))) -((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-2910 (($ (-766) (-766)) 97)) (-2955 (($ $ $) 87)) (-2309 (($ |#2|) 91) (($ $) 90)) (-4097 (((-112) $) 99)) (-1975 (($ $ (-562) (-562)) 83)) (-2842 (($ $ (-562) (-562)) 82)) (-2167 (($ $ (-562) (-562) (-562) (-562)) 81)) (-2058 (($ $) 89)) (-2819 (((-112) $) 101)) (-3735 (((-112) $ (-766)) 8)) (-1980 (($ $ (-562) (-562) $) 80)) (-4200 ((|#1| $ (-562) (-562) |#1|) 44) (($ $ (-639 (-562)) (-639 (-562)) $) 84)) (-2267 (($ $ (-562) |#2|) 42)) (-3320 (($ $ (-562) |#3|) 41)) (-4369 (($ (-766) |#1|) 95)) (-3329 (($) 7 T CONST)) (-2239 (($ $) 67 (|has| |#1| (-306)))) (-3511 ((|#2| $ (-562)) 46)) (-2172 (((-766) $) 66 (|has| |#1| (-554)))) (-1507 ((|#1| $ (-562) (-562) |#1|) 43)) (-1420 ((|#1| $ (-562) (-562)) 48)) (-1720 (((-639 |#1|) $) 30)) (-4244 (((-766) $) 65 (|has| |#1| (-554)))) (-3821 (((-639 |#3|) $) 64 (|has| |#1| (-554)))) (-2698 (((-766) $) 51)) (-1458 (($ (-766) (-766) |#1|) 57)) (-2708 (((-766) $) 50)) (-4172 (((-112) $ (-766)) 9)) (-1622 ((|#1| $) 62 (|has| |#1| (-6 (-4405 "*"))))) (-1808 (((-562) $) 55)) (-2028 (((-562) $) 53)) (-2123 (((-639 |#1|) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-3269 (((-562) $) 54)) (-2727 (((-562) $) 52)) (-2884 (($ (-639 (-639 |#1|))) 96)) (-1491 (($ (-1 |#1| |#1|) $) 34)) (-4152 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2247 (((-639 (-639 |#1|)) $) 86)) (-4147 (((-112) $ (-766)) 10)) (-3696 (((-1150) $) 22 (|has| |#1| (-1092)))) (-2463 (((-3 $ "failed") $) 61 (|has| |#1| (-362)))) (-3713 (($ $ $) 88)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-3510 (($ $ |#1|) 56)) (-1762 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-554)))) (-3008 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) 14)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-2343 ((|#1| $ (-562) (-562)) 49) ((|#1| $ (-562) (-562) |#1|) 47) (($ $ (-639 (-562)) (-639 (-562))) 85)) (-3168 (($ (-639 |#1|)) 94) (($ (-639 $)) 93)) (-1752 (((-112) $) 100)) (-3282 ((|#1| $) 63 (|has| |#1| (-6 (-4405 "*"))))) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4403))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-4220 (($ $) 13)) (-2208 ((|#3| $ (-562)) 45)) (-4053 (($ |#3|) 92) (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-2879 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4403)))) (-1996 (((-112) $) 98)) (-1733 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-1859 (($ $ |#1|) 68 (|has| |#1| (-362)))) (-1847 (($ $ $) 78) (($ $) 77)) (-1836 (($ $ $) 79)) (** (($ $ (-766)) 70) (($ $ (-562)) 60 (|has| |#1| (-362)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-562) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-681 |#1| |#2| |#3|) (-139) (-1044) (-372 |t#1|) (-372 |t#1|)) (T -681)) -((-2819 (*1 *2 *1) (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-112)))) (-1752 (*1 *2 *1) (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-112)))) (-4097 (*1 *2 *1) (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-112)))) (-1996 (*1 *2 *1) (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-112)))) (-2910 (*1 *1 *2 *2) (-12 (-5 *2 (-766)) (-4 *3 (-1044)) (-4 *1 (-681 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-639 (-639 *3))) (-4 *3 (-1044)) (-4 *1 (-681 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-4369 (*1 *1 *2 *3) (-12 (-5 *2 (-766)) (-4 *3 (-1044)) (-4 *1 (-681 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-3168 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1044)) (-4 *1 (-681 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-3168 (*1 *1 *2) (-12 (-5 *2 (-639 *1)) (-4 *3 (-1044)) (-4 *1 (-681 *3 *4 *5)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-4053 (*1 *1 *2) (-12 (-4 *3 (-1044)) (-4 *1 (-681 *3 *4 *2)) (-4 *4 (-372 *3)) (-4 *2 (-372 *3)))) (-2309 (*1 *1 *2) (-12 (-4 *3 (-1044)) (-4 *1 (-681 *3 *2 *4)) (-4 *2 (-372 *3)) (-4 *4 (-372 *3)))) (-2309 (*1 *1 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-2058 (*1 *1 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-3713 (*1 *1 *1 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-2955 (*1 *1 *1 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-2247 (*1 *2 *1) (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-639 (-639 *3))))) (-2343 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-639 (-562))) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-4200 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-639 (-562))) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-1975 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-562)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-2842 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-562)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-2167 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-562)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-1980 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-562)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-1836 (*1 *1 *1 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-1847 (*1 *1 *1 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (-1847 (*1 *1 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-562)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-681 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *2 (-372 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-681 *3 *2 *4)) (-4 *3 (-1044)) (-4 *2 (-372 *3)) (-4 *4 (-372 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) (-1762 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-554)))) (-1859 (*1 *1 *1 *2) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-362)))) (-2239 (*1 *1 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-306)))) (-2172 (*1 *2 *1) (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-4 *3 (-554)) (-5 *2 (-766)))) (-4244 (*1 *2 *1) (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-4 *3 (-554)) (-5 *2 (-766)))) (-3821 (*1 *2 *1) (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-4 *3 (-554)) (-5 *2 (-639 *5)))) (-3282 (*1 *2 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (|has| *2 (-6 (-4405 "*"))) (-4 *2 (-1044)))) (-1622 (*1 *2 *1) (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (|has| *2 (-6 (-4405 "*"))) (-4 *2 (-1044)))) (-2463 (*1 *1 *1) (|partial| -12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-362)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-4 *3 (-362))))) -(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4404) (-6 -4403) (-15 -2819 ((-112) $)) (-15 -1752 ((-112) $)) (-15 -4097 ((-112) $)) (-15 -1996 ((-112) $)) (-15 -2910 ($ (-766) (-766))) (-15 -2884 ($ (-639 (-639 |t#1|)))) (-15 -4369 ($ (-766) |t#1|)) (-15 -3168 ($ (-639 |t#1|))) (-15 -3168 ($ (-639 $))) (-15 -4053 ($ |t#3|)) (-15 -2309 ($ |t#2|)) (-15 -2309 ($ $)) (-15 -2058 ($ $)) (-15 -3713 ($ $ $)) (-15 -2955 ($ $ $)) (-15 -2247 ((-639 (-639 |t#1|)) $)) (-15 -2343 ($ $ (-639 (-562)) (-639 (-562)))) (-15 -4200 ($ $ (-639 (-562)) (-639 (-562)) $)) (-15 -1975 ($ $ (-562) (-562))) (-15 -2842 ($ $ (-562) (-562))) (-15 -2167 ($ $ (-562) (-562) (-562) (-562))) (-15 -1980 ($ $ (-562) (-562) $)) (-15 -1836 ($ $ $)) (-15 -1847 ($ $ $)) (-15 -1847 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-562) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-766))) (IF (|has| |t#1| (-554)) (-15 -1762 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-362)) (-15 -1859 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-306)) (-15 -2239 ($ $)) |%noBranch|) (IF (|has| |t#1| (-554)) (PROGN (-15 -2172 ((-766) $)) (-15 -4244 ((-766) $)) (-15 -3821 ((-639 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4405 "*"))) (PROGN (-15 -3282 (|t#1| $)) (-15 -1622 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-362)) (PROGN (-15 -2463 ((-3 $ "failed") $)) (-15 ** ($ $ (-562)))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1092) |has| |#1| (-1092)) ((-57 |#1| |#2| |#3|) . T) ((-1207) . T)) -((-2239 ((|#4| |#4|) 71 (|has| |#1| (-306)))) (-2172 (((-766) |#4|) 98 (|has| |#1| (-554)))) (-4244 (((-766) |#4|) 75 (|has| |#1| (-554)))) (-3821 (((-639 |#3|) |#4|) 82 (|has| |#1| (-554)))) (-2925 (((-2 (|:| -3380 |#1|) (|:| -1441 |#1|)) |#1| |#1|) 110 (|has| |#1| (-306)))) (-1622 ((|#1| |#4|) 34)) (-2144 (((-3 |#4| "failed") |#4|) 63 (|has| |#1| (-554)))) (-2463 (((-3 |#4| "failed") |#4|) 79 (|has| |#1| (-362)))) (-3010 ((|#4| |#4|) 67 (|has| |#1| (-554)))) (-2510 ((|#4| |#4| |#1| (-562) (-562)) 42)) (-1907 ((|#4| |#4| (-562) (-562)) 37)) (-3570 ((|#4| |#4| |#1| (-562) (-562)) 47)) (-3282 ((|#1| |#4|) 77)) (-1926 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 68 (|has| |#1| (-554))))) -(((-682 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3282 (|#1| |#4|)) (-15 -1622 (|#1| |#4|)) (-15 -1907 (|#4| |#4| (-562) (-562))) (-15 -2510 (|#4| |#4| |#1| (-562) (-562))) (-15 -3570 (|#4| |#4| |#1| (-562) (-562))) (IF (|has| |#1| (-554)) (PROGN (-15 -2172 ((-766) |#4|)) (-15 -4244 ((-766) |#4|)) (-15 -3821 ((-639 |#3|) |#4|)) (-15 -3010 (|#4| |#4|)) (-15 -2144 ((-3 |#4| "failed") |#4|)) (-15 -1926 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-306)) (PROGN (-15 -2239 (|#4| |#4|)) (-15 -2925 ((-2 (|:| -3380 |#1|) (|:| -1441 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -2463 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-171) (-372 |#1|) (-372 |#1|) (-681 |#1| |#2| |#3|)) (T -682)) -((-2463 (*1 *2 *2) (|partial| -12 (-4 *3 (-362)) (-4 *3 (-171)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-682 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))) (-2925 (*1 *2 *3 *3) (-12 (-4 *3 (-306)) (-4 *3 (-171)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *2 (-2 (|:| -3380 *3) (|:| -1441 *3))) (-5 *1 (-682 *3 *4 *5 *6)) (-4 *6 (-681 *3 *4 *5)))) (-2239 (*1 *2 *2) (-12 (-4 *3 (-306)) (-4 *3 (-171)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-682 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))) (-1926 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *4 (-171)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6)))) (-2144 (*1 *2 *2) (|partial| -12 (-4 *3 (-554)) (-4 *3 (-171)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-682 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))) (-3010 (*1 *2 *2) (-12 (-4 *3 (-554)) (-4 *3 (-171)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-682 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))) (-3821 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *4 (-171)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-639 *6)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6)))) (-4244 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *4 (-171)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-766)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6)))) (-2172 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *4 (-171)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-766)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6)))) (-3570 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-562)) (-4 *3 (-171)) (-4 *5 (-372 *3)) (-4 *6 (-372 *3)) (-5 *1 (-682 *3 *5 *6 *2)) (-4 *2 (-681 *3 *5 *6)))) (-2510 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-562)) (-4 *3 (-171)) (-4 *5 (-372 *3)) (-4 *6 (-372 *3)) (-5 *1 (-682 *3 *5 *6 *2)) (-4 *2 (-681 *3 *5 *6)))) (-1907 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-562)) (-4 *4 (-171)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *1 (-682 *4 *5 *6 *2)) (-4 *2 (-681 *4 *5 *6)))) (-1622 (*1 *2 *3) (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-171)) (-5 *1 (-682 *2 *4 *5 *3)) (-4 *3 (-681 *2 *4 *5)))) (-3282 (*1 *2 *3) (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-171)) (-5 *1 (-682 *2 *4 *5 *3)) (-4 *3 (-681 *2 *4 *5))))) -(-10 -7 (-15 -3282 (|#1| |#4|)) (-15 -1622 (|#1| |#4|)) (-15 -1907 (|#4| |#4| (-562) (-562))) (-15 -2510 (|#4| |#4| |#1| (-562) (-562))) (-15 -3570 (|#4| |#4| |#1| (-562) (-562))) (IF (|has| |#1| (-554)) (PROGN (-15 -2172 ((-766) |#4|)) (-15 -4244 ((-766) |#4|)) (-15 -3821 ((-639 |#3|) |#4|)) (-15 -3010 (|#4| |#4|)) (-15 -2144 ((-3 |#4| "failed") |#4|)) (-15 -1926 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-306)) (PROGN (-15 -2239 (|#4| |#4|)) (-15 -2925 ((-2 (|:| -3380 |#1|) (|:| -1441 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -2463 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2910 (($ (-766) (-766)) 47)) (-2955 (($ $ $) NIL)) (-2309 (($ (-1256 |#1|)) NIL) (($ $) NIL)) (-4097 (((-112) $) NIL)) (-1975 (($ $ (-562) (-562)) 12)) (-2842 (($ $ (-562) (-562)) NIL)) (-2167 (($ $ (-562) (-562) (-562) (-562)) NIL)) (-2058 (($ $) NIL)) (-2819 (((-112) $) NIL)) (-3735 (((-112) $ (-766)) NIL)) (-1980 (($ $ (-562) (-562) $) NIL)) (-4200 ((|#1| $ (-562) (-562) |#1|) NIL) (($ $ (-639 (-562)) (-639 (-562)) $) NIL)) (-2267 (($ $ (-562) (-1256 |#1|)) NIL)) (-3320 (($ $ (-562) (-1256 |#1|)) NIL)) (-4369 (($ (-766) |#1|) 22)) (-3329 (($) NIL T CONST)) (-2239 (($ $) 31 (|has| |#1| (-306)))) (-3511 (((-1256 |#1|) $ (-562)) NIL)) (-2172 (((-766) $) 33 (|has| |#1| (-554)))) (-1507 ((|#1| $ (-562) (-562) |#1|) 51)) (-1420 ((|#1| $ (-562) (-562)) NIL)) (-1720 (((-639 |#1|) $) NIL)) (-4244 (((-766) $) 35 (|has| |#1| (-554)))) (-3821 (((-639 (-1256 |#1|)) $) 38 (|has| |#1| (-554)))) (-2698 (((-766) $) 20)) (-1458 (($ (-766) (-766) |#1|) 16)) (-2708 (((-766) $) 21)) (-4172 (((-112) $ (-766)) NIL)) (-1622 ((|#1| $) 29 (|has| |#1| (-6 (-4405 "*"))))) (-1808 (((-562) $) 9)) (-2028 (((-562) $) 10)) (-2123 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-3269 (((-562) $) 11)) (-2727 (((-562) $) 48)) (-2884 (($ (-639 (-639 |#1|))) NIL)) (-1491 (($ (-1 |#1| |#1|) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2247 (((-639 (-639 |#1|)) $) 60)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-2463 (((-3 $ "failed") $) 45 (|has| |#1| (-362)))) (-3713 (($ $ $) NIL)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-3510 (($ $ |#1|) NIL)) (-1762 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554)))) (-3008 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) NIL)) (-2343 ((|#1| $ (-562) (-562)) NIL) ((|#1| $ (-562) (-562) |#1|) NIL) (($ $ (-639 (-562)) (-639 (-562))) NIL)) (-3168 (($ (-639 |#1|)) NIL) (($ (-639 $)) NIL) (($ (-1256 |#1|)) 52)) (-1752 (((-112) $) NIL)) (-3282 ((|#1| $) 27 (|has| |#1| (-6 (-4405 "*"))))) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-4220 (($ $) NIL)) (-4208 (((-535) $) 64 (|has| |#1| (-610 (-535))))) (-2208 (((-1256 |#1|) $ (-562)) NIL)) (-4053 (($ (-1256 |#1|)) NIL) (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-2879 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1996 (((-112) $) NIL)) (-1733 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1847 (($ $ $) NIL) (($ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-766)) 23) (($ $ (-562)) 46 (|has| |#1| (-362)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-562) $) NIL) (((-1256 |#1|) $ (-1256 |#1|)) NIL) (((-1256 |#1|) (-1256 |#1|) $) NIL)) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-683 |#1|) (-13 (-681 |#1| (-1256 |#1|) (-1256 |#1|)) (-10 -8 (-15 -3168 ($ (-1256 |#1|))) (IF (|has| |#1| (-610 (-535))) (-6 (-610 (-535))) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -2463 ((-3 $ "failed") $)) |%noBranch|))) (-1044)) (T -683)) -((-2463 (*1 *1 *1) (|partial| -12 (-5 *1 (-683 *2)) (-4 *2 (-362)) (-4 *2 (-1044)))) (-3168 (*1 *1 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-1044)) (-5 *1 (-683 *3))))) -(-13 (-681 |#1| (-1256 |#1|) (-1256 |#1|)) (-10 -8 (-15 -3168 ($ (-1256 |#1|))) (IF (|has| |#1| (-610 (-535))) (-6 (-610 (-535))) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -2463 ((-3 $ "failed") $)) |%noBranch|))) -((-2769 (((-683 |#1|) (-683 |#1|) (-683 |#1|) (-683 |#1|)) 25)) (-1350 (((-683 |#1|) (-683 |#1|) (-683 |#1|) |#1|) 21)) (-3717 (((-683 |#1|) (-683 |#1|) (-683 |#1|) (-683 |#1|) (-683 |#1|) (-766)) 26)) (-1363 (((-683 |#1|) (-683 |#1|) (-683 |#1|) (-683 |#1|)) 14)) (-3363 (((-683 |#1|) (-683 |#1|) (-683 |#1|) (-683 |#1|)) 18) (((-683 |#1|) (-683 |#1|) (-683 |#1|)) 16)) (-3106 (((-683 |#1|) (-683 |#1|) |#1| (-683 |#1|)) 20)) (-4267 (((-683 |#1|) (-683 |#1|) (-683 |#1|)) 12)) (** (((-683 |#1|) (-683 |#1|) (-766)) 30))) -(((-684 |#1|) (-10 -7 (-15 -4267 ((-683 |#1|) (-683 |#1|) (-683 |#1|))) (-15 -1363 ((-683 |#1|) (-683 |#1|) (-683 |#1|) (-683 |#1|))) (-15 -3363 ((-683 |#1|) (-683 |#1|) (-683 |#1|))) (-15 -3363 ((-683 |#1|) (-683 |#1|) (-683 |#1|) (-683 |#1|))) (-15 -3106 ((-683 |#1|) (-683 |#1|) |#1| (-683 |#1|))) (-15 -1350 ((-683 |#1|) (-683 |#1|) (-683 |#1|) |#1|)) (-15 -2769 ((-683 |#1|) (-683 |#1|) (-683 |#1|) (-683 |#1|))) (-15 -3717 ((-683 |#1|) (-683 |#1|) (-683 |#1|) (-683 |#1|) (-683 |#1|) (-766))) (-15 ** ((-683 |#1|) (-683 |#1|) (-766)))) (-1044)) (T -684)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-683 *4)) (-5 *3 (-766)) (-4 *4 (-1044)) (-5 *1 (-684 *4)))) (-3717 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-683 *4)) (-5 *3 (-766)) (-4 *4 (-1044)) (-5 *1 (-684 *4)))) (-2769 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-684 *3)))) (-1350 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-684 *3)))) (-3106 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-684 *3)))) (-3363 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-684 *3)))) (-3363 (*1 *2 *2 *2) (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-684 *3)))) (-1363 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-684 *3)))) (-4267 (*1 *2 *2 *2) (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-684 *3))))) -(-10 -7 (-15 -4267 ((-683 |#1|) (-683 |#1|) (-683 |#1|))) (-15 -1363 ((-683 |#1|) (-683 |#1|) (-683 |#1|) (-683 |#1|))) (-15 -3363 ((-683 |#1|) (-683 |#1|) (-683 |#1|))) (-15 -3363 ((-683 |#1|) (-683 |#1|) (-683 |#1|) (-683 |#1|))) (-15 -3106 ((-683 |#1|) (-683 |#1|) |#1| (-683 |#1|))) (-15 -1350 ((-683 |#1|) (-683 |#1|) (-683 |#1|) |#1|)) (-15 -2769 ((-683 |#1|) (-683 |#1|) (-683 |#1|) (-683 |#1|))) (-15 -3717 ((-683 |#1|) (-683 |#1|) (-683 |#1|) (-683 |#1|) (-683 |#1|) (-766))) (-15 ** ((-683 |#1|) (-683 |#1|) (-766)))) -((-4048 (((-3 |#1| "failed") $) 17)) (-3960 ((|#1| $) NIL)) (-1918 (($) 7 T CONST)) (-1520 (($ |#1|) 8)) (-4053 (($ |#1|) 15) (((-857) $) 22)) (-2276 (((-112) $ (|[\|\|]| |#1|)) 13) (((-112) $ (|[\|\|]| -1918)) 11)) (-4248 ((|#1| $) 14))) -(((-685 |#1|) (-13 (-1251) (-1033 |#1|) (-609 (-857)) (-10 -8 (-15 -1520 ($ |#1|)) (-15 -2276 ((-112) $ (|[\|\|]| |#1|))) (-15 -2276 ((-112) $ (|[\|\|]| -1918))) (-15 -4248 (|#1| $)) (-15 -1918 ($) -1497))) (-609 (-857))) (T -685)) -((-1520 (*1 *1 *2) (-12 (-5 *1 (-685 *2)) (-4 *2 (-609 (-857))))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-609 (-857))) (-5 *2 (-112)) (-5 *1 (-685 *4)))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1918)) (-5 *2 (-112)) (-5 *1 (-685 *4)) (-4 *4 (-609 (-857))))) (-4248 (*1 *2 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-609 (-857))))) (-1918 (*1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-609 (-857)))))) -(-13 (-1251) (-1033 |#1|) (-609 (-857)) (-10 -8 (-15 -1520 ($ |#1|)) (-15 -2276 ((-112) $ (|[\|\|]| |#1|))) (-15 -2276 ((-112) $ (|[\|\|]| -1918))) (-15 -4248 (|#1| $)) (-15 -1918 ($) -1497))) -((-3096 ((|#2| |#2| |#4|) 25)) (-3648 (((-683 |#2|) |#3| |#4|) 31)) (-3183 (((-683 |#2|) |#2| |#4|) 30)) (-1613 (((-1256 |#2|) |#2| |#4|) 16)) (-3566 ((|#2| |#3| |#4|) 24)) (-3378 (((-683 |#2|) |#3| |#4| (-766) (-766)) 38)) (-1476 (((-683 |#2|) |#2| |#4| (-766)) 37))) -(((-686 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1613 ((-1256 |#2|) |#2| |#4|)) (-15 -3566 (|#2| |#3| |#4|)) (-15 -3096 (|#2| |#2| |#4|)) (-15 -3183 ((-683 |#2|) |#2| |#4|)) (-15 -1476 ((-683 |#2|) |#2| |#4| (-766))) (-15 -3648 ((-683 |#2|) |#3| |#4|)) (-15 -3378 ((-683 |#2|) |#3| |#4| (-766) (-766)))) (-1092) (-895 |#1|) (-372 |#2|) (-13 (-372 |#1|) (-10 -7 (-6 -4403)))) (T -686)) -((-3378 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-766)) (-4 *6 (-1092)) (-4 *7 (-895 *6)) (-5 *2 (-683 *7)) (-5 *1 (-686 *6 *7 *3 *4)) (-4 *3 (-372 *7)) (-4 *4 (-13 (-372 *6) (-10 -7 (-6 -4403)))))) (-3648 (*1 *2 *3 *4) (-12 (-4 *5 (-1092)) (-4 *6 (-895 *5)) (-5 *2 (-683 *6)) (-5 *1 (-686 *5 *6 *3 *4)) (-4 *3 (-372 *6)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4403)))))) (-1476 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-766)) (-4 *6 (-1092)) (-4 *3 (-895 *6)) (-5 *2 (-683 *3)) (-5 *1 (-686 *6 *3 *7 *4)) (-4 *7 (-372 *3)) (-4 *4 (-13 (-372 *6) (-10 -7 (-6 -4403)))))) (-3183 (*1 *2 *3 *4) (-12 (-4 *5 (-1092)) (-4 *3 (-895 *5)) (-5 *2 (-683 *3)) (-5 *1 (-686 *5 *3 *6 *4)) (-4 *6 (-372 *3)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4403)))))) (-3096 (*1 *2 *2 *3) (-12 (-4 *4 (-1092)) (-4 *2 (-895 *4)) (-5 *1 (-686 *4 *2 *5 *3)) (-4 *5 (-372 *2)) (-4 *3 (-13 (-372 *4) (-10 -7 (-6 -4403)))))) (-3566 (*1 *2 *3 *4) (-12 (-4 *5 (-1092)) (-4 *2 (-895 *5)) (-5 *1 (-686 *5 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4403)))))) (-1613 (*1 *2 *3 *4) (-12 (-4 *5 (-1092)) (-4 *3 (-895 *5)) (-5 *2 (-1256 *3)) (-5 *1 (-686 *5 *3 *6 *4)) (-4 *6 (-372 *3)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4403))))))) -(-10 -7 (-15 -1613 ((-1256 |#2|) |#2| |#4|)) (-15 -3566 (|#2| |#3| |#4|)) (-15 -3096 (|#2| |#2| |#4|)) (-15 -3183 ((-683 |#2|) |#2| |#4|)) (-15 -1476 ((-683 |#2|) |#2| |#4| (-766))) (-15 -3648 ((-683 |#2|) |#3| |#4|)) (-15 -3378 ((-683 |#2|) |#3| |#4| (-766) (-766)))) -((-3358 (((-2 (|:| |num| (-683 |#1|)) (|:| |den| |#1|)) (-683 |#2|)) 20)) (-2162 ((|#1| (-683 |#2|)) 9)) (-2414 (((-683 |#1|) (-683 |#2|)) 18))) -(((-687 |#1| |#2|) (-10 -7 (-15 -2162 (|#1| (-683 |#2|))) (-15 -2414 ((-683 |#1|) (-683 |#2|))) (-15 -3358 ((-2 (|:| |num| (-683 |#1|)) (|:| |den| |#1|)) (-683 |#2|)))) (-554) (-987 |#1|)) (T -687)) -((-3358 (*1 *2 *3) (-12 (-5 *3 (-683 *5)) (-4 *5 (-987 *4)) (-4 *4 (-554)) (-5 *2 (-2 (|:| |num| (-683 *4)) (|:| |den| *4))) (-5 *1 (-687 *4 *5)))) (-2414 (*1 *2 *3) (-12 (-5 *3 (-683 *5)) (-4 *5 (-987 *4)) (-4 *4 (-554)) (-5 *2 (-683 *4)) (-5 *1 (-687 *4 *5)))) (-2162 (*1 *2 *3) (-12 (-5 *3 (-683 *4)) (-4 *4 (-987 *2)) (-4 *2 (-554)) (-5 *1 (-687 *2 *4))))) -(-10 -7 (-15 -2162 (|#1| (-683 |#2|))) (-15 -2414 ((-683 |#1|) (-683 |#2|))) (-15 -3358 ((-2 (|:| |num| (-683 |#1|)) (|:| |den| |#1|)) (-683 |#2|)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-4342 (((-683 (-693))) NIL) (((-683 (-693)) (-1256 $)) NIL)) (-1748 (((-693) $) NIL)) (-2987 (($ $) NIL (|has| (-693) (-1192)))) (-4098 (($ $) NIL (|has| (-693) (-1192)))) (-1755 (((-1180 (-916) (-766)) (-562)) NIL (|has| (-693) (-348)))) (-2781 (((-3 $ "failed") $ $) NIL)) (-3517 (((-417 (-1164 $)) (-1164 $)) NIL (-12 (|has| (-693) (-306)) (|has| (-693) (-904))))) (-1977 (($ $) NIL (-4037 (-12 (|has| (-693) (-306)) (|has| (-693) (-904))) (|has| (-693) (-362))))) (-3788 (((-417 $) $) NIL (-4037 (-12 (|has| (-693) (-306)) (|has| (-693) (-904))) (|has| (-693) (-362))))) (-1644 (($ $) NIL (-12 (|has| (-693) (-997)) (|has| (-693) (-1192))))) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (-12 (|has| (-693) (-306)) (|has| (-693) (-904))))) (-1436 (((-112) $ $) NIL (|has| (-693) (-306)))) (-1382 (((-766)) NIL (|has| (-693) (-367)))) (-4206 (($ $) NIL (|has| (-693) (-1192)))) (-4074 (($ $) NIL (|has| (-693) (-1192)))) (-3013 (($ $) NIL (|has| (-693) (-1192)))) (-4120 (($ $) NIL (|has| (-693) (-1192)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL) (((-3 (-693) "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL (|has| (-693) (-1033 (-406 (-562)))))) (-3960 (((-562) $) NIL) (((-693) $) NIL) (((-406 (-562)) $) NIL (|has| (-693) (-1033 (-406 (-562)))))) (-3916 (($ (-1256 (-693))) NIL) (($ (-1256 (-693)) (-1256 $)) NIL)) (-3082 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-693) (-348)))) (-1810 (($ $ $) NIL (|has| (-693) (-306)))) (-4376 (((-683 (-693)) $) NIL) (((-683 (-693)) $ (-1256 $)) NIL)) (-3449 (((-683 (-693)) (-683 $)) NIL) (((-2 (|:| -1767 (-683 (-693))) (|:| |vec| (-1256 (-693)))) (-683 $) (-1256 $)) NIL) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| (-693) (-635 (-562)))) (((-683 (-562)) (-683 $)) NIL (|has| (-693) (-635 (-562))))) (-1954 (((-3 $ "failed") (-406 (-1164 (-693)))) NIL (|has| (-693) (-362))) (($ (-1164 (-693))) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-1657 (((-693) $) 29)) (-3913 (((-3 (-406 (-562)) "failed") $) NIL (|has| (-693) (-544)))) (-3498 (((-112) $) NIL (|has| (-693) (-544)))) (-3854 (((-406 (-562)) $) NIL (|has| (-693) (-544)))) (-2172 (((-916)) NIL)) (-1447 (($) NIL (|has| (-693) (-367)))) (-1787 (($ $ $) NIL (|has| (-693) (-306)))) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL (|has| (-693) (-306)))) (-2787 (($) NIL (|has| (-693) (-348)))) (-1844 (((-112) $) NIL (|has| (-693) (-348)))) (-2184 (($ $) NIL (|has| (-693) (-348))) (($ $ (-766)) NIL (|has| (-693) (-348)))) (-3521 (((-112) $) NIL (-4037 (-12 (|has| (-693) (-306)) (|has| (-693) (-904))) (|has| (-693) (-362))))) (-2994 (((-2 (|:| |r| (-693)) (|:| |phi| (-693))) $) NIL (-12 (|has| (-693) (-1053)) (|has| (-693) (-1192))))) (-4100 (($) NIL (|has| (-693) (-1192)))) (-2337 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (|has| (-693) (-881 (-378)))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (|has| (-693) (-881 (-562))))) (-1993 (((-828 (-916)) $) NIL (|has| (-693) (-348))) (((-916) $) NIL (|has| (-693) (-348)))) (-4367 (((-112) $) NIL)) (-1895 (($ $ (-562)) NIL (-12 (|has| (-693) (-997)) (|has| (-693) (-1192))))) (-4363 (((-693) $) NIL)) (-3828 (((-3 $ "failed") $) NIL (|has| (-693) (-348)))) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| (-693) (-306)))) (-1937 (((-1164 (-693)) $) NIL (|has| (-693) (-362)))) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-4152 (($ (-1 (-693) (-693)) $) NIL)) (-3549 (((-916) $) NIL (|has| (-693) (-367)))) (-4366 (($ $) NIL (|has| (-693) (-1192)))) (-1942 (((-1164 (-693)) $) NIL)) (-1564 (($ (-639 $)) NIL (|has| (-693) (-306))) (($ $ $) NIL (|has| (-693) (-306)))) (-3696 (((-1150) $) NIL)) (-1525 (($ $) NIL (|has| (-693) (-362)))) (-3730 (($) NIL (|has| (-693) (-348)) CONST)) (-2464 (($ (-916)) NIL (|has| (-693) (-367)))) (-2396 (($) NIL)) (-1670 (((-693) $) 31)) (-1709 (((-1112) $) NIL)) (-3147 (($) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| (-693) (-306)))) (-1606 (($ (-639 $)) NIL (|has| (-693) (-306))) (($ $ $) NIL (|has| (-693) (-306)))) (-1753 (((-639 (-2 (|:| -1635 (-562)) (|:| -1300 (-562))))) NIL (|has| (-693) (-348)))) (-3586 (((-417 (-1164 $)) (-1164 $)) NIL (-12 (|has| (-693) (-306)) (|has| (-693) (-904))))) (-3468 (((-417 (-1164 $)) (-1164 $)) NIL (-12 (|has| (-693) (-306)) (|has| (-693) (-904))))) (-1635 (((-417 $) $) NIL (-4037 (-12 (|has| (-693) (-306)) (|has| (-693) (-904))) (|has| (-693) (-362))))) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-693) (-306))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL (|has| (-693) (-306)))) (-1762 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-693)) NIL (|has| (-693) (-554)))) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| (-693) (-306)))) (-3430 (($ $) NIL (|has| (-693) (-1192)))) (-1433 (($ $ (-1168) (-693)) NIL (|has| (-693) (-513 (-1168) (-693)))) (($ $ (-639 (-1168)) (-639 (-693))) NIL (|has| (-693) (-513 (-1168) (-693)))) (($ $ (-639 (-293 (-693)))) NIL (|has| (-693) (-308 (-693)))) (($ $ (-293 (-693))) NIL (|has| (-693) (-308 (-693)))) (($ $ (-693) (-693)) NIL (|has| (-693) (-308 (-693)))) (($ $ (-639 (-693)) (-639 (-693))) NIL (|has| (-693) (-308 (-693))))) (-2044 (((-766) $) NIL (|has| (-693) (-306)))) (-2343 (($ $ (-693)) NIL (|has| (-693) (-285 (-693) (-693))))) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| (-693) (-306)))) (-2736 (((-693)) NIL) (((-693) (-1256 $)) NIL)) (-3543 (((-3 (-766) "failed") $ $) NIL (|has| (-693) (-348))) (((-766) $) NIL (|has| (-693) (-348)))) (-4029 (($ $ (-1 (-693) (-693))) NIL) (($ $ (-1 (-693) (-693)) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| (-693) (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| (-693) (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| (-693) (-895 (-1168)))) (($ $ (-1168)) NIL (|has| (-693) (-895 (-1168)))) (($ $ (-766)) NIL (|has| (-693) (-232))) (($ $) NIL (|has| (-693) (-232)))) (-2539 (((-683 (-693)) (-1256 $) (-1 (-693) (-693))) NIL (|has| (-693) (-362)))) (-3371 (((-1164 (-693))) NIL)) (-3022 (($ $) NIL (|has| (-693) (-1192)))) (-4130 (($ $) NIL (|has| (-693) (-1192)))) (-1653 (($) NIL (|has| (-693) (-348)))) (-3000 (($ $) NIL (|has| (-693) (-1192)))) (-4108 (($ $) NIL (|has| (-693) (-1192)))) (-2977 (($ $) NIL (|has| (-693) (-1192)))) (-4087 (($ $) NIL (|has| (-693) (-1192)))) (-2205 (((-683 (-693)) (-1256 $)) NIL) (((-1256 (-693)) $) NIL) (((-683 (-693)) (-1256 $) (-1256 $)) NIL) (((-1256 (-693)) $ (-1256 $)) NIL)) (-4208 (((-535) $) NIL (|has| (-693) (-610 (-535)))) (((-168 (-224)) $) NIL (|has| (-693) (-1017))) (((-168 (-378)) $) NIL (|has| (-693) (-1017))) (((-887 (-378)) $) NIL (|has| (-693) (-610 (-887 (-378))))) (((-887 (-562)) $) NIL (|has| (-693) (-610 (-887 (-562))))) (($ (-1164 (-693))) NIL) (((-1164 (-693)) $) NIL) (($ (-1256 (-693))) NIL) (((-1256 (-693)) $) NIL)) (-1660 (($ $) NIL)) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (-4037 (-12 (|has| (-693) (-306)) (|has| $ (-144)) (|has| (-693) (-904))) (|has| (-693) (-348))))) (-1418 (($ (-693) (-693)) 12)) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-562)) NIL) (($ (-693)) NIL) (($ (-168 (-378))) 13) (($ (-168 (-562))) 19) (($ (-168 (-693))) 28) (($ (-168 (-695))) 25) (((-168 (-378)) $) 33) (($ (-406 (-562))) NIL (-4037 (|has| (-693) (-1033 (-406 (-562)))) (|has| (-693) (-362))))) (-2059 (($ $) NIL (|has| (-693) (-348))) (((-3 $ "failed") $) NIL (-4037 (-12 (|has| (-693) (-306)) (|has| $ (-144)) (|has| (-693) (-904))) (|has| (-693) (-144))))) (-3683 (((-1164 (-693)) $) NIL)) (-1568 (((-766)) NIL)) (-4291 (((-1256 $)) NIL)) (-3054 (($ $) NIL (|has| (-693) (-1192)))) (-4165 (($ $) NIL (|has| (-693) (-1192)))) (-3799 (((-112) $ $) NIL)) (-3033 (($ $) NIL (|has| (-693) (-1192)))) (-4139 (($ $) NIL (|has| (-693) (-1192)))) (-3077 (($ $) NIL (|has| (-693) (-1192)))) (-4183 (($ $) NIL (|has| (-693) (-1192)))) (-2282 (((-693) $) NIL (|has| (-693) (-1192)))) (-1567 (($ $) NIL (|has| (-693) (-1192)))) (-4195 (($ $) NIL (|has| (-693) (-1192)))) (-3065 (($ $) NIL (|has| (-693) (-1192)))) (-4175 (($ $) NIL (|has| (-693) (-1192)))) (-3040 (($ $) NIL (|has| (-693) (-1192)))) (-4151 (($ $) NIL (|has| (-693) (-1192)))) (-2757 (($ $) NIL (|has| (-693) (-1053)))) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3113 (($ $ (-1 (-693) (-693))) NIL) (($ $ (-1 (-693) (-693)) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| (-693) (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| (-693) (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| (-693) (-895 (-1168)))) (($ $ (-1168)) NIL (|has| (-693) (-895 (-1168)))) (($ $ (-766)) NIL (|has| (-693) (-232))) (($ $) NIL (|has| (-693) (-232)))) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) NIL)) (-1859 (($ $ $) NIL (|has| (-693) (-362)))) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ $) NIL (|has| (-693) (-1192))) (($ $ (-406 (-562))) NIL (-12 (|has| (-693) (-997)) (|has| (-693) (-1192)))) (($ $ (-562)) NIL (|has| (-693) (-362)))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ (-693) $) NIL) (($ $ (-693)) NIL) (($ (-406 (-562)) $) NIL (|has| (-693) (-362))) (($ $ (-406 (-562))) NIL (|has| (-693) (-362))))) -(((-688) (-13 (-386) (-165 (-693)) (-10 -8 (-15 -4053 ($ (-168 (-378)))) (-15 -4053 ($ (-168 (-562)))) (-15 -4053 ($ (-168 (-693)))) (-15 -4053 ($ (-168 (-695)))) (-15 -4053 ((-168 (-378)) $))))) (T -688)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-688)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-168 (-562))) (-5 *1 (-688)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-168 (-693))) (-5 *1 (-688)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-168 (-695))) (-5 *1 (-688)))) (-4053 (*1 *2 *1) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-688))))) -(-13 (-386) (-165 (-693)) (-10 -8 (-15 -4053 ($ (-168 (-378)))) (-15 -4053 ($ (-168 (-562)))) (-15 -4053 ($ (-168 (-693)))) (-15 -4053 ($ (-168 (-695)))) (-15 -4053 ((-168 (-378)) $)))) -((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-3735 (((-112) $ (-766)) 8)) (-2968 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4403)))) (-3329 (($) 7 T CONST)) (-3923 (($ $) 62)) (-1459 (($ $) 58 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-3729 (($ |#1| $) 47 (|has| $ (-6 -4403))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4403)))) (-1475 (($ |#1| $) 57 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4403)))) (-1954 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4403)))) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4403)))) (-4172 (((-112) $ (-766)) 9)) (-2123 (((-639 |#1|) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1491 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-4147 (((-112) $ (-766)) 10)) (-3696 (((-1150) $) 22 (|has| |#1| (-1092)))) (-2078 ((|#1| $) 39)) (-1581 (($ |#1| $) 40) (($ |#1| $ (-766)) 63)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-1963 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2038 ((|#1| $) 41)) (-3008 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) 14)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-3110 (((-639 (-2 (|:| -2693 |#1|) (|:| -1723 (-766)))) $) 61)) (-1932 (($) 49) (($ (-639 |#1|)) 48)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4403))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-4220 (($ $) 13)) (-4208 (((-535) $) 59 (|has| |#1| (-610 (-535))))) (-4064 (($ (-639 |#1|)) 50)) (-4053 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-4131 (($ (-639 |#1|)) 42)) (-2879 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-689 |#1|) (-139) (-1092)) (T -689)) -((-1581 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-766)) (-4 *1 (-689 *2)) (-4 *2 (-1092)))) (-3923 (*1 *1 *1) (-12 (-4 *1 (-689 *2)) (-4 *2 (-1092)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-689 *3)) (-4 *3 (-1092)) (-5 *2 (-639 (-2 (|:| -2693 *3) (|:| -1723 (-766)))))))) -(-13 (-234 |t#1|) (-10 -8 (-15 -1581 ($ |t#1| $ (-766))) (-15 -3923 ($ $)) (-15 -3110 ((-639 (-2 (|:| -2693 |t#1|) (|:| -1723 (-766)))) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-150 |#1|) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1092) |has| |#1| (-1092)) ((-1207) . T)) -((-3317 (((-639 |#1|) (-639 (-2 (|:| -1635 |#1|) (|:| -2250 (-562)))) (-562)) 47)) (-3527 ((|#1| |#1| (-562)) 46)) (-1606 ((|#1| |#1| |#1| (-562)) 36)) (-1635 (((-639 |#1|) |#1| (-562)) 39)) (-3880 ((|#1| |#1| (-562) |#1| (-562)) 32)) (-3678 (((-639 (-2 (|:| -1635 |#1|) (|:| -2250 (-562)))) |#1| (-562)) 45))) -(((-690 |#1|) (-10 -7 (-15 -1606 (|#1| |#1| |#1| (-562))) (-15 -3527 (|#1| |#1| (-562))) (-15 -1635 ((-639 |#1|) |#1| (-562))) (-15 -3678 ((-639 (-2 (|:| -1635 |#1|) (|:| -2250 (-562)))) |#1| (-562))) (-15 -3317 ((-639 |#1|) (-639 (-2 (|:| -1635 |#1|) (|:| -2250 (-562)))) (-562))) (-15 -3880 (|#1| |#1| (-562) |#1| (-562)))) (-1232 (-562))) (T -690)) -((-3880 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-562)) (-5 *1 (-690 *2)) (-4 *2 (-1232 *3)))) (-3317 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-2 (|:| -1635 *5) (|:| -2250 (-562))))) (-5 *4 (-562)) (-4 *5 (-1232 *4)) (-5 *2 (-639 *5)) (-5 *1 (-690 *5)))) (-3678 (*1 *2 *3 *4) (-12 (-5 *4 (-562)) (-5 *2 (-639 (-2 (|:| -1635 *3) (|:| -2250 *4)))) (-5 *1 (-690 *3)) (-4 *3 (-1232 *4)))) (-1635 (*1 *2 *3 *4) (-12 (-5 *4 (-562)) (-5 *2 (-639 *3)) (-5 *1 (-690 *3)) (-4 *3 (-1232 *4)))) (-3527 (*1 *2 *2 *3) (-12 (-5 *3 (-562)) (-5 *1 (-690 *2)) (-4 *2 (-1232 *3)))) (-1606 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-562)) (-5 *1 (-690 *2)) (-4 *2 (-1232 *3))))) -(-10 -7 (-15 -1606 (|#1| |#1| |#1| (-562))) (-15 -3527 (|#1| |#1| (-562))) (-15 -1635 ((-639 |#1|) |#1| (-562))) (-15 -3678 ((-639 (-2 (|:| -1635 |#1|) (|:| -2250 (-562)))) |#1| (-562))) (-15 -3317 ((-639 |#1|) (-639 (-2 (|:| -1635 |#1|) (|:| -2250 (-562)))) (-562))) (-15 -3880 (|#1| |#1| (-562) |#1| (-562)))) -((-2275 (((-1 (-938 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224) (-224))) 17)) (-3062 (((-1125 (-224)) (-1125 (-224)) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-224)) (-1086 (-224)) (-639 (-262))) 40) (((-1125 (-224)) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-224)) (-1086 (-224)) (-639 (-262))) 42) (((-1125 (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1086 (-224)) (-1086 (-224)) (-639 (-262))) 44)) (-3130 (((-1125 (-224)) (-315 (-562)) (-315 (-562)) (-315 (-562)) (-1 (-224) (-224)) (-1086 (-224)) (-639 (-262))) NIL)) (-2721 (((-1125 (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1086 (-224)) (-1086 (-224)) (-639 (-262))) 45))) -(((-691) (-10 -7 (-15 -3062 ((-1125 (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1086 (-224)) (-1086 (-224)) (-639 (-262)))) (-15 -3062 ((-1125 (-224)) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-224)) (-1086 (-224)) (-639 (-262)))) (-15 -3062 ((-1125 (-224)) (-1125 (-224)) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-224)) (-1086 (-224)) (-639 (-262)))) (-15 -2721 ((-1125 (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1086 (-224)) (-1086 (-224)) (-639 (-262)))) (-15 -3130 ((-1125 (-224)) (-315 (-562)) (-315 (-562)) (-315 (-562)) (-1 (-224) (-224)) (-1086 (-224)) (-639 (-262)))) (-15 -2275 ((-1 (-938 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224) (-224)))))) (T -691)) -((-2275 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1 (-224) (-224) (-224) (-224))) (-5 *2 (-1 (-938 (-224)) (-224) (-224))) (-5 *1 (-691)))) (-3130 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-315 (-562))) (-5 *4 (-1 (-224) (-224))) (-5 *5 (-1086 (-224))) (-5 *6 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-691)))) (-2721 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-3 (-1 (-224) (-224) (-224) (-224)) "undefined")) (-5 *5 (-1086 (-224))) (-5 *6 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-691)))) (-3062 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1125 (-224))) (-5 *3 (-1 (-938 (-224)) (-224) (-224))) (-5 *4 (-1086 (-224))) (-5 *5 (-639 (-262))) (-5 *1 (-691)))) (-3062 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-938 (-224)) (-224) (-224))) (-5 *4 (-1086 (-224))) (-5 *5 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-691)))) (-3062 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-3 (-1 (-224) (-224) (-224) (-224)) "undefined")) (-5 *5 (-1086 (-224))) (-5 *6 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-691))))) -(-10 -7 (-15 -3062 ((-1125 (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1086 (-224)) (-1086 (-224)) (-639 (-262)))) (-15 -3062 ((-1125 (-224)) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-224)) (-1086 (-224)) (-639 (-262)))) (-15 -3062 ((-1125 (-224)) (-1125 (-224)) (-1 (-938 (-224)) (-224) (-224)) (-1086 (-224)) (-1086 (-224)) (-639 (-262)))) (-15 -2721 ((-1125 (-224)) (-1 (-224) (-224) (-224)) (-3 (-1 (-224) (-224) (-224) (-224)) "undefined") (-1086 (-224)) (-1086 (-224)) (-639 (-262)))) (-15 -3130 ((-1125 (-224)) (-315 (-562)) (-315 (-562)) (-315 (-562)) (-1 (-224) (-224)) (-1086 (-224)) (-639 (-262)))) (-15 -2275 ((-1 (-938 (-224)) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224)) (-1 (-224) (-224) (-224) (-224))))) -((-1635 (((-417 (-1164 |#4|)) (-1164 |#4|)) 73) (((-417 |#4|) |#4|) 220))) -(((-692 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1635 ((-417 |#4|) |#4|)) (-15 -1635 ((-417 (-1164 |#4|)) (-1164 |#4|)))) (-845) (-788) (-348) (-944 |#3| |#2| |#1|)) (T -692)) -((-1635 (*1 *2 *3) (-12 (-4 *4 (-845)) (-4 *5 (-788)) (-4 *6 (-348)) (-4 *7 (-944 *6 *5 *4)) (-5 *2 (-417 (-1164 *7))) (-5 *1 (-692 *4 *5 *6 *7)) (-5 *3 (-1164 *7)))) (-1635 (*1 *2 *3) (-12 (-4 *4 (-845)) (-4 *5 (-788)) (-4 *6 (-348)) (-5 *2 (-417 *3)) (-5 *1 (-692 *4 *5 *6 *3)) (-4 *3 (-944 *6 *5 *4))))) -(-10 -7 (-15 -1635 ((-417 |#4|) |#4|)) (-15 -1635 ((-417 (-1164 |#4|)) (-1164 |#4|)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) 84)) (-2300 (((-562) $) 30)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-1302 (($ $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-1644 (($ $) NIL)) (-1436 (((-112) $ $) NIL)) (-1587 (((-562) $) NIL)) (-3329 (($) NIL T CONST)) (-3410 (($ $) NIL)) (-4048 (((-3 (-562) "failed") $) 73) (((-3 (-406 (-562)) "failed") $) 26) (((-3 (-378) "failed") $) 70)) (-3960 (((-562) $) 75) (((-406 (-562)) $) 67) (((-378) $) 68)) (-1810 (($ $ $) 96)) (-1694 (((-3 $ "failed") $) 87)) (-1787 (($ $ $) 95)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-3521 (((-112) $) NIL)) (-3326 (((-916)) 77) (((-916) (-916)) 76)) (-2696 (((-112) $) NIL)) (-2337 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL)) (-1993 (((-562) $) NIL)) (-4367 (((-112) $) NIL)) (-1895 (($ $ (-562)) NIL)) (-4363 (($ $) NIL)) (-3855 (((-112) $) NIL)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2590 (((-562) (-562)) 81) (((-562)) 82)) (-1551 (($ $ $) NIL) (($) NIL (-12 (-2234 (|has| $ (-6 -4386))) (-2234 (|has| $ (-6 -4394)))))) (-1999 (((-562) (-562)) 79) (((-562)) 80)) (-2993 (($ $ $) NIL) (($) NIL (-12 (-2234 (|has| $ (-6 -4386))) (-2234 (|has| $ (-6 -4394)))))) (-3946 (((-562) $) 16)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) 91)) (-2898 (((-916) (-562)) NIL (|has| $ (-6 -4394)))) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2561 (($ $) NIL)) (-3870 (($ $) NIL)) (-4237 (($ (-562) (-562)) NIL) (($ (-562) (-562) (-916)) NIL)) (-1635 (((-417 $) $) NIL)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) 92)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1300 (((-562) $) 22)) (-2044 (((-766) $) NIL)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 94)) (-2244 (((-916)) NIL) (((-916) (-916)) NIL (|has| $ (-6 -4394)))) (-3719 (((-916) (-562)) NIL (|has| $ (-6 -4394)))) (-4208 (((-378) $) NIL) (((-224) $) NIL) (((-887 (-378)) $) NIL)) (-4053 (((-857) $) 52) (($ (-562)) 63) (($ $) NIL) (($ (-406 (-562))) 66) (($ (-562)) 63) (($ (-406 (-562))) 66) (($ (-378)) 60) (((-378) $) 50) (($ (-695)) 55)) (-1568 (((-766)) 103)) (-3388 (($ (-562) (-562) (-916)) 44)) (-3636 (($ $) NIL)) (-3573 (((-916)) NIL) (((-916) (-916)) NIL (|has| $ (-6 -4394)))) (-3240 (((-916)) 35) (((-916) (-916)) 78)) (-3799 (((-112) $ $) NIL)) (-2757 (($ $) NIL)) (-2285 (($) 32 T CONST)) (-2294 (($) 17 T CONST)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 83)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) 101)) (-1859 (($ $ $) 65)) (-1847 (($ $) 99) (($ $ $) 100)) (-1836 (($ $ $) 98)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL) (($ $ (-406 (-562))) 90)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 97) (($ $ $) 88) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL))) -(((-693) (-13 (-403) (-386) (-362) (-1033 (-378)) (-1033 (-406 (-562))) (-146) (-10 -8 (-15 -3326 ((-916) (-916))) (-15 -3326 ((-916))) (-15 -3240 ((-916) (-916))) (-15 -1999 ((-562) (-562))) (-15 -1999 ((-562))) (-15 -2590 ((-562) (-562))) (-15 -2590 ((-562))) (-15 -4053 ((-378) $)) (-15 -4053 ($ (-695))) (-15 -3946 ((-562) $)) (-15 -1300 ((-562) $)) (-15 -3388 ($ (-562) (-562) (-916)))))) (T -693)) -((-1300 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-693)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-693)))) (-3326 (*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-693)))) (-3326 (*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-693)))) (-3240 (*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-693)))) (-1999 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-693)))) (-1999 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-693)))) (-2590 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-693)))) (-2590 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-693)))) (-4053 (*1 *2 *1) (-12 (-5 *2 (-378)) (-5 *1 (-693)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-693)))) (-3388 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-562)) (-5 *3 (-916)) (-5 *1 (-693))))) -(-13 (-403) (-386) (-362) (-1033 (-378)) (-1033 (-406 (-562))) (-146) (-10 -8 (-15 -3326 ((-916) (-916))) (-15 -3326 ((-916))) (-15 -3240 ((-916) (-916))) (-15 -1999 ((-562) (-562))) (-15 -1999 ((-562))) (-15 -2590 ((-562) (-562))) (-15 -2590 ((-562))) (-15 -4053 ((-378) $)) (-15 -4053 ($ (-695))) (-15 -3946 ((-562) $)) (-15 -1300 ((-562) $)) (-15 -3388 ($ (-562) (-562) (-916))))) -((-4337 (((-683 |#1|) (-683 |#1|) |#1| |#1|) 65)) (-2239 (((-683 |#1|) (-683 |#1|) |#1|) 48)) (-2989 (((-683 |#1|) (-683 |#1|) |#1|) 66)) (-3390 (((-683 |#1|) (-683 |#1|)) 49)) (-2925 (((-2 (|:| -3380 |#1|) (|:| -1441 |#1|)) |#1| |#1|) 64))) -(((-694 |#1|) (-10 -7 (-15 -3390 ((-683 |#1|) (-683 |#1|))) (-15 -2239 ((-683 |#1|) (-683 |#1|) |#1|)) (-15 -2989 ((-683 |#1|) (-683 |#1|) |#1|)) (-15 -4337 ((-683 |#1|) (-683 |#1|) |#1| |#1|)) (-15 -2925 ((-2 (|:| -3380 |#1|) (|:| -1441 |#1|)) |#1| |#1|))) (-306)) (T -694)) -((-2925 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3380 *3) (|:| -1441 *3))) (-5 *1 (-694 *3)) (-4 *3 (-306)))) (-4337 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-683 *3)) (-4 *3 (-306)) (-5 *1 (-694 *3)))) (-2989 (*1 *2 *2 *3) (-12 (-5 *2 (-683 *3)) (-4 *3 (-306)) (-5 *1 (-694 *3)))) (-2239 (*1 *2 *2 *3) (-12 (-5 *2 (-683 *3)) (-4 *3 (-306)) (-5 *1 (-694 *3)))) (-3390 (*1 *2 *2) (-12 (-5 *2 (-683 *3)) (-4 *3 (-306)) (-5 *1 (-694 *3))))) -(-10 -7 (-15 -3390 ((-683 |#1|) (-683 |#1|))) (-15 -2239 ((-683 |#1|) (-683 |#1|) |#1|)) (-15 -2989 ((-683 |#1|) (-683 |#1|) |#1|)) (-15 -4337 ((-683 |#1|) (-683 |#1|) |#1| |#1|)) (-15 -2925 ((-2 (|:| -3380 |#1|) (|:| -1441 |#1|)) |#1| |#1|))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-3544 (($ $ $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-4158 (($ $ $ $) NIL)) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-1436 (((-112) $ $) NIL)) (-1587 (((-562) $) NIL)) (-3355 (($ $ $) NIL)) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) 27)) (-3960 (((-562) $) 25)) (-1810 (($ $ $) NIL)) (-3449 (((-683 (-562)) (-683 $)) NIL) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-3913 (((-3 (-406 (-562)) "failed") $) NIL)) (-3498 (((-112) $) NIL)) (-3854 (((-406 (-562)) $) NIL)) (-1447 (($ $) NIL) (($) NIL)) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-3521 (((-112) $) NIL)) (-2877 (($ $ $ $) NIL)) (-3867 (($ $ $) NIL)) (-2696 (((-112) $) NIL)) (-1940 (($ $ $) NIL)) (-2337 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL)) (-4367 (((-112) $) NIL)) (-3152 (((-112) $) NIL)) (-3828 (((-3 $ "failed") $) NIL)) (-3855 (((-112) $) NIL)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2051 (($ $ $ $) NIL)) (-1551 (($ $ $) NIL)) (-2734 (((-916) (-916)) 10) (((-916)) 9)) (-2993 (($ $ $) NIL)) (-3930 (($ $) NIL)) (-3641 (($ $) NIL)) (-1564 (($ (-639 $)) NIL) (($ $ $) NIL)) (-3696 (((-1150) $) NIL)) (-2296 (($ $ $) NIL)) (-3730 (($) NIL T CONST)) (-4137 (($ $) NIL)) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ (-639 $)) NIL) (($ $ $) NIL)) (-3350 (($ $) NIL)) (-1635 (((-417 $) $) NIL)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2438 (((-112) $) NIL)) (-2044 (((-766) $) NIL)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-4029 (($ $) NIL) (($ $ (-766)) NIL)) (-2369 (($ $) NIL)) (-4220 (($ $) NIL)) (-4208 (((-224) $) NIL) (((-378) $) NIL) (((-887 (-562)) $) NIL) (((-535) $) NIL) (((-562) $) NIL)) (-4053 (((-857) $) NIL) (($ (-562)) 24) (($ $) NIL) (($ (-562)) 24) (((-315 $) (-315 (-562))) 18)) (-1568 (((-766)) NIL)) (-3869 (((-112) $ $) NIL)) (-2068 (($ $ $) NIL)) (-3240 (($) NIL)) (-3799 (((-112) $ $) NIL)) (-3160 (($ $ $ $) NIL)) (-2757 (($ $) NIL)) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3113 (($ $) NIL) (($ $ (-766)) NIL)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL))) -(((-695) (-13 (-386) (-544) (-10 -8 (-15 -2734 ((-916) (-916))) (-15 -2734 ((-916))) (-15 -4053 ((-315 $) (-315 (-562))))))) (T -695)) -((-2734 (*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-695)))) (-2734 (*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-695)))) (-4053 (*1 *2 *3) (-12 (-5 *3 (-315 (-562))) (-5 *2 (-315 (-695))) (-5 *1 (-695))))) -(-13 (-386) (-544) (-10 -8 (-15 -2734 ((-916) (-916))) (-15 -2734 ((-916))) (-15 -4053 ((-315 $) (-315 (-562)))))) -((-1845 (((-1 |#4| |#2| |#3|) |#1| (-1168) (-1168)) 19)) (-2596 (((-1 |#4| |#2| |#3|) (-1168)) 12))) -(((-696 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2596 ((-1 |#4| |#2| |#3|) (-1168))) (-15 -1845 ((-1 |#4| |#2| |#3|) |#1| (-1168) (-1168)))) (-610 (-535)) (-1207) (-1207) (-1207)) (T -696)) -((-1845 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1168)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-696 *3 *5 *6 *7)) (-4 *3 (-610 (-535))) (-4 *5 (-1207)) (-4 *6 (-1207)) (-4 *7 (-1207)))) (-2596 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-696 *4 *5 *6 *7)) (-4 *4 (-610 (-535))) (-4 *5 (-1207)) (-4 *6 (-1207)) (-4 *7 (-1207))))) -(-10 -7 (-15 -2596 ((-1 |#4| |#2| |#3|) (-1168))) (-15 -1845 ((-1 |#4| |#2| |#3|) |#1| (-1168) (-1168)))) -((-4041 (((-112) $ $) NIL)) (-2389 (((-1261) $ (-766)) 14)) (-4265 (((-766) $) 12)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 18) (($ |#1|) 23) ((|#1| $) 15)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 25)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) 24))) -(((-697 |#1|) (-13 (-131) (-489 |#1|)) (-1092)) (T -697)) -NIL -(-13 (-131) (-489 |#1|)) -((-3937 (((-1 (-224) (-224) (-224)) |#1| (-1168) (-1168)) 34) (((-1 (-224) (-224)) |#1| (-1168)) 39))) -(((-698 |#1|) (-10 -7 (-15 -3937 ((-1 (-224) (-224)) |#1| (-1168))) (-15 -3937 ((-1 (-224) (-224) (-224)) |#1| (-1168) (-1168)))) (-610 (-535))) (T -698)) -((-3937 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1168)) (-5 *2 (-1 (-224) (-224) (-224))) (-5 *1 (-698 *3)) (-4 *3 (-610 (-535))))) (-3937 (*1 *2 *3 *4) (-12 (-5 *4 (-1168)) (-5 *2 (-1 (-224) (-224))) (-5 *1 (-698 *3)) (-4 *3 (-610 (-535)))))) -(-10 -7 (-15 -3937 ((-1 (-224) (-224)) |#1| (-1168))) (-15 -3937 ((-1 (-224) (-224) (-224)) |#1| (-1168) (-1168)))) -((-1407 (((-1168) |#1| (-1168) (-639 (-1168))) 9) (((-1168) |#1| (-1168) (-1168) (-1168)) 12) (((-1168) |#1| (-1168) (-1168)) 11) (((-1168) |#1| (-1168)) 10))) -(((-699 |#1|) (-10 -7 (-15 -1407 ((-1168) |#1| (-1168))) (-15 -1407 ((-1168) |#1| (-1168) (-1168))) (-15 -1407 ((-1168) |#1| (-1168) (-1168) (-1168))) (-15 -1407 ((-1168) |#1| (-1168) (-639 (-1168))))) (-610 (-535))) (T -699)) -((-1407 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-639 (-1168))) (-5 *2 (-1168)) (-5 *1 (-699 *3)) (-4 *3 (-610 (-535))))) (-1407 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-699 *3)) (-4 *3 (-610 (-535))))) (-1407 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-699 *3)) (-4 *3 (-610 (-535))))) (-1407 (*1 *2 *3 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-699 *3)) (-4 *3 (-610 (-535)))))) -(-10 -7 (-15 -1407 ((-1168) |#1| (-1168))) (-15 -1407 ((-1168) |#1| (-1168) (-1168))) (-15 -1407 ((-1168) |#1| (-1168) (-1168) (-1168))) (-15 -1407 ((-1168) |#1| (-1168) (-639 (-1168))))) -((-3617 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-700 |#1| |#2|) (-10 -7 (-15 -3617 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1207) (-1207)) (T -700)) -((-3617 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-700 *3 *4)) (-4 *3 (-1207)) (-4 *4 (-1207))))) -(-10 -7 (-15 -3617 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-4149 (((-1 |#3| |#2|) (-1168)) 11)) (-1845 (((-1 |#3| |#2|) |#1| (-1168)) 21))) -(((-701 |#1| |#2| |#3|) (-10 -7 (-15 -4149 ((-1 |#3| |#2|) (-1168))) (-15 -1845 ((-1 |#3| |#2|) |#1| (-1168)))) (-610 (-535)) (-1207) (-1207)) (T -701)) -((-1845 (*1 *2 *3 *4) (-12 (-5 *4 (-1168)) (-5 *2 (-1 *6 *5)) (-5 *1 (-701 *3 *5 *6)) (-4 *3 (-610 (-535))) (-4 *5 (-1207)) (-4 *6 (-1207)))) (-4149 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1 *6 *5)) (-5 *1 (-701 *4 *5 *6)) (-4 *4 (-610 (-535))) (-4 *5 (-1207)) (-4 *6 (-1207))))) -(-10 -7 (-15 -4149 ((-1 |#3| |#2|) (-1168))) (-15 -1845 ((-1 |#3| |#2|) |#1| (-1168)))) -((-3233 (((-3 (-639 (-1164 |#4|)) "failed") (-1164 |#4|) (-639 |#2|) (-639 (-1164 |#4|)) (-639 |#3|) (-639 |#4|) (-639 (-639 (-2 (|:| -2542 (-766)) (|:| |pcoef| |#4|)))) (-639 (-766)) (-1256 (-639 (-1164 |#3|))) |#3|) 61)) (-3722 (((-3 (-639 (-1164 |#4|)) "failed") (-1164 |#4|) (-639 |#2|) (-639 (-1164 |#3|)) (-639 |#3|) (-639 |#4|) (-639 (-766)) |#3|) 74)) (-2158 (((-3 (-639 (-1164 |#4|)) "failed") (-1164 |#4|) (-639 |#2|) (-639 |#3|) (-639 (-766)) (-639 (-1164 |#4|)) (-1256 (-639 (-1164 |#3|))) |#3|) 34))) -(((-702 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2158 ((-3 (-639 (-1164 |#4|)) "failed") (-1164 |#4|) (-639 |#2|) (-639 |#3|) (-639 (-766)) (-639 (-1164 |#4|)) (-1256 (-639 (-1164 |#3|))) |#3|)) (-15 -3722 ((-3 (-639 (-1164 |#4|)) "failed") (-1164 |#4|) (-639 |#2|) (-639 (-1164 |#3|)) (-639 |#3|) (-639 |#4|) (-639 (-766)) |#3|)) (-15 -3233 ((-3 (-639 (-1164 |#4|)) "failed") (-1164 |#4|) (-639 |#2|) (-639 (-1164 |#4|)) (-639 |#3|) (-639 |#4|) (-639 (-639 (-2 (|:| -2542 (-766)) (|:| |pcoef| |#4|)))) (-639 (-766)) (-1256 (-639 (-1164 |#3|))) |#3|))) (-788) (-845) (-306) (-944 |#3| |#1| |#2|)) (T -702)) -((-3233 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-639 (-1164 *13))) (-5 *3 (-1164 *13)) (-5 *4 (-639 *12)) (-5 *5 (-639 *10)) (-5 *6 (-639 *13)) (-5 *7 (-639 (-639 (-2 (|:| -2542 (-766)) (|:| |pcoef| *13))))) (-5 *8 (-639 (-766))) (-5 *9 (-1256 (-639 (-1164 *10)))) (-4 *12 (-845)) (-4 *10 (-306)) (-4 *13 (-944 *10 *11 *12)) (-4 *11 (-788)) (-5 *1 (-702 *11 *12 *10 *13)))) (-3722 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-639 *11)) (-5 *5 (-639 (-1164 *9))) (-5 *6 (-639 *9)) (-5 *7 (-639 *12)) (-5 *8 (-639 (-766))) (-4 *11 (-845)) (-4 *9 (-306)) (-4 *12 (-944 *9 *10 *11)) (-4 *10 (-788)) (-5 *2 (-639 (-1164 *12))) (-5 *1 (-702 *10 *11 *9 *12)) (-5 *3 (-1164 *12)))) (-2158 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-639 (-1164 *11))) (-5 *3 (-1164 *11)) (-5 *4 (-639 *10)) (-5 *5 (-639 *8)) (-5 *6 (-639 (-766))) (-5 *7 (-1256 (-639 (-1164 *8)))) (-4 *10 (-845)) (-4 *8 (-306)) (-4 *11 (-944 *8 *9 *10)) (-4 *9 (-788)) (-5 *1 (-702 *9 *10 *8 *11))))) -(-10 -7 (-15 -2158 ((-3 (-639 (-1164 |#4|)) "failed") (-1164 |#4|) (-639 |#2|) (-639 |#3|) (-639 (-766)) (-639 (-1164 |#4|)) (-1256 (-639 (-1164 |#3|))) |#3|)) (-15 -3722 ((-3 (-639 (-1164 |#4|)) "failed") (-1164 |#4|) (-639 |#2|) (-639 (-1164 |#3|)) (-639 |#3|) (-639 |#4|) (-639 (-766)) |#3|)) (-15 -3233 ((-3 (-639 (-1164 |#4|)) "failed") (-1164 |#4|) (-639 |#2|) (-639 (-1164 |#4|)) (-639 |#3|) (-639 |#4|) (-639 (-639 (-2 (|:| -2542 (-766)) (|:| |pcoef| |#4|)))) (-639 (-766)) (-1256 (-639 (-1164 |#3|))) |#3|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-1600 (($ $) 42)) (-1694 (((-3 $ "failed") $) 33)) (-4367 (((-112) $) 31)) (-1377 (($ |#1| (-766)) 40)) (-3161 (((-766) $) 44)) (-1573 ((|#1| $) 43)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-2250 (((-766) $) 45)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 39 (|has| |#1| (-171)))) (-2266 ((|#1| $ (-766)) 41)) (-1568 (((-766)) 28)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 47) (($ |#1| $) 46))) -(((-703 |#1|) (-139) (-1044)) (T -703)) -((-2250 (*1 *2 *1) (-12 (-4 *1 (-703 *3)) (-4 *3 (-1044)) (-5 *2 (-766)))) (-3161 (*1 *2 *1) (-12 (-4 *1 (-703 *3)) (-4 *3 (-1044)) (-5 *2 (-766)))) (-1573 (*1 *2 *1) (-12 (-4 *1 (-703 *2)) (-4 *2 (-1044)))) (-1600 (*1 *1 *1) (-12 (-4 *1 (-703 *2)) (-4 *2 (-1044)))) (-2266 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-4 *1 (-703 *2)) (-4 *2 (-1044)))) (-1377 (*1 *1 *2 *3) (-12 (-5 *3 (-766)) (-4 *1 (-703 *2)) (-4 *2 (-1044))))) -(-13 (-1044) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-171)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -2250 ((-766) $)) (-15 -3161 ((-766) $)) (-15 -1573 (|t#1| $)) (-15 -1600 ($ $)) (-15 -2266 (|t#1| $ (-766))) (-15 -1377 ($ |t#1| (-766))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-171)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-612 (-562)) . T) ((-612 |#1|) |has| |#1| (-171)) ((-609 (-857)) . T) ((-642 |#1|) . T) ((-642 $) . T) ((-712 |#1|) |has| |#1| (-171)) ((-721) . T) ((-1050 |#1|) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) -((-4152 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-704 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4152 (|#6| (-1 |#4| |#1|) |#3|))) (-554) (-1232 |#1|) (-1232 (-406 |#2|)) (-554) (-1232 |#4|) (-1232 (-406 |#5|))) (T -704)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-554)) (-4 *7 (-554)) (-4 *6 (-1232 *5)) (-4 *2 (-1232 (-406 *8))) (-5 *1 (-704 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1232 (-406 *6))) (-4 *8 (-1232 *7))))) -(-10 -7 (-15 -4152 (|#6| (-1 |#4| |#1|) |#3|))) -((-4041 (((-112) $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2415 (((-1150) (-857)) 31)) (-1479 (((-1261) (-1150)) 28)) (-4106 (((-1150) (-857)) 24)) (-1605 (((-1150) (-857)) 25)) (-4053 (((-857) $) NIL) (((-1150) (-857)) 23)) (-1733 (((-112) $ $) NIL))) -(((-705) (-13 (-1092) (-10 -7 (-15 -4053 ((-1150) (-857))) (-15 -4106 ((-1150) (-857))) (-15 -1605 ((-1150) (-857))) (-15 -2415 ((-1150) (-857))) (-15 -1479 ((-1261) (-1150)))))) (T -705)) -((-4053 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1150)) (-5 *1 (-705)))) (-4106 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1150)) (-5 *1 (-705)))) (-1605 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1150)) (-5 *1 (-705)))) (-2415 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1150)) (-5 *1 (-705)))) (-1479 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-705))))) -(-13 (-1092) (-10 -7 (-15 -4053 ((-1150) (-857))) (-15 -4106 ((-1150) (-857))) (-15 -1605 ((-1150) (-857))) (-15 -2415 ((-1150) (-857))) (-15 -1479 ((-1261) (-1150))))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-1436 (((-112) $ $) NIL)) (-3329 (($) NIL T CONST)) (-1810 (($ $ $) NIL)) (-1954 (($ |#1| |#2|) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-3521 (((-112) $) NIL)) (-4367 (((-112) $) NIL)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2685 ((|#2| $) NIL)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-1635 (((-417 $) $) NIL)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-3649 (((-3 $ "failed") $ $) NIL)) (-2044 (((-766) $) NIL)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL) ((|#1| $) NIL)) (-1568 (((-766)) NIL)) (-3799 (((-112) $ $) NIL)) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-1733 (((-112) $ $) NIL)) (-1859 (($ $ $) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL))) -(((-706 |#1| |#2| |#3| |#4| |#5|) (-13 (-362) (-10 -8 (-15 -2685 (|#2| $)) (-15 -4053 (|#1| $)) (-15 -1954 ($ |#1| |#2|)) (-15 -3649 ((-3 $ "failed") $ $)))) (-171) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -706)) -((-2685 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-706 *3 *2 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-4053 (*1 *2 *1) (-12 (-4 *2 (-171)) (-5 *1 (-706 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1954 (*1 *1 *2 *3) (-12 (-5 *1 (-706 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3649 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-706 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-362) (-10 -8 (-15 -2685 (|#2| $)) (-15 -4053 (|#1| $)) (-15 -1954 ($ |#1| |#2|)) (-15 -3649 ((-3 $ "failed") $ $)))) -((-4041 (((-112) $ $) 77)) (-4325 (((-112) $) 30)) (-4263 (((-1256 |#1|) $ (-766)) NIL)) (-1401 (((-639 (-1074)) $) NIL)) (-2505 (($ (-1164 |#1|)) NIL)) (-1602 (((-1164 $) $ (-1074)) NIL) (((-1164 |#1|) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-1965 (($ $) NIL (|has| |#1| (-554)))) (-4102 (((-112) $) NIL (|has| |#1| (-554)))) (-1578 (((-766) $) NIL) (((-766) $ (-639 (-1074))) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-2035 (($ $ $) NIL (|has| |#1| (-554)))) (-3517 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-1977 (($ $) NIL (|has| |#1| (-451)))) (-3788 (((-417 $) $) NIL (|has| |#1| (-451)))) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-1436 (((-112) $ $) NIL (|has| |#1| (-362)))) (-1382 (((-766)) 46 (|has| |#1| (-367)))) (-1730 (($ $ (-766)) NIL)) (-3538 (($ $ (-766)) NIL)) (-1707 ((|#2| |#2|) 43)) (-2687 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-451)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-1074) "failed") $) NIL)) (-3960 ((|#1| $) NIL) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-1074) $) NIL)) (-2355 (($ $ $ (-1074)) NIL (|has| |#1| (-171))) ((|#1| $ $) NIL (|has| |#1| (-171)))) (-1810 (($ $ $) NIL (|has| |#1| (-362)))) (-1600 (($ $) 33)) (-3449 (((-683 (-562)) (-683 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) NIL) (((-683 |#1|) (-683 $)) NIL)) (-1954 (($ |#2|) 41)) (-1694 (((-3 $ "failed") $) 85)) (-1447 (($) 50 (|has| |#1| (-367)))) (-1787 (($ $ $) NIL (|has| |#1| (-362)))) (-4296 (($ $ $) NIL)) (-3127 (($ $ $) NIL (|has| |#1| (-554)))) (-3840 (((-2 (|:| -4221 |#1|) (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| |#1| (-554)))) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL (|has| |#1| (-362)))) (-2578 (($ $) NIL (|has| |#1| (-451))) (($ $ (-1074)) NIL (|has| |#1| (-451)))) (-1585 (((-639 $) $) NIL)) (-3521 (((-112) $) NIL (|has| |#1| (-904)))) (-2794 (((-953 $)) 79)) (-3066 (($ $ |#1| (-766) $) NIL)) (-2337 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-1074) (-881 (-378))) (|has| |#1| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (-12 (|has| (-1074) (-881 (-562))) (|has| |#1| (-881 (-562)))))) (-1993 (((-766) $ $) NIL (|has| |#1| (-554)))) (-4367 (((-112) $) NIL)) (-3627 (((-766) $) NIL)) (-3828 (((-3 $ "failed") $) NIL (|has| |#1| (-1143)))) (-1389 (($ (-1164 |#1|) (-1074)) NIL) (($ (-1164 $) (-1074)) NIL)) (-3662 (($ $ (-766)) NIL)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-1869 (((-639 $) $) NIL)) (-2833 (((-112) $) NIL)) (-1377 (($ |#1| (-766)) 76) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL)) (-3851 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $ (-1074)) NIL) (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-2685 ((|#2|) 44)) (-3161 (((-766) $) NIL) (((-766) $ (-1074)) NIL) (((-639 (-766)) $ (-639 (-1074))) NIL)) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-2363 (($ (-1 (-766) (-766)) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-1556 (((-1164 |#1|) $) NIL)) (-3640 (((-3 (-1074) "failed") $) NIL)) (-3549 (((-916) $) NIL (|has| |#1| (-367)))) (-1942 ((|#2| $) 40)) (-1560 (($ $) NIL)) (-1573 ((|#1| $) 28)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) NIL (|has| |#1| (-451)))) (-3696 (((-1150) $) NIL)) (-2215 (((-2 (|:| -3380 $) (|:| -1441 $)) $ (-766)) NIL)) (-4025 (((-3 (-639 $) "failed") $) NIL)) (-1778 (((-3 (-639 $) "failed") $) NIL)) (-4270 (((-3 (-2 (|:| |var| (-1074)) (|:| -1300 (-766))) "failed") $) NIL)) (-3081 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3730 (($) NIL (|has| |#1| (-1143)) CONST)) (-2464 (($ (-916)) NIL (|has| |#1| (-367)))) (-1709 (((-1112) $) NIL)) (-1534 (((-112) $) NIL)) (-1547 ((|#1| $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-451)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) NIL (|has| |#1| (-451)))) (-1366 (($ $) 78 (|has| |#1| (-348)))) (-3586 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-3468 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-1635 (((-417 $) $) NIL (|has| |#1| (-904)))) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL (|has| |#1| (-362)))) (-1762 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-554)))) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-1433 (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-1074) |#1|) NIL) (($ $ (-639 (-1074)) (-639 |#1|)) NIL) (($ $ (-1074) $) NIL) (($ $ (-639 (-1074)) (-639 $)) NIL)) (-2044 (((-766) $) NIL (|has| |#1| (-362)))) (-2343 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-406 $) (-406 $) (-406 $)) NIL (|has| |#1| (-554))) ((|#1| (-406 $) |#1|) NIL (|has| |#1| (-362))) (((-406 $) $ (-406 $)) NIL (|has| |#1| (-554)))) (-1610 (((-3 $ "failed") $ (-766)) NIL)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 86 (|has| |#1| (-362)))) (-2736 (($ $ (-1074)) NIL (|has| |#1| (-171))) ((|#1| $) NIL (|has| |#1| (-171)))) (-4029 (($ $ (-1074)) NIL) (($ $ (-639 (-1074))) NIL) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL) (($ $ (-766)) NIL) (($ $) NIL) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2250 (((-766) $) 31) (((-766) $ (-1074)) NIL) (((-639 (-766)) $ (-639 (-1074))) NIL)) (-4208 (((-887 (-378)) $) NIL (-12 (|has| (-1074) (-610 (-887 (-378)))) (|has| |#1| (-610 (-887 (-378)))))) (((-887 (-562)) $) NIL (-12 (|has| (-1074) (-610 (-887 (-562)))) (|has| |#1| (-610 (-887 (-562)))))) (((-535) $) NIL (-12 (|has| (-1074) (-610 (-535))) (|has| |#1| (-610 (-535)))))) (-2201 ((|#1| $) NIL (|has| |#1| (-451))) (($ $ (-1074)) NIL (|has| |#1| (-451)))) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-904))))) (-3076 (((-953 $)) 35)) (-2155 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554))) (((-3 (-406 $) "failed") (-406 $) $) NIL (|has| |#1| (-554)))) (-4053 (((-857) $) 60) (($ (-562)) NIL) (($ |#1|) 57) (($ (-1074)) NIL) (($ |#2|) 67) (($ (-406 (-562))) NIL (-4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562)))))) (($ $) NIL (|has| |#1| (-554)))) (-3969 (((-639 |#1|) $) NIL)) (-2266 ((|#1| $ (-766)) 62) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL)) (-2059 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#1| (-904))) (|has| |#1| (-144))))) (-1568 (((-766)) NIL)) (-1760 (($ $ $ (-766)) NIL (|has| |#1| (-171)))) (-3799 (((-112) $ $) NIL (|has| |#1| (-554)))) (-2285 (($) 20 T CONST)) (-2283 (((-1256 |#1|) $) 74)) (-3781 (($ (-1256 |#1|)) 49)) (-2294 (($) 8 T CONST)) (-3113 (($ $ (-1074)) NIL) (($ $ (-639 (-1074))) NIL) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL) (($ $ (-766)) NIL) (($ $) NIL) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2338 (((-1256 |#1|) $) NIL)) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1771 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1733 (((-112) $ $) 68)) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1761 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1847 (($ $) 71) (($ $ $) NIL)) (-1836 (($ $ $) 32)) (** (($ $ (-916)) NIL) (($ $ (-766)) 80)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 56) (($ $ $) 73) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ |#1| $) 54) (($ $ |#1|) NIL))) -(((-707 |#1| |#2|) (-13 (-1232 |#1|) (-612 |#2|) (-10 -8 (-15 -1707 (|#2| |#2|)) (-15 -2685 (|#2|)) (-15 -1954 ($ |#2|)) (-15 -1942 (|#2| $)) (-15 -2283 ((-1256 |#1|) $)) (-15 -3781 ($ (-1256 |#1|))) (-15 -2338 ((-1256 |#1|) $)) (-15 -2794 ((-953 $))) (-15 -3076 ((-953 $))) (IF (|has| |#1| (-348)) (-15 -1366 ($ $)) |%noBranch|) (IF (|has| |#1| (-367)) (-6 (-367)) |%noBranch|))) (-1044) (-1232 |#1|)) (T -707)) -((-1707 (*1 *2 *2) (-12 (-4 *3 (-1044)) (-5 *1 (-707 *3 *2)) (-4 *2 (-1232 *3)))) (-2685 (*1 *2) (-12 (-4 *2 (-1232 *3)) (-5 *1 (-707 *3 *2)) (-4 *3 (-1044)))) (-1954 (*1 *1 *2) (-12 (-4 *3 (-1044)) (-5 *1 (-707 *3 *2)) (-4 *2 (-1232 *3)))) (-1942 (*1 *2 *1) (-12 (-4 *2 (-1232 *3)) (-5 *1 (-707 *3 *2)) (-4 *3 (-1044)))) (-2283 (*1 *2 *1) (-12 (-4 *3 (-1044)) (-5 *2 (-1256 *3)) (-5 *1 (-707 *3 *4)) (-4 *4 (-1232 *3)))) (-3781 (*1 *1 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-1044)) (-5 *1 (-707 *3 *4)) (-4 *4 (-1232 *3)))) (-2338 (*1 *2 *1) (-12 (-4 *3 (-1044)) (-5 *2 (-1256 *3)) (-5 *1 (-707 *3 *4)) (-4 *4 (-1232 *3)))) (-2794 (*1 *2) (-12 (-4 *3 (-1044)) (-5 *2 (-953 (-707 *3 *4))) (-5 *1 (-707 *3 *4)) (-4 *4 (-1232 *3)))) (-3076 (*1 *2) (-12 (-4 *3 (-1044)) (-5 *2 (-953 (-707 *3 *4))) (-5 *1 (-707 *3 *4)) (-4 *4 (-1232 *3)))) (-1366 (*1 *1 *1) (-12 (-4 *2 (-348)) (-4 *2 (-1044)) (-5 *1 (-707 *2 *3)) (-4 *3 (-1232 *2))))) -(-13 (-1232 |#1|) (-612 |#2|) (-10 -8 (-15 -1707 (|#2| |#2|)) (-15 -2685 (|#2|)) (-15 -1954 ($ |#2|)) (-15 -1942 (|#2| $)) (-15 -2283 ((-1256 |#1|) $)) (-15 -3781 ($ (-1256 |#1|))) (-15 -2338 ((-1256 |#1|) $)) (-15 -2794 ((-953 $))) (-15 -3076 ((-953 $))) (IF (|has| |#1| (-348)) (-15 -1366 ($ $)) |%noBranch|) (IF (|has| |#1| (-367)) (-6 (-367)) |%noBranch|))) -((-4041 (((-112) $ $) NIL)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-3696 (((-1150) $) NIL)) (-2464 ((|#1| $) 13)) (-1709 (((-1112) $) NIL)) (-1300 ((|#2| $) 12)) (-4064 (($ |#1| |#2|) 16)) (-4053 (((-857) $) NIL) (($ (-2 (|:| -2464 |#1|) (|:| -1300 |#2|))) 15) (((-2 (|:| -2464 |#1|) (|:| -1300 |#2|)) $) 14)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) 11))) -(((-708 |#1| |#2| |#3|) (-13 (-845) (-489 (-2 (|:| -2464 |#1|) (|:| -1300 |#2|))) (-10 -8 (-15 -1300 (|#2| $)) (-15 -2464 (|#1| $)) (-15 -4064 ($ |#1| |#2|)))) (-845) (-1092) (-1 (-112) (-2 (|:| -2464 |#1|) (|:| -1300 |#2|)) (-2 (|:| -2464 |#1|) (|:| -1300 |#2|)))) (T -708)) -((-1300 (*1 *2 *1) (-12 (-4 *2 (-1092)) (-5 *1 (-708 *3 *2 *4)) (-4 *3 (-845)) (-14 *4 (-1 (-112) (-2 (|:| -2464 *3) (|:| -1300 *2)) (-2 (|:| -2464 *3) (|:| -1300 *2)))))) (-2464 (*1 *2 *1) (-12 (-4 *2 (-845)) (-5 *1 (-708 *2 *3 *4)) (-4 *3 (-1092)) (-14 *4 (-1 (-112) (-2 (|:| -2464 *2) (|:| -1300 *3)) (-2 (|:| -2464 *2) (|:| -1300 *3)))))) (-4064 (*1 *1 *2 *3) (-12 (-5 *1 (-708 *2 *3 *4)) (-4 *2 (-845)) (-4 *3 (-1092)) (-14 *4 (-1 (-112) (-2 (|:| -2464 *2) (|:| -1300 *3)) (-2 (|:| -2464 *2) (|:| -1300 *3))))))) -(-13 (-845) (-489 (-2 (|:| -2464 |#1|) (|:| -1300 |#2|))) (-10 -8 (-15 -1300 (|#2| $)) (-15 -2464 (|#1| $)) (-15 -4064 ($ |#1| |#2|)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) 59)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) 89) (((-3 (-114) "failed") $) 95)) (-3960 ((|#1| $) NIL) (((-114) $) 39)) (-1694 (((-3 $ "failed") $) 90)) (-3208 ((|#2| (-114) |#2|) 82)) (-4367 (((-112) $) NIL)) (-2755 (($ |#1| (-360 (-114))) 14)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1910 (($ $ (-1 |#2| |#2|)) 58)) (-3610 (($ $ (-1 |#2| |#2|)) 44)) (-2343 ((|#2| $ |#2|) 33)) (-2383 ((|#1| |#1|) 105 (|has| |#1| (-171)))) (-4053 (((-857) $) 66) (($ (-562)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-2059 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-1568 (((-766)) 37)) (-1926 (($ $) 99 (|has| |#1| (-171))) (($ $ $) 103 (|has| |#1| (-171)))) (-2285 (($) 21 T CONST)) (-2294 (($) 9 T CONST)) (-1733 (((-112) $ $) NIL)) (-1847 (($ $) 48) (($ $ $) NIL)) (-1836 (($ $ $) 73)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ (-114) (-562)) NIL) (($ $ (-562)) 57)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-171))) (($ $ |#1|) 97 (|has| |#1| (-171))))) -(((-709 |#1| |#2|) (-13 (-1044) (-1033 |#1|) (-1033 (-114)) (-285 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-6 (-38 |#1|)) (-15 -1926 ($ $)) (-15 -1926 ($ $ $)) (-15 -2383 (|#1| |#1|))) |%noBranch|) (-15 -3610 ($ $ (-1 |#2| |#2|))) (-15 -1910 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-562))) (-15 ** ($ $ (-562))) (-15 -3208 (|#2| (-114) |#2|)) (-15 -2755 ($ |#1| (-360 (-114)))))) (-1044) (-642 |#1|)) (T -709)) -((-1926 (*1 *1 *1) (-12 (-4 *2 (-171)) (-4 *2 (-1044)) (-5 *1 (-709 *2 *3)) (-4 *3 (-642 *2)))) (-1926 (*1 *1 *1 *1) (-12 (-4 *2 (-171)) (-4 *2 (-1044)) (-5 *1 (-709 *2 *3)) (-4 *3 (-642 *2)))) (-2383 (*1 *2 *2) (-12 (-4 *2 (-171)) (-4 *2 (-1044)) (-5 *1 (-709 *2 *3)) (-4 *3 (-642 *2)))) (-3610 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-642 *3)) (-4 *3 (-1044)) (-5 *1 (-709 *3 *4)))) (-1910 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-642 *3)) (-4 *3 (-1044)) (-5 *1 (-709 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-562)) (-4 *4 (-1044)) (-5 *1 (-709 *4 *5)) (-4 *5 (-642 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-4 *3 (-1044)) (-5 *1 (-709 *3 *4)) (-4 *4 (-642 *3)))) (-3208 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1044)) (-5 *1 (-709 *4 *2)) (-4 *2 (-642 *4)))) (-2755 (*1 *1 *2 *3) (-12 (-5 *3 (-360 (-114))) (-4 *2 (-1044)) (-5 *1 (-709 *2 *4)) (-4 *4 (-642 *2))))) -(-13 (-1044) (-1033 |#1|) (-1033 (-114)) (-285 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-6 (-38 |#1|)) (-15 -1926 ($ $)) (-15 -1926 ($ $ $)) (-15 -2383 (|#1| |#1|))) |%noBranch|) (-15 -3610 ($ $ (-1 |#2| |#2|))) (-15 -1910 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-562))) (-15 ** ($ $ (-562))) (-15 -3208 (|#2| (-114) |#2|)) (-15 -2755 ($ |#1| (-360 (-114)))))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) 33)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3329 (($) NIL T CONST)) (-1954 (($ |#1| |#2|) 25)) (-1694 (((-3 $ "failed") $) 48)) (-4367 (((-112) $) 35)) (-2685 ((|#2| $) 12)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) 49)) (-1709 (((-1112) $) NIL)) (-3649 (((-3 $ "failed") $ $) 47)) (-4053 (((-857) $) 24) (($ (-562)) 19) ((|#1| $) 13)) (-1568 (((-766)) 28)) (-2285 (($) 16 T CONST)) (-2294 (($) 30 T CONST)) (-1733 (((-112) $ $) 38)) (-1847 (($ $) 43) (($ $ $) 37)) (-1836 (($ $ $) 40)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 21) (($ $ $) 20))) -(((-710 |#1| |#2| |#3| |#4| |#5|) (-13 (-1044) (-10 -8 (-15 -2685 (|#2| $)) (-15 -4053 (|#1| $)) (-15 -1954 ($ |#1| |#2|)) (-15 -3649 ((-3 $ "failed") $ $)) (-15 -1694 ((-3 $ "failed") $)) (-15 -1525 ($ $)))) (-171) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -710)) -((-1694 (*1 *1 *1) (|partial| -12 (-5 *1 (-710 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2685 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-710 *3 *2 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-4053 (*1 *2 *1) (-12 (-4 *2 (-171)) (-5 *1 (-710 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1954 (*1 *1 *2 *3) (-12 (-5 *1 (-710 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3649 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-710 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1525 (*1 *1 *1) (-12 (-5 *1 (-710 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-1044) (-10 -8 (-15 -2685 (|#2| $)) (-15 -4053 (|#1| $)) (-15 -1954 ($ |#1| |#2|)) (-15 -3649 ((-3 $ "failed") $ $)) (-15 -1694 ((-3 $ "failed") $)) (-15 -1525 ($ $)))) -((* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) -(((-711 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-562) |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 * (|#1| (-916) |#1|))) (-712 |#2|) (-171)) (T -711)) -NIL -(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-562) |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 * (|#1| (-916) |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11)) (-2285 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-712 |#1|) (-139) (-171)) (T -712)) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) 15)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4239 (($) NIL T CONST)) (-2143 ((|#1| $) 21)) (-3084 (($ $ $) NIL (|has| |#1| (-787)))) (-1777 (($ $ $) NIL (|has| |#1| (-787)))) (-3573 (((-1151) $) 46)) (-1694 (((-1113) $) NIL)) (-2154 ((|#3| $) 22)) (-1693 (((-858) $) 42)) (-2241 (($) 10 T CONST)) (-1778 (((-112) $ $) NIL (|has| |#1| (-787)))) (-1756 (((-112) $ $) NIL (|has| |#1| (-787)))) (-1718 (((-112) $ $) 20)) (-1768 (((-112) $ $) NIL (|has| |#1| (-787)))) (-1744 (((-112) $ $) 24 (|has| |#1| (-787)))) (-1837 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-1826 (($ $) 17) (($ $ $) NIL)) (-1814 (($ $ $) 27)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) +(((-657 |#1| |#2| |#3|) (-13 (-713 |#2|) (-10 -8 (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (-15 -1837 ($ $ |#3|)) (-15 -1837 ($ |#1| |#3|)) (-15 -2143 (|#1| $)) (-15 -2154 (|#3| $)))) (-713 |#2|) (-172) (|SubsetCategory| (-722) |#2|)) (T -657)) +((-1837 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-657 *3 *4 *2)) (-4 *3 (-713 *4)) (-4 *2 (|SubsetCategory| (-722) *4)))) (-1837 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-657 *2 *4 *3)) (-4 *2 (-713 *4)) (-4 *3 (|SubsetCategory| (-722) *4)))) (-2143 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-713 *3)) (-5 *1 (-657 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-722) *3)))) (-2154 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-722) *4)) (-5 *1 (-657 *3 *4 *2)) (-4 *3 (-713 *4))))) +(-13 (-713 |#2|) (-10 -8 (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (-15 -1837 ($ $ |#3|)) (-15 -1837 ($ |#1| |#3|)) (-15 -2143 (|#1| $)) (-15 -2154 (|#3| $)))) +((-2764 (((-3 (-640 (-1165 |#1|)) "failed") (-640 (-1165 |#1|)) (-1165 |#1|)) 33))) +(((-658 |#1|) (-10 -7 (-15 -2764 ((-3 (-640 (-1165 |#1|)) "failed") (-640 (-1165 |#1|)) (-1165 |#1|)))) (-905)) (T -658)) +((-2764 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-640 (-1165 *4))) (-5 *3 (-1165 *4)) (-4 *4 (-905)) (-5 *1 (-658 *4))))) +(-10 -7 (-15 -2764 ((-3 (-640 (-1165 |#1|)) "failed") (-640 (-1165 |#1|)) (-1165 |#1|)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-3993 (((-640 |#1|) $) 82)) (-2872 (($ $ (-767)) 90)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4239 (($) NIL T CONST)) (-3181 (((-1281 |#1| |#2|) (-1281 |#1| |#2|) $) 48)) (-2131 (((-3 (-667 |#1|) "failed") $) NIL)) (-2058 (((-667 |#1|) $) NIL)) (-2751 (($ $) 89)) (-4096 (((-767) $) NIL)) (-1368 (((-640 $) $) NIL)) (-3920 (((-112) $) NIL)) (-4222 (($ (-667 |#1|) |#2|) 68)) (-4337 (($ $) 86)) (-2240 (($ (-1 |#2| |#2|) $) NIL)) (-3439 (((-1281 |#1| |#2|) (-1281 |#1| |#2|) $) 47)) (-3115 (((-2 (|:| |k| (-667 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2716 (((-667 |#1|) $) NIL)) (-2726 ((|#2| $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1540 (($ $ |#1| $) 30) (($ $ (-640 |#1|) (-640 $)) 32)) (-4167 (((-767) $) 88)) (-1707 (($ $ $) 20) (($ (-667 |#1|) (-667 |#1|)) 77) (($ (-667 |#1|) $) 75) (($ $ (-667 |#1|)) 76)) (-1693 (((-858) $) NIL) (($ |#1|) 74) (((-1272 |#1| |#2|) $) 58) (((-1281 |#1| |#2|) $) 41) (($ (-667 |#1|)) 25)) (-1337 (((-640 |#2|) $) NIL)) (-4319 ((|#2| $ (-667 |#1|)) NIL)) (-2311 ((|#2| (-1281 |#1| |#2|) $) 43)) (-2241 (($) 23 T CONST)) (-1531 (((-640 (-2 (|:| |k| (-667 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2343 (((-3 $ "failed") (-1272 |#1| |#2|)) 60)) (-3657 (($ (-667 |#1|)) 14)) (-1718 (((-112) $ $) 44)) (-1837 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1826 (($ $) 66) (($ $ $) NIL)) (-1814 (($ $ $) 29)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-667 |#1|)) NIL))) +(((-659 |#1| |#2|) (-13 (-374 |#1| |#2|) (-382 |#2| (-667 |#1|)) (-10 -8 (-15 -2343 ((-3 $ "failed") (-1272 |#1| |#2|))) (-15 -1707 ($ (-667 |#1|) (-667 |#1|))) (-15 -1707 ($ (-667 |#1|) $)) (-15 -1707 ($ $ (-667 |#1|))))) (-846) (-172)) (T -659)) +((-2343 (*1 *1 *2) (|partial| -12 (-5 *2 (-1272 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *1 (-659 *3 *4)))) (-1707 (*1 *1 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-846)) (-5 *1 (-659 *3 *4)) (-4 *4 (-172)))) (-1707 (*1 *1 *2 *1) (-12 (-5 *2 (-667 *3)) (-4 *3 (-846)) (-5 *1 (-659 *3 *4)) (-4 *4 (-172)))) (-1707 (*1 *1 *1 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-846)) (-5 *1 (-659 *3 *4)) (-4 *4 (-172))))) +(-13 (-374 |#1| |#2|) (-382 |#2| (-667 |#1|)) (-10 -8 (-15 -2343 ((-3 $ "failed") (-1272 |#1| |#2|))) (-15 -1707 ($ (-667 |#1|) (-667 |#1|))) (-15 -1707 ($ (-667 |#1|) $)) (-15 -1707 ($ $ (-667 |#1|))))) +((-3523 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 49)) (-2770 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-2812 (($ (-1 (-112) |#2|) $) 27)) (-2907 (($ $) 55)) (-4005 (($ $) 63)) (-2705 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 36)) (-2444 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52)) (-4368 (((-563) |#2| $ (-563)) 60) (((-563) |#2| $) NIL) (((-563) (-1 (-112) |#2|) $) 46)) (-1566 (($ (-767) |#2|) 53)) (-2878 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 29)) (-3164 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-2240 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 54)) (-3651 (($ |#2|) 15)) (-1812 (($ $ $ (-563)) 35) (($ |#2| $ (-563)) 33)) (-4203 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 45)) (-1314 (($ $ (-1224 (-563))) 43) (($ $ (-563)) 37)) (-3076 (($ $ $ (-563)) 59)) (-1872 (($ $) 57)) (-1744 (((-112) $ $) 65))) +(((-660 |#1| |#2|) (-10 -8 (-15 -3651 (|#1| |#2|)) (-15 -1314 (|#1| |#1| (-563))) (-15 -1314 (|#1| |#1| (-1224 (-563)))) (-15 -2705 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1812 (|#1| |#2| |#1| (-563))) (-15 -1812 (|#1| |#1| |#1| (-563))) (-15 -2878 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2812 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2705 (|#1| |#2| |#1|)) (-15 -4005 (|#1| |#1|)) (-15 -2878 (|#1| |#1| |#1|)) (-15 -3164 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3523 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4368 ((-563) (-1 (-112) |#2|) |#1|)) (-15 -4368 ((-563) |#2| |#1|)) (-15 -4368 ((-563) |#2| |#1| (-563))) (-15 -3164 (|#1| |#1| |#1|)) (-15 -3523 ((-112) |#1|)) (-15 -3076 (|#1| |#1| |#1| (-563))) (-15 -2907 (|#1| |#1|)) (-15 -2770 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2770 (|#1| |#1|)) (-15 -1744 ((-112) |#1| |#1|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4203 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1566 (|#1| (-767) |#2|)) (-15 -2240 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2240 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1872 (|#1| |#1|))) (-661 |#2|) (-1208)) (T -660)) +NIL +(-10 -8 (-15 -3651 (|#1| |#2|)) (-15 -1314 (|#1| |#1| (-563))) (-15 -1314 (|#1| |#1| (-1224 (-563)))) (-15 -2705 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1812 (|#1| |#2| |#1| (-563))) (-15 -1812 (|#1| |#1| |#1| (-563))) (-15 -2878 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2812 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2705 (|#1| |#2| |#1|)) (-15 -4005 (|#1| |#1|)) (-15 -2878 (|#1| |#1| |#1|)) (-15 -3164 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3523 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4368 ((-563) (-1 (-112) |#2|) |#1|)) (-15 -4368 ((-563) |#2| |#1|)) (-15 -4368 ((-563) |#2| |#1| (-563))) (-15 -3164 (|#1| |#1| |#1|)) (-15 -3523 ((-112) |#1|)) (-15 -3076 (|#1| |#1| |#1| (-563))) (-15 -2907 (|#1| |#1|)) (-15 -2770 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2770 (|#1| |#1|)) (-15 -1744 ((-112) |#1| |#1|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2444 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4203 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1566 (|#1| (-767) |#2|)) (-15 -2240 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2240 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1872 (|#1| |#1|))) +((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-2619 ((|#1| $) 48)) (-3442 ((|#1| $) 65)) (-4302 (($ $) 67)) (-4378 (((-1262) $ (-563) (-563)) 97 (|has| $ (-6 -4408)))) (-1624 (($ $ (-563)) 52 (|has| $ (-6 -4408)))) (-3523 (((-112) $) 142 (|has| |#1| (-846))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-2770 (($ $) 146 (-12 (|has| |#1| (-846)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4408)))) (-1642 (($ $) 141 (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-2759 (((-112) $ (-767)) 8)) (-2936 ((|#1| $ |#1|) 39 (|has| $ (-6 -4408)))) (-3692 (($ $ $) 56 (|has| $ (-6 -4408)))) (-3889 ((|#1| $ |#1|) 54 (|has| $ (-6 -4408)))) (-1543 ((|#1| $ |#1|) 58 (|has| $ (-6 -4408)))) (-1849 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4408))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4408))) (($ $ "rest" $) 55 (|has| $ (-6 -4408))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4408))) ((|#1| $ (-1224 (-563)) |#1|) 117 (|has| $ (-6 -4408))) ((|#1| $ (-563) |#1|) 86 (|has| $ (-6 -4408)))) (-2811 (($ $ (-640 $)) 41 (|has| $ (-6 -4408)))) (-2812 (($ (-1 (-112) |#1|) $) 129)) (-2256 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4407)))) (-3431 ((|#1| $) 66)) (-4239 (($) 7 T CONST)) (-2907 (($ $) 144 (|has| $ (-6 -4408)))) (-4382 (($ $) 134)) (-3792 (($ $) 73) (($ $ (-767)) 71)) (-4005 (($ $) 131 (|has| |#1| (-1093)))) (-3813 (($ $) 99 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-2705 (($ |#1| $) 130 (|has| |#1| (-1093))) (($ (-1 (-112) |#1|) $) 125)) (-1459 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4407))) (($ |#1| $) 100 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-4355 ((|#1| $ (-563) |#1|) 85 (|has| $ (-6 -4408)))) (-4293 ((|#1| $ (-563)) 87)) (-2018 (((-112) $) 83)) (-4368 (((-563) |#1| $ (-563)) 139 (|has| |#1| (-1093))) (((-563) |#1| $) 138 (|has| |#1| (-1093))) (((-563) (-1 (-112) |#1|) $) 137)) (-2659 (((-640 |#1|) $) 30 (|has| $ (-6 -4407)))) (-2071 (((-640 $) $) 50)) (-1469 (((-112) $ $) 42 (|has| |#1| (-1093)))) (-1566 (($ (-767) |#1|) 108)) (-2581 (((-112) $ (-767)) 9)) (-2411 (((-563) $) 95 (|has| (-563) (-846)))) (-3084 (($ $ $) 147 (|has| |#1| (-846)))) (-2878 (($ $ $) 132 (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-3164 (($ $ $) 140 (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-2259 (((-640 |#1|) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-3860 (((-563) $) 94 (|has| (-563) (-846)))) (-1777 (($ $ $) 148 (|has| |#1| (-846)))) (-4345 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3651 (($ |#1|) 122)) (-2382 (((-112) $ (-767)) 10)) (-2512 (((-640 |#1|) $) 45)) (-2194 (((-112) $) 49)) (-3573 (((-1151) $) 22 (|has| |#1| (-1093)))) (-1481 ((|#1| $) 70) (($ $ (-767)) 68)) (-1812 (($ $ $ (-563)) 127) (($ |#1| $ (-563)) 126)) (-3396 (($ $ $ (-563)) 116) (($ |#1| $ (-563)) 115)) (-4318 (((-640 (-563)) $) 92)) (-3192 (((-112) (-563) $) 91)) (-1694 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3781 ((|#1| $) 76) (($ $ (-767)) 74)) (-4203 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2358 (($ $ |#1|) 96 (|has| $ (-6 -4408)))) (-2833 (((-112) $) 84)) (-3138 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) 14)) (-2105 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2836 (((-640 |#1|) $) 90)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-2309 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1224 (-563))) 112) ((|#1| $ (-563)) 89) ((|#1| $ (-563) |#1|) 88)) (-4071 (((-563) $ $) 44)) (-1314 (($ $ (-1224 (-563))) 124) (($ $ (-563)) 123)) (-2963 (($ $ (-1224 (-563))) 114) (($ $ (-563)) 113)) (-1434 (((-112) $) 46)) (-2749 (($ $) 62)) (-1322 (($ $) 59 (|has| $ (-6 -4408)))) (-1950 (((-767) $) 63)) (-3752 (($ $) 64)) (-1709 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4407))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-3076 (($ $ $ (-563)) 143 (|has| $ (-6 -4408)))) (-1872 (($ $) 13)) (-2220 (((-536) $) 98 (|has| |#1| (-611 (-536))))) (-1707 (($ (-640 |#1|)) 107)) (-3245 (($ $ $) 61) (($ $ |#1|) 60)) (-2853 (($ $ $) 78) (($ |#1| $) 77) (($ (-640 $)) 110) (($ $ |#1|) 109)) (-1693 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-4258 (((-640 $) $) 51)) (-2962 (((-112) $ $) 43 (|has| |#1| (-1093)))) (-4383 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-1778 (((-112) $ $) 150 (|has| |#1| (-846)))) (-1756 (((-112) $ $) 151 (|has| |#1| (-846)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-1768 (((-112) $ $) 149 (|has| |#1| (-846)))) (-1744 (((-112) $ $) 152 (|has| |#1| (-846)))) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-661 |#1|) (-140) (-1208)) (T -661)) +((-3651 (*1 *1 *2) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1208))))) +(-13 (-1142 |t#1|) (-373 |t#1|) (-282 |t#1|) (-10 -8 (-15 -3651 ($ |t#1|)))) +(((-34) . T) ((-102) -4032 (|has| |#1| (-1093)) (|has| |#1| (-846))) ((-610 (-858)) -4032 (|has| |#1| (-1093)) (|has| |#1| (-846)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-286 #0=(-563) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-282 |#1|) . T) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-601 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-646 |#1|) . T) ((-846) |has| |#1| (-846)) ((-1006 |#1|) . T) ((-1093) -4032 (|has| |#1| (-1093)) (|has| |#1| (-846))) ((-1142 |#1|) . T) ((-1208) . T) ((-1245 |#1|) . T)) +((-1793 (((-640 (-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -4315 (-640 (-1257 |#1|))))) (-640 (-640 |#1|)) (-640 (-1257 |#1|))) 22) (((-640 (-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -4315 (-640 (-1257 |#1|))))) (-684 |#1|) (-640 (-1257 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -4315 (-640 (-1257 |#1|)))) (-640 (-640 |#1|)) (-1257 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -4315 (-640 (-1257 |#1|)))) (-684 |#1|) (-1257 |#1|)) 14)) (-2522 (((-767) (-684 |#1|) (-1257 |#1|)) 30)) (-2635 (((-3 (-1257 |#1|) "failed") (-684 |#1|) (-1257 |#1|)) 24)) (-3962 (((-112) (-684 |#1|) (-1257 |#1|)) 27))) +(((-662 |#1|) (-10 -7 (-15 -1793 ((-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -4315 (-640 (-1257 |#1|)))) (-684 |#1|) (-1257 |#1|))) (-15 -1793 ((-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -4315 (-640 (-1257 |#1|)))) (-640 (-640 |#1|)) (-1257 |#1|))) (-15 -1793 ((-640 (-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -4315 (-640 (-1257 |#1|))))) (-684 |#1|) (-640 (-1257 |#1|)))) (-15 -1793 ((-640 (-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -4315 (-640 (-1257 |#1|))))) (-640 (-640 |#1|)) (-640 (-1257 |#1|)))) (-15 -2635 ((-3 (-1257 |#1|) "failed") (-684 |#1|) (-1257 |#1|))) (-15 -3962 ((-112) (-684 |#1|) (-1257 |#1|))) (-15 -2522 ((-767) (-684 |#1|) (-1257 |#1|)))) (-363)) (T -662)) +((-2522 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *5)) (-5 *4 (-1257 *5)) (-4 *5 (-363)) (-5 *2 (-767)) (-5 *1 (-662 *5)))) (-3962 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *5)) (-5 *4 (-1257 *5)) (-4 *5 (-363)) (-5 *2 (-112)) (-5 *1 (-662 *5)))) (-2635 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1257 *4)) (-5 *3 (-684 *4)) (-4 *4 (-363)) (-5 *1 (-662 *4)))) (-1793 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-640 *5))) (-4 *5 (-363)) (-5 *2 (-640 (-2 (|:| |particular| (-3 (-1257 *5) "failed")) (|:| -4315 (-640 (-1257 *5)))))) (-5 *1 (-662 *5)) (-5 *4 (-640 (-1257 *5))))) (-1793 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *5)) (-4 *5 (-363)) (-5 *2 (-640 (-2 (|:| |particular| (-3 (-1257 *5) "failed")) (|:| -4315 (-640 (-1257 *5)))))) (-5 *1 (-662 *5)) (-5 *4 (-640 (-1257 *5))))) (-1793 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-640 *5))) (-4 *5 (-363)) (-5 *2 (-2 (|:| |particular| (-3 (-1257 *5) "failed")) (|:| -4315 (-640 (-1257 *5))))) (-5 *1 (-662 *5)) (-5 *4 (-1257 *5)))) (-1793 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |particular| (-3 (-1257 *5) "failed")) (|:| -4315 (-640 (-1257 *5))))) (-5 *1 (-662 *5)) (-5 *4 (-1257 *5))))) +(-10 -7 (-15 -1793 ((-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -4315 (-640 (-1257 |#1|)))) (-684 |#1|) (-1257 |#1|))) (-15 -1793 ((-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -4315 (-640 (-1257 |#1|)))) (-640 (-640 |#1|)) (-1257 |#1|))) (-15 -1793 ((-640 (-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -4315 (-640 (-1257 |#1|))))) (-684 |#1|) (-640 (-1257 |#1|)))) (-15 -1793 ((-640 (-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -4315 (-640 (-1257 |#1|))))) (-640 (-640 |#1|)) (-640 (-1257 |#1|)))) (-15 -2635 ((-3 (-1257 |#1|) "failed") (-684 |#1|) (-1257 |#1|))) (-15 -3962 ((-112) (-684 |#1|) (-1257 |#1|))) (-15 -2522 ((-767) (-684 |#1|) (-1257 |#1|)))) +((-1793 (((-640 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4315 (-640 |#3|)))) |#4| (-640 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4315 (-640 |#3|))) |#4| |#3|) 45)) (-2522 (((-767) |#4| |#3|) 17)) (-2635 (((-3 |#3| "failed") |#4| |#3|) 20)) (-3962 (((-112) |#4| |#3|) 13))) +(((-663 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1793 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4315 (-640 |#3|))) |#4| |#3|)) (-15 -1793 ((-640 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4315 (-640 |#3|)))) |#4| (-640 |#3|))) (-15 -2635 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3962 ((-112) |#4| |#3|)) (-15 -2522 ((-767) |#4| |#3|))) (-363) (-13 (-373 |#1|) (-10 -7 (-6 -4408))) (-13 (-373 |#1|) (-10 -7 (-6 -4408))) (-682 |#1| |#2| |#3|)) (T -663)) +((-2522 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4408)))) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4408)))) (-5 *2 (-767)) (-5 *1 (-663 *5 *6 *4 *3)) (-4 *3 (-682 *5 *6 *4)))) (-3962 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4408)))) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4408)))) (-5 *2 (-112)) (-5 *1 (-663 *5 *6 *4 *3)) (-4 *3 (-682 *5 *6 *4)))) (-2635 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-363)) (-4 *5 (-13 (-373 *4) (-10 -7 (-6 -4408)))) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4408)))) (-5 *1 (-663 *4 *5 *2 *3)) (-4 *3 (-682 *4 *5 *2)))) (-1793 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4408)))) (-4 *7 (-13 (-373 *5) (-10 -7 (-6 -4408)))) (-5 *2 (-640 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4315 (-640 *7))))) (-5 *1 (-663 *5 *6 *7 *3)) (-5 *4 (-640 *7)) (-4 *3 (-682 *5 *6 *7)))) (-1793 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4408)))) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4408)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4315 (-640 *4)))) (-5 *1 (-663 *5 *6 *4 *3)) (-4 *3 (-682 *5 *6 *4))))) +(-10 -7 (-15 -1793 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4315 (-640 |#3|))) |#4| |#3|)) (-15 -1793 ((-640 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4315 (-640 |#3|)))) |#4| (-640 |#3|))) (-15 -2635 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3962 ((-112) |#4| |#3|)) (-15 -2522 ((-767) |#4| |#3|))) +((-2956 (((-2 (|:| |particular| (-3 (-1257 (-407 |#4|)) "failed")) (|:| -4315 (-640 (-1257 (-407 |#4|))))) (-640 |#4|) (-640 |#3|)) 45))) +(((-664 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2956 ((-2 (|:| |particular| (-3 (-1257 (-407 |#4|)) "failed")) (|:| -4315 (-640 (-1257 (-407 |#4|))))) (-640 |#4|) (-640 |#3|)))) (-555) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -664)) +((-2956 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 *7)) (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-4 *5 (-555)) (-4 *6 (-789)) (-5 *2 (-2 (|:| |particular| (-3 (-1257 (-407 *8)) "failed")) (|:| -4315 (-640 (-1257 (-407 *8)))))) (-5 *1 (-664 *5 *6 *7 *8))))) +(-10 -7 (-15 -2956 ((-2 (|:| |particular| (-3 (-1257 (-407 |#4|)) "failed")) (|:| -4315 (-640 (-1257 (-407 |#4|))))) (-640 |#4|) (-640 |#3|)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1414 (((-3 $ "failed")) NIL (|has| |#2| (-555)))) (-1733 ((|#2| $) NIL)) (-3129 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3507 (((-1257 (-684 |#2|))) NIL) (((-1257 (-684 |#2|)) (-1257 $)) NIL)) (-1937 (((-112) $) NIL)) (-1438 (((-1257 $)) 37)) (-2759 (((-112) $ (-767)) NIL)) (-3845 (($ |#2|) NIL)) (-4239 (($) NIL T CONST)) (-4069 (($ $) NIL (|has| |#2| (-307)))) (-2368 (((-240 |#1| |#2|) $ (-563)) NIL)) (-2133 (((-3 (-2 (|:| |particular| $) (|:| -4315 (-640 $))) "failed")) NIL (|has| |#2| (-555)))) (-2435 (((-3 $ "failed")) NIL (|has| |#2| (-555)))) (-4220 (((-684 |#2|)) NIL) (((-684 |#2|) (-1257 $)) NIL)) (-2480 ((|#2| $) NIL)) (-3043 (((-684 |#2|) $) NIL) (((-684 |#2|) $ (-1257 $)) NIL)) (-4154 (((-3 $ "failed") $) NIL (|has| |#2| (-555)))) (-3451 (((-1165 (-948 |#2|))) NIL (|has| |#2| (-363)))) (-2300 (($ $ (-917)) NIL)) (-3830 ((|#2| $) NIL)) (-3763 (((-1165 |#2|) $) NIL (|has| |#2| (-555)))) (-1824 ((|#2|) NIL) ((|#2| (-1257 $)) NIL)) (-2876 (((-1165 |#2|) $) NIL)) (-2182 (((-112)) NIL)) (-2131 (((-3 (-563) "failed") $) NIL (|has| |#2| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-3 |#2| "failed") $) NIL)) (-2058 (((-563) $) NIL (|has| |#2| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#2| (-1034 (-407 (-563))))) ((|#2| $) NIL)) (-3937 (($ (-1257 |#2|)) NIL) (($ (-1257 |#2|) (-1257 $)) NIL)) (-2950 (((-684 (-563)) (-684 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -2835 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL) (((-684 |#2|) (-684 $)) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-2522 (((-767) $) NIL (|has| |#2| (-555))) (((-917)) 38)) (-4293 ((|#2| $ (-563) (-563)) NIL)) (-2250 (((-112)) NIL)) (-2287 (($ $ (-917)) NIL)) (-2659 (((-640 |#2|) $) NIL (|has| $ (-6 -4407)))) (-3827 (((-112) $) NIL)) (-1997 (((-767) $) NIL (|has| |#2| (-555)))) (-2345 (((-640 (-240 |#1| |#2|)) $) NIL (|has| |#2| (-555)))) (-2381 (((-767) $) NIL)) (-3901 (((-112)) NIL)) (-2393 (((-767) $) NIL)) (-2581 (((-112) $ (-767)) NIL)) (-3977 ((|#2| $) NIL (|has| |#2| (-6 (-4409 "*"))))) (-2013 (((-563) $) NIL)) (-3650 (((-563) $) NIL)) (-2259 (((-640 |#2|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093))))) (-1859 (((-563) $) NIL)) (-2207 (((-563) $) NIL)) (-4038 (($ (-640 (-640 |#2|))) NIL)) (-4345 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-4136 (((-640 (-640 |#2|)) $) NIL)) (-3308 (((-112)) NIL)) (-3104 (((-112)) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-2284 (((-3 (-2 (|:| |particular| $) (|:| -4315 (-640 $))) "failed")) NIL (|has| |#2| (-555)))) (-2508 (((-3 $ "failed")) NIL (|has| |#2| (-555)))) (-2328 (((-684 |#2|)) NIL) (((-684 |#2|) (-1257 $)) NIL)) (-2842 ((|#2| $) NIL)) (-1823 (((-684 |#2|) $) NIL) (((-684 |#2|) $ (-1257 $)) NIL)) (-3856 (((-3 $ "failed") $) NIL (|has| |#2| (-555)))) (-3594 (((-1165 (-948 |#2|))) NIL (|has| |#2| (-363)))) (-1494 (($ $ (-917)) NIL)) (-2199 ((|#2| $) NIL)) (-2604 (((-1165 |#2|) $) NIL (|has| |#2| (-555)))) (-4111 ((|#2|) NIL) ((|#2| (-1257 $)) NIL)) (-2665 (((-1165 |#2|) $) NIL)) (-4012 (((-112)) NIL)) (-3573 (((-1151) $) NIL)) (-2136 (((-112)) NIL)) (-1789 (((-112)) NIL)) (-2047 (((-112)) NIL)) (-2591 (((-3 $ "failed") $) NIL (|has| |#2| (-363)))) (-1694 (((-1113) $) NIL)) (-4084 (((-112)) NIL)) (-3008 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-555)))) (-3138 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-2026 (((-112) $ $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) NIL)) (-2309 ((|#2| $ (-563) (-563) |#2|) NIL) ((|#2| $ (-563) (-563)) 22) ((|#2| $ (-563)) NIL)) (-4202 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3327 ((|#2| $) NIL)) (-2104 (($ (-640 |#2|)) NIL)) (-2717 (((-112) $) NIL)) (-3154 (((-240 |#1| |#2|) $) NIL)) (-3848 ((|#2| $) NIL (|has| |#2| (-6 (-4409 "*"))))) (-1709 (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093))))) (-1872 (($ $) NIL)) (-1880 (((-684 |#2|) (-1257 $)) NIL) (((-1257 |#2|) $) NIL) (((-684 |#2|) (-1257 $) (-1257 $)) NIL) (((-1257 |#2|) $ (-1257 $)) 25)) (-2220 (($ (-1257 |#2|)) NIL) (((-1257 |#2|) $) NIL)) (-4152 (((-640 (-948 |#2|))) NIL) (((-640 (-948 |#2|)) (-1257 $)) NIL)) (-2146 (($ $ $) NIL)) (-1936 (((-112)) NIL)) (-1912 (((-240 |#1| |#2|) $ (-563)) NIL)) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ (-407 (-563))) NIL (|has| |#2| (-1034 (-407 (-563))))) (($ |#2|) NIL) (((-684 |#2|) $) NIL)) (-1675 (((-767)) NIL)) (-4315 (((-1257 $)) 36)) (-2138 (((-640 (-1257 |#2|))) NIL (|has| |#2| (-555)))) (-1361 (($ $ $ $) NIL)) (-1402 (((-112)) NIL)) (-3726 (($ (-684 |#2|) $) NIL)) (-4383 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-3280 (((-112) $) NIL)) (-3399 (($ $ $) NIL)) (-2483 (((-112)) NIL)) (-3777 (((-112)) NIL)) (-2128 (((-112)) NIL)) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-3209 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1718 (((-112) $ $) NIL)) (-1837 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| |#2| (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) NIL) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) NIL)) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-665 |#1| |#2|) (-13 (-1116 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-610 (-684 |#2|)) (-417 |#2|)) (-917) (-172)) (T -665)) +NIL +(-13 (-1116 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-610 (-684 |#2|)) (-417 |#2|)) +((-1677 (((-112) $ $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-2666 (((-640 (-1128)) $) 10)) (-1693 (((-858) $) 18) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-666) (-13 (-1076) (-10 -8 (-15 -2666 ((-640 (-1128)) $))))) (T -666)) +((-2666 (*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-666))))) +(-13 (-1076) (-10 -8 (-15 -2666 ((-640 (-1128)) $)))) +((-1677 (((-112) $ $) NIL)) (-3993 (((-640 |#1|) $) NIL)) (-1701 (($ $) 51)) (-4134 (((-112) $) NIL)) (-2131 (((-3 |#1| "failed") $) NIL)) (-2058 ((|#1| $) NIL)) (-3084 (($ $ $) NIL)) (-1777 (($ $ $) NIL)) (-2101 (((-3 $ "failed") (-815 |#1|)) 23)) (-2123 (((-112) (-815 |#1|)) 15)) (-2782 (($ (-815 |#1|)) 24)) (-1550 (((-112) $ $) 29)) (-3415 (((-917) $) 36)) (-1686 (($ $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-2174 (((-640 $) (-815 |#1|)) 17)) (-1693 (((-858) $) 42) (($ |#1|) 33) (((-815 |#1|) $) 38) (((-672 |#1|) $) 43)) (-3494 (((-59 (-640 $)) (-640 |#1|) (-917)) 56)) (-1458 (((-640 $) (-640 |#1|) (-917)) 59)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 52)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) 37))) +(((-667 |#1|) (-13 (-846) (-1034 |#1|) (-10 -8 (-15 -4134 ((-112) $)) (-15 -1686 ($ $)) (-15 -1701 ($ $)) (-15 -3415 ((-917) $)) (-15 -1550 ((-112) $ $)) (-15 -1693 ((-815 |#1|) $)) (-15 -1693 ((-672 |#1|) $)) (-15 -2174 ((-640 $) (-815 |#1|))) (-15 -2123 ((-112) (-815 |#1|))) (-15 -2782 ($ (-815 |#1|))) (-15 -2101 ((-3 $ "failed") (-815 |#1|))) (-15 -3993 ((-640 |#1|) $)) (-15 -3494 ((-59 (-640 $)) (-640 |#1|) (-917))) (-15 -1458 ((-640 $) (-640 |#1|) (-917))))) (-846)) (T -667)) +((-4134 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) (-1686 (*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-846)))) (-1701 (*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-846)))) (-3415 (*1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) (-1550 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) (-1693 (*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) (-1693 (*1 *2 *1) (-12 (-5 *2 (-672 *3)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) (-2174 (*1 *2 *3) (-12 (-5 *3 (-815 *4)) (-4 *4 (-846)) (-5 *2 (-640 (-667 *4))) (-5 *1 (-667 *4)))) (-2123 (*1 *2 *3) (-12 (-5 *3 (-815 *4)) (-4 *4 (-846)) (-5 *2 (-112)) (-5 *1 (-667 *4)))) (-2782 (*1 *1 *2) (-12 (-5 *2 (-815 *3)) (-4 *3 (-846)) (-5 *1 (-667 *3)))) (-2101 (*1 *1 *2) (|partial| -12 (-5 *2 (-815 *3)) (-4 *3 (-846)) (-5 *1 (-667 *3)))) (-3993 (*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) (-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *5)) (-5 *4 (-917)) (-4 *5 (-846)) (-5 *2 (-59 (-640 (-667 *5)))) (-5 *1 (-667 *5)))) (-1458 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *5)) (-5 *4 (-917)) (-4 *5 (-846)) (-5 *2 (-640 (-667 *5))) (-5 *1 (-667 *5))))) +(-13 (-846) (-1034 |#1|) (-10 -8 (-15 -4134 ((-112) $)) (-15 -1686 ($ $)) (-15 -1701 ($ $)) (-15 -3415 ((-917) $)) (-15 -1550 ((-112) $ $)) (-15 -1693 ((-815 |#1|) $)) (-15 -1693 ((-672 |#1|) $)) (-15 -2174 ((-640 $) (-815 |#1|))) (-15 -2123 ((-112) (-815 |#1|))) (-15 -2782 ($ (-815 |#1|))) (-15 -2101 ((-3 $ "failed") (-815 |#1|))) (-15 -3993 ((-640 |#1|) $)) (-15 -3494 ((-59 (-640 $)) (-640 |#1|) (-917))) (-15 -1458 ((-640 $) (-640 |#1|) (-917))))) +((-2619 ((|#2| $) 76)) (-4302 (($ $) 96)) (-2759 (((-112) $ (-767)) 26)) (-3792 (($ $) 85) (($ $ (-767)) 88)) (-2018 (((-112) $) 97)) (-2071 (((-640 $) $) 72)) (-1469 (((-112) $ $) 71)) (-2581 (((-112) $ (-767)) 24)) (-2411 (((-563) $) 46)) (-3860 (((-563) $) 45)) (-2382 (((-112) $ (-767)) 22)) (-2194 (((-112) $) 74)) (-1481 ((|#2| $) 89) (($ $ (-767)) 92)) (-3396 (($ $ $ (-563)) 62) (($ |#2| $ (-563)) 61)) (-4318 (((-640 (-563)) $) 44)) (-3192 (((-112) (-563) $) 42)) (-3781 ((|#2| $) NIL) (($ $ (-767)) 84)) (-3320 (($ $ (-563)) 99)) (-2833 (((-112) $) 98)) (-3138 (((-112) (-1 (-112) |#2|) $) 32)) (-2836 (((-640 |#2|) $) 33)) (-2309 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1224 (-563))) 58) ((|#2| $ (-563)) 40) ((|#2| $ (-563) |#2|) 41)) (-4071 (((-563) $ $) 70)) (-2963 (($ $ (-1224 (-563))) 57) (($ $ (-563)) 51)) (-1434 (((-112) $) 66)) (-2749 (($ $) 81)) (-1950 (((-767) $) 80)) (-3752 (($ $) 79)) (-1707 (($ (-640 |#2|)) 37)) (-1741 (($ $) 100)) (-4258 (((-640 $) $) 69)) (-2962 (((-112) $ $) 68)) (-4383 (((-112) (-1 (-112) |#2|) $) 31)) (-1718 (((-112) $ $) 18)) (-3608 (((-767) $) 29))) +(((-668 |#1| |#2|) (-10 -8 (-15 -1741 (|#1| |#1|)) (-15 -3320 (|#1| |#1| (-563))) (-15 -2018 ((-112) |#1|)) (-15 -2833 ((-112) |#1|)) (-15 -2309 (|#2| |#1| (-563) |#2|)) (-15 -2309 (|#2| |#1| (-563))) (-15 -2836 ((-640 |#2|) |#1|)) (-15 -3192 ((-112) (-563) |#1|)) (-15 -4318 ((-640 (-563)) |#1|)) (-15 -3860 ((-563) |#1|)) (-15 -2411 ((-563) |#1|)) (-15 -1707 (|#1| (-640 |#2|))) (-15 -2309 (|#1| |#1| (-1224 (-563)))) (-15 -2963 (|#1| |#1| (-563))) (-15 -2963 (|#1| |#1| (-1224 (-563)))) (-15 -3396 (|#1| |#2| |#1| (-563))) (-15 -3396 (|#1| |#1| |#1| (-563))) (-15 -2749 (|#1| |#1|)) (-15 -1950 ((-767) |#1|)) (-15 -3752 (|#1| |#1|)) (-15 -4302 (|#1| |#1|)) (-15 -1481 (|#1| |#1| (-767))) (-15 -2309 (|#2| |#1| "last")) (-15 -1481 (|#2| |#1|)) (-15 -3792 (|#1| |#1| (-767))) (-15 -2309 (|#1| |#1| "rest")) (-15 -3792 (|#1| |#1|)) (-15 -3781 (|#1| |#1| (-767))) (-15 -2309 (|#2| |#1| "first")) (-15 -3781 (|#2| |#1|)) (-15 -1469 ((-112) |#1| |#1|)) (-15 -2962 ((-112) |#1| |#1|)) (-15 -4071 ((-563) |#1| |#1|)) (-15 -1434 ((-112) |#1|)) (-15 -2309 (|#2| |#1| "value")) (-15 -2619 (|#2| |#1|)) (-15 -2194 ((-112) |#1|)) (-15 -2071 ((-640 |#1|) |#1|)) (-15 -4258 ((-640 |#1|) |#1|)) (-15 -1718 ((-112) |#1| |#1|)) (-15 -3138 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4383 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3608 ((-767) |#1|)) (-15 -2759 ((-112) |#1| (-767))) (-15 -2581 ((-112) |#1| (-767))) (-15 -2382 ((-112) |#1| (-767)))) (-669 |#2|) (-1208)) (T -668)) +NIL +(-10 -8 (-15 -1741 (|#1| |#1|)) (-15 -3320 (|#1| |#1| (-563))) (-15 -2018 ((-112) |#1|)) (-15 -2833 ((-112) |#1|)) (-15 -2309 (|#2| |#1| (-563) |#2|)) (-15 -2309 (|#2| |#1| (-563))) (-15 -2836 ((-640 |#2|) |#1|)) (-15 -3192 ((-112) (-563) |#1|)) (-15 -4318 ((-640 (-563)) |#1|)) (-15 -3860 ((-563) |#1|)) (-15 -2411 ((-563) |#1|)) (-15 -1707 (|#1| (-640 |#2|))) (-15 -2309 (|#1| |#1| (-1224 (-563)))) (-15 -2963 (|#1| |#1| (-563))) (-15 -2963 (|#1| |#1| (-1224 (-563)))) (-15 -3396 (|#1| |#2| |#1| (-563))) (-15 -3396 (|#1| |#1| |#1| (-563))) (-15 -2749 (|#1| |#1|)) (-15 -1950 ((-767) |#1|)) (-15 -3752 (|#1| |#1|)) (-15 -4302 (|#1| |#1|)) (-15 -1481 (|#1| |#1| (-767))) (-15 -2309 (|#2| |#1| "last")) (-15 -1481 (|#2| |#1|)) (-15 -3792 (|#1| |#1| (-767))) (-15 -2309 (|#1| |#1| "rest")) (-15 -3792 (|#1| |#1|)) (-15 -3781 (|#1| |#1| (-767))) (-15 -2309 (|#2| |#1| "first")) (-15 -3781 (|#2| |#1|)) (-15 -1469 ((-112) |#1| |#1|)) (-15 -2962 ((-112) |#1| |#1|)) (-15 -4071 ((-563) |#1| |#1|)) (-15 -1434 ((-112) |#1|)) (-15 -2309 (|#2| |#1| "value")) (-15 -2619 (|#2| |#1|)) (-15 -2194 ((-112) |#1|)) (-15 -2071 ((-640 |#1|) |#1|)) (-15 -4258 ((-640 |#1|) |#1|)) (-15 -1718 ((-112) |#1| |#1|)) (-15 -3138 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4383 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3608 ((-767) |#1|)) (-15 -2759 ((-112) |#1| (-767))) (-15 -2581 ((-112) |#1| (-767))) (-15 -2382 ((-112) |#1| (-767)))) +((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-2619 ((|#1| $) 48)) (-3442 ((|#1| $) 65)) (-4302 (($ $) 67)) (-4378 (((-1262) $ (-563) (-563)) 97 (|has| $ (-6 -4408)))) (-1624 (($ $ (-563)) 52 (|has| $ (-6 -4408)))) (-2759 (((-112) $ (-767)) 8)) (-2936 ((|#1| $ |#1|) 39 (|has| $ (-6 -4408)))) (-3692 (($ $ $) 56 (|has| $ (-6 -4408)))) (-3889 ((|#1| $ |#1|) 54 (|has| $ (-6 -4408)))) (-1543 ((|#1| $ |#1|) 58 (|has| $ (-6 -4408)))) (-1849 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4408))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4408))) (($ $ "rest" $) 55 (|has| $ (-6 -4408))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4408))) ((|#1| $ (-1224 (-563)) |#1|) 117 (|has| $ (-6 -4408))) ((|#1| $ (-563) |#1|) 86 (|has| $ (-6 -4408)))) (-2811 (($ $ (-640 $)) 41 (|has| $ (-6 -4408)))) (-2256 (($ (-1 (-112) |#1|) $) 102)) (-3431 ((|#1| $) 66)) (-4239 (($) 7 T CONST)) (-2310 (($ $) 124)) (-3792 (($ $) 73) (($ $ (-767)) 71)) (-3813 (($ $) 99 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1459 (($ |#1| $) 100 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#1|) $) 103)) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-4355 ((|#1| $ (-563) |#1|) 85 (|has| $ (-6 -4408)))) (-4293 ((|#1| $ (-563)) 87)) (-2018 (((-112) $) 83)) (-2659 (((-640 |#1|) $) 30 (|has| $ (-6 -4407)))) (-2808 (((-767) $) 123)) (-2071 (((-640 $) $) 50)) (-1469 (((-112) $ $) 42 (|has| |#1| (-1093)))) (-1566 (($ (-767) |#1|) 108)) (-2581 (((-112) $ (-767)) 9)) (-2411 (((-563) $) 95 (|has| (-563) (-846)))) (-2259 (((-640 |#1|) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-3860 (((-563) $) 94 (|has| (-563) (-846)))) (-4345 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2382 (((-112) $ (-767)) 10)) (-2512 (((-640 |#1|) $) 45)) (-2194 (((-112) $) 49)) (-1785 (($ $) 126)) (-3858 (((-112) $) 127)) (-3573 (((-1151) $) 22 (|has| |#1| (-1093)))) (-1481 ((|#1| $) 70) (($ $ (-767)) 68)) (-3396 (($ $ $ (-563)) 116) (($ |#1| $ (-563)) 115)) (-4318 (((-640 (-563)) $) 92)) (-3192 (((-112) (-563) $) 91)) (-1694 (((-1113) $) 21 (|has| |#1| (-1093)))) (-2548 ((|#1| $) 125)) (-3781 ((|#1| $) 76) (($ $ (-767)) 74)) (-4203 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2358 (($ $ |#1|) 96 (|has| $ (-6 -4408)))) (-3320 (($ $ (-563)) 122)) (-2833 (((-112) $) 84)) (-4122 (((-112) $) 128)) (-3063 (((-112) $) 129)) (-3138 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) 14)) (-2105 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2836 (((-640 |#1|) $) 90)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-2309 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1224 (-563))) 112) ((|#1| $ (-563)) 89) ((|#1| $ (-563) |#1|) 88)) (-4071 (((-563) $ $) 44)) (-2963 (($ $ (-1224 (-563))) 114) (($ $ (-563)) 113)) (-1434 (((-112) $) 46)) (-2749 (($ $) 62)) (-1322 (($ $) 59 (|has| $ (-6 -4408)))) (-1950 (((-767) $) 63)) (-3752 (($ $) 64)) (-1709 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4407))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1872 (($ $) 13)) (-2220 (((-536) $) 98 (|has| |#1| (-611 (-536))))) (-1707 (($ (-640 |#1|)) 107)) (-3245 (($ $ $) 61 (|has| $ (-6 -4408))) (($ $ |#1|) 60 (|has| $ (-6 -4408)))) (-2853 (($ $ $) 78) (($ |#1| $) 77) (($ (-640 $)) 110) (($ $ |#1|) 109)) (-1741 (($ $) 121)) (-1693 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-4258 (((-640 $) $) 51)) (-2962 (((-112) $ $) 43 (|has| |#1| (-1093)))) (-4383 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-669 |#1|) (-140) (-1208)) (T -669)) +((-1459 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-669 *3)) (-4 *3 (-1208)))) (-2256 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-669 *3)) (-4 *3 (-1208)))) (-3063 (*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1208)) (-5 *2 (-112)))) (-4122 (*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1208)) (-5 *2 (-112)))) (-3858 (*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1208)) (-5 *2 (-112)))) (-1785 (*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1208)))) (-2548 (*1 *2 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1208)))) (-2310 (*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1208)))) (-2808 (*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1208)) (-5 *2 (-767)))) (-3320 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-669 *3)) (-4 *3 (-1208)))) (-1741 (*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1208))))) +(-13 (-1142 |t#1|) (-10 -8 (-15 -1459 ($ (-1 (-112) |t#1|) $)) (-15 -2256 ($ (-1 (-112) |t#1|) $)) (-15 -3063 ((-112) $)) (-15 -4122 ((-112) $)) (-15 -3858 ((-112) $)) (-15 -1785 ($ $)) (-15 -2548 (|t#1| $)) (-15 -2310 ($ $)) (-15 -2808 ((-767) $)) (-15 -3320 ($ $ (-563))) (-15 -1741 ($ $)))) +(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4032 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-286 #0=(-563) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-601 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-646 |#1|) . T) ((-1006 |#1|) . T) ((-1093) |has| |#1| (-1093)) ((-1142 |#1|) . T) ((-1208) . T) ((-1245 |#1|) . T)) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-4255 (($ (-767) (-767) (-767)) 33 (|has| |#1| (-1045)))) (-2759 (((-112) $ (-767)) NIL)) (-3739 ((|#1| $ (-767) (-767) (-767) |#1|) 27)) (-4239 (($) NIL T CONST)) (-4139 (($ $ $) 37 (|has| |#1| (-1045)))) (-2659 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-2581 (((-112) $ (-767)) NIL)) (-2259 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2988 (((-1257 (-767)) $) 9)) (-1436 (($ (-1169) $ $) 22)) (-4345 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3073 (($ (-767)) 35 (|has| |#1| (-1045)))) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3138 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) NIL)) (-2309 ((|#1| $ (-767) (-767) (-767)) 25)) (-1709 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1872 (($ $) NIL)) (-1707 (($ (-640 (-640 (-640 |#1|)))) 44)) (-1693 (($ (-954 (-954 (-954 |#1|)))) 15) (((-954 (-954 (-954 |#1|))) $) 12) (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-4383 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-670 |#1|) (-13 (-489 |#1|) (-10 -8 (IF (|has| |#1| (-1045)) (PROGN (-15 -4255 ($ (-767) (-767) (-767))) (-15 -3073 ($ (-767))) (-15 -4139 ($ $ $))) |%noBranch|) (-15 -1707 ($ (-640 (-640 (-640 |#1|))))) (-15 -2309 (|#1| $ (-767) (-767) (-767))) (-15 -3739 (|#1| $ (-767) (-767) (-767) |#1|)) (-15 -1693 ($ (-954 (-954 (-954 |#1|))))) (-15 -1693 ((-954 (-954 (-954 |#1|))) $)) (-15 -1436 ($ (-1169) $ $)) (-15 -2988 ((-1257 (-767)) $)))) (-1093)) (T -670)) +((-4255 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-767)) (-5 *1 (-670 *3)) (-4 *3 (-1045)) (-4 *3 (-1093)))) (-3073 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-670 *3)) (-4 *3 (-1045)) (-4 *3 (-1093)))) (-4139 (*1 *1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1045)) (-4 *2 (-1093)))) (-1707 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 (-640 *3)))) (-4 *3 (-1093)) (-5 *1 (-670 *3)))) (-2309 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-767)) (-5 *1 (-670 *2)) (-4 *2 (-1093)))) (-3739 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-670 *2)) (-4 *2 (-1093)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-954 (-954 (-954 *3)))) (-4 *3 (-1093)) (-5 *1 (-670 *3)))) (-1693 (*1 *2 *1) (-12 (-5 *2 (-954 (-954 (-954 *3)))) (-5 *1 (-670 *3)) (-4 *3 (-1093)))) (-1436 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-670 *3)) (-4 *3 (-1093)))) (-2988 (*1 *2 *1) (-12 (-5 *2 (-1257 (-767))) (-5 *1 (-670 *3)) (-4 *3 (-1093))))) +(-13 (-489 |#1|) (-10 -8 (IF (|has| |#1| (-1045)) (PROGN (-15 -4255 ($ (-767) (-767) (-767))) (-15 -3073 ($ (-767))) (-15 -4139 ($ $ $))) |%noBranch|) (-15 -1707 ($ (-640 (-640 (-640 |#1|))))) (-15 -2309 (|#1| $ (-767) (-767) (-767))) (-15 -3739 (|#1| $ (-767) (-767) (-767) |#1|)) (-15 -1693 ($ (-954 (-954 (-954 |#1|))))) (-15 -1693 ((-954 (-954 (-954 |#1|))) $)) (-15 -1436 ($ (-1169) $ $)) (-15 -2988 ((-1257 (-767)) $)))) +((-1677 (((-112) $ $) NIL)) (-3573 (((-1151) $) NIL)) (-2917 (((-483) $) 10)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 21) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3359 (((-1128) $) 12)) (-1718 (((-112) $ $) NIL))) +(((-671) (-13 (-1076) (-10 -8 (-15 -2917 ((-483) $)) (-15 -3359 ((-1128) $))))) (T -671)) +((-2917 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-671)))) (-3359 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-671))))) +(-13 (-1076) (-10 -8 (-15 -2917 ((-483) $)) (-15 -3359 ((-1128) $)))) +((-1677 (((-112) $ $) NIL)) (-3993 (((-640 |#1|) $) 14)) (-1701 (($ $) 18)) (-4134 (((-112) $) 19)) (-2131 (((-3 |#1| "failed") $) 22)) (-2058 ((|#1| $) 20)) (-3792 (($ $) 36)) (-4337 (($ $) 24)) (-3084 (($ $ $) NIL)) (-1777 (($ $ $) NIL)) (-1550 (((-112) $ $) 41)) (-3415 (((-917) $) 38)) (-1686 (($ $) 17)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-3781 ((|#1| $) 35)) (-1693 (((-858) $) 31) (($ |#1|) 23) (((-815 |#1|) $) 27)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 12)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) 40)) (* (($ $ $) 34))) +(((-672 |#1|) (-13 (-846) (-1034 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -1693 ((-815 |#1|) $)) (-15 -3781 (|#1| $)) (-15 -1686 ($ $)) (-15 -3415 ((-917) $)) (-15 -1550 ((-112) $ $)) (-15 -4337 ($ $)) (-15 -3792 ($ $)) (-15 -4134 ((-112) $)) (-15 -1701 ($ $)) (-15 -3993 ((-640 |#1|) $)))) (-846)) (T -672)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) (-1693 (*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-672 *3)) (-4 *3 (-846)))) (-3781 (*1 *2 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) (-1686 (*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) (-3415 (*1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-672 *3)) (-4 *3 (-846)))) (-1550 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-672 *3)) (-4 *3 (-846)))) (-4337 (*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) (-3792 (*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-672 *3)) (-4 *3 (-846)))) (-1701 (*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) (-3993 (*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-672 *3)) (-4 *3 (-846))))) +(-13 (-846) (-1034 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -1693 ((-815 |#1|) $)) (-15 -3781 (|#1| $)) (-15 -1686 ($ $)) (-15 -3415 ((-917) $)) (-15 -1550 ((-112) $ $)) (-15 -4337 ($ $)) (-15 -3792 ($ $)) (-15 -4134 ((-112) $)) (-15 -1701 ($ $)) (-15 -3993 ((-640 |#1|) $)))) +((-3350 ((|#1| (-1 |#1| (-767) |#1|) (-767) |#1|) 11)) (-1431 ((|#1| (-1 |#1| |#1|) (-767) |#1|) 9))) +(((-673 |#1|) (-10 -7 (-15 -1431 (|#1| (-1 |#1| |#1|) (-767) |#1|)) (-15 -3350 (|#1| (-1 |#1| (-767) |#1|) (-767) |#1|))) (-1093)) (T -673)) +((-3350 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-767) *2)) (-5 *4 (-767)) (-4 *2 (-1093)) (-5 *1 (-673 *2)))) (-1431 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-767)) (-4 *2 (-1093)) (-5 *1 (-673 *2))))) +(-10 -7 (-15 -1431 (|#1| (-1 |#1| |#1|) (-767) |#1|)) (-15 -3350 (|#1| (-1 |#1| (-767) |#1|) (-767) |#1|))) +((-1884 ((|#2| |#1| |#2|) 9)) (-1873 ((|#1| |#1| |#2|) 8))) +(((-674 |#1| |#2|) (-10 -7 (-15 -1873 (|#1| |#1| |#2|)) (-15 -1884 (|#2| |#1| |#2|))) (-1093) (-1093)) (T -674)) +((-1884 (*1 *2 *3 *2) (-12 (-5 *1 (-674 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093)))) (-1873 (*1 *2 *2 *3) (-12 (-5 *1 (-674 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093))))) +(-10 -7 (-15 -1873 (|#1| |#1| |#2|)) (-15 -1884 (|#2| |#1| |#2|))) +((-3555 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) +(((-675 |#1| |#2| |#3|) (-10 -7 (-15 -3555 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1093) (-1093) (-1093)) (T -675)) +((-3555 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-1093)) (-5 *1 (-675 *5 *6 *2))))) +(-10 -7 (-15 -3555 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-1677 (((-112) $ $) NIL)) (-4183 (((-1207) $) 20)) (-4130 (((-640 (-1207)) $) 18)) (-4286 (($ (-640 (-1207)) (-1207)) 13)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 29) (($ (-1174)) NIL) (((-1174) $) NIL) (((-1207) $) 21) (($ (-1111)) 10)) (-1718 (((-112) $ $) NIL))) +(((-676) (-13 (-1076) (-610 (-1207)) (-10 -8 (-15 -1693 ($ (-1111))) (-15 -4286 ($ (-640 (-1207)) (-1207))) (-15 -4130 ((-640 (-1207)) $)) (-15 -4183 ((-1207) $))))) (T -676)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-1111)) (-5 *1 (-676)))) (-4286 (*1 *1 *2 *3) (-12 (-5 *2 (-640 (-1207))) (-5 *3 (-1207)) (-5 *1 (-676)))) (-4130 (*1 *2 *1) (-12 (-5 *2 (-640 (-1207))) (-5 *1 (-676)))) (-4183 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-676))))) +(-13 (-1076) (-610 (-1207)) (-10 -8 (-15 -1693 ($ (-1111))) (-15 -4286 ($ (-640 (-1207)) (-1207))) (-15 -4130 ((-640 (-1207)) $)) (-15 -4183 ((-1207) $)))) +((-3350 (((-1 |#1| (-767) |#1|) (-1 |#1| (-767) |#1|)) 23)) (-4108 (((-1 |#1|) |#1|) 8)) (-1524 ((|#1| |#1|) 16)) (-1986 (((-640 |#1|) (-1 (-640 |#1|) (-640 |#1|)) (-563)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-1693 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-767)) 20))) +(((-677 |#1|) (-10 -7 (-15 -4108 ((-1 |#1|) |#1|)) (-15 -1693 ((-1 |#1|) |#1|)) (-15 -1986 (|#1| (-1 |#1| |#1|))) (-15 -1986 ((-640 |#1|) (-1 (-640 |#1|) (-640 |#1|)) (-563))) (-15 -1524 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-767))) (-15 -3350 ((-1 |#1| (-767) |#1|) (-1 |#1| (-767) |#1|)))) (-1093)) (T -677)) +((-3350 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-767) *3)) (-4 *3 (-1093)) (-5 *1 (-677 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *4 (-1093)) (-5 *1 (-677 *4)))) (-1524 (*1 *2 *2) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1093)))) (-1986 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-640 *5) (-640 *5))) (-5 *4 (-563)) (-5 *2 (-640 *5)) (-5 *1 (-677 *5)) (-4 *5 (-1093)))) (-1986 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-677 *2)) (-4 *2 (-1093)))) (-1693 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-677 *3)) (-4 *3 (-1093)))) (-4108 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-677 *3)) (-4 *3 (-1093))))) +(-10 -7 (-15 -4108 ((-1 |#1|) |#1|)) (-15 -1693 ((-1 |#1|) |#1|)) (-15 -1986 (|#1| (-1 |#1| |#1|))) (-15 -1986 ((-640 |#1|) (-1 (-640 |#1|) (-640 |#1|)) (-563))) (-15 -1524 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-767))) (-15 -3350 ((-1 |#1| (-767) |#1|) (-1 |#1| (-767) |#1|)))) +((-3783 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2796 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2669 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-1410 (((-1 |#2| |#1|) |#2|) 11))) +(((-678 |#1| |#2|) (-10 -7 (-15 -1410 ((-1 |#2| |#1|) |#2|)) (-15 -2796 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2669 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3783 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1093) (-1093)) (T -678)) +((-3783 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-5 *2 (-1 *5 *4)) (-5 *1 (-678 *4 *5)))) (-2669 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1093)) (-5 *2 (-1 *5 *4)) (-5 *1 (-678 *4 *5)) (-4 *4 (-1093)))) (-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-5 *2 (-1 *5)) (-5 *1 (-678 *4 *5)))) (-1410 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-678 *4 *3)) (-4 *4 (-1093)) (-4 *3 (-1093))))) +(-10 -7 (-15 -1410 ((-1 |#2| |#1|) |#2|)) (-15 -2796 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2669 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3783 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-3922 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-1982 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3838 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-1926 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-3939 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-679 |#1| |#2| |#3|) (-10 -7 (-15 -1982 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3838 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1926 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3939 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3922 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1093) (-1093) (-1093)) (T -679)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-1 *7 *5)) (-5 *1 (-679 *5 *6 *7)))) (-3922 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-679 *4 *5 *6)))) (-3939 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-679 *4 *5 *6)) (-4 *4 (-1093)))) (-1926 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1093)) (-4 *6 (-1093)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-679 *4 *5 *6)) (-4 *5 (-1093)))) (-3838 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-5 *2 (-1 *6 *5)) (-5 *1 (-679 *4 *5 *6)))) (-1982 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1093)) (-4 *4 (-1093)) (-4 *6 (-1093)) (-5 *2 (-1 *6 *5)) (-5 *1 (-679 *5 *4 *6))))) +(-10 -7 (-15 -1982 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3838 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1926 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3939 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3922 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-2444 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-2240 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-680 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2240 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2240 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2444 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1045) (-373 |#1|) (-373 |#1|) (-682 |#1| |#2| |#3|) (-1045) (-373 |#5|) (-373 |#5|) (-682 |#5| |#6| |#7|)) (T -680)) +((-2444 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1045)) (-4 *2 (-1045)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *8 (-373 *2)) (-4 *9 (-373 *2)) (-5 *1 (-680 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-682 *5 *6 *7)) (-4 *10 (-682 *2 *8 *9)))) (-2240 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1045)) (-4 *8 (-1045)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *2 (-682 *8 *9 *10)) (-5 *1 (-680 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-682 *5 *6 *7)) (-4 *9 (-373 *8)) (-4 *10 (-373 *8)))) (-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1045)) (-4 *8 (-1045)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *2 (-682 *8 *9 *10)) (-5 *1 (-680 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-682 *5 *6 *7)) (-4 *9 (-373 *8)) (-4 *10 (-373 *8))))) +(-10 -7 (-15 -2240 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2240 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2444 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-3212 (($ (-767) (-767)) 33)) (-3888 (($ $ $) 56)) (-3493 (($ |#3|) 52) (($ $) 53)) (-3129 (((-112) $) 28)) (-4311 (($ $ (-563) (-563)) 58)) (-4004 (($ $ (-563) (-563)) 59)) (-1461 (($ $ (-563) (-563) (-563) (-563)) 63)) (-2767 (($ $) 54)) (-1937 (((-112) $) 14)) (-4356 (($ $ (-563) (-563) $) 64)) (-1849 ((|#2| $ (-563) (-563) |#2|) NIL) (($ $ (-640 (-563)) (-640 (-563)) $) 62)) (-3845 (($ (-767) |#2|) 39)) (-4038 (($ (-640 (-640 |#2|))) 37)) (-4136 (((-640 (-640 |#2|)) $) 57)) (-3757 (($ $ $) 55)) (-3008 (((-3 $ "failed") $ |#2|) 91)) (-2309 ((|#2| $ (-563) (-563)) NIL) ((|#2| $ (-563) (-563) |#2|) NIL) (($ $ (-640 (-563)) (-640 (-563))) 61)) (-2104 (($ (-640 |#2|)) 40) (($ (-640 $)) 42)) (-2717 (((-112) $) 24)) (-1693 (($ |#4|) 47) (((-858) $) NIL)) (-3280 (((-112) $) 30)) (-1837 (($ $ |#2|) 93)) (-1826 (($ $ $) 68) (($ $) 71)) (-1814 (($ $ $) 66)) (** (($ $ (-767)) 80) (($ $ (-563)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-563) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88))) +(((-681 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1693 ((-858) |#1|)) (-15 ** (|#1| |#1| (-563))) (-15 -1837 (|#1| |#1| |#2|)) (-15 -3008 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-767))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1826 (|#1| |#1|)) (-15 -1826 (|#1| |#1| |#1|)) (-15 -1814 (|#1| |#1| |#1|)) (-15 -4356 (|#1| |#1| (-563) (-563) |#1|)) (-15 -1461 (|#1| |#1| (-563) (-563) (-563) (-563))) (-15 -4004 (|#1| |#1| (-563) (-563))) (-15 -4311 (|#1| |#1| (-563) (-563))) (-15 -1849 (|#1| |#1| (-640 (-563)) (-640 (-563)) |#1|)) (-15 -2309 (|#1| |#1| (-640 (-563)) (-640 (-563)))) (-15 -4136 ((-640 (-640 |#2|)) |#1|)) (-15 -3888 (|#1| |#1| |#1|)) (-15 -3757 (|#1| |#1| |#1|)) (-15 -2767 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3493 (|#1| |#3|)) (-15 -1693 (|#1| |#4|)) (-15 -2104 (|#1| (-640 |#1|))) (-15 -2104 (|#1| (-640 |#2|))) (-15 -3845 (|#1| (-767) |#2|)) (-15 -4038 (|#1| (-640 (-640 |#2|)))) (-15 -3212 (|#1| (-767) (-767))) (-15 -3280 ((-112) |#1|)) (-15 -3129 ((-112) |#1|)) (-15 -2717 ((-112) |#1|)) (-15 -1937 ((-112) |#1|)) (-15 -1849 (|#2| |#1| (-563) (-563) |#2|)) (-15 -2309 (|#2| |#1| (-563) (-563) |#2|)) (-15 -2309 (|#2| |#1| (-563) (-563)))) (-682 |#2| |#3| |#4|) (-1045) (-373 |#2|) (-373 |#2|)) (T -681)) +NIL +(-10 -8 (-15 -1693 ((-858) |#1|)) (-15 ** (|#1| |#1| (-563))) (-15 -1837 (|#1| |#1| |#2|)) (-15 -3008 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-767))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1826 (|#1| |#1|)) (-15 -1826 (|#1| |#1| |#1|)) (-15 -1814 (|#1| |#1| |#1|)) (-15 -4356 (|#1| |#1| (-563) (-563) |#1|)) (-15 -1461 (|#1| |#1| (-563) (-563) (-563) (-563))) (-15 -4004 (|#1| |#1| (-563) (-563))) (-15 -4311 (|#1| |#1| (-563) (-563))) (-15 -1849 (|#1| |#1| (-640 (-563)) (-640 (-563)) |#1|)) (-15 -2309 (|#1| |#1| (-640 (-563)) (-640 (-563)))) (-15 -4136 ((-640 (-640 |#2|)) |#1|)) (-15 -3888 (|#1| |#1| |#1|)) (-15 -3757 (|#1| |#1| |#1|)) (-15 -2767 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3493 (|#1| |#3|)) (-15 -1693 (|#1| |#4|)) (-15 -2104 (|#1| (-640 |#1|))) (-15 -2104 (|#1| (-640 |#2|))) (-15 -3845 (|#1| (-767) |#2|)) (-15 -4038 (|#1| (-640 (-640 |#2|)))) (-15 -3212 (|#1| (-767) (-767))) (-15 -3280 ((-112) |#1|)) (-15 -3129 ((-112) |#1|)) (-15 -2717 ((-112) |#1|)) (-15 -1937 ((-112) |#1|)) (-15 -1849 (|#2| |#1| (-563) (-563) |#2|)) (-15 -2309 (|#2| |#1| (-563) (-563) |#2|)) (-15 -2309 (|#2| |#1| (-563) (-563)))) +((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-3212 (($ (-767) (-767)) 97)) (-3888 (($ $ $) 87)) (-3493 (($ |#2|) 91) (($ $) 90)) (-3129 (((-112) $) 99)) (-4311 (($ $ (-563) (-563)) 83)) (-4004 (($ $ (-563) (-563)) 82)) (-1461 (($ $ (-563) (-563) (-563) (-563)) 81)) (-2767 (($ $) 89)) (-1937 (((-112) $) 101)) (-2759 (((-112) $ (-767)) 8)) (-4356 (($ $ (-563) (-563) $) 80)) (-1849 ((|#1| $ (-563) (-563) |#1|) 44) (($ $ (-640 (-563)) (-640 (-563)) $) 84)) (-4327 (($ $ (-563) |#2|) 42)) (-4175 (($ $ (-563) |#3|) 41)) (-3845 (($ (-767) |#1|) 95)) (-4239 (($) 7 T CONST)) (-4069 (($ $) 67 (|has| |#1| (-307)))) (-2368 ((|#2| $ (-563)) 46)) (-2522 (((-767) $) 66 (|has| |#1| (-555)))) (-4355 ((|#1| $ (-563) (-563) |#1|) 43)) (-4293 ((|#1| $ (-563) (-563)) 48)) (-2659 (((-640 |#1|) $) 30)) (-1997 (((-767) $) 65 (|has| |#1| (-555)))) (-2345 (((-640 |#3|) $) 64 (|has| |#1| (-555)))) (-2381 (((-767) $) 51)) (-1566 (($ (-767) (-767) |#1|) 57)) (-2393 (((-767) $) 50)) (-2581 (((-112) $ (-767)) 9)) (-3977 ((|#1| $) 62 (|has| |#1| (-6 (-4409 "*"))))) (-2013 (((-563) $) 55)) (-3650 (((-563) $) 53)) (-2259 (((-640 |#1|) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1859 (((-563) $) 54)) (-2207 (((-563) $) 52)) (-4038 (($ (-640 (-640 |#1|))) 96)) (-4345 (($ (-1 |#1| |#1|) $) 34)) (-2240 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-4136 (((-640 (-640 |#1|)) $) 86)) (-2382 (((-112) $ (-767)) 10)) (-3573 (((-1151) $) 22 (|has| |#1| (-1093)))) (-2591 (((-3 $ "failed") $) 61 (|has| |#1| (-363)))) (-3757 (($ $ $) 88)) (-1694 (((-1113) $) 21 (|has| |#1| (-1093)))) (-2358 (($ $ |#1|) 56)) (-3008 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-555)))) (-3138 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) 14)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-2309 ((|#1| $ (-563) (-563)) 49) ((|#1| $ (-563) (-563) |#1|) 47) (($ $ (-640 (-563)) (-640 (-563))) 85)) (-2104 (($ (-640 |#1|)) 94) (($ (-640 $)) 93)) (-2717 (((-112) $) 100)) (-3848 ((|#1| $) 63 (|has| |#1| (-6 (-4409 "*"))))) (-1709 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4407))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1872 (($ $) 13)) (-1912 ((|#3| $ (-563)) 45)) (-1693 (($ |#3|) 92) (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-4383 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-3280 (((-112) $) 98)) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-1837 (($ $ |#1|) 68 (|has| |#1| (-363)))) (-1826 (($ $ $) 78) (($ $) 77)) (-1814 (($ $ $) 79)) (** (($ $ (-767)) 70) (($ $ (-563)) 60 (|has| |#1| (-363)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-563) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-682 |#1| |#2| |#3|) (-140) (-1045) (-373 |t#1|) (-373 |t#1|)) (T -682)) +((-1937 (*1 *2 *1) (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-2717 (*1 *2 *1) (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-3129 (*1 *2 *1) (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-3280 (*1 *2 *1) (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-3212 (*1 *1 *2 *2) (-12 (-5 *2 (-767)) (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-4038 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3845 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2104 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2104 (*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1693 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *2)) (-4 *4 (-373 *3)) (-4 *2 (-373 *3)))) (-3493 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-4 *1 (-682 *3 *2 *4)) (-4 *2 (-373 *3)) (-4 *4 (-373 *3)))) (-3493 (*1 *1 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-2767 (*1 *1 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-3757 (*1 *1 *1 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-3888 (*1 *1 *1 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-4136 (*1 *2 *1) (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-640 (-640 *3))))) (-2309 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-640 (-563))) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1849 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-640 (-563))) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-4311 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-4004 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1461 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-4356 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1814 (*1 *1 *1 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-1826 (*1 *1 *1 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-1826 (*1 *1 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-682 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *2 (-373 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-682 *3 *2 *4)) (-4 *3 (-1045)) (-4 *2 (-373 *3)) (-4 *4 (-373 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3008 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-555)))) (-1837 (*1 *1 *1 *2) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-363)))) (-4069 (*1 *1 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-307)))) (-2522 (*1 *2 *1) (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-555)) (-5 *2 (-767)))) (-1997 (*1 *2 *1) (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-555)) (-5 *2 (-767)))) (-2345 (*1 *2 *1) (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-555)) (-5 *2 (-640 *5)))) (-3848 (*1 *2 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (|has| *2 (-6 (-4409 "*"))) (-4 *2 (-1045)))) (-3977 (*1 *2 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (|has| *2 (-6 (-4409 "*"))) (-4 *2 (-1045)))) (-2591 (*1 *1 *1) (|partial| -12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-363)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-363))))) +(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4408) (-6 -4407) (-15 -1937 ((-112) $)) (-15 -2717 ((-112) $)) (-15 -3129 ((-112) $)) (-15 -3280 ((-112) $)) (-15 -3212 ($ (-767) (-767))) (-15 -4038 ($ (-640 (-640 |t#1|)))) (-15 -3845 ($ (-767) |t#1|)) (-15 -2104 ($ (-640 |t#1|))) (-15 -2104 ($ (-640 $))) (-15 -1693 ($ |t#3|)) (-15 -3493 ($ |t#2|)) (-15 -3493 ($ $)) (-15 -2767 ($ $)) (-15 -3757 ($ $ $)) (-15 -3888 ($ $ $)) (-15 -4136 ((-640 (-640 |t#1|)) $)) (-15 -2309 ($ $ (-640 (-563)) (-640 (-563)))) (-15 -1849 ($ $ (-640 (-563)) (-640 (-563)) $)) (-15 -4311 ($ $ (-563) (-563))) (-15 -4004 ($ $ (-563) (-563))) (-15 -1461 ($ $ (-563) (-563) (-563) (-563))) (-15 -4356 ($ $ (-563) (-563) $)) (-15 -1814 ($ $ $)) (-15 -1826 ($ $ $)) (-15 -1826 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-563) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-767))) (IF (|has| |t#1| (-555)) (-15 -3008 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-363)) (-15 -1837 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-307)) (-15 -4069 ($ $)) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-15 -2522 ((-767) $)) (-15 -1997 ((-767) $)) (-15 -2345 ((-640 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4409 "*"))) (PROGN (-15 -3848 (|t#1| $)) (-15 -3977 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-15 -2591 ((-3 $ "failed") $)) (-15 ** ($ $ (-563)))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4032 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-57 |#1| |#2| |#3|) . T) ((-1208) . T)) +((-4069 ((|#4| |#4|) 71 (|has| |#1| (-307)))) (-2522 (((-767) |#4|) 98 (|has| |#1| (-555)))) (-1997 (((-767) |#4|) 75 (|has| |#1| (-555)))) (-2345 (((-640 |#3|) |#4|) 82 (|has| |#1| (-555)))) (-3612 (((-2 (|:| -3490 |#1|) (|:| -1972 |#1|)) |#1| |#1|) 110 (|has| |#1| (-307)))) (-3977 ((|#1| |#4|) 34)) (-2485 (((-3 |#4| "failed") |#4|) 63 (|has| |#1| (-555)))) (-2591 (((-3 |#4| "failed") |#4|) 79 (|has| |#1| (-363)))) (-3147 ((|#4| |#4|) 67 (|has| |#1| (-555)))) (-1843 ((|#4| |#4| |#1| (-563) (-563)) 42)) (-1796 ((|#4| |#4| (-563) (-563)) 37)) (-1698 ((|#4| |#4| |#1| (-563) (-563)) 47)) (-3848 ((|#1| |#4|) 77)) (-3831 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 68 (|has| |#1| (-555))))) +(((-683 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3848 (|#1| |#4|)) (-15 -3977 (|#1| |#4|)) (-15 -1796 (|#4| |#4| (-563) (-563))) (-15 -1843 (|#4| |#4| |#1| (-563) (-563))) (-15 -1698 (|#4| |#4| |#1| (-563) (-563))) (IF (|has| |#1| (-555)) (PROGN (-15 -2522 ((-767) |#4|)) (-15 -1997 ((-767) |#4|)) (-15 -2345 ((-640 |#3|) |#4|)) (-15 -3147 (|#4| |#4|)) (-15 -2485 ((-3 |#4| "failed") |#4|)) (-15 -3831 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-307)) (PROGN (-15 -4069 (|#4| |#4|)) (-15 -3612 ((-2 (|:| -3490 |#1|) (|:| -1972 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -2591 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-172) (-373 |#1|) (-373 |#1|) (-682 |#1| |#2| |#3|)) (T -683)) +((-2591 (*1 *2 *2) (|partial| -12 (-4 *3 (-363)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-683 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))) (-3612 (*1 *2 *3 *3) (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-2 (|:| -3490 *3) (|:| -1972 *3))) (-5 *1 (-683 *3 *4 *5 *6)) (-4 *6 (-682 *3 *4 *5)))) (-4069 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-683 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))) (-3831 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))) (-2485 (*1 *2 *2) (|partial| -12 (-4 *3 (-555)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-683 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))) (-3147 (*1 *2 *2) (-12 (-4 *3 (-555)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-683 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))) (-2345 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-640 *6)) (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))) (-1997 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-767)) (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))) (-2522 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-767)) (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))) (-1698 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-563)) (-4 *3 (-172)) (-4 *5 (-373 *3)) (-4 *6 (-373 *3)) (-5 *1 (-683 *3 *5 *6 *2)) (-4 *2 (-682 *3 *5 *6)))) (-1843 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-563)) (-4 *3 (-172)) (-4 *5 (-373 *3)) (-4 *6 (-373 *3)) (-5 *1 (-683 *3 *5 *6 *2)) (-4 *2 (-682 *3 *5 *6)))) (-1796 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-563)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *1 (-683 *4 *5 *6 *2)) (-4 *2 (-682 *4 *5 *6)))) (-3977 (*1 *2 *3) (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172)) (-5 *1 (-683 *2 *4 *5 *3)) (-4 *3 (-682 *2 *4 *5)))) (-3848 (*1 *2 *3) (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172)) (-5 *1 (-683 *2 *4 *5 *3)) (-4 *3 (-682 *2 *4 *5))))) +(-10 -7 (-15 -3848 (|#1| |#4|)) (-15 -3977 (|#1| |#4|)) (-15 -1796 (|#4| |#4| (-563) (-563))) (-15 -1843 (|#4| |#4| |#1| (-563) (-563))) (-15 -1698 (|#4| |#4| |#1| (-563) (-563))) (IF (|has| |#1| (-555)) (PROGN (-15 -2522 ((-767) |#4|)) (-15 -1997 ((-767) |#4|)) (-15 -2345 ((-640 |#3|) |#4|)) (-15 -3147 (|#4| |#4|)) (-15 -2485 ((-3 |#4| "failed") |#4|)) (-15 -3831 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-307)) (PROGN (-15 -4069 (|#4| |#4|)) (-15 -3612 ((-2 (|:| -3490 |#1|) (|:| -1972 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -2591 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3212 (($ (-767) (-767)) 47)) (-3888 (($ $ $) NIL)) (-3493 (($ (-1257 |#1|)) NIL) (($ $) NIL)) (-3129 (((-112) $) NIL)) (-4311 (($ $ (-563) (-563)) 12)) (-4004 (($ $ (-563) (-563)) NIL)) (-1461 (($ $ (-563) (-563) (-563) (-563)) NIL)) (-2767 (($ $) NIL)) (-1937 (((-112) $) NIL)) (-2759 (((-112) $ (-767)) NIL)) (-4356 (($ $ (-563) (-563) $) NIL)) (-1849 ((|#1| $ (-563) (-563) |#1|) NIL) (($ $ (-640 (-563)) (-640 (-563)) $) NIL)) (-4327 (($ $ (-563) (-1257 |#1|)) NIL)) (-4175 (($ $ (-563) (-1257 |#1|)) NIL)) (-3845 (($ (-767) |#1|) 22)) (-4239 (($) NIL T CONST)) (-4069 (($ $) 31 (|has| |#1| (-307)))) (-2368 (((-1257 |#1|) $ (-563)) NIL)) (-2522 (((-767) $) 33 (|has| |#1| (-555)))) (-4355 ((|#1| $ (-563) (-563) |#1|) 51)) (-4293 ((|#1| $ (-563) (-563)) NIL)) (-2659 (((-640 |#1|) $) NIL)) (-1997 (((-767) $) 35 (|has| |#1| (-555)))) (-2345 (((-640 (-1257 |#1|)) $) 38 (|has| |#1| (-555)))) (-2381 (((-767) $) 20)) (-1566 (($ (-767) (-767) |#1|) 16)) (-2393 (((-767) $) 21)) (-2581 (((-112) $ (-767)) NIL)) (-3977 ((|#1| $) 29 (|has| |#1| (-6 (-4409 "*"))))) (-2013 (((-563) $) 9)) (-3650 (((-563) $) 10)) (-2259 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1859 (((-563) $) 11)) (-2207 (((-563) $) 48)) (-4038 (($ (-640 (-640 |#1|))) NIL)) (-4345 (($ (-1 |#1| |#1|) $) NIL)) (-2240 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4136 (((-640 (-640 |#1|)) $) 58)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-2591 (((-3 $ "failed") $) 45 (|has| |#1| (-363)))) (-3757 (($ $ $) NIL)) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-2358 (($ $ |#1|) NIL)) (-3008 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555)))) (-3138 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) NIL)) (-2309 ((|#1| $ (-563) (-563)) NIL) ((|#1| $ (-563) (-563) |#1|) NIL) (($ $ (-640 (-563)) (-640 (-563))) NIL)) (-2104 (($ (-640 |#1|)) NIL) (($ (-640 $)) NIL) (($ (-1257 |#1|)) 52)) (-2717 (((-112) $) NIL)) (-3848 ((|#1| $) 27 (|has| |#1| (-6 (-4409 "*"))))) (-1709 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1872 (($ $) NIL)) (-2220 (((-536) $) 62 (|has| |#1| (-611 (-536))))) (-1912 (((-1257 |#1|) $ (-563)) NIL)) (-1693 (($ (-1257 |#1|)) NIL) (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-4383 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-3280 (((-112) $) NIL)) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1837 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1826 (($ $ $) NIL) (($ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-767)) 23) (($ $ (-563)) 46 (|has| |#1| (-363)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-563) $) NIL) (((-1257 |#1|) $ (-1257 |#1|)) NIL) (((-1257 |#1|) (-1257 |#1|) $) NIL)) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-684 |#1|) (-13 (-682 |#1| (-1257 |#1|) (-1257 |#1|)) (-10 -8 (-15 -2104 ($ (-1257 |#1|))) (IF (|has| |#1| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -2591 ((-3 $ "failed") $)) |%noBranch|))) (-1045)) (T -684)) +((-2591 (*1 *1 *1) (|partial| -12 (-5 *1 (-684 *2)) (-4 *2 (-363)) (-4 *2 (-1045)))) (-2104 (*1 *1 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-1045)) (-5 *1 (-684 *3))))) +(-13 (-682 |#1| (-1257 |#1|) (-1257 |#1|)) (-10 -8 (-15 -2104 ($ (-1257 |#1|))) (IF (|has| |#1| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -2591 ((-3 $ "failed") $)) |%noBranch|))) +((-2624 (((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|)) 25)) (-1949 (((-684 |#1|) (-684 |#1|) (-684 |#1|) |#1|) 21)) (-3790 (((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|) (-767)) 26)) (-1513 (((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|)) 14)) (-3312 (((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|)) 18) (((-684 |#1|) (-684 |#1|) (-684 |#1|)) 16)) (-2712 (((-684 |#1|) (-684 |#1|) |#1| (-684 |#1|)) 20)) (-4054 (((-684 |#1|) (-684 |#1|) (-684 |#1|)) 12)) (** (((-684 |#1|) (-684 |#1|) (-767)) 30))) +(((-685 |#1|) (-10 -7 (-15 -4054 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -1513 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -3312 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -3312 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -2712 ((-684 |#1|) (-684 |#1|) |#1| (-684 |#1|))) (-15 -1949 ((-684 |#1|) (-684 |#1|) (-684 |#1|) |#1|)) (-15 -2624 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -3790 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|) (-767))) (-15 ** ((-684 |#1|) (-684 |#1|) (-767)))) (-1045)) (T -685)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-684 *4)) (-5 *3 (-767)) (-4 *4 (-1045)) (-5 *1 (-685 *4)))) (-3790 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-684 *4)) (-5 *3 (-767)) (-4 *4 (-1045)) (-5 *1 (-685 *4)))) (-2624 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))) (-1949 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))) (-2712 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))) (-3312 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))) (-3312 (*1 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))) (-1513 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))) (-4054 (*1 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3))))) +(-10 -7 (-15 -4054 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -1513 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -3312 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -3312 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -2712 ((-684 |#1|) (-684 |#1|) |#1| (-684 |#1|))) (-15 -1949 ((-684 |#1|) (-684 |#1|) (-684 |#1|) |#1|)) (-15 -2624 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -3790 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|) (-767))) (-15 ** ((-684 |#1|) (-684 |#1|) (-767)))) +((-2131 (((-3 |#1| "failed") $) 17)) (-2058 ((|#1| $) NIL)) (-2598 (($) 7 T CONST)) (-4370 (($ |#1|) 8)) (-1693 (($ |#1|) 15) (((-858) $) 22)) (-2226 (((-112) $ (|[\|\|]| |#1|)) 13) (((-112) $ (|[\|\|]| -2598)) 11)) (-1905 ((|#1| $) 14))) +(((-686 |#1|) (-13 (-1252) (-1034 |#1|) (-610 (-858)) (-10 -8 (-15 -4370 ($ |#1|)) (-15 -2226 ((-112) $ (|[\|\|]| |#1|))) (-15 -2226 ((-112) $ (|[\|\|]| -2598))) (-15 -1905 (|#1| $)) (-15 -2598 ($) -2669))) (-610 (-858))) (T -686)) +((-4370 (*1 *1 *2) (-12 (-5 *1 (-686 *2)) (-4 *2 (-610 (-858))))) (-2226 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-610 (-858))) (-5 *2 (-112)) (-5 *1 (-686 *4)))) (-2226 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2598)) (-5 *2 (-112)) (-5 *1 (-686 *4)) (-4 *4 (-610 (-858))))) (-1905 (*1 *2 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-610 (-858))))) (-2598 (*1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-610 (-858)))))) +(-13 (-1252) (-1034 |#1|) (-610 (-858)) (-10 -8 (-15 -4370 ($ |#1|)) (-15 -2226 ((-112) $ (|[\|\|]| |#1|))) (-15 -2226 ((-112) $ (|[\|\|]| -2598))) (-15 -1905 (|#1| $)) (-15 -2598 ($) -2669))) +((-2648 ((|#2| |#2| |#4|) 25)) (-4312 (((-684 |#2|) |#3| |#4|) 31)) (-2245 (((-684 |#2|) |#2| |#4|) 30)) (-3894 (((-1257 |#2|) |#2| |#4|) 16)) (-1658 ((|#2| |#3| |#4|) 24)) (-3471 (((-684 |#2|) |#3| |#4| (-767) (-767)) 38)) (-2179 (((-684 |#2|) |#2| |#4| (-767)) 37))) +(((-687 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3894 ((-1257 |#2|) |#2| |#4|)) (-15 -1658 (|#2| |#3| |#4|)) (-15 -2648 (|#2| |#2| |#4|)) (-15 -2245 ((-684 |#2|) |#2| |#4|)) (-15 -2179 ((-684 |#2|) |#2| |#4| (-767))) (-15 -4312 ((-684 |#2|) |#3| |#4|)) (-15 -3471 ((-684 |#2|) |#3| |#4| (-767) (-767)))) (-1093) (-896 |#1|) (-373 |#2|) (-13 (-373 |#1|) (-10 -7 (-6 -4407)))) (T -687)) +((-3471 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-767)) (-4 *6 (-1093)) (-4 *7 (-896 *6)) (-5 *2 (-684 *7)) (-5 *1 (-687 *6 *7 *3 *4)) (-4 *3 (-373 *7)) (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4407)))))) (-4312 (*1 *2 *3 *4) (-12 (-4 *5 (-1093)) (-4 *6 (-896 *5)) (-5 *2 (-684 *6)) (-5 *1 (-687 *5 *6 *3 *4)) (-4 *3 (-373 *6)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4407)))))) (-2179 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-767)) (-4 *6 (-1093)) (-4 *3 (-896 *6)) (-5 *2 (-684 *3)) (-5 *1 (-687 *6 *3 *7 *4)) (-4 *7 (-373 *3)) (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4407)))))) (-2245 (*1 *2 *3 *4) (-12 (-4 *5 (-1093)) (-4 *3 (-896 *5)) (-5 *2 (-684 *3)) (-5 *1 (-687 *5 *3 *6 *4)) (-4 *6 (-373 *3)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4407)))))) (-2648 (*1 *2 *2 *3) (-12 (-4 *4 (-1093)) (-4 *2 (-896 *4)) (-5 *1 (-687 *4 *2 *5 *3)) (-4 *5 (-373 *2)) (-4 *3 (-13 (-373 *4) (-10 -7 (-6 -4407)))))) (-1658 (*1 *2 *3 *4) (-12 (-4 *5 (-1093)) (-4 *2 (-896 *5)) (-5 *1 (-687 *5 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4407)))))) (-3894 (*1 *2 *3 *4) (-12 (-4 *5 (-1093)) (-4 *3 (-896 *5)) (-5 *2 (-1257 *3)) (-5 *1 (-687 *5 *3 *6 *4)) (-4 *6 (-373 *3)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4407))))))) +(-10 -7 (-15 -3894 ((-1257 |#2|) |#2| |#4|)) (-15 -1658 (|#2| |#3| |#4|)) (-15 -2648 (|#2| |#2| |#4|)) (-15 -2245 ((-684 |#2|) |#2| |#4|)) (-15 -2179 ((-684 |#2|) |#2| |#4| (-767))) (-15 -4312 ((-684 |#2|) |#3| |#4|)) (-15 -3471 ((-684 |#2|) |#3| |#4| (-767) (-767)))) +((-3266 (((-2 (|:| |num| (-684 |#1|)) (|:| |den| |#1|)) (-684 |#2|)) 20)) (-1417 ((|#1| (-684 |#2|)) 9)) (-2119 (((-684 |#1|) (-684 |#2|)) 18))) +(((-688 |#1| |#2|) (-10 -7 (-15 -1417 (|#1| (-684 |#2|))) (-15 -2119 ((-684 |#1|) (-684 |#2|))) (-15 -3266 ((-2 (|:| |num| (-684 |#1|)) (|:| |den| |#1|)) (-684 |#2|)))) (-555) (-988 |#1|)) (T -688)) +((-3266 (*1 *2 *3) (-12 (-5 *3 (-684 *5)) (-4 *5 (-988 *4)) (-4 *4 (-555)) (-5 *2 (-2 (|:| |num| (-684 *4)) (|:| |den| *4))) (-5 *1 (-688 *4 *5)))) (-2119 (*1 *2 *3) (-12 (-5 *3 (-684 *5)) (-4 *5 (-988 *4)) (-4 *4 (-555)) (-5 *2 (-684 *4)) (-5 *1 (-688 *4 *5)))) (-1417 (*1 *2 *3) (-12 (-5 *3 (-684 *4)) (-4 *4 (-988 *2)) (-4 *2 (-555)) (-5 *1 (-688 *2 *4))))) +(-10 -7 (-15 -1417 (|#1| (-684 |#2|))) (-15 -2119 ((-684 |#1|) (-684 |#2|))) (-15 -3266 ((-2 (|:| |num| (-684 |#1|)) (|:| |den| |#1|)) (-684 |#2|)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-3561 (((-684 (-694))) NIL) (((-684 (-694)) (-1257 $)) NIL)) (-1733 (((-694) $) NIL)) (-1771 (($ $) NIL (|has| (-694) (-1193)))) (-1619 (($ $) NIL (|has| (-694) (-1193)))) (-2752 (((-1181 (-917) (-767)) (-563)) NIL (|has| (-694) (-349)))) (-1495 (((-3 $ "failed") $ $) NIL)) (-2424 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-694) (-307)) (|has| (-694) (-905))))) (-4335 (($ $) NIL (-4032 (-12 (|has| (-694) (-307)) (|has| (-694) (-905))) (|has| (-694) (-363))))) (-3205 (((-418 $) $) NIL (-4032 (-12 (|has| (-694) (-307)) (|has| (-694) (-905))) (|has| (-694) (-363))))) (-2186 (($ $) NIL (-12 (|has| (-694) (-998)) (|has| (-694) (-1193))))) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-694) (-307)) (|has| (-694) (-905))))) (-1919 (((-112) $ $) NIL (|has| (-694) (-307)))) (-3749 (((-767)) NIL (|has| (-694) (-368)))) (-1748 (($ $) NIL (|has| (-694) (-1193)))) (-1597 (($ $) NIL (|has| (-694) (-1193)))) (-1794 (($ $) NIL (|has| (-694) (-1193)))) (-1643 (($ $) NIL (|has| (-694) (-1193)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-563) "failed") $) NIL) (((-3 (-694) "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| (-694) (-1034 (-407 (-563)))))) (-2058 (((-563) $) NIL) (((-694) $) NIL) (((-407 (-563)) $) NIL (|has| (-694) (-1034 (-407 (-563)))))) (-3937 (($ (-1257 (-694))) NIL) (($ (-1257 (-694)) (-1257 $)) NIL)) (-3711 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-694) (-349)))) (-3090 (($ $ $) NIL (|has| (-694) (-307)))) (-3914 (((-684 (-694)) $) NIL) (((-684 (-694)) $ (-1257 $)) NIL)) (-2950 (((-684 (-694)) (-684 $)) NIL) (((-2 (|:| -2835 (-684 (-694))) (|:| |vec| (-1257 (-694)))) (-684 $) (-1257 $)) NIL) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| (-694) (-636 (-563)))) (((-684 (-563)) (-684 $)) NIL (|has| (-694) (-636 (-563))))) (-2444 (((-3 $ "failed") (-407 (-1165 (-694)))) NIL (|has| (-694) (-363))) (($ (-1165 (-694))) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-2489 (((-694) $) 29)) (-3909 (((-3 (-407 (-563)) "failed") $) NIL (|has| (-694) (-545)))) (-2239 (((-112) $) NIL (|has| (-694) (-545)))) (-2651 (((-407 (-563)) $) NIL (|has| (-694) (-545)))) (-2522 (((-917)) NIL)) (-1691 (($) NIL (|has| (-694) (-368)))) (-3050 (($ $ $) NIL (|has| (-694) (-307)))) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL (|has| (-694) (-307)))) (-1571 (($) NIL (|has| (-694) (-349)))) (-2366 (((-112) $) NIL (|has| (-694) (-349)))) (-1637 (($ $) NIL (|has| (-694) (-349))) (($ $ (-767)) NIL (|has| (-694) (-349)))) (-2468 (((-112) $) NIL (-4032 (-12 (|has| (-694) (-307)) (|has| (-694) (-905))) (|has| (-694) (-363))))) (-3032 (((-2 (|:| |r| (-694)) (|:| |phi| (-694))) $) NIL (-12 (|has| (-694) (-1054)) (|has| (-694) (-1193))))) (-2180 (($) NIL (|has| (-694) (-1193)))) (-3787 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-694) (-882 (-379)))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (|has| (-694) (-882 (-563))))) (-3254 (((-829 (-917)) $) NIL (|has| (-694) (-349))) (((-917) $) NIL (|has| (-694) (-349)))) (-3827 (((-112) $) NIL)) (-1645 (($ $ (-563)) NIL (-12 (|has| (-694) (-998)) (|has| (-694) (-1193))))) (-3793 (((-694) $) NIL)) (-2408 (((-3 $ "failed") $) NIL (|has| (-694) (-349)))) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| (-694) (-307)))) (-3941 (((-1165 (-694)) $) NIL (|has| (-694) (-363)))) (-3084 (($ $ $) NIL)) (-1777 (($ $ $) NIL)) (-2240 (($ (-1 (-694) (-694)) $) NIL)) (-1476 (((-917) $) NIL (|has| (-694) (-368)))) (-4371 (($ $) NIL (|has| (-694) (-1193)))) (-2433 (((-1165 (-694)) $) NIL)) (-3513 (($ (-640 $)) NIL (|has| (-694) (-307))) (($ $ $) NIL (|has| (-694) (-307)))) (-3573 (((-1151) $) NIL)) (-2688 (($ $) NIL (|has| (-694) (-363)))) (-2523 (($) NIL (|has| (-694) (-349)) CONST)) (-2555 (($ (-917)) NIL (|has| (-694) (-368)))) (-3127 (($) NIL)) (-2499 (((-694) $) 31)) (-1694 (((-1113) $) NIL)) (-4333 (($) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| (-694) (-307)))) (-3548 (($ (-640 $)) NIL (|has| (-694) (-307))) (($ $ $) NIL (|has| (-694) (-307)))) (-2727 (((-640 (-2 (|:| -2174 (-563)) (|:| -1654 (-563))))) NIL (|has| (-694) (-349)))) (-1876 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-694) (-307)) (|has| (-694) (-905))))) (-3116 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-694) (-307)) (|has| (-694) (-905))))) (-2174 (((-418 $) $) NIL (-4032 (-12 (|has| (-694) (-307)) (|has| (-694) (-905))) (|has| (-694) (-363))))) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-694) (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL (|has| (-694) (-307)))) (-3008 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-694)) NIL (|has| (-694) (-555)))) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| (-694) (-307)))) (-3368 (($ $) NIL (|has| (-694) (-1193)))) (-1540 (($ $ (-1169) (-694)) NIL (|has| (-694) (-514 (-1169) (-694)))) (($ $ (-640 (-1169)) (-640 (-694))) NIL (|has| (-694) (-514 (-1169) (-694)))) (($ $ (-640 (-294 (-694)))) NIL (|has| (-694) (-309 (-694)))) (($ $ (-294 (-694))) NIL (|has| (-694) (-309 (-694)))) (($ $ (-694) (-694)) NIL (|has| (-694) (-309 (-694)))) (($ $ (-640 (-694)) (-640 (-694))) NIL (|has| (-694) (-309 (-694))))) (-2628 (((-767) $) NIL (|has| (-694) (-307)))) (-2309 (($ $ (-694)) NIL (|has| (-694) (-286 (-694) (-694))))) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| (-694) (-307)))) (-2315 (((-694)) NIL) (((-694) (-1257 $)) NIL)) (-1423 (((-3 (-767) "failed") $ $) NIL (|has| (-694) (-349))) (((-767) $) NIL (|has| (-694) (-349)))) (-4202 (($ $ (-1 (-694) (-694))) NIL) (($ $ (-1 (-694) (-694)) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-694) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-694) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-694) (-896 (-1169)))) (($ $ (-1169)) NIL (|has| (-694) (-896 (-1169)))) (($ $ (-767)) NIL (|has| (-694) (-233))) (($ $) NIL (|has| (-694) (-233)))) (-3974 (((-684 (-694)) (-1257 $) (-1 (-694) (-694))) NIL (|has| (-694) (-363)))) (-3390 (((-1165 (-694))) NIL)) (-1806 (($ $) NIL (|has| (-694) (-1193)))) (-1656 (($ $) NIL (|has| (-694) (-1193)))) (-4284 (($) NIL (|has| (-694) (-349)))) (-1784 (($ $) NIL (|has| (-694) (-1193)))) (-1630 (($ $) NIL (|has| (-694) (-1193)))) (-1759 (($ $) NIL (|has| (-694) (-1193)))) (-1608 (($ $) NIL (|has| (-694) (-1193)))) (-1880 (((-684 (-694)) (-1257 $)) NIL) (((-1257 (-694)) $) NIL) (((-684 (-694)) (-1257 $) (-1257 $)) NIL) (((-1257 (-694)) $ (-1257 $)) NIL)) (-2220 (((-536) $) NIL (|has| (-694) (-611 (-536)))) (((-169 (-225)) $) NIL (|has| (-694) (-1018))) (((-169 (-379)) $) NIL (|has| (-694) (-1018))) (((-888 (-379)) $) NIL (|has| (-694) (-611 (-888 (-379))))) (((-888 (-563)) $) NIL (|has| (-694) (-611 (-888 (-563))))) (($ (-1165 (-694))) NIL) (((-1165 (-694)) $) NIL) (($ (-1257 (-694))) NIL) (((-1257 (-694)) $) NIL)) (-4339 (($ $) NIL)) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (-4032 (-12 (|has| (-694) (-307)) (|has| $ (-145)) (|has| (-694) (-905))) (|has| (-694) (-349))))) (-1413 (($ (-694) (-694)) 12)) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-563)) NIL) (($ (-694)) NIL) (($ (-169 (-379))) 13) (($ (-169 (-563))) 19) (($ (-169 (-694))) 28) (($ (-169 (-696))) 25) (((-169 (-379)) $) 33) (($ (-407 (-563))) NIL (-4032 (|has| (-694) (-1034 (-407 (-563)))) (|has| (-694) (-363))))) (-2779 (($ $) NIL (|has| (-694) (-349))) (((-3 $ "failed") $) NIL (-4032 (-12 (|has| (-694) (-307)) (|has| $ (-145)) (|has| (-694) (-905))) (|has| (-694) (-145))))) (-3421 (((-1165 (-694)) $) NIL)) (-1675 (((-767)) NIL)) (-4315 (((-1257 $)) NIL)) (-1840 (($ $) NIL (|has| (-694) (-1193)))) (-1695 (($ $) NIL (|has| (-694) (-1193)))) (-2126 (((-112) $ $) NIL)) (-1817 (($ $) NIL (|has| (-694) (-1193)))) (-1667 (($ $) NIL (|has| (-694) (-1193)))) (-1862 (($ $) NIL (|has| (-694) (-1193)))) (-1722 (($ $) NIL (|has| (-694) (-1193)))) (-3237 (((-694) $) NIL (|has| (-694) (-1193)))) (-1311 (($ $) NIL (|has| (-694) (-1193)))) (-1735 (($ $) NIL (|has| (-694) (-1193)))) (-1851 (($ $) NIL (|has| (-694) (-1193)))) (-1710 (($ $) NIL (|has| (-694) (-1193)))) (-1829 (($ $) NIL (|has| (-694) (-1193)))) (-1680 (($ $) NIL (|has| (-694) (-1193)))) (-2509 (($ $) NIL (|has| (-694) (-1054)))) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-3209 (($ $ (-1 (-694) (-694))) NIL) (($ $ (-1 (-694) (-694)) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-694) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-694) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-694) (-896 (-1169)))) (($ $ (-1169)) NIL (|has| (-694) (-896 (-1169)))) (($ $ (-767)) NIL (|has| (-694) (-233))) (($ $) NIL (|has| (-694) (-233)))) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) NIL)) (-1837 (($ $ $) NIL (|has| (-694) (-363)))) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ $) NIL (|has| (-694) (-1193))) (($ $ (-407 (-563))) NIL (-12 (|has| (-694) (-998)) (|has| (-694) (-1193)))) (($ $ (-563)) NIL (|has| (-694) (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ (-694) $) NIL) (($ $ (-694)) NIL) (($ (-407 (-563)) $) NIL (|has| (-694) (-363))) (($ $ (-407 (-563))) NIL (|has| (-694) (-363))))) +(((-689) (-13 (-387) (-166 (-694)) (-10 -8 (-15 -1693 ($ (-169 (-379)))) (-15 -1693 ($ (-169 (-563)))) (-15 -1693 ($ (-169 (-694)))) (-15 -1693 ($ (-169 (-696)))) (-15 -1693 ((-169 (-379)) $))))) (T -689)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-689)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-169 (-563))) (-5 *1 (-689)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-169 (-694))) (-5 *1 (-689)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-169 (-696))) (-5 *1 (-689)))) (-1693 (*1 *2 *1) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-689))))) +(-13 (-387) (-166 (-694)) (-10 -8 (-15 -1693 ($ (-169 (-379)))) (-15 -1693 ($ (-169 (-563)))) (-15 -1693 ($ (-169 (-694)))) (-15 -1693 ($ (-169 (-696)))) (-15 -1693 ((-169 (-379)) $)))) +((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-2759 (((-112) $ (-767)) 8)) (-2812 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4407)))) (-2256 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4407)))) (-4239 (($) 7 T CONST)) (-4005 (($ $) 62)) (-3813 (($ $) 58 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-2705 (($ |#1| $) 47 (|has| $ (-6 -4407))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4407)))) (-1459 (($ |#1| $) 57 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4407)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4407)))) (-2659 (((-640 |#1|) $) 30 (|has| $ (-6 -4407)))) (-2581 (((-112) $ (-767)) 9)) (-2259 (((-640 |#1|) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-4345 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 35)) (-2382 (((-112) $ (-767)) 10)) (-3573 (((-1151) $) 22 (|has| |#1| (-1093)))) (-2964 ((|#1| $) 39)) (-1812 (($ |#1| $) 40) (($ |#1| $ (-767)) 63)) (-1694 (((-1113) $) 21 (|has| |#1| (-1093)))) (-4203 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3755 ((|#1| $) 41)) (-3138 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) 14)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-2757 (((-640 (-2 (|:| -2557 |#1|) (|:| -1709 (-767)))) $) 61)) (-3890 (($) 49) (($ (-640 |#1|)) 48)) (-1709 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4407))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1872 (($ $) 13)) (-2220 (((-536) $) 59 (|has| |#1| (-611 (-536))))) (-1707 (($ (-640 |#1|)) 50)) (-1693 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-2233 (($ (-640 |#1|)) 42)) (-4383 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-690 |#1|) (-140) (-1093)) (T -690)) +((-1812 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-690 *2)) (-4 *2 (-1093)))) (-4005 (*1 *1 *1) (-12 (-4 *1 (-690 *2)) (-4 *2 (-1093)))) (-2757 (*1 *2 *1) (-12 (-4 *1 (-690 *3)) (-4 *3 (-1093)) (-5 *2 (-640 (-2 (|:| -2557 *3) (|:| -1709 (-767)))))))) +(-13 (-235 |t#1|) (-10 -8 (-15 -1812 ($ |t#1| $ (-767))) (-15 -4005 ($ $)) (-15 -2757 ((-640 (-2 (|:| -2557 |t#1|) (|:| -1709 (-767)))) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4032 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T)) +((-4147 (((-640 |#1|) (-640 (-2 (|:| -2174 |#1|) (|:| -4167 (-563)))) (-563)) 47)) (-2526 ((|#1| |#1| (-563)) 46)) (-3548 ((|#1| |#1| |#1| (-563)) 36)) (-2174 (((-640 |#1|) |#1| (-563)) 39)) (-1704 ((|#1| |#1| (-563) |#1| (-563)) 32)) (-3384 (((-640 (-2 (|:| -2174 |#1|) (|:| -4167 (-563)))) |#1| (-563)) 45))) +(((-691 |#1|) (-10 -7 (-15 -3548 (|#1| |#1| |#1| (-563))) (-15 -2526 (|#1| |#1| (-563))) (-15 -2174 ((-640 |#1|) |#1| (-563))) (-15 -3384 ((-640 (-2 (|:| -2174 |#1|) (|:| -4167 (-563)))) |#1| (-563))) (-15 -4147 ((-640 |#1|) (-640 (-2 (|:| -2174 |#1|) (|:| -4167 (-563)))) (-563))) (-15 -1704 (|#1| |#1| (-563) |#1| (-563)))) (-1233 (-563))) (T -691)) +((-1704 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-691 *2)) (-4 *2 (-1233 *3)))) (-4147 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-2 (|:| -2174 *5) (|:| -4167 (-563))))) (-5 *4 (-563)) (-4 *5 (-1233 *4)) (-5 *2 (-640 *5)) (-5 *1 (-691 *5)))) (-3384 (*1 *2 *3 *4) (-12 (-5 *4 (-563)) (-5 *2 (-640 (-2 (|:| -2174 *3) (|:| -4167 *4)))) (-5 *1 (-691 *3)) (-4 *3 (-1233 *4)))) (-2174 (*1 *2 *3 *4) (-12 (-5 *4 (-563)) (-5 *2 (-640 *3)) (-5 *1 (-691 *3)) (-4 *3 (-1233 *4)))) (-2526 (*1 *2 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-691 *2)) (-4 *2 (-1233 *3)))) (-3548 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-691 *2)) (-4 *2 (-1233 *3))))) +(-10 -7 (-15 -3548 (|#1| |#1| |#1| (-563))) (-15 -2526 (|#1| |#1| (-563))) (-15 -2174 ((-640 |#1|) |#1| (-563))) (-15 -3384 ((-640 (-2 (|:| -2174 |#1|) (|:| -4167 (-563)))) |#1| (-563))) (-15 -4147 ((-640 |#1|) (-640 (-2 (|:| -2174 |#1|) (|:| -4167 (-563)))) (-563))) (-15 -1704 (|#1| |#1| (-563) |#1| (-563)))) +((-1315 (((-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 17)) (-3518 (((-1126 (-225)) (-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-640 (-263))) 40) (((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-640 (-263))) 42) (((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1087 (-225)) (-1087 (-225)) (-640 (-263))) 44)) (-2933 (((-1126 (-225)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-640 (-263))) NIL)) (-2147 (((-1126 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1087 (-225)) (-1087 (-225)) (-640 (-263))) 45))) +(((-692) (-10 -7 (-15 -3518 ((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1087 (-225)) (-1087 (-225)) (-640 (-263)))) (-15 -3518 ((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-640 (-263)))) (-15 -3518 ((-1126 (-225)) (-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-640 (-263)))) (-15 -2147 ((-1126 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1087 (-225)) (-1087 (-225)) (-640 (-263)))) (-15 -2933 ((-1126 (-225)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-640 (-263)))) (-15 -1315 ((-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -692)) +((-1315 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1 (-225) (-225) (-225) (-225))) (-5 *2 (-1 (-939 (-225)) (-225) (-225))) (-5 *1 (-692)))) (-2933 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-316 (-563))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1087 (-225))) (-5 *6 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-692)))) (-2147 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1087 (-225))) (-5 *6 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-692)))) (-3518 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1126 (-225))) (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1087 (-225))) (-5 *5 (-640 (-263))) (-5 *1 (-692)))) (-3518 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1087 (-225))) (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-692)))) (-3518 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1087 (-225))) (-5 *6 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-692))))) +(-10 -7 (-15 -3518 ((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1087 (-225)) (-1087 (-225)) (-640 (-263)))) (-15 -3518 ((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-640 (-263)))) (-15 -3518 ((-1126 (-225)) (-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-640 (-263)))) (-15 -2147 ((-1126 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1087 (-225)) (-1087 (-225)) (-640 (-263)))) (-15 -2933 ((-1126 (-225)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-640 (-263)))) (-15 -1315 ((-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))))) +((-2174 (((-418 (-1165 |#4|)) (-1165 |#4|)) 73) (((-418 |#4|) |#4|) 220))) +(((-693 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2174 ((-418 |#4|) |#4|)) (-15 -2174 ((-418 (-1165 |#4|)) (-1165 |#4|)))) (-846) (-789) (-349) (-945 |#3| |#2| |#1|)) (T -693)) +((-2174 (*1 *2 *3) (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-349)) (-4 *7 (-945 *6 *5 *4)) (-5 *2 (-418 (-1165 *7))) (-5 *1 (-693 *4 *5 *6 *7)) (-5 *3 (-1165 *7)))) (-2174 (*1 *2 *3) (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-945 *6 *5 *4))))) +(-10 -7 (-15 -2174 ((-418 |#4|) |#4|)) (-15 -2174 ((-418 (-1165 |#4|)) (-1165 |#4|)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) 84)) (-3401 (((-563) $) 30)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-2421 (($ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-2186 (($ $) NIL)) (-1919 (((-112) $ $) NIL)) (-1857 (((-563) $) NIL)) (-4239 (($) NIL T CONST)) (-3796 (($ $) NIL)) (-2131 (((-3 (-563) "failed") $) 73) (((-3 (-407 (-563)) "failed") $) 26) (((-3 (-379) "failed") $) 70)) (-2058 (((-563) $) 75) (((-407 (-563)) $) 67) (((-379) $) 68)) (-3090 (($ $ $) 96)) (-3400 (((-3 $ "failed") $) 87)) (-3050 (($ $ $) 95)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-2468 (((-112) $) NIL)) (-3102 (((-917)) 77) (((-917) (-917)) 76)) (-3101 (((-112) $) NIL)) (-3787 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL)) (-3254 (((-563) $) NIL)) (-3827 (((-112) $) NIL)) (-1645 (($ $ (-563)) NIL)) (-3793 (($ $) NIL)) (-1419 (((-112) $) NIL)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3272 (((-563) (-563)) 81) (((-563)) 82)) (-3084 (($ $ $) NIL) (($) NIL (-12 (-2176 (|has| $ (-6 -4390))) (-2176 (|has| $ (-6 -4398)))))) (-3316 (((-563) (-563)) 79) (((-563)) 80)) (-1777 (($ $ $) NIL) (($) NIL (-12 (-2176 (|has| $ (-6 -4390))) (-2176 (|has| $ (-6 -4398)))))) (-4050 (((-563) $) 16)) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) 91)) (-3324 (((-917) (-563)) NIL (|has| $ (-6 -4398)))) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ $ $) NIL) (($ (-640 $)) NIL)) (-4215 (($ $) NIL)) (-1583 (($ $) NIL)) (-4340 (($ (-563) (-563)) NIL) (($ (-563) (-563) (-917)) NIL)) (-2174 (((-418 $) $) NIL)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3008 (((-3 $ "failed") $ $) 92)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1654 (((-563) $) 22)) (-2628 (((-767) $) NIL)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 94)) (-4113 (((-917)) NIL) (((-917) (-917)) NIL (|has| $ (-6 -4398)))) (-3814 (((-917) (-563)) NIL (|has| $ (-6 -4398)))) (-2220 (((-379) $) NIL) (((-225) $) NIL) (((-888 (-379)) $) NIL)) (-1693 (((-858) $) 52) (($ (-563)) 63) (($ $) NIL) (($ (-407 (-563))) 66) (($ (-563)) 63) (($ (-407 (-563))) 66) (($ (-379)) 60) (((-379) $) 50) (($ (-696)) 55)) (-1675 (((-767)) 103)) (-3578 (($ (-563) (-563) (-917)) 44)) (-4194 (($ $) NIL)) (-1734 (((-917)) NIL) (((-917) (-917)) NIL (|has| $ (-6 -4398)))) (-4211 (((-917)) 35) (((-917) (-917)) 78)) (-2126 (((-112) $ $) NIL)) (-2509 (($ $) NIL)) (-2241 (($) 32 T CONST)) (-2254 (($) 17 T CONST)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 83)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) 101)) (-1837 (($ $ $) 65)) (-1826 (($ $) 99) (($ $ $) 100)) (-1814 (($ $ $) 98)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL) (($ $ (-407 (-563))) 90)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 97) (($ $ $) 88) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL))) +(((-694) (-13 (-404) (-387) (-363) (-1034 (-379)) (-1034 (-407 (-563))) (-147) (-10 -8 (-15 -3102 ((-917) (-917))) (-15 -3102 ((-917))) (-15 -4211 ((-917) (-917))) (-15 -3316 ((-563) (-563))) (-15 -3316 ((-563))) (-15 -3272 ((-563) (-563))) (-15 -3272 ((-563))) (-15 -1693 ((-379) $)) (-15 -1693 ($ (-696))) (-15 -4050 ((-563) $)) (-15 -1654 ((-563) $)) (-15 -3578 ($ (-563) (-563) (-917)))))) (T -694)) +((-1654 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-694)))) (-4050 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-694)))) (-3102 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-694)))) (-3102 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-694)))) (-4211 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-694)))) (-3316 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-694)))) (-3316 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-694)))) (-3272 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-694)))) (-3272 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-694)))) (-1693 (*1 *2 *1) (-12 (-5 *2 (-379)) (-5 *1 (-694)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-694)))) (-3578 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-563)) (-5 *3 (-917)) (-5 *1 (-694))))) +(-13 (-404) (-387) (-363) (-1034 (-379)) (-1034 (-407 (-563))) (-147) (-10 -8 (-15 -3102 ((-917) (-917))) (-15 -3102 ((-917))) (-15 -4211 ((-917) (-917))) (-15 -3316 ((-563) (-563))) (-15 -3316 ((-563))) (-15 -3272 ((-563) (-563))) (-15 -3272 ((-563))) (-15 -1693 ((-379) $)) (-15 -1693 ($ (-696))) (-15 -4050 ((-563) $)) (-15 -1654 ((-563) $)) (-15 -3578 ($ (-563) (-563) (-917))))) +((-3511 (((-684 |#1|) (-684 |#1|) |#1| |#1|) 65)) (-4069 (((-684 |#1|) (-684 |#1|) |#1|) 48)) (-2991 (((-684 |#1|) (-684 |#1|) |#1|) 66)) (-3599 (((-684 |#1|) (-684 |#1|)) 49)) (-3612 (((-2 (|:| -3490 |#1|) (|:| -1972 |#1|)) |#1| |#1|) 64))) +(((-695 |#1|) (-10 -7 (-15 -3599 ((-684 |#1|) (-684 |#1|))) (-15 -4069 ((-684 |#1|) (-684 |#1|) |#1|)) (-15 -2991 ((-684 |#1|) (-684 |#1|) |#1|)) (-15 -3511 ((-684 |#1|) (-684 |#1|) |#1| |#1|)) (-15 -3612 ((-2 (|:| -3490 |#1|) (|:| -1972 |#1|)) |#1| |#1|))) (-307)) (T -695)) +((-3612 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3490 *3) (|:| -1972 *3))) (-5 *1 (-695 *3)) (-4 *3 (-307)))) (-3511 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-684 *3)) (-4 *3 (-307)) (-5 *1 (-695 *3)))) (-2991 (*1 *2 *2 *3) (-12 (-5 *2 (-684 *3)) (-4 *3 (-307)) (-5 *1 (-695 *3)))) (-4069 (*1 *2 *2 *3) (-12 (-5 *2 (-684 *3)) (-4 *3 (-307)) (-5 *1 (-695 *3)))) (-3599 (*1 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-307)) (-5 *1 (-695 *3))))) +(-10 -7 (-15 -3599 ((-684 |#1|) (-684 |#1|))) (-15 -4069 ((-684 |#1|) (-684 |#1|) |#1|)) (-15 -2991 ((-684 |#1|) (-684 |#1|) |#1|)) (-15 -3511 ((-684 |#1|) (-684 |#1|) |#1| |#1|)) (-15 -3612 ((-2 (|:| -3490 |#1|) (|:| -1972 |#1|)) |#1| |#1|))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-1433 (($ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-2448 (($ $ $ $) NIL)) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-1919 (((-112) $ $) NIL)) (-1857 (((-563) $) NIL)) (-3458 (($ $ $) NIL)) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-563) "failed") $) 27)) (-2058 (((-563) $) 25)) (-3090 (($ $ $) NIL)) (-2950 (((-684 (-563)) (-684 $)) NIL) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-3909 (((-3 (-407 (-563)) "failed") $) NIL)) (-2239 (((-112) $) NIL)) (-2651 (((-407 (-563)) $) NIL)) (-1691 (($ $) NIL) (($) NIL)) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-2468 (((-112) $) NIL)) (-4362 (($ $ $ $) NIL)) (-1544 (($ $ $) NIL)) (-3101 (((-112) $) NIL)) (-3972 (($ $ $) NIL)) (-3787 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL)) (-3827 (((-112) $) NIL)) (-3131 (((-112) $) NIL)) (-2408 (((-3 $ "failed") $) NIL)) (-1419 (((-112) $) NIL)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2692 (($ $ $ $) NIL)) (-3084 (($ $ $) NIL)) (-2292 (((-917) (-917)) 10) (((-917)) 9)) (-1777 (($ $ $) NIL)) (-2646 (($ $) NIL)) (-3415 (($ $) NIL)) (-3513 (($ (-640 $)) NIL) (($ $ $) NIL)) (-3573 (((-1151) $) NIL)) (-3364 (($ $ $) NIL)) (-2523 (($) NIL T CONST)) (-2824 (($ $) NIL)) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ (-640 $)) NIL) (($ $ $) NIL)) (-3219 (($ $) NIL)) (-2174 (((-418 $) $) NIL)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2359 (((-112) $) NIL)) (-2628 (((-767) $) NIL)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-4202 (($ $) NIL) (($ $ (-767)) NIL)) (-3872 (($ $) NIL)) (-1872 (($ $) NIL)) (-2220 (((-225) $) NIL) (((-379) $) NIL) (((-888 (-563)) $) NIL) (((-536) $) NIL) (((-563) $) NIL)) (-1693 (((-858) $) NIL) (($ (-563)) 24) (($ $) NIL) (($ (-563)) 24) (((-316 $) (-316 (-563))) 18)) (-1675 (((-767)) NIL)) (-1570 (((-112) $ $) NIL)) (-2869 (($ $ $) NIL)) (-4211 (($) NIL)) (-2126 (((-112) $ $) NIL)) (-2039 (($ $ $ $) NIL)) (-2509 (($ $) NIL)) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-3209 (($ $) NIL) (($ $ (-767)) NIL)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL))) +(((-696) (-13 (-387) (-545) (-10 -8 (-15 -2292 ((-917) (-917))) (-15 -2292 ((-917))) (-15 -1693 ((-316 $) (-316 (-563))))))) (T -696)) +((-2292 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-696)))) (-2292 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-696)))) (-1693 (*1 *2 *3) (-12 (-5 *3 (-316 (-563))) (-5 *2 (-316 (-696))) (-5 *1 (-696))))) +(-13 (-387) (-545) (-10 -8 (-15 -2292 ((-917) (-917))) (-15 -2292 ((-917))) (-15 -1693 ((-316 $) (-316 (-563)))))) +((-2376 (((-1 |#4| |#2| |#3|) |#1| (-1169) (-1169)) 19)) (-3329 (((-1 |#4| |#2| |#3|) (-1169)) 12))) +(((-697 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3329 ((-1 |#4| |#2| |#3|) (-1169))) (-15 -2376 ((-1 |#4| |#2| |#3|) |#1| (-1169) (-1169)))) (-611 (-536)) (-1208) (-1208) (-1208)) (T -697)) +((-2376 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1169)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-697 *3 *5 *6 *7)) (-4 *3 (-611 (-536))) (-4 *5 (-1208)) (-4 *6 (-1208)) (-4 *7 (-1208)))) (-3329 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-697 *4 *5 *6 *7)) (-4 *4 (-611 (-536))) (-4 *5 (-1208)) (-4 *6 (-1208)) (-4 *7 (-1208))))) +(-10 -7 (-15 -3329 ((-1 |#4| |#2| |#3|) (-1169))) (-15 -2376 ((-1 |#4| |#2| |#3|) |#1| (-1169) (-1169)))) +((-1677 (((-112) $ $) NIL)) (-3052 (((-1262) $ (-767)) 14)) (-4368 (((-767) $) 12)) (-3084 (($ $ $) NIL)) (-1777 (($ $ $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 18) (($ |#1|) 23) ((|#1| $) 15)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 25)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) 24))) +(((-698 |#1|) (-13 (-132) (-490 |#1|)) (-1093)) (T -698)) +NIL +(-13 (-132) (-490 |#1|)) +((-4137 (((-1 (-225) (-225) (-225)) |#1| (-1169) (-1169)) 34) (((-1 (-225) (-225)) |#1| (-1169)) 39))) +(((-699 |#1|) (-10 -7 (-15 -4137 ((-1 (-225) (-225)) |#1| (-1169))) (-15 -4137 ((-1 (-225) (-225) (-225)) |#1| (-1169) (-1169)))) (-611 (-536))) (T -699)) +((-4137 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1169)) (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-699 *3)) (-4 *3 (-611 (-536))))) (-4137 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-699 *3)) (-4 *3 (-611 (-536)))))) +(-10 -7 (-15 -4137 ((-1 (-225) (-225)) |#1| (-1169))) (-15 -4137 ((-1 (-225) (-225) (-225)) |#1| (-1169) (-1169)))) +((-1516 (((-1169) |#1| (-1169) (-640 (-1169))) 9) (((-1169) |#1| (-1169) (-1169) (-1169)) 12) (((-1169) |#1| (-1169) (-1169)) 11) (((-1169) |#1| (-1169)) 10))) +(((-700 |#1|) (-10 -7 (-15 -1516 ((-1169) |#1| (-1169))) (-15 -1516 ((-1169) |#1| (-1169) (-1169))) (-15 -1516 ((-1169) |#1| (-1169) (-1169) (-1169))) (-15 -1516 ((-1169) |#1| (-1169) (-640 (-1169))))) (-611 (-536))) (T -700)) +((-1516 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-640 (-1169))) (-5 *2 (-1169)) (-5 *1 (-700 *3)) (-4 *3 (-611 (-536))))) (-1516 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-700 *3)) (-4 *3 (-611 (-536))))) (-1516 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-700 *3)) (-4 *3 (-611 (-536))))) (-1516 (*1 *2 *3 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-700 *3)) (-4 *3 (-611 (-536)))))) +(-10 -7 (-15 -1516 ((-1169) |#1| (-1169))) (-15 -1516 ((-1169) |#1| (-1169) (-1169))) (-15 -1516 ((-1169) |#1| (-1169) (-1169) (-1169))) (-15 -1516 ((-1169) |#1| (-1169) (-640 (-1169))))) +((-2320 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-701 |#1| |#2|) (-10 -7 (-15 -2320 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1208) (-1208)) (T -701)) +((-2320 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-701 *3 *4)) (-4 *3 (-1208)) (-4 *4 (-1208))))) +(-10 -7 (-15 -2320 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-2392 (((-1 |#3| |#2|) (-1169)) 11)) (-2376 (((-1 |#3| |#2|) |#1| (-1169)) 21))) +(((-702 |#1| |#2| |#3|) (-10 -7 (-15 -2392 ((-1 |#3| |#2|) (-1169))) (-15 -2376 ((-1 |#3| |#2|) |#1| (-1169)))) (-611 (-536)) (-1208) (-1208)) (T -702)) +((-2376 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-5 *2 (-1 *6 *5)) (-5 *1 (-702 *3 *5 *6)) (-4 *3 (-611 (-536))) (-4 *5 (-1208)) (-4 *6 (-1208)))) (-2392 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1 *6 *5)) (-5 *1 (-702 *4 *5 *6)) (-4 *4 (-611 (-536))) (-4 *5 (-1208)) (-4 *6 (-1208))))) +(-10 -7 (-15 -2392 ((-1 |#3| |#2|) (-1169))) (-15 -2376 ((-1 |#3| |#2|) |#1| (-1169)))) +((-1471 (((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-640 |#2|) (-640 (-1165 |#4|)) (-640 |#3|) (-640 |#4|) (-640 (-640 (-2 (|:| -4008 (-767)) (|:| |pcoef| |#4|)))) (-640 (-767)) (-1257 (-640 (-1165 |#3|))) |#3|) 61)) (-3843 (((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-640 |#2|) (-640 (-1165 |#3|)) (-640 |#3|) (-640 |#4|) (-640 (-767)) |#3|) 74)) (-1374 (((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-640 |#2|) (-640 |#3|) (-640 (-767)) (-640 (-1165 |#4|)) (-1257 (-640 (-1165 |#3|))) |#3|) 34))) +(((-703 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1374 ((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-640 |#2|) (-640 |#3|) (-640 (-767)) (-640 (-1165 |#4|)) (-1257 (-640 (-1165 |#3|))) |#3|)) (-15 -3843 ((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-640 |#2|) (-640 (-1165 |#3|)) (-640 |#3|) (-640 |#4|) (-640 (-767)) |#3|)) (-15 -1471 ((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-640 |#2|) (-640 (-1165 |#4|)) (-640 |#3|) (-640 |#4|) (-640 (-640 (-2 (|:| -4008 (-767)) (|:| |pcoef| |#4|)))) (-640 (-767)) (-1257 (-640 (-1165 |#3|))) |#3|))) (-789) (-846) (-307) (-945 |#3| |#1| |#2|)) (T -703)) +((-1471 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-640 (-1165 *13))) (-5 *3 (-1165 *13)) (-5 *4 (-640 *12)) (-5 *5 (-640 *10)) (-5 *6 (-640 *13)) (-5 *7 (-640 (-640 (-2 (|:| -4008 (-767)) (|:| |pcoef| *13))))) (-5 *8 (-640 (-767))) (-5 *9 (-1257 (-640 (-1165 *10)))) (-4 *12 (-846)) (-4 *10 (-307)) (-4 *13 (-945 *10 *11 *12)) (-4 *11 (-789)) (-5 *1 (-703 *11 *12 *10 *13)))) (-3843 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-640 *11)) (-5 *5 (-640 (-1165 *9))) (-5 *6 (-640 *9)) (-5 *7 (-640 *12)) (-5 *8 (-640 (-767))) (-4 *11 (-846)) (-4 *9 (-307)) (-4 *12 (-945 *9 *10 *11)) (-4 *10 (-789)) (-5 *2 (-640 (-1165 *12))) (-5 *1 (-703 *10 *11 *9 *12)) (-5 *3 (-1165 *12)))) (-1374 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-640 (-1165 *11))) (-5 *3 (-1165 *11)) (-5 *4 (-640 *10)) (-5 *5 (-640 *8)) (-5 *6 (-640 (-767))) (-5 *7 (-1257 (-640 (-1165 *8)))) (-4 *10 (-846)) (-4 *8 (-307)) (-4 *11 (-945 *8 *9 *10)) (-4 *9 (-789)) (-5 *1 (-703 *9 *10 *8 *11))))) +(-10 -7 (-15 -1374 ((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-640 |#2|) (-640 |#3|) (-640 (-767)) (-640 (-1165 |#4|)) (-1257 (-640 (-1165 |#3|))) |#3|)) (-15 -3843 ((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-640 |#2|) (-640 (-1165 |#3|)) (-640 |#3|) (-640 |#4|) (-640 (-767)) |#3|)) (-15 -1471 ((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-640 |#2|) (-640 (-1165 |#4|)) (-640 |#3|) (-640 |#4|) (-640 (-640 (-2 (|:| -4008 (-767)) (|:| |pcoef| |#4|)))) (-640 (-767)) (-1257 (-640 (-1165 |#3|))) |#3|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-2751 (($ $) 42)) (-3400 (((-3 $ "failed") $) 33)) (-3827 (((-112) $) 31)) (-2588 (($ |#1| (-767)) 40)) (-2048 (((-767) $) 44)) (-2726 ((|#1| $) 43)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-4167 (((-767) $) 45)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 39 (|has| |#1| (-172)))) (-4319 ((|#1| $ (-767)) 41)) (-1675 (((-767)) 28)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 47) (($ |#1| $) 46))) +(((-704 |#1|) (-140) (-1045)) (T -704)) +((-4167 (*1 *2 *1) (-12 (-4 *1 (-704 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-2048 (*1 *2 *1) (-12 (-4 *1 (-704 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-2726 (*1 *2 *1) (-12 (-4 *1 (-704 *2)) (-4 *2 (-1045)))) (-2751 (*1 *1 *1) (-12 (-4 *1 (-704 *2)) (-4 *2 (-1045)))) (-4319 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-704 *2)) (-4 *2 (-1045)))) (-2588 (*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-704 *2)) (-4 *2 (-1045))))) +(-13 (-1045) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -4167 ((-767) $)) (-15 -2048 ((-767) $)) (-15 -2726 (|t#1| $)) (-15 -2751 ($ $)) (-15 -4319 (|t#1| $ (-767))) (-15 -2588 ($ |t#1| (-767))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 |#1|) |has| |#1| (-172)) ((-722) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) +((-2240 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-705 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2240 (|#6| (-1 |#4| |#1|) |#3|))) (-555) (-1233 |#1|) (-1233 (-407 |#2|)) (-555) (-1233 |#4|) (-1233 (-407 |#5|))) (T -705)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-555)) (-4 *7 (-555)) (-4 *6 (-1233 *5)) (-4 *2 (-1233 (-407 *8))) (-5 *1 (-705 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1233 (-407 *6))) (-4 *8 (-1233 *7))))) +(-10 -7 (-15 -2240 (|#6| (-1 |#4| |#1|) |#3|))) +((-1677 (((-112) $ $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-2130 (((-1151) (-858)) 31)) (-1463 (((-1262) (-1151)) 28)) (-3190 (((-1151) (-858)) 24)) (-3837 (((-1151) (-858)) 25)) (-1693 (((-858) $) NIL) (((-1151) (-858)) 23)) (-1718 (((-112) $ $) NIL))) +(((-706) (-13 (-1093) (-10 -7 (-15 -1693 ((-1151) (-858))) (-15 -3190 ((-1151) (-858))) (-15 -3837 ((-1151) (-858))) (-15 -2130 ((-1151) (-858))) (-15 -1463 ((-1262) (-1151)))))) (T -706)) +((-1693 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1151)) (-5 *1 (-706)))) (-3190 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1151)) (-5 *1 (-706)))) (-3837 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1151)) (-5 *1 (-706)))) (-2130 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1151)) (-5 *1 (-706)))) (-1463 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-706))))) +(-13 (-1093) (-10 -7 (-15 -1693 ((-1151) (-858))) (-15 -3190 ((-1151) (-858))) (-15 -3837 ((-1151) (-858))) (-15 -2130 ((-1151) (-858))) (-15 -1463 ((-1262) (-1151))))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-1919 (((-112) $ $) NIL)) (-4239 (($) NIL T CONST)) (-3090 (($ $ $) NIL)) (-2444 (($ |#1| |#2|) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-2468 (((-112) $) NIL)) (-3827 (((-112) $) NIL)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2995 ((|#2| $) NIL)) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) NIL)) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ $ $) NIL) (($ (-640 $)) NIL)) (-2174 (((-418 $) $) NIL)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4322 (((-3 $ "failed") $ $) NIL)) (-2628 (((-767) $) NIL)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) ((|#1| $) NIL)) (-1675 (((-767)) NIL)) (-2126 (((-112) $ $) NIL)) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-1718 (((-112) $ $) NIL)) (-1837 (($ $ $) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL))) +(((-707 |#1| |#2| |#3| |#4| |#5|) (-13 (-363) (-10 -8 (-15 -2995 (|#2| $)) (-15 -1693 (|#1| $)) (-15 -2444 ($ |#1| |#2|)) (-15 -4322 ((-3 $ "failed") $ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -707)) +((-2995 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-707 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-1693 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2444 (*1 *1 *2 *3) (-12 (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4322 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-363) (-10 -8 (-15 -2995 (|#2| $)) (-15 -1693 (|#1| $)) (-15 -2444 ($ |#1| |#2|)) (-15 -4322 ((-3 $ "failed") $ $)))) +((-1677 (((-112) $ $) 77)) (-3411 (((-112) $) 30)) (-4030 (((-1257 |#1|) $ (-767)) NIL)) (-2606 (((-640 (-1075)) $) NIL)) (-1787 (($ (-1165 |#1|)) NIL)) (-2139 (((-1165 $) $ (-1075)) NIL) (((-1165 |#1|) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-4223 (($ $) NIL (|has| |#1| (-555)))) (-3156 (((-112) $) NIL (|has| |#1| (-555)))) (-1779 (((-767) $) NIL) (((-767) $ (-640 (-1075))) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3724 (($ $ $) NIL (|has| |#1| (-555)))) (-2424 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-4335 (($ $) NIL (|has| |#1| (-452)))) (-3205 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-1919 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3749 (((-767)) 46 (|has| |#1| (-368)))) (-3729 (($ $ (-767)) NIL)) (-2618 (($ $ (-767)) NIL)) (-3537 ((|#2| |#2|) 43)) (-3018 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-1075) "failed") $) NIL)) (-2058 ((|#1| $) NIL) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-1075) $) NIL)) (-2742 (($ $ $ (-1075)) NIL (|has| |#1| (-172))) ((|#1| $ $) NIL (|has| |#1| (-172)))) (-3090 (($ $ $) NIL (|has| |#1| (-363)))) (-2751 (($ $) 33)) (-2950 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-2444 (($ |#2|) 41)) (-3400 (((-3 $ "failed") $) 85)) (-1691 (($) 50 (|has| |#1| (-368)))) (-3050 (($ $ $) NIL (|has| |#1| (-363)))) (-4369 (($ $ $) NIL)) (-2906 (($ $ $) NIL (|has| |#1| (-555)))) (-2521 (((-2 (|:| -2311 |#1|) (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| |#1| (-555)))) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-1300 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1075)) NIL (|has| |#1| (-452)))) (-2739 (((-640 $) $) NIL)) (-2468 (((-112) $) NIL (|has| |#1| (-905)))) (-1650 (((-954 $)) 79)) (-3554 (($ $ |#1| (-767) $) NIL)) (-3787 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1075) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-1075) (-882 (-563))) (|has| |#1| (-882 (-563)))))) (-3254 (((-767) $ $) NIL (|has| |#1| (-555)))) (-3827 (((-112) $) NIL)) (-4096 (((-767) $) NIL)) (-2408 (((-3 $ "failed") $) NIL (|has| |#1| (-1144)))) (-2596 (($ (-1165 |#1|) (-1075)) NIL) (($ (-1165 $) (-1075)) NIL)) (-1351 (($ $ (-767)) NIL)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-1368 (((-640 $) $) NIL)) (-3920 (((-112) $) NIL)) (-2588 (($ |#1| (-767)) 76) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL)) (-2625 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $ (-1075)) NIL) (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-2995 ((|#2|) 44)) (-2048 (((-767) $) NIL) (((-767) $ (-1075)) NIL) (((-640 (-767)) $ (-640 (-1075))) NIL)) (-3084 (($ $ $) NIL (|has| |#1| (-846)))) (-1777 (($ $ $) NIL (|has| |#1| (-846)))) (-2803 (($ (-1 (-767) (-767)) $) NIL)) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-1580 (((-1165 |#1|) $) NIL)) (-4234 (((-3 (-1075) "failed") $) NIL)) (-1476 (((-917) $) NIL (|has| |#1| (-368)))) (-2433 ((|#2| $) 40)) (-2716 (($ $) NIL)) (-2726 ((|#1| $) 28)) (-3513 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3573 (((-1151) $) NIL)) (-3839 (((-2 (|:| -3490 $) (|:| -1972 $)) $ (-767)) NIL)) (-3733 (((-3 (-640 $) "failed") $) NIL)) (-2919 (((-3 (-640 $) "failed") $) NIL)) (-4086 (((-3 (-2 (|:| |var| (-1075)) (|:| -1654 (-767))) "failed") $) NIL)) (-3698 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2523 (($) NIL (|has| |#1| (-1144)) CONST)) (-2555 (($ (-917)) NIL (|has| |#1| (-368)))) (-1694 (((-1113) $) NIL)) (-2696 (((-112) $) NIL)) (-2706 ((|#1| $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-452)))) (-3548 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3564 (($ $) 78 (|has| |#1| (-349)))) (-1876 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-3116 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2174 (((-418 $) $) NIL (|has| |#1| (-905)))) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL (|has| |#1| (-363)))) (-3008 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-555)))) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-1540 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-1075) |#1|) NIL) (($ $ (-640 (-1075)) (-640 |#1|)) NIL) (($ $ (-1075) $) NIL) (($ $ (-640 (-1075)) (-640 $)) NIL)) (-2628 (((-767) $) NIL (|has| |#1| (-363)))) (-2309 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-555))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-555)))) (-3862 (((-3 $ "failed") $ (-767)) NIL)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 86 (|has| |#1| (-363)))) (-2315 (($ $ (-1075)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-4202 (($ $ (-1075)) NIL) (($ $ (-640 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4167 (((-767) $) 31) (((-767) $ (-1075)) NIL) (((-640 (-767)) $ (-640 (-1075))) NIL)) (-2220 (((-888 (-379)) $) NIL (-12 (|has| (-1075) (-611 (-888 (-379)))) (|has| |#1| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| (-1075) (-611 (-888 (-563)))) (|has| |#1| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| (-1075) (-611 (-536))) (|has| |#1| (-611 (-536)))))) (-1836 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1075)) NIL (|has| |#1| (-452)))) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-3649 (((-954 $)) 35)) (-1346 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#1| (-555)))) (-1693 (((-858) $) 60) (($ (-563)) NIL) (($ |#1|) 57) (($ (-1075)) NIL) (($ |#2|) 67) (($ (-407 (-563))) NIL (-4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#1| (-555)))) (-1337 (((-640 |#1|) $) NIL)) (-4319 ((|#1| $ (-767)) 62) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL)) (-2779 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-1675 (((-767)) NIL)) (-2793 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-2126 (((-112) $ $) NIL (|has| |#1| (-555)))) (-2241 (($) 20 T CONST)) (-3248 (((-1257 |#1|) $) 74)) (-3142 (($ (-1257 |#1|)) 49)) (-2254 (($) 8 T CONST)) (-3209 (($ $ (-1075)) NIL) (($ $ (-640 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3795 (((-1257 |#1|) $) NIL)) (-1778 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1756 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) 68)) (-1768 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1744 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1837 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1826 (($ $) 71) (($ $ $) NIL)) (-1814 (($ $ $) 32)) (** (($ $ (-917)) NIL) (($ $ (-767)) 80)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 56) (($ $ $) 73) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) 54) (($ $ |#1|) NIL))) +(((-708 |#1| |#2|) (-13 (-1233 |#1|) (-613 |#2|) (-10 -8 (-15 -3537 (|#2| |#2|)) (-15 -2995 (|#2|)) (-15 -2444 ($ |#2|)) (-15 -2433 (|#2| $)) (-15 -3248 ((-1257 |#1|) $)) (-15 -3142 ($ (-1257 |#1|))) (-15 -3795 ((-1257 |#1|) $)) (-15 -1650 ((-954 $))) (-15 -3649 ((-954 $))) (IF (|has| |#1| (-349)) (-15 -3564 ($ $)) |%noBranch|) (IF (|has| |#1| (-368)) (-6 (-368)) |%noBranch|))) (-1045) (-1233 |#1|)) (T -708)) +((-3537 (*1 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-708 *3 *2)) (-4 *2 (-1233 *3)))) (-2995 (*1 *2) (-12 (-4 *2 (-1233 *3)) (-5 *1 (-708 *3 *2)) (-4 *3 (-1045)))) (-2444 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-708 *3 *2)) (-4 *2 (-1233 *3)))) (-2433 (*1 *2 *1) (-12 (-4 *2 (-1233 *3)) (-5 *1 (-708 *3 *2)) (-4 *3 (-1045)))) (-3248 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-5 *2 (-1257 *3)) (-5 *1 (-708 *3 *4)) (-4 *4 (-1233 *3)))) (-3142 (*1 *1 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-1045)) (-5 *1 (-708 *3 *4)) (-4 *4 (-1233 *3)))) (-3795 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-5 *2 (-1257 *3)) (-5 *1 (-708 *3 *4)) (-4 *4 (-1233 *3)))) (-1650 (*1 *2) (-12 (-4 *3 (-1045)) (-5 *2 (-954 (-708 *3 *4))) (-5 *1 (-708 *3 *4)) (-4 *4 (-1233 *3)))) (-3649 (*1 *2) (-12 (-4 *3 (-1045)) (-5 *2 (-954 (-708 *3 *4))) (-5 *1 (-708 *3 *4)) (-4 *4 (-1233 *3)))) (-3564 (*1 *1 *1) (-12 (-4 *2 (-349)) (-4 *2 (-1045)) (-5 *1 (-708 *2 *3)) (-4 *3 (-1233 *2))))) +(-13 (-1233 |#1|) (-613 |#2|) (-10 -8 (-15 -3537 (|#2| |#2|)) (-15 -2995 (|#2|)) (-15 -2444 ($ |#2|)) (-15 -2433 (|#2| $)) (-15 -3248 ((-1257 |#1|) $)) (-15 -3142 ($ (-1257 |#1|))) (-15 -3795 ((-1257 |#1|) $)) (-15 -1650 ((-954 $))) (-15 -3649 ((-954 $))) (IF (|has| |#1| (-349)) (-15 -3564 ($ $)) |%noBranch|) (IF (|has| |#1| (-368)) (-6 (-368)) |%noBranch|))) +((-1677 (((-112) $ $) NIL)) (-3084 (($ $ $) NIL)) (-1777 (($ $ $) NIL)) (-3573 (((-1151) $) NIL)) (-2555 ((|#1| $) 13)) (-1694 (((-1113) $) NIL)) (-1654 ((|#2| $) 12)) (-1707 (($ |#1| |#2|) 16)) (-1693 (((-858) $) NIL) (($ (-2 (|:| -2555 |#1|) (|:| -1654 |#2|))) 15) (((-2 (|:| -2555 |#1|) (|:| -1654 |#2|)) $) 14)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) 11))) +(((-709 |#1| |#2| |#3|) (-13 (-846) (-490 (-2 (|:| -2555 |#1|) (|:| -1654 |#2|))) (-10 -8 (-15 -1654 (|#2| $)) (-15 -2555 (|#1| $)) (-15 -1707 ($ |#1| |#2|)))) (-846) (-1093) (-1 (-112) (-2 (|:| -2555 |#1|) (|:| -1654 |#2|)) (-2 (|:| -2555 |#1|) (|:| -1654 |#2|)))) (T -709)) +((-1654 (*1 *2 *1) (-12 (-4 *2 (-1093)) (-5 *1 (-709 *3 *2 *4)) (-4 *3 (-846)) (-14 *4 (-1 (-112) (-2 (|:| -2555 *3) (|:| -1654 *2)) (-2 (|:| -2555 *3) (|:| -1654 *2)))))) (-2555 (*1 *2 *1) (-12 (-4 *2 (-846)) (-5 *1 (-709 *2 *3 *4)) (-4 *3 (-1093)) (-14 *4 (-1 (-112) (-2 (|:| -2555 *2) (|:| -1654 *3)) (-2 (|:| -2555 *2) (|:| -1654 *3)))))) (-1707 (*1 *1 *2 *3) (-12 (-5 *1 (-709 *2 *3 *4)) (-4 *2 (-846)) (-4 *3 (-1093)) (-14 *4 (-1 (-112) (-2 (|:| -2555 *2) (|:| -1654 *3)) (-2 (|:| -2555 *2) (|:| -1654 *3))))))) +(-13 (-846) (-490 (-2 (|:| -2555 |#1|) (|:| -1654 |#2|))) (-10 -8 (-15 -1654 (|#2| $)) (-15 -2555 (|#1| $)) (-15 -1707 ($ |#1| |#2|)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) 59)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#1| "failed") $) 89) (((-3 (-114) "failed") $) 95)) (-2058 ((|#1| $) NIL) (((-114) $) 39)) (-3400 (((-3 $ "failed") $) 90)) (-2486 ((|#2| (-114) |#2|) 82)) (-3827 (((-112) $) NIL)) (-2488 (($ |#1| (-361 (-114))) 14)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1830 (($ $ (-1 |#2| |#2|)) 58)) (-3934 (($ $ (-1 |#2| |#2|)) 44)) (-2309 ((|#2| $ |#2|) 33)) (-2989 ((|#1| |#1|) 105 (|has| |#1| (-172)))) (-1693 (((-858) $) 66) (($ (-563)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-2779 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1675 (((-767)) 37)) (-3831 (($ $) 99 (|has| |#1| (-172))) (($ $ $) 103 (|has| |#1| (-172)))) (-2241 (($) 21 T CONST)) (-2254 (($) 9 T CONST)) (-1718 (((-112) $ $) NIL)) (-1826 (($ $) 48) (($ $ $) NIL)) (-1814 (($ $ $) 73)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ (-114) (-563)) NIL) (($ $ (-563)) 57)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-172))) (($ $ |#1|) 97 (|has| |#1| (-172))))) +(((-710 |#1| |#2|) (-13 (-1045) (-1034 |#1|) (-1034 (-114)) (-286 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -3831 ($ $)) (-15 -3831 ($ $ $)) (-15 -2989 (|#1| |#1|))) |%noBranch|) (-15 -3934 ($ $ (-1 |#2| |#2|))) (-15 -1830 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-563))) (-15 ** ($ $ (-563))) (-15 -2486 (|#2| (-114) |#2|)) (-15 -2488 ($ |#1| (-361 (-114)))))) (-1045) (-643 |#1|)) (T -710)) +((-3831 (*1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3)) (-4 *3 (-643 *2)))) (-3831 (*1 *1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3)) (-4 *3 (-643 *2)))) (-2989 (*1 *2 *2) (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3)) (-4 *3 (-643 *2)))) (-3934 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-643 *3)) (-4 *3 (-1045)) (-5 *1 (-710 *3 *4)))) (-1830 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-643 *3)) (-4 *3 (-1045)) (-5 *1 (-710 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-563)) (-4 *4 (-1045)) (-5 *1 (-710 *4 *5)) (-4 *5 (-643 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *3 (-1045)) (-5 *1 (-710 *3 *4)) (-4 *4 (-643 *3)))) (-2486 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1045)) (-5 *1 (-710 *4 *2)) (-4 *2 (-643 *4)))) (-2488 (*1 *1 *2 *3) (-12 (-5 *3 (-361 (-114))) (-4 *2 (-1045)) (-5 *1 (-710 *2 *4)) (-4 *4 (-643 *2))))) +(-13 (-1045) (-1034 |#1|) (-1034 (-114)) (-286 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -3831 ($ $)) (-15 -3831 ($ $ $)) (-15 -2989 (|#1| |#1|))) |%noBranch|) (-15 -3934 ($ $ (-1 |#2| |#2|))) (-15 -1830 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-563))) (-15 ** ($ $ (-563))) (-15 -2486 (|#2| (-114) |#2|)) (-15 -2488 ($ |#1| (-361 (-114)))))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) 33)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4239 (($) NIL T CONST)) (-2444 (($ |#1| |#2|) 25)) (-3400 (((-3 $ "failed") $) 48)) (-3827 (((-112) $) 35)) (-2995 ((|#2| $) 12)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) 49)) (-1694 (((-1113) $) NIL)) (-4322 (((-3 $ "failed") $ $) 47)) (-1693 (((-858) $) 24) (($ (-563)) 19) ((|#1| $) 13)) (-1675 (((-767)) 28)) (-2241 (($) 16 T CONST)) (-2254 (($) 30 T CONST)) (-1718 (((-112) $ $) 38)) (-1826 (($ $) 43) (($ $ $) 37)) (-1814 (($ $ $) 40)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 21) (($ $ $) 20))) +(((-711 |#1| |#2| |#3| |#4| |#5|) (-13 (-1045) (-10 -8 (-15 -2995 (|#2| $)) (-15 -1693 (|#1| $)) (-15 -2444 ($ |#1| |#2|)) (-15 -4322 ((-3 $ "failed") $ $)) (-15 -3400 ((-3 $ "failed") $)) (-15 -2688 ($ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -711)) +((-3400 (*1 *1 *1) (|partial| -12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2995 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-711 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-1693 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2444 (*1 *1 *2 *3) (-12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4322 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2688 (*1 *1 *1) (-12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-1045) (-10 -8 (-15 -2995 (|#2| $)) (-15 -1693 (|#1| $)) (-15 -2444 ($ |#1| |#2|)) (-15 -4322 ((-3 $ "failed") $ $)) (-15 -3400 ((-3 $ "failed") $)) (-15 -2688 ($ $)))) +((* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) +(((-712 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) (-713 |#2|) (-172)) (T -712)) +NIL +(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11)) (-2241 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-713 |#1|) (-140) (-172)) (T -713)) NIL (-13 (-111 |t#1| |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-609 (-857)) . T) ((-642 |#1|) . T) ((-1050 |#1|) . T) ((-1092) . T)) -((-4041 (((-112) $ $) NIL)) (-3355 (($ |#1|) 17) (($ $ |#1|) 20)) (-1978 (($ |#1|) 18) (($ $ |#1|) 21)) (-3329 (($) NIL T CONST)) (-1694 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-4367 (((-112) $) NIL)) (-2381 (($ |#1| |#1| |#1| |#1|) 8)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) 16)) (-1709 (((-1112) $) NIL)) (-1433 ((|#1| $ |#1|) 24) (((-828 |#1|) $ (-828 |#1|)) 32)) (-1660 (($ $ $) NIL)) (-2114 (($ $ $) NIL)) (-4053 (((-857) $) 39)) (-2294 (($) 9 T CONST)) (-1733 (((-112) $ $) 44)) (-1859 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ $ $) 14))) -(((-713 |#1|) (-13 (-472) (-10 -8 (-15 -2381 ($ |#1| |#1| |#1| |#1|)) (-15 -3355 ($ |#1|)) (-15 -1978 ($ |#1|)) (-15 -1694 ($)) (-15 -3355 ($ $ |#1|)) (-15 -1978 ($ $ |#1|)) (-15 -1694 ($ $)) (-15 -1433 (|#1| $ |#1|)) (-15 -1433 ((-828 |#1|) $ (-828 |#1|))))) (-362)) (T -713)) -((-2381 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-362)))) (-3355 (*1 *1 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-362)))) (-1978 (*1 *1 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-362)))) (-1694 (*1 *1) (-12 (-5 *1 (-713 *2)) (-4 *2 (-362)))) (-3355 (*1 *1 *1 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-362)))) (-1978 (*1 *1 *1 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-362)))) (-1694 (*1 *1 *1) (-12 (-5 *1 (-713 *2)) (-4 *2 (-362)))) (-1433 (*1 *2 *1 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-362)))) (-1433 (*1 *2 *1 *2) (-12 (-5 *2 (-828 *3)) (-4 *3 (-362)) (-5 *1 (-713 *3))))) -(-13 (-472) (-10 -8 (-15 -2381 ($ |#1| |#1| |#1| |#1|)) (-15 -3355 ($ |#1|)) (-15 -1978 ($ |#1|)) (-15 -1694 ($)) (-15 -3355 ($ $ |#1|)) (-15 -1978 ($ $ |#1|)) (-15 -1694 ($ $)) (-15 -1433 (|#1| $ |#1|)) (-15 -1433 ((-828 |#1|) $ (-828 |#1|))))) -((-2127 (($ $ (-916)) 12)) (-3235 (($ $ (-916)) 13)) (** (($ $ (-916)) 10))) -(((-714 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-916))) (-15 -3235 (|#1| |#1| (-916))) (-15 -2127 (|#1| |#1| (-916)))) (-715)) (T -714)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-916))) (-15 -3235 (|#1| |#1| (-916))) (-15 -2127 (|#1| |#1| (-916)))) -((-4041 (((-112) $ $) 7)) (-2127 (($ $ (-916)) 15)) (-3235 (($ $ (-916)) 14)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11)) (-1733 (((-112) $ $) 6)) (** (($ $ (-916)) 13)) (* (($ $ $) 16))) -(((-715) (-139)) (T -715)) -((* (*1 *1 *1 *1) (-4 *1 (-715))) (-2127 (*1 *1 *1 *2) (-12 (-4 *1 (-715)) (-5 *2 (-916)))) (-3235 (*1 *1 *1 *2) (-12 (-4 *1 (-715)) (-5 *2 (-916)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-715)) (-5 *2 (-916))))) -(-13 (-1092) (-10 -8 (-15 * ($ $ $)) (-15 -2127 ($ $ (-916))) (-15 -3235 ($ $ (-916))) (-15 ** ($ $ (-916))))) -(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) -((-2127 (($ $ (-916)) NIL) (($ $ (-766)) 17)) (-4367 (((-112) $) 10)) (-3235 (($ $ (-916)) NIL) (($ $ (-766)) 18)) (** (($ $ (-916)) NIL) (($ $ (-766)) 15))) -(((-716 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-766))) (-15 -3235 (|#1| |#1| (-766))) (-15 -2127 (|#1| |#1| (-766))) (-15 -4367 ((-112) |#1|)) (-15 ** (|#1| |#1| (-916))) (-15 -3235 (|#1| |#1| (-916))) (-15 -2127 (|#1| |#1| (-916)))) (-717)) (T -716)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-766))) (-15 -3235 (|#1| |#1| (-766))) (-15 -2127 (|#1| |#1| (-766))) (-15 -4367 ((-112) |#1|)) (-15 ** (|#1| |#1| (-916))) (-15 -3235 (|#1| |#1| (-916))) (-15 -2127 (|#1| |#1| (-916)))) -((-4041 (((-112) $ $) 7)) (-4276 (((-3 $ "failed") $) 17)) (-2127 (($ $ (-916)) 15) (($ $ (-766)) 22)) (-1694 (((-3 $ "failed") $) 19)) (-4367 (((-112) $) 23)) (-2217 (((-3 $ "failed") $) 18)) (-3235 (($ $ (-916)) 14) (($ $ (-766)) 21)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11)) (-2294 (($) 24 T CONST)) (-1733 (((-112) $ $) 6)) (** (($ $ (-916)) 13) (($ $ (-766)) 20)) (* (($ $ $) 16))) -(((-717) (-139)) (T -717)) -((-2294 (*1 *1) (-4 *1 (-717))) (-4367 (*1 *2 *1) (-12 (-4 *1 (-717)) (-5 *2 (-112)))) (-2127 (*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-766)))) (-3235 (*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-766)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-766)))) (-1694 (*1 *1 *1) (|partial| -4 *1 (-717))) (-2217 (*1 *1 *1) (|partial| -4 *1 (-717))) (-4276 (*1 *1 *1) (|partial| -4 *1 (-717)))) -(-13 (-715) (-10 -8 (-15 (-2294) ($) -1497) (-15 -4367 ((-112) $)) (-15 -2127 ($ $ (-766))) (-15 -3235 ($ $ (-766))) (-15 ** ($ $ (-766))) (-15 -1694 ((-3 $ "failed") $)) (-15 -2217 ((-3 $ "failed") $)) (-15 -4276 ((-3 $ "failed") $)))) -(((-102) . T) ((-609 (-857)) . T) ((-715) . T) ((-1092) . T)) -((-1382 (((-766)) 35)) (-4048 (((-3 (-562) "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3960 (((-562) $) NIL) (((-406 (-562)) $) NIL) ((|#2| $) 22)) (-1954 (($ |#3|) NIL) (((-3 $ "failed") (-406 |#3|)) 45)) (-1694 (((-3 $ "failed") $) 65)) (-1447 (($) 39)) (-4363 ((|#2| $) 20)) (-3147 (($) 17)) (-4029 (($ $ (-1 |#2| |#2|) (-766)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-639 (-1168)) (-639 (-766))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168)) NIL) (($ $ (-766)) NIL) (($ $) NIL)) (-2539 (((-683 |#2|) (-1256 $) (-1 |#2| |#2|)) 60)) (-4208 (((-1256 |#2|) $) NIL) (($ (-1256 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3683 ((|#3| $) 32)) (-4291 (((-1256 $)) 29))) -(((-718 |#1| |#2| |#3|) (-10 -8 (-15 -4029 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -1447 (|#1|)) (-15 -1382 ((-766))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|) (-766))) (-15 -2539 ((-683 |#2|) (-1256 |#1|) (-1 |#2| |#2|))) (-15 -1954 ((-3 |#1| "failed") (-406 |#3|))) (-15 -4208 (|#1| |#3|)) (-15 -1954 (|#1| |#3|)) (-15 -3147 (|#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -3960 (|#2| |#1|)) (-15 -3960 ((-406 (-562)) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3960 ((-562) |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -4208 (|#3| |#1|)) (-15 -4208 (|#1| (-1256 |#2|))) (-15 -4208 ((-1256 |#2|) |#1|)) (-15 -4291 ((-1256 |#1|))) (-15 -3683 (|#3| |#1|)) (-15 -4363 (|#2| |#1|)) (-15 -1694 ((-3 |#1| "failed") |#1|))) (-719 |#2| |#3|) (-171) (-1232 |#2|)) (T -718)) -((-1382 (*1 *2) (-12 (-4 *4 (-171)) (-4 *5 (-1232 *4)) (-5 *2 (-766)) (-5 *1 (-718 *3 *4 *5)) (-4 *3 (-719 *4 *5))))) -(-10 -8 (-15 -4029 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -1447 (|#1|)) (-15 -1382 ((-766))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|) (-766))) (-15 -2539 ((-683 |#2|) (-1256 |#1|) (-1 |#2| |#2|))) (-15 -1954 ((-3 |#1| "failed") (-406 |#3|))) (-15 -4208 (|#1| |#3|)) (-15 -1954 (|#1| |#3|)) (-15 -3147 (|#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -3960 (|#2| |#1|)) (-15 -3960 ((-406 (-562)) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3960 ((-562) |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -4208 (|#3| |#1|)) (-15 -4208 (|#1| (-1256 |#2|))) (-15 -4208 ((-1256 |#2|) |#1|)) (-15 -4291 ((-1256 |#1|))) (-15 -3683 (|#3| |#1|)) (-15 -4363 (|#2| |#1|)) (-15 -1694 ((-3 |#1| "failed") |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 93 (|has| |#1| (-362)))) (-1965 (($ $) 94 (|has| |#1| (-362)))) (-4102 (((-112) $) 96 (|has| |#1| (-362)))) (-4342 (((-683 |#1|) (-1256 $)) 47) (((-683 |#1|)) 62)) (-1748 ((|#1| $) 53)) (-1755 (((-1180 (-916) (-766)) (-562)) 146 (|has| |#1| (-348)))) (-2781 (((-3 $ "failed") $ $) 19)) (-1977 (($ $) 113 (|has| |#1| (-362)))) (-3788 (((-417 $) $) 114 (|has| |#1| (-362)))) (-1436 (((-112) $ $) 104 (|has| |#1| (-362)))) (-1382 (((-766)) 87 (|has| |#1| (-367)))) (-3329 (($) 17 T CONST)) (-4048 (((-3 (-562) "failed") $) 169 (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) 167 (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) 164)) (-3960 (((-562) $) 168 (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) 166 (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) 165)) (-3916 (($ (-1256 |#1|) (-1256 $)) 49) (($ (-1256 |#1|)) 65)) (-3082 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-348)))) (-1810 (($ $ $) 108 (|has| |#1| (-362)))) (-4376 (((-683 |#1|) $ (-1256 $)) 54) (((-683 |#1|) $) 60)) (-3449 (((-683 (-562)) (-683 $)) 163 (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 162 (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) 161) (((-683 |#1|) (-683 $)) 160)) (-1954 (($ |#2|) 157) (((-3 $ "failed") (-406 |#2|)) 154 (|has| |#1| (-362)))) (-1694 (((-3 $ "failed") $) 33)) (-2172 (((-916)) 55)) (-1447 (($) 90 (|has| |#1| (-367)))) (-1787 (($ $ $) 107 (|has| |#1| (-362)))) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) 102 (|has| |#1| (-362)))) (-2787 (($) 148 (|has| |#1| (-348)))) (-1844 (((-112) $) 149 (|has| |#1| (-348)))) (-2184 (($ $ (-766)) 140 (|has| |#1| (-348))) (($ $) 139 (|has| |#1| (-348)))) (-3521 (((-112) $) 115 (|has| |#1| (-362)))) (-1993 (((-916) $) 151 (|has| |#1| (-348))) (((-828 (-916)) $) 137 (|has| |#1| (-348)))) (-4367 (((-112) $) 31)) (-4363 ((|#1| $) 52)) (-3828 (((-3 $ "failed") $) 141 (|has| |#1| (-348)))) (-1719 (((-3 (-639 $) "failed") (-639 $) $) 111 (|has| |#1| (-362)))) (-1937 ((|#2| $) 45 (|has| |#1| (-362)))) (-3549 (((-916) $) 89 (|has| |#1| (-367)))) (-1942 ((|#2| $) 155)) (-1564 (($ (-639 $)) 100 (|has| |#1| (-362))) (($ $ $) 99 (|has| |#1| (-362)))) (-3696 (((-1150) $) 9)) (-1525 (($ $) 116 (|has| |#1| (-362)))) (-3730 (($) 142 (|has| |#1| (-348)) CONST)) (-2464 (($ (-916)) 88 (|has| |#1| (-367)))) (-1709 (((-1112) $) 10)) (-3147 (($) 159)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 101 (|has| |#1| (-362)))) (-1606 (($ (-639 $)) 98 (|has| |#1| (-362))) (($ $ $) 97 (|has| |#1| (-362)))) (-1753 (((-639 (-2 (|:| -1635 (-562)) (|:| -1300 (-562))))) 145 (|has| |#1| (-348)))) (-1635 (((-417 $) $) 112 (|has| |#1| (-362)))) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) 109 (|has| |#1| (-362)))) (-1762 (((-3 $ "failed") $ $) 92 (|has| |#1| (-362)))) (-1879 (((-3 (-639 $) "failed") (-639 $) $) 103 (|has| |#1| (-362)))) (-2044 (((-766) $) 105 (|has| |#1| (-362)))) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 106 (|has| |#1| (-362)))) (-2736 ((|#1| (-1256 $)) 48) ((|#1|) 61)) (-3543 (((-766) $) 150 (|has| |#1| (-348))) (((-3 (-766) "failed") $ $) 138 (|has| |#1| (-348)))) (-4029 (($ $) 136 (-4037 (-2245 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-766)) 134 (-4037 (-2245 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-1168)) 132 (-2245 (|has| |#1| (-895 (-1168))) (|has| |#1| (-362)))) (($ $ (-639 (-1168))) 131 (-2245 (|has| |#1| (-895 (-1168))) (|has| |#1| (-362)))) (($ $ (-1168) (-766)) 130 (-2245 (|has| |#1| (-895 (-1168))) (|has| |#1| (-362)))) (($ $ (-639 (-1168)) (-639 (-766))) 129 (-2245 (|has| |#1| (-895 (-1168))) (|has| |#1| (-362)))) (($ $ (-1 |#1| |#1|) (-766)) 122 (|has| |#1| (-362))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-362)))) (-2539 (((-683 |#1|) (-1256 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-362)))) (-3371 ((|#2|) 158)) (-1653 (($) 147 (|has| |#1| (-348)))) (-2205 (((-1256 |#1|) $ (-1256 $)) 51) (((-683 |#1|) (-1256 $) (-1256 $)) 50) (((-1256 |#1|) $) 67) (((-683 |#1|) (-1256 $)) 66)) (-4208 (((-1256 |#1|) $) 64) (($ (-1256 |#1|)) 63) ((|#2| $) 170) (($ |#2|) 156)) (-1870 (((-3 (-1256 $) "failed") (-683 $)) 144 (|has| |#1| (-348)))) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 38) (($ $) 91 (|has| |#1| (-362))) (($ (-406 (-562))) 86 (-4037 (|has| |#1| (-362)) (|has| |#1| (-1033 (-406 (-562))))))) (-2059 (($ $) 143 (|has| |#1| (-348))) (((-3 $ "failed") $) 44 (|has| |#1| (-144)))) (-3683 ((|#2| $) 46)) (-1568 (((-766)) 28)) (-4291 (((-1256 $)) 68)) (-3799 (((-112) $ $) 95 (|has| |#1| (-362)))) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3113 (($ $) 135 (-4037 (-2245 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-766)) 133 (-4037 (-2245 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-1168)) 128 (-2245 (|has| |#1| (-895 (-1168))) (|has| |#1| (-362)))) (($ $ (-639 (-1168))) 127 (-2245 (|has| |#1| (-895 (-1168))) (|has| |#1| (-362)))) (($ $ (-1168) (-766)) 126 (-2245 (|has| |#1| (-895 (-1168))) (|has| |#1| (-362)))) (($ $ (-639 (-1168)) (-639 (-766))) 125 (-2245 (|has| |#1| (-895 (-1168))) (|has| |#1| (-362)))) (($ $ (-1 |#1| |#1|) (-766)) 124 (|has| |#1| (-362))) (($ $ (-1 |#1| |#1|)) 123 (|has| |#1| (-362)))) (-1733 (((-112) $ $) 6)) (-1859 (($ $ $) 120 (|has| |#1| (-362)))) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 117 (|has| |#1| (-362)))) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-406 (-562)) $) 119 (|has| |#1| (-362))) (($ $ (-406 (-562))) 118 (|has| |#1| (-362))))) -(((-719 |#1| |#2|) (-139) (-171) (-1232 |t#1|)) (T -719)) -((-3147 (*1 *1) (-12 (-4 *2 (-171)) (-4 *1 (-719 *2 *3)) (-4 *3 (-1232 *2)))) (-3371 (*1 *2) (-12 (-4 *1 (-719 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1232 *3)))) (-1954 (*1 *1 *2) (-12 (-4 *3 (-171)) (-4 *1 (-719 *3 *2)) (-4 *2 (-1232 *3)))) (-4208 (*1 *1 *2) (-12 (-4 *3 (-171)) (-4 *1 (-719 *3 *2)) (-4 *2 (-1232 *3)))) (-1942 (*1 *2 *1) (-12 (-4 *1 (-719 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1232 *3)))) (-1954 (*1 *1 *2) (|partial| -12 (-5 *2 (-406 *4)) (-4 *4 (-1232 *3)) (-4 *3 (-362)) (-4 *3 (-171)) (-4 *1 (-719 *3 *4)))) (-2539 (*1 *2 *3 *4) (-12 (-5 *3 (-1256 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362)) (-4 *1 (-719 *5 *6)) (-4 *5 (-171)) (-4 *6 (-1232 *5)) (-5 *2 (-683 *5))))) -(-13 (-408 |t#1| |t#2|) (-171) (-610 |t#2|) (-410 |t#1|) (-376 |t#1|) (-10 -8 (-15 -3147 ($)) (-15 -3371 (|t#2|)) (-15 -1954 ($ |t#2|)) (-15 -4208 ($ |t#2|)) (-15 -1942 (|t#2| $)) (IF (|has| |t#1| (-367)) (-6 (-367)) |%noBranch|) (IF (|has| |t#1| (-362)) (PROGN (-6 (-362)) (-6 (-230 |t#1|)) (-15 -1954 ((-3 $ "failed") (-406 |t#2|))) (-15 -2539 ((-683 |t#1|) (-1256 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-348)) (-6 (-348)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-562))) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-38 |#1|) . T) ((-38 $) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-102) . T) ((-111 #0# #0#) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -4037 (|has| |#1| (-348)) (|has| |#1| (-144))) ((-146) |has| |#1| (-146)) ((-612 #0#) -4037 (|has| |#1| (-1033 (-406 (-562)))) (|has| |#1| (-348)) (|has| |#1| (-362))) ((-612 (-562)) . T) ((-612 |#1|) . T) ((-612 $) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-609 (-857)) . T) ((-171) . T) ((-610 |#2|) . T) ((-230 |#1|) |has| |#1| (-362)) ((-232) -4037 (|has| |#1| (-348)) (-12 (|has| |#1| (-232)) (|has| |#1| (-362)))) ((-242) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-289) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-306) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-362) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-401) |has| |#1| (-348)) ((-367) -4037 (|has| |#1| (-367)) (|has| |#1| (-348))) ((-348) |has| |#1| (-348)) ((-369 |#1| |#2|) . T) ((-408 |#1| |#2|) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-451) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-554) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-642 #0#) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-642 |#1|) . T) ((-642 $) . T) ((-635 (-562)) |has| |#1| (-635 (-562))) ((-635 |#1|) . T) ((-712 #0#) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-712 |#1|) . T) ((-712 $) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-721) . T) ((-895 (-1168)) -12 (|has| |#1| (-362)) (|has| |#1| (-895 (-1168)))) ((-915) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-1033 (-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((-1033 (-562)) |has| |#1| (-1033 (-562))) ((-1033 |#1|) . T) ((-1050 #0#) -4037 (|has| |#1| (-348)) (|has| |#1| (-362))) ((-1050 |#1|) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1143) |has| |#1| (-348)) ((-1211) -4037 (|has| |#1| (-348)) (|has| |#1| (-362)))) -((-3329 (($) 11)) (-1694 (((-3 $ "failed") $) 13)) (-4367 (((-112) $) 10)) (** (($ $ (-916)) NIL) (($ $ (-766)) 18))) -(((-720 |#1|) (-10 -8 (-15 -1694 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-766))) (-15 -4367 ((-112) |#1|)) (-15 -3329 (|#1|)) (-15 ** (|#1| |#1| (-916)))) (-721)) (T -720)) -NIL -(-10 -8 (-15 -1694 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-766))) (-15 -4367 ((-112) |#1|)) (-15 -3329 (|#1|)) (-15 ** (|#1| |#1| (-916)))) -((-4041 (((-112) $ $) 7)) (-3329 (($) 18 T CONST)) (-1694 (((-3 $ "failed") $) 15)) (-4367 (((-112) $) 17)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11)) (-2294 (($) 19 T CONST)) (-1733 (((-112) $ $) 6)) (** (($ $ (-916)) 13) (($ $ (-766)) 16)) (* (($ $ $) 14))) -(((-721) (-139)) (T -721)) -((-2294 (*1 *1) (-4 *1 (-721))) (-3329 (*1 *1) (-4 *1 (-721))) (-4367 (*1 *2 *1) (-12 (-4 *1 (-721)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-766)))) (-1694 (*1 *1 *1) (|partial| -4 *1 (-721)))) -(-13 (-1104) (-10 -8 (-15 (-2294) ($) -1497) (-15 -3329 ($) -1497) (-15 -4367 ((-112) $)) (-15 ** ($ $ (-766))) (-15 -1694 ((-3 $ "failed") $)))) -(((-102) . T) ((-609 (-857)) . T) ((-1104) . T) ((-1092) . T)) -((-1839 (((-2 (|:| -2450 (-417 |#2|)) (|:| |special| (-417 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-1841 (((-2 (|:| -2450 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2149 ((|#2| (-406 |#2|) (-1 |#2| |#2|)) 13)) (-3758 (((-2 (|:| |poly| |#2|) (|:| -2450 (-406 |#2|)) (|:| |special| (-406 |#2|))) (-406 |#2|) (-1 |#2| |#2|)) 47))) -(((-722 |#1| |#2|) (-10 -7 (-15 -1841 ((-2 (|:| -2450 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1839 ((-2 (|:| -2450 (-417 |#2|)) (|:| |special| (-417 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2149 (|#2| (-406 |#2|) (-1 |#2| |#2|))) (-15 -3758 ((-2 (|:| |poly| |#2|) (|:| -2450 (-406 |#2|)) (|:| |special| (-406 |#2|))) (-406 |#2|) (-1 |#2| |#2|)))) (-362) (-1232 |#1|)) (T -722)) -((-3758 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2450 (-406 *6)) (|:| |special| (-406 *6)))) (-5 *1 (-722 *5 *6)) (-5 *3 (-406 *6)))) (-2149 (*1 *2 *3 *4) (-12 (-5 *3 (-406 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1232 *5)) (-5 *1 (-722 *5 *2)) (-4 *5 (-362)))) (-1839 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1232 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| -2450 (-417 *3)) (|:| |special| (-417 *3)))) (-5 *1 (-722 *5 *3)))) (-1841 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1232 *5)) (-4 *5 (-362)) (-5 *2 (-2 (|:| -2450 *3) (|:| |special| *3))) (-5 *1 (-722 *5 *3))))) -(-10 -7 (-15 -1841 ((-2 (|:| -2450 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1839 ((-2 (|:| -2450 (-417 |#2|)) (|:| |special| (-417 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2149 (|#2| (-406 |#2|) (-1 |#2| |#2|))) (-15 -3758 ((-2 (|:| |poly| |#2|) (|:| -2450 (-406 |#2|)) (|:| |special| (-406 |#2|))) (-406 |#2|) (-1 |#2| |#2|)))) -((-4162 ((|#7| (-639 |#5|) |#6|) NIL)) (-4152 ((|#7| (-1 |#5| |#4|) |#6|) 26))) -(((-723 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4152 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -4162 (|#7| (-639 |#5|) |#6|))) (-845) (-788) (-788) (-1044) (-1044) (-944 |#4| |#2| |#1|) (-944 |#5| |#3| |#1|)) (T -723)) -((-4162 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *9)) (-4 *9 (-1044)) (-4 *5 (-845)) (-4 *6 (-788)) (-4 *8 (-1044)) (-4 *2 (-944 *9 *7 *5)) (-5 *1 (-723 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-788)) (-4 *4 (-944 *8 *6 *5)))) (-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1044)) (-4 *9 (-1044)) (-4 *5 (-845)) (-4 *6 (-788)) (-4 *2 (-944 *9 *7 *5)) (-5 *1 (-723 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-788)) (-4 *4 (-944 *8 *6 *5))))) -(-10 -7 (-15 -4152 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -4162 (|#7| (-639 |#5|) |#6|))) -((-4152 ((|#7| (-1 |#2| |#1|) |#6|) 28))) -(((-724 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4152 (|#7| (-1 |#2| |#1|) |#6|))) (-845) (-845) (-788) (-788) (-1044) (-944 |#5| |#3| |#1|) (-944 |#5| |#4| |#2|)) (T -724)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-845)) (-4 *6 (-845)) (-4 *7 (-788)) (-4 *9 (-1044)) (-4 *2 (-944 *9 *8 *6)) (-5 *1 (-724 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-788)) (-4 *4 (-944 *9 *7 *5))))) -(-10 -7 (-15 -4152 (|#7| (-1 |#2| |#1|) |#6|))) -((-1635 (((-417 |#4|) |#4|) 41))) -(((-725 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1635 ((-417 |#4|) |#4|))) (-788) (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $)) (-15 -2443 ((-3 $ "failed") (-1168))))) (-306) (-944 (-947 |#3|) |#1| |#2|)) (T -725)) -((-1635 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $)) (-15 -2443 ((-3 $ "failed") (-1168)))))) (-4 *6 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-725 *4 *5 *6 *3)) (-4 *3 (-944 (-947 *6) *4 *5))))) -(-10 -7 (-15 -1635 ((-417 |#4|) |#4|))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-1401 (((-639 (-859 |#1|)) $) NIL)) (-1602 (((-1164 $) $ (-859 |#1|)) NIL) (((-1164 |#2|) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL (|has| |#2| (-554)))) (-1965 (($ $) NIL (|has| |#2| (-554)))) (-4102 (((-112) $) NIL (|has| |#2| (-554)))) (-1578 (((-766) $) NIL) (((-766) $ (-639 (-859 |#1|))) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3517 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-1977 (($ $) NIL (|has| |#2| (-451)))) (-3788 (((-417 $) $) NIL (|has| |#2| (-451)))) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#2| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) NIL (|has| |#2| (-1033 (-562)))) (((-3 (-859 |#1|) "failed") $) NIL)) (-3960 ((|#2| $) NIL) (((-406 (-562)) $) NIL (|has| |#2| (-1033 (-406 (-562))))) (((-562) $) NIL (|has| |#2| (-1033 (-562)))) (((-859 |#1|) $) NIL)) (-2355 (($ $ $ (-859 |#1|)) NIL (|has| |#2| (-171)))) (-1600 (($ $) NIL)) (-3449 (((-683 (-562)) (-683 $)) NIL (|has| |#2| (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#2| (-635 (-562)))) (((-2 (|:| -1767 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) NIL) (((-683 |#2|) (-683 $)) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-2578 (($ $) NIL (|has| |#2| (-451))) (($ $ (-859 |#1|)) NIL (|has| |#2| (-451)))) (-1585 (((-639 $) $) NIL)) (-3521 (((-112) $) NIL (|has| |#2| (-904)))) (-3066 (($ $ |#2| (-530 (-859 |#1|)) $) NIL)) (-2337 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-859 |#1|) (-881 (-378))) (|has| |#2| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (-12 (|has| (-859 |#1|) (-881 (-562))) (|has| |#2| (-881 (-562)))))) (-4367 (((-112) $) NIL)) (-3627 (((-766) $) NIL)) (-1389 (($ (-1164 |#2|) (-859 |#1|)) NIL) (($ (-1164 $) (-859 |#1|)) NIL)) (-1869 (((-639 $) $) NIL)) (-2833 (((-112) $) NIL)) (-1377 (($ |#2| (-530 (-859 |#1|))) NIL) (($ $ (-859 |#1|) (-766)) NIL) (($ $ (-639 (-859 |#1|)) (-639 (-766))) NIL)) (-3851 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $ (-859 |#1|)) NIL)) (-3161 (((-530 (-859 |#1|)) $) NIL) (((-766) $ (-859 |#1|)) NIL) (((-639 (-766)) $ (-639 (-859 |#1|))) NIL)) (-1551 (($ $ $) NIL (|has| |#2| (-845)))) (-2993 (($ $ $) NIL (|has| |#2| (-845)))) (-2363 (($ (-1 (-530 (-859 |#1|)) (-530 (-859 |#1|))) $) NIL)) (-4152 (($ (-1 |#2| |#2|) $) NIL)) (-3640 (((-3 (-859 |#1|) "failed") $) NIL)) (-1560 (($ $) NIL)) (-1573 ((|#2| $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#2| (-451))) (($ $ $) NIL (|has| |#2| (-451)))) (-3696 (((-1150) $) NIL)) (-4025 (((-3 (-639 $) "failed") $) NIL)) (-1778 (((-3 (-639 $) "failed") $) NIL)) (-4270 (((-3 (-2 (|:| |var| (-859 |#1|)) (|:| -1300 (-766))) "failed") $) NIL)) (-1709 (((-1112) $) NIL)) (-1534 (((-112) $) NIL)) (-1547 ((|#2| $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#2| (-451)))) (-1606 (($ (-639 $)) NIL (|has| |#2| (-451))) (($ $ $) NIL (|has| |#2| (-451)))) (-3586 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-3468 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-1635 (((-417 $) $) NIL (|has| |#2| (-904)))) (-1762 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-554)))) (-1433 (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-859 |#1|) |#2|) NIL) (($ $ (-639 (-859 |#1|)) (-639 |#2|)) NIL) (($ $ (-859 |#1|) $) NIL) (($ $ (-639 (-859 |#1|)) (-639 $)) NIL)) (-2736 (($ $ (-859 |#1|)) NIL (|has| |#2| (-171)))) (-4029 (($ $ (-859 |#1|)) NIL) (($ $ (-639 (-859 |#1|))) NIL) (($ $ (-859 |#1|) (-766)) NIL) (($ $ (-639 (-859 |#1|)) (-639 (-766))) NIL)) (-2250 (((-530 (-859 |#1|)) $) NIL) (((-766) $ (-859 |#1|)) NIL) (((-639 (-766)) $ (-639 (-859 |#1|))) NIL)) (-4208 (((-887 (-378)) $) NIL (-12 (|has| (-859 |#1|) (-610 (-887 (-378)))) (|has| |#2| (-610 (-887 (-378)))))) (((-887 (-562)) $) NIL (-12 (|has| (-859 |#1|) (-610 (-887 (-562)))) (|has| |#2| (-610 (-887 (-562)))))) (((-535) $) NIL (-12 (|has| (-859 |#1|) (-610 (-535))) (|has| |#2| (-610 (-535)))))) (-2201 ((|#2| $) NIL (|has| |#2| (-451))) (($ $ (-859 |#1|)) NIL (|has| |#2| (-451)))) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-904))))) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ |#2|) NIL) (($ (-859 |#1|)) NIL) (($ $) NIL (|has| |#2| (-554))) (($ (-406 (-562))) NIL (-4037 (|has| |#2| (-38 (-406 (-562)))) (|has| |#2| (-1033 (-406 (-562))))))) (-3969 (((-639 |#2|) $) NIL)) (-2266 ((|#2| $ (-530 (-859 |#1|))) NIL) (($ $ (-859 |#1|) (-766)) NIL) (($ $ (-639 (-859 |#1|)) (-639 (-766))) NIL)) (-2059 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#2| (-904))) (|has| |#2| (-144))))) (-1568 (((-766)) NIL)) (-1760 (($ $ $ (-766)) NIL (|has| |#2| (-171)))) (-3799 (((-112) $ $) NIL (|has| |#2| (-554)))) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3113 (($ $ (-859 |#1|)) NIL) (($ $ (-639 (-859 |#1|))) NIL) (($ $ (-859 |#1|) (-766)) NIL) (($ $ (-639 (-859 |#1|)) (-639 (-766))) NIL)) (-1798 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1771 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1761 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1859 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL (|has| |#2| (-38 (-406 (-562))))) (($ (-406 (-562)) $) NIL (|has| |#2| (-38 (-406 (-562))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-726 |#1| |#2|) (-944 |#2| (-530 (-859 |#1|)) (-859 |#1|)) (-639 (-1168)) (-1044)) (T -726)) -NIL -(-944 |#2| (-530 (-859 |#1|)) (-859 |#1|)) -((-2471 (((-2 (|:| -1593 (-947 |#3|)) (|:| -1693 (-947 |#3|))) |#4|) 14)) (-2135 ((|#4| |#4| |#2|) 33)) (-2557 ((|#4| (-406 (-947 |#3|)) |#2|) 64)) (-3653 ((|#4| (-1164 (-947 |#3|)) |#2|) 77)) (-2568 ((|#4| (-1164 |#4|) |#2|) 51)) (-3444 ((|#4| |#4| |#2|) 54)) (-1635 (((-417 |#4|) |#4|) 40))) -(((-727 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2471 ((-2 (|:| -1593 (-947 |#3|)) (|:| -1693 (-947 |#3|))) |#4|)) (-15 -3444 (|#4| |#4| |#2|)) (-15 -2568 (|#4| (-1164 |#4|) |#2|)) (-15 -2135 (|#4| |#4| |#2|)) (-15 -3653 (|#4| (-1164 (-947 |#3|)) |#2|)) (-15 -2557 (|#4| (-406 (-947 |#3|)) |#2|)) (-15 -1635 ((-417 |#4|) |#4|))) (-788) (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $)))) (-554) (-944 (-406 (-947 |#3|)) |#1| |#2|)) (T -727)) -((-1635 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $))))) (-4 *6 (-554)) (-5 *2 (-417 *3)) (-5 *1 (-727 *4 *5 *6 *3)) (-4 *3 (-944 (-406 (-947 *6)) *4 *5)))) (-2557 (*1 *2 *3 *4) (-12 (-4 *6 (-554)) (-4 *2 (-944 *3 *5 *4)) (-5 *1 (-727 *5 *4 *6 *2)) (-5 *3 (-406 (-947 *6))) (-4 *5 (-788)) (-4 *4 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $))))))) (-3653 (*1 *2 *3 *4) (-12 (-5 *3 (-1164 (-947 *6))) (-4 *6 (-554)) (-4 *2 (-944 (-406 (-947 *6)) *5 *4)) (-5 *1 (-727 *5 *4 *6 *2)) (-4 *5 (-788)) (-4 *4 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $))))))) (-2135 (*1 *2 *2 *3) (-12 (-4 *4 (-788)) (-4 *3 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $))))) (-4 *5 (-554)) (-5 *1 (-727 *4 *3 *5 *2)) (-4 *2 (-944 (-406 (-947 *5)) *4 *3)))) (-2568 (*1 *2 *3 *4) (-12 (-5 *3 (-1164 *2)) (-4 *2 (-944 (-406 (-947 *6)) *5 *4)) (-5 *1 (-727 *5 *4 *6 *2)) (-4 *5 (-788)) (-4 *4 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $))))) (-4 *6 (-554)))) (-3444 (*1 *2 *2 *3) (-12 (-4 *4 (-788)) (-4 *3 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $))))) (-4 *5 (-554)) (-5 *1 (-727 *4 *3 *5 *2)) (-4 *2 (-944 (-406 (-947 *5)) *4 *3)))) (-2471 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $))))) (-4 *6 (-554)) (-5 *2 (-2 (|:| -1593 (-947 *6)) (|:| -1693 (-947 *6)))) (-5 *1 (-727 *4 *5 *6 *3)) (-4 *3 (-944 (-406 (-947 *6)) *4 *5))))) -(-10 -7 (-15 -2471 ((-2 (|:| -1593 (-947 |#3|)) (|:| -1693 (-947 |#3|))) |#4|)) (-15 -3444 (|#4| |#4| |#2|)) (-15 -2568 (|#4| (-1164 |#4|) |#2|)) (-15 -2135 (|#4| |#4| |#2|)) (-15 -3653 (|#4| (-1164 (-947 |#3|)) |#2|)) (-15 -2557 (|#4| (-406 (-947 |#3|)) |#2|)) (-15 -1635 ((-417 |#4|) |#4|))) -((-1635 (((-417 |#4|) |#4|) 52))) -(((-728 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1635 ((-417 |#4|) |#4|))) (-788) (-845) (-13 (-306) (-146)) (-944 (-406 |#3|) |#1| |#2|)) (T -728)) -((-1635 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-13 (-306) (-146))) (-5 *2 (-417 *3)) (-5 *1 (-728 *4 *5 *6 *3)) (-4 *3 (-944 (-406 *6) *4 *5))))) -(-10 -7 (-15 -1635 ((-417 |#4|) |#4|))) -((-4152 (((-730 |#2| |#3|) (-1 |#2| |#1|) (-730 |#1| |#3|)) 18))) -(((-729 |#1| |#2| |#3|) (-10 -7 (-15 -4152 ((-730 |#2| |#3|) (-1 |#2| |#1|) (-730 |#1| |#3|)))) (-1044) (-1044) (-721)) (T -729)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-730 *5 *7)) (-4 *5 (-1044)) (-4 *6 (-1044)) (-4 *7 (-721)) (-5 *2 (-730 *6 *7)) (-5 *1 (-729 *5 *6 *7))))) -(-10 -7 (-15 -4152 ((-730 |#2| |#3|) (-1 |#2| |#1|) (-730 |#1| |#3|)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) 28)) (-4196 (((-639 (-2 (|:| -4221 |#1|) (|:| -3044 |#2|))) $) 29)) (-2781 (((-3 $ "failed") $ $) NIL)) (-1382 (((-766)) 20 (-12 (|has| |#2| (-367)) (|has| |#1| (-367))))) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-3960 ((|#2| $) NIL) ((|#1| $) NIL)) (-1600 (($ $) 79 (|has| |#2| (-845)))) (-1694 (((-3 $ "failed") $) 65)) (-1447 (($) 35 (-12 (|has| |#2| (-367)) (|has| |#1| (-367))))) (-4367 (((-112) $) NIL)) (-3627 (((-766) $) 55)) (-1869 (((-639 $) $) 39)) (-2833 (((-112) $) NIL)) (-1377 (($ |#1| |#2|) 16)) (-4152 (($ (-1 |#1| |#1|) $) 54)) (-3549 (((-916) $) 32 (-12 (|has| |#2| (-367)) (|has| |#1| (-367))))) (-1560 ((|#2| $) 78 (|has| |#2| (-845)))) (-1573 ((|#1| $) 77 (|has| |#2| (-845)))) (-3696 (((-1150) $) NIL)) (-2464 (($ (-916)) 27 (-12 (|has| |#2| (-367)) (|has| |#1| (-367))))) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 76) (($ (-562)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-639 (-2 (|:| -4221 |#1|) (|:| -3044 |#2|)))) 11)) (-3969 (((-639 |#1|) $) 41)) (-2266 ((|#1| $ |#2|) 87)) (-2059 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-1568 (((-766)) NIL)) (-2285 (($) 12 T CONST)) (-2294 (($) 33 T CONST)) (-1733 (((-112) $ $) 80)) (-1847 (($ $) 47) (($ $ $) NIL)) (-1836 (($ $ $) 26)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 52) (($ $ $) 89) (($ |#1| $) 49 (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171))))) -(((-730 |#1| |#2|) (-13 (-1044) (-1033 |#2|) (-1033 |#1|) (-10 -8 (-15 -1377 ($ |#1| |#2|)) (-15 -2266 (|#1| $ |#2|)) (-15 -4053 ($ (-639 (-2 (|:| -4221 |#1|) (|:| -3044 |#2|))))) (-15 -4196 ((-639 (-2 (|:| -4221 |#1|) (|:| -3044 |#2|))) $)) (-15 -4152 ($ (-1 |#1| |#1|) $)) (-15 -2833 ((-112) $)) (-15 -3969 ((-639 |#1|) $)) (-15 -1869 ((-639 $) $)) (-15 -3627 ((-766) $)) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-845)) (PROGN (-15 -1560 (|#2| $)) (-15 -1573 (|#1| $)) (-15 -1600 ($ $))) |%noBranch|))) (-1044) (-721)) (T -730)) -((-1377 (*1 *1 *2 *3) (-12 (-5 *1 (-730 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-721)))) (-2266 (*1 *2 *1 *3) (-12 (-4 *2 (-1044)) (-5 *1 (-730 *2 *3)) (-4 *3 (-721)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-639 (-2 (|:| -4221 *3) (|:| -3044 *4)))) (-4 *3 (-1044)) (-4 *4 (-721)) (-5 *1 (-730 *3 *4)))) (-4196 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| -4221 *3) (|:| -3044 *4)))) (-5 *1 (-730 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-721)))) (-4152 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1044)) (-5 *1 (-730 *3 *4)) (-4 *4 (-721)))) (-2833 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-730 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-721)))) (-3969 (*1 *2 *1) (-12 (-5 *2 (-639 *3)) (-5 *1 (-730 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-721)))) (-1869 (*1 *2 *1) (-12 (-5 *2 (-639 (-730 *3 *4))) (-5 *1 (-730 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-721)))) (-3627 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-730 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-721)))) (-1560 (*1 *2 *1) (-12 (-4 *2 (-721)) (-4 *2 (-845)) (-5 *1 (-730 *3 *2)) (-4 *3 (-1044)))) (-1573 (*1 *2 *1) (-12 (-4 *2 (-1044)) (-5 *1 (-730 *2 *3)) (-4 *3 (-845)) (-4 *3 (-721)))) (-1600 (*1 *1 *1) (-12 (-5 *1 (-730 *2 *3)) (-4 *3 (-845)) (-4 *2 (-1044)) (-4 *3 (-721))))) -(-13 (-1044) (-1033 |#2|) (-1033 |#1|) (-10 -8 (-15 -1377 ($ |#1| |#2|)) (-15 -2266 (|#1| $ |#2|)) (-15 -4053 ($ (-639 (-2 (|:| -4221 |#1|) (|:| -3044 |#2|))))) (-15 -4196 ((-639 (-2 (|:| -4221 |#1|) (|:| -3044 |#2|))) $)) (-15 -4152 ($ (-1 |#1| |#1|) $)) (-15 -2833 ((-112) $)) (-15 -3969 ((-639 |#1|) $)) (-15 -1869 ((-639 $) $)) (-15 -3627 ((-766) $)) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-845)) (PROGN (-15 -1560 (|#2| $)) (-15 -1573 (|#1| $)) (-15 -1600 ($ $))) |%noBranch|))) -((-4041 (((-112) $ $) 19)) (-2492 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2570 (($ $ $) 72)) (-3938 (((-112) $ $) 73)) (-3735 (((-112) $ (-766)) 8)) (-1607 (($ (-639 |#1|)) 68) (($) 67)) (-2968 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4403)))) (-3329 (($) 7 T CONST)) (-3923 (($ $) 62)) (-1459 (($ $) 58 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-3729 (($ |#1| $) 47 (|has| $ (-6 -4403))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4403)))) (-1475 (($ |#1| $) 57 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4403)))) (-1954 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4403)))) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4403)))) (-3528 (((-112) $ $) 64)) (-4172 (((-112) $ (-766)) 9)) (-2123 (((-639 |#1|) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1491 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-4147 (((-112) $ (-766)) 10)) (-3696 (((-1150) $) 22)) (-4169 (($ $ $) 69)) (-2078 ((|#1| $) 39)) (-1581 (($ |#1| $) 40) (($ |#1| $ (-766)) 63)) (-1709 (((-1112) $) 21)) (-1963 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2038 ((|#1| $) 41)) (-3008 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) 14)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-3110 (((-639 (-2 (|:| -2693 |#1|) (|:| -1723 (-766)))) $) 61)) (-3874 (($ $ |#1|) 71) (($ $ $) 70)) (-1932 (($) 49) (($ (-639 |#1|)) 48)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4403))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-4220 (($ $) 13)) (-4208 (((-535) $) 59 (|has| |#1| (-610 (-535))))) (-4064 (($ (-639 |#1|)) 50)) (-4053 (((-857) $) 18)) (-1702 (($ (-639 |#1|)) 66) (($) 65)) (-4131 (($ (-639 |#1|)) 42)) (-2879 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 20)) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-731 |#1|) (-139) (-1092)) (T -731)) -NIL -(-13 (-689 |t#1|) (-1090 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-609 (-857)) . T) ((-150 |#1|) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-689 |#1|) . T) ((-1090 |#1|) . T) ((-1092) . T) ((-1207) . T)) -((-4041 (((-112) $ $) NIL)) (-2492 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-2570 (($ $ $) 79)) (-3938 (((-112) $ $) 83)) (-3735 (((-112) $ (-766)) NIL)) (-1607 (($ (-639 |#1|)) 24) (($) 16)) (-2968 (($ (-1 (-112) |#1|) $) 70 (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-3329 (($) NIL T CONST)) (-3923 (($ $) 71)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-3729 (($ |#1| $) 61 (|has| $ (-6 -4403))) (($ (-1 (-112) |#1|) $) 65 (|has| $ (-6 -4403))) (($ |#1| $ (-562)) 63) (($ (-1 (-112) |#1|) $ (-562)) 66)) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (($ |#1| $ (-562)) 68) (($ (-1 (-112) |#1|) $ (-562)) 69)) (-1954 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4403)))) (-1720 (((-639 |#1|) $) 32 (|has| $ (-6 -4403)))) (-3528 (((-112) $ $) 82)) (-2562 (($) 14) (($ |#1|) 26) (($ (-639 |#1|)) 21)) (-4172 (((-112) $ (-766)) NIL)) (-2123 (((-639 |#1|) $) 38)) (-1572 (((-112) |#1| $) 58 (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1491 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 75)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL)) (-4169 (($ $ $) 77)) (-2078 ((|#1| $) 55)) (-1581 (($ |#1| $) 56) (($ |#1| $ (-766)) 72)) (-1709 (((-1112) $) NIL)) (-1963 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2038 ((|#1| $) 54)) (-3008 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) NIL)) (-3087 (((-112) $) 50)) (-1663 (($) 13)) (-3110 (((-639 (-2 (|:| -2693 |#1|) (|:| -1723 (-766)))) $) 48)) (-3874 (($ $ |#1|) NIL) (($ $ $) 78)) (-1932 (($) 15) (($ (-639 |#1|)) 23)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-766) |#1| $) 60 (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-4220 (($ $) 67)) (-4208 (((-535) $) 36 (|has| |#1| (-610 (-535))))) (-4064 (($ (-639 |#1|)) 20)) (-4053 (((-857) $) 44)) (-1702 (($ (-639 |#1|)) 25) (($) 17)) (-4131 (($ (-639 |#1|)) 22)) (-2879 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 81)) (-3492 (((-766) $) 59 (|has| $ (-6 -4403))))) -(((-732 |#1|) (-13 (-731 |#1|) (-10 -8 (-6 -4403) (-6 -4404) (-15 -2562 ($)) (-15 -2562 ($ |#1|)) (-15 -2562 ($ (-639 |#1|))) (-15 -2123 ((-639 |#1|) $)) (-15 -1475 ($ |#1| $ (-562))) (-15 -1475 ($ (-1 (-112) |#1|) $ (-562))) (-15 -3729 ($ |#1| $ (-562))) (-15 -3729 ($ (-1 (-112) |#1|) $ (-562))))) (-1092)) (T -732)) -((-2562 (*1 *1) (-12 (-5 *1 (-732 *2)) (-4 *2 (-1092)))) (-2562 (*1 *1 *2) (-12 (-5 *1 (-732 *2)) (-4 *2 (-1092)))) (-2562 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-5 *1 (-732 *3)))) (-2123 (*1 *2 *1) (-12 (-5 *2 (-639 *3)) (-5 *1 (-732 *3)) (-4 *3 (-1092)))) (-1475 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *1 (-732 *2)) (-4 *2 (-1092)))) (-1475 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-562)) (-4 *4 (-1092)) (-5 *1 (-732 *4)))) (-3729 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *1 (-732 *2)) (-4 *2 (-1092)))) (-3729 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-562)) (-4 *4 (-1092)) (-5 *1 (-732 *4))))) -(-13 (-731 |#1|) (-10 -8 (-6 -4403) (-6 -4404) (-15 -2562 ($)) (-15 -2562 ($ |#1|)) (-15 -2562 ($ (-639 |#1|))) (-15 -2123 ((-639 |#1|) $)) (-15 -1475 ($ |#1| $ (-562))) (-15 -1475 ($ (-1 (-112) |#1|) $ (-562))) (-15 -3729 ($ |#1| $ (-562))) (-15 -3729 ($ (-1 (-112) |#1|) $ (-562))))) -((-2419 (((-1261) (-1150)) 8))) -(((-733) (-10 -7 (-15 -2419 ((-1261) (-1150))))) (T -733)) -((-2419 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-733))))) -(-10 -7 (-15 -2419 ((-1261) (-1150)))) -((-3156 (((-639 |#1|) (-639 |#1|) (-639 |#1|)) 10))) -(((-734 |#1|) (-10 -7 (-15 -3156 ((-639 |#1|) (-639 |#1|) (-639 |#1|)))) (-845)) (T -734)) -((-3156 (*1 *2 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-845)) (-5 *1 (-734 *3))))) -(-10 -7 (-15 -3156 ((-639 |#1|) (-639 |#1|) (-639 |#1|)))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-1401 (((-639 |#2|) $) 139)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 132 (|has| |#1| (-554)))) (-1965 (($ $) 131 (|has| |#1| (-554)))) (-4102 (((-112) $) 129 (|has| |#1| (-554)))) (-2987 (($ $) 88 (|has| |#1| (-38 (-406 (-562)))))) (-4098 (($ $) 71 (|has| |#1| (-38 (-406 (-562)))))) (-2781 (((-3 $ "failed") $ $) 19)) (-1644 (($ $) 70 (|has| |#1| (-38 (-406 (-562)))))) (-4206 (($ $) 87 (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) 72 (|has| |#1| (-38 (-406 (-562)))))) (-3013 (($ $) 86 (|has| |#1| (-38 (-406 (-562)))))) (-4120 (($ $) 73 (|has| |#1| (-38 (-406 (-562)))))) (-3329 (($) 17 T CONST)) (-1600 (($ $) 123)) (-1694 (((-3 $ "failed") $) 33)) (-1455 (((-947 |#1|) $ (-766)) 101) (((-947 |#1|) $ (-766) (-766)) 100)) (-2965 (((-112) $) 140)) (-4100 (($) 98 (|has| |#1| (-38 (-406 (-562)))))) (-1993 (((-766) $ |#2|) 103) (((-766) $ |#2| (-766)) 102)) (-4367 (((-112) $) 31)) (-1895 (($ $ (-562)) 69 (|has| |#1| (-38 (-406 (-562)))))) (-2833 (((-112) $) 121)) (-1377 (($ $ (-639 |#2|) (-639 (-530 |#2|))) 138) (($ $ |#2| (-530 |#2|)) 137) (($ |#1| (-530 |#2|)) 122) (($ $ |#2| (-766)) 105) (($ $ (-639 |#2|) (-639 (-766))) 104)) (-4152 (($ (-1 |#1| |#1|) $) 120)) (-4366 (($ $) 95 (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) 118)) (-1573 ((|#1| $) 117)) (-3696 (((-1150) $) 9)) (-3081 (($ $ |#2|) 99 (|has| |#1| (-38 (-406 (-562)))))) (-1709 (((-1112) $) 10)) (-4316 (($ $ (-766)) 106)) (-1762 (((-3 $ "failed") $ $) 133 (|has| |#1| (-554)))) (-3430 (($ $) 96 (|has| |#1| (-38 (-406 (-562)))))) (-1433 (($ $ |#2| $) 114) (($ $ (-639 |#2|) (-639 $)) 113) (($ $ (-639 (-293 $))) 112) (($ $ (-293 $)) 111) (($ $ $ $) 110) (($ $ (-639 $) (-639 $)) 109)) (-4029 (($ $ |#2|) 42) (($ $ (-639 |#2|)) 41) (($ $ |#2| (-766)) 40) (($ $ (-639 |#2|) (-639 (-766))) 39)) (-2250 (((-530 |#2|) $) 119)) (-3022 (($ $) 85 (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) 74 (|has| |#1| (-38 (-406 (-562)))))) (-3000 (($ $) 84 (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) 75 (|has| |#1| (-38 (-406 (-562)))))) (-2977 (($ $) 83 (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) 76 (|has| |#1| (-38 (-406 (-562)))))) (-1345 (($ $) 141)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 136 (|has| |#1| (-171))) (($ $) 134 (|has| |#1| (-554))) (($ (-406 (-562))) 126 (|has| |#1| (-38 (-406 (-562)))))) (-2266 ((|#1| $ (-530 |#2|)) 124) (($ $ |#2| (-766)) 108) (($ $ (-639 |#2|) (-639 (-766))) 107)) (-2059 (((-3 $ "failed") $) 135 (|has| |#1| (-144)))) (-1568 (((-766)) 28)) (-3054 (($ $) 94 (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) 82 (|has| |#1| (-38 (-406 (-562)))))) (-3799 (((-112) $ $) 130 (|has| |#1| (-554)))) (-3033 (($ $) 93 (|has| |#1| (-38 (-406 (-562)))))) (-4139 (($ $) 81 (|has| |#1| (-38 (-406 (-562)))))) (-3077 (($ $) 92 (|has| |#1| (-38 (-406 (-562)))))) (-4183 (($ $) 80 (|has| |#1| (-38 (-406 (-562)))))) (-1567 (($ $) 91 (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) 79 (|has| |#1| (-38 (-406 (-562)))))) (-3065 (($ $) 90 (|has| |#1| (-38 (-406 (-562)))))) (-4175 (($ $) 78 (|has| |#1| (-38 (-406 (-562)))))) (-3040 (($ $) 89 (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) 77 (|has| |#1| (-38 (-406 (-562)))))) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3113 (($ $ |#2|) 38) (($ $ (-639 |#2|)) 37) (($ $ |#2| (-766)) 36) (($ $ (-639 |#2|) (-639 (-766))) 35)) (-1733 (((-112) $ $) 6)) (-1859 (($ $ |#1|) 125 (|has| |#1| (-362)))) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ $) 97 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 68 (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ (-406 (-562))) 128 (|has| |#1| (-38 (-406 (-562))))) (($ (-406 (-562)) $) 127 (|has| |#1| (-38 (-406 (-562))))) (($ |#1| $) 116) (($ $ |#1|) 115))) -(((-735 |#1| |#2|) (-139) (-1044) (-845)) (T -735)) -((-2266 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-766)) (-4 *1 (-735 *4 *2)) (-4 *4 (-1044)) (-4 *2 (-845)))) (-2266 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 *5)) (-5 *3 (-639 (-766))) (-4 *1 (-735 *4 *5)) (-4 *4 (-1044)) (-4 *5 (-845)))) (-4316 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-735 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-845)))) (-1377 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-766)) (-4 *1 (-735 *4 *2)) (-4 *4 (-1044)) (-4 *2 (-845)))) (-1377 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 *5)) (-5 *3 (-639 (-766))) (-4 *1 (-735 *4 *5)) (-4 *4 (-1044)) (-4 *5 (-845)))) (-1993 (*1 *2 *1 *3) (-12 (-4 *1 (-735 *4 *3)) (-4 *4 (-1044)) (-4 *3 (-845)) (-5 *2 (-766)))) (-1993 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-766)) (-4 *1 (-735 *4 *3)) (-4 *4 (-1044)) (-4 *3 (-845)))) (-1455 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-4 *1 (-735 *4 *5)) (-4 *4 (-1044)) (-4 *5 (-845)) (-5 *2 (-947 *4)))) (-1455 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-766)) (-4 *1 (-735 *4 *5)) (-4 *4 (-1044)) (-4 *5 (-845)) (-5 *2 (-947 *4)))) (-3081 (*1 *1 *1 *2) (-12 (-4 *1 (-735 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-845)) (-4 *3 (-38 (-406 (-562))))))) -(-13 (-895 |t#2|) (-968 |t#1| (-530 |t#2|) |t#2|) (-513 |t#2| $) (-308 $) (-10 -8 (-15 -2266 ($ $ |t#2| (-766))) (-15 -2266 ($ $ (-639 |t#2|) (-639 (-766)))) (-15 -4316 ($ $ (-766))) (-15 -1377 ($ $ |t#2| (-766))) (-15 -1377 ($ $ (-639 |t#2|) (-639 (-766)))) (-15 -1993 ((-766) $ |t#2|)) (-15 -1993 ((-766) $ |t#2| (-766))) (-15 -1455 ((-947 |t#1|) $ (-766))) (-15 -1455 ((-947 |t#1|) $ (-766) (-766))) (IF (|has| |t#1| (-38 (-406 (-562)))) (PROGN (-15 -3081 ($ $ |t#2|)) (-6 (-997)) (-6 (-1192))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-530 |#2|)) . T) ((-25) . T) ((-38 #1=(-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-554)) ((-35) |has| |#1| (-38 (-406 (-562)))) ((-95) |has| |#1| (-38 (-406 (-562)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-406 (-562)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #1#) |has| |#1| (-38 (-406 (-562)))) ((-612 (-562)) . T) ((-612 |#1|) |has| |#1| (-171)) ((-612 $) |has| |#1| (-554)) ((-609 (-857)) . T) ((-171) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-283) |has| |#1| (-38 (-406 (-562)))) ((-289) |has| |#1| (-554)) ((-308 $) . T) ((-492) |has| |#1| (-38 (-406 (-562)))) ((-513 |#2| $) . T) ((-513 $ $) . T) ((-554) |has| |#1| (-554)) ((-642 #1#) |has| |#1| (-38 (-406 (-562)))) ((-642 |#1|) . T) ((-642 $) . T) ((-712 #1#) |has| |#1| (-38 (-406 (-562)))) ((-712 |#1|) |has| |#1| (-171)) ((-712 $) |has| |#1| (-554)) ((-721) . T) ((-895 |#2|) . T) ((-968 |#1| #0# |#2|) . T) ((-997) |has| |#1| (-38 (-406 (-562)))) ((-1050 #1#) |has| |#1| (-38 (-406 (-562)))) ((-1050 |#1|) . T) ((-1050 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1192) |has| |#1| (-38 (-406 (-562)))) ((-1195) |has| |#1| (-38 (-406 (-562))))) -((-1635 (((-417 (-1164 |#4|)) (-1164 |#4|)) 30) (((-417 |#4|) |#4|) 26))) -(((-736 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1635 ((-417 |#4|) |#4|)) (-15 -1635 ((-417 (-1164 |#4|)) (-1164 |#4|)))) (-845) (-788) (-13 (-306) (-146)) (-944 |#3| |#2| |#1|)) (T -736)) -((-1635 (*1 *2 *3) (-12 (-4 *4 (-845)) (-4 *5 (-788)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-944 *6 *5 *4)) (-5 *2 (-417 (-1164 *7))) (-5 *1 (-736 *4 *5 *6 *7)) (-5 *3 (-1164 *7)))) (-1635 (*1 *2 *3) (-12 (-4 *4 (-845)) (-4 *5 (-788)) (-4 *6 (-13 (-306) (-146))) (-5 *2 (-417 *3)) (-5 *1 (-736 *4 *5 *6 *3)) (-4 *3 (-944 *6 *5 *4))))) -(-10 -7 (-15 -1635 ((-417 |#4|) |#4|)) (-15 -1635 ((-417 (-1164 |#4|)) (-1164 |#4|)))) -((-4156 (((-417 |#4|) |#4| |#2|) 118)) (-1612 (((-417 |#4|) |#4|) NIL)) (-3788 (((-417 (-1164 |#4|)) (-1164 |#4|)) 109) (((-417 |#4|) |#4|) 40)) (-3884 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-639 (-2 (|:| -1635 (-1164 |#4|)) (|:| -1300 (-562)))))) (-1164 |#4|) (-639 |#2|) (-639 (-639 |#3|))) 68)) (-3311 (((-1164 |#3|) (-1164 |#3|) (-562)) 136)) (-3831 (((-639 (-766)) (-1164 |#4|) (-639 |#2|) (-766)) 60)) (-1942 (((-3 (-639 (-1164 |#4|)) "failed") (-1164 |#4|) (-1164 |#3|) (-1164 |#3|) |#4| (-639 |#2|) (-639 (-766)) (-639 |#3|)) 64)) (-4060 (((-2 (|:| |upol| (-1164 |#3|)) (|:| |Lval| (-639 |#3|)) (|:| |Lfact| (-639 (-2 (|:| -1635 (-1164 |#3|)) (|:| -1300 (-562))))) (|:| |ctpol| |#3|)) (-1164 |#4|) (-639 |#2|) (-639 (-639 |#3|))) 25)) (-2202 (((-2 (|:| -4201 (-1164 |#4|)) (|:| |polval| (-1164 |#3|))) (-1164 |#4|) (-1164 |#3|) (-562)) 56)) (-1473 (((-562) (-639 (-2 (|:| -1635 (-1164 |#3|)) (|:| -1300 (-562))))) 133)) (-4187 ((|#4| (-562) (-417 |#4|)) 57)) (-1661 (((-112) (-639 (-2 (|:| -1635 (-1164 |#3|)) (|:| -1300 (-562)))) (-639 (-2 (|:| -1635 (-1164 |#3|)) (|:| -1300 (-562))))) NIL))) -(((-737 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3788 ((-417 |#4|) |#4|)) (-15 -3788 ((-417 (-1164 |#4|)) (-1164 |#4|))) (-15 -1612 ((-417 |#4|) |#4|)) (-15 -1473 ((-562) (-639 (-2 (|:| -1635 (-1164 |#3|)) (|:| -1300 (-562)))))) (-15 -4156 ((-417 |#4|) |#4| |#2|)) (-15 -2202 ((-2 (|:| -4201 (-1164 |#4|)) (|:| |polval| (-1164 |#3|))) (-1164 |#4|) (-1164 |#3|) (-562))) (-15 -3884 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-639 (-2 (|:| -1635 (-1164 |#4|)) (|:| -1300 (-562)))))) (-1164 |#4|) (-639 |#2|) (-639 (-639 |#3|)))) (-15 -4060 ((-2 (|:| |upol| (-1164 |#3|)) (|:| |Lval| (-639 |#3|)) (|:| |Lfact| (-639 (-2 (|:| -1635 (-1164 |#3|)) (|:| -1300 (-562))))) (|:| |ctpol| |#3|)) (-1164 |#4|) (-639 |#2|) (-639 (-639 |#3|)))) (-15 -4187 (|#4| (-562) (-417 |#4|))) (-15 -1661 ((-112) (-639 (-2 (|:| -1635 (-1164 |#3|)) (|:| -1300 (-562)))) (-639 (-2 (|:| -1635 (-1164 |#3|)) (|:| -1300 (-562)))))) (-15 -1942 ((-3 (-639 (-1164 |#4|)) "failed") (-1164 |#4|) (-1164 |#3|) (-1164 |#3|) |#4| (-639 |#2|) (-639 (-766)) (-639 |#3|))) (-15 -3831 ((-639 (-766)) (-1164 |#4|) (-639 |#2|) (-766))) (-15 -3311 ((-1164 |#3|) (-1164 |#3|) (-562)))) (-788) (-845) (-306) (-944 |#3| |#1| |#2|)) (T -737)) -((-3311 (*1 *2 *2 *3) (-12 (-5 *2 (-1164 *6)) (-5 *3 (-562)) (-4 *6 (-306)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-737 *4 *5 *6 *7)) (-4 *7 (-944 *6 *4 *5)))) (-3831 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1164 *9)) (-5 *4 (-639 *7)) (-4 *7 (-845)) (-4 *9 (-944 *8 *6 *7)) (-4 *6 (-788)) (-4 *8 (-306)) (-5 *2 (-639 (-766))) (-5 *1 (-737 *6 *7 *8 *9)) (-5 *5 (-766)))) (-1942 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1164 *11)) (-5 *6 (-639 *10)) (-5 *7 (-639 (-766))) (-5 *8 (-639 *11)) (-4 *10 (-845)) (-4 *11 (-306)) (-4 *9 (-788)) (-4 *5 (-944 *11 *9 *10)) (-5 *2 (-639 (-1164 *5))) (-5 *1 (-737 *9 *10 *11 *5)) (-5 *3 (-1164 *5)))) (-1661 (*1 *2 *3 *3) (-12 (-5 *3 (-639 (-2 (|:| -1635 (-1164 *6)) (|:| -1300 (-562))))) (-4 *6 (-306)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)) (-5 *1 (-737 *4 *5 *6 *7)) (-4 *7 (-944 *6 *4 *5)))) (-4187 (*1 *2 *3 *4) (-12 (-5 *3 (-562)) (-5 *4 (-417 *2)) (-4 *2 (-944 *7 *5 *6)) (-5 *1 (-737 *5 *6 *7 *2)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-306)))) (-4060 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1164 *9)) (-5 *4 (-639 *7)) (-5 *5 (-639 (-639 *8))) (-4 *7 (-845)) (-4 *8 (-306)) (-4 *9 (-944 *8 *6 *7)) (-4 *6 (-788)) (-5 *2 (-2 (|:| |upol| (-1164 *8)) (|:| |Lval| (-639 *8)) (|:| |Lfact| (-639 (-2 (|:| -1635 (-1164 *8)) (|:| -1300 (-562))))) (|:| |ctpol| *8))) (-5 *1 (-737 *6 *7 *8 *9)))) (-3884 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-639 *7)) (-5 *5 (-639 (-639 *8))) (-4 *7 (-845)) (-4 *8 (-306)) (-4 *6 (-788)) (-4 *9 (-944 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-639 (-2 (|:| -1635 (-1164 *9)) (|:| -1300 (-562))))))) (-5 *1 (-737 *6 *7 *8 *9)) (-5 *3 (-1164 *9)))) (-2202 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-562)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *8 (-306)) (-4 *9 (-944 *8 *6 *7)) (-5 *2 (-2 (|:| -4201 (-1164 *9)) (|:| |polval| (-1164 *8)))) (-5 *1 (-737 *6 *7 *8 *9)) (-5 *3 (-1164 *9)) (-5 *4 (-1164 *8)))) (-4156 (*1 *2 *3 *4) (-12 (-4 *5 (-788)) (-4 *4 (-845)) (-4 *6 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-737 *5 *4 *6 *3)) (-4 *3 (-944 *6 *5 *4)))) (-1473 (*1 *2 *3) (-12 (-5 *3 (-639 (-2 (|:| -1635 (-1164 *6)) (|:| -1300 (-562))))) (-4 *6 (-306)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-562)) (-5 *1 (-737 *4 *5 *6 *7)) (-4 *7 (-944 *6 *4 *5)))) (-1612 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-737 *4 *5 *6 *3)) (-4 *3 (-944 *6 *4 *5)))) (-3788 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-306)) (-4 *7 (-944 *6 *4 *5)) (-5 *2 (-417 (-1164 *7))) (-5 *1 (-737 *4 *5 *6 *7)) (-5 *3 (-1164 *7)))) (-3788 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-737 *4 *5 *6 *3)) (-4 *3 (-944 *6 *4 *5))))) -(-10 -7 (-15 -3788 ((-417 |#4|) |#4|)) (-15 -3788 ((-417 (-1164 |#4|)) (-1164 |#4|))) (-15 -1612 ((-417 |#4|) |#4|)) (-15 -1473 ((-562) (-639 (-2 (|:| -1635 (-1164 |#3|)) (|:| -1300 (-562)))))) (-15 -4156 ((-417 |#4|) |#4| |#2|)) (-15 -2202 ((-2 (|:| -4201 (-1164 |#4|)) (|:| |polval| (-1164 |#3|))) (-1164 |#4|) (-1164 |#3|) (-562))) (-15 -3884 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-639 (-2 (|:| -1635 (-1164 |#4|)) (|:| -1300 (-562)))))) (-1164 |#4|) (-639 |#2|) (-639 (-639 |#3|)))) (-15 -4060 ((-2 (|:| |upol| (-1164 |#3|)) (|:| |Lval| (-639 |#3|)) (|:| |Lfact| (-639 (-2 (|:| -1635 (-1164 |#3|)) (|:| -1300 (-562))))) (|:| |ctpol| |#3|)) (-1164 |#4|) (-639 |#2|) (-639 (-639 |#3|)))) (-15 -4187 (|#4| (-562) (-417 |#4|))) (-15 -1661 ((-112) (-639 (-2 (|:| -1635 (-1164 |#3|)) (|:| -1300 (-562)))) (-639 (-2 (|:| -1635 (-1164 |#3|)) (|:| -1300 (-562)))))) (-15 -1942 ((-3 (-639 (-1164 |#4|)) "failed") (-1164 |#4|) (-1164 |#3|) (-1164 |#3|) |#4| (-639 |#2|) (-639 (-766)) (-639 |#3|))) (-15 -3831 ((-639 (-766)) (-1164 |#4|) (-639 |#2|) (-766))) (-15 -3311 ((-1164 |#3|) (-1164 |#3|) (-562)))) -((-1492 (($ $ (-916)) 12))) -(((-738 |#1| |#2|) (-10 -8 (-15 -1492 (|#1| |#1| (-916)))) (-739 |#2|) (-171)) (T -738)) -NIL -(-10 -8 (-15 -1492 (|#1| |#1| (-916)))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-2127 (($ $ (-916)) 28)) (-1492 (($ $ (-916)) 33)) (-3235 (($ $ (-916)) 29)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-2114 (($ $ $) 25)) (-4053 (((-857) $) 11)) (-2584 (($ $ $ $) 26)) (-4324 (($ $ $) 24)) (-2285 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 30)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-739 |#1|) (-139) (-171)) (T -739)) -((-1492 (*1 *1 *1 *2) (-12 (-5 *2 (-916)) (-4 *1 (-739 *3)) (-4 *3 (-171))))) -(-13 (-756) (-712 |t#1|) (-10 -8 (-15 -1492 ($ $ (-916))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-609 (-857)) . T) ((-642 |#1|) . T) ((-712 |#1|) . T) ((-715) . T) ((-756) . T) ((-1050 |#1|) . T) ((-1092) . T)) -((-3561 (((-1030) (-683 (-224)) (-562) (-112) (-562)) 25)) (-4308 (((-1030) (-683 (-224)) (-562) (-112) (-562)) 24))) -(((-740) (-10 -7 (-15 -4308 ((-1030) (-683 (-224)) (-562) (-112) (-562))) (-15 -3561 ((-1030) (-683 (-224)) (-562) (-112) (-562))))) (T -740)) -((-3561 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *5 (-112)) (-5 *2 (-1030)) (-5 *1 (-740)))) (-4308 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *5 (-112)) (-5 *2 (-1030)) (-5 *1 (-740))))) -(-10 -7 (-15 -4308 ((-1030) (-683 (-224)) (-562) (-112) (-562))) (-15 -3561 ((-1030) (-683 (-224)) (-562) (-112) (-562)))) -((-3827 (((-1030) (-562) (-562) (-562) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN)))) 43)) (-2976 (((-1030) (-562) (-562) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN)))) 39)) (-2368 (((-1030) (-224) (-224) (-224) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3196)))) 32))) -(((-741) (-10 -7 (-15 -2368 ((-1030) (-224) (-224) (-224) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3196))))) (-15 -2976 ((-1030) (-562) (-562) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN))))) (-15 -3827 ((-1030) (-562) (-562) (-562) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN))))))) (T -741)) -((-3827 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1030)) (-5 *1 (-741)))) (-2976 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1030)) (-5 *1 (-741)))) (-2368 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3196)))) (-5 *2 (-1030)) (-5 *1 (-741))))) -(-10 -7 (-15 -2368 ((-1030) (-224) (-224) (-224) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3196))))) (-15 -2976 ((-1030) (-562) (-562) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN))))) (-15 -3827 ((-1030) (-562) (-562) (-562) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN)))))) -((-2017 (((-1030) (-562) (-562) (-683 (-224)) (-562)) 34)) (-3559 (((-1030) (-562) (-562) (-683 (-224)) (-562)) 33)) (-3055 (((-1030) (-562) (-683 (-224)) (-562)) 32)) (-2839 (((-1030) (-562) (-683 (-224)) (-562)) 31)) (-3242 (((-1030) (-562) (-562) (-1150) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562)) 30)) (-3402 (((-1030) (-562) (-562) (-1150) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562)) 29)) (-2554 (((-1030) (-562) (-562) (-1150) (-683 (-224)) (-683 (-224)) (-562)) 28)) (-3264 (((-1030) (-562) (-562) (-1150) (-683 (-224)) (-683 (-224)) (-562)) 27)) (-1597 (((-1030) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562)) 24)) (-2908 (((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562)) 23)) (-2014 (((-1030) (-562) (-683 (-224)) (-562)) 22)) (-3221 (((-1030) (-562) (-683 (-224)) (-562)) 21))) -(((-742) (-10 -7 (-15 -3221 ((-1030) (-562) (-683 (-224)) (-562))) (-15 -2014 ((-1030) (-562) (-683 (-224)) (-562))) (-15 -2908 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -1597 ((-1030) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -3264 ((-1030) (-562) (-562) (-1150) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2554 ((-1030) (-562) (-562) (-1150) (-683 (-224)) (-683 (-224)) (-562))) (-15 -3402 ((-1030) (-562) (-562) (-1150) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -3242 ((-1030) (-562) (-562) (-1150) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2839 ((-1030) (-562) (-683 (-224)) (-562))) (-15 -3055 ((-1030) (-562) (-683 (-224)) (-562))) (-15 -3559 ((-1030) (-562) (-562) (-683 (-224)) (-562))) (-15 -2017 ((-1030) (-562) (-562) (-683 (-224)) (-562))))) (T -742)) -((-2017 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-742)))) (-3559 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-742)))) (-3055 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-742)))) (-2839 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-742)))) (-3242 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-562)) (-5 *4 (-1150)) (-5 *5 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-742)))) (-3402 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-562)) (-5 *4 (-1150)) (-5 *5 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-742)))) (-2554 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-562)) (-5 *4 (-1150)) (-5 *5 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-742)))) (-3264 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-562)) (-5 *4 (-1150)) (-5 *5 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-742)))) (-1597 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-742)))) (-2908 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-742)))) (-2014 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-742)))) (-3221 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-742))))) -(-10 -7 (-15 -3221 ((-1030) (-562) (-683 (-224)) (-562))) (-15 -2014 ((-1030) (-562) (-683 (-224)) (-562))) (-15 -2908 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -1597 ((-1030) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -3264 ((-1030) (-562) (-562) (-1150) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2554 ((-1030) (-562) (-562) (-1150) (-683 (-224)) (-683 (-224)) (-562))) (-15 -3402 ((-1030) (-562) (-562) (-1150) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -3242 ((-1030) (-562) (-562) (-1150) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2839 ((-1030) (-562) (-683 (-224)) (-562))) (-15 -3055 ((-1030) (-562) (-683 (-224)) (-562))) (-15 -3559 ((-1030) (-562) (-562) (-683 (-224)) (-562))) (-15 -2017 ((-1030) (-562) (-562) (-683 (-224)) (-562)))) -((-2973 (((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562) (-224) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN)))) 52)) (-4215 (((-1030) (-683 (-224)) (-683 (-224)) (-562) (-562)) 51)) (-4246 (((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN)))) 50)) (-2313 (((-1030) (-224) (-224) (-562) (-562) (-562) (-562)) 46)) (-3116 (((-1030) (-224) (-224) (-562) (-224) (-562) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) 45)) (-1554 (((-1030) (-224) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) 44)) (-1679 (((-1030) (-224) (-224) (-224) (-224) (-562) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) 43)) (-3046 (((-1030) (-224) (-224) (-224) (-562) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) 42)) (-1816 (((-1030) (-224) (-562) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3196)))) 38)) (-2142 (((-1030) (-224) (-224) (-562) (-683 (-224)) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3196)))) 37)) (-3557 (((-1030) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3196)))) 33)) (-2378 (((-1030) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3196)))) 32))) -(((-743) (-10 -7 (-15 -2378 ((-1030) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3196))))) (-15 -3557 ((-1030) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3196))))) (-15 -2142 ((-1030) (-224) (-224) (-562) (-683 (-224)) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3196))))) (-15 -1816 ((-1030) (-224) (-562) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3196))))) (-15 -3046 ((-1030) (-224) (-224) (-224) (-562) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -1679 ((-1030) (-224) (-224) (-224) (-224) (-562) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -1554 ((-1030) (-224) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -3116 ((-1030) (-224) (-224) (-562) (-224) (-562) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -2313 ((-1030) (-224) (-224) (-562) (-562) (-562) (-562))) (-15 -4246 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN))))) (-15 -4215 ((-1030) (-683 (-224)) (-683 (-224)) (-562) (-562))) (-15 -2973 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562) (-224) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN))))))) (T -743)) -((-2973 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1030)) (-5 *1 (-743)))) (-4215 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-743)))) (-4246 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1030)) (-5 *1 (-743)))) (-2313 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-743)))) (-3116 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1030)) (-5 *1 (-743)))) (-1554 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1030)) (-5 *1 (-743)))) (-1679 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1030)) (-5 *1 (-743)))) (-3046 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1030)) (-5 *1 (-743)))) (-1816 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3196)))) (-5 *2 (-1030)) (-5 *1 (-743)))) (-2142 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-562)) (-5 *5 (-683 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3196)))) (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-743)))) (-3557 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3196)))) (-5 *2 (-1030)) (-5 *1 (-743)))) (-2378 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3196)))) (-5 *2 (-1030)) (-5 *1 (-743))))) -(-10 -7 (-15 -2378 ((-1030) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3196))))) (-15 -3557 ((-1030) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3196))))) (-15 -2142 ((-1030) (-224) (-224) (-562) (-683 (-224)) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3196))))) (-15 -1816 ((-1030) (-224) (-562) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3196))))) (-15 -3046 ((-1030) (-224) (-224) (-224) (-562) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -1679 ((-1030) (-224) (-224) (-224) (-224) (-562) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -1554 ((-1030) (-224) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -3116 ((-1030) (-224) (-224) (-562) (-224) (-562) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G))))) (-15 -2313 ((-1030) (-224) (-224) (-562) (-562) (-562) (-562))) (-15 -4246 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562) (-224) (-562) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN))))) (-15 -4215 ((-1030) (-683 (-224)) (-683 (-224)) (-562) (-562))) (-15 -2973 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562) (-224) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN)))))) -((-1971 (((-1030) (-562) (-562) (-562) (-562) (-224) (-562) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-387)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-2193 (((-1030) (-683 (-224)) (-562) (-562) (-224) (-562) (-562) (-224) (-224) (-683 (-224)) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))) (-387) (-387)) 69) (((-1030) (-683 (-224)) (-562) (-562) (-224) (-562) (-562) (-224) (-224) (-683 (-224)) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL)))) 68)) (-2849 (((-1030) (-224) (-224) (-562) (-224) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNG)))) 57)) (-4300 (((-1030) (-683 (-224)) (-683 (-224)) (-562) (-224) (-224) (-224) (-562) (-562) (-562) (-683 (-224)) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) 50)) (-2803 (((-1030) (-224) (-562) (-562) (-1150) (-562) (-224) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) 49)) (-3720 (((-1030) (-224) (-562) (-562) (-224) (-1150) (-224) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) 45)) (-1725 (((-1030) (-224) (-562) (-562) (-224) (-224) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) 42)) (-3259 (((-1030) (-224) (-562) (-562) (-562) (-224) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) 38))) -(((-744) (-10 -7 (-15 -3259 ((-1030) (-224) (-562) (-562) (-562) (-224) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -1725 ((-1030) (-224) (-562) (-562) (-224) (-224) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))) (-15 -3720 ((-1030) (-224) (-562) (-562) (-224) (-1150) (-224) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -2803 ((-1030) (-224) (-562) (-562) (-1150) (-562) (-224) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -4300 ((-1030) (-683 (-224)) (-683 (-224)) (-562) (-224) (-224) (-224) (-562) (-562) (-562) (-683 (-224)) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))) (-15 -2849 ((-1030) (-224) (-224) (-562) (-224) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNG))))) (-15 -2193 ((-1030) (-683 (-224)) (-562) (-562) (-224) (-562) (-562) (-224) (-224) (-683 (-224)) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))))) (-15 -2193 ((-1030) (-683 (-224)) (-562) (-562) (-224) (-562) (-562) (-224) (-224) (-683 (-224)) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))) (-387) (-387))) (-15 -1971 ((-1030) (-562) (-562) (-562) (-562) (-224) (-562) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-387)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -744)) -((-1971 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-744)))) (-2193 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-387)) (-5 *2 (-1030)) (-5 *1 (-744)))) (-2193 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1030)) (-5 *1 (-744)))) (-2849 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-562)) (-5 *5 (-683 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-744)))) (-4300 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *5 (-224)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1030)) (-5 *1 (-744)))) (-2803 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-562)) (-5 *5 (-1150)) (-5 *6 (-683 (-224))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-744)))) (-3720 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-562)) (-5 *5 (-1150)) (-5 *6 (-683 (-224))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-744)))) (-1725 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-562)) (-5 *5 (-683 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-744)))) (-3259 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-562)) (-5 *5 (-683 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-744))))) -(-10 -7 (-15 -3259 ((-1030) (-224) (-562) (-562) (-562) (-224) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -1725 ((-1030) (-224) (-562) (-562) (-224) (-224) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))) (-15 -3720 ((-1030) (-224) (-562) (-562) (-224) (-1150) (-224) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -2803 ((-1030) (-224) (-562) (-562) (-1150) (-562) (-224) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT))))) (-15 -4300 ((-1030) (-683 (-224)) (-683 (-224)) (-562) (-224) (-224) (-224) (-562) (-562) (-562) (-683 (-224)) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN))))) (-15 -2849 ((-1030) (-224) (-224) (-562) (-224) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNG))))) (-15 -2193 ((-1030) (-683 (-224)) (-562) (-562) (-224) (-562) (-562) (-224) (-224) (-683 (-224)) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))))) (-15 -2193 ((-1030) (-683 (-224)) (-562) (-562) (-224) (-562) (-562) (-224) (-224) (-683 (-224)) (-562) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL))) (-387) (-387))) (-15 -1971 ((-1030) (-562) (-562) (-562) (-562) (-224) (-562) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-387)) (|:| |fp| (-76 G JACOBG JACGEP)))))) -((-1857 (((-1030) (-224) (-224) (-562) (-562) (-683 (-224)) (-683 (-224)) (-224) (-224) (-562) (-562) (-683 (-224)) (-683 (-224)) (-224) (-224) (-562) (-562) (-683 (-224)) (-683 (-224)) (-224) (-562) (-562) (-562) (-669 (-224)) (-562)) 45)) (-4345 (((-1030) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-1150) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-83 BNDY)))) 41)) (-1688 (((-1030) (-562) (-562) (-562) (-562) (-224) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562)) 23))) -(((-745) (-10 -7 (-15 -1688 ((-1030) (-562) (-562) (-562) (-562) (-224) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -4345 ((-1030) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-1150) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-83 BNDY))))) (-15 -1857 ((-1030) (-224) (-224) (-562) (-562) (-683 (-224)) (-683 (-224)) (-224) (-224) (-562) (-562) (-683 (-224)) (-683 (-224)) (-224) (-224) (-562) (-562) (-683 (-224)) (-683 (-224)) (-224) (-562) (-562) (-562) (-669 (-224)) (-562))))) (T -745)) -((-1857 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-562)) (-5 *5 (-683 (-224))) (-5 *6 (-669 (-224))) (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-745)))) (-4345 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *5 (-1150)) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1030)) (-5 *1 (-745)))) (-1688 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-745))))) -(-10 -7 (-15 -1688 ((-1030) (-562) (-562) (-562) (-562) (-224) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -4345 ((-1030) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-1150) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-387)) (|:| |fp| (-83 BNDY))))) (-15 -1857 ((-1030) (-224) (-224) (-562) (-562) (-683 (-224)) (-683 (-224)) (-224) (-224) (-562) (-562) (-683 (-224)) (-683 (-224)) (-224) (-224) (-562) (-562) (-683 (-224)) (-683 (-224)) (-224) (-562) (-562) (-562) (-669 (-224)) (-562)))) -((-3547 (((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-224) (-683 (-224)) (-224) (-224) (-562)) 35)) (-3714 (((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-562) (-224) (-224) (-562)) 34)) (-2722 (((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-562)) (-683 (-224)) (-224) (-224) (-562)) 33)) (-1558 (((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562)) 29)) (-2615 (((-1030) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562)) 28)) (-2560 (((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-224) (-224) (-562)) 27)) (-1512 (((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-683 (-224)) (-562)) 24)) (-3571 (((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-683 (-224)) (-562)) 23)) (-3037 (((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562)) 22)) (-3309 (((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562) (-562) (-562)) 21))) -(((-746) (-10 -7 (-15 -3309 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562) (-562) (-562))) (-15 -3037 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -3571 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-683 (-224)) (-562))) (-15 -1512 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-683 (-224)) (-562))) (-15 -2560 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-224) (-224) (-562))) (-15 -2615 ((-1030) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -1558 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2722 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-562)) (-683 (-224)) (-224) (-224) (-562))) (-15 -3714 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-562) (-224) (-224) (-562))) (-15 -3547 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-224) (-683 (-224)) (-224) (-224) (-562))))) (T -746)) -((-3547 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) (-5 *2 (-1030)) (-5 *1 (-746)))) (-3714 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) (-5 *2 (-1030)) (-5 *1 (-746)))) (-2722 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-683 (-224))) (-5 *5 (-683 (-562))) (-5 *6 (-224)) (-5 *3 (-562)) (-5 *2 (-1030)) (-5 *1 (-746)))) (-1558 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-746)))) (-2615 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-746)))) (-2560 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) (-5 *2 (-1030)) (-5 *1 (-746)))) (-1512 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-746)))) (-3571 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-746)))) (-3037 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-746)))) (-3309 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-746))))) -(-10 -7 (-15 -3309 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562) (-562) (-562))) (-15 -3037 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -3571 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-683 (-224)) (-562))) (-15 -1512 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-683 (-224)) (-562))) (-15 -2560 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-224) (-224) (-562))) (-15 -2615 ((-1030) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -1558 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2722 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-562)) (-683 (-224)) (-224) (-224) (-562))) (-15 -3714 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-562) (-224) (-224) (-562))) (-15 -3547 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-224) (-683 (-224)) (-224) (-224) (-562)))) -((-3440 (((-1030) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562) (-683 (-224)) (-683 (-224)) (-562) (-562) (-562)) 45)) (-2189 (((-1030) (-562) (-562) (-562) (-224) (-683 (-224)) (-683 (-224)) (-562)) 44)) (-1861 (((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-562) (-562)) 43)) (-4356 (((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562)) 42)) (-4011 (((-1030) (-1150) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-224) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-683 (-224)) (-683 (-224)) (-562)) 41)) (-1697 (((-1030) (-1150) (-562) (-683 (-224)) (-562) (-683 (-224)) (-683 (-224)) (-224) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-683 (-224)) (-683 (-224)) (-683 (-562)) (-562)) 40)) (-3038 (((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-562)) (-562) (-562) (-562) (-224) (-683 (-224)) (-562)) 39)) (-3646 (((-1030) (-1150) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-224) (-562) (-562) (-562) (-683 (-224)) (-562) (-683 (-224)) (-683 (-562))) 38)) (-2173 (((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562)) 35)) (-2425 (((-1030) (-562) (-683 (-224)) (-683 (-224)) (-224) (-562) (-562)) 34)) (-2287 (((-1030) (-562) (-683 (-224)) (-683 (-224)) (-224) (-562)) 33)) (-2528 (((-1030) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562)) 32)) (-2462 (((-1030) (-562) (-224) (-224) (-683 (-224)) (-562) (-562) (-224) (-562)) 31)) (-1528 (((-1030) (-562) (-224) (-224) (-683 (-224)) (-562) (-562) (-224) (-562) (-562) (-562)) 30)) (-1372 (((-1030) (-562) (-224) (-224) (-683 (-224)) (-562) (-562) (-562) (-562) (-562)) 29)) (-2862 (((-1030) (-562) (-562) (-562) (-224) (-224) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-683 (-224)) (-683 (-224)) (-562) (-683 (-562)) (-562) (-562) (-562)) 28)) (-2422 (((-1030) (-562) (-683 (-224)) (-224) (-562)) 24)) (-2161 (((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562)) 21))) -(((-747) (-10 -7 (-15 -2161 ((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2422 ((-1030) (-562) (-683 (-224)) (-224) (-562))) (-15 -2862 ((-1030) (-562) (-562) (-562) (-224) (-224) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-683 (-224)) (-683 (-224)) (-562) (-683 (-562)) (-562) (-562) (-562))) (-15 -1372 ((-1030) (-562) (-224) (-224) (-683 (-224)) (-562) (-562) (-562) (-562) (-562))) (-15 -1528 ((-1030) (-562) (-224) (-224) (-683 (-224)) (-562) (-562) (-224) (-562) (-562) (-562))) (-15 -2462 ((-1030) (-562) (-224) (-224) (-683 (-224)) (-562) (-562) (-224) (-562))) (-15 -2528 ((-1030) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2287 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-224) (-562))) (-15 -2425 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-224) (-562) (-562))) (-15 -2173 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -3646 ((-1030) (-1150) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-224) (-562) (-562) (-562) (-683 (-224)) (-562) (-683 (-224)) (-683 (-562)))) (-15 -3038 ((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-562)) (-562) (-562) (-562) (-224) (-683 (-224)) (-562))) (-15 -1697 ((-1030) (-1150) (-562) (-683 (-224)) (-562) (-683 (-224)) (-683 (-224)) (-224) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-683 (-224)) (-683 (-224)) (-683 (-562)) (-562))) (-15 -4011 ((-1030) (-1150) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-224) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -4356 ((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -1861 ((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-562) (-562))) (-15 -2189 ((-1030) (-562) (-562) (-562) (-224) (-683 (-224)) (-683 (-224)) (-562))) (-15 -3440 ((-1030) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562) (-683 (-224)) (-683 (-224)) (-562) (-562) (-562))))) (T -747)) -((-3440 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-747)))) (-2189 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-747)))) (-1861 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-747)))) (-4356 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-747)))) (-4011 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1150)) (-5 *4 (-562)) (-5 *5 (-683 (-224))) (-5 *6 (-224)) (-5 *2 (-1030)) (-5 *1 (-747)))) (-1697 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1150)) (-5 *5 (-683 (-224))) (-5 *6 (-224)) (-5 *7 (-683 (-562))) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-747)))) (-3038 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-683 (-224))) (-5 *5 (-683 (-562))) (-5 *6 (-224)) (-5 *3 (-562)) (-5 *2 (-1030)) (-5 *1 (-747)))) (-3646 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1150)) (-5 *5 (-683 (-224))) (-5 *6 (-224)) (-5 *7 (-683 (-562))) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-747)))) (-2173 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-747)))) (-2425 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) (-5 *2 (-1030)) (-5 *1 (-747)))) (-2287 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) (-5 *2 (-1030)) (-5 *1 (-747)))) (-2528 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-747)))) (-2462 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-747)))) (-1528 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-747)))) (-1372 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-747)))) (-2862 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-683 (-224))) (-5 *6 (-683 (-562))) (-5 *3 (-562)) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-747)))) (-2422 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) (-5 *2 (-1030)) (-5 *1 (-747)))) (-2161 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-747))))) -(-10 -7 (-15 -2161 ((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2422 ((-1030) (-562) (-683 (-224)) (-224) (-562))) (-15 -2862 ((-1030) (-562) (-562) (-562) (-224) (-224) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-683 (-224)) (-683 (-224)) (-562) (-683 (-562)) (-562) (-562) (-562))) (-15 -1372 ((-1030) (-562) (-224) (-224) (-683 (-224)) (-562) (-562) (-562) (-562) (-562))) (-15 -1528 ((-1030) (-562) (-224) (-224) (-683 (-224)) (-562) (-562) (-224) (-562) (-562) (-562))) (-15 -2462 ((-1030) (-562) (-224) (-224) (-683 (-224)) (-562) (-562) (-224) (-562))) (-15 -2528 ((-1030) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2287 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-224) (-562))) (-15 -2425 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-224) (-562) (-562))) (-15 -2173 ((-1030) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -3646 ((-1030) (-1150) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-224) (-562) (-562) (-562) (-683 (-224)) (-562) (-683 (-224)) (-683 (-562)))) (-15 -3038 ((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-562)) (-562) (-562) (-562) (-224) (-683 (-224)) (-562))) (-15 -1697 ((-1030) (-1150) (-562) (-683 (-224)) (-562) (-683 (-224)) (-683 (-224)) (-224) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-683 (-224)) (-683 (-224)) (-683 (-562)) (-562))) (-15 -4011 ((-1030) (-1150) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-224) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -4356 ((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -1861 ((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-562) (-562))) (-15 -2189 ((-1030) (-562) (-562) (-562) (-224) (-683 (-224)) (-683 (-224)) (-562))) (-15 -3440 ((-1030) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562) (-683 (-224)) (-683 (-224)) (-562) (-562) (-562)))) -((-3303 (((-1030) (-562) (-562) (-562) (-224) (-683 (-224)) (-562) (-683 (-224)) (-562)) 63)) (-3343 (((-1030) (-562) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-562) (-112) (-224) (-562) (-224) (-224) (-112) (-224) (-224) (-224) (-224) (-112) (-562) (-562) (-562) (-562) (-562) (-224) (-224) (-224) (-562) (-562) (-562) (-562) (-562) (-683 (-562)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN)))) 62)) (-2577 (((-1030) (-562) (-562) (-562) (-562) (-562) (-562) (-562) (-562) (-224) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-112) (-112) (-112) (-562) (-562) (-683 (-224)) (-683 (-562)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS)))) 58)) (-2253 (((-1030) (-562) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-112) (-562) (-562) (-683 (-224)) (-562)) 51)) (-2079 (((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1)))) 50)) (-3352 (((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-63 LSFUN2)))) 46)) (-3279 (((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1)))) 42)) (-2081 (((-1030) (-562) (-224) (-224) (-562) (-224) (-112) (-224) (-224) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN)))) 38))) -(((-748) (-10 -7 (-15 -2081 ((-1030) (-562) (-224) (-224) (-562) (-224) (-112) (-224) (-224) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN))))) (-15 -3279 ((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1))))) (-15 -3352 ((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-63 LSFUN2))))) (-15 -2079 ((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1))))) (-15 -2253 ((-1030) (-562) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-112) (-562) (-562) (-683 (-224)) (-562))) (-15 -2577 ((-1030) (-562) (-562) (-562) (-562) (-562) (-562) (-562) (-562) (-224) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-112) (-112) (-112) (-562) (-562) (-683 (-224)) (-683 (-562)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS))))) (-15 -3343 ((-1030) (-562) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-562) (-112) (-224) (-562) (-224) (-224) (-112) (-224) (-224) (-224) (-224) (-112) (-562) (-562) (-562) (-562) (-562) (-224) (-224) (-224) (-562) (-562) (-562) (-562) (-562) (-683 (-562)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN))))) (-15 -3303 ((-1030) (-562) (-562) (-562) (-224) (-683 (-224)) (-562) (-683 (-224)) (-562))))) (T -748)) -((-3303 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-748)))) (-3343 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-683 (-224))) (-5 *5 (-112)) (-5 *6 (-224)) (-5 *7 (-683 (-562))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-562)) (-5 *2 (-1030)) (-5 *1 (-748)))) (-2577 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-683 (-224))) (-5 *6 (-112)) (-5 *7 (-683 (-562))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-562)) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-748)))) (-2253 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-112)) (-5 *2 (-1030)) (-5 *1 (-748)))) (-2079 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1030)) (-5 *1 (-748)))) (-3352 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1030)) (-5 *1 (-748)))) (-3279 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1030)) (-5 *1 (-748)))) (-2081 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-562)) (-5 *5 (-112)) (-5 *6 (-683 (-224))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-748))))) -(-10 -7 (-15 -2081 ((-1030) (-562) (-224) (-224) (-562) (-224) (-112) (-224) (-224) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN))))) (-15 -3279 ((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1))))) (-15 -3352 ((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-63 LSFUN2))))) (-15 -2079 ((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1))))) (-15 -2253 ((-1030) (-562) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-112) (-562) (-562) (-683 (-224)) (-562))) (-15 -2577 ((-1030) (-562) (-562) (-562) (-562) (-562) (-562) (-562) (-562) (-224) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-112) (-112) (-112) (-562) (-562) (-683 (-224)) (-683 (-562)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS))))) (-15 -3343 ((-1030) (-562) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-562) (-112) (-224) (-562) (-224) (-224) (-112) (-224) (-224) (-224) (-224) (-112) (-562) (-562) (-562) (-562) (-562) (-224) (-224) (-224) (-562) (-562) (-562) (-562) (-562) (-683 (-562)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN))))) (-15 -3303 ((-1030) (-562) (-562) (-562) (-224) (-683 (-224)) (-562) (-683 (-224)) (-562)))) -((-4078 (((-1030) (-1150) (-562) (-562) (-562) (-562) (-683 (-168 (-224))) (-683 (-168 (-224))) (-562)) 47)) (-3429 (((-1030) (-1150) (-1150) (-562) (-562) (-683 (-168 (-224))) (-562) (-683 (-168 (-224))) (-562) (-562) (-683 (-168 (-224))) (-562)) 46)) (-2231 (((-1030) (-562) (-562) (-562) (-683 (-168 (-224))) (-562)) 45)) (-2075 (((-1030) (-1150) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562)) 40)) (-4273 (((-1030) (-1150) (-1150) (-562) (-562) (-683 (-224)) (-562) (-683 (-224)) (-562) (-562) (-683 (-224)) (-562)) 39)) (-3172 (((-1030) (-562) (-562) (-562) (-683 (-224)) (-562)) 36)) (-3386 (((-1030) (-562) (-683 (-224)) (-562) (-683 (-562)) (-562)) 35)) (-2255 (((-1030) (-562) (-562) (-562) (-562) (-639 (-112)) (-683 (-224)) (-683 (-562)) (-683 (-562)) (-224) (-224) (-562)) 34)) (-3409 (((-1030) (-562) (-562) (-562) (-683 (-562)) (-683 (-562)) (-683 (-562)) (-683 (-562)) (-112) (-224) (-112) (-683 (-562)) (-683 (-224)) (-562)) 33)) (-2137 (((-1030) (-562) (-562) (-562) (-562) (-224) (-112) (-112) (-639 (-112)) (-683 (-224)) (-683 (-562)) (-683 (-562)) (-562)) 32))) -(((-749) (-10 -7 (-15 -2137 ((-1030) (-562) (-562) (-562) (-562) (-224) (-112) (-112) (-639 (-112)) (-683 (-224)) (-683 (-562)) (-683 (-562)) (-562))) (-15 -3409 ((-1030) (-562) (-562) (-562) (-683 (-562)) (-683 (-562)) (-683 (-562)) (-683 (-562)) (-112) (-224) (-112) (-683 (-562)) (-683 (-224)) (-562))) (-15 -2255 ((-1030) (-562) (-562) (-562) (-562) (-639 (-112)) (-683 (-224)) (-683 (-562)) (-683 (-562)) (-224) (-224) (-562))) (-15 -3386 ((-1030) (-562) (-683 (-224)) (-562) (-683 (-562)) (-562))) (-15 -3172 ((-1030) (-562) (-562) (-562) (-683 (-224)) (-562))) (-15 -4273 ((-1030) (-1150) (-1150) (-562) (-562) (-683 (-224)) (-562) (-683 (-224)) (-562) (-562) (-683 (-224)) (-562))) (-15 -2075 ((-1030) (-1150) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2231 ((-1030) (-562) (-562) (-562) (-683 (-168 (-224))) (-562))) (-15 -3429 ((-1030) (-1150) (-1150) (-562) (-562) (-683 (-168 (-224))) (-562) (-683 (-168 (-224))) (-562) (-562) (-683 (-168 (-224))) (-562))) (-15 -4078 ((-1030) (-1150) (-562) (-562) (-562) (-562) (-683 (-168 (-224))) (-683 (-168 (-224))) (-562))))) (T -749)) -((-4078 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1150)) (-5 *4 (-562)) (-5 *5 (-683 (-168 (-224)))) (-5 *2 (-1030)) (-5 *1 (-749)))) (-3429 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1150)) (-5 *4 (-562)) (-5 *5 (-683 (-168 (-224)))) (-5 *2 (-1030)) (-5 *1 (-749)))) (-2231 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-168 (-224)))) (-5 *2 (-1030)) (-5 *1 (-749)))) (-2075 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1150)) (-5 *4 (-562)) (-5 *5 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-749)))) (-4273 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1150)) (-5 *4 (-562)) (-5 *5 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-749)))) (-3172 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-749)))) (-3386 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-683 (-224))) (-5 *5 (-683 (-562))) (-5 *3 (-562)) (-5 *2 (-1030)) (-5 *1 (-749)))) (-2255 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-639 (-112))) (-5 *5 (-683 (-224))) (-5 *6 (-683 (-562))) (-5 *7 (-224)) (-5 *3 (-562)) (-5 *2 (-1030)) (-5 *1 (-749)))) (-3409 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-683 (-562))) (-5 *5 (-112)) (-5 *7 (-683 (-224))) (-5 *3 (-562)) (-5 *6 (-224)) (-5 *2 (-1030)) (-5 *1 (-749)))) (-2137 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-639 (-112))) (-5 *7 (-683 (-224))) (-5 *8 (-683 (-562))) (-5 *3 (-562)) (-5 *4 (-224)) (-5 *5 (-112)) (-5 *2 (-1030)) (-5 *1 (-749))))) -(-10 -7 (-15 -2137 ((-1030) (-562) (-562) (-562) (-562) (-224) (-112) (-112) (-639 (-112)) (-683 (-224)) (-683 (-562)) (-683 (-562)) (-562))) (-15 -3409 ((-1030) (-562) (-562) (-562) (-683 (-562)) (-683 (-562)) (-683 (-562)) (-683 (-562)) (-112) (-224) (-112) (-683 (-562)) (-683 (-224)) (-562))) (-15 -2255 ((-1030) (-562) (-562) (-562) (-562) (-639 (-112)) (-683 (-224)) (-683 (-562)) (-683 (-562)) (-224) (-224) (-562))) (-15 -3386 ((-1030) (-562) (-683 (-224)) (-562) (-683 (-562)) (-562))) (-15 -3172 ((-1030) (-562) (-562) (-562) (-683 (-224)) (-562))) (-15 -4273 ((-1030) (-1150) (-1150) (-562) (-562) (-683 (-224)) (-562) (-683 (-224)) (-562) (-562) (-683 (-224)) (-562))) (-15 -2075 ((-1030) (-1150) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2231 ((-1030) (-562) (-562) (-562) (-683 (-168 (-224))) (-562))) (-15 -3429 ((-1030) (-1150) (-1150) (-562) (-562) (-683 (-168 (-224))) (-562) (-683 (-168 (-224))) (-562) (-562) (-683 (-168 (-224))) (-562))) (-15 -4078 ((-1030) (-1150) (-562) (-562) (-562) (-562) (-683 (-168 (-224))) (-683 (-168 (-224))) (-562)))) -((-2299 (((-1030) (-562) (-562) (-562) (-562) (-562) (-112) (-562) (-112) (-562) (-683 (-168 (-224))) (-683 (-168 (-224))) (-562)) 66)) (-3251 (((-1030) (-562) (-562) (-562) (-562) (-562) (-112) (-562) (-112) (-562) (-683 (-224)) (-683 (-224)) (-562)) 61)) (-1371 (((-1030) (-562) (-562) (-224) (-562) (-562) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))) (-387)) 56) (((-1030) (-562) (-562) (-224) (-562) (-562) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) 55)) (-3860 (((-1030) (-562) (-562) (-562) (-224) (-112) (-562) (-683 (-224)) (-683 (-224)) (-562)) 37)) (-2556 (((-1030) (-562) (-562) (-224) (-224) (-562) (-562) (-683 (-224)) (-562)) 33)) (-3686 (((-1030) (-683 (-224)) (-562) (-683 (-224)) (-562) (-562) (-562) (-562) (-562)) 30)) (-1726 (((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562)) 29)) (-1354 (((-1030) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562)) 28)) (-3025 (((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562)) 27)) (-2899 (((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-562)) 26)) (-1668 (((-1030) (-562) (-562) (-683 (-224)) (-562)) 25)) (-3769 (((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562)) 24)) (-1355 (((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562)) 23)) (-1565 (((-1030) (-683 (-224)) (-562) (-562) (-562) (-562)) 22)) (-1714 (((-1030) (-562) (-562) (-683 (-224)) (-562)) 21))) -(((-750) (-10 -7 (-15 -1714 ((-1030) (-562) (-562) (-683 (-224)) (-562))) (-15 -1565 ((-1030) (-683 (-224)) (-562) (-562) (-562) (-562))) (-15 -1355 ((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -3769 ((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -1668 ((-1030) (-562) (-562) (-683 (-224)) (-562))) (-15 -2899 ((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-562))) (-15 -3025 ((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -1354 ((-1030) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -1726 ((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -3686 ((-1030) (-683 (-224)) (-562) (-683 (-224)) (-562) (-562) (-562) (-562) (-562))) (-15 -2556 ((-1030) (-562) (-562) (-224) (-224) (-562) (-562) (-683 (-224)) (-562))) (-15 -3860 ((-1030) (-562) (-562) (-562) (-224) (-112) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -1371 ((-1030) (-562) (-562) (-224) (-562) (-562) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))))) (-15 -1371 ((-1030) (-562) (-562) (-224) (-562) (-562) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))) (-387))) (-15 -3251 ((-1030) (-562) (-562) (-562) (-562) (-562) (-112) (-562) (-112) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2299 ((-1030) (-562) (-562) (-562) (-562) (-562) (-112) (-562) (-112) (-562) (-683 (-168 (-224))) (-683 (-168 (-224))) (-562))))) (T -750)) -((-2299 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-562)) (-5 *4 (-112)) (-5 *5 (-683 (-168 (-224)))) (-5 *2 (-1030)) (-5 *1 (-750)))) (-3251 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-562)) (-5 *4 (-112)) (-5 *5 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-750)))) (-1371 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-387)) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-750)))) (-1371 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-750)))) (-3860 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-562)) (-5 *5 (-112)) (-5 *6 (-683 (-224))) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-750)))) (-2556 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-750)))) (-3686 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-750)))) (-1726 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-750)))) (-1354 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-750)))) (-3025 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-750)))) (-2899 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-750)))) (-1668 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-750)))) (-3769 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-750)))) (-1355 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-750)))) (-1565 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-750)))) (-1714 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-750))))) -(-10 -7 (-15 -1714 ((-1030) (-562) (-562) (-683 (-224)) (-562))) (-15 -1565 ((-1030) (-683 (-224)) (-562) (-562) (-562) (-562))) (-15 -1355 ((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -3769 ((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -1668 ((-1030) (-562) (-562) (-683 (-224)) (-562))) (-15 -2899 ((-1030) (-562) (-562) (-562) (-562) (-683 (-224)) (-562))) (-15 -3025 ((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -1354 ((-1030) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -1726 ((-1030) (-562) (-562) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -3686 ((-1030) (-683 (-224)) (-562) (-683 (-224)) (-562) (-562) (-562) (-562) (-562))) (-15 -2556 ((-1030) (-562) (-562) (-224) (-224) (-562) (-562) (-683 (-224)) (-562))) (-15 -3860 ((-1030) (-562) (-562) (-562) (-224) (-112) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -1371 ((-1030) (-562) (-562) (-224) (-562) (-562) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))))) (-15 -1371 ((-1030) (-562) (-562) (-224) (-562) (-562) (-562) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE))) (-387))) (-15 -3251 ((-1030) (-562) (-562) (-562) (-562) (-562) (-112) (-562) (-112) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2299 ((-1030) (-562) (-562) (-562) (-562) (-562) (-112) (-562) (-112) (-562) (-683 (-168 (-224))) (-683 (-168 (-224))) (-562)))) -((-4350 (((-1030) (-562) (-562) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD)))) 61)) (-1598 (((-1030) (-562) (-683 (-224)) (-562) (-683 (-224)) (-683 (-562)) (-562) (-683 (-224)) (-562) (-562) (-562) (-562)) 57)) (-1862 (((-1030) (-562) (-683 (-224)) (-112) (-224) (-562) (-562) (-562) (-562) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE)))) 56)) (-4238 (((-1030) (-562) (-562) (-683 (-224)) (-562) (-683 (-562)) (-562) (-683 (-562)) (-683 (-224)) (-683 (-562)) (-683 (-562)) (-683 (-224)) (-683 (-224)) (-683 (-562)) (-562)) 37)) (-2845 (((-1030) (-562) (-562) (-562) (-224) (-562) (-683 (-224)) (-683 (-224)) (-562)) 36)) (-2983 (((-1030) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562)) 33)) (-2238 (((-1030) (-562) (-683 (-224)) (-562) (-683 (-562)) (-683 (-562)) (-562) (-683 (-562)) (-683 (-224))) 32)) (-1342 (((-1030) (-683 (-224)) (-562) (-683 (-224)) (-562) (-562) (-562)) 28)) (-2067 (((-1030) (-562) (-683 (-224)) (-562) (-683 (-224)) (-562)) 27)) (-2592 (((-1030) (-562) (-683 (-224)) (-562) (-683 (-224)) (-562)) 26)) (-2933 (((-1030) (-562) (-683 (-168 (-224))) (-562) (-562) (-562) (-562) (-683 (-168 (-224))) (-562)) 22))) -(((-751) (-10 -7 (-15 -2933 ((-1030) (-562) (-683 (-168 (-224))) (-562) (-562) (-562) (-562) (-683 (-168 (-224))) (-562))) (-15 -2592 ((-1030) (-562) (-683 (-224)) (-562) (-683 (-224)) (-562))) (-15 -2067 ((-1030) (-562) (-683 (-224)) (-562) (-683 (-224)) (-562))) (-15 -1342 ((-1030) (-683 (-224)) (-562) (-683 (-224)) (-562) (-562) (-562))) (-15 -2238 ((-1030) (-562) (-683 (-224)) (-562) (-683 (-562)) (-683 (-562)) (-562) (-683 (-562)) (-683 (-224)))) (-15 -2983 ((-1030) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2845 ((-1030) (-562) (-562) (-562) (-224) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -4238 ((-1030) (-562) (-562) (-683 (-224)) (-562) (-683 (-562)) (-562) (-683 (-562)) (-683 (-224)) (-683 (-562)) (-683 (-562)) (-683 (-224)) (-683 (-224)) (-683 (-562)) (-562))) (-15 -1862 ((-1030) (-562) (-683 (-224)) (-112) (-224) (-562) (-562) (-562) (-562) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE))))) (-15 -1598 ((-1030) (-562) (-683 (-224)) (-562) (-683 (-224)) (-683 (-562)) (-562) (-683 (-224)) (-562) (-562) (-562) (-562))) (-15 -4350 ((-1030) (-562) (-562) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD))))))) (T -751)) -((-4350 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD)))) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-751)))) (-1598 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-683 (-224))) (-5 *5 (-683 (-562))) (-5 *3 (-562)) (-5 *2 (-1030)) (-5 *1 (-751)))) (-1862 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-112)) (-5 *6 (-224)) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1030)) (-5 *1 (-751)))) (-4238 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-683 (-224))) (-5 *5 (-683 (-562))) (-5 *3 (-562)) (-5 *2 (-1030)) (-5 *1 (-751)))) (-2845 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-751)))) (-2983 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-751)))) (-2238 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-683 (-224))) (-5 *5 (-683 (-562))) (-5 *3 (-562)) (-5 *2 (-1030)) (-5 *1 (-751)))) (-1342 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-751)))) (-2067 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-751)))) (-2592 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-751)))) (-2933 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-168 (-224)))) (-5 *2 (-1030)) (-5 *1 (-751))))) -(-10 -7 (-15 -2933 ((-1030) (-562) (-683 (-168 (-224))) (-562) (-562) (-562) (-562) (-683 (-168 (-224))) (-562))) (-15 -2592 ((-1030) (-562) (-683 (-224)) (-562) (-683 (-224)) (-562))) (-15 -2067 ((-1030) (-562) (-683 (-224)) (-562) (-683 (-224)) (-562))) (-15 -1342 ((-1030) (-683 (-224)) (-562) (-683 (-224)) (-562) (-562) (-562))) (-15 -2238 ((-1030) (-562) (-683 (-224)) (-562) (-683 (-562)) (-683 (-562)) (-562) (-683 (-562)) (-683 (-224)))) (-15 -2983 ((-1030) (-562) (-562) (-683 (-224)) (-683 (-224)) (-683 (-224)) (-562))) (-15 -2845 ((-1030) (-562) (-562) (-562) (-224) (-562) (-683 (-224)) (-683 (-224)) (-562))) (-15 -4238 ((-1030) (-562) (-562) (-683 (-224)) (-562) (-683 (-562)) (-562) (-683 (-562)) (-683 (-224)) (-683 (-562)) (-683 (-562)) (-683 (-224)) (-683 (-224)) (-683 (-562)) (-562))) (-15 -1862 ((-1030) (-562) (-683 (-224)) (-112) (-224) (-562) (-562) (-562) (-562) (-224) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE))))) (-15 -1598 ((-1030) (-562) (-683 (-224)) (-562) (-683 (-224)) (-683 (-562)) (-562) (-683 (-224)) (-562) (-562) (-562) (-562))) (-15 -4350 ((-1030) (-562) (-562) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-562) (-683 (-224)) (-562) (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD)))))) -((-1779 (((-1030) (-1150) (-562) (-562) (-683 (-224)) (-562) (-562) (-683 (-224))) 29)) (-1871 (((-1030) (-1150) (-562) (-562) (-683 (-224))) 28)) (-1656 (((-1030) (-1150) (-562) (-562) (-683 (-224)) (-562) (-683 (-562)) (-562) (-683 (-224))) 27)) (-2270 (((-1030) (-562) (-562) (-562) (-683 (-224))) 21))) -(((-752) (-10 -7 (-15 -2270 ((-1030) (-562) (-562) (-562) (-683 (-224)))) (-15 -1656 ((-1030) (-1150) (-562) (-562) (-683 (-224)) (-562) (-683 (-562)) (-562) (-683 (-224)))) (-15 -1871 ((-1030) (-1150) (-562) (-562) (-683 (-224)))) (-15 -1779 ((-1030) (-1150) (-562) (-562) (-683 (-224)) (-562) (-562) (-683 (-224)))))) (T -752)) -((-1779 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1150)) (-5 *4 (-562)) (-5 *5 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-752)))) (-1871 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1150)) (-5 *4 (-562)) (-5 *5 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-752)))) (-1656 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1150)) (-5 *5 (-683 (-224))) (-5 *6 (-683 (-562))) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-752)))) (-2270 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) (-5 *1 (-752))))) -(-10 -7 (-15 -2270 ((-1030) (-562) (-562) (-562) (-683 (-224)))) (-15 -1656 ((-1030) (-1150) (-562) (-562) (-683 (-224)) (-562) (-683 (-562)) (-562) (-683 (-224)))) (-15 -1871 ((-1030) (-1150) (-562) (-562) (-683 (-224)))) (-15 -1779 ((-1030) (-1150) (-562) (-562) (-683 (-224)) (-562) (-562) (-683 (-224))))) -((-1549 (((-1030) (-224) (-224) (-224) (-224) (-562)) 62)) (-1689 (((-1030) (-224) (-224) (-224) (-562)) 61)) (-4083 (((-1030) (-224) (-224) (-224) (-562)) 60)) (-4260 (((-1030) (-224) (-224) (-562)) 59)) (-2093 (((-1030) (-224) (-562)) 58)) (-3442 (((-1030) (-224) (-562)) 57)) (-3314 (((-1030) (-224) (-562)) 56)) (-3434 (((-1030) (-224) (-562)) 55)) (-4353 (((-1030) (-224) (-562)) 54)) (-3631 (((-1030) (-224) (-562)) 53)) (-1828 (((-1030) (-224) (-168 (-224)) (-562) (-1150) (-562)) 52)) (-1995 (((-1030) (-224) (-168 (-224)) (-562) (-1150) (-562)) 51)) (-3903 (((-1030) (-224) (-562)) 50)) (-3760 (((-1030) (-224) (-562)) 49)) (-2546 (((-1030) (-224) (-562)) 48)) (-3163 (((-1030) (-224) (-562)) 47)) (-1381 (((-1030) (-562) (-224) (-168 (-224)) (-562) (-1150) (-562)) 46)) (-3530 (((-1030) (-1150) (-168 (-224)) (-1150) (-562)) 45)) (-4253 (((-1030) (-1150) (-168 (-224)) (-1150) (-562)) 44)) (-1959 (((-1030) (-224) (-168 (-224)) (-562) (-1150) (-562)) 43)) (-3122 (((-1030) (-224) (-168 (-224)) (-562) (-1150) (-562)) 42)) (-2040 (((-1030) (-224) (-562)) 39)) (-4146 (((-1030) (-224) (-562)) 38)) (-3589 (((-1030) (-224) (-562)) 37)) (-1562 (((-1030) (-224) (-562)) 36)) (-3459 (((-1030) (-224) (-562)) 35)) (-3984 (((-1030) (-224) (-562)) 34)) (-2339 (((-1030) (-224) (-562)) 33)) (-4236 (((-1030) (-224) (-562)) 32)) (-3843 (((-1030) (-224) (-562)) 31)) (-4090 (((-1030) (-224) (-562)) 30)) (-1297 (((-1030) (-224) (-224) (-224) (-562)) 29)) (-2163 (((-1030) (-224) (-562)) 28)) (-4005 (((-1030) (-224) (-562)) 27)) (-3102 (((-1030) (-224) (-562)) 26)) (-1427 (((-1030) (-224) (-562)) 25)) (-2317 (((-1030) (-224) (-562)) 24)) (-4094 (((-1030) (-168 (-224)) (-562)) 21))) -(((-753) (-10 -7 (-15 -4094 ((-1030) (-168 (-224)) (-562))) (-15 -2317 ((-1030) (-224) (-562))) (-15 -1427 ((-1030) (-224) (-562))) (-15 -3102 ((-1030) (-224) (-562))) (-15 -4005 ((-1030) (-224) (-562))) (-15 -2163 ((-1030) (-224) (-562))) (-15 -1297 ((-1030) (-224) (-224) (-224) (-562))) (-15 -4090 ((-1030) (-224) (-562))) (-15 -3843 ((-1030) (-224) (-562))) (-15 -4236 ((-1030) (-224) (-562))) (-15 -2339 ((-1030) (-224) (-562))) (-15 -3984 ((-1030) (-224) (-562))) (-15 -3459 ((-1030) (-224) (-562))) (-15 -1562 ((-1030) (-224) (-562))) (-15 -3589 ((-1030) (-224) (-562))) (-15 -4146 ((-1030) (-224) (-562))) (-15 -2040 ((-1030) (-224) (-562))) (-15 -3122 ((-1030) (-224) (-168 (-224)) (-562) (-1150) (-562))) (-15 -1959 ((-1030) (-224) (-168 (-224)) (-562) (-1150) (-562))) (-15 -4253 ((-1030) (-1150) (-168 (-224)) (-1150) (-562))) (-15 -3530 ((-1030) (-1150) (-168 (-224)) (-1150) (-562))) (-15 -1381 ((-1030) (-562) (-224) (-168 (-224)) (-562) (-1150) (-562))) (-15 -3163 ((-1030) (-224) (-562))) (-15 -2546 ((-1030) (-224) (-562))) (-15 -3760 ((-1030) (-224) (-562))) (-15 -3903 ((-1030) (-224) (-562))) (-15 -1995 ((-1030) (-224) (-168 (-224)) (-562) (-1150) (-562))) (-15 -1828 ((-1030) (-224) (-168 (-224)) (-562) (-1150) (-562))) (-15 -3631 ((-1030) (-224) (-562))) (-15 -4353 ((-1030) (-224) (-562))) (-15 -3434 ((-1030) (-224) (-562))) (-15 -3314 ((-1030) (-224) (-562))) (-15 -3442 ((-1030) (-224) (-562))) (-15 -2093 ((-1030) (-224) (-562))) (-15 -4260 ((-1030) (-224) (-224) (-562))) (-15 -4083 ((-1030) (-224) (-224) (-224) (-562))) (-15 -1689 ((-1030) (-224) (-224) (-224) (-562))) (-15 -1549 ((-1030) (-224) (-224) (-224) (-224) (-562))))) (T -753)) -((-1549 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-1689 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-4083 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-4260 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-2093 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-3442 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-3314 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-3434 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-4353 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-3631 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-1828 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-224))) (-5 *5 (-562)) (-5 *6 (-1150)) (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-1995 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-224))) (-5 *5 (-562)) (-5 *6 (-1150)) (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-3903 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-3760 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-2546 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-3163 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-1381 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-562)) (-5 *5 (-168 (-224))) (-5 *6 (-1150)) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-3530 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1150)) (-5 *4 (-168 (-224))) (-5 *5 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-4253 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1150)) (-5 *4 (-168 (-224))) (-5 *5 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-1959 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-224))) (-5 *5 (-562)) (-5 *6 (-1150)) (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-3122 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-224))) (-5 *5 (-562)) (-5 *6 (-1150)) (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-2040 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-4146 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-3589 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-1562 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-3459 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-3984 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-2339 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-4236 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-3843 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-4090 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-1297 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-2163 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-4005 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-3102 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-1427 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-2317 (*1 *2 *3 *4) (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753)))) (-4094 (*1 *2 *3 *4) (-12 (-5 *3 (-168 (-224))) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) -(-10 -7 (-15 -4094 ((-1030) (-168 (-224)) (-562))) (-15 -2317 ((-1030) (-224) (-562))) (-15 -1427 ((-1030) (-224) (-562))) (-15 -3102 ((-1030) (-224) (-562))) (-15 -4005 ((-1030) (-224) (-562))) (-15 -2163 ((-1030) (-224) (-562))) (-15 -1297 ((-1030) (-224) (-224) (-224) (-562))) (-15 -4090 ((-1030) (-224) (-562))) (-15 -3843 ((-1030) (-224) (-562))) (-15 -4236 ((-1030) (-224) (-562))) (-15 -2339 ((-1030) (-224) (-562))) (-15 -3984 ((-1030) (-224) (-562))) (-15 -3459 ((-1030) (-224) (-562))) (-15 -1562 ((-1030) (-224) (-562))) (-15 -3589 ((-1030) (-224) (-562))) (-15 -4146 ((-1030) (-224) (-562))) (-15 -2040 ((-1030) (-224) (-562))) (-15 -3122 ((-1030) (-224) (-168 (-224)) (-562) (-1150) (-562))) (-15 -1959 ((-1030) (-224) (-168 (-224)) (-562) (-1150) (-562))) (-15 -4253 ((-1030) (-1150) (-168 (-224)) (-1150) (-562))) (-15 -3530 ((-1030) (-1150) (-168 (-224)) (-1150) (-562))) (-15 -1381 ((-1030) (-562) (-224) (-168 (-224)) (-562) (-1150) (-562))) (-15 -3163 ((-1030) (-224) (-562))) (-15 -2546 ((-1030) (-224) (-562))) (-15 -3760 ((-1030) (-224) (-562))) (-15 -3903 ((-1030) (-224) (-562))) (-15 -1995 ((-1030) (-224) (-168 (-224)) (-562) (-1150) (-562))) (-15 -1828 ((-1030) (-224) (-168 (-224)) (-562) (-1150) (-562))) (-15 -3631 ((-1030) (-224) (-562))) (-15 -4353 ((-1030) (-224) (-562))) (-15 -3434 ((-1030) (-224) (-562))) (-15 -3314 ((-1030) (-224) (-562))) (-15 -3442 ((-1030) (-224) (-562))) (-15 -2093 ((-1030) (-224) (-562))) (-15 -4260 ((-1030) (-224) (-224) (-562))) (-15 -4083 ((-1030) (-224) (-224) (-224) (-562))) (-15 -1689 ((-1030) (-224) (-224) (-224) (-562))) (-15 -1549 ((-1030) (-224) (-224) (-224) (-224) (-562)))) -((-3780 (((-1261)) 18)) (-1892 (((-1150)) 22)) (-4255 (((-1150)) 21)) (-2220 (((-1096) (-1168) (-683 (-562))) 37) (((-1096) (-1168) (-683 (-224))) 32)) (-2724 (((-112)) 16)) (-2122 (((-1150) (-1150)) 25))) -(((-754) (-10 -7 (-15 -4255 ((-1150))) (-15 -1892 ((-1150))) (-15 -2122 ((-1150) (-1150))) (-15 -2220 ((-1096) (-1168) (-683 (-224)))) (-15 -2220 ((-1096) (-1168) (-683 (-562)))) (-15 -2724 ((-112))) (-15 -3780 ((-1261))))) (T -754)) -((-3780 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-754)))) (-2724 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-754)))) (-2220 (*1 *2 *3 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-683 (-562))) (-5 *2 (-1096)) (-5 *1 (-754)))) (-2220 (*1 *2 *3 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-683 (-224))) (-5 *2 (-1096)) (-5 *1 (-754)))) (-2122 (*1 *2 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-754)))) (-1892 (*1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-754)))) (-4255 (*1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-754))))) -(-10 -7 (-15 -4255 ((-1150))) (-15 -1892 ((-1150))) (-15 -2122 ((-1150) (-1150))) (-15 -2220 ((-1096) (-1168) (-683 (-224)))) (-15 -2220 ((-1096) (-1168) (-683 (-562)))) (-15 -2724 ((-112))) (-15 -3780 ((-1261)))) -((-2114 (($ $ $) 10)) (-2584 (($ $ $ $) 9)) (-4324 (($ $ $) 12))) -(((-755 |#1|) (-10 -8 (-15 -4324 (|#1| |#1| |#1|)) (-15 -2114 (|#1| |#1| |#1|)) (-15 -2584 (|#1| |#1| |#1| |#1|))) (-756)) (T -755)) -NIL -(-10 -8 (-15 -4324 (|#1| |#1| |#1|)) (-15 -2114 (|#1| |#1| |#1|)) (-15 -2584 (|#1| |#1| |#1| |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-2127 (($ $ (-916)) 28)) (-3235 (($ $ (-916)) 29)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-2114 (($ $ $) 25)) (-4053 (((-857) $) 11)) (-2584 (($ $ $ $) 26)) (-4324 (($ $ $) 24)) (-2285 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 30)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 27))) -(((-756) (-139)) (T -756)) -((-2584 (*1 *1 *1 *1 *1) (-4 *1 (-756))) (-2114 (*1 *1 *1 *1) (-4 *1 (-756))) (-4324 (*1 *1 *1 *1) (-4 *1 (-756)))) -(-13 (-21) (-715) (-10 -8 (-15 -2584 ($ $ $ $)) (-15 -2114 ($ $ $)) (-15 -4324 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-609 (-857)) . T) ((-715) . T) ((-1092) . T)) -((-4053 (((-857) $) NIL) (($ (-562)) 10))) -(((-757 |#1|) (-10 -8 (-15 -4053 (|#1| (-562))) (-15 -4053 ((-857) |#1|))) (-758)) (T -757)) -NIL -(-10 -8 (-15 -4053 (|#1| (-562))) (-15 -4053 ((-857) |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-4276 (((-3 $ "failed") $) 40)) (-2127 (($ $ (-916)) 28) (($ $ (-766)) 35)) (-1694 (((-3 $ "failed") $) 38)) (-4367 (((-112) $) 34)) (-2217 (((-3 $ "failed") $) 39)) (-3235 (($ $ (-916)) 29) (($ $ (-766)) 36)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-2114 (($ $ $) 25)) (-4053 (((-857) $) 11) (($ (-562)) 31)) (-1568 (((-766)) 32)) (-2584 (($ $ $ $) 26)) (-4324 (($ $ $) 24)) (-2285 (($) 18 T CONST)) (-2294 (($) 33 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 30) (($ $ (-766)) 37)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 27))) -(((-758) (-139)) (T -758)) -((-1568 (*1 *2) (-12 (-4 *1 (-758)) (-5 *2 (-766)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-758))))) -(-13 (-756) (-717) (-10 -8 (-15 -1568 ((-766))) (-15 -4053 ($ (-562))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-609 (-857)) . T) ((-715) . T) ((-717) . T) ((-756) . T) ((-1092) . T)) -((-3270 (((-639 (-2 (|:| |outval| (-168 |#1|)) (|:| |outmult| (-562)) (|:| |outvect| (-639 (-683 (-168 |#1|)))))) (-683 (-168 (-406 (-562)))) |#1|) 33)) (-2228 (((-639 (-168 |#1|)) (-683 (-168 (-406 (-562)))) |#1|) 23)) (-3683 (((-947 (-168 (-406 (-562)))) (-683 (-168 (-406 (-562)))) (-1168)) 20) (((-947 (-168 (-406 (-562)))) (-683 (-168 (-406 (-562))))) 19))) -(((-759 |#1|) (-10 -7 (-15 -3683 ((-947 (-168 (-406 (-562)))) (-683 (-168 (-406 (-562)))))) (-15 -3683 ((-947 (-168 (-406 (-562)))) (-683 (-168 (-406 (-562)))) (-1168))) (-15 -2228 ((-639 (-168 |#1|)) (-683 (-168 (-406 (-562)))) |#1|)) (-15 -3270 ((-639 (-2 (|:| |outval| (-168 |#1|)) (|:| |outmult| (-562)) (|:| |outvect| (-639 (-683 (-168 |#1|)))))) (-683 (-168 (-406 (-562)))) |#1|))) (-13 (-362) (-843))) (T -759)) -((-3270 (*1 *2 *3 *4) (-12 (-5 *3 (-683 (-168 (-406 (-562))))) (-5 *2 (-639 (-2 (|:| |outval| (-168 *4)) (|:| |outmult| (-562)) (|:| |outvect| (-639 (-683 (-168 *4))))))) (-5 *1 (-759 *4)) (-4 *4 (-13 (-362) (-843))))) (-2228 (*1 *2 *3 *4) (-12 (-5 *3 (-683 (-168 (-406 (-562))))) (-5 *2 (-639 (-168 *4))) (-5 *1 (-759 *4)) (-4 *4 (-13 (-362) (-843))))) (-3683 (*1 *2 *3 *4) (-12 (-5 *3 (-683 (-168 (-406 (-562))))) (-5 *4 (-1168)) (-5 *2 (-947 (-168 (-406 (-562))))) (-5 *1 (-759 *5)) (-4 *5 (-13 (-362) (-843))))) (-3683 (*1 *2 *3) (-12 (-5 *3 (-683 (-168 (-406 (-562))))) (-5 *2 (-947 (-168 (-406 (-562))))) (-5 *1 (-759 *4)) (-4 *4 (-13 (-362) (-843)))))) -(-10 -7 (-15 -3683 ((-947 (-168 (-406 (-562)))) (-683 (-168 (-406 (-562)))))) (-15 -3683 ((-947 (-168 (-406 (-562)))) (-683 (-168 (-406 (-562)))) (-1168))) (-15 -2228 ((-639 (-168 |#1|)) (-683 (-168 (-406 (-562)))) |#1|)) (-15 -3270 ((-639 (-2 (|:| |outval| (-168 |#1|)) (|:| |outmult| (-562)) (|:| |outvect| (-639 (-683 (-168 |#1|)))))) (-683 (-168 (-406 (-562)))) |#1|))) -((-1477 (((-173 (-562)) |#1|) 25))) -(((-760 |#1|) (-10 -7 (-15 -1477 ((-173 (-562)) |#1|))) (-403)) (T -760)) -((-1477 (*1 *2 *3) (-12 (-5 *2 (-173 (-562))) (-5 *1 (-760 *3)) (-4 *3 (-403))))) -(-10 -7 (-15 -1477 ((-173 (-562)) |#1|))) -((-4371 ((|#1| |#1| |#1|) 24)) (-1934 ((|#1| |#1| |#1|) 23)) (-2516 ((|#1| |#1| |#1|) 32)) (-3552 ((|#1| |#1| |#1|) 28)) (-3151 (((-3 |#1| "failed") |#1| |#1|) 27)) (-1651 (((-2 (|:| -3380 |#1|) (|:| -1441 |#1|)) |#1| |#1|) 22))) -(((-761 |#1| |#2|) (-10 -7 (-15 -1651 ((-2 (|:| -3380 |#1|) (|:| -1441 |#1|)) |#1| |#1|)) (-15 -1934 (|#1| |#1| |#1|)) (-15 -4371 (|#1| |#1| |#1|)) (-15 -3151 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3552 (|#1| |#1| |#1|)) (-15 -2516 (|#1| |#1| |#1|))) (-703 |#2|) (-362)) (T -761)) -((-2516 (*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-761 *2 *3)) (-4 *2 (-703 *3)))) (-3552 (*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-761 *2 *3)) (-4 *2 (-703 *3)))) (-3151 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-362)) (-5 *1 (-761 *2 *3)) (-4 *2 (-703 *3)))) (-4371 (*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-761 *2 *3)) (-4 *2 (-703 *3)))) (-1934 (*1 *2 *2 *2) (-12 (-4 *3 (-362)) (-5 *1 (-761 *2 *3)) (-4 *2 (-703 *3)))) (-1651 (*1 *2 *3 *3) (-12 (-4 *4 (-362)) (-5 *2 (-2 (|:| -3380 *3) (|:| -1441 *3))) (-5 *1 (-761 *3 *4)) (-4 *3 (-703 *4))))) -(-10 -7 (-15 -1651 ((-2 (|:| -3380 |#1|) (|:| -1441 |#1|)) |#1| |#1|)) (-15 -1934 (|#1| |#1| |#1|)) (-15 -4371 (|#1| |#1| |#1|)) (-15 -3151 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3552 (|#1| |#1| |#1|)) (-15 -2516 (|#1| |#1| |#1|))) -((-1734 (((-685 (-1214)) $ (-1214)) 26)) (-2667 (((-685 (-547)) $ (-547)) 25)) (-3445 (((-766) $ (-128)) 27)) (-1571 (((-685 (-129)) $ (-129)) 24)) (-3746 (((-685 (-1214)) $) 12)) (-2589 (((-685 (-1213)) $) 8)) (-1617 (((-685 (-1212)) $) 10)) (-3994 (((-685 (-547)) $) 13)) (-1882 (((-685 (-546)) $) 9)) (-4320 (((-685 (-545)) $) 11)) (-2456 (((-766) $ (-128)) 7)) (-2661 (((-685 (-129)) $) 14)) (-2659 (((-112) $) 31)) (-4052 (((-685 $) |#1| (-949)) 32)) (-1380 (($ $) 6))) -(((-762 |#1|) (-139) (-1092)) (T -762)) -((-4052 (*1 *2 *3 *4) (-12 (-5 *4 (-949)) (-4 *3 (-1092)) (-5 *2 (-685 *1)) (-4 *1 (-762 *3)))) (-2659 (*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-1092)) (-5 *2 (-112))))) -(-13 (-574) (-10 -8 (-15 -4052 ((-685 $) |t#1| (-949))) (-15 -2659 ((-112) $)))) -(((-172) . T) ((-526) . T) ((-574) . T) ((-855) . T)) -((-2606 (((-2 (|:| -4291 (-683 (-562))) (|:| |basisDen| (-562)) (|:| |basisInv| (-683 (-562)))) (-562)) 59)) (-2639 (((-2 (|:| -4291 (-683 (-562))) (|:| |basisDen| (-562)) (|:| |basisInv| (-683 (-562))))) 57)) (-2736 (((-562)) 70))) -(((-763 |#1| |#2|) (-10 -7 (-15 -2736 ((-562))) (-15 -2639 ((-2 (|:| -4291 (-683 (-562))) (|:| |basisDen| (-562)) (|:| |basisInv| (-683 (-562)))))) (-15 -2606 ((-2 (|:| -4291 (-683 (-562))) (|:| |basisDen| (-562)) (|:| |basisInv| (-683 (-562)))) (-562)))) (-1232 (-562)) (-408 (-562) |#1|)) (T -763)) -((-2606 (*1 *2 *3) (-12 (-5 *3 (-562)) (-4 *4 (-1232 *3)) (-5 *2 (-2 (|:| -4291 (-683 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-683 *3)))) (-5 *1 (-763 *4 *5)) (-4 *5 (-408 *3 *4)))) (-2639 (*1 *2) (-12 (-4 *3 (-1232 (-562))) (-5 *2 (-2 (|:| -4291 (-683 (-562))) (|:| |basisDen| (-562)) (|:| |basisInv| (-683 (-562))))) (-5 *1 (-763 *3 *4)) (-4 *4 (-408 (-562) *3)))) (-2736 (*1 *2) (-12 (-4 *3 (-1232 *2)) (-5 *2 (-562)) (-5 *1 (-763 *3 *4)) (-4 *4 (-408 *2 *3))))) -(-10 -7 (-15 -2736 ((-562))) (-15 -2639 ((-2 (|:| -4291 (-683 (-562))) (|:| |basisDen| (-562)) (|:| |basisInv| (-683 (-562)))))) (-15 -2606 ((-2 (|:| -4291 (-683 (-562))) (|:| |basisDen| (-562)) (|:| |basisInv| (-683 (-562)))) (-562)))) -((-4041 (((-112) $ $) NIL)) (-3960 (((-3 (|:| |nia| (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) $) 21)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 20) (($ (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 13) (($ (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) 18)) (-1733 (((-112) $ $) NIL))) -(((-764) (-13 (-1092) (-10 -8 (-15 -4053 ($ (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4053 ($ (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4053 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (-15 -3960 ((-3 (|:| |nia| (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) $))))) (T -764)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *1 (-764)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *1 (-764)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) (-5 *1 (-764)))) (-3960 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) (-5 *1 (-764))))) -(-13 (-1092) (-10 -8 (-15 -4053 ($ (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4053 ($ (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -4053 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (-15 -3960 ((-3 (|:| |nia| (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) $)))) -((-1949 (((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-947 |#1|))) 18) (((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-947 |#1|)) (-639 (-1168))) 17)) (-3888 (((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-947 |#1|))) 20) (((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-947 |#1|)) (-639 (-1168))) 19))) -(((-765 |#1|) (-10 -7 (-15 -1949 ((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-947 |#1|)) (-639 (-1168)))) (-15 -1949 ((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-947 |#1|)))) (-15 -3888 ((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-947 |#1|)) (-639 (-1168)))) (-15 -3888 ((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-947 |#1|))))) (-554)) (T -765)) -((-3888 (*1 *2 *3) (-12 (-5 *3 (-639 (-947 *4))) (-4 *4 (-554)) (-5 *2 (-639 (-639 (-293 (-406 (-947 *4)))))) (-5 *1 (-765 *4)))) (-3888 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-639 (-1168))) (-4 *5 (-554)) (-5 *2 (-639 (-639 (-293 (-406 (-947 *5)))))) (-5 *1 (-765 *5)))) (-1949 (*1 *2 *3) (-12 (-5 *3 (-639 (-947 *4))) (-4 *4 (-554)) (-5 *2 (-639 (-639 (-293 (-406 (-947 *4)))))) (-5 *1 (-765 *4)))) (-1949 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-639 (-1168))) (-4 *5 (-554)) (-5 *2 (-639 (-639 (-293 (-406 (-947 *5)))))) (-5 *1 (-765 *5))))) -(-10 -7 (-15 -1949 ((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-947 |#1|)) (-639 (-1168)))) (-15 -1949 ((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-947 |#1|)))) (-15 -3888 ((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-947 |#1|)) (-639 (-1168)))) (-15 -3888 ((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-947 |#1|))))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-1593 (($ $ $) 6)) (-2781 (((-3 $ "failed") $ $) 9)) (-3355 (($ $ (-562)) 7)) (-3329 (($) NIL T CONST)) (-1810 (($ $ $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-1447 (($ $) NIL)) (-1787 (($ $ $) NIL)) (-4367 (((-112) $) NIL)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1606 (($ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-4053 (((-857) $) NIL)) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-766)) NIL) (($ $ (-916)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ $ $) NIL))) -(((-766) (-13 (-788) (-721) (-10 -8 (-15 -1787 ($ $ $)) (-15 -1810 ($ $ $)) (-15 -1606 ($ $ $)) (-15 -3204 ((-2 (|:| -3380 $) (|:| -1441 $)) $ $)) (-15 -1762 ((-3 $ "failed") $ $)) (-15 -3355 ($ $ (-562))) (-15 -1447 ($ $)) (-6 (-4405 "*"))))) (T -766)) -((-1787 (*1 *1 *1 *1) (-5 *1 (-766))) (-1810 (*1 *1 *1 *1) (-5 *1 (-766))) (-1606 (*1 *1 *1 *1) (-5 *1 (-766))) (-3204 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3380 (-766)) (|:| -1441 (-766)))) (-5 *1 (-766)))) (-1762 (*1 *1 *1 *1) (|partial| -5 *1 (-766))) (-3355 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-766)))) (-1447 (*1 *1 *1) (-5 *1 (-766)))) -(-13 (-788) (-721) (-10 -8 (-15 -1787 ($ $ $)) (-15 -1810 ($ $ $)) (-15 -1606 ($ $ $)) (-15 -3204 ((-2 (|:| -3380 $) (|:| -1441 $)) $ $)) (-15 -1762 ((-3 $ "failed") $ $)) (-15 -3355 ($ $ (-562))) (-15 -1447 ($ $)) (-6 (-4405 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-1051 |#1|) . T) ((-1093) . T)) +((-1677 (((-112) $ $) NIL)) (-3458 (($ |#1|) 17) (($ $ |#1|) 20)) (-4346 (($ |#1|) 18) (($ $ |#1|) 21)) (-4239 (($) NIL T CONST)) (-3400 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-3827 (((-112) $) NIL)) (-2969 (($ |#1| |#1| |#1| |#1|) 8)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) 16)) (-1694 (((-1113) $) NIL)) (-1540 ((|#1| $ |#1|) 24) (((-829 |#1|) $ (-829 |#1|)) 32)) (-4339 (($ $ $) NIL)) (-2146 (($ $ $) NIL)) (-1693 (((-858) $) 39)) (-2254 (($) 9 T CONST)) (-1718 (((-112) $ $) 44)) (-1837 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ $ $) 14))) +(((-714 |#1|) (-13 (-473) (-10 -8 (-15 -2969 ($ |#1| |#1| |#1| |#1|)) (-15 -3458 ($ |#1|)) (-15 -4346 ($ |#1|)) (-15 -3400 ($)) (-15 -3458 ($ $ |#1|)) (-15 -4346 ($ $ |#1|)) (-15 -3400 ($ $)) (-15 -1540 (|#1| $ |#1|)) (-15 -1540 ((-829 |#1|) $ (-829 |#1|))))) (-363)) (T -714)) +((-2969 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-3458 (*1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-4346 (*1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-3400 (*1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-3458 (*1 *1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-4346 (*1 *1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-3400 (*1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-1540 (*1 *2 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-1540 (*1 *2 *1 *2) (-12 (-5 *2 (-829 *3)) (-4 *3 (-363)) (-5 *1 (-714 *3))))) +(-13 (-473) (-10 -8 (-15 -2969 ($ |#1| |#1| |#1| |#1|)) (-15 -3458 ($ |#1|)) (-15 -4346 ($ |#1|)) (-15 -3400 ($)) (-15 -3458 ($ $ |#1|)) (-15 -4346 ($ $ |#1|)) (-15 -3400 ($ $)) (-15 -1540 (|#1| $ |#1|)) (-15 -1540 ((-829 |#1|) $ (-829 |#1|))))) +((-2300 (($ $ (-917)) 12)) (-1494 (($ $ (-917)) 13)) (** (($ $ (-917)) 10))) +(((-715 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-917))) (-15 -1494 (|#1| |#1| (-917))) (-15 -2300 (|#1| |#1| (-917)))) (-716)) (T -715)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-917))) (-15 -1494 (|#1| |#1| (-917))) (-15 -2300 (|#1| |#1| (-917)))) +((-1677 (((-112) $ $) 7)) (-2300 (($ $ (-917)) 15)) (-1494 (($ $ (-917)) 14)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11)) (-1718 (((-112) $ $) 6)) (** (($ $ (-917)) 13)) (* (($ $ $) 16))) +(((-716) (-140)) (T -716)) +((* (*1 *1 *1 *1) (-4 *1 (-716))) (-2300 (*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-917)))) (-1494 (*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-917)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-917))))) +(-13 (-1093) (-10 -8 (-15 * ($ $ $)) (-15 -2300 ($ $ (-917))) (-15 -1494 ($ $ (-917))) (-15 ** ($ $ (-917))))) +(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) +((-2300 (($ $ (-917)) NIL) (($ $ (-767)) 17)) (-3827 (((-112) $) 10)) (-1494 (($ $ (-917)) NIL) (($ $ (-767)) 18)) (** (($ $ (-917)) NIL) (($ $ (-767)) 15))) +(((-717 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-767))) (-15 -1494 (|#1| |#1| (-767))) (-15 -2300 (|#1| |#1| (-767))) (-15 -3827 ((-112) |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 -1494 (|#1| |#1| (-917))) (-15 -2300 (|#1| |#1| (-917)))) (-718)) (T -717)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-767))) (-15 -1494 (|#1| |#1| (-767))) (-15 -2300 (|#1| |#1| (-767))) (-15 -3827 ((-112) |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 -1494 (|#1| |#1| (-917))) (-15 -2300 (|#1| |#1| (-917)))) +((-1677 (((-112) $ $) 7)) (-4154 (((-3 $ "failed") $) 17)) (-2300 (($ $ (-917)) 15) (($ $ (-767)) 22)) (-3400 (((-3 $ "failed") $) 19)) (-3827 (((-112) $) 23)) (-3856 (((-3 $ "failed") $) 18)) (-1494 (($ $ (-917)) 14) (($ $ (-767)) 21)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11)) (-2254 (($) 24 T CONST)) (-1718 (((-112) $ $) 6)) (** (($ $ (-917)) 13) (($ $ (-767)) 20)) (* (($ $ $) 16))) +(((-718) (-140)) (T -718)) +((-2254 (*1 *1) (-4 *1 (-718))) (-3827 (*1 *2 *1) (-12 (-4 *1 (-718)) (-5 *2 (-112)))) (-2300 (*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767)))) (-1494 (*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767)))) (-3400 (*1 *1 *1) (|partial| -4 *1 (-718))) (-3856 (*1 *1 *1) (|partial| -4 *1 (-718))) (-4154 (*1 *1 *1) (|partial| -4 *1 (-718)))) +(-13 (-716) (-10 -8 (-15 (-2254) ($) -2669) (-15 -3827 ((-112) $)) (-15 -2300 ($ $ (-767))) (-15 -1494 ($ $ (-767))) (-15 ** ($ $ (-767))) (-15 -3400 ((-3 $ "failed") $)) (-15 -3856 ((-3 $ "failed") $)) (-15 -4154 ((-3 $ "failed") $)))) +(((-102) . T) ((-610 (-858)) . T) ((-716) . T) ((-1093) . T)) +((-3749 (((-767)) 35)) (-2131 (((-3 (-563) "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-2058 (((-563) $) NIL) (((-407 (-563)) $) NIL) ((|#2| $) 22)) (-2444 (($ |#3|) NIL) (((-3 $ "failed") (-407 |#3|)) 45)) (-3400 (((-3 $ "failed") $) 65)) (-1691 (($) 39)) (-3793 ((|#2| $) 20)) (-4333 (($) 17)) (-4202 (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169)) NIL) (($ $ (-767)) NIL) (($ $) NIL)) (-3974 (((-684 |#2|) (-1257 $) (-1 |#2| |#2|)) 60)) (-2220 (((-1257 |#2|) $) NIL) (($ (-1257 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3421 ((|#3| $) 32)) (-4315 (((-1257 $)) 29))) +(((-719 |#1| |#2| |#3|) (-10 -8 (-15 -4202 (|#1| |#1|)) (-15 -4202 (|#1| |#1| (-767))) (-15 -4202 (|#1| |#1| (-1169))) (-15 -4202 (|#1| |#1| (-640 (-1169)))) (-15 -4202 (|#1| |#1| (-1169) (-767))) (-15 -4202 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -1691 (|#1|)) (-15 -3749 ((-767))) (-15 -4202 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4202 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -3974 ((-684 |#2|) (-1257 |#1|) (-1 |#2| |#2|))) (-15 -2444 ((-3 |#1| "failed") (-407 |#3|))) (-15 -2220 (|#1| |#3|)) (-15 -2444 (|#1| |#3|)) (-15 -4333 (|#1|)) (-15 -2131 ((-3 |#2| "failed") |#1|)) (-15 -2058 (|#2| |#1|)) (-15 -2058 ((-407 (-563)) |#1|)) (-15 -2131 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2058 ((-563) |#1|)) (-15 -2131 ((-3 (-563) "failed") |#1|)) (-15 -2220 (|#3| |#1|)) (-15 -2220 (|#1| (-1257 |#2|))) (-15 -2220 ((-1257 |#2|) |#1|)) (-15 -4315 ((-1257 |#1|))) (-15 -3421 (|#3| |#1|)) (-15 -3793 (|#2| |#1|)) (-15 -3400 ((-3 |#1| "failed") |#1|))) (-720 |#2| |#3|) (-172) (-1233 |#2|)) (T -719)) +((-3749 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1233 *4)) (-5 *2 (-767)) (-5 *1 (-719 *3 *4 *5)) (-4 *3 (-720 *4 *5))))) +(-10 -8 (-15 -4202 (|#1| |#1|)) (-15 -4202 (|#1| |#1| (-767))) (-15 -4202 (|#1| |#1| (-1169))) (-15 -4202 (|#1| |#1| (-640 (-1169)))) (-15 -4202 (|#1| |#1| (-1169) (-767))) (-15 -4202 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -1691 (|#1|)) (-15 -3749 ((-767))) (-15 -4202 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4202 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -3974 ((-684 |#2|) (-1257 |#1|) (-1 |#2| |#2|))) (-15 -2444 ((-3 |#1| "failed") (-407 |#3|))) (-15 -2220 (|#1| |#3|)) (-15 -2444 (|#1| |#3|)) (-15 -4333 (|#1|)) (-15 -2131 ((-3 |#2| "failed") |#1|)) (-15 -2058 (|#2| |#1|)) (-15 -2058 ((-407 (-563)) |#1|)) (-15 -2131 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2058 ((-563) |#1|)) (-15 -2131 ((-3 (-563) "failed") |#1|)) (-15 -2220 (|#3| |#1|)) (-15 -2220 (|#1| (-1257 |#2|))) (-15 -2220 ((-1257 |#2|) |#1|)) (-15 -4315 ((-1257 |#1|))) (-15 -3421 (|#3| |#1|)) (-15 -3793 (|#2| |#1|)) (-15 -3400 ((-3 |#1| "failed") |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 93 (|has| |#1| (-363)))) (-4223 (($ $) 94 (|has| |#1| (-363)))) (-3156 (((-112) $) 96 (|has| |#1| (-363)))) (-3561 (((-684 |#1|) (-1257 $)) 47) (((-684 |#1|)) 62)) (-1733 ((|#1| $) 53)) (-2752 (((-1181 (-917) (-767)) (-563)) 146 (|has| |#1| (-349)))) (-1495 (((-3 $ "failed") $ $) 19)) (-4335 (($ $) 113 (|has| |#1| (-363)))) (-3205 (((-418 $) $) 114 (|has| |#1| (-363)))) (-1919 (((-112) $ $) 104 (|has| |#1| (-363)))) (-3749 (((-767)) 87 (|has| |#1| (-368)))) (-4239 (($) 17 T CONST)) (-2131 (((-3 (-563) "failed") $) 169 (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) 167 (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 164)) (-2058 (((-563) $) 168 (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) 166 (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) 165)) (-3937 (($ (-1257 |#1|) (-1257 $)) 49) (($ (-1257 |#1|)) 65)) (-3711 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-349)))) (-3090 (($ $ $) 108 (|has| |#1| (-363)))) (-3914 (((-684 |#1|) $ (-1257 $)) 54) (((-684 |#1|) $) 60)) (-2950 (((-684 (-563)) (-684 $)) 163 (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 162 (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 161) (((-684 |#1|) (-684 $)) 160)) (-2444 (($ |#2|) 157) (((-3 $ "failed") (-407 |#2|)) 154 (|has| |#1| (-363)))) (-3400 (((-3 $ "failed") $) 33)) (-2522 (((-917)) 55)) (-1691 (($) 90 (|has| |#1| (-368)))) (-3050 (($ $ $) 107 (|has| |#1| (-363)))) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) 102 (|has| |#1| (-363)))) (-1571 (($) 148 (|has| |#1| (-349)))) (-2366 (((-112) $) 149 (|has| |#1| (-349)))) (-1637 (($ $ (-767)) 140 (|has| |#1| (-349))) (($ $) 139 (|has| |#1| (-349)))) (-2468 (((-112) $) 115 (|has| |#1| (-363)))) (-3254 (((-917) $) 151 (|has| |#1| (-349))) (((-829 (-917)) $) 137 (|has| |#1| (-349)))) (-3827 (((-112) $) 31)) (-3793 ((|#1| $) 52)) (-2408 (((-3 $ "failed") $) 141 (|has| |#1| (-349)))) (-3643 (((-3 (-640 $) "failed") (-640 $) $) 111 (|has| |#1| (-363)))) (-3941 ((|#2| $) 45 (|has| |#1| (-363)))) (-1476 (((-917) $) 89 (|has| |#1| (-368)))) (-2433 ((|#2| $) 155)) (-3513 (($ (-640 $)) 100 (|has| |#1| (-363))) (($ $ $) 99 (|has| |#1| (-363)))) (-3573 (((-1151) $) 9)) (-2688 (($ $) 116 (|has| |#1| (-363)))) (-2523 (($) 142 (|has| |#1| (-349)) CONST)) (-2555 (($ (-917)) 88 (|has| |#1| (-368)))) (-1694 (((-1113) $) 10)) (-4333 (($) 159)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 101 (|has| |#1| (-363)))) (-3548 (($ (-640 $)) 98 (|has| |#1| (-363))) (($ $ $) 97 (|has| |#1| (-363)))) (-2727 (((-640 (-2 (|:| -2174 (-563)) (|:| -1654 (-563))))) 145 (|has| |#1| (-349)))) (-2174 (((-418 $) $) 112 (|has| |#1| (-363)))) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) 109 (|has| |#1| (-363)))) (-3008 (((-3 $ "failed") $ $) 92 (|has| |#1| (-363)))) (-1465 (((-3 (-640 $) "failed") (-640 $) $) 103 (|has| |#1| (-363)))) (-2628 (((-767) $) 105 (|has| |#1| (-363)))) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 106 (|has| |#1| (-363)))) (-2315 ((|#1| (-1257 $)) 48) ((|#1|) 61)) (-1423 (((-767) $) 150 (|has| |#1| (-349))) (((-3 (-767) "failed") $ $) 138 (|has| |#1| (-349)))) (-4202 (($ $) 136 (-4032 (-2190 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-767)) 134 (-4032 (-2190 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1169)) 132 (-2190 (|has| |#1| (-896 (-1169))) (|has| |#1| (-363)))) (($ $ (-640 (-1169))) 131 (-2190 (|has| |#1| (-896 (-1169))) (|has| |#1| (-363)))) (($ $ (-1169) (-767)) 130 (-2190 (|has| |#1| (-896 (-1169))) (|has| |#1| (-363)))) (($ $ (-640 (-1169)) (-640 (-767))) 129 (-2190 (|has| |#1| (-896 (-1169))) (|has| |#1| (-363)))) (($ $ (-1 |#1| |#1|) (-767)) 122 (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-363)))) (-3974 (((-684 |#1|) (-1257 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-363)))) (-3390 ((|#2|) 158)) (-4284 (($) 147 (|has| |#1| (-349)))) (-1880 (((-1257 |#1|) $ (-1257 $)) 51) (((-684 |#1|) (-1257 $) (-1257 $)) 50) (((-1257 |#1|) $) 67) (((-684 |#1|) (-1257 $)) 66)) (-2220 (((-1257 |#1|) $) 64) (($ (-1257 |#1|)) 63) ((|#2| $) 170) (($ |#2|) 156)) (-1377 (((-3 (-1257 $) "failed") (-684 $)) 144 (|has| |#1| (-349)))) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 38) (($ $) 91 (|has| |#1| (-363))) (($ (-407 (-563))) 86 (-4032 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-563))))))) (-2779 (($ $) 143 (|has| |#1| (-349))) (((-3 $ "failed") $) 44 (|has| |#1| (-145)))) (-3421 ((|#2| $) 46)) (-1675 (((-767)) 28)) (-4315 (((-1257 $)) 68)) (-2126 (((-112) $ $) 95 (|has| |#1| (-363)))) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-3209 (($ $) 135 (-4032 (-2190 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-767)) 133 (-4032 (-2190 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1169)) 128 (-2190 (|has| |#1| (-896 (-1169))) (|has| |#1| (-363)))) (($ $ (-640 (-1169))) 127 (-2190 (|has| |#1| (-896 (-1169))) (|has| |#1| (-363)))) (($ $ (-1169) (-767)) 126 (-2190 (|has| |#1| (-896 (-1169))) (|has| |#1| (-363)))) (($ $ (-640 (-1169)) (-640 (-767))) 125 (-2190 (|has| |#1| (-896 (-1169))) (|has| |#1| (-363)))) (($ $ (-1 |#1| |#1|) (-767)) 124 (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) 123 (|has| |#1| (-363)))) (-1718 (((-112) $ $) 6)) (-1837 (($ $ $) 120 (|has| |#1| (-363)))) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 117 (|has| |#1| (-363)))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-407 (-563)) $) 119 (|has| |#1| (-363))) (($ $ (-407 (-563))) 118 (|has| |#1| (-363))))) +(((-720 |#1| |#2|) (-140) (-172) (-1233 |t#1|)) (T -720)) +((-4333 (*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-720 *2 *3)) (-4 *3 (-1233 *2)))) (-3390 (*1 *2) (-12 (-4 *1 (-720 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1233 *3)))) (-2444 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-720 *3 *2)) (-4 *2 (-1233 *3)))) (-2220 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-720 *3 *2)) (-4 *2 (-1233 *3)))) (-2433 (*1 *2 *1) (-12 (-4 *1 (-720 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1233 *3)))) (-2444 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1233 *3)) (-4 *3 (-363)) (-4 *3 (-172)) (-4 *1 (-720 *3 *4)))) (-3974 (*1 *2 *3 *4) (-12 (-5 *3 (-1257 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-4 *1 (-720 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1233 *5)) (-5 *2 (-684 *5))))) +(-13 (-409 |t#1| |t#2|) (-172) (-611 |t#2|) (-411 |t#1|) (-377 |t#1|) (-10 -8 (-15 -4333 ($)) (-15 -3390 (|t#2|)) (-15 -2444 ($ |t#2|)) (-15 -2220 ($ |t#2|)) (-15 -2433 (|t#2| $)) (IF (|has| |t#1| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-6 (-363)) (-6 (-231 |t#1|)) (-15 -2444 ((-3 $ "failed") (-407 |t#2|))) (-15 -3974 ((-684 |t#1|) (-1257 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-349)) (-6 (-349)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) -4032 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-38 |#1|) . T) ((-38 $) -4032 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-102) . T) ((-111 #0# #0#) -4032 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -4032 (|has| |#1| (-349)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-613 #0#) -4032 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-349)) (|has| |#1| (-363))) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-613 $) -4032 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-610 (-858)) . T) ((-172) . T) ((-611 |#2|) . T) ((-231 |#1|) |has| |#1| (-363)) ((-233) -4032 (|has| |#1| (-349)) (-12 (|has| |#1| (-233)) (|has| |#1| (-363)))) ((-243) -4032 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-290) -4032 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-307) -4032 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-363) -4032 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-402) |has| |#1| (-349)) ((-368) -4032 (|has| |#1| (-368)) (|has| |#1| (-349))) ((-349) |has| |#1| (-349)) ((-370 |#1| |#2|) . T) ((-409 |#1| |#2|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -4032 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-555) -4032 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-643 #0#) -4032 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-643 |#1|) . T) ((-643 $) . T) ((-636 (-563)) |has| |#1| (-636 (-563))) ((-636 |#1|) . T) ((-713 #0#) -4032 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-713 |#1|) . T) ((-713 $) -4032 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-722) . T) ((-896 (-1169)) -12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169)))) ((-916) -4032 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1034 (-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 |#1|) . T) ((-1051 #0#) -4032 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1144) |has| |#1| (-349)) ((-1212) -4032 (|has| |#1| (-349)) (|has| |#1| (-363)))) +((-4239 (($) 11)) (-3400 (((-3 $ "failed") $) 13)) (-3827 (((-112) $) 10)) (** (($ $ (-917)) NIL) (($ $ (-767)) 18))) +(((-721 |#1|) (-10 -8 (-15 -3400 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 -3827 ((-112) |#1|)) (-15 -4239 (|#1|)) (-15 ** (|#1| |#1| (-917)))) (-722)) (T -721)) +NIL +(-10 -8 (-15 -3400 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 -3827 ((-112) |#1|)) (-15 -4239 (|#1|)) (-15 ** (|#1| |#1| (-917)))) +((-1677 (((-112) $ $) 7)) (-4239 (($) 18 T CONST)) (-3400 (((-3 $ "failed") $) 15)) (-3827 (((-112) $) 17)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11)) (-2254 (($) 19 T CONST)) (-1718 (((-112) $ $) 6)) (** (($ $ (-917)) 13) (($ $ (-767)) 16)) (* (($ $ $) 14))) +(((-722) (-140)) (T -722)) +((-2254 (*1 *1) (-4 *1 (-722))) (-4239 (*1 *1) (-4 *1 (-722))) (-3827 (*1 *2 *1) (-12 (-4 *1 (-722)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-767)))) (-3400 (*1 *1 *1) (|partial| -4 *1 (-722)))) +(-13 (-1105) (-10 -8 (-15 (-2254) ($) -2669) (-15 -4239 ($) -2669) (-15 -3827 ((-112) $)) (-15 ** ($ $ (-767))) (-15 -3400 ((-3 $ "failed") $)))) +(((-102) . T) ((-610 (-858)) . T) ((-1105) . T) ((-1093) . T)) +((-2316 (((-2 (|:| -2377 (-418 |#2|)) (|:| |special| (-418 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-2335 (((-2 (|:| -2377 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2543 ((|#2| (-407 |#2|) (-1 |#2| |#2|)) 13)) (-2927 (((-2 (|:| |poly| |#2|) (|:| -2377 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|)) 47))) +(((-723 |#1| |#2|) (-10 -7 (-15 -2335 ((-2 (|:| -2377 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2316 ((-2 (|:| -2377 (-418 |#2|)) (|:| |special| (-418 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2543 (|#2| (-407 |#2|) (-1 |#2| |#2|))) (-15 -2927 ((-2 (|:| |poly| |#2|) (|:| -2377 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|)))) (-363) (-1233 |#1|)) (T -723)) +((-2927 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2377 (-407 *6)) (|:| |special| (-407 *6)))) (-5 *1 (-723 *5 *6)) (-5 *3 (-407 *6)))) (-2543 (*1 *2 *3 *4) (-12 (-5 *3 (-407 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1233 *5)) (-5 *1 (-723 *5 *2)) (-4 *5 (-363)))) (-2316 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1233 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -2377 (-418 *3)) (|:| |special| (-418 *3)))) (-5 *1 (-723 *5 *3)))) (-2335 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1233 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -2377 *3) (|:| |special| *3))) (-5 *1 (-723 *5 *3))))) +(-10 -7 (-15 -2335 ((-2 (|:| -2377 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2316 ((-2 (|:| -2377 (-418 |#2|)) (|:| |special| (-418 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2543 (|#2| (-407 |#2|) (-1 |#2| |#2|))) (-15 -2927 ((-2 (|:| |poly| |#2|) (|:| -2377 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|)))) +((-4256 ((|#7| (-640 |#5|) |#6|) NIL)) (-2240 ((|#7| (-1 |#5| |#4|) |#6|) 26))) +(((-724 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2240 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -4256 (|#7| (-640 |#5|) |#6|))) (-846) (-789) (-789) (-1045) (-1045) (-945 |#4| |#2| |#1|) (-945 |#5| |#3| |#1|)) (T -724)) +((-4256 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *9)) (-4 *9 (-1045)) (-4 *5 (-846)) (-4 *6 (-789)) (-4 *8 (-1045)) (-4 *2 (-945 *9 *7 *5)) (-5 *1 (-724 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-789)) (-4 *4 (-945 *8 *6 *5)))) (-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1045)) (-4 *9 (-1045)) (-4 *5 (-846)) (-4 *6 (-789)) (-4 *2 (-945 *9 *7 *5)) (-5 *1 (-724 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-789)) (-4 *4 (-945 *8 *6 *5))))) +(-10 -7 (-15 -2240 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -4256 (|#7| (-640 |#5|) |#6|))) +((-2240 ((|#7| (-1 |#2| |#1|) |#6|) 28))) +(((-725 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2240 (|#7| (-1 |#2| |#1|) |#6|))) (-846) (-846) (-789) (-789) (-1045) (-945 |#5| |#3| |#1|) (-945 |#5| |#4| |#2|)) (T -725)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-846)) (-4 *6 (-846)) (-4 *7 (-789)) (-4 *9 (-1045)) (-4 *2 (-945 *9 *8 *6)) (-5 *1 (-725 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-789)) (-4 *4 (-945 *9 *7 *5))))) +(-10 -7 (-15 -2240 (|#7| (-1 |#2| |#1|) |#6|))) +((-2174 (((-418 |#4|) |#4|) 41))) +(((-726 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2174 ((-418 |#4|) |#4|))) (-789) (-13 (-846) (-10 -8 (-15 -2220 ((-1169) $)) (-15 -2518 ((-3 $ "failed") (-1169))))) (-307) (-945 (-948 |#3|) |#1| |#2|)) (T -726)) +((-2174 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-13 (-846) (-10 -8 (-15 -2220 ((-1169) $)) (-15 -2518 ((-3 $ "failed") (-1169)))))) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-726 *4 *5 *6 *3)) (-4 *3 (-945 (-948 *6) *4 *5))))) +(-10 -7 (-15 -2174 ((-418 |#4|) |#4|))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-2606 (((-640 (-860 |#1|)) $) NIL)) (-2139 (((-1165 $) $ (-860 |#1|)) NIL) (((-1165 |#2|) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#2| (-555)))) (-4223 (($ $) NIL (|has| |#2| (-555)))) (-3156 (((-112) $) NIL (|has| |#2| (-555)))) (-1779 (((-767) $) NIL) (((-767) $ (-640 (-860 |#1|))) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-2424 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-4335 (($ $) NIL (|has| |#2| (-452)))) (-3205 (((-418 $) $) NIL (|has| |#2| (-452)))) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#2| (-1034 (-563)))) (((-3 (-860 |#1|) "failed") $) NIL)) (-2058 ((|#2| $) NIL) (((-407 (-563)) $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#2| (-1034 (-563)))) (((-860 |#1|) $) NIL)) (-2742 (($ $ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-2751 (($ $) NIL)) (-2950 (((-684 (-563)) (-684 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -2835 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL) (((-684 |#2|) (-684 $)) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-1300 (($ $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-2739 (((-640 $) $) NIL)) (-2468 (((-112) $) NIL (|has| |#2| (-905)))) (-3554 (($ $ |#2| (-531 (-860 |#1|)) $) NIL)) (-3787 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-563))) (|has| |#2| (-882 (-563)))))) (-3827 (((-112) $) NIL)) (-4096 (((-767) $) NIL)) (-2596 (($ (-1165 |#2|) (-860 |#1|)) NIL) (($ (-1165 $) (-860 |#1|)) NIL)) (-1368 (((-640 $) $) NIL)) (-3920 (((-112) $) NIL)) (-2588 (($ |#2| (-531 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-2625 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $ (-860 |#1|)) NIL)) (-2048 (((-531 (-860 |#1|)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-640 (-767)) $ (-640 (-860 |#1|))) NIL)) (-3084 (($ $ $) NIL (|has| |#2| (-846)))) (-1777 (($ $ $) NIL (|has| |#2| (-846)))) (-2803 (($ (-1 (-531 (-860 |#1|)) (-531 (-860 |#1|))) $) NIL)) (-2240 (($ (-1 |#2| |#2|) $) NIL)) (-4234 (((-3 (-860 |#1|) "failed") $) NIL)) (-2716 (($ $) NIL)) (-2726 ((|#2| $) NIL)) (-3513 (($ (-640 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3573 (((-1151) $) NIL)) (-3733 (((-3 (-640 $) "failed") $) NIL)) (-2919 (((-3 (-640 $) "failed") $) NIL)) (-4086 (((-3 (-2 (|:| |var| (-860 |#1|)) (|:| -1654 (-767))) "failed") $) NIL)) (-1694 (((-1113) $) NIL)) (-2696 (((-112) $) NIL)) (-2706 ((|#2| $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#2| (-452)))) (-3548 (($ (-640 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-1876 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-3116 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2174 (((-418 $) $) NIL (|has| |#2| (-905)))) (-3008 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-555))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-555)))) (-1540 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-860 |#1|) |#2|) NIL) (($ $ (-640 (-860 |#1|)) (-640 |#2|)) NIL) (($ $ (-860 |#1|) $) NIL) (($ $ (-640 (-860 |#1|)) (-640 $)) NIL)) (-2315 (($ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-4202 (($ $ (-860 |#1|)) NIL) (($ $ (-640 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-4167 (((-531 (-860 |#1|)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-640 (-767)) $ (-640 (-860 |#1|))) NIL)) (-2220 (((-888 (-379)) $) NIL (-12 (|has| (-860 |#1|) (-611 (-888 (-379)))) (|has| |#2| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| (-860 |#1|) (-611 (-888 (-563)))) (|has| |#2| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| (-860 |#1|) (-611 (-536))) (|has| |#2| (-611 (-536)))))) (-1836 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905))))) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ |#2|) NIL) (($ (-860 |#1|)) NIL) (($ $) NIL (|has| |#2| (-555))) (($ (-407 (-563))) NIL (-4032 (|has| |#2| (-38 (-407 (-563)))) (|has| |#2| (-1034 (-407 (-563))))))) (-1337 (((-640 |#2|) $) NIL)) (-4319 ((|#2| $ (-531 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-2779 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#2| (-145))))) (-1675 (((-767)) NIL)) (-2793 (($ $ $ (-767)) NIL (|has| |#2| (-172)))) (-2126 (((-112) $ $) NIL (|has| |#2| (-555)))) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-3209 (($ $ (-860 |#1|)) NIL) (($ $ (-640 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-1778 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1756 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1744 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1837 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL (|has| |#2| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#2| (-38 (-407 (-563))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-727 |#1| |#2|) (-945 |#2| (-531 (-860 |#1|)) (-860 |#1|)) (-640 (-1169)) (-1045)) (T -727)) +NIL +(-945 |#2| (-531 (-860 |#1|)) (-860 |#1|)) +((-1411 (((-2 (|:| -1901 (-948 |#3|)) (|:| -3388 (-948 |#3|))) |#4|) 14)) (-2386 ((|#4| |#4| |#2|) 33)) (-4171 ((|#4| (-407 (-948 |#3|)) |#2|) 64)) (-4358 ((|#4| (-1165 (-948 |#3|)) |#2|) 77)) (-4290 ((|#4| (-1165 |#4|) |#2|) 51)) (-2900 ((|#4| |#4| |#2|) 54)) (-2174 (((-418 |#4|) |#4|) 40))) +(((-728 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1411 ((-2 (|:| -1901 (-948 |#3|)) (|:| -3388 (-948 |#3|))) |#4|)) (-15 -2900 (|#4| |#4| |#2|)) (-15 -4290 (|#4| (-1165 |#4|) |#2|)) (-15 -2386 (|#4| |#4| |#2|)) (-15 -4358 (|#4| (-1165 (-948 |#3|)) |#2|)) (-15 -4171 (|#4| (-407 (-948 |#3|)) |#2|)) (-15 -2174 ((-418 |#4|) |#4|))) (-789) (-13 (-846) (-10 -8 (-15 -2220 ((-1169) $)))) (-555) (-945 (-407 (-948 |#3|)) |#1| |#2|)) (T -728)) +((-2174 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-13 (-846) (-10 -8 (-15 -2220 ((-1169) $))))) (-4 *6 (-555)) (-5 *2 (-418 *3)) (-5 *1 (-728 *4 *5 *6 *3)) (-4 *3 (-945 (-407 (-948 *6)) *4 *5)))) (-4171 (*1 *2 *3 *4) (-12 (-4 *6 (-555)) (-4 *2 (-945 *3 *5 *4)) (-5 *1 (-728 *5 *4 *6 *2)) (-5 *3 (-407 (-948 *6))) (-4 *5 (-789)) (-4 *4 (-13 (-846) (-10 -8 (-15 -2220 ((-1169) $))))))) (-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1165 (-948 *6))) (-4 *6 (-555)) (-4 *2 (-945 (-407 (-948 *6)) *5 *4)) (-5 *1 (-728 *5 *4 *6 *2)) (-4 *5 (-789)) (-4 *4 (-13 (-846) (-10 -8 (-15 -2220 ((-1169) $))))))) (-2386 (*1 *2 *2 *3) (-12 (-4 *4 (-789)) (-4 *3 (-13 (-846) (-10 -8 (-15 -2220 ((-1169) $))))) (-4 *5 (-555)) (-5 *1 (-728 *4 *3 *5 *2)) (-4 *2 (-945 (-407 (-948 *5)) *4 *3)))) (-4290 (*1 *2 *3 *4) (-12 (-5 *3 (-1165 *2)) (-4 *2 (-945 (-407 (-948 *6)) *5 *4)) (-5 *1 (-728 *5 *4 *6 *2)) (-4 *5 (-789)) (-4 *4 (-13 (-846) (-10 -8 (-15 -2220 ((-1169) $))))) (-4 *6 (-555)))) (-2900 (*1 *2 *2 *3) (-12 (-4 *4 (-789)) (-4 *3 (-13 (-846) (-10 -8 (-15 -2220 ((-1169) $))))) (-4 *5 (-555)) (-5 *1 (-728 *4 *3 *5 *2)) (-4 *2 (-945 (-407 (-948 *5)) *4 *3)))) (-1411 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-13 (-846) (-10 -8 (-15 -2220 ((-1169) $))))) (-4 *6 (-555)) (-5 *2 (-2 (|:| -1901 (-948 *6)) (|:| -3388 (-948 *6)))) (-5 *1 (-728 *4 *5 *6 *3)) (-4 *3 (-945 (-407 (-948 *6)) *4 *5))))) +(-10 -7 (-15 -1411 ((-2 (|:| -1901 (-948 |#3|)) (|:| -3388 (-948 |#3|))) |#4|)) (-15 -2900 (|#4| |#4| |#2|)) (-15 -4290 (|#4| (-1165 |#4|) |#2|)) (-15 -2386 (|#4| |#4| |#2|)) (-15 -4358 (|#4| (-1165 (-948 |#3|)) |#2|)) (-15 -4171 (|#4| (-407 (-948 |#3|)) |#2|)) (-15 -2174 ((-418 |#4|) |#4|))) +((-2174 (((-418 |#4|) |#4|) 52))) +(((-729 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2174 ((-418 |#4|) |#4|))) (-789) (-846) (-13 (-307) (-147)) (-945 (-407 |#3|) |#1| |#2|)) (T -729)) +((-2174 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-729 *4 *5 *6 *3)) (-4 *3 (-945 (-407 *6) *4 *5))))) +(-10 -7 (-15 -2174 ((-418 |#4|) |#4|))) +((-2240 (((-731 |#2| |#3|) (-1 |#2| |#1|) (-731 |#1| |#3|)) 18))) +(((-730 |#1| |#2| |#3|) (-10 -7 (-15 -2240 ((-731 |#2| |#3|) (-1 |#2| |#1|) (-731 |#1| |#3|)))) (-1045) (-1045) (-722)) (T -730)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-731 *5 *7)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-722)) (-5 *2 (-731 *6 *7)) (-5 *1 (-730 *5 *6 *7))))) +(-10 -7 (-15 -2240 ((-731 |#2| |#3|) (-1 |#2| |#1|) (-731 |#1| |#3|)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) 28)) (-1539 (((-640 (-2 (|:| -2311 |#1|) (|:| -4222 |#2|))) $) 29)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3749 (((-767)) 20 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-2058 ((|#2| $) NIL) ((|#1| $) NIL)) (-2751 (($ $) 79 (|has| |#2| (-846)))) (-3400 (((-3 $ "failed") $) 65)) (-1691 (($) 35 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-3827 (((-112) $) NIL)) (-4096 (((-767) $) 55)) (-1368 (((-640 $) $) 39)) (-3920 (((-112) $) NIL)) (-2588 (($ |#1| |#2|) 16)) (-2240 (($ (-1 |#1| |#1|) $) 54)) (-1476 (((-917) $) 32 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-2716 ((|#2| $) 78 (|has| |#2| (-846)))) (-2726 ((|#1| $) 77 (|has| |#2| (-846)))) (-3573 (((-1151) $) NIL)) (-2555 (($ (-917)) 27 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 76) (($ (-563)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-640 (-2 (|:| -2311 |#1|) (|:| -4222 |#2|)))) 11)) (-1337 (((-640 |#1|) $) 41)) (-4319 ((|#1| $ |#2|) 87)) (-2779 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1675 (((-767)) NIL)) (-2241 (($) 12 T CONST)) (-2254 (($) 33 T CONST)) (-1718 (((-112) $ $) 80)) (-1826 (($ $) 47) (($ $ $) NIL)) (-1814 (($ $ $) 26)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 52) (($ $ $) 89) (($ |#1| $) 49 (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) +(((-731 |#1| |#2|) (-13 (-1045) (-1034 |#2|) (-1034 |#1|) (-10 -8 (-15 -2588 ($ |#1| |#2|)) (-15 -4319 (|#1| $ |#2|)) (-15 -1693 ($ (-640 (-2 (|:| -2311 |#1|) (|:| -4222 |#2|))))) (-15 -1539 ((-640 (-2 (|:| -2311 |#1|) (|:| -4222 |#2|))) $)) (-15 -2240 ($ (-1 |#1| |#1|) $)) (-15 -3920 ((-112) $)) (-15 -1337 ((-640 |#1|) $)) (-15 -1368 ((-640 $) $)) (-15 -4096 ((-767) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-846)) (PROGN (-15 -2716 (|#2| $)) (-15 -2726 (|#1| $)) (-15 -2751 ($ $))) |%noBranch|))) (-1045) (-722)) (T -731)) +((-2588 (*1 *1 *2 *3) (-12 (-5 *1 (-731 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-722)))) (-4319 (*1 *2 *1 *3) (-12 (-4 *2 (-1045)) (-5 *1 (-731 *2 *3)) (-4 *3 (-722)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-640 (-2 (|:| -2311 *3) (|:| -4222 *4)))) (-4 *3 (-1045)) (-4 *4 (-722)) (-5 *1 (-731 *3 *4)))) (-1539 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| -2311 *3) (|:| -4222 *4)))) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722)))) (-2240 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-731 *3 *4)) (-4 *4 (-722)))) (-3920 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722)))) (-1368 (*1 *2 *1) (-12 (-5 *2 (-640 (-731 *3 *4))) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722)))) (-2716 (*1 *2 *1) (-12 (-4 *2 (-722)) (-4 *2 (-846)) (-5 *1 (-731 *3 *2)) (-4 *3 (-1045)))) (-2726 (*1 *2 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-731 *2 *3)) (-4 *3 (-846)) (-4 *3 (-722)))) (-2751 (*1 *1 *1) (-12 (-5 *1 (-731 *2 *3)) (-4 *3 (-846)) (-4 *2 (-1045)) (-4 *3 (-722))))) +(-13 (-1045) (-1034 |#2|) (-1034 |#1|) (-10 -8 (-15 -2588 ($ |#1| |#2|)) (-15 -4319 (|#1| $ |#2|)) (-15 -1693 ($ (-640 (-2 (|:| -2311 |#1|) (|:| -4222 |#2|))))) (-15 -1539 ((-640 (-2 (|:| -2311 |#1|) (|:| -4222 |#2|))) $)) (-15 -2240 ($ (-1 |#1| |#1|) $)) (-15 -3920 ((-112) $)) (-15 -1337 ((-640 |#1|) $)) (-15 -1368 ((-640 $) $)) (-15 -4096 ((-767) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-846)) (PROGN (-15 -2716 (|#2| $)) (-15 -2726 (|#1| $)) (-15 -2751 ($ $))) |%noBranch|))) +((-1677 (((-112) $ $) 19)) (-2583 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-4314 (($ $ $) 72)) (-4149 (((-112) $ $) 73)) (-2759 (((-112) $ (-767)) 8)) (-1584 (($ (-640 |#1|)) 68) (($) 67)) (-2812 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4407)))) (-2256 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4407)))) (-4239 (($) 7 T CONST)) (-4005 (($ $) 62)) (-3813 (($ $) 58 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-2705 (($ |#1| $) 47 (|has| $ (-6 -4407))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4407)))) (-1459 (($ |#1| $) 57 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4407)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4407)))) (-2659 (((-640 |#1|) $) 30 (|has| $ (-6 -4407)))) (-2539 (((-112) $ $) 64)) (-2581 (((-112) $ (-767)) 9)) (-2259 (((-640 |#1|) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-4345 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 35)) (-2382 (((-112) $ (-767)) 10)) (-3573 (((-1151) $) 22)) (-2550 (($ $ $) 69)) (-2964 ((|#1| $) 39)) (-1812 (($ |#1| $) 40) (($ |#1| $ (-767)) 63)) (-1694 (((-1113) $) 21)) (-4203 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3755 ((|#1| $) 41)) (-3138 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) 14)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-2757 (((-640 (-2 (|:| -2557 |#1|) (|:| -1709 (-767)))) $) 61)) (-1629 (($ $ |#1|) 71) (($ $ $) 70)) (-3890 (($) 49) (($ (-640 |#1|)) 48)) (-1709 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4407))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1872 (($ $) 13)) (-2220 (((-536) $) 59 (|has| |#1| (-611 (-536))))) (-1707 (($ (-640 |#1|)) 50)) (-1693 (((-858) $) 18)) (-2534 (($ (-640 |#1|)) 66) (($) 65)) (-2233 (($ (-640 |#1|)) 42)) (-4383 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 20)) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-732 |#1|) (-140) (-1093)) (T -732)) +NIL +(-13 (-690 |t#1|) (-1091 |t#1|)) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-610 (-858)) . T) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-690 |#1|) . T) ((-1091 |#1|) . T) ((-1093) . T) ((-1208) . T)) +((-1677 (((-112) $ $) NIL)) (-2583 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-4314 (($ $ $) 77)) (-4149 (((-112) $ $) 81)) (-2759 (((-112) $ (-767)) NIL)) (-1584 (($ (-640 |#1|)) 24) (($) 16)) (-2812 (($ (-1 (-112) |#1|) $) 68 (|has| $ (-6 -4407)))) (-2256 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-4239 (($) NIL T CONST)) (-4005 (($ $) 69)) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2705 (($ |#1| $) 59 (|has| $ (-6 -4407))) (($ (-1 (-112) |#1|) $) 63 (|has| $ (-6 -4407))) (($ |#1| $ (-563)) 61) (($ (-1 (-112) |#1|) $ (-563)) 64)) (-1459 (($ |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (($ |#1| $ (-563)) 66) (($ (-1 (-112) |#1|) $ (-563)) 67)) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-2659 (((-640 |#1|) $) 30 (|has| $ (-6 -4407)))) (-2539 (((-112) $ $) 80)) (-4224 (($) 14) (($ |#1|) 26) (($ (-640 |#1|)) 21)) (-2581 (((-112) $ (-767)) NIL)) (-2259 (((-640 |#1|) $) 36)) (-1729 (((-112) |#1| $) 56 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-4345 (($ (-1 |#1| |#1|) $) 72 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 73)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL)) (-2550 (($ $ $) 75)) (-2964 ((|#1| $) 53)) (-1812 (($ |#1| $) 54) (($ |#1| $ (-767)) 70)) (-1694 (((-1113) $) NIL)) (-4203 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3755 ((|#1| $) 52)) (-3138 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) NIL)) (-3756 (((-112) $) 48)) (-3135 (($) 13)) (-2757 (((-640 (-2 (|:| -2557 |#1|) (|:| -1709 (-767)))) $) 46)) (-1629 (($ $ |#1|) NIL) (($ $ $) 76)) (-3890 (($) 15) (($ (-640 |#1|)) 23)) (-1709 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) 58 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1872 (($ $) 65)) (-2220 (((-536) $) 34 (|has| |#1| (-611 (-536))))) (-1707 (($ (-640 |#1|)) 20)) (-1693 (((-858) $) 42)) (-2534 (($ (-640 |#1|)) 25) (($) 17)) (-2233 (($ (-640 |#1|)) 22)) (-4383 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 79)) (-3608 (((-767) $) 57 (|has| $ (-6 -4407))))) +(((-733 |#1|) (-13 (-732 |#1|) (-10 -8 (-6 -4407) (-6 -4408) (-15 -4224 ($)) (-15 -4224 ($ |#1|)) (-15 -4224 ($ (-640 |#1|))) (-15 -2259 ((-640 |#1|) $)) (-15 -1459 ($ |#1| $ (-563))) (-15 -1459 ($ (-1 (-112) |#1|) $ (-563))) (-15 -2705 ($ |#1| $ (-563))) (-15 -2705 ($ (-1 (-112) |#1|) $ (-563))))) (-1093)) (T -733)) +((-4224 (*1 *1) (-12 (-5 *1 (-733 *2)) (-4 *2 (-1093)))) (-4224 (*1 *1 *2) (-12 (-5 *1 (-733 *2)) (-4 *2 (-1093)))) (-4224 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-733 *3)))) (-2259 (*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-733 *3)) (-4 *3 (-1093)))) (-1459 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *1 (-733 *2)) (-4 *2 (-1093)))) (-1459 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-563)) (-4 *4 (-1093)) (-5 *1 (-733 *4)))) (-2705 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *1 (-733 *2)) (-4 *2 (-1093)))) (-2705 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-563)) (-4 *4 (-1093)) (-5 *1 (-733 *4))))) +(-13 (-732 |#1|) (-10 -8 (-6 -4407) (-6 -4408) (-15 -4224 ($)) (-15 -4224 ($ |#1|)) (-15 -4224 ($ (-640 |#1|))) (-15 -2259 ((-640 |#1|) $)) (-15 -1459 ($ |#1| $ (-563))) (-15 -1459 ($ (-1 (-112) |#1|) $ (-563))) (-15 -2705 ($ |#1| $ (-563))) (-15 -2705 ($ (-1 (-112) |#1|) $ (-563))))) +((-2346 (((-1262) (-1151)) 8))) +(((-734) (-10 -7 (-15 -2346 ((-1262) (-1151))))) (T -734)) +((-2346 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-734))))) +(-10 -7 (-15 -2346 ((-1262) (-1151)))) +((-1999 (((-640 |#1|) (-640 |#1|) (-640 |#1|)) 10))) +(((-735 |#1|) (-10 -7 (-15 -1999 ((-640 |#1|) (-640 |#1|) (-640 |#1|)))) (-846)) (T -735)) +((-1999 (*1 *2 *2 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-735 *3))))) +(-10 -7 (-15 -1999 ((-640 |#1|) (-640 |#1|) (-640 |#1|)))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-2606 (((-640 |#2|) $) 139)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 132 (|has| |#1| (-555)))) (-4223 (($ $) 131 (|has| |#1| (-555)))) (-3156 (((-112) $) 129 (|has| |#1| (-555)))) (-1771 (($ $) 88 (|has| |#1| (-38 (-407 (-563)))))) (-1619 (($ $) 71 (|has| |#1| (-38 (-407 (-563)))))) (-1495 (((-3 $ "failed") $ $) 19)) (-2186 (($ $) 70 (|has| |#1| (-38 (-407 (-563)))))) (-1748 (($ $) 87 (|has| |#1| (-38 (-407 (-563)))))) (-1597 (($ $) 72 (|has| |#1| (-38 (-407 (-563)))))) (-1794 (($ $) 86 (|has| |#1| (-38 (-407 (-563)))))) (-1643 (($ $) 73 (|has| |#1| (-38 (-407 (-563)))))) (-4239 (($) 17 T CONST)) (-2751 (($ $) 123)) (-3400 (((-3 $ "failed") $) 33)) (-3619 (((-948 |#1|) $ (-767)) 101) (((-948 |#1|) $ (-767) (-767)) 100)) (-2788 (((-112) $) 140)) (-2180 (($) 98 (|has| |#1| (-38 (-407 (-563)))))) (-3254 (((-767) $ |#2|) 103) (((-767) $ |#2| (-767)) 102)) (-3827 (((-112) $) 31)) (-1645 (($ $ (-563)) 69 (|has| |#1| (-38 (-407 (-563)))))) (-3920 (((-112) $) 121)) (-2588 (($ $ (-640 |#2|) (-640 (-531 |#2|))) 138) (($ $ |#2| (-531 |#2|)) 137) (($ |#1| (-531 |#2|)) 122) (($ $ |#2| (-767)) 105) (($ $ (-640 |#2|) (-640 (-767))) 104)) (-2240 (($ (-1 |#1| |#1|) $) 120)) (-4371 (($ $) 95 (|has| |#1| (-38 (-407 (-563)))))) (-2716 (($ $) 118)) (-2726 ((|#1| $) 117)) (-3573 (((-1151) $) 9)) (-3698 (($ $ |#2|) 99 (|has| |#1| (-38 (-407 (-563)))))) (-1694 (((-1113) $) 10)) (-3320 (($ $ (-767)) 106)) (-3008 (((-3 $ "failed") $ $) 133 (|has| |#1| (-555)))) (-3368 (($ $) 96 (|has| |#1| (-38 (-407 (-563)))))) (-1540 (($ $ |#2| $) 114) (($ $ (-640 |#2|) (-640 $)) 113) (($ $ (-640 (-294 $))) 112) (($ $ (-294 $)) 111) (($ $ $ $) 110) (($ $ (-640 $) (-640 $)) 109)) (-4202 (($ $ |#2|) 42) (($ $ (-640 |#2|)) 41) (($ $ |#2| (-767)) 40) (($ $ (-640 |#2|) (-640 (-767))) 39)) (-4167 (((-531 |#2|) $) 119)) (-1806 (($ $) 85 (|has| |#1| (-38 (-407 (-563)))))) (-1656 (($ $) 74 (|has| |#1| (-38 (-407 (-563)))))) (-1784 (($ $) 84 (|has| |#1| (-38 (-407 (-563)))))) (-1630 (($ $) 75 (|has| |#1| (-38 (-407 (-563)))))) (-1759 (($ $) 83 (|has| |#1| (-38 (-407 (-563)))))) (-1608 (($ $) 76 (|has| |#1| (-38 (-407 (-563)))))) (-1741 (($ $) 141)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 136 (|has| |#1| (-172))) (($ $) 134 (|has| |#1| (-555))) (($ (-407 (-563))) 126 (|has| |#1| (-38 (-407 (-563)))))) (-4319 ((|#1| $ (-531 |#2|)) 124) (($ $ |#2| (-767)) 108) (($ $ (-640 |#2|) (-640 (-767))) 107)) (-2779 (((-3 $ "failed") $) 135 (|has| |#1| (-145)))) (-1675 (((-767)) 28)) (-1840 (($ $) 94 (|has| |#1| (-38 (-407 (-563)))))) (-1695 (($ $) 82 (|has| |#1| (-38 (-407 (-563)))))) (-2126 (((-112) $ $) 130 (|has| |#1| (-555)))) (-1817 (($ $) 93 (|has| |#1| (-38 (-407 (-563)))))) (-1667 (($ $) 81 (|has| |#1| (-38 (-407 (-563)))))) (-1862 (($ $) 92 (|has| |#1| (-38 (-407 (-563)))))) (-1722 (($ $) 80 (|has| |#1| (-38 (-407 (-563)))))) (-1311 (($ $) 91 (|has| |#1| (-38 (-407 (-563)))))) (-1735 (($ $) 79 (|has| |#1| (-38 (-407 (-563)))))) (-1851 (($ $) 90 (|has| |#1| (-38 (-407 (-563)))))) (-1710 (($ $) 78 (|has| |#1| (-38 (-407 (-563)))))) (-1829 (($ $) 89 (|has| |#1| (-38 (-407 (-563)))))) (-1680 (($ $) 77 (|has| |#1| (-38 (-407 (-563)))))) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-3209 (($ $ |#2|) 38) (($ $ (-640 |#2|)) 37) (($ $ |#2| (-767)) 36) (($ $ (-640 |#2|) (-640 (-767))) 35)) (-1718 (((-112) $ $) 6)) (-1837 (($ $ |#1|) 125 (|has| |#1| (-363)))) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ $) 97 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 68 (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 128 (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) 127 (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) 116) (($ $ |#1|) 115))) +(((-736 |#1| |#2|) (-140) (-1045) (-846)) (T -736)) +((-4319 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *2)) (-4 *4 (-1045)) (-4 *2 (-846)))) (-4319 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 *5)) (-5 *3 (-640 (-767))) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-846)))) (-3320 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-736 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-846)))) (-2588 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *2)) (-4 *4 (-1045)) (-4 *2 (-846)))) (-2588 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 *5)) (-5 *3 (-640 (-767))) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-846)))) (-3254 (*1 *2 *1 *3) (-12 (-4 *1 (-736 *4 *3)) (-4 *4 (-1045)) (-4 *3 (-846)) (-5 *2 (-767)))) (-3254 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-767)) (-4 *1 (-736 *4 *3)) (-4 *4 (-1045)) (-4 *3 (-846)))) (-3619 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-846)) (-5 *2 (-948 *4)))) (-3619 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-846)) (-5 *2 (-948 *4)))) (-3698 (*1 *1 *1 *2) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-846)) (-4 *3 (-38 (-407 (-563))))))) +(-13 (-896 |t#2|) (-969 |t#1| (-531 |t#2|) |t#2|) (-514 |t#2| $) (-309 $) (-10 -8 (-15 -4319 ($ $ |t#2| (-767))) (-15 -4319 ($ $ (-640 |t#2|) (-640 (-767)))) (-15 -3320 ($ $ (-767))) (-15 -2588 ($ $ |t#2| (-767))) (-15 -2588 ($ $ (-640 |t#2|) (-640 (-767)))) (-15 -3254 ((-767) $ |t#2|)) (-15 -3254 ((-767) $ |t#2| (-767))) (-15 -3619 ((-948 |t#1|) $ (-767))) (-15 -3619 ((-948 |t#1|) $ (-767) (-767))) (IF (|has| |t#1| (-38 (-407 (-563)))) (PROGN (-15 -3698 ($ $ |t#2|)) (-6 (-998)) (-6 (-1193))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-531 |#2|)) . T) ((-25) . T) ((-38 #1=(-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-555)) ((-35) |has| |#1| (-38 (-407 (-563)))) ((-95) |has| |#1| (-38 (-407 (-563)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-563)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4032 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #1#) |has| |#1| (-38 (-407 (-563)))) ((-613 (-563)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-613 $) |has| |#1| (-555)) ((-610 (-858)) . T) ((-172) -4032 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-284) |has| |#1| (-38 (-407 (-563)))) ((-290) |has| |#1| (-555)) ((-309 $) . T) ((-493) |has| |#1| (-38 (-407 (-563)))) ((-514 |#2| $) . T) ((-514 $ $) . T) ((-555) |has| |#1| (-555)) ((-643 #1#) |has| |#1| (-38 (-407 (-563)))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #1#) |has| |#1| (-38 (-407 (-563)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-555)) ((-722) . T) ((-896 |#2|) . T) ((-969 |#1| #0# |#2|) . T) ((-998) |has| |#1| (-38 (-407 (-563)))) ((-1051 #1#) |has| |#1| (-38 (-407 (-563)))) ((-1051 |#1|) . T) ((-1051 $) -4032 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1193) |has| |#1| (-38 (-407 (-563)))) ((-1196) |has| |#1| (-38 (-407 (-563))))) +((-2174 (((-418 (-1165 |#4|)) (-1165 |#4|)) 30) (((-418 |#4|) |#4|) 26))) +(((-737 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2174 ((-418 |#4|) |#4|)) (-15 -2174 ((-418 (-1165 |#4|)) (-1165 |#4|)))) (-846) (-789) (-13 (-307) (-147)) (-945 |#3| |#2| |#1|)) (T -737)) +((-2174 (*1 *2 *3) (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-945 *6 *5 *4)) (-5 *2 (-418 (-1165 *7))) (-5 *1 (-737 *4 *5 *6 *7)) (-5 *3 (-1165 *7)))) (-2174 (*1 *2 *3) (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-737 *4 *5 *6 *3)) (-4 *3 (-945 *6 *5 *4))))) +(-10 -7 (-15 -2174 ((-418 |#4|) |#4|)) (-15 -2174 ((-418 (-1165 |#4|)) (-1165 |#4|)))) +((-2425 (((-418 |#4|) |#4| |#2|) 118)) (-3882 (((-418 |#4|) |#4|) NIL)) (-3205 (((-418 (-1165 |#4|)) (-1165 |#4|)) 109) (((-418 |#4|) |#4|) 40)) (-1757 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-640 (-2 (|:| -2174 (-1165 |#4|)) (|:| -1654 (-563)))))) (-1165 |#4|) (-640 |#2|) (-640 (-640 |#3|))) 68)) (-4101 (((-1165 |#3|) (-1165 |#3|) (-563)) 136)) (-2443 (((-640 (-767)) (-1165 |#4|) (-640 |#2|) (-767)) 60)) (-2433 (((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-1165 |#3|) (-1165 |#3|) |#4| (-640 |#2|) (-640 (-767)) (-640 |#3|)) 64)) (-2816 (((-2 (|:| |upol| (-1165 |#3|)) (|:| |Lval| (-640 |#3|)) (|:| |Lfact| (-640 (-2 (|:| -2174 (-1165 |#3|)) (|:| -1654 (-563))))) (|:| |ctpol| |#3|)) (-1165 |#4|) (-640 |#2|) (-640 (-640 |#3|))) 25)) (-1847 (((-2 (|:| -1574 (-1165 |#4|)) (|:| |polval| (-1165 |#3|))) (-1165 |#4|) (-1165 |#3|) (-563)) 56)) (-2153 (((-563) (-640 (-2 (|:| -2174 (-1165 |#3|)) (|:| -1654 (-563))))) 133)) (-1455 ((|#4| (-563) (-418 |#4|)) 57)) (-4350 (((-112) (-640 (-2 (|:| -2174 (-1165 |#3|)) (|:| -1654 (-563)))) (-640 (-2 (|:| -2174 (-1165 |#3|)) (|:| -1654 (-563))))) NIL))) +(((-738 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3205 ((-418 |#4|) |#4|)) (-15 -3205 ((-418 (-1165 |#4|)) (-1165 |#4|))) (-15 -3882 ((-418 |#4|) |#4|)) (-15 -2153 ((-563) (-640 (-2 (|:| -2174 (-1165 |#3|)) (|:| -1654 (-563)))))) (-15 -2425 ((-418 |#4|) |#4| |#2|)) (-15 -1847 ((-2 (|:| -1574 (-1165 |#4|)) (|:| |polval| (-1165 |#3|))) (-1165 |#4|) (-1165 |#3|) (-563))) (-15 -1757 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-640 (-2 (|:| -2174 (-1165 |#4|)) (|:| -1654 (-563)))))) (-1165 |#4|) (-640 |#2|) (-640 (-640 |#3|)))) (-15 -2816 ((-2 (|:| |upol| (-1165 |#3|)) (|:| |Lval| (-640 |#3|)) (|:| |Lfact| (-640 (-2 (|:| -2174 (-1165 |#3|)) (|:| -1654 (-563))))) (|:| |ctpol| |#3|)) (-1165 |#4|) (-640 |#2|) (-640 (-640 |#3|)))) (-15 -1455 (|#4| (-563) (-418 |#4|))) (-15 -4350 ((-112) (-640 (-2 (|:| -2174 (-1165 |#3|)) (|:| -1654 (-563)))) (-640 (-2 (|:| -2174 (-1165 |#3|)) (|:| -1654 (-563)))))) (-15 -2433 ((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-1165 |#3|) (-1165 |#3|) |#4| (-640 |#2|) (-640 (-767)) (-640 |#3|))) (-15 -2443 ((-640 (-767)) (-1165 |#4|) (-640 |#2|) (-767))) (-15 -4101 ((-1165 |#3|) (-1165 |#3|) (-563)))) (-789) (-846) (-307) (-945 |#3| |#1| |#2|)) (T -738)) +((-4101 (*1 *2 *2 *3) (-12 (-5 *2 (-1165 *6)) (-5 *3 (-563)) (-4 *6 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5)))) (-2443 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1165 *9)) (-5 *4 (-640 *7)) (-4 *7 (-846)) (-4 *9 (-945 *8 *6 *7)) (-4 *6 (-789)) (-4 *8 (-307)) (-5 *2 (-640 (-767))) (-5 *1 (-738 *6 *7 *8 *9)) (-5 *5 (-767)))) (-2433 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1165 *11)) (-5 *6 (-640 *10)) (-5 *7 (-640 (-767))) (-5 *8 (-640 *11)) (-4 *10 (-846)) (-4 *11 (-307)) (-4 *9 (-789)) (-4 *5 (-945 *11 *9 *10)) (-5 *2 (-640 (-1165 *5))) (-5 *1 (-738 *9 *10 *11 *5)) (-5 *3 (-1165 *5)))) (-4350 (*1 *2 *3 *3) (-12 (-5 *3 (-640 (-2 (|:| -2174 (-1165 *6)) (|:| -1654 (-563))))) (-4 *6 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5)))) (-1455 (*1 *2 *3 *4) (-12 (-5 *3 (-563)) (-5 *4 (-418 *2)) (-4 *2 (-945 *7 *5 *6)) (-5 *1 (-738 *5 *6 *7 *2)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-307)))) (-2816 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1165 *9)) (-5 *4 (-640 *7)) (-5 *5 (-640 (-640 *8))) (-4 *7 (-846)) (-4 *8 (-307)) (-4 *9 (-945 *8 *6 *7)) (-4 *6 (-789)) (-5 *2 (-2 (|:| |upol| (-1165 *8)) (|:| |Lval| (-640 *8)) (|:| |Lfact| (-640 (-2 (|:| -2174 (-1165 *8)) (|:| -1654 (-563))))) (|:| |ctpol| *8))) (-5 *1 (-738 *6 *7 *8 *9)))) (-1757 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-640 *7)) (-5 *5 (-640 (-640 *8))) (-4 *7 (-846)) (-4 *8 (-307)) (-4 *6 (-789)) (-4 *9 (-945 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-640 (-2 (|:| -2174 (-1165 *9)) (|:| -1654 (-563))))))) (-5 *1 (-738 *6 *7 *8 *9)) (-5 *3 (-1165 *9)))) (-1847 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-563)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-307)) (-4 *9 (-945 *8 *6 *7)) (-5 *2 (-2 (|:| -1574 (-1165 *9)) (|:| |polval| (-1165 *8)))) (-5 *1 (-738 *6 *7 *8 *9)) (-5 *3 (-1165 *9)) (-5 *4 (-1165 *8)))) (-2425 (*1 *2 *3 *4) (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-738 *5 *4 *6 *3)) (-4 *3 (-945 *6 *5 *4)))) (-2153 (*1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| -2174 (-1165 *6)) (|:| -1654 (-563))))) (-4 *6 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-563)) (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5)))) (-3882 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-945 *6 *4 *5)))) (-3205 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-418 (-1165 *7))) (-5 *1 (-738 *4 *5 *6 *7)) (-5 *3 (-1165 *7)))) (-3205 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-945 *6 *4 *5))))) +(-10 -7 (-15 -3205 ((-418 |#4|) |#4|)) (-15 -3205 ((-418 (-1165 |#4|)) (-1165 |#4|))) (-15 -3882 ((-418 |#4|) |#4|)) (-15 -2153 ((-563) (-640 (-2 (|:| -2174 (-1165 |#3|)) (|:| -1654 (-563)))))) (-15 -2425 ((-418 |#4|) |#4| |#2|)) (-15 -1847 ((-2 (|:| -1574 (-1165 |#4|)) (|:| |polval| (-1165 |#3|))) (-1165 |#4|) (-1165 |#3|) (-563))) (-15 -1757 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-640 (-2 (|:| -2174 (-1165 |#4|)) (|:| -1654 (-563)))))) (-1165 |#4|) (-640 |#2|) (-640 (-640 |#3|)))) (-15 -2816 ((-2 (|:| |upol| (-1165 |#3|)) (|:| |Lval| (-640 |#3|)) (|:| |Lfact| (-640 (-2 (|:| -2174 (-1165 |#3|)) (|:| -1654 (-563))))) (|:| |ctpol| |#3|)) (-1165 |#4|) (-640 |#2|) (-640 (-640 |#3|)))) (-15 -1455 (|#4| (-563) (-418 |#4|))) (-15 -4350 ((-112) (-640 (-2 (|:| -2174 (-1165 |#3|)) (|:| -1654 (-563)))) (-640 (-2 (|:| -2174 (-1165 |#3|)) (|:| -1654 (-563)))))) (-15 -2433 ((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-1165 |#3|) (-1165 |#3|) |#4| (-640 |#2|) (-640 (-767)) (-640 |#3|))) (-15 -2443 ((-640 (-767)) (-1165 |#4|) (-640 |#2|) (-767))) (-15 -4101 ((-1165 |#3|) (-1165 |#3|) (-563)))) +((-2287 (($ $ (-917)) 12))) +(((-739 |#1| |#2|) (-10 -8 (-15 -2287 (|#1| |#1| (-917)))) (-740 |#2|) (-172)) (T -739)) +NIL +(-10 -8 (-15 -2287 (|#1| |#1| (-917)))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-2300 (($ $ (-917)) 28)) (-2287 (($ $ (-917)) 33)) (-1494 (($ $ (-917)) 29)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-2146 (($ $ $) 25)) (-1693 (((-858) $) 11)) (-1361 (($ $ $ $) 26)) (-3399 (($ $ $) 24)) (-2241 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 30)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-740 |#1|) (-140) (-172)) (T -740)) +((-2287 (*1 *1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-740 *3)) (-4 *3 (-172))))) +(-13 (-757) (-713 |t#1|) (-10 -8 (-15 -2287 ($ $ (-917))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-713 |#1|) . T) ((-716) . T) ((-757) . T) ((-1051 |#1|) . T) ((-1093) . T)) +((-1611 (((-1031) (-684 (-225)) (-563) (-112) (-563)) 25)) (-1391 (((-1031) (-684 (-225)) (-563) (-112) (-563)) 24))) +(((-741) (-10 -7 (-15 -1391 ((-1031) (-684 (-225)) (-563) (-112) (-563))) (-15 -1611 ((-1031) (-684 (-225)) (-563) (-112) (-563))))) (T -741)) +((-1611 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *5 (-112)) (-5 *2 (-1031)) (-5 *1 (-741)))) (-1391 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *5 (-112)) (-5 *2 (-1031)) (-5 *1 (-741))))) +(-10 -7 (-15 -1391 ((-1031) (-684 (-225)) (-563) (-112) (-563))) (-15 -1611 ((-1031) (-684 (-225)) (-563) (-112) (-563)))) +((-2397 (((-1031) (-563) (-563) (-563) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) 43)) (-2894 (((-1031) (-563) (-563) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) 39)) (-2856 (((-1031) (-225) (-225) (-225) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3191)))) 32))) +(((-742) (-10 -7 (-15 -2856 ((-1031) (-225) (-225) (-225) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3191))))) (-15 -2894 ((-1031) (-563) (-563) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN))))) (-15 -2397 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN))))))) (T -742)) +((-2397 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1031)) (-5 *1 (-742)))) (-2894 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1031)) (-5 *1 (-742)))) (-2856 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3191)))) (-5 *2 (-1031)) (-5 *1 (-742))))) +(-10 -7 (-15 -2856 ((-1031) (-225) (-225) (-225) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3191))))) (-15 -2894 ((-1031) (-563) (-563) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN))))) (-15 -2397 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))))) +((-3519 (((-1031) (-563) (-563) (-684 (-225)) (-563)) 34)) (-1588 (((-1031) (-563) (-563) (-684 (-225)) (-563)) 33)) (-3454 (((-1031) (-563) (-684 (-225)) (-563)) 32)) (-3981 (((-1031) (-563) (-684 (-225)) (-563)) 31)) (-1568 (((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563)) 30)) (-3717 (((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563)) 29)) (-4141 (((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-563)) 28)) (-1811 (((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-563)) 27)) (-3794 (((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563)) 24)) (-3430 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563)) 23)) (-3485 (((-1031) (-563) (-684 (-225)) (-563)) 22)) (-1355 (((-1031) (-563) (-684 (-225)) (-563)) 21))) +(((-743) (-10 -7 (-15 -1355 ((-1031) (-563) (-684 (-225)) (-563))) (-15 -3485 ((-1031) (-563) (-684 (-225)) (-563))) (-15 -3430 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3794 ((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -1811 ((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-563))) (-15 -4141 ((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3717 ((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -1568 ((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3981 ((-1031) (-563) (-684 (-225)) (-563))) (-15 -3454 ((-1031) (-563) (-684 (-225)) (-563))) (-15 -1588 ((-1031) (-563) (-563) (-684 (-225)) (-563))) (-15 -3519 ((-1031) (-563) (-563) (-684 (-225)) (-563))))) (T -743)) +((-3519 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-1588 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-3454 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-3981 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-1568 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *4 (-1151)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-3717 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *4 (-1151)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-4141 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *4 (-1151)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-1811 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *4 (-1151)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-3794 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-3430 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-3485 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-1355 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743))))) +(-10 -7 (-15 -1355 ((-1031) (-563) (-684 (-225)) (-563))) (-15 -3485 ((-1031) (-563) (-684 (-225)) (-563))) (-15 -3430 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3794 ((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -1811 ((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-563))) (-15 -4141 ((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3717 ((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -1568 ((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3981 ((-1031) (-563) (-684 (-225)) (-563))) (-15 -3454 ((-1031) (-563) (-684 (-225)) (-563))) (-15 -1588 ((-1031) (-563) (-563) (-684 (-225)) (-563))) (-15 -3519 ((-1031) (-563) (-563) (-684 (-225)) (-563)))) +((-2866 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563) (-225) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) 52)) (-1727 (((-1031) (-684 (-225)) (-684 (-225)) (-563) (-563)) 51)) (-2014 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) 50)) (-3539 (((-1031) (-225) (-225) (-563) (-563) (-563) (-563)) 46)) (-2809 (((-1031) (-225) (-225) (-563) (-225) (-563) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 45)) (-1554 (((-1031) (-225) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 44)) (-3247 (((-1031) (-225) (-225) (-225) (-225) (-563) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 43)) (-3357 (((-1031) (-225) (-225) (-225) (-563) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 42)) (-2079 (((-1031) (-225) (-563) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3191)))) 38)) (-2461 (((-1031) (-225) (-225) (-563) (-684 (-225)) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3191)))) 37)) (-1563 (((-1031) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3191)))) 33)) (-2940 (((-1031) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3191)))) 32))) +(((-744) (-10 -7 (-15 -2940 ((-1031) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3191))))) (-15 -1563 ((-1031) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3191))))) (-15 -2461 ((-1031) (-225) (-225) (-563) (-684 (-225)) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3191))))) (-15 -2079 ((-1031) (-225) (-563) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3191))))) (-15 -3357 ((-1031) (-225) (-225) (-225) (-563) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -3247 ((-1031) (-225) (-225) (-225) (-225) (-563) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -1554 ((-1031) (-225) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2809 ((-1031) (-225) (-225) (-563) (-225) (-563) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -3539 ((-1031) (-225) (-225) (-563) (-563) (-563) (-563))) (-15 -2014 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))) (-15 -1727 ((-1031) (-684 (-225)) (-684 (-225)) (-563) (-563))) (-15 -2866 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563) (-225) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))))) (T -744)) +((-2866 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-1727 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-744)))) (-2014 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-3539 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-744)))) (-2809 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-1554 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-3247 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-3357 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-2079 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3191)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-2461 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-563)) (-5 *5 (-684 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3191)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-744)))) (-1563 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3191)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-2940 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3191)))) (-5 *2 (-1031)) (-5 *1 (-744))))) +(-10 -7 (-15 -2940 ((-1031) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3191))))) (-15 -1563 ((-1031) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3191))))) (-15 -2461 ((-1031) (-225) (-225) (-563) (-684 (-225)) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3191))))) (-15 -2079 ((-1031) (-225) (-563) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3191))))) (-15 -3357 ((-1031) (-225) (-225) (-225) (-563) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -3247 ((-1031) (-225) (-225) (-225) (-225) (-563) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -1554 ((-1031) (-225) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2809 ((-1031) (-225) (-225) (-563) (-225) (-563) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -3539 ((-1031) (-225) (-225) (-563) (-563) (-563) (-563))) (-15 -2014 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))) (-15 -1727 ((-1031) (-684 (-225)) (-684 (-225)) (-563) (-563))) (-15 -2866 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563) (-225) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))))) +((-4268 (((-1031) (-563) (-563) (-563) (-563) (-225) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-1742 (((-1031) (-684 (-225)) (-563) (-563) (-225) (-563) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))) (-388) (-388)) 69) (((-1031) (-684 (-225)) (-563) (-563) (-225) (-563) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) 68)) (-4070 (((-1031) (-225) (-225) (-563) (-225) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG)))) 57)) (-1313 (((-1031) (-684 (-225)) (-684 (-225)) (-563) (-225) (-225) (-225) (-563) (-563) (-563) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) 50)) (-1758 (((-1031) (-225) (-563) (-563) (-1151) (-563) (-225) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) 49)) (-3826 (((-1031) (-225) (-563) (-563) (-225) (-1151) (-225) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) 45)) (-3677 (((-1031) (-225) (-563) (-563) (-225) (-225) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) 42)) (-1766 (((-1031) (-225) (-563) (-563) (-563) (-225) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) 38))) +(((-745) (-10 -7 (-15 -1766 ((-1031) (-225) (-563) (-563) (-563) (-225) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -3677 ((-1031) (-225) (-563) (-563) (-225) (-225) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -3826 ((-1031) (-225) (-563) (-563) (-225) (-1151) (-225) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -1758 ((-1031) (-225) (-563) (-563) (-1151) (-563) (-225) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -1313 ((-1031) (-684 (-225)) (-684 (-225)) (-563) (-225) (-225) (-225) (-563) (-563) (-563) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -4070 ((-1031) (-225) (-225) (-563) (-225) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG))))) (-15 -1742 ((-1031) (-684 (-225)) (-563) (-563) (-225) (-563) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))))) (-15 -1742 ((-1031) (-684 (-225)) (-563) (-563) (-225) (-563) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))) (-388) (-388))) (-15 -4268 ((-1031) (-563) (-563) (-563) (-563) (-225) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -745)) +((-4268 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-1742 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-388)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-1742 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1031)) (-5 *1 (-745)))) (-4070 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-563)) (-5 *5 (-684 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-1313 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1031)) (-5 *1 (-745)))) (-1758 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-563)) (-5 *5 (-1151)) (-5 *6 (-684 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-3826 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-563)) (-5 *5 (-1151)) (-5 *6 (-684 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-3677 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-563)) (-5 *5 (-684 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-1766 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-563)) (-5 *5 (-684 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745))))) +(-10 -7 (-15 -1766 ((-1031) (-225) (-563) (-563) (-563) (-225) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -3677 ((-1031) (-225) (-563) (-563) (-225) (-225) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -3826 ((-1031) (-225) (-563) (-563) (-225) (-1151) (-225) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -1758 ((-1031) (-225) (-563) (-563) (-1151) (-563) (-225) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -1313 ((-1031) (-684 (-225)) (-684 (-225)) (-563) (-225) (-225) (-225) (-563) (-563) (-563) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -4070 ((-1031) (-225) (-225) (-563) (-225) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG))))) (-15 -1742 ((-1031) (-684 (-225)) (-563) (-563) (-225) (-563) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))))) (-15 -1742 ((-1031) (-684 (-225)) (-563) (-563) (-225) (-563) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))) (-388) (-388))) (-15 -4268 ((-1031) (-563) (-563) (-563) (-563) (-225) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP)))))) +((-2500 (((-1031) (-225) (-225) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-225) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-225) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-670 (-225)) (-563)) 45)) (-3596 (((-1031) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-1151) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY)))) 41)) (-3331 (((-1031) (-563) (-563) (-563) (-563) (-225) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563)) 23))) +(((-746) (-10 -7 (-15 -3331 ((-1031) (-563) (-563) (-563) (-563) (-225) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3596 ((-1031) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-1151) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY))))) (-15 -2500 ((-1031) (-225) (-225) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-225) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-225) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-670 (-225)) (-563))))) (T -746)) +((-2500 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-563)) (-5 *5 (-684 (-225))) (-5 *6 (-670 (-225))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-746)))) (-3596 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *5 (-1151)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1031)) (-5 *1 (-746)))) (-3331 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-746))))) +(-10 -7 (-15 -3331 ((-1031) (-563) (-563) (-563) (-563) (-225) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3596 ((-1031) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-1151) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY))))) (-15 -2500 ((-1031) (-225) (-225) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-225) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-225) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-670 (-225)) (-563)))) +((-1453 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-684 (-225)) (-225) (-225) (-563)) 35)) (-3769 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-225) (-225) (-563)) 34)) (-2157 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-684 (-225)) (-225) (-225) (-563)) 33)) (-1603 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563)) 29)) (-3531 (((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563)) 28)) (-4204 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-225) (-563)) 27)) (-2439 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-563)) 24)) (-1713 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-563)) 23)) (-3279 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563)) 22)) (-4090 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563) (-563) (-563)) 21))) +(((-747) (-10 -7 (-15 -4090 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563) (-563) (-563))) (-15 -3279 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -1713 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-563))) (-15 -2439 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-563))) (-15 -4204 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-225) (-563))) (-15 -3531 ((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -1603 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2157 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-684 (-225)) (-225) (-225) (-563))) (-15 -3769 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-225) (-225) (-563))) (-15 -1453 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-684 (-225)) (-225) (-225) (-563))))) (T -747)) +((-1453 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-747)))) (-3769 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-747)))) (-2157 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *6 (-225)) (-5 *3 (-563)) (-5 *2 (-1031)) (-5 *1 (-747)))) (-1603 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))) (-3531 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))) (-4204 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-747)))) (-2439 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))) (-1713 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))) (-3279 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))) (-4090 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-747))))) +(-10 -7 (-15 -4090 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563) (-563) (-563))) (-15 -3279 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -1713 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-563))) (-15 -2439 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-563))) (-15 -4204 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-225) (-563))) (-15 -3531 ((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -1603 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2157 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-684 (-225)) (-225) (-225) (-563))) (-15 -3769 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-225) (-225) (-563))) (-15 -1453 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-684 (-225)) (-225) (-225) (-563)))) +((-2864 (((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-563) (-563) (-563)) 45)) (-1705 (((-1031) (-563) (-563) (-563) (-225) (-684 (-225)) (-684 (-225)) (-563)) 44)) (-2536 (((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-563)) 43)) (-3714 (((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563)) 42)) (-3601 (((-1031) (-1151) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-563)) 41)) (-3437 (((-1031) (-1151) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-563)) 40)) (-3290 (((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-563) (-563) (-563) (-225) (-684 (-225)) (-563)) 39)) (-4292 (((-1031) (-1151) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-563))) 38)) (-1518 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563)) 35)) (-2223 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563)) 34)) (-3276 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563)) 33)) (-3880 (((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563)) 32)) (-2579 (((-1031) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-225) (-563)) 31)) (-1324 (((-1031) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-225) (-563) (-563) (-563)) 30)) (-2234 (((-1031) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-563) (-563) (-563)) 29)) (-4200 (((-1031) (-563) (-563) (-563) (-225) (-225) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-563) (-684 (-563)) (-563) (-563) (-563)) 28)) (-2187 (((-1031) (-563) (-684 (-225)) (-225) (-563)) 24)) (-1406 (((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563)) 21))) +(((-748) (-10 -7 (-15 -1406 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2187 ((-1031) (-563) (-684 (-225)) (-225) (-563))) (-15 -4200 ((-1031) (-563) (-563) (-563) (-225) (-225) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-563) (-684 (-563)) (-563) (-563) (-563))) (-15 -2234 ((-1031) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-563) (-563) (-563))) (-15 -1324 ((-1031) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-225) (-563) (-563) (-563))) (-15 -2579 ((-1031) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-225) (-563))) (-15 -3880 ((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3276 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563))) (-15 -2223 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563))) (-15 -1518 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -4292 ((-1031) (-1151) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-563)))) (-15 -3290 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-563) (-563) (-563) (-225) (-684 (-225)) (-563))) (-15 -3437 ((-1031) (-1151) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-563))) (-15 -3601 ((-1031) (-1151) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3714 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2536 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-563))) (-15 -1705 ((-1031) (-563) (-563) (-563) (-225) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2864 ((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-563) (-563) (-563))))) (T -748)) +((-2864 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))) (-1705 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-2536 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))) (-3714 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))) (-3601 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-225))) (-5 *6 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-3437 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1151)) (-5 *5 (-684 (-225))) (-5 *6 (-225)) (-5 *7 (-684 (-563))) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-3290 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *6 (-225)) (-5 *3 (-563)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-4292 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1151)) (-5 *5 (-684 (-225))) (-5 *6 (-225)) (-5 *7 (-684 (-563))) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-1518 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))) (-2223 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-3276 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-3880 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))) (-2579 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-1324 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-2234 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-4200 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-684 (-225))) (-5 *6 (-684 (-563))) (-5 *3 (-563)) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-2187 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-1406 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-748))))) +(-10 -7 (-15 -1406 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2187 ((-1031) (-563) (-684 (-225)) (-225) (-563))) (-15 -4200 ((-1031) (-563) (-563) (-563) (-225) (-225) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-563) (-684 (-563)) (-563) (-563) (-563))) (-15 -2234 ((-1031) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-563) (-563) (-563))) (-15 -1324 ((-1031) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-225) (-563) (-563) (-563))) (-15 -2579 ((-1031) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-225) (-563))) (-15 -3880 ((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3276 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563))) (-15 -2223 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563))) (-15 -1518 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -4292 ((-1031) (-1151) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-563)))) (-15 -3290 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-563) (-563) (-563) (-225) (-684 (-225)) (-563))) (-15 -3437 ((-1031) (-1151) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-563))) (-15 -3601 ((-1031) (-1151) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3714 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2536 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-563))) (-15 -1705 ((-1031) (-563) (-563) (-563) (-225) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2864 ((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-563) (-563) (-563)))) +((-4020 (((-1031) (-563) (-563) (-563) (-225) (-684 (-225)) (-563) (-684 (-225)) (-563)) 63)) (-4384 (((-1031) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-112) (-225) (-563) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-563) (-563) (-563) (-563) (-563) (-225) (-225) (-225) (-563) (-563) (-563) (-563) (-563) (-684 (-563)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) 62)) (-1290 (((-1031) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-225) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-112) (-112) (-112) (-563) (-563) (-684 (-225)) (-684 (-563)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS)))) 58)) (-4198 (((-1031) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-112) (-563) (-563) (-684 (-225)) (-563)) 51)) (-2974 (((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1)))) 50)) (-3228 (((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2)))) 46)) (-1964 (((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1)))) 42)) (-2994 (((-1031) (-563) (-225) (-225) (-563) (-225) (-112) (-225) (-225) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) 38))) +(((-749) (-10 -7 (-15 -2994 ((-1031) (-563) (-225) (-225) (-563) (-225) (-112) (-225) (-225) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -1964 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1))))) (-15 -3228 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2))))) (-15 -2974 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1))))) (-15 -4198 ((-1031) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-112) (-563) (-563) (-684 (-225)) (-563))) (-15 -1290 ((-1031) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-225) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-112) (-112) (-112) (-563) (-563) (-684 (-225)) (-684 (-563)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS))))) (-15 -4384 ((-1031) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-112) (-225) (-563) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-563) (-563) (-563) (-563) (-563) (-225) (-225) (-225) (-563) (-563) (-563) (-563) (-563) (-684 (-563)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -4020 ((-1031) (-563) (-563) (-563) (-225) (-684 (-225)) (-563) (-684 (-225)) (-563))))) (T -749)) +((-4020 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-749)))) (-4384 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-684 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-684 (-563))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-563)) (-5 *2 (-1031)) (-5 *1 (-749)))) (-1290 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-684 (-225))) (-5 *6 (-112)) (-5 *7 (-684 (-563))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-563)) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-749)))) (-4198 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-112)) (-5 *2 (-1031)) (-5 *1 (-749)))) (-2974 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1031)) (-5 *1 (-749)))) (-3228 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1031)) (-5 *1 (-749)))) (-1964 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1031)) (-5 *1 (-749)))) (-2994 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-563)) (-5 *5 (-112)) (-5 *6 (-684 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-749))))) +(-10 -7 (-15 -2994 ((-1031) (-563) (-225) (-225) (-563) (-225) (-112) (-225) (-225) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -1964 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1))))) (-15 -3228 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2))))) (-15 -2974 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1))))) (-15 -4198 ((-1031) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-112) (-563) (-563) (-684 (-225)) (-563))) (-15 -1290 ((-1031) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-225) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-112) (-112) (-112) (-563) (-563) (-684 (-225)) (-684 (-563)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS))))) (-15 -4384 ((-1031) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-112) (-225) (-563) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-563) (-563) (-563) (-563) (-563) (-225) (-225) (-225) (-563) (-563) (-563) (-563) (-563) (-684 (-563)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -4020 ((-1031) (-563) (-563) (-563) (-225) (-684 (-225)) (-563) (-684 (-225)) (-563)))) +((-2961 (((-1031) (-1151) (-563) (-563) (-563) (-563) (-684 (-169 (-225))) (-684 (-169 (-225))) (-563)) 47)) (-2774 (((-1031) (-1151) (-1151) (-563) (-563) (-684 (-169 (-225))) (-563) (-684 (-169 (-225))) (-563) (-563) (-684 (-169 (-225))) (-563)) 46)) (-3989 (((-1031) (-563) (-563) (-563) (-684 (-169 (-225))) (-563)) 45)) (-2934 (((-1031) (-1151) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563)) 40)) (-4120 (((-1031) (-1151) (-1151) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-563) (-563) (-684 (-225)) (-563)) 39)) (-2124 (((-1031) (-563) (-563) (-563) (-684 (-225)) (-563)) 36)) (-3551 (((-1031) (-563) (-684 (-225)) (-563) (-684 (-563)) (-563)) 35)) (-4219 (((-1031) (-563) (-563) (-563) (-563) (-640 (-112)) (-684 (-225)) (-684 (-563)) (-684 (-563)) (-225) (-225) (-563)) 34)) (-3786 (((-1031) (-563) (-563) (-563) (-684 (-563)) (-684 (-563)) (-684 (-563)) (-684 (-563)) (-112) (-225) (-112) (-684 (-563)) (-684 (-225)) (-563)) 33)) (-2406 (((-1031) (-563) (-563) (-563) (-563) (-225) (-112) (-112) (-640 (-112)) (-684 (-225)) (-684 (-563)) (-684 (-563)) (-563)) 32))) +(((-750) (-10 -7 (-15 -2406 ((-1031) (-563) (-563) (-563) (-563) (-225) (-112) (-112) (-640 (-112)) (-684 (-225)) (-684 (-563)) (-684 (-563)) (-563))) (-15 -3786 ((-1031) (-563) (-563) (-563) (-684 (-563)) (-684 (-563)) (-684 (-563)) (-684 (-563)) (-112) (-225) (-112) (-684 (-563)) (-684 (-225)) (-563))) (-15 -4219 ((-1031) (-563) (-563) (-563) (-563) (-640 (-112)) (-684 (-225)) (-684 (-563)) (-684 (-563)) (-225) (-225) (-563))) (-15 -3551 ((-1031) (-563) (-684 (-225)) (-563) (-684 (-563)) (-563))) (-15 -2124 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-563))) (-15 -4120 ((-1031) (-1151) (-1151) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-563) (-563) (-684 (-225)) (-563))) (-15 -2934 ((-1031) (-1151) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3989 ((-1031) (-563) (-563) (-563) (-684 (-169 (-225))) (-563))) (-15 -2774 ((-1031) (-1151) (-1151) (-563) (-563) (-684 (-169 (-225))) (-563) (-684 (-169 (-225))) (-563) (-563) (-684 (-169 (-225))) (-563))) (-15 -2961 ((-1031) (-1151) (-563) (-563) (-563) (-563) (-684 (-169 (-225))) (-684 (-169 (-225))) (-563))))) (T -750)) +((-2961 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-169 (-225)))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-2774 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-169 (-225)))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-3989 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-169 (-225)))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-2934 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-4120 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-2124 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-3551 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *3 (-563)) (-5 *2 (-1031)) (-5 *1 (-750)))) (-4219 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-640 (-112))) (-5 *5 (-684 (-225))) (-5 *6 (-684 (-563))) (-5 *7 (-225)) (-5 *3 (-563)) (-5 *2 (-1031)) (-5 *1 (-750)))) (-3786 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-684 (-563))) (-5 *5 (-112)) (-5 *7 (-684 (-225))) (-5 *3 (-563)) (-5 *6 (-225)) (-5 *2 (-1031)) (-5 *1 (-750)))) (-2406 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-640 (-112))) (-5 *7 (-684 (-225))) (-5 *8 (-684 (-563))) (-5 *3 (-563)) (-5 *4 (-225)) (-5 *5 (-112)) (-5 *2 (-1031)) (-5 *1 (-750))))) +(-10 -7 (-15 -2406 ((-1031) (-563) (-563) (-563) (-563) (-225) (-112) (-112) (-640 (-112)) (-684 (-225)) (-684 (-563)) (-684 (-563)) (-563))) (-15 -3786 ((-1031) (-563) (-563) (-563) (-684 (-563)) (-684 (-563)) (-684 (-563)) (-684 (-563)) (-112) (-225) (-112) (-684 (-563)) (-684 (-225)) (-563))) (-15 -4219 ((-1031) (-563) (-563) (-563) (-563) (-640 (-112)) (-684 (-225)) (-684 (-563)) (-684 (-563)) (-225) (-225) (-563))) (-15 -3551 ((-1031) (-563) (-684 (-225)) (-563) (-684 (-563)) (-563))) (-15 -2124 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-563))) (-15 -4120 ((-1031) (-1151) (-1151) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-563) (-563) (-684 (-225)) (-563))) (-15 -2934 ((-1031) (-1151) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3989 ((-1031) (-563) (-563) (-563) (-684 (-169 (-225))) (-563))) (-15 -2774 ((-1031) (-1151) (-1151) (-563) (-563) (-684 (-169 (-225))) (-563) (-684 (-169 (-225))) (-563) (-563) (-684 (-169 (-225))) (-563))) (-15 -2961 ((-1031) (-1151) (-563) (-563) (-563) (-563) (-684 (-169 (-225))) (-684 (-169 (-225))) (-563)))) +((-3389 (((-1031) (-563) (-563) (-563) (-563) (-563) (-112) (-563) (-112) (-563) (-684 (-169 (-225))) (-684 (-169 (-225))) (-563)) 66)) (-1676 (((-1031) (-563) (-563) (-563) (-563) (-563) (-112) (-563) (-112) (-563) (-684 (-225)) (-684 (-225)) (-563)) 61)) (-2172 (((-1031) (-563) (-563) (-225) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388)) 56) (((-1031) (-563) (-563) (-225) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) 55)) (-1473 (((-1031) (-563) (-563) (-563) (-225) (-112) (-563) (-684 (-225)) (-684 (-225)) (-563)) 37)) (-4163 (((-1031) (-563) (-563) (-225) (-225) (-563) (-563) (-684 (-225)) (-563)) 33)) (-3456 (((-1031) (-684 (-225)) (-563) (-684 (-225)) (-563) (-563) (-563) (-563) (-563)) 30)) (-3690 (((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563)) 29)) (-2252 (((-1031) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563)) 28)) (-3175 (((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563)) 27)) (-3334 (((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-563)) 26)) (-3169 (((-1031) (-563) (-563) (-684 (-225)) (-563)) 25)) (-3037 (((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563)) 24)) (-2527 (((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563)) 23)) (-1651 (((-1031) (-684 (-225)) (-563) (-563) (-563) (-563)) 22)) (-3597 (((-1031) (-563) (-563) (-684 (-225)) (-563)) 21))) +(((-751) (-10 -7 (-15 -3597 ((-1031) (-563) (-563) (-684 (-225)) (-563))) (-15 -1651 ((-1031) (-684 (-225)) (-563) (-563) (-563) (-563))) (-15 -2527 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3037 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3169 ((-1031) (-563) (-563) (-684 (-225)) (-563))) (-15 -3334 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-563))) (-15 -3175 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2252 ((-1031) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3690 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3456 ((-1031) (-684 (-225)) (-563) (-684 (-225)) (-563) (-563) (-563) (-563) (-563))) (-15 -4163 ((-1031) (-563) (-563) (-225) (-225) (-563) (-563) (-684 (-225)) (-563))) (-15 -1473 ((-1031) (-563) (-563) (-563) (-225) (-112) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2172 ((-1031) (-563) (-563) (-225) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))))) (-15 -2172 ((-1031) (-563) (-563) (-225) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388))) (-15 -1676 ((-1031) (-563) (-563) (-563) (-563) (-563) (-112) (-563) (-112) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3389 ((-1031) (-563) (-563) (-563) (-563) (-563) (-112) (-563) (-112) (-563) (-684 (-169 (-225))) (-684 (-169 (-225))) (-563))))) (T -751)) +((-3389 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *4 (-112)) (-5 *5 (-684 (-169 (-225)))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-1676 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *4 (-112)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2172 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-388)) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2172 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-1473 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-563)) (-5 *5 (-112)) (-5 *6 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-4163 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-3456 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-3690 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2252 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-3175 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-3334 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-3169 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-3037 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-2527 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-1651 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-3597 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751))))) +(-10 -7 (-15 -3597 ((-1031) (-563) (-563) (-684 (-225)) (-563))) (-15 -1651 ((-1031) (-684 (-225)) (-563) (-563) (-563) (-563))) (-15 -2527 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3037 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3169 ((-1031) (-563) (-563) (-684 (-225)) (-563))) (-15 -3334 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-563))) (-15 -3175 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2252 ((-1031) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3690 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3456 ((-1031) (-684 (-225)) (-563) (-684 (-225)) (-563) (-563) (-563) (-563) (-563))) (-15 -4163 ((-1031) (-563) (-563) (-225) (-225) (-563) (-563) (-684 (-225)) (-563))) (-15 -1473 ((-1031) (-563) (-563) (-563) (-225) (-112) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2172 ((-1031) (-563) (-563) (-225) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))))) (-15 -2172 ((-1031) (-563) (-563) (-225) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388))) (-15 -1676 ((-1031) (-563) (-563) (-563) (-563) (-563) (-112) (-563) (-112) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3389 ((-1031) (-563) (-563) (-563) (-563) (-563) (-112) (-563) (-112) (-563) (-684 (-169 (-225))) (-684 (-169 (-225))) (-563)))) +((-3642 (((-1031) (-563) (-563) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) 61)) (-3805 (((-1031) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-563)) (-563) (-684 (-225)) (-563) (-563) (-563) (-563)) 57)) (-2547 (((-1031) (-563) (-684 (-225)) (-112) (-225) (-563) (-563) (-563) (-563) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE)))) 56)) (-1942 (((-1031) (-563) (-563) (-684 (-225)) (-563) (-684 (-563)) (-563) (-684 (-563)) (-684 (-225)) (-684 (-563)) (-684 (-563)) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-563)) 37)) (-4023 (((-1031) (-563) (-563) (-563) (-225) (-563) (-684 (-225)) (-684 (-225)) (-563)) 36)) (-2942 (((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563)) 33)) (-4058 (((-1031) (-563) (-684 (-225)) (-563) (-684 (-563)) (-684 (-563)) (-563) (-684 (-563)) (-684 (-225))) 32)) (-1700 (((-1031) (-684 (-225)) (-563) (-684 (-225)) (-563) (-563) (-563)) 28)) (-2859 (((-1031) (-563) (-684 (-225)) (-563) (-684 (-225)) (-563)) 27)) (-3293 (((-1031) (-563) (-684 (-225)) (-563) (-684 (-225)) (-563)) 26)) (-3691 (((-1031) (-563) (-684 (-169 (-225))) (-563) (-563) (-563) (-563) (-684 (-169 (-225))) (-563)) 22))) +(((-752) (-10 -7 (-15 -3691 ((-1031) (-563) (-684 (-169 (-225))) (-563) (-563) (-563) (-563) (-684 (-169 (-225))) (-563))) (-15 -3293 ((-1031) (-563) (-684 (-225)) (-563) (-684 (-225)) (-563))) (-15 -2859 ((-1031) (-563) (-684 (-225)) (-563) (-684 (-225)) (-563))) (-15 -1700 ((-1031) (-684 (-225)) (-563) (-684 (-225)) (-563) (-563) (-563))) (-15 -4058 ((-1031) (-563) (-684 (-225)) (-563) (-684 (-563)) (-684 (-563)) (-563) (-684 (-563)) (-684 (-225)))) (-15 -2942 ((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -4023 ((-1031) (-563) (-563) (-563) (-225) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -1942 ((-1031) (-563) (-563) (-684 (-225)) (-563) (-684 (-563)) (-563) (-684 (-563)) (-684 (-225)) (-684 (-563)) (-684 (-563)) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-563))) (-15 -2547 ((-1031) (-563) (-684 (-225)) (-112) (-225) (-563) (-563) (-563) (-563) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE))))) (-15 -3805 ((-1031) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-563)) (-563) (-684 (-225)) (-563) (-563) (-563) (-563))) (-15 -3642 ((-1031) (-563) (-563) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD))))))) (T -752)) +((-3642 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-3805 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *3 (-563)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-2547 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1031)) (-5 *1 (-752)))) (-1942 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *3 (-563)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-4023 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-2942 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-752)))) (-4058 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *3 (-563)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-1700 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-2859 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-752)))) (-3293 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-752)))) (-3691 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-169 (-225)))) (-5 *2 (-1031)) (-5 *1 (-752))))) +(-10 -7 (-15 -3691 ((-1031) (-563) (-684 (-169 (-225))) (-563) (-563) (-563) (-563) (-684 (-169 (-225))) (-563))) (-15 -3293 ((-1031) (-563) (-684 (-225)) (-563) (-684 (-225)) (-563))) (-15 -2859 ((-1031) (-563) (-684 (-225)) (-563) (-684 (-225)) (-563))) (-15 -1700 ((-1031) (-684 (-225)) (-563) (-684 (-225)) (-563) (-563) (-563))) (-15 -4058 ((-1031) (-563) (-684 (-225)) (-563) (-684 (-563)) (-684 (-563)) (-563) (-684 (-563)) (-684 (-225)))) (-15 -2942 ((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -4023 ((-1031) (-563) (-563) (-563) (-225) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -1942 ((-1031) (-563) (-563) (-684 (-225)) (-563) (-684 (-563)) (-563) (-684 (-563)) (-684 (-225)) (-684 (-563)) (-684 (-563)) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-563))) (-15 -2547 ((-1031) (-563) (-684 (-225)) (-112) (-225) (-563) (-563) (-563) (-563) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE))))) (-15 -3805 ((-1031) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-563)) (-563) (-684 (-225)) (-563) (-563) (-563) (-563))) (-15 -3642 ((-1031) (-563) (-563) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))))) +((-2928 (((-1031) (-1151) (-563) (-563) (-684 (-225)) (-563) (-563) (-684 (-225))) 29)) (-1387 (((-1031) (-1151) (-563) (-563) (-684 (-225))) 28)) (-4306 (((-1031) (-1151) (-563) (-563) (-684 (-225)) (-563) (-684 (-563)) (-563) (-684 (-225))) 27)) (-4360 (((-1031) (-563) (-563) (-563) (-684 (-225))) 21))) +(((-753) (-10 -7 (-15 -4360 ((-1031) (-563) (-563) (-563) (-684 (-225)))) (-15 -4306 ((-1031) (-1151) (-563) (-563) (-684 (-225)) (-563) (-684 (-563)) (-563) (-684 (-225)))) (-15 -1387 ((-1031) (-1151) (-563) (-563) (-684 (-225)))) (-15 -2928 ((-1031) (-1151) (-563) (-563) (-684 (-225)) (-563) (-563) (-684 (-225)))))) (T -753)) +((-2928 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-753)))) (-1387 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-753)))) (-4306 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1151)) (-5 *5 (-684 (-225))) (-5 *6 (-684 (-563))) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-753)))) (-4360 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-753))))) +(-10 -7 (-15 -4360 ((-1031) (-563) (-563) (-563) (-684 (-225)))) (-15 -4306 ((-1031) (-1151) (-563) (-563) (-684 (-225)) (-563) (-684 (-563)) (-563) (-684 (-225)))) (-15 -1387 ((-1031) (-1151) (-563) (-563) (-684 (-225)))) (-15 -2928 ((-1031) (-1151) (-563) (-563) (-684 (-225)) (-563) (-563) (-684 (-225))))) +((-1517 (((-1031) (-225) (-225) (-225) (-225) (-563)) 62)) (-3341 (((-1031) (-225) (-225) (-225) (-563)) 61)) (-3001 (((-1031) (-225) (-225) (-225) (-563)) 60)) (-3998 (((-1031) (-225) (-225) (-563)) 59)) (-3110 (((-1031) (-225) (-563)) 58)) (-2882 (((-1031) (-225) (-563)) 57)) (-4135 (((-1031) (-225) (-563)) 56)) (-2804 (((-1031) (-225) (-563)) 55)) (-3676 (((-1031) (-225) (-563)) 54)) (-4142 (((-1031) (-225) (-563)) 53)) (-2198 (((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563)) 52)) (-3271 (((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563)) 51)) (-1956 (((-1031) (-225) (-563)) 50)) (-2946 (((-1031) (-225) (-563)) 49)) (-4052 (((-1031) (-225) (-563)) 48)) (-2066 (((-1031) (-225) (-563)) 47)) (-3088 (((-1031) (-563) (-225) (-169 (-225)) (-563) (-1151) (-563)) 46)) (-2558 (((-1031) (-1151) (-169 (-225)) (-1151) (-563)) 45)) (-2073 (((-1031) (-1151) (-169 (-225)) (-1151) (-563)) 44)) (-4161 (((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563)) 43)) (-2860 (((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563)) 42)) (-3778 (((-1031) (-225) (-563)) 39)) (-2369 (((-1031) (-225) (-563)) 38)) (-1908 (((-1031) (-225) (-563)) 37)) (-1638 (((-1031) (-225) (-563)) 36)) (-3053 (((-1031) (-225) (-563)) 35)) (-3325 (((-1031) (-225) (-563)) 34)) (-3808 (((-1031) (-225) (-563)) 33)) (-1931 (((-1031) (-225) (-563)) 32)) (-2556 (((-1031) (-225) (-563)) 31)) (-3054 (((-1031) (-225) (-563)) 30)) (-2937 (((-1031) (-225) (-225) (-225) (-563)) 29)) (-1428 (((-1031) (-225) (-563)) 28)) (-3541 (((-1031) (-225) (-563)) 27)) (-2693 (((-1031) (-225) (-563)) 26)) (-4115 (((-1031) (-225) (-563)) 25)) (-3587 (((-1031) (-225) (-563)) 24)) (-3094 (((-1031) (-169 (-225)) (-563)) 21))) +(((-754) (-10 -7 (-15 -3094 ((-1031) (-169 (-225)) (-563))) (-15 -3587 ((-1031) (-225) (-563))) (-15 -4115 ((-1031) (-225) (-563))) (-15 -2693 ((-1031) (-225) (-563))) (-15 -3541 ((-1031) (-225) (-563))) (-15 -1428 ((-1031) (-225) (-563))) (-15 -2937 ((-1031) (-225) (-225) (-225) (-563))) (-15 -3054 ((-1031) (-225) (-563))) (-15 -2556 ((-1031) (-225) (-563))) (-15 -1931 ((-1031) (-225) (-563))) (-15 -3808 ((-1031) (-225) (-563))) (-15 -3325 ((-1031) (-225) (-563))) (-15 -3053 ((-1031) (-225) (-563))) (-15 -1638 ((-1031) (-225) (-563))) (-15 -1908 ((-1031) (-225) (-563))) (-15 -2369 ((-1031) (-225) (-563))) (-15 -3778 ((-1031) (-225) (-563))) (-15 -2860 ((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563))) (-15 -4161 ((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563))) (-15 -2073 ((-1031) (-1151) (-169 (-225)) (-1151) (-563))) (-15 -2558 ((-1031) (-1151) (-169 (-225)) (-1151) (-563))) (-15 -3088 ((-1031) (-563) (-225) (-169 (-225)) (-563) (-1151) (-563))) (-15 -2066 ((-1031) (-225) (-563))) (-15 -4052 ((-1031) (-225) (-563))) (-15 -2946 ((-1031) (-225) (-563))) (-15 -1956 ((-1031) (-225) (-563))) (-15 -3271 ((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563))) (-15 -2198 ((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563))) (-15 -4142 ((-1031) (-225) (-563))) (-15 -3676 ((-1031) (-225) (-563))) (-15 -2804 ((-1031) (-225) (-563))) (-15 -4135 ((-1031) (-225) (-563))) (-15 -2882 ((-1031) (-225) (-563))) (-15 -3110 ((-1031) (-225) (-563))) (-15 -3998 ((-1031) (-225) (-225) (-563))) (-15 -3001 ((-1031) (-225) (-225) (-225) (-563))) (-15 -3341 ((-1031) (-225) (-225) (-225) (-563))) (-15 -1517 ((-1031) (-225) (-225) (-225) (-225) (-563))))) (T -754)) +((-1517 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3341 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3001 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3998 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3110 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2882 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-4135 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2804 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3676 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2198 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-563)) (-5 *6 (-1151)) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3271 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-563)) (-5 *6 (-1151)) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1956 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2946 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-4052 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2066 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3088 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-563)) (-5 *5 (-169 (-225))) (-5 *6 (-1151)) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2558 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1151)) (-5 *4 (-169 (-225))) (-5 *5 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2073 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1151)) (-5 *4 (-169 (-225))) (-5 *5 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-4161 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-563)) (-5 *6 (-1151)) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2860 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-563)) (-5 *6 (-1151)) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3778 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2369 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1908 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1638 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3053 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3325 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3808 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1931 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2556 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3054 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2937 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-1428 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3541 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2693 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-4115 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3587 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3094 (*1 *2 *3 *4) (-12 (-5 *3 (-169 (-225))) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(-10 -7 (-15 -3094 ((-1031) (-169 (-225)) (-563))) (-15 -3587 ((-1031) (-225) (-563))) (-15 -4115 ((-1031) (-225) (-563))) (-15 -2693 ((-1031) (-225) (-563))) (-15 -3541 ((-1031) (-225) (-563))) (-15 -1428 ((-1031) (-225) (-563))) (-15 -2937 ((-1031) (-225) (-225) (-225) (-563))) (-15 -3054 ((-1031) (-225) (-563))) (-15 -2556 ((-1031) (-225) (-563))) (-15 -1931 ((-1031) (-225) (-563))) (-15 -3808 ((-1031) (-225) (-563))) (-15 -3325 ((-1031) (-225) (-563))) (-15 -3053 ((-1031) (-225) (-563))) (-15 -1638 ((-1031) (-225) (-563))) (-15 -1908 ((-1031) (-225) (-563))) (-15 -2369 ((-1031) (-225) (-563))) (-15 -3778 ((-1031) (-225) (-563))) (-15 -2860 ((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563))) (-15 -4161 ((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563))) (-15 -2073 ((-1031) (-1151) (-169 (-225)) (-1151) (-563))) (-15 -2558 ((-1031) (-1151) (-169 (-225)) (-1151) (-563))) (-15 -3088 ((-1031) (-563) (-225) (-169 (-225)) (-563) (-1151) (-563))) (-15 -2066 ((-1031) (-225) (-563))) (-15 -4052 ((-1031) (-225) (-563))) (-15 -2946 ((-1031) (-225) (-563))) (-15 -1956 ((-1031) (-225) (-563))) (-15 -3271 ((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563))) (-15 -2198 ((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563))) (-15 -4142 ((-1031) (-225) (-563))) (-15 -3676 ((-1031) (-225) (-563))) (-15 -2804 ((-1031) (-225) (-563))) (-15 -4135 ((-1031) (-225) (-563))) (-15 -2882 ((-1031) (-225) (-563))) (-15 -3110 ((-1031) (-225) (-563))) (-15 -3998 ((-1031) (-225) (-225) (-563))) (-15 -3001 ((-1031) (-225) (-225) (-225) (-563))) (-15 -3341 ((-1031) (-225) (-225) (-225) (-563))) (-15 -1517 ((-1031) (-225) (-225) (-225) (-225) (-563)))) +((-3133 (((-1262)) 18)) (-1620 (((-1151)) 22)) (-3944 (((-1151)) 21)) (-3884 (((-1097) (-1169) (-684 (-563))) 37) (((-1097) (-1169) (-684 (-225))) 32)) (-2001 (((-112)) 16)) (-2246 (((-1151) (-1151)) 25))) +(((-755) (-10 -7 (-15 -3944 ((-1151))) (-15 -1620 ((-1151))) (-15 -2246 ((-1151) (-1151))) (-15 -3884 ((-1097) (-1169) (-684 (-225)))) (-15 -3884 ((-1097) (-1169) (-684 (-563)))) (-15 -2001 ((-112))) (-15 -3133 ((-1262))))) (T -755)) +((-3133 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-755)))) (-2001 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-755)))) (-3884 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-684 (-563))) (-5 *2 (-1097)) (-5 *1 (-755)))) (-3884 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-684 (-225))) (-5 *2 (-1097)) (-5 *1 (-755)))) (-2246 (*1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-755)))) (-1620 (*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-755)))) (-3944 (*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-755))))) +(-10 -7 (-15 -3944 ((-1151))) (-15 -1620 ((-1151))) (-15 -2246 ((-1151) (-1151))) (-15 -3884 ((-1097) (-1169) (-684 (-225)))) (-15 -3884 ((-1097) (-1169) (-684 (-563)))) (-15 -2001 ((-112))) (-15 -3133 ((-1262)))) +((-2146 (($ $ $) 10)) (-1361 (($ $ $ $) 9)) (-3399 (($ $ $) 12))) +(((-756 |#1|) (-10 -8 (-15 -3399 (|#1| |#1| |#1|)) (-15 -2146 (|#1| |#1| |#1|)) (-15 -1361 (|#1| |#1| |#1| |#1|))) (-757)) (T -756)) +NIL +(-10 -8 (-15 -3399 (|#1| |#1| |#1|)) (-15 -2146 (|#1| |#1| |#1|)) (-15 -1361 (|#1| |#1| |#1| |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-2300 (($ $ (-917)) 28)) (-1494 (($ $ (-917)) 29)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-2146 (($ $ $) 25)) (-1693 (((-858) $) 11)) (-1361 (($ $ $ $) 26)) (-3399 (($ $ $) 24)) (-2241 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 30)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 27))) +(((-757) (-140)) (T -757)) +((-1361 (*1 *1 *1 *1 *1) (-4 *1 (-757))) (-2146 (*1 *1 *1 *1) (-4 *1 (-757))) (-3399 (*1 *1 *1 *1) (-4 *1 (-757)))) +(-13 (-21) (-716) (-10 -8 (-15 -1361 ($ $ $ $)) (-15 -2146 ($ $ $)) (-15 -3399 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-858)) . T) ((-716) . T) ((-1093) . T)) +((-1693 (((-858) $) NIL) (($ (-563)) 10))) +(((-758 |#1|) (-10 -8 (-15 -1693 (|#1| (-563))) (-15 -1693 ((-858) |#1|))) (-759)) (T -758)) +NIL +(-10 -8 (-15 -1693 (|#1| (-563))) (-15 -1693 ((-858) |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-4154 (((-3 $ "failed") $) 40)) (-2300 (($ $ (-917)) 28) (($ $ (-767)) 35)) (-3400 (((-3 $ "failed") $) 38)) (-3827 (((-112) $) 34)) (-3856 (((-3 $ "failed") $) 39)) (-1494 (($ $ (-917)) 29) (($ $ (-767)) 36)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-2146 (($ $ $) 25)) (-1693 (((-858) $) 11) (($ (-563)) 31)) (-1675 (((-767)) 32)) (-1361 (($ $ $ $) 26)) (-3399 (($ $ $) 24)) (-2241 (($) 18 T CONST)) (-2254 (($) 33 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 30) (($ $ (-767)) 37)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 27))) +(((-759) (-140)) (T -759)) +((-1675 (*1 *2) (-12 (-4 *1 (-759)) (-5 *2 (-767)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-759))))) +(-13 (-757) (-718) (-10 -8 (-15 -1675 ((-767))) (-15 -1693 ($ (-563))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-858)) . T) ((-716) . T) ((-718) . T) ((-757) . T) ((-1093) . T)) +((-1870 (((-640 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 (-169 |#1|)))))) (-684 (-169 (-407 (-563)))) |#1|) 33)) (-3957 (((-640 (-169 |#1|)) (-684 (-169 (-407 (-563)))) |#1|) 23)) (-3421 (((-948 (-169 (-407 (-563)))) (-684 (-169 (-407 (-563)))) (-1169)) 20) (((-948 (-169 (-407 (-563)))) (-684 (-169 (-407 (-563))))) 19))) +(((-760 |#1|) (-10 -7 (-15 -3421 ((-948 (-169 (-407 (-563)))) (-684 (-169 (-407 (-563)))))) (-15 -3421 ((-948 (-169 (-407 (-563)))) (-684 (-169 (-407 (-563)))) (-1169))) (-15 -3957 ((-640 (-169 |#1|)) (-684 (-169 (-407 (-563)))) |#1|)) (-15 -1870 ((-640 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 (-169 |#1|)))))) (-684 (-169 (-407 (-563)))) |#1|))) (-13 (-363) (-844))) (T -760)) +((-1870 (*1 *2 *3 *4) (-12 (-5 *3 (-684 (-169 (-407 (-563))))) (-5 *2 (-640 (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 (-169 *4))))))) (-5 *1 (-760 *4)) (-4 *4 (-13 (-363) (-844))))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-684 (-169 (-407 (-563))))) (-5 *2 (-640 (-169 *4))) (-5 *1 (-760 *4)) (-4 *4 (-13 (-363) (-844))))) (-3421 (*1 *2 *3 *4) (-12 (-5 *3 (-684 (-169 (-407 (-563))))) (-5 *4 (-1169)) (-5 *2 (-948 (-169 (-407 (-563))))) (-5 *1 (-760 *5)) (-4 *5 (-13 (-363) (-844))))) (-3421 (*1 *2 *3) (-12 (-5 *3 (-684 (-169 (-407 (-563))))) (-5 *2 (-948 (-169 (-407 (-563))))) (-5 *1 (-760 *4)) (-4 *4 (-13 (-363) (-844)))))) +(-10 -7 (-15 -3421 ((-948 (-169 (-407 (-563)))) (-684 (-169 (-407 (-563)))))) (-15 -3421 ((-948 (-169 (-407 (-563)))) (-684 (-169 (-407 (-563)))) (-1169))) (-15 -3957 ((-640 (-169 |#1|)) (-684 (-169 (-407 (-563)))) |#1|)) (-15 -1870 ((-640 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 (-169 |#1|)))))) (-684 (-169 (-407 (-563)))) |#1|))) +((-2192 (((-174 (-563)) |#1|) 25))) +(((-761 |#1|) (-10 -7 (-15 -2192 ((-174 (-563)) |#1|))) (-404)) (T -761)) +((-2192 (*1 *2 *3) (-12 (-5 *2 (-174 (-563))) (-5 *1 (-761 *3)) (-4 *3 (-404))))) +(-10 -7 (-15 -2192 ((-174 (-563)) |#1|))) +((-3861 ((|#1| |#1| |#1|) 24)) (-3911 ((|#1| |#1| |#1|) 23)) (-1909 ((|#1| |#1| |#1|) 32)) (-1511 ((|#1| |#1| |#1|) 28)) (-3121 (((-3 |#1| "failed") |#1| |#1|) 27)) (-4262 (((-2 (|:| -3490 |#1|) (|:| -1972 |#1|)) |#1| |#1|) 22))) +(((-762 |#1| |#2|) (-10 -7 (-15 -4262 ((-2 (|:| -3490 |#1|) (|:| -1972 |#1|)) |#1| |#1|)) (-15 -3911 (|#1| |#1| |#1|)) (-15 -3861 (|#1| |#1| |#1|)) (-15 -3121 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1511 (|#1| |#1| |#1|)) (-15 -1909 (|#1| |#1| |#1|))) (-704 |#2|) (-363)) (T -762)) +((-1909 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) (-1511 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) (-3121 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) (-3861 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) (-3911 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) (-4262 (*1 *2 *3 *3) (-12 (-4 *4 (-363)) (-5 *2 (-2 (|:| -3490 *3) (|:| -1972 *3))) (-5 *1 (-762 *3 *4)) (-4 *3 (-704 *4))))) +(-10 -7 (-15 -4262 ((-2 (|:| -3490 |#1|) (|:| -1972 |#1|)) |#1| |#1|)) (-15 -3911 (|#1| |#1| |#1|)) (-15 -3861 (|#1| |#1| |#1|)) (-15 -3121 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1511 (|#1| |#1| |#1|)) (-15 -1909 (|#1| |#1| |#1|))) +((-2577 (((-686 (-1215)) $ (-1215)) 26)) (-2871 (((-686 (-548)) $ (-548)) 25)) (-2910 (((-767) $ (-128)) 27)) (-1717 (((-686 (-129)) $ (-129)) 24)) (-2843 (((-686 (-1215)) $) 12)) (-3262 (((-686 (-1214)) $) 8)) (-3927 (((-686 (-1213)) $) 10)) (-3429 (((-686 (-548)) $) 13)) (-1497 (((-686 (-547)) $) 9)) (-3351 (((-686 (-546)) $) 11)) (-2513 (((-767) $ (-128)) 7)) (-2810 (((-686 (-129)) $) 14)) (-2791 (((-112) $) 31)) (-2755 (((-686 $) |#1| (-950)) 32)) (-3004 (($ $) 6))) +(((-763 |#1|) (-140) (-1093)) (T -763)) +((-2755 (*1 *2 *3 *4) (-12 (-5 *4 (-950)) (-4 *3 (-1093)) (-5 *2 (-686 *1)) (-4 *1 (-763 *3)))) (-2791 (*1 *2 *1) (-12 (-4 *1 (-763 *3)) (-4 *3 (-1093)) (-5 *2 (-112))))) +(-13 (-575) (-10 -8 (-15 -2755 ((-686 $) |t#1| (-950))) (-15 -2791 ((-112) $)))) +(((-173) . T) ((-527) . T) ((-575) . T) ((-856) . T)) +((-3435 (((-2 (|:| -4315 (-684 (-563))) (|:| |basisDen| (-563)) (|:| |basisInv| (-684 (-563)))) (-563)) 59)) (-3815 (((-2 (|:| -4315 (-684 (-563))) (|:| |basisDen| (-563)) (|:| |basisInv| (-684 (-563))))) 57)) (-2315 (((-563)) 70))) +(((-764 |#1| |#2|) (-10 -7 (-15 -2315 ((-563))) (-15 -3815 ((-2 (|:| -4315 (-684 (-563))) (|:| |basisDen| (-563)) (|:| |basisInv| (-684 (-563)))))) (-15 -3435 ((-2 (|:| -4315 (-684 (-563))) (|:| |basisDen| (-563)) (|:| |basisInv| (-684 (-563)))) (-563)))) (-1233 (-563)) (-409 (-563) |#1|)) (T -764)) +((-3435 (*1 *2 *3) (-12 (-5 *3 (-563)) (-4 *4 (-1233 *3)) (-5 *2 (-2 (|:| -4315 (-684 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-684 *3)))) (-5 *1 (-764 *4 *5)) (-4 *5 (-409 *3 *4)))) (-3815 (*1 *2) (-12 (-4 *3 (-1233 (-563))) (-5 *2 (-2 (|:| -4315 (-684 (-563))) (|:| |basisDen| (-563)) (|:| |basisInv| (-684 (-563))))) (-5 *1 (-764 *3 *4)) (-4 *4 (-409 (-563) *3)))) (-2315 (*1 *2) (-12 (-4 *3 (-1233 *2)) (-5 *2 (-563)) (-5 *1 (-764 *3 *4)) (-4 *4 (-409 *2 *3))))) +(-10 -7 (-15 -2315 ((-563))) (-15 -3815 ((-2 (|:| -4315 (-684 (-563))) (|:| |basisDen| (-563)) (|:| |basisInv| (-684 (-563)))))) (-15 -3435 ((-2 (|:| -4315 (-684 (-563))) (|:| |basisDen| (-563)) (|:| |basisInv| (-684 (-563)))) (-563)))) +((-1677 (((-112) $ $) NIL)) (-2058 (((-3 (|:| |nia| (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $) 21)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 20) (($ (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 13) (($ (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) 18)) (-1718 (((-112) $ $) NIL))) +(((-765) (-13 (-1093) (-10 -8 (-15 -1693 ($ (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1693 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1693 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -2058 ((-3 (|:| |nia| (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $))))) (T -765)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-765)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-765)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-765)))) (-2058 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-765))))) +(-13 (-1093) (-10 -8 (-15 -1693 ($ (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1693 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1693 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -2058 ((-3 (|:| |nia| (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $)))) +((-4062 (((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|))) 18) (((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|)) (-640 (-1169))) 17)) (-1793 (((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|))) 20) (((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|)) (-640 (-1169))) 19))) +(((-766 |#1|) (-10 -7 (-15 -4062 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|)) (-640 (-1169)))) (-15 -4062 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|)))) (-15 -1793 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|)) (-640 (-1169)))) (-15 -1793 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|))))) (-555)) (T -766)) +((-1793 (*1 *2 *3) (-12 (-5 *3 (-640 (-948 *4))) (-4 *4 (-555)) (-5 *2 (-640 (-640 (-294 (-407 (-948 *4)))))) (-5 *1 (-766 *4)))) (-1793 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-640 (-1169))) (-4 *5 (-555)) (-5 *2 (-640 (-640 (-294 (-407 (-948 *5)))))) (-5 *1 (-766 *5)))) (-4062 (*1 *2 *3) (-12 (-5 *3 (-640 (-948 *4))) (-4 *4 (-555)) (-5 *2 (-640 (-640 (-294 (-407 (-948 *4)))))) (-5 *1 (-766 *4)))) (-4062 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-640 (-1169))) (-4 *5 (-555)) (-5 *2 (-640 (-640 (-294 (-407 (-948 *5)))))) (-5 *1 (-766 *5))))) +(-10 -7 (-15 -4062 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|)) (-640 (-1169)))) (-15 -4062 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|)))) (-15 -1793 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|)) (-640 (-1169)))) (-15 -1793 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|))))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1901 (($ $ $) 6)) (-1495 (((-3 $ "failed") $ $) 9)) (-3458 (($ $ (-563)) 7)) (-4239 (($) NIL T CONST)) (-3090 (($ $ $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-1691 (($ $) NIL)) (-3050 (($ $ $) NIL)) (-3827 (((-112) $) NIL)) (-3084 (($ $ $) NIL)) (-1777 (($ $ $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-3548 (($ $ $) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-1693 (((-858) $) NIL)) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ $ $) NIL))) +(((-767) (-13 (-789) (-722) (-10 -8 (-15 -3050 ($ $ $)) (-15 -3090 ($ $ $)) (-15 -3548 ($ $ $)) (-15 -2452 ((-2 (|:| -3490 $) (|:| -1972 $)) $ $)) (-15 -3008 ((-3 $ "failed") $ $)) (-15 -3458 ($ $ (-563))) (-15 -1691 ($ $)) (-6 (-4409 "*"))))) (T -767)) +((-3050 (*1 *1 *1 *1) (-5 *1 (-767))) (-3090 (*1 *1 *1 *1) (-5 *1 (-767))) (-3548 (*1 *1 *1 *1) (-5 *1 (-767))) (-2452 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3490 (-767)) (|:| -1972 (-767)))) (-5 *1 (-767)))) (-3008 (*1 *1 *1 *1) (|partial| -5 *1 (-767))) (-3458 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-767)))) (-1691 (*1 *1 *1) (-5 *1 (-767)))) +(-13 (-789) (-722) (-10 -8 (-15 -3050 ($ $ $)) (-15 -3090 ($ $ $)) (-15 -3548 ($ $ $)) (-15 -2452 ((-2 (|:| -3490 $) (|:| -1972 $)) $ $)) (-15 -3008 ((-3 $ "failed") $ $)) (-15 -3458 ($ $ (-563))) (-15 -1691 ($ $)) (-6 (-4409 "*")))) ((|Integer|) (COND ((< |#1| 0) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) -((-3888 (((-3 |#2| "failed") |#2| |#2| (-114) (-1168)) 35))) -(((-767 |#1| |#2|) (-10 -7 (-15 -3888 ((-3 |#2| "failed") |#2| |#2| (-114) (-1168)))) (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146)) (-13 (-29 |#1|) (-1192) (-954))) (T -767)) -((-3888 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1168)) (-4 *5 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-5 *1 (-767 *5 *2)) (-4 *2 (-13 (-29 *5) (-1192) (-954)))))) -(-10 -7 (-15 -3888 ((-3 |#2| "failed") |#2| |#2| (-114) (-1168)))) -((-4053 (((-769) |#1|) 8))) -(((-768 |#1|) (-10 -7 (-15 -4053 ((-769) |#1|))) (-1207)) (T -768)) -((-4053 (*1 *2 *3) (-12 (-5 *2 (-769)) (-5 *1 (-768 *3)) (-4 *3 (-1207))))) -(-10 -7 (-15 -4053 ((-769) |#1|))) -((-4041 (((-112) $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 7)) (-1733 (((-112) $ $) 9))) -(((-769) (-1092)) (T -769)) -NIL -(-1092) -((-4363 ((|#2| |#4|) 35))) -(((-770 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4363 (|#2| |#4|))) (-451) (-1232 |#1|) (-719 |#1| |#2|) (-1232 |#3|)) (T -770)) -((-4363 (*1 *2 *3) (-12 (-4 *4 (-451)) (-4 *5 (-719 *4 *2)) (-4 *2 (-1232 *4)) (-5 *1 (-770 *4 *2 *5 *3)) (-4 *3 (-1232 *5))))) -(-10 -7 (-15 -4363 (|#2| |#4|))) -((-1694 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-3550 (((-1261) (-1150) (-1150) |#4| |#5|) 33)) (-1984 ((|#4| |#4| |#5|) 72)) (-2140 (((-639 (-2 (|:| |val| |#4|) (|:| -1501 |#5|))) |#4| |#5|) 76)) (-3718 (((-639 (-2 (|:| |val| (-112)) (|:| -1501 |#5|))) |#4| |#5|) 16))) -(((-771 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1694 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1984 (|#4| |#4| |#5|)) (-15 -2140 ((-639 (-2 (|:| |val| |#4|) (|:| -1501 |#5|))) |#4| |#5|)) (-15 -3550 ((-1261) (-1150) (-1150) |#4| |#5|)) (-15 -3718 ((-639 (-2 (|:| |val| (-112)) (|:| -1501 |#5|))) |#4| |#5|))) (-451) (-788) (-845) (-1058 |#1| |#2| |#3|) (-1064 |#1| |#2| |#3| |#4|)) (T -771)) -((-3718 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 (-2 (|:| |val| (-112)) (|:| -1501 *4)))) (-5 *1 (-771 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-3550 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1150)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) (-4 *4 (-1058 *6 *7 *8)) (-5 *2 (-1261)) (-5 *1 (-771 *6 *7 *8 *4 *5)) (-4 *5 (-1064 *6 *7 *8 *4)))) (-2140 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1501 *4)))) (-5 *1 (-771 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-1984 (*1 *2 *2 *3) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *2 (-1058 *4 *5 *6)) (-5 *1 (-771 *4 *5 *6 *2 *3)) (-4 *3 (-1064 *4 *5 *6 *2)))) (-1694 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-771 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) -(-10 -7 (-15 -1694 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1984 (|#4| |#4| |#5|)) (-15 -2140 ((-639 (-2 (|:| |val| |#4|) (|:| -1501 |#5|))) |#4| |#5|)) (-15 -3550 ((-1261) (-1150) (-1150) |#4| |#5|)) (-15 -3718 ((-639 (-2 (|:| |val| (-112)) (|:| -1501 |#5|))) |#4| |#5|))) -((-4048 (((-3 (-1164 (-1164 |#1|)) "failed") |#4|) 43)) (-3373 (((-639 |#4|) |#4|) 15)) (-4144 ((|#4| |#4|) 11))) -(((-772 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3373 ((-639 |#4|) |#4|)) (-15 -4048 ((-3 (-1164 (-1164 |#1|)) "failed") |#4|)) (-15 -4144 (|#4| |#4|))) (-348) (-328 |#1|) (-1232 |#2|) (-1232 |#3|) (-916)) (T -772)) -((-4144 (*1 *2 *2) (-12 (-4 *3 (-348)) (-4 *4 (-328 *3)) (-4 *5 (-1232 *4)) (-5 *1 (-772 *3 *4 *5 *2 *6)) (-4 *2 (-1232 *5)) (-14 *6 (-916)))) (-4048 (*1 *2 *3) (|partial| -12 (-4 *4 (-348)) (-4 *5 (-328 *4)) (-4 *6 (-1232 *5)) (-5 *2 (-1164 (-1164 *4))) (-5 *1 (-772 *4 *5 *6 *3 *7)) (-4 *3 (-1232 *6)) (-14 *7 (-916)))) (-3373 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *5 (-328 *4)) (-4 *6 (-1232 *5)) (-5 *2 (-639 *3)) (-5 *1 (-772 *4 *5 *6 *3 *7)) (-4 *3 (-1232 *6)) (-14 *7 (-916))))) -(-10 -7 (-15 -3373 ((-639 |#4|) |#4|)) (-15 -4048 ((-3 (-1164 (-1164 |#1|)) "failed") |#4|)) (-15 -4144 (|#4| |#4|))) -((-1985 (((-2 (|:| |deter| (-639 (-1164 |#5|))) (|:| |dterm| (-639 (-639 (-2 (|:| -2542 (-766)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-639 |#1|)) (|:| |nlead| (-639 |#5|))) (-1164 |#5|) (-639 |#1|) (-639 |#5|)) 53)) (-3131 (((-639 (-766)) |#1|) 13))) -(((-773 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1985 ((-2 (|:| |deter| (-639 (-1164 |#5|))) (|:| |dterm| (-639 (-639 (-2 (|:| -2542 (-766)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-639 |#1|)) (|:| |nlead| (-639 |#5|))) (-1164 |#5|) (-639 |#1|) (-639 |#5|))) (-15 -3131 ((-639 (-766)) |#1|))) (-1232 |#4|) (-788) (-845) (-306) (-944 |#4| |#2| |#3|)) (T -773)) -((-3131 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-306)) (-5 *2 (-639 (-766))) (-5 *1 (-773 *3 *4 *5 *6 *7)) (-4 *3 (-1232 *6)) (-4 *7 (-944 *6 *4 *5)))) (-1985 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1232 *9)) (-4 *7 (-788)) (-4 *8 (-845)) (-4 *9 (-306)) (-4 *10 (-944 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-639 (-1164 *10))) (|:| |dterm| (-639 (-639 (-2 (|:| -2542 (-766)) (|:| |pcoef| *10))))) (|:| |nfacts| (-639 *6)) (|:| |nlead| (-639 *10)))) (-5 *1 (-773 *6 *7 *8 *9 *10)) (-5 *3 (-1164 *10)) (-5 *4 (-639 *6)) (-5 *5 (-639 *10))))) -(-10 -7 (-15 -1985 ((-2 (|:| |deter| (-639 (-1164 |#5|))) (|:| |dterm| (-639 (-639 (-2 (|:| -2542 (-766)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-639 |#1|)) (|:| |nlead| (-639 |#5|))) (-1164 |#5|) (-639 |#1|) (-639 |#5|))) (-15 -3131 ((-639 (-766)) |#1|))) -((-3523 (((-639 (-2 (|:| |outval| |#1|) (|:| |outmult| (-562)) (|:| |outvect| (-639 (-683 |#1|))))) (-683 (-406 (-562))) |#1|) 31)) (-1956 (((-639 |#1|) (-683 (-406 (-562))) |#1|) 21)) (-3683 (((-947 (-406 (-562))) (-683 (-406 (-562))) (-1168)) 18) (((-947 (-406 (-562))) (-683 (-406 (-562)))) 17))) -(((-774 |#1|) (-10 -7 (-15 -3683 ((-947 (-406 (-562))) (-683 (-406 (-562))))) (-15 -3683 ((-947 (-406 (-562))) (-683 (-406 (-562))) (-1168))) (-15 -1956 ((-639 |#1|) (-683 (-406 (-562))) |#1|)) (-15 -3523 ((-639 (-2 (|:| |outval| |#1|) (|:| |outmult| (-562)) (|:| |outvect| (-639 (-683 |#1|))))) (-683 (-406 (-562))) |#1|))) (-13 (-362) (-843))) (T -774)) -((-3523 (*1 *2 *3 *4) (-12 (-5 *3 (-683 (-406 (-562)))) (-5 *2 (-639 (-2 (|:| |outval| *4) (|:| |outmult| (-562)) (|:| |outvect| (-639 (-683 *4)))))) (-5 *1 (-774 *4)) (-4 *4 (-13 (-362) (-843))))) (-1956 (*1 *2 *3 *4) (-12 (-5 *3 (-683 (-406 (-562)))) (-5 *2 (-639 *4)) (-5 *1 (-774 *4)) (-4 *4 (-13 (-362) (-843))))) (-3683 (*1 *2 *3 *4) (-12 (-5 *3 (-683 (-406 (-562)))) (-5 *4 (-1168)) (-5 *2 (-947 (-406 (-562)))) (-5 *1 (-774 *5)) (-4 *5 (-13 (-362) (-843))))) (-3683 (*1 *2 *3) (-12 (-5 *3 (-683 (-406 (-562)))) (-5 *2 (-947 (-406 (-562)))) (-5 *1 (-774 *4)) (-4 *4 (-13 (-362) (-843)))))) -(-10 -7 (-15 -3683 ((-947 (-406 (-562))) (-683 (-406 (-562))))) (-15 -3683 ((-947 (-406 (-562))) (-683 (-406 (-562))) (-1168))) (-15 -1956 ((-639 |#1|) (-683 (-406 (-562))) |#1|)) (-15 -3523 ((-639 (-2 (|:| |outval| |#1|) (|:| |outmult| (-562)) (|:| |outvect| (-639 (-683 |#1|))))) (-683 (-406 (-562))) |#1|))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) 34)) (-1401 (((-639 |#2|) $) NIL)) (-1602 (((-1164 $) $ |#2|) NIL) (((-1164 |#1|) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-1965 (($ $) NIL (|has| |#1| (-554)))) (-4102 (((-112) $) NIL (|has| |#1| (-554)))) (-1578 (((-766) $) NIL) (((-766) $ (-639 |#2|)) NIL)) (-3120 (($ $) 28)) (-3415 (((-112) $ $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-2035 (($ $ $) 92 (|has| |#1| (-554)))) (-4205 (((-639 $) $ $) 105 (|has| |#1| (-554)))) (-3517 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-1977 (($ $) NIL (|has| |#1| (-451)))) (-3788 (((-417 $) $) NIL (|has| |#1| (-451)))) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-947 (-406 (-562)))) NIL (-12 (|has| |#1| (-38 (-406 (-562)))) (|has| |#2| (-610 (-1168))))) (((-3 $ "failed") (-947 (-562))) NIL (-4037 (-12 (|has| |#1| (-38 (-562))) (|has| |#2| (-610 (-1168))) (-2234 (|has| |#1| (-38 (-406 (-562)))))) (-12 (|has| |#1| (-38 (-406 (-562)))) (|has| |#2| (-610 (-1168)))))) (((-3 $ "failed") (-947 |#1|)) NIL (-4037 (-12 (|has| |#2| (-610 (-1168))) (-2234 (|has| |#1| (-38 (-406 (-562))))) (-2234 (|has| |#1| (-38 (-562))))) (-12 (|has| |#1| (-38 (-562))) (|has| |#2| (-610 (-1168))) (-2234 (|has| |#1| (-38 (-406 (-562))))) (-2234 (|has| |#1| (-544)))) (-12 (|has| |#1| (-38 (-406 (-562)))) (|has| |#2| (-610 (-1168))) (-2234 (|has| |#1| (-987 (-562))))))) (((-3 (-1117 |#1| |#2|) "failed") $) 18)) (-3960 ((|#1| $) NIL) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-562) $) NIL (|has| |#1| (-1033 (-562)))) ((|#2| $) NIL) (($ (-947 (-406 (-562)))) NIL (-12 (|has| |#1| (-38 (-406 (-562)))) (|has| |#2| (-610 (-1168))))) (($ (-947 (-562))) NIL (-4037 (-12 (|has| |#1| (-38 (-562))) (|has| |#2| (-610 (-1168))) (-2234 (|has| |#1| (-38 (-406 (-562)))))) (-12 (|has| |#1| (-38 (-406 (-562)))) (|has| |#2| (-610 (-1168)))))) (($ (-947 |#1|)) NIL (-4037 (-12 (|has| |#2| (-610 (-1168))) (-2234 (|has| |#1| (-38 (-406 (-562))))) (-2234 (|has| |#1| (-38 (-562))))) (-12 (|has| |#1| (-38 (-562))) (|has| |#2| (-610 (-1168))) (-2234 (|has| |#1| (-38 (-406 (-562))))) (-2234 (|has| |#1| (-544)))) (-12 (|has| |#1| (-38 (-406 (-562)))) (|has| |#2| (-610 (-1168))) (-2234 (|has| |#1| (-987 (-562))))))) (((-1117 |#1| |#2|) $) NIL)) (-2355 (($ $ $ |#2|) NIL (|has| |#1| (-171))) (($ $ $) 103 (|has| |#1| (-554)))) (-1600 (($ $) NIL) (($ $ |#2|) NIL)) (-3449 (((-683 (-562)) (-683 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) NIL) (((-683 |#1|) (-683 $)) NIL)) (-3300 (((-112) $ $) NIL) (((-112) $ (-639 $)) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-3446 (((-112) $) NIL)) (-3840 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 69)) (-1814 (($ $) 118 (|has| |#1| (-451)))) (-2578 (($ $) NIL (|has| |#1| (-451))) (($ $ |#2|) NIL (|has| |#1| (-451)))) (-1585 (((-639 $) $) NIL)) (-3521 (((-112) $) NIL (|has| |#1| (-904)))) (-2827 (($ $) NIL (|has| |#1| (-554)))) (-3499 (($ $) NIL (|has| |#1| (-554)))) (-3321 (($ $ $) 64) (($ $ $ |#2|) NIL)) (-3486 (($ $ $) 67) (($ $ $ |#2|) NIL)) (-3066 (($ $ |#1| (-530 |#2|) $) NIL)) (-2337 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (-12 (|has| |#1| (-881 (-378))) (|has| |#2| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (-12 (|has| |#1| (-881 (-562))) (|has| |#2| (-881 (-562)))))) (-4367 (((-112) $) NIL)) (-3627 (((-766) $) NIL)) (-1493 (((-112) $ $) NIL) (((-112) $ (-639 $)) NIL)) (-2746 (($ $ $ $ $) 89 (|has| |#1| (-554)))) (-3761 ((|#2| $) 19)) (-1389 (($ (-1164 |#1|) |#2|) NIL) (($ (-1164 $) |#2|) NIL)) (-1869 (((-639 $) $) NIL)) (-2833 (((-112) $) NIL)) (-1377 (($ |#1| (-530 |#2|)) NIL) (($ $ |#2| (-766)) 36) (($ $ (-639 |#2|) (-639 (-766))) NIL)) (-1874 (($ $ $) 60)) (-3851 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $ |#2|) NIL)) (-3739 (((-112) $) NIL)) (-3161 (((-530 |#2|) $) NIL) (((-766) $ |#2|) NIL) (((-639 (-766)) $ (-639 |#2|)) NIL)) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-4091 (((-766) $) 20)) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-2363 (($ (-1 (-530 |#2|) (-530 |#2|)) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-3640 (((-3 |#2| "failed") $) NIL)) (-3181 (($ $) NIL (|has| |#1| (-451)))) (-3349 (($ $) NIL (|has| |#1| (-451)))) (-1838 (((-639 $) $) NIL)) (-3807 (($ $) 37)) (-1634 (($ $) NIL (|has| |#1| (-451)))) (-4119 (((-639 $) $) 41)) (-4282 (($ $) 39)) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL) (($ $ |#2|) 45)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) NIL (|has| |#1| (-451)))) (-1674 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3185 (-766))) $ $) 81)) (-3823 (((-2 (|:| -4221 $) (|:| |gap| (-766)) (|:| -3380 $) (|:| -1441 $)) $ $) 66) (((-2 (|:| -4221 $) (|:| |gap| (-766)) (|:| -3380 $) (|:| -1441 $)) $ $ |#2|) NIL)) (-1648 (((-2 (|:| -4221 $) (|:| |gap| (-766)) (|:| -1441 $)) $ $) NIL) (((-2 (|:| -4221 $) (|:| |gap| (-766)) (|:| -1441 $)) $ $ |#2|) NIL)) (-3493 (($ $ $) 71) (($ $ $ |#2|) NIL)) (-3725 (($ $ $) 74) (($ $ $ |#2|) NIL)) (-3696 (((-1150) $) NIL)) (-2672 (($ $ $) 107 (|has| |#1| (-554)))) (-3173 (((-639 $) $) 30)) (-4025 (((-3 (-639 $) "failed") $) NIL)) (-1778 (((-3 (-639 $) "failed") $) NIL)) (-4270 (((-3 (-2 (|:| |var| |#2|) (|:| -1300 (-766))) "failed") $) NIL)) (-1645 (((-112) $ $) NIL) (((-112) $ (-639 $)) NIL)) (-2651 (($ $ $) NIL)) (-3730 (($ $) 21)) (-1789 (((-112) $ $) NIL)) (-2830 (((-112) $ $) NIL) (((-112) $ (-639 $)) NIL)) (-1630 (($ $ $) NIL)) (-3757 (($ $) 23)) (-1709 (((-1112) $) NIL)) (-4272 (((-2 (|:| -1606 $) (|:| |coef2| $)) $ $) 98 (|has| |#1| (-554)))) (-3015 (((-2 (|:| -1606 $) (|:| |coef1| $)) $ $) 95 (|has| |#1| (-554)))) (-1534 (((-112) $) 52)) (-1547 ((|#1| $) 55)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-451)))) (-1606 ((|#1| |#1| $) 115 (|has| |#1| (-451))) (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) NIL (|has| |#1| (-451)))) (-3586 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-3468 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-1635 (((-417 $) $) NIL (|has| |#1| (-904)))) (-2057 (((-2 (|:| -1606 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 101 (|has| |#1| (-554)))) (-1762 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ $) 83 (|has| |#1| (-554)))) (-3504 (($ $ |#1|) 111 (|has| |#1| (-554))) (($ $ $) NIL (|has| |#1| (-554)))) (-3347 (($ $ |#1|) 110 (|has| |#1| (-554))) (($ $ $) NIL (|has| |#1| (-554)))) (-1433 (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-639 |#2|) (-639 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-639 |#2|) (-639 $)) NIL)) (-2736 (($ $ |#2|) NIL (|has| |#1| (-171)))) (-4029 (($ $ |#2|) NIL) (($ $ (-639 |#2|)) NIL) (($ $ |#2| (-766)) NIL) (($ $ (-639 |#2|) (-639 (-766))) NIL)) (-2250 (((-530 |#2|) $) NIL) (((-766) $ |#2|) 43) (((-639 (-766)) $ (-639 |#2|)) NIL)) (-3276 (($ $) NIL)) (-3293 (($ $) 33)) (-4208 (((-887 (-378)) $) NIL (-12 (|has| |#1| (-610 (-887 (-378)))) (|has| |#2| (-610 (-887 (-378)))))) (((-887 (-562)) $) NIL (-12 (|has| |#1| (-610 (-887 (-562)))) (|has| |#2| (-610 (-887 (-562)))))) (((-535) $) NIL (-12 (|has| |#1| (-610 (-535))) (|has| |#2| (-610 (-535))))) (($ (-947 (-406 (-562)))) NIL (-12 (|has| |#1| (-38 (-406 (-562)))) (|has| |#2| (-610 (-1168))))) (($ (-947 (-562))) NIL (-4037 (-12 (|has| |#1| (-38 (-562))) (|has| |#2| (-610 (-1168))) (-2234 (|has| |#1| (-38 (-406 (-562)))))) (-12 (|has| |#1| (-38 (-406 (-562)))) (|has| |#2| (-610 (-1168)))))) (($ (-947 |#1|)) NIL (|has| |#2| (-610 (-1168)))) (((-1150) $) NIL (-12 (|has| |#1| (-1033 (-562))) (|has| |#2| (-610 (-1168))))) (((-947 |#1|) $) NIL (|has| |#2| (-610 (-1168))))) (-2201 ((|#1| $) 114 (|has| |#1| (-451))) (($ $ |#2|) NIL (|has| |#1| (-451)))) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-904))))) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-947 |#1|) $) NIL (|has| |#2| (-610 (-1168)))) (((-1117 |#1| |#2|) $) 15) (($ (-1117 |#1| |#2|)) 16) (($ (-406 (-562))) NIL (-4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562)))))) (($ $) NIL (|has| |#1| (-554)))) (-3969 (((-639 |#1|) $) NIL)) (-2266 ((|#1| $ (-530 |#2|)) NIL) (($ $ |#2| (-766)) 44) (($ $ (-639 |#2|) (-639 (-766))) NIL)) (-2059 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#1| (-904))) (|has| |#1| (-144))))) (-1568 (((-766)) NIL)) (-1760 (($ $ $ (-766)) NIL (|has| |#1| (-171)))) (-3799 (((-112) $ $) NIL (|has| |#1| (-554)))) (-2285 (($) 13 T CONST)) (-2632 (((-3 (-112) "failed") $ $) NIL)) (-2294 (($) 35 T CONST)) (-1378 (($ $ $ $ (-766)) 87 (|has| |#1| (-554)))) (-4382 (($ $ $ (-766)) 86 (|has| |#1| (-554)))) (-3113 (($ $ |#2|) NIL) (($ $ (-639 |#2|)) NIL) (($ $ |#2| (-766)) NIL) (($ $ (-639 |#2|) (-639 (-766))) NIL)) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1771 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1733 (((-112) $ $) 54)) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1761 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1847 (($ $) NIL) (($ $ $) 63)) (-1836 (($ $ $) 73)) (** (($ $ (-916)) NIL) (($ $ (-766)) 61)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 59) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) -(((-775 |#1| |#2|) (-13 (-1058 |#1| (-530 |#2|) |#2|) (-609 (-1117 |#1| |#2|)) (-1033 (-1117 |#1| |#2|))) (-1044) (-845)) (T -775)) -NIL -(-13 (-1058 |#1| (-530 |#2|) |#2|) (-609 (-1117 |#1| |#2|)) (-1033 (-1117 |#1| |#2|))) -((-4152 (((-777 |#2|) (-1 |#2| |#1|) (-777 |#1|)) 13))) -(((-776 |#1| |#2|) (-10 -7 (-15 -4152 ((-777 |#2|) (-1 |#2| |#1|) (-777 |#1|)))) (-1044) (-1044)) (T -776)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-777 *5)) (-4 *5 (-1044)) (-4 *6 (-1044)) (-5 *2 (-777 *6)) (-5 *1 (-776 *5 *6))))) -(-10 -7 (-15 -4152 ((-777 |#2|) (-1 |#2| |#1|) (-777 |#1|)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) 12)) (-4263 (((-1256 |#1|) $ (-766)) NIL)) (-1401 (((-639 (-1074)) $) NIL)) (-2505 (($ (-1164 |#1|)) NIL)) (-1602 (((-1164 $) $ (-1074)) NIL) (((-1164 |#1|) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-1965 (($ $) NIL (|has| |#1| (-554)))) (-4102 (((-112) $) NIL (|has| |#1| (-554)))) (-1578 (((-766) $) NIL) (((-766) $ (-639 (-1074))) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3215 (((-639 $) $ $) 39 (|has| |#1| (-554)))) (-2035 (($ $ $) 35 (|has| |#1| (-554)))) (-3517 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-1977 (($ $) NIL (|has| |#1| (-451)))) (-3788 (((-417 $) $) NIL (|has| |#1| (-451)))) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-1436 (((-112) $ $) NIL (|has| |#1| (-362)))) (-1730 (($ $ (-766)) NIL)) (-3538 (($ $ (-766)) NIL)) (-2687 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-451)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-1074) "failed") $) NIL) (((-3 (-1164 |#1|) "failed") $) 10)) (-3960 ((|#1| $) NIL) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-1074) $) NIL) (((-1164 |#1|) $) NIL)) (-2355 (($ $ $ (-1074)) NIL (|has| |#1| (-171))) ((|#1| $ $) 43 (|has| |#1| (-171)))) (-1810 (($ $ $) NIL (|has| |#1| (-362)))) (-1600 (($ $) NIL)) (-3449 (((-683 (-562)) (-683 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) NIL) (((-683 |#1|) (-683 $)) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-1787 (($ $ $) NIL (|has| |#1| (-362)))) (-4296 (($ $ $) NIL)) (-3127 (($ $ $) 71 (|has| |#1| (-554)))) (-3840 (((-2 (|:| -4221 |#1|) (|:| -3380 $) (|:| -1441 $)) $ $) 70 (|has| |#1| (-554)))) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL (|has| |#1| (-362)))) (-2578 (($ $) NIL (|has| |#1| (-451))) (($ $ (-1074)) NIL (|has| |#1| (-451)))) (-1585 (((-639 $) $) NIL)) (-3521 (((-112) $) NIL (|has| |#1| (-904)))) (-3066 (($ $ |#1| (-766) $) NIL)) (-2337 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-1074) (-881 (-378))) (|has| |#1| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (-12 (|has| (-1074) (-881 (-562))) (|has| |#1| (-881 (-562)))))) (-1993 (((-766) $ $) NIL (|has| |#1| (-554)))) (-4367 (((-112) $) NIL)) (-3627 (((-766) $) NIL)) (-3828 (((-3 $ "failed") $) NIL (|has| |#1| (-1143)))) (-1389 (($ (-1164 |#1|) (-1074)) NIL) (($ (-1164 $) (-1074)) NIL)) (-3662 (($ $ (-766)) NIL)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-1869 (((-639 $) $) NIL)) (-2833 (((-112) $) NIL)) (-1377 (($ |#1| (-766)) NIL) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL)) (-1874 (($ $ $) 20)) (-3851 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $ (-1074)) NIL) (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-3161 (((-766) $) NIL) (((-766) $ (-1074)) NIL) (((-639 (-766)) $ (-639 (-1074))) NIL)) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-2363 (($ (-1 (-766) (-766)) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-1556 (((-1164 |#1|) $) NIL)) (-3640 (((-3 (-1074) "failed") $) NIL)) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) NIL (|has| |#1| (-451)))) (-1674 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3185 (-766))) $ $) 26)) (-4159 (($ $ $) 29)) (-1809 (($ $ $) 32)) (-3823 (((-2 (|:| -4221 |#1|) (|:| |gap| (-766)) (|:| -3380 $) (|:| -1441 $)) $ $) 31)) (-3696 (((-1150) $) NIL)) (-2672 (($ $ $) 41 (|has| |#1| (-554)))) (-2215 (((-2 (|:| -3380 $) (|:| -1441 $)) $ (-766)) NIL)) (-4025 (((-3 (-639 $) "failed") $) NIL)) (-1778 (((-3 (-639 $) "failed") $) NIL)) (-4270 (((-3 (-2 (|:| |var| (-1074)) (|:| -1300 (-766))) "failed") $) NIL)) (-3081 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3730 (($) NIL (|has| |#1| (-1143)) CONST)) (-1709 (((-1112) $) NIL)) (-4272 (((-2 (|:| -1606 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-554)))) (-3015 (((-2 (|:| -1606 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-554)))) (-2168 (((-2 (|:| -2355 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-554)))) (-3284 (((-2 (|:| -2355 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-554)))) (-1534 (((-112) $) 13)) (-1547 ((|#1| $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-451)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) NIL (|has| |#1| (-451)))) (-1601 (($ $ (-766) |#1| $) 19)) (-3586 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-3468 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-1635 (((-417 $) $) NIL (|has| |#1| (-904)))) (-2057 (((-2 (|:| -1606 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-554)))) (-2019 (((-2 (|:| -2355 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-554)))) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL (|has| |#1| (-362)))) (-1762 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-1433 (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-1074) |#1|) NIL) (($ $ (-639 (-1074)) (-639 |#1|)) NIL) (($ $ (-1074) $) NIL) (($ $ (-639 (-1074)) (-639 $)) NIL)) (-2044 (((-766) $) NIL (|has| |#1| (-362)))) (-2343 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-406 $) (-406 $) (-406 $)) NIL (|has| |#1| (-554))) ((|#1| (-406 $) |#1|) NIL (|has| |#1| (-362))) (((-406 $) $ (-406 $)) NIL (|has| |#1| (-554)))) (-1610 (((-3 $ "failed") $ (-766)) NIL)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| |#1| (-362)))) (-2736 (($ $ (-1074)) NIL (|has| |#1| (-171))) ((|#1| $) NIL (|has| |#1| (-171)))) (-4029 (($ $ (-1074)) NIL) (($ $ (-639 (-1074))) NIL) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL) (($ $ (-766)) NIL) (($ $) NIL) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2250 (((-766) $) NIL) (((-766) $ (-1074)) NIL) (((-639 (-766)) $ (-639 (-1074))) NIL)) (-4208 (((-887 (-378)) $) NIL (-12 (|has| (-1074) (-610 (-887 (-378)))) (|has| |#1| (-610 (-887 (-378)))))) (((-887 (-562)) $) NIL (-12 (|has| (-1074) (-610 (-887 (-562)))) (|has| |#1| (-610 (-887 (-562)))))) (((-535) $) NIL (-12 (|has| (-1074) (-610 (-535))) (|has| |#1| (-610 (-535)))))) (-2201 ((|#1| $) NIL (|has| |#1| (-451))) (($ $ (-1074)) NIL (|has| |#1| (-451)))) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-904))))) (-2155 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554))) (((-3 (-406 $) "failed") (-406 $) $) NIL (|has| |#1| (-554)))) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ |#1|) NIL) (($ (-1074)) NIL) (((-1164 |#1|) $) 7) (($ (-1164 |#1|)) 8) (($ (-406 (-562))) NIL (-4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562)))))) (($ $) NIL (|has| |#1| (-554)))) (-3969 (((-639 |#1|) $) NIL)) (-2266 ((|#1| $ (-766)) NIL) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL)) (-2059 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#1| (-904))) (|has| |#1| (-144))))) (-1568 (((-766)) NIL)) (-1760 (($ $ $ (-766)) NIL (|has| |#1| (-171)))) (-3799 (((-112) $ $) NIL (|has| |#1| (-554)))) (-2285 (($) 21 T CONST)) (-2294 (($) 24 T CONST)) (-3113 (($ $ (-1074)) NIL) (($ $ (-639 (-1074))) NIL) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL) (($ $ (-766)) NIL) (($ $) NIL) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1771 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1761 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1847 (($ $) 28) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) -(((-777 |#1|) (-13 (-1232 |#1|) (-609 (-1164 |#1|)) (-1033 (-1164 |#1|)) (-10 -8 (-15 -1601 ($ $ (-766) |#1| $)) (-15 -1874 ($ $ $)) (-15 -1674 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3185 (-766))) $ $)) (-15 -4159 ($ $ $)) (-15 -3823 ((-2 (|:| -4221 |#1|) (|:| |gap| (-766)) (|:| -3380 $) (|:| -1441 $)) $ $)) (-15 -1809 ($ $ $)) (IF (|has| |#1| (-554)) (PROGN (-15 -3215 ((-639 $) $ $)) (-15 -2672 ($ $ $)) (-15 -2057 ((-2 (|:| -1606 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3015 ((-2 (|:| -1606 $) (|:| |coef1| $)) $ $)) (-15 -4272 ((-2 (|:| -1606 $) (|:| |coef2| $)) $ $)) (-15 -2019 ((-2 (|:| -2355 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3284 ((-2 (|:| -2355 |#1|) (|:| |coef1| $)) $ $)) (-15 -2168 ((-2 (|:| -2355 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1044)) (T -777)) -((-1601 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-766)) (-5 *1 (-777 *3)) (-4 *3 (-1044)))) (-1874 (*1 *1 *1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1044)))) (-1674 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-777 *3)) (|:| |polden| *3) (|:| -3185 (-766)))) (-5 *1 (-777 *3)) (-4 *3 (-1044)))) (-4159 (*1 *1 *1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1044)))) (-3823 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4221 *3) (|:| |gap| (-766)) (|:| -3380 (-777 *3)) (|:| -1441 (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-1044)))) (-1809 (*1 *1 *1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1044)))) (-3215 (*1 *2 *1 *1) (-12 (-5 *2 (-639 (-777 *3))) (-5 *1 (-777 *3)) (-4 *3 (-554)) (-4 *3 (-1044)))) (-2672 (*1 *1 *1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-554)) (-4 *2 (-1044)))) (-2057 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1606 (-777 *3)) (|:| |coef1| (-777 *3)) (|:| |coef2| (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-554)) (-4 *3 (-1044)))) (-3015 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1606 (-777 *3)) (|:| |coef1| (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-554)) (-4 *3 (-1044)))) (-4272 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1606 (-777 *3)) (|:| |coef2| (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-554)) (-4 *3 (-1044)))) (-2019 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2355 *3) (|:| |coef1| (-777 *3)) (|:| |coef2| (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-554)) (-4 *3 (-1044)))) (-3284 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2355 *3) (|:| |coef1| (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-554)) (-4 *3 (-1044)))) (-2168 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2355 *3) (|:| |coef2| (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-554)) (-4 *3 (-1044))))) -(-13 (-1232 |#1|) (-609 (-1164 |#1|)) (-1033 (-1164 |#1|)) (-10 -8 (-15 -1601 ($ $ (-766) |#1| $)) (-15 -1874 ($ $ $)) (-15 -1674 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3185 (-766))) $ $)) (-15 -4159 ($ $ $)) (-15 -3823 ((-2 (|:| -4221 |#1|) (|:| |gap| (-766)) (|:| -3380 $) (|:| -1441 $)) $ $)) (-15 -1809 ($ $ $)) (IF (|has| |#1| (-554)) (PROGN (-15 -3215 ((-639 $) $ $)) (-15 -2672 ($ $ $)) (-15 -2057 ((-2 (|:| -1606 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3015 ((-2 (|:| -1606 $) (|:| |coef1| $)) $ $)) (-15 -4272 ((-2 (|:| -1606 $) (|:| |coef2| $)) $ $)) (-15 -2019 ((-2 (|:| -2355 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3284 ((-2 (|:| -2355 |#1|) (|:| |coef1| $)) $ $)) (-15 -2168 ((-2 (|:| -2355 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-3322 ((|#1| (-766) |#1|) 32 (|has| |#1| (-38 (-406 (-562)))))) (-3612 ((|#1| (-766) |#1|) 22)) (-3126 ((|#1| (-766) |#1|) 34 (|has| |#1| (-38 (-406 (-562))))))) -(((-778 |#1|) (-10 -7 (-15 -3612 (|#1| (-766) |#1|)) (IF (|has| |#1| (-38 (-406 (-562)))) (PROGN (-15 -3126 (|#1| (-766) |#1|)) (-15 -3322 (|#1| (-766) |#1|))) |%noBranch|)) (-171)) (T -778)) -((-3322 (*1 *2 *3 *2) (-12 (-5 *3 (-766)) (-5 *1 (-778 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-171)))) (-3126 (*1 *2 *3 *2) (-12 (-5 *3 (-766)) (-5 *1 (-778 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-171)))) (-3612 (*1 *2 *3 *2) (-12 (-5 *3 (-766)) (-5 *1 (-778 *2)) (-4 *2 (-171))))) -(-10 -7 (-15 -3612 (|#1| (-766) |#1|)) (IF (|has| |#1| (-38 (-406 (-562)))) (PROGN (-15 -3126 (|#1| (-766) |#1|)) (-15 -3322 (|#1| (-766) |#1|))) |%noBranch|)) -((-4041 (((-112) $ $) 7)) (-1330 (((-639 (-2 (|:| -1449 $) (|:| -3315 (-639 |#4|)))) (-639 |#4|)) 85)) (-3672 (((-639 $) (-639 |#4|)) 86) (((-639 $) (-639 |#4|) (-112)) 111)) (-1401 (((-639 |#3|) $) 33)) (-2799 (((-112) $) 26)) (-4370 (((-112) $) 17 (|has| |#1| (-554)))) (-4177 (((-112) |#4| $) 101) (((-112) $) 97)) (-3623 ((|#4| |#4| $) 92)) (-1977 (((-639 (-2 (|:| |val| |#4|) (|:| -1501 $))) |#4| $) 126)) (-1395 (((-2 (|:| |under| $) (|:| -3870 $) (|:| |upper| $)) $ |#3|) 27)) (-3735 (((-112) $ (-766)) 44)) (-3556 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4403))) (((-3 |#4| "failed") $ |#3|) 79)) (-3329 (($) 45 T CONST)) (-2169 (((-112) $) 22 (|has| |#1| (-554)))) (-2183 (((-112) $ $) 24 (|has| |#1| (-554)))) (-2864 (((-112) $ $) 23 (|has| |#1| (-554)))) (-4219 (((-112) $) 25 (|has| |#1| (-554)))) (-4227 (((-639 |#4|) (-639 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2037 (((-639 |#4|) (-639 |#4|) $) 18 (|has| |#1| (-554)))) (-4230 (((-639 |#4|) (-639 |#4|) $) 19 (|has| |#1| (-554)))) (-4048 (((-3 $ "failed") (-639 |#4|)) 36)) (-3960 (($ (-639 |#4|)) 35)) (-1434 (((-3 $ "failed") $) 82)) (-3255 ((|#4| |#4| $) 89)) (-1459 (($ $) 68 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4403))))) (-1475 (($ |#4| $) 67 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4403)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4403)))) (-1441 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-554)))) (-3300 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2227 ((|#4| |#4| $) 87)) (-1954 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4403)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4403))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4403))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1471 (((-2 (|:| -1449 (-639 |#4|)) (|:| -3315 (-639 |#4|))) $) 105)) (-3189 (((-112) |#4| $) 136)) (-2633 (((-112) |#4| $) 133)) (-2813 (((-112) |#4| $) 137) (((-112) $) 134)) (-1720 (((-639 |#4|) $) 52 (|has| $ (-6 -4403)))) (-1493 (((-112) |#4| $) 104) (((-112) $) 103)) (-3761 ((|#3| $) 34)) (-4172 (((-112) $ (-766)) 43)) (-2123 (((-639 |#4|) $) 53 (|has| $ (-6 -4403)))) (-1572 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4403))))) (-1491 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#4| |#4|) $) 47)) (-3133 (((-639 |#3|) $) 32)) (-3112 (((-112) |#3| $) 31)) (-4147 (((-112) $ (-766)) 42)) (-3696 (((-1150) $) 9)) (-4093 (((-3 |#4| (-639 $)) |#4| |#4| $) 128)) (-2672 (((-639 (-2 (|:| |val| |#4|) (|:| -1501 $))) |#4| |#4| $) 127)) (-1504 (((-3 |#4| "failed") $) 83)) (-2334 (((-639 $) |#4| $) 129)) (-4302 (((-3 (-112) (-639 $)) |#4| $) 132)) (-3792 (((-639 (-2 (|:| |val| (-112)) (|:| -1501 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-4169 (((-639 $) |#4| $) 125) (((-639 $) (-639 |#4|) $) 124) (((-639 $) (-639 |#4|) (-639 $)) 123) (((-639 $) |#4| (-639 $)) 122)) (-1997 (($ |#4| $) 117) (($ (-639 |#4|) $) 116)) (-2063 (((-639 |#4|) $) 107)) (-1645 (((-112) |#4| $) 99) (((-112) $) 95)) (-2651 ((|#4| |#4| $) 90)) (-1789 (((-112) $ $) 110)) (-4123 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-554)))) (-2830 (((-112) |#4| $) 100) (((-112) $) 96)) (-1630 ((|#4| |#4| $) 91)) (-1709 (((-1112) $) 10)) (-1421 (((-3 |#4| "failed") $) 84)) (-1963 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4333 (((-3 $ "failed") $ |#4|) 78)) (-4316 (($ $ |#4|) 77) (((-639 $) |#4| $) 115) (((-639 $) |#4| (-639 $)) 114) (((-639 $) (-639 |#4|) $) 113) (((-639 $) (-639 |#4|) (-639 $)) 112)) (-3008 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 |#4|) (-639 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-639 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))))) (-1452 (((-112) $ $) 38)) (-3087 (((-112) $) 41)) (-1663 (($) 40)) (-2250 (((-766) $) 106)) (-1723 (((-766) |#4| $) 54 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4403)))) (((-766) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4403)))) (-4220 (($ $) 39)) (-4208 (((-535) $) 69 (|has| |#4| (-610 (-535))))) (-4064 (($ (-639 |#4|)) 60)) (-2316 (($ $ |#3|) 28)) (-2180 (($ $ |#3|) 30)) (-2209 (($ $) 88)) (-1962 (($ $ |#3|) 29)) (-4053 (((-857) $) 11) (((-639 |#4|) $) 37)) (-4157 (((-766) $) 76 (|has| |#3| (-367)))) (-4168 (((-3 (-2 (|:| |bas| $) (|:| -2774 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2774 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2350 (((-112) $ (-1 (-112) |#4| (-639 |#4|))) 98)) (-4125 (((-639 $) |#4| $) 121) (((-639 $) |#4| (-639 $)) 120) (((-639 $) (-639 |#4|) $) 119) (((-639 $) (-639 |#4|) (-639 $)) 118)) (-2879 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4403)))) (-3278 (((-639 |#3|) $) 81)) (-1972 (((-112) |#4| $) 135)) (-3782 (((-112) |#3| $) 80)) (-1733 (((-112) $ $) 6)) (-3492 (((-766) $) 46 (|has| $ (-6 -4403))))) -(((-779 |#1| |#2| |#3| |#4|) (-139) (-451) (-788) (-845) (-1058 |t#1| |t#2| |t#3|)) (T -779)) -NIL -(-13 (-1064 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-609 (-639 |#4|)) . T) ((-609 (-857)) . T) ((-150 |#4|) . T) ((-610 (-535)) |has| |#4| (-610 (-535))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))) ((-488 |#4|) . T) ((-513 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))) ((-971 |#1| |#2| |#3| |#4|) . T) ((-1064 |#1| |#2| |#3| |#4|) . T) ((-1092) . T) ((-1200 |#1| |#2| |#3| |#4|) . T) ((-1207) . T)) -((-3991 (((-3 (-378) "failed") (-315 |#1|) (-916)) 62 (-12 (|has| |#1| (-554)) (|has| |#1| (-845)))) (((-3 (-378) "failed") (-315 |#1|)) 54 (-12 (|has| |#1| (-554)) (|has| |#1| (-845)))) (((-3 (-378) "failed") (-406 (-947 |#1|)) (-916)) 41 (|has| |#1| (-554))) (((-3 (-378) "failed") (-406 (-947 |#1|))) 40 (|has| |#1| (-554))) (((-3 (-378) "failed") (-947 |#1|) (-916)) 31 (|has| |#1| (-1044))) (((-3 (-378) "failed") (-947 |#1|)) 30 (|has| |#1| (-1044)))) (-1655 (((-378) (-315 |#1|) (-916)) 99 (-12 (|has| |#1| (-554)) (|has| |#1| (-845)))) (((-378) (-315 |#1|)) 94 (-12 (|has| |#1| (-554)) (|has| |#1| (-845)))) (((-378) (-406 (-947 |#1|)) (-916)) 91 (|has| |#1| (-554))) (((-378) (-406 (-947 |#1|))) 90 (|has| |#1| (-554))) (((-378) (-947 |#1|) (-916)) 86 (|has| |#1| (-1044))) (((-378) (-947 |#1|)) 85 (|has| |#1| (-1044))) (((-378) |#1| (-916)) 76) (((-378) |#1|) 22)) (-3844 (((-3 (-168 (-378)) "failed") (-315 (-168 |#1|)) (-916)) 71 (-12 (|has| |#1| (-554)) (|has| |#1| (-845)))) (((-3 (-168 (-378)) "failed") (-315 (-168 |#1|))) 70 (-12 (|has| |#1| (-554)) (|has| |#1| (-845)))) (((-3 (-168 (-378)) "failed") (-315 |#1|) (-916)) 63 (-12 (|has| |#1| (-554)) (|has| |#1| (-845)))) (((-3 (-168 (-378)) "failed") (-315 |#1|)) 61 (-12 (|has| |#1| (-554)) (|has| |#1| (-845)))) (((-3 (-168 (-378)) "failed") (-406 (-947 (-168 |#1|))) (-916)) 46 (|has| |#1| (-554))) (((-3 (-168 (-378)) "failed") (-406 (-947 (-168 |#1|)))) 45 (|has| |#1| (-554))) (((-3 (-168 (-378)) "failed") (-406 (-947 |#1|)) (-916)) 39 (|has| |#1| (-554))) (((-3 (-168 (-378)) "failed") (-406 (-947 |#1|))) 38 (|has| |#1| (-554))) (((-3 (-168 (-378)) "failed") (-947 |#1|) (-916)) 28 (|has| |#1| (-1044))) (((-3 (-168 (-378)) "failed") (-947 |#1|)) 26 (|has| |#1| (-1044))) (((-3 (-168 (-378)) "failed") (-947 (-168 |#1|)) (-916)) 18 (|has| |#1| (-171))) (((-3 (-168 (-378)) "failed") (-947 (-168 |#1|))) 15 (|has| |#1| (-171)))) (-1563 (((-168 (-378)) (-315 (-168 |#1|)) (-916)) 102 (-12 (|has| |#1| (-554)) (|has| |#1| (-845)))) (((-168 (-378)) (-315 (-168 |#1|))) 101 (-12 (|has| |#1| (-554)) (|has| |#1| (-845)))) (((-168 (-378)) (-315 |#1|) (-916)) 100 (-12 (|has| |#1| (-554)) (|has| |#1| (-845)))) (((-168 (-378)) (-315 |#1|)) 98 (-12 (|has| |#1| (-554)) (|has| |#1| (-845)))) (((-168 (-378)) (-406 (-947 (-168 |#1|))) (-916)) 93 (|has| |#1| (-554))) (((-168 (-378)) (-406 (-947 (-168 |#1|)))) 92 (|has| |#1| (-554))) (((-168 (-378)) (-406 (-947 |#1|)) (-916)) 89 (|has| |#1| (-554))) (((-168 (-378)) (-406 (-947 |#1|))) 88 (|has| |#1| (-554))) (((-168 (-378)) (-947 |#1|) (-916)) 84 (|has| |#1| (-1044))) (((-168 (-378)) (-947 |#1|)) 83 (|has| |#1| (-1044))) (((-168 (-378)) (-947 (-168 |#1|)) (-916)) 78 (|has| |#1| (-171))) (((-168 (-378)) (-947 (-168 |#1|))) 77 (|has| |#1| (-171))) (((-168 (-378)) (-168 |#1|) (-916)) 80 (|has| |#1| (-171))) (((-168 (-378)) (-168 |#1|)) 79 (|has| |#1| (-171))) (((-168 (-378)) |#1| (-916)) 27) (((-168 (-378)) |#1|) 25))) -(((-780 |#1|) (-10 -7 (-15 -1655 ((-378) |#1|)) (-15 -1655 ((-378) |#1| (-916))) (-15 -1563 ((-168 (-378)) |#1|)) (-15 -1563 ((-168 (-378)) |#1| (-916))) (IF (|has| |#1| (-171)) (PROGN (-15 -1563 ((-168 (-378)) (-168 |#1|))) (-15 -1563 ((-168 (-378)) (-168 |#1|) (-916))) (-15 -1563 ((-168 (-378)) (-947 (-168 |#1|)))) (-15 -1563 ((-168 (-378)) (-947 (-168 |#1|)) (-916)))) |%noBranch|) (IF (|has| |#1| (-1044)) (PROGN (-15 -1655 ((-378) (-947 |#1|))) (-15 -1655 ((-378) (-947 |#1|) (-916))) (-15 -1563 ((-168 (-378)) (-947 |#1|))) (-15 -1563 ((-168 (-378)) (-947 |#1|) (-916)))) |%noBranch|) (IF (|has| |#1| (-554)) (PROGN (-15 -1655 ((-378) (-406 (-947 |#1|)))) (-15 -1655 ((-378) (-406 (-947 |#1|)) (-916))) (-15 -1563 ((-168 (-378)) (-406 (-947 |#1|)))) (-15 -1563 ((-168 (-378)) (-406 (-947 |#1|)) (-916))) (-15 -1563 ((-168 (-378)) (-406 (-947 (-168 |#1|))))) (-15 -1563 ((-168 (-378)) (-406 (-947 (-168 |#1|))) (-916))) (IF (|has| |#1| (-845)) (PROGN (-15 -1655 ((-378) (-315 |#1|))) (-15 -1655 ((-378) (-315 |#1|) (-916))) (-15 -1563 ((-168 (-378)) (-315 |#1|))) (-15 -1563 ((-168 (-378)) (-315 |#1|) (-916))) (-15 -1563 ((-168 (-378)) (-315 (-168 |#1|)))) (-15 -1563 ((-168 (-378)) (-315 (-168 |#1|)) (-916)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-15 -3844 ((-3 (-168 (-378)) "failed") (-947 (-168 |#1|)))) (-15 -3844 ((-3 (-168 (-378)) "failed") (-947 (-168 |#1|)) (-916)))) |%noBranch|) (IF (|has| |#1| (-1044)) (PROGN (-15 -3991 ((-3 (-378) "failed") (-947 |#1|))) (-15 -3991 ((-3 (-378) "failed") (-947 |#1|) (-916))) (-15 -3844 ((-3 (-168 (-378)) "failed") (-947 |#1|))) (-15 -3844 ((-3 (-168 (-378)) "failed") (-947 |#1|) (-916)))) |%noBranch|) (IF (|has| |#1| (-554)) (PROGN (-15 -3991 ((-3 (-378) "failed") (-406 (-947 |#1|)))) (-15 -3991 ((-3 (-378) "failed") (-406 (-947 |#1|)) (-916))) (-15 -3844 ((-3 (-168 (-378)) "failed") (-406 (-947 |#1|)))) (-15 -3844 ((-3 (-168 (-378)) "failed") (-406 (-947 |#1|)) (-916))) (-15 -3844 ((-3 (-168 (-378)) "failed") (-406 (-947 (-168 |#1|))))) (-15 -3844 ((-3 (-168 (-378)) "failed") (-406 (-947 (-168 |#1|))) (-916))) (IF (|has| |#1| (-845)) (PROGN (-15 -3991 ((-3 (-378) "failed") (-315 |#1|))) (-15 -3991 ((-3 (-378) "failed") (-315 |#1|) (-916))) (-15 -3844 ((-3 (-168 (-378)) "failed") (-315 |#1|))) (-15 -3844 ((-3 (-168 (-378)) "failed") (-315 |#1|) (-916))) (-15 -3844 ((-3 (-168 (-378)) "failed") (-315 (-168 |#1|)))) (-15 -3844 ((-3 (-168 (-378)) "failed") (-315 (-168 |#1|)) (-916)))) |%noBranch|)) |%noBranch|)) (-610 (-378))) (T -780)) -((-3844 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-315 (-168 *5))) (-5 *4 (-916)) (-4 *5 (-554)) (-4 *5 (-845)) (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) (-3844 (*1 *2 *3) (|partial| -12 (-5 *3 (-315 (-168 *4))) (-4 *4 (-554)) (-4 *4 (-845)) (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) (-3844 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-315 *5)) (-5 *4 (-916)) (-4 *5 (-554)) (-4 *5 (-845)) (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) (-3844 (*1 *2 *3) (|partial| -12 (-5 *3 (-315 *4)) (-4 *4 (-554)) (-4 *4 (-845)) (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) (-3991 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-315 *5)) (-5 *4 (-916)) (-4 *5 (-554)) (-4 *5 (-845)) (-4 *5 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *5)))) (-3991 (*1 *2 *3) (|partial| -12 (-5 *3 (-315 *4)) (-4 *4 (-554)) (-4 *4 (-845)) (-4 *4 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *4)))) (-3844 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-406 (-947 (-168 *5)))) (-5 *4 (-916)) (-4 *5 (-554)) (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) (-3844 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-947 (-168 *4)))) (-4 *4 (-554)) (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) (-3844 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-916)) (-4 *5 (-554)) (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) (-3844 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-554)) (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) (-3991 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-916)) (-4 *5 (-554)) (-4 *5 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *5)))) (-3991 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-554)) (-4 *4 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *4)))) (-3844 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-947 *5)) (-5 *4 (-916)) (-4 *5 (-1044)) (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) (-3844 (*1 *2 *3) (|partial| -12 (-5 *3 (-947 *4)) (-4 *4 (-1044)) (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) (-3991 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-947 *5)) (-5 *4 (-916)) (-4 *5 (-1044)) (-4 *5 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *5)))) (-3991 (*1 *2 *3) (|partial| -12 (-5 *3 (-947 *4)) (-4 *4 (-1044)) (-4 *4 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *4)))) (-3844 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-947 (-168 *5))) (-5 *4 (-916)) (-4 *5 (-171)) (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) (-3844 (*1 *2 *3) (|partial| -12 (-5 *3 (-947 (-168 *4))) (-4 *4 (-171)) (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) (-1563 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-168 *5))) (-5 *4 (-916)) (-4 *5 (-554)) (-4 *5 (-845)) (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) (-1563 (*1 *2 *3) (-12 (-5 *3 (-315 (-168 *4))) (-4 *4 (-554)) (-4 *4 (-845)) (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) (-1563 (*1 *2 *3 *4) (-12 (-5 *3 (-315 *5)) (-5 *4 (-916)) (-4 *5 (-554)) (-4 *5 (-845)) (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) (-1563 (*1 *2 *3) (-12 (-5 *3 (-315 *4)) (-4 *4 (-554)) (-4 *4 (-845)) (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) (-1655 (*1 *2 *3 *4) (-12 (-5 *3 (-315 *5)) (-5 *4 (-916)) (-4 *5 (-554)) (-4 *5 (-845)) (-4 *5 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *5)))) (-1655 (*1 *2 *3) (-12 (-5 *3 (-315 *4)) (-4 *4 (-554)) (-4 *4 (-845)) (-4 *4 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *4)))) (-1563 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-947 (-168 *5)))) (-5 *4 (-916)) (-4 *5 (-554)) (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) (-1563 (*1 *2 *3) (-12 (-5 *3 (-406 (-947 (-168 *4)))) (-4 *4 (-554)) (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) (-1563 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-916)) (-4 *5 (-554)) (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) (-1563 (*1 *2 *3) (-12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-554)) (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) (-1655 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-916)) (-4 *5 (-554)) (-4 *5 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *5)))) (-1655 (*1 *2 *3) (-12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-554)) (-4 *4 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *4)))) (-1563 (*1 *2 *3 *4) (-12 (-5 *3 (-947 *5)) (-5 *4 (-916)) (-4 *5 (-1044)) (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) (-1563 (*1 *2 *3) (-12 (-5 *3 (-947 *4)) (-4 *4 (-1044)) (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) (-1655 (*1 *2 *3 *4) (-12 (-5 *3 (-947 *5)) (-5 *4 (-916)) (-4 *5 (-1044)) (-4 *5 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *5)))) (-1655 (*1 *2 *3) (-12 (-5 *3 (-947 *4)) (-4 *4 (-1044)) (-4 *4 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *4)))) (-1563 (*1 *2 *3 *4) (-12 (-5 *3 (-947 (-168 *5))) (-5 *4 (-916)) (-4 *5 (-171)) (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) (-1563 (*1 *2 *3) (-12 (-5 *3 (-947 (-168 *4))) (-4 *4 (-171)) (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) (-1563 (*1 *2 *3 *4) (-12 (-5 *3 (-168 *5)) (-5 *4 (-916)) (-4 *5 (-171)) (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) (-1563 (*1 *2 *3) (-12 (-5 *3 (-168 *4)) (-4 *4 (-171)) (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) (-1563 (*1 *2 *3 *4) (-12 (-5 *4 (-916)) (-5 *2 (-168 (-378))) (-5 *1 (-780 *3)) (-4 *3 (-610 (-378))))) (-1563 (*1 *2 *3) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-780 *3)) (-4 *3 (-610 (-378))))) (-1655 (*1 *2 *3 *4) (-12 (-5 *4 (-916)) (-5 *2 (-378)) (-5 *1 (-780 *3)) (-4 *3 (-610 *2)))) (-1655 (*1 *2 *3) (-12 (-5 *2 (-378)) (-5 *1 (-780 *3)) (-4 *3 (-610 *2))))) -(-10 -7 (-15 -1655 ((-378) |#1|)) (-15 -1655 ((-378) |#1| (-916))) (-15 -1563 ((-168 (-378)) |#1|)) (-15 -1563 ((-168 (-378)) |#1| (-916))) (IF (|has| |#1| (-171)) (PROGN (-15 -1563 ((-168 (-378)) (-168 |#1|))) (-15 -1563 ((-168 (-378)) (-168 |#1|) (-916))) (-15 -1563 ((-168 (-378)) (-947 (-168 |#1|)))) (-15 -1563 ((-168 (-378)) (-947 (-168 |#1|)) (-916)))) |%noBranch|) (IF (|has| |#1| (-1044)) (PROGN (-15 -1655 ((-378) (-947 |#1|))) (-15 -1655 ((-378) (-947 |#1|) (-916))) (-15 -1563 ((-168 (-378)) (-947 |#1|))) (-15 -1563 ((-168 (-378)) (-947 |#1|) (-916)))) |%noBranch|) (IF (|has| |#1| (-554)) (PROGN (-15 -1655 ((-378) (-406 (-947 |#1|)))) (-15 -1655 ((-378) (-406 (-947 |#1|)) (-916))) (-15 -1563 ((-168 (-378)) (-406 (-947 |#1|)))) (-15 -1563 ((-168 (-378)) (-406 (-947 |#1|)) (-916))) (-15 -1563 ((-168 (-378)) (-406 (-947 (-168 |#1|))))) (-15 -1563 ((-168 (-378)) (-406 (-947 (-168 |#1|))) (-916))) (IF (|has| |#1| (-845)) (PROGN (-15 -1655 ((-378) (-315 |#1|))) (-15 -1655 ((-378) (-315 |#1|) (-916))) (-15 -1563 ((-168 (-378)) (-315 |#1|))) (-15 -1563 ((-168 (-378)) (-315 |#1|) (-916))) (-15 -1563 ((-168 (-378)) (-315 (-168 |#1|)))) (-15 -1563 ((-168 (-378)) (-315 (-168 |#1|)) (-916)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-15 -3844 ((-3 (-168 (-378)) "failed") (-947 (-168 |#1|)))) (-15 -3844 ((-3 (-168 (-378)) "failed") (-947 (-168 |#1|)) (-916)))) |%noBranch|) (IF (|has| |#1| (-1044)) (PROGN (-15 -3991 ((-3 (-378) "failed") (-947 |#1|))) (-15 -3991 ((-3 (-378) "failed") (-947 |#1|) (-916))) (-15 -3844 ((-3 (-168 (-378)) "failed") (-947 |#1|))) (-15 -3844 ((-3 (-168 (-378)) "failed") (-947 |#1|) (-916)))) |%noBranch|) (IF (|has| |#1| (-554)) (PROGN (-15 -3991 ((-3 (-378) "failed") (-406 (-947 |#1|)))) (-15 -3991 ((-3 (-378) "failed") (-406 (-947 |#1|)) (-916))) (-15 -3844 ((-3 (-168 (-378)) "failed") (-406 (-947 |#1|)))) (-15 -3844 ((-3 (-168 (-378)) "failed") (-406 (-947 |#1|)) (-916))) (-15 -3844 ((-3 (-168 (-378)) "failed") (-406 (-947 (-168 |#1|))))) (-15 -3844 ((-3 (-168 (-378)) "failed") (-406 (-947 (-168 |#1|))) (-916))) (IF (|has| |#1| (-845)) (PROGN (-15 -3991 ((-3 (-378) "failed") (-315 |#1|))) (-15 -3991 ((-3 (-378) "failed") (-315 |#1|) (-916))) (-15 -3844 ((-3 (-168 (-378)) "failed") (-315 |#1|))) (-15 -3844 ((-3 (-168 (-378)) "failed") (-315 |#1|) (-916))) (-15 -3844 ((-3 (-168 (-378)) "failed") (-315 (-168 |#1|)))) (-15 -3844 ((-3 (-168 (-378)) "failed") (-315 (-168 |#1|)) (-916)))) |%noBranch|)) |%noBranch|)) -((-3039 (((-916) (-1150)) 64)) (-1291 (((-3 (-378) "failed") (-1150)) 32)) (-2000 (((-378) (-1150)) 30)) (-2744 (((-916) (-1150)) 53)) (-1309 (((-1150) (-916)) 54)) (-3403 (((-1150) (-916)) 52))) -(((-781) (-10 -7 (-15 -3403 ((-1150) (-916))) (-15 -2744 ((-916) (-1150))) (-15 -1309 ((-1150) (-916))) (-15 -3039 ((-916) (-1150))) (-15 -2000 ((-378) (-1150))) (-15 -1291 ((-3 (-378) "failed") (-1150))))) (T -781)) -((-1291 (*1 *2 *3) (|partial| -12 (-5 *3 (-1150)) (-5 *2 (-378)) (-5 *1 (-781)))) (-2000 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-378)) (-5 *1 (-781)))) (-3039 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-916)) (-5 *1 (-781)))) (-1309 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1150)) (-5 *1 (-781)))) (-2744 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-916)) (-5 *1 (-781)))) (-3403 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1150)) (-5 *1 (-781))))) -(-10 -7 (-15 -3403 ((-1150) (-916))) (-15 -2744 ((-916) (-1150))) (-15 -1309 ((-1150) (-916))) (-15 -3039 ((-916) (-1150))) (-15 -2000 ((-378) (-1150))) (-15 -1291 ((-3 (-378) "failed") (-1150)))) -((-4041 (((-112) $ $) 7)) (-1908 (((-1030) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) 15) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030)) 13)) (-1806 (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 16) (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 14)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11)) (-1733 (((-112) $ $) 6))) -(((-782) (-139)) (T -782)) -((-1806 (*1 *2 *3 *4) (-12 (-4 *1 (-782)) (-5 *3 (-1056)) (-5 *4 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030)))))) (-1908 (*1 *2 *3 *2) (-12 (-4 *1 (-782)) (-5 *2 (-1030)) (-5 *3 (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) (-1806 (*1 *2 *3 *4) (-12 (-4 *1 (-782)) (-5 *3 (-1056)) (-5 *4 (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030)))))) (-1908 (*1 *2 *3 *2) (-12 (-4 *1 (-782)) (-5 *2 (-1030)) (-5 *3 (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) -(-13 (-1092) (-10 -7 (-15 -1806 ((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1908 ((-1030) (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030))) (-15 -1806 ((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)) (|:| |extra| (-1030))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -1908 ((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) (-1030))))) -(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) -((-2599 (((-1261) (-1256 (-378)) (-562) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4336 (-378))) (-378) (-1256 (-378)) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378))) 44) (((-1261) (-1256 (-378)) (-562) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4336 (-378))) (-378) (-1256 (-378)) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378))) 43)) (-3141 (((-1261) (-1256 (-378)) (-562) (-378) (-378) (-562) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378))) 50)) (-1538 (((-1261) (-1256 (-378)) (-562) (-378) (-378) (-378) (-378) (-562) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378))) 41)) (-1367 (((-1261) (-1256 (-378)) (-562) (-378) (-378) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378))) 52) (((-1261) (-1256 (-378)) (-562) (-378) (-378) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378))) 51))) -(((-783) (-10 -7 (-15 -1367 ((-1261) (-1256 (-378)) (-562) (-378) (-378) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378)))) (-15 -1367 ((-1261) (-1256 (-378)) (-562) (-378) (-378) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)))) (-15 -1538 ((-1261) (-1256 (-378)) (-562) (-378) (-378) (-378) (-378) (-562) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378)))) (-15 -2599 ((-1261) (-1256 (-378)) (-562) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4336 (-378))) (-378) (-1256 (-378)) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378)))) (-15 -2599 ((-1261) (-1256 (-378)) (-562) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4336 (-378))) (-378) (-1256 (-378)) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)))) (-15 -3141 ((-1261) (-1256 (-378)) (-562) (-378) (-378) (-562) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378)))))) (T -783)) -((-3141 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-562)) (-5 *6 (-1 (-1261) (-1256 *5) (-1256 *5) (-378))) (-5 *3 (-1256 (-378))) (-5 *5 (-378)) (-5 *2 (-1261)) (-5 *1 (-783)))) (-2599 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-562)) (-5 *6 (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4336 (-378)))) (-5 *7 (-1 (-1261) (-1256 *5) (-1256 *5) (-378))) (-5 *3 (-1256 (-378))) (-5 *5 (-378)) (-5 *2 (-1261)) (-5 *1 (-783)))) (-2599 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-562)) (-5 *6 (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4336 (-378)))) (-5 *7 (-1 (-1261) (-1256 *5) (-1256 *5) (-378))) (-5 *3 (-1256 (-378))) (-5 *5 (-378)) (-5 *2 (-1261)) (-5 *1 (-783)))) (-1538 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-562)) (-5 *6 (-1 (-1261) (-1256 *5) (-1256 *5) (-378))) (-5 *3 (-1256 (-378))) (-5 *5 (-378)) (-5 *2 (-1261)) (-5 *1 (-783)))) (-1367 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-562)) (-5 *6 (-1 (-1261) (-1256 *5) (-1256 *5) (-378))) (-5 *3 (-1256 (-378))) (-5 *5 (-378)) (-5 *2 (-1261)) (-5 *1 (-783)))) (-1367 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-562)) (-5 *6 (-1 (-1261) (-1256 *5) (-1256 *5) (-378))) (-5 *3 (-1256 (-378))) (-5 *5 (-378)) (-5 *2 (-1261)) (-5 *1 (-783))))) -(-10 -7 (-15 -1367 ((-1261) (-1256 (-378)) (-562) (-378) (-378) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378)))) (-15 -1367 ((-1261) (-1256 (-378)) (-562) (-378) (-378) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)))) (-15 -1538 ((-1261) (-1256 (-378)) (-562) (-378) (-378) (-378) (-378) (-562) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378)))) (-15 -2599 ((-1261) (-1256 (-378)) (-562) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4336 (-378))) (-378) (-1256 (-378)) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378)))) (-15 -2599 ((-1261) (-1256 (-378)) (-562) (-378) (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4336 (-378))) (-378) (-1256 (-378)) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)) (-1256 (-378)))) (-15 -3141 ((-1261) (-1256 (-378)) (-562) (-378) (-378) (-562) (-1 (-1261) (-1256 (-378)) (-1256 (-378)) (-378))))) -((-1536 (((-2 (|:| -2533 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562)) 53)) (-2373 (((-2 (|:| -2533 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562)) 31)) (-2992 (((-2 (|:| -2533 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562)) 52)) (-2330 (((-2 (|:| -2533 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562)) 29)) (-1790 (((-2 (|:| -2533 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562)) 51)) (-4142 (((-2 (|:| -2533 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562)) 19)) (-4010 (((-2 (|:| -2533 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562) (-562)) 32)) (-3914 (((-2 (|:| -2533 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562) (-562)) 30)) (-1669 (((-2 (|:| -2533 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562) (-562)) 28))) -(((-784) (-10 -7 (-15 -1669 ((-2 (|:| -2533 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562) (-562))) (-15 -3914 ((-2 (|:| -2533 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562) (-562))) (-15 -4010 ((-2 (|:| -2533 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562) (-562))) (-15 -4142 ((-2 (|:| -2533 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562))) (-15 -2330 ((-2 (|:| -2533 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562))) (-15 -2373 ((-2 (|:| -2533 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562))) (-15 -1790 ((-2 (|:| -2533 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562))) (-15 -2992 ((-2 (|:| -2533 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562))) (-15 -1536 ((-2 (|:| -2533 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562))))) (T -784)) -((-1536 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2533 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) (|:| |success| (-112)))) (-5 *1 (-784)) (-5 *5 (-562)))) (-2992 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2533 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) (|:| |success| (-112)))) (-5 *1 (-784)) (-5 *5 (-562)))) (-1790 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2533 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) (|:| |success| (-112)))) (-5 *1 (-784)) (-5 *5 (-562)))) (-2373 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2533 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) (|:| |success| (-112)))) (-5 *1 (-784)) (-5 *5 (-562)))) (-2330 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2533 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) (|:| |success| (-112)))) (-5 *1 (-784)) (-5 *5 (-562)))) (-4142 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2533 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) (|:| |success| (-112)))) (-5 *1 (-784)) (-5 *5 (-562)))) (-4010 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2533 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) (|:| |success| (-112)))) (-5 *1 (-784)) (-5 *5 (-562)))) (-3914 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2533 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) (|:| |success| (-112)))) (-5 *1 (-784)) (-5 *5 (-562)))) (-1669 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) (-5 *2 (-2 (|:| -2533 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) (|:| |success| (-112)))) (-5 *1 (-784)) (-5 *5 (-562))))) -(-10 -7 (-15 -1669 ((-2 (|:| -2533 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562) (-562))) (-15 -3914 ((-2 (|:| -2533 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562) (-562))) (-15 -4010 ((-2 (|:| -2533 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562) (-562))) (-15 -4142 ((-2 (|:| -2533 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562))) (-15 -2330 ((-2 (|:| -2533 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562))) (-15 -2373 ((-2 (|:| -2533 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562))) (-15 -1790 ((-2 (|:| -2533 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562))) (-15 -2992 ((-2 (|:| -2533 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562))) (-15 -1536 ((-2 (|:| -2533 (-378)) (|:| -3964 (-378)) (|:| |totalpts| (-562)) (|:| |success| (-112))) (-1 (-378) (-378)) (-378) (-378) (-378) (-378) (-562) (-562)))) -((-1843 (((-1202 |#1|) |#1| (-224) (-562)) 46))) -(((-785 |#1|) (-10 -7 (-15 -1843 ((-1202 |#1|) |#1| (-224) (-562)))) (-969)) (T -785)) -((-1843 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-224)) (-5 *5 (-562)) (-5 *2 (-1202 *3)) (-5 *1 (-785 *3)) (-4 *3 (-969))))) -(-10 -7 (-15 -1843 ((-1202 |#1|) |#1| (-224) (-562)))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 24)) (-2781 (((-3 $ "failed") $ $) 26)) (-3329 (($) 23 T CONST)) (-1551 (($ $ $) 13)) (-2993 (($ $ $) 14)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11)) (-2285 (($) 22 T CONST)) (-1798 (((-112) $ $) 16)) (-1771 (((-112) $ $) 17)) (-1733 (((-112) $ $) 6)) (-1785 (((-112) $ $) 15)) (-1761 (((-112) $ $) 18)) (-1847 (($ $ $) 28) (($ $) 27)) (-1836 (($ $ $) 20)) (* (($ (-916) $) 21) (($ (-766) $) 25) (($ (-562) $) 29))) -(((-786) (-139)) (T -786)) -NIL -(-13 (-790) (-21)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-609 (-857)) . T) ((-787) . T) ((-789) . T) ((-790) . T) ((-845) . T) ((-1092) . T)) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 24)) (-3329 (($) 23 T CONST)) (-1551 (($ $ $) 13)) (-2993 (($ $ $) 14)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11)) (-2285 (($) 22 T CONST)) (-1798 (((-112) $ $) 16)) (-1771 (((-112) $ $) 17)) (-1733 (((-112) $ $) 6)) (-1785 (((-112) $ $) 15)) (-1761 (((-112) $ $) 18)) (-1836 (($ $ $) 20)) (* (($ (-916) $) 21) (($ (-766) $) 25))) -(((-787) (-139)) (T -787)) -NIL -(-13 (-789) (-23)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-609 (-857)) . T) ((-789) . T) ((-845) . T) ((-1092) . T)) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 24)) (-1593 (($ $ $) 27)) (-2781 (((-3 $ "failed") $ $) 26)) (-3329 (($) 23 T CONST)) (-1551 (($ $ $) 13)) (-2993 (($ $ $) 14)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11)) (-2285 (($) 22 T CONST)) (-1798 (((-112) $ $) 16)) (-1771 (((-112) $ $) 17)) (-1733 (((-112) $ $) 6)) (-1785 (((-112) $ $) 15)) (-1761 (((-112) $ $) 18)) (-1836 (($ $ $) 20)) (* (($ (-916) $) 21) (($ (-766) $) 25))) -(((-788) (-139)) (T -788)) -((-1593 (*1 *1 *1 *1) (-4 *1 (-788)))) -(-13 (-790) (-10 -8 (-15 -1593 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-609 (-857)) . T) ((-787) . T) ((-789) . T) ((-790) . T) ((-845) . T) ((-1092) . T)) -((-4041 (((-112) $ $) 7)) (-1551 (($ $ $) 13)) (-2993 (($ $ $) 14)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11)) (-1798 (((-112) $ $) 16)) (-1771 (((-112) $ $) 17)) (-1733 (((-112) $ $) 6)) (-1785 (((-112) $ $) 15)) (-1761 (((-112) $ $) 18)) (-1836 (($ $ $) 20)) (* (($ (-916) $) 21))) -(((-789) (-139)) (T -789)) -NIL -(-13 (-845) (-25)) -(((-25) . T) ((-102) . T) ((-609 (-857)) . T) ((-845) . T) ((-1092) . T)) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 24)) (-2781 (((-3 $ "failed") $ $) 26)) (-3329 (($) 23 T CONST)) (-1551 (($ $ $) 13)) (-2993 (($ $ $) 14)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11)) (-2285 (($) 22 T CONST)) (-1798 (((-112) $ $) 16)) (-1771 (((-112) $ $) 17)) (-1733 (((-112) $ $) 6)) (-1785 (((-112) $ $) 15)) (-1761 (((-112) $ $) 18)) (-1836 (($ $ $) 20)) (* (($ (-916) $) 21) (($ (-766) $) 25))) -(((-790) (-139)) (T -790)) -NIL -(-13 (-787) (-130)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-609 (-857)) . T) ((-787) . T) ((-789) . T) ((-845) . T) ((-1092) . T)) -((-4325 (((-112) $) 41)) (-4048 (((-3 (-562) "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-3960 (((-562) $) NIL) (((-406 (-562)) $) NIL) ((|#2| $) 42)) (-3913 (((-3 (-406 (-562)) "failed") $) 78)) (-3498 (((-112) $) 72)) (-3854 (((-406 (-562)) $) 76)) (-4363 ((|#2| $) 26)) (-4152 (($ (-1 |#2| |#2|) $) 23)) (-1525 (($ $) 61)) (-4208 (((-535) $) 67)) (-1660 (($ $) 21)) (-4053 (((-857) $) 56) (($ (-562)) 39) (($ |#2|) 37) (($ (-406 (-562))) NIL)) (-1568 (((-766)) 10)) (-2757 ((|#2| $) 71)) (-1733 (((-112) $ $) 29)) (-1761 (((-112) $ $) 69)) (-1847 (($ $) 31) (($ $ $) NIL)) (-1836 (($ $ $) 30)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) -(((-791 |#1| |#2|) (-10 -8 (-15 -1761 ((-112) |#1| |#1|)) (-15 -4208 ((-535) |#1|)) (-15 -1525 (|#1| |#1|)) (-15 -3913 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3854 ((-406 (-562)) |#1|)) (-15 -3498 ((-112) |#1|)) (-15 -2757 (|#2| |#1|)) (-15 -4363 (|#2| |#1|)) (-15 -1660 (|#1| |#1|)) (-15 -4152 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -3960 (|#2| |#1|)) (-15 -3960 ((-406 (-562)) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -4053 (|#1| (-406 (-562)))) (-15 -3960 ((-562) |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -4053 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1568 ((-766))) (-15 -4053 (|#1| (-562))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-562) |#1|)) (-15 -1847 (|#1| |#1| |#1|)) (-15 -1847 (|#1| |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 -4325 ((-112) |#1|)) (-15 * (|#1| (-916) |#1|)) (-15 -1836 (|#1| |#1| |#1|)) (-15 -4053 ((-857) |#1|)) (-15 -1733 ((-112) |#1| |#1|))) (-792 |#2|) (-171)) (T -791)) -((-1568 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-766)) (-5 *1 (-791 *3 *4)) (-4 *3 (-792 *4))))) -(-10 -8 (-15 -1761 ((-112) |#1| |#1|)) (-15 -4208 ((-535) |#1|)) (-15 -1525 (|#1| |#1|)) (-15 -3913 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3854 ((-406 (-562)) |#1|)) (-15 -3498 ((-112) |#1|)) (-15 -2757 (|#2| |#1|)) (-15 -4363 (|#2| |#1|)) (-15 -1660 (|#1| |#1|)) (-15 -4152 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -3960 (|#2| |#1|)) (-15 -3960 ((-406 (-562)) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -4053 (|#1| (-406 (-562)))) (-15 -3960 ((-562) |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -4053 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1568 ((-766))) (-15 -4053 (|#1| (-562))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-562) |#1|)) (-15 -1847 (|#1| |#1| |#1|)) (-15 -1847 (|#1| |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 -4325 ((-112) |#1|)) (-15 * (|#1| (-916) |#1|)) (-15 -1836 (|#1| |#1| |#1|)) (-15 -4053 ((-857) |#1|)) (-15 -1733 ((-112) |#1| |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2781 (((-3 $ "failed") $ $) 19)) (-1382 (((-766)) 52 (|has| |#1| (-367)))) (-3329 (($) 17 T CONST)) (-4048 (((-3 (-562) "failed") $) 94 (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) 91 (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) 88)) (-3960 (((-562) $) 93 (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) 90 (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) 89)) (-1694 (((-3 $ "failed") $) 33)) (-1657 ((|#1| $) 78)) (-3913 (((-3 (-406 (-562)) "failed") $) 65 (|has| |#1| (-544)))) (-3498 (((-112) $) 67 (|has| |#1| (-544)))) (-3854 (((-406 (-562)) $) 66 (|has| |#1| (-544)))) (-1447 (($) 55 (|has| |#1| (-367)))) (-4367 (((-112) $) 31)) (-3014 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 69)) (-4363 ((|#1| $) 70)) (-1551 (($ $ $) 61 (|has| |#1| (-845)))) (-2993 (($ $ $) 60 (|has| |#1| (-845)))) (-4152 (($ (-1 |#1| |#1|) $) 80)) (-3549 (((-916) $) 54 (|has| |#1| (-367)))) (-3696 (((-1150) $) 9)) (-1525 (($ $) 64 (|has| |#1| (-362)))) (-2464 (($ (-916)) 53 (|has| |#1| (-367)))) (-2248 ((|#1| $) 75)) (-4030 ((|#1| $) 76)) (-1592 ((|#1| $) 77)) (-1664 ((|#1| $) 71)) (-3966 ((|#1| $) 72)) (-1402 ((|#1| $) 73)) (-2441 ((|#1| $) 74)) (-1709 (((-1112) $) 10)) (-1433 (($ $ (-639 |#1|) (-639 |#1|)) 86 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 85 (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) 84 (|has| |#1| (-308 |#1|))) (($ $ (-639 (-293 |#1|))) 83 (|has| |#1| (-308 |#1|))) (($ $ (-639 (-1168)) (-639 |#1|)) 82 (|has| |#1| (-513 (-1168) |#1|))) (($ $ (-1168) |#1|) 81 (|has| |#1| (-513 (-1168) |#1|)))) (-2343 (($ $ |#1|) 87 (|has| |#1| (-285 |#1| |#1|)))) (-4208 (((-535) $) 62 (|has| |#1| (-610 (-535))))) (-1660 (($ $) 79)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 38) (($ (-406 (-562))) 92 (|has| |#1| (-1033 (-406 (-562)))))) (-2059 (((-3 $ "failed") $) 63 (|has| |#1| (-144)))) (-1568 (((-766)) 28)) (-2757 ((|#1| $) 68 (|has| |#1| (-1053)))) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1798 (((-112) $ $) 58 (|has| |#1| (-845)))) (-1771 (((-112) $ $) 57 (|has| |#1| (-845)))) (-1733 (((-112) $ $) 6)) (-1785 (((-112) $ $) 59 (|has| |#1| (-845)))) (-1761 (((-112) $ $) 56 (|has| |#1| (-845)))) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-792 |#1|) (-139) (-171)) (T -792)) -((-1660 (*1 *1 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) (-1657 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) (-1592 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) (-4030 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) (-2248 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) (-2441 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) (-1402 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) (-3966 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) (-1664 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) (-4363 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) (-3014 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) (-2757 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)) (-4 *2 (-1053)))) (-3498 (*1 *2 *1) (-12 (-4 *1 (-792 *3)) (-4 *3 (-171)) (-4 *3 (-544)) (-5 *2 (-112)))) (-3854 (*1 *2 *1) (-12 (-4 *1 (-792 *3)) (-4 *3 (-171)) (-4 *3 (-544)) (-5 *2 (-406 (-562))))) (-3913 (*1 *2 *1) (|partial| -12 (-4 *1 (-792 *3)) (-4 *3 (-171)) (-4 *3 (-544)) (-5 *2 (-406 (-562))))) (-1525 (*1 *1 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)) (-4 *2 (-362))))) -(-13 (-38 |t#1|) (-410 |t#1|) (-337 |t#1|) (-10 -8 (-15 -1660 ($ $)) (-15 -1657 (|t#1| $)) (-15 -1592 (|t#1| $)) (-15 -4030 (|t#1| $)) (-15 -2248 (|t#1| $)) (-15 -2441 (|t#1| $)) (-15 -1402 (|t#1| $)) (-15 -3966 (|t#1| $)) (-15 -1664 (|t#1| $)) (-15 -4363 (|t#1| $)) (-15 -3014 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-367)) (-6 (-367)) |%noBranch|) (IF (|has| |t#1| (-845)) (-6 (-845)) |%noBranch|) (IF (|has| |t#1| (-610 (-535))) (-6 (-610 (-535))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-1053)) (-15 -2757 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-15 -3498 ((-112) $)) (-15 -3854 ((-406 (-562)) $)) (-15 -3913 ((-3 (-406 (-562)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-362)) (-15 -1525 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #0=(-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((-612 (-562)) . T) ((-612 |#1|) . T) ((-609 (-857)) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-367) |has| |#1| (-367)) ((-337 |#1|) . T) ((-410 |#1|) . T) ((-513 (-1168) |#1|) |has| |#1| (-513 (-1168) |#1|)) ((-513 |#1| |#1|) |has| |#1| (-308 |#1|)) ((-642 |#1|) . T) ((-642 $) . T) ((-712 |#1|) . T) ((-721) . T) ((-845) |has| |#1| (-845)) ((-1033 #0#) |has| |#1| (-1033 (-406 (-562)))) ((-1033 (-562)) |has| |#1| (-1033 (-562))) ((-1033 |#1|) . T) ((-1050 |#1|) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) -((-4152 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-793 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4152 (|#3| (-1 |#4| |#2|) |#1|))) (-792 |#2|) (-171) (-792 |#4|) (-171)) (T -793)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-4 *2 (-792 *6)) (-5 *1 (-793 *4 *5 *2 *6)) (-4 *4 (-792 *5))))) -(-10 -7 (-15 -4152 (|#3| (-1 |#4| |#2|) |#1|))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-1382 (((-766)) NIL (|has| |#1| (-367)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) NIL) (((-3 (-994 |#1|) "failed") $) 35) (((-3 (-562) "failed") $) NIL (-4037 (|has| (-994 |#1|) (-1033 (-562))) (|has| |#1| (-1033 (-562))))) (((-3 (-406 (-562)) "failed") $) NIL (-4037 (|has| (-994 |#1|) (-1033 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562))))))) (-3960 ((|#1| $) NIL) (((-994 |#1|) $) 33) (((-562) $) NIL (-4037 (|has| (-994 |#1|) (-1033 (-562))) (|has| |#1| (-1033 (-562))))) (((-406 (-562)) $) NIL (-4037 (|has| (-994 |#1|) (-1033 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562))))))) (-1694 (((-3 $ "failed") $) NIL)) (-1657 ((|#1| $) 16)) (-3913 (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-544)))) (-3498 (((-112) $) NIL (|has| |#1| (-544)))) (-3854 (((-406 (-562)) $) NIL (|has| |#1| (-544)))) (-1447 (($) NIL (|has| |#1| (-367)))) (-4367 (((-112) $) NIL)) (-3014 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-994 |#1|) (-994 |#1|)) 29)) (-4363 ((|#1| $) NIL)) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-3549 (((-916) $) NIL (|has| |#1| (-367)))) (-3696 (((-1150) $) NIL)) (-1525 (($ $) NIL (|has| |#1| (-362)))) (-2464 (($ (-916)) NIL (|has| |#1| (-367)))) (-2248 ((|#1| $) 22)) (-4030 ((|#1| $) 20)) (-1592 ((|#1| $) 18)) (-1664 ((|#1| $) 26)) (-3966 ((|#1| $) 25)) (-1402 ((|#1| $) 24)) (-2441 ((|#1| $) 23)) (-1709 (((-1112) $) NIL)) (-1433 (($ $ (-639 |#1|) (-639 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-639 (-293 |#1|))) NIL (|has| |#1| (-308 |#1|))) (($ $ (-639 (-1168)) (-639 |#1|)) NIL (|has| |#1| (-513 (-1168) |#1|))) (($ $ (-1168) |#1|) NIL (|has| |#1| (-513 (-1168) |#1|)))) (-2343 (($ $ |#1|) NIL (|has| |#1| (-285 |#1| |#1|)))) (-4208 (((-535) $) NIL (|has| |#1| (-610 (-535))))) (-1660 (($ $) NIL)) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ |#1|) NIL) (($ (-994 |#1|)) 30) (($ (-406 (-562))) NIL (-4037 (|has| (-994 |#1|) (-1033 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562))))))) (-2059 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-1568 (((-766)) NIL)) (-2757 ((|#1| $) NIL (|has| |#1| (-1053)))) (-2285 (($) 8 T CONST)) (-2294 (($) 12 T CONST)) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1771 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1761 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-794 |#1|) (-13 (-792 |#1|) (-410 (-994 |#1|)) (-10 -8 (-15 -3014 ($ (-994 |#1|) (-994 |#1|))))) (-171)) (T -794)) -((-3014 (*1 *1 *2 *2) (-12 (-5 *2 (-994 *3)) (-4 *3 (-171)) (-5 *1 (-794 *3))))) -(-13 (-792 |#1|) (-410 (-994 |#1|)) (-10 -8 (-15 -3014 ($ (-994 |#1|) (-994 |#1|))))) -((-4041 (((-112) $ $) 7)) (-1806 (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 14)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11)) (-3069 (((-1030) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 13)) (-1733 (((-112) $ $) 6))) -(((-795) (-139)) (T -795)) -((-1806 (*1 *2 *3 *4) (-12 (-4 *1 (-795)) (-5 *3 (-1056)) (-5 *4 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)))))) (-3069 (*1 *2 *3) (-12 (-4 *1 (-795)) (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-1030))))) -(-13 (-1092) (-10 -7 (-15 -1806 ((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3069 ((-1030) (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) -(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) -((-2525 (((-2 (|:| |particular| |#2|) (|:| -4291 (-639 |#2|))) |#3| |#2| (-1168)) 19))) -(((-796 |#1| |#2| |#3|) (-10 -7 (-15 -2525 ((-2 (|:| |particular| |#2|) (|:| -4291 (-639 |#2|))) |#3| |#2| (-1168)))) (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146)) (-13 (-29 |#1|) (-1192) (-954)) (-650 |#2|)) (T -796)) -((-2525 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1168)) (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-4 *4 (-13 (-29 *6) (-1192) (-954))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4291 (-639 *4)))) (-5 *1 (-796 *6 *4 *3)) (-4 *3 (-650 *4))))) -(-10 -7 (-15 -2525 ((-2 (|:| |particular| |#2|) (|:| -4291 (-639 |#2|))) |#3| |#2| (-1168)))) -((-3888 (((-3 |#2| "failed") |#2| (-114) (-293 |#2|) (-639 |#2|)) 28) (((-3 |#2| "failed") (-293 |#2|) (-114) (-293 |#2|) (-639 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -4291 (-639 |#2|))) |#2| "failed") |#2| (-114) (-1168)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -4291 (-639 |#2|))) |#2| "failed") (-293 |#2|) (-114) (-1168)) 18) (((-3 (-2 (|:| |particular| (-1256 |#2|)) (|:| -4291 (-639 (-1256 |#2|)))) "failed") (-639 |#2|) (-639 (-114)) (-1168)) 24) (((-3 (-2 (|:| |particular| (-1256 |#2|)) (|:| -4291 (-639 (-1256 |#2|)))) "failed") (-639 (-293 |#2|)) (-639 (-114)) (-1168)) 26) (((-3 (-639 (-1256 |#2|)) "failed") (-683 |#2|) (-1168)) 37) (((-3 (-2 (|:| |particular| (-1256 |#2|)) (|:| -4291 (-639 (-1256 |#2|)))) "failed") (-683 |#2|) (-1256 |#2|) (-1168)) 35))) -(((-797 |#1| |#2|) (-10 -7 (-15 -3888 ((-3 (-2 (|:| |particular| (-1256 |#2|)) (|:| -4291 (-639 (-1256 |#2|)))) "failed") (-683 |#2|) (-1256 |#2|) (-1168))) (-15 -3888 ((-3 (-639 (-1256 |#2|)) "failed") (-683 |#2|) (-1168))) (-15 -3888 ((-3 (-2 (|:| |particular| (-1256 |#2|)) (|:| -4291 (-639 (-1256 |#2|)))) "failed") (-639 (-293 |#2|)) (-639 (-114)) (-1168))) (-15 -3888 ((-3 (-2 (|:| |particular| (-1256 |#2|)) (|:| -4291 (-639 (-1256 |#2|)))) "failed") (-639 |#2|) (-639 (-114)) (-1168))) (-15 -3888 ((-3 (-2 (|:| |particular| |#2|) (|:| -4291 (-639 |#2|))) |#2| "failed") (-293 |#2|) (-114) (-1168))) (-15 -3888 ((-3 (-2 (|:| |particular| |#2|) (|:| -4291 (-639 |#2|))) |#2| "failed") |#2| (-114) (-1168))) (-15 -3888 ((-3 |#2| "failed") (-293 |#2|) (-114) (-293 |#2|) (-639 |#2|))) (-15 -3888 ((-3 |#2| "failed") |#2| (-114) (-293 |#2|) (-639 |#2|)))) (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146)) (-13 (-29 |#1|) (-1192) (-954))) (T -797)) -((-3888 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-293 *2)) (-5 *5 (-639 *2)) (-4 *2 (-13 (-29 *6) (-1192) (-954))) (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-5 *1 (-797 *6 *2)))) (-3888 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-293 *2)) (-5 *4 (-114)) (-5 *5 (-639 *2)) (-4 *2 (-13 (-29 *6) (-1192) (-954))) (-5 *1 (-797 *6 *2)) (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))))) (-3888 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1168)) (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -4291 (-639 *3))) *3 "failed")) (-5 *1 (-797 *6 *3)) (-4 *3 (-13 (-29 *6) (-1192) (-954))))) (-3888 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-293 *7)) (-5 *4 (-114)) (-5 *5 (-1168)) (-4 *7 (-13 (-29 *6) (-1192) (-954))) (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -4291 (-639 *7))) *7 "failed")) (-5 *1 (-797 *6 *7)))) (-3888 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-639 *7)) (-5 *4 (-639 (-114))) (-5 *5 (-1168)) (-4 *7 (-13 (-29 *6) (-1192) (-954))) (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-5 *2 (-2 (|:| |particular| (-1256 *7)) (|:| -4291 (-639 (-1256 *7))))) (-5 *1 (-797 *6 *7)))) (-3888 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-639 (-293 *7))) (-5 *4 (-639 (-114))) (-5 *5 (-1168)) (-4 *7 (-13 (-29 *6) (-1192) (-954))) (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-5 *2 (-2 (|:| |particular| (-1256 *7)) (|:| -4291 (-639 (-1256 *7))))) (-5 *1 (-797 *6 *7)))) (-3888 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-683 *6)) (-5 *4 (-1168)) (-4 *6 (-13 (-29 *5) (-1192) (-954))) (-4 *5 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-5 *2 (-639 (-1256 *6))) (-5 *1 (-797 *5 *6)))) (-3888 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-683 *7)) (-5 *5 (-1168)) (-4 *7 (-13 (-29 *6) (-1192) (-954))) (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-5 *2 (-2 (|:| |particular| (-1256 *7)) (|:| -4291 (-639 (-1256 *7))))) (-5 *1 (-797 *6 *7)) (-5 *4 (-1256 *7))))) -(-10 -7 (-15 -3888 ((-3 (-2 (|:| |particular| (-1256 |#2|)) (|:| -4291 (-639 (-1256 |#2|)))) "failed") (-683 |#2|) (-1256 |#2|) (-1168))) (-15 -3888 ((-3 (-639 (-1256 |#2|)) "failed") (-683 |#2|) (-1168))) (-15 -3888 ((-3 (-2 (|:| |particular| (-1256 |#2|)) (|:| -4291 (-639 (-1256 |#2|)))) "failed") (-639 (-293 |#2|)) (-639 (-114)) (-1168))) (-15 -3888 ((-3 (-2 (|:| |particular| (-1256 |#2|)) (|:| -4291 (-639 (-1256 |#2|)))) "failed") (-639 |#2|) (-639 (-114)) (-1168))) (-15 -3888 ((-3 (-2 (|:| |particular| |#2|) (|:| -4291 (-639 |#2|))) |#2| "failed") (-293 |#2|) (-114) (-1168))) (-15 -3888 ((-3 (-2 (|:| |particular| |#2|) (|:| -4291 (-639 |#2|))) |#2| "failed") |#2| (-114) (-1168))) (-15 -3888 ((-3 |#2| "failed") (-293 |#2|) (-114) (-293 |#2|) (-639 |#2|))) (-15 -3888 ((-3 |#2| "failed") |#2| (-114) (-293 |#2|) (-639 |#2|)))) -((-2119 (($) 9)) (-2154 (((-3 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))) "failed") (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 31)) (-1521 (((-639 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $) 28)) (-1581 (($ (-2 (|:| -2319 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2693 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))))) 25)) (-2412 (($ (-639 (-2 (|:| -2319 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2693 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))))) 23)) (-3229 (((-1261)) 12))) -(((-798) (-10 -8 (-15 -2119 ($)) (-15 -3229 ((-1261))) (-15 -1521 ((-639 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $)) (-15 -2412 ($ (-639 (-2 (|:| -2319 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2693 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))))))) (-15 -1581 ($ (-2 (|:| -2319 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2693 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))))) (-15 -2154 ((-3 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))) "failed") (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))))) (T -798)) -((-2154 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *2 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))) (-5 *1 (-798)))) (-1581 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2319 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2693 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))))) (-5 *1 (-798)))) (-2412 (*1 *1 *2) (-12 (-5 *2 (-639 (-2 (|:| -2319 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2693 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))))) (-5 *1 (-798)))) (-1521 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-5 *1 (-798)))) (-3229 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-798)))) (-2119 (*1 *1) (-5 *1 (-798)))) -(-10 -8 (-15 -2119 ($)) (-15 -3229 ((-1261))) (-15 -1521 ((-639 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) $)) (-15 -2412 ($ (-639 (-2 (|:| -2319 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2693 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378)))))))) (-15 -1581 ($ (-2 (|:| -2319 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (|:| -2693 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))))))) (-15 -2154 ((-3 (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) (|:| |expense| (-378)) (|:| |accuracy| (-378)) (|:| |intermediateResults| (-378))) "failed") (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) -((-1322 ((|#2| |#2| (-1168)) 16)) (-2210 ((|#2| |#2| (-1168)) 51)) (-3679 (((-1 |#2| |#2|) (-1168)) 11))) -(((-799 |#1| |#2|) (-10 -7 (-15 -1322 (|#2| |#2| (-1168))) (-15 -2210 (|#2| |#2| (-1168))) (-15 -3679 ((-1 |#2| |#2|) (-1168)))) (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146)) (-13 (-29 |#1|) (-1192) (-954))) (T -799)) -((-3679 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-5 *2 (-1 *5 *5)) (-5 *1 (-799 *4 *5)) (-4 *5 (-13 (-29 *4) (-1192) (-954))))) (-2210 (*1 *2 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-5 *1 (-799 *4 *2)) (-4 *2 (-13 (-29 *4) (-1192) (-954))))) (-1322 (*1 *2 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-5 *1 (-799 *4 *2)) (-4 *2 (-13 (-29 *4) (-1192) (-954)))))) -(-10 -7 (-15 -1322 (|#2| |#2| (-1168))) (-15 -2210 (|#2| |#2| (-1168))) (-15 -3679 ((-1 |#2| |#2|) (-1168)))) -((-3888 (((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378)) (-315 (-378)) (-639 (-378)) (-378) (-378)) 116) (((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378)) (-315 (-378)) (-639 (-378)) (-378)) 117) (((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378)) (-639 (-378)) (-378)) 119) (((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378)) (-315 (-378)) (-378)) 120) (((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378)) (-378)) 121) (((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378))) 122) (((-1030) (-803) (-1056)) 108) (((-1030) (-803)) 109)) (-1806 (((-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150)))) (-803) (-1056)) 75) (((-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150)))) (-803)) 77))) -(((-800) (-10 -7 (-15 -3888 ((-1030) (-803))) (-15 -3888 ((-1030) (-803) (-1056))) (-15 -3888 ((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378)))) (-15 -3888 ((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378)) (-378))) (-15 -3888 ((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378)) (-315 (-378)) (-378))) (-15 -3888 ((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378)) (-639 (-378)) (-378))) (-15 -3888 ((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378)) (-315 (-378)) (-639 (-378)) (-378))) (-15 -3888 ((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378)) (-315 (-378)) (-639 (-378)) (-378) (-378))) (-15 -1806 ((-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150)))) (-803))) (-15 -1806 ((-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150)))) (-803) (-1056))))) (T -800)) -((-1806 (*1 *2 *3 *4) (-12 (-5 *3 (-803)) (-5 *4 (-1056)) (-5 *2 (-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150))))) (-5 *1 (-800)))) (-1806 (*1 *2 *3) (-12 (-5 *3 (-803)) (-5 *2 (-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150))))) (-5 *1 (-800)))) (-3888 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1256 (-315 *4))) (-5 *5 (-639 (-378))) (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1030)) (-5 *1 (-800)))) (-3888 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1256 (-315 *4))) (-5 *5 (-639 (-378))) (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1030)) (-5 *1 (-800)))) (-3888 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1256 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-639 *4)) (-5 *2 (-1030)) (-5 *1 (-800)))) (-3888 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1256 (-315 *4))) (-5 *5 (-639 (-378))) (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1030)) (-5 *1 (-800)))) (-3888 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1256 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-639 *4)) (-5 *2 (-1030)) (-5 *1 (-800)))) (-3888 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1256 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-639 *4)) (-5 *2 (-1030)) (-5 *1 (-800)))) (-3888 (*1 *2 *3 *4) (-12 (-5 *3 (-803)) (-5 *4 (-1056)) (-5 *2 (-1030)) (-5 *1 (-800)))) (-3888 (*1 *2 *3) (-12 (-5 *3 (-803)) (-5 *2 (-1030)) (-5 *1 (-800))))) -(-10 -7 (-15 -3888 ((-1030) (-803))) (-15 -3888 ((-1030) (-803) (-1056))) (-15 -3888 ((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378)))) (-15 -3888 ((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378)) (-378))) (-15 -3888 ((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378)) (-315 (-378)) (-378))) (-15 -3888 ((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378)) (-639 (-378)) (-378))) (-15 -3888 ((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378)) (-315 (-378)) (-639 (-378)) (-378))) (-15 -3888 ((-1030) (-1256 (-315 (-378))) (-378) (-378) (-639 (-378)) (-315 (-378)) (-639 (-378)) (-378) (-378))) (-15 -1806 ((-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150)))) (-803))) (-15 -1806 ((-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150)))) (-803) (-1056)))) -((-1741 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4291 (-639 |#4|))) (-647 |#4|) |#4|) 35))) -(((-801 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1741 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4291 (-639 |#4|))) (-647 |#4|) |#4|))) (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562)))) (-1232 |#1|) (-1232 (-406 |#2|)) (-341 |#1| |#2| |#3|)) (T -801)) -((-1741 (*1 *2 *3 *4) (-12 (-5 *3 (-647 *4)) (-4 *4 (-341 *5 *6 *7)) (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-406 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4291 (-639 *4)))) (-5 *1 (-801 *5 *6 *7 *4))))) -(-10 -7 (-15 -1741 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4291 (-639 |#4|))) (-647 |#4|) |#4|))) -((-3358 (((-2 (|:| -3339 |#3|) (|:| |rh| (-639 (-406 |#2|)))) |#4| (-639 (-406 |#2|))) 52)) (-2055 (((-639 (-2 (|:| -2328 |#2|) (|:| -3680 |#2|))) |#4| |#2|) 60) (((-639 (-2 (|:| -2328 |#2|) (|:| -3680 |#2|))) |#4|) 59) (((-639 (-2 (|:| -2328 |#2|) (|:| -3680 |#2|))) |#3| |#2|) 20) (((-639 (-2 (|:| -2328 |#2|) (|:| -3680 |#2|))) |#3|) 21)) (-4058 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-2895 ((|#2| |#3| (-639 (-406 |#2|))) 94) (((-3 |#2| "failed") |#3| (-406 |#2|)) 91))) -(((-802 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2895 ((-3 |#2| "failed") |#3| (-406 |#2|))) (-15 -2895 (|#2| |#3| (-639 (-406 |#2|)))) (-15 -2055 ((-639 (-2 (|:| -2328 |#2|) (|:| -3680 |#2|))) |#3|)) (-15 -2055 ((-639 (-2 (|:| -2328 |#2|) (|:| -3680 |#2|))) |#3| |#2|)) (-15 -4058 (|#2| |#3| |#1|)) (-15 -2055 ((-639 (-2 (|:| -2328 |#2|) (|:| -3680 |#2|))) |#4|)) (-15 -2055 ((-639 (-2 (|:| -2328 |#2|) (|:| -3680 |#2|))) |#4| |#2|)) (-15 -4058 (|#2| |#4| |#1|)) (-15 -3358 ((-2 (|:| -3339 |#3|) (|:| |rh| (-639 (-406 |#2|)))) |#4| (-639 (-406 |#2|))))) (-13 (-362) (-146) (-1033 (-406 (-562)))) (-1232 |#1|) (-650 |#2|) (-650 (-406 |#2|))) (T -802)) -((-3358 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *6 (-1232 *5)) (-5 *2 (-2 (|:| -3339 *7) (|:| |rh| (-639 (-406 *6))))) (-5 *1 (-802 *5 *6 *7 *3)) (-5 *4 (-639 (-406 *6))) (-4 *7 (-650 *6)) (-4 *3 (-650 (-406 *6))))) (-4058 (*1 *2 *3 *4) (-12 (-4 *2 (-1232 *4)) (-5 *1 (-802 *4 *2 *5 *3)) (-4 *4 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *5 (-650 *2)) (-4 *3 (-650 (-406 *2))))) (-2055 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *4 (-1232 *5)) (-5 *2 (-639 (-2 (|:| -2328 *4) (|:| -3680 *4)))) (-5 *1 (-802 *5 *4 *6 *3)) (-4 *6 (-650 *4)) (-4 *3 (-650 (-406 *4))))) (-2055 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *5 (-1232 *4)) (-5 *2 (-639 (-2 (|:| -2328 *5) (|:| -3680 *5)))) (-5 *1 (-802 *4 *5 *6 *3)) (-4 *6 (-650 *5)) (-4 *3 (-650 (-406 *5))))) (-4058 (*1 *2 *3 *4) (-12 (-4 *2 (-1232 *4)) (-5 *1 (-802 *4 *2 *3 *5)) (-4 *4 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *3 (-650 *2)) (-4 *5 (-650 (-406 *2))))) (-2055 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *4 (-1232 *5)) (-5 *2 (-639 (-2 (|:| -2328 *4) (|:| -3680 *4)))) (-5 *1 (-802 *5 *4 *3 *6)) (-4 *3 (-650 *4)) (-4 *6 (-650 (-406 *4))))) (-2055 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *5 (-1232 *4)) (-5 *2 (-639 (-2 (|:| -2328 *5) (|:| -3680 *5)))) (-5 *1 (-802 *4 *5 *3 *6)) (-4 *3 (-650 *5)) (-4 *6 (-650 (-406 *5))))) (-2895 (*1 *2 *3 *4) (-12 (-5 *4 (-639 (-406 *2))) (-4 *2 (-1232 *5)) (-5 *1 (-802 *5 *2 *3 *6)) (-4 *5 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *3 (-650 *2)) (-4 *6 (-650 (-406 *2))))) (-2895 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-406 *2)) (-4 *2 (-1232 *5)) (-5 *1 (-802 *5 *2 *3 *6)) (-4 *5 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *3 (-650 *2)) (-4 *6 (-650 *4))))) -(-10 -7 (-15 -2895 ((-3 |#2| "failed") |#3| (-406 |#2|))) (-15 -2895 (|#2| |#3| (-639 (-406 |#2|)))) (-15 -2055 ((-639 (-2 (|:| -2328 |#2|) (|:| -3680 |#2|))) |#3|)) (-15 -2055 ((-639 (-2 (|:| -2328 |#2|) (|:| -3680 |#2|))) |#3| |#2|)) (-15 -4058 (|#2| |#3| |#1|)) (-15 -2055 ((-639 (-2 (|:| -2328 |#2|) (|:| -3680 |#2|))) |#4|)) (-15 -2055 ((-639 (-2 (|:| -2328 |#2|) (|:| -3680 |#2|))) |#4| |#2|)) (-15 -4058 (|#2| |#4| |#1|)) (-15 -3358 ((-2 (|:| -3339 |#3|) (|:| |rh| (-639 (-406 |#2|)))) |#4| (-639 (-406 |#2|))))) -((-4041 (((-112) $ $) NIL)) (-3960 (((-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) $) 13)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 15) (($ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) 12)) (-1733 (((-112) $ $) NIL))) -(((-803) (-13 (-1092) (-10 -8 (-15 -4053 ($ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3960 ((-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) $))))) (T -803)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *1 (-803)))) (-3960 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224)))) (-5 *1 (-803))))) -(-13 (-1092) (-10 -8 (-15 -4053 ($ (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))))) (-15 -3960 ((-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) (|:| |relerr| (-224))) $)))) -((-3952 (((-639 (-2 (|:| |frac| (-406 |#2|)) (|:| -3339 |#3|))) |#3| (-1 (-639 |#2|) |#2| (-1164 |#2|)) (-1 (-417 |#2|) |#2|)) 117)) (-1508 (((-639 (-2 (|:| |poly| |#2|) (|:| -3339 |#3|))) |#3| (-1 (-639 |#1|) |#2|)) 46)) (-1754 (((-639 (-2 (|:| |deg| (-766)) (|:| -3339 |#2|))) |#3|) 94)) (-3454 ((|#2| |#3|) 37)) (-3344 (((-639 (-2 (|:| -1497 |#1|) (|:| -3339 |#3|))) |#3| (-1 (-639 |#1|) |#2|)) 81)) (-2164 ((|#3| |#3| (-406 |#2|)) 62) ((|#3| |#3| |#2|) 78))) -(((-804 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3454 (|#2| |#3|)) (-15 -1754 ((-639 (-2 (|:| |deg| (-766)) (|:| -3339 |#2|))) |#3|)) (-15 -3344 ((-639 (-2 (|:| -1497 |#1|) (|:| -3339 |#3|))) |#3| (-1 (-639 |#1|) |#2|))) (-15 -1508 ((-639 (-2 (|:| |poly| |#2|) (|:| -3339 |#3|))) |#3| (-1 (-639 |#1|) |#2|))) (-15 -3952 ((-639 (-2 (|:| |frac| (-406 |#2|)) (|:| -3339 |#3|))) |#3| (-1 (-639 |#2|) |#2| (-1164 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -2164 (|#3| |#3| |#2|)) (-15 -2164 (|#3| |#3| (-406 |#2|)))) (-13 (-362) (-146) (-1033 (-406 (-562)))) (-1232 |#1|) (-650 |#2|) (-650 (-406 |#2|))) (T -804)) -((-2164 (*1 *2 *2 *3) (-12 (-5 *3 (-406 *5)) (-4 *4 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *5 (-1232 *4)) (-5 *1 (-804 *4 *5 *2 *6)) (-4 *2 (-650 *5)) (-4 *6 (-650 *3)))) (-2164 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *3 (-1232 *4)) (-5 *1 (-804 *4 *3 *2 *5)) (-4 *2 (-650 *3)) (-4 *5 (-650 (-406 *3))))) (-3952 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-639 *7) *7 (-1164 *7))) (-5 *5 (-1 (-417 *7) *7)) (-4 *7 (-1232 *6)) (-4 *6 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-5 *2 (-639 (-2 (|:| |frac| (-406 *7)) (|:| -3339 *3)))) (-5 *1 (-804 *6 *7 *3 *8)) (-4 *3 (-650 *7)) (-4 *8 (-650 (-406 *7))))) (-1508 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-639 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *6 (-1232 *5)) (-5 *2 (-639 (-2 (|:| |poly| *6) (|:| -3339 *3)))) (-5 *1 (-804 *5 *6 *3 *7)) (-4 *3 (-650 *6)) (-4 *7 (-650 (-406 *6))))) (-3344 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-639 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *6 (-1232 *5)) (-5 *2 (-639 (-2 (|:| -1497 *5) (|:| -3339 *3)))) (-5 *1 (-804 *5 *6 *3 *7)) (-4 *3 (-650 *6)) (-4 *7 (-650 (-406 *6))))) (-1754 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *5 (-1232 *4)) (-5 *2 (-639 (-2 (|:| |deg| (-766)) (|:| -3339 *5)))) (-5 *1 (-804 *4 *5 *3 *6)) (-4 *3 (-650 *5)) (-4 *6 (-650 (-406 *5))))) (-3454 (*1 *2 *3) (-12 (-4 *2 (-1232 *4)) (-5 *1 (-804 *4 *2 *3 *5)) (-4 *4 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *3 (-650 *2)) (-4 *5 (-650 (-406 *2)))))) -(-10 -7 (-15 -3454 (|#2| |#3|)) (-15 -1754 ((-639 (-2 (|:| |deg| (-766)) (|:| -3339 |#2|))) |#3|)) (-15 -3344 ((-639 (-2 (|:| -1497 |#1|) (|:| -3339 |#3|))) |#3| (-1 (-639 |#1|) |#2|))) (-15 -1508 ((-639 (-2 (|:| |poly| |#2|) (|:| -3339 |#3|))) |#3| (-1 (-639 |#1|) |#2|))) (-15 -3952 ((-639 (-2 (|:| |frac| (-406 |#2|)) (|:| -3339 |#3|))) |#3| (-1 (-639 |#2|) |#2| (-1164 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -2164 (|#3| |#3| |#2|)) (-15 -2164 (|#3| |#3| (-406 |#2|)))) -((-1742 (((-2 (|:| -4291 (-639 (-406 |#2|))) (|:| -1767 (-683 |#1|))) (-648 |#2| (-406 |#2|)) (-639 (-406 |#2|))) 122) (((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -4291 (-639 (-406 |#2|)))) (-648 |#2| (-406 |#2|)) (-406 |#2|)) 121) (((-2 (|:| -4291 (-639 (-406 |#2|))) (|:| -1767 (-683 |#1|))) (-647 (-406 |#2|)) (-639 (-406 |#2|))) 116) (((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -4291 (-639 (-406 |#2|)))) (-647 (-406 |#2|)) (-406 |#2|)) 114)) (-3026 ((|#2| (-648 |#2| (-406 |#2|))) 80) ((|#2| (-647 (-406 |#2|))) 83))) -(((-805 |#1| |#2|) (-10 -7 (-15 -1742 ((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -4291 (-639 (-406 |#2|)))) (-647 (-406 |#2|)) (-406 |#2|))) (-15 -1742 ((-2 (|:| -4291 (-639 (-406 |#2|))) (|:| -1767 (-683 |#1|))) (-647 (-406 |#2|)) (-639 (-406 |#2|)))) (-15 -1742 ((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -4291 (-639 (-406 |#2|)))) (-648 |#2| (-406 |#2|)) (-406 |#2|))) (-15 -1742 ((-2 (|:| -4291 (-639 (-406 |#2|))) (|:| -1767 (-683 |#1|))) (-648 |#2| (-406 |#2|)) (-639 (-406 |#2|)))) (-15 -3026 (|#2| (-647 (-406 |#2|)))) (-15 -3026 (|#2| (-648 |#2| (-406 |#2|))))) (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562)))) (-1232 |#1|)) (T -805)) -((-3026 (*1 *2 *3) (-12 (-5 *3 (-648 *2 (-406 *2))) (-4 *2 (-1232 *4)) (-5 *1 (-805 *4 *2)) (-4 *4 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))))) (-3026 (*1 *2 *3) (-12 (-5 *3 (-647 (-406 *2))) (-4 *2 (-1232 *4)) (-5 *1 (-805 *4 *2)) (-4 *4 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))))) (-1742 (*1 *2 *3 *4) (-12 (-5 *3 (-648 *6 (-406 *6))) (-4 *6 (-1232 *5)) (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-5 *2 (-2 (|:| -4291 (-639 (-406 *6))) (|:| -1767 (-683 *5)))) (-5 *1 (-805 *5 *6)) (-5 *4 (-639 (-406 *6))))) (-1742 (*1 *2 *3 *4) (-12 (-5 *3 (-648 *6 (-406 *6))) (-5 *4 (-406 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4291 (-639 *4)))) (-5 *1 (-805 *5 *6)))) (-1742 (*1 *2 *3 *4) (-12 (-5 *3 (-647 (-406 *6))) (-4 *6 (-1232 *5)) (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-5 *2 (-2 (|:| -4291 (-639 (-406 *6))) (|:| -1767 (-683 *5)))) (-5 *1 (-805 *5 *6)) (-5 *4 (-639 (-406 *6))))) (-1742 (*1 *2 *3 *4) (-12 (-5 *3 (-647 (-406 *6))) (-5 *4 (-406 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4291 (-639 *4)))) (-5 *1 (-805 *5 *6))))) -(-10 -7 (-15 -1742 ((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -4291 (-639 (-406 |#2|)))) (-647 (-406 |#2|)) (-406 |#2|))) (-15 -1742 ((-2 (|:| -4291 (-639 (-406 |#2|))) (|:| -1767 (-683 |#1|))) (-647 (-406 |#2|)) (-639 (-406 |#2|)))) (-15 -1742 ((-2 (|:| |particular| (-3 (-406 |#2|) "failed")) (|:| -4291 (-639 (-406 |#2|)))) (-648 |#2| (-406 |#2|)) (-406 |#2|))) (-15 -1742 ((-2 (|:| -4291 (-639 (-406 |#2|))) (|:| -1767 (-683 |#1|))) (-648 |#2| (-406 |#2|)) (-639 (-406 |#2|)))) (-15 -3026 (|#2| (-647 (-406 |#2|)))) (-15 -3026 (|#2| (-648 |#2| (-406 |#2|))))) -((-1684 (((-2 (|:| -1767 (-683 |#2|)) (|:| |vec| (-1256 |#1|))) |#5| |#4|) 48))) -(((-806 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1684 ((-2 (|:| -1767 (-683 |#2|)) (|:| |vec| (-1256 |#1|))) |#5| |#4|))) (-362) (-650 |#1|) (-1232 |#1|) (-719 |#1| |#3|) (-650 |#4|)) (T -806)) -((-1684 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *7 (-1232 *5)) (-4 *4 (-719 *5 *7)) (-5 *2 (-2 (|:| -1767 (-683 *6)) (|:| |vec| (-1256 *5)))) (-5 *1 (-806 *5 *6 *7 *4 *3)) (-4 *6 (-650 *5)) (-4 *3 (-650 *4))))) -(-10 -7 (-15 -1684 ((-2 (|:| -1767 (-683 |#2|)) (|:| |vec| (-1256 |#1|))) |#5| |#4|))) -((-3952 (((-639 (-2 (|:| |frac| (-406 |#2|)) (|:| -3339 (-648 |#2| (-406 |#2|))))) (-648 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|)) 47)) (-3503 (((-639 (-406 |#2|)) (-648 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|)) 140 (|has| |#1| (-27))) (((-639 (-406 |#2|)) (-648 |#2| (-406 |#2|))) 137 (|has| |#1| (-27))) (((-639 (-406 |#2|)) (-647 (-406 |#2|)) (-1 (-417 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-639 (-406 |#2|)) (-647 (-406 |#2|))) 139 (|has| |#1| (-27))) (((-639 (-406 |#2|)) (-648 |#2| (-406 |#2|)) (-1 (-639 |#1|) |#2|) (-1 (-417 |#2|) |#2|)) 38) (((-639 (-406 |#2|)) (-648 |#2| (-406 |#2|)) (-1 (-639 |#1|) |#2|)) 39) (((-639 (-406 |#2|)) (-647 (-406 |#2|)) (-1 (-639 |#1|) |#2|) (-1 (-417 |#2|) |#2|)) 36) (((-639 (-406 |#2|)) (-647 (-406 |#2|)) (-1 (-639 |#1|) |#2|)) 37)) (-1508 (((-639 (-2 (|:| |poly| |#2|) (|:| -3339 (-648 |#2| (-406 |#2|))))) (-648 |#2| (-406 |#2|)) (-1 (-639 |#1|) |#2|)) 83))) -(((-807 |#1| |#2|) (-10 -7 (-15 -3503 ((-639 (-406 |#2|)) (-647 (-406 |#2|)) (-1 (-639 |#1|) |#2|))) (-15 -3503 ((-639 (-406 |#2|)) (-647 (-406 |#2|)) (-1 (-639 |#1|) |#2|) (-1 (-417 |#2|) |#2|))) (-15 -3503 ((-639 (-406 |#2|)) (-648 |#2| (-406 |#2|)) (-1 (-639 |#1|) |#2|))) (-15 -3503 ((-639 (-406 |#2|)) (-648 |#2| (-406 |#2|)) (-1 (-639 |#1|) |#2|) (-1 (-417 |#2|) |#2|))) (-15 -3952 ((-639 (-2 (|:| |frac| (-406 |#2|)) (|:| -3339 (-648 |#2| (-406 |#2|))))) (-648 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -1508 ((-639 (-2 (|:| |poly| |#2|) (|:| -3339 (-648 |#2| (-406 |#2|))))) (-648 |#2| (-406 |#2|)) (-1 (-639 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3503 ((-639 (-406 |#2|)) (-647 (-406 |#2|)))) (-15 -3503 ((-639 (-406 |#2|)) (-647 (-406 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -3503 ((-639 (-406 |#2|)) (-648 |#2| (-406 |#2|)))) (-15 -3503 ((-639 (-406 |#2|)) (-648 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|)))) |%noBranch|)) (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562)))) (-1232 |#1|)) (T -807)) -((-3503 (*1 *2 *3 *4) (-12 (-5 *3 (-648 *6 (-406 *6))) (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1232 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-5 *2 (-639 (-406 *6))) (-5 *1 (-807 *5 *6)))) (-3503 (*1 *2 *3) (-12 (-5 *3 (-648 *5 (-406 *5))) (-4 *5 (-1232 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-5 *2 (-639 (-406 *5))) (-5 *1 (-807 *4 *5)))) (-3503 (*1 *2 *3 *4) (-12 (-5 *3 (-647 (-406 *6))) (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1232 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-5 *2 (-639 (-406 *6))) (-5 *1 (-807 *5 *6)))) (-3503 (*1 *2 *3) (-12 (-5 *3 (-647 (-406 *5))) (-4 *5 (-1232 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-5 *2 (-639 (-406 *5))) (-5 *1 (-807 *4 *5)))) (-1508 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-639 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-4 *6 (-1232 *5)) (-5 *2 (-639 (-2 (|:| |poly| *6) (|:| -3339 (-648 *6 (-406 *6)))))) (-5 *1 (-807 *5 *6)) (-5 *3 (-648 *6 (-406 *6))))) (-3952 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1232 *5)) (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-5 *2 (-639 (-2 (|:| |frac| (-406 *6)) (|:| -3339 (-648 *6 (-406 *6)))))) (-5 *1 (-807 *5 *6)) (-5 *3 (-648 *6 (-406 *6))))) (-3503 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-648 *7 (-406 *7))) (-5 *4 (-1 (-639 *6) *7)) (-5 *5 (-1 (-417 *7) *7)) (-4 *6 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-4 *7 (-1232 *6)) (-5 *2 (-639 (-406 *7))) (-5 *1 (-807 *6 *7)))) (-3503 (*1 *2 *3 *4) (-12 (-5 *3 (-648 *6 (-406 *6))) (-5 *4 (-1 (-639 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-4 *6 (-1232 *5)) (-5 *2 (-639 (-406 *6))) (-5 *1 (-807 *5 *6)))) (-3503 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-647 (-406 *7))) (-5 *4 (-1 (-639 *6) *7)) (-5 *5 (-1 (-417 *7) *7)) (-4 *6 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-4 *7 (-1232 *6)) (-5 *2 (-639 (-406 *7))) (-5 *1 (-807 *6 *7)))) (-3503 (*1 *2 *3 *4) (-12 (-5 *3 (-647 (-406 *6))) (-5 *4 (-1 (-639 *5) *6)) (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) (-4 *6 (-1232 *5)) (-5 *2 (-639 (-406 *6))) (-5 *1 (-807 *5 *6))))) -(-10 -7 (-15 -3503 ((-639 (-406 |#2|)) (-647 (-406 |#2|)) (-1 (-639 |#1|) |#2|))) (-15 -3503 ((-639 (-406 |#2|)) (-647 (-406 |#2|)) (-1 (-639 |#1|) |#2|) (-1 (-417 |#2|) |#2|))) (-15 -3503 ((-639 (-406 |#2|)) (-648 |#2| (-406 |#2|)) (-1 (-639 |#1|) |#2|))) (-15 -3503 ((-639 (-406 |#2|)) (-648 |#2| (-406 |#2|)) (-1 (-639 |#1|) |#2|) (-1 (-417 |#2|) |#2|))) (-15 -3952 ((-639 (-2 (|:| |frac| (-406 |#2|)) (|:| -3339 (-648 |#2| (-406 |#2|))))) (-648 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -1508 ((-639 (-2 (|:| |poly| |#2|) (|:| -3339 (-648 |#2| (-406 |#2|))))) (-648 |#2| (-406 |#2|)) (-1 (-639 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3503 ((-639 (-406 |#2|)) (-647 (-406 |#2|)))) (-15 -3503 ((-639 (-406 |#2|)) (-647 (-406 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -3503 ((-639 (-406 |#2|)) (-648 |#2| (-406 |#2|)))) (-15 -3503 ((-639 (-406 |#2|)) (-648 |#2| (-406 |#2|)) (-1 (-417 |#2|) |#2|)))) |%noBranch|)) -((-1671 (((-2 (|:| -1767 (-683 |#2|)) (|:| |vec| (-1256 |#1|))) (-683 |#2|) (-1256 |#1|)) 85) (((-2 (|:| A (-683 |#1|)) (|:| |eqs| (-639 (-2 (|:| C (-683 |#1|)) (|:| |g| (-1256 |#1|)) (|:| -3339 |#2|) (|:| |rh| |#1|))))) (-683 |#1|) (-1256 |#1|)) 15)) (-1949 (((-2 (|:| |particular| (-3 (-1256 |#1|) "failed")) (|:| -4291 (-639 (-1256 |#1|)))) (-683 |#2|) (-1256 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4291 (-639 |#1|))) |#2| |#1|)) 92)) (-3888 (((-3 (-2 (|:| |particular| (-1256 |#1|)) (|:| -4291 (-683 |#1|))) "failed") (-683 |#1|) (-1256 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4291 (-639 |#1|))) "failed") |#2| |#1|)) 43))) -(((-808 |#1| |#2|) (-10 -7 (-15 -1671 ((-2 (|:| A (-683 |#1|)) (|:| |eqs| (-639 (-2 (|:| C (-683 |#1|)) (|:| |g| (-1256 |#1|)) (|:| -3339 |#2|) (|:| |rh| |#1|))))) (-683 |#1|) (-1256 |#1|))) (-15 -1671 ((-2 (|:| -1767 (-683 |#2|)) (|:| |vec| (-1256 |#1|))) (-683 |#2|) (-1256 |#1|))) (-15 -3888 ((-3 (-2 (|:| |particular| (-1256 |#1|)) (|:| -4291 (-683 |#1|))) "failed") (-683 |#1|) (-1256 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4291 (-639 |#1|))) "failed") |#2| |#1|))) (-15 -1949 ((-2 (|:| |particular| (-3 (-1256 |#1|) "failed")) (|:| -4291 (-639 (-1256 |#1|)))) (-683 |#2|) (-1256 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4291 (-639 |#1|))) |#2| |#1|)))) (-362) (-650 |#1|)) (T -808)) -((-1949 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-683 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4291 (-639 *6))) *7 *6)) (-4 *6 (-362)) (-4 *7 (-650 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1256 *6) "failed")) (|:| -4291 (-639 (-1256 *6))))) (-5 *1 (-808 *6 *7)) (-5 *4 (-1256 *6)))) (-3888 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -4291 (-639 *6))) "failed") *7 *6)) (-4 *6 (-362)) (-4 *7 (-650 *6)) (-5 *2 (-2 (|:| |particular| (-1256 *6)) (|:| -4291 (-683 *6)))) (-5 *1 (-808 *6 *7)) (-5 *3 (-683 *6)) (-5 *4 (-1256 *6)))) (-1671 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-4 *6 (-650 *5)) (-5 *2 (-2 (|:| -1767 (-683 *6)) (|:| |vec| (-1256 *5)))) (-5 *1 (-808 *5 *6)) (-5 *3 (-683 *6)) (-5 *4 (-1256 *5)))) (-1671 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-5 *2 (-2 (|:| A (-683 *5)) (|:| |eqs| (-639 (-2 (|:| C (-683 *5)) (|:| |g| (-1256 *5)) (|:| -3339 *6) (|:| |rh| *5)))))) (-5 *1 (-808 *5 *6)) (-5 *3 (-683 *5)) (-5 *4 (-1256 *5)) (-4 *6 (-650 *5))))) -(-10 -7 (-15 -1671 ((-2 (|:| A (-683 |#1|)) (|:| |eqs| (-639 (-2 (|:| C (-683 |#1|)) (|:| |g| (-1256 |#1|)) (|:| -3339 |#2|) (|:| |rh| |#1|))))) (-683 |#1|) (-1256 |#1|))) (-15 -1671 ((-2 (|:| -1767 (-683 |#2|)) (|:| |vec| (-1256 |#1|))) (-683 |#2|) (-1256 |#1|))) (-15 -3888 ((-3 (-2 (|:| |particular| (-1256 |#1|)) (|:| -4291 (-683 |#1|))) "failed") (-683 |#1|) (-1256 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4291 (-639 |#1|))) "failed") |#2| |#1|))) (-15 -1949 ((-2 (|:| |particular| (-3 (-1256 |#1|) "failed")) (|:| -4291 (-639 (-1256 |#1|)))) (-683 |#2|) (-1256 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4291 (-639 |#1|))) |#2| |#1|)))) -((-3919 (((-683 |#1|) (-639 |#1|) (-766)) 13) (((-683 |#1|) (-639 |#1|)) 14)) (-4365 (((-3 (-1256 |#1|) "failed") |#2| |#1| (-639 |#1|)) 34)) (-2341 (((-3 |#1| "failed") |#2| |#1| (-639 |#1|) (-1 |#1| |#1|)) 42))) -(((-809 |#1| |#2|) (-10 -7 (-15 -3919 ((-683 |#1|) (-639 |#1|))) (-15 -3919 ((-683 |#1|) (-639 |#1|) (-766))) (-15 -4365 ((-3 (-1256 |#1|) "failed") |#2| |#1| (-639 |#1|))) (-15 -2341 ((-3 |#1| "failed") |#2| |#1| (-639 |#1|) (-1 |#1| |#1|)))) (-362) (-650 |#1|)) (T -809)) -((-2341 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-639 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-362)) (-5 *1 (-809 *2 *3)) (-4 *3 (-650 *2)))) (-4365 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-639 *4)) (-4 *4 (-362)) (-5 *2 (-1256 *4)) (-5 *1 (-809 *4 *3)) (-4 *3 (-650 *4)))) (-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *5)) (-5 *4 (-766)) (-4 *5 (-362)) (-5 *2 (-683 *5)) (-5 *1 (-809 *5 *6)) (-4 *6 (-650 *5)))) (-3919 (*1 *2 *3) (-12 (-5 *3 (-639 *4)) (-4 *4 (-362)) (-5 *2 (-683 *4)) (-5 *1 (-809 *4 *5)) (-4 *5 (-650 *4))))) -(-10 -7 (-15 -3919 ((-683 |#1|) (-639 |#1|))) (-15 -3919 ((-683 |#1|) (-639 |#1|) (-766))) (-15 -4365 ((-3 (-1256 |#1|) "failed") |#2| |#1| (-639 |#1|))) (-15 -2341 ((-3 |#1| "failed") |#2| |#1| (-639 |#1|) (-1 |#1| |#1|)))) -((-4041 (((-112) $ $) NIL (|has| |#2| (-1092)))) (-4325 (((-112) $) NIL (|has| |#2| (-130)))) (-2211 (($ (-916)) NIL (|has| |#2| (-1044)))) (-3655 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4404)))) (-1593 (($ $ $) NIL (|has| |#2| (-788)))) (-2781 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-3735 (((-112) $ (-766)) NIL)) (-1382 (((-766)) NIL (|has| |#2| (-367)))) (-1587 (((-562) $) NIL (|has| |#2| (-843)))) (-4200 ((|#2| $ (-562) |#2|) NIL (|has| $ (-6 -4404)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL (-12 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092)))) (((-3 (-406 (-562)) "failed") $) NIL (-12 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1092)))) (-3960 (((-562) $) NIL (-12 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092)))) (((-406 (-562)) $) NIL (-12 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) ((|#2| $) NIL (|has| |#2| (-1092)))) (-3449 (((-683 (-562)) (-683 $)) NIL (-12 (|has| |#2| (-635 (-562))) (|has| |#2| (-1044)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (-12 (|has| |#2| (-635 (-562))) (|has| |#2| (-1044)))) (((-2 (|:| -1767 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) NIL (|has| |#2| (-1044))) (((-683 |#2|) (-683 $)) NIL (|has| |#2| (-1044)))) (-1694 (((-3 $ "failed") $) NIL (|has| |#2| (-721)))) (-1447 (($) NIL (|has| |#2| (-367)))) (-1507 ((|#2| $ (-562) |#2|) NIL (|has| $ (-6 -4404)))) (-1420 ((|#2| $ (-562)) NIL)) (-2696 (((-112) $) NIL (|has| |#2| (-843)))) (-1720 (((-639 |#2|) $) NIL (|has| $ (-6 -4403)))) (-4367 (((-112) $) NIL (|has| |#2| (-721)))) (-3855 (((-112) $) NIL (|has| |#2| (-843)))) (-4172 (((-112) $ (-766)) NIL)) (-1849 (((-562) $) NIL (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-2123 (((-639 |#2|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092))))) (-1929 (((-562) $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-1491 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#2| |#2|) $) NIL)) (-3549 (((-916) $) NIL (|has| |#2| (-367)))) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL (|has| |#2| (-1092)))) (-3336 (((-639 (-562)) $) NIL)) (-1987 (((-112) (-562) $) NIL)) (-2464 (($ (-916)) NIL (|has| |#2| (-367)))) (-1709 (((-1112) $) NIL (|has| |#2| (-1092)))) (-1421 ((|#2| $) NIL (|has| (-562) (-845)))) (-3510 (($ $ |#2|) NIL (|has| $ (-6 -4404)))) (-3008 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 |#2|) (-639 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))))) (-1452 (((-112) $ $) NIL)) (-2716 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092))))) (-2366 (((-639 |#2|) $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) NIL)) (-2343 ((|#2| $ (-562) |#2|) NIL) ((|#2| $ (-562)) NIL)) (-2852 ((|#2| $ $) NIL (|has| |#2| (-1044)))) (-1678 (($ (-1256 |#2|)) NIL)) (-4340 (((-133)) NIL (|has| |#2| (-362)))) (-4029 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1044)))) (($ $ (-766)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1044)))) (($ $ (-1168)) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-1 |#2| |#2|) (-766)) NIL (|has| |#2| (-1044))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1044)))) (-1723 (((-766) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403))) (((-766) |#2| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092))))) (-4220 (($ $) NIL)) (-4053 (((-1256 |#2|) $) NIL) (($ (-562)) NIL (-4037 (-12 (|has| |#2| (-1033 (-562))) (|has| |#2| (-1092))) (|has| |#2| (-1044)))) (($ (-406 (-562))) NIL (-12 (|has| |#2| (-1033 (-406 (-562)))) (|has| |#2| (-1092)))) (($ |#2|) NIL (|has| |#2| (-1092))) (((-857) $) NIL (|has| |#2| (-609 (-857))))) (-1568 (((-766)) NIL (|has| |#2| (-1044)))) (-2879 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403)))) (-2757 (($ $) NIL (|has| |#2| (-843)))) (-2285 (($) NIL (|has| |#2| (-130)) CONST)) (-2294 (($) NIL (|has| |#2| (-721)) CONST)) (-3113 (($ $) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1044)))) (($ $ (-766)) NIL (-12 (|has| |#2| (-232)) (|has| |#2| (-1044)))) (($ $ (-1168)) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#2| (-895 (-1168))) (|has| |#2| (-1044)))) (($ $ (-1 |#2| |#2|) (-766)) NIL (|has| |#2| (-1044))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1044)))) (-1798 (((-112) $ $) NIL (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-1771 (((-112) $ $) NIL (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-1733 (((-112) $ $) NIL (|has| |#2| (-1092)))) (-1785 (((-112) $ $) NIL (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-1761 (((-112) $ $) 11 (-4037 (|has| |#2| (-788)) (|has| |#2| (-843))))) (-1859 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1847 (($ $ $) NIL (|has| |#2| (-1044))) (($ $) NIL (|has| |#2| (-1044)))) (-1836 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-766)) NIL (|has| |#2| (-721))) (($ $ (-916)) NIL (|has| |#2| (-721)))) (* (($ (-562) $) NIL (|has| |#2| (-1044))) (($ $ $) NIL (|has| |#2| (-721))) (($ $ |#2|) NIL (|has| |#2| (-721))) (($ |#2| $) NIL (|has| |#2| (-721))) (($ (-766) $) NIL (|has| |#2| (-130))) (($ (-916) $) NIL (|has| |#2| (-25)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-810 |#1| |#2| |#3|) (-237 |#1| |#2|) (-766) (-788) (-1 (-112) (-1256 |#2|) (-1256 |#2|))) (T -810)) -NIL -(-237 |#1| |#2|) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-1759 (((-639 (-766)) $) NIL) (((-639 (-766)) $ (-1168)) NIL)) (-2277 (((-766) $) NIL) (((-766) $ (-1168)) NIL)) (-1401 (((-639 (-813 (-1168))) $) NIL)) (-1602 (((-1164 $) $ (-813 (-1168))) NIL) (((-1164 |#1|) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-1965 (($ $) NIL (|has| |#1| (-554)))) (-4102 (((-112) $) NIL (|has| |#1| (-554)))) (-1578 (((-766) $) NIL) (((-766) $ (-639 (-813 (-1168)))) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3517 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-1977 (($ $) NIL (|has| |#1| (-451)))) (-3788 (((-417 $) $) NIL (|has| |#1| (-451)))) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-3611 (($ $) NIL)) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-813 (-1168)) "failed") $) NIL) (((-3 (-1168) "failed") $) NIL) (((-3 (-1117 |#1| (-1168)) "failed") $) NIL)) (-3960 ((|#1| $) NIL) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-813 (-1168)) $) NIL) (((-1168) $) NIL) (((-1117 |#1| (-1168)) $) NIL)) (-2355 (($ $ $ (-813 (-1168))) NIL (|has| |#1| (-171)))) (-1600 (($ $) NIL)) (-3449 (((-683 (-562)) (-683 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) NIL) (((-683 |#1|) (-683 $)) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-2578 (($ $) NIL (|has| |#1| (-451))) (($ $ (-813 (-1168))) NIL (|has| |#1| (-451)))) (-1585 (((-639 $) $) NIL)) (-3521 (((-112) $) NIL (|has| |#1| (-904)))) (-3066 (($ $ |#1| (-530 (-813 (-1168))) $) NIL)) (-2337 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-813 (-1168)) (-881 (-378))) (|has| |#1| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (-12 (|has| (-813 (-1168)) (-881 (-562))) (|has| |#1| (-881 (-562)))))) (-1993 (((-766) $ (-1168)) NIL) (((-766) $) NIL)) (-4367 (((-112) $) NIL)) (-3627 (((-766) $) NIL)) (-1389 (($ (-1164 |#1|) (-813 (-1168))) NIL) (($ (-1164 $) (-813 (-1168))) NIL)) (-1869 (((-639 $) $) NIL)) (-2833 (((-112) $) NIL)) (-1377 (($ |#1| (-530 (-813 (-1168)))) NIL) (($ $ (-813 (-1168)) (-766)) NIL) (($ $ (-639 (-813 (-1168))) (-639 (-766))) NIL)) (-3851 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $ (-813 (-1168))) NIL)) (-3161 (((-530 (-813 (-1168))) $) NIL) (((-766) $ (-813 (-1168))) NIL) (((-639 (-766)) $ (-639 (-813 (-1168)))) NIL)) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-2363 (($ (-1 (-530 (-813 (-1168))) (-530 (-813 (-1168)))) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-2298 (((-1 $ (-766)) (-1168)) NIL) (((-1 $ (-766)) $) NIL (|has| |#1| (-232)))) (-3640 (((-3 (-813 (-1168)) "failed") $) NIL)) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-3736 (((-813 (-1168)) $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) NIL (|has| |#1| (-451)))) (-3696 (((-1150) $) NIL)) (-1611 (((-112) $) NIL)) (-4025 (((-3 (-639 $) "failed") $) NIL)) (-1778 (((-3 (-639 $) "failed") $) NIL)) (-4270 (((-3 (-2 (|:| |var| (-813 (-1168))) (|:| -1300 (-766))) "failed") $) NIL)) (-3592 (($ $) NIL)) (-1709 (((-1112) $) NIL)) (-1534 (((-112) $) NIL)) (-1547 ((|#1| $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-451)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) NIL (|has| |#1| (-451)))) (-3586 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-3468 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-1635 (((-417 $) $) NIL (|has| |#1| (-904)))) (-1762 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-1433 (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-813 (-1168)) |#1|) NIL) (($ $ (-639 (-813 (-1168))) (-639 |#1|)) NIL) (($ $ (-813 (-1168)) $) NIL) (($ $ (-639 (-813 (-1168))) (-639 $)) NIL) (($ $ (-1168) $) NIL (|has| |#1| (-232))) (($ $ (-639 (-1168)) (-639 $)) NIL (|has| |#1| (-232))) (($ $ (-1168) |#1|) NIL (|has| |#1| (-232))) (($ $ (-639 (-1168)) (-639 |#1|)) NIL (|has| |#1| (-232)))) (-2736 (($ $ (-813 (-1168))) NIL (|has| |#1| (-171)))) (-4029 (($ $ (-813 (-1168))) NIL) (($ $ (-639 (-813 (-1168)))) NIL) (($ $ (-813 (-1168)) (-766)) NIL) (($ $ (-639 (-813 (-1168))) (-639 (-766))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-766)) NIL (|has| |#1| (-232))) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3712 (((-639 (-1168)) $) NIL)) (-2250 (((-530 (-813 (-1168))) $) NIL) (((-766) $ (-813 (-1168))) NIL) (((-639 (-766)) $ (-639 (-813 (-1168)))) NIL) (((-766) $ (-1168)) NIL)) (-4208 (((-887 (-378)) $) NIL (-12 (|has| (-813 (-1168)) (-610 (-887 (-378)))) (|has| |#1| (-610 (-887 (-378)))))) (((-887 (-562)) $) NIL (-12 (|has| (-813 (-1168)) (-610 (-887 (-562)))) (|has| |#1| (-610 (-887 (-562)))))) (((-535) $) NIL (-12 (|has| (-813 (-1168)) (-610 (-535))) (|has| |#1| (-610 (-535)))))) (-2201 ((|#1| $) NIL (|has| |#1| (-451))) (($ $ (-813 (-1168))) NIL (|has| |#1| (-451)))) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-904))))) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ |#1|) NIL) (($ (-813 (-1168))) NIL) (($ (-1168)) NIL) (($ (-1117 |#1| (-1168))) NIL) (($ (-406 (-562))) NIL (-4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562)))))) (($ $) NIL (|has| |#1| (-554)))) (-3969 (((-639 |#1|) $) NIL)) (-2266 ((|#1| $ (-530 (-813 (-1168)))) NIL) (($ $ (-813 (-1168)) (-766)) NIL) (($ $ (-639 (-813 (-1168))) (-639 (-766))) NIL)) (-2059 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#1| (-904))) (|has| |#1| (-144))))) (-1568 (((-766)) NIL)) (-1760 (($ $ $ (-766)) NIL (|has| |#1| (-171)))) (-3799 (((-112) $ $) NIL (|has| |#1| (-554)))) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3113 (($ $ (-813 (-1168))) NIL) (($ $ (-639 (-813 (-1168)))) NIL) (($ $ (-813 (-1168)) (-766)) NIL) (($ $ (-639 (-813 (-1168))) (-639 (-766))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-766)) NIL (|has| |#1| (-232))) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1771 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1761 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-811 |#1|) (-13 (-252 |#1| (-1168) (-813 (-1168)) (-530 (-813 (-1168)))) (-1033 (-1117 |#1| (-1168)))) (-1044)) (T -811)) -NIL -(-13 (-252 |#1| (-1168) (-813 (-1168)) (-530 (-813 (-1168)))) (-1033 (-1117 |#1| (-1168)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL (|has| |#2| (-362)))) (-1965 (($ $) NIL (|has| |#2| (-362)))) (-4102 (((-112) $) NIL (|has| |#2| (-362)))) (-2781 (((-3 $ "failed") $ $) NIL)) (-1977 (($ $) NIL (|has| |#2| (-362)))) (-3788 (((-417 $) $) NIL (|has| |#2| (-362)))) (-1436 (((-112) $ $) NIL (|has| |#2| (-362)))) (-3329 (($) NIL T CONST)) (-1810 (($ $ $) NIL (|has| |#2| (-362)))) (-1694 (((-3 $ "failed") $) NIL)) (-1787 (($ $ $) NIL (|has| |#2| (-362)))) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL (|has| |#2| (-362)))) (-3521 (((-112) $) NIL (|has| |#2| (-362)))) (-4367 (((-112) $) NIL)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#2| (-362)))) (-1564 (($ (-639 $)) NIL (|has| |#2| (-362))) (($ $ $) NIL (|has| |#2| (-362)))) (-3696 (((-1150) $) NIL)) (-1525 (($ $) 20 (|has| |#2| (-362)))) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#2| (-362)))) (-1606 (($ (-639 $)) NIL (|has| |#2| (-362))) (($ $ $) NIL (|has| |#2| (-362)))) (-1635 (((-417 $) $) NIL (|has| |#2| (-362)))) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL (|has| |#2| (-362)))) (-1762 (((-3 $ "failed") $ $) NIL (|has| |#2| (-362)))) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#2| (-362)))) (-2044 (((-766) $) NIL (|has| |#2| (-362)))) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| |#2| (-362)))) (-4029 (($ $ (-766)) NIL) (($ $) 13)) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-406 (-562))) NIL (|has| |#2| (-362))) (($ $) NIL (|has| |#2| (-362)))) (-1568 (((-766)) NIL)) (-3799 (((-112) $ $) NIL (|has| |#2| (-362)))) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3113 (($ $ (-766)) NIL) (($ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1859 (($ $ $) 15 (|has| |#2| (-362)))) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-766)) NIL) (($ $ (-916)) NIL) (($ $ (-562)) 18 (|has| |#2| (-362)))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-406 (-562)) $) NIL (|has| |#2| (-362))) (($ $ (-406 (-562))) NIL (|has| |#2| (-362))))) -(((-812 |#1| |#2| |#3|) (-13 (-111 $ $) (-232) (-489 |#2|) (-10 -7 (IF (|has| |#2| (-362)) (-6 (-362)) |%noBranch|))) (-1092) (-895 |#1|) |#1|) (T -812)) -NIL -(-13 (-111 $ $) (-232) (-489 |#2|) (-10 -7 (IF (|has| |#2| (-362)) (-6 (-362)) |%noBranch|))) -((-4041 (((-112) $ $) NIL)) (-2277 (((-766) $) NIL)) (-2443 ((|#1| $) 10)) (-4048 (((-3 |#1| "failed") $) NIL)) (-3960 ((|#1| $) NIL)) (-1993 (((-766) $) 11)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-2298 (($ |#1| (-766)) 9)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4029 (($ $) NIL) (($ $ (-766)) NIL)) (-4053 (((-857) $) NIL) (($ |#1|) NIL)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) NIL))) -(((-813 |#1|) (-265 |#1|) (-845)) (T -813)) -NIL -(-265 |#1|) -((-4041 (((-112) $ $) NIL)) (-2850 (((-639 |#1|) $) 29)) (-1382 (((-766) $) NIL)) (-3329 (($) NIL T CONST)) (-2403 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-4048 (((-3 |#1| "failed") $) NIL)) (-3960 ((|#1| $) NIL)) (-1434 (($ $) 31)) (-1694 (((-3 $ "failed") $) NIL)) (-4069 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-4367 (((-112) $) NIL)) (-3111 ((|#1| $ (-562)) NIL)) (-1646 (((-766) $ (-562)) NIL)) (-2572 (($ $) 35)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-2303 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-2483 (((-112) $ $) 33)) (-3641 (((-766) $) 25)) (-3696 (((-1150) $) NIL)) (-2938 (($ $ $) NIL)) (-1616 (($ $ $) NIL)) (-1709 (((-1112) $) NIL)) (-1421 ((|#1| $) 30)) (-2656 (((-639 (-2 (|:| |gen| |#1|) (|:| -3430 (-766)))) $) NIL)) (-1774 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-4053 (((-857) $) NIL) (($ |#1|) NIL)) (-2294 (($) 15 T CONST)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) 34)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ |#1| (-766)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-814 |#1|) (-13 (-841) (-1033 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-766))) (-15 -1421 (|#1| $)) (-15 -1434 ($ $)) (-15 -2572 ($ $)) (-15 -2483 ((-112) $ $)) (-15 -1616 ($ $ $)) (-15 -2938 ($ $ $)) (-15 -2303 ((-3 $ "failed") $ $)) (-15 -2403 ((-3 $ "failed") $ $)) (-15 -2303 ((-3 $ "failed") $ |#1|)) (-15 -2403 ((-3 $ "failed") $ |#1|)) (-15 -1774 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4069 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1382 ((-766) $)) (-15 -1646 ((-766) $ (-562))) (-15 -3111 (|#1| $ (-562))) (-15 -2656 ((-639 (-2 (|:| |gen| |#1|) (|:| -3430 (-766)))) $)) (-15 -3641 ((-766) $)) (-15 -2850 ((-639 |#1|) $)))) (-845)) (T -814)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-766)) (-5 *1 (-814 *2)) (-4 *2 (-845)))) (-1421 (*1 *2 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) (-1434 (*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) (-2572 (*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) (-2483 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-814 *3)) (-4 *3 (-845)))) (-1616 (*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) (-2938 (*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) (-2303 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) (-2403 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) (-2303 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) (-2403 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) (-1774 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-814 *3)) (|:| |rm| (-814 *3)))) (-5 *1 (-814 *3)) (-4 *3 (-845)))) (-4069 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-814 *3)) (|:| |mm| (-814 *3)) (|:| |rm| (-814 *3)))) (-5 *1 (-814 *3)) (-4 *3 (-845)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-814 *3)) (-4 *3 (-845)))) (-1646 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *2 (-766)) (-5 *1 (-814 *4)) (-4 *4 (-845)))) (-3111 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *1 (-814 *2)) (-4 *2 (-845)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| |gen| *3) (|:| -3430 (-766))))) (-5 *1 (-814 *3)) (-4 *3 (-845)))) (-3641 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-814 *3)) (-4 *3 (-845)))) (-2850 (*1 *2 *1) (-12 (-5 *2 (-639 *3)) (-5 *1 (-814 *3)) (-4 *3 (-845))))) -(-13 (-841) (-1033 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-766))) (-15 -1421 (|#1| $)) (-15 -1434 ($ $)) (-15 -2572 ($ $)) (-15 -2483 ((-112) $ $)) (-15 -1616 ($ $ $)) (-15 -2938 ($ $ $)) (-15 -2303 ((-3 $ "failed") $ $)) (-15 -2403 ((-3 $ "failed") $ $)) (-15 -2303 ((-3 $ "failed") $ |#1|)) (-15 -2403 ((-3 $ "failed") $ |#1|)) (-15 -1774 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4069 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1382 ((-766) $)) (-15 -1646 ((-766) $ (-562))) (-15 -3111 (|#1| $ (-562))) (-15 -2656 ((-639 (-2 (|:| |gen| |#1|) (|:| -3430 (-766)))) $)) (-15 -3641 ((-766) $)) (-15 -2850 ((-639 |#1|) $)))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 42)) (-1965 (($ $) 41)) (-4102 (((-112) $) 39)) (-2781 (((-3 $ "failed") $ $) 19)) (-1587 (((-562) $) 54)) (-3329 (($) 17 T CONST)) (-1694 (((-3 $ "failed") $) 33)) (-2696 (((-112) $) 52)) (-4367 (((-112) $) 31)) (-3855 (((-112) $) 53)) (-1551 (($ $ $) 51)) (-2993 (($ $ $) 50)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-1762 (((-3 $ "failed") $ $) 43)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ $) 44)) (-1568 (((-766)) 28)) (-3799 (((-112) $ $) 40)) (-2757 (($ $) 55)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1798 (((-112) $ $) 48)) (-1771 (((-112) $ $) 47)) (-1733 (((-112) $ $) 6)) (-1785 (((-112) $ $) 49)) (-1761 (((-112) $ $) 46)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) -(((-815) (-139)) (T -815)) -NIL -(-13 (-554) (-843)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-289) . T) ((-554) . T) ((-642 $) . T) ((-712 $) . T) ((-721) . T) ((-786) . T) ((-787) . T) ((-789) . T) ((-790) . T) ((-843) . T) ((-845) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) -((-1846 (($ (-1112)) 7)) (-2773 (((-112) $ (-1150) (-1112)) 15)) (-1927 (((-817) $) 12)) (-2924 (((-817) $) 11)) (-1696 (((-1261) $) 9)) (-1390 (((-112) $ (-1112)) 16))) -(((-816) (-10 -8 (-15 -1846 ($ (-1112))) (-15 -1696 ((-1261) $)) (-15 -2924 ((-817) $)) (-15 -1927 ((-817) $)) (-15 -2773 ((-112) $ (-1150) (-1112))) (-15 -1390 ((-112) $ (-1112))))) (T -816)) -((-1390 (*1 *2 *1 *3) (-12 (-5 *3 (-1112)) (-5 *2 (-112)) (-5 *1 (-816)))) (-2773 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1150)) (-5 *4 (-1112)) (-5 *2 (-112)) (-5 *1 (-816)))) (-1927 (*1 *2 *1) (-12 (-5 *2 (-817)) (-5 *1 (-816)))) (-2924 (*1 *2 *1) (-12 (-5 *2 (-817)) (-5 *1 (-816)))) (-1696 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-816)))) (-1846 (*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-816))))) -(-10 -8 (-15 -1846 ($ (-1112))) (-15 -1696 ((-1261) $)) (-15 -2924 ((-817) $)) (-15 -1927 ((-817) $)) (-15 -2773 ((-112) $ (-1150) (-1112))) (-15 -1390 ((-112) $ (-1112)))) -((-3985 (((-1261) $ (-818)) 12)) (-2185 (((-1261) $ (-1168)) 32)) (-3332 (((-1261) $ (-1150) (-1150)) 34)) (-1561 (((-1261) $ (-1150)) 33)) (-1633 (((-1261) $) 19)) (-2011 (((-1261) $ (-562)) 28)) (-2911 (((-1261) $ (-224)) 30)) (-2702 (((-1261) $) 18)) (-3868 (((-1261) $) 26)) (-3534 (((-1261) $) 25)) (-2404 (((-1261) $) 23)) (-2105 (((-1261) $) 24)) (-3898 (((-1261) $) 22)) (-2195 (((-1261) $) 21)) (-1489 (((-1261) $) 20)) (-3922 (((-1261) $) 16)) (-1909 (((-1261) $) 17)) (-3962 (((-1261) $) 15)) (-1539 (((-1261) $) 14)) (-2465 (((-1261) $) 13)) (-1450 (($ (-1150) (-818)) 9)) (-4275 (($ (-1150) (-1150) (-818)) 8)) (-3011 (((-1168) $) 51)) (-2926 (((-1168) $) 55)) (-1735 (((-2 (|:| |cd| (-1150)) (|:| -3253 (-1150))) $) 54)) (-1782 (((-1150) $) 52)) (-3958 (((-1261) $) 41)) (-2076 (((-562) $) 49)) (-1658 (((-224) $) 50)) (-4303 (((-1261) $) 40)) (-4163 (((-1261) $) 48)) (-4114 (((-1261) $) 47)) (-2258 (((-1261) $) 45)) (-3710 (((-1261) $) 46)) (-3500 (((-1261) $) 44)) (-3948 (((-1261) $) 43)) (-2885 (((-1261) $) 42)) (-3892 (((-1261) $) 38)) (-4012 (((-1261) $) 39)) (-3569 (((-1261) $) 37)) (-1518 (((-1261) $) 36)) (-2131 (((-1261) $) 35)) (-1786 (((-1261) $) 11))) -(((-817) (-10 -8 (-15 -4275 ($ (-1150) (-1150) (-818))) (-15 -1450 ($ (-1150) (-818))) (-15 -1786 ((-1261) $)) (-15 -3985 ((-1261) $ (-818))) (-15 -2465 ((-1261) $)) (-15 -1539 ((-1261) $)) (-15 -3962 ((-1261) $)) (-15 -3922 ((-1261) $)) (-15 -1909 ((-1261) $)) (-15 -2702 ((-1261) $)) (-15 -1633 ((-1261) $)) (-15 -1489 ((-1261) $)) (-15 -2195 ((-1261) $)) (-15 -3898 ((-1261) $)) (-15 -2404 ((-1261) $)) (-15 -2105 ((-1261) $)) (-15 -3534 ((-1261) $)) (-15 -3868 ((-1261) $)) (-15 -2011 ((-1261) $ (-562))) (-15 -2911 ((-1261) $ (-224))) (-15 -2185 ((-1261) $ (-1168))) (-15 -1561 ((-1261) $ (-1150))) (-15 -3332 ((-1261) $ (-1150) (-1150))) (-15 -2131 ((-1261) $)) (-15 -1518 ((-1261) $)) (-15 -3569 ((-1261) $)) (-15 -3892 ((-1261) $)) (-15 -4012 ((-1261) $)) (-15 -4303 ((-1261) $)) (-15 -3958 ((-1261) $)) (-15 -2885 ((-1261) $)) (-15 -3948 ((-1261) $)) (-15 -3500 ((-1261) $)) (-15 -2258 ((-1261) $)) (-15 -3710 ((-1261) $)) (-15 -4114 ((-1261) $)) (-15 -4163 ((-1261) $)) (-15 -2076 ((-562) $)) (-15 -1658 ((-224) $)) (-15 -3011 ((-1168) $)) (-15 -1782 ((-1150) $)) (-15 -1735 ((-2 (|:| |cd| (-1150)) (|:| -3253 (-1150))) $)) (-15 -2926 ((-1168) $)))) (T -817)) -((-2926 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-817)))) (-1735 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1150)) (|:| -3253 (-1150)))) (-5 *1 (-817)))) (-1782 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-817)))) (-3011 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-817)))) (-1658 (*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-817)))) (-2076 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-817)))) (-4163 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-4114 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-3710 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-3500 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-2885 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-3958 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-4303 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-4012 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-3892 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-2131 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-3332 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-817)))) (-1561 (*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-817)))) (-2185 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1261)) (-5 *1 (-817)))) (-2911 (*1 *2 *1 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1261)) (-5 *1 (-817)))) (-2011 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *2 (-1261)) (-5 *1 (-817)))) (-3868 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-3534 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-2105 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-2404 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-3898 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-2195 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-1489 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-1633 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-2702 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-1909 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-3962 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-1539 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-2465 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-3985 (*1 *2 *1 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1261)) (-5 *1 (-817)))) (-1786 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817)))) (-1450 (*1 *1 *2 *3) (-12 (-5 *2 (-1150)) (-5 *3 (-818)) (-5 *1 (-817)))) (-4275 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1150)) (-5 *3 (-818)) (-5 *1 (-817))))) -(-10 -8 (-15 -4275 ($ (-1150) (-1150) (-818))) (-15 -1450 ($ (-1150) (-818))) (-15 -1786 ((-1261) $)) (-15 -3985 ((-1261) $ (-818))) (-15 -2465 ((-1261) $)) (-15 -1539 ((-1261) $)) (-15 -3962 ((-1261) $)) (-15 -3922 ((-1261) $)) (-15 -1909 ((-1261) $)) (-15 -2702 ((-1261) $)) (-15 -1633 ((-1261) $)) (-15 -1489 ((-1261) $)) (-15 -2195 ((-1261) $)) (-15 -3898 ((-1261) $)) (-15 -2404 ((-1261) $)) (-15 -2105 ((-1261) $)) (-15 -3534 ((-1261) $)) (-15 -3868 ((-1261) $)) (-15 -2011 ((-1261) $ (-562))) (-15 -2911 ((-1261) $ (-224))) (-15 -2185 ((-1261) $ (-1168))) (-15 -1561 ((-1261) $ (-1150))) (-15 -3332 ((-1261) $ (-1150) (-1150))) (-15 -2131 ((-1261) $)) (-15 -1518 ((-1261) $)) (-15 -3569 ((-1261) $)) (-15 -3892 ((-1261) $)) (-15 -4012 ((-1261) $)) (-15 -4303 ((-1261) $)) (-15 -3958 ((-1261) $)) (-15 -2885 ((-1261) $)) (-15 -3948 ((-1261) $)) (-15 -3500 ((-1261) $)) (-15 -2258 ((-1261) $)) (-15 -3710 ((-1261) $)) (-15 -4114 ((-1261) $)) (-15 -4163 ((-1261) $)) (-15 -2076 ((-562) $)) (-15 -1658 ((-224) $)) (-15 -3011 ((-1168) $)) (-15 -1782 ((-1150) $)) (-15 -1735 ((-2 (|:| |cd| (-1150)) (|:| -3253 (-1150))) $)) (-15 -2926 ((-1168) $))) -((-4041 (((-112) $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 10)) (-3031 (($) 13)) (-4164 (($) 11)) (-2440 (($) 14)) (-3624 (($) 12)) (-1733 (((-112) $ $) 8))) -(((-818) (-13 (-1092) (-10 -8 (-15 -4164 ($)) (-15 -3031 ($)) (-15 -2440 ($)) (-15 -3624 ($))))) (T -818)) -((-4164 (*1 *1) (-5 *1 (-818))) (-3031 (*1 *1) (-5 *1 (-818))) (-2440 (*1 *1) (-5 *1 (-818))) (-3624 (*1 *1) (-5 *1 (-818)))) -(-13 (-1092) (-10 -8 (-15 -4164 ($)) (-15 -3031 ($)) (-15 -2440 ($)) (-15 -3624 ($)))) -((-4041 (((-112) $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 21) (($ (-1168)) 17)) (-1973 (((-112) $) 10)) (-3727 (((-112) $) 9)) (-1326 (((-112) $) 11)) (-1530 (((-112) $) 8)) (-1733 (((-112) $ $) 19))) -(((-819) (-13 (-1092) (-10 -8 (-15 -4053 ($ (-1168))) (-15 -1530 ((-112) $)) (-15 -3727 ((-112) $)) (-15 -1973 ((-112) $)) (-15 -1326 ((-112) $))))) (T -819)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-819)))) (-1530 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-819)))) (-3727 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-819)))) (-1973 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-819)))) (-1326 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-819))))) -(-13 (-1092) (-10 -8 (-15 -4053 ($ (-1168))) (-15 -1530 ((-112) $)) (-15 -3727 ((-112) $)) (-15 -1973 ((-112) $)) (-15 -1326 ((-112) $)))) -((-4041 (((-112) $ $) NIL)) (-2963 (($ (-819) (-639 (-1168))) 24)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-3687 (((-819) $) 25)) (-2494 (((-639 (-1168)) $) 26)) (-4053 (((-857) $) 23)) (-1733 (((-112) $ $) NIL))) -(((-820) (-13 (-1092) (-10 -8 (-15 -3687 ((-819) $)) (-15 -2494 ((-639 (-1168)) $)) (-15 -2963 ($ (-819) (-639 (-1168))))))) (T -820)) -((-3687 (*1 *2 *1) (-12 (-5 *2 (-819)) (-5 *1 (-820)))) (-2494 (*1 *2 *1) (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-820)))) (-2963 (*1 *1 *2 *3) (-12 (-5 *2 (-819)) (-5 *3 (-639 (-1168))) (-5 *1 (-820))))) -(-13 (-1092) (-10 -8 (-15 -3687 ((-819) $)) (-15 -2494 ((-639 (-1168)) $)) (-15 -2963 ($ (-819) (-639 (-1168)))))) -((-2332 (((-1261) (-817) (-315 |#1|) (-112)) 23) (((-1261) (-817) (-315 |#1|)) 79) (((-1150) (-315 |#1|) (-112)) 78) (((-1150) (-315 |#1|)) 77))) -(((-821 |#1|) (-10 -7 (-15 -2332 ((-1150) (-315 |#1|))) (-15 -2332 ((-1150) (-315 |#1|) (-112))) (-15 -2332 ((-1261) (-817) (-315 |#1|))) (-15 -2332 ((-1261) (-817) (-315 |#1|) (-112)))) (-13 (-823) (-845) (-1044))) (T -821)) -((-2332 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-817)) (-5 *4 (-315 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-823) (-845) (-1044))) (-5 *2 (-1261)) (-5 *1 (-821 *6)))) (-2332 (*1 *2 *3 *4) (-12 (-5 *3 (-817)) (-5 *4 (-315 *5)) (-4 *5 (-13 (-823) (-845) (-1044))) (-5 *2 (-1261)) (-5 *1 (-821 *5)))) (-2332 (*1 *2 *3 *4) (-12 (-5 *3 (-315 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-823) (-845) (-1044))) (-5 *2 (-1150)) (-5 *1 (-821 *5)))) (-2332 (*1 *2 *3) (-12 (-5 *3 (-315 *4)) (-4 *4 (-13 (-823) (-845) (-1044))) (-5 *2 (-1150)) (-5 *1 (-821 *4))))) -(-10 -7 (-15 -2332 ((-1150) (-315 |#1|))) (-15 -2332 ((-1150) (-315 |#1|) (-112))) (-15 -2332 ((-1261) (-817) (-315 |#1|))) (-15 -2332 ((-1261) (-817) (-315 |#1|) (-112)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3329 (($) NIL T CONST)) (-1600 (($ $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-1509 ((|#1| $) 10)) (-2429 (($ |#1|) 9)) (-4367 (((-112) $) NIL)) (-1377 (($ |#2| (-766)) NIL)) (-3161 (((-766) $) NIL)) (-1573 ((|#2| $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4029 (($ $ (-766)) NIL (|has| |#1| (-232))) (($ $) NIL (|has| |#1| (-232)))) (-2250 (((-766) $) NIL)) (-4053 (((-857) $) 17) (($ (-562)) NIL) (($ |#2|) NIL (|has| |#2| (-171)))) (-2266 ((|#2| $ (-766)) NIL)) (-1568 (((-766)) NIL)) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3113 (($ $ (-766)) NIL (|has| |#1| (-232))) (($ $) NIL (|has| |#1| (-232)))) (-1733 (((-112) $ $) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-822 |#1| |#2|) (-13 (-703 |#2|) (-10 -8 (IF (|has| |#1| (-232)) (-6 (-232)) |%noBranch|) (-15 -2429 ($ |#1|)) (-15 -1509 (|#1| $)))) (-703 |#2|) (-1044)) (T -822)) -((-2429 (*1 *1 *2) (-12 (-4 *3 (-1044)) (-5 *1 (-822 *2 *3)) (-4 *2 (-703 *3)))) (-1509 (*1 *2 *1) (-12 (-4 *2 (-703 *3)) (-5 *1 (-822 *2 *3)) (-4 *3 (-1044))))) -(-13 (-703 |#2|) (-10 -8 (IF (|has| |#1| (-232)) (-6 (-232)) |%noBranch|) (-15 -2429 ($ |#1|)) (-15 -1509 (|#1| $)))) -((-2332 (((-1261) (-817) $ (-112)) 9) (((-1261) (-817) $) 8) (((-1150) $ (-112)) 7) (((-1150) $) 6))) -(((-823) (-139)) (T -823)) -((-2332 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-823)) (-5 *3 (-817)) (-5 *4 (-112)) (-5 *2 (-1261)))) (-2332 (*1 *2 *3 *1) (-12 (-4 *1 (-823)) (-5 *3 (-817)) (-5 *2 (-1261)))) (-2332 (*1 *2 *1 *3) (-12 (-4 *1 (-823)) (-5 *3 (-112)) (-5 *2 (-1150)))) (-2332 (*1 *2 *1) (-12 (-4 *1 (-823)) (-5 *2 (-1150))))) -(-13 (-10 -8 (-15 -2332 ((-1150) $)) (-15 -2332 ((-1150) $ (-112))) (-15 -2332 ((-1261) (-817) $)) (-15 -2332 ((-1261) (-817) $ (-112))))) -((-1773 (((-311) (-1150) (-1150)) 12)) (-1680 (((-112) (-1150) (-1150)) 33)) (-2426 (((-112) (-1150)) 32)) (-2022 (((-52) (-1150)) 25)) (-1922 (((-52) (-1150)) 23)) (-3642 (((-52) (-817)) 17)) (-3333 (((-639 (-1150)) (-1150)) 28)) (-2688 (((-639 (-1150))) 27))) -(((-824) (-10 -7 (-15 -3642 ((-52) (-817))) (-15 -1922 ((-52) (-1150))) (-15 -2022 ((-52) (-1150))) (-15 -2688 ((-639 (-1150)))) (-15 -3333 ((-639 (-1150)) (-1150))) (-15 -2426 ((-112) (-1150))) (-15 -1680 ((-112) (-1150) (-1150))) (-15 -1773 ((-311) (-1150) (-1150))))) (T -824)) -((-1773 (*1 *2 *3 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-311)) (-5 *1 (-824)))) (-1680 (*1 *2 *3 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-112)) (-5 *1 (-824)))) (-2426 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-112)) (-5 *1 (-824)))) (-3333 (*1 *2 *3) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-824)) (-5 *3 (-1150)))) (-2688 (*1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-824)))) (-2022 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-52)) (-5 *1 (-824)))) (-1922 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-52)) (-5 *1 (-824)))) (-3642 (*1 *2 *3) (-12 (-5 *3 (-817)) (-5 *2 (-52)) (-5 *1 (-824))))) -(-10 -7 (-15 -3642 ((-52) (-817))) (-15 -1922 ((-52) (-1150))) (-15 -2022 ((-52) (-1150))) (-15 -2688 ((-639 (-1150)))) (-15 -3333 ((-639 (-1150)) (-1150))) (-15 -2426 ((-112) (-1150))) (-15 -1680 ((-112) (-1150) (-1150))) (-15 -1773 ((-311) (-1150) (-1150)))) -((-4041 (((-112) $ $) 19)) (-2492 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2570 (($ $ $) 72)) (-3938 (((-112) $ $) 73)) (-3735 (((-112) $ (-766)) 8)) (-1607 (($ (-639 |#1|)) 68) (($) 67)) (-2968 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4403)))) (-3329 (($) 7 T CONST)) (-3923 (($ $) 62)) (-1459 (($ $) 58 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-3729 (($ |#1| $) 47 (|has| $ (-6 -4403))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4403)))) (-1475 (($ |#1| $) 57 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4403)))) (-1954 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4403)))) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4403)))) (-3528 (((-112) $ $) 64)) (-4172 (((-112) $ (-766)) 9)) (-1551 ((|#1| $) 78)) (-3124 (($ $ $) 81)) (-4103 (($ $ $) 80)) (-2123 (((-639 |#1|) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-2993 ((|#1| $) 79)) (-1491 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-4147 (((-112) $ (-766)) 10)) (-3696 (((-1150) $) 22)) (-4169 (($ $ $) 69)) (-2078 ((|#1| $) 39)) (-1581 (($ |#1| $) 40) (($ |#1| $ (-766)) 63)) (-1709 (((-1112) $) 21)) (-1963 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2038 ((|#1| $) 41)) (-3008 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) 14)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-3110 (((-639 (-2 (|:| -2693 |#1|) (|:| -1723 (-766)))) $) 61)) (-3874 (($ $ |#1|) 71) (($ $ $) 70)) (-1932 (($) 49) (($ (-639 |#1|)) 48)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4403))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-4220 (($ $) 13)) (-4208 (((-535) $) 59 (|has| |#1| (-610 (-535))))) (-4064 (($ (-639 |#1|)) 50)) (-4053 (((-857) $) 18)) (-1702 (($ (-639 |#1|)) 66) (($) 65)) (-4131 (($ (-639 |#1|)) 42)) (-2879 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 20)) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-825 |#1|) (-139) (-845)) (T -825)) -((-1551 (*1 *2 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-845))))) -(-13 (-731 |t#1|) (-963 |t#1|) (-10 -8 (-15 -1551 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-609 (-857)) . T) ((-150 |#1|) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-234 |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-689 |#1|) . T) ((-731 |#1|) . T) ((-963 |#1|) . T) ((-1090 |#1|) . T) ((-1092) . T) ((-1207) . T)) -((-3593 (((-1261) (-1112) (-1112)) 47)) (-3899 (((-1261) (-816) (-52)) 44)) (-4262 (((-52) (-816)) 16))) -(((-826) (-10 -7 (-15 -4262 ((-52) (-816))) (-15 -3899 ((-1261) (-816) (-52))) (-15 -3593 ((-1261) (-1112) (-1112))))) (T -826)) -((-3593 (*1 *2 *3 *3) (-12 (-5 *3 (-1112)) (-5 *2 (-1261)) (-5 *1 (-826)))) (-3899 (*1 *2 *3 *4) (-12 (-5 *3 (-816)) (-5 *4 (-52)) (-5 *2 (-1261)) (-5 *1 (-826)))) (-4262 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-52)) (-5 *1 (-826))))) -(-10 -7 (-15 -4262 ((-52) (-816))) (-15 -3899 ((-1261) (-816) (-52))) (-15 -3593 ((-1261) (-1112) (-1112)))) -((-4152 (((-828 |#2|) (-1 |#2| |#1|) (-828 |#1|) (-828 |#2|)) 12) (((-828 |#2|) (-1 |#2| |#1|) (-828 |#1|)) 13))) -(((-827 |#1| |#2|) (-10 -7 (-15 -4152 ((-828 |#2|) (-1 |#2| |#1|) (-828 |#1|))) (-15 -4152 ((-828 |#2|) (-1 |#2| |#1|) (-828 |#1|) (-828 |#2|)))) (-1092) (-1092)) (T -827)) -((-4152 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-828 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-828 *5)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-5 *1 (-827 *5 *6)))) (-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-828 *5)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-5 *2 (-828 *6)) (-5 *1 (-827 *5 *6))))) -(-10 -7 (-15 -4152 ((-828 |#2|) (-1 |#2| |#1|) (-828 |#1|))) (-15 -4152 ((-828 |#2|) (-1 |#2| |#1|) (-828 |#1|) (-828 |#2|)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL (|has| |#1| (-21)))) (-2781 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1587 (((-562) $) NIL (|has| |#1| (-843)))) (-3329 (($) NIL (|has| |#1| (-21)) CONST)) (-4048 (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) 15)) (-3960 (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) 9)) (-1694 (((-3 $ "failed") $) 40 (|has| |#1| (-843)))) (-3913 (((-3 (-406 (-562)) "failed") $) 49 (|has| |#1| (-544)))) (-3498 (((-112) $) 43 (|has| |#1| (-544)))) (-3854 (((-406 (-562)) $) 46 (|has| |#1| (-544)))) (-2696 (((-112) $) NIL (|has| |#1| (-843)))) (-4367 (((-112) $) NIL (|has| |#1| (-843)))) (-3855 (((-112) $) NIL (|has| |#1| (-843)))) (-1551 (($ $ $) NIL (|has| |#1| (-843)))) (-2993 (($ $ $) NIL (|has| |#1| (-843)))) (-3696 (((-1150) $) NIL)) (-4113 (($) 13)) (-2098 (((-112) $) 12)) (-1709 (((-1112) $) NIL)) (-3973 (((-112) $) 11)) (-4053 (((-857) $) 18) (($ (-406 (-562))) NIL (|has| |#1| (-1033 (-406 (-562))))) (($ |#1|) 8) (($ (-562)) NIL (-4037 (|has| |#1| (-843)) (|has| |#1| (-1033 (-562)))))) (-1568 (((-766)) 34 (|has| |#1| (-843)))) (-2757 (($ $) NIL (|has| |#1| (-843)))) (-2285 (($) 22 (|has| |#1| (-21)) CONST)) (-2294 (($) 31 (|has| |#1| (-843)) CONST)) (-1798 (((-112) $ $) NIL (|has| |#1| (-843)))) (-1771 (((-112) $ $) NIL (|has| |#1| (-843)))) (-1733 (((-112) $ $) 20)) (-1785 (((-112) $ $) NIL (|has| |#1| (-843)))) (-1761 (((-112) $ $) 42 (|has| |#1| (-843)))) (-1847 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-1836 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-916)) NIL (|has| |#1| (-843))) (($ $ (-766)) NIL (|has| |#1| (-843)))) (* (($ $ $) 37 (|has| |#1| (-843))) (($ (-562) $) 25 (|has| |#1| (-21))) (($ (-766) $) NIL (|has| |#1| (-21))) (($ (-916) $) NIL (|has| |#1| (-21))))) -(((-828 |#1|) (-13 (-1092) (-410 |#1|) (-10 -8 (-15 -4113 ($)) (-15 -3973 ((-112) $)) (-15 -2098 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-843)) (-6 (-843)) |%noBranch|) (IF (|has| |#1| (-544)) (PROGN (-15 -3498 ((-112) $)) (-15 -3854 ((-406 (-562)) $)) (-15 -3913 ((-3 (-406 (-562)) "failed") $))) |%noBranch|))) (-1092)) (T -828)) -((-4113 (*1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-1092)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828 *3)) (-4 *3 (-1092)))) (-2098 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828 *3)) (-4 *3 (-1092)))) (-3498 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828 *3)) (-4 *3 (-544)) (-4 *3 (-1092)))) (-3854 (*1 *2 *1) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-828 *3)) (-4 *3 (-544)) (-4 *3 (-1092)))) (-3913 (*1 *2 *1) (|partial| -12 (-5 *2 (-406 (-562))) (-5 *1 (-828 *3)) (-4 *3 (-544)) (-4 *3 (-1092))))) -(-13 (-1092) (-410 |#1|) (-10 -8 (-15 -4113 ($)) (-15 -3973 ((-112) $)) (-15 -2098 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-843)) (-6 (-843)) |%noBranch|) (IF (|has| |#1| (-544)) (PROGN (-15 -3498 ((-112) $)) (-15 -3854 ((-406 (-562)) $)) (-15 -3913 ((-3 (-406 (-562)) "failed") $))) |%noBranch|))) -((-4053 (((-857) $) 11))) -(((-829 |#1| |#2|) (-10 -8 (-15 -4053 ((-857) |#1|))) (-830 |#2|) (-1092)) (T -829)) -NIL -(-10 -8 (-15 -4053 ((-857) |#1|))) -((-4041 (((-112) $ $) 7)) (-3253 ((|#1| $) 14)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11)) (-3975 (((-55) $) 13)) (-1733 (((-112) $ $) 6))) -(((-830 |#1|) (-139) (-1092)) (T -830)) -((-3253 (*1 *2 *1) (-12 (-4 *1 (-830 *2)) (-4 *2 (-1092)))) (-3975 (*1 *2 *1) (-12 (-4 *1 (-830 *3)) (-4 *3 (-1092)) (-5 *2 (-55))))) -(-13 (-1092) (-10 -8 (-15 -3253 (|t#1| $)) (-15 -3975 ((-55) $)))) -(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-3960 ((|#1| $) NIL) (((-114) $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-3208 ((|#1| (-114) |#1|) NIL)) (-4367 (((-112) $) NIL)) (-2755 (($ |#1| (-360 (-114))) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1910 (($ $ (-1 |#1| |#1|)) NIL)) (-3610 (($ $ (-1 |#1| |#1|)) NIL)) (-2343 ((|#1| $ |#1|) NIL)) (-2383 ((|#1| |#1|) NIL (|has| |#1| (-171)))) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-2059 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-1568 (((-766)) NIL)) (-1926 (($ $) NIL (|has| |#1| (-171))) (($ $ $) NIL (|has| |#1| (-171)))) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-1733 (((-112) $ $) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ (-114) (-562)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171))))) -(((-831 |#1|) (-13 (-1044) (-1033 |#1|) (-1033 (-114)) (-285 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-6 (-38 |#1|)) (-15 -1926 ($ $)) (-15 -1926 ($ $ $)) (-15 -2383 (|#1| |#1|))) |%noBranch|) (-15 -3610 ($ $ (-1 |#1| |#1|))) (-15 -1910 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-562))) (-15 ** ($ $ (-562))) (-15 -3208 (|#1| (-114) |#1|)) (-15 -2755 ($ |#1| (-360 (-114)))))) (-1044)) (T -831)) -((-1926 (*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-171)) (-4 *2 (-1044)))) (-1926 (*1 *1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-171)) (-4 *2 (-1044)))) (-2383 (*1 *2 *2) (-12 (-5 *1 (-831 *2)) (-4 *2 (-171)) (-4 *2 (-1044)))) (-3610 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1044)) (-5 *1 (-831 *3)))) (-1910 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1044)) (-5 *1 (-831 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-562)) (-5 *1 (-831 *4)) (-4 *4 (-1044)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-831 *3)) (-4 *3 (-1044)))) (-3208 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-831 *2)) (-4 *2 (-1044)))) (-2755 (*1 *1 *2 *3) (-12 (-5 *3 (-360 (-114))) (-5 *1 (-831 *2)) (-4 *2 (-1044))))) -(-13 (-1044) (-1033 |#1|) (-1033 (-114)) (-285 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-171)) (PROGN (-6 (-38 |#1|)) (-15 -1926 ($ $)) (-15 -1926 ($ $ $)) (-15 -2383 (|#1| |#1|))) |%noBranch|) (-15 -3610 ($ $ (-1 |#1| |#1|))) (-15 -1910 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-562))) (-15 ** ($ $ (-562))) (-15 -3208 (|#1| (-114) |#1|)) (-15 -2755 ($ |#1| (-360 (-114)))))) -((-3940 (((-213 (-501)) (-1150)) 9))) -(((-832) (-10 -7 (-15 -3940 ((-213 (-501)) (-1150))))) (T -832)) -((-3940 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-213 (-501))) (-5 *1 (-832))))) -(-10 -7 (-15 -3940 ((-213 (-501)) (-1150)))) -((-4041 (((-112) $ $) NIL)) (-2844 (((-1110) $) 10)) (-3253 (((-505) $) 9)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4064 (($ (-505) (-1110)) 8)) (-4053 (((-857) $) 26)) (-3975 (((-55) $) 19)) (-1733 (((-112) $ $) 12))) -(((-833) (-13 (-830 (-505)) (-10 -8 (-15 -2844 ((-1110) $)) (-15 -4064 ($ (-505) (-1110)))))) (T -833)) -((-2844 (*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-833)))) (-4064 (*1 *1 *2 *3) (-12 (-5 *2 (-505)) (-5 *3 (-1110)) (-5 *1 (-833))))) -(-13 (-830 (-505)) (-10 -8 (-15 -2844 ((-1110) $)) (-15 -4064 ($ (-505) (-1110))))) -((-4041 (((-112) $ $) 7)) (-2605 (((-1030) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))) 14) (((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 13)) (-1806 (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 16) (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))) 15)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11)) (-1733 (((-112) $ $) 6))) -(((-834) (-139)) (T -834)) -((-1806 (*1 *2 *3 *4) (-12 (-4 *1 (-834)) (-5 *3 (-1056)) (-5 *4 (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) (-5 *2 (-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)))))) (-1806 (*1 *2 *3 *4) (-12 (-4 *1 (-834)) (-5 *3 (-1056)) (-5 *4 (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))) (-5 *2 (-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)))))) (-2605 (*1 *2 *3) (-12 (-4 *1 (-834)) (-5 *3 (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))) (-5 *2 (-1030)))) (-2605 (*1 *2 *3) (-12 (-4 *1 (-834)) (-5 *3 (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) (-5 *2 (-1030))))) -(-13 (-1092) (-10 -7 (-15 -1806 ((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224))))))) (-15 -1806 ((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224)))))) (-15 -2605 ((-1030) (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224)))))) (-15 -2605 ((-1030) (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224))))))))) -(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) -((-2906 (((-1030) (-639 (-315 (-378))) (-639 (-378))) 147) (((-1030) (-315 (-378)) (-639 (-378))) 145) (((-1030) (-315 (-378)) (-639 (-378)) (-639 (-838 (-378))) (-639 (-838 (-378)))) 144) (((-1030) (-315 (-378)) (-639 (-378)) (-639 (-838 (-378))) (-639 (-315 (-378))) (-639 (-838 (-378)))) 143) (((-1030) (-836)) 117) (((-1030) (-836) (-1056)) 116)) (-1806 (((-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150)))) (-836) (-1056)) 82) (((-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150)))) (-836)) 84)) (-2407 (((-1030) (-639 (-315 (-378))) (-639 (-378))) 148) (((-1030) (-836)) 133))) -(((-835) (-10 -7 (-15 -1806 ((-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150)))) (-836))) (-15 -1806 ((-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150)))) (-836) (-1056))) (-15 -2906 ((-1030) (-836) (-1056))) (-15 -2906 ((-1030) (-836))) (-15 -2407 ((-1030) (-836))) (-15 -2906 ((-1030) (-315 (-378)) (-639 (-378)) (-639 (-838 (-378))) (-639 (-315 (-378))) (-639 (-838 (-378))))) (-15 -2906 ((-1030) (-315 (-378)) (-639 (-378)) (-639 (-838 (-378))) (-639 (-838 (-378))))) (-15 -2906 ((-1030) (-315 (-378)) (-639 (-378)))) (-15 -2906 ((-1030) (-639 (-315 (-378))) (-639 (-378)))) (-15 -2407 ((-1030) (-639 (-315 (-378))) (-639 (-378)))))) (T -835)) -((-2407 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-315 (-378)))) (-5 *4 (-639 (-378))) (-5 *2 (-1030)) (-5 *1 (-835)))) (-2906 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-315 (-378)))) (-5 *4 (-639 (-378))) (-5 *2 (-1030)) (-5 *1 (-835)))) (-2906 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-639 (-378))) (-5 *2 (-1030)) (-5 *1 (-835)))) (-2906 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-315 (-378))) (-5 *4 (-639 (-378))) (-5 *5 (-639 (-838 (-378)))) (-5 *2 (-1030)) (-5 *1 (-835)))) (-2906 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-639 (-378))) (-5 *5 (-639 (-838 (-378)))) (-5 *6 (-639 (-315 (-378)))) (-5 *3 (-315 (-378))) (-5 *2 (-1030)) (-5 *1 (-835)))) (-2407 (*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-1030)) (-5 *1 (-835)))) (-2906 (*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-1030)) (-5 *1 (-835)))) (-2906 (*1 *2 *3 *4) (-12 (-5 *3 (-836)) (-5 *4 (-1056)) (-5 *2 (-1030)) (-5 *1 (-835)))) (-1806 (*1 *2 *3 *4) (-12 (-5 *3 (-836)) (-5 *4 (-1056)) (-5 *2 (-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150))))) (-5 *1 (-835)))) (-1806 (*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150))))) (-5 *1 (-835))))) -(-10 -7 (-15 -1806 ((-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150)))) (-836))) (-15 -1806 ((-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150)))) (-836) (-1056))) (-15 -2906 ((-1030) (-836) (-1056))) (-15 -2906 ((-1030) (-836))) (-15 -2407 ((-1030) (-836))) (-15 -2906 ((-1030) (-315 (-378)) (-639 (-378)) (-639 (-838 (-378))) (-639 (-315 (-378))) (-639 (-838 (-378))))) (-15 -2906 ((-1030) (-315 (-378)) (-639 (-378)) (-639 (-838 (-378))) (-639 (-838 (-378))))) (-15 -2906 ((-1030) (-315 (-378)) (-639 (-378)))) (-15 -2906 ((-1030) (-639 (-315 (-378))) (-639 (-378)))) (-15 -2407 ((-1030) (-639 (-315 (-378))) (-639 (-378))))) -((-4041 (((-112) $ $) NIL)) (-3960 (((-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224)))))) $) 21)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 20) (($ (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) 14) (($ (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))))) 18)) (-1733 (((-112) $ $) NIL))) -(((-836) (-13 (-1092) (-10 -8 (-15 -4053 ($ (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224))))))) (-15 -4053 ($ (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224)))))) (-15 -4053 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224)))))))) (-15 -3960 ((-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224)))))) $))))) (T -836)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) (-5 *1 (-836)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))) (-5 *1 (-836)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))))) (-5 *1 (-836)))) (-3960 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))))) (-5 *1 (-836))))) -(-13 (-1092) (-10 -8 (-15 -4053 ($ (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224))))))) (-15 -4053 ($ (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224)))))) (-15 -4053 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224)))))))) (-15 -3960 ((-3 (|:| |noa| (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) (|:| |ub| (-639 (-838 (-224)))))) (|:| |lsa| (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224)))))) $)))) -((-4152 (((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|) (-838 |#2|) (-838 |#2|)) 13) (((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|)) 14))) -(((-837 |#1| |#2|) (-10 -7 (-15 -4152 ((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|))) (-15 -4152 ((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|) (-838 |#2|) (-838 |#2|)))) (-1092) (-1092)) (T -837)) -((-4152 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-838 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-838 *5)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-5 *1 (-837 *5 *6)))) (-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-838 *5)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-5 *2 (-838 *6)) (-5 *1 (-837 *5 *6))))) -(-10 -7 (-15 -4152 ((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|))) (-15 -4152 ((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|) (-838 |#2|) (-838 |#2|)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL (|has| |#1| (-21)))) (-1794 (((-1112) $) 24)) (-2781 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1587 (((-562) $) NIL (|has| |#1| (-843)))) (-3329 (($) NIL (|has| |#1| (-21)) CONST)) (-4048 (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) 16)) (-3960 (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) 9)) (-1694 (((-3 $ "failed") $) 47 (|has| |#1| (-843)))) (-3913 (((-3 (-406 (-562)) "failed") $) 54 (|has| |#1| (-544)))) (-3498 (((-112) $) 49 (|has| |#1| (-544)))) (-3854 (((-406 (-562)) $) 52 (|has| |#1| (-544)))) (-2696 (((-112) $) NIL (|has| |#1| (-843)))) (-3604 (($) 13)) (-4367 (((-112) $) NIL (|has| |#1| (-843)))) (-3855 (((-112) $) NIL (|has| |#1| (-843)))) (-3616 (($) 14)) (-1551 (($ $ $) NIL (|has| |#1| (-843)))) (-2993 (($ $ $) NIL (|has| |#1| (-843)))) (-3696 (((-1150) $) NIL)) (-2098 (((-112) $) 12)) (-1709 (((-1112) $) NIL)) (-3973 (((-112) $) 11)) (-4053 (((-857) $) 22) (($ (-406 (-562))) NIL (|has| |#1| (-1033 (-406 (-562))))) (($ |#1|) 8) (($ (-562)) NIL (-4037 (|has| |#1| (-843)) (|has| |#1| (-1033 (-562)))))) (-1568 (((-766)) 41 (|has| |#1| (-843)))) (-2757 (($ $) NIL (|has| |#1| (-843)))) (-2285 (($) 29 (|has| |#1| (-21)) CONST)) (-2294 (($) 38 (|has| |#1| (-843)) CONST)) (-1798 (((-112) $ $) NIL (|has| |#1| (-843)))) (-1771 (((-112) $ $) NIL (|has| |#1| (-843)))) (-1733 (((-112) $ $) 27)) (-1785 (((-112) $ $) NIL (|has| |#1| (-843)))) (-1761 (((-112) $ $) 48 (|has| |#1| (-843)))) (-1847 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-1836 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-916)) NIL (|has| |#1| (-843))) (($ $ (-766)) NIL (|has| |#1| (-843)))) (* (($ $ $) 44 (|has| |#1| (-843))) (($ (-562) $) 32 (|has| |#1| (-21))) (($ (-766) $) NIL (|has| |#1| (-21))) (($ (-916) $) NIL (|has| |#1| (-21))))) -(((-838 |#1|) (-13 (-1092) (-410 |#1|) (-10 -8 (-15 -3604 ($)) (-15 -3616 ($)) (-15 -3973 ((-112) $)) (-15 -2098 ((-112) $)) (-15 -1794 ((-1112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-843)) (-6 (-843)) |%noBranch|) (IF (|has| |#1| (-544)) (PROGN (-15 -3498 ((-112) $)) (-15 -3854 ((-406 (-562)) $)) (-15 -3913 ((-3 (-406 (-562)) "failed") $))) |%noBranch|))) (-1092)) (T -838)) -((-3604 (*1 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-1092)))) (-3616 (*1 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-1092)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-1092)))) (-2098 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-1092)))) (-1794 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-838 *3)) (-4 *3 (-1092)))) (-3498 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-544)) (-4 *3 (-1092)))) (-3854 (*1 *2 *1) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-838 *3)) (-4 *3 (-544)) (-4 *3 (-1092)))) (-3913 (*1 *2 *1) (|partial| -12 (-5 *2 (-406 (-562))) (-5 *1 (-838 *3)) (-4 *3 (-544)) (-4 *3 (-1092))))) -(-13 (-1092) (-410 |#1|) (-10 -8 (-15 -3604 ($)) (-15 -3616 ($)) (-15 -3973 ((-112) $)) (-15 -2098 ((-112) $)) (-15 -1794 ((-1112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-843)) (-6 (-843)) |%noBranch|) (IF (|has| |#1| (-544)) (PROGN (-15 -3498 ((-112) $)) (-15 -3854 ((-406 (-562)) $)) (-15 -3913 ((-3 (-406 (-562)) "failed") $))) |%noBranch|))) -((-4041 (((-112) $ $) 7)) (-1382 (((-766)) 22)) (-1447 (($) 25)) (-1551 (($ $ $) 13) (($) 21 T CONST)) (-2993 (($ $ $) 14) (($) 20 T CONST)) (-3549 (((-916) $) 24)) (-3696 (((-1150) $) 9)) (-2464 (($ (-916)) 23)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11)) (-1798 (((-112) $ $) 16)) (-1771 (((-112) $ $) 17)) (-1733 (((-112) $ $) 6)) (-1785 (((-112) $ $) 15)) (-1761 (((-112) $ $) 18))) -(((-839) (-139)) (T -839)) -((-1551 (*1 *1) (-4 *1 (-839))) (-2993 (*1 *1) (-4 *1 (-839)))) -(-13 (-845) (-367) (-10 -8 (-15 -1551 ($) -1497) (-15 -2993 ($) -1497))) -(((-102) . T) ((-609 (-857)) . T) ((-367) . T) ((-845) . T) ((-1092) . T)) -((-1307 (((-112) (-1256 |#2|) (-1256 |#2|)) 17)) (-1948 (((-112) (-1256 |#2|) (-1256 |#2|)) 18)) (-2934 (((-112) (-1256 |#2|) (-1256 |#2|)) 14))) -(((-840 |#1| |#2|) (-10 -7 (-15 -2934 ((-112) (-1256 |#2|) (-1256 |#2|))) (-15 -1307 ((-112) (-1256 |#2|) (-1256 |#2|))) (-15 -1948 ((-112) (-1256 |#2|) (-1256 |#2|)))) (-766) (-787)) (T -840)) -((-1948 (*1 *2 *3 *3) (-12 (-5 *3 (-1256 *5)) (-4 *5 (-787)) (-5 *2 (-112)) (-5 *1 (-840 *4 *5)) (-14 *4 (-766)))) (-1307 (*1 *2 *3 *3) (-12 (-5 *3 (-1256 *5)) (-4 *5 (-787)) (-5 *2 (-112)) (-5 *1 (-840 *4 *5)) (-14 *4 (-766)))) (-2934 (*1 *2 *3 *3) (-12 (-5 *3 (-1256 *5)) (-4 *5 (-787)) (-5 *2 (-112)) (-5 *1 (-840 *4 *5)) (-14 *4 (-766))))) -(-10 -7 (-15 -2934 ((-112) (-1256 |#2|) (-1256 |#2|))) (-15 -1307 ((-112) (-1256 |#2|) (-1256 |#2|))) (-15 -1948 ((-112) (-1256 |#2|) (-1256 |#2|)))) -((-4041 (((-112) $ $) 7)) (-3329 (($) 23 T CONST)) (-1694 (((-3 $ "failed") $) 26)) (-4367 (((-112) $) 24)) (-1551 (($ $ $) 13)) (-2993 (($ $ $) 14)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11)) (-2294 (($) 22 T CONST)) (-1798 (((-112) $ $) 16)) (-1771 (((-112) $ $) 17)) (-1733 (((-112) $ $) 6)) (-1785 (((-112) $ $) 15)) (-1761 (((-112) $ $) 18)) (** (($ $ (-916)) 21) (($ $ (-766)) 25)) (* (($ $ $) 20))) -(((-841) (-139)) (T -841)) -NIL -(-13 (-852) (-721)) -(((-102) . T) ((-609 (-857)) . T) ((-721) . T) ((-852) . T) ((-845) . T) ((-1104) . T) ((-1092) . T)) -((-1587 (((-562) $) 17)) (-2696 (((-112) $) 10)) (-3855 (((-112) $) 11)) (-2757 (($ $) 19))) -(((-842 |#1|) (-10 -8 (-15 -2757 (|#1| |#1|)) (-15 -1587 ((-562) |#1|)) (-15 -3855 ((-112) |#1|)) (-15 -2696 ((-112) |#1|))) (-843)) (T -842)) -NIL -(-10 -8 (-15 -2757 (|#1| |#1|)) (-15 -1587 ((-562) |#1|)) (-15 -3855 ((-112) |#1|)) (-15 -2696 ((-112) |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 24)) (-2781 (((-3 $ "failed") $ $) 26)) (-1587 (((-562) $) 34)) (-3329 (($) 23 T CONST)) (-1694 (((-3 $ "failed") $) 39)) (-2696 (((-112) $) 36)) (-4367 (((-112) $) 41)) (-3855 (((-112) $) 35)) (-1551 (($ $ $) 13)) (-2993 (($ $ $) 14)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11) (($ (-562)) 43)) (-1568 (((-766)) 44)) (-2757 (($ $) 33)) (-2285 (($) 22 T CONST)) (-2294 (($) 42 T CONST)) (-1798 (((-112) $ $) 16)) (-1771 (((-112) $ $) 17)) (-1733 (((-112) $ $) 6)) (-1785 (((-112) $ $) 15)) (-1761 (((-112) $ $) 18)) (-1847 (($ $ $) 28) (($ $) 27)) (-1836 (($ $ $) 20)) (** (($ $ (-766)) 40) (($ $ (-916)) 37)) (* (($ (-916) $) 21) (($ (-766) $) 25) (($ (-562) $) 29) (($ $ $) 38))) -(((-843) (-139)) (T -843)) -((-2696 (*1 *2 *1) (-12 (-4 *1 (-843)) (-5 *2 (-112)))) (-3855 (*1 *2 *1) (-12 (-4 *1 (-843)) (-5 *2 (-112)))) (-1587 (*1 *2 *1) (-12 (-4 *1 (-843)) (-5 *2 (-562)))) (-2757 (*1 *1 *1) (-4 *1 (-843)))) -(-13 (-786) (-1044) (-721) (-10 -8 (-15 -2696 ((-112) $)) (-15 -3855 ((-112) $)) (-15 -1587 ((-562) $)) (-15 -2757 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-612 (-562)) . T) ((-609 (-857)) . T) ((-642 $) . T) ((-721) . T) ((-786) . T) ((-787) . T) ((-789) . T) ((-790) . T) ((-845) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) -((-1551 (($ $ $) 10)) (-2993 (($ $ $) 9)) (-1798 (((-112) $ $) 12)) (-1771 (((-112) $ $) 11)) (-1785 (((-112) $ $) 13))) -(((-844 |#1|) (-10 -8 (-15 -1551 (|#1| |#1| |#1|)) (-15 -2993 (|#1| |#1| |#1|)) (-15 -1785 ((-112) |#1| |#1|)) (-15 -1798 ((-112) |#1| |#1|)) (-15 -1771 ((-112) |#1| |#1|))) (-845)) (T -844)) -NIL -(-10 -8 (-15 -1551 (|#1| |#1| |#1|)) (-15 -2993 (|#1| |#1| |#1|)) (-15 -1785 ((-112) |#1| |#1|)) (-15 -1798 ((-112) |#1| |#1|)) (-15 -1771 ((-112) |#1| |#1|))) -((-4041 (((-112) $ $) 7)) (-1551 (($ $ $) 13)) (-2993 (($ $ $) 14)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11)) (-1798 (((-112) $ $) 16)) (-1771 (((-112) $ $) 17)) (-1733 (((-112) $ $) 6)) (-1785 (((-112) $ $) 15)) (-1761 (((-112) $ $) 18))) -(((-845) (-139)) (T -845)) -((-1761 (*1 *2 *1 *1) (-12 (-4 *1 (-845)) (-5 *2 (-112)))) (-1771 (*1 *2 *1 *1) (-12 (-4 *1 (-845)) (-5 *2 (-112)))) (-1798 (*1 *2 *1 *1) (-12 (-4 *1 (-845)) (-5 *2 (-112)))) (-1785 (*1 *2 *1 *1) (-12 (-4 *1 (-845)) (-5 *2 (-112)))) (-2993 (*1 *1 *1 *1) (-4 *1 (-845))) (-1551 (*1 *1 *1 *1) (-4 *1 (-845)))) -(-13 (-1092) (-10 -8 (-15 -1761 ((-112) $ $)) (-15 -1771 ((-112) $ $)) (-15 -1798 ((-112) $ $)) (-15 -1785 ((-112) $ $)) (-15 -2993 ($ $ $)) (-15 -1551 ($ $ $)))) -(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) -((-1944 (($ $ $) 45)) (-3711 (($ $ $) 44)) (-1884 (($ $ $) 42)) (-1353 (($ $ $) 51)) (-3392 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) 46)) (-3560 (((-3 $ "failed") $ $) 49)) (-4048 (((-3 (-562) "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-2578 (($ $) 35)) (-4371 (($ $ $) 39)) (-1934 (($ $ $) 38)) (-2516 (($ $ $) 47)) (-3552 (($ $ $) 53)) (-1989 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) 41)) (-3151 (((-3 $ "failed") $ $) 48)) (-1762 (((-3 $ "failed") $ |#2|) 28)) (-2201 ((|#2| $) 32)) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ (-406 (-562))) NIL) (($ |#2|) 12)) (-3969 (((-639 |#2|) $) 18)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22))) -(((-846 |#1| |#2|) (-10 -8 (-15 -2516 (|#1| |#1| |#1|)) (-15 -3392 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3147 |#1|)) |#1| |#1|)) (-15 -1353 (|#1| |#1| |#1|)) (-15 -3560 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1944 (|#1| |#1| |#1|)) (-15 -3711 (|#1| |#1| |#1|)) (-15 -1884 (|#1| |#1| |#1|)) (-15 -1989 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3147 |#1|)) |#1| |#1|)) (-15 -3552 (|#1| |#1| |#1|)) (-15 -3151 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4371 (|#1| |#1| |#1|)) (-15 -1934 (|#1| |#1| |#1|)) (-15 -2578 (|#1| |#1|)) (-15 -2201 (|#2| |#1|)) (-15 -1762 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3969 ((-639 |#2|) |#1|)) (-15 -4053 (|#1| |#2|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -4053 (|#1| (-406 (-562)))) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4053 (|#1| (-562))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-562) |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 * (|#1| (-916) |#1|)) (-15 -4053 ((-857) |#1|))) (-847 |#2|) (-1044)) (T -846)) -NIL -(-10 -8 (-15 -2516 (|#1| |#1| |#1|)) (-15 -3392 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3147 |#1|)) |#1| |#1|)) (-15 -1353 (|#1| |#1| |#1|)) (-15 -3560 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1944 (|#1| |#1| |#1|)) (-15 -3711 (|#1| |#1| |#1|)) (-15 -1884 (|#1| |#1| |#1|)) (-15 -1989 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3147 |#1|)) |#1| |#1|)) (-15 -3552 (|#1| |#1| |#1|)) (-15 -3151 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4371 (|#1| |#1| |#1|)) (-15 -1934 (|#1| |#1| |#1|)) (-15 -2578 (|#1| |#1|)) (-15 -2201 (|#2| |#1|)) (-15 -1762 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3969 ((-639 |#2|) |#1|)) (-15 -4053 (|#1| |#2|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -4053 (|#1| (-406 (-562)))) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4053 (|#1| (-562))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-562) |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 * (|#1| (-916) |#1|)) (-15 -4053 ((-857) |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-1944 (($ $ $) 44 (|has| |#1| (-362)))) (-3711 (($ $ $) 45 (|has| |#1| (-362)))) (-1884 (($ $ $) 47 (|has| |#1| (-362)))) (-1353 (($ $ $) 42 (|has| |#1| (-362)))) (-3392 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) 41 (|has| |#1| (-362)))) (-3560 (((-3 $ "failed") $ $) 43 (|has| |#1| (-362)))) (-4190 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 46 (|has| |#1| (-362)))) (-4048 (((-3 (-562) "failed") $) 74 (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) 71 (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) 68)) (-3960 (((-562) $) 73 (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) 70 (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) 69)) (-1600 (($ $) 63)) (-1694 (((-3 $ "failed") $) 33)) (-2578 (($ $) 54 (|has| |#1| (-451)))) (-4367 (((-112) $) 31)) (-1377 (($ |#1| (-766)) 61)) (-1524 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 56 (|has| |#1| (-554)))) (-4006 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 57 (|has| |#1| (-554)))) (-3161 (((-766) $) 65)) (-4371 (($ $ $) 51 (|has| |#1| (-362)))) (-1934 (($ $ $) 52 (|has| |#1| (-362)))) (-2516 (($ $ $) 40 (|has| |#1| (-362)))) (-3552 (($ $ $) 49 (|has| |#1| (-362)))) (-1989 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) 48 (|has| |#1| (-362)))) (-3151 (((-3 $ "failed") $ $) 50 (|has| |#1| (-362)))) (-1651 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 53 (|has| |#1| (-362)))) (-1573 ((|#1| $) 64)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-1762 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-554)))) (-2250 (((-766) $) 66)) (-2201 ((|#1| $) 55 (|has| |#1| (-451)))) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ (-406 (-562))) 72 (|has| |#1| (-1033 (-406 (-562))))) (($ |#1|) 67)) (-3969 (((-639 |#1|) $) 60)) (-2266 ((|#1| $ (-766)) 62)) (-1568 (((-766)) 28)) (-1360 ((|#1| $ |#1| |#1|) 59)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75))) -(((-847 |#1|) (-139) (-1044)) (T -847)) -((-2250 (*1 *2 *1) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1044)) (-5 *2 (-766)))) (-3161 (*1 *2 *1) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1044)) (-5 *2 (-766)))) (-1573 (*1 *2 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)))) (-1600 (*1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)))) (-2266 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-4 *1 (-847 *2)) (-4 *2 (-1044)))) (-1377 (*1 *1 *2 *3) (-12 (-5 *3 (-766)) (-4 *1 (-847 *2)) (-4 *2 (-1044)))) (-3969 (*1 *2 *1) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1044)) (-5 *2 (-639 *3)))) (-1360 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)))) (-1762 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-554)))) (-4006 (*1 *2 *1 *1) (-12 (-4 *3 (-554)) (-4 *3 (-1044)) (-5 *2 (-2 (|:| -3380 *1) (|:| -1441 *1))) (-4 *1 (-847 *3)))) (-1524 (*1 *2 *1 *1) (-12 (-4 *3 (-554)) (-4 *3 (-1044)) (-5 *2 (-2 (|:| -3380 *1) (|:| -1441 *1))) (-4 *1 (-847 *3)))) (-2201 (*1 *2 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-451)))) (-2578 (*1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-451)))) (-1651 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *3 (-1044)) (-5 *2 (-2 (|:| -3380 *1) (|:| -1441 *1))) (-4 *1 (-847 *3)))) (-1934 (*1 *1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362)))) (-4371 (*1 *1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362)))) (-3151 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362)))) (-3552 (*1 *1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362)))) (-1989 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *3 (-1044)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3147 *1))) (-4 *1 (-847 *3)))) (-1884 (*1 *1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362)))) (-4190 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *3 (-1044)) (-5 *2 (-2 (|:| -3380 *1) (|:| -1441 *1))) (-4 *1 (-847 *3)))) (-3711 (*1 *1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362)))) (-1944 (*1 *1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362)))) (-3560 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362)))) (-1353 (*1 *1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362)))) (-3392 (*1 *2 *1 *1) (-12 (-4 *3 (-362)) (-4 *3 (-1044)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3147 *1))) (-4 *1 (-847 *3)))) (-2516 (*1 *1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362))))) -(-13 (-1044) (-111 |t#1| |t#1|) (-410 |t#1|) (-10 -8 (-15 -2250 ((-766) $)) (-15 -3161 ((-766) $)) (-15 -1573 (|t#1| $)) (-15 -1600 ($ $)) (-15 -2266 (|t#1| $ (-766))) (-15 -1377 ($ |t#1| (-766))) (-15 -3969 ((-639 |t#1|) $)) (-15 -1360 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-171)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-554)) (PROGN (-15 -1762 ((-3 $ "failed") $ |t#1|)) (-15 -4006 ((-2 (|:| -3380 $) (|:| -1441 $)) $ $)) (-15 -1524 ((-2 (|:| -3380 $) (|:| -1441 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-451)) (PROGN (-15 -2201 (|t#1| $)) (-15 -2578 ($ $))) |%noBranch|) (IF (|has| |t#1| (-362)) (PROGN (-15 -1651 ((-2 (|:| -3380 $) (|:| -1441 $)) $ $)) (-15 -1934 ($ $ $)) (-15 -4371 ($ $ $)) (-15 -3151 ((-3 $ "failed") $ $)) (-15 -3552 ($ $ $)) (-15 -1989 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $)) (-15 -1884 ($ $ $)) (-15 -4190 ((-2 (|:| -3380 $) (|:| -1441 $)) $ $)) (-15 -3711 ($ $ $)) (-15 -1944 ($ $ $)) (-15 -3560 ((-3 $ "failed") $ $)) (-15 -1353 ($ $ $)) (-15 -3392 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $)) (-15 -2516 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-171)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-612 #0=(-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((-612 (-562)) . T) ((-612 |#1|) . T) ((-609 (-857)) . T) ((-410 |#1|) . T) ((-642 |#1|) . T) ((-642 $) . T) ((-712 |#1|) |has| |#1| (-171)) ((-721) . T) ((-1033 #0#) |has| |#1| (-1033 (-406 (-562)))) ((-1033 (-562)) |has| |#1| (-1033 (-562))) ((-1033 |#1|) . T) ((-1050 |#1|) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) -((-3001 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-4190 (((-2 (|:| -3380 |#2|) (|:| -1441 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-362)))) (-1524 (((-2 (|:| -3380 |#2|) (|:| -1441 |#2|)) |#2| |#2| (-99 |#1|)) 40 (|has| |#1| (-554)))) (-4006 (((-2 (|:| -3380 |#2|) (|:| -1441 |#2|)) |#2| |#2| (-99 |#1|)) 39 (|has| |#1| (-554)))) (-1651 (((-2 (|:| -3380 |#2|) (|:| -1441 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-362)))) (-1360 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 31))) -(((-848 |#1| |#2|) (-10 -7 (-15 -3001 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -1360 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-554)) (PROGN (-15 -4006 ((-2 (|:| -3380 |#2|) (|:| -1441 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1524 ((-2 (|:| -3380 |#2|) (|:| -1441 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -1651 ((-2 (|:| -3380 |#2|) (|:| -1441 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4190 ((-2 (|:| -3380 |#2|) (|:| -1441 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1044) (-847 |#1|)) (T -848)) -((-4190 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-362)) (-4 *5 (-1044)) (-5 *2 (-2 (|:| -3380 *3) (|:| -1441 *3))) (-5 *1 (-848 *5 *3)) (-4 *3 (-847 *5)))) (-1651 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-362)) (-4 *5 (-1044)) (-5 *2 (-2 (|:| -3380 *3) (|:| -1441 *3))) (-5 *1 (-848 *5 *3)) (-4 *3 (-847 *5)))) (-1524 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-554)) (-4 *5 (-1044)) (-5 *2 (-2 (|:| -3380 *3) (|:| -1441 *3))) (-5 *1 (-848 *5 *3)) (-4 *3 (-847 *5)))) (-4006 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-554)) (-4 *5 (-1044)) (-5 *2 (-2 (|:| -3380 *3) (|:| -1441 *3))) (-5 *1 (-848 *5 *3)) (-4 *3 (-847 *5)))) (-1360 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1044)) (-5 *1 (-848 *2 *3)) (-4 *3 (-847 *2)))) (-3001 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1044)) (-5 *1 (-848 *5 *2)) (-4 *2 (-847 *5))))) -(-10 -7 (-15 -3001 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -1360 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-554)) (PROGN (-15 -4006 ((-2 (|:| -3380 |#2|) (|:| -1441 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1524 ((-2 (|:| -3380 |#2|) (|:| -1441 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -1651 ((-2 (|:| -3380 |#2|) (|:| -1441 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4190 ((-2 (|:| -3380 |#2|) (|:| -1441 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3329 (($) NIL T CONST)) (-1944 (($ $ $) NIL (|has| |#1| (-362)))) (-3711 (($ $ $) NIL (|has| |#1| (-362)))) (-1884 (($ $ $) NIL (|has| |#1| (-362)))) (-1353 (($ $ $) NIL (|has| |#1| (-362)))) (-3392 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL (|has| |#1| (-362)))) (-3560 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-4190 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 32 (|has| |#1| (-362)))) (-4048 (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) NIL)) (-3960 (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) NIL)) (-1600 (($ $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-2578 (($ $) NIL (|has| |#1| (-451)))) (-3508 (((-857) $ (-857)) NIL)) (-4367 (((-112) $) NIL)) (-1377 (($ |#1| (-766)) NIL)) (-1524 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 28 (|has| |#1| (-554)))) (-4006 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 26 (|has| |#1| (-554)))) (-3161 (((-766) $) NIL)) (-4371 (($ $ $) NIL (|has| |#1| (-362)))) (-1934 (($ $ $) NIL (|has| |#1| (-362)))) (-2516 (($ $ $) NIL (|has| |#1| (-362)))) (-3552 (($ $ $) NIL (|has| |#1| (-362)))) (-1989 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL (|has| |#1| (-362)))) (-3151 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-1651 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 30 (|has| |#1| (-362)))) (-1573 ((|#1| $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1762 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554)))) (-2250 (((-766) $) NIL)) (-2201 ((|#1| $) NIL (|has| |#1| (-451)))) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ (-406 (-562))) NIL (|has| |#1| (-1033 (-406 (-562))))) (($ |#1|) NIL)) (-3969 (((-639 |#1|) $) NIL)) (-2266 ((|#1| $ (-766)) NIL)) (-1568 (((-766)) NIL)) (-1360 ((|#1| $ |#1| |#1|) 15)) (-2285 (($) NIL T CONST)) (-2294 (($) 20 T CONST)) (-1733 (((-112) $ $) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) 19) (($ $ (-766)) 22)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-849 |#1| |#2| |#3|) (-13 (-847 |#1|) (-10 -8 (-15 -3508 ((-857) $ (-857))))) (-1044) (-99 |#1|) (-1 |#1| |#1|)) (T -849)) -((-3508 (*1 *2 *1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-849 *3 *4 *5)) (-4 *3 (-1044)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-847 |#1|) (-10 -8 (-15 -3508 ((-857) $ (-857))))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3329 (($) NIL T CONST)) (-1944 (($ $ $) NIL (|has| |#2| (-362)))) (-3711 (($ $ $) NIL (|has| |#2| (-362)))) (-1884 (($ $ $) NIL (|has| |#2| (-362)))) (-1353 (($ $ $) NIL (|has| |#2| (-362)))) (-3392 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL (|has| |#2| (-362)))) (-3560 (((-3 $ "failed") $ $) NIL (|has| |#2| (-362)))) (-4190 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| |#2| (-362)))) (-4048 (((-3 (-562) "failed") $) NIL (|has| |#2| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#2| (-1033 (-406 (-562))))) (((-3 |#2| "failed") $) NIL)) (-3960 (((-562) $) NIL (|has| |#2| (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| |#2| (-1033 (-406 (-562))))) ((|#2| $) NIL)) (-1600 (($ $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-2578 (($ $) NIL (|has| |#2| (-451)))) (-4367 (((-112) $) NIL)) (-1377 (($ |#2| (-766)) 16)) (-1524 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| |#2| (-554)))) (-4006 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| |#2| (-554)))) (-3161 (((-766) $) NIL)) (-4371 (($ $ $) NIL (|has| |#2| (-362)))) (-1934 (($ $ $) NIL (|has| |#2| (-362)))) (-2516 (($ $ $) NIL (|has| |#2| (-362)))) (-3552 (($ $ $) NIL (|has| |#2| (-362)))) (-1989 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL (|has| |#2| (-362)))) (-3151 (((-3 $ "failed") $ $) NIL (|has| |#2| (-362)))) (-1651 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| |#2| (-362)))) (-1573 ((|#2| $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1762 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-554)))) (-2250 (((-766) $) NIL)) (-2201 ((|#2| $) NIL (|has| |#2| (-451)))) (-4053 (((-857) $) 23) (($ (-562)) NIL) (($ (-406 (-562))) NIL (|has| |#2| (-1033 (-406 (-562))))) (($ |#2|) NIL) (($ (-1252 |#1|)) 18)) (-3969 (((-639 |#2|) $) NIL)) (-2266 ((|#2| $ (-766)) NIL)) (-1568 (((-766)) NIL)) (-1360 ((|#2| $ |#2| |#2|) NIL)) (-2285 (($) NIL T CONST)) (-2294 (($) 13 T CONST)) (-1733 (((-112) $ $) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-850 |#1| |#2| |#3| |#4|) (-13 (-847 |#2|) (-612 (-1252 |#1|))) (-1168) (-1044) (-99 |#2|) (-1 |#2| |#2|)) (T -850)) -NIL -(-13 (-847 |#2|) (-612 (-1252 |#1|))) -((-4280 ((|#1| (-766) |#1|) 35 (|has| |#1| (-38 (-406 (-562)))))) (-3387 ((|#1| (-766) (-766) |#1|) 27) ((|#1| (-766) |#1|) 20)) (-3393 ((|#1| (-766) |#1|) 31)) (-2286 ((|#1| (-766) |#1|) 29)) (-1936 ((|#1| (-766) |#1|) 28))) -(((-851 |#1|) (-10 -7 (-15 -1936 (|#1| (-766) |#1|)) (-15 -2286 (|#1| (-766) |#1|)) (-15 -3393 (|#1| (-766) |#1|)) (-15 -3387 (|#1| (-766) |#1|)) (-15 -3387 (|#1| (-766) (-766) |#1|)) (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -4280 (|#1| (-766) |#1|)) |%noBranch|)) (-171)) (T -851)) -((-4280 (*1 *2 *3 *2) (-12 (-5 *3 (-766)) (-5 *1 (-851 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-171)))) (-3387 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-766)) (-5 *1 (-851 *2)) (-4 *2 (-171)))) (-3387 (*1 *2 *3 *2) (-12 (-5 *3 (-766)) (-5 *1 (-851 *2)) (-4 *2 (-171)))) (-3393 (*1 *2 *3 *2) (-12 (-5 *3 (-766)) (-5 *1 (-851 *2)) (-4 *2 (-171)))) (-2286 (*1 *2 *3 *2) (-12 (-5 *3 (-766)) (-5 *1 (-851 *2)) (-4 *2 (-171)))) (-1936 (*1 *2 *3 *2) (-12 (-5 *3 (-766)) (-5 *1 (-851 *2)) (-4 *2 (-171))))) -(-10 -7 (-15 -1936 (|#1| (-766) |#1|)) (-15 -2286 (|#1| (-766) |#1|)) (-15 -3393 (|#1| (-766) |#1|)) (-15 -3387 (|#1| (-766) |#1|)) (-15 -3387 (|#1| (-766) (-766) |#1|)) (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -4280 (|#1| (-766) |#1|)) |%noBranch|)) -((-4041 (((-112) $ $) 7)) (-1551 (($ $ $) 13)) (-2993 (($ $ $) 14)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11)) (-1798 (((-112) $ $) 16)) (-1771 (((-112) $ $) 17)) (-1733 (((-112) $ $) 6)) (-1785 (((-112) $ $) 15)) (-1761 (((-112) $ $) 18)) (** (($ $ (-916)) 21)) (* (($ $ $) 20))) -(((-852) (-139)) (T -852)) -NIL -(-13 (-845) (-1104)) -(((-102) . T) ((-609 (-857)) . T) ((-845) . T) ((-1104) . T) ((-1092) . T)) -((-4041 (((-112) $ $) NIL)) (-2533 (((-562) $) 12)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 18) (($ (-562)) 11)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 8)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) 9))) -(((-853) (-13 (-845) (-10 -8 (-15 -4053 ($ (-562))) (-15 -2533 ((-562) $))))) (T -853)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-853)))) (-2533 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-853))))) -(-13 (-845) (-10 -8 (-15 -4053 ($ (-562))) (-15 -2533 ((-562) $)))) -((-1734 (((-685 (-1214)) $ (-1214)) 15)) (-2667 (((-685 (-547)) $ (-547)) 12)) (-3445 (((-766) $ (-128)) 24))) -(((-854 |#1|) (-10 -8 (-15 -3445 ((-766) |#1| (-128))) (-15 -1734 ((-685 (-1214)) |#1| (-1214))) (-15 -2667 ((-685 (-547)) |#1| (-547)))) (-855)) (T -854)) -NIL -(-10 -8 (-15 -3445 ((-766) |#1| (-128))) (-15 -1734 ((-685 (-1214)) |#1| (-1214))) (-15 -2667 ((-685 (-547)) |#1| (-547)))) -((-1734 (((-685 (-1214)) $ (-1214)) 8)) (-2667 (((-685 (-547)) $ (-547)) 9)) (-3445 (((-766) $ (-128)) 7)) (-1571 (((-685 (-129)) $ (-129)) 10)) (-1380 (($ $) 6))) -(((-855) (-139)) (T -855)) -((-1571 (*1 *2 *1 *3) (-12 (-4 *1 (-855)) (-5 *2 (-685 (-129))) (-5 *3 (-129)))) (-2667 (*1 *2 *1 *3) (-12 (-4 *1 (-855)) (-5 *2 (-685 (-547))) (-5 *3 (-547)))) (-1734 (*1 *2 *1 *3) (-12 (-4 *1 (-855)) (-5 *2 (-685 (-1214))) (-5 *3 (-1214)))) (-3445 (*1 *2 *1 *3) (-12 (-4 *1 (-855)) (-5 *3 (-128)) (-5 *2 (-766))))) -(-13 (-172) (-10 -8 (-15 -1571 ((-685 (-129)) $ (-129))) (-15 -2667 ((-685 (-547)) $ (-547))) (-15 -1734 ((-685 (-1214)) $ (-1214))) (-15 -3445 ((-766) $ (-128))))) -(((-172) . T)) -((-1734 (((-685 (-1214)) $ (-1214)) NIL)) (-2667 (((-685 (-547)) $ (-547)) NIL)) (-3445 (((-766) $ (-128)) NIL)) (-1571 (((-685 (-129)) $ (-129)) 21)) (-2198 (($ (-387)) 12) (($ (-1150)) 14)) (-2851 (((-112) $) 18)) (-4053 (((-857) $) 25)) (-1380 (($ $) 22))) -(((-856) (-13 (-855) (-609 (-857)) (-10 -8 (-15 -2198 ($ (-387))) (-15 -2198 ($ (-1150))) (-15 -2851 ((-112) $))))) (T -856)) -((-2198 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-856)))) (-2198 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-856)))) (-2851 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-856))))) -(-13 (-855) (-609 (-857)) (-10 -8 (-15 -2198 ($ (-387))) (-15 -2198 ($ (-1150))) (-15 -2851 ((-112) $)))) -((-4041 (((-112) $ $) NIL) (($ $ $) 77)) (-2401 (($ $ $) 114)) (-3697 (((-562) $) 31) (((-562)) 36)) (-3632 (($ (-562)) 45)) (-3808 (($ $ $) 46) (($ (-639 $)) 76)) (-3074 (($ $ (-639 $)) 74)) (-3340 (((-562) $) 34)) (-1599 (($ $ $) 65)) (-1625 (($ $) 127) (($ $ $) 128) (($ $ $ $) 129)) (-3902 (((-562) $) 33)) (-1923 (($ $ $) 64)) (-3596 (($ $) 104)) (-1659 (($ $ $) 118)) (-2467 (($ (-639 $)) 53)) (-3652 (($ $ (-639 $)) 71)) (-2474 (($ (-562) (-562)) 47)) (-3723 (($ $) 115) (($ $ $) 116)) (-1603 (($ $ (-562)) 41) (($ $) 44)) (-1810 (($ $ $) 89)) (-1840 (($ $ $) 121)) (-3436 (($ $) 105)) (-1787 (($ $ $) 90)) (-2723 (($ $) 130) (($ $ $) 131) (($ $ $ $) 132)) (-3206 (((-1261) $) 10)) (-4066 (($ $) 108) (($ $ (-766)) 111)) (-4286 (($ $ $) 67)) (-3142 (($ $ $) 66)) (-2177 (($ $ (-639 $)) 100)) (-3889 (($ $ $) 103)) (-3575 (($ (-639 $)) 51)) (-2229 (($ $) 62) (($ (-639 $)) 63)) (-4085 (($ $ $) 112)) (-1624 (($ $) 106)) (-3954 (($ $ $) 117)) (-3508 (($ (-562)) 21) (($ (-1168)) 23) (($ (-1150)) 30) (($ (-224)) 25)) (-2256 (($ $ $) 93)) (-2234 (($ $) 94)) (-2045 (((-1261) (-1150)) 15)) (-3885 (($ (-1150)) 14)) (-2884 (($ (-639 (-639 $))) 50)) (-1589 (($ $ (-562)) 40) (($ $) 43)) (-3696 (((-1150) $) NIL)) (-1799 (($ $ $) 120)) (-1322 (($ $) 133) (($ $ $) 134) (($ $ $ $) 135)) (-3918 (((-112) $) 98)) (-3260 (($ $ (-639 $)) 101) (($ $ $ $) 102)) (-4160 (($ (-562)) 37)) (-3059 (((-562) $) 32) (((-562)) 35)) (-4059 (($ $ $) 38) (($ (-639 $)) 75)) (-1709 (((-1112) $) NIL)) (-1762 (($ $ $) 91)) (-1663 (($) 13)) (-2343 (($ $ (-639 $)) 99)) (-2475 (((-1150) (-1150)) 8)) (-2852 (($ $) 107) (($ $ (-766)) 110)) (-1774 (($ $ $) 88)) (-4029 (($ $ (-766)) 126)) (-2975 (($ (-639 $)) 52)) (-4053 (((-857) $) 19)) (-2328 (($ $ (-562)) 39) (($ $) 42)) (-4138 (($ $) 60) (($ (-639 $)) 61)) (-1702 (($ $) 58) (($ (-639 $)) 59)) (-2745 (($ $) 113)) (-2563 (($ (-639 $)) 57)) (-2068 (($ $ $) 97)) (-2714 (($ $ $) 119)) (-2245 (($ $ $) 92)) (-3863 (($ $ $) 95) (($ $) 96)) (-1798 (($ $ $) 81)) (-1771 (($ $ $) 79)) (-1733 (((-112) $ $) 16) (($ $ $) 17)) (-1785 (($ $ $) 80)) (-1761 (($ $ $) 78)) (-1859 (($ $ $) 86)) (-1847 (($ $ $) 83) (($ $) 84)) (-1836 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) -(((-857) (-13 (-1092) (-10 -8 (-15 -3206 ((-1261) $)) (-15 -3885 ($ (-1150))) (-15 -2045 ((-1261) (-1150))) (-15 -3508 ($ (-562))) (-15 -3508 ($ (-1168))) (-15 -3508 ($ (-1150))) (-15 -3508 ($ (-224))) (-15 -1663 ($)) (-15 -2475 ((-1150) (-1150))) (-15 -3697 ((-562) $)) (-15 -3059 ((-562) $)) (-15 -3697 ((-562))) (-15 -3059 ((-562))) (-15 -3902 ((-562) $)) (-15 -3340 ((-562) $)) (-15 -4160 ($ (-562))) (-15 -3632 ($ (-562))) (-15 -2474 ($ (-562) (-562))) (-15 -1589 ($ $ (-562))) (-15 -1603 ($ $ (-562))) (-15 -2328 ($ $ (-562))) (-15 -1589 ($ $)) (-15 -1603 ($ $)) (-15 -2328 ($ $)) (-15 -4059 ($ $ $)) (-15 -3808 ($ $ $)) (-15 -4059 ($ (-639 $))) (-15 -3808 ($ (-639 $))) (-15 -2177 ($ $ (-639 $))) (-15 -3260 ($ $ (-639 $))) (-15 -3260 ($ $ $ $)) (-15 -3889 ($ $ $)) (-15 -3918 ((-112) $)) (-15 -2343 ($ $ (-639 $))) (-15 -3596 ($ $)) (-15 -1799 ($ $ $)) (-15 -2745 ($ $)) (-15 -2884 ($ (-639 (-639 $)))) (-15 -2401 ($ $ $)) (-15 -3723 ($ $)) (-15 -3723 ($ $ $)) (-15 -3954 ($ $ $)) (-15 -1659 ($ $ $)) (-15 -2714 ($ $ $)) (-15 -1840 ($ $ $)) (-15 -4029 ($ $ (-766))) (-15 -2068 ($ $ $)) (-15 -1923 ($ $ $)) (-15 -1599 ($ $ $)) (-15 -3142 ($ $ $)) (-15 -4286 ($ $ $)) (-15 -3652 ($ $ (-639 $))) (-15 -3074 ($ $ (-639 $))) (-15 -3436 ($ $)) (-15 -2852 ($ $)) (-15 -2852 ($ $ (-766))) (-15 -4066 ($ $)) (-15 -4066 ($ $ (-766))) (-15 -1624 ($ $)) (-15 -4085 ($ $ $)) (-15 -1625 ($ $)) (-15 -1625 ($ $ $)) (-15 -1625 ($ $ $ $)) (-15 -2723 ($ $)) (-15 -2723 ($ $ $)) (-15 -2723 ($ $ $ $)) (-15 -1322 ($ $)) (-15 -1322 ($ $ $)) (-15 -1322 ($ $ $ $)) (-15 -1702 ($ $)) (-15 -1702 ($ (-639 $))) (-15 -4138 ($ $)) (-15 -4138 ($ (-639 $))) (-15 -2229 ($ $)) (-15 -2229 ($ (-639 $))) (-15 -3575 ($ (-639 $))) (-15 -2975 ($ (-639 $))) (-15 -2467 ($ (-639 $))) (-15 -2563 ($ (-639 $))) (-15 -1733 ($ $ $)) (-15 -4041 ($ $ $)) (-15 -1761 ($ $ $)) (-15 -1771 ($ $ $)) (-15 -1785 ($ $ $)) (-15 -1798 ($ $ $)) (-15 -1836 ($ $ $)) (-15 -1847 ($ $ $)) (-15 -1847 ($ $)) (-15 * ($ $ $)) (-15 -1859 ($ $ $)) (-15 ** ($ $ $)) (-15 -1774 ($ $ $)) (-15 -1810 ($ $ $)) (-15 -1787 ($ $ $)) (-15 -1762 ($ $ $)) (-15 -2245 ($ $ $)) (-15 -2256 ($ $ $)) (-15 -2234 ($ $)) (-15 -3863 ($ $ $)) (-15 -3863 ($ $))))) (T -857)) -((-3206 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-857)))) (-3885 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-857)))) (-2045 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-857)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-857)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-857)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-857)))) (-1663 (*1 *1) (-5 *1 (-857))) (-2475 (*1 *2 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-857)))) (-3697 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) (-3059 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) (-3697 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) (-3059 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) (-3902 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) (-3340 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) (-4160 (*1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) (-3632 (*1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) (-2474 (*1 *1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) (-1589 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) (-1603 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) (-2328 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) (-1589 (*1 *1 *1) (-5 *1 (-857))) (-1603 (*1 *1 *1) (-5 *1 (-857))) (-2328 (*1 *1 *1) (-5 *1 (-857))) (-4059 (*1 *1 *1 *1) (-5 *1 (-857))) (-3808 (*1 *1 *1 *1) (-5 *1 (-857))) (-4059 (*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) (-3808 (*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) (-2177 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) (-3260 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) (-3260 (*1 *1 *1 *1 *1) (-5 *1 (-857))) (-3889 (*1 *1 *1 *1) (-5 *1 (-857))) (-3918 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-857)))) (-2343 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) (-3596 (*1 *1 *1) (-5 *1 (-857))) (-1799 (*1 *1 *1 *1) (-5 *1 (-857))) (-2745 (*1 *1 *1) (-5 *1 (-857))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-639 (-639 (-857)))) (-5 *1 (-857)))) (-2401 (*1 *1 *1 *1) (-5 *1 (-857))) (-3723 (*1 *1 *1) (-5 *1 (-857))) (-3723 (*1 *1 *1 *1) (-5 *1 (-857))) (-3954 (*1 *1 *1 *1) (-5 *1 (-857))) (-1659 (*1 *1 *1 *1) (-5 *1 (-857))) (-2714 (*1 *1 *1 *1) (-5 *1 (-857))) (-1840 (*1 *1 *1 *1) (-5 *1 (-857))) (-4029 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-857)))) (-2068 (*1 *1 *1 *1) (-5 *1 (-857))) (-1923 (*1 *1 *1 *1) (-5 *1 (-857))) (-1599 (*1 *1 *1 *1) (-5 *1 (-857))) (-3142 (*1 *1 *1 *1) (-5 *1 (-857))) (-4286 (*1 *1 *1 *1) (-5 *1 (-857))) (-3652 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) (-3074 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) (-3436 (*1 *1 *1) (-5 *1 (-857))) (-2852 (*1 *1 *1) (-5 *1 (-857))) (-2852 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-857)))) (-4066 (*1 *1 *1) (-5 *1 (-857))) (-4066 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-857)))) (-1624 (*1 *1 *1) (-5 *1 (-857))) (-4085 (*1 *1 *1 *1) (-5 *1 (-857))) (-1625 (*1 *1 *1) (-5 *1 (-857))) (-1625 (*1 *1 *1 *1) (-5 *1 (-857))) (-1625 (*1 *1 *1 *1 *1) (-5 *1 (-857))) (-2723 (*1 *1 *1) (-5 *1 (-857))) (-2723 (*1 *1 *1 *1) (-5 *1 (-857))) (-2723 (*1 *1 *1 *1 *1) (-5 *1 (-857))) (-1322 (*1 *1 *1) (-5 *1 (-857))) (-1322 (*1 *1 *1 *1) (-5 *1 (-857))) (-1322 (*1 *1 *1 *1 *1) (-5 *1 (-857))) (-1702 (*1 *1 *1) (-5 *1 (-857))) (-1702 (*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) (-4138 (*1 *1 *1) (-5 *1 (-857))) (-4138 (*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) (-2229 (*1 *1 *1) (-5 *1 (-857))) (-2229 (*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) (-3575 (*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) (-2975 (*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) (-2467 (*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) (-2563 (*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) (-1733 (*1 *1 *1 *1) (-5 *1 (-857))) (-4041 (*1 *1 *1 *1) (-5 *1 (-857))) (-1761 (*1 *1 *1 *1) (-5 *1 (-857))) (-1771 (*1 *1 *1 *1) (-5 *1 (-857))) (-1785 (*1 *1 *1 *1) (-5 *1 (-857))) (-1798 (*1 *1 *1 *1) (-5 *1 (-857))) (-1836 (*1 *1 *1 *1) (-5 *1 (-857))) (-1847 (*1 *1 *1 *1) (-5 *1 (-857))) (-1847 (*1 *1 *1) (-5 *1 (-857))) (* (*1 *1 *1 *1) (-5 *1 (-857))) (-1859 (*1 *1 *1 *1) (-5 *1 (-857))) (** (*1 *1 *1 *1) (-5 *1 (-857))) (-1774 (*1 *1 *1 *1) (-5 *1 (-857))) (-1810 (*1 *1 *1 *1) (-5 *1 (-857))) (-1787 (*1 *1 *1 *1) (-5 *1 (-857))) (-1762 (*1 *1 *1 *1) (-5 *1 (-857))) (-2245 (*1 *1 *1 *1) (-5 *1 (-857))) (-2256 (*1 *1 *1 *1) (-5 *1 (-857))) (-2234 (*1 *1 *1) (-5 *1 (-857))) (-3863 (*1 *1 *1 *1) (-5 *1 (-857))) (-3863 (*1 *1 *1) (-5 *1 (-857)))) -(-13 (-1092) (-10 -8 (-15 -3206 ((-1261) $)) (-15 -3885 ($ (-1150))) (-15 -2045 ((-1261) (-1150))) (-15 -3508 ($ (-562))) (-15 -3508 ($ (-1168))) (-15 -3508 ($ (-1150))) (-15 -3508 ($ (-224))) (-15 -1663 ($)) (-15 -2475 ((-1150) (-1150))) (-15 -3697 ((-562) $)) (-15 -3059 ((-562) $)) (-15 -3697 ((-562))) (-15 -3059 ((-562))) (-15 -3902 ((-562) $)) (-15 -3340 ((-562) $)) (-15 -4160 ($ (-562))) (-15 -3632 ($ (-562))) (-15 -2474 ($ (-562) (-562))) (-15 -1589 ($ $ (-562))) (-15 -1603 ($ $ (-562))) (-15 -2328 ($ $ (-562))) (-15 -1589 ($ $)) (-15 -1603 ($ $)) (-15 -2328 ($ $)) (-15 -4059 ($ $ $)) (-15 -3808 ($ $ $)) (-15 -4059 ($ (-639 $))) (-15 -3808 ($ (-639 $))) (-15 -2177 ($ $ (-639 $))) (-15 -3260 ($ $ (-639 $))) (-15 -3260 ($ $ $ $)) (-15 -3889 ($ $ $)) (-15 -3918 ((-112) $)) (-15 -2343 ($ $ (-639 $))) (-15 -3596 ($ $)) (-15 -1799 ($ $ $)) (-15 -2745 ($ $)) (-15 -2884 ($ (-639 (-639 $)))) (-15 -2401 ($ $ $)) (-15 -3723 ($ $)) (-15 -3723 ($ $ $)) (-15 -3954 ($ $ $)) (-15 -1659 ($ $ $)) (-15 -2714 ($ $ $)) (-15 -1840 ($ $ $)) (-15 -4029 ($ $ (-766))) (-15 -2068 ($ $ $)) (-15 -1923 ($ $ $)) (-15 -1599 ($ $ $)) (-15 -3142 ($ $ $)) (-15 -4286 ($ $ $)) (-15 -3652 ($ $ (-639 $))) (-15 -3074 ($ $ (-639 $))) (-15 -3436 ($ $)) (-15 -2852 ($ $)) (-15 -2852 ($ $ (-766))) (-15 -4066 ($ $)) (-15 -4066 ($ $ (-766))) (-15 -1624 ($ $)) (-15 -4085 ($ $ $)) (-15 -1625 ($ $)) (-15 -1625 ($ $ $)) (-15 -1625 ($ $ $ $)) (-15 -2723 ($ $)) (-15 -2723 ($ $ $)) (-15 -2723 ($ $ $ $)) (-15 -1322 ($ $)) (-15 -1322 ($ $ $)) (-15 -1322 ($ $ $ $)) (-15 -1702 ($ $)) (-15 -1702 ($ (-639 $))) (-15 -4138 ($ $)) (-15 -4138 ($ (-639 $))) (-15 -2229 ($ $)) (-15 -2229 ($ (-639 $))) (-15 -3575 ($ (-639 $))) (-15 -2975 ($ (-639 $))) (-15 -2467 ($ (-639 $))) (-15 -2563 ($ (-639 $))) (-15 -1733 ($ $ $)) (-15 -4041 ($ $ $)) (-15 -1761 ($ $ $)) (-15 -1771 ($ $ $)) (-15 -1785 ($ $ $)) (-15 -1798 ($ $ $)) (-15 -1836 ($ $ $)) (-15 -1847 ($ $ $)) (-15 -1847 ($ $)) (-15 * ($ $ $)) (-15 -1859 ($ $ $)) (-15 ** ($ $ $)) (-15 -1774 ($ $ $)) (-15 -1810 ($ $ $)) (-15 -1787 ($ $ $)) (-15 -1762 ($ $ $)) (-15 -2245 ($ $ $)) (-15 -2256 ($ $ $)) (-15 -2234 ($ $)) (-15 -3863 ($ $ $)) (-15 -3863 ($ $)))) -((-1966 (((-1261) (-639 (-52))) 24)) (-3462 (((-1261) (-1150) (-857)) 14) (((-1261) (-857)) 9) (((-1261) (-1150)) 11))) -(((-858) (-10 -7 (-15 -3462 ((-1261) (-1150))) (-15 -3462 ((-1261) (-857))) (-15 -3462 ((-1261) (-1150) (-857))) (-15 -1966 ((-1261) (-639 (-52)))))) (T -858)) -((-1966 (*1 *2 *3) (-12 (-5 *3 (-639 (-52))) (-5 *2 (-1261)) (-5 *1 (-858)))) (-3462 (*1 *2 *3 *4) (-12 (-5 *3 (-1150)) (-5 *4 (-857)) (-5 *2 (-1261)) (-5 *1 (-858)))) (-3462 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1261)) (-5 *1 (-858)))) (-3462 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-858))))) -(-10 -7 (-15 -3462 ((-1261) (-1150))) (-15 -3462 ((-1261) (-857))) (-15 -3462 ((-1261) (-1150) (-857))) (-15 -1966 ((-1261) (-639 (-52))))) -((-4041 (((-112) $ $) NIL)) (-2443 (((-3 $ "failed") (-1168)) 33)) (-1382 (((-766)) 31)) (-1447 (($) NIL)) (-1551 (($ $ $) NIL) (($) NIL T CONST)) (-2993 (($ $ $) NIL) (($) NIL T CONST)) (-3549 (((-916) $) 29)) (-3696 (((-1150) $) 39)) (-2464 (($ (-916)) 28)) (-1709 (((-1112) $) NIL)) (-4208 (((-1168) $) 13) (((-535) $) 19) (((-887 (-378)) $) 26) (((-887 (-562)) $) 22)) (-4053 (((-857) $) 16)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 36)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) 35))) -(((-859 |#1|) (-13 (-839) (-610 (-1168)) (-610 (-535)) (-610 (-887 (-378))) (-610 (-887 (-562))) (-10 -8 (-15 -2443 ((-3 $ "failed") (-1168))))) (-639 (-1168))) (T -859)) -((-2443 (*1 *1 *2) (|partial| -12 (-5 *2 (-1168)) (-5 *1 (-859 *3)) (-14 *3 (-639 *2))))) -(-13 (-839) (-610 (-1168)) (-610 (-535)) (-610 (-887 (-378))) (-610 (-887 (-562))) (-10 -8 (-15 -2443 ((-3 $ "failed") (-1168))))) -((-4041 (((-112) $ $) NIL)) (-3253 (((-505) $) 9)) (-2123 (((-639 (-438)) $) 13)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 21)) (-1733 (((-112) $ $) 16))) -(((-860) (-13 (-1092) (-10 -8 (-15 -3253 ((-505) $)) (-15 -2123 ((-639 (-438)) $))))) (T -860)) -((-3253 (*1 *2 *1) (-12 (-5 *2 (-505)) (-5 *1 (-860)))) (-2123 (*1 *2 *1) (-12 (-5 *2 (-639 (-438))) (-5 *1 (-860))))) -(-13 (-1092) (-10 -8 (-15 -3253 ((-505) $)) (-15 -2123 ((-639 (-438)) $)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3329 (($) NIL T CONST)) (-1694 (((-3 $ "failed") $) NIL)) (-4367 (((-112) $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ (-947 |#1|)) NIL) (((-947 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-171)))) (-1568 (((-766)) NIL)) (-2825 (((-1261) (-766)) NIL)) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-1733 (((-112) $ $) NIL)) (-1859 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171))))) -(((-861 |#1| |#2| |#3| |#4|) (-13 (-1044) (-489 (-947 |#1|)) (-10 -8 (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -1859 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2825 ((-1261) (-766))))) (-1044) (-639 (-1168)) (-639 (-766)) (-766)) (T -861)) -((-1859 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-861 *2 *3 *4 *5)) (-4 *2 (-362)) (-4 *2 (-1044)) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-766))) (-14 *5 (-766)))) (-2825 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1261)) (-5 *1 (-861 *4 *5 *6 *7)) (-4 *4 (-1044)) (-14 *5 (-639 (-1168))) (-14 *6 (-639 *3)) (-14 *7 *3)))) -(-13 (-1044) (-489 (-947 |#1|)) (-10 -8 (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -1859 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2825 ((-1261) (-766))))) -((-2752 (((-3 (-173 |#3|) "failed") (-766) (-766) |#2| |#2|) 31)) (-1352 (((-3 (-406 |#3|) "failed") (-766) (-766) |#2| |#2|) 24))) -(((-862 |#1| |#2| |#3|) (-10 -7 (-15 -1352 ((-3 (-406 |#3|) "failed") (-766) (-766) |#2| |#2|)) (-15 -2752 ((-3 (-173 |#3|) "failed") (-766) (-766) |#2| |#2|))) (-362) (-1247 |#1|) (-1232 |#1|)) (T -862)) -((-2752 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-766)) (-4 *5 (-362)) (-5 *2 (-173 *6)) (-5 *1 (-862 *5 *4 *6)) (-4 *4 (-1247 *5)) (-4 *6 (-1232 *5)))) (-1352 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-766)) (-4 *5 (-362)) (-5 *2 (-406 *6)) (-5 *1 (-862 *5 *4 *6)) (-4 *4 (-1247 *5)) (-4 *6 (-1232 *5))))) -(-10 -7 (-15 -1352 ((-3 (-406 |#3|) "failed") (-766) (-766) |#2| |#2|)) (-15 -2752 ((-3 (-173 |#3|) "failed") (-766) (-766) |#2| |#2|))) -((-1352 (((-3 (-406 (-1229 |#2| |#1|)) "failed") (-766) (-766) (-1248 |#1| |#2| |#3|)) 28) (((-3 (-406 (-1229 |#2| |#1|)) "failed") (-766) (-766) (-1248 |#1| |#2| |#3|) (-1248 |#1| |#2| |#3|)) 26))) -(((-863 |#1| |#2| |#3|) (-10 -7 (-15 -1352 ((-3 (-406 (-1229 |#2| |#1|)) "failed") (-766) (-766) (-1248 |#1| |#2| |#3|) (-1248 |#1| |#2| |#3|))) (-15 -1352 ((-3 (-406 (-1229 |#2| |#1|)) "failed") (-766) (-766) (-1248 |#1| |#2| |#3|)))) (-362) (-1168) |#1|) (T -863)) -((-1352 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-766)) (-5 *4 (-1248 *5 *6 *7)) (-4 *5 (-362)) (-14 *6 (-1168)) (-14 *7 *5) (-5 *2 (-406 (-1229 *6 *5))) (-5 *1 (-863 *5 *6 *7)))) (-1352 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-766)) (-5 *4 (-1248 *5 *6 *7)) (-4 *5 (-362)) (-14 *6 (-1168)) (-14 *7 *5) (-5 *2 (-406 (-1229 *6 *5))) (-5 *1 (-863 *5 *6 *7))))) -(-10 -7 (-15 -1352 ((-3 (-406 (-1229 |#2| |#1|)) "failed") (-766) (-766) (-1248 |#1| |#2| |#3|) (-1248 |#1| |#2| |#3|))) (-15 -1352 ((-3 (-406 (-1229 |#2| |#1|)) "failed") (-766) (-766) (-1248 |#1| |#2| |#3|)))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 42)) (-1965 (($ $) 41)) (-4102 (((-112) $) 39)) (-2781 (((-3 $ "failed") $ $) 19)) (-1644 (($ $ (-562)) 63)) (-1436 (((-112) $ $) 60)) (-3329 (($) 17 T CONST)) (-3723 (($ (-1164 (-562)) (-562)) 62)) (-1810 (($ $ $) 56)) (-1694 (((-3 $ "failed") $) 33)) (-3119 (($ $) 65)) (-1787 (($ $ $) 57)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) 52)) (-1993 (((-766) $) 70)) (-4367 (((-112) $) 31)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) 53)) (-2685 (((-562)) 67)) (-2920 (((-562) $) 66)) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-4316 (($ $ (-562)) 69)) (-1762 (((-3 $ "failed") $ $) 43)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) 51)) (-2044 (((-766) $) 59)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 58)) (-2244 (((-1148 (-562)) $) 71)) (-1345 (($ $) 68)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ $) 44)) (-1568 (((-766)) 28)) (-3799 (((-112) $ $) 40)) (-1406 (((-562) $ (-562)) 64)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) -(((-864 |#1|) (-139) (-562)) (T -864)) -((-2244 (*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-5 *2 (-1148 (-562))))) (-1993 (*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-5 *2 (-766)))) (-4316 (*1 *1 *1 *2) (-12 (-4 *1 (-864 *3)) (-5 *2 (-562)))) (-1345 (*1 *1 *1) (-4 *1 (-864 *2))) (-2685 (*1 *2) (-12 (-4 *1 (-864 *3)) (-5 *2 (-562)))) (-2920 (*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-5 *2 (-562)))) (-3119 (*1 *1 *1) (-4 *1 (-864 *2))) (-1406 (*1 *2 *1 *2) (-12 (-4 *1 (-864 *3)) (-5 *2 (-562)))) (-1644 (*1 *1 *1 *2) (-12 (-4 *1 (-864 *3)) (-5 *2 (-562)))) (-3723 (*1 *1 *2 *3) (-12 (-5 *2 (-1164 (-562))) (-5 *3 (-562)) (-4 *1 (-864 *4))))) -(-13 (-306) (-146) (-10 -8 (-15 -2244 ((-1148 (-562)) $)) (-15 -1993 ((-766) $)) (-15 -4316 ($ $ (-562))) (-15 -1345 ($ $)) (-15 -2685 ((-562))) (-15 -2920 ((-562) $)) (-15 -3119 ($ $)) (-15 -1406 ((-562) $ (-562))) (-15 -1644 ($ $ (-562))) (-15 -3723 ($ (-1164 (-562)) (-562))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-289) . T) ((-306) . T) ((-451) . T) ((-554) . T) ((-642 $) . T) ((-712 $) . T) ((-721) . T) ((-915) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-1644 (($ $ (-562)) NIL)) (-1436 (((-112) $ $) NIL)) (-3329 (($) NIL T CONST)) (-3723 (($ (-1164 (-562)) (-562)) NIL)) (-1810 (($ $ $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-3119 (($ $) NIL)) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-1993 (((-766) $) NIL)) (-4367 (((-112) $) NIL)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2685 (((-562)) NIL)) (-2920 (((-562) $) NIL)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4316 (($ $ (-562)) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2044 (((-766) $) NIL)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-2244 (((-1148 (-562)) $) NIL)) (-1345 (($ $) NIL)) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL)) (-1568 (((-766)) NIL)) (-3799 (((-112) $ $) NIL)) (-1406 (((-562) $ (-562)) NIL)) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-1733 (((-112) $ $) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL))) -(((-865 |#1|) (-864 |#1|) (-562)) (T -865)) -NIL -(-864 |#1|) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2300 (((-865 |#1|) $) NIL (|has| (-865 |#1|) (-306)))) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3517 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-865 |#1|) (-904)))) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| (-865 |#1|) (-904)))) (-1436 (((-112) $ $) NIL)) (-1587 (((-562) $) NIL (|has| (-865 |#1|) (-815)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-865 |#1|) "failed") $) NIL) (((-3 (-1168) "failed") $) NIL (|has| (-865 |#1|) (-1033 (-1168)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| (-865 |#1|) (-1033 (-562)))) (((-3 (-562) "failed") $) NIL (|has| (-865 |#1|) (-1033 (-562))))) (-3960 (((-865 |#1|) $) NIL) (((-1168) $) NIL (|has| (-865 |#1|) (-1033 (-1168)))) (((-406 (-562)) $) NIL (|has| (-865 |#1|) (-1033 (-562)))) (((-562) $) NIL (|has| (-865 |#1|) (-1033 (-562))))) (-2449 (($ $) NIL) (($ (-562) $) NIL)) (-1810 (($ $ $) NIL)) (-3449 (((-683 (-562)) (-683 $)) NIL (|has| (-865 |#1|) (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| (-865 |#1|) (-635 (-562)))) (((-2 (|:| -1767 (-683 (-865 |#1|))) (|:| |vec| (-1256 (-865 |#1|)))) (-683 $) (-1256 $)) NIL) (((-683 (-865 |#1|)) (-683 $)) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-1447 (($) NIL (|has| (-865 |#1|) (-544)))) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-3521 (((-112) $) NIL)) (-2696 (((-112) $) NIL (|has| (-865 |#1|) (-815)))) (-2337 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (|has| (-865 |#1|) (-881 (-562)))) (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (|has| (-865 |#1|) (-881 (-378))))) (-4367 (((-112) $) NIL)) (-2957 (($ $) NIL)) (-4063 (((-865 |#1|) $) NIL)) (-3828 (((-3 $ "failed") $) NIL (|has| (-865 |#1|) (-1143)))) (-3855 (((-112) $) NIL (|has| (-865 |#1|) (-815)))) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1551 (($ $ $) NIL (|has| (-865 |#1|) (-845)))) (-2993 (($ $ $) NIL (|has| (-865 |#1|) (-845)))) (-4152 (($ (-1 (-865 |#1|) (-865 |#1|)) $) NIL)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3730 (($) NIL (|has| (-865 |#1|) (-1143)) CONST)) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2561 (($ $) NIL (|has| (-865 |#1|) (-306)))) (-3870 (((-865 |#1|) $) NIL (|has| (-865 |#1|) (-544)))) (-3586 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-865 |#1|) (-904)))) (-3468 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-865 |#1|) (-904)))) (-1635 (((-417 $) $) NIL)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1433 (($ $ (-639 (-865 |#1|)) (-639 (-865 |#1|))) NIL (|has| (-865 |#1|) (-308 (-865 |#1|)))) (($ $ (-865 |#1|) (-865 |#1|)) NIL (|has| (-865 |#1|) (-308 (-865 |#1|)))) (($ $ (-293 (-865 |#1|))) NIL (|has| (-865 |#1|) (-308 (-865 |#1|)))) (($ $ (-639 (-293 (-865 |#1|)))) NIL (|has| (-865 |#1|) (-308 (-865 |#1|)))) (($ $ (-639 (-1168)) (-639 (-865 |#1|))) NIL (|has| (-865 |#1|) (-513 (-1168) (-865 |#1|)))) (($ $ (-1168) (-865 |#1|)) NIL (|has| (-865 |#1|) (-513 (-1168) (-865 |#1|))))) (-2044 (((-766) $) NIL)) (-2343 (($ $ (-865 |#1|)) NIL (|has| (-865 |#1|) (-285 (-865 |#1|) (-865 |#1|))))) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-4029 (($ $) NIL (|has| (-865 |#1|) (-232))) (($ $ (-766)) NIL (|has| (-865 |#1|) (-232))) (($ $ (-1168)) NIL (|has| (-865 |#1|) (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| (-865 |#1|) (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| (-865 |#1|) (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| (-865 |#1|) (-895 (-1168)))) (($ $ (-1 (-865 |#1|) (-865 |#1|)) (-766)) NIL) (($ $ (-1 (-865 |#1|) (-865 |#1|))) NIL)) (-1580 (($ $) NIL)) (-4079 (((-865 |#1|) $) NIL)) (-4208 (((-887 (-562)) $) NIL (|has| (-865 |#1|) (-610 (-887 (-562))))) (((-887 (-378)) $) NIL (|has| (-865 |#1|) (-610 (-887 (-378))))) (((-535) $) NIL (|has| (-865 |#1|) (-610 (-535)))) (((-378) $) NIL (|has| (-865 |#1|) (-1017))) (((-224) $) NIL (|has| (-865 |#1|) (-1017)))) (-1477 (((-173 (-406 (-562))) $) NIL)) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| (-865 |#1|) (-904))))) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL) (($ (-865 |#1|)) NIL) (($ (-1168)) NIL (|has| (-865 |#1|) (-1033 (-1168))))) (-2059 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| (-865 |#1|) (-904))) (|has| (-865 |#1|) (-144))))) (-1568 (((-766)) NIL)) (-3636 (((-865 |#1|) $) NIL (|has| (-865 |#1|) (-544)))) (-3799 (((-112) $ $) NIL)) (-1406 (((-406 (-562)) $ (-562)) NIL)) (-2757 (($ $) NIL (|has| (-865 |#1|) (-815)))) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3113 (($ $) NIL (|has| (-865 |#1|) (-232))) (($ $ (-766)) NIL (|has| (-865 |#1|) (-232))) (($ $ (-1168)) NIL (|has| (-865 |#1|) (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| (-865 |#1|) (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| (-865 |#1|) (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| (-865 |#1|) (-895 (-1168)))) (($ $ (-1 (-865 |#1|) (-865 |#1|)) (-766)) NIL) (($ $ (-1 (-865 |#1|) (-865 |#1|))) NIL)) (-1798 (((-112) $ $) NIL (|has| (-865 |#1|) (-845)))) (-1771 (((-112) $ $) NIL (|has| (-865 |#1|) (-845)))) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| (-865 |#1|) (-845)))) (-1761 (((-112) $ $) NIL (|has| (-865 |#1|) (-845)))) (-1859 (($ $ $) NIL) (($ (-865 |#1|) (-865 |#1|)) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ (-865 |#1|) $) NIL) (($ $ (-865 |#1|)) NIL))) -(((-866 |#1|) (-13 (-987 (-865 |#1|)) (-10 -8 (-15 -1406 ((-406 (-562)) $ (-562))) (-15 -1477 ((-173 (-406 (-562))) $)) (-15 -2449 ($ $)) (-15 -2449 ($ (-562) $)))) (-562)) (T -866)) -((-1406 (*1 *2 *1 *3) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-866 *4)) (-14 *4 *3) (-5 *3 (-562)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-173 (-406 (-562)))) (-5 *1 (-866 *3)) (-14 *3 (-562)))) (-2449 (*1 *1 *1) (-12 (-5 *1 (-866 *2)) (-14 *2 (-562)))) (-2449 (*1 *1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-866 *3)) (-14 *3 *2)))) -(-13 (-987 (-865 |#1|)) (-10 -8 (-15 -1406 ((-406 (-562)) $ (-562))) (-15 -1477 ((-173 (-406 (-562))) $)) (-15 -2449 ($ $)) (-15 -2449 ($ (-562) $)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2300 ((|#2| $) NIL (|has| |#2| (-306)))) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3517 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-1436 (((-112) $ $) NIL)) (-1587 (((-562) $) NIL (|has| |#2| (-815)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#2| "failed") $) NIL) (((-3 (-1168) "failed") $) NIL (|has| |#2| (-1033 (-1168)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#2| (-1033 (-562)))) (((-3 (-562) "failed") $) NIL (|has| |#2| (-1033 (-562))))) (-3960 ((|#2| $) NIL) (((-1168) $) NIL (|has| |#2| (-1033 (-1168)))) (((-406 (-562)) $) NIL (|has| |#2| (-1033 (-562)))) (((-562) $) NIL (|has| |#2| (-1033 (-562))))) (-2449 (($ $) 31) (($ (-562) $) 32)) (-1810 (($ $ $) NIL)) (-3449 (((-683 (-562)) (-683 $)) NIL (|has| |#2| (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#2| (-635 (-562)))) (((-2 (|:| -1767 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) NIL) (((-683 |#2|) (-683 $)) NIL)) (-1694 (((-3 $ "failed") $) 53)) (-1447 (($) NIL (|has| |#2| (-544)))) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-3521 (((-112) $) NIL)) (-2696 (((-112) $) NIL (|has| |#2| (-815)))) (-2337 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (|has| |#2| (-881 (-562)))) (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (|has| |#2| (-881 (-378))))) (-4367 (((-112) $) NIL)) (-2957 (($ $) NIL)) (-4063 ((|#2| $) NIL)) (-3828 (((-3 $ "failed") $) NIL (|has| |#2| (-1143)))) (-3855 (((-112) $) NIL (|has| |#2| (-815)))) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1551 (($ $ $) NIL (|has| |#2| (-845)))) (-2993 (($ $ $) NIL (|has| |#2| (-845)))) (-4152 (($ (-1 |#2| |#2|) $) NIL)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) 49)) (-3730 (($) NIL (|has| |#2| (-1143)) CONST)) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2561 (($ $) NIL (|has| |#2| (-306)))) (-3870 ((|#2| $) NIL (|has| |#2| (-544)))) (-3586 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-3468 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-1635 (((-417 $) $) NIL)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1433 (($ $ (-639 |#2|) (-639 |#2|)) NIL (|has| |#2| (-308 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-308 |#2|))) (($ $ (-293 |#2|)) NIL (|has| |#2| (-308 |#2|))) (($ $ (-639 (-293 |#2|))) NIL (|has| |#2| (-308 |#2|))) (($ $ (-639 (-1168)) (-639 |#2|)) NIL (|has| |#2| (-513 (-1168) |#2|))) (($ $ (-1168) |#2|) NIL (|has| |#2| (-513 (-1168) |#2|)))) (-2044 (((-766) $) NIL)) (-2343 (($ $ |#2|) NIL (|has| |#2| (-285 |#2| |#2|)))) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-4029 (($ $) NIL (|has| |#2| (-232))) (($ $ (-766)) NIL (|has| |#2| (-232))) (($ $ (-1168)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1 |#2| |#2|) (-766)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1580 (($ $) NIL)) (-4079 ((|#2| $) NIL)) (-4208 (((-887 (-562)) $) NIL (|has| |#2| (-610 (-887 (-562))))) (((-887 (-378)) $) NIL (|has| |#2| (-610 (-887 (-378))))) (((-535) $) NIL (|has| |#2| (-610 (-535)))) (((-378) $) NIL (|has| |#2| (-1017))) (((-224) $) NIL (|has| |#2| (-1017)))) (-1477 (((-173 (-406 (-562))) $) 68)) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-904))))) (-4053 (((-857) $) 86) (($ (-562)) 19) (($ $) NIL) (($ (-406 (-562))) 24) (($ |#2|) 18) (($ (-1168)) NIL (|has| |#2| (-1033 (-1168))))) (-2059 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#2| (-904))) (|has| |#2| (-144))))) (-1568 (((-766)) NIL)) (-3636 ((|#2| $) NIL (|has| |#2| (-544)))) (-3799 (((-112) $ $) NIL)) (-1406 (((-406 (-562)) $ (-562)) 60)) (-2757 (($ $) NIL (|has| |#2| (-815)))) (-2285 (($) 14 T CONST)) (-2294 (($) 16 T CONST)) (-3113 (($ $) NIL (|has| |#2| (-232))) (($ $ (-766)) NIL (|has| |#2| (-232))) (($ $ (-1168)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1 |#2| |#2|) (-766)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1798 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1771 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1733 (((-112) $ $) 35)) (-1785 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1761 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1859 (($ $ $) 23) (($ |#2| |#2|) 54)) (-1847 (($ $) 39) (($ $ $) 41)) (-1836 (($ $ $) 37)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) 50)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 42) (($ $ $) 44) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) -(((-867 |#1| |#2|) (-13 (-987 |#2|) (-10 -8 (-15 -1406 ((-406 (-562)) $ (-562))) (-15 -1477 ((-173 (-406 (-562))) $)) (-15 -2449 ($ $)) (-15 -2449 ($ (-562) $)))) (-562) (-864 |#1|)) (T -867)) -((-1406 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-406 (-562))) (-5 *1 (-867 *4 *5)) (-5 *3 (-562)) (-4 *5 (-864 *4)))) (-1477 (*1 *2 *1) (-12 (-14 *3 (-562)) (-5 *2 (-173 (-406 (-562)))) (-5 *1 (-867 *3 *4)) (-4 *4 (-864 *3)))) (-2449 (*1 *1 *1) (-12 (-14 *2 (-562)) (-5 *1 (-867 *2 *3)) (-4 *3 (-864 *2)))) (-2449 (*1 *1 *2 *1) (-12 (-5 *2 (-562)) (-14 *3 *2) (-5 *1 (-867 *3 *4)) (-4 *4 (-864 *3))))) -(-13 (-987 |#2|) (-10 -8 (-15 -1406 ((-406 (-562)) $ (-562))) (-15 -1477 ((-173 (-406 (-562))) $)) (-15 -2449 ($ $)) (-15 -2449 ($ (-562) $)))) -((-4041 (((-112) $ $) NIL (-12 (|has| |#1| (-1092)) (|has| |#2| (-1092))))) (-2349 ((|#2| $) 12)) (-2496 (($ |#1| |#2|) 9)) (-3696 (((-1150) $) NIL (-12 (|has| |#1| (-1092)) (|has| |#2| (-1092))))) (-1709 (((-1112) $) NIL (-12 (|has| |#1| (-1092)) (|has| |#2| (-1092))))) (-1421 ((|#1| $) 11)) (-4064 (($ |#1| |#2|) 10)) (-4053 (((-857) $) 18 (-4037 (-12 (|has| |#1| (-609 (-857))) (|has| |#2| (-609 (-857)))) (-12 (|has| |#1| (-1092)) (|has| |#2| (-1092)))))) (-1733 (((-112) $ $) 22 (-12 (|has| |#1| (-1092)) (|has| |#2| (-1092)))))) -(((-868 |#1| |#2|) (-13 (-1207) (-10 -8 (IF (|has| |#1| (-609 (-857))) (IF (|has| |#2| (-609 (-857))) (-6 (-609 (-857))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1092)) (IF (|has| |#2| (-1092)) (-6 (-1092)) |%noBranch|) |%noBranch|) (-15 -2496 ($ |#1| |#2|)) (-15 -4064 ($ |#1| |#2|)) (-15 -1421 (|#1| $)) (-15 -2349 (|#2| $)))) (-1207) (-1207)) (T -868)) -((-2496 (*1 *1 *2 *3) (-12 (-5 *1 (-868 *2 *3)) (-4 *2 (-1207)) (-4 *3 (-1207)))) (-4064 (*1 *1 *2 *3) (-12 (-5 *1 (-868 *2 *3)) (-4 *2 (-1207)) (-4 *3 (-1207)))) (-1421 (*1 *2 *1) (-12 (-4 *2 (-1207)) (-5 *1 (-868 *2 *3)) (-4 *3 (-1207)))) (-2349 (*1 *2 *1) (-12 (-4 *2 (-1207)) (-5 *1 (-868 *3 *2)) (-4 *3 (-1207))))) -(-13 (-1207) (-10 -8 (IF (|has| |#1| (-609 (-857))) (IF (|has| |#2| (-609 (-857))) (-6 (-609 (-857))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1092)) (IF (|has| |#2| (-1092)) (-6 (-1092)) |%noBranch|) |%noBranch|) (-15 -2496 ($ |#1| |#2|)) (-15 -4064 ($ |#1| |#2|)) (-15 -1421 (|#1| $)) (-15 -2349 (|#2| $)))) -((-4041 (((-112) $ $) NIL)) (-1614 (((-562) $) 15)) (-4118 (($ (-156)) 11)) (-1848 (($ (-156)) 12)) (-3696 (((-1150) $) NIL)) (-4031 (((-156) $) 13)) (-1709 (((-1112) $) NIL)) (-2240 (($ (-156)) 9)) (-2279 (($ (-156)) 8)) (-4053 (((-857) $) 23) (($ (-156)) 16)) (-3982 (($ (-156)) 10)) (-1733 (((-112) $ $) NIL))) -(((-869) (-13 (-1092) (-10 -8 (-15 -2279 ($ (-156))) (-15 -2240 ($ (-156))) (-15 -3982 ($ (-156))) (-15 -4118 ($ (-156))) (-15 -1848 ($ (-156))) (-15 -4031 ((-156) $)) (-15 -1614 ((-562) $)) (-15 -4053 ($ (-156)))))) (T -869)) -((-2279 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-869)))) (-2240 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-869)))) (-3982 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-869)))) (-4118 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-869)))) (-1848 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-869)))) (-4031 (*1 *2 *1) (-12 (-5 *2 (-156)) (-5 *1 (-869)))) (-1614 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-869)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-869))))) -(-13 (-1092) (-10 -8 (-15 -2279 ($ (-156))) (-15 -2240 ($ (-156))) (-15 -3982 ($ (-156))) (-15 -4118 ($ (-156))) (-15 -1848 ($ (-156))) (-15 -4031 ((-156) $)) (-15 -1614 ((-562) $)) (-15 -4053 ($ (-156))))) -((-4053 (((-315 (-562)) (-406 (-947 (-48)))) 23) (((-315 (-562)) (-947 (-48))) 18))) -(((-870) (-10 -7 (-15 -4053 ((-315 (-562)) (-947 (-48)))) (-15 -4053 ((-315 (-562)) (-406 (-947 (-48))))))) (T -870)) -((-4053 (*1 *2 *3) (-12 (-5 *3 (-406 (-947 (-48)))) (-5 *2 (-315 (-562))) (-5 *1 (-870)))) (-4053 (*1 *2 *3) (-12 (-5 *3 (-947 (-48))) (-5 *2 (-315 (-562))) (-5 *1 (-870))))) -(-10 -7 (-15 -4053 ((-315 (-562)) (-947 (-48)))) (-15 -4053 ((-315 (-562)) (-406 (-947 (-48)))))) -((-4152 (((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|)) 14))) -(((-871 |#1| |#2|) (-10 -7 (-15 -4152 ((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|)))) (-1207) (-1207)) (T -871)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-872 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-872 *6)) (-5 *1 (-871 *5 *6))))) -(-10 -7 (-15 -4152 ((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|)))) -((-1698 (($ |#1| |#1|) 8)) (-4247 ((|#1| $ (-766)) 10))) -(((-872 |#1|) (-10 -8 (-15 -1698 ($ |#1| |#1|)) (-15 -4247 (|#1| $ (-766)))) (-1207)) (T -872)) -((-4247 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-5 *1 (-872 *2)) (-4 *2 (-1207)))) (-1698 (*1 *1 *2 *2) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1207))))) -(-10 -8 (-15 -1698 ($ |#1| |#1|)) (-15 -4247 (|#1| $ (-766)))) -((-4152 (((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)) 14))) -(((-873 |#1| |#2|) (-10 -7 (-15 -4152 ((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)))) (-1207) (-1207)) (T -873)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-874 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-874 *6)) (-5 *1 (-873 *5 *6))))) -(-10 -7 (-15 -4152 ((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)))) -((-1698 (($ |#1| |#1| |#1|) 8)) (-4247 ((|#1| $ (-766)) 10))) -(((-874 |#1|) (-10 -8 (-15 -1698 ($ |#1| |#1| |#1|)) (-15 -4247 (|#1| $ (-766)))) (-1207)) (T -874)) -((-4247 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-5 *1 (-874 *2)) (-4 *2 (-1207)))) (-1698 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-1207))))) -(-10 -8 (-15 -1698 ($ |#1| |#1| |#1|)) (-15 -4247 (|#1| $ (-766)))) -((-3915 (((-639 (-1173)) (-1150)) 9))) -(((-875) (-10 -7 (-15 -3915 ((-639 (-1173)) (-1150))))) (T -875)) -((-3915 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-639 (-1173))) (-5 *1 (-875))))) -(-10 -7 (-15 -3915 ((-639 (-1173)) (-1150)))) -((-4152 (((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)) 14))) -(((-876 |#1| |#2|) (-10 -7 (-15 -4152 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)))) (-1207) (-1207)) (T -876)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-877 *6)) (-5 *1 (-876 *5 *6))))) -(-10 -7 (-15 -4152 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)))) -((-1336 (($ |#1| |#1| |#1|) 8)) (-4247 ((|#1| $ (-766)) 10))) -(((-877 |#1|) (-10 -8 (-15 -1336 ($ |#1| |#1| |#1|)) (-15 -4247 (|#1| $ (-766)))) (-1207)) (T -877)) -((-4247 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-5 *1 (-877 *2)) (-4 *2 (-1207)))) (-1336 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1207))))) -(-10 -8 (-15 -1336 ($ |#1| |#1| |#1|)) (-15 -4247 (|#1| $ (-766)))) -((-1691 (((-1148 (-639 (-562))) (-639 (-562)) (-1148 (-639 (-562)))) 30)) (-2203 (((-1148 (-639 (-562))) (-639 (-562)) (-639 (-562))) 26)) (-3572 (((-1148 (-639 (-562))) (-639 (-562))) 39) (((-1148 (-639 (-562))) (-639 (-562)) (-639 (-562))) 38)) (-2128 (((-1148 (-639 (-562))) (-562)) 40)) (-3684 (((-1148 (-639 (-562))) (-562) (-562)) 22) (((-1148 (-639 (-562))) (-562)) 16) (((-1148 (-639 (-562))) (-562) (-562) (-562)) 12)) (-3455 (((-1148 (-639 (-562))) (-1148 (-639 (-562)))) 24)) (-1660 (((-639 (-562)) (-639 (-562))) 23))) -(((-878) (-10 -7 (-15 -3684 ((-1148 (-639 (-562))) (-562) (-562) (-562))) (-15 -3684 ((-1148 (-639 (-562))) (-562))) (-15 -3684 ((-1148 (-639 (-562))) (-562) (-562))) (-15 -1660 ((-639 (-562)) (-639 (-562)))) (-15 -3455 ((-1148 (-639 (-562))) (-1148 (-639 (-562))))) (-15 -2203 ((-1148 (-639 (-562))) (-639 (-562)) (-639 (-562)))) (-15 -1691 ((-1148 (-639 (-562))) (-639 (-562)) (-1148 (-639 (-562))))) (-15 -3572 ((-1148 (-639 (-562))) (-639 (-562)) (-639 (-562)))) (-15 -3572 ((-1148 (-639 (-562))) (-639 (-562)))) (-15 -2128 ((-1148 (-639 (-562))) (-562))))) (T -878)) -((-2128 (*1 *2 *3) (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *1 (-878)) (-5 *3 (-562)))) (-3572 (*1 *2 *3) (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *1 (-878)) (-5 *3 (-639 (-562))))) (-3572 (*1 *2 *3 *3) (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *1 (-878)) (-5 *3 (-639 (-562))))) (-1691 (*1 *2 *3 *2) (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *3 (-639 (-562))) (-5 *1 (-878)))) (-2203 (*1 *2 *3 *3) (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *1 (-878)) (-5 *3 (-639 (-562))))) (-3455 (*1 *2 *2) (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *1 (-878)))) (-1660 (*1 *2 *2) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-878)))) (-3684 (*1 *2 *3 *3) (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *1 (-878)) (-5 *3 (-562)))) (-3684 (*1 *2 *3) (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *1 (-878)) (-5 *3 (-562)))) (-3684 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *1 (-878)) (-5 *3 (-562))))) -(-10 -7 (-15 -3684 ((-1148 (-639 (-562))) (-562) (-562) (-562))) (-15 -3684 ((-1148 (-639 (-562))) (-562))) (-15 -3684 ((-1148 (-639 (-562))) (-562) (-562))) (-15 -1660 ((-639 (-562)) (-639 (-562)))) (-15 -3455 ((-1148 (-639 (-562))) (-1148 (-639 (-562))))) (-15 -2203 ((-1148 (-639 (-562))) (-639 (-562)) (-639 (-562)))) (-15 -1691 ((-1148 (-639 (-562))) (-639 (-562)) (-1148 (-639 (-562))))) (-15 -3572 ((-1148 (-639 (-562))) (-639 (-562)) (-639 (-562)))) (-15 -3572 ((-1148 (-639 (-562))) (-639 (-562)))) (-15 -2128 ((-1148 (-639 (-562))) (-562)))) -((-4208 (((-887 (-378)) $) 9 (|has| |#1| (-610 (-887 (-378))))) (((-887 (-562)) $) 8 (|has| |#1| (-610 (-887 (-562))))))) -(((-879 |#1|) (-139) (-1207)) (T -879)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-610 (-887 (-562)))) (-6 (-610 (-887 (-562)))) |%noBranch|) (IF (|has| |t#1| (-610 (-887 (-378)))) (-6 (-610 (-887 (-378)))) |%noBranch|))) -(((-610 (-887 (-378))) |has| |#1| (-610 (-887 (-378)))) ((-610 (-887 (-562))) |has| |#1| (-610 (-887 (-562))))) -((-4041 (((-112) $ $) NIL)) (-1458 (($) 14)) (-1510 (($ (-884 |#1| |#2|) (-884 |#1| |#3|)) 27)) (-2822 (((-884 |#1| |#3|) $) 16)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2436 (((-112) $) 22)) (-4254 (($) 19)) (-4053 (((-857) $) 30)) (-2740 (((-884 |#1| |#2|) $) 15)) (-1733 (((-112) $ $) 25))) -(((-880 |#1| |#2| |#3|) (-13 (-1092) (-10 -8 (-15 -2436 ((-112) $)) (-15 -4254 ($)) (-15 -1458 ($)) (-15 -1510 ($ (-884 |#1| |#2|) (-884 |#1| |#3|))) (-15 -2740 ((-884 |#1| |#2|) $)) (-15 -2822 ((-884 |#1| |#3|) $)))) (-1092) (-1092) (-660 |#2|)) (T -880)) -((-2436 (*1 *2 *1) (-12 (-4 *4 (-1092)) (-5 *2 (-112)) (-5 *1 (-880 *3 *4 *5)) (-4 *3 (-1092)) (-4 *5 (-660 *4)))) (-4254 (*1 *1) (-12 (-4 *3 (-1092)) (-5 *1 (-880 *2 *3 *4)) (-4 *2 (-1092)) (-4 *4 (-660 *3)))) (-1458 (*1 *1) (-12 (-4 *3 (-1092)) (-5 *1 (-880 *2 *3 *4)) (-4 *2 (-1092)) (-4 *4 (-660 *3)))) (-1510 (*1 *1 *2 *3) (-12 (-5 *2 (-884 *4 *5)) (-5 *3 (-884 *4 *6)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-660 *5)) (-5 *1 (-880 *4 *5 *6)))) (-2740 (*1 *2 *1) (-12 (-4 *4 (-1092)) (-5 *2 (-884 *3 *4)) (-5 *1 (-880 *3 *4 *5)) (-4 *3 (-1092)) (-4 *5 (-660 *4)))) (-2822 (*1 *2 *1) (-12 (-4 *4 (-1092)) (-5 *2 (-884 *3 *5)) (-5 *1 (-880 *3 *4 *5)) (-4 *3 (-1092)) (-4 *5 (-660 *4))))) -(-13 (-1092) (-10 -8 (-15 -2436 ((-112) $)) (-15 -4254 ($)) (-15 -1458 ($)) (-15 -1510 ($ (-884 |#1| |#2|) (-884 |#1| |#3|))) (-15 -2740 ((-884 |#1| |#2|) $)) (-15 -2822 ((-884 |#1| |#3|) $)))) -((-4041 (((-112) $ $) 7)) (-2337 (((-884 |#1| $) $ (-887 |#1|) (-884 |#1| $)) 13)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11)) (-1733 (((-112) $ $) 6))) -(((-881 |#1|) (-139) (-1092)) (T -881)) -((-2337 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-884 *4 *1)) (-5 *3 (-887 *4)) (-4 *1 (-881 *4)) (-4 *4 (-1092))))) -(-13 (-1092) (-10 -8 (-15 -2337 ((-884 |t#1| $) $ (-887 |t#1|) (-884 |t#1| $))))) -(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) -((-3115 (((-112) (-639 |#2|) |#3|) 22) (((-112) |#2| |#3|) 17)) (-1566 (((-884 |#1| |#2|) |#2| |#3|) 42 (-12 (-2234 (|has| |#2| (-1033 (-1168)))) (-2234 (|has| |#2| (-1044))))) (((-639 (-293 (-947 |#2|))) |#2| |#3|) 41 (-12 (|has| |#2| (-1044)) (-2234 (|has| |#2| (-1033 (-1168)))))) (((-639 (-293 |#2|)) |#2| |#3|) 34 (|has| |#2| (-1033 (-1168)))) (((-880 |#1| |#2| (-639 |#2|)) (-639 |#2|) |#3|) 20))) -(((-882 |#1| |#2| |#3|) (-10 -7 (-15 -3115 ((-112) |#2| |#3|)) (-15 -3115 ((-112) (-639 |#2|) |#3|)) (-15 -1566 ((-880 |#1| |#2| (-639 |#2|)) (-639 |#2|) |#3|)) (IF (|has| |#2| (-1033 (-1168))) (-15 -1566 ((-639 (-293 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1044)) (-15 -1566 ((-639 (-293 (-947 |#2|))) |#2| |#3|)) (-15 -1566 ((-884 |#1| |#2|) |#2| |#3|))))) (-1092) (-881 |#1|) (-610 (-887 |#1|))) (T -882)) -((-1566 (*1 *2 *3 *4) (-12 (-4 *5 (-1092)) (-5 *2 (-884 *5 *3)) (-5 *1 (-882 *5 *3 *4)) (-2234 (-4 *3 (-1033 (-1168)))) (-2234 (-4 *3 (-1044))) (-4 *3 (-881 *5)) (-4 *4 (-610 (-887 *5))))) (-1566 (*1 *2 *3 *4) (-12 (-4 *5 (-1092)) (-5 *2 (-639 (-293 (-947 *3)))) (-5 *1 (-882 *5 *3 *4)) (-4 *3 (-1044)) (-2234 (-4 *3 (-1033 (-1168)))) (-4 *3 (-881 *5)) (-4 *4 (-610 (-887 *5))))) (-1566 (*1 *2 *3 *4) (-12 (-4 *5 (-1092)) (-5 *2 (-639 (-293 *3))) (-5 *1 (-882 *5 *3 *4)) (-4 *3 (-1033 (-1168))) (-4 *3 (-881 *5)) (-4 *4 (-610 (-887 *5))))) (-1566 (*1 *2 *3 *4) (-12 (-4 *5 (-1092)) (-4 *6 (-881 *5)) (-5 *2 (-880 *5 *6 (-639 *6))) (-5 *1 (-882 *5 *6 *4)) (-5 *3 (-639 *6)) (-4 *4 (-610 (-887 *5))))) (-3115 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *6)) (-4 *6 (-881 *5)) (-4 *5 (-1092)) (-5 *2 (-112)) (-5 *1 (-882 *5 *6 *4)) (-4 *4 (-610 (-887 *5))))) (-3115 (*1 *2 *3 *4) (-12 (-4 *5 (-1092)) (-5 *2 (-112)) (-5 *1 (-882 *5 *3 *4)) (-4 *3 (-881 *5)) (-4 *4 (-610 (-887 *5)))))) -(-10 -7 (-15 -3115 ((-112) |#2| |#3|)) (-15 -3115 ((-112) (-639 |#2|) |#3|)) (-15 -1566 ((-880 |#1| |#2| (-639 |#2|)) (-639 |#2|) |#3|)) (IF (|has| |#2| (-1033 (-1168))) (-15 -1566 ((-639 (-293 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1044)) (-15 -1566 ((-639 (-293 (-947 |#2|))) |#2| |#3|)) (-15 -1566 ((-884 |#1| |#2|) |#2| |#3|))))) -((-4152 (((-884 |#1| |#3|) (-1 |#3| |#2|) (-884 |#1| |#2|)) 22))) -(((-883 |#1| |#2| |#3|) (-10 -7 (-15 -4152 ((-884 |#1| |#3|) (-1 |#3| |#2|) (-884 |#1| |#2|)))) (-1092) (-1092) (-1092)) (T -883)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-884 *5 *6)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-884 *5 *7)) (-5 *1 (-883 *5 *6 *7))))) -(-10 -7 (-15 -4152 ((-884 |#1| |#3|) (-1 |#3| |#2|) (-884 |#1| |#2|)))) -((-4041 (((-112) $ $) NIL)) (-2492 (($ $ $) 39)) (-3146 (((-3 (-112) "failed") $ (-887 |#1|)) 36)) (-1458 (($) 12)) (-3696 (((-1150) $) NIL)) (-2386 (($ (-887 |#1|) |#2| $) 20)) (-1709 (((-1112) $) NIL)) (-3974 (((-3 |#2| "failed") (-887 |#1|) $) 50)) (-2436 (((-112) $) 15)) (-4254 (($) 13)) (-1716 (((-639 (-2 (|:| -2319 (-1168)) (|:| -2693 |#2|))) $) 25)) (-4064 (($ (-639 (-2 (|:| -2319 (-1168)) (|:| -2693 |#2|)))) 23)) (-4053 (((-857) $) 44)) (-2005 (($ (-887 |#1|) |#2| $ |#2|) 48)) (-4007 (($ (-887 |#1|) |#2| $) 47)) (-1733 (((-112) $ $) 41))) -(((-884 |#1| |#2|) (-13 (-1092) (-10 -8 (-15 -2436 ((-112) $)) (-15 -4254 ($)) (-15 -1458 ($)) (-15 -2492 ($ $ $)) (-15 -3974 ((-3 |#2| "failed") (-887 |#1|) $)) (-15 -4007 ($ (-887 |#1|) |#2| $)) (-15 -2386 ($ (-887 |#1|) |#2| $)) (-15 -2005 ($ (-887 |#1|) |#2| $ |#2|)) (-15 -1716 ((-639 (-2 (|:| -2319 (-1168)) (|:| -2693 |#2|))) $)) (-15 -4064 ($ (-639 (-2 (|:| -2319 (-1168)) (|:| -2693 |#2|))))) (-15 -3146 ((-3 (-112) "failed") $ (-887 |#1|))))) (-1092) (-1092)) (T -884)) -((-2436 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-884 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)))) (-4254 (*1 *1) (-12 (-5 *1 (-884 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092)))) (-1458 (*1 *1) (-12 (-5 *1 (-884 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092)))) (-2492 (*1 *1 *1 *1) (-12 (-5 *1 (-884 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092)))) (-3974 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-887 *4)) (-4 *4 (-1092)) (-4 *2 (-1092)) (-5 *1 (-884 *4 *2)))) (-4007 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-887 *4)) (-4 *4 (-1092)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1092)))) (-2386 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-887 *4)) (-4 *4 (-1092)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1092)))) (-2005 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-887 *4)) (-4 *4 (-1092)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1092)))) (-1716 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| -2319 (-1168)) (|:| -2693 *4)))) (-5 *1 (-884 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-639 (-2 (|:| -2319 (-1168)) (|:| -2693 *4)))) (-4 *4 (-1092)) (-5 *1 (-884 *3 *4)) (-4 *3 (-1092)))) (-3146 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-887 *4)) (-4 *4 (-1092)) (-5 *2 (-112)) (-5 *1 (-884 *4 *5)) (-4 *5 (-1092))))) -(-13 (-1092) (-10 -8 (-15 -2436 ((-112) $)) (-15 -4254 ($)) (-15 -1458 ($)) (-15 -2492 ($ $ $)) (-15 -3974 ((-3 |#2| "failed") (-887 |#1|) $)) (-15 -4007 ($ (-887 |#1|) |#2| $)) (-15 -2386 ($ (-887 |#1|) |#2| $)) (-15 -2005 ($ (-887 |#1|) |#2| $ |#2|)) (-15 -1716 ((-639 (-2 (|:| -2319 (-1168)) (|:| -2693 |#2|))) $)) (-15 -4064 ($ (-639 (-2 (|:| -2319 (-1168)) (|:| -2693 |#2|))))) (-15 -3146 ((-3 (-112) "failed") $ (-887 |#1|))))) -((-3170 (((-887 |#1|) (-887 |#1|) (-639 (-1168)) (-1 (-112) (-639 |#2|))) 32) (((-887 |#1|) (-887 |#1|) (-639 (-1 (-112) |#2|))) 43) (((-887 |#1|) (-887 |#1|) (-1 (-112) |#2|)) 35)) (-3146 (((-112) (-639 |#2|) (-887 |#1|)) 40) (((-112) |#2| (-887 |#1|)) 36)) (-1820 (((-1 (-112) |#2|) (-887 |#1|)) 16)) (-3812 (((-639 |#2|) (-887 |#1|)) 24)) (-1873 (((-887 |#1|) (-887 |#1|) |#2|) 20))) -(((-885 |#1| |#2|) (-10 -7 (-15 -3170 ((-887 |#1|) (-887 |#1|) (-1 (-112) |#2|))) (-15 -3170 ((-887 |#1|) (-887 |#1|) (-639 (-1 (-112) |#2|)))) (-15 -3170 ((-887 |#1|) (-887 |#1|) (-639 (-1168)) (-1 (-112) (-639 |#2|)))) (-15 -1820 ((-1 (-112) |#2|) (-887 |#1|))) (-15 -3146 ((-112) |#2| (-887 |#1|))) (-15 -3146 ((-112) (-639 |#2|) (-887 |#1|))) (-15 -1873 ((-887 |#1|) (-887 |#1|) |#2|)) (-15 -3812 ((-639 |#2|) (-887 |#1|)))) (-1092) (-1207)) (T -885)) -((-3812 (*1 *2 *3) (-12 (-5 *3 (-887 *4)) (-4 *4 (-1092)) (-5 *2 (-639 *5)) (-5 *1 (-885 *4 *5)) (-4 *5 (-1207)))) (-1873 (*1 *2 *2 *3) (-12 (-5 *2 (-887 *4)) (-4 *4 (-1092)) (-5 *1 (-885 *4 *3)) (-4 *3 (-1207)))) (-3146 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *6)) (-5 *4 (-887 *5)) (-4 *5 (-1092)) (-4 *6 (-1207)) (-5 *2 (-112)) (-5 *1 (-885 *5 *6)))) (-3146 (*1 *2 *3 *4) (-12 (-5 *4 (-887 *5)) (-4 *5 (-1092)) (-5 *2 (-112)) (-5 *1 (-885 *5 *3)) (-4 *3 (-1207)))) (-1820 (*1 *2 *3) (-12 (-5 *3 (-887 *4)) (-4 *4 (-1092)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-885 *4 *5)) (-4 *5 (-1207)))) (-3170 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-887 *5)) (-5 *3 (-639 (-1168))) (-5 *4 (-1 (-112) (-639 *6))) (-4 *5 (-1092)) (-4 *6 (-1207)) (-5 *1 (-885 *5 *6)))) (-3170 (*1 *2 *2 *3) (-12 (-5 *2 (-887 *4)) (-5 *3 (-639 (-1 (-112) *5))) (-4 *4 (-1092)) (-4 *5 (-1207)) (-5 *1 (-885 *4 *5)))) (-3170 (*1 *2 *2 *3) (-12 (-5 *2 (-887 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1092)) (-4 *5 (-1207)) (-5 *1 (-885 *4 *5))))) -(-10 -7 (-15 -3170 ((-887 |#1|) (-887 |#1|) (-1 (-112) |#2|))) (-15 -3170 ((-887 |#1|) (-887 |#1|) (-639 (-1 (-112) |#2|)))) (-15 -3170 ((-887 |#1|) (-887 |#1|) (-639 (-1168)) (-1 (-112) (-639 |#2|)))) (-15 -1820 ((-1 (-112) |#2|) (-887 |#1|))) (-15 -3146 ((-112) |#2| (-887 |#1|))) (-15 -3146 ((-112) (-639 |#2|) (-887 |#1|))) (-15 -1873 ((-887 |#1|) (-887 |#1|) |#2|)) (-15 -3812 ((-639 |#2|) (-887 |#1|)))) -((-4152 (((-887 |#2|) (-1 |#2| |#1|) (-887 |#1|)) 19))) -(((-886 |#1| |#2|) (-10 -7 (-15 -4152 ((-887 |#2|) (-1 |#2| |#1|) (-887 |#1|)))) (-1092) (-1092)) (T -886)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-887 *5)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-5 *2 (-887 *6)) (-5 *1 (-886 *5 *6))))) -(-10 -7 (-15 -4152 ((-887 |#2|) (-1 |#2| |#1|) (-887 |#1|)))) -((-4041 (((-112) $ $) NIL)) (-2115 (($ $ (-639 (-52))) 62)) (-1401 (((-639 $) $) 116)) (-3368 (((-2 (|:| |var| (-639 (-1168))) (|:| |pred| (-52))) $) 23)) (-1681 (((-112) $) 29)) (-2690 (($ $ (-639 (-1168)) (-52)) 24)) (-1305 (($ $ (-639 (-52))) 61)) (-4048 (((-3 |#1| "failed") $) 59) (((-3 (-1168) "failed") $) 138)) (-3960 ((|#1| $) 56) (((-1168) $) NIL)) (-4182 (($ $) 106)) (-3107 (((-112) $) 44)) (-1365 (((-639 (-52)) $) 42)) (-2179 (($ (-1168) (-112) (-112) (-112)) 63)) (-1887 (((-3 (-639 $) "failed") (-639 $)) 70)) (-2236 (((-112) $) 47)) (-1675 (((-112) $) 46)) (-3696 (((-1150) $) NIL)) (-4025 (((-3 (-639 $) "failed") $) 33)) (-3006 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 40)) (-2811 (((-3 (-2 (|:| |val| $) (|:| -1300 $)) "failed") $) 81)) (-1778 (((-3 (-639 $) "failed") $) 32)) (-3271 (((-3 (-639 $) "failed") $ (-114)) 105) (((-3 (-2 (|:| -2429 (-114)) (|:| |arg| (-639 $))) "failed") $) 93)) (-3478 (((-3 (-639 $) "failed") $) 34)) (-4270 (((-3 (-2 (|:| |val| $) (|:| -1300 (-766))) "failed") $) 37)) (-2430 (((-112) $) 28)) (-1709 (((-1112) $) NIL)) (-3374 (((-112) $) 20)) (-3100 (((-112) $) 43)) (-1793 (((-639 (-52)) $) 109)) (-2621 (((-112) $) 45)) (-2343 (($ (-114) (-639 $)) 90)) (-2191 (((-766) $) 27)) (-4220 (($ $) 60)) (-4208 (($ (-639 $)) 57)) (-3620 (((-112) $) 25)) (-4053 (((-857) $) 51) (($ |#1|) 18) (($ (-1168)) 64)) (-1873 (($ $ (-52)) 108)) (-2285 (($) 89 T CONST)) (-2294 (($) 71 T CONST)) (-1733 (((-112) $ $) 77)) (-1859 (($ $ $) 98)) (-1836 (($ $ $) 102)) (** (($ $ (-766)) 97) (($ $ $) 52)) (* (($ $ $) 103))) -(((-887 |#1|) (-13 (-1092) (-1033 |#1|) (-1033 (-1168)) (-10 -8 (-15 0 ($) -1497) (-15 1 ($) -1497) (-15 -1778 ((-3 (-639 $) "failed") $)) (-15 -4025 ((-3 (-639 $) "failed") $)) (-15 -3271 ((-3 (-639 $) "failed") $ (-114))) (-15 -3271 ((-3 (-2 (|:| -2429 (-114)) (|:| |arg| (-639 $))) "failed") $)) (-15 -4270 ((-3 (-2 (|:| |val| $) (|:| -1300 (-766))) "failed") $)) (-15 -3006 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3478 ((-3 (-639 $) "failed") $)) (-15 -2811 ((-3 (-2 (|:| |val| $) (|:| -1300 $)) "failed") $)) (-15 -2343 ($ (-114) (-639 $))) (-15 -1836 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-766))) (-15 ** ($ $ $)) (-15 -1859 ($ $ $)) (-15 -2191 ((-766) $)) (-15 -4208 ($ (-639 $))) (-15 -4220 ($ $)) (-15 -2430 ((-112) $)) (-15 -3107 ((-112) $)) (-15 -1681 ((-112) $)) (-15 -3620 ((-112) $)) (-15 -2621 ((-112) $)) (-15 -1675 ((-112) $)) (-15 -2236 ((-112) $)) (-15 -3100 ((-112) $)) (-15 -1365 ((-639 (-52)) $)) (-15 -1305 ($ $ (-639 (-52)))) (-15 -2115 ($ $ (-639 (-52)))) (-15 -2179 ($ (-1168) (-112) (-112) (-112))) (-15 -2690 ($ $ (-639 (-1168)) (-52))) (-15 -3368 ((-2 (|:| |var| (-639 (-1168))) (|:| |pred| (-52))) $)) (-15 -3374 ((-112) $)) (-15 -4182 ($ $)) (-15 -1873 ($ $ (-52))) (-15 -1793 ((-639 (-52)) $)) (-15 -1401 ((-639 $) $)) (-15 -1887 ((-3 (-639 $) "failed") (-639 $))))) (-1092)) (T -887)) -((-2285 (*1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1092)))) (-2294 (*1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1092)))) (-1778 (*1 *2 *1) (|partial| -12 (-5 *2 (-639 (-887 *3))) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-4025 (*1 *2 *1) (|partial| -12 (-5 *2 (-639 (-887 *3))) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-3271 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-639 (-887 *4))) (-5 *1 (-887 *4)) (-4 *4 (-1092)))) (-3271 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2429 (-114)) (|:| |arg| (-639 (-887 *3))))) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-4270 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-887 *3)) (|:| -1300 (-766)))) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-3006 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-887 *3)) (|:| |den| (-887 *3)))) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-3478 (*1 *2 *1) (|partial| -12 (-5 *2 (-639 (-887 *3))) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-2811 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-887 *3)) (|:| -1300 (-887 *3)))) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-2343 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-639 (-887 *4))) (-5 *1 (-887 *4)) (-4 *4 (-1092)))) (-1836 (*1 *1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1092)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1092)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1092)))) (-1859 (*1 *1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1092)))) (-2191 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-4208 (*1 *1 *2) (-12 (-5 *2 (-639 (-887 *3))) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-4220 (*1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1092)))) (-2430 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-1681 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-2621 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-1675 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-2236 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-3100 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-1365 (*1 *2 *1) (-12 (-5 *2 (-639 (-52))) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-1305 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-52))) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-2115 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-52))) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-2179 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-112)) (-5 *1 (-887 *4)) (-4 *4 (-1092)))) (-2690 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 (-1168))) (-5 *3 (-52)) (-5 *1 (-887 *4)) (-4 *4 (-1092)))) (-3368 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-639 (-1168))) (|:| |pred| (-52)))) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-3374 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-4182 (*1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1092)))) (-1873 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-1793 (*1 *2 *1) (-12 (-5 *2 (-639 (-52))) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-1401 (*1 *2 *1) (-12 (-5 *2 (-639 (-887 *3))) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) (-1887 (*1 *2 *2) (|partial| -12 (-5 *2 (-639 (-887 *3))) (-5 *1 (-887 *3)) (-4 *3 (-1092))))) -(-13 (-1092) (-1033 |#1|) (-1033 (-1168)) (-10 -8 (-15 (-2285) ($) -1497) (-15 (-2294) ($) -1497) (-15 -1778 ((-3 (-639 $) "failed") $)) (-15 -4025 ((-3 (-639 $) "failed") $)) (-15 -3271 ((-3 (-639 $) "failed") $ (-114))) (-15 -3271 ((-3 (-2 (|:| -2429 (-114)) (|:| |arg| (-639 $))) "failed") $)) (-15 -4270 ((-3 (-2 (|:| |val| $) (|:| -1300 (-766))) "failed") $)) (-15 -3006 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3478 ((-3 (-639 $) "failed") $)) (-15 -2811 ((-3 (-2 (|:| |val| $) (|:| -1300 $)) "failed") $)) (-15 -2343 ($ (-114) (-639 $))) (-15 -1836 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-766))) (-15 ** ($ $ $)) (-15 -1859 ($ $ $)) (-15 -2191 ((-766) $)) (-15 -4208 ($ (-639 $))) (-15 -4220 ($ $)) (-15 -2430 ((-112) $)) (-15 -3107 ((-112) $)) (-15 -1681 ((-112) $)) (-15 -3620 ((-112) $)) (-15 -2621 ((-112) $)) (-15 -1675 ((-112) $)) (-15 -2236 ((-112) $)) (-15 -3100 ((-112) $)) (-15 -1365 ((-639 (-52)) $)) (-15 -1305 ($ $ (-639 (-52)))) (-15 -2115 ($ $ (-639 (-52)))) (-15 -2179 ($ (-1168) (-112) (-112) (-112))) (-15 -2690 ($ $ (-639 (-1168)) (-52))) (-15 -3368 ((-2 (|:| |var| (-639 (-1168))) (|:| |pred| (-52))) $)) (-15 -3374 ((-112) $)) (-15 -4182 ($ $)) (-15 -1873 ($ $ (-52))) (-15 -1793 ((-639 (-52)) $)) (-15 -1401 ((-639 $) $)) (-15 -1887 ((-3 (-639 $) "failed") (-639 $))))) -((-4041 (((-112) $ $) NIL)) (-2850 (((-639 |#1|) $) 16)) (-1638 (((-112) $) 38)) (-4048 (((-3 (-666 |#1|) "failed") $) 43)) (-3960 (((-666 |#1|) $) 41)) (-1434 (($ $) 18)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-3641 (((-766) $) 46)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1421 (((-666 |#1|) $) 17)) (-4053 (((-857) $) 37) (($ (-666 |#1|)) 21) (((-814 |#1|) $) 27) (($ |#1|) 20)) (-2294 (($) 8 T CONST)) (-2174 (((-639 (-666 |#1|)) $) 23)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 11)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) 49))) -(((-888 |#1|) (-13 (-845) (-1033 (-666 |#1|)) (-10 -8 (-15 1 ($) -1497) (-15 -4053 ((-814 |#1|) $)) (-15 -4053 ($ |#1|)) (-15 -1421 ((-666 |#1|) $)) (-15 -3641 ((-766) $)) (-15 -2174 ((-639 (-666 |#1|)) $)) (-15 -1434 ($ $)) (-15 -1638 ((-112) $)) (-15 -2850 ((-639 |#1|) $)))) (-845)) (T -888)) -((-2294 (*1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-845)))) (-4053 (*1 *2 *1) (-12 (-5 *2 (-814 *3)) (-5 *1 (-888 *3)) (-4 *3 (-845)))) (-4053 (*1 *1 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-845)))) (-1421 (*1 *2 *1) (-12 (-5 *2 (-666 *3)) (-5 *1 (-888 *3)) (-4 *3 (-845)))) (-3641 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-888 *3)) (-4 *3 (-845)))) (-2174 (*1 *2 *1) (-12 (-5 *2 (-639 (-666 *3))) (-5 *1 (-888 *3)) (-4 *3 (-845)))) (-1434 (*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-845)))) (-1638 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-845)))) (-2850 (*1 *2 *1) (-12 (-5 *2 (-639 *3)) (-5 *1 (-888 *3)) (-4 *3 (-845))))) -(-13 (-845) (-1033 (-666 |#1|)) (-10 -8 (-15 (-2294) ($) -1497) (-15 -4053 ((-814 |#1|) $)) (-15 -4053 ($ |#1|)) (-15 -1421 ((-666 |#1|) $)) (-15 -3641 ((-766) $)) (-15 -2174 ((-639 (-666 |#1|)) $)) (-15 -1434 ($ $)) (-15 -1638 ((-112) $)) (-15 -2850 ((-639 |#1|) $)))) -((-3507 ((|#1| |#1| |#1|) 19))) -(((-889 |#1| |#2|) (-10 -7 (-15 -3507 (|#1| |#1| |#1|))) (-1232 |#2|) (-1044)) (T -889)) -((-3507 (*1 *2 *2 *2) (-12 (-4 *3 (-1044)) (-5 *1 (-889 *2 *3)) (-4 *2 (-1232 *3))))) -(-10 -7 (-15 -3507 (|#1| |#1| |#1|))) -((-4041 (((-112) $ $) 7)) (-1806 (((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224)))) 14)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11)) (-1727 (((-1030) (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224)))) 13)) (-1733 (((-112) $ $) 6))) -(((-890) (-139)) (T -890)) -((-1806 (*1 *2 *3 *4) (-12 (-4 *1 (-890)) (-5 *3 (-1056)) (-5 *4 (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224)))) (-5 *2 (-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)))))) (-1727 (*1 *2 *3) (-12 (-4 *1 (-890)) (-5 *3 (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224)))) (-5 *2 (-1030))))) -(-13 (-1092) (-10 -7 (-15 -1806 ((-2 (|:| -1806 (-378)) (|:| |explanations| (-1150))) (-1056) (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224))))) (-15 -1727 ((-1030) (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224))))))) -(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) -((-2367 ((|#1| |#1| (-766)) 24)) (-3850 (((-3 |#1| "failed") |#1| |#1|) 22)) (-3758 (((-3 (-2 (|:| -1589 |#1|) (|:| -1603 |#1|)) "failed") |#1| (-766) (-766)) 27) (((-639 |#1|) |#1|) 29))) -(((-891 |#1| |#2|) (-10 -7 (-15 -3758 ((-639 |#1|) |#1|)) (-15 -3758 ((-3 (-2 (|:| -1589 |#1|) (|:| -1603 |#1|)) "failed") |#1| (-766) (-766))) (-15 -3850 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2367 (|#1| |#1| (-766)))) (-1232 |#2|) (-362)) (T -891)) -((-2367 (*1 *2 *2 *3) (-12 (-5 *3 (-766)) (-4 *4 (-362)) (-5 *1 (-891 *2 *4)) (-4 *2 (-1232 *4)))) (-3850 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-362)) (-5 *1 (-891 *2 *3)) (-4 *2 (-1232 *3)))) (-3758 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-766)) (-4 *5 (-362)) (-5 *2 (-2 (|:| -1589 *3) (|:| -1603 *3))) (-5 *1 (-891 *3 *5)) (-4 *3 (-1232 *5)))) (-3758 (*1 *2 *3) (-12 (-4 *4 (-362)) (-5 *2 (-639 *3)) (-5 *1 (-891 *3 *4)) (-4 *3 (-1232 *4))))) -(-10 -7 (-15 -3758 ((-639 |#1|) |#1|)) (-15 -3758 ((-3 (-2 (|:| -1589 |#1|) (|:| -1603 |#1|)) "failed") |#1| (-766) (-766))) (-15 -3850 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2367 (|#1| |#1| (-766)))) -((-3888 (((-1030) (-378) (-378) (-378) (-378) (-766) (-766) (-639 (-315 (-378))) (-639 (-639 (-315 (-378)))) (-1150)) 96) (((-1030) (-378) (-378) (-378) (-378) (-766) (-766) (-639 (-315 (-378))) (-639 (-639 (-315 (-378)))) (-1150) (-224)) 91) (((-1030) (-893) (-1056)) 83) (((-1030) (-893)) 84)) (-1806 (((-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150)))) (-893) (-1056)) 59) (((-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150)))) (-893)) 61))) -(((-892) (-10 -7 (-15 -3888 ((-1030) (-893))) (-15 -3888 ((-1030) (-893) (-1056))) (-15 -3888 ((-1030) (-378) (-378) (-378) (-378) (-766) (-766) (-639 (-315 (-378))) (-639 (-639 (-315 (-378)))) (-1150) (-224))) (-15 -3888 ((-1030) (-378) (-378) (-378) (-378) (-766) (-766) (-639 (-315 (-378))) (-639 (-639 (-315 (-378)))) (-1150))) (-15 -1806 ((-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150)))) (-893))) (-15 -1806 ((-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150)))) (-893) (-1056))))) (T -892)) -((-1806 (*1 *2 *3 *4) (-12 (-5 *3 (-893)) (-5 *4 (-1056)) (-5 *2 (-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150))))) (-5 *1 (-892)))) (-1806 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150))))) (-5 *1 (-892)))) (-3888 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-766)) (-5 *6 (-639 (-639 (-315 *3)))) (-5 *7 (-1150)) (-5 *5 (-639 (-315 (-378)))) (-5 *3 (-378)) (-5 *2 (-1030)) (-5 *1 (-892)))) (-3888 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-766)) (-5 *6 (-639 (-639 (-315 *3)))) (-5 *7 (-1150)) (-5 *8 (-224)) (-5 *5 (-639 (-315 (-378)))) (-5 *3 (-378)) (-5 *2 (-1030)) (-5 *1 (-892)))) (-3888 (*1 *2 *3 *4) (-12 (-5 *3 (-893)) (-5 *4 (-1056)) (-5 *2 (-1030)) (-5 *1 (-892)))) (-3888 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1030)) (-5 *1 (-892))))) -(-10 -7 (-15 -3888 ((-1030) (-893))) (-15 -3888 ((-1030) (-893) (-1056))) (-15 -3888 ((-1030) (-378) (-378) (-378) (-378) (-766) (-766) (-639 (-315 (-378))) (-639 (-639 (-315 (-378)))) (-1150) (-224))) (-15 -3888 ((-1030) (-378) (-378) (-378) (-378) (-766) (-766) (-639 (-315 (-378))) (-639 (-639 (-315 (-378)))) (-1150))) (-15 -1806 ((-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150)))) (-893))) (-15 -1806 ((-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) (|:| |explanations| (-639 (-1150)))) (-893) (-1056)))) -((-4041 (((-112) $ $) NIL)) (-3960 (((-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224))) $) 19)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 21) (($ (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224)))) 18)) (-1733 (((-112) $ $) NIL))) -(((-893) (-13 (-1092) (-10 -8 (-15 -4053 ($ (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224))))) (-15 -3960 ((-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224))) $))))) (T -893)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224)))) (-5 *1 (-893)))) (-3960 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224)))) (-5 *1 (-893))))) -(-13 (-1092) (-10 -8 (-15 -4053 ($ (-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224))))) (-15 -3960 ((-2 (|:| |pde| (-639 (-315 (-224)))) (|:| |constraints| (-639 (-2 (|:| |start| (-224)) (|:| |finish| (-224)) (|:| |grid| (-766)) (|:| |boundaryType| (-562)) (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) (|:| |tol| (-224))) $)))) -((-4029 (($ $ |#2|) NIL) (($ $ (-639 |#2|)) 10) (($ $ |#2| (-766)) 12) (($ $ (-639 |#2|) (-639 (-766))) 15)) (-3113 (($ $ |#2|) 16) (($ $ (-639 |#2|)) 18) (($ $ |#2| (-766)) 19) (($ $ (-639 |#2|) (-639 (-766))) 21))) -(((-894 |#1| |#2|) (-10 -8 (-15 -3113 (|#1| |#1| (-639 |#2|) (-639 (-766)))) (-15 -3113 (|#1| |#1| |#2| (-766))) (-15 -3113 (|#1| |#1| (-639 |#2|))) (-15 -3113 (|#1| |#1| |#2|)) (-15 -4029 (|#1| |#1| (-639 |#2|) (-639 (-766)))) (-15 -4029 (|#1| |#1| |#2| (-766))) (-15 -4029 (|#1| |#1| (-639 |#2|))) (-15 -4029 (|#1| |#1| |#2|))) (-895 |#2|) (-1092)) (T -894)) -NIL -(-10 -8 (-15 -3113 (|#1| |#1| (-639 |#2|) (-639 (-766)))) (-15 -3113 (|#1| |#1| |#2| (-766))) (-15 -3113 (|#1| |#1| (-639 |#2|))) (-15 -3113 (|#1| |#1| |#2|)) (-15 -4029 (|#1| |#1| (-639 |#2|) (-639 (-766)))) (-15 -4029 (|#1| |#1| |#2| (-766))) (-15 -4029 (|#1| |#1| (-639 |#2|))) (-15 -4029 (|#1| |#1| |#2|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-1694 (((-3 $ "failed") $) 33)) (-4367 (((-112) $) 31)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4029 (($ $ |#1|) 42) (($ $ (-639 |#1|)) 41) (($ $ |#1| (-766)) 40) (($ $ (-639 |#1|) (-639 (-766))) 39)) (-4053 (((-857) $) 11) (($ (-562)) 29)) (-1568 (((-766)) 28)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3113 (($ $ |#1|) 38) (($ $ (-639 |#1|)) 37) (($ $ |#1| (-766)) 36) (($ $ (-639 |#1|) (-639 (-766))) 35)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) -(((-895 |#1|) (-139) (-1092)) (T -895)) -((-4029 (*1 *1 *1 *2) (-12 (-4 *1 (-895 *2)) (-4 *2 (-1092)))) (-4029 (*1 *1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *1 (-895 *3)) (-4 *3 (-1092)))) (-4029 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-766)) (-4 *1 (-895 *2)) (-4 *2 (-1092)))) (-4029 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 *4)) (-5 *3 (-639 (-766))) (-4 *1 (-895 *4)) (-4 *4 (-1092)))) (-3113 (*1 *1 *1 *2) (-12 (-4 *1 (-895 *2)) (-4 *2 (-1092)))) (-3113 (*1 *1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *1 (-895 *3)) (-4 *3 (-1092)))) (-3113 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-766)) (-4 *1 (-895 *2)) (-4 *2 (-1092)))) (-3113 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 *4)) (-5 *3 (-639 (-766))) (-4 *1 (-895 *4)) (-4 *4 (-1092))))) -(-13 (-1044) (-10 -8 (-15 -4029 ($ $ |t#1|)) (-15 -4029 ($ $ (-639 |t#1|))) (-15 -4029 ($ $ |t#1| (-766))) (-15 -4029 ($ $ (-639 |t#1|) (-639 (-766)))) (-15 -3113 ($ $ |t#1|)) (-15 -3113 ($ $ (-639 |t#1|))) (-15 -3113 ($ $ |t#1| (-766))) (-15 -3113 ($ $ (-639 |t#1|) (-639 (-766)))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-612 (-562)) . T) ((-609 (-857)) . T) ((-642 $) . T) ((-721) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2533 ((|#1| $) 26)) (-3735 (((-112) $ (-766)) NIL)) (-2677 ((|#1| $ |#1|) NIL (|has| $ (-6 -4404)))) (-3853 (($ $ $) NIL (|has| $ (-6 -4404)))) (-2861 (($ $ $) NIL (|has| $ (-6 -4404)))) (-4200 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4404))) (($ $ "left" $) NIL (|has| $ (-6 -4404))) (($ $ "right" $) NIL (|has| $ (-6 -4404)))) (-3742 (($ $ (-639 $)) NIL (|has| $ (-6 -4404)))) (-3329 (($) NIL T CONST)) (-1603 (($ $) 25)) (-1672 (($ |#1|) 12) (($ $ $) 17)) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-2409 (((-639 $) $) NIL)) (-4188 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-4172 (((-112) $ (-766)) NIL)) (-2123 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1491 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-1589 (($ $) 23)) (-4008 (((-639 |#1|) $) NIL)) (-3179 (((-112) $) 20)) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-3008 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) NIL)) (-2343 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1423 (((-562) $ $) NIL)) (-2473 (((-112) $) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-4220 (($ $) NIL)) (-4053 (((-1193 |#1|) $) 9) (((-857) $) 29 (|has| |#1| (-609 (-857))))) (-3643 (((-639 $) $) NIL)) (-2985 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2879 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 21 (|has| |#1| (-1092)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-896 |#1|) (-13 (-119 |#1|) (-609 (-1193 |#1|)) (-10 -8 (-15 -1672 ($ |#1|)) (-15 -1672 ($ $ $)))) (-1092)) (T -896)) -((-1672 (*1 *1 *2) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1092)))) (-1672 (*1 *1 *1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1092))))) -(-13 (-119 |#1|) (-609 (-1193 |#1|)) (-10 -8 (-15 -1672 ($ |#1|)) (-15 -1672 ($ $ $)))) -((-3634 ((|#2| (-1134 |#1| |#2|)) 41))) -(((-897 |#1| |#2|) (-10 -7 (-15 -3634 (|#2| (-1134 |#1| |#2|)))) (-916) (-13 (-1044) (-10 -7 (-6 (-4405 "*"))))) (T -897)) -((-3634 (*1 *2 *3) (-12 (-5 *3 (-1134 *4 *2)) (-14 *4 (-916)) (-4 *2 (-13 (-1044) (-10 -7 (-6 (-4405 "*"))))) (-5 *1 (-897 *4 *2))))) -(-10 -7 (-15 -3634 (|#2| (-1134 |#1| |#2|)))) -((-4041 (((-112) $ $) 7)) (-3329 (($) 18 T CONST)) (-1694 (((-3 $ "failed") $) 15)) (-2872 (((-1094 |#1|) $ |#1|) 32)) (-4367 (((-112) $) 17)) (-1551 (($ $ $) 30 (-4037 (|has| |#1| (-845)) (|has| |#1| (-367))))) (-2993 (($ $ $) 29 (-4037 (|has| |#1| (-845)) (|has| |#1| (-367))))) (-3696 (((-1150) $) 9)) (-1525 (($ $) 24)) (-1709 (((-1112) $) 10)) (-1433 ((|#1| $ |#1|) 34)) (-2343 ((|#1| $ |#1|) 33)) (-3639 (($ (-639 (-639 |#1|))) 35)) (-2263 (($ (-639 |#1|)) 36)) (-1660 (($ $ $) 21)) (-2114 (($ $ $) 20)) (-4053 (((-857) $) 11)) (-2294 (($) 19 T CONST)) (-1798 (((-112) $ $) 27 (-4037 (|has| |#1| (-845)) (|has| |#1| (-367))))) (-1771 (((-112) $ $) 26 (-4037 (|has| |#1| (-845)) (|has| |#1| (-367))))) (-1733 (((-112) $ $) 6)) (-1785 (((-112) $ $) 28 (-4037 (|has| |#1| (-845)) (|has| |#1| (-367))))) (-1761 (((-112) $ $) 31)) (-1859 (($ $ $) 23)) (** (($ $ (-916)) 13) (($ $ (-766)) 16) (($ $ (-562)) 22)) (* (($ $ $) 14))) -(((-898 |#1|) (-139) (-1092)) (T -898)) -((-2263 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-4 *1 (-898 *3)))) (-3639 (*1 *1 *2) (-12 (-5 *2 (-639 (-639 *3))) (-4 *3 (-1092)) (-4 *1 (-898 *3)))) (-1433 (*1 *2 *1 *2) (-12 (-4 *1 (-898 *2)) (-4 *2 (-1092)))) (-2343 (*1 *2 *1 *2) (-12 (-4 *1 (-898 *2)) (-4 *2 (-1092)))) (-2872 (*1 *2 *1 *3) (-12 (-4 *1 (-898 *3)) (-4 *3 (-1092)) (-5 *2 (-1094 *3)))) (-1761 (*1 *2 *1 *1) (-12 (-4 *1 (-898 *3)) (-4 *3 (-1092)) (-5 *2 (-112))))) -(-13 (-472) (-10 -8 (-15 -2263 ($ (-639 |t#1|))) (-15 -3639 ($ (-639 (-639 |t#1|)))) (-15 -1433 (|t#1| $ |t#1|)) (-15 -2343 (|t#1| $ |t#1|)) (-15 -2872 ((-1094 |t#1|) $ |t#1|)) (-15 -1761 ((-112) $ $)) (IF (|has| |t#1| (-845)) (-6 (-845)) |%noBranch|) (IF (|has| |t#1| (-367)) (-6 (-845)) |%noBranch|))) -(((-102) . T) ((-609 (-857)) . T) ((-472) . T) ((-721) . T) ((-845) -4037 (|has| |#1| (-845)) (|has| |#1| (-367))) ((-1104) . T) ((-1092) . T)) -((-4041 (((-112) $ $) NIL)) (-2398 (((-639 (-639 (-766))) $) 107)) (-1947 (((-639 (-766)) (-900 |#1|) $) 129)) (-3773 (((-639 (-766)) (-900 |#1|) $) 130)) (-3926 (((-639 (-900 |#1|)) $) 97)) (-1447 (((-900 |#1|) $ (-562)) 102) (((-900 |#1|) $) 103)) (-4015 (($ (-639 (-900 |#1|))) 109)) (-1993 (((-766) $) 104)) (-4194 (((-1094 (-1094 |#1|)) $) 127)) (-2872 (((-1094 |#1|) $ |#1|) 120) (((-1094 (-1094 |#1|)) $ (-1094 |#1|)) 138) (((-1094 (-639 |#1|)) $ (-639 |#1|)) 141)) (-1946 (((-1094 |#1|) $) 100)) (-1572 (((-112) (-900 |#1|) $) 91)) (-3696 (((-1150) $) NIL)) (-3417 (((-1261) $) 94) (((-1261) $ (-562) (-562)) 142)) (-1709 (((-1112) $) NIL)) (-3501 (((-639 (-900 |#1|)) $) 95)) (-2343 (((-900 |#1|) $ (-766)) 98)) (-2250 (((-766) $) 105)) (-4053 (((-857) $) 118) (((-639 (-900 |#1|)) $) 23) (($ (-639 (-900 |#1|))) 108)) (-3240 (((-639 |#1|) $) 106)) (-1733 (((-112) $ $) 135)) (-1785 (((-112) $ $) 133)) (-1761 (((-112) $ $) 132))) -(((-899 |#1|) (-13 (-1092) (-10 -8 (-15 -4053 ((-639 (-900 |#1|)) $)) (-15 -3501 ((-639 (-900 |#1|)) $)) (-15 -2343 ((-900 |#1|) $ (-766))) (-15 -1447 ((-900 |#1|) $ (-562))) (-15 -1447 ((-900 |#1|) $)) (-15 -1993 ((-766) $)) (-15 -2250 ((-766) $)) (-15 -3240 ((-639 |#1|) $)) (-15 -3926 ((-639 (-900 |#1|)) $)) (-15 -2398 ((-639 (-639 (-766))) $)) (-15 -4053 ($ (-639 (-900 |#1|)))) (-15 -4015 ($ (-639 (-900 |#1|)))) (-15 -2872 ((-1094 |#1|) $ |#1|)) (-15 -4194 ((-1094 (-1094 |#1|)) $)) (-15 -2872 ((-1094 (-1094 |#1|)) $ (-1094 |#1|))) (-15 -2872 ((-1094 (-639 |#1|)) $ (-639 |#1|))) (-15 -1572 ((-112) (-900 |#1|) $)) (-15 -1947 ((-639 (-766)) (-900 |#1|) $)) (-15 -3773 ((-639 (-766)) (-900 |#1|) $)) (-15 -1946 ((-1094 |#1|) $)) (-15 -1761 ((-112) $ $)) (-15 -1785 ((-112) $ $)) (-15 -3417 ((-1261) $)) (-15 -3417 ((-1261) $ (-562) (-562))))) (-1092)) (T -899)) -((-4053 (*1 *2 *1) (-12 (-5 *2 (-639 (-900 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-639 (-900 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) (-2343 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-5 *2 (-900 *4)) (-5 *1 (-899 *4)) (-4 *4 (-1092)))) (-1447 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *2 (-900 *4)) (-5 *1 (-899 *4)) (-4 *4 (-1092)))) (-1447 (*1 *2 *1) (-12 (-5 *2 (-900 *3)) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) (-2250 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) (-3240 (*1 *2 *1) (-12 (-5 *2 (-639 *3)) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) (-3926 (*1 *2 *1) (-12 (-5 *2 (-639 (-900 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) (-2398 (*1 *2 *1) (-12 (-5 *2 (-639 (-639 (-766)))) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-639 (-900 *3))) (-4 *3 (-1092)) (-5 *1 (-899 *3)))) (-4015 (*1 *1 *2) (-12 (-5 *2 (-639 (-900 *3))) (-4 *3 (-1092)) (-5 *1 (-899 *3)))) (-2872 (*1 *2 *1 *3) (-12 (-5 *2 (-1094 *3)) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) (-4194 (*1 *2 *1) (-12 (-5 *2 (-1094 (-1094 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) (-2872 (*1 *2 *1 *3) (-12 (-4 *4 (-1092)) (-5 *2 (-1094 (-1094 *4))) (-5 *1 (-899 *4)) (-5 *3 (-1094 *4)))) (-2872 (*1 *2 *1 *3) (-12 (-4 *4 (-1092)) (-5 *2 (-1094 (-639 *4))) (-5 *1 (-899 *4)) (-5 *3 (-639 *4)))) (-1572 (*1 *2 *3 *1) (-12 (-5 *3 (-900 *4)) (-4 *4 (-1092)) (-5 *2 (-112)) (-5 *1 (-899 *4)))) (-1947 (*1 *2 *3 *1) (-12 (-5 *3 (-900 *4)) (-4 *4 (-1092)) (-5 *2 (-639 (-766))) (-5 *1 (-899 *4)))) (-3773 (*1 *2 *3 *1) (-12 (-5 *3 (-900 *4)) (-4 *4 (-1092)) (-5 *2 (-639 (-766))) (-5 *1 (-899 *4)))) (-1946 (*1 *2 *1) (-12 (-5 *2 (-1094 *3)) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) (-1761 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) (-1785 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) (-3417 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-562)) (-5 *2 (-1261)) (-5 *1 (-899 *4)) (-4 *4 (-1092))))) -(-13 (-1092) (-10 -8 (-15 -4053 ((-639 (-900 |#1|)) $)) (-15 -3501 ((-639 (-900 |#1|)) $)) (-15 -2343 ((-900 |#1|) $ (-766))) (-15 -1447 ((-900 |#1|) $ (-562))) (-15 -1447 ((-900 |#1|) $)) (-15 -1993 ((-766) $)) (-15 -2250 ((-766) $)) (-15 -3240 ((-639 |#1|) $)) (-15 -3926 ((-639 (-900 |#1|)) $)) (-15 -2398 ((-639 (-639 (-766))) $)) (-15 -4053 ($ (-639 (-900 |#1|)))) (-15 -4015 ($ (-639 (-900 |#1|)))) (-15 -2872 ((-1094 |#1|) $ |#1|)) (-15 -4194 ((-1094 (-1094 |#1|)) $)) (-15 -2872 ((-1094 (-1094 |#1|)) $ (-1094 |#1|))) (-15 -2872 ((-1094 (-639 |#1|)) $ (-639 |#1|))) (-15 -1572 ((-112) (-900 |#1|) $)) (-15 -1947 ((-639 (-766)) (-900 |#1|) $)) (-15 -3773 ((-639 (-766)) (-900 |#1|) $)) (-15 -1946 ((-1094 |#1|) $)) (-15 -1761 ((-112) $ $)) (-15 -1785 ((-112) $ $)) (-15 -3417 ((-1261) $)) (-15 -3417 ((-1261) $ (-562) (-562))))) -((-4041 (((-112) $ $) NIL)) (-1395 (((-639 $) (-639 $)) 77)) (-1587 (((-562) $) 60)) (-3329 (($) NIL T CONST)) (-1694 (((-3 $ "failed") $) NIL)) (-1993 (((-766) $) 58)) (-2872 (((-1094 |#1|) $ |#1|) 49)) (-4367 (((-112) $) NIL)) (-3152 (((-112) $) 63)) (-3222 (((-766) $) 61)) (-1946 (((-1094 |#1|) $) 42)) (-1551 (($ $ $) NIL (-4037 (|has| |#1| (-367)) (|has| |#1| (-845))))) (-2993 (($ $ $) NIL (-4037 (|has| |#1| (-367)) (|has| |#1| (-845))))) (-3267 (((-2 (|:| |preimage| (-639 |#1|)) (|:| |image| (-639 |#1|))) $) 37)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) 93)) (-1709 (((-1112) $) NIL)) (-2336 (((-1094 |#1|) $) 100 (|has| |#1| (-367)))) (-2438 (((-112) $) 59)) (-1433 ((|#1| $ |#1|) 47)) (-2343 ((|#1| $ |#1|) 94)) (-2250 (((-766) $) 44)) (-3639 (($ (-639 (-639 |#1|))) 85)) (-2969 (((-966) $) 53)) (-2263 (($ (-639 |#1|)) 22)) (-1660 (($ $ $) NIL)) (-2114 (($ $ $) NIL)) (-2751 (($ (-639 (-639 |#1|))) 39)) (-2824 (($ (-639 (-639 |#1|))) 88)) (-4143 (($ (-639 |#1|)) 96)) (-4053 (((-857) $) 84) (($ (-639 (-639 |#1|))) 66) (($ (-639 |#1|)) 67)) (-2294 (($) 17 T CONST)) (-1798 (((-112) $ $) NIL (-4037 (|has| |#1| (-367)) (|has| |#1| (-845))))) (-1771 (((-112) $ $) NIL (-4037 (|has| |#1| (-367)) (|has| |#1| (-845))))) (-1733 (((-112) $ $) 45)) (-1785 (((-112) $ $) NIL (-4037 (|has| |#1| (-367)) (|has| |#1| (-845))))) (-1761 (((-112) $ $) 65)) (-1859 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ $ $) 23))) -(((-900 |#1|) (-13 (-898 |#1|) (-10 -8 (-15 -3267 ((-2 (|:| |preimage| (-639 |#1|)) (|:| |image| (-639 |#1|))) $)) (-15 -2751 ($ (-639 (-639 |#1|)))) (-15 -4053 ($ (-639 (-639 |#1|)))) (-15 -4053 ($ (-639 |#1|))) (-15 -2824 ($ (-639 (-639 |#1|)))) (-15 -2250 ((-766) $)) (-15 -1946 ((-1094 |#1|) $)) (-15 -2969 ((-966) $)) (-15 -1993 ((-766) $)) (-15 -3222 ((-766) $)) (-15 -1587 ((-562) $)) (-15 -2438 ((-112) $)) (-15 -3152 ((-112) $)) (-15 -1395 ((-639 $) (-639 $))) (IF (|has| |#1| (-367)) (-15 -2336 ((-1094 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-544)) (-15 -4143 ($ (-639 |#1|))) (IF (|has| |#1| (-367)) (-15 -4143 ($ (-639 |#1|))) |%noBranch|)))) (-1092)) (T -900)) -((-3267 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-639 *3)) (|:| |image| (-639 *3)))) (-5 *1 (-900 *3)) (-4 *3 (-1092)))) (-2751 (*1 *1 *2) (-12 (-5 *2 (-639 (-639 *3))) (-4 *3 (-1092)) (-5 *1 (-900 *3)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-639 (-639 *3))) (-4 *3 (-1092)) (-5 *1 (-900 *3)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-5 *1 (-900 *3)))) (-2824 (*1 *1 *2) (-12 (-5 *2 (-639 (-639 *3))) (-4 *3 (-1092)) (-5 *1 (-900 *3)))) (-2250 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-900 *3)) (-4 *3 (-1092)))) (-1946 (*1 *2 *1) (-12 (-5 *2 (-1094 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1092)))) (-2969 (*1 *2 *1) (-12 (-5 *2 (-966)) (-5 *1 (-900 *3)) (-4 *3 (-1092)))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-900 *3)) (-4 *3 (-1092)))) (-3222 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-900 *3)) (-4 *3 (-1092)))) (-1587 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-900 *3)) (-4 *3 (-1092)))) (-2438 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3)) (-4 *3 (-1092)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3)) (-4 *3 (-1092)))) (-1395 (*1 *2 *2) (-12 (-5 *2 (-639 (-900 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1092)))) (-2336 (*1 *2 *1) (-12 (-5 *2 (-1094 *3)) (-5 *1 (-900 *3)) (-4 *3 (-367)) (-4 *3 (-1092)))) (-4143 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-5 *1 (-900 *3))))) -(-13 (-898 |#1|) (-10 -8 (-15 -3267 ((-2 (|:| |preimage| (-639 |#1|)) (|:| |image| (-639 |#1|))) $)) (-15 -2751 ($ (-639 (-639 |#1|)))) (-15 -4053 ($ (-639 (-639 |#1|)))) (-15 -4053 ($ (-639 |#1|))) (-15 -2824 ($ (-639 (-639 |#1|)))) (-15 -2250 ((-766) $)) (-15 -1946 ((-1094 |#1|) $)) (-15 -2969 ((-966) $)) (-15 -1993 ((-766) $)) (-15 -3222 ((-766) $)) (-15 -1587 ((-562) $)) (-15 -2438 ((-112) $)) (-15 -3152 ((-112) $)) (-15 -1395 ((-639 $) (-639 $))) (IF (|has| |#1| (-367)) (-15 -2336 ((-1094 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-544)) (-15 -4143 ($ (-639 |#1|))) (IF (|has| |#1| (-367)) (-15 -4143 ($ (-639 |#1|))) |%noBranch|)))) -((-3752 (((-3 (-639 (-1164 |#4|)) "failed") (-639 (-1164 |#4|)) (-1164 |#4|)) 127)) (-3852 ((|#1|) 76)) (-2469 (((-417 (-1164 |#4|)) (-1164 |#4|)) 136)) (-2526 (((-417 (-1164 |#4|)) (-639 |#3|) (-1164 |#4|)) 68)) (-2468 (((-417 (-1164 |#4|)) (-1164 |#4|)) 146)) (-1432 (((-3 (-639 (-1164 |#4|)) "failed") (-639 (-1164 |#4|)) (-1164 |#4|) |#3|) 91))) -(((-901 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3752 ((-3 (-639 (-1164 |#4|)) "failed") (-639 (-1164 |#4|)) (-1164 |#4|))) (-15 -2468 ((-417 (-1164 |#4|)) (-1164 |#4|))) (-15 -2469 ((-417 (-1164 |#4|)) (-1164 |#4|))) (-15 -3852 (|#1|)) (-15 -1432 ((-3 (-639 (-1164 |#4|)) "failed") (-639 (-1164 |#4|)) (-1164 |#4|) |#3|)) (-15 -2526 ((-417 (-1164 |#4|)) (-639 |#3|) (-1164 |#4|)))) (-904) (-788) (-845) (-944 |#1| |#2| |#3|)) (T -901)) -((-2526 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *7)) (-4 *7 (-845)) (-4 *5 (-904)) (-4 *6 (-788)) (-4 *8 (-944 *5 *6 *7)) (-5 *2 (-417 (-1164 *8))) (-5 *1 (-901 *5 *6 *7 *8)) (-5 *4 (-1164 *8)))) (-1432 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-639 (-1164 *7))) (-5 *3 (-1164 *7)) (-4 *7 (-944 *5 *6 *4)) (-4 *5 (-904)) (-4 *6 (-788)) (-4 *4 (-845)) (-5 *1 (-901 *5 *6 *4 *7)))) (-3852 (*1 *2) (-12 (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-904)) (-5 *1 (-901 *2 *3 *4 *5)) (-4 *5 (-944 *2 *3 *4)))) (-2469 (*1 *2 *3) (-12 (-4 *4 (-904)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-944 *4 *5 *6)) (-5 *2 (-417 (-1164 *7))) (-5 *1 (-901 *4 *5 *6 *7)) (-5 *3 (-1164 *7)))) (-2468 (*1 *2 *3) (-12 (-4 *4 (-904)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-944 *4 *5 *6)) (-5 *2 (-417 (-1164 *7))) (-5 *1 (-901 *4 *5 *6 *7)) (-5 *3 (-1164 *7)))) (-3752 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-639 (-1164 *7))) (-5 *3 (-1164 *7)) (-4 *7 (-944 *4 *5 *6)) (-4 *4 (-904)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-901 *4 *5 *6 *7))))) -(-10 -7 (-15 -3752 ((-3 (-639 (-1164 |#4|)) "failed") (-639 (-1164 |#4|)) (-1164 |#4|))) (-15 -2468 ((-417 (-1164 |#4|)) (-1164 |#4|))) (-15 -2469 ((-417 (-1164 |#4|)) (-1164 |#4|))) (-15 -3852 (|#1|)) (-15 -1432 ((-3 (-639 (-1164 |#4|)) "failed") (-639 (-1164 |#4|)) (-1164 |#4|) |#3|)) (-15 -2526 ((-417 (-1164 |#4|)) (-639 |#3|) (-1164 |#4|)))) -((-3752 (((-3 (-639 (-1164 |#2|)) "failed") (-639 (-1164 |#2|)) (-1164 |#2|)) 36)) (-3852 ((|#1|) 53)) (-2469 (((-417 (-1164 |#2|)) (-1164 |#2|)) 101)) (-2526 (((-417 (-1164 |#2|)) (-1164 |#2|)) 89)) (-2468 (((-417 (-1164 |#2|)) (-1164 |#2|)) 112))) -(((-902 |#1| |#2|) (-10 -7 (-15 -3752 ((-3 (-639 (-1164 |#2|)) "failed") (-639 (-1164 |#2|)) (-1164 |#2|))) (-15 -2468 ((-417 (-1164 |#2|)) (-1164 |#2|))) (-15 -2469 ((-417 (-1164 |#2|)) (-1164 |#2|))) (-15 -3852 (|#1|)) (-15 -2526 ((-417 (-1164 |#2|)) (-1164 |#2|)))) (-904) (-1232 |#1|)) (T -902)) -((-2526 (*1 *2 *3) (-12 (-4 *4 (-904)) (-4 *5 (-1232 *4)) (-5 *2 (-417 (-1164 *5))) (-5 *1 (-902 *4 *5)) (-5 *3 (-1164 *5)))) (-3852 (*1 *2) (-12 (-4 *2 (-904)) (-5 *1 (-902 *2 *3)) (-4 *3 (-1232 *2)))) (-2469 (*1 *2 *3) (-12 (-4 *4 (-904)) (-4 *5 (-1232 *4)) (-5 *2 (-417 (-1164 *5))) (-5 *1 (-902 *4 *5)) (-5 *3 (-1164 *5)))) (-2468 (*1 *2 *3) (-12 (-4 *4 (-904)) (-4 *5 (-1232 *4)) (-5 *2 (-417 (-1164 *5))) (-5 *1 (-902 *4 *5)) (-5 *3 (-1164 *5)))) (-3752 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-639 (-1164 *5))) (-5 *3 (-1164 *5)) (-4 *5 (-1232 *4)) (-4 *4 (-904)) (-5 *1 (-902 *4 *5))))) -(-10 -7 (-15 -3752 ((-3 (-639 (-1164 |#2|)) "failed") (-639 (-1164 |#2|)) (-1164 |#2|))) (-15 -2468 ((-417 (-1164 |#2|)) (-1164 |#2|))) (-15 -2469 ((-417 (-1164 |#2|)) (-1164 |#2|))) (-15 -3852 (|#1|)) (-15 -2526 ((-417 (-1164 |#2|)) (-1164 |#2|)))) -((-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) 41)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 18)) (-2059 (((-3 $ "failed") $) 35))) -(((-903 |#1|) (-10 -8 (-15 -2059 ((-3 |#1| "failed") |#1|)) (-15 -2654 ((-3 (-639 (-1164 |#1|)) "failed") (-639 (-1164 |#1|)) (-1164 |#1|))) (-15 -2602 ((-1164 |#1|) (-1164 |#1|) (-1164 |#1|)))) (-904)) (T -903)) -NIL -(-10 -8 (-15 -2059 ((-3 |#1| "failed") |#1|)) (-15 -2654 ((-3 (-639 (-1164 |#1|)) "failed") (-639 (-1164 |#1|)) (-1164 |#1|))) (-15 -2602 ((-1164 |#1|) (-1164 |#1|) (-1164 |#1|)))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 42)) (-1965 (($ $) 41)) (-4102 (((-112) $) 39)) (-2781 (((-3 $ "failed") $ $) 19)) (-3517 (((-417 (-1164 $)) (-1164 $)) 61)) (-1977 (($ $) 52)) (-3788 (((-417 $) $) 53)) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) 58)) (-3329 (($) 17 T CONST)) (-1694 (((-3 $ "failed") $) 33)) (-3521 (((-112) $) 54)) (-4367 (((-112) $) 31)) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-3586 (((-417 (-1164 $)) (-1164 $)) 59)) (-3468 (((-417 (-1164 $)) (-1164 $)) 60)) (-1635 (((-417 $) $) 51)) (-1762 (((-3 $ "failed") $ $) 43)) (-1870 (((-3 (-1256 $) "failed") (-683 $)) 57 (|has| $ (-144)))) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ $) 44)) (-2059 (((-3 $ "failed") $) 56 (|has| $ (-144)))) (-1568 (((-766)) 28)) (-3799 (((-112) $ $) 40)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) -(((-904) (-139)) (T -904)) -((-2602 (*1 *2 *2 *2) (-12 (-5 *2 (-1164 *1)) (-4 *1 (-904)))) (-3517 (*1 *2 *3) (-12 (-4 *1 (-904)) (-5 *2 (-417 (-1164 *1))) (-5 *3 (-1164 *1)))) (-3468 (*1 *2 *3) (-12 (-4 *1 (-904)) (-5 *2 (-417 (-1164 *1))) (-5 *3 (-1164 *1)))) (-3586 (*1 *2 *3) (-12 (-4 *1 (-904)) (-5 *2 (-417 (-1164 *1))) (-5 *3 (-1164 *1)))) (-2654 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-639 (-1164 *1))) (-5 *3 (-1164 *1)) (-4 *1 (-904)))) (-1870 (*1 *2 *3) (|partial| -12 (-5 *3 (-683 *1)) (-4 *1 (-144)) (-4 *1 (-904)) (-5 *2 (-1256 *1)))) (-2059 (*1 *1 *1) (|partial| -12 (-4 *1 (-144)) (-4 *1 (-904))))) -(-13 (-1211) (-10 -8 (-15 -3517 ((-417 (-1164 $)) (-1164 $))) (-15 -3468 ((-417 (-1164 $)) (-1164 $))) (-15 -3586 ((-417 (-1164 $)) (-1164 $))) (-15 -2602 ((-1164 $) (-1164 $) (-1164 $))) (-15 -2654 ((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $))) (IF (|has| $ (-144)) (PROGN (-15 -1870 ((-3 (-1256 $) "failed") (-683 $))) (-15 -2059 ((-3 $ "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-289) . T) ((-451) . T) ((-554) . T) ((-642 $) . T) ((-712 $) . T) ((-721) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1211) . T)) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-3826 (((-112) $) NIL)) (-2284 (((-766)) NIL)) (-1748 (($ $ (-916)) NIL (|has| $ (-367))) (($ $) NIL)) (-1755 (((-1180 (-916) (-766)) (-562)) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-1436 (((-112) $ $) NIL)) (-1382 (((-766)) NIL)) (-3329 (($) NIL T CONST)) (-4048 (((-3 $ "failed") $) NIL)) (-3960 (($ $) NIL)) (-3916 (($ (-1256 $)) NIL)) (-3082 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-1810 (($ $ $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-1447 (($) NIL)) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-2787 (($) NIL)) (-1844 (((-112) $) NIL)) (-2184 (($ $) NIL) (($ $ (-766)) NIL)) (-3521 (((-112) $) NIL)) (-1993 (((-828 (-916)) $) NIL) (((-916) $) NIL)) (-4367 (((-112) $) NIL)) (-2631 (($) NIL (|has| $ (-367)))) (-1775 (((-112) $) NIL (|has| $ (-367)))) (-4363 (($ $ (-916)) NIL (|has| $ (-367))) (($ $) NIL)) (-3828 (((-3 $ "failed") $) NIL)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1937 (((-1164 $) $ (-916)) NIL (|has| $ (-367))) (((-1164 $) $) NIL)) (-3549 (((-916) $) NIL)) (-2121 (((-1164 $) $) NIL (|has| $ (-367)))) (-1894 (((-3 (-1164 $) "failed") $ $) NIL (|has| $ (-367))) (((-1164 $) $) NIL (|has| $ (-367)))) (-3319 (($ $ (-1164 $)) NIL (|has| $ (-367)))) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3730 (($) NIL T CONST)) (-2464 (($ (-916)) NIL)) (-2991 (((-112) $) NIL)) (-1709 (((-1112) $) NIL)) (-3147 (($) NIL (|has| $ (-367)))) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-1753 (((-639 (-2 (|:| -1635 (-562)) (|:| -1300 (-562))))) NIL)) (-1635 (((-417 $) $) NIL)) (-3548 (((-916)) NIL) (((-828 (-916))) NIL)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2044 (((-766) $) NIL)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-3543 (((-3 (-766) "failed") $ $) NIL) (((-766) $) NIL)) (-4340 (((-133)) NIL)) (-4029 (($ $ (-766)) NIL) (($ $) NIL)) (-2250 (((-916) $) NIL) (((-828 (-916)) $) NIL)) (-3371 (((-1164 $)) NIL)) (-1653 (($) NIL)) (-3861 (($) NIL (|has| $ (-367)))) (-2205 (((-683 $) (-1256 $)) NIL) (((-1256 $) $) NIL)) (-4208 (((-562) $) NIL)) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL)) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL)) (-2059 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-1568 (((-766)) NIL)) (-4291 (((-1256 $) (-916)) NIL) (((-1256 $)) NIL)) (-3799 (((-112) $ $) NIL)) (-3782 (((-112) $) NIL)) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-4144 (($ $ (-766)) NIL (|has| $ (-367))) (($ $) NIL (|has| $ (-367)))) (-3113 (($ $ (-766)) NIL) (($ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1859 (($ $ $) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL))) -(((-905 |#1|) (-13 (-348) (-328 $) (-610 (-562))) (-916)) (T -905)) -NIL -(-13 (-348) (-328 $) (-610 (-562))) -((-3470 (((-3 (-2 (|:| -1993 (-766)) (|:| -1407 |#5|)) "failed") (-335 |#2| |#3| |#4| |#5|)) 79)) (-3241 (((-112) (-335 |#2| |#3| |#4| |#5|)) 17)) (-1993 (((-3 (-766) "failed") (-335 |#2| |#3| |#4| |#5|)) 15))) -(((-906 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1993 ((-3 (-766) "failed") (-335 |#2| |#3| |#4| |#5|))) (-15 -3241 ((-112) (-335 |#2| |#3| |#4| |#5|))) (-15 -3470 ((-3 (-2 (|:| -1993 (-766)) (|:| -1407 |#5|)) "failed") (-335 |#2| |#3| |#4| |#5|)))) (-13 (-845) (-554) (-1033 (-562))) (-429 |#1|) (-1232 |#2|) (-1232 (-406 |#3|)) (-341 |#2| |#3| |#4|)) (T -906)) -((-3470 (*1 *2 *3) (|partial| -12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4)) (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) (-4 *4 (-13 (-845) (-554) (-1033 (-562)))) (-5 *2 (-2 (|:| -1993 (-766)) (|:| -1407 *8))) (-5 *1 (-906 *4 *5 *6 *7 *8)))) (-3241 (*1 *2 *3) (-12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4)) (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) (-4 *4 (-13 (-845) (-554) (-1033 (-562)))) (-5 *2 (-112)) (-5 *1 (-906 *4 *5 *6 *7 *8)))) (-1993 (*1 *2 *3) (|partial| -12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4)) (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) (-4 *4 (-13 (-845) (-554) (-1033 (-562)))) (-5 *2 (-766)) (-5 *1 (-906 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -1993 ((-3 (-766) "failed") (-335 |#2| |#3| |#4| |#5|))) (-15 -3241 ((-112) (-335 |#2| |#3| |#4| |#5|))) (-15 -3470 ((-3 (-2 (|:| -1993 (-766)) (|:| -1407 |#5|)) "failed") (-335 |#2| |#3| |#4| |#5|)))) -((-3470 (((-3 (-2 (|:| -1993 (-766)) (|:| -1407 |#3|)) "failed") (-335 (-406 (-562)) |#1| |#2| |#3|)) 56)) (-3241 (((-112) (-335 (-406 (-562)) |#1| |#2| |#3|)) 16)) (-1993 (((-3 (-766) "failed") (-335 (-406 (-562)) |#1| |#2| |#3|)) 14))) -(((-907 |#1| |#2| |#3|) (-10 -7 (-15 -1993 ((-3 (-766) "failed") (-335 (-406 (-562)) |#1| |#2| |#3|))) (-15 -3241 ((-112) (-335 (-406 (-562)) |#1| |#2| |#3|))) (-15 -3470 ((-3 (-2 (|:| -1993 (-766)) (|:| -1407 |#3|)) "failed") (-335 (-406 (-562)) |#1| |#2| |#3|)))) (-1232 (-406 (-562))) (-1232 (-406 |#1|)) (-341 (-406 (-562)) |#1| |#2|)) (T -907)) -((-3470 (*1 *2 *3) (|partial| -12 (-5 *3 (-335 (-406 (-562)) *4 *5 *6)) (-4 *4 (-1232 (-406 (-562)))) (-4 *5 (-1232 (-406 *4))) (-4 *6 (-341 (-406 (-562)) *4 *5)) (-5 *2 (-2 (|:| -1993 (-766)) (|:| -1407 *6))) (-5 *1 (-907 *4 *5 *6)))) (-3241 (*1 *2 *3) (-12 (-5 *3 (-335 (-406 (-562)) *4 *5 *6)) (-4 *4 (-1232 (-406 (-562)))) (-4 *5 (-1232 (-406 *4))) (-4 *6 (-341 (-406 (-562)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-907 *4 *5 *6)))) (-1993 (*1 *2 *3) (|partial| -12 (-5 *3 (-335 (-406 (-562)) *4 *5 *6)) (-4 *4 (-1232 (-406 (-562)))) (-4 *5 (-1232 (-406 *4))) (-4 *6 (-341 (-406 (-562)) *4 *5)) (-5 *2 (-766)) (-5 *1 (-907 *4 *5 *6))))) -(-10 -7 (-15 -1993 ((-3 (-766) "failed") (-335 (-406 (-562)) |#1| |#2| |#3|))) (-15 -3241 ((-112) (-335 (-406 (-562)) |#1| |#2| |#3|))) (-15 -3470 ((-3 (-2 (|:| -1993 (-766)) (|:| -1407 |#3|)) "failed") (-335 (-406 (-562)) |#1| |#2| |#3|)))) -((-3574 ((|#2| |#2|) 26)) (-3167 (((-562) (-639 (-2 (|:| |den| (-562)) (|:| |gcdnum| (-562))))) 15)) (-2364 (((-916) (-562)) 35)) (-4327 (((-562) |#2|) 42)) (-4233 (((-562) |#2|) 21) (((-2 (|:| |den| (-562)) (|:| |gcdnum| (-562))) |#1|) 20))) -(((-908 |#1| |#2|) (-10 -7 (-15 -2364 ((-916) (-562))) (-15 -4233 ((-2 (|:| |den| (-562)) (|:| |gcdnum| (-562))) |#1|)) (-15 -4233 ((-562) |#2|)) (-15 -3167 ((-562) (-639 (-2 (|:| |den| (-562)) (|:| |gcdnum| (-562)))))) (-15 -4327 ((-562) |#2|)) (-15 -3574 (|#2| |#2|))) (-1232 (-406 (-562))) (-1232 (-406 |#1|))) (T -908)) -((-3574 (*1 *2 *2) (-12 (-4 *3 (-1232 (-406 (-562)))) (-5 *1 (-908 *3 *2)) (-4 *2 (-1232 (-406 *3))))) (-4327 (*1 *2 *3) (-12 (-4 *4 (-1232 (-406 *2))) (-5 *2 (-562)) (-5 *1 (-908 *4 *3)) (-4 *3 (-1232 (-406 *4))))) (-3167 (*1 *2 *3) (-12 (-5 *3 (-639 (-2 (|:| |den| (-562)) (|:| |gcdnum| (-562))))) (-4 *4 (-1232 (-406 *2))) (-5 *2 (-562)) (-5 *1 (-908 *4 *5)) (-4 *5 (-1232 (-406 *4))))) (-4233 (*1 *2 *3) (-12 (-4 *4 (-1232 (-406 *2))) (-5 *2 (-562)) (-5 *1 (-908 *4 *3)) (-4 *3 (-1232 (-406 *4))))) (-4233 (*1 *2 *3) (-12 (-4 *3 (-1232 (-406 (-562)))) (-5 *2 (-2 (|:| |den| (-562)) (|:| |gcdnum| (-562)))) (-5 *1 (-908 *3 *4)) (-4 *4 (-1232 (-406 *3))))) (-2364 (*1 *2 *3) (-12 (-5 *3 (-562)) (-4 *4 (-1232 (-406 *3))) (-5 *2 (-916)) (-5 *1 (-908 *4 *5)) (-4 *5 (-1232 (-406 *4)))))) -(-10 -7 (-15 -2364 ((-916) (-562))) (-15 -4233 ((-2 (|:| |den| (-562)) (|:| |gcdnum| (-562))) |#1|)) (-15 -4233 ((-562) |#2|)) (-15 -3167 ((-562) (-639 (-2 (|:| |den| (-562)) (|:| |gcdnum| (-562)))))) (-15 -4327 ((-562) |#2|)) (-15 -3574 (|#2| |#2|))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2300 ((|#1| $) 81)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-1436 (((-112) $ $) NIL)) (-3329 (($) NIL T CONST)) (-1810 (($ $ $) NIL)) (-1694 (((-3 $ "failed") $) 75)) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-3521 (((-112) $) NIL)) (-3613 (($ |#1| (-417 |#1|)) 73)) (-2120 (((-1164 |#1|) |#1| |#1|) 41)) (-2124 (($ $) 49)) (-4367 (((-112) $) NIL)) (-3148 (((-562) $) 78)) (-1394 (($ $ (-562)) 80)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2007 ((|#1| $) 77)) (-3280 (((-417 |#1|) $) 76)) (-1635 (((-417 $) $) NIL)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) 74)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2044 (((-766) $) NIL)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-2315 (($ $) 39)) (-4053 (((-857) $) 99) (($ (-562)) 54) (($ $) NIL) (($ (-406 (-562))) NIL) (($ |#1|) 31) (((-406 |#1|) $) 59) (($ (-406 (-417 |#1|))) 67)) (-1568 (((-766)) 52)) (-3799 (((-112) $ $) NIL)) (-2285 (($) 23 T CONST)) (-2294 (($) 12 T CONST)) (-1733 (((-112) $ $) 68)) (-1859 (($ $ $) NIL)) (-1847 (($ $) 88) (($ $ $) NIL)) (-1836 (($ $ $) 38)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 90) (($ $ $) 37) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL))) -(((-909 |#1|) (-13 (-362) (-38 |#1|) (-10 -8 (-15 -4053 ((-406 |#1|) $)) (-15 -4053 ($ (-406 (-417 |#1|)))) (-15 -2315 ($ $)) (-15 -3280 ((-417 |#1|) $)) (-15 -2007 (|#1| $)) (-15 -1394 ($ $ (-562))) (-15 -3148 ((-562) $)) (-15 -2120 ((-1164 |#1|) |#1| |#1|)) (-15 -2124 ($ $)) (-15 -3613 ($ |#1| (-417 |#1|))) (-15 -2300 (|#1| $)))) (-306)) (T -909)) -((-4053 (*1 *2 *1) (-12 (-5 *2 (-406 *3)) (-5 *1 (-909 *3)) (-4 *3 (-306)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-406 (-417 *3))) (-4 *3 (-306)) (-5 *1 (-909 *3)))) (-2315 (*1 *1 *1) (-12 (-5 *1 (-909 *2)) (-4 *2 (-306)))) (-3280 (*1 *2 *1) (-12 (-5 *2 (-417 *3)) (-5 *1 (-909 *3)) (-4 *3 (-306)))) (-2007 (*1 *2 *1) (-12 (-5 *1 (-909 *2)) (-4 *2 (-306)))) (-1394 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-909 *3)) (-4 *3 (-306)))) (-3148 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-909 *3)) (-4 *3 (-306)))) (-2120 (*1 *2 *3 *3) (-12 (-5 *2 (-1164 *3)) (-5 *1 (-909 *3)) (-4 *3 (-306)))) (-2124 (*1 *1 *1) (-12 (-5 *1 (-909 *2)) (-4 *2 (-306)))) (-3613 (*1 *1 *2 *3) (-12 (-5 *3 (-417 *2)) (-4 *2 (-306)) (-5 *1 (-909 *2)))) (-2300 (*1 *2 *1) (-12 (-5 *1 (-909 *2)) (-4 *2 (-306))))) -(-13 (-362) (-38 |#1|) (-10 -8 (-15 -4053 ((-406 |#1|) $)) (-15 -4053 ($ (-406 (-417 |#1|)))) (-15 -2315 ($ $)) (-15 -3280 ((-417 |#1|) $)) (-15 -2007 (|#1| $)) (-15 -1394 ($ $ (-562))) (-15 -3148 ((-562) $)) (-15 -2120 ((-1164 |#1|) |#1| |#1|)) (-15 -2124 ($ $)) (-15 -3613 ($ |#1| (-417 |#1|))) (-15 -2300 (|#1| $)))) -((-3613 (((-52) (-947 |#1|) (-417 (-947 |#1|)) (-1168)) 17) (((-52) (-406 (-947 |#1|)) (-1168)) 18))) -(((-910 |#1|) (-10 -7 (-15 -3613 ((-52) (-406 (-947 |#1|)) (-1168))) (-15 -3613 ((-52) (-947 |#1|) (-417 (-947 |#1|)) (-1168)))) (-13 (-306) (-146))) (T -910)) -((-3613 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-417 (-947 *6))) (-5 *5 (-1168)) (-5 *3 (-947 *6)) (-4 *6 (-13 (-306) (-146))) (-5 *2 (-52)) (-5 *1 (-910 *6)))) (-3613 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-1168)) (-4 *5 (-13 (-306) (-146))) (-5 *2 (-52)) (-5 *1 (-910 *5))))) -(-10 -7 (-15 -3613 ((-52) (-406 (-947 |#1|)) (-1168))) (-15 -3613 ((-52) (-947 |#1|) (-417 (-947 |#1|)) (-1168)))) -((-3169 ((|#4| (-639 |#4|)) 121) (((-1164 |#4|) (-1164 |#4|) (-1164 |#4|)) 66) ((|#4| |#4| |#4|) 120)) (-1606 (((-1164 |#4|) (-639 (-1164 |#4|))) 114) (((-1164 |#4|) (-1164 |#4|) (-1164 |#4|)) 49) ((|#4| (-639 |#4|)) 54) ((|#4| |#4| |#4|) 84))) -(((-911 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1606 (|#4| |#4| |#4|)) (-15 -1606 (|#4| (-639 |#4|))) (-15 -1606 ((-1164 |#4|) (-1164 |#4|) (-1164 |#4|))) (-15 -1606 ((-1164 |#4|) (-639 (-1164 |#4|)))) (-15 -3169 (|#4| |#4| |#4|)) (-15 -3169 ((-1164 |#4|) (-1164 |#4|) (-1164 |#4|))) (-15 -3169 (|#4| (-639 |#4|)))) (-788) (-845) (-306) (-944 |#3| |#1| |#2|)) (T -911)) -((-3169 (*1 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-944 *6 *4 *5)) (-5 *1 (-911 *4 *5 *6 *2)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-306)))) (-3169 (*1 *2 *2 *2) (-12 (-5 *2 (-1164 *6)) (-4 *6 (-944 *5 *3 *4)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *5 (-306)) (-5 *1 (-911 *3 *4 *5 *6)))) (-3169 (*1 *2 *2 *2) (-12 (-4 *3 (-788)) (-4 *4 (-845)) (-4 *5 (-306)) (-5 *1 (-911 *3 *4 *5 *2)) (-4 *2 (-944 *5 *3 *4)))) (-1606 (*1 *2 *3) (-12 (-5 *3 (-639 (-1164 *7))) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-306)) (-5 *2 (-1164 *7)) (-5 *1 (-911 *4 *5 *6 *7)) (-4 *7 (-944 *6 *4 *5)))) (-1606 (*1 *2 *2 *2) (-12 (-5 *2 (-1164 *6)) (-4 *6 (-944 *5 *3 *4)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *5 (-306)) (-5 *1 (-911 *3 *4 *5 *6)))) (-1606 (*1 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-944 *6 *4 *5)) (-5 *1 (-911 *4 *5 *6 *2)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-306)))) (-1606 (*1 *2 *2 *2) (-12 (-4 *3 (-788)) (-4 *4 (-845)) (-4 *5 (-306)) (-5 *1 (-911 *3 *4 *5 *2)) (-4 *2 (-944 *5 *3 *4))))) -(-10 -7 (-15 -1606 (|#4| |#4| |#4|)) (-15 -1606 (|#4| (-639 |#4|))) (-15 -1606 ((-1164 |#4|) (-1164 |#4|) (-1164 |#4|))) (-15 -1606 ((-1164 |#4|) (-639 (-1164 |#4|)))) (-15 -3169 (|#4| |#4| |#4|)) (-15 -3169 ((-1164 |#4|) (-1164 |#4|) (-1164 |#4|))) (-15 -3169 (|#4| (-639 |#4|)))) -((-2855 (((-899 (-562)) (-966)) 23) (((-899 (-562)) (-639 (-562))) 20)) (-2523 (((-899 (-562)) (-639 (-562))) 48) (((-899 (-562)) (-916)) 49)) (-3524 (((-899 (-562))) 24)) (-2952 (((-899 (-562))) 38) (((-899 (-562)) (-639 (-562))) 37)) (-1415 (((-899 (-562))) 36) (((-899 (-562)) (-639 (-562))) 35)) (-3353 (((-899 (-562))) 34) (((-899 (-562)) (-639 (-562))) 33)) (-3784 (((-899 (-562))) 32) (((-899 (-562)) (-639 (-562))) 31)) (-2549 (((-899 (-562))) 30) (((-899 (-562)) (-639 (-562))) 29)) (-2545 (((-899 (-562))) 40) (((-899 (-562)) (-639 (-562))) 39)) (-4002 (((-899 (-562)) (-639 (-562))) 52) (((-899 (-562)) (-916)) 53)) (-1324 (((-899 (-562)) (-639 (-562))) 50) (((-899 (-562)) (-916)) 51)) (-1422 (((-899 (-562)) (-639 (-562))) 46) (((-899 (-562)) (-916)) 47)) (-2686 (((-899 (-562)) (-639 (-916))) 43))) -(((-912) (-10 -7 (-15 -2523 ((-899 (-562)) (-916))) (-15 -2523 ((-899 (-562)) (-639 (-562)))) (-15 -1422 ((-899 (-562)) (-916))) (-15 -1422 ((-899 (-562)) (-639 (-562)))) (-15 -2686 ((-899 (-562)) (-639 (-916)))) (-15 -1324 ((-899 (-562)) (-916))) (-15 -1324 ((-899 (-562)) (-639 (-562)))) (-15 -4002 ((-899 (-562)) (-916))) (-15 -4002 ((-899 (-562)) (-639 (-562)))) (-15 -2549 ((-899 (-562)) (-639 (-562)))) (-15 -2549 ((-899 (-562)))) (-15 -3784 ((-899 (-562)) (-639 (-562)))) (-15 -3784 ((-899 (-562)))) (-15 -3353 ((-899 (-562)) (-639 (-562)))) (-15 -3353 ((-899 (-562)))) (-15 -1415 ((-899 (-562)) (-639 (-562)))) (-15 -1415 ((-899 (-562)))) (-15 -2952 ((-899 (-562)) (-639 (-562)))) (-15 -2952 ((-899 (-562)))) (-15 -2545 ((-899 (-562)) (-639 (-562)))) (-15 -2545 ((-899 (-562)))) (-15 -3524 ((-899 (-562)))) (-15 -2855 ((-899 (-562)) (-639 (-562)))) (-15 -2855 ((-899 (-562)) (-966))))) (T -912)) -((-2855 (*1 *2 *3) (-12 (-5 *3 (-966)) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-2855 (*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-3524 (*1 *2) (-12 (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-2545 (*1 *2) (-12 (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-2545 (*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-2952 (*1 *2) (-12 (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-2952 (*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-1415 (*1 *2) (-12 (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-1415 (*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-3353 (*1 *2) (-12 (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-3353 (*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-3784 (*1 *2) (-12 (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-3784 (*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-2549 (*1 *2) (-12 (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-2549 (*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-4002 (*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-4002 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-1324 (*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-1324 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-2686 (*1 *2 *3) (-12 (-5 *3 (-639 (-916))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-1422 (*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-1422 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-2523 (*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) (-2523 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-899 (-562))) (-5 *1 (-912))))) -(-10 -7 (-15 -2523 ((-899 (-562)) (-916))) (-15 -2523 ((-899 (-562)) (-639 (-562)))) (-15 -1422 ((-899 (-562)) (-916))) (-15 -1422 ((-899 (-562)) (-639 (-562)))) (-15 -2686 ((-899 (-562)) (-639 (-916)))) (-15 -1324 ((-899 (-562)) (-916))) (-15 -1324 ((-899 (-562)) (-639 (-562)))) (-15 -4002 ((-899 (-562)) (-916))) (-15 -4002 ((-899 (-562)) (-639 (-562)))) (-15 -2549 ((-899 (-562)) (-639 (-562)))) (-15 -2549 ((-899 (-562)))) (-15 -3784 ((-899 (-562)) (-639 (-562)))) (-15 -3784 ((-899 (-562)))) (-15 -3353 ((-899 (-562)) (-639 (-562)))) (-15 -3353 ((-899 (-562)))) (-15 -1415 ((-899 (-562)) (-639 (-562)))) (-15 -1415 ((-899 (-562)))) (-15 -2952 ((-899 (-562)) (-639 (-562)))) (-15 -2952 ((-899 (-562)))) (-15 -2545 ((-899 (-562)) (-639 (-562)))) (-15 -2545 ((-899 (-562)))) (-15 -3524 ((-899 (-562)))) (-15 -2855 ((-899 (-562)) (-639 (-562)))) (-15 -2855 ((-899 (-562)) (-966)))) -((-3584 (((-639 (-947 |#1|)) (-639 (-947 |#1|)) (-639 (-1168))) 12)) (-2797 (((-639 (-947 |#1|)) (-639 (-947 |#1|)) (-639 (-1168))) 11))) -(((-913 |#1|) (-10 -7 (-15 -2797 ((-639 (-947 |#1|)) (-639 (-947 |#1|)) (-639 (-1168)))) (-15 -3584 ((-639 (-947 |#1|)) (-639 (-947 |#1|)) (-639 (-1168))))) (-451)) (T -913)) -((-3584 (*1 *2 *2 *3) (-12 (-5 *2 (-639 (-947 *4))) (-5 *3 (-639 (-1168))) (-4 *4 (-451)) (-5 *1 (-913 *4)))) (-2797 (*1 *2 *2 *3) (-12 (-5 *2 (-639 (-947 *4))) (-5 *3 (-639 (-1168))) (-4 *4 (-451)) (-5 *1 (-913 *4))))) -(-10 -7 (-15 -2797 ((-639 (-947 |#1|)) (-639 (-947 |#1|)) (-639 (-1168)))) (-15 -3584 ((-639 (-947 |#1|)) (-639 (-947 |#1|)) (-639 (-1168))))) -((-4053 (((-315 |#1|) (-476)) 16))) -(((-914 |#1|) (-10 -7 (-15 -4053 ((-315 |#1|) (-476)))) (-13 (-845) (-554))) (T -914)) -((-4053 (*1 *2 *3) (-12 (-5 *3 (-476)) (-5 *2 (-315 *4)) (-5 *1 (-914 *4)) (-4 *4 (-13 (-845) (-554)))))) -(-10 -7 (-15 -4053 ((-315 |#1|) (-476)))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 42)) (-1965 (($ $) 41)) (-4102 (((-112) $) 39)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-1694 (((-3 $ "failed") $) 33)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) 52)) (-4367 (((-112) $) 31)) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-1762 (((-3 $ "failed") $ $) 43)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) 51)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ $) 44)) (-1568 (((-766)) 28)) (-3799 (((-112) $ $) 40)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) -(((-915) (-139)) (T -915)) -((-2288 (*1 *2 *3) (-12 (-4 *1 (-915)) (-5 *2 (-2 (|:| -4221 (-639 *1)) (|:| -3147 *1))) (-5 *3 (-639 *1)))) (-1879 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-639 *1)) (-4 *1 (-915))))) -(-13 (-451) (-10 -8 (-15 -2288 ((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $))) (-15 -1879 ((-3 (-639 $) "failed") (-639 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-289) . T) ((-451) . T) ((-554) . T) ((-642 $) . T) ((-712 $) . T) ((-721) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) -((-4041 (((-112) $ $) NIL)) (-3329 (($) NIL T CONST)) (-1694 (((-3 $ "failed") $) NIL)) (-4367 (((-112) $) NIL)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1606 (($ $ $) NIL)) (-4053 (((-857) $) NIL)) (-2294 (($) NIL T CONST)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-766)) NIL) (($ $ (-916)) NIL)) (* (($ (-916) $) NIL) (($ $ $) NIL))) -(((-916) (-13 (-789) (-721) (-10 -8 (-15 -1606 ($ $ $)) (-6 (-4405 "*"))))) (T -916)) -((-1606 (*1 *1 *1 *1) (-5 *1 (-916)))) -(-13 (-789) (-721) (-10 -8 (-15 -1606 ($ $ $)) (-6 (-4405 "*")))) +((-1793 (((-3 |#2| "failed") |#2| |#2| (-114) (-1169)) 35))) +(((-768 |#1| |#2|) (-10 -7 (-15 -1793 ((-3 |#2| "failed") |#2| |#2| (-114) (-1169)))) (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)) (-13 (-29 |#1|) (-1193) (-955))) (T -768)) +((-1793 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1169)) (-4 *5 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *1 (-768 *5 *2)) (-4 *2 (-13 (-29 *5) (-1193) (-955)))))) +(-10 -7 (-15 -1793 ((-3 |#2| "failed") |#2| |#2| (-114) (-1169)))) +((-1693 (((-770) |#1|) 8))) +(((-769 |#1|) (-10 -7 (-15 -1693 ((-770) |#1|))) (-1208)) (T -769)) +((-1693 (*1 *2 *3) (-12 (-5 *2 (-770)) (-5 *1 (-769 *3)) (-4 *3 (-1208))))) +(-10 -7 (-15 -1693 ((-770) |#1|))) +((-1677 (((-112) $ $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 7)) (-1718 (((-112) $ $) 9))) +(((-770) (-1093)) (T -770)) +NIL +(-1093) +((-3793 ((|#2| |#4|) 35))) +(((-771 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3793 (|#2| |#4|))) (-452) (-1233 |#1|) (-720 |#1| |#2|) (-1233 |#3|)) (T -771)) +((-3793 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-720 *4 *2)) (-4 *2 (-1233 *4)) (-5 *1 (-771 *4 *2 *5 *3)) (-4 *3 (-1233 *5))))) +(-10 -7 (-15 -3793 (|#2| |#4|))) +((-3400 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-1487 (((-1262) (-1151) (-1151) |#4| |#5|) 33)) (-3166 ((|#4| |#4| |#5|) 72)) (-2441 (((-640 (-2 (|:| |val| |#4|) (|:| -2059 |#5|))) |#4| |#5|) 76)) (-3803 (((-640 (-2 (|:| |val| (-112)) (|:| -2059 |#5|))) |#4| |#5|) 16))) +(((-772 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3400 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3166 (|#4| |#4| |#5|)) (-15 -2441 ((-640 (-2 (|:| |val| |#4|) (|:| -2059 |#5|))) |#4| |#5|)) (-15 -1487 ((-1262) (-1151) (-1151) |#4| |#5|)) (-15 -3803 ((-640 (-2 (|:| |val| (-112)) (|:| -2059 |#5|))) |#4| |#5|))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -772)) +((-3803 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -2059 *4)))) (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-1487 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1151)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *4 (-1059 *6 *7 *8)) (-5 *2 (-1262)) (-5 *1 (-772 *6 *7 *8 *4 *5)) (-4 *5 (-1065 *6 *7 *8 *4)))) (-2441 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2059 *4)))) (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3166 (*1 *2 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *2 (-1059 *4 *5 *6)) (-5 *1 (-772 *4 *5 *6 *2 *3)) (-4 *3 (-1065 *4 *5 *6 *2)))) (-3400 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) +(-10 -7 (-15 -3400 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3166 (|#4| |#4| |#5|)) (-15 -2441 ((-640 (-2 (|:| |val| |#4|) (|:| -2059 |#5|))) |#4| |#5|)) (-15 -1487 ((-1262) (-1151) (-1151) |#4| |#5|)) (-15 -3803 ((-640 (-2 (|:| |val| (-112)) (|:| -2059 |#5|))) |#4| |#5|))) +((-2131 (((-3 (-1165 (-1165 |#1|)) "failed") |#4|) 43)) (-3414 (((-640 |#4|) |#4|) 15)) (-2350 ((|#4| |#4|) 11))) +(((-773 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3414 ((-640 |#4|) |#4|)) (-15 -2131 ((-3 (-1165 (-1165 |#1|)) "failed") |#4|)) (-15 -2350 (|#4| |#4|))) (-349) (-329 |#1|) (-1233 |#2|) (-1233 |#3|) (-917)) (T -773)) +((-2350 (*1 *2 *2) (-12 (-4 *3 (-349)) (-4 *4 (-329 *3)) (-4 *5 (-1233 *4)) (-5 *1 (-773 *3 *4 *5 *2 *6)) (-4 *2 (-1233 *5)) (-14 *6 (-917)))) (-2131 (*1 *2 *3) (|partial| -12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1233 *5)) (-5 *2 (-1165 (-1165 *4))) (-5 *1 (-773 *4 *5 *6 *3 *7)) (-4 *3 (-1233 *6)) (-14 *7 (-917)))) (-3414 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1233 *5)) (-5 *2 (-640 *3)) (-5 *1 (-773 *4 *5 *6 *3 *7)) (-4 *3 (-1233 *6)) (-14 *7 (-917))))) +(-10 -7 (-15 -3414 ((-640 |#4|) |#4|)) (-15 -2131 ((-3 (-1165 (-1165 |#1|)) "failed") |#4|)) (-15 -2350 (|#4| |#4|))) +((-3176 (((-2 (|:| |deter| (-640 (-1165 |#5|))) (|:| |dterm| (-640 (-640 (-2 (|:| -4008 (-767)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-640 |#1|)) (|:| |nlead| (-640 |#5|))) (-1165 |#5|) (-640 |#1|) (-640 |#5|)) 53)) (-2943 (((-640 (-767)) |#1|) 13))) +(((-774 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3176 ((-2 (|:| |deter| (-640 (-1165 |#5|))) (|:| |dterm| (-640 (-640 (-2 (|:| -4008 (-767)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-640 |#1|)) (|:| |nlead| (-640 |#5|))) (-1165 |#5|) (-640 |#1|) (-640 |#5|))) (-15 -2943 ((-640 (-767)) |#1|))) (-1233 |#4|) (-789) (-846) (-307) (-945 |#4| |#2| |#3|)) (T -774)) +((-2943 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-640 (-767))) (-5 *1 (-774 *3 *4 *5 *6 *7)) (-4 *3 (-1233 *6)) (-4 *7 (-945 *6 *4 *5)))) (-3176 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1233 *9)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-307)) (-4 *10 (-945 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-640 (-1165 *10))) (|:| |dterm| (-640 (-640 (-2 (|:| -4008 (-767)) (|:| |pcoef| *10))))) (|:| |nfacts| (-640 *6)) (|:| |nlead| (-640 *10)))) (-5 *1 (-774 *6 *7 *8 *9 *10)) (-5 *3 (-1165 *10)) (-5 *4 (-640 *6)) (-5 *5 (-640 *10))))) +(-10 -7 (-15 -3176 ((-2 (|:| |deter| (-640 (-1165 |#5|))) (|:| |dterm| (-640 (-640 (-2 (|:| -4008 (-767)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-640 |#1|)) (|:| |nlead| (-640 |#5|))) (-1165 |#5|) (-640 |#1|) (-640 |#5|))) (-15 -2943 ((-640 (-767)) |#1|))) +((-2491 (((-640 (-2 (|:| |outval| |#1|) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 |#1|))))) (-684 (-407 (-563))) |#1|) 31)) (-4128 (((-640 |#1|) (-684 (-407 (-563))) |#1|) 21)) (-3421 (((-948 (-407 (-563))) (-684 (-407 (-563))) (-1169)) 18) (((-948 (-407 (-563))) (-684 (-407 (-563)))) 17))) +(((-775 |#1|) (-10 -7 (-15 -3421 ((-948 (-407 (-563))) (-684 (-407 (-563))))) (-15 -3421 ((-948 (-407 (-563))) (-684 (-407 (-563))) (-1169))) (-15 -4128 ((-640 |#1|) (-684 (-407 (-563))) |#1|)) (-15 -2491 ((-640 (-2 (|:| |outval| |#1|) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 |#1|))))) (-684 (-407 (-563))) |#1|))) (-13 (-363) (-844))) (T -775)) +((-2491 (*1 *2 *3 *4) (-12 (-5 *3 (-684 (-407 (-563)))) (-5 *2 (-640 (-2 (|:| |outval| *4) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 *4)))))) (-5 *1 (-775 *4)) (-4 *4 (-13 (-363) (-844))))) (-4128 (*1 *2 *3 *4) (-12 (-5 *3 (-684 (-407 (-563)))) (-5 *2 (-640 *4)) (-5 *1 (-775 *4)) (-4 *4 (-13 (-363) (-844))))) (-3421 (*1 *2 *3 *4) (-12 (-5 *3 (-684 (-407 (-563)))) (-5 *4 (-1169)) (-5 *2 (-948 (-407 (-563)))) (-5 *1 (-775 *5)) (-4 *5 (-13 (-363) (-844))))) (-3421 (*1 *2 *3) (-12 (-5 *3 (-684 (-407 (-563)))) (-5 *2 (-948 (-407 (-563)))) (-5 *1 (-775 *4)) (-4 *4 (-13 (-363) (-844)))))) +(-10 -7 (-15 -3421 ((-948 (-407 (-563))) (-684 (-407 (-563))))) (-15 -3421 ((-948 (-407 (-563))) (-684 (-407 (-563))) (-1169))) (-15 -4128 ((-640 |#1|) (-684 (-407 (-563))) |#1|)) (-15 -2491 ((-640 (-2 (|:| |outval| |#1|) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 |#1|))))) (-684 (-407 (-563))) |#1|))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) 34)) (-2606 (((-640 |#2|) $) NIL)) (-2139 (((-1165 $) $ |#2|) NIL) (((-1165 |#1|) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-4223 (($ $) NIL (|has| |#1| (-555)))) (-3156 (((-112) $) NIL (|has| |#1| (-555)))) (-1779 (((-767) $) NIL) (((-767) $ (-640 |#2|)) NIL)) (-4302 (($ $) 28)) (-2645 (((-112) $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3724 (($ $ $) 92 (|has| |#1| (-555)))) (-1623 (((-640 $) $ $) 105 (|has| |#1| (-555)))) (-2424 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-4335 (($ $) NIL (|has| |#1| (-452)))) (-3205 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-948 (-407 (-563)))) NIL (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#2| (-611 (-1169))))) (((-3 $ "failed") (-948 (-563))) NIL (-4032 (-12 (|has| |#1| (-38 (-563))) (|has| |#2| (-611 (-1169))) (-2176 (|has| |#1| (-38 (-407 (-563)))))) (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#2| (-611 (-1169)))))) (((-3 $ "failed") (-948 |#1|)) NIL (-4032 (-12 (|has| |#2| (-611 (-1169))) (-2176 (|has| |#1| (-38 (-407 (-563))))) (-2176 (|has| |#1| (-38 (-563))))) (-12 (|has| |#1| (-38 (-563))) (|has| |#2| (-611 (-1169))) (-2176 (|has| |#1| (-38 (-407 (-563))))) (-2176 (|has| |#1| (-545)))) (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#2| (-611 (-1169))) (-2176 (|has| |#1| (-988 (-563))))))) (((-3 (-1118 |#1| |#2|) "failed") $) 18)) (-2058 ((|#1| $) NIL) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#1| (-1034 (-563)))) ((|#2| $) NIL) (($ (-948 (-407 (-563)))) NIL (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#2| (-611 (-1169))))) (($ (-948 (-563))) NIL (-4032 (-12 (|has| |#1| (-38 (-563))) (|has| |#2| (-611 (-1169))) (-2176 (|has| |#1| (-38 (-407 (-563)))))) (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#2| (-611 (-1169)))))) (($ (-948 |#1|)) NIL (-4032 (-12 (|has| |#2| (-611 (-1169))) (-2176 (|has| |#1| (-38 (-407 (-563))))) (-2176 (|has| |#1| (-38 (-563))))) (-12 (|has| |#1| (-38 (-563))) (|has| |#2| (-611 (-1169))) (-2176 (|has| |#1| (-38 (-407 (-563))))) (-2176 (|has| |#1| (-545)))) (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#2| (-611 (-1169))) (-2176 (|has| |#1| (-988 (-563))))))) (((-1118 |#1| |#2|) $) NIL)) (-2742 (($ $ $ |#2|) NIL (|has| |#1| (-172))) (($ $ $) 103 (|has| |#1| (-555)))) (-2751 (($ $) NIL) (($ $ |#2|) NIL)) (-2950 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3990 (((-112) $ $) NIL) (((-112) $ (-640 $)) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-2921 (((-112) $) NIL)) (-2521 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 69)) (-2060 (($ $) 118 (|has| |#1| (-452)))) (-1300 (($ $) NIL (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-2739 (((-640 $) $) NIL)) (-2468 (((-112) $) NIL (|has| |#1| (-905)))) (-2003 (($ $) NIL (|has| |#1| (-555)))) (-2253 (($ $) NIL (|has| |#1| (-555)))) (-4189 (($ $ $) 64) (($ $ $ |#2|) NIL)) (-2110 (($ $ $) 67) (($ $ $ |#2|) NIL)) (-3554 (($ $ |#1| (-531 |#2|) $) NIL)) (-3787 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| |#1| (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| |#1| (-882 (-563))) (|has| |#2| (-882 (-563)))))) (-3827 (((-112) $) NIL)) (-4096 (((-767) $) NIL)) (-2299 (((-112) $ $) NIL) (((-112) $ (-640 $)) NIL)) (-2398 (($ $ $ $ $) 89 (|has| |#1| (-555)))) (-2957 ((|#2| $) 19)) (-2596 (($ (-1165 |#1|) |#2|) NIL) (($ (-1165 $) |#2|) NIL)) (-1368 (((-640 $) $) NIL)) (-3920 (((-112) $) NIL)) (-2588 (($ |#1| (-531 |#2|)) NIL) (($ $ |#2| (-767)) 36) (($ $ (-640 |#2|) (-640 (-767))) NIL)) (-1421 (($ $ $) 60)) (-2625 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $ |#2|) NIL)) (-2792 (((-112) $) NIL)) (-2048 (((-531 |#2|) $) NIL) (((-767) $ |#2|) NIL) (((-640 (-767)) $ (-640 |#2|)) NIL)) (-3084 (($ $ $) NIL (|has| |#1| (-846)))) (-3064 (((-767) $) 20)) (-1777 (($ $ $) NIL (|has| |#1| (-846)))) (-2803 (($ (-1 (-531 |#2|) (-531 |#2|)) $) NIL)) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-4234 (((-3 |#2| "failed") $) NIL)) (-2216 (($ $) NIL (|has| |#1| (-452)))) (-3208 (($ $) NIL (|has| |#1| (-452)))) (-2305 (((-640 $) $) NIL)) (-2196 (($ $) 37)) (-4099 (($ $) NIL (|has| |#1| (-452)))) (-2120 (((-640 $) $) 41)) (-4216 (($ $) 39)) (-2716 (($ $) NIL)) (-2726 ((|#1| $) NIL) (($ $ |#2|) 45)) (-3513 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3206 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2269 (-767))) $ $) 81)) (-2365 (((-2 (|:| -2311 $) (|:| |gap| (-767)) (|:| -3490 $) (|:| -1972 $)) $ $) 66) (((-2 (|:| -2311 $) (|:| |gap| (-767)) (|:| -3490 $) (|:| -1972 $)) $ $ |#2|) NIL)) (-4227 (((-2 (|:| -2311 $) (|:| |gap| (-767)) (|:| -1972 $)) $ $) NIL) (((-2 (|:| -2311 $) (|:| |gap| (-767)) (|:| -1972 $)) $ $ |#2|) NIL)) (-2173 (($ $ $) 71) (($ $ $ |#2|) NIL)) (-2679 (($ $ $) 74) (($ $ $ |#2|) NIL)) (-3573 (((-1151) $) NIL)) (-2898 (($ $ $) 107 (|has| |#1| (-555)))) (-2134 (((-640 $) $) 30)) (-3733 (((-3 (-640 $) "failed") $) NIL)) (-2919 (((-3 (-640 $) "failed") $) NIL)) (-4086 (((-3 (-2 (|:| |var| |#2|) (|:| -1654 (-767))) "failed") $) NIL)) (-4197 (((-112) $ $) NIL) (((-112) $ (-640 $)) NIL)) (-2715 (($ $ $) NIL)) (-2523 (($ $) 21)) (-3009 (((-112) $ $) NIL)) (-2031 (((-112) $ $) NIL) (((-112) $ (-640 $)) NIL)) (-4056 (($ $ $) NIL)) (-2917 (($ $) 23)) (-1694 (((-1113) $) NIL)) (-4110 (((-2 (|:| -3548 $) (|:| |coef2| $)) $ $) 98 (|has| |#1| (-555)))) (-3183 (((-2 (|:| -3548 $) (|:| |coef1| $)) $ $) 95 (|has| |#1| (-555)))) (-2696 (((-112) $) 52)) (-2706 ((|#1| $) 55)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-452)))) (-3548 ((|#1| |#1| $) 115 (|has| |#1| (-452))) (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1876 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-3116 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2174 (((-418 $) $) NIL (|has| |#1| (-905)))) (-2758 (((-2 (|:| -3548 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 101 (|has| |#1| (-555)))) (-3008 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555))) (((-3 $ "failed") $ $) 83 (|has| |#1| (-555)))) (-2307 (($ $ |#1|) 111 (|has| |#1| (-555))) (($ $ $) NIL (|has| |#1| (-555)))) (-1327 (($ $ |#1|) 110 (|has| |#1| (-555))) (($ $ $) NIL (|has| |#1| (-555)))) (-1540 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-640 |#2|) (-640 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-640 |#2|) (-640 $)) NIL)) (-2315 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-4202 (($ $ |#2|) NIL) (($ $ (-640 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-640 |#2|) (-640 (-767))) NIL)) (-4167 (((-531 |#2|) $) NIL) (((-767) $ |#2|) 43) (((-640 (-767)) $ (-640 |#2|)) NIL)) (-1935 (($ $) NIL)) (-3938 (($ $) 33)) (-2220 (((-888 (-379)) $) NIL (-12 (|has| |#1| (-611 (-888 (-379)))) (|has| |#2| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| |#1| (-611 (-888 (-563)))) (|has| |#2| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| |#1| (-611 (-536))) (|has| |#2| (-611 (-536))))) (($ (-948 (-407 (-563)))) NIL (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#2| (-611 (-1169))))) (($ (-948 (-563))) NIL (-4032 (-12 (|has| |#1| (-38 (-563))) (|has| |#2| (-611 (-1169))) (-2176 (|has| |#1| (-38 (-407 (-563)))))) (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#2| (-611 (-1169)))))) (($ (-948 |#1|)) NIL (|has| |#2| (-611 (-1169)))) (((-1151) $) NIL (-12 (|has| |#1| (-1034 (-563))) (|has| |#2| (-611 (-1169))))) (((-948 |#1|) $) NIL (|has| |#2| (-611 (-1169))))) (-1836 ((|#1| $) 114 (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-948 |#1|) $) NIL (|has| |#2| (-611 (-1169)))) (((-1118 |#1| |#2|) $) 15) (($ (-1118 |#1| |#2|)) 16) (($ (-407 (-563))) NIL (-4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#1| (-555)))) (-1337 (((-640 |#1|) $) NIL)) (-4319 ((|#1| $ (-531 |#2|)) NIL) (($ $ |#2| (-767)) 44) (($ $ (-640 |#2|) (-640 (-767))) NIL)) (-2779 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-1675 (((-767)) NIL)) (-2793 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-2126 (((-112) $ $) NIL (|has| |#1| (-555)))) (-2241 (($) 13 T CONST)) (-3738 (((-3 (-112) "failed") $ $) NIL)) (-2254 (($) 35 T CONST)) (-1298 (($ $ $ $ (-767)) 87 (|has| |#1| (-555)))) (-2771 (($ $ $ (-767)) 86 (|has| |#1| (-555)))) (-3209 (($ $ |#2|) NIL) (($ $ (-640 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-640 |#2|) (-640 (-767))) NIL)) (-1778 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1756 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) 54)) (-1768 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1744 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1837 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1826 (($ $) NIL) (($ $ $) 63)) (-1814 (($ $ $) 73)) (** (($ $ (-917)) NIL) (($ $ (-767)) 61)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 59) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) +(((-776 |#1| |#2|) (-13 (-1059 |#1| (-531 |#2|) |#2|) (-610 (-1118 |#1| |#2|)) (-1034 (-1118 |#1| |#2|))) (-1045) (-846)) (T -776)) +NIL +(-13 (-1059 |#1| (-531 |#2|) |#2|) (-610 (-1118 |#1| |#2|)) (-1034 (-1118 |#1| |#2|))) +((-2240 (((-778 |#2|) (-1 |#2| |#1|) (-778 |#1|)) 13))) +(((-777 |#1| |#2|) (-10 -7 (-15 -2240 ((-778 |#2|) (-1 |#2| |#1|) (-778 |#1|)))) (-1045) (-1045)) (T -777)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-778 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-778 *6)) (-5 *1 (-777 *5 *6))))) +(-10 -7 (-15 -2240 ((-778 |#2|) (-1 |#2| |#1|) (-778 |#1|)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) 12)) (-4030 (((-1257 |#1|) $ (-767)) NIL)) (-2606 (((-640 (-1075)) $) NIL)) (-1787 (($ (-1165 |#1|)) NIL)) (-2139 (((-1165 $) $ (-1075)) NIL) (((-1165 |#1|) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-4223 (($ $) NIL (|has| |#1| (-555)))) (-3156 (((-112) $) NIL (|has| |#1| (-555)))) (-1779 (((-767) $) NIL) (((-767) $ (-640 (-1075))) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-2563 (((-640 $) $ $) 39 (|has| |#1| (-555)))) (-3724 (($ $ $) 35 (|has| |#1| (-555)))) (-2424 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-4335 (($ $) NIL (|has| |#1| (-452)))) (-3205 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-1919 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3729 (($ $ (-767)) NIL)) (-2618 (($ $ (-767)) NIL)) (-3018 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-1075) "failed") $) NIL) (((-3 (-1165 |#1|) "failed") $) 10)) (-2058 ((|#1| $) NIL) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-1075) $) NIL) (((-1165 |#1|) $) NIL)) (-2742 (($ $ $ (-1075)) NIL (|has| |#1| (-172))) ((|#1| $ $) 43 (|has| |#1| (-172)))) (-3090 (($ $ $) NIL (|has| |#1| (-363)))) (-2751 (($ $) NIL)) (-2950 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-3050 (($ $ $) NIL (|has| |#1| (-363)))) (-4369 (($ $ $) NIL)) (-2906 (($ $ $) 71 (|has| |#1| (-555)))) (-2521 (((-2 (|:| -2311 |#1|) (|:| -3490 $) (|:| -1972 $)) $ $) 70 (|has| |#1| (-555)))) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-1300 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1075)) NIL (|has| |#1| (-452)))) (-2739 (((-640 $) $) NIL)) (-2468 (((-112) $) NIL (|has| |#1| (-905)))) (-3554 (($ $ |#1| (-767) $) NIL)) (-3787 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1075) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-1075) (-882 (-563))) (|has| |#1| (-882 (-563)))))) (-3254 (((-767) $ $) NIL (|has| |#1| (-555)))) (-3827 (((-112) $) NIL)) (-4096 (((-767) $) NIL)) (-2408 (((-3 $ "failed") $) NIL (|has| |#1| (-1144)))) (-2596 (($ (-1165 |#1|) (-1075)) NIL) (($ (-1165 $) (-1075)) NIL)) (-1351 (($ $ (-767)) NIL)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-1368 (((-640 $) $) NIL)) (-3920 (((-112) $) NIL)) (-2588 (($ |#1| (-767)) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL)) (-1421 (($ $ $) 20)) (-2625 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $ (-1075)) NIL) (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-2048 (((-767) $) NIL) (((-767) $ (-1075)) NIL) (((-640 (-767)) $ (-640 (-1075))) NIL)) (-3084 (($ $ $) NIL (|has| |#1| (-846)))) (-1777 (($ $ $) NIL (|has| |#1| (-846)))) (-2803 (($ (-1 (-767) (-767)) $) NIL)) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-1580 (((-1165 |#1|) $) NIL)) (-4234 (((-3 (-1075) "failed") $) NIL)) (-2716 (($ $) NIL)) (-2726 ((|#1| $) NIL)) (-3513 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3206 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2269 (-767))) $ $) 26)) (-2458 (($ $ $) 29)) (-2021 (($ $ $) 32)) (-2365 (((-2 (|:| -2311 |#1|) (|:| |gap| (-767)) (|:| -3490 $) (|:| -1972 $)) $ $) 31)) (-3573 (((-1151) $) NIL)) (-2898 (($ $ $) 41 (|has| |#1| (-555)))) (-3839 (((-2 (|:| -3490 $) (|:| -1972 $)) $ (-767)) NIL)) (-3733 (((-3 (-640 $) "failed") $) NIL)) (-2919 (((-3 (-640 $) "failed") $) NIL)) (-4086 (((-3 (-2 (|:| |var| (-1075)) (|:| -1654 (-767))) "failed") $) NIL)) (-3698 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2523 (($) NIL (|has| |#1| (-1144)) CONST)) (-1694 (((-1113) $) NIL)) (-4110 (((-2 (|:| -3548 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-555)))) (-3183 (((-2 (|:| -3548 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-555)))) (-1472 (((-2 (|:| -2742 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-555)))) (-3857 (((-2 (|:| -2742 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-555)))) (-2696 (((-112) $) 13)) (-2706 ((|#1| $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-452)))) (-3548 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3817 (($ $ (-767) |#1| $) 19)) (-1876 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-3116 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2174 (((-418 $) $) NIL (|has| |#1| (-905)))) (-2758 (((-2 (|:| -3548 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-555)))) (-3542 (((-2 (|:| -2742 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-555)))) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL (|has| |#1| (-363)))) (-3008 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-1540 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-1075) |#1|) NIL) (($ $ (-640 (-1075)) (-640 |#1|)) NIL) (($ $ (-1075) $) NIL) (($ $ (-640 (-1075)) (-640 $)) NIL)) (-2628 (((-767) $) NIL (|has| |#1| (-363)))) (-2309 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-555))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-555)))) (-3862 (((-3 $ "failed") $ (-767)) NIL)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| |#1| (-363)))) (-2315 (($ $ (-1075)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-4202 (($ $ (-1075)) NIL) (($ $ (-640 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4167 (((-767) $) NIL) (((-767) $ (-1075)) NIL) (((-640 (-767)) $ (-640 (-1075))) NIL)) (-2220 (((-888 (-379)) $) NIL (-12 (|has| (-1075) (-611 (-888 (-379)))) (|has| |#1| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| (-1075) (-611 (-888 (-563)))) (|has| |#1| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| (-1075) (-611 (-536))) (|has| |#1| (-611 (-536)))))) (-1836 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1075)) NIL (|has| |#1| (-452)))) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-1346 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#1| (-555)))) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL) (($ (-1075)) NIL) (((-1165 |#1|) $) 7) (($ (-1165 |#1|)) 8) (($ (-407 (-563))) NIL (-4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#1| (-555)))) (-1337 (((-640 |#1|) $) NIL)) (-4319 ((|#1| $ (-767)) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL)) (-2779 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-1675 (((-767)) NIL)) (-2793 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-2126 (((-112) $ $) NIL (|has| |#1| (-555)))) (-2241 (($) 21 T CONST)) (-2254 (($) 24 T CONST)) (-3209 (($ $ (-1075)) NIL) (($ $ (-640 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1778 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1756 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1744 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1837 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1826 (($ $) 28) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) +(((-778 |#1|) (-13 (-1233 |#1|) (-610 (-1165 |#1|)) (-1034 (-1165 |#1|)) (-10 -8 (-15 -3817 ($ $ (-767) |#1| $)) (-15 -1421 ($ $ $)) (-15 -3206 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2269 (-767))) $ $)) (-15 -2458 ($ $ $)) (-15 -2365 ((-2 (|:| -2311 |#1|) (|:| |gap| (-767)) (|:| -3490 $) (|:| -1972 $)) $ $)) (-15 -2021 ($ $ $)) (IF (|has| |#1| (-555)) (PROGN (-15 -2563 ((-640 $) $ $)) (-15 -2898 ($ $ $)) (-15 -2758 ((-2 (|:| -3548 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3183 ((-2 (|:| -3548 $) (|:| |coef1| $)) $ $)) (-15 -4110 ((-2 (|:| -3548 $) (|:| |coef2| $)) $ $)) (-15 -3542 ((-2 (|:| -2742 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3857 ((-2 (|:| -2742 |#1|) (|:| |coef1| $)) $ $)) (-15 -1472 ((-2 (|:| -2742 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1045)) (T -778)) +((-3817 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-767)) (-5 *1 (-778 *3)) (-4 *3 (-1045)))) (-1421 (*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-1045)))) (-3206 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-778 *3)) (|:| |polden| *3) (|:| -2269 (-767)))) (-5 *1 (-778 *3)) (-4 *3 (-1045)))) (-2458 (*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-1045)))) (-2365 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2311 *3) (|:| |gap| (-767)) (|:| -3490 (-778 *3)) (|:| -1972 (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-1045)))) (-2021 (*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-1045)))) (-2563 (*1 *2 *1 *1) (-12 (-5 *2 (-640 (-778 *3))) (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045)))) (-2898 (*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-555)) (-4 *2 (-1045)))) (-2758 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3548 (-778 *3)) (|:| |coef1| (-778 *3)) (|:| |coef2| (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045)))) (-3183 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3548 (-778 *3)) (|:| |coef1| (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045)))) (-4110 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3548 (-778 *3)) (|:| |coef2| (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045)))) (-3542 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2742 *3) (|:| |coef1| (-778 *3)) (|:| |coef2| (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045)))) (-3857 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2742 *3) (|:| |coef1| (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045)))) (-1472 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2742 *3) (|:| |coef2| (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045))))) +(-13 (-1233 |#1|) (-610 (-1165 |#1|)) (-1034 (-1165 |#1|)) (-10 -8 (-15 -3817 ($ $ (-767) |#1| $)) (-15 -1421 ($ $ $)) (-15 -3206 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2269 (-767))) $ $)) (-15 -2458 ($ $ $)) (-15 -2365 ((-2 (|:| -2311 |#1|) (|:| |gap| (-767)) (|:| -3490 $) (|:| -1972 $)) $ $)) (-15 -2021 ($ $ $)) (IF (|has| |#1| (-555)) (PROGN (-15 -2563 ((-640 $) $ $)) (-15 -2898 ($ $ $)) (-15 -2758 ((-2 (|:| -3548 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3183 ((-2 (|:| -3548 $) (|:| |coef1| $)) $ $)) (-15 -4110 ((-2 (|:| -3548 $) (|:| |coef2| $)) $ $)) (-15 -3542 ((-2 (|:| -2742 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3857 ((-2 (|:| -2742 |#1|) (|:| |coef1| $)) $ $)) (-15 -1472 ((-2 (|:| -2742 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-4199 ((|#1| (-767) |#1|) 32 (|has| |#1| (-38 (-407 (-563)))))) (-3952 ((|#1| (-767) |#1|) 22)) (-2896 ((|#1| (-767) |#1|) 34 (|has| |#1| (-38 (-407 (-563))))))) +(((-779 |#1|) (-10 -7 (-15 -3952 (|#1| (-767) |#1|)) (IF (|has| |#1| (-38 (-407 (-563)))) (PROGN (-15 -2896 (|#1| (-767) |#1|)) (-15 -4199 (|#1| (-767) |#1|))) |%noBranch|)) (-172)) (T -779)) +((-4199 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-172)))) (-2896 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-172)))) (-3952 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-172))))) +(-10 -7 (-15 -3952 (|#1| (-767) |#1|)) (IF (|has| |#1| (-38 (-407 (-563)))) (PROGN (-15 -2896 (|#1| (-767) |#1|)) (-15 -4199 (|#1| (-767) |#1|))) |%noBranch|)) +((-1677 (((-112) $ $) 7)) (-1578 (((-640 (-2 (|:| -1442 $) (|:| -3405 (-640 |#4|)))) (-640 |#4|)) 85)) (-3319 (((-640 $) (-640 |#4|)) 86) (((-640 $) (-640 |#4|) (-112)) 111)) (-2606 (((-640 |#3|) $) 33)) (-1706 (((-112) $) 26)) (-3854 (((-112) $) 17 (|has| |#1| (-555)))) (-2620 (((-112) |#4| $) 101) (((-112) $) 97)) (-4053 ((|#4| |#4| $) 92)) (-4335 (((-640 (-2 (|:| |val| |#4|) (|:| -2059 $))) |#4| $) 126)) (-1642 (((-2 (|:| |under| $) (|:| -1583 $) (|:| |upper| $)) $ |#3|) 27)) (-2759 (((-112) $ (-767)) 44)) (-2256 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4407))) (((-3 |#4| "failed") $ |#3|) 79)) (-4239 (($) 45 T CONST)) (-1483 (((-112) $) 22 (|has| |#1| (-555)))) (-1626 (((-112) $ $) 24 (|has| |#1| (-555)))) (-4221 (((-112) $ $) 23 (|has| |#1| (-555)))) (-1763 (((-112) $) 25 (|has| |#1| (-555)))) (-1833 (((-640 |#4|) (-640 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3746 (((-640 |#4|) (-640 |#4|) $) 18 (|has| |#1| (-555)))) (-1866 (((-640 |#4|) (-640 |#4|) $) 19 (|has| |#1| (-555)))) (-2131 (((-3 $ "failed") (-640 |#4|)) 36)) (-2058 (($ (-640 |#4|)) 35)) (-3792 (((-3 $ "failed") $) 82)) (-1719 ((|#4| |#4| $) 89)) (-3813 (($ $) 68 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4407))))) (-1459 (($ |#4| $) 67 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4407)))) (-1972 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-555)))) (-3990 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3948 ((|#4| |#4| $) 87)) (-2444 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4407)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4407))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4407))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2144 (((-2 (|:| -1442 (-640 |#4|)) (|:| -3405 (-640 |#4|))) $) 105)) (-2313 (((-112) |#4| $) 136)) (-3748 (((-112) |#4| $) 133)) (-1871 (((-112) |#4| $) 137) (((-112) $) 134)) (-2659 (((-640 |#4|) $) 52 (|has| $ (-6 -4407)))) (-2299 (((-112) |#4| $) 104) (((-112) $) 103)) (-2957 ((|#3| $) 34)) (-2581 (((-112) $ (-767)) 43)) (-2259 (((-640 |#4|) $) 53 (|has| $ (-6 -4407)))) (-1729 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4407))))) (-4345 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#4| |#4|) $) 47)) (-2965 (((-640 |#3|) $) 32)) (-2780 (((-112) |#3| $) 31)) (-2382 (((-112) $ (-767)) 42)) (-3573 (((-1151) $) 9)) (-3083 (((-3 |#4| (-640 $)) |#4| |#4| $) 128)) (-2898 (((-640 (-2 (|:| |val| |#4|) (|:| -2059 $))) |#4| |#4| $) 127)) (-1481 (((-3 |#4| "failed") $) 83)) (-3764 (((-640 $) |#4| $) 129)) (-1334 (((-3 (-112) (-640 $)) |#4| $) 132)) (-2069 (((-640 (-2 (|:| |val| (-112)) (|:| -2059 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-2550 (((-640 $) |#4| $) 125) (((-640 $) (-640 |#4|) $) 124) (((-640 $) (-640 |#4|) (-640 $)) 123) (((-640 $) |#4| (-640 $)) 122)) (-3291 (($ |#4| $) 117) (($ (-640 |#4|) $) 116)) (-2820 (((-640 |#4|) $) 107)) (-4197 (((-112) |#4| $) 99) (((-112) $) 95)) (-2715 ((|#4| |#4| $) 90)) (-3009 (((-112) $ $) 110)) (-2152 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-555)))) (-2031 (((-112) |#4| $) 100) (((-112) $) 96)) (-4056 ((|#4| |#4| $) 91)) (-1694 (((-1113) $) 10)) (-3781 (((-3 |#4| "failed") $) 84)) (-4203 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3479 (((-3 $ "failed") $ |#4|) 78)) (-3320 (($ $ |#4|) 77) (((-640 $) |#4| $) 115) (((-640 $) |#4| (-640 $)) 114) (((-640 $) (-640 |#4|) $) 113) (((-640 $) (-640 |#4|) (-640 $)) 112)) (-3138 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 |#4|) (-640 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-2026 (((-112) $ $) 38)) (-3756 (((-112) $) 41)) (-3135 (($) 40)) (-4167 (((-767) $) 106)) (-1709 (((-767) |#4| $) 54 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4407)))) (((-767) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4407)))) (-1872 (($ $) 39)) (-2220 (((-536) $) 69 (|has| |#4| (-611 (-536))))) (-1707 (($ (-640 |#4|)) 60)) (-3577 (($ $ |#3|) 28)) (-1593 (($ $ |#3|) 30)) (-1924 (($ $) 88)) (-4192 (($ $ |#3|) 29)) (-1693 (((-858) $) 11) (((-640 |#4|) $) 37)) (-2437 (((-767) $) 76 (|has| |#3| (-368)))) (-2540 (((-3 (-2 (|:| |bas| $) (|:| -2636 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2636 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2691 (((-112) $ (-1 (-112) |#4| (-640 |#4|))) 98)) (-2175 (((-640 $) |#4| $) 121) (((-640 $) |#4| (-640 $)) 120) (((-640 $) (-640 |#4|) $) 119) (((-640 $) (-640 |#4|) (-640 $)) 118)) (-4383 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4407)))) (-1955 (((-640 |#3|) $) 81)) (-4279 (((-112) |#4| $) 135)) (-3152 (((-112) |#3| $) 80)) (-1718 (((-112) $ $) 6)) (-3608 (((-767) $) 46 (|has| $ (-6 -4407))))) +(((-780 |#1| |#2| |#3| |#4|) (-140) (-452) (-789) (-846) (-1059 |t#1| |t#2| |t#3|)) (T -780)) +NIL +(-13 (-1065 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-610 (-640 |#4|)) . T) ((-610 (-858)) . T) ((-151 |#4|) . T) ((-611 (-536)) |has| |#4| (-611 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-972 |#1| |#2| |#3| |#4|) . T) ((-1065 |#1| |#2| |#3| |#4|) . T) ((-1093) . T) ((-1201 |#1| |#2| |#3| |#4|) . T) ((-1208) . T)) +((-3403 (((-3 (-379) "failed") (-316 |#1|) (-917)) 62 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-3 (-379) "failed") (-316 |#1|)) 54 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-3 (-379) "failed") (-407 (-948 |#1|)) (-917)) 41 (|has| |#1| (-555))) (((-3 (-379) "failed") (-407 (-948 |#1|))) 40 (|has| |#1| (-555))) (((-3 (-379) "failed") (-948 |#1|) (-917)) 31 (|has| |#1| (-1045))) (((-3 (-379) "failed") (-948 |#1|)) 30 (|has| |#1| (-1045)))) (-3806 (((-379) (-316 |#1|) (-917)) 99 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-379) (-316 |#1|)) 94 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-379) (-407 (-948 |#1|)) (-917)) 91 (|has| |#1| (-555))) (((-379) (-407 (-948 |#1|))) 90 (|has| |#1| (-555))) (((-379) (-948 |#1|) (-917)) 86 (|has| |#1| (-1045))) (((-379) (-948 |#1|)) 85 (|has| |#1| (-1045))) (((-379) |#1| (-917)) 76) (((-379) |#1|) 22)) (-2565 (((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)) (-917)) 71 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-3 (-169 (-379)) "failed") (-316 (-169 |#1|))) 70 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-3 (-169 (-379)) "failed") (-316 |#1|) (-917)) 63 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-3 (-169 (-379)) "failed") (-316 |#1|)) 61 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-3 (-169 (-379)) "failed") (-407 (-948 (-169 |#1|))) (-917)) 46 (|has| |#1| (-555))) (((-3 (-169 (-379)) "failed") (-407 (-948 (-169 |#1|)))) 45 (|has| |#1| (-555))) (((-3 (-169 (-379)) "failed") (-407 (-948 |#1|)) (-917)) 39 (|has| |#1| (-555))) (((-3 (-169 (-379)) "failed") (-407 (-948 |#1|))) 38 (|has| |#1| (-555))) (((-3 (-169 (-379)) "failed") (-948 |#1|) (-917)) 28 (|has| |#1| (-1045))) (((-3 (-169 (-379)) "failed") (-948 |#1|)) 26 (|has| |#1| (-1045))) (((-3 (-169 (-379)) "failed") (-948 (-169 |#1|)) (-917)) 18 (|has| |#1| (-172))) (((-3 (-169 (-379)) "failed") (-948 (-169 |#1|))) 15 (|has| |#1| (-172)))) (-2108 (((-169 (-379)) (-316 (-169 |#1|)) (-917)) 102 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-169 (-379)) (-316 (-169 |#1|))) 101 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-169 (-379)) (-316 |#1|) (-917)) 100 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-169 (-379)) (-316 |#1|)) 98 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-169 (-379)) (-407 (-948 (-169 |#1|))) (-917)) 93 (|has| |#1| (-555))) (((-169 (-379)) (-407 (-948 (-169 |#1|)))) 92 (|has| |#1| (-555))) (((-169 (-379)) (-407 (-948 |#1|)) (-917)) 89 (|has| |#1| (-555))) (((-169 (-379)) (-407 (-948 |#1|))) 88 (|has| |#1| (-555))) (((-169 (-379)) (-948 |#1|) (-917)) 84 (|has| |#1| (-1045))) (((-169 (-379)) (-948 |#1|)) 83 (|has| |#1| (-1045))) (((-169 (-379)) (-948 (-169 |#1|)) (-917)) 78 (|has| |#1| (-172))) (((-169 (-379)) (-948 (-169 |#1|))) 77 (|has| |#1| (-172))) (((-169 (-379)) (-169 |#1|) (-917)) 80 (|has| |#1| (-172))) (((-169 (-379)) (-169 |#1|)) 79 (|has| |#1| (-172))) (((-169 (-379)) |#1| (-917)) 27) (((-169 (-379)) |#1|) 25))) +(((-781 |#1|) (-10 -7 (-15 -3806 ((-379) |#1|)) (-15 -3806 ((-379) |#1| (-917))) (-15 -2108 ((-169 (-379)) |#1|)) (-15 -2108 ((-169 (-379)) |#1| (-917))) (IF (|has| |#1| (-172)) (PROGN (-15 -2108 ((-169 (-379)) (-169 |#1|))) (-15 -2108 ((-169 (-379)) (-169 |#1|) (-917))) (-15 -2108 ((-169 (-379)) (-948 (-169 |#1|)))) (-15 -2108 ((-169 (-379)) (-948 (-169 |#1|)) (-917)))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-15 -3806 ((-379) (-948 |#1|))) (-15 -3806 ((-379) (-948 |#1|) (-917))) (-15 -2108 ((-169 (-379)) (-948 |#1|))) (-15 -2108 ((-169 (-379)) (-948 |#1|) (-917)))) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -3806 ((-379) (-407 (-948 |#1|)))) (-15 -3806 ((-379) (-407 (-948 |#1|)) (-917))) (-15 -2108 ((-169 (-379)) (-407 (-948 |#1|)))) (-15 -2108 ((-169 (-379)) (-407 (-948 |#1|)) (-917))) (-15 -2108 ((-169 (-379)) (-407 (-948 (-169 |#1|))))) (-15 -2108 ((-169 (-379)) (-407 (-948 (-169 |#1|))) (-917))) (IF (|has| |#1| (-846)) (PROGN (-15 -3806 ((-379) (-316 |#1|))) (-15 -3806 ((-379) (-316 |#1|) (-917))) (-15 -2108 ((-169 (-379)) (-316 |#1|))) (-15 -2108 ((-169 (-379)) (-316 |#1|) (-917))) (-15 -2108 ((-169 (-379)) (-316 (-169 |#1|)))) (-15 -2108 ((-169 (-379)) (-316 (-169 |#1|)) (-917)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -2565 ((-3 (-169 (-379)) "failed") (-948 (-169 |#1|)))) (-15 -2565 ((-3 (-169 (-379)) "failed") (-948 (-169 |#1|)) (-917)))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-15 -3403 ((-3 (-379) "failed") (-948 |#1|))) (-15 -3403 ((-3 (-379) "failed") (-948 |#1|) (-917))) (-15 -2565 ((-3 (-169 (-379)) "failed") (-948 |#1|))) (-15 -2565 ((-3 (-169 (-379)) "failed") (-948 |#1|) (-917)))) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -3403 ((-3 (-379) "failed") (-407 (-948 |#1|)))) (-15 -3403 ((-3 (-379) "failed") (-407 (-948 |#1|)) (-917))) (-15 -2565 ((-3 (-169 (-379)) "failed") (-407 (-948 |#1|)))) (-15 -2565 ((-3 (-169 (-379)) "failed") (-407 (-948 |#1|)) (-917))) (-15 -2565 ((-3 (-169 (-379)) "failed") (-407 (-948 (-169 |#1|))))) (-15 -2565 ((-3 (-169 (-379)) "failed") (-407 (-948 (-169 |#1|))) (-917))) (IF (|has| |#1| (-846)) (PROGN (-15 -3403 ((-3 (-379) "failed") (-316 |#1|))) (-15 -3403 ((-3 (-379) "failed") (-316 |#1|) (-917))) (-15 -2565 ((-3 (-169 (-379)) "failed") (-316 |#1|))) (-15 -2565 ((-3 (-169 (-379)) "failed") (-316 |#1|) (-917))) (-15 -2565 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)))) (-15 -2565 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)) (-917)))) |%noBranch|)) |%noBranch|)) (-611 (-379))) (T -781)) +((-2565 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-846)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2565 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-555)) (-4 *4 (-846)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-2565 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-846)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2565 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-555)) (-4 *4 (-846)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-3403 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-846)) (-4 *5 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) (-3403 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-555)) (-4 *4 (-846)) (-4 *4 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) (-2565 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-948 (-169 *5)))) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2565 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-948 (-169 *4)))) (-4 *4 (-555)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-2565 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2565 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-3403 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) (-3403 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555)) (-4 *4 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) (-2565 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2565 (*1 *2 *3) (|partial| -12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-3403 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045)) (-4 *5 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) (-3403 (*1 *2 *3) (|partial| -12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) (-2565 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-948 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-172)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2565 (*1 *2 *3) (|partial| -12 (-5 *3 (-948 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-2108 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-846)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2108 (*1 *2 *3) (-12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-555)) (-4 *4 (-846)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-2108 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-846)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2108 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-555)) (-4 *4 (-846)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-3806 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-846)) (-4 *5 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) (-3806 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-555)) (-4 *4 (-846)) (-4 *4 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) (-2108 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 (-169 *5)))) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2108 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 (-169 *4)))) (-4 *4 (-555)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-2108 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2108 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-3806 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) (-3806 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555)) (-4 *4 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) (-2108 (*1 *2 *3 *4) (-12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2108 (*1 *2 *3) (-12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-3806 (*1 *2 *3 *4) (-12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045)) (-4 *5 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) (-3806 (*1 *2 *3) (-12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) (-2108 (*1 *2 *3 *4) (-12 (-5 *3 (-948 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-172)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2108 (*1 *2 *3) (-12 (-5 *3 (-948 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-2108 (*1 *2 *3 *4) (-12 (-5 *3 (-169 *5)) (-5 *4 (-917)) (-4 *5 (-172)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-2108 (*1 *2 *3) (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-2108 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-5 *2 (-169 (-379))) (-5 *1 (-781 *3)) (-4 *3 (-611 (-379))))) (-2108 (*1 *2 *3) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-781 *3)) (-4 *3 (-611 (-379))))) (-3806 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-5 *2 (-379)) (-5 *1 (-781 *3)) (-4 *3 (-611 *2)))) (-3806 (*1 *2 *3) (-12 (-5 *2 (-379)) (-5 *1 (-781 *3)) (-4 *3 (-611 *2))))) +(-10 -7 (-15 -3806 ((-379) |#1|)) (-15 -3806 ((-379) |#1| (-917))) (-15 -2108 ((-169 (-379)) |#1|)) (-15 -2108 ((-169 (-379)) |#1| (-917))) (IF (|has| |#1| (-172)) (PROGN (-15 -2108 ((-169 (-379)) (-169 |#1|))) (-15 -2108 ((-169 (-379)) (-169 |#1|) (-917))) (-15 -2108 ((-169 (-379)) (-948 (-169 |#1|)))) (-15 -2108 ((-169 (-379)) (-948 (-169 |#1|)) (-917)))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-15 -3806 ((-379) (-948 |#1|))) (-15 -3806 ((-379) (-948 |#1|) (-917))) (-15 -2108 ((-169 (-379)) (-948 |#1|))) (-15 -2108 ((-169 (-379)) (-948 |#1|) (-917)))) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -3806 ((-379) (-407 (-948 |#1|)))) (-15 -3806 ((-379) (-407 (-948 |#1|)) (-917))) (-15 -2108 ((-169 (-379)) (-407 (-948 |#1|)))) (-15 -2108 ((-169 (-379)) (-407 (-948 |#1|)) (-917))) (-15 -2108 ((-169 (-379)) (-407 (-948 (-169 |#1|))))) (-15 -2108 ((-169 (-379)) (-407 (-948 (-169 |#1|))) (-917))) (IF (|has| |#1| (-846)) (PROGN (-15 -3806 ((-379) (-316 |#1|))) (-15 -3806 ((-379) (-316 |#1|) (-917))) (-15 -2108 ((-169 (-379)) (-316 |#1|))) (-15 -2108 ((-169 (-379)) (-316 |#1|) (-917))) (-15 -2108 ((-169 (-379)) (-316 (-169 |#1|)))) (-15 -2108 ((-169 (-379)) (-316 (-169 |#1|)) (-917)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -2565 ((-3 (-169 (-379)) "failed") (-948 (-169 |#1|)))) (-15 -2565 ((-3 (-169 (-379)) "failed") (-948 (-169 |#1|)) (-917)))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-15 -3403 ((-3 (-379) "failed") (-948 |#1|))) (-15 -3403 ((-3 (-379) "failed") (-948 |#1|) (-917))) (-15 -2565 ((-3 (-169 (-379)) "failed") (-948 |#1|))) (-15 -2565 ((-3 (-169 (-379)) "failed") (-948 |#1|) (-917)))) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -3403 ((-3 (-379) "failed") (-407 (-948 |#1|)))) (-15 -3403 ((-3 (-379) "failed") (-407 (-948 |#1|)) (-917))) (-15 -2565 ((-3 (-169 (-379)) "failed") (-407 (-948 |#1|)))) (-15 -2565 ((-3 (-169 (-379)) "failed") (-407 (-948 |#1|)) (-917))) (-15 -2565 ((-3 (-169 (-379)) "failed") (-407 (-948 (-169 |#1|))))) (-15 -2565 ((-3 (-169 (-379)) "failed") (-407 (-948 (-169 |#1|))) (-917))) (IF (|has| |#1| (-846)) (PROGN (-15 -3403 ((-3 (-379) "failed") (-316 |#1|))) (-15 -3403 ((-3 (-379) "failed") (-316 |#1|) (-917))) (-15 -2565 ((-3 (-169 (-379)) "failed") (-316 |#1|))) (-15 -2565 ((-3 (-169 (-379)) "failed") (-316 |#1|) (-917))) (-15 -2565 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)))) (-15 -2565 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)) (-917)))) |%noBranch|)) |%noBranch|)) +((-3306 (((-917) (-1151)) 64)) (-4248 (((-3 (-379) "failed") (-1151)) 32)) (-3326 (((-379) (-1151)) 30)) (-2384 (((-917) (-1151)) 53)) (-2571 (((-1151) (-917)) 54)) (-3730 (((-1151) (-917)) 52))) +(((-782) (-10 -7 (-15 -3730 ((-1151) (-917))) (-15 -2384 ((-917) (-1151))) (-15 -2571 ((-1151) (-917))) (-15 -3306 ((-917) (-1151))) (-15 -3326 ((-379) (-1151))) (-15 -4248 ((-3 (-379) "failed") (-1151))))) (T -782)) +((-4248 (*1 *2 *3) (|partial| -12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-782)))) (-3326 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-782)))) (-3306 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-917)) (-5 *1 (-782)))) (-2571 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1151)) (-5 *1 (-782)))) (-2384 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-917)) (-5 *1 (-782)))) (-3730 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1151)) (-5 *1 (-782))))) +(-10 -7 (-15 -3730 ((-1151) (-917))) (-15 -2384 ((-917) (-1151))) (-15 -2571 ((-1151) (-917))) (-15 -3306 ((-917) (-1151))) (-15 -3326 ((-379) (-1151))) (-15 -4248 ((-3 (-379) "failed") (-1151)))) +((-1677 (((-112) $ $) 7)) (-1807 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 15) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 13)) (-1994 (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 16) (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 14)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11)) (-1718 (((-112) $ $) 6))) +(((-783) (-140)) (T -783)) +((-1994 (*1 *2 *3 *4) (-12 (-4 *1 (-783)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031)))))) (-1807 (*1 *2 *3 *2) (-12 (-4 *1 (-783)) (-5 *2 (-1031)) (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-1994 (*1 *2 *3 *4) (-12 (-4 *1 (-783)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031)))))) (-1807 (*1 *2 *3 *2) (-12 (-4 *1 (-783)) (-5 *2 (-1031)) (-5 *3 (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) +(-13 (-1093) (-10 -7 (-15 -1994 ((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1807 ((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031))) (-15 -1994 ((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1807 ((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031))))) +(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) +((-3360 (((-1262) (-1257 (-379)) (-563) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -1333 (-379))) (-379) (-1257 (-379)) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379))) 44) (((-1262) (-1257 (-379)) (-563) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -1333 (-379))) (-379) (-1257 (-379)) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379))) 43)) (-3025 (((-1262) (-1257 (-379)) (-563) (-379) (-379) (-563) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379))) 50)) (-1415 (((-1262) (-1257 (-379)) (-563) (-379) (-379) (-379) (-379) (-563) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379))) 41)) (-3576 (((-1262) (-1257 (-379)) (-563) (-379) (-379) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379))) 52) (((-1262) (-1257 (-379)) (-563) (-379) (-379) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379))) 51))) +(((-784) (-10 -7 (-15 -3576 ((-1262) (-1257 (-379)) (-563) (-379) (-379) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)))) (-15 -3576 ((-1262) (-1257 (-379)) (-563) (-379) (-379) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)))) (-15 -1415 ((-1262) (-1257 (-379)) (-563) (-379) (-379) (-379) (-379) (-563) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)))) (-15 -3360 ((-1262) (-1257 (-379)) (-563) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -1333 (-379))) (-379) (-1257 (-379)) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)))) (-15 -3360 ((-1262) (-1257 (-379)) (-563) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -1333 (-379))) (-379) (-1257 (-379)) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)))) (-15 -3025 ((-1262) (-1257 (-379)) (-563) (-379) (-379) (-563) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)))))) (T -784)) +((-3025 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-563)) (-5 *6 (-1 (-1262) (-1257 *5) (-1257 *5) (-379))) (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262)) (-5 *1 (-784)))) (-3360 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-563)) (-5 *6 (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -1333 (-379)))) (-5 *7 (-1 (-1262) (-1257 *5) (-1257 *5) (-379))) (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262)) (-5 *1 (-784)))) (-3360 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-563)) (-5 *6 (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -1333 (-379)))) (-5 *7 (-1 (-1262) (-1257 *5) (-1257 *5) (-379))) (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262)) (-5 *1 (-784)))) (-1415 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-563)) (-5 *6 (-1 (-1262) (-1257 *5) (-1257 *5) (-379))) (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262)) (-5 *1 (-784)))) (-3576 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-563)) (-5 *6 (-1 (-1262) (-1257 *5) (-1257 *5) (-379))) (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262)) (-5 *1 (-784)))) (-3576 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-563)) (-5 *6 (-1 (-1262) (-1257 *5) (-1257 *5) (-379))) (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262)) (-5 *1 (-784))))) +(-10 -7 (-15 -3576 ((-1262) (-1257 (-379)) (-563) (-379) (-379) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)))) (-15 -3576 ((-1262) (-1257 (-379)) (-563) (-379) (-379) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)))) (-15 -1415 ((-1262) (-1257 (-379)) (-563) (-379) (-379) (-379) (-379) (-563) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)))) (-15 -3360 ((-1262) (-1257 (-379)) (-563) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -1333 (-379))) (-379) (-1257 (-379)) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)))) (-15 -3360 ((-1262) (-1257 (-379)) (-563) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -1333 (-379))) (-379) (-1257 (-379)) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)))) (-15 -3025 ((-1262) (-1257 (-379)) (-563) (-379) (-379) (-563) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379))))) +((-1393 (((-2 (|:| -2619 (-379)) (|:| -4076 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563)) 53)) (-2891 (((-2 (|:| -2619 (-379)) (|:| -4076 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563)) 31)) (-3022 (((-2 (|:| -2619 (-379)) (|:| -4076 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563)) 52)) (-3718 (((-2 (|:| -2619 (-379)) (|:| -4076 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563)) 29)) (-3019 (((-2 (|:| -2619 (-379)) (|:| -4076 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563)) 51)) (-2329 (((-2 (|:| -2619 (-379)) (|:| -4076 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563)) 19)) (-3589 (((-2 (|:| -2619 (-379)) (|:| -4076 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563) (-563)) 32)) (-3919 (((-2 (|:| -2619 (-379)) (|:| -4076 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563) (-563)) 30)) (-3179 (((-2 (|:| -2619 (-379)) (|:| -4076 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563) (-563)) 28))) +(((-785) (-10 -7 (-15 -3179 ((-2 (|:| -2619 (-379)) (|:| -4076 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563) (-563))) (-15 -3919 ((-2 (|:| -2619 (-379)) (|:| -4076 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563) (-563))) (-15 -3589 ((-2 (|:| -2619 (-379)) (|:| -4076 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563) (-563))) (-15 -2329 ((-2 (|:| -2619 (-379)) (|:| -4076 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563))) (-15 -3718 ((-2 (|:| -2619 (-379)) (|:| -4076 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563))) (-15 -2891 ((-2 (|:| -2619 (-379)) (|:| -4076 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563))) (-15 -3019 ((-2 (|:| -2619 (-379)) (|:| -4076 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563))) (-15 -3022 ((-2 (|:| -2619 (-379)) (|:| -4076 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563))) (-15 -1393 ((-2 (|:| -2619 (-379)) (|:| -4076 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563))))) (T -785)) +((-1393 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2619 *4) (|:| -4076 *4) (|:| |totalpts| (-563)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-563)))) (-3022 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2619 *4) (|:| -4076 *4) (|:| |totalpts| (-563)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-563)))) (-3019 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2619 *4) (|:| -4076 *4) (|:| |totalpts| (-563)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-563)))) (-2891 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2619 *4) (|:| -4076 *4) (|:| |totalpts| (-563)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-563)))) (-3718 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2619 *4) (|:| -4076 *4) (|:| |totalpts| (-563)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-563)))) (-2329 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2619 *4) (|:| -4076 *4) (|:| |totalpts| (-563)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-563)))) (-3589 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2619 *4) (|:| -4076 *4) (|:| |totalpts| (-563)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-563)))) (-3919 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2619 *4) (|:| -4076 *4) (|:| |totalpts| (-563)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-563)))) (-3179 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -2619 *4) (|:| -4076 *4) (|:| |totalpts| (-563)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-563))))) +(-10 -7 (-15 -3179 ((-2 (|:| -2619 (-379)) (|:| -4076 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563) (-563))) (-15 -3919 ((-2 (|:| -2619 (-379)) (|:| -4076 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563) (-563))) (-15 -3589 ((-2 (|:| -2619 (-379)) (|:| -4076 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563) (-563))) (-15 -2329 ((-2 (|:| -2619 (-379)) (|:| -4076 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563))) (-15 -3718 ((-2 (|:| -2619 (-379)) (|:| -4076 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563))) (-15 -2891 ((-2 (|:| -2619 (-379)) (|:| -4076 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563))) (-15 -3019 ((-2 (|:| -2619 (-379)) (|:| -4076 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563))) (-15 -3022 ((-2 (|:| -2619 (-379)) (|:| -4076 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563))) (-15 -1393 ((-2 (|:| -2619 (-379)) (|:| -4076 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563)))) +((-2357 (((-1203 |#1|) |#1| (-225) (-563)) 46))) +(((-786 |#1|) (-10 -7 (-15 -2357 ((-1203 |#1|) |#1| (-225) (-563)))) (-970)) (T -786)) +((-2357 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-225)) (-5 *5 (-563)) (-5 *2 (-1203 *3)) (-5 *1 (-786 *3)) (-4 *3 (-970))))) +(-10 -7 (-15 -2357 ((-1203 |#1|) |#1| (-225) (-563)))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 24)) (-1495 (((-3 $ "failed") $ $) 26)) (-4239 (($) 23 T CONST)) (-3084 (($ $ $) 13)) (-1777 (($ $ $) 14)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11)) (-2241 (($) 22 T CONST)) (-1778 (((-112) $ $) 16)) (-1756 (((-112) $ $) 17)) (-1718 (((-112) $ $) 6)) (-1768 (((-112) $ $) 15)) (-1744 (((-112) $ $) 18)) (-1826 (($ $ $) 28) (($ $) 27)) (-1814 (($ $ $) 20)) (* (($ (-917) $) 21) (($ (-767) $) 25) (($ (-563) $) 29))) +(((-787) (-140)) (T -787)) +NIL +(-13 (-791) (-21)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-858)) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-846) . T) ((-1093) . T)) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 24)) (-4239 (($) 23 T CONST)) (-3084 (($ $ $) 13)) (-1777 (($ $ $) 14)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11)) (-2241 (($) 22 T CONST)) (-1778 (((-112) $ $) 16)) (-1756 (((-112) $ $) 17)) (-1718 (((-112) $ $) 6)) (-1768 (((-112) $ $) 15)) (-1744 (((-112) $ $) 18)) (-1814 (($ $ $) 20)) (* (($ (-917) $) 21) (($ (-767) $) 25))) +(((-788) (-140)) (T -788)) +NIL +(-13 (-790) (-23)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-610 (-858)) . T) ((-790) . T) ((-846) . T) ((-1093) . T)) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 24)) (-1901 (($ $ $) 27)) (-1495 (((-3 $ "failed") $ $) 26)) (-4239 (($) 23 T CONST)) (-3084 (($ $ $) 13)) (-1777 (($ $ $) 14)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11)) (-2241 (($) 22 T CONST)) (-1778 (((-112) $ $) 16)) (-1756 (((-112) $ $) 17)) (-1718 (((-112) $ $) 6)) (-1768 (((-112) $ $) 15)) (-1744 (((-112) $ $) 18)) (-1814 (($ $ $) 20)) (* (($ (-917) $) 21) (($ (-767) $) 25))) +(((-789) (-140)) (T -789)) +((-1901 (*1 *1 *1 *1) (-4 *1 (-789)))) +(-13 (-791) (-10 -8 (-15 -1901 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-858)) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-846) . T) ((-1093) . T)) +((-1677 (((-112) $ $) 7)) (-3084 (($ $ $) 13)) (-1777 (($ $ $) 14)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11)) (-1778 (((-112) $ $) 16)) (-1756 (((-112) $ $) 17)) (-1718 (((-112) $ $) 6)) (-1768 (((-112) $ $) 15)) (-1744 (((-112) $ $) 18)) (-1814 (($ $ $) 20)) (* (($ (-917) $) 21))) +(((-790) (-140)) (T -790)) +NIL +(-13 (-846) (-25)) +(((-25) . T) ((-102) . T) ((-610 (-858)) . T) ((-846) . T) ((-1093) . T)) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 24)) (-1495 (((-3 $ "failed") $ $) 26)) (-4239 (($) 23 T CONST)) (-3084 (($ $ $) 13)) (-1777 (($ $ $) 14)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11)) (-2241 (($) 22 T CONST)) (-1778 (((-112) $ $) 16)) (-1756 (((-112) $ $) 17)) (-1718 (((-112) $ $) 6)) (-1768 (((-112) $ $) 15)) (-1744 (((-112) $ $) 18)) (-1814 (($ $ $) 20)) (* (($ (-917) $) 21) (($ (-767) $) 25))) +(((-791) (-140)) (T -791)) +NIL +(-13 (-788) (-131)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-858)) . T) ((-788) . T) ((-790) . T) ((-846) . T) ((-1093) . T)) +((-3411 (((-112) $) 41)) (-2131 (((-3 (-563) "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-2058 (((-563) $) NIL) (((-407 (-563)) $) NIL) ((|#2| $) 42)) (-3909 (((-3 (-407 (-563)) "failed") $) 78)) (-2239 (((-112) $) 72)) (-2651 (((-407 (-563)) $) 76)) (-3793 ((|#2| $) 26)) (-2240 (($ (-1 |#2| |#2|) $) 23)) (-2688 (($ $) 59)) (-2220 (((-536) $) 67)) (-4339 (($ $) 21)) (-1693 (((-858) $) 54) (($ (-563)) 39) (($ |#2|) 37) (($ (-407 (-563))) NIL)) (-1675 (((-767)) 10)) (-2509 ((|#2| $) 71)) (-1718 (((-112) $ $) 29)) (-1744 (((-112) $ $) 69)) (-1826 (($ $) 31) (($ $ $) NIL)) (-1814 (($ $ $) 30)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) +(((-792 |#1| |#2|) (-10 -8 (-15 -1744 ((-112) |#1| |#1|)) (-15 -2220 ((-536) |#1|)) (-15 -2688 (|#1| |#1|)) (-15 -3909 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2651 ((-407 (-563)) |#1|)) (-15 -2239 ((-112) |#1|)) (-15 -2509 (|#2| |#1|)) (-15 -3793 (|#2| |#1|)) (-15 -4339 (|#1| |#1|)) (-15 -2240 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2131 ((-3 |#2| "failed") |#1|)) (-15 -2058 (|#2| |#1|)) (-15 -2058 ((-407 (-563)) |#1|)) (-15 -2131 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -1693 (|#1| (-407 (-563)))) (-15 -2058 ((-563) |#1|)) (-15 -2131 ((-3 (-563) "failed") |#1|)) (-15 -1693 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1675 ((-767))) (-15 -1693 (|#1| (-563))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 -1826 (|#1| |#1| |#1|)) (-15 -1826 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 -3411 ((-112) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -1814 (|#1| |#1| |#1|)) (-15 -1693 ((-858) |#1|)) (-15 -1718 ((-112) |#1| |#1|))) (-793 |#2|) (-172)) (T -792)) +((-1675 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-792 *3 *4)) (-4 *3 (-793 *4))))) +(-10 -8 (-15 -1744 ((-112) |#1| |#1|)) (-15 -2220 ((-536) |#1|)) (-15 -2688 (|#1| |#1|)) (-15 -3909 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2651 ((-407 (-563)) |#1|)) (-15 -2239 ((-112) |#1|)) (-15 -2509 (|#2| |#1|)) (-15 -3793 (|#2| |#1|)) (-15 -4339 (|#1| |#1|)) (-15 -2240 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2131 ((-3 |#2| "failed") |#1|)) (-15 -2058 (|#2| |#1|)) (-15 -2058 ((-407 (-563)) |#1|)) (-15 -2131 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -1693 (|#1| (-407 (-563)))) (-15 -2058 ((-563) |#1|)) (-15 -2131 ((-3 (-563) "failed") |#1|)) (-15 -1693 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1675 ((-767))) (-15 -1693 (|#1| (-563))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 -1826 (|#1| |#1| |#1|)) (-15 -1826 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 -3411 ((-112) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -1814 (|#1| |#1| |#1|)) (-15 -1693 ((-858) |#1|)) (-15 -1718 ((-112) |#1| |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1495 (((-3 $ "failed") $ $) 19)) (-3749 (((-767)) 52 (|has| |#1| (-368)))) (-4239 (($) 17 T CONST)) (-2131 (((-3 (-563) "failed") $) 94 (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) 91 (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 88)) (-2058 (((-563) $) 93 (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) 90 (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) 89)) (-3400 (((-3 $ "failed") $) 33)) (-2489 ((|#1| $) 78)) (-3909 (((-3 (-407 (-563)) "failed") $) 65 (|has| |#1| (-545)))) (-2239 (((-112) $) 67 (|has| |#1| (-545)))) (-2651 (((-407 (-563)) $) 66 (|has| |#1| (-545)))) (-1691 (($) 55 (|has| |#1| (-368)))) (-3827 (((-112) $) 31)) (-3174 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 69)) (-3793 ((|#1| $) 70)) (-3084 (($ $ $) 61 (|has| |#1| (-846)))) (-1777 (($ $ $) 60 (|has| |#1| (-846)))) (-2240 (($ (-1 |#1| |#1|) $) 80)) (-1476 (((-917) $) 54 (|has| |#1| (-368)))) (-3573 (((-1151) $) 9)) (-2688 (($ $) 64 (|has| |#1| (-363)))) (-2555 (($ (-917)) 53 (|has| |#1| (-368)))) (-4148 ((|#1| $) 75)) (-3775 ((|#1| $) 76)) (-1890 ((|#1| $) 77)) (-3144 ((|#1| $) 71)) (-1307 ((|#1| $) 72)) (-3908 ((|#1| $) 73)) (-2380 ((|#1| $) 74)) (-1694 (((-1113) $) 10)) (-1540 (($ $ (-640 |#1|) (-640 |#1|)) 86 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 85 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 84 (|has| |#1| (-309 |#1|))) (($ $ (-640 (-294 |#1|))) 83 (|has| |#1| (-309 |#1|))) (($ $ (-640 (-1169)) (-640 |#1|)) 82 (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) 81 (|has| |#1| (-514 (-1169) |#1|)))) (-2309 (($ $ |#1|) 87 (|has| |#1| (-286 |#1| |#1|)))) (-2220 (((-536) $) 62 (|has| |#1| (-611 (-536))))) (-4339 (($ $) 79)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 38) (($ (-407 (-563))) 92 (|has| |#1| (-1034 (-407 (-563)))))) (-2779 (((-3 $ "failed") $) 63 (|has| |#1| (-145)))) (-1675 (((-767)) 28)) (-2509 ((|#1| $) 68 (|has| |#1| (-1054)))) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1778 (((-112) $ $) 58 (|has| |#1| (-846)))) (-1756 (((-112) $ $) 57 (|has| |#1| (-846)))) (-1718 (((-112) $ $) 6)) (-1768 (((-112) $ $) 59 (|has| |#1| (-846)))) (-1744 (((-112) $ $) 56 (|has| |#1| (-846)))) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-793 |#1|) (-140) (-172)) (T -793)) +((-4339 (*1 *1 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-2489 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-1890 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-4148 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-2380 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-3908 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-1307 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-3144 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-3793 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-3174 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-2509 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)) (-4 *2 (-1054)))) (-2239 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-2651 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-563))))) (-3909 (*1 *2 *1) (|partial| -12 (-4 *1 (-793 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-563))))) (-2688 (*1 *1 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)) (-4 *2 (-363))))) +(-13 (-38 |t#1|) (-411 |t#1|) (-338 |t#1|) (-10 -8 (-15 -4339 ($ $)) (-15 -2489 (|t#1| $)) (-15 -1890 (|t#1| $)) (-15 -3775 (|t#1| $)) (-15 -4148 (|t#1| $)) (-15 -2380 (|t#1| $)) (-15 -3908 (|t#1| $)) (-15 -1307 (|t#1| $)) (-15 -3144 (|t#1| $)) (-15 -3793 (|t#1| $)) (-15 -3174 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#1| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1054)) (-15 -2509 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -2239 ((-112) $)) (-15 -2651 ((-407 (-563)) $)) (-15 -3909 ((-3 (-407 (-563)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-363)) (-15 -2688 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0=(-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-610 (-858)) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-368) |has| |#1| (-368)) ((-338 |#1|) . T) ((-411 |#1|) . T) ((-514 (-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-643 |#1|) . T) ((-643 $) . T) ((-713 |#1|) . T) ((-722) . T) ((-846) |has| |#1| (-846)) ((-1034 #0#) |has| |#1| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 |#1|) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) +((-2240 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-794 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2240 (|#3| (-1 |#4| |#2|) |#1|))) (-793 |#2|) (-172) (-793 |#4|) (-172)) (T -794)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-793 *6)) (-5 *1 (-794 *4 *5 *2 *6)) (-4 *4 (-793 *5))))) +(-10 -7 (-15 -2240 (|#3| (-1 |#4| |#2|) |#1|))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3749 (((-767)) NIL (|has| |#1| (-368)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#1| "failed") $) NIL) (((-3 (-995 |#1|) "failed") $) 35) (((-3 (-563) "failed") $) NIL (-4032 (|has| (-995 |#1|) (-1034 (-563))) (|has| |#1| (-1034 (-563))))) (((-3 (-407 (-563)) "failed") $) NIL (-4032 (|has| (-995 |#1|) (-1034 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))))) (-2058 ((|#1| $) NIL) (((-995 |#1|) $) 33) (((-563) $) NIL (-4032 (|has| (-995 |#1|) (-1034 (-563))) (|has| |#1| (-1034 (-563))))) (((-407 (-563)) $) NIL (-4032 (|has| (-995 |#1|) (-1034 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))))) (-3400 (((-3 $ "failed") $) NIL)) (-2489 ((|#1| $) 16)) (-3909 (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-545)))) (-2239 (((-112) $) NIL (|has| |#1| (-545)))) (-2651 (((-407 (-563)) $) NIL (|has| |#1| (-545)))) (-1691 (($) NIL (|has| |#1| (-368)))) (-3827 (((-112) $) NIL)) (-3174 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-995 |#1|) (-995 |#1|)) 29)) (-3793 ((|#1| $) NIL)) (-3084 (($ $ $) NIL (|has| |#1| (-846)))) (-1777 (($ $ $) NIL (|has| |#1| (-846)))) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-1476 (((-917) $) NIL (|has| |#1| (-368)))) (-3573 (((-1151) $) NIL)) (-2688 (($ $) NIL (|has| |#1| (-363)))) (-2555 (($ (-917)) NIL (|has| |#1| (-368)))) (-4148 ((|#1| $) 22)) (-3775 ((|#1| $) 20)) (-1890 ((|#1| $) 18)) (-3144 ((|#1| $) 26)) (-1307 ((|#1| $) 25)) (-3908 ((|#1| $) 24)) (-2380 ((|#1| $) 23)) (-1694 (((-1113) $) NIL)) (-1540 (($ $ (-640 |#1|) (-640 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-640 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-640 (-1169)) (-640 |#1|)) NIL (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) NIL (|has| |#1| (-514 (-1169) |#1|)))) (-2309 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-2220 (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-4339 (($ $) NIL)) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL) (($ (-995 |#1|)) 30) (($ (-407 (-563))) NIL (-4032 (|has| (-995 |#1|) (-1034 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))))) (-2779 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1675 (((-767)) NIL)) (-2509 ((|#1| $) NIL (|has| |#1| (-1054)))) (-2241 (($) 8 T CONST)) (-2254 (($) 12 T CONST)) (-1778 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1756 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1744 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-795 |#1|) (-13 (-793 |#1|) (-411 (-995 |#1|)) (-10 -8 (-15 -3174 ($ (-995 |#1|) (-995 |#1|))))) (-172)) (T -795)) +((-3174 (*1 *1 *2 *2) (-12 (-5 *2 (-995 *3)) (-4 *3 (-172)) (-5 *1 (-795 *3))))) +(-13 (-793 |#1|) (-411 (-995 |#1|)) (-10 -8 (-15 -3174 ($ (-995 |#1|) (-995 |#1|))))) +((-1677 (((-112) $ $) 7)) (-1994 (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 14)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11)) (-3591 (((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 13)) (-1718 (((-112) $ $) 6))) +(((-796) (-140)) (T -796)) +((-1994 (*1 *2 *3 *4) (-12 (-4 *1 (-796)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)))))) (-3591 (*1 *2 *3) (-12 (-4 *1 (-796)) (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1031))))) +(-13 (-1093) (-10 -7 (-15 -1994 ((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3591 ((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) +(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) +((-1995 (((-2 (|:| |particular| |#2|) (|:| -4315 (-640 |#2|))) |#3| |#2| (-1169)) 19))) +(((-797 |#1| |#2| |#3|) (-10 -7 (-15 -1995 ((-2 (|:| |particular| |#2|) (|:| -4315 (-640 |#2|))) |#3| |#2| (-1169)))) (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)) (-13 (-29 |#1|) (-1193) (-955)) (-651 |#2|)) (T -797)) +((-1995 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1169)) (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-4 *4 (-13 (-29 *6) (-1193) (-955))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4315 (-640 *4)))) (-5 *1 (-797 *6 *4 *3)) (-4 *3 (-651 *4))))) +(-10 -7 (-15 -1995 ((-2 (|:| |particular| |#2|) (|:| -4315 (-640 |#2|))) |#3| |#2| (-1169)))) +((-1793 (((-3 |#2| "failed") |#2| (-114) (-294 |#2|) (-640 |#2|)) 28) (((-3 |#2| "failed") (-294 |#2|) (-114) (-294 |#2|) (-640 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -4315 (-640 |#2|))) |#2| "failed") |#2| (-114) (-1169)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -4315 (-640 |#2|))) |#2| "failed") (-294 |#2|) (-114) (-1169)) 18) (((-3 (-2 (|:| |particular| (-1257 |#2|)) (|:| -4315 (-640 (-1257 |#2|)))) "failed") (-640 |#2|) (-640 (-114)) (-1169)) 24) (((-3 (-2 (|:| |particular| (-1257 |#2|)) (|:| -4315 (-640 (-1257 |#2|)))) "failed") (-640 (-294 |#2|)) (-640 (-114)) (-1169)) 26) (((-3 (-640 (-1257 |#2|)) "failed") (-684 |#2|) (-1169)) 37) (((-3 (-2 (|:| |particular| (-1257 |#2|)) (|:| -4315 (-640 (-1257 |#2|)))) "failed") (-684 |#2|) (-1257 |#2|) (-1169)) 35))) +(((-798 |#1| |#2|) (-10 -7 (-15 -1793 ((-3 (-2 (|:| |particular| (-1257 |#2|)) (|:| -4315 (-640 (-1257 |#2|)))) "failed") (-684 |#2|) (-1257 |#2|) (-1169))) (-15 -1793 ((-3 (-640 (-1257 |#2|)) "failed") (-684 |#2|) (-1169))) (-15 -1793 ((-3 (-2 (|:| |particular| (-1257 |#2|)) (|:| -4315 (-640 (-1257 |#2|)))) "failed") (-640 (-294 |#2|)) (-640 (-114)) (-1169))) (-15 -1793 ((-3 (-2 (|:| |particular| (-1257 |#2|)) (|:| -4315 (-640 (-1257 |#2|)))) "failed") (-640 |#2|) (-640 (-114)) (-1169))) (-15 -1793 ((-3 (-2 (|:| |particular| |#2|) (|:| -4315 (-640 |#2|))) |#2| "failed") (-294 |#2|) (-114) (-1169))) (-15 -1793 ((-3 (-2 (|:| |particular| |#2|) (|:| -4315 (-640 |#2|))) |#2| "failed") |#2| (-114) (-1169))) (-15 -1793 ((-3 |#2| "failed") (-294 |#2|) (-114) (-294 |#2|) (-640 |#2|))) (-15 -1793 ((-3 |#2| "failed") |#2| (-114) (-294 |#2|) (-640 |#2|)))) (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)) (-13 (-29 |#1|) (-1193) (-955))) (T -798)) +((-1793 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-294 *2)) (-5 *5 (-640 *2)) (-4 *2 (-13 (-29 *6) (-1193) (-955))) (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *1 (-798 *6 *2)))) (-1793 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-294 *2)) (-5 *4 (-114)) (-5 *5 (-640 *2)) (-4 *2 (-13 (-29 *6) (-1193) (-955))) (-5 *1 (-798 *6 *2)) (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))))) (-1793 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1169)) (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -4315 (-640 *3))) *3 "failed")) (-5 *1 (-798 *6 *3)) (-4 *3 (-13 (-29 *6) (-1193) (-955))))) (-1793 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-1169)) (-4 *7 (-13 (-29 *6) (-1193) (-955))) (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -4315 (-640 *7))) *7 "failed")) (-5 *1 (-798 *6 *7)))) (-1793 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-640 *7)) (-5 *4 (-640 (-114))) (-5 *5 (-1169)) (-4 *7 (-13 (-29 *6) (-1193) (-955))) (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-2 (|:| |particular| (-1257 *7)) (|:| -4315 (-640 (-1257 *7))))) (-5 *1 (-798 *6 *7)))) (-1793 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-640 (-294 *7))) (-5 *4 (-640 (-114))) (-5 *5 (-1169)) (-4 *7 (-13 (-29 *6) (-1193) (-955))) (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-2 (|:| |particular| (-1257 *7)) (|:| -4315 (-640 (-1257 *7))))) (-5 *1 (-798 *6 *7)))) (-1793 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-684 *6)) (-5 *4 (-1169)) (-4 *6 (-13 (-29 *5) (-1193) (-955))) (-4 *5 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-640 (-1257 *6))) (-5 *1 (-798 *5 *6)))) (-1793 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-684 *7)) (-5 *5 (-1169)) (-4 *7 (-13 (-29 *6) (-1193) (-955))) (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-2 (|:| |particular| (-1257 *7)) (|:| -4315 (-640 (-1257 *7))))) (-5 *1 (-798 *6 *7)) (-5 *4 (-1257 *7))))) +(-10 -7 (-15 -1793 ((-3 (-2 (|:| |particular| (-1257 |#2|)) (|:| -4315 (-640 (-1257 |#2|)))) "failed") (-684 |#2|) (-1257 |#2|) (-1169))) (-15 -1793 ((-3 (-640 (-1257 |#2|)) "failed") (-684 |#2|) (-1169))) (-15 -1793 ((-3 (-2 (|:| |particular| (-1257 |#2|)) (|:| -4315 (-640 (-1257 |#2|)))) "failed") (-640 (-294 |#2|)) (-640 (-114)) (-1169))) (-15 -1793 ((-3 (-2 (|:| |particular| (-1257 |#2|)) (|:| -4315 (-640 (-1257 |#2|)))) "failed") (-640 |#2|) (-640 (-114)) (-1169))) (-15 -1793 ((-3 (-2 (|:| |particular| |#2|) (|:| -4315 (-640 |#2|))) |#2| "failed") (-294 |#2|) (-114) (-1169))) (-15 -1793 ((-3 (-2 (|:| |particular| |#2|) (|:| -4315 (-640 |#2|))) |#2| "failed") |#2| (-114) (-1169))) (-15 -1793 ((-3 |#2| "failed") (-294 |#2|) (-114) (-294 |#2|) (-640 |#2|))) (-15 -1793 ((-3 |#2| "failed") |#2| (-114) (-294 |#2|) (-640 |#2|)))) +((-2204 (($) 9)) (-2585 (((-3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 31)) (-1303 (((-640 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 28)) (-1812 (($ (-2 (|:| -2387 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2557 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))) 25)) (-2100 (($ (-640 (-2 (|:| -2387 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2557 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) 23)) (-1439 (((-1262)) 12))) +(((-799) (-10 -8 (-15 -2204 ($)) (-15 -1439 ((-1262))) (-15 -1303 ((-640 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -2100 ($ (-640 (-2 (|:| -2387 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2557 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))))) (-15 -1812 ($ (-2 (|:| -2387 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2557 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) (-15 -2585 ((-3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -799)) +((-2585 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))) (-5 *1 (-799)))) (-1812 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2387 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2557 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))) (-5 *1 (-799)))) (-2100 (*1 *1 *2) (-12 (-5 *2 (-640 (-2 (|:| -2387 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2557 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) (-5 *1 (-799)))) (-1303 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-799)))) (-1439 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-799)))) (-2204 (*1 *1) (-5 *1 (-799)))) +(-10 -8 (-15 -2204 ($)) (-15 -1439 ((-1262))) (-15 -1303 ((-640 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -2100 ($ (-640 (-2 (|:| -2387 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2557 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))))) (-15 -1812 ($ (-2 (|:| -2387 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2557 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) (-15 -2585 ((-3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) +((-1479 ((|#2| |#2| (-1169)) 16)) (-1934 ((|#2| |#2| (-1169)) 51)) (-3397 (((-1 |#2| |#2|) (-1169)) 11))) +(((-800 |#1| |#2|) (-10 -7 (-15 -1479 (|#2| |#2| (-1169))) (-15 -1934 (|#2| |#2| (-1169))) (-15 -3397 ((-1 |#2| |#2|) (-1169)))) (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)) (-13 (-29 |#1|) (-1193) (-955))) (T -800)) +((-3397 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-1 *5 *5)) (-5 *1 (-800 *4 *5)) (-4 *5 (-13 (-29 *4) (-1193) (-955))))) (-1934 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *1 (-800 *4 *2)) (-4 *2 (-13 (-29 *4) (-1193) (-955))))) (-1479 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *1 (-800 *4 *2)) (-4 *2 (-13 (-29 *4) (-1193) (-955)))))) +(-10 -7 (-15 -1479 (|#2| |#2| (-1169))) (-15 -1934 (|#2| |#2| (-1169))) (-15 -3397 ((-1 |#2| |#2|) (-1169)))) +((-1793 (((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-316 (-379)) (-640 (-379)) (-379) (-379)) 116) (((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-316 (-379)) (-640 (-379)) (-379)) 117) (((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-640 (-379)) (-379)) 119) (((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-316 (-379)) (-379)) 120) (((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-379)) 121) (((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379))) 122) (((-1031) (-804) (-1057)) 108) (((-1031) (-804)) 109)) (-1994 (((-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151)))) (-804) (-1057)) 75) (((-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151)))) (-804)) 77))) +(((-801) (-10 -7 (-15 -1793 ((-1031) (-804))) (-15 -1793 ((-1031) (-804) (-1057))) (-15 -1793 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)))) (-15 -1793 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-379))) (-15 -1793 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-316 (-379)) (-379))) (-15 -1793 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-640 (-379)) (-379))) (-15 -1793 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-316 (-379)) (-640 (-379)) (-379))) (-15 -1793 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-316 (-379)) (-640 (-379)) (-379) (-379))) (-15 -1994 ((-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151)))) (-804))) (-15 -1994 ((-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151)))) (-804) (-1057))))) (T -801)) +((-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-804)) (-5 *4 (-1057)) (-5 *2 (-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151))))) (-5 *1 (-801)))) (-1994 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151))))) (-5 *1 (-801)))) (-1793 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1257 (-316 *4))) (-5 *5 (-640 (-379))) (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-1793 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1257 (-316 *4))) (-5 *5 (-640 (-379))) (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-1793 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1257 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-640 *4)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-1793 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1257 (-316 *4))) (-5 *5 (-640 (-379))) (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-1793 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1257 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-640 *4)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-1793 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1257 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-640 *4)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-1793 (*1 *2 *3 *4) (-12 (-5 *3 (-804)) (-5 *4 (-1057)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-1793 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1031)) (-5 *1 (-801))))) +(-10 -7 (-15 -1793 ((-1031) (-804))) (-15 -1793 ((-1031) (-804) (-1057))) (-15 -1793 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)))) (-15 -1793 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-379))) (-15 -1793 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-316 (-379)) (-379))) (-15 -1793 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-640 (-379)) (-379))) (-15 -1793 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-316 (-379)) (-640 (-379)) (-379))) (-15 -1793 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-316 (-379)) (-640 (-379)) (-379) (-379))) (-15 -1994 ((-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151)))) (-804))) (-15 -1994 ((-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151)))) (-804) (-1057)))) +((-2643 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4315 (-640 |#4|))) (-648 |#4|) |#4|) 35))) +(((-802 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2643 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4315 (-640 |#4|))) (-648 |#4|) |#4|))) (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563)))) (-1233 |#1|) (-1233 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -802)) +((-2643 (*1 *2 *3 *4) (-12 (-5 *3 (-648 *4)) (-4 *4 (-342 *5 *6 *7)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4315 (-640 *4)))) (-5 *1 (-802 *5 *6 *7 *4))))) +(-10 -7 (-15 -2643 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4315 (-640 |#4|))) (-648 |#4|) |#4|))) +((-3266 (((-2 (|:| -1420 |#3|) (|:| |rh| (-640 (-407 |#2|)))) |#4| (-640 (-407 |#2|))) 52)) (-2734 (((-640 (-2 (|:| -3408 |#2|) (|:| -2378 |#2|))) |#4| |#2|) 60) (((-640 (-2 (|:| -3408 |#2|) (|:| -2378 |#2|))) |#4|) 59) (((-640 (-2 (|:| -3408 |#2|) (|:| -2378 |#2|))) |#3| |#2|) 20) (((-640 (-2 (|:| -3408 |#2|) (|:| -2378 |#2|))) |#3|) 21)) (-2797 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-3288 ((|#2| |#3| (-640 (-407 |#2|))) 94) (((-3 |#2| "failed") |#3| (-407 |#2|)) 91))) +(((-803 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3288 ((-3 |#2| "failed") |#3| (-407 |#2|))) (-15 -3288 (|#2| |#3| (-640 (-407 |#2|)))) (-15 -2734 ((-640 (-2 (|:| -3408 |#2|) (|:| -2378 |#2|))) |#3|)) (-15 -2734 ((-640 (-2 (|:| -3408 |#2|) (|:| -2378 |#2|))) |#3| |#2|)) (-15 -2797 (|#2| |#3| |#1|)) (-15 -2734 ((-640 (-2 (|:| -3408 |#2|) (|:| -2378 |#2|))) |#4|)) (-15 -2734 ((-640 (-2 (|:| -3408 |#2|) (|:| -2378 |#2|))) |#4| |#2|)) (-15 -2797 (|#2| |#4| |#1|)) (-15 -3266 ((-2 (|:| -1420 |#3|) (|:| |rh| (-640 (-407 |#2|)))) |#4| (-640 (-407 |#2|))))) (-13 (-363) (-147) (-1034 (-407 (-563)))) (-1233 |#1|) (-651 |#2|) (-651 (-407 |#2|))) (T -803)) +((-3266 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *6 (-1233 *5)) (-5 *2 (-2 (|:| -1420 *7) (|:| |rh| (-640 (-407 *6))))) (-5 *1 (-803 *5 *6 *7 *3)) (-5 *4 (-640 (-407 *6))) (-4 *7 (-651 *6)) (-4 *3 (-651 (-407 *6))))) (-2797 (*1 *2 *3 *4) (-12 (-4 *2 (-1233 *4)) (-5 *1 (-803 *4 *2 *5 *3)) (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *5 (-651 *2)) (-4 *3 (-651 (-407 *2))))) (-2734 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *4 (-1233 *5)) (-5 *2 (-640 (-2 (|:| -3408 *4) (|:| -2378 *4)))) (-5 *1 (-803 *5 *4 *6 *3)) (-4 *6 (-651 *4)) (-4 *3 (-651 (-407 *4))))) (-2734 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *5 (-1233 *4)) (-5 *2 (-640 (-2 (|:| -3408 *5) (|:| -2378 *5)))) (-5 *1 (-803 *4 *5 *6 *3)) (-4 *6 (-651 *5)) (-4 *3 (-651 (-407 *5))))) (-2797 (*1 *2 *3 *4) (-12 (-4 *2 (-1233 *4)) (-5 *1 (-803 *4 *2 *3 *5)) (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *3 (-651 *2)) (-4 *5 (-651 (-407 *2))))) (-2734 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *4 (-1233 *5)) (-5 *2 (-640 (-2 (|:| -3408 *4) (|:| -2378 *4)))) (-5 *1 (-803 *5 *4 *3 *6)) (-4 *3 (-651 *4)) (-4 *6 (-651 (-407 *4))))) (-2734 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *5 (-1233 *4)) (-5 *2 (-640 (-2 (|:| -3408 *5) (|:| -2378 *5)))) (-5 *1 (-803 *4 *5 *3 *6)) (-4 *3 (-651 *5)) (-4 *6 (-651 (-407 *5))))) (-3288 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-407 *2))) (-4 *2 (-1233 *5)) (-5 *1 (-803 *5 *2 *3 *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *3 (-651 *2)) (-4 *6 (-651 (-407 *2))))) (-3288 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-407 *2)) (-4 *2 (-1233 *5)) (-5 *1 (-803 *5 *2 *3 *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *3 (-651 *2)) (-4 *6 (-651 *4))))) +(-10 -7 (-15 -3288 ((-3 |#2| "failed") |#3| (-407 |#2|))) (-15 -3288 (|#2| |#3| (-640 (-407 |#2|)))) (-15 -2734 ((-640 (-2 (|:| -3408 |#2|) (|:| -2378 |#2|))) |#3|)) (-15 -2734 ((-640 (-2 (|:| -3408 |#2|) (|:| -2378 |#2|))) |#3| |#2|)) (-15 -2797 (|#2| |#3| |#1|)) (-15 -2734 ((-640 (-2 (|:| -3408 |#2|) (|:| -2378 |#2|))) |#4|)) (-15 -2734 ((-640 (-2 (|:| -3408 |#2|) (|:| -2378 |#2|))) |#4| |#2|)) (-15 -2797 (|#2| |#4| |#1|)) (-15 -3266 ((-2 (|:| -1420 |#3|) (|:| |rh| (-640 (-407 |#2|)))) |#4| (-640 (-407 |#2|))))) +((-1677 (((-112) $ $) NIL)) (-2058 (((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $) 13)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 15) (($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 12)) (-1718 (((-112) $ $) NIL))) +(((-804) (-13 (-1093) (-10 -8 (-15 -1693 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2058 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $))))) (T -804)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-804)))) (-2058 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-804))))) +(-13 (-1093) (-10 -8 (-15 -1693 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2058 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $)))) +((-4277 (((-640 (-2 (|:| |frac| (-407 |#2|)) (|:| -1420 |#3|))) |#3| (-1 (-640 |#2|) |#2| (-1165 |#2|)) (-1 (-418 |#2|) |#2|)) 117)) (-2394 (((-640 (-2 (|:| |poly| |#2|) (|:| -1420 |#3|))) |#3| (-1 (-640 |#1|) |#2|)) 46)) (-2740 (((-640 (-2 (|:| |deg| (-767)) (|:| -1420 |#2|))) |#3|) 94)) (-3000 ((|#2| |#3|) 37)) (-1296 (((-640 (-2 (|:| -2669 |#1|) (|:| -1420 |#3|))) |#3| (-1 (-640 |#1|) |#2|)) 81)) (-1440 ((|#3| |#3| (-407 |#2|)) 62) ((|#3| |#3| |#2|) 78))) +(((-805 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3000 (|#2| |#3|)) (-15 -2740 ((-640 (-2 (|:| |deg| (-767)) (|:| -1420 |#2|))) |#3|)) (-15 -1296 ((-640 (-2 (|:| -2669 |#1|) (|:| -1420 |#3|))) |#3| (-1 (-640 |#1|) |#2|))) (-15 -2394 ((-640 (-2 (|:| |poly| |#2|) (|:| -1420 |#3|))) |#3| (-1 (-640 |#1|) |#2|))) (-15 -4277 ((-640 (-2 (|:| |frac| (-407 |#2|)) (|:| -1420 |#3|))) |#3| (-1 (-640 |#2|) |#2| (-1165 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -1440 (|#3| |#3| |#2|)) (-15 -1440 (|#3| |#3| (-407 |#2|)))) (-13 (-363) (-147) (-1034 (-407 (-563)))) (-1233 |#1|) (-651 |#2|) (-651 (-407 |#2|))) (T -805)) +((-1440 (*1 *2 *2 *3) (-12 (-5 *3 (-407 *5)) (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *5 (-1233 *4)) (-5 *1 (-805 *4 *5 *2 *6)) (-4 *2 (-651 *5)) (-4 *6 (-651 *3)))) (-1440 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *3 (-1233 *4)) (-5 *1 (-805 *4 *3 *2 *5)) (-4 *2 (-651 *3)) (-4 *5 (-651 (-407 *3))))) (-4277 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-640 *7) *7 (-1165 *7))) (-5 *5 (-1 (-418 *7) *7)) (-4 *7 (-1233 *6)) (-4 *6 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-5 *2 (-640 (-2 (|:| |frac| (-407 *7)) (|:| -1420 *3)))) (-5 *1 (-805 *6 *7 *3 *8)) (-4 *3 (-651 *7)) (-4 *8 (-651 (-407 *7))))) (-2394 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-640 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *6 (-1233 *5)) (-5 *2 (-640 (-2 (|:| |poly| *6) (|:| -1420 *3)))) (-5 *1 (-805 *5 *6 *3 *7)) (-4 *3 (-651 *6)) (-4 *7 (-651 (-407 *6))))) (-1296 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-640 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *6 (-1233 *5)) (-5 *2 (-640 (-2 (|:| -2669 *5) (|:| -1420 *3)))) (-5 *1 (-805 *5 *6 *3 *7)) (-4 *3 (-651 *6)) (-4 *7 (-651 (-407 *6))))) (-2740 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *5 (-1233 *4)) (-5 *2 (-640 (-2 (|:| |deg| (-767)) (|:| -1420 *5)))) (-5 *1 (-805 *4 *5 *3 *6)) (-4 *3 (-651 *5)) (-4 *6 (-651 (-407 *5))))) (-3000 (*1 *2 *3) (-12 (-4 *2 (-1233 *4)) (-5 *1 (-805 *4 *2 *3 *5)) (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *3 (-651 *2)) (-4 *5 (-651 (-407 *2)))))) +(-10 -7 (-15 -3000 (|#2| |#3|)) (-15 -2740 ((-640 (-2 (|:| |deg| (-767)) (|:| -1420 |#2|))) |#3|)) (-15 -1296 ((-640 (-2 (|:| -2669 |#1|) (|:| -1420 |#3|))) |#3| (-1 (-640 |#1|) |#2|))) (-15 -2394 ((-640 (-2 (|:| |poly| |#2|) (|:| -1420 |#3|))) |#3| (-1 (-640 |#1|) |#2|))) (-15 -4277 ((-640 (-2 (|:| |frac| (-407 |#2|)) (|:| -1420 |#3|))) |#3| (-1 (-640 |#2|) |#2| (-1165 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -1440 (|#3| |#3| |#2|)) (-15 -1440 (|#3| |#3| (-407 |#2|)))) +((-2653 (((-2 (|:| -4315 (-640 (-407 |#2|))) (|:| -2835 (-684 |#1|))) (-649 |#2| (-407 |#2|)) (-640 (-407 |#2|))) 122) (((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -4315 (-640 (-407 |#2|)))) (-649 |#2| (-407 |#2|)) (-407 |#2|)) 121) (((-2 (|:| -4315 (-640 (-407 |#2|))) (|:| -2835 (-684 |#1|))) (-648 (-407 |#2|)) (-640 (-407 |#2|))) 116) (((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -4315 (-640 (-407 |#2|)))) (-648 (-407 |#2|)) (-407 |#2|)) 114)) (-3185 ((|#2| (-649 |#2| (-407 |#2|))) 80) ((|#2| (-648 (-407 |#2|))) 83))) +(((-806 |#1| |#2|) (-10 -7 (-15 -2653 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -4315 (-640 (-407 |#2|)))) (-648 (-407 |#2|)) (-407 |#2|))) (-15 -2653 ((-2 (|:| -4315 (-640 (-407 |#2|))) (|:| -2835 (-684 |#1|))) (-648 (-407 |#2|)) (-640 (-407 |#2|)))) (-15 -2653 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -4315 (-640 (-407 |#2|)))) (-649 |#2| (-407 |#2|)) (-407 |#2|))) (-15 -2653 ((-2 (|:| -4315 (-640 (-407 |#2|))) (|:| -2835 (-684 |#1|))) (-649 |#2| (-407 |#2|)) (-640 (-407 |#2|)))) (-15 -3185 (|#2| (-648 (-407 |#2|)))) (-15 -3185 (|#2| (-649 |#2| (-407 |#2|))))) (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563)))) (-1233 |#1|)) (T -806)) +((-3185 (*1 *2 *3) (-12 (-5 *3 (-649 *2 (-407 *2))) (-4 *2 (-1233 *4)) (-5 *1 (-806 *4 *2)) (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))))) (-3185 (*1 *2 *3) (-12 (-5 *3 (-648 (-407 *2))) (-4 *2 (-1233 *4)) (-5 *1 (-806 *4 *2)) (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))))) (-2653 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6 (-407 *6))) (-4 *6 (-1233 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-5 *2 (-2 (|:| -4315 (-640 (-407 *6))) (|:| -2835 (-684 *5)))) (-5 *1 (-806 *5 *6)) (-5 *4 (-640 (-407 *6))))) (-2653 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4315 (-640 *4)))) (-5 *1 (-806 *5 *6)))) (-2653 (*1 *2 *3 *4) (-12 (-5 *3 (-648 (-407 *6))) (-4 *6 (-1233 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-5 *2 (-2 (|:| -4315 (-640 (-407 *6))) (|:| -2835 (-684 *5)))) (-5 *1 (-806 *5 *6)) (-5 *4 (-640 (-407 *6))))) (-2653 (*1 *2 *3 *4) (-12 (-5 *3 (-648 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4315 (-640 *4)))) (-5 *1 (-806 *5 *6))))) +(-10 -7 (-15 -2653 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -4315 (-640 (-407 |#2|)))) (-648 (-407 |#2|)) (-407 |#2|))) (-15 -2653 ((-2 (|:| -4315 (-640 (-407 |#2|))) (|:| -2835 (-684 |#1|))) (-648 (-407 |#2|)) (-640 (-407 |#2|)))) (-15 -2653 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -4315 (-640 (-407 |#2|)))) (-649 |#2| (-407 |#2|)) (-407 |#2|))) (-15 -2653 ((-2 (|:| -4315 (-640 (-407 |#2|))) (|:| -2835 (-684 |#1|))) (-649 |#2| (-407 |#2|)) (-640 (-407 |#2|)))) (-15 -3185 (|#2| (-648 (-407 |#2|)))) (-15 -3185 (|#2| (-649 |#2| (-407 |#2|))))) +((-3297 (((-2 (|:| -2835 (-684 |#2|)) (|:| |vec| (-1257 |#1|))) |#5| |#4|) 48))) +(((-807 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3297 ((-2 (|:| -2835 (-684 |#2|)) (|:| |vec| (-1257 |#1|))) |#5| |#4|))) (-363) (-651 |#1|) (-1233 |#1|) (-720 |#1| |#3|) (-651 |#4|)) (T -807)) +((-3297 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *7 (-1233 *5)) (-4 *4 (-720 *5 *7)) (-5 *2 (-2 (|:| -2835 (-684 *6)) (|:| |vec| (-1257 *5)))) (-5 *1 (-807 *5 *6 *7 *4 *3)) (-4 *6 (-651 *5)) (-4 *3 (-651 *4))))) +(-10 -7 (-15 -3297 ((-2 (|:| -2835 (-684 |#2|)) (|:| |vec| (-1257 |#1|))) |#5| |#4|))) +((-4277 (((-640 (-2 (|:| |frac| (-407 |#2|)) (|:| -1420 (-649 |#2| (-407 |#2|))))) (-649 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)) 47)) (-2297 (((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)) 140 (|has| |#1| (-27))) (((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|))) 137 (|has| |#1| (-27))) (((-640 (-407 |#2|)) (-648 (-407 |#2|)) (-1 (-418 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-640 (-407 |#2|)) (-648 (-407 |#2|))) 139 (|has| |#1| (-27))) (((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|)) (-1 (-640 |#1|) |#2|) (-1 (-418 |#2|) |#2|)) 38) (((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|)) (-1 (-640 |#1|) |#2|)) 39) (((-640 (-407 |#2|)) (-648 (-407 |#2|)) (-1 (-640 |#1|) |#2|) (-1 (-418 |#2|) |#2|)) 36) (((-640 (-407 |#2|)) (-648 (-407 |#2|)) (-1 (-640 |#1|) |#2|)) 37)) (-2394 (((-640 (-2 (|:| |poly| |#2|) (|:| -1420 (-649 |#2| (-407 |#2|))))) (-649 |#2| (-407 |#2|)) (-1 (-640 |#1|) |#2|)) 83))) +(((-808 |#1| |#2|) (-10 -7 (-15 -2297 ((-640 (-407 |#2|)) (-648 (-407 |#2|)) (-1 (-640 |#1|) |#2|))) (-15 -2297 ((-640 (-407 |#2|)) (-648 (-407 |#2|)) (-1 (-640 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -2297 ((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|)) (-1 (-640 |#1|) |#2|))) (-15 -2297 ((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|)) (-1 (-640 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -4277 ((-640 (-2 (|:| |frac| (-407 |#2|)) (|:| -1420 (-649 |#2| (-407 |#2|))))) (-649 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -2394 ((-640 (-2 (|:| |poly| |#2|) (|:| -1420 (-649 |#2| (-407 |#2|))))) (-649 |#2| (-407 |#2|)) (-1 (-640 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2297 ((-640 (-407 |#2|)) (-648 (-407 |#2|)))) (-15 -2297 ((-640 (-407 |#2|)) (-648 (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -2297 ((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|)))) (-15 -2297 ((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)))) |%noBranch|)) (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563)))) (-1233 |#1|)) (T -808)) +((-2297 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6 (-407 *6))) (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1233 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-5 *2 (-640 (-407 *6))) (-5 *1 (-808 *5 *6)))) (-2297 (*1 *2 *3) (-12 (-5 *3 (-649 *5 (-407 *5))) (-4 *5 (-1233 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-5 *2 (-640 (-407 *5))) (-5 *1 (-808 *4 *5)))) (-2297 (*1 *2 *3 *4) (-12 (-5 *3 (-648 (-407 *6))) (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1233 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-5 *2 (-640 (-407 *6))) (-5 *1 (-808 *5 *6)))) (-2297 (*1 *2 *3) (-12 (-5 *3 (-648 (-407 *5))) (-4 *5 (-1233 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-5 *2 (-640 (-407 *5))) (-5 *1 (-808 *4 *5)))) (-2394 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-640 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-4 *6 (-1233 *5)) (-5 *2 (-640 (-2 (|:| |poly| *6) (|:| -1420 (-649 *6 (-407 *6)))))) (-5 *1 (-808 *5 *6)) (-5 *3 (-649 *6 (-407 *6))))) (-4277 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1233 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-5 *2 (-640 (-2 (|:| |frac| (-407 *6)) (|:| -1420 (-649 *6 (-407 *6)))))) (-5 *1 (-808 *5 *6)) (-5 *3 (-649 *6 (-407 *6))))) (-2297 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *7 (-407 *7))) (-5 *4 (-1 (-640 *6) *7)) (-5 *5 (-1 (-418 *7) *7)) (-4 *6 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-4 *7 (-1233 *6)) (-5 *2 (-640 (-407 *7))) (-5 *1 (-808 *6 *7)))) (-2297 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6 (-407 *6))) (-5 *4 (-1 (-640 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-4 *6 (-1233 *5)) (-5 *2 (-640 (-407 *6))) (-5 *1 (-808 *5 *6)))) (-2297 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-648 (-407 *7))) (-5 *4 (-1 (-640 *6) *7)) (-5 *5 (-1 (-418 *7) *7)) (-4 *6 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-4 *7 (-1233 *6)) (-5 *2 (-640 (-407 *7))) (-5 *1 (-808 *6 *7)))) (-2297 (*1 *2 *3 *4) (-12 (-5 *3 (-648 (-407 *6))) (-5 *4 (-1 (-640 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-4 *6 (-1233 *5)) (-5 *2 (-640 (-407 *6))) (-5 *1 (-808 *5 *6))))) +(-10 -7 (-15 -2297 ((-640 (-407 |#2|)) (-648 (-407 |#2|)) (-1 (-640 |#1|) |#2|))) (-15 -2297 ((-640 (-407 |#2|)) (-648 (-407 |#2|)) (-1 (-640 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -2297 ((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|)) (-1 (-640 |#1|) |#2|))) (-15 -2297 ((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|)) (-1 (-640 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -4277 ((-640 (-2 (|:| |frac| (-407 |#2|)) (|:| -1420 (-649 |#2| (-407 |#2|))))) (-649 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -2394 ((-640 (-2 (|:| |poly| |#2|) (|:| -1420 (-649 |#2| (-407 |#2|))))) (-649 |#2| (-407 |#2|)) (-1 (-640 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2297 ((-640 (-407 |#2|)) (-648 (-407 |#2|)))) (-15 -2297 ((-640 (-407 |#2|)) (-648 (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -2297 ((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|)))) (-15 -2297 ((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)))) |%noBranch|)) +((-3188 (((-2 (|:| -2835 (-684 |#2|)) (|:| |vec| (-1257 |#1|))) (-684 |#2|) (-1257 |#1|)) 85) (((-2 (|:| A (-684 |#1|)) (|:| |eqs| (-640 (-2 (|:| C (-684 |#1|)) (|:| |g| (-1257 |#1|)) (|:| -1420 |#2|) (|:| |rh| |#1|))))) (-684 |#1|) (-1257 |#1|)) 15)) (-4062 (((-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -4315 (-640 (-1257 |#1|)))) (-684 |#2|) (-1257 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4315 (-640 |#1|))) |#2| |#1|)) 92)) (-1793 (((-3 (-2 (|:| |particular| (-1257 |#1|)) (|:| -4315 (-684 |#1|))) "failed") (-684 |#1|) (-1257 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4315 (-640 |#1|))) "failed") |#2| |#1|)) 43))) +(((-809 |#1| |#2|) (-10 -7 (-15 -3188 ((-2 (|:| A (-684 |#1|)) (|:| |eqs| (-640 (-2 (|:| C (-684 |#1|)) (|:| |g| (-1257 |#1|)) (|:| -1420 |#2|) (|:| |rh| |#1|))))) (-684 |#1|) (-1257 |#1|))) (-15 -3188 ((-2 (|:| -2835 (-684 |#2|)) (|:| |vec| (-1257 |#1|))) (-684 |#2|) (-1257 |#1|))) (-15 -1793 ((-3 (-2 (|:| |particular| (-1257 |#1|)) (|:| -4315 (-684 |#1|))) "failed") (-684 |#1|) (-1257 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4315 (-640 |#1|))) "failed") |#2| |#1|))) (-15 -4062 ((-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -4315 (-640 (-1257 |#1|)))) (-684 |#2|) (-1257 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4315 (-640 |#1|))) |#2| |#1|)))) (-363) (-651 |#1|)) (T -809)) +((-4062 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-684 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4315 (-640 *6))) *7 *6)) (-4 *6 (-363)) (-4 *7 (-651 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1257 *6) "failed")) (|:| -4315 (-640 (-1257 *6))))) (-5 *1 (-809 *6 *7)) (-5 *4 (-1257 *6)))) (-1793 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -4315 (-640 *6))) "failed") *7 *6)) (-4 *6 (-363)) (-4 *7 (-651 *6)) (-5 *2 (-2 (|:| |particular| (-1257 *6)) (|:| -4315 (-684 *6)))) (-5 *1 (-809 *6 *7)) (-5 *3 (-684 *6)) (-5 *4 (-1257 *6)))) (-3188 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-651 *5)) (-5 *2 (-2 (|:| -2835 (-684 *6)) (|:| |vec| (-1257 *5)))) (-5 *1 (-809 *5 *6)) (-5 *3 (-684 *6)) (-5 *4 (-1257 *5)))) (-3188 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| A (-684 *5)) (|:| |eqs| (-640 (-2 (|:| C (-684 *5)) (|:| |g| (-1257 *5)) (|:| -1420 *6) (|:| |rh| *5)))))) (-5 *1 (-809 *5 *6)) (-5 *3 (-684 *5)) (-5 *4 (-1257 *5)) (-4 *6 (-651 *5))))) +(-10 -7 (-15 -3188 ((-2 (|:| A (-684 |#1|)) (|:| |eqs| (-640 (-2 (|:| C (-684 |#1|)) (|:| |g| (-1257 |#1|)) (|:| -1420 |#2|) (|:| |rh| |#1|))))) (-684 |#1|) (-1257 |#1|))) (-15 -3188 ((-2 (|:| -2835 (-684 |#2|)) (|:| |vec| (-1257 |#1|))) (-684 |#2|) (-1257 |#1|))) (-15 -1793 ((-3 (-2 (|:| |particular| (-1257 |#1|)) (|:| -4315 (-684 |#1|))) "failed") (-684 |#1|) (-1257 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4315 (-640 |#1|))) "failed") |#2| |#1|))) (-15 -4062 ((-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -4315 (-640 (-1257 |#1|)))) (-684 |#2|) (-1257 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4315 (-640 |#1|))) |#2| |#1|)))) +((-3960 (((-684 |#1|) (-640 |#1|) (-767)) 13) (((-684 |#1|) (-640 |#1|)) 14)) (-3816 (((-3 (-1257 |#1|) "failed") |#2| |#1| (-640 |#1|)) 34)) (-2635 (((-3 |#1| "failed") |#2| |#1| (-640 |#1|) (-1 |#1| |#1|)) 42))) +(((-810 |#1| |#2|) (-10 -7 (-15 -3960 ((-684 |#1|) (-640 |#1|))) (-15 -3960 ((-684 |#1|) (-640 |#1|) (-767))) (-15 -3816 ((-3 (-1257 |#1|) "failed") |#2| |#1| (-640 |#1|))) (-15 -2635 ((-3 |#1| "failed") |#2| |#1| (-640 |#1|) (-1 |#1| |#1|)))) (-363) (-651 |#1|)) (T -810)) +((-2635 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-640 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-363)) (-5 *1 (-810 *2 *3)) (-4 *3 (-651 *2)))) (-3816 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-640 *4)) (-4 *4 (-363)) (-5 *2 (-1257 *4)) (-5 *1 (-810 *4 *3)) (-4 *3 (-651 *4)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *5)) (-5 *4 (-767)) (-4 *5 (-363)) (-5 *2 (-684 *5)) (-5 *1 (-810 *5 *6)) (-4 *6 (-651 *5)))) (-3960 (*1 *2 *3) (-12 (-5 *3 (-640 *4)) (-4 *4 (-363)) (-5 *2 (-684 *4)) (-5 *1 (-810 *4 *5)) (-4 *5 (-651 *4))))) +(-10 -7 (-15 -3960 ((-684 |#1|) (-640 |#1|))) (-15 -3960 ((-684 |#1|) (-640 |#1|) (-767))) (-15 -3816 ((-3 (-1257 |#1|) "failed") |#2| |#1| (-640 |#1|))) (-15 -2635 ((-3 |#1| "failed") |#2| |#1| (-640 |#1|) (-1 |#1| |#1|)))) +((-1677 (((-112) $ $) NIL (|has| |#2| (-1093)))) (-3411 (((-112) $) NIL (|has| |#2| (-131)))) (-1946 (($ (-917)) NIL (|has| |#2| (-1045)))) (-4378 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4408)))) (-1901 (($ $ $) NIL (|has| |#2| (-789)))) (-1495 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-2759 (((-112) $ (-767)) NIL)) (-3749 (((-767)) NIL (|has| |#2| (-368)))) (-1857 (((-563) $) NIL (|has| |#2| (-844)))) (-1849 ((|#2| $ (-563) |#2|) NIL (|has| $ (-6 -4408)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-563) "failed") $) NIL (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093)))) (((-3 (-407 (-563)) "failed") $) NIL (-12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1093)))) (-2058 (((-563) $) NIL (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093)))) (((-407 (-563)) $) NIL (-12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) ((|#2| $) NIL (|has| |#2| (-1093)))) (-2950 (((-684 (-563)) (-684 $)) NIL (-12 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (-12 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045)))) (((-2 (|:| -2835 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL (|has| |#2| (-1045))) (((-684 |#2|) (-684 $)) NIL (|has| |#2| (-1045)))) (-3400 (((-3 $ "failed") $) NIL (|has| |#2| (-722)))) (-1691 (($) NIL (|has| |#2| (-368)))) (-4355 ((|#2| $ (-563) |#2|) NIL (|has| $ (-6 -4408)))) (-4293 ((|#2| $ (-563)) NIL)) (-3101 (((-112) $) NIL (|has| |#2| (-844)))) (-2659 (((-640 |#2|) $) NIL (|has| $ (-6 -4407)))) (-3827 (((-112) $) NIL (|has| |#2| (-722)))) (-1419 (((-112) $) NIL (|has| |#2| (-844)))) (-2581 (((-112) $ (-767)) NIL)) (-2411 (((-563) $) NIL (|has| (-563) (-846)))) (-3084 (($ $ $) NIL (-4032 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2259 (((-640 |#2|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093))))) (-3860 (((-563) $) NIL (|has| (-563) (-846)))) (-1777 (($ $ $) NIL (-4032 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-4345 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#2| |#2|) $) NIL)) (-1476 (((-917) $) NIL (|has| |#2| (-368)))) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL (|has| |#2| (-1093)))) (-4318 (((-640 (-563)) $) NIL)) (-3192 (((-112) (-563) $) NIL)) (-2555 (($ (-917)) NIL (|has| |#2| (-368)))) (-1694 (((-1113) $) NIL (|has| |#2| (-1093)))) (-3781 ((|#2| $) NIL (|has| (-563) (-846)))) (-2358 (($ $ |#2|) NIL (|has| $ (-6 -4408)))) (-3138 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-2026 (((-112) $ $) NIL)) (-2105 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093))))) (-2836 (((-640 |#2|) $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) NIL)) (-2309 ((|#2| $ (-563) |#2|) NIL) ((|#2| $ (-563)) NIL)) (-4092 ((|#2| $ $) NIL (|has| |#2| (-1045)))) (-2510 (($ (-1257 |#2|)) NIL)) (-3533 (((-134)) NIL (|has| |#2| (-363)))) (-4202 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-1709 (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093))))) (-1872 (($ $) NIL)) (-1693 (((-1257 |#2|) $) NIL) (($ (-563)) NIL (-4032 (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) (|has| |#2| (-1045)))) (($ (-407 (-563))) NIL (-12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) (($ |#2|) NIL (|has| |#2| (-1093))) (((-858) $) NIL (|has| |#2| (-610 (-858))))) (-1675 (((-767)) NIL (|has| |#2| (-1045)))) (-4383 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-2509 (($ $) NIL (|has| |#2| (-844)))) (-2241 (($) NIL (|has| |#2| (-131)) CONST)) (-2254 (($) NIL (|has| |#2| (-722)) CONST)) (-3209 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-1778 (((-112) $ $) NIL (-4032 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1756 (((-112) $ $) NIL (-4032 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1718 (((-112) $ $) NIL (|has| |#2| (-1093)))) (-1768 (((-112) $ $) NIL (-4032 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1744 (((-112) $ $) 11 (-4032 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1837 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1826 (($ $ $) NIL (|has| |#2| (-1045))) (($ $) NIL (|has| |#2| (-1045)))) (-1814 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-767)) NIL (|has| |#2| (-722))) (($ $ (-917)) NIL (|has| |#2| (-722)))) (* (($ (-563) $) NIL (|has| |#2| (-1045))) (($ $ $) NIL (|has| |#2| (-722))) (($ $ |#2|) NIL (|has| |#2| (-722))) (($ |#2| $) NIL (|has| |#2| (-722))) (($ (-767) $) NIL (|has| |#2| (-131))) (($ (-917) $) NIL (|has| |#2| (-25)))) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-811 |#1| |#2| |#3|) (-238 |#1| |#2|) (-767) (-789) (-1 (-112) (-1257 |#2|) (-1257 |#2|))) (T -811)) +NIL +(-238 |#1| |#2|) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-2784 (((-640 (-767)) $) NIL) (((-640 (-767)) $ (-1169)) NIL)) (-1326 (((-767) $) NIL) (((-767) $ (-1169)) NIL)) (-2606 (((-640 (-814 (-1169))) $) NIL)) (-2139 (((-1165 $) $ (-814 (-1169))) NIL) (((-1165 |#1|) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-4223 (($ $) NIL (|has| |#1| (-555)))) (-3156 (((-112) $) NIL (|has| |#1| (-555)))) (-1779 (((-767) $) NIL) (((-767) $ (-640 (-814 (-1169)))) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-2424 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-4335 (($ $) NIL (|has| |#1| (-452)))) (-3205 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-3942 (($ $) NIL)) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-814 (-1169)) "failed") $) NIL) (((-3 (-1169) "failed") $) NIL) (((-3 (-1118 |#1| (-1169)) "failed") $) NIL)) (-2058 ((|#1| $) NIL) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-814 (-1169)) $) NIL) (((-1169) $) NIL) (((-1118 |#1| (-1169)) $) NIL)) (-2742 (($ $ $ (-814 (-1169))) NIL (|has| |#1| (-172)))) (-2751 (($ $) NIL)) (-2950 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-1300 (($ $) NIL (|has| |#1| (-452))) (($ $ (-814 (-1169))) NIL (|has| |#1| (-452)))) (-2739 (((-640 $) $) NIL)) (-2468 (((-112) $) NIL (|has| |#1| (-905)))) (-3554 (($ $ |#1| (-531 (-814 (-1169))) $) NIL)) (-3787 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-814 (-1169)) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-814 (-1169)) (-882 (-563))) (|has| |#1| (-882 (-563)))))) (-3254 (((-767) $ (-1169)) NIL) (((-767) $) NIL)) (-3827 (((-112) $) NIL)) (-4096 (((-767) $) NIL)) (-2596 (($ (-1165 |#1|) (-814 (-1169))) NIL) (($ (-1165 $) (-814 (-1169))) NIL)) (-1368 (((-640 $) $) NIL)) (-3920 (((-112) $) NIL)) (-2588 (($ |#1| (-531 (-814 (-1169)))) NIL) (($ $ (-814 (-1169)) (-767)) NIL) (($ $ (-640 (-814 (-1169))) (-640 (-767))) NIL)) (-2625 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $ (-814 (-1169))) NIL)) (-2048 (((-531 (-814 (-1169))) $) NIL) (((-767) $ (-814 (-1169))) NIL) (((-640 (-767)) $ (-640 (-814 (-1169)))) NIL)) (-3084 (($ $ $) NIL (|has| |#1| (-846)))) (-1777 (($ $ $) NIL (|has| |#1| (-846)))) (-2803 (($ (-1 (-531 (-814 (-1169))) (-531 (-814 (-1169)))) $) NIL)) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-3376 (((-1 $ (-767)) (-1169)) NIL) (((-1 $ (-767)) $) NIL (|has| |#1| (-233)))) (-4234 (((-3 (-814 (-1169)) "failed") $) NIL)) (-2716 (($ $) NIL)) (-2726 ((|#1| $) NIL)) (-3759 (((-814 (-1169)) $) NIL)) (-3513 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3573 (((-1151) $) NIL)) (-3871 (((-112) $) NIL)) (-3733 (((-3 (-640 $) "failed") $) NIL)) (-2919 (((-3 (-640 $) "failed") $) NIL)) (-4086 (((-3 (-2 (|:| |var| (-814 (-1169))) (|:| -1654 (-767))) "failed") $) NIL)) (-3562 (($ $) NIL)) (-1694 (((-1113) $) NIL)) (-2696 (((-112) $) NIL)) (-2706 ((|#1| $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-452)))) (-3548 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1876 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-3116 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2174 (((-418 $) $) NIL (|has| |#1| (-905)))) (-3008 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-1540 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-814 (-1169)) |#1|) NIL) (($ $ (-640 (-814 (-1169))) (-640 |#1|)) NIL) (($ $ (-814 (-1169)) $) NIL) (($ $ (-640 (-814 (-1169))) (-640 $)) NIL) (($ $ (-1169) $) NIL (|has| |#1| (-233))) (($ $ (-640 (-1169)) (-640 $)) NIL (|has| |#1| (-233))) (($ $ (-1169) |#1|) NIL (|has| |#1| (-233))) (($ $ (-640 (-1169)) (-640 |#1|)) NIL (|has| |#1| (-233)))) (-2315 (($ $ (-814 (-1169))) NIL (|has| |#1| (-172)))) (-4202 (($ $ (-814 (-1169))) NIL) (($ $ (-640 (-814 (-1169)))) NIL) (($ $ (-814 (-1169)) (-767)) NIL) (($ $ (-640 (-814 (-1169))) (-640 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3745 (((-640 (-1169)) $) NIL)) (-4167 (((-531 (-814 (-1169))) $) NIL) (((-767) $ (-814 (-1169))) NIL) (((-640 (-767)) $ (-640 (-814 (-1169)))) NIL) (((-767) $ (-1169)) NIL)) (-2220 (((-888 (-379)) $) NIL (-12 (|has| (-814 (-1169)) (-611 (-888 (-379)))) (|has| |#1| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| (-814 (-1169)) (-611 (-888 (-563)))) (|has| |#1| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| (-814 (-1169)) (-611 (-536))) (|has| |#1| (-611 (-536)))))) (-1836 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-814 (-1169))) NIL (|has| |#1| (-452)))) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL) (($ (-814 (-1169))) NIL) (($ (-1169)) NIL) (($ (-1118 |#1| (-1169))) NIL) (($ (-407 (-563))) NIL (-4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#1| (-555)))) (-1337 (((-640 |#1|) $) NIL)) (-4319 ((|#1| $ (-531 (-814 (-1169)))) NIL) (($ $ (-814 (-1169)) (-767)) NIL) (($ $ (-640 (-814 (-1169))) (-640 (-767))) NIL)) (-2779 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-1675 (((-767)) NIL)) (-2793 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-2126 (((-112) $ $) NIL (|has| |#1| (-555)))) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-3209 (($ $ (-814 (-1169))) NIL) (($ $ (-640 (-814 (-1169)))) NIL) (($ $ (-814 (-1169)) (-767)) NIL) (($ $ (-640 (-814 (-1169))) (-640 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1778 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1756 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1744 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1837 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-812 |#1|) (-13 (-253 |#1| (-1169) (-814 (-1169)) (-531 (-814 (-1169)))) (-1034 (-1118 |#1| (-1169)))) (-1045)) (T -812)) +NIL +(-13 (-253 |#1| (-1169) (-814 (-1169)) (-531 (-814 (-1169)))) (-1034 (-1118 |#1| (-1169)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#2| (-363)))) (-4223 (($ $) NIL (|has| |#2| (-363)))) (-3156 (((-112) $) NIL (|has| |#2| (-363)))) (-1495 (((-3 $ "failed") $ $) NIL)) (-4335 (($ $) NIL (|has| |#2| (-363)))) (-3205 (((-418 $) $) NIL (|has| |#2| (-363)))) (-1919 (((-112) $ $) NIL (|has| |#2| (-363)))) (-4239 (($) NIL T CONST)) (-3090 (($ $ $) NIL (|has| |#2| (-363)))) (-3400 (((-3 $ "failed") $) NIL)) (-3050 (($ $ $) NIL (|has| |#2| (-363)))) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL (|has| |#2| (-363)))) (-2468 (((-112) $) NIL (|has| |#2| (-363)))) (-3827 (((-112) $) NIL)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#2| (-363)))) (-3513 (($ (-640 $)) NIL (|has| |#2| (-363))) (($ $ $) NIL (|has| |#2| (-363)))) (-3573 (((-1151) $) NIL)) (-2688 (($ $) 20 (|has| |#2| (-363)))) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#2| (-363)))) (-3548 (($ (-640 $)) NIL (|has| |#2| (-363))) (($ $ $) NIL (|has| |#2| (-363)))) (-2174 (((-418 $) $) NIL (|has| |#2| (-363)))) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL (|has| |#2| (-363)))) (-3008 (((-3 $ "failed") $ $) NIL (|has| |#2| (-363)))) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#2| (-363)))) (-2628 (((-767) $) NIL (|has| |#2| (-363)))) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| |#2| (-363)))) (-4202 (($ $ (-767)) NIL) (($ $) 13)) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-407 (-563))) NIL (|has| |#2| (-363))) (($ $) NIL (|has| |#2| (-363)))) (-1675 (((-767)) NIL)) (-2126 (((-112) $ $) NIL (|has| |#2| (-363)))) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-3209 (($ $ (-767)) NIL) (($ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1837 (($ $ $) 15 (|has| |#2| (-363)))) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-917)) NIL) (($ $ (-563)) 18 (|has| |#2| (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-407 (-563)) $) NIL (|has| |#2| (-363))) (($ $ (-407 (-563))) NIL (|has| |#2| (-363))))) +(((-813 |#1| |#2| |#3|) (-13 (-111 $ $) (-233) (-490 |#2|) (-10 -7 (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|))) (-1093) (-896 |#1|) |#1|) (T -813)) +NIL +(-13 (-111 $ $) (-233) (-490 |#2|) (-10 -7 (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|))) +((-1677 (((-112) $ $) NIL)) (-1326 (((-767) $) NIL)) (-2518 ((|#1| $) 10)) (-2131 (((-3 |#1| "failed") $) NIL)) (-2058 ((|#1| $) NIL)) (-3254 (((-767) $) 11)) (-3084 (($ $ $) NIL)) (-1777 (($ $ $) NIL)) (-3376 (($ |#1| (-767)) 9)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-4202 (($ $) NIL) (($ $ (-767)) NIL)) (-1693 (((-858) $) NIL) (($ |#1|) NIL)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) NIL))) +(((-814 |#1|) (-266 |#1|) (-846)) (T -814)) +NIL +(-266 |#1|) +((-1677 (((-112) $ $) NIL)) (-3993 (((-640 |#1|) $) 29)) (-3749 (((-767) $) NIL)) (-4239 (($) NIL T CONST)) (-3181 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-2131 (((-3 |#1| "failed") $) NIL)) (-2058 ((|#1| $) NIL)) (-3792 (($ $) 31)) (-3400 (((-3 $ "failed") $) NIL)) (-2884 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-3827 (((-112) $) NIL)) (-2768 ((|#1| $ (-563)) NIL)) (-4208 (((-767) $ (-563)) NIL)) (-4337 (($ $) 35)) (-3084 (($ $ $) NIL)) (-1777 (($ $ $) NIL)) (-3439 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-1550 (((-112) $ $) 33)) (-3415 (((-767) $) 25)) (-3573 (((-1151) $) NIL)) (-3744 (($ $ $) NIL)) (-3916 (($ $ $) NIL)) (-1694 (((-1113) $) NIL)) (-3781 ((|#1| $) 30)) (-2760 (((-640 (-2 (|:| |gen| |#1|) (|:| -3368 (-767)))) $) NIL)) (-3028 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-1693 (((-858) $) NIL) (($ |#1|) NIL)) (-2254 (($) 15 T CONST)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) 34)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ |#1| (-767)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-815 |#1|) (-13 (-842) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-767))) (-15 -3781 (|#1| $)) (-15 -3792 ($ $)) (-15 -4337 ($ $)) (-15 -1550 ((-112) $ $)) (-15 -3916 ($ $ $)) (-15 -3744 ($ $ $)) (-15 -3439 ((-3 $ "failed") $ $)) (-15 -3181 ((-3 $ "failed") $ $)) (-15 -3439 ((-3 $ "failed") $ |#1|)) (-15 -3181 ((-3 $ "failed") $ |#1|)) (-15 -3028 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2884 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3749 ((-767) $)) (-15 -4208 ((-767) $ (-563))) (-15 -2768 (|#1| $ (-563))) (-15 -2760 ((-640 (-2 (|:| |gen| |#1|) (|:| -3368 (-767)))) $)) (-15 -3415 ((-767) $)) (-15 -3993 ((-640 |#1|) $)))) (-846)) (T -815)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-3781 (*1 *2 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-3792 (*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-4337 (*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-1550 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-3916 (*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-3744 (*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-3439 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-3181 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-3439 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-3181 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-3028 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-815 *3)) (|:| |rm| (-815 *3)))) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-2884 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-815 *3)) (|:| |mm| (-815 *3)) (|:| |rm| (-815 *3)))) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-3749 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-4208 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *2 (-767)) (-5 *1 (-815 *4)) (-4 *4 (-846)))) (-2768 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-2760 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3368 (-767))))) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-3415 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-3993 (*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-815 *3)) (-4 *3 (-846))))) +(-13 (-842) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-767))) (-15 -3781 (|#1| $)) (-15 -3792 ($ $)) (-15 -4337 ($ $)) (-15 -1550 ((-112) $ $)) (-15 -3916 ($ $ $)) (-15 -3744 ($ $ $)) (-15 -3439 ((-3 $ "failed") $ $)) (-15 -3181 ((-3 $ "failed") $ $)) (-15 -3439 ((-3 $ "failed") $ |#1|)) (-15 -3181 ((-3 $ "failed") $ |#1|)) (-15 -3028 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2884 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3749 ((-767) $)) (-15 -4208 ((-767) $ (-563))) (-15 -2768 (|#1| $ (-563))) (-15 -2760 ((-640 (-2 (|:| |gen| |#1|) (|:| -3368 (-767)))) $)) (-15 -3415 ((-767) $)) (-15 -3993 ((-640 |#1|) $)))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 42)) (-4223 (($ $) 41)) (-3156 (((-112) $) 39)) (-1495 (((-3 $ "failed") $ $) 19)) (-1857 (((-563) $) 54)) (-4239 (($) 17 T CONST)) (-3400 (((-3 $ "failed") $) 33)) (-3101 (((-112) $) 52)) (-3827 (((-112) $) 31)) (-1419 (((-112) $) 53)) (-3084 (($ $ $) 51)) (-1777 (($ $ $) 50)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-3008 (((-3 $ "failed") $ $) 43)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ $) 44)) (-1675 (((-767)) 28)) (-2126 (((-112) $ $) 40)) (-2509 (($ $) 55)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1778 (((-112) $ $) 48)) (-1756 (((-112) $ $) 47)) (-1718 (((-112) $ $) 6)) (-1768 (((-112) $ $) 49)) (-1744 (((-112) $ $) 46)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) +(((-816) (-140)) (T -816)) +NIL +(-13 (-555) (-844)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-290) . T) ((-555) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-844) . T) ((-846) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) +((-2389 (($ (-1113)) 7)) (-1418 (((-112) $ (-1151) (-1113)) 15)) (-3842 (((-818) $) 12)) (-3602 (((-818) $) 11)) (-3425 (((-1262) $) 9)) (-2304 (((-112) $ (-1113)) 16))) +(((-817) (-10 -8 (-15 -2389 ($ (-1113))) (-15 -3425 ((-1262) $)) (-15 -3602 ((-818) $)) (-15 -3842 ((-818) $)) (-15 -1418 ((-112) $ (-1151) (-1113))) (-15 -2304 ((-112) $ (-1113))))) (T -817)) +((-2304 (*1 *2 *1 *3) (-12 (-5 *3 (-1113)) (-5 *2 (-112)) (-5 *1 (-817)))) (-1418 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1151)) (-5 *4 (-1113)) (-5 *2 (-112)) (-5 *1 (-817)))) (-3842 (*1 *2 *1) (-12 (-5 *2 (-818)) (-5 *1 (-817)))) (-3602 (*1 *2 *1) (-12 (-5 *2 (-818)) (-5 *1 (-817)))) (-3425 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-817)))) (-2389 (*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-817))))) +(-10 -8 (-15 -2389 ($ (-1113))) (-15 -3425 ((-1262) $)) (-15 -3602 ((-818) $)) (-15 -3842 ((-818) $)) (-15 -1418 ((-112) $ (-1151) (-1113))) (-15 -2304 ((-112) $ (-1113)))) +((-3335 (((-1262) $ (-819)) 12)) (-1653 (((-1262) $ (-1169)) 32)) (-4275 (((-1262) $ (-1151) (-1151)) 34)) (-1625 (((-1262) $ (-1151)) 33)) (-4088 (((-1262) $) 19)) (-3455 (((-1262) $ (-563)) 28)) (-3452 (((-1262) $ (-225)) 30)) (-3151 (((-1262) $) 18)) (-1559 (((-1262) $) 26)) (-2590 (((-1262) $) 25)) (-2023 (((-1262) $) 23)) (-2055 (((-1262) $) 24)) (-1904 (((-1262) $) 22)) (-1767 (((-1262) $) 21)) (-2267 (((-1262) $) 20)) (-3992 (((-1262) $) 16)) (-1819 (((-1262) $) 17)) (-4374 (((-1262) $) 15)) (-1426 (((-1262) $) 14)) (-2599 (((-1262) $) 13)) (-2008 (($ (-1151) (-819)) 9)) (-4143 (($ (-1151) (-1151) (-819)) 8)) (-3157 (((-1169) $) 51)) (-3624 (((-1169) $) 55)) (-2589 (((-2 (|:| |cd| (-1151)) (|:| -3348 (-1151))) $) 54)) (-2958 (((-1151) $) 52)) (-4343 (((-1262) $) 41)) (-2944 (((-563) $) 49)) (-4317 (((-225) $) 50)) (-1342 (((-1262) $) 40)) (-2493 (((-1262) $) 48)) (-3239 (((-1262) $) 47)) (-4238 (((-1262) $) 45)) (-3725 (((-1262) $) 46)) (-2263 (((-1262) $) 44)) (-4241 (((-1262) $) 43)) (-1328 (((-1262) $) 42)) (-1839 (((-1262) $) 38)) (-3613 (((-1262) $) 39)) (-1683 (((-1262) $) 37)) (-2494 (((-1262) $) 36)) (-2342 (((-1262) $) 35)) (-2987 (((-1262) $) 11))) +(((-818) (-10 -8 (-15 -4143 ($ (-1151) (-1151) (-819))) (-15 -2008 ($ (-1151) (-819))) (-15 -2987 ((-1262) $)) (-15 -3335 ((-1262) $ (-819))) (-15 -2599 ((-1262) $)) (-15 -1426 ((-1262) $)) (-15 -4374 ((-1262) $)) (-15 -3992 ((-1262) $)) (-15 -1819 ((-1262) $)) (-15 -3151 ((-1262) $)) (-15 -4088 ((-1262) $)) (-15 -2267 ((-1262) $)) (-15 -1767 ((-1262) $)) (-15 -1904 ((-1262) $)) (-15 -2023 ((-1262) $)) (-15 -2055 ((-1262) $)) (-15 -2590 ((-1262) $)) (-15 -1559 ((-1262) $)) (-15 -3455 ((-1262) $ (-563))) (-15 -3452 ((-1262) $ (-225))) (-15 -1653 ((-1262) $ (-1169))) (-15 -1625 ((-1262) $ (-1151))) (-15 -4275 ((-1262) $ (-1151) (-1151))) (-15 -2342 ((-1262) $)) (-15 -2494 ((-1262) $)) (-15 -1683 ((-1262) $)) (-15 -1839 ((-1262) $)) (-15 -3613 ((-1262) $)) (-15 -1342 ((-1262) $)) (-15 -4343 ((-1262) $)) (-15 -1328 ((-1262) $)) (-15 -4241 ((-1262) $)) (-15 -2263 ((-1262) $)) (-15 -4238 ((-1262) $)) (-15 -3725 ((-1262) $)) (-15 -3239 ((-1262) $)) (-15 -2493 ((-1262) $)) (-15 -2944 ((-563) $)) (-15 -4317 ((-225) $)) (-15 -3157 ((-1169) $)) (-15 -2958 ((-1151) $)) (-15 -2589 ((-2 (|:| |cd| (-1151)) (|:| -3348 (-1151))) $)) (-15 -3624 ((-1169) $)))) (T -818)) +((-3624 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-818)))) (-2589 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1151)) (|:| -3348 (-1151)))) (-5 *1 (-818)))) (-2958 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-818)))) (-3157 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-818)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-818)))) (-2944 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-818)))) (-2493 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3239 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3725 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-4238 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-2263 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-4241 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-1328 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-4343 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-1342 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-1839 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-2494 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-2342 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-4275 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-818)))) (-1625 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-818)))) (-1653 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-818)))) (-3452 (*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1262)) (-5 *1 (-818)))) (-3455 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-818)))) (-1559 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-2590 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-2055 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-2023 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-1904 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-1767 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-2267 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-4088 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3151 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-1819 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3992 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-4374 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-1426 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-2599 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-3335 (*1 *2 *1 *3) (-12 (-5 *3 (-819)) (-5 *2 (-1262)) (-5 *1 (-818)))) (-2987 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-2008 (*1 *1 *2 *3) (-12 (-5 *2 (-1151)) (-5 *3 (-819)) (-5 *1 (-818)))) (-4143 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1151)) (-5 *3 (-819)) (-5 *1 (-818))))) +(-10 -8 (-15 -4143 ($ (-1151) (-1151) (-819))) (-15 -2008 ($ (-1151) (-819))) (-15 -2987 ((-1262) $)) (-15 -3335 ((-1262) $ (-819))) (-15 -2599 ((-1262) $)) (-15 -1426 ((-1262) $)) (-15 -4374 ((-1262) $)) (-15 -3992 ((-1262) $)) (-15 -1819 ((-1262) $)) (-15 -3151 ((-1262) $)) (-15 -4088 ((-1262) $)) (-15 -2267 ((-1262) $)) (-15 -1767 ((-1262) $)) (-15 -1904 ((-1262) $)) (-15 -2023 ((-1262) $)) (-15 -2055 ((-1262) $)) (-15 -2590 ((-1262) $)) (-15 -1559 ((-1262) $)) (-15 -3455 ((-1262) $ (-563))) (-15 -3452 ((-1262) $ (-225))) (-15 -1653 ((-1262) $ (-1169))) (-15 -1625 ((-1262) $ (-1151))) (-15 -4275 ((-1262) $ (-1151) (-1151))) (-15 -2342 ((-1262) $)) (-15 -2494 ((-1262) $)) (-15 -1683 ((-1262) $)) (-15 -1839 ((-1262) $)) (-15 -3613 ((-1262) $)) (-15 -1342 ((-1262) $)) (-15 -4343 ((-1262) $)) (-15 -1328 ((-1262) $)) (-15 -4241 ((-1262) $)) (-15 -2263 ((-1262) $)) (-15 -4238 ((-1262) $)) (-15 -3725 ((-1262) $)) (-15 -3239 ((-1262) $)) (-15 -2493 ((-1262) $)) (-15 -2944 ((-563) $)) (-15 -4317 ((-225) $)) (-15 -3157 ((-1169) $)) (-15 -2958 ((-1151) $)) (-15 -2589 ((-2 (|:| |cd| (-1151)) (|:| -3348 (-1151))) $)) (-15 -3624 ((-1169) $))) +((-1677 (((-112) $ $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 10)) (-3232 (($) 13)) (-2503 (($) 11)) (-2367 (($) 14)) (-4061 (($) 12)) (-1718 (((-112) $ $) 8))) +(((-819) (-13 (-1093) (-10 -8 (-15 -2503 ($)) (-15 -3232 ($)) (-15 -2367 ($)) (-15 -4061 ($))))) (T -819)) +((-2503 (*1 *1) (-5 *1 (-819))) (-3232 (*1 *1) (-5 *1 (-819))) (-2367 (*1 *1) (-5 *1 (-819))) (-4061 (*1 *1) (-5 *1 (-819)))) +(-13 (-1093) (-10 -8 (-15 -2503 ($)) (-15 -3232 ($)) (-15 -2367 ($)) (-15 -4061 ($)))) +((-1677 (((-112) $ $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 21) (($ (-1169)) 17)) (-4291 (((-112) $) 10)) (-2694 (((-112) $) 9)) (-1527 (((-112) $) 11)) (-1344 (((-112) $) 8)) (-1718 (((-112) $ $) 19))) +(((-820) (-13 (-1093) (-10 -8 (-15 -1693 ($ (-1169))) (-15 -1344 ((-112) $)) (-15 -2694 ((-112) $)) (-15 -4291 ((-112) $)) (-15 -1527 ((-112) $))))) (T -820)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-820)))) (-1344 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))) (-2694 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))) (-4291 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))) (-1527 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820))))) +(-13 (-1093) (-10 -8 (-15 -1693 ($ (-1169))) (-15 -1344 ((-112) $)) (-15 -2694 ((-112) $)) (-15 -4291 ((-112) $)) (-15 -1527 ((-112) $)))) +((-1677 (((-112) $ $) NIL)) (-2765 (($ (-820) (-640 (-1169))) 24)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-3468 (((-820) $) 25)) (-1659 (((-640 (-1169)) $) 26)) (-1693 (((-858) $) 23)) (-1718 (((-112) $ $) NIL))) +(((-821) (-13 (-1093) (-10 -8 (-15 -3468 ((-820) $)) (-15 -1659 ((-640 (-1169)) $)) (-15 -2765 ($ (-820) (-640 (-1169))))))) (T -821)) +((-3468 (*1 *2 *1) (-12 (-5 *2 (-820)) (-5 *1 (-821)))) (-1659 (*1 *2 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-821)))) (-2765 (*1 *1 *2 *3) (-12 (-5 *2 (-820)) (-5 *3 (-640 (-1169))) (-5 *1 (-821))))) +(-13 (-1093) (-10 -8 (-15 -3468 ((-820) $)) (-15 -1659 ((-640 (-1169)) $)) (-15 -2765 ($ (-820) (-640 (-1169)))))) +((-3741 (((-1262) (-818) (-316 |#1|) (-112)) 23) (((-1262) (-818) (-316 |#1|)) 79) (((-1151) (-316 |#1|) (-112)) 78) (((-1151) (-316 |#1|)) 77))) +(((-822 |#1|) (-10 -7 (-15 -3741 ((-1151) (-316 |#1|))) (-15 -3741 ((-1151) (-316 |#1|) (-112))) (-15 -3741 ((-1262) (-818) (-316 |#1|))) (-15 -3741 ((-1262) (-818) (-316 |#1|) (-112)))) (-13 (-824) (-846) (-1045))) (T -822)) +((-3741 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-818)) (-5 *4 (-316 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-824) (-846) (-1045))) (-5 *2 (-1262)) (-5 *1 (-822 *6)))) (-3741 (*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-316 *5)) (-4 *5 (-13 (-824) (-846) (-1045))) (-5 *2 (-1262)) (-5 *1 (-822 *5)))) (-3741 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-824) (-846) (-1045))) (-5 *2 (-1151)) (-5 *1 (-822 *5)))) (-3741 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-13 (-824) (-846) (-1045))) (-5 *2 (-1151)) (-5 *1 (-822 *4))))) +(-10 -7 (-15 -3741 ((-1151) (-316 |#1|))) (-15 -3741 ((-1151) (-316 |#1|) (-112))) (-15 -3741 ((-1262) (-818) (-316 |#1|))) (-15 -3741 ((-1262) (-818) (-316 |#1|) (-112)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4239 (($) NIL T CONST)) (-2751 (($ $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-2405 ((|#1| $) 10)) (-2517 (($ |#1|) 9)) (-3827 (((-112) $) NIL)) (-2588 (($ |#2| (-767)) NIL)) (-2048 (((-767) $) NIL)) (-2726 ((|#2| $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-4202 (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-4167 (((-767) $) NIL)) (-1693 (((-858) $) 17) (($ (-563)) NIL) (($ |#2|) NIL (|has| |#2| (-172)))) (-4319 ((|#2| $ (-767)) NIL)) (-1675 (((-767)) NIL)) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-3209 (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-1718 (((-112) $ $) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-823 |#1| |#2|) (-13 (-704 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -2517 ($ |#1|)) (-15 -2405 (|#1| $)))) (-704 |#2|) (-1045)) (T -823)) +((-2517 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-823 *2 *3)) (-4 *2 (-704 *3)))) (-2405 (*1 *2 *1) (-12 (-4 *2 (-704 *3)) (-5 *1 (-823 *2 *3)) (-4 *3 (-1045))))) +(-13 (-704 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -2517 ($ |#1|)) (-15 -2405 (|#1| $)))) +((-3741 (((-1262) (-818) $ (-112)) 9) (((-1262) (-818) $) 8) (((-1151) $ (-112)) 7) (((-1151) $) 6))) +(((-824) (-140)) (T -824)) +((-3741 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-824)) (-5 *3 (-818)) (-5 *4 (-112)) (-5 *2 (-1262)))) (-3741 (*1 *2 *3 *1) (-12 (-4 *1 (-824)) (-5 *3 (-818)) (-5 *2 (-1262)))) (-3741 (*1 *2 *1 *3) (-12 (-4 *1 (-824)) (-5 *3 (-112)) (-5 *2 (-1151)))) (-3741 (*1 *2 *1) (-12 (-4 *1 (-824)) (-5 *2 (-1151))))) +(-13 (-10 -8 (-15 -3741 ((-1151) $)) (-15 -3741 ((-1151) $ (-112))) (-15 -3741 ((-1262) (-818) $)) (-15 -3741 ((-1262) (-818) $ (-112))))) +((-2881 (((-312) (-1151) (-1151)) 12)) (-3257 (((-112) (-1151) (-1151)) 33)) (-2235 (((-112) (-1151)) 32)) (-3582 (((-52) (-1151)) 25)) (-1939 (((-52) (-1151)) 23)) (-4242 (((-52) (-818)) 17)) (-4287 (((-640 (-1151)) (-1151)) 28)) (-3026 (((-640 (-1151))) 27))) +(((-825) (-10 -7 (-15 -4242 ((-52) (-818))) (-15 -1939 ((-52) (-1151))) (-15 -3582 ((-52) (-1151))) (-15 -3026 ((-640 (-1151)))) (-15 -4287 ((-640 (-1151)) (-1151))) (-15 -2235 ((-112) (-1151))) (-15 -3257 ((-112) (-1151) (-1151))) (-15 -2881 ((-312) (-1151) (-1151))))) (T -825)) +((-2881 (*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-312)) (-5 *1 (-825)))) (-3257 (*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-112)) (-5 *1 (-825)))) (-2235 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-112)) (-5 *1 (-825)))) (-4287 (*1 *2 *3) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-825)) (-5 *3 (-1151)))) (-3026 (*1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-825)))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-52)) (-5 *1 (-825)))) (-1939 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-52)) (-5 *1 (-825)))) (-4242 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-52)) (-5 *1 (-825))))) +(-10 -7 (-15 -4242 ((-52) (-818))) (-15 -1939 ((-52) (-1151))) (-15 -3582 ((-52) (-1151))) (-15 -3026 ((-640 (-1151)))) (-15 -4287 ((-640 (-1151)) (-1151))) (-15 -2235 ((-112) (-1151))) (-15 -3257 ((-112) (-1151) (-1151))) (-15 -2881 ((-312) (-1151) (-1151)))) +((-1677 (((-112) $ $) 19)) (-2583 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-4314 (($ $ $) 72)) (-4149 (((-112) $ $) 73)) (-2759 (((-112) $ (-767)) 8)) (-1584 (($ (-640 |#1|)) 68) (($) 67)) (-2812 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4407)))) (-2256 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4407)))) (-4239 (($) 7 T CONST)) (-4005 (($ $) 62)) (-3813 (($ $) 58 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-2705 (($ |#1| $) 47 (|has| $ (-6 -4407))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4407)))) (-1459 (($ |#1| $) 57 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4407)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4407)))) (-2659 (((-640 |#1|) $) 30 (|has| $ (-6 -4407)))) (-2539 (((-112) $ $) 64)) (-2581 (((-112) $ (-767)) 9)) (-3084 ((|#1| $) 78)) (-2878 (($ $ $) 81)) (-3164 (($ $ $) 80)) (-2259 (((-640 |#1|) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1777 ((|#1| $) 79)) (-4345 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 35)) (-2382 (((-112) $ (-767)) 10)) (-3573 (((-1151) $) 22)) (-2550 (($ $ $) 69)) (-2964 ((|#1| $) 39)) (-1812 (($ |#1| $) 40) (($ |#1| $ (-767)) 63)) (-1694 (((-1113) $) 21)) (-4203 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3755 ((|#1| $) 41)) (-3138 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) 14)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-2757 (((-640 (-2 (|:| -2557 |#1|) (|:| -1709 (-767)))) $) 61)) (-1629 (($ $ |#1|) 71) (($ $ $) 70)) (-3890 (($) 49) (($ (-640 |#1|)) 48)) (-1709 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4407))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1872 (($ $) 13)) (-2220 (((-536) $) 59 (|has| |#1| (-611 (-536))))) (-1707 (($ (-640 |#1|)) 50)) (-1693 (((-858) $) 18)) (-2534 (($ (-640 |#1|)) 66) (($) 65)) (-2233 (($ (-640 |#1|)) 42)) (-4383 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 20)) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-826 |#1|) (-140) (-846)) (T -826)) +((-3084 (*1 *2 *1) (-12 (-4 *1 (-826 *2)) (-4 *2 (-846))))) +(-13 (-732 |t#1|) (-964 |t#1|) (-10 -8 (-15 -3084 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-610 (-858)) . T) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-690 |#1|) . T) ((-732 |#1|) . T) ((-964 |#1|) . T) ((-1091 |#1|) . T) ((-1093) . T) ((-1208) . T)) +((-1929 (((-1262) (-1113) (-1113)) 47)) (-1913 (((-1262) (-817) (-52)) 44)) (-4019 (((-52) (-817)) 16))) +(((-827) (-10 -7 (-15 -4019 ((-52) (-817))) (-15 -1913 ((-1262) (-817) (-52))) (-15 -1929 ((-1262) (-1113) (-1113))))) (T -827)) +((-1929 (*1 *2 *3 *3) (-12 (-5 *3 (-1113)) (-5 *2 (-1262)) (-5 *1 (-827)))) (-1913 (*1 *2 *3 *4) (-12 (-5 *3 (-817)) (-5 *4 (-52)) (-5 *2 (-1262)) (-5 *1 (-827)))) (-4019 (*1 *2 *3) (-12 (-5 *3 (-817)) (-5 *2 (-52)) (-5 *1 (-827))))) +(-10 -7 (-15 -4019 ((-52) (-817))) (-15 -1913 ((-1262) (-817) (-52))) (-15 -1929 ((-1262) (-1113) (-1113)))) +((-2240 (((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|) (-829 |#2|)) 12) (((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|)) 13))) +(((-828 |#1| |#2|) (-10 -7 (-15 -2240 ((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|))) (-15 -2240 ((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|) (-829 |#2|)))) (-1093) (-1093)) (T -828)) +((-2240 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-829 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-829 *5)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-5 *1 (-828 *5 *6)))) (-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-829 *5)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-5 *2 (-829 *6)) (-5 *1 (-828 *5 *6))))) +(-10 -7 (-15 -2240 ((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|))) (-15 -2240 ((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|) (-829 |#2|)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL (|has| |#1| (-21)))) (-1495 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1857 (((-563) $) NIL (|has| |#1| (-844)))) (-4239 (($) NIL (|has| |#1| (-21)) CONST)) (-2131 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 15)) (-2058 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) 9)) (-3400 (((-3 $ "failed") $) 40 (|has| |#1| (-844)))) (-3909 (((-3 (-407 (-563)) "failed") $) 49 (|has| |#1| (-545)))) (-2239 (((-112) $) 43 (|has| |#1| (-545)))) (-2651 (((-407 (-563)) $) 46 (|has| |#1| (-545)))) (-3101 (((-112) $) NIL (|has| |#1| (-844)))) (-3827 (((-112) $) NIL (|has| |#1| (-844)))) (-1419 (((-112) $) NIL (|has| |#1| (-844)))) (-3084 (($ $ $) NIL (|has| |#1| (-844)))) (-1777 (($ $ $) NIL (|has| |#1| (-844)))) (-3573 (((-1151) $) NIL)) (-2191 (($) 13)) (-1990 (((-112) $) 12)) (-1694 (((-1113) $) NIL)) (-1376 (((-112) $) 11)) (-1693 (((-858) $) 18) (($ (-407 (-563))) NIL (|has| |#1| (-1034 (-407 (-563))))) (($ |#1|) 8) (($ (-563)) NIL (-4032 (|has| |#1| (-844)) (|has| |#1| (-1034 (-563)))))) (-1675 (((-767)) 34 (|has| |#1| (-844)))) (-2509 (($ $) NIL (|has| |#1| (-844)))) (-2241 (($) 22 (|has| |#1| (-21)) CONST)) (-2254 (($) 31 (|has| |#1| (-844)) CONST)) (-1778 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1756 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1718 (((-112) $ $) 20)) (-1768 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1744 (((-112) $ $) 42 (|has| |#1| (-844)))) (-1826 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-1814 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-917)) NIL (|has| |#1| (-844))) (($ $ (-767)) NIL (|has| |#1| (-844)))) (* (($ $ $) 37 (|has| |#1| (-844))) (($ (-563) $) 25 (|has| |#1| (-21))) (($ (-767) $) NIL (|has| |#1| (-21))) (($ (-917) $) NIL (|has| |#1| (-21))))) +(((-829 |#1|) (-13 (-1093) (-411 |#1|) (-10 -8 (-15 -2191 ($)) (-15 -1376 ((-112) $)) (-15 -1990 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2239 ((-112) $)) (-15 -2651 ((-407 (-563)) $)) (-15 -3909 ((-3 (-407 (-563)) "failed") $))) |%noBranch|))) (-1093)) (T -829)) +((-2191 (*1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-1093)))) (-1376 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-1093)))) (-1990 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-1093)))) (-2239 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-545)) (-4 *3 (-1093)))) (-2651 (*1 *2 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-829 *3)) (-4 *3 (-545)) (-4 *3 (-1093)))) (-3909 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-563))) (-5 *1 (-829 *3)) (-4 *3 (-545)) (-4 *3 (-1093))))) +(-13 (-1093) (-411 |#1|) (-10 -8 (-15 -2191 ($)) (-15 -1376 ((-112) $)) (-15 -1990 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2239 ((-112) $)) (-15 -2651 ((-407 (-563)) $)) (-15 -3909 ((-3 (-407 (-563)) "failed") $))) |%noBranch|))) +((-1693 (((-858) $) 11))) +(((-830 |#1| |#2|) (-10 -8 (-15 -1693 ((-858) |#1|))) (-831 |#2|) (-1093)) (T -830)) +NIL +(-10 -8 (-15 -1693 ((-858) |#1|))) +((-1677 (((-112) $ $) 7)) (-3348 ((|#1| $) 14)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11)) (-1396 (((-55) $) 13)) (-1718 (((-112) $ $) 6))) +(((-831 |#1|) (-140) (-1093)) (T -831)) +((-3348 (*1 *2 *1) (-12 (-4 *1 (-831 *2)) (-4 *2 (-1093)))) (-1396 (*1 *2 *1) (-12 (-4 *1 (-831 *3)) (-4 *3 (-1093)) (-5 *2 (-55))))) +(-13 (-1093) (-10 -8 (-15 -3348 (|t#1| $)) (-15 -1396 ((-55) $)))) +(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-2058 ((|#1| $) NIL) (((-114) $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-2486 ((|#1| (-114) |#1|) NIL)) (-3827 (((-112) $) NIL)) (-2488 (($ |#1| (-361 (-114))) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1830 (($ $ (-1 |#1| |#1|)) NIL)) (-3934 (($ $ (-1 |#1| |#1|)) NIL)) (-2309 ((|#1| $ |#1|) NIL)) (-2989 ((|#1| |#1|) NIL (|has| |#1| (-172)))) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-2779 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1675 (((-767)) NIL)) (-3831 (($ $) NIL (|has| |#1| (-172))) (($ $ $) NIL (|has| |#1| (-172)))) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-1718 (((-112) $ $) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ (-114) (-563)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) +(((-832 |#1|) (-13 (-1045) (-1034 |#1|) (-1034 (-114)) (-286 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -3831 ($ $)) (-15 -3831 ($ $ $)) (-15 -2989 (|#1| |#1|))) |%noBranch|) (-15 -3934 ($ $ (-1 |#1| |#1|))) (-15 -1830 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-563))) (-15 ** ($ $ (-563))) (-15 -2486 (|#1| (-114) |#1|)) (-15 -2488 ($ |#1| (-361 (-114)))))) (-1045)) (T -832)) +((-3831 (*1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-172)) (-4 *2 (-1045)))) (-3831 (*1 *1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-172)) (-4 *2 (-1045)))) (-2989 (*1 *2 *2) (-12 (-5 *1 (-832 *2)) (-4 *2 (-172)) (-4 *2 (-1045)))) (-3934 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-832 *3)))) (-1830 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-832 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-563)) (-5 *1 (-832 *4)) (-4 *4 (-1045)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-832 *3)) (-4 *3 (-1045)))) (-2486 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-832 *2)) (-4 *2 (-1045)))) (-2488 (*1 *1 *2 *3) (-12 (-5 *3 (-361 (-114))) (-5 *1 (-832 *2)) (-4 *2 (-1045))))) +(-13 (-1045) (-1034 |#1|) (-1034 (-114)) (-286 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -3831 ($ $)) (-15 -3831 ($ $ $)) (-15 -2989 (|#1| |#1|))) |%noBranch|) (-15 -3934 ($ $ (-1 |#1| |#1|))) (-15 -1830 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-563))) (-15 ** ($ $ (-563))) (-15 -2486 (|#1| (-114) |#1|)) (-15 -2488 ($ |#1| (-361 (-114)))))) +((-4168 (((-214 (-502)) (-1151)) 9))) +(((-833) (-10 -7 (-15 -4168 ((-214 (-502)) (-1151))))) (T -833)) +((-4168 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-214 (-502))) (-5 *1 (-833))))) +(-10 -7 (-15 -4168 ((-214 (-502)) (-1151)))) +((-1677 (((-112) $ $) NIL)) (-2918 (((-1111) $) 10)) (-3348 (((-506) $) 9)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1707 (($ (-506) (-1111)) 8)) (-1693 (((-858) $) 26)) (-1396 (((-55) $) 19)) (-1718 (((-112) $ $) 12))) +(((-834) (-13 (-831 (-506)) (-10 -8 (-15 -2918 ((-1111) $)) (-15 -1707 ($ (-506) (-1111)))))) (T -834)) +((-2918 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-834)))) (-1707 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1111)) (-5 *1 (-834))))) +(-13 (-831 (-506)) (-10 -8 (-15 -2918 ((-1111) $)) (-15 -1707 ($ (-506) (-1111))))) +((-1677 (((-112) $ $) 7)) (-3422 (((-1031) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))) 14) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 13)) (-1994 (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 16) (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))) 15)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11)) (-1718 (((-112) $ $) 6))) +(((-835) (-140)) (T -835)) +((-1994 (*1 *2 *3 *4) (-12 (-4 *1 (-835)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (-5 *2 (-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)))))) (-1994 (*1 *2 *3 *4) (-12 (-4 *1 (-835)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))) (-5 *2 (-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)))))) (-3422 (*1 *2 *3) (-12 (-4 *1 (-835)) (-5 *3 (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))) (-5 *2 (-1031)))) (-3422 (*1 *2 *3) (-12 (-4 *1 (-835)) (-5 *3 (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (-5 *2 (-1031))))) +(-13 (-1093) (-10 -7 (-15 -1994 ((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225))))))) (-15 -1994 ((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225)))))) (-15 -3422 ((-1031) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225)))))) (-15 -3422 ((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225))))))))) +(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) +((-2908 (((-1031) (-640 (-316 (-379))) (-640 (-379))) 147) (((-1031) (-316 (-379)) (-640 (-379))) 145) (((-1031) (-316 (-379)) (-640 (-379)) (-640 (-839 (-379))) (-640 (-839 (-379)))) 144) (((-1031) (-316 (-379)) (-640 (-379)) (-640 (-839 (-379))) (-640 (-316 (-379))) (-640 (-839 (-379)))) 143) (((-1031) (-837)) 117) (((-1031) (-837) (-1057)) 116)) (-1994 (((-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151)))) (-837) (-1057)) 82) (((-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151)))) (-837)) 84)) (-2050 (((-1031) (-640 (-316 (-379))) (-640 (-379))) 148) (((-1031) (-837)) 133))) +(((-836) (-10 -7 (-15 -1994 ((-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151)))) (-837))) (-15 -1994 ((-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151)))) (-837) (-1057))) (-15 -2908 ((-1031) (-837) (-1057))) (-15 -2908 ((-1031) (-837))) (-15 -2050 ((-1031) (-837))) (-15 -2908 ((-1031) (-316 (-379)) (-640 (-379)) (-640 (-839 (-379))) (-640 (-316 (-379))) (-640 (-839 (-379))))) (-15 -2908 ((-1031) (-316 (-379)) (-640 (-379)) (-640 (-839 (-379))) (-640 (-839 (-379))))) (-15 -2908 ((-1031) (-316 (-379)) (-640 (-379)))) (-15 -2908 ((-1031) (-640 (-316 (-379))) (-640 (-379)))) (-15 -2050 ((-1031) (-640 (-316 (-379))) (-640 (-379)))))) (T -836)) +((-2050 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-316 (-379)))) (-5 *4 (-640 (-379))) (-5 *2 (-1031)) (-5 *1 (-836)))) (-2908 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-316 (-379)))) (-5 *4 (-640 (-379))) (-5 *2 (-1031)) (-5 *1 (-836)))) (-2908 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-379))) (-5 *2 (-1031)) (-5 *1 (-836)))) (-2908 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-379))) (-5 *5 (-640 (-839 (-379)))) (-5 *2 (-1031)) (-5 *1 (-836)))) (-2908 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-640 (-379))) (-5 *5 (-640 (-839 (-379)))) (-5 *6 (-640 (-316 (-379)))) (-5 *3 (-316 (-379))) (-5 *2 (-1031)) (-5 *1 (-836)))) (-2050 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1031)) (-5 *1 (-836)))) (-2908 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1031)) (-5 *1 (-836)))) (-2908 (*1 *2 *3 *4) (-12 (-5 *3 (-837)) (-5 *4 (-1057)) (-5 *2 (-1031)) (-5 *1 (-836)))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-837)) (-5 *4 (-1057)) (-5 *2 (-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151))))) (-5 *1 (-836)))) (-1994 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151))))) (-5 *1 (-836))))) +(-10 -7 (-15 -1994 ((-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151)))) (-837))) (-15 -1994 ((-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151)))) (-837) (-1057))) (-15 -2908 ((-1031) (-837) (-1057))) (-15 -2908 ((-1031) (-837))) (-15 -2050 ((-1031) (-837))) (-15 -2908 ((-1031) (-316 (-379)) (-640 (-379)) (-640 (-839 (-379))) (-640 (-316 (-379))) (-640 (-839 (-379))))) (-15 -2908 ((-1031) (-316 (-379)) (-640 (-379)) (-640 (-839 (-379))) (-640 (-839 (-379))))) (-15 -2908 ((-1031) (-316 (-379)) (-640 (-379)))) (-15 -2908 ((-1031) (-640 (-316 (-379))) (-640 (-379)))) (-15 -2050 ((-1031) (-640 (-316 (-379))) (-640 (-379))))) +((-1677 (((-112) $ $) NIL)) (-2058 (((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225)))))) $) 21)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 20) (($ (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 14) (($ (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))))) 18)) (-1718 (((-112) $ $) NIL))) +(((-837) (-13 (-1093) (-10 -8 (-15 -1693 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225))))))) (-15 -1693 ($ (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225)))))) (-15 -1693 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225)))))))) (-15 -2058 ((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225)))))) $))))) (T -837)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (-5 *1 (-837)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))) (-5 *1 (-837)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))))) (-5 *1 (-837)))) (-2058 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))))) (-5 *1 (-837))))) +(-13 (-1093) (-10 -8 (-15 -1693 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225))))))) (-15 -1693 ($ (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225)))))) (-15 -1693 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225)))))))) (-15 -2058 ((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225)))))) $)))) +((-2240 (((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|) (-839 |#2|) (-839 |#2|)) 13) (((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|)) 14))) +(((-838 |#1| |#2|) (-10 -7 (-15 -2240 ((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|))) (-15 -2240 ((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|) (-839 |#2|) (-839 |#2|)))) (-1093) (-1093)) (T -838)) +((-2240 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-839 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-839 *5)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-5 *1 (-838 *5 *6)))) (-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-839 *5)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-5 *2 (-839 *6)) (-5 *1 (-838 *5 *6))))) +(-10 -7 (-15 -2240 ((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|))) (-15 -2240 ((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|) (-839 |#2|) (-839 |#2|)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL (|has| |#1| (-21)))) (-3060 (((-1113) $) 24)) (-1495 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1857 (((-563) $) NIL (|has| |#1| (-844)))) (-4239 (($) NIL (|has| |#1| (-21)) CONST)) (-2131 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 16)) (-2058 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) 9)) (-3400 (((-3 $ "failed") $) 47 (|has| |#1| (-844)))) (-3909 (((-3 (-407 (-563)) "failed") $) 54 (|has| |#1| (-545)))) (-2239 (((-112) $) 49 (|has| |#1| (-545)))) (-2651 (((-407 (-563)) $) 52 (|has| |#1| (-545)))) (-3101 (((-112) $) NIL (|has| |#1| (-844)))) (-3625 (($) 13)) (-3827 (((-112) $) NIL (|has| |#1| (-844)))) (-1419 (((-112) $) NIL (|has| |#1| (-844)))) (-3637 (($) 14)) (-3084 (($ $ $) NIL (|has| |#1| (-844)))) (-1777 (($ $ $) NIL (|has| |#1| (-844)))) (-3573 (((-1151) $) NIL)) (-1990 (((-112) $) 12)) (-1694 (((-1113) $) NIL)) (-1376 (((-112) $) 11)) (-1693 (((-858) $) 22) (($ (-407 (-563))) NIL (|has| |#1| (-1034 (-407 (-563))))) (($ |#1|) 8) (($ (-563)) NIL (-4032 (|has| |#1| (-844)) (|has| |#1| (-1034 (-563)))))) (-1675 (((-767)) 41 (|has| |#1| (-844)))) (-2509 (($ $) NIL (|has| |#1| (-844)))) (-2241 (($) 29 (|has| |#1| (-21)) CONST)) (-2254 (($) 38 (|has| |#1| (-844)) CONST)) (-1778 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1756 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1718 (((-112) $ $) 27)) (-1768 (((-112) $ $) NIL (|has| |#1| (-844)))) (-1744 (((-112) $ $) 48 (|has| |#1| (-844)))) (-1826 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-1814 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-917)) NIL (|has| |#1| (-844))) (($ $ (-767)) NIL (|has| |#1| (-844)))) (* (($ $ $) 44 (|has| |#1| (-844))) (($ (-563) $) 32 (|has| |#1| (-21))) (($ (-767) $) NIL (|has| |#1| (-21))) (($ (-917) $) NIL (|has| |#1| (-21))))) +(((-839 |#1|) (-13 (-1093) (-411 |#1|) (-10 -8 (-15 -3625 ($)) (-15 -3637 ($)) (-15 -1376 ((-112) $)) (-15 -1990 ((-112) $)) (-15 -3060 ((-1113) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2239 ((-112) $)) (-15 -2651 ((-407 (-563)) $)) (-15 -3909 ((-3 (-407 (-563)) "failed") $))) |%noBranch|))) (-1093)) (T -839)) +((-3625 (*1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-1093)))) (-3637 (*1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-1093)))) (-1376 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-1093)))) (-1990 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-1093)))) (-3060 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-839 *3)) (-4 *3 (-1093)))) (-2239 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-545)) (-4 *3 (-1093)))) (-2651 (*1 *2 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-839 *3)) (-4 *3 (-545)) (-4 *3 (-1093)))) (-3909 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-563))) (-5 *1 (-839 *3)) (-4 *3 (-545)) (-4 *3 (-1093))))) +(-13 (-1093) (-411 |#1|) (-10 -8 (-15 -3625 ($)) (-15 -3637 ($)) (-15 -1376 ((-112) $)) (-15 -1990 ((-112) $)) (-15 -3060 ((-1113) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2239 ((-112) $)) (-15 -2651 ((-407 (-563)) $)) (-15 -3909 ((-3 (-407 (-563)) "failed") $))) |%noBranch|))) +((-1677 (((-112) $ $) 7)) (-3749 (((-767)) 22)) (-1691 (($) 25)) (-3084 (($ $ $) 13) (($) 21 T CONST)) (-1777 (($ $ $) 14) (($) 20 T CONST)) (-1476 (((-917) $) 24)) (-3573 (((-1151) $) 9)) (-2555 (($ (-917)) 23)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11)) (-1778 (((-112) $ $) 16)) (-1756 (((-112) $ $) 17)) (-1718 (((-112) $ $) 6)) (-1768 (((-112) $ $) 15)) (-1744 (((-112) $ $) 18))) +(((-840) (-140)) (T -840)) +((-3084 (*1 *1) (-4 *1 (-840))) (-1777 (*1 *1) (-4 *1 (-840)))) +(-13 (-846) (-368) (-10 -8 (-15 -3084 ($) -2669) (-15 -1777 ($) -2669))) +(((-102) . T) ((-610 (-858)) . T) ((-368) . T) ((-846) . T) ((-1093) . T)) +((-2477 (((-112) (-1257 |#2|) (-1257 |#2|)) 17)) (-4051 (((-112) (-1257 |#2|) (-1257 |#2|)) 18)) (-3706 (((-112) (-1257 |#2|) (-1257 |#2|)) 14))) +(((-841 |#1| |#2|) (-10 -7 (-15 -3706 ((-112) (-1257 |#2|) (-1257 |#2|))) (-15 -2477 ((-112) (-1257 |#2|) (-1257 |#2|))) (-15 -4051 ((-112) (-1257 |#2|) (-1257 |#2|)))) (-767) (-788)) (T -841)) +((-4051 (*1 *2 *3 *3) (-12 (-5 *3 (-1257 *5)) (-4 *5 (-788)) (-5 *2 (-112)) (-5 *1 (-841 *4 *5)) (-14 *4 (-767)))) (-2477 (*1 *2 *3 *3) (-12 (-5 *3 (-1257 *5)) (-4 *5 (-788)) (-5 *2 (-112)) (-5 *1 (-841 *4 *5)) (-14 *4 (-767)))) (-3706 (*1 *2 *3 *3) (-12 (-5 *3 (-1257 *5)) (-4 *5 (-788)) (-5 *2 (-112)) (-5 *1 (-841 *4 *5)) (-14 *4 (-767))))) +(-10 -7 (-15 -3706 ((-112) (-1257 |#2|) (-1257 |#2|))) (-15 -2477 ((-112) (-1257 |#2|) (-1257 |#2|))) (-15 -4051 ((-112) (-1257 |#2|) (-1257 |#2|)))) +((-1677 (((-112) $ $) 7)) (-4239 (($) 23 T CONST)) (-3400 (((-3 $ "failed") $) 26)) (-3827 (((-112) $) 24)) (-3084 (($ $ $) 13)) (-1777 (($ $ $) 14)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11)) (-2254 (($) 22 T CONST)) (-1778 (((-112) $ $) 16)) (-1756 (((-112) $ $) 17)) (-1718 (((-112) $ $) 6)) (-1768 (((-112) $ $) 15)) (-1744 (((-112) $ $) 18)) (** (($ $ (-917)) 21) (($ $ (-767)) 25)) (* (($ $ $) 20))) +(((-842) (-140)) (T -842)) +NIL +(-13 (-853) (-722)) +(((-102) . T) ((-610 (-858)) . T) ((-722) . T) ((-853) . T) ((-846) . T) ((-1105) . T) ((-1093) . T)) +((-1857 (((-563) $) 17)) (-3101 (((-112) $) 10)) (-1419 (((-112) $) 11)) (-2509 (($ $) 19))) +(((-843 |#1|) (-10 -8 (-15 -2509 (|#1| |#1|)) (-15 -1857 ((-563) |#1|)) (-15 -1419 ((-112) |#1|)) (-15 -3101 ((-112) |#1|))) (-844)) (T -843)) +NIL +(-10 -8 (-15 -2509 (|#1| |#1|)) (-15 -1857 ((-563) |#1|)) (-15 -1419 ((-112) |#1|)) (-15 -3101 ((-112) |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 24)) (-1495 (((-3 $ "failed") $ $) 26)) (-1857 (((-563) $) 34)) (-4239 (($) 23 T CONST)) (-3400 (((-3 $ "failed") $) 39)) (-3101 (((-112) $) 36)) (-3827 (((-112) $) 41)) (-1419 (((-112) $) 35)) (-3084 (($ $ $) 13)) (-1777 (($ $ $) 14)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11) (($ (-563)) 43)) (-1675 (((-767)) 44)) (-2509 (($ $) 33)) (-2241 (($) 22 T CONST)) (-2254 (($) 42 T CONST)) (-1778 (((-112) $ $) 16)) (-1756 (((-112) $ $) 17)) (-1718 (((-112) $ $) 6)) (-1768 (((-112) $ $) 15)) (-1744 (((-112) $ $) 18)) (-1826 (($ $ $) 28) (($ $) 27)) (-1814 (($ $ $) 20)) (** (($ $ (-767)) 40) (($ $ (-917)) 37)) (* (($ (-917) $) 21) (($ (-767) $) 25) (($ (-563) $) 29) (($ $ $) 38))) +(((-844) (-140)) (T -844)) +((-3101 (*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) (-1419 (*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) (-1857 (*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-563)))) (-2509 (*1 *1 *1) (-4 *1 (-844)))) +(-13 (-787) (-1045) (-722) (-10 -8 (-15 -3101 ((-112) $)) (-15 -1419 ((-112) $)) (-15 -1857 ((-563) $)) (-15 -2509 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-643 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-846) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) +((-3084 (($ $ $) 10)) (-1777 (($ $ $) 9)) (-1778 (((-112) $ $) 12)) (-1756 (((-112) $ $) 11)) (-1768 (((-112) $ $) 13))) +(((-845 |#1|) (-10 -8 (-15 -3084 (|#1| |#1| |#1|)) (-15 -1777 (|#1| |#1| |#1|)) (-15 -1768 ((-112) |#1| |#1|)) (-15 -1778 ((-112) |#1| |#1|)) (-15 -1756 ((-112) |#1| |#1|))) (-846)) (T -845)) +NIL +(-10 -8 (-15 -3084 (|#1| |#1| |#1|)) (-15 -1777 (|#1| |#1| |#1|)) (-15 -1768 ((-112) |#1| |#1|)) (-15 -1778 ((-112) |#1| |#1|)) (-15 -1756 ((-112) |#1| |#1|))) +((-1677 (((-112) $ $) 7)) (-3084 (($ $ $) 13)) (-1777 (($ $ $) 14)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11)) (-1778 (((-112) $ $) 16)) (-1756 (((-112) $ $) 17)) (-1718 (((-112) $ $) 6)) (-1768 (((-112) $ $) 15)) (-1744 (((-112) $ $) 18))) +(((-846) (-140)) (T -846)) +((-1744 (*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) (-1756 (*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) (-1778 (*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) (-1768 (*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) (-1777 (*1 *1 *1 *1) (-4 *1 (-846))) (-3084 (*1 *1 *1 *1) (-4 *1 (-846)))) +(-13 (-1093) (-10 -8 (-15 -1744 ((-112) $ $)) (-15 -1756 ((-112) $ $)) (-15 -1778 ((-112) $ $)) (-15 -1768 ((-112) $ $)) (-15 -1777 ($ $ $)) (-15 -3084 ($ $ $)))) +(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) +((-4006 (($ $ $) 45)) (-3737 (($ $ $) 44)) (-1523 (($ $ $) 42)) (-2237 (($ $ $) 51)) (-3621 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) 46)) (-1599 (((-3 $ "failed") $ $) 49)) (-2131 (((-3 (-563) "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-1300 (($ $) 35)) (-3861 (($ $ $) 39)) (-3911 (($ $ $) 38)) (-1909 (($ $ $) 47)) (-1511 (($ $ $) 53)) (-3214 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) 41)) (-3121 (((-3 $ "failed") $ $) 48)) (-3008 (((-3 $ "failed") $ |#2|) 28)) (-1836 ((|#2| $) 32)) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ (-407 (-563))) NIL) (($ |#2|) 12)) (-1337 (((-640 |#2|) $) 18)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22))) +(((-847 |#1| |#2|) (-10 -8 (-15 -1909 (|#1| |#1| |#1|)) (-15 -3621 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4333 |#1|)) |#1| |#1|)) (-15 -2237 (|#1| |#1| |#1|)) (-15 -1599 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4006 (|#1| |#1| |#1|)) (-15 -3737 (|#1| |#1| |#1|)) (-15 -1523 (|#1| |#1| |#1|)) (-15 -3214 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4333 |#1|)) |#1| |#1|)) (-15 -1511 (|#1| |#1| |#1|)) (-15 -3121 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3861 (|#1| |#1| |#1|)) (-15 -3911 (|#1| |#1| |#1|)) (-15 -1300 (|#1| |#1|)) (-15 -1836 (|#2| |#1|)) (-15 -3008 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1337 ((-640 |#2|) |#1|)) (-15 -1693 (|#1| |#2|)) (-15 -2131 ((-3 |#2| "failed") |#1|)) (-15 -2131 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -1693 (|#1| (-407 (-563)))) (-15 -2131 ((-3 (-563) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1693 (|#1| (-563))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -1693 ((-858) |#1|))) (-848 |#2|) (-1045)) (T -847)) +NIL +(-10 -8 (-15 -1909 (|#1| |#1| |#1|)) (-15 -3621 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4333 |#1|)) |#1| |#1|)) (-15 -2237 (|#1| |#1| |#1|)) (-15 -1599 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4006 (|#1| |#1| |#1|)) (-15 -3737 (|#1| |#1| |#1|)) (-15 -1523 (|#1| |#1| |#1|)) (-15 -3214 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4333 |#1|)) |#1| |#1|)) (-15 -1511 (|#1| |#1| |#1|)) (-15 -3121 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3861 (|#1| |#1| |#1|)) (-15 -3911 (|#1| |#1| |#1|)) (-15 -1300 (|#1| |#1|)) (-15 -1836 (|#2| |#1|)) (-15 -3008 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1337 ((-640 |#2|) |#1|)) (-15 -1693 (|#1| |#2|)) (-15 -2131 ((-3 |#2| "failed") |#1|)) (-15 -2131 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -1693 (|#1| (-407 (-563)))) (-15 -2131 ((-3 (-563) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1693 (|#1| (-563))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -1693 ((-858) |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-4006 (($ $ $) 44 (|has| |#1| (-363)))) (-3737 (($ $ $) 45 (|has| |#1| (-363)))) (-1523 (($ $ $) 47 (|has| |#1| (-363)))) (-2237 (($ $ $) 42 (|has| |#1| (-363)))) (-3621 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) 41 (|has| |#1| (-363)))) (-1599 (((-3 $ "failed") $ $) 43 (|has| |#1| (-363)))) (-1490 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 46 (|has| |#1| (-363)))) (-2131 (((-3 (-563) "failed") $) 74 (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) 71 (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 68)) (-2058 (((-563) $) 73 (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) 70 (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) 69)) (-2751 (($ $) 63)) (-3400 (((-3 $ "failed") $) 33)) (-1300 (($ $) 54 (|has| |#1| (-452)))) (-3827 (((-112) $) 31)) (-2588 (($ |#1| (-767)) 61)) (-1293 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 56 (|has| |#1| (-555)))) (-3552 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 57 (|has| |#1| (-555)))) (-2048 (((-767) $) 65)) (-3861 (($ $ $) 51 (|has| |#1| (-363)))) (-3911 (($ $ $) 52 (|has| |#1| (-363)))) (-1909 (($ $ $) 40 (|has| |#1| (-363)))) (-1511 (($ $ $) 49 (|has| |#1| (-363)))) (-3214 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) 48 (|has| |#1| (-363)))) (-3121 (((-3 $ "failed") $ $) 50 (|has| |#1| (-363)))) (-4262 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 53 (|has| |#1| (-363)))) (-2726 ((|#1| $) 64)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-3008 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-555)))) (-4167 (((-767) $) 66)) (-1836 ((|#1| $) 55 (|has| |#1| (-452)))) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ (-407 (-563))) 72 (|has| |#1| (-1034 (-407 (-563))))) (($ |#1|) 67)) (-1337 (((-640 |#1|) $) 60)) (-4319 ((|#1| $ (-767)) 62)) (-1675 (((-767)) 28)) (-3726 ((|#1| $ |#1| |#1|) 59)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75))) +(((-848 |#1|) (-140) (-1045)) (T -848)) +((-4167 (*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-2048 (*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-2726 (*1 *2 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)))) (-2751 (*1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)))) (-4319 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-848 *2)) (-4 *2 (-1045)))) (-2588 (*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-848 *2)) (-4 *2 (-1045)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-640 *3)))) (-3726 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)))) (-3008 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-555)))) (-3552 (*1 *2 *1 *1) (-12 (-4 *3 (-555)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -3490 *1) (|:| -1972 *1))) (-4 *1 (-848 *3)))) (-1293 (*1 *2 *1 *1) (-12 (-4 *3 (-555)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -3490 *1) (|:| -1972 *1))) (-4 *1 (-848 *3)))) (-1836 (*1 *2 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-452)))) (-1300 (*1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-452)))) (-4262 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -3490 *1) (|:| -1972 *1))) (-4 *1 (-848 *3)))) (-3911 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-3861 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-3121 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-1511 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-3214 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4333 *1))) (-4 *1 (-848 *3)))) (-1523 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-1490 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -3490 *1) (|:| -1972 *1))) (-4 *1 (-848 *3)))) (-3737 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-4006 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-1599 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-2237 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-3621 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4333 *1))) (-4 *1 (-848 *3)))) (-1909 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) +(-13 (-1045) (-111 |t#1| |t#1|) (-411 |t#1|) (-10 -8 (-15 -4167 ((-767) $)) (-15 -2048 ((-767) $)) (-15 -2726 (|t#1| $)) (-15 -2751 ($ $)) (-15 -4319 (|t#1| $ (-767))) (-15 -2588 ($ |t#1| (-767))) (-15 -1337 ((-640 |t#1|) $)) (-15 -3726 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-15 -3008 ((-3 $ "failed") $ |t#1|)) (-15 -3552 ((-2 (|:| -3490 $) (|:| -1972 $)) $ $)) (-15 -1293 ((-2 (|:| -3490 $) (|:| -1972 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -1836 (|t#1| $)) (-15 -1300 ($ $))) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-15 -4262 ((-2 (|:| -3490 $) (|:| -1972 $)) $ $)) (-15 -3911 ($ $ $)) (-15 -3861 ($ $ $)) (-15 -3121 ((-3 $ "failed") $ $)) (-15 -1511 ($ $ $)) (-15 -3214 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $)) (-15 -1523 ($ $ $)) (-15 -1490 ((-2 (|:| -3490 $) (|:| -1972 $)) $ $)) (-15 -3737 ($ $ $)) (-15 -4006 ($ $ $)) (-15 -1599 ((-3 $ "failed") $ $)) (-15 -2237 ($ $ $)) (-15 -3621 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $)) (-15 -1909 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 #0=(-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-610 (-858)) . T) ((-411 |#1|) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 |#1|) |has| |#1| (-172)) ((-722) . T) ((-1034 #0#) |has| |#1| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 |#1|) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) +((-4179 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-1490 (((-2 (|:| -3490 |#2|) (|:| -1972 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-363)))) (-1293 (((-2 (|:| -3490 |#2|) (|:| -1972 |#2|)) |#2| |#2| (-99 |#1|)) 40 (|has| |#1| (-555)))) (-3552 (((-2 (|:| -3490 |#2|) (|:| -1972 |#2|)) |#2| |#2| (-99 |#1|)) 39 (|has| |#1| (-555)))) (-4262 (((-2 (|:| -3490 |#2|) (|:| -1972 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-363)))) (-3726 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 31))) +(((-849 |#1| |#2|) (-10 -7 (-15 -4179 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3726 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-555)) (PROGN (-15 -3552 ((-2 (|:| -3490 |#2|) (|:| -1972 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1293 ((-2 (|:| -3490 |#2|) (|:| -1972 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -4262 ((-2 (|:| -3490 |#2|) (|:| -1972 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1490 ((-2 (|:| -3490 |#2|) (|:| -1972 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1045) (-848 |#1|)) (T -849)) +((-1490 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1045)) (-5 *2 (-2 (|:| -3490 *3) (|:| -1972 *3))) (-5 *1 (-849 *5 *3)) (-4 *3 (-848 *5)))) (-4262 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1045)) (-5 *2 (-2 (|:| -3490 *3) (|:| -1972 *3))) (-5 *1 (-849 *5 *3)) (-4 *3 (-848 *5)))) (-1293 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-555)) (-4 *5 (-1045)) (-5 *2 (-2 (|:| -3490 *3) (|:| -1972 *3))) (-5 *1 (-849 *5 *3)) (-4 *3 (-848 *5)))) (-3552 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-555)) (-4 *5 (-1045)) (-5 *2 (-2 (|:| -3490 *3) (|:| -1972 *3))) (-5 *1 (-849 *5 *3)) (-4 *3 (-848 *5)))) (-3726 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1045)) (-5 *1 (-849 *2 *3)) (-4 *3 (-848 *2)))) (-4179 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1045)) (-5 *1 (-849 *5 *2)) (-4 *2 (-848 *5))))) +(-10 -7 (-15 -4179 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3726 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-555)) (PROGN (-15 -3552 ((-2 (|:| -3490 |#2|) (|:| -1972 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1293 ((-2 (|:| -3490 |#2|) (|:| -1972 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -4262 ((-2 (|:| -3490 |#2|) (|:| -1972 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1490 ((-2 (|:| -3490 |#2|) (|:| -1972 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4239 (($) NIL T CONST)) (-4006 (($ $ $) NIL (|has| |#1| (-363)))) (-3737 (($ $ $) NIL (|has| |#1| (-363)))) (-1523 (($ $ $) NIL (|has| |#1| (-363)))) (-2237 (($ $ $) NIL (|has| |#1| (-363)))) (-3621 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL (|has| |#1| (-363)))) (-1599 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-1490 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 32 (|has| |#1| (-363)))) (-2131 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) NIL)) (-2058 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) NIL)) (-2751 (($ $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-1300 (($ $) NIL (|has| |#1| (-452)))) (-2349 (((-858) $ (-858)) NIL)) (-3827 (((-112) $) NIL)) (-2588 (($ |#1| (-767)) NIL)) (-1293 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 28 (|has| |#1| (-555)))) (-3552 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 26 (|has| |#1| (-555)))) (-2048 (((-767) $) NIL)) (-3861 (($ $ $) NIL (|has| |#1| (-363)))) (-3911 (($ $ $) NIL (|has| |#1| (-363)))) (-1909 (($ $ $) NIL (|has| |#1| (-363)))) (-1511 (($ $ $) NIL (|has| |#1| (-363)))) (-3214 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL (|has| |#1| (-363)))) (-3121 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-4262 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 30 (|has| |#1| (-363)))) (-2726 ((|#1| $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-3008 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555)))) (-4167 (((-767) $) NIL)) (-1836 ((|#1| $) NIL (|has| |#1| (-452)))) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ (-407 (-563))) NIL (|has| |#1| (-1034 (-407 (-563))))) (($ |#1|) NIL)) (-1337 (((-640 |#1|) $) NIL)) (-4319 ((|#1| $ (-767)) NIL)) (-1675 (((-767)) NIL)) (-3726 ((|#1| $ |#1| |#1|) 15)) (-2241 (($) NIL T CONST)) (-2254 (($) 20 T CONST)) (-1718 (((-112) $ $) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) 19) (($ $ (-767)) 22)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-850 |#1| |#2| |#3|) (-13 (-848 |#1|) (-10 -8 (-15 -2349 ((-858) $ (-858))))) (-1045) (-99 |#1|) (-1 |#1| |#1|)) (T -850)) +((-2349 (*1 *2 *1 *2) (-12 (-5 *2 (-858)) (-5 *1 (-850 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-848 |#1|) (-10 -8 (-15 -2349 ((-858) $ (-858))))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4239 (($) NIL T CONST)) (-4006 (($ $ $) NIL (|has| |#2| (-363)))) (-3737 (($ $ $) NIL (|has| |#2| (-363)))) (-1523 (($ $ $) NIL (|has| |#2| (-363)))) (-2237 (($ $ $) NIL (|has| |#2| (-363)))) (-3621 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL (|has| |#2| (-363)))) (-1599 (((-3 $ "failed") $ $) NIL (|has| |#2| (-363)))) (-1490 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| |#2| (-363)))) (-2131 (((-3 (-563) "failed") $) NIL (|has| |#2| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-3 |#2| "failed") $) NIL)) (-2058 (((-563) $) NIL (|has| |#2| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#2| (-1034 (-407 (-563))))) ((|#2| $) NIL)) (-2751 (($ $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-1300 (($ $) NIL (|has| |#2| (-452)))) (-3827 (((-112) $) NIL)) (-2588 (($ |#2| (-767)) 16)) (-1293 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| |#2| (-555)))) (-3552 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| |#2| (-555)))) (-2048 (((-767) $) NIL)) (-3861 (($ $ $) NIL (|has| |#2| (-363)))) (-3911 (($ $ $) NIL (|has| |#2| (-363)))) (-1909 (($ $ $) NIL (|has| |#2| (-363)))) (-1511 (($ $ $) NIL (|has| |#2| (-363)))) (-3214 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL (|has| |#2| (-363)))) (-3121 (((-3 $ "failed") $ $) NIL (|has| |#2| (-363)))) (-4262 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| |#2| (-363)))) (-2726 ((|#2| $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-3008 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-555)))) (-4167 (((-767) $) NIL)) (-1836 ((|#2| $) NIL (|has| |#2| (-452)))) (-1693 (((-858) $) 23) (($ (-563)) NIL) (($ (-407 (-563))) NIL (|has| |#2| (-1034 (-407 (-563))))) (($ |#2|) NIL) (($ (-1253 |#1|)) 18)) (-1337 (((-640 |#2|) $) NIL)) (-4319 ((|#2| $ (-767)) NIL)) (-1675 (((-767)) NIL)) (-3726 ((|#2| $ |#2| |#2|) NIL)) (-2241 (($) NIL T CONST)) (-2254 (($) 13 T CONST)) (-1718 (((-112) $ $) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-851 |#1| |#2| |#3| |#4|) (-13 (-848 |#2|) (-613 (-1253 |#1|))) (-1169) (-1045) (-99 |#2|) (-1 |#2| |#2|)) (T -851)) +NIL +(-13 (-848 |#2|) (-613 (-1253 |#1|))) +((-4195 ((|#1| (-767) |#1|) 35 (|has| |#1| (-38 (-407 (-563)))))) (-3566 ((|#1| (-767) (-767) |#1|) 27) ((|#1| (-767) |#1|) 20)) (-3634 ((|#1| (-767) |#1|) 31)) (-3265 ((|#1| (-767) |#1|) 29)) (-3932 ((|#1| (-767) |#1|) 28))) +(((-852 |#1|) (-10 -7 (-15 -3932 (|#1| (-767) |#1|)) (-15 -3265 (|#1| (-767) |#1|)) (-15 -3634 (|#1| (-767) |#1|)) (-15 -3566 (|#1| (-767) |#1|)) (-15 -3566 (|#1| (-767) (-767) |#1|)) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -4195 (|#1| (-767) |#1|)) |%noBranch|)) (-172)) (T -852)) +((-4195 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-172)))) (-3566 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))) (-3566 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))) (-3634 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))) (-3265 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))) (-3932 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172))))) +(-10 -7 (-15 -3932 (|#1| (-767) |#1|)) (-15 -3265 (|#1| (-767) |#1|)) (-15 -3634 (|#1| (-767) |#1|)) (-15 -3566 (|#1| (-767) |#1|)) (-15 -3566 (|#1| (-767) (-767) |#1|)) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -4195 (|#1| (-767) |#1|)) |%noBranch|)) +((-1677 (((-112) $ $) 7)) (-3084 (($ $ $) 13)) (-1777 (($ $ $) 14)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11)) (-1778 (((-112) $ $) 16)) (-1756 (((-112) $ $) 17)) (-1718 (((-112) $ $) 6)) (-1768 (((-112) $ $) 15)) (-1744 (((-112) $ $) 18)) (** (($ $ (-917)) 21)) (* (($ $ $) 20))) +(((-853) (-140)) (T -853)) +NIL +(-13 (-846) (-1105)) +(((-102) . T) ((-610 (-858)) . T) ((-846) . T) ((-1105) . T) ((-1093) . T)) +((-1677 (((-112) $ $) NIL)) (-2619 (((-563) $) 12)) (-3084 (($ $ $) NIL)) (-1777 (($ $ $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 18) (($ (-563)) 11)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 8)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) 9))) +(((-854) (-13 (-846) (-10 -8 (-15 -1693 ($ (-563))) (-15 -2619 ((-563) $))))) (T -854)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-854)))) (-2619 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-854))))) +(-13 (-846) (-10 -8 (-15 -1693 ($ (-563))) (-15 -2619 ((-563) $)))) +((-2577 (((-686 (-1215)) $ (-1215)) 15)) (-2871 (((-686 (-548)) $ (-548)) 12)) (-2910 (((-767) $ (-128)) 24))) +(((-855 |#1|) (-10 -8 (-15 -2910 ((-767) |#1| (-128))) (-15 -2577 ((-686 (-1215)) |#1| (-1215))) (-15 -2871 ((-686 (-548)) |#1| (-548)))) (-856)) (T -855)) +NIL +(-10 -8 (-15 -2910 ((-767) |#1| (-128))) (-15 -2577 ((-686 (-1215)) |#1| (-1215))) (-15 -2871 ((-686 (-548)) |#1| (-548)))) +((-2577 (((-686 (-1215)) $ (-1215)) 8)) (-2871 (((-686 (-548)) $ (-548)) 9)) (-2910 (((-767) $ (-128)) 7)) (-1717 (((-686 (-129)) $ (-129)) 10)) (-3004 (($ $) 6))) +(((-856) (-140)) (T -856)) +((-1717 (*1 *2 *1 *3) (-12 (-4 *1 (-856)) (-5 *2 (-686 (-129))) (-5 *3 (-129)))) (-2871 (*1 *2 *1 *3) (-12 (-4 *1 (-856)) (-5 *2 (-686 (-548))) (-5 *3 (-548)))) (-2577 (*1 *2 *1 *3) (-12 (-4 *1 (-856)) (-5 *2 (-686 (-1215))) (-5 *3 (-1215)))) (-2910 (*1 *2 *1 *3) (-12 (-4 *1 (-856)) (-5 *3 (-128)) (-5 *2 (-767))))) +(-13 (-173) (-10 -8 (-15 -1717 ((-686 (-129)) $ (-129))) (-15 -2871 ((-686 (-548)) $ (-548))) (-15 -2577 ((-686 (-1215)) $ (-1215))) (-15 -2910 ((-767) $ (-128))))) +(((-173) . T)) +((-2577 (((-686 (-1215)) $ (-1215)) NIL)) (-2871 (((-686 (-548)) $ (-548)) NIL)) (-2910 (((-767) $ (-128)) NIL)) (-1717 (((-686 (-129)) $ (-129)) 21)) (-1802 (($ (-388)) 12) (($ (-1151)) 14)) (-4080 (((-112) $) 18)) (-1693 (((-858) $) 25)) (-3004 (($ $) 22))) +(((-857) (-13 (-856) (-610 (-858)) (-10 -8 (-15 -1802 ($ (-388))) (-15 -1802 ($ (-1151))) (-15 -4080 ((-112) $))))) (T -857)) +((-1802 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-857)))) (-1802 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-857)))) (-4080 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-857))))) +(-13 (-856) (-610 (-858)) (-10 -8 (-15 -1802 ($ (-388))) (-15 -1802 ($ (-1151))) (-15 -4080 ((-112) $)))) +((-1677 (((-112) $ $) NIL) (($ $ $) 77)) (-3162 (($ $ $) 114)) (-3835 (((-563) $) 31) (((-563)) 36)) (-4153 (($ (-563)) 45)) (-2206 (($ $ $) 46) (($ (-640 $)) 76)) (-3627 (($ $ (-640 $)) 74)) (-4351 (((-563) $) 34)) (-3125 (($ $ $) 65)) (-2236 (($ $) 127) (($ $ $) 128) (($ $ $ $) 129)) (-1948 (((-563) $) 33)) (-3799 (($ $ $) 64)) (-3736 (($ $) 104)) (-4328 (($ $ $) 118)) (-2617 (($ (-640 $)) 53)) (-3428 (($ $ (-640 $)) 71)) (-1444 (($ (-563) (-563)) 47)) (-3853 (($ $) 115) (($ $ $) 116)) (-1701 (($ $ (-563)) 41) (($ $) 44)) (-3090 (($ $ $) 89)) (-2326 (($ $ $) 121)) (-2827 (($ $) 105)) (-3050 (($ $ $) 90)) (-2169 (($ $) 130) (($ $ $) 131) (($ $ $ $) 132)) (-3303 (((-1262) $) 10)) (-2858 (($ $) 108) (($ $ (-767)) 111)) (-4259 (($ $ $) 67)) (-3034 (($ $ $) 66)) (-3246 (($ $ (-640 $)) 100)) (-1804 (($ $ $) 103)) (-1762 (($ (-640 $)) 51)) (-3968 (($ $) 62) (($ (-640 $)) 63)) (-3012 (($ $ $) 112)) (-4001 (($ $) 106)) (-4299 (($ $ $) 117)) (-2349 (($ (-563)) 21) (($ (-1169)) 23) (($ (-1151)) 30) (($ (-225)) 25)) (-2202 (($ $ $) 93)) (-2176 (($ $) 94)) (-2640 (((-1262) (-1151)) 15)) (-4002 (($ (-1151)) 14)) (-4038 (($ (-640 (-640 $))) 50)) (-1686 (($ $ (-563)) 40) (($ $) 43)) (-3573 (((-1151) $) NIL)) (-1892 (($ $ $) 120)) (-1479 (($ $) 133) (($ $ $) 134) (($ $ $ $) 135)) (-2637 (((-112) $) 98)) (-1780 (($ $ (-640 $)) 101) (($ $ $ $) 102)) (-2470 (($ (-563)) 37)) (-4236 (((-563) $) 32) (((-563)) 35)) (-2805 (($ $ $) 38) (($ (-640 $)) 75)) (-1694 (((-1113) $) NIL)) (-3008 (($ $ $) 91)) (-3135 (($) 13)) (-2309 (($ $ (-640 $)) 99)) (-1454 (((-1151) (-1151)) 8)) (-4092 (($ $) 107) (($ $ (-767)) 110)) (-3028 (($ $ $) 88)) (-4202 (($ $ (-767)) 126)) (-2885 (($ (-640 $)) 52)) (-1693 (((-858) $) 19)) (-3408 (($ $ (-563)) 39) (($ $) 42)) (-2308 (($ $) 60) (($ (-640 $)) 61)) (-2534 (($ $) 58) (($ (-640 $)) 59)) (-3079 (($ $) 113)) (-4233 (($ (-640 $)) 57)) (-2869 (($ $ $) 97)) (-2085 (($ $ $) 119)) (-2190 (($ $ $) 92)) (-2178 (($ $ $) 95) (($ $) 96)) (-1778 (($ $ $) 81)) (-1756 (($ $ $) 79)) (-1718 (((-112) $ $) 16) (($ $ $) 17)) (-1768 (($ $ $) 80)) (-1744 (($ $ $) 78)) (-1837 (($ $ $) 86)) (-1826 (($ $ $) 83) (($ $) 84)) (-1814 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) +(((-858) (-13 (-1093) (-10 -8 (-15 -3303 ((-1262) $)) (-15 -4002 ($ (-1151))) (-15 -2640 ((-1262) (-1151))) (-15 -2349 ($ (-563))) (-15 -2349 ($ (-1169))) (-15 -2349 ($ (-1151))) (-15 -2349 ($ (-225))) (-15 -3135 ($)) (-15 -1454 ((-1151) (-1151))) (-15 -3835 ((-563) $)) (-15 -4236 ((-563) $)) (-15 -3835 ((-563))) (-15 -4236 ((-563))) (-15 -1948 ((-563) $)) (-15 -4351 ((-563) $)) (-15 -2470 ($ (-563))) (-15 -4153 ($ (-563))) (-15 -1444 ($ (-563) (-563))) (-15 -1686 ($ $ (-563))) (-15 -1701 ($ $ (-563))) (-15 -3408 ($ $ (-563))) (-15 -1686 ($ $)) (-15 -1701 ($ $)) (-15 -3408 ($ $)) (-15 -2805 ($ $ $)) (-15 -2206 ($ $ $)) (-15 -2805 ($ (-640 $))) (-15 -2206 ($ (-640 $))) (-15 -3246 ($ $ (-640 $))) (-15 -1780 ($ $ (-640 $))) (-15 -1780 ($ $ $ $)) (-15 -1804 ($ $ $)) (-15 -2637 ((-112) $)) (-15 -2309 ($ $ (-640 $))) (-15 -3736 ($ $)) (-15 -1892 ($ $ $)) (-15 -3079 ($ $)) (-15 -4038 ($ (-640 (-640 $)))) (-15 -3162 ($ $ $)) (-15 -3853 ($ $)) (-15 -3853 ($ $ $)) (-15 -4299 ($ $ $)) (-15 -4328 ($ $ $)) (-15 -2085 ($ $ $)) (-15 -2326 ($ $ $)) (-15 -4202 ($ $ (-767))) (-15 -2869 ($ $ $)) (-15 -3799 ($ $ $)) (-15 -3125 ($ $ $)) (-15 -3034 ($ $ $)) (-15 -4259 ($ $ $)) (-15 -3428 ($ $ (-640 $))) (-15 -3627 ($ $ (-640 $))) (-15 -2827 ($ $)) (-15 -4092 ($ $)) (-15 -4092 ($ $ (-767))) (-15 -2858 ($ $)) (-15 -2858 ($ $ (-767))) (-15 -4001 ($ $)) (-15 -3012 ($ $ $)) (-15 -2236 ($ $)) (-15 -2236 ($ $ $)) (-15 -2236 ($ $ $ $)) (-15 -2169 ($ $)) (-15 -2169 ($ $ $)) (-15 -2169 ($ $ $ $)) (-15 -1479 ($ $)) (-15 -1479 ($ $ $)) (-15 -1479 ($ $ $ $)) (-15 -2534 ($ $)) (-15 -2534 ($ (-640 $))) (-15 -2308 ($ $)) (-15 -2308 ($ (-640 $))) (-15 -3968 ($ $)) (-15 -3968 ($ (-640 $))) (-15 -1762 ($ (-640 $))) (-15 -2885 ($ (-640 $))) (-15 -2617 ($ (-640 $))) (-15 -4233 ($ (-640 $))) (-15 -1718 ($ $ $)) (-15 -1677 ($ $ $)) (-15 -1744 ($ $ $)) (-15 -1756 ($ $ $)) (-15 -1768 ($ $ $)) (-15 -1778 ($ $ $)) (-15 -1814 ($ $ $)) (-15 -1826 ($ $ $)) (-15 -1826 ($ $)) (-15 * ($ $ $)) (-15 -1837 ($ $ $)) (-15 ** ($ $ $)) (-15 -3028 ($ $ $)) (-15 -3090 ($ $ $)) (-15 -3050 ($ $ $)) (-15 -3008 ($ $ $)) (-15 -2190 ($ $ $)) (-15 -2202 ($ $ $)) (-15 -2176 ($ $)) (-15 -2178 ($ $ $)) (-15 -2178 ($ $))))) (T -858)) +((-3303 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-858)))) (-4002 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-858)))) (-2640 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-858)))) (-2349 (*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-2349 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-858)))) (-2349 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-858)))) (-2349 (*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-858)))) (-3135 (*1 *1) (-5 *1 (-858))) (-1454 (*1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-858)))) (-3835 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-4236 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-3835 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-4236 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-1948 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-4351 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-2470 (*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-4153 (*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-1444 (*1 *1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-1686 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-1701 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-3408 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-1686 (*1 *1 *1) (-5 *1 (-858))) (-1701 (*1 *1 *1) (-5 *1 (-858))) (-3408 (*1 *1 *1) (-5 *1 (-858))) (-2805 (*1 *1 *1 *1) (-5 *1 (-858))) (-2206 (*1 *1 *1 *1) (-5 *1 (-858))) (-2805 (*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-2206 (*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-3246 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-1780 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-1780 (*1 *1 *1 *1 *1) (-5 *1 (-858))) (-1804 (*1 *1 *1 *1) (-5 *1 (-858))) (-2637 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-858)))) (-2309 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-3736 (*1 *1 *1) (-5 *1 (-858))) (-1892 (*1 *1 *1 *1) (-5 *1 (-858))) (-3079 (*1 *1 *1) (-5 *1 (-858))) (-4038 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 (-858)))) (-5 *1 (-858)))) (-3162 (*1 *1 *1 *1) (-5 *1 (-858))) (-3853 (*1 *1 *1) (-5 *1 (-858))) (-3853 (*1 *1 *1 *1) (-5 *1 (-858))) (-4299 (*1 *1 *1 *1) (-5 *1 (-858))) (-4328 (*1 *1 *1 *1) (-5 *1 (-858))) (-2085 (*1 *1 *1 *1) (-5 *1 (-858))) (-2326 (*1 *1 *1 *1) (-5 *1 (-858))) (-4202 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-858)))) (-2869 (*1 *1 *1 *1) (-5 *1 (-858))) (-3799 (*1 *1 *1 *1) (-5 *1 (-858))) (-3125 (*1 *1 *1 *1) (-5 *1 (-858))) (-3034 (*1 *1 *1 *1) (-5 *1 (-858))) (-4259 (*1 *1 *1 *1) (-5 *1 (-858))) (-3428 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-3627 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-2827 (*1 *1 *1) (-5 *1 (-858))) (-4092 (*1 *1 *1) (-5 *1 (-858))) (-4092 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-858)))) (-2858 (*1 *1 *1) (-5 *1 (-858))) (-2858 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-858)))) (-4001 (*1 *1 *1) (-5 *1 (-858))) (-3012 (*1 *1 *1 *1) (-5 *1 (-858))) (-2236 (*1 *1 *1) (-5 *1 (-858))) (-2236 (*1 *1 *1 *1) (-5 *1 (-858))) (-2236 (*1 *1 *1 *1 *1) (-5 *1 (-858))) (-2169 (*1 *1 *1) (-5 *1 (-858))) (-2169 (*1 *1 *1 *1) (-5 *1 (-858))) (-2169 (*1 *1 *1 *1 *1) (-5 *1 (-858))) (-1479 (*1 *1 *1) (-5 *1 (-858))) (-1479 (*1 *1 *1 *1) (-5 *1 (-858))) (-1479 (*1 *1 *1 *1 *1) (-5 *1 (-858))) (-2534 (*1 *1 *1) (-5 *1 (-858))) (-2534 (*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-2308 (*1 *1 *1) (-5 *1 (-858))) (-2308 (*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-3968 (*1 *1 *1) (-5 *1 (-858))) (-3968 (*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-1762 (*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-2885 (*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-2617 (*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-1718 (*1 *1 *1 *1) (-5 *1 (-858))) (-1677 (*1 *1 *1 *1) (-5 *1 (-858))) (-1744 (*1 *1 *1 *1) (-5 *1 (-858))) (-1756 (*1 *1 *1 *1) (-5 *1 (-858))) (-1768 (*1 *1 *1 *1) (-5 *1 (-858))) (-1778 (*1 *1 *1 *1) (-5 *1 (-858))) (-1814 (*1 *1 *1 *1) (-5 *1 (-858))) (-1826 (*1 *1 *1 *1) (-5 *1 (-858))) (-1826 (*1 *1 *1) (-5 *1 (-858))) (* (*1 *1 *1 *1) (-5 *1 (-858))) (-1837 (*1 *1 *1 *1) (-5 *1 (-858))) (** (*1 *1 *1 *1) (-5 *1 (-858))) (-3028 (*1 *1 *1 *1) (-5 *1 (-858))) (-3090 (*1 *1 *1 *1) (-5 *1 (-858))) (-3050 (*1 *1 *1 *1) (-5 *1 (-858))) (-3008 (*1 *1 *1 *1) (-5 *1 (-858))) (-2190 (*1 *1 *1 *1) (-5 *1 (-858))) (-2202 (*1 *1 *1 *1) (-5 *1 (-858))) (-2176 (*1 *1 *1) (-5 *1 (-858))) (-2178 (*1 *1 *1 *1) (-5 *1 (-858))) (-2178 (*1 *1 *1) (-5 *1 (-858)))) +(-13 (-1093) (-10 -8 (-15 -3303 ((-1262) $)) (-15 -4002 ($ (-1151))) (-15 -2640 ((-1262) (-1151))) (-15 -2349 ($ (-563))) (-15 -2349 ($ (-1169))) (-15 -2349 ($ (-1151))) (-15 -2349 ($ (-225))) (-15 -3135 ($)) (-15 -1454 ((-1151) (-1151))) (-15 -3835 ((-563) $)) (-15 -4236 ((-563) $)) (-15 -3835 ((-563))) (-15 -4236 ((-563))) (-15 -1948 ((-563) $)) (-15 -4351 ((-563) $)) (-15 -2470 ($ (-563))) (-15 -4153 ($ (-563))) (-15 -1444 ($ (-563) (-563))) (-15 -1686 ($ $ (-563))) (-15 -1701 ($ $ (-563))) (-15 -3408 ($ $ (-563))) (-15 -1686 ($ $)) (-15 -1701 ($ $)) (-15 -3408 ($ $)) (-15 -2805 ($ $ $)) (-15 -2206 ($ $ $)) (-15 -2805 ($ (-640 $))) (-15 -2206 ($ (-640 $))) (-15 -3246 ($ $ (-640 $))) (-15 -1780 ($ $ (-640 $))) (-15 -1780 ($ $ $ $)) (-15 -1804 ($ $ $)) (-15 -2637 ((-112) $)) (-15 -2309 ($ $ (-640 $))) (-15 -3736 ($ $)) (-15 -1892 ($ $ $)) (-15 -3079 ($ $)) (-15 -4038 ($ (-640 (-640 $)))) (-15 -3162 ($ $ $)) (-15 -3853 ($ $)) (-15 -3853 ($ $ $)) (-15 -4299 ($ $ $)) (-15 -4328 ($ $ $)) (-15 -2085 ($ $ $)) (-15 -2326 ($ $ $)) (-15 -4202 ($ $ (-767))) (-15 -2869 ($ $ $)) (-15 -3799 ($ $ $)) (-15 -3125 ($ $ $)) (-15 -3034 ($ $ $)) (-15 -4259 ($ $ $)) (-15 -3428 ($ $ (-640 $))) (-15 -3627 ($ $ (-640 $))) (-15 -2827 ($ $)) (-15 -4092 ($ $)) (-15 -4092 ($ $ (-767))) (-15 -2858 ($ $)) (-15 -2858 ($ $ (-767))) (-15 -4001 ($ $)) (-15 -3012 ($ $ $)) (-15 -2236 ($ $)) (-15 -2236 ($ $ $)) (-15 -2236 ($ $ $ $)) (-15 -2169 ($ $)) (-15 -2169 ($ $ $)) (-15 -2169 ($ $ $ $)) (-15 -1479 ($ $)) (-15 -1479 ($ $ $)) (-15 -1479 ($ $ $ $)) (-15 -2534 ($ $)) (-15 -2534 ($ (-640 $))) (-15 -2308 ($ $)) (-15 -2308 ($ (-640 $))) (-15 -3968 ($ $)) (-15 -3968 ($ (-640 $))) (-15 -1762 ($ (-640 $))) (-15 -2885 ($ (-640 $))) (-15 -2617 ($ (-640 $))) (-15 -4233 ($ (-640 $))) (-15 -1718 ($ $ $)) (-15 -1677 ($ $ $)) (-15 -1744 ($ $ $)) (-15 -1756 ($ $ $)) (-15 -1768 ($ $ $)) (-15 -1778 ($ $ $)) (-15 -1814 ($ $ $)) (-15 -1826 ($ $ $)) (-15 -1826 ($ $)) (-15 * ($ $ $)) (-15 -1837 ($ $ $)) (-15 ** ($ $ $)) (-15 -3028 ($ $ $)) (-15 -3090 ($ $ $)) (-15 -3050 ($ $ $)) (-15 -3008 ($ $ $)) (-15 -2190 ($ $ $)) (-15 -2202 ($ $ $)) (-15 -2176 ($ $)) (-15 -2178 ($ $ $)) (-15 -2178 ($ $)))) +((-1922 (((-1262) (-640 (-52))) 24)) (-1555 (((-1262) (-1151) (-858)) 14) (((-1262) (-858)) 9) (((-1262) (-1151)) 11))) +(((-859) (-10 -7 (-15 -1555 ((-1262) (-1151))) (-15 -1555 ((-1262) (-858))) (-15 -1555 ((-1262) (-1151) (-858))) (-15 -1922 ((-1262) (-640 (-52)))))) (T -859)) +((-1922 (*1 *2 *3) (-12 (-5 *3 (-640 (-52))) (-5 *2 (-1262)) (-5 *1 (-859)))) (-1555 (*1 *2 *3 *4) (-12 (-5 *3 (-1151)) (-5 *4 (-858)) (-5 *2 (-1262)) (-5 *1 (-859)))) (-1555 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1262)) (-5 *1 (-859)))) (-1555 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-859))))) +(-10 -7 (-15 -1555 ((-1262) (-1151))) (-15 -1555 ((-1262) (-858))) (-15 -1555 ((-1262) (-1151) (-858))) (-15 -1922 ((-1262) (-640 (-52))))) +((-1677 (((-112) $ $) NIL)) (-2518 (((-3 $ "failed") (-1169)) 33)) (-3749 (((-767)) 31)) (-1691 (($) NIL)) (-3084 (($ $ $) NIL) (($) NIL T CONST)) (-1777 (($ $ $) NIL) (($) NIL T CONST)) (-1476 (((-917) $) 29)) (-3573 (((-1151) $) 39)) (-2555 (($ (-917)) 28)) (-1694 (((-1113) $) NIL)) (-2220 (((-1169) $) 13) (((-536) $) 19) (((-888 (-379)) $) 26) (((-888 (-563)) $) 22)) (-1693 (((-858) $) 16)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 36)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) 35))) +(((-860 |#1|) (-13 (-840) (-611 (-1169)) (-611 (-536)) (-611 (-888 (-379))) (-611 (-888 (-563))) (-10 -8 (-15 -2518 ((-3 $ "failed") (-1169))))) (-640 (-1169))) (T -860)) +((-2518 (*1 *1 *2) (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-860 *3)) (-14 *3 (-640 *2))))) +(-13 (-840) (-611 (-1169)) (-611 (-536)) (-611 (-888 (-379))) (-611 (-888 (-563))) (-10 -8 (-15 -2518 ((-3 $ "failed") (-1169))))) +((-1677 (((-112) $ $) NIL)) (-3348 (((-506) $) 9)) (-2259 (((-640 (-439)) $) 13)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 21)) (-1718 (((-112) $ $) 16))) +(((-861) (-13 (-1093) (-10 -8 (-15 -3348 ((-506) $)) (-15 -2259 ((-640 (-439)) $))))) (T -861)) +((-3348 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-861)))) (-2259 (*1 *2 *1) (-12 (-5 *2 (-640 (-439))) (-5 *1 (-861))))) +(-13 (-1093) (-10 -8 (-15 -3348 ((-506) $)) (-15 -2259 ((-640 (-439)) $)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4239 (($) NIL T CONST)) (-3400 (((-3 $ "failed") $) NIL)) (-3827 (((-112) $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ (-948 |#1|)) NIL) (((-948 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-172)))) (-1675 (((-767)) NIL)) (-1984 (((-1262) (-767)) NIL)) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-1718 (((-112) $ $) NIL)) (-1837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) +(((-862 |#1| |#2| |#3| |#4|) (-13 (-1045) (-490 (-948 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1837 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1984 ((-1262) (-767))))) (-1045) (-640 (-1169)) (-640 (-767)) (-767)) (T -862)) +((-1837 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-862 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *2 (-1045)) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-767))) (-14 *5 (-767)))) (-1984 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-862 *4 *5 *6 *7)) (-4 *4 (-1045)) (-14 *5 (-640 (-1169))) (-14 *6 (-640 *3)) (-14 *7 *3)))) +(-13 (-1045) (-490 (-948 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1837 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1984 ((-1262) (-767))))) +((-2463 (((-3 (-174 |#3|) "failed") (-767) (-767) |#2| |#2|) 31)) (-3134 (((-3 (-407 |#3|) "failed") (-767) (-767) |#2| |#2|) 24))) +(((-863 |#1| |#2| |#3|) (-10 -7 (-15 -3134 ((-3 (-407 |#3|) "failed") (-767) (-767) |#2| |#2|)) (-15 -2463 ((-3 (-174 |#3|) "failed") (-767) (-767) |#2| |#2|))) (-363) (-1248 |#1|) (-1233 |#1|)) (T -863)) +((-2463 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-767)) (-4 *5 (-363)) (-5 *2 (-174 *6)) (-5 *1 (-863 *5 *4 *6)) (-4 *4 (-1248 *5)) (-4 *6 (-1233 *5)))) (-3134 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-767)) (-4 *5 (-363)) (-5 *2 (-407 *6)) (-5 *1 (-863 *5 *4 *6)) (-4 *4 (-1248 *5)) (-4 *6 (-1233 *5))))) +(-10 -7 (-15 -3134 ((-3 (-407 |#3|) "failed") (-767) (-767) |#2| |#2|)) (-15 -2463 ((-3 (-174 |#3|) "failed") (-767) (-767) |#2| |#2|))) +((-3134 (((-3 (-407 (-1230 |#2| |#1|)) "failed") (-767) (-767) (-1249 |#1| |#2| |#3|)) 28) (((-3 (-407 (-1230 |#2| |#1|)) "failed") (-767) (-767) (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|)) 26))) +(((-864 |#1| |#2| |#3|) (-10 -7 (-15 -3134 ((-3 (-407 (-1230 |#2| |#1|)) "failed") (-767) (-767) (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|))) (-15 -3134 ((-3 (-407 (-1230 |#2| |#1|)) "failed") (-767) (-767) (-1249 |#1| |#2| |#3|)))) (-363) (-1169) |#1|) (T -864)) +((-3134 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-767)) (-5 *4 (-1249 *5 *6 *7)) (-4 *5 (-363)) (-14 *6 (-1169)) (-14 *7 *5) (-5 *2 (-407 (-1230 *6 *5))) (-5 *1 (-864 *5 *6 *7)))) (-3134 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-767)) (-5 *4 (-1249 *5 *6 *7)) (-4 *5 (-363)) (-14 *6 (-1169)) (-14 *7 *5) (-5 *2 (-407 (-1230 *6 *5))) (-5 *1 (-864 *5 *6 *7))))) +(-10 -7 (-15 -3134 ((-3 (-407 (-1230 |#2| |#1|)) "failed") (-767) (-767) (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|))) (-15 -3134 ((-3 (-407 (-1230 |#2| |#1|)) "failed") (-767) (-767) (-1249 |#1| |#2| |#3|)))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 42)) (-4223 (($ $) 41)) (-3156 (((-112) $) 39)) (-1495 (((-3 $ "failed") $ $) 19)) (-2186 (($ $ (-563)) 63)) (-1919 (((-112) $ $) 60)) (-4239 (($) 17 T CONST)) (-3853 (($ (-1165 (-563)) (-563)) 62)) (-3090 (($ $ $) 56)) (-3400 (((-3 $ "failed") $) 33)) (-2840 (($ $) 65)) (-3050 (($ $ $) 57)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) 52)) (-3254 (((-767) $) 70)) (-3827 (((-112) $) 31)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-2995 (((-563)) 67)) (-3553 (((-563) $) 66)) (-3513 (($ $ $) 47) (($ (-640 $)) 46)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3548 (($ $ $) 49) (($ (-640 $)) 48)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3320 (($ $ (-563)) 69)) (-3008 (((-3 $ "failed") $ $) 43)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-2628 (((-767) $) 59)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 58)) (-4113 (((-1149 (-563)) $) 71)) (-1741 (($ $) 68)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ $) 44)) (-1675 (((-767)) 28)) (-2126 (((-112) $ $) 40)) (-1403 (((-563) $ (-563)) 64)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) +(((-865 |#1|) (-140) (-563)) (T -865)) +((-4113 (*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-5 *2 (-1149 (-563))))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-5 *2 (-767)))) (-3320 (*1 *1 *1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-563)))) (-1741 (*1 *1 *1) (-4 *1 (-865 *2))) (-2995 (*1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-563)))) (-3553 (*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-5 *2 (-563)))) (-2840 (*1 *1 *1) (-4 *1 (-865 *2))) (-1403 (*1 *2 *1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-563)))) (-2186 (*1 *1 *1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-563)))) (-3853 (*1 *1 *2 *3) (-12 (-5 *2 (-1165 (-563))) (-5 *3 (-563)) (-4 *1 (-865 *4))))) +(-13 (-307) (-147) (-10 -8 (-15 -4113 ((-1149 (-563)) $)) (-15 -3254 ((-767) $)) (-15 -3320 ($ $ (-563))) (-15 -1741 ($ $)) (-15 -2995 ((-563))) (-15 -3553 ((-563) $)) (-15 -2840 ($ $)) (-15 -1403 ((-563) $ (-563))) (-15 -2186 ($ $ (-563))) (-15 -3853 ($ (-1165 (-563)) (-563))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-290) . T) ((-307) . T) ((-452) . T) ((-555) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-2186 (($ $ (-563)) NIL)) (-1919 (((-112) $ $) NIL)) (-4239 (($) NIL T CONST)) (-3853 (($ (-1165 (-563)) (-563)) NIL)) (-3090 (($ $ $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-2840 (($ $) NIL)) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-3254 (((-767) $) NIL)) (-3827 (((-112) $) NIL)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2995 (((-563)) NIL)) (-3553 (((-563) $) NIL)) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3320 (($ $ (-563)) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2628 (((-767) $) NIL)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-4113 (((-1149 (-563)) $) NIL)) (-1741 (($ $) NIL)) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL)) (-1675 (((-767)) NIL)) (-2126 (((-112) $ $) NIL)) (-1403 (((-563) $ (-563)) NIL)) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-1718 (((-112) $ $) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL))) +(((-866 |#1|) (-865 |#1|) (-563)) (T -866)) +NIL +(-865 |#1|) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-3401 (((-866 |#1|) $) NIL (|has| (-866 |#1|) (-307)))) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-2424 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-866 |#1|) (-905)))) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| (-866 |#1|) (-905)))) (-1919 (((-112) $ $) NIL)) (-1857 (((-563) $) NIL (|has| (-866 |#1|) (-816)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-866 |#1|) "failed") $) NIL) (((-3 (-1169) "failed") $) NIL (|has| (-866 |#1|) (-1034 (-1169)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| (-866 |#1|) (-1034 (-563)))) (((-3 (-563) "failed") $) NIL (|has| (-866 |#1|) (-1034 (-563))))) (-2058 (((-866 |#1|) $) NIL) (((-1169) $) NIL (|has| (-866 |#1|) (-1034 (-1169)))) (((-407 (-563)) $) NIL (|has| (-866 |#1|) (-1034 (-563)))) (((-563) $) NIL (|has| (-866 |#1|) (-1034 (-563))))) (-2457 (($ $) NIL) (($ (-563) $) NIL)) (-3090 (($ $ $) NIL)) (-2950 (((-684 (-563)) (-684 $)) NIL (|has| (-866 |#1|) (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| (-866 |#1|) (-636 (-563)))) (((-2 (|:| -2835 (-684 (-866 |#1|))) (|:| |vec| (-1257 (-866 |#1|)))) (-684 $) (-1257 $)) NIL) (((-684 (-866 |#1|)) (-684 $)) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-1691 (($) NIL (|has| (-866 |#1|) (-545)))) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-2468 (((-112) $) NIL)) (-3101 (((-112) $) NIL (|has| (-866 |#1|) (-816)))) (-3787 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (|has| (-866 |#1|) (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-866 |#1|) (-882 (-379))))) (-3827 (((-112) $) NIL)) (-2711 (($ $) NIL)) (-2143 (((-866 |#1|) $) NIL)) (-2408 (((-3 $ "failed") $) NIL (|has| (-866 |#1|) (-1144)))) (-1419 (((-112) $) NIL (|has| (-866 |#1|) (-816)))) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3084 (($ $ $) NIL (|has| (-866 |#1|) (-846)))) (-1777 (($ $ $) NIL (|has| (-866 |#1|) (-846)))) (-2240 (($ (-1 (-866 |#1|) (-866 |#1|)) $) NIL)) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) NIL)) (-2523 (($) NIL (|has| (-866 |#1|) (-1144)) CONST)) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ $ $) NIL) (($ (-640 $)) NIL)) (-4215 (($ $) NIL (|has| (-866 |#1|) (-307)))) (-1583 (((-866 |#1|) $) NIL (|has| (-866 |#1|) (-545)))) (-1876 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-866 |#1|) (-905)))) (-3116 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-866 |#1|) (-905)))) (-2174 (((-418 $) $) NIL)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1540 (($ $ (-640 (-866 |#1|)) (-640 (-866 |#1|))) NIL (|has| (-866 |#1|) (-309 (-866 |#1|)))) (($ $ (-866 |#1|) (-866 |#1|)) NIL (|has| (-866 |#1|) (-309 (-866 |#1|)))) (($ $ (-294 (-866 |#1|))) NIL (|has| (-866 |#1|) (-309 (-866 |#1|)))) (($ $ (-640 (-294 (-866 |#1|)))) NIL (|has| (-866 |#1|) (-309 (-866 |#1|)))) (($ $ (-640 (-1169)) (-640 (-866 |#1|))) NIL (|has| (-866 |#1|) (-514 (-1169) (-866 |#1|)))) (($ $ (-1169) (-866 |#1|)) NIL (|has| (-866 |#1|) (-514 (-1169) (-866 |#1|))))) (-2628 (((-767) $) NIL)) (-2309 (($ $ (-866 |#1|)) NIL (|has| (-866 |#1|) (-286 (-866 |#1|) (-866 |#1|))))) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-4202 (($ $) NIL (|has| (-866 |#1|) (-233))) (($ $ (-767)) NIL (|has| (-866 |#1|) (-233))) (($ $ (-1169)) NIL (|has| (-866 |#1|) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-866 |#1|) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-866 |#1|) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-866 |#1|) (-896 (-1169)))) (($ $ (-1 (-866 |#1|) (-866 |#1|)) (-767)) NIL) (($ $ (-1 (-866 |#1|) (-866 |#1|))) NIL)) (-1801 (($ $) NIL)) (-2154 (((-866 |#1|) $) NIL)) (-2220 (((-888 (-563)) $) NIL (|has| (-866 |#1|) (-611 (-888 (-563))))) (((-888 (-379)) $) NIL (|has| (-866 |#1|) (-611 (-888 (-379))))) (((-536) $) NIL (|has| (-866 |#1|) (-611 (-536)))) (((-379) $) NIL (|has| (-866 |#1|) (-1018))) (((-225) $) NIL (|has| (-866 |#1|) (-1018)))) (-2192 (((-174 (-407 (-563))) $) NIL)) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-866 |#1|) (-905))))) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ (-866 |#1|)) NIL) (($ (-1169)) NIL (|has| (-866 |#1|) (-1034 (-1169))))) (-2779 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| $ (-145)) (|has| (-866 |#1|) (-905))) (|has| (-866 |#1|) (-145))))) (-1675 (((-767)) NIL)) (-4194 (((-866 |#1|) $) NIL (|has| (-866 |#1|) (-545)))) (-2126 (((-112) $ $) NIL)) (-1403 (((-407 (-563)) $ (-563)) NIL)) (-2509 (($ $) NIL (|has| (-866 |#1|) (-816)))) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-3209 (($ $) NIL (|has| (-866 |#1|) (-233))) (($ $ (-767)) NIL (|has| (-866 |#1|) (-233))) (($ $ (-1169)) NIL (|has| (-866 |#1|) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-866 |#1|) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-866 |#1|) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-866 |#1|) (-896 (-1169)))) (($ $ (-1 (-866 |#1|) (-866 |#1|)) (-767)) NIL) (($ $ (-1 (-866 |#1|) (-866 |#1|))) NIL)) (-1778 (((-112) $ $) NIL (|has| (-866 |#1|) (-846)))) (-1756 (((-112) $ $) NIL (|has| (-866 |#1|) (-846)))) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL (|has| (-866 |#1|) (-846)))) (-1744 (((-112) $ $) NIL (|has| (-866 |#1|) (-846)))) (-1837 (($ $ $) NIL) (($ (-866 |#1|) (-866 |#1|)) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ (-866 |#1|) $) NIL) (($ $ (-866 |#1|)) NIL))) +(((-867 |#1|) (-13 (-988 (-866 |#1|)) (-10 -8 (-15 -1403 ((-407 (-563)) $ (-563))) (-15 -2192 ((-174 (-407 (-563))) $)) (-15 -2457 ($ $)) (-15 -2457 ($ (-563) $)))) (-563)) (T -867)) +((-1403 (*1 *2 *1 *3) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-867 *4)) (-14 *4 *3) (-5 *3 (-563)))) (-2192 (*1 *2 *1) (-12 (-5 *2 (-174 (-407 (-563)))) (-5 *1 (-867 *3)) (-14 *3 (-563)))) (-2457 (*1 *1 *1) (-12 (-5 *1 (-867 *2)) (-14 *2 (-563)))) (-2457 (*1 *1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-867 *3)) (-14 *3 *2)))) +(-13 (-988 (-866 |#1|)) (-10 -8 (-15 -1403 ((-407 (-563)) $ (-563))) (-15 -2192 ((-174 (-407 (-563))) $)) (-15 -2457 ($ $)) (-15 -2457 ($ (-563) $)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-3401 ((|#2| $) NIL (|has| |#2| (-307)))) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-2424 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-1919 (((-112) $ $) NIL)) (-1857 (((-563) $) NIL (|has| |#2| (-816)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#2| "failed") $) NIL) (((-3 (-1169) "failed") $) NIL (|has| |#2| (-1034 (-1169)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#2| (-1034 (-563)))) (((-3 (-563) "failed") $) NIL (|has| |#2| (-1034 (-563))))) (-2058 ((|#2| $) NIL) (((-1169) $) NIL (|has| |#2| (-1034 (-1169)))) (((-407 (-563)) $) NIL (|has| |#2| (-1034 (-563)))) (((-563) $) NIL (|has| |#2| (-1034 (-563))))) (-2457 (($ $) 31) (($ (-563) $) 32)) (-3090 (($ $ $) NIL)) (-2950 (((-684 (-563)) (-684 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -2835 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL) (((-684 |#2|) (-684 $)) NIL)) (-3400 (((-3 $ "failed") $) 53)) (-1691 (($) NIL (|has| |#2| (-545)))) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-2468 (((-112) $) NIL)) (-3101 (((-112) $) NIL (|has| |#2| (-816)))) (-3787 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (|has| |#2| (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| |#2| (-882 (-379))))) (-3827 (((-112) $) NIL)) (-2711 (($ $) NIL)) (-2143 ((|#2| $) NIL)) (-2408 (((-3 $ "failed") $) NIL (|has| |#2| (-1144)))) (-1419 (((-112) $) NIL (|has| |#2| (-816)))) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3084 (($ $ $) NIL (|has| |#2| (-846)))) (-1777 (($ $ $) NIL (|has| |#2| (-846)))) (-2240 (($ (-1 |#2| |#2|) $) NIL)) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) 49)) (-2523 (($) NIL (|has| |#2| (-1144)) CONST)) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ $ $) NIL) (($ (-640 $)) NIL)) (-4215 (($ $) NIL (|has| |#2| (-307)))) (-1583 ((|#2| $) NIL (|has| |#2| (-545)))) (-1876 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-3116 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2174 (((-418 $) $) NIL)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1540 (($ $ (-640 |#2|) (-640 |#2|)) NIL (|has| |#2| (-309 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-309 |#2|))) (($ $ (-294 |#2|)) NIL (|has| |#2| (-309 |#2|))) (($ $ (-640 (-294 |#2|))) NIL (|has| |#2| (-309 |#2|))) (($ $ (-640 (-1169)) (-640 |#2|)) NIL (|has| |#2| (-514 (-1169) |#2|))) (($ $ (-1169) |#2|) NIL (|has| |#2| (-514 (-1169) |#2|)))) (-2628 (((-767) $) NIL)) (-2309 (($ $ |#2|) NIL (|has| |#2| (-286 |#2| |#2|)))) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-4202 (($ $) NIL (|has| |#2| (-233))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1801 (($ $) NIL)) (-2154 ((|#2| $) NIL)) (-2220 (((-888 (-563)) $) NIL (|has| |#2| (-611 (-888 (-563))))) (((-888 (-379)) $) NIL (|has| |#2| (-611 (-888 (-379))))) (((-536) $) NIL (|has| |#2| (-611 (-536)))) (((-379) $) NIL (|has| |#2| (-1018))) (((-225) $) NIL (|has| |#2| (-1018)))) (-2192 (((-174 (-407 (-563))) $) 68)) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905))))) (-1693 (((-858) $) 86) (($ (-563)) 19) (($ $) NIL) (($ (-407 (-563))) 24) (($ |#2|) 18) (($ (-1169)) NIL (|has| |#2| (-1034 (-1169))))) (-2779 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#2| (-145))))) (-1675 (((-767)) NIL)) (-4194 ((|#2| $) NIL (|has| |#2| (-545)))) (-2126 (((-112) $ $) NIL)) (-1403 (((-407 (-563)) $ (-563)) 60)) (-2509 (($ $) NIL (|has| |#2| (-816)))) (-2241 (($) 14 T CONST)) (-2254 (($) 16 T CONST)) (-3209 (($ $) NIL (|has| |#2| (-233))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1778 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1756 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1718 (((-112) $ $) 35)) (-1768 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1744 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1837 (($ $ $) 23) (($ |#2| |#2|) 54)) (-1826 (($ $) 39) (($ $ $) 41)) (-1814 (($ $ $) 37)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) 50)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 42) (($ $ $) 44) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) +(((-868 |#1| |#2|) (-13 (-988 |#2|) (-10 -8 (-15 -1403 ((-407 (-563)) $ (-563))) (-15 -2192 ((-174 (-407 (-563))) $)) (-15 -2457 ($ $)) (-15 -2457 ($ (-563) $)))) (-563) (-865 |#1|)) (T -868)) +((-1403 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-407 (-563))) (-5 *1 (-868 *4 *5)) (-5 *3 (-563)) (-4 *5 (-865 *4)))) (-2192 (*1 *2 *1) (-12 (-14 *3 (-563)) (-5 *2 (-174 (-407 (-563)))) (-5 *1 (-868 *3 *4)) (-4 *4 (-865 *3)))) (-2457 (*1 *1 *1) (-12 (-14 *2 (-563)) (-5 *1 (-868 *2 *3)) (-4 *3 (-865 *2)))) (-2457 (*1 *1 *2 *1) (-12 (-5 *2 (-563)) (-14 *3 *2) (-5 *1 (-868 *3 *4)) (-4 *4 (-865 *3))))) +(-13 (-988 |#2|) (-10 -8 (-15 -1403 ((-407 (-563)) $ (-563))) (-15 -2192 ((-174 (-407 (-563))) $)) (-15 -2457 ($ $)) (-15 -2457 ($ (-563) $)))) +((-1677 (((-112) $ $) NIL (-12 (|has| |#1| (-1093)) (|has| |#2| (-1093))))) (-3431 ((|#2| $) 12)) (-2586 (($ |#1| |#2|) 9)) (-3573 (((-1151) $) NIL (-12 (|has| |#1| (-1093)) (|has| |#2| (-1093))))) (-1694 (((-1113) $) NIL (-12 (|has| |#1| (-1093)) (|has| |#2| (-1093))))) (-3781 ((|#1| $) 11)) (-1707 (($ |#1| |#2|) 10)) (-1693 (((-858) $) 18 (-4032 (-12 (|has| |#1| (-610 (-858))) (|has| |#2| (-610 (-858)))) (-12 (|has| |#1| (-1093)) (|has| |#2| (-1093)))))) (-1718 (((-112) $ $) 22 (-12 (|has| |#1| (-1093)) (|has| |#2| (-1093)))))) +(((-869 |#1| |#2|) (-13 (-1208) (-10 -8 (IF (|has| |#1| (-610 (-858))) (IF (|has| |#2| (-610 (-858))) (-6 (-610 (-858))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1093)) (IF (|has| |#2| (-1093)) (-6 (-1093)) |%noBranch|) |%noBranch|) (-15 -2586 ($ |#1| |#2|)) (-15 -1707 ($ |#1| |#2|)) (-15 -3781 (|#1| $)) (-15 -3431 (|#2| $)))) (-1208) (-1208)) (T -869)) +((-2586 (*1 *1 *2 *3) (-12 (-5 *1 (-869 *2 *3)) (-4 *2 (-1208)) (-4 *3 (-1208)))) (-1707 (*1 *1 *2 *3) (-12 (-5 *1 (-869 *2 *3)) (-4 *2 (-1208)) (-4 *3 (-1208)))) (-3781 (*1 *2 *1) (-12 (-4 *2 (-1208)) (-5 *1 (-869 *2 *3)) (-4 *3 (-1208)))) (-3431 (*1 *2 *1) (-12 (-4 *2 (-1208)) (-5 *1 (-869 *3 *2)) (-4 *3 (-1208))))) +(-13 (-1208) (-10 -8 (IF (|has| |#1| (-610 (-858))) (IF (|has| |#2| (-610 (-858))) (-6 (-610 (-858))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1093)) (IF (|has| |#2| (-1093)) (-6 (-1093)) |%noBranch|) |%noBranch|) (-15 -2586 ($ |#1| |#2|)) (-15 -1707 ($ |#1| |#2|)) (-15 -3781 (|#1| $)) (-15 -3431 (|#2| $)))) +((-1677 (((-112) $ $) NIL)) (-3905 (((-563) $) 15)) (-2111 (($ (-157)) 11)) (-2399 (($ (-157)) 12)) (-3573 (((-1151) $) NIL)) (-3788 (((-157) $) 13)) (-1694 (((-1113) $) NIL)) (-3304 (($ (-157)) 9)) (-3207 (($ (-157)) 8)) (-1693 (((-858) $) 23) (($ (-157)) 16)) (-3995 (($ (-157)) 10)) (-1718 (((-112) $ $) NIL))) +(((-870) (-13 (-1093) (-10 -8 (-15 -3207 ($ (-157))) (-15 -3304 ($ (-157))) (-15 -3995 ($ (-157))) (-15 -2111 ($ (-157))) (-15 -2399 ($ (-157))) (-15 -3788 ((-157) $)) (-15 -3905 ((-563) $)) (-15 -1693 ($ (-157)))))) (T -870)) +((-3207 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-3304 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-3995 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-2111 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-2399 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-3788 (*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-3905 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-870)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870))))) +(-13 (-1093) (-10 -8 (-15 -3207 ($ (-157))) (-15 -3304 ($ (-157))) (-15 -3995 ($ (-157))) (-15 -2111 ($ (-157))) (-15 -2399 ($ (-157))) (-15 -3788 ((-157) $)) (-15 -3905 ((-563) $)) (-15 -1693 ($ (-157))))) +((-1693 (((-316 (-563)) (-407 (-948 (-48)))) 23) (((-316 (-563)) (-948 (-48))) 18))) +(((-871) (-10 -7 (-15 -1693 ((-316 (-563)) (-948 (-48)))) (-15 -1693 ((-316 (-563)) (-407 (-948 (-48))))))) (T -871)) +((-1693 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 (-48)))) (-5 *2 (-316 (-563))) (-5 *1 (-871)))) (-1693 (*1 *2 *3) (-12 (-5 *3 (-948 (-48))) (-5 *2 (-316 (-563))) (-5 *1 (-871))))) +(-10 -7 (-15 -1693 ((-316 (-563)) (-948 (-48)))) (-15 -1693 ((-316 (-563)) (-407 (-948 (-48)))))) +((-2240 (((-873 |#2|) (-1 |#2| |#1|) (-873 |#1|)) 14))) +(((-872 |#1| |#2|) (-10 -7 (-15 -2240 ((-873 |#2|) (-1 |#2| |#1|) (-873 |#1|)))) (-1208) (-1208)) (T -872)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-873 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-873 *6)) (-5 *1 (-872 *5 *6))))) +(-10 -7 (-15 -2240 ((-873 |#2|) (-1 |#2| |#1|) (-873 |#1|)))) +((-3448 (($ |#1| |#1|) 8)) (-2024 ((|#1| $ (-767)) 10))) +(((-873 |#1|) (-10 -8 (-15 -3448 ($ |#1| |#1|)) (-15 -2024 (|#1| $ (-767)))) (-1208)) (T -873)) +((-2024 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-873 *2)) (-4 *2 (-1208)))) (-3448 (*1 *1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-1208))))) +(-10 -8 (-15 -3448 ($ |#1| |#1|)) (-15 -2024 (|#1| $ (-767)))) +((-2240 (((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)) 14))) +(((-874 |#1| |#2|) (-10 -7 (-15 -2240 ((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)))) (-1208) (-1208)) (T -874)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-875 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-875 *6)) (-5 *1 (-874 *5 *6))))) +(-10 -7 (-15 -2240 ((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)))) +((-3448 (($ |#1| |#1| |#1|) 8)) (-2024 ((|#1| $ (-767)) 10))) +(((-875 |#1|) (-10 -8 (-15 -3448 ($ |#1| |#1| |#1|)) (-15 -2024 (|#1| $ (-767)))) (-1208)) (T -875)) +((-2024 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-875 *2)) (-4 *2 (-1208)))) (-3448 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1208))))) +(-10 -8 (-15 -3448 ($ |#1| |#1| |#1|)) (-15 -2024 (|#1| $ (-767)))) +((-3930 (((-640 (-1174)) (-1151)) 9))) +(((-876) (-10 -7 (-15 -3930 ((-640 (-1174)) (-1151))))) (T -876)) +((-3930 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-640 (-1174))) (-5 *1 (-876))))) +(-10 -7 (-15 -3930 ((-640 (-1174)) (-1151)))) +((-2240 (((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|)) 14))) +(((-877 |#1| |#2|) (-10 -7 (-15 -2240 ((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|)))) (-1208) (-1208)) (T -877)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-878 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-878 *6)) (-5 *1 (-877 *5 *6))))) +(-10 -7 (-15 -2240 ((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|)))) +((-1635 (($ |#1| |#1| |#1|) 8)) (-2024 ((|#1| $ (-767)) 10))) +(((-878 |#1|) (-10 -8 (-15 -1635 ($ |#1| |#1| |#1|)) (-15 -2024 (|#1| $ (-767)))) (-1208)) (T -878)) +((-2024 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-878 *2)) (-4 *2 (-1208)))) (-1635 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1208))))) +(-10 -8 (-15 -1635 ($ |#1| |#1| |#1|)) (-15 -2024 (|#1| $ (-767)))) +((-3363 (((-1149 (-640 (-563))) (-640 (-563)) (-1149 (-640 (-563)))) 30)) (-1858 (((-1149 (-640 (-563))) (-640 (-563)) (-640 (-563))) 26)) (-1725 (((-1149 (-640 (-563))) (-640 (-563))) 39) (((-1149 (-640 (-563))) (-640 (-563)) (-640 (-563))) 38)) (-2312 (((-1149 (-640 (-563))) (-563)) 40)) (-3434 (((-1149 (-640 (-563))) (-563) (-563)) 22) (((-1149 (-640 (-563))) (-563)) 16) (((-1149 (-640 (-563))) (-563) (-563) (-563)) 12)) (-3011 (((-1149 (-640 (-563))) (-1149 (-640 (-563)))) 24)) (-4339 (((-640 (-563)) (-640 (-563))) 23))) +(((-879) (-10 -7 (-15 -3434 ((-1149 (-640 (-563))) (-563) (-563) (-563))) (-15 -3434 ((-1149 (-640 (-563))) (-563))) (-15 -3434 ((-1149 (-640 (-563))) (-563) (-563))) (-15 -4339 ((-640 (-563)) (-640 (-563)))) (-15 -3011 ((-1149 (-640 (-563))) (-1149 (-640 (-563))))) (-15 -1858 ((-1149 (-640 (-563))) (-640 (-563)) (-640 (-563)))) (-15 -3363 ((-1149 (-640 (-563))) (-640 (-563)) (-1149 (-640 (-563))))) (-15 -1725 ((-1149 (-640 (-563))) (-640 (-563)) (-640 (-563)))) (-15 -1725 ((-1149 (-640 (-563))) (-640 (-563)))) (-15 -2312 ((-1149 (-640 (-563))) (-563))))) (T -879)) +((-2312 (*1 *2 *3) (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) (-5 *3 (-563)))) (-1725 (*1 *2 *3) (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) (-5 *3 (-640 (-563))))) (-1725 (*1 *2 *3 *3) (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) (-5 *3 (-640 (-563))))) (-3363 (*1 *2 *3 *2) (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *3 (-640 (-563))) (-5 *1 (-879)))) (-1858 (*1 *2 *3 *3) (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) (-5 *3 (-640 (-563))))) (-3011 (*1 *2 *2) (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)))) (-4339 (*1 *2 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-879)))) (-3434 (*1 *2 *3 *3) (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) (-5 *3 (-563)))) (-3434 (*1 *2 *3) (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) (-5 *3 (-563)))) (-3434 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) (-5 *3 (-563))))) +(-10 -7 (-15 -3434 ((-1149 (-640 (-563))) (-563) (-563) (-563))) (-15 -3434 ((-1149 (-640 (-563))) (-563))) (-15 -3434 ((-1149 (-640 (-563))) (-563) (-563))) (-15 -4339 ((-640 (-563)) (-640 (-563)))) (-15 -3011 ((-1149 (-640 (-563))) (-1149 (-640 (-563))))) (-15 -1858 ((-1149 (-640 (-563))) (-640 (-563)) (-640 (-563)))) (-15 -3363 ((-1149 (-640 (-563))) (-640 (-563)) (-1149 (-640 (-563))))) (-15 -1725 ((-1149 (-640 (-563))) (-640 (-563)) (-640 (-563)))) (-15 -1725 ((-1149 (-640 (-563))) (-640 (-563)))) (-15 -2312 ((-1149 (-640 (-563))) (-563)))) +((-2220 (((-888 (-379)) $) 9 (|has| |#1| (-611 (-888 (-379))))) (((-888 (-563)) $) 8 (|has| |#1| (-611 (-888 (-563))))))) +(((-880 |#1|) (-140) (-1208)) (T -880)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-611 (-888 (-563)))) (-6 (-611 (-888 (-563)))) |%noBranch|) (IF (|has| |t#1| (-611 (-888 (-379)))) (-6 (-611 (-888 (-379)))) |%noBranch|))) +(((-611 (-888 (-379))) |has| |#1| (-611 (-888 (-379)))) ((-611 (-888 (-563))) |has| |#1| (-611 (-888 (-563))))) +((-1677 (((-112) $ $) NIL)) (-1566 (($) 14)) (-2416 (($ (-885 |#1| |#2|) (-885 |#1| |#3|)) 27)) (-2595 (((-885 |#1| |#3|) $) 16)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-2336 (((-112) $) 22)) (-4244 (($) 19)) (-1693 (((-858) $) 30)) (-2344 (((-885 |#1| |#2|) $) 15)) (-1718 (((-112) $ $) 25))) +(((-881 |#1| |#2| |#3|) (-13 (-1093) (-10 -8 (-15 -2336 ((-112) $)) (-15 -4244 ($)) (-15 -1566 ($)) (-15 -2416 ($ (-885 |#1| |#2|) (-885 |#1| |#3|))) (-15 -2344 ((-885 |#1| |#2|) $)) (-15 -2595 ((-885 |#1| |#3|) $)))) (-1093) (-1093) (-661 |#2|)) (T -881)) +((-2336 (*1 *2 *1) (-12 (-4 *4 (-1093)) (-5 *2 (-112)) (-5 *1 (-881 *3 *4 *5)) (-4 *3 (-1093)) (-4 *5 (-661 *4)))) (-4244 (*1 *1) (-12 (-4 *3 (-1093)) (-5 *1 (-881 *2 *3 *4)) (-4 *2 (-1093)) (-4 *4 (-661 *3)))) (-1566 (*1 *1) (-12 (-4 *3 (-1093)) (-5 *1 (-881 *2 *3 *4)) (-4 *2 (-1093)) (-4 *4 (-661 *3)))) (-2416 (*1 *1 *2 *3) (-12 (-5 *2 (-885 *4 *5)) (-5 *3 (-885 *4 *6)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-661 *5)) (-5 *1 (-881 *4 *5 *6)))) (-2344 (*1 *2 *1) (-12 (-4 *4 (-1093)) (-5 *2 (-885 *3 *4)) (-5 *1 (-881 *3 *4 *5)) (-4 *3 (-1093)) (-4 *5 (-661 *4)))) (-2595 (*1 *2 *1) (-12 (-4 *4 (-1093)) (-5 *2 (-885 *3 *5)) (-5 *1 (-881 *3 *4 *5)) (-4 *3 (-1093)) (-4 *5 (-661 *4))))) +(-13 (-1093) (-10 -8 (-15 -2336 ((-112) $)) (-15 -4244 ($)) (-15 -1566 ($)) (-15 -2416 ($ (-885 |#1| |#2|) (-885 |#1| |#3|))) (-15 -2344 ((-885 |#1| |#2|) $)) (-15 -2595 ((-885 |#1| |#3|) $)))) +((-1677 (((-112) $ $) 7)) (-3787 (((-885 |#1| $) $ (-888 |#1|) (-885 |#1| $)) 13)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11)) (-1718 (((-112) $ $) 6))) +(((-882 |#1|) (-140) (-1093)) (T -882)) +((-3787 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-885 *4 *1)) (-5 *3 (-888 *4)) (-4 *1 (-882 *4)) (-4 *4 (-1093))))) +(-13 (-1093) (-10 -8 (-15 -3787 ((-885 |t#1| $) $ (-888 |t#1|) (-885 |t#1| $))))) +(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) +((-2799 (((-112) (-640 |#2|) |#3|) 22) (((-112) |#2| |#3|) 17)) (-1662 (((-885 |#1| |#2|) |#2| |#3|) 42 (-12 (-2176 (|has| |#2| (-1034 (-1169)))) (-2176 (|has| |#2| (-1045))))) (((-640 (-294 (-948 |#2|))) |#2| |#3|) 41 (-12 (|has| |#2| (-1045)) (-2176 (|has| |#2| (-1034 (-1169)))))) (((-640 (-294 |#2|)) |#2| |#3|) 34 (|has| |#2| (-1034 (-1169)))) (((-881 |#1| |#2| (-640 |#2|)) (-640 |#2|) |#3|) 20))) +(((-883 |#1| |#2| |#3|) (-10 -7 (-15 -2799 ((-112) |#2| |#3|)) (-15 -2799 ((-112) (-640 |#2|) |#3|)) (-15 -1662 ((-881 |#1| |#2| (-640 |#2|)) (-640 |#2|) |#3|)) (IF (|has| |#2| (-1034 (-1169))) (-15 -1662 ((-640 (-294 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1045)) (-15 -1662 ((-640 (-294 (-948 |#2|))) |#2| |#3|)) (-15 -1662 ((-885 |#1| |#2|) |#2| |#3|))))) (-1093) (-882 |#1|) (-611 (-888 |#1|))) (T -883)) +((-1662 (*1 *2 *3 *4) (-12 (-4 *5 (-1093)) (-5 *2 (-885 *5 *3)) (-5 *1 (-883 *5 *3 *4)) (-2176 (-4 *3 (-1034 (-1169)))) (-2176 (-4 *3 (-1045))) (-4 *3 (-882 *5)) (-4 *4 (-611 (-888 *5))))) (-1662 (*1 *2 *3 *4) (-12 (-4 *5 (-1093)) (-5 *2 (-640 (-294 (-948 *3)))) (-5 *1 (-883 *5 *3 *4)) (-4 *3 (-1045)) (-2176 (-4 *3 (-1034 (-1169)))) (-4 *3 (-882 *5)) (-4 *4 (-611 (-888 *5))))) (-1662 (*1 *2 *3 *4) (-12 (-4 *5 (-1093)) (-5 *2 (-640 (-294 *3))) (-5 *1 (-883 *5 *3 *4)) (-4 *3 (-1034 (-1169))) (-4 *3 (-882 *5)) (-4 *4 (-611 (-888 *5))))) (-1662 (*1 *2 *3 *4) (-12 (-4 *5 (-1093)) (-4 *6 (-882 *5)) (-5 *2 (-881 *5 *6 (-640 *6))) (-5 *1 (-883 *5 *6 *4)) (-5 *3 (-640 *6)) (-4 *4 (-611 (-888 *5))))) (-2799 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *6)) (-4 *6 (-882 *5)) (-4 *5 (-1093)) (-5 *2 (-112)) (-5 *1 (-883 *5 *6 *4)) (-4 *4 (-611 (-888 *5))))) (-2799 (*1 *2 *3 *4) (-12 (-4 *5 (-1093)) (-5 *2 (-112)) (-5 *1 (-883 *5 *3 *4)) (-4 *3 (-882 *5)) (-4 *4 (-611 (-888 *5)))))) +(-10 -7 (-15 -2799 ((-112) |#2| |#3|)) (-15 -2799 ((-112) (-640 |#2|) |#3|)) (-15 -1662 ((-881 |#1| |#2| (-640 |#2|)) (-640 |#2|) |#3|)) (IF (|has| |#2| (-1034 (-1169))) (-15 -1662 ((-640 (-294 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1045)) (-15 -1662 ((-640 (-294 (-948 |#2|))) |#2| |#3|)) (-15 -1662 ((-885 |#1| |#2|) |#2| |#3|))))) +((-2240 (((-885 |#1| |#3|) (-1 |#3| |#2|) (-885 |#1| |#2|)) 22))) +(((-884 |#1| |#2| |#3|) (-10 -7 (-15 -2240 ((-885 |#1| |#3|) (-1 |#3| |#2|) (-885 |#1| |#2|)))) (-1093) (-1093) (-1093)) (T -884)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-885 *5 *6)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-885 *5 *7)) (-5 *1 (-884 *5 *6 *7))))) +(-10 -7 (-15 -2240 ((-885 |#1| |#3|) (-1 |#3| |#2|) (-885 |#1| |#2|)))) +((-1677 (((-112) $ $) NIL)) (-2583 (($ $ $) 39)) (-3075 (((-3 (-112) "failed") $ (-888 |#1|)) 36)) (-1566 (($) 12)) (-3573 (((-1151) $) NIL)) (-3020 (($ (-888 |#1|) |#2| $) 20)) (-1694 (((-1113) $) NIL)) (-1386 (((-3 |#2| "failed") (-888 |#1|) $) 50)) (-2336 (((-112) $) 15)) (-4244 (($) 13)) (-2546 (((-640 (-2 (|:| -2387 (-1169)) (|:| -2557 |#2|))) $) 25)) (-1707 (($ (-640 (-2 (|:| -2387 (-1169)) (|:| -2557 |#2|)))) 23)) (-1693 (((-858) $) 44)) (-3382 (($ (-888 |#1|) |#2| $ |#2|) 48)) (-3569 (($ (-888 |#1|) |#2| $) 47)) (-1718 (((-112) $ $) 41))) +(((-885 |#1| |#2|) (-13 (-1093) (-10 -8 (-15 -2336 ((-112) $)) (-15 -4244 ($)) (-15 -1566 ($)) (-15 -2583 ($ $ $)) (-15 -1386 ((-3 |#2| "failed") (-888 |#1|) $)) (-15 -3569 ($ (-888 |#1|) |#2| $)) (-15 -3020 ($ (-888 |#1|) |#2| $)) (-15 -3382 ($ (-888 |#1|) |#2| $ |#2|)) (-15 -2546 ((-640 (-2 (|:| -2387 (-1169)) (|:| -2557 |#2|))) $)) (-15 -1707 ($ (-640 (-2 (|:| -2387 (-1169)) (|:| -2557 |#2|))))) (-15 -3075 ((-3 (-112) "failed") $ (-888 |#1|))))) (-1093) (-1093)) (T -885)) +((-2336 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)))) (-4244 (*1 *1) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))) (-1566 (*1 *1) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))) (-2583 (*1 *1 *1 *1) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))) (-1386 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-888 *4)) (-4 *4 (-1093)) (-4 *2 (-1093)) (-5 *1 (-885 *4 *2)))) (-3569 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-888 *4)) (-4 *4 (-1093)) (-5 *1 (-885 *4 *3)) (-4 *3 (-1093)))) (-3020 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-888 *4)) (-4 *4 (-1093)) (-5 *1 (-885 *4 *3)) (-4 *3 (-1093)))) (-3382 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-888 *4)) (-4 *4 (-1093)) (-5 *1 (-885 *4 *3)) (-4 *3 (-1093)))) (-2546 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| -2387 (-1169)) (|:| -2557 *4)))) (-5 *1 (-885 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)))) (-1707 (*1 *1 *2) (-12 (-5 *2 (-640 (-2 (|:| -2387 (-1169)) (|:| -2557 *4)))) (-4 *4 (-1093)) (-5 *1 (-885 *3 *4)) (-4 *3 (-1093)))) (-3075 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-888 *4)) (-4 *4 (-1093)) (-5 *2 (-112)) (-5 *1 (-885 *4 *5)) (-4 *5 (-1093))))) +(-13 (-1093) (-10 -8 (-15 -2336 ((-112) $)) (-15 -4244 ($)) (-15 -1566 ($)) (-15 -2583 ($ $ $)) (-15 -1386 ((-3 |#2| "failed") (-888 |#1|) $)) (-15 -3569 ($ (-888 |#1|) |#2| $)) (-15 -3020 ($ (-888 |#1|) |#2| $)) (-15 -3382 ($ (-888 |#1|) |#2| $ |#2|)) (-15 -2546 ((-640 (-2 (|:| -2387 (-1169)) (|:| -2557 |#2|))) $)) (-15 -1707 ($ (-640 (-2 (|:| -2387 (-1169)) (|:| -2557 |#2|))))) (-15 -3075 ((-3 (-112) "failed") $ (-888 |#1|))))) +((-1959 (((-888 |#1|) (-888 |#1|) (-640 (-1169)) (-1 (-112) (-640 |#2|))) 32) (((-888 |#1|) (-888 |#1|) (-640 (-1 (-112) |#2|))) 43) (((-888 |#1|) (-888 |#1|) (-1 (-112) |#2|)) 35)) (-3075 (((-112) (-640 |#2|) (-888 |#1|)) 40) (((-112) |#2| (-888 |#1|)) 36)) (-3301 (((-1 (-112) |#2|) (-888 |#1|)) 16)) (-2260 (((-640 |#2|) (-888 |#1|)) 24)) (-1409 (((-888 |#1|) (-888 |#1|) |#2|) 20))) +(((-886 |#1| |#2|) (-10 -7 (-15 -1959 ((-888 |#1|) (-888 |#1|) (-1 (-112) |#2|))) (-15 -1959 ((-888 |#1|) (-888 |#1|) (-640 (-1 (-112) |#2|)))) (-15 -1959 ((-888 |#1|) (-888 |#1|) (-640 (-1169)) (-1 (-112) (-640 |#2|)))) (-15 -3301 ((-1 (-112) |#2|) (-888 |#1|))) (-15 -3075 ((-112) |#2| (-888 |#1|))) (-15 -3075 ((-112) (-640 |#2|) (-888 |#1|))) (-15 -1409 ((-888 |#1|) (-888 |#1|) |#2|)) (-15 -2260 ((-640 |#2|) (-888 |#1|)))) (-1093) (-1208)) (T -886)) +((-2260 (*1 *2 *3) (-12 (-5 *3 (-888 *4)) (-4 *4 (-1093)) (-5 *2 (-640 *5)) (-5 *1 (-886 *4 *5)) (-4 *5 (-1208)))) (-1409 (*1 *2 *2 *3) (-12 (-5 *2 (-888 *4)) (-4 *4 (-1093)) (-5 *1 (-886 *4 *3)) (-4 *3 (-1208)))) (-3075 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *6)) (-5 *4 (-888 *5)) (-4 *5 (-1093)) (-4 *6 (-1208)) (-5 *2 (-112)) (-5 *1 (-886 *5 *6)))) (-3075 (*1 *2 *3 *4) (-12 (-5 *4 (-888 *5)) (-4 *5 (-1093)) (-5 *2 (-112)) (-5 *1 (-886 *5 *3)) (-4 *3 (-1208)))) (-3301 (*1 *2 *3) (-12 (-5 *3 (-888 *4)) (-4 *4 (-1093)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-886 *4 *5)) (-4 *5 (-1208)))) (-1959 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-888 *5)) (-5 *3 (-640 (-1169))) (-5 *4 (-1 (-112) (-640 *6))) (-4 *5 (-1093)) (-4 *6 (-1208)) (-5 *1 (-886 *5 *6)))) (-1959 (*1 *2 *2 *3) (-12 (-5 *2 (-888 *4)) (-5 *3 (-640 (-1 (-112) *5))) (-4 *4 (-1093)) (-4 *5 (-1208)) (-5 *1 (-886 *4 *5)))) (-1959 (*1 *2 *2 *3) (-12 (-5 *2 (-888 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1093)) (-4 *5 (-1208)) (-5 *1 (-886 *4 *5))))) +(-10 -7 (-15 -1959 ((-888 |#1|) (-888 |#1|) (-1 (-112) |#2|))) (-15 -1959 ((-888 |#1|) (-888 |#1|) (-640 (-1 (-112) |#2|)))) (-15 -1959 ((-888 |#1|) (-888 |#1|) (-640 (-1169)) (-1 (-112) (-640 |#2|)))) (-15 -3301 ((-1 (-112) |#2|) (-888 |#1|))) (-15 -3075 ((-112) |#2| (-888 |#1|))) (-15 -3075 ((-112) (-640 |#2|) (-888 |#1|))) (-15 -1409 ((-888 |#1|) (-888 |#1|) |#2|)) (-15 -2260 ((-640 |#2|) (-888 |#1|)))) +((-2240 (((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)) 19))) +(((-887 |#1| |#2|) (-10 -7 (-15 -2240 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)))) (-1093) (-1093)) (T -887)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6))))) +(-10 -7 (-15 -2240 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)))) +((-1677 (((-112) $ $) NIL)) (-2155 (($ $ (-640 (-52))) 62)) (-2606 (((-640 $) $) 114)) (-3353 (((-2 (|:| |var| (-640 (-1169))) (|:| |pred| (-52))) $) 23)) (-3264 (((-112) $) 29)) (-3048 (($ $ (-640 (-1169)) (-52)) 24)) (-2454 (($ $ (-640 (-52))) 61)) (-2131 (((-3 |#1| "failed") $) 59) (((-3 (-1169) "failed") $) 136)) (-2058 ((|#1| $) 56) (((-1169) $) NIL)) (-2664 (($ $) 104)) (-2722 (((-112) $) 44)) (-2553 (((-640 (-52)) $) 42)) (-1582 (($ (-1169) (-112) (-112) (-112)) 63)) (-1562 (((-3 (-640 $) "failed") (-640 $)) 70)) (-4034 (((-112) $) 47)) (-3218 (((-112) $) 46)) (-3573 (((-1151) $) NIL)) (-3733 (((-3 (-640 $) "failed") $) 33)) (-4187 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 40)) (-1848 (((-3 (-2 (|:| |val| $) (|:| -1654 $)) "failed") $) 81)) (-2919 (((-3 (-640 $) "failed") $) 32)) (-1879 (((-3 (-640 $) "failed") $ (-114)) 103) (((-3 (-2 (|:| -2517 (-114)) (|:| |arg| (-640 $))) "failed") $) 91)) (-2033 (((-3 (-640 $) "failed") $) 34)) (-4086 (((-3 (-2 (|:| |val| $) (|:| -1654 (-767))) "failed") $) 37)) (-2273 (((-112) $) 28)) (-1694 (((-1113) $) NIL)) (-3424 (((-112) $) 20)) (-2677 (((-112) $) 43)) (-3051 (((-640 (-52)) $) 107)) (-3606 (((-112) $) 45)) (-2309 (($ (-114) (-640 $)) 88)) (-2370 (((-767) $) 27)) (-1872 (($ $) 60)) (-2220 (($ (-640 $)) 57)) (-4018 (((-112) $) 25)) (-1693 (((-858) $) 51) (($ |#1|) 18) (($ (-1169)) 64)) (-1409 (($ $ (-52)) 106)) (-2241 (($) 87 T CONST)) (-2254 (($) 71 T CONST)) (-1718 (((-112) $ $) 77)) (-1837 (($ $ $) 96)) (-1814 (($ $ $) 100)) (** (($ $ (-767)) 95) (($ $ $) 52)) (* (($ $ $) 101))) +(((-888 |#1|) (-13 (-1093) (-1034 |#1|) (-1034 (-1169)) (-10 -8 (-15 0 ($) -2669) (-15 1 ($) -2669) (-15 -2919 ((-3 (-640 $) "failed") $)) (-15 -3733 ((-3 (-640 $) "failed") $)) (-15 -1879 ((-3 (-640 $) "failed") $ (-114))) (-15 -1879 ((-3 (-2 (|:| -2517 (-114)) (|:| |arg| (-640 $))) "failed") $)) (-15 -4086 ((-3 (-2 (|:| |val| $) (|:| -1654 (-767))) "failed") $)) (-15 -4187 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2033 ((-3 (-640 $) "failed") $)) (-15 -1848 ((-3 (-2 (|:| |val| $) (|:| -1654 $)) "failed") $)) (-15 -2309 ($ (-114) (-640 $))) (-15 -1814 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-767))) (-15 ** ($ $ $)) (-15 -1837 ($ $ $)) (-15 -2370 ((-767) $)) (-15 -2220 ($ (-640 $))) (-15 -1872 ($ $)) (-15 -2273 ((-112) $)) (-15 -2722 ((-112) $)) (-15 -3264 ((-112) $)) (-15 -4018 ((-112) $)) (-15 -3606 ((-112) $)) (-15 -3218 ((-112) $)) (-15 -4034 ((-112) $)) (-15 -2677 ((-112) $)) (-15 -2553 ((-640 (-52)) $)) (-15 -2454 ($ $ (-640 (-52)))) (-15 -2155 ($ $ (-640 (-52)))) (-15 -1582 ($ (-1169) (-112) (-112) (-112))) (-15 -3048 ($ $ (-640 (-1169)) (-52))) (-15 -3353 ((-2 (|:| |var| (-640 (-1169))) (|:| |pred| (-52))) $)) (-15 -3424 ((-112) $)) (-15 -2664 ($ $)) (-15 -1409 ($ $ (-52))) (-15 -3051 ((-640 (-52)) $)) (-15 -2606 ((-640 $) $)) (-15 -1562 ((-3 (-640 $) "failed") (-640 $))))) (-1093)) (T -888)) +((-2241 (*1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) (-2254 (*1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) (-2919 (*1 *2 *1) (|partial| -12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-3733 (*1 *2 *1) (|partial| -12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-1879 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-640 (-888 *4))) (-5 *1 (-888 *4)) (-4 *4 (-1093)))) (-1879 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2517 (-114)) (|:| |arg| (-640 (-888 *3))))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-4086 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-888 *3)) (|:| -1654 (-767)))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-4187 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-888 *3)) (|:| |den| (-888 *3)))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2033 (*1 *2 *1) (|partial| -12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-1848 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-888 *3)) (|:| -1654 (-888 *3)))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2309 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-640 (-888 *4))) (-5 *1 (-888 *4)) (-4 *4 (-1093)))) (-1814 (*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) (-1837 (*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) (-2370 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2220 (*1 *1 *2) (-12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-1872 (*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) (-2273 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2722 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-3264 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-4018 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-3606 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-3218 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-4034 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2677 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2553 (*1 *2 *1) (-12 (-5 *2 (-640 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2454 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2155 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-1582 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-112)) (-5 *1 (-888 *4)) (-4 *4 (-1093)))) (-3048 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-52)) (-5 *1 (-888 *4)) (-4 *4 (-1093)))) (-3353 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-640 (-1169))) (|:| |pred| (-52)))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-3424 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2664 (*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) (-1409 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-3051 (*1 *2 *1) (-12 (-5 *2 (-640 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2606 (*1 *2 *1) (-12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-1562 (*1 *2 *2) (|partial| -12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1093))))) +(-13 (-1093) (-1034 |#1|) (-1034 (-1169)) (-10 -8 (-15 (-2241) ($) -2669) (-15 (-2254) ($) -2669) (-15 -2919 ((-3 (-640 $) "failed") $)) (-15 -3733 ((-3 (-640 $) "failed") $)) (-15 -1879 ((-3 (-640 $) "failed") $ (-114))) (-15 -1879 ((-3 (-2 (|:| -2517 (-114)) (|:| |arg| (-640 $))) "failed") $)) (-15 -4086 ((-3 (-2 (|:| |val| $) (|:| -1654 (-767))) "failed") $)) (-15 -4187 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2033 ((-3 (-640 $) "failed") $)) (-15 -1848 ((-3 (-2 (|:| |val| $) (|:| -1654 $)) "failed") $)) (-15 -2309 ($ (-114) (-640 $))) (-15 -1814 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-767))) (-15 ** ($ $ $)) (-15 -1837 ($ $ $)) (-15 -2370 ((-767) $)) (-15 -2220 ($ (-640 $))) (-15 -1872 ($ $)) (-15 -2273 ((-112) $)) (-15 -2722 ((-112) $)) (-15 -3264 ((-112) $)) (-15 -4018 ((-112) $)) (-15 -3606 ((-112) $)) (-15 -3218 ((-112) $)) (-15 -4034 ((-112) $)) (-15 -2677 ((-112) $)) (-15 -2553 ((-640 (-52)) $)) (-15 -2454 ($ $ (-640 (-52)))) (-15 -2155 ($ $ (-640 (-52)))) (-15 -1582 ($ (-1169) (-112) (-112) (-112))) (-15 -3048 ($ $ (-640 (-1169)) (-52))) (-15 -3353 ((-2 (|:| |var| (-640 (-1169))) (|:| |pred| (-52))) $)) (-15 -3424 ((-112) $)) (-15 -2664 ($ $)) (-15 -1409 ($ $ (-52))) (-15 -3051 ((-640 (-52)) $)) (-15 -2606 ((-640 $) $)) (-15 -1562 ((-3 (-640 $) "failed") (-640 $))))) +((-1677 (((-112) $ $) NIL)) (-3993 (((-640 |#1|) $) 16)) (-4134 (((-112) $) 38)) (-2131 (((-3 (-667 |#1|) "failed") $) 43)) (-2058 (((-667 |#1|) $) 41)) (-3792 (($ $) 18)) (-3084 (($ $ $) NIL)) (-1777 (($ $ $) NIL)) (-3415 (((-767) $) 46)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-3781 (((-667 |#1|) $) 17)) (-1693 (((-858) $) 37) (($ (-667 |#1|)) 21) (((-815 |#1|) $) 27) (($ |#1|) 20)) (-2254 (($) 8 T CONST)) (-1531 (((-640 (-667 |#1|)) $) 23)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 11)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) 49))) +(((-889 |#1|) (-13 (-846) (-1034 (-667 |#1|)) (-10 -8 (-15 1 ($) -2669) (-15 -1693 ((-815 |#1|) $)) (-15 -1693 ($ |#1|)) (-15 -3781 ((-667 |#1|) $)) (-15 -3415 ((-767) $)) (-15 -1531 ((-640 (-667 |#1|)) $)) (-15 -3792 ($ $)) (-15 -4134 ((-112) $)) (-15 -3993 ((-640 |#1|) $)))) (-846)) (T -889)) +((-2254 (*1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846)))) (-1693 (*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) (-1693 (*1 *1 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846)))) (-3781 (*1 *2 *1) (-12 (-5 *2 (-667 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) (-3415 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) (-1531 (*1 *2 *1) (-12 (-5 *2 (-640 (-667 *3))) (-5 *1 (-889 *3)) (-4 *3 (-846)))) (-3792 (*1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846)))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) (-3993 (*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846))))) +(-13 (-846) (-1034 (-667 |#1|)) (-10 -8 (-15 (-2254) ($) -2669) (-15 -1693 ((-815 |#1|) $)) (-15 -1693 ($ |#1|)) (-15 -3781 ((-667 |#1|) $)) (-15 -3415 ((-767) $)) (-15 -1531 ((-640 (-667 |#1|)) $)) (-15 -3792 ($ $)) (-15 -4134 ((-112) $)) (-15 -3993 ((-640 |#1|) $)))) +((-2337 ((|#1| |#1| |#1|) 19))) +(((-890 |#1| |#2|) (-10 -7 (-15 -2337 (|#1| |#1| |#1|))) (-1233 |#2|) (-1045)) (T -890)) +((-2337 (*1 *2 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-890 *2 *3)) (-4 *2 (-1233 *3))))) +(-10 -7 (-15 -2337 (|#1| |#1| |#1|))) +((-1677 (((-112) $ $) 7)) (-1994 (((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) 14)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11)) (-3703 (((-1031) (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) 13)) (-1718 (((-112) $ $) 6))) +(((-891) (-140)) (T -891)) +((-1994 (*1 *2 *3 *4) (-12 (-4 *1 (-891)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) (-5 *2 (-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)))))) (-3703 (*1 *2 *3) (-12 (-4 *1 (-891)) (-5 *3 (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) (-5 *2 (-1031))))) +(-13 (-1093) (-10 -7 (-15 -1994 ((-2 (|:| -1994 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225))))) (-15 -3703 ((-1031) (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225))))))) +(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) +((-2846 ((|#1| |#1| (-767)) 24)) (-2614 (((-3 |#1| "failed") |#1| |#1|) 22)) (-2927 (((-3 (-2 (|:| -1686 |#1|) (|:| -1701 |#1|)) "failed") |#1| (-767) (-767)) 27) (((-640 |#1|) |#1|) 29))) +(((-892 |#1| |#2|) (-10 -7 (-15 -2927 ((-640 |#1|) |#1|)) (-15 -2927 ((-3 (-2 (|:| -1686 |#1|) (|:| -1701 |#1|)) "failed") |#1| (-767) (-767))) (-15 -2614 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2846 (|#1| |#1| (-767)))) (-1233 |#2|) (-363)) (T -892)) +((-2846 (*1 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-363)) (-5 *1 (-892 *2 *4)) (-4 *2 (-1233 *4)))) (-2614 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-363)) (-5 *1 (-892 *2 *3)) (-4 *2 (-1233 *3)))) (-2927 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-767)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -1686 *3) (|:| -1701 *3))) (-5 *1 (-892 *3 *5)) (-4 *3 (-1233 *5)))) (-2927 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-640 *3)) (-5 *1 (-892 *3 *4)) (-4 *3 (-1233 *4))))) +(-10 -7 (-15 -2927 ((-640 |#1|) |#1|)) (-15 -2927 ((-3 (-2 (|:| -1686 |#1|) (|:| -1701 |#1|)) "failed") |#1| (-767) (-767))) (-15 -2614 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2846 (|#1| |#1| (-767)))) +((-1793 (((-1031) (-379) (-379) (-379) (-379) (-767) (-767) (-640 (-316 (-379))) (-640 (-640 (-316 (-379)))) (-1151)) 96) (((-1031) (-379) (-379) (-379) (-379) (-767) (-767) (-640 (-316 (-379))) (-640 (-640 (-316 (-379)))) (-1151) (-225)) 91) (((-1031) (-894) (-1057)) 83) (((-1031) (-894)) 84)) (-1994 (((-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151)))) (-894) (-1057)) 59) (((-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151)))) (-894)) 61))) +(((-893) (-10 -7 (-15 -1793 ((-1031) (-894))) (-15 -1793 ((-1031) (-894) (-1057))) (-15 -1793 ((-1031) (-379) (-379) (-379) (-379) (-767) (-767) (-640 (-316 (-379))) (-640 (-640 (-316 (-379)))) (-1151) (-225))) (-15 -1793 ((-1031) (-379) (-379) (-379) (-379) (-767) (-767) (-640 (-316 (-379))) (-640 (-640 (-316 (-379)))) (-1151))) (-15 -1994 ((-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151)))) (-894))) (-15 -1994 ((-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151)))) (-894) (-1057))))) (T -893)) +((-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-894)) (-5 *4 (-1057)) (-5 *2 (-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151))))) (-5 *1 (-893)))) (-1994 (*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151))))) (-5 *1 (-893)))) (-1793 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-767)) (-5 *6 (-640 (-640 (-316 *3)))) (-5 *7 (-1151)) (-5 *5 (-640 (-316 (-379)))) (-5 *3 (-379)) (-5 *2 (-1031)) (-5 *1 (-893)))) (-1793 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-767)) (-5 *6 (-640 (-640 (-316 *3)))) (-5 *7 (-1151)) (-5 *8 (-225)) (-5 *5 (-640 (-316 (-379)))) (-5 *3 (-379)) (-5 *2 (-1031)) (-5 *1 (-893)))) (-1793 (*1 *2 *3 *4) (-12 (-5 *3 (-894)) (-5 *4 (-1057)) (-5 *2 (-1031)) (-5 *1 (-893)))) (-1793 (*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-1031)) (-5 *1 (-893))))) +(-10 -7 (-15 -1793 ((-1031) (-894))) (-15 -1793 ((-1031) (-894) (-1057))) (-15 -1793 ((-1031) (-379) (-379) (-379) (-379) (-767) (-767) (-640 (-316 (-379))) (-640 (-640 (-316 (-379)))) (-1151) (-225))) (-15 -1793 ((-1031) (-379) (-379) (-379) (-379) (-767) (-767) (-640 (-316 (-379))) (-640 (-640 (-316 (-379)))) (-1151))) (-15 -1994 ((-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151)))) (-894))) (-15 -1994 ((-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) (|:| |explanations| (-640 (-1151)))) (-894) (-1057)))) +((-1677 (((-112) $ $) NIL)) (-2058 (((-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225))) $) 19)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 21) (($ (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) 18)) (-1718 (((-112) $ $) NIL))) +(((-894) (-13 (-1093) (-10 -8 (-15 -1693 ($ (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225))))) (-15 -2058 ((-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225))) $))))) (T -894)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) (-5 *1 (-894)))) (-2058 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) (-5 *1 (-894))))) +(-13 (-1093) (-10 -8 (-15 -1693 ($ (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225))))) (-15 -2058 ((-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225))) $)))) +((-4202 (($ $ |#2|) NIL) (($ $ (-640 |#2|)) 10) (($ $ |#2| (-767)) 12) (($ $ (-640 |#2|) (-640 (-767))) 15)) (-3209 (($ $ |#2|) 16) (($ $ (-640 |#2|)) 18) (($ $ |#2| (-767)) 19) (($ $ (-640 |#2|) (-640 (-767))) 21))) +(((-895 |#1| |#2|) (-10 -8 (-15 -3209 (|#1| |#1| (-640 |#2|) (-640 (-767)))) (-15 -3209 (|#1| |#1| |#2| (-767))) (-15 -3209 (|#1| |#1| (-640 |#2|))) (-15 -3209 (|#1| |#1| |#2|)) (-15 -4202 (|#1| |#1| (-640 |#2|) (-640 (-767)))) (-15 -4202 (|#1| |#1| |#2| (-767))) (-15 -4202 (|#1| |#1| (-640 |#2|))) (-15 -4202 (|#1| |#1| |#2|))) (-896 |#2|) (-1093)) (T -895)) +NIL +(-10 -8 (-15 -3209 (|#1| |#1| (-640 |#2|) (-640 (-767)))) (-15 -3209 (|#1| |#1| |#2| (-767))) (-15 -3209 (|#1| |#1| (-640 |#2|))) (-15 -3209 (|#1| |#1| |#2|)) (-15 -4202 (|#1| |#1| (-640 |#2|) (-640 (-767)))) (-15 -4202 (|#1| |#1| |#2| (-767))) (-15 -4202 (|#1| |#1| (-640 |#2|))) (-15 -4202 (|#1| |#1| |#2|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-3400 (((-3 $ "failed") $) 33)) (-3827 (((-112) $) 31)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-4202 (($ $ |#1|) 42) (($ $ (-640 |#1|)) 41) (($ $ |#1| (-767)) 40) (($ $ (-640 |#1|) (-640 (-767))) 39)) (-1693 (((-858) $) 11) (($ (-563)) 29)) (-1675 (((-767)) 28)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-3209 (($ $ |#1|) 38) (($ $ (-640 |#1|)) 37) (($ $ |#1| (-767)) 36) (($ $ (-640 |#1|) (-640 (-767))) 35)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) +(((-896 |#1|) (-140) (-1093)) (T -896)) +((-4202 (*1 *1 *1 *2) (-12 (-4 *1 (-896 *2)) (-4 *2 (-1093)))) (-4202 (*1 *1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *1 (-896 *3)) (-4 *3 (-1093)))) (-4202 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-896 *2)) (-4 *2 (-1093)))) (-4202 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 *4)) (-5 *3 (-640 (-767))) (-4 *1 (-896 *4)) (-4 *4 (-1093)))) (-3209 (*1 *1 *1 *2) (-12 (-4 *1 (-896 *2)) (-4 *2 (-1093)))) (-3209 (*1 *1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *1 (-896 *3)) (-4 *3 (-1093)))) (-3209 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-896 *2)) (-4 *2 (-1093)))) (-3209 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 *4)) (-5 *3 (-640 (-767))) (-4 *1 (-896 *4)) (-4 *4 (-1093))))) +(-13 (-1045) (-10 -8 (-15 -4202 ($ $ |t#1|)) (-15 -4202 ($ $ (-640 |t#1|))) (-15 -4202 ($ $ |t#1| (-767))) (-15 -4202 ($ $ (-640 |t#1|) (-640 (-767)))) (-15 -3209 ($ $ |t#1|)) (-15 -3209 ($ $ (-640 |t#1|))) (-15 -3209 ($ $ |t#1| (-767))) (-15 -3209 ($ $ (-640 |t#1|) (-640 (-767)))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-643 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2619 ((|#1| $) 26)) (-2759 (((-112) $ (-767)) NIL)) (-2936 ((|#1| $ |#1|) NIL (|has| $ (-6 -4408)))) (-2641 (($ $ $) NIL (|has| $ (-6 -4408)))) (-4190 (($ $ $) NIL (|has| $ (-6 -4408)))) (-1849 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4408))) (($ $ "left" $) NIL (|has| $ (-6 -4408))) (($ $ "right" $) NIL (|has| $ (-6 -4408)))) (-2811 (($ $ (-640 $)) NIL (|has| $ (-6 -4408)))) (-4239 (($) NIL T CONST)) (-1701 (($ $) 25)) (-2817 (($ |#1|) 12) (($ $ $) 17)) (-2659 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-2071 (((-640 $) $) NIL)) (-1469 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2581 (((-112) $ (-767)) NIL)) (-2259 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-4345 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-1686 (($ $) 23)) (-2512 (((-640 |#1|) $) NIL)) (-2194 (((-112) $) 20)) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3138 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) NIL)) (-2309 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4071 (((-563) $ $) NIL)) (-1434 (((-112) $) NIL)) (-1709 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1872 (($ $) NIL)) (-1693 (((-1194 |#1|) $) 9) (((-858) $) 29 (|has| |#1| (-610 (-858))))) (-4258 (((-640 $) $) NIL)) (-2962 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-4383 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 21 (|has| |#1| (-1093)))) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-897 |#1|) (-13 (-119 |#1|) (-610 (-1194 |#1|)) (-10 -8 (-15 -2817 ($ |#1|)) (-15 -2817 ($ $ $)))) (-1093)) (T -897)) +((-2817 (*1 *1 *2) (-12 (-5 *1 (-897 *2)) (-4 *2 (-1093)))) (-2817 (*1 *1 *1 *1) (-12 (-5 *1 (-897 *2)) (-4 *2 (-1093))))) +(-13 (-119 |#1|) (-610 (-1194 |#1|)) (-10 -8 (-15 -2817 ($ |#1|)) (-15 -2817 ($ $ $)))) +((-4172 ((|#2| (-1135 |#1| |#2|)) 41))) +(((-898 |#1| |#2|) (-10 -7 (-15 -4172 (|#2| (-1135 |#1| |#2|)))) (-917) (-13 (-1045) (-10 -7 (-6 (-4409 "*"))))) (T -898)) +((-4172 (*1 *2 *3) (-12 (-5 *3 (-1135 *4 *2)) (-14 *4 (-917)) (-4 *2 (-13 (-1045) (-10 -7 (-6 (-4409 "*"))))) (-5 *1 (-898 *4 *2))))) +(-10 -7 (-15 -4172 (|#2| (-1135 |#1| |#2|)))) +((-1677 (((-112) $ $) 7)) (-4239 (($) 18 T CONST)) (-3400 (((-3 $ "failed") $) 15)) (-4309 (((-1095 |#1|) $ |#1|) 32)) (-3827 (((-112) $) 17)) (-3084 (($ $ $) 30 (-4032 (|has| |#1| (-846)) (|has| |#1| (-368))))) (-1777 (($ $ $) 29 (-4032 (|has| |#1| (-846)) (|has| |#1| (-368))))) (-3573 (((-1151) $) 9)) (-2688 (($ $) 24)) (-1694 (((-1113) $) 10)) (-1540 ((|#1| $ |#1|) 34)) (-2309 ((|#1| $ |#1|) 33)) (-4225 (($ (-640 (-640 |#1|))) 35)) (-4296 (($ (-640 |#1|)) 36)) (-4339 (($ $ $) 21)) (-2146 (($ $ $) 20)) (-1693 (((-858) $) 11)) (-2254 (($) 19 T CONST)) (-1778 (((-112) $ $) 27 (-4032 (|has| |#1| (-846)) (|has| |#1| (-368))))) (-1756 (((-112) $ $) 26 (-4032 (|has| |#1| (-846)) (|has| |#1| (-368))))) (-1718 (((-112) $ $) 6)) (-1768 (((-112) $ $) 28 (-4032 (|has| |#1| (-846)) (|has| |#1| (-368))))) (-1744 (((-112) $ $) 31)) (-1837 (($ $ $) 23)) (** (($ $ (-917)) 13) (($ $ (-767)) 16) (($ $ (-563)) 22)) (* (($ $ $) 14))) +(((-899 |#1|) (-140) (-1093)) (T -899)) +((-4296 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-4 *1 (-899 *3)))) (-4225 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1093)) (-4 *1 (-899 *3)))) (-1540 (*1 *2 *1 *2) (-12 (-4 *1 (-899 *2)) (-4 *2 (-1093)))) (-2309 (*1 *2 *1 *2) (-12 (-4 *1 (-899 *2)) (-4 *2 (-1093)))) (-4309 (*1 *2 *1 *3) (-12 (-4 *1 (-899 *3)) (-4 *3 (-1093)) (-5 *2 (-1095 *3)))) (-1744 (*1 *2 *1 *1) (-12 (-4 *1 (-899 *3)) (-4 *3 (-1093)) (-5 *2 (-112))))) +(-13 (-473) (-10 -8 (-15 -4296 ($ (-640 |t#1|))) (-15 -4225 ($ (-640 (-640 |t#1|)))) (-15 -1540 (|t#1| $ |t#1|)) (-15 -2309 (|t#1| $ |t#1|)) (-15 -4309 ((-1095 |t#1|) $ |t#1|)) (-15 -1744 ((-112) $ $)) (IF (|has| |t#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#1| (-368)) (-6 (-846)) |%noBranch|))) +(((-102) . T) ((-610 (-858)) . T) ((-473) . T) ((-722) . T) ((-846) -4032 (|has| |#1| (-846)) (|has| |#1| (-368))) ((-1105) . T) ((-1093) . T)) +((-1677 (((-112) $ $) NIL)) (-3146 (((-640 (-640 (-767))) $) 107)) (-4039 (((-640 (-767)) (-901 |#1|) $) 129)) (-3077 (((-640 (-767)) (-901 |#1|) $) 130)) (-4026 (((-640 (-901 |#1|)) $) 97)) (-1691 (((-901 |#1|) $ (-563)) 102) (((-901 |#1|) $) 103)) (-3647 (($ (-640 (-901 |#1|))) 109)) (-3254 (((-767) $) 104)) (-1526 (((-1095 (-1095 |#1|)) $) 127)) (-4309 (((-1095 |#1|) $ |#1|) 120) (((-1095 (-1095 |#1|)) $ (-1095 |#1|)) 138) (((-1095 (-640 |#1|)) $ (-640 |#1|)) 141)) (-4027 (((-1095 |#1|) $) 100)) (-1729 (((-112) (-901 |#1|) $) 91)) (-3573 (((-1151) $) NIL)) (-2663 (((-1262) $) 94) (((-1262) $ (-563) (-563)) 142)) (-1694 (((-1113) $) NIL)) (-2274 (((-640 (-901 |#1|)) $) 95)) (-2309 (((-901 |#1|) $ (-767)) 98)) (-4167 (((-767) $) 105)) (-1693 (((-858) $) 118) (((-640 (-901 |#1|)) $) 23) (($ (-640 (-901 |#1|))) 108)) (-4211 (((-640 |#1|) $) 106)) (-1718 (((-112) $ $) 135)) (-1768 (((-112) $ $) 133)) (-1744 (((-112) $ $) 132))) +(((-900 |#1|) (-13 (-1093) (-10 -8 (-15 -1693 ((-640 (-901 |#1|)) $)) (-15 -2274 ((-640 (-901 |#1|)) $)) (-15 -2309 ((-901 |#1|) $ (-767))) (-15 -1691 ((-901 |#1|) $ (-563))) (-15 -1691 ((-901 |#1|) $)) (-15 -3254 ((-767) $)) (-15 -4167 ((-767) $)) (-15 -4211 ((-640 |#1|) $)) (-15 -4026 ((-640 (-901 |#1|)) $)) (-15 -3146 ((-640 (-640 (-767))) $)) (-15 -1693 ($ (-640 (-901 |#1|)))) (-15 -3647 ($ (-640 (-901 |#1|)))) (-15 -4309 ((-1095 |#1|) $ |#1|)) (-15 -1526 ((-1095 (-1095 |#1|)) $)) (-15 -4309 ((-1095 (-1095 |#1|)) $ (-1095 |#1|))) (-15 -4309 ((-1095 (-640 |#1|)) $ (-640 |#1|))) (-15 -1729 ((-112) (-901 |#1|) $)) (-15 -4039 ((-640 (-767)) (-901 |#1|) $)) (-15 -3077 ((-640 (-767)) (-901 |#1|) $)) (-15 -4027 ((-1095 |#1|) $)) (-15 -1744 ((-112) $ $)) (-15 -1768 ((-112) $ $)) (-15 -2663 ((-1262) $)) (-15 -2663 ((-1262) $ (-563) (-563))))) (-1093)) (T -900)) +((-1693 (*1 *2 *1) (-12 (-5 *2 (-640 (-901 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-2274 (*1 *2 *1) (-12 (-5 *2 (-640 (-901 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-2309 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-901 *4)) (-5 *1 (-900 *4)) (-4 *4 (-1093)))) (-1691 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *2 (-901 *4)) (-5 *1 (-900 *4)) (-4 *4 (-1093)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-901 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-3254 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-4167 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-4211 (*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-4026 (*1 *2 *1) (-12 (-5 *2 (-640 (-901 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-3146 (*1 *2 *1) (-12 (-5 *2 (-640 (-640 (-767)))) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-640 (-901 *3))) (-4 *3 (-1093)) (-5 *1 (-900 *3)))) (-3647 (*1 *1 *2) (-12 (-5 *2 (-640 (-901 *3))) (-4 *3 (-1093)) (-5 *1 (-900 *3)))) (-4309 (*1 *2 *1 *3) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-1526 (*1 *2 *1) (-12 (-5 *2 (-1095 (-1095 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-4309 (*1 *2 *1 *3) (-12 (-4 *4 (-1093)) (-5 *2 (-1095 (-1095 *4))) (-5 *1 (-900 *4)) (-5 *3 (-1095 *4)))) (-4309 (*1 *2 *1 *3) (-12 (-4 *4 (-1093)) (-5 *2 (-1095 (-640 *4))) (-5 *1 (-900 *4)) (-5 *3 (-640 *4)))) (-1729 (*1 *2 *3 *1) (-12 (-5 *3 (-901 *4)) (-4 *4 (-1093)) (-5 *2 (-112)) (-5 *1 (-900 *4)))) (-4039 (*1 *2 *3 *1) (-12 (-5 *3 (-901 *4)) (-4 *4 (-1093)) (-5 *2 (-640 (-767))) (-5 *1 (-900 *4)))) (-3077 (*1 *2 *3 *1) (-12 (-5 *3 (-901 *4)) (-4 *4 (-1093)) (-5 *2 (-640 (-767))) (-5 *1 (-900 *4)))) (-4027 (*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-1744 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-1768 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-2663 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-2663 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-900 *4)) (-4 *4 (-1093))))) +(-13 (-1093) (-10 -8 (-15 -1693 ((-640 (-901 |#1|)) $)) (-15 -2274 ((-640 (-901 |#1|)) $)) (-15 -2309 ((-901 |#1|) $ (-767))) (-15 -1691 ((-901 |#1|) $ (-563))) (-15 -1691 ((-901 |#1|) $)) (-15 -3254 ((-767) $)) (-15 -4167 ((-767) $)) (-15 -4211 ((-640 |#1|) $)) (-15 -4026 ((-640 (-901 |#1|)) $)) (-15 -3146 ((-640 (-640 (-767))) $)) (-15 -1693 ($ (-640 (-901 |#1|)))) (-15 -3647 ($ (-640 (-901 |#1|)))) (-15 -4309 ((-1095 |#1|) $ |#1|)) (-15 -1526 ((-1095 (-1095 |#1|)) $)) (-15 -4309 ((-1095 (-1095 |#1|)) $ (-1095 |#1|))) (-15 -4309 ((-1095 (-640 |#1|)) $ (-640 |#1|))) (-15 -1729 ((-112) (-901 |#1|) $)) (-15 -4039 ((-640 (-767)) (-901 |#1|) $)) (-15 -3077 ((-640 (-767)) (-901 |#1|) $)) (-15 -4027 ((-1095 |#1|) $)) (-15 -1744 ((-112) $ $)) (-15 -1768 ((-112) $ $)) (-15 -2663 ((-1262) $)) (-15 -2663 ((-1262) $ (-563) (-563))))) +((-1677 (((-112) $ $) NIL)) (-1642 (((-640 $) (-640 $)) 77)) (-1857 (((-563) $) 60)) (-4239 (($) NIL T CONST)) (-3400 (((-3 $ "failed") $) NIL)) (-3254 (((-767) $) 58)) (-4309 (((-1095 |#1|) $ |#1|) 49)) (-3827 (((-112) $) NIL)) (-3131 (((-112) $) 63)) (-1365 (((-767) $) 61)) (-4027 (((-1095 |#1|) $) 42)) (-3084 (($ $ $) NIL (-4032 (|has| |#1| (-368)) (|has| |#1| (-846))))) (-1777 (($ $ $) NIL (-4032 (|has| |#1| (-368)) (|has| |#1| (-846))))) (-1835 (((-2 (|:| |preimage| (-640 |#1|)) (|:| |image| (-640 |#1|))) $) 37)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) 93)) (-1694 (((-1113) $) NIL)) (-3774 (((-1095 |#1|) $) 100 (|has| |#1| (-368)))) (-2359 (((-112) $) 59)) (-1540 ((|#1| $ |#1|) 47)) (-2309 ((|#1| $ |#1|) 94)) (-4167 (((-767) $) 44)) (-4225 (($ (-640 (-640 |#1|))) 85)) (-2828 (((-967) $) 53)) (-4296 (($ (-640 |#1|)) 22)) (-4339 (($ $ $) NIL)) (-2146 (($ $ $) NIL)) (-2451 (($ (-640 (-640 |#1|))) 39)) (-1977 (($ (-640 (-640 |#1|))) 88)) (-2339 (($ (-640 |#1|)) 96)) (-1693 (((-858) $) 84) (($ (-640 (-640 |#1|))) 66) (($ (-640 |#1|)) 67)) (-2254 (($) 17 T CONST)) (-1778 (((-112) $ $) NIL (-4032 (|has| |#1| (-368)) (|has| |#1| (-846))))) (-1756 (((-112) $ $) NIL (-4032 (|has| |#1| (-368)) (|has| |#1| (-846))))) (-1718 (((-112) $ $) 45)) (-1768 (((-112) $ $) NIL (-4032 (|has| |#1| (-368)) (|has| |#1| (-846))))) (-1744 (((-112) $ $) 65)) (-1837 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ $ $) 23))) +(((-901 |#1|) (-13 (-899 |#1|) (-10 -8 (-15 -1835 ((-2 (|:| |preimage| (-640 |#1|)) (|:| |image| (-640 |#1|))) $)) (-15 -2451 ($ (-640 (-640 |#1|)))) (-15 -1693 ($ (-640 (-640 |#1|)))) (-15 -1693 ($ (-640 |#1|))) (-15 -1977 ($ (-640 (-640 |#1|)))) (-15 -4167 ((-767) $)) (-15 -4027 ((-1095 |#1|) $)) (-15 -2828 ((-967) $)) (-15 -3254 ((-767) $)) (-15 -1365 ((-767) $)) (-15 -1857 ((-563) $)) (-15 -2359 ((-112) $)) (-15 -3131 ((-112) $)) (-15 -1642 ((-640 $) (-640 $))) (IF (|has| |#1| (-368)) (-15 -3774 ((-1095 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-545)) (-15 -2339 ($ (-640 |#1|))) (IF (|has| |#1| (-368)) (-15 -2339 ($ (-640 |#1|))) |%noBranch|)))) (-1093)) (T -901)) +((-1835 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-640 *3)) (|:| |image| (-640 *3)))) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) (-2451 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1093)) (-5 *1 (-901 *3)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1093)) (-5 *1 (-901 *3)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-901 *3)))) (-1977 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1093)) (-5 *1 (-901 *3)))) (-4167 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) (-4027 (*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) (-2828 (*1 *2 *1) (-12 (-5 *2 (-967)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) (-3254 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) (-1365 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) (-1857 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) (-2359 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) (-3131 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) (-1642 (*1 *2 *2) (-12 (-5 *2 (-640 (-901 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) (-3774 (*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-901 *3)) (-4 *3 (-368)) (-4 *3 (-1093)))) (-2339 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-901 *3))))) +(-13 (-899 |#1|) (-10 -8 (-15 -1835 ((-2 (|:| |preimage| (-640 |#1|)) (|:| |image| (-640 |#1|))) $)) (-15 -2451 ($ (-640 (-640 |#1|)))) (-15 -1693 ($ (-640 (-640 |#1|)))) (-15 -1693 ($ (-640 |#1|))) (-15 -1977 ($ (-640 (-640 |#1|)))) (-15 -4167 ((-767) $)) (-15 -4027 ((-1095 |#1|) $)) (-15 -2828 ((-967) $)) (-15 -3254 ((-767) $)) (-15 -1365 ((-767) $)) (-15 -1857 ((-563) $)) (-15 -2359 ((-112) $)) (-15 -3131 ((-112) $)) (-15 -1642 ((-640 $) (-640 $))) (IF (|has| |#1| (-368)) (-15 -3774 ((-1095 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-545)) (-15 -2339 ($ (-640 |#1|))) (IF (|has| |#1| (-368)) (-15 -2339 ($ (-640 |#1|))) |%noBranch|)))) +((-2888 (((-3 (-640 (-1165 |#4|)) "failed") (-640 (-1165 |#4|)) (-1165 |#4|)) 127)) (-2632 ((|#1|) 76)) (-1388 (((-418 (-1165 |#4|)) (-1165 |#4|)) 136)) (-2005 (((-418 (-1165 |#4|)) (-640 |#3|) (-1165 |#4|)) 68)) (-1379 (((-418 (-1165 |#4|)) (-1165 |#4|)) 146)) (-4160 (((-3 (-640 (-1165 |#4|)) "failed") (-640 (-1165 |#4|)) (-1165 |#4|) |#3|) 91))) +(((-902 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2888 ((-3 (-640 (-1165 |#4|)) "failed") (-640 (-1165 |#4|)) (-1165 |#4|))) (-15 -1379 ((-418 (-1165 |#4|)) (-1165 |#4|))) (-15 -1388 ((-418 (-1165 |#4|)) (-1165 |#4|))) (-15 -2632 (|#1|)) (-15 -4160 ((-3 (-640 (-1165 |#4|)) "failed") (-640 (-1165 |#4|)) (-1165 |#4|) |#3|)) (-15 -2005 ((-418 (-1165 |#4|)) (-640 |#3|) (-1165 |#4|)))) (-905) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -902)) +((-2005 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *7)) (-4 *7 (-846)) (-4 *5 (-905)) (-4 *6 (-789)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-418 (-1165 *8))) (-5 *1 (-902 *5 *6 *7 *8)) (-5 *4 (-1165 *8)))) (-4160 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-640 (-1165 *7))) (-5 *3 (-1165 *7)) (-4 *7 (-945 *5 *6 *4)) (-4 *5 (-905)) (-4 *6 (-789)) (-4 *4 (-846)) (-5 *1 (-902 *5 *6 *4 *7)))) (-2632 (*1 *2) (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-905)) (-5 *1 (-902 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (-1388 (*1 *2 *3) (-12 (-4 *4 (-905)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-418 (-1165 *7))) (-5 *1 (-902 *4 *5 *6 *7)) (-5 *3 (-1165 *7)))) (-1379 (*1 *2 *3) (-12 (-4 *4 (-905)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-418 (-1165 *7))) (-5 *1 (-902 *4 *5 *6 *7)) (-5 *3 (-1165 *7)))) (-2888 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-640 (-1165 *7))) (-5 *3 (-1165 *7)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-905)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-902 *4 *5 *6 *7))))) +(-10 -7 (-15 -2888 ((-3 (-640 (-1165 |#4|)) "failed") (-640 (-1165 |#4|)) (-1165 |#4|))) (-15 -1379 ((-418 (-1165 |#4|)) (-1165 |#4|))) (-15 -1388 ((-418 (-1165 |#4|)) (-1165 |#4|))) (-15 -2632 (|#1|)) (-15 -4160 ((-3 (-640 (-1165 |#4|)) "failed") (-640 (-1165 |#4|)) (-1165 |#4|) |#3|)) (-15 -2005 ((-418 (-1165 |#4|)) (-640 |#3|) (-1165 |#4|)))) +((-2888 (((-3 (-640 (-1165 |#2|)) "failed") (-640 (-1165 |#2|)) (-1165 |#2|)) 36)) (-2632 ((|#1|) 53)) (-1388 (((-418 (-1165 |#2|)) (-1165 |#2|)) 101)) (-2005 (((-418 (-1165 |#2|)) (-1165 |#2|)) 89)) (-1379 (((-418 (-1165 |#2|)) (-1165 |#2|)) 112))) +(((-903 |#1| |#2|) (-10 -7 (-15 -2888 ((-3 (-640 (-1165 |#2|)) "failed") (-640 (-1165 |#2|)) (-1165 |#2|))) (-15 -1379 ((-418 (-1165 |#2|)) (-1165 |#2|))) (-15 -1388 ((-418 (-1165 |#2|)) (-1165 |#2|))) (-15 -2632 (|#1|)) (-15 -2005 ((-418 (-1165 |#2|)) (-1165 |#2|)))) (-905) (-1233 |#1|)) (T -903)) +((-2005 (*1 *2 *3) (-12 (-4 *4 (-905)) (-4 *5 (-1233 *4)) (-5 *2 (-418 (-1165 *5))) (-5 *1 (-903 *4 *5)) (-5 *3 (-1165 *5)))) (-2632 (*1 *2) (-12 (-4 *2 (-905)) (-5 *1 (-903 *2 *3)) (-4 *3 (-1233 *2)))) (-1388 (*1 *2 *3) (-12 (-4 *4 (-905)) (-4 *5 (-1233 *4)) (-5 *2 (-418 (-1165 *5))) (-5 *1 (-903 *4 *5)) (-5 *3 (-1165 *5)))) (-1379 (*1 *2 *3) (-12 (-4 *4 (-905)) (-4 *5 (-1233 *4)) (-5 *2 (-418 (-1165 *5))) (-5 *1 (-903 *4 *5)) (-5 *3 (-1165 *5)))) (-2888 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-640 (-1165 *5))) (-5 *3 (-1165 *5)) (-4 *5 (-1233 *4)) (-4 *4 (-905)) (-5 *1 (-903 *4 *5))))) +(-10 -7 (-15 -2888 ((-3 (-640 (-1165 |#2|)) "failed") (-640 (-1165 |#2|)) (-1165 |#2|))) (-15 -1379 ((-418 (-1165 |#2|)) (-1165 |#2|))) (-15 -1388 ((-418 (-1165 |#2|)) (-1165 |#2|))) (-15 -2632 (|#1|)) (-15 -2005 ((-418 (-1165 |#2|)) (-1165 |#2|)))) +((-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 41)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 18)) (-2779 (((-3 $ "failed") $) 35))) +(((-904 |#1|) (-10 -8 (-15 -2779 ((-3 |#1| "failed") |#1|)) (-15 -2748 ((-3 (-640 (-1165 |#1|)) "failed") (-640 (-1165 |#1|)) (-1165 |#1|))) (-15 -3385 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|)))) (-905)) (T -904)) +NIL +(-10 -8 (-15 -2779 ((-3 |#1| "failed") |#1|)) (-15 -2748 ((-3 (-640 (-1165 |#1|)) "failed") (-640 (-1165 |#1|)) (-1165 |#1|))) (-15 -3385 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|)))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 42)) (-4223 (($ $) 41)) (-3156 (((-112) $) 39)) (-1495 (((-3 $ "failed") $ $) 19)) (-2424 (((-418 (-1165 $)) (-1165 $)) 61)) (-4335 (($ $) 52)) (-3205 (((-418 $) $) 53)) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 58)) (-4239 (($) 17 T CONST)) (-3400 (((-3 $ "failed") $) 33)) (-2468 (((-112) $) 54)) (-3827 (((-112) $) 31)) (-3513 (($ $ $) 47) (($ (-640 $)) 46)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3548 (($ $ $) 49) (($ (-640 $)) 48)) (-1876 (((-418 (-1165 $)) (-1165 $)) 59)) (-3116 (((-418 (-1165 $)) (-1165 $)) 60)) (-2174 (((-418 $) $) 51)) (-3008 (((-3 $ "failed") $ $) 43)) (-1377 (((-3 (-1257 $) "failed") (-684 $)) 57 (|has| $ (-145)))) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ $) 44)) (-2779 (((-3 $ "failed") $) 56 (|has| $ (-145)))) (-1675 (((-767)) 28)) (-2126 (((-112) $ $) 40)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) +(((-905) (-140)) (T -905)) +((-3385 (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *1)) (-4 *1 (-905)))) (-2424 (*1 *2 *3) (-12 (-4 *1 (-905)) (-5 *2 (-418 (-1165 *1))) (-5 *3 (-1165 *1)))) (-3116 (*1 *2 *3) (-12 (-4 *1 (-905)) (-5 *2 (-418 (-1165 *1))) (-5 *3 (-1165 *1)))) (-1876 (*1 *2 *3) (-12 (-4 *1 (-905)) (-5 *2 (-418 (-1165 *1))) (-5 *3 (-1165 *1)))) (-2748 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-640 (-1165 *1))) (-5 *3 (-1165 *1)) (-4 *1 (-905)))) (-1377 (*1 *2 *3) (|partial| -12 (-5 *3 (-684 *1)) (-4 *1 (-145)) (-4 *1 (-905)) (-5 *2 (-1257 *1)))) (-2779 (*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-905))))) +(-13 (-1212) (-10 -8 (-15 -2424 ((-418 (-1165 $)) (-1165 $))) (-15 -3116 ((-418 (-1165 $)) (-1165 $))) (-15 -1876 ((-418 (-1165 $)) (-1165 $))) (-15 -3385 ((-1165 $) (-1165 $) (-1165 $))) (-15 -2748 ((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $))) (IF (|has| $ (-145)) (PROGN (-15 -1377 ((-3 (-1257 $) "failed") (-684 $))) (-15 -2779 ((-3 $ "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-555) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1212) . T)) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-2388 (((-112) $) NIL)) (-3259 (((-767)) NIL)) (-1733 (($ $ (-917)) NIL (|has| $ (-368))) (($ $) NIL)) (-2752 (((-1181 (-917) (-767)) (-563)) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-1919 (((-112) $ $) NIL)) (-3749 (((-767)) NIL)) (-4239 (($) NIL T CONST)) (-2131 (((-3 $ "failed") $) NIL)) (-2058 (($ $) NIL)) (-3937 (($ (-1257 $)) NIL)) (-3711 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-3090 (($ $ $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-1691 (($) NIL)) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-1571 (($) NIL)) (-2366 (((-112) $) NIL)) (-1637 (($ $) NIL) (($ $ (-767)) NIL)) (-2468 (((-112) $) NIL)) (-3254 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-3827 (((-112) $) NIL)) (-3723 (($) NIL (|has| $ (-368)))) (-2890 (((-112) $) NIL (|has| $ (-368)))) (-3793 (($ $ (-917)) NIL (|has| $ (-368))) (($ $) NIL)) (-2408 (((-3 $ "failed") $) NIL)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3941 (((-1165 $) $ (-917)) NIL (|has| $ (-368))) (((-1165 $) $) NIL)) (-1476 (((-917) $) NIL)) (-2229 (((-1165 $) $) NIL (|has| $ (-368)))) (-1631 (((-3 (-1165 $) "failed") $ $) NIL (|has| $ (-368))) (((-1165 $) $) NIL (|has| $ (-368)))) (-4166 (($ $ (-1165 $)) NIL (|has| $ (-368)))) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) NIL)) (-2523 (($) NIL T CONST)) (-2555 (($ (-917)) NIL)) (-3013 (((-112) $) NIL)) (-1694 (((-1113) $) NIL)) (-4333 (($) NIL (|has| $ (-368)))) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ $ $) NIL) (($ (-640 $)) NIL)) (-2727 (((-640 (-2 (|:| -2174 (-563)) (|:| -1654 (-563))))) NIL)) (-2174 (((-418 $) $) NIL)) (-1467 (((-917)) NIL) (((-829 (-917))) NIL)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2628 (((-767) $) NIL)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-1423 (((-3 (-767) "failed") $ $) NIL) (((-767) $) NIL)) (-3533 (((-134)) NIL)) (-4202 (($ $ (-767)) NIL) (($ $) NIL)) (-4167 (((-917) $) NIL) (((-829 (-917)) $) NIL)) (-3390 (((-1165 $)) NIL)) (-4284 (($) NIL)) (-1484 (($) NIL (|has| $ (-368)))) (-1880 (((-684 $) (-1257 $)) NIL) (((-1257 $) $) NIL)) (-2220 (((-563) $) NIL)) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL)) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL)) (-2779 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-1675 (((-767)) NIL)) (-4315 (((-1257 $) (-917)) NIL) (((-1257 $)) NIL)) (-2126 (((-112) $ $) NIL)) (-3152 (((-112) $) NIL)) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-2350 (($ $ (-767)) NIL (|has| $ (-368))) (($ $) NIL (|has| $ (-368)))) (-3209 (($ $ (-767)) NIL) (($ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1837 (($ $ $) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL))) +(((-906 |#1|) (-13 (-349) (-329 $) (-611 (-563))) (-917)) (T -906)) +NIL +(-13 (-349) (-329 $) (-611 (-563))) +((-3136 (((-3 (-2 (|:| -3254 (-767)) (|:| -1516 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|)) 79)) (-1557 (((-112) (-336 |#2| |#3| |#4| |#5|)) 17)) (-3254 (((-3 (-767) "failed") (-336 |#2| |#3| |#4| |#5|)) 15))) +(((-907 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3254 ((-3 (-767) "failed") (-336 |#2| |#3| |#4| |#5|))) (-15 -1557 ((-112) (-336 |#2| |#3| |#4| |#5|))) (-15 -3136 ((-3 (-2 (|:| -3254 (-767)) (|:| -1516 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|)))) (-13 (-846) (-555) (-1034 (-563))) (-430 |#1|) (-1233 |#2|) (-1233 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -907)) +((-3136 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-846) (-555) (-1034 (-563)))) (-5 *2 (-2 (|:| -3254 (-767)) (|:| -1516 *8))) (-5 *1 (-907 *4 *5 *6 *7 *8)))) (-1557 (*1 *2 *3) (-12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-846) (-555) (-1034 (-563)))) (-5 *2 (-112)) (-5 *1 (-907 *4 *5 *6 *7 *8)))) (-3254 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-846) (-555) (-1034 (-563)))) (-5 *2 (-767)) (-5 *1 (-907 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -3254 ((-3 (-767) "failed") (-336 |#2| |#3| |#4| |#5|))) (-15 -1557 ((-112) (-336 |#2| |#3| |#4| |#5|))) (-15 -3136 ((-3 (-2 (|:| -3254 (-767)) (|:| -1516 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|)))) +((-3136 (((-3 (-2 (|:| -3254 (-767)) (|:| -1516 |#3|)) "failed") (-336 (-407 (-563)) |#1| |#2| |#3|)) 56)) (-1557 (((-112) (-336 (-407 (-563)) |#1| |#2| |#3|)) 16)) (-3254 (((-3 (-767) "failed") (-336 (-407 (-563)) |#1| |#2| |#3|)) 14))) +(((-908 |#1| |#2| |#3|) (-10 -7 (-15 -3254 ((-3 (-767) "failed") (-336 (-407 (-563)) |#1| |#2| |#3|))) (-15 -1557 ((-112) (-336 (-407 (-563)) |#1| |#2| |#3|))) (-15 -3136 ((-3 (-2 (|:| -3254 (-767)) (|:| -1516 |#3|)) "failed") (-336 (-407 (-563)) |#1| |#2| |#3|)))) (-1233 (-407 (-563))) (-1233 (-407 |#1|)) (-342 (-407 (-563)) |#1| |#2|)) (T -908)) +((-3136 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 (-407 (-563)) *4 *5 *6)) (-4 *4 (-1233 (-407 (-563)))) (-4 *5 (-1233 (-407 *4))) (-4 *6 (-342 (-407 (-563)) *4 *5)) (-5 *2 (-2 (|:| -3254 (-767)) (|:| -1516 *6))) (-5 *1 (-908 *4 *5 *6)))) (-1557 (*1 *2 *3) (-12 (-5 *3 (-336 (-407 (-563)) *4 *5 *6)) (-4 *4 (-1233 (-407 (-563)))) (-4 *5 (-1233 (-407 *4))) (-4 *6 (-342 (-407 (-563)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-908 *4 *5 *6)))) (-3254 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 (-407 (-563)) *4 *5 *6)) (-4 *4 (-1233 (-407 (-563)))) (-4 *5 (-1233 (-407 *4))) (-4 *6 (-342 (-407 (-563)) *4 *5)) (-5 *2 (-767)) (-5 *1 (-908 *4 *5 *6))))) +(-10 -7 (-15 -3254 ((-3 (-767) "failed") (-336 (-407 (-563)) |#1| |#2| |#3|))) (-15 -1557 ((-112) (-336 (-407 (-563)) |#1| |#2| |#3|))) (-15 -3136 ((-3 (-2 (|:| -3254 (-767)) (|:| -1516 |#3|)) "failed") (-336 (-407 (-563)) |#1| |#2| |#3|)))) +((-1750 ((|#2| |#2|) 26)) (-2094 (((-563) (-640 (-2 (|:| |den| (-563)) (|:| |gcdnum| (-563))))) 15)) (-2814 (((-917) (-563)) 35)) (-3423 (((-563) |#2|) 42)) (-1899 (((-563) |#2|) 21) (((-2 (|:| |den| (-563)) (|:| |gcdnum| (-563))) |#1|) 20))) +(((-909 |#1| |#2|) (-10 -7 (-15 -2814 ((-917) (-563))) (-15 -1899 ((-2 (|:| |den| (-563)) (|:| |gcdnum| (-563))) |#1|)) (-15 -1899 ((-563) |#2|)) (-15 -2094 ((-563) (-640 (-2 (|:| |den| (-563)) (|:| |gcdnum| (-563)))))) (-15 -3423 ((-563) |#2|)) (-15 -1750 (|#2| |#2|))) (-1233 (-407 (-563))) (-1233 (-407 |#1|))) (T -909)) +((-1750 (*1 *2 *2) (-12 (-4 *3 (-1233 (-407 (-563)))) (-5 *1 (-909 *3 *2)) (-4 *2 (-1233 (-407 *3))))) (-3423 (*1 *2 *3) (-12 (-4 *4 (-1233 (-407 *2))) (-5 *2 (-563)) (-5 *1 (-909 *4 *3)) (-4 *3 (-1233 (-407 *4))))) (-2094 (*1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| |den| (-563)) (|:| |gcdnum| (-563))))) (-4 *4 (-1233 (-407 *2))) (-5 *2 (-563)) (-5 *1 (-909 *4 *5)) (-4 *5 (-1233 (-407 *4))))) (-1899 (*1 *2 *3) (-12 (-4 *4 (-1233 (-407 *2))) (-5 *2 (-563)) (-5 *1 (-909 *4 *3)) (-4 *3 (-1233 (-407 *4))))) (-1899 (*1 *2 *3) (-12 (-4 *3 (-1233 (-407 (-563)))) (-5 *2 (-2 (|:| |den| (-563)) (|:| |gcdnum| (-563)))) (-5 *1 (-909 *3 *4)) (-4 *4 (-1233 (-407 *3))))) (-2814 (*1 *2 *3) (-12 (-5 *3 (-563)) (-4 *4 (-1233 (-407 *3))) (-5 *2 (-917)) (-5 *1 (-909 *4 *5)) (-4 *5 (-1233 (-407 *4)))))) +(-10 -7 (-15 -2814 ((-917) (-563))) (-15 -1899 ((-2 (|:| |den| (-563)) (|:| |gcdnum| (-563))) |#1|)) (-15 -1899 ((-563) |#2|)) (-15 -2094 ((-563) (-640 (-2 (|:| |den| (-563)) (|:| |gcdnum| (-563)))))) (-15 -3423 ((-563) |#2|)) (-15 -1750 (|#2| |#2|))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-3401 ((|#1| $) 81)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-1919 (((-112) $ $) NIL)) (-4239 (($) NIL T CONST)) (-3090 (($ $ $) NIL)) (-3400 (((-3 $ "failed") $) 75)) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-2468 (((-112) $) NIL)) (-3964 (($ |#1| (-418 |#1|)) 73)) (-2215 (((-1165 |#1|) |#1| |#1|) 41)) (-2268 (($ $) 49)) (-3827 (((-112) $) NIL)) (-3086 (((-563) $) 78)) (-3898 (($ $ (-563)) 80)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) NIL)) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3407 ((|#1| $) 77)) (-1975 (((-418 |#1|) $) 76)) (-2174 (((-418 $) $) NIL)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3008 (((-3 $ "failed") $ $) 74)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2628 (((-767) $) NIL)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-3567 (($ $) 39)) (-1693 (((-858) $) 99) (($ (-563)) 54) (($ $) NIL) (($ (-407 (-563))) NIL) (($ |#1|) 31) (((-407 |#1|) $) 59) (($ (-407 (-418 |#1|))) 67)) (-1675 (((-767)) 52)) (-2126 (((-112) $ $) NIL)) (-2241 (($) 23 T CONST)) (-2254 (($) 12 T CONST)) (-1718 (((-112) $ $) 68)) (-1837 (($ $ $) NIL)) (-1826 (($ $) 88) (($ $ $) NIL)) (-1814 (($ $ $) 38)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 90) (($ $ $) 37) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL))) +(((-910 |#1|) (-13 (-363) (-38 |#1|) (-10 -8 (-15 -1693 ((-407 |#1|) $)) (-15 -1693 ($ (-407 (-418 |#1|)))) (-15 -3567 ($ $)) (-15 -1975 ((-418 |#1|) $)) (-15 -3407 (|#1| $)) (-15 -3898 ($ $ (-563))) (-15 -3086 ((-563) $)) (-15 -2215 ((-1165 |#1|) |#1| |#1|)) (-15 -2268 ($ $)) (-15 -3964 ($ |#1| (-418 |#1|))) (-15 -3401 (|#1| $)))) (-307)) (T -910)) +((-1693 (*1 *2 *1) (-12 (-5 *2 (-407 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-407 (-418 *3))) (-4 *3 (-307)) (-5 *1 (-910 *3)))) (-3567 (*1 *1 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307)))) (-1975 (*1 *2 *1) (-12 (-5 *2 (-418 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307)))) (-3407 (*1 *2 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307)))) (-3898 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-910 *3)) (-4 *3 (-307)))) (-3086 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-910 *3)) (-4 *3 (-307)))) (-2215 (*1 *2 *3 *3) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307)))) (-2268 (*1 *1 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307)))) (-3964 (*1 *1 *2 *3) (-12 (-5 *3 (-418 *2)) (-4 *2 (-307)) (-5 *1 (-910 *2)))) (-3401 (*1 *2 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307))))) +(-13 (-363) (-38 |#1|) (-10 -8 (-15 -1693 ((-407 |#1|) $)) (-15 -1693 ($ (-407 (-418 |#1|)))) (-15 -3567 ($ $)) (-15 -1975 ((-418 |#1|) $)) (-15 -3407 (|#1| $)) (-15 -3898 ($ $ (-563))) (-15 -3086 ((-563) $)) (-15 -2215 ((-1165 |#1|) |#1| |#1|)) (-15 -2268 ($ $)) (-15 -3964 ($ |#1| (-418 |#1|))) (-15 -3401 (|#1| $)))) +((-3964 (((-52) (-948 |#1|) (-418 (-948 |#1|)) (-1169)) 17) (((-52) (-407 (-948 |#1|)) (-1169)) 18))) +(((-911 |#1|) (-10 -7 (-15 -3964 ((-52) (-407 (-948 |#1|)) (-1169))) (-15 -3964 ((-52) (-948 |#1|) (-418 (-948 |#1|)) (-1169)))) (-13 (-307) (-147))) (T -911)) +((-3964 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-418 (-948 *6))) (-5 *5 (-1169)) (-5 *3 (-948 *6)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-911 *6)))) (-3964 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-911 *5))))) +(-10 -7 (-15 -3964 ((-52) (-407 (-948 |#1|)) (-1169))) (-15 -3964 ((-52) (-948 |#1|) (-418 (-948 |#1|)) (-1169)))) +((-2114 ((|#4| (-640 |#4|)) 121) (((-1165 |#4|) (-1165 |#4|) (-1165 |#4|)) 66) ((|#4| |#4| |#4|) 120)) (-3548 (((-1165 |#4|) (-640 (-1165 |#4|))) 114) (((-1165 |#4|) (-1165 |#4|) (-1165 |#4|)) 49) ((|#4| (-640 |#4|)) 54) ((|#4| |#4| |#4|) 84))) +(((-912 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3548 (|#4| |#4| |#4|)) (-15 -3548 (|#4| (-640 |#4|))) (-15 -3548 ((-1165 |#4|) (-1165 |#4|) (-1165 |#4|))) (-15 -3548 ((-1165 |#4|) (-640 (-1165 |#4|)))) (-15 -2114 (|#4| |#4| |#4|)) (-15 -2114 ((-1165 |#4|) (-1165 |#4|) (-1165 |#4|))) (-15 -2114 (|#4| (-640 |#4|)))) (-789) (-846) (-307) (-945 |#3| |#1| |#2|)) (T -912)) +((-2114 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *6 *4 *5)) (-5 *1 (-912 *4 *5 *6 *2)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)))) (-2114 (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *6)) (-4 *6 (-945 *5 *3 *4)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *6)))) (-2114 (*1 *2 *2 *2) (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *2)) (-4 *2 (-945 *5 *3 *4)))) (-3548 (*1 *2 *3) (-12 (-5 *3 (-640 (-1165 *7))) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-1165 *7)) (-5 *1 (-912 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5)))) (-3548 (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *6)) (-4 *6 (-945 *5 *3 *4)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *6)))) (-3548 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *6 *4 *5)) (-5 *1 (-912 *4 *5 *6 *2)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)))) (-3548 (*1 *2 *2 *2) (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *2)) (-4 *2 (-945 *5 *3 *4))))) +(-10 -7 (-15 -3548 (|#4| |#4| |#4|)) (-15 -3548 (|#4| (-640 |#4|))) (-15 -3548 ((-1165 |#4|) (-1165 |#4|) (-1165 |#4|))) (-15 -3548 ((-1165 |#4|) (-640 (-1165 |#4|)))) (-15 -2114 (|#4| |#4| |#4|)) (-15 -2114 ((-1165 |#4|) (-1165 |#4|) (-1165 |#4|))) (-15 -2114 (|#4| (-640 |#4|)))) +((-4126 (((-900 (-563)) (-967)) 23) (((-900 (-563)) (-640 (-563))) 20)) (-1979 (((-900 (-563)) (-640 (-563))) 48) (((-900 (-563)) (-917)) 49)) (-2502 (((-900 (-563))) 24)) (-3859 (((-900 (-563))) 38) (((-900 (-563)) (-640 (-563))) 37)) (-4025 (((-900 (-563))) 36) (((-900 (-563)) (-640 (-563))) 35)) (-3238 (((-900 (-563))) 34) (((-900 (-563)) (-640 (-563))) 33)) (-3168 (((-900 (-563))) 32) (((-900 (-563)) (-640 (-563))) 31)) (-4085 (((-900 (-563))) 30) (((-900 (-563)) (-640 (-563))) 29)) (-4040 (((-900 (-563))) 40) (((-900 (-563)) (-640 (-563))) 39)) (-3517 (((-900 (-563)) (-640 (-563))) 52) (((-900 (-563)) (-917)) 53)) (-1501 (((-900 (-563)) (-640 (-563))) 50) (((-900 (-563)) (-917)) 51)) (-4060 (((-900 (-563)) (-640 (-563))) 46) (((-900 (-563)) (-917)) 47)) (-3006 (((-900 (-563)) (-640 (-917))) 43))) +(((-913) (-10 -7 (-15 -1979 ((-900 (-563)) (-917))) (-15 -1979 ((-900 (-563)) (-640 (-563)))) (-15 -4060 ((-900 (-563)) (-917))) (-15 -4060 ((-900 (-563)) (-640 (-563)))) (-15 -3006 ((-900 (-563)) (-640 (-917)))) (-15 -1501 ((-900 (-563)) (-917))) (-15 -1501 ((-900 (-563)) (-640 (-563)))) (-15 -3517 ((-900 (-563)) (-917))) (-15 -3517 ((-900 (-563)) (-640 (-563)))) (-15 -4085 ((-900 (-563)) (-640 (-563)))) (-15 -4085 ((-900 (-563)))) (-15 -3168 ((-900 (-563)) (-640 (-563)))) (-15 -3168 ((-900 (-563)))) (-15 -3238 ((-900 (-563)) (-640 (-563)))) (-15 -3238 ((-900 (-563)))) (-15 -4025 ((-900 (-563)) (-640 (-563)))) (-15 -4025 ((-900 (-563)))) (-15 -3859 ((-900 (-563)) (-640 (-563)))) (-15 -3859 ((-900 (-563)))) (-15 -4040 ((-900 (-563)) (-640 (-563)))) (-15 -4040 ((-900 (-563)))) (-15 -2502 ((-900 (-563)))) (-15 -4126 ((-900 (-563)) (-640 (-563)))) (-15 -4126 ((-900 (-563)) (-967))))) (T -913)) +((-4126 (*1 *2 *3) (-12 (-5 *3 (-967)) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-4126 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-2502 (*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-4040 (*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-4040 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-3859 (*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-3859 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-4025 (*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-4025 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-3238 (*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-3238 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-3168 (*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-3168 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-4085 (*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-4085 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-3517 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-3517 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-1501 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-1501 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-3006 (*1 *2 *3) (-12 (-5 *3 (-640 (-917))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-4060 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-4060 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-1979 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-1979 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-563))) (-5 *1 (-913))))) +(-10 -7 (-15 -1979 ((-900 (-563)) (-917))) (-15 -1979 ((-900 (-563)) (-640 (-563)))) (-15 -4060 ((-900 (-563)) (-917))) (-15 -4060 ((-900 (-563)) (-640 (-563)))) (-15 -3006 ((-900 (-563)) (-640 (-917)))) (-15 -1501 ((-900 (-563)) (-917))) (-15 -1501 ((-900 (-563)) (-640 (-563)))) (-15 -3517 ((-900 (-563)) (-917))) (-15 -3517 ((-900 (-563)) (-640 (-563)))) (-15 -4085 ((-900 (-563)) (-640 (-563)))) (-15 -4085 ((-900 (-563)))) (-15 -3168 ((-900 (-563)) (-640 (-563)))) (-15 -3168 ((-900 (-563)))) (-15 -3238 ((-900 (-563)) (-640 (-563)))) (-15 -3238 ((-900 (-563)))) (-15 -4025 ((-900 (-563)) (-640 (-563)))) (-15 -4025 ((-900 (-563)))) (-15 -3859 ((-900 (-563)) (-640 (-563)))) (-15 -3859 ((-900 (-563)))) (-15 -4040 ((-900 (-563)) (-640 (-563)))) (-15 -4040 ((-900 (-563)))) (-15 -2502 ((-900 (-563)))) (-15 -4126 ((-900 (-563)) (-640 (-563)))) (-15 -4126 ((-900 (-563)) (-967)))) +((-1854 (((-640 (-948 |#1|)) (-640 (-948 |#1|)) (-640 (-1169))) 12)) (-1678 (((-640 (-948 |#1|)) (-640 (-948 |#1|)) (-640 (-1169))) 11))) +(((-914 |#1|) (-10 -7 (-15 -1678 ((-640 (-948 |#1|)) (-640 (-948 |#1|)) (-640 (-1169)))) (-15 -1854 ((-640 (-948 |#1|)) (-640 (-948 |#1|)) (-640 (-1169))))) (-452)) (T -914)) +((-1854 (*1 *2 *2 *3) (-12 (-5 *2 (-640 (-948 *4))) (-5 *3 (-640 (-1169))) (-4 *4 (-452)) (-5 *1 (-914 *4)))) (-1678 (*1 *2 *2 *3) (-12 (-5 *2 (-640 (-948 *4))) (-5 *3 (-640 (-1169))) (-4 *4 (-452)) (-5 *1 (-914 *4))))) +(-10 -7 (-15 -1678 ((-640 (-948 |#1|)) (-640 (-948 |#1|)) (-640 (-1169)))) (-15 -1854 ((-640 (-948 |#1|)) (-640 (-948 |#1|)) (-640 (-1169))))) +((-1693 (((-316 |#1|) (-477)) 16))) +(((-915 |#1|) (-10 -7 (-15 -1693 ((-316 |#1|) (-477)))) (-13 (-846) (-555))) (T -915)) +((-1693 (*1 *2 *3) (-12 (-5 *3 (-477)) (-5 *2 (-316 *4)) (-5 *1 (-915 *4)) (-4 *4 (-13 (-846) (-555)))))) +(-10 -7 (-15 -1693 ((-316 |#1|) (-477)))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 42)) (-4223 (($ $) 41)) (-3156 (((-112) $) 39)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-3400 (((-3 $ "failed") $) 33)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) 52)) (-3827 (((-112) $) 31)) (-3513 (($ $ $) 47) (($ (-640 $)) 46)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3548 (($ $ $) 49) (($ (-640 $)) 48)) (-3008 (((-3 $ "failed") $ $) 43)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ $) 44)) (-1675 (((-767)) 28)) (-2126 (((-112) $ $) 40)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) +(((-916) (-140)) (T -916)) +((-3286 (*1 *2 *3) (-12 (-4 *1 (-916)) (-5 *2 (-2 (|:| -2311 (-640 *1)) (|:| -4333 *1))) (-5 *3 (-640 *1)))) (-1465 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-640 *1)) (-4 *1 (-916))))) +(-13 (-452) (-10 -8 (-15 -3286 ((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $))) (-15 -1465 ((-3 (-640 $) "failed") (-640 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-555) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) +((-1677 (((-112) $ $) NIL)) (-4239 (($) NIL T CONST)) (-3400 (((-3 $ "failed") $) NIL)) (-3827 (((-112) $) NIL)) (-3084 (($ $ $) NIL)) (-1777 (($ $ $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-3548 (($ $ $) NIL)) (-1693 (((-858) $) NIL)) (-2254 (($) NIL T CONST)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ $ $) NIL))) +(((-917) (-13 (-790) (-722) (-10 -8 (-15 -3548 ($ $ $)) (-6 (-4409 "*"))))) (T -917)) +((-3548 (*1 *1 *1 *1) (-5 *1 (-917)))) +(-13 (-790) (-722) (-10 -8 (-15 -3548 ($ $ $)) (-6 (-4409 "*")))) ((|NonNegativeInteger|) (< 0 |#1|)) -((-3435 ((|#2| (-639 |#1|) (-639 |#1|)) 24))) -(((-917 |#1| |#2|) (-10 -7 (-15 -3435 (|#2| (-639 |#1|) (-639 |#1|)))) (-362) (-1232 |#1|)) (T -917)) -((-3435 (*1 *2 *3 *3) (-12 (-5 *3 (-639 *4)) (-4 *4 (-362)) (-4 *2 (-1232 *4)) (-5 *1 (-917 *4 *2))))) -(-10 -7 (-15 -3435 (|#2| (-639 |#1|) (-639 |#1|)))) -((-3667 (((-1164 |#2|) (-639 |#2|) (-639 |#2|)) 17) (((-1229 |#1| |#2|) (-1229 |#1| |#2|) (-639 |#2|) (-639 |#2|)) 13))) -(((-918 |#1| |#2|) (-10 -7 (-15 -3667 ((-1229 |#1| |#2|) (-1229 |#1| |#2|) (-639 |#2|) (-639 |#2|))) (-15 -3667 ((-1164 |#2|) (-639 |#2|) (-639 |#2|)))) (-1168) (-362)) (T -918)) -((-3667 (*1 *2 *3 *3) (-12 (-5 *3 (-639 *5)) (-4 *5 (-362)) (-5 *2 (-1164 *5)) (-5 *1 (-918 *4 *5)) (-14 *4 (-1168)))) (-3667 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1229 *4 *5)) (-5 *3 (-639 *5)) (-14 *4 (-1168)) (-4 *5 (-362)) (-5 *1 (-918 *4 *5))))) -(-10 -7 (-15 -3667 ((-1229 |#1| |#2|) (-1229 |#1| |#2|) (-639 |#2|) (-639 |#2|))) (-15 -3667 ((-1164 |#2|) (-639 |#2|) (-639 |#2|)))) -((-2495 (((-562) (-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|))))))))) (-1150)) 139)) (-1858 ((|#4| |#4|) 155)) (-2641 (((-639 (-406 (-947 |#1|))) (-639 (-1168))) 119)) (-2470 (((-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))) (-683 |#4|) (-639 (-406 (-947 |#1|))) (-639 (-639 |#4|)) (-766) (-766) (-562)) 75)) (-2481 (((-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|)))))) (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|)))))) (-639 |#4|)) 59)) (-3771 (((-683 |#4|) (-683 |#4|) (-639 |#4|)) 55)) (-1780 (((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|))))))))) (-1150)) 151)) (-4323 (((-562) (-683 |#4|) (-916) (-1150)) 133) (((-562) (-683 |#4|) (-639 (-1168)) (-916) (-1150)) 132) (((-562) (-683 |#4|) (-639 |#4|) (-916) (-1150)) 131) (((-562) (-683 |#4|) (-1150)) 128) (((-562) (-683 |#4|) (-639 (-1168)) (-1150)) 127) (((-562) (-683 |#4|) (-639 |#4|) (-1150)) 126) (((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|) (-916)) 125) (((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|) (-639 (-1168)) (-916)) 124) (((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|) (-639 |#4|) (-916)) 123) (((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|)) 121) (((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|) (-639 (-1168))) 120) (((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|) (-639 |#4|)) 116)) (-2627 ((|#4| (-947 |#1|)) 68)) (-2642 (((-112) (-639 |#4|) (-639 (-639 |#4|))) 152)) (-2477 (((-639 (-639 (-562))) (-562) (-562)) 130)) (-2018 (((-639 (-639 |#4|)) (-639 (-639 |#4|))) 88)) (-2829 (((-766) (-639 (-2 (|:| -2172 (-766)) (|:| |eqns| (-639 (-2 (|:| |det| |#4|) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))))) (|:| |fgb| (-639 |#4|))))) 86)) (-1699 (((-766) (-639 (-2 (|:| -2172 (-766)) (|:| |eqns| (-639 (-2 (|:| |det| |#4|) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))))) (|:| |fgb| (-639 |#4|))))) 85)) (-1704 (((-112) (-639 (-947 |#1|))) 17) (((-112) (-639 |#4|)) 13)) (-1320 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-639 |#4|)) (|:| |n0| (-639 |#4|))) (-639 |#4|) (-639 |#4|)) 71)) (-2190 (((-639 |#4|) |#4|) 49)) (-1306 (((-639 (-406 (-947 |#1|))) (-639 |#4|)) 115) (((-683 (-406 (-947 |#1|))) (-683 |#4|)) 56) (((-406 (-947 |#1|)) |#4|) 112)) (-1627 (((-2 (|:| |rgl| (-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|)))))))))) (|:| |rgsz| (-562))) (-683 |#4|) (-639 (-406 (-947 |#1|))) (-766) (-1150) (-562)) 93)) (-4191 (((-639 (-2 (|:| -2172 (-766)) (|:| |eqns| (-639 (-2 (|:| |det| |#4|) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))))) (|:| |fgb| (-639 |#4|)))) (-683 |#4|) (-766)) 84)) (-3480 (((-639 (-2 (|:| |det| |#4|) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562))))) (-683 |#4|) (-766)) 102)) (-3334 (((-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|)))))) (-2 (|:| -1767 (-683 (-406 (-947 |#1|)))) (|:| |vec| (-639 (-406 (-947 |#1|)))) (|:| -2172 (-766)) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562))))) 48))) -(((-919 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4323 ((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|) (-639 |#4|))) (-15 -4323 ((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|) (-639 (-1168)))) (-15 -4323 ((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|))) (-15 -4323 ((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|) (-639 |#4|) (-916))) (-15 -4323 ((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|) (-639 (-1168)) (-916))) (-15 -4323 ((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|) (-916))) (-15 -4323 ((-562) (-683 |#4|) (-639 |#4|) (-1150))) (-15 -4323 ((-562) (-683 |#4|) (-639 (-1168)) (-1150))) (-15 -4323 ((-562) (-683 |#4|) (-1150))) (-15 -4323 ((-562) (-683 |#4|) (-639 |#4|) (-916) (-1150))) (-15 -4323 ((-562) (-683 |#4|) (-639 (-1168)) (-916) (-1150))) (-15 -4323 ((-562) (-683 |#4|) (-916) (-1150))) (-15 -2495 ((-562) (-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|))))))))) (-1150))) (-15 -1780 ((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|))))))))) (-1150))) (-15 -1627 ((-2 (|:| |rgl| (-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|)))))))))) (|:| |rgsz| (-562))) (-683 |#4|) (-639 (-406 (-947 |#1|))) (-766) (-1150) (-562))) (-15 -1306 ((-406 (-947 |#1|)) |#4|)) (-15 -1306 ((-683 (-406 (-947 |#1|))) (-683 |#4|))) (-15 -1306 ((-639 (-406 (-947 |#1|))) (-639 |#4|))) (-15 -2641 ((-639 (-406 (-947 |#1|))) (-639 (-1168)))) (-15 -2627 (|#4| (-947 |#1|))) (-15 -1320 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-639 |#4|)) (|:| |n0| (-639 |#4|))) (-639 |#4|) (-639 |#4|))) (-15 -4191 ((-639 (-2 (|:| -2172 (-766)) (|:| |eqns| (-639 (-2 (|:| |det| |#4|) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))))) (|:| |fgb| (-639 |#4|)))) (-683 |#4|) (-766))) (-15 -2481 ((-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|)))))) (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|)))))) (-639 |#4|))) (-15 -3334 ((-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|)))))) (-2 (|:| -1767 (-683 (-406 (-947 |#1|)))) (|:| |vec| (-639 (-406 (-947 |#1|)))) (|:| -2172 (-766)) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))))) (-15 -2190 ((-639 |#4|) |#4|)) (-15 -1699 ((-766) (-639 (-2 (|:| -2172 (-766)) (|:| |eqns| (-639 (-2 (|:| |det| |#4|) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))))) (|:| |fgb| (-639 |#4|)))))) (-15 -2829 ((-766) (-639 (-2 (|:| -2172 (-766)) (|:| |eqns| (-639 (-2 (|:| |det| |#4|) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))))) (|:| |fgb| (-639 |#4|)))))) (-15 -2018 ((-639 (-639 |#4|)) (-639 (-639 |#4|)))) (-15 -2477 ((-639 (-639 (-562))) (-562) (-562))) (-15 -2642 ((-112) (-639 |#4|) (-639 (-639 |#4|)))) (-15 -3480 ((-639 (-2 (|:| |det| |#4|) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562))))) (-683 |#4|) (-766))) (-15 -3771 ((-683 |#4|) (-683 |#4|) (-639 |#4|))) (-15 -2470 ((-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))) (-683 |#4|) (-639 (-406 (-947 |#1|))) (-639 (-639 |#4|)) (-766) (-766) (-562))) (-15 -1858 (|#4| |#4|)) (-15 -1704 ((-112) (-639 |#4|))) (-15 -1704 ((-112) (-639 (-947 |#1|))))) (-13 (-306) (-146)) (-13 (-845) (-610 (-1168))) (-788) (-944 |#1| |#3| |#2|)) (T -919)) -((-1704 (*1 *2 *3) (-12 (-5 *3 (-639 (-947 *4))) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *2 (-112)) (-5 *1 (-919 *4 *5 *6 *7)) (-4 *7 (-944 *4 *6 *5)))) (-1704 (*1 *2 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-944 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *2 (-112)) (-5 *1 (-919 *4 *5 *6 *7)))) (-1858 (*1 *2 *2) (-12 (-4 *3 (-13 (-306) (-146))) (-4 *4 (-13 (-845) (-610 (-1168)))) (-4 *5 (-788)) (-5 *1 (-919 *3 *4 *5 *2)) (-4 *2 (-944 *3 *5 *4)))) (-2470 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562))))) (-5 *4 (-683 *12)) (-5 *5 (-639 (-406 (-947 *9)))) (-5 *6 (-639 (-639 *12))) (-5 *7 (-766)) (-5 *8 (-562)) (-4 *9 (-13 (-306) (-146))) (-4 *12 (-944 *9 *11 *10)) (-4 *10 (-13 (-845) (-610 (-1168)))) (-4 *11 (-788)) (-5 *2 (-2 (|:| |eqzro| (-639 *12)) (|:| |neqzro| (-639 *12)) (|:| |wcond| (-639 (-947 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 *9)))) (|:| -4291 (-639 (-1256 (-406 (-947 *9))))))))) (-5 *1 (-919 *9 *10 *11 *12)))) (-3771 (*1 *2 *2 *3) (-12 (-5 *2 (-683 *7)) (-5 *3 (-639 *7)) (-4 *7 (-944 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *1 (-919 *4 *5 *6 *7)))) (-3480 (*1 *2 *3 *4) (-12 (-5 *3 (-683 *8)) (-5 *4 (-766)) (-4 *8 (-944 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-845) (-610 (-1168)))) (-4 *7 (-788)) (-5 *2 (-639 (-2 (|:| |det| *8) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))))) (-5 *1 (-919 *5 *6 *7 *8)))) (-2642 (*1 *2 *3 *4) (-12 (-5 *4 (-639 (-639 *8))) (-5 *3 (-639 *8)) (-4 *8 (-944 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-845) (-610 (-1168)))) (-4 *7 (-788)) (-5 *2 (-112)) (-5 *1 (-919 *5 *6 *7 *8)))) (-2477 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *2 (-639 (-639 (-562)))) (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-562)) (-4 *7 (-944 *4 *6 *5)))) (-2018 (*1 *2 *2) (-12 (-5 *2 (-639 (-639 *6))) (-4 *6 (-944 *3 *5 *4)) (-4 *3 (-13 (-306) (-146))) (-4 *4 (-13 (-845) (-610 (-1168)))) (-4 *5 (-788)) (-5 *1 (-919 *3 *4 *5 *6)))) (-2829 (*1 *2 *3) (-12 (-5 *3 (-639 (-2 (|:| -2172 (-766)) (|:| |eqns| (-639 (-2 (|:| |det| *7) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))))) (|:| |fgb| (-639 *7))))) (-4 *7 (-944 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *2 (-766)) (-5 *1 (-919 *4 *5 *6 *7)))) (-1699 (*1 *2 *3) (-12 (-5 *3 (-639 (-2 (|:| -2172 (-766)) (|:| |eqns| (-639 (-2 (|:| |det| *7) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))))) (|:| |fgb| (-639 *7))))) (-4 *7 (-944 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *2 (-766)) (-5 *1 (-919 *4 *5 *6 *7)))) (-2190 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *2 (-639 *3)) (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-944 *4 *6 *5)))) (-3334 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1767 (-683 (-406 (-947 *4)))) (|:| |vec| (-639 (-406 (-947 *4)))) (|:| -2172 (-766)) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562))))) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *2 (-2 (|:| |partsol| (-1256 (-406 (-947 *4)))) (|:| -4291 (-639 (-1256 (-406 (-947 *4))))))) (-5 *1 (-919 *4 *5 *6 *7)) (-4 *7 (-944 *4 *6 *5)))) (-2481 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1256 (-406 (-947 *4)))) (|:| -4291 (-639 (-1256 (-406 (-947 *4))))))) (-5 *3 (-639 *7)) (-4 *4 (-13 (-306) (-146))) (-4 *7 (-944 *4 *6 *5)) (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *1 (-919 *4 *5 *6 *7)))) (-4191 (*1 *2 *3 *4) (-12 (-5 *3 (-683 *8)) (-4 *8 (-944 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-845) (-610 (-1168)))) (-4 *7 (-788)) (-5 *2 (-639 (-2 (|:| -2172 (-766)) (|:| |eqns| (-639 (-2 (|:| |det| *8) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))))) (|:| |fgb| (-639 *8))))) (-5 *1 (-919 *5 *6 *7 *8)) (-5 *4 (-766)))) (-1320 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-4 *7 (-944 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-639 *7)) (|:| |n0| (-639 *7)))) (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-639 *7)))) (-2627 (*1 *2 *3) (-12 (-5 *3 (-947 *4)) (-4 *4 (-13 (-306) (-146))) (-4 *2 (-944 *4 *6 *5)) (-5 *1 (-919 *4 *5 *6 *2)) (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)))) (-2641 (*1 *2 *3) (-12 (-5 *3 (-639 (-1168))) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *2 (-639 (-406 (-947 *4)))) (-5 *1 (-919 *4 *5 *6 *7)) (-4 *7 (-944 *4 *6 *5)))) (-1306 (*1 *2 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-944 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *2 (-639 (-406 (-947 *4)))) (-5 *1 (-919 *4 *5 *6 *7)))) (-1306 (*1 *2 *3) (-12 (-5 *3 (-683 *7)) (-4 *7 (-944 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *2 (-683 (-406 (-947 *4)))) (-5 *1 (-919 *4 *5 *6 *7)))) (-1306 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *2 (-406 (-947 *4))) (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-944 *4 *6 *5)))) (-1627 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-683 *11)) (-5 *4 (-639 (-406 (-947 *8)))) (-5 *5 (-766)) (-5 *6 (-1150)) (-4 *8 (-13 (-306) (-146))) (-4 *11 (-944 *8 *10 *9)) (-4 *9 (-13 (-845) (-610 (-1168)))) (-4 *10 (-788)) (-5 *2 (-2 (|:| |rgl| (-639 (-2 (|:| |eqzro| (-639 *11)) (|:| |neqzro| (-639 *11)) (|:| |wcond| (-639 (-947 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 *8)))) (|:| -4291 (-639 (-1256 (-406 (-947 *8)))))))))) (|:| |rgsz| (-562)))) (-5 *1 (-919 *8 *9 *10 *11)) (-5 *7 (-562)))) (-1780 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *2 (-639 (-2 (|:| |eqzro| (-639 *7)) (|:| |neqzro| (-639 *7)) (|:| |wcond| (-639 (-947 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 *4)))) (|:| -4291 (-639 (-1256 (-406 (-947 *4)))))))))) (-5 *1 (-919 *4 *5 *6 *7)) (-4 *7 (-944 *4 *6 *5)))) (-2495 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-2 (|:| |eqzro| (-639 *8)) (|:| |neqzro| (-639 *8)) (|:| |wcond| (-639 (-947 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 *5)))) (|:| -4291 (-639 (-1256 (-406 (-947 *5)))))))))) (-5 *4 (-1150)) (-4 *5 (-13 (-306) (-146))) (-4 *8 (-944 *5 *7 *6)) (-4 *6 (-13 (-845) (-610 (-1168)))) (-4 *7 (-788)) (-5 *2 (-562)) (-5 *1 (-919 *5 *6 *7 *8)))) (-4323 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-683 *9)) (-5 *4 (-916)) (-5 *5 (-1150)) (-4 *9 (-944 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-845) (-610 (-1168)))) (-4 *8 (-788)) (-5 *2 (-562)) (-5 *1 (-919 *6 *7 *8 *9)))) (-4323 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-683 *10)) (-5 *4 (-639 (-1168))) (-5 *5 (-916)) (-5 *6 (-1150)) (-4 *10 (-944 *7 *9 *8)) (-4 *7 (-13 (-306) (-146))) (-4 *8 (-13 (-845) (-610 (-1168)))) (-4 *9 (-788)) (-5 *2 (-562)) (-5 *1 (-919 *7 *8 *9 *10)))) (-4323 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-683 *10)) (-5 *4 (-639 *10)) (-5 *5 (-916)) (-5 *6 (-1150)) (-4 *10 (-944 *7 *9 *8)) (-4 *7 (-13 (-306) (-146))) (-4 *8 (-13 (-845) (-610 (-1168)))) (-4 *9 (-788)) (-5 *2 (-562)) (-5 *1 (-919 *7 *8 *9 *10)))) (-4323 (*1 *2 *3 *4) (-12 (-5 *3 (-683 *8)) (-5 *4 (-1150)) (-4 *8 (-944 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-845) (-610 (-1168)))) (-4 *7 (-788)) (-5 *2 (-562)) (-5 *1 (-919 *5 *6 *7 *8)))) (-4323 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-683 *9)) (-5 *4 (-639 (-1168))) (-5 *5 (-1150)) (-4 *9 (-944 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-845) (-610 (-1168)))) (-4 *8 (-788)) (-5 *2 (-562)) (-5 *1 (-919 *6 *7 *8 *9)))) (-4323 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-683 *9)) (-5 *4 (-639 *9)) (-5 *5 (-1150)) (-4 *9 (-944 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-845) (-610 (-1168)))) (-4 *8 (-788)) (-5 *2 (-562)) (-5 *1 (-919 *6 *7 *8 *9)))) (-4323 (*1 *2 *3 *4) (-12 (-5 *3 (-683 *8)) (-5 *4 (-916)) (-4 *8 (-944 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-845) (-610 (-1168)))) (-4 *7 (-788)) (-5 *2 (-639 (-2 (|:| |eqzro| (-639 *8)) (|:| |neqzro| (-639 *8)) (|:| |wcond| (-639 (-947 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 *5)))) (|:| -4291 (-639 (-1256 (-406 (-947 *5)))))))))) (-5 *1 (-919 *5 *6 *7 *8)))) (-4323 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-683 *9)) (-5 *4 (-639 (-1168))) (-5 *5 (-916)) (-4 *9 (-944 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-845) (-610 (-1168)))) (-4 *8 (-788)) (-5 *2 (-639 (-2 (|:| |eqzro| (-639 *9)) (|:| |neqzro| (-639 *9)) (|:| |wcond| (-639 (-947 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 *6)))) (|:| -4291 (-639 (-1256 (-406 (-947 *6)))))))))) (-5 *1 (-919 *6 *7 *8 *9)))) (-4323 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-683 *9)) (-5 *5 (-916)) (-4 *9 (-944 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-845) (-610 (-1168)))) (-4 *8 (-788)) (-5 *2 (-639 (-2 (|:| |eqzro| (-639 *9)) (|:| |neqzro| (-639 *9)) (|:| |wcond| (-639 (-947 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 *6)))) (|:| -4291 (-639 (-1256 (-406 (-947 *6)))))))))) (-5 *1 (-919 *6 *7 *8 *9)) (-5 *4 (-639 *9)))) (-4323 (*1 *2 *3) (-12 (-5 *3 (-683 *7)) (-4 *7 (-944 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *2 (-639 (-2 (|:| |eqzro| (-639 *7)) (|:| |neqzro| (-639 *7)) (|:| |wcond| (-639 (-947 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 *4)))) (|:| -4291 (-639 (-1256 (-406 (-947 *4)))))))))) (-5 *1 (-919 *4 *5 *6 *7)))) (-4323 (*1 *2 *3 *4) (-12 (-5 *3 (-683 *8)) (-5 *4 (-639 (-1168))) (-4 *8 (-944 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-845) (-610 (-1168)))) (-4 *7 (-788)) (-5 *2 (-639 (-2 (|:| |eqzro| (-639 *8)) (|:| |neqzro| (-639 *8)) (|:| |wcond| (-639 (-947 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 *5)))) (|:| -4291 (-639 (-1256 (-406 (-947 *5)))))))))) (-5 *1 (-919 *5 *6 *7 *8)))) (-4323 (*1 *2 *3 *4) (-12 (-5 *3 (-683 *8)) (-4 *8 (-944 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-845) (-610 (-1168)))) (-4 *7 (-788)) (-5 *2 (-639 (-2 (|:| |eqzro| (-639 *8)) (|:| |neqzro| (-639 *8)) (|:| |wcond| (-639 (-947 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 *5)))) (|:| -4291 (-639 (-1256 (-406 (-947 *5)))))))))) (-5 *1 (-919 *5 *6 *7 *8)) (-5 *4 (-639 *8))))) -(-10 -7 (-15 -4323 ((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|) (-639 |#4|))) (-15 -4323 ((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|) (-639 (-1168)))) (-15 -4323 ((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|))) (-15 -4323 ((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|) (-639 |#4|) (-916))) (-15 -4323 ((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|) (-639 (-1168)) (-916))) (-15 -4323 ((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|))))))))) (-683 |#4|) (-916))) (-15 -4323 ((-562) (-683 |#4|) (-639 |#4|) (-1150))) (-15 -4323 ((-562) (-683 |#4|) (-639 (-1168)) (-1150))) (-15 -4323 ((-562) (-683 |#4|) (-1150))) (-15 -4323 ((-562) (-683 |#4|) (-639 |#4|) (-916) (-1150))) (-15 -4323 ((-562) (-683 |#4|) (-639 (-1168)) (-916) (-1150))) (-15 -4323 ((-562) (-683 |#4|) (-916) (-1150))) (-15 -2495 ((-562) (-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|))))))))) (-1150))) (-15 -1780 ((-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|))))))))) (-1150))) (-15 -1627 ((-2 (|:| |rgl| (-639 (-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|)))))))))) (|:| |rgsz| (-562))) (-683 |#4|) (-639 (-406 (-947 |#1|))) (-766) (-1150) (-562))) (-15 -1306 ((-406 (-947 |#1|)) |#4|)) (-15 -1306 ((-683 (-406 (-947 |#1|))) (-683 |#4|))) (-15 -1306 ((-639 (-406 (-947 |#1|))) (-639 |#4|))) (-15 -2641 ((-639 (-406 (-947 |#1|))) (-639 (-1168)))) (-15 -2627 (|#4| (-947 |#1|))) (-15 -1320 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-639 |#4|)) (|:| |n0| (-639 |#4|))) (-639 |#4|) (-639 |#4|))) (-15 -4191 ((-639 (-2 (|:| -2172 (-766)) (|:| |eqns| (-639 (-2 (|:| |det| |#4|) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))))) (|:| |fgb| (-639 |#4|)))) (-683 |#4|) (-766))) (-15 -2481 ((-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|)))))) (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|)))))) (-639 |#4|))) (-15 -3334 ((-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|)))))) (-2 (|:| -1767 (-683 (-406 (-947 |#1|)))) (|:| |vec| (-639 (-406 (-947 |#1|)))) (|:| -2172 (-766)) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))))) (-15 -2190 ((-639 |#4|) |#4|)) (-15 -1699 ((-766) (-639 (-2 (|:| -2172 (-766)) (|:| |eqns| (-639 (-2 (|:| |det| |#4|) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))))) (|:| |fgb| (-639 |#4|)))))) (-15 -2829 ((-766) (-639 (-2 (|:| -2172 (-766)) (|:| |eqns| (-639 (-2 (|:| |det| |#4|) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))))) (|:| |fgb| (-639 |#4|)))))) (-15 -2018 ((-639 (-639 |#4|)) (-639 (-639 |#4|)))) (-15 -2477 ((-639 (-639 (-562))) (-562) (-562))) (-15 -2642 ((-112) (-639 |#4|) (-639 (-639 |#4|)))) (-15 -3480 ((-639 (-2 (|:| |det| |#4|) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562))))) (-683 |#4|) (-766))) (-15 -3771 ((-683 |#4|) (-683 |#4|) (-639 |#4|))) (-15 -2470 ((-2 (|:| |eqzro| (-639 |#4|)) (|:| |neqzro| (-639 |#4|)) (|:| |wcond| (-639 (-947 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1256 (-406 (-947 |#1|)))) (|:| -4291 (-639 (-1256 (-406 (-947 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562)))) (-683 |#4|) (-639 (-406 (-947 |#1|))) (-639 (-639 |#4|)) (-766) (-766) (-562))) (-15 -1858 (|#4| |#4|)) (-15 -1704 ((-112) (-639 |#4|))) (-15 -1704 ((-112) (-639 (-947 |#1|))))) -((-3012 (((-922) |#1| (-1168)) 17) (((-922) |#1| (-1168) (-1086 (-224))) 21)) (-2923 (((-922) |#1| |#1| (-1168) (-1086 (-224))) 19) (((-922) |#1| (-1168) (-1086 (-224))) 15))) -(((-920 |#1|) (-10 -7 (-15 -2923 ((-922) |#1| (-1168) (-1086 (-224)))) (-15 -2923 ((-922) |#1| |#1| (-1168) (-1086 (-224)))) (-15 -3012 ((-922) |#1| (-1168) (-1086 (-224)))) (-15 -3012 ((-922) |#1| (-1168)))) (-610 (-535))) (T -920)) -((-3012 (*1 *2 *3 *4) (-12 (-5 *4 (-1168)) (-5 *2 (-922)) (-5 *1 (-920 *3)) (-4 *3 (-610 (-535))))) (-3012 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1168)) (-5 *5 (-1086 (-224))) (-5 *2 (-922)) (-5 *1 (-920 *3)) (-4 *3 (-610 (-535))))) (-2923 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1168)) (-5 *5 (-1086 (-224))) (-5 *2 (-922)) (-5 *1 (-920 *3)) (-4 *3 (-610 (-535))))) (-2923 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1168)) (-5 *5 (-1086 (-224))) (-5 *2 (-922)) (-5 *1 (-920 *3)) (-4 *3 (-610 (-535)))))) -(-10 -7 (-15 -2923 ((-922) |#1| (-1168) (-1086 (-224)))) (-15 -2923 ((-922) |#1| |#1| (-1168) (-1086 (-224)))) (-15 -3012 ((-922) |#1| (-1168) (-1086 (-224)))) (-15 -3012 ((-922) |#1| (-1168)))) -((-1677 (($ $ (-1086 (-224)) (-1086 (-224)) (-1086 (-224))) 69)) (-1478 (((-1086 (-224)) $) 40)) (-1462 (((-1086 (-224)) $) 39)) (-1448 (((-1086 (-224)) $) 38)) (-3660 (((-639 (-639 (-224))) $) 43)) (-3907 (((-1086 (-224)) $) 41)) (-1513 (((-562) (-562)) 32)) (-2485 (((-562) (-562)) 28)) (-3047 (((-562) (-562)) 30)) (-4372 (((-112) (-112)) 35)) (-2307 (((-562)) 31)) (-2776 (($ $ (-1086 (-224))) 72) (($ $) 73)) (-2616 (($ (-1 (-938 (-224)) (-224)) (-1086 (-224))) 77) (($ (-1 (-938 (-224)) (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224))) 78)) (-2923 (($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1086 (-224))) 80) (($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224))) 81) (($ $ (-1086 (-224))) 75)) (-2626 (((-562)) 36)) (-4284 (((-562)) 27)) (-2428 (((-562)) 29)) (-2259 (((-639 (-639 (-938 (-224)))) $) 93)) (-2478 (((-112) (-112)) 37)) (-4053 (((-857) $) 92)) (-3101 (((-112)) 34))) -(((-921) (-13 (-969) (-10 -8 (-15 -2616 ($ (-1 (-938 (-224)) (-224)) (-1086 (-224)))) (-15 -2616 ($ (-1 (-938 (-224)) (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224)))) (-15 -2923 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1086 (-224)))) (-15 -2923 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224)))) (-15 -2923 ($ $ (-1086 (-224)))) (-15 -1677 ($ $ (-1086 (-224)) (-1086 (-224)) (-1086 (-224)))) (-15 -2776 ($ $ (-1086 (-224)))) (-15 -2776 ($ $)) (-15 -3907 ((-1086 (-224)) $)) (-15 -3660 ((-639 (-639 (-224))) $)) (-15 -4284 ((-562))) (-15 -2485 ((-562) (-562))) (-15 -2428 ((-562))) (-15 -3047 ((-562) (-562))) (-15 -2307 ((-562))) (-15 -1513 ((-562) (-562))) (-15 -3101 ((-112))) (-15 -4372 ((-112) (-112))) (-15 -2626 ((-562))) (-15 -2478 ((-112) (-112)))))) (T -921)) -((-2616 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-938 (-224)) (-224))) (-5 *3 (-1086 (-224))) (-5 *1 (-921)))) (-2616 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-938 (-224)) (-224))) (-5 *3 (-1086 (-224))) (-5 *1 (-921)))) (-2923 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1086 (-224))) (-5 *1 (-921)))) (-2923 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1086 (-224))) (-5 *1 (-921)))) (-2923 (*1 *1 *1 *2) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-921)))) (-1677 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-921)))) (-2776 (*1 *1 *1 *2) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-921)))) (-2776 (*1 *1 *1) (-5 *1 (-921))) (-3907 (*1 *2 *1) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-921)))) (-3660 (*1 *2 *1) (-12 (-5 *2 (-639 (-639 (-224)))) (-5 *1 (-921)))) (-4284 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-921)))) (-2485 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-921)))) (-2428 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-921)))) (-3047 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-921)))) (-2307 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-921)))) (-1513 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-921)))) (-3101 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-921)))) (-4372 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-921)))) (-2626 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-921)))) (-2478 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-921))))) -(-13 (-969) (-10 -8 (-15 -2616 ($ (-1 (-938 (-224)) (-224)) (-1086 (-224)))) (-15 -2616 ($ (-1 (-938 (-224)) (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224)))) (-15 -2923 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1086 (-224)))) (-15 -2923 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1 (-224) (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224)))) (-15 -2923 ($ $ (-1086 (-224)))) (-15 -1677 ($ $ (-1086 (-224)) (-1086 (-224)) (-1086 (-224)))) (-15 -2776 ($ $ (-1086 (-224)))) (-15 -2776 ($ $)) (-15 -3907 ((-1086 (-224)) $)) (-15 -3660 ((-639 (-639 (-224))) $)) (-15 -4284 ((-562))) (-15 -2485 ((-562) (-562))) (-15 -2428 ((-562))) (-15 -3047 ((-562) (-562))) (-15 -2307 ((-562))) (-15 -1513 ((-562) (-562))) (-15 -3101 ((-112))) (-15 -4372 ((-112) (-112))) (-15 -2626 ((-562))) (-15 -2478 ((-112) (-112))))) -((-1677 (($ $ (-1086 (-224))) 69) (($ $ (-1086 (-224)) (-1086 (-224))) 70)) (-1462 (((-1086 (-224)) $) 44)) (-1448 (((-1086 (-224)) $) 43)) (-3907 (((-1086 (-224)) $) 45)) (-4171 (((-562) (-562)) 37)) (-2801 (((-562) (-562)) 33)) (-2150 (((-562) (-562)) 35)) (-2874 (((-112) (-112)) 39)) (-3822 (((-562)) 36)) (-2776 (($ $ (-1086 (-224))) 73) (($ $) 74)) (-2616 (($ (-1 (-938 (-224)) (-224)) (-1086 (-224))) 83) (($ (-1 (-938 (-224)) (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224))) 84)) (-3012 (($ (-1 (-224) (-224)) (-1086 (-224))) 91) (($ (-1 (-224) (-224))) 94)) (-2923 (($ (-1 (-224) (-224)) (-1086 (-224))) 78) (($ (-1 (-224) (-224)) (-1086 (-224)) (-1086 (-224))) 79) (($ (-639 (-1 (-224) (-224))) (-1086 (-224))) 86) (($ (-639 (-1 (-224) (-224))) (-1086 (-224)) (-1086 (-224))) 87) (($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1086 (-224))) 80) (($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224))) 81) (($ $ (-1086 (-224))) 75)) (-3562 (((-112) $) 40)) (-2534 (((-562)) 41)) (-1626 (((-562)) 32)) (-1885 (((-562)) 34)) (-2259 (((-639 (-639 (-938 (-224)))) $) 23)) (-3103 (((-112) (-112)) 42)) (-4053 (((-857) $) 105)) (-2624 (((-112)) 38))) -(((-922) (-13 (-950) (-10 -8 (-15 -2923 ($ (-1 (-224) (-224)) (-1086 (-224)))) (-15 -2923 ($ (-1 (-224) (-224)) (-1086 (-224)) (-1086 (-224)))) (-15 -2923 ($ (-639 (-1 (-224) (-224))) (-1086 (-224)))) (-15 -2923 ($ (-639 (-1 (-224) (-224))) (-1086 (-224)) (-1086 (-224)))) (-15 -2923 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1086 (-224)))) (-15 -2923 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224)))) (-15 -2616 ($ (-1 (-938 (-224)) (-224)) (-1086 (-224)))) (-15 -2616 ($ (-1 (-938 (-224)) (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224)))) (-15 -3012 ($ (-1 (-224) (-224)) (-1086 (-224)))) (-15 -3012 ($ (-1 (-224) (-224)))) (-15 -2923 ($ $ (-1086 (-224)))) (-15 -3562 ((-112) $)) (-15 -1677 ($ $ (-1086 (-224)))) (-15 -1677 ($ $ (-1086 (-224)) (-1086 (-224)))) (-15 -2776 ($ $ (-1086 (-224)))) (-15 -2776 ($ $)) (-15 -3907 ((-1086 (-224)) $)) (-15 -1626 ((-562))) (-15 -2801 ((-562) (-562))) (-15 -1885 ((-562))) (-15 -2150 ((-562) (-562))) (-15 -3822 ((-562))) (-15 -4171 ((-562) (-562))) (-15 -2624 ((-112))) (-15 -2874 ((-112) (-112))) (-15 -2534 ((-562))) (-15 -3103 ((-112) (-112)))))) (T -922)) -((-2923 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1086 (-224))) (-5 *1 (-922)))) (-2923 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1086 (-224))) (-5 *1 (-922)))) (-2923 (*1 *1 *2 *3) (-12 (-5 *2 (-639 (-1 (-224) (-224)))) (-5 *3 (-1086 (-224))) (-5 *1 (-922)))) (-2923 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-639 (-1 (-224) (-224)))) (-5 *3 (-1086 (-224))) (-5 *1 (-922)))) (-2923 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1086 (-224))) (-5 *1 (-922)))) (-2923 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1086 (-224))) (-5 *1 (-922)))) (-2616 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-938 (-224)) (-224))) (-5 *3 (-1086 (-224))) (-5 *1 (-922)))) (-2616 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-938 (-224)) (-224))) (-5 *3 (-1086 (-224))) (-5 *1 (-922)))) (-3012 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1086 (-224))) (-5 *1 (-922)))) (-3012 (*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-922)))) (-2923 (*1 *1 *1 *2) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-922)))) (-3562 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-922)))) (-1677 (*1 *1 *1 *2) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-922)))) (-1677 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-922)))) (-2776 (*1 *1 *1 *2) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-922)))) (-2776 (*1 *1 *1) (-5 *1 (-922))) (-3907 (*1 *2 *1) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-922)))) (-1626 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-922)))) (-2801 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-922)))) (-1885 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-922)))) (-2150 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-922)))) (-3822 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-922)))) (-4171 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-922)))) (-2624 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922)))) (-2874 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922)))) (-2534 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-922)))) (-3103 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922))))) -(-13 (-950) (-10 -8 (-15 -2923 ($ (-1 (-224) (-224)) (-1086 (-224)))) (-15 -2923 ($ (-1 (-224) (-224)) (-1086 (-224)) (-1086 (-224)))) (-15 -2923 ($ (-639 (-1 (-224) (-224))) (-1086 (-224)))) (-15 -2923 ($ (-639 (-1 (-224) (-224))) (-1086 (-224)) (-1086 (-224)))) (-15 -2923 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1086 (-224)))) (-15 -2923 ($ (-1 (-224) (-224)) (-1 (-224) (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224)))) (-15 -2616 ($ (-1 (-938 (-224)) (-224)) (-1086 (-224)))) (-15 -2616 ($ (-1 (-938 (-224)) (-224)) (-1086 (-224)) (-1086 (-224)) (-1086 (-224)))) (-15 -3012 ($ (-1 (-224) (-224)) (-1086 (-224)))) (-15 -3012 ($ (-1 (-224) (-224)))) (-15 -2923 ($ $ (-1086 (-224)))) (-15 -3562 ((-112) $)) (-15 -1677 ($ $ (-1086 (-224)))) (-15 -1677 ($ $ (-1086 (-224)) (-1086 (-224)))) (-15 -2776 ($ $ (-1086 (-224)))) (-15 -2776 ($ $)) (-15 -3907 ((-1086 (-224)) $)) (-15 -1626 ((-562))) (-15 -2801 ((-562) (-562))) (-15 -1885 ((-562))) (-15 -2150 ((-562) (-562))) (-15 -3822 ((-562))) (-15 -4171 ((-562) (-562))) (-15 -2624 ((-112))) (-15 -2874 ((-112) (-112))) (-15 -2534 ((-562))) (-15 -3103 ((-112) (-112))))) -((-1408 (((-639 (-1086 (-224))) (-639 (-639 (-938 (-224))))) 24))) -(((-923) (-10 -7 (-15 -1408 ((-639 (-1086 (-224))) (-639 (-639 (-938 (-224)))))))) (T -923)) -((-1408 (*1 *2 *3) (-12 (-5 *3 (-639 (-639 (-938 (-224))))) (-5 *2 (-639 (-1086 (-224)))) (-5 *1 (-923))))) -(-10 -7 (-15 -1408 ((-639 (-1086 (-224))) (-639 (-639 (-938 (-224))))))) -((-3778 ((|#2| |#2|) 26)) (-3097 ((|#2| |#2|) 27)) (-1497 ((|#2| |#2|) 25)) (-3976 ((|#2| |#2| (-1150)) 24))) -(((-924 |#1| |#2|) (-10 -7 (-15 -3976 (|#2| |#2| (-1150))) (-15 -1497 (|#2| |#2|)) (-15 -3778 (|#2| |#2|)) (-15 -3097 (|#2| |#2|))) (-845) (-429 |#1|)) (T -924)) -((-3097 (*1 *2 *2) (-12 (-4 *3 (-845)) (-5 *1 (-924 *3 *2)) (-4 *2 (-429 *3)))) (-3778 (*1 *2 *2) (-12 (-4 *3 (-845)) (-5 *1 (-924 *3 *2)) (-4 *2 (-429 *3)))) (-1497 (*1 *2 *2) (-12 (-4 *3 (-845)) (-5 *1 (-924 *3 *2)) (-4 *2 (-429 *3)))) (-3976 (*1 *2 *2 *3) (-12 (-5 *3 (-1150)) (-4 *4 (-845)) (-5 *1 (-924 *4 *2)) (-4 *2 (-429 *4))))) -(-10 -7 (-15 -3976 (|#2| |#2| (-1150))) (-15 -1497 (|#2| |#2|)) (-15 -3778 (|#2| |#2|)) (-15 -3097 (|#2| |#2|))) -((-3778 (((-315 (-562)) (-1168)) 16)) (-3097 (((-315 (-562)) (-1168)) 14)) (-1497 (((-315 (-562)) (-1168)) 12)) (-3976 (((-315 (-562)) (-1168) (-1150)) 19))) -(((-925) (-10 -7 (-15 -3976 ((-315 (-562)) (-1168) (-1150))) (-15 -1497 ((-315 (-562)) (-1168))) (-15 -3778 ((-315 (-562)) (-1168))) (-15 -3097 ((-315 (-562)) (-1168))))) (T -925)) -((-3097 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-315 (-562))) (-5 *1 (-925)))) (-3778 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-315 (-562))) (-5 *1 (-925)))) (-1497 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-315 (-562))) (-5 *1 (-925)))) (-3976 (*1 *2 *3 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-1150)) (-5 *2 (-315 (-562))) (-5 *1 (-925))))) -(-10 -7 (-15 -3976 ((-315 (-562)) (-1168) (-1150))) (-15 -1497 ((-315 (-562)) (-1168))) (-15 -3778 ((-315 (-562)) (-1168))) (-15 -3097 ((-315 (-562)) (-1168)))) -((-2337 (((-884 |#1| |#3|) |#2| (-887 |#1|) (-884 |#1| |#3|)) 25)) (-3955 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) -(((-926 |#1| |#2| |#3|) (-10 -7 (-15 -3955 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2337 ((-884 |#1| |#3|) |#2| (-887 |#1|) (-884 |#1| |#3|)))) (-1092) (-881 |#1|) (-13 (-1092) (-1033 |#2|))) (T -926)) -((-2337 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 *6)) (-5 *4 (-887 *5)) (-4 *5 (-1092)) (-4 *6 (-13 (-1092) (-1033 *3))) (-4 *3 (-881 *5)) (-5 *1 (-926 *5 *3 *6)))) (-3955 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1092) (-1033 *5))) (-4 *5 (-881 *4)) (-4 *4 (-1092)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-926 *4 *5 *6))))) -(-10 -7 (-15 -3955 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2337 ((-884 |#1| |#3|) |#2| (-887 |#1|) (-884 |#1| |#3|)))) -((-2337 (((-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|)) 30))) -(((-927 |#1| |#2| |#3|) (-10 -7 (-15 -2337 ((-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|)))) (-1092) (-13 (-554) (-845) (-881 |#1|)) (-13 (-429 |#2|) (-610 (-887 |#1|)) (-881 |#1|) (-1033 (-608 $)))) (T -927)) -((-2337 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 *3)) (-4 *5 (-1092)) (-4 *3 (-13 (-429 *6) (-610 *4) (-881 *5) (-1033 (-608 $)))) (-5 *4 (-887 *5)) (-4 *6 (-13 (-554) (-845) (-881 *5))) (-5 *1 (-927 *5 *6 *3))))) -(-10 -7 (-15 -2337 ((-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|)))) -((-2337 (((-884 (-562) |#1|) |#1| (-887 (-562)) (-884 (-562) |#1|)) 13))) -(((-928 |#1|) (-10 -7 (-15 -2337 ((-884 (-562) |#1|) |#1| (-887 (-562)) (-884 (-562) |#1|)))) (-544)) (T -928)) -((-2337 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 (-562) *3)) (-5 *4 (-887 (-562))) (-4 *3 (-544)) (-5 *1 (-928 *3))))) -(-10 -7 (-15 -2337 ((-884 (-562) |#1|) |#1| (-887 (-562)) (-884 (-562) |#1|)))) -((-2337 (((-884 |#1| |#2|) (-608 |#2|) (-887 |#1|) (-884 |#1| |#2|)) 54))) -(((-929 |#1| |#2|) (-10 -7 (-15 -2337 ((-884 |#1| |#2|) (-608 |#2|) (-887 |#1|) (-884 |#1| |#2|)))) (-1092) (-13 (-845) (-1033 (-608 $)) (-610 (-887 |#1|)) (-881 |#1|))) (T -929)) -((-2337 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 *6)) (-5 *3 (-608 *6)) (-4 *5 (-1092)) (-4 *6 (-13 (-845) (-1033 (-608 $)) (-610 *4) (-881 *5))) (-5 *4 (-887 *5)) (-5 *1 (-929 *5 *6))))) -(-10 -7 (-15 -2337 ((-884 |#1| |#2|) (-608 |#2|) (-887 |#1|) (-884 |#1| |#2|)))) -((-2337 (((-880 |#1| |#2| |#3|) |#3| (-887 |#1|) (-880 |#1| |#2| |#3|)) 15))) -(((-930 |#1| |#2| |#3|) (-10 -7 (-15 -2337 ((-880 |#1| |#2| |#3|) |#3| (-887 |#1|) (-880 |#1| |#2| |#3|)))) (-1092) (-881 |#1|) (-660 |#2|)) (T -930)) -((-2337 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-880 *5 *6 *3)) (-5 *4 (-887 *5)) (-4 *5 (-1092)) (-4 *6 (-881 *5)) (-4 *3 (-660 *6)) (-5 *1 (-930 *5 *6 *3))))) -(-10 -7 (-15 -2337 ((-880 |#1| |#2| |#3|) |#3| (-887 |#1|) (-880 |#1| |#2| |#3|)))) -((-2337 (((-884 |#1| |#5|) |#5| (-887 |#1|) (-884 |#1| |#5|)) 17 (|has| |#3| (-881 |#1|))) (((-884 |#1| |#5|) |#5| (-887 |#1|) (-884 |#1| |#5|) (-1 (-884 |#1| |#5|) |#3| (-887 |#1|) (-884 |#1| |#5|))) 16))) -(((-931 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2337 ((-884 |#1| |#5|) |#5| (-887 |#1|) (-884 |#1| |#5|) (-1 (-884 |#1| |#5|) |#3| (-887 |#1|) (-884 |#1| |#5|)))) (IF (|has| |#3| (-881 |#1|)) (-15 -2337 ((-884 |#1| |#5|) |#5| (-887 |#1|) (-884 |#1| |#5|))) |%noBranch|)) (-1092) (-788) (-845) (-13 (-1044) (-845) (-881 |#1|)) (-13 (-944 |#4| |#2| |#3|) (-610 (-887 |#1|)))) (T -931)) -((-2337 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 *3)) (-4 *5 (-1092)) (-4 *3 (-13 (-944 *8 *6 *7) (-610 *4))) (-5 *4 (-887 *5)) (-4 *7 (-881 *5)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *8 (-13 (-1044) (-845) (-881 *5))) (-5 *1 (-931 *5 *6 *7 *8 *3)))) (-2337 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-884 *6 *3) *8 (-887 *6) (-884 *6 *3))) (-4 *8 (-845)) (-5 *2 (-884 *6 *3)) (-5 *4 (-887 *6)) (-4 *6 (-1092)) (-4 *3 (-13 (-944 *9 *7 *8) (-610 *4))) (-4 *7 (-788)) (-4 *9 (-13 (-1044) (-845) (-881 *6))) (-5 *1 (-931 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -2337 ((-884 |#1| |#5|) |#5| (-887 |#1|) (-884 |#1| |#5|) (-1 (-884 |#1| |#5|) |#3| (-887 |#1|) (-884 |#1| |#5|)))) (IF (|has| |#3| (-881 |#1|)) (-15 -2337 ((-884 |#1| |#5|) |#5| (-887 |#1|) (-884 |#1| |#5|))) |%noBranch|)) -((-3170 ((|#2| |#2| (-639 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) -(((-932 |#1| |#2| |#3|) (-10 -7 (-15 -3170 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3170 (|#2| |#2| (-639 (-1 (-112) |#3|))))) (-845) (-429 |#1|) (-1207)) (T -932)) -((-3170 (*1 *2 *2 *3) (-12 (-5 *3 (-639 (-1 (-112) *5))) (-4 *5 (-1207)) (-4 *4 (-845)) (-5 *1 (-932 *4 *2 *5)) (-4 *2 (-429 *4)))) (-3170 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1207)) (-4 *4 (-845)) (-5 *1 (-932 *4 *2 *5)) (-4 *2 (-429 *4))))) -(-10 -7 (-15 -3170 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3170 (|#2| |#2| (-639 (-1 (-112) |#3|))))) -((-3170 (((-315 (-562)) (-1168) (-639 (-1 (-112) |#1|))) 18) (((-315 (-562)) (-1168) (-1 (-112) |#1|)) 15))) -(((-933 |#1|) (-10 -7 (-15 -3170 ((-315 (-562)) (-1168) (-1 (-112) |#1|))) (-15 -3170 ((-315 (-562)) (-1168) (-639 (-1 (-112) |#1|))))) (-1207)) (T -933)) -((-3170 (*1 *2 *3 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-639 (-1 (-112) *5))) (-4 *5 (-1207)) (-5 *2 (-315 (-562))) (-5 *1 (-933 *5)))) (-3170 (*1 *2 *3 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1207)) (-5 *2 (-315 (-562))) (-5 *1 (-933 *5))))) -(-10 -7 (-15 -3170 ((-315 (-562)) (-1168) (-1 (-112) |#1|))) (-15 -3170 ((-315 (-562)) (-1168) (-639 (-1 (-112) |#1|))))) -((-2337 (((-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|)) 25))) -(((-934 |#1| |#2| |#3|) (-10 -7 (-15 -2337 ((-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|)))) (-1092) (-13 (-554) (-881 |#1|) (-610 (-887 |#1|))) (-987 |#2|)) (T -934)) -((-2337 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 *3)) (-4 *5 (-1092)) (-4 *3 (-987 *6)) (-4 *6 (-13 (-554) (-881 *5) (-610 *4))) (-5 *4 (-887 *5)) (-5 *1 (-934 *5 *6 *3))))) -(-10 -7 (-15 -2337 ((-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|)))) -((-2337 (((-884 |#1| (-1168)) (-1168) (-887 |#1|) (-884 |#1| (-1168))) 17))) -(((-935 |#1|) (-10 -7 (-15 -2337 ((-884 |#1| (-1168)) (-1168) (-887 |#1|) (-884 |#1| (-1168))))) (-1092)) (T -935)) -((-2337 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 (-1168))) (-5 *3 (-1168)) (-5 *4 (-887 *5)) (-4 *5 (-1092)) (-5 *1 (-935 *5))))) -(-10 -7 (-15 -2337 ((-884 |#1| (-1168)) (-1168) (-887 |#1|) (-884 |#1| (-1168))))) -((-1898 (((-884 |#1| |#3|) (-639 |#3|) (-639 (-887 |#1|)) (-884 |#1| |#3|) (-1 (-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|))) 33)) (-2337 (((-884 |#1| |#3|) (-639 |#3|) (-639 (-887 |#1|)) (-1 |#3| (-639 |#3|)) (-884 |#1| |#3|) (-1 (-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|))) 32))) -(((-936 |#1| |#2| |#3|) (-10 -7 (-15 -2337 ((-884 |#1| |#3|) (-639 |#3|) (-639 (-887 |#1|)) (-1 |#3| (-639 |#3|)) (-884 |#1| |#3|) (-1 (-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|)))) (-15 -1898 ((-884 |#1| |#3|) (-639 |#3|) (-639 (-887 |#1|)) (-884 |#1| |#3|) (-1 (-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|))))) (-1092) (-13 (-1044) (-845)) (-13 (-1044) (-610 (-887 |#1|)) (-1033 |#2|))) (T -936)) -((-1898 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-639 *8)) (-5 *4 (-639 (-887 *6))) (-5 *5 (-1 (-884 *6 *8) *8 (-887 *6) (-884 *6 *8))) (-4 *6 (-1092)) (-4 *8 (-13 (-1044) (-610 (-887 *6)) (-1033 *7))) (-5 *2 (-884 *6 *8)) (-4 *7 (-13 (-1044) (-845))) (-5 *1 (-936 *6 *7 *8)))) (-2337 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-639 (-887 *7))) (-5 *5 (-1 *9 (-639 *9))) (-5 *6 (-1 (-884 *7 *9) *9 (-887 *7) (-884 *7 *9))) (-4 *7 (-1092)) (-4 *9 (-13 (-1044) (-610 (-887 *7)) (-1033 *8))) (-5 *2 (-884 *7 *9)) (-5 *3 (-639 *9)) (-4 *8 (-13 (-1044) (-845))) (-5 *1 (-936 *7 *8 *9))))) -(-10 -7 (-15 -2337 ((-884 |#1| |#3|) (-639 |#3|) (-639 (-887 |#1|)) (-1 |#3| (-639 |#3|)) (-884 |#1| |#3|) (-1 (-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|)))) (-15 -1898 ((-884 |#1| |#3|) (-639 |#3|) (-639 (-887 |#1|)) (-884 |#1| |#3|) (-1 (-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|))))) -((-2996 (((-1164 (-406 (-562))) (-562)) 62)) (-2302 (((-1164 (-562)) (-562)) 65)) (-1829 (((-1164 (-562)) (-562)) 59)) (-3489 (((-562) (-1164 (-562))) 54)) (-3795 (((-1164 (-406 (-562))) (-562)) 48)) (-3612 (((-1164 (-562)) (-562)) 37)) (-2286 (((-1164 (-562)) (-562)) 67)) (-1936 (((-1164 (-562)) (-562)) 66)) (-3443 (((-1164 (-406 (-562))) (-562)) 50))) -(((-937) (-10 -7 (-15 -3443 ((-1164 (-406 (-562))) (-562))) (-15 -1936 ((-1164 (-562)) (-562))) (-15 -2286 ((-1164 (-562)) (-562))) (-15 -3612 ((-1164 (-562)) (-562))) (-15 -3795 ((-1164 (-406 (-562))) (-562))) (-15 -3489 ((-562) (-1164 (-562)))) (-15 -1829 ((-1164 (-562)) (-562))) (-15 -2302 ((-1164 (-562)) (-562))) (-15 -2996 ((-1164 (-406 (-562))) (-562))))) (T -937)) -((-2996 (*1 *2 *3) (-12 (-5 *2 (-1164 (-406 (-562)))) (-5 *1 (-937)) (-5 *3 (-562)))) (-2302 (*1 *2 *3) (-12 (-5 *2 (-1164 (-562))) (-5 *1 (-937)) (-5 *3 (-562)))) (-1829 (*1 *2 *3) (-12 (-5 *2 (-1164 (-562))) (-5 *1 (-937)) (-5 *3 (-562)))) (-3489 (*1 *2 *3) (-12 (-5 *3 (-1164 (-562))) (-5 *2 (-562)) (-5 *1 (-937)))) (-3795 (*1 *2 *3) (-12 (-5 *2 (-1164 (-406 (-562)))) (-5 *1 (-937)) (-5 *3 (-562)))) (-3612 (*1 *2 *3) (-12 (-5 *2 (-1164 (-562))) (-5 *1 (-937)) (-5 *3 (-562)))) (-2286 (*1 *2 *3) (-12 (-5 *2 (-1164 (-562))) (-5 *1 (-937)) (-5 *3 (-562)))) (-1936 (*1 *2 *3) (-12 (-5 *2 (-1164 (-562))) (-5 *1 (-937)) (-5 *3 (-562)))) (-3443 (*1 *2 *3) (-12 (-5 *2 (-1164 (-406 (-562)))) (-5 *1 (-937)) (-5 *3 (-562))))) -(-10 -7 (-15 -3443 ((-1164 (-406 (-562))) (-562))) (-15 -1936 ((-1164 (-562)) (-562))) (-15 -2286 ((-1164 (-562)) (-562))) (-15 -3612 ((-1164 (-562)) (-562))) (-15 -3795 ((-1164 (-406 (-562))) (-562))) (-15 -3489 ((-562) (-1164 (-562)))) (-15 -1829 ((-1164 (-562)) (-562))) (-15 -2302 ((-1164 (-562)) (-562))) (-15 -2996 ((-1164 (-406 (-562))) (-562)))) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2910 (($ (-766)) NIL (|has| |#1| (-23)))) (-3655 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4404)))) (-1706 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-845)))) (-3737 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4404))) (($ $) NIL (-12 (|has| $ (-6 -4404)) (|has| |#1| (-845))))) (-1395 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-845)))) (-3735 (((-112) $ (-766)) NIL)) (-4200 ((|#1| $ (-562) |#1|) 11 (|has| $ (-6 -4404))) ((|#1| $ (-1223 (-562)) |#1|) NIL (|has| $ (-6 -4404)))) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-3329 (($) NIL T CONST)) (-2673 (($ $) NIL (|has| $ (-6 -4404)))) (-2676 (($ $) NIL)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1954 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4403)))) (-1507 ((|#1| $ (-562) |#1|) NIL (|has| $ (-6 -4404)))) (-1420 ((|#1| $ (-562)) NIL)) (-4265 (((-562) (-1 (-112) |#1|) $) NIL) (((-562) |#1| $) NIL (|has| |#1| (-1092))) (((-562) |#1| $ (-562)) NIL (|has| |#1| (-1092)))) (-1460 (($ (-639 |#1|)) 13)) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-2840 (((-683 |#1|) $ $) NIL (|has| |#1| (-1044)))) (-1458 (($ (-766) |#1|) 8)) (-4172 (((-112) $ (-766)) NIL)) (-1849 (((-562) $) 10 (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-4103 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-845)))) (-2123 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1929 (((-562) $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-1491 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3872 ((|#1| $) NIL (-12 (|has| |#1| (-997)) (|has| |#1| (-1044))))) (-4147 (((-112) $ (-766)) NIL)) (-3641 ((|#1| $) NIL (-12 (|has| |#1| (-997)) (|has| |#1| (-1044))))) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-3295 (($ |#1| $ (-562)) NIL) (($ $ $ (-562)) NIL)) (-3336 (((-639 (-562)) $) NIL)) (-1987 (((-112) (-562) $) NIL)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-1421 ((|#1| $) NIL (|has| (-562) (-845)))) (-1963 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3510 (($ $ |#1|) NIL (|has| $ (-6 -4404)))) (-4316 (($ $ (-639 |#1|)) 26)) (-3008 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) NIL)) (-2716 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2366 (((-639 |#1|) $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) NIL)) (-2343 ((|#1| $ (-562) |#1|) NIL) ((|#1| $ (-562)) 20) (($ $ (-1223 (-562))) NIL)) (-2852 ((|#1| $ $) NIL (|has| |#1| (-1044)))) (-4340 (((-916) $) 16)) (-2880 (($ $ (-562)) NIL) (($ $ (-1223 (-562))) NIL)) (-3247 (($ $ $) 24)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2694 (($ $ $ (-562)) NIL (|has| $ (-6 -4404)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| |#1| (-610 (-535)))) (($ (-639 |#1|)) 17)) (-4064 (($ (-639 |#1|)) NIL)) (-2767 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-639 $)) NIL)) (-4053 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-2879 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1771 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1761 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1847 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1836 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-562) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-721))) (($ $ |#1|) NIL (|has| |#1| (-721)))) (-3492 (((-766) $) 14 (|has| $ (-6 -4403))))) -(((-938 |#1|) (-975 |#1|) (-1044)) (T -938)) -NIL -(-975 |#1|) -((-1457 (((-480 |#1| |#2|) (-947 |#2|)) 20)) (-2889 (((-246 |#1| |#2|) (-947 |#2|)) 33)) (-3817 (((-947 |#2|) (-480 |#1| |#2|)) 25)) (-2529 (((-246 |#1| |#2|) (-480 |#1| |#2|)) 55)) (-3644 (((-947 |#2|) (-246 |#1| |#2|)) 30)) (-2178 (((-480 |#1| |#2|) (-246 |#1| |#2|)) 46))) -(((-939 |#1| |#2|) (-10 -7 (-15 -2178 ((-480 |#1| |#2|) (-246 |#1| |#2|))) (-15 -2529 ((-246 |#1| |#2|) (-480 |#1| |#2|))) (-15 -1457 ((-480 |#1| |#2|) (-947 |#2|))) (-15 -3817 ((-947 |#2|) (-480 |#1| |#2|))) (-15 -3644 ((-947 |#2|) (-246 |#1| |#2|))) (-15 -2889 ((-246 |#1| |#2|) (-947 |#2|)))) (-639 (-1168)) (-1044)) (T -939)) -((-2889 (*1 *2 *3) (-12 (-5 *3 (-947 *5)) (-4 *5 (-1044)) (-5 *2 (-246 *4 *5)) (-5 *1 (-939 *4 *5)) (-14 *4 (-639 (-1168))))) (-3644 (*1 *2 *3) (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-639 (-1168))) (-4 *5 (-1044)) (-5 *2 (-947 *5)) (-5 *1 (-939 *4 *5)))) (-3817 (*1 *2 *3) (-12 (-5 *3 (-480 *4 *5)) (-14 *4 (-639 (-1168))) (-4 *5 (-1044)) (-5 *2 (-947 *5)) (-5 *1 (-939 *4 *5)))) (-1457 (*1 *2 *3) (-12 (-5 *3 (-947 *5)) (-4 *5 (-1044)) (-5 *2 (-480 *4 *5)) (-5 *1 (-939 *4 *5)) (-14 *4 (-639 (-1168))))) (-2529 (*1 *2 *3) (-12 (-5 *3 (-480 *4 *5)) (-14 *4 (-639 (-1168))) (-4 *5 (-1044)) (-5 *2 (-246 *4 *5)) (-5 *1 (-939 *4 *5)))) (-2178 (*1 *2 *3) (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-639 (-1168))) (-4 *5 (-1044)) (-5 *2 (-480 *4 *5)) (-5 *1 (-939 *4 *5))))) -(-10 -7 (-15 -2178 ((-480 |#1| |#2|) (-246 |#1| |#2|))) (-15 -2529 ((-246 |#1| |#2|) (-480 |#1| |#2|))) (-15 -1457 ((-480 |#1| |#2|) (-947 |#2|))) (-15 -3817 ((-947 |#2|) (-480 |#1| |#2|))) (-15 -3644 ((-947 |#2|) (-246 |#1| |#2|))) (-15 -2889 ((-246 |#1| |#2|) (-947 |#2|)))) -((-1982 (((-639 |#2|) |#2| |#2|) 10)) (-3205 (((-766) (-639 |#1|)) 37 (|has| |#1| (-843)))) (-1334 (((-639 |#2|) |#2|) 11)) (-2392 (((-766) (-639 |#1|) (-562) (-562)) 39 (|has| |#1| (-843)))) (-3688 ((|#1| |#2|) 32 (|has| |#1| (-843))))) -(((-940 |#1| |#2|) (-10 -7 (-15 -1982 ((-639 |#2|) |#2| |#2|)) (-15 -1334 ((-639 |#2|) |#2|)) (IF (|has| |#1| (-843)) (PROGN (-15 -3688 (|#1| |#2|)) (-15 -3205 ((-766) (-639 |#1|))) (-15 -2392 ((-766) (-639 |#1|) (-562) (-562)))) |%noBranch|)) (-362) (-1232 |#1|)) (T -940)) -((-2392 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-639 *5)) (-5 *4 (-562)) (-4 *5 (-843)) (-4 *5 (-362)) (-5 *2 (-766)) (-5 *1 (-940 *5 *6)) (-4 *6 (-1232 *5)))) (-3205 (*1 *2 *3) (-12 (-5 *3 (-639 *4)) (-4 *4 (-843)) (-4 *4 (-362)) (-5 *2 (-766)) (-5 *1 (-940 *4 *5)) (-4 *5 (-1232 *4)))) (-3688 (*1 *2 *3) (-12 (-4 *2 (-362)) (-4 *2 (-843)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1232 *2)))) (-1334 (*1 *2 *3) (-12 (-4 *4 (-362)) (-5 *2 (-639 *3)) (-5 *1 (-940 *4 *3)) (-4 *3 (-1232 *4)))) (-1982 (*1 *2 *3 *3) (-12 (-4 *4 (-362)) (-5 *2 (-639 *3)) (-5 *1 (-940 *4 *3)) (-4 *3 (-1232 *4))))) -(-10 -7 (-15 -1982 ((-639 |#2|) |#2| |#2|)) (-15 -1334 ((-639 |#2|) |#2|)) (IF (|has| |#1| (-843)) (PROGN (-15 -3688 (|#1| |#2|)) (-15 -3205 ((-766) (-639 |#1|))) (-15 -2392 ((-766) (-639 |#1|) (-562) (-562)))) |%noBranch|)) -((-4152 (((-947 |#2|) (-1 |#2| |#1|) (-947 |#1|)) 19))) -(((-941 |#1| |#2|) (-10 -7 (-15 -4152 ((-947 |#2|) (-1 |#2| |#1|) (-947 |#1|)))) (-1044) (-1044)) (T -941)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-947 *5)) (-4 *5 (-1044)) (-4 *6 (-1044)) (-5 *2 (-947 *6)) (-5 *1 (-941 *5 *6))))) -(-10 -7 (-15 -4152 ((-947 |#2|) (-1 |#2| |#1|) (-947 |#1|)))) -((-1602 (((-1229 |#1| (-947 |#2|)) (-947 |#2|) (-1252 |#1|)) 18))) -(((-942 |#1| |#2|) (-10 -7 (-15 -1602 ((-1229 |#1| (-947 |#2|)) (-947 |#2|) (-1252 |#1|)))) (-1168) (-1044)) (T -942)) -((-1602 (*1 *2 *3 *4) (-12 (-5 *4 (-1252 *5)) (-14 *5 (-1168)) (-4 *6 (-1044)) (-5 *2 (-1229 *5 (-947 *6))) (-5 *1 (-942 *5 *6)) (-5 *3 (-947 *6))))) -(-10 -7 (-15 -1602 ((-1229 |#1| (-947 |#2|)) (-947 |#2|) (-1252 |#1|)))) -((-1578 (((-766) $) 71) (((-766) $ (-639 |#4|)) 74)) (-1977 (($ $) 172)) (-3788 (((-417 $) $) 164)) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) 115)) (-4048 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL) (((-3 (-562) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-3960 ((|#2| $) NIL) (((-406 (-562)) $) NIL) (((-562) $) NIL) ((|#4| $) 59)) (-2355 (($ $ $ |#4|) 76)) (-3449 (((-683 (-562)) (-683 $)) NIL) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL) (((-2 (|:| -1767 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) 105) (((-683 |#2|) (-683 $)) 98)) (-2578 (($ $) 179) (($ $ |#4|) 182)) (-1585 (((-639 $) $) 63)) (-2337 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 198) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) 191)) (-1869 (((-639 $) $) 28)) (-1377 (($ |#2| |#3|) NIL) (($ $ |#4| (-766)) NIL) (($ $ (-639 |#4|) (-639 (-766))) 57)) (-3851 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $ |#4|) 161)) (-4025 (((-3 (-639 $) "failed") $) 42)) (-1778 (((-3 (-639 $) "failed") $) 31)) (-4270 (((-3 (-2 (|:| |var| |#4|) (|:| -1300 (-766))) "failed") $) 47)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 108)) (-3586 (((-417 (-1164 $)) (-1164 $)) 121)) (-3468 (((-417 (-1164 $)) (-1164 $)) 119)) (-1635 (((-417 $) $) 139)) (-1433 (($ $ (-639 (-293 $))) 21) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-639 |#4|) (-639 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-639 |#4|) (-639 $)) NIL)) (-2736 (($ $ |#4|) 78)) (-4208 (((-887 (-378)) $) 212) (((-887 (-562)) $) 205) (((-535) $) 220)) (-2201 ((|#2| $) NIL) (($ $ |#4|) 174)) (-1870 (((-3 (-1256 $) "failed") (-683 $)) 153)) (-2266 ((|#2| $ |#3|) NIL) (($ $ |#4| (-766)) 52) (($ $ (-639 |#4|) (-639 (-766))) 55)) (-2059 (((-3 $ "failed") $) 155)) (-1761 (((-112) $ $) 185))) -(((-943 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2602 ((-1164 |#1|) (-1164 |#1|) (-1164 |#1|))) (-15 -3788 ((-417 |#1|) |#1|)) (-15 -1977 (|#1| |#1|)) (-15 -2059 ((-3 |#1| "failed") |#1|)) (-15 -1761 ((-112) |#1| |#1|)) (-15 -4208 ((-535) |#1|)) (-15 -4208 ((-887 (-562)) |#1|)) (-15 -4208 ((-887 (-378)) |#1|)) (-15 -2337 ((-884 (-562) |#1|) |#1| (-887 (-562)) (-884 (-562) |#1|))) (-15 -2337 ((-884 (-378) |#1|) |#1| (-887 (-378)) (-884 (-378) |#1|))) (-15 -1635 ((-417 |#1|) |#1|)) (-15 -3468 ((-417 (-1164 |#1|)) (-1164 |#1|))) (-15 -3586 ((-417 (-1164 |#1|)) (-1164 |#1|))) (-15 -2654 ((-3 (-639 (-1164 |#1|)) "failed") (-639 (-1164 |#1|)) (-1164 |#1|))) (-15 -1870 ((-3 (-1256 |#1|) "failed") (-683 |#1|))) (-15 -2578 (|#1| |#1| |#4|)) (-15 -2201 (|#1| |#1| |#4|)) (-15 -2736 (|#1| |#1| |#4|)) (-15 -2355 (|#1| |#1| |#1| |#4|)) (-15 -1585 ((-639 |#1|) |#1|)) (-15 -1578 ((-766) |#1| (-639 |#4|))) (-15 -1578 ((-766) |#1|)) (-15 -4270 ((-3 (-2 (|:| |var| |#4|) (|:| -1300 (-766))) "failed") |#1|)) (-15 -4025 ((-3 (-639 |#1|) "failed") |#1|)) (-15 -1778 ((-3 (-639 |#1|) "failed") |#1|)) (-15 -1377 (|#1| |#1| (-639 |#4|) (-639 (-766)))) (-15 -1377 (|#1| |#1| |#4| (-766))) (-15 -3851 ((-2 (|:| -3380 |#1|) (|:| -1441 |#1|)) |#1| |#1| |#4|)) (-15 -1869 ((-639 |#1|) |#1|)) (-15 -2266 (|#1| |#1| (-639 |#4|) (-639 (-766)))) (-15 -2266 (|#1| |#1| |#4| (-766))) (-15 -3449 ((-683 |#2|) (-683 |#1|))) (-15 -3449 ((-2 (|:| -1767 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 |#1|) (-1256 |#1|))) (-15 -3449 ((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 |#1|) (-1256 |#1|))) (-15 -3449 ((-683 (-562)) (-683 |#1|))) (-15 -4048 ((-3 |#4| "failed") |#1|)) (-15 -3960 (|#4| |#1|)) (-15 -1433 (|#1| |#1| (-639 |#4|) (-639 |#1|))) (-15 -1433 (|#1| |#1| |#4| |#1|)) (-15 -1433 (|#1| |#1| (-639 |#4|) (-639 |#2|))) (-15 -1433 (|#1| |#1| |#4| |#2|)) (-15 -1433 (|#1| |#1| (-639 |#1|) (-639 |#1|))) (-15 -1433 (|#1| |#1| |#1| |#1|)) (-15 -1433 (|#1| |#1| (-293 |#1|))) (-15 -1433 (|#1| |#1| (-639 (-293 |#1|)))) (-15 -1377 (|#1| |#2| |#3|)) (-15 -2266 (|#2| |#1| |#3|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -3960 ((-562) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3960 ((-406 (-562)) |#1|)) (-15 -3960 (|#2| |#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -2201 (|#2| |#1|)) (-15 -2578 (|#1| |#1|))) (-944 |#2| |#3| |#4|) (-1044) (-788) (-845)) (T -943)) -NIL -(-10 -8 (-15 -2602 ((-1164 |#1|) (-1164 |#1|) (-1164 |#1|))) (-15 -3788 ((-417 |#1|) |#1|)) (-15 -1977 (|#1| |#1|)) (-15 -2059 ((-3 |#1| "failed") |#1|)) (-15 -1761 ((-112) |#1| |#1|)) (-15 -4208 ((-535) |#1|)) (-15 -4208 ((-887 (-562)) |#1|)) (-15 -4208 ((-887 (-378)) |#1|)) (-15 -2337 ((-884 (-562) |#1|) |#1| (-887 (-562)) (-884 (-562) |#1|))) (-15 -2337 ((-884 (-378) |#1|) |#1| (-887 (-378)) (-884 (-378) |#1|))) (-15 -1635 ((-417 |#1|) |#1|)) (-15 -3468 ((-417 (-1164 |#1|)) (-1164 |#1|))) (-15 -3586 ((-417 (-1164 |#1|)) (-1164 |#1|))) (-15 -2654 ((-3 (-639 (-1164 |#1|)) "failed") (-639 (-1164 |#1|)) (-1164 |#1|))) (-15 -1870 ((-3 (-1256 |#1|) "failed") (-683 |#1|))) (-15 -2578 (|#1| |#1| |#4|)) (-15 -2201 (|#1| |#1| |#4|)) (-15 -2736 (|#1| |#1| |#4|)) (-15 -2355 (|#1| |#1| |#1| |#4|)) (-15 -1585 ((-639 |#1|) |#1|)) (-15 -1578 ((-766) |#1| (-639 |#4|))) (-15 -1578 ((-766) |#1|)) (-15 -4270 ((-3 (-2 (|:| |var| |#4|) (|:| -1300 (-766))) "failed") |#1|)) (-15 -4025 ((-3 (-639 |#1|) "failed") |#1|)) (-15 -1778 ((-3 (-639 |#1|) "failed") |#1|)) (-15 -1377 (|#1| |#1| (-639 |#4|) (-639 (-766)))) (-15 -1377 (|#1| |#1| |#4| (-766))) (-15 -3851 ((-2 (|:| -3380 |#1|) (|:| -1441 |#1|)) |#1| |#1| |#4|)) (-15 -1869 ((-639 |#1|) |#1|)) (-15 -2266 (|#1| |#1| (-639 |#4|) (-639 (-766)))) (-15 -2266 (|#1| |#1| |#4| (-766))) (-15 -3449 ((-683 |#2|) (-683 |#1|))) (-15 -3449 ((-2 (|:| -1767 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 |#1|) (-1256 |#1|))) (-15 -3449 ((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 |#1|) (-1256 |#1|))) (-15 -3449 ((-683 (-562)) (-683 |#1|))) (-15 -4048 ((-3 |#4| "failed") |#1|)) (-15 -3960 (|#4| |#1|)) (-15 -1433 (|#1| |#1| (-639 |#4|) (-639 |#1|))) (-15 -1433 (|#1| |#1| |#4| |#1|)) (-15 -1433 (|#1| |#1| (-639 |#4|) (-639 |#2|))) (-15 -1433 (|#1| |#1| |#4| |#2|)) (-15 -1433 (|#1| |#1| (-639 |#1|) (-639 |#1|))) (-15 -1433 (|#1| |#1| |#1| |#1|)) (-15 -1433 (|#1| |#1| (-293 |#1|))) (-15 -1433 (|#1| |#1| (-639 (-293 |#1|)))) (-15 -1377 (|#1| |#2| |#3|)) (-15 -2266 (|#2| |#1| |#3|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -3960 ((-562) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3960 ((-406 (-562)) |#1|)) (-15 -3960 (|#2| |#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -2201 (|#2| |#1|)) (-15 -2578 (|#1| |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-1401 (((-639 |#3|) $) 110)) (-1602 (((-1164 $) $ |#3|) 125) (((-1164 |#1|) $) 124)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 87 (|has| |#1| (-554)))) (-1965 (($ $) 88 (|has| |#1| (-554)))) (-4102 (((-112) $) 90 (|has| |#1| (-554)))) (-1578 (((-766) $) 112) (((-766) $ (-639 |#3|)) 111)) (-2781 (((-3 $ "failed") $ $) 19)) (-3517 (((-417 (-1164 $)) (-1164 $)) 100 (|has| |#1| (-904)))) (-1977 (($ $) 98 (|has| |#1| (-451)))) (-3788 (((-417 $) $) 97 (|has| |#1| (-451)))) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) 103 (|has| |#1| (-904)))) (-3329 (($) 17 T CONST)) (-4048 (((-3 |#1| "failed") $) 164) (((-3 (-406 (-562)) "failed") $) 161 (|has| |#1| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) 159 (|has| |#1| (-1033 (-562)))) (((-3 |#3| "failed") $) 136)) (-3960 ((|#1| $) 163) (((-406 (-562)) $) 162 (|has| |#1| (-1033 (-406 (-562))))) (((-562) $) 160 (|has| |#1| (-1033 (-562)))) ((|#3| $) 137)) (-2355 (($ $ $ |#3|) 108 (|has| |#1| (-171)))) (-1600 (($ $) 154)) (-3449 (((-683 (-562)) (-683 $)) 134 (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 133 (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) 132) (((-683 |#1|) (-683 $)) 131)) (-1694 (((-3 $ "failed") $) 33)) (-2578 (($ $) 176 (|has| |#1| (-451))) (($ $ |#3|) 105 (|has| |#1| (-451)))) (-1585 (((-639 $) $) 109)) (-3521 (((-112) $) 96 (|has| |#1| (-904)))) (-3066 (($ $ |#1| |#2| $) 172)) (-2337 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 84 (-12 (|has| |#3| (-881 (-378))) (|has| |#1| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) 83 (-12 (|has| |#3| (-881 (-562))) (|has| |#1| (-881 (-562)))))) (-4367 (((-112) $) 31)) (-3627 (((-766) $) 169)) (-1389 (($ (-1164 |#1|) |#3|) 117) (($ (-1164 $) |#3|) 116)) (-1869 (((-639 $) $) 126)) (-2833 (((-112) $) 152)) (-1377 (($ |#1| |#2|) 153) (($ $ |#3| (-766)) 119) (($ $ (-639 |#3|) (-639 (-766))) 118)) (-3851 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $ |#3|) 120)) (-3161 ((|#2| $) 170) (((-766) $ |#3|) 122) (((-639 (-766)) $ (-639 |#3|)) 121)) (-1551 (($ $ $) 79 (|has| |#1| (-845)))) (-2993 (($ $ $) 78 (|has| |#1| (-845)))) (-2363 (($ (-1 |#2| |#2|) $) 171)) (-4152 (($ (-1 |#1| |#1|) $) 151)) (-3640 (((-3 |#3| "failed") $) 123)) (-1560 (($ $) 149)) (-1573 ((|#1| $) 148)) (-1564 (($ (-639 $)) 94 (|has| |#1| (-451))) (($ $ $) 93 (|has| |#1| (-451)))) (-3696 (((-1150) $) 9)) (-4025 (((-3 (-639 $) "failed") $) 114)) (-1778 (((-3 (-639 $) "failed") $) 115)) (-4270 (((-3 (-2 (|:| |var| |#3|) (|:| -1300 (-766))) "failed") $) 113)) (-1709 (((-1112) $) 10)) (-1534 (((-112) $) 166)) (-1547 ((|#1| $) 167)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 95 (|has| |#1| (-451)))) (-1606 (($ (-639 $)) 92 (|has| |#1| (-451))) (($ $ $) 91 (|has| |#1| (-451)))) (-3586 (((-417 (-1164 $)) (-1164 $)) 102 (|has| |#1| (-904)))) (-3468 (((-417 (-1164 $)) (-1164 $)) 101 (|has| |#1| (-904)))) (-1635 (((-417 $) $) 99 (|has| |#1| (-904)))) (-1762 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-554))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-554)))) (-1433 (($ $ (-639 (-293 $))) 145) (($ $ (-293 $)) 144) (($ $ $ $) 143) (($ $ (-639 $) (-639 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-639 |#3|) (-639 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-639 |#3|) (-639 $)) 138)) (-2736 (($ $ |#3|) 107 (|has| |#1| (-171)))) (-4029 (($ $ |#3|) 42) (($ $ (-639 |#3|)) 41) (($ $ |#3| (-766)) 40) (($ $ (-639 |#3|) (-639 (-766))) 39)) (-2250 ((|#2| $) 150) (((-766) $ |#3|) 130) (((-639 (-766)) $ (-639 |#3|)) 129)) (-4208 (((-887 (-378)) $) 82 (-12 (|has| |#3| (-610 (-887 (-378)))) (|has| |#1| (-610 (-887 (-378)))))) (((-887 (-562)) $) 81 (-12 (|has| |#3| (-610 (-887 (-562)))) (|has| |#1| (-610 (-887 (-562)))))) (((-535) $) 80 (-12 (|has| |#3| (-610 (-535))) (|has| |#1| (-610 (-535)))))) (-2201 ((|#1| $) 175 (|has| |#1| (-451))) (($ $ |#3|) 106 (|has| |#1| (-451)))) (-1870 (((-3 (-1256 $) "failed") (-683 $)) 104 (-2245 (|has| $ (-144)) (|has| |#1| (-904))))) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ $) 85 (|has| |#1| (-554))) (($ (-406 (-562))) 72 (-4037 (|has| |#1| (-1033 (-406 (-562)))) (|has| |#1| (-38 (-406 (-562))))))) (-3969 (((-639 |#1|) $) 168)) (-2266 ((|#1| $ |#2|) 155) (($ $ |#3| (-766)) 128) (($ $ (-639 |#3|) (-639 (-766))) 127)) (-2059 (((-3 $ "failed") $) 73 (-4037 (-2245 (|has| $ (-144)) (|has| |#1| (-904))) (|has| |#1| (-144))))) (-1568 (((-766)) 28)) (-1760 (($ $ $ (-766)) 173 (|has| |#1| (-171)))) (-3799 (((-112) $ $) 89 (|has| |#1| (-554)))) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3113 (($ $ |#3|) 38) (($ $ (-639 |#3|)) 37) (($ $ |#3| (-766)) 36) (($ $ (-639 |#3|) (-639 (-766))) 35)) (-1798 (((-112) $ $) 76 (|has| |#1| (-845)))) (-1771 (((-112) $ $) 75 (|has| |#1| (-845)))) (-1733 (((-112) $ $) 6)) (-1785 (((-112) $ $) 77 (|has| |#1| (-845)))) (-1761 (((-112) $ $) 74 (|has| |#1| (-845)))) (-1859 (($ $ |#1|) 156 (|has| |#1| (-362)))) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ (-406 (-562))) 158 (|has| |#1| (-38 (-406 (-562))))) (($ (-406 (-562)) $) 157 (|has| |#1| (-38 (-406 (-562))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-944 |#1| |#2| |#3|) (-139) (-1044) (-788) (-845)) (T -944)) -((-2578 (*1 *1 *1) (-12 (-4 *1 (-944 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-451)))) (-2250 (*1 *2 *1 *3) (-12 (-4 *1 (-944 *4 *5 *3)) (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *3 (-845)) (-5 *2 (-766)))) (-2250 (*1 *2 *1 *3) (-12 (-5 *3 (-639 *6)) (-4 *1 (-944 *4 *5 *6)) (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 (-766))))) (-2266 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-766)) (-4 *1 (-944 *4 *5 *2)) (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *2 (-845)))) (-2266 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 *6)) (-5 *3 (-639 (-766))) (-4 *1 (-944 *4 *5 *6)) (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *6 (-845)))) (-1869 (*1 *2 *1) (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-639 *1)) (-4 *1 (-944 *3 *4 *5)))) (-1602 (*1 *2 *1 *3) (-12 (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *3 (-845)) (-5 *2 (-1164 *1)) (-4 *1 (-944 *4 *5 *3)))) (-1602 (*1 *2 *1) (-12 (-4 *1 (-944 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-1164 *3)))) (-3640 (*1 *2 *1) (|partial| -12 (-4 *1 (-944 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *2 (-845)))) (-3161 (*1 *2 *1 *3) (-12 (-4 *1 (-944 *4 *5 *3)) (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *3 (-845)) (-5 *2 (-766)))) (-3161 (*1 *2 *1 *3) (-12 (-5 *3 (-639 *6)) (-4 *1 (-944 *4 *5 *6)) (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 (-766))))) (-3851 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *3 (-845)) (-5 *2 (-2 (|:| -3380 *1) (|:| -1441 *1))) (-4 *1 (-944 *4 *5 *3)))) (-1377 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-766)) (-4 *1 (-944 *4 *5 *2)) (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *2 (-845)))) (-1377 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 *6)) (-5 *3 (-639 (-766))) (-4 *1 (-944 *4 *5 *6)) (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *6 (-845)))) (-1389 (*1 *1 *2 *3) (-12 (-5 *2 (-1164 *4)) (-4 *4 (-1044)) (-4 *1 (-944 *4 *5 *3)) (-4 *5 (-788)) (-4 *3 (-845)))) (-1389 (*1 *1 *2 *3) (-12 (-5 *2 (-1164 *1)) (-4 *1 (-944 *4 *5 *3)) (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *3 (-845)))) (-1778 (*1 *2 *1) (|partial| -12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-639 *1)) (-4 *1 (-944 *3 *4 *5)))) (-4025 (*1 *2 *1) (|partial| -12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-639 *1)) (-4 *1 (-944 *3 *4 *5)))) (-4270 (*1 *2 *1) (|partial| -12 (-4 *1 (-944 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-2 (|:| |var| *5) (|:| -1300 (-766)))))) (-1578 (*1 *2 *1) (-12 (-4 *1 (-944 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-766)))) (-1578 (*1 *2 *1 *3) (-12 (-5 *3 (-639 *6)) (-4 *1 (-944 *4 *5 *6)) (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-766)))) (-1401 (*1 *2 *1) (-12 (-4 *1 (-944 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-639 *5)))) (-1585 (*1 *2 *1) (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-639 *1)) (-4 *1 (-944 *3 *4 *5)))) (-2355 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-944 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *2 (-845)) (-4 *3 (-171)))) (-2736 (*1 *1 *1 *2) (-12 (-4 *1 (-944 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *2 (-845)) (-4 *3 (-171)))) (-2201 (*1 *1 *1 *2) (-12 (-4 *1 (-944 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *2 (-845)) (-4 *3 (-451)))) (-2578 (*1 *1 *1 *2) (-12 (-4 *1 (-944 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *2 (-845)) (-4 *3 (-451)))) (-1977 (*1 *1 *1) (-12 (-4 *1 (-944 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-451)))) (-3788 (*1 *2 *1) (-12 (-4 *3 (-451)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-417 *1)) (-4 *1 (-944 *3 *4 *5))))) -(-13 (-895 |t#3|) (-325 |t#1| |t#2|) (-308 $) (-513 |t#3| |t#1|) (-513 |t#3| $) (-1033 |t#3|) (-376 |t#1|) (-10 -8 (-15 -2250 ((-766) $ |t#3|)) (-15 -2250 ((-639 (-766)) $ (-639 |t#3|))) (-15 -2266 ($ $ |t#3| (-766))) (-15 -2266 ($ $ (-639 |t#3|) (-639 (-766)))) (-15 -1869 ((-639 $) $)) (-15 -1602 ((-1164 $) $ |t#3|)) (-15 -1602 ((-1164 |t#1|) $)) (-15 -3640 ((-3 |t#3| "failed") $)) (-15 -3161 ((-766) $ |t#3|)) (-15 -3161 ((-639 (-766)) $ (-639 |t#3|))) (-15 -3851 ((-2 (|:| -3380 $) (|:| -1441 $)) $ $ |t#3|)) (-15 -1377 ($ $ |t#3| (-766))) (-15 -1377 ($ $ (-639 |t#3|) (-639 (-766)))) (-15 -1389 ($ (-1164 |t#1|) |t#3|)) (-15 -1389 ($ (-1164 $) |t#3|)) (-15 -1778 ((-3 (-639 $) "failed") $)) (-15 -4025 ((-3 (-639 $) "failed") $)) (-15 -4270 ((-3 (-2 (|:| |var| |t#3|) (|:| -1300 (-766))) "failed") $)) (-15 -1578 ((-766) $)) (-15 -1578 ((-766) $ (-639 |t#3|))) (-15 -1401 ((-639 |t#3|) $)) (-15 -1585 ((-639 $) $)) (IF (|has| |t#1| (-845)) (-6 (-845)) |%noBranch|) (IF (|has| |t#1| (-610 (-535))) (IF (|has| |t#3| (-610 (-535))) (-6 (-610 (-535))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-610 (-887 (-562)))) (IF (|has| |t#3| (-610 (-887 (-562)))) (-6 (-610 (-887 (-562)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-610 (-887 (-378)))) (IF (|has| |t#3| (-610 (-887 (-378)))) (-6 (-610 (-887 (-378)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-881 (-562))) (IF (|has| |t#3| (-881 (-562))) (-6 (-881 (-562))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-881 (-378))) (IF (|has| |t#3| (-881 (-378))) (-6 (-881 (-378))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-171)) (PROGN (-15 -2355 ($ $ $ |t#3|)) (-15 -2736 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-451)) (PROGN (-6 (-451)) (-15 -2201 ($ $ |t#3|)) (-15 -2578 ($ $)) (-15 -2578 ($ $ |t#3|)) (-15 -3788 ((-417 $) $)) (-15 -1977 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4401)) (-6 -4401) |%noBranch|) (IF (|has| |t#1| (-904)) (-6 (-904)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-562)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #0#) -4037 (|has| |#1| (-1033 (-406 (-562)))) (|has| |#1| (-38 (-406 (-562))))) ((-612 (-562)) . T) ((-612 |#1|) . T) ((-612 |#3|) . T) ((-612 $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451))) ((-609 (-857)) . T) ((-171) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451)) (|has| |#1| (-171))) ((-610 (-535)) -12 (|has| |#1| (-610 (-535))) (|has| |#3| (-610 (-535)))) ((-610 (-887 (-378))) -12 (|has| |#1| (-610 (-887 (-378)))) (|has| |#3| (-610 (-887 (-378))))) ((-610 (-887 (-562))) -12 (|has| |#1| (-610 (-887 (-562)))) (|has| |#3| (-610 (-887 (-562))))) ((-289) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451))) ((-308 $) . T) ((-325 |#1| |#2|) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-451) -4037 (|has| |#1| (-904)) (|has| |#1| (-451))) ((-513 |#3| |#1|) . T) ((-513 |#3| $) . T) ((-513 $ $) . T) ((-554) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451))) ((-642 #0#) |has| |#1| (-38 (-406 (-562)))) ((-642 |#1|) . T) ((-642 $) . T) ((-635 (-562)) |has| |#1| (-635 (-562))) ((-635 |#1|) . T) ((-712 #0#) |has| |#1| (-38 (-406 (-562)))) ((-712 |#1|) |has| |#1| (-171)) ((-712 $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451))) ((-721) . T) ((-845) |has| |#1| (-845)) ((-895 |#3|) . T) ((-881 (-378)) -12 (|has| |#1| (-881 (-378))) (|has| |#3| (-881 (-378)))) ((-881 (-562)) -12 (|has| |#1| (-881 (-562))) (|has| |#3| (-881 (-562)))) ((-904) |has| |#1| (-904)) ((-1033 (-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((-1033 (-562)) |has| |#1| (-1033 (-562))) ((-1033 |#1|) . T) ((-1033 |#3|) . T) ((-1050 #0#) |has| |#1| (-38 (-406 (-562)))) ((-1050 |#1|) . T) ((-1050 $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451)) (|has| |#1| (-171))) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1211) |has| |#1| (-904))) -((-1401 (((-639 |#2|) |#5|) 36)) (-1602 (((-1164 |#5|) |#5| |#2| (-1164 |#5|)) 23) (((-406 (-1164 |#5|)) |#5| |#2|) 16)) (-1389 ((|#5| (-406 (-1164 |#5|)) |#2|) 30)) (-3640 (((-3 |#2| "failed") |#5|) 65)) (-4025 (((-3 (-639 |#5|) "failed") |#5|) 59)) (-2811 (((-3 (-2 (|:| |val| |#5|) (|:| -1300 (-562))) "failed") |#5|) 47)) (-1778 (((-3 (-639 |#5|) "failed") |#5|) 61)) (-4270 (((-3 (-2 (|:| |var| |#2|) (|:| -1300 (-562))) "failed") |#5|) 51))) -(((-945 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1401 ((-639 |#2|) |#5|)) (-15 -3640 ((-3 |#2| "failed") |#5|)) (-15 -1602 ((-406 (-1164 |#5|)) |#5| |#2|)) (-15 -1389 (|#5| (-406 (-1164 |#5|)) |#2|)) (-15 -1602 ((-1164 |#5|) |#5| |#2| (-1164 |#5|))) (-15 -1778 ((-3 (-639 |#5|) "failed") |#5|)) (-15 -4025 ((-3 (-639 |#5|) "failed") |#5|)) (-15 -4270 ((-3 (-2 (|:| |var| |#2|) (|:| -1300 (-562))) "failed") |#5|)) (-15 -2811 ((-3 (-2 (|:| |val| |#5|) (|:| -1300 (-562))) "failed") |#5|))) (-788) (-845) (-1044) (-944 |#3| |#1| |#2|) (-13 (-362) (-10 -8 (-15 -4053 ($ |#4|)) (-15 -4063 (|#4| $)) (-15 -4079 (|#4| $))))) (T -945)) -((-2811 (*1 *2 *3) (|partial| -12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1044)) (-4 *7 (-944 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -1300 (-562)))) (-5 *1 (-945 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4053 ($ *7)) (-15 -4063 (*7 $)) (-15 -4079 (*7 $))))))) (-4270 (*1 *2 *3) (|partial| -12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1044)) (-4 *7 (-944 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -1300 (-562)))) (-5 *1 (-945 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4053 ($ *7)) (-15 -4063 (*7 $)) (-15 -4079 (*7 $))))))) (-4025 (*1 *2 *3) (|partial| -12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1044)) (-4 *7 (-944 *6 *4 *5)) (-5 *2 (-639 *3)) (-5 *1 (-945 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4053 ($ *7)) (-15 -4063 (*7 $)) (-15 -4079 (*7 $))))))) (-1778 (*1 *2 *3) (|partial| -12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1044)) (-4 *7 (-944 *6 *4 *5)) (-5 *2 (-639 *3)) (-5 *1 (-945 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4053 ($ *7)) (-15 -4063 (*7 $)) (-15 -4079 (*7 $))))))) (-1602 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4053 ($ *7)) (-15 -4063 (*7 $)) (-15 -4079 (*7 $))))) (-4 *7 (-944 *6 *5 *4)) (-4 *5 (-788)) (-4 *4 (-845)) (-4 *6 (-1044)) (-5 *1 (-945 *5 *4 *6 *7 *3)))) (-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-1164 *2))) (-4 *5 (-788)) (-4 *4 (-845)) (-4 *6 (-1044)) (-4 *2 (-13 (-362) (-10 -8 (-15 -4053 ($ *7)) (-15 -4063 (*7 $)) (-15 -4079 (*7 $))))) (-5 *1 (-945 *5 *4 *6 *7 *2)) (-4 *7 (-944 *6 *5 *4)))) (-1602 (*1 *2 *3 *4) (-12 (-4 *5 (-788)) (-4 *4 (-845)) (-4 *6 (-1044)) (-4 *7 (-944 *6 *5 *4)) (-5 *2 (-406 (-1164 *3))) (-5 *1 (-945 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4053 ($ *7)) (-15 -4063 (*7 $)) (-15 -4079 (*7 $))))))) (-3640 (*1 *2 *3) (|partial| -12 (-4 *4 (-788)) (-4 *5 (-1044)) (-4 *6 (-944 *5 *4 *2)) (-4 *2 (-845)) (-5 *1 (-945 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4053 ($ *6)) (-15 -4063 (*6 $)) (-15 -4079 (*6 $))))))) (-1401 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1044)) (-4 *7 (-944 *6 *4 *5)) (-5 *2 (-639 *5)) (-5 *1 (-945 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4053 ($ *7)) (-15 -4063 (*7 $)) (-15 -4079 (*7 $)))))))) -(-10 -7 (-15 -1401 ((-639 |#2|) |#5|)) (-15 -3640 ((-3 |#2| "failed") |#5|)) (-15 -1602 ((-406 (-1164 |#5|)) |#5| |#2|)) (-15 -1389 (|#5| (-406 (-1164 |#5|)) |#2|)) (-15 -1602 ((-1164 |#5|) |#5| |#2| (-1164 |#5|))) (-15 -1778 ((-3 (-639 |#5|) "failed") |#5|)) (-15 -4025 ((-3 (-639 |#5|) "failed") |#5|)) (-15 -4270 ((-3 (-2 (|:| |var| |#2|) (|:| -1300 (-562))) "failed") |#5|)) (-15 -2811 ((-3 (-2 (|:| |val| |#5|) (|:| -1300 (-562))) "failed") |#5|))) -((-4152 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 23))) -(((-946 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4152 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-788) (-845) (-1044) (-944 |#3| |#1| |#2|) (-13 (-1092) (-10 -8 (-15 -1836 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-766)))))) (T -946)) -((-4152 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-845)) (-4 *8 (-1044)) (-4 *6 (-788)) (-4 *2 (-13 (-1092) (-10 -8 (-15 -1836 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-766)))))) (-5 *1 (-946 *6 *7 *8 *5 *2)) (-4 *5 (-944 *8 *6 *7))))) -(-10 -7 (-15 -4152 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-1401 (((-639 (-1168)) $) 16)) (-1602 (((-1164 $) $ (-1168)) 21) (((-1164 |#1|) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-1965 (($ $) NIL (|has| |#1| (-554)))) (-4102 (((-112) $) NIL (|has| |#1| (-554)))) (-1578 (((-766) $) NIL) (((-766) $ (-639 (-1168))) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3517 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-1977 (($ $) NIL (|has| |#1| (-451)))) (-3788 (((-417 $) $) NIL (|has| |#1| (-451)))) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) 8) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-1168) "failed") $) NIL)) (-3960 ((|#1| $) NIL) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-1168) $) NIL)) (-2355 (($ $ $ (-1168)) NIL (|has| |#1| (-171)))) (-1600 (($ $) NIL)) (-3449 (((-683 (-562)) (-683 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) NIL) (((-683 |#1|) (-683 $)) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-2578 (($ $) NIL (|has| |#1| (-451))) (($ $ (-1168)) NIL (|has| |#1| (-451)))) (-1585 (((-639 $) $) NIL)) (-3521 (((-112) $) NIL (|has| |#1| (-904)))) (-3066 (($ $ |#1| (-530 (-1168)) $) NIL)) (-2337 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-1168) (-881 (-378))) (|has| |#1| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (-12 (|has| (-1168) (-881 (-562))) (|has| |#1| (-881 (-562)))))) (-4367 (((-112) $) NIL)) (-3627 (((-766) $) NIL)) (-1389 (($ (-1164 |#1|) (-1168)) NIL) (($ (-1164 $) (-1168)) NIL)) (-1869 (((-639 $) $) NIL)) (-2833 (((-112) $) NIL)) (-1377 (($ |#1| (-530 (-1168))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL)) (-3851 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $ (-1168)) NIL)) (-3161 (((-530 (-1168)) $) NIL) (((-766) $ (-1168)) NIL) (((-639 (-766)) $ (-639 (-1168))) NIL)) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-2363 (($ (-1 (-530 (-1168)) (-530 (-1168))) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-3640 (((-3 (-1168) "failed") $) 19)) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) NIL (|has| |#1| (-451)))) (-3696 (((-1150) $) NIL)) (-4025 (((-3 (-639 $) "failed") $) NIL)) (-1778 (((-3 (-639 $) "failed") $) NIL)) (-4270 (((-3 (-2 (|:| |var| (-1168)) (|:| -1300 (-766))) "failed") $) NIL)) (-3081 (($ $ (-1168)) 29 (|has| |#1| (-38 (-406 (-562)))))) (-1709 (((-1112) $) NIL)) (-1534 (((-112) $) NIL)) (-1547 ((|#1| $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-451)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) NIL (|has| |#1| (-451)))) (-3586 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-3468 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-1635 (((-417 $) $) NIL (|has| |#1| (-904)))) (-1762 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-1433 (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-1168) |#1|) NIL) (($ $ (-639 (-1168)) (-639 |#1|)) NIL) (($ $ (-1168) $) NIL) (($ $ (-639 (-1168)) (-639 $)) NIL)) (-2736 (($ $ (-1168)) NIL (|has| |#1| (-171)))) (-4029 (($ $ (-1168)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL)) (-2250 (((-530 (-1168)) $) NIL) (((-766) $ (-1168)) NIL) (((-639 (-766)) $ (-639 (-1168))) NIL)) (-4208 (((-887 (-378)) $) NIL (-12 (|has| (-1168) (-610 (-887 (-378)))) (|has| |#1| (-610 (-887 (-378)))))) (((-887 (-562)) $) NIL (-12 (|has| (-1168) (-610 (-887 (-562)))) (|has| |#1| (-610 (-887 (-562)))))) (((-535) $) NIL (-12 (|has| (-1168) (-610 (-535))) (|has| |#1| (-610 (-535)))))) (-2201 ((|#1| $) NIL (|has| |#1| (-451))) (($ $ (-1168)) NIL (|has| |#1| (-451)))) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-904))))) (-4053 (((-857) $) 25) (($ (-562)) NIL) (($ |#1|) NIL) (($ (-1168)) 27) (($ (-406 (-562))) NIL (-4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562)))))) (($ $) NIL (|has| |#1| (-554)))) (-3969 (((-639 |#1|) $) NIL)) (-2266 ((|#1| $ (-530 (-1168))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL)) (-2059 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#1| (-904))) (|has| |#1| (-144))))) (-1568 (((-766)) NIL)) (-1760 (($ $ $ (-766)) NIL (|has| |#1| (-171)))) (-3799 (((-112) $ $) NIL (|has| |#1| (-554)))) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3113 (($ $ (-1168)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL)) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1771 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1761 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-947 |#1|) (-13 (-944 |#1| (-530 (-1168)) (-1168)) (-10 -8 (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -3081 ($ $ (-1168))) |%noBranch|))) (-1044)) (T -947)) -((-3081 (*1 *1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-947 *3)) (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044))))) -(-13 (-944 |#1| (-530 (-1168)) (-1168)) (-10 -8 (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -3081 ($ $ (-1168))) |%noBranch|))) -((-2070 (((-2 (|:| -1300 (-766)) (|:| -4221 |#5|) (|:| |radicand| |#5|)) |#3| (-766)) 38)) (-3397 (((-2 (|:| -1300 (-766)) (|:| -4221 |#5|) (|:| |radicand| |#5|)) (-406 (-562)) (-766)) 34)) (-1776 (((-2 (|:| -1300 (-766)) (|:| -4221 |#4|) (|:| |radicand| (-639 |#4|))) |#4| (-766)) 54)) (-2331 (((-2 (|:| -1300 (-766)) (|:| -4221 |#5|) (|:| |radicand| |#5|)) |#5| (-766)) 64 (|has| |#3| (-451))))) -(((-948 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2070 ((-2 (|:| -1300 (-766)) (|:| -4221 |#5|) (|:| |radicand| |#5|)) |#3| (-766))) (-15 -3397 ((-2 (|:| -1300 (-766)) (|:| -4221 |#5|) (|:| |radicand| |#5|)) (-406 (-562)) (-766))) (IF (|has| |#3| (-451)) (-15 -2331 ((-2 (|:| -1300 (-766)) (|:| -4221 |#5|) (|:| |radicand| |#5|)) |#5| (-766))) |%noBranch|) (-15 -1776 ((-2 (|:| -1300 (-766)) (|:| -4221 |#4|) (|:| |radicand| (-639 |#4|))) |#4| (-766)))) (-788) (-845) (-554) (-944 |#3| |#1| |#2|) (-13 (-362) (-10 -8 (-15 -4053 ($ |#4|)) (-15 -4063 (|#4| $)) (-15 -4079 (|#4| $))))) (T -948)) -((-1776 (*1 *2 *3 *4) (-12 (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-554)) (-4 *3 (-944 *7 *5 *6)) (-5 *2 (-2 (|:| -1300 (-766)) (|:| -4221 *3) (|:| |radicand| (-639 *3)))) (-5 *1 (-948 *5 *6 *7 *3 *8)) (-5 *4 (-766)) (-4 *8 (-13 (-362) (-10 -8 (-15 -4053 ($ *3)) (-15 -4063 (*3 $)) (-15 -4079 (*3 $))))))) (-2331 (*1 *2 *3 *4) (-12 (-4 *7 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-554)) (-4 *8 (-944 *7 *5 *6)) (-5 *2 (-2 (|:| -1300 (-766)) (|:| -4221 *3) (|:| |radicand| *3))) (-5 *1 (-948 *5 *6 *7 *8 *3)) (-5 *4 (-766)) (-4 *3 (-13 (-362) (-10 -8 (-15 -4053 ($ *8)) (-15 -4063 (*8 $)) (-15 -4079 (*8 $))))))) (-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-562))) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-554)) (-4 *8 (-944 *7 *5 *6)) (-5 *2 (-2 (|:| -1300 (-766)) (|:| -4221 *9) (|:| |radicand| *9))) (-5 *1 (-948 *5 *6 *7 *8 *9)) (-5 *4 (-766)) (-4 *9 (-13 (-362) (-10 -8 (-15 -4053 ($ *8)) (-15 -4063 (*8 $)) (-15 -4079 (*8 $))))))) (-2070 (*1 *2 *3 *4) (-12 (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-554)) (-4 *7 (-944 *3 *5 *6)) (-5 *2 (-2 (|:| -1300 (-766)) (|:| -4221 *8) (|:| |radicand| *8))) (-5 *1 (-948 *5 *6 *3 *7 *8)) (-5 *4 (-766)) (-4 *8 (-13 (-362) (-10 -8 (-15 -4053 ($ *7)) (-15 -4063 (*7 $)) (-15 -4079 (*7 $)))))))) -(-10 -7 (-15 -2070 ((-2 (|:| -1300 (-766)) (|:| -4221 |#5|) (|:| |radicand| |#5|)) |#3| (-766))) (-15 -3397 ((-2 (|:| -1300 (-766)) (|:| -4221 |#5|) (|:| |radicand| |#5|)) (-406 (-562)) (-766))) (IF (|has| |#3| (-451)) (-15 -2331 ((-2 (|:| -1300 (-766)) (|:| -4221 |#5|) (|:| |radicand| |#5|)) |#5| (-766))) |%noBranch|) (-15 -1776 ((-2 (|:| -1300 (-766)) (|:| -4221 |#4|) (|:| |radicand| (-639 |#4|))) |#4| (-766)))) -((-4041 (((-112) $ $) NIL)) (-3328 (($ (-1112)) 8)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 14) (((-1112) $) 11)) (-1733 (((-112) $ $) 10))) -(((-949) (-13 (-1092) (-609 (-1112)) (-10 -8 (-15 -3328 ($ (-1112)))))) (T -949)) -((-3328 (*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-949))))) -(-13 (-1092) (-609 (-1112)) (-10 -8 (-15 -3328 ($ (-1112))))) -((-1462 (((-1086 (-224)) $) 8)) (-1448 (((-1086 (-224)) $) 9)) (-2259 (((-639 (-639 (-938 (-224)))) $) 10)) (-4053 (((-857) $) 6))) -(((-950) (-139)) (T -950)) -((-2259 (*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-639 (-639 (-938 (-224))))))) (-1448 (*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-1086 (-224))))) (-1462 (*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-1086 (-224)))))) -(-13 (-609 (-857)) (-10 -8 (-15 -2259 ((-639 (-639 (-938 (-224)))) $)) (-15 -1448 ((-1086 (-224)) $)) (-15 -1462 ((-1086 (-224)) $)))) -(((-609 (-857)) . T)) -((-3707 (((-3 (-683 |#1|) "failed") |#2| (-916)) 15))) -(((-951 |#1| |#2|) (-10 -7 (-15 -3707 ((-3 (-683 |#1|) "failed") |#2| (-916)))) (-554) (-650 |#1|)) (T -951)) -((-3707 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-916)) (-4 *5 (-554)) (-5 *2 (-683 *5)) (-5 *1 (-951 *5 *3)) (-4 *3 (-650 *5))))) -(-10 -7 (-15 -3707 ((-3 (-683 |#1|) "failed") |#2| (-916)))) -((-1555 (((-953 |#2|) (-1 |#2| |#1| |#2|) (-953 |#1|) |#2|) 16)) (-1954 ((|#2| (-1 |#2| |#1| |#2|) (-953 |#1|) |#2|) 18)) (-4152 (((-953 |#2|) (-1 |#2| |#1|) (-953 |#1|)) 13))) -(((-952 |#1| |#2|) (-10 -7 (-15 -1555 ((-953 |#2|) (-1 |#2| |#1| |#2|) (-953 |#1|) |#2|)) (-15 -1954 (|#2| (-1 |#2| |#1| |#2|) (-953 |#1|) |#2|)) (-15 -4152 ((-953 |#2|) (-1 |#2| |#1|) (-953 |#1|)))) (-1207) (-1207)) (T -952)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-953 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-953 *6)) (-5 *1 (-952 *5 *6)))) (-1954 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-953 *5)) (-4 *5 (-1207)) (-4 *2 (-1207)) (-5 *1 (-952 *5 *2)))) (-1555 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-953 *6)) (-4 *6 (-1207)) (-4 *5 (-1207)) (-5 *2 (-953 *5)) (-5 *1 (-952 *6 *5))))) -(-10 -7 (-15 -1555 ((-953 |#2|) (-1 |#2| |#1| |#2|) (-953 |#1|) |#2|)) (-15 -1954 (|#2| (-1 |#2| |#1| |#2|) (-953 |#1|) |#2|)) (-15 -4152 ((-953 |#2|) (-1 |#2| |#1|) (-953 |#1|)))) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3655 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4404)))) (-1706 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-845)))) (-3737 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4404))) (($ $) NIL (-12 (|has| $ (-6 -4404)) (|has| |#1| (-845))))) (-1395 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-845)))) (-3735 (((-112) $ (-766)) NIL)) (-4200 ((|#1| $ (-562) |#1|) 16 (|has| $ (-6 -4404))) ((|#1| $ (-1223 (-562)) |#1|) NIL (|has| $ (-6 -4404)))) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-3329 (($) NIL T CONST)) (-2673 (($ $) NIL (|has| $ (-6 -4404)))) (-2676 (($ $) NIL)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1954 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4403)))) (-1507 ((|#1| $ (-562) |#1|) 15 (|has| $ (-6 -4404)))) (-1420 ((|#1| $ (-562)) 13)) (-4265 (((-562) (-1 (-112) |#1|) $) NIL) (((-562) |#1| $) NIL (|has| |#1| (-1092))) (((-562) |#1| $ (-562)) NIL (|has| |#1| (-1092)))) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1458 (($ (-766) |#1|) 12)) (-4172 (((-112) $ (-766)) NIL)) (-1849 (((-562) $) 10 (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-4103 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-845)))) (-2123 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1929 (((-562) $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-1491 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-3295 (($ |#1| $ (-562)) NIL) (($ $ $ (-562)) NIL)) (-3336 (((-639 (-562)) $) NIL)) (-1987 (((-112) (-562) $) NIL)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-1421 ((|#1| $) NIL (|has| (-562) (-845)))) (-1963 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3510 (($ $ |#1|) 17 (|has| $ (-6 -4404)))) (-3008 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) NIL)) (-2716 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2366 (((-639 |#1|) $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) 11)) (-2343 ((|#1| $ (-562) |#1|) NIL) ((|#1| $ (-562)) 14) (($ $ (-1223 (-562))) NIL)) (-2880 (($ $ (-562)) NIL) (($ $ (-1223 (-562))) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2694 (($ $ $ (-562)) NIL (|has| $ (-6 -4404)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| |#1| (-610 (-535))))) (-4064 (($ (-639 |#1|)) NIL)) (-2767 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-639 $)) NIL)) (-4053 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-2879 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1771 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1761 (((-112) $ $) NIL (|has| |#1| (-845)))) (-3492 (((-766) $) 8 (|has| $ (-6 -4403))))) -(((-953 |#1|) (-19 |#1|) (-1207)) (T -953)) +((-2815 ((|#2| (-640 |#1|) (-640 |#1|)) 24))) +(((-918 |#1| |#2|) (-10 -7 (-15 -2815 (|#2| (-640 |#1|) (-640 |#1|)))) (-363) (-1233 |#1|)) (T -918)) +((-2815 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *4)) (-4 *4 (-363)) (-4 *2 (-1233 *4)) (-5 *1 (-918 *4 *2))))) +(-10 -7 (-15 -2815 (|#2| (-640 |#1|) (-640 |#1|)))) +((-3263 (((-1165 |#2|) (-640 |#2|) (-640 |#2|)) 17) (((-1230 |#1| |#2|) (-1230 |#1| |#2|) (-640 |#2|) (-640 |#2|)) 13))) +(((-919 |#1| |#2|) (-10 -7 (-15 -3263 ((-1230 |#1| |#2|) (-1230 |#1| |#2|) (-640 |#2|) (-640 |#2|))) (-15 -3263 ((-1165 |#2|) (-640 |#2|) (-640 |#2|)))) (-1169) (-363)) (T -919)) +((-3263 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *5)) (-4 *5 (-363)) (-5 *2 (-1165 *5)) (-5 *1 (-919 *4 *5)) (-14 *4 (-1169)))) (-3263 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1230 *4 *5)) (-5 *3 (-640 *5)) (-14 *4 (-1169)) (-4 *5 (-363)) (-5 *1 (-919 *4 *5))))) +(-10 -7 (-15 -3263 ((-1230 |#1| |#2|) (-1230 |#1| |#2|) (-640 |#2|) (-640 |#2|))) (-15 -3263 ((-1165 |#2|) (-640 |#2|) (-640 |#2|)))) +((-1670 (((-563) (-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|))))))))) (-1151)) 139)) (-2511 ((|#4| |#4|) 155)) (-3833 (((-640 (-407 (-948 |#1|))) (-640 (-1169))) 119)) (-1400 (((-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))) (-684 |#4|) (-640 (-407 (-948 |#1|))) (-640 (-640 |#4|)) (-767) (-767) (-563)) 75)) (-1525 (((-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|)))))) (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|)))))) (-640 |#4|)) 59)) (-3059 (((-684 |#4|) (-684 |#4|) (-640 |#4|)) 55)) (-2938 (((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|))))))))) (-1151)) 151)) (-3386 (((-563) (-684 |#4|) (-917) (-1151)) 133) (((-563) (-684 |#4|) (-640 (-1169)) (-917) (-1151)) 132) (((-563) (-684 |#4|) (-640 |#4|) (-917) (-1151)) 131) (((-563) (-684 |#4|) (-1151)) 128) (((-563) (-684 |#4|) (-640 (-1169)) (-1151)) 127) (((-563) (-684 |#4|) (-640 |#4|) (-1151)) 126) (((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-917)) 125) (((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 (-1169)) (-917)) 124) (((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 |#4|) (-917)) 123) (((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|)) 121) (((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 (-1169))) 120) (((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 |#4|)) 116)) (-3675 ((|#4| (-948 |#1|)) 68)) (-3844 (((-112) (-640 |#4|) (-640 (-640 |#4|))) 152)) (-1477 (((-640 (-640 (-563))) (-563) (-563)) 130)) (-3529 (((-640 (-640 |#4|)) (-640 (-640 |#4|))) 88)) (-2020 (((-767) (-640 (-2 (|:| -2522 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 |#4|))))) 86)) (-3460 (((-767) (-640 (-2 (|:| -2522 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 |#4|))))) 85)) (-3502 (((-112) (-640 (-948 |#1|))) 17) (((-112) (-640 |#4|)) 13)) (-1456 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-640 |#4|)) (|:| |n0| (-640 |#4|))) (-640 |#4|) (-640 |#4|)) 71)) (-1716 (((-640 |#4|) |#4|) 49)) (-2464 (((-640 (-407 (-948 |#1|))) (-640 |#4|)) 115) (((-684 (-407 (-948 |#1|))) (-684 |#4|)) 56) (((-407 (-948 |#1|)) |#4|) 112)) (-4021 (((-2 (|:| |rgl| (-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|)))))))))) (|:| |rgsz| (-563))) (-684 |#4|) (-640 (-407 (-948 |#1|))) (-767) (-1151) (-563)) 93)) (-1499 (((-640 (-2 (|:| -2522 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 |#4|)))) (-684 |#4|) (-767)) 84)) (-2051 (((-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563))))) (-684 |#4|) (-767)) 102)) (-4297 (((-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|)))))) (-2 (|:| -2835 (-684 (-407 (-948 |#1|)))) (|:| |vec| (-640 (-407 (-948 |#1|)))) (|:| -2522 (-767)) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563))))) 48))) +(((-920 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3386 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 |#4|))) (-15 -3386 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 (-1169)))) (-15 -3386 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|))) (-15 -3386 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 |#4|) (-917))) (-15 -3386 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 (-1169)) (-917))) (-15 -3386 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-917))) (-15 -3386 ((-563) (-684 |#4|) (-640 |#4|) (-1151))) (-15 -3386 ((-563) (-684 |#4|) (-640 (-1169)) (-1151))) (-15 -3386 ((-563) (-684 |#4|) (-1151))) (-15 -3386 ((-563) (-684 |#4|) (-640 |#4|) (-917) (-1151))) (-15 -3386 ((-563) (-684 |#4|) (-640 (-1169)) (-917) (-1151))) (-15 -3386 ((-563) (-684 |#4|) (-917) (-1151))) (-15 -1670 ((-563) (-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|))))))))) (-1151))) (-15 -2938 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|))))))))) (-1151))) (-15 -4021 ((-2 (|:| |rgl| (-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|)))))))))) (|:| |rgsz| (-563))) (-684 |#4|) (-640 (-407 (-948 |#1|))) (-767) (-1151) (-563))) (-15 -2464 ((-407 (-948 |#1|)) |#4|)) (-15 -2464 ((-684 (-407 (-948 |#1|))) (-684 |#4|))) (-15 -2464 ((-640 (-407 (-948 |#1|))) (-640 |#4|))) (-15 -3833 ((-640 (-407 (-948 |#1|))) (-640 (-1169)))) (-15 -3675 (|#4| (-948 |#1|))) (-15 -1456 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-640 |#4|)) (|:| |n0| (-640 |#4|))) (-640 |#4|) (-640 |#4|))) (-15 -1499 ((-640 (-2 (|:| -2522 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 |#4|)))) (-684 |#4|) (-767))) (-15 -1525 ((-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|)))))) (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|)))))) (-640 |#4|))) (-15 -4297 ((-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|)))))) (-2 (|:| -2835 (-684 (-407 (-948 |#1|)))) (|:| |vec| (-640 (-407 (-948 |#1|)))) (|:| -2522 (-767)) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (-15 -1716 ((-640 |#4|) |#4|)) (-15 -3460 ((-767) (-640 (-2 (|:| -2522 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 |#4|)))))) (-15 -2020 ((-767) (-640 (-2 (|:| -2522 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 |#4|)))))) (-15 -3529 ((-640 (-640 |#4|)) (-640 (-640 |#4|)))) (-15 -1477 ((-640 (-640 (-563))) (-563) (-563))) (-15 -3844 ((-112) (-640 |#4|) (-640 (-640 |#4|)))) (-15 -2051 ((-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563))))) (-684 |#4|) (-767))) (-15 -3059 ((-684 |#4|) (-684 |#4|) (-640 |#4|))) (-15 -1400 ((-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))) (-684 |#4|) (-640 (-407 (-948 |#1|))) (-640 (-640 |#4|)) (-767) (-767) (-563))) (-15 -2511 (|#4| |#4|)) (-15 -3502 ((-112) (-640 |#4|))) (-15 -3502 ((-112) (-640 (-948 |#1|))))) (-13 (-307) (-147)) (-13 (-846) (-611 (-1169))) (-789) (-945 |#1| |#3| |#2|)) (T -920)) +((-3502 (*1 *2 *3) (-12 (-5 *3 (-640 (-948 *4))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-112)) (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5)))) (-3502 (*1 *2 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-112)) (-5 *1 (-920 *4 *5 *6 *7)))) (-2511 (*1 *2 *2) (-12 (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-846) (-611 (-1169)))) (-4 *5 (-789)) (-5 *1 (-920 *3 *4 *5 *2)) (-4 *2 (-945 *3 *5 *4)))) (-1400 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563))))) (-5 *4 (-684 *12)) (-5 *5 (-640 (-407 (-948 *9)))) (-5 *6 (-640 (-640 *12))) (-5 *7 (-767)) (-5 *8 (-563)) (-4 *9 (-13 (-307) (-147))) (-4 *12 (-945 *9 *11 *10)) (-4 *10 (-13 (-846) (-611 (-1169)))) (-4 *11 (-789)) (-5 *2 (-2 (|:| |eqzro| (-640 *12)) (|:| |neqzro| (-640 *12)) (|:| |wcond| (-640 (-948 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 *9)))) (|:| -4315 (-640 (-1257 (-407 (-948 *9))))))))) (-5 *1 (-920 *9 *10 *11 *12)))) (-3059 (*1 *2 *2 *3) (-12 (-5 *2 (-684 *7)) (-5 *3 (-640 *7)) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *1 (-920 *4 *5 *6 *7)))) (-2051 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *8)) (-5 *4 (-767)) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-640 (-2 (|:| |det| *8) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (-5 *1 (-920 *5 *6 *7 *8)))) (-3844 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-640 *8))) (-5 *3 (-640 *8)) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-112)) (-5 *1 (-920 *5 *6 *7 *8)))) (-1477 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-640 (-640 (-563)))) (-5 *1 (-920 *4 *5 *6 *7)) (-5 *3 (-563)) (-4 *7 (-945 *4 *6 *5)))) (-3529 (*1 *2 *2) (-12 (-5 *2 (-640 (-640 *6))) (-4 *6 (-945 *3 *5 *4)) (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-846) (-611 (-1169)))) (-4 *5 (-789)) (-5 *1 (-920 *3 *4 *5 *6)))) (-2020 (*1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| -2522 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| *7) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 *7))))) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-767)) (-5 *1 (-920 *4 *5 *6 *7)))) (-3460 (*1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| -2522 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| *7) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 *7))))) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-767)) (-5 *1 (-920 *4 *5 *6 *7)))) (-1716 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-640 *3)) (-5 *1 (-920 *4 *5 *6 *3)) (-4 *3 (-945 *4 *6 *5)))) (-4297 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2835 (-684 (-407 (-948 *4)))) (|:| |vec| (-640 (-407 (-948 *4)))) (|:| -2522 (-767)) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563))))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-2 (|:| |partsol| (-1257 (-407 (-948 *4)))) (|:| -4315 (-640 (-1257 (-407 (-948 *4))))))) (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5)))) (-1525 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1257 (-407 (-948 *4)))) (|:| -4315 (-640 (-1257 (-407 (-948 *4))))))) (-5 *3 (-640 *7)) (-4 *4 (-13 (-307) (-147))) (-4 *7 (-945 *4 *6 *5)) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *1 (-920 *4 *5 *6 *7)))) (-1499 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *8)) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-640 (-2 (|:| -2522 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| *8) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 *8))))) (-5 *1 (-920 *5 *6 *7 *8)) (-5 *4 (-767)))) (-1456 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-4 *7 (-945 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-640 *7)) (|:| |n0| (-640 *7)))) (-5 *1 (-920 *4 *5 *6 *7)) (-5 *3 (-640 *7)))) (-3675 (*1 *2 *3) (-12 (-5 *3 (-948 *4)) (-4 *4 (-13 (-307) (-147))) (-4 *2 (-945 *4 *6 *5)) (-5 *1 (-920 *4 *5 *6 *2)) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)))) (-3833 (*1 *2 *3) (-12 (-5 *3 (-640 (-1169))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-640 (-407 (-948 *4)))) (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-640 (-407 (-948 *4)))) (-5 *1 (-920 *4 *5 *6 *7)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-684 *7)) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-684 (-407 (-948 *4)))) (-5 *1 (-920 *4 *5 *6 *7)))) (-2464 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-407 (-948 *4))) (-5 *1 (-920 *4 *5 *6 *3)) (-4 *3 (-945 *4 *6 *5)))) (-4021 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-684 *11)) (-5 *4 (-640 (-407 (-948 *8)))) (-5 *5 (-767)) (-5 *6 (-1151)) (-4 *8 (-13 (-307) (-147))) (-4 *11 (-945 *8 *10 *9)) (-4 *9 (-13 (-846) (-611 (-1169)))) (-4 *10 (-789)) (-5 *2 (-2 (|:| |rgl| (-640 (-2 (|:| |eqzro| (-640 *11)) (|:| |neqzro| (-640 *11)) (|:| |wcond| (-640 (-948 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 *8)))) (|:| -4315 (-640 (-1257 (-407 (-948 *8)))))))))) (|:| |rgsz| (-563)))) (-5 *1 (-920 *8 *9 *10 *11)) (-5 *7 (-563)))) (-2938 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-640 (-2 (|:| |eqzro| (-640 *7)) (|:| |neqzro| (-640 *7)) (|:| |wcond| (-640 (-948 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 *4)))) (|:| -4315 (-640 (-1257 (-407 (-948 *4)))))))))) (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5)))) (-1670 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-2 (|:| |eqzro| (-640 *8)) (|:| |neqzro| (-640 *8)) (|:| |wcond| (-640 (-948 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 *5)))) (|:| -4315 (-640 (-1257 (-407 (-948 *5)))))))))) (-5 *4 (-1151)) (-4 *5 (-13 (-307) (-147))) (-4 *8 (-945 *5 *7 *6)) (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-563)) (-5 *1 (-920 *5 *6 *7 *8)))) (-3386 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-684 *9)) (-5 *4 (-917)) (-5 *5 (-1151)) (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-611 (-1169)))) (-4 *8 (-789)) (-5 *2 (-563)) (-5 *1 (-920 *6 *7 *8 *9)))) (-3386 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-684 *10)) (-5 *4 (-640 (-1169))) (-5 *5 (-917)) (-5 *6 (-1151)) (-4 *10 (-945 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) (-4 *8 (-13 (-846) (-611 (-1169)))) (-4 *9 (-789)) (-5 *2 (-563)) (-5 *1 (-920 *7 *8 *9 *10)))) (-3386 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-684 *10)) (-5 *4 (-640 *10)) (-5 *5 (-917)) (-5 *6 (-1151)) (-4 *10 (-945 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) (-4 *8 (-13 (-846) (-611 (-1169)))) (-4 *9 (-789)) (-5 *2 (-563)) (-5 *1 (-920 *7 *8 *9 *10)))) (-3386 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *8)) (-5 *4 (-1151)) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-563)) (-5 *1 (-920 *5 *6 *7 *8)))) (-3386 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-684 *9)) (-5 *4 (-640 (-1169))) (-5 *5 (-1151)) (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-611 (-1169)))) (-4 *8 (-789)) (-5 *2 (-563)) (-5 *1 (-920 *6 *7 *8 *9)))) (-3386 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-684 *9)) (-5 *4 (-640 *9)) (-5 *5 (-1151)) (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-611 (-1169)))) (-4 *8 (-789)) (-5 *2 (-563)) (-5 *1 (-920 *6 *7 *8 *9)))) (-3386 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *8)) (-5 *4 (-917)) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-640 (-2 (|:| |eqzro| (-640 *8)) (|:| |neqzro| (-640 *8)) (|:| |wcond| (-640 (-948 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 *5)))) (|:| -4315 (-640 (-1257 (-407 (-948 *5)))))))))) (-5 *1 (-920 *5 *6 *7 *8)))) (-3386 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-684 *9)) (-5 *4 (-640 (-1169))) (-5 *5 (-917)) (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-611 (-1169)))) (-4 *8 (-789)) (-5 *2 (-640 (-2 (|:| |eqzro| (-640 *9)) (|:| |neqzro| (-640 *9)) (|:| |wcond| (-640 (-948 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 *6)))) (|:| -4315 (-640 (-1257 (-407 (-948 *6)))))))))) (-5 *1 (-920 *6 *7 *8 *9)))) (-3386 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-684 *9)) (-5 *5 (-917)) (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-611 (-1169)))) (-4 *8 (-789)) (-5 *2 (-640 (-2 (|:| |eqzro| (-640 *9)) (|:| |neqzro| (-640 *9)) (|:| |wcond| (-640 (-948 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 *6)))) (|:| -4315 (-640 (-1257 (-407 (-948 *6)))))))))) (-5 *1 (-920 *6 *7 *8 *9)) (-5 *4 (-640 *9)))) (-3386 (*1 *2 *3) (-12 (-5 *3 (-684 *7)) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-640 (-2 (|:| |eqzro| (-640 *7)) (|:| |neqzro| (-640 *7)) (|:| |wcond| (-640 (-948 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 *4)))) (|:| -4315 (-640 (-1257 (-407 (-948 *4)))))))))) (-5 *1 (-920 *4 *5 *6 *7)))) (-3386 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *8)) (-5 *4 (-640 (-1169))) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-640 (-2 (|:| |eqzro| (-640 *8)) (|:| |neqzro| (-640 *8)) (|:| |wcond| (-640 (-948 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 *5)))) (|:| -4315 (-640 (-1257 (-407 (-948 *5)))))))))) (-5 *1 (-920 *5 *6 *7 *8)))) (-3386 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *8)) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-640 (-2 (|:| |eqzro| (-640 *8)) (|:| |neqzro| (-640 *8)) (|:| |wcond| (-640 (-948 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 *5)))) (|:| -4315 (-640 (-1257 (-407 (-948 *5)))))))))) (-5 *1 (-920 *5 *6 *7 *8)) (-5 *4 (-640 *8))))) +(-10 -7 (-15 -3386 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 |#4|))) (-15 -3386 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 (-1169)))) (-15 -3386 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|))) (-15 -3386 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 |#4|) (-917))) (-15 -3386 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 (-1169)) (-917))) (-15 -3386 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-917))) (-15 -3386 ((-563) (-684 |#4|) (-640 |#4|) (-1151))) (-15 -3386 ((-563) (-684 |#4|) (-640 (-1169)) (-1151))) (-15 -3386 ((-563) (-684 |#4|) (-1151))) (-15 -3386 ((-563) (-684 |#4|) (-640 |#4|) (-917) (-1151))) (-15 -3386 ((-563) (-684 |#4|) (-640 (-1169)) (-917) (-1151))) (-15 -3386 ((-563) (-684 |#4|) (-917) (-1151))) (-15 -1670 ((-563) (-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|))))))))) (-1151))) (-15 -2938 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|))))))))) (-1151))) (-15 -4021 ((-2 (|:| |rgl| (-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|)))))))))) (|:| |rgsz| (-563))) (-684 |#4|) (-640 (-407 (-948 |#1|))) (-767) (-1151) (-563))) (-15 -2464 ((-407 (-948 |#1|)) |#4|)) (-15 -2464 ((-684 (-407 (-948 |#1|))) (-684 |#4|))) (-15 -2464 ((-640 (-407 (-948 |#1|))) (-640 |#4|))) (-15 -3833 ((-640 (-407 (-948 |#1|))) (-640 (-1169)))) (-15 -3675 (|#4| (-948 |#1|))) (-15 -1456 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-640 |#4|)) (|:| |n0| (-640 |#4|))) (-640 |#4|) (-640 |#4|))) (-15 -1499 ((-640 (-2 (|:| -2522 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 |#4|)))) (-684 |#4|) (-767))) (-15 -1525 ((-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|)))))) (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|)))))) (-640 |#4|))) (-15 -4297 ((-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|)))))) (-2 (|:| -2835 (-684 (-407 (-948 |#1|)))) (|:| |vec| (-640 (-407 (-948 |#1|)))) (|:| -2522 (-767)) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (-15 -1716 ((-640 |#4|) |#4|)) (-15 -3460 ((-767) (-640 (-2 (|:| -2522 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 |#4|)))))) (-15 -2020 ((-767) (-640 (-2 (|:| -2522 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 |#4|)))))) (-15 -3529 ((-640 (-640 |#4|)) (-640 (-640 |#4|)))) (-15 -1477 ((-640 (-640 (-563))) (-563) (-563))) (-15 -3844 ((-112) (-640 |#4|) (-640 (-640 |#4|)))) (-15 -2051 ((-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563))))) (-684 |#4|) (-767))) (-15 -3059 ((-684 |#4|) (-684 |#4|) (-640 |#4|))) (-15 -1400 ((-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -4315 (-640 (-1257 (-407 (-948 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))) (-684 |#4|) (-640 (-407 (-948 |#1|))) (-640 (-640 |#4|)) (-767) (-767) (-563))) (-15 -2511 (|#4| |#4|)) (-15 -3502 ((-112) (-640 |#4|))) (-15 -3502 ((-112) (-640 (-948 |#1|))))) +((-3163 (((-923) |#1| (-1169)) 17) (((-923) |#1| (-1169) (-1087 (-225))) 21)) (-3590 (((-923) |#1| |#1| (-1169) (-1087 (-225))) 19) (((-923) |#1| (-1169) (-1087 (-225))) 15))) +(((-921 |#1|) (-10 -7 (-15 -3590 ((-923) |#1| (-1169) (-1087 (-225)))) (-15 -3590 ((-923) |#1| |#1| (-1169) (-1087 (-225)))) (-15 -3163 ((-923) |#1| (-1169) (-1087 (-225)))) (-15 -3163 ((-923) |#1| (-1169)))) (-611 (-536))) (T -921)) +((-3163 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-5 *2 (-923)) (-5 *1 (-921 *3)) (-4 *3 (-611 (-536))))) (-3163 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1169)) (-5 *5 (-1087 (-225))) (-5 *2 (-923)) (-5 *1 (-921 *3)) (-4 *3 (-611 (-536))))) (-3590 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1169)) (-5 *5 (-1087 (-225))) (-5 *2 (-923)) (-5 *1 (-921 *3)) (-4 *3 (-611 (-536))))) (-3590 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1169)) (-5 *5 (-1087 (-225))) (-5 *2 (-923)) (-5 *1 (-921 *3)) (-4 *3 (-611 (-536)))))) +(-10 -7 (-15 -3590 ((-923) |#1| (-1169) (-1087 (-225)))) (-15 -3590 ((-923) |#1| |#1| (-1169) (-1087 (-225)))) (-15 -3163 ((-923) |#1| (-1169) (-1087 (-225)))) (-15 -3163 ((-923) |#1| (-1169)))) +((-3236 (($ $ (-1087 (-225)) (-1087 (-225)) (-1087 (-225))) 69)) (-4334 (((-1087 (-225)) $) 40)) (-4324 (((-1087 (-225)) $) 39)) (-4313 (((-1087 (-225)) $) 38)) (-1331 (((-640 (-640 (-225))) $) 43)) (-1993 (((-1087 (-225)) $) 41)) (-2450 (((-563) (-563)) 32)) (-1575 (((-563) (-563)) 28)) (-3371 (((-563) (-563)) 30)) (-3870 (((-112) (-112)) 35)) (-3472 (((-563)) 31)) (-1441 (($ $ (-1087 (-225))) 72) (($ $) 73)) (-3544 (($ (-1 (-939 (-225)) (-225)) (-1087 (-225))) 77) (($ (-1 (-939 (-225)) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225))) 78)) (-3590 (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225))) 80) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225))) 81) (($ $ (-1087 (-225))) 75)) (-3663 (((-563)) 36)) (-4235 (((-563)) 27)) (-2264 (((-563)) 29)) (-4250 (((-640 (-640 (-939 (-225)))) $) 93)) (-1488 (((-112) (-112)) 37)) (-1693 (((-858) $) 92)) (-2684 (((-112)) 34))) +(((-922) (-13 (-970) (-10 -8 (-15 -3544 ($ (-1 (-939 (-225)) (-225)) (-1087 (-225)))) (-15 -3544 ($ (-1 (-939 (-225)) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -3590 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225)))) (-15 -3590 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -3590 ($ $ (-1087 (-225)))) (-15 -3236 ($ $ (-1087 (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -1441 ($ $ (-1087 (-225)))) (-15 -1441 ($ $)) (-15 -1993 ((-1087 (-225)) $)) (-15 -1331 ((-640 (-640 (-225))) $)) (-15 -4235 ((-563))) (-15 -1575 ((-563) (-563))) (-15 -2264 ((-563))) (-15 -3371 ((-563) (-563))) (-15 -3472 ((-563))) (-15 -2450 ((-563) (-563))) (-15 -2684 ((-112))) (-15 -3870 ((-112) (-112))) (-15 -3663 ((-563))) (-15 -1488 ((-112) (-112)))))) (T -922)) +((-3544 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1087 (-225))) (-5 *1 (-922)))) (-3544 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1087 (-225))) (-5 *1 (-922)))) (-3590 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) (-5 *1 (-922)))) (-3590 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) (-5 *1 (-922)))) (-3590 (*1 *1 *1 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-922)))) (-3236 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-922)))) (-1441 (*1 *1 *1 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-922)))) (-1441 (*1 *1 *1) (-5 *1 (-922))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-922)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-640 (-640 (-225)))) (-5 *1 (-922)))) (-4235 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922)))) (-1575 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922)))) (-2264 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922)))) (-3371 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922)))) (-3472 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922)))) (-2450 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922)))) (-2684 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922)))) (-3870 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922)))) (-3663 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922)))) (-1488 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922))))) +(-13 (-970) (-10 -8 (-15 -3544 ($ (-1 (-939 (-225)) (-225)) (-1087 (-225)))) (-15 -3544 ($ (-1 (-939 (-225)) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -3590 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225)))) (-15 -3590 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -3590 ($ $ (-1087 (-225)))) (-15 -3236 ($ $ (-1087 (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -1441 ($ $ (-1087 (-225)))) (-15 -1441 ($ $)) (-15 -1993 ((-1087 (-225)) $)) (-15 -1331 ((-640 (-640 (-225))) $)) (-15 -4235 ((-563))) (-15 -1575 ((-563) (-563))) (-15 -2264 ((-563))) (-15 -3371 ((-563) (-563))) (-15 -3472 ((-563))) (-15 -2450 ((-563) (-563))) (-15 -2684 ((-112))) (-15 -3870 ((-112) (-112))) (-15 -3663 ((-563))) (-15 -1488 ((-112) (-112))))) +((-3236 (($ $ (-1087 (-225))) 69) (($ $ (-1087 (-225)) (-1087 (-225))) 70)) (-4324 (((-1087 (-225)) $) 44)) (-4313 (((-1087 (-225)) $) 43)) (-1993 (((-1087 (-225)) $) 45)) (-2570 (((-563) (-563)) 37)) (-1731 (((-563) (-563)) 33)) (-2554 (((-563) (-563)) 35)) (-4332 (((-112) (-112)) 39)) (-2355 (((-563)) 36)) (-1441 (($ $ (-1087 (-225))) 73) (($ $) 74)) (-3544 (($ (-1 (-939 (-225)) (-225)) (-1087 (-225))) 83) (($ (-1 (-939 (-225)) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225))) 84)) (-3163 (($ (-1 (-225) (-225)) (-1087 (-225))) 91) (($ (-1 (-225) (-225))) 94)) (-3590 (($ (-1 (-225) (-225)) (-1087 (-225))) 78) (($ (-1 (-225) (-225)) (-1087 (-225)) (-1087 (-225))) 79) (($ (-640 (-1 (-225) (-225))) (-1087 (-225))) 86) (($ (-640 (-1 (-225) (-225))) (-1087 (-225)) (-1087 (-225))) 87) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225))) 80) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225))) 81) (($ $ (-1087 (-225))) 75)) (-1621 (((-112) $) 40)) (-3924 (((-563)) 41)) (-4011 (((-563)) 32)) (-1535 (((-563)) 34)) (-4250 (((-640 (-640 (-939 (-225)))) $) 23)) (-3199 (((-112) (-112)) 42)) (-1693 (((-858) $) 105)) (-3641 (((-112)) 38))) +(((-923) (-13 (-951) (-10 -8 (-15 -3590 ($ (-1 (-225) (-225)) (-1087 (-225)))) (-15 -3590 ($ (-1 (-225) (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -3590 ($ (-640 (-1 (-225) (-225))) (-1087 (-225)))) (-15 -3590 ($ (-640 (-1 (-225) (-225))) (-1087 (-225)) (-1087 (-225)))) (-15 -3590 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225)))) (-15 -3590 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -3544 ($ (-1 (-939 (-225)) (-225)) (-1087 (-225)))) (-15 -3544 ($ (-1 (-939 (-225)) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -3163 ($ (-1 (-225) (-225)) (-1087 (-225)))) (-15 -3163 ($ (-1 (-225) (-225)))) (-15 -3590 ($ $ (-1087 (-225)))) (-15 -1621 ((-112) $)) (-15 -3236 ($ $ (-1087 (-225)))) (-15 -3236 ($ $ (-1087 (-225)) (-1087 (-225)))) (-15 -1441 ($ $ (-1087 (-225)))) (-15 -1441 ($ $)) (-15 -1993 ((-1087 (-225)) $)) (-15 -4011 ((-563))) (-15 -1731 ((-563) (-563))) (-15 -1535 ((-563))) (-15 -2554 ((-563) (-563))) (-15 -2355 ((-563))) (-15 -2570 ((-563) (-563))) (-15 -3641 ((-112))) (-15 -4332 ((-112) (-112))) (-15 -3924 ((-563))) (-15 -3199 ((-112) (-112)))))) (T -923)) +((-3590 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) (-5 *1 (-923)))) (-3590 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) (-5 *1 (-923)))) (-3590 (*1 *1 *2 *3) (-12 (-5 *2 (-640 (-1 (-225) (-225)))) (-5 *3 (-1087 (-225))) (-5 *1 (-923)))) (-3590 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-640 (-1 (-225) (-225)))) (-5 *3 (-1087 (-225))) (-5 *1 (-923)))) (-3590 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) (-5 *1 (-923)))) (-3590 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) (-5 *1 (-923)))) (-3544 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1087 (-225))) (-5 *1 (-923)))) (-3544 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1087 (-225))) (-5 *1 (-923)))) (-3163 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) (-5 *1 (-923)))) (-3163 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-923)))) (-3590 (*1 *1 *1 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-923)))) (-1621 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-923)))) (-3236 (*1 *1 *1 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-923)))) (-3236 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-923)))) (-1441 (*1 *1 *1 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-923)))) (-1441 (*1 *1 *1) (-5 *1 (-923))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-923)))) (-4011 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923)))) (-1731 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923)))) (-1535 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923)))) (-2554 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923)))) (-2355 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923)))) (-2570 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923)))) (-3641 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))) (-4332 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))) (-3924 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923)))) (-3199 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923))))) +(-13 (-951) (-10 -8 (-15 -3590 ($ (-1 (-225) (-225)) (-1087 (-225)))) (-15 -3590 ($ (-1 (-225) (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -3590 ($ (-640 (-1 (-225) (-225))) (-1087 (-225)))) (-15 -3590 ($ (-640 (-1 (-225) (-225))) (-1087 (-225)) (-1087 (-225)))) (-15 -3590 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225)))) (-15 -3590 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -3544 ($ (-1 (-939 (-225)) (-225)) (-1087 (-225)))) (-15 -3544 ($ (-1 (-939 (-225)) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -3163 ($ (-1 (-225) (-225)) (-1087 (-225)))) (-15 -3163 ($ (-1 (-225) (-225)))) (-15 -3590 ($ $ (-1087 (-225)))) (-15 -1621 ((-112) $)) (-15 -3236 ($ $ (-1087 (-225)))) (-15 -3236 ($ $ (-1087 (-225)) (-1087 (-225)))) (-15 -1441 ($ $ (-1087 (-225)))) (-15 -1441 ($ $)) (-15 -1993 ((-1087 (-225)) $)) (-15 -4011 ((-563))) (-15 -1731 ((-563) (-563))) (-15 -1535 ((-563))) (-15 -2554 ((-563) (-563))) (-15 -2355 ((-563))) (-15 -2570 ((-563) (-563))) (-15 -3641 ((-112))) (-15 -4332 ((-112) (-112))) (-15 -3924 ((-563))) (-15 -3199 ((-112) (-112))))) +((-3949 (((-640 (-1087 (-225))) (-640 (-640 (-939 (-225))))) 24))) +(((-924) (-10 -7 (-15 -3949 ((-640 (-1087 (-225))) (-640 (-640 (-939 (-225)))))))) (T -924)) +((-3949 (*1 *2 *3) (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *2 (-640 (-1087 (-225)))) (-5 *1 (-924))))) +(-10 -7 (-15 -3949 ((-640 (-1087 (-225))) (-640 (-640 (-939 (-225))))))) +((-3902 ((|#2| |#2|) 26)) (-1883 ((|#2| |#2|) 27)) (-2669 ((|#2| |#2|) 25)) (-2295 ((|#2| |#2| (-1151)) 24))) +(((-925 |#1| |#2|) (-10 -7 (-15 -2295 (|#2| |#2| (-1151))) (-15 -2669 (|#2| |#2|)) (-15 -3902 (|#2| |#2|)) (-15 -1883 (|#2| |#2|))) (-846) (-430 |#1|)) (T -925)) +((-1883 (*1 *2 *2) (-12 (-4 *3 (-846)) (-5 *1 (-925 *3 *2)) (-4 *2 (-430 *3)))) (-3902 (*1 *2 *2) (-12 (-4 *3 (-846)) (-5 *1 (-925 *3 *2)) (-4 *2 (-430 *3)))) (-2669 (*1 *2 *2) (-12 (-4 *3 (-846)) (-5 *1 (-925 *3 *2)) (-4 *2 (-430 *3)))) (-2295 (*1 *2 *2 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-846)) (-5 *1 (-925 *4 *2)) (-4 *2 (-430 *4))))) +(-10 -7 (-15 -2295 (|#2| |#2| (-1151))) (-15 -2669 (|#2| |#2|)) (-15 -3902 (|#2| |#2|)) (-15 -1883 (|#2| |#2|))) +((-3902 (((-316 (-563)) (-1169)) 16)) (-1883 (((-316 (-563)) (-1169)) 14)) (-2669 (((-316 (-563)) (-1169)) 12)) (-2295 (((-316 (-563)) (-1169) (-1151)) 19))) +(((-926) (-10 -7 (-15 -2295 ((-316 (-563)) (-1169) (-1151))) (-15 -2669 ((-316 (-563)) (-1169))) (-15 -3902 ((-316 (-563)) (-1169))) (-15 -1883 ((-316 (-563)) (-1169))))) (T -926)) +((-1883 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-316 (-563))) (-5 *1 (-926)))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-316 (-563))) (-5 *1 (-926)))) (-2669 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-316 (-563))) (-5 *1 (-926)))) (-2295 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-1151)) (-5 *2 (-316 (-563))) (-5 *1 (-926))))) +(-10 -7 (-15 -2295 ((-316 (-563)) (-1169) (-1151))) (-15 -2669 ((-316 (-563)) (-1169))) (-15 -3902 ((-316 (-563)) (-1169))) (-15 -1883 ((-316 (-563)) (-1169)))) +((-3787 (((-885 |#1| |#3|) |#2| (-888 |#1|) (-885 |#1| |#3|)) 25)) (-4310 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) +(((-927 |#1| |#2| |#3|) (-10 -7 (-15 -4310 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3787 ((-885 |#1| |#3|) |#2| (-888 |#1|) (-885 |#1| |#3|)))) (-1093) (-882 |#1|) (-13 (-1093) (-1034 |#2|))) (T -927)) +((-3787 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 *6)) (-5 *4 (-888 *5)) (-4 *5 (-1093)) (-4 *6 (-13 (-1093) (-1034 *3))) (-4 *3 (-882 *5)) (-5 *1 (-927 *5 *3 *6)))) (-4310 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1093) (-1034 *5))) (-4 *5 (-882 *4)) (-4 *4 (-1093)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-927 *4 *5 *6))))) +(-10 -7 (-15 -4310 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3787 ((-885 |#1| |#3|) |#2| (-888 |#1|) (-885 |#1| |#3|)))) +((-3787 (((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)) 30))) +(((-928 |#1| |#2| |#3|) (-10 -7 (-15 -3787 ((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)))) (-1093) (-13 (-555) (-846) (-882 |#1|)) (-13 (-430 |#2|) (-611 (-888 |#1|)) (-882 |#1|) (-1034 (-609 $)))) (T -928)) +((-3787 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 *3)) (-4 *5 (-1093)) (-4 *3 (-13 (-430 *6) (-611 *4) (-882 *5) (-1034 (-609 $)))) (-5 *4 (-888 *5)) (-4 *6 (-13 (-555) (-846) (-882 *5))) (-5 *1 (-928 *5 *6 *3))))) +(-10 -7 (-15 -3787 ((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)))) +((-3787 (((-885 (-563) |#1|) |#1| (-888 (-563)) (-885 (-563) |#1|)) 13))) +(((-929 |#1|) (-10 -7 (-15 -3787 ((-885 (-563) |#1|) |#1| (-888 (-563)) (-885 (-563) |#1|)))) (-545)) (T -929)) +((-3787 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 (-563) *3)) (-5 *4 (-888 (-563))) (-4 *3 (-545)) (-5 *1 (-929 *3))))) +(-10 -7 (-15 -3787 ((-885 (-563) |#1|) |#1| (-888 (-563)) (-885 (-563) |#1|)))) +((-3787 (((-885 |#1| |#2|) (-609 |#2|) (-888 |#1|) (-885 |#1| |#2|)) 52))) +(((-930 |#1| |#2|) (-10 -7 (-15 -3787 ((-885 |#1| |#2|) (-609 |#2|) (-888 |#1|) (-885 |#1| |#2|)))) (-1093) (-13 (-846) (-1034 (-609 $)) (-611 (-888 |#1|)) (-882 |#1|))) (T -930)) +((-3787 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 *6)) (-5 *3 (-609 *6)) (-4 *5 (-1093)) (-4 *6 (-13 (-846) (-1034 (-609 $)) (-611 *4) (-882 *5))) (-5 *4 (-888 *5)) (-5 *1 (-930 *5 *6))))) +(-10 -7 (-15 -3787 ((-885 |#1| |#2|) (-609 |#2|) (-888 |#1|) (-885 |#1| |#2|)))) +((-3787 (((-881 |#1| |#2| |#3|) |#3| (-888 |#1|) (-881 |#1| |#2| |#3|)) 15))) +(((-931 |#1| |#2| |#3|) (-10 -7 (-15 -3787 ((-881 |#1| |#2| |#3|) |#3| (-888 |#1|) (-881 |#1| |#2| |#3|)))) (-1093) (-882 |#1|) (-661 |#2|)) (T -931)) +((-3787 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-881 *5 *6 *3)) (-5 *4 (-888 *5)) (-4 *5 (-1093)) (-4 *6 (-882 *5)) (-4 *3 (-661 *6)) (-5 *1 (-931 *5 *6 *3))))) +(-10 -7 (-15 -3787 ((-881 |#1| |#2| |#3|) |#3| (-888 |#1|) (-881 |#1| |#2| |#3|)))) +((-3787 (((-885 |#1| |#5|) |#5| (-888 |#1|) (-885 |#1| |#5|)) 17 (|has| |#3| (-882 |#1|))) (((-885 |#1| |#5|) |#5| (-888 |#1|) (-885 |#1| |#5|) (-1 (-885 |#1| |#5|) |#3| (-888 |#1|) (-885 |#1| |#5|))) 16))) +(((-932 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3787 ((-885 |#1| |#5|) |#5| (-888 |#1|) (-885 |#1| |#5|) (-1 (-885 |#1| |#5|) |#3| (-888 |#1|) (-885 |#1| |#5|)))) (IF (|has| |#3| (-882 |#1|)) (-15 -3787 ((-885 |#1| |#5|) |#5| (-888 |#1|) (-885 |#1| |#5|))) |%noBranch|)) (-1093) (-789) (-846) (-13 (-1045) (-846) (-882 |#1|)) (-13 (-945 |#4| |#2| |#3|) (-611 (-888 |#1|)))) (T -932)) +((-3787 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 *3)) (-4 *5 (-1093)) (-4 *3 (-13 (-945 *8 *6 *7) (-611 *4))) (-5 *4 (-888 *5)) (-4 *7 (-882 *5)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-13 (-1045) (-846) (-882 *5))) (-5 *1 (-932 *5 *6 *7 *8 *3)))) (-3787 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-885 *6 *3) *8 (-888 *6) (-885 *6 *3))) (-4 *8 (-846)) (-5 *2 (-885 *6 *3)) (-5 *4 (-888 *6)) (-4 *6 (-1093)) (-4 *3 (-13 (-945 *9 *7 *8) (-611 *4))) (-4 *7 (-789)) (-4 *9 (-13 (-1045) (-846) (-882 *6))) (-5 *1 (-932 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -3787 ((-885 |#1| |#5|) |#5| (-888 |#1|) (-885 |#1| |#5|) (-1 (-885 |#1| |#5|) |#3| (-888 |#1|) (-885 |#1| |#5|)))) (IF (|has| |#3| (-882 |#1|)) (-15 -3787 ((-885 |#1| |#5|) |#5| (-888 |#1|) (-885 |#1| |#5|))) |%noBranch|)) +((-1959 ((|#2| |#2| (-640 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) +(((-933 |#1| |#2| |#3|) (-10 -7 (-15 -1959 (|#2| |#2| (-1 (-112) |#3|))) (-15 -1959 (|#2| |#2| (-640 (-1 (-112) |#3|))))) (-846) (-430 |#1|) (-1208)) (T -933)) +((-1959 (*1 *2 *2 *3) (-12 (-5 *3 (-640 (-1 (-112) *5))) (-4 *5 (-1208)) (-4 *4 (-846)) (-5 *1 (-933 *4 *2 *5)) (-4 *2 (-430 *4)))) (-1959 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1208)) (-4 *4 (-846)) (-5 *1 (-933 *4 *2 *5)) (-4 *2 (-430 *4))))) +(-10 -7 (-15 -1959 (|#2| |#2| (-1 (-112) |#3|))) (-15 -1959 (|#2| |#2| (-640 (-1 (-112) |#3|))))) +((-1959 (((-316 (-563)) (-1169) (-640 (-1 (-112) |#1|))) 18) (((-316 (-563)) (-1169) (-1 (-112) |#1|)) 15))) +(((-934 |#1|) (-10 -7 (-15 -1959 ((-316 (-563)) (-1169) (-1 (-112) |#1|))) (-15 -1959 ((-316 (-563)) (-1169) (-640 (-1 (-112) |#1|))))) (-1208)) (T -934)) +((-1959 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-640 (-1 (-112) *5))) (-4 *5 (-1208)) (-5 *2 (-316 (-563))) (-5 *1 (-934 *5)))) (-1959 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1208)) (-5 *2 (-316 (-563))) (-5 *1 (-934 *5))))) +(-10 -7 (-15 -1959 ((-316 (-563)) (-1169) (-1 (-112) |#1|))) (-15 -1959 ((-316 (-563)) (-1169) (-640 (-1 (-112) |#1|))))) +((-3787 (((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)) 25))) +(((-935 |#1| |#2| |#3|) (-10 -7 (-15 -3787 ((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)))) (-1093) (-13 (-555) (-882 |#1|) (-611 (-888 |#1|))) (-988 |#2|)) (T -935)) +((-3787 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 *3)) (-4 *5 (-1093)) (-4 *3 (-988 *6)) (-4 *6 (-13 (-555) (-882 *5) (-611 *4))) (-5 *4 (-888 *5)) (-5 *1 (-935 *5 *6 *3))))) +(-10 -7 (-15 -3787 ((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)))) +((-3787 (((-885 |#1| (-1169)) (-1169) (-888 |#1|) (-885 |#1| (-1169))) 17))) +(((-936 |#1|) (-10 -7 (-15 -3787 ((-885 |#1| (-1169)) (-1169) (-888 |#1|) (-885 |#1| (-1169))))) (-1093)) (T -936)) +((-3787 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 (-1169))) (-5 *3 (-1169)) (-5 *4 (-888 *5)) (-4 *5 (-1093)) (-5 *1 (-936 *5))))) +(-10 -7 (-15 -3787 ((-885 |#1| (-1169)) (-1169) (-888 |#1|) (-885 |#1| (-1169))))) +((-1682 (((-885 |#1| |#3|) (-640 |#3|) (-640 (-888 |#1|)) (-885 |#1| |#3|) (-1 (-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|))) 33)) (-3787 (((-885 |#1| |#3|) (-640 |#3|) (-640 (-888 |#1|)) (-1 |#3| (-640 |#3|)) (-885 |#1| |#3|) (-1 (-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|))) 32))) +(((-937 |#1| |#2| |#3|) (-10 -7 (-15 -3787 ((-885 |#1| |#3|) (-640 |#3|) (-640 (-888 |#1|)) (-1 |#3| (-640 |#3|)) (-885 |#1| |#3|) (-1 (-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)))) (-15 -1682 ((-885 |#1| |#3|) (-640 |#3|) (-640 (-888 |#1|)) (-885 |#1| |#3|) (-1 (-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|))))) (-1093) (-13 (-1045) (-846)) (-13 (-1045) (-611 (-888 |#1|)) (-1034 |#2|))) (T -937)) +((-1682 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 (-888 *6))) (-5 *5 (-1 (-885 *6 *8) *8 (-888 *6) (-885 *6 *8))) (-4 *6 (-1093)) (-4 *8 (-13 (-1045) (-611 (-888 *6)) (-1034 *7))) (-5 *2 (-885 *6 *8)) (-4 *7 (-13 (-1045) (-846))) (-5 *1 (-937 *6 *7 *8)))) (-3787 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-640 (-888 *7))) (-5 *5 (-1 *9 (-640 *9))) (-5 *6 (-1 (-885 *7 *9) *9 (-888 *7) (-885 *7 *9))) (-4 *7 (-1093)) (-4 *9 (-13 (-1045) (-611 (-888 *7)) (-1034 *8))) (-5 *2 (-885 *7 *9)) (-5 *3 (-640 *9)) (-4 *8 (-13 (-1045) (-846))) (-5 *1 (-937 *7 *8 *9))))) +(-10 -7 (-15 -3787 ((-885 |#1| |#3|) (-640 |#3|) (-640 (-888 |#1|)) (-1 |#3| (-640 |#3|)) (-885 |#1| |#3|) (-1 (-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)))) (-15 -1682 ((-885 |#1| |#3|) (-640 |#3|) (-640 (-888 |#1|)) (-885 |#1| |#3|) (-1 (-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|))))) +((-3055 (((-1165 (-407 (-563))) (-563)) 62)) (-3427 (((-1165 (-563)) (-563)) 65)) (-2209 (((-1165 (-563)) (-563)) 59)) (-2140 (((-563) (-1165 (-563))) 54)) (-2086 (((-1165 (-407 (-563))) (-563)) 48)) (-3952 (((-1165 (-563)) (-563)) 37)) (-3265 (((-1165 (-563)) (-563)) 67)) (-3932 (((-1165 (-563)) (-563)) 66)) (-2892 (((-1165 (-407 (-563))) (-563)) 50))) +(((-938) (-10 -7 (-15 -2892 ((-1165 (-407 (-563))) (-563))) (-15 -3932 ((-1165 (-563)) (-563))) (-15 -3265 ((-1165 (-563)) (-563))) (-15 -3952 ((-1165 (-563)) (-563))) (-15 -2086 ((-1165 (-407 (-563))) (-563))) (-15 -2140 ((-563) (-1165 (-563)))) (-15 -2209 ((-1165 (-563)) (-563))) (-15 -3427 ((-1165 (-563)) (-563))) (-15 -3055 ((-1165 (-407 (-563))) (-563))))) (T -938)) +((-3055 (*1 *2 *3) (-12 (-5 *2 (-1165 (-407 (-563)))) (-5 *1 (-938)) (-5 *3 (-563)))) (-3427 (*1 *2 *3) (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-938)) (-5 *3 (-563)))) (-2209 (*1 *2 *3) (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-938)) (-5 *3 (-563)))) (-2140 (*1 *2 *3) (-12 (-5 *3 (-1165 (-563))) (-5 *2 (-563)) (-5 *1 (-938)))) (-2086 (*1 *2 *3) (-12 (-5 *2 (-1165 (-407 (-563)))) (-5 *1 (-938)) (-5 *3 (-563)))) (-3952 (*1 *2 *3) (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-938)) (-5 *3 (-563)))) (-3265 (*1 *2 *3) (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-938)) (-5 *3 (-563)))) (-3932 (*1 *2 *3) (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-938)) (-5 *3 (-563)))) (-2892 (*1 *2 *3) (-12 (-5 *2 (-1165 (-407 (-563)))) (-5 *1 (-938)) (-5 *3 (-563))))) +(-10 -7 (-15 -2892 ((-1165 (-407 (-563))) (-563))) (-15 -3932 ((-1165 (-563)) (-563))) (-15 -3265 ((-1165 (-563)) (-563))) (-15 -3952 ((-1165 (-563)) (-563))) (-15 -2086 ((-1165 (-407 (-563))) (-563))) (-15 -2140 ((-563) (-1165 (-563)))) (-15 -2209 ((-1165 (-563)) (-563))) (-15 -3427 ((-1165 (-563)) (-563))) (-15 -3055 ((-1165 (-407 (-563))) (-563)))) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3212 (($ (-767)) NIL (|has| |#1| (-23)))) (-4378 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4408)))) (-3523 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-2770 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4408))) (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-846))))) (-1642 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-2759 (((-112) $ (-767)) NIL)) (-1849 ((|#1| $ (-563) |#1|) 11 (|has| $ (-6 -4408))) ((|#1| $ (-1224 (-563)) |#1|) NIL (|has| $ (-6 -4408)))) (-2256 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-4239 (($) NIL T CONST)) (-2907 (($ $) NIL (|has| $ (-6 -4408)))) (-4382 (($ $) NIL)) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1459 (($ |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-4355 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4408)))) (-4293 ((|#1| $ (-563)) NIL)) (-4368 (((-563) (-1 (-112) |#1|) $) NIL) (((-563) |#1| $) NIL (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) NIL (|has| |#1| (-1093)))) (-3014 (($ (-640 |#1|)) 13)) (-2659 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-3982 (((-684 |#1|) $ $) NIL (|has| |#1| (-1045)))) (-1566 (($ (-767) |#1|) 8)) (-2581 (((-112) $ (-767)) NIL)) (-2411 (((-563) $) 10 (|has| (-563) (-846)))) (-3084 (($ $ $) NIL (|has| |#1| (-846)))) (-3164 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-2259 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-3860 (((-563) $) NIL (|has| (-563) (-846)))) (-1777 (($ $ $) NIL (|has| |#1| (-846)))) (-4345 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1607 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-2382 (((-112) $ (-767)) NIL)) (-3415 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3396 (($ |#1| $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-4318 (((-640 (-563)) $) NIL)) (-3192 (((-112) (-563) $) NIL)) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3781 ((|#1| $) NIL (|has| (-563) (-846)))) (-4203 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2358 (($ $ |#1|) NIL (|has| $ (-6 -4408)))) (-3320 (($ $ (-640 |#1|)) 26)) (-3138 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) NIL)) (-2105 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2836 (((-640 |#1|) $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) NIL)) (-2309 ((|#1| $ (-563) |#1|) NIL) ((|#1| $ (-563)) 20) (($ $ (-1224 (-563))) NIL)) (-4092 ((|#1| $ $) NIL (|has| |#1| (-1045)))) (-3533 (((-917) $) 16)) (-2963 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-1627 (($ $ $) 24)) (-1709 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-3076 (($ $ $ (-563)) NIL (|has| $ (-6 -4408)))) (-1872 (($ $) NIL)) (-2220 (((-536) $) NIL (|has| |#1| (-611 (-536)))) (($ (-640 |#1|)) 17)) (-1707 (($ (-640 |#1|)) NIL)) (-2853 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-640 $)) NIL)) (-1693 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-4383 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1778 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1756 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1768 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1744 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1826 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1814 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-563) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-722))) (($ $ |#1|) NIL (|has| |#1| (-722)))) (-3608 (((-767) $) 14 (|has| $ (-6 -4407))))) +(((-939 |#1|) (-976 |#1|) (-1045)) (T -939)) +NIL +(-976 |#1|) +((-2065 (((-481 |#1| |#2|) (-948 |#2|)) 20)) (-1366 (((-247 |#1| |#2|) (-948 |#2|)) 33)) (-2314 (((-948 |#2|) (-481 |#1| |#2|)) 25)) (-3892 (((-247 |#1| |#2|) (-481 |#1| |#2|)) 55)) (-4269 (((-948 |#2|) (-247 |#1| |#2|)) 30)) (-1569 (((-481 |#1| |#2|) (-247 |#1| |#2|)) 46))) +(((-940 |#1| |#2|) (-10 -7 (-15 -1569 ((-481 |#1| |#2|) (-247 |#1| |#2|))) (-15 -3892 ((-247 |#1| |#2|) (-481 |#1| |#2|))) (-15 -2065 ((-481 |#1| |#2|) (-948 |#2|))) (-15 -2314 ((-948 |#2|) (-481 |#1| |#2|))) (-15 -4269 ((-948 |#2|) (-247 |#1| |#2|))) (-15 -1366 ((-247 |#1| |#2|) (-948 |#2|)))) (-640 (-1169)) (-1045)) (T -940)) +((-1366 (*1 *2 *3) (-12 (-5 *3 (-948 *5)) (-4 *5 (-1045)) (-5 *2 (-247 *4 *5)) (-5 *1 (-940 *4 *5)) (-14 *4 (-640 (-1169))))) (-4269 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-640 (-1169))) (-4 *5 (-1045)) (-5 *2 (-948 *5)) (-5 *1 (-940 *4 *5)))) (-2314 (*1 *2 *3) (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-640 (-1169))) (-4 *5 (-1045)) (-5 *2 (-948 *5)) (-5 *1 (-940 *4 *5)))) (-2065 (*1 *2 *3) (-12 (-5 *3 (-948 *5)) (-4 *5 (-1045)) (-5 *2 (-481 *4 *5)) (-5 *1 (-940 *4 *5)) (-14 *4 (-640 (-1169))))) (-3892 (*1 *2 *3) (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-640 (-1169))) (-4 *5 (-1045)) (-5 *2 (-247 *4 *5)) (-5 *1 (-940 *4 *5)))) (-1569 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-640 (-1169))) (-4 *5 (-1045)) (-5 *2 (-481 *4 *5)) (-5 *1 (-940 *4 *5))))) +(-10 -7 (-15 -1569 ((-481 |#1| |#2|) (-247 |#1| |#2|))) (-15 -3892 ((-247 |#1| |#2|) (-481 |#1| |#2|))) (-15 -2065 ((-481 |#1| |#2|) (-948 |#2|))) (-15 -2314 ((-948 |#2|) (-481 |#1| |#2|))) (-15 -4269 ((-948 |#2|) (-247 |#1| |#2|))) (-15 -1366 ((-247 |#1| |#2|) (-948 |#2|)))) +((-4376 (((-640 |#2|) |#2| |#2|) 10)) (-2462 (((-767) (-640 |#1|)) 37 (|has| |#1| (-844)))) (-1613 (((-640 |#2|) |#2|) 11)) (-3080 (((-767) (-640 |#1|) (-563) (-563)) 39 (|has| |#1| (-844)))) (-3477 ((|#1| |#2|) 32 (|has| |#1| (-844))))) +(((-941 |#1| |#2|) (-10 -7 (-15 -4376 ((-640 |#2|) |#2| |#2|)) (-15 -1613 ((-640 |#2|) |#2|)) (IF (|has| |#1| (-844)) (PROGN (-15 -3477 (|#1| |#2|)) (-15 -2462 ((-767) (-640 |#1|))) (-15 -3080 ((-767) (-640 |#1|) (-563) (-563)))) |%noBranch|)) (-363) (-1233 |#1|)) (T -941)) +((-3080 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-640 *5)) (-5 *4 (-563)) (-4 *5 (-844)) (-4 *5 (-363)) (-5 *2 (-767)) (-5 *1 (-941 *5 *6)) (-4 *6 (-1233 *5)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-640 *4)) (-4 *4 (-844)) (-4 *4 (-363)) (-5 *2 (-767)) (-5 *1 (-941 *4 *5)) (-4 *5 (-1233 *4)))) (-3477 (*1 *2 *3) (-12 (-4 *2 (-363)) (-4 *2 (-844)) (-5 *1 (-941 *2 *3)) (-4 *3 (-1233 *2)))) (-1613 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-640 *3)) (-5 *1 (-941 *4 *3)) (-4 *3 (-1233 *4)))) (-4376 (*1 *2 *3 *3) (-12 (-4 *4 (-363)) (-5 *2 (-640 *3)) (-5 *1 (-941 *4 *3)) (-4 *3 (-1233 *4))))) +(-10 -7 (-15 -4376 ((-640 |#2|) |#2| |#2|)) (-15 -1613 ((-640 |#2|) |#2|)) (IF (|has| |#1| (-844)) (PROGN (-15 -3477 (|#1| |#2|)) (-15 -2462 ((-767) (-640 |#1|))) (-15 -3080 ((-767) (-640 |#1|) (-563) (-563)))) |%noBranch|)) +((-2240 (((-948 |#2|) (-1 |#2| |#1|) (-948 |#1|)) 19))) +(((-942 |#1| |#2|) (-10 -7 (-15 -2240 ((-948 |#2|) (-1 |#2| |#1|) (-948 |#1|)))) (-1045) (-1045)) (T -942)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-948 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-948 *6)) (-5 *1 (-942 *5 *6))))) +(-10 -7 (-15 -2240 ((-948 |#2|) (-1 |#2| |#1|) (-948 |#1|)))) +((-2139 (((-1230 |#1| (-948 |#2|)) (-948 |#2|) (-1253 |#1|)) 18))) +(((-943 |#1| |#2|) (-10 -7 (-15 -2139 ((-1230 |#1| (-948 |#2|)) (-948 |#2|) (-1253 |#1|)))) (-1169) (-1045)) (T -943)) +((-2139 (*1 *2 *3 *4) (-12 (-5 *4 (-1253 *5)) (-14 *5 (-1169)) (-4 *6 (-1045)) (-5 *2 (-1230 *5 (-948 *6))) (-5 *1 (-943 *5 *6)) (-5 *3 (-948 *6))))) +(-10 -7 (-15 -2139 ((-1230 |#1| (-948 |#2|)) (-948 |#2|) (-1253 |#1|)))) +((-1779 (((-767) $) 71) (((-767) $ (-640 |#4|)) 74)) (-4335 (($ $) 172)) (-3205 (((-418 $) $) 164)) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 115)) (-2131 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 (-563) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-2058 ((|#2| $) NIL) (((-407 (-563)) $) NIL) (((-563) $) NIL) ((|#4| $) 59)) (-2742 (($ $ $ |#4|) 76)) (-2950 (((-684 (-563)) (-684 $)) NIL) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-2 (|:| -2835 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) 105) (((-684 |#2|) (-684 $)) 98)) (-1300 (($ $) 179) (($ $ |#4|) 182)) (-2739 (((-640 $) $) 63)) (-3787 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 198) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 191)) (-1368 (((-640 $) $) 28)) (-2588 (($ |#2| |#3|) NIL) (($ $ |#4| (-767)) NIL) (($ $ (-640 |#4|) (-640 (-767))) 57)) (-2625 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $ |#4|) 161)) (-3733 (((-3 (-640 $) "failed") $) 42)) (-2919 (((-3 (-640 $) "failed") $) 31)) (-4086 (((-3 (-2 (|:| |var| |#4|) (|:| -1654 (-767))) "failed") $) 47)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 108)) (-1876 (((-418 (-1165 $)) (-1165 $)) 121)) (-3116 (((-418 (-1165 $)) (-1165 $)) 119)) (-2174 (((-418 $) $) 139)) (-1540 (($ $ (-640 (-294 $))) 21) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-640 |#4|) (-640 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-640 |#4|) (-640 $)) NIL)) (-2315 (($ $ |#4|) 78)) (-2220 (((-888 (-379)) $) 212) (((-888 (-563)) $) 205) (((-536) $) 220)) (-1836 ((|#2| $) NIL) (($ $ |#4|) 174)) (-1377 (((-3 (-1257 $) "failed") (-684 $)) 153)) (-4319 ((|#2| $ |#3|) NIL) (($ $ |#4| (-767)) 52) (($ $ (-640 |#4|) (-640 (-767))) 55)) (-2779 (((-3 $ "failed") $) 155)) (-1744 (((-112) $ $) 185))) +(((-944 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3385 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -3205 ((-418 |#1|) |#1|)) (-15 -4335 (|#1| |#1|)) (-15 -2779 ((-3 |#1| "failed") |#1|)) (-15 -1744 ((-112) |#1| |#1|)) (-15 -2220 ((-536) |#1|)) (-15 -2220 ((-888 (-563)) |#1|)) (-15 -2220 ((-888 (-379)) |#1|)) (-15 -3787 ((-885 (-563) |#1|) |#1| (-888 (-563)) (-885 (-563) |#1|))) (-15 -3787 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -2174 ((-418 |#1|) |#1|)) (-15 -3116 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -1876 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -2748 ((-3 (-640 (-1165 |#1|)) "failed") (-640 (-1165 |#1|)) (-1165 |#1|))) (-15 -1377 ((-3 (-1257 |#1|) "failed") (-684 |#1|))) (-15 -1300 (|#1| |#1| |#4|)) (-15 -1836 (|#1| |#1| |#4|)) (-15 -2315 (|#1| |#1| |#4|)) (-15 -2742 (|#1| |#1| |#1| |#4|)) (-15 -2739 ((-640 |#1|) |#1|)) (-15 -1779 ((-767) |#1| (-640 |#4|))) (-15 -1779 ((-767) |#1|)) (-15 -4086 ((-3 (-2 (|:| |var| |#4|) (|:| -1654 (-767))) "failed") |#1|)) (-15 -3733 ((-3 (-640 |#1|) "failed") |#1|)) (-15 -2919 ((-3 (-640 |#1|) "failed") |#1|)) (-15 -2588 (|#1| |#1| (-640 |#4|) (-640 (-767)))) (-15 -2588 (|#1| |#1| |#4| (-767))) (-15 -2625 ((-2 (|:| -3490 |#1|) (|:| -1972 |#1|)) |#1| |#1| |#4|)) (-15 -1368 ((-640 |#1|) |#1|)) (-15 -4319 (|#1| |#1| (-640 |#4|) (-640 (-767)))) (-15 -4319 (|#1| |#1| |#4| (-767))) (-15 -2950 ((-684 |#2|) (-684 |#1|))) (-15 -2950 ((-2 (|:| -2835 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 |#1|) (-1257 |#1|))) (-15 -2950 ((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -2950 ((-684 (-563)) (-684 |#1|))) (-15 -2131 ((-3 |#4| "failed") |#1|)) (-15 -2058 (|#4| |#1|)) (-15 -1540 (|#1| |#1| (-640 |#4|) (-640 |#1|))) (-15 -1540 (|#1| |#1| |#4| |#1|)) (-15 -1540 (|#1| |#1| (-640 |#4|) (-640 |#2|))) (-15 -1540 (|#1| |#1| |#4| |#2|)) (-15 -1540 (|#1| |#1| (-640 |#1|) (-640 |#1|))) (-15 -1540 (|#1| |#1| |#1| |#1|)) (-15 -1540 (|#1| |#1| (-294 |#1|))) (-15 -1540 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -2588 (|#1| |#2| |#3|)) (-15 -4319 (|#2| |#1| |#3|)) (-15 -2131 ((-3 (-563) "failed") |#1|)) (-15 -2058 ((-563) |#1|)) (-15 -2131 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2058 ((-407 (-563)) |#1|)) (-15 -2058 (|#2| |#1|)) (-15 -2131 ((-3 |#2| "failed") |#1|)) (-15 -1836 (|#2| |#1|)) (-15 -1300 (|#1| |#1|))) (-945 |#2| |#3| |#4|) (-1045) (-789) (-846)) (T -944)) +NIL +(-10 -8 (-15 -3385 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -3205 ((-418 |#1|) |#1|)) (-15 -4335 (|#1| |#1|)) (-15 -2779 ((-3 |#1| "failed") |#1|)) (-15 -1744 ((-112) |#1| |#1|)) (-15 -2220 ((-536) |#1|)) (-15 -2220 ((-888 (-563)) |#1|)) (-15 -2220 ((-888 (-379)) |#1|)) (-15 -3787 ((-885 (-563) |#1|) |#1| (-888 (-563)) (-885 (-563) |#1|))) (-15 -3787 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -2174 ((-418 |#1|) |#1|)) (-15 -3116 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -1876 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -2748 ((-3 (-640 (-1165 |#1|)) "failed") (-640 (-1165 |#1|)) (-1165 |#1|))) (-15 -1377 ((-3 (-1257 |#1|) "failed") (-684 |#1|))) (-15 -1300 (|#1| |#1| |#4|)) (-15 -1836 (|#1| |#1| |#4|)) (-15 -2315 (|#1| |#1| |#4|)) (-15 -2742 (|#1| |#1| |#1| |#4|)) (-15 -2739 ((-640 |#1|) |#1|)) (-15 -1779 ((-767) |#1| (-640 |#4|))) (-15 -1779 ((-767) |#1|)) (-15 -4086 ((-3 (-2 (|:| |var| |#4|) (|:| -1654 (-767))) "failed") |#1|)) (-15 -3733 ((-3 (-640 |#1|) "failed") |#1|)) (-15 -2919 ((-3 (-640 |#1|) "failed") |#1|)) (-15 -2588 (|#1| |#1| (-640 |#4|) (-640 (-767)))) (-15 -2588 (|#1| |#1| |#4| (-767))) (-15 -2625 ((-2 (|:| -3490 |#1|) (|:| -1972 |#1|)) |#1| |#1| |#4|)) (-15 -1368 ((-640 |#1|) |#1|)) (-15 -4319 (|#1| |#1| (-640 |#4|) (-640 (-767)))) (-15 -4319 (|#1| |#1| |#4| (-767))) (-15 -2950 ((-684 |#2|) (-684 |#1|))) (-15 -2950 ((-2 (|:| -2835 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 |#1|) (-1257 |#1|))) (-15 -2950 ((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -2950 ((-684 (-563)) (-684 |#1|))) (-15 -2131 ((-3 |#4| "failed") |#1|)) (-15 -2058 (|#4| |#1|)) (-15 -1540 (|#1| |#1| (-640 |#4|) (-640 |#1|))) (-15 -1540 (|#1| |#1| |#4| |#1|)) (-15 -1540 (|#1| |#1| (-640 |#4|) (-640 |#2|))) (-15 -1540 (|#1| |#1| |#4| |#2|)) (-15 -1540 (|#1| |#1| (-640 |#1|) (-640 |#1|))) (-15 -1540 (|#1| |#1| |#1| |#1|)) (-15 -1540 (|#1| |#1| (-294 |#1|))) (-15 -1540 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -2588 (|#1| |#2| |#3|)) (-15 -4319 (|#2| |#1| |#3|)) (-15 -2131 ((-3 (-563) "failed") |#1|)) (-15 -2058 ((-563) |#1|)) (-15 -2131 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2058 ((-407 (-563)) |#1|)) (-15 -2058 (|#2| |#1|)) (-15 -2131 ((-3 |#2| "failed") |#1|)) (-15 -1836 (|#2| |#1|)) (-15 -1300 (|#1| |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-2606 (((-640 |#3|) $) 110)) (-2139 (((-1165 $) $ |#3|) 125) (((-1165 |#1|) $) 124)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 87 (|has| |#1| (-555)))) (-4223 (($ $) 88 (|has| |#1| (-555)))) (-3156 (((-112) $) 90 (|has| |#1| (-555)))) (-1779 (((-767) $) 112) (((-767) $ (-640 |#3|)) 111)) (-1495 (((-3 $ "failed") $ $) 19)) (-2424 (((-418 (-1165 $)) (-1165 $)) 100 (|has| |#1| (-905)))) (-4335 (($ $) 98 (|has| |#1| (-452)))) (-3205 (((-418 $) $) 97 (|has| |#1| (-452)))) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 103 (|has| |#1| (-905)))) (-4239 (($) 17 T CONST)) (-2131 (((-3 |#1| "failed") $) 164) (((-3 (-407 (-563)) "failed") $) 161 (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) 159 (|has| |#1| (-1034 (-563)))) (((-3 |#3| "failed") $) 136)) (-2058 ((|#1| $) 163) (((-407 (-563)) $) 162 (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) 160 (|has| |#1| (-1034 (-563)))) ((|#3| $) 137)) (-2742 (($ $ $ |#3|) 108 (|has| |#1| (-172)))) (-2751 (($ $) 154)) (-2950 (((-684 (-563)) (-684 $)) 134 (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 133 (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 132) (((-684 |#1|) (-684 $)) 131)) (-3400 (((-3 $ "failed") $) 33)) (-1300 (($ $) 176 (|has| |#1| (-452))) (($ $ |#3|) 105 (|has| |#1| (-452)))) (-2739 (((-640 $) $) 109)) (-2468 (((-112) $) 96 (|has| |#1| (-905)))) (-3554 (($ $ |#1| |#2| $) 172)) (-3787 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 84 (-12 (|has| |#3| (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 83 (-12 (|has| |#3| (-882 (-563))) (|has| |#1| (-882 (-563)))))) (-3827 (((-112) $) 31)) (-4096 (((-767) $) 169)) (-2596 (($ (-1165 |#1|) |#3|) 117) (($ (-1165 $) |#3|) 116)) (-1368 (((-640 $) $) 126)) (-3920 (((-112) $) 152)) (-2588 (($ |#1| |#2|) 153) (($ $ |#3| (-767)) 119) (($ $ (-640 |#3|) (-640 (-767))) 118)) (-2625 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $ |#3|) 120)) (-2048 ((|#2| $) 170) (((-767) $ |#3|) 122) (((-640 (-767)) $ (-640 |#3|)) 121)) (-3084 (($ $ $) 79 (|has| |#1| (-846)))) (-1777 (($ $ $) 78 (|has| |#1| (-846)))) (-2803 (($ (-1 |#2| |#2|) $) 171)) (-2240 (($ (-1 |#1| |#1|) $) 151)) (-4234 (((-3 |#3| "failed") $) 123)) (-2716 (($ $) 149)) (-2726 ((|#1| $) 148)) (-3513 (($ (-640 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-3573 (((-1151) $) 9)) (-3733 (((-3 (-640 $) "failed") $) 114)) (-2919 (((-3 (-640 $) "failed") $) 115)) (-4086 (((-3 (-2 (|:| |var| |#3|) (|:| -1654 (-767))) "failed") $) 113)) (-1694 (((-1113) $) 10)) (-2696 (((-112) $) 166)) (-2706 ((|#1| $) 167)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 95 (|has| |#1| (-452)))) (-3548 (($ (-640 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-1876 (((-418 (-1165 $)) (-1165 $)) 102 (|has| |#1| (-905)))) (-3116 (((-418 (-1165 $)) (-1165 $)) 101 (|has| |#1| (-905)))) (-2174 (((-418 $) $) 99 (|has| |#1| (-905)))) (-3008 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-555))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-555)))) (-1540 (($ $ (-640 (-294 $))) 145) (($ $ (-294 $)) 144) (($ $ $ $) 143) (($ $ (-640 $) (-640 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-640 |#3|) (-640 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-640 |#3|) (-640 $)) 138)) (-2315 (($ $ |#3|) 107 (|has| |#1| (-172)))) (-4202 (($ $ |#3|) 42) (($ $ (-640 |#3|)) 41) (($ $ |#3| (-767)) 40) (($ $ (-640 |#3|) (-640 (-767))) 39)) (-4167 ((|#2| $) 150) (((-767) $ |#3|) 130) (((-640 (-767)) $ (-640 |#3|)) 129)) (-2220 (((-888 (-379)) $) 82 (-12 (|has| |#3| (-611 (-888 (-379)))) (|has| |#1| (-611 (-888 (-379)))))) (((-888 (-563)) $) 81 (-12 (|has| |#3| (-611 (-888 (-563)))) (|has| |#1| (-611 (-888 (-563)))))) (((-536) $) 80 (-12 (|has| |#3| (-611 (-536))) (|has| |#1| (-611 (-536)))))) (-1836 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ |#3|) 106 (|has| |#1| (-452)))) (-1377 (((-3 (-1257 $) "failed") (-684 $)) 104 (-2190 (|has| $ (-145)) (|has| |#1| (-905))))) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ $) 85 (|has| |#1| (-555))) (($ (-407 (-563))) 72 (-4032 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-38 (-407 (-563))))))) (-1337 (((-640 |#1|) $) 168)) (-4319 ((|#1| $ |#2|) 155) (($ $ |#3| (-767)) 128) (($ $ (-640 |#3|) (-640 (-767))) 127)) (-2779 (((-3 $ "failed") $) 73 (-4032 (-2190 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-1675 (((-767)) 28)) (-2793 (($ $ $ (-767)) 173 (|has| |#1| (-172)))) (-2126 (((-112) $ $) 89 (|has| |#1| (-555)))) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-3209 (($ $ |#3|) 38) (($ $ (-640 |#3|)) 37) (($ $ |#3| (-767)) 36) (($ $ (-640 |#3|) (-640 (-767))) 35)) (-1778 (((-112) $ $) 76 (|has| |#1| (-846)))) (-1756 (((-112) $ $) 75 (|has| |#1| (-846)))) (-1718 (((-112) $ $) 6)) (-1768 (((-112) $ $) 77 (|has| |#1| (-846)))) (-1744 (((-112) $ $) 74 (|has| |#1| (-846)))) (-1837 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 158 (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) 157 (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-945 |#1| |#2| |#3|) (-140) (-1045) (-789) (-846)) (T -945)) +((-1300 (*1 *1 *1) (-12 (-4 *1 (-945 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-4167 (*1 *2 *1 *3) (-12 (-4 *1 (-945 *4 *5 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-767)))) (-4167 (*1 *2 *1 *3) (-12 (-5 *3 (-640 *6)) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 (-767))))) (-4319 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-945 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *2 (-846)))) (-4319 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 *6)) (-5 *3 (-640 (-767))) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)))) (-1368 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-945 *3 *4 *5)))) (-2139 (*1 *2 *1 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-1165 *1)) (-4 *1 (-945 *4 *5 *3)))) (-2139 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-1165 *3)))) (-4234 (*1 *2 *1) (|partial| -12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-2048 (*1 *2 *1 *3) (-12 (-4 *1 (-945 *4 *5 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-767)))) (-2048 (*1 *2 *1 *3) (-12 (-5 *3 (-640 *6)) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 (-767))))) (-2625 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-2 (|:| -3490 *1) (|:| -1972 *1))) (-4 *1 (-945 *4 *5 *3)))) (-2588 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-945 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *2 (-846)))) (-2588 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 *6)) (-5 *3 (-640 (-767))) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)))) (-2596 (*1 *1 *2 *3) (-12 (-5 *2 (-1165 *4)) (-4 *4 (-1045)) (-4 *1 (-945 *4 *5 *3)) (-4 *5 (-789)) (-4 *3 (-846)))) (-2596 (*1 *1 *2 *3) (-12 (-5 *2 (-1165 *1)) (-4 *1 (-945 *4 *5 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)))) (-2919 (*1 *2 *1) (|partial| -12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-945 *3 *4 *5)))) (-3733 (*1 *2 *1) (|partial| -12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-945 *3 *4 *5)))) (-4086 (*1 *2 *1) (|partial| -12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| |var| *5) (|:| -1654 (-767)))))) (-1779 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-767)))) (-1779 (*1 *2 *1 *3) (-12 (-5 *3 (-640 *6)) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-767)))) (-2606 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *5)))) (-2739 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-945 *3 *4 *5)))) (-2742 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *3 (-172)))) (-2315 (*1 *1 *1 *2) (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *3 (-172)))) (-1836 (*1 *1 *1 *2) (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *3 (-452)))) (-1300 (*1 *1 *1 *2) (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *3 (-452)))) (-4335 (*1 *1 *1) (-12 (-4 *1 (-945 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-3205 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-418 *1)) (-4 *1 (-945 *3 *4 *5))))) +(-13 (-896 |t#3|) (-326 |t#1| |t#2|) (-309 $) (-514 |t#3| |t#1|) (-514 |t#3| $) (-1034 |t#3|) (-377 |t#1|) (-10 -8 (-15 -4167 ((-767) $ |t#3|)) (-15 -4167 ((-640 (-767)) $ (-640 |t#3|))) (-15 -4319 ($ $ |t#3| (-767))) (-15 -4319 ($ $ (-640 |t#3|) (-640 (-767)))) (-15 -1368 ((-640 $) $)) (-15 -2139 ((-1165 $) $ |t#3|)) (-15 -2139 ((-1165 |t#1|) $)) (-15 -4234 ((-3 |t#3| "failed") $)) (-15 -2048 ((-767) $ |t#3|)) (-15 -2048 ((-640 (-767)) $ (-640 |t#3|))) (-15 -2625 ((-2 (|:| -3490 $) (|:| -1972 $)) $ $ |t#3|)) (-15 -2588 ($ $ |t#3| (-767))) (-15 -2588 ($ $ (-640 |t#3|) (-640 (-767)))) (-15 -2596 ($ (-1165 |t#1|) |t#3|)) (-15 -2596 ($ (-1165 $) |t#3|)) (-15 -2919 ((-3 (-640 $) "failed") $)) (-15 -3733 ((-3 (-640 $) "failed") $)) (-15 -4086 ((-3 (-2 (|:| |var| |t#3|) (|:| -1654 (-767))) "failed") $)) (-15 -1779 ((-767) $)) (-15 -1779 ((-767) $ (-640 |t#3|))) (-15 -2606 ((-640 |t#3|) $)) (-15 -2739 ((-640 $) $)) (IF (|has| |t#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#1| (-611 (-536))) (IF (|has| |t#3| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-611 (-888 (-563)))) (IF (|has| |t#3| (-611 (-888 (-563)))) (-6 (-611 (-888 (-563)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-611 (-888 (-379)))) (IF (|has| |t#3| (-611 (-888 (-379)))) (-6 (-611 (-888 (-379)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-882 (-563))) (IF (|has| |t#3| (-882 (-563))) (-6 (-882 (-563))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-882 (-379))) (IF (|has| |t#3| (-882 (-379))) (-6 (-882 (-379))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -2742 ($ $ $ |t#3|)) (-15 -2315 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-6 (-452)) (-15 -1836 ($ $ |t#3|)) (-15 -1300 ($ $)) (-15 -1300 ($ $ |t#3|)) (-15 -3205 ((-418 $) $)) (-15 -4335 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4405)) (-6 -4405) |%noBranch|) (IF (|has| |t#1| (-905)) (-6 (-905)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4032 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-563)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4032 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0#) -4032 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-38 (-407 (-563))))) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-613 |#3|) . T) ((-613 $) -4032 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-610 (-858)) . T) ((-172) -4032 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-611 (-536)) -12 (|has| |#1| (-611 (-536))) (|has| |#3| (-611 (-536)))) ((-611 (-888 (-379))) -12 (|has| |#1| (-611 (-888 (-379)))) (|has| |#3| (-611 (-888 (-379))))) ((-611 (-888 (-563))) -12 (|has| |#1| (-611 (-888 (-563)))) (|has| |#3| (-611 (-888 (-563))))) ((-290) -4032 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#2|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -4032 (|has| |#1| (-905)) (|has| |#1| (-452))) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-555) -4032 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-643 #0#) |has| |#1| (-38 (-407 (-563)))) ((-643 |#1|) . T) ((-643 $) . T) ((-636 (-563)) |has| |#1| (-636 (-563))) ((-636 |#1|) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-563)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -4032 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-722) . T) ((-846) |has| |#1| (-846)) ((-896 |#3|) . T) ((-882 (-379)) -12 (|has| |#1| (-882 (-379))) (|has| |#3| (-882 (-379)))) ((-882 (-563)) -12 (|has| |#1| (-882 (-563))) (|has| |#3| (-882 (-563)))) ((-905) |has| |#1| (-905)) ((-1034 (-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 |#1|) . T) ((-1034 |#3|) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-563)))) ((-1051 |#1|) . T) ((-1051 $) -4032 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1212) |has| |#1| (-905))) +((-2606 (((-640 |#2|) |#5|) 36)) (-2139 (((-1165 |#5|) |#5| |#2| (-1165 |#5|)) 23) (((-407 (-1165 |#5|)) |#5| |#2|) 16)) (-2596 ((|#5| (-407 (-1165 |#5|)) |#2|) 30)) (-4234 (((-3 |#2| "failed") |#5|) 65)) (-3733 (((-3 (-640 |#5|) "failed") |#5|) 59)) (-1848 (((-3 (-2 (|:| |val| |#5|) (|:| -1654 (-563))) "failed") |#5|) 47)) (-2919 (((-3 (-640 |#5|) "failed") |#5|) 61)) (-4086 (((-3 (-2 (|:| |var| |#2|) (|:| -1654 (-563))) "failed") |#5|) 51))) +(((-946 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2606 ((-640 |#2|) |#5|)) (-15 -4234 ((-3 |#2| "failed") |#5|)) (-15 -2139 ((-407 (-1165 |#5|)) |#5| |#2|)) (-15 -2596 (|#5| (-407 (-1165 |#5|)) |#2|)) (-15 -2139 ((-1165 |#5|) |#5| |#2| (-1165 |#5|))) (-15 -2919 ((-3 (-640 |#5|) "failed") |#5|)) (-15 -3733 ((-3 (-640 |#5|) "failed") |#5|)) (-15 -4086 ((-3 (-2 (|:| |var| |#2|) (|:| -1654 (-563))) "failed") |#5|)) (-15 -1848 ((-3 (-2 (|:| |val| |#5|) (|:| -1654 (-563))) "failed") |#5|))) (-789) (-846) (-1045) (-945 |#3| |#1| |#2|) (-13 (-363) (-10 -8 (-15 -1693 ($ |#4|)) (-15 -2143 (|#4| $)) (-15 -2154 (|#4| $))))) (T -946)) +((-1848 (*1 *2 *3) (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -1654 (-563)))) (-5 *1 (-946 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1693 ($ *7)) (-15 -2143 (*7 $)) (-15 -2154 (*7 $))))))) (-4086 (*1 *2 *3) (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -1654 (-563)))) (-5 *1 (-946 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1693 ($ *7)) (-15 -2143 (*7 $)) (-15 -2154 (*7 $))))))) (-3733 (*1 *2 *3) (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-640 *3)) (-5 *1 (-946 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1693 ($ *7)) (-15 -2143 (*7 $)) (-15 -2154 (*7 $))))))) (-2919 (*1 *2 *3) (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-640 *3)) (-5 *1 (-946 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1693 ($ *7)) (-15 -2143 (*7 $)) (-15 -2154 (*7 $))))))) (-2139 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1693 ($ *7)) (-15 -2143 (*7 $)) (-15 -2154 (*7 $))))) (-4 *7 (-945 *6 *5 *4)) (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-1045)) (-5 *1 (-946 *5 *4 *6 *7 *3)))) (-2596 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-1165 *2))) (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-1045)) (-4 *2 (-13 (-363) (-10 -8 (-15 -1693 ($ *7)) (-15 -2143 (*7 $)) (-15 -2154 (*7 $))))) (-5 *1 (-946 *5 *4 *6 *7 *2)) (-4 *7 (-945 *6 *5 *4)))) (-2139 (*1 *2 *3 *4) (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-1045)) (-4 *7 (-945 *6 *5 *4)) (-5 *2 (-407 (-1165 *3))) (-5 *1 (-946 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1693 ($ *7)) (-15 -2143 (*7 $)) (-15 -2154 (*7 $))))))) (-4234 (*1 *2 *3) (|partial| -12 (-4 *4 (-789)) (-4 *5 (-1045)) (-4 *6 (-945 *5 *4 *2)) (-4 *2 (-846)) (-5 *1 (-946 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1693 ($ *6)) (-15 -2143 (*6 $)) (-15 -2154 (*6 $))))))) (-2606 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-640 *5)) (-5 *1 (-946 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1693 ($ *7)) (-15 -2143 (*7 $)) (-15 -2154 (*7 $)))))))) +(-10 -7 (-15 -2606 ((-640 |#2|) |#5|)) (-15 -4234 ((-3 |#2| "failed") |#5|)) (-15 -2139 ((-407 (-1165 |#5|)) |#5| |#2|)) (-15 -2596 (|#5| (-407 (-1165 |#5|)) |#2|)) (-15 -2139 ((-1165 |#5|) |#5| |#2| (-1165 |#5|))) (-15 -2919 ((-3 (-640 |#5|) "failed") |#5|)) (-15 -3733 ((-3 (-640 |#5|) "failed") |#5|)) (-15 -4086 ((-3 (-2 (|:| |var| |#2|) (|:| -1654 (-563))) "failed") |#5|)) (-15 -1848 ((-3 (-2 (|:| |val| |#5|) (|:| -1654 (-563))) "failed") |#5|))) +((-2240 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 23))) +(((-947 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2240 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-789) (-846) (-1045) (-945 |#3| |#1| |#2|) (-13 (-1093) (-10 -8 (-15 -1814 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-767)))))) (T -947)) +((-2240 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-846)) (-4 *8 (-1045)) (-4 *6 (-789)) (-4 *2 (-13 (-1093) (-10 -8 (-15 -1814 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-767)))))) (-5 *1 (-947 *6 *7 *8 *5 *2)) (-4 *5 (-945 *8 *6 *7))))) +(-10 -7 (-15 -2240 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-2606 (((-640 (-1169)) $) 16)) (-2139 (((-1165 $) $ (-1169)) 21) (((-1165 |#1|) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-4223 (($ $) NIL (|has| |#1| (-555)))) (-3156 (((-112) $) NIL (|has| |#1| (-555)))) (-1779 (((-767) $) NIL) (((-767) $ (-640 (-1169))) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-2424 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-4335 (($ $) NIL (|has| |#1| (-452)))) (-3205 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#1| "failed") $) 8) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-1169) "failed") $) NIL)) (-2058 ((|#1| $) NIL) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-1169) $) NIL)) (-2742 (($ $ $ (-1169)) NIL (|has| |#1| (-172)))) (-2751 (($ $) NIL)) (-2950 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-1300 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1169)) NIL (|has| |#1| (-452)))) (-2739 (((-640 $) $) NIL)) (-2468 (((-112) $) NIL (|has| |#1| (-905)))) (-3554 (($ $ |#1| (-531 (-1169)) $) NIL)) (-3787 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1169) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-1169) (-882 (-563))) (|has| |#1| (-882 (-563)))))) (-3827 (((-112) $) NIL)) (-4096 (((-767) $) NIL)) (-2596 (($ (-1165 |#1|) (-1169)) NIL) (($ (-1165 $) (-1169)) NIL)) (-1368 (((-640 $) $) NIL)) (-3920 (((-112) $) NIL)) (-2588 (($ |#1| (-531 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL)) (-2625 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $ (-1169)) NIL)) (-2048 (((-531 (-1169)) $) NIL) (((-767) $ (-1169)) NIL) (((-640 (-767)) $ (-640 (-1169))) NIL)) (-3084 (($ $ $) NIL (|has| |#1| (-846)))) (-1777 (($ $ $) NIL (|has| |#1| (-846)))) (-2803 (($ (-1 (-531 (-1169)) (-531 (-1169))) $) NIL)) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-4234 (((-3 (-1169) "failed") $) 19)) (-2716 (($ $) NIL)) (-2726 ((|#1| $) NIL)) (-3513 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3573 (((-1151) $) NIL)) (-3733 (((-3 (-640 $) "failed") $) NIL)) (-2919 (((-3 (-640 $) "failed") $) NIL)) (-4086 (((-3 (-2 (|:| |var| (-1169)) (|:| -1654 (-767))) "failed") $) NIL)) (-3698 (($ $ (-1169)) 29 (|has| |#1| (-38 (-407 (-563)))))) (-1694 (((-1113) $) NIL)) (-2696 (((-112) $) NIL)) (-2706 ((|#1| $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-452)))) (-3548 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1876 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-3116 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2174 (((-418 $) $) NIL (|has| |#1| (-905)))) (-3008 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-1540 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-1169) |#1|) NIL) (($ $ (-640 (-1169)) (-640 |#1|)) NIL) (($ $ (-1169) $) NIL) (($ $ (-640 (-1169)) (-640 $)) NIL)) (-2315 (($ $ (-1169)) NIL (|has| |#1| (-172)))) (-4202 (($ $ (-1169)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL)) (-4167 (((-531 (-1169)) $) NIL) (((-767) $ (-1169)) NIL) (((-640 (-767)) $ (-640 (-1169))) NIL)) (-2220 (((-888 (-379)) $) NIL (-12 (|has| (-1169) (-611 (-888 (-379)))) (|has| |#1| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| (-1169) (-611 (-888 (-563)))) (|has| |#1| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| (-1169) (-611 (-536))) (|has| |#1| (-611 (-536)))))) (-1836 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1169)) NIL (|has| |#1| (-452)))) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-1693 (((-858) $) 25) (($ (-563)) NIL) (($ |#1|) NIL) (($ (-1169)) 27) (($ (-407 (-563))) NIL (-4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#1| (-555)))) (-1337 (((-640 |#1|) $) NIL)) (-4319 ((|#1| $ (-531 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL)) (-2779 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-1675 (((-767)) NIL)) (-2793 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-2126 (((-112) $ $) NIL (|has| |#1| (-555)))) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-3209 (($ $ (-1169)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL)) (-1778 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1756 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1744 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1837 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-948 |#1|) (-13 (-945 |#1| (-531 (-1169)) (-1169)) (-10 -8 (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -3698 ($ $ (-1169))) |%noBranch|))) (-1045)) (T -948)) +((-3698 (*1 *1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-948 *3)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045))))) +(-13 (-945 |#1| (-531 (-1169)) (-1169)) (-10 -8 (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -3698 ($ $ (-1169))) |%noBranch|))) +((-2886 (((-2 (|:| -1654 (-767)) (|:| -2311 |#5|) (|:| |radicand| |#5|)) |#3| (-767)) 38)) (-3655 (((-2 (|:| -1654 (-767)) (|:| -2311 |#5|) (|:| |radicand| |#5|)) (-407 (-563)) (-767)) 34)) (-2899 (((-2 (|:| -1654 (-767)) (|:| -2311 |#4|) (|:| |radicand| (-640 |#4|))) |#4| (-767)) 54)) (-3731 (((-2 (|:| -1654 (-767)) (|:| -2311 |#5|) (|:| |radicand| |#5|)) |#5| (-767)) 64 (|has| |#3| (-452))))) +(((-949 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2886 ((-2 (|:| -1654 (-767)) (|:| -2311 |#5|) (|:| |radicand| |#5|)) |#3| (-767))) (-15 -3655 ((-2 (|:| -1654 (-767)) (|:| -2311 |#5|) (|:| |radicand| |#5|)) (-407 (-563)) (-767))) (IF (|has| |#3| (-452)) (-15 -3731 ((-2 (|:| -1654 (-767)) (|:| -2311 |#5|) (|:| |radicand| |#5|)) |#5| (-767))) |%noBranch|) (-15 -2899 ((-2 (|:| -1654 (-767)) (|:| -2311 |#4|) (|:| |radicand| (-640 |#4|))) |#4| (-767)))) (-789) (-846) (-555) (-945 |#3| |#1| |#2|) (-13 (-363) (-10 -8 (-15 -1693 ($ |#4|)) (-15 -2143 (|#4| $)) (-15 -2154 (|#4| $))))) (T -949)) +((-2899 (*1 *2 *3 *4) (-12 (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-555)) (-4 *3 (-945 *7 *5 *6)) (-5 *2 (-2 (|:| -1654 (-767)) (|:| -2311 *3) (|:| |radicand| (-640 *3)))) (-5 *1 (-949 *5 *6 *7 *3 *8)) (-5 *4 (-767)) (-4 *8 (-13 (-363) (-10 -8 (-15 -1693 ($ *3)) (-15 -2143 (*3 $)) (-15 -2154 (*3 $))))))) (-3731 (*1 *2 *3 *4) (-12 (-4 *7 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-555)) (-4 *8 (-945 *7 *5 *6)) (-5 *2 (-2 (|:| -1654 (-767)) (|:| -2311 *3) (|:| |radicand| *3))) (-5 *1 (-949 *5 *6 *7 *8 *3)) (-5 *4 (-767)) (-4 *3 (-13 (-363) (-10 -8 (-15 -1693 ($ *8)) (-15 -2143 (*8 $)) (-15 -2154 (*8 $))))))) (-3655 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-563))) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-555)) (-4 *8 (-945 *7 *5 *6)) (-5 *2 (-2 (|:| -1654 (-767)) (|:| -2311 *9) (|:| |radicand| *9))) (-5 *1 (-949 *5 *6 *7 *8 *9)) (-5 *4 (-767)) (-4 *9 (-13 (-363) (-10 -8 (-15 -1693 ($ *8)) (-15 -2143 (*8 $)) (-15 -2154 (*8 $))))))) (-2886 (*1 *2 *3 *4) (-12 (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-555)) (-4 *7 (-945 *3 *5 *6)) (-5 *2 (-2 (|:| -1654 (-767)) (|:| -2311 *8) (|:| |radicand| *8))) (-5 *1 (-949 *5 *6 *3 *7 *8)) (-5 *4 (-767)) (-4 *8 (-13 (-363) (-10 -8 (-15 -1693 ($ *7)) (-15 -2143 (*7 $)) (-15 -2154 (*7 $)))))))) +(-10 -7 (-15 -2886 ((-2 (|:| -1654 (-767)) (|:| -2311 |#5|) (|:| |radicand| |#5|)) |#3| (-767))) (-15 -3655 ((-2 (|:| -1654 (-767)) (|:| -2311 |#5|) (|:| |radicand| |#5|)) (-407 (-563)) (-767))) (IF (|has| |#3| (-452)) (-15 -3731 ((-2 (|:| -1654 (-767)) (|:| -2311 |#5|) (|:| |radicand| |#5|)) |#5| (-767))) |%noBranch|) (-15 -2899 ((-2 (|:| -1654 (-767)) (|:| -2311 |#4|) (|:| |radicand| (-640 |#4|))) |#4| (-767)))) +((-1677 (((-112) $ $) NIL)) (-2266 (($ (-1113)) 8)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 14) (((-1113) $) 11)) (-1718 (((-112) $ $) 10))) +(((-950) (-13 (-1093) (-610 (-1113)) (-10 -8 (-15 -2266 ($ (-1113)))))) (T -950)) +((-2266 (*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-950))))) +(-13 (-1093) (-610 (-1113)) (-10 -8 (-15 -2266 ($ (-1113))))) +((-4324 (((-1087 (-225)) $) 8)) (-4313 (((-1087 (-225)) $) 9)) (-4250 (((-640 (-640 (-939 (-225)))) $) 10)) (-1693 (((-858) $) 6))) +(((-951) (-140)) (T -951)) +((-4250 (*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-640 (-640 (-939 (-225))))))) (-4313 (*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-1087 (-225))))) (-4324 (*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-1087 (-225)))))) +(-13 (-610 (-858)) (-10 -8 (-15 -4250 ((-640 (-640 (-939 (-225)))) $)) (-15 -4313 ((-1087 (-225)) $)) (-15 -4324 ((-1087 (-225)) $)))) +(((-610 (-858)) . T)) +((-3686 (((-3 (-684 |#1|) "failed") |#2| (-917)) 15))) +(((-952 |#1| |#2|) (-10 -7 (-15 -3686 ((-3 (-684 |#1|) "failed") |#2| (-917)))) (-555) (-651 |#1|)) (T -952)) +((-3686 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-917)) (-4 *5 (-555)) (-5 *2 (-684 *5)) (-5 *1 (-952 *5 *3)) (-4 *3 (-651 *5))))) +(-10 -7 (-15 -3686 ((-3 (-684 |#1|) "failed") |#2| (-917)))) +((-1567 (((-954 |#2|) (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|) 16)) (-2444 ((|#2| (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|) 18)) (-2240 (((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|)) 13))) +(((-953 |#1| |#2|) (-10 -7 (-15 -1567 ((-954 |#2|) (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|)) (-15 -2444 (|#2| (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|)) (-15 -2240 ((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|)))) (-1208) (-1208)) (T -953)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-954 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-954 *6)) (-5 *1 (-953 *5 *6)))) (-2444 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-954 *5)) (-4 *5 (-1208)) (-4 *2 (-1208)) (-5 *1 (-953 *5 *2)))) (-1567 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-954 *6)) (-4 *6 (-1208)) (-4 *5 (-1208)) (-5 *2 (-954 *5)) (-5 *1 (-953 *6 *5))))) +(-10 -7 (-15 -1567 ((-954 |#2|) (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|)) (-15 -2444 (|#2| (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|)) (-15 -2240 ((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|)))) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-4378 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4408)))) (-3523 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-2770 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4408))) (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-846))))) (-1642 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-2759 (((-112) $ (-767)) NIL)) (-1849 ((|#1| $ (-563) |#1|) 16 (|has| $ (-6 -4408))) ((|#1| $ (-1224 (-563)) |#1|) NIL (|has| $ (-6 -4408)))) (-2256 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-4239 (($) NIL T CONST)) (-2907 (($ $) NIL (|has| $ (-6 -4408)))) (-4382 (($ $) NIL)) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1459 (($ |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-4355 ((|#1| $ (-563) |#1|) 15 (|has| $ (-6 -4408)))) (-4293 ((|#1| $ (-563)) 13)) (-4368 (((-563) (-1 (-112) |#1|) $) NIL) (((-563) |#1| $) NIL (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) NIL (|has| |#1| (-1093)))) (-2659 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1566 (($ (-767) |#1|) 12)) (-2581 (((-112) $ (-767)) NIL)) (-2411 (((-563) $) 10 (|has| (-563) (-846)))) (-3084 (($ $ $) NIL (|has| |#1| (-846)))) (-3164 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-2259 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-3860 (((-563) $) NIL (|has| (-563) (-846)))) (-1777 (($ $ $) NIL (|has| |#1| (-846)))) (-4345 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3396 (($ |#1| $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-4318 (((-640 (-563)) $) NIL)) (-3192 (((-112) (-563) $) NIL)) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3781 ((|#1| $) NIL (|has| (-563) (-846)))) (-4203 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2358 (($ $ |#1|) 17 (|has| $ (-6 -4408)))) (-3138 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) NIL)) (-2105 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2836 (((-640 |#1|) $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) 11)) (-2309 ((|#1| $ (-563) |#1|) NIL) ((|#1| $ (-563)) 14) (($ $ (-1224 (-563))) NIL)) (-2963 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-1709 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-3076 (($ $ $ (-563)) NIL (|has| $ (-6 -4408)))) (-1872 (($ $) NIL)) (-2220 (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-1707 (($ (-640 |#1|)) NIL)) (-2853 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-640 $)) NIL)) (-1693 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-4383 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1778 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1756 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1768 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1744 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3608 (((-767) $) 8 (|has| $ (-6 -4407))))) +(((-954 |#1|) (-19 |#1|) (-1208)) (T -954)) NIL (-19 |#1|) -((-1529 (($ $ (-1084 $)) 7) (($ $ (-1168)) 6))) -(((-954) (-139)) (T -954)) -((-1529 (*1 *1 *1 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-954)))) (-1529 (*1 *1 *1 *2) (-12 (-4 *1 (-954)) (-5 *2 (-1168))))) -(-13 (-10 -8 (-15 -1529 ($ $ (-1168))) (-15 -1529 ($ $ (-1084 $))))) -((-2787 (((-2 (|:| -4221 (-639 (-562))) (|:| |poly| (-639 (-1164 |#1|))) (|:| |prim| (-1164 |#1|))) (-639 (-947 |#1|)) (-639 (-1168)) (-1168)) 25) (((-2 (|:| -4221 (-639 (-562))) (|:| |poly| (-639 (-1164 |#1|))) (|:| |prim| (-1164 |#1|))) (-639 (-947 |#1|)) (-639 (-1168))) 26) (((-2 (|:| |coef1| (-562)) (|:| |coef2| (-562)) (|:| |prim| (-1164 |#1|))) (-947 |#1|) (-1168) (-947 |#1|) (-1168)) 43))) -(((-955 |#1|) (-10 -7 (-15 -2787 ((-2 (|:| |coef1| (-562)) (|:| |coef2| (-562)) (|:| |prim| (-1164 |#1|))) (-947 |#1|) (-1168) (-947 |#1|) (-1168))) (-15 -2787 ((-2 (|:| -4221 (-639 (-562))) (|:| |poly| (-639 (-1164 |#1|))) (|:| |prim| (-1164 |#1|))) (-639 (-947 |#1|)) (-639 (-1168)))) (-15 -2787 ((-2 (|:| -4221 (-639 (-562))) (|:| |poly| (-639 (-1164 |#1|))) (|:| |prim| (-1164 |#1|))) (-639 (-947 |#1|)) (-639 (-1168)) (-1168)))) (-13 (-362) (-146))) (T -955)) -((-2787 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 (-947 *6))) (-5 *4 (-639 (-1168))) (-5 *5 (-1168)) (-4 *6 (-13 (-362) (-146))) (-5 *2 (-2 (|:| -4221 (-639 (-562))) (|:| |poly| (-639 (-1164 *6))) (|:| |prim| (-1164 *6)))) (-5 *1 (-955 *6)))) (-2787 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-639 (-1168))) (-4 *5 (-13 (-362) (-146))) (-5 *2 (-2 (|:| -4221 (-639 (-562))) (|:| |poly| (-639 (-1164 *5))) (|:| |prim| (-1164 *5)))) (-5 *1 (-955 *5)))) (-2787 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-947 *5)) (-5 *4 (-1168)) (-4 *5 (-13 (-362) (-146))) (-5 *2 (-2 (|:| |coef1| (-562)) (|:| |coef2| (-562)) (|:| |prim| (-1164 *5)))) (-5 *1 (-955 *5))))) -(-10 -7 (-15 -2787 ((-2 (|:| |coef1| (-562)) (|:| |coef2| (-562)) (|:| |prim| (-1164 |#1|))) (-947 |#1|) (-1168) (-947 |#1|) (-1168))) (-15 -2787 ((-2 (|:| -4221 (-639 (-562))) (|:| |poly| (-639 (-1164 |#1|))) (|:| |prim| (-1164 |#1|))) (-639 (-947 |#1|)) (-639 (-1168)))) (-15 -2787 ((-2 (|:| -4221 (-639 (-562))) (|:| |poly| (-639 (-1164 |#1|))) (|:| |prim| (-1164 |#1|))) (-639 (-947 |#1|)) (-639 (-1168)) (-1168)))) -((-2020 (((-639 |#1|) |#1| |#1|) 42)) (-3521 (((-112) |#1|) 39)) (-2692 ((|#1| |#1|) 64)) (-3599 ((|#1| |#1|) 63))) -(((-956 |#1|) (-10 -7 (-15 -3521 ((-112) |#1|)) (-15 -3599 (|#1| |#1|)) (-15 -2692 (|#1| |#1|)) (-15 -2020 ((-639 |#1|) |#1| |#1|))) (-544)) (T -956)) -((-2020 (*1 *2 *3 *3) (-12 (-5 *2 (-639 *3)) (-5 *1 (-956 *3)) (-4 *3 (-544)))) (-2692 (*1 *2 *2) (-12 (-5 *1 (-956 *2)) (-4 *2 (-544)))) (-3599 (*1 *2 *2) (-12 (-5 *1 (-956 *2)) (-4 *2 (-544)))) (-3521 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-956 *3)) (-4 *3 (-544))))) -(-10 -7 (-15 -3521 ((-112) |#1|)) (-15 -3599 (|#1| |#1|)) (-15 -2692 (|#1| |#1|)) (-15 -2020 ((-639 |#1|) |#1| |#1|))) -((-3206 (((-1261) (-857)) 9))) -(((-957) (-10 -7 (-15 -3206 ((-1261) (-857))))) (T -957)) -((-3206 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1261)) (-5 *1 (-957))))) -(-10 -7 (-15 -3206 ((-1261) (-857)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 60 (|has| |#1| (-554)))) (-1965 (($ $) 61 (|has| |#1| (-554)))) (-4102 (((-112) $) NIL (|has| |#1| (-554)))) (-2781 (((-3 $ "failed") $ $) NIL)) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) 28)) (-3960 (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) NIL)) (-1600 (($ $) 24)) (-1694 (((-3 $ "failed") $) 35)) (-2578 (($ $) NIL (|has| |#1| (-451)))) (-3066 (($ $ |#1| |#2| $) 47)) (-4367 (((-112) $) NIL)) (-3627 (((-766) $) 16)) (-2833 (((-112) $) NIL)) (-1377 (($ |#1| |#2|) NIL)) (-3161 ((|#2| $) 19)) (-2363 (($ (-1 |#2| |#2|) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-1560 (($ $) 23)) (-1573 ((|#1| $) 21)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1534 (((-112) $) 40)) (-1547 ((|#1| $) NIL)) (-1601 (($ $ |#2| |#1| $) 72 (-12 (|has| |#2| (-130)) (|has| |#1| (-554))))) (-1762 (((-3 $ "failed") $ $) 73 (|has| |#1| (-554))) (((-3 $ "failed") $ |#1|) 67 (|has| |#1| (-554)))) (-2250 ((|#2| $) 17)) (-2201 ((|#1| $) NIL (|has| |#1| (-451)))) (-4053 (((-857) $) NIL) (($ (-562)) 39) (($ $) NIL (|has| |#1| (-554))) (($ |#1|) 34) (($ (-406 (-562))) NIL (-4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562))))))) (-3969 (((-639 |#1|) $) NIL)) (-2266 ((|#1| $ |#2|) 31)) (-2059 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-1568 (((-766)) 15)) (-1760 (($ $ $ (-766)) 56 (|has| |#1| (-171)))) (-3799 (((-112) $ $) 66 (|has| |#1| (-554)))) (-2285 (($) 22 T CONST)) (-2294 (($) 12 T CONST)) (-1733 (((-112) $ $) 65)) (-1859 (($ $ |#1|) 74 (|has| |#1| (-362)))) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) 53) (($ $ (-766)) 51)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 50) (($ $ |#1|) 49) (($ |#1| $) 48) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))))) -(((-958 |#1| |#2|) (-13 (-325 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-554)) (IF (|has| |#2| (-130)) (-15 -1601 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4401)) (-6 -4401) |%noBranch|))) (-1044) (-787)) (T -958)) -((-1601 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-958 *3 *2)) (-4 *2 (-130)) (-4 *3 (-554)) (-4 *3 (-1044)) (-4 *2 (-787))))) -(-13 (-325 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-554)) (IF (|has| |#2| (-130)) (-15 -1601 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4401)) (-6 -4401) |%noBranch|))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL (-4037 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788)))))) (-1593 (($ $ $) 63 (-12 (|has| |#1| (-788)) (|has| |#2| (-788))))) (-2781 (((-3 $ "failed") $ $) 50 (-4037 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788)))))) (-1382 (((-766)) 34 (-12 (|has| |#1| (-367)) (|has| |#2| (-367))))) (-2804 ((|#2| $) 21)) (-3084 ((|#1| $) 20)) (-3329 (($) NIL (-4037 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-472)) (|has| |#2| (-472))) (-12 (|has| |#1| (-721)) (|has| |#2| (-721))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788)))) CONST)) (-1694 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| |#1| (-472)) (|has| |#2| (-472))) (-12 (|has| |#1| (-721)) (|has| |#2| (-721)))))) (-1447 (($) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-367))))) (-4367 (((-112) $) NIL (-4037 (-12 (|has| |#1| (-472)) (|has| |#2| (-472))) (-12 (|has| |#1| (-721)) (|has| |#2| (-721)))))) (-1551 (($ $ $) NIL (-4037 (-12 (|has| |#1| (-788)) (|has| |#2| (-788))) (-12 (|has| |#1| (-845)) (|has| |#2| (-845)))))) (-2993 (($ $ $) NIL (-4037 (-12 (|has| |#1| (-788)) (|has| |#2| (-788))) (-12 (|has| |#1| (-845)) (|has| |#2| (-845)))))) (-4018 (($ |#1| |#2|) 19)) (-3549 (((-916) $) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-367))))) (-3696 (((-1150) $) NIL)) (-1525 (($ $) 37 (-12 (|has| |#1| (-472)) (|has| |#2| (-472))))) (-2464 (($ (-916)) NIL (-12 (|has| |#1| (-367)) (|has| |#2| (-367))))) (-1709 (((-1112) $) NIL)) (-1660 (($ $ $) NIL (-12 (|has| |#1| (-472)) (|has| |#2| (-472))))) (-2114 (($ $ $) NIL (-12 (|has| |#1| (-472)) (|has| |#2| (-472))))) (-4053 (((-857) $) 14)) (-2285 (($) 40 (-4037 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788)))) CONST)) (-2294 (($) 24 (-4037 (-12 (|has| |#1| (-472)) (|has| |#2| (-472))) (-12 (|has| |#1| (-721)) (|has| |#2| (-721)))) CONST)) (-1798 (((-112) $ $) NIL (-4037 (-12 (|has| |#1| (-788)) (|has| |#2| (-788))) (-12 (|has| |#1| (-845)) (|has| |#2| (-845)))))) (-1771 (((-112) $ $) NIL (-4037 (-12 (|has| |#1| (-788)) (|has| |#2| (-788))) (-12 (|has| |#1| (-845)) (|has| |#2| (-845)))))) (-1733 (((-112) $ $) 18)) (-1785 (((-112) $ $) NIL (-4037 (-12 (|has| |#1| (-788)) (|has| |#2| (-788))) (-12 (|has| |#1| (-845)) (|has| |#2| (-845)))))) (-1761 (((-112) $ $) 66 (-4037 (-12 (|has| |#1| (-788)) (|has| |#2| (-788))) (-12 (|has| |#1| (-845)) (|has| |#2| (-845)))))) (-1859 (($ $ $) NIL (-12 (|has| |#1| (-472)) (|has| |#2| (-472))))) (-1847 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-1836 (($ $ $) 43 (-4037 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788)))))) (** (($ $ (-562)) NIL (-12 (|has| |#1| (-472)) (|has| |#2| (-472)))) (($ $ (-766)) 31 (-4037 (-12 (|has| |#1| (-472)) (|has| |#2| (-472))) (-12 (|has| |#1| (-721)) (|has| |#2| (-721))))) (($ $ (-916)) NIL (-4037 (-12 (|has| |#1| (-472)) (|has| |#2| (-472))) (-12 (|has| |#1| (-721)) (|has| |#2| (-721)))))) (* (($ (-562) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-766) $) 46 (-4037 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788))))) (($ (-916) $) NIL (-4037 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788))))) (($ $ $) 27 (-4037 (-12 (|has| |#1| (-472)) (|has| |#2| (-472))) (-12 (|has| |#1| (-721)) (|has| |#2| (-721))))))) -(((-959 |#1| |#2|) (-13 (-1092) (-10 -8 (IF (|has| |#1| (-367)) (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-721)) (IF (|has| |#2| (-721)) (-6 (-721)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-472)) (IF (|has| |#2| (-472)) (-6 (-472)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-788)) (IF (|has| |#2| (-788)) (-6 (-788)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-845)) (IF (|has| |#2| (-845)) (-6 (-845)) |%noBranch|) |%noBranch|) (-15 -4018 ($ |#1| |#2|)) (-15 -3084 (|#1| $)) (-15 -2804 (|#2| $)))) (-1092) (-1092)) (T -959)) -((-4018 (*1 *1 *2 *3) (-12 (-5 *1 (-959 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092)))) (-3084 (*1 *2 *1) (-12 (-4 *2 (-1092)) (-5 *1 (-959 *2 *3)) (-4 *3 (-1092)))) (-2804 (*1 *2 *1) (-12 (-4 *2 (-1092)) (-5 *1 (-959 *3 *2)) (-4 *3 (-1092))))) -(-13 (-1092) (-10 -8 (IF (|has| |#1| (-367)) (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-721)) (IF (|has| |#2| (-721)) (-6 (-721)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-472)) (IF (|has| |#2| (-472)) (-6 (-472)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-788)) (IF (|has| |#2| (-788)) (-6 (-788)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-845)) (IF (|has| |#2| (-845)) (-6 (-845)) |%noBranch|) |%noBranch|) (-15 -4018 ($ |#1| |#2|)) (-15 -3084 (|#1| $)) (-15 -2804 (|#2| $)))) -((-2533 (((-1096) $) 12)) (-3394 (($ (-1168) (-1096)) 13)) (-3253 (((-1168) $) 10)) (-4053 (((-857) $) 22))) -(((-960) (-13 (-609 (-857)) (-10 -8 (-15 -3253 ((-1168) $)) (-15 -2533 ((-1096) $)) (-15 -3394 ($ (-1168) (-1096)))))) (T -960)) -((-3253 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-960)))) (-2533 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-960)))) (-3394 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1096)) (-5 *1 (-960))))) -(-13 (-609 (-857)) (-10 -8 (-15 -3253 ((-1168) $)) (-15 -2533 ((-1096) $)) (-15 -3394 ($ (-1168) (-1096))))) -((-4041 (((-112) $ $) NIL)) (-1401 (((-1094 (-1168)) $) 19)) (-3927 (((-112) $) 26)) (-2443 (((-1168) $) 27)) (-2522 (((-112) $) 24)) (-1692 ((|#1| $) 25)) (-3460 (((-868 $ $) $) 34)) (-1329 (((-112) $) 33)) (-2256 (($ $ $) 12)) (-1519 (($ $) 29)) (-2348 (((-112) $) 28)) (-2234 (($ $) 10)) (-3696 (((-1150) $) NIL)) (-4288 (((-868 $ $) $) 36)) (-3992 (((-112) $) 35)) (-3664 (($ $ $) 13)) (-1709 (((-1112) $) NIL)) (-3772 (((-868 $ $) $) 38)) (-2324 (((-112) $) 37)) (-4166 (($ $ $) 14)) (-4053 (((-857) $) 40) (($ |#1|) 7) (($ (-1168)) 9)) (-3972 (((-868 $ $) $) 32)) (-3227 (((-112) $) 30)) (-2245 (($ $ $) 11)) (-1733 (((-112) $ $) NIL))) -(((-961 |#1|) (-13 (-962) (-10 -8 (-15 -4053 ($ |#1|)) (-15 -4053 ($ (-1168))) (-15 -1401 ((-1094 (-1168)) $)) (-15 -2522 ((-112) $)) (-15 -1692 (|#1| $)) (-15 -3927 ((-112) $)) (-15 -2443 ((-1168) $)) (-15 -2348 ((-112) $)) (-15 -1519 ($ $)) (-15 -3227 ((-112) $)) (-15 -3972 ((-868 $ $) $)) (-15 -1329 ((-112) $)) (-15 -3460 ((-868 $ $) $)) (-15 -3992 ((-112) $)) (-15 -4288 ((-868 $ $) $)) (-15 -2324 ((-112) $)) (-15 -3772 ((-868 $ $) $)))) (-962)) (T -961)) -((-4053 (*1 *1 *2) (-12 (-5 *1 (-961 *2)) (-4 *2 (-962)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-961 *3)) (-4 *3 (-962)))) (-1401 (*1 *2 *1) (-12 (-5 *2 (-1094 (-1168))) (-5 *1 (-961 *3)) (-4 *3 (-962)))) (-2522 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-962)))) (-1692 (*1 *2 *1) (-12 (-5 *1 (-961 *2)) (-4 *2 (-962)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-962)))) (-2443 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-961 *3)) (-4 *3 (-962)))) (-2348 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-962)))) (-1519 (*1 *1 *1) (-12 (-5 *1 (-961 *2)) (-4 *2 (-962)))) (-3227 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-962)))) (-3972 (*1 *2 *1) (-12 (-5 *2 (-868 (-961 *3) (-961 *3))) (-5 *1 (-961 *3)) (-4 *3 (-962)))) (-1329 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-962)))) (-3460 (*1 *2 *1) (-12 (-5 *2 (-868 (-961 *3) (-961 *3))) (-5 *1 (-961 *3)) (-4 *3 (-962)))) (-3992 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-962)))) (-4288 (*1 *2 *1) (-12 (-5 *2 (-868 (-961 *3) (-961 *3))) (-5 *1 (-961 *3)) (-4 *3 (-962)))) (-2324 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-962)))) (-3772 (*1 *2 *1) (-12 (-5 *2 (-868 (-961 *3) (-961 *3))) (-5 *1 (-961 *3)) (-4 *3 (-962))))) -(-13 (-962) (-10 -8 (-15 -4053 ($ |#1|)) (-15 -4053 ($ (-1168))) (-15 -1401 ((-1094 (-1168)) $)) (-15 -2522 ((-112) $)) (-15 -1692 (|#1| $)) (-15 -3927 ((-112) $)) (-15 -2443 ((-1168) $)) (-15 -2348 ((-112) $)) (-15 -1519 ($ $)) (-15 -3227 ((-112) $)) (-15 -3972 ((-868 $ $) $)) (-15 -1329 ((-112) $)) (-15 -3460 ((-868 $ $) $)) (-15 -3992 ((-112) $)) (-15 -4288 ((-868 $ $) $)) (-15 -2324 ((-112) $)) (-15 -3772 ((-868 $ $) $)))) -((-4041 (((-112) $ $) 7)) (-2256 (($ $ $) 15)) (-2234 (($ $) 17)) (-3696 (((-1150) $) 9)) (-3664 (($ $ $) 14)) (-1709 (((-1112) $) 10)) (-4166 (($ $ $) 13)) (-4053 (((-857) $) 11)) (-2245 (($ $ $) 16)) (-1733 (((-112) $ $) 6))) -(((-962) (-139)) (T -962)) -((-2234 (*1 *1 *1) (-4 *1 (-962))) (-2245 (*1 *1 *1 *1) (-4 *1 (-962))) (-2256 (*1 *1 *1 *1) (-4 *1 (-962))) (-3664 (*1 *1 *1 *1) (-4 *1 (-962))) (-4166 (*1 *1 *1 *1) (-4 *1 (-962)))) -(-13 (-1092) (-10 -8 (-15 -2234 ($ $)) (-15 -2245 ($ $ $)) (-15 -2256 ($ $ $)) (-15 -3664 ($ $ $)) (-15 -4166 ($ $ $)))) -(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) -((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-3735 (((-112) $ (-766)) 8)) (-3329 (($) 7 T CONST)) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4403)))) (-4172 (((-112) $ (-766)) 9)) (-3124 (($ $ $) 43)) (-4103 (($ $ $) 44)) (-2123 (((-639 |#1|) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-2993 ((|#1| $) 45)) (-1491 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-4147 (((-112) $ (-766)) 10)) (-3696 (((-1150) $) 22 (|has| |#1| (-1092)))) (-2078 ((|#1| $) 39)) (-1581 (($ |#1| $) 40)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-2038 ((|#1| $) 41)) (-3008 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) 14)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4403))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-4220 (($ $) 13)) (-4053 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-4131 (($ (-639 |#1|)) 42)) (-2879 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-963 |#1|) (-139) (-845)) (T -963)) -((-2993 (*1 *2 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-845)))) (-4103 (*1 *1 *1 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-845)))) (-3124 (*1 *1 *1 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-845))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4403) (-15 -2993 (|t#1| $)) (-15 -4103 ($ $ $)) (-15 -3124 ($ $ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1092) |has| |#1| (-1092)) ((-1207) . T)) -((-2199 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1606 |#2|)) |#2| |#2|) 84)) (-2035 ((|#2| |#2| |#2|) 82)) (-2905 (((-2 (|:| |coef2| |#2|) (|:| -1606 |#2|)) |#2| |#2|) 86)) (-2030 (((-2 (|:| |coef1| |#2|) (|:| -1606 |#2|)) |#2| |#2|) 88)) (-3198 (((-2 (|:| |coef2| |#2|) (|:| -3959 |#1|)) |#2| |#2|) 106 (|has| |#1| (-451)))) (-4381 (((-2 (|:| |coef2| |#2|) (|:| -2355 |#1|)) |#2| |#2|) 45)) (-4161 (((-2 (|:| |coef2| |#2|) (|:| -2355 |#1|)) |#2| |#2|) 63)) (-1463 (((-2 (|:| |coef1| |#2|) (|:| -2355 |#1|)) |#2| |#2|) 65)) (-3114 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 77)) (-4250 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-766)) 70)) (-2878 (((-2 (|:| |coef2| |#2|) (|:| -2736 |#1|)) |#2|) 96)) (-1480 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-766)) 73)) (-3558 (((-639 (-766)) |#2| |#2|) 81)) (-2132 ((|#1| |#2| |#2|) 41)) (-1896 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3959 |#1|)) |#2| |#2|) 104 (|has| |#1| (-451)))) (-3959 ((|#1| |#2| |#2|) 102 (|has| |#1| (-451)))) (-3878 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2355 |#1|)) |#2| |#2|) 43)) (-1899 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2355 |#1|)) |#2| |#2|) 62)) (-2355 ((|#1| |#2| |#2|) 60)) (-3840 (((-2 (|:| -4221 |#1|) (|:| -3380 |#2|) (|:| -1441 |#2|)) |#2| |#2|) 34)) (-2749 ((|#2| |#2| |#2| |#2| |#1|) 52)) (-3698 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 75)) (-2672 ((|#2| |#2| |#2|) 74)) (-1921 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-766)) 68)) (-4065 ((|#2| |#2| |#2| (-766)) 66)) (-1606 ((|#2| |#2| |#2|) 110 (|has| |#1| (-451)))) (-1762 (((-1256 |#2|) (-1256 |#2|) |#1|) 21)) (-3204 (((-2 (|:| -3380 |#2|) (|:| -1441 |#2|)) |#2| |#2|) 38)) (-3053 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2736 |#1|)) |#2|) 94)) (-2736 ((|#1| |#2|) 91)) (-4359 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-766)) 72)) (-1831 ((|#2| |#2| |#2| (-766)) 71)) (-3416 (((-639 |#2|) |#2| |#2|) 79)) (-1541 ((|#2| |#2| |#1| |#1| (-766)) 49)) (-4019 ((|#1| |#1| |#1| (-766)) 48)) (* (((-1256 |#2|) |#1| (-1256 |#2|)) 16))) -(((-964 |#1| |#2|) (-10 -7 (-15 -2355 (|#1| |#2| |#2|)) (-15 -1899 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2355 |#1|)) |#2| |#2|)) (-15 -4161 ((-2 (|:| |coef2| |#2|) (|:| -2355 |#1|)) |#2| |#2|)) (-15 -1463 ((-2 (|:| |coef1| |#2|) (|:| -2355 |#1|)) |#2| |#2|)) (-15 -4065 (|#2| |#2| |#2| (-766))) (-15 -1921 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-766))) (-15 -4250 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-766))) (-15 -1831 (|#2| |#2| |#2| (-766))) (-15 -4359 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-766))) (-15 -1480 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-766))) (-15 -2672 (|#2| |#2| |#2|)) (-15 -3698 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3114 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2035 (|#2| |#2| |#2|)) (-15 -2199 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1606 |#2|)) |#2| |#2|)) (-15 -2905 ((-2 (|:| |coef2| |#2|) (|:| -1606 |#2|)) |#2| |#2|)) (-15 -2030 ((-2 (|:| |coef1| |#2|) (|:| -1606 |#2|)) |#2| |#2|)) (-15 -2736 (|#1| |#2|)) (-15 -3053 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2736 |#1|)) |#2|)) (-15 -2878 ((-2 (|:| |coef2| |#2|) (|:| -2736 |#1|)) |#2|)) (-15 -3416 ((-639 |#2|) |#2| |#2|)) (-15 -3558 ((-639 (-766)) |#2| |#2|)) (IF (|has| |#1| (-451)) (PROGN (-15 -3959 (|#1| |#2| |#2|)) (-15 -1896 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3959 |#1|)) |#2| |#2|)) (-15 -3198 ((-2 (|:| |coef2| |#2|) (|:| -3959 |#1|)) |#2| |#2|)) (-15 -1606 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1256 |#2|) |#1| (-1256 |#2|))) (-15 -1762 ((-1256 |#2|) (-1256 |#2|) |#1|)) (-15 -3840 ((-2 (|:| -4221 |#1|) (|:| -3380 |#2|) (|:| -1441 |#2|)) |#2| |#2|)) (-15 -3204 ((-2 (|:| -3380 |#2|) (|:| -1441 |#2|)) |#2| |#2|)) (-15 -4019 (|#1| |#1| |#1| (-766))) (-15 -1541 (|#2| |#2| |#1| |#1| (-766))) (-15 -2749 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2132 (|#1| |#2| |#2|)) (-15 -3878 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2355 |#1|)) |#2| |#2|)) (-15 -4381 ((-2 (|:| |coef2| |#2|) (|:| -2355 |#1|)) |#2| |#2|))) (-554) (-1232 |#1|)) (T -964)) -((-4381 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2355 *4))) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-3878 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2355 *4))) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-2132 (*1 *2 *3 *3) (-12 (-4 *2 (-554)) (-5 *1 (-964 *2 *3)) (-4 *3 (-1232 *2)))) (-2749 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-554)) (-5 *1 (-964 *3 *2)) (-4 *2 (-1232 *3)))) (-1541 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-766)) (-4 *3 (-554)) (-5 *1 (-964 *3 *2)) (-4 *2 (-1232 *3)))) (-4019 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-766)) (-4 *2 (-554)) (-5 *1 (-964 *2 *4)) (-4 *4 (-1232 *2)))) (-3204 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| -3380 *3) (|:| -1441 *3))) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-3840 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| -4221 *4) (|:| -3380 *3) (|:| -1441 *3))) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-1762 (*1 *2 *2 *3) (-12 (-5 *2 (-1256 *4)) (-4 *4 (-1232 *3)) (-4 *3 (-554)) (-5 *1 (-964 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1256 *4)) (-4 *4 (-1232 *3)) (-4 *3 (-554)) (-5 *1 (-964 *3 *4)))) (-1606 (*1 *2 *2 *2) (-12 (-4 *3 (-451)) (-4 *3 (-554)) (-5 *1 (-964 *3 *2)) (-4 *2 (-1232 *3)))) (-3198 (*1 *2 *3 *3) (-12 (-4 *4 (-451)) (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3959 *4))) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-1896 (*1 *2 *3 *3) (-12 (-4 *4 (-451)) (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3959 *4))) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-3959 (*1 *2 *3 *3) (-12 (-4 *2 (-554)) (-4 *2 (-451)) (-5 *1 (-964 *2 *3)) (-4 *3 (-1232 *2)))) (-3558 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-639 (-766))) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-3416 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-639 *3)) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-2878 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2736 *4))) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-3053 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2736 *4))) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-2736 (*1 *2 *3) (-12 (-4 *2 (-554)) (-5 *1 (-964 *2 *3)) (-4 *3 (-1232 *2)))) (-2030 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1606 *3))) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-2905 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1606 *3))) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-2199 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1606 *3))) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-2035 (*1 *2 *2 *2) (-12 (-4 *3 (-554)) (-5 *1 (-964 *3 *2)) (-4 *2 (-1232 *3)))) (-3114 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-3698 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-2672 (*1 *2 *2 *2) (-12 (-4 *3 (-554)) (-5 *1 (-964 *3 *2)) (-4 *2 (-1232 *3)))) (-1480 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-766)) (-4 *5 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-964 *5 *3)) (-4 *3 (-1232 *5)))) (-4359 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-766)) (-4 *5 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-964 *5 *3)) (-4 *3 (-1232 *5)))) (-1831 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-766)) (-4 *4 (-554)) (-5 *1 (-964 *4 *2)) (-4 *2 (-1232 *4)))) (-4250 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-766)) (-4 *5 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-964 *5 *3)) (-4 *3 (-1232 *5)))) (-1921 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-766)) (-4 *5 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-964 *5 *3)) (-4 *3 (-1232 *5)))) (-4065 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-766)) (-4 *4 (-554)) (-5 *1 (-964 *4 *2)) (-4 *2 (-1232 *4)))) (-1463 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2355 *4))) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-4161 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2355 *4))) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-1899 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2355 *4))) (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) (-2355 (*1 *2 *3 *3) (-12 (-4 *2 (-554)) (-5 *1 (-964 *2 *3)) (-4 *3 (-1232 *2))))) -(-10 -7 (-15 -2355 (|#1| |#2| |#2|)) (-15 -1899 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2355 |#1|)) |#2| |#2|)) (-15 -4161 ((-2 (|:| |coef2| |#2|) (|:| -2355 |#1|)) |#2| |#2|)) (-15 -1463 ((-2 (|:| |coef1| |#2|) (|:| -2355 |#1|)) |#2| |#2|)) (-15 -4065 (|#2| |#2| |#2| (-766))) (-15 -1921 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-766))) (-15 -4250 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-766))) (-15 -1831 (|#2| |#2| |#2| (-766))) (-15 -4359 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-766))) (-15 -1480 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-766))) (-15 -2672 (|#2| |#2| |#2|)) (-15 -3698 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3114 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2035 (|#2| |#2| |#2|)) (-15 -2199 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1606 |#2|)) |#2| |#2|)) (-15 -2905 ((-2 (|:| |coef2| |#2|) (|:| -1606 |#2|)) |#2| |#2|)) (-15 -2030 ((-2 (|:| |coef1| |#2|) (|:| -1606 |#2|)) |#2| |#2|)) (-15 -2736 (|#1| |#2|)) (-15 -3053 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2736 |#1|)) |#2|)) (-15 -2878 ((-2 (|:| |coef2| |#2|) (|:| -2736 |#1|)) |#2|)) (-15 -3416 ((-639 |#2|) |#2| |#2|)) (-15 -3558 ((-639 (-766)) |#2| |#2|)) (IF (|has| |#1| (-451)) (PROGN (-15 -3959 (|#1| |#2| |#2|)) (-15 -1896 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3959 |#1|)) |#2| |#2|)) (-15 -3198 ((-2 (|:| |coef2| |#2|) (|:| -3959 |#1|)) |#2| |#2|)) (-15 -1606 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1256 |#2|) |#1| (-1256 |#2|))) (-15 -1762 ((-1256 |#2|) (-1256 |#2|) |#1|)) (-15 -3840 ((-2 (|:| -4221 |#1|) (|:| -3380 |#2|) (|:| -1441 |#2|)) |#2| |#2|)) (-15 -3204 ((-2 (|:| -3380 |#2|) (|:| -1441 |#2|)) |#2| |#2|)) (-15 -4019 (|#1| |#1| |#1| (-766))) (-15 -1541 (|#2| |#2| |#1| |#1| (-766))) (-15 -2749 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2132 (|#1| |#2| |#2|)) (-15 -3878 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2355 |#1|)) |#2| |#2|)) (-15 -4381 ((-2 (|:| |coef2| |#2|) (|:| -2355 |#1|)) |#2| |#2|))) -((-4041 (((-112) $ $) NIL)) (-4084 (((-1206) $) 13)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1743 (((-1127) $) 10)) (-4053 (((-857) $) 22) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-965) (-13 (-1075) (-10 -8 (-15 -1743 ((-1127) $)) (-15 -4084 ((-1206) $))))) (T -965)) -((-1743 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-965)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-965))))) -(-13 (-1075) (-10 -8 (-15 -1743 ((-1127) $)) (-15 -4084 ((-1206) $)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) 26)) (-3329 (($) NIL T CONST)) (-3180 (((-639 (-639 (-562))) (-639 (-562))) 28)) (-4080 (((-562) $) 44)) (-3004 (($ (-639 (-562))) 17)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4208 (((-639 (-562)) $) 12)) (-1660 (($ $) 31)) (-4053 (((-857) $) 42) (((-639 (-562)) $) 10)) (-2285 (($) 7 T CONST)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 19)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) 18)) (-1836 (($ $ $) 20)) (* (($ (-916) $) NIL) (($ (-766) $) 24))) -(((-966) (-13 (-790) (-610 (-639 (-562))) (-609 (-639 (-562))) (-10 -8 (-15 -3004 ($ (-639 (-562)))) (-15 -3180 ((-639 (-639 (-562))) (-639 (-562)))) (-15 -4080 ((-562) $)) (-15 -1660 ($ $))))) (T -966)) -((-3004 (*1 *1 *2) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-966)))) (-3180 (*1 *2 *3) (-12 (-5 *2 (-639 (-639 (-562)))) (-5 *1 (-966)) (-5 *3 (-639 (-562))))) (-4080 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-966)))) (-1660 (*1 *1 *1) (-5 *1 (-966)))) -(-13 (-790) (-610 (-639 (-562))) (-609 (-639 (-562))) (-10 -8 (-15 -3004 ($ (-639 (-562)))) (-15 -3180 ((-639 (-639 (-562))) (-639 (-562)))) (-15 -4080 ((-562) $)) (-15 -1660 ($ $)))) -((-1859 (($ $ |#2|) 30)) (-1847 (($ $) 22) (($ $ $) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-406 (-562)) $) 26) (($ $ (-406 (-562))) 28))) -(((-967 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-406 (-562)))) (-15 * (|#1| (-406 (-562)) |#1|)) (-15 -1859 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-562) |#1|)) (-15 -1847 (|#1| |#1| |#1|)) (-15 -1847 (|#1| |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 * (|#1| (-916) |#1|))) (-968 |#2| |#3| |#4|) (-1044) (-787) (-845)) (T -967)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-406 (-562)))) (-15 * (|#1| (-406 (-562)) |#1|)) (-15 -1859 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-562) |#1|)) (-15 -1847 (|#1| |#1| |#1|)) (-15 -1847 (|#1| |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 * (|#1| (-916) |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-1401 (((-639 |#3|) $) 77)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-1965 (($ $) 55 (|has| |#1| (-554)))) (-4102 (((-112) $) 57 (|has| |#1| (-554)))) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-1600 (($ $) 63)) (-1694 (((-3 $ "failed") $) 33)) (-2965 (((-112) $) 76)) (-4367 (((-112) $) 31)) (-2833 (((-112) $) 65)) (-1377 (($ |#1| |#2|) 64) (($ $ |#3| |#2|) 79) (($ $ (-639 |#3|) (-639 |#2|)) 78)) (-4152 (($ (-1 |#1| |#1|) $) 66)) (-1560 (($ $) 68)) (-1573 ((|#1| $) 69)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-1762 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554)))) (-2250 ((|#2| $) 67)) (-1345 (($ $) 75)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ (-406 (-562))) 60 (|has| |#1| (-38 (-406 (-562))))) (($ $) 52 (|has| |#1| (-554))) (($ |#1|) 50 (|has| |#1| (-171)))) (-2266 ((|#1| $ |#2|) 62)) (-2059 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-1568 (((-766)) 28)) (-3799 (((-112) $ $) 56 (|has| |#1| (-554)))) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1859 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-562)) $) 59 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 58 (|has| |#1| (-38 (-406 (-562))))))) -(((-968 |#1| |#2| |#3|) (-139) (-1044) (-787) (-845)) (T -968)) -((-1573 (*1 *2 *1) (-12 (-4 *1 (-968 *2 *3 *4)) (-4 *3 (-787)) (-4 *4 (-845)) (-4 *2 (-1044)))) (-1560 (*1 *1 *1) (-12 (-4 *1 (-968 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-787)) (-4 *4 (-845)))) (-2250 (*1 *2 *1) (-12 (-4 *1 (-968 *3 *2 *4)) (-4 *3 (-1044)) (-4 *4 (-845)) (-4 *2 (-787)))) (-1377 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-968 *4 *3 *2)) (-4 *4 (-1044)) (-4 *3 (-787)) (-4 *2 (-845)))) (-1377 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 *6)) (-5 *3 (-639 *5)) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1044)) (-4 *5 (-787)) (-4 *6 (-845)))) (-1401 (*1 *2 *1) (-12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-787)) (-4 *5 (-845)) (-5 *2 (-639 *5)))) (-2965 (*1 *2 *1) (-12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-787)) (-4 *5 (-845)) (-5 *2 (-112)))) (-1345 (*1 *1 *1) (-12 (-4 *1 (-968 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-787)) (-4 *4 (-845))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -1377 ($ $ |t#3| |t#2|)) (-15 -1377 ($ $ (-639 |t#3|) (-639 |t#2|))) (-15 -1560 ($ $)) (-15 -1573 (|t#1| $)) (-15 -2250 (|t#2| $)) (-15 -1401 ((-639 |t#3|) $)) (-15 -2965 ((-112) $)) (-15 -1345 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-554)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-562)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #0#) |has| |#1| (-38 (-406 (-562)))) ((-612 (-562)) . T) ((-612 |#1|) |has| |#1| (-171)) ((-612 $) |has| |#1| (-554)) ((-609 (-857)) . T) ((-171) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-289) |has| |#1| (-554)) ((-554) |has| |#1| (-554)) ((-642 #0#) |has| |#1| (-38 (-406 (-562)))) ((-642 |#1|) . T) ((-642 $) . T) ((-712 #0#) |has| |#1| (-38 (-406 (-562)))) ((-712 |#1|) |has| |#1| (-171)) ((-712 $) |has| |#1| (-554)) ((-721) . T) ((-1050 #0#) |has| |#1| (-38 (-406 (-562)))) ((-1050 |#1|) . T) ((-1050 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) -((-1478 (((-1086 (-224)) $) 8)) (-1462 (((-1086 (-224)) $) 9)) (-1448 (((-1086 (-224)) $) 10)) (-2259 (((-639 (-639 (-938 (-224)))) $) 11)) (-4053 (((-857) $) 6))) -(((-969) (-139)) (T -969)) -((-2259 (*1 *2 *1) (-12 (-4 *1 (-969)) (-5 *2 (-639 (-639 (-938 (-224))))))) (-1448 (*1 *2 *1) (-12 (-4 *1 (-969)) (-5 *2 (-1086 (-224))))) (-1462 (*1 *2 *1) (-12 (-4 *1 (-969)) (-5 *2 (-1086 (-224))))) (-1478 (*1 *2 *1) (-12 (-4 *1 (-969)) (-5 *2 (-1086 (-224)))))) -(-13 (-609 (-857)) (-10 -8 (-15 -2259 ((-639 (-639 (-938 (-224)))) $)) (-15 -1448 ((-1086 (-224)) $)) (-15 -1462 ((-1086 (-224)) $)) (-15 -1478 ((-1086 (-224)) $)))) -(((-609 (-857)) . T)) -((-1401 (((-639 |#4|) $) 23)) (-2799 (((-112) $) 47)) (-4370 (((-112) $) 46)) (-1395 (((-2 (|:| |under| $) (|:| -3870 $) (|:| |upper| $)) $ |#4|) 35)) (-2169 (((-112) $) 48)) (-2183 (((-112) $ $) 54)) (-2864 (((-112) $ $) 57)) (-4219 (((-112) $) 52)) (-2037 (((-639 |#5|) (-639 |#5|) $) 89)) (-4230 (((-639 |#5|) (-639 |#5|) $) 86)) (-1441 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 80)) (-3133 (((-639 |#4|) $) 27)) (-3112 (((-112) |#4| $) 29)) (-4123 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 72)) (-2316 (($ $ |#4|) 32)) (-2180 (($ $ |#4|) 31)) (-1962 (($ $ |#4|) 33)) (-1733 (((-112) $ $) 39))) -(((-970 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4370 ((-112) |#1|)) (-15 -2037 ((-639 |#5|) (-639 |#5|) |#1|)) (-15 -4230 ((-639 |#5|) (-639 |#5|) |#1|)) (-15 -1441 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4123 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2169 ((-112) |#1|)) (-15 -2864 ((-112) |#1| |#1|)) (-15 -2183 ((-112) |#1| |#1|)) (-15 -4219 ((-112) |#1|)) (-15 -2799 ((-112) |#1|)) (-15 -1395 ((-2 (|:| |under| |#1|) (|:| -3870 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2316 (|#1| |#1| |#4|)) (-15 -1962 (|#1| |#1| |#4|)) (-15 -2180 (|#1| |#1| |#4|)) (-15 -3112 ((-112) |#4| |#1|)) (-15 -3133 ((-639 |#4|) |#1|)) (-15 -1401 ((-639 |#4|) |#1|)) (-15 -1733 ((-112) |#1| |#1|))) (-971 |#2| |#3| |#4| |#5|) (-1044) (-788) (-845) (-1058 |#2| |#3| |#4|)) (T -970)) -NIL -(-10 -8 (-15 -4370 ((-112) |#1|)) (-15 -2037 ((-639 |#5|) (-639 |#5|) |#1|)) (-15 -4230 ((-639 |#5|) (-639 |#5|) |#1|)) (-15 -1441 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4123 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2169 ((-112) |#1|)) (-15 -2864 ((-112) |#1| |#1|)) (-15 -2183 ((-112) |#1| |#1|)) (-15 -4219 ((-112) |#1|)) (-15 -2799 ((-112) |#1|)) (-15 -1395 ((-2 (|:| |under| |#1|) (|:| -3870 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2316 (|#1| |#1| |#4|)) (-15 -1962 (|#1| |#1| |#4|)) (-15 -2180 (|#1| |#1| |#4|)) (-15 -3112 ((-112) |#4| |#1|)) (-15 -3133 ((-639 |#4|) |#1|)) (-15 -1401 ((-639 |#4|) |#1|)) (-15 -1733 ((-112) |#1| |#1|))) -((-4041 (((-112) $ $) 7)) (-1401 (((-639 |#3|) $) 33)) (-2799 (((-112) $) 26)) (-4370 (((-112) $) 17 (|has| |#1| (-554)))) (-1395 (((-2 (|:| |under| $) (|:| -3870 $) (|:| |upper| $)) $ |#3|) 27)) (-3735 (((-112) $ (-766)) 44)) (-3556 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4403)))) (-3329 (($) 45 T CONST)) (-2169 (((-112) $) 22 (|has| |#1| (-554)))) (-2183 (((-112) $ $) 24 (|has| |#1| (-554)))) (-2864 (((-112) $ $) 23 (|has| |#1| (-554)))) (-4219 (((-112) $) 25 (|has| |#1| (-554)))) (-2037 (((-639 |#4|) (-639 |#4|) $) 18 (|has| |#1| (-554)))) (-4230 (((-639 |#4|) (-639 |#4|) $) 19 (|has| |#1| (-554)))) (-4048 (((-3 $ "failed") (-639 |#4|)) 36)) (-3960 (($ (-639 |#4|)) 35)) (-1459 (($ $) 68 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4403))))) (-1475 (($ |#4| $) 67 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4403)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4403)))) (-1441 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-554)))) (-1954 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4403)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4403))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4403)))) (-1720 (((-639 |#4|) $) 52 (|has| $ (-6 -4403)))) (-3761 ((|#3| $) 34)) (-4172 (((-112) $ (-766)) 43)) (-2123 (((-639 |#4|) $) 53 (|has| $ (-6 -4403)))) (-1572 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4403))))) (-1491 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#4| |#4|) $) 47)) (-3133 (((-639 |#3|) $) 32)) (-3112 (((-112) |#3| $) 31)) (-4147 (((-112) $ (-766)) 42)) (-3696 (((-1150) $) 9)) (-4123 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-554)))) (-1709 (((-1112) $) 10)) (-1963 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3008 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 |#4|) (-639 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-639 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))))) (-1452 (((-112) $ $) 38)) (-3087 (((-112) $) 41)) (-1663 (($) 40)) (-1723 (((-766) |#4| $) 54 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4403)))) (((-766) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4403)))) (-4220 (($ $) 39)) (-4208 (((-535) $) 69 (|has| |#4| (-610 (-535))))) (-4064 (($ (-639 |#4|)) 60)) (-2316 (($ $ |#3|) 28)) (-2180 (($ $ |#3|) 30)) (-1962 (($ $ |#3|) 29)) (-4053 (((-857) $) 11) (((-639 |#4|) $) 37)) (-2879 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 6)) (-3492 (((-766) $) 46 (|has| $ (-6 -4403))))) -(((-971 |#1| |#2| |#3| |#4|) (-139) (-1044) (-788) (-845) (-1058 |t#1| |t#2| |t#3|)) (T -971)) -((-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *1 (-971 *3 *4 *5 *6)))) (-3960 (*1 *1 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *1 (-971 *3 *4 *5 *6)))) (-3761 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *2 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-1058 *3 *4 *2)) (-4 *2 (-845)))) (-1401 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-639 *5)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-639 *5)))) (-3112 (*1 *2 *3 *1) (-12 (-4 *1 (-971 *4 *5 *3 *6)) (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *3 (-845)) (-4 *6 (-1058 *4 *5 *3)) (-5 *2 (-112)))) (-2180 (*1 *1 *1 *2) (-12 (-4 *1 (-971 *3 *4 *2 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *2 (-845)) (-4 *5 (-1058 *3 *4 *2)))) (-1962 (*1 *1 *1 *2) (-12 (-4 *1 (-971 *3 *4 *2 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *2 (-845)) (-4 *5 (-1058 *3 *4 *2)))) (-2316 (*1 *1 *1 *2) (-12 (-4 *1 (-971 *3 *4 *2 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *2 (-845)) (-4 *5 (-1058 *3 *4 *2)))) (-1395 (*1 *2 *1 *3) (-12 (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *3 (-845)) (-4 *6 (-1058 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3870 *1) (|:| |upper| *1))) (-4 *1 (-971 *4 *5 *3 *6)))) (-2799 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-112)))) (-4219 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) (-5 *2 (-112)))) (-2183 (*1 *2 *1 *1) (-12 (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) (-5 *2 (-112)))) (-2864 (*1 *2 *1 *1) (-12 (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) (-5 *2 (-112)))) (-2169 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) (-5 *2 (-112)))) (-4123 (*1 *2 *3 *1) (-12 (-4 *1 (-971 *4 *5 *6 *3)) (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-4 *4 (-554)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-1441 (*1 *2 *3 *1) (-12 (-4 *1 (-971 *4 *5 *6 *3)) (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-4 *4 (-554)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-4230 (*1 *2 *2 *1) (-12 (-5 *2 (-639 *6)) (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)))) (-2037 (*1 *2 *2 *1) (-12 (-5 *2 (-639 *6)) (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)))) (-4370 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) (-5 *2 (-112))))) -(-13 (-1092) (-150 |t#4|) (-609 (-639 |t#4|)) (-10 -8 (-6 -4403) (-15 -4048 ((-3 $ "failed") (-639 |t#4|))) (-15 -3960 ($ (-639 |t#4|))) (-15 -3761 (|t#3| $)) (-15 -1401 ((-639 |t#3|) $)) (-15 -3133 ((-639 |t#3|) $)) (-15 -3112 ((-112) |t#3| $)) (-15 -2180 ($ $ |t#3|)) (-15 -1962 ($ $ |t#3|)) (-15 -2316 ($ $ |t#3|)) (-15 -1395 ((-2 (|:| |under| $) (|:| -3870 $) (|:| |upper| $)) $ |t#3|)) (-15 -2799 ((-112) $)) (IF (|has| |t#1| (-554)) (PROGN (-15 -4219 ((-112) $)) (-15 -2183 ((-112) $ $)) (-15 -2864 ((-112) $ $)) (-15 -2169 ((-112) $)) (-15 -4123 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1441 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -4230 ((-639 |t#4|) (-639 |t#4|) $)) (-15 -2037 ((-639 |t#4|) (-639 |t#4|) $)) (-15 -4370 ((-112) $))) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-609 (-639 |#4|)) . T) ((-609 (-857)) . T) ((-150 |#4|) . T) ((-610 (-535)) |has| |#4| (-610 (-535))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))) ((-488 |#4|) . T) ((-513 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))) ((-1092) . T) ((-1207) . T)) -((-2023 (((-639 |#4|) |#4| |#4|) 117)) (-3244 (((-639 |#4|) (-639 |#4|) (-112)) 106 (|has| |#1| (-451))) (((-639 |#4|) (-639 |#4|)) 107 (|has| |#1| (-451)))) (-4331 (((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 |#4|)) 34)) (-4347 (((-112) |#4|) 33)) (-2096 (((-639 |#4|) |#4|) 102 (|has| |#1| (-451)))) (-3425 (((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-1 (-112) |#4|) (-639 |#4|)) 19)) (-2213 (((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 (-1 (-112) |#4|)) (-639 |#4|)) 21)) (-2882 (((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 (-1 (-112) |#4|)) (-639 |#4|)) 22)) (-2967 (((-3 (-2 (|:| |bas| (-475 |#1| |#2| |#3| |#4|)) (|:| -2774 (-639 |#4|))) "failed") (-639 |#4|)) 72)) (-1766 (((-639 |#4|) (-639 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 84)) (-4061 (((-639 |#4|) (-639 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 110)) (-2564 (((-639 |#4|) (-639 |#4|)) 109)) (-3245 (((-639 |#4|) (-639 |#4|) (-639 |#4|) (-112)) 47) (((-639 |#4|) (-639 |#4|) (-639 |#4|)) 49)) (-3875 ((|#4| |#4| (-639 |#4|)) 48)) (-1356 (((-639 |#4|) (-639 |#4|) (-639 |#4|)) 113 (|has| |#1| (-451)))) (-1410 (((-639 |#4|) (-639 |#4|) (-639 |#4|)) 116 (|has| |#1| (-451)))) (-1299 (((-639 |#4|) (-639 |#4|) (-639 |#4|)) 115 (|has| |#1| (-451)))) (-3674 (((-639 |#4|) (-639 |#4|) (-639 |#4|) (-1 (-639 |#4|) (-639 |#4|))) 86) (((-639 |#4|) (-639 |#4|) (-639 |#4|)) 88) (((-639 |#4|) (-639 |#4|) |#4|) 120) (((-639 |#4|) |#4| |#4|) 118) (((-639 |#4|) (-639 |#4|)) 87)) (-3274 (((-639 |#4|) (-639 |#4|) (-639 |#4|)) 99 (-12 (|has| |#1| (-146)) (|has| |#1| (-306))))) (-4281 (((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 |#4|)) 40)) (-4086 (((-112) (-639 |#4|)) 61)) (-4124 (((-112) (-639 |#4|) (-639 (-639 |#4|))) 52)) (-3398 (((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 |#4|)) 28)) (-3647 (((-112) |#4|) 27)) (-3361 (((-639 |#4|) (-639 |#4|)) 97 (-12 (|has| |#1| (-146)) (|has| |#1| (-306))))) (-3820 (((-639 |#4|) (-639 |#4|)) 98 (-12 (|has| |#1| (-146)) (|has| |#1| (-306))))) (-2537 (((-639 |#4|) (-639 |#4|)) 65)) (-3261 (((-639 |#4|) (-639 |#4|)) 78)) (-3463 (((-112) (-639 |#4|) (-639 |#4|)) 50)) (-1331 (((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 |#4|)) 38)) (-2116 (((-112) |#4|) 35))) -(((-972 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3674 ((-639 |#4|) (-639 |#4|))) (-15 -3674 ((-639 |#4|) |#4| |#4|)) (-15 -2564 ((-639 |#4|) (-639 |#4|))) (-15 -2023 ((-639 |#4|) |#4| |#4|)) (-15 -3674 ((-639 |#4|) (-639 |#4|) |#4|)) (-15 -3674 ((-639 |#4|) (-639 |#4|) (-639 |#4|))) (-15 -3674 ((-639 |#4|) (-639 |#4|) (-639 |#4|) (-1 (-639 |#4|) (-639 |#4|)))) (-15 -3463 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -4124 ((-112) (-639 |#4|) (-639 (-639 |#4|)))) (-15 -4086 ((-112) (-639 |#4|))) (-15 -3425 ((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-1 (-112) |#4|) (-639 |#4|))) (-15 -2213 ((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 (-1 (-112) |#4|)) (-639 |#4|))) (-15 -2882 ((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 (-1 (-112) |#4|)) (-639 |#4|))) (-15 -4281 ((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 |#4|))) (-15 -4347 ((-112) |#4|)) (-15 -4331 ((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 |#4|))) (-15 -3647 ((-112) |#4|)) (-15 -3398 ((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 |#4|))) (-15 -2116 ((-112) |#4|)) (-15 -1331 ((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 |#4|))) (-15 -3245 ((-639 |#4|) (-639 |#4|) (-639 |#4|))) (-15 -3245 ((-639 |#4|) (-639 |#4|) (-639 |#4|) (-112))) (-15 -3875 (|#4| |#4| (-639 |#4|))) (-15 -2537 ((-639 |#4|) (-639 |#4|))) (-15 -2967 ((-3 (-2 (|:| |bas| (-475 |#1| |#2| |#3| |#4|)) (|:| -2774 (-639 |#4|))) "failed") (-639 |#4|))) (-15 -3261 ((-639 |#4|) (-639 |#4|))) (-15 -1766 ((-639 |#4|) (-639 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4061 ((-639 |#4|) (-639 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-451)) (PROGN (-15 -2096 ((-639 |#4|) |#4|)) (-15 -3244 ((-639 |#4|) (-639 |#4|))) (-15 -3244 ((-639 |#4|) (-639 |#4|) (-112))) (-15 -1356 ((-639 |#4|) (-639 |#4|) (-639 |#4|))) (-15 -1299 ((-639 |#4|) (-639 |#4|) (-639 |#4|))) (-15 -1410 ((-639 |#4|) (-639 |#4|) (-639 |#4|)))) |%noBranch|) (IF (|has| |#1| (-306)) (IF (|has| |#1| (-146)) (PROGN (-15 -3820 ((-639 |#4|) (-639 |#4|))) (-15 -3361 ((-639 |#4|) (-639 |#4|))) (-15 -3274 ((-639 |#4|) (-639 |#4|) (-639 |#4|)))) |%noBranch|) |%noBranch|)) (-554) (-788) (-845) (-1058 |#1| |#2| |#3|)) (T -972)) -((-3274 (*1 *2 *2 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-146)) (-4 *3 (-306)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6)))) (-3361 (*1 *2 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-146)) (-4 *3 (-306)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6)))) (-3820 (*1 *2 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-146)) (-4 *3 (-306)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6)))) (-1410 (*1 *2 *2 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-451)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6)))) (-1299 (*1 *2 *2 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-451)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6)))) (-1356 (*1 *2 *2 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-451)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6)))) (-3244 (*1 *2 *2 *3) (-12 (-5 *2 (-639 *7)) (-5 *3 (-112)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-972 *4 *5 *6 *7)))) (-3244 (*1 *2 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-451)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6)))) (-2096 (*1 *2 *3) (-12 (-4 *4 (-451)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 *3)) (-5 *1 (-972 *4 *5 *6 *3)) (-4 *3 (-1058 *4 *5 *6)))) (-4061 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-639 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *1 (-972 *5 *6 *7 *8)))) (-1766 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-639 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1058 *6 *7 *8)) (-4 *6 (-554)) (-4 *7 (-788)) (-4 *8 (-845)) (-5 *1 (-972 *6 *7 *8 *9)))) (-3261 (*1 *2 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6)))) (-2967 (*1 *2 *3) (|partial| -12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-475 *4 *5 *6 *7)) (|:| -2774 (-639 *7)))) (-5 *1 (-972 *4 *5 *6 *7)) (-5 *3 (-639 *7)))) (-2537 (*1 *2 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6)))) (-3875 (*1 *2 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-1058 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-972 *4 *5 *6 *2)))) (-3245 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-639 *7)) (-5 *3 (-112)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-972 *4 *5 *6 *7)))) (-3245 (*1 *2 *2 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6)))) (-1331 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-639 *7)) (|:| |badPols| (-639 *7)))) (-5 *1 (-972 *4 *5 *6 *7)) (-5 *3 (-639 *7)))) (-2116 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-972 *4 *5 *6 *3)) (-4 *3 (-1058 *4 *5 *6)))) (-3398 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-639 *7)) (|:| |badPols| (-639 *7)))) (-5 *1 (-972 *4 *5 *6 *7)) (-5 *3 (-639 *7)))) (-3647 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-972 *4 *5 *6 *3)) (-4 *3 (-1058 *4 *5 *6)))) (-4331 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-639 *7)) (|:| |badPols| (-639 *7)))) (-5 *1 (-972 *4 *5 *6 *7)) (-5 *3 (-639 *7)))) (-4347 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-972 *4 *5 *6 *3)) (-4 *3 (-1058 *4 *5 *6)))) (-4281 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-639 *7)) (|:| |badPols| (-639 *7)))) (-5 *1 (-972 *4 *5 *6 *7)) (-5 *3 (-639 *7)))) (-2882 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-1 (-112) *8))) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-2 (|:| |goodPols| (-639 *8)) (|:| |badPols| (-639 *8)))) (-5 *1 (-972 *5 *6 *7 *8)) (-5 *4 (-639 *8)))) (-2213 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-1 (-112) *8))) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-2 (|:| |goodPols| (-639 *8)) (|:| |badPols| (-639 *8)))) (-5 *1 (-972 *5 *6 *7 *8)) (-5 *4 (-639 *8)))) (-3425 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-2 (|:| |goodPols| (-639 *8)) (|:| |badPols| (-639 *8)))) (-5 *1 (-972 *5 *6 *7 *8)) (-5 *4 (-639 *8)))) (-4086 (*1 *2 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-972 *4 *5 *6 *7)))) (-4124 (*1 *2 *3 *4) (-12 (-5 *4 (-639 (-639 *8))) (-5 *3 (-639 *8)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-112)) (-5 *1 (-972 *5 *6 *7 *8)))) (-3463 (*1 *2 *3 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-972 *4 *5 *6 *7)))) (-3674 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-639 *7) (-639 *7))) (-5 *2 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-972 *4 *5 *6 *7)))) (-3674 (*1 *2 *2 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6)))) (-3674 (*1 *2 *2 *3) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1058 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-972 *4 *5 *6 *3)))) (-2023 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 *3)) (-5 *1 (-972 *4 *5 *6 *3)) (-4 *3 (-1058 *4 *5 *6)))) (-2564 (*1 *2 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6)))) (-3674 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 *3)) (-5 *1 (-972 *4 *5 *6 *3)) (-4 *3 (-1058 *4 *5 *6)))) (-3674 (*1 *2 *2) (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6))))) -(-10 -7 (-15 -3674 ((-639 |#4|) (-639 |#4|))) (-15 -3674 ((-639 |#4|) |#4| |#4|)) (-15 -2564 ((-639 |#4|) (-639 |#4|))) (-15 -2023 ((-639 |#4|) |#4| |#4|)) (-15 -3674 ((-639 |#4|) (-639 |#4|) |#4|)) (-15 -3674 ((-639 |#4|) (-639 |#4|) (-639 |#4|))) (-15 -3674 ((-639 |#4|) (-639 |#4|) (-639 |#4|) (-1 (-639 |#4|) (-639 |#4|)))) (-15 -3463 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -4124 ((-112) (-639 |#4|) (-639 (-639 |#4|)))) (-15 -4086 ((-112) (-639 |#4|))) (-15 -3425 ((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-1 (-112) |#4|) (-639 |#4|))) (-15 -2213 ((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 (-1 (-112) |#4|)) (-639 |#4|))) (-15 -2882 ((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 (-1 (-112) |#4|)) (-639 |#4|))) (-15 -4281 ((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 |#4|))) (-15 -4347 ((-112) |#4|)) (-15 -4331 ((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 |#4|))) (-15 -3647 ((-112) |#4|)) (-15 -3398 ((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 |#4|))) (-15 -2116 ((-112) |#4|)) (-15 -1331 ((-2 (|:| |goodPols| (-639 |#4|)) (|:| |badPols| (-639 |#4|))) (-639 |#4|))) (-15 -3245 ((-639 |#4|) (-639 |#4|) (-639 |#4|))) (-15 -3245 ((-639 |#4|) (-639 |#4|) (-639 |#4|) (-112))) (-15 -3875 (|#4| |#4| (-639 |#4|))) (-15 -2537 ((-639 |#4|) (-639 |#4|))) (-15 -2967 ((-3 (-2 (|:| |bas| (-475 |#1| |#2| |#3| |#4|)) (|:| -2774 (-639 |#4|))) "failed") (-639 |#4|))) (-15 -3261 ((-639 |#4|) (-639 |#4|))) (-15 -1766 ((-639 |#4|) (-639 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4061 ((-639 |#4|) (-639 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-451)) (PROGN (-15 -2096 ((-639 |#4|) |#4|)) (-15 -3244 ((-639 |#4|) (-639 |#4|))) (-15 -3244 ((-639 |#4|) (-639 |#4|) (-112))) (-15 -1356 ((-639 |#4|) (-639 |#4|) (-639 |#4|))) (-15 -1299 ((-639 |#4|) (-639 |#4|) (-639 |#4|))) (-15 -1410 ((-639 |#4|) (-639 |#4|) (-639 |#4|)))) |%noBranch|) (IF (|has| |#1| (-306)) (IF (|has| |#1| (-146)) (PROGN (-15 -3820 ((-639 |#4|) (-639 |#4|))) (-15 -3361 ((-639 |#4|) (-639 |#4|))) (-15 -3274 ((-639 |#4|) (-639 |#4|) (-639 |#4|)))) |%noBranch|) |%noBranch|)) -((-1791 (((-2 (|:| R (-683 |#1|)) (|:| A (-683 |#1|)) (|:| |Ainv| (-683 |#1|))) (-683 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-3144 (((-639 (-2 (|:| C (-683 |#1|)) (|:| |g| (-1256 |#1|)))) (-683 |#1|) (-1256 |#1|)) 35)) (-3388 (((-683 |#1|) (-683 |#1|) (-683 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) -(((-973 |#1|) (-10 -7 (-15 -1791 ((-2 (|:| R (-683 |#1|)) (|:| A (-683 |#1|)) (|:| |Ainv| (-683 |#1|))) (-683 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3388 ((-683 |#1|) (-683 |#1|) (-683 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3144 ((-639 (-2 (|:| C (-683 |#1|)) (|:| |g| (-1256 |#1|)))) (-683 |#1|) (-1256 |#1|)))) (-362)) (T -973)) -((-3144 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-5 *2 (-639 (-2 (|:| C (-683 *5)) (|:| |g| (-1256 *5))))) (-5 *1 (-973 *5)) (-5 *3 (-683 *5)) (-5 *4 (-1256 *5)))) (-3388 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-683 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362)) (-5 *1 (-973 *5)))) (-1791 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-362)) (-5 *2 (-2 (|:| R (-683 *6)) (|:| A (-683 *6)) (|:| |Ainv| (-683 *6)))) (-5 *1 (-973 *6)) (-5 *3 (-683 *6))))) -(-10 -7 (-15 -1791 ((-2 (|:| R (-683 |#1|)) (|:| A (-683 |#1|)) (|:| |Ainv| (-683 |#1|))) (-683 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3388 ((-683 |#1|) (-683 |#1|) (-683 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3144 ((-639 (-2 (|:| C (-683 |#1|)) (|:| |g| (-1256 |#1|)))) (-683 |#1|) (-1256 |#1|)))) -((-3788 (((-417 |#4|) |#4|) 48))) -(((-974 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3788 ((-417 |#4|) |#4|))) (-845) (-788) (-451) (-944 |#3| |#2| |#1|)) (T -974)) -((-3788 (*1 *2 *3) (-12 (-4 *4 (-845)) (-4 *5 (-788)) (-4 *6 (-451)) (-5 *2 (-417 *3)) (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-944 *6 *5 *4))))) -(-10 -7 (-15 -3788 ((-417 |#4|) |#4|))) -((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-2910 (($ (-766)) 112 (|has| |#1| (-23)))) (-3655 (((-1261) $ (-562) (-562)) 40 (|has| $ (-6 -4404)))) (-1706 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-845)))) (-3737 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4404))) (($ $) 88 (-12 (|has| |#1| (-845)) (|has| $ (-6 -4404))))) (-1395 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-845)))) (-3735 (((-112) $ (-766)) 8)) (-4200 ((|#1| $ (-562) |#1|) 52 (|has| $ (-6 -4404))) ((|#1| $ (-1223 (-562)) |#1|) 58 (|has| $ (-6 -4404)))) (-3556 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4403)))) (-3329 (($) 7 T CONST)) (-2673 (($ $) 90 (|has| $ (-6 -4404)))) (-2676 (($ $) 100)) (-1459 (($ $) 78 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1475 (($ |#1| $) 77 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4403)))) (-1954 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4403)))) (-1507 ((|#1| $ (-562) |#1|) 53 (|has| $ (-6 -4404)))) (-1420 ((|#1| $ (-562)) 51)) (-4265 (((-562) (-1 (-112) |#1|) $) 97) (((-562) |#1| $) 96 (|has| |#1| (-1092))) (((-562) |#1| $ (-562)) 95 (|has| |#1| (-1092)))) (-1460 (($ (-639 |#1|)) 118)) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4403)))) (-2840 (((-683 |#1|) $ $) 105 (|has| |#1| (-1044)))) (-1458 (($ (-766) |#1|) 69)) (-4172 (((-112) $ (-766)) 9)) (-1849 (((-562) $) 43 (|has| (-562) (-845)))) (-1551 (($ $ $) 87 (|has| |#1| (-845)))) (-4103 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-845)))) (-2123 (((-639 |#1|) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1929 (((-562) $) 44 (|has| (-562) (-845)))) (-2993 (($ $ $) 86 (|has| |#1| (-845)))) (-1491 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3872 ((|#1| $) 102 (-12 (|has| |#1| (-1044)) (|has| |#1| (-997))))) (-4147 (((-112) $ (-766)) 10)) (-3641 ((|#1| $) 103 (-12 (|has| |#1| (-1044)) (|has| |#1| (-997))))) (-3696 (((-1150) $) 22 (|has| |#1| (-1092)))) (-3295 (($ |#1| $ (-562)) 60) (($ $ $ (-562)) 59)) (-3336 (((-639 (-562)) $) 46)) (-1987 (((-112) (-562) $) 47)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-1421 ((|#1| $) 42 (|has| (-562) (-845)))) (-1963 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3510 (($ $ |#1|) 41 (|has| $ (-6 -4404)))) (-4316 (($ $ (-639 |#1|)) 116)) (-3008 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) 14)) (-2716 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2366 (((-639 |#1|) $) 48)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-2343 ((|#1| $ (-562) |#1|) 50) ((|#1| $ (-562)) 49) (($ $ (-1223 (-562))) 63)) (-2852 ((|#1| $ $) 106 (|has| |#1| (-1044)))) (-4340 (((-916) $) 117)) (-2880 (($ $ (-562)) 62) (($ $ (-1223 (-562))) 61)) (-3247 (($ $ $) 104)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4403))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-2694 (($ $ $ (-562)) 91 (|has| $ (-6 -4404)))) (-4220 (($ $) 13)) (-4208 (((-535) $) 79 (|has| |#1| (-610 (-535)))) (($ (-639 |#1|)) 119)) (-4064 (($ (-639 |#1|)) 70)) (-2767 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-639 $)) 65)) (-4053 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-2879 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4403)))) (-1798 (((-112) $ $) 84 (|has| |#1| (-845)))) (-1771 (((-112) $ $) 83 (|has| |#1| (-845)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-1785 (((-112) $ $) 85 (|has| |#1| (-845)))) (-1761 (((-112) $ $) 82 (|has| |#1| (-845)))) (-1847 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1836 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-562) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-721))) (($ $ |#1|) 107 (|has| |#1| (-721)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-975 |#1|) (-139) (-1044)) (T -975)) -((-1460 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1044)) (-4 *1 (-975 *3)))) (-4340 (*1 *2 *1) (-12 (-4 *1 (-975 *3)) (-4 *3 (-1044)) (-5 *2 (-916)))) (-3247 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2)) (-4 *2 (-1044)))) (-4316 (*1 *1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *1 (-975 *3)) (-4 *3 (-1044))))) -(-13 (-1254 |t#1|) (-614 (-639 |t#1|)) (-10 -8 (-15 -1460 ($ (-639 |t#1|))) (-15 -4340 ((-916) $)) (-15 -3247 ($ $ $)) (-15 -4316 ($ $ (-639 |t#1|))))) -(((-34) . T) ((-102) -4037 (|has| |#1| (-1092)) (|has| |#1| (-845))) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-845)) (|has| |#1| (-609 (-857)))) ((-150 |#1|) . T) ((-614 (-639 |#1|)) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-285 #0=(-562) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-372 |#1|) . T) ((-488 |#1|) . T) ((-600 #0# |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-645 |#1|) . T) ((-19 |#1|) . T) ((-845) |has| |#1| (-845)) ((-1092) -4037 (|has| |#1| (-1092)) (|has| |#1| (-845))) ((-1207) . T) ((-1254 |#1|) . T)) -((-4152 (((-938 |#2|) (-1 |#2| |#1|) (-938 |#1|)) 17))) -(((-976 |#1| |#2|) (-10 -7 (-15 -4152 ((-938 |#2|) (-1 |#2| |#1|) (-938 |#1|)))) (-1044) (-1044)) (T -976)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-938 *5)) (-4 *5 (-1044)) (-4 *6 (-1044)) (-5 *2 (-938 *6)) (-5 *1 (-976 *5 *6))))) -(-10 -7 (-15 -4152 ((-938 |#2|) (-1 |#2| |#1|) (-938 |#1|)))) -((-2145 ((|#1| (-938 |#1|)) 13)) (-4107 ((|#1| (-938 |#1|)) 12)) (-3970 ((|#1| (-938 |#1|)) 11)) (-1439 ((|#1| (-938 |#1|)) 15)) (-1614 ((|#1| (-938 |#1|)) 21)) (-1456 ((|#1| (-938 |#1|)) 14)) (-3346 ((|#1| (-938 |#1|)) 16)) (-4031 ((|#1| (-938 |#1|)) 20)) (-2581 ((|#1| (-938 |#1|)) 19))) -(((-977 |#1|) (-10 -7 (-15 -3970 (|#1| (-938 |#1|))) (-15 -4107 (|#1| (-938 |#1|))) (-15 -2145 (|#1| (-938 |#1|))) (-15 -1456 (|#1| (-938 |#1|))) (-15 -1439 (|#1| (-938 |#1|))) (-15 -3346 (|#1| (-938 |#1|))) (-15 -2581 (|#1| (-938 |#1|))) (-15 -4031 (|#1| (-938 |#1|))) (-15 -1614 (|#1| (-938 |#1|)))) (-1044)) (T -977)) -((-1614 (*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044)))) (-4031 (*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044)))) (-2581 (*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044)))) (-3346 (*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044)))) (-1439 (*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044)))) (-1456 (*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044)))) (-2145 (*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044)))) (-4107 (*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044)))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044))))) -(-10 -7 (-15 -3970 (|#1| (-938 |#1|))) (-15 -4107 (|#1| (-938 |#1|))) (-15 -2145 (|#1| (-938 |#1|))) (-15 -1456 (|#1| (-938 |#1|))) (-15 -1439 (|#1| (-938 |#1|))) (-15 -3346 (|#1| (-938 |#1|))) (-15 -2581 (|#1| (-938 |#1|))) (-15 -4031 (|#1| (-938 |#1|))) (-15 -1614 (|#1| (-938 |#1|)))) -((-2647 (((-3 |#1| "failed") |#1|) 18)) (-1969 (((-3 |#1| "failed") |#1|) 6)) (-3911 (((-3 |#1| "failed") |#1|) 16)) (-3275 (((-3 |#1| "failed") |#1|) 4)) (-1710 (((-3 |#1| "failed") |#1|) 20)) (-3290 (((-3 |#1| "failed") |#1|) 8)) (-1464 (((-3 |#1| "failed") |#1| (-766)) 1)) (-2501 (((-3 |#1| "failed") |#1|) 3)) (-3774 (((-3 |#1| "failed") |#1|) 2)) (-3986 (((-3 |#1| "failed") |#1|) 21)) (-3882 (((-3 |#1| "failed") |#1|) 9)) (-2904 (((-3 |#1| "failed") |#1|) 19)) (-1738 (((-3 |#1| "failed") |#1|) 7)) (-3021 (((-3 |#1| "failed") |#1|) 17)) (-3797 (((-3 |#1| "failed") |#1|) 5)) (-3963 (((-3 |#1| "failed") |#1|) 24)) (-1308 (((-3 |#1| "failed") |#1|) 12)) (-3625 (((-3 |#1| "failed") |#1|) 22)) (-2099 (((-3 |#1| "failed") |#1|) 10)) (-2073 (((-3 |#1| "failed") |#1|) 26)) (-3908 (((-3 |#1| "failed") |#1|) 14)) (-3286 (((-3 |#1| "failed") |#1|) 27)) (-3682 (((-3 |#1| "failed") |#1|) 15)) (-2984 (((-3 |#1| "failed") |#1|) 25)) (-2585 (((-3 |#1| "failed") |#1|) 13)) (-3117 (((-3 |#1| "failed") |#1|) 23)) (-2397 (((-3 |#1| "failed") |#1|) 11))) -(((-978 |#1|) (-139) (-1192)) (T -978)) -((-3286 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-2073 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-2984 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-3963 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-3117 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-3625 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-3986 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-1710 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-2904 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-2647 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-3021 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-3911 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-3682 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-3908 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-2585 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-1308 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-2397 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-2099 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-3882 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-3290 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-1738 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-1969 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-3797 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-3275 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-2501 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-3774 (*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192)))) (-1464 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-766)) (-4 *1 (-978 *2)) (-4 *2 (-1192))))) -(-13 (-10 -7 (-15 -1464 ((-3 |t#1| "failed") |t#1| (-766))) (-15 -3774 ((-3 |t#1| "failed") |t#1|)) (-15 -2501 ((-3 |t#1| "failed") |t#1|)) (-15 -3275 ((-3 |t#1| "failed") |t#1|)) (-15 -3797 ((-3 |t#1| "failed") |t#1|)) (-15 -1969 ((-3 |t#1| "failed") |t#1|)) (-15 -1738 ((-3 |t#1| "failed") |t#1|)) (-15 -3290 ((-3 |t#1| "failed") |t#1|)) (-15 -3882 ((-3 |t#1| "failed") |t#1|)) (-15 -2099 ((-3 |t#1| "failed") |t#1|)) (-15 -2397 ((-3 |t#1| "failed") |t#1|)) (-15 -1308 ((-3 |t#1| "failed") |t#1|)) (-15 -2585 ((-3 |t#1| "failed") |t#1|)) (-15 -3908 ((-3 |t#1| "failed") |t#1|)) (-15 -3682 ((-3 |t#1| "failed") |t#1|)) (-15 -3911 ((-3 |t#1| "failed") |t#1|)) (-15 -3021 ((-3 |t#1| "failed") |t#1|)) (-15 -2647 ((-3 |t#1| "failed") |t#1|)) (-15 -2904 ((-3 |t#1| "failed") |t#1|)) (-15 -1710 ((-3 |t#1| "failed") |t#1|)) (-15 -3986 ((-3 |t#1| "failed") |t#1|)) (-15 -3625 ((-3 |t#1| "failed") |t#1|)) (-15 -3117 ((-3 |t#1| "failed") |t#1|)) (-15 -3963 ((-3 |t#1| "failed") |t#1|)) (-15 -2984 ((-3 |t#1| "failed") |t#1|)) (-15 -2073 ((-3 |t#1| "failed") |t#1|)) (-15 -3286 ((-3 |t#1| "failed") |t#1|)))) -((-2135 ((|#4| |#4| (-639 |#3|)) 55) ((|#4| |#4| |#3|) 54)) (-3444 ((|#4| |#4| (-639 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-4152 ((|#4| (-1 |#4| (-947 |#1|)) |#4|) 30))) -(((-979 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3444 (|#4| |#4| |#3|)) (-15 -3444 (|#4| |#4| (-639 |#3|))) (-15 -2135 (|#4| |#4| |#3|)) (-15 -2135 (|#4| |#4| (-639 |#3|))) (-15 -4152 (|#4| (-1 |#4| (-947 |#1|)) |#4|))) (-1044) (-788) (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $)) (-15 -2443 ((-3 $ "failed") (-1168))))) (-944 (-947 |#1|) |#2| |#3|)) (T -979)) -((-4152 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-947 *4))) (-4 *4 (-1044)) (-4 *2 (-944 (-947 *4) *5 *6)) (-4 *5 (-788)) (-4 *6 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $)) (-15 -2443 ((-3 $ "failed") (-1168)))))) (-5 *1 (-979 *4 *5 *6 *2)))) (-2135 (*1 *2 *2 *3) (-12 (-5 *3 (-639 *6)) (-4 *6 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $)) (-15 -2443 ((-3 $ "failed") (-1168)))))) (-4 *4 (-1044)) (-4 *5 (-788)) (-5 *1 (-979 *4 *5 *6 *2)) (-4 *2 (-944 (-947 *4) *5 *6)))) (-2135 (*1 *2 *2 *3) (-12 (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *3 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $)) (-15 -2443 ((-3 $ "failed") (-1168)))))) (-5 *1 (-979 *4 *5 *3 *2)) (-4 *2 (-944 (-947 *4) *5 *3)))) (-3444 (*1 *2 *2 *3) (-12 (-5 *3 (-639 *6)) (-4 *6 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $)) (-15 -2443 ((-3 $ "failed") (-1168)))))) (-4 *4 (-1044)) (-4 *5 (-788)) (-5 *1 (-979 *4 *5 *6 *2)) (-4 *2 (-944 (-947 *4) *5 *6)))) (-3444 (*1 *2 *2 *3) (-12 (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *3 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $)) (-15 -2443 ((-3 $ "failed") (-1168)))))) (-5 *1 (-979 *4 *5 *3 *2)) (-4 *2 (-944 (-947 *4) *5 *3))))) -(-10 -7 (-15 -3444 (|#4| |#4| |#3|)) (-15 -3444 (|#4| |#4| (-639 |#3|))) (-15 -2135 (|#4| |#4| |#3|)) (-15 -2135 (|#4| |#4| (-639 |#3|))) (-15 -4152 (|#4| (-1 |#4| (-947 |#1|)) |#4|))) -((-3540 ((|#2| |#3|) 35)) (-2606 (((-2 (|:| -4291 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|))) |#2|) 73)) (-2639 (((-2 (|:| -4291 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|)))) 89))) -(((-980 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2639 ((-2 (|:| -4291 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|))))) (-15 -2606 ((-2 (|:| -4291 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|))) |#2|)) (-15 -3540 (|#2| |#3|))) (-348) (-1232 |#1|) (-1232 |#2|) (-719 |#2| |#3|)) (T -980)) -((-3540 (*1 *2 *3) (-12 (-4 *3 (-1232 *2)) (-4 *2 (-1232 *4)) (-5 *1 (-980 *4 *2 *3 *5)) (-4 *4 (-348)) (-4 *5 (-719 *2 *3)))) (-2606 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *3 (-1232 *4)) (-4 *5 (-1232 *3)) (-5 *2 (-2 (|:| -4291 (-683 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-683 *3)))) (-5 *1 (-980 *4 *3 *5 *6)) (-4 *6 (-719 *3 *5)))) (-2639 (*1 *2) (-12 (-4 *3 (-348)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 *4)) (-5 *2 (-2 (|:| -4291 (-683 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-683 *4)))) (-5 *1 (-980 *3 *4 *5 *6)) (-4 *6 (-719 *4 *5))))) -(-10 -7 (-15 -2639 ((-2 (|:| -4291 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|))))) (-15 -2606 ((-2 (|:| -4291 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|))) |#2|)) (-15 -3540 (|#2| |#3|))) -((-2540 (((-982 (-406 (-562)) (-859 |#1|) (-239 |#2| (-766)) (-246 |#1| (-406 (-562)))) (-982 (-406 (-562)) (-859 |#1|) (-239 |#2| (-766)) (-246 |#1| (-406 (-562))))) 68))) -(((-981 |#1| |#2|) (-10 -7 (-15 -2540 ((-982 (-406 (-562)) (-859 |#1|) (-239 |#2| (-766)) (-246 |#1| (-406 (-562)))) (-982 (-406 (-562)) (-859 |#1|) (-239 |#2| (-766)) (-246 |#1| (-406 (-562))))))) (-639 (-1168)) (-766)) (T -981)) -((-2540 (*1 *2 *2) (-12 (-5 *2 (-982 (-406 (-562)) (-859 *3) (-239 *4 (-766)) (-246 *3 (-406 (-562))))) (-14 *3 (-639 (-1168))) (-14 *4 (-766)) (-5 *1 (-981 *3 *4))))) -(-10 -7 (-15 -2540 ((-982 (-406 (-562)) (-859 |#1|) (-239 |#2| (-766)) (-246 |#1| (-406 (-562)))) (-982 (-406 (-562)) (-859 |#1|) (-239 |#2| (-766)) (-246 |#1| (-406 (-562))))))) -((-4041 (((-112) $ $) NIL)) (-3981 (((-3 (-112) "failed") $) 69)) (-3537 (($ $) 36 (-12 (|has| |#1| (-146)) (|has| |#1| (-306))))) (-2856 (($ $ (-3 (-112) "failed")) 70)) (-1850 (($ (-639 |#4|) |#4|) 25)) (-3696 (((-1150) $) NIL)) (-1640 (($ $) 67)) (-1709 (((-1112) $) NIL)) (-3087 (((-112) $) 68)) (-1663 (($) 30)) (-2731 ((|#4| $) 72)) (-3481 (((-639 |#4|) $) 71)) (-4053 (((-857) $) 66)) (-1733 (((-112) $ $) NIL))) -(((-982 |#1| |#2| |#3| |#4|) (-13 (-1092) (-609 (-857)) (-10 -8 (-15 -1663 ($)) (-15 -1850 ($ (-639 |#4|) |#4|)) (-15 -3981 ((-3 (-112) "failed") $)) (-15 -2856 ($ $ (-3 (-112) "failed"))) (-15 -3087 ((-112) $)) (-15 -3481 ((-639 |#4|) $)) (-15 -2731 (|#4| $)) (-15 -1640 ($ $)) (IF (|has| |#1| (-306)) (IF (|has| |#1| (-146)) (-15 -3537 ($ $)) |%noBranch|) |%noBranch|))) (-451) (-845) (-788) (-944 |#1| |#3| |#2|)) (T -982)) -((-1663 (*1 *1) (-12 (-4 *2 (-451)) (-4 *3 (-845)) (-4 *4 (-788)) (-5 *1 (-982 *2 *3 *4 *5)) (-4 *5 (-944 *2 *4 *3)))) (-1850 (*1 *1 *2 *3) (-12 (-5 *2 (-639 *3)) (-4 *3 (-944 *4 *6 *5)) (-4 *4 (-451)) (-4 *5 (-845)) (-4 *6 (-788)) (-5 *1 (-982 *4 *5 *6 *3)))) (-3981 (*1 *2 *1) (|partial| -12 (-4 *3 (-451)) (-4 *4 (-845)) (-4 *5 (-788)) (-5 *2 (-112)) (-5 *1 (-982 *3 *4 *5 *6)) (-4 *6 (-944 *3 *5 *4)))) (-2856 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-451)) (-4 *4 (-845)) (-4 *5 (-788)) (-5 *1 (-982 *3 *4 *5 *6)) (-4 *6 (-944 *3 *5 *4)))) (-3087 (*1 *2 *1) (-12 (-4 *3 (-451)) (-4 *4 (-845)) (-4 *5 (-788)) (-5 *2 (-112)) (-5 *1 (-982 *3 *4 *5 *6)) (-4 *6 (-944 *3 *5 *4)))) (-3481 (*1 *2 *1) (-12 (-4 *3 (-451)) (-4 *4 (-845)) (-4 *5 (-788)) (-5 *2 (-639 *6)) (-5 *1 (-982 *3 *4 *5 *6)) (-4 *6 (-944 *3 *5 *4)))) (-2731 (*1 *2 *1) (-12 (-4 *2 (-944 *3 *5 *4)) (-5 *1 (-982 *3 *4 *5 *2)) (-4 *3 (-451)) (-4 *4 (-845)) (-4 *5 (-788)))) (-1640 (*1 *1 *1) (-12 (-4 *2 (-451)) (-4 *3 (-845)) (-4 *4 (-788)) (-5 *1 (-982 *2 *3 *4 *5)) (-4 *5 (-944 *2 *4 *3)))) (-3537 (*1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-306)) (-4 *2 (-451)) (-4 *3 (-845)) (-4 *4 (-788)) (-5 *1 (-982 *2 *3 *4 *5)) (-4 *5 (-944 *2 *4 *3))))) -(-13 (-1092) (-609 (-857)) (-10 -8 (-15 -1663 ($)) (-15 -1850 ($ (-639 |#4|) |#4|)) (-15 -3981 ((-3 (-112) "failed") $)) (-15 -2856 ($ $ (-3 (-112) "failed"))) (-15 -3087 ((-112) $)) (-15 -3481 ((-639 |#4|) $)) (-15 -2731 (|#4| $)) (-15 -1640 ($ $)) (IF (|has| |#1| (-306)) (IF (|has| |#1| (-146)) (-15 -3537 ($ $)) |%noBranch|) |%noBranch|))) -((-3590 (((-112) |#5| |#5|) 37)) (-1914 (((-112) |#5| |#5|) 51)) (-4346 (((-112) |#5| (-639 |#5|)) 73) (((-112) |#5| |#5|) 60)) (-4077 (((-112) (-639 |#4|) (-639 |#4|)) 57)) (-2097 (((-112) (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|)) (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) 62)) (-4089 (((-1261)) 33)) (-1983 (((-1261) (-1150) (-1150) (-1150)) 29)) (-4257 (((-639 |#5|) (-639 |#5|)) 80)) (-1550 (((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|)))) 78)) (-3579 (((-639 (-2 (|:| -3339 (-639 |#4|)) (|:| -1501 |#5|) (|:| |ineq| (-639 |#4|)))) (-639 |#4|) (-639 |#5|) (-112) (-112)) 100)) (-2027 (((-112) |#5| |#5|) 46)) (-2916 (((-3 (-112) "failed") |#5| |#5|) 70)) (-2838 (((-112) (-639 |#4|) (-639 |#4|)) 56)) (-3338 (((-112) (-639 |#4|) (-639 |#4|)) 58)) (-1789 (((-112) (-639 |#4|) (-639 |#4|)) 59)) (-1902 (((-3 (-2 (|:| -3339 (-639 |#4|)) (|:| -1501 |#5|) (|:| |ineq| (-639 |#4|))) "failed") (-639 |#4|) |#5| (-639 |#4|) (-112) (-112) (-112) (-112) (-112)) 96)) (-1586 (((-639 |#5|) (-639 |#5|)) 42))) -(((-983 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1983 ((-1261) (-1150) (-1150) (-1150))) (-15 -4089 ((-1261))) (-15 -3590 ((-112) |#5| |#5|)) (-15 -1586 ((-639 |#5|) (-639 |#5|))) (-15 -2027 ((-112) |#5| |#5|)) (-15 -1914 ((-112) |#5| |#5|)) (-15 -4077 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -2838 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -3338 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -1789 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -2916 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4346 ((-112) |#5| |#5|)) (-15 -4346 ((-112) |#5| (-639 |#5|))) (-15 -4257 ((-639 |#5|) (-639 |#5|))) (-15 -2097 ((-112) (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|)) (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|)))) (-15 -1550 ((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) (-15 -3579 ((-639 (-2 (|:| -3339 (-639 |#4|)) (|:| -1501 |#5|) (|:| |ineq| (-639 |#4|)))) (-639 |#4|) (-639 |#5|) (-112) (-112))) (-15 -1902 ((-3 (-2 (|:| -3339 (-639 |#4|)) (|:| -1501 |#5|) (|:| |ineq| (-639 |#4|))) "failed") (-639 |#4|) |#5| (-639 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-451) (-788) (-845) (-1058 |#1| |#2| |#3|) (-1064 |#1| |#2| |#3| |#4|)) (T -983)) -((-1902 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) (-4 *9 (-1058 *6 *7 *8)) (-5 *2 (-2 (|:| -3339 (-639 *9)) (|:| -1501 *4) (|:| |ineq| (-639 *9)))) (-5 *1 (-983 *6 *7 *8 *9 *4)) (-5 *3 (-639 *9)) (-4 *4 (-1064 *6 *7 *8 *9)))) (-3579 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-639 *10)) (-5 *5 (-112)) (-4 *10 (-1064 *6 *7 *8 *9)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) (-4 *9 (-1058 *6 *7 *8)) (-5 *2 (-639 (-2 (|:| -3339 (-639 *9)) (|:| -1501 *10) (|:| |ineq| (-639 *9))))) (-5 *1 (-983 *6 *7 *8 *9 *10)) (-5 *3 (-639 *9)))) (-1550 (*1 *2 *2) (-12 (-5 *2 (-639 (-2 (|:| |val| (-639 *6)) (|:| -1501 *7)))) (-4 *6 (-1058 *3 *4 *5)) (-4 *7 (-1064 *3 *4 *5 *6)) (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-983 *3 *4 *5 *6 *7)))) (-2097 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-639 *7)) (|:| -1501 *8))) (-4 *7 (-1058 *4 *5 *6)) (-4 *8 (-1064 *4 *5 *6 *7)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *7 *8)))) (-4257 (*1 *2 *2) (-12 (-5 *2 (-639 *7)) (-4 *7 (-1064 *3 *4 *5 *6)) (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *1 (-983 *3 *4 *5 *6 *7)))) (-4346 (*1 *2 *3 *4) (-12 (-5 *4 (-639 *3)) (-4 *3 (-1064 *5 *6 *7 *8)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *8 (-1058 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-983 *5 *6 *7 *8 *3)))) (-4346 (*1 *2 *3 *3) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7)))) (-2916 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7)))) (-1789 (*1 *2 *3 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) (-3338 (*1 *2 *3 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) (-2838 (*1 *2 *3 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) (-4077 (*1 *2 *3 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) (-1914 (*1 *2 *3 *3) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7)))) (-2027 (*1 *2 *3 *3) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7)))) (-1586 (*1 *2 *2) (-12 (-5 *2 (-639 *7)) (-4 *7 (-1064 *3 *4 *5 *6)) (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *1 (-983 *3 *4 *5 *6 *7)))) (-3590 (*1 *2 *3 *3) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7)))) (-4089 (*1 *2) (-12 (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-1261)) (-5 *1 (-983 *3 *4 *5 *6 *7)) (-4 *7 (-1064 *3 *4 *5 *6)))) (-1983 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1150)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-1261)) (-5 *1 (-983 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7))))) -(-10 -7 (-15 -1983 ((-1261) (-1150) (-1150) (-1150))) (-15 -4089 ((-1261))) (-15 -3590 ((-112) |#5| |#5|)) (-15 -1586 ((-639 |#5|) (-639 |#5|))) (-15 -2027 ((-112) |#5| |#5|)) (-15 -1914 ((-112) |#5| |#5|)) (-15 -4077 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -2838 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -3338 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -1789 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -2916 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4346 ((-112) |#5| |#5|)) (-15 -4346 ((-112) |#5| (-639 |#5|))) (-15 -4257 ((-639 |#5|) (-639 |#5|))) (-15 -2097 ((-112) (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|)) (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|)))) (-15 -1550 ((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) (-15 -3579 ((-639 (-2 (|:| -3339 (-639 |#4|)) (|:| -1501 |#5|) (|:| |ineq| (-639 |#4|)))) (-639 |#4|) (-639 |#5|) (-112) (-112))) (-15 -1902 ((-3 (-2 (|:| -3339 (-639 |#4|)) (|:| -1501 |#5|) (|:| |ineq| (-639 |#4|))) "failed") (-639 |#4|) |#5| (-639 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-2443 (((-1168) $) 15)) (-2533 (((-1150) $) 16)) (-3680 (($ (-1168) (-1150)) 14)) (-4053 (((-857) $) 13))) -(((-984) (-13 (-609 (-857)) (-10 -8 (-15 -3680 ($ (-1168) (-1150))) (-15 -2443 ((-1168) $)) (-15 -2533 ((-1150) $))))) (T -984)) -((-3680 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1150)) (-5 *1 (-984)))) (-2443 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-984)))) (-2533 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-984))))) -(-13 (-609 (-857)) (-10 -8 (-15 -3680 ($ (-1168) (-1150))) (-15 -2443 ((-1168) $)) (-15 -2533 ((-1150) $)))) -((-4152 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-985 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4152 (|#4| (-1 |#2| |#1|) |#3|))) (-554) (-554) (-987 |#1|) (-987 |#2|)) (T -985)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-554)) (-4 *6 (-554)) (-4 *2 (-987 *6)) (-5 *1 (-985 *5 *6 *4 *2)) (-4 *4 (-987 *5))))) -(-10 -7 (-15 -4152 (|#4| (-1 |#2| |#1|) |#3|))) -((-4048 (((-3 |#2| "failed") $) NIL) (((-3 (-1168) "failed") $) 65) (((-3 (-406 (-562)) "failed") $) NIL) (((-3 (-562) "failed") $) 95)) (-3960 ((|#2| $) NIL) (((-1168) $) 60) (((-406 (-562)) $) NIL) (((-562) $) 92)) (-3449 (((-683 (-562)) (-683 $)) NIL) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL) (((-2 (|:| -1767 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) 112) (((-683 |#2|) (-683 $)) 28)) (-1447 (($) 98)) (-2337 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) 75) (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 84)) (-2957 (($ $) 10)) (-3828 (((-3 $ "failed") $) 20)) (-4152 (($ (-1 |#2| |#2|) $) 22)) (-3730 (($) 16)) (-2561 (($ $) 54)) (-4029 (($ $) NIL) (($ $ (-766)) NIL) (($ $ (-1168)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL) (($ $ (-1 |#2| |#2|) (-766)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-1580 (($ $) 12)) (-4208 (((-887 (-562)) $) 70) (((-887 (-378)) $) 79) (((-535) $) 40) (((-378) $) 44) (((-224) $) 47)) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) 90) (($ |#2|) NIL) (($ (-1168)) 57)) (-1568 (((-766)) 31)) (-1761 (((-112) $ $) 50))) -(((-986 |#1| |#2|) (-10 -8 (-15 -1761 ((-112) |#1| |#1|)) (-15 -3730 (|#1|)) (-15 -3828 ((-3 |#1| "failed") |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -3960 ((-562) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3960 ((-406 (-562)) |#1|)) (-15 -4208 ((-224) |#1|)) (-15 -4208 ((-378) |#1|)) (-15 -4208 ((-535) |#1|)) (-15 -4053 (|#1| (-1168))) (-15 -4048 ((-3 (-1168) "failed") |#1|)) (-15 -3960 ((-1168) |#1|)) (-15 -1447 (|#1|)) (-15 -2561 (|#1| |#1|)) (-15 -1580 (|#1| |#1|)) (-15 -2957 (|#1| |#1|)) (-15 -2337 ((-884 (-378) |#1|) |#1| (-887 (-378)) (-884 (-378) |#1|))) (-15 -2337 ((-884 (-562) |#1|) |#1| (-887 (-562)) (-884 (-562) |#1|))) (-15 -4208 ((-887 (-378)) |#1|)) (-15 -4208 ((-887 (-562)) |#1|)) (-15 -3449 ((-683 |#2|) (-683 |#1|))) (-15 -3449 ((-2 (|:| -1767 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 |#1|) (-1256 |#1|))) (-15 -3449 ((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 |#1|) (-1256 |#1|))) (-15 -3449 ((-683 (-562)) (-683 |#1|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1|)) (-15 -4152 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -3960 (|#2| |#1|)) (-15 -4053 (|#1| |#2|)) (-15 -4053 (|#1| (-406 (-562)))) (-15 -4053 (|#1| |#1|)) (-15 -1568 ((-766))) (-15 -4053 (|#1| (-562))) (-15 -4053 ((-857) |#1|))) (-987 |#2|) (-554)) (T -986)) -((-1568 (*1 *2) (-12 (-4 *4 (-554)) (-5 *2 (-766)) (-5 *1 (-986 *3 *4)) (-4 *3 (-987 *4))))) -(-10 -8 (-15 -1761 ((-112) |#1| |#1|)) (-15 -3730 (|#1|)) (-15 -3828 ((-3 |#1| "failed") |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -3960 ((-562) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3960 ((-406 (-562)) |#1|)) (-15 -4208 ((-224) |#1|)) (-15 -4208 ((-378) |#1|)) (-15 -4208 ((-535) |#1|)) (-15 -4053 (|#1| (-1168))) (-15 -4048 ((-3 (-1168) "failed") |#1|)) (-15 -3960 ((-1168) |#1|)) (-15 -1447 (|#1|)) (-15 -2561 (|#1| |#1|)) (-15 -1580 (|#1| |#1|)) (-15 -2957 (|#1| |#1|)) (-15 -2337 ((-884 (-378) |#1|) |#1| (-887 (-378)) (-884 (-378) |#1|))) (-15 -2337 ((-884 (-562) |#1|) |#1| (-887 (-562)) (-884 (-562) |#1|))) (-15 -4208 ((-887 (-378)) |#1|)) (-15 -4208 ((-887 (-562)) |#1|)) (-15 -3449 ((-683 |#2|) (-683 |#1|))) (-15 -3449 ((-2 (|:| -1767 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 |#1|) (-1256 |#1|))) (-15 -3449 ((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 |#1|) (-1256 |#1|))) (-15 -3449 ((-683 (-562)) (-683 |#1|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1|)) (-15 -4152 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -3960 (|#2| |#1|)) (-15 -4053 (|#1| |#2|)) (-15 -4053 (|#1| (-406 (-562)))) (-15 -4053 (|#1| |#1|)) (-15 -1568 ((-766))) (-15 -4053 (|#1| (-562))) (-15 -4053 ((-857) |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2300 ((|#1| $) 138 (|has| |#1| (-306)))) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 42)) (-1965 (($ $) 41)) (-4102 (((-112) $) 39)) (-2781 (((-3 $ "failed") $ $) 19)) (-3517 (((-417 (-1164 $)) (-1164 $)) 129 (|has| |#1| (-904)))) (-1977 (($ $) 74)) (-3788 (((-417 $) $) 73)) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) 132 (|has| |#1| (-904)))) (-1436 (((-112) $ $) 60)) (-1587 (((-562) $) 119 (|has| |#1| (-815)))) (-3329 (($) 17 T CONST)) (-4048 (((-3 |#1| "failed") $) 176) (((-3 (-1168) "failed") $) 127 (|has| |#1| (-1033 (-1168)))) (((-3 (-406 (-562)) "failed") $) 110 (|has| |#1| (-1033 (-562)))) (((-3 (-562) "failed") $) 108 (|has| |#1| (-1033 (-562))))) (-3960 ((|#1| $) 177) (((-1168) $) 128 (|has| |#1| (-1033 (-1168)))) (((-406 (-562)) $) 111 (|has| |#1| (-1033 (-562)))) (((-562) $) 109 (|has| |#1| (-1033 (-562))))) (-1810 (($ $ $) 56)) (-3449 (((-683 (-562)) (-683 $)) 151 (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 150 (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) 149) (((-683 |#1|) (-683 $)) 148)) (-1694 (((-3 $ "failed") $) 33)) (-1447 (($) 136 (|has| |#1| (-544)))) (-1787 (($ $ $) 57)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) 52)) (-3521 (((-112) $) 72)) (-2696 (((-112) $) 121 (|has| |#1| (-815)))) (-2337 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) 145 (|has| |#1| (-881 (-562)))) (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 144 (|has| |#1| (-881 (-378))))) (-4367 (((-112) $) 31)) (-2957 (($ $) 140)) (-4063 ((|#1| $) 142)) (-3828 (((-3 $ "failed") $) 107 (|has| |#1| (-1143)))) (-3855 (((-112) $) 120 (|has| |#1| (-815)))) (-1719 (((-3 (-639 $) "failed") (-639 $) $) 53)) (-1551 (($ $ $) 117 (|has| |#1| (-845)))) (-2993 (($ $ $) 116 (|has| |#1| (-845)))) (-4152 (($ (-1 |#1| |#1|) $) 168)) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-3696 (((-1150) $) 9)) (-1525 (($ $) 71)) (-3730 (($) 106 (|has| |#1| (-1143)) CONST)) (-1709 (((-1112) $) 10)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-2561 (($ $) 137 (|has| |#1| (-306)))) (-3870 ((|#1| $) 134 (|has| |#1| (-544)))) (-3586 (((-417 (-1164 $)) (-1164 $)) 131 (|has| |#1| (-904)))) (-3468 (((-417 (-1164 $)) (-1164 $)) 130 (|has| |#1| (-904)))) (-1635 (((-417 $) $) 75)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1762 (((-3 $ "failed") $ $) 43)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) 51)) (-1433 (($ $ (-639 |#1|) (-639 |#1|)) 174 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 173 (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) 172 (|has| |#1| (-308 |#1|))) (($ $ (-639 (-293 |#1|))) 171 (|has| |#1| (-308 |#1|))) (($ $ (-639 (-1168)) (-639 |#1|)) 170 (|has| |#1| (-513 (-1168) |#1|))) (($ $ (-1168) |#1|) 169 (|has| |#1| (-513 (-1168) |#1|)))) (-2044 (((-766) $) 59)) (-2343 (($ $ |#1|) 175 (|has| |#1| (-285 |#1| |#1|)))) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 58)) (-4029 (($ $) 167 (|has| |#1| (-232))) (($ $ (-766)) 165 (|has| |#1| (-232))) (($ $ (-1168)) 163 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) 162 (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) 161 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) 160 (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-1580 (($ $) 139)) (-4079 ((|#1| $) 141)) (-4208 (((-887 (-562)) $) 147 (|has| |#1| (-610 (-887 (-562))))) (((-887 (-378)) $) 146 (|has| |#1| (-610 (-887 (-378))))) (((-535) $) 124 (|has| |#1| (-610 (-535)))) (((-378) $) 123 (|has| |#1| (-1017))) (((-224) $) 122 (|has| |#1| (-1017)))) (-1870 (((-3 (-1256 $) "failed") (-683 $)) 133 (-2245 (|has| $ (-144)) (|has| |#1| (-904))))) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ $) 44) (($ (-406 (-562))) 67) (($ |#1|) 180) (($ (-1168)) 126 (|has| |#1| (-1033 (-1168))))) (-2059 (((-3 $ "failed") $) 125 (-4037 (|has| |#1| (-144)) (-2245 (|has| $ (-144)) (|has| |#1| (-904)))))) (-1568 (((-766)) 28)) (-3636 ((|#1| $) 135 (|has| |#1| (-544)))) (-3799 (((-112) $ $) 40)) (-2757 (($ $) 118 (|has| |#1| (-815)))) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3113 (($ $) 166 (|has| |#1| (-232))) (($ $ (-766)) 164 (|has| |#1| (-232))) (($ $ (-1168)) 159 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) 158 (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) 157 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) 156 (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) 155) (($ $ (-1 |#1| |#1|)) 154)) (-1798 (((-112) $ $) 114 (|has| |#1| (-845)))) (-1771 (((-112) $ $) 113 (|has| |#1| (-845)))) (-1733 (((-112) $ $) 6)) (-1785 (((-112) $ $) 115 (|has| |#1| (-845)))) (-1761 (((-112) $ $) 112 (|has| |#1| (-845)))) (-1859 (($ $ $) 66) (($ |#1| |#1|) 143)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 70)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ (-406 (-562))) 69) (($ (-406 (-562)) $) 68) (($ |#1| $) 179) (($ $ |#1|) 178))) -(((-987 |#1|) (-139) (-554)) (T -987)) -((-1859 (*1 *1 *2 *2) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554)))) (-4063 (*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554)))) (-4079 (*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554)))) (-2957 (*1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554)))) (-1580 (*1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554)))) (-2300 (*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554)) (-4 *2 (-306)))) (-2561 (*1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554)) (-4 *2 (-306)))) (-1447 (*1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-544)) (-4 *2 (-554)))) (-3636 (*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554)) (-4 *2 (-544)))) (-3870 (*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554)) (-4 *2 (-544))))) -(-13 (-362) (-38 |t#1|) (-1033 |t#1|) (-337 |t#1|) (-230 |t#1|) (-376 |t#1|) (-879 |t#1|) (-399 |t#1|) (-10 -8 (-15 -1859 ($ |t#1| |t#1|)) (-15 -4063 (|t#1| $)) (-15 -4079 (|t#1| $)) (-15 -2957 ($ $)) (-15 -1580 ($ $)) (IF (|has| |t#1| (-1143)) (-6 (-1143)) |%noBranch|) (IF (|has| |t#1| (-1033 (-562))) (PROGN (-6 (-1033 (-562))) (-6 (-1033 (-406 (-562))))) |%noBranch|) (IF (|has| |t#1| (-845)) (-6 (-845)) |%noBranch|) (IF (|has| |t#1| (-815)) (-6 (-815)) |%noBranch|) (IF (|has| |t#1| (-1017)) (-6 (-1017)) |%noBranch|) (IF (|has| |t#1| (-610 (-535))) (-6 (-610 (-535))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-1033 (-1168))) (-6 (-1033 (-1168))) |%noBranch|) (IF (|has| |t#1| (-306)) (PROGN (-15 -2300 (|t#1| $)) (-15 -2561 ($ $))) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-15 -1447 ($)) (-15 -3636 (|t#1| $)) (-15 -3870 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-904)) (-6 (-904)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-562))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #0#) . T) ((-612 (-562)) . T) ((-612 #1=(-1168)) |has| |#1| (-1033 (-1168))) ((-612 |#1|) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-610 (-224)) |has| |#1| (-1017)) ((-610 (-378)) |has| |#1| (-1017)) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-610 (-887 (-378))) |has| |#1| (-610 (-887 (-378)))) ((-610 (-887 (-562))) |has| |#1| (-610 (-887 (-562)))) ((-230 |#1|) . T) ((-232) |has| |#1| (-232)) ((-242) . T) ((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-289) . T) ((-306) . T) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-362) . T) ((-337 |#1|) . T) ((-376 |#1|) . T) ((-399 |#1|) . T) ((-451) . T) ((-513 (-1168) |#1|) |has| |#1| (-513 (-1168) |#1|)) ((-513 |#1| |#1|) |has| |#1| (-308 |#1|)) ((-554) . T) ((-642 #0#) . T) ((-642 |#1|) . T) ((-642 $) . T) ((-635 (-562)) |has| |#1| (-635 (-562))) ((-635 |#1|) . T) ((-712 #0#) . T) ((-712 |#1|) . T) ((-712 $) . T) ((-721) . T) ((-786) |has| |#1| (-815)) ((-787) |has| |#1| (-815)) ((-789) |has| |#1| (-815)) ((-790) |has| |#1| (-815)) ((-815) |has| |#1| (-815)) ((-843) |has| |#1| (-815)) ((-845) -4037 (|has| |#1| (-845)) (|has| |#1| (-815))) ((-895 (-1168)) |has| |#1| (-895 (-1168))) ((-881 (-378)) |has| |#1| (-881 (-378))) ((-881 (-562)) |has| |#1| (-881 (-562))) ((-879 |#1|) . T) ((-904) |has| |#1| (-904)) ((-915) . T) ((-1017) |has| |#1| (-1017)) ((-1033 (-406 (-562))) |has| |#1| (-1033 (-562))) ((-1033 (-562)) |has| |#1| (-1033 (-562))) ((-1033 #1#) |has| |#1| (-1033 (-1168))) ((-1033 |#1|) . T) ((-1050 #0#) . T) ((-1050 |#1|) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1143) |has| |#1| (-1143)) ((-1207) . T) ((-1211) . T)) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3329 (($) NIL T CONST)) (-2610 (($ (-1134 |#1| |#2|)) 11)) (-2884 (((-1134 |#1| |#2|) $) 12)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2343 ((|#2| $ (-239 |#1| |#2|)) 16)) (-4053 (((-857) $) NIL)) (-2285 (($) NIL T CONST)) (-1733 (((-112) $ $) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL))) -(((-988 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -2610 ($ (-1134 |#1| |#2|))) (-15 -2884 ((-1134 |#1| |#2|) $)) (-15 -2343 (|#2| $ (-239 |#1| |#2|))))) (-916) (-362)) (T -988)) -((-2610 (*1 *1 *2) (-12 (-5 *2 (-1134 *3 *4)) (-14 *3 (-916)) (-4 *4 (-362)) (-5 *1 (-988 *3 *4)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-1134 *3 *4)) (-5 *1 (-988 *3 *4)) (-14 *3 (-916)) (-4 *4 (-362)))) (-2343 (*1 *2 *1 *3) (-12 (-5 *3 (-239 *4 *2)) (-14 *4 (-916)) (-4 *2 (-362)) (-5 *1 (-988 *4 *2))))) -(-13 (-21) (-10 -8 (-15 -2610 ($ (-1134 |#1| |#2|))) (-15 -2884 ((-1134 |#1| |#2|) $)) (-15 -2343 (|#2| $ (-239 |#1| |#2|))))) -((-4041 (((-112) $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1743 (((-1127) $) 9)) (-4053 (((-857) $) 17) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-989) (-13 (-1075) (-10 -8 (-15 -1743 ((-1127) $))))) (T -989)) -((-1743 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-989))))) -(-13 (-1075) (-10 -8 (-15 -1743 ((-1127) $)))) -((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-3735 (((-112) $ (-766)) 8)) (-3329 (($) 7 T CONST)) (-2953 (($ $) 46)) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4403)))) (-4172 (((-112) $ (-766)) 9)) (-2123 (((-639 |#1|) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1491 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-4147 (((-112) $ (-766)) 10)) (-3641 (((-766) $) 45)) (-3696 (((-1150) $) 22 (|has| |#1| (-1092)))) (-2078 ((|#1| $) 39)) (-1581 (($ |#1| $) 40)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-2662 ((|#1| $) 44)) (-2038 ((|#1| $) 41)) (-3008 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) 14)) (-3297 ((|#1| |#1| $) 48)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-1903 ((|#1| $) 47)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4403))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-4220 (($ $) 13)) (-4053 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-4131 (($ (-639 |#1|)) 42)) (-3690 ((|#1| $) 43)) (-2879 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-990 |#1|) (-139) (-1207)) (T -990)) -((-3297 (*1 *2 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-1207)))) (-1903 (*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-1207)))) (-2953 (*1 *1 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-1207)))) (-3641 (*1 *2 *1) (-12 (-4 *1 (-990 *3)) (-4 *3 (-1207)) (-5 *2 (-766)))) (-2662 (*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-1207)))) (-3690 (*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-1207))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4403) (-15 -3297 (|t#1| |t#1| $)) (-15 -1903 (|t#1| $)) (-15 -2953 ($ $)) (-15 -3641 ((-766) $)) (-15 -2662 (|t#1| $)) (-15 -3690 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1092) |has| |#1| (-1092)) ((-1207) . T)) -((-4325 (((-112) $) 42)) (-4048 (((-3 (-562) "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-3960 (((-562) $) NIL) (((-406 (-562)) $) NIL) ((|#2| $) 43)) (-3913 (((-3 (-406 (-562)) "failed") $) 78)) (-3498 (((-112) $) 72)) (-3854 (((-406 (-562)) $) 76)) (-4367 (((-112) $) 41)) (-4363 ((|#2| $) 22)) (-4152 (($ (-1 |#2| |#2|) $) 19)) (-1525 (($ $) 61)) (-4029 (($ $) NIL) (($ $ (-766)) NIL) (($ $ (-1168)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL) (($ $ (-1 |#2| |#2|) (-766)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-4208 (((-535) $) 67)) (-1660 (($ $) 17)) (-4053 (((-857) $) 56) (($ (-562)) 38) (($ |#2|) 36) (($ (-406 (-562))) NIL)) (-1568 (((-766)) 10)) (-2757 ((|#2| $) 71)) (-1733 (((-112) $ $) 25)) (-1761 (((-112) $ $) 69)) (-1847 (($ $) 29) (($ $ $) 28)) (-1836 (($ $ $) 26)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL))) -(((-991 |#1| |#2|) (-10 -8 (-15 -4053 (|#1| (-406 (-562)))) (-15 -1761 ((-112) |#1| |#1|)) (-15 * (|#1| (-406 (-562)) |#1|)) (-15 * (|#1| |#1| (-406 (-562)))) (-15 -1525 (|#1| |#1|)) (-15 -4208 ((-535) |#1|)) (-15 -3913 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3854 ((-406 (-562)) |#1|)) (-15 -3498 ((-112) |#1|)) (-15 -2757 (|#2| |#1|)) (-15 -4363 (|#2| |#1|)) (-15 -1660 (|#1| |#1|)) (-15 -4152 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -3960 (|#2| |#1|)) (-15 -3960 ((-406 (-562)) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3960 ((-562) |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -4053 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1568 ((-766))) (-15 -4053 (|#1| (-562))) (-15 -4367 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-562) |#1|)) (-15 -1847 (|#1| |#1| |#1|)) (-15 -1847 (|#1| |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 -4325 ((-112) |#1|)) (-15 * (|#1| (-916) |#1|)) (-15 -1836 (|#1| |#1| |#1|)) (-15 -4053 ((-857) |#1|)) (-15 -1733 ((-112) |#1| |#1|))) (-992 |#2|) (-171)) (T -991)) -((-1568 (*1 *2) (-12 (-4 *4 (-171)) (-5 *2 (-766)) (-5 *1 (-991 *3 *4)) (-4 *3 (-992 *4))))) -(-10 -8 (-15 -4053 (|#1| (-406 (-562)))) (-15 -1761 ((-112) |#1| |#1|)) (-15 * (|#1| (-406 (-562)) |#1|)) (-15 * (|#1| |#1| (-406 (-562)))) (-15 -1525 (|#1| |#1|)) (-15 -4208 ((-535) |#1|)) (-15 -3913 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3854 ((-406 (-562)) |#1|)) (-15 -3498 ((-112) |#1|)) (-15 -2757 (|#2| |#1|)) (-15 -4363 (|#2| |#1|)) (-15 -1660 (|#1| |#1|)) (-15 -4152 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -3960 (|#2| |#1|)) (-15 -3960 ((-406 (-562)) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3960 ((-562) |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -4053 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1568 ((-766))) (-15 -4053 (|#1| (-562))) (-15 -4367 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-562) |#1|)) (-15 -1847 (|#1| |#1| |#1|)) (-15 -1847 (|#1| |#1|)) (-15 * (|#1| (-766) |#1|)) (-15 -4325 ((-112) |#1|)) (-15 * (|#1| (-916) |#1|)) (-15 -1836 (|#1| |#1| |#1|)) (-15 -4053 ((-857) |#1|)) (-15 -1733 ((-112) |#1| |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-4048 (((-3 (-562) "failed") $) 118 (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) 116 (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) 113)) (-3960 (((-562) $) 117 (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) 115 (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) 114)) (-3449 (((-683 (-562)) (-683 $)) 88 (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 87 (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) 86) (((-683 |#1|) (-683 $)) 85)) (-1694 (((-3 $ "failed") $) 33)) (-1657 ((|#1| $) 78)) (-3913 (((-3 (-406 (-562)) "failed") $) 74 (|has| |#1| (-544)))) (-3498 (((-112) $) 76 (|has| |#1| (-544)))) (-3854 (((-406 (-562)) $) 75 (|has| |#1| (-544)))) (-2487 (($ |#1| |#1| |#1| |#1|) 79)) (-4367 (((-112) $) 31)) (-4363 ((|#1| $) 80)) (-1551 (($ $ $) 67 (|has| |#1| (-845)))) (-2993 (($ $ $) 66 (|has| |#1| (-845)))) (-4152 (($ (-1 |#1| |#1|) $) 89)) (-3696 (((-1150) $) 9)) (-1525 (($ $) 71 (|has| |#1| (-362)))) (-1664 ((|#1| $) 81)) (-3966 ((|#1| $) 82)) (-1402 ((|#1| $) 83)) (-1709 (((-1112) $) 10)) (-1433 (($ $ (-639 |#1|) (-639 |#1|)) 95 (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) 94 (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) 93 (|has| |#1| (-308 |#1|))) (($ $ (-639 (-293 |#1|))) 92 (|has| |#1| (-308 |#1|))) (($ $ (-639 (-1168)) (-639 |#1|)) 91 (|has| |#1| (-513 (-1168) |#1|))) (($ $ (-1168) |#1|) 90 (|has| |#1| (-513 (-1168) |#1|)))) (-2343 (($ $ |#1|) 96 (|has| |#1| (-285 |#1| |#1|)))) (-4029 (($ $) 112 (|has| |#1| (-232))) (($ $ (-766)) 110 (|has| |#1| (-232))) (($ $ (-1168)) 108 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) 107 (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) 106 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) 105 (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) 98) (($ $ (-1 |#1| |#1|)) 97)) (-4208 (((-535) $) 72 (|has| |#1| (-610 (-535))))) (-1660 (($ $) 84)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 38) (($ (-406 (-562))) 61 (-4037 (|has| |#1| (-362)) (|has| |#1| (-1033 (-406 (-562))))))) (-2059 (((-3 $ "failed") $) 73 (|has| |#1| (-144)))) (-1568 (((-766)) 28)) (-2757 ((|#1| $) 77 (|has| |#1| (-1053)))) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3113 (($ $) 111 (|has| |#1| (-232))) (($ $ (-766)) 109 (|has| |#1| (-232))) (($ $ (-1168)) 104 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) 103 (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) 102 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) 101 (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-1798 (((-112) $ $) 64 (|has| |#1| (-845)))) (-1771 (((-112) $ $) 63 (|has| |#1| (-845)))) (-1733 (((-112) $ $) 6)) (-1785 (((-112) $ $) 65 (|has| |#1| (-845)))) (-1761 (((-112) $ $) 62 (|has| |#1| (-845)))) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 70 (|has| |#1| (-362)))) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-406 (-562))) 69 (|has| |#1| (-362))) (($ (-406 (-562)) $) 68 (|has| |#1| (-362))))) -(((-992 |#1|) (-139) (-171)) (T -992)) -((-1660 (*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-171)))) (-1402 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-171)))) (-3966 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-171)))) (-1664 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-171)))) (-4363 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-171)))) (-2487 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-992 *2)) (-4 *2 (-171)))) (-1657 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-171)))) (-2757 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-171)) (-4 *2 (-1053)))) (-3498 (*1 *2 *1) (-12 (-4 *1 (-992 *3)) (-4 *3 (-171)) (-4 *3 (-544)) (-5 *2 (-112)))) (-3854 (*1 *2 *1) (-12 (-4 *1 (-992 *3)) (-4 *3 (-171)) (-4 *3 (-544)) (-5 *2 (-406 (-562))))) (-3913 (*1 *2 *1) (|partial| -12 (-4 *1 (-992 *3)) (-4 *3 (-171)) (-4 *3 (-544)) (-5 *2 (-406 (-562)))))) -(-13 (-38 |t#1|) (-410 |t#1|) (-230 |t#1|) (-337 |t#1|) (-376 |t#1|) (-10 -8 (-15 -1660 ($ $)) (-15 -1402 (|t#1| $)) (-15 -3966 (|t#1| $)) (-15 -1664 (|t#1| $)) (-15 -4363 (|t#1| $)) (-15 -2487 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -1657 (|t#1| $)) (IF (|has| |t#1| (-289)) (-6 (-289)) |%noBranch|) (IF (|has| |t#1| (-845)) (-6 (-845)) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-242)) |%noBranch|) (IF (|has| |t#1| (-610 (-535))) (-6 (-610 (-535))) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-1053)) (-15 -2757 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-15 -3498 ((-112) $)) (-15 -3854 ((-406 (-562)) $)) (-15 -3913 ((-3 (-406 (-562)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-562))) |has| |#1| (-362)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-362)) ((-111 |#1| |#1|) . T) ((-111 $ $) -4037 (|has| |#1| (-362)) (|has| |#1| (-289))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #0#) -4037 (|has| |#1| (-1033 (-406 (-562)))) (|has| |#1| (-362))) ((-612 (-562)) . T) ((-612 |#1|) . T) ((-609 (-857)) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-230 |#1|) . T) ((-232) |has| |#1| (-232)) ((-242) |has| |#1| (-362)) ((-285 |#1| $) |has| |#1| (-285 |#1| |#1|)) ((-289) -4037 (|has| |#1| (-362)) (|has| |#1| (-289))) ((-308 |#1|) |has| |#1| (-308 |#1|)) ((-337 |#1|) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-513 (-1168) |#1|) |has| |#1| (-513 (-1168) |#1|)) ((-513 |#1| |#1|) |has| |#1| (-308 |#1|)) ((-642 #0#) |has| |#1| (-362)) ((-642 |#1|) . T) ((-642 $) . T) ((-635 (-562)) |has| |#1| (-635 (-562))) ((-635 |#1|) . T) ((-712 #0#) |has| |#1| (-362)) ((-712 |#1|) . T) ((-721) . T) ((-845) |has| |#1| (-845)) ((-895 (-1168)) |has| |#1| (-895 (-1168))) ((-1033 (-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((-1033 (-562)) |has| |#1| (-1033 (-562))) ((-1033 |#1|) . T) ((-1050 #0#) |has| |#1| (-362)) ((-1050 |#1|) . T) ((-1050 $) -4037 (|has| |#1| (-362)) (|has| |#1| (-289))) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) -((-4152 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-993 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4152 (|#3| (-1 |#4| |#2|) |#1|))) (-992 |#2|) (-171) (-992 |#4|) (-171)) (T -993)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) (-4 *2 (-992 *6)) (-5 *1 (-993 *4 *5 *2 *6)) (-4 *4 (-992 *5))))) -(-10 -7 (-15 -4152 (|#3| (-1 |#4| |#2|) |#1|))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) NIL)) (-3960 (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) NIL)) (-3449 (((-683 (-562)) (-683 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) NIL) (((-683 |#1|) (-683 $)) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-1657 ((|#1| $) 12)) (-3913 (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-544)))) (-3498 (((-112) $) NIL (|has| |#1| (-544)))) (-3854 (((-406 (-562)) $) NIL (|has| |#1| (-544)))) (-2487 (($ |#1| |#1| |#1| |#1|) 16)) (-4367 (((-112) $) NIL)) (-4363 ((|#1| $) NIL)) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) NIL (|has| |#1| (-362)))) (-1664 ((|#1| $) 15)) (-3966 ((|#1| $) 14)) (-1402 ((|#1| $) 13)) (-1709 (((-1112) $) NIL)) (-1433 (($ $ (-639 |#1|) (-639 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-308 |#1|))) (($ $ (-293 |#1|)) NIL (|has| |#1| (-308 |#1|))) (($ $ (-639 (-293 |#1|))) NIL (|has| |#1| (-308 |#1|))) (($ $ (-639 (-1168)) (-639 |#1|)) NIL (|has| |#1| (-513 (-1168) |#1|))) (($ $ (-1168) |#1|) NIL (|has| |#1| (-513 (-1168) |#1|)))) (-2343 (($ $ |#1|) NIL (|has| |#1| (-285 |#1| |#1|)))) (-4029 (($ $) NIL (|has| |#1| (-232))) (($ $ (-766)) NIL (|has| |#1| (-232))) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4208 (((-535) $) NIL (|has| |#1| (-610 (-535))))) (-1660 (($ $) NIL)) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ |#1|) NIL) (($ (-406 (-562))) NIL (-4037 (|has| |#1| (-362)) (|has| |#1| (-1033 (-406 (-562))))))) (-2059 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-1568 (((-766)) NIL)) (-2757 ((|#1| $) NIL (|has| |#1| (-1053)))) (-2285 (($) 8 T CONST)) (-2294 (($) 10 T CONST)) (-3113 (($ $) NIL (|has| |#1| (-232))) (($ $ (-766)) NIL (|has| |#1| (-232))) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1771 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1761 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL (|has| |#1| (-362)))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-406 (-562))) NIL (|has| |#1| (-362))) (($ (-406 (-562)) $) NIL (|has| |#1| (-362))))) -(((-994 |#1|) (-992 |#1|) (-171)) (T -994)) -NIL -(-992 |#1|) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3735 (((-112) $ (-766)) NIL)) (-3329 (($) NIL T CONST)) (-2953 (($ $) 20)) (-1346 (($ (-639 |#1|)) 29)) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-4172 (((-112) $ (-766)) NIL)) (-2123 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1491 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3641 (((-766) $) 22)) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-2078 ((|#1| $) 24)) (-1581 (($ |#1| $) 15)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-2662 ((|#1| $) 23)) (-2038 ((|#1| $) 19)) (-3008 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) NIL)) (-3297 ((|#1| |#1| $) 14)) (-3087 (((-112) $) 17)) (-1663 (($) NIL)) (-1903 ((|#1| $) 18)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-4220 (($ $) NIL)) (-4053 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-4131 (($ (-639 |#1|)) NIL)) (-3690 ((|#1| $) 26)) (-2879 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-995 |#1|) (-13 (-990 |#1|) (-10 -8 (-15 -1346 ($ (-639 |#1|))))) (-1092)) (T -995)) -((-1346 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-5 *1 (-995 *3))))) -(-13 (-990 |#1|) (-10 -8 (-15 -1346 ($ (-639 |#1|))))) -((-1644 (($ $) 12)) (-1895 (($ $ (-562)) 13))) -(((-996 |#1|) (-10 -8 (-15 -1644 (|#1| |#1|)) (-15 -1895 (|#1| |#1| (-562)))) (-997)) (T -996)) -NIL -(-10 -8 (-15 -1644 (|#1| |#1|)) (-15 -1895 (|#1| |#1| (-562)))) -((-1644 (($ $) 6)) (-1895 (($ $ (-562)) 7)) (** (($ $ (-406 (-562))) 8))) -(((-997) (-139)) (T -997)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-997)) (-5 *2 (-406 (-562))))) (-1895 (*1 *1 *1 *2) (-12 (-4 *1 (-997)) (-5 *2 (-562)))) (-1644 (*1 *1 *1) (-4 *1 (-997)))) -(-13 (-10 -8 (-15 -1644 ($ $)) (-15 -1895 ($ $ (-562))) (-15 ** ($ $ (-406 (-562)))))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-1631 (((-2 (|:| |num| (-1256 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL (|has| (-406 |#2|) (-362)))) (-1965 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-4102 (((-112) $) NIL (|has| (-406 |#2|) (-362)))) (-4342 (((-683 (-406 |#2|)) (-1256 $)) NIL) (((-683 (-406 |#2|))) NIL)) (-1748 (((-406 |#2|) $) NIL)) (-1755 (((-1180 (-916) (-766)) (-562)) NIL (|has| (-406 |#2|) (-348)))) (-2781 (((-3 $ "failed") $ $) NIL)) (-1977 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-3788 (((-417 $) $) NIL (|has| (-406 |#2|) (-362)))) (-1436 (((-112) $ $) NIL (|has| (-406 |#2|) (-362)))) (-1382 (((-766)) NIL (|has| (-406 |#2|) (-367)))) (-3236 (((-112)) NIL)) (-3520 (((-112) |#1|) 148) (((-112) |#2|) 153)) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL (|has| (-406 |#2|) (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| (-406 |#2|) (-1033 (-406 (-562))))) (((-3 (-406 |#2|) "failed") $) NIL)) (-3960 (((-562) $) NIL (|has| (-406 |#2|) (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| (-406 |#2|) (-1033 (-406 (-562))))) (((-406 |#2|) $) NIL)) (-3916 (($ (-1256 (-406 |#2|)) (-1256 $)) NIL) (($ (-1256 (-406 |#2|))) 70) (($ (-1256 |#2|) |#2|) NIL)) (-3082 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-406 |#2|) (-348)))) (-1810 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-4376 (((-683 (-406 |#2|)) $ (-1256 $)) NIL) (((-683 (-406 |#2|)) $) NIL)) (-3449 (((-683 (-562)) (-683 $)) NIL (|has| (-406 |#2|) (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| (-406 |#2|) (-635 (-562)))) (((-2 (|:| -1767 (-683 (-406 |#2|))) (|:| |vec| (-1256 (-406 |#2|)))) (-683 $) (-1256 $)) NIL) (((-683 (-406 |#2|)) (-683 $)) NIL)) (-2575 (((-1256 $) (-1256 $)) NIL)) (-1954 (($ |#3|) 65) (((-3 $ "failed") (-406 |#3|)) NIL (|has| (-406 |#2|) (-362)))) (-1694 (((-3 $ "failed") $) NIL)) (-2713 (((-639 (-639 |#1|))) NIL (|has| |#1| (-367)))) (-1718 (((-112) |#1| |#1|) NIL)) (-2172 (((-916)) NIL)) (-1447 (($) NIL (|has| (-406 |#2|) (-367)))) (-2241 (((-112)) NIL)) (-1912 (((-112) |#1|) 56) (((-112) |#2|) 150)) (-1787 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL (|has| (-406 |#2|) (-362)))) (-2578 (($ $) NIL)) (-2787 (($) NIL (|has| (-406 |#2|) (-348)))) (-1844 (((-112) $) NIL (|has| (-406 |#2|) (-348)))) (-2184 (($ $ (-766)) NIL (|has| (-406 |#2|) (-348))) (($ $) NIL (|has| (-406 |#2|) (-348)))) (-3521 (((-112) $) NIL (|has| (-406 |#2|) (-362)))) (-1993 (((-916) $) NIL (|has| (-406 |#2|) (-348))) (((-828 (-916)) $) NIL (|has| (-406 |#2|) (-348)))) (-4367 (((-112) $) NIL)) (-3668 (((-766)) NIL)) (-2700 (((-1256 $) (-1256 $)) NIL)) (-4363 (((-406 |#2|) $) NIL)) (-2004 (((-639 (-947 |#1|)) (-1168)) NIL (|has| |#1| (-362)))) (-3828 (((-3 $ "failed") $) NIL (|has| (-406 |#2|) (-348)))) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| (-406 |#2|) (-362)))) (-1937 ((|#3| $) NIL (|has| (-406 |#2|) (-362)))) (-3549 (((-916) $) NIL (|has| (-406 |#2|) (-367)))) (-1942 ((|#3| $) NIL)) (-1564 (($ (-639 $)) NIL (|has| (-406 |#2|) (-362))) (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-3696 (((-1150) $) NIL)) (-2715 (((-683 (-406 |#2|))) 52)) (-2289 (((-683 (-406 |#2|))) 51)) (-1525 (($ $) NIL (|has| (-406 |#2|) (-362)))) (-3174 (($ (-1256 |#2|) |#2|) 71)) (-3324 (((-683 (-406 |#2|))) 50)) (-4335 (((-683 (-406 |#2|))) 49)) (-3128 (((-2 (|:| |num| (-683 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-4329 (((-2 (|:| |num| (-1256 |#2|)) (|:| |den| |#2|)) $) 77)) (-3137 (((-1256 $)) 46)) (-2639 (((-1256 $)) 45)) (-3841 (((-112) $) NIL)) (-2881 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3730 (($) NIL (|has| (-406 |#2|) (-348)) CONST)) (-2464 (($ (-916)) NIL (|has| (-406 |#2|) (-367)))) (-3153 (((-3 |#2| "failed")) 63)) (-1709 (((-1112) $) NIL)) (-2435 (((-766)) NIL)) (-3147 (($) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| (-406 |#2|) (-362)))) (-1606 (($ (-639 $)) NIL (|has| (-406 |#2|) (-362))) (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-1753 (((-639 (-2 (|:| -1635 (-562)) (|:| -1300 (-562))))) NIL (|has| (-406 |#2|) (-348)))) (-1635 (((-417 $) $) NIL (|has| (-406 |#2|) (-362)))) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-406 |#2|) (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL (|has| (-406 |#2|) (-362)))) (-1762 (((-3 $ "failed") $ $) NIL (|has| (-406 |#2|) (-362)))) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| (-406 |#2|) (-362)))) (-2044 (((-766) $) NIL (|has| (-406 |#2|) (-362)))) (-2343 ((|#1| $ |#1| |#1|) NIL)) (-3092 (((-3 |#2| "failed")) 62)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| (-406 |#2|) (-362)))) (-2736 (((-406 |#2|) (-1256 $)) NIL) (((-406 |#2|)) 42)) (-3543 (((-766) $) NIL (|has| (-406 |#2|) (-348))) (((-3 (-766) "failed") $ $) NIL (|has| (-406 |#2|) (-348)))) (-4029 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-766)) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168))))) (($ $ (-1168)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168))))) (($ $ (-766)) NIL (-4037 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) NIL (-4037 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-2539 (((-683 (-406 |#2|)) (-1256 $) (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362)))) (-3371 ((|#3|) 53)) (-1653 (($) NIL (|has| (-406 |#2|) (-348)))) (-2205 (((-1256 (-406 |#2|)) $ (-1256 $)) NIL) (((-683 (-406 |#2|)) (-1256 $) (-1256 $)) NIL) (((-1256 (-406 |#2|)) $) 72) (((-683 (-406 |#2|)) (-1256 $)) NIL)) (-4208 (((-1256 (-406 |#2|)) $) NIL) (($ (-1256 (-406 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (|has| (-406 |#2|) (-348)))) (-4240 (((-1256 $) (-1256 $)) NIL)) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ (-406 |#2|)) NIL) (($ (-406 (-562))) NIL (-4037 (|has| (-406 |#2|) (-1033 (-406 (-562)))) (|has| (-406 |#2|) (-362)))) (($ $) NIL (|has| (-406 |#2|) (-362)))) (-2059 (($ $) NIL (|has| (-406 |#2|) (-348))) (((-3 $ "failed") $) NIL (|has| (-406 |#2|) (-144)))) (-3683 ((|#3| $) NIL)) (-1568 (((-766)) NIL)) (-4266 (((-112)) 60)) (-3866 (((-112) |#1|) 154) (((-112) |#2|) 155)) (-4291 (((-1256 $)) 125)) (-3799 (((-112) $ $) NIL (|has| (-406 |#2|) (-362)))) (-2960 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3243 (((-112)) NIL)) (-2285 (($) 94 T CONST)) (-2294 (($) NIL T CONST)) (-3113 (($ $ (-1 (-406 |#2|) (-406 |#2|)) (-766)) NIL (|has| (-406 |#2|) (-362))) (($ $ (-1 (-406 |#2|) (-406 |#2|))) NIL (|has| (-406 |#2|) (-362))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168))))) (($ $ (-1168)) NIL (-12 (|has| (-406 |#2|) (-362)) (|has| (-406 |#2|) (-895 (-1168))))) (($ $ (-766)) NIL (-4037 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348)))) (($ $) NIL (-4037 (-12 (|has| (-406 |#2|) (-232)) (|has| (-406 |#2|) (-362))) (|has| (-406 |#2|) (-348))))) (-1733 (((-112) $ $) NIL)) (-1859 (($ $ $) NIL (|has| (-406 |#2|) (-362)))) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL (|has| (-406 |#2|) (-362)))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 |#2|)) NIL) (($ (-406 |#2|) $) NIL) (($ (-406 (-562)) $) NIL (|has| (-406 |#2|) (-362))) (($ $ (-406 (-562))) NIL (|has| (-406 |#2|) (-362))))) -(((-998 |#1| |#2| |#3| |#4| |#5|) (-341 |#1| |#2| |#3|) (-1211) (-1232 |#1|) (-1232 (-406 |#2|)) (-406 |#2|) (-766)) (T -998)) -NIL -(-341 |#1| |#2| |#3|) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-1715 (((-639 (-562)) $) 54)) (-2484 (($ (-639 (-562))) 62)) (-2300 (((-562) $) 40 (|has| (-562) (-306)))) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3517 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-562) (-904)))) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| (-562) (-904)))) (-1436 (((-112) $ $) NIL)) (-1587 (((-562) $) NIL (|has| (-562) (-815)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) 49) (((-3 (-1168) "failed") $) NIL (|has| (-562) (-1033 (-1168)))) (((-3 (-406 (-562)) "failed") $) 47 (|has| (-562) (-1033 (-562)))) (((-3 (-562) "failed") $) 49 (|has| (-562) (-1033 (-562))))) (-3960 (((-562) $) NIL) (((-1168) $) NIL (|has| (-562) (-1033 (-1168)))) (((-406 (-562)) $) NIL (|has| (-562) (-1033 (-562)))) (((-562) $) NIL (|has| (-562) (-1033 (-562))))) (-1810 (($ $ $) NIL)) (-3449 (((-683 (-562)) (-683 $)) NIL (|has| (-562) (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| (-562) (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL) (((-683 (-562)) (-683 $)) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-1447 (($) NIL (|has| (-562) (-544)))) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-3521 (((-112) $) NIL)) (-2265 (((-639 (-562)) $) 60)) (-2696 (((-112) $) NIL (|has| (-562) (-815)))) (-2337 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (|has| (-562) (-881 (-562)))) (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (|has| (-562) (-881 (-378))))) (-4367 (((-112) $) NIL)) (-2957 (($ $) NIL)) (-4063 (((-562) $) 37)) (-3828 (((-3 $ "failed") $) NIL (|has| (-562) (-1143)))) (-3855 (((-112) $) NIL (|has| (-562) (-815)))) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1551 (($ $ $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| (-562) (-845)))) (-4152 (($ (-1 (-562) (-562)) $) NIL)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) NIL)) (-3730 (($) NIL (|has| (-562) (-1143)) CONST)) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-2561 (($ $) NIL (|has| (-562) (-306))) (((-406 (-562)) $) 42)) (-1386 (((-1148 (-562)) $) 59)) (-1647 (($ (-639 (-562)) (-639 (-562))) 63)) (-3870 (((-562) $) 53 (|has| (-562) (-544)))) (-3586 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-562) (-904)))) (-3468 (((-417 (-1164 $)) (-1164 $)) NIL (|has| (-562) (-904)))) (-1635 (((-417 $) $) NIL)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1433 (($ $ (-639 (-562)) (-639 (-562))) NIL (|has| (-562) (-308 (-562)))) (($ $ (-562) (-562)) NIL (|has| (-562) (-308 (-562)))) (($ $ (-293 (-562))) NIL (|has| (-562) (-308 (-562)))) (($ $ (-639 (-293 (-562)))) NIL (|has| (-562) (-308 (-562)))) (($ $ (-639 (-1168)) (-639 (-562))) NIL (|has| (-562) (-513 (-1168) (-562)))) (($ $ (-1168) (-562)) NIL (|has| (-562) (-513 (-1168) (-562))))) (-2044 (((-766) $) NIL)) (-2343 (($ $ (-562)) NIL (|has| (-562) (-285 (-562) (-562))))) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-4029 (($ $) 11 (|has| (-562) (-232))) (($ $ (-766)) NIL (|has| (-562) (-232))) (($ $ (-1168)) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-1 (-562) (-562)) (-766)) NIL) (($ $ (-1 (-562) (-562))) NIL)) (-1580 (($ $) NIL)) (-4079 (((-562) $) 39)) (-3412 (((-639 (-562)) $) 61)) (-4208 (((-887 (-562)) $) NIL (|has| (-562) (-610 (-887 (-562))))) (((-887 (-378)) $) NIL (|has| (-562) (-610 (-887 (-378))))) (((-535) $) NIL (|has| (-562) (-610 (-535)))) (((-378) $) NIL (|has| (-562) (-1017))) (((-224) $) NIL (|has| (-562) (-1017)))) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| (-562) (-904))))) (-4053 (((-857) $) 77) (($ (-562)) 43) (($ $) NIL) (($ (-406 (-562))) 20) (($ (-562)) 43) (($ (-1168)) NIL (|has| (-562) (-1033 (-1168)))) (((-406 (-562)) $) 18)) (-2059 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| (-562) (-904))) (|has| (-562) (-144))))) (-1568 (((-766)) 9)) (-3636 (((-562) $) 51 (|has| (-562) (-544)))) (-3799 (((-112) $ $) NIL)) (-2757 (($ $) NIL (|has| (-562) (-815)))) (-2285 (($) 10 T CONST)) (-2294 (($) 12 T CONST)) (-3113 (($ $) NIL (|has| (-562) (-232))) (($ $ (-766)) NIL (|has| (-562) (-232))) (($ $ (-1168)) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| (-562) (-895 (-1168)))) (($ $ (-1 (-562) (-562)) (-766)) NIL) (($ $ (-1 (-562) (-562))) NIL)) (-1798 (((-112) $ $) NIL (|has| (-562) (-845)))) (-1771 (((-112) $ $) NIL (|has| (-562) (-845)))) (-1733 (((-112) $ $) 14)) (-1785 (((-112) $ $) NIL (|has| (-562) (-845)))) (-1761 (((-112) $ $) 33 (|has| (-562) (-845)))) (-1859 (($ $ $) 29) (($ (-562) (-562)) 31)) (-1847 (($ $) 15) (($ $ $) 23)) (-1836 (($ $ $) 21)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 25) (($ $ $) 27) (($ $ (-406 (-562))) NIL) (($ (-406 (-562)) $) NIL) (($ (-562) $) 25) (($ $ (-562)) NIL))) -(((-999 |#1|) (-13 (-987 (-562)) (-609 (-406 (-562))) (-10 -8 (-15 -2561 ((-406 (-562)) $)) (-15 -1715 ((-639 (-562)) $)) (-15 -1386 ((-1148 (-562)) $)) (-15 -2265 ((-639 (-562)) $)) (-15 -3412 ((-639 (-562)) $)) (-15 -2484 ($ (-639 (-562)))) (-15 -1647 ($ (-639 (-562)) (-639 (-562)))))) (-562)) (T -999)) -((-2561 (*1 *2 *1) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-999 *3)) (-14 *3 (-562)))) (-1715 (*1 *2 *1) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-999 *3)) (-14 *3 (-562)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-1148 (-562))) (-5 *1 (-999 *3)) (-14 *3 (-562)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-999 *3)) (-14 *3 (-562)))) (-3412 (*1 *2 *1) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-999 *3)) (-14 *3 (-562)))) (-2484 (*1 *1 *2) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-999 *3)) (-14 *3 (-562)))) (-1647 (*1 *1 *2 *2) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-999 *3)) (-14 *3 (-562))))) -(-13 (-987 (-562)) (-609 (-406 (-562))) (-10 -8 (-15 -2561 ((-406 (-562)) $)) (-15 -1715 ((-639 (-562)) $)) (-15 -1386 ((-1148 (-562)) $)) (-15 -2265 ((-639 (-562)) $)) (-15 -3412 ((-639 (-562)) $)) (-15 -2484 ($ (-639 (-562)))) (-15 -1647 ($ (-639 (-562)) (-639 (-562)))))) -((-1800 (((-52) (-406 (-562)) (-562)) 9))) -(((-1000) (-10 -7 (-15 -1800 ((-52) (-406 (-562)) (-562))))) (T -1000)) -((-1800 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-562))) (-5 *4 (-562)) (-5 *2 (-52)) (-5 *1 (-1000))))) -(-10 -7 (-15 -1800 ((-52) (-406 (-562)) (-562)))) -((-1382 (((-562)) 13)) (-2347 (((-562)) 16)) (-1559 (((-1261) (-562)) 15)) (-1915 (((-562) (-562)) 17) (((-562)) 12))) -(((-1001) (-10 -7 (-15 -1915 ((-562))) (-15 -1382 ((-562))) (-15 -1915 ((-562) (-562))) (-15 -1559 ((-1261) (-562))) (-15 -2347 ((-562))))) (T -1001)) -((-2347 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-1001)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-562)) (-5 *2 (-1261)) (-5 *1 (-1001)))) (-1915 (*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-1001)))) (-1382 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-1001)))) (-1915 (*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-1001))))) -(-10 -7 (-15 -1915 ((-562))) (-15 -1382 ((-562))) (-15 -1915 ((-562) (-562))) (-15 -1559 ((-1261) (-562))) (-15 -2347 ((-562)))) -((-3805 (((-417 |#1|) |#1|) 41)) (-1635 (((-417 |#1|) |#1|) 40))) -(((-1002 |#1|) (-10 -7 (-15 -1635 ((-417 |#1|) |#1|)) (-15 -3805 ((-417 |#1|) |#1|))) (-1232 (-406 (-562)))) (T -1002)) -((-3805 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1002 *3)) (-4 *3 (-1232 (-406 (-562)))))) (-1635 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1002 *3)) (-4 *3 (-1232 (-406 (-562))))))) -(-10 -7 (-15 -1635 ((-417 |#1|) |#1|)) (-15 -3805 ((-417 |#1|) |#1|))) -((-3913 (((-3 (-406 (-562)) "failed") |#1|) 15)) (-3498 (((-112) |#1|) 14)) (-3854 (((-406 (-562)) |#1|) 10))) -(((-1003 |#1|) (-10 -7 (-15 -3854 ((-406 (-562)) |#1|)) (-15 -3498 ((-112) |#1|)) (-15 -3913 ((-3 (-406 (-562)) "failed") |#1|))) (-1033 (-406 (-562)))) (T -1003)) -((-3913 (*1 *2 *3) (|partial| -12 (-5 *2 (-406 (-562))) (-5 *1 (-1003 *3)) (-4 *3 (-1033 *2)))) (-3498 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1003 *3)) (-4 *3 (-1033 (-406 (-562)))))) (-3854 (*1 *2 *3) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-1003 *3)) (-4 *3 (-1033 *2))))) -(-10 -7 (-15 -3854 ((-406 (-562)) |#1|)) (-15 -3498 ((-112) |#1|)) (-15 -3913 ((-3 (-406 (-562)) "failed") |#1|))) -((-4200 ((|#2| $ "value" |#2|) 12)) (-2343 ((|#2| $ "value") 10)) (-2985 (((-112) $ $) 18))) -(((-1004 |#1| |#2|) (-10 -8 (-15 -4200 (|#2| |#1| "value" |#2|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -2343 (|#2| |#1| "value"))) (-1005 |#2|) (-1207)) (T -1004)) -NIL -(-10 -8 (-15 -4200 (|#2| |#1| "value" |#2|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -2343 (|#2| |#1| "value"))) -((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-2533 ((|#1| $) 48)) (-3735 (((-112) $ (-766)) 8)) (-2677 ((|#1| $ |#1|) 39 (|has| $ (-6 -4404)))) (-4200 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4404)))) (-3742 (($ $ (-639 $)) 41 (|has| $ (-6 -4404)))) (-3329 (($) 7 T CONST)) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4403)))) (-2409 (((-639 $) $) 50)) (-4188 (((-112) $ $) 42 (|has| |#1| (-1092)))) (-4172 (((-112) $ (-766)) 9)) (-2123 (((-639 |#1|) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1491 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-4147 (((-112) $ (-766)) 10)) (-4008 (((-639 |#1|) $) 45)) (-3179 (((-112) $) 49)) (-3696 (((-1150) $) 22 (|has| |#1| (-1092)))) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-3008 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) 14)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-2343 ((|#1| $ "value") 47)) (-1423 (((-562) $ $) 44)) (-2473 (((-112) $) 46)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4403))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-4220 (($ $) 13)) (-4053 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-3643 (((-639 $) $) 51)) (-2985 (((-112) $ $) 43 (|has| |#1| (-1092)))) (-2879 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-1005 |#1|) (-139) (-1207)) (T -1005)) -((-3643 (*1 *2 *1) (-12 (-4 *3 (-1207)) (-5 *2 (-639 *1)) (-4 *1 (-1005 *3)))) (-2409 (*1 *2 *1) (-12 (-4 *3 (-1207)) (-5 *2 (-639 *1)) (-4 *1 (-1005 *3)))) (-3179 (*1 *2 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1207)) (-5 *2 (-112)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1207)))) (-2343 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1005 *2)) (-4 *2 (-1207)))) (-2473 (*1 *2 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1207)) (-5 *2 (-112)))) (-4008 (*1 *2 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1207)) (-5 *2 (-639 *3)))) (-1423 (*1 *2 *1 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1207)) (-5 *2 (-562)))) (-2985 (*1 *2 *1 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1207)) (-4 *3 (-1092)) (-5 *2 (-112)))) (-4188 (*1 *2 *1 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1207)) (-4 *3 (-1092)) (-5 *2 (-112)))) (-3742 (*1 *1 *1 *2) (-12 (-5 *2 (-639 *1)) (|has| *1 (-6 -4404)) (-4 *1 (-1005 *3)) (-4 *3 (-1207)))) (-4200 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4404)) (-4 *1 (-1005 *2)) (-4 *2 (-1207)))) (-2677 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4404)) (-4 *1 (-1005 *2)) (-4 *2 (-1207))))) -(-13 (-488 |t#1|) (-10 -8 (-15 -3643 ((-639 $) $)) (-15 -2409 ((-639 $) $)) (-15 -3179 ((-112) $)) (-15 -2533 (|t#1| $)) (-15 -2343 (|t#1| $ "value")) (-15 -2473 ((-112) $)) (-15 -4008 ((-639 |t#1|) $)) (-15 -1423 ((-562) $ $)) (IF (|has| |t#1| (-1092)) (PROGN (-15 -2985 ((-112) $ $)) (-15 -4188 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4404)) (PROGN (-15 -3742 ($ $ (-639 $))) (-15 -4200 (|t#1| $ "value" |t#1|)) (-15 -2677 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1092) |has| |#1| (-1092)) ((-1207) . T)) -((-1644 (($ $) 9) (($ $ (-916)) 43) (($ (-406 (-562))) 13) (($ (-562)) 15)) (-2608 (((-3 $ "failed") (-1164 $) (-916) (-857)) 23) (((-3 $ "failed") (-1164 $) (-916)) 28)) (-1895 (($ $ (-562)) 49)) (-1568 (((-766)) 17)) (-4383 (((-639 $) (-1164 $)) NIL) (((-639 $) (-1164 (-406 (-562)))) 54) (((-639 $) (-1164 (-562))) 59) (((-639 $) (-947 $)) 63) (((-639 $) (-947 (-406 (-562)))) 67) (((-639 $) (-947 (-562))) 71)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL) (($ $ (-406 (-562))) 47))) -(((-1006 |#1|) (-10 -8 (-15 -1644 (|#1| (-562))) (-15 -1644 (|#1| (-406 (-562)))) (-15 -1644 (|#1| |#1| (-916))) (-15 -4383 ((-639 |#1|) (-947 (-562)))) (-15 -4383 ((-639 |#1|) (-947 (-406 (-562))))) (-15 -4383 ((-639 |#1|) (-947 |#1|))) (-15 -4383 ((-639 |#1|) (-1164 (-562)))) (-15 -4383 ((-639 |#1|) (-1164 (-406 (-562))))) (-15 -4383 ((-639 |#1|) (-1164 |#1|))) (-15 -2608 ((-3 |#1| "failed") (-1164 |#1|) (-916))) (-15 -2608 ((-3 |#1| "failed") (-1164 |#1|) (-916) (-857))) (-15 ** (|#1| |#1| (-406 (-562)))) (-15 -1895 (|#1| |#1| (-562))) (-15 -1644 (|#1| |#1|)) (-15 ** (|#1| |#1| (-562))) (-15 -1568 ((-766))) (-15 ** (|#1| |#1| (-766))) (-15 ** (|#1| |#1| (-916)))) (-1007)) (T -1006)) -((-1568 (*1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-1006 *3)) (-4 *3 (-1007))))) -(-10 -8 (-15 -1644 (|#1| (-562))) (-15 -1644 (|#1| (-406 (-562)))) (-15 -1644 (|#1| |#1| (-916))) (-15 -4383 ((-639 |#1|) (-947 (-562)))) (-15 -4383 ((-639 |#1|) (-947 (-406 (-562))))) (-15 -4383 ((-639 |#1|) (-947 |#1|))) (-15 -4383 ((-639 |#1|) (-1164 (-562)))) (-15 -4383 ((-639 |#1|) (-1164 (-406 (-562))))) (-15 -4383 ((-639 |#1|) (-1164 |#1|))) (-15 -2608 ((-3 |#1| "failed") (-1164 |#1|) (-916))) (-15 -2608 ((-3 |#1| "failed") (-1164 |#1|) (-916) (-857))) (-15 ** (|#1| |#1| (-406 (-562)))) (-15 -1895 (|#1| |#1| (-562))) (-15 -1644 (|#1| |#1|)) (-15 ** (|#1| |#1| (-562))) (-15 -1568 ((-766))) (-15 ** (|#1| |#1| (-766))) (-15 ** (|#1| |#1| (-916)))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 91)) (-1965 (($ $) 92)) (-4102 (((-112) $) 94)) (-2781 (((-3 $ "failed") $ $) 19)) (-1977 (($ $) 111)) (-3788 (((-417 $) $) 112)) (-1644 (($ $) 75) (($ $ (-916)) 61) (($ (-406 (-562))) 60) (($ (-562)) 59)) (-1436 (((-112) $ $) 102)) (-1587 (((-562) $) 128)) (-3329 (($) 17 T CONST)) (-2608 (((-3 $ "failed") (-1164 $) (-916) (-857)) 69) (((-3 $ "failed") (-1164 $) (-916)) 68)) (-4048 (((-3 (-562) "failed") $) 88 (|has| (-406 (-562)) (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) 86 (|has| (-406 (-562)) (-1033 (-406 (-562))))) (((-3 (-406 (-562)) "failed") $) 83)) (-3960 (((-562) $) 87 (|has| (-406 (-562)) (-1033 (-562)))) (((-406 (-562)) $) 85 (|has| (-406 (-562)) (-1033 (-406 (-562))))) (((-406 (-562)) $) 84)) (-2225 (($ $ (-857)) 58)) (-3783 (($ $ (-857)) 57)) (-1810 (($ $ $) 106)) (-1694 (((-3 $ "failed") $) 33)) (-1787 (($ $ $) 105)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) 100)) (-3521 (((-112) $) 113)) (-2696 (((-112) $) 126)) (-4367 (((-112) $) 31)) (-1895 (($ $ (-562)) 74)) (-3855 (((-112) $) 127)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) 109)) (-1551 (($ $ $) 125)) (-2993 (($ $ $) 124)) (-2077 (((-3 (-1164 $) "failed") $) 70)) (-3296 (((-3 (-857) "failed") $) 72)) (-2437 (((-3 (-1164 $) "failed") $) 71)) (-1564 (($ (-639 $)) 98) (($ $ $) 97)) (-3696 (((-1150) $) 9)) (-1525 (($ $) 114)) (-1709 (((-1112) $) 10)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 99)) (-1606 (($ (-639 $)) 96) (($ $ $) 95)) (-1635 (((-417 $) $) 110)) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) 107)) (-1762 (((-3 $ "failed") $ $) 90)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) 101)) (-2044 (((-766) $) 103)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 104)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ (-406 (-562))) 118) (($ $) 89) (($ (-406 (-562))) 82) (($ (-562)) 81) (($ (-406 (-562))) 78)) (-1568 (((-766)) 28)) (-3799 (((-112) $ $) 93)) (-1406 (((-406 (-562)) $ $) 56)) (-4383 (((-639 $) (-1164 $)) 67) (((-639 $) (-1164 (-406 (-562)))) 66) (((-639 $) (-1164 (-562))) 65) (((-639 $) (-947 $)) 64) (((-639 $) (-947 (-406 (-562)))) 63) (((-639 $) (-947 (-562))) 62)) (-2757 (($ $) 129)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1798 (((-112) $ $) 122)) (-1771 (((-112) $ $) 121)) (-1733 (((-112) $ $) 6)) (-1785 (((-112) $ $) 123)) (-1761 (((-112) $ $) 120)) (-1859 (($ $ $) 119)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 115) (($ $ (-406 (-562))) 73)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ (-406 (-562)) $) 117) (($ $ (-406 (-562))) 116) (($ (-562) $) 80) (($ $ (-562)) 79) (($ (-406 (-562)) $) 77) (($ $ (-406 (-562))) 76))) -(((-1007) (-139)) (T -1007)) -((-1644 (*1 *1 *1) (-4 *1 (-1007))) (-3296 (*1 *2 *1) (|partial| -12 (-4 *1 (-1007)) (-5 *2 (-857)))) (-2437 (*1 *2 *1) (|partial| -12 (-5 *2 (-1164 *1)) (-4 *1 (-1007)))) (-2077 (*1 *2 *1) (|partial| -12 (-5 *2 (-1164 *1)) (-4 *1 (-1007)))) (-2608 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1164 *1)) (-5 *3 (-916)) (-5 *4 (-857)) (-4 *1 (-1007)))) (-2608 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1164 *1)) (-5 *3 (-916)) (-4 *1 (-1007)))) (-4383 (*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-1007)) (-5 *2 (-639 *1)))) (-4383 (*1 *2 *3) (-12 (-5 *3 (-1164 (-406 (-562)))) (-5 *2 (-639 *1)) (-4 *1 (-1007)))) (-4383 (*1 *2 *3) (-12 (-5 *3 (-1164 (-562))) (-5 *2 (-639 *1)) (-4 *1 (-1007)))) (-4383 (*1 *2 *3) (-12 (-5 *3 (-947 *1)) (-4 *1 (-1007)) (-5 *2 (-639 *1)))) (-4383 (*1 *2 *3) (-12 (-5 *3 (-947 (-406 (-562)))) (-5 *2 (-639 *1)) (-4 *1 (-1007)))) (-4383 (*1 *2 *3) (-12 (-5 *3 (-947 (-562))) (-5 *2 (-639 *1)) (-4 *1 (-1007)))) (-1644 (*1 *1 *1 *2) (-12 (-4 *1 (-1007)) (-5 *2 (-916)))) (-1644 (*1 *1 *2) (-12 (-5 *2 (-406 (-562))) (-4 *1 (-1007)))) (-1644 (*1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-1007)))) (-2225 (*1 *1 *1 *2) (-12 (-4 *1 (-1007)) (-5 *2 (-857)))) (-3783 (*1 *1 *1 *2) (-12 (-4 *1 (-1007)) (-5 *2 (-857)))) (-1406 (*1 *2 *1 *1) (-12 (-4 *1 (-1007)) (-5 *2 (-406 (-562)))))) -(-13 (-146) (-843) (-171) (-362) (-410 (-406 (-562))) (-38 (-562)) (-38 (-406 (-562))) (-997) (-10 -8 (-15 -3296 ((-3 (-857) "failed") $)) (-15 -2437 ((-3 (-1164 $) "failed") $)) (-15 -2077 ((-3 (-1164 $) "failed") $)) (-15 -2608 ((-3 $ "failed") (-1164 $) (-916) (-857))) (-15 -2608 ((-3 $ "failed") (-1164 $) (-916))) (-15 -4383 ((-639 $) (-1164 $))) (-15 -4383 ((-639 $) (-1164 (-406 (-562))))) (-15 -4383 ((-639 $) (-1164 (-562)))) (-15 -4383 ((-639 $) (-947 $))) (-15 -4383 ((-639 $) (-947 (-406 (-562))))) (-15 -4383 ((-639 $) (-947 (-562)))) (-15 -1644 ($ $ (-916))) (-15 -1644 ($ $)) (-15 -1644 ($ (-406 (-562)))) (-15 -1644 ($ (-562))) (-15 -2225 ($ $ (-857))) (-15 -3783 ($ $ (-857))) (-15 -1406 ((-406 (-562)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-562))) . T) ((-38 #1=(-562)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-612 #0#) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-410 (-406 (-562))) . T) ((-451) . T) ((-554) . T) ((-642 #0#) . T) ((-642 #1#) . T) ((-642 $) . T) ((-712 #0#) . T) ((-712 #1#) . T) ((-712 $) . T) ((-721) . T) ((-786) . T) ((-787) . T) ((-789) . T) ((-790) . T) ((-843) . T) ((-845) . T) ((-915) . T) ((-997) . T) ((-1033 (-406 (-562))) . T) ((-1033 (-562)) |has| (-406 (-562)) (-1033 (-562))) ((-1050 #0#) . T) ((-1050 #1#) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1211) . T)) -((-2118 (((-2 (|:| |ans| |#2|) (|:| -1603 |#2|) (|:| |sol?| (-112))) (-562) |#2| |#2| (-1168) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-639 |#2|)) (-1 (-3 (-2 (|:| -2929 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 65))) -(((-1008 |#1| |#2|) (-10 -7 (-15 -2118 ((-2 (|:| |ans| |#2|) (|:| -1603 |#2|) (|:| |sol?| (-112))) (-562) |#2| |#2| (-1168) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-639 |#2|)) (-1 (-3 (-2 (|:| -2929 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-451) (-845) (-146) (-1033 (-562)) (-635 (-562))) (-13 (-1192) (-27) (-429 |#1|))) (T -1008)) -((-2118 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1168)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-639 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2929 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1192) (-27) (-429 *8))) (-4 *8 (-13 (-451) (-845) (-146) (-1033 *3) (-635 *3))) (-5 *3 (-562)) (-5 *2 (-2 (|:| |ans| *4) (|:| -1603 *4) (|:| |sol?| (-112)))) (-5 *1 (-1008 *8 *4))))) -(-10 -7 (-15 -2118 ((-2 (|:| |ans| |#2|) (|:| -1603 |#2|) (|:| |sol?| (-112))) (-562) |#2| |#2| (-1168) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-639 |#2|)) (-1 (-3 (-2 (|:| -2929 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-2488 (((-3 (-639 |#2|) "failed") (-562) |#2| |#2| |#2| (-1168) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-639 |#2|)) (-1 (-3 (-2 (|:| -2929 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53))) -(((-1009 |#1| |#2|) (-10 -7 (-15 -2488 ((-3 (-639 |#2|) "failed") (-562) |#2| |#2| |#2| (-1168) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-639 |#2|)) (-1 (-3 (-2 (|:| -2929 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-451) (-845) (-146) (-1033 (-562)) (-635 (-562))) (-13 (-1192) (-27) (-429 |#1|))) (T -1009)) -((-2488 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1168)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-639 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2929 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1192) (-27) (-429 *8))) (-4 *8 (-13 (-451) (-845) (-146) (-1033 *3) (-635 *3))) (-5 *3 (-562)) (-5 *2 (-639 *4)) (-5 *1 (-1009 *8 *4))))) -(-10 -7 (-15 -2488 ((-3 (-639 |#2|) "failed") (-562) |#2| |#2| |#2| (-1168) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-639 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-639 |#2|)) (-1 (-3 (-2 (|:| -2929 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-2600 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3339 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-562)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-562) (-1 |#2| |#2|)) 31)) (-4173 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |c| (-406 |#2|)) (|:| -3354 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|)) 59)) (-2798 (((-2 (|:| |ans| (-406 |#2|)) (|:| |nosol| (-112))) (-406 |#2|) (-406 |#2|)) 64))) -(((-1010 |#1| |#2|) (-10 -7 (-15 -4173 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |c| (-406 |#2|)) (|:| -3354 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|))) (-15 -2798 ((-2 (|:| |ans| (-406 |#2|)) (|:| |nosol| (-112))) (-406 |#2|) (-406 |#2|))) (-15 -2600 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3339 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-562)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-562) (-1 |#2| |#2|)))) (-13 (-362) (-146) (-1033 (-562))) (-1232 |#1|)) (T -1010)) -((-2600 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1232 *6)) (-4 *6 (-13 (-362) (-146) (-1033 *4))) (-5 *4 (-562)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3339 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1010 *6 *3)))) (-2798 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-362) (-146) (-1033 (-562)))) (-4 *5 (-1232 *4)) (-5 *2 (-2 (|:| |ans| (-406 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1010 *4 *5)) (-5 *3 (-406 *5)))) (-4173 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-13 (-362) (-146) (-1033 (-562)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-406 *6)) (|:| |c| (-406 *6)) (|:| -3354 *6))) (-5 *1 (-1010 *5 *6)) (-5 *3 (-406 *6))))) -(-10 -7 (-15 -4173 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |c| (-406 |#2|)) (|:| -3354 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|))) (-15 -2798 ((-2 (|:| |ans| (-406 |#2|)) (|:| |nosol| (-112))) (-406 |#2|) (-406 |#2|))) (-15 -2600 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3339 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-562)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-562) (-1 |#2| |#2|)))) -((-3819 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |h| |#2|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| -3354 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|)) 22)) (-1400 (((-3 (-639 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|)) 33))) -(((-1011 |#1| |#2|) (-10 -7 (-15 -3819 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |h| |#2|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| -3354 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|))) (-15 -1400 ((-3 (-639 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|)))) (-13 (-362) (-146) (-1033 (-562))) (-1232 |#1|)) (T -1011)) -((-1400 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-362) (-146) (-1033 (-562)))) (-4 *5 (-1232 *4)) (-5 *2 (-639 (-406 *5))) (-5 *1 (-1011 *4 *5)) (-5 *3 (-406 *5)))) (-3819 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-13 (-362) (-146) (-1033 (-562)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-406 *6)) (|:| |h| *6) (|:| |c1| (-406 *6)) (|:| |c2| (-406 *6)) (|:| -3354 *6))) (-5 *1 (-1011 *5 *6)) (-5 *3 (-406 *6))))) -(-10 -7 (-15 -3819 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-406 |#2|)) (|:| |h| |#2|) (|:| |c1| (-406 |#2|)) (|:| |c2| (-406 |#2|)) (|:| -3354 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|) (-1 |#2| |#2|))) (-15 -1400 ((-3 (-639 (-406 |#2|)) "failed") (-406 |#2|) (-406 |#2|) (-406 |#2|)))) -((-4174 (((-1 |#1|) (-639 (-2 (|:| -2533 |#1|) (|:| -2277 (-562))))) 37)) (-2674 (((-1 |#1|) (-1094 |#1|)) 45)) (-3873 (((-1 |#1|) (-1256 |#1|) (-1256 (-562)) (-562)) 34))) -(((-1012 |#1|) (-10 -7 (-15 -2674 ((-1 |#1|) (-1094 |#1|))) (-15 -4174 ((-1 |#1|) (-639 (-2 (|:| -2533 |#1|) (|:| -2277 (-562)))))) (-15 -3873 ((-1 |#1|) (-1256 |#1|) (-1256 (-562)) (-562)))) (-1092)) (T -1012)) -((-3873 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1256 *6)) (-5 *4 (-1256 (-562))) (-5 *5 (-562)) (-4 *6 (-1092)) (-5 *2 (-1 *6)) (-5 *1 (-1012 *6)))) (-4174 (*1 *2 *3) (-12 (-5 *3 (-639 (-2 (|:| -2533 *4) (|:| -2277 (-562))))) (-4 *4 (-1092)) (-5 *2 (-1 *4)) (-5 *1 (-1012 *4)))) (-2674 (*1 *2 *3) (-12 (-5 *3 (-1094 *4)) (-4 *4 (-1092)) (-5 *2 (-1 *4)) (-5 *1 (-1012 *4))))) -(-10 -7 (-15 -2674 ((-1 |#1|) (-1094 |#1|))) (-15 -4174 ((-1 |#1|) (-639 (-2 (|:| -2533 |#1|) (|:| -2277 (-562)))))) (-15 -3873 ((-1 |#1|) (-1256 |#1|) (-1256 (-562)) (-562)))) -((-1993 (((-766) (-335 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-1013 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1993 ((-766) (-335 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-362) (-1232 |#1|) (-1232 (-406 |#2|)) (-341 |#1| |#2| |#3|) (-13 (-367) (-362))) (T -1013)) -((-1993 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-335 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-362)) (-4 *7 (-1232 *6)) (-4 *4 (-1232 (-406 *7))) (-4 *8 (-341 *6 *7 *4)) (-4 *9 (-13 (-367) (-362))) (-5 *2 (-766)) (-5 *1 (-1013 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -1993 ((-766) (-335 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-4041 (((-112) $ $) NIL)) (-1502 (((-1127) $) 9)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL) (($ (-1173)) NIL) (((-1173) $) NIL)) (-3265 (((-1127) $) 11)) (-1733 (((-112) $ $) NIL))) -(((-1014) (-13 (-1075) (-10 -8 (-15 -1502 ((-1127) $)) (-15 -3265 ((-1127) $))))) (T -1014)) -((-1502 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1014)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1014))))) -(-13 (-1075) (-10 -8 (-15 -1502 ((-1127) $)) (-15 -3265 ((-1127) $)))) -((-2776 (((-3 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))) "failed") |#1| (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))) (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) 31) (((-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))) |#1| (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))) (-406 (-562))) 28)) (-3944 (((-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) |#1| (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))) (-406 (-562))) 33) (((-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) |#1| (-406 (-562))) 29) (((-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) |#1| (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) 32) (((-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) |#1|) 27)) (-2433 (((-639 (-406 (-562))) (-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))))) 19)) (-2054 (((-406 (-562)) (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) 16))) -(((-1015 |#1|) (-10 -7 (-15 -3944 ((-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) |#1|)) (-15 -3944 ((-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) |#1| (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))))) (-15 -3944 ((-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) |#1| (-406 (-562)))) (-15 -3944 ((-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) |#1| (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))) (-406 (-562)))) (-15 -2776 ((-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))) |#1| (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))) (-406 (-562)))) (-15 -2776 ((-3 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))) "failed") |#1| (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))) (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))))) (-15 -2054 ((-406 (-562)) (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))))) (-15 -2433 ((-639 (-406 (-562))) (-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))))))) (-1232 (-562))) (T -1015)) -((-2433 (*1 *2 *3) (-12 (-5 *3 (-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))))) (-5 *2 (-639 (-406 (-562)))) (-5 *1 (-1015 *4)) (-4 *4 (-1232 (-562))))) (-2054 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) (-5 *2 (-406 (-562))) (-5 *1 (-1015 *4)) (-4 *4 (-1232 (-562))))) (-2776 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) (-5 *1 (-1015 *3)) (-4 *3 (-1232 (-562))))) (-2776 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) (-5 *4 (-406 (-562))) (-5 *1 (-1015 *3)) (-4 *3 (-1232 (-562))))) (-3944 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-406 (-562))) (-5 *2 (-639 (-2 (|:| -1589 *5) (|:| -1603 *5)))) (-5 *1 (-1015 *3)) (-4 *3 (-1232 (-562))) (-5 *4 (-2 (|:| -1589 *5) (|:| -1603 *5))))) (-3944 (*1 *2 *3 *4) (-12 (-5 *2 (-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))))) (-5 *1 (-1015 *3)) (-4 *3 (-1232 (-562))) (-5 *4 (-406 (-562))))) (-3944 (*1 *2 *3 *4) (-12 (-5 *2 (-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))))) (-5 *1 (-1015 *3)) (-4 *3 (-1232 (-562))) (-5 *4 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))))) (-3944 (*1 *2 *3) (-12 (-5 *2 (-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))))) (-5 *1 (-1015 *3)) (-4 *3 (-1232 (-562)))))) -(-10 -7 (-15 -3944 ((-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) |#1|)) (-15 -3944 ((-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) |#1| (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))))) (-15 -3944 ((-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) |#1| (-406 (-562)))) (-15 -3944 ((-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) |#1| (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))) (-406 (-562)))) (-15 -2776 ((-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))) |#1| (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))) (-406 (-562)))) (-15 -2776 ((-3 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))) "failed") |#1| (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))) (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))))) (-15 -2054 ((-406 (-562)) (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))))) (-15 -2433 ((-639 (-406 (-562))) (-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))))))) -((-2776 (((-3 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))) "failed") |#1| (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))) (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) 35) (((-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))) |#1| (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))) (-406 (-562))) 32)) (-3944 (((-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) |#1| (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))) (-406 (-562))) 30) (((-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) |#1| (-406 (-562))) 26) (((-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) |#1| (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) 28) (((-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) |#1|) 24))) -(((-1016 |#1|) (-10 -7 (-15 -3944 ((-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) |#1|)) (-15 -3944 ((-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) |#1| (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))))) (-15 -3944 ((-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) |#1| (-406 (-562)))) (-15 -3944 ((-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) |#1| (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))) (-406 (-562)))) (-15 -2776 ((-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))) |#1| (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))) (-406 (-562)))) (-15 -2776 ((-3 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))) "failed") |#1| (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))) (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))))) (-1232 (-406 (-562)))) (T -1016)) -((-2776 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) (-5 *1 (-1016 *3)) (-4 *3 (-1232 (-406 (-562)))))) (-2776 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) (-5 *4 (-406 (-562))) (-5 *1 (-1016 *3)) (-4 *3 (-1232 *4)))) (-3944 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-406 (-562))) (-5 *2 (-639 (-2 (|:| -1589 *5) (|:| -1603 *5)))) (-5 *1 (-1016 *3)) (-4 *3 (-1232 *5)) (-5 *4 (-2 (|:| -1589 *5) (|:| -1603 *5))))) (-3944 (*1 *2 *3 *4) (-12 (-5 *4 (-406 (-562))) (-5 *2 (-639 (-2 (|:| -1589 *4) (|:| -1603 *4)))) (-5 *1 (-1016 *3)) (-4 *3 (-1232 *4)))) (-3944 (*1 *2 *3 *4) (-12 (-5 *2 (-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))))) (-5 *1 (-1016 *3)) (-4 *3 (-1232 (-406 (-562)))) (-5 *4 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))))) (-3944 (*1 *2 *3) (-12 (-5 *2 (-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))))) (-5 *1 (-1016 *3)) (-4 *3 (-1232 (-406 (-562))))))) -(-10 -7 (-15 -3944 ((-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) |#1|)) (-15 -3944 ((-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) |#1| (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))))) (-15 -3944 ((-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) |#1| (-406 (-562)))) (-15 -3944 ((-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) |#1| (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))) (-406 (-562)))) (-15 -2776 ((-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))) |#1| (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))) (-406 (-562)))) (-15 -2776 ((-3 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))) "failed") |#1| (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))) (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))))) -((-4208 (((-224) $) 6) (((-378) $) 9))) -(((-1017) (-139)) (T -1017)) -NIL -(-13 (-610 (-224)) (-610 (-378))) -(((-610 (-224)) . T) ((-610 (-378)) . T)) -((-3888 (((-639 (-378)) (-947 (-562)) (-378)) 28) (((-639 (-378)) (-947 (-406 (-562))) (-378)) 27)) (-2107 (((-639 (-639 (-378))) (-639 (-947 (-562))) (-639 (-1168)) (-378)) 37))) -(((-1018) (-10 -7 (-15 -3888 ((-639 (-378)) (-947 (-406 (-562))) (-378))) (-15 -3888 ((-639 (-378)) (-947 (-562)) (-378))) (-15 -2107 ((-639 (-639 (-378))) (-639 (-947 (-562))) (-639 (-1168)) (-378))))) (T -1018)) -((-2107 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 (-947 (-562)))) (-5 *4 (-639 (-1168))) (-5 *2 (-639 (-639 (-378)))) (-5 *1 (-1018)) (-5 *5 (-378)))) (-3888 (*1 *2 *3 *4) (-12 (-5 *3 (-947 (-562))) (-5 *2 (-639 (-378))) (-5 *1 (-1018)) (-5 *4 (-378)))) (-3888 (*1 *2 *3 *4) (-12 (-5 *3 (-947 (-406 (-562)))) (-5 *2 (-639 (-378))) (-5 *1 (-1018)) (-5 *4 (-378))))) -(-10 -7 (-15 -3888 ((-639 (-378)) (-947 (-406 (-562))) (-378))) (-15 -3888 ((-639 (-378)) (-947 (-562)) (-378))) (-15 -2107 ((-639 (-639 (-378))) (-639 (-947 (-562))) (-639 (-1168)) (-378)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) 70)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-1644 (($ $) NIL) (($ $ (-916)) NIL) (($ (-406 (-562))) NIL) (($ (-562)) NIL)) (-1436 (((-112) $ $) NIL)) (-1587 (((-562) $) 65)) (-3329 (($) NIL T CONST)) (-2608 (((-3 $ "failed") (-1164 $) (-916) (-857)) NIL) (((-3 $ "failed") (-1164 $) (-916)) 50)) (-4048 (((-3 (-406 (-562)) "failed") $) NIL (|has| (-406 (-562)) (-1033 (-406 (-562))))) (((-3 (-406 (-562)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-562) "failed") $) NIL (-4037 (|has| (-406 (-562)) (-1033 (-562))) (|has| |#1| (-1033 (-562)))))) (-3960 (((-406 (-562)) $) 15 (|has| (-406 (-562)) (-1033 (-406 (-562))))) (((-406 (-562)) $) 15) ((|#1| $) 108) (((-562) $) NIL (-4037 (|has| (-406 (-562)) (-1033 (-562))) (|has| |#1| (-1033 (-562)))))) (-2225 (($ $ (-857)) 42)) (-3783 (($ $ (-857)) 43)) (-1810 (($ $ $) NIL)) (-2918 (((-406 (-562)) $ $) 19)) (-1694 (((-3 $ "failed") $) 83)) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-3521 (((-112) $) NIL)) (-2696 (((-112) $) 61)) (-4367 (((-112) $) NIL)) (-1895 (($ $ (-562)) NIL)) (-3855 (((-112) $) 64)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-2077 (((-3 (-1164 $) "failed") $) 78)) (-3296 (((-3 (-857) "failed") $) 77)) (-2437 (((-3 (-1164 $) "failed") $) 75)) (-3786 (((-3 (-1054 $ (-1164 $)) "failed") $) 73)) (-1564 (($ (-639 $)) NIL) (($ $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) 84)) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ (-639 $)) NIL) (($ $ $) NIL)) (-1635 (((-417 $) $) NIL)) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2044 (((-766) $) NIL)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-4053 (((-857) $) 82) (($ (-562)) NIL) (($ (-406 (-562))) NIL) (($ $) 58) (($ (-406 (-562))) NIL) (($ (-562)) NIL) (($ (-406 (-562))) NIL) (($ |#1|) 110)) (-1568 (((-766)) NIL)) (-3799 (((-112) $ $) NIL)) (-1406 (((-406 (-562)) $ $) 25)) (-4383 (((-639 $) (-1164 $)) 56) (((-639 $) (-1164 (-406 (-562)))) NIL) (((-639 $) (-1164 (-562))) NIL) (((-639 $) (-947 $)) NIL) (((-639 $) (-947 (-406 (-562)))) NIL) (((-639 $) (-947 (-562))) NIL)) (-4268 (($ (-1054 $ (-1164 $)) (-857)) 41)) (-2757 (($ $) 20)) (-2285 (($) 29 T CONST)) (-2294 (($) 35 T CONST)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 71)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) 22)) (-1859 (($ $ $) 33)) (-1847 (($ $) 34) (($ $ $) 69)) (-1836 (($ $ $) 103)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL) (($ $ (-406 (-562))) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 91) (($ $ $) 96) (($ (-406 (-562)) $) NIL) (($ $ (-406 (-562))) NIL) (($ (-562) $) 91) (($ $ (-562)) NIL) (($ (-406 (-562)) $) NIL) (($ $ (-406 (-562))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL))) -(((-1019 |#1|) (-13 (-1007) (-410 |#1|) (-38 |#1|) (-10 -8 (-15 -4268 ($ (-1054 $ (-1164 $)) (-857))) (-15 -3786 ((-3 (-1054 $ (-1164 $)) "failed") $)) (-15 -2918 ((-406 (-562)) $ $)))) (-13 (-843) (-362) (-1017))) (T -1019)) -((-4268 (*1 *1 *2 *3) (-12 (-5 *2 (-1054 (-1019 *4) (-1164 (-1019 *4)))) (-5 *3 (-857)) (-5 *1 (-1019 *4)) (-4 *4 (-13 (-843) (-362) (-1017))))) (-3786 (*1 *2 *1) (|partial| -12 (-5 *2 (-1054 (-1019 *3) (-1164 (-1019 *3)))) (-5 *1 (-1019 *3)) (-4 *3 (-13 (-843) (-362) (-1017))))) (-2918 (*1 *2 *1 *1) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-1019 *3)) (-4 *3 (-13 (-843) (-362) (-1017)))))) -(-13 (-1007) (-410 |#1|) (-38 |#1|) (-10 -8 (-15 -4268 ($ (-1054 $ (-1164 $)) (-857))) (-15 -3786 ((-3 (-1054 $ (-1164 $)) "failed") $)) (-15 -2918 ((-406 (-562)) $ $)))) -((-2459 (((-2 (|:| -3339 |#2|) (|:| -2429 (-639 |#1|))) |#2| (-639 |#1|)) 20) ((|#2| |#2| |#1|) 15))) -(((-1020 |#1| |#2|) (-10 -7 (-15 -2459 (|#2| |#2| |#1|)) (-15 -2459 ((-2 (|:| -3339 |#2|) (|:| -2429 (-639 |#1|))) |#2| (-639 |#1|)))) (-362) (-650 |#1|)) (T -1020)) -((-2459 (*1 *2 *3 *4) (-12 (-4 *5 (-362)) (-5 *2 (-2 (|:| -3339 *3) (|:| -2429 (-639 *5)))) (-5 *1 (-1020 *5 *3)) (-5 *4 (-639 *5)) (-4 *3 (-650 *5)))) (-2459 (*1 *2 *2 *3) (-12 (-4 *3 (-362)) (-5 *1 (-1020 *3 *2)) (-4 *2 (-650 *3))))) -(-10 -7 (-15 -2459 (|#2| |#2| |#1|)) (-15 -2459 ((-2 (|:| -3339 |#2|) (|:| -2429 (-639 |#1|))) |#2| (-639 |#1|)))) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2617 ((|#1| $ |#1|) 14)) (-4200 ((|#1| $ |#1|) 12)) (-3396 (($ |#1|) 10)) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-2343 ((|#1| $) 11)) (-1700 ((|#1| $) 13)) (-4053 (((-857) $) 21 (|has| |#1| (-1092)))) (-1733 (((-112) $ $) 9))) -(((-1021 |#1|) (-13 (-1207) (-10 -8 (-15 -3396 ($ |#1|)) (-15 -2343 (|#1| $)) (-15 -4200 (|#1| $ |#1|)) (-15 -1700 (|#1| $)) (-15 -2617 (|#1| $ |#1|)) (-15 -1733 ((-112) $ $)) (IF (|has| |#1| (-1092)) (-6 (-1092)) |%noBranch|))) (-1207)) (T -1021)) -((-3396 (*1 *1 *2) (-12 (-5 *1 (-1021 *2)) (-4 *2 (-1207)))) (-2343 (*1 *2 *1) (-12 (-5 *1 (-1021 *2)) (-4 *2 (-1207)))) (-4200 (*1 *2 *1 *2) (-12 (-5 *1 (-1021 *2)) (-4 *2 (-1207)))) (-1700 (*1 *2 *1) (-12 (-5 *1 (-1021 *2)) (-4 *2 (-1207)))) (-2617 (*1 *2 *1 *2) (-12 (-5 *1 (-1021 *2)) (-4 *2 (-1207)))) (-1733 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1021 *3)) (-4 *3 (-1207))))) -(-13 (-1207) (-10 -8 (-15 -3396 ($ |#1|)) (-15 -2343 (|#1| $)) (-15 -4200 (|#1| $ |#1|)) (-15 -1700 (|#1| $)) (-15 -2617 (|#1| $ |#1|)) (-15 -1733 ((-112) $ $)) (IF (|has| |#1| (-1092)) (-6 (-1092)) |%noBranch|))) -((-4041 (((-112) $ $) NIL)) (-1330 (((-639 (-2 (|:| -1449 $) (|:| -3315 (-639 |#4|)))) (-639 |#4|)) NIL)) (-3672 (((-639 $) (-639 |#4|)) 105) (((-639 $) (-639 |#4|) (-112)) 106) (((-639 $) (-639 |#4|) (-112) (-112)) 104) (((-639 $) (-639 |#4|) (-112) (-112) (-112) (-112)) 107)) (-1401 (((-639 |#3|) $) NIL)) (-2799 (((-112) $) NIL)) (-4370 (((-112) $) NIL (|has| |#1| (-554)))) (-4177 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3623 ((|#4| |#4| $) NIL)) (-1977 (((-639 (-2 (|:| |val| |#4|) (|:| -1501 $))) |#4| $) 99)) (-1395 (((-2 (|:| |under| $) (|:| -3870 $) (|:| |upper| $)) $ |#3|) NIL)) (-3735 (((-112) $ (-766)) NIL)) (-3556 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4403))) (((-3 |#4| "failed") $ |#3|) 54)) (-3329 (($) NIL T CONST)) (-2169 (((-112) $) 27 (|has| |#1| (-554)))) (-2183 (((-112) $ $) NIL (|has| |#1| (-554)))) (-2864 (((-112) $ $) NIL (|has| |#1| (-554)))) (-4219 (((-112) $) NIL (|has| |#1| (-554)))) (-4227 (((-639 |#4|) (-639 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2037 (((-639 |#4|) (-639 |#4|) $) NIL (|has| |#1| (-554)))) (-4230 (((-639 |#4|) (-639 |#4|) $) NIL (|has| |#1| (-554)))) (-4048 (((-3 $ "failed") (-639 |#4|)) NIL)) (-3960 (($ (-639 |#4|)) NIL)) (-1434 (((-3 $ "failed") $) 40)) (-3255 ((|#4| |#4| $) 57)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#4| (-1092))))) (-1475 (($ |#4| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#4| (-1092)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4403)))) (-1441 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-554)))) (-3300 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2227 ((|#4| |#4| $) NIL)) (-1954 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4403)) (|has| |#4| (-1092)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4403))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4403))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1471 (((-2 (|:| -1449 (-639 |#4|)) (|:| -3315 (-639 |#4|))) $) NIL)) (-3189 (((-112) |#4| $) NIL)) (-2633 (((-112) |#4| $) NIL)) (-2813 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3764 (((-2 (|:| |val| (-639 |#4|)) (|:| |towers| (-639 $))) (-639 |#4|) (-112) (-112)) 119)) (-1720 (((-639 |#4|) $) 17 (|has| $ (-6 -4403)))) (-1493 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3761 ((|#3| $) 34)) (-4172 (((-112) $ (-766)) NIL)) (-2123 (((-639 |#4|) $) 18 (|has| $ (-6 -4403)))) (-1572 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4403)) (|has| |#4| (-1092))))) (-1491 (($ (-1 |#4| |#4|) $) 24 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#4| |#4|) $) 22)) (-3133 (((-639 |#3|) $) NIL)) (-3112 (((-112) |#3| $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL)) (-4093 (((-3 |#4| (-639 $)) |#4| |#4| $) NIL)) (-2672 (((-639 (-2 (|:| |val| |#4|) (|:| -1501 $))) |#4| |#4| $) 97)) (-1504 (((-3 |#4| "failed") $) 38)) (-2334 (((-639 $) |#4| $) 80)) (-4302 (((-3 (-112) (-639 $)) |#4| $) NIL)) (-3792 (((-639 (-2 (|:| |val| (-112)) (|:| -1501 $))) |#4| $) 90) (((-112) |#4| $) 52)) (-4169 (((-639 $) |#4| $) 102) (((-639 $) (-639 |#4|) $) NIL) (((-639 $) (-639 |#4|) (-639 $)) 103) (((-639 $) |#4| (-639 $)) NIL)) (-4110 (((-639 $) (-639 |#4|) (-112) (-112) (-112)) 114)) (-1997 (($ |#4| $) 70) (($ (-639 |#4|) $) 71) (((-639 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 67)) (-2063 (((-639 |#4|) $) NIL)) (-1645 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2651 ((|#4| |#4| $) NIL)) (-1789 (((-112) $ $) NIL)) (-4123 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-554)))) (-2830 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1630 ((|#4| |#4| $) NIL)) (-1709 (((-1112) $) NIL)) (-1421 (((-3 |#4| "failed") $) 36)) (-1963 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4333 (((-3 $ "failed") $ |#4|) 48)) (-4316 (($ $ |#4|) NIL) (((-639 $) |#4| $) 82) (((-639 $) |#4| (-639 $)) NIL) (((-639 $) (-639 |#4|) $) NIL) (((-639 $) (-639 |#4|) (-639 $)) 77)) (-3008 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 |#4|) (-639 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-639 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))))) (-1452 (((-112) $ $) NIL)) (-3087 (((-112) $) 16)) (-1663 (($) 14)) (-2250 (((-766) $) NIL)) (-1723 (((-766) |#4| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#4| (-1092)))) (((-766) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4403)))) (-4220 (($ $) 13)) (-4208 (((-535) $) NIL (|has| |#4| (-610 (-535))))) (-4064 (($ (-639 |#4|)) 21)) (-2316 (($ $ |#3|) 43)) (-2180 (($ $ |#3|) 44)) (-2209 (($ $) NIL)) (-1962 (($ $ |#3|) NIL)) (-4053 (((-857) $) 32) (((-639 |#4|) $) 41)) (-4157 (((-766) $) NIL (|has| |#3| (-367)))) (-4168 (((-3 (-2 (|:| |bas| $) (|:| -2774 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2774 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2350 (((-112) $ (-1 (-112) |#4| (-639 |#4|))) NIL)) (-4125 (((-639 $) |#4| $) 79) (((-639 $) |#4| (-639 $)) NIL) (((-639 $) (-639 |#4|) $) NIL) (((-639 $) (-639 |#4|) (-639 $)) NIL)) (-2879 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4403)))) (-3278 (((-639 |#3|) $) NIL)) (-1972 (((-112) |#4| $) NIL)) (-3782 (((-112) |#3| $) 53)) (-1733 (((-112) $ $) NIL)) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-1022 |#1| |#2| |#3| |#4|) (-13 (-1064 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1997 ((-639 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3672 ((-639 $) (-639 |#4|) (-112) (-112))) (-15 -3672 ((-639 $) (-639 |#4|) (-112) (-112) (-112) (-112))) (-15 -4110 ((-639 $) (-639 |#4|) (-112) (-112) (-112))) (-15 -3764 ((-2 (|:| |val| (-639 |#4|)) (|:| |towers| (-639 $))) (-639 |#4|) (-112) (-112))))) (-451) (-788) (-845) (-1058 |#1| |#2| |#3|)) (T -1022)) -((-1997 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-639 (-1022 *5 *6 *7 *3))) (-5 *1 (-1022 *5 *6 *7 *3)) (-4 *3 (-1058 *5 *6 *7)))) (-3672 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-639 (-1022 *5 *6 *7 *8))) (-5 *1 (-1022 *5 *6 *7 *8)))) (-3672 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-639 (-1022 *5 *6 *7 *8))) (-5 *1 (-1022 *5 *6 *7 *8)))) (-4110 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-639 (-1022 *5 *6 *7 *8))) (-5 *1 (-1022 *5 *6 *7 *8)))) (-3764 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *8 (-1058 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-639 *8)) (|:| |towers| (-639 (-1022 *5 *6 *7 *8))))) (-5 *1 (-1022 *5 *6 *7 *8)) (-5 *3 (-639 *8))))) -(-13 (-1064 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1997 ((-639 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3672 ((-639 $) (-639 |#4|) (-112) (-112))) (-15 -3672 ((-639 $) (-639 |#4|) (-112) (-112) (-112) (-112))) (-15 -4110 ((-639 $) (-639 |#4|) (-112) (-112) (-112))) (-15 -3764 ((-2 (|:| |val| (-639 |#4|)) (|:| |towers| (-639 $))) (-639 |#4|) (-112) (-112))))) -((-2699 (((-639 (-683 |#1|)) (-639 (-683 |#1|))) 58) (((-683 |#1|) (-683 |#1|)) 57) (((-639 (-683 |#1|)) (-639 (-683 |#1|)) (-639 (-683 |#1|))) 56) (((-683 |#1|) (-683 |#1|) (-683 |#1|)) 53)) (-4150 (((-639 (-683 |#1|)) (-639 (-683 |#1|)) (-916)) 52) (((-683 |#1|) (-683 |#1|) (-916)) 51)) (-1313 (((-639 (-683 (-562))) (-639 (-639 (-562)))) 68) (((-639 (-683 (-562))) (-639 (-900 (-562))) (-562)) 67) (((-683 (-562)) (-639 (-562))) 64) (((-683 (-562)) (-900 (-562)) (-562)) 63)) (-1736 (((-683 (-947 |#1|)) (-766)) 81)) (-2143 (((-639 (-683 |#1|)) (-639 (-683 |#1|)) (-916)) 37 (|has| |#1| (-6 (-4405 "*")))) (((-683 |#1|) (-683 |#1|) (-916)) 35 (|has| |#1| (-6 (-4405 "*")))))) -(((-1023 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4405 "*"))) (-15 -2143 ((-683 |#1|) (-683 |#1|) (-916))) |%noBranch|) (IF (|has| |#1| (-6 (-4405 "*"))) (-15 -2143 ((-639 (-683 |#1|)) (-639 (-683 |#1|)) (-916))) |%noBranch|) (-15 -1736 ((-683 (-947 |#1|)) (-766))) (-15 -4150 ((-683 |#1|) (-683 |#1|) (-916))) (-15 -4150 ((-639 (-683 |#1|)) (-639 (-683 |#1|)) (-916))) (-15 -2699 ((-683 |#1|) (-683 |#1|) (-683 |#1|))) (-15 -2699 ((-639 (-683 |#1|)) (-639 (-683 |#1|)) (-639 (-683 |#1|)))) (-15 -2699 ((-683 |#1|) (-683 |#1|))) (-15 -2699 ((-639 (-683 |#1|)) (-639 (-683 |#1|)))) (-15 -1313 ((-683 (-562)) (-900 (-562)) (-562))) (-15 -1313 ((-683 (-562)) (-639 (-562)))) (-15 -1313 ((-639 (-683 (-562))) (-639 (-900 (-562))) (-562))) (-15 -1313 ((-639 (-683 (-562))) (-639 (-639 (-562)))))) (-1044)) (T -1023)) -((-1313 (*1 *2 *3) (-12 (-5 *3 (-639 (-639 (-562)))) (-5 *2 (-639 (-683 (-562)))) (-5 *1 (-1023 *4)) (-4 *4 (-1044)))) (-1313 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-900 (-562)))) (-5 *4 (-562)) (-5 *2 (-639 (-683 *4))) (-5 *1 (-1023 *5)) (-4 *5 (-1044)))) (-1313 (*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-683 (-562))) (-5 *1 (-1023 *4)) (-4 *4 (-1044)))) (-1313 (*1 *2 *3 *4) (-12 (-5 *3 (-900 (-562))) (-5 *4 (-562)) (-5 *2 (-683 *4)) (-5 *1 (-1023 *5)) (-4 *5 (-1044)))) (-2699 (*1 *2 *2) (-12 (-5 *2 (-639 (-683 *3))) (-4 *3 (-1044)) (-5 *1 (-1023 *3)))) (-2699 (*1 *2 *2) (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-1023 *3)))) (-2699 (*1 *2 *2 *2) (-12 (-5 *2 (-639 (-683 *3))) (-4 *3 (-1044)) (-5 *1 (-1023 *3)))) (-2699 (*1 *2 *2 *2) (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-1023 *3)))) (-4150 (*1 *2 *2 *3) (-12 (-5 *2 (-639 (-683 *4))) (-5 *3 (-916)) (-4 *4 (-1044)) (-5 *1 (-1023 *4)))) (-4150 (*1 *2 *2 *3) (-12 (-5 *2 (-683 *4)) (-5 *3 (-916)) (-4 *4 (-1044)) (-5 *1 (-1023 *4)))) (-1736 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-683 (-947 *4))) (-5 *1 (-1023 *4)) (-4 *4 (-1044)))) (-2143 (*1 *2 *2 *3) (-12 (-5 *2 (-639 (-683 *4))) (-5 *3 (-916)) (|has| *4 (-6 (-4405 "*"))) (-4 *4 (-1044)) (-5 *1 (-1023 *4)))) (-2143 (*1 *2 *2 *3) (-12 (-5 *2 (-683 *4)) (-5 *3 (-916)) (|has| *4 (-6 (-4405 "*"))) (-4 *4 (-1044)) (-5 *1 (-1023 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4405 "*"))) (-15 -2143 ((-683 |#1|) (-683 |#1|) (-916))) |%noBranch|) (IF (|has| |#1| (-6 (-4405 "*"))) (-15 -2143 ((-639 (-683 |#1|)) (-639 (-683 |#1|)) (-916))) |%noBranch|) (-15 -1736 ((-683 (-947 |#1|)) (-766))) (-15 -4150 ((-683 |#1|) (-683 |#1|) (-916))) (-15 -4150 ((-639 (-683 |#1|)) (-639 (-683 |#1|)) (-916))) (-15 -2699 ((-683 |#1|) (-683 |#1|) (-683 |#1|))) (-15 -2699 ((-639 (-683 |#1|)) (-639 (-683 |#1|)) (-639 (-683 |#1|)))) (-15 -2699 ((-683 |#1|) (-683 |#1|))) (-15 -2699 ((-639 (-683 |#1|)) (-639 (-683 |#1|)))) (-15 -1313 ((-683 (-562)) (-900 (-562)) (-562))) (-15 -1313 ((-683 (-562)) (-639 (-562)))) (-15 -1313 ((-639 (-683 (-562))) (-639 (-900 (-562))) (-562))) (-15 -1313 ((-639 (-683 (-562))) (-639 (-639 (-562)))))) -((-1424 (((-683 |#1|) (-639 (-683 |#1|)) (-1256 |#1|)) 49 (|has| |#1| (-306)))) (-1841 (((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|)) (-1256 (-1256 |#1|))) 75 (|has| |#1| (-362))) (((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|)) (-1256 |#1|)) 78 (|has| |#1| (-362)))) (-3086 (((-1256 |#1|) (-639 (-1256 |#1|)) (-562)) 92 (-12 (|has| |#1| (-362)) (|has| |#1| (-367))))) (-1391 (((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|)) (-916)) 84 (-12 (|has| |#1| (-362)) (|has| |#1| (-367)))) (((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|)) (-112)) 82 (-12 (|has| |#1| (-362)) (|has| |#1| (-367)))) (((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|))) 81 (-12 (|has| |#1| (-362)) (|has| |#1| (-367)))) (((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|)) (-112) (-562) (-562)) 80 (-12 (|has| |#1| (-362)) (|has| |#1| (-367))))) (-4128 (((-112) (-639 (-683 |#1|))) 70 (|has| |#1| (-362))) (((-112) (-639 (-683 |#1|)) (-562)) 72 (|has| |#1| (-362)))) (-4239 (((-1256 (-1256 |#1|)) (-639 (-683 |#1|)) (-1256 |#1|)) 47 (|has| |#1| (-306)))) (-2837 (((-683 |#1|) (-639 (-683 |#1|)) (-683 |#1|)) 33)) (-3989 (((-683 |#1|) (-1256 (-1256 |#1|))) 30)) (-2318 (((-683 |#1|) (-639 (-683 |#1|)) (-639 (-683 |#1|)) (-562)) 64 (|has| |#1| (-362))) (((-683 |#1|) (-639 (-683 |#1|)) (-639 (-683 |#1|))) 63 (|has| |#1| (-362))) (((-683 |#1|) (-639 (-683 |#1|)) (-639 (-683 |#1|)) (-112) (-562)) 68 (|has| |#1| (-362))))) -(((-1024 |#1|) (-10 -7 (-15 -3989 ((-683 |#1|) (-1256 (-1256 |#1|)))) (-15 -2837 ((-683 |#1|) (-639 (-683 |#1|)) (-683 |#1|))) (IF (|has| |#1| (-306)) (PROGN (-15 -4239 ((-1256 (-1256 |#1|)) (-639 (-683 |#1|)) (-1256 |#1|))) (-15 -1424 ((-683 |#1|) (-639 (-683 |#1|)) (-1256 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -2318 ((-683 |#1|) (-639 (-683 |#1|)) (-639 (-683 |#1|)) (-112) (-562))) (-15 -2318 ((-683 |#1|) (-639 (-683 |#1|)) (-639 (-683 |#1|)))) (-15 -2318 ((-683 |#1|) (-639 (-683 |#1|)) (-639 (-683 |#1|)) (-562))) (-15 -4128 ((-112) (-639 (-683 |#1|)) (-562))) (-15 -4128 ((-112) (-639 (-683 |#1|)))) (-15 -1841 ((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|)) (-1256 |#1|))) (-15 -1841 ((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|)) (-1256 (-1256 |#1|))))) |%noBranch|) (IF (|has| |#1| (-367)) (IF (|has| |#1| (-362)) (PROGN (-15 -1391 ((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|)) (-112) (-562) (-562))) (-15 -1391 ((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|)))) (-15 -1391 ((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|)) (-112))) (-15 -1391 ((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|)) (-916))) (-15 -3086 ((-1256 |#1|) (-639 (-1256 |#1|)) (-562)))) |%noBranch|) |%noBranch|)) (-1044)) (T -1024)) -((-3086 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-1256 *5))) (-5 *4 (-562)) (-5 *2 (-1256 *5)) (-5 *1 (-1024 *5)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1044)))) (-1391 (*1 *2 *3 *4) (-12 (-5 *4 (-916)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1044)) (-5 *2 (-639 (-639 (-683 *5)))) (-5 *1 (-1024 *5)) (-5 *3 (-639 (-683 *5))))) (-1391 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1044)) (-5 *2 (-639 (-639 (-683 *5)))) (-5 *1 (-1024 *5)) (-5 *3 (-639 (-683 *5))))) (-1391 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *4 (-367)) (-4 *4 (-1044)) (-5 *2 (-639 (-639 (-683 *4)))) (-5 *1 (-1024 *4)) (-5 *3 (-639 (-683 *4))))) (-1391 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-562)) (-4 *6 (-362)) (-4 *6 (-367)) (-4 *6 (-1044)) (-5 *2 (-639 (-639 (-683 *6)))) (-5 *1 (-1024 *6)) (-5 *3 (-639 (-683 *6))))) (-1841 (*1 *2 *3 *4) (-12 (-5 *4 (-1256 (-1256 *5))) (-4 *5 (-362)) (-4 *5 (-1044)) (-5 *2 (-639 (-639 (-683 *5)))) (-5 *1 (-1024 *5)) (-5 *3 (-639 (-683 *5))))) (-1841 (*1 *2 *3 *4) (-12 (-5 *4 (-1256 *5)) (-4 *5 (-362)) (-4 *5 (-1044)) (-5 *2 (-639 (-639 (-683 *5)))) (-5 *1 (-1024 *5)) (-5 *3 (-639 (-683 *5))))) (-4128 (*1 *2 *3) (-12 (-5 *3 (-639 (-683 *4))) (-4 *4 (-362)) (-4 *4 (-1044)) (-5 *2 (-112)) (-5 *1 (-1024 *4)))) (-4128 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-683 *5))) (-5 *4 (-562)) (-4 *5 (-362)) (-4 *5 (-1044)) (-5 *2 (-112)) (-5 *1 (-1024 *5)))) (-2318 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-639 (-683 *5))) (-5 *4 (-562)) (-5 *2 (-683 *5)) (-5 *1 (-1024 *5)) (-4 *5 (-362)) (-4 *5 (-1044)))) (-2318 (*1 *2 *3 *3) (-12 (-5 *3 (-639 (-683 *4))) (-5 *2 (-683 *4)) (-5 *1 (-1024 *4)) (-4 *4 (-362)) (-4 *4 (-1044)))) (-2318 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-639 (-683 *6))) (-5 *4 (-112)) (-5 *5 (-562)) (-5 *2 (-683 *6)) (-5 *1 (-1024 *6)) (-4 *6 (-362)) (-4 *6 (-1044)))) (-1424 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-683 *5))) (-5 *4 (-1256 *5)) (-4 *5 (-306)) (-4 *5 (-1044)) (-5 *2 (-683 *5)) (-5 *1 (-1024 *5)))) (-4239 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-683 *5))) (-4 *5 (-306)) (-4 *5 (-1044)) (-5 *2 (-1256 (-1256 *5))) (-5 *1 (-1024 *5)) (-5 *4 (-1256 *5)))) (-2837 (*1 *2 *3 *2) (-12 (-5 *3 (-639 (-683 *4))) (-5 *2 (-683 *4)) (-4 *4 (-1044)) (-5 *1 (-1024 *4)))) (-3989 (*1 *2 *3) (-12 (-5 *3 (-1256 (-1256 *4))) (-4 *4 (-1044)) (-5 *2 (-683 *4)) (-5 *1 (-1024 *4))))) -(-10 -7 (-15 -3989 ((-683 |#1|) (-1256 (-1256 |#1|)))) (-15 -2837 ((-683 |#1|) (-639 (-683 |#1|)) (-683 |#1|))) (IF (|has| |#1| (-306)) (PROGN (-15 -4239 ((-1256 (-1256 |#1|)) (-639 (-683 |#1|)) (-1256 |#1|))) (-15 -1424 ((-683 |#1|) (-639 (-683 |#1|)) (-1256 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -2318 ((-683 |#1|) (-639 (-683 |#1|)) (-639 (-683 |#1|)) (-112) (-562))) (-15 -2318 ((-683 |#1|) (-639 (-683 |#1|)) (-639 (-683 |#1|)))) (-15 -2318 ((-683 |#1|) (-639 (-683 |#1|)) (-639 (-683 |#1|)) (-562))) (-15 -4128 ((-112) (-639 (-683 |#1|)) (-562))) (-15 -4128 ((-112) (-639 (-683 |#1|)))) (-15 -1841 ((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|)) (-1256 |#1|))) (-15 -1841 ((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|)) (-1256 (-1256 |#1|))))) |%noBranch|) (IF (|has| |#1| (-367)) (IF (|has| |#1| (-362)) (PROGN (-15 -1391 ((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|)) (-112) (-562) (-562))) (-15 -1391 ((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|)))) (-15 -1391 ((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|)) (-112))) (-15 -1391 ((-639 (-639 (-683 |#1|))) (-639 (-683 |#1|)) (-916))) (-15 -3086 ((-1256 |#1|) (-639 (-1256 |#1|)) (-562)))) |%noBranch|) |%noBranch|)) -((-2530 ((|#1| (-916) |#1|) 9))) -(((-1025 |#1|) (-10 -7 (-15 -2530 (|#1| (-916) |#1|))) (-13 (-1092) (-10 -8 (-15 -1836 ($ $ $))))) (T -1025)) -((-2530 (*1 *2 *3 *2) (-12 (-5 *3 (-916)) (-5 *1 (-1025 *2)) (-4 *2 (-13 (-1092) (-10 -8 (-15 -1836 ($ $ $)))))))) -(-10 -7 (-15 -2530 (|#1| (-916) |#1|))) -((-3526 (((-639 (-2 (|:| |radval| (-315 (-562))) (|:| |radmult| (-562)) (|:| |radvect| (-639 (-683 (-315 (-562))))))) (-683 (-406 (-947 (-562))))) 59)) (-3576 (((-639 (-683 (-315 (-562)))) (-315 (-562)) (-683 (-406 (-947 (-562))))) 48)) (-1315 (((-639 (-315 (-562))) (-683 (-406 (-947 (-562))))) 41)) (-2106 (((-639 (-683 (-315 (-562)))) (-683 (-406 (-947 (-562))))) 68)) (-1911 (((-683 (-315 (-562))) (-683 (-315 (-562)))) 34)) (-2559 (((-639 (-683 (-315 (-562)))) (-639 (-683 (-315 (-562))))) 62)) (-3465 (((-3 (-683 (-315 (-562))) "failed") (-683 (-406 (-947 (-562))))) 66))) -(((-1026) (-10 -7 (-15 -3526 ((-639 (-2 (|:| |radval| (-315 (-562))) (|:| |radmult| (-562)) (|:| |radvect| (-639 (-683 (-315 (-562))))))) (-683 (-406 (-947 (-562)))))) (-15 -3576 ((-639 (-683 (-315 (-562)))) (-315 (-562)) (-683 (-406 (-947 (-562)))))) (-15 -1315 ((-639 (-315 (-562))) (-683 (-406 (-947 (-562)))))) (-15 -3465 ((-3 (-683 (-315 (-562))) "failed") (-683 (-406 (-947 (-562)))))) (-15 -1911 ((-683 (-315 (-562))) (-683 (-315 (-562))))) (-15 -2559 ((-639 (-683 (-315 (-562)))) (-639 (-683 (-315 (-562)))))) (-15 -2106 ((-639 (-683 (-315 (-562)))) (-683 (-406 (-947 (-562)))))))) (T -1026)) -((-2106 (*1 *2 *3) (-12 (-5 *3 (-683 (-406 (-947 (-562))))) (-5 *2 (-639 (-683 (-315 (-562))))) (-5 *1 (-1026)))) (-2559 (*1 *2 *2) (-12 (-5 *2 (-639 (-683 (-315 (-562))))) (-5 *1 (-1026)))) (-1911 (*1 *2 *2) (-12 (-5 *2 (-683 (-315 (-562)))) (-5 *1 (-1026)))) (-3465 (*1 *2 *3) (|partial| -12 (-5 *3 (-683 (-406 (-947 (-562))))) (-5 *2 (-683 (-315 (-562)))) (-5 *1 (-1026)))) (-1315 (*1 *2 *3) (-12 (-5 *3 (-683 (-406 (-947 (-562))))) (-5 *2 (-639 (-315 (-562)))) (-5 *1 (-1026)))) (-3576 (*1 *2 *3 *4) (-12 (-5 *4 (-683 (-406 (-947 (-562))))) (-5 *2 (-639 (-683 (-315 (-562))))) (-5 *1 (-1026)) (-5 *3 (-315 (-562))))) (-3526 (*1 *2 *3) (-12 (-5 *3 (-683 (-406 (-947 (-562))))) (-5 *2 (-639 (-2 (|:| |radval| (-315 (-562))) (|:| |radmult| (-562)) (|:| |radvect| (-639 (-683 (-315 (-562)))))))) (-5 *1 (-1026))))) -(-10 -7 (-15 -3526 ((-639 (-2 (|:| |radval| (-315 (-562))) (|:| |radmult| (-562)) (|:| |radvect| (-639 (-683 (-315 (-562))))))) (-683 (-406 (-947 (-562)))))) (-15 -3576 ((-639 (-683 (-315 (-562)))) (-315 (-562)) (-683 (-406 (-947 (-562)))))) (-15 -1315 ((-639 (-315 (-562))) (-683 (-406 (-947 (-562)))))) (-15 -3465 ((-3 (-683 (-315 (-562))) "failed") (-683 (-406 (-947 (-562)))))) (-15 -1911 ((-683 (-315 (-562))) (-683 (-315 (-562))))) (-15 -2559 ((-639 (-683 (-315 (-562)))) (-639 (-683 (-315 (-562)))))) (-15 -2106 ((-639 (-683 (-315 (-562)))) (-683 (-406 (-947 (-562))))))) -((-2542 ((|#1| |#1| (-916)) 9))) -(((-1027 |#1|) (-10 -7 (-15 -2542 (|#1| |#1| (-916)))) (-13 (-1092) (-10 -8 (-15 * ($ $ $))))) (T -1027)) -((-2542 (*1 *2 *2 *3) (-12 (-5 *3 (-916)) (-5 *1 (-1027 *2)) (-4 *2 (-13 (-1092) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -2542 (|#1| |#1| (-916)))) -((-4053 ((|#1| (-311)) 11) (((-1261) |#1|) 9))) -(((-1028 |#1|) (-10 -7 (-15 -4053 ((-1261) |#1|)) (-15 -4053 (|#1| (-311)))) (-1207)) (T -1028)) -((-4053 (*1 *2 *3) (-12 (-5 *3 (-311)) (-5 *1 (-1028 *2)) (-4 *2 (-1207)))) (-4053 (*1 *2 *3) (-12 (-5 *2 (-1261)) (-5 *1 (-1028 *3)) (-4 *3 (-1207))))) -(-10 -7 (-15 -4053 ((-1261) |#1|)) (-15 -4053 (|#1| (-311)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3329 (($) NIL T CONST)) (-1954 (($ |#4|) 25)) (-1694 (((-3 $ "failed") $) NIL)) (-4367 (((-112) $) NIL)) (-1942 ((|#4| $) 27)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 46) (($ (-562)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-1568 (((-766)) 43)) (-2285 (($) 21 T CONST)) (-2294 (($) 23 T CONST)) (-1733 (((-112) $ $) 40)) (-1847 (($ $) 31) (($ $ $) NIL)) (-1836 (($ $ $) 29)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-1029 |#1| |#2| |#3| |#4| |#5|) (-13 (-171) (-38 |#1|) (-10 -8 (-15 -1954 ($ |#4|)) (-15 -4053 ($ |#4|)) (-15 -1942 (|#4| $)))) (-362) (-788) (-845) (-944 |#1| |#2| |#3|) (-639 |#4|)) (T -1029)) -((-1954 (*1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-1029 *3 *4 *5 *2 *6)) (-4 *2 (-944 *3 *4 *5)) (-14 *6 (-639 *2)))) (-4053 (*1 *1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-1029 *3 *4 *5 *2 *6)) (-4 *2 (-944 *3 *4 *5)) (-14 *6 (-639 *2)))) (-1942 (*1 *2 *1) (-12 (-4 *2 (-944 *3 *4 *5)) (-5 *1 (-1029 *3 *4 *5 *2 *6)) (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-14 *6 (-639 *2))))) -(-13 (-171) (-38 |#1|) (-10 -8 (-15 -1954 ($ |#4|)) (-15 -4053 ($ |#4|)) (-15 -1942 (|#4| $)))) -((-4041 (((-112) $ $) NIL (-4037 (|has| (-52) (-1092)) (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-1092))))) (-1443 (($) NIL) (($ (-639 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))))) NIL)) (-3655 (((-1261) $ (-1168) (-1168)) NIL (|has| $ (-6 -4404)))) (-3735 (((-112) $ (-766)) NIL)) (-3307 (((-112) (-112)) 39)) (-2010 (((-112) (-112)) 38)) (-4200 (((-52) $ (-1168) (-52)) NIL)) (-2968 (($ (-1 (-112) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) $) NIL (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) $) NIL (|has| $ (-6 -4403)))) (-1472 (((-3 (-52) "failed") (-1168) $) NIL)) (-3329 (($) NIL T CONST)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-1092))))) (-3729 (($ (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) $) NIL (|has| $ (-6 -4403))) (($ (-1 (-112) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) $) NIL (|has| $ (-6 -4403))) (((-3 (-52) "failed") (-1168) $) NIL)) (-1475 (($ (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-1092)))) (($ (-1 (-112) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) $) NIL (|has| $ (-6 -4403)))) (-1954 (((-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-1 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) $ (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-1092)))) (((-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-1 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) $ (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) NIL (|has| $ (-6 -4403))) (((-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-1 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) $) NIL (|has| $ (-6 -4403)))) (-1507 (((-52) $ (-1168) (-52)) NIL (|has| $ (-6 -4404)))) (-1420 (((-52) $ (-1168)) NIL)) (-1720 (((-639 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) $) NIL (|has| $ (-6 -4403))) (((-639 (-52)) $) NIL (|has| $ (-6 -4403)))) (-4172 (((-112) $ (-766)) NIL)) (-1849 (((-1168) $) NIL (|has| (-1168) (-845)))) (-2123 (((-639 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) $) NIL (|has| $ (-6 -4403))) (((-639 (-52)) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-1092)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-52) (-1092))))) (-1929 (((-1168) $) NIL (|has| (-1168) (-845)))) (-1491 (($ (-1 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) $) NIL (|has| $ (-6 -4404))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL (-4037 (|has| (-52) (-1092)) (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-1092))))) (-1521 (((-639 (-1168)) $) 34)) (-4278 (((-112) (-1168) $) NIL)) (-2078 (((-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) $) NIL)) (-1581 (($ (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) $) NIL)) (-3336 (((-639 (-1168)) $) NIL)) (-1987 (((-112) (-1168) $) NIL)) (-1709 (((-1112) $) NIL (-4037 (|has| (-52) (-1092)) (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-1092))))) (-1421 (((-52) $) NIL (|has| (-1168) (-845)))) (-1963 (((-3 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) "failed") (-1 (-112) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) $) NIL)) (-3510 (($ $ (-52)) NIL (|has| $ (-6 -4404)))) (-2038 (((-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) $) NIL)) (-3008 (((-112) (-1 (-112) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) $) NIL (|has| $ (-6 -4403))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))))) NIL (-12 (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-308 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))))) (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-1092)))) (($ $ (-293 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))))) NIL (-12 (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-308 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))))) (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-1092)))) (($ $ (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) NIL (-12 (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-308 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))))) (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-1092)))) (($ $ (-639 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) (-639 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))))) NIL (-12 (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-308 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))))) (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-1092)))) (($ $ (-639 (-52)) (-639 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1092)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1092)))) (($ $ (-293 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1092)))) (($ $ (-639 (-293 (-52)))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1092))))) (-1452 (((-112) $ $) NIL)) (-2716 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-52) (-1092))))) (-2366 (((-639 (-52)) $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) NIL)) (-2343 (((-52) $ (-1168)) 35) (((-52) $ (-1168) (-52)) NIL)) (-1932 (($) NIL) (($ (-639 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))))) NIL)) (-1723 (((-766) (-1 (-112) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) $) NIL (|has| $ (-6 -4403))) (((-766) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-1092)))) (((-766) (-52) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-52) (-1092)))) (((-766) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4403)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-610 (-535))))) (-4064 (($ (-639 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))))) NIL)) (-4053 (((-857) $) 37 (-4037 (|has| (-52) (-609 (-857))) (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-609 (-857)))))) (-4131 (($ (-639 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))))) NIL)) (-2879 (((-112) (-1 (-112) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) $) NIL (|has| $ (-6 -4403))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) NIL (-4037 (|has| (-52) (-1092)) (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-1092))))) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-1030) (-13 (-1183 (-1168) (-52)) (-10 -7 (-15 -3307 ((-112) (-112))) (-15 -2010 ((-112) (-112))) (-6 -4403)))) (T -1030)) -((-3307 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1030)))) (-2010 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1030))))) -(-13 (-1183 (-1168) (-52)) (-10 -7 (-15 -3307 ((-112) (-112))) (-15 -2010 ((-112) (-112))) (-6 -4403))) -((-4041 (((-112) $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1743 (((-1127) $) 9)) (-4053 (((-857) $) 17) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-1031) (-13 (-1075) (-10 -8 (-15 -1743 ((-1127) $))))) (T -1031)) -((-1743 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1031))))) -(-13 (-1075) (-10 -8 (-15 -1743 ((-1127) $)))) -((-3960 ((|#2| $) 10))) -(((-1032 |#1| |#2|) (-10 -8 (-15 -3960 (|#2| |#1|))) (-1033 |#2|) (-1207)) (T -1032)) -NIL -(-10 -8 (-15 -3960 (|#2| |#1|))) -((-4048 (((-3 |#1| "failed") $) 9)) (-3960 ((|#1| $) 8)) (-4053 (($ |#1|) 6))) -(((-1033 |#1|) (-139) (-1207)) (T -1033)) -((-4048 (*1 *2 *1) (|partial| -12 (-4 *1 (-1033 *2)) (-4 *2 (-1207)))) (-3960 (*1 *2 *1) (-12 (-4 *1 (-1033 *2)) (-4 *2 (-1207))))) -(-13 (-612 |t#1|) (-10 -8 (-15 -4048 ((-3 |t#1| "failed") $)) (-15 -3960 (|t#1| $)))) -(((-612 |#1|) . T)) -((-4055 (((-639 (-639 (-293 (-406 (-947 |#2|))))) (-639 (-947 |#2|)) (-639 (-1168))) 38))) -(((-1034 |#1| |#2|) (-10 -7 (-15 -4055 ((-639 (-639 (-293 (-406 (-947 |#2|))))) (-639 (-947 |#2|)) (-639 (-1168))))) (-554) (-13 (-554) (-1033 |#1|))) (T -1034)) -((-4055 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-947 *6))) (-5 *4 (-639 (-1168))) (-4 *6 (-13 (-554) (-1033 *5))) (-4 *5 (-554)) (-5 *2 (-639 (-639 (-293 (-406 (-947 *6)))))) (-5 *1 (-1034 *5 *6))))) -(-10 -7 (-15 -4055 ((-639 (-639 (-293 (-406 (-947 |#2|))))) (-639 (-947 |#2|)) (-639 (-1168))))) -((-4344 (((-378)) 15)) (-2674 (((-1 (-378)) (-378) (-378)) 20)) (-3354 (((-1 (-378)) (-766)) 42)) (-3058 (((-378)) 33)) (-2450 (((-1 (-378)) (-378) (-378)) 34)) (-4305 (((-378)) 26)) (-1952 (((-1 (-378)) (-378)) 27)) (-2607 (((-378) (-766)) 37)) (-3796 (((-1 (-378)) (-766)) 38)) (-3196 (((-1 (-378)) (-766) (-766)) 41)) (-3291 (((-1 (-378)) (-766) (-766)) 39))) -(((-1035) (-10 -7 (-15 -4344 ((-378))) (-15 -3058 ((-378))) (-15 -4305 ((-378))) (-15 -2607 ((-378) (-766))) (-15 -2674 ((-1 (-378)) (-378) (-378))) (-15 -2450 ((-1 (-378)) (-378) (-378))) (-15 -1952 ((-1 (-378)) (-378))) (-15 -3796 ((-1 (-378)) (-766))) (-15 -3291 ((-1 (-378)) (-766) (-766))) (-15 -3196 ((-1 (-378)) (-766) (-766))) (-15 -3354 ((-1 (-378)) (-766))))) (T -1035)) -((-3354 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1 (-378))) (-5 *1 (-1035)))) (-3196 (*1 *2 *3 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1 (-378))) (-5 *1 (-1035)))) (-3291 (*1 *2 *3 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1 (-378))) (-5 *1 (-1035)))) (-3796 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1 (-378))) (-5 *1 (-1035)))) (-1952 (*1 *2 *3) (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1035)) (-5 *3 (-378)))) (-2450 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1035)) (-5 *3 (-378)))) (-2674 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1035)) (-5 *3 (-378)))) (-2607 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-378)) (-5 *1 (-1035)))) (-4305 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1035)))) (-3058 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1035)))) (-4344 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1035))))) -(-10 -7 (-15 -4344 ((-378))) (-15 -3058 ((-378))) (-15 -4305 ((-378))) (-15 -2607 ((-378) (-766))) (-15 -2674 ((-1 (-378)) (-378) (-378))) (-15 -2450 ((-1 (-378)) (-378) (-378))) (-15 -1952 ((-1 (-378)) (-378))) (-15 -3796 ((-1 (-378)) (-766))) (-15 -3291 ((-1 (-378)) (-766) (-766))) (-15 -3196 ((-1 (-378)) (-766) (-766))) (-15 -3354 ((-1 (-378)) (-766)))) -((-1635 (((-417 |#1|) |#1|) 33))) -(((-1036 |#1|) (-10 -7 (-15 -1635 ((-417 |#1|) |#1|))) (-1232 (-406 (-947 (-562))))) (T -1036)) -((-1635 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1036 *3)) (-4 *3 (-1232 (-406 (-947 (-562)))))))) -(-10 -7 (-15 -1635 ((-417 |#1|) |#1|))) -((-3658 (((-406 (-417 (-947 |#1|))) (-406 (-947 |#1|))) 14))) -(((-1037 |#1|) (-10 -7 (-15 -3658 ((-406 (-417 (-947 |#1|))) (-406 (-947 |#1|))))) (-306)) (T -1037)) -((-3658 (*1 *2 *3) (-12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-306)) (-5 *2 (-406 (-417 (-947 *4)))) (-5 *1 (-1037 *4))))) -(-10 -7 (-15 -3658 ((-406 (-417 (-947 |#1|))) (-406 (-947 |#1|))))) -((-1401 (((-639 (-1168)) (-406 (-947 |#1|))) 17)) (-1602 (((-406 (-1164 (-406 (-947 |#1|)))) (-406 (-947 |#1|)) (-1168)) 24)) (-1389 (((-406 (-947 |#1|)) (-406 (-1164 (-406 (-947 |#1|)))) (-1168)) 26)) (-3640 (((-3 (-1168) "failed") (-406 (-947 |#1|))) 20)) (-1433 (((-406 (-947 |#1|)) (-406 (-947 |#1|)) (-639 (-293 (-406 (-947 |#1|))))) 32) (((-406 (-947 |#1|)) (-406 (-947 |#1|)) (-293 (-406 (-947 |#1|)))) 33) (((-406 (-947 |#1|)) (-406 (-947 |#1|)) (-639 (-1168)) (-639 (-406 (-947 |#1|)))) 28) (((-406 (-947 |#1|)) (-406 (-947 |#1|)) (-1168) (-406 (-947 |#1|))) 29)) (-4053 (((-406 (-947 |#1|)) |#1|) 11))) -(((-1038 |#1|) (-10 -7 (-15 -1401 ((-639 (-1168)) (-406 (-947 |#1|)))) (-15 -3640 ((-3 (-1168) "failed") (-406 (-947 |#1|)))) (-15 -1602 ((-406 (-1164 (-406 (-947 |#1|)))) (-406 (-947 |#1|)) (-1168))) (-15 -1389 ((-406 (-947 |#1|)) (-406 (-1164 (-406 (-947 |#1|)))) (-1168))) (-15 -1433 ((-406 (-947 |#1|)) (-406 (-947 |#1|)) (-1168) (-406 (-947 |#1|)))) (-15 -1433 ((-406 (-947 |#1|)) (-406 (-947 |#1|)) (-639 (-1168)) (-639 (-406 (-947 |#1|))))) (-15 -1433 ((-406 (-947 |#1|)) (-406 (-947 |#1|)) (-293 (-406 (-947 |#1|))))) (-15 -1433 ((-406 (-947 |#1|)) (-406 (-947 |#1|)) (-639 (-293 (-406 (-947 |#1|)))))) (-15 -4053 ((-406 (-947 |#1|)) |#1|))) (-554)) (T -1038)) -((-4053 (*1 *2 *3) (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-1038 *3)) (-4 *3 (-554)))) (-1433 (*1 *2 *2 *3) (-12 (-5 *3 (-639 (-293 (-406 (-947 *4))))) (-5 *2 (-406 (-947 *4))) (-4 *4 (-554)) (-5 *1 (-1038 *4)))) (-1433 (*1 *2 *2 *3) (-12 (-5 *3 (-293 (-406 (-947 *4)))) (-5 *2 (-406 (-947 *4))) (-4 *4 (-554)) (-5 *1 (-1038 *4)))) (-1433 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-639 (-1168))) (-5 *4 (-639 (-406 (-947 *5)))) (-5 *2 (-406 (-947 *5))) (-4 *5 (-554)) (-5 *1 (-1038 *5)))) (-1433 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-406 (-947 *4))) (-5 *3 (-1168)) (-4 *4 (-554)) (-5 *1 (-1038 *4)))) (-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-1164 (-406 (-947 *5))))) (-5 *4 (-1168)) (-5 *2 (-406 (-947 *5))) (-5 *1 (-1038 *5)) (-4 *5 (-554)))) (-1602 (*1 *2 *3 *4) (-12 (-5 *4 (-1168)) (-4 *5 (-554)) (-5 *2 (-406 (-1164 (-406 (-947 *5))))) (-5 *1 (-1038 *5)) (-5 *3 (-406 (-947 *5))))) (-3640 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-554)) (-5 *2 (-1168)) (-5 *1 (-1038 *4)))) (-1401 (*1 *2 *3) (-12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-554)) (-5 *2 (-639 (-1168))) (-5 *1 (-1038 *4))))) -(-10 -7 (-15 -1401 ((-639 (-1168)) (-406 (-947 |#1|)))) (-15 -3640 ((-3 (-1168) "failed") (-406 (-947 |#1|)))) (-15 -1602 ((-406 (-1164 (-406 (-947 |#1|)))) (-406 (-947 |#1|)) (-1168))) (-15 -1389 ((-406 (-947 |#1|)) (-406 (-1164 (-406 (-947 |#1|)))) (-1168))) (-15 -1433 ((-406 (-947 |#1|)) (-406 (-947 |#1|)) (-1168) (-406 (-947 |#1|)))) (-15 -1433 ((-406 (-947 |#1|)) (-406 (-947 |#1|)) (-639 (-1168)) (-639 (-406 (-947 |#1|))))) (-15 -1433 ((-406 (-947 |#1|)) (-406 (-947 |#1|)) (-293 (-406 (-947 |#1|))))) (-15 -1433 ((-406 (-947 |#1|)) (-406 (-947 |#1|)) (-639 (-293 (-406 (-947 |#1|)))))) (-15 -4053 ((-406 (-947 |#1|)) |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-3329 (($) 17 T CONST)) (-2821 ((|#1| $) 22)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-2894 ((|#1| $) 21)) (-1708 ((|#1|) 19 T CONST)) (-4053 (((-857) $) 11)) (-3381 ((|#1| $) 20)) (-2285 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1836 (($ $ $) 14)) (* (($ (-916) $) 13) (($ (-766) $) 15))) -(((-1039 |#1|) (-139) (-23)) (T -1039)) -((-2821 (*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-23)))) (-2894 (*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-23)))) (-3381 (*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-23)))) (-1708 (*1 *2) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -2821 (|t#1| $)) (-15 -2894 (|t#1| $)) (-15 -3381 (|t#1| $)) (-15 -1708 (|t#1|) -1497))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-3238 (($) 24 T CONST)) (-3329 (($) 17 T CONST)) (-2821 ((|#1| $) 22)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-2894 ((|#1| $) 21)) (-1708 ((|#1|) 19 T CONST)) (-4053 (((-857) $) 11)) (-3381 ((|#1| $) 20)) (-2285 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1836 (($ $ $) 14)) (* (($ (-916) $) 13) (($ (-766) $) 15))) -(((-1040 |#1|) (-139) (-23)) (T -1040)) -((-3238 (*1 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23))))) -(-13 (-1039 |t#1|) (-10 -8 (-15 -3238 ($) -1497))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-609 (-857)) . T) ((-1039 |#1|) . T) ((-1092) . T)) -((-4041 (((-112) $ $) NIL)) (-1330 (((-639 (-2 (|:| -1449 $) (|:| -3315 (-639 (-775 |#1| (-859 |#2|)))))) (-639 (-775 |#1| (-859 |#2|)))) NIL)) (-3672 (((-639 $) (-639 (-775 |#1| (-859 |#2|)))) NIL) (((-639 $) (-639 (-775 |#1| (-859 |#2|))) (-112)) NIL) (((-639 $) (-639 (-775 |#1| (-859 |#2|))) (-112) (-112)) NIL)) (-1401 (((-639 (-859 |#2|)) $) NIL)) (-2799 (((-112) $) NIL)) (-4370 (((-112) $) NIL (|has| |#1| (-554)))) (-4177 (((-112) (-775 |#1| (-859 |#2|)) $) NIL) (((-112) $) NIL)) (-3623 (((-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)) $) NIL)) (-1977 (((-639 (-2 (|:| |val| (-775 |#1| (-859 |#2|))) (|:| -1501 $))) (-775 |#1| (-859 |#2|)) $) NIL)) (-1395 (((-2 (|:| |under| $) (|:| -3870 $) (|:| |upper| $)) $ (-859 |#2|)) NIL)) (-3735 (((-112) $ (-766)) NIL)) (-3556 (($ (-1 (-112) (-775 |#1| (-859 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-3 (-775 |#1| (-859 |#2|)) "failed") $ (-859 |#2|)) NIL)) (-3329 (($) NIL T CONST)) (-2169 (((-112) $) NIL (|has| |#1| (-554)))) (-2183 (((-112) $ $) NIL (|has| |#1| (-554)))) (-2864 (((-112) $ $) NIL (|has| |#1| (-554)))) (-4219 (((-112) $) NIL (|has| |#1| (-554)))) (-4227 (((-639 (-775 |#1| (-859 |#2|))) (-639 (-775 |#1| (-859 |#2|))) $ (-1 (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|))) (-1 (-112) (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)))) NIL)) (-2037 (((-639 (-775 |#1| (-859 |#2|))) (-639 (-775 |#1| (-859 |#2|))) $) NIL (|has| |#1| (-554)))) (-4230 (((-639 (-775 |#1| (-859 |#2|))) (-639 (-775 |#1| (-859 |#2|))) $) NIL (|has| |#1| (-554)))) (-4048 (((-3 $ "failed") (-639 (-775 |#1| (-859 |#2|)))) NIL)) (-3960 (($ (-639 (-775 |#1| (-859 |#2|)))) NIL)) (-1434 (((-3 $ "failed") $) NIL)) (-3255 (((-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)) $) NIL)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-775 |#1| (-859 |#2|)) (-1092))))) (-1475 (($ (-775 |#1| (-859 |#2|)) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-775 |#1| (-859 |#2|)) (-1092)))) (($ (-1 (-112) (-775 |#1| (-859 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-1441 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-775 |#1| (-859 |#2|))) (|:| |den| |#1|)) (-775 |#1| (-859 |#2|)) $) NIL (|has| |#1| (-554)))) (-3300 (((-112) (-775 |#1| (-859 |#2|)) $ (-1 (-112) (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)))) NIL)) (-2227 (((-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)) $) NIL)) (-1954 (((-775 |#1| (-859 |#2|)) (-1 (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|))) $ (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|))) NIL (-12 (|has| $ (-6 -4403)) (|has| (-775 |#1| (-859 |#2|)) (-1092)))) (((-775 |#1| (-859 |#2|)) (-1 (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|))) $ (-775 |#1| (-859 |#2|))) NIL (|has| $ (-6 -4403))) (((-775 |#1| (-859 |#2|)) (-1 (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)) $ (-1 (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|))) (-1 (-112) (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)))) NIL)) (-1471 (((-2 (|:| -1449 (-639 (-775 |#1| (-859 |#2|)))) (|:| -3315 (-639 (-775 |#1| (-859 |#2|))))) $) NIL)) (-3189 (((-112) (-775 |#1| (-859 |#2|)) $) NIL)) (-2633 (((-112) (-775 |#1| (-859 |#2|)) $) NIL)) (-2813 (((-112) (-775 |#1| (-859 |#2|)) $) NIL) (((-112) $) NIL)) (-1720 (((-639 (-775 |#1| (-859 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-1493 (((-112) (-775 |#1| (-859 |#2|)) $) NIL) (((-112) $) NIL)) (-3761 (((-859 |#2|) $) NIL)) (-4172 (((-112) $ (-766)) NIL)) (-2123 (((-639 (-775 |#1| (-859 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) (-775 |#1| (-859 |#2|)) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-775 |#1| (-859 |#2|)) (-1092))))) (-1491 (($ (-1 (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|))) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|))) $) NIL)) (-3133 (((-639 (-859 |#2|)) $) NIL)) (-3112 (((-112) (-859 |#2|) $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL)) (-4093 (((-3 (-775 |#1| (-859 |#2|)) (-639 $)) (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)) $) NIL)) (-2672 (((-639 (-2 (|:| |val| (-775 |#1| (-859 |#2|))) (|:| -1501 $))) (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)) $) NIL)) (-1504 (((-3 (-775 |#1| (-859 |#2|)) "failed") $) NIL)) (-2334 (((-639 $) (-775 |#1| (-859 |#2|)) $) NIL)) (-4302 (((-3 (-112) (-639 $)) (-775 |#1| (-859 |#2|)) $) NIL)) (-3792 (((-639 (-2 (|:| |val| (-112)) (|:| -1501 $))) (-775 |#1| (-859 |#2|)) $) NIL) (((-112) (-775 |#1| (-859 |#2|)) $) NIL)) (-4169 (((-639 $) (-775 |#1| (-859 |#2|)) $) NIL) (((-639 $) (-639 (-775 |#1| (-859 |#2|))) $) NIL) (((-639 $) (-639 (-775 |#1| (-859 |#2|))) (-639 $)) NIL) (((-639 $) (-775 |#1| (-859 |#2|)) (-639 $)) NIL)) (-1997 (($ (-775 |#1| (-859 |#2|)) $) NIL) (($ (-639 (-775 |#1| (-859 |#2|))) $) NIL)) (-2063 (((-639 (-775 |#1| (-859 |#2|))) $) NIL)) (-1645 (((-112) (-775 |#1| (-859 |#2|)) $) NIL) (((-112) $) NIL)) (-2651 (((-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)) $) NIL)) (-1789 (((-112) $ $) NIL)) (-4123 (((-2 (|:| |num| (-775 |#1| (-859 |#2|))) (|:| |den| |#1|)) (-775 |#1| (-859 |#2|)) $) NIL (|has| |#1| (-554)))) (-2830 (((-112) (-775 |#1| (-859 |#2|)) $) NIL) (((-112) $) NIL)) (-1630 (((-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)) $) NIL)) (-1709 (((-1112) $) NIL)) (-1421 (((-3 (-775 |#1| (-859 |#2|)) "failed") $) NIL)) (-1963 (((-3 (-775 |#1| (-859 |#2|)) "failed") (-1 (-112) (-775 |#1| (-859 |#2|))) $) NIL)) (-4333 (((-3 $ "failed") $ (-775 |#1| (-859 |#2|))) NIL)) (-4316 (($ $ (-775 |#1| (-859 |#2|))) NIL) (((-639 $) (-775 |#1| (-859 |#2|)) $) NIL) (((-639 $) (-775 |#1| (-859 |#2|)) (-639 $)) NIL) (((-639 $) (-639 (-775 |#1| (-859 |#2|))) $) NIL) (((-639 $) (-639 (-775 |#1| (-859 |#2|))) (-639 $)) NIL)) (-3008 (((-112) (-1 (-112) (-775 |#1| (-859 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-775 |#1| (-859 |#2|))) (-639 (-775 |#1| (-859 |#2|)))) NIL (-12 (|has| (-775 |#1| (-859 |#2|)) (-308 (-775 |#1| (-859 |#2|)))) (|has| (-775 |#1| (-859 |#2|)) (-1092)))) (($ $ (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|))) NIL (-12 (|has| (-775 |#1| (-859 |#2|)) (-308 (-775 |#1| (-859 |#2|)))) (|has| (-775 |#1| (-859 |#2|)) (-1092)))) (($ $ (-293 (-775 |#1| (-859 |#2|)))) NIL (-12 (|has| (-775 |#1| (-859 |#2|)) (-308 (-775 |#1| (-859 |#2|)))) (|has| (-775 |#1| (-859 |#2|)) (-1092)))) (($ $ (-639 (-293 (-775 |#1| (-859 |#2|))))) NIL (-12 (|has| (-775 |#1| (-859 |#2|)) (-308 (-775 |#1| (-859 |#2|)))) (|has| (-775 |#1| (-859 |#2|)) (-1092))))) (-1452 (((-112) $ $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) NIL)) (-2250 (((-766) $) NIL)) (-1723 (((-766) (-775 |#1| (-859 |#2|)) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-775 |#1| (-859 |#2|)) (-1092)))) (((-766) (-1 (-112) (-775 |#1| (-859 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| (-775 |#1| (-859 |#2|)) (-610 (-535))))) (-4064 (($ (-639 (-775 |#1| (-859 |#2|)))) NIL)) (-2316 (($ $ (-859 |#2|)) NIL)) (-2180 (($ $ (-859 |#2|)) NIL)) (-2209 (($ $) NIL)) (-1962 (($ $ (-859 |#2|)) NIL)) (-4053 (((-857) $) NIL) (((-639 (-775 |#1| (-859 |#2|))) $) NIL)) (-4157 (((-766) $) NIL (|has| (-859 |#2|) (-367)))) (-4168 (((-3 (-2 (|:| |bas| $) (|:| -2774 (-639 (-775 |#1| (-859 |#2|))))) "failed") (-639 (-775 |#1| (-859 |#2|))) (-1 (-112) (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2774 (-639 (-775 |#1| (-859 |#2|))))) "failed") (-639 (-775 |#1| (-859 |#2|))) (-1 (-112) (-775 |#1| (-859 |#2|))) (-1 (-112) (-775 |#1| (-859 |#2|)) (-775 |#1| (-859 |#2|)))) NIL)) (-2350 (((-112) $ (-1 (-112) (-775 |#1| (-859 |#2|)) (-639 (-775 |#1| (-859 |#2|))))) NIL)) (-4125 (((-639 $) (-775 |#1| (-859 |#2|)) $) NIL) (((-639 $) (-775 |#1| (-859 |#2|)) (-639 $)) NIL) (((-639 $) (-639 (-775 |#1| (-859 |#2|))) $) NIL) (((-639 $) (-639 (-775 |#1| (-859 |#2|))) (-639 $)) NIL)) (-2879 (((-112) (-1 (-112) (-775 |#1| (-859 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-3278 (((-639 (-859 |#2|)) $) NIL)) (-1972 (((-112) (-775 |#1| (-859 |#2|)) $) NIL)) (-3782 (((-112) (-859 |#2|) $) NIL)) (-1733 (((-112) $ $) NIL)) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-1041 |#1| |#2|) (-13 (-1064 |#1| (-530 (-859 |#2|)) (-859 |#2|) (-775 |#1| (-859 |#2|))) (-10 -8 (-15 -3672 ((-639 $) (-639 (-775 |#1| (-859 |#2|))) (-112) (-112))))) (-451) (-639 (-1168))) (T -1041)) -((-3672 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-639 (-775 *5 (-859 *6)))) (-5 *4 (-112)) (-4 *5 (-451)) (-14 *6 (-639 (-1168))) (-5 *2 (-639 (-1041 *5 *6))) (-5 *1 (-1041 *5 *6))))) -(-13 (-1064 |#1| (-530 (-859 |#2|)) (-859 |#2|) (-775 |#1| (-859 |#2|))) (-10 -8 (-15 -3672 ((-639 $) (-639 (-775 |#1| (-859 |#2|))) (-112) (-112))))) -((-2674 (((-1 (-562)) (-1086 (-562))) 33)) (-3987 (((-562) (-562) (-562) (-562) (-562)) 30)) (-3079 (((-1 (-562)) |RationalNumber|) NIL)) (-4133 (((-1 (-562)) |RationalNumber|) NIL)) (-2068 (((-1 (-562)) (-562) |RationalNumber|) NIL))) -(((-1042) (-10 -7 (-15 -2674 ((-1 (-562)) (-1086 (-562)))) (-15 -2068 ((-1 (-562)) (-562) |RationalNumber|)) (-15 -3079 ((-1 (-562)) |RationalNumber|)) (-15 -4133 ((-1 (-562)) |RationalNumber|)) (-15 -3987 ((-562) (-562) (-562) (-562) (-562))))) (T -1042)) -((-3987 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-1042)))) (-4133 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-562))) (-5 *1 (-1042)))) (-3079 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-562))) (-5 *1 (-1042)))) (-2068 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-562))) (-5 *1 (-1042)) (-5 *3 (-562)))) (-2674 (*1 *2 *3) (-12 (-5 *3 (-1086 (-562))) (-5 *2 (-1 (-562))) (-5 *1 (-1042))))) -(-10 -7 (-15 -2674 ((-1 (-562)) (-1086 (-562)))) (-15 -2068 ((-1 (-562)) (-562) |RationalNumber|)) (-15 -3079 ((-1 (-562)) |RationalNumber|)) (-15 -4133 ((-1 (-562)) |RationalNumber|)) (-15 -3987 ((-562) (-562) (-562) (-562) (-562)))) -((-4053 (((-857) $) NIL) (($ (-562)) 10))) -(((-1043 |#1|) (-10 -8 (-15 -4053 (|#1| (-562))) (-15 -4053 ((-857) |#1|))) (-1044)) (T -1043)) -NIL -(-10 -8 (-15 -4053 (|#1| (-562))) (-15 -4053 ((-857) |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-1694 (((-3 $ "failed") $) 33)) (-4367 (((-112) $) 31)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11) (($ (-562)) 29)) (-1568 (((-766)) 28)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) -(((-1044) (-139)) (T -1044)) -((-1568 (*1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-766))))) -(-13 (-1051) (-721) (-642 $) (-612 (-562)) (-10 -7 (-15 -1568 ((-766))) (-6 -4400))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-612 (-562)) . T) ((-609 (-857)) . T) ((-642 $) . T) ((-721) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) -((-3667 (((-406 (-947 |#2|)) (-639 |#2|) (-639 |#2|) (-766) (-766)) 46))) -(((-1045 |#1| |#2|) (-10 -7 (-15 -3667 ((-406 (-947 |#2|)) (-639 |#2|) (-639 |#2|) (-766) (-766)))) (-1168) (-362)) (T -1045)) -((-3667 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-639 *6)) (-5 *4 (-766)) (-4 *6 (-362)) (-5 *2 (-406 (-947 *6))) (-5 *1 (-1045 *5 *6)) (-14 *5 (-1168))))) -(-10 -7 (-15 -3667 ((-406 (-947 |#2|)) (-639 |#2|) (-639 |#2|) (-766) (-766)))) -((-4097 (((-112) $) 29)) (-2819 (((-112) $) 16)) (-2698 (((-766) $) 13)) (-2708 (((-766) $) 14)) (-1752 (((-112) $) 26)) (-1996 (((-112) $) 31))) -(((-1046 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2708 ((-766) |#1|)) (-15 -2698 ((-766) |#1|)) (-15 -1996 ((-112) |#1|)) (-15 -4097 ((-112) |#1|)) (-15 -1752 ((-112) |#1|)) (-15 -2819 ((-112) |#1|))) (-1047 |#2| |#3| |#4| |#5| |#6|) (-766) (-766) (-1044) (-237 |#3| |#4|) (-237 |#2| |#4|)) (T -1046)) -NIL -(-10 -8 (-15 -2708 ((-766) |#1|)) (-15 -2698 ((-766) |#1|)) (-15 -1996 ((-112) |#1|)) (-15 -4097 ((-112) |#1|)) (-15 -1752 ((-112) |#1|)) (-15 -2819 ((-112) |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-4097 (((-112) $) 51)) (-2781 (((-3 $ "failed") $ $) 19)) (-2819 (((-112) $) 53)) (-3735 (((-112) $ (-766)) 61)) (-3329 (($) 17 T CONST)) (-2239 (($ $) 34 (|has| |#3| (-306)))) (-3511 ((|#4| $ (-562)) 39)) (-2172 (((-766) $) 33 (|has| |#3| (-554)))) (-1420 ((|#3| $ (-562) (-562)) 41)) (-1720 (((-639 |#3|) $) 68 (|has| $ (-6 -4403)))) (-4244 (((-766) $) 32 (|has| |#3| (-554)))) (-3821 (((-639 |#5|) $) 31 (|has| |#3| (-554)))) (-2698 (((-766) $) 45)) (-2708 (((-766) $) 44)) (-4172 (((-112) $ (-766)) 60)) (-1808 (((-562) $) 49)) (-2028 (((-562) $) 47)) (-2123 (((-639 |#3|) $) 69 (|has| $ (-6 -4403)))) (-1572 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1092)) (|has| $ (-6 -4403))))) (-3269 (((-562) $) 48)) (-2727 (((-562) $) 46)) (-2884 (($ (-639 (-639 |#3|))) 54)) (-1491 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-2247 (((-639 (-639 |#3|)) $) 43)) (-4147 (((-112) $ (-766)) 59)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-1762 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-554)))) (-3008 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 |#3|) (-639 |#3|)) 75 (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) (($ $ (-293 |#3|)) 73 (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) (($ $ (-639 (-293 |#3|))) 72 (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092))))) (-1452 (((-112) $ $) 55)) (-3087 (((-112) $) 58)) (-1663 (($) 57)) (-2343 ((|#3| $ (-562) (-562)) 42) ((|#3| $ (-562) (-562) |#3|) 40)) (-1752 (((-112) $) 52)) (-1723 (((-766) |#3| $) 70 (-12 (|has| |#3| (-1092)) (|has| $ (-6 -4403)))) (((-766) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4403)))) (-4220 (($ $) 56)) (-2208 ((|#5| $ (-562)) 38)) (-4053 (((-857) $) 11)) (-2879 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4403)))) (-1996 (((-112) $) 50)) (-2285 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1859 (($ $ |#3|) 35 (|has| |#3| (-362)))) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-3492 (((-766) $) 62 (|has| $ (-6 -4403))))) -(((-1047 |#1| |#2| |#3| |#4| |#5|) (-139) (-766) (-766) (-1044) (-237 |t#2| |t#3|) (-237 |t#1| |t#3|)) (T -1047)) -((-4152 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-639 (-639 *5))) (-4 *5 (-1044)) (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)))) (-2819 (*1 *2 *1) (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))) (-1752 (*1 *2 *1) (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))) (-4097 (*1 *2 *1) (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))) (-1996 (*1 *2 *1) (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112)))) (-1808 (*1 *2 *1) (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-562)))) (-3269 (*1 *2 *1) (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-562)))) (-2028 (*1 *2 *1) (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-562)))) (-2727 (*1 *2 *1) (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-562)))) (-2698 (*1 *2 *1) (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-766)))) (-2708 (*1 *2 *1) (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-766)))) (-2247 (*1 *2 *1) (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-639 (-639 *5))))) (-2343 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-562)) (-4 *1 (-1047 *4 *5 *2 *6 *7)) (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)) (-4 *2 (-1044)))) (-1420 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-562)) (-4 *1 (-1047 *4 *5 *2 *6 *7)) (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)) (-4 *2 (-1044)))) (-2343 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-562)) (-4 *1 (-1047 *4 *5 *2 *6 *7)) (-4 *2 (-1044)) (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)))) (-3511 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-4 *1 (-1047 *4 *5 *6 *2 *7)) (-4 *6 (-1044)) (-4 *7 (-237 *4 *6)) (-4 *2 (-237 *5 *6)))) (-2208 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-4 *1 (-1047 *4 *5 *6 *7 *2)) (-4 *6 (-1044)) (-4 *7 (-237 *5 *6)) (-4 *2 (-237 *4 *6)))) (-4152 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)))) (-1762 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1047 *3 *4 *2 *5 *6)) (-4 *2 (-1044)) (-4 *5 (-237 *4 *2)) (-4 *6 (-237 *3 *2)) (-4 *2 (-554)))) (-1859 (*1 *1 *1 *2) (-12 (-4 *1 (-1047 *3 *4 *2 *5 *6)) (-4 *2 (-1044)) (-4 *5 (-237 *4 *2)) (-4 *6 (-237 *3 *2)) (-4 *2 (-362)))) (-2239 (*1 *1 *1) (-12 (-4 *1 (-1047 *2 *3 *4 *5 *6)) (-4 *4 (-1044)) (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *2 *4)) (-4 *4 (-306)))) (-2172 (*1 *2 *1) (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-554)) (-5 *2 (-766)))) (-4244 (*1 *2 *1) (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-554)) (-5 *2 (-766)))) (-3821 (*1 *2 *1) (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-554)) (-5 *2 (-639 *7))))) -(-13 (-111 |t#3| |t#3|) (-488 |t#3|) (-10 -8 (-6 -4403) (IF (|has| |t#3| (-171)) (-6 (-712 |t#3|)) |%noBranch|) (-15 -2884 ($ (-639 (-639 |t#3|)))) (-15 -2819 ((-112) $)) (-15 -1752 ((-112) $)) (-15 -4097 ((-112) $)) (-15 -1996 ((-112) $)) (-15 -1808 ((-562) $)) (-15 -3269 ((-562) $)) (-15 -2028 ((-562) $)) (-15 -2727 ((-562) $)) (-15 -2698 ((-766) $)) (-15 -2708 ((-766) $)) (-15 -2247 ((-639 (-639 |t#3|)) $)) (-15 -2343 (|t#3| $ (-562) (-562))) (-15 -1420 (|t#3| $ (-562) (-562))) (-15 -2343 (|t#3| $ (-562) (-562) |t#3|)) (-15 -3511 (|t#4| $ (-562))) (-15 -2208 (|t#5| $ (-562))) (-15 -4152 ($ (-1 |t#3| |t#3|) $)) (-15 -4152 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-554)) (-15 -1762 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-362)) (-15 -1859 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-306)) (-15 -2239 ($ $)) |%noBranch|) (IF (|has| |t#3| (-554)) (PROGN (-15 -2172 ((-766) $)) (-15 -4244 ((-766) $)) (-15 -3821 ((-639 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-130) . T) ((-609 (-857)) . T) ((-308 |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092))) ((-488 |#3|) . T) ((-513 |#3| |#3|) -12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092))) ((-642 |#3|) . T) ((-712 |#3|) |has| |#3| (-171)) ((-1050 |#3|) . T) ((-1092) . T) ((-1207) . T)) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-4097 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-2819 (((-112) $) NIL)) (-3735 (((-112) $ (-766)) NIL)) (-3329 (($) NIL T CONST)) (-2239 (($ $) 43 (|has| |#3| (-306)))) (-3511 (((-239 |#2| |#3|) $ (-562)) 32)) (-4095 (($ (-683 |#3|)) 41)) (-2172 (((-766) $) 45 (|has| |#3| (-554)))) (-1420 ((|#3| $ (-562) (-562)) NIL)) (-1720 (((-639 |#3|) $) NIL (|has| $ (-6 -4403)))) (-4244 (((-766) $) 47 (|has| |#3| (-554)))) (-3821 (((-639 (-239 |#1| |#3|)) $) 51 (|has| |#3| (-554)))) (-2698 (((-766) $) NIL)) (-2708 (((-766) $) NIL)) (-4172 (((-112) $ (-766)) NIL)) (-1808 (((-562) $) NIL)) (-2028 (((-562) $) NIL)) (-2123 (((-639 |#3|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#3| (-1092))))) (-3269 (((-562) $) NIL)) (-2727 (((-562) $) NIL)) (-2884 (($ (-639 (-639 |#3|))) 27)) (-1491 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2247 (((-639 (-639 |#3|)) $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1762 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-554)))) (-3008 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 |#3|) (-639 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) (($ $ (-293 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) (($ $ (-639 (-293 |#3|))) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092))))) (-1452 (((-112) $ $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) NIL)) (-2343 ((|#3| $ (-562) (-562)) NIL) ((|#3| $ (-562) (-562) |#3|) NIL)) (-4340 (((-133)) 54 (|has| |#3| (-362)))) (-1752 (((-112) $) NIL)) (-1723 (((-766) |#3| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#3| (-1092)))) (((-766) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4403)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) 63 (|has| |#3| (-610 (-535))))) (-2208 (((-239 |#1| |#3|) $ (-562)) 36)) (-4053 (((-857) $) 16) (((-683 |#3|) $) 38)) (-2879 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4403)))) (-1996 (((-112) $) NIL)) (-2285 (($) 13 T CONST)) (-1733 (((-112) $ $) NIL)) (-1859 (($ $ |#3|) NIL (|has| |#3| (-362)))) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-1048 |#1| |#2| |#3|) (-13 (-1047 |#1| |#2| |#3| (-239 |#2| |#3|) (-239 |#1| |#3|)) (-609 (-683 |#3|)) (-10 -8 (IF (|has| |#3| (-362)) (-6 (-1263 |#3|)) |%noBranch|) (IF (|has| |#3| (-610 (-535))) (-6 (-610 (-535))) |%noBranch|) (-15 -4095 ($ (-683 |#3|))))) (-766) (-766) (-1044)) (T -1048)) -((-4095 (*1 *1 *2) (-12 (-5 *2 (-683 *5)) (-4 *5 (-1044)) (-5 *1 (-1048 *3 *4 *5)) (-14 *3 (-766)) (-14 *4 (-766))))) -(-13 (-1047 |#1| |#2| |#3| (-239 |#2| |#3|) (-239 |#1| |#3|)) (-609 (-683 |#3|)) (-10 -8 (IF (|has| |#3| (-362)) (-6 (-1263 |#3|)) |%noBranch|) (IF (|has| |#3| (-610 (-535))) (-6 (-610 (-535))) |%noBranch|) (-15 -4095 ($ (-683 |#3|))))) -((-1954 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-4152 ((|#10| (-1 |#7| |#3|) |#6|) 32))) -(((-1049 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4152 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1954 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-766) (-766) (-1044) (-237 |#2| |#3|) (-237 |#1| |#3|) (-1047 |#1| |#2| |#3| |#4| |#5|) (-1044) (-237 |#2| |#7|) (-237 |#1| |#7|) (-1047 |#1| |#2| |#7| |#8| |#9|)) (T -1049)) -((-1954 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1044)) (-4 *2 (-1044)) (-14 *5 (-766)) (-14 *6 (-766)) (-4 *8 (-237 *6 *7)) (-4 *9 (-237 *5 *7)) (-4 *10 (-237 *6 *2)) (-4 *11 (-237 *5 *2)) (-5 *1 (-1049 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1047 *5 *6 *7 *8 *9)) (-4 *12 (-1047 *5 *6 *2 *10 *11)))) (-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1044)) (-4 *10 (-1044)) (-14 *5 (-766)) (-14 *6 (-766)) (-4 *8 (-237 *6 *7)) (-4 *9 (-237 *5 *7)) (-4 *2 (-1047 *5 *6 *10 *11 *12)) (-5 *1 (-1049 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1047 *5 *6 *7 *8 *9)) (-4 *11 (-237 *6 *10)) (-4 *12 (-237 *5 *10))))) -(-10 -7 (-15 -4152 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1954 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11)) (-2285 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ |#1|) 23))) -(((-1050 |#1|) (-139) (-1051)) (T -1050)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1051))))) +((-1335 (($ $ (-1085 $)) 7) (($ $ (-1169)) 6))) +(((-955) (-140)) (T -955)) +((-1335 (*1 *1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-955)))) (-1335 (*1 *1 *1 *2) (-12 (-4 *1 (-955)) (-5 *2 (-1169))))) +(-13 (-10 -8 (-15 -1335 ($ $ (-1169))) (-15 -1335 ($ $ (-1085 $))))) +((-1571 (((-2 (|:| -2311 (-640 (-563))) (|:| |poly| (-640 (-1165 |#1|))) (|:| |prim| (-1165 |#1|))) (-640 (-948 |#1|)) (-640 (-1169)) (-1169)) 25) (((-2 (|:| -2311 (-640 (-563))) (|:| |poly| (-640 (-1165 |#1|))) (|:| |prim| (-1165 |#1|))) (-640 (-948 |#1|)) (-640 (-1169))) 26) (((-2 (|:| |coef1| (-563)) (|:| |coef2| (-563)) (|:| |prim| (-1165 |#1|))) (-948 |#1|) (-1169) (-948 |#1|) (-1169)) 43))) +(((-956 |#1|) (-10 -7 (-15 -1571 ((-2 (|:| |coef1| (-563)) (|:| |coef2| (-563)) (|:| |prim| (-1165 |#1|))) (-948 |#1|) (-1169) (-948 |#1|) (-1169))) (-15 -1571 ((-2 (|:| -2311 (-640 (-563))) (|:| |poly| (-640 (-1165 |#1|))) (|:| |prim| (-1165 |#1|))) (-640 (-948 |#1|)) (-640 (-1169)))) (-15 -1571 ((-2 (|:| -2311 (-640 (-563))) (|:| |poly| (-640 (-1165 |#1|))) (|:| |prim| (-1165 |#1|))) (-640 (-948 |#1|)) (-640 (-1169)) (-1169)))) (-13 (-363) (-147))) (T -956)) +((-1571 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-640 (-948 *6))) (-5 *4 (-640 (-1169))) (-5 *5 (-1169)) (-4 *6 (-13 (-363) (-147))) (-5 *2 (-2 (|:| -2311 (-640 (-563))) (|:| |poly| (-640 (-1165 *6))) (|:| |prim| (-1165 *6)))) (-5 *1 (-956 *6)))) (-1571 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-640 (-1169))) (-4 *5 (-13 (-363) (-147))) (-5 *2 (-2 (|:| -2311 (-640 (-563))) (|:| |poly| (-640 (-1165 *5))) (|:| |prim| (-1165 *5)))) (-5 *1 (-956 *5)))) (-1571 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-948 *5)) (-5 *4 (-1169)) (-4 *5 (-13 (-363) (-147))) (-5 *2 (-2 (|:| |coef1| (-563)) (|:| |coef2| (-563)) (|:| |prim| (-1165 *5)))) (-5 *1 (-956 *5))))) +(-10 -7 (-15 -1571 ((-2 (|:| |coef1| (-563)) (|:| |coef2| (-563)) (|:| |prim| (-1165 |#1|))) (-948 |#1|) (-1169) (-948 |#1|) (-1169))) (-15 -1571 ((-2 (|:| -2311 (-640 (-563))) (|:| |poly| (-640 (-1165 |#1|))) (|:| |prim| (-1165 |#1|))) (-640 (-948 |#1|)) (-640 (-1169)))) (-15 -1571 ((-2 (|:| -2311 (-640 (-563))) (|:| |poly| (-640 (-1165 |#1|))) (|:| |prim| (-1165 |#1|))) (-640 (-948 |#1|)) (-640 (-1169)) (-1169)))) +((-3556 (((-640 |#1|) |#1| |#1|) 42)) (-2468 (((-112) |#1|) 39)) (-3067 ((|#1| |#1|) 64)) (-1980 ((|#1| |#1|) 63))) +(((-957 |#1|) (-10 -7 (-15 -2468 ((-112) |#1|)) (-15 -1980 (|#1| |#1|)) (-15 -3067 (|#1| |#1|)) (-15 -3556 ((-640 |#1|) |#1| |#1|))) (-545)) (T -957)) +((-3556 (*1 *2 *3 *3) (-12 (-5 *2 (-640 *3)) (-5 *1 (-957 *3)) (-4 *3 (-545)))) (-3067 (*1 *2 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-545)))) (-1980 (*1 *2 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-545)))) (-2468 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-957 *3)) (-4 *3 (-545))))) +(-10 -7 (-15 -2468 ((-112) |#1|)) (-15 -1980 (|#1| |#1|)) (-15 -3067 (|#1| |#1|)) (-15 -3556 ((-640 |#1|) |#1| |#1|))) +((-3303 (((-1262) (-858)) 9))) +(((-958) (-10 -7 (-15 -3303 ((-1262) (-858))))) (T -958)) +((-3303 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1262)) (-5 *1 (-958))))) +(-10 -7 (-15 -3303 ((-1262) (-858)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 60 (|has| |#1| (-555)))) (-4223 (($ $) 61 (|has| |#1| (-555)))) (-3156 (((-112) $) NIL (|has| |#1| (-555)))) (-1495 (((-3 $ "failed") $ $) NIL)) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 28)) (-2058 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) NIL)) (-2751 (($ $) 24)) (-3400 (((-3 $ "failed") $) 35)) (-1300 (($ $) NIL (|has| |#1| (-452)))) (-3554 (($ $ |#1| |#2| $) 47)) (-3827 (((-112) $) NIL)) (-4096 (((-767) $) 16)) (-3920 (((-112) $) NIL)) (-2588 (($ |#1| |#2|) NIL)) (-2048 ((|#2| $) 19)) (-2803 (($ (-1 |#2| |#2|) $) NIL)) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-2716 (($ $) 23)) (-2726 ((|#1| $) 21)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-2696 (((-112) $) 40)) (-2706 ((|#1| $) NIL)) (-3817 (($ $ |#2| |#1| $) 72 (-12 (|has| |#2| (-131)) (|has| |#1| (-555))))) (-3008 (((-3 $ "failed") $ $) 73 (|has| |#1| (-555))) (((-3 $ "failed") $ |#1|) 67 (|has| |#1| (-555)))) (-4167 ((|#2| $) 17)) (-1836 ((|#1| $) NIL (|has| |#1| (-452)))) (-1693 (((-858) $) NIL) (($ (-563)) 39) (($ $) NIL (|has| |#1| (-555))) (($ |#1|) 34) (($ (-407 (-563))) NIL (-4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))))) (-1337 (((-640 |#1|) $) NIL)) (-4319 ((|#1| $ |#2|) 31)) (-2779 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1675 (((-767)) 15)) (-2793 (($ $ $ (-767)) 56 (|has| |#1| (-172)))) (-2126 (((-112) $ $) 66 (|has| |#1| (-555)))) (-2241 (($) 22 T CONST)) (-2254 (($) 12 T CONST)) (-1718 (((-112) $ $) 65)) (-1837 (($ $ |#1|) 74 (|has| |#1| (-363)))) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) 53) (($ $ (-767)) 51)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 50) (($ $ |#1|) 49) (($ |#1| $) 48) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))))) +(((-959 |#1| |#2|) (-13 (-326 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-555)) (IF (|has| |#2| (-131)) (-15 -3817 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4405)) (-6 -4405) |%noBranch|))) (-1045) (-788)) (T -959)) +((-3817 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-959 *3 *2)) (-4 *2 (-131)) (-4 *3 (-555)) (-4 *3 (-1045)) (-4 *2 (-788))))) +(-13 (-326 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-555)) (IF (|has| |#2| (-131)) (-15 -3817 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4405)) (-6 -4405) |%noBranch|))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL (-4032 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-1901 (($ $ $) 63 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))))) (-1495 (((-3 $ "failed") $ $) 50 (-4032 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-3749 (((-767)) 34 (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-1770 ((|#2| $) 21)) (-3735 ((|#1| $) 20)) (-4239 (($) NIL (-4032 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))) CONST)) (-3400 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722)))))) (-1691 (($) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-3827 (((-112) $) NIL (-4032 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722)))))) (-3084 (($ $ $) NIL (-4032 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-1777 (($ $ $) NIL (-4032 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-3669 (($ |#1| |#2|) 19)) (-1476 (((-917) $) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-3573 (((-1151) $) NIL)) (-2688 (($ $) 37 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-2555 (($ (-917)) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-1694 (((-1113) $) NIL)) (-4339 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-2146 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-1693 (((-858) $) 14)) (-2241 (($) 40 (-4032 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))) CONST)) (-2254 (($) 24 (-4032 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722)))) CONST)) (-1778 (((-112) $ $) NIL (-4032 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-1756 (((-112) $ $) NIL (-4032 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-1718 (((-112) $ $) 18)) (-1768 (((-112) $ $) NIL (-4032 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-1744 (((-112) $ $) 66 (-4032 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-1837 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-1826 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-1814 (($ $ $) 43 (-4032 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (** (($ $ (-563)) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473)))) (($ $ (-767)) 31 (-4032 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722))))) (($ $ (-917)) NIL (-4032 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722)))))) (* (($ (-563) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-767) $) 46 (-4032 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789))))) (($ (-917) $) NIL (-4032 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789))))) (($ $ $) 27 (-4032 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722))))))) +(((-960 |#1| |#2|) (-13 (-1093) (-10 -8 (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-722)) (IF (|has| |#2| (-722)) (-6 (-722)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-473)) (IF (|has| |#2| (-473)) (-6 (-473)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-789)) (IF (|has| |#2| (-789)) (-6 (-789)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-846)) (IF (|has| |#2| (-846)) (-6 (-846)) |%noBranch|) |%noBranch|) (-15 -3669 ($ |#1| |#2|)) (-15 -3735 (|#1| $)) (-15 -1770 (|#2| $)))) (-1093) (-1093)) (T -960)) +((-3669 (*1 *1 *2 *3) (-12 (-5 *1 (-960 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))) (-3735 (*1 *2 *1) (-12 (-4 *2 (-1093)) (-5 *1 (-960 *2 *3)) (-4 *3 (-1093)))) (-1770 (*1 *2 *1) (-12 (-4 *2 (-1093)) (-5 *1 (-960 *3 *2)) (-4 *3 (-1093))))) +(-13 (-1093) (-10 -8 (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-722)) (IF (|has| |#2| (-722)) (-6 (-722)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-473)) (IF (|has| |#2| (-473)) (-6 (-473)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-789)) (IF (|has| |#2| (-789)) (-6 (-789)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-846)) (IF (|has| |#2| (-846)) (-6 (-846)) |%noBranch|) |%noBranch|) (-15 -3669 ($ |#1| |#2|)) (-15 -3735 (|#1| $)) (-15 -1770 (|#2| $)))) +((-2619 (((-1097) $) 12)) (-3495 (($ (-1169) (-1097)) 13)) (-3348 (((-1169) $) 10)) (-1693 (((-858) $) 22))) +(((-961) (-13 (-610 (-858)) (-10 -8 (-15 -3348 ((-1169) $)) (-15 -2619 ((-1097) $)) (-15 -3495 ($ (-1169) (-1097)))))) (T -961)) +((-3348 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-961)))) (-2619 (*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-961)))) (-3495 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1097)) (-5 *1 (-961))))) +(-13 (-610 (-858)) (-10 -8 (-15 -3348 ((-1169) $)) (-15 -2619 ((-1097) $)) (-15 -3495 ($ (-1169) (-1097))))) +((-1677 (((-112) $ $) NIL)) (-2606 (((-1095 (-1169)) $) 19)) (-4036 (((-112) $) 26)) (-2518 (((-1169) $) 27)) (-1969 (((-112) $) 24)) (-3375 ((|#1| $) 25)) (-3062 (((-869 $ $) $) 34)) (-1565 (((-112) $) 33)) (-2202 (($ $ $) 12)) (-2505 (($ $) 29)) (-2417 (((-112) $) 28)) (-2176 (($ $) 10)) (-3573 (((-1151) $) NIL)) (-4282 (((-869 $ $) $) 36)) (-3417 (((-112) $) 35)) (-3234 (($ $ $) 13)) (-1694 (((-1113) $) NIL)) (-3068 (((-869 $ $) $) 38)) (-3656 (((-112) $) 37)) (-2515 (($ $ $) 14)) (-1693 (((-858) $) 40) (($ |#1|) 7) (($ (-1169)) 9)) (-1367 (((-869 $ $) $) 32)) (-1416 (((-112) $) 30)) (-2190 (($ $ $) 11)) (-1718 (((-112) $ $) NIL))) +(((-962 |#1|) (-13 (-963) (-10 -8 (-15 -1693 ($ |#1|)) (-15 -1693 ($ (-1169))) (-15 -2606 ((-1095 (-1169)) $)) (-15 -1969 ((-112) $)) (-15 -3375 (|#1| $)) (-15 -4036 ((-112) $)) (-15 -2518 ((-1169) $)) (-15 -2417 ((-112) $)) (-15 -2505 ($ $)) (-15 -1416 ((-112) $)) (-15 -1367 ((-869 $ $) $)) (-15 -1565 ((-112) $)) (-15 -3062 ((-869 $ $) $)) (-15 -3417 ((-112) $)) (-15 -4282 ((-869 $ $) $)) (-15 -3656 ((-112) $)) (-15 -3068 ((-869 $ $) $)))) (-963)) (T -962)) +((-1693 (*1 *1 *2) (-12 (-5 *1 (-962 *2)) (-4 *2 (-963)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-2606 (*1 *2 *1) (-12 (-5 *2 (-1095 (-1169))) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-1969 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-3375 (*1 *2 *1) (-12 (-5 *1 (-962 *2)) (-4 *2 (-963)))) (-4036 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-2518 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-2417 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-2505 (*1 *1 *1) (-12 (-5 *1 (-962 *2)) (-4 *2 (-963)))) (-1416 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-1367 (*1 *2 *1) (-12 (-5 *2 (-869 (-962 *3) (-962 *3))) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-1565 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-3062 (*1 *2 *1) (-12 (-5 *2 (-869 (-962 *3) (-962 *3))) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-4282 (*1 *2 *1) (-12 (-5 *2 (-869 (-962 *3) (-962 *3))) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-3656 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-3068 (*1 *2 *1) (-12 (-5 *2 (-869 (-962 *3) (-962 *3))) (-5 *1 (-962 *3)) (-4 *3 (-963))))) +(-13 (-963) (-10 -8 (-15 -1693 ($ |#1|)) (-15 -1693 ($ (-1169))) (-15 -2606 ((-1095 (-1169)) $)) (-15 -1969 ((-112) $)) (-15 -3375 (|#1| $)) (-15 -4036 ((-112) $)) (-15 -2518 ((-1169) $)) (-15 -2417 ((-112) $)) (-15 -2505 ($ $)) (-15 -1416 ((-112) $)) (-15 -1367 ((-869 $ $) $)) (-15 -1565 ((-112) $)) (-15 -3062 ((-869 $ $) $)) (-15 -3417 ((-112) $)) (-15 -4282 ((-869 $ $) $)) (-15 -3656 ((-112) $)) (-15 -3068 ((-869 $ $) $)))) +((-1677 (((-112) $ $) 7)) (-2202 (($ $ $) 15)) (-2176 (($ $) 17)) (-3573 (((-1151) $) 9)) (-3234 (($ $ $) 14)) (-1694 (((-1113) $) 10)) (-2515 (($ $ $) 13)) (-1693 (((-858) $) 11)) (-2190 (($ $ $) 16)) (-1718 (((-112) $ $) 6))) +(((-963) (-140)) (T -963)) +((-2176 (*1 *1 *1) (-4 *1 (-963))) (-2190 (*1 *1 *1 *1) (-4 *1 (-963))) (-2202 (*1 *1 *1 *1) (-4 *1 (-963))) (-3234 (*1 *1 *1 *1) (-4 *1 (-963))) (-2515 (*1 *1 *1 *1) (-4 *1 (-963)))) +(-13 (-1093) (-10 -8 (-15 -2176 ($ $)) (-15 -2190 ($ $ $)) (-15 -2202 ($ $ $)) (-15 -3234 ($ $ $)) (-15 -2515 ($ $ $)))) +(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) +((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-2759 (((-112) $ (-767)) 8)) (-4239 (($) 7 T CONST)) (-2659 (((-640 |#1|) $) 30 (|has| $ (-6 -4407)))) (-2581 (((-112) $ (-767)) 9)) (-2878 (($ $ $) 43)) (-3164 (($ $ $) 44)) (-2259 (((-640 |#1|) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1777 ((|#1| $) 45)) (-4345 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 35)) (-2382 (((-112) $ (-767)) 10)) (-3573 (((-1151) $) 22 (|has| |#1| (-1093)))) (-2964 ((|#1| $) 39)) (-1812 (($ |#1| $) 40)) (-1694 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3755 ((|#1| $) 41)) (-3138 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) 14)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-1709 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4407))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1872 (($ $) 13)) (-1693 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-2233 (($ (-640 |#1|)) 42)) (-4383 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-964 |#1|) (-140) (-846)) (T -964)) +((-1777 (*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846)))) (-3164 (*1 *1 *1 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846)))) (-2878 (*1 *1 *1 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4407) (-15 -1777 (|t#1| $)) (-15 -3164 ($ $ $)) (-15 -2878 ($ $ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4032 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T)) +((-1813 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3548 |#2|)) |#2| |#2|) 84)) (-3724 ((|#2| |#2| |#2|) 82)) (-3404 (((-2 (|:| |coef2| |#2|) (|:| -3548 |#2|)) |#2| |#2|) 86)) (-3671 (((-2 (|:| |coef1| |#2|) (|:| -3548 |#2|)) |#2| |#2|) 88)) (-2385 (((-2 (|:| |coef2| |#2|) (|:| -4354 |#1|)) |#2| |#2|) 106 (|has| |#1| (-452)))) (-2761 (((-2 (|:| |coef2| |#2|) (|:| -2742 |#1|)) |#2| |#2|) 45)) (-2482 (((-2 (|:| |coef2| |#2|) (|:| -2742 |#1|)) |#2| |#2|) 63)) (-2082 (((-2 (|:| |coef1| |#2|) (|:| -2742 |#1|)) |#2| |#2|) 65)) (-2790 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 77)) (-2045 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767)) 70)) (-4375 (((-2 (|:| |coef2| |#2|) (|:| -2315 |#1|)) |#2|) 96)) (-2203 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767)) 73)) (-1576 (((-640 (-767)) |#2| |#2|) 81)) (-2354 ((|#1| |#2| |#2|) 41)) (-1657 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4354 |#1|)) |#2| |#2|) 104 (|has| |#1| (-452)))) (-4354 ((|#1| |#2| |#2|) 102 (|has| |#1| (-452)))) (-1679 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2742 |#1|)) |#2| |#2|) 43)) (-1697 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2742 |#1|)) |#2| |#2|) 62)) (-2742 ((|#1| |#2| |#2|) 60)) (-2521 (((-2 (|:| -2311 |#1|) (|:| -3490 |#2|) (|:| -1972 |#2|)) |#2| |#2|) 34)) (-2431 ((|#2| |#2| |#2| |#2| |#1|) 52)) (-3583 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 75)) (-2898 ((|#2| |#2| |#2|) 74)) (-1928 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767)) 68)) (-2848 ((|#2| |#2| |#2| (-767)) 66)) (-3548 ((|#2| |#2| |#2|) 110 (|has| |#1| (-452)))) (-3008 (((-1257 |#2|) (-1257 |#2|) |#1|) 21)) (-2452 (((-2 (|:| -3490 |#2|) (|:| -1972 |#2|)) |#2| |#2|) 38)) (-3443 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2315 |#1|)) |#2|) 94)) (-2315 ((|#1| |#2|) 91)) (-3750 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767)) 72)) (-2238 ((|#2| |#2| |#2| (-767)) 71)) (-2654 (((-640 |#2|) |#2| |#2|) 79)) (-1447 ((|#2| |#2| |#1| |#1| (-767)) 49)) (-3681 ((|#1| |#1| |#1| (-767)) 48)) (* (((-1257 |#2|) |#1| (-1257 |#2|)) 16))) +(((-965 |#1| |#2|) (-10 -7 (-15 -2742 (|#1| |#2| |#2|)) (-15 -1697 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2742 |#1|)) |#2| |#2|)) (-15 -2482 ((-2 (|:| |coef2| |#2|) (|:| -2742 |#1|)) |#2| |#2|)) (-15 -2082 ((-2 (|:| |coef1| |#2|) (|:| -2742 |#1|)) |#2| |#2|)) (-15 -2848 (|#2| |#2| |#2| (-767))) (-15 -1928 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -2045 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -2238 (|#2| |#2| |#2| (-767))) (-15 -3750 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -2203 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -2898 (|#2| |#2| |#2|)) (-15 -3583 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2790 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3724 (|#2| |#2| |#2|)) (-15 -1813 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3548 |#2|)) |#2| |#2|)) (-15 -3404 ((-2 (|:| |coef2| |#2|) (|:| -3548 |#2|)) |#2| |#2|)) (-15 -3671 ((-2 (|:| |coef1| |#2|) (|:| -3548 |#2|)) |#2| |#2|)) (-15 -2315 (|#1| |#2|)) (-15 -3443 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2315 |#1|)) |#2|)) (-15 -4375 ((-2 (|:| |coef2| |#2|) (|:| -2315 |#1|)) |#2|)) (-15 -2654 ((-640 |#2|) |#2| |#2|)) (-15 -1576 ((-640 (-767)) |#2| |#2|)) (IF (|has| |#1| (-452)) (PROGN (-15 -4354 (|#1| |#2| |#2|)) (-15 -1657 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4354 |#1|)) |#2| |#2|)) (-15 -2385 ((-2 (|:| |coef2| |#2|) (|:| -4354 |#1|)) |#2| |#2|)) (-15 -3548 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1257 |#2|) |#1| (-1257 |#2|))) (-15 -3008 ((-1257 |#2|) (-1257 |#2|) |#1|)) (-15 -2521 ((-2 (|:| -2311 |#1|) (|:| -3490 |#2|) (|:| -1972 |#2|)) |#2| |#2|)) (-15 -2452 ((-2 (|:| -3490 |#2|) (|:| -1972 |#2|)) |#2| |#2|)) (-15 -3681 (|#1| |#1| |#1| (-767))) (-15 -1447 (|#2| |#2| |#1| |#1| (-767))) (-15 -2431 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2354 (|#1| |#2| |#2|)) (-15 -1679 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2742 |#1|)) |#2| |#2|)) (-15 -2761 ((-2 (|:| |coef2| |#2|) (|:| -2742 |#1|)) |#2| |#2|))) (-555) (-1233 |#1|)) (T -965)) +((-2761 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2742 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-1679 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2742 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-2354 (*1 *2 *3 *3) (-12 (-4 *2 (-555)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1233 *2)))) (-2431 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-555)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1233 *3)))) (-1447 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-767)) (-4 *3 (-555)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1233 *3)))) (-3681 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *2 (-555)) (-5 *1 (-965 *2 *4)) (-4 *4 (-1233 *2)))) (-2452 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| -3490 *3) (|:| -1972 *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-2521 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| -2311 *4) (|:| -3490 *3) (|:| -1972 *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-3008 (*1 *2 *2 *3) (-12 (-5 *2 (-1257 *4)) (-4 *4 (-1233 *3)) (-4 *3 (-555)) (-5 *1 (-965 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1257 *4)) (-4 *4 (-1233 *3)) (-4 *3 (-555)) (-5 *1 (-965 *3 *4)))) (-3548 (*1 *2 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-555)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1233 *3)))) (-2385 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4354 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-1657 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4354 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-4354 (*1 *2 *3 *3) (-12 (-4 *2 (-555)) (-4 *2 (-452)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1233 *2)))) (-1576 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-640 (-767))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-2654 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-640 *3)) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-4375 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2315 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-3443 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2315 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-2315 (*1 *2 *3) (-12 (-4 *2 (-555)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1233 *2)))) (-3671 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3548 *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-3404 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3548 *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-1813 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3548 *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-3724 (*1 *2 *2 *2) (-12 (-4 *3 (-555)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1233 *3)))) (-2790 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-3583 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-2898 (*1 *2 *2 *2) (-12 (-4 *3 (-555)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1233 *3)))) (-2203 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *5 *3)) (-4 *3 (-1233 *5)))) (-3750 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *5 *3)) (-4 *3 (-1233 *5)))) (-2238 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-555)) (-5 *1 (-965 *4 *2)) (-4 *2 (-1233 *4)))) (-2045 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *5 *3)) (-4 *3 (-1233 *5)))) (-1928 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *5 *3)) (-4 *3 (-1233 *5)))) (-2848 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-555)) (-5 *1 (-965 *4 *2)) (-4 *2 (-1233 *4)))) (-2082 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2742 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-2482 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2742 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-1697 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2742 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-2742 (*1 *2 *3 *3) (-12 (-4 *2 (-555)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1233 *2))))) +(-10 -7 (-15 -2742 (|#1| |#2| |#2|)) (-15 -1697 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2742 |#1|)) |#2| |#2|)) (-15 -2482 ((-2 (|:| |coef2| |#2|) (|:| -2742 |#1|)) |#2| |#2|)) (-15 -2082 ((-2 (|:| |coef1| |#2|) (|:| -2742 |#1|)) |#2| |#2|)) (-15 -2848 (|#2| |#2| |#2| (-767))) (-15 -1928 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -2045 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -2238 (|#2| |#2| |#2| (-767))) (-15 -3750 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -2203 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -2898 (|#2| |#2| |#2|)) (-15 -3583 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2790 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3724 (|#2| |#2| |#2|)) (-15 -1813 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3548 |#2|)) |#2| |#2|)) (-15 -3404 ((-2 (|:| |coef2| |#2|) (|:| -3548 |#2|)) |#2| |#2|)) (-15 -3671 ((-2 (|:| |coef1| |#2|) (|:| -3548 |#2|)) |#2| |#2|)) (-15 -2315 (|#1| |#2|)) (-15 -3443 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2315 |#1|)) |#2|)) (-15 -4375 ((-2 (|:| |coef2| |#2|) (|:| -2315 |#1|)) |#2|)) (-15 -2654 ((-640 |#2|) |#2| |#2|)) (-15 -1576 ((-640 (-767)) |#2| |#2|)) (IF (|has| |#1| (-452)) (PROGN (-15 -4354 (|#1| |#2| |#2|)) (-15 -1657 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4354 |#1|)) |#2| |#2|)) (-15 -2385 ((-2 (|:| |coef2| |#2|) (|:| -4354 |#1|)) |#2| |#2|)) (-15 -3548 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1257 |#2|) |#1| (-1257 |#2|))) (-15 -3008 ((-1257 |#2|) (-1257 |#2|) |#1|)) (-15 -2521 ((-2 (|:| -2311 |#1|) (|:| -3490 |#2|) (|:| -1972 |#2|)) |#2| |#2|)) (-15 -2452 ((-2 (|:| -3490 |#2|) (|:| -1972 |#2|)) |#2| |#2|)) (-15 -3681 (|#1| |#1| |#1| (-767))) (-15 -1447 (|#2| |#2| |#1| |#1| (-767))) (-15 -2431 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2354 (|#1| |#2| |#2|)) (-15 -1679 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2742 |#1|)) |#2| |#2|)) (-15 -2761 ((-2 (|:| |coef2| |#2|) (|:| -2742 |#1|)) |#2| |#2|))) +((-1677 (((-112) $ $) NIL)) (-4183 (((-1207) $) 13)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-3685 (((-1128) $) 10)) (-1693 (((-858) $) 22) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-966) (-13 (-1076) (-10 -8 (-15 -3685 ((-1128) $)) (-15 -4183 ((-1207) $))))) (T -966)) +((-3685 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-966)))) (-4183 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-966))))) +(-13 (-1076) (-10 -8 (-15 -3685 ((-1128) $)) (-15 -4183 ((-1207) $)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) 26)) (-4239 (($) NIL T CONST)) (-2205 (((-640 (-640 (-563))) (-640 (-563))) 28)) (-2971 (((-563) $) 44)) (-3106 (($ (-640 (-563))) 17)) (-3084 (($ $ $) NIL)) (-1777 (($ $ $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-2220 (((-640 (-563)) $) 12)) (-4339 (($ $) 31)) (-1693 (((-858) $) 42) (((-640 (-563)) $) 10)) (-2241 (($) 7 T CONST)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 19)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) 18)) (-1814 (($ $ $) 20)) (* (($ (-917) $) NIL) (($ (-767) $) 24))) +(((-967) (-13 (-791) (-611 (-640 (-563))) (-610 (-640 (-563))) (-10 -8 (-15 -3106 ($ (-640 (-563)))) (-15 -2205 ((-640 (-640 (-563))) (-640 (-563)))) (-15 -2971 ((-563) $)) (-15 -4339 ($ $))))) (T -967)) +((-3106 (*1 *1 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-967)))) (-2205 (*1 *2 *3) (-12 (-5 *2 (-640 (-640 (-563)))) (-5 *1 (-967)) (-5 *3 (-640 (-563))))) (-2971 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-967)))) (-4339 (*1 *1 *1) (-5 *1 (-967)))) +(-13 (-791) (-611 (-640 (-563))) (-610 (-640 (-563))) (-10 -8 (-15 -3106 ($ (-640 (-563)))) (-15 -2205 ((-640 (-640 (-563))) (-640 (-563)))) (-15 -2971 ((-563) $)) (-15 -4339 ($ $)))) +((-1837 (($ $ |#2|) 30)) (-1826 (($ $) 22) (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-407 (-563)) $) 26) (($ $ (-407 (-563))) 28))) +(((-968 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-407 (-563)))) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 -1837 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 -1826 (|#1| |#1| |#1|)) (-15 -1826 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) (-969 |#2| |#3| |#4|) (-1045) (-788) (-846)) (T -968)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-407 (-563)))) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 -1837 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 -1826 (|#1| |#1| |#1|)) (-15 -1826 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-2606 (((-640 |#3|) $) 77)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 54 (|has| |#1| (-555)))) (-4223 (($ $) 55 (|has| |#1| (-555)))) (-3156 (((-112) $) 57 (|has| |#1| (-555)))) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-2751 (($ $) 63)) (-3400 (((-3 $ "failed") $) 33)) (-2788 (((-112) $) 76)) (-3827 (((-112) $) 31)) (-3920 (((-112) $) 65)) (-2588 (($ |#1| |#2|) 64) (($ $ |#3| |#2|) 79) (($ $ (-640 |#3|) (-640 |#2|)) 78)) (-2240 (($ (-1 |#1| |#1|) $) 66)) (-2716 (($ $) 68)) (-2726 ((|#1| $) 69)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-3008 (((-3 $ "failed") $ $) 53 (|has| |#1| (-555)))) (-4167 ((|#2| $) 67)) (-1741 (($ $) 75)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ (-407 (-563))) 60 (|has| |#1| (-38 (-407 (-563))))) (($ $) 52 (|has| |#1| (-555))) (($ |#1|) 50 (|has| |#1| (-172)))) (-4319 ((|#1| $ |#2|) 62)) (-2779 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-1675 (((-767)) 28)) (-2126 (((-112) $ $) 56 (|has| |#1| (-555)))) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1837 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-563)) $) 59 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 58 (|has| |#1| (-38 (-407 (-563))))))) +(((-969 |#1| |#2| |#3|) (-140) (-1045) (-788) (-846)) (T -969)) +((-2726 (*1 *2 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *3 (-788)) (-4 *4 (-846)) (-4 *2 (-1045)))) (-2716 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-788)) (-4 *4 (-846)))) (-4167 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *2 *4)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *2 (-788)))) (-2588 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-969 *4 *3 *2)) (-4 *4 (-1045)) (-4 *3 (-788)) (-4 *2 (-846)))) (-2588 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 *6)) (-5 *3 (-640 *5)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-788)) (-4 *6 (-846)))) (-2606 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-788)) (-4 *5 (-846)) (-5 *2 (-640 *5)))) (-2788 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-788)) (-4 *5 (-846)) (-5 *2 (-112)))) (-1741 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-788)) (-4 *4 (-846))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2588 ($ $ |t#3| |t#2|)) (-15 -2588 ($ $ (-640 |t#3|) (-640 |t#2|))) (-15 -2716 ($ $)) (-15 -2726 (|t#1| $)) (-15 -4167 (|t#2| $)) (-15 -2606 ((-640 |t#3|) $)) (-15 -2788 ((-112) $)) (-15 -1741 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-555)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-563)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4032 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0#) |has| |#1| (-38 (-407 (-563)))) ((-613 (-563)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-613 $) |has| |#1| (-555)) ((-610 (-858)) . T) ((-172) -4032 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-290) |has| |#1| (-555)) ((-555) |has| |#1| (-555)) ((-643 #0#) |has| |#1| (-38 (-407 (-563)))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-563)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-555)) ((-722) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-563)))) ((-1051 |#1|) . T) ((-1051 $) -4032 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) +((-4334 (((-1087 (-225)) $) 8)) (-4324 (((-1087 (-225)) $) 9)) (-4313 (((-1087 (-225)) $) 10)) (-4250 (((-640 (-640 (-939 (-225)))) $) 11)) (-1693 (((-858) $) 6))) +(((-970) (-140)) (T -970)) +((-4250 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-640 (-640 (-939 (-225))))))) (-4313 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1087 (-225))))) (-4324 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1087 (-225))))) (-4334 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1087 (-225)))))) +(-13 (-610 (-858)) (-10 -8 (-15 -4250 ((-640 (-640 (-939 (-225)))) $)) (-15 -4313 ((-1087 (-225)) $)) (-15 -4324 ((-1087 (-225)) $)) (-15 -4334 ((-1087 (-225)) $)))) +(((-610 (-858)) . T)) +((-2606 (((-640 |#4|) $) 23)) (-1706 (((-112) $) 47)) (-3854 (((-112) $) 46)) (-1642 (((-2 (|:| |under| $) (|:| -1583 $) (|:| |upper| $)) $ |#4|) 35)) (-1483 (((-112) $) 48)) (-1626 (((-112) $ $) 54)) (-4221 (((-112) $ $) 57)) (-1763 (((-112) $) 52)) (-3746 (((-640 |#5|) (-640 |#5|) $) 89)) (-1866 (((-640 |#5|) (-640 |#5|) $) 86)) (-1972 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 80)) (-2965 (((-640 |#4|) $) 27)) (-2780 (((-112) |#4| $) 29)) (-2152 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 72)) (-3577 (($ $ |#4|) 32)) (-1593 (($ $ |#4|) 31)) (-4192 (($ $ |#4|) 33)) (-1718 (((-112) $ $) 39))) +(((-971 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3854 ((-112) |#1|)) (-15 -3746 ((-640 |#5|) (-640 |#5|) |#1|)) (-15 -1866 ((-640 |#5|) (-640 |#5|) |#1|)) (-15 -1972 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2152 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1483 ((-112) |#1|)) (-15 -4221 ((-112) |#1| |#1|)) (-15 -1626 ((-112) |#1| |#1|)) (-15 -1763 ((-112) |#1|)) (-15 -1706 ((-112) |#1|)) (-15 -1642 ((-2 (|:| |under| |#1|) (|:| -1583 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3577 (|#1| |#1| |#4|)) (-15 -4192 (|#1| |#1| |#4|)) (-15 -1593 (|#1| |#1| |#4|)) (-15 -2780 ((-112) |#4| |#1|)) (-15 -2965 ((-640 |#4|) |#1|)) (-15 -2606 ((-640 |#4|) |#1|)) (-15 -1718 ((-112) |#1| |#1|))) (-972 |#2| |#3| |#4| |#5|) (-1045) (-789) (-846) (-1059 |#2| |#3| |#4|)) (T -971)) +NIL +(-10 -8 (-15 -3854 ((-112) |#1|)) (-15 -3746 ((-640 |#5|) (-640 |#5|) |#1|)) (-15 -1866 ((-640 |#5|) (-640 |#5|) |#1|)) (-15 -1972 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2152 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1483 ((-112) |#1|)) (-15 -4221 ((-112) |#1| |#1|)) (-15 -1626 ((-112) |#1| |#1|)) (-15 -1763 ((-112) |#1|)) (-15 -1706 ((-112) |#1|)) (-15 -1642 ((-2 (|:| |under| |#1|) (|:| -1583 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3577 (|#1| |#1| |#4|)) (-15 -4192 (|#1| |#1| |#4|)) (-15 -1593 (|#1| |#1| |#4|)) (-15 -2780 ((-112) |#4| |#1|)) (-15 -2965 ((-640 |#4|) |#1|)) (-15 -2606 ((-640 |#4|) |#1|)) (-15 -1718 ((-112) |#1| |#1|))) +((-1677 (((-112) $ $) 7)) (-2606 (((-640 |#3|) $) 33)) (-1706 (((-112) $) 26)) (-3854 (((-112) $) 17 (|has| |#1| (-555)))) (-1642 (((-2 (|:| |under| $) (|:| -1583 $) (|:| |upper| $)) $ |#3|) 27)) (-2759 (((-112) $ (-767)) 44)) (-2256 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4407)))) (-4239 (($) 45 T CONST)) (-1483 (((-112) $) 22 (|has| |#1| (-555)))) (-1626 (((-112) $ $) 24 (|has| |#1| (-555)))) (-4221 (((-112) $ $) 23 (|has| |#1| (-555)))) (-1763 (((-112) $) 25 (|has| |#1| (-555)))) (-3746 (((-640 |#4|) (-640 |#4|) $) 18 (|has| |#1| (-555)))) (-1866 (((-640 |#4|) (-640 |#4|) $) 19 (|has| |#1| (-555)))) (-2131 (((-3 $ "failed") (-640 |#4|)) 36)) (-2058 (($ (-640 |#4|)) 35)) (-3813 (($ $) 68 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4407))))) (-1459 (($ |#4| $) 67 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4407)))) (-1972 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-555)))) (-2444 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4407)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4407))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4407)))) (-2659 (((-640 |#4|) $) 52 (|has| $ (-6 -4407)))) (-2957 ((|#3| $) 34)) (-2581 (((-112) $ (-767)) 43)) (-2259 (((-640 |#4|) $) 53 (|has| $ (-6 -4407)))) (-1729 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4407))))) (-4345 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#4| |#4|) $) 47)) (-2965 (((-640 |#3|) $) 32)) (-2780 (((-112) |#3| $) 31)) (-2382 (((-112) $ (-767)) 42)) (-3573 (((-1151) $) 9)) (-2152 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-555)))) (-1694 (((-1113) $) 10)) (-4203 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3138 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 |#4|) (-640 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-2026 (((-112) $ $) 38)) (-3756 (((-112) $) 41)) (-3135 (($) 40)) (-1709 (((-767) |#4| $) 54 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4407)))) (((-767) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4407)))) (-1872 (($ $) 39)) (-2220 (((-536) $) 69 (|has| |#4| (-611 (-536))))) (-1707 (($ (-640 |#4|)) 60)) (-3577 (($ $ |#3|) 28)) (-1593 (($ $ |#3|) 30)) (-4192 (($ $ |#3|) 29)) (-1693 (((-858) $) 11) (((-640 |#4|) $) 37)) (-4383 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 6)) (-3608 (((-767) $) 46 (|has| $ (-6 -4407))))) +(((-972 |#1| |#2| |#3| |#4|) (-140) (-1045) (-789) (-846) (-1059 |t#1| |t#2| |t#3|)) (T -972)) +((-2131 (*1 *1 *2) (|partial| -12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *1 (-972 *3 *4 *5 *6)))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *1 (-972 *3 *4 *5 *6)))) (-2957 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-1059 *3 *4 *2)) (-4 *2 (-846)))) (-2606 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-640 *5)))) (-2965 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-640 *5)))) (-2780 (*1 *2 *3 *1) (-12 (-4 *1 (-972 *4 *5 *3 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-4 *6 (-1059 *4 *5 *3)) (-5 *2 (-112)))) (-1593 (*1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *5 (-1059 *3 *4 *2)))) (-4192 (*1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *5 (-1059 *3 *4 *2)))) (-3577 (*1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *5 (-1059 *3 *4 *2)))) (-1642 (*1 *2 *1 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-4 *6 (-1059 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -1583 *1) (|:| |upper| *1))) (-4 *1 (-972 *4 *5 *3 *6)))) (-1706 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-1763 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-5 *2 (-112)))) (-1626 (*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-5 *2 (-112)))) (-4221 (*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-5 *2 (-112)))) (-1483 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-5 *2 (-112)))) (-2152 (*1 *2 *3 *1) (-12 (-4 *1 (-972 *4 *5 *6 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-555)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-1972 (*1 *2 *3 *1) (-12 (-4 *1 (-972 *4 *5 *6 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-555)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-1866 (*1 *2 *2 *1) (-12 (-5 *2 (-640 *6)) (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)))) (-3746 (*1 *2 *2 *1) (-12 (-5 *2 (-640 *6)) (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)))) (-3854 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-5 *2 (-112))))) +(-13 (-1093) (-151 |t#4|) (-610 (-640 |t#4|)) (-10 -8 (-6 -4407) (-15 -2131 ((-3 $ "failed") (-640 |t#4|))) (-15 -2058 ($ (-640 |t#4|))) (-15 -2957 (|t#3| $)) (-15 -2606 ((-640 |t#3|) $)) (-15 -2965 ((-640 |t#3|) $)) (-15 -2780 ((-112) |t#3| $)) (-15 -1593 ($ $ |t#3|)) (-15 -4192 ($ $ |t#3|)) (-15 -3577 ($ $ |t#3|)) (-15 -1642 ((-2 (|:| |under| $) (|:| -1583 $) (|:| |upper| $)) $ |t#3|)) (-15 -1706 ((-112) $)) (IF (|has| |t#1| (-555)) (PROGN (-15 -1763 ((-112) $)) (-15 -1626 ((-112) $ $)) (-15 -4221 ((-112) $ $)) (-15 -1483 ((-112) $)) (-15 -2152 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1972 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1866 ((-640 |t#4|) (-640 |t#4|) $)) (-15 -3746 ((-640 |t#4|) (-640 |t#4|) $)) (-15 -3854 ((-112) $))) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-610 (-640 |#4|)) . T) ((-610 (-858)) . T) ((-151 |#4|) . T) ((-611 (-536)) |has| |#4| (-611 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-1093) . T) ((-1208) . T)) +((-3592 (((-640 |#4|) |#4| |#4|) 117)) (-1594 (((-640 |#4|) (-640 |#4|) (-112)) 106 (|has| |#1| (-452))) (((-640 |#4|) (-640 |#4|)) 107 (|has| |#1| (-452)))) (-3459 (((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|)) 34)) (-3618 (((-112) |#4|) 33)) (-3141 (((-640 |#4|) |#4|) 102 (|has| |#1| (-452)))) (-2741 (((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-1 (-112) |#4|) (-640 |#4|)) 19)) (-1965 (((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 (-1 (-112) |#4|)) (-640 |#4|)) 21)) (-1306 (((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 (-1 (-112) |#4|)) (-640 |#4|)) 22)) (-2806 (((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -2636 (-640 |#4|))) "failed") (-640 |#4|)) 72)) (-2825 (((-640 |#4|) (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 84)) (-2829 (((-640 |#4|) (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 110)) (-4245 (((-640 |#4|) (-640 |#4|)) 109)) (-1605 (((-640 |#4|) (-640 |#4|) (-640 |#4|) (-112)) 47) (((-640 |#4|) (-640 |#4|) (-640 |#4|)) 49)) (-1639 ((|#4| |#4| (-640 |#4|)) 48)) (-2538 (((-640 |#4|) (-640 |#4|) (-640 |#4|)) 113 (|has| |#1| (-452)))) (-3967 (((-640 |#4|) (-640 |#4|) (-640 |#4|)) 116 (|has| |#1| (-452)))) (-1641 (((-640 |#4|) (-640 |#4|) (-640 |#4|)) 115 (|has| |#1| (-452)))) (-3338 (((-640 |#4|) (-640 |#4|) (-640 |#4|) (-1 (-640 |#4|) (-640 |#4|))) 86) (((-640 |#4|) (-640 |#4|) (-640 |#4|)) 88) (((-640 |#4|) (-640 |#4|) |#4|) 120) (((-640 |#4|) |#4| |#4|) 118) (((-640 |#4|) (-640 |#4|)) 87)) (-1911 (((-640 |#4|) (-640 |#4|) (-640 |#4|)) 99 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-4206 (((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|)) 40)) (-3023 (((-112) (-640 |#4|)) 61)) (-2164 (((-112) (-640 |#4|) (-640 (-640 |#4|))) 52)) (-3667 (((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|)) 28)) (-4304 (((-112) |#4|) 27)) (-3287 (((-640 |#4|) (-640 |#4|)) 97 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-2333 (((-640 |#4|) (-640 |#4|)) 98 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-3953 (((-640 |#4|) (-640 |#4|)) 65)) (-1791 (((-640 |#4|) (-640 |#4|)) 78)) (-3081 (((-112) (-640 |#4|) (-640 |#4|)) 50)) (-1591 (((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|)) 38)) (-2166 (((-112) |#4|) 35))) +(((-973 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3338 ((-640 |#4|) (-640 |#4|))) (-15 -3338 ((-640 |#4|) |#4| |#4|)) (-15 -4245 ((-640 |#4|) (-640 |#4|))) (-15 -3592 ((-640 |#4|) |#4| |#4|)) (-15 -3338 ((-640 |#4|) (-640 |#4|) |#4|)) (-15 -3338 ((-640 |#4|) (-640 |#4|) (-640 |#4|))) (-15 -3338 ((-640 |#4|) (-640 |#4|) (-640 |#4|) (-1 (-640 |#4|) (-640 |#4|)))) (-15 -3081 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -2164 ((-112) (-640 |#4|) (-640 (-640 |#4|)))) (-15 -3023 ((-112) (-640 |#4|))) (-15 -2741 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-1 (-112) |#4|) (-640 |#4|))) (-15 -1965 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 (-1 (-112) |#4|)) (-640 |#4|))) (-15 -1306 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 (-1 (-112) |#4|)) (-640 |#4|))) (-15 -4206 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|))) (-15 -3618 ((-112) |#4|)) (-15 -3459 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|))) (-15 -4304 ((-112) |#4|)) (-15 -3667 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|))) (-15 -2166 ((-112) |#4|)) (-15 -1591 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|))) (-15 -1605 ((-640 |#4|) (-640 |#4|) (-640 |#4|))) (-15 -1605 ((-640 |#4|) (-640 |#4|) (-640 |#4|) (-112))) (-15 -1639 (|#4| |#4| (-640 |#4|))) (-15 -3953 ((-640 |#4|) (-640 |#4|))) (-15 -2806 ((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -2636 (-640 |#4|))) "failed") (-640 |#4|))) (-15 -1791 ((-640 |#4|) (-640 |#4|))) (-15 -2825 ((-640 |#4|) (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2829 ((-640 |#4|) (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-452)) (PROGN (-15 -3141 ((-640 |#4|) |#4|)) (-15 -1594 ((-640 |#4|) (-640 |#4|))) (-15 -1594 ((-640 |#4|) (-640 |#4|) (-112))) (-15 -2538 ((-640 |#4|) (-640 |#4|) (-640 |#4|))) (-15 -1641 ((-640 |#4|) (-640 |#4|) (-640 |#4|))) (-15 -3967 ((-640 |#4|) (-640 |#4|) (-640 |#4|)))) |%noBranch|) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (PROGN (-15 -2333 ((-640 |#4|) (-640 |#4|))) (-15 -3287 ((-640 |#4|) (-640 |#4|))) (-15 -1911 ((-640 |#4|) (-640 |#4|) (-640 |#4|)))) |%noBranch|) |%noBranch|)) (-555) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -973)) +((-1911 (*1 *2 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-3287 (*1 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-2333 (*1 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-3967 (*1 *2 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-1641 (*1 *2 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-2538 (*1 *2 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-1594 (*1 *2 *2 *3) (-12 (-5 *2 (-640 *7)) (-5 *3 (-112)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *7)))) (-1594 (*1 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-3141 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *3)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-2829 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-640 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-973 *5 *6 *7 *8)))) (-2825 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-640 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-555)) (-4 *7 (-789)) (-4 *8 (-846)) (-5 *1 (-973 *6 *7 *8 *9)))) (-1791 (*1 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-2806 (*1 *2 *3) (|partial| -12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-476 *4 *5 *6 *7)) (|:| -2636 (-640 *7)))) (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-640 *7)))) (-3953 (*1 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-1639 (*1 *2 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-1059 *4 *5 *6)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *2)))) (-1605 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-640 *7)) (-5 *3 (-112)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *7)))) (-1605 (*1 *2 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-1591 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-640 *7)) (|:| |badPols| (-640 *7)))) (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-640 *7)))) (-2166 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-3667 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-640 *7)) (|:| |badPols| (-640 *7)))) (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-640 *7)))) (-4304 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-3459 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-640 *7)) (|:| |badPols| (-640 *7)))) (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-640 *7)))) (-3618 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-4206 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-640 *7)) (|:| |badPols| (-640 *7)))) (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-640 *7)))) (-1306 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-1 (-112) *8))) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-2 (|:| |goodPols| (-640 *8)) (|:| |badPols| (-640 *8)))) (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-640 *8)))) (-1965 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-1 (-112) *8))) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-2 (|:| |goodPols| (-640 *8)) (|:| |badPols| (-640 *8)))) (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-640 *8)))) (-2741 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-2 (|:| |goodPols| (-640 *8)) (|:| |badPols| (-640 *8)))) (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-640 *8)))) (-3023 (*1 *2 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *7)))) (-2164 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-640 *8))) (-5 *3 (-640 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *5 *6 *7 *8)))) (-3081 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *7)))) (-3338 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-640 *7) (-640 *7))) (-5 *2 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *7)))) (-3338 (*1 *2 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-3338 (*1 *2 *2 *3) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *3)))) (-3592 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *3)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-4245 (*1 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-3338 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *3)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-3338 (*1 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6))))) +(-10 -7 (-15 -3338 ((-640 |#4|) (-640 |#4|))) (-15 -3338 ((-640 |#4|) |#4| |#4|)) (-15 -4245 ((-640 |#4|) (-640 |#4|))) (-15 -3592 ((-640 |#4|) |#4| |#4|)) (-15 -3338 ((-640 |#4|) (-640 |#4|) |#4|)) (-15 -3338 ((-640 |#4|) (-640 |#4|) (-640 |#4|))) (-15 -3338 ((-640 |#4|) (-640 |#4|) (-640 |#4|) (-1 (-640 |#4|) (-640 |#4|)))) (-15 -3081 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -2164 ((-112) (-640 |#4|) (-640 (-640 |#4|)))) (-15 -3023 ((-112) (-640 |#4|))) (-15 -2741 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-1 (-112) |#4|) (-640 |#4|))) (-15 -1965 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 (-1 (-112) |#4|)) (-640 |#4|))) (-15 -1306 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 (-1 (-112) |#4|)) (-640 |#4|))) (-15 -4206 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|))) (-15 -3618 ((-112) |#4|)) (-15 -3459 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|))) (-15 -4304 ((-112) |#4|)) (-15 -3667 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|))) (-15 -2166 ((-112) |#4|)) (-15 -1591 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|))) (-15 -1605 ((-640 |#4|) (-640 |#4|) (-640 |#4|))) (-15 -1605 ((-640 |#4|) (-640 |#4|) (-640 |#4|) (-112))) (-15 -1639 (|#4| |#4| (-640 |#4|))) (-15 -3953 ((-640 |#4|) (-640 |#4|))) (-15 -2806 ((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -2636 (-640 |#4|))) "failed") (-640 |#4|))) (-15 -1791 ((-640 |#4|) (-640 |#4|))) (-15 -2825 ((-640 |#4|) (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2829 ((-640 |#4|) (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-452)) (PROGN (-15 -3141 ((-640 |#4|) |#4|)) (-15 -1594 ((-640 |#4|) (-640 |#4|))) (-15 -1594 ((-640 |#4|) (-640 |#4|) (-112))) (-15 -2538 ((-640 |#4|) (-640 |#4|) (-640 |#4|))) (-15 -1641 ((-640 |#4|) (-640 |#4|) (-640 |#4|))) (-15 -3967 ((-640 |#4|) (-640 |#4|) (-640 |#4|)))) |%noBranch|) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (PROGN (-15 -2333 ((-640 |#4|) (-640 |#4|))) (-15 -3287 ((-640 |#4|) (-640 |#4|))) (-15 -1911 ((-640 |#4|) (-640 |#4|) (-640 |#4|)))) |%noBranch|) |%noBranch|)) +((-3029 (((-2 (|:| R (-684 |#1|)) (|:| A (-684 |#1|)) (|:| |Ainv| (-684 |#1|))) (-684 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-3056 (((-640 (-2 (|:| C (-684 |#1|)) (|:| |g| (-1257 |#1|)))) (-684 |#1|) (-1257 |#1|)) 35)) (-3578 (((-684 |#1|) (-684 |#1|) (-684 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) +(((-974 |#1|) (-10 -7 (-15 -3029 ((-2 (|:| R (-684 |#1|)) (|:| A (-684 |#1|)) (|:| |Ainv| (-684 |#1|))) (-684 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3578 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3056 ((-640 (-2 (|:| C (-684 |#1|)) (|:| |g| (-1257 |#1|)))) (-684 |#1|) (-1257 |#1|)))) (-363)) (T -974)) +((-3056 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-640 (-2 (|:| C (-684 *5)) (|:| |g| (-1257 *5))))) (-5 *1 (-974 *5)) (-5 *3 (-684 *5)) (-5 *4 (-1257 *5)))) (-3578 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-684 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-5 *1 (-974 *5)))) (-3029 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-363)) (-5 *2 (-2 (|:| R (-684 *6)) (|:| A (-684 *6)) (|:| |Ainv| (-684 *6)))) (-5 *1 (-974 *6)) (-5 *3 (-684 *6))))) +(-10 -7 (-15 -3029 ((-2 (|:| R (-684 |#1|)) (|:| A (-684 |#1|)) (|:| |Ainv| (-684 |#1|))) (-684 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3578 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3056 ((-640 (-2 (|:| C (-684 |#1|)) (|:| |g| (-1257 |#1|)))) (-684 |#1|) (-1257 |#1|)))) +((-3205 (((-418 |#4|) |#4|) 48))) +(((-975 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3205 ((-418 |#4|) |#4|))) (-846) (-789) (-452) (-945 |#3| |#2| |#1|)) (T -975)) +((-3205 (*1 *2 *3) (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-452)) (-5 *2 (-418 *3)) (-5 *1 (-975 *4 *5 *6 *3)) (-4 *3 (-945 *6 *5 *4))))) +(-10 -7 (-15 -3205 ((-418 |#4|) |#4|))) +((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-3212 (($ (-767)) 112 (|has| |#1| (-23)))) (-4378 (((-1262) $ (-563) (-563)) 40 (|has| $ (-6 -4408)))) (-3523 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-846)))) (-2770 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4408))) (($ $) 88 (-12 (|has| |#1| (-846)) (|has| $ (-6 -4408))))) (-1642 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-846)))) (-2759 (((-112) $ (-767)) 8)) (-1849 ((|#1| $ (-563) |#1|) 52 (|has| $ (-6 -4408))) ((|#1| $ (-1224 (-563)) |#1|) 58 (|has| $ (-6 -4408)))) (-2256 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4407)))) (-4239 (($) 7 T CONST)) (-2907 (($ $) 90 (|has| $ (-6 -4408)))) (-4382 (($ $) 100)) (-3813 (($ $) 78 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1459 (($ |#1| $) 77 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4407)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4407)))) (-4355 ((|#1| $ (-563) |#1|) 53 (|has| $ (-6 -4408)))) (-4293 ((|#1| $ (-563)) 51)) (-4368 (((-563) (-1 (-112) |#1|) $) 97) (((-563) |#1| $) 96 (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) 95 (|has| |#1| (-1093)))) (-3014 (($ (-640 |#1|)) 118)) (-2659 (((-640 |#1|) $) 30 (|has| $ (-6 -4407)))) (-3982 (((-684 |#1|) $ $) 105 (|has| |#1| (-1045)))) (-1566 (($ (-767) |#1|) 69)) (-2581 (((-112) $ (-767)) 9)) (-2411 (((-563) $) 43 (|has| (-563) (-846)))) (-3084 (($ $ $) 87 (|has| |#1| (-846)))) (-3164 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-846)))) (-2259 (((-640 |#1|) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-3860 (((-563) $) 44 (|has| (-563) (-846)))) (-1777 (($ $ $) 86 (|has| |#1| (-846)))) (-4345 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1607 ((|#1| $) 102 (-12 (|has| |#1| (-1045)) (|has| |#1| (-998))))) (-2382 (((-112) $ (-767)) 10)) (-3415 ((|#1| $) 103 (-12 (|has| |#1| (-1045)) (|has| |#1| (-998))))) (-3573 (((-1151) $) 22 (|has| |#1| (-1093)))) (-3396 (($ |#1| $ (-563)) 60) (($ $ $ (-563)) 59)) (-4318 (((-640 (-563)) $) 46)) (-3192 (((-112) (-563) $) 47)) (-1694 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3781 ((|#1| $) 42 (|has| (-563) (-846)))) (-4203 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2358 (($ $ |#1|) 41 (|has| $ (-6 -4408)))) (-3320 (($ $ (-640 |#1|)) 116)) (-3138 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) 14)) (-2105 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2836 (((-640 |#1|) $) 48)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-2309 ((|#1| $ (-563) |#1|) 50) ((|#1| $ (-563)) 49) (($ $ (-1224 (-563))) 63)) (-4092 ((|#1| $ $) 106 (|has| |#1| (-1045)))) (-3533 (((-917) $) 117)) (-2963 (($ $ (-563)) 62) (($ $ (-1224 (-563))) 61)) (-1627 (($ $ $) 104)) (-1709 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4407))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-3076 (($ $ $ (-563)) 91 (|has| $ (-6 -4408)))) (-1872 (($ $) 13)) (-2220 (((-536) $) 79 (|has| |#1| (-611 (-536)))) (($ (-640 |#1|)) 119)) (-1707 (($ (-640 |#1|)) 70)) (-2853 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-640 $)) 65)) (-1693 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-4383 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-1778 (((-112) $ $) 84 (|has| |#1| (-846)))) (-1756 (((-112) $ $) 83 (|has| |#1| (-846)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-1768 (((-112) $ $) 85 (|has| |#1| (-846)))) (-1744 (((-112) $ $) 82 (|has| |#1| (-846)))) (-1826 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1814 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-563) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-722))) (($ $ |#1|) 107 (|has| |#1| (-722)))) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-976 |#1|) (-140) (-1045)) (T -976)) +((-3014 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1045)) (-4 *1 (-976 *3)))) (-3533 (*1 *2 *1) (-12 (-4 *1 (-976 *3)) (-4 *3 (-1045)) (-5 *2 (-917)))) (-1627 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-1045)))) (-3320 (*1 *1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *1 (-976 *3)) (-4 *3 (-1045))))) +(-13 (-1255 |t#1|) (-615 (-640 |t#1|)) (-10 -8 (-15 -3014 ($ (-640 |t#1|))) (-15 -3533 ((-917) $)) (-15 -1627 ($ $ $)) (-15 -3320 ($ $ (-640 |t#1|))))) +(((-34) . T) ((-102) -4032 (|has| |#1| (-1093)) (|has| |#1| (-846))) ((-610 (-858)) -4032 (|has| |#1| (-1093)) (|has| |#1| (-846)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-615 (-640 |#1|)) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-286 #0=(-563) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-601 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-646 |#1|) . T) ((-19 |#1|) . T) ((-846) |has| |#1| (-846)) ((-1093) -4032 (|has| |#1| (-1093)) (|has| |#1| (-846))) ((-1208) . T) ((-1255 |#1|) . T)) +((-2240 (((-939 |#2|) (-1 |#2| |#1|) (-939 |#1|)) 17))) +(((-977 |#1| |#2|) (-10 -7 (-15 -2240 ((-939 |#2|) (-1 |#2| |#1|) (-939 |#1|)))) (-1045) (-1045)) (T -977)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-939 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-939 *6)) (-5 *1 (-977 *5 *6))))) +(-10 -7 (-15 -2240 ((-939 |#2|) (-1 |#2| |#1|) (-939 |#1|)))) +((-2496 ((|#1| (-939 |#1|)) 13)) (-3200 ((|#1| (-939 |#1|)) 12)) (-1347 ((|#1| (-939 |#1|)) 11)) (-1953 ((|#1| (-939 |#1|)) 15)) (-3905 ((|#1| (-939 |#1|)) 21)) (-2053 ((|#1| (-939 |#1|)) 14)) (-1316 ((|#1| (-939 |#1|)) 16)) (-3788 ((|#1| (-939 |#1|)) 20)) (-1332 ((|#1| (-939 |#1|)) 19))) +(((-978 |#1|) (-10 -7 (-15 -1347 (|#1| (-939 |#1|))) (-15 -3200 (|#1| (-939 |#1|))) (-15 -2496 (|#1| (-939 |#1|))) (-15 -2053 (|#1| (-939 |#1|))) (-15 -1953 (|#1| (-939 |#1|))) (-15 -1316 (|#1| (-939 |#1|))) (-15 -1332 (|#1| (-939 |#1|))) (-15 -3788 (|#1| (-939 |#1|))) (-15 -3905 (|#1| (-939 |#1|)))) (-1045)) (T -978)) +((-3905 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-3788 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-1332 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-1316 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-1953 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-2053 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-2496 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-3200 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-1347 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045))))) +(-10 -7 (-15 -1347 (|#1| (-939 |#1|))) (-15 -3200 (|#1| (-939 |#1|))) (-15 -2496 (|#1| (-939 |#1|))) (-15 -2053 (|#1| (-939 |#1|))) (-15 -1953 (|#1| (-939 |#1|))) (-15 -1316 (|#1| (-939 |#1|))) (-15 -1332 (|#1| (-939 |#1|))) (-15 -3788 (|#1| (-939 |#1|))) (-15 -3905 (|#1| (-939 |#1|)))) +((-2695 (((-3 |#1| "failed") |#1|) 18)) (-4243 (((-3 |#1| "failed") |#1|) 6)) (-2030 (((-3 |#1| "failed") |#1|) 16)) (-1923 (((-3 |#1| "failed") |#1|) 4)) (-3565 (((-3 |#1| "failed") |#1|) 20)) (-3918 (((-3 |#1| "failed") |#1|) 8)) (-2092 (((-3 |#1| "failed") |#1| (-767)) 1)) (-1739 (((-3 |#1| "failed") |#1|) 3)) (-3089 (((-3 |#1| "failed") |#1|) 2)) (-3344 (((-3 |#1| "failed") |#1|) 21)) (-1732 (((-3 |#1| "failed") |#1|) 9)) (-3392 (((-3 |#1| "failed") |#1|) 19)) (-2616 (((-3 |#1| "failed") |#1|) 7)) (-3240 (((-3 |#1| "failed") |#1|) 17)) (-2106 (((-3 |#1| "failed") |#1|) 5)) (-4385 (((-3 |#1| "failed") |#1|) 24)) (-2566 (((-3 |#1| "failed") |#1|) 12)) (-4074 (((-3 |#1| "failed") |#1|) 22)) (-2000 (((-3 |#1| "failed") |#1|) 10)) (-2915 (((-3 |#1| "failed") |#1|) 26)) (-2002 (((-3 |#1| "failed") |#1|) 14)) (-3874 (((-3 |#1| "failed") |#1|) 27)) (-3409 (((-3 |#1| "failed") |#1|) 15)) (-2951 (((-3 |#1| "failed") |#1|) 25)) (-3235 (((-3 |#1| "failed") |#1|) 13)) (-2819 (((-3 |#1| "failed") |#1|) 23)) (-3137 (((-3 |#1| "failed") |#1|) 11))) +(((-979 |#1|) (-140) (-1193)) (T -979)) +((-3874 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-2915 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-2951 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-4385 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-2819 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-4074 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3344 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3565 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3392 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-2695 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3240 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-2030 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3409 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-2002 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3235 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-2566 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3137 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-2000 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-1732 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3918 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-2616 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-4243 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-2106 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-1923 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-1739 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3089 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-2092 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-767)) (-4 *1 (-979 *2)) (-4 *2 (-1193))))) +(-13 (-10 -7 (-15 -2092 ((-3 |t#1| "failed") |t#1| (-767))) (-15 -3089 ((-3 |t#1| "failed") |t#1|)) (-15 -1739 ((-3 |t#1| "failed") |t#1|)) (-15 -1923 ((-3 |t#1| "failed") |t#1|)) (-15 -2106 ((-3 |t#1| "failed") |t#1|)) (-15 -4243 ((-3 |t#1| "failed") |t#1|)) (-15 -2616 ((-3 |t#1| "failed") |t#1|)) (-15 -3918 ((-3 |t#1| "failed") |t#1|)) (-15 -1732 ((-3 |t#1| "failed") |t#1|)) (-15 -2000 ((-3 |t#1| "failed") |t#1|)) (-15 -3137 ((-3 |t#1| "failed") |t#1|)) (-15 -2566 ((-3 |t#1| "failed") |t#1|)) (-15 -3235 ((-3 |t#1| "failed") |t#1|)) (-15 -2002 ((-3 |t#1| "failed") |t#1|)) (-15 -3409 ((-3 |t#1| "failed") |t#1|)) (-15 -2030 ((-3 |t#1| "failed") |t#1|)) (-15 -3240 ((-3 |t#1| "failed") |t#1|)) (-15 -2695 ((-3 |t#1| "failed") |t#1|)) (-15 -3392 ((-3 |t#1| "failed") |t#1|)) (-15 -3565 ((-3 |t#1| "failed") |t#1|)) (-15 -3344 ((-3 |t#1| "failed") |t#1|)) (-15 -4074 ((-3 |t#1| "failed") |t#1|)) (-15 -2819 ((-3 |t#1| "failed") |t#1|)) (-15 -4385 ((-3 |t#1| "failed") |t#1|)) (-15 -2951 ((-3 |t#1| "failed") |t#1|)) (-15 -2915 ((-3 |t#1| "failed") |t#1|)) (-15 -3874 ((-3 |t#1| "failed") |t#1|)))) +((-2386 ((|#4| |#4| (-640 |#3|)) 55) ((|#4| |#4| |#3|) 54)) (-2900 ((|#4| |#4| (-640 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-2240 ((|#4| (-1 |#4| (-948 |#1|)) |#4|) 30))) +(((-980 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2900 (|#4| |#4| |#3|)) (-15 -2900 (|#4| |#4| (-640 |#3|))) (-15 -2386 (|#4| |#4| |#3|)) (-15 -2386 (|#4| |#4| (-640 |#3|))) (-15 -2240 (|#4| (-1 |#4| (-948 |#1|)) |#4|))) (-1045) (-789) (-13 (-846) (-10 -8 (-15 -2220 ((-1169) $)) (-15 -2518 ((-3 $ "failed") (-1169))))) (-945 (-948 |#1|) |#2| |#3|)) (T -980)) +((-2240 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-948 *4))) (-4 *4 (-1045)) (-4 *2 (-945 (-948 *4) *5 *6)) (-4 *5 (-789)) (-4 *6 (-13 (-846) (-10 -8 (-15 -2220 ((-1169) $)) (-15 -2518 ((-3 $ "failed") (-1169)))))) (-5 *1 (-980 *4 *5 *6 *2)))) (-2386 (*1 *2 *2 *3) (-12 (-5 *3 (-640 *6)) (-4 *6 (-13 (-846) (-10 -8 (-15 -2220 ((-1169) $)) (-15 -2518 ((-3 $ "failed") (-1169)))))) (-4 *4 (-1045)) (-4 *5 (-789)) (-5 *1 (-980 *4 *5 *6 *2)) (-4 *2 (-945 (-948 *4) *5 *6)))) (-2386 (*1 *2 *2 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-13 (-846) (-10 -8 (-15 -2220 ((-1169) $)) (-15 -2518 ((-3 $ "failed") (-1169)))))) (-5 *1 (-980 *4 *5 *3 *2)) (-4 *2 (-945 (-948 *4) *5 *3)))) (-2900 (*1 *2 *2 *3) (-12 (-5 *3 (-640 *6)) (-4 *6 (-13 (-846) (-10 -8 (-15 -2220 ((-1169) $)) (-15 -2518 ((-3 $ "failed") (-1169)))))) (-4 *4 (-1045)) (-4 *5 (-789)) (-5 *1 (-980 *4 *5 *6 *2)) (-4 *2 (-945 (-948 *4) *5 *6)))) (-2900 (*1 *2 *2 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-13 (-846) (-10 -8 (-15 -2220 ((-1169) $)) (-15 -2518 ((-3 $ "failed") (-1169)))))) (-5 *1 (-980 *4 *5 *3 *2)) (-4 *2 (-945 (-948 *4) *5 *3))))) +(-10 -7 (-15 -2900 (|#4| |#4| |#3|)) (-15 -2900 (|#4| |#4| (-640 |#3|))) (-15 -2386 (|#4| |#4| |#3|)) (-15 -2386 (|#4| |#4| (-640 |#3|))) (-15 -2240 (|#4| (-1 |#4| (-948 |#1|)) |#4|))) +((-1389 ((|#2| |#3|) 35)) (-3435 (((-2 (|:| -4315 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) |#2|) 73)) (-3815 (((-2 (|:| -4315 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|)))) 89))) +(((-981 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3815 ((-2 (|:| -4315 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))))) (-15 -3435 ((-2 (|:| -4315 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) |#2|)) (-15 -1389 (|#2| |#3|))) (-349) (-1233 |#1|) (-1233 |#2|) (-720 |#2| |#3|)) (T -981)) +((-1389 (*1 *2 *3) (-12 (-4 *3 (-1233 *2)) (-4 *2 (-1233 *4)) (-5 *1 (-981 *4 *2 *3 *5)) (-4 *4 (-349)) (-4 *5 (-720 *2 *3)))) (-3435 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *3 (-1233 *4)) (-4 *5 (-1233 *3)) (-5 *2 (-2 (|:| -4315 (-684 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-684 *3)))) (-5 *1 (-981 *4 *3 *5 *6)) (-4 *6 (-720 *3 *5)))) (-3815 (*1 *2) (-12 (-4 *3 (-349)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 *4)) (-5 *2 (-2 (|:| -4315 (-684 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-684 *4)))) (-5 *1 (-981 *3 *4 *5 *6)) (-4 *6 (-720 *4 *5))))) +(-10 -7 (-15 -3815 ((-2 (|:| -4315 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))))) (-15 -3435 ((-2 (|:| -4315 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) |#2|)) (-15 -1389 (|#2| |#3|))) +((-3985 (((-983 (-407 (-563)) (-860 |#1|) (-240 |#2| (-767)) (-247 |#1| (-407 (-563)))) (-983 (-407 (-563)) (-860 |#1|) (-240 |#2| (-767)) (-247 |#1| (-407 (-563))))) 68))) +(((-982 |#1| |#2|) (-10 -7 (-15 -3985 ((-983 (-407 (-563)) (-860 |#1|) (-240 |#2| (-767)) (-247 |#1| (-407 (-563)))) (-983 (-407 (-563)) (-860 |#1|) (-240 |#2| (-767)) (-247 |#1| (-407 (-563))))))) (-640 (-1169)) (-767)) (T -982)) +((-3985 (*1 *2 *2) (-12 (-5 *2 (-983 (-407 (-563)) (-860 *3) (-240 *4 (-767)) (-247 *3 (-407 (-563))))) (-14 *3 (-640 (-1169))) (-14 *4 (-767)) (-5 *1 (-982 *3 *4))))) +(-10 -7 (-15 -3985 ((-983 (-407 (-563)) (-860 |#1|) (-240 |#2| (-767)) (-247 |#1| (-407 (-563)))) (-983 (-407 (-563)) (-860 |#1|) (-240 |#2| (-767)) (-247 |#1| (-407 (-563))))))) +((-1677 (((-112) $ $) NIL)) (-2733 (((-3 (-112) "failed") $) 69)) (-2609 (($ $) 36 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-4138 (($ $ (-3 (-112) "failed")) 70)) (-2422 (($ (-640 |#4|) |#4|) 25)) (-3573 (((-1151) $) NIL)) (-4156 (($ $) 67)) (-1694 (((-1113) $) NIL)) (-3756 (((-112) $) 68)) (-3135 (($) 30)) (-2261 ((|#4| $) 72)) (-2062 (((-640 |#4|) $) 71)) (-1693 (((-858) $) 66)) (-1718 (((-112) $ $) NIL))) +(((-983 |#1| |#2| |#3| |#4|) (-13 (-1093) (-610 (-858)) (-10 -8 (-15 -3135 ($)) (-15 -2422 ($ (-640 |#4|) |#4|)) (-15 -2733 ((-3 (-112) "failed") $)) (-15 -4138 ($ $ (-3 (-112) "failed"))) (-15 -3756 ((-112) $)) (-15 -2062 ((-640 |#4|) $)) (-15 -2261 (|#4| $)) (-15 -4156 ($ $)) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (-15 -2609 ($ $)) |%noBranch|) |%noBranch|))) (-452) (-846) (-789) (-945 |#1| |#3| |#2|)) (T -983)) +((-3135 (*1 *1) (-12 (-4 *2 (-452)) (-4 *3 (-846)) (-4 *4 (-789)) (-5 *1 (-983 *2 *3 *4 *5)) (-4 *5 (-945 *2 *4 *3)))) (-2422 (*1 *1 *2 *3) (-12 (-5 *2 (-640 *3)) (-4 *3 (-945 *4 *6 *5)) (-4 *4 (-452)) (-4 *5 (-846)) (-4 *6 (-789)) (-5 *1 (-983 *4 *5 *6 *3)))) (-2733 (*1 *2 *1) (|partial| -12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *2 (-112)) (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4)))) (-4138 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4)))) (-3756 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *2 (-112)) (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4)))) (-2062 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *2 (-640 *6)) (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4)))) (-2261 (*1 *2 *1) (-12 (-4 *2 (-945 *3 *5 *4)) (-5 *1 (-983 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)))) (-4156 (*1 *1 *1) (-12 (-4 *2 (-452)) (-4 *3 (-846)) (-4 *4 (-789)) (-5 *1 (-983 *2 *3 *4 *5)) (-4 *5 (-945 *2 *4 *3)))) (-2609 (*1 *1 *1) (-12 (-4 *2 (-147)) (-4 *2 (-307)) (-4 *2 (-452)) (-4 *3 (-846)) (-4 *4 (-789)) (-5 *1 (-983 *2 *3 *4 *5)) (-4 *5 (-945 *2 *4 *3))))) +(-13 (-1093) (-610 (-858)) (-10 -8 (-15 -3135 ($)) (-15 -2422 ($ (-640 |#4|) |#4|)) (-15 -2733 ((-3 (-112) "failed") $)) (-15 -4138 ($ $ (-3 (-112) "failed"))) (-15 -3756 ((-112) $)) (-15 -2062 ((-640 |#4|) $)) (-15 -2261 (|#4| $)) (-15 -4156 ($ $)) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (-15 -2609 ($ $)) |%noBranch|) |%noBranch|))) +((-1918 (((-112) |#5| |#5|) 37)) (-1874 (((-112) |#5| |#5|) 51)) (-3607 (((-112) |#5| (-640 |#5|)) 73) (((-112) |#5| |#5|) 60)) (-2952 (((-112) (-640 |#4|) (-640 |#4|)) 57)) (-3150 (((-112) (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|)) (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) 62)) (-3044 (((-1262)) 33)) (-4387 (((-1262) (-1151) (-1151) (-1151)) 29)) (-3965 (((-640 |#5|) (-640 |#5|)) 80)) (-1530 (((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|)))) 78)) (-1809 (((-640 (-2 (|:| -1420 (-640 |#4|)) (|:| -2059 |#5|) (|:| |ineq| (-640 |#4|)))) (-640 |#4|) (-640 |#5|) (-112) (-112)) 100)) (-3638 (((-112) |#5| |#5|) 46)) (-3506 (((-3 (-112) "failed") |#5| |#5|) 70)) (-3970 (((-112) (-640 |#4|) (-640 |#4|)) 56)) (-4342 (((-112) (-640 |#4|) (-640 |#4|)) 58)) (-3009 (((-112) (-640 |#4|) (-640 |#4|)) 59)) (-1737 (((-3 (-2 (|:| -1420 (-640 |#4|)) (|:| -2059 |#5|) (|:| |ineq| (-640 |#4|))) "failed") (-640 |#4|) |#5| (-640 |#4|) (-112) (-112) (-112) (-112) (-112)) 96)) (-1846 (((-640 |#5|) (-640 |#5|)) 42))) +(((-984 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4387 ((-1262) (-1151) (-1151) (-1151))) (-15 -3044 ((-1262))) (-15 -1918 ((-112) |#5| |#5|)) (-15 -1846 ((-640 |#5|) (-640 |#5|))) (-15 -3638 ((-112) |#5| |#5|)) (-15 -1874 ((-112) |#5| |#5|)) (-15 -2952 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -3970 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -4342 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -3009 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -3506 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3607 ((-112) |#5| |#5|)) (-15 -3607 ((-112) |#5| (-640 |#5|))) (-15 -3965 ((-640 |#5|) (-640 |#5|))) (-15 -3150 ((-112) (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|)) (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|)))) (-15 -1530 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) (-15 -1809 ((-640 (-2 (|:| -1420 (-640 |#4|)) (|:| -2059 |#5|) (|:| |ineq| (-640 |#4|)))) (-640 |#4|) (-640 |#5|) (-112) (-112))) (-15 -1737 ((-3 (-2 (|:| -1420 (-640 |#4|)) (|:| -2059 |#5|) (|:| |ineq| (-640 |#4|))) "failed") (-640 |#4|) |#5| (-640 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -984)) +((-1737 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| -1420 (-640 *9)) (|:| -2059 *4) (|:| |ineq| (-640 *9)))) (-5 *1 (-984 *6 *7 *8 *9 *4)) (-5 *3 (-640 *9)) (-4 *4 (-1065 *6 *7 *8 *9)))) (-1809 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-640 *10)) (-5 *5 (-112)) (-4 *10 (-1065 *6 *7 *8 *9)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8)) (-5 *2 (-640 (-2 (|:| -1420 (-640 *9)) (|:| -2059 *10) (|:| |ineq| (-640 *9))))) (-5 *1 (-984 *6 *7 *8 *9 *10)) (-5 *3 (-640 *9)))) (-1530 (*1 *2 *2) (-12 (-5 *2 (-640 (-2 (|:| |val| (-640 *6)) (|:| -2059 *7)))) (-4 *6 (-1059 *3 *4 *5)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-984 *3 *4 *5 *6 *7)))) (-3150 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-640 *7)) (|:| -2059 *8))) (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8)))) (-3965 (*1 *2 *2) (-12 (-5 *2 (-640 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-984 *3 *4 *5 *6 *7)))) (-3607 (*1 *2 *3 *4) (-12 (-5 *4 (-640 *3)) (-4 *3 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-984 *5 *6 *7 *8 *3)))) (-3607 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-3506 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-3009 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-4342 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-3970 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-2952 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-1874 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-3638 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-1846 (*1 *2 *2) (-12 (-5 *2 (-640 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-984 *3 *4 *5 *6 *7)))) (-1918 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-3044 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-4387 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))) +(-10 -7 (-15 -4387 ((-1262) (-1151) (-1151) (-1151))) (-15 -3044 ((-1262))) (-15 -1918 ((-112) |#5| |#5|)) (-15 -1846 ((-640 |#5|) (-640 |#5|))) (-15 -3638 ((-112) |#5| |#5|)) (-15 -1874 ((-112) |#5| |#5|)) (-15 -2952 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -3970 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -4342 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -3009 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -3506 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3607 ((-112) |#5| |#5|)) (-15 -3607 ((-112) |#5| (-640 |#5|))) (-15 -3965 ((-640 |#5|) (-640 |#5|))) (-15 -3150 ((-112) (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|)) (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|)))) (-15 -1530 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) (-15 -1809 ((-640 (-2 (|:| -1420 (-640 |#4|)) (|:| -2059 |#5|) (|:| |ineq| (-640 |#4|)))) (-640 |#4|) (-640 |#5|) (-112) (-112))) (-15 -1737 ((-3 (-2 (|:| -1420 (-640 |#4|)) (|:| -2059 |#5|) (|:| |ineq| (-640 |#4|))) "failed") (-640 |#4|) |#5| (-640 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-2518 (((-1169) $) 15)) (-2619 (((-1151) $) 16)) (-2378 (($ (-1169) (-1151)) 14)) (-1693 (((-858) $) 13))) +(((-985) (-13 (-610 (-858)) (-10 -8 (-15 -2378 ($ (-1169) (-1151))) (-15 -2518 ((-1169) $)) (-15 -2619 ((-1151) $))))) (T -985)) +((-2378 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1151)) (-5 *1 (-985)))) (-2518 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-985)))) (-2619 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-985))))) +(-13 (-610 (-858)) (-10 -8 (-15 -2378 ($ (-1169) (-1151))) (-15 -2518 ((-1169) $)) (-15 -2619 ((-1151) $)))) +((-2240 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-986 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2240 (|#4| (-1 |#2| |#1|) |#3|))) (-555) (-555) (-988 |#1|) (-988 |#2|)) (T -986)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-555)) (-4 *6 (-555)) (-4 *2 (-988 *6)) (-5 *1 (-986 *5 *6 *4 *2)) (-4 *4 (-988 *5))))) +(-10 -7 (-15 -2240 (|#4| (-1 |#2| |#1|) |#3|))) +((-2131 (((-3 |#2| "failed") $) NIL) (((-3 (-1169) "failed") $) 65) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 (-563) "failed") $) 95)) (-2058 ((|#2| $) NIL) (((-1169) $) 60) (((-407 (-563)) $) NIL) (((-563) $) 92)) (-2950 (((-684 (-563)) (-684 $)) NIL) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-2 (|:| -2835 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) 112) (((-684 |#2|) (-684 $)) 28)) (-1691 (($) 98)) (-3787 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 75) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 84)) (-2711 (($ $) 10)) (-2408 (((-3 $ "failed") $) 20)) (-2240 (($ (-1 |#2| |#2|) $) 22)) (-2523 (($) 16)) (-4215 (($ $) 54)) (-4202 (($ $) NIL) (($ $ (-767)) NIL) (($ $ (-1169)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-1801 (($ $) 12)) (-2220 (((-888 (-563)) $) 70) (((-888 (-379)) $) 79) (((-536) $) 40) (((-379) $) 44) (((-225) $) 47)) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) 90) (($ |#2|) NIL) (($ (-1169)) 57)) (-1675 (((-767)) 31)) (-1744 (((-112) $ $) 50))) +(((-987 |#1| |#2|) (-10 -8 (-15 -1744 ((-112) |#1| |#1|)) (-15 -2523 (|#1|)) (-15 -2408 ((-3 |#1| "failed") |#1|)) (-15 -2131 ((-3 (-563) "failed") |#1|)) (-15 -2058 ((-563) |#1|)) (-15 -2131 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2058 ((-407 (-563)) |#1|)) (-15 -2220 ((-225) |#1|)) (-15 -2220 ((-379) |#1|)) (-15 -2220 ((-536) |#1|)) (-15 -1693 (|#1| (-1169))) (-15 -2131 ((-3 (-1169) "failed") |#1|)) (-15 -2058 ((-1169) |#1|)) (-15 -1691 (|#1|)) (-15 -4215 (|#1| |#1|)) (-15 -1801 (|#1| |#1|)) (-15 -2711 (|#1| |#1|)) (-15 -3787 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -3787 ((-885 (-563) |#1|) |#1| (-888 (-563)) (-885 (-563) |#1|))) (-15 -2220 ((-888 (-379)) |#1|)) (-15 -2220 ((-888 (-563)) |#1|)) (-15 -2950 ((-684 |#2|) (-684 |#1|))) (-15 -2950 ((-2 (|:| -2835 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 |#1|) (-1257 |#1|))) (-15 -2950 ((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -2950 ((-684 (-563)) (-684 |#1|))) (-15 -4202 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4202 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4202 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -4202 (|#1| |#1| (-1169) (-767))) (-15 -4202 (|#1| |#1| (-640 (-1169)))) (-15 -4202 (|#1| |#1| (-1169))) (-15 -4202 (|#1| |#1| (-767))) (-15 -4202 (|#1| |#1|)) (-15 -2240 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2131 ((-3 |#2| "failed") |#1|)) (-15 -2058 (|#2| |#1|)) (-15 -1693 (|#1| |#2|)) (-15 -1693 (|#1| (-407 (-563)))) (-15 -1693 (|#1| |#1|)) (-15 -1675 ((-767))) (-15 -1693 (|#1| (-563))) (-15 -1693 ((-858) |#1|))) (-988 |#2|) (-555)) (T -987)) +((-1675 (*1 *2) (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-987 *3 *4)) (-4 *3 (-988 *4))))) +(-10 -8 (-15 -1744 ((-112) |#1| |#1|)) (-15 -2523 (|#1|)) (-15 -2408 ((-3 |#1| "failed") |#1|)) (-15 -2131 ((-3 (-563) "failed") |#1|)) (-15 -2058 ((-563) |#1|)) (-15 -2131 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2058 ((-407 (-563)) |#1|)) (-15 -2220 ((-225) |#1|)) (-15 -2220 ((-379) |#1|)) (-15 -2220 ((-536) |#1|)) (-15 -1693 (|#1| (-1169))) (-15 -2131 ((-3 (-1169) "failed") |#1|)) (-15 -2058 ((-1169) |#1|)) (-15 -1691 (|#1|)) (-15 -4215 (|#1| |#1|)) (-15 -1801 (|#1| |#1|)) (-15 -2711 (|#1| |#1|)) (-15 -3787 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -3787 ((-885 (-563) |#1|) |#1| (-888 (-563)) (-885 (-563) |#1|))) (-15 -2220 ((-888 (-379)) |#1|)) (-15 -2220 ((-888 (-563)) |#1|)) (-15 -2950 ((-684 |#2|) (-684 |#1|))) (-15 -2950 ((-2 (|:| -2835 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 |#1|) (-1257 |#1|))) (-15 -2950 ((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -2950 ((-684 (-563)) (-684 |#1|))) (-15 -4202 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4202 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4202 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -4202 (|#1| |#1| (-1169) (-767))) (-15 -4202 (|#1| |#1| (-640 (-1169)))) (-15 -4202 (|#1| |#1| (-1169))) (-15 -4202 (|#1| |#1| (-767))) (-15 -4202 (|#1| |#1|)) (-15 -2240 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2131 ((-3 |#2| "failed") |#1|)) (-15 -2058 (|#2| |#1|)) (-15 -1693 (|#1| |#2|)) (-15 -1693 (|#1| (-407 (-563)))) (-15 -1693 (|#1| |#1|)) (-15 -1675 ((-767))) (-15 -1693 (|#1| (-563))) (-15 -1693 ((-858) |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-3401 ((|#1| $) 138 (|has| |#1| (-307)))) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 42)) (-4223 (($ $) 41)) (-3156 (((-112) $) 39)) (-1495 (((-3 $ "failed") $ $) 19)) (-2424 (((-418 (-1165 $)) (-1165 $)) 129 (|has| |#1| (-905)))) (-4335 (($ $) 74)) (-3205 (((-418 $) $) 73)) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 132 (|has| |#1| (-905)))) (-1919 (((-112) $ $) 60)) (-1857 (((-563) $) 119 (|has| |#1| (-816)))) (-4239 (($) 17 T CONST)) (-2131 (((-3 |#1| "failed") $) 176) (((-3 (-1169) "failed") $) 127 (|has| |#1| (-1034 (-1169)))) (((-3 (-407 (-563)) "failed") $) 110 (|has| |#1| (-1034 (-563)))) (((-3 (-563) "failed") $) 108 (|has| |#1| (-1034 (-563))))) (-2058 ((|#1| $) 177) (((-1169) $) 128 (|has| |#1| (-1034 (-1169)))) (((-407 (-563)) $) 111 (|has| |#1| (-1034 (-563)))) (((-563) $) 109 (|has| |#1| (-1034 (-563))))) (-3090 (($ $ $) 56)) (-2950 (((-684 (-563)) (-684 $)) 151 (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 150 (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 149) (((-684 |#1|) (-684 $)) 148)) (-3400 (((-3 $ "failed") $) 33)) (-1691 (($) 136 (|has| |#1| (-545)))) (-3050 (($ $ $) 57)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) 52)) (-2468 (((-112) $) 72)) (-3101 (((-112) $) 121 (|has| |#1| (-816)))) (-3787 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 145 (|has| |#1| (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 144 (|has| |#1| (-882 (-379))))) (-3827 (((-112) $) 31)) (-2711 (($ $) 140)) (-2143 ((|#1| $) 142)) (-2408 (((-3 $ "failed") $) 107 (|has| |#1| (-1144)))) (-1419 (((-112) $) 120 (|has| |#1| (-816)))) (-3643 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-3084 (($ $ $) 117 (|has| |#1| (-846)))) (-1777 (($ $ $) 116 (|has| |#1| (-846)))) (-2240 (($ (-1 |#1| |#1|) $) 168)) (-3513 (($ $ $) 47) (($ (-640 $)) 46)) (-3573 (((-1151) $) 9)) (-2688 (($ $) 71)) (-2523 (($) 106 (|has| |#1| (-1144)) CONST)) (-1694 (((-1113) $) 10)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3548 (($ $ $) 49) (($ (-640 $)) 48)) (-4215 (($ $) 137 (|has| |#1| (-307)))) (-1583 ((|#1| $) 134 (|has| |#1| (-545)))) (-1876 (((-418 (-1165 $)) (-1165 $)) 131 (|has| |#1| (-905)))) (-3116 (((-418 (-1165 $)) (-1165 $)) 130 (|has| |#1| (-905)))) (-2174 (((-418 $) $) 75)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3008 (((-3 $ "failed") $ $) 43)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-1540 (($ $ (-640 |#1|) (-640 |#1|)) 174 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 173 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 172 (|has| |#1| (-309 |#1|))) (($ $ (-640 (-294 |#1|))) 171 (|has| |#1| (-309 |#1|))) (($ $ (-640 (-1169)) (-640 |#1|)) 170 (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) 169 (|has| |#1| (-514 (-1169) |#1|)))) (-2628 (((-767) $) 59)) (-2309 (($ $ |#1|) 175 (|has| |#1| (-286 |#1| |#1|)))) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 58)) (-4202 (($ $) 167 (|has| |#1| (-233))) (($ $ (-767)) 165 (|has| |#1| (-233))) (($ $ (-1169)) 163 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 162 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 161 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) 160 (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-1801 (($ $) 139)) (-2154 ((|#1| $) 141)) (-2220 (((-888 (-563)) $) 147 (|has| |#1| (-611 (-888 (-563))))) (((-888 (-379)) $) 146 (|has| |#1| (-611 (-888 (-379))))) (((-536) $) 124 (|has| |#1| (-611 (-536)))) (((-379) $) 123 (|has| |#1| (-1018))) (((-225) $) 122 (|has| |#1| (-1018)))) (-1377 (((-3 (-1257 $) "failed") (-684 $)) 133 (-2190 (|has| $ (-145)) (|has| |#1| (-905))))) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-407 (-563))) 67) (($ |#1|) 180) (($ (-1169)) 126 (|has| |#1| (-1034 (-1169))))) (-2779 (((-3 $ "failed") $) 125 (-4032 (|has| |#1| (-145)) (-2190 (|has| $ (-145)) (|has| |#1| (-905)))))) (-1675 (((-767)) 28)) (-4194 ((|#1| $) 135 (|has| |#1| (-545)))) (-2126 (((-112) $ $) 40)) (-2509 (($ $) 118 (|has| |#1| (-816)))) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-3209 (($ $) 166 (|has| |#1| (-233))) (($ $ (-767)) 164 (|has| |#1| (-233))) (($ $ (-1169)) 159 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 158 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 157 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) 156 (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) 155) (($ $ (-1 |#1| |#1|)) 154)) (-1778 (((-112) $ $) 114 (|has| |#1| (-846)))) (-1756 (((-112) $ $) 113 (|has| |#1| (-846)))) (-1718 (((-112) $ $) 6)) (-1768 (((-112) $ $) 115 (|has| |#1| (-846)))) (-1744 (((-112) $ $) 112 (|has| |#1| (-846)))) (-1837 (($ $ $) 66) (($ |#1| |#1|) 143)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 70)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 69) (($ (-407 (-563)) $) 68) (($ |#1| $) 179) (($ $ |#1|) 178))) +(((-988 |#1|) (-140) (-555)) (T -988)) +((-1837 (*1 *1 *2 *2) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)))) (-2143 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)))) (-2154 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)))) (-2711 (*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)))) (-1801 (*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)))) (-3401 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)) (-4 *2 (-307)))) (-4215 (*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)) (-4 *2 (-307)))) (-1691 (*1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-545)) (-4 *2 (-555)))) (-4194 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)) (-4 *2 (-545)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)) (-4 *2 (-545))))) +(-13 (-363) (-38 |t#1|) (-1034 |t#1|) (-338 |t#1|) (-231 |t#1|) (-377 |t#1|) (-880 |t#1|) (-400 |t#1|) (-10 -8 (-15 -1837 ($ |t#1| |t#1|)) (-15 -2143 (|t#1| $)) (-15 -2154 (|t#1| $)) (-15 -2711 ($ $)) (-15 -1801 ($ $)) (IF (|has| |t#1| (-1144)) (-6 (-1144)) |%noBranch|) (IF (|has| |t#1| (-1034 (-563))) (PROGN (-6 (-1034 (-563))) (-6 (-1034 (-407 (-563))))) |%noBranch|) (IF (|has| |t#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#1| (-816)) (-6 (-816)) |%noBranch|) (IF (|has| |t#1| (-1018)) (-6 (-1018)) |%noBranch|) (IF (|has| |t#1| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1034 (-1169))) (-6 (-1034 (-1169))) |%noBranch|) (IF (|has| |t#1| (-307)) (PROGN (-15 -3401 (|t#1| $)) (-15 -4215 ($ $))) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -1691 ($)) (-15 -4194 (|t#1| $)) (-15 -1583 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-905)) (-6 (-905)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0#) . T) ((-613 (-563)) . T) ((-613 #1=(-1169)) |has| |#1| (-1034 (-1169))) ((-613 |#1|) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-611 (-225)) |has| |#1| (-1018)) ((-611 (-379)) |has| |#1| (-1018)) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-611 (-888 (-379))) |has| |#1| (-611 (-888 (-379)))) ((-611 (-888 (-563))) |has| |#1| (-611 (-888 (-563)))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) . T) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) . T) ((-307) . T) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-363) . T) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-400 |#1|) . T) ((-452) . T) ((-514 (-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-555) . T) ((-643 #0#) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-636 (-563)) |has| |#1| (-636 (-563))) ((-636 |#1|) . T) ((-713 #0#) . T) ((-713 |#1|) . T) ((-713 $) . T) ((-722) . T) ((-787) |has| |#1| (-816)) ((-788) |has| |#1| (-816)) ((-790) |has| |#1| (-816)) ((-791) |has| |#1| (-816)) ((-816) |has| |#1| (-816)) ((-844) |has| |#1| (-816)) ((-846) -4032 (|has| |#1| (-846)) (|has| |#1| (-816))) ((-896 (-1169)) |has| |#1| (-896 (-1169))) ((-882 (-379)) |has| |#1| (-882 (-379))) ((-882 (-563)) |has| |#1| (-882 (-563))) ((-880 |#1|) . T) ((-905) |has| |#1| (-905)) ((-916) . T) ((-1018) |has| |#1| (-1018)) ((-1034 (-407 (-563))) |has| |#1| (-1034 (-563))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 #1#) |has| |#1| (-1034 (-1169))) ((-1034 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1144) |has| |#1| (-1144)) ((-1208) . T) ((-1212) . T)) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4239 (($) NIL T CONST)) (-3478 (($ (-1135 |#1| |#2|)) 11)) (-4038 (((-1135 |#1| |#2|) $) 12)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-2309 ((|#2| $ (-240 |#1| |#2|)) 16)) (-1693 (((-858) $) NIL)) (-2241 (($) NIL T CONST)) (-1718 (((-112) $ $) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL))) +(((-989 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3478 ($ (-1135 |#1| |#2|))) (-15 -4038 ((-1135 |#1| |#2|) $)) (-15 -2309 (|#2| $ (-240 |#1| |#2|))))) (-917) (-363)) (T -989)) +((-3478 (*1 *1 *2) (-12 (-5 *2 (-1135 *3 *4)) (-14 *3 (-917)) (-4 *4 (-363)) (-5 *1 (-989 *3 *4)))) (-4038 (*1 *2 *1) (-12 (-5 *2 (-1135 *3 *4)) (-5 *1 (-989 *3 *4)) (-14 *3 (-917)) (-4 *4 (-363)))) (-2309 (*1 *2 *1 *3) (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-917)) (-4 *2 (-363)) (-5 *1 (-989 *4 *2))))) +(-13 (-21) (-10 -8 (-15 -3478 ($ (-1135 |#1| |#2|))) (-15 -4038 ((-1135 |#1| |#2|) $)) (-15 -2309 (|#2| $ (-240 |#1| |#2|))))) +((-1677 (((-112) $ $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-3685 (((-1128) $) 9)) (-1693 (((-858) $) 17) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-990) (-13 (-1076) (-10 -8 (-15 -3685 ((-1128) $))))) (T -990)) +((-3685 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-990))))) +(-13 (-1076) (-10 -8 (-15 -3685 ((-1128) $)))) +((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-2759 (((-112) $ (-767)) 8)) (-4239 (($) 7 T CONST)) (-3866 (($ $) 46)) (-2659 (((-640 |#1|) $) 30 (|has| $ (-6 -4407)))) (-2581 (((-112) $ (-767)) 9)) (-2259 (((-640 |#1|) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-4345 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 35)) (-2382 (((-112) $ (-767)) 10)) (-3415 (((-767) $) 45)) (-3573 (((-1151) $) 22 (|has| |#1| (-1093)))) (-2964 ((|#1| $) 39)) (-1812 (($ |#1| $) 40)) (-1694 (((-1113) $) 21 (|has| |#1| (-1093)))) (-2822 ((|#1| $) 44)) (-3755 ((|#1| $) 41)) (-3138 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) 14)) (-3958 ((|#1| |#1| $) 48)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-1749 ((|#1| $) 47)) (-1709 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4407))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1872 (($ $) 13)) (-1693 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-2233 (($ (-640 |#1|)) 42)) (-3498 ((|#1| $) 43)) (-4383 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-991 |#1|) (-140) (-1208)) (T -991)) +((-3958 (*1 *2 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1208)))) (-1749 (*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1208)))) (-3866 (*1 *1 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1208)))) (-3415 (*1 *2 *1) (-12 (-4 *1 (-991 *3)) (-4 *3 (-1208)) (-5 *2 (-767)))) (-2822 (*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1208)))) (-3498 (*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1208))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4407) (-15 -3958 (|t#1| |t#1| $)) (-15 -1749 (|t#1| $)) (-15 -3866 ($ $)) (-15 -3415 ((-767) $)) (-15 -2822 (|t#1| $)) (-15 -3498 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4032 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T)) +((-3411 (((-112) $) 42)) (-2131 (((-3 (-563) "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2058 (((-563) $) NIL) (((-407 (-563)) $) NIL) ((|#2| $) 43)) (-3909 (((-3 (-407 (-563)) "failed") $) 78)) (-2239 (((-112) $) 72)) (-2651 (((-407 (-563)) $) 76)) (-3827 (((-112) $) 41)) (-3793 ((|#2| $) 22)) (-2240 (($ (-1 |#2| |#2|) $) 19)) (-2688 (($ $) 59)) (-4202 (($ $) NIL) (($ $ (-767)) NIL) (($ $ (-1169)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-2220 (((-536) $) 67)) (-4339 (($ $) 17)) (-1693 (((-858) $) 54) (($ (-563)) 38) (($ |#2|) 36) (($ (-407 (-563))) NIL)) (-1675 (((-767)) 10)) (-2509 ((|#2| $) 71)) (-1718 (((-112) $ $) 25)) (-1744 (((-112) $ $) 69)) (-1826 (($ $) 29) (($ $ $) 28)) (-1814 (($ $ $) 26)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL))) +(((-992 |#1| |#2|) (-10 -8 (-15 -1693 (|#1| (-407 (-563)))) (-15 -1744 ((-112) |#1| |#1|)) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 * (|#1| |#1| (-407 (-563)))) (-15 -2688 (|#1| |#1|)) (-15 -2220 ((-536) |#1|)) (-15 -3909 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2651 ((-407 (-563)) |#1|)) (-15 -2239 ((-112) |#1|)) (-15 -2509 (|#2| |#1|)) (-15 -3793 (|#2| |#1|)) (-15 -4339 (|#1| |#1|)) (-15 -2240 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4202 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4202 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4202 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -4202 (|#1| |#1| (-1169) (-767))) (-15 -4202 (|#1| |#1| (-640 (-1169)))) (-15 -4202 (|#1| |#1| (-1169))) (-15 -4202 (|#1| |#1| (-767))) (-15 -4202 (|#1| |#1|)) (-15 -2131 ((-3 |#2| "failed") |#1|)) (-15 -2058 (|#2| |#1|)) (-15 -2058 ((-407 (-563)) |#1|)) (-15 -2131 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2058 ((-563) |#1|)) (-15 -2131 ((-3 (-563) "failed") |#1|)) (-15 -1693 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1675 ((-767))) (-15 -1693 (|#1| (-563))) (-15 -3827 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 -1826 (|#1| |#1| |#1|)) (-15 -1826 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 -3411 ((-112) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -1814 (|#1| |#1| |#1|)) (-15 -1693 ((-858) |#1|)) (-15 -1718 ((-112) |#1| |#1|))) (-993 |#2|) (-172)) (T -992)) +((-1675 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-992 *3 *4)) (-4 *3 (-993 *4))))) +(-10 -8 (-15 -1693 (|#1| (-407 (-563)))) (-15 -1744 ((-112) |#1| |#1|)) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 * (|#1| |#1| (-407 (-563)))) (-15 -2688 (|#1| |#1|)) (-15 -2220 ((-536) |#1|)) (-15 -3909 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2651 ((-407 (-563)) |#1|)) (-15 -2239 ((-112) |#1|)) (-15 -2509 (|#2| |#1|)) (-15 -3793 (|#2| |#1|)) (-15 -4339 (|#1| |#1|)) (-15 -2240 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4202 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4202 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4202 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -4202 (|#1| |#1| (-1169) (-767))) (-15 -4202 (|#1| |#1| (-640 (-1169)))) (-15 -4202 (|#1| |#1| (-1169))) (-15 -4202 (|#1| |#1| (-767))) (-15 -4202 (|#1| |#1|)) (-15 -2131 ((-3 |#2| "failed") |#1|)) (-15 -2058 (|#2| |#1|)) (-15 -2058 ((-407 (-563)) |#1|)) (-15 -2131 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2058 ((-563) |#1|)) (-15 -2131 ((-3 (-563) "failed") |#1|)) (-15 -1693 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1675 ((-767))) (-15 -1693 (|#1| (-563))) (-15 -3827 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 -1826 (|#1| |#1| |#1|)) (-15 -1826 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 -3411 ((-112) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -1814 (|#1| |#1| |#1|)) (-15 -1693 ((-858) |#1|)) (-15 -1718 ((-112) |#1| |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-2131 (((-3 (-563) "failed") $) 118 (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) 116 (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 113)) (-2058 (((-563) $) 117 (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) 115 (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) 114)) (-2950 (((-684 (-563)) (-684 $)) 88 (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 87 (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 86) (((-684 |#1|) (-684 $)) 85)) (-3400 (((-3 $ "failed") $) 33)) (-2489 ((|#1| $) 78)) (-3909 (((-3 (-407 (-563)) "failed") $) 74 (|has| |#1| (-545)))) (-2239 (((-112) $) 76 (|has| |#1| (-545)))) (-2651 (((-407 (-563)) $) 75 (|has| |#1| (-545)))) (-1589 (($ |#1| |#1| |#1| |#1|) 79)) (-3827 (((-112) $) 31)) (-3793 ((|#1| $) 80)) (-3084 (($ $ $) 67 (|has| |#1| (-846)))) (-1777 (($ $ $) 66 (|has| |#1| (-846)))) (-2240 (($ (-1 |#1| |#1|) $) 89)) (-3573 (((-1151) $) 9)) (-2688 (($ $) 71 (|has| |#1| (-363)))) (-3144 ((|#1| $) 81)) (-1307 ((|#1| $) 82)) (-3908 ((|#1| $) 83)) (-1694 (((-1113) $) 10)) (-1540 (($ $ (-640 |#1|) (-640 |#1|)) 95 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 94 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 93 (|has| |#1| (-309 |#1|))) (($ $ (-640 (-294 |#1|))) 92 (|has| |#1| (-309 |#1|))) (($ $ (-640 (-1169)) (-640 |#1|)) 91 (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) 90 (|has| |#1| (-514 (-1169) |#1|)))) (-2309 (($ $ |#1|) 96 (|has| |#1| (-286 |#1| |#1|)))) (-4202 (($ $) 112 (|has| |#1| (-233))) (($ $ (-767)) 110 (|has| |#1| (-233))) (($ $ (-1169)) 108 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 107 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 106 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) 105 (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) 98) (($ $ (-1 |#1| |#1|)) 97)) (-2220 (((-536) $) 72 (|has| |#1| (-611 (-536))))) (-4339 (($ $) 84)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 38) (($ (-407 (-563))) 61 (-4032 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-563))))))) (-2779 (((-3 $ "failed") $) 73 (|has| |#1| (-145)))) (-1675 (((-767)) 28)) (-2509 ((|#1| $) 77 (|has| |#1| (-1054)))) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-3209 (($ $) 111 (|has| |#1| (-233))) (($ $ (-767)) 109 (|has| |#1| (-233))) (($ $ (-1169)) 104 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 103 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 102 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) 101 (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-1778 (((-112) $ $) 64 (|has| |#1| (-846)))) (-1756 (((-112) $ $) 63 (|has| |#1| (-846)))) (-1718 (((-112) $ $) 6)) (-1768 (((-112) $ $) 65 (|has| |#1| (-846)))) (-1744 (((-112) $ $) 62 (|has| |#1| (-846)))) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 70 (|has| |#1| (-363)))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-407 (-563))) 69 (|has| |#1| (-363))) (($ (-407 (-563)) $) 68 (|has| |#1| (-363))))) +(((-993 |#1|) (-140) (-172)) (T -993)) +((-4339 (*1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-3908 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-1307 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-3144 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-3793 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-1589 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-2489 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-2509 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)) (-4 *2 (-1054)))) (-2239 (*1 *2 *1) (-12 (-4 *1 (-993 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-2651 (*1 *2 *1) (-12 (-4 *1 (-993 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-563))))) (-3909 (*1 *2 *1) (|partial| -12 (-4 *1 (-993 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-563)))))) +(-13 (-38 |t#1|) (-411 |t#1|) (-231 |t#1|) (-338 |t#1|) (-377 |t#1|) (-10 -8 (-15 -4339 ($ $)) (-15 -3908 (|t#1| $)) (-15 -1307 (|t#1| $)) (-15 -3144 (|t#1| $)) (-15 -3793 (|t#1| $)) (-15 -1589 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2489 (|t#1| $)) (IF (|has| |t#1| (-290)) (-6 (-290)) |%noBranch|) (IF (|has| |t#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-243)) |%noBranch|) (IF (|has| |t#1| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1054)) (-15 -2509 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -2239 ((-112) $)) (-15 -2651 ((-407 (-563)) $)) (-15 -3909 ((-3 (-407 (-563)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) |has| |#1| (-363)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-363)) ((-111 |#1| |#1|) . T) ((-111 $ $) -4032 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0#) -4032 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-363))) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-610 (-858)) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) |has| |#1| (-363)) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) -4032 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-514 (-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-643 #0#) |has| |#1| (-363)) ((-643 |#1|) . T) ((-643 $) . T) ((-636 (-563)) |has| |#1| (-636 (-563))) ((-636 |#1|) . T) ((-713 #0#) |has| |#1| (-363)) ((-713 |#1|) . T) ((-722) . T) ((-846) |has| |#1| (-846)) ((-896 (-1169)) |has| |#1| (-896 (-1169))) ((-1034 (-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 |#1|) . T) ((-1051 #0#) |has| |#1| (-363)) ((-1051 |#1|) . T) ((-1051 $) -4032 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) +((-2240 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-994 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2240 (|#3| (-1 |#4| |#2|) |#1|))) (-993 |#2|) (-172) (-993 |#4|) (-172)) (T -994)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-993 *6)) (-5 *1 (-994 *4 *5 *2 *6)) (-4 *4 (-993 *5))))) +(-10 -7 (-15 -2240 (|#3| (-1 |#4| |#2|) |#1|))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) NIL)) (-2058 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) NIL)) (-2950 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-2489 ((|#1| $) 12)) (-3909 (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-545)))) (-2239 (((-112) $) NIL (|has| |#1| (-545)))) (-2651 (((-407 (-563)) $) NIL (|has| |#1| (-545)))) (-1589 (($ |#1| |#1| |#1| |#1|) 16)) (-3827 (((-112) $) NIL)) (-3793 ((|#1| $) NIL)) (-3084 (($ $ $) NIL (|has| |#1| (-846)))) (-1777 (($ $ $) NIL (|has| |#1| (-846)))) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) NIL (|has| |#1| (-363)))) (-3144 ((|#1| $) 15)) (-1307 ((|#1| $) 14)) (-3908 ((|#1| $) 13)) (-1694 (((-1113) $) NIL)) (-1540 (($ $ (-640 |#1|) (-640 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-640 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-640 (-1169)) (-640 |#1|)) NIL (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) NIL (|has| |#1| (-514 (-1169) |#1|)))) (-2309 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-4202 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2220 (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-4339 (($ $) NIL)) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL) (($ (-407 (-563))) NIL (-4032 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-563))))))) (-2779 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1675 (((-767)) NIL)) (-2509 ((|#1| $) NIL (|has| |#1| (-1054)))) (-2241 (($) 8 T CONST)) (-2254 (($) 10 T CONST)) (-3209 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1778 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1756 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1744 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| |#1| (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-407 (-563))) NIL (|has| |#1| (-363))) (($ (-407 (-563)) $) NIL (|has| |#1| (-363))))) +(((-995 |#1|) (-993 |#1|) (-172)) (T -995)) +NIL +(-993 |#1|) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2759 (((-112) $ (-767)) NIL)) (-4239 (($) NIL T CONST)) (-3866 (($ $) 20)) (-3283 (($ (-640 |#1|)) 29)) (-2659 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-2581 (((-112) $ (-767)) NIL)) (-2259 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-4345 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3415 (((-767) $) 22)) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-2964 ((|#1| $) 24)) (-1812 (($ |#1| $) 15)) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-2822 ((|#1| $) 23)) (-3755 ((|#1| $) 19)) (-3138 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) NIL)) (-3958 ((|#1| |#1| $) 14)) (-3756 (((-112) $) 17)) (-3135 (($) NIL)) (-1749 ((|#1| $) 18)) (-1709 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1872 (($ $) NIL)) (-1693 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-2233 (($ (-640 |#1|)) NIL)) (-3498 ((|#1| $) 26)) (-4383 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-996 |#1|) (-13 (-991 |#1|) (-10 -8 (-15 -3283 ($ (-640 |#1|))))) (-1093)) (T -996)) +((-3283 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-996 *3))))) +(-13 (-991 |#1|) (-10 -8 (-15 -3283 ($ (-640 |#1|))))) +((-2186 (($ $) 12)) (-1645 (($ $ (-563)) 13))) +(((-997 |#1|) (-10 -8 (-15 -2186 (|#1| |#1|)) (-15 -1645 (|#1| |#1| (-563)))) (-998)) (T -997)) +NIL +(-10 -8 (-15 -2186 (|#1| |#1|)) (-15 -1645 (|#1| |#1| (-563)))) +((-2186 (($ $) 6)) (-1645 (($ $ (-563)) 7)) (** (($ $ (-407 (-563))) 8))) +(((-998) (-140)) (T -998)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-998)) (-5 *2 (-407 (-563))))) (-1645 (*1 *1 *1 *2) (-12 (-4 *1 (-998)) (-5 *2 (-563)))) (-2186 (*1 *1 *1) (-4 *1 (-998)))) +(-13 (-10 -8 (-15 -2186 ($ $)) (-15 -1645 ($ $ (-563))) (-15 ** ($ $ (-407 (-563)))))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-4067 (((-2 (|:| |num| (-1257 |#2|)) (|:| |den| |#2|)) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| (-407 |#2|) (-363)))) (-4223 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-3156 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-3561 (((-684 (-407 |#2|)) (-1257 $)) NIL) (((-684 (-407 |#2|))) NIL)) (-1733 (((-407 |#2|) $) NIL)) (-2752 (((-1181 (-917) (-767)) (-563)) NIL (|has| (-407 |#2|) (-349)))) (-1495 (((-3 $ "failed") $ $) NIL)) (-4335 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-3205 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-1919 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-3749 (((-767)) NIL (|has| (-407 |#2|) (-368)))) (-1504 (((-112)) NIL)) (-2456 (((-112) |#1|) 148) (((-112) |#2|) 153)) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-563) "failed") $) NIL (|has| (-407 |#2|) (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| (-407 |#2|) (-1034 (-407 (-563))))) (((-3 (-407 |#2|) "failed") $) NIL)) (-2058 (((-563) $) NIL (|has| (-407 |#2|) (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| (-407 |#2|) (-1034 (-407 (-563))))) (((-407 |#2|) $) NIL)) (-3937 (($ (-1257 (-407 |#2|)) (-1257 $)) NIL) (($ (-1257 (-407 |#2|))) 70) (($ (-1257 |#2|) |#2|) NIL)) (-3711 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-407 |#2|) (-349)))) (-3090 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3914 (((-684 (-407 |#2|)) $ (-1257 $)) NIL) (((-684 (-407 |#2|)) $) NIL)) (-2950 (((-684 (-563)) (-684 $)) NIL (|has| (-407 |#2|) (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| (-407 |#2|) (-636 (-563)))) (((-2 (|:| -2835 (-684 (-407 |#2|))) (|:| |vec| (-1257 (-407 |#2|)))) (-684 $) (-1257 $)) NIL) (((-684 (-407 |#2|)) (-684 $)) NIL)) (-4364 (((-1257 $) (-1257 $)) NIL)) (-2444 (($ |#3|) 65) (((-3 $ "failed") (-407 |#3|)) NIL (|has| (-407 |#2|) (-363)))) (-3400 (((-3 $ "failed") $) NIL)) (-2077 (((-640 (-640 |#1|))) NIL (|has| |#1| (-368)))) (-3632 (((-112) |#1| |#1|) NIL)) (-2522 (((-917)) NIL)) (-1691 (($) NIL (|has| (-407 |#2|) (-368)))) (-4077 (((-112)) NIL)) (-1852 (((-112) |#1|) 56) (((-112) |#2|) 150)) (-3050 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL (|has| (-407 |#2|) (-363)))) (-1300 (($ $) NIL)) (-1571 (($) NIL (|has| (-407 |#2|) (-349)))) (-2366 (((-112) $) NIL (|has| (-407 |#2|) (-349)))) (-1637 (($ $ (-767)) NIL (|has| (-407 |#2|) (-349))) (($ $) NIL (|has| (-407 |#2|) (-349)))) (-2468 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-3254 (((-917) $) NIL (|has| (-407 |#2|) (-349))) (((-829 (-917)) $) NIL (|has| (-407 |#2|) (-349)))) (-3827 (((-112) $) NIL)) (-3273 (((-767)) NIL)) (-3132 (((-1257 $) (-1257 $)) NIL)) (-3793 (((-407 |#2|) $) NIL)) (-3370 (((-640 (-948 |#1|)) (-1169)) NIL (|has| |#1| (-363)))) (-2408 (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-349)))) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| (-407 |#2|) (-363)))) (-3941 ((|#3| $) NIL (|has| (-407 |#2|) (-363)))) (-1476 (((-917) $) NIL (|has| (-407 |#2|) (-368)))) (-2433 ((|#3| $) NIL)) (-3513 (($ (-640 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3573 (((-1151) $) NIL)) (-2095 (((-684 (-407 |#2|))) 52)) (-3295 (((-684 (-407 |#2|))) 51)) (-2688 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-2145 (($ (-1257 |#2|) |#2|) 71)) (-4218 (((-684 (-407 |#2|))) 50)) (-3500 (((-684 (-407 |#2|))) 49)) (-2914 (((-2 (|:| |num| (-684 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-3447 (((-2 (|:| |num| (-1257 |#2|)) (|:| |den| |#2|)) $) 77)) (-2993 (((-1257 $)) 46)) (-3815 (((-1257 $)) 45)) (-2532 (((-112) $) NIL)) (-1294 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2523 (($) NIL (|has| (-407 |#2|) (-349)) CONST)) (-2555 (($ (-917)) NIL (|has| (-407 |#2|) (-368)))) (-3140 (((-3 |#2| "failed")) 63)) (-1694 (((-1113) $) NIL)) (-2327 (((-767)) NIL)) (-4333 (($) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| (-407 |#2|) (-363)))) (-3548 (($ (-640 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-2727 (((-640 (-2 (|:| -2174 (-563)) (|:| -1654 (-563))))) NIL (|has| (-407 |#2|) (-349)))) (-2174 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-3008 (((-3 $ "failed") $ $) NIL (|has| (-407 |#2|) (-363)))) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| (-407 |#2|) (-363)))) (-2628 (((-767) $) NIL (|has| (-407 |#2|) (-363)))) (-2309 ((|#1| $ |#1| |#1|) NIL)) (-2621 (((-3 |#2| "failed")) 62)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-2315 (((-407 |#2|) (-1257 $)) NIL) (((-407 |#2|)) 42)) (-1423 (((-767) $) NIL (|has| (-407 |#2|) (-349))) (((-3 (-767) "failed") $ $) NIL (|has| (-407 |#2|) (-349)))) (-4202 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-767)) NIL (-4032 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-4032 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-3974 (((-684 (-407 |#2|)) (-1257 $) (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363)))) (-3390 ((|#3|) 53)) (-4284 (($) NIL (|has| (-407 |#2|) (-349)))) (-1880 (((-1257 (-407 |#2|)) $ (-1257 $)) NIL) (((-684 (-407 |#2|)) (-1257 $) (-1257 $)) NIL) (((-1257 (-407 |#2|)) $) 72) (((-684 (-407 |#2|)) (-1257 $)) NIL)) (-2220 (((-1257 (-407 |#2|)) $) NIL) (($ (-1257 (-407 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| (-407 |#2|) (-349)))) (-1962 (((-1257 $) (-1257 $)) NIL)) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ (-407 |#2|)) NIL) (($ (-407 (-563))) NIL (-4032 (|has| (-407 |#2|) (-1034 (-407 (-563)))) (|has| (-407 |#2|) (-363)))) (($ $) NIL (|has| (-407 |#2|) (-363)))) (-2779 (($ $) NIL (|has| (-407 |#2|) (-349))) (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-145)))) (-3421 ((|#3| $) NIL)) (-1675 (((-767)) NIL)) (-4042 (((-112)) 60)) (-1528 (((-112) |#1|) 154) (((-112) |#2|) 155)) (-4315 (((-1257 $)) 125)) (-2126 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-2732 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1581 (((-112)) NIL)) (-2241 (($) 94 T CONST)) (-2254 (($) NIL T CONST)) (-3209 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-767)) NIL (-4032 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-4032 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-1718 (((-112) $ $) NIL)) (-1837 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| (-407 |#2|) (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 |#2|)) NIL) (($ (-407 |#2|) $) NIL) (($ (-407 (-563)) $) NIL (|has| (-407 |#2|) (-363))) (($ $ (-407 (-563))) NIL (|has| (-407 |#2|) (-363))))) +(((-999 |#1| |#2| |#3| |#4| |#5|) (-342 |#1| |#2| |#3|) (-1212) (-1233 |#1|) (-1233 (-407 |#2|)) (-407 |#2|) (-767)) (T -999)) +NIL +(-342 |#1| |#2| |#3|) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-3609 (((-640 (-563)) $) 54)) (-1564 (($ (-640 (-563))) 62)) (-3401 (((-563) $) 40 (|has| (-563) (-307)))) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-2424 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-1919 (((-112) $ $) NIL)) (-1857 (((-563) $) NIL (|has| (-563) (-816)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-563) "failed") $) 49) (((-3 (-1169) "failed") $) NIL (|has| (-563) (-1034 (-1169)))) (((-3 (-407 (-563)) "failed") $) 47 (|has| (-563) (-1034 (-563)))) (((-3 (-563) "failed") $) 49 (|has| (-563) (-1034 (-563))))) (-2058 (((-563) $) NIL) (((-1169) $) NIL (|has| (-563) (-1034 (-1169)))) (((-407 (-563)) $) NIL (|has| (-563) (-1034 (-563)))) (((-563) $) NIL (|has| (-563) (-1034 (-563))))) (-3090 (($ $ $) NIL)) (-2950 (((-684 (-563)) (-684 $)) NIL (|has| (-563) (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| (-563) (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-684 (-563)) (-684 $)) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-1691 (($) NIL (|has| (-563) (-545)))) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-2468 (((-112) $) NIL)) (-4308 (((-640 (-563)) $) 60)) (-3101 (((-112) $) NIL (|has| (-563) (-816)))) (-3787 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (|has| (-563) (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-563) (-882 (-379))))) (-3827 (((-112) $) NIL)) (-2711 (($ $) NIL)) (-2143 (((-563) $) 37)) (-2408 (((-3 $ "failed") $) NIL (|has| (-563) (-1144)))) (-1419 (((-112) $) NIL (|has| (-563) (-816)))) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3084 (($ $ $) NIL (|has| (-563) (-846)))) (-1777 (($ $ $) NIL (|has| (-563) (-846)))) (-2240 (($ (-1 (-563) (-563)) $) NIL)) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) NIL)) (-2523 (($) NIL (|has| (-563) (-1144)) CONST)) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ $ $) NIL) (($ (-640 $)) NIL)) (-4215 (($ $) NIL (|has| (-563) (-307))) (((-407 (-563)) $) 42)) (-1764 (((-1149 (-563)) $) 59)) (-4217 (($ (-640 (-563)) (-640 (-563))) 63)) (-1583 (((-563) $) 53 (|has| (-563) (-545)))) (-1876 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-3116 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-2174 (((-418 $) $) NIL)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1540 (($ $ (-640 (-563)) (-640 (-563))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-563) (-563)) NIL (|has| (-563) (-309 (-563)))) (($ $ (-294 (-563))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-640 (-294 (-563)))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-640 (-1169)) (-640 (-563))) NIL (|has| (-563) (-514 (-1169) (-563)))) (($ $ (-1169) (-563)) NIL (|has| (-563) (-514 (-1169) (-563))))) (-2628 (((-767) $) NIL)) (-2309 (($ $ (-563)) NIL (|has| (-563) (-286 (-563) (-563))))) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-4202 (($ $) 11 (|has| (-563) (-233))) (($ $ (-767)) NIL (|has| (-563) (-233))) (($ $ (-1169)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1 (-563) (-563)) (-767)) NIL) (($ $ (-1 (-563) (-563))) NIL)) (-1801 (($ $) NIL)) (-2154 (((-563) $) 39)) (-3809 (((-640 (-563)) $) 61)) (-2220 (((-888 (-563)) $) NIL (|has| (-563) (-611 (-888 (-563))))) (((-888 (-379)) $) NIL (|has| (-563) (-611 (-888 (-379))))) (((-536) $) NIL (|has| (-563) (-611 (-536)))) (((-379) $) NIL (|has| (-563) (-1018))) (((-225) $) NIL (|has| (-563) (-1018)))) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-563) (-905))))) (-1693 (((-858) $) 77) (($ (-563)) 43) (($ $) NIL) (($ (-407 (-563))) 20) (($ (-563)) 43) (($ (-1169)) NIL (|has| (-563) (-1034 (-1169)))) (((-407 (-563)) $) 18)) (-2779 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| $ (-145)) (|has| (-563) (-905))) (|has| (-563) (-145))))) (-1675 (((-767)) 9)) (-4194 (((-563) $) 51 (|has| (-563) (-545)))) (-2126 (((-112) $ $) NIL)) (-2509 (($ $) NIL (|has| (-563) (-816)))) (-2241 (($) 10 T CONST)) (-2254 (($) 12 T CONST)) (-3209 (($ $) NIL (|has| (-563) (-233))) (($ $ (-767)) NIL (|has| (-563) (-233))) (($ $ (-1169)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1 (-563) (-563)) (-767)) NIL) (($ $ (-1 (-563) (-563))) NIL)) (-1778 (((-112) $ $) NIL (|has| (-563) (-846)))) (-1756 (((-112) $ $) NIL (|has| (-563) (-846)))) (-1718 (((-112) $ $) 14)) (-1768 (((-112) $ $) NIL (|has| (-563) (-846)))) (-1744 (((-112) $ $) 33 (|has| (-563) (-846)))) (-1837 (($ $ $) 29) (($ (-563) (-563)) 31)) (-1826 (($ $) 15) (($ $ $) 23)) (-1814 (($ $ $) 21)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 25) (($ $ $) 27) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ (-563) $) 25) (($ $ (-563)) NIL))) +(((-1000 |#1|) (-13 (-988 (-563)) (-610 (-407 (-563))) (-10 -8 (-15 -4215 ((-407 (-563)) $)) (-15 -3609 ((-640 (-563)) $)) (-15 -1764 ((-1149 (-563)) $)) (-15 -4308 ((-640 (-563)) $)) (-15 -3809 ((-640 (-563)) $)) (-15 -1564 ($ (-640 (-563)))) (-15 -4217 ($ (-640 (-563)) (-640 (-563)))))) (-563)) (T -1000)) +((-4215 (*1 *2 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563)))) (-3609 (*1 *2 *1) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563)))) (-1764 (*1 *2 *1) (-12 (-5 *2 (-1149 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563)))) (-4308 (*1 *2 *1) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563)))) (-3809 (*1 *2 *1) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563)))) (-1564 (*1 *1 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563)))) (-4217 (*1 *1 *2 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563))))) +(-13 (-988 (-563)) (-610 (-407 (-563))) (-10 -8 (-15 -4215 ((-407 (-563)) $)) (-15 -3609 ((-640 (-563)) $)) (-15 -1764 ((-1149 (-563)) $)) (-15 -4308 ((-640 (-563)) $)) (-15 -3809 ((-640 (-563)) $)) (-15 -1564 ($ (-640 (-563)))) (-15 -4217 ($ (-640 (-563)) (-640 (-563)))))) +((-3103 (((-52) (-407 (-563)) (-563)) 9))) +(((-1001) (-10 -7 (-15 -3103 ((-52) (-407 (-563)) (-563))))) (T -1001)) +((-3103 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-563))) (-5 *4 (-563)) (-5 *2 (-52)) (-5 *1 (-1001))))) +(-10 -7 (-15 -3103 ((-52) (-407 (-563)) (-563)))) +((-3749 (((-563)) 13)) (-2682 (((-563)) 16)) (-1614 (((-1262) (-563)) 15)) (-1885 (((-563) (-563)) 17) (((-563)) 12))) +(((-1002) (-10 -7 (-15 -1885 ((-563))) (-15 -3749 ((-563))) (-15 -1885 ((-563) (-563))) (-15 -1614 ((-1262) (-563))) (-15 -2682 ((-563))))) (T -1002)) +((-2682 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1002)))) (-1614 (*1 *2 *3) (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-1002)))) (-1885 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1002)))) (-3749 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1002)))) (-1885 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1002))))) +(-10 -7 (-15 -1885 ((-563))) (-15 -3749 ((-563))) (-15 -1885 ((-563) (-563))) (-15 -1614 ((-1262) (-563))) (-15 -2682 ((-563)))) +((-2184 (((-418 |#1|) |#1|) 41)) (-2174 (((-418 |#1|) |#1|) 40))) +(((-1003 |#1|) (-10 -7 (-15 -2174 ((-418 |#1|) |#1|)) (-15 -2184 ((-418 |#1|) |#1|))) (-1233 (-407 (-563)))) (T -1003)) +((-2184 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1003 *3)) (-4 *3 (-1233 (-407 (-563)))))) (-2174 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1003 *3)) (-4 *3 (-1233 (-407 (-563))))))) +(-10 -7 (-15 -2174 ((-418 |#1|) |#1|)) (-15 -2184 ((-418 |#1|) |#1|))) +((-3909 (((-3 (-407 (-563)) "failed") |#1|) 15)) (-2239 (((-112) |#1|) 14)) (-2651 (((-407 (-563)) |#1|) 10))) +(((-1004 |#1|) (-10 -7 (-15 -2651 ((-407 (-563)) |#1|)) (-15 -2239 ((-112) |#1|)) (-15 -3909 ((-3 (-407 (-563)) "failed") |#1|))) (-1034 (-407 (-563)))) (T -1004)) +((-3909 (*1 *2 *3) (|partial| -12 (-5 *2 (-407 (-563))) (-5 *1 (-1004 *3)) (-4 *3 (-1034 *2)))) (-2239 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1004 *3)) (-4 *3 (-1034 (-407 (-563)))))) (-2651 (*1 *2 *3) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-1004 *3)) (-4 *3 (-1034 *2))))) +(-10 -7 (-15 -2651 ((-407 (-563)) |#1|)) (-15 -2239 ((-112) |#1|)) (-15 -3909 ((-3 (-407 (-563)) "failed") |#1|))) +((-1849 ((|#2| $ "value" |#2|) 12)) (-2309 ((|#2| $ "value") 10)) (-2962 (((-112) $ $) 18))) +(((-1005 |#1| |#2|) (-10 -8 (-15 -1849 (|#2| |#1| "value" |#2|)) (-15 -2962 ((-112) |#1| |#1|)) (-15 -2309 (|#2| |#1| "value"))) (-1006 |#2|) (-1208)) (T -1005)) +NIL +(-10 -8 (-15 -1849 (|#2| |#1| "value" |#2|)) (-15 -2962 ((-112) |#1| |#1|)) (-15 -2309 (|#2| |#1| "value"))) +((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-2619 ((|#1| $) 48)) (-2759 (((-112) $ (-767)) 8)) (-2936 ((|#1| $ |#1|) 39 (|has| $ (-6 -4408)))) (-1849 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4408)))) (-2811 (($ $ (-640 $)) 41 (|has| $ (-6 -4408)))) (-4239 (($) 7 T CONST)) (-2659 (((-640 |#1|) $) 30 (|has| $ (-6 -4407)))) (-2071 (((-640 $) $) 50)) (-1469 (((-112) $ $) 42 (|has| |#1| (-1093)))) (-2581 (((-112) $ (-767)) 9)) (-2259 (((-640 |#1|) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-4345 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 35)) (-2382 (((-112) $ (-767)) 10)) (-2512 (((-640 |#1|) $) 45)) (-2194 (((-112) $) 49)) (-3573 (((-1151) $) 22 (|has| |#1| (-1093)))) (-1694 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3138 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) 14)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-2309 ((|#1| $ "value") 47)) (-4071 (((-563) $ $) 44)) (-1434 (((-112) $) 46)) (-1709 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4407))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1872 (($ $) 13)) (-1693 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-4258 (((-640 $) $) 51)) (-2962 (((-112) $ $) 43 (|has| |#1| (-1093)))) (-4383 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-1006 |#1|) (-140) (-1208)) (T -1006)) +((-4258 (*1 *2 *1) (-12 (-4 *3 (-1208)) (-5 *2 (-640 *1)) (-4 *1 (-1006 *3)))) (-2071 (*1 *2 *1) (-12 (-4 *3 (-1208)) (-5 *2 (-640 *1)) (-4 *1 (-1006 *3)))) (-2194 (*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-5 *2 (-112)))) (-2619 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1208)))) (-2309 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1006 *2)) (-4 *2 (-1208)))) (-1434 (*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-5 *2 (-112)))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-5 *2 (-640 *3)))) (-4071 (*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-5 *2 (-563)))) (-2962 (*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-4 *3 (-1093)) (-5 *2 (-112)))) (-1469 (*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-4 *3 (-1093)) (-5 *2 (-112)))) (-2811 (*1 *1 *1 *2) (-12 (-5 *2 (-640 *1)) (|has| *1 (-6 -4408)) (-4 *1 (-1006 *3)) (-4 *3 (-1208)))) (-1849 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4408)) (-4 *1 (-1006 *2)) (-4 *2 (-1208)))) (-2936 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-1006 *2)) (-4 *2 (-1208))))) +(-13 (-489 |t#1|) (-10 -8 (-15 -4258 ((-640 $) $)) (-15 -2071 ((-640 $) $)) (-15 -2194 ((-112) $)) (-15 -2619 (|t#1| $)) (-15 -2309 (|t#1| $ "value")) (-15 -1434 ((-112) $)) (-15 -2512 ((-640 |t#1|) $)) (-15 -4071 ((-563) $ $)) (IF (|has| |t#1| (-1093)) (PROGN (-15 -2962 ((-112) $ $)) (-15 -1469 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4408)) (PROGN (-15 -2811 ($ $ (-640 $))) (-15 -1849 (|t#1| $ "value" |t#1|)) (-15 -2936 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4032 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T)) +((-2186 (($ $) 9) (($ $ (-917)) 43) (($ (-407 (-563))) 13) (($ (-563)) 15)) (-3457 (((-3 $ "failed") (-1165 $) (-917) (-858)) 23) (((-3 $ "failed") (-1165 $) (-917)) 28)) (-1645 (($ $ (-563)) 49)) (-1675 (((-767)) 17)) (-2783 (((-640 $) (-1165 $)) NIL) (((-640 $) (-1165 (-407 (-563)))) 54) (((-640 $) (-1165 (-563))) 59) (((-640 $) (-948 $)) 63) (((-640 $) (-948 (-407 (-563)))) 67) (((-640 $) (-948 (-563))) 71)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL) (($ $ (-407 (-563))) 47))) +(((-1007 |#1|) (-10 -8 (-15 -2186 (|#1| (-563))) (-15 -2186 (|#1| (-407 (-563)))) (-15 -2186 (|#1| |#1| (-917))) (-15 -2783 ((-640 |#1|) (-948 (-563)))) (-15 -2783 ((-640 |#1|) (-948 (-407 (-563))))) (-15 -2783 ((-640 |#1|) (-948 |#1|))) (-15 -2783 ((-640 |#1|) (-1165 (-563)))) (-15 -2783 ((-640 |#1|) (-1165 (-407 (-563))))) (-15 -2783 ((-640 |#1|) (-1165 |#1|))) (-15 -3457 ((-3 |#1| "failed") (-1165 |#1|) (-917))) (-15 -3457 ((-3 |#1| "failed") (-1165 |#1|) (-917) (-858))) (-15 ** (|#1| |#1| (-407 (-563)))) (-15 -1645 (|#1| |#1| (-563))) (-15 -2186 (|#1| |#1|)) (-15 ** (|#1| |#1| (-563))) (-15 -1675 ((-767))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917)))) (-1008)) (T -1007)) +((-1675 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1007 *3)) (-4 *3 (-1008))))) +(-10 -8 (-15 -2186 (|#1| (-563))) (-15 -2186 (|#1| (-407 (-563)))) (-15 -2186 (|#1| |#1| (-917))) (-15 -2783 ((-640 |#1|) (-948 (-563)))) (-15 -2783 ((-640 |#1|) (-948 (-407 (-563))))) (-15 -2783 ((-640 |#1|) (-948 |#1|))) (-15 -2783 ((-640 |#1|) (-1165 (-563)))) (-15 -2783 ((-640 |#1|) (-1165 (-407 (-563))))) (-15 -2783 ((-640 |#1|) (-1165 |#1|))) (-15 -3457 ((-3 |#1| "failed") (-1165 |#1|) (-917))) (-15 -3457 ((-3 |#1| "failed") (-1165 |#1|) (-917) (-858))) (-15 ** (|#1| |#1| (-407 (-563)))) (-15 -1645 (|#1| |#1| (-563))) (-15 -2186 (|#1| |#1|)) (-15 ** (|#1| |#1| (-563))) (-15 -1675 ((-767))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917)))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 91)) (-4223 (($ $) 92)) (-3156 (((-112) $) 94)) (-1495 (((-3 $ "failed") $ $) 19)) (-4335 (($ $) 111)) (-3205 (((-418 $) $) 112)) (-2186 (($ $) 75) (($ $ (-917)) 61) (($ (-407 (-563))) 60) (($ (-563)) 59)) (-1919 (((-112) $ $) 102)) (-1857 (((-563) $) 128)) (-4239 (($) 17 T CONST)) (-3457 (((-3 $ "failed") (-1165 $) (-917) (-858)) 69) (((-3 $ "failed") (-1165 $) (-917)) 68)) (-2131 (((-3 (-563) "failed") $) 88 (|has| (-407 (-563)) (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) 86 (|has| (-407 (-563)) (-1034 (-407 (-563))))) (((-3 (-407 (-563)) "failed") $) 83)) (-2058 (((-563) $) 87 (|has| (-407 (-563)) (-1034 (-563)))) (((-407 (-563)) $) 85 (|has| (-407 (-563)) (-1034 (-407 (-563))))) (((-407 (-563)) $) 84)) (-3928 (($ $ (-858)) 58)) (-3158 (($ $ (-858)) 57)) (-3090 (($ $ $) 106)) (-3400 (((-3 $ "failed") $) 33)) (-3050 (($ $ $) 105)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) 100)) (-2468 (((-112) $) 113)) (-3101 (((-112) $) 126)) (-3827 (((-112) $) 31)) (-1645 (($ $ (-563)) 74)) (-1419 (((-112) $) 127)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) 109)) (-3084 (($ $ $) 125)) (-1777 (($ $ $) 124)) (-2955 (((-3 (-1165 $) "failed") $) 70)) (-3947 (((-3 (-858) "failed") $) 72)) (-2348 (((-3 (-1165 $) "failed") $) 71)) (-3513 (($ (-640 $)) 98) (($ $ $) 97)) (-3573 (((-1151) $) 9)) (-2688 (($ $) 114)) (-1694 (((-1113) $) 10)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 99)) (-3548 (($ (-640 $)) 96) (($ $ $) 95)) (-2174 (((-418 $) $) 110)) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) 107)) (-3008 (((-3 $ "failed") $ $) 90)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) 101)) (-2628 (((-767) $) 103)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 104)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ (-407 (-563))) 118) (($ $) 89) (($ (-407 (-563))) 82) (($ (-563)) 81) (($ (-407 (-563))) 78)) (-1675 (((-767)) 28)) (-2126 (((-112) $ $) 93)) (-1403 (((-407 (-563)) $ $) 56)) (-2783 (((-640 $) (-1165 $)) 67) (((-640 $) (-1165 (-407 (-563)))) 66) (((-640 $) (-1165 (-563))) 65) (((-640 $) (-948 $)) 64) (((-640 $) (-948 (-407 (-563)))) 63) (((-640 $) (-948 (-563))) 62)) (-2509 (($ $) 129)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1778 (((-112) $ $) 122)) (-1756 (((-112) $ $) 121)) (-1718 (((-112) $ $) 6)) (-1768 (((-112) $ $) 123)) (-1744 (((-112) $ $) 120)) (-1837 (($ $ $) 119)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 115) (($ $ (-407 (-563))) 73)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ (-407 (-563)) $) 117) (($ $ (-407 (-563))) 116) (($ (-563) $) 80) (($ $ (-563)) 79) (($ (-407 (-563)) $) 77) (($ $ (-407 (-563))) 76))) +(((-1008) (-140)) (T -1008)) +((-2186 (*1 *1 *1) (-4 *1 (-1008))) (-3947 (*1 *2 *1) (|partial| -12 (-4 *1 (-1008)) (-5 *2 (-858)))) (-2348 (*1 *2 *1) (|partial| -12 (-5 *2 (-1165 *1)) (-4 *1 (-1008)))) (-2955 (*1 *2 *1) (|partial| -12 (-5 *2 (-1165 *1)) (-4 *1 (-1008)))) (-3457 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1165 *1)) (-5 *3 (-917)) (-5 *4 (-858)) (-4 *1 (-1008)))) (-3457 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1165 *1)) (-5 *3 (-917)) (-4 *1 (-1008)))) (-2783 (*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-1008)) (-5 *2 (-640 *1)))) (-2783 (*1 *2 *3) (-12 (-5 *3 (-1165 (-407 (-563)))) (-5 *2 (-640 *1)) (-4 *1 (-1008)))) (-2783 (*1 *2 *3) (-12 (-5 *3 (-1165 (-563))) (-5 *2 (-640 *1)) (-4 *1 (-1008)))) (-2783 (*1 *2 *3) (-12 (-5 *3 (-948 *1)) (-4 *1 (-1008)) (-5 *2 (-640 *1)))) (-2783 (*1 *2 *3) (-12 (-5 *3 (-948 (-407 (-563)))) (-5 *2 (-640 *1)) (-4 *1 (-1008)))) (-2783 (*1 *2 *3) (-12 (-5 *3 (-948 (-563))) (-5 *2 (-640 *1)) (-4 *1 (-1008)))) (-2186 (*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-917)))) (-2186 (*1 *1 *2) (-12 (-5 *2 (-407 (-563))) (-4 *1 (-1008)))) (-2186 (*1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-1008)))) (-3928 (*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-858)))) (-3158 (*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-858)))) (-1403 (*1 *2 *1 *1) (-12 (-4 *1 (-1008)) (-5 *2 (-407 (-563)))))) +(-13 (-147) (-844) (-172) (-363) (-411 (-407 (-563))) (-38 (-563)) (-38 (-407 (-563))) (-998) (-10 -8 (-15 -3947 ((-3 (-858) "failed") $)) (-15 -2348 ((-3 (-1165 $) "failed") $)) (-15 -2955 ((-3 (-1165 $) "failed") $)) (-15 -3457 ((-3 $ "failed") (-1165 $) (-917) (-858))) (-15 -3457 ((-3 $ "failed") (-1165 $) (-917))) (-15 -2783 ((-640 $) (-1165 $))) (-15 -2783 ((-640 $) (-1165 (-407 (-563))))) (-15 -2783 ((-640 $) (-1165 (-563)))) (-15 -2783 ((-640 $) (-948 $))) (-15 -2783 ((-640 $) (-948 (-407 (-563))))) (-15 -2783 ((-640 $) (-948 (-563)))) (-15 -2186 ($ $ (-917))) (-15 -2186 ($ $)) (-15 -2186 ($ (-407 (-563)))) (-15 -2186 ($ (-563))) (-15 -3928 ($ $ (-858))) (-15 -3158 ($ $ (-858))) (-15 -1403 ((-407 (-563)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-38 #1=(-563)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-613 #0#) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-411 (-407 (-563))) . T) ((-452) . T) ((-555) . T) ((-643 #0#) . T) ((-643 #1#) . T) ((-643 $) . T) ((-713 #0#) . T) ((-713 #1#) . T) ((-713 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-844) . T) ((-846) . T) ((-916) . T) ((-998) . T) ((-1034 (-407 (-563))) . T) ((-1034 (-563)) |has| (-407 (-563)) (-1034 (-563))) ((-1051 #0#) . T) ((-1051 #1#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1212) . T)) +((-2193 (((-2 (|:| |ans| |#2|) (|:| -1701 |#2|) (|:| |sol?| (-112))) (-563) |#2| |#2| (-1169) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-640 |#2|)) (-1 (-3 (-2 (|:| -3646 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 65))) +(((-1009 |#1| |#2|) (-10 -7 (-15 -2193 ((-2 (|:| |ans| |#2|) (|:| -1701 |#2|) (|:| |sol?| (-112))) (-563) |#2| |#2| (-1169) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-640 |#2|)) (-1 (-3 (-2 (|:| -3646 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563))) (-13 (-1193) (-27) (-430 |#1|))) (T -1009)) +((-2193 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1169)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-640 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3646 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1193) (-27) (-430 *8))) (-4 *8 (-13 (-452) (-846) (-147) (-1034 *3) (-636 *3))) (-5 *3 (-563)) (-5 *2 (-2 (|:| |ans| *4) (|:| -1701 *4) (|:| |sol?| (-112)))) (-5 *1 (-1009 *8 *4))))) +(-10 -7 (-15 -2193 ((-2 (|:| |ans| |#2|) (|:| -1701 |#2|) (|:| |sol?| (-112))) (-563) |#2| |#2| (-1169) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-640 |#2|)) (-1 (-3 (-2 (|:| -3646 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-1600 (((-3 (-640 |#2|) "failed") (-563) |#2| |#2| |#2| (-1169) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-640 |#2|)) (-1 (-3 (-2 (|:| -3646 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53))) +(((-1010 |#1| |#2|) (-10 -7 (-15 -1600 ((-3 (-640 |#2|) "failed") (-563) |#2| |#2| |#2| (-1169) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-640 |#2|)) (-1 (-3 (-2 (|:| -3646 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563))) (-13 (-1193) (-27) (-430 |#1|))) (T -1010)) +((-1600 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1169)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-640 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3646 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1193) (-27) (-430 *8))) (-4 *8 (-13 (-452) (-846) (-147) (-1034 *3) (-636 *3))) (-5 *3 (-563)) (-5 *2 (-640 *4)) (-5 *1 (-1010 *8 *4))))) +(-10 -7 (-15 -1600 ((-3 (-640 |#2|) "failed") (-563) |#2| |#2| |#2| (-1169) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-640 |#2|)) (-1 (-3 (-2 (|:| -3646 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-3373 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -1420 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-563)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-563) (-1 |#2| |#2|)) 31)) (-2592 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -2288 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|)) 59)) (-1692 (((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|)) 64))) +(((-1011 |#1| |#2|) (-10 -7 (-15 -2592 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -2288 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -1692 ((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|))) (-15 -3373 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -1420 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-563)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-563) (-1 |#2| |#2|)))) (-13 (-363) (-147) (-1034 (-563))) (-1233 |#1|)) (T -1011)) +((-3373 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1233 *6)) (-4 *6 (-13 (-363) (-147) (-1034 *4))) (-5 *4 (-563)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -1420 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1011 *6 *3)))) (-1692 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-563)))) (-4 *5 (-1233 *4)) (-5 *2 (-2 (|:| |ans| (-407 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1011 *4 *5)) (-5 *3 (-407 *5)))) (-2592 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |c| (-407 *6)) (|:| -2288 *6))) (-5 *1 (-1011 *5 *6)) (-5 *3 (-407 *6))))) +(-10 -7 (-15 -2592 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -2288 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -1692 ((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|))) (-15 -3373 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -1420 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-563)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-563) (-1 |#2| |#2|)))) +((-2325 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -2288 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|)) 22)) (-3897 (((-3 (-640 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)) 33))) +(((-1012 |#1| |#2|) (-10 -7 (-15 -2325 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -2288 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3897 ((-3 (-640 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)))) (-13 (-363) (-147) (-1034 (-563))) (-1233 |#1|)) (T -1012)) +((-3897 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1034 (-563)))) (-4 *5 (-1233 *4)) (-5 *2 (-640 (-407 *5))) (-5 *1 (-1012 *4 *5)) (-5 *3 (-407 *5)))) (-2325 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |h| *6) (|:| |c1| (-407 *6)) (|:| |c2| (-407 *6)) (|:| -2288 *6))) (-5 *1 (-1012 *5 *6)) (-5 *3 (-407 *6))))) +(-10 -7 (-15 -2325 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -2288 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3897 ((-3 (-640 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)))) +((-2601 (((-1 |#1|) (-640 (-2 (|:| -2619 |#1|) (|:| -1326 (-563))))) 37)) (-2916 (((-1 |#1|) (-1095 |#1|)) 45)) (-1618 (((-1 |#1|) (-1257 |#1|) (-1257 (-563)) (-563)) 34))) +(((-1013 |#1|) (-10 -7 (-15 -2916 ((-1 |#1|) (-1095 |#1|))) (-15 -2601 ((-1 |#1|) (-640 (-2 (|:| -2619 |#1|) (|:| -1326 (-563)))))) (-15 -1618 ((-1 |#1|) (-1257 |#1|) (-1257 (-563)) (-563)))) (-1093)) (T -1013)) +((-1618 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1257 *6)) (-5 *4 (-1257 (-563))) (-5 *5 (-563)) (-4 *6 (-1093)) (-5 *2 (-1 *6)) (-5 *1 (-1013 *6)))) (-2601 (*1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| -2619 *4) (|:| -1326 (-563))))) (-4 *4 (-1093)) (-5 *2 (-1 *4)) (-5 *1 (-1013 *4)))) (-2916 (*1 *2 *3) (-12 (-5 *3 (-1095 *4)) (-4 *4 (-1093)) (-5 *2 (-1 *4)) (-5 *1 (-1013 *4))))) +(-10 -7 (-15 -2916 ((-1 |#1|) (-1095 |#1|))) (-15 -2601 ((-1 |#1|) (-640 (-2 (|:| -2619 |#1|) (|:| -1326 (-563)))))) (-15 -1618 ((-1 |#1|) (-1257 |#1|) (-1257 (-563)) (-563)))) +((-3254 (((-767) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-1014 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3254 ((-767) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-363) (-1233 |#1|) (-1233 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-13 (-368) (-363))) (T -1014)) +((-3254 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-336 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-363)) (-4 *7 (-1233 *6)) (-4 *4 (-1233 (-407 *7))) (-4 *8 (-342 *6 *7 *4)) (-4 *9 (-13 (-368) (-363))) (-5 *2 (-767)) (-5 *1 (-1014 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -3254 ((-767) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-1677 (((-112) $ $) NIL)) (-2361 (((-1128) $) 9)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3359 (((-1128) $) 11)) (-1718 (((-112) $ $) NIL))) +(((-1015) (-13 (-1076) (-10 -8 (-15 -2361 ((-1128) $)) (-15 -3359 ((-1128) $))))) (T -1015)) +((-2361 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1015)))) (-3359 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1015))))) +(-13 (-1076) (-10 -8 (-15 -2361 ((-1128) $)) (-15 -3359 ((-1128) $)))) +((-1441 (((-3 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))) "failed") |#1| (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))) (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) 31) (((-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))) |#1| (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))) (-407 (-563))) 28)) (-4212 (((-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) |#1| (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))) (-407 (-563))) 33) (((-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) |#1| (-407 (-563))) 29) (((-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) |#1| (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) 32) (((-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) |#1|) 27)) (-2306 (((-640 (-407 (-563))) (-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))))) 19)) (-2723 (((-407 (-563)) (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) 16))) +(((-1016 |#1|) (-10 -7 (-15 -4212 ((-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) |#1|)) (-15 -4212 ((-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) |#1| (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))))) (-15 -4212 ((-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) |#1| (-407 (-563)))) (-15 -4212 ((-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) |#1| (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))) (-407 (-563)))) (-15 -1441 ((-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))) |#1| (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))) (-407 (-563)))) (-15 -1441 ((-3 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))) "failed") |#1| (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))) (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))))) (-15 -2723 ((-407 (-563)) (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))))) (-15 -2306 ((-640 (-407 (-563))) (-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))))))) (-1233 (-563))) (T -1016)) +((-2306 (*1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))))) (-5 *2 (-640 (-407 (-563)))) (-5 *1 (-1016 *4)) (-4 *4 (-1233 (-563))))) (-2723 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) (-5 *2 (-407 (-563))) (-5 *1 (-1016 *4)) (-4 *4 (-1233 (-563))))) (-1441 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) (-5 *1 (-1016 *3)) (-4 *3 (-1233 (-563))))) (-1441 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) (-5 *4 (-407 (-563))) (-5 *1 (-1016 *3)) (-4 *3 (-1233 (-563))))) (-4212 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-407 (-563))) (-5 *2 (-640 (-2 (|:| -1686 *5) (|:| -1701 *5)))) (-5 *1 (-1016 *3)) (-4 *3 (-1233 (-563))) (-5 *4 (-2 (|:| -1686 *5) (|:| -1701 *5))))) (-4212 (*1 *2 *3 *4) (-12 (-5 *2 (-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))))) (-5 *1 (-1016 *3)) (-4 *3 (-1233 (-563))) (-5 *4 (-407 (-563))))) (-4212 (*1 *2 *3 *4) (-12 (-5 *2 (-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))))) (-5 *1 (-1016 *3)) (-4 *3 (-1233 (-563))) (-5 *4 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))))) (-4212 (*1 *2 *3) (-12 (-5 *2 (-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))))) (-5 *1 (-1016 *3)) (-4 *3 (-1233 (-563)))))) +(-10 -7 (-15 -4212 ((-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) |#1|)) (-15 -4212 ((-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) |#1| (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))))) (-15 -4212 ((-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) |#1| (-407 (-563)))) (-15 -4212 ((-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) |#1| (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))) (-407 (-563)))) (-15 -1441 ((-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))) |#1| (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))) (-407 (-563)))) (-15 -1441 ((-3 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))) "failed") |#1| (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))) (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))))) (-15 -2723 ((-407 (-563)) (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))))) (-15 -2306 ((-640 (-407 (-563))) (-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))))))) +((-1441 (((-3 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))) "failed") |#1| (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))) (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) 35) (((-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))) |#1| (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))) (-407 (-563))) 32)) (-4212 (((-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) |#1| (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))) (-407 (-563))) 30) (((-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) |#1| (-407 (-563))) 26) (((-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) |#1| (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) 28) (((-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) |#1|) 24))) +(((-1017 |#1|) (-10 -7 (-15 -4212 ((-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) |#1|)) (-15 -4212 ((-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) |#1| (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))))) (-15 -4212 ((-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) |#1| (-407 (-563)))) (-15 -4212 ((-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) |#1| (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))) (-407 (-563)))) (-15 -1441 ((-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))) |#1| (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))) (-407 (-563)))) (-15 -1441 ((-3 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))) "failed") |#1| (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))) (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))))) (-1233 (-407 (-563)))) (T -1017)) +((-1441 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) (-5 *1 (-1017 *3)) (-4 *3 (-1233 (-407 (-563)))))) (-1441 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) (-5 *4 (-407 (-563))) (-5 *1 (-1017 *3)) (-4 *3 (-1233 *4)))) (-4212 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-407 (-563))) (-5 *2 (-640 (-2 (|:| -1686 *5) (|:| -1701 *5)))) (-5 *1 (-1017 *3)) (-4 *3 (-1233 *5)) (-5 *4 (-2 (|:| -1686 *5) (|:| -1701 *5))))) (-4212 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-563))) (-5 *2 (-640 (-2 (|:| -1686 *4) (|:| -1701 *4)))) (-5 *1 (-1017 *3)) (-4 *3 (-1233 *4)))) (-4212 (*1 *2 *3 *4) (-12 (-5 *2 (-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))))) (-5 *1 (-1017 *3)) (-4 *3 (-1233 (-407 (-563)))) (-5 *4 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))))) (-4212 (*1 *2 *3) (-12 (-5 *2 (-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))))) (-5 *1 (-1017 *3)) (-4 *3 (-1233 (-407 (-563))))))) +(-10 -7 (-15 -4212 ((-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) |#1|)) (-15 -4212 ((-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) |#1| (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))))) (-15 -4212 ((-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) |#1| (-407 (-563)))) (-15 -4212 ((-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) |#1| (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))) (-407 (-563)))) (-15 -1441 ((-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))) |#1| (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))) (-407 (-563)))) (-15 -1441 ((-3 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))) "failed") |#1| (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))) (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))))) +((-2220 (((-225) $) 6) (((-379) $) 9))) +(((-1018) (-140)) (T -1018)) +NIL +(-13 (-611 (-225)) (-611 (-379))) +(((-611 (-225)) . T) ((-611 (-379)) . T)) +((-1793 (((-640 (-379)) (-948 (-563)) (-379)) 28) (((-640 (-379)) (-948 (-407 (-563))) (-379)) 27)) (-2076 (((-640 (-640 (-379))) (-640 (-948 (-563))) (-640 (-1169)) (-379)) 37))) +(((-1019) (-10 -7 (-15 -1793 ((-640 (-379)) (-948 (-407 (-563))) (-379))) (-15 -1793 ((-640 (-379)) (-948 (-563)) (-379))) (-15 -2076 ((-640 (-640 (-379))) (-640 (-948 (-563))) (-640 (-1169)) (-379))))) (T -1019)) +((-2076 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-640 (-948 (-563)))) (-5 *4 (-640 (-1169))) (-5 *2 (-640 (-640 (-379)))) (-5 *1 (-1019)) (-5 *5 (-379)))) (-1793 (*1 *2 *3 *4) (-12 (-5 *3 (-948 (-563))) (-5 *2 (-640 (-379))) (-5 *1 (-1019)) (-5 *4 (-379)))) (-1793 (*1 *2 *3 *4) (-12 (-5 *3 (-948 (-407 (-563)))) (-5 *2 (-640 (-379))) (-5 *1 (-1019)) (-5 *4 (-379))))) +(-10 -7 (-15 -1793 ((-640 (-379)) (-948 (-407 (-563))) (-379))) (-15 -1793 ((-640 (-379)) (-948 (-563)) (-379))) (-15 -2076 ((-640 (-640 (-379))) (-640 (-948 (-563))) (-640 (-1169)) (-379)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) 70)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-2186 (($ $) NIL) (($ $ (-917)) NIL) (($ (-407 (-563))) NIL) (($ (-563)) NIL)) (-1919 (((-112) $ $) NIL)) (-1857 (((-563) $) 65)) (-4239 (($) NIL T CONST)) (-3457 (((-3 $ "failed") (-1165 $) (-917) (-858)) NIL) (((-3 $ "failed") (-1165 $) (-917)) 50)) (-2131 (((-3 (-407 (-563)) "failed") $) NIL (|has| (-407 (-563)) (-1034 (-407 (-563))))) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-563) "failed") $) NIL (-4032 (|has| (-407 (-563)) (-1034 (-563))) (|has| |#1| (-1034 (-563)))))) (-2058 (((-407 (-563)) $) 15 (|has| (-407 (-563)) (-1034 (-407 (-563))))) (((-407 (-563)) $) 15) ((|#1| $) 108) (((-563) $) NIL (-4032 (|has| (-407 (-563)) (-1034 (-563))) (|has| |#1| (-1034 (-563)))))) (-3928 (($ $ (-858)) 42)) (-3158 (($ $ (-858)) 43)) (-3090 (($ $ $) NIL)) (-3527 (((-407 (-563)) $ $) 19)) (-3400 (((-3 $ "failed") $) 83)) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-2468 (((-112) $) NIL)) (-3101 (((-112) $) 61)) (-3827 (((-112) $) NIL)) (-1645 (($ $ (-563)) NIL)) (-1419 (((-112) $) 64)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3084 (($ $ $) NIL)) (-1777 (($ $ $) NIL)) (-2955 (((-3 (-1165 $) "failed") $) 78)) (-3947 (((-3 (-858) "failed") $) 77)) (-2348 (((-3 (-1165 $) "failed") $) 75)) (-3187 (((-3 (-1055 $ (-1165 $)) "failed") $) 73)) (-3513 (($ (-640 $)) NIL) (($ $ $) NIL)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) 84)) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ (-640 $)) NIL) (($ $ $) NIL)) (-2174 (((-418 $) $) NIL)) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2628 (((-767) $) NIL)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-1693 (((-858) $) 82) (($ (-563)) NIL) (($ (-407 (-563))) NIL) (($ $) 58) (($ (-407 (-563))) NIL) (($ (-563)) NIL) (($ (-407 (-563))) NIL) (($ |#1|) 110)) (-1675 (((-767)) NIL)) (-2126 (((-112) $ $) NIL)) (-1403 (((-407 (-563)) $ $) 25)) (-2783 (((-640 $) (-1165 $)) 56) (((-640 $) (-1165 (-407 (-563)))) NIL) (((-640 $) (-1165 (-563))) NIL) (((-640 $) (-948 $)) NIL) (((-640 $) (-948 (-407 (-563)))) NIL) (((-640 $) (-948 (-563))) NIL)) (-4065 (($ (-1055 $ (-1165 $)) (-858)) 41)) (-2509 (($ $) 20)) (-2241 (($) 29 T CONST)) (-2254 (($) 35 T CONST)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 71)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) 22)) (-1837 (($ $ $) 33)) (-1826 (($ $) 34) (($ $ $) 69)) (-1814 (($ $ $) 103)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL) (($ $ (-407 (-563))) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 91) (($ $ $) 96) (($ (-407 (-563)) $) NIL) (($ $ (-407 (-563))) NIL) (($ (-563) $) 91) (($ $ (-563)) NIL) (($ (-407 (-563)) $) NIL) (($ $ (-407 (-563))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL))) +(((-1020 |#1|) (-13 (-1008) (-411 |#1|) (-38 |#1|) (-10 -8 (-15 -4065 ($ (-1055 $ (-1165 $)) (-858))) (-15 -3187 ((-3 (-1055 $ (-1165 $)) "failed") $)) (-15 -3527 ((-407 (-563)) $ $)))) (-13 (-844) (-363) (-1018))) (T -1020)) +((-4065 (*1 *1 *2 *3) (-12 (-5 *2 (-1055 (-1020 *4) (-1165 (-1020 *4)))) (-5 *3 (-858)) (-5 *1 (-1020 *4)) (-4 *4 (-13 (-844) (-363) (-1018))))) (-3187 (*1 *2 *1) (|partial| -12 (-5 *2 (-1055 (-1020 *3) (-1165 (-1020 *3)))) (-5 *1 (-1020 *3)) (-4 *3 (-13 (-844) (-363) (-1018))))) (-3527 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-1020 *3)) (-4 *3 (-13 (-844) (-363) (-1018)))))) +(-13 (-1008) (-411 |#1|) (-38 |#1|) (-10 -8 (-15 -4065 ($ (-1055 $ (-1165 $)) (-858))) (-15 -3187 ((-3 (-1055 $ (-1165 $)) "failed") $)) (-15 -3527 ((-407 (-563)) $ $)))) +((-2549 (((-2 (|:| -1420 |#2|) (|:| -2517 (-640 |#1|))) |#2| (-640 |#1|)) 20) ((|#2| |#2| |#1|) 15))) +(((-1021 |#1| |#2|) (-10 -7 (-15 -2549 (|#2| |#2| |#1|)) (-15 -2549 ((-2 (|:| -1420 |#2|) (|:| -2517 (-640 |#1|))) |#2| (-640 |#1|)))) (-363) (-651 |#1|)) (T -1021)) +((-2549 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| -1420 *3) (|:| -2517 (-640 *5)))) (-5 *1 (-1021 *5 *3)) (-5 *4 (-640 *5)) (-4 *3 (-651 *5)))) (-2549 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-1021 *3 *2)) (-4 *2 (-651 *3))))) +(-10 -7 (-15 -2549 (|#2| |#2| |#1|)) (-15 -2549 ((-2 (|:| -1420 |#2|) (|:| -2517 (-640 |#1|))) |#2| (-640 |#1|)))) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3559 ((|#1| $ |#1|) 14)) (-1849 ((|#1| $ |#1|) 12)) (-3644 (($ |#1|) 10)) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-2309 ((|#1| $) 11)) (-3470 ((|#1| $) 13)) (-1693 (((-858) $) 21 (|has| |#1| (-1093)))) (-1718 (((-112) $ $) 9))) +(((-1022 |#1|) (-13 (-1208) (-10 -8 (-15 -3644 ($ |#1|)) (-15 -2309 (|#1| $)) (-15 -1849 (|#1| $ |#1|)) (-15 -3470 (|#1| $)) (-15 -3559 (|#1| $ |#1|)) (-15 -1718 ((-112) $ $)) (IF (|has| |#1| (-1093)) (-6 (-1093)) |%noBranch|))) (-1208)) (T -1022)) +((-3644 (*1 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1208)))) (-2309 (*1 *2 *1) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1208)))) (-1849 (*1 *2 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1208)))) (-3470 (*1 *2 *1) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1208)))) (-3559 (*1 *2 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1208)))) (-1718 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1022 *3)) (-4 *3 (-1208))))) +(-13 (-1208) (-10 -8 (-15 -3644 ($ |#1|)) (-15 -2309 (|#1| $)) (-15 -1849 (|#1| $ |#1|)) (-15 -3470 (|#1| $)) (-15 -3559 (|#1| $ |#1|)) (-15 -1718 ((-112) $ $)) (IF (|has| |#1| (-1093)) (-6 (-1093)) |%noBranch|))) +((-1677 (((-112) $ $) NIL)) (-1578 (((-640 (-2 (|:| -1442 $) (|:| -3405 (-640 |#4|)))) (-640 |#4|)) NIL)) (-3319 (((-640 $) (-640 |#4|)) 105) (((-640 $) (-640 |#4|) (-112)) 106) (((-640 $) (-640 |#4|) (-112) (-112)) 104) (((-640 $) (-640 |#4|) (-112) (-112) (-112) (-112)) 107)) (-2606 (((-640 |#3|) $) NIL)) (-1706 (((-112) $) NIL)) (-3854 (((-112) $) NIL (|has| |#1| (-555)))) (-2620 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4053 ((|#4| |#4| $) NIL)) (-4335 (((-640 (-2 (|:| |val| |#4|) (|:| -2059 $))) |#4| $) 99)) (-1642 (((-2 (|:| |under| $) (|:| -1583 $) (|:| |upper| $)) $ |#3|) NIL)) (-2759 (((-112) $ (-767)) NIL)) (-2256 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407))) (((-3 |#4| "failed") $ |#3|) 54)) (-4239 (($) NIL T CONST)) (-1483 (((-112) $) 27 (|has| |#1| (-555)))) (-1626 (((-112) $ $) NIL (|has| |#1| (-555)))) (-4221 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1763 (((-112) $) NIL (|has| |#1| (-555)))) (-1833 (((-640 |#4|) (-640 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3746 (((-640 |#4|) (-640 |#4|) $) NIL (|has| |#1| (-555)))) (-1866 (((-640 |#4|) (-640 |#4|) $) NIL (|has| |#1| (-555)))) (-2131 (((-3 $ "failed") (-640 |#4|)) NIL)) (-2058 (($ (-640 |#4|)) NIL)) (-3792 (((-3 $ "failed") $) 40)) (-1719 ((|#4| |#4| $) 57)) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1093))))) (-1459 (($ |#4| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1093)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-1972 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-555)))) (-3990 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3948 ((|#4| |#4| $) NIL)) (-2444 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1093)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4407))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4407))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2144 (((-2 (|:| -1442 (-640 |#4|)) (|:| -3405 (-640 |#4|))) $) NIL)) (-2313 (((-112) |#4| $) NIL)) (-3748 (((-112) |#4| $) NIL)) (-1871 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2984 (((-2 (|:| |val| (-640 |#4|)) (|:| |towers| (-640 $))) (-640 |#4|) (-112) (-112)) 119)) (-2659 (((-640 |#4|) $) 17 (|has| $ (-6 -4407)))) (-2299 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2957 ((|#3| $) 34)) (-2581 (((-112) $ (-767)) NIL)) (-2259 (((-640 |#4|) $) 18 (|has| $ (-6 -4407)))) (-1729 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1093))))) (-4345 (($ (-1 |#4| |#4|) $) 24 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#4| |#4|) $) 22)) (-2965 (((-640 |#3|) $) NIL)) (-2780 (((-112) |#3| $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL)) (-3083 (((-3 |#4| (-640 $)) |#4| |#4| $) NIL)) (-2898 (((-640 (-2 (|:| |val| |#4|) (|:| -2059 $))) |#4| |#4| $) 97)) (-1481 (((-3 |#4| "failed") $) 38)) (-3764 (((-640 $) |#4| $) 80)) (-1334 (((-3 (-112) (-640 $)) |#4| $) NIL)) (-2069 (((-640 (-2 (|:| |val| (-112)) (|:| -2059 $))) |#4| $) 90) (((-112) |#4| $) 52)) (-2550 (((-640 $) |#4| $) 102) (((-640 $) (-640 |#4|) $) NIL) (((-640 $) (-640 |#4|) (-640 $)) 103) (((-640 $) |#4| (-640 $)) NIL)) (-3211 (((-640 $) (-640 |#4|) (-112) (-112) (-112)) 114)) (-3291 (($ |#4| $) 70) (($ (-640 |#4|) $) 71) (((-640 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 67)) (-2820 (((-640 |#4|) $) NIL)) (-4197 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2715 ((|#4| |#4| $) NIL)) (-3009 (((-112) $ $) NIL)) (-2152 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-555)))) (-2031 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4056 ((|#4| |#4| $) NIL)) (-1694 (((-1113) $) NIL)) (-3781 (((-3 |#4| "failed") $) 36)) (-4203 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3479 (((-3 $ "failed") $ |#4|) 48)) (-3320 (($ $ |#4|) NIL) (((-640 $) |#4| $) 82) (((-640 $) |#4| (-640 $)) NIL) (((-640 $) (-640 |#4|) $) NIL) (((-640 $) (-640 |#4|) (-640 $)) 77)) (-3138 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 |#4|) (-640 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-2026 (((-112) $ $) NIL)) (-3756 (((-112) $) 16)) (-3135 (($) 14)) (-4167 (((-767) $) NIL)) (-1709 (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1093)))) (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-1872 (($ $) 13)) (-2220 (((-536) $) NIL (|has| |#4| (-611 (-536))))) (-1707 (($ (-640 |#4|)) 21)) (-3577 (($ $ |#3|) 43)) (-1593 (($ $ |#3|) 44)) (-1924 (($ $) NIL)) (-4192 (($ $ |#3|) NIL)) (-1693 (((-858) $) 32) (((-640 |#4|) $) 41)) (-2437 (((-767) $) NIL (|has| |#3| (-368)))) (-2540 (((-3 (-2 (|:| |bas| $) (|:| -2636 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2636 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2691 (((-112) $ (-1 (-112) |#4| (-640 |#4|))) NIL)) (-2175 (((-640 $) |#4| $) 79) (((-640 $) |#4| (-640 $)) NIL) (((-640 $) (-640 |#4|) $) NIL) (((-640 $) (-640 |#4|) (-640 $)) NIL)) (-4383 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-1955 (((-640 |#3|) $) NIL)) (-4279 (((-112) |#4| $) NIL)) (-3152 (((-112) |#3| $) 53)) (-1718 (((-112) $ $) NIL)) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-1023 |#1| |#2| |#3| |#4|) (-13 (-1065 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3291 ((-640 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3319 ((-640 $) (-640 |#4|) (-112) (-112))) (-15 -3319 ((-640 $) (-640 |#4|) (-112) (-112) (-112) (-112))) (-15 -3211 ((-640 $) (-640 |#4|) (-112) (-112) (-112))) (-15 -2984 ((-2 (|:| |val| (-640 |#4|)) (|:| |towers| (-640 $))) (-640 |#4|) (-112) (-112))))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -1023)) +((-3291 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 (-1023 *5 *6 *7 *3))) (-5 *1 (-1023 *5 *6 *7 *3)) (-4 *3 (-1059 *5 *6 *7)))) (-3319 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 (-1023 *5 *6 *7 *8))) (-5 *1 (-1023 *5 *6 *7 *8)))) (-3319 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 (-1023 *5 *6 *7 *8))) (-5 *1 (-1023 *5 *6 *7 *8)))) (-3211 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 (-1023 *5 *6 *7 *8))) (-5 *1 (-1023 *5 *6 *7 *8)))) (-2984 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-640 *8)) (|:| |towers| (-640 (-1023 *5 *6 *7 *8))))) (-5 *1 (-1023 *5 *6 *7 *8)) (-5 *3 (-640 *8))))) +(-13 (-1065 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3291 ((-640 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3319 ((-640 $) (-640 |#4|) (-112) (-112))) (-15 -3319 ((-640 $) (-640 |#4|) (-112) (-112) (-112) (-112))) (-15 -3211 ((-640 $) (-640 |#4|) (-112) (-112) (-112))) (-15 -2984 ((-2 (|:| |val| (-640 |#4|)) (|:| |towers| (-640 $))) (-640 |#4|) (-112) (-112))))) +((-3123 (((-640 (-684 |#1|)) (-640 (-684 |#1|))) 58) (((-684 |#1|) (-684 |#1|)) 57) (((-640 (-684 |#1|)) (-640 (-684 |#1|)) (-640 (-684 |#1|))) 56) (((-684 |#1|) (-684 |#1|) (-684 |#1|)) 53)) (-2402 (((-640 (-684 |#1|)) (-640 (-684 |#1|)) (-917)) 52) (((-684 |#1|) (-684 |#1|) (-917)) 51)) (-1380 (((-640 (-684 (-563))) (-640 (-640 (-563)))) 68) (((-640 (-684 (-563))) (-640 (-901 (-563))) (-563)) 67) (((-684 (-563)) (-640 (-563))) 64) (((-684 (-563)) (-901 (-563)) (-563)) 63)) (-2597 (((-684 (-948 |#1|)) (-767)) 81)) (-2475 (((-640 (-684 |#1|)) (-640 (-684 |#1|)) (-917)) 37 (|has| |#1| (-6 (-4409 "*")))) (((-684 |#1|) (-684 |#1|) (-917)) 35 (|has| |#1| (-6 (-4409 "*")))))) +(((-1024 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4409 "*"))) (-15 -2475 ((-684 |#1|) (-684 |#1|) (-917))) |%noBranch|) (IF (|has| |#1| (-6 (-4409 "*"))) (-15 -2475 ((-640 (-684 |#1|)) (-640 (-684 |#1|)) (-917))) |%noBranch|) (-15 -2597 ((-684 (-948 |#1|)) (-767))) (-15 -2402 ((-684 |#1|) (-684 |#1|) (-917))) (-15 -2402 ((-640 (-684 |#1|)) (-640 (-684 |#1|)) (-917))) (-15 -3123 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -3123 ((-640 (-684 |#1|)) (-640 (-684 |#1|)) (-640 (-684 |#1|)))) (-15 -3123 ((-684 |#1|) (-684 |#1|))) (-15 -3123 ((-640 (-684 |#1|)) (-640 (-684 |#1|)))) (-15 -1380 ((-684 (-563)) (-901 (-563)) (-563))) (-15 -1380 ((-684 (-563)) (-640 (-563)))) (-15 -1380 ((-640 (-684 (-563))) (-640 (-901 (-563))) (-563))) (-15 -1380 ((-640 (-684 (-563))) (-640 (-640 (-563)))))) (-1045)) (T -1024)) +((-1380 (*1 *2 *3) (-12 (-5 *3 (-640 (-640 (-563)))) (-5 *2 (-640 (-684 (-563)))) (-5 *1 (-1024 *4)) (-4 *4 (-1045)))) (-1380 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-901 (-563)))) (-5 *4 (-563)) (-5 *2 (-640 (-684 *4))) (-5 *1 (-1024 *5)) (-4 *5 (-1045)))) (-1380 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-684 (-563))) (-5 *1 (-1024 *4)) (-4 *4 (-1045)))) (-1380 (*1 *2 *3 *4) (-12 (-5 *3 (-901 (-563))) (-5 *4 (-563)) (-5 *2 (-684 *4)) (-5 *1 (-1024 *5)) (-4 *5 (-1045)))) (-3123 (*1 *2 *2) (-12 (-5 *2 (-640 (-684 *3))) (-4 *3 (-1045)) (-5 *1 (-1024 *3)))) (-3123 (*1 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-1024 *3)))) (-3123 (*1 *2 *2 *2) (-12 (-5 *2 (-640 (-684 *3))) (-4 *3 (-1045)) (-5 *1 (-1024 *3)))) (-3123 (*1 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-1024 *3)))) (-2402 (*1 *2 *2 *3) (-12 (-5 *2 (-640 (-684 *4))) (-5 *3 (-917)) (-4 *4 (-1045)) (-5 *1 (-1024 *4)))) (-2402 (*1 *2 *2 *3) (-12 (-5 *2 (-684 *4)) (-5 *3 (-917)) (-4 *4 (-1045)) (-5 *1 (-1024 *4)))) (-2597 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-684 (-948 *4))) (-5 *1 (-1024 *4)) (-4 *4 (-1045)))) (-2475 (*1 *2 *2 *3) (-12 (-5 *2 (-640 (-684 *4))) (-5 *3 (-917)) (|has| *4 (-6 (-4409 "*"))) (-4 *4 (-1045)) (-5 *1 (-1024 *4)))) (-2475 (*1 *2 *2 *3) (-12 (-5 *2 (-684 *4)) (-5 *3 (-917)) (|has| *4 (-6 (-4409 "*"))) (-4 *4 (-1045)) (-5 *1 (-1024 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4409 "*"))) (-15 -2475 ((-684 |#1|) (-684 |#1|) (-917))) |%noBranch|) (IF (|has| |#1| (-6 (-4409 "*"))) (-15 -2475 ((-640 (-684 |#1|)) (-640 (-684 |#1|)) (-917))) |%noBranch|) (-15 -2597 ((-684 (-948 |#1|)) (-767))) (-15 -2402 ((-684 |#1|) (-684 |#1|) (-917))) (-15 -2402 ((-640 (-684 |#1|)) (-640 (-684 |#1|)) (-917))) (-15 -3123 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -3123 ((-640 (-684 |#1|)) (-640 (-684 |#1|)) (-640 (-684 |#1|)))) (-15 -3123 ((-684 |#1|) (-684 |#1|))) (-15 -3123 ((-640 (-684 |#1|)) (-640 (-684 |#1|)))) (-15 -1380 ((-684 (-563)) (-901 (-563)) (-563))) (-15 -1380 ((-684 (-563)) (-640 (-563)))) (-15 -1380 ((-640 (-684 (-563))) (-640 (-901 (-563))) (-563))) (-15 -1380 ((-640 (-684 (-563))) (-640 (-640 (-563)))))) +((-4082 (((-684 |#1|) (-640 (-684 |#1|)) (-1257 |#1|)) 49 (|has| |#1| (-307)))) (-2335 (((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-1257 (-1257 |#1|))) 75 (|has| |#1| (-363))) (((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-1257 |#1|)) 78 (|has| |#1| (-363)))) (-3747 (((-1257 |#1|) (-640 (-1257 |#1|)) (-563)) 92 (-12 (|has| |#1| (-363)) (|has| |#1| (-368))))) (-3800 (((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-917)) 84 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-112)) 82 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|))) 81 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-112) (-563) (-563)) 80 (-12 (|has| |#1| (-363)) (|has| |#1| (-368))))) (-2211 (((-112) (-640 (-684 |#1|))) 70 (|has| |#1| (-363))) (((-112) (-640 (-684 |#1|)) (-563)) 72 (|has| |#1| (-363)))) (-1952 (((-1257 (-1257 |#1|)) (-640 (-684 |#1|)) (-1257 |#1|)) 47 (|has| |#1| (-307)))) (-3961 (((-684 |#1|) (-640 (-684 |#1|)) (-684 |#1|)) 33)) (-3379 (((-684 |#1|) (-1257 (-1257 |#1|))) 30)) (-3600 (((-684 |#1|) (-640 (-684 |#1|)) (-640 (-684 |#1|)) (-563)) 64 (|has| |#1| (-363))) (((-684 |#1|) (-640 (-684 |#1|)) (-640 (-684 |#1|))) 63 (|has| |#1| (-363))) (((-684 |#1|) (-640 (-684 |#1|)) (-640 (-684 |#1|)) (-112) (-563)) 68 (|has| |#1| (-363))))) +(((-1025 |#1|) (-10 -7 (-15 -3379 ((-684 |#1|) (-1257 (-1257 |#1|)))) (-15 -3961 ((-684 |#1|) (-640 (-684 |#1|)) (-684 |#1|))) (IF (|has| |#1| (-307)) (PROGN (-15 -1952 ((-1257 (-1257 |#1|)) (-640 (-684 |#1|)) (-1257 |#1|))) (-15 -4082 ((-684 |#1|) (-640 (-684 |#1|)) (-1257 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -3600 ((-684 |#1|) (-640 (-684 |#1|)) (-640 (-684 |#1|)) (-112) (-563))) (-15 -3600 ((-684 |#1|) (-640 (-684 |#1|)) (-640 (-684 |#1|)))) (-15 -3600 ((-684 |#1|) (-640 (-684 |#1|)) (-640 (-684 |#1|)) (-563))) (-15 -2211 ((-112) (-640 (-684 |#1|)) (-563))) (-15 -2211 ((-112) (-640 (-684 |#1|)))) (-15 -2335 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-1257 |#1|))) (-15 -2335 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-1257 (-1257 |#1|))))) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#1| (-363)) (PROGN (-15 -3800 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-112) (-563) (-563))) (-15 -3800 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)))) (-15 -3800 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-112))) (-15 -3800 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-917))) (-15 -3747 ((-1257 |#1|) (-640 (-1257 |#1|)) (-563)))) |%noBranch|) |%noBranch|)) (-1045)) (T -1025)) +((-3747 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-1257 *5))) (-5 *4 (-563)) (-5 *2 (-1257 *5)) (-5 *1 (-1025 *5)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045)))) (-3800 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045)) (-5 *2 (-640 (-640 (-684 *5)))) (-5 *1 (-1025 *5)) (-5 *3 (-640 (-684 *5))))) (-3800 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045)) (-5 *2 (-640 (-640 (-684 *5)))) (-5 *1 (-1025 *5)) (-5 *3 (-640 (-684 *5))))) (-3800 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *4 (-368)) (-4 *4 (-1045)) (-5 *2 (-640 (-640 (-684 *4)))) (-5 *1 (-1025 *4)) (-5 *3 (-640 (-684 *4))))) (-3800 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-563)) (-4 *6 (-363)) (-4 *6 (-368)) (-4 *6 (-1045)) (-5 *2 (-640 (-640 (-684 *6)))) (-5 *1 (-1025 *6)) (-5 *3 (-640 (-684 *6))))) (-2335 (*1 *2 *3 *4) (-12 (-5 *4 (-1257 (-1257 *5))) (-4 *5 (-363)) (-4 *5 (-1045)) (-5 *2 (-640 (-640 (-684 *5)))) (-5 *1 (-1025 *5)) (-5 *3 (-640 (-684 *5))))) (-2335 (*1 *2 *3 *4) (-12 (-5 *4 (-1257 *5)) (-4 *5 (-363)) (-4 *5 (-1045)) (-5 *2 (-640 (-640 (-684 *5)))) (-5 *1 (-1025 *5)) (-5 *3 (-640 (-684 *5))))) (-2211 (*1 *2 *3) (-12 (-5 *3 (-640 (-684 *4))) (-4 *4 (-363)) (-4 *4 (-1045)) (-5 *2 (-112)) (-5 *1 (-1025 *4)))) (-2211 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-684 *5))) (-5 *4 (-563)) (-4 *5 (-363)) (-4 *5 (-1045)) (-5 *2 (-112)) (-5 *1 (-1025 *5)))) (-3600 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-640 (-684 *5))) (-5 *4 (-563)) (-5 *2 (-684 *5)) (-5 *1 (-1025 *5)) (-4 *5 (-363)) (-4 *5 (-1045)))) (-3600 (*1 *2 *3 *3) (-12 (-5 *3 (-640 (-684 *4))) (-5 *2 (-684 *4)) (-5 *1 (-1025 *4)) (-4 *4 (-363)) (-4 *4 (-1045)))) (-3600 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-640 (-684 *6))) (-5 *4 (-112)) (-5 *5 (-563)) (-5 *2 (-684 *6)) (-5 *1 (-1025 *6)) (-4 *6 (-363)) (-4 *6 (-1045)))) (-4082 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-684 *5))) (-5 *4 (-1257 *5)) (-4 *5 (-307)) (-4 *5 (-1045)) (-5 *2 (-684 *5)) (-5 *1 (-1025 *5)))) (-1952 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-684 *5))) (-4 *5 (-307)) (-4 *5 (-1045)) (-5 *2 (-1257 (-1257 *5))) (-5 *1 (-1025 *5)) (-5 *4 (-1257 *5)))) (-3961 (*1 *2 *3 *2) (-12 (-5 *3 (-640 (-684 *4))) (-5 *2 (-684 *4)) (-4 *4 (-1045)) (-5 *1 (-1025 *4)))) (-3379 (*1 *2 *3) (-12 (-5 *3 (-1257 (-1257 *4))) (-4 *4 (-1045)) (-5 *2 (-684 *4)) (-5 *1 (-1025 *4))))) +(-10 -7 (-15 -3379 ((-684 |#1|) (-1257 (-1257 |#1|)))) (-15 -3961 ((-684 |#1|) (-640 (-684 |#1|)) (-684 |#1|))) (IF (|has| |#1| (-307)) (PROGN (-15 -1952 ((-1257 (-1257 |#1|)) (-640 (-684 |#1|)) (-1257 |#1|))) (-15 -4082 ((-684 |#1|) (-640 (-684 |#1|)) (-1257 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -3600 ((-684 |#1|) (-640 (-684 |#1|)) (-640 (-684 |#1|)) (-112) (-563))) (-15 -3600 ((-684 |#1|) (-640 (-684 |#1|)) (-640 (-684 |#1|)))) (-15 -3600 ((-684 |#1|) (-640 (-684 |#1|)) (-640 (-684 |#1|)) (-563))) (-15 -2211 ((-112) (-640 (-684 |#1|)) (-563))) (-15 -2211 ((-112) (-640 (-684 |#1|)))) (-15 -2335 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-1257 |#1|))) (-15 -2335 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-1257 (-1257 |#1|))))) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#1| (-363)) (PROGN (-15 -3800 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-112) (-563) (-563))) (-15 -3800 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)))) (-15 -3800 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-112))) (-15 -3800 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-917))) (-15 -3747 ((-1257 |#1|) (-640 (-1257 |#1|)) (-563)))) |%noBranch|) |%noBranch|)) +((-4109 ((|#1| (-917) |#1|) 9))) +(((-1026 |#1|) (-10 -7 (-15 -4109 (|#1| (-917) |#1|))) (-13 (-1093) (-10 -8 (-15 -1814 ($ $ $))))) (T -1026)) +((-4109 (*1 *2 *3 *2) (-12 (-5 *3 (-917)) (-5 *1 (-1026 *2)) (-4 *2 (-13 (-1093) (-10 -8 (-15 -1814 ($ $ $)))))))) +(-10 -7 (-15 -4109 (|#1| (-917) |#1|))) +((-2514 (((-640 (-2 (|:| |radval| (-316 (-563))) (|:| |radmult| (-563)) (|:| |radvect| (-640 (-684 (-316 (-563))))))) (-684 (-407 (-948 (-563))))) 59)) (-1774 (((-640 (-684 (-316 (-563)))) (-316 (-563)) (-684 (-407 (-948 (-563))))) 48)) (-1401 (((-640 (-316 (-563))) (-684 (-407 (-948 (-563))))) 41)) (-2067 (((-640 (-684 (-316 (-563)))) (-684 (-407 (-948 (-563))))) 68)) (-1841 (((-684 (-316 (-563))) (-684 (-316 (-563)))) 34)) (-4193 (((-640 (-684 (-316 (-563)))) (-640 (-684 (-316 (-563))))) 62)) (-3092 (((-3 (-684 (-316 (-563))) "failed") (-684 (-407 (-948 (-563))))) 66))) +(((-1027) (-10 -7 (-15 -2514 ((-640 (-2 (|:| |radval| (-316 (-563))) (|:| |radmult| (-563)) (|:| |radvect| (-640 (-684 (-316 (-563))))))) (-684 (-407 (-948 (-563)))))) (-15 -1774 ((-640 (-684 (-316 (-563)))) (-316 (-563)) (-684 (-407 (-948 (-563)))))) (-15 -1401 ((-640 (-316 (-563))) (-684 (-407 (-948 (-563)))))) (-15 -3092 ((-3 (-684 (-316 (-563))) "failed") (-684 (-407 (-948 (-563)))))) (-15 -1841 ((-684 (-316 (-563))) (-684 (-316 (-563))))) (-15 -4193 ((-640 (-684 (-316 (-563)))) (-640 (-684 (-316 (-563)))))) (-15 -2067 ((-640 (-684 (-316 (-563)))) (-684 (-407 (-948 (-563)))))))) (T -1027)) +((-2067 (*1 *2 *3) (-12 (-5 *3 (-684 (-407 (-948 (-563))))) (-5 *2 (-640 (-684 (-316 (-563))))) (-5 *1 (-1027)))) (-4193 (*1 *2 *2) (-12 (-5 *2 (-640 (-684 (-316 (-563))))) (-5 *1 (-1027)))) (-1841 (*1 *2 *2) (-12 (-5 *2 (-684 (-316 (-563)))) (-5 *1 (-1027)))) (-3092 (*1 *2 *3) (|partial| -12 (-5 *3 (-684 (-407 (-948 (-563))))) (-5 *2 (-684 (-316 (-563)))) (-5 *1 (-1027)))) (-1401 (*1 *2 *3) (-12 (-5 *3 (-684 (-407 (-948 (-563))))) (-5 *2 (-640 (-316 (-563)))) (-5 *1 (-1027)))) (-1774 (*1 *2 *3 *4) (-12 (-5 *4 (-684 (-407 (-948 (-563))))) (-5 *2 (-640 (-684 (-316 (-563))))) (-5 *1 (-1027)) (-5 *3 (-316 (-563))))) (-2514 (*1 *2 *3) (-12 (-5 *3 (-684 (-407 (-948 (-563))))) (-5 *2 (-640 (-2 (|:| |radval| (-316 (-563))) (|:| |radmult| (-563)) (|:| |radvect| (-640 (-684 (-316 (-563)))))))) (-5 *1 (-1027))))) +(-10 -7 (-15 -2514 ((-640 (-2 (|:| |radval| (-316 (-563))) (|:| |radmult| (-563)) (|:| |radvect| (-640 (-684 (-316 (-563))))))) (-684 (-407 (-948 (-563)))))) (-15 -1774 ((-640 (-684 (-316 (-563)))) (-316 (-563)) (-684 (-407 (-948 (-563)))))) (-15 -1401 ((-640 (-316 (-563))) (-684 (-407 (-948 (-563)))))) (-15 -3092 ((-3 (-684 (-316 (-563))) "failed") (-684 (-407 (-948 (-563)))))) (-15 -1841 ((-684 (-316 (-563))) (-684 (-316 (-563))))) (-15 -4193 ((-640 (-684 (-316 (-563)))) (-640 (-684 (-316 (-563)))))) (-15 -2067 ((-640 (-684 (-316 (-563)))) (-684 (-407 (-948 (-563))))))) +((-4008 ((|#1| |#1| (-917)) 9))) +(((-1028 |#1|) (-10 -7 (-15 -4008 (|#1| |#1| (-917)))) (-13 (-1093) (-10 -8 (-15 * ($ $ $))))) (T -1028)) +((-4008 (*1 *2 *2 *3) (-12 (-5 *3 (-917)) (-5 *1 (-1028 *2)) (-4 *2 (-13 (-1093) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -4008 (|#1| |#1| (-917)))) +((-1693 ((|#1| (-312)) 11) (((-1262) |#1|) 9))) +(((-1029 |#1|) (-10 -7 (-15 -1693 ((-1262) |#1|)) (-15 -1693 (|#1| (-312)))) (-1208)) (T -1029)) +((-1693 (*1 *2 *3) (-12 (-5 *3 (-312)) (-5 *1 (-1029 *2)) (-4 *2 (-1208)))) (-1693 (*1 *2 *3) (-12 (-5 *2 (-1262)) (-5 *1 (-1029 *3)) (-4 *3 (-1208))))) +(-10 -7 (-15 -1693 ((-1262) |#1|)) (-15 -1693 (|#1| (-312)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4239 (($) NIL T CONST)) (-2444 (($ |#4|) 25)) (-3400 (((-3 $ "failed") $) NIL)) (-3827 (((-112) $) NIL)) (-2433 ((|#4| $) 27)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 46) (($ (-563)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-1675 (((-767)) 43)) (-2241 (($) 21 T CONST)) (-2254 (($) 23 T CONST)) (-1718 (((-112) $ $) 40)) (-1826 (($ $) 31) (($ $ $) NIL)) (-1814 (($ $ $) 29)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-1030 |#1| |#2| |#3| |#4| |#5|) (-13 (-172) (-38 |#1|) (-10 -8 (-15 -2444 ($ |#4|)) (-15 -1693 ($ |#4|)) (-15 -2433 (|#4| $)))) (-363) (-789) (-846) (-945 |#1| |#2| |#3|) (-640 |#4|)) (T -1030)) +((-2444 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *2 (-945 *3 *4 *5)) (-14 *6 (-640 *2)))) (-1693 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *2 (-945 *3 *4 *5)) (-14 *6 (-640 *2)))) (-2433 (*1 *2 *1) (-12 (-4 *2 (-945 *3 *4 *5)) (-5 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-14 *6 (-640 *2))))) +(-13 (-172) (-38 |#1|) (-10 -8 (-15 -2444 ($ |#4|)) (-15 -1693 ($ |#4|)) (-15 -2433 (|#4| $)))) +((-1677 (((-112) $ $) NIL (-4032 (|has| (-52) (-1093)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-1093))))) (-1552 (($) NIL) (($ (-640 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))))) NIL)) (-4378 (((-1262) $ (-1169) (-1169)) NIL (|has| $ (-6 -4408)))) (-2759 (((-112) $ (-767)) NIL)) (-4068 (((-112) (-112)) 39)) (-3444 (((-112) (-112)) 38)) (-1849 (((-52) $ (-1169) (-52)) NIL)) (-2812 (($ (-1 (-112) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) $) NIL (|has| $ (-6 -4407)))) (-2256 (($ (-1 (-112) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) $) NIL (|has| $ (-6 -4407)))) (-1577 (((-3 (-52) "failed") (-1169) $) NIL)) (-4239 (($) NIL T CONST)) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-1093))))) (-2705 (($ (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) $) NIL (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) $) NIL (|has| $ (-6 -4407))) (((-3 (-52) "failed") (-1169) $) NIL)) (-1459 (($ (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-1093)))) (($ (-1 (-112) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) $) NIL (|has| $ (-6 -4407)))) (-2444 (((-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-1 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) $ (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-1093)))) (((-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-1 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) $ (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) NIL (|has| $ (-6 -4407))) (((-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-1 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) $) NIL (|has| $ (-6 -4407)))) (-4355 (((-52) $ (-1169) (-52)) NIL (|has| $ (-6 -4408)))) (-4293 (((-52) $ (-1169)) NIL)) (-2659 (((-640 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) $) NIL (|has| $ (-6 -4407))) (((-640 (-52)) $) NIL (|has| $ (-6 -4407)))) (-2581 (((-112) $ (-767)) NIL)) (-2411 (((-1169) $) NIL (|has| (-1169) (-846)))) (-2259 (((-640 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) $) NIL (|has| $ (-6 -4407))) (((-640 (-52)) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-1093)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-52) (-1093))))) (-3860 (((-1169) $) NIL (|has| (-1169) (-846)))) (-4345 (($ (-1 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL (-4032 (|has| (-52) (-1093)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-1093))))) (-1303 (((-640 (-1169)) $) 34)) (-4173 (((-112) (-1169) $) NIL)) (-2964 (((-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) $) NIL)) (-1812 (($ (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) $) NIL)) (-4318 (((-640 (-1169)) $) NIL)) (-3192 (((-112) (-1169) $) NIL)) (-1694 (((-1113) $) NIL (-4032 (|has| (-52) (-1093)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-1093))))) (-3781 (((-52) $) NIL (|has| (-1169) (-846)))) (-4203 (((-3 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) "failed") (-1 (-112) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) $) NIL)) (-2358 (($ $ (-52)) NIL (|has| $ (-6 -4408)))) (-3755 (((-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) $) NIL)) (-3138 (((-112) (-1 (-112) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))))) NIL (-12 (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-309 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))))) (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-1093)))) (($ $ (-294 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))))) NIL (-12 (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-309 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))))) (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-1093)))) (($ $ (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) NIL (-12 (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-309 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))))) (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-1093)))) (($ $ (-640 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) (-640 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))))) NIL (-12 (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-309 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))))) (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-1093)))) (($ $ (-640 (-52)) (-640 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093)))) (($ $ (-294 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093)))) (($ $ (-640 (-294 (-52)))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093))))) (-2026 (((-112) $ $) NIL)) (-2105 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-52) (-1093))))) (-2836 (((-640 (-52)) $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) NIL)) (-2309 (((-52) $ (-1169)) 35) (((-52) $ (-1169) (-52)) NIL)) (-3890 (($) NIL) (($ (-640 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))))) NIL)) (-1709 (((-767) (-1 (-112) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) $) NIL (|has| $ (-6 -4407))) (((-767) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-1093)))) (((-767) (-52) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-52) (-1093)))) (((-767) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4407)))) (-1872 (($ $) NIL)) (-2220 (((-536) $) NIL (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-611 (-536))))) (-1707 (($ (-640 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))))) NIL)) (-1693 (((-858) $) 37 (-4032 (|has| (-52) (-610 (-858))) (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-610 (-858)))))) (-2233 (($ (-640 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))))) NIL)) (-4383 (((-112) (-1 (-112) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) NIL (-4032 (|has| (-52) (-1093)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-1093))))) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-1031) (-13 (-1184 (-1169) (-52)) (-10 -7 (-15 -4068 ((-112) (-112))) (-15 -3444 ((-112) (-112))) (-6 -4407)))) (T -1031)) +((-4068 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1031)))) (-3444 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1031))))) +(-13 (-1184 (-1169) (-52)) (-10 -7 (-15 -4068 ((-112) (-112))) (-15 -3444 ((-112) (-112))) (-6 -4407))) +((-1677 (((-112) $ $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-3685 (((-1128) $) 9)) (-1693 (((-858) $) 17) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-1032) (-13 (-1076) (-10 -8 (-15 -3685 ((-1128) $))))) (T -1032)) +((-3685 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1032))))) +(-13 (-1076) (-10 -8 (-15 -3685 ((-1128) $)))) +((-2058 ((|#2| $) 10))) +(((-1033 |#1| |#2|) (-10 -8 (-15 -2058 (|#2| |#1|))) (-1034 |#2|) (-1208)) (T -1033)) +NIL +(-10 -8 (-15 -2058 (|#2| |#1|))) +((-2131 (((-3 |#1| "failed") $) 9)) (-2058 ((|#1| $) 8)) (-1693 (($ |#1|) 6))) +(((-1034 |#1|) (-140) (-1208)) (T -1034)) +((-2131 (*1 *2 *1) (|partial| -12 (-4 *1 (-1034 *2)) (-4 *2 (-1208)))) (-2058 (*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1208))))) +(-13 (-613 |t#1|) (-10 -8 (-15 -2131 ((-3 |t#1| "failed") $)) (-15 -2058 (|t#1| $)))) +(((-613 |#1|) . T)) +((-2776 (((-640 (-640 (-294 (-407 (-948 |#2|))))) (-640 (-948 |#2|)) (-640 (-1169))) 38))) +(((-1035 |#1| |#2|) (-10 -7 (-15 -2776 ((-640 (-640 (-294 (-407 (-948 |#2|))))) (-640 (-948 |#2|)) (-640 (-1169))))) (-555) (-13 (-555) (-1034 |#1|))) (T -1035)) +((-2776 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-948 *6))) (-5 *4 (-640 (-1169))) (-4 *6 (-13 (-555) (-1034 *5))) (-4 *5 (-555)) (-5 *2 (-640 (-640 (-294 (-407 (-948 *6)))))) (-5 *1 (-1035 *5 *6))))) +(-10 -7 (-15 -2776 ((-640 (-640 (-294 (-407 (-948 |#2|))))) (-640 (-948 |#2|)) (-640 (-1169))))) +((-3585 (((-379)) 15)) (-2916 (((-1 (-379)) (-379) (-379)) 20)) (-2288 (((-1 (-379)) (-767)) 42)) (-3486 (((-379)) 33)) (-2377 (((-1 (-379)) (-379) (-379)) 34)) (-1362 (((-379)) 26)) (-4094 (((-1 (-379)) (-379)) 27)) (-3446 (((-379) (-767)) 37)) (-2096 (((-1 (-379)) (-767)) 38)) (-3191 (((-1 (-379)) (-767) (-767)) 41)) (-3929 (((-1 (-379)) (-767) (-767)) 39))) +(((-1036) (-10 -7 (-15 -3585 ((-379))) (-15 -3486 ((-379))) (-15 -1362 ((-379))) (-15 -3446 ((-379) (-767))) (-15 -2916 ((-1 (-379)) (-379) (-379))) (-15 -2377 ((-1 (-379)) (-379) (-379))) (-15 -4094 ((-1 (-379)) (-379))) (-15 -2096 ((-1 (-379)) (-767))) (-15 -3929 ((-1 (-379)) (-767) (-767))) (-15 -3191 ((-1 (-379)) (-767) (-767))) (-15 -2288 ((-1 (-379)) (-767))))) (T -1036)) +((-2288 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036)))) (-3191 (*1 *2 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036)))) (-3929 (*1 *2 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036)))) (-2096 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036)))) (-4094 (*1 *2 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1036)) (-5 *3 (-379)))) (-2377 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1036)) (-5 *3 (-379)))) (-2916 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1036)) (-5 *3 (-379)))) (-3446 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-379)) (-5 *1 (-1036)))) (-1362 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1036)))) (-3486 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1036)))) (-3585 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1036))))) +(-10 -7 (-15 -3585 ((-379))) (-15 -3486 ((-379))) (-15 -1362 ((-379))) (-15 -3446 ((-379) (-767))) (-15 -2916 ((-1 (-379)) (-379) (-379))) (-15 -2377 ((-1 (-379)) (-379) (-379))) (-15 -4094 ((-1 (-379)) (-379))) (-15 -2096 ((-1 (-379)) (-767))) (-15 -3929 ((-1 (-379)) (-767) (-767))) (-15 -3191 ((-1 (-379)) (-767) (-767))) (-15 -2288 ((-1 (-379)) (-767)))) +((-2174 (((-418 |#1|) |#1|) 33))) +(((-1037 |#1|) (-10 -7 (-15 -2174 ((-418 |#1|) |#1|))) (-1233 (-407 (-948 (-563))))) (T -1037)) +((-2174 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1037 *3)) (-4 *3 (-1233 (-407 (-948 (-563)))))))) +(-10 -7 (-15 -2174 ((-418 |#1|) |#1|))) +((-1312 (((-407 (-418 (-948 |#1|))) (-407 (-948 |#1|))) 14))) +(((-1038 |#1|) (-10 -7 (-15 -1312 ((-407 (-418 (-948 |#1|))) (-407 (-948 |#1|))))) (-307)) (T -1038)) +((-1312 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-307)) (-5 *2 (-407 (-418 (-948 *4)))) (-5 *1 (-1038 *4))))) +(-10 -7 (-15 -1312 ((-407 (-418 (-948 |#1|))) (-407 (-948 |#1|))))) +((-2606 (((-640 (-1169)) (-407 (-948 |#1|))) 17)) (-2139 (((-407 (-1165 (-407 (-948 |#1|)))) (-407 (-948 |#1|)) (-1169)) 24)) (-2596 (((-407 (-948 |#1|)) (-407 (-1165 (-407 (-948 |#1|)))) (-1169)) 26)) (-4234 (((-3 (-1169) "failed") (-407 (-948 |#1|))) 20)) (-1540 (((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-640 (-294 (-407 (-948 |#1|))))) 32) (((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|)))) 33) (((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-640 (-1169)) (-640 (-407 (-948 |#1|)))) 28) (((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-1169) (-407 (-948 |#1|))) 29)) (-1693 (((-407 (-948 |#1|)) |#1|) 11))) +(((-1039 |#1|) (-10 -7 (-15 -2606 ((-640 (-1169)) (-407 (-948 |#1|)))) (-15 -4234 ((-3 (-1169) "failed") (-407 (-948 |#1|)))) (-15 -2139 ((-407 (-1165 (-407 (-948 |#1|)))) (-407 (-948 |#1|)) (-1169))) (-15 -2596 ((-407 (-948 |#1|)) (-407 (-1165 (-407 (-948 |#1|)))) (-1169))) (-15 -1540 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-1169) (-407 (-948 |#1|)))) (-15 -1540 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-640 (-1169)) (-640 (-407 (-948 |#1|))))) (-15 -1540 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))))) (-15 -1540 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-640 (-294 (-407 (-948 |#1|)))))) (-15 -1693 ((-407 (-948 |#1|)) |#1|))) (-555)) (T -1039)) +((-1693 (*1 *2 *3) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-1039 *3)) (-4 *3 (-555)))) (-1540 (*1 *2 *2 *3) (-12 (-5 *3 (-640 (-294 (-407 (-948 *4))))) (-5 *2 (-407 (-948 *4))) (-4 *4 (-555)) (-5 *1 (-1039 *4)))) (-1540 (*1 *2 *2 *3) (-12 (-5 *3 (-294 (-407 (-948 *4)))) (-5 *2 (-407 (-948 *4))) (-4 *4 (-555)) (-5 *1 (-1039 *4)))) (-1540 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-640 (-1169))) (-5 *4 (-640 (-407 (-948 *5)))) (-5 *2 (-407 (-948 *5))) (-4 *5 (-555)) (-5 *1 (-1039 *5)))) (-1540 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-407 (-948 *4))) (-5 *3 (-1169)) (-4 *4 (-555)) (-5 *1 (-1039 *4)))) (-2596 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-1165 (-407 (-948 *5))))) (-5 *4 (-1169)) (-5 *2 (-407 (-948 *5))) (-5 *1 (-1039 *5)) (-4 *5 (-555)))) (-2139 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-555)) (-5 *2 (-407 (-1165 (-407 (-948 *5))))) (-5 *1 (-1039 *5)) (-5 *3 (-407 (-948 *5))))) (-4234 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555)) (-5 *2 (-1169)) (-5 *1 (-1039 *4)))) (-2606 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555)) (-5 *2 (-640 (-1169))) (-5 *1 (-1039 *4))))) +(-10 -7 (-15 -2606 ((-640 (-1169)) (-407 (-948 |#1|)))) (-15 -4234 ((-3 (-1169) "failed") (-407 (-948 |#1|)))) (-15 -2139 ((-407 (-1165 (-407 (-948 |#1|)))) (-407 (-948 |#1|)) (-1169))) (-15 -2596 ((-407 (-948 |#1|)) (-407 (-1165 (-407 (-948 |#1|)))) (-1169))) (-15 -1540 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-1169) (-407 (-948 |#1|)))) (-15 -1540 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-640 (-1169)) (-640 (-407 (-948 |#1|))))) (-15 -1540 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))))) (-15 -1540 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-640 (-294 (-407 (-948 |#1|)))))) (-15 -1693 ((-407 (-948 |#1|)) |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-4239 (($) 17 T CONST)) (-1957 ((|#1| $) 22)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-3278 ((|#1| $) 21)) (-3549 ((|#1|) 19 T CONST)) (-1693 (((-858) $) 11)) (-3504 ((|#1| $) 20)) (-2241 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1814 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15))) +(((-1040 |#1|) (-140) (-23)) (T -1040)) +((-1957 (*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23)))) (-3278 (*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23)))) (-3504 (*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23)))) (-3549 (*1 *2) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -1957 (|t#1| $)) (-15 -3278 (|t#1| $)) (-15 -3504 (|t#1| $)) (-15 -3549 (|t#1|) -2669))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1532 (($) 24 T CONST)) (-4239 (($) 17 T CONST)) (-1957 ((|#1| $) 22)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-3278 ((|#1| $) 21)) (-3549 ((|#1|) 19 T CONST)) (-1693 (((-858) $) 11)) (-3504 ((|#1| $) 20)) (-2241 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1814 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15))) +(((-1041 |#1|) (-140) (-23)) (T -1041)) +((-1532 (*1 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23))))) +(-13 (-1040 |t#1|) (-10 -8 (-15 -1532 ($) -2669))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-610 (-858)) . T) ((-1040 |#1|) . T) ((-1093) . T)) +((-1677 (((-112) $ $) NIL)) (-1578 (((-640 (-2 (|:| -1442 $) (|:| -3405 (-640 (-776 |#1| (-860 |#2|)))))) (-640 (-776 |#1| (-860 |#2|)))) NIL)) (-3319 (((-640 $) (-640 (-776 |#1| (-860 |#2|)))) NIL) (((-640 $) (-640 (-776 |#1| (-860 |#2|))) (-112)) NIL) (((-640 $) (-640 (-776 |#1| (-860 |#2|))) (-112) (-112)) NIL)) (-2606 (((-640 (-860 |#2|)) $) NIL)) (-1706 (((-112) $) NIL)) (-3854 (((-112) $) NIL (|has| |#1| (-555)))) (-2620 (((-112) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) $) NIL)) (-4053 (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-4335 (((-640 (-2 (|:| |val| (-776 |#1| (-860 |#2|))) (|:| -2059 $))) (-776 |#1| (-860 |#2|)) $) NIL)) (-1642 (((-2 (|:| |under| $) (|:| -1583 $) (|:| |upper| $)) $ (-860 |#2|)) NIL)) (-2759 (((-112) $ (-767)) NIL)) (-2256 (($ (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-3 (-776 |#1| (-860 |#2|)) "failed") $ (-860 |#2|)) NIL)) (-4239 (($) NIL T CONST)) (-1483 (((-112) $) NIL (|has| |#1| (-555)))) (-1626 (((-112) $ $) NIL (|has| |#1| (-555)))) (-4221 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1763 (((-112) $) NIL (|has| |#1| (-555)))) (-1833 (((-640 (-776 |#1| (-860 |#2|))) (-640 (-776 |#1| (-860 |#2|))) $ (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) (-1 (-112) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)))) NIL)) (-3746 (((-640 (-776 |#1| (-860 |#2|))) (-640 (-776 |#1| (-860 |#2|))) $) NIL (|has| |#1| (-555)))) (-1866 (((-640 (-776 |#1| (-860 |#2|))) (-640 (-776 |#1| (-860 |#2|))) $) NIL (|has| |#1| (-555)))) (-2131 (((-3 $ "failed") (-640 (-776 |#1| (-860 |#2|)))) NIL)) (-2058 (($ (-640 (-776 |#1| (-860 |#2|)))) NIL)) (-3792 (((-3 $ "failed") $) NIL)) (-1719 (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-776 |#1| (-860 |#2|)) (-1093))))) (-1459 (($ (-776 |#1| (-860 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-776 |#1| (-860 |#2|)) (-1093)))) (($ (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-1972 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-776 |#1| (-860 |#2|))) (|:| |den| |#1|)) (-776 |#1| (-860 |#2|)) $) NIL (|has| |#1| (-555)))) (-3990 (((-112) (-776 |#1| (-860 |#2|)) $ (-1 (-112) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)))) NIL)) (-3948 (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-2444 (((-776 |#1| (-860 |#2|)) (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) $ (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) NIL (-12 (|has| $ (-6 -4407)) (|has| (-776 |#1| (-860 |#2|)) (-1093)))) (((-776 |#1| (-860 |#2|)) (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) $ (-776 |#1| (-860 |#2|))) NIL (|has| $ (-6 -4407))) (((-776 |#1| (-860 |#2|)) (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $ (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) (-1 (-112) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)))) NIL)) (-2144 (((-2 (|:| -1442 (-640 (-776 |#1| (-860 |#2|)))) (|:| -3405 (-640 (-776 |#1| (-860 |#2|))))) $) NIL)) (-2313 (((-112) (-776 |#1| (-860 |#2|)) $) NIL)) (-3748 (((-112) (-776 |#1| (-860 |#2|)) $) NIL)) (-1871 (((-112) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) $) NIL)) (-2659 (((-640 (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-2299 (((-112) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) $) NIL)) (-2957 (((-860 |#2|) $) NIL)) (-2581 (((-112) $ (-767)) NIL)) (-2259 (((-640 (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) (-776 |#1| (-860 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-776 |#1| (-860 |#2|)) (-1093))))) (-4345 (($ (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) $) NIL)) (-2965 (((-640 (-860 |#2|)) $) NIL)) (-2780 (((-112) (-860 |#2|) $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL)) (-3083 (((-3 (-776 |#1| (-860 |#2|)) (-640 $)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-2898 (((-640 (-2 (|:| |val| (-776 |#1| (-860 |#2|))) (|:| -2059 $))) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-1481 (((-3 (-776 |#1| (-860 |#2|)) "failed") $) NIL)) (-3764 (((-640 $) (-776 |#1| (-860 |#2|)) $) NIL)) (-1334 (((-3 (-112) (-640 $)) (-776 |#1| (-860 |#2|)) $) NIL)) (-2069 (((-640 (-2 (|:| |val| (-112)) (|:| -2059 $))) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) (-776 |#1| (-860 |#2|)) $) NIL)) (-2550 (((-640 $) (-776 |#1| (-860 |#2|)) $) NIL) (((-640 $) (-640 (-776 |#1| (-860 |#2|))) $) NIL) (((-640 $) (-640 (-776 |#1| (-860 |#2|))) (-640 $)) NIL) (((-640 $) (-776 |#1| (-860 |#2|)) (-640 $)) NIL)) (-3291 (($ (-776 |#1| (-860 |#2|)) $) NIL) (($ (-640 (-776 |#1| (-860 |#2|))) $) NIL)) (-2820 (((-640 (-776 |#1| (-860 |#2|))) $) NIL)) (-4197 (((-112) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) $) NIL)) (-2715 (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-3009 (((-112) $ $) NIL)) (-2152 (((-2 (|:| |num| (-776 |#1| (-860 |#2|))) (|:| |den| |#1|)) (-776 |#1| (-860 |#2|)) $) NIL (|has| |#1| (-555)))) (-2031 (((-112) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) $) NIL)) (-4056 (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-1694 (((-1113) $) NIL)) (-3781 (((-3 (-776 |#1| (-860 |#2|)) "failed") $) NIL)) (-4203 (((-3 (-776 |#1| (-860 |#2|)) "failed") (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL)) (-3479 (((-3 $ "failed") $ (-776 |#1| (-860 |#2|))) NIL)) (-3320 (($ $ (-776 |#1| (-860 |#2|))) NIL) (((-640 $) (-776 |#1| (-860 |#2|)) $) NIL) (((-640 $) (-776 |#1| (-860 |#2|)) (-640 $)) NIL) (((-640 $) (-640 (-776 |#1| (-860 |#2|))) $) NIL) (((-640 $) (-640 (-776 |#1| (-860 |#2|))) (-640 $)) NIL)) (-3138 (((-112) (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-776 |#1| (-860 |#2|))) (-640 (-776 |#1| (-860 |#2|)))) NIL (-12 (|has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|)))) (|has| (-776 |#1| (-860 |#2|)) (-1093)))) (($ $ (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) NIL (-12 (|has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|)))) (|has| (-776 |#1| (-860 |#2|)) (-1093)))) (($ $ (-294 (-776 |#1| (-860 |#2|)))) NIL (-12 (|has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|)))) (|has| (-776 |#1| (-860 |#2|)) (-1093)))) (($ $ (-640 (-294 (-776 |#1| (-860 |#2|))))) NIL (-12 (|has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|)))) (|has| (-776 |#1| (-860 |#2|)) (-1093))))) (-2026 (((-112) $ $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) NIL)) (-4167 (((-767) $) NIL)) (-1709 (((-767) (-776 |#1| (-860 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-776 |#1| (-860 |#2|)) (-1093)))) (((-767) (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-1872 (($ $) NIL)) (-2220 (((-536) $) NIL (|has| (-776 |#1| (-860 |#2|)) (-611 (-536))))) (-1707 (($ (-640 (-776 |#1| (-860 |#2|)))) NIL)) (-3577 (($ $ (-860 |#2|)) NIL)) (-1593 (($ $ (-860 |#2|)) NIL)) (-1924 (($ $) NIL)) (-4192 (($ $ (-860 |#2|)) NIL)) (-1693 (((-858) $) NIL) (((-640 (-776 |#1| (-860 |#2|))) $) NIL)) (-2437 (((-767) $) NIL (|has| (-860 |#2|) (-368)))) (-2540 (((-3 (-2 (|:| |bas| $) (|:| -2636 (-640 (-776 |#1| (-860 |#2|))))) "failed") (-640 (-776 |#1| (-860 |#2|))) (-1 (-112) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2636 (-640 (-776 |#1| (-860 |#2|))))) "failed") (-640 (-776 |#1| (-860 |#2|))) (-1 (-112) (-776 |#1| (-860 |#2|))) (-1 (-112) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)))) NIL)) (-2691 (((-112) $ (-1 (-112) (-776 |#1| (-860 |#2|)) (-640 (-776 |#1| (-860 |#2|))))) NIL)) (-2175 (((-640 $) (-776 |#1| (-860 |#2|)) $) NIL) (((-640 $) (-776 |#1| (-860 |#2|)) (-640 $)) NIL) (((-640 $) (-640 (-776 |#1| (-860 |#2|))) $) NIL) (((-640 $) (-640 (-776 |#1| (-860 |#2|))) (-640 $)) NIL)) (-4383 (((-112) (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-1955 (((-640 (-860 |#2|)) $) NIL)) (-4279 (((-112) (-776 |#1| (-860 |#2|)) $) NIL)) (-3152 (((-112) (-860 |#2|) $) NIL)) (-1718 (((-112) $ $) NIL)) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-1042 |#1| |#2|) (-13 (-1065 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|))) (-10 -8 (-15 -3319 ((-640 $) (-640 (-776 |#1| (-860 |#2|))) (-112) (-112))))) (-452) (-640 (-1169))) (T -1042)) +((-3319 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-640 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-640 (-1169))) (-5 *2 (-640 (-1042 *5 *6))) (-5 *1 (-1042 *5 *6))))) +(-13 (-1065 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|))) (-10 -8 (-15 -3319 ((-640 $) (-640 (-776 |#1| (-860 |#2|))) (-112) (-112))))) +((-2916 (((-1 (-563)) (-1087 (-563))) 33)) (-3356 (((-563) (-563) (-563) (-563) (-563)) 30)) (-3672 (((-1 (-563)) |RationalNumber|) NIL)) (-2265 (((-1 (-563)) |RationalNumber|) NIL)) (-2869 (((-1 (-563)) (-563) |RationalNumber|) NIL))) +(((-1043) (-10 -7 (-15 -2916 ((-1 (-563)) (-1087 (-563)))) (-15 -2869 ((-1 (-563)) (-563) |RationalNumber|)) (-15 -3672 ((-1 (-563)) |RationalNumber|)) (-15 -2265 ((-1 (-563)) |RationalNumber|)) (-15 -3356 ((-563) (-563) (-563) (-563) (-563))))) (T -1043)) +((-3356 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1043)))) (-2265 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-563))) (-5 *1 (-1043)))) (-3672 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-563))) (-5 *1 (-1043)))) (-2869 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-563))) (-5 *1 (-1043)) (-5 *3 (-563)))) (-2916 (*1 *2 *3) (-12 (-5 *3 (-1087 (-563))) (-5 *2 (-1 (-563))) (-5 *1 (-1043))))) +(-10 -7 (-15 -2916 ((-1 (-563)) (-1087 (-563)))) (-15 -2869 ((-1 (-563)) (-563) |RationalNumber|)) (-15 -3672 ((-1 (-563)) |RationalNumber|)) (-15 -2265 ((-1 (-563)) |RationalNumber|)) (-15 -3356 ((-563) (-563) (-563) (-563) (-563)))) +((-1693 (((-858) $) NIL) (($ (-563)) 10))) +(((-1044 |#1|) (-10 -8 (-15 -1693 (|#1| (-563))) (-15 -1693 ((-858) |#1|))) (-1045)) (T -1044)) +NIL +(-10 -8 (-15 -1693 (|#1| (-563))) (-15 -1693 ((-858) |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-3400 (((-3 $ "failed") $) 33)) (-3827 (((-112) $) 31)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11) (($ (-563)) 29)) (-1675 (((-767)) 28)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) +(((-1045) (-140)) (T -1045)) +((-1675 (*1 *2) (-12 (-4 *1 (-1045)) (-5 *2 (-767))))) +(-13 (-1052) (-722) (-643 $) (-613 (-563)) (-10 -7 (-15 -1675 ((-767))) (-6 -4404))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-643 $) . T) ((-722) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) +((-3263 (((-407 (-948 |#2|)) (-640 |#2|) (-640 |#2|) (-767) (-767)) 46))) +(((-1046 |#1| |#2|) (-10 -7 (-15 -3263 ((-407 (-948 |#2|)) (-640 |#2|) (-640 |#2|) (-767) (-767)))) (-1169) (-363)) (T -1046)) +((-3263 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-640 *6)) (-5 *4 (-767)) (-4 *6 (-363)) (-5 *2 (-407 (-948 *6))) (-5 *1 (-1046 *5 *6)) (-14 *5 (-1169))))) +(-10 -7 (-15 -3263 ((-407 (-948 |#2|)) (-640 |#2|) (-640 |#2|) (-767) (-767)))) +((-3129 (((-112) $) 29)) (-1937 (((-112) $) 16)) (-2381 (((-767) $) 13)) (-2393 (((-767) $) 14)) (-2717 (((-112) $) 26)) (-3280 (((-112) $) 31))) +(((-1047 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2393 ((-767) |#1|)) (-15 -2381 ((-767) |#1|)) (-15 -3280 ((-112) |#1|)) (-15 -3129 ((-112) |#1|)) (-15 -2717 ((-112) |#1|)) (-15 -1937 ((-112) |#1|))) (-1048 |#2| |#3| |#4| |#5| |#6|) (-767) (-767) (-1045) (-238 |#3| |#4|) (-238 |#2| |#4|)) (T -1047)) +NIL +(-10 -8 (-15 -2393 ((-767) |#1|)) (-15 -2381 ((-767) |#1|)) (-15 -3280 ((-112) |#1|)) (-15 -3129 ((-112) |#1|)) (-15 -2717 ((-112) |#1|)) (-15 -1937 ((-112) |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-3129 (((-112) $) 51)) (-1495 (((-3 $ "failed") $ $) 19)) (-1937 (((-112) $) 53)) (-2759 (((-112) $ (-767)) 61)) (-4239 (($) 17 T CONST)) (-4069 (($ $) 34 (|has| |#3| (-307)))) (-2368 ((|#4| $ (-563)) 39)) (-2522 (((-767) $) 33 (|has| |#3| (-555)))) (-4293 ((|#3| $ (-563) (-563)) 41)) (-2659 (((-640 |#3|) $) 68 (|has| $ (-6 -4407)))) (-1997 (((-767) $) 32 (|has| |#3| (-555)))) (-2345 (((-640 |#5|) $) 31 (|has| |#3| (-555)))) (-2381 (((-767) $) 45)) (-2393 (((-767) $) 44)) (-2581 (((-112) $ (-767)) 60)) (-2013 (((-563) $) 49)) (-3650 (((-563) $) 47)) (-2259 (((-640 |#3|) $) 69 (|has| $ (-6 -4407)))) (-1729 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1093)) (|has| $ (-6 -4407))))) (-1859 (((-563) $) 48)) (-2207 (((-563) $) 46)) (-4038 (($ (-640 (-640 |#3|))) 54)) (-4345 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-4136 (((-640 (-640 |#3|)) $) 43)) (-2382 (((-112) $ (-767)) 59)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-3008 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-555)))) (-3138 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 |#3|) (-640 |#3|)) 75 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ (-294 |#3|)) 73 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ (-640 (-294 |#3|))) 72 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093))))) (-2026 (((-112) $ $) 55)) (-3756 (((-112) $) 58)) (-3135 (($) 57)) (-2309 ((|#3| $ (-563) (-563)) 42) ((|#3| $ (-563) (-563) |#3|) 40)) (-2717 (((-112) $) 52)) (-1709 (((-767) |#3| $) 70 (-12 (|has| |#3| (-1093)) (|has| $ (-6 -4407)))) (((-767) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4407)))) (-1872 (($ $) 56)) (-1912 ((|#5| $ (-563)) 38)) (-1693 (((-858) $) 11)) (-4383 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4407)))) (-3280 (((-112) $) 50)) (-2241 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1837 (($ $ |#3|) 35 (|has| |#3| (-363)))) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-3608 (((-767) $) 62 (|has| $ (-6 -4407))))) +(((-1048 |#1| |#2| |#3| |#4| |#5|) (-140) (-767) (-767) (-1045) (-238 |t#2| |t#3|) (-238 |t#1| |t#3|)) (T -1048)) +((-2240 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-4038 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 *5))) (-4 *5 (-1045)) (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-1937 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-2717 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3129 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3280 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-2013 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-563)))) (-1859 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-563)))) (-3650 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-563)))) (-2207 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-563)))) (-2381 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-767)))) (-2393 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-767)))) (-4136 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-640 (-640 *5))))) (-2309 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-563)) (-4 *1 (-1048 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1045)))) (-4293 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-563)) (-4 *1 (-1048 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1045)))) (-2309 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-563)) (-4 *1 (-1048 *4 *5 *2 *6 *7)) (-4 *2 (-1045)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) (-2368 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *1 (-1048 *4 *5 *6 *2 *7)) (-4 *6 (-1045)) (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6)))) (-1912 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *1 (-1048 *4 *5 *6 *7 *2)) (-4 *6 (-1045)) (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6)))) (-2240 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-3008 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1048 *3 *4 *2 *5 *6)) (-4 *2 (-1045)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-555)))) (-1837 (*1 *1 *1 *2) (-12 (-4 *1 (-1048 *3 *4 *2 *5 *6)) (-4 *2 (-1045)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-363)))) (-4069 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-307)))) (-2522 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-555)) (-5 *2 (-767)))) (-1997 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-555)) (-5 *2 (-767)))) (-2345 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-555)) (-5 *2 (-640 *7))))) +(-13 (-111 |t#3| |t#3|) (-489 |t#3|) (-10 -8 (-6 -4407) (IF (|has| |t#3| (-172)) (-6 (-713 |t#3|)) |%noBranch|) (-15 -4038 ($ (-640 (-640 |t#3|)))) (-15 -1937 ((-112) $)) (-15 -2717 ((-112) $)) (-15 -3129 ((-112) $)) (-15 -3280 ((-112) $)) (-15 -2013 ((-563) $)) (-15 -1859 ((-563) $)) (-15 -3650 ((-563) $)) (-15 -2207 ((-563) $)) (-15 -2381 ((-767) $)) (-15 -2393 ((-767) $)) (-15 -4136 ((-640 (-640 |t#3|)) $)) (-15 -2309 (|t#3| $ (-563) (-563))) (-15 -4293 (|t#3| $ (-563) (-563))) (-15 -2309 (|t#3| $ (-563) (-563) |t#3|)) (-15 -2368 (|t#4| $ (-563))) (-15 -1912 (|t#5| $ (-563))) (-15 -2240 ($ (-1 |t#3| |t#3|) $)) (-15 -2240 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-555)) (-15 -3008 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-363)) (-15 -1837 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-307)) (-15 -4069 ($ $)) |%noBranch|) (IF (|has| |t#3| (-555)) (PROGN (-15 -2522 ((-767) $)) (-15 -1997 ((-767) $)) (-15 -2345 ((-640 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-131) . T) ((-610 (-858)) . T) ((-309 |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093))) ((-489 |#3|) . T) ((-514 |#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093))) ((-643 |#3|) . T) ((-713 |#3|) |has| |#3| (-172)) ((-1051 |#3|) . T) ((-1093) . T) ((-1208) . T)) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-3129 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-1937 (((-112) $) NIL)) (-2759 (((-112) $ (-767)) NIL)) (-4239 (($) NIL T CONST)) (-4069 (($ $) 43 (|has| |#3| (-307)))) (-2368 (((-240 |#2| |#3|) $ (-563)) 32)) (-3107 (($ (-684 |#3|)) 41)) (-2522 (((-767) $) 45 (|has| |#3| (-555)))) (-4293 ((|#3| $ (-563) (-563)) NIL)) (-2659 (((-640 |#3|) $) NIL (|has| $ (-6 -4407)))) (-1997 (((-767) $) 47 (|has| |#3| (-555)))) (-2345 (((-640 (-240 |#1| |#3|)) $) 51 (|has| |#3| (-555)))) (-2381 (((-767) $) NIL)) (-2393 (((-767) $) NIL)) (-2581 (((-112) $ (-767)) NIL)) (-2013 (((-563) $) NIL)) (-3650 (((-563) $) NIL)) (-2259 (((-640 |#3|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#3| (-1093))))) (-1859 (((-563) $) NIL)) (-2207 (((-563) $) NIL)) (-4038 (($ (-640 (-640 |#3|))) 27)) (-4345 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-4136 (((-640 (-640 |#3|)) $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-3008 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-555)))) (-3138 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 |#3|) (-640 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ (-640 (-294 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093))))) (-2026 (((-112) $ $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) NIL)) (-2309 ((|#3| $ (-563) (-563)) NIL) ((|#3| $ (-563) (-563) |#3|) NIL)) (-3533 (((-134)) 54 (|has| |#3| (-363)))) (-2717 (((-112) $) NIL)) (-1709 (((-767) |#3| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#3| (-1093)))) (((-767) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4407)))) (-1872 (($ $) NIL)) (-2220 (((-536) $) 61 (|has| |#3| (-611 (-536))))) (-1912 (((-240 |#1| |#3|) $ (-563)) 36)) (-1693 (((-858) $) 16) (((-684 |#3|) $) 38)) (-4383 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4407)))) (-3280 (((-112) $) NIL)) (-2241 (($) 13 T CONST)) (-1718 (((-112) $ $) NIL)) (-1837 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-1049 |#1| |#2| |#3|) (-13 (-1048 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-610 (-684 |#3|)) (-10 -8 (IF (|has| |#3| (-363)) (-6 (-1264 |#3|)) |%noBranch|) (IF (|has| |#3| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|) (-15 -3107 ($ (-684 |#3|))))) (-767) (-767) (-1045)) (T -1049)) +((-3107 (*1 *1 *2) (-12 (-5 *2 (-684 *5)) (-4 *5 (-1045)) (-5 *1 (-1049 *3 *4 *5)) (-14 *3 (-767)) (-14 *4 (-767))))) +(-13 (-1048 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-610 (-684 |#3|)) (-10 -8 (IF (|has| |#3| (-363)) (-6 (-1264 |#3|)) |%noBranch|) (IF (|has| |#3| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|) (-15 -3107 ($ (-684 |#3|))))) +((-2444 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-2240 ((|#10| (-1 |#7| |#3|) |#6|) 32))) +(((-1050 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -2240 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2444 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-767) (-767) (-1045) (-238 |#2| |#3|) (-238 |#1| |#3|) (-1048 |#1| |#2| |#3| |#4| |#5|) (-1045) (-238 |#2| |#7|) (-238 |#1| |#7|) (-1048 |#1| |#2| |#7| |#8| |#9|)) (T -1050)) +((-2444 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1045)) (-4 *2 (-1045)) (-14 *5 (-767)) (-14 *6 (-767)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) (-5 *1 (-1050 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1048 *5 *6 *7 *8 *9)) (-4 *12 (-1048 *5 *6 *2 *10 *11)))) (-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1045)) (-4 *10 (-1045)) (-14 *5 (-767)) (-14 *6 (-767)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *2 (-1048 *5 *6 *10 *11 *12)) (-5 *1 (-1050 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1048 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) (-4 *12 (-238 *5 *10))))) +(-10 -7 (-15 -2240 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2444 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11)) (-2241 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ |#1|) 23))) +(((-1051 |#1|) (-140) (-1052)) (T -1051)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-1052))))) (-13 (-21) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-609 (-857)) . T) ((-1092) . T)) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11)) (-2285 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) -(((-1051) (-139)) (T -1051)) -NIL -(-13 (-21) (-1104)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-130) . T) ((-609 (-857)) . T) ((-1104) . T) ((-1092) . T)) -((-1302 (($ $) 16)) (-3410 (($ $) 22)) (-2337 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 49)) (-4363 (($ $) 24)) (-2561 (($ $) 11)) (-3870 (($ $) 38)) (-4208 (((-378) $) NIL) (((-224) $) NIL) (((-887 (-378)) $) 33)) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL) (($ (-406 (-562))) 28) (($ (-562)) NIL) (($ (-406 (-562))) 28)) (-1568 (((-766)) 8)) (-3636 (($ $) 39))) -(((-1052 |#1|) (-10 -8 (-15 -3410 (|#1| |#1|)) (-15 -1302 (|#1| |#1|)) (-15 -2561 (|#1| |#1|)) (-15 -3870 (|#1| |#1|)) (-15 -3636 (|#1| |#1|)) (-15 -4363 (|#1| |#1|)) (-15 -2337 ((-884 (-378) |#1|) |#1| (-887 (-378)) (-884 (-378) |#1|))) (-15 -4208 ((-887 (-378)) |#1|)) (-15 -4053 (|#1| (-406 (-562)))) (-15 -4053 (|#1| (-562))) (-15 -4208 ((-224) |#1|)) (-15 -4208 ((-378) |#1|)) (-15 -4053 (|#1| (-406 (-562)))) (-15 -4053 (|#1| |#1|)) (-15 -1568 ((-766))) (-15 -4053 (|#1| (-562))) (-15 -4053 ((-857) |#1|))) (-1053)) (T -1052)) -((-1568 (*1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-1052 *3)) (-4 *3 (-1053))))) -(-10 -8 (-15 -3410 (|#1| |#1|)) (-15 -1302 (|#1| |#1|)) (-15 -2561 (|#1| |#1|)) (-15 -3870 (|#1| |#1|)) (-15 -3636 (|#1| |#1|)) (-15 -4363 (|#1| |#1|)) (-15 -2337 ((-884 (-378) |#1|) |#1| (-887 (-378)) (-884 (-378) |#1|))) (-15 -4208 ((-887 (-378)) |#1|)) (-15 -4053 (|#1| (-406 (-562)))) (-15 -4053 (|#1| (-562))) (-15 -4208 ((-224) |#1|)) (-15 -4208 ((-378) |#1|)) (-15 -4053 (|#1| (-406 (-562)))) (-15 -4053 (|#1| |#1|)) (-15 -1568 ((-766))) (-15 -4053 (|#1| (-562))) (-15 -4053 ((-857) |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2300 (((-562) $) 90)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 42)) (-1965 (($ $) 41)) (-4102 (((-112) $) 39)) (-1302 (($ $) 88)) (-2781 (((-3 $ "failed") $ $) 19)) (-1977 (($ $) 74)) (-3788 (((-417 $) $) 73)) (-1644 (($ $) 98)) (-1436 (((-112) $ $) 60)) (-1587 (((-562) $) 115)) (-3329 (($) 17 T CONST)) (-3410 (($ $) 87)) (-4048 (((-3 (-562) "failed") $) 103) (((-3 (-406 (-562)) "failed") $) 100)) (-3960 (((-562) $) 104) (((-406 (-562)) $) 101)) (-1810 (($ $ $) 56)) (-1694 (((-3 $ "failed") $) 33)) (-1787 (($ $ $) 57)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) 52)) (-3521 (((-112) $) 72)) (-2696 (((-112) $) 113)) (-2337 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 94)) (-4367 (((-112) $) 31)) (-1895 (($ $ (-562)) 97)) (-4363 (($ $) 93)) (-3855 (((-112) $) 114)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) 53)) (-1551 (($ $ $) 112)) (-2993 (($ $ $) 111)) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-3696 (((-1150) $) 9)) (-1525 (($ $) 71)) (-1709 (((-1112) $) 10)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-2561 (($ $) 89)) (-3870 (($ $) 91)) (-1635 (((-417 $) $) 75)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1762 (((-3 $ "failed") $ $) 43)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) 51)) (-2044 (((-766) $) 59)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 58)) (-4208 (((-378) $) 106) (((-224) $) 105) (((-887 (-378)) $) 95)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ $) 44) (($ (-406 (-562))) 67) (($ (-562)) 102) (($ (-406 (-562))) 99)) (-1568 (((-766)) 28)) (-3636 (($ $) 92)) (-3799 (((-112) $ $) 40)) (-2757 (($ $) 116)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1798 (((-112) $ $) 109)) (-1771 (((-112) $ $) 108)) (-1733 (((-112) $ $) 6)) (-1785 (((-112) $ $) 110)) (-1761 (((-112) $ $) 107)) (-1859 (($ $ $) 66)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 70) (($ $ (-406 (-562))) 96)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ (-406 (-562))) 69) (($ (-406 (-562)) $) 68))) -(((-1053) (-139)) (T -1053)) -((-2757 (*1 *1 *1) (-4 *1 (-1053))) (-4363 (*1 *1 *1) (-4 *1 (-1053))) (-3636 (*1 *1 *1) (-4 *1 (-1053))) (-3870 (*1 *1 *1) (-4 *1 (-1053))) (-2300 (*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-562)))) (-2561 (*1 *1 *1) (-4 *1 (-1053))) (-1302 (*1 *1 *1) (-4 *1 (-1053))) (-3410 (*1 *1 *1) (-4 *1 (-1053)))) -(-13 (-362) (-843) (-1017) (-1033 (-562)) (-1033 (-406 (-562))) (-997) (-610 (-887 (-378))) (-881 (-378)) (-146) (-10 -8 (-15 -4363 ($ $)) (-15 -3636 ($ $)) (-15 -3870 ($ $)) (-15 -2300 ((-562) $)) (-15 -2561 ($ $)) (-15 -1302 ($ $)) (-15 -3410 ($ $)) (-15 -2757 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-562))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-146) . T) ((-612 #0#) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-610 (-224)) . T) ((-610 (-378)) . T) ((-610 (-887 (-378))) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-451) . T) ((-554) . T) ((-642 #0#) . T) ((-642 $) . T) ((-712 #0#) . T) ((-712 $) . T) ((-721) . T) ((-786) . T) ((-787) . T) ((-789) . T) ((-790) . T) ((-843) . T) ((-845) . T) ((-881 (-378)) . T) ((-915) . T) ((-997) . T) ((-1017) . T) ((-1033 (-406 (-562))) . T) ((-1033 (-562)) . T) ((-1050 #0#) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1211) . T)) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) |#2| $) 23)) (-1382 ((|#1| $) 10)) (-1587 (((-562) |#2| $) 87)) (-2608 (((-3 $ "failed") |#2| (-916)) 57)) (-1603 ((|#1| $) 28)) (-2918 ((|#1| |#2| $ |#1|) 37)) (-2776 (($ $) 25)) (-1694 (((-3 |#2| "failed") |#2| $) 86)) (-2696 (((-112) |#2| $) NIL)) (-3855 (((-112) |#2| $) NIL)) (-2418 (((-112) |#2| $) 24)) (-1531 ((|#1| $) 88)) (-1589 ((|#1| $) 27)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-3371 ((|#2| $) 78)) (-4053 (((-857) $) 70)) (-1406 ((|#1| |#2| $ |#1|) 38)) (-4383 (((-639 $) |#2|) 59)) (-1733 (((-112) $ $) 73))) -(((-1054 |#1| |#2|) (-13 (-1061 |#1| |#2|) (-10 -8 (-15 -1589 (|#1| $)) (-15 -1603 (|#1| $)) (-15 -1382 (|#1| $)) (-15 -1531 (|#1| $)) (-15 -2776 ($ $)) (-15 -2418 ((-112) |#2| $)) (-15 -2918 (|#1| |#2| $ |#1|)))) (-13 (-843) (-362)) (-1232 |#1|)) (T -1054)) -((-2918 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-843) (-362))) (-5 *1 (-1054 *2 *3)) (-4 *3 (-1232 *2)))) (-1589 (*1 *2 *1) (-12 (-4 *2 (-13 (-843) (-362))) (-5 *1 (-1054 *2 *3)) (-4 *3 (-1232 *2)))) (-1603 (*1 *2 *1) (-12 (-4 *2 (-13 (-843) (-362))) (-5 *1 (-1054 *2 *3)) (-4 *3 (-1232 *2)))) (-1382 (*1 *2 *1) (-12 (-4 *2 (-13 (-843) (-362))) (-5 *1 (-1054 *2 *3)) (-4 *3 (-1232 *2)))) (-1531 (*1 *2 *1) (-12 (-4 *2 (-13 (-843) (-362))) (-5 *1 (-1054 *2 *3)) (-4 *3 (-1232 *2)))) (-2776 (*1 *1 *1) (-12 (-4 *2 (-13 (-843) (-362))) (-5 *1 (-1054 *2 *3)) (-4 *3 (-1232 *2)))) (-2418 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-843) (-362))) (-5 *2 (-112)) (-5 *1 (-1054 *4 *3)) (-4 *3 (-1232 *4))))) -(-13 (-1061 |#1| |#2|) (-10 -8 (-15 -1589 (|#1| $)) (-15 -1603 (|#1| $)) (-15 -1382 (|#1| $)) (-15 -1531 (|#1| $)) (-15 -2776 ($ $)) (-15 -2418 ((-112) |#2| $)) (-15 -2918 (|#1| |#2| $ |#1|)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-3544 (($ $ $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-4158 (($ $ $ $) NIL)) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-1436 (((-112) $ $) NIL)) (-1587 (((-562) $) NIL)) (-3355 (($ $ $) NIL)) (-3329 (($) NIL T CONST)) (-3747 (($ (-1168)) 10) (($ (-562)) 7)) (-4048 (((-3 (-562) "failed") $) NIL)) (-3960 (((-562) $) NIL)) (-1810 (($ $ $) NIL)) (-3449 (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL) (((-683 (-562)) (-683 $)) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-3913 (((-3 (-406 (-562)) "failed") $) NIL)) (-3498 (((-112) $) NIL)) (-3854 (((-406 (-562)) $) NIL)) (-1447 (($) NIL) (($ $) NIL)) (-1787 (($ $ $) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-3521 (((-112) $) NIL)) (-2877 (($ $ $ $) NIL)) (-3867 (($ $ $) NIL)) (-2696 (((-112) $) NIL)) (-1940 (($ $ $) NIL)) (-2337 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL)) (-4367 (((-112) $) NIL)) (-3152 (((-112) $) NIL)) (-3828 (((-3 $ "failed") $) NIL)) (-3855 (((-112) $) NIL)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2051 (($ $ $ $) NIL)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-3930 (($ $) NIL)) (-3641 (($ $) NIL)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) NIL)) (-2296 (($ $ $) NIL)) (-3730 (($) NIL T CONST)) (-4137 (($ $) NIL)) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3350 (($ $) NIL)) (-1635 (((-417 $) $) NIL)) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2438 (((-112) $) NIL)) (-2044 (((-766) $) NIL)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-4029 (($ $ (-766)) NIL) (($ $) NIL)) (-2369 (($ $) NIL)) (-4220 (($ $) NIL)) (-4208 (((-562) $) 16) (((-535) $) NIL) (((-887 (-562)) $) NIL) (((-378) $) NIL) (((-224) $) NIL) (($ (-1168)) 9)) (-4053 (((-857) $) 20) (($ (-562)) 6) (($ $) NIL) (($ (-562)) 6)) (-1568 (((-766)) NIL)) (-3869 (((-112) $ $) NIL)) (-2068 (($ $ $) NIL)) (-3240 (($) NIL)) (-3799 (((-112) $ $) NIL)) (-3160 (($ $ $ $) NIL)) (-2757 (($ $) NIL)) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3113 (($ $ (-766)) NIL) (($ $) NIL)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) NIL)) (-1847 (($ $) 19) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL))) -(((-1055) (-13 (-544) (-614 (-1168)) (-10 -8 (-6 -4390) (-6 -4395) (-6 -4391) (-15 -3747 ($ (-1168))) (-15 -3747 ($ (-562)))))) (T -1055)) -((-3747 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1055)))) (-3747 (*1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-1055))))) -(-13 (-544) (-614 (-1168)) (-10 -8 (-6 -4390) (-6 -4395) (-6 -4391) (-15 -3747 ($ (-1168))) (-15 -3747 ($ (-562))))) -((-4041 (((-112) $ $) NIL (-4037 (|has| (-52) (-1092)) (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-1092))))) (-1443 (($) NIL) (($ (-639 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))))) NIL)) (-3655 (((-1261) $ (-1168) (-1168)) NIL (|has| $ (-6 -4404)))) (-3735 (((-112) $ (-766)) NIL)) (-4226 (($) 9)) (-4200 (((-52) $ (-1168) (-52)) NIL)) (-2756 (($ $) 30)) (-2065 (($ $) 28)) (-3064 (($ $) 27)) (-3304 (($ $) 29)) (-4277 (($ $) 32)) (-3200 (($ $) 33)) (-2887 (($ $) 26)) (-1864 (($ $) 31)) (-2968 (($ (-1 (-112) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) $) NIL (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) $) 25 (|has| $ (-6 -4403)))) (-1472 (((-3 (-52) "failed") (-1168) $) 40)) (-3329 (($) NIL T CONST)) (-3345 (($) 7)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-1092))))) (-3729 (($ (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) $) 50 (|has| $ (-6 -4403))) (($ (-1 (-112) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) $) NIL (|has| $ (-6 -4403))) (((-3 (-52) "failed") (-1168) $) NIL)) (-1475 (($ (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-1092)))) (($ (-1 (-112) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) $) NIL (|has| $ (-6 -4403)))) (-1954 (((-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-1 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) $ (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-1092)))) (((-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-1 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) $ (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) NIL (|has| $ (-6 -4403))) (((-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-1 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) $) NIL (|has| $ (-6 -4403)))) (-2565 (((-3 (-1150) "failed") $ (-1150) (-562)) 59)) (-1507 (((-52) $ (-1168) (-52)) NIL (|has| $ (-6 -4404)))) (-1420 (((-52) $ (-1168)) NIL)) (-1720 (((-639 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) $) NIL (|has| $ (-6 -4403))) (((-639 (-52)) $) NIL (|has| $ (-6 -4403)))) (-4172 (((-112) $ (-766)) NIL)) (-1849 (((-1168) $) NIL (|has| (-1168) (-845)))) (-2123 (((-639 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) $) 35 (|has| $ (-6 -4403))) (((-639 (-52)) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-1092)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-52) (-1092))))) (-1929 (((-1168) $) NIL (|has| (-1168) (-845)))) (-1491 (($ (-1 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) $) NIL (|has| $ (-6 -4404))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL (-4037 (|has| (-52) (-1092)) (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-1092))))) (-1521 (((-639 (-1168)) $) NIL)) (-4278 (((-112) (-1168) $) NIL)) (-2078 (((-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) $) NIL)) (-1581 (($ (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) $) 43)) (-3336 (((-639 (-1168)) $) NIL)) (-1987 (((-112) (-1168) $) NIL)) (-1709 (((-1112) $) NIL (-4037 (|has| (-52) (-1092)) (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-1092))))) (-4306 (((-378) $ (-1168)) 49)) (-3089 (((-639 (-1150)) $ (-1150)) 60)) (-1421 (((-52) $) NIL (|has| (-1168) (-845)))) (-1963 (((-3 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) "failed") (-1 (-112) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) $) NIL)) (-3510 (($ $ (-52)) NIL (|has| $ (-6 -4404)))) (-2038 (((-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) $) NIL)) (-3008 (((-112) (-1 (-112) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) $) NIL (|has| $ (-6 -4403))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))))) NIL (-12 (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-308 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))))) (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-1092)))) (($ $ (-293 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))))) NIL (-12 (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-308 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))))) (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-1092)))) (($ $ (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) NIL (-12 (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-308 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))))) (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-1092)))) (($ $ (-639 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) (-639 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))))) NIL (-12 (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-308 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))))) (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-1092)))) (($ $ (-639 (-52)) (-639 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1092)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1092)))) (($ $ (-293 (-52))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1092)))) (($ $ (-639 (-293 (-52)))) NIL (-12 (|has| (-52) (-308 (-52))) (|has| (-52) (-1092))))) (-1452 (((-112) $ $) NIL)) (-2716 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-52) (-1092))))) (-2366 (((-639 (-52)) $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) NIL)) (-2343 (((-52) $ (-1168)) NIL) (((-52) $ (-1168) (-52)) NIL)) (-1932 (($) NIL) (($ (-639 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))))) NIL)) (-2777 (($ $ (-1168)) 51)) (-1723 (((-766) (-1 (-112) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) $) NIL (|has| $ (-6 -4403))) (((-766) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-1092)))) (((-766) (-52) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-52) (-1092)))) (((-766) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4403)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-610 (-535))))) (-4064 (($ (-639 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))))) 37)) (-2767 (($ $ $) 38)) (-4053 (((-857) $) NIL (-4037 (|has| (-52) (-609 (-857))) (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-609 (-857)))))) (-3890 (($ $ (-1168) (-378)) 47)) (-3108 (($ $ (-1168) (-378)) 48)) (-4131 (($ (-639 (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))))) NIL)) (-2879 (((-112) (-1 (-112) (-2 (|:| -2319 (-1168)) (|:| -2693 (-52)))) $) NIL (|has| $ (-6 -4403))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) NIL (-4037 (|has| (-52) (-1092)) (|has| (-2 (|:| -2319 (-1168)) (|:| -2693 (-52))) (-1092))))) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-1056) (-13 (-1183 (-1168) (-52)) (-10 -8 (-15 -2767 ($ $ $)) (-15 -3345 ($)) (-15 -2887 ($ $)) (-15 -3064 ($ $)) (-15 -2065 ($ $)) (-15 -3304 ($ $)) (-15 -1864 ($ $)) (-15 -2756 ($ $)) (-15 -4277 ($ $)) (-15 -3200 ($ $)) (-15 -3890 ($ $ (-1168) (-378))) (-15 -3108 ($ $ (-1168) (-378))) (-15 -4306 ((-378) $ (-1168))) (-15 -3089 ((-639 (-1150)) $ (-1150))) (-15 -2777 ($ $ (-1168))) (-15 -4226 ($)) (-15 -2565 ((-3 (-1150) "failed") $ (-1150) (-562))) (-6 -4403)))) (T -1056)) -((-2767 (*1 *1 *1 *1) (-5 *1 (-1056))) (-3345 (*1 *1) (-5 *1 (-1056))) (-2887 (*1 *1 *1) (-5 *1 (-1056))) (-3064 (*1 *1 *1) (-5 *1 (-1056))) (-2065 (*1 *1 *1) (-5 *1 (-1056))) (-3304 (*1 *1 *1) (-5 *1 (-1056))) (-1864 (*1 *1 *1) (-5 *1 (-1056))) (-2756 (*1 *1 *1) (-5 *1 (-1056))) (-4277 (*1 *1 *1) (-5 *1 (-1056))) (-3200 (*1 *1 *1) (-5 *1 (-1056))) (-3890 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-378)) (-5 *1 (-1056)))) (-3108 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-378)) (-5 *1 (-1056)))) (-4306 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-378)) (-5 *1 (-1056)))) (-3089 (*1 *2 *1 *3) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1056)) (-5 *3 (-1150)))) (-2777 (*1 *1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1056)))) (-4226 (*1 *1) (-5 *1 (-1056))) (-2565 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1150)) (-5 *3 (-562)) (-5 *1 (-1056))))) -(-13 (-1183 (-1168) (-52)) (-10 -8 (-15 -2767 ($ $ $)) (-15 -3345 ($)) (-15 -2887 ($ $)) (-15 -3064 ($ $)) (-15 -2065 ($ $)) (-15 -3304 ($ $)) (-15 -1864 ($ $)) (-15 -2756 ($ $)) (-15 -4277 ($ $)) (-15 -3200 ($ $)) (-15 -3890 ($ $ (-1168) (-378))) (-15 -3108 ($ $ (-1168) (-378))) (-15 -4306 ((-378) $ (-1168))) (-15 -3089 ((-639 (-1150)) $ (-1150))) (-15 -2777 ($ $ (-1168))) (-15 -4226 ($)) (-15 -2565 ((-3 (-1150) "failed") $ (-1150) (-562))) (-6 -4403))) -((-3120 (($ $) 45)) (-3415 (((-112) $ $) 74)) (-4048 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL) (((-3 (-562) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-947 (-406 (-562)))) 226) (((-3 $ "failed") (-947 (-562))) 225) (((-3 $ "failed") (-947 |#2|)) 228)) (-3960 ((|#2| $) NIL) (((-406 (-562)) $) NIL) (((-562) $) NIL) ((|#4| $) NIL) (($ (-947 (-406 (-562)))) 214) (($ (-947 (-562))) 210) (($ (-947 |#2|)) 230)) (-1600 (($ $) NIL) (($ $ |#4|) 43)) (-3300 (((-112) $ $) 111) (((-112) $ (-639 $)) 112)) (-3446 (((-112) $) 56)) (-3840 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 106)) (-1814 (($ $) 137)) (-2827 (($ $) 133)) (-3499 (($ $) 132)) (-3321 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3486 (($ $ $) 82) (($ $ $ |#4|) 86)) (-1493 (((-112) $ $) 120) (((-112) $ (-639 $)) 121)) (-3761 ((|#4| $) 33)) (-1874 (($ $ $) 109)) (-3739 (((-112) $) 55)) (-4091 (((-766) $) 35)) (-3181 (($ $) 151)) (-3349 (($ $) 148)) (-1838 (((-639 $) $) 68)) (-3807 (($ $) 57)) (-1634 (($ $) 144)) (-4119 (((-639 $) $) 65)) (-4282 (($ $) 59)) (-1573 ((|#2| $) NIL) (($ $ |#4|) 38)) (-1674 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3185 (-766))) $ $) 110)) (-3823 (((-2 (|:| -4221 $) (|:| |gap| (-766)) (|:| -3380 $) (|:| -1441 $)) $ $) 107) (((-2 (|:| -4221 $) (|:| |gap| (-766)) (|:| -3380 $) (|:| -1441 $)) $ $ |#4|) 108)) (-1648 (((-2 (|:| -4221 $) (|:| |gap| (-766)) (|:| -1441 $)) $ $) 103) (((-2 (|:| -4221 $) (|:| |gap| (-766)) (|:| -1441 $)) $ $ |#4|) 104)) (-3493 (($ $ $) 89) (($ $ $ |#4|) 94)) (-3725 (($ $ $) 90) (($ $ $ |#4|) 95)) (-3173 (((-639 $) $) 51)) (-1645 (((-112) $ $) 117) (((-112) $ (-639 $)) 118)) (-2651 (($ $ $) 102)) (-3730 (($ $) 37)) (-1789 (((-112) $ $) 72)) (-2830 (((-112) $ $) 113) (((-112) $ (-639 $)) 115)) (-1630 (($ $ $) 100)) (-3757 (($ $) 40)) (-1606 ((|#2| |#2| $) 141) (($ (-639 $)) NIL) (($ $ $) NIL)) (-3504 (($ $ |#2|) NIL) (($ $ $) 130)) (-3347 (($ $ |#2|) 125) (($ $ $) 128)) (-3276 (($ $) 48)) (-3293 (($ $) 52)) (-4208 (((-887 (-378)) $) NIL) (((-887 (-562)) $) NIL) (((-535) $) NIL) (($ (-947 (-406 (-562)))) 216) (($ (-947 (-562))) 212) (($ (-947 |#2|)) 227) (((-1150) $) 249) (((-947 |#2|) $) 161)) (-4053 (((-857) $) 30) (($ (-562)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-947 |#2|) $) 162) (($ (-406 (-562))) NIL) (($ $) NIL)) (-2632 (((-3 (-112) "failed") $ $) 71))) -(((-1057 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4053 (|#1| |#1|)) (-15 -1606 (|#1| |#1| |#1|)) (-15 -1606 (|#1| (-639 |#1|))) (-15 -4053 (|#1| (-406 (-562)))) (-15 -4053 ((-947 |#2|) |#1|)) (-15 -4208 ((-947 |#2|) |#1|)) (-15 -4208 ((-1150) |#1|)) (-15 -3181 (|#1| |#1|)) (-15 -3349 (|#1| |#1|)) (-15 -1634 (|#1| |#1|)) (-15 -1814 (|#1| |#1|)) (-15 -1606 (|#2| |#2| |#1|)) (-15 -3504 (|#1| |#1| |#1|)) (-15 -3347 (|#1| |#1| |#1|)) (-15 -3504 (|#1| |#1| |#2|)) (-15 -3347 (|#1| |#1| |#2|)) (-15 -2827 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -4208 (|#1| (-947 |#2|))) (-15 -3960 (|#1| (-947 |#2|))) (-15 -4048 ((-3 |#1| "failed") (-947 |#2|))) (-15 -4208 (|#1| (-947 (-562)))) (-15 -3960 (|#1| (-947 (-562)))) (-15 -4048 ((-3 |#1| "failed") (-947 (-562)))) (-15 -4208 (|#1| (-947 (-406 (-562))))) (-15 -3960 (|#1| (-947 (-406 (-562))))) (-15 -4048 ((-3 |#1| "failed") (-947 (-406 (-562))))) (-15 -2651 (|#1| |#1| |#1|)) (-15 -1630 (|#1| |#1| |#1|)) (-15 -1674 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3185 (-766))) |#1| |#1|)) (-15 -1874 (|#1| |#1| |#1|)) (-15 -3840 ((-2 (|:| -3380 |#1|) (|:| -1441 |#1|)) |#1| |#1|)) (-15 -3823 ((-2 (|:| -4221 |#1|) (|:| |gap| (-766)) (|:| -3380 |#1|) (|:| -1441 |#1|)) |#1| |#1| |#4|)) (-15 -3823 ((-2 (|:| -4221 |#1|) (|:| |gap| (-766)) (|:| -3380 |#1|) (|:| -1441 |#1|)) |#1| |#1|)) (-15 -1648 ((-2 (|:| -4221 |#1|) (|:| |gap| (-766)) (|:| -1441 |#1|)) |#1| |#1| |#4|)) (-15 -1648 ((-2 (|:| -4221 |#1|) (|:| |gap| (-766)) (|:| -1441 |#1|)) |#1| |#1|)) (-15 -3725 (|#1| |#1| |#1| |#4|)) (-15 -3493 (|#1| |#1| |#1| |#4|)) (-15 -3725 (|#1| |#1| |#1|)) (-15 -3493 (|#1| |#1| |#1|)) (-15 -3486 (|#1| |#1| |#1| |#4|)) (-15 -3321 (|#1| |#1| |#1| |#4|)) (-15 -3486 (|#1| |#1| |#1|)) (-15 -3321 (|#1| |#1| |#1|)) (-15 -1493 ((-112) |#1| (-639 |#1|))) (-15 -1493 ((-112) |#1| |#1|)) (-15 -1645 ((-112) |#1| (-639 |#1|))) (-15 -1645 ((-112) |#1| |#1|)) (-15 -2830 ((-112) |#1| (-639 |#1|))) (-15 -2830 ((-112) |#1| |#1|)) (-15 -3300 ((-112) |#1| (-639 |#1|))) (-15 -3300 ((-112) |#1| |#1|)) (-15 -3415 ((-112) |#1| |#1|)) (-15 -1789 ((-112) |#1| |#1|)) (-15 -2632 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1838 ((-639 |#1|) |#1|)) (-15 -4119 ((-639 |#1|) |#1|)) (-15 -4282 (|#1| |#1|)) (-15 -3807 (|#1| |#1|)) (-15 -3446 ((-112) |#1|)) (-15 -3739 ((-112) |#1|)) (-15 -1600 (|#1| |#1| |#4|)) (-15 -1573 (|#1| |#1| |#4|)) (-15 -3293 (|#1| |#1|)) (-15 -3173 ((-639 |#1|) |#1|)) (-15 -3276 (|#1| |#1|)) (-15 -3120 (|#1| |#1|)) (-15 -3757 (|#1| |#1|)) (-15 -3730 (|#1| |#1|)) (-15 -4091 ((-766) |#1|)) (-15 -3761 (|#4| |#1|)) (-15 -4208 ((-535) |#1|)) (-15 -4208 ((-887 (-562)) |#1|)) (-15 -4208 ((-887 (-378)) |#1|)) (-15 -4053 (|#1| |#4|)) (-15 -4048 ((-3 |#4| "failed") |#1|)) (-15 -3960 (|#4| |#1|)) (-15 -1573 (|#2| |#1|)) (-15 -1600 (|#1| |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -3960 ((-562) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3960 ((-406 (-562)) |#1|)) (-15 -3960 (|#2| |#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -4053 (|#1| |#2|)) (-15 -4053 (|#1| (-562))) (-15 -4053 ((-857) |#1|))) (-1058 |#2| |#3| |#4|) (-1044) (-788) (-845)) (T -1057)) -NIL -(-10 -8 (-15 -4053 (|#1| |#1|)) (-15 -1606 (|#1| |#1| |#1|)) (-15 -1606 (|#1| (-639 |#1|))) (-15 -4053 (|#1| (-406 (-562)))) (-15 -4053 ((-947 |#2|) |#1|)) (-15 -4208 ((-947 |#2|) |#1|)) (-15 -4208 ((-1150) |#1|)) (-15 -3181 (|#1| |#1|)) (-15 -3349 (|#1| |#1|)) (-15 -1634 (|#1| |#1|)) (-15 -1814 (|#1| |#1|)) (-15 -1606 (|#2| |#2| |#1|)) (-15 -3504 (|#1| |#1| |#1|)) (-15 -3347 (|#1| |#1| |#1|)) (-15 -3504 (|#1| |#1| |#2|)) (-15 -3347 (|#1| |#1| |#2|)) (-15 -2827 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -4208 (|#1| (-947 |#2|))) (-15 -3960 (|#1| (-947 |#2|))) (-15 -4048 ((-3 |#1| "failed") (-947 |#2|))) (-15 -4208 (|#1| (-947 (-562)))) (-15 -3960 (|#1| (-947 (-562)))) (-15 -4048 ((-3 |#1| "failed") (-947 (-562)))) (-15 -4208 (|#1| (-947 (-406 (-562))))) (-15 -3960 (|#1| (-947 (-406 (-562))))) (-15 -4048 ((-3 |#1| "failed") (-947 (-406 (-562))))) (-15 -2651 (|#1| |#1| |#1|)) (-15 -1630 (|#1| |#1| |#1|)) (-15 -1674 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3185 (-766))) |#1| |#1|)) (-15 -1874 (|#1| |#1| |#1|)) (-15 -3840 ((-2 (|:| -3380 |#1|) (|:| -1441 |#1|)) |#1| |#1|)) (-15 -3823 ((-2 (|:| -4221 |#1|) (|:| |gap| (-766)) (|:| -3380 |#1|) (|:| -1441 |#1|)) |#1| |#1| |#4|)) (-15 -3823 ((-2 (|:| -4221 |#1|) (|:| |gap| (-766)) (|:| -3380 |#1|) (|:| -1441 |#1|)) |#1| |#1|)) (-15 -1648 ((-2 (|:| -4221 |#1|) (|:| |gap| (-766)) (|:| -1441 |#1|)) |#1| |#1| |#4|)) (-15 -1648 ((-2 (|:| -4221 |#1|) (|:| |gap| (-766)) (|:| -1441 |#1|)) |#1| |#1|)) (-15 -3725 (|#1| |#1| |#1| |#4|)) (-15 -3493 (|#1| |#1| |#1| |#4|)) (-15 -3725 (|#1| |#1| |#1|)) (-15 -3493 (|#1| |#1| |#1|)) (-15 -3486 (|#1| |#1| |#1| |#4|)) (-15 -3321 (|#1| |#1| |#1| |#4|)) (-15 -3486 (|#1| |#1| |#1|)) (-15 -3321 (|#1| |#1| |#1|)) (-15 -1493 ((-112) |#1| (-639 |#1|))) (-15 -1493 ((-112) |#1| |#1|)) (-15 -1645 ((-112) |#1| (-639 |#1|))) (-15 -1645 ((-112) |#1| |#1|)) (-15 -2830 ((-112) |#1| (-639 |#1|))) (-15 -2830 ((-112) |#1| |#1|)) (-15 -3300 ((-112) |#1| (-639 |#1|))) (-15 -3300 ((-112) |#1| |#1|)) (-15 -3415 ((-112) |#1| |#1|)) (-15 -1789 ((-112) |#1| |#1|)) (-15 -2632 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1838 ((-639 |#1|) |#1|)) (-15 -4119 ((-639 |#1|) |#1|)) (-15 -4282 (|#1| |#1|)) (-15 -3807 (|#1| |#1|)) (-15 -3446 ((-112) |#1|)) (-15 -3739 ((-112) |#1|)) (-15 -1600 (|#1| |#1| |#4|)) (-15 -1573 (|#1| |#1| |#4|)) (-15 -3293 (|#1| |#1|)) (-15 -3173 ((-639 |#1|) |#1|)) (-15 -3276 (|#1| |#1|)) (-15 -3120 (|#1| |#1|)) (-15 -3757 (|#1| |#1|)) (-15 -3730 (|#1| |#1|)) (-15 -4091 ((-766) |#1|)) (-15 -3761 (|#4| |#1|)) (-15 -4208 ((-535) |#1|)) (-15 -4208 ((-887 (-562)) |#1|)) (-15 -4208 ((-887 (-378)) |#1|)) (-15 -4053 (|#1| |#4|)) (-15 -4048 ((-3 |#4| "failed") |#1|)) (-15 -3960 (|#4| |#1|)) (-15 -1573 (|#2| |#1|)) (-15 -1600 (|#1| |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -3960 ((-562) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3960 ((-406 (-562)) |#1|)) (-15 -3960 (|#2| |#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -4053 (|#1| |#2|)) (-15 -4053 (|#1| (-562))) (-15 -4053 ((-857) |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-1401 (((-639 |#3|) $) 110)) (-1602 (((-1164 $) $ |#3|) 125) (((-1164 |#1|) $) 124)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 87 (|has| |#1| (-554)))) (-1965 (($ $) 88 (|has| |#1| (-554)))) (-4102 (((-112) $) 90 (|has| |#1| (-554)))) (-1578 (((-766) $) 112) (((-766) $ (-639 |#3|)) 111)) (-3120 (($ $) 271)) (-3415 (((-112) $ $) 257)) (-2781 (((-3 $ "failed") $ $) 19)) (-2035 (($ $ $) 216 (|has| |#1| (-554)))) (-4205 (((-639 $) $ $) 211 (|has| |#1| (-554)))) (-3517 (((-417 (-1164 $)) (-1164 $)) 100 (|has| |#1| (-904)))) (-1977 (($ $) 98 (|has| |#1| (-451)))) (-3788 (((-417 $) $) 97 (|has| |#1| (-451)))) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) 103 (|has| |#1| (-904)))) (-3329 (($) 17 T CONST)) (-4048 (((-3 |#1| "failed") $) 164) (((-3 (-406 (-562)) "failed") $) 161 (|has| |#1| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) 159 (|has| |#1| (-1033 (-562)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-947 (-406 (-562)))) 231 (-12 (|has| |#1| (-38 (-406 (-562)))) (|has| |#3| (-610 (-1168))))) (((-3 $ "failed") (-947 (-562))) 228 (-4037 (-12 (-2234 (|has| |#1| (-38 (-406 (-562))))) (|has| |#1| (-38 (-562))) (|has| |#3| (-610 (-1168)))) (-12 (|has| |#1| (-38 (-406 (-562)))) (|has| |#3| (-610 (-1168)))))) (((-3 $ "failed") (-947 |#1|)) 225 (-4037 (-12 (-2234 (|has| |#1| (-38 (-406 (-562))))) (-2234 (|has| |#1| (-38 (-562)))) (|has| |#3| (-610 (-1168)))) (-12 (-2234 (|has| |#1| (-544))) (-2234 (|has| |#1| (-38 (-406 (-562))))) (|has| |#1| (-38 (-562))) (|has| |#3| (-610 (-1168)))) (-12 (-2234 (|has| |#1| (-987 (-562)))) (|has| |#1| (-38 (-406 (-562)))) (|has| |#3| (-610 (-1168))))))) (-3960 ((|#1| $) 163) (((-406 (-562)) $) 162 (|has| |#1| (-1033 (-406 (-562))))) (((-562) $) 160 (|has| |#1| (-1033 (-562)))) ((|#3| $) 137) (($ (-947 (-406 (-562)))) 230 (-12 (|has| |#1| (-38 (-406 (-562)))) (|has| |#3| (-610 (-1168))))) (($ (-947 (-562))) 227 (-4037 (-12 (-2234 (|has| |#1| (-38 (-406 (-562))))) (|has| |#1| (-38 (-562))) (|has| |#3| (-610 (-1168)))) (-12 (|has| |#1| (-38 (-406 (-562)))) (|has| |#3| (-610 (-1168)))))) (($ (-947 |#1|)) 224 (-4037 (-12 (-2234 (|has| |#1| (-38 (-406 (-562))))) (-2234 (|has| |#1| (-38 (-562)))) (|has| |#3| (-610 (-1168)))) (-12 (-2234 (|has| |#1| (-544))) (-2234 (|has| |#1| (-38 (-406 (-562))))) (|has| |#1| (-38 (-562))) (|has| |#3| (-610 (-1168)))) (-12 (-2234 (|has| |#1| (-987 (-562)))) (|has| |#1| (-38 (-406 (-562)))) (|has| |#3| (-610 (-1168))))))) (-2355 (($ $ $ |#3|) 108 (|has| |#1| (-171))) (($ $ $) 212 (|has| |#1| (-554)))) (-1600 (($ $) 154) (($ $ |#3|) 266)) (-3449 (((-683 (-562)) (-683 $)) 134 (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 133 (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) 132) (((-683 |#1|) (-683 $)) 131)) (-3300 (((-112) $ $) 256) (((-112) $ (-639 $)) 255)) (-1694 (((-3 $ "failed") $) 33)) (-3446 (((-112) $) 264)) (-3840 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 236)) (-1814 (($ $) 205 (|has| |#1| (-451)))) (-2578 (($ $) 176 (|has| |#1| (-451))) (($ $ |#3|) 105 (|has| |#1| (-451)))) (-1585 (((-639 $) $) 109)) (-3521 (((-112) $) 96 (|has| |#1| (-904)))) (-2827 (($ $) 221 (|has| |#1| (-554)))) (-3499 (($ $) 222 (|has| |#1| (-554)))) (-3321 (($ $ $) 248) (($ $ $ |#3|) 246)) (-3486 (($ $ $) 247) (($ $ $ |#3|) 245)) (-3066 (($ $ |#1| |#2| $) 172)) (-2337 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 84 (-12 (|has| |#3| (-881 (-378))) (|has| |#1| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) 83 (-12 (|has| |#3| (-881 (-562))) (|has| |#1| (-881 (-562)))))) (-4367 (((-112) $) 31)) (-3627 (((-766) $) 169)) (-1493 (((-112) $ $) 250) (((-112) $ (-639 $)) 249)) (-2746 (($ $ $ $ $) 207 (|has| |#1| (-554)))) (-3761 ((|#3| $) 275)) (-1389 (($ (-1164 |#1|) |#3|) 117) (($ (-1164 $) |#3|) 116)) (-1869 (((-639 $) $) 126)) (-2833 (((-112) $) 152)) (-1377 (($ |#1| |#2|) 153) (($ $ |#3| (-766)) 119) (($ $ (-639 |#3|) (-639 (-766))) 118)) (-1874 (($ $ $) 235)) (-3851 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $ |#3|) 120)) (-3739 (((-112) $) 265)) (-3161 ((|#2| $) 170) (((-766) $ |#3|) 122) (((-639 (-766)) $ (-639 |#3|)) 121)) (-1551 (($ $ $) 79 (|has| |#1| (-845)))) (-4091 (((-766) $) 274)) (-2993 (($ $ $) 78 (|has| |#1| (-845)))) (-2363 (($ (-1 |#2| |#2|) $) 171)) (-4152 (($ (-1 |#1| |#1|) $) 151)) (-3640 (((-3 |#3| "failed") $) 123)) (-3181 (($ $) 202 (|has| |#1| (-451)))) (-3349 (($ $) 203 (|has| |#1| (-451)))) (-1838 (((-639 $) $) 260)) (-3807 (($ $) 263)) (-1634 (($ $) 204 (|has| |#1| (-451)))) (-4119 (((-639 $) $) 261)) (-4282 (($ $) 262)) (-1560 (($ $) 149)) (-1573 ((|#1| $) 148) (($ $ |#3|) 267)) (-1564 (($ (-639 $)) 94 (|has| |#1| (-451))) (($ $ $) 93 (|has| |#1| (-451)))) (-1674 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3185 (-766))) $ $) 234)) (-3823 (((-2 (|:| -4221 $) (|:| |gap| (-766)) (|:| -3380 $) (|:| -1441 $)) $ $) 238) (((-2 (|:| -4221 $) (|:| |gap| (-766)) (|:| -3380 $) (|:| -1441 $)) $ $ |#3|) 237)) (-1648 (((-2 (|:| -4221 $) (|:| |gap| (-766)) (|:| -1441 $)) $ $) 240) (((-2 (|:| -4221 $) (|:| |gap| (-766)) (|:| -1441 $)) $ $ |#3|) 239)) (-3493 (($ $ $) 244) (($ $ $ |#3|) 242)) (-3725 (($ $ $) 243) (($ $ $ |#3|) 241)) (-3696 (((-1150) $) 9)) (-2672 (($ $ $) 210 (|has| |#1| (-554)))) (-3173 (((-639 $) $) 269)) (-4025 (((-3 (-639 $) "failed") $) 114)) (-1778 (((-3 (-639 $) "failed") $) 115)) (-4270 (((-3 (-2 (|:| |var| |#3|) (|:| -1300 (-766))) "failed") $) 113)) (-1645 (((-112) $ $) 252) (((-112) $ (-639 $)) 251)) (-2651 (($ $ $) 232)) (-3730 (($ $) 273)) (-1789 (((-112) $ $) 258)) (-2830 (((-112) $ $) 254) (((-112) $ (-639 $)) 253)) (-1630 (($ $ $) 233)) (-3757 (($ $) 272)) (-1709 (((-1112) $) 10)) (-4272 (((-2 (|:| -1606 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-554)))) (-3015 (((-2 (|:| -1606 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-554)))) (-1534 (((-112) $) 166)) (-1547 ((|#1| $) 167)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 95 (|has| |#1| (-451)))) (-1606 ((|#1| |#1| $) 206 (|has| |#1| (-451))) (($ (-639 $)) 92 (|has| |#1| (-451))) (($ $ $) 91 (|has| |#1| (-451)))) (-3586 (((-417 (-1164 $)) (-1164 $)) 102 (|has| |#1| (-904)))) (-3468 (((-417 (-1164 $)) (-1164 $)) 101 (|has| |#1| (-904)))) (-1635 (((-417 $) $) 99 (|has| |#1| (-904)))) (-2057 (((-2 (|:| -1606 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-554)))) (-1762 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-554))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-554)))) (-3504 (($ $ |#1|) 219 (|has| |#1| (-554))) (($ $ $) 217 (|has| |#1| (-554)))) (-3347 (($ $ |#1|) 220 (|has| |#1| (-554))) (($ $ $) 218 (|has| |#1| (-554)))) (-1433 (($ $ (-639 (-293 $))) 145) (($ $ (-293 $)) 144) (($ $ $ $) 143) (($ $ (-639 $) (-639 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-639 |#3|) (-639 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-639 |#3|) (-639 $)) 138)) (-2736 (($ $ |#3|) 107 (|has| |#1| (-171)))) (-4029 (($ $ |#3|) 42) (($ $ (-639 |#3|)) 41) (($ $ |#3| (-766)) 40) (($ $ (-639 |#3|) (-639 (-766))) 39)) (-2250 ((|#2| $) 150) (((-766) $ |#3|) 130) (((-639 (-766)) $ (-639 |#3|)) 129)) (-3276 (($ $) 270)) (-3293 (($ $) 268)) (-4208 (((-887 (-378)) $) 82 (-12 (|has| |#3| (-610 (-887 (-378)))) (|has| |#1| (-610 (-887 (-378)))))) (((-887 (-562)) $) 81 (-12 (|has| |#3| (-610 (-887 (-562)))) (|has| |#1| (-610 (-887 (-562)))))) (((-535) $) 80 (-12 (|has| |#3| (-610 (-535))) (|has| |#1| (-610 (-535))))) (($ (-947 (-406 (-562)))) 229 (-12 (|has| |#1| (-38 (-406 (-562)))) (|has| |#3| (-610 (-1168))))) (($ (-947 (-562))) 226 (-4037 (-12 (-2234 (|has| |#1| (-38 (-406 (-562))))) (|has| |#1| (-38 (-562))) (|has| |#3| (-610 (-1168)))) (-12 (|has| |#1| (-38 (-406 (-562)))) (|has| |#3| (-610 (-1168)))))) (($ (-947 |#1|)) 223 (|has| |#3| (-610 (-1168)))) (((-1150) $) 201 (-12 (|has| |#1| (-1033 (-562))) (|has| |#3| (-610 (-1168))))) (((-947 |#1|) $) 200 (|has| |#3| (-610 (-1168))))) (-2201 ((|#1| $) 175 (|has| |#1| (-451))) (($ $ |#3|) 106 (|has| |#1| (-451)))) (-1870 (((-3 (-1256 $) "failed") (-683 $)) 104 (-2245 (|has| $ (-144)) (|has| |#1| (-904))))) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 165) (($ |#3|) 135) (((-947 |#1|) $) 199 (|has| |#3| (-610 (-1168)))) (($ (-406 (-562))) 72 (-4037 (|has| |#1| (-1033 (-406 (-562)))) (|has| |#1| (-38 (-406 (-562)))))) (($ $) 85 (|has| |#1| (-554)))) (-3969 (((-639 |#1|) $) 168)) (-2266 ((|#1| $ |#2|) 155) (($ $ |#3| (-766)) 128) (($ $ (-639 |#3|) (-639 (-766))) 127)) (-2059 (((-3 $ "failed") $) 73 (-4037 (-2245 (|has| $ (-144)) (|has| |#1| (-904))) (|has| |#1| (-144))))) (-1568 (((-766)) 28)) (-1760 (($ $ $ (-766)) 173 (|has| |#1| (-171)))) (-3799 (((-112) $ $) 89 (|has| |#1| (-554)))) (-2285 (($) 18 T CONST)) (-2632 (((-3 (-112) "failed") $ $) 259)) (-2294 (($) 30 T CONST)) (-1378 (($ $ $ $ (-766)) 208 (|has| |#1| (-554)))) (-4382 (($ $ $ (-766)) 209 (|has| |#1| (-554)))) (-3113 (($ $ |#3|) 38) (($ $ (-639 |#3|)) 37) (($ $ |#3| (-766)) 36) (($ $ (-639 |#3|) (-639 (-766))) 35)) (-1798 (((-112) $ $) 76 (|has| |#1| (-845)))) (-1771 (((-112) $ $) 75 (|has| |#1| (-845)))) (-1733 (((-112) $ $) 6)) (-1785 (((-112) $ $) 77 (|has| |#1| (-845)))) (-1761 (((-112) $ $) 74 (|has| |#1| (-845)))) (-1859 (($ $ |#1|) 156 (|has| |#1| (-362)))) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ (-406 (-562))) 158 (|has| |#1| (-38 (-406 (-562))))) (($ (-406 (-562)) $) 157 (|has| |#1| (-38 (-406 (-562))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-1058 |#1| |#2| |#3|) (-139) (-1044) (-788) (-845)) (T -1058)) -((-3761 (*1 *2 *1) (-12 (-4 *1 (-1058 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *2 (-845)))) (-4091 (*1 *2 *1) (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-766)))) (-3730 (*1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)))) (-3757 (*1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)))) (-3120 (*1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)))) (-3276 (*1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)))) (-3173 (*1 *2 *1) (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-639 *1)) (-4 *1 (-1058 *3 *4 *5)))) (-3293 (*1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)))) (-1573 (*1 *1 *1 *2) (-12 (-4 *1 (-1058 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *2 (-845)))) (-1600 (*1 *1 *1 *2) (-12 (-4 *1 (-1058 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *2 (-845)))) (-3739 (*1 *2 *1) (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)))) (-3446 (*1 *2 *1) (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)))) (-3807 (*1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)))) (-4282 (*1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)))) (-4119 (*1 *2 *1) (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-639 *1)) (-4 *1 (-1058 *3 *4 *5)))) (-1838 (*1 *2 *1) (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-639 *1)) (-4 *1 (-1058 *3 *4 *5)))) (-2632 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)))) (-1789 (*1 *2 *1 *1) (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)))) (-3415 (*1 *2 *1 *1) (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)))) (-3300 (*1 *2 *1 *1) (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)))) (-3300 (*1 *2 *1 *3) (-12 (-5 *3 (-639 *1)) (-4 *1 (-1058 *4 *5 *6)) (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)))) (-2830 (*1 *2 *1 *1) (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)))) (-2830 (*1 *2 *1 *3) (-12 (-5 *3 (-639 *1)) (-4 *1 (-1058 *4 *5 *6)) (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)))) (-1645 (*1 *2 *1 *1) (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)))) (-1645 (*1 *2 *1 *3) (-12 (-5 *3 (-639 *1)) (-4 *1 (-1058 *4 *5 *6)) (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)))) (-1493 (*1 *2 *1 *1) (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)))) (-1493 (*1 *2 *1 *3) (-12 (-5 *3 (-639 *1)) (-4 *1 (-1058 *4 *5 *6)) (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)))) (-3321 (*1 *1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)))) (-3486 (*1 *1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)))) (-3321 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1058 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *2 (-845)))) (-3486 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1058 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *2 (-845)))) (-3493 (*1 *1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)))) (-3725 (*1 *1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)))) (-3493 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1058 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *2 (-845)))) (-3725 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1058 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *2 (-845)))) (-1648 (*1 *2 *1 *1) (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-2 (|:| -4221 *1) (|:| |gap| (-766)) (|:| -1441 *1))) (-4 *1 (-1058 *3 *4 *5)))) (-1648 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *3 (-845)) (-5 *2 (-2 (|:| -4221 *1) (|:| |gap| (-766)) (|:| -1441 *1))) (-4 *1 (-1058 *4 *5 *3)))) (-3823 (*1 *2 *1 *1) (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-2 (|:| -4221 *1) (|:| |gap| (-766)) (|:| -3380 *1) (|:| -1441 *1))) (-4 *1 (-1058 *3 *4 *5)))) (-3823 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *3 (-845)) (-5 *2 (-2 (|:| -4221 *1) (|:| |gap| (-766)) (|:| -3380 *1) (|:| -1441 *1))) (-4 *1 (-1058 *4 *5 *3)))) (-3840 (*1 *2 *1 *1) (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-2 (|:| -3380 *1) (|:| -1441 *1))) (-4 *1 (-1058 *3 *4 *5)))) (-1874 (*1 *1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)))) (-1674 (*1 *2 *1 *1) (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3185 (-766)))) (-4 *1 (-1058 *3 *4 *5)))) (-1630 (*1 *1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)))) (-2651 (*1 *1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)))) (-4048 (*1 *1 *2) (|partial| -12 (-5 *2 (-947 (-406 (-562)))) (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-38 (-406 (-562)))) (-4 *5 (-610 (-1168))) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)))) (-3960 (*1 *1 *2) (-12 (-5 *2 (-947 (-406 (-562)))) (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-38 (-406 (-562)))) (-4 *5 (-610 (-1168))) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)))) (-4208 (*1 *1 *2) (-12 (-5 *2 (-947 (-406 (-562)))) (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-38 (-406 (-562)))) (-4 *5 (-610 (-1168))) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)))) (-4048 (*1 *1 *2) (|partial| -4037 (-12 (-5 *2 (-947 (-562))) (-4 *1 (-1058 *3 *4 *5)) (-12 (-2234 (-4 *3 (-38 (-406 (-562))))) (-4 *3 (-38 (-562))) (-4 *5 (-610 (-1168)))) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845))) (-12 (-5 *2 (-947 (-562))) (-4 *1 (-1058 *3 *4 *5)) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *5 (-610 (-1168)))) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845))))) (-3960 (*1 *1 *2) (-4037 (-12 (-5 *2 (-947 (-562))) (-4 *1 (-1058 *3 *4 *5)) (-12 (-2234 (-4 *3 (-38 (-406 (-562))))) (-4 *3 (-38 (-562))) (-4 *5 (-610 (-1168)))) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845))) (-12 (-5 *2 (-947 (-562))) (-4 *1 (-1058 *3 *4 *5)) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *5 (-610 (-1168)))) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845))))) (-4208 (*1 *1 *2) (-4037 (-12 (-5 *2 (-947 (-562))) (-4 *1 (-1058 *3 *4 *5)) (-12 (-2234 (-4 *3 (-38 (-406 (-562))))) (-4 *3 (-38 (-562))) (-4 *5 (-610 (-1168)))) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845))) (-12 (-5 *2 (-947 (-562))) (-4 *1 (-1058 *3 *4 *5)) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *5 (-610 (-1168)))) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845))))) (-4048 (*1 *1 *2) (|partial| -4037 (-12 (-5 *2 (-947 *3)) (-12 (-2234 (-4 *3 (-38 (-406 (-562))))) (-2234 (-4 *3 (-38 (-562)))) (-4 *5 (-610 (-1168)))) (-4 *3 (-1044)) (-4 *1 (-1058 *3 *4 *5)) (-4 *4 (-788)) (-4 *5 (-845))) (-12 (-5 *2 (-947 *3)) (-12 (-2234 (-4 *3 (-544))) (-2234 (-4 *3 (-38 (-406 (-562))))) (-4 *3 (-38 (-562))) (-4 *5 (-610 (-1168)))) (-4 *3 (-1044)) (-4 *1 (-1058 *3 *4 *5)) (-4 *4 (-788)) (-4 *5 (-845))) (-12 (-5 *2 (-947 *3)) (-12 (-2234 (-4 *3 (-987 (-562)))) (-4 *3 (-38 (-406 (-562)))) (-4 *5 (-610 (-1168)))) (-4 *3 (-1044)) (-4 *1 (-1058 *3 *4 *5)) (-4 *4 (-788)) (-4 *5 (-845))))) (-3960 (*1 *1 *2) (-4037 (-12 (-5 *2 (-947 *3)) (-12 (-2234 (-4 *3 (-38 (-406 (-562))))) (-2234 (-4 *3 (-38 (-562)))) (-4 *5 (-610 (-1168)))) (-4 *3 (-1044)) (-4 *1 (-1058 *3 *4 *5)) (-4 *4 (-788)) (-4 *5 (-845))) (-12 (-5 *2 (-947 *3)) (-12 (-2234 (-4 *3 (-544))) (-2234 (-4 *3 (-38 (-406 (-562))))) (-4 *3 (-38 (-562))) (-4 *5 (-610 (-1168)))) (-4 *3 (-1044)) (-4 *1 (-1058 *3 *4 *5)) (-4 *4 (-788)) (-4 *5 (-845))) (-12 (-5 *2 (-947 *3)) (-12 (-2234 (-4 *3 (-987 (-562)))) (-4 *3 (-38 (-406 (-562)))) (-4 *5 (-610 (-1168)))) (-4 *3 (-1044)) (-4 *1 (-1058 *3 *4 *5)) (-4 *4 (-788)) (-4 *5 (-845))))) (-4208 (*1 *1 *2) (-12 (-5 *2 (-947 *3)) (-4 *3 (-1044)) (-4 *1 (-1058 *3 *4 *5)) (-4 *5 (-610 (-1168))) (-4 *4 (-788)) (-4 *5 (-845)))) (-3499 (*1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-554)))) (-2827 (*1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-554)))) (-3347 (*1 *1 *1 *2) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-554)))) (-3504 (*1 *1 *1 *2) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-554)))) (-3347 (*1 *1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-554)))) (-3504 (*1 *1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-554)))) (-2035 (*1 *1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-554)))) (-2057 (*1 *2 *1 *1) (-12 (-4 *3 (-554)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-2 (|:| -1606 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1058 *3 *4 *5)))) (-3015 (*1 *2 *1 *1) (-12 (-4 *3 (-554)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-2 (|:| -1606 *1) (|:| |coef1| *1))) (-4 *1 (-1058 *3 *4 *5)))) (-4272 (*1 *2 *1 *1) (-12 (-4 *3 (-554)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-2 (|:| -1606 *1) (|:| |coef2| *1))) (-4 *1 (-1058 *3 *4 *5)))) (-2355 (*1 *1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-554)))) (-4205 (*1 *2 *1 *1) (-12 (-4 *3 (-554)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-639 *1)) (-4 *1 (-1058 *3 *4 *5)))) (-2672 (*1 *1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-554)))) (-4382 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *3 (-554)))) (-1378 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *3 (-554)))) (-2746 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-554)))) (-1606 (*1 *2 *2 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-451)))) (-1814 (*1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-451)))) (-1634 (*1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-451)))) (-3349 (*1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-451)))) (-3181 (*1 *1 *1) (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-451))))) -(-13 (-944 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3761 (|t#3| $)) (-15 -4091 ((-766) $)) (-15 -3730 ($ $)) (-15 -3757 ($ $)) (-15 -3120 ($ $)) (-15 -3276 ($ $)) (-15 -3173 ((-639 $) $)) (-15 -3293 ($ $)) (-15 -1573 ($ $ |t#3|)) (-15 -1600 ($ $ |t#3|)) (-15 -3739 ((-112) $)) (-15 -3446 ((-112) $)) (-15 -3807 ($ $)) (-15 -4282 ($ $)) (-15 -4119 ((-639 $) $)) (-15 -1838 ((-639 $) $)) (-15 -2632 ((-3 (-112) "failed") $ $)) (-15 -1789 ((-112) $ $)) (-15 -3415 ((-112) $ $)) (-15 -3300 ((-112) $ $)) (-15 -3300 ((-112) $ (-639 $))) (-15 -2830 ((-112) $ $)) (-15 -2830 ((-112) $ (-639 $))) (-15 -1645 ((-112) $ $)) (-15 -1645 ((-112) $ (-639 $))) (-15 -1493 ((-112) $ $)) (-15 -1493 ((-112) $ (-639 $))) (-15 -3321 ($ $ $)) (-15 -3486 ($ $ $)) (-15 -3321 ($ $ $ |t#3|)) (-15 -3486 ($ $ $ |t#3|)) (-15 -3493 ($ $ $)) (-15 -3725 ($ $ $)) (-15 -3493 ($ $ $ |t#3|)) (-15 -3725 ($ $ $ |t#3|)) (-15 -1648 ((-2 (|:| -4221 $) (|:| |gap| (-766)) (|:| -1441 $)) $ $)) (-15 -1648 ((-2 (|:| -4221 $) (|:| |gap| (-766)) (|:| -1441 $)) $ $ |t#3|)) (-15 -3823 ((-2 (|:| -4221 $) (|:| |gap| (-766)) (|:| -3380 $) (|:| -1441 $)) $ $)) (-15 -3823 ((-2 (|:| -4221 $) (|:| |gap| (-766)) (|:| -3380 $) (|:| -1441 $)) $ $ |t#3|)) (-15 -3840 ((-2 (|:| -3380 $) (|:| -1441 $)) $ $)) (-15 -1874 ($ $ $)) (-15 -1674 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3185 (-766))) $ $)) (-15 -1630 ($ $ $)) (-15 -2651 ($ $ $)) (IF (|has| |t#3| (-610 (-1168))) (PROGN (-6 (-609 (-947 |t#1|))) (-6 (-610 (-947 |t#1|))) (IF (|has| |t#1| (-38 (-406 (-562)))) (PROGN (-15 -4048 ((-3 $ "failed") (-947 (-406 (-562))))) (-15 -3960 ($ (-947 (-406 (-562))))) (-15 -4208 ($ (-947 (-406 (-562))))) (-15 -4048 ((-3 $ "failed") (-947 (-562)))) (-15 -3960 ($ (-947 (-562)))) (-15 -4208 ($ (-947 (-562)))) (IF (|has| |t#1| (-987 (-562))) |%noBranch| (PROGN (-15 -4048 ((-3 $ "failed") (-947 |t#1|))) (-15 -3960 ($ (-947 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-562))) (IF (|has| |t#1| (-38 (-406 (-562)))) |%noBranch| (PROGN (-15 -4048 ((-3 $ "failed") (-947 (-562)))) (-15 -3960 ($ (-947 (-562)))) (-15 -4208 ($ (-947 (-562)))) (IF (|has| |t#1| (-544)) |%noBranch| (PROGN (-15 -4048 ((-3 $ "failed") (-947 |t#1|))) (-15 -3960 ($ (-947 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-562))) |%noBranch| (IF (|has| |t#1| (-38 (-406 (-562)))) |%noBranch| (PROGN (-15 -4048 ((-3 $ "failed") (-947 |t#1|))) (-15 -3960 ($ (-947 |t#1|)))))) (-15 -4208 ($ (-947 |t#1|))) (IF (|has| |t#1| (-1033 (-562))) (-6 (-610 (-1150))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-554)) (PROGN (-15 -3499 ($ $)) (-15 -2827 ($ $)) (-15 -3347 ($ $ |t#1|)) (-15 -3504 ($ $ |t#1|)) (-15 -3347 ($ $ $)) (-15 -3504 ($ $ $)) (-15 -2035 ($ $ $)) (-15 -2057 ((-2 (|:| -1606 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3015 ((-2 (|:| -1606 $) (|:| |coef1| $)) $ $)) (-15 -4272 ((-2 (|:| -1606 $) (|:| |coef2| $)) $ $)) (-15 -2355 ($ $ $)) (-15 -4205 ((-639 $) $ $)) (-15 -2672 ($ $ $)) (-15 -4382 ($ $ $ (-766))) (-15 -1378 ($ $ $ $ (-766))) (-15 -2746 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-451)) (PROGN (-15 -1606 (|t#1| |t#1| $)) (-15 -1814 ($ $)) (-15 -1634 ($ $)) (-15 -3349 ($ $)) (-15 -3181 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-562)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #0#) -4037 (|has| |#1| (-1033 (-406 (-562)))) (|has| |#1| (-38 (-406 (-562))))) ((-612 (-562)) . T) ((-612 |#1|) . T) ((-612 |#3|) . T) ((-612 $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451))) ((-609 (-857)) . T) ((-609 (-947 |#1|)) |has| |#3| (-610 (-1168))) ((-171) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451)) (|has| |#1| (-171))) ((-610 (-535)) -12 (|has| |#1| (-610 (-535))) (|has| |#3| (-610 (-535)))) ((-610 (-887 (-378))) -12 (|has| |#1| (-610 (-887 (-378)))) (|has| |#3| (-610 (-887 (-378))))) ((-610 (-887 (-562))) -12 (|has| |#1| (-610 (-887 (-562)))) (|has| |#3| (-610 (-887 (-562))))) ((-610 (-947 |#1|)) |has| |#3| (-610 (-1168))) ((-610 (-1150)) -12 (|has| |#1| (-1033 (-562))) (|has| |#3| (-610 (-1168)))) ((-289) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451))) ((-308 $) . T) ((-325 |#1| |#2|) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-451) -4037 (|has| |#1| (-904)) (|has| |#1| (-451))) ((-513 |#3| |#1|) . T) ((-513 |#3| $) . T) ((-513 $ $) . T) ((-554) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451))) ((-642 #0#) |has| |#1| (-38 (-406 (-562)))) ((-642 |#1|) . T) ((-642 $) . T) ((-635 (-562)) |has| |#1| (-635 (-562))) ((-635 |#1|) . T) ((-712 #0#) |has| |#1| (-38 (-406 (-562)))) ((-712 |#1|) |has| |#1| (-171)) ((-712 $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451))) ((-721) . T) ((-845) |has| |#1| (-845)) ((-895 |#3|) . T) ((-881 (-378)) -12 (|has| |#1| (-881 (-378))) (|has| |#3| (-881 (-378)))) ((-881 (-562)) -12 (|has| |#1| (-881 (-562))) (|has| |#3| (-881 (-562)))) ((-944 |#1| |#2| |#3|) . T) ((-904) |has| |#1| (-904)) ((-1033 (-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((-1033 (-562)) |has| |#1| (-1033 (-562))) ((-1033 |#1|) . T) ((-1033 |#3|) . T) ((-1050 #0#) |has| |#1| (-38 (-406 (-562)))) ((-1050 |#1|) . T) ((-1050 $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451)) (|has| |#1| (-171))) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1211) |has| |#1| (-904))) -((-4041 (((-112) $ $) NIL)) (-3696 (((-1150) $) NIL)) (-2453 (((-639 (-1127)) $) 13)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 24) (($ (-1173)) NIL) (((-1173) $) NIL)) (-3265 (((-1127) $) 15)) (-1733 (((-112) $ $) NIL))) -(((-1059) (-13 (-1075) (-10 -8 (-15 -2453 ((-639 (-1127)) $)) (-15 -3265 ((-1127) $))))) (T -1059)) -((-2453 (*1 *2 *1) (-12 (-5 *2 (-639 (-1127))) (-5 *1 (-1059)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1059))))) -(-13 (-1075) (-10 -8 (-15 -2453 ((-639 (-1127)) $)) (-15 -3265 ((-1127) $)))) -((-4325 (((-112) |#3| $) 13)) (-2608 (((-3 $ "failed") |#3| (-916)) 23)) (-1694 (((-3 |#3| "failed") |#3| $) 38)) (-2696 (((-112) |#3| $) 16)) (-3855 (((-112) |#3| $) 14))) -(((-1060 |#1| |#2| |#3|) (-10 -8 (-15 -2608 ((-3 |#1| "failed") |#3| (-916))) (-15 -1694 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2696 ((-112) |#3| |#1|)) (-15 -3855 ((-112) |#3| |#1|)) (-15 -4325 ((-112) |#3| |#1|))) (-1061 |#2| |#3|) (-13 (-843) (-362)) (-1232 |#2|)) (T -1060)) -NIL -(-10 -8 (-15 -2608 ((-3 |#1| "failed") |#3| (-916))) (-15 -1694 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2696 ((-112) |#3| |#1|)) (-15 -3855 ((-112) |#3| |#1|)) (-15 -4325 ((-112) |#3| |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) |#2| $) 21)) (-1587 (((-562) |#2| $) 22)) (-2608 (((-3 $ "failed") |#2| (-916)) 15)) (-2918 ((|#1| |#2| $ |#1|) 13)) (-1694 (((-3 |#2| "failed") |#2| $) 18)) (-2696 (((-112) |#2| $) 19)) (-3855 (((-112) |#2| $) 20)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-3371 ((|#2| $) 17)) (-4053 (((-857) $) 11)) (-1406 ((|#1| |#2| $ |#1|) 14)) (-4383 (((-639 $) |#2|) 16)) (-1733 (((-112) $ $) 6))) -(((-1061 |#1| |#2|) (-139) (-13 (-843) (-362)) (-1232 |t#1|)) (T -1061)) -((-1587 (*1 *2 *3 *1) (-12 (-4 *1 (-1061 *4 *3)) (-4 *4 (-13 (-843) (-362))) (-4 *3 (-1232 *4)) (-5 *2 (-562)))) (-4325 (*1 *2 *3 *1) (-12 (-4 *1 (-1061 *4 *3)) (-4 *4 (-13 (-843) (-362))) (-4 *3 (-1232 *4)) (-5 *2 (-112)))) (-3855 (*1 *2 *3 *1) (-12 (-4 *1 (-1061 *4 *3)) (-4 *4 (-13 (-843) (-362))) (-4 *3 (-1232 *4)) (-5 *2 (-112)))) (-2696 (*1 *2 *3 *1) (-12 (-4 *1 (-1061 *4 *3)) (-4 *4 (-13 (-843) (-362))) (-4 *3 (-1232 *4)) (-5 *2 (-112)))) (-1694 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1061 *3 *2)) (-4 *3 (-13 (-843) (-362))) (-4 *2 (-1232 *3)))) (-3371 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *2)) (-4 *3 (-13 (-843) (-362))) (-4 *2 (-1232 *3)))) (-4383 (*1 *2 *3) (-12 (-4 *4 (-13 (-843) (-362))) (-4 *3 (-1232 *4)) (-5 *2 (-639 *1)) (-4 *1 (-1061 *4 *3)))) (-2608 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-916)) (-4 *4 (-13 (-843) (-362))) (-4 *1 (-1061 *4 *2)) (-4 *2 (-1232 *4)))) (-1406 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1061 *2 *3)) (-4 *2 (-13 (-843) (-362))) (-4 *3 (-1232 *2)))) (-2918 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1061 *2 *3)) (-4 *2 (-13 (-843) (-362))) (-4 *3 (-1232 *2))))) -(-13 (-1092) (-10 -8 (-15 -1587 ((-562) |t#2| $)) (-15 -4325 ((-112) |t#2| $)) (-15 -3855 ((-112) |t#2| $)) (-15 -2696 ((-112) |t#2| $)) (-15 -1694 ((-3 |t#2| "failed") |t#2| $)) (-15 -3371 (|t#2| $)) (-15 -4383 ((-639 $) |t#2|)) (-15 -2608 ((-3 $ "failed") |t#2| (-916))) (-15 -1406 (|t#1| |t#2| $ |t#1|)) (-15 -2918 (|t#1| |t#2| $ |t#1|)))) -(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) -((-4211 (((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) (-639 |#4|) (-639 |#5|) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) (-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) (-766)) 95)) (-2846 (((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5| (-766)) 56)) (-4192 (((-1261) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) (-766)) 87)) (-1930 (((-766) (-639 |#4|) (-639 |#5|)) 27)) (-3341 (((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5| (-766)) 58) (((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5| (-766) (-112)) 60)) (-3758 (((-639 |#5|) (-639 |#4|) (-639 |#5|) (-112) (-112) (-112) (-112) (-112)) 78) (((-639 |#5|) (-639 |#4|) (-639 |#5|) (-112) (-112)) 79)) (-4208 (((-1150) (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) 82)) (-2329 (((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5| (-112)) 55)) (-3608 (((-766) (-639 |#4|) (-639 |#5|)) 19))) -(((-1062 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3608 ((-766) (-639 |#4|) (-639 |#5|))) (-15 -1930 ((-766) (-639 |#4|) (-639 |#5|))) (-15 -2329 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5| (-112))) (-15 -2846 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5| (-766))) (-15 -2846 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5|)) (-15 -3341 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5| (-766) (-112))) (-15 -3341 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5| (-766))) (-15 -3341 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5|)) (-15 -3758 ((-639 |#5|) (-639 |#4|) (-639 |#5|) (-112) (-112))) (-15 -3758 ((-639 |#5|) (-639 |#4|) (-639 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4211 ((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) (-639 |#4|) (-639 |#5|) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) (-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) (-766))) (-15 -4208 ((-1150) (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|)))) (-15 -4192 ((-1261) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) (-766)))) (-451) (-788) (-845) (-1058 |#1| |#2| |#3|) (-1064 |#1| |#2| |#3| |#4|)) (T -1062)) -((-4192 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-2 (|:| |val| (-639 *8)) (|:| -1501 *9)))) (-5 *4 (-766)) (-4 *8 (-1058 *5 *6 *7)) (-4 *9 (-1064 *5 *6 *7 *8)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-1261)) (-5 *1 (-1062 *5 *6 *7 *8 *9)))) (-4208 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-639 *7)) (|:| -1501 *8))) (-4 *7 (-1058 *4 *5 *6)) (-4 *8 (-1064 *4 *5 *6 *7)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-1150)) (-5 *1 (-1062 *4 *5 *6 *7 *8)))) (-4211 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-639 *11)) (|:| |todo| (-639 (-2 (|:| |val| *3) (|:| -1501 *11)))))) (-5 *6 (-766)) (-5 *2 (-639 (-2 (|:| |val| (-639 *10)) (|:| -1501 *11)))) (-5 *3 (-639 *10)) (-5 *4 (-639 *11)) (-4 *10 (-1058 *7 *8 *9)) (-4 *11 (-1064 *7 *8 *9 *10)) (-4 *7 (-451)) (-4 *8 (-788)) (-4 *9 (-845)) (-5 *1 (-1062 *7 *8 *9 *10 *11)))) (-3758 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-639 *9)) (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) (-4 *9 (-1064 *5 *6 *7 *8)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *1 (-1062 *5 *6 *7 *8 *9)))) (-3758 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-639 *9)) (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) (-4 *9 (-1064 *5 *6 *7 *8)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *1 (-1062 *5 *6 *7 *8 *9)))) (-3341 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-639 *4)) (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1501 *4)))))) (-5 *1 (-1062 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-3341 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-766)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) (-4 *3 (-1058 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-639 *4)) (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1501 *4)))))) (-5 *1 (-1062 *6 *7 *8 *3 *4)) (-4 *4 (-1064 *6 *7 *8 *3)))) (-3341 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-766)) (-5 *6 (-112)) (-4 *7 (-451)) (-4 *8 (-788)) (-4 *9 (-845)) (-4 *3 (-1058 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-639 *4)) (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1501 *4)))))) (-5 *1 (-1062 *7 *8 *9 *3 *4)) (-4 *4 (-1064 *7 *8 *9 *3)))) (-2846 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-639 *4)) (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1501 *4)))))) (-5 *1 (-1062 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-2846 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-766)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) (-4 *3 (-1058 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-639 *4)) (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1501 *4)))))) (-5 *1 (-1062 *6 *7 *8 *3 *4)) (-4 *4 (-1064 *6 *7 *8 *3)))) (-2329 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) (-4 *3 (-1058 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-639 *4)) (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1501 *4)))))) (-5 *1 (-1062 *6 *7 *8 *3 *4)) (-4 *4 (-1064 *6 *7 *8 *3)))) (-1930 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-639 *9)) (-4 *8 (-1058 *5 *6 *7)) (-4 *9 (-1064 *5 *6 *7 *8)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-766)) (-5 *1 (-1062 *5 *6 *7 *8 *9)))) (-3608 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-639 *9)) (-4 *8 (-1058 *5 *6 *7)) (-4 *9 (-1064 *5 *6 *7 *8)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-766)) (-5 *1 (-1062 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -3608 ((-766) (-639 |#4|) (-639 |#5|))) (-15 -1930 ((-766) (-639 |#4|) (-639 |#5|))) (-15 -2329 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5| (-112))) (-15 -2846 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5| (-766))) (-15 -2846 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5|)) (-15 -3341 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5| (-766) (-112))) (-15 -3341 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5| (-766))) (-15 -3341 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5|)) (-15 -3758 ((-639 |#5|) (-639 |#4|) (-639 |#5|) (-112) (-112))) (-15 -3758 ((-639 |#5|) (-639 |#4|) (-639 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4211 ((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) (-639 |#4|) (-639 |#5|) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) (-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) (-766))) (-15 -4208 ((-1150) (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|)))) (-15 -4192 ((-1261) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) (-766)))) -((-3189 (((-112) |#5| $) 20)) (-2633 (((-112) |#5| $) 23)) (-2813 (((-112) |#5| $) 16) (((-112) $) 44)) (-4169 (((-639 $) |#5| $) NIL) (((-639 $) (-639 |#5|) $) 76) (((-639 $) (-639 |#5|) (-639 $)) 74) (((-639 $) |#5| (-639 $)) 77)) (-4316 (($ $ |#5|) NIL) (((-639 $) |#5| $) NIL) (((-639 $) |#5| (-639 $)) 59) (((-639 $) (-639 |#5|) $) 61) (((-639 $) (-639 |#5|) (-639 $)) 63)) (-4125 (((-639 $) |#5| $) NIL) (((-639 $) |#5| (-639 $)) 53) (((-639 $) (-639 |#5|) $) 55) (((-639 $) (-639 |#5|) (-639 $)) 57)) (-1972 (((-112) |#5| $) 26))) -(((-1063 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4316 ((-639 |#1|) (-639 |#5|) (-639 |#1|))) (-15 -4316 ((-639 |#1|) (-639 |#5|) |#1|)) (-15 -4316 ((-639 |#1|) |#5| (-639 |#1|))) (-15 -4316 ((-639 |#1|) |#5| |#1|)) (-15 -4125 ((-639 |#1|) (-639 |#5|) (-639 |#1|))) (-15 -4125 ((-639 |#1|) (-639 |#5|) |#1|)) (-15 -4125 ((-639 |#1|) |#5| (-639 |#1|))) (-15 -4125 ((-639 |#1|) |#5| |#1|)) (-15 -4169 ((-639 |#1|) |#5| (-639 |#1|))) (-15 -4169 ((-639 |#1|) (-639 |#5|) (-639 |#1|))) (-15 -4169 ((-639 |#1|) (-639 |#5|) |#1|)) (-15 -4169 ((-639 |#1|) |#5| |#1|)) (-15 -2633 ((-112) |#5| |#1|)) (-15 -2813 ((-112) |#1|)) (-15 -1972 ((-112) |#5| |#1|)) (-15 -3189 ((-112) |#5| |#1|)) (-15 -2813 ((-112) |#5| |#1|)) (-15 -4316 (|#1| |#1| |#5|))) (-1064 |#2| |#3| |#4| |#5|) (-451) (-788) (-845) (-1058 |#2| |#3| |#4|)) (T -1063)) -NIL -(-10 -8 (-15 -4316 ((-639 |#1|) (-639 |#5|) (-639 |#1|))) (-15 -4316 ((-639 |#1|) (-639 |#5|) |#1|)) (-15 -4316 ((-639 |#1|) |#5| (-639 |#1|))) (-15 -4316 ((-639 |#1|) |#5| |#1|)) (-15 -4125 ((-639 |#1|) (-639 |#5|) (-639 |#1|))) (-15 -4125 ((-639 |#1|) (-639 |#5|) |#1|)) (-15 -4125 ((-639 |#1|) |#5| (-639 |#1|))) (-15 -4125 ((-639 |#1|) |#5| |#1|)) (-15 -4169 ((-639 |#1|) |#5| (-639 |#1|))) (-15 -4169 ((-639 |#1|) (-639 |#5|) (-639 |#1|))) (-15 -4169 ((-639 |#1|) (-639 |#5|) |#1|)) (-15 -4169 ((-639 |#1|) |#5| |#1|)) (-15 -2633 ((-112) |#5| |#1|)) (-15 -2813 ((-112) |#1|)) (-15 -1972 ((-112) |#5| |#1|)) (-15 -3189 ((-112) |#5| |#1|)) (-15 -2813 ((-112) |#5| |#1|)) (-15 -4316 (|#1| |#1| |#5|))) -((-4041 (((-112) $ $) 7)) (-1330 (((-639 (-2 (|:| -1449 $) (|:| -3315 (-639 |#4|)))) (-639 |#4|)) 85)) (-3672 (((-639 $) (-639 |#4|)) 86) (((-639 $) (-639 |#4|) (-112)) 111)) (-1401 (((-639 |#3|) $) 33)) (-2799 (((-112) $) 26)) (-4370 (((-112) $) 17 (|has| |#1| (-554)))) (-4177 (((-112) |#4| $) 101) (((-112) $) 97)) (-3623 ((|#4| |#4| $) 92)) (-1977 (((-639 (-2 (|:| |val| |#4|) (|:| -1501 $))) |#4| $) 126)) (-1395 (((-2 (|:| |under| $) (|:| -3870 $) (|:| |upper| $)) $ |#3|) 27)) (-3735 (((-112) $ (-766)) 44)) (-3556 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4403))) (((-3 |#4| "failed") $ |#3|) 79)) (-3329 (($) 45 T CONST)) (-2169 (((-112) $) 22 (|has| |#1| (-554)))) (-2183 (((-112) $ $) 24 (|has| |#1| (-554)))) (-2864 (((-112) $ $) 23 (|has| |#1| (-554)))) (-4219 (((-112) $) 25 (|has| |#1| (-554)))) (-4227 (((-639 |#4|) (-639 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2037 (((-639 |#4|) (-639 |#4|) $) 18 (|has| |#1| (-554)))) (-4230 (((-639 |#4|) (-639 |#4|) $) 19 (|has| |#1| (-554)))) (-4048 (((-3 $ "failed") (-639 |#4|)) 36)) (-3960 (($ (-639 |#4|)) 35)) (-1434 (((-3 $ "failed") $) 82)) (-3255 ((|#4| |#4| $) 89)) (-1459 (($ $) 68 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4403))))) (-1475 (($ |#4| $) 67 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4403)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4403)))) (-1441 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-554)))) (-3300 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2227 ((|#4| |#4| $) 87)) (-1954 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4403)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4403))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4403))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1471 (((-2 (|:| -1449 (-639 |#4|)) (|:| -3315 (-639 |#4|))) $) 105)) (-3189 (((-112) |#4| $) 136)) (-2633 (((-112) |#4| $) 133)) (-2813 (((-112) |#4| $) 137) (((-112) $) 134)) (-1720 (((-639 |#4|) $) 52 (|has| $ (-6 -4403)))) (-1493 (((-112) |#4| $) 104) (((-112) $) 103)) (-3761 ((|#3| $) 34)) (-4172 (((-112) $ (-766)) 43)) (-2123 (((-639 |#4|) $) 53 (|has| $ (-6 -4403)))) (-1572 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4403))))) (-1491 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#4| |#4|) $) 47)) (-3133 (((-639 |#3|) $) 32)) (-3112 (((-112) |#3| $) 31)) (-4147 (((-112) $ (-766)) 42)) (-3696 (((-1150) $) 9)) (-4093 (((-3 |#4| (-639 $)) |#4| |#4| $) 128)) (-2672 (((-639 (-2 (|:| |val| |#4|) (|:| -1501 $))) |#4| |#4| $) 127)) (-1504 (((-3 |#4| "failed") $) 83)) (-2334 (((-639 $) |#4| $) 129)) (-4302 (((-3 (-112) (-639 $)) |#4| $) 132)) (-3792 (((-639 (-2 (|:| |val| (-112)) (|:| -1501 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-4169 (((-639 $) |#4| $) 125) (((-639 $) (-639 |#4|) $) 124) (((-639 $) (-639 |#4|) (-639 $)) 123) (((-639 $) |#4| (-639 $)) 122)) (-1997 (($ |#4| $) 117) (($ (-639 |#4|) $) 116)) (-2063 (((-639 |#4|) $) 107)) (-1645 (((-112) |#4| $) 99) (((-112) $) 95)) (-2651 ((|#4| |#4| $) 90)) (-1789 (((-112) $ $) 110)) (-4123 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-554)))) (-2830 (((-112) |#4| $) 100) (((-112) $) 96)) (-1630 ((|#4| |#4| $) 91)) (-1709 (((-1112) $) 10)) (-1421 (((-3 |#4| "failed") $) 84)) (-1963 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4333 (((-3 $ "failed") $ |#4|) 78)) (-4316 (($ $ |#4|) 77) (((-639 $) |#4| $) 115) (((-639 $) |#4| (-639 $)) 114) (((-639 $) (-639 |#4|) $) 113) (((-639 $) (-639 |#4|) (-639 $)) 112)) (-3008 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 |#4|) (-639 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-639 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))))) (-1452 (((-112) $ $) 38)) (-3087 (((-112) $) 41)) (-1663 (($) 40)) (-2250 (((-766) $) 106)) (-1723 (((-766) |#4| $) 54 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4403)))) (((-766) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4403)))) (-4220 (($ $) 39)) (-4208 (((-535) $) 69 (|has| |#4| (-610 (-535))))) (-4064 (($ (-639 |#4|)) 60)) (-2316 (($ $ |#3|) 28)) (-2180 (($ $ |#3|) 30)) (-2209 (($ $) 88)) (-1962 (($ $ |#3|) 29)) (-4053 (((-857) $) 11) (((-639 |#4|) $) 37)) (-4157 (((-766) $) 76 (|has| |#3| (-367)))) (-4168 (((-3 (-2 (|:| |bas| $) (|:| -2774 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2774 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2350 (((-112) $ (-1 (-112) |#4| (-639 |#4|))) 98)) (-4125 (((-639 $) |#4| $) 121) (((-639 $) |#4| (-639 $)) 120) (((-639 $) (-639 |#4|) $) 119) (((-639 $) (-639 |#4|) (-639 $)) 118)) (-2879 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4403)))) (-3278 (((-639 |#3|) $) 81)) (-1972 (((-112) |#4| $) 135)) (-3782 (((-112) |#3| $) 80)) (-1733 (((-112) $ $) 6)) (-3492 (((-766) $) 46 (|has| $ (-6 -4403))))) -(((-1064 |#1| |#2| |#3| |#4|) (-139) (-451) (-788) (-845) (-1058 |t#1| |t#2| |t#3|)) (T -1064)) -((-2813 (*1 *2 *3 *1) (-12 (-4 *1 (-1064 *4 *5 *6 *3)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112)))) (-3189 (*1 *2 *3 *1) (-12 (-4 *1 (-1064 *4 *5 *6 *3)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112)))) (-1972 (*1 *2 *3 *1) (-12 (-4 *1 (-1064 *4 *5 *6 *3)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112)))) (-2813 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5 *6)) (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-112)))) (-2633 (*1 *2 *3 *1) (-12 (-4 *1 (-1064 *4 *5 *6 *3)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112)))) (-4302 (*1 *2 *3 *1) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-3 (-112) (-639 *1))) (-4 *1 (-1064 *4 *5 *6 *3)))) (-3792 (*1 *2 *3 *1) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-639 (-2 (|:| |val| (-112)) (|:| -1501 *1)))) (-4 *1 (-1064 *4 *5 *6 *3)))) (-3792 (*1 *2 *3 *1) (-12 (-4 *1 (-1064 *4 *5 *6 *3)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112)))) (-2334 (*1 *2 *3 *1) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-639 *1)) (-4 *1 (-1064 *4 *5 *6 *3)))) (-4093 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-3 *3 (-639 *1))) (-4 *1 (-1064 *4 *5 *6 *3)))) (-2672 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1501 *1)))) (-4 *1 (-1064 *4 *5 *6 *3)))) (-1977 (*1 *2 *3 *1) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1501 *1)))) (-4 *1 (-1064 *4 *5 *6 *3)))) (-4169 (*1 *2 *3 *1) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-639 *1)) (-4 *1 (-1064 *4 *5 *6 *3)))) (-4169 (*1 *2 *3 *1) (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 *1)) (-4 *1 (-1064 *4 *5 *6 *7)))) (-4169 (*1 *2 *3 *2) (-12 (-5 *2 (-639 *1)) (-5 *3 (-639 *7)) (-4 *1 (-1064 *4 *5 *6 *7)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)))) (-4169 (*1 *2 *3 *2) (-12 (-5 *2 (-639 *1)) (-4 *1 (-1064 *4 *5 *6 *3)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)))) (-4125 (*1 *2 *3 *1) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-639 *1)) (-4 *1 (-1064 *4 *5 *6 *3)))) (-4125 (*1 *2 *3 *2) (-12 (-5 *2 (-639 *1)) (-4 *1 (-1064 *4 *5 *6 *3)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)))) (-4125 (*1 *2 *3 *1) (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 *1)) (-4 *1 (-1064 *4 *5 *6 *7)))) (-4125 (*1 *2 *3 *2) (-12 (-5 *2 (-639 *1)) (-5 *3 (-639 *7)) (-4 *1 (-1064 *4 *5 *6 *7)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)))) (-1997 (*1 *1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5 *2)) (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5)))) (-1997 (*1 *1 *2 *1) (-12 (-5 *2 (-639 *6)) (-4 *1 (-1064 *3 *4 *5 *6)) (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)))) (-4316 (*1 *2 *3 *1) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-639 *1)) (-4 *1 (-1064 *4 *5 *6 *3)))) (-4316 (*1 *2 *3 *2) (-12 (-5 *2 (-639 *1)) (-4 *1 (-1064 *4 *5 *6 *3)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)))) (-4316 (*1 *2 *3 *1) (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 *1)) (-4 *1 (-1064 *4 *5 *6 *7)))) (-4316 (*1 *2 *3 *2) (-12 (-5 *2 (-639 *1)) (-5 *3 (-639 *7)) (-4 *1 (-1064 *4 *5 *6 *7)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)))) (-3672 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-639 *1)) (-4 *1 (-1064 *5 *6 *7 *8))))) -(-13 (-1200 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2813 ((-112) |t#4| $)) (-15 -3189 ((-112) |t#4| $)) (-15 -1972 ((-112) |t#4| $)) (-15 -2813 ((-112) $)) (-15 -2633 ((-112) |t#4| $)) (-15 -4302 ((-3 (-112) (-639 $)) |t#4| $)) (-15 -3792 ((-639 (-2 (|:| |val| (-112)) (|:| -1501 $))) |t#4| $)) (-15 -3792 ((-112) |t#4| $)) (-15 -2334 ((-639 $) |t#4| $)) (-15 -4093 ((-3 |t#4| (-639 $)) |t#4| |t#4| $)) (-15 -2672 ((-639 (-2 (|:| |val| |t#4|) (|:| -1501 $))) |t#4| |t#4| $)) (-15 -1977 ((-639 (-2 (|:| |val| |t#4|) (|:| -1501 $))) |t#4| $)) (-15 -4169 ((-639 $) |t#4| $)) (-15 -4169 ((-639 $) (-639 |t#4|) $)) (-15 -4169 ((-639 $) (-639 |t#4|) (-639 $))) (-15 -4169 ((-639 $) |t#4| (-639 $))) (-15 -4125 ((-639 $) |t#4| $)) (-15 -4125 ((-639 $) |t#4| (-639 $))) (-15 -4125 ((-639 $) (-639 |t#4|) $)) (-15 -4125 ((-639 $) (-639 |t#4|) (-639 $))) (-15 -1997 ($ |t#4| $)) (-15 -1997 ($ (-639 |t#4|) $)) (-15 -4316 ((-639 $) |t#4| $)) (-15 -4316 ((-639 $) |t#4| (-639 $))) (-15 -4316 ((-639 $) (-639 |t#4|) $)) (-15 -4316 ((-639 $) (-639 |t#4|) (-639 $))) (-15 -3672 ((-639 $) (-639 |t#4|) (-112))))) -(((-34) . T) ((-102) . T) ((-609 (-639 |#4|)) . T) ((-609 (-857)) . T) ((-150 |#4|) . T) ((-610 (-535)) |has| |#4| (-610 (-535))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))) ((-488 |#4|) . T) ((-513 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))) ((-971 |#1| |#2| |#3| |#4|) . T) ((-1092) . T) ((-1200 |#1| |#2| |#3| |#4|) . T) ((-1207) . T)) -((-3217 (((-639 (-2 (|:| |val| |#4|) (|:| -1501 |#5|))) |#4| |#5|) 81)) (-4054 (((-639 (-2 (|:| |val| |#4|) (|:| -1501 |#5|))) |#4| |#4| |#5|) 112)) (-1878 (((-639 |#5|) |#4| |#5|) 70)) (-2939 (((-639 (-2 (|:| |val| (-112)) (|:| -1501 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-3005 (((-1261)) 37)) (-2125 (((-1261)) 26)) (-4354 (((-1261) (-1150) (-1150) (-1150)) 33)) (-3845 (((-1261) (-1150) (-1150) (-1150)) 22)) (-2424 (((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) |#4| |#4| |#5|) 95)) (-2580 (((-639 (-2 (|:| |val| |#4|) (|:| -1501 |#5|))) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) |#3| (-112)) 106) (((-639 (-2 (|:| |val| |#4|) (|:| -1501 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-2497 (((-639 (-2 (|:| |val| |#4|) (|:| -1501 |#5|))) |#4| |#4| |#5|) 101))) -(((-1065 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3845 ((-1261) (-1150) (-1150) (-1150))) (-15 -2125 ((-1261))) (-15 -4354 ((-1261) (-1150) (-1150) (-1150))) (-15 -3005 ((-1261))) (-15 -2424 ((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) |#4| |#4| |#5|)) (-15 -2580 ((-639 (-2 (|:| |val| |#4|) (|:| -1501 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2580 ((-639 (-2 (|:| |val| |#4|) (|:| -1501 |#5|))) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) |#3| (-112))) (-15 -2497 ((-639 (-2 (|:| |val| |#4|) (|:| -1501 |#5|))) |#4| |#4| |#5|)) (-15 -4054 ((-639 (-2 (|:| |val| |#4|) (|:| -1501 |#5|))) |#4| |#4| |#5|)) (-15 -2939 ((-112) |#4| |#5|)) (-15 -2939 ((-639 (-2 (|:| |val| (-112)) (|:| -1501 |#5|))) |#4| |#5|)) (-15 -1878 ((-639 |#5|) |#4| |#5|)) (-15 -3217 ((-639 (-2 (|:| |val| |#4|) (|:| -1501 |#5|))) |#4| |#5|))) (-451) (-788) (-845) (-1058 |#1| |#2| |#3|) (-1064 |#1| |#2| |#3| |#4|)) (T -1065)) -((-3217 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1501 *4)))) (-5 *1 (-1065 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-1878 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 *4)) (-5 *1 (-1065 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-2939 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 (-2 (|:| |val| (-112)) (|:| -1501 *4)))) (-5 *1 (-1065 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-2939 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1065 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-4054 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1501 *4)))) (-5 *1 (-1065 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-2497 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1501 *4)))) (-5 *1 (-1065 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-2580 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 (-2 (|:| |val| (-639 *8)) (|:| -1501 *9)))) (-5 *5 (-112)) (-4 *8 (-1058 *6 *7 *4)) (-4 *9 (-1064 *6 *7 *4 *8)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *4 (-845)) (-5 *2 (-639 (-2 (|:| |val| *8) (|:| -1501 *9)))) (-5 *1 (-1065 *6 *7 *4 *8 *9)))) (-2580 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) (-4 *3 (-1058 *6 *7 *8)) (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1501 *4)))) (-5 *1 (-1065 *6 *7 *8 *3 *4)) (-4 *4 (-1064 *6 *7 *8 *3)))) (-2424 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 (-2 (|:| |val| (-639 *3)) (|:| -1501 *4)))) (-5 *1 (-1065 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-3005 (*1 *2) (-12 (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-1261)) (-5 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *7 (-1064 *3 *4 *5 *6)))) (-4354 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1150)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-1261)) (-5 *1 (-1065 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) (-2125 (*1 *2) (-12 (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-1261)) (-5 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *7 (-1064 *3 *4 *5 *6)))) (-3845 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1150)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-1261)) (-5 *1 (-1065 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7))))) -(-10 -7 (-15 -3845 ((-1261) (-1150) (-1150) (-1150))) (-15 -2125 ((-1261))) (-15 -4354 ((-1261) (-1150) (-1150) (-1150))) (-15 -3005 ((-1261))) (-15 -2424 ((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) |#4| |#4| |#5|)) (-15 -2580 ((-639 (-2 (|:| |val| |#4|) (|:| -1501 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2580 ((-639 (-2 (|:| |val| |#4|) (|:| -1501 |#5|))) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) |#3| (-112))) (-15 -2497 ((-639 (-2 (|:| |val| |#4|) (|:| -1501 |#5|))) |#4| |#4| |#5|)) (-15 -4054 ((-639 (-2 (|:| |val| |#4|) (|:| -1501 |#5|))) |#4| |#4| |#5|)) (-15 -2939 ((-112) |#4| |#5|)) (-15 -2939 ((-639 (-2 (|:| |val| (-112)) (|:| -1501 |#5|))) |#4| |#5|)) (-15 -1878 ((-639 |#5|) |#4| |#5|)) (-15 -3217 ((-639 (-2 (|:| |val| |#4|) (|:| -1501 |#5|))) |#4| |#5|))) -((-4041 (((-112) $ $) NIL)) (-4084 (((-1206) $) 13)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1743 (((-1127) $) 10)) (-4053 (((-857) $) 22) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-1066) (-13 (-1075) (-10 -8 (-15 -1743 ((-1127) $)) (-15 -4084 ((-1206) $))))) (T -1066)) -((-1743 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1066)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-1066))))) -(-13 (-1075) (-10 -8 (-15 -1743 ((-1127) $)) (-15 -4084 ((-1206) $)))) -((-4041 (((-112) $ $) NIL)) (-3253 (((-1168) $) 8)) (-3696 (((-1150) $) 16)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 11)) (-1733 (((-112) $ $) 13))) -(((-1067 |#1|) (-13 (-1092) (-10 -8 (-15 -3253 ((-1168) $)))) (-1168)) (T -1067)) -((-3253 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1067 *3)) (-14 *3 *2)))) -(-13 (-1092) (-10 -8 (-15 -3253 ((-1168) $)))) -((-4041 (((-112) $ $) NIL)) (-3170 (($ $ (-639 (-1168)) (-1 (-112) (-639 |#3|))) 33)) (-2586 (($ |#3| |#3|) 22) (($ |#3| |#3| (-639 (-1168))) 20)) (-4330 ((|#3| $) 13)) (-4048 (((-3 (-293 |#3|) "failed") $) 58)) (-3960 (((-293 |#3|) $) NIL)) (-3063 (((-639 (-1168)) $) 16)) (-3838 (((-887 |#1|) $) 11)) (-4318 ((|#3| $) 12)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2343 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-916)) 39)) (-4053 (((-857) $) 86) (($ (-293 |#3|)) 21)) (-1733 (((-112) $ $) 36))) -(((-1068 |#1| |#2| |#3|) (-13 (-1092) (-285 |#3| |#3|) (-1033 (-293 |#3|)) (-10 -8 (-15 -2586 ($ |#3| |#3|)) (-15 -2586 ($ |#3| |#3| (-639 (-1168)))) (-15 -3170 ($ $ (-639 (-1168)) (-1 (-112) (-639 |#3|)))) (-15 -3838 ((-887 |#1|) $)) (-15 -4318 (|#3| $)) (-15 -4330 (|#3| $)) (-15 -2343 (|#3| $ |#3| (-916))) (-15 -3063 ((-639 (-1168)) $)))) (-1092) (-13 (-1044) (-881 |#1|) (-845) (-610 (-887 |#1|))) (-13 (-429 |#2|) (-881 |#1|) (-610 (-887 |#1|)))) (T -1068)) -((-2586 (*1 *1 *2 *2) (-12 (-4 *3 (-1092)) (-4 *4 (-13 (-1044) (-881 *3) (-845) (-610 (-887 *3)))) (-5 *1 (-1068 *3 *4 *2)) (-4 *2 (-13 (-429 *4) (-881 *3) (-610 (-887 *3)))))) (-2586 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-639 (-1168))) (-4 *4 (-1092)) (-4 *5 (-13 (-1044) (-881 *4) (-845) (-610 (-887 *4)))) (-5 *1 (-1068 *4 *5 *2)) (-4 *2 (-13 (-429 *5) (-881 *4) (-610 (-887 *4)))))) (-3170 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 (-1168))) (-5 *3 (-1 (-112) (-639 *6))) (-4 *6 (-13 (-429 *5) (-881 *4) (-610 (-887 *4)))) (-4 *4 (-1092)) (-4 *5 (-13 (-1044) (-881 *4) (-845) (-610 (-887 *4)))) (-5 *1 (-1068 *4 *5 *6)))) (-3838 (*1 *2 *1) (-12 (-4 *3 (-1092)) (-4 *4 (-13 (-1044) (-881 *3) (-845) (-610 *2))) (-5 *2 (-887 *3)) (-5 *1 (-1068 *3 *4 *5)) (-4 *5 (-13 (-429 *4) (-881 *3) (-610 *2))))) (-4318 (*1 *2 *1) (-12 (-4 *3 (-1092)) (-4 *2 (-13 (-429 *4) (-881 *3) (-610 (-887 *3)))) (-5 *1 (-1068 *3 *4 *2)) (-4 *4 (-13 (-1044) (-881 *3) (-845) (-610 (-887 *3)))))) (-4330 (*1 *2 *1) (-12 (-4 *3 (-1092)) (-4 *2 (-13 (-429 *4) (-881 *3) (-610 (-887 *3)))) (-5 *1 (-1068 *3 *4 *2)) (-4 *4 (-13 (-1044) (-881 *3) (-845) (-610 (-887 *3)))))) (-2343 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-916)) (-4 *4 (-1092)) (-4 *5 (-13 (-1044) (-881 *4) (-845) (-610 (-887 *4)))) (-5 *1 (-1068 *4 *5 *2)) (-4 *2 (-13 (-429 *5) (-881 *4) (-610 (-887 *4)))))) (-3063 (*1 *2 *1) (-12 (-4 *3 (-1092)) (-4 *4 (-13 (-1044) (-881 *3) (-845) (-610 (-887 *3)))) (-5 *2 (-639 (-1168))) (-5 *1 (-1068 *3 *4 *5)) (-4 *5 (-13 (-429 *4) (-881 *3) (-610 (-887 *3))))))) -(-13 (-1092) (-285 |#3| |#3|) (-1033 (-293 |#3|)) (-10 -8 (-15 -2586 ($ |#3| |#3|)) (-15 -2586 ($ |#3| |#3| (-639 (-1168)))) (-15 -3170 ($ $ (-639 (-1168)) (-1 (-112) (-639 |#3|)))) (-15 -3838 ((-887 |#1|) $)) (-15 -4318 (|#3| $)) (-15 -4330 (|#3| $)) (-15 -2343 (|#3| $ |#3| (-916))) (-15 -3063 ((-639 (-1168)) $)))) -((-4041 (((-112) $ $) NIL)) (-3139 (($ (-639 (-1068 |#1| |#2| |#3|))) 13)) (-1575 (((-639 (-1068 |#1| |#2| |#3|)) $) 20)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2343 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-916)) 26)) (-4053 (((-857) $) 16)) (-1733 (((-112) $ $) 19))) -(((-1069 |#1| |#2| |#3|) (-13 (-1092) (-285 |#3| |#3|) (-10 -8 (-15 -3139 ($ (-639 (-1068 |#1| |#2| |#3|)))) (-15 -1575 ((-639 (-1068 |#1| |#2| |#3|)) $)) (-15 -2343 (|#3| $ |#3| (-916))))) (-1092) (-13 (-1044) (-881 |#1|) (-845) (-610 (-887 |#1|))) (-13 (-429 |#2|) (-881 |#1|) (-610 (-887 |#1|)))) (T -1069)) -((-3139 (*1 *1 *2) (-12 (-5 *2 (-639 (-1068 *3 *4 *5))) (-4 *3 (-1092)) (-4 *4 (-13 (-1044) (-881 *3) (-845) (-610 (-887 *3)))) (-4 *5 (-13 (-429 *4) (-881 *3) (-610 (-887 *3)))) (-5 *1 (-1069 *3 *4 *5)))) (-1575 (*1 *2 *1) (-12 (-4 *3 (-1092)) (-4 *4 (-13 (-1044) (-881 *3) (-845) (-610 (-887 *3)))) (-5 *2 (-639 (-1068 *3 *4 *5))) (-5 *1 (-1069 *3 *4 *5)) (-4 *5 (-13 (-429 *4) (-881 *3) (-610 (-887 *3)))))) (-2343 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-916)) (-4 *4 (-1092)) (-4 *5 (-13 (-1044) (-881 *4) (-845) (-610 (-887 *4)))) (-5 *1 (-1069 *4 *5 *2)) (-4 *2 (-13 (-429 *5) (-881 *4) (-610 (-887 *4))))))) -(-13 (-1092) (-285 |#3| |#3|) (-10 -8 (-15 -3139 ($ (-639 (-1068 |#1| |#2| |#3|)))) (-15 -1575 ((-639 (-1068 |#1| |#2| |#3|)) $)) (-15 -2343 (|#3| $ |#3| (-916))))) -((-3437 (((-639 (-2 (|:| -1333 (-1164 |#1|)) (|:| -2205 (-639 (-947 |#1|))))) (-639 (-947 |#1|)) (-112) (-112)) 74) (((-639 (-2 (|:| -1333 (-1164 |#1|)) (|:| -2205 (-639 (-947 |#1|))))) (-639 (-947 |#1|))) 76) (((-639 (-2 (|:| -1333 (-1164 |#1|)) (|:| -2205 (-639 (-947 |#1|))))) (-639 (-947 |#1|)) (-112)) 75))) -(((-1070 |#1| |#2|) (-10 -7 (-15 -3437 ((-639 (-2 (|:| -1333 (-1164 |#1|)) (|:| -2205 (-639 (-947 |#1|))))) (-639 (-947 |#1|)) (-112))) (-15 -3437 ((-639 (-2 (|:| -1333 (-1164 |#1|)) (|:| -2205 (-639 (-947 |#1|))))) (-639 (-947 |#1|)))) (-15 -3437 ((-639 (-2 (|:| -1333 (-1164 |#1|)) (|:| -2205 (-639 (-947 |#1|))))) (-639 (-947 |#1|)) (-112) (-112)))) (-13 (-306) (-146)) (-639 (-1168))) (T -1070)) -((-3437 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-5 *2 (-639 (-2 (|:| -1333 (-1164 *5)) (|:| -2205 (-639 (-947 *5)))))) (-5 *1 (-1070 *5 *6)) (-5 *3 (-639 (-947 *5))) (-14 *6 (-639 (-1168))))) (-3437 (*1 *2 *3) (-12 (-4 *4 (-13 (-306) (-146))) (-5 *2 (-639 (-2 (|:| -1333 (-1164 *4)) (|:| -2205 (-639 (-947 *4)))))) (-5 *1 (-1070 *4 *5)) (-5 *3 (-639 (-947 *4))) (-14 *5 (-639 (-1168))))) (-3437 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-5 *2 (-639 (-2 (|:| -1333 (-1164 *5)) (|:| -2205 (-639 (-947 *5)))))) (-5 *1 (-1070 *5 *6)) (-5 *3 (-639 (-947 *5))) (-14 *6 (-639 (-1168)))))) -(-10 -7 (-15 -3437 ((-639 (-2 (|:| -1333 (-1164 |#1|)) (|:| -2205 (-639 (-947 |#1|))))) (-639 (-947 |#1|)) (-112))) (-15 -3437 ((-639 (-2 (|:| -1333 (-1164 |#1|)) (|:| -2205 (-639 (-947 |#1|))))) (-639 (-947 |#1|)))) (-15 -3437 ((-639 (-2 (|:| -1333 (-1164 |#1|)) (|:| -2205 (-639 (-947 |#1|))))) (-639 (-947 |#1|)) (-112) (-112)))) -((-1635 (((-417 |#3|) |#3|) 18))) -(((-1071 |#1| |#2| |#3|) (-10 -7 (-15 -1635 ((-417 |#3|) |#3|))) (-1232 (-406 (-562))) (-13 (-362) (-146) (-719 (-406 (-562)) |#1|)) (-1232 |#2|)) (T -1071)) -((-1635 (*1 *2 *3) (-12 (-4 *4 (-1232 (-406 (-562)))) (-4 *5 (-13 (-362) (-146) (-719 (-406 (-562)) *4))) (-5 *2 (-417 *3)) (-5 *1 (-1071 *4 *5 *3)) (-4 *3 (-1232 *5))))) -(-10 -7 (-15 -1635 ((-417 |#3|) |#3|))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) 126)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL (|has| |#1| (-362)))) (-1965 (($ $) NIL (|has| |#1| (-362)))) (-4102 (((-112) $) NIL (|has| |#1| (-362)))) (-4342 (((-683 |#1|) (-1256 $)) NIL) (((-683 |#1|)) 115)) (-1748 ((|#1| $) 119)) (-1755 (((-1180 (-916) (-766)) (-562)) NIL (|has| |#1| (-348)))) (-2781 (((-3 $ "failed") $ $) NIL)) (-1977 (($ $) NIL (|has| |#1| (-362)))) (-3788 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1436 (((-112) $ $) NIL (|has| |#1| (-362)))) (-1382 (((-766)) 40 (|has| |#1| (-367)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) NIL)) (-3960 (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) NIL)) (-3916 (($ (-1256 |#1|) (-1256 $)) NIL) (($ (-1256 |#1|)) 43)) (-3082 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-348)))) (-1810 (($ $ $) NIL (|has| |#1| (-362)))) (-4376 (((-683 |#1|) $ (-1256 $)) NIL) (((-683 |#1|) $) NIL)) (-3449 (((-683 (-562)) (-683 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) 106) (((-683 |#1|) (-683 $)) 101)) (-1954 (($ |#2|) 61) (((-3 $ "failed") (-406 |#2|)) NIL (|has| |#1| (-362)))) (-1694 (((-3 $ "failed") $) NIL)) (-2172 (((-916)) 77)) (-1447 (($) 44 (|has| |#1| (-367)))) (-1787 (($ $ $) NIL (|has| |#1| (-362)))) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL (|has| |#1| (-362)))) (-2787 (($) NIL (|has| |#1| (-348)))) (-1844 (((-112) $) NIL (|has| |#1| (-348)))) (-2184 (($ $ (-766)) NIL (|has| |#1| (-348))) (($ $) NIL (|has| |#1| (-348)))) (-3521 (((-112) $) NIL (|has| |#1| (-362)))) (-1993 (((-916) $) NIL (|has| |#1| (-348))) (((-828 (-916)) $) NIL (|has| |#1| (-348)))) (-4367 (((-112) $) NIL)) (-4363 ((|#1| $) NIL)) (-3828 (((-3 $ "failed") $) NIL (|has| |#1| (-348)))) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-1937 ((|#2| $) 84 (|has| |#1| (-362)))) (-3549 (((-916) $) 130 (|has| |#1| (-367)))) (-1942 ((|#2| $) 58)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3696 (((-1150) $) NIL)) (-1525 (($ $) NIL (|has| |#1| (-362)))) (-3730 (($) NIL (|has| |#1| (-348)) CONST)) (-2464 (($ (-916)) 125 (|has| |#1| (-367)))) (-1709 (((-1112) $) NIL)) (-3147 (($) 121)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-362)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1753 (((-639 (-2 (|:| -1635 (-562)) (|:| -1300 (-562))))) NIL (|has| |#1| (-348)))) (-1635 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL (|has| |#1| (-362)))) (-1762 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-2044 (((-766) $) NIL (|has| |#1| (-362)))) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| |#1| (-362)))) (-2736 ((|#1| (-1256 $)) NIL) ((|#1|) 109)) (-3543 (((-766) $) NIL (|has| |#1| (-348))) (((-3 (-766) "failed") $ $) NIL (|has| |#1| (-348)))) (-4029 (($ $) NIL (-4037 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-766)) NIL (-4037 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-1168)) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-895 (-1168))))) (($ $ (-1 |#1| |#1|) (-766)) NIL (|has| |#1| (-362))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-362)))) (-2539 (((-683 |#1|) (-1256 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-362)))) (-3371 ((|#2|) 73)) (-1653 (($) NIL (|has| |#1| (-348)))) (-2205 (((-1256 |#1|) $ (-1256 $)) 89) (((-683 |#1|) (-1256 $) (-1256 $)) NIL) (((-1256 |#1|) $) 71) (((-683 |#1|) (-1256 $)) 85)) (-4208 (((-1256 |#1|) $) NIL) (($ (-1256 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (|has| |#1| (-348)))) (-4053 (((-857) $) 57) (($ (-562)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-362))) (($ (-406 (-562))) NIL (-4037 (|has| |#1| (-362)) (|has| |#1| (-1033 (-406 (-562))))))) (-2059 (($ $) NIL (|has| |#1| (-348))) (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-3683 ((|#2| $) 82)) (-1568 (((-766)) 75)) (-4291 (((-1256 $)) 81)) (-3799 (((-112) $ $) NIL (|has| |#1| (-362)))) (-2285 (($) 30 T CONST)) (-2294 (($) 19 T CONST)) (-3113 (($ $) NIL (-4037 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-766)) NIL (-4037 (-12 (|has| |#1| (-232)) (|has| |#1| (-362))) (|has| |#1| (-348)))) (($ $ (-1168)) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-362)) (|has| |#1| (-895 (-1168))))) (($ $ (-1 |#1| |#1|) (-766)) NIL (|has| |#1| (-362))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-362)))) (-1733 (((-112) $ $) 63)) (-1859 (($ $ $) NIL (|has| |#1| (-362)))) (-1847 (($ $) 67) (($ $ $) NIL)) (-1836 (($ $ $) 65)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL (|has| |#1| (-362)))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-406 (-562)) $) NIL (|has| |#1| (-362))) (($ $ (-406 (-562))) NIL (|has| |#1| (-362))))) -(((-1072 |#1| |#2| |#3|) (-719 |#1| |#2|) (-171) (-1232 |#1|) |#2|) (T -1072)) -NIL -(-719 |#1| |#2|) -((-1635 (((-417 |#3|) |#3|) 19))) -(((-1073 |#1| |#2| |#3|) (-10 -7 (-15 -1635 ((-417 |#3|) |#3|))) (-1232 (-406 (-947 (-562)))) (-13 (-362) (-146) (-719 (-406 (-947 (-562))) |#1|)) (-1232 |#2|)) (T -1073)) -((-1635 (*1 *2 *3) (-12 (-4 *4 (-1232 (-406 (-947 (-562))))) (-4 *5 (-13 (-362) (-146) (-719 (-406 (-947 (-562))) *4))) (-5 *2 (-417 *3)) (-5 *1 (-1073 *4 *5 *3)) (-4 *3 (-1232 *5))))) -(-10 -7 (-15 -1635 ((-417 |#3|) |#3|))) -((-4041 (((-112) $ $) NIL)) (-1551 (($ $ $) 14)) (-2993 (($ $ $) 15)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-3864 (($) 6)) (-4208 (((-1168) $) 18)) (-4053 (((-857) $) 12)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 13)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) 8))) -(((-1074) (-13 (-845) (-610 (-1168)) (-10 -8 (-15 -3864 ($))))) (T -1074)) -((-3864 (*1 *1) (-5 *1 (-1074)))) -(-13 (-845) (-610 (-1168)) (-10 -8 (-15 -3864 ($)))) -((-4041 (((-112) $ $) 7)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11) (($ (-1173)) 16) (((-1173) $) 15)) (-1733 (((-112) $ $) 6))) -(((-1075) (-139)) (T -1075)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-858)) . T) ((-1093) . T)) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11)) (-2241 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) +(((-1052) (-140)) (T -1052)) +NIL +(-13 (-21) (-1105)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-858)) . T) ((-1105) . T) ((-1093) . T)) +((-2421 (($ $) 16)) (-3796 (($ $) 22)) (-3787 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 49)) (-3793 (($ $) 24)) (-4215 (($ $) 11)) (-1583 (($ $) 38)) (-2220 (((-379) $) NIL) (((-225) $) NIL) (((-888 (-379)) $) 33)) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) 28) (($ (-563)) NIL) (($ (-407 (-563))) 28)) (-1675 (((-767)) 8)) (-4194 (($ $) 39))) +(((-1053 |#1|) (-10 -8 (-15 -3796 (|#1| |#1|)) (-15 -2421 (|#1| |#1|)) (-15 -4215 (|#1| |#1|)) (-15 -1583 (|#1| |#1|)) (-15 -4194 (|#1| |#1|)) (-15 -3793 (|#1| |#1|)) (-15 -3787 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -2220 ((-888 (-379)) |#1|)) (-15 -1693 (|#1| (-407 (-563)))) (-15 -1693 (|#1| (-563))) (-15 -2220 ((-225) |#1|)) (-15 -2220 ((-379) |#1|)) (-15 -1693 (|#1| (-407 (-563)))) (-15 -1693 (|#1| |#1|)) (-15 -1675 ((-767))) (-15 -1693 (|#1| (-563))) (-15 -1693 ((-858) |#1|))) (-1054)) (T -1053)) +((-1675 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1053 *3)) (-4 *3 (-1054))))) +(-10 -8 (-15 -3796 (|#1| |#1|)) (-15 -2421 (|#1| |#1|)) (-15 -4215 (|#1| |#1|)) (-15 -1583 (|#1| |#1|)) (-15 -4194 (|#1| |#1|)) (-15 -3793 (|#1| |#1|)) (-15 -3787 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -2220 ((-888 (-379)) |#1|)) (-15 -1693 (|#1| (-407 (-563)))) (-15 -1693 (|#1| (-563))) (-15 -2220 ((-225) |#1|)) (-15 -2220 ((-379) |#1|)) (-15 -1693 (|#1| (-407 (-563)))) (-15 -1693 (|#1| |#1|)) (-15 -1675 ((-767))) (-15 -1693 (|#1| (-563))) (-15 -1693 ((-858) |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-3401 (((-563) $) 90)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 42)) (-4223 (($ $) 41)) (-3156 (((-112) $) 39)) (-2421 (($ $) 88)) (-1495 (((-3 $ "failed") $ $) 19)) (-4335 (($ $) 74)) (-3205 (((-418 $) $) 73)) (-2186 (($ $) 98)) (-1919 (((-112) $ $) 60)) (-1857 (((-563) $) 115)) (-4239 (($) 17 T CONST)) (-3796 (($ $) 87)) (-2131 (((-3 (-563) "failed") $) 103) (((-3 (-407 (-563)) "failed") $) 100)) (-2058 (((-563) $) 104) (((-407 (-563)) $) 101)) (-3090 (($ $ $) 56)) (-3400 (((-3 $ "failed") $) 33)) (-3050 (($ $ $) 57)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) 52)) (-2468 (((-112) $) 72)) (-3101 (((-112) $) 113)) (-3787 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 94)) (-3827 (((-112) $) 31)) (-1645 (($ $ (-563)) 97)) (-3793 (($ $) 93)) (-1419 (((-112) $) 114)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-3084 (($ $ $) 112)) (-1777 (($ $ $) 111)) (-3513 (($ $ $) 47) (($ (-640 $)) 46)) (-3573 (((-1151) $) 9)) (-2688 (($ $) 71)) (-1694 (((-1113) $) 10)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3548 (($ $ $) 49) (($ (-640 $)) 48)) (-4215 (($ $) 89)) (-1583 (($ $) 91)) (-2174 (((-418 $) $) 75)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3008 (((-3 $ "failed") $ $) 43)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-2628 (((-767) $) 59)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 58)) (-2220 (((-379) $) 106) (((-225) $) 105) (((-888 (-379)) $) 95)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-407 (-563))) 67) (($ (-563)) 102) (($ (-407 (-563))) 99)) (-1675 (((-767)) 28)) (-4194 (($ $) 92)) (-2126 (((-112) $ $) 40)) (-2509 (($ $) 116)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1778 (((-112) $ $) 109)) (-1756 (((-112) $ $) 108)) (-1718 (((-112) $ $) 6)) (-1768 (((-112) $ $) 110)) (-1744 (((-112) $ $) 107)) (-1837 (($ $ $) 66)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 70) (($ $ (-407 (-563))) 96)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 69) (($ (-407 (-563)) $) 68))) +(((-1054) (-140)) (T -1054)) +((-2509 (*1 *1 *1) (-4 *1 (-1054))) (-3793 (*1 *1 *1) (-4 *1 (-1054))) (-4194 (*1 *1 *1) (-4 *1 (-1054))) (-1583 (*1 *1 *1) (-4 *1 (-1054))) (-3401 (*1 *2 *1) (-12 (-4 *1 (-1054)) (-5 *2 (-563)))) (-4215 (*1 *1 *1) (-4 *1 (-1054))) (-2421 (*1 *1 *1) (-4 *1 (-1054))) (-3796 (*1 *1 *1) (-4 *1 (-1054)))) +(-13 (-363) (-844) (-1018) (-1034 (-563)) (-1034 (-407 (-563))) (-998) (-611 (-888 (-379))) (-882 (-379)) (-147) (-10 -8 (-15 -3793 ($ $)) (-15 -4194 ($ $)) (-15 -1583 ($ $)) (-15 -3401 ((-563) $)) (-15 -4215 ($ $)) (-15 -2421 ($ $)) (-15 -3796 ($ $)) (-15 -2509 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-613 #0#) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-611 (-225)) . T) ((-611 (-379)) . T) ((-611 (-888 (-379))) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-555) . T) ((-643 #0#) . T) ((-643 $) . T) ((-713 #0#) . T) ((-713 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-844) . T) ((-846) . T) ((-882 (-379)) . T) ((-916) . T) ((-998) . T) ((-1018) . T) ((-1034 (-407 (-563))) . T) ((-1034 (-563)) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1212) . T)) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) |#2| $) 23)) (-3749 ((|#1| $) 10)) (-1857 (((-563) |#2| $) 87)) (-3457 (((-3 $ "failed") |#2| (-917)) 57)) (-1701 ((|#1| $) 28)) (-3527 ((|#1| |#2| $ |#1|) 37)) (-1441 (($ $) 25)) (-3400 (((-3 |#2| "failed") |#2| $) 86)) (-3101 (((-112) |#2| $) NIL)) (-1419 (((-112) |#2| $) NIL)) (-2161 (((-112) |#2| $) 24)) (-1354 ((|#1| $) 88)) (-1686 ((|#1| $) 27)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-3390 ((|#2| $) 78)) (-1693 (((-858) $) 70)) (-1403 ((|#1| |#2| $ |#1|) 38)) (-2783 (((-640 $) |#2|) 59)) (-1718 (((-112) $ $) 73))) +(((-1055 |#1| |#2|) (-13 (-1062 |#1| |#2|) (-10 -8 (-15 -1686 (|#1| $)) (-15 -1701 (|#1| $)) (-15 -3749 (|#1| $)) (-15 -1354 (|#1| $)) (-15 -1441 ($ $)) (-15 -2161 ((-112) |#2| $)) (-15 -3527 (|#1| |#2| $ |#1|)))) (-13 (-844) (-363)) (-1233 |#1|)) (T -1055)) +((-3527 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1233 *2)))) (-1686 (*1 *2 *1) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1233 *2)))) (-1701 (*1 *2 *1) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1233 *2)))) (-3749 (*1 *2 *1) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1233 *2)))) (-1354 (*1 *2 *1) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1233 *2)))) (-1441 (*1 *1 *1) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1233 *2)))) (-2161 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-844) (-363))) (-5 *2 (-112)) (-5 *1 (-1055 *4 *3)) (-4 *3 (-1233 *4))))) +(-13 (-1062 |#1| |#2|) (-10 -8 (-15 -1686 (|#1| $)) (-15 -1701 (|#1| $)) (-15 -3749 (|#1| $)) (-15 -1354 (|#1| $)) (-15 -1441 ($ $)) (-15 -2161 ((-112) |#2| $)) (-15 -3527 (|#1| |#2| $ |#1|)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-1433 (($ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-2448 (($ $ $ $) NIL)) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-1919 (((-112) $ $) NIL)) (-1857 (((-563) $) NIL)) (-3458 (($ $ $) NIL)) (-4239 (($) NIL T CONST)) (-2852 (($ (-1169)) 10) (($ (-563)) 7)) (-2131 (((-3 (-563) "failed") $) NIL)) (-2058 (((-563) $) NIL)) (-3090 (($ $ $) NIL)) (-2950 (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-684 (-563)) (-684 $)) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-3909 (((-3 (-407 (-563)) "failed") $) NIL)) (-2239 (((-112) $) NIL)) (-2651 (((-407 (-563)) $) NIL)) (-1691 (($) NIL) (($ $) NIL)) (-3050 (($ $ $) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-2468 (((-112) $) NIL)) (-4362 (($ $ $ $) NIL)) (-1544 (($ $ $) NIL)) (-3101 (((-112) $) NIL)) (-3972 (($ $ $) NIL)) (-3787 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL)) (-3827 (((-112) $) NIL)) (-3131 (((-112) $) NIL)) (-2408 (((-3 $ "failed") $) NIL)) (-1419 (((-112) $) NIL)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2692 (($ $ $ $) NIL)) (-3084 (($ $ $) NIL)) (-1777 (($ $ $) NIL)) (-2646 (($ $) NIL)) (-3415 (($ $) NIL)) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) NIL)) (-3364 (($ $ $) NIL)) (-2523 (($) NIL T CONST)) (-2824 (($ $) NIL)) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3219 (($ $) NIL)) (-2174 (((-418 $) $) NIL)) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2359 (((-112) $) NIL)) (-2628 (((-767) $) NIL)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-4202 (($ $ (-767)) NIL) (($ $) NIL)) (-3872 (($ $) NIL)) (-1872 (($ $) NIL)) (-2220 (((-563) $) 16) (((-536) $) NIL) (((-888 (-563)) $) NIL) (((-379) $) NIL) (((-225) $) NIL) (($ (-1169)) 9)) (-1693 (((-858) $) 20) (($ (-563)) 6) (($ $) NIL) (($ (-563)) 6)) (-1675 (((-767)) NIL)) (-1570 (((-112) $ $) NIL)) (-2869 (($ $ $) NIL)) (-4211 (($) NIL)) (-2126 (((-112) $ $) NIL)) (-2039 (($ $ $ $) NIL)) (-2509 (($ $) NIL)) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-3209 (($ $ (-767)) NIL) (($ $) NIL)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) NIL)) (-1826 (($ $) 19) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL))) +(((-1056) (-13 (-545) (-615 (-1169)) (-10 -8 (-6 -4394) (-6 -4399) (-6 -4395) (-15 -2852 ($ (-1169))) (-15 -2852 ($ (-563)))))) (T -1056)) +((-2852 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1056)))) (-2852 (*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1056))))) +(-13 (-545) (-615 (-1169)) (-10 -8 (-6 -4394) (-6 -4399) (-6 -4395) (-15 -2852 ($ (-1169))) (-15 -2852 ($ (-563))))) +((-1677 (((-112) $ $) NIL (-4032 (|has| (-52) (-1093)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-1093))))) (-1552 (($) NIL) (($ (-640 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))))) NIL)) (-4378 (((-1262) $ (-1169) (-1169)) NIL (|has| $ (-6 -4408)))) (-2759 (((-112) $ (-767)) NIL)) (-1822 (($) 9)) (-1849 (((-52) $ (-1169) (-52)) NIL)) (-2498 (($ $) 30)) (-2841 (($ $) 28)) (-3543 (($ $) 27)) (-4035 (($ $) 29)) (-4164 (($ $) 32)) (-2407 (($ $) 33)) (-1348 (($ $) 26)) (-1320 (($ $) 31)) (-2812 (($ (-1 (-112) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) $) NIL (|has| $ (-6 -4407)))) (-2256 (($ (-1 (-112) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) $) 25 (|has| $ (-6 -4407)))) (-1577 (((-3 (-52) "failed") (-1169) $) 40)) (-4239 (($) NIL T CONST)) (-1304 (($) 7)) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-1093))))) (-2705 (($ (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) $) 50 (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) $) NIL (|has| $ (-6 -4407))) (((-3 (-52) "failed") (-1169) $) NIL)) (-1459 (($ (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-1093)))) (($ (-1 (-112) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) $) NIL (|has| $ (-6 -4407)))) (-2444 (((-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-1 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) $ (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-1093)))) (((-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-1 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) $ (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) NIL (|has| $ (-6 -4407))) (((-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-1 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) $) NIL (|has| $ (-6 -4407)))) (-4257 (((-3 (-1151) "failed") $ (-1151) (-563)) 59)) (-4355 (((-52) $ (-1169) (-52)) NIL (|has| $ (-6 -4408)))) (-4293 (((-52) $ (-1169)) NIL)) (-2659 (((-640 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) $) NIL (|has| $ (-6 -4407))) (((-640 (-52)) $) NIL (|has| $ (-6 -4407)))) (-2581 (((-112) $ (-767)) NIL)) (-2411 (((-1169) $) NIL (|has| (-1169) (-846)))) (-2259 (((-640 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) $) 35 (|has| $ (-6 -4407))) (((-640 (-52)) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-1093)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-52) (-1093))))) (-3860 (((-1169) $) NIL (|has| (-1169) (-846)))) (-4345 (($ (-1 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL (-4032 (|has| (-52) (-1093)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-1093))))) (-1303 (((-640 (-1169)) $) NIL)) (-4173 (((-112) (-1169) $) NIL)) (-2964 (((-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) $) NIL)) (-1812 (($ (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) $) 43)) (-4318 (((-640 (-1169)) $) NIL)) (-3192 (((-112) (-1169) $) NIL)) (-1694 (((-1113) $) NIL (-4032 (|has| (-52) (-1093)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-1093))))) (-1371 (((-379) $ (-1169)) 49)) (-3779 (((-640 (-1151)) $ (-1151)) 60)) (-3781 (((-52) $) NIL (|has| (-1169) (-846)))) (-4203 (((-3 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) "failed") (-1 (-112) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) $) NIL)) (-2358 (($ $ (-52)) NIL (|has| $ (-6 -4408)))) (-3755 (((-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) $) NIL)) (-3138 (((-112) (-1 (-112) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))))) NIL (-12 (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-309 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))))) (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-1093)))) (($ $ (-294 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))))) NIL (-12 (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-309 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))))) (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-1093)))) (($ $ (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) NIL (-12 (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-309 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))))) (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-1093)))) (($ $ (-640 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) (-640 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))))) NIL (-12 (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-309 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))))) (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-1093)))) (($ $ (-640 (-52)) (-640 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093)))) (($ $ (-294 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093)))) (($ $ (-640 (-294 (-52)))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093))))) (-2026 (((-112) $ $) NIL)) (-2105 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-52) (-1093))))) (-2836 (((-640 (-52)) $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) NIL)) (-2309 (((-52) $ (-1169)) NIL) (((-52) $ (-1169) (-52)) NIL)) (-3890 (($) NIL) (($ (-640 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))))) NIL)) (-1450 (($ $ (-1169)) 51)) (-1709 (((-767) (-1 (-112) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) $) NIL (|has| $ (-6 -4407))) (((-767) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-1093)))) (((-767) (-52) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-52) (-1093)))) (((-767) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4407)))) (-1872 (($ $) NIL)) (-2220 (((-536) $) NIL (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-611 (-536))))) (-1707 (($ (-640 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))))) 37)) (-2853 (($ $ $) 38)) (-1693 (((-858) $) NIL (-4032 (|has| (-52) (-610 (-858))) (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-610 (-858)))))) (-1816 (($ $ (-1169) (-379)) 47)) (-2735 (($ $ (-1169) (-379)) 48)) (-2233 (($ (-640 (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))))) NIL)) (-4383 (((-112) (-1 (-112) (-2 (|:| -2387 (-1169)) (|:| -2557 (-52)))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) NIL (-4032 (|has| (-52) (-1093)) (|has| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (-1093))))) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-1057) (-13 (-1184 (-1169) (-52)) (-10 -8 (-15 -2853 ($ $ $)) (-15 -1304 ($)) (-15 -1348 ($ $)) (-15 -3543 ($ $)) (-15 -2841 ($ $)) (-15 -4035 ($ $)) (-15 -1320 ($ $)) (-15 -2498 ($ $)) (-15 -4164 ($ $)) (-15 -2407 ($ $)) (-15 -1816 ($ $ (-1169) (-379))) (-15 -2735 ($ $ (-1169) (-379))) (-15 -1371 ((-379) $ (-1169))) (-15 -3779 ((-640 (-1151)) $ (-1151))) (-15 -1450 ($ $ (-1169))) (-15 -1822 ($)) (-15 -4257 ((-3 (-1151) "failed") $ (-1151) (-563))) (-6 -4407)))) (T -1057)) +((-2853 (*1 *1 *1 *1) (-5 *1 (-1057))) (-1304 (*1 *1) (-5 *1 (-1057))) (-1348 (*1 *1 *1) (-5 *1 (-1057))) (-3543 (*1 *1 *1) (-5 *1 (-1057))) (-2841 (*1 *1 *1) (-5 *1 (-1057))) (-4035 (*1 *1 *1) (-5 *1 (-1057))) (-1320 (*1 *1 *1) (-5 *1 (-1057))) (-2498 (*1 *1 *1) (-5 *1 (-1057))) (-4164 (*1 *1 *1) (-5 *1 (-1057))) (-2407 (*1 *1 *1) (-5 *1 (-1057))) (-1816 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-379)) (-5 *1 (-1057)))) (-2735 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-379)) (-5 *1 (-1057)))) (-1371 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-379)) (-5 *1 (-1057)))) (-3779 (*1 *2 *1 *3) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1057)) (-5 *3 (-1151)))) (-1450 (*1 *1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1057)))) (-1822 (*1 *1) (-5 *1 (-1057))) (-4257 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1151)) (-5 *3 (-563)) (-5 *1 (-1057))))) +(-13 (-1184 (-1169) (-52)) (-10 -8 (-15 -2853 ($ $ $)) (-15 -1304 ($)) (-15 -1348 ($ $)) (-15 -3543 ($ $)) (-15 -2841 ($ $)) (-15 -4035 ($ $)) (-15 -1320 ($ $)) (-15 -2498 ($ $)) (-15 -4164 ($ $)) (-15 -2407 ($ $)) (-15 -1816 ($ $ (-1169) (-379))) (-15 -2735 ($ $ (-1169) (-379))) (-15 -1371 ((-379) $ (-1169))) (-15 -3779 ((-640 (-1151)) $ (-1151))) (-15 -1450 ($ $ (-1169))) (-15 -1822 ($)) (-15 -4257 ((-3 (-1151) "failed") $ (-1151) (-563))) (-6 -4407))) +((-4302 (($ $) 45)) (-2645 (((-112) $ $) 74)) (-2131 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 (-563) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-948 (-407 (-563)))) 226) (((-3 $ "failed") (-948 (-563))) 225) (((-3 $ "failed") (-948 |#2|)) 228)) (-2058 ((|#2| $) NIL) (((-407 (-563)) $) NIL) (((-563) $) NIL) ((|#4| $) NIL) (($ (-948 (-407 (-563)))) 214) (($ (-948 (-563))) 210) (($ (-948 |#2|)) 230)) (-2751 (($ $) NIL) (($ $ |#4|) 43)) (-3990 (((-112) $ $) 111) (((-112) $ (-640 $)) 112)) (-2921 (((-112) $) 56)) (-2521 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 106)) (-2060 (($ $) 137)) (-2003 (($ $) 133)) (-2253 (($ $) 132)) (-4189 (($ $ $) 79) (($ $ $ |#4|) 84)) (-2110 (($ $ $) 82) (($ $ $ |#4|) 86)) (-2299 (((-112) $ $) 120) (((-112) $ (-640 $)) 121)) (-2957 ((|#4| $) 33)) (-1421 (($ $ $) 109)) (-2792 (((-112) $) 55)) (-3064 (((-767) $) 35)) (-2216 (($ $) 151)) (-3208 (($ $) 148)) (-2305 (((-640 $) $) 68)) (-2196 (($ $) 57)) (-4099 (($ $) 144)) (-2120 (((-640 $) $) 65)) (-4216 (($ $) 59)) (-2726 ((|#2| $) NIL) (($ $ |#4|) 38)) (-3206 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2269 (-767))) $ $) 110)) (-2365 (((-2 (|:| -2311 $) (|:| |gap| (-767)) (|:| -3490 $) (|:| -1972 $)) $ $) 107) (((-2 (|:| -2311 $) (|:| |gap| (-767)) (|:| -3490 $) (|:| -1972 $)) $ $ |#4|) 108)) (-4227 (((-2 (|:| -2311 $) (|:| |gap| (-767)) (|:| -1972 $)) $ $) 103) (((-2 (|:| -2311 $) (|:| |gap| (-767)) (|:| -1972 $)) $ $ |#4|) 104)) (-2173 (($ $ $) 89) (($ $ $ |#4|) 94)) (-2679 (($ $ $) 90) (($ $ $ |#4|) 95)) (-2134 (((-640 $) $) 51)) (-4197 (((-112) $ $) 117) (((-112) $ (-640 $)) 118)) (-2715 (($ $ $) 102)) (-2523 (($ $) 37)) (-3009 (((-112) $ $) 72)) (-2031 (((-112) $ $) 113) (((-112) $ (-640 $)) 115)) (-4056 (($ $ $) 100)) (-2917 (($ $) 40)) (-3548 ((|#2| |#2| $) 141) (($ (-640 $)) NIL) (($ $ $) NIL)) (-2307 (($ $ |#2|) NIL) (($ $ $) 130)) (-1327 (($ $ |#2|) 125) (($ $ $) 128)) (-1935 (($ $) 48)) (-3938 (($ $) 52)) (-2220 (((-888 (-379)) $) NIL) (((-888 (-563)) $) NIL) (((-536) $) NIL) (($ (-948 (-407 (-563)))) 216) (($ (-948 (-563))) 212) (($ (-948 |#2|)) 227) (((-1151) $) 249) (((-948 |#2|) $) 161)) (-1693 (((-858) $) 30) (($ (-563)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-948 |#2|) $) 162) (($ (-407 (-563))) NIL) (($ $) NIL)) (-3738 (((-3 (-112) "failed") $ $) 71))) +(((-1058 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1693 (|#1| |#1|)) (-15 -3548 (|#1| |#1| |#1|)) (-15 -3548 (|#1| (-640 |#1|))) (-15 -1693 (|#1| (-407 (-563)))) (-15 -1693 ((-948 |#2|) |#1|)) (-15 -2220 ((-948 |#2|) |#1|)) (-15 -2220 ((-1151) |#1|)) (-15 -2216 (|#1| |#1|)) (-15 -3208 (|#1| |#1|)) (-15 -4099 (|#1| |#1|)) (-15 -2060 (|#1| |#1|)) (-15 -3548 (|#2| |#2| |#1|)) (-15 -2307 (|#1| |#1| |#1|)) (-15 -1327 (|#1| |#1| |#1|)) (-15 -2307 (|#1| |#1| |#2|)) (-15 -1327 (|#1| |#1| |#2|)) (-15 -2003 (|#1| |#1|)) (-15 -2253 (|#1| |#1|)) (-15 -2220 (|#1| (-948 |#2|))) (-15 -2058 (|#1| (-948 |#2|))) (-15 -2131 ((-3 |#1| "failed") (-948 |#2|))) (-15 -2220 (|#1| (-948 (-563)))) (-15 -2058 (|#1| (-948 (-563)))) (-15 -2131 ((-3 |#1| "failed") (-948 (-563)))) (-15 -2220 (|#1| (-948 (-407 (-563))))) (-15 -2058 (|#1| (-948 (-407 (-563))))) (-15 -2131 ((-3 |#1| "failed") (-948 (-407 (-563))))) (-15 -2715 (|#1| |#1| |#1|)) (-15 -4056 (|#1| |#1| |#1|)) (-15 -3206 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2269 (-767))) |#1| |#1|)) (-15 -1421 (|#1| |#1| |#1|)) (-15 -2521 ((-2 (|:| -3490 |#1|) (|:| -1972 |#1|)) |#1| |#1|)) (-15 -2365 ((-2 (|:| -2311 |#1|) (|:| |gap| (-767)) (|:| -3490 |#1|) (|:| -1972 |#1|)) |#1| |#1| |#4|)) (-15 -2365 ((-2 (|:| -2311 |#1|) (|:| |gap| (-767)) (|:| -3490 |#1|) (|:| -1972 |#1|)) |#1| |#1|)) (-15 -4227 ((-2 (|:| -2311 |#1|) (|:| |gap| (-767)) (|:| -1972 |#1|)) |#1| |#1| |#4|)) (-15 -4227 ((-2 (|:| -2311 |#1|) (|:| |gap| (-767)) (|:| -1972 |#1|)) |#1| |#1|)) (-15 -2679 (|#1| |#1| |#1| |#4|)) (-15 -2173 (|#1| |#1| |#1| |#4|)) (-15 -2679 (|#1| |#1| |#1|)) (-15 -2173 (|#1| |#1| |#1|)) (-15 -2110 (|#1| |#1| |#1| |#4|)) (-15 -4189 (|#1| |#1| |#1| |#4|)) (-15 -2110 (|#1| |#1| |#1|)) (-15 -4189 (|#1| |#1| |#1|)) (-15 -2299 ((-112) |#1| (-640 |#1|))) (-15 -2299 ((-112) |#1| |#1|)) (-15 -4197 ((-112) |#1| (-640 |#1|))) (-15 -4197 ((-112) |#1| |#1|)) (-15 -2031 ((-112) |#1| (-640 |#1|))) (-15 -2031 ((-112) |#1| |#1|)) (-15 -3990 ((-112) |#1| (-640 |#1|))) (-15 -3990 ((-112) |#1| |#1|)) (-15 -2645 ((-112) |#1| |#1|)) (-15 -3009 ((-112) |#1| |#1|)) (-15 -3738 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2305 ((-640 |#1|) |#1|)) (-15 -2120 ((-640 |#1|) |#1|)) (-15 -4216 (|#1| |#1|)) (-15 -2196 (|#1| |#1|)) (-15 -2921 ((-112) |#1|)) (-15 -2792 ((-112) |#1|)) (-15 -2751 (|#1| |#1| |#4|)) (-15 -2726 (|#1| |#1| |#4|)) (-15 -3938 (|#1| |#1|)) (-15 -2134 ((-640 |#1|) |#1|)) (-15 -1935 (|#1| |#1|)) (-15 -4302 (|#1| |#1|)) (-15 -2917 (|#1| |#1|)) (-15 -2523 (|#1| |#1|)) (-15 -3064 ((-767) |#1|)) (-15 -2957 (|#4| |#1|)) (-15 -2220 ((-536) |#1|)) (-15 -2220 ((-888 (-563)) |#1|)) (-15 -2220 ((-888 (-379)) |#1|)) (-15 -1693 (|#1| |#4|)) (-15 -2131 ((-3 |#4| "failed") |#1|)) (-15 -2058 (|#4| |#1|)) (-15 -2726 (|#2| |#1|)) (-15 -2751 (|#1| |#1|)) (-15 -2131 ((-3 (-563) "failed") |#1|)) (-15 -2058 ((-563) |#1|)) (-15 -2131 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2058 ((-407 (-563)) |#1|)) (-15 -2058 (|#2| |#1|)) (-15 -2131 ((-3 |#2| "failed") |#1|)) (-15 -1693 (|#1| |#2|)) (-15 -1693 (|#1| (-563))) (-15 -1693 ((-858) |#1|))) (-1059 |#2| |#3| |#4|) (-1045) (-789) (-846)) (T -1058)) +NIL +(-10 -8 (-15 -1693 (|#1| |#1|)) (-15 -3548 (|#1| |#1| |#1|)) (-15 -3548 (|#1| (-640 |#1|))) (-15 -1693 (|#1| (-407 (-563)))) (-15 -1693 ((-948 |#2|) |#1|)) (-15 -2220 ((-948 |#2|) |#1|)) (-15 -2220 ((-1151) |#1|)) (-15 -2216 (|#1| |#1|)) (-15 -3208 (|#1| |#1|)) (-15 -4099 (|#1| |#1|)) (-15 -2060 (|#1| |#1|)) (-15 -3548 (|#2| |#2| |#1|)) (-15 -2307 (|#1| |#1| |#1|)) (-15 -1327 (|#1| |#1| |#1|)) (-15 -2307 (|#1| |#1| |#2|)) (-15 -1327 (|#1| |#1| |#2|)) (-15 -2003 (|#1| |#1|)) (-15 -2253 (|#1| |#1|)) (-15 -2220 (|#1| (-948 |#2|))) (-15 -2058 (|#1| (-948 |#2|))) (-15 -2131 ((-3 |#1| "failed") (-948 |#2|))) (-15 -2220 (|#1| (-948 (-563)))) (-15 -2058 (|#1| (-948 (-563)))) (-15 -2131 ((-3 |#1| "failed") (-948 (-563)))) (-15 -2220 (|#1| (-948 (-407 (-563))))) (-15 -2058 (|#1| (-948 (-407 (-563))))) (-15 -2131 ((-3 |#1| "failed") (-948 (-407 (-563))))) (-15 -2715 (|#1| |#1| |#1|)) (-15 -4056 (|#1| |#1| |#1|)) (-15 -3206 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2269 (-767))) |#1| |#1|)) (-15 -1421 (|#1| |#1| |#1|)) (-15 -2521 ((-2 (|:| -3490 |#1|) (|:| -1972 |#1|)) |#1| |#1|)) (-15 -2365 ((-2 (|:| -2311 |#1|) (|:| |gap| (-767)) (|:| -3490 |#1|) (|:| -1972 |#1|)) |#1| |#1| |#4|)) (-15 -2365 ((-2 (|:| -2311 |#1|) (|:| |gap| (-767)) (|:| -3490 |#1|) (|:| -1972 |#1|)) |#1| |#1|)) (-15 -4227 ((-2 (|:| -2311 |#1|) (|:| |gap| (-767)) (|:| -1972 |#1|)) |#1| |#1| |#4|)) (-15 -4227 ((-2 (|:| -2311 |#1|) (|:| |gap| (-767)) (|:| -1972 |#1|)) |#1| |#1|)) (-15 -2679 (|#1| |#1| |#1| |#4|)) (-15 -2173 (|#1| |#1| |#1| |#4|)) (-15 -2679 (|#1| |#1| |#1|)) (-15 -2173 (|#1| |#1| |#1|)) (-15 -2110 (|#1| |#1| |#1| |#4|)) (-15 -4189 (|#1| |#1| |#1| |#4|)) (-15 -2110 (|#1| |#1| |#1|)) (-15 -4189 (|#1| |#1| |#1|)) (-15 -2299 ((-112) |#1| (-640 |#1|))) (-15 -2299 ((-112) |#1| |#1|)) (-15 -4197 ((-112) |#1| (-640 |#1|))) (-15 -4197 ((-112) |#1| |#1|)) (-15 -2031 ((-112) |#1| (-640 |#1|))) (-15 -2031 ((-112) |#1| |#1|)) (-15 -3990 ((-112) |#1| (-640 |#1|))) (-15 -3990 ((-112) |#1| |#1|)) (-15 -2645 ((-112) |#1| |#1|)) (-15 -3009 ((-112) |#1| |#1|)) (-15 -3738 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2305 ((-640 |#1|) |#1|)) (-15 -2120 ((-640 |#1|) |#1|)) (-15 -4216 (|#1| |#1|)) (-15 -2196 (|#1| |#1|)) (-15 -2921 ((-112) |#1|)) (-15 -2792 ((-112) |#1|)) (-15 -2751 (|#1| |#1| |#4|)) (-15 -2726 (|#1| |#1| |#4|)) (-15 -3938 (|#1| |#1|)) (-15 -2134 ((-640 |#1|) |#1|)) (-15 -1935 (|#1| |#1|)) (-15 -4302 (|#1| |#1|)) (-15 -2917 (|#1| |#1|)) (-15 -2523 (|#1| |#1|)) (-15 -3064 ((-767) |#1|)) (-15 -2957 (|#4| |#1|)) (-15 -2220 ((-536) |#1|)) (-15 -2220 ((-888 (-563)) |#1|)) (-15 -2220 ((-888 (-379)) |#1|)) (-15 -1693 (|#1| |#4|)) (-15 -2131 ((-3 |#4| "failed") |#1|)) (-15 -2058 (|#4| |#1|)) (-15 -2726 (|#2| |#1|)) (-15 -2751 (|#1| |#1|)) (-15 -2131 ((-3 (-563) "failed") |#1|)) (-15 -2058 ((-563) |#1|)) (-15 -2131 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2058 ((-407 (-563)) |#1|)) (-15 -2058 (|#2| |#1|)) (-15 -2131 ((-3 |#2| "failed") |#1|)) (-15 -1693 (|#1| |#2|)) (-15 -1693 (|#1| (-563))) (-15 -1693 ((-858) |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-2606 (((-640 |#3|) $) 110)) (-2139 (((-1165 $) $ |#3|) 125) (((-1165 |#1|) $) 124)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 87 (|has| |#1| (-555)))) (-4223 (($ $) 88 (|has| |#1| (-555)))) (-3156 (((-112) $) 90 (|has| |#1| (-555)))) (-1779 (((-767) $) 112) (((-767) $ (-640 |#3|)) 111)) (-4302 (($ $) 271)) (-2645 (((-112) $ $) 257)) (-1495 (((-3 $ "failed") $ $) 19)) (-3724 (($ $ $) 216 (|has| |#1| (-555)))) (-1623 (((-640 $) $ $) 211 (|has| |#1| (-555)))) (-2424 (((-418 (-1165 $)) (-1165 $)) 100 (|has| |#1| (-905)))) (-4335 (($ $) 98 (|has| |#1| (-452)))) (-3205 (((-418 $) $) 97 (|has| |#1| (-452)))) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 103 (|has| |#1| (-905)))) (-4239 (($) 17 T CONST)) (-2131 (((-3 |#1| "failed") $) 164) (((-3 (-407 (-563)) "failed") $) 161 (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) 159 (|has| |#1| (-1034 (-563)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-948 (-407 (-563)))) 231 (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#3| (-611 (-1169))))) (((-3 $ "failed") (-948 (-563))) 228 (-4032 (-12 (-2176 (|has| |#1| (-38 (-407 (-563))))) (|has| |#1| (-38 (-563))) (|has| |#3| (-611 (-1169)))) (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#3| (-611 (-1169)))))) (((-3 $ "failed") (-948 |#1|)) 225 (-4032 (-12 (-2176 (|has| |#1| (-38 (-407 (-563))))) (-2176 (|has| |#1| (-38 (-563)))) (|has| |#3| (-611 (-1169)))) (-12 (-2176 (|has| |#1| (-545))) (-2176 (|has| |#1| (-38 (-407 (-563))))) (|has| |#1| (-38 (-563))) (|has| |#3| (-611 (-1169)))) (-12 (-2176 (|has| |#1| (-988 (-563)))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#3| (-611 (-1169))))))) (-2058 ((|#1| $) 163) (((-407 (-563)) $) 162 (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) 160 (|has| |#1| (-1034 (-563)))) ((|#3| $) 137) (($ (-948 (-407 (-563)))) 230 (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#3| (-611 (-1169))))) (($ (-948 (-563))) 227 (-4032 (-12 (-2176 (|has| |#1| (-38 (-407 (-563))))) (|has| |#1| (-38 (-563))) (|has| |#3| (-611 (-1169)))) (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#3| (-611 (-1169)))))) (($ (-948 |#1|)) 224 (-4032 (-12 (-2176 (|has| |#1| (-38 (-407 (-563))))) (-2176 (|has| |#1| (-38 (-563)))) (|has| |#3| (-611 (-1169)))) (-12 (-2176 (|has| |#1| (-545))) (-2176 (|has| |#1| (-38 (-407 (-563))))) (|has| |#1| (-38 (-563))) (|has| |#3| (-611 (-1169)))) (-12 (-2176 (|has| |#1| (-988 (-563)))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#3| (-611 (-1169))))))) (-2742 (($ $ $ |#3|) 108 (|has| |#1| (-172))) (($ $ $) 212 (|has| |#1| (-555)))) (-2751 (($ $) 154) (($ $ |#3|) 266)) (-2950 (((-684 (-563)) (-684 $)) 134 (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 133 (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 132) (((-684 |#1|) (-684 $)) 131)) (-3990 (((-112) $ $) 256) (((-112) $ (-640 $)) 255)) (-3400 (((-3 $ "failed") $) 33)) (-2921 (((-112) $) 264)) (-2521 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 236)) (-2060 (($ $) 205 (|has| |#1| (-452)))) (-1300 (($ $) 176 (|has| |#1| (-452))) (($ $ |#3|) 105 (|has| |#1| (-452)))) (-2739 (((-640 $) $) 109)) (-2468 (((-112) $) 96 (|has| |#1| (-905)))) (-2003 (($ $) 221 (|has| |#1| (-555)))) (-2253 (($ $) 222 (|has| |#1| (-555)))) (-4189 (($ $ $) 248) (($ $ $ |#3|) 246)) (-2110 (($ $ $) 247) (($ $ $ |#3|) 245)) (-3554 (($ $ |#1| |#2| $) 172)) (-3787 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 84 (-12 (|has| |#3| (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 83 (-12 (|has| |#3| (-882 (-563))) (|has| |#1| (-882 (-563)))))) (-3827 (((-112) $) 31)) (-4096 (((-767) $) 169)) (-2299 (((-112) $ $) 250) (((-112) $ (-640 $)) 249)) (-2398 (($ $ $ $ $) 207 (|has| |#1| (-555)))) (-2957 ((|#3| $) 275)) (-2596 (($ (-1165 |#1|) |#3|) 117) (($ (-1165 $) |#3|) 116)) (-1368 (((-640 $) $) 126)) (-3920 (((-112) $) 152)) (-2588 (($ |#1| |#2|) 153) (($ $ |#3| (-767)) 119) (($ $ (-640 |#3|) (-640 (-767))) 118)) (-1421 (($ $ $) 235)) (-2625 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $ |#3|) 120)) (-2792 (((-112) $) 265)) (-2048 ((|#2| $) 170) (((-767) $ |#3|) 122) (((-640 (-767)) $ (-640 |#3|)) 121)) (-3084 (($ $ $) 79 (|has| |#1| (-846)))) (-3064 (((-767) $) 274)) (-1777 (($ $ $) 78 (|has| |#1| (-846)))) (-2803 (($ (-1 |#2| |#2|) $) 171)) (-2240 (($ (-1 |#1| |#1|) $) 151)) (-4234 (((-3 |#3| "failed") $) 123)) (-2216 (($ $) 202 (|has| |#1| (-452)))) (-3208 (($ $) 203 (|has| |#1| (-452)))) (-2305 (((-640 $) $) 260)) (-2196 (($ $) 263)) (-4099 (($ $) 204 (|has| |#1| (-452)))) (-2120 (((-640 $) $) 261)) (-4216 (($ $) 262)) (-2716 (($ $) 149)) (-2726 ((|#1| $) 148) (($ $ |#3|) 267)) (-3513 (($ (-640 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-3206 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2269 (-767))) $ $) 234)) (-2365 (((-2 (|:| -2311 $) (|:| |gap| (-767)) (|:| -3490 $) (|:| -1972 $)) $ $) 238) (((-2 (|:| -2311 $) (|:| |gap| (-767)) (|:| -3490 $) (|:| -1972 $)) $ $ |#3|) 237)) (-4227 (((-2 (|:| -2311 $) (|:| |gap| (-767)) (|:| -1972 $)) $ $) 240) (((-2 (|:| -2311 $) (|:| |gap| (-767)) (|:| -1972 $)) $ $ |#3|) 239)) (-2173 (($ $ $) 244) (($ $ $ |#3|) 242)) (-2679 (($ $ $) 243) (($ $ $ |#3|) 241)) (-3573 (((-1151) $) 9)) (-2898 (($ $ $) 210 (|has| |#1| (-555)))) (-2134 (((-640 $) $) 269)) (-3733 (((-3 (-640 $) "failed") $) 114)) (-2919 (((-3 (-640 $) "failed") $) 115)) (-4086 (((-3 (-2 (|:| |var| |#3|) (|:| -1654 (-767))) "failed") $) 113)) (-4197 (((-112) $ $) 252) (((-112) $ (-640 $)) 251)) (-2715 (($ $ $) 232)) (-2523 (($ $) 273)) (-3009 (((-112) $ $) 258)) (-2031 (((-112) $ $) 254) (((-112) $ (-640 $)) 253)) (-4056 (($ $ $) 233)) (-2917 (($ $) 272)) (-1694 (((-1113) $) 10)) (-4110 (((-2 (|:| -3548 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-555)))) (-3183 (((-2 (|:| -3548 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-555)))) (-2696 (((-112) $) 166)) (-2706 ((|#1| $) 167)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 95 (|has| |#1| (-452)))) (-3548 ((|#1| |#1| $) 206 (|has| |#1| (-452))) (($ (-640 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-1876 (((-418 (-1165 $)) (-1165 $)) 102 (|has| |#1| (-905)))) (-3116 (((-418 (-1165 $)) (-1165 $)) 101 (|has| |#1| (-905)))) (-2174 (((-418 $) $) 99 (|has| |#1| (-905)))) (-2758 (((-2 (|:| -3548 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-555)))) (-3008 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-555))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-555)))) (-2307 (($ $ |#1|) 219 (|has| |#1| (-555))) (($ $ $) 217 (|has| |#1| (-555)))) (-1327 (($ $ |#1|) 220 (|has| |#1| (-555))) (($ $ $) 218 (|has| |#1| (-555)))) (-1540 (($ $ (-640 (-294 $))) 145) (($ $ (-294 $)) 144) (($ $ $ $) 143) (($ $ (-640 $) (-640 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-640 |#3|) (-640 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-640 |#3|) (-640 $)) 138)) (-2315 (($ $ |#3|) 107 (|has| |#1| (-172)))) (-4202 (($ $ |#3|) 42) (($ $ (-640 |#3|)) 41) (($ $ |#3| (-767)) 40) (($ $ (-640 |#3|) (-640 (-767))) 39)) (-4167 ((|#2| $) 150) (((-767) $ |#3|) 130) (((-640 (-767)) $ (-640 |#3|)) 129)) (-1935 (($ $) 270)) (-3938 (($ $) 268)) (-2220 (((-888 (-379)) $) 82 (-12 (|has| |#3| (-611 (-888 (-379)))) (|has| |#1| (-611 (-888 (-379)))))) (((-888 (-563)) $) 81 (-12 (|has| |#3| (-611 (-888 (-563)))) (|has| |#1| (-611 (-888 (-563)))))) (((-536) $) 80 (-12 (|has| |#3| (-611 (-536))) (|has| |#1| (-611 (-536))))) (($ (-948 (-407 (-563)))) 229 (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#3| (-611 (-1169))))) (($ (-948 (-563))) 226 (-4032 (-12 (-2176 (|has| |#1| (-38 (-407 (-563))))) (|has| |#1| (-38 (-563))) (|has| |#3| (-611 (-1169)))) (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#3| (-611 (-1169)))))) (($ (-948 |#1|)) 223 (|has| |#3| (-611 (-1169)))) (((-1151) $) 201 (-12 (|has| |#1| (-1034 (-563))) (|has| |#3| (-611 (-1169))))) (((-948 |#1|) $) 200 (|has| |#3| (-611 (-1169))))) (-1836 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ |#3|) 106 (|has| |#1| (-452)))) (-1377 (((-3 (-1257 $) "failed") (-684 $)) 104 (-2190 (|has| $ (-145)) (|has| |#1| (-905))))) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 165) (($ |#3|) 135) (((-948 |#1|) $) 199 (|has| |#3| (-611 (-1169)))) (($ (-407 (-563))) 72 (-4032 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-38 (-407 (-563)))))) (($ $) 85 (|has| |#1| (-555)))) (-1337 (((-640 |#1|) $) 168)) (-4319 ((|#1| $ |#2|) 155) (($ $ |#3| (-767)) 128) (($ $ (-640 |#3|) (-640 (-767))) 127)) (-2779 (((-3 $ "failed") $) 73 (-4032 (-2190 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-1675 (((-767)) 28)) (-2793 (($ $ $ (-767)) 173 (|has| |#1| (-172)))) (-2126 (((-112) $ $) 89 (|has| |#1| (-555)))) (-2241 (($) 18 T CONST)) (-3738 (((-3 (-112) "failed") $ $) 259)) (-2254 (($) 30 T CONST)) (-1298 (($ $ $ $ (-767)) 208 (|has| |#1| (-555)))) (-2771 (($ $ $ (-767)) 209 (|has| |#1| (-555)))) (-3209 (($ $ |#3|) 38) (($ $ (-640 |#3|)) 37) (($ $ |#3| (-767)) 36) (($ $ (-640 |#3|) (-640 (-767))) 35)) (-1778 (((-112) $ $) 76 (|has| |#1| (-846)))) (-1756 (((-112) $ $) 75 (|has| |#1| (-846)))) (-1718 (((-112) $ $) 6)) (-1768 (((-112) $ $) 77 (|has| |#1| (-846)))) (-1744 (((-112) $ $) 74 (|has| |#1| (-846)))) (-1837 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 158 (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) 157 (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-1059 |#1| |#2| |#3|) (-140) (-1045) (-789) (-846)) (T -1059)) +((-2957 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-3064 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-767)))) (-2523 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-2917 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-4302 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-1935 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-2134 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-1059 *3 *4 *5)))) (-3938 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-2726 (*1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-2751 (*1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-2792 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-2921 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-2196 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-4216 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-2120 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-1059 *3 *4 *5)))) (-2305 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-1059 *3 *4 *5)))) (-3738 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-3009 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-2645 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-3990 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-3990 (*1 *2 *1 *3) (-12 (-5 *3 (-640 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) (-2031 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-2031 (*1 *2 *1 *3) (-12 (-5 *3 (-640 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) (-4197 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-4197 (*1 *2 *1 *3) (-12 (-5 *3 (-640 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) (-2299 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-2299 (*1 *2 *1 *3) (-12 (-5 *3 (-640 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) (-4189 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-2110 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-4189 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-2110 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-2173 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-2679 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-2173 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-2679 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-4227 (*1 *2 *1 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -2311 *1) (|:| |gap| (-767)) (|:| -1972 *1))) (-4 *1 (-1059 *3 *4 *5)))) (-4227 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-2 (|:| -2311 *1) (|:| |gap| (-767)) (|:| -1972 *1))) (-4 *1 (-1059 *4 *5 *3)))) (-2365 (*1 *2 *1 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -2311 *1) (|:| |gap| (-767)) (|:| -3490 *1) (|:| -1972 *1))) (-4 *1 (-1059 *3 *4 *5)))) (-2365 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-2 (|:| -2311 *1) (|:| |gap| (-767)) (|:| -3490 *1) (|:| -1972 *1))) (-4 *1 (-1059 *4 *5 *3)))) (-2521 (*1 *2 *1 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -3490 *1) (|:| -1972 *1))) (-4 *1 (-1059 *3 *4 *5)))) (-1421 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-3206 (*1 *2 *1 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2269 (-767)))) (-4 *1 (-1059 *3 *4 *5)))) (-4056 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-2715 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-2131 (*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-407 (-563)))) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-948 (-407 (-563)))) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))) (-2220 (*1 *1 *2) (-12 (-5 *2 (-948 (-407 (-563)))) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))) (-2131 (*1 *1 *2) (|partial| -4032 (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-2176 (-4 *3 (-38 (-407 (-563))))) (-4 *3 (-38 (-563))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))))) (-2058 (*1 *1 *2) (-4032 (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-2176 (-4 *3 (-38 (-407 (-563))))) (-4 *3 (-38 (-563))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))))) (-2220 (*1 *1 *2) (-4032 (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-2176 (-4 *3 (-38 (-407 (-563))))) (-4 *3 (-38 (-563))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))))) (-2131 (*1 *1 *2) (|partial| -4032 (-12 (-5 *2 (-948 *3)) (-12 (-2176 (-4 *3 (-38 (-407 (-563))))) (-2176 (-4 *3 (-38 (-563)))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 *3)) (-12 (-2176 (-4 *3 (-545))) (-2176 (-4 *3 (-38 (-407 (-563))))) (-4 *3 (-38 (-563))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 *3)) (-12 (-2176 (-4 *3 (-988 (-563)))) (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))))) (-2058 (*1 *1 *2) (-4032 (-12 (-5 *2 (-948 *3)) (-12 (-2176 (-4 *3 (-38 (-407 (-563))))) (-2176 (-4 *3 (-38 (-563)))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 *3)) (-12 (-2176 (-4 *3 (-545))) (-2176 (-4 *3 (-38 (-407 (-563))))) (-4 *3 (-38 (-563))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 *3)) (-12 (-2176 (-4 *3 (-988 (-563)))) (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))))) (-2220 (*1 *1 *2) (-12 (-5 *2 (-948 *3)) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *5 (-611 (-1169))) (-4 *4 (-789)) (-4 *5 (-846)))) (-2253 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-555)))) (-2003 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-555)))) (-1327 (*1 *1 *1 *2) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-555)))) (-2307 (*1 *1 *1 *2) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-555)))) (-1327 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-555)))) (-2307 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-555)))) (-3724 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-555)))) (-2758 (*1 *2 *1 *1) (-12 (-4 *3 (-555)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -3548 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1059 *3 *4 *5)))) (-3183 (*1 *2 *1 *1) (-12 (-4 *3 (-555)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -3548 *1) (|:| |coef1| *1))) (-4 *1 (-1059 *3 *4 *5)))) (-4110 (*1 *2 *1 *1) (-12 (-4 *3 (-555)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -3548 *1) (|:| |coef2| *1))) (-4 *1 (-1059 *3 *4 *5)))) (-2742 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-555)))) (-1623 (*1 *2 *1 *1) (-12 (-4 *3 (-555)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-1059 *3 *4 *5)))) (-2898 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-555)))) (-2771 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *3 (-555)))) (-1298 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *3 (-555)))) (-2398 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-555)))) (-3548 (*1 *2 *2 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-2060 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-4099 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-3208 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-2216 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452))))) +(-13 (-945 |t#1| |t#2| |t#3|) (-10 -8 (-15 -2957 (|t#3| $)) (-15 -3064 ((-767) $)) (-15 -2523 ($ $)) (-15 -2917 ($ $)) (-15 -4302 ($ $)) (-15 -1935 ($ $)) (-15 -2134 ((-640 $) $)) (-15 -3938 ($ $)) (-15 -2726 ($ $ |t#3|)) (-15 -2751 ($ $ |t#3|)) (-15 -2792 ((-112) $)) (-15 -2921 ((-112) $)) (-15 -2196 ($ $)) (-15 -4216 ($ $)) (-15 -2120 ((-640 $) $)) (-15 -2305 ((-640 $) $)) (-15 -3738 ((-3 (-112) "failed") $ $)) (-15 -3009 ((-112) $ $)) (-15 -2645 ((-112) $ $)) (-15 -3990 ((-112) $ $)) (-15 -3990 ((-112) $ (-640 $))) (-15 -2031 ((-112) $ $)) (-15 -2031 ((-112) $ (-640 $))) (-15 -4197 ((-112) $ $)) (-15 -4197 ((-112) $ (-640 $))) (-15 -2299 ((-112) $ $)) (-15 -2299 ((-112) $ (-640 $))) (-15 -4189 ($ $ $)) (-15 -2110 ($ $ $)) (-15 -4189 ($ $ $ |t#3|)) (-15 -2110 ($ $ $ |t#3|)) (-15 -2173 ($ $ $)) (-15 -2679 ($ $ $)) (-15 -2173 ($ $ $ |t#3|)) (-15 -2679 ($ $ $ |t#3|)) (-15 -4227 ((-2 (|:| -2311 $) (|:| |gap| (-767)) (|:| -1972 $)) $ $)) (-15 -4227 ((-2 (|:| -2311 $) (|:| |gap| (-767)) (|:| -1972 $)) $ $ |t#3|)) (-15 -2365 ((-2 (|:| -2311 $) (|:| |gap| (-767)) (|:| -3490 $) (|:| -1972 $)) $ $)) (-15 -2365 ((-2 (|:| -2311 $) (|:| |gap| (-767)) (|:| -3490 $) (|:| -1972 $)) $ $ |t#3|)) (-15 -2521 ((-2 (|:| -3490 $) (|:| -1972 $)) $ $)) (-15 -1421 ($ $ $)) (-15 -3206 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2269 (-767))) $ $)) (-15 -4056 ($ $ $)) (-15 -2715 ($ $ $)) (IF (|has| |t#3| (-611 (-1169))) (PROGN (-6 (-610 (-948 |t#1|))) (-6 (-611 (-948 |t#1|))) (IF (|has| |t#1| (-38 (-407 (-563)))) (PROGN (-15 -2131 ((-3 $ "failed") (-948 (-407 (-563))))) (-15 -2058 ($ (-948 (-407 (-563))))) (-15 -2220 ($ (-948 (-407 (-563))))) (-15 -2131 ((-3 $ "failed") (-948 (-563)))) (-15 -2058 ($ (-948 (-563)))) (-15 -2220 ($ (-948 (-563)))) (IF (|has| |t#1| (-988 (-563))) |%noBranch| (PROGN (-15 -2131 ((-3 $ "failed") (-948 |t#1|))) (-15 -2058 ($ (-948 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-563))) (IF (|has| |t#1| (-38 (-407 (-563)))) |%noBranch| (PROGN (-15 -2131 ((-3 $ "failed") (-948 (-563)))) (-15 -2058 ($ (-948 (-563)))) (-15 -2220 ($ (-948 (-563)))) (IF (|has| |t#1| (-545)) |%noBranch| (PROGN (-15 -2131 ((-3 $ "failed") (-948 |t#1|))) (-15 -2058 ($ (-948 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-563))) |%noBranch| (IF (|has| |t#1| (-38 (-407 (-563)))) |%noBranch| (PROGN (-15 -2131 ((-3 $ "failed") (-948 |t#1|))) (-15 -2058 ($ (-948 |t#1|)))))) (-15 -2220 ($ (-948 |t#1|))) (IF (|has| |t#1| (-1034 (-563))) (-6 (-611 (-1151))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-15 -2253 ($ $)) (-15 -2003 ($ $)) (-15 -1327 ($ $ |t#1|)) (-15 -2307 ($ $ |t#1|)) (-15 -1327 ($ $ $)) (-15 -2307 ($ $ $)) (-15 -3724 ($ $ $)) (-15 -2758 ((-2 (|:| -3548 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3183 ((-2 (|:| -3548 $) (|:| |coef1| $)) $ $)) (-15 -4110 ((-2 (|:| -3548 $) (|:| |coef2| $)) $ $)) (-15 -2742 ($ $ $)) (-15 -1623 ((-640 $) $ $)) (-15 -2898 ($ $ $)) (-15 -2771 ($ $ $ (-767))) (-15 -1298 ($ $ $ $ (-767))) (-15 -2398 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -3548 (|t#1| |t#1| $)) (-15 -2060 ($ $)) (-15 -4099 ($ $)) (-15 -3208 ($ $)) (-15 -2216 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4032 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-563)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4032 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0#) -4032 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-38 (-407 (-563))))) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-613 |#3|) . T) ((-613 $) -4032 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-610 (-858)) . T) ((-610 (-948 |#1|)) |has| |#3| (-611 (-1169))) ((-172) -4032 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-611 (-536)) -12 (|has| |#1| (-611 (-536))) (|has| |#3| (-611 (-536)))) ((-611 (-888 (-379))) -12 (|has| |#1| (-611 (-888 (-379)))) (|has| |#3| (-611 (-888 (-379))))) ((-611 (-888 (-563))) -12 (|has| |#1| (-611 (-888 (-563)))) (|has| |#3| (-611 (-888 (-563))))) ((-611 (-948 |#1|)) |has| |#3| (-611 (-1169))) ((-611 (-1151)) -12 (|has| |#1| (-1034 (-563))) (|has| |#3| (-611 (-1169)))) ((-290) -4032 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#2|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -4032 (|has| |#1| (-905)) (|has| |#1| (-452))) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-555) -4032 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-643 #0#) |has| |#1| (-38 (-407 (-563)))) ((-643 |#1|) . T) ((-643 $) . T) ((-636 (-563)) |has| |#1| (-636 (-563))) ((-636 |#1|) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-563)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -4032 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-722) . T) ((-846) |has| |#1| (-846)) ((-896 |#3|) . T) ((-882 (-379)) -12 (|has| |#1| (-882 (-379))) (|has| |#3| (-882 (-379)))) ((-882 (-563)) -12 (|has| |#1| (-882 (-563))) (|has| |#3| (-882 (-563)))) ((-945 |#1| |#2| |#3|) . T) ((-905) |has| |#1| (-905)) ((-1034 (-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 |#1|) . T) ((-1034 |#3|) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-563)))) ((-1051 |#1|) . T) ((-1051 $) -4032 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1212) |has| |#1| (-905))) +((-1677 (((-112) $ $) NIL)) (-3573 (((-1151) $) NIL)) (-2530 (((-640 (-1128)) $) 13)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 24) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3359 (((-1128) $) 15)) (-1718 (((-112) $ $) NIL))) +(((-1060) (-13 (-1076) (-10 -8 (-15 -2530 ((-640 (-1128)) $)) (-15 -3359 ((-1128) $))))) (T -1060)) +((-2530 (*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-1060)))) (-3359 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1060))))) +(-13 (-1076) (-10 -8 (-15 -2530 ((-640 (-1128)) $)) (-15 -3359 ((-1128) $)))) +((-3411 (((-112) |#3| $) 13)) (-3457 (((-3 $ "failed") |#3| (-917)) 23)) (-3400 (((-3 |#3| "failed") |#3| $) 38)) (-3101 (((-112) |#3| $) 16)) (-1419 (((-112) |#3| $) 14))) +(((-1061 |#1| |#2| |#3|) (-10 -8 (-15 -3457 ((-3 |#1| "failed") |#3| (-917))) (-15 -3400 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3101 ((-112) |#3| |#1|)) (-15 -1419 ((-112) |#3| |#1|)) (-15 -3411 ((-112) |#3| |#1|))) (-1062 |#2| |#3|) (-13 (-844) (-363)) (-1233 |#2|)) (T -1061)) +NIL +(-10 -8 (-15 -3457 ((-3 |#1| "failed") |#3| (-917))) (-15 -3400 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3101 ((-112) |#3| |#1|)) (-15 -1419 ((-112) |#3| |#1|)) (-15 -3411 ((-112) |#3| |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) |#2| $) 21)) (-1857 (((-563) |#2| $) 22)) (-3457 (((-3 $ "failed") |#2| (-917)) 15)) (-3527 ((|#1| |#2| $ |#1|) 13)) (-3400 (((-3 |#2| "failed") |#2| $) 18)) (-3101 (((-112) |#2| $) 19)) (-1419 (((-112) |#2| $) 20)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-3390 ((|#2| $) 17)) (-1693 (((-858) $) 11)) (-1403 ((|#1| |#2| $ |#1|) 14)) (-2783 (((-640 $) |#2|) 16)) (-1718 (((-112) $ $) 6))) +(((-1062 |#1| |#2|) (-140) (-13 (-844) (-363)) (-1233 |t#1|)) (T -1062)) +((-1857 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1233 *4)) (-5 *2 (-563)))) (-3411 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1233 *4)) (-5 *2 (-112)))) (-1419 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1233 *4)) (-5 *2 (-112)))) (-3101 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1233 *4)) (-5 *2 (-112)))) (-3400 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1062 *3 *2)) (-4 *3 (-13 (-844) (-363))) (-4 *2 (-1233 *3)))) (-3390 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *2)) (-4 *3 (-13 (-844) (-363))) (-4 *2 (-1233 *3)))) (-2783 (*1 *2 *3) (-12 (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1233 *4)) (-5 *2 (-640 *1)) (-4 *1 (-1062 *4 *3)))) (-3457 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-917)) (-4 *4 (-13 (-844) (-363))) (-4 *1 (-1062 *4 *2)) (-4 *2 (-1233 *4)))) (-1403 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1062 *2 *3)) (-4 *2 (-13 (-844) (-363))) (-4 *3 (-1233 *2)))) (-3527 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1062 *2 *3)) (-4 *2 (-13 (-844) (-363))) (-4 *3 (-1233 *2))))) +(-13 (-1093) (-10 -8 (-15 -1857 ((-563) |t#2| $)) (-15 -3411 ((-112) |t#2| $)) (-15 -1419 ((-112) |t#2| $)) (-15 -3101 ((-112) |t#2| $)) (-15 -3400 ((-3 |t#2| "failed") |t#2| $)) (-15 -3390 (|t#2| $)) (-15 -2783 ((-640 $) |t#2|)) (-15 -3457 ((-3 $ "failed") |t#2| (-917))) (-15 -1403 (|t#1| |t#2| $ |t#1|)) (-15 -3527 (|t#1| |t#2| $ |t#1|)))) +(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) +((-1672 (((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) (-640 |#4|) (-640 |#5|) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) (-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) (-767)) 95)) (-4037 (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5| (-767)) 56)) (-2672 (((-1262) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) (-767)) 87)) (-3867 (((-767) (-640 |#4|) (-640 |#5|)) 27)) (-4361 (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5| (-767)) 58) (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5| (-767) (-112)) 60)) (-2927 (((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112) (-112) (-112) (-112)) 78) (((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112)) 79)) (-2220 (((-1151) (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) 82)) (-3705 (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5| (-112)) 55)) (-3913 (((-767) (-640 |#4|) (-640 |#5|)) 19))) +(((-1063 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3913 ((-767) (-640 |#4|) (-640 |#5|))) (-15 -3867 ((-767) (-640 |#4|) (-640 |#5|))) (-15 -3705 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5| (-112))) (-15 -4037 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5| (-767))) (-15 -4037 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5|)) (-15 -4361 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5| (-767) (-112))) (-15 -4361 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5| (-767))) (-15 -4361 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5|)) (-15 -2927 ((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112))) (-15 -2927 ((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -1672 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) (-640 |#4|) (-640 |#5|) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) (-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) (-767))) (-15 -2220 ((-1151) (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|)))) (-15 -2672 ((-1262) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) (-767)))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -1063)) +((-2672 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-2 (|:| |val| (-640 *8)) (|:| -2059 *9)))) (-5 *4 (-767)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-1262)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) (-2220 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-640 *7)) (|:| -2059 *8))) (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1151)) (-5 *1 (-1063 *4 *5 *6 *7 *8)))) (-1672 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-640 *11)) (|:| |todo| (-640 (-2 (|:| |val| *3) (|:| -2059 *11)))))) (-5 *6 (-767)) (-5 *2 (-640 (-2 (|:| |val| (-640 *10)) (|:| -2059 *11)))) (-5 *3 (-640 *10)) (-5 *4 (-640 *11)) (-4 *10 (-1059 *7 *8 *9)) (-4 *11 (-1065 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-789)) (-4 *9 (-846)) (-5 *1 (-1063 *7 *8 *9 *10 *11)))) (-2927 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-640 *9)) (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) (-2927 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-640 *9)) (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) (-4361 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2059 *4)))))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-4361 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2059 *4)))))) (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) (-4361 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-767)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-789)) (-4 *9 (-846)) (-4 *3 (-1059 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2059 *4)))))) (-5 *1 (-1063 *7 *8 *9 *3 *4)) (-4 *4 (-1065 *7 *8 *9 *3)))) (-4037 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2059 *4)))))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-4037 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2059 *4)))))) (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) (-3705 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2059 *4)))))) (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) (-3867 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 *9)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) (-3913 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 *9)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1063 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -3913 ((-767) (-640 |#4|) (-640 |#5|))) (-15 -3867 ((-767) (-640 |#4|) (-640 |#5|))) (-15 -3705 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5| (-112))) (-15 -4037 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5| (-767))) (-15 -4037 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5|)) (-15 -4361 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5| (-767) (-112))) (-15 -4361 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5| (-767))) (-15 -4361 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5|)) (-15 -2927 ((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112))) (-15 -2927 ((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -1672 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) (-640 |#4|) (-640 |#5|) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) (-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) (-767))) (-15 -2220 ((-1151) (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|)))) (-15 -2672 ((-1262) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) (-767)))) +((-2313 (((-112) |#5| $) 20)) (-3748 (((-112) |#5| $) 23)) (-1871 (((-112) |#5| $) 16) (((-112) $) 44)) (-2550 (((-640 $) |#5| $) NIL) (((-640 $) (-640 |#5|) $) 76) (((-640 $) (-640 |#5|) (-640 $)) 74) (((-640 $) |#5| (-640 $)) 77)) (-3320 (($ $ |#5|) NIL) (((-640 $) |#5| $) NIL) (((-640 $) |#5| (-640 $)) 59) (((-640 $) (-640 |#5|) $) 61) (((-640 $) (-640 |#5|) (-640 $)) 63)) (-2175 (((-640 $) |#5| $) NIL) (((-640 $) |#5| (-640 $)) 53) (((-640 $) (-640 |#5|) $) 55) (((-640 $) (-640 |#5|) (-640 $)) 57)) (-4279 (((-112) |#5| $) 26))) +(((-1064 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3320 ((-640 |#1|) (-640 |#5|) (-640 |#1|))) (-15 -3320 ((-640 |#1|) (-640 |#5|) |#1|)) (-15 -3320 ((-640 |#1|) |#5| (-640 |#1|))) (-15 -3320 ((-640 |#1|) |#5| |#1|)) (-15 -2175 ((-640 |#1|) (-640 |#5|) (-640 |#1|))) (-15 -2175 ((-640 |#1|) (-640 |#5|) |#1|)) (-15 -2175 ((-640 |#1|) |#5| (-640 |#1|))) (-15 -2175 ((-640 |#1|) |#5| |#1|)) (-15 -2550 ((-640 |#1|) |#5| (-640 |#1|))) (-15 -2550 ((-640 |#1|) (-640 |#5|) (-640 |#1|))) (-15 -2550 ((-640 |#1|) (-640 |#5|) |#1|)) (-15 -2550 ((-640 |#1|) |#5| |#1|)) (-15 -3748 ((-112) |#5| |#1|)) (-15 -1871 ((-112) |#1|)) (-15 -4279 ((-112) |#5| |#1|)) (-15 -2313 ((-112) |#5| |#1|)) (-15 -1871 ((-112) |#5| |#1|)) (-15 -3320 (|#1| |#1| |#5|))) (-1065 |#2| |#3| |#4| |#5|) (-452) (-789) (-846) (-1059 |#2| |#3| |#4|)) (T -1064)) +NIL +(-10 -8 (-15 -3320 ((-640 |#1|) (-640 |#5|) (-640 |#1|))) (-15 -3320 ((-640 |#1|) (-640 |#5|) |#1|)) (-15 -3320 ((-640 |#1|) |#5| (-640 |#1|))) (-15 -3320 ((-640 |#1|) |#5| |#1|)) (-15 -2175 ((-640 |#1|) (-640 |#5|) (-640 |#1|))) (-15 -2175 ((-640 |#1|) (-640 |#5|) |#1|)) (-15 -2175 ((-640 |#1|) |#5| (-640 |#1|))) (-15 -2175 ((-640 |#1|) |#5| |#1|)) (-15 -2550 ((-640 |#1|) |#5| (-640 |#1|))) (-15 -2550 ((-640 |#1|) (-640 |#5|) (-640 |#1|))) (-15 -2550 ((-640 |#1|) (-640 |#5|) |#1|)) (-15 -2550 ((-640 |#1|) |#5| |#1|)) (-15 -3748 ((-112) |#5| |#1|)) (-15 -1871 ((-112) |#1|)) (-15 -4279 ((-112) |#5| |#1|)) (-15 -2313 ((-112) |#5| |#1|)) (-15 -1871 ((-112) |#5| |#1|)) (-15 -3320 (|#1| |#1| |#5|))) +((-1677 (((-112) $ $) 7)) (-1578 (((-640 (-2 (|:| -1442 $) (|:| -3405 (-640 |#4|)))) (-640 |#4|)) 85)) (-3319 (((-640 $) (-640 |#4|)) 86) (((-640 $) (-640 |#4|) (-112)) 111)) (-2606 (((-640 |#3|) $) 33)) (-1706 (((-112) $) 26)) (-3854 (((-112) $) 17 (|has| |#1| (-555)))) (-2620 (((-112) |#4| $) 101) (((-112) $) 97)) (-4053 ((|#4| |#4| $) 92)) (-4335 (((-640 (-2 (|:| |val| |#4|) (|:| -2059 $))) |#4| $) 126)) (-1642 (((-2 (|:| |under| $) (|:| -1583 $) (|:| |upper| $)) $ |#3|) 27)) (-2759 (((-112) $ (-767)) 44)) (-2256 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4407))) (((-3 |#4| "failed") $ |#3|) 79)) (-4239 (($) 45 T CONST)) (-1483 (((-112) $) 22 (|has| |#1| (-555)))) (-1626 (((-112) $ $) 24 (|has| |#1| (-555)))) (-4221 (((-112) $ $) 23 (|has| |#1| (-555)))) (-1763 (((-112) $) 25 (|has| |#1| (-555)))) (-1833 (((-640 |#4|) (-640 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3746 (((-640 |#4|) (-640 |#4|) $) 18 (|has| |#1| (-555)))) (-1866 (((-640 |#4|) (-640 |#4|) $) 19 (|has| |#1| (-555)))) (-2131 (((-3 $ "failed") (-640 |#4|)) 36)) (-2058 (($ (-640 |#4|)) 35)) (-3792 (((-3 $ "failed") $) 82)) (-1719 ((|#4| |#4| $) 89)) (-3813 (($ $) 68 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4407))))) (-1459 (($ |#4| $) 67 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4407)))) (-1972 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-555)))) (-3990 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3948 ((|#4| |#4| $) 87)) (-2444 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4407)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4407))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4407))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2144 (((-2 (|:| -1442 (-640 |#4|)) (|:| -3405 (-640 |#4|))) $) 105)) (-2313 (((-112) |#4| $) 136)) (-3748 (((-112) |#4| $) 133)) (-1871 (((-112) |#4| $) 137) (((-112) $) 134)) (-2659 (((-640 |#4|) $) 52 (|has| $ (-6 -4407)))) (-2299 (((-112) |#4| $) 104) (((-112) $) 103)) (-2957 ((|#3| $) 34)) (-2581 (((-112) $ (-767)) 43)) (-2259 (((-640 |#4|) $) 53 (|has| $ (-6 -4407)))) (-1729 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4407))))) (-4345 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#4| |#4|) $) 47)) (-2965 (((-640 |#3|) $) 32)) (-2780 (((-112) |#3| $) 31)) (-2382 (((-112) $ (-767)) 42)) (-3573 (((-1151) $) 9)) (-3083 (((-3 |#4| (-640 $)) |#4| |#4| $) 128)) (-2898 (((-640 (-2 (|:| |val| |#4|) (|:| -2059 $))) |#4| |#4| $) 127)) (-1481 (((-3 |#4| "failed") $) 83)) (-3764 (((-640 $) |#4| $) 129)) (-1334 (((-3 (-112) (-640 $)) |#4| $) 132)) (-2069 (((-640 (-2 (|:| |val| (-112)) (|:| -2059 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-2550 (((-640 $) |#4| $) 125) (((-640 $) (-640 |#4|) $) 124) (((-640 $) (-640 |#4|) (-640 $)) 123) (((-640 $) |#4| (-640 $)) 122)) (-3291 (($ |#4| $) 117) (($ (-640 |#4|) $) 116)) (-2820 (((-640 |#4|) $) 107)) (-4197 (((-112) |#4| $) 99) (((-112) $) 95)) (-2715 ((|#4| |#4| $) 90)) (-3009 (((-112) $ $) 110)) (-2152 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-555)))) (-2031 (((-112) |#4| $) 100) (((-112) $) 96)) (-4056 ((|#4| |#4| $) 91)) (-1694 (((-1113) $) 10)) (-3781 (((-3 |#4| "failed") $) 84)) (-4203 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3479 (((-3 $ "failed") $ |#4|) 78)) (-3320 (($ $ |#4|) 77) (((-640 $) |#4| $) 115) (((-640 $) |#4| (-640 $)) 114) (((-640 $) (-640 |#4|) $) 113) (((-640 $) (-640 |#4|) (-640 $)) 112)) (-3138 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 |#4|) (-640 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-2026 (((-112) $ $) 38)) (-3756 (((-112) $) 41)) (-3135 (($) 40)) (-4167 (((-767) $) 106)) (-1709 (((-767) |#4| $) 54 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4407)))) (((-767) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4407)))) (-1872 (($ $) 39)) (-2220 (((-536) $) 69 (|has| |#4| (-611 (-536))))) (-1707 (($ (-640 |#4|)) 60)) (-3577 (($ $ |#3|) 28)) (-1593 (($ $ |#3|) 30)) (-1924 (($ $) 88)) (-4192 (($ $ |#3|) 29)) (-1693 (((-858) $) 11) (((-640 |#4|) $) 37)) (-2437 (((-767) $) 76 (|has| |#3| (-368)))) (-2540 (((-3 (-2 (|:| |bas| $) (|:| -2636 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2636 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2691 (((-112) $ (-1 (-112) |#4| (-640 |#4|))) 98)) (-2175 (((-640 $) |#4| $) 121) (((-640 $) |#4| (-640 $)) 120) (((-640 $) (-640 |#4|) $) 119) (((-640 $) (-640 |#4|) (-640 $)) 118)) (-4383 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4407)))) (-1955 (((-640 |#3|) $) 81)) (-4279 (((-112) |#4| $) 135)) (-3152 (((-112) |#3| $) 80)) (-1718 (((-112) $ $) 6)) (-3608 (((-767) $) 46 (|has| $ (-6 -4407))))) +(((-1065 |#1| |#2| |#3| |#4|) (-140) (-452) (-789) (-846) (-1059 |t#1| |t#2| |t#3|)) (T -1065)) +((-1871 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-2313 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-4279 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-1871 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-3748 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-1334 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-3 (-112) (-640 *1))) (-4 *1 (-1065 *4 *5 *6 *3)))) (-2069 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -2059 *1)))) (-4 *1 (-1065 *4 *5 *6 *3)))) (-2069 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-3764 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *3)))) (-3083 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-3 *3 (-640 *1))) (-4 *1 (-1065 *4 *5 *6 *3)))) (-2898 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2059 *1)))) (-4 *1 (-1065 *4 *5 *6 *3)))) (-4335 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2059 *1)))) (-4 *1 (-1065 *4 *5 *6 *3)))) (-2550 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *3)))) (-2550 (*1 *2 *3 *1) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *7)))) (-2550 (*1 *2 *3 *2) (-12 (-5 *2 (-640 *1)) (-5 *3 (-640 *7)) (-4 *1 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)))) (-2550 (*1 *2 *3 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)))) (-2175 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *3)))) (-2175 (*1 *2 *3 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)))) (-2175 (*1 *2 *3 *1) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *7)))) (-2175 (*1 *2 *3 *2) (-12 (-5 *2 (-640 *1)) (-5 *3 (-640 *7)) (-4 *1 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)))) (-3291 (*1 *1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-3291 (*1 *1 *2 *1) (-12 (-5 *2 (-640 *6)) (-4 *1 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)))) (-3320 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *3)))) (-3320 (*1 *2 *3 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)))) (-3320 (*1 *2 *3 *1) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *7)))) (-3320 (*1 *2 *3 *2) (-12 (-5 *2 (-640 *1)) (-5 *3 (-640 *7)) (-4 *1 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)))) (-3319 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-1065 *5 *6 *7 *8))))) +(-13 (-1201 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -1871 ((-112) |t#4| $)) (-15 -2313 ((-112) |t#4| $)) (-15 -4279 ((-112) |t#4| $)) (-15 -1871 ((-112) $)) (-15 -3748 ((-112) |t#4| $)) (-15 -1334 ((-3 (-112) (-640 $)) |t#4| $)) (-15 -2069 ((-640 (-2 (|:| |val| (-112)) (|:| -2059 $))) |t#4| $)) (-15 -2069 ((-112) |t#4| $)) (-15 -3764 ((-640 $) |t#4| $)) (-15 -3083 ((-3 |t#4| (-640 $)) |t#4| |t#4| $)) (-15 -2898 ((-640 (-2 (|:| |val| |t#4|) (|:| -2059 $))) |t#4| |t#4| $)) (-15 -4335 ((-640 (-2 (|:| |val| |t#4|) (|:| -2059 $))) |t#4| $)) (-15 -2550 ((-640 $) |t#4| $)) (-15 -2550 ((-640 $) (-640 |t#4|) $)) (-15 -2550 ((-640 $) (-640 |t#4|) (-640 $))) (-15 -2550 ((-640 $) |t#4| (-640 $))) (-15 -2175 ((-640 $) |t#4| $)) (-15 -2175 ((-640 $) |t#4| (-640 $))) (-15 -2175 ((-640 $) (-640 |t#4|) $)) (-15 -2175 ((-640 $) (-640 |t#4|) (-640 $))) (-15 -3291 ($ |t#4| $)) (-15 -3291 ($ (-640 |t#4|) $)) (-15 -3320 ((-640 $) |t#4| $)) (-15 -3320 ((-640 $) |t#4| (-640 $))) (-15 -3320 ((-640 $) (-640 |t#4|) $)) (-15 -3320 ((-640 $) (-640 |t#4|) (-640 $))) (-15 -3319 ((-640 $) (-640 |t#4|) (-112))))) +(((-34) . T) ((-102) . T) ((-610 (-640 |#4|)) . T) ((-610 (-858)) . T) ((-151 |#4|) . T) ((-611 (-536)) |has| |#4| (-611 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-972 |#1| |#2| |#3| |#4|) . T) ((-1093) . T) ((-1201 |#1| |#2| |#3| |#4|) . T) ((-1208) . T)) +((-2572 (((-640 (-2 (|:| |val| |#4|) (|:| -2059 |#5|))) |#4| |#5|) 81)) (-2766 (((-640 (-2 (|:| |val| |#4|) (|:| -2059 |#5|))) |#4| |#4| |#5|) 112)) (-1452 (((-640 |#5|) |#4| |#5|) 70)) (-3753 (((-640 (-2 (|:| |val| (-112)) (|:| -2059 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-3117 (((-1262)) 37)) (-2279 (((-1262)) 26)) (-3688 (((-1262) (-1151) (-1151) (-1151)) 33)) (-2574 (((-1262) (-1151) (-1151) (-1151)) 22)) (-2208 (((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) |#4| |#4| |#5|) 95)) (-1321 (((-640 (-2 (|:| |val| |#4|) (|:| -2059 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) |#3| (-112)) 106) (((-640 (-2 (|:| |val| |#4|) (|:| -2059 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-1684 (((-640 (-2 (|:| |val| |#4|) (|:| -2059 |#5|))) |#4| |#4| |#5|) 101))) +(((-1066 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2574 ((-1262) (-1151) (-1151) (-1151))) (-15 -2279 ((-1262))) (-15 -3688 ((-1262) (-1151) (-1151) (-1151))) (-15 -3117 ((-1262))) (-15 -2208 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) |#4| |#4| |#5|)) (-15 -1321 ((-640 (-2 (|:| |val| |#4|) (|:| -2059 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1321 ((-640 (-2 (|:| |val| |#4|) (|:| -2059 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) |#3| (-112))) (-15 -1684 ((-640 (-2 (|:| |val| |#4|) (|:| -2059 |#5|))) |#4| |#4| |#5|)) (-15 -2766 ((-640 (-2 (|:| |val| |#4|) (|:| -2059 |#5|))) |#4| |#4| |#5|)) (-15 -3753 ((-112) |#4| |#5|)) (-15 -3753 ((-640 (-2 (|:| |val| (-112)) (|:| -2059 |#5|))) |#4| |#5|)) (-15 -1452 ((-640 |#5|) |#4| |#5|)) (-15 -2572 ((-640 (-2 (|:| |val| |#4|) (|:| -2059 |#5|))) |#4| |#5|))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -1066)) +((-2572 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2059 *4)))) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-1452 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 *4)) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3753 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -2059 *4)))) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3753 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-2766 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2059 *4)))) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-1684 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2059 *4)))) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-1321 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-640 (-2 (|:| |val| (-640 *8)) (|:| -2059 *9)))) (-5 *5 (-112)) (-4 *8 (-1059 *6 *7 *4)) (-4 *9 (-1065 *6 *7 *4 *8)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *4 (-846)) (-5 *2 (-640 (-2 (|:| |val| *8) (|:| -2059 *9)))) (-5 *1 (-1066 *6 *7 *4 *8 *9)))) (-1321 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2059 *4)))) (-5 *1 (-1066 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) (-2208 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| (-640 *3)) (|:| -2059 *4)))) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3117 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) (-5 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-3688 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) (-5 *1 (-1066 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-2279 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) (-5 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-2574 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) (-5 *1 (-1066 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))) +(-10 -7 (-15 -2574 ((-1262) (-1151) (-1151) (-1151))) (-15 -2279 ((-1262))) (-15 -3688 ((-1262) (-1151) (-1151) (-1151))) (-15 -3117 ((-1262))) (-15 -2208 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) |#4| |#4| |#5|)) (-15 -1321 ((-640 (-2 (|:| |val| |#4|) (|:| -2059 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1321 ((-640 (-2 (|:| |val| |#4|) (|:| -2059 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) |#3| (-112))) (-15 -1684 ((-640 (-2 (|:| |val| |#4|) (|:| -2059 |#5|))) |#4| |#4| |#5|)) (-15 -2766 ((-640 (-2 (|:| |val| |#4|) (|:| -2059 |#5|))) |#4| |#4| |#5|)) (-15 -3753 ((-112) |#4| |#5|)) (-15 -3753 ((-640 (-2 (|:| |val| (-112)) (|:| -2059 |#5|))) |#4| |#5|)) (-15 -1452 ((-640 |#5|) |#4| |#5|)) (-15 -2572 ((-640 (-2 (|:| |val| |#4|) (|:| -2059 |#5|))) |#4| |#5|))) +((-1677 (((-112) $ $) NIL)) (-4183 (((-1207) $) 13)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-3685 (((-1128) $) 10)) (-1693 (((-858) $) 22) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-1067) (-13 (-1076) (-10 -8 (-15 -3685 ((-1128) $)) (-15 -4183 ((-1207) $))))) (T -1067)) +((-3685 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1067)))) (-4183 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1067))))) +(-13 (-1076) (-10 -8 (-15 -3685 ((-1128) $)) (-15 -4183 ((-1207) $)))) +((-1677 (((-112) $ $) NIL)) (-3348 (((-1169) $) 8)) (-3573 (((-1151) $) 16)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 11)) (-1718 (((-112) $ $) 13))) +(((-1068 |#1|) (-13 (-1093) (-10 -8 (-15 -3348 ((-1169) $)))) (-1169)) (T -1068)) +((-3348 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1068 *3)) (-14 *3 *2)))) +(-13 (-1093) (-10 -8 (-15 -3348 ((-1169) $)))) +((-1677 (((-112) $ $) NIL)) (-1959 (($ $ (-640 (-1169)) (-1 (-112) (-640 |#3|))) 33)) (-3709 (($ |#3| |#3|) 22) (($ |#3| |#3| (-640 (-1169))) 20)) (-2351 ((|#3| $) 13)) (-2131 (((-3 (-294 |#3|) "failed") $) 58)) (-2058 (((-294 |#3|) $) NIL)) (-3530 (((-640 (-1169)) $) 16)) (-3959 (((-888 |#1|) $) 11)) (-2340 ((|#3| $) 12)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-2309 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-917)) 39)) (-1693 (((-858) $) 86) (($ (-294 |#3|)) 21)) (-1718 (((-112) $ $) 36))) +(((-1069 |#1| |#2| |#3|) (-13 (-1093) (-286 |#3| |#3|) (-1034 (-294 |#3|)) (-10 -8 (-15 -3709 ($ |#3| |#3|)) (-15 -3709 ($ |#3| |#3| (-640 (-1169)))) (-15 -1959 ($ $ (-640 (-1169)) (-1 (-112) (-640 |#3|)))) (-15 -3959 ((-888 |#1|) $)) (-15 -2340 (|#3| $)) (-15 -2351 (|#3| $)) (-15 -2309 (|#3| $ |#3| (-917))) (-15 -3530 ((-640 (-1169)) $)))) (-1093) (-13 (-1045) (-882 |#1|) (-846) (-611 (-888 |#1|))) (-13 (-430 |#2|) (-882 |#1|) (-611 (-888 |#1|)))) (T -1069)) +((-3709 (*1 *1 *2 *2) (-12 (-4 *3 (-1093)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3)))) (-5 *1 (-1069 *3 *4 *2)) (-4 *2 (-13 (-430 *4) (-882 *3) (-611 (-888 *3)))))) (-3709 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-640 (-1169))) (-4 *4 (-1093)) (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4)))) (-5 *1 (-1069 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-882 *4) (-611 (-888 *4)))))) (-1959 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-1 (-112) (-640 *6))) (-4 *6 (-13 (-430 *5) (-882 *4) (-611 (-888 *4)))) (-4 *4 (-1093)) (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4)))) (-5 *1 (-1069 *4 *5 *6)))) (-3959 (*1 *2 *1) (-12 (-4 *3 (-1093)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 *2))) (-5 *2 (-888 *3)) (-5 *1 (-1069 *3 *4 *5)) (-4 *5 (-13 (-430 *4) (-882 *3) (-611 *2))))) (-2340 (*1 *2 *1) (-12 (-4 *3 (-1093)) (-4 *2 (-13 (-430 *4) (-882 *3) (-611 (-888 *3)))) (-5 *1 (-1069 *3 *4 *2)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3)))))) (-2351 (*1 *2 *1) (-12 (-4 *3 (-1093)) (-4 *2 (-13 (-430 *4) (-882 *3) (-611 (-888 *3)))) (-5 *1 (-1069 *3 *4 *2)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3)))))) (-2309 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-917)) (-4 *4 (-1093)) (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4)))) (-5 *1 (-1069 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-882 *4) (-611 (-888 *4)))))) (-3530 (*1 *2 *1) (-12 (-4 *3 (-1093)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3)))) (-5 *2 (-640 (-1169))) (-5 *1 (-1069 *3 *4 *5)) (-4 *5 (-13 (-430 *4) (-882 *3) (-611 (-888 *3))))))) +(-13 (-1093) (-286 |#3| |#3|) (-1034 (-294 |#3|)) (-10 -8 (-15 -3709 ($ |#3| |#3|)) (-15 -3709 ($ |#3| |#3| (-640 (-1169)))) (-15 -1959 ($ $ (-640 (-1169)) (-1 (-112) (-640 |#3|)))) (-15 -3959 ((-888 |#1|) $)) (-15 -2340 (|#3| $)) (-15 -2351 (|#3| $)) (-15 -2309 (|#3| $ |#3| (-917))) (-15 -3530 ((-640 (-1169)) $)))) +((-1677 (((-112) $ $) NIL)) (-1927 (($ (-640 (-1069 |#1| |#2| |#3|))) 13)) (-2728 (((-640 (-1069 |#1| |#2| |#3|)) $) 20)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-2309 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-917)) 26)) (-1693 (((-858) $) 16)) (-1718 (((-112) $ $) 19))) +(((-1070 |#1| |#2| |#3|) (-13 (-1093) (-286 |#3| |#3|) (-10 -8 (-15 -1927 ($ (-640 (-1069 |#1| |#2| |#3|)))) (-15 -2728 ((-640 (-1069 |#1| |#2| |#3|)) $)) (-15 -2309 (|#3| $ |#3| (-917))))) (-1093) (-13 (-1045) (-882 |#1|) (-846) (-611 (-888 |#1|))) (-13 (-430 |#2|) (-882 |#1|) (-611 (-888 |#1|)))) (T -1070)) +((-1927 (*1 *1 *2) (-12 (-5 *2 (-640 (-1069 *3 *4 *5))) (-4 *3 (-1093)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3)))) (-4 *5 (-13 (-430 *4) (-882 *3) (-611 (-888 *3)))) (-5 *1 (-1070 *3 *4 *5)))) (-2728 (*1 *2 *1) (-12 (-4 *3 (-1093)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3)))) (-5 *2 (-640 (-1069 *3 *4 *5))) (-5 *1 (-1070 *3 *4 *5)) (-4 *5 (-13 (-430 *4) (-882 *3) (-611 (-888 *3)))))) (-2309 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-917)) (-4 *4 (-1093)) (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4)))) (-5 *1 (-1070 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-882 *4) (-611 (-888 *4))))))) +(-13 (-1093) (-286 |#3| |#3|) (-10 -8 (-15 -1927 ($ (-640 (-1069 |#1| |#2| |#3|)))) (-15 -2728 ((-640 (-1069 |#1| |#2| |#3|)) $)) (-15 -2309 (|#3| $ |#3| (-917))))) +((-2837 (((-640 (-2 (|:| -1602 (-1165 |#1|)) (|:| -1880 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112) (-112)) 74) (((-640 (-2 (|:| -1602 (-1165 |#1|)) (|:| -1880 (-640 (-948 |#1|))))) (-640 (-948 |#1|))) 76) (((-640 (-2 (|:| -1602 (-1165 |#1|)) (|:| -1880 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112)) 75))) +(((-1071 |#1| |#2|) (-10 -7 (-15 -2837 ((-640 (-2 (|:| -1602 (-1165 |#1|)) (|:| -1880 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112))) (-15 -2837 ((-640 (-2 (|:| -1602 (-1165 |#1|)) (|:| -1880 (-640 (-948 |#1|))))) (-640 (-948 |#1|)))) (-15 -2837 ((-640 (-2 (|:| -1602 (-1165 |#1|)) (|:| -1880 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112) (-112)))) (-13 (-307) (-147)) (-640 (-1169))) (T -1071)) +((-2837 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-640 (-2 (|:| -1602 (-1165 *5)) (|:| -1880 (-640 (-948 *5)))))) (-5 *1 (-1071 *5 *6)) (-5 *3 (-640 (-948 *5))) (-14 *6 (-640 (-1169))))) (-2837 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-5 *2 (-640 (-2 (|:| -1602 (-1165 *4)) (|:| -1880 (-640 (-948 *4)))))) (-5 *1 (-1071 *4 *5)) (-5 *3 (-640 (-948 *4))) (-14 *5 (-640 (-1169))))) (-2837 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-640 (-2 (|:| -1602 (-1165 *5)) (|:| -1880 (-640 (-948 *5)))))) (-5 *1 (-1071 *5 *6)) (-5 *3 (-640 (-948 *5))) (-14 *6 (-640 (-1169)))))) +(-10 -7 (-15 -2837 ((-640 (-2 (|:| -1602 (-1165 |#1|)) (|:| -1880 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112))) (-15 -2837 ((-640 (-2 (|:| -1602 (-1165 |#1|)) (|:| -1880 (-640 (-948 |#1|))))) (-640 (-948 |#1|)))) (-15 -2837 ((-640 (-2 (|:| -1602 (-1165 |#1|)) (|:| -1880 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112) (-112)))) +((-2174 (((-418 |#3|) |#3|) 18))) +(((-1072 |#1| |#2| |#3|) (-10 -7 (-15 -2174 ((-418 |#3|) |#3|))) (-1233 (-407 (-563))) (-13 (-363) (-147) (-720 (-407 (-563)) |#1|)) (-1233 |#2|)) (T -1072)) +((-2174 (*1 *2 *3) (-12 (-4 *4 (-1233 (-407 (-563)))) (-4 *5 (-13 (-363) (-147) (-720 (-407 (-563)) *4))) (-5 *2 (-418 *3)) (-5 *1 (-1072 *4 *5 *3)) (-4 *3 (-1233 *5))))) +(-10 -7 (-15 -2174 ((-418 |#3|) |#3|))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) 126)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-363)))) (-4223 (($ $) NIL (|has| |#1| (-363)))) (-3156 (((-112) $) NIL (|has| |#1| (-363)))) (-3561 (((-684 |#1|) (-1257 $)) NIL) (((-684 |#1|)) 115)) (-1733 ((|#1| $) 119)) (-2752 (((-1181 (-917) (-767)) (-563)) NIL (|has| |#1| (-349)))) (-1495 (((-3 $ "failed") $ $) NIL)) (-4335 (($ $) NIL (|has| |#1| (-363)))) (-3205 (((-418 $) $) NIL (|has| |#1| (-363)))) (-1919 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3749 (((-767)) 40 (|has| |#1| (-368)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) NIL)) (-2058 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) NIL)) (-3937 (($ (-1257 |#1|) (-1257 $)) NIL) (($ (-1257 |#1|)) 43)) (-3711 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-3090 (($ $ $) NIL (|has| |#1| (-363)))) (-3914 (((-684 |#1|) $ (-1257 $)) NIL) (((-684 |#1|) $) NIL)) (-2950 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 106) (((-684 |#1|) (-684 $)) 101)) (-2444 (($ |#2|) 61) (((-3 $ "failed") (-407 |#2|)) NIL (|has| |#1| (-363)))) (-3400 (((-3 $ "failed") $) NIL)) (-2522 (((-917)) 77)) (-1691 (($) 44 (|has| |#1| (-368)))) (-3050 (($ $ $) NIL (|has| |#1| (-363)))) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-1571 (($) NIL (|has| |#1| (-349)))) (-2366 (((-112) $) NIL (|has| |#1| (-349)))) (-1637 (($ $ (-767)) NIL (|has| |#1| (-349))) (($ $) NIL (|has| |#1| (-349)))) (-2468 (((-112) $) NIL (|has| |#1| (-363)))) (-3254 (((-917) $) NIL (|has| |#1| (-349))) (((-829 (-917)) $) NIL (|has| |#1| (-349)))) (-3827 (((-112) $) NIL)) (-3793 ((|#1| $) NIL)) (-2408 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3941 ((|#2| $) 84 (|has| |#1| (-363)))) (-1476 (((-917) $) 130 (|has| |#1| (-368)))) (-2433 ((|#2| $) 58)) (-3513 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3573 (((-1151) $) NIL)) (-2688 (($ $) NIL (|has| |#1| (-363)))) (-2523 (($) NIL (|has| |#1| (-349)) CONST)) (-2555 (($ (-917)) 125 (|has| |#1| (-368)))) (-1694 (((-1113) $) NIL)) (-4333 (($) 121)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-363)))) (-3548 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2727 (((-640 (-2 (|:| -2174 (-563)) (|:| -1654 (-563))))) NIL (|has| |#1| (-349)))) (-2174 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL (|has| |#1| (-363)))) (-3008 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-2628 (((-767) $) NIL (|has| |#1| (-363)))) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| |#1| (-363)))) (-2315 ((|#1| (-1257 $)) NIL) ((|#1|) 109)) (-1423 (((-767) $) NIL (|has| |#1| (-349))) (((-3 (-767) "failed") $ $) NIL (|has| |#1| (-349)))) (-4202 (($ $) NIL (-4032 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-767)) NIL (-4032 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))))) (($ $ (-1 |#1| |#1|) (-767)) NIL (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-3974 (((-684 |#1|) (-1257 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-3390 ((|#2|) 73)) (-4284 (($) NIL (|has| |#1| (-349)))) (-1880 (((-1257 |#1|) $ (-1257 $)) 89) (((-684 |#1|) (-1257 $) (-1257 $)) NIL) (((-1257 |#1|) $) 71) (((-684 |#1|) (-1257 $)) 85)) (-2220 (((-1257 |#1|) $) NIL) (($ (-1257 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| |#1| (-349)))) (-1693 (((-858) $) 57) (($ (-563)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-363))) (($ (-407 (-563))) NIL (-4032 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-563))))))) (-2779 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3421 ((|#2| $) 82)) (-1675 (((-767)) 75)) (-4315 (((-1257 $)) 81)) (-2126 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2241 (($) 30 T CONST)) (-2254 (($) 19 T CONST)) (-3209 (($ $) NIL (-4032 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-767)) NIL (-4032 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))))) (($ $ (-1 |#1| |#1|) (-767)) NIL (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-1718 (((-112) $ $) 63)) (-1837 (($ $ $) NIL (|has| |#1| (-363)))) (-1826 (($ $) 67) (($ $ $) NIL)) (-1814 (($ $ $) 65)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| |#1| (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-407 (-563)) $) NIL (|has| |#1| (-363))) (($ $ (-407 (-563))) NIL (|has| |#1| (-363))))) +(((-1073 |#1| |#2| |#3|) (-720 |#1| |#2|) (-172) (-1233 |#1|) |#2|) (T -1073)) +NIL +(-720 |#1| |#2|) +((-2174 (((-418 |#3|) |#3|) 19))) +(((-1074 |#1| |#2| |#3|) (-10 -7 (-15 -2174 ((-418 |#3|) |#3|))) (-1233 (-407 (-948 (-563)))) (-13 (-363) (-147) (-720 (-407 (-948 (-563))) |#1|)) (-1233 |#2|)) (T -1074)) +((-2174 (*1 *2 *3) (-12 (-4 *4 (-1233 (-407 (-948 (-563))))) (-4 *5 (-13 (-363) (-147) (-720 (-407 (-948 (-563))) *4))) (-5 *2 (-418 *3)) (-5 *1 (-1074 *4 *5 *3)) (-4 *3 (-1233 *5))))) +(-10 -7 (-15 -2174 ((-418 |#3|) |#3|))) +((-1677 (((-112) $ $) NIL)) (-3084 (($ $ $) 14)) (-1777 (($ $ $) 15)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1507 (($) 6)) (-2220 (((-1169) $) 18)) (-1693 (((-858) $) 12)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 13)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) 8))) +(((-1075) (-13 (-846) (-611 (-1169)) (-10 -8 (-15 -1507 ($))))) (T -1075)) +((-1507 (*1 *1) (-5 *1 (-1075)))) +(-13 (-846) (-611 (-1169)) (-10 -8 (-15 -1507 ($)))) +((-1677 (((-112) $ $) 7)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11) (($ (-1174)) 16) (((-1174) $) 15)) (-1718 (((-112) $ $) 6))) +(((-1076) (-140)) (T -1076)) NIL (-13 (-93)) -(((-93) . T) ((-102) . T) ((-612 #0=(-1173)) . T) ((-609 (-857)) . T) ((-609 #0#) . T) ((-489 #0#) . T) ((-1092) . T)) -((-2675 ((|#1| |#1| (-1 (-562) |#1| |#1|)) 23) ((|#1| |#1| (-1 (-112) |#1|)) 19)) (-3411 (((-1261)) 15)) (-1481 (((-639 |#1|)) 9))) -(((-1076 |#1|) (-10 -7 (-15 -3411 ((-1261))) (-15 -1481 ((-639 |#1|))) (-15 -2675 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2675 (|#1| |#1| (-1 (-562) |#1| |#1|)))) (-131)) (T -1076)) -((-2675 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-562) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1076 *2)))) (-2675 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1076 *2)))) (-1481 (*1 *2) (-12 (-5 *2 (-639 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-131)))) (-3411 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-1076 *3)) (-4 *3 (-131))))) -(-10 -7 (-15 -3411 ((-1261))) (-15 -1481 ((-639 |#1|))) (-15 -2675 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2675 (|#1| |#1| (-1 (-562) |#1| |#1|)))) -((-2371 (($ (-109) $) 16)) (-1817 (((-3 (-109) "failed") (-1168) $) 15)) (-1663 (($) 7)) (-1569 (($) 17)) (-3494 (($) 18)) (-3246 (((-639 (-174)) $) 10)) (-4053 (((-857) $) 21))) -(((-1077) (-13 (-609 (-857)) (-10 -8 (-15 -1663 ($)) (-15 -3246 ((-639 (-174)) $)) (-15 -1817 ((-3 (-109) "failed") (-1168) $)) (-15 -2371 ($ (-109) $)) (-15 -1569 ($)) (-15 -3494 ($))))) (T -1077)) -((-1663 (*1 *1) (-5 *1 (-1077))) (-3246 (*1 *2 *1) (-12 (-5 *2 (-639 (-174))) (-5 *1 (-1077)))) (-1817 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1168)) (-5 *2 (-109)) (-5 *1 (-1077)))) (-2371 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1077)))) (-1569 (*1 *1) (-5 *1 (-1077))) (-3494 (*1 *1) (-5 *1 (-1077)))) -(-13 (-609 (-857)) (-10 -8 (-15 -1663 ($)) (-15 -3246 ((-639 (-174)) $)) (-15 -1817 ((-3 (-109) "failed") (-1168) $)) (-15 -2371 ($ (-109) $)) (-15 -1569 ($)) (-15 -3494 ($)))) -((-2016 (((-1256 (-683 |#1|)) (-639 (-683 |#1|))) 42) (((-1256 (-683 (-947 |#1|))) (-639 (-1168)) (-683 (-947 |#1|))) 62) (((-1256 (-683 (-406 (-947 |#1|)))) (-639 (-1168)) (-683 (-406 (-947 |#1|)))) 78)) (-2205 (((-1256 |#1|) (-683 |#1|) (-639 (-683 |#1|))) 36))) -(((-1078 |#1|) (-10 -7 (-15 -2016 ((-1256 (-683 (-406 (-947 |#1|)))) (-639 (-1168)) (-683 (-406 (-947 |#1|))))) (-15 -2016 ((-1256 (-683 (-947 |#1|))) (-639 (-1168)) (-683 (-947 |#1|)))) (-15 -2016 ((-1256 (-683 |#1|)) (-639 (-683 |#1|)))) (-15 -2205 ((-1256 |#1|) (-683 |#1|) (-639 (-683 |#1|))))) (-362)) (T -1078)) -((-2205 (*1 *2 *3 *4) (-12 (-5 *4 (-639 (-683 *5))) (-5 *3 (-683 *5)) (-4 *5 (-362)) (-5 *2 (-1256 *5)) (-5 *1 (-1078 *5)))) (-2016 (*1 *2 *3) (-12 (-5 *3 (-639 (-683 *4))) (-4 *4 (-362)) (-5 *2 (-1256 (-683 *4))) (-5 *1 (-1078 *4)))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-1168))) (-4 *5 (-362)) (-5 *2 (-1256 (-683 (-947 *5)))) (-5 *1 (-1078 *5)) (-5 *4 (-683 (-947 *5))))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-1168))) (-4 *5 (-362)) (-5 *2 (-1256 (-683 (-406 (-947 *5))))) (-5 *1 (-1078 *5)) (-5 *4 (-683 (-406 (-947 *5))))))) -(-10 -7 (-15 -2016 ((-1256 (-683 (-406 (-947 |#1|)))) (-639 (-1168)) (-683 (-406 (-947 |#1|))))) (-15 -2016 ((-1256 (-683 (-947 |#1|))) (-639 (-1168)) (-683 (-947 |#1|)))) (-15 -2016 ((-1256 (-683 |#1|)) (-639 (-683 |#1|)))) (-15 -2205 ((-1256 |#1|) (-683 |#1|) (-639 (-683 |#1|))))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-1759 (((-639 (-766)) $) NIL) (((-639 (-766)) $ (-1168)) NIL)) (-2277 (((-766) $) NIL) (((-766) $ (-1168)) NIL)) (-1401 (((-639 (-1080 (-1168))) $) NIL)) (-1602 (((-1164 $) $ (-1080 (-1168))) NIL) (((-1164 |#1|) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-1965 (($ $) NIL (|has| |#1| (-554)))) (-4102 (((-112) $) NIL (|has| |#1| (-554)))) (-1578 (((-766) $) NIL) (((-766) $ (-639 (-1080 (-1168)))) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3517 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-1977 (($ $) NIL (|has| |#1| (-451)))) (-3788 (((-417 $) $) NIL (|has| |#1| (-451)))) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-3611 (($ $) NIL)) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-1080 (-1168)) "failed") $) NIL) (((-3 (-1168) "failed") $) NIL) (((-3 (-1117 |#1| (-1168)) "failed") $) NIL)) (-3960 ((|#1| $) NIL) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-1080 (-1168)) $) NIL) (((-1168) $) NIL) (((-1117 |#1| (-1168)) $) NIL)) (-2355 (($ $ $ (-1080 (-1168))) NIL (|has| |#1| (-171)))) (-1600 (($ $) NIL)) (-3449 (((-683 (-562)) (-683 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) NIL) (((-683 |#1|) (-683 $)) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-2578 (($ $) NIL (|has| |#1| (-451))) (($ $ (-1080 (-1168))) NIL (|has| |#1| (-451)))) (-1585 (((-639 $) $) NIL)) (-3521 (((-112) $) NIL (|has| |#1| (-904)))) (-3066 (($ $ |#1| (-530 (-1080 (-1168))) $) NIL)) (-2337 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-1080 (-1168)) (-881 (-378))) (|has| |#1| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (-12 (|has| (-1080 (-1168)) (-881 (-562))) (|has| |#1| (-881 (-562)))))) (-1993 (((-766) $ (-1168)) NIL) (((-766) $) NIL)) (-4367 (((-112) $) NIL)) (-3627 (((-766) $) NIL)) (-1389 (($ (-1164 |#1|) (-1080 (-1168))) NIL) (($ (-1164 $) (-1080 (-1168))) NIL)) (-1869 (((-639 $) $) NIL)) (-2833 (((-112) $) NIL)) (-1377 (($ |#1| (-530 (-1080 (-1168)))) NIL) (($ $ (-1080 (-1168)) (-766)) NIL) (($ $ (-639 (-1080 (-1168))) (-639 (-766))) NIL)) (-3851 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $ (-1080 (-1168))) NIL)) (-3161 (((-530 (-1080 (-1168))) $) NIL) (((-766) $ (-1080 (-1168))) NIL) (((-639 (-766)) $ (-639 (-1080 (-1168)))) NIL)) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-2363 (($ (-1 (-530 (-1080 (-1168))) (-530 (-1080 (-1168)))) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-2298 (((-1 $ (-766)) (-1168)) NIL) (((-1 $ (-766)) $) NIL (|has| |#1| (-232)))) (-3640 (((-3 (-1080 (-1168)) "failed") $) NIL)) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-3736 (((-1080 (-1168)) $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) NIL (|has| |#1| (-451)))) (-3696 (((-1150) $) NIL)) (-1611 (((-112) $) NIL)) (-4025 (((-3 (-639 $) "failed") $) NIL)) (-1778 (((-3 (-639 $) "failed") $) NIL)) (-4270 (((-3 (-2 (|:| |var| (-1080 (-1168))) (|:| -1300 (-766))) "failed") $) NIL)) (-3592 (($ $) NIL)) (-1709 (((-1112) $) NIL)) (-1534 (((-112) $) NIL)) (-1547 ((|#1| $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-451)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) NIL (|has| |#1| (-451)))) (-3586 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-3468 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-1635 (((-417 $) $) NIL (|has| |#1| (-904)))) (-1762 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-1433 (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-1080 (-1168)) |#1|) NIL) (($ $ (-639 (-1080 (-1168))) (-639 |#1|)) NIL) (($ $ (-1080 (-1168)) $) NIL) (($ $ (-639 (-1080 (-1168))) (-639 $)) NIL) (($ $ (-1168) $) NIL (|has| |#1| (-232))) (($ $ (-639 (-1168)) (-639 $)) NIL (|has| |#1| (-232))) (($ $ (-1168) |#1|) NIL (|has| |#1| (-232))) (($ $ (-639 (-1168)) (-639 |#1|)) NIL (|has| |#1| (-232)))) (-2736 (($ $ (-1080 (-1168))) NIL (|has| |#1| (-171)))) (-4029 (($ $ (-1080 (-1168))) NIL) (($ $ (-639 (-1080 (-1168)))) NIL) (($ $ (-1080 (-1168)) (-766)) NIL) (($ $ (-639 (-1080 (-1168))) (-639 (-766))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-766)) NIL (|has| |#1| (-232))) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3712 (((-639 (-1168)) $) NIL)) (-2250 (((-530 (-1080 (-1168))) $) NIL) (((-766) $ (-1080 (-1168))) NIL) (((-639 (-766)) $ (-639 (-1080 (-1168)))) NIL) (((-766) $ (-1168)) NIL)) (-4208 (((-887 (-378)) $) NIL (-12 (|has| (-1080 (-1168)) (-610 (-887 (-378)))) (|has| |#1| (-610 (-887 (-378)))))) (((-887 (-562)) $) NIL (-12 (|has| (-1080 (-1168)) (-610 (-887 (-562)))) (|has| |#1| (-610 (-887 (-562)))))) (((-535) $) NIL (-12 (|has| (-1080 (-1168)) (-610 (-535))) (|has| |#1| (-610 (-535)))))) (-2201 ((|#1| $) NIL (|has| |#1| (-451))) (($ $ (-1080 (-1168))) NIL (|has| |#1| (-451)))) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-904))))) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ |#1|) NIL) (($ (-1080 (-1168))) NIL) (($ (-1168)) NIL) (($ (-1117 |#1| (-1168))) NIL) (($ (-406 (-562))) NIL (-4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562)))))) (($ $) NIL (|has| |#1| (-554)))) (-3969 (((-639 |#1|) $) NIL)) (-2266 ((|#1| $ (-530 (-1080 (-1168)))) NIL) (($ $ (-1080 (-1168)) (-766)) NIL) (($ $ (-639 (-1080 (-1168))) (-639 (-766))) NIL)) (-2059 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#1| (-904))) (|has| |#1| (-144))))) (-1568 (((-766)) NIL)) (-1760 (($ $ $ (-766)) NIL (|has| |#1| (-171)))) (-3799 (((-112) $ $) NIL (|has| |#1| (-554)))) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3113 (($ $ (-1080 (-1168))) NIL) (($ $ (-639 (-1080 (-1168)))) NIL) (($ $ (-1080 (-1168)) (-766)) NIL) (($ $ (-639 (-1080 (-1168))) (-639 (-766))) NIL) (($ $) NIL (|has| |#1| (-232))) (($ $ (-766)) NIL (|has| |#1| (-232))) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1771 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1761 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1079 |#1|) (-13 (-252 |#1| (-1168) (-1080 (-1168)) (-530 (-1080 (-1168)))) (-1033 (-1117 |#1| (-1168)))) (-1044)) (T -1079)) -NIL -(-13 (-252 |#1| (-1168) (-1080 (-1168)) (-530 (-1080 (-1168)))) (-1033 (-1117 |#1| (-1168)))) -((-4041 (((-112) $ $) NIL)) (-2277 (((-766) $) NIL)) (-2443 ((|#1| $) 10)) (-4048 (((-3 |#1| "failed") $) NIL)) (-3960 ((|#1| $) NIL)) (-1993 (((-766) $) 11)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-2298 (($ |#1| (-766)) 9)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4029 (($ $) NIL) (($ $ (-766)) NIL)) (-4053 (((-857) $) NIL) (($ |#1|) NIL)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) 15))) -(((-1080 |#1|) (-265 |#1|) (-845)) (T -1080)) -NIL -(-265 |#1|) -((-4152 (((-639 |#2|) (-1 |#2| |#1|) (-1086 |#1|)) 23 (|has| |#1| (-843))) (((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|)) 14))) -(((-1081 |#1| |#2|) (-10 -7 (-15 -4152 ((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|))) (IF (|has| |#1| (-843)) (-15 -4152 ((-639 |#2|) (-1 |#2| |#1|) (-1086 |#1|))) |%noBranch|)) (-1207) (-1207)) (T -1081)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1086 *5)) (-4 *5 (-843)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-639 *6)) (-5 *1 (-1081 *5 *6)))) (-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1086 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-1086 *6)) (-5 *1 (-1081 *5 *6))))) -(-10 -7 (-15 -4152 ((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|))) (IF (|has| |#1| (-843)) (-15 -4152 ((-639 |#2|) (-1 |#2| |#1|) (-1086 |#1|))) |%noBranch|)) -((-4041 (((-112) $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 17) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1852 (((-639 (-1127)) $) 9)) (-1733 (((-112) $ $) NIL))) -(((-1082) (-13 (-1075) (-10 -8 (-15 -1852 ((-639 (-1127)) $))))) (T -1082)) -((-1852 (*1 *2 *1) (-12 (-5 *2 (-639 (-1127))) (-5 *1 (-1082))))) -(-13 (-1075) (-10 -8 (-15 -1852 ((-639 (-1127)) $)))) -((-4152 (((-1084 |#2|) (-1 |#2| |#1|) (-1084 |#1|)) 19))) -(((-1083 |#1| |#2|) (-10 -7 (-15 -4152 ((-1084 |#2|) (-1 |#2| |#1|) (-1084 |#1|)))) (-1207) (-1207)) (T -1083)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1084 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-1084 *6)) (-5 *1 (-1083 *5 *6))))) -(-10 -7 (-15 -4152 ((-1084 |#2|) (-1 |#2| |#1|) (-1084 |#1|)))) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2443 (((-1168) $) 11)) (-2668 (((-1086 |#1|) $) 12)) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-3680 (($ (-1168) (-1086 |#1|)) 10)) (-4053 (((-857) $) 20 (|has| |#1| (-1092)))) (-1733 (((-112) $ $) 15 (|has| |#1| (-1092))))) -(((-1084 |#1|) (-13 (-1207) (-10 -8 (-15 -3680 ($ (-1168) (-1086 |#1|))) (-15 -2443 ((-1168) $)) (-15 -2668 ((-1086 |#1|) $)) (IF (|has| |#1| (-1092)) (-6 (-1092)) |%noBranch|))) (-1207)) (T -1084)) -((-3680 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1086 *4)) (-4 *4 (-1207)) (-5 *1 (-1084 *4)))) (-2443 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1084 *3)) (-4 *3 (-1207)))) (-2668 (*1 *2 *1) (-12 (-5 *2 (-1086 *3)) (-5 *1 (-1084 *3)) (-4 *3 (-1207))))) -(-13 (-1207) (-10 -8 (-15 -3680 ($ (-1168) (-1086 |#1|))) (-15 -2443 ((-1168) $)) (-15 -2668 ((-1086 |#1|) $)) (IF (|has| |#1| (-1092)) (-6 (-1092)) |%noBranch|))) -((-2668 (($ |#1| |#1|) 8)) (-3665 ((|#1| $) 11)) (-1750 ((|#1| $) 13)) (-1765 (((-562) $) 9)) (-3979 ((|#1| $) 10)) (-2088 ((|#1| $) 12)) (-4208 (($ |#1|) 6)) (-3863 (($ |#1| |#1|) 15)) (-1483 (($ $ (-562)) 14))) -(((-1085 |#1|) (-139) (-1207)) (T -1085)) -((-3863 (*1 *1 *2 *2) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1207)))) (-1483 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-1085 *3)) (-4 *3 (-1207)))) (-1750 (*1 *2 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1207)))) (-2088 (*1 *2 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1207)))) (-3665 (*1 *2 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1207)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1207)))) (-1765 (*1 *2 *1) (-12 (-4 *1 (-1085 *3)) (-4 *3 (-1207)) (-5 *2 (-562)))) (-2668 (*1 *1 *2 *2) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1207))))) -(-13 (-614 |t#1|) (-10 -8 (-15 -3863 ($ |t#1| |t#1|)) (-15 -1483 ($ $ (-562))) (-15 -1750 (|t#1| $)) (-15 -2088 (|t#1| $)) (-15 -3665 (|t#1| $)) (-15 -3979 (|t#1| $)) (-15 -1765 ((-562) $)) (-15 -2668 ($ |t#1| |t#1|)))) -(((-614 |#1|) . T)) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2668 (($ |#1| |#1|) 15)) (-4152 (((-639 |#1|) (-1 |#1| |#1|) $) 37 (|has| |#1| (-843)))) (-3665 ((|#1| $) 10)) (-1750 ((|#1| $) 9)) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1765 (((-562) $) 14)) (-3979 ((|#1| $) 12)) (-2088 ((|#1| $) 11)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-3525 (((-639 |#1|) $) 35 (|has| |#1| (-843))) (((-639 |#1|) (-639 $)) 34 (|has| |#1| (-843)))) (-4208 (($ |#1|) 26)) (-4053 (((-857) $) 25 (|has| |#1| (-1092)))) (-3863 (($ |#1| |#1|) 8)) (-1483 (($ $ (-562)) 16)) (-1733 (((-112) $ $) 19 (|has| |#1| (-1092))))) -(((-1086 |#1|) (-13 (-1085 |#1|) (-10 -7 (IF (|has| |#1| (-1092)) (-6 (-1092)) |%noBranch|) (IF (|has| |#1| (-843)) (-6 (-1087 |#1| (-639 |#1|))) |%noBranch|))) (-1207)) (T -1086)) -NIL -(-13 (-1085 |#1|) (-10 -7 (IF (|has| |#1| (-1092)) (-6 (-1092)) |%noBranch|) (IF (|has| |#1| (-843)) (-6 (-1087 |#1| (-639 |#1|))) |%noBranch|))) -((-2668 (($ |#1| |#1|) 8)) (-4152 ((|#2| (-1 |#1| |#1|) $) 16)) (-3665 ((|#1| $) 11)) (-1750 ((|#1| $) 13)) (-1765 (((-562) $) 9)) (-3979 ((|#1| $) 10)) (-2088 ((|#1| $) 12)) (-3525 ((|#2| (-639 $)) 18) ((|#2| $) 17)) (-4208 (($ |#1|) 6)) (-3863 (($ |#1| |#1|) 15)) (-1483 (($ $ (-562)) 14))) -(((-1087 |#1| |#2|) (-139) (-843) (-1141 |t#1|)) (T -1087)) -((-3525 (*1 *2 *3) (-12 (-5 *3 (-639 *1)) (-4 *1 (-1087 *4 *2)) (-4 *4 (-843)) (-4 *2 (-1141 *4)))) (-3525 (*1 *2 *1) (-12 (-4 *1 (-1087 *3 *2)) (-4 *3 (-843)) (-4 *2 (-1141 *3)))) (-4152 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1087 *4 *2)) (-4 *4 (-843)) (-4 *2 (-1141 *4))))) -(-13 (-1085 |t#1|) (-10 -8 (-15 -3525 (|t#2| (-639 $))) (-15 -3525 (|t#2| $)) (-15 -4152 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-614 |#1|) . T) ((-1085 |#1|) . T)) -((-4041 (((-112) $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1504 (((-1127) $) 12)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 20) (($ (-1173)) NIL) (((-1173) $) NIL)) (-3265 (((-639 (-1127)) $) 10)) (-1733 (((-112) $ $) NIL))) -(((-1088) (-13 (-1075) (-10 -8 (-15 -3265 ((-639 (-1127)) $)) (-15 -1504 ((-1127) $))))) (T -1088)) -((-3265 (*1 *2 *1) (-12 (-5 *2 (-639 (-1127))) (-5 *1 (-1088)))) (-1504 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1088))))) -(-13 (-1075) (-10 -8 (-15 -3265 ((-639 (-1127)) $)) (-15 -1504 ((-1127) $)))) -((-2492 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2570 (($ $ $) 10)) (-3874 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-1089 |#1| |#2|) (-10 -8 (-15 -2492 (|#1| |#2| |#1|)) (-15 -2492 (|#1| |#1| |#2|)) (-15 -2492 (|#1| |#1| |#1|)) (-15 -2570 (|#1| |#1| |#1|)) (-15 -3874 (|#1| |#1| |#2|)) (-15 -3874 (|#1| |#1| |#1|))) (-1090 |#2|) (-1092)) (T -1089)) -NIL -(-10 -8 (-15 -2492 (|#1| |#2| |#1|)) (-15 -2492 (|#1| |#1| |#2|)) (-15 -2492 (|#1| |#1| |#1|)) (-15 -2570 (|#1| |#1| |#1|)) (-15 -3874 (|#1| |#1| |#2|)) (-15 -3874 (|#1| |#1| |#1|))) -((-4041 (((-112) $ $) 7)) (-2492 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-2570 (($ $ $) 20)) (-3938 (((-112) $ $) 19)) (-3735 (((-112) $ (-766)) 35)) (-1607 (($) 25) (($ (-639 |#1|)) 24)) (-3556 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4403)))) (-3329 (($) 36 T CONST)) (-1459 (($ $) 59 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1475 (($ |#1| $) 58 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4403)))) (-1954 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4403)))) (-1720 (((-639 |#1|) $) 43 (|has| $ (-6 -4403)))) (-3528 (((-112) $ $) 28)) (-4172 (((-112) $ (-766)) 34)) (-2123 (((-639 |#1|) $) 44 (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1491 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 38)) (-4147 (((-112) $ (-766)) 33)) (-3696 (((-1150) $) 9)) (-4169 (($ $ $) 23)) (-1709 (((-1112) $) 10)) (-1963 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3008 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 |#1|) (-639 |#1|)) 50 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 48 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 (-293 |#1|))) 47 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) 29)) (-3087 (((-112) $) 32)) (-1663 (($) 31)) (-3874 (($ $ $) 22) (($ $ |#1|) 21)) (-1723 (((-766) |#1| $) 45 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403)))) (((-766) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4403)))) (-4220 (($ $) 30)) (-4208 (((-535) $) 60 (|has| |#1| (-610 (-535))))) (-4064 (($ (-639 |#1|)) 51)) (-4053 (((-857) $) 11)) (-1702 (($) 27) (($ (-639 |#1|)) 26)) (-2879 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 6)) (-3492 (((-766) $) 37 (|has| $ (-6 -4403))))) -(((-1090 |#1|) (-139) (-1092)) (T -1090)) -((-3528 (*1 *2 *1 *1) (-12 (-4 *1 (-1090 *3)) (-4 *3 (-1092)) (-5 *2 (-112)))) (-1702 (*1 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092)))) (-1702 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-4 *1 (-1090 *3)))) (-1607 (*1 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092)))) (-1607 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-4 *1 (-1090 *3)))) (-4169 (*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092)))) (-3874 (*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092)))) (-3874 (*1 *1 *1 *2) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092)))) (-2570 (*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092)))) (-3938 (*1 *2 *1 *1) (-12 (-4 *1 (-1090 *3)) (-4 *3 (-1092)) (-5 *2 (-112)))) (-2492 (*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092)))) (-2492 (*1 *1 *1 *2) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092)))) (-2492 (*1 *1 *2 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092))))) -(-13 (-1092) (-150 |t#1|) (-10 -8 (-6 -4393) (-15 -3528 ((-112) $ $)) (-15 -1702 ($)) (-15 -1702 ($ (-639 |t#1|))) (-15 -1607 ($)) (-15 -1607 ($ (-639 |t#1|))) (-15 -4169 ($ $ $)) (-15 -3874 ($ $ $)) (-15 -3874 ($ $ |t#1|)) (-15 -2570 ($ $ $)) (-15 -3938 ((-112) $ $)) (-15 -2492 ($ $ $)) (-15 -2492 ($ $ |t#1|)) (-15 -2492 ($ |t#1| $)))) -(((-34) . T) ((-102) . T) ((-609 (-857)) . T) ((-150 |#1|) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1092) . T) ((-1207) . T)) -((-3696 (((-1150) $) 10)) (-1709 (((-1112) $) 8))) -(((-1091 |#1|) (-10 -8 (-15 -3696 ((-1150) |#1|)) (-15 -1709 ((-1112) |#1|))) (-1092)) (T -1091)) -NIL -(-10 -8 (-15 -3696 ((-1150) |#1|)) (-15 -1709 ((-1112) |#1|))) -((-4041 (((-112) $ $) 7)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11)) (-1733 (((-112) $ $) 6))) -(((-1092) (-139)) (T -1092)) -((-1709 (*1 *2 *1) (-12 (-4 *1 (-1092)) (-5 *2 (-1112)))) (-3696 (*1 *2 *1) (-12 (-4 *1 (-1092)) (-5 *2 (-1150))))) -(-13 (-102) (-609 (-857)) (-10 -8 (-15 -1709 ((-1112) $)) (-15 -3696 ((-1150) $)))) -(((-102) . T) ((-609 (-857)) . T)) -((-4041 (((-112) $ $) NIL)) (-1382 (((-766)) 30)) (-4176 (($ (-639 (-916))) 52)) (-1897 (((-3 $ "failed") $ (-916) (-916)) 58)) (-1447 (($) 32)) (-1572 (((-112) (-916) $) 35)) (-3549 (((-916) $) 50)) (-3696 (((-1150) $) NIL)) (-2464 (($ (-916)) 31)) (-2625 (((-3 $ "failed") $ (-916)) 55)) (-1709 (((-1112) $) NIL)) (-3618 (((-1256 $)) 40)) (-2048 (((-639 (-916)) $) 24)) (-3756 (((-766) $ (-916) (-916)) 56)) (-4053 (((-857) $) 29)) (-1733 (((-112) $ $) 21))) -(((-1093 |#1| |#2|) (-13 (-367) (-10 -8 (-15 -2625 ((-3 $ "failed") $ (-916))) (-15 -1897 ((-3 $ "failed") $ (-916) (-916))) (-15 -2048 ((-639 (-916)) $)) (-15 -4176 ($ (-639 (-916)))) (-15 -3618 ((-1256 $))) (-15 -1572 ((-112) (-916) $)) (-15 -3756 ((-766) $ (-916) (-916))))) (-916) (-916)) (T -1093)) -((-2625 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-916)) (-5 *1 (-1093 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1897 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-916)) (-5 *1 (-1093 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2048 (*1 *2 *1) (-12 (-5 *2 (-639 (-916))) (-5 *1 (-1093 *3 *4)) (-14 *3 (-916)) (-14 *4 (-916)))) (-4176 (*1 *1 *2) (-12 (-5 *2 (-639 (-916))) (-5 *1 (-1093 *3 *4)) (-14 *3 (-916)) (-14 *4 (-916)))) (-3618 (*1 *2) (-12 (-5 *2 (-1256 (-1093 *3 *4))) (-5 *1 (-1093 *3 *4)) (-14 *3 (-916)) (-14 *4 (-916)))) (-1572 (*1 *2 *3 *1) (-12 (-5 *3 (-916)) (-5 *2 (-112)) (-5 *1 (-1093 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3756 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-916)) (-5 *2 (-766)) (-5 *1 (-1093 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-367) (-10 -8 (-15 -2625 ((-3 $ "failed") $ (-916))) (-15 -1897 ((-3 $ "failed") $ (-916) (-916))) (-15 -2048 ((-639 (-916)) $)) (-15 -4176 ($ (-639 (-916)))) (-15 -3618 ((-1256 $))) (-15 -1572 ((-112) (-916) $)) (-15 -3756 ((-766) $ (-916) (-916))))) -((-4041 (((-112) $ $) NIL)) (-4076 (($) NIL (|has| |#1| (-367)))) (-2492 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 73)) (-2570 (($ $ $) 71)) (-3938 (((-112) $ $) 72)) (-3735 (((-112) $ (-766)) NIL)) (-1382 (((-766)) NIL (|has| |#1| (-367)))) (-1607 (($ (-639 |#1|)) NIL) (($) 13)) (-2968 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-3329 (($) NIL T CONST)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-3729 (($ |#1| $) 67 (|has| $ (-6 -4403))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1954 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4403)))) (-1447 (($) NIL (|has| |#1| (-367)))) (-1720 (((-639 |#1|) $) 19 (|has| $ (-6 -4403)))) (-3528 (((-112) $ $) NIL)) (-4172 (((-112) $ (-766)) NIL)) (-1551 ((|#1| $) 57 (|has| |#1| (-845)))) (-2123 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) 66 (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2993 ((|#1| $) 55 (|has| |#1| (-845)))) (-1491 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 34)) (-3549 (((-916) $) NIL (|has| |#1| (-367)))) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL)) (-4169 (($ $ $) 69)) (-2078 ((|#1| $) 25)) (-1581 (($ |#1| $) 65)) (-2464 (($ (-916)) NIL (|has| |#1| (-367)))) (-1709 (((-1112) $) NIL)) (-1963 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-2038 ((|#1| $) 27)) (-3008 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) NIL)) (-3087 (((-112) $) 21)) (-1663 (($) 11)) (-3874 (($ $ |#1|) NIL) (($ $ $) 70)) (-1932 (($) NIL) (($ (-639 |#1|)) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-4220 (($ $) 16)) (-4208 (((-535) $) 52 (|has| |#1| (-610 (-535))))) (-4064 (($ (-639 |#1|)) 61)) (-2695 (($ $) NIL (|has| |#1| (-367)))) (-4053 (((-857) $) NIL)) (-2186 (((-766) $) NIL)) (-1702 (($ (-639 |#1|)) NIL) (($) 12)) (-4131 (($ (-639 |#1|)) NIL)) (-2879 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 54)) (-3492 (((-766) $) 10 (|has| $ (-6 -4403))))) -(((-1094 |#1|) (-424 |#1|) (-1092)) (T -1094)) -NIL -(-424 |#1|) -((-4041 (((-112) $ $) 7)) (-1681 (((-112) $) 32)) (-1729 ((|#2| $) 27)) (-1950 (((-112) $) 33)) (-3596 ((|#1| $) 28)) (-3391 (((-112) $) 35)) (-3032 (((-112) $) 37)) (-1498 (((-112) $) 34)) (-3696 (((-1150) $) 9)) (-3693 (((-112) $) 31)) (-1757 ((|#3| $) 26)) (-1709 (((-1112) $) 10)) (-4014 (((-112) $) 30)) (-4237 ((|#4| $) 25)) (-2400 ((|#5| $) 24)) (-3339 (((-112) $ $) 38)) (-2343 (($ $ (-562)) 20) (($ $ (-639 (-562))) 19)) (-1716 (((-639 $) $) 29)) (-4208 (($ |#1|) 44) (($ |#2|) 43) (($ |#3|) 42) (($ |#4|) 41) (($ |#5|) 40) (($ (-639 $)) 39)) (-4053 (((-857) $) 11)) (-3740 (($ $) 22)) (-3728 (($ $) 23)) (-4301 (((-112) $) 36)) (-1733 (((-112) $ $) 6)) (-3492 (((-562) $) 21))) -(((-1095 |#1| |#2| |#3| |#4| |#5|) (-139) (-1092) (-1092) (-1092) (-1092) (-1092)) (T -1095)) -((-3339 (*1 *2 *1 *1) (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112)))) (-3032 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112)))) (-4301 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112)))) (-3391 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112)))) (-1498 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112)))) (-1950 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112)))) (-1681 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112)))) (-3693 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112)))) (-4014 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112)))) (-1716 (*1 *2 *1) (-12 (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-639 *1)) (-4 *1 (-1095 *3 *4 *5 *6 *7)))) (-3596 (*1 *2 *1) (-12 (-4 *1 (-1095 *2 *3 *4 *5 *6)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *2 (-1092)))) (-1729 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *2 *4 *5 *6)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *2 (-1092)))) (-1757 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *2 *5 *6)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *2 (-1092)))) (-4237 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *5 *2 *6)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *2 (-1092)))) (-2400 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *5 *6 *2)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *2 (-1092)))) (-3728 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4 *5 *6)) (-4 *2 (-1092)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)))) (-3740 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4 *5 *6)) (-4 *2 (-1092)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)))) (-3492 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-562)))) (-2343 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)))) (-2343 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-562))) (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092))))) -(-13 (-1092) (-614 |t#1|) (-614 |t#2|) (-614 |t#3|) (-614 |t#4|) (-614 |t#4|) (-614 |t#5|) (-614 (-639 $)) (-10 -8 (-15 -3339 ((-112) $ $)) (-15 -3032 ((-112) $)) (-15 -4301 ((-112) $)) (-15 -3391 ((-112) $)) (-15 -1498 ((-112) $)) (-15 -1950 ((-112) $)) (-15 -1681 ((-112) $)) (-15 -3693 ((-112) $)) (-15 -4014 ((-112) $)) (-15 -1716 ((-639 $) $)) (-15 -3596 (|t#1| $)) (-15 -1729 (|t#2| $)) (-15 -1757 (|t#3| $)) (-15 -4237 (|t#4| $)) (-15 -2400 (|t#5| $)) (-15 -3728 ($ $)) (-15 -3740 ($ $)) (-15 -3492 ((-562) $)) (-15 -2343 ($ $ (-562))) (-15 -2343 ($ $ (-639 (-562)))))) -(((-102) . T) ((-609 (-857)) . T) ((-614 (-639 $)) . T) ((-614 |#1|) . T) ((-614 |#2|) . T) ((-614 |#3|) . T) ((-614 |#4|) . T) ((-614 |#5|) . T) ((-1092) . T)) -((-4041 (((-112) $ $) NIL)) (-1681 (((-112) $) NIL)) (-1729 (((-1168) $) NIL)) (-1950 (((-112) $) NIL)) (-3596 (((-1150) $) NIL)) (-3391 (((-112) $) NIL)) (-3032 (((-112) $) NIL)) (-1498 (((-112) $) NIL)) (-3696 (((-1150) $) NIL)) (-3693 (((-112) $) NIL)) (-1757 (((-562) $) NIL)) (-1709 (((-1112) $) NIL)) (-4014 (((-112) $) NIL)) (-4237 (((-224) $) NIL)) (-2400 (((-857) $) NIL)) (-3339 (((-112) $ $) NIL)) (-2343 (($ $ (-562)) NIL) (($ $ (-639 (-562))) NIL)) (-1716 (((-639 $) $) NIL)) (-4208 (($ (-1150)) NIL) (($ (-1168)) NIL) (($ (-562)) NIL) (($ (-224)) NIL) (($ (-857)) NIL) (($ (-639 $)) NIL)) (-4053 (((-857) $) NIL)) (-3740 (($ $) NIL)) (-3728 (($ $) NIL)) (-4301 (((-112) $) NIL)) (-1733 (((-112) $ $) NIL)) (-3492 (((-562) $) NIL))) -(((-1096) (-1095 (-1150) (-1168) (-562) (-224) (-857))) (T -1096)) -NIL -(-1095 (-1150) (-1168) (-562) (-224) (-857)) -((-4041 (((-112) $ $) NIL)) (-1681 (((-112) $) 39)) (-1729 ((|#2| $) 42)) (-1950 (((-112) $) 18)) (-3596 ((|#1| $) 19)) (-3391 (((-112) $) 37)) (-3032 (((-112) $) 14)) (-1498 (((-112) $) 38)) (-3696 (((-1150) $) NIL)) (-3693 (((-112) $) 40)) (-1757 ((|#3| $) 44)) (-1709 (((-1112) $) NIL)) (-4014 (((-112) $) 41)) (-4237 ((|#4| $) 43)) (-2400 ((|#5| $) 45)) (-3339 (((-112) $ $) 36)) (-2343 (($ $ (-562)) 56) (($ $ (-639 (-562))) 58)) (-1716 (((-639 $) $) 24)) (-4208 (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51) (($ (-639 $)) 46)) (-4053 (((-857) $) 25)) (-3740 (($ $) 23)) (-3728 (($ $) 52)) (-4301 (((-112) $) 21)) (-1733 (((-112) $ $) 35)) (-3492 (((-562) $) 54))) -(((-1097 |#1| |#2| |#3| |#4| |#5|) (-1095 |#1| |#2| |#3| |#4| |#5|) (-1092) (-1092) (-1092) (-1092) (-1092)) (T -1097)) -NIL -(-1095 |#1| |#2| |#3| |#4| |#5|) -((-3218 (((-1261) $) 23)) (-1332 (($ (-1168) (-433) |#2|) 11)) (-4053 (((-857) $) 16))) -(((-1098 |#1| |#2|) (-13 (-394) (-10 -8 (-15 -1332 ($ (-1168) (-433) |#2|)))) (-845) (-429 |#1|)) (T -1098)) -((-1332 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1168)) (-5 *3 (-433)) (-4 *5 (-845)) (-5 *1 (-1098 *5 *4)) (-4 *4 (-429 *5))))) -(-13 (-394) (-10 -8 (-15 -1332 ($ (-1168) (-433) |#2|)))) -((-3590 (((-112) |#5| |#5|) 37)) (-1914 (((-112) |#5| |#5|) 51)) (-4346 (((-112) |#5| (-639 |#5|)) 74) (((-112) |#5| |#5|) 60)) (-4077 (((-112) (-639 |#4|) (-639 |#4|)) 57)) (-2097 (((-112) (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|)) (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) 62)) (-4089 (((-1261)) 33)) (-1983 (((-1261) (-1150) (-1150) (-1150)) 29)) (-4257 (((-639 |#5|) (-639 |#5|)) 81)) (-1550 (((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|)))) 79)) (-3579 (((-639 (-2 (|:| -3339 (-639 |#4|)) (|:| -1501 |#5|) (|:| |ineq| (-639 |#4|)))) (-639 |#4|) (-639 |#5|) (-112) (-112)) 101)) (-2027 (((-112) |#5| |#5|) 46)) (-2916 (((-3 (-112) "failed") |#5| |#5|) 70)) (-2838 (((-112) (-639 |#4|) (-639 |#4|)) 56)) (-3338 (((-112) (-639 |#4|) (-639 |#4|)) 58)) (-1789 (((-112) (-639 |#4|) (-639 |#4|)) 59)) (-1902 (((-3 (-2 (|:| -3339 (-639 |#4|)) (|:| -1501 |#5|) (|:| |ineq| (-639 |#4|))) "failed") (-639 |#4|) |#5| (-639 |#4|) (-112) (-112) (-112) (-112) (-112)) 97)) (-1586 (((-639 |#5|) (-639 |#5|)) 42))) -(((-1099 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1983 ((-1261) (-1150) (-1150) (-1150))) (-15 -4089 ((-1261))) (-15 -3590 ((-112) |#5| |#5|)) (-15 -1586 ((-639 |#5|) (-639 |#5|))) (-15 -2027 ((-112) |#5| |#5|)) (-15 -1914 ((-112) |#5| |#5|)) (-15 -4077 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -2838 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -3338 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -1789 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -2916 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4346 ((-112) |#5| |#5|)) (-15 -4346 ((-112) |#5| (-639 |#5|))) (-15 -4257 ((-639 |#5|) (-639 |#5|))) (-15 -2097 ((-112) (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|)) (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|)))) (-15 -1550 ((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) (-15 -3579 ((-639 (-2 (|:| -3339 (-639 |#4|)) (|:| -1501 |#5|) (|:| |ineq| (-639 |#4|)))) (-639 |#4|) (-639 |#5|) (-112) (-112))) (-15 -1902 ((-3 (-2 (|:| -3339 (-639 |#4|)) (|:| -1501 |#5|) (|:| |ineq| (-639 |#4|))) "failed") (-639 |#4|) |#5| (-639 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-451) (-788) (-845) (-1058 |#1| |#2| |#3|) (-1064 |#1| |#2| |#3| |#4|)) (T -1099)) -((-1902 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) (-4 *9 (-1058 *6 *7 *8)) (-5 *2 (-2 (|:| -3339 (-639 *9)) (|:| -1501 *4) (|:| |ineq| (-639 *9)))) (-5 *1 (-1099 *6 *7 *8 *9 *4)) (-5 *3 (-639 *9)) (-4 *4 (-1064 *6 *7 *8 *9)))) (-3579 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-639 *10)) (-5 *5 (-112)) (-4 *10 (-1064 *6 *7 *8 *9)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) (-4 *9 (-1058 *6 *7 *8)) (-5 *2 (-639 (-2 (|:| -3339 (-639 *9)) (|:| -1501 *10) (|:| |ineq| (-639 *9))))) (-5 *1 (-1099 *6 *7 *8 *9 *10)) (-5 *3 (-639 *9)))) (-1550 (*1 *2 *2) (-12 (-5 *2 (-639 (-2 (|:| |val| (-639 *6)) (|:| -1501 *7)))) (-4 *6 (-1058 *3 *4 *5)) (-4 *7 (-1064 *3 *4 *5 *6)) (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-1099 *3 *4 *5 *6 *7)))) (-2097 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-639 *7)) (|:| -1501 *8))) (-4 *7 (-1058 *4 *5 *6)) (-4 *8 (-1064 *4 *5 *6 *7)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-1099 *4 *5 *6 *7 *8)))) (-4257 (*1 *2 *2) (-12 (-5 *2 (-639 *7)) (-4 *7 (-1064 *3 *4 *5 *6)) (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *1 (-1099 *3 *4 *5 *6 *7)))) (-4346 (*1 *2 *3 *4) (-12 (-5 *4 (-639 *3)) (-4 *3 (-1064 *5 *6 *7 *8)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *8 (-1058 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1099 *5 *6 *7 *8 *3)))) (-4346 (*1 *2 *3 *3) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1099 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7)))) (-2916 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1099 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7)))) (-1789 (*1 *2 *3 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-1099 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) (-3338 (*1 *2 *3 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-1099 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) (-2838 (*1 *2 *3 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-1099 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) (-4077 (*1 *2 *3 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) (-5 *1 (-1099 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) (-1914 (*1 *2 *3 *3) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1099 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7)))) (-2027 (*1 *2 *3 *3) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1099 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7)))) (-1586 (*1 *2 *2) (-12 (-5 *2 (-639 *7)) (-4 *7 (-1064 *3 *4 *5 *6)) (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *1 (-1099 *3 *4 *5 *6 *7)))) (-3590 (*1 *2 *3 *3) (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1099 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7)))) (-4089 (*1 *2) (-12 (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-1261)) (-5 *1 (-1099 *3 *4 *5 *6 *7)) (-4 *7 (-1064 *3 *4 *5 *6)))) (-1983 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1150)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-1261)) (-5 *1 (-1099 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7))))) -(-10 -7 (-15 -1983 ((-1261) (-1150) (-1150) (-1150))) (-15 -4089 ((-1261))) (-15 -3590 ((-112) |#5| |#5|)) (-15 -1586 ((-639 |#5|) (-639 |#5|))) (-15 -2027 ((-112) |#5| |#5|)) (-15 -1914 ((-112) |#5| |#5|)) (-15 -4077 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -2838 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -3338 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -1789 ((-112) (-639 |#4|) (-639 |#4|))) (-15 -2916 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4346 ((-112) |#5| |#5|)) (-15 -4346 ((-112) |#5| (-639 |#5|))) (-15 -4257 ((-639 |#5|) (-639 |#5|))) (-15 -2097 ((-112) (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|)) (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|)))) (-15 -1550 ((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) (-15 -3579 ((-639 (-2 (|:| -3339 (-639 |#4|)) (|:| -1501 |#5|) (|:| |ineq| (-639 |#4|)))) (-639 |#4|) (-639 |#5|) (-112) (-112))) (-15 -1902 ((-3 (-2 (|:| -3339 (-639 |#4|)) (|:| -1501 |#5|) (|:| |ineq| (-639 |#4|))) "failed") (-639 |#4|) |#5| (-639 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-3155 (((-639 (-2 (|:| |val| |#4|) (|:| -1501 |#5|))) |#4| |#5|) 95)) (-3140 (((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) |#4| |#4| |#5|) 71)) (-3968 (((-639 (-2 (|:| |val| |#4|) (|:| -1501 |#5|))) |#4| |#4| |#5|) 89)) (-3977 (((-639 |#5|) |#4| |#5|) 109)) (-2807 (((-639 |#5|) |#4| |#5|) 116)) (-2701 (((-639 |#5|) |#4| |#5|) 117)) (-3651 (((-639 (-2 (|:| |val| (-112)) (|:| -1501 |#5|))) |#4| |#5|) 96)) (-2479 (((-639 (-2 (|:| |val| (-112)) (|:| -1501 |#5|))) |#4| |#5|) 115)) (-2212 (((-639 (-2 (|:| |val| (-112)) (|:| -1501 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-2074 (((-639 (-2 (|:| |val| |#4|) (|:| -1501 |#5|))) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) |#3| (-112)) 83) (((-639 (-2 (|:| |val| |#4|) (|:| -1501 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-4204 (((-639 (-2 (|:| |val| |#4|) (|:| -1501 |#5|))) |#4| |#4| |#5|) 78)) (-3005 (((-1261)) 37)) (-2125 (((-1261)) 26)) (-4354 (((-1261) (-1150) (-1150) (-1150)) 33)) (-3845 (((-1261) (-1150) (-1150) (-1150)) 22))) -(((-1100 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3845 ((-1261) (-1150) (-1150) (-1150))) (-15 -2125 ((-1261))) (-15 -4354 ((-1261) (-1150) (-1150) (-1150))) (-15 -3005 ((-1261))) (-15 -3140 ((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) |#4| |#4| |#5|)) (-15 -2074 ((-639 (-2 (|:| |val| |#4|) (|:| -1501 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2074 ((-639 (-2 (|:| |val| |#4|) (|:| -1501 |#5|))) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) |#3| (-112))) (-15 -4204 ((-639 (-2 (|:| |val| |#4|) (|:| -1501 |#5|))) |#4| |#4| |#5|)) (-15 -3968 ((-639 (-2 (|:| |val| |#4|) (|:| -1501 |#5|))) |#4| |#4| |#5|)) (-15 -2212 ((-112) |#4| |#5|)) (-15 -3651 ((-639 (-2 (|:| |val| (-112)) (|:| -1501 |#5|))) |#4| |#5|)) (-15 -3977 ((-639 |#5|) |#4| |#5|)) (-15 -2479 ((-639 (-2 (|:| |val| (-112)) (|:| -1501 |#5|))) |#4| |#5|)) (-15 -2807 ((-639 |#5|) |#4| |#5|)) (-15 -2212 ((-639 (-2 (|:| |val| (-112)) (|:| -1501 |#5|))) |#4| |#5|)) (-15 -2701 ((-639 |#5|) |#4| |#5|)) (-15 -3155 ((-639 (-2 (|:| |val| |#4|) (|:| -1501 |#5|))) |#4| |#5|))) (-451) (-788) (-845) (-1058 |#1| |#2| |#3|) (-1064 |#1| |#2| |#3| |#4|)) (T -1100)) -((-3155 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1501 *4)))) (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-2701 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 *4)) (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-2212 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 (-2 (|:| |val| (-112)) (|:| -1501 *4)))) (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-2807 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 *4)) (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-2479 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 (-2 (|:| |val| (-112)) (|:| -1501 *4)))) (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-3977 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 *4)) (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-3651 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 (-2 (|:| |val| (-112)) (|:| -1501 *4)))) (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-2212 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-3968 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1501 *4)))) (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-4204 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1501 *4)))) (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-2074 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 (-2 (|:| |val| (-639 *8)) (|:| -1501 *9)))) (-5 *5 (-112)) (-4 *8 (-1058 *6 *7 *4)) (-4 *9 (-1064 *6 *7 *4 *8)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *4 (-845)) (-5 *2 (-639 (-2 (|:| |val| *8) (|:| -1501 *9)))) (-5 *1 (-1100 *6 *7 *4 *8 *9)))) (-2074 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) (-4 *3 (-1058 *6 *7 *8)) (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1501 *4)))) (-5 *1 (-1100 *6 *7 *8 *3 *4)) (-4 *4 (-1064 *6 *7 *8 *3)))) (-3140 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 (-2 (|:| |val| (-639 *3)) (|:| -1501 *4)))) (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) (-3005 (*1 *2) (-12 (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-1261)) (-5 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *7 (-1064 *3 *4 *5 *6)))) (-4354 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1150)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-1261)) (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) (-2125 (*1 *2) (-12 (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-1261)) (-5 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *7 (-1064 *3 *4 *5 *6)))) (-3845 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1150)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-1261)) (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7))))) -(-10 -7 (-15 -3845 ((-1261) (-1150) (-1150) (-1150))) (-15 -2125 ((-1261))) (-15 -4354 ((-1261) (-1150) (-1150) (-1150))) (-15 -3005 ((-1261))) (-15 -3140 ((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) |#4| |#4| |#5|)) (-15 -2074 ((-639 (-2 (|:| |val| |#4|) (|:| -1501 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2074 ((-639 (-2 (|:| |val| |#4|) (|:| -1501 |#5|))) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) |#3| (-112))) (-15 -4204 ((-639 (-2 (|:| |val| |#4|) (|:| -1501 |#5|))) |#4| |#4| |#5|)) (-15 -3968 ((-639 (-2 (|:| |val| |#4|) (|:| -1501 |#5|))) |#4| |#4| |#5|)) (-15 -2212 ((-112) |#4| |#5|)) (-15 -3651 ((-639 (-2 (|:| |val| (-112)) (|:| -1501 |#5|))) |#4| |#5|)) (-15 -3977 ((-639 |#5|) |#4| |#5|)) (-15 -2479 ((-639 (-2 (|:| |val| (-112)) (|:| -1501 |#5|))) |#4| |#5|)) (-15 -2807 ((-639 |#5|) |#4| |#5|)) (-15 -2212 ((-639 (-2 (|:| |val| (-112)) (|:| -1501 |#5|))) |#4| |#5|)) (-15 -2701 ((-639 |#5|) |#4| |#5|)) (-15 -3155 ((-639 (-2 (|:| |val| |#4|) (|:| -1501 |#5|))) |#4| |#5|))) -((-4041 (((-112) $ $) 7)) (-1330 (((-639 (-2 (|:| -1449 $) (|:| -3315 (-639 |#4|)))) (-639 |#4|)) 85)) (-3672 (((-639 $) (-639 |#4|)) 86) (((-639 $) (-639 |#4|) (-112)) 111)) (-1401 (((-639 |#3|) $) 33)) (-2799 (((-112) $) 26)) (-4370 (((-112) $) 17 (|has| |#1| (-554)))) (-4177 (((-112) |#4| $) 101) (((-112) $) 97)) (-3623 ((|#4| |#4| $) 92)) (-1977 (((-639 (-2 (|:| |val| |#4|) (|:| -1501 $))) |#4| $) 126)) (-1395 (((-2 (|:| |under| $) (|:| -3870 $) (|:| |upper| $)) $ |#3|) 27)) (-3735 (((-112) $ (-766)) 44)) (-3556 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4403))) (((-3 |#4| "failed") $ |#3|) 79)) (-3329 (($) 45 T CONST)) (-2169 (((-112) $) 22 (|has| |#1| (-554)))) (-2183 (((-112) $ $) 24 (|has| |#1| (-554)))) (-2864 (((-112) $ $) 23 (|has| |#1| (-554)))) (-4219 (((-112) $) 25 (|has| |#1| (-554)))) (-4227 (((-639 |#4|) (-639 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2037 (((-639 |#4|) (-639 |#4|) $) 18 (|has| |#1| (-554)))) (-4230 (((-639 |#4|) (-639 |#4|) $) 19 (|has| |#1| (-554)))) (-4048 (((-3 $ "failed") (-639 |#4|)) 36)) (-3960 (($ (-639 |#4|)) 35)) (-1434 (((-3 $ "failed") $) 82)) (-3255 ((|#4| |#4| $) 89)) (-1459 (($ $) 68 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4403))))) (-1475 (($ |#4| $) 67 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4403)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4403)))) (-1441 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-554)))) (-3300 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2227 ((|#4| |#4| $) 87)) (-1954 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4403)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4403))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4403))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1471 (((-2 (|:| -1449 (-639 |#4|)) (|:| -3315 (-639 |#4|))) $) 105)) (-3189 (((-112) |#4| $) 136)) (-2633 (((-112) |#4| $) 133)) (-2813 (((-112) |#4| $) 137) (((-112) $) 134)) (-1720 (((-639 |#4|) $) 52 (|has| $ (-6 -4403)))) (-1493 (((-112) |#4| $) 104) (((-112) $) 103)) (-3761 ((|#3| $) 34)) (-4172 (((-112) $ (-766)) 43)) (-2123 (((-639 |#4|) $) 53 (|has| $ (-6 -4403)))) (-1572 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4403))))) (-1491 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#4| |#4|) $) 47)) (-3133 (((-639 |#3|) $) 32)) (-3112 (((-112) |#3| $) 31)) (-4147 (((-112) $ (-766)) 42)) (-3696 (((-1150) $) 9)) (-4093 (((-3 |#4| (-639 $)) |#4| |#4| $) 128)) (-2672 (((-639 (-2 (|:| |val| |#4|) (|:| -1501 $))) |#4| |#4| $) 127)) (-1504 (((-3 |#4| "failed") $) 83)) (-2334 (((-639 $) |#4| $) 129)) (-4302 (((-3 (-112) (-639 $)) |#4| $) 132)) (-3792 (((-639 (-2 (|:| |val| (-112)) (|:| -1501 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-4169 (((-639 $) |#4| $) 125) (((-639 $) (-639 |#4|) $) 124) (((-639 $) (-639 |#4|) (-639 $)) 123) (((-639 $) |#4| (-639 $)) 122)) (-1997 (($ |#4| $) 117) (($ (-639 |#4|) $) 116)) (-2063 (((-639 |#4|) $) 107)) (-1645 (((-112) |#4| $) 99) (((-112) $) 95)) (-2651 ((|#4| |#4| $) 90)) (-1789 (((-112) $ $) 110)) (-4123 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-554)))) (-2830 (((-112) |#4| $) 100) (((-112) $) 96)) (-1630 ((|#4| |#4| $) 91)) (-1709 (((-1112) $) 10)) (-1421 (((-3 |#4| "failed") $) 84)) (-1963 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4333 (((-3 $ "failed") $ |#4|) 78)) (-4316 (($ $ |#4|) 77) (((-639 $) |#4| $) 115) (((-639 $) |#4| (-639 $)) 114) (((-639 $) (-639 |#4|) $) 113) (((-639 $) (-639 |#4|) (-639 $)) 112)) (-3008 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 |#4|) (-639 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-639 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))))) (-1452 (((-112) $ $) 38)) (-3087 (((-112) $) 41)) (-1663 (($) 40)) (-2250 (((-766) $) 106)) (-1723 (((-766) |#4| $) 54 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4403)))) (((-766) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4403)))) (-4220 (($ $) 39)) (-4208 (((-535) $) 69 (|has| |#4| (-610 (-535))))) (-4064 (($ (-639 |#4|)) 60)) (-2316 (($ $ |#3|) 28)) (-2180 (($ $ |#3|) 30)) (-2209 (($ $) 88)) (-1962 (($ $ |#3|) 29)) (-4053 (((-857) $) 11) (((-639 |#4|) $) 37)) (-4157 (((-766) $) 76 (|has| |#3| (-367)))) (-4168 (((-3 (-2 (|:| |bas| $) (|:| -2774 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2774 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2350 (((-112) $ (-1 (-112) |#4| (-639 |#4|))) 98)) (-4125 (((-639 $) |#4| $) 121) (((-639 $) |#4| (-639 $)) 120) (((-639 $) (-639 |#4|) $) 119) (((-639 $) (-639 |#4|) (-639 $)) 118)) (-2879 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4403)))) (-3278 (((-639 |#3|) $) 81)) (-1972 (((-112) |#4| $) 135)) (-3782 (((-112) |#3| $) 80)) (-1733 (((-112) $ $) 6)) (-3492 (((-766) $) 46 (|has| $ (-6 -4403))))) -(((-1101 |#1| |#2| |#3| |#4|) (-139) (-451) (-788) (-845) (-1058 |t#1| |t#2| |t#3|)) (T -1101)) -NIL -(-13 (-1064 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-609 (-639 |#4|)) . T) ((-609 (-857)) . T) ((-150 |#4|) . T) ((-610 (-535)) |has| |#4| (-610 (-535))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))) ((-488 |#4|) . T) ((-513 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))) ((-971 |#1| |#2| |#3| |#4|) . T) ((-1064 |#1| |#2| |#3| |#4|) . T) ((-1092) . T) ((-1200 |#1| |#2| |#3| |#4|) . T) ((-1207) . T)) -((-1717 (((-639 (-562)) (-562) (-562) (-562)) 22)) (-3003 (((-639 (-562)) (-562) (-562) (-562)) 12)) (-2635 (((-639 (-562)) (-562) (-562) (-562)) 18)) (-3983 (((-562) (-562) (-562)) 9)) (-3496 (((-1256 (-562)) (-639 (-562)) (-1256 (-562)) (-562)) 45) (((-1256 (-562)) (-1256 (-562)) (-1256 (-562)) (-562)) 40)) (-1872 (((-639 (-562)) (-639 (-562)) (-639 (-562)) (-112)) 27)) (-2739 (((-683 (-562)) (-639 (-562)) (-639 (-562)) (-683 (-562))) 44)) (-3654 (((-683 (-562)) (-639 (-562)) (-639 (-562))) 32)) (-1751 (((-639 (-683 (-562))) (-639 (-562))) 34)) (-1514 (((-639 (-562)) (-639 (-562)) (-639 (-562)) (-683 (-562))) 48)) (-2321 (((-683 (-562)) (-639 (-562)) (-639 (-562)) (-639 (-562))) 56))) -(((-1102) (-10 -7 (-15 -2321 ((-683 (-562)) (-639 (-562)) (-639 (-562)) (-639 (-562)))) (-15 -1514 ((-639 (-562)) (-639 (-562)) (-639 (-562)) (-683 (-562)))) (-15 -1751 ((-639 (-683 (-562))) (-639 (-562)))) (-15 -3654 ((-683 (-562)) (-639 (-562)) (-639 (-562)))) (-15 -2739 ((-683 (-562)) (-639 (-562)) (-639 (-562)) (-683 (-562)))) (-15 -1872 ((-639 (-562)) (-639 (-562)) (-639 (-562)) (-112))) (-15 -3496 ((-1256 (-562)) (-1256 (-562)) (-1256 (-562)) (-562))) (-15 -3496 ((-1256 (-562)) (-639 (-562)) (-1256 (-562)) (-562))) (-15 -3983 ((-562) (-562) (-562))) (-15 -2635 ((-639 (-562)) (-562) (-562) (-562))) (-15 -3003 ((-639 (-562)) (-562) (-562) (-562))) (-15 -1717 ((-639 (-562)) (-562) (-562) (-562))))) (T -1102)) -((-1717 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-1102)) (-5 *3 (-562)))) (-3003 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-1102)) (-5 *3 (-562)))) (-2635 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-1102)) (-5 *3 (-562)))) (-3983 (*1 *2 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-1102)))) (-3496 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1256 (-562))) (-5 *3 (-639 (-562))) (-5 *4 (-562)) (-5 *1 (-1102)))) (-3496 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1256 (-562))) (-5 *3 (-562)) (-5 *1 (-1102)))) (-1872 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-639 (-562))) (-5 *3 (-112)) (-5 *1 (-1102)))) (-2739 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-683 (-562))) (-5 *3 (-639 (-562))) (-5 *1 (-1102)))) (-3654 (*1 *2 *3 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-683 (-562))) (-5 *1 (-1102)))) (-1751 (*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-639 (-683 (-562)))) (-5 *1 (-1102)))) (-1514 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-639 (-562))) (-5 *3 (-683 (-562))) (-5 *1 (-1102)))) (-2321 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-683 (-562))) (-5 *1 (-1102))))) -(-10 -7 (-15 -2321 ((-683 (-562)) (-639 (-562)) (-639 (-562)) (-639 (-562)))) (-15 -1514 ((-639 (-562)) (-639 (-562)) (-639 (-562)) (-683 (-562)))) (-15 -1751 ((-639 (-683 (-562))) (-639 (-562)))) (-15 -3654 ((-683 (-562)) (-639 (-562)) (-639 (-562)))) (-15 -2739 ((-683 (-562)) (-639 (-562)) (-639 (-562)) (-683 (-562)))) (-15 -1872 ((-639 (-562)) (-639 (-562)) (-639 (-562)) (-112))) (-15 -3496 ((-1256 (-562)) (-1256 (-562)) (-1256 (-562)) (-562))) (-15 -3496 ((-1256 (-562)) (-639 (-562)) (-1256 (-562)) (-562))) (-15 -3983 ((-562) (-562) (-562))) (-15 -2635 ((-639 (-562)) (-562) (-562) (-562))) (-15 -3003 ((-639 (-562)) (-562) (-562) (-562))) (-15 -1717 ((-639 (-562)) (-562) (-562) (-562)))) -((** (($ $ (-916)) 10))) -(((-1103 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-916)))) (-1104)) (T -1103)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-916)))) -((-4041 (((-112) $ $) 7)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11)) (-1733 (((-112) $ $) 6)) (** (($ $ (-916)) 13)) (* (($ $ $) 14))) -(((-1104) (-139)) (T -1104)) -((* (*1 *1 *1 *1) (-4 *1 (-1104))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-916))))) -(-13 (-1092) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-916))))) -(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) -((-4041 (((-112) $ $) NIL (|has| |#3| (-1092)))) (-4325 (((-112) $) NIL (|has| |#3| (-130)))) (-2211 (($ (-916)) NIL (|has| |#3| (-1044)))) (-3655 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4404)))) (-1593 (($ $ $) NIL (|has| |#3| (-788)))) (-2781 (((-3 $ "failed") $ $) NIL (|has| |#3| (-130)))) (-3735 (((-112) $ (-766)) NIL)) (-1382 (((-766)) NIL (|has| |#3| (-367)))) (-1587 (((-562) $) NIL (|has| |#3| (-843)))) (-4200 ((|#3| $ (-562) |#3|) NIL (|has| $ (-6 -4404)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL (-12 (|has| |#3| (-1033 (-562))) (|has| |#3| (-1092)))) (((-3 (-406 (-562)) "failed") $) NIL (-12 (|has| |#3| (-1033 (-406 (-562)))) (|has| |#3| (-1092)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1092)))) (-3960 (((-562) $) NIL (-12 (|has| |#3| (-1033 (-562))) (|has| |#3| (-1092)))) (((-406 (-562)) $) NIL (-12 (|has| |#3| (-1033 (-406 (-562)))) (|has| |#3| (-1092)))) ((|#3| $) NIL (|has| |#3| (-1092)))) (-3449 (((-683 (-562)) (-683 $)) NIL (-12 (|has| |#3| (-635 (-562))) (|has| |#3| (-1044)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (-12 (|has| |#3| (-635 (-562))) (|has| |#3| (-1044)))) (((-2 (|:| -1767 (-683 |#3|)) (|:| |vec| (-1256 |#3|))) (-683 $) (-1256 $)) NIL (|has| |#3| (-1044))) (((-683 |#3|) (-683 $)) NIL (|has| |#3| (-1044)))) (-1694 (((-3 $ "failed") $) NIL (|has| |#3| (-721)))) (-1447 (($) NIL (|has| |#3| (-367)))) (-1507 ((|#3| $ (-562) |#3|) NIL (|has| $ (-6 -4404)))) (-1420 ((|#3| $ (-562)) 12)) (-2696 (((-112) $) NIL (|has| |#3| (-843)))) (-1720 (((-639 |#3|) $) NIL (|has| $ (-6 -4403)))) (-4367 (((-112) $) NIL (|has| |#3| (-721)))) (-3855 (((-112) $) NIL (|has| |#3| (-843)))) (-4172 (((-112) $ (-766)) NIL)) (-1849 (((-562) $) NIL (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (-4037 (|has| |#3| (-788)) (|has| |#3| (-843))))) (-2123 (((-639 |#3|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#3| (-1092))))) (-1929 (((-562) $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (-4037 (|has| |#3| (-788)) (|has| |#3| (-843))))) (-1491 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#3| |#3|) $) NIL)) (-3549 (((-916) $) NIL (|has| |#3| (-367)))) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL (|has| |#3| (-1092)))) (-3336 (((-639 (-562)) $) NIL)) (-1987 (((-112) (-562) $) NIL)) (-2464 (($ (-916)) NIL (|has| |#3| (-367)))) (-1709 (((-1112) $) NIL (|has| |#3| (-1092)))) (-1421 ((|#3| $) NIL (|has| (-562) (-845)))) (-3510 (($ $ |#3|) NIL (|has| $ (-6 -4404)))) (-3008 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#3|))) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) (($ $ (-293 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092)))) (($ $ (-639 |#3|) (-639 |#3|)) NIL (-12 (|has| |#3| (-308 |#3|)) (|has| |#3| (-1092))))) (-1452 (((-112) $ $) NIL)) (-2716 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#3| (-1092))))) (-2366 (((-639 |#3|) $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) NIL)) (-2343 ((|#3| $ (-562) |#3|) NIL) ((|#3| $ (-562)) NIL)) (-2852 ((|#3| $ $) NIL (|has| |#3| (-1044)))) (-1678 (($ (-1256 |#3|)) NIL)) (-4340 (((-133)) NIL (|has| |#3| (-362)))) (-4029 (($ $) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1044)))) (($ $ (-766)) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1044)))) (($ $ (-1168)) NIL (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) (($ $ (-1 |#3| |#3|) (-766)) NIL (|has| |#3| (-1044))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1044)))) (-1723 (((-766) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4403))) (((-766) |#3| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#3| (-1092))))) (-4220 (($ $) NIL)) (-4053 (((-1256 |#3|) $) NIL) (($ (-562)) NIL (-4037 (-12 (|has| |#3| (-1033 (-562))) (|has| |#3| (-1092))) (|has| |#3| (-1044)))) (($ (-406 (-562))) NIL (-12 (|has| |#3| (-1033 (-406 (-562)))) (|has| |#3| (-1092)))) (($ |#3|) NIL (|has| |#3| (-1092))) (((-857) $) NIL (|has| |#3| (-609 (-857))))) (-1568 (((-766)) NIL (|has| |#3| (-1044)))) (-2879 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4403)))) (-2757 (($ $) NIL (|has| |#3| (-843)))) (-2285 (($) NIL (|has| |#3| (-130)) CONST)) (-2294 (($) NIL (|has| |#3| (-721)) CONST)) (-3113 (($ $) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1044)))) (($ $ (-766)) NIL (-12 (|has| |#3| (-232)) (|has| |#3| (-1044)))) (($ $ (-1168)) NIL (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#3| (-895 (-1168))) (|has| |#3| (-1044)))) (($ $ (-1 |#3| |#3|) (-766)) NIL (|has| |#3| (-1044))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1044)))) (-1798 (((-112) $ $) NIL (-4037 (|has| |#3| (-788)) (|has| |#3| (-843))))) (-1771 (((-112) $ $) NIL (-4037 (|has| |#3| (-788)) (|has| |#3| (-843))))) (-1733 (((-112) $ $) NIL (|has| |#3| (-1092)))) (-1785 (((-112) $ $) NIL (-4037 (|has| |#3| (-788)) (|has| |#3| (-843))))) (-1761 (((-112) $ $) 17 (-4037 (|has| |#3| (-788)) (|has| |#3| (-843))))) (-1859 (($ $ |#3|) NIL (|has| |#3| (-362)))) (-1847 (($ $ $) NIL (|has| |#3| (-1044))) (($ $) NIL (|has| |#3| (-1044)))) (-1836 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-766)) NIL (|has| |#3| (-721))) (($ $ (-916)) NIL (|has| |#3| (-721)))) (* (($ (-562) $) NIL (|has| |#3| (-1044))) (($ $ $) NIL (|has| |#3| (-721))) (($ $ |#3|) NIL (|has| |#3| (-721))) (($ |#3| $) NIL (|has| |#3| (-721))) (($ (-766) $) NIL (|has| |#3| (-130))) (($ (-916) $) NIL (|has| |#3| (-25)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-1105 |#1| |#2| |#3|) (-237 |#1| |#3|) (-766) (-766) (-788)) (T -1105)) -NIL -(-237 |#1| |#3|) -((-2800 (((-639 (-1229 |#2| |#1|)) (-1229 |#2| |#1|) (-1229 |#2| |#1|)) 36)) (-1650 (((-562) (-1229 |#2| |#1|)) 68 (|has| |#1| (-451)))) (-1818 (((-562) (-1229 |#2| |#1|)) 53)) (-3237 (((-639 (-1229 |#2| |#1|)) (-1229 |#2| |#1|) (-1229 |#2| |#1|)) 44)) (-3061 (((-562) (-1229 |#2| |#1|) (-1229 |#2| |#1|)) 67 (|has| |#1| (-451)))) (-3150 (((-639 |#1|) (-1229 |#2| |#1|) (-1229 |#2| |#1|)) 47)) (-2085 (((-562) (-1229 |#2| |#1|) (-1229 |#2| |#1|)) 52))) -(((-1106 |#1| |#2|) (-10 -7 (-15 -2800 ((-639 (-1229 |#2| |#1|)) (-1229 |#2| |#1|) (-1229 |#2| |#1|))) (-15 -3237 ((-639 (-1229 |#2| |#1|)) (-1229 |#2| |#1|) (-1229 |#2| |#1|))) (-15 -3150 ((-639 |#1|) (-1229 |#2| |#1|) (-1229 |#2| |#1|))) (-15 -2085 ((-562) (-1229 |#2| |#1|) (-1229 |#2| |#1|))) (-15 -1818 ((-562) (-1229 |#2| |#1|))) (IF (|has| |#1| (-451)) (PROGN (-15 -3061 ((-562) (-1229 |#2| |#1|) (-1229 |#2| |#1|))) (-15 -1650 ((-562) (-1229 |#2| |#1|)))) |%noBranch|)) (-815) (-1168)) (T -1106)) -((-1650 (*1 *2 *3) (-12 (-5 *3 (-1229 *5 *4)) (-4 *4 (-451)) (-4 *4 (-815)) (-14 *5 (-1168)) (-5 *2 (-562)) (-5 *1 (-1106 *4 *5)))) (-3061 (*1 *2 *3 *3) (-12 (-5 *3 (-1229 *5 *4)) (-4 *4 (-451)) (-4 *4 (-815)) (-14 *5 (-1168)) (-5 *2 (-562)) (-5 *1 (-1106 *4 *5)))) (-1818 (*1 *2 *3) (-12 (-5 *3 (-1229 *5 *4)) (-4 *4 (-815)) (-14 *5 (-1168)) (-5 *2 (-562)) (-5 *1 (-1106 *4 *5)))) (-2085 (*1 *2 *3 *3) (-12 (-5 *3 (-1229 *5 *4)) (-4 *4 (-815)) (-14 *5 (-1168)) (-5 *2 (-562)) (-5 *1 (-1106 *4 *5)))) (-3150 (*1 *2 *3 *3) (-12 (-5 *3 (-1229 *5 *4)) (-4 *4 (-815)) (-14 *5 (-1168)) (-5 *2 (-639 *4)) (-5 *1 (-1106 *4 *5)))) (-3237 (*1 *2 *3 *3) (-12 (-4 *4 (-815)) (-14 *5 (-1168)) (-5 *2 (-639 (-1229 *5 *4))) (-5 *1 (-1106 *4 *5)) (-5 *3 (-1229 *5 *4)))) (-2800 (*1 *2 *3 *3) (-12 (-4 *4 (-815)) (-14 *5 (-1168)) (-5 *2 (-639 (-1229 *5 *4))) (-5 *1 (-1106 *4 *5)) (-5 *3 (-1229 *5 *4))))) -(-10 -7 (-15 -2800 ((-639 (-1229 |#2| |#1|)) (-1229 |#2| |#1|) (-1229 |#2| |#1|))) (-15 -3237 ((-639 (-1229 |#2| |#1|)) (-1229 |#2| |#1|) (-1229 |#2| |#1|))) (-15 -3150 ((-639 |#1|) (-1229 |#2| |#1|) (-1229 |#2| |#1|))) (-15 -2085 ((-562) (-1229 |#2| |#1|) (-1229 |#2| |#1|))) (-15 -1818 ((-562) (-1229 |#2| |#1|))) (IF (|has| |#1| (-451)) (PROGN (-15 -3061 ((-562) (-1229 |#2| |#1|) (-1229 |#2| |#1|))) (-15 -1650 ((-562) (-1229 |#2| |#1|)))) |%noBranch|)) -((-4041 (((-112) $ $) NIL)) (-3800 (($ (-505) (-1110)) 14)) (-2844 (((-1110) $) 20)) (-3253 (((-505) $) 17)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 28) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-1107) (-13 (-1075) (-10 -8 (-15 -3800 ($ (-505) (-1110))) (-15 -3253 ((-505) $)) (-15 -2844 ((-1110) $))))) (T -1107)) -((-3800 (*1 *1 *2 *3) (-12 (-5 *2 (-505)) (-5 *3 (-1110)) (-5 *1 (-1107)))) (-3253 (*1 *2 *1) (-12 (-5 *2 (-505)) (-5 *1 (-1107)))) (-2844 (*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-1107))))) -(-13 (-1075) (-10 -8 (-15 -3800 ($ (-505) (-1110))) (-15 -3253 ((-505) $)) (-15 -2844 ((-1110) $)))) -((-1587 (((-3 (-562) "failed") |#2| (-1168) |#2| (-1150)) 17) (((-3 (-562) "failed") |#2| (-1168) (-838 |#2|)) 15) (((-3 (-562) "failed") |#2|) 54))) -(((-1108 |#1| |#2|) (-10 -7 (-15 -1587 ((-3 (-562) "failed") |#2|)) (-15 -1587 ((-3 (-562) "failed") |#2| (-1168) (-838 |#2|))) (-15 -1587 ((-3 (-562) "failed") |#2| (-1168) |#2| (-1150)))) (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)) (-451)) (-13 (-27) (-1192) (-429 |#1|))) (T -1108)) -((-1587 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1168)) (-5 *5 (-1150)) (-4 *6 (-13 (-554) (-845) (-1033 *2) (-635 *2) (-451))) (-5 *2 (-562)) (-5 *1 (-1108 *6 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *6))))) (-1587 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1168)) (-5 *5 (-838 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *6))) (-4 *6 (-13 (-554) (-845) (-1033 *2) (-635 *2) (-451))) (-5 *2 (-562)) (-5 *1 (-1108 *6 *3)))) (-1587 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-554) (-845) (-1033 *2) (-635 *2) (-451))) (-5 *2 (-562)) (-5 *1 (-1108 *4 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *4)))))) -(-10 -7 (-15 -1587 ((-3 (-562) "failed") |#2|)) (-15 -1587 ((-3 (-562) "failed") |#2| (-1168) (-838 |#2|))) (-15 -1587 ((-3 (-562) "failed") |#2| (-1168) |#2| (-1150)))) -((-1587 (((-3 (-562) "failed") (-406 (-947 |#1|)) (-1168) (-406 (-947 |#1|)) (-1150)) 35) (((-3 (-562) "failed") (-406 (-947 |#1|)) (-1168) (-838 (-406 (-947 |#1|)))) 30) (((-3 (-562) "failed") (-406 (-947 |#1|))) 13))) -(((-1109 |#1|) (-10 -7 (-15 -1587 ((-3 (-562) "failed") (-406 (-947 |#1|)))) (-15 -1587 ((-3 (-562) "failed") (-406 (-947 |#1|)) (-1168) (-838 (-406 (-947 |#1|))))) (-15 -1587 ((-3 (-562) "failed") (-406 (-947 |#1|)) (-1168) (-406 (-947 |#1|)) (-1150)))) (-451)) (T -1109)) -((-1587 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-406 (-947 *6))) (-5 *4 (-1168)) (-5 *5 (-1150)) (-4 *6 (-451)) (-5 *2 (-562)) (-5 *1 (-1109 *6)))) (-1587 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1168)) (-5 *5 (-838 (-406 (-947 *6)))) (-5 *3 (-406 (-947 *6))) (-4 *6 (-451)) (-5 *2 (-562)) (-5 *1 (-1109 *6)))) (-1587 (*1 *2 *3) (|partial| -12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-451)) (-5 *2 (-562)) (-5 *1 (-1109 *4))))) -(-10 -7 (-15 -1587 ((-3 (-562) "failed") (-406 (-947 |#1|)))) (-15 -1587 ((-3 (-562) "failed") (-406 (-947 |#1|)) (-1168) (-838 (-406 (-947 |#1|))))) (-15 -1587 ((-3 (-562) "failed") (-406 (-947 |#1|)) (-1168) (-406 (-947 |#1|)) (-1150)))) -((-4041 (((-112) $ $) NIL)) (-4084 (((-1173) $) 10)) (-4017 (((-639 (-1173)) $) 11)) (-2844 (($ (-639 (-1173)) (-1173)) 9)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 22)) (-1733 (((-112) $ $) 14))) -(((-1110) (-13 (-1092) (-10 -8 (-15 -2844 ($ (-639 (-1173)) (-1173))) (-15 -4084 ((-1173) $)) (-15 -4017 ((-639 (-1173)) $))))) (T -1110)) -((-2844 (*1 *1 *2 *3) (-12 (-5 *2 (-639 (-1173))) (-5 *3 (-1173)) (-5 *1 (-1110)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1110)))) (-4017 (*1 *2 *1) (-12 (-5 *2 (-639 (-1173))) (-5 *1 (-1110))))) -(-13 (-1092) (-10 -8 (-15 -2844 ($ (-639 (-1173)) (-1173))) (-15 -4084 ((-1173) $)) (-15 -4017 ((-639 (-1173)) $)))) -((-3537 (((-315 (-562)) (-48)) 12))) -(((-1111) (-10 -7 (-15 -3537 ((-315 (-562)) (-48))))) (T -1111)) -((-3537 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-315 (-562))) (-5 *1 (-1111))))) -(-10 -7 (-15 -3537 ((-315 (-562)) (-48)))) -((-4041 (((-112) $ $) NIL)) (-3294 (($ $) 40)) (-4325 (((-112) $) 64)) (-2264 (($ $ $) 47)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 89)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-3544 (($ $ $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-4158 (($ $ $ $) 74)) (-1977 (($ $) NIL)) (-3788 (((-417 $) $) NIL)) (-1436 (((-112) $ $) NIL)) (-1382 (((-766)) 76)) (-1587 (((-562) $) NIL)) (-3355 (($ $ $) 71)) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL)) (-3960 (((-562) $) NIL)) (-1810 (($ $ $) 58)) (-3449 (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 83) (((-683 (-562)) (-683 $)) 27)) (-1694 (((-3 $ "failed") $) NIL)) (-3913 (((-3 (-406 (-562)) "failed") $) NIL)) (-3498 (((-112) $) NIL)) (-3854 (((-406 (-562)) $) NIL)) (-1447 (($) 86) (($ $) 87)) (-1787 (($ $ $) 57)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL)) (-3521 (((-112) $) NIL)) (-2877 (($ $ $ $) NIL)) (-3867 (($ $ $) 84)) (-2696 (((-112) $) NIL)) (-1940 (($ $ $) NIL)) (-2337 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL)) (-4367 (((-112) $) 65)) (-3152 (((-112) $) 63)) (-2234 (($ $) 41)) (-3828 (((-3 $ "failed") $) NIL)) (-3855 (((-112) $) 75)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2051 (($ $ $ $) 72)) (-1551 (($ $ $) 67) (($) 38 T CONST)) (-2993 (($ $ $) 66) (($) 37 T CONST)) (-3930 (($ $) NIL)) (-3549 (((-916) $) 79)) (-3641 (($ $) 70)) (-1564 (($ $ $) NIL) (($ (-639 $)) NIL)) (-3696 (((-1150) $) NIL)) (-2296 (($ $ $) NIL)) (-3730 (($) NIL T CONST)) (-2464 (($ (-916)) 78)) (-4137 (($ $) 49)) (-1709 (((-1112) $) 69)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL)) (-1606 (($ $ $) 61) (($ (-639 $)) NIL)) (-3350 (($ $) NIL)) (-1635 (((-417 $) $) NIL)) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL)) (-1762 (((-3 $ "failed") $ $) NIL)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL)) (-2438 (((-112) $) NIL)) (-2044 (((-766) $) NIL)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 60)) (-4029 (($ $ (-766)) NIL) (($ $) NIL)) (-2369 (($ $) 50)) (-4220 (($ $) NIL)) (-4208 (((-562) $) 31) (((-535) $) NIL) (((-887 (-562)) $) NIL) (((-378) $) NIL) (((-224) $) NIL)) (-4053 (((-857) $) 30) (($ (-562)) 85) (($ $) NIL) (($ (-562)) 85)) (-1568 (((-766)) NIL)) (-3869 (((-112) $ $) NIL)) (-2068 (($ $ $) NIL)) (-3240 (($) 36)) (-3799 (((-112) $ $) NIL)) (-3160 (($ $ $ $) 73)) (-2757 (($ $) 62)) (-2306 (($ $ $) 43)) (-2285 (($) 34 T CONST)) (-2935 (($ $ $) 46)) (-2294 (($) 35 T CONST)) (-2332 (((-1150) $) 20) (((-1150) $ (-112)) 22) (((-1261) (-817) $) 23) (((-1261) (-817) $ (-112)) 24)) (-2943 (($ $) 44)) (-3113 (($ $ (-766)) NIL) (($ $) NIL)) (-2927 (($ $ $) 45)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 39)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) 48)) (-2297 (($ $ $) 42)) (-1847 (($ $) 51) (($ $ $) 53)) (-1836 (($ $ $) 52)) (** (($ $ (-916)) NIL) (($ $ (-766)) 56)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 33) (($ $ $) 54))) -(((-1112) (-13 (-544) (-839) (-655) (-823) (-10 -8 (-6 -4390) (-6 -4395) (-6 -4391) (-15 -2234 ($ $)) (-15 -2264 ($ $ $)) (-15 -2943 ($ $)) (-15 -2927 ($ $ $)) (-15 -2935 ($ $ $))))) (T -1112)) -((-2234 (*1 *1 *1) (-5 *1 (-1112))) (-2264 (*1 *1 *1 *1) (-5 *1 (-1112))) (-2943 (*1 *1 *1) (-5 *1 (-1112))) (-2927 (*1 *1 *1 *1) (-5 *1 (-1112))) (-2935 (*1 *1 *1 *1) (-5 *1 (-1112)))) -(-13 (-544) (-839) (-655) (-823) (-10 -8 (-6 -4390) (-6 -4395) (-6 -4391) (-15 -2234 ($ $)) (-15 -2264 ($ $ $)) (-15 -2943 ($ $)) (-15 -2927 ($ $ $)) (-15 -2935 ($ $ $)))) +(((-93) . T) ((-102) . T) ((-613 #0=(-1174)) . T) ((-610 (-858)) . T) ((-610 #0#) . T) ((-490 #0#) . T) ((-1093) . T)) +((-2926 ((|#1| |#1| (-1 (-563) |#1| |#1|)) 23) ((|#1| |#1| (-1 (-112) |#1|)) 19)) (-3501 (((-1262)) 15)) (-1585 (((-640 |#1|)) 9))) +(((-1077 |#1|) (-10 -7 (-15 -3501 ((-1262))) (-15 -1585 ((-640 |#1|))) (-15 -2926 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2926 (|#1| |#1| (-1 (-563) |#1| |#1|)))) (-132)) (T -1077)) +((-2926 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-563) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1077 *2)))) (-2926 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1077 *2)))) (-1585 (*1 *2) (-12 (-5 *2 (-640 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-132)))) (-3501 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1077 *3)) (-4 *3 (-132))))) +(-10 -7 (-15 -3501 ((-1262))) (-15 -1585 ((-640 |#1|))) (-15 -2926 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2926 (|#1| |#1| (-1 (-563) |#1| |#1|)))) +((-2874 (($ (-109) $) 16)) (-2087 (((-3 (-109) "failed") (-1169) $) 15)) (-3135 (($) 7)) (-1689 (($) 17)) (-2188 (($) 18)) (-1615 (((-640 (-175)) $) 10)) (-1693 (((-858) $) 21))) +(((-1078) (-13 (-610 (-858)) (-10 -8 (-15 -3135 ($)) (-15 -1615 ((-640 (-175)) $)) (-15 -2087 ((-3 (-109) "failed") (-1169) $)) (-15 -2874 ($ (-109) $)) (-15 -1689 ($)) (-15 -2188 ($))))) (T -1078)) +((-3135 (*1 *1) (-5 *1 (-1078))) (-1615 (*1 *2 *1) (-12 (-5 *2 (-640 (-175))) (-5 *1 (-1078)))) (-2087 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1169)) (-5 *2 (-109)) (-5 *1 (-1078)))) (-2874 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1078)))) (-1689 (*1 *1) (-5 *1 (-1078))) (-2188 (*1 *1) (-5 *1 (-1078)))) +(-13 (-610 (-858)) (-10 -8 (-15 -3135 ($)) (-15 -1615 ((-640 (-175)) $)) (-15 -2087 ((-3 (-109) "failed") (-1169) $)) (-15 -2874 ($ (-109) $)) (-15 -1689 ($)) (-15 -2188 ($)))) +((-3507 (((-1257 (-684 |#1|)) (-640 (-684 |#1|))) 42) (((-1257 (-684 (-948 |#1|))) (-640 (-1169)) (-684 (-948 |#1|))) 62) (((-1257 (-684 (-407 (-948 |#1|)))) (-640 (-1169)) (-684 (-407 (-948 |#1|)))) 78)) (-1880 (((-1257 |#1|) (-684 |#1|) (-640 (-684 |#1|))) 36))) +(((-1079 |#1|) (-10 -7 (-15 -3507 ((-1257 (-684 (-407 (-948 |#1|)))) (-640 (-1169)) (-684 (-407 (-948 |#1|))))) (-15 -3507 ((-1257 (-684 (-948 |#1|))) (-640 (-1169)) (-684 (-948 |#1|)))) (-15 -3507 ((-1257 (-684 |#1|)) (-640 (-684 |#1|)))) (-15 -1880 ((-1257 |#1|) (-684 |#1|) (-640 (-684 |#1|))))) (-363)) (T -1079)) +((-1880 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-684 *5))) (-5 *3 (-684 *5)) (-4 *5 (-363)) (-5 *2 (-1257 *5)) (-5 *1 (-1079 *5)))) (-3507 (*1 *2 *3) (-12 (-5 *3 (-640 (-684 *4))) (-4 *4 (-363)) (-5 *2 (-1257 (-684 *4))) (-5 *1 (-1079 *4)))) (-3507 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-1169))) (-4 *5 (-363)) (-5 *2 (-1257 (-684 (-948 *5)))) (-5 *1 (-1079 *5)) (-5 *4 (-684 (-948 *5))))) (-3507 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-1169))) (-4 *5 (-363)) (-5 *2 (-1257 (-684 (-407 (-948 *5))))) (-5 *1 (-1079 *5)) (-5 *4 (-684 (-407 (-948 *5))))))) +(-10 -7 (-15 -3507 ((-1257 (-684 (-407 (-948 |#1|)))) (-640 (-1169)) (-684 (-407 (-948 |#1|))))) (-15 -3507 ((-1257 (-684 (-948 |#1|))) (-640 (-1169)) (-684 (-948 |#1|)))) (-15 -3507 ((-1257 (-684 |#1|)) (-640 (-684 |#1|)))) (-15 -1880 ((-1257 |#1|) (-684 |#1|) (-640 (-684 |#1|))))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-2784 (((-640 (-767)) $) NIL) (((-640 (-767)) $ (-1169)) NIL)) (-1326 (((-767) $) NIL) (((-767) $ (-1169)) NIL)) (-2606 (((-640 (-1081 (-1169))) $) NIL)) (-2139 (((-1165 $) $ (-1081 (-1169))) NIL) (((-1165 |#1|) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-4223 (($ $) NIL (|has| |#1| (-555)))) (-3156 (((-112) $) NIL (|has| |#1| (-555)))) (-1779 (((-767) $) NIL) (((-767) $ (-640 (-1081 (-1169)))) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-2424 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-4335 (($ $) NIL (|has| |#1| (-452)))) (-3205 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-3942 (($ $) NIL)) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-1081 (-1169)) "failed") $) NIL) (((-3 (-1169) "failed") $) NIL) (((-3 (-1118 |#1| (-1169)) "failed") $) NIL)) (-2058 ((|#1| $) NIL) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-1081 (-1169)) $) NIL) (((-1169) $) NIL) (((-1118 |#1| (-1169)) $) NIL)) (-2742 (($ $ $ (-1081 (-1169))) NIL (|has| |#1| (-172)))) (-2751 (($ $) NIL)) (-2950 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-1300 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1081 (-1169))) NIL (|has| |#1| (-452)))) (-2739 (((-640 $) $) NIL)) (-2468 (((-112) $) NIL (|has| |#1| (-905)))) (-3554 (($ $ |#1| (-531 (-1081 (-1169))) $) NIL)) (-3787 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1081 (-1169)) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-1081 (-1169)) (-882 (-563))) (|has| |#1| (-882 (-563)))))) (-3254 (((-767) $ (-1169)) NIL) (((-767) $) NIL)) (-3827 (((-112) $) NIL)) (-4096 (((-767) $) NIL)) (-2596 (($ (-1165 |#1|) (-1081 (-1169))) NIL) (($ (-1165 $) (-1081 (-1169))) NIL)) (-1368 (((-640 $) $) NIL)) (-3920 (((-112) $) NIL)) (-2588 (($ |#1| (-531 (-1081 (-1169)))) NIL) (($ $ (-1081 (-1169)) (-767)) NIL) (($ $ (-640 (-1081 (-1169))) (-640 (-767))) NIL)) (-2625 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $ (-1081 (-1169))) NIL)) (-2048 (((-531 (-1081 (-1169))) $) NIL) (((-767) $ (-1081 (-1169))) NIL) (((-640 (-767)) $ (-640 (-1081 (-1169)))) NIL)) (-3084 (($ $ $) NIL (|has| |#1| (-846)))) (-1777 (($ $ $) NIL (|has| |#1| (-846)))) (-2803 (($ (-1 (-531 (-1081 (-1169))) (-531 (-1081 (-1169)))) $) NIL)) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-3376 (((-1 $ (-767)) (-1169)) NIL) (((-1 $ (-767)) $) NIL (|has| |#1| (-233)))) (-4234 (((-3 (-1081 (-1169)) "failed") $) NIL)) (-2716 (($ $) NIL)) (-2726 ((|#1| $) NIL)) (-3759 (((-1081 (-1169)) $) NIL)) (-3513 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3573 (((-1151) $) NIL)) (-3871 (((-112) $) NIL)) (-3733 (((-3 (-640 $) "failed") $) NIL)) (-2919 (((-3 (-640 $) "failed") $) NIL)) (-4086 (((-3 (-2 (|:| |var| (-1081 (-1169))) (|:| -1654 (-767))) "failed") $) NIL)) (-3562 (($ $) NIL)) (-1694 (((-1113) $) NIL)) (-2696 (((-112) $) NIL)) (-2706 ((|#1| $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-452)))) (-3548 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1876 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-3116 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2174 (((-418 $) $) NIL (|has| |#1| (-905)))) (-3008 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-1540 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-1081 (-1169)) |#1|) NIL) (($ $ (-640 (-1081 (-1169))) (-640 |#1|)) NIL) (($ $ (-1081 (-1169)) $) NIL) (($ $ (-640 (-1081 (-1169))) (-640 $)) NIL) (($ $ (-1169) $) NIL (|has| |#1| (-233))) (($ $ (-640 (-1169)) (-640 $)) NIL (|has| |#1| (-233))) (($ $ (-1169) |#1|) NIL (|has| |#1| (-233))) (($ $ (-640 (-1169)) (-640 |#1|)) NIL (|has| |#1| (-233)))) (-2315 (($ $ (-1081 (-1169))) NIL (|has| |#1| (-172)))) (-4202 (($ $ (-1081 (-1169))) NIL) (($ $ (-640 (-1081 (-1169)))) NIL) (($ $ (-1081 (-1169)) (-767)) NIL) (($ $ (-640 (-1081 (-1169))) (-640 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3745 (((-640 (-1169)) $) NIL)) (-4167 (((-531 (-1081 (-1169))) $) NIL) (((-767) $ (-1081 (-1169))) NIL) (((-640 (-767)) $ (-640 (-1081 (-1169)))) NIL) (((-767) $ (-1169)) NIL)) (-2220 (((-888 (-379)) $) NIL (-12 (|has| (-1081 (-1169)) (-611 (-888 (-379)))) (|has| |#1| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| (-1081 (-1169)) (-611 (-888 (-563)))) (|has| |#1| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| (-1081 (-1169)) (-611 (-536))) (|has| |#1| (-611 (-536)))))) (-1836 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1081 (-1169))) NIL (|has| |#1| (-452)))) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL) (($ (-1081 (-1169))) NIL) (($ (-1169)) NIL) (($ (-1118 |#1| (-1169))) NIL) (($ (-407 (-563))) NIL (-4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#1| (-555)))) (-1337 (((-640 |#1|) $) NIL)) (-4319 ((|#1| $ (-531 (-1081 (-1169)))) NIL) (($ $ (-1081 (-1169)) (-767)) NIL) (($ $ (-640 (-1081 (-1169))) (-640 (-767))) NIL)) (-2779 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-1675 (((-767)) NIL)) (-2793 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-2126 (((-112) $ $) NIL (|has| |#1| (-555)))) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-3209 (($ $ (-1081 (-1169))) NIL) (($ $ (-640 (-1081 (-1169)))) NIL) (($ $ (-1081 (-1169)) (-767)) NIL) (($ $ (-640 (-1081 (-1169))) (-640 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1778 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1756 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1744 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1837 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1080 |#1|) (-13 (-253 |#1| (-1169) (-1081 (-1169)) (-531 (-1081 (-1169)))) (-1034 (-1118 |#1| (-1169)))) (-1045)) (T -1080)) +NIL +(-13 (-253 |#1| (-1169) (-1081 (-1169)) (-531 (-1081 (-1169)))) (-1034 (-1118 |#1| (-1169)))) +((-1677 (((-112) $ $) NIL)) (-1326 (((-767) $) NIL)) (-2518 ((|#1| $) 10)) (-2131 (((-3 |#1| "failed") $) NIL)) (-2058 ((|#1| $) NIL)) (-3254 (((-767) $) 11)) (-3084 (($ $ $) NIL)) (-1777 (($ $ $) NIL)) (-3376 (($ |#1| (-767)) 9)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-4202 (($ $) NIL) (($ $ (-767)) NIL)) (-1693 (((-858) $) NIL) (($ |#1|) NIL)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) 15))) +(((-1081 |#1|) (-266 |#1|) (-846)) (T -1081)) +NIL +(-266 |#1|) +((-2240 (((-640 |#2|) (-1 |#2| |#1|) (-1087 |#1|)) 23 (|has| |#1| (-844))) (((-1087 |#2|) (-1 |#2| |#1|) (-1087 |#1|)) 14))) +(((-1082 |#1| |#2|) (-10 -7 (-15 -2240 ((-1087 |#2|) (-1 |#2| |#1|) (-1087 |#1|))) (IF (|has| |#1| (-844)) (-15 -2240 ((-640 |#2|) (-1 |#2| |#1|) (-1087 |#1|))) |%noBranch|)) (-1208) (-1208)) (T -1082)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1087 *5)) (-4 *5 (-844)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-640 *6)) (-5 *1 (-1082 *5 *6)))) (-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1087 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-1087 *6)) (-5 *1 (-1082 *5 *6))))) +(-10 -7 (-15 -2240 ((-1087 |#2|) (-1 |#2| |#1|) (-1087 |#1|))) (IF (|has| |#1| (-844)) (-15 -2240 ((-640 |#2|) (-1 |#2| |#1|) (-1087 |#1|))) |%noBranch|)) +((-1677 (((-112) $ $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 17) (($ (-1174)) NIL) (((-1174) $) NIL)) (-2445 (((-640 (-1128)) $) 9)) (-1718 (((-112) $ $) NIL))) +(((-1083) (-13 (-1076) (-10 -8 (-15 -2445 ((-640 (-1128)) $))))) (T -1083)) +((-2445 (*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-1083))))) +(-13 (-1076) (-10 -8 (-15 -2445 ((-640 (-1128)) $)))) +((-2240 (((-1085 |#2|) (-1 |#2| |#1|) (-1085 |#1|)) 19))) +(((-1084 |#1| |#2|) (-10 -7 (-15 -2240 ((-1085 |#2|) (-1 |#2| |#1|) (-1085 |#1|)))) (-1208) (-1208)) (T -1084)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1085 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-1085 *6)) (-5 *1 (-1084 *5 *6))))) +(-10 -7 (-15 -2240 ((-1085 |#2|) (-1 |#2| |#1|) (-1085 |#1|)))) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2518 (((-1169) $) 11)) (-4260 (((-1087 |#1|) $) 12)) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-2378 (($ (-1169) (-1087 |#1|)) 10)) (-1693 (((-858) $) 20 (|has| |#1| (-1093)))) (-1718 (((-112) $ $) 15 (|has| |#1| (-1093))))) +(((-1085 |#1|) (-13 (-1208) (-10 -8 (-15 -2378 ($ (-1169) (-1087 |#1|))) (-15 -2518 ((-1169) $)) (-15 -4260 ((-1087 |#1|) $)) (IF (|has| |#1| (-1093)) (-6 (-1093)) |%noBranch|))) (-1208)) (T -1085)) +((-2378 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1087 *4)) (-4 *4 (-1208)) (-5 *1 (-1085 *4)))) (-2518 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1085 *3)) (-4 *3 (-1208)))) (-4260 (*1 *2 *1) (-12 (-5 *2 (-1087 *3)) (-5 *1 (-1085 *3)) (-4 *3 (-1208))))) +(-13 (-1208) (-10 -8 (-15 -2378 ($ (-1169) (-1087 |#1|))) (-15 -2518 ((-1169) $)) (-15 -4260 ((-1087 |#1|) $)) (IF (|has| |#1| (-1093)) (-6 (-1093)) |%noBranch|))) +((-4260 (($ |#1| |#1|) 8)) (-3244 ((|#1| $) 11)) (-3284 ((|#1| $) 13)) (-3298 (((-563) $) 9)) (-3289 ((|#1| $) 10)) (-3426 ((|#1| $) 12)) (-2220 (($ |#1|) 6)) (-2178 (($ |#1| |#1|) 15)) (-1464 (($ $ (-563)) 14))) +(((-1086 |#1|) (-140) (-1208)) (T -1086)) +((-2178 (*1 *1 *2 *2) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208)))) (-1464 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-1086 *3)) (-4 *3 (-1208)))) (-3284 (*1 *2 *1) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208)))) (-3426 (*1 *2 *1) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208)))) (-3244 (*1 *2 *1) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208)))) (-3289 (*1 *2 *1) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208)))) (-3298 (*1 *2 *1) (-12 (-4 *1 (-1086 *3)) (-4 *3 (-1208)) (-5 *2 (-563)))) (-4260 (*1 *1 *2 *2) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208))))) +(-13 (-615 |t#1|) (-10 -8 (-15 -2178 ($ |t#1| |t#1|)) (-15 -1464 ($ $ (-563))) (-15 -3284 (|t#1| $)) (-15 -3426 (|t#1| $)) (-15 -3244 (|t#1| $)) (-15 -3289 (|t#1| $)) (-15 -3298 ((-563) $)) (-15 -4260 ($ |t#1| |t#1|)))) +(((-615 |#1|) . T)) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-4260 (($ |#1| |#1|) 15)) (-2240 (((-640 |#1|) (-1 |#1| |#1|) $) 37 (|has| |#1| (-844)))) (-3244 ((|#1| $) 10)) (-3284 ((|#1| $) 9)) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3298 (((-563) $) 14)) (-3289 ((|#1| $) 12)) (-3426 ((|#1| $) 11)) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-2213 (((-640 |#1|) $) 35 (|has| |#1| (-844))) (((-640 |#1|) (-640 $)) 34 (|has| |#1| (-844)))) (-2220 (($ |#1|) 26)) (-1693 (((-858) $) 25 (|has| |#1| (-1093)))) (-2178 (($ |#1| |#1|) 8)) (-1464 (($ $ (-563)) 16)) (-1718 (((-112) $ $) 19 (|has| |#1| (-1093))))) +(((-1087 |#1|) (-13 (-1086 |#1|) (-10 -7 (IF (|has| |#1| (-1093)) (-6 (-1093)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-1088 |#1| (-640 |#1|))) |%noBranch|))) (-1208)) (T -1087)) +NIL +(-13 (-1086 |#1|) (-10 -7 (IF (|has| |#1| (-1093)) (-6 (-1093)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-1088 |#1| (-640 |#1|))) |%noBranch|))) +((-4260 (($ |#1| |#1|) 8)) (-2240 ((|#2| (-1 |#1| |#1|) $) 16)) (-3244 ((|#1| $) 11)) (-3284 ((|#1| $) 13)) (-3298 (((-563) $) 9)) (-3289 ((|#1| $) 10)) (-3426 ((|#1| $) 12)) (-2213 ((|#2| (-640 $)) 18) ((|#2| $) 17)) (-2220 (($ |#1|) 6)) (-2178 (($ |#1| |#1|) 15)) (-1464 (($ $ (-563)) 14))) +(((-1088 |#1| |#2|) (-140) (-844) (-1142 |t#1|)) (T -1088)) +((-2213 (*1 *2 *3) (-12 (-5 *3 (-640 *1)) (-4 *1 (-1088 *4 *2)) (-4 *4 (-844)) (-4 *2 (-1142 *4)))) (-2213 (*1 *2 *1) (-12 (-4 *1 (-1088 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1142 *3)))) (-2240 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1088 *4 *2)) (-4 *4 (-844)) (-4 *2 (-1142 *4))))) +(-13 (-1086 |t#1|) (-10 -8 (-15 -2213 (|t#2| (-640 $))) (-15 -2213 (|t#2| $)) (-15 -2240 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-615 |#1|) . T) ((-1086 |#1|) . T)) +((-1677 (((-112) $ $) NIL)) (-3573 (((-1151) $) NIL)) (-1481 (((-1128) $) 12)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 20) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3359 (((-640 (-1128)) $) 10)) (-1718 (((-112) $ $) NIL))) +(((-1089) (-13 (-1076) (-10 -8 (-15 -3359 ((-640 (-1128)) $)) (-15 -1481 ((-1128) $))))) (T -1089)) +((-3359 (*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-1089)))) (-1481 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1089))))) +(-13 (-1076) (-10 -8 (-15 -3359 ((-640 (-1128)) $)) (-15 -1481 ((-1128) $)))) +((-2583 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-4314 (($ $ $) 10)) (-1629 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1090 |#1| |#2|) (-10 -8 (-15 -2583 (|#1| |#2| |#1|)) (-15 -2583 (|#1| |#1| |#2|)) (-15 -2583 (|#1| |#1| |#1|)) (-15 -4314 (|#1| |#1| |#1|)) (-15 -1629 (|#1| |#1| |#2|)) (-15 -1629 (|#1| |#1| |#1|))) (-1091 |#2|) (-1093)) (T -1090)) +NIL +(-10 -8 (-15 -2583 (|#1| |#2| |#1|)) (-15 -2583 (|#1| |#1| |#2|)) (-15 -2583 (|#1| |#1| |#1|)) (-15 -4314 (|#1| |#1| |#1|)) (-15 -1629 (|#1| |#1| |#2|)) (-15 -1629 (|#1| |#1| |#1|))) +((-1677 (((-112) $ $) 7)) (-2583 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-4314 (($ $ $) 20)) (-4149 (((-112) $ $) 19)) (-2759 (((-112) $ (-767)) 35)) (-1584 (($) 25) (($ (-640 |#1|)) 24)) (-2256 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4407)))) (-4239 (($) 36 T CONST)) (-3813 (($ $) 59 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1459 (($ |#1| $) 58 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4407)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4407)))) (-2659 (((-640 |#1|) $) 43 (|has| $ (-6 -4407)))) (-2539 (((-112) $ $) 28)) (-2581 (((-112) $ (-767)) 34)) (-2259 (((-640 |#1|) $) 44 (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-4345 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 38)) (-2382 (((-112) $ (-767)) 33)) (-3573 (((-1151) $) 9)) (-2550 (($ $ $) 23)) (-1694 (((-1113) $) 10)) (-4203 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3138 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 |#1|) (-640 |#1|)) 50 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 48 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 (-294 |#1|))) 47 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) 29)) (-3756 (((-112) $) 32)) (-3135 (($) 31)) (-1629 (($ $ $) 22) (($ $ |#1|) 21)) (-1709 (((-767) |#1| $) 45 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407)))) (((-767) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4407)))) (-1872 (($ $) 30)) (-2220 (((-536) $) 60 (|has| |#1| (-611 (-536))))) (-1707 (($ (-640 |#1|)) 51)) (-1693 (((-858) $) 11)) (-2534 (($) 27) (($ (-640 |#1|)) 26)) (-4383 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 6)) (-3608 (((-767) $) 37 (|has| $ (-6 -4407))))) +(((-1091 |#1|) (-140) (-1093)) (T -1091)) +((-2539 (*1 *2 *1 *1) (-12 (-4 *1 (-1091 *3)) (-4 *3 (-1093)) (-5 *2 (-112)))) (-2534 (*1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))) (-2534 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-4 *1 (-1091 *3)))) (-1584 (*1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))) (-1584 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-4 *1 (-1091 *3)))) (-2550 (*1 *1 *1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))) (-1629 (*1 *1 *1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))) (-1629 (*1 *1 *1 *2) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))) (-4314 (*1 *1 *1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))) (-4149 (*1 *2 *1 *1) (-12 (-4 *1 (-1091 *3)) (-4 *3 (-1093)) (-5 *2 (-112)))) (-2583 (*1 *1 *1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))) (-2583 (*1 *1 *1 *2) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))) (-2583 (*1 *1 *2 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093))))) +(-13 (-1093) (-151 |t#1|) (-10 -8 (-6 -4397) (-15 -2539 ((-112) $ $)) (-15 -2534 ($)) (-15 -2534 ($ (-640 |t#1|))) (-15 -1584 ($)) (-15 -1584 ($ (-640 |t#1|))) (-15 -2550 ($ $ $)) (-15 -1629 ($ $ $)) (-15 -1629 ($ $ |t#1|)) (-15 -4314 ($ $ $)) (-15 -4149 ((-112) $ $)) (-15 -2583 ($ $ $)) (-15 -2583 ($ $ |t#1|)) (-15 -2583 ($ |t#1| $)))) +(((-34) . T) ((-102) . T) ((-610 (-858)) . T) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) . T) ((-1208) . T)) +((-3573 (((-1151) $) 10)) (-1694 (((-1113) $) 8))) +(((-1092 |#1|) (-10 -8 (-15 -3573 ((-1151) |#1|)) (-15 -1694 ((-1113) |#1|))) (-1093)) (T -1092)) +NIL +(-10 -8 (-15 -3573 ((-1151) |#1|)) (-15 -1694 ((-1113) |#1|))) +((-1677 (((-112) $ $) 7)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11)) (-1718 (((-112) $ $) 6))) +(((-1093) (-140)) (T -1093)) +((-1694 (*1 *2 *1) (-12 (-4 *1 (-1093)) (-5 *2 (-1113)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1093)) (-5 *2 (-1151))))) +(-13 (-102) (-610 (-858)) (-10 -8 (-15 -1694 ((-1113) $)) (-15 -3573 ((-1151) $)))) +(((-102) . T) ((-610 (-858)) . T)) +((-1677 (((-112) $ $) NIL)) (-3749 (((-767)) 30)) (-2610 (($ (-640 (-917))) 52)) (-1668 (((-3 $ "failed") $ (-917) (-917)) 58)) (-1691 (($) 32)) (-1729 (((-112) (-917) $) 35)) (-1476 (((-917) $) 50)) (-3573 (((-1151) $) NIL)) (-2555 (($ (-917)) 31)) (-3652 (((-3 $ "failed") $ (-917)) 55)) (-1694 (((-1113) $) NIL)) (-3997 (((-1257 $)) 40)) (-2666 (((-640 (-917)) $) 24)) (-1648 (((-767) $ (-917) (-917)) 56)) (-1693 (((-858) $) 29)) (-1718 (((-112) $ $) 21))) +(((-1094 |#1| |#2|) (-13 (-368) (-10 -8 (-15 -3652 ((-3 $ "failed") $ (-917))) (-15 -1668 ((-3 $ "failed") $ (-917) (-917))) (-15 -2666 ((-640 (-917)) $)) (-15 -2610 ($ (-640 (-917)))) (-15 -3997 ((-1257 $))) (-15 -1729 ((-112) (-917) $)) (-15 -1648 ((-767) $ (-917) (-917))))) (-917) (-917)) (T -1094)) +((-3652 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-917)) (-5 *1 (-1094 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1668 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-917)) (-5 *1 (-1094 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2666 (*1 *2 *1) (-12 (-5 *2 (-640 (-917))) (-5 *1 (-1094 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) (-2610 (*1 *1 *2) (-12 (-5 *2 (-640 (-917))) (-5 *1 (-1094 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) (-3997 (*1 *2) (-12 (-5 *2 (-1257 (-1094 *3 *4))) (-5 *1 (-1094 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) (-1729 (*1 *2 *3 *1) (-12 (-5 *3 (-917)) (-5 *2 (-112)) (-5 *1 (-1094 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1648 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-767)) (-5 *1 (-1094 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-368) (-10 -8 (-15 -3652 ((-3 $ "failed") $ (-917))) (-15 -1668 ((-3 $ "failed") $ (-917) (-917))) (-15 -2666 ((-640 (-917)) $)) (-15 -2610 ($ (-640 (-917)))) (-15 -3997 ((-1257 $))) (-15 -1729 ((-112) (-917) $)) (-15 -1648 ((-767) $ (-917) (-917))))) +((-1677 (((-112) $ $) NIL)) (-2941 (($) NIL (|has| |#1| (-368)))) (-2583 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 71)) (-4314 (($ $ $) 69)) (-4149 (((-112) $ $) 70)) (-2759 (((-112) $ (-767)) NIL)) (-3749 (((-767)) NIL (|has| |#1| (-368)))) (-1584 (($ (-640 |#1|)) NIL) (($) 13)) (-2812 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-2256 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-4239 (($) NIL T CONST)) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2705 (($ |#1| $) 65 (|has| $ (-6 -4407))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1459 (($ |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4407)))) (-1691 (($) NIL (|has| |#1| (-368)))) (-2659 (((-640 |#1|) $) 19 (|has| $ (-6 -4407)))) (-2539 (((-112) $ $) NIL)) (-2581 (((-112) $ (-767)) NIL)) (-3084 ((|#1| $) 55 (|has| |#1| (-846)))) (-2259 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) 64 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1777 ((|#1| $) 53 (|has| |#1| (-846)))) (-4345 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 34)) (-1476 (((-917) $) NIL (|has| |#1| (-368)))) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL)) (-2550 (($ $ $) 67)) (-2964 ((|#1| $) 25)) (-1812 (($ |#1| $) 63)) (-2555 (($ (-917)) NIL (|has| |#1| (-368)))) (-1694 (((-1113) $) NIL)) (-4203 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-3755 ((|#1| $) 27)) (-3138 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) NIL)) (-3756 (((-112) $) 21)) (-3135 (($) 11)) (-1629 (($ $ |#1|) NIL) (($ $ $) 68)) (-3890 (($) NIL) (($ (-640 |#1|)) NIL)) (-1709 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1872 (($ $) 16)) (-2220 (((-536) $) 50 (|has| |#1| (-611 (-536))))) (-1707 (($ (-640 |#1|)) 59)) (-3085 (($ $) NIL (|has| |#1| (-368)))) (-1693 (((-858) $) NIL)) (-1663 (((-767) $) NIL)) (-2534 (($ (-640 |#1|)) NIL) (($) 12)) (-2233 (($ (-640 |#1|)) NIL)) (-4383 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 52)) (-3608 (((-767) $) 10 (|has| $ (-6 -4407))))) +(((-1095 |#1|) (-425 |#1|) (-1093)) (T -1095)) +NIL +(-425 |#1|) +((-1677 (((-112) $ $) 7)) (-3264 (((-112) $) 32)) (-3674 ((|#2| $) 27)) (-4072 (((-112) $) 33)) (-3736 ((|#1| $) 28)) (-3611 (((-112) $) 35)) (-3243 (((-112) $) 37)) (-2341 (((-112) $) 34)) (-3573 (((-1151) $) 9)) (-3532 (((-112) $) 31)) (-3701 ((|#3| $) 26)) (-1694 (((-1113) $) 10)) (-3636 (((-112) $) 30)) (-4340 ((|#4| $) 25)) (-2474 ((|#5| $) 24)) (-1420 (((-112) $ $) 38)) (-2309 (($ $ (-563)) 20) (($ $ (-640 (-563))) 19)) (-2546 (((-640 $) $) 29)) (-2220 (($ |#1|) 44) (($ |#2|) 43) (($ |#3|) 42) (($ |#4|) 41) (($ |#5|) 40) (($ (-640 $)) 39)) (-1693 (((-858) $) 11)) (-3673 (($ $) 22)) (-3662 (($ $) 23)) (-1323 (((-112) $) 36)) (-1718 (((-112) $ $) 6)) (-3608 (((-563) $) 21))) +(((-1096 |#1| |#2| |#3| |#4| |#5|) (-140) (-1093) (-1093) (-1093) (-1093) (-1093)) (T -1096)) +((-1420 (*1 *2 *1 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))) (-3243 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))) (-1323 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))) (-3611 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))) (-2341 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))) (-4072 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))) (-3264 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))) (-3532 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))) (-3636 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))) (-2546 (*1 *2 *1) (-12 (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-640 *1)) (-4 *1 (-1096 *3 *4 *5 *6 *7)))) (-3736 (*1 *2 *1) (-12 (-4 *1 (-1096 *2 *3 *4 *5 *6)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-1093)))) (-3674 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *2 *4 *5 *6)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-1093)))) (-3701 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *2 *5 *6)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-1093)))) (-4340 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *2 *6)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-1093)))) (-2474 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6 *2)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-1093)))) (-3662 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4 *5 *6)) (-4 *2 (-1093)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)))) (-3673 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4 *5 *6)) (-4 *2 (-1093)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)))) (-3608 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-563)))) (-2309 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)))) (-2309 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-563))) (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093))))) +(-13 (-1093) (-615 |t#1|) (-615 |t#2|) (-615 |t#3|) (-615 |t#4|) (-615 |t#4|) (-615 |t#5|) (-615 (-640 $)) (-10 -8 (-15 -1420 ((-112) $ $)) (-15 -3243 ((-112) $)) (-15 -1323 ((-112) $)) (-15 -3611 ((-112) $)) (-15 -2341 ((-112) $)) (-15 -4072 ((-112) $)) (-15 -3264 ((-112) $)) (-15 -3532 ((-112) $)) (-15 -3636 ((-112) $)) (-15 -2546 ((-640 $) $)) (-15 -3736 (|t#1| $)) (-15 -3674 (|t#2| $)) (-15 -3701 (|t#3| $)) (-15 -4340 (|t#4| $)) (-15 -2474 (|t#5| $)) (-15 -3662 ($ $)) (-15 -3673 ($ $)) (-15 -3608 ((-563) $)) (-15 -2309 ($ $ (-563))) (-15 -2309 ($ $ (-640 (-563)))))) +(((-102) . T) ((-610 (-858)) . T) ((-615 (-640 $)) . T) ((-615 |#1|) . T) ((-615 |#2|) . T) ((-615 |#3|) . T) ((-615 |#4|) . T) ((-615 |#5|) . T) ((-1093) . T)) +((-1677 (((-112) $ $) NIL)) (-3264 (((-112) $) NIL)) (-3674 (((-1169) $) NIL)) (-4072 (((-112) $) NIL)) (-3736 (((-1151) $) NIL)) (-3611 (((-112) $) NIL)) (-3243 (((-112) $) NIL)) (-2341 (((-112) $) NIL)) (-3573 (((-1151) $) NIL)) (-3532 (((-112) $) NIL)) (-3701 (((-563) $) NIL)) (-1694 (((-1113) $) NIL)) (-3636 (((-112) $) NIL)) (-4340 (((-225) $) NIL)) (-2474 (((-858) $) NIL)) (-1420 (((-112) $ $) NIL)) (-2309 (($ $ (-563)) NIL) (($ $ (-640 (-563))) NIL)) (-2546 (((-640 $) $) NIL)) (-2220 (($ (-1151)) NIL) (($ (-1169)) NIL) (($ (-563)) NIL) (($ (-225)) NIL) (($ (-858)) NIL) (($ (-640 $)) NIL)) (-1693 (((-858) $) NIL)) (-3673 (($ $) NIL)) (-3662 (($ $) NIL)) (-1323 (((-112) $) NIL)) (-1718 (((-112) $ $) NIL)) (-3608 (((-563) $) NIL))) +(((-1097) (-1096 (-1151) (-1169) (-563) (-225) (-858))) (T -1097)) +NIL +(-1096 (-1151) (-1169) (-563) (-225) (-858)) +((-1677 (((-112) $ $) NIL)) (-3264 (((-112) $) 39)) (-3674 ((|#2| $) 42)) (-4072 (((-112) $) 18)) (-3736 ((|#1| $) 19)) (-3611 (((-112) $) 37)) (-3243 (((-112) $) 14)) (-2341 (((-112) $) 38)) (-3573 (((-1151) $) NIL)) (-3532 (((-112) $) 40)) (-3701 ((|#3| $) 44)) (-1694 (((-1113) $) NIL)) (-3636 (((-112) $) 41)) (-4340 ((|#4| $) 43)) (-2474 ((|#5| $) 45)) (-1420 (((-112) $ $) 36)) (-2309 (($ $ (-563)) 56) (($ $ (-640 (-563))) 58)) (-2546 (((-640 $) $) 24)) (-2220 (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51) (($ (-640 $)) 46)) (-1693 (((-858) $) 25)) (-3673 (($ $) 23)) (-3662 (($ $) 52)) (-1323 (((-112) $) 21)) (-1718 (((-112) $ $) 35)) (-3608 (((-563) $) 54))) +(((-1098 |#1| |#2| |#3| |#4| |#5|) (-1096 |#1| |#2| |#3| |#4| |#5|) (-1093) (-1093) (-1093) (-1093) (-1093)) (T -1098)) +NIL +(-1096 |#1| |#2| |#3| |#4| |#5|) +((-2615 (((-1262) $) 23)) (-3420 (($ (-1169) (-434) |#2|) 11)) (-1693 (((-858) $) 16))) +(((-1099 |#1| |#2|) (-13 (-395) (-10 -8 (-15 -3420 ($ (-1169) (-434) |#2|)))) (-846) (-430 |#1|)) (T -1099)) +((-3420 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-434)) (-4 *5 (-846)) (-5 *1 (-1099 *5 *4)) (-4 *4 (-430 *5))))) +(-13 (-395) (-10 -8 (-15 -3420 ($ (-1169) (-434) |#2|)))) +((-1918 (((-112) |#5| |#5|) 37)) (-1874 (((-112) |#5| |#5|) 51)) (-3607 (((-112) |#5| (-640 |#5|)) 74) (((-112) |#5| |#5|) 60)) (-2952 (((-112) (-640 |#4|) (-640 |#4|)) 57)) (-3150 (((-112) (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|)) (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) 62)) (-3044 (((-1262)) 33)) (-4387 (((-1262) (-1151) (-1151) (-1151)) 29)) (-3965 (((-640 |#5|) (-640 |#5|)) 81)) (-1530 (((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|)))) 79)) (-1809 (((-640 (-2 (|:| -1420 (-640 |#4|)) (|:| -2059 |#5|) (|:| |ineq| (-640 |#4|)))) (-640 |#4|) (-640 |#5|) (-112) (-112)) 101)) (-3638 (((-112) |#5| |#5|) 46)) (-3506 (((-3 (-112) "failed") |#5| |#5|) 70)) (-3970 (((-112) (-640 |#4|) (-640 |#4|)) 56)) (-4342 (((-112) (-640 |#4|) (-640 |#4|)) 58)) (-3009 (((-112) (-640 |#4|) (-640 |#4|)) 59)) (-1737 (((-3 (-2 (|:| -1420 (-640 |#4|)) (|:| -2059 |#5|) (|:| |ineq| (-640 |#4|))) "failed") (-640 |#4|) |#5| (-640 |#4|) (-112) (-112) (-112) (-112) (-112)) 97)) (-1846 (((-640 |#5|) (-640 |#5|)) 42))) +(((-1100 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4387 ((-1262) (-1151) (-1151) (-1151))) (-15 -3044 ((-1262))) (-15 -1918 ((-112) |#5| |#5|)) (-15 -1846 ((-640 |#5|) (-640 |#5|))) (-15 -3638 ((-112) |#5| |#5|)) (-15 -1874 ((-112) |#5| |#5|)) (-15 -2952 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -3970 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -4342 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -3009 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -3506 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3607 ((-112) |#5| |#5|)) (-15 -3607 ((-112) |#5| (-640 |#5|))) (-15 -3965 ((-640 |#5|) (-640 |#5|))) (-15 -3150 ((-112) (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|)) (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|)))) (-15 -1530 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) (-15 -1809 ((-640 (-2 (|:| -1420 (-640 |#4|)) (|:| -2059 |#5|) (|:| |ineq| (-640 |#4|)))) (-640 |#4|) (-640 |#5|) (-112) (-112))) (-15 -1737 ((-3 (-2 (|:| -1420 (-640 |#4|)) (|:| -2059 |#5|) (|:| |ineq| (-640 |#4|))) "failed") (-640 |#4|) |#5| (-640 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -1100)) +((-1737 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| -1420 (-640 *9)) (|:| -2059 *4) (|:| |ineq| (-640 *9)))) (-5 *1 (-1100 *6 *7 *8 *9 *4)) (-5 *3 (-640 *9)) (-4 *4 (-1065 *6 *7 *8 *9)))) (-1809 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-640 *10)) (-5 *5 (-112)) (-4 *10 (-1065 *6 *7 *8 *9)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8)) (-5 *2 (-640 (-2 (|:| -1420 (-640 *9)) (|:| -2059 *10) (|:| |ineq| (-640 *9))))) (-5 *1 (-1100 *6 *7 *8 *9 *10)) (-5 *3 (-640 *9)))) (-1530 (*1 *2 *2) (-12 (-5 *2 (-640 (-2 (|:| |val| (-640 *6)) (|:| -2059 *7)))) (-4 *6 (-1059 *3 *4 *5)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1100 *3 *4 *5 *6 *7)))) (-3150 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-640 *7)) (|:| -2059 *8))) (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *8)))) (-3965 (*1 *2 *2) (-12 (-5 *2 (-640 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-1100 *3 *4 *5 *6 *7)))) (-3607 (*1 *2 *3 *4) (-12 (-5 *4 (-640 *3)) (-4 *3 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1100 *5 *6 *7 *8 *3)))) (-3607 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-3506 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-3009 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-4342 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-3970 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-2952 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-1874 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-3638 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-1846 (*1 *2 *2) (-12 (-5 *2 (-640 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-1100 *3 *4 *5 *6 *7)))) (-1918 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-3044 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) (-5 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-4387 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))) +(-10 -7 (-15 -4387 ((-1262) (-1151) (-1151) (-1151))) (-15 -3044 ((-1262))) (-15 -1918 ((-112) |#5| |#5|)) (-15 -1846 ((-640 |#5|) (-640 |#5|))) (-15 -3638 ((-112) |#5| |#5|)) (-15 -1874 ((-112) |#5| |#5|)) (-15 -2952 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -3970 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -4342 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -3009 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -3506 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3607 ((-112) |#5| |#5|)) (-15 -3607 ((-112) |#5| (-640 |#5|))) (-15 -3965 ((-640 |#5|) (-640 |#5|))) (-15 -3150 ((-112) (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|)) (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|)))) (-15 -1530 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) (-15 -1809 ((-640 (-2 (|:| -1420 (-640 |#4|)) (|:| -2059 |#5|) (|:| |ineq| (-640 |#4|)))) (-640 |#4|) (-640 |#5|) (-112) (-112))) (-15 -1737 ((-3 (-2 (|:| -1420 (-640 |#4|)) (|:| -2059 |#5|) (|:| |ineq| (-640 |#4|))) "failed") (-640 |#4|) |#5| (-640 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-1991 (((-640 (-2 (|:| |val| |#4|) (|:| -2059 |#5|))) |#4| |#5|) 95)) (-3016 (((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) |#4| |#4| |#5|) 71)) (-1329 (((-640 (-2 (|:| |val| |#4|) (|:| -2059 |#5|))) |#4| |#4| |#5|) 89)) (-3268 (((-640 |#5|) |#4| |#5|) 109)) (-1805 (((-640 |#5|) |#4| |#5|) 116)) (-3143 (((-640 |#5|) |#4| |#5|) 117)) (-4347 (((-640 (-2 (|:| |val| (-112)) (|:| -2059 |#5|))) |#4| |#5|) 96)) (-1500 (((-640 (-2 (|:| |val| (-112)) (|:| -2059 |#5|))) |#4| |#5|) 115)) (-1954 (((-640 (-2 (|:| |val| (-112)) (|:| -2059 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-2925 (((-640 (-2 (|:| |val| |#4|) (|:| -2059 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) |#3| (-112)) 83) (((-640 (-2 (|:| |val| |#4|) (|:| -2059 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-1612 (((-640 (-2 (|:| |val| |#4|) (|:| -2059 |#5|))) |#4| |#4| |#5|) 78)) (-3117 (((-1262)) 37)) (-2279 (((-1262)) 26)) (-3688 (((-1262) (-1151) (-1151) (-1151)) 33)) (-2574 (((-1262) (-1151) (-1151) (-1151)) 22))) +(((-1101 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2574 ((-1262) (-1151) (-1151) (-1151))) (-15 -2279 ((-1262))) (-15 -3688 ((-1262) (-1151) (-1151) (-1151))) (-15 -3117 ((-1262))) (-15 -3016 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) |#4| |#4| |#5|)) (-15 -2925 ((-640 (-2 (|:| |val| |#4|) (|:| -2059 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2925 ((-640 (-2 (|:| |val| |#4|) (|:| -2059 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) |#3| (-112))) (-15 -1612 ((-640 (-2 (|:| |val| |#4|) (|:| -2059 |#5|))) |#4| |#4| |#5|)) (-15 -1329 ((-640 (-2 (|:| |val| |#4|) (|:| -2059 |#5|))) |#4| |#4| |#5|)) (-15 -1954 ((-112) |#4| |#5|)) (-15 -4347 ((-640 (-2 (|:| |val| (-112)) (|:| -2059 |#5|))) |#4| |#5|)) (-15 -3268 ((-640 |#5|) |#4| |#5|)) (-15 -1500 ((-640 (-2 (|:| |val| (-112)) (|:| -2059 |#5|))) |#4| |#5|)) (-15 -1805 ((-640 |#5|) |#4| |#5|)) (-15 -1954 ((-640 (-2 (|:| |val| (-112)) (|:| -2059 |#5|))) |#4| |#5|)) (-15 -3143 ((-640 |#5|) |#4| |#5|)) (-15 -1991 ((-640 (-2 (|:| |val| |#4|) (|:| -2059 |#5|))) |#4| |#5|))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -1101)) +((-1991 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2059 *4)))) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3143 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 *4)) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-1954 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -2059 *4)))) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-1805 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 *4)) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-1500 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -2059 *4)))) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3268 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 *4)) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-4347 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -2059 *4)))) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-1954 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-1329 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2059 *4)))) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-1612 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2059 *4)))) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-2925 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-640 (-2 (|:| |val| (-640 *8)) (|:| -2059 *9)))) (-5 *5 (-112)) (-4 *8 (-1059 *6 *7 *4)) (-4 *9 (-1065 *6 *7 *4 *8)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *4 (-846)) (-5 *2 (-640 (-2 (|:| |val| *8) (|:| -2059 *9)))) (-5 *1 (-1101 *6 *7 *4 *8 *9)))) (-2925 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2059 *4)))) (-5 *1 (-1101 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) (-3016 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| (-640 *3)) (|:| -2059 *4)))) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3117 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) (-5 *1 (-1101 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-3688 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-2279 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) (-5 *1 (-1101 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-2574 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))) +(-10 -7 (-15 -2574 ((-1262) (-1151) (-1151) (-1151))) (-15 -2279 ((-1262))) (-15 -3688 ((-1262) (-1151) (-1151) (-1151))) (-15 -3117 ((-1262))) (-15 -3016 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) |#4| |#4| |#5|)) (-15 -2925 ((-640 (-2 (|:| |val| |#4|) (|:| -2059 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2925 ((-640 (-2 (|:| |val| |#4|) (|:| -2059 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) |#3| (-112))) (-15 -1612 ((-640 (-2 (|:| |val| |#4|) (|:| -2059 |#5|))) |#4| |#4| |#5|)) (-15 -1329 ((-640 (-2 (|:| |val| |#4|) (|:| -2059 |#5|))) |#4| |#4| |#5|)) (-15 -1954 ((-112) |#4| |#5|)) (-15 -4347 ((-640 (-2 (|:| |val| (-112)) (|:| -2059 |#5|))) |#4| |#5|)) (-15 -3268 ((-640 |#5|) |#4| |#5|)) (-15 -1500 ((-640 (-2 (|:| |val| (-112)) (|:| -2059 |#5|))) |#4| |#5|)) (-15 -1805 ((-640 |#5|) |#4| |#5|)) (-15 -1954 ((-640 (-2 (|:| |val| (-112)) (|:| -2059 |#5|))) |#4| |#5|)) (-15 -3143 ((-640 |#5|) |#4| |#5|)) (-15 -1991 ((-640 (-2 (|:| |val| |#4|) (|:| -2059 |#5|))) |#4| |#5|))) +((-1677 (((-112) $ $) 7)) (-1578 (((-640 (-2 (|:| -1442 $) (|:| -3405 (-640 |#4|)))) (-640 |#4|)) 85)) (-3319 (((-640 $) (-640 |#4|)) 86) (((-640 $) (-640 |#4|) (-112)) 111)) (-2606 (((-640 |#3|) $) 33)) (-1706 (((-112) $) 26)) (-3854 (((-112) $) 17 (|has| |#1| (-555)))) (-2620 (((-112) |#4| $) 101) (((-112) $) 97)) (-4053 ((|#4| |#4| $) 92)) (-4335 (((-640 (-2 (|:| |val| |#4|) (|:| -2059 $))) |#4| $) 126)) (-1642 (((-2 (|:| |under| $) (|:| -1583 $) (|:| |upper| $)) $ |#3|) 27)) (-2759 (((-112) $ (-767)) 44)) (-2256 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4407))) (((-3 |#4| "failed") $ |#3|) 79)) (-4239 (($) 45 T CONST)) (-1483 (((-112) $) 22 (|has| |#1| (-555)))) (-1626 (((-112) $ $) 24 (|has| |#1| (-555)))) (-4221 (((-112) $ $) 23 (|has| |#1| (-555)))) (-1763 (((-112) $) 25 (|has| |#1| (-555)))) (-1833 (((-640 |#4|) (-640 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3746 (((-640 |#4|) (-640 |#4|) $) 18 (|has| |#1| (-555)))) (-1866 (((-640 |#4|) (-640 |#4|) $) 19 (|has| |#1| (-555)))) (-2131 (((-3 $ "failed") (-640 |#4|)) 36)) (-2058 (($ (-640 |#4|)) 35)) (-3792 (((-3 $ "failed") $) 82)) (-1719 ((|#4| |#4| $) 89)) (-3813 (($ $) 68 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4407))))) (-1459 (($ |#4| $) 67 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4407)))) (-1972 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-555)))) (-3990 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3948 ((|#4| |#4| $) 87)) (-2444 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4407)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4407))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4407))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2144 (((-2 (|:| -1442 (-640 |#4|)) (|:| -3405 (-640 |#4|))) $) 105)) (-2313 (((-112) |#4| $) 136)) (-3748 (((-112) |#4| $) 133)) (-1871 (((-112) |#4| $) 137) (((-112) $) 134)) (-2659 (((-640 |#4|) $) 52 (|has| $ (-6 -4407)))) (-2299 (((-112) |#4| $) 104) (((-112) $) 103)) (-2957 ((|#3| $) 34)) (-2581 (((-112) $ (-767)) 43)) (-2259 (((-640 |#4|) $) 53 (|has| $ (-6 -4407)))) (-1729 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4407))))) (-4345 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#4| |#4|) $) 47)) (-2965 (((-640 |#3|) $) 32)) (-2780 (((-112) |#3| $) 31)) (-2382 (((-112) $ (-767)) 42)) (-3573 (((-1151) $) 9)) (-3083 (((-3 |#4| (-640 $)) |#4| |#4| $) 128)) (-2898 (((-640 (-2 (|:| |val| |#4|) (|:| -2059 $))) |#4| |#4| $) 127)) (-1481 (((-3 |#4| "failed") $) 83)) (-3764 (((-640 $) |#4| $) 129)) (-1334 (((-3 (-112) (-640 $)) |#4| $) 132)) (-2069 (((-640 (-2 (|:| |val| (-112)) (|:| -2059 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-2550 (((-640 $) |#4| $) 125) (((-640 $) (-640 |#4|) $) 124) (((-640 $) (-640 |#4|) (-640 $)) 123) (((-640 $) |#4| (-640 $)) 122)) (-3291 (($ |#4| $) 117) (($ (-640 |#4|) $) 116)) (-2820 (((-640 |#4|) $) 107)) (-4197 (((-112) |#4| $) 99) (((-112) $) 95)) (-2715 ((|#4| |#4| $) 90)) (-3009 (((-112) $ $) 110)) (-2152 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-555)))) (-2031 (((-112) |#4| $) 100) (((-112) $) 96)) (-4056 ((|#4| |#4| $) 91)) (-1694 (((-1113) $) 10)) (-3781 (((-3 |#4| "failed") $) 84)) (-4203 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3479 (((-3 $ "failed") $ |#4|) 78)) (-3320 (($ $ |#4|) 77) (((-640 $) |#4| $) 115) (((-640 $) |#4| (-640 $)) 114) (((-640 $) (-640 |#4|) $) 113) (((-640 $) (-640 |#4|) (-640 $)) 112)) (-3138 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 |#4|) (-640 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-2026 (((-112) $ $) 38)) (-3756 (((-112) $) 41)) (-3135 (($) 40)) (-4167 (((-767) $) 106)) (-1709 (((-767) |#4| $) 54 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4407)))) (((-767) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4407)))) (-1872 (($ $) 39)) (-2220 (((-536) $) 69 (|has| |#4| (-611 (-536))))) (-1707 (($ (-640 |#4|)) 60)) (-3577 (($ $ |#3|) 28)) (-1593 (($ $ |#3|) 30)) (-1924 (($ $) 88)) (-4192 (($ $ |#3|) 29)) (-1693 (((-858) $) 11) (((-640 |#4|) $) 37)) (-2437 (((-767) $) 76 (|has| |#3| (-368)))) (-2540 (((-3 (-2 (|:| |bas| $) (|:| -2636 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2636 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2691 (((-112) $ (-1 (-112) |#4| (-640 |#4|))) 98)) (-2175 (((-640 $) |#4| $) 121) (((-640 $) |#4| (-640 $)) 120) (((-640 $) (-640 |#4|) $) 119) (((-640 $) (-640 |#4|) (-640 $)) 118)) (-4383 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4407)))) (-1955 (((-640 |#3|) $) 81)) (-4279 (((-112) |#4| $) 135)) (-3152 (((-112) |#3| $) 80)) (-1718 (((-112) $ $) 6)) (-3608 (((-767) $) 46 (|has| $ (-6 -4407))))) +(((-1102 |#1| |#2| |#3| |#4|) (-140) (-452) (-789) (-846) (-1059 |t#1| |t#2| |t#3|)) (T -1102)) +NIL +(-13 (-1065 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-610 (-640 |#4|)) . T) ((-610 (-858)) . T) ((-151 |#4|) . T) ((-611 (-536)) |has| |#4| (-611 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-972 |#1| |#2| |#3| |#4|) . T) ((-1065 |#1| |#2| |#3| |#4|) . T) ((-1093) . T) ((-1201 |#1| |#2| |#3| |#4|) . T) ((-1208) . T)) +((-3620 (((-640 (-563)) (-563) (-563) (-563)) 22)) (-3095 (((-640 (-563)) (-563) (-563) (-563)) 12)) (-3770 (((-640 (-563)) (-563) (-563) (-563)) 18)) (-3315 (((-563) (-563) (-563)) 9)) (-2210 (((-1257 (-563)) (-640 (-563)) (-1257 (-563)) (-563)) 45) (((-1257 (-563)) (-1257 (-563)) (-1257 (-563)) (-563)) 40)) (-1398 (((-640 (-563)) (-640 (-563)) (-640 (-563)) (-112)) 27)) (-2334 (((-684 (-563)) (-640 (-563)) (-640 (-563)) (-684 (-563))) 44)) (-4366 (((-684 (-563)) (-640 (-563)) (-640 (-563))) 32)) (-2707 (((-640 (-684 (-563))) (-640 (-563))) 34)) (-2460 (((-640 (-563)) (-640 (-563)) (-640 (-563)) (-684 (-563))) 48)) (-3622 (((-684 (-563)) (-640 (-563)) (-640 (-563)) (-640 (-563))) 56))) +(((-1103) (-10 -7 (-15 -3622 ((-684 (-563)) (-640 (-563)) (-640 (-563)) (-640 (-563)))) (-15 -2460 ((-640 (-563)) (-640 (-563)) (-640 (-563)) (-684 (-563)))) (-15 -2707 ((-640 (-684 (-563))) (-640 (-563)))) (-15 -4366 ((-684 (-563)) (-640 (-563)) (-640 (-563)))) (-15 -2334 ((-684 (-563)) (-640 (-563)) (-640 (-563)) (-684 (-563)))) (-15 -1398 ((-640 (-563)) (-640 (-563)) (-640 (-563)) (-112))) (-15 -2210 ((-1257 (-563)) (-1257 (-563)) (-1257 (-563)) (-563))) (-15 -2210 ((-1257 (-563)) (-640 (-563)) (-1257 (-563)) (-563))) (-15 -3315 ((-563) (-563) (-563))) (-15 -3770 ((-640 (-563)) (-563) (-563) (-563))) (-15 -3095 ((-640 (-563)) (-563) (-563) (-563))) (-15 -3620 ((-640 (-563)) (-563) (-563) (-563))))) (T -1103)) +((-3620 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1103)) (-5 *3 (-563)))) (-3095 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1103)) (-5 *3 (-563)))) (-3770 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1103)) (-5 *3 (-563)))) (-3315 (*1 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1103)))) (-2210 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1257 (-563))) (-5 *3 (-640 (-563))) (-5 *4 (-563)) (-5 *1 (-1103)))) (-2210 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1257 (-563))) (-5 *3 (-563)) (-5 *1 (-1103)))) (-1398 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-640 (-563))) (-5 *3 (-112)) (-5 *1 (-1103)))) (-2334 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-684 (-563))) (-5 *3 (-640 (-563))) (-5 *1 (-1103)))) (-4366 (*1 *2 *3 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-684 (-563))) (-5 *1 (-1103)))) (-2707 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-640 (-684 (-563)))) (-5 *1 (-1103)))) (-2460 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-640 (-563))) (-5 *3 (-684 (-563))) (-5 *1 (-1103)))) (-3622 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-684 (-563))) (-5 *1 (-1103))))) +(-10 -7 (-15 -3622 ((-684 (-563)) (-640 (-563)) (-640 (-563)) (-640 (-563)))) (-15 -2460 ((-640 (-563)) (-640 (-563)) (-640 (-563)) (-684 (-563)))) (-15 -2707 ((-640 (-684 (-563))) (-640 (-563)))) (-15 -4366 ((-684 (-563)) (-640 (-563)) (-640 (-563)))) (-15 -2334 ((-684 (-563)) (-640 (-563)) (-640 (-563)) (-684 (-563)))) (-15 -1398 ((-640 (-563)) (-640 (-563)) (-640 (-563)) (-112))) (-15 -2210 ((-1257 (-563)) (-1257 (-563)) (-1257 (-563)) (-563))) (-15 -2210 ((-1257 (-563)) (-640 (-563)) (-1257 (-563)) (-563))) (-15 -3315 ((-563) (-563) (-563))) (-15 -3770 ((-640 (-563)) (-563) (-563) (-563))) (-15 -3095 ((-640 (-563)) (-563) (-563) (-563))) (-15 -3620 ((-640 (-563)) (-563) (-563) (-563)))) +((** (($ $ (-917)) 10))) +(((-1104 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-917)))) (-1105)) (T -1104)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-917)))) +((-1677 (((-112) $ $) 7)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11)) (-1718 (((-112) $ $) 6)) (** (($ $ (-917)) 13)) (* (($ $ $) 14))) +(((-1105) (-140)) (T -1105)) +((* (*1 *1 *1 *1) (-4 *1 (-1105))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1105)) (-5 *2 (-917))))) +(-13 (-1093) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-917))))) +(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) +((-1677 (((-112) $ $) NIL (|has| |#3| (-1093)))) (-3411 (((-112) $) NIL (|has| |#3| (-131)))) (-1946 (($ (-917)) NIL (|has| |#3| (-1045)))) (-4378 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4408)))) (-1901 (($ $ $) NIL (|has| |#3| (-789)))) (-1495 (((-3 $ "failed") $ $) NIL (|has| |#3| (-131)))) (-2759 (((-112) $ (-767)) NIL)) (-3749 (((-767)) NIL (|has| |#3| (-368)))) (-1857 (((-563) $) NIL (|has| |#3| (-844)))) (-1849 ((|#3| $ (-563) |#3|) NIL (|has| $ (-6 -4408)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-563) "failed") $) NIL (-12 (|has| |#3| (-1034 (-563))) (|has| |#3| (-1093)))) (((-3 (-407 (-563)) "failed") $) NIL (-12 (|has| |#3| (-1034 (-407 (-563)))) (|has| |#3| (-1093)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1093)))) (-2058 (((-563) $) NIL (-12 (|has| |#3| (-1034 (-563))) (|has| |#3| (-1093)))) (((-407 (-563)) $) NIL (-12 (|has| |#3| (-1034 (-407 (-563)))) (|has| |#3| (-1093)))) ((|#3| $) NIL (|has| |#3| (-1093)))) (-2950 (((-684 (-563)) (-684 $)) NIL (-12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (-12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045)))) (((-2 (|:| -2835 (-684 |#3|)) (|:| |vec| (-1257 |#3|))) (-684 $) (-1257 $)) NIL (|has| |#3| (-1045))) (((-684 |#3|) (-684 $)) NIL (|has| |#3| (-1045)))) (-3400 (((-3 $ "failed") $) NIL (|has| |#3| (-722)))) (-1691 (($) NIL (|has| |#3| (-368)))) (-4355 ((|#3| $ (-563) |#3|) NIL (|has| $ (-6 -4408)))) (-4293 ((|#3| $ (-563)) 12)) (-3101 (((-112) $) NIL (|has| |#3| (-844)))) (-2659 (((-640 |#3|) $) NIL (|has| $ (-6 -4407)))) (-3827 (((-112) $) NIL (|has| |#3| (-722)))) (-1419 (((-112) $) NIL (|has| |#3| (-844)))) (-2581 (((-112) $ (-767)) NIL)) (-2411 (((-563) $) NIL (|has| (-563) (-846)))) (-3084 (($ $ $) NIL (-4032 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-2259 (((-640 |#3|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#3| (-1093))))) (-3860 (((-563) $) NIL (|has| (-563) (-846)))) (-1777 (($ $ $) NIL (-4032 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-4345 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#3| |#3|) $) NIL)) (-1476 (((-917) $) NIL (|has| |#3| (-368)))) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL (|has| |#3| (-1093)))) (-4318 (((-640 (-563)) $) NIL)) (-3192 (((-112) (-563) $) NIL)) (-2555 (($ (-917)) NIL (|has| |#3| (-368)))) (-1694 (((-1113) $) NIL (|has| |#3| (-1093)))) (-3781 ((|#3| $) NIL (|has| (-563) (-846)))) (-2358 (($ $ |#3|) NIL (|has| $ (-6 -4408)))) (-3138 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ (-640 |#3|) (-640 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093))))) (-2026 (((-112) $ $) NIL)) (-2105 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#3| (-1093))))) (-2836 (((-640 |#3|) $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) NIL)) (-2309 ((|#3| $ (-563) |#3|) NIL) ((|#3| $ (-563)) NIL)) (-4092 ((|#3| $ $) NIL (|has| |#3| (-1045)))) (-2510 (($ (-1257 |#3|)) NIL)) (-3533 (((-134)) NIL (|has| |#3| (-363)))) (-4202 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-1 |#3| |#3|) (-767)) NIL (|has| |#3| (-1045))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1045)))) (-1709 (((-767) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4407))) (((-767) |#3| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#3| (-1093))))) (-1872 (($ $) NIL)) (-1693 (((-1257 |#3|) $) NIL) (($ (-563)) NIL (-4032 (-12 (|has| |#3| (-1034 (-563))) (|has| |#3| (-1093))) (|has| |#3| (-1045)))) (($ (-407 (-563))) NIL (-12 (|has| |#3| (-1034 (-407 (-563)))) (|has| |#3| (-1093)))) (($ |#3|) NIL (|has| |#3| (-1093))) (((-858) $) NIL (|has| |#3| (-610 (-858))))) (-1675 (((-767)) NIL (|has| |#3| (-1045)))) (-4383 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4407)))) (-2509 (($ $) NIL (|has| |#3| (-844)))) (-2241 (($) NIL (|has| |#3| (-131)) CONST)) (-2254 (($) NIL (|has| |#3| (-722)) CONST)) (-3209 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-1 |#3| |#3|) (-767)) NIL (|has| |#3| (-1045))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1045)))) (-1778 (((-112) $ $) NIL (-4032 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-1756 (((-112) $ $) NIL (-4032 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-1718 (((-112) $ $) NIL (|has| |#3| (-1093)))) (-1768 (((-112) $ $) NIL (-4032 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-1744 (((-112) $ $) 17 (-4032 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-1837 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-1826 (($ $ $) NIL (|has| |#3| (-1045))) (($ $) NIL (|has| |#3| (-1045)))) (-1814 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-767)) NIL (|has| |#3| (-722))) (($ $ (-917)) NIL (|has| |#3| (-722)))) (* (($ (-563) $) NIL (|has| |#3| (-1045))) (($ $ $) NIL (|has| |#3| (-722))) (($ $ |#3|) NIL (|has| |#3| (-722))) (($ |#3| $) NIL (|has| |#3| (-722))) (($ (-767) $) NIL (|has| |#3| (-131))) (($ (-917) $) NIL (|has| |#3| (-25)))) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-1106 |#1| |#2| |#3|) (-238 |#1| |#3|) (-767) (-767) (-789)) (T -1106)) +NIL +(-238 |#1| |#3|) +((-1721 (((-640 (-1230 |#2| |#1|)) (-1230 |#2| |#1|) (-1230 |#2| |#1|)) 36)) (-4249 (((-563) (-1230 |#2| |#1|)) 68 (|has| |#1| (-452)))) (-2098 (((-563) (-1230 |#2| |#1|)) 53)) (-1519 (((-640 (-1230 |#2| |#1|)) (-1230 |#2| |#1|) (-1230 |#2| |#1|)) 44)) (-3508 (((-563) (-1230 |#2| |#1|) (-1230 |#2| |#1|)) 67 (|has| |#1| (-452)))) (-3111 (((-640 |#1|) (-1230 |#2| |#1|) (-1230 |#2| |#1|)) 47)) (-3035 (((-563) (-1230 |#2| |#1|) (-1230 |#2| |#1|)) 52))) +(((-1107 |#1| |#2|) (-10 -7 (-15 -1721 ((-640 (-1230 |#2| |#1|)) (-1230 |#2| |#1|) (-1230 |#2| |#1|))) (-15 -1519 ((-640 (-1230 |#2| |#1|)) (-1230 |#2| |#1|) (-1230 |#2| |#1|))) (-15 -3111 ((-640 |#1|) (-1230 |#2| |#1|) (-1230 |#2| |#1|))) (-15 -3035 ((-563) (-1230 |#2| |#1|) (-1230 |#2| |#1|))) (-15 -2098 ((-563) (-1230 |#2| |#1|))) (IF (|has| |#1| (-452)) (PROGN (-15 -3508 ((-563) (-1230 |#2| |#1|) (-1230 |#2| |#1|))) (-15 -4249 ((-563) (-1230 |#2| |#1|)))) |%noBranch|)) (-816) (-1169)) (T -1107)) +((-4249 (*1 *2 *3) (-12 (-5 *3 (-1230 *5 *4)) (-4 *4 (-452)) (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-563)) (-5 *1 (-1107 *4 *5)))) (-3508 (*1 *2 *3 *3) (-12 (-5 *3 (-1230 *5 *4)) (-4 *4 (-452)) (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-563)) (-5 *1 (-1107 *4 *5)))) (-2098 (*1 *2 *3) (-12 (-5 *3 (-1230 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-563)) (-5 *1 (-1107 *4 *5)))) (-3035 (*1 *2 *3 *3) (-12 (-5 *3 (-1230 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-563)) (-5 *1 (-1107 *4 *5)))) (-3111 (*1 *2 *3 *3) (-12 (-5 *3 (-1230 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-640 *4)) (-5 *1 (-1107 *4 *5)))) (-1519 (*1 *2 *3 *3) (-12 (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-640 (-1230 *5 *4))) (-5 *1 (-1107 *4 *5)) (-5 *3 (-1230 *5 *4)))) (-1721 (*1 *2 *3 *3) (-12 (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-640 (-1230 *5 *4))) (-5 *1 (-1107 *4 *5)) (-5 *3 (-1230 *5 *4))))) +(-10 -7 (-15 -1721 ((-640 (-1230 |#2| |#1|)) (-1230 |#2| |#1|) (-1230 |#2| |#1|))) (-15 -1519 ((-640 (-1230 |#2| |#1|)) (-1230 |#2| |#1|) (-1230 |#2| |#1|))) (-15 -3111 ((-640 |#1|) (-1230 |#2| |#1|) (-1230 |#2| |#1|))) (-15 -3035 ((-563) (-1230 |#2| |#1|) (-1230 |#2| |#1|))) (-15 -2098 ((-563) (-1230 |#2| |#1|))) (IF (|has| |#1| (-452)) (PROGN (-15 -3508 ((-563) (-1230 |#2| |#1|) (-1230 |#2| |#1|))) (-15 -4249 ((-563) (-1230 |#2| |#1|)))) |%noBranch|)) +((-1677 (((-112) $ $) NIL)) (-2137 (($ (-506) (-1111)) 14)) (-2918 (((-1111) $) 20)) (-3348 (((-506) $) 17)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 28) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-1108) (-13 (-1076) (-10 -8 (-15 -2137 ($ (-506) (-1111))) (-15 -3348 ((-506) $)) (-15 -2918 ((-1111) $))))) (T -1108)) +((-2137 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1111)) (-5 *1 (-1108)))) (-3348 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1108)))) (-2918 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1108))))) +(-13 (-1076) (-10 -8 (-15 -2137 ($ (-506) (-1111))) (-15 -3348 ((-506) $)) (-15 -2918 ((-1111) $)))) +((-1857 (((-3 (-563) "failed") |#2| (-1169) |#2| (-1151)) 17) (((-3 (-563) "failed") |#2| (-1169) (-839 |#2|)) 15) (((-3 (-563) "failed") |#2|) 53))) +(((-1109 |#1| |#2|) (-10 -7 (-15 -1857 ((-3 (-563) "failed") |#2|)) (-15 -1857 ((-3 (-563) "failed") |#2| (-1169) (-839 |#2|))) (-15 -1857 ((-3 (-563) "failed") |#2| (-1169) |#2| (-1151)))) (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)) (-452)) (-13 (-27) (-1193) (-430 |#1|))) (T -1109)) +((-1857 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-1151)) (-4 *6 (-13 (-555) (-846) (-1034 *2) (-636 *2) (-452))) (-5 *2 (-563)) (-5 *1 (-1109 *6 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *6))))) (-1857 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-839 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-555) (-846) (-1034 *2) (-636 *2) (-452))) (-5 *2 (-563)) (-5 *1 (-1109 *6 *3)))) (-1857 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-555) (-846) (-1034 *2) (-636 *2) (-452))) (-5 *2 (-563)) (-5 *1 (-1109 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *4)))))) +(-10 -7 (-15 -1857 ((-3 (-563) "failed") |#2|)) (-15 -1857 ((-3 (-563) "failed") |#2| (-1169) (-839 |#2|))) (-15 -1857 ((-3 (-563) "failed") |#2| (-1169) |#2| (-1151)))) +((-1857 (((-3 (-563) "failed") (-407 (-948 |#1|)) (-1169) (-407 (-948 |#1|)) (-1151)) 35) (((-3 (-563) "failed") (-407 (-948 |#1|)) (-1169) (-839 (-407 (-948 |#1|)))) 30) (((-3 (-563) "failed") (-407 (-948 |#1|))) 13))) +(((-1110 |#1|) (-10 -7 (-15 -1857 ((-3 (-563) "failed") (-407 (-948 |#1|)))) (-15 -1857 ((-3 (-563) "failed") (-407 (-948 |#1|)) (-1169) (-839 (-407 (-948 |#1|))))) (-15 -1857 ((-3 (-563) "failed") (-407 (-948 |#1|)) (-1169) (-407 (-948 |#1|)) (-1151)))) (-452)) (T -1110)) +((-1857 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-407 (-948 *6))) (-5 *4 (-1169)) (-5 *5 (-1151)) (-4 *6 (-452)) (-5 *2 (-563)) (-5 *1 (-1110 *6)))) (-1857 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-839 (-407 (-948 *6)))) (-5 *3 (-407 (-948 *6))) (-4 *6 (-452)) (-5 *2 (-563)) (-5 *1 (-1110 *6)))) (-1857 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-452)) (-5 *2 (-563)) (-5 *1 (-1110 *4))))) +(-10 -7 (-15 -1857 ((-3 (-563) "failed") (-407 (-948 |#1|)))) (-15 -1857 ((-3 (-563) "failed") (-407 (-948 |#1|)) (-1169) (-839 (-407 (-948 |#1|))))) (-15 -1857 ((-3 (-563) "failed") (-407 (-948 |#1|)) (-1169) (-407 (-948 |#1|)) (-1151)))) +((-1677 (((-112) $ $) NIL)) (-4183 (((-1174) $) 10)) (-4130 (((-640 (-1174)) $) 11)) (-2918 (($ (-640 (-1174)) (-1174)) 9)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 22)) (-1718 (((-112) $ $) 14))) +(((-1111) (-13 (-1093) (-10 -8 (-15 -2918 ($ (-640 (-1174)) (-1174))) (-15 -4183 ((-1174) $)) (-15 -4130 ((-640 (-1174)) $))))) (T -1111)) +((-2918 (*1 *1 *2 *3) (-12 (-5 *2 (-640 (-1174))) (-5 *3 (-1174)) (-5 *1 (-1111)))) (-4183 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1111)))) (-4130 (*1 *2 *1) (-12 (-5 *2 (-640 (-1174))) (-5 *1 (-1111))))) +(-13 (-1093) (-10 -8 (-15 -2918 ($ (-640 (-1174)) (-1174))) (-15 -4183 ((-1174) $)) (-15 -4130 ((-640 (-1174)) $)))) +((-2609 (((-316 (-563)) (-48)) 12))) +(((-1112) (-10 -7 (-15 -2609 ((-316 (-563)) (-48))))) (T -1112)) +((-2609 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-316 (-563))) (-5 *1 (-1112))))) +(-10 -7 (-15 -2609 ((-316 (-563)) (-48)))) +((-1677 (((-112) $ $) NIL)) (-3380 (($ $) 40)) (-3411 (((-112) $) 64)) (-2212 (($ $ $) 47)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 89)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-1433 (($ $ $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-2448 (($ $ $ $) 74)) (-4335 (($ $) NIL)) (-3205 (((-418 $) $) NIL)) (-1919 (((-112) $ $) NIL)) (-3749 (((-767)) 76)) (-1857 (((-563) $) NIL)) (-3458 (($ $ $) 71)) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-563) "failed") $) NIL)) (-2058 (((-563) $) NIL)) (-3090 (($ $ $) 58)) (-2950 (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 83) (((-684 (-563)) (-684 $)) 27)) (-3400 (((-3 $ "failed") $) NIL)) (-3909 (((-3 (-407 (-563)) "failed") $) NIL)) (-2239 (((-112) $) NIL)) (-2651 (((-407 (-563)) $) NIL)) (-1691 (($) 86) (($ $) 87)) (-3050 (($ $ $) 57)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL)) (-2468 (((-112) $) NIL)) (-4362 (($ $ $ $) NIL)) (-1544 (($ $ $) 84)) (-3101 (((-112) $) NIL)) (-3972 (($ $ $) NIL)) (-3787 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL)) (-3827 (((-112) $) 65)) (-3131 (((-112) $) 63)) (-2176 (($ $) 41)) (-2408 (((-3 $ "failed") $) NIL)) (-1419 (((-112) $) 75)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2692 (($ $ $ $) 72)) (-3084 (($ $ $) 67) (($) 38 T CONST)) (-1777 (($ $ $) 66) (($) 37 T CONST)) (-2646 (($ $) NIL)) (-1476 (((-917) $) 79)) (-3415 (($ $) 70)) (-3513 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3573 (((-1151) $) NIL)) (-3364 (($ $ $) NIL)) (-2523 (($) NIL T CONST)) (-2555 (($ (-917)) 78)) (-2824 (($ $) 49)) (-1694 (((-1113) $) 69)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-3548 (($ $ $) 61) (($ (-640 $)) NIL)) (-3219 (($ $) NIL)) (-2174 (((-418 $) $) NIL)) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL)) (-3008 (((-3 $ "failed") $ $) NIL)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2359 (((-112) $) NIL)) (-2628 (((-767) $) NIL)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 60)) (-4202 (($ $ (-767)) NIL) (($ $) NIL)) (-3872 (($ $) 50)) (-1872 (($ $) NIL)) (-2220 (((-563) $) 31) (((-536) $) NIL) (((-888 (-563)) $) NIL) (((-379) $) NIL) (((-225) $) NIL)) (-1693 (((-858) $) 30) (($ (-563)) 85) (($ $) NIL) (($ (-563)) 85)) (-1675 (((-767)) NIL)) (-1570 (((-112) $ $) NIL)) (-2869 (($ $ $) NIL)) (-4211 (($) 36)) (-2126 (((-112) $ $) NIL)) (-2039 (($ $ $ $) 73)) (-2509 (($ $) 62)) (-1534 (($ $ $) 43)) (-2241 (($) 34 T CONST)) (-3242 (($ $ $) 46)) (-2254 (($) 35 T CONST)) (-3741 (((-1151) $) 20) (((-1151) $ (-112)) 22) (((-1262) (-818) $) 23) (((-1262) (-818) $ (-112)) 24)) (-3252 (($ $) 44)) (-3209 (($ $ (-767)) NIL) (($ $) NIL)) (-3231 (($ $ $) 45)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 39)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) 48)) (-1521 (($ $ $) 42)) (-1826 (($ $) 51) (($ $ $) 53)) (-1814 (($ $ $) 52)) (** (($ $ (-917)) NIL) (($ $ (-767)) 56)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 33) (($ $ $) 54))) +(((-1113) (-13 (-545) (-840) (-656) (-824) (-10 -8 (-6 -4394) (-6 -4399) (-6 -4395) (-15 -2176 ($ $)) (-15 -2212 ($ $ $)) (-15 -3252 ($ $)) (-15 -3231 ($ $ $)) (-15 -3242 ($ $ $))))) (T -1113)) +((-2176 (*1 *1 *1) (-5 *1 (-1113))) (-2212 (*1 *1 *1 *1) (-5 *1 (-1113))) (-3252 (*1 *1 *1) (-5 *1 (-1113))) (-3231 (*1 *1 *1 *1) (-5 *1 (-1113))) (-3242 (*1 *1 *1 *1) (-5 *1 (-1113)))) +(-13 (-545) (-840) (-656) (-824) (-10 -8 (-6 -4394) (-6 -4399) (-6 -4395) (-15 -2176 ($ $)) (-15 -2212 ($ $ $)) (-15 -3252 ($ $)) (-15 -3231 ($ $ $)) (-15 -3242 ($ $ $)))) ((|Integer|) (SMINTP |#1|)) -((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-2774 ((|#1| $) 44)) (-3735 (((-112) $ (-766)) 8)) (-3329 (($) 7 T CONST)) (-2571 ((|#1| |#1| $) 46)) (-3767 ((|#1| $) 45)) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4403)))) (-4172 (((-112) $ (-766)) 9)) (-2123 (((-639 |#1|) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1491 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-4147 (((-112) $ (-766)) 10)) (-3696 (((-1150) $) 22 (|has| |#1| (-1092)))) (-2078 ((|#1| $) 39)) (-1581 (($ |#1| $) 40)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-2038 ((|#1| $) 41)) (-3008 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) 14)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-2191 (((-766) $) 43)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4403))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-4220 (($ $) 13)) (-4053 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-4131 (($ (-639 |#1|)) 42)) (-2879 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-1113 |#1|) (-139) (-1207)) (T -1113)) -((-2571 (*1 *2 *2 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1207)))) (-3767 (*1 *2 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1207)))) (-2774 (*1 *2 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1207)))) (-2191 (*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1207)) (-5 *2 (-766))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4403) (-15 -2571 (|t#1| |t#1| $)) (-15 -3767 (|t#1| $)) (-15 -2774 (|t#1| $)) (-15 -2191 ((-766) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1092) |has| |#1| (-1092)) ((-1207) . T)) -((-1748 ((|#3| $) 76)) (-4048 (((-3 (-562) "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-3960 (((-562) $) NIL) (((-406 (-562)) $) NIL) ((|#3| $) 37)) (-3449 (((-683 (-562)) (-683 $)) NIL) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL) (((-2 (|:| -1767 (-683 |#3|)) (|:| |vec| (-1256 |#3|))) (-683 $) (-1256 $)) 73) (((-683 |#3|) (-683 $)) 65)) (-4029 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168)) NIL) (($ $ (-766)) NIL) (($ $) NIL)) (-3042 ((|#3| $) 78)) (-2399 ((|#4| $) 32)) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ (-406 (-562))) NIL) (($ |#3|) 16)) (** (($ $ (-916)) NIL) (($ $ (-766)) 15) (($ $ (-562)) 82))) -(((-1114 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-562))) (-15 -3042 (|#3| |#1|)) (-15 -1748 (|#3| |#1|)) (-15 -2399 (|#4| |#1|)) (-15 -3449 ((-683 |#3|) (-683 |#1|))) (-15 -3449 ((-2 (|:| -1767 (-683 |#3|)) (|:| |vec| (-1256 |#3|))) (-683 |#1|) (-1256 |#1|))) (-15 -3449 ((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 |#1|) (-1256 |#1|))) (-15 -3449 ((-683 (-562)) (-683 |#1|))) (-15 -4053 (|#1| |#3|)) (-15 -4048 ((-3 |#3| "failed") |#1|)) (-15 -3960 (|#3| |#1|)) (-15 -3960 ((-406 (-562)) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -4053 (|#1| (-406 (-562)))) (-15 -3960 ((-562) |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -4029 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -4029 (|#1| |#1| (-1 |#3| |#3|) (-766))) (-15 -4029 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4053 (|#1| (-562))) (-15 ** (|#1| |#1| (-766))) (-15 ** (|#1| |#1| (-916))) (-15 -4053 ((-857) |#1|))) (-1115 |#2| |#3| |#4| |#5|) (-766) (-1044) (-237 |#2| |#3|) (-237 |#2| |#3|)) (T -1114)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-562))) (-15 -3042 (|#3| |#1|)) (-15 -1748 (|#3| |#1|)) (-15 -2399 (|#4| |#1|)) (-15 -3449 ((-683 |#3|) (-683 |#1|))) (-15 -3449 ((-2 (|:| -1767 (-683 |#3|)) (|:| |vec| (-1256 |#3|))) (-683 |#1|) (-1256 |#1|))) (-15 -3449 ((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 |#1|) (-1256 |#1|))) (-15 -3449 ((-683 (-562)) (-683 |#1|))) (-15 -4053 (|#1| |#3|)) (-15 -4048 ((-3 |#3| "failed") |#1|)) (-15 -3960 (|#3| |#1|)) (-15 -3960 ((-406 (-562)) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -4053 (|#1| (-406 (-562)))) (-15 -3960 ((-562) |#1|)) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -4029 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -4029 (|#1| |#1| (-1 |#3| |#3|) (-766))) (-15 -4029 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4053 (|#1| (-562))) (-15 ** (|#1| |#1| (-766))) (-15 ** (|#1| |#1| (-916))) (-15 -4053 ((-857) |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-1748 ((|#2| $) 71)) (-4097 (((-112) $) 111)) (-2781 (((-3 $ "failed") $ $) 19)) (-2819 (((-112) $) 109)) (-3735 (((-112) $ (-766)) 101)) (-4369 (($ |#2|) 74)) (-3329 (($) 17 T CONST)) (-2239 (($ $) 128 (|has| |#2| (-306)))) (-3511 ((|#3| $ (-562)) 123)) (-4048 (((-3 (-562) "failed") $) 86 (|has| |#2| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) 83 (|has| |#2| (-1033 (-406 (-562))))) (((-3 |#2| "failed") $) 80)) (-3960 (((-562) $) 85 (|has| |#2| (-1033 (-562)))) (((-406 (-562)) $) 82 (|has| |#2| (-1033 (-406 (-562))))) ((|#2| $) 81)) (-3449 (((-683 (-562)) (-683 $)) 78 (|has| |#2| (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 77 (|has| |#2| (-635 (-562)))) (((-2 (|:| -1767 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) 76) (((-683 |#2|) (-683 $)) 75)) (-1694 (((-3 $ "failed") $) 33)) (-2172 (((-766) $) 129 (|has| |#2| (-554)))) (-1420 ((|#2| $ (-562) (-562)) 121)) (-1720 (((-639 |#2|) $) 94 (|has| $ (-6 -4403)))) (-4367 (((-112) $) 31)) (-4244 (((-766) $) 130 (|has| |#2| (-554)))) (-3821 (((-639 |#4|) $) 131 (|has| |#2| (-554)))) (-2698 (((-766) $) 117)) (-2708 (((-766) $) 118)) (-4172 (((-112) $ (-766)) 102)) (-1622 ((|#2| $) 66 (|has| |#2| (-6 (-4405 "*"))))) (-1808 (((-562) $) 113)) (-2028 (((-562) $) 115)) (-2123 (((-639 |#2|) $) 93 (|has| $ (-6 -4403)))) (-1572 (((-112) |#2| $) 91 (-12 (|has| |#2| (-1092)) (|has| $ (-6 -4403))))) (-3269 (((-562) $) 114)) (-2727 (((-562) $) 116)) (-2884 (($ (-639 (-639 |#2|))) 108)) (-1491 (($ (-1 |#2| |#2|) $) 98 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#2| |#2| |#2|) $ $) 125) (($ (-1 |#2| |#2|) $) 99)) (-2247 (((-639 (-639 |#2|)) $) 119)) (-4147 (((-112) $ (-766)) 103)) (-3696 (((-1150) $) 9)) (-2463 (((-3 $ "failed") $) 65 (|has| |#2| (-362)))) (-1709 (((-1112) $) 10)) (-1762 (((-3 $ "failed") $ |#2|) 126 (|has| |#2| (-554)))) (-3008 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#2|))) 90 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-293 |#2|)) 89 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ |#2| |#2|) 88 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 |#2|) (-639 |#2|)) 87 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))))) (-1452 (((-112) $ $) 107)) (-3087 (((-112) $) 104)) (-1663 (($) 105)) (-2343 ((|#2| $ (-562) (-562) |#2|) 122) ((|#2| $ (-562) (-562)) 120)) (-4029 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-766)) 51) (($ $ (-639 (-1168)) (-639 (-766))) 44 (|has| |#2| (-895 (-1168)))) (($ $ (-1168) (-766)) 43 (|has| |#2| (-895 (-1168)))) (($ $ (-639 (-1168))) 42 (|has| |#2| (-895 (-1168)))) (($ $ (-1168)) 41 (|has| |#2| (-895 (-1168)))) (($ $ (-766)) 39 (|has| |#2| (-232))) (($ $) 37 (|has| |#2| (-232)))) (-3042 ((|#2| $) 70)) (-3168 (($ (-639 |#2|)) 73)) (-1752 (((-112) $) 110)) (-2399 ((|#3| $) 72)) (-3282 ((|#2| $) 67 (|has| |#2| (-6 (-4405 "*"))))) (-1723 (((-766) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4403))) (((-766) |#2| $) 92 (-12 (|has| |#2| (-1092)) (|has| $ (-6 -4403))))) (-4220 (($ $) 106)) (-2208 ((|#4| $ (-562)) 124)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ (-406 (-562))) 84 (|has| |#2| (-1033 (-406 (-562))))) (($ |#2|) 79)) (-1568 (((-766)) 28)) (-2879 (((-112) (-1 (-112) |#2|) $) 97 (|has| $ (-6 -4403)))) (-1996 (((-112) $) 112)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3113 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-766)) 49) (($ $ (-639 (-1168)) (-639 (-766))) 48 (|has| |#2| (-895 (-1168)))) (($ $ (-1168) (-766)) 47 (|has| |#2| (-895 (-1168)))) (($ $ (-639 (-1168))) 46 (|has| |#2| (-895 (-1168)))) (($ $ (-1168)) 45 (|has| |#2| (-895 (-1168)))) (($ $ (-766)) 40 (|has| |#2| (-232))) (($ $) 38 (|has| |#2| (-232)))) (-1733 (((-112) $ $) 6)) (-1859 (($ $ |#2|) 127 (|has| |#2| (-362)))) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 64 (|has| |#2| (-362)))) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#2|) 133) (($ |#2| $) 132) ((|#4| $ |#4|) 69) ((|#3| |#3| $) 68)) (-3492 (((-766) $) 100 (|has| $ (-6 -4403))))) -(((-1115 |#1| |#2| |#3| |#4|) (-139) (-766) (-1044) (-237 |t#1| |t#2|) (-237 |t#1| |t#2|)) (T -1115)) -((-4369 (*1 *1 *2) (-12 (-4 *2 (-1044)) (-4 *1 (-1115 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)))) (-3168 (*1 *1 *2) (-12 (-5 *2 (-639 *4)) (-4 *4 (-1044)) (-4 *1 (-1115 *3 *4 *5 *6)) (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *3 *4)))) (-2399 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *2 *5)) (-4 *4 (-1044)) (-4 *5 (-237 *3 *4)) (-4 *2 (-237 *3 *4)))) (-1748 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) (-4 *2 (-1044)))) (-3042 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) (-4 *2 (-1044)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1115 *3 *4 *5 *2)) (-4 *4 (-1044)) (-4 *5 (-237 *3 *4)) (-4 *2 (-237 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *2 *5)) (-4 *4 (-1044)) (-4 *2 (-237 *3 *4)) (-4 *5 (-237 *3 *4)))) (-3282 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) (|has| *2 (-6 (-4405 "*"))) (-4 *2 (-1044)))) (-1622 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) (-4 *5 (-237 *3 *2)) (|has| *2 (-6 (-4405 "*"))) (-4 *2 (-1044)))) (-2463 (*1 *1 *1) (|partial| -12 (-4 *1 (-1115 *2 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-237 *2 *3)) (-4 *5 (-237 *2 *3)) (-4 *3 (-362)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-1115 *3 *4 *5 *6)) (-4 *4 (-1044)) (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *3 *4)) (-4 *4 (-362))))) -(-13 (-230 |t#2|) (-111 |t#2| |t#2|) (-1047 |t#1| |t#1| |t#2| |t#3| |t#4|) (-410 |t#2|) (-376 |t#2|) (-10 -8 (IF (|has| |t#2| (-171)) (-6 (-712 |t#2|)) |%noBranch|) (-15 -4369 ($ |t#2|)) (-15 -3168 ($ (-639 |t#2|))) (-15 -2399 (|t#3| $)) (-15 -1748 (|t#2| $)) (-15 -3042 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4405 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3282 (|t#2| $)) (-15 -1622 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-362)) (PROGN (-15 -2463 ((-3 $ "failed") $)) (-15 ** ($ $ (-562)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4405 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-612 #0=(-406 (-562))) |has| |#2| (-1033 (-406 (-562)))) ((-612 (-562)) . T) ((-612 |#2|) . T) ((-609 (-857)) . T) ((-230 |#2|) . T) ((-232) |has| |#2| (-232)) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) ((-376 |#2|) . T) ((-410 |#2|) . T) ((-488 |#2|) . T) ((-513 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) ((-642 |#2|) . T) ((-642 $) . T) ((-635 (-562)) |has| |#2| (-635 (-562))) ((-635 |#2|) . T) ((-712 |#2|) -4037 (|has| |#2| (-171)) (|has| |#2| (-6 (-4405 "*")))) ((-721) . T) ((-895 (-1168)) |has| |#2| (-895 (-1168))) ((-1047 |#1| |#1| |#2| |#3| |#4|) . T) ((-1033 #0#) |has| |#2| (-1033 (-406 (-562)))) ((-1033 (-562)) |has| |#2| (-1033 (-562))) ((-1033 |#2|) . T) ((-1050 |#2|) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1207) . T)) -((-1500 ((|#4| |#4|) 70)) (-1829 ((|#4| |#4|) 65)) (-3876 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4291 (-639 |#3|))) |#4| |#3|) 78)) (-2823 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-1683 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67))) -(((-1116 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1829 (|#4| |#4|)) (-15 -1683 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1500 (|#4| |#4|)) (-15 -2823 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3876 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4291 (-639 |#3|))) |#4| |#3|))) (-306) (-372 |#1|) (-372 |#1|) (-681 |#1| |#2| |#3|)) (T -1116)) -((-3876 (*1 *2 *3 *4) (-12 (-4 *5 (-306)) (-4 *6 (-372 *5)) (-4 *4 (-372 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4291 (-639 *4)))) (-5 *1 (-1116 *5 *6 *4 *3)) (-4 *3 (-681 *5 *6 *4)))) (-2823 (*1 *2 *3) (-12 (-4 *4 (-306)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1116 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6)))) (-1500 (*1 *2 *2) (-12 (-4 *3 (-306)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-1116 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))) (-1683 (*1 *2 *3) (-12 (-4 *4 (-306)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1116 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6)))) (-1829 (*1 *2 *2) (-12 (-4 *3 (-306)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-1116 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5))))) -(-10 -7 (-15 -1829 (|#4| |#4|)) (-15 -1683 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1500 (|#4| |#4|)) (-15 -2823 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3876 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4291 (-639 |#3|))) |#4| |#3|))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) 17)) (-1401 (((-639 |#2|) $) 158)) (-1602 (((-1164 $) $ |#2|) 53) (((-1164 |#1|) $) 42)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 107 (|has| |#1| (-554)))) (-1965 (($ $) 109 (|has| |#1| (-554)))) (-4102 (((-112) $) 111 (|has| |#1| (-554)))) (-1578 (((-766) $) NIL) (((-766) $ (-639 |#2|)) 191)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3517 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-1977 (($ $) NIL (|has| |#1| (-451)))) (-3788 (((-417 $) $) NIL (|has| |#1| (-451)))) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) 155) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 |#2| "failed") $) NIL)) (-3960 ((|#1| $) 153) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-562) $) NIL (|has| |#1| (-1033 (-562)))) ((|#2| $) NIL)) (-2355 (($ $ $ |#2|) NIL (|has| |#1| (-171)))) (-1600 (($ $) 195)) (-3449 (((-683 (-562)) (-683 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) NIL) (((-683 |#1|) (-683 $)) NIL)) (-1694 (((-3 $ "failed") $) 81)) (-2578 (($ $) NIL (|has| |#1| (-451))) (($ $ |#2|) NIL (|has| |#1| (-451)))) (-1585 (((-639 $) $) NIL)) (-3521 (((-112) $) NIL (|has| |#1| (-904)))) (-3066 (($ $ |#1| (-530 |#2|) $) NIL)) (-2337 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (-12 (|has| |#1| (-881 (-378))) (|has| |#2| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (-12 (|has| |#1| (-881 (-562))) (|has| |#2| (-881 (-562)))))) (-4367 (((-112) $) 19)) (-3627 (((-766) $) 26)) (-1389 (($ (-1164 |#1|) |#2|) 47) (($ (-1164 $) |#2|) 63)) (-1869 (((-639 $) $) NIL)) (-2833 (((-112) $) 32)) (-1377 (($ |#1| (-530 |#2|)) 70) (($ $ |#2| (-766)) 51) (($ $ (-639 |#2|) (-639 (-766))) NIL)) (-3851 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $ |#2|) NIL)) (-3161 (((-530 |#2|) $) 185) (((-766) $ |#2|) 186) (((-639 (-766)) $ (-639 |#2|)) 187)) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-2363 (($ (-1 (-530 |#2|) (-530 |#2|)) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) 119)) (-3640 (((-3 |#2| "failed") $) 160)) (-1560 (($ $) 194)) (-1573 ((|#1| $) 36)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) NIL (|has| |#1| (-451)))) (-3696 (((-1150) $) NIL)) (-4025 (((-3 (-639 $) "failed") $) NIL)) (-1778 (((-3 (-639 $) "failed") $) NIL)) (-4270 (((-3 (-2 (|:| |var| |#2|) (|:| -1300 (-766))) "failed") $) NIL)) (-1709 (((-1112) $) NIL)) (-1534 (((-112) $) 33)) (-1547 ((|#1| $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 137 (|has| |#1| (-451)))) (-1606 (($ (-639 $)) 142 (|has| |#1| (-451))) (($ $ $) 129 (|has| |#1| (-451)))) (-3586 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-3468 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#1| (-904)))) (-1635 (((-417 $) $) NIL (|has| |#1| (-904)))) (-1762 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ $) 117 (|has| |#1| (-554)))) (-1433 (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ |#2| |#1|) 163) (($ $ (-639 |#2|) (-639 |#1|)) 176) (($ $ |#2| $) 162) (($ $ (-639 |#2|) (-639 $)) 175)) (-2736 (($ $ |#2|) NIL (|has| |#1| (-171)))) (-4029 (($ $ |#2|) 193) (($ $ (-639 |#2|)) NIL) (($ $ |#2| (-766)) NIL) (($ $ (-639 |#2|) (-639 (-766))) NIL)) (-2250 (((-530 |#2|) $) 181) (((-766) $ |#2|) 177) (((-639 (-766)) $ (-639 |#2|)) 179)) (-4208 (((-887 (-378)) $) NIL (-12 (|has| |#1| (-610 (-887 (-378)))) (|has| |#2| (-610 (-887 (-378)))))) (((-887 (-562)) $) NIL (-12 (|has| |#1| (-610 (-887 (-562)))) (|has| |#2| (-610 (-887 (-562)))))) (((-535) $) NIL (-12 (|has| |#1| (-610 (-535))) (|has| |#2| (-610 (-535)))))) (-2201 ((|#1| $) 125 (|has| |#1| (-451))) (($ $ |#2|) 128 (|has| |#1| (-451)))) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-904))))) (-4053 (((-857) $) 148) (($ (-562)) 75) (($ |#1|) 76) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-554))) (($ (-406 (-562))) NIL (-4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562))))))) (-3969 (((-639 |#1|) $) 151)) (-2266 ((|#1| $ (-530 |#2|)) 72) (($ $ |#2| (-766)) NIL) (($ $ (-639 |#2|) (-639 (-766))) NIL)) (-2059 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#1| (-904))) (|has| |#1| (-144))))) (-1568 (((-766)) 78)) (-1760 (($ $ $ (-766)) NIL (|has| |#1| (-171)))) (-3799 (((-112) $ $) 114 (|has| |#1| (-554)))) (-2285 (($) 12 T CONST)) (-2294 (($) 14 T CONST)) (-3113 (($ $ |#2|) NIL) (($ $ (-639 |#2|)) NIL) (($ $ |#2| (-766)) NIL) (($ $ (-639 |#2|) (-639 (-766))) NIL)) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1771 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1733 (((-112) $ $) 96)) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1761 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1859 (($ $ |#1|) 123 (|has| |#1| (-362)))) (-1847 (($ $) 84) (($ $ $) 94)) (-1836 (($ $ $) 48)) (** (($ $ (-916)) 101) (($ $ (-766)) 99)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 87) (($ $ $) 64) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ |#1| $) 89) (($ $ |#1|) NIL))) -(((-1117 |#1| |#2|) (-944 |#1| (-530 |#2|) |#2|) (-1044) (-845)) (T -1117)) -NIL -(-944 |#1| (-530 |#2|) |#2|) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-1401 (((-639 |#2|) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-1965 (($ $) NIL (|has| |#1| (-554)))) (-4102 (((-112) $) NIL (|has| |#1| (-554)))) (-2987 (($ $) 140 (|has| |#1| (-38 (-406 (-562)))))) (-4098 (($ $) 116 (|has| |#1| (-38 (-406 (-562)))))) (-2781 (((-3 $ "failed") $ $) NIL)) (-1644 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4206 (($ $) 136 (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) 112 (|has| |#1| (-38 (-406 (-562)))))) (-3013 (($ $) 144 (|has| |#1| (-38 (-406 (-562)))))) (-4120 (($ $) 120 (|has| |#1| (-38 (-406 (-562)))))) (-3329 (($) NIL T CONST)) (-1600 (($ $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-1455 (((-947 |#1|) $ (-766)) NIL) (((-947 |#1|) $ (-766) (-766)) NIL)) (-2965 (((-112) $) NIL)) (-4100 (($) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1993 (((-766) $ |#2|) NIL) (((-766) $ |#2| (-766)) NIL)) (-4367 (((-112) $) NIL)) (-1895 (($ $ (-562)) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2833 (((-112) $) NIL)) (-1377 (($ $ (-639 |#2|) (-639 (-530 |#2|))) NIL) (($ $ |#2| (-530 |#2|)) NIL) (($ |#1| (-530 |#2|)) NIL) (($ $ |#2| (-766)) 55) (($ $ (-639 |#2|) (-639 (-766))) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-4366 (($ $) 110 (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-3696 (((-1150) $) NIL)) (-3081 (($ $ |#2|) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ |#2| |#1|) 163 (|has| |#1| (-38 (-406 (-562)))))) (-1709 (((-1112) $) NIL)) (-4096 (($ (-1 $) |#2| |#1|) 162 (|has| |#1| (-38 (-406 (-562)))))) (-4316 (($ $ (-766)) 13)) (-1762 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-3430 (($ $) 108 (|has| |#1| (-38 (-406 (-562)))))) (-1433 (($ $ |#2| $) 94) (($ $ (-639 |#2|) (-639 $)) 87) (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL)) (-4029 (($ $ |#2|) 97) (($ $ (-639 |#2|)) NIL) (($ $ |#2| (-766)) NIL) (($ $ (-639 |#2|) (-639 (-766))) NIL)) (-2250 (((-530 |#2|) $) NIL)) (-2628 (((-1 (-1148 |#3|) |#3|) (-639 |#2|) (-639 (-1148 |#3|))) 76)) (-3022 (($ $) 146 (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) 122 (|has| |#1| (-38 (-406 (-562)))))) (-3000 (($ $) 142 (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) 118 (|has| |#1| (-38 (-406 (-562)))))) (-2977 (($ $) 138 (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) 114 (|has| |#1| (-38 (-406 (-562)))))) (-1345 (($ $) 15)) (-4053 (((-857) $) 179) (($ (-562)) NIL) (($ |#1|) 40 (|has| |#1| (-171))) (($ $) NIL (|has| |#1| (-554))) (($ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ |#2|) 62) (($ |#3|) 60)) (-2266 ((|#1| $ (-530 |#2|)) NIL) (($ $ |#2| (-766)) NIL) (($ $ (-639 |#2|) (-639 (-766))) NIL) ((|#3| $ (-766)) 38)) (-2059 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-1568 (((-766)) NIL)) (-3054 (($ $) 152 (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) 128 (|has| |#1| (-38 (-406 (-562)))))) (-3799 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3033 (($ $) 148 (|has| |#1| (-38 (-406 (-562)))))) (-4139 (($ $) 124 (|has| |#1| (-38 (-406 (-562)))))) (-3077 (($ $) 156 (|has| |#1| (-38 (-406 (-562)))))) (-4183 (($ $) 132 (|has| |#1| (-38 (-406 (-562)))))) (-1567 (($ $) 158 (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) 134 (|has| |#1| (-38 (-406 (-562)))))) (-3065 (($ $) 154 (|has| |#1| (-38 (-406 (-562)))))) (-4175 (($ $) 130 (|has| |#1| (-38 (-406 (-562)))))) (-3040 (($ $) 150 (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) 126 (|has| |#1| (-38 (-406 (-562)))))) (-2285 (($) 47 T CONST)) (-2294 (($) 54 T CONST)) (-3113 (($ $ |#2|) NIL) (($ $ (-639 |#2|)) NIL) (($ $ |#2| (-766)) NIL) (($ $ (-639 |#2|) (-639 (-766))) NIL)) (-1733 (((-112) $ $) NIL)) (-1859 (($ $ |#1|) 181 (|has| |#1| (-362)))) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) 58)) (** (($ $ (-916)) NIL) (($ $ (-766)) 67) (($ $ $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 100 (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 57) (($ $ (-406 (-562))) 105 (|has| |#1| (-38 (-406 (-562))))) (($ (-406 (-562)) $) 103 (|has| |#1| (-38 (-406 (-562))))) (($ |#1| $) 43) (($ $ |#1|) 44) (($ |#3| $) 42))) -(((-1118 |#1| |#2| |#3|) (-13 (-735 |#1| |#2|) (-10 -8 (-15 -2266 (|#3| $ (-766))) (-15 -4053 ($ |#2|)) (-15 -4053 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2628 ((-1 (-1148 |#3|) |#3|) (-639 |#2|) (-639 (-1148 |#3|)))) (IF (|has| |#1| (-38 (-406 (-562)))) (PROGN (-15 -3081 ($ $ |#2| |#1|)) (-15 -4096 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1044) (-845) (-944 |#1| (-530 |#2|) |#2|)) (T -1118)) -((-2266 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-4 *2 (-944 *4 (-530 *5) *5)) (-5 *1 (-1118 *4 *5 *2)) (-4 *4 (-1044)) (-4 *5 (-845)))) (-4053 (*1 *1 *2) (-12 (-4 *3 (-1044)) (-4 *2 (-845)) (-5 *1 (-1118 *3 *2 *4)) (-4 *4 (-944 *3 (-530 *2) *2)))) (-4053 (*1 *1 *2) (-12 (-4 *3 (-1044)) (-4 *4 (-845)) (-5 *1 (-1118 *3 *4 *2)) (-4 *2 (-944 *3 (-530 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1044)) (-4 *4 (-845)) (-5 *1 (-1118 *3 *4 *2)) (-4 *2 (-944 *3 (-530 *4) *4)))) (-2628 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *6)) (-5 *4 (-639 (-1148 *7))) (-4 *6 (-845)) (-4 *7 (-944 *5 (-530 *6) *6)) (-4 *5 (-1044)) (-5 *2 (-1 (-1148 *7) *7)) (-5 *1 (-1118 *5 *6 *7)))) (-3081 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) (-4 *2 (-845)) (-5 *1 (-1118 *3 *2 *4)) (-4 *4 (-944 *3 (-530 *2) *2)))) (-4096 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1118 *4 *3 *5))) (-4 *4 (-38 (-406 (-562)))) (-4 *4 (-1044)) (-4 *3 (-845)) (-5 *1 (-1118 *4 *3 *5)) (-4 *5 (-944 *4 (-530 *3) *3))))) -(-13 (-735 |#1| |#2|) (-10 -8 (-15 -2266 (|#3| $ (-766))) (-15 -4053 ($ |#2|)) (-15 -4053 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2628 ((-1 (-1148 |#3|) |#3|) (-639 |#2|) (-639 (-1148 |#3|)))) (IF (|has| |#1| (-38 (-406 (-562)))) (PROGN (-15 -3081 ($ $ |#2| |#1|)) (-15 -4096 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-4041 (((-112) $ $) 7)) (-1330 (((-639 (-2 (|:| -1449 $) (|:| -3315 (-639 |#4|)))) (-639 |#4|)) 85)) (-3672 (((-639 $) (-639 |#4|)) 86) (((-639 $) (-639 |#4|) (-112)) 111)) (-1401 (((-639 |#3|) $) 33)) (-2799 (((-112) $) 26)) (-4370 (((-112) $) 17 (|has| |#1| (-554)))) (-4177 (((-112) |#4| $) 101) (((-112) $) 97)) (-3623 ((|#4| |#4| $) 92)) (-1977 (((-639 (-2 (|:| |val| |#4|) (|:| -1501 $))) |#4| $) 126)) (-1395 (((-2 (|:| |under| $) (|:| -3870 $) (|:| |upper| $)) $ |#3|) 27)) (-3735 (((-112) $ (-766)) 44)) (-3556 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4403))) (((-3 |#4| "failed") $ |#3|) 79)) (-3329 (($) 45 T CONST)) (-2169 (((-112) $) 22 (|has| |#1| (-554)))) (-2183 (((-112) $ $) 24 (|has| |#1| (-554)))) (-2864 (((-112) $ $) 23 (|has| |#1| (-554)))) (-4219 (((-112) $) 25 (|has| |#1| (-554)))) (-4227 (((-639 |#4|) (-639 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2037 (((-639 |#4|) (-639 |#4|) $) 18 (|has| |#1| (-554)))) (-4230 (((-639 |#4|) (-639 |#4|) $) 19 (|has| |#1| (-554)))) (-4048 (((-3 $ "failed") (-639 |#4|)) 36)) (-3960 (($ (-639 |#4|)) 35)) (-1434 (((-3 $ "failed") $) 82)) (-3255 ((|#4| |#4| $) 89)) (-1459 (($ $) 68 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4403))))) (-1475 (($ |#4| $) 67 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4403)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4403)))) (-1441 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-554)))) (-3300 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2227 ((|#4| |#4| $) 87)) (-1954 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4403)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4403))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4403))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1471 (((-2 (|:| -1449 (-639 |#4|)) (|:| -3315 (-639 |#4|))) $) 105)) (-3189 (((-112) |#4| $) 136)) (-2633 (((-112) |#4| $) 133)) (-2813 (((-112) |#4| $) 137) (((-112) $) 134)) (-1720 (((-639 |#4|) $) 52 (|has| $ (-6 -4403)))) (-1493 (((-112) |#4| $) 104) (((-112) $) 103)) (-3761 ((|#3| $) 34)) (-4172 (((-112) $ (-766)) 43)) (-2123 (((-639 |#4|) $) 53 (|has| $ (-6 -4403)))) (-1572 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4403))))) (-1491 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#4| |#4|) $) 47)) (-3133 (((-639 |#3|) $) 32)) (-3112 (((-112) |#3| $) 31)) (-4147 (((-112) $ (-766)) 42)) (-3696 (((-1150) $) 9)) (-4093 (((-3 |#4| (-639 $)) |#4| |#4| $) 128)) (-2672 (((-639 (-2 (|:| |val| |#4|) (|:| -1501 $))) |#4| |#4| $) 127)) (-1504 (((-3 |#4| "failed") $) 83)) (-2334 (((-639 $) |#4| $) 129)) (-4302 (((-3 (-112) (-639 $)) |#4| $) 132)) (-3792 (((-639 (-2 (|:| |val| (-112)) (|:| -1501 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-4169 (((-639 $) |#4| $) 125) (((-639 $) (-639 |#4|) $) 124) (((-639 $) (-639 |#4|) (-639 $)) 123) (((-639 $) |#4| (-639 $)) 122)) (-1997 (($ |#4| $) 117) (($ (-639 |#4|) $) 116)) (-2063 (((-639 |#4|) $) 107)) (-1645 (((-112) |#4| $) 99) (((-112) $) 95)) (-2651 ((|#4| |#4| $) 90)) (-1789 (((-112) $ $) 110)) (-4123 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-554)))) (-2830 (((-112) |#4| $) 100) (((-112) $) 96)) (-1630 ((|#4| |#4| $) 91)) (-1709 (((-1112) $) 10)) (-1421 (((-3 |#4| "failed") $) 84)) (-1963 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4333 (((-3 $ "failed") $ |#4|) 78)) (-4316 (($ $ |#4|) 77) (((-639 $) |#4| $) 115) (((-639 $) |#4| (-639 $)) 114) (((-639 $) (-639 |#4|) $) 113) (((-639 $) (-639 |#4|) (-639 $)) 112)) (-3008 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 |#4|) (-639 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-639 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))))) (-1452 (((-112) $ $) 38)) (-3087 (((-112) $) 41)) (-1663 (($) 40)) (-2250 (((-766) $) 106)) (-1723 (((-766) |#4| $) 54 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4403)))) (((-766) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4403)))) (-4220 (($ $) 39)) (-4208 (((-535) $) 69 (|has| |#4| (-610 (-535))))) (-4064 (($ (-639 |#4|)) 60)) (-2316 (($ $ |#3|) 28)) (-2180 (($ $ |#3|) 30)) (-2209 (($ $) 88)) (-1962 (($ $ |#3|) 29)) (-4053 (((-857) $) 11) (((-639 |#4|) $) 37)) (-4157 (((-766) $) 76 (|has| |#3| (-367)))) (-4168 (((-3 (-2 (|:| |bas| $) (|:| -2774 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2774 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2350 (((-112) $ (-1 (-112) |#4| (-639 |#4|))) 98)) (-4125 (((-639 $) |#4| $) 121) (((-639 $) |#4| (-639 $)) 120) (((-639 $) (-639 |#4|) $) 119) (((-639 $) (-639 |#4|) (-639 $)) 118)) (-2879 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4403)))) (-3278 (((-639 |#3|) $) 81)) (-1972 (((-112) |#4| $) 135)) (-3782 (((-112) |#3| $) 80)) (-1733 (((-112) $ $) 6)) (-3492 (((-766) $) 46 (|has| $ (-6 -4403))))) -(((-1119 |#1| |#2| |#3| |#4|) (-139) (-451) (-788) (-845) (-1058 |t#1| |t#2| |t#3|)) (T -1119)) -NIL -(-13 (-1101 |t#1| |t#2| |t#3| |t#4|) (-779 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-609 (-639 |#4|)) . T) ((-609 (-857)) . T) ((-150 |#4|) . T) ((-610 (-535)) |has| |#4| (-610 (-535))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))) ((-488 |#4|) . T) ((-513 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))) ((-779 |#1| |#2| |#3| |#4|) . T) ((-971 |#1| |#2| |#3| |#4|) . T) ((-1064 |#1| |#2| |#3| |#4|) . T) ((-1092) . T) ((-1101 |#1| |#2| |#3| |#4|) . T) ((-1200 |#1| |#2| |#3| |#4|) . T) ((-1207) . T)) -((-3888 (((-639 |#2|) |#1|) 12)) (-2246 (((-639 |#2|) |#2| |#2| |#2| |#2| |#2|) 38) (((-639 |#2|) |#1|) 49)) (-4027 (((-639 |#2|) |#2| |#2| |#2|) 36) (((-639 |#2|) |#1|) 47)) (-2341 ((|#2| |#1|) 43)) (-2171 (((-2 (|:| |solns| (-639 |#2|)) (|:| |maps| (-639 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-1428 (((-639 |#2|) |#2| |#2|) 35) (((-639 |#2|) |#1|) 46)) (-1437 (((-639 |#2|) |#2| |#2| |#2| |#2|) 37) (((-639 |#2|) |#1|) 48)) (-2663 ((|#2| |#2| |#2| |#2| |#2| |#2|) 42)) (-3080 ((|#2| |#2| |#2| |#2|) 40)) (-3545 ((|#2| |#2| |#2|) 39)) (-2944 ((|#2| |#2| |#2| |#2| |#2|) 41))) -(((-1120 |#1| |#2|) (-10 -7 (-15 -3888 ((-639 |#2|) |#1|)) (-15 -2341 (|#2| |#1|)) (-15 -2171 ((-2 (|:| |solns| (-639 |#2|)) (|:| |maps| (-639 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1428 ((-639 |#2|) |#1|)) (-15 -4027 ((-639 |#2|) |#1|)) (-15 -1437 ((-639 |#2|) |#1|)) (-15 -2246 ((-639 |#2|) |#1|)) (-15 -1428 ((-639 |#2|) |#2| |#2|)) (-15 -4027 ((-639 |#2|) |#2| |#2| |#2|)) (-15 -1437 ((-639 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2246 ((-639 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3545 (|#2| |#2| |#2|)) (-15 -3080 (|#2| |#2| |#2| |#2|)) (-15 -2944 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2663 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1232 |#2|) (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) (T -1120)) -((-2663 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) (-5 *1 (-1120 *3 *2)) (-4 *3 (-1232 *2)))) (-2944 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) (-5 *1 (-1120 *3 *2)) (-4 *3 (-1232 *2)))) (-3080 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) (-5 *1 (-1120 *3 *2)) (-4 *3 (-1232 *2)))) (-3545 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) (-5 *1 (-1120 *3 *2)) (-4 *3 (-1232 *2)))) (-2246 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) (-5 *2 (-639 *3)) (-5 *1 (-1120 *4 *3)) (-4 *4 (-1232 *3)))) (-1437 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) (-5 *2 (-639 *3)) (-5 *1 (-1120 *4 *3)) (-4 *4 (-1232 *3)))) (-4027 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) (-5 *2 (-639 *3)) (-5 *1 (-1120 *4 *3)) (-4 *4 (-1232 *3)))) (-1428 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) (-5 *2 (-639 *3)) (-5 *1 (-1120 *4 *3)) (-4 *4 (-1232 *3)))) (-2246 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) (-5 *2 (-639 *4)) (-5 *1 (-1120 *3 *4)) (-4 *3 (-1232 *4)))) (-1437 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) (-5 *2 (-639 *4)) (-5 *1 (-1120 *3 *4)) (-4 *3 (-1232 *4)))) (-4027 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) (-5 *2 (-639 *4)) (-5 *1 (-1120 *3 *4)) (-4 *3 (-1232 *4)))) (-1428 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) (-5 *2 (-639 *4)) (-5 *1 (-1120 *3 *4)) (-4 *3 (-1232 *4)))) (-2171 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) (-5 *2 (-2 (|:| |solns| (-639 *5)) (|:| |maps| (-639 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1120 *3 *5)) (-4 *3 (-1232 *5)))) (-2341 (*1 *2 *3) (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) (-5 *1 (-1120 *3 *2)) (-4 *3 (-1232 *2)))) (-3888 (*1 *2 *3) (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) (-5 *2 (-639 *4)) (-5 *1 (-1120 *3 *4)) (-4 *3 (-1232 *4))))) -(-10 -7 (-15 -3888 ((-639 |#2|) |#1|)) (-15 -2341 (|#2| |#1|)) (-15 -2171 ((-2 (|:| |solns| (-639 |#2|)) (|:| |maps| (-639 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1428 ((-639 |#2|) |#1|)) (-15 -4027 ((-639 |#2|) |#1|)) (-15 -1437 ((-639 |#2|) |#1|)) (-15 -2246 ((-639 |#2|) |#1|)) (-15 -1428 ((-639 |#2|) |#2| |#2|)) (-15 -4027 ((-639 |#2|) |#2| |#2| |#2|)) (-15 -1437 ((-639 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2246 ((-639 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3545 (|#2| |#2| |#2|)) (-15 -3080 (|#2| |#2| |#2| |#2|)) (-15 -2944 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2663 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-3109 (((-639 (-639 (-293 (-315 |#1|)))) (-639 (-293 (-406 (-947 |#1|))))) 95) (((-639 (-639 (-293 (-315 |#1|)))) (-639 (-293 (-406 (-947 |#1|)))) (-639 (-1168))) 94) (((-639 (-639 (-293 (-315 |#1|)))) (-639 (-406 (-947 |#1|)))) 92) (((-639 (-639 (-293 (-315 |#1|)))) (-639 (-406 (-947 |#1|))) (-639 (-1168))) 90) (((-639 (-293 (-315 |#1|))) (-293 (-406 (-947 |#1|)))) 75) (((-639 (-293 (-315 |#1|))) (-293 (-406 (-947 |#1|))) (-1168)) 76) (((-639 (-293 (-315 |#1|))) (-406 (-947 |#1|))) 70) (((-639 (-293 (-315 |#1|))) (-406 (-947 |#1|)) (-1168)) 59)) (-3194 (((-639 (-639 (-315 |#1|))) (-639 (-406 (-947 |#1|))) (-639 (-1168))) 88) (((-639 (-315 |#1|)) (-406 (-947 |#1|)) (-1168)) 43)) (-1619 (((-1157 (-639 (-315 |#1|)) (-639 (-293 (-315 |#1|)))) (-406 (-947 |#1|)) (-1168)) 98) (((-1157 (-639 (-315 |#1|)) (-639 (-293 (-315 |#1|)))) (-293 (-406 (-947 |#1|))) (-1168)) 97))) -(((-1121 |#1|) (-10 -7 (-15 -3109 ((-639 (-293 (-315 |#1|))) (-406 (-947 |#1|)) (-1168))) (-15 -3109 ((-639 (-293 (-315 |#1|))) (-406 (-947 |#1|)))) (-15 -3109 ((-639 (-293 (-315 |#1|))) (-293 (-406 (-947 |#1|))) (-1168))) (-15 -3109 ((-639 (-293 (-315 |#1|))) (-293 (-406 (-947 |#1|))))) (-15 -3109 ((-639 (-639 (-293 (-315 |#1|)))) (-639 (-406 (-947 |#1|))) (-639 (-1168)))) (-15 -3109 ((-639 (-639 (-293 (-315 |#1|)))) (-639 (-406 (-947 |#1|))))) (-15 -3109 ((-639 (-639 (-293 (-315 |#1|)))) (-639 (-293 (-406 (-947 |#1|)))) (-639 (-1168)))) (-15 -3109 ((-639 (-639 (-293 (-315 |#1|)))) (-639 (-293 (-406 (-947 |#1|)))))) (-15 -3194 ((-639 (-315 |#1|)) (-406 (-947 |#1|)) (-1168))) (-15 -3194 ((-639 (-639 (-315 |#1|))) (-639 (-406 (-947 |#1|))) (-639 (-1168)))) (-15 -1619 ((-1157 (-639 (-315 |#1|)) (-639 (-293 (-315 |#1|)))) (-293 (-406 (-947 |#1|))) (-1168))) (-15 -1619 ((-1157 (-639 (-315 |#1|)) (-639 (-293 (-315 |#1|)))) (-406 (-947 |#1|)) (-1168)))) (-13 (-306) (-845) (-146))) (T -1121)) -((-1619 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-1168)) (-4 *5 (-13 (-306) (-845) (-146))) (-5 *2 (-1157 (-639 (-315 *5)) (-639 (-293 (-315 *5))))) (-5 *1 (-1121 *5)))) (-1619 (*1 *2 *3 *4) (-12 (-5 *3 (-293 (-406 (-947 *5)))) (-5 *4 (-1168)) (-4 *5 (-13 (-306) (-845) (-146))) (-5 *2 (-1157 (-639 (-315 *5)) (-639 (-293 (-315 *5))))) (-5 *1 (-1121 *5)))) (-3194 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-406 (-947 *5)))) (-5 *4 (-639 (-1168))) (-4 *5 (-13 (-306) (-845) (-146))) (-5 *2 (-639 (-639 (-315 *5)))) (-5 *1 (-1121 *5)))) (-3194 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-1168)) (-4 *5 (-13 (-306) (-845) (-146))) (-5 *2 (-639 (-315 *5))) (-5 *1 (-1121 *5)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-639 (-293 (-406 (-947 *4))))) (-4 *4 (-13 (-306) (-845) (-146))) (-5 *2 (-639 (-639 (-293 (-315 *4))))) (-5 *1 (-1121 *4)))) (-3109 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-293 (-406 (-947 *5))))) (-5 *4 (-639 (-1168))) (-4 *5 (-13 (-306) (-845) (-146))) (-5 *2 (-639 (-639 (-293 (-315 *5))))) (-5 *1 (-1121 *5)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-639 (-406 (-947 *4)))) (-4 *4 (-13 (-306) (-845) (-146))) (-5 *2 (-639 (-639 (-293 (-315 *4))))) (-5 *1 (-1121 *4)))) (-3109 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-406 (-947 *5)))) (-5 *4 (-639 (-1168))) (-4 *5 (-13 (-306) (-845) (-146))) (-5 *2 (-639 (-639 (-293 (-315 *5))))) (-5 *1 (-1121 *5)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-293 (-406 (-947 *4)))) (-4 *4 (-13 (-306) (-845) (-146))) (-5 *2 (-639 (-293 (-315 *4)))) (-5 *1 (-1121 *4)))) (-3109 (*1 *2 *3 *4) (-12 (-5 *3 (-293 (-406 (-947 *5)))) (-5 *4 (-1168)) (-4 *5 (-13 (-306) (-845) (-146))) (-5 *2 (-639 (-293 (-315 *5)))) (-5 *1 (-1121 *5)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-13 (-306) (-845) (-146))) (-5 *2 (-639 (-293 (-315 *4)))) (-5 *1 (-1121 *4)))) (-3109 (*1 *2 *3 *4) (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-1168)) (-4 *5 (-13 (-306) (-845) (-146))) (-5 *2 (-639 (-293 (-315 *5)))) (-5 *1 (-1121 *5))))) -(-10 -7 (-15 -3109 ((-639 (-293 (-315 |#1|))) (-406 (-947 |#1|)) (-1168))) (-15 -3109 ((-639 (-293 (-315 |#1|))) (-406 (-947 |#1|)))) (-15 -3109 ((-639 (-293 (-315 |#1|))) (-293 (-406 (-947 |#1|))) (-1168))) (-15 -3109 ((-639 (-293 (-315 |#1|))) (-293 (-406 (-947 |#1|))))) (-15 -3109 ((-639 (-639 (-293 (-315 |#1|)))) (-639 (-406 (-947 |#1|))) (-639 (-1168)))) (-15 -3109 ((-639 (-639 (-293 (-315 |#1|)))) (-639 (-406 (-947 |#1|))))) (-15 -3109 ((-639 (-639 (-293 (-315 |#1|)))) (-639 (-293 (-406 (-947 |#1|)))) (-639 (-1168)))) (-15 -3109 ((-639 (-639 (-293 (-315 |#1|)))) (-639 (-293 (-406 (-947 |#1|)))))) (-15 -3194 ((-639 (-315 |#1|)) (-406 (-947 |#1|)) (-1168))) (-15 -3194 ((-639 (-639 (-315 |#1|))) (-639 (-406 (-947 |#1|))) (-639 (-1168)))) (-15 -1619 ((-1157 (-639 (-315 |#1|)) (-639 (-293 (-315 |#1|)))) (-293 (-406 (-947 |#1|))) (-1168))) (-15 -1619 ((-1157 (-639 (-315 |#1|)) (-639 (-293 (-315 |#1|)))) (-406 (-947 |#1|)) (-1168)))) -((-3017 (((-406 (-1164 (-315 |#1|))) (-1256 (-315 |#1|)) (-406 (-1164 (-315 |#1|))) (-562)) 29)) (-3288 (((-406 (-1164 (-315 |#1|))) (-406 (-1164 (-315 |#1|))) (-406 (-1164 (-315 |#1|))) (-406 (-1164 (-315 |#1|)))) 40))) -(((-1122 |#1|) (-10 -7 (-15 -3288 ((-406 (-1164 (-315 |#1|))) (-406 (-1164 (-315 |#1|))) (-406 (-1164 (-315 |#1|))) (-406 (-1164 (-315 |#1|))))) (-15 -3017 ((-406 (-1164 (-315 |#1|))) (-1256 (-315 |#1|)) (-406 (-1164 (-315 |#1|))) (-562)))) (-13 (-554) (-845))) (T -1122)) -((-3017 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-406 (-1164 (-315 *5)))) (-5 *3 (-1256 (-315 *5))) (-5 *4 (-562)) (-4 *5 (-13 (-554) (-845))) (-5 *1 (-1122 *5)))) (-3288 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-406 (-1164 (-315 *3)))) (-4 *3 (-13 (-554) (-845))) (-5 *1 (-1122 *3))))) -(-10 -7 (-15 -3288 ((-406 (-1164 (-315 |#1|))) (-406 (-1164 (-315 |#1|))) (-406 (-1164 (-315 |#1|))) (-406 (-1164 (-315 |#1|))))) (-15 -3017 ((-406 (-1164 (-315 |#1|))) (-1256 (-315 |#1|)) (-406 (-1164 (-315 |#1|))) (-562)))) -((-3888 (((-639 (-639 (-293 (-315 |#1|)))) (-639 (-293 (-315 |#1|))) (-639 (-1168))) 222) (((-639 (-293 (-315 |#1|))) (-315 |#1|) (-1168)) 20) (((-639 (-293 (-315 |#1|))) (-293 (-315 |#1|)) (-1168)) 26) (((-639 (-293 (-315 |#1|))) (-293 (-315 |#1|))) 25) (((-639 (-293 (-315 |#1|))) (-315 |#1|)) 21))) -(((-1123 |#1|) (-10 -7 (-15 -3888 ((-639 (-293 (-315 |#1|))) (-315 |#1|))) (-15 -3888 ((-639 (-293 (-315 |#1|))) (-293 (-315 |#1|)))) (-15 -3888 ((-639 (-293 (-315 |#1|))) (-293 (-315 |#1|)) (-1168))) (-15 -3888 ((-639 (-293 (-315 |#1|))) (-315 |#1|) (-1168))) (-15 -3888 ((-639 (-639 (-293 (-315 |#1|)))) (-639 (-293 (-315 |#1|))) (-639 (-1168))))) (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (T -1123)) -((-3888 (*1 *2 *3 *4) (-12 (-5 *4 (-639 (-1168))) (-4 *5 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-5 *2 (-639 (-639 (-293 (-315 *5))))) (-5 *1 (-1123 *5)) (-5 *3 (-639 (-293 (-315 *5)))))) (-3888 (*1 *2 *3 *4) (-12 (-5 *4 (-1168)) (-4 *5 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-5 *2 (-639 (-293 (-315 *5)))) (-5 *1 (-1123 *5)) (-5 *3 (-315 *5)))) (-3888 (*1 *2 *3 *4) (-12 (-5 *4 (-1168)) (-4 *5 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-5 *2 (-639 (-293 (-315 *5)))) (-5 *1 (-1123 *5)) (-5 *3 (-293 (-315 *5))))) (-3888 (*1 *2 *3) (-12 (-4 *4 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-5 *2 (-639 (-293 (-315 *4)))) (-5 *1 (-1123 *4)) (-5 *3 (-293 (-315 *4))))) (-3888 (*1 *2 *3) (-12 (-4 *4 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) (-5 *2 (-639 (-293 (-315 *4)))) (-5 *1 (-1123 *4)) (-5 *3 (-315 *4))))) -(-10 -7 (-15 -3888 ((-639 (-293 (-315 |#1|))) (-315 |#1|))) (-15 -3888 ((-639 (-293 (-315 |#1|))) (-293 (-315 |#1|)))) (-15 -3888 ((-639 (-293 (-315 |#1|))) (-293 (-315 |#1|)) (-1168))) (-15 -3888 ((-639 (-293 (-315 |#1|))) (-315 |#1|) (-1168))) (-15 -3888 ((-639 (-639 (-293 (-315 |#1|)))) (-639 (-293 (-315 |#1|))) (-639 (-1168))))) -((-3450 ((|#2| |#2|) 20 (|has| |#1| (-845))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 17)) (-3829 ((|#2| |#2|) 19 (|has| |#1| (-845))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 16))) -(((-1124 |#1| |#2|) (-10 -7 (-15 -3829 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3450 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-845)) (PROGN (-15 -3829 (|#2| |#2|)) (-15 -3450 (|#2| |#2|))) |%noBranch|)) (-1207) (-13 (-600 (-562) |#1|) (-10 -7 (-6 -4403) (-6 -4404)))) (T -1124)) -((-3450 (*1 *2 *2) (-12 (-4 *3 (-845)) (-4 *3 (-1207)) (-5 *1 (-1124 *3 *2)) (-4 *2 (-13 (-600 (-562) *3) (-10 -7 (-6 -4403) (-6 -4404)))))) (-3829 (*1 *2 *2) (-12 (-4 *3 (-845)) (-4 *3 (-1207)) (-5 *1 (-1124 *3 *2)) (-4 *2 (-13 (-600 (-562) *3) (-10 -7 (-6 -4403) (-6 -4404)))))) (-3450 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1207)) (-5 *1 (-1124 *4 *2)) (-4 *2 (-13 (-600 (-562) *4) (-10 -7 (-6 -4403) (-6 -4404)))))) (-3829 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1207)) (-5 *1 (-1124 *4 *2)) (-4 *2 (-13 (-600 (-562) *4) (-10 -7 (-6 -4403) (-6 -4404))))))) -(-10 -7 (-15 -3829 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3450 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-845)) (PROGN (-15 -3829 (|#2| |#2|)) (-15 -3450 (|#2| |#2|))) |%noBranch|)) -((-4041 (((-112) $ $) NIL)) (-2962 (((-1156 3 |#1|) $) 107)) (-3770 (((-112) $) 72)) (-4020 (($ $ (-639 (-938 |#1|))) 20) (($ $ (-639 (-639 |#1|))) 75) (($ (-639 (-938 |#1|))) 74) (((-639 (-938 |#1|)) $) 73)) (-3138 (((-112) $) 41)) (-1460 (($ $ (-938 |#1|)) 46) (($ $ (-639 |#1|)) 51) (($ $ (-766)) 53) (($ (-938 |#1|)) 47) (((-938 |#1|) $) 45)) (-3230 (((-2 (|:| -1358 (-766)) (|:| |curves| (-766)) (|:| |polygons| (-766)) (|:| |constructs| (-766))) $) 105)) (-2817 (((-766) $) 26)) (-3668 (((-766) $) 25)) (-2948 (($ $ (-766) (-938 |#1|)) 39)) (-2888 (((-112) $) 82)) (-3157 (($ $ (-639 (-639 (-938 |#1|))) (-639 (-170)) (-170)) 89) (($ $ (-639 (-639 (-639 |#1|))) (-639 (-170)) (-170)) 91) (($ $ (-639 (-639 (-938 |#1|))) (-112) (-112)) 85) (($ $ (-639 (-639 (-639 |#1|))) (-112) (-112)) 93) (($ (-639 (-639 (-938 |#1|)))) 86) (($ (-639 (-639 (-938 |#1|))) (-112) (-112)) 87) (((-639 (-639 (-938 |#1|))) $) 84)) (-4103 (($ (-639 $)) 28) (($ $ $) 29)) (-3514 (((-639 (-170)) $) 102)) (-1662 (((-639 (-938 |#1|)) $) 96)) (-3765 (((-639 (-639 (-170))) $) 101)) (-3816 (((-639 (-639 (-639 (-938 |#1|)))) $) NIL)) (-2951 (((-639 (-639 (-639 (-766)))) $) 99)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2196 (((-766) $ (-639 (-938 |#1|))) 37)) (-2990 (((-112) $) 54)) (-1698 (($ $ (-639 (-938 |#1|))) 56) (($ $ (-639 (-639 |#1|))) 62) (($ (-639 (-938 |#1|))) 57) (((-639 (-938 |#1|)) $) 55)) (-2835 (($) 23) (($ (-1156 3 |#1|)) 24)) (-4220 (($ $) 35)) (-1703 (((-639 $) $) 34)) (-2155 (($ (-639 $)) 31)) (-3383 (((-639 $) $) 33)) (-4053 (((-857) $) 111)) (-2763 (((-112) $) 64)) (-2377 (($ $ (-639 (-938 |#1|))) 66) (($ $ (-639 (-639 |#1|))) 69) (($ (-639 (-938 |#1|))) 67) (((-639 (-938 |#1|)) $) 65)) (-1661 (($ $) 106)) (-1733 (((-112) $ $) NIL))) -(((-1125 |#1|) (-1126 |#1|) (-1044)) (T -1125)) -NIL -(-1126 |#1|) -((-4041 (((-112) $ $) 7)) (-2962 (((-1156 3 |#1|) $) 13)) (-3770 (((-112) $) 29)) (-4020 (($ $ (-639 (-938 |#1|))) 33) (($ $ (-639 (-639 |#1|))) 32) (($ (-639 (-938 |#1|))) 31) (((-639 (-938 |#1|)) $) 30)) (-3138 (((-112) $) 44)) (-1460 (($ $ (-938 |#1|)) 49) (($ $ (-639 |#1|)) 48) (($ $ (-766)) 47) (($ (-938 |#1|)) 46) (((-938 |#1|) $) 45)) (-3230 (((-2 (|:| -1358 (-766)) (|:| |curves| (-766)) (|:| |polygons| (-766)) (|:| |constructs| (-766))) $) 15)) (-2817 (((-766) $) 58)) (-3668 (((-766) $) 59)) (-2948 (($ $ (-766) (-938 |#1|)) 50)) (-2888 (((-112) $) 21)) (-3157 (($ $ (-639 (-639 (-938 |#1|))) (-639 (-170)) (-170)) 28) (($ $ (-639 (-639 (-639 |#1|))) (-639 (-170)) (-170)) 27) (($ $ (-639 (-639 (-938 |#1|))) (-112) (-112)) 26) (($ $ (-639 (-639 (-639 |#1|))) (-112) (-112)) 25) (($ (-639 (-639 (-938 |#1|)))) 24) (($ (-639 (-639 (-938 |#1|))) (-112) (-112)) 23) (((-639 (-639 (-938 |#1|))) $) 22)) (-4103 (($ (-639 $)) 57) (($ $ $) 56)) (-3514 (((-639 (-170)) $) 16)) (-1662 (((-639 (-938 |#1|)) $) 20)) (-3765 (((-639 (-639 (-170))) $) 17)) (-3816 (((-639 (-639 (-639 (-938 |#1|)))) $) 18)) (-2951 (((-639 (-639 (-639 (-766)))) $) 19)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-2196 (((-766) $ (-639 (-938 |#1|))) 51)) (-2990 (((-112) $) 39)) (-1698 (($ $ (-639 (-938 |#1|))) 43) (($ $ (-639 (-639 |#1|))) 42) (($ (-639 (-938 |#1|))) 41) (((-639 (-938 |#1|)) $) 40)) (-2835 (($) 61) (($ (-1156 3 |#1|)) 60)) (-4220 (($ $) 52)) (-1703 (((-639 $) $) 53)) (-2155 (($ (-639 $)) 55)) (-3383 (((-639 $) $) 54)) (-4053 (((-857) $) 11)) (-2763 (((-112) $) 34)) (-2377 (($ $ (-639 (-938 |#1|))) 38) (($ $ (-639 (-639 |#1|))) 37) (($ (-639 (-938 |#1|))) 36) (((-639 (-938 |#1|)) $) 35)) (-1661 (($ $) 14)) (-1733 (((-112) $ $) 6))) -(((-1126 |#1|) (-139) (-1044)) (T -1126)) -((-4053 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-857)))) (-2835 (*1 *1) (-12 (-4 *1 (-1126 *2)) (-4 *2 (-1044)))) (-2835 (*1 *1 *2) (-12 (-5 *2 (-1156 3 *3)) (-4 *3 (-1044)) (-4 *1 (-1126 *3)))) (-3668 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-766)))) (-2817 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-766)))) (-4103 (*1 *1 *2) (-12 (-5 *2 (-639 *1)) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) (-4103 (*1 *1 *1 *1) (-12 (-4 *1 (-1126 *2)) (-4 *2 (-1044)))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-639 *1)) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) (-3383 (*1 *2 *1) (-12 (-4 *3 (-1044)) (-5 *2 (-639 *1)) (-4 *1 (-1126 *3)))) (-1703 (*1 *2 *1) (-12 (-4 *3 (-1044)) (-5 *2 (-639 *1)) (-4 *1 (-1126 *3)))) (-4220 (*1 *1 *1) (-12 (-4 *1 (-1126 *2)) (-4 *2 (-1044)))) (-2196 (*1 *2 *1 *3) (-12 (-5 *3 (-639 (-938 *4))) (-4 *1 (-1126 *4)) (-4 *4 (-1044)) (-5 *2 (-766)))) (-2948 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-766)) (-5 *3 (-938 *4)) (-4 *1 (-1126 *4)) (-4 *4 (-1044)))) (-1460 (*1 *1 *1 *2) (-12 (-5 *2 (-938 *3)) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) (-1460 (*1 *1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) (-1460 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) (-1460 (*1 *1 *2) (-12 (-5 *2 (-938 *3)) (-4 *3 (-1044)) (-4 *1 (-1126 *3)))) (-1460 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-938 *3)))) (-3138 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-112)))) (-1698 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-938 *3))) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) (-1698 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-639 *3))) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) (-1698 (*1 *1 *2) (-12 (-5 *2 (-639 (-938 *3))) (-4 *3 (-1044)) (-4 *1 (-1126 *3)))) (-1698 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-639 (-938 *3))))) (-2990 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-112)))) (-2377 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-938 *3))) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) (-2377 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-639 *3))) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) (-2377 (*1 *1 *2) (-12 (-5 *2 (-639 (-938 *3))) (-4 *3 (-1044)) (-4 *1 (-1126 *3)))) (-2377 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-639 (-938 *3))))) (-2763 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-112)))) (-4020 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-938 *3))) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) (-4020 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-639 *3))) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) (-4020 (*1 *1 *2) (-12 (-5 *2 (-639 (-938 *3))) (-4 *3 (-1044)) (-4 *1 (-1126 *3)))) (-4020 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-639 (-938 *3))))) (-3770 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-112)))) (-3157 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-639 (-639 (-938 *5)))) (-5 *3 (-639 (-170))) (-5 *4 (-170)) (-4 *1 (-1126 *5)) (-4 *5 (-1044)))) (-3157 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-639 (-639 (-639 *5)))) (-5 *3 (-639 (-170))) (-5 *4 (-170)) (-4 *1 (-1126 *5)) (-4 *5 (-1044)))) (-3157 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-639 (-639 (-938 *4)))) (-5 *3 (-112)) (-4 *1 (-1126 *4)) (-4 *4 (-1044)))) (-3157 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-639 (-639 (-639 *4)))) (-5 *3 (-112)) (-4 *1 (-1126 *4)) (-4 *4 (-1044)))) (-3157 (*1 *1 *2) (-12 (-5 *2 (-639 (-639 (-938 *3)))) (-4 *3 (-1044)) (-4 *1 (-1126 *3)))) (-3157 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-639 (-639 (-938 *4)))) (-5 *3 (-112)) (-4 *4 (-1044)) (-4 *1 (-1126 *4)))) (-3157 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-639 (-639 (-938 *3)))))) (-2888 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-112)))) (-1662 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-639 (-938 *3))))) (-2951 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-639 (-639 (-639 (-766))))))) (-3816 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-639 (-639 (-639 (-938 *3))))))) (-3765 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-639 (-639 (-170)))))) (-3514 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-639 (-170))))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-2 (|:| -1358 (-766)) (|:| |curves| (-766)) (|:| |polygons| (-766)) (|:| |constructs| (-766)))))) (-1661 (*1 *1 *1) (-12 (-4 *1 (-1126 *2)) (-4 *2 (-1044)))) (-2962 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-1156 3 *3))))) -(-13 (-1092) (-10 -8 (-15 -2835 ($)) (-15 -2835 ($ (-1156 3 |t#1|))) (-15 -3668 ((-766) $)) (-15 -2817 ((-766) $)) (-15 -4103 ($ (-639 $))) (-15 -4103 ($ $ $)) (-15 -2155 ($ (-639 $))) (-15 -3383 ((-639 $) $)) (-15 -1703 ((-639 $) $)) (-15 -4220 ($ $)) (-15 -2196 ((-766) $ (-639 (-938 |t#1|)))) (-15 -2948 ($ $ (-766) (-938 |t#1|))) (-15 -1460 ($ $ (-938 |t#1|))) (-15 -1460 ($ $ (-639 |t#1|))) (-15 -1460 ($ $ (-766))) (-15 -1460 ($ (-938 |t#1|))) (-15 -1460 ((-938 |t#1|) $)) (-15 -3138 ((-112) $)) (-15 -1698 ($ $ (-639 (-938 |t#1|)))) (-15 -1698 ($ $ (-639 (-639 |t#1|)))) (-15 -1698 ($ (-639 (-938 |t#1|)))) (-15 -1698 ((-639 (-938 |t#1|)) $)) (-15 -2990 ((-112) $)) (-15 -2377 ($ $ (-639 (-938 |t#1|)))) (-15 -2377 ($ $ (-639 (-639 |t#1|)))) (-15 -2377 ($ (-639 (-938 |t#1|)))) (-15 -2377 ((-639 (-938 |t#1|)) $)) (-15 -2763 ((-112) $)) (-15 -4020 ($ $ (-639 (-938 |t#1|)))) (-15 -4020 ($ $ (-639 (-639 |t#1|)))) (-15 -4020 ($ (-639 (-938 |t#1|)))) (-15 -4020 ((-639 (-938 |t#1|)) $)) (-15 -3770 ((-112) $)) (-15 -3157 ($ $ (-639 (-639 (-938 |t#1|))) (-639 (-170)) (-170))) (-15 -3157 ($ $ (-639 (-639 (-639 |t#1|))) (-639 (-170)) (-170))) (-15 -3157 ($ $ (-639 (-639 (-938 |t#1|))) (-112) (-112))) (-15 -3157 ($ $ (-639 (-639 (-639 |t#1|))) (-112) (-112))) (-15 -3157 ($ (-639 (-639 (-938 |t#1|))))) (-15 -3157 ($ (-639 (-639 (-938 |t#1|))) (-112) (-112))) (-15 -3157 ((-639 (-639 (-938 |t#1|))) $)) (-15 -2888 ((-112) $)) (-15 -1662 ((-639 (-938 |t#1|)) $)) (-15 -2951 ((-639 (-639 (-639 (-766)))) $)) (-15 -3816 ((-639 (-639 (-639 (-938 |t#1|)))) $)) (-15 -3765 ((-639 (-639 (-170))) $)) (-15 -3514 ((-639 (-170)) $)) (-15 -3230 ((-2 (|:| -1358 (-766)) (|:| |curves| (-766)) (|:| |polygons| (-766)) (|:| |constructs| (-766))) $)) (-15 -1661 ($ $)) (-15 -2962 ((-1156 3 |t#1|) $)) (-15 -4053 ((-857) $)))) -(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) -((-4041 (((-112) $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 176) (($ (-1173)) NIL) (((-1173) $) 7)) (-2276 (((-112) $ (|[\|\|]| (-523))) 17) (((-112) $ (|[\|\|]| (-217))) 21) (((-112) $ (|[\|\|]| (-670))) 25) (((-112) $ (|[\|\|]| (-1266))) 29) (((-112) $ (|[\|\|]| (-137))) 33) (((-112) $ (|[\|\|]| (-132))) 37) (((-112) $ (|[\|\|]| (-1107))) 41) (((-112) $ (|[\|\|]| (-96))) 45) (((-112) $ (|[\|\|]| (-675))) 49) (((-112) $ (|[\|\|]| (-516))) 53) (((-112) $ (|[\|\|]| (-1059))) 57) (((-112) $ (|[\|\|]| (-1267))) 61) (((-112) $ (|[\|\|]| (-524))) 65) (((-112) $ (|[\|\|]| (-153))) 69) (((-112) $ (|[\|\|]| (-665))) 73) (((-112) $ (|[\|\|]| (-310))) 77) (((-112) $ (|[\|\|]| (-1031))) 81) (((-112) $ (|[\|\|]| (-179))) 85) (((-112) $ (|[\|\|]| (-965))) 89) (((-112) $ (|[\|\|]| (-1066))) 93) (((-112) $ (|[\|\|]| (-1082))) 97) (((-112) $ (|[\|\|]| (-1088))) 101) (((-112) $ (|[\|\|]| (-622))) 105) (((-112) $ (|[\|\|]| (-1158))) 109) (((-112) $ (|[\|\|]| (-155))) 113) (((-112) $ (|[\|\|]| (-136))) 117) (((-112) $ (|[\|\|]| (-477))) 121) (((-112) $ (|[\|\|]| (-589))) 125) (((-112) $ (|[\|\|]| (-505))) 131) (((-112) $ (|[\|\|]| (-1150))) 135) (((-112) $ (|[\|\|]| (-562))) 139)) (-4248 (((-523) $) 18) (((-217) $) 22) (((-670) $) 26) (((-1266) $) 30) (((-137) $) 34) (((-132) $) 38) (((-1107) $) 42) (((-96) $) 46) (((-675) $) 50) (((-516) $) 54) (((-1059) $) 58) (((-1267) $) 62) (((-524) $) 66) (((-153) $) 70) (((-665) $) 74) (((-310) $) 78) (((-1031) $) 82) (((-179) $) 86) (((-965) $) 90) (((-1066) $) 94) (((-1082) $) 98) (((-1088) $) 102) (((-622) $) 106) (((-1158) $) 110) (((-155) $) 114) (((-136) $) 118) (((-477) $) 122) (((-589) $) 126) (((-505) $) 132) (((-1150) $) 136) (((-562) $) 140)) (-1733 (((-112) $ $) NIL))) -(((-1127) (-1129)) (T -1127)) -NIL -(-1129) -((-2357 (((-639 (-1173)) (-1150)) 9))) -(((-1128) (-10 -7 (-15 -2357 ((-639 (-1173)) (-1150))))) (T -1128)) -((-2357 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-639 (-1173))) (-5 *1 (-1128))))) -(-10 -7 (-15 -2357 ((-639 (-1173)) (-1150)))) -((-4041 (((-112) $ $) 7)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11) (($ (-1173)) 16) (((-1173) $) 15)) (-2276 (((-112) $ (|[\|\|]| (-523))) 80) (((-112) $ (|[\|\|]| (-217))) 78) (((-112) $ (|[\|\|]| (-670))) 76) (((-112) $ (|[\|\|]| (-1266))) 74) (((-112) $ (|[\|\|]| (-137))) 72) (((-112) $ (|[\|\|]| (-132))) 70) (((-112) $ (|[\|\|]| (-1107))) 68) (((-112) $ (|[\|\|]| (-96))) 66) (((-112) $ (|[\|\|]| (-675))) 64) (((-112) $ (|[\|\|]| (-516))) 62) (((-112) $ (|[\|\|]| (-1059))) 60) (((-112) $ (|[\|\|]| (-1267))) 58) (((-112) $ (|[\|\|]| (-524))) 56) (((-112) $ (|[\|\|]| (-153))) 54) (((-112) $ (|[\|\|]| (-665))) 52) (((-112) $ (|[\|\|]| (-310))) 50) (((-112) $ (|[\|\|]| (-1031))) 48) (((-112) $ (|[\|\|]| (-179))) 46) (((-112) $ (|[\|\|]| (-965))) 44) (((-112) $ (|[\|\|]| (-1066))) 42) (((-112) $ (|[\|\|]| (-1082))) 40) (((-112) $ (|[\|\|]| (-1088))) 38) (((-112) $ (|[\|\|]| (-622))) 36) (((-112) $ (|[\|\|]| (-1158))) 34) (((-112) $ (|[\|\|]| (-155))) 32) (((-112) $ (|[\|\|]| (-136))) 30) (((-112) $ (|[\|\|]| (-477))) 28) (((-112) $ (|[\|\|]| (-589))) 26) (((-112) $ (|[\|\|]| (-505))) 24) (((-112) $ (|[\|\|]| (-1150))) 22) (((-112) $ (|[\|\|]| (-562))) 20)) (-4248 (((-523) $) 79) (((-217) $) 77) (((-670) $) 75) (((-1266) $) 73) (((-137) $) 71) (((-132) $) 69) (((-1107) $) 67) (((-96) $) 65) (((-675) $) 63) (((-516) $) 61) (((-1059) $) 59) (((-1267) $) 57) (((-524) $) 55) (((-153) $) 53) (((-665) $) 51) (((-310) $) 49) (((-1031) $) 47) (((-179) $) 45) (((-965) $) 43) (((-1066) $) 41) (((-1082) $) 39) (((-1088) $) 37) (((-622) $) 35) (((-1158) $) 33) (((-155) $) 31) (((-136) $) 29) (((-477) $) 27) (((-589) $) 25) (((-505) $) 23) (((-1150) $) 21) (((-562) $) 19)) (-1733 (((-112) $ $) 6))) -(((-1129) (-139)) (T -1129)) -((-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-523))) (-5 *2 (-112)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-523)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-217))) (-5 *2 (-112)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-217)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-670))) (-5 *2 (-112)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-670)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1266))) (-5 *2 (-112)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1266)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-137)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-132)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1107))) (-5 *2 (-112)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1107)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-96)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-675))) (-5 *2 (-112)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-675)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-516)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1059))) (-5 *2 (-112)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1059)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1267))) (-5 *2 (-112)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1267)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-524))) (-5 *2 (-112)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-524)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-153))) (-5 *2 (-112)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-153)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-665))) (-5 *2 (-112)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-665)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-310))) (-5 *2 (-112)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-310)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1031))) (-5 *2 (-112)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1031)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-112)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-179)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-965))) (-5 *2 (-112)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-965)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1066))) (-5 *2 (-112)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1066)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1082))) (-5 *2 (-112)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1082)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1088))) (-5 *2 (-112)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1088)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-622))) (-5 *2 (-112)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-622)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1158))) (-5 *2 (-112)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1158)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-155)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-136)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-477))) (-5 *2 (-112)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-477)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-589))) (-5 *2 (-112)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-589)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-505))) (-5 *2 (-112)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-505)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1150))) (-5 *2 (-112)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1150)))) (-2276 (*1 *2 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-562))) (-5 *2 (-112)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-562))))) -(-13 (-1075) (-1251) (-10 -8 (-15 -2276 ((-112) $ (|[\|\|]| (-523)))) (-15 -4248 ((-523) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-217)))) (-15 -4248 ((-217) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-670)))) (-15 -4248 ((-670) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-1266)))) (-15 -4248 ((-1266) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-137)))) (-15 -4248 ((-137) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-132)))) (-15 -4248 ((-132) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-1107)))) (-15 -4248 ((-1107) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-96)))) (-15 -4248 ((-96) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-675)))) (-15 -4248 ((-675) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-516)))) (-15 -4248 ((-516) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-1059)))) (-15 -4248 ((-1059) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-1267)))) (-15 -4248 ((-1267) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-524)))) (-15 -4248 ((-524) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-153)))) (-15 -4248 ((-153) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-665)))) (-15 -4248 ((-665) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-310)))) (-15 -4248 ((-310) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-1031)))) (-15 -4248 ((-1031) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-179)))) (-15 -4248 ((-179) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-965)))) (-15 -4248 ((-965) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-1066)))) (-15 -4248 ((-1066) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-1082)))) (-15 -4248 ((-1082) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-1088)))) (-15 -4248 ((-1088) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-622)))) (-15 -4248 ((-622) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-1158)))) (-15 -4248 ((-1158) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-155)))) (-15 -4248 ((-155) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-136)))) (-15 -4248 ((-136) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-477)))) (-15 -4248 ((-477) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-589)))) (-15 -4248 ((-589) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-505)))) (-15 -4248 ((-505) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-1150)))) (-15 -4248 ((-1150) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-562)))) (-15 -4248 ((-562) $)))) -(((-93) . T) ((-102) . T) ((-612 #0=(-1173)) . T) ((-609 (-857)) . T) ((-609 #0#) . T) ((-489 #0#) . T) ((-1092) . T) ((-1075) . T) ((-1251) . T)) -((-3998 (((-1261) (-639 (-857))) 23) (((-1261) (-857)) 22)) (-2043 (((-1261) (-639 (-857))) 21) (((-1261) (-857)) 20)) (-3218 (((-1261) (-639 (-857))) 19) (((-1261) (-857)) 11) (((-1261) (-1150) (-857)) 17))) -(((-1130) (-10 -7 (-15 -3218 ((-1261) (-1150) (-857))) (-15 -3218 ((-1261) (-857))) (-15 -2043 ((-1261) (-857))) (-15 -3998 ((-1261) (-857))) (-15 -3218 ((-1261) (-639 (-857)))) (-15 -2043 ((-1261) (-639 (-857)))) (-15 -3998 ((-1261) (-639 (-857)))))) (T -1130)) -((-3998 (*1 *2 *3) (-12 (-5 *3 (-639 (-857))) (-5 *2 (-1261)) (-5 *1 (-1130)))) (-2043 (*1 *2 *3) (-12 (-5 *3 (-639 (-857))) (-5 *2 (-1261)) (-5 *1 (-1130)))) (-3218 (*1 *2 *3) (-12 (-5 *3 (-639 (-857))) (-5 *2 (-1261)) (-5 *1 (-1130)))) (-3998 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1261)) (-5 *1 (-1130)))) (-2043 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1261)) (-5 *1 (-1130)))) (-3218 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1261)) (-5 *1 (-1130)))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-1150)) (-5 *4 (-857)) (-5 *2 (-1261)) (-5 *1 (-1130))))) -(-10 -7 (-15 -3218 ((-1261) (-1150) (-857))) (-15 -3218 ((-1261) (-857))) (-15 -2043 ((-1261) (-857))) (-15 -3998 ((-1261) (-857))) (-15 -3218 ((-1261) (-639 (-857)))) (-15 -2043 ((-1261) (-639 (-857)))) (-15 -3998 ((-1261) (-639 (-857))))) -((-2146 (($ $ $) 10)) (-1904 (($ $) 9)) (-3733 (($ $ $) 13)) (-2831 (($ $ $) 15)) (-4287 (($ $ $) 12)) (-1623 (($ $ $) 14)) (-2001 (($ $) 17)) (-3950 (($ $) 16)) (-2757 (($ $) 6)) (-2582 (($ $ $) 11) (($ $) 7)) (-3291 (($ $ $) 8))) -(((-1131) (-139)) (T -1131)) -((-2001 (*1 *1 *1) (-4 *1 (-1131))) (-3950 (*1 *1 *1) (-4 *1 (-1131))) (-2831 (*1 *1 *1 *1) (-4 *1 (-1131))) (-1623 (*1 *1 *1 *1) (-4 *1 (-1131))) (-3733 (*1 *1 *1 *1) (-4 *1 (-1131))) (-4287 (*1 *1 *1 *1) (-4 *1 (-1131))) (-2582 (*1 *1 *1 *1) (-4 *1 (-1131))) (-2146 (*1 *1 *1 *1) (-4 *1 (-1131))) (-1904 (*1 *1 *1) (-4 *1 (-1131))) (-3291 (*1 *1 *1 *1) (-4 *1 (-1131))) (-2582 (*1 *1 *1) (-4 *1 (-1131))) (-2757 (*1 *1 *1) (-4 *1 (-1131)))) -(-13 (-10 -8 (-15 -2757 ($ $)) (-15 -2582 ($ $)) (-15 -3291 ($ $ $)) (-15 -1904 ($ $)) (-15 -2146 ($ $ $)) (-15 -2582 ($ $ $)) (-15 -4287 ($ $ $)) (-15 -3733 ($ $ $)) (-15 -1623 ($ $ $)) (-15 -2831 ($ $ $)) (-15 -3950 ($ $)) (-15 -2001 ($ $)))) -((-4041 (((-112) $ $) 42)) (-2533 ((|#1| $) 16)) (-2002 (((-112) $ $ (-1 (-112) |#2| |#2|)) 37)) (-3981 (((-112) $) 18)) (-4373 (($ $ |#1|) 29)) (-1811 (($ $ (-112)) 31)) (-1576 (($ $) 32)) (-2536 (($ $ |#2|) 30)) (-3696 (((-1150) $) NIL)) (-3578 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 36)) (-1709 (((-1112) $) NIL)) (-3087 (((-112) $) 15)) (-1663 (($) 11)) (-4220 (($ $) 28)) (-4064 (($ |#1| |#2| (-112)) 19) (($ |#1| |#2|) 20) (($ (-2 (|:| |val| |#1|) (|:| -1501 |#2|))) 22) (((-639 $) (-639 (-2 (|:| |val| |#1|) (|:| -1501 |#2|)))) 25) (((-639 $) |#1| (-639 |#2|)) 27)) (-3316 ((|#2| $) 17)) (-4053 (((-857) $) 51)) (-1733 (((-112) $ $) 40))) -(((-1132 |#1| |#2|) (-13 (-1092) (-10 -8 (-15 -1663 ($)) (-15 -3087 ((-112) $)) (-15 -2533 (|#1| $)) (-15 -3316 (|#2| $)) (-15 -3981 ((-112) $)) (-15 -4064 ($ |#1| |#2| (-112))) (-15 -4064 ($ |#1| |#2|)) (-15 -4064 ($ (-2 (|:| |val| |#1|) (|:| -1501 |#2|)))) (-15 -4064 ((-639 $) (-639 (-2 (|:| |val| |#1|) (|:| -1501 |#2|))))) (-15 -4064 ((-639 $) |#1| (-639 |#2|))) (-15 -4220 ($ $)) (-15 -4373 ($ $ |#1|)) (-15 -2536 ($ $ |#2|)) (-15 -1811 ($ $ (-112))) (-15 -1576 ($ $)) (-15 -3578 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2002 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1092) (-34)) (-13 (-1092) (-34))) (T -1132)) -((-1663 (*1 *1) (-12 (-5 *1 (-1132 *2 *3)) (-4 *2 (-13 (-1092) (-34))) (-4 *3 (-13 (-1092) (-34))))) (-3087 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1132 *3 *4)) (-4 *3 (-13 (-1092) (-34))) (-4 *4 (-13 (-1092) (-34))))) (-2533 (*1 *2 *1) (-12 (-4 *2 (-13 (-1092) (-34))) (-5 *1 (-1132 *2 *3)) (-4 *3 (-13 (-1092) (-34))))) (-3316 (*1 *2 *1) (-12 (-4 *2 (-13 (-1092) (-34))) (-5 *1 (-1132 *3 *2)) (-4 *3 (-13 (-1092) (-34))))) (-3981 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1132 *3 *4)) (-4 *3 (-13 (-1092) (-34))) (-4 *4 (-13 (-1092) (-34))))) (-4064 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1132 *2 *3)) (-4 *2 (-13 (-1092) (-34))) (-4 *3 (-13 (-1092) (-34))))) (-4064 (*1 *1 *2 *3) (-12 (-5 *1 (-1132 *2 *3)) (-4 *2 (-13 (-1092) (-34))) (-4 *3 (-13 (-1092) (-34))))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1501 *4))) (-4 *3 (-13 (-1092) (-34))) (-4 *4 (-13 (-1092) (-34))) (-5 *1 (-1132 *3 *4)))) (-4064 (*1 *2 *3) (-12 (-5 *3 (-639 (-2 (|:| |val| *4) (|:| -1501 *5)))) (-4 *4 (-13 (-1092) (-34))) (-4 *5 (-13 (-1092) (-34))) (-5 *2 (-639 (-1132 *4 *5))) (-5 *1 (-1132 *4 *5)))) (-4064 (*1 *2 *3 *4) (-12 (-5 *4 (-639 *5)) (-4 *5 (-13 (-1092) (-34))) (-5 *2 (-639 (-1132 *3 *5))) (-5 *1 (-1132 *3 *5)) (-4 *3 (-13 (-1092) (-34))))) (-4220 (*1 *1 *1) (-12 (-5 *1 (-1132 *2 *3)) (-4 *2 (-13 (-1092) (-34))) (-4 *3 (-13 (-1092) (-34))))) (-4373 (*1 *1 *1 *2) (-12 (-5 *1 (-1132 *2 *3)) (-4 *2 (-13 (-1092) (-34))) (-4 *3 (-13 (-1092) (-34))))) (-2536 (*1 *1 *1 *2) (-12 (-5 *1 (-1132 *3 *2)) (-4 *3 (-13 (-1092) (-34))) (-4 *2 (-13 (-1092) (-34))))) (-1811 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1132 *3 *4)) (-4 *3 (-13 (-1092) (-34))) (-4 *4 (-13 (-1092) (-34))))) (-1576 (*1 *1 *1) (-12 (-5 *1 (-1132 *2 *3)) (-4 *2 (-13 (-1092) (-34))) (-4 *3 (-13 (-1092) (-34))))) (-3578 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1092) (-34))) (-4 *6 (-13 (-1092) (-34))) (-5 *2 (-112)) (-5 *1 (-1132 *5 *6)))) (-2002 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1092) (-34))) (-5 *2 (-112)) (-5 *1 (-1132 *4 *5)) (-4 *4 (-13 (-1092) (-34)))))) -(-13 (-1092) (-10 -8 (-15 -1663 ($)) (-15 -3087 ((-112) $)) (-15 -2533 (|#1| $)) (-15 -3316 (|#2| $)) (-15 -3981 ((-112) $)) (-15 -4064 ($ |#1| |#2| (-112))) (-15 -4064 ($ |#1| |#2|)) (-15 -4064 ($ (-2 (|:| |val| |#1|) (|:| -1501 |#2|)))) (-15 -4064 ((-639 $) (-639 (-2 (|:| |val| |#1|) (|:| -1501 |#2|))))) (-15 -4064 ((-639 $) |#1| (-639 |#2|))) (-15 -4220 ($ $)) (-15 -4373 ($ $ |#1|)) (-15 -2536 ($ $ |#2|)) (-15 -1811 ($ $ (-112))) (-15 -1576 ($ $)) (-15 -3578 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2002 ((-112) $ $ (-1 (-112) |#2| |#2|))))) -((-4041 (((-112) $ $) NIL (|has| (-1132 |#1| |#2|) (-1092)))) (-2533 (((-1132 |#1| |#2|) $) 26)) (-2372 (($ $) 76)) (-3692 (((-112) (-1132 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 85)) (-3248 (($ $ $ (-639 (-1132 |#1| |#2|))) 90) (($ $ $ (-639 (-1132 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 91)) (-3735 (((-112) $ (-766)) NIL)) (-2677 (((-1132 |#1| |#2|) $ (-1132 |#1| |#2|)) 43 (|has| $ (-6 -4404)))) (-4200 (((-1132 |#1| |#2|) $ "value" (-1132 |#1| |#2|)) NIL (|has| $ (-6 -4404)))) (-3742 (($ $ (-639 $)) 41 (|has| $ (-6 -4404)))) (-3329 (($) NIL T CONST)) (-3794 (((-639 (-2 (|:| |val| |#1|) (|:| -1501 |#2|))) $) 80)) (-3729 (($ (-1132 |#1| |#2|) $) 39)) (-1475 (($ (-1132 |#1| |#2|) $) 31)) (-1720 (((-639 (-1132 |#1| |#2|)) $) NIL (|has| $ (-6 -4403)))) (-2409 (((-639 $) $) 51)) (-3298 (((-112) (-1132 |#1| |#2|) $) 82)) (-4188 (((-112) $ $) NIL (|has| (-1132 |#1| |#2|) (-1092)))) (-4172 (((-112) $ (-766)) NIL)) (-2123 (((-639 (-1132 |#1| |#2|)) $) 55 (|has| $ (-6 -4403)))) (-1572 (((-112) (-1132 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-1132 |#1| |#2|) (-1092))))) (-1491 (($ (-1 (-1132 |#1| |#2|) (-1132 |#1| |#2|)) $) 47 (|has| $ (-6 -4404)))) (-4152 (($ (-1 (-1132 |#1| |#2|) (-1132 |#1| |#2|)) $) 46)) (-4147 (((-112) $ (-766)) NIL)) (-4008 (((-639 (-1132 |#1| |#2|)) $) 53)) (-3179 (((-112) $) 42)) (-3696 (((-1150) $) NIL (|has| (-1132 |#1| |#2|) (-1092)))) (-1709 (((-1112) $) NIL (|has| (-1132 |#1| |#2|) (-1092)))) (-4101 (((-3 $ "failed") $) 75)) (-3008 (((-112) (-1 (-112) (-1132 |#1| |#2|)) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 (-1132 |#1| |#2|)))) NIL (-12 (|has| (-1132 |#1| |#2|) (-308 (-1132 |#1| |#2|))) (|has| (-1132 |#1| |#2|) (-1092)))) (($ $ (-293 (-1132 |#1| |#2|))) NIL (-12 (|has| (-1132 |#1| |#2|) (-308 (-1132 |#1| |#2|))) (|has| (-1132 |#1| |#2|) (-1092)))) (($ $ (-1132 |#1| |#2|) (-1132 |#1| |#2|)) NIL (-12 (|has| (-1132 |#1| |#2|) (-308 (-1132 |#1| |#2|))) (|has| (-1132 |#1| |#2|) (-1092)))) (($ $ (-639 (-1132 |#1| |#2|)) (-639 (-1132 |#1| |#2|))) NIL (-12 (|has| (-1132 |#1| |#2|) (-308 (-1132 |#1| |#2|))) (|has| (-1132 |#1| |#2|) (-1092))))) (-1452 (((-112) $ $) 50)) (-3087 (((-112) $) 23)) (-1663 (($) 25)) (-2343 (((-1132 |#1| |#2|) $ "value") NIL)) (-1423 (((-562) $ $) NIL)) (-2473 (((-112) $) 44)) (-1723 (((-766) (-1 (-112) (-1132 |#1| |#2|)) $) NIL (|has| $ (-6 -4403))) (((-766) (-1132 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-1132 |#1| |#2|) (-1092))))) (-4220 (($ $) 49)) (-4064 (($ (-1132 |#1| |#2|)) 10) (($ |#1| |#2| (-639 $)) 13) (($ |#1| |#2| (-639 (-1132 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-639 |#2|)) 18)) (-3777 (((-639 |#2|) $) 81)) (-4053 (((-857) $) 73 (|has| (-1132 |#1| |#2|) (-609 (-857))))) (-3643 (((-639 $) $) 29)) (-2985 (((-112) $ $) NIL (|has| (-1132 |#1| |#2|) (-1092)))) (-2879 (((-112) (-1 (-112) (-1132 |#1| |#2|)) $) NIL (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 64 (|has| (-1132 |#1| |#2|) (-1092)))) (-3492 (((-766) $) 58 (|has| $ (-6 -4403))))) -(((-1133 |#1| |#2|) (-13 (-1005 (-1132 |#1| |#2|)) (-10 -8 (-6 -4404) (-6 -4403) (-15 -4101 ((-3 $ "failed") $)) (-15 -2372 ($ $)) (-15 -4064 ($ (-1132 |#1| |#2|))) (-15 -4064 ($ |#1| |#2| (-639 $))) (-15 -4064 ($ |#1| |#2| (-639 (-1132 |#1| |#2|)))) (-15 -4064 ($ |#1| |#2| |#1| (-639 |#2|))) (-15 -3777 ((-639 |#2|) $)) (-15 -3794 ((-639 (-2 (|:| |val| |#1|) (|:| -1501 |#2|))) $)) (-15 -3298 ((-112) (-1132 |#1| |#2|) $)) (-15 -3692 ((-112) (-1132 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1475 ($ (-1132 |#1| |#2|) $)) (-15 -3729 ($ (-1132 |#1| |#2|) $)) (-15 -3248 ($ $ $ (-639 (-1132 |#1| |#2|)))) (-15 -3248 ($ $ $ (-639 (-1132 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1092) (-34)) (-13 (-1092) (-34))) (T -1133)) -((-4101 (*1 *1 *1) (|partial| -12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1092) (-34))) (-4 *3 (-13 (-1092) (-34))))) (-2372 (*1 *1 *1) (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1092) (-34))) (-4 *3 (-13 (-1092) (-34))))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-1132 *3 *4)) (-4 *3 (-13 (-1092) (-34))) (-4 *4 (-13 (-1092) (-34))) (-5 *1 (-1133 *3 *4)))) (-4064 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-639 (-1133 *2 *3))) (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1092) (-34))) (-4 *3 (-13 (-1092) (-34))))) (-4064 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-639 (-1132 *2 *3))) (-4 *2 (-13 (-1092) (-34))) (-4 *3 (-13 (-1092) (-34))) (-5 *1 (-1133 *2 *3)))) (-4064 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-639 *3)) (-4 *3 (-13 (-1092) (-34))) (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1092) (-34))))) (-3777 (*1 *2 *1) (-12 (-5 *2 (-639 *4)) (-5 *1 (-1133 *3 *4)) (-4 *3 (-13 (-1092) (-34))) (-4 *4 (-13 (-1092) (-34))))) (-3794 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1501 *4)))) (-5 *1 (-1133 *3 *4)) (-4 *3 (-13 (-1092) (-34))) (-4 *4 (-13 (-1092) (-34))))) (-3298 (*1 *2 *3 *1) (-12 (-5 *3 (-1132 *4 *5)) (-4 *4 (-13 (-1092) (-34))) (-4 *5 (-13 (-1092) (-34))) (-5 *2 (-112)) (-5 *1 (-1133 *4 *5)))) (-3692 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1132 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1092) (-34))) (-4 *6 (-13 (-1092) (-34))) (-5 *2 (-112)) (-5 *1 (-1133 *5 *6)))) (-1475 (*1 *1 *2 *1) (-12 (-5 *2 (-1132 *3 *4)) (-4 *3 (-13 (-1092) (-34))) (-4 *4 (-13 (-1092) (-34))) (-5 *1 (-1133 *3 *4)))) (-3729 (*1 *1 *2 *1) (-12 (-5 *2 (-1132 *3 *4)) (-4 *3 (-13 (-1092) (-34))) (-4 *4 (-13 (-1092) (-34))) (-5 *1 (-1133 *3 *4)))) (-3248 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-639 (-1132 *3 *4))) (-4 *3 (-13 (-1092) (-34))) (-4 *4 (-13 (-1092) (-34))) (-5 *1 (-1133 *3 *4)))) (-3248 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-639 (-1132 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1092) (-34))) (-4 *5 (-13 (-1092) (-34))) (-5 *1 (-1133 *4 *5))))) -(-13 (-1005 (-1132 |#1| |#2|)) (-10 -8 (-6 -4404) (-6 -4403) (-15 -4101 ((-3 $ "failed") $)) (-15 -2372 ($ $)) (-15 -4064 ($ (-1132 |#1| |#2|))) (-15 -4064 ($ |#1| |#2| (-639 $))) (-15 -4064 ($ |#1| |#2| (-639 (-1132 |#1| |#2|)))) (-15 -4064 ($ |#1| |#2| |#1| (-639 |#2|))) (-15 -3777 ((-639 |#2|) $)) (-15 -3794 ((-639 (-2 (|:| |val| |#1|) (|:| -1501 |#2|))) $)) (-15 -3298 ((-112) (-1132 |#1| |#2|) $)) (-15 -3692 ((-112) (-1132 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1475 ($ (-1132 |#1| |#2|) $)) (-15 -3729 ($ (-1132 |#1| |#2|) $)) (-15 -3248 ($ $ $ (-639 (-1132 |#1| |#2|)))) (-15 -3248 ($ $ $ (-639 (-1132 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2309 (($ $) NIL)) (-1748 ((|#2| $) NIL)) (-4097 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-2130 (($ (-683 |#2|)) 50)) (-2819 (((-112) $) NIL)) (-3735 (((-112) $ (-766)) NIL)) (-4369 (($ |#2|) 10)) (-3329 (($) NIL T CONST)) (-2239 (($ $) 63 (|has| |#2| (-306)))) (-3511 (((-239 |#1| |#2|) $ (-562)) 36)) (-4048 (((-3 (-562) "failed") $) NIL (|has| |#2| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#2| (-1033 (-406 (-562))))) (((-3 |#2| "failed") $) NIL)) (-3960 (((-562) $) NIL (|has| |#2| (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| |#2| (-1033 (-406 (-562))))) ((|#2| $) NIL)) (-3449 (((-683 (-562)) (-683 $)) NIL (|has| |#2| (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#2| (-635 (-562)))) (((-2 (|:| -1767 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) NIL) (((-683 |#2|) (-683 $)) NIL)) (-1694 (((-3 $ "failed") $) 77)) (-2172 (((-766) $) 65 (|has| |#2| (-554)))) (-1420 ((|#2| $ (-562) (-562)) NIL)) (-1720 (((-639 |#2|) $) NIL (|has| $ (-6 -4403)))) (-4367 (((-112) $) NIL)) (-4244 (((-766) $) 67 (|has| |#2| (-554)))) (-3821 (((-639 (-239 |#1| |#2|)) $) 71 (|has| |#2| (-554)))) (-2698 (((-766) $) NIL)) (-1458 (($ |#2|) 20)) (-2708 (((-766) $) NIL)) (-4172 (((-112) $ (-766)) NIL)) (-1622 ((|#2| $) 61 (|has| |#2| (-6 (-4405 "*"))))) (-1808 (((-562) $) NIL)) (-2028 (((-562) $) NIL)) (-2123 (((-639 |#2|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092))))) (-3269 (((-562) $) NIL)) (-2727 (((-562) $) NIL)) (-2884 (($ (-639 (-639 |#2|))) 31)) (-1491 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2247 (((-639 (-639 |#2|)) $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL)) (-2463 (((-3 $ "failed") $) 74 (|has| |#2| (-362)))) (-1709 (((-1112) $) NIL)) (-1762 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-554)))) (-3008 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 |#2|) (-639 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))))) (-1452 (((-112) $ $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) NIL)) (-2343 ((|#2| $ (-562) (-562) |#2|) NIL) ((|#2| $ (-562) (-562)) NIL)) (-4029 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1168)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-766)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-3042 ((|#2| $) NIL)) (-3168 (($ (-639 |#2|)) 44)) (-1752 (((-112) $) NIL)) (-2399 (((-239 |#1| |#2|) $) NIL)) (-3282 ((|#2| $) 59 (|has| |#2| (-6 (-4405 "*"))))) (-1723 (((-766) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403))) (((-766) |#2| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092))))) (-4220 (($ $) NIL)) (-4208 (((-535) $) 86 (|has| |#2| (-610 (-535))))) (-2208 (((-239 |#1| |#2|) $ (-562)) 38)) (-4053 (((-857) $) 41) (($ (-562)) NIL) (($ (-406 (-562))) NIL (|has| |#2| (-1033 (-406 (-562))))) (($ |#2|) NIL) (((-683 |#2|) $) 46)) (-1568 (((-766)) 18)) (-2879 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403)))) (-1996 (((-112) $) NIL)) (-2285 (($) 12 T CONST)) (-2294 (($) 15 T CONST)) (-3113 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1168)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-766)) NIL (|has| |#2| (-232))) (($ $) NIL (|has| |#2| (-232)))) (-1733 (((-112) $ $) NIL)) (-1859 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) 57) (($ $ (-562)) 76 (|has| |#2| (-362)))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-239 |#1| |#2|) $ (-239 |#1| |#2|)) 53) (((-239 |#1| |#2|) (-239 |#1| |#2|) $) 55)) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-1134 |#1| |#2|) (-13 (-1115 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-609 (-683 |#2|)) (-10 -8 (-15 -1458 ($ |#2|)) (-15 -2309 ($ $)) (-15 -2130 ($ (-683 |#2|))) (IF (|has| |#2| (-6 (-4405 "*"))) (-6 -4392) |%noBranch|) (IF (|has| |#2| (-6 (-4405 "*"))) (IF (|has| |#2| (-6 -4400)) (-6 -4400) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-610 (-535))) (-6 (-610 (-535))) |%noBranch|))) (-766) (-1044)) (T -1134)) -((-1458 (*1 *1 *2) (-12 (-5 *1 (-1134 *3 *2)) (-14 *3 (-766)) (-4 *2 (-1044)))) (-2309 (*1 *1 *1) (-12 (-5 *1 (-1134 *2 *3)) (-14 *2 (-766)) (-4 *3 (-1044)))) (-2130 (*1 *1 *2) (-12 (-5 *2 (-683 *4)) (-4 *4 (-1044)) (-5 *1 (-1134 *3 *4)) (-14 *3 (-766))))) -(-13 (-1115 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-609 (-683 |#2|)) (-10 -8 (-15 -1458 ($ |#2|)) (-15 -2309 ($ $)) (-15 -2130 ($ (-683 |#2|))) (IF (|has| |#2| (-6 (-4405 "*"))) (-6 -4392) |%noBranch|) (IF (|has| |#2| (-6 (-4405 "*"))) (IF (|has| |#2| (-6 -4400)) (-6 -4400) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-610 (-535))) (-6 (-610 (-535))) |%noBranch|))) -((-2033 (($ $) 19)) (-3904 (($ $ (-143)) 10) (($ $ (-140)) 14)) (-3847 (((-112) $ $) 24)) (-3249 (($ $) 17)) (-2343 (((-143) $ (-562) (-143)) NIL) (((-143) $ (-562)) NIL) (($ $ (-1223 (-562))) NIL) (($ $ $) 29)) (-4053 (($ (-143)) 27) (((-857) $) NIL))) -(((-1135 |#1|) (-10 -8 (-15 -4053 ((-857) |#1|)) (-15 -2343 (|#1| |#1| |#1|)) (-15 -3904 (|#1| |#1| (-140))) (-15 -3904 (|#1| |#1| (-143))) (-15 -4053 (|#1| (-143))) (-15 -3847 ((-112) |#1| |#1|)) (-15 -2033 (|#1| |#1|)) (-15 -3249 (|#1| |#1|)) (-15 -2343 (|#1| |#1| (-1223 (-562)))) (-15 -2343 ((-143) |#1| (-562))) (-15 -2343 ((-143) |#1| (-562) (-143)))) (-1136)) (T -1135)) -NIL -(-10 -8 (-15 -4053 ((-857) |#1|)) (-15 -2343 (|#1| |#1| |#1|)) (-15 -3904 (|#1| |#1| (-140))) (-15 -3904 (|#1| |#1| (-143))) (-15 -4053 (|#1| (-143))) (-15 -3847 ((-112) |#1| |#1|)) (-15 -2033 (|#1| |#1|)) (-15 -3249 (|#1| |#1|)) (-15 -2343 (|#1| |#1| (-1223 (-562)))) (-15 -2343 ((-143) |#1| (-562))) (-15 -2343 ((-143) |#1| (-562) (-143)))) -((-4041 (((-112) $ $) 19 (|has| (-143) (-1092)))) (-2629 (($ $) 120)) (-2033 (($ $) 121)) (-3904 (($ $ (-143)) 108) (($ $ (-140)) 107)) (-3655 (((-1261) $ (-562) (-562)) 40 (|has| $ (-6 -4404)))) (-3824 (((-112) $ $) 118)) (-3801 (((-112) $ $ (-562)) 117)) (-1841 (((-639 $) $ (-143)) 110) (((-639 $) $ (-140)) 109)) (-1706 (((-112) (-1 (-112) (-143) (-143)) $) 98) (((-112) $) 92 (|has| (-143) (-845)))) (-3737 (($ (-1 (-112) (-143) (-143)) $) 89 (|has| $ (-6 -4404))) (($ $) 88 (-12 (|has| (-143) (-845)) (|has| $ (-6 -4404))))) (-1395 (($ (-1 (-112) (-143) (-143)) $) 99) (($ $) 93 (|has| (-143) (-845)))) (-3735 (((-112) $ (-766)) 8)) (-4200 (((-143) $ (-562) (-143)) 52 (|has| $ (-6 -4404))) (((-143) $ (-1223 (-562)) (-143)) 58 (|has| $ (-6 -4404)))) (-3556 (($ (-1 (-112) (-143)) $) 75 (|has| $ (-6 -4403)))) (-3329 (($) 7 T CONST)) (-1967 (($ $ (-143)) 104) (($ $ (-140)) 103)) (-2673 (($ $) 90 (|has| $ (-6 -4404)))) (-2676 (($ $) 100)) (-1348 (($ $ (-1223 (-562)) $) 114)) (-1459 (($ $) 78 (-12 (|has| (-143) (-1092)) (|has| $ (-6 -4403))))) (-1475 (($ (-143) $) 77 (-12 (|has| (-143) (-1092)) (|has| $ (-6 -4403)))) (($ (-1 (-112) (-143)) $) 74 (|has| $ (-6 -4403)))) (-1954 (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) 76 (-12 (|has| (-143) (-1092)) (|has| $ (-6 -4403)))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) 73 (|has| $ (-6 -4403))) (((-143) (-1 (-143) (-143) (-143)) $) 72 (|has| $ (-6 -4403)))) (-1507 (((-143) $ (-562) (-143)) 53 (|has| $ (-6 -4404)))) (-1420 (((-143) $ (-562)) 51)) (-3847 (((-112) $ $) 119)) (-4265 (((-562) (-1 (-112) (-143)) $) 97) (((-562) (-143) $) 96 (|has| (-143) (-1092))) (((-562) (-143) $ (-562)) 95 (|has| (-143) (-1092))) (((-562) $ $ (-562)) 113) (((-562) (-140) $ (-562)) 112)) (-1720 (((-639 (-143)) $) 30 (|has| $ (-6 -4403)))) (-1458 (($ (-766) (-143)) 69)) (-4172 (((-112) $ (-766)) 9)) (-1849 (((-562) $) 43 (|has| (-562) (-845)))) (-1551 (($ $ $) 87 (|has| (-143) (-845)))) (-4103 (($ (-1 (-112) (-143) (-143)) $ $) 101) (($ $ $) 94 (|has| (-143) (-845)))) (-2123 (((-639 (-143)) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) (-143) $) 27 (-12 (|has| (-143) (-1092)) (|has| $ (-6 -4403))))) (-1929 (((-562) $) 44 (|has| (-562) (-845)))) (-2993 (($ $ $) 86 (|has| (-143) (-845)))) (-4264 (((-112) $ $ (-143)) 115)) (-3789 (((-766) $ $ (-143)) 116)) (-1491 (($ (-1 (-143) (-143)) $) 34 (|has| $ (-6 -4404)))) (-4152 (($ (-1 (-143) (-143)) $) 35) (($ (-1 (-143) (-143) (-143)) $ $) 64)) (-4145 (($ $) 122)) (-3249 (($ $) 123)) (-4147 (((-112) $ (-766)) 10)) (-1979 (($ $ (-143)) 106) (($ $ (-140)) 105)) (-3696 (((-1150) $) 22 (|has| (-143) (-1092)))) (-3295 (($ (-143) $ (-562)) 60) (($ $ $ (-562)) 59)) (-3336 (((-639 (-562)) $) 46)) (-1987 (((-112) (-562) $) 47)) (-1709 (((-1112) $) 21 (|has| (-143) (-1092)))) (-1421 (((-143) $) 42 (|has| (-562) (-845)))) (-1963 (((-3 (-143) "failed") (-1 (-112) (-143)) $) 71)) (-3510 (($ $ (-143)) 41 (|has| $ (-6 -4404)))) (-3008 (((-112) (-1 (-112) (-143)) $) 32 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 (-143)))) 26 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092)))) (($ $ (-293 (-143))) 25 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092)))) (($ $ (-143) (-143)) 24 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092)))) (($ $ (-639 (-143)) (-639 (-143))) 23 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092))))) (-1452 (((-112) $ $) 14)) (-2716 (((-112) (-143) $) 45 (-12 (|has| $ (-6 -4403)) (|has| (-143) (-1092))))) (-2366 (((-639 (-143)) $) 48)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-2343 (((-143) $ (-562) (-143)) 50) (((-143) $ (-562)) 49) (($ $ (-1223 (-562))) 63) (($ $ $) 102)) (-2880 (($ $ (-562)) 62) (($ $ (-1223 (-562))) 61)) (-1723 (((-766) (-1 (-112) (-143)) $) 31 (|has| $ (-6 -4403))) (((-766) (-143) $) 28 (-12 (|has| (-143) (-1092)) (|has| $ (-6 -4403))))) (-2694 (($ $ $ (-562)) 91 (|has| $ (-6 -4404)))) (-4220 (($ $) 13)) (-4208 (((-535) $) 79 (|has| (-143) (-610 (-535))))) (-4064 (($ (-639 (-143))) 70)) (-2767 (($ $ (-143)) 68) (($ (-143) $) 67) (($ $ $) 66) (($ (-639 $)) 65)) (-4053 (($ (-143)) 111) (((-857) $) 18 (|has| (-143) (-609 (-857))))) (-2879 (((-112) (-1 (-112) (-143)) $) 33 (|has| $ (-6 -4403)))) (-1798 (((-112) $ $) 84 (|has| (-143) (-845)))) (-1771 (((-112) $ $) 83 (|has| (-143) (-845)))) (-1733 (((-112) $ $) 20 (|has| (-143) (-1092)))) (-1785 (((-112) $ $) 85 (|has| (-143) (-845)))) (-1761 (((-112) $ $) 82 (|has| (-143) (-845)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-1136) (-139)) (T -1136)) -((-3249 (*1 *1 *1) (-4 *1 (-1136))) (-4145 (*1 *1 *1) (-4 *1 (-1136))) (-2033 (*1 *1 *1) (-4 *1 (-1136))) (-2629 (*1 *1 *1) (-4 *1 (-1136))) (-3847 (*1 *2 *1 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-112)))) (-3824 (*1 *2 *1 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-112)))) (-3801 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (-562)) (-5 *2 (-112)))) (-3789 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (-143)) (-5 *2 (-766)))) (-4264 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (-143)) (-5 *2 (-112)))) (-1348 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1223 (-562))))) (-4265 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1136)) (-5 *2 (-562)))) (-4265 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1136)) (-5 *2 (-562)) (-5 *3 (-140)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-143)) (-4 *1 (-1136)))) (-1841 (*1 *2 *1 *3) (-12 (-5 *3 (-143)) (-5 *2 (-639 *1)) (-4 *1 (-1136)))) (-1841 (*1 *2 *1 *3) (-12 (-5 *3 (-140)) (-5 *2 (-639 *1)) (-4 *1 (-1136)))) (-3904 (*1 *1 *1 *2) (-12 (-4 *1 (-1136)) (-5 *2 (-143)))) (-3904 (*1 *1 *1 *2) (-12 (-4 *1 (-1136)) (-5 *2 (-140)))) (-1979 (*1 *1 *1 *2) (-12 (-4 *1 (-1136)) (-5 *2 (-143)))) (-1979 (*1 *1 *1 *2) (-12 (-4 *1 (-1136)) (-5 *2 (-140)))) (-1967 (*1 *1 *1 *2) (-12 (-4 *1 (-1136)) (-5 *2 (-143)))) (-1967 (*1 *1 *1 *2) (-12 (-4 *1 (-1136)) (-5 *2 (-140)))) (-2343 (*1 *1 *1 *1) (-4 *1 (-1136)))) -(-13 (-19 (-143)) (-10 -8 (-15 -3249 ($ $)) (-15 -4145 ($ $)) (-15 -2033 ($ $)) (-15 -2629 ($ $)) (-15 -3847 ((-112) $ $)) (-15 -3824 ((-112) $ $)) (-15 -3801 ((-112) $ $ (-562))) (-15 -3789 ((-766) $ $ (-143))) (-15 -4264 ((-112) $ $ (-143))) (-15 -1348 ($ $ (-1223 (-562)) $)) (-15 -4265 ((-562) $ $ (-562))) (-15 -4265 ((-562) (-140) $ (-562))) (-15 -4053 ($ (-143))) (-15 -1841 ((-639 $) $ (-143))) (-15 -1841 ((-639 $) $ (-140))) (-15 -3904 ($ $ (-143))) (-15 -3904 ($ $ (-140))) (-15 -1979 ($ $ (-143))) (-15 -1979 ($ $ (-140))) (-15 -1967 ($ $ (-143))) (-15 -1967 ($ $ (-140))) (-15 -2343 ($ $ $)))) -(((-34) . T) ((-102) -4037 (|has| (-143) (-1092)) (|has| (-143) (-845))) ((-609 (-857)) -4037 (|has| (-143) (-1092)) (|has| (-143) (-845)) (|has| (-143) (-609 (-857)))) ((-150 #0=(-143)) . T) ((-610 (-535)) |has| (-143) (-610 (-535))) ((-285 #1=(-562) #0#) . T) ((-287 #1# #0#) . T) ((-308 #0#) -12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092))) ((-372 #0#) . T) ((-488 #0#) . T) ((-600 #1# #0#) . T) ((-513 #0# #0#) -12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092))) ((-645 #0#) . T) ((-19 #0#) . T) ((-845) |has| (-143) (-845)) ((-1092) -4037 (|has| (-143) (-1092)) (|has| (-143) (-845))) ((-1207) . T)) -((-4211 (((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) (-639 |#4|) (-639 |#5|) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) (-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) (-766)) 93)) (-2846 (((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5| (-766)) 54)) (-4192 (((-1261) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) (-766)) 85)) (-1930 (((-766) (-639 |#4|) (-639 |#5|)) 27)) (-3341 (((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5| (-766)) 56) (((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5| (-766) (-112)) 58)) (-3758 (((-639 |#5|) (-639 |#4|) (-639 |#5|) (-112) (-112) (-112) (-112) (-112)) 76) (((-639 |#5|) (-639 |#4|) (-639 |#5|) (-112) (-112)) 77)) (-4208 (((-1150) (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) 80)) (-2329 (((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5|) 53)) (-3608 (((-766) (-639 |#4|) (-639 |#5|)) 19))) -(((-1137 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3608 ((-766) (-639 |#4|) (-639 |#5|))) (-15 -1930 ((-766) (-639 |#4|) (-639 |#5|))) (-15 -2329 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5|)) (-15 -2846 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5| (-766))) (-15 -2846 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5|)) (-15 -3341 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5| (-766) (-112))) (-15 -3341 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5| (-766))) (-15 -3341 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5|)) (-15 -3758 ((-639 |#5|) (-639 |#4|) (-639 |#5|) (-112) (-112))) (-15 -3758 ((-639 |#5|) (-639 |#4|) (-639 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4211 ((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) (-639 |#4|) (-639 |#5|) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) (-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) (-766))) (-15 -4208 ((-1150) (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|)))) (-15 -4192 ((-1261) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) (-766)))) (-451) (-788) (-845) (-1058 |#1| |#2| |#3|) (-1101 |#1| |#2| |#3| |#4|)) (T -1137)) -((-4192 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-2 (|:| |val| (-639 *8)) (|:| -1501 *9)))) (-5 *4 (-766)) (-4 *8 (-1058 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-1261)) (-5 *1 (-1137 *5 *6 *7 *8 *9)))) (-4208 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-639 *7)) (|:| -1501 *8))) (-4 *7 (-1058 *4 *5 *6)) (-4 *8 (-1101 *4 *5 *6 *7)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-1150)) (-5 *1 (-1137 *4 *5 *6 *7 *8)))) (-4211 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-639 *11)) (|:| |todo| (-639 (-2 (|:| |val| *3) (|:| -1501 *11)))))) (-5 *6 (-766)) (-5 *2 (-639 (-2 (|:| |val| (-639 *10)) (|:| -1501 *11)))) (-5 *3 (-639 *10)) (-5 *4 (-639 *11)) (-4 *10 (-1058 *7 *8 *9)) (-4 *11 (-1101 *7 *8 *9 *10)) (-4 *7 (-451)) (-4 *8 (-788)) (-4 *9 (-845)) (-5 *1 (-1137 *7 *8 *9 *10 *11)))) (-3758 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-639 *9)) (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *1 (-1137 *5 *6 *7 *8 *9)))) (-3758 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-639 *9)) (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *1 (-1137 *5 *6 *7 *8 *9)))) (-3341 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-639 *4)) (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1501 *4)))))) (-5 *1 (-1137 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3341 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-766)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) (-4 *3 (-1058 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-639 *4)) (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1501 *4)))))) (-5 *1 (-1137 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) (-3341 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-766)) (-5 *6 (-112)) (-4 *7 (-451)) (-4 *8 (-788)) (-4 *9 (-845)) (-4 *3 (-1058 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-639 *4)) (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1501 *4)))))) (-5 *1 (-1137 *7 *8 *9 *3 *4)) (-4 *4 (-1101 *7 *8 *9 *3)))) (-2846 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-639 *4)) (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1501 *4)))))) (-5 *1 (-1137 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-2846 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-766)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) (-4 *3 (-1058 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-639 *4)) (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1501 *4)))))) (-5 *1 (-1137 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) (-2329 (*1 *2 *3 *4) (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-639 *4)) (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1501 *4)))))) (-5 *1 (-1137 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-1930 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-639 *9)) (-4 *8 (-1058 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-766)) (-5 *1 (-1137 *5 *6 *7 *8 *9)))) (-3608 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-639 *9)) (-4 *8 (-1058 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-766)) (-5 *1 (-1137 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -3608 ((-766) (-639 |#4|) (-639 |#5|))) (-15 -1930 ((-766) (-639 |#4|) (-639 |#5|))) (-15 -2329 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5|)) (-15 -2846 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5| (-766))) (-15 -2846 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5|)) (-15 -3341 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5| (-766) (-112))) (-15 -3341 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5| (-766))) (-15 -3341 ((-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) |#4| |#5|)) (-15 -3758 ((-639 |#5|) (-639 |#4|) (-639 |#5|) (-112) (-112))) (-15 -3758 ((-639 |#5|) (-639 |#4|) (-639 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4211 ((-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) (-639 |#4|) (-639 |#5|) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) (-2 (|:| |done| (-639 |#5|)) (|:| |todo| (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))))) (-766))) (-15 -4208 ((-1150) (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|)))) (-15 -4192 ((-1261) (-639 (-2 (|:| |val| (-639 |#4|)) (|:| -1501 |#5|))) (-766)))) -((-4041 (((-112) $ $) NIL)) (-1330 (((-639 (-2 (|:| -1449 $) (|:| -3315 (-639 |#4|)))) (-639 |#4|)) NIL)) (-3672 (((-639 $) (-639 |#4|)) 110) (((-639 $) (-639 |#4|) (-112)) 111) (((-639 $) (-639 |#4|) (-112) (-112)) 109) (((-639 $) (-639 |#4|) (-112) (-112) (-112) (-112)) 112)) (-1401 (((-639 |#3|) $) NIL)) (-2799 (((-112) $) NIL)) (-4370 (((-112) $) NIL (|has| |#1| (-554)))) (-4177 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3623 ((|#4| |#4| $) NIL)) (-1977 (((-639 (-2 (|:| |val| |#4|) (|:| -1501 $))) |#4| $) 84)) (-1395 (((-2 (|:| |under| $) (|:| -3870 $) (|:| |upper| $)) $ |#3|) NIL)) (-3735 (((-112) $ (-766)) NIL)) (-3556 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4403))) (((-3 |#4| "failed") $ |#3|) 62)) (-3329 (($) NIL T CONST)) (-2169 (((-112) $) 27 (|has| |#1| (-554)))) (-2183 (((-112) $ $) NIL (|has| |#1| (-554)))) (-2864 (((-112) $ $) NIL (|has| |#1| (-554)))) (-4219 (((-112) $) NIL (|has| |#1| (-554)))) (-4227 (((-639 |#4|) (-639 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2037 (((-639 |#4|) (-639 |#4|) $) NIL (|has| |#1| (-554)))) (-4230 (((-639 |#4|) (-639 |#4|) $) NIL (|has| |#1| (-554)))) (-4048 (((-3 $ "failed") (-639 |#4|)) NIL)) (-3960 (($ (-639 |#4|)) NIL)) (-1434 (((-3 $ "failed") $) 40)) (-3255 ((|#4| |#4| $) 65)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#4| (-1092))))) (-1475 (($ |#4| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#4| (-1092)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4403)))) (-1441 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-554)))) (-3300 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2227 ((|#4| |#4| $) NIL)) (-1954 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4403)) (|has| |#4| (-1092)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4403))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4403))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1471 (((-2 (|:| -1449 (-639 |#4|)) (|:| -3315 (-639 |#4|))) $) NIL)) (-3189 (((-112) |#4| $) NIL)) (-2633 (((-112) |#4| $) NIL)) (-2813 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3764 (((-2 (|:| |val| (-639 |#4|)) (|:| |towers| (-639 $))) (-639 |#4|) (-112) (-112)) 124)) (-1720 (((-639 |#4|) $) 17 (|has| $ (-6 -4403)))) (-1493 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3761 ((|#3| $) 34)) (-4172 (((-112) $ (-766)) NIL)) (-2123 (((-639 |#4|) $) 18 (|has| $ (-6 -4403)))) (-1572 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4403)) (|has| |#4| (-1092))))) (-1491 (($ (-1 |#4| |#4|) $) 24 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#4| |#4|) $) 22)) (-3133 (((-639 |#3|) $) NIL)) (-3112 (((-112) |#3| $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL)) (-4093 (((-3 |#4| (-639 $)) |#4| |#4| $) NIL)) (-2672 (((-639 (-2 (|:| |val| |#4|) (|:| -1501 $))) |#4| |#4| $) 103)) (-1504 (((-3 |#4| "failed") $) 38)) (-2334 (((-639 $) |#4| $) 88)) (-4302 (((-3 (-112) (-639 $)) |#4| $) NIL)) (-3792 (((-639 (-2 (|:| |val| (-112)) (|:| -1501 $))) |#4| $) 98) (((-112) |#4| $) 53)) (-4169 (((-639 $) |#4| $) 107) (((-639 $) (-639 |#4|) $) NIL) (((-639 $) (-639 |#4|) (-639 $)) 108) (((-639 $) |#4| (-639 $)) NIL)) (-4110 (((-639 $) (-639 |#4|) (-112) (-112) (-112)) 119)) (-1997 (($ |#4| $) 75) (($ (-639 |#4|) $) 76) (((-639 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 74)) (-2063 (((-639 |#4|) $) NIL)) (-1645 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2651 ((|#4| |#4| $) NIL)) (-1789 (((-112) $ $) NIL)) (-4123 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-554)))) (-2830 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1630 ((|#4| |#4| $) NIL)) (-1709 (((-1112) $) NIL)) (-1421 (((-3 |#4| "failed") $) 36)) (-1963 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4333 (((-3 $ "failed") $ |#4|) 48)) (-4316 (($ $ |#4|) NIL) (((-639 $) |#4| $) 90) (((-639 $) |#4| (-639 $)) NIL) (((-639 $) (-639 |#4|) $) NIL) (((-639 $) (-639 |#4|) (-639 $)) 86)) (-3008 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 |#4|) (-639 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-639 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))))) (-1452 (((-112) $ $) NIL)) (-3087 (((-112) $) 16)) (-1663 (($) 14)) (-2250 (((-766) $) NIL)) (-1723 (((-766) |#4| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#4| (-1092)))) (((-766) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4403)))) (-4220 (($ $) 13)) (-4208 (((-535) $) NIL (|has| |#4| (-610 (-535))))) (-4064 (($ (-639 |#4|)) 21)) (-2316 (($ $ |#3|) 43)) (-2180 (($ $ |#3|) 44)) (-2209 (($ $) NIL)) (-1962 (($ $ |#3|) NIL)) (-4053 (((-857) $) 32) (((-639 |#4|) $) 41)) (-4157 (((-766) $) NIL (|has| |#3| (-367)))) (-4168 (((-3 (-2 (|:| |bas| $) (|:| -2774 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2774 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2350 (((-112) $ (-1 (-112) |#4| (-639 |#4|))) NIL)) (-4125 (((-639 $) |#4| $) 54) (((-639 $) |#4| (-639 $)) NIL) (((-639 $) (-639 |#4|) $) NIL) (((-639 $) (-639 |#4|) (-639 $)) NIL)) (-2879 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4403)))) (-3278 (((-639 |#3|) $) NIL)) (-1972 (((-112) |#4| $) NIL)) (-3782 (((-112) |#3| $) 61)) (-1733 (((-112) $ $) NIL)) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-1138 |#1| |#2| |#3| |#4|) (-13 (-1101 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1997 ((-639 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3672 ((-639 $) (-639 |#4|) (-112) (-112))) (-15 -3672 ((-639 $) (-639 |#4|) (-112) (-112) (-112) (-112))) (-15 -4110 ((-639 $) (-639 |#4|) (-112) (-112) (-112))) (-15 -3764 ((-2 (|:| |val| (-639 |#4|)) (|:| |towers| (-639 $))) (-639 |#4|) (-112) (-112))))) (-451) (-788) (-845) (-1058 |#1| |#2| |#3|)) (T -1138)) -((-1997 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-639 (-1138 *5 *6 *7 *3))) (-5 *1 (-1138 *5 *6 *7 *3)) (-4 *3 (-1058 *5 *6 *7)))) (-3672 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-639 (-1138 *5 *6 *7 *8))) (-5 *1 (-1138 *5 *6 *7 *8)))) (-3672 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-639 (-1138 *5 *6 *7 *8))) (-5 *1 (-1138 *5 *6 *7 *8)))) (-4110 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-639 (-1138 *5 *6 *7 *8))) (-5 *1 (-1138 *5 *6 *7 *8)))) (-3764 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *8 (-1058 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-639 *8)) (|:| |towers| (-639 (-1138 *5 *6 *7 *8))))) (-5 *1 (-1138 *5 *6 *7 *8)) (-5 *3 (-639 *8))))) -(-13 (-1101 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1997 ((-639 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3672 ((-639 $) (-639 |#4|) (-112) (-112))) (-15 -3672 ((-639 $) (-639 |#4|) (-112) (-112) (-112) (-112))) (-15 -4110 ((-639 $) (-639 |#4|) (-112) (-112) (-112))) (-15 -3764 ((-2 (|:| |val| (-639 |#4|)) (|:| |towers| (-639 $))) (-639 |#4|) (-112) (-112))))) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2774 ((|#1| $) 34)) (-2439 (($ (-639 |#1|)) 39)) (-3735 (((-112) $ (-766)) NIL)) (-3329 (($) NIL T CONST)) (-2571 ((|#1| |#1| $) 36)) (-3767 ((|#1| $) 32)) (-1720 (((-639 |#1|) $) 18 (|has| $ (-6 -4403)))) (-4172 (((-112) $ (-766)) NIL)) (-2123 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1491 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 22)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-2078 ((|#1| $) 35)) (-1581 (($ |#1| $) 37)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-2038 ((|#1| $) 33)) (-3008 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) NIL)) (-3087 (((-112) $) 31)) (-1663 (($) 38)) (-2191 (((-766) $) 29)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-4220 (($ $) 27)) (-4053 (((-857) $) 14 (|has| |#1| (-609 (-857))))) (-4131 (($ (-639 |#1|)) NIL)) (-2879 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 17 (|has| |#1| (-1092)))) (-3492 (((-766) $) 30 (|has| $ (-6 -4403))))) -(((-1139 |#1|) (-13 (-1113 |#1|) (-10 -8 (-15 -2439 ($ (-639 |#1|))))) (-1207)) (T -1139)) -((-2439 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-5 *1 (-1139 *3))))) -(-13 (-1113 |#1|) (-10 -8 (-15 -2439 ($ (-639 |#1|))))) -((-4200 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1223 (-562)) |#2|) 43) ((|#2| $ (-562) |#2|) 40)) (-2101 (((-112) $) 11)) (-1491 (($ (-1 |#2| |#2|) $) 38)) (-1421 ((|#2| $) NIL) (($ $ (-766)) 16)) (-3510 (($ $ |#2|) 39)) (-3745 (((-112) $) 10)) (-2343 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1223 (-562))) 30) ((|#2| $ (-562)) 22) ((|#2| $ (-562) |#2|) NIL)) (-2587 (($ $ $) 46) (($ $ |#2|) NIL)) (-2767 (($ $ $) 32) (($ |#2| $) NIL) (($ (-639 $)) 35) (($ $ |#2|) NIL))) -(((-1140 |#1| |#2|) (-10 -8 (-15 -2101 ((-112) |#1|)) (-15 -3745 ((-112) |#1|)) (-15 -4200 (|#2| |#1| (-562) |#2|)) (-15 -2343 (|#2| |#1| (-562) |#2|)) (-15 -2343 (|#2| |#1| (-562))) (-15 -3510 (|#1| |#1| |#2|)) (-15 -2767 (|#1| |#1| |#2|)) (-15 -2767 (|#1| (-639 |#1|))) (-15 -2343 (|#1| |#1| (-1223 (-562)))) (-15 -4200 (|#2| |#1| (-1223 (-562)) |#2|)) (-15 -4200 (|#2| |#1| "last" |#2|)) (-15 -4200 (|#1| |#1| "rest" |#1|)) (-15 -4200 (|#2| |#1| "first" |#2|)) (-15 -2587 (|#1| |#1| |#2|)) (-15 -2587 (|#1| |#1| |#1|)) (-15 -2343 (|#2| |#1| "last")) (-15 -2343 (|#1| |#1| "rest")) (-15 -1421 (|#1| |#1| (-766))) (-15 -2343 (|#2| |#1| "first")) (-15 -1421 (|#2| |#1|)) (-15 -2767 (|#1| |#2| |#1|)) (-15 -2767 (|#1| |#1| |#1|)) (-15 -4200 (|#2| |#1| "value" |#2|)) (-15 -2343 (|#2| |#1| "value")) (-15 -1491 (|#1| (-1 |#2| |#2|) |#1|))) (-1141 |#2|) (-1207)) (T -1140)) -NIL -(-10 -8 (-15 -2101 ((-112) |#1|)) (-15 -3745 ((-112) |#1|)) (-15 -4200 (|#2| |#1| (-562) |#2|)) (-15 -2343 (|#2| |#1| (-562) |#2|)) (-15 -2343 (|#2| |#1| (-562))) (-15 -3510 (|#1| |#1| |#2|)) (-15 -2767 (|#1| |#1| |#2|)) (-15 -2767 (|#1| (-639 |#1|))) (-15 -2343 (|#1| |#1| (-1223 (-562)))) (-15 -4200 (|#2| |#1| (-1223 (-562)) |#2|)) (-15 -4200 (|#2| |#1| "last" |#2|)) (-15 -4200 (|#1| |#1| "rest" |#1|)) (-15 -4200 (|#2| |#1| "first" |#2|)) (-15 -2587 (|#1| |#1| |#2|)) (-15 -2587 (|#1| |#1| |#1|)) (-15 -2343 (|#2| |#1| "last")) (-15 -2343 (|#1| |#1| "rest")) (-15 -1421 (|#1| |#1| (-766))) (-15 -2343 (|#2| |#1| "first")) (-15 -1421 (|#2| |#1|)) (-15 -2767 (|#1| |#2| |#1|)) (-15 -2767 (|#1| |#1| |#1|)) (-15 -4200 (|#2| |#1| "value" |#2|)) (-15 -2343 (|#2| |#1| "value")) (-15 -1491 (|#1| (-1 |#2| |#2|) |#1|))) -((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-2533 ((|#1| $) 48)) (-2358 ((|#1| $) 65)) (-3120 (($ $) 67)) (-3655 (((-1261) $ (-562) (-562)) 97 (|has| $ (-6 -4404)))) (-1335 (($ $ (-562)) 52 (|has| $ (-6 -4404)))) (-3735 (((-112) $ (-766)) 8)) (-2677 ((|#1| $ |#1|) 39 (|has| $ (-6 -4404)))) (-3400 (($ $ $) 56 (|has| $ (-6 -4404)))) (-1393 ((|#1| $ |#1|) 54 (|has| $ (-6 -4404)))) (-3239 ((|#1| $ |#1|) 58 (|has| $ (-6 -4404)))) (-4200 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4404))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4404))) (($ $ "rest" $) 55 (|has| $ (-6 -4404))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4404))) ((|#1| $ (-1223 (-562)) |#1|) 117 (|has| $ (-6 -4404))) ((|#1| $ (-562) |#1|) 86 (|has| $ (-6 -4404)))) (-3742 (($ $ (-639 $)) 41 (|has| $ (-6 -4404)))) (-3556 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4403)))) (-2349 ((|#1| $) 66)) (-3329 (($) 7 T CONST)) (-1434 (($ $) 73) (($ $ (-766)) 71)) (-1459 (($ $) 99 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1475 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4403))) (($ |#1| $) 100 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1954 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1507 ((|#1| $ (-562) |#1|) 85 (|has| $ (-6 -4404)))) (-1420 ((|#1| $ (-562)) 87)) (-2101 (((-112) $) 83)) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4403)))) (-2409 (((-639 $) $) 50)) (-4188 (((-112) $ $) 42 (|has| |#1| (-1092)))) (-1458 (($ (-766) |#1|) 108)) (-4172 (((-112) $ (-766)) 9)) (-1849 (((-562) $) 95 (|has| (-562) (-845)))) (-2123 (((-639 |#1|) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1929 (((-562) $) 94 (|has| (-562) (-845)))) (-1491 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4147 (((-112) $ (-766)) 10)) (-4008 (((-639 |#1|) $) 45)) (-3179 (((-112) $) 49)) (-3696 (((-1150) $) 22 (|has| |#1| (-1092)))) (-1504 ((|#1| $) 70) (($ $ (-766)) 68)) (-3295 (($ $ $ (-562)) 116) (($ |#1| $ (-562)) 115)) (-3336 (((-639 (-562)) $) 92)) (-1987 (((-112) (-562) $) 91)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-1421 ((|#1| $) 76) (($ $ (-766)) 74)) (-1963 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-3510 (($ $ |#1|) 96 (|has| $ (-6 -4404)))) (-3745 (((-112) $) 84)) (-3008 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) 14)) (-2716 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2366 (((-639 |#1|) $) 90)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-2343 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1223 (-562))) 112) ((|#1| $ (-562)) 89) ((|#1| $ (-562) |#1|) 88)) (-1423 (((-562) $ $) 44)) (-2880 (($ $ (-1223 (-562))) 114) (($ $ (-562)) 113)) (-2473 (((-112) $) 46)) (-3734 (($ $) 62)) (-3659 (($ $) 59 (|has| $ (-6 -4404)))) (-3595 (((-766) $) 63)) (-2333 (($ $) 64)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4403))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-4220 (($ $) 13)) (-4208 (((-535) $) 98 (|has| |#1| (-610 (-535))))) (-4064 (($ (-639 |#1|)) 107)) (-2587 (($ $ $) 61 (|has| $ (-6 -4404))) (($ $ |#1|) 60 (|has| $ (-6 -4404)))) (-2767 (($ $ $) 78) (($ |#1| $) 77) (($ (-639 $)) 110) (($ $ |#1|) 109)) (-4053 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-3643 (((-639 $) $) 51)) (-2985 (((-112) $ $) 43 (|has| |#1| (-1092)))) (-2879 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-1141 |#1|) (-139) (-1207)) (T -1141)) -((-3745 (*1 *2 *1) (-12 (-4 *1 (-1141 *3)) (-4 *3 (-1207)) (-5 *2 (-112)))) (-2101 (*1 *2 *1) (-12 (-4 *1 (-1141 *3)) (-4 *3 (-1207)) (-5 *2 (-112))))) -(-13 (-1244 |t#1|) (-645 |t#1|) (-10 -8 (-15 -3745 ((-112) $)) (-15 -2101 ((-112) $)))) -(((-34) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-150 |#1|) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-285 #0=(-562) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-600 #0# |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-645 |#1|) . T) ((-1005 |#1|) . T) ((-1092) |has| |#1| (-1092)) ((-1207) . T) ((-1244 |#1|) . T)) -((-4041 (((-112) $ $) NIL (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1443 (($) NIL) (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL)) (-3655 (((-1261) $ |#1| |#1|) NIL (|has| $ (-6 -4404)))) (-3735 (((-112) $ (-766)) NIL)) (-4200 ((|#2| $ |#1| |#2|) NIL)) (-2968 (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-1472 (((-3 |#2| "failed") |#1| $) NIL)) (-3329 (($) NIL T CONST)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092))))) (-3729 (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL (|has| $ (-6 -4403))) (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-3 |#2| "failed") |#1| $) NIL)) (-1475 (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-1954 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL (|has| $ (-6 -4403))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-1507 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4404)))) (-1420 ((|#2| $ |#1|) NIL)) (-1720 (((-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-639 |#2|) $) NIL (|has| $ (-6 -4403)))) (-4172 (((-112) $ (-766)) NIL)) (-1849 ((|#1| $) NIL (|has| |#1| (-845)))) (-2123 (((-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-639 |#2|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092))))) (-1929 ((|#1| $) NIL (|has| |#1| (-845)))) (-1491 (($ (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4404))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1521 (((-639 |#1|) $) NIL)) (-4278 (((-112) |#1| $) NIL)) (-2078 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL)) (-1581 (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL)) (-3336 (((-639 |#1|) $) NIL)) (-1987 (((-112) |#1| $) NIL)) (-1709 (((-1112) $) NIL (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1421 ((|#2| $) NIL (|has| |#1| (-845)))) (-1963 (((-3 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) "failed") (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL)) (-3510 (($ $ |#2|) NIL (|has| $ (-6 -4404)))) (-2038 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL)) (-3008 (((-112) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))))) NIL (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-293 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-639 |#2|) (-639 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))))) (-1452 (((-112) $ $) NIL)) (-2716 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092))))) (-2366 (((-639 |#2|) $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) NIL)) (-2343 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1932 (($) NIL) (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL)) (-1723 (((-766) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-766) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (((-766) |#2| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092)))) (((-766) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-610 (-535))))) (-4064 (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL)) (-4053 (((-857) $) NIL (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-609 (-857))) (|has| |#2| (-609 (-857)))))) (-4131 (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL)) (-2879 (((-112) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) NIL (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-1142 |#1| |#2| |#3|) (-1183 |#1| |#2|) (-1092) (-1092) |#2|) (T -1142)) -NIL -(-1183 |#1| |#2|) -((-4041 (((-112) $ $) 7)) (-3828 (((-3 $ "failed") $) 13)) (-3696 (((-1150) $) 9)) (-3730 (($) 14 T CONST)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11)) (-1733 (((-112) $ $) 6))) -(((-1143) (-139)) (T -1143)) -((-3730 (*1 *1) (-4 *1 (-1143))) (-3828 (*1 *1 *1) (|partial| -4 *1 (-1143)))) -(-13 (-1092) (-10 -8 (-15 -3730 ($) -1497) (-15 -3828 ((-3 $ "failed") $)))) -(((-102) . T) ((-609 (-857)) . T) ((-1092) . T)) -((-2490 (((-1148 |#1|) (-1148 |#1|)) 17)) (-3377 (((-1148 |#1|) (-1148 |#1|)) 13)) (-3669 (((-1148 |#1|) (-1148 |#1|) (-562) (-562)) 20)) (-2102 (((-1148 |#1|) (-1148 |#1|)) 15))) -(((-1144 |#1|) (-10 -7 (-15 -3377 ((-1148 |#1|) (-1148 |#1|))) (-15 -2102 ((-1148 |#1|) (-1148 |#1|))) (-15 -2490 ((-1148 |#1|) (-1148 |#1|))) (-15 -3669 ((-1148 |#1|) (-1148 |#1|) (-562) (-562)))) (-13 (-554) (-146))) (T -1144)) -((-3669 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-562)) (-4 *4 (-13 (-554) (-146))) (-5 *1 (-1144 *4)))) (-2490 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-13 (-554) (-146))) (-5 *1 (-1144 *3)))) (-2102 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-13 (-554) (-146))) (-5 *1 (-1144 *3)))) (-3377 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-13 (-554) (-146))) (-5 *1 (-1144 *3))))) -(-10 -7 (-15 -3377 ((-1148 |#1|) (-1148 |#1|))) (-15 -2102 ((-1148 |#1|) (-1148 |#1|))) (-15 -2490 ((-1148 |#1|) (-1148 |#1|))) (-15 -3669 ((-1148 |#1|) (-1148 |#1|) (-562) (-562)))) -((-2767 (((-1148 |#1|) (-1148 (-1148 |#1|))) 15))) -(((-1145 |#1|) (-10 -7 (-15 -2767 ((-1148 |#1|) (-1148 (-1148 |#1|))))) (-1207)) (T -1145)) -((-2767 (*1 *2 *3) (-12 (-5 *3 (-1148 (-1148 *4))) (-5 *2 (-1148 *4)) (-5 *1 (-1145 *4)) (-4 *4 (-1207))))) -(-10 -7 (-15 -2767 ((-1148 |#1|) (-1148 (-1148 |#1|))))) -((-1555 (((-1148 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1148 |#1|)) 25)) (-1954 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1148 |#1|)) 26)) (-4152 (((-1148 |#2|) (-1 |#2| |#1|) (-1148 |#1|)) 16))) -(((-1146 |#1| |#2|) (-10 -7 (-15 -4152 ((-1148 |#2|) (-1 |#2| |#1|) (-1148 |#1|))) (-15 -1555 ((-1148 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1148 |#1|))) (-15 -1954 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1148 |#1|)))) (-1207) (-1207)) (T -1146)) -((-1954 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1148 *5)) (-4 *5 (-1207)) (-4 *2 (-1207)) (-5 *1 (-1146 *5 *2)))) (-1555 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1148 *6)) (-4 *6 (-1207)) (-4 *3 (-1207)) (-5 *2 (-1148 *3)) (-5 *1 (-1146 *6 *3)))) (-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-1148 *6)) (-5 *1 (-1146 *5 *6))))) -(-10 -7 (-15 -4152 ((-1148 |#2|) (-1 |#2| |#1|) (-1148 |#1|))) (-15 -1555 ((-1148 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1148 |#1|))) (-15 -1954 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1148 |#1|)))) -((-4152 (((-1148 |#3|) (-1 |#3| |#1| |#2|) (-1148 |#1|) (-1148 |#2|)) 21))) -(((-1147 |#1| |#2| |#3|) (-10 -7 (-15 -4152 ((-1148 |#3|) (-1 |#3| |#1| |#2|) (-1148 |#1|) (-1148 |#2|)))) (-1207) (-1207) (-1207)) (T -1147)) -((-4152 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1148 *6)) (-5 *5 (-1148 *7)) (-4 *6 (-1207)) (-4 *7 (-1207)) (-4 *8 (-1207)) (-5 *2 (-1148 *8)) (-5 *1 (-1147 *6 *7 *8))))) -(-10 -7 (-15 -4152 ((-1148 |#3|) (-1 |#3| |#1| |#2|) (-1148 |#1|) (-1148 |#2|)))) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2533 ((|#1| $) NIL)) (-2358 ((|#1| $) NIL)) (-3120 (($ $) 51)) (-3655 (((-1261) $ (-562) (-562)) 76 (|has| $ (-6 -4404)))) (-1335 (($ $ (-562)) 110 (|has| $ (-6 -4404)))) (-3735 (((-112) $ (-766)) NIL)) (-3413 (((-857) $) 40 (|has| |#1| (-1092)))) (-3766 (((-112)) 39 (|has| |#1| (-1092)))) (-2677 ((|#1| $ |#1|) NIL (|has| $ (-6 -4404)))) (-3400 (($ $ $) 98 (|has| $ (-6 -4404))) (($ $ (-562) $) 122)) (-1393 ((|#1| $ |#1|) 107 (|has| $ (-6 -4404)))) (-3239 ((|#1| $ |#1|) 102 (|has| $ (-6 -4404)))) (-4200 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4404))) ((|#1| $ "first" |#1|) 104 (|has| $ (-6 -4404))) (($ $ "rest" $) 106 (|has| $ (-6 -4404))) ((|#1| $ "last" |#1|) 109 (|has| $ (-6 -4404))) ((|#1| $ (-1223 (-562)) |#1|) 89 (|has| $ (-6 -4404))) ((|#1| $ (-562) |#1|) 55 (|has| $ (-6 -4404)))) (-3742 (($ $ (-639 $)) NIL (|has| $ (-6 -4404)))) (-3556 (($ (-1 (-112) |#1|) $) 58)) (-2349 ((|#1| $) NIL)) (-3329 (($) NIL T CONST)) (-1494 (($ $) 14)) (-1434 (($ $) 28) (($ $ (-766)) 88)) (-4377 (((-112) (-639 |#1|) $) 116 (|has| |#1| (-1092)))) (-2637 (($ (-639 |#1|)) 112)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092)))) (($ (-1 (-112) |#1|) $) 57)) (-1954 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1507 ((|#1| $ (-562) |#1|) NIL (|has| $ (-6 -4404)))) (-1420 ((|#1| $ (-562)) NIL)) (-2101 (((-112) $) NIL)) (-1720 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-3462 (((-1261) (-562) $) 121 (|has| |#1| (-1092)))) (-2062 (((-766) $) 118)) (-2409 (((-639 $) $) NIL)) (-4188 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1458 (($ (-766) |#1|) NIL)) (-4172 (((-112) $ (-766)) NIL)) (-1849 (((-562) $) NIL (|has| (-562) (-845)))) (-2123 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1929 (((-562) $) NIL (|has| (-562) (-845)))) (-1491 (($ (-1 |#1| |#1|) $) 73 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#1| |#1| |#1|) $ $) 67)) (-4147 (((-112) $ (-766)) NIL)) (-4008 (((-639 |#1|) $) NIL)) (-3179 (((-112) $) NIL)) (-1906 (($ $) 90)) (-4040 (((-112) $) 13)) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1504 ((|#1| $) NIL) (($ $ (-766)) NIL)) (-3295 (($ $ $ (-562)) NIL) (($ |#1| $ (-562)) NIL)) (-3336 (((-639 (-562)) $) NIL)) (-1987 (((-112) (-562) $) 74)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-2166 (($ (-1 |#1|)) 124) (($ (-1 |#1| |#1|) |#1|) 125)) (-3529 ((|#1| $) 10)) (-1421 ((|#1| $) 27) (($ $ (-766)) 49)) (-3676 (((-2 (|:| |cycle?| (-112)) (|:| -2177 (-766)) (|:| |period| (-766))) (-766) $) 24)) (-1963 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3535 (($ (-1 (-112) |#1|) $) 126)) (-3546 (($ (-1 (-112) |#1|) $) 127)) (-3510 (($ $ |#1|) 68 (|has| $ (-6 -4404)))) (-4316 (($ $ (-562)) 31)) (-3745 (((-112) $) 72)) (-1637 (((-112) $) 12)) (-2998 (((-112) $) 117)) (-3008 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) 20)) (-2716 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2366 (((-639 |#1|) $) NIL)) (-3087 (((-112) $) 15)) (-1663 (($) 44)) (-2343 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1223 (-562))) NIL) ((|#1| $ (-562)) 54) ((|#1| $ (-562) |#1|) NIL)) (-1423 (((-562) $ $) 48)) (-2880 (($ $ (-1223 (-562))) NIL) (($ $ (-562)) NIL)) (-3856 (($ (-1 $)) 47)) (-2473 (((-112) $) 69)) (-3734 (($ $) 70)) (-3659 (($ $) 99 (|has| $ (-6 -4404)))) (-3595 (((-766) $) NIL)) (-2333 (($ $) NIL)) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-4220 (($ $) 43)) (-4208 (((-535) $) NIL (|has| |#1| (-610 (-535))))) (-4064 (($ (-639 |#1|)) 53)) (-3949 (($ |#1| $) 97)) (-2587 (($ $ $) 100 (|has| $ (-6 -4404))) (($ $ |#1|) 101 (|has| $ (-6 -4404)))) (-2767 (($ $ $) 78) (($ |#1| $) 45) (($ (-639 $)) 83) (($ $ |#1|) 77)) (-1345 (($ $) 50)) (-4053 (($ (-639 |#1|)) 111) (((-857) $) 41 (|has| |#1| (-609 (-857))))) (-3643 (((-639 $) $) NIL)) (-2985 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2879 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 114 (|has| |#1| (-1092)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-1148 |#1|) (-13 (-668 |#1|) (-612 (-639 |#1|)) (-10 -8 (-6 -4404) (-15 -2637 ($ (-639 |#1|))) (IF (|has| |#1| (-1092)) (-15 -4377 ((-112) (-639 |#1|) $)) |%noBranch|) (-15 -3676 ((-2 (|:| |cycle?| (-112)) (|:| -2177 (-766)) (|:| |period| (-766))) (-766) $)) (-15 -3856 ($ (-1 $))) (-15 -3949 ($ |#1| $)) (IF (|has| |#1| (-1092)) (PROGN (-15 -3462 ((-1261) (-562) $)) (-15 -3413 ((-857) $)) (-15 -3766 ((-112)))) |%noBranch|) (-15 -3400 ($ $ (-562) $)) (-15 -2166 ($ (-1 |#1|))) (-15 -2166 ($ (-1 |#1| |#1|) |#1|)) (-15 -3535 ($ (-1 (-112) |#1|) $)) (-15 -3546 ($ (-1 (-112) |#1|) $)))) (-1207)) (T -1148)) -((-2637 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-5 *1 (-1148 *3)))) (-4377 (*1 *2 *3 *1) (-12 (-5 *3 (-639 *4)) (-4 *4 (-1092)) (-4 *4 (-1207)) (-5 *2 (-112)) (-5 *1 (-1148 *4)))) (-3676 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2177 (-766)) (|:| |period| (-766)))) (-5 *1 (-1148 *4)) (-4 *4 (-1207)) (-5 *3 (-766)))) (-3856 (*1 *1 *2) (-12 (-5 *2 (-1 (-1148 *3))) (-5 *1 (-1148 *3)) (-4 *3 (-1207)))) (-3949 (*1 *1 *2 *1) (-12 (-5 *1 (-1148 *2)) (-4 *2 (-1207)))) (-3462 (*1 *2 *3 *1) (-12 (-5 *3 (-562)) (-5 *2 (-1261)) (-5 *1 (-1148 *4)) (-4 *4 (-1092)) (-4 *4 (-1207)))) (-3413 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-1148 *3)) (-4 *3 (-1092)) (-4 *3 (-1207)))) (-3766 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1148 *3)) (-4 *3 (-1092)) (-4 *3 (-1207)))) (-3400 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-1148 *3)) (-4 *3 (-1207)))) (-2166 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1207)) (-5 *1 (-1148 *3)))) (-2166 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1207)) (-5 *1 (-1148 *3)))) (-3535 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1207)) (-5 *1 (-1148 *3)))) (-3546 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1207)) (-5 *1 (-1148 *3))))) -(-13 (-668 |#1|) (-612 (-639 |#1|)) (-10 -8 (-6 -4404) (-15 -2637 ($ (-639 |#1|))) (IF (|has| |#1| (-1092)) (-15 -4377 ((-112) (-639 |#1|) $)) |%noBranch|) (-15 -3676 ((-2 (|:| |cycle?| (-112)) (|:| -2177 (-766)) (|:| |period| (-766))) (-766) $)) (-15 -3856 ($ (-1 $))) (-15 -3949 ($ |#1| $)) (IF (|has| |#1| (-1092)) (PROGN (-15 -3462 ((-1261) (-562) $)) (-15 -3413 ((-857) $)) (-15 -3766 ((-112)))) |%noBranch|) (-15 -3400 ($ $ (-562) $)) (-15 -2166 ($ (-1 |#1|))) (-15 -2166 ($ (-1 |#1| |#1|) |#1|)) (-15 -3535 ($ (-1 (-112) |#1|) $)) (-15 -3546 ($ (-1 (-112) |#1|) $)))) -((-4041 (((-112) $ $) 19)) (-2629 (($ $) 120)) (-2033 (($ $) 121)) (-3904 (($ $ (-143)) 108) (($ $ (-140)) 107)) (-3655 (((-1261) $ (-562) (-562)) 40 (|has| $ (-6 -4404)))) (-3824 (((-112) $ $) 118)) (-3801 (((-112) $ $ (-562)) 117)) (-3596 (($ (-562)) 127)) (-1841 (((-639 $) $ (-143)) 110) (((-639 $) $ (-140)) 109)) (-1706 (((-112) (-1 (-112) (-143) (-143)) $) 98) (((-112) $) 92 (|has| (-143) (-845)))) (-3737 (($ (-1 (-112) (-143) (-143)) $) 89 (|has| $ (-6 -4404))) (($ $) 88 (-12 (|has| (-143) (-845)) (|has| $ (-6 -4404))))) (-1395 (($ (-1 (-112) (-143) (-143)) $) 99) (($ $) 93 (|has| (-143) (-845)))) (-3735 (((-112) $ (-766)) 8)) (-4200 (((-143) $ (-562) (-143)) 52 (|has| $ (-6 -4404))) (((-143) $ (-1223 (-562)) (-143)) 58 (|has| $ (-6 -4404)))) (-3556 (($ (-1 (-112) (-143)) $) 75 (|has| $ (-6 -4403)))) (-3329 (($) 7 T CONST)) (-1967 (($ $ (-143)) 104) (($ $ (-140)) 103)) (-2673 (($ $) 90 (|has| $ (-6 -4404)))) (-2676 (($ $) 100)) (-1348 (($ $ (-1223 (-562)) $) 114)) (-1459 (($ $) 78 (-12 (|has| (-143) (-1092)) (|has| $ (-6 -4403))))) (-1475 (($ (-143) $) 77 (-12 (|has| (-143) (-1092)) (|has| $ (-6 -4403)))) (($ (-1 (-112) (-143)) $) 74 (|has| $ (-6 -4403)))) (-1954 (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) 76 (-12 (|has| (-143) (-1092)) (|has| $ (-6 -4403)))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) 73 (|has| $ (-6 -4403))) (((-143) (-1 (-143) (-143) (-143)) $) 72 (|has| $ (-6 -4403)))) (-1507 (((-143) $ (-562) (-143)) 53 (|has| $ (-6 -4404)))) (-1420 (((-143) $ (-562)) 51)) (-3847 (((-112) $ $) 119)) (-4265 (((-562) (-1 (-112) (-143)) $) 97) (((-562) (-143) $) 96 (|has| (-143) (-1092))) (((-562) (-143) $ (-562)) 95 (|has| (-143) (-1092))) (((-562) $ $ (-562)) 113) (((-562) (-140) $ (-562)) 112)) (-1720 (((-639 (-143)) $) 30 (|has| $ (-6 -4403)))) (-1458 (($ (-766) (-143)) 69)) (-4172 (((-112) $ (-766)) 9)) (-1849 (((-562) $) 43 (|has| (-562) (-845)))) (-1551 (($ $ $) 87 (|has| (-143) (-845)))) (-4103 (($ (-1 (-112) (-143) (-143)) $ $) 101) (($ $ $) 94 (|has| (-143) (-845)))) (-2123 (((-639 (-143)) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) (-143) $) 27 (-12 (|has| (-143) (-1092)) (|has| $ (-6 -4403))))) (-1929 (((-562) $) 44 (|has| (-562) (-845)))) (-2993 (($ $ $) 86 (|has| (-143) (-845)))) (-4264 (((-112) $ $ (-143)) 115)) (-3789 (((-766) $ $ (-143)) 116)) (-1491 (($ (-1 (-143) (-143)) $) 34 (|has| $ (-6 -4404)))) (-4152 (($ (-1 (-143) (-143)) $) 35) (($ (-1 (-143) (-143) (-143)) $ $) 64)) (-4145 (($ $) 122)) (-3249 (($ $) 123)) (-4147 (((-112) $ (-766)) 10)) (-1979 (($ $ (-143)) 106) (($ $ (-140)) 105)) (-3696 (((-1150) $) 22)) (-3295 (($ (-143) $ (-562)) 60) (($ $ $ (-562)) 59)) (-3336 (((-639 (-562)) $) 46)) (-1987 (((-112) (-562) $) 47)) (-1709 (((-1112) $) 21)) (-1421 (((-143) $) 42 (|has| (-562) (-845)))) (-1963 (((-3 (-143) "failed") (-1 (-112) (-143)) $) 71)) (-3510 (($ $ (-143)) 41 (|has| $ (-6 -4404)))) (-3008 (((-112) (-1 (-112) (-143)) $) 32 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 (-143)))) 26 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092)))) (($ $ (-293 (-143))) 25 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092)))) (($ $ (-143) (-143)) 24 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092)))) (($ $ (-639 (-143)) (-639 (-143))) 23 (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092))))) (-1452 (((-112) $ $) 14)) (-2716 (((-112) (-143) $) 45 (-12 (|has| $ (-6 -4403)) (|has| (-143) (-1092))))) (-2366 (((-639 (-143)) $) 48)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-2343 (((-143) $ (-562) (-143)) 50) (((-143) $ (-562)) 49) (($ $ (-1223 (-562))) 63) (($ $ $) 102)) (-2880 (($ $ (-562)) 62) (($ $ (-1223 (-562))) 61)) (-1723 (((-766) (-1 (-112) (-143)) $) 31 (|has| $ (-6 -4403))) (((-766) (-143) $) 28 (-12 (|has| (-143) (-1092)) (|has| $ (-6 -4403))))) (-2694 (($ $ $ (-562)) 91 (|has| $ (-6 -4404)))) (-4220 (($ $) 13)) (-4208 (((-535) $) 79 (|has| (-143) (-610 (-535))))) (-4064 (($ (-639 (-143))) 70)) (-2767 (($ $ (-143)) 68) (($ (-143) $) 67) (($ $ $) 66) (($ (-639 $)) 65)) (-4053 (($ (-143)) 111) (((-857) $) 18)) (-2879 (((-112) (-1 (-112) (-143)) $) 33 (|has| $ (-6 -4403)))) (-2332 (((-1150) $) 131) (((-1150) $ (-112)) 130) (((-1261) (-817) $) 129) (((-1261) (-817) $ (-112)) 128)) (-1798 (((-112) $ $) 84 (|has| (-143) (-845)))) (-1771 (((-112) $ $) 83 (|has| (-143) (-845)))) (-1733 (((-112) $ $) 20)) (-1785 (((-112) $ $) 85 (|has| (-143) (-845)))) (-1761 (((-112) $ $) 82 (|has| (-143) (-845)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-1149) (-139)) (T -1149)) -((-3596 (*1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-1149))))) -(-13 (-1136) (-1092) (-823) (-10 -8 (-15 -3596 ($ (-562))))) -(((-34) . T) ((-102) . T) ((-609 (-857)) . T) ((-150 #0=(-143)) . T) ((-610 (-535)) |has| (-143) (-610 (-535))) ((-285 #1=(-562) #0#) . T) ((-287 #1# #0#) . T) ((-308 #0#) -12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092))) ((-372 #0#) . T) ((-488 #0#) . T) ((-600 #1# #0#) . T) ((-513 #0# #0#) -12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092))) ((-645 #0#) . T) ((-19 #0#) . T) ((-823) . T) ((-845) |has| (-143) (-845)) ((-1092) . T) ((-1136) . T) ((-1207) . T)) -((-4041 (((-112) $ $) NIL)) (-2629 (($ $) NIL)) (-2033 (($ $) NIL)) (-3904 (($ $ (-143)) NIL) (($ $ (-140)) NIL)) (-3655 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4404)))) (-3824 (((-112) $ $) NIL)) (-3801 (((-112) $ $ (-562)) NIL)) (-3596 (($ (-562)) 7)) (-1841 (((-639 $) $ (-143)) NIL) (((-639 $) $ (-140)) NIL)) (-1706 (((-112) (-1 (-112) (-143) (-143)) $) NIL) (((-112) $) NIL (|has| (-143) (-845)))) (-3737 (($ (-1 (-112) (-143) (-143)) $) NIL (|has| $ (-6 -4404))) (($ $) NIL (-12 (|has| $ (-6 -4404)) (|has| (-143) (-845))))) (-1395 (($ (-1 (-112) (-143) (-143)) $) NIL) (($ $) NIL (|has| (-143) (-845)))) (-3735 (((-112) $ (-766)) NIL)) (-4200 (((-143) $ (-562) (-143)) NIL (|has| $ (-6 -4404))) (((-143) $ (-1223 (-562)) (-143)) NIL (|has| $ (-6 -4404)))) (-3556 (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4403)))) (-3329 (($) NIL T CONST)) (-1967 (($ $ (-143)) NIL) (($ $ (-140)) NIL)) (-2673 (($ $) NIL (|has| $ (-6 -4404)))) (-2676 (($ $) NIL)) (-1348 (($ $ (-1223 (-562)) $) NIL)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-143) (-1092))))) (-1475 (($ (-143) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-143) (-1092)))) (($ (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4403)))) (-1954 (((-143) (-1 (-143) (-143) (-143)) $ (-143) (-143)) NIL (-12 (|has| $ (-6 -4403)) (|has| (-143) (-1092)))) (((-143) (-1 (-143) (-143) (-143)) $ (-143)) NIL (|has| $ (-6 -4403))) (((-143) (-1 (-143) (-143) (-143)) $) NIL (|has| $ (-6 -4403)))) (-1507 (((-143) $ (-562) (-143)) NIL (|has| $ (-6 -4404)))) (-1420 (((-143) $ (-562)) NIL)) (-3847 (((-112) $ $) NIL)) (-4265 (((-562) (-1 (-112) (-143)) $) NIL) (((-562) (-143) $) NIL (|has| (-143) (-1092))) (((-562) (-143) $ (-562)) NIL (|has| (-143) (-1092))) (((-562) $ $ (-562)) NIL) (((-562) (-140) $ (-562)) NIL)) (-1720 (((-639 (-143)) $) NIL (|has| $ (-6 -4403)))) (-1458 (($ (-766) (-143)) NIL)) (-4172 (((-112) $ (-766)) NIL)) (-1849 (((-562) $) NIL (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (|has| (-143) (-845)))) (-4103 (($ (-1 (-112) (-143) (-143)) $ $) NIL) (($ $ $) NIL (|has| (-143) (-845)))) (-2123 (((-639 (-143)) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) (-143) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-143) (-1092))))) (-1929 (((-562) $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| (-143) (-845)))) (-4264 (((-112) $ $ (-143)) NIL)) (-3789 (((-766) $ $ (-143)) NIL)) (-1491 (($ (-1 (-143) (-143)) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 (-143) (-143)) $) NIL) (($ (-1 (-143) (-143) (-143)) $ $) NIL)) (-4145 (($ $) NIL)) (-3249 (($ $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-1979 (($ $ (-143)) NIL) (($ $ (-140)) NIL)) (-3696 (((-1150) $) NIL)) (-3295 (($ (-143) $ (-562)) NIL) (($ $ $ (-562)) NIL)) (-3336 (((-639 (-562)) $) NIL)) (-1987 (((-112) (-562) $) NIL)) (-1709 (((-1112) $) NIL)) (-1421 (((-143) $) NIL (|has| (-562) (-845)))) (-1963 (((-3 (-143) "failed") (-1 (-112) (-143)) $) NIL)) (-3510 (($ $ (-143)) NIL (|has| $ (-6 -4404)))) (-3008 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 (-143)))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092)))) (($ $ (-293 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092)))) (($ $ (-143) (-143)) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092)))) (($ $ (-639 (-143)) (-639 (-143))) NIL (-12 (|has| (-143) (-308 (-143))) (|has| (-143) (-1092))))) (-1452 (((-112) $ $) NIL)) (-2716 (((-112) (-143) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-143) (-1092))))) (-2366 (((-639 (-143)) $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) NIL)) (-2343 (((-143) $ (-562) (-143)) NIL) (((-143) $ (-562)) NIL) (($ $ (-1223 (-562))) NIL) (($ $ $) NIL)) (-2880 (($ $ (-562)) NIL) (($ $ (-1223 (-562))) NIL)) (-1723 (((-766) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4403))) (((-766) (-143) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-143) (-1092))))) (-2694 (($ $ $ (-562)) NIL (|has| $ (-6 -4404)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| (-143) (-610 (-535))))) (-4064 (($ (-639 (-143))) NIL)) (-2767 (($ $ (-143)) NIL) (($ (-143) $) NIL) (($ $ $) NIL) (($ (-639 $)) NIL)) (-4053 (($ (-143)) NIL) (((-857) $) NIL)) (-2879 (((-112) (-1 (-112) (-143)) $) NIL (|has| $ (-6 -4403)))) (-2332 (((-1150) $) 18) (((-1150) $ (-112)) 20) (((-1261) (-817) $) 21) (((-1261) (-817) $ (-112)) 22)) (-1798 (((-112) $ $) NIL (|has| (-143) (-845)))) (-1771 (((-112) $ $) NIL (|has| (-143) (-845)))) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| (-143) (-845)))) (-1761 (((-112) $ $) NIL (|has| (-143) (-845)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-1150) (-1149)) (T -1150)) -NIL -(-1149) -((-4041 (((-112) $ $) NIL (-4037 (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-1092)) (|has| |#1| (-1092))))) (-1443 (($) NIL) (($ (-639 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)))) NIL)) (-3655 (((-1261) $ (-1150) (-1150)) NIL (|has| $ (-6 -4404)))) (-3735 (((-112) $ (-766)) NIL)) (-4200 ((|#1| $ (-1150) |#1|) NIL)) (-2968 (($ (-1 (-112) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) $) NIL (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) $) NIL (|has| $ (-6 -4403)))) (-1472 (((-3 |#1| "failed") (-1150) $) NIL)) (-3329 (($) NIL T CONST)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-1092))))) (-3729 (($ (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) $) NIL (|has| $ (-6 -4403))) (($ (-1 (-112) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) $) NIL (|has| $ (-6 -4403))) (((-3 |#1| "failed") (-1150) $) NIL)) (-1475 (($ (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-1092)))) (($ (-1 (-112) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) $) NIL (|has| $ (-6 -4403)))) (-1954 (((-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-1 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) $ (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-1092)))) (((-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-1 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) $ (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) NIL (|has| $ (-6 -4403))) (((-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-1 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) $) NIL (|has| $ (-6 -4403)))) (-1507 ((|#1| $ (-1150) |#1|) NIL (|has| $ (-6 -4404)))) (-1420 ((|#1| $ (-1150)) NIL)) (-1720 (((-639 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) $) NIL (|has| $ (-6 -4403))) (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-4172 (((-112) $ (-766)) NIL)) (-1849 (((-1150) $) NIL (|has| (-1150) (-845)))) (-2123 (((-639 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) $) NIL (|has| $ (-6 -4403))) (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-1092)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1929 (((-1150) $) NIL (|has| (-1150) (-845)))) (-1491 (($ (-1 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) $) NIL (|has| $ (-6 -4404))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL (-4037 (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-1092)) (|has| |#1| (-1092))))) (-1521 (((-639 (-1150)) $) NIL)) (-4278 (((-112) (-1150) $) NIL)) (-2078 (((-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) $) NIL)) (-1581 (($ (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) $) NIL)) (-3336 (((-639 (-1150)) $) NIL)) (-1987 (((-112) (-1150) $) NIL)) (-1709 (((-1112) $) NIL (-4037 (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-1092)) (|has| |#1| (-1092))))) (-1421 ((|#1| $) NIL (|has| (-1150) (-845)))) (-1963 (((-3 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) "failed") (-1 (-112) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) $) NIL)) (-3510 (($ $ |#1|) NIL (|has| $ (-6 -4404)))) (-2038 (((-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) $) NIL)) (-3008 (((-112) (-1 (-112) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) $) NIL (|has| $ (-6 -4403))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))))) NIL (-12 (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-308 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)))) (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-1092)))) (($ $ (-293 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)))) NIL (-12 (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-308 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)))) (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-1092)))) (($ $ (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) NIL (-12 (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-308 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)))) (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-1092)))) (($ $ (-639 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) (-639 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)))) NIL (-12 (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-308 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)))) (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) NIL)) (-2716 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2366 (((-639 |#1|) $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) NIL)) (-2343 ((|#1| $ (-1150)) NIL) ((|#1| $ (-1150) |#1|) NIL)) (-1932 (($) NIL) (($ (-639 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)))) NIL)) (-1723 (((-766) (-1 (-112) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) $) NIL (|has| $ (-6 -4403))) (((-766) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-1092)))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092)))) (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-610 (-535))))) (-4064 (($ (-639 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)))) NIL)) (-4053 (((-857) $) NIL (-4037 (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-609 (-857))) (|has| |#1| (-609 (-857)))))) (-4131 (($ (-639 (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)))) NIL)) (-2879 (((-112) (-1 (-112) (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|))) $) NIL (|has| $ (-6 -4403))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) NIL (-4037 (|has| (-2 (|:| -2319 (-1150)) (|:| -2693 |#1|)) (-1092)) (|has| |#1| (-1092))))) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-1151 |#1|) (-13 (-1183 (-1150) |#1|) (-10 -7 (-6 -4403))) (-1092)) (T -1151)) -NIL -(-13 (-1183 (-1150) |#1|) (-10 -7 (-6 -4403))) -((-3043 (((-1148 |#1|) (-1148 |#1|)) 77)) (-1694 (((-3 (-1148 |#1|) "failed") (-1148 |#1|)) 37)) (-1764 (((-1148 |#1|) (-406 (-562)) (-1148 |#1|)) 121 (|has| |#1| (-38 (-406 (-562)))))) (-3185 (((-1148 |#1|) |#1| (-1148 |#1|)) 127 (|has| |#1| (-362)))) (-3656 (((-1148 |#1|) (-1148 |#1|)) 90)) (-2725 (((-1148 (-562)) (-562)) 57)) (-2857 (((-1148 |#1|) (-1148 (-1148 |#1|))) 109 (|has| |#1| (-38 (-406 (-562)))))) (-3637 (((-1148 |#1|) (-562) (-562) (-1148 |#1|)) 95)) (-3044 (((-1148 |#1|) |#1| (-562)) 45)) (-1916 (((-1148 |#1|) (-1148 |#1|) (-1148 |#1|)) 60)) (-4274 (((-1148 |#1|) (-1148 |#1|) (-1148 |#1|)) 124 (|has| |#1| (-362)))) (-2254 (((-1148 |#1|) |#1| (-1 (-1148 |#1|))) 108 (|has| |#1| (-38 (-406 (-562)))))) (-3330 (((-1148 |#1|) (-1 |#1| (-562)) |#1| (-1 (-1148 |#1|))) 125 (|has| |#1| (-362)))) (-1376 (((-1148 |#1|) (-1148 |#1|)) 89)) (-4361 (((-1148 |#1|) (-1148 |#1|)) 76)) (-1628 (((-1148 |#1|) (-562) (-562) (-1148 |#1|)) 96)) (-3081 (((-1148 |#1|) |#1| (-1148 |#1|)) 105 (|has| |#1| (-38 (-406 (-562)))))) (-3052 (((-1148 (-562)) (-562)) 56)) (-1322 (((-1148 |#1|) |#1|) 59)) (-1337 (((-1148 |#1|) (-1148 |#1|) (-562) (-562)) 92)) (-2423 (((-1148 |#1|) (-1 |#1| (-562)) (-1148 |#1|)) 66)) (-1762 (((-3 (-1148 |#1|) "failed") (-1148 |#1|) (-1148 |#1|)) 35)) (-2021 (((-1148 |#1|) (-1148 |#1|)) 91)) (-1433 (((-1148 |#1|) (-1148 |#1|) |#1|) 71)) (-3256 (((-1148 |#1|) (-1148 |#1|)) 62)) (-3507 (((-1148 |#1|) (-1148 |#1|) (-1148 |#1|)) 72)) (-4053 (((-1148 |#1|) |#1|) 67)) (-2703 (((-1148 |#1|) (-1148 (-1148 |#1|))) 82)) (-1859 (((-1148 |#1|) (-1148 |#1|) (-1148 |#1|)) 36)) (-1847 (((-1148 |#1|) (-1148 |#1|)) 21) (((-1148 |#1|) (-1148 |#1|) (-1148 |#1|)) 23)) (-1836 (((-1148 |#1|) (-1148 |#1|) (-1148 |#1|)) 17)) (* (((-1148 |#1|) (-1148 |#1|) |#1|) 29) (((-1148 |#1|) |#1| (-1148 |#1|)) 26) (((-1148 |#1|) (-1148 |#1|) (-1148 |#1|)) 27))) -(((-1152 |#1|) (-10 -7 (-15 -1836 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -1847 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -1847 ((-1148 |#1|) (-1148 |#1|))) (-15 * ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 * ((-1148 |#1|) |#1| (-1148 |#1|))) (-15 * ((-1148 |#1|) (-1148 |#1|) |#1|)) (-15 -1762 ((-3 (-1148 |#1|) "failed") (-1148 |#1|) (-1148 |#1|))) (-15 -1859 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -1694 ((-3 (-1148 |#1|) "failed") (-1148 |#1|))) (-15 -3044 ((-1148 |#1|) |#1| (-562))) (-15 -3052 ((-1148 (-562)) (-562))) (-15 -2725 ((-1148 (-562)) (-562))) (-15 -1322 ((-1148 |#1|) |#1|)) (-15 -1916 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -3256 ((-1148 |#1|) (-1148 |#1|))) (-15 -2423 ((-1148 |#1|) (-1 |#1| (-562)) (-1148 |#1|))) (-15 -4053 ((-1148 |#1|) |#1|)) (-15 -1433 ((-1148 |#1|) (-1148 |#1|) |#1|)) (-15 -3507 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -4361 ((-1148 |#1|) (-1148 |#1|))) (-15 -3043 ((-1148 |#1|) (-1148 |#1|))) (-15 -2703 ((-1148 |#1|) (-1148 (-1148 |#1|)))) (-15 -1376 ((-1148 |#1|) (-1148 |#1|))) (-15 -3656 ((-1148 |#1|) (-1148 |#1|))) (-15 -2021 ((-1148 |#1|) (-1148 |#1|))) (-15 -1337 ((-1148 |#1|) (-1148 |#1|) (-562) (-562))) (-15 -3637 ((-1148 |#1|) (-562) (-562) (-1148 |#1|))) (-15 -1628 ((-1148 |#1|) (-562) (-562) (-1148 |#1|))) (IF (|has| |#1| (-38 (-406 (-562)))) (PROGN (-15 -3081 ((-1148 |#1|) |#1| (-1148 |#1|))) (-15 -2254 ((-1148 |#1|) |#1| (-1 (-1148 |#1|)))) (-15 -2857 ((-1148 |#1|) (-1148 (-1148 |#1|)))) (-15 -1764 ((-1148 |#1|) (-406 (-562)) (-1148 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -4274 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -3330 ((-1148 |#1|) (-1 |#1| (-562)) |#1| (-1 (-1148 |#1|)))) (-15 -3185 ((-1148 |#1|) |#1| (-1148 |#1|)))) |%noBranch|)) (-1044)) (T -1152)) -((-3185 (*1 *2 *3 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-362)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (-3330 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-562))) (-5 *5 (-1 (-1148 *4))) (-4 *4 (-362)) (-4 *4 (-1044)) (-5 *2 (-1148 *4)) (-5 *1 (-1152 *4)))) (-4274 (*1 *2 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-362)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (-1764 (*1 *2 *3 *2) (-12 (-5 *2 (-1148 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1044)) (-5 *3 (-406 (-562))) (-5 *1 (-1152 *4)))) (-2857 (*1 *2 *3) (-12 (-5 *3 (-1148 (-1148 *4))) (-5 *2 (-1148 *4)) (-5 *1 (-1152 *4)) (-4 *4 (-38 (-406 (-562)))) (-4 *4 (-1044)))) (-2254 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1148 *3))) (-5 *2 (-1148 *3)) (-5 *1 (-1152 *3)) (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)))) (-3081 (*1 *2 *3 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (-1628 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-562)) (-4 *4 (-1044)) (-5 *1 (-1152 *4)))) (-3637 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-562)) (-4 *4 (-1044)) (-5 *1 (-1152 *4)))) (-1337 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-562)) (-4 *4 (-1044)) (-5 *1 (-1152 *4)))) (-2021 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (-3656 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (-1376 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (-2703 (*1 *2 *3) (-12 (-5 *3 (-1148 (-1148 *4))) (-5 *2 (-1148 *4)) (-5 *1 (-1152 *4)) (-4 *4 (-1044)))) (-3043 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (-4361 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (-3507 (*1 *2 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (-1433 (*1 *2 *2 *3) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (-4053 (*1 *2 *3) (-12 (-5 *2 (-1148 *3)) (-5 *1 (-1152 *3)) (-4 *3 (-1044)))) (-2423 (*1 *2 *3 *2) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-1 *4 (-562))) (-4 *4 (-1044)) (-5 *1 (-1152 *4)))) (-3256 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (-1916 (*1 *2 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (-1322 (*1 *2 *3) (-12 (-5 *2 (-1148 *3)) (-5 *1 (-1152 *3)) (-4 *3 (-1044)))) (-2725 (*1 *2 *3) (-12 (-5 *2 (-1148 (-562))) (-5 *1 (-1152 *4)) (-4 *4 (-1044)) (-5 *3 (-562)))) (-3052 (*1 *2 *3) (-12 (-5 *2 (-1148 (-562))) (-5 *1 (-1152 *4)) (-4 *4 (-1044)) (-5 *3 (-562)))) (-3044 (*1 *2 *3 *4) (-12 (-5 *4 (-562)) (-5 *2 (-1148 *3)) (-5 *1 (-1152 *3)) (-4 *3 (-1044)))) (-1694 (*1 *2 *2) (|partial| -12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (-1859 (*1 *2 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (-1762 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (-1847 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (-1847 (*1 *2 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) (-1836 (*1 *2 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3))))) -(-10 -7 (-15 -1836 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -1847 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -1847 ((-1148 |#1|) (-1148 |#1|))) (-15 * ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 * ((-1148 |#1|) |#1| (-1148 |#1|))) (-15 * ((-1148 |#1|) (-1148 |#1|) |#1|)) (-15 -1762 ((-3 (-1148 |#1|) "failed") (-1148 |#1|) (-1148 |#1|))) (-15 -1859 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -1694 ((-3 (-1148 |#1|) "failed") (-1148 |#1|))) (-15 -3044 ((-1148 |#1|) |#1| (-562))) (-15 -3052 ((-1148 (-562)) (-562))) (-15 -2725 ((-1148 (-562)) (-562))) (-15 -1322 ((-1148 |#1|) |#1|)) (-15 -1916 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -3256 ((-1148 |#1|) (-1148 |#1|))) (-15 -2423 ((-1148 |#1|) (-1 |#1| (-562)) (-1148 |#1|))) (-15 -4053 ((-1148 |#1|) |#1|)) (-15 -1433 ((-1148 |#1|) (-1148 |#1|) |#1|)) (-15 -3507 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -4361 ((-1148 |#1|) (-1148 |#1|))) (-15 -3043 ((-1148 |#1|) (-1148 |#1|))) (-15 -2703 ((-1148 |#1|) (-1148 (-1148 |#1|)))) (-15 -1376 ((-1148 |#1|) (-1148 |#1|))) (-15 -3656 ((-1148 |#1|) (-1148 |#1|))) (-15 -2021 ((-1148 |#1|) (-1148 |#1|))) (-15 -1337 ((-1148 |#1|) (-1148 |#1|) (-562) (-562))) (-15 -3637 ((-1148 |#1|) (-562) (-562) (-1148 |#1|))) (-15 -1628 ((-1148 |#1|) (-562) (-562) (-1148 |#1|))) (IF (|has| |#1| (-38 (-406 (-562)))) (PROGN (-15 -3081 ((-1148 |#1|) |#1| (-1148 |#1|))) (-15 -2254 ((-1148 |#1|) |#1| (-1 (-1148 |#1|)))) (-15 -2857 ((-1148 |#1|) (-1148 (-1148 |#1|)))) (-15 -1764 ((-1148 |#1|) (-406 (-562)) (-1148 |#1|)))) |%noBranch|) (IF (|has| |#1| (-362)) (PROGN (-15 -4274 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -3330 ((-1148 |#1|) (-1 |#1| (-562)) |#1| (-1 (-1148 |#1|)))) (-15 -3185 ((-1148 |#1|) |#1| (-1148 |#1|)))) |%noBranch|)) -((-2987 (((-1148 |#1|) (-1148 |#1|)) 57)) (-4098 (((-1148 |#1|) (-1148 |#1|)) 39)) (-4206 (((-1148 |#1|) (-1148 |#1|)) 53)) (-4074 (((-1148 |#1|) (-1148 |#1|)) 35)) (-3013 (((-1148 |#1|) (-1148 |#1|)) 60)) (-4120 (((-1148 |#1|) (-1148 |#1|)) 42)) (-4366 (((-1148 |#1|) (-1148 |#1|)) 31)) (-3430 (((-1148 |#1|) (-1148 |#1|)) 27)) (-3022 (((-1148 |#1|) (-1148 |#1|)) 61)) (-4130 (((-1148 |#1|) (-1148 |#1|)) 43)) (-3000 (((-1148 |#1|) (-1148 |#1|)) 58)) (-4108 (((-1148 |#1|) (-1148 |#1|)) 40)) (-2977 (((-1148 |#1|) (-1148 |#1|)) 55)) (-4087 (((-1148 |#1|) (-1148 |#1|)) 37)) (-3054 (((-1148 |#1|) (-1148 |#1|)) 65)) (-4165 (((-1148 |#1|) (-1148 |#1|)) 47)) (-3033 (((-1148 |#1|) (-1148 |#1|)) 63)) (-4139 (((-1148 |#1|) (-1148 |#1|)) 45)) (-3077 (((-1148 |#1|) (-1148 |#1|)) 68)) (-4183 (((-1148 |#1|) (-1148 |#1|)) 50)) (-1567 (((-1148 |#1|) (-1148 |#1|)) 69)) (-4195 (((-1148 |#1|) (-1148 |#1|)) 51)) (-3065 (((-1148 |#1|) (-1148 |#1|)) 67)) (-4175 (((-1148 |#1|) (-1148 |#1|)) 49)) (-3040 (((-1148 |#1|) (-1148 |#1|)) 66)) (-4151 (((-1148 |#1|) (-1148 |#1|)) 48)) (** (((-1148 |#1|) (-1148 |#1|) (-1148 |#1|)) 33))) -(((-1153 |#1|) (-10 -7 (-15 -3430 ((-1148 |#1|) (-1148 |#1|))) (-15 -4366 ((-1148 |#1|) (-1148 |#1|))) (-15 ** ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -4074 ((-1148 |#1|) (-1148 |#1|))) (-15 -4087 ((-1148 |#1|) (-1148 |#1|))) (-15 -4098 ((-1148 |#1|) (-1148 |#1|))) (-15 -4108 ((-1148 |#1|) (-1148 |#1|))) (-15 -4120 ((-1148 |#1|) (-1148 |#1|))) (-15 -4130 ((-1148 |#1|) (-1148 |#1|))) (-15 -4139 ((-1148 |#1|) (-1148 |#1|))) (-15 -4151 ((-1148 |#1|) (-1148 |#1|))) (-15 -4165 ((-1148 |#1|) (-1148 |#1|))) (-15 -4175 ((-1148 |#1|) (-1148 |#1|))) (-15 -4183 ((-1148 |#1|) (-1148 |#1|))) (-15 -4195 ((-1148 |#1|) (-1148 |#1|))) (-15 -4206 ((-1148 |#1|) (-1148 |#1|))) (-15 -2977 ((-1148 |#1|) (-1148 |#1|))) (-15 -2987 ((-1148 |#1|) (-1148 |#1|))) (-15 -3000 ((-1148 |#1|) (-1148 |#1|))) (-15 -3013 ((-1148 |#1|) (-1148 |#1|))) (-15 -3022 ((-1148 |#1|) (-1148 |#1|))) (-15 -3033 ((-1148 |#1|) (-1148 |#1|))) (-15 -3040 ((-1148 |#1|) (-1148 |#1|))) (-15 -3054 ((-1148 |#1|) (-1148 |#1|))) (-15 -3065 ((-1148 |#1|) (-1148 |#1|))) (-15 -3077 ((-1148 |#1|) (-1148 |#1|))) (-15 -1567 ((-1148 |#1|) (-1148 |#1|)))) (-38 (-406 (-562)))) (T -1153)) -((-1567 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-3077 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-3065 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-3054 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-3040 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-3033 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-3022 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-3013 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-3000 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-2987 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-2977 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-4206 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-4195 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-4183 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-4175 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-4165 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-4151 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-4139 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-4130 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-4120 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-4108 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-4098 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-4087 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-4074 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-4366 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3)))) (-3430 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1153 *3))))) -(-10 -7 (-15 -3430 ((-1148 |#1|) (-1148 |#1|))) (-15 -4366 ((-1148 |#1|) (-1148 |#1|))) (-15 ** ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -4074 ((-1148 |#1|) (-1148 |#1|))) (-15 -4087 ((-1148 |#1|) (-1148 |#1|))) (-15 -4098 ((-1148 |#1|) (-1148 |#1|))) (-15 -4108 ((-1148 |#1|) (-1148 |#1|))) (-15 -4120 ((-1148 |#1|) (-1148 |#1|))) (-15 -4130 ((-1148 |#1|) (-1148 |#1|))) (-15 -4139 ((-1148 |#1|) (-1148 |#1|))) (-15 -4151 ((-1148 |#1|) (-1148 |#1|))) (-15 -4165 ((-1148 |#1|) (-1148 |#1|))) (-15 -4175 ((-1148 |#1|) (-1148 |#1|))) (-15 -4183 ((-1148 |#1|) (-1148 |#1|))) (-15 -4195 ((-1148 |#1|) (-1148 |#1|))) (-15 -4206 ((-1148 |#1|) (-1148 |#1|))) (-15 -2977 ((-1148 |#1|) (-1148 |#1|))) (-15 -2987 ((-1148 |#1|) (-1148 |#1|))) (-15 -3000 ((-1148 |#1|) (-1148 |#1|))) (-15 -3013 ((-1148 |#1|) (-1148 |#1|))) (-15 -3022 ((-1148 |#1|) (-1148 |#1|))) (-15 -3033 ((-1148 |#1|) (-1148 |#1|))) (-15 -3040 ((-1148 |#1|) (-1148 |#1|))) (-15 -3054 ((-1148 |#1|) (-1148 |#1|))) (-15 -3065 ((-1148 |#1|) (-1148 |#1|))) (-15 -3077 ((-1148 |#1|) (-1148 |#1|))) (-15 -1567 ((-1148 |#1|) (-1148 |#1|)))) -((-2987 (((-1148 |#1|) (-1148 |#1|)) 100)) (-4098 (((-1148 |#1|) (-1148 |#1|)) 64)) (-3920 (((-2 (|:| -4206 (-1148 |#1|)) (|:| -2977 (-1148 |#1|))) (-1148 |#1|)) 96)) (-4206 (((-1148 |#1|) (-1148 |#1|)) 97)) (-4293 (((-2 (|:| -4074 (-1148 |#1|)) (|:| -4087 (-1148 |#1|))) (-1148 |#1|)) 53)) (-4074 (((-1148 |#1|) (-1148 |#1|)) 54)) (-3013 (((-1148 |#1|) (-1148 |#1|)) 102)) (-4120 (((-1148 |#1|) (-1148 |#1|)) 71)) (-4366 (((-1148 |#1|) (-1148 |#1|)) 39)) (-3430 (((-1148 |#1|) (-1148 |#1|)) 36)) (-3022 (((-1148 |#1|) (-1148 |#1|)) 103)) (-4130 (((-1148 |#1|) (-1148 |#1|)) 72)) (-3000 (((-1148 |#1|) (-1148 |#1|)) 101)) (-4108 (((-1148 |#1|) (-1148 |#1|)) 67)) (-2977 (((-1148 |#1|) (-1148 |#1|)) 98)) (-4087 (((-1148 |#1|) (-1148 |#1|)) 55)) (-3054 (((-1148 |#1|) (-1148 |#1|)) 111)) (-4165 (((-1148 |#1|) (-1148 |#1|)) 86)) (-3033 (((-1148 |#1|) (-1148 |#1|)) 105)) (-4139 (((-1148 |#1|) (-1148 |#1|)) 82)) (-3077 (((-1148 |#1|) (-1148 |#1|)) 115)) (-4183 (((-1148 |#1|) (-1148 |#1|)) 90)) (-1567 (((-1148 |#1|) (-1148 |#1|)) 117)) (-4195 (((-1148 |#1|) (-1148 |#1|)) 92)) (-3065 (((-1148 |#1|) (-1148 |#1|)) 113)) (-4175 (((-1148 |#1|) (-1148 |#1|)) 88)) (-3040 (((-1148 |#1|) (-1148 |#1|)) 107)) (-4151 (((-1148 |#1|) (-1148 |#1|)) 84)) (** (((-1148 |#1|) (-1148 |#1|) (-1148 |#1|)) 40))) -(((-1154 |#1|) (-10 -7 (-15 -3430 ((-1148 |#1|) (-1148 |#1|))) (-15 -4366 ((-1148 |#1|) (-1148 |#1|))) (-15 ** ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -4293 ((-2 (|:| -4074 (-1148 |#1|)) (|:| -4087 (-1148 |#1|))) (-1148 |#1|))) (-15 -4074 ((-1148 |#1|) (-1148 |#1|))) (-15 -4087 ((-1148 |#1|) (-1148 |#1|))) (-15 -4098 ((-1148 |#1|) (-1148 |#1|))) (-15 -4108 ((-1148 |#1|) (-1148 |#1|))) (-15 -4120 ((-1148 |#1|) (-1148 |#1|))) (-15 -4130 ((-1148 |#1|) (-1148 |#1|))) (-15 -4139 ((-1148 |#1|) (-1148 |#1|))) (-15 -4151 ((-1148 |#1|) (-1148 |#1|))) (-15 -4165 ((-1148 |#1|) (-1148 |#1|))) (-15 -4175 ((-1148 |#1|) (-1148 |#1|))) (-15 -4183 ((-1148 |#1|) (-1148 |#1|))) (-15 -4195 ((-1148 |#1|) (-1148 |#1|))) (-15 -3920 ((-2 (|:| -4206 (-1148 |#1|)) (|:| -2977 (-1148 |#1|))) (-1148 |#1|))) (-15 -4206 ((-1148 |#1|) (-1148 |#1|))) (-15 -2977 ((-1148 |#1|) (-1148 |#1|))) (-15 -2987 ((-1148 |#1|) (-1148 |#1|))) (-15 -3000 ((-1148 |#1|) (-1148 |#1|))) (-15 -3013 ((-1148 |#1|) (-1148 |#1|))) (-15 -3022 ((-1148 |#1|) (-1148 |#1|))) (-15 -3033 ((-1148 |#1|) (-1148 |#1|))) (-15 -3040 ((-1148 |#1|) (-1148 |#1|))) (-15 -3054 ((-1148 |#1|) (-1148 |#1|))) (-15 -3065 ((-1148 |#1|) (-1148 |#1|))) (-15 -3077 ((-1148 |#1|) (-1148 |#1|))) (-15 -1567 ((-1148 |#1|) (-1148 |#1|)))) (-38 (-406 (-562)))) (T -1154)) -((-1567 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-3077 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-3065 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-3054 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-3040 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-3033 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-3022 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-3013 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-3000 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-2987 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-2977 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-4206 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-3920 (*1 *2 *3) (-12 (-4 *4 (-38 (-406 (-562)))) (-5 *2 (-2 (|:| -4206 (-1148 *4)) (|:| -2977 (-1148 *4)))) (-5 *1 (-1154 *4)) (-5 *3 (-1148 *4)))) (-4195 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-4183 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-4175 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-4165 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-4151 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-4139 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-4130 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-4120 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-4108 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-4098 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-4087 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-4074 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-4293 (*1 *2 *3) (-12 (-4 *4 (-38 (-406 (-562)))) (-5 *2 (-2 (|:| -4074 (-1148 *4)) (|:| -4087 (-1148 *4)))) (-5 *1 (-1154 *4)) (-5 *3 (-1148 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-4366 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3)))) (-3430 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1154 *3))))) -(-10 -7 (-15 -3430 ((-1148 |#1|) (-1148 |#1|))) (-15 -4366 ((-1148 |#1|) (-1148 |#1|))) (-15 ** ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -4293 ((-2 (|:| -4074 (-1148 |#1|)) (|:| -4087 (-1148 |#1|))) (-1148 |#1|))) (-15 -4074 ((-1148 |#1|) (-1148 |#1|))) (-15 -4087 ((-1148 |#1|) (-1148 |#1|))) (-15 -4098 ((-1148 |#1|) (-1148 |#1|))) (-15 -4108 ((-1148 |#1|) (-1148 |#1|))) (-15 -4120 ((-1148 |#1|) (-1148 |#1|))) (-15 -4130 ((-1148 |#1|) (-1148 |#1|))) (-15 -4139 ((-1148 |#1|) (-1148 |#1|))) (-15 -4151 ((-1148 |#1|) (-1148 |#1|))) (-15 -4165 ((-1148 |#1|) (-1148 |#1|))) (-15 -4175 ((-1148 |#1|) (-1148 |#1|))) (-15 -4183 ((-1148 |#1|) (-1148 |#1|))) (-15 -4195 ((-1148 |#1|) (-1148 |#1|))) (-15 -3920 ((-2 (|:| -4206 (-1148 |#1|)) (|:| -2977 (-1148 |#1|))) (-1148 |#1|))) (-15 -4206 ((-1148 |#1|) (-1148 |#1|))) (-15 -2977 ((-1148 |#1|) (-1148 |#1|))) (-15 -2987 ((-1148 |#1|) (-1148 |#1|))) (-15 -3000 ((-1148 |#1|) (-1148 |#1|))) (-15 -3013 ((-1148 |#1|) (-1148 |#1|))) (-15 -3022 ((-1148 |#1|) (-1148 |#1|))) (-15 -3033 ((-1148 |#1|) (-1148 |#1|))) (-15 -3040 ((-1148 |#1|) (-1148 |#1|))) (-15 -3054 ((-1148 |#1|) (-1148 |#1|))) (-15 -3065 ((-1148 |#1|) (-1148 |#1|))) (-15 -3077 ((-1148 |#1|) (-1148 |#1|))) (-15 -1567 ((-1148 |#1|) (-1148 |#1|)))) -((-2684 (((-953 |#2|) |#2| |#2|) 35)) (-2578 ((|#2| |#2| |#1|) 19 (|has| |#1| (-306))))) -(((-1155 |#1| |#2|) (-10 -7 (-15 -2684 ((-953 |#2|) |#2| |#2|)) (IF (|has| |#1| (-306)) (-15 -2578 (|#2| |#2| |#1|)) |%noBranch|)) (-554) (-1232 |#1|)) (T -1155)) -((-2578 (*1 *2 *2 *3) (-12 (-4 *3 (-306)) (-4 *3 (-554)) (-5 *1 (-1155 *3 *2)) (-4 *2 (-1232 *3)))) (-2684 (*1 *2 *3 *3) (-12 (-4 *4 (-554)) (-5 *2 (-953 *3)) (-5 *1 (-1155 *4 *3)) (-4 *3 (-1232 *4))))) -(-10 -7 (-15 -2684 ((-953 |#2|) |#2| |#2|)) (IF (|has| |#1| (-306)) (-15 -2578 (|#2| |#2| |#1|)) |%noBranch|)) -((-4041 (((-112) $ $) NIL)) (-3956 (($ $ (-639 (-766))) 66)) (-2962 (($) 25)) (-3023 (($ $) 41)) (-2687 (((-639 $) $) 50)) (-2896 (((-112) $) 16)) (-1740 (((-639 (-938 |#2|)) $) 73)) (-1795 (($ $) 67)) (-3491 (((-766) $) 36)) (-1458 (($) 24)) (-3379 (($ $ (-639 (-766)) (-938 |#2|)) 59) (($ $ (-639 (-766)) (-766)) 60) (($ $ (-766) (-938 |#2|)) 62)) (-4103 (($ $ $) 47) (($ (-639 $)) 49)) (-3327 (((-766) $) 74)) (-3179 (((-112) $) 15)) (-3696 (((-1150) $) NIL)) (-2416 (((-112) $) 17)) (-1709 (((-1112) $) NIL)) (-2875 (((-170) $) 72)) (-2652 (((-938 |#2|) $) 68)) (-2025 (((-766) $) 69)) (-3798 (((-112) $) 71)) (-1981 (($ $ (-639 (-766)) (-170)) 65)) (-2046 (($ $) 42)) (-4053 (((-857) $) 85)) (-2087 (($ $ (-639 (-766)) (-112)) 64)) (-3643 (((-639 $) $) 11)) (-1842 (($ $ (-766)) 35)) (-2009 (($ $) 31)) (-3726 (($ $ $ (-938 |#2|) (-766)) 55)) (-2867 (($ $ (-938 |#2|)) 54)) (-2753 (($ $ (-639 (-766)) (-938 |#2|)) 53) (($ $ (-639 (-766)) (-766)) 57) (((-766) $ (-938 |#2|)) 58)) (-1733 (((-112) $ $) 79))) -(((-1156 |#1| |#2|) (-13 (-1092) (-10 -8 (-15 -3179 ((-112) $)) (-15 -2896 ((-112) $)) (-15 -2416 ((-112) $)) (-15 -1458 ($)) (-15 -2962 ($)) (-15 -2009 ($ $)) (-15 -1842 ($ $ (-766))) (-15 -3643 ((-639 $) $)) (-15 -3491 ((-766) $)) (-15 -3023 ($ $)) (-15 -2046 ($ $)) (-15 -4103 ($ $ $)) (-15 -4103 ($ (-639 $))) (-15 -2687 ((-639 $) $)) (-15 -2753 ($ $ (-639 (-766)) (-938 |#2|))) (-15 -2867 ($ $ (-938 |#2|))) (-15 -3726 ($ $ $ (-938 |#2|) (-766))) (-15 -3379 ($ $ (-639 (-766)) (-938 |#2|))) (-15 -2753 ($ $ (-639 (-766)) (-766))) (-15 -3379 ($ $ (-639 (-766)) (-766))) (-15 -2753 ((-766) $ (-938 |#2|))) (-15 -3379 ($ $ (-766) (-938 |#2|))) (-15 -2087 ($ $ (-639 (-766)) (-112))) (-15 -1981 ($ $ (-639 (-766)) (-170))) (-15 -3956 ($ $ (-639 (-766)))) (-15 -2652 ((-938 |#2|) $)) (-15 -2025 ((-766) $)) (-15 -3798 ((-112) $)) (-15 -2875 ((-170) $)) (-15 -3327 ((-766) $)) (-15 -1795 ($ $)) (-15 -1740 ((-639 (-938 |#2|)) $)))) (-916) (-1044)) (T -1156)) -((-3179 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) (-4 *4 (-1044)))) (-2896 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) (-4 *4 (-1044)))) (-2416 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) (-4 *4 (-1044)))) (-1458 (*1 *1) (-12 (-5 *1 (-1156 *2 *3)) (-14 *2 (-916)) (-4 *3 (-1044)))) (-2962 (*1 *1) (-12 (-5 *1 (-1156 *2 *3)) (-14 *2 (-916)) (-4 *3 (-1044)))) (-2009 (*1 *1 *1) (-12 (-5 *1 (-1156 *2 *3)) (-14 *2 (-916)) (-4 *3 (-1044)))) (-1842 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) (-4 *4 (-1044)))) (-3643 (*1 *2 *1) (-12 (-5 *2 (-639 (-1156 *3 *4))) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) (-4 *4 (-1044)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) (-4 *4 (-1044)))) (-3023 (*1 *1 *1) (-12 (-5 *1 (-1156 *2 *3)) (-14 *2 (-916)) (-4 *3 (-1044)))) (-2046 (*1 *1 *1) (-12 (-5 *1 (-1156 *2 *3)) (-14 *2 (-916)) (-4 *3 (-1044)))) (-4103 (*1 *1 *1 *1) (-12 (-5 *1 (-1156 *2 *3)) (-14 *2 (-916)) (-4 *3 (-1044)))) (-4103 (*1 *1 *2) (-12 (-5 *2 (-639 (-1156 *3 *4))) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) (-4 *4 (-1044)))) (-2687 (*1 *2 *1) (-12 (-5 *2 (-639 (-1156 *3 *4))) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) (-4 *4 (-1044)))) (-2753 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 (-766))) (-5 *3 (-938 *5)) (-4 *5 (-1044)) (-5 *1 (-1156 *4 *5)) (-14 *4 (-916)))) (-2867 (*1 *1 *1 *2) (-12 (-5 *2 (-938 *4)) (-4 *4 (-1044)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)))) (-3726 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-938 *5)) (-5 *3 (-766)) (-4 *5 (-1044)) (-5 *1 (-1156 *4 *5)) (-14 *4 (-916)))) (-3379 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 (-766))) (-5 *3 (-938 *5)) (-4 *5 (-1044)) (-5 *1 (-1156 *4 *5)) (-14 *4 (-916)))) (-2753 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 (-766))) (-5 *3 (-766)) (-5 *1 (-1156 *4 *5)) (-14 *4 (-916)) (-4 *5 (-1044)))) (-3379 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 (-766))) (-5 *3 (-766)) (-5 *1 (-1156 *4 *5)) (-14 *4 (-916)) (-4 *5 (-1044)))) (-2753 (*1 *2 *1 *3) (-12 (-5 *3 (-938 *5)) (-4 *5 (-1044)) (-5 *2 (-766)) (-5 *1 (-1156 *4 *5)) (-14 *4 (-916)))) (-3379 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-766)) (-5 *3 (-938 *5)) (-4 *5 (-1044)) (-5 *1 (-1156 *4 *5)) (-14 *4 (-916)))) (-2087 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 (-766))) (-5 *3 (-112)) (-5 *1 (-1156 *4 *5)) (-14 *4 (-916)) (-4 *5 (-1044)))) (-1981 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-639 (-766))) (-5 *3 (-170)) (-5 *1 (-1156 *4 *5)) (-14 *4 (-916)) (-4 *5 (-1044)))) (-3956 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-766))) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) (-4 *4 (-1044)))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-938 *4)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) (-4 *4 (-1044)))) (-2025 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) (-4 *4 (-1044)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) (-4 *4 (-1044)))) (-2875 (*1 *2 *1) (-12 (-5 *2 (-170)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) (-4 *4 (-1044)))) (-3327 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) (-4 *4 (-1044)))) (-1795 (*1 *1 *1) (-12 (-5 *1 (-1156 *2 *3)) (-14 *2 (-916)) (-4 *3 (-1044)))) (-1740 (*1 *2 *1) (-12 (-5 *2 (-639 (-938 *4))) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) (-4 *4 (-1044))))) -(-13 (-1092) (-10 -8 (-15 -3179 ((-112) $)) (-15 -2896 ((-112) $)) (-15 -2416 ((-112) $)) (-15 -1458 ($)) (-15 -2962 ($)) (-15 -2009 ($ $)) (-15 -1842 ($ $ (-766))) (-15 -3643 ((-639 $) $)) (-15 -3491 ((-766) $)) (-15 -3023 ($ $)) (-15 -2046 ($ $)) (-15 -4103 ($ $ $)) (-15 -4103 ($ (-639 $))) (-15 -2687 ((-639 $) $)) (-15 -2753 ($ $ (-639 (-766)) (-938 |#2|))) (-15 -2867 ($ $ (-938 |#2|))) (-15 -3726 ($ $ $ (-938 |#2|) (-766))) (-15 -3379 ($ $ (-639 (-766)) (-938 |#2|))) (-15 -2753 ($ $ (-639 (-766)) (-766))) (-15 -3379 ($ $ (-639 (-766)) (-766))) (-15 -2753 ((-766) $ (-938 |#2|))) (-15 -3379 ($ $ (-766) (-938 |#2|))) (-15 -2087 ($ $ (-639 (-766)) (-112))) (-15 -1981 ($ $ (-639 (-766)) (-170))) (-15 -3956 ($ $ (-639 (-766)))) (-15 -2652 ((-938 |#2|) $)) (-15 -2025 ((-766) $)) (-15 -3798 ((-112) $)) (-15 -2875 ((-170) $)) (-15 -3327 ((-766) $)) (-15 -1795 ($ $)) (-15 -1740 ((-639 (-938 |#2|)) $)))) -((-4041 (((-112) $ $) NIL)) (-4330 ((|#2| $) 11)) (-4318 ((|#1| $) 10)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4064 (($ |#1| |#2|) 9)) (-4053 (((-857) $) 16)) (-1733 (((-112) $ $) NIL))) -(((-1157 |#1| |#2|) (-13 (-1092) (-10 -8 (-15 -4064 ($ |#1| |#2|)) (-15 -4318 (|#1| $)) (-15 -4330 (|#2| $)))) (-1092) (-1092)) (T -1157)) -((-4064 (*1 *1 *2 *3) (-12 (-5 *1 (-1157 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092)))) (-4318 (*1 *2 *1) (-12 (-4 *2 (-1092)) (-5 *1 (-1157 *2 *3)) (-4 *3 (-1092)))) (-4330 (*1 *2 *1) (-12 (-4 *2 (-1092)) (-5 *1 (-1157 *3 *2)) (-4 *3 (-1092))))) -(-13 (-1092) (-10 -8 (-15 -4064 ($ |#1| |#2|)) (-15 -4318 (|#1| $)) (-15 -4330 (|#2| $)))) -((-4041 (((-112) $ $) NIL)) (-1820 (((-1127) $) 9)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 17) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-1158) (-13 (-1075) (-10 -8 (-15 -1820 ((-1127) $))))) (T -1158)) -((-1820 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1158))))) -(-13 (-1075) (-10 -8 (-15 -1820 ((-1127) $)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2300 (((-1166 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-306)) (|has| |#1| (-362))))) (-1401 (((-639 (-1074)) $) NIL)) (-2443 (((-1168) $) 11)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-1965 (($ $) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-4102 (((-112) $) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-1302 (($ $ (-562)) NIL) (($ $ (-562) (-562)) 66)) (-4196 (((-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|))) $) NIL)) (-2108 (((-1166 |#1| |#2| |#3|) $) 36)) (-3357 (((-3 (-1166 |#1| |#2| |#3|) "failed") $) 29)) (-1470 (((-1166 |#1| |#2| |#3|) $) 30)) (-2987 (($ $) 107 (|has| |#1| (-38 (-406 (-562)))))) (-4098 (($ $) 83 (|has| |#1| (-38 (-406 (-562)))))) (-2781 (((-3 $ "failed") $ $) NIL)) (-3517 (((-417 (-1164 $)) (-1164 $)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))))) (-1977 (($ $) NIL (|has| |#1| (-362)))) (-3788 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1644 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))))) (-1436 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4206 (($ $) 103 (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) 79 (|has| |#1| (-38 (-406 (-562)))))) (-1587 (((-562) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))))) (-1503 (($ (-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|)))) NIL)) (-3013 (($ $) 111 (|has| |#1| (-38 (-406 (-562)))))) (-4120 (($ $) 87 (|has| |#1| (-38 (-406 (-562)))))) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-1166 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1168) "failed") $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-1033 (-1168))) (|has| |#1| (-362)))) (((-3 (-406 (-562)) "failed") $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-1033 (-562))) (|has| |#1| (-362)))) (((-3 (-562) "failed") $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-1033 (-562))) (|has| |#1| (-362))))) (-3960 (((-1166 |#1| |#2| |#3|) $) 131) (((-1168) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-1033 (-1168))) (|has| |#1| (-362)))) (((-406 (-562)) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-1033 (-562))) (|has| |#1| (-362)))) (((-562) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-1033 (-562))) (|has| |#1| (-362))))) (-2449 (($ $) 34) (($ (-562) $) 35)) (-1810 (($ $ $) NIL (|has| |#1| (-362)))) (-1600 (($ $) NIL)) (-3449 (((-683 (-1166 |#1| |#2| |#3|)) (-683 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -1767 (-683 (-1166 |#1| |#2| |#3|))) (|:| |vec| (-1256 (-1166 |#1| |#2| |#3|)))) (-683 $) (-1256 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-635 (-562))) (|has| |#1| (-362)))) (((-683 (-562)) (-683 $)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-635 (-562))) (|has| |#1| (-362))))) (-1694 (((-3 $ "failed") $) 48)) (-2547 (((-406 (-947 |#1|)) $ (-562)) 65 (|has| |#1| (-554))) (((-406 (-947 |#1|)) $ (-562) (-562)) 67 (|has| |#1| (-554)))) (-1447 (($) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-544)) (|has| |#1| (-362))))) (-1787 (($ $ $) NIL (|has| |#1| (-362)))) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL (|has| |#1| (-362)))) (-3521 (((-112) $) NIL (|has| |#1| (-362)))) (-2696 (((-112) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))))) (-2965 (((-112) $) 25)) (-4100 (($) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2337 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-881 (-378))) (|has| |#1| (-362)))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-881 (-562))) (|has| |#1| (-362))))) (-1993 (((-562) $) NIL) (((-562) $ (-562)) 24)) (-4367 (((-112) $) NIL)) (-2957 (($ $) NIL (|has| |#1| (-362)))) (-4063 (((-1166 |#1| |#2| |#3|) $) 38 (|has| |#1| (-362)))) (-1895 (($ $ (-562)) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3828 (((-3 $ "failed") $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-1143)) (|has| |#1| (-362))))) (-3855 (((-112) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))))) (-3662 (($ $ (-916)) NIL)) (-2064 (($ (-1 |#1| (-562)) $) NIL)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-2833 (((-112) $) NIL)) (-1377 (($ |#1| (-562)) 18) (($ $ (-1074) (-562)) NIL) (($ $ (-639 (-1074)) (-639 (-562))) NIL)) (-1551 (($ $ $) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-845)) (|has| |#1| (-362)))))) (-2993 (($ $ $) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-845)) (|has| |#1| (-362)))))) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-362)))) (-4366 (($ $) 72 (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1487 (($ (-562) (-1166 |#1| |#2| |#3|)) 33)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) NIL (|has| |#1| (-362)))) (-3081 (($ $) 70 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-1168)) NIL (-4037 (-12 (|has| |#1| (-15 -3081 (|#1| |#1| (-1168)))) (|has| |#1| (-15 -1401 ((-639 (-1168)) |#1|))) (|has| |#1| (-38 (-406 (-562))))) (-12 (|has| |#1| (-29 (-562))) (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-954)) (|has| |#1| (-1192))))) (($ $ (-1252 |#2|)) 71 (|has| |#1| (-38 (-406 (-562)))))) (-3730 (($) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-1143)) (|has| |#1| (-362))) CONST)) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-362)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-2561 (($ $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-306)) (|has| |#1| (-362))))) (-3870 (((-1166 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-544)) (|has| |#1| (-362))))) (-3586 (((-417 (-1164 $)) (-1164 $)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))))) (-3468 (((-417 (-1164 $)) (-1164 $)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))))) (-1635 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL (|has| |#1| (-362)))) (-4316 (($ $ (-562)) 145)) (-1762 (((-3 $ "failed") $ $) 49 (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-3430 (($ $) 73 (|has| |#1| (-38 (-406 (-562)))))) (-1433 (((-1148 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-562))))) (($ $ (-1168) (-1166 |#1| |#2| |#3|)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-513 (-1168) (-1166 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-639 (-1168)) (-639 (-1166 |#1| |#2| |#3|))) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-513 (-1168) (-1166 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-639 (-293 (-1166 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-308 (-1166 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-293 (-1166 |#1| |#2| |#3|))) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-308 (-1166 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-308 (-1166 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-639 (-1166 |#1| |#2| |#3|)) (-639 (-1166 |#1| |#2| |#3|))) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-308 (-1166 |#1| |#2| |#3|))) (|has| |#1| (-362))))) (-2044 (((-766) $) NIL (|has| |#1| (-362)))) (-2343 ((|#1| $ (-562)) NIL) (($ $ $) 54 (|has| (-562) (-1104))) (($ $ (-1166 |#1| |#2| |#3|)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-285 (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|))) (|has| |#1| (-362))))) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| |#1| (-362)))) (-4029 (($ $ (-1 (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|))) NIL (|has| |#1| (-362))) (($ $ (-1 (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|)) (-766)) NIL (|has| |#1| (-362))) (($ $ (-1252 |#2|)) 51) (($ $ (-766)) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $) 50 (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-1168) (-766)) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-639 (-1168))) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-1168)) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168))))))) (-1580 (($ $) NIL (|has| |#1| (-362)))) (-4079 (((-1166 |#1| |#2| |#3|) $) 41 (|has| |#1| (-362)))) (-2250 (((-562) $) 37)) (-3022 (($ $) 113 (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) 89 (|has| |#1| (-38 (-406 (-562)))))) (-3000 (($ $) 109 (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) 85 (|has| |#1| (-38 (-406 (-562)))))) (-2977 (($ $) 105 (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) 81 (|has| |#1| (-38 (-406 (-562)))))) (-4208 (((-535) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-610 (-535))) (|has| |#1| (-362)))) (((-378) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-1017)) (|has| |#1| (-362)))) (((-224) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-1017)) (|has| |#1| (-362)))) (((-887 (-378)) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-610 (-887 (-378)))) (|has| |#1| (-362)))) (((-887 (-562)) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-610 (-887 (-562)))) (|has| |#1| (-362))))) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| (-1166 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))))) (-1345 (($ $) NIL)) (-4053 (((-857) $) 149) (($ (-562)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1166 |#1| |#2| |#3|)) 27) (($ (-1252 |#2|)) 23) (($ (-1168)) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-1033 (-1168))) (|has| |#1| (-362)))) (($ $) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))) (|has| |#1| (-554)))) (($ (-406 (-562))) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-1033 (-562))) (|has| |#1| (-362))) (|has| |#1| (-38 (-406 (-562))))))) (-2266 ((|#1| $ (-562)) 68)) (-2059 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| (-1166 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-144)) (|has| |#1| (-362))) (|has| |#1| (-144))))) (-1568 (((-766)) NIL)) (-2328 ((|#1| $) 12)) (-3636 (((-1166 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-544)) (|has| |#1| (-362))))) (-3054 (($ $) 119 (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) 95 (|has| |#1| (-38 (-406 (-562)))))) (-3799 (((-112) $ $) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-3033 (($ $) 115 (|has| |#1| (-38 (-406 (-562)))))) (-4139 (($ $) 91 (|has| |#1| (-38 (-406 (-562)))))) (-3077 (($ $) 123 (|has| |#1| (-38 (-406 (-562)))))) (-4183 (($ $) 99 (|has| |#1| (-38 (-406 (-562)))))) (-1406 ((|#1| $ (-562)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-562)))) (|has| |#1| (-15 -4053 (|#1| (-1168))))))) (-1567 (($ $) 125 (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) 101 (|has| |#1| (-38 (-406 (-562)))))) (-3065 (($ $) 121 (|has| |#1| (-38 (-406 (-562)))))) (-4175 (($ $) 97 (|has| |#1| (-38 (-406 (-562)))))) (-3040 (($ $) 117 (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) 93 (|has| |#1| (-38 (-406 (-562)))))) (-2757 (($ $) NIL (-12 (|has| (-1166 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))))) (-2285 (($) 20 T CONST)) (-2294 (($) 16 T CONST)) (-3113 (($ $ (-1 (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|))) NIL (|has| |#1| (-362))) (($ $ (-1 (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|)) (-766)) NIL (|has| |#1| (-362))) (($ $ (-766)) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-1168) (-766)) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-639 (-1168))) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-1168)) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168))))))) (-1798 (((-112) $ $) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-845)) (|has| |#1| (-362)))))) (-1771 (((-112) $ $) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-845)) (|has| |#1| (-362)))))) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-845)) (|has| |#1| (-362)))))) (-1761 (((-112) $ $) NIL (-4037 (-12 (|has| (-1166 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1166 |#1| |#2| |#3|) (-845)) (|has| |#1| (-362)))))) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) 44 (|has| |#1| (-362))) (($ (-1166 |#1| |#2| |#3|) (-1166 |#1| |#2| |#3|)) 45 (|has| |#1| (-362)))) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) 21)) (** (($ $ (-916)) NIL) (($ $ (-766)) 53) (($ $ (-562)) NIL (|has| |#1| (-362))) (($ $ $) 74 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 128 (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1166 |#1| |#2| |#3|)) 43 (|has| |#1| (-362))) (($ (-1166 |#1| |#2| |#3|) $) 42 (|has| |#1| (-362))) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))))) -(((-1159 |#1| |#2| |#3|) (-13 (-1218 |#1| (-1166 |#1| |#2| |#3|)) (-10 -8 (-15 -4053 ($ (-1252 |#2|))) (-15 -4029 ($ $ (-1252 |#2|))) (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -3081 ($ $ (-1252 |#2|))) |%noBranch|))) (-1044) (-1168) |#1|) (T -1159)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1159 *3 *4 *5)) (-4 *3 (-1044)) (-14 *5 *3))) (-4029 (*1 *1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1159 *3 *4 *5)) (-4 *3 (-1044)) (-14 *5 *3))) (-3081 (*1 *1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1159 *3 *4 *5)) (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) (-14 *5 *3)))) -(-13 (-1218 |#1| (-1166 |#1| |#2| |#3|)) (-10 -8 (-15 -4053 ($ (-1252 |#2|))) (-15 -4029 ($ $ (-1252 |#2|))) (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -3081 ($ $ (-1252 |#2|))) |%noBranch|))) -((-1625 ((|#2| |#2| (-1084 |#2|)) 26) ((|#2| |#2| (-1168)) 28))) -(((-1160 |#1| |#2|) (-10 -7 (-15 -1625 (|#2| |#2| (-1168))) (-15 -1625 (|#2| |#2| (-1084 |#2|)))) (-13 (-554) (-845) (-1033 (-562)) (-635 (-562))) (-13 (-429 |#1|) (-159) (-27) (-1192))) (T -1160)) -((-1625 (*1 *2 *2 *3) (-12 (-5 *3 (-1084 *2)) (-4 *2 (-13 (-429 *4) (-159) (-27) (-1192))) (-4 *4 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-1160 *4 *2)))) (-1625 (*1 *2 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-1160 *4 *2)) (-4 *2 (-13 (-429 *4) (-159) (-27) (-1192)))))) -(-10 -7 (-15 -1625 (|#2| |#2| (-1168))) (-15 -1625 (|#2| |#2| (-1084 |#2|)))) -((-1625 (((-3 (-406 (-947 |#1|)) (-315 |#1|)) (-406 (-947 |#1|)) (-1084 (-406 (-947 |#1|)))) 31) (((-406 (-947 |#1|)) (-947 |#1|) (-1084 (-947 |#1|))) 44) (((-3 (-406 (-947 |#1|)) (-315 |#1|)) (-406 (-947 |#1|)) (-1168)) 33) (((-406 (-947 |#1|)) (-947 |#1|) (-1168)) 36))) -(((-1161 |#1|) (-10 -7 (-15 -1625 ((-406 (-947 |#1|)) (-947 |#1|) (-1168))) (-15 -1625 ((-3 (-406 (-947 |#1|)) (-315 |#1|)) (-406 (-947 |#1|)) (-1168))) (-15 -1625 ((-406 (-947 |#1|)) (-947 |#1|) (-1084 (-947 |#1|)))) (-15 -1625 ((-3 (-406 (-947 |#1|)) (-315 |#1|)) (-406 (-947 |#1|)) (-1084 (-406 (-947 |#1|)))))) (-13 (-554) (-845) (-1033 (-562)))) (T -1161)) -((-1625 (*1 *2 *3 *4) (-12 (-5 *4 (-1084 (-406 (-947 *5)))) (-5 *3 (-406 (-947 *5))) (-4 *5 (-13 (-554) (-845) (-1033 (-562)))) (-5 *2 (-3 *3 (-315 *5))) (-5 *1 (-1161 *5)))) (-1625 (*1 *2 *3 *4) (-12 (-5 *4 (-1084 (-947 *5))) (-5 *3 (-947 *5)) (-4 *5 (-13 (-554) (-845) (-1033 (-562)))) (-5 *2 (-406 *3)) (-5 *1 (-1161 *5)))) (-1625 (*1 *2 *3 *4) (-12 (-5 *4 (-1168)) (-4 *5 (-13 (-554) (-845) (-1033 (-562)))) (-5 *2 (-3 (-406 (-947 *5)) (-315 *5))) (-5 *1 (-1161 *5)) (-5 *3 (-406 (-947 *5))))) (-1625 (*1 *2 *3 *4) (-12 (-5 *4 (-1168)) (-4 *5 (-13 (-554) (-845) (-1033 (-562)))) (-5 *2 (-406 (-947 *5))) (-5 *1 (-1161 *5)) (-5 *3 (-947 *5))))) -(-10 -7 (-15 -1625 ((-406 (-947 |#1|)) (-947 |#1|) (-1168))) (-15 -1625 ((-3 (-406 (-947 |#1|)) (-315 |#1|)) (-406 (-947 |#1|)) (-1168))) (-15 -1625 ((-406 (-947 |#1|)) (-947 |#1|) (-1084 (-947 |#1|)))) (-15 -1625 ((-3 (-406 (-947 |#1|)) (-315 |#1|)) (-406 (-947 |#1|)) (-1084 (-406 (-947 |#1|)))))) -((-4152 (((-1164 |#2|) (-1 |#2| |#1|) (-1164 |#1|)) 13))) -(((-1162 |#1| |#2|) (-10 -7 (-15 -4152 ((-1164 |#2|) (-1 |#2| |#1|) (-1164 |#1|)))) (-1044) (-1044)) (T -1162)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1164 *5)) (-4 *5 (-1044)) (-4 *6 (-1044)) (-5 *2 (-1164 *6)) (-5 *1 (-1162 *5 *6))))) -(-10 -7 (-15 -4152 ((-1164 |#2|) (-1 |#2| |#1|) (-1164 |#1|)))) -((-3788 (((-417 (-1164 (-406 |#4|))) (-1164 (-406 |#4|))) 51)) (-1635 (((-417 (-1164 (-406 |#4|))) (-1164 (-406 |#4|))) 52))) -(((-1163 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1635 ((-417 (-1164 (-406 |#4|))) (-1164 (-406 |#4|)))) (-15 -3788 ((-417 (-1164 (-406 |#4|))) (-1164 (-406 |#4|))))) (-788) (-845) (-451) (-944 |#3| |#1| |#2|)) (T -1163)) -((-3788 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-451)) (-4 *7 (-944 *6 *4 *5)) (-5 *2 (-417 (-1164 (-406 *7)))) (-5 *1 (-1163 *4 *5 *6 *7)) (-5 *3 (-1164 (-406 *7))))) (-1635 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-451)) (-4 *7 (-944 *6 *4 *5)) (-5 *2 (-417 (-1164 (-406 *7)))) (-5 *1 (-1163 *4 *5 *6 *7)) (-5 *3 (-1164 (-406 *7)))))) -(-10 -7 (-15 -1635 ((-417 (-1164 (-406 |#4|))) (-1164 (-406 |#4|)))) (-15 -3788 ((-417 (-1164 (-406 |#4|))) (-1164 (-406 |#4|))))) -((-4041 (((-112) $ $) 136)) (-4325 (((-112) $) 27)) (-4263 (((-1256 |#1|) $ (-766)) NIL)) (-1401 (((-639 (-1074)) $) NIL)) (-2505 (($ (-1164 |#1|)) NIL)) (-1602 (((-1164 $) $ (-1074)) 58) (((-1164 |#1|) $) 47)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-1965 (($ $) 131 (|has| |#1| (-554)))) (-4102 (((-112) $) NIL (|has| |#1| (-554)))) (-1578 (((-766) $) NIL) (((-766) $ (-639 (-1074))) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-2035 (($ $ $) 125 (|has| |#1| (-554)))) (-3517 (((-417 (-1164 $)) (-1164 $)) 71 (|has| |#1| (-904)))) (-1977 (($ $) NIL (|has| |#1| (-451)))) (-3788 (((-417 $) $) NIL (|has| |#1| (-451)))) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) 91 (|has| |#1| (-904)))) (-1436 (((-112) $ $) NIL (|has| |#1| (-362)))) (-1730 (($ $ (-766)) 39)) (-3538 (($ $ (-766)) 40)) (-2687 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-451)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#1| "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-1074) "failed") $) NIL)) (-3960 ((|#1| $) NIL) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-1074) $) NIL)) (-2355 (($ $ $ (-1074)) NIL (|has| |#1| (-171))) ((|#1| $ $) 127 (|has| |#1| (-171)))) (-1810 (($ $ $) NIL (|has| |#1| (-362)))) (-1600 (($ $) 56)) (-3449 (((-683 (-562)) (-683 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) NIL) (((-683 |#1|) (-683 $)) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-1787 (($ $ $) NIL (|has| |#1| (-362)))) (-4296 (($ $ $) 103)) (-3127 (($ $ $) NIL (|has| |#1| (-554)))) (-3840 (((-2 (|:| -4221 |#1|) (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| |#1| (-554)))) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL (|has| |#1| (-362)))) (-2578 (($ $) 132 (|has| |#1| (-451))) (($ $ (-1074)) NIL (|has| |#1| (-451)))) (-1585 (((-639 $) $) NIL)) (-3521 (((-112) $) NIL (|has| |#1| (-904)))) (-3066 (($ $ |#1| (-766) $) 45)) (-2337 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-1074) (-881 (-378))) (|has| |#1| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (-12 (|has| (-1074) (-881 (-562))) (|has| |#1| (-881 (-562)))))) (-3508 (((-857) $ (-857)) 116)) (-1993 (((-766) $ $) NIL (|has| |#1| (-554)))) (-4367 (((-112) $) 30)) (-3627 (((-766) $) NIL)) (-3828 (((-3 $ "failed") $) NIL (|has| |#1| (-1143)))) (-1389 (($ (-1164 |#1|) (-1074)) 49) (($ (-1164 $) (-1074)) 65)) (-3662 (($ $ (-766)) 32)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-1869 (((-639 $) $) NIL)) (-2833 (((-112) $) NIL)) (-1377 (($ |#1| (-766)) 63) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL)) (-3851 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $ (-1074)) NIL) (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 120)) (-3161 (((-766) $) NIL) (((-766) $ (-1074)) NIL) (((-639 (-766)) $ (-639 (-1074))) NIL)) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-2363 (($ (-1 (-766) (-766)) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-1556 (((-1164 |#1|) $) NIL)) (-3640 (((-3 (-1074) "failed") $) NIL)) (-1560 (($ $) NIL)) (-1573 ((|#1| $) 52)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) NIL (|has| |#1| (-451)))) (-3696 (((-1150) $) NIL)) (-2215 (((-2 (|:| -3380 $) (|:| -1441 $)) $ (-766)) 38)) (-4025 (((-3 (-639 $) "failed") $) NIL)) (-1778 (((-3 (-639 $) "failed") $) NIL)) (-4270 (((-3 (-2 (|:| |var| (-1074)) (|:| -1300 (-766))) "failed") $) NIL)) (-3081 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3730 (($) NIL (|has| |#1| (-1143)) CONST)) (-1709 (((-1112) $) NIL)) (-1534 (((-112) $) 31)) (-1547 ((|#1| $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 79 (|has| |#1| (-451)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-451))) (($ $ $) 134 (|has| |#1| (-451)))) (-1601 (($ $ (-766) |#1| $) 98)) (-3586 (((-417 (-1164 $)) (-1164 $)) 77 (|has| |#1| (-904)))) (-3468 (((-417 (-1164 $)) (-1164 $)) 76 (|has| |#1| (-904)))) (-1635 (((-417 $) $) 84 (|has| |#1| (-904)))) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL (|has| |#1| (-362)))) (-1762 (((-3 $ "failed") $ |#1|) 130 (|has| |#1| (-554))) (((-3 $ "failed") $ $) 99 (|has| |#1| (-554)))) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-1433 (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-1074) |#1|) NIL) (($ $ (-639 (-1074)) (-639 |#1|)) NIL) (($ $ (-1074) $) NIL) (($ $ (-639 (-1074)) (-639 $)) NIL)) (-2044 (((-766) $) NIL (|has| |#1| (-362)))) (-2343 ((|#1| $ |#1|) 118) (($ $ $) 119) (((-406 $) (-406 $) (-406 $)) NIL (|has| |#1| (-554))) ((|#1| (-406 $) |#1|) NIL (|has| |#1| (-362))) (((-406 $) $ (-406 $)) NIL (|has| |#1| (-554)))) (-1610 (((-3 $ "failed") $ (-766)) 35)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 137 (|has| |#1| (-362)))) (-2736 (($ $ (-1074)) NIL (|has| |#1| (-171))) ((|#1| $) 123 (|has| |#1| (-171)))) (-4029 (($ $ (-1074)) NIL) (($ $ (-639 (-1074))) NIL) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL) (($ $ (-766)) NIL) (($ $) NIL) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2250 (((-766) $) 54) (((-766) $ (-1074)) NIL) (((-639 (-766)) $ (-639 (-1074))) NIL)) (-4208 (((-887 (-378)) $) NIL (-12 (|has| (-1074) (-610 (-887 (-378)))) (|has| |#1| (-610 (-887 (-378)))))) (((-887 (-562)) $) NIL (-12 (|has| (-1074) (-610 (-887 (-562)))) (|has| |#1| (-610 (-887 (-562)))))) (((-535) $) NIL (-12 (|has| (-1074) (-610 (-535))) (|has| |#1| (-610 (-535)))))) (-2201 ((|#1| $) 129 (|has| |#1| (-451))) (($ $ (-1074)) NIL (|has| |#1| (-451)))) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| |#1| (-904))))) (-2155 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554))) (((-3 (-406 $) "failed") (-406 $) $) NIL (|has| |#1| (-554)))) (-4053 (((-857) $) 117) (($ (-562)) NIL) (($ |#1|) 53) (($ (-1074)) NIL) (($ (-406 (-562))) NIL (-4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562)))))) (($ $) NIL (|has| |#1| (-554)))) (-3969 (((-639 |#1|) $) NIL)) (-2266 ((|#1| $ (-766)) NIL) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL)) (-2059 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#1| (-904))) (|has| |#1| (-144))))) (-1568 (((-766)) NIL)) (-1760 (($ $ $ (-766)) 25 (|has| |#1| (-171)))) (-3799 (((-112) $ $) NIL (|has| |#1| (-554)))) (-2285 (($) 15 T CONST)) (-2294 (($) 16 T CONST)) (-3113 (($ $ (-1074)) NIL) (($ $ (-639 (-1074))) NIL) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL) (($ $ (-766)) NIL) (($ $) NIL) (($ $ (-1168)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1771 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1733 (((-112) $ $) 96)) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1761 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1859 (($ $ |#1|) 138 (|has| |#1| (-362)))) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) 66)) (** (($ $ (-916)) 14) (($ $ (-766)) 12)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 24) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ |#1| $) 101) (($ $ |#1|) NIL))) -(((-1164 |#1|) (-13 (-1232 |#1|) (-10 -8 (-15 -3508 ((-857) $ (-857))) (-15 -1601 ($ $ (-766) |#1| $)))) (-1044)) (T -1164)) -((-3508 (*1 *2 *1 *2) (-12 (-5 *2 (-857)) (-5 *1 (-1164 *3)) (-4 *3 (-1044)))) (-1601 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-766)) (-5 *1 (-1164 *3)) (-4 *3 (-1044))))) -(-13 (-1232 |#1|) (-10 -8 (-15 -3508 ((-857) $ (-857))) (-15 -1601 ($ $ (-766) |#1| $)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-1401 (((-639 (-1074)) $) NIL)) (-2443 (((-1168) $) 11)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-1965 (($ $) NIL (|has| |#1| (-554)))) (-4102 (((-112) $) NIL (|has| |#1| (-554)))) (-1302 (($ $ (-406 (-562))) NIL) (($ $ (-406 (-562)) (-406 (-562))) NIL)) (-4196 (((-1148 (-2 (|:| |k| (-406 (-562))) (|:| |c| |#1|))) $) NIL)) (-2987 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4098 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2781 (((-3 $ "failed") $ $) NIL)) (-1977 (($ $) NIL (|has| |#1| (-362)))) (-3788 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1644 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1436 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4206 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1503 (($ (-766) (-1148 (-2 (|:| |k| (-406 (-562))) (|:| |c| |#1|)))) NIL)) (-3013 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4120 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-1159 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1166 |#1| |#2| |#3|) "failed") $) 36)) (-3960 (((-1159 |#1| |#2| |#3|) $) NIL) (((-1166 |#1| |#2| |#3|) $) NIL)) (-1810 (($ $ $) NIL (|has| |#1| (-362)))) (-1600 (($ $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-1417 (((-406 (-562)) $) 55)) (-1787 (($ $ $) NIL (|has| |#1| (-362)))) (-1499 (($ (-406 (-562)) (-1159 |#1| |#2| |#3|)) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL (|has| |#1| (-362)))) (-3521 (((-112) $) NIL (|has| |#1| (-362)))) (-2965 (((-112) $) NIL)) (-4100 (($) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1993 (((-406 (-562)) $) NIL) (((-406 (-562)) $ (-406 (-562))) NIL)) (-4367 (((-112) $) NIL)) (-1895 (($ $ (-562)) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3662 (($ $ (-916)) NIL) (($ $ (-406 (-562))) NIL)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-2833 (((-112) $) NIL)) (-1377 (($ |#1| (-406 (-562))) 20) (($ $ (-1074) (-406 (-562))) NIL) (($ $ (-639 (-1074)) (-639 (-406 (-562)))) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-4366 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3370 (((-1159 |#1| |#2| |#3|) $) 41)) (-3515 (((-3 (-1159 |#1| |#2| |#3|) "failed") $) NIL)) (-1487 (((-1159 |#1| |#2| |#3|) $) NIL)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) NIL (|has| |#1| (-362)))) (-3081 (($ $) 39 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-1168)) NIL (-4037 (-12 (|has| |#1| (-15 -3081 (|#1| |#1| (-1168)))) (|has| |#1| (-15 -1401 ((-639 (-1168)) |#1|))) (|has| |#1| (-38 (-406 (-562))))) (-12 (|has| |#1| (-29 (-562))) (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-954)) (|has| |#1| (-1192))))) (($ $ (-1252 |#2|)) 40 (|has| |#1| (-38 (-406 (-562)))))) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-362)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1635 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL (|has| |#1| (-362)))) (-4316 (($ $ (-406 (-562))) NIL)) (-1762 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-3430 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1433 (((-1148 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-406 (-562))))))) (-2044 (((-766) $) NIL (|has| |#1| (-362)))) (-2343 ((|#1| $ (-406 (-562))) NIL) (($ $ $) NIL (|has| (-406 (-562)) (-1104)))) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| |#1| (-362)))) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-766)) NIL (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|)))) (($ $ (-1252 |#2|)) 38)) (-2250 (((-406 (-562)) $) NIL)) (-3022 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3000 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2977 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1345 (($ $) NIL)) (-4053 (((-857) $) 58) (($ (-562)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1159 |#1| |#2| |#3|)) 30) (($ (-1166 |#1| |#2| |#3|)) 31) (($ (-1252 |#2|)) 26) (($ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $) NIL (|has| |#1| (-554)))) (-2266 ((|#1| $ (-406 (-562))) NIL)) (-2059 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-1568 (((-766)) NIL)) (-2328 ((|#1| $) 12)) (-3054 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3799 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3033 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4139 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3077 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4183 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1406 ((|#1| $ (-406 (-562))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-562))))) (|has| |#1| (-15 -4053 (|#1| (-1168))))))) (-1567 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3065 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4175 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3040 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2285 (($) 22 T CONST)) (-2294 (($) 16 T CONST)) (-3113 (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-766)) NIL (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (-1733 (((-112) $ $) NIL)) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) 24)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))))) -(((-1165 |#1| |#2| |#3|) (-13 (-1239 |#1| (-1159 |#1| |#2| |#3|)) (-1033 (-1166 |#1| |#2| |#3|)) (-612 (-1252 |#2|)) (-10 -8 (-15 -4029 ($ $ (-1252 |#2|))) (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -3081 ($ $ (-1252 |#2|))) |%noBranch|))) (-1044) (-1168) |#1|) (T -1165)) -((-4029 (*1 *1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1165 *3 *4 *5)) (-4 *3 (-1044)) (-14 *5 *3))) (-3081 (*1 *1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1165 *3 *4 *5)) (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) (-14 *5 *3)))) -(-13 (-1239 |#1| (-1159 |#1| |#2| |#3|)) (-1033 (-1166 |#1| |#2| |#3|)) (-612 (-1252 |#2|)) (-10 -8 (-15 -4029 ($ $ (-1252 |#2|))) (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -3081 ($ $ (-1252 |#2|))) |%noBranch|))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) 124)) (-1401 (((-639 (-1074)) $) NIL)) (-2443 (((-1168) $) 115)) (-3600 (((-1229 |#2| |#1|) $ (-766)) 62)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-1965 (($ $) NIL (|has| |#1| (-554)))) (-4102 (((-112) $) NIL (|has| |#1| (-554)))) (-1302 (($ $ (-766)) 78) (($ $ (-766) (-766)) 75)) (-4196 (((-1148 (-2 (|:| |k| (-766)) (|:| |c| |#1|))) $) 101)) (-2987 (($ $) 168 (|has| |#1| (-38 (-406 (-562)))))) (-4098 (($ $) 144 (|has| |#1| (-38 (-406 (-562)))))) (-2781 (((-3 $ "failed") $ $) NIL)) (-1644 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4206 (($ $) 164 (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) 140 (|has| |#1| (-38 (-406 (-562)))))) (-1503 (($ (-1148 (-2 (|:| |k| (-766)) (|:| |c| |#1|)))) 114) (($ (-1148 |#1|)) 109)) (-3013 (($ $) 172 (|has| |#1| (-38 (-406 (-562)))))) (-4120 (($ $) 148 (|has| |#1| (-38 (-406 (-562)))))) (-3329 (($) NIL T CONST)) (-1600 (($ $) NIL)) (-1694 (((-3 $ "failed") $) 23)) (-2344 (($ $) 26)) (-1455 (((-947 |#1|) $ (-766)) 74) (((-947 |#1|) $ (-766) (-766)) 76)) (-2965 (((-112) $) 119)) (-4100 (($) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1993 (((-766) $) 121) (((-766) $ (-766)) 123)) (-4367 (((-112) $) NIL)) (-1895 (($ $ (-562)) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3662 (($ $ (-916)) NIL)) (-2064 (($ (-1 |#1| (-562)) $) NIL)) (-2833 (((-112) $) NIL)) (-1377 (($ |#1| (-766)) 13) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-4366 (($ $) 130 (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-3696 (((-1150) $) NIL)) (-3081 (($ $) 128 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-1168)) NIL (-4037 (-12 (|has| |#1| (-15 -3081 (|#1| |#1| (-1168)))) (|has| |#1| (-15 -1401 ((-639 (-1168)) |#1|))) (|has| |#1| (-38 (-406 (-562))))) (-12 (|has| |#1| (-29 (-562))) (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-954)) (|has| |#1| (-1192))))) (($ $ (-1252 |#2|)) 129 (|has| |#1| (-38 (-406 (-562)))))) (-1709 (((-1112) $) NIL)) (-4316 (($ $ (-766)) 15)) (-1762 (((-3 $ "failed") $ $) 24 (|has| |#1| (-554)))) (-3430 (($ $) 132 (|has| |#1| (-38 (-406 (-562)))))) (-1433 (((-1148 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-766)))))) (-2343 ((|#1| $ (-766)) 118) (($ $ $) 127 (|has| (-766) (-1104)))) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168)) NIL (-12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-766)) NIL (|has| |#1| (-15 * (|#1| (-766) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-766) |#1|)))) (($ $ (-1252 |#2|)) 29)) (-2250 (((-766) $) NIL)) (-3022 (($ $) 174 (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) 150 (|has| |#1| (-38 (-406 (-562)))))) (-3000 (($ $) 170 (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) 146 (|has| |#1| (-38 (-406 (-562)))))) (-2977 (($ $) 166 (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) 142 (|has| |#1| (-38 (-406 (-562)))))) (-1345 (($ $) NIL)) (-4053 (((-857) $) 200) (($ (-562)) NIL) (($ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $) NIL (|has| |#1| (-554))) (($ |#1|) 125 (|has| |#1| (-171))) (($ (-1229 |#2| |#1|)) 50) (($ (-1252 |#2|)) 32)) (-3969 (((-1148 |#1|) $) 97)) (-2266 ((|#1| $ (-766)) 117)) (-2059 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-1568 (((-766)) NIL)) (-2328 ((|#1| $) 53)) (-3054 (($ $) 180 (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) 156 (|has| |#1| (-38 (-406 (-562)))))) (-3799 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3033 (($ $) 176 (|has| |#1| (-38 (-406 (-562)))))) (-4139 (($ $) 152 (|has| |#1| (-38 (-406 (-562)))))) (-3077 (($ $) 184 (|has| |#1| (-38 (-406 (-562)))))) (-4183 (($ $) 160 (|has| |#1| (-38 (-406 (-562)))))) (-1406 ((|#1| $ (-766)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-766)))) (|has| |#1| (-15 -4053 (|#1| (-1168))))))) (-1567 (($ $) 186 (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) 162 (|has| |#1| (-38 (-406 (-562)))))) (-3065 (($ $) 182 (|has| |#1| (-38 (-406 (-562)))))) (-4175 (($ $) 158 (|has| |#1| (-38 (-406 (-562)))))) (-3040 (($ $) 178 (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) 154 (|has| |#1| (-38 (-406 (-562)))))) (-2285 (($) 17 T CONST)) (-2294 (($) 19 T CONST)) (-3113 (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168)) NIL (-12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-766)) NIL (|has| |#1| (-15 * (|#1| (-766) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-766) |#1|))))) (-1733 (((-112) $ $) NIL)) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1847 (($ $) NIL) (($ $ $) 193)) (-1836 (($ $ $) 31)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ |#1|) 197 (|has| |#1| (-362))) (($ $ $) 133 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 136 (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 131) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))))) -(((-1166 |#1| |#2| |#3|) (-13 (-1247 |#1|) (-10 -8 (-15 -4053 ($ (-1229 |#2| |#1|))) (-15 -3600 ((-1229 |#2| |#1|) $ (-766))) (-15 -4053 ($ (-1252 |#2|))) (-15 -4029 ($ $ (-1252 |#2|))) (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -3081 ($ $ (-1252 |#2|))) |%noBranch|))) (-1044) (-1168) |#1|) (T -1166)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-1229 *4 *3)) (-4 *3 (-1044)) (-14 *4 (-1168)) (-14 *5 *3) (-5 *1 (-1166 *3 *4 *5)))) (-3600 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1229 *5 *4)) (-5 *1 (-1166 *4 *5 *6)) (-4 *4 (-1044)) (-14 *5 (-1168)) (-14 *6 *4))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-1044)) (-14 *5 *3))) (-4029 (*1 *1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-1044)) (-14 *5 *3))) (-3081 (*1 *1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) (-14 *5 *3)))) -(-13 (-1247 |#1|) (-10 -8 (-15 -4053 ($ (-1229 |#2| |#1|))) (-15 -3600 ((-1229 |#2| |#1|) $ (-766))) (-15 -4053 ($ (-1252 |#2|))) (-15 -4029 ($ $ (-1252 |#2|))) (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -3081 ($ $ (-1252 |#2|))) |%noBranch|))) -((-4053 (((-857) $) 27) (($ (-1168)) 29)) (-4037 (($ (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 40)) (-4023 (($ (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 33) (($ $) 34)) (-4348 (($ (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 35)) (-4338 (($ (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 37)) (-4326 (($ (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 36)) (-4314 (($ (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 38)) (-3310 (($ (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $))) 39))) -(((-1167) (-13 (-609 (-857)) (-10 -8 (-15 -4053 ($ (-1168))) (-15 -4348 ($ (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4326 ($ (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4338 ($ (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4314 ($ (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4037 ($ (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -3310 ($ (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4023 ($ (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4023 ($ $))))) (T -1167)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1167)))) (-4348 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1167)))) (-5 *1 (-1167)))) (-4326 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1167)))) (-5 *1 (-1167)))) (-4338 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1167)))) (-5 *1 (-1167)))) (-4314 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1167)))) (-5 *1 (-1167)))) (-4037 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1167)))) (-5 *1 (-1167)))) (-3310 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1167)))) (-5 *1 (-1167)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1167)))) (-5 *1 (-1167)))) (-4023 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1167)))) (-5 *1 (-1167)))) (-4023 (*1 *1 *1) (-5 *1 (-1167)))) -(-13 (-609 (-857)) (-10 -8 (-15 -4053 ($ (-1168))) (-15 -4348 ($ (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4326 ($ (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4338 ($ (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4314 ($ (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4037 ($ (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -3310 ($ (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)) (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4023 ($ (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) (|:| CF (-315 (-168 (-378)))) (|:| |switch| $)))) (-15 -4023 ($ $)))) -((-4041 (((-112) $ $) NIL)) (-2353 (($ $ (-639 (-857))) 59)) (-3177 (($ $ (-639 (-857))) 57)) (-3596 (((-1150) $) 84)) (-3652 (((-2 (|:| -1923 (-639 (-857))) (|:| -1593 (-639 (-857))) (|:| |presup| (-639 (-857))) (|:| -3142 (-639 (-857))) (|:| |args| (-639 (-857)))) $) 87)) (-3331 (((-112) $) 22)) (-1482 (($ $ (-639 (-639 (-857)))) 56) (($ $ (-2 (|:| -1923 (-639 (-857))) (|:| -1593 (-639 (-857))) (|:| |presup| (-639 (-857))) (|:| -3142 (-639 (-857))) (|:| |args| (-639 (-857))))) 82)) (-3329 (($) 123 T CONST)) (-1865 (((-1261)) 105)) (-2337 (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) 66) (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 73)) (-1458 (($) 94) (($ $) 100)) (-3253 (($ $) 83)) (-1551 (($ $ $) NIL)) (-2993 (($ $ $) NIL)) (-3716 (((-639 $) $) 106)) (-3696 (((-1150) $) 89)) (-1709 (((-1112) $) NIL)) (-2343 (($ $ (-639 (-857))) 58)) (-4208 (((-535) $) 46) (((-1168) $) 47) (((-887 (-562)) $) 77) (((-887 (-378)) $) 75)) (-4053 (((-857) $) 53) (($ (-1150)) 48)) (-3447 (($ $ (-639 (-857))) 60)) (-2332 (((-1150) $) 33) (((-1150) $ (-112)) 34) (((-1261) (-817) $) 35) (((-1261) (-817) $ (-112)) 36)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) 49)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) 50))) -(((-1168) (-13 (-845) (-610 (-535)) (-823) (-610 (-1168)) (-612 (-1150)) (-610 (-887 (-562))) (-610 (-887 (-378))) (-881 (-562)) (-881 (-378)) (-10 -8 (-15 -1458 ($)) (-15 -1458 ($ $)) (-15 -1865 ((-1261))) (-15 -3253 ($ $)) (-15 -3331 ((-112) $)) (-15 -3652 ((-2 (|:| -1923 (-639 (-857))) (|:| -1593 (-639 (-857))) (|:| |presup| (-639 (-857))) (|:| -3142 (-639 (-857))) (|:| |args| (-639 (-857)))) $)) (-15 -1482 ($ $ (-639 (-639 (-857))))) (-15 -1482 ($ $ (-2 (|:| -1923 (-639 (-857))) (|:| -1593 (-639 (-857))) (|:| |presup| (-639 (-857))) (|:| -3142 (-639 (-857))) (|:| |args| (-639 (-857)))))) (-15 -3177 ($ $ (-639 (-857)))) (-15 -2353 ($ $ (-639 (-857)))) (-15 -3447 ($ $ (-639 (-857)))) (-15 -2343 ($ $ (-639 (-857)))) (-15 -3596 ((-1150) $)) (-15 -3716 ((-639 $) $)) (-15 -3329 ($) -1497)))) (T -1168)) -((-1458 (*1 *1) (-5 *1 (-1168))) (-1458 (*1 *1 *1) (-5 *1 (-1168))) (-1865 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-1168)))) (-3253 (*1 *1 *1) (-5 *1 (-1168))) (-3331 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1168)))) (-3652 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1923 (-639 (-857))) (|:| -1593 (-639 (-857))) (|:| |presup| (-639 (-857))) (|:| -3142 (-639 (-857))) (|:| |args| (-639 (-857))))) (-5 *1 (-1168)))) (-1482 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-639 (-857)))) (-5 *1 (-1168)))) (-1482 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -1923 (-639 (-857))) (|:| -1593 (-639 (-857))) (|:| |presup| (-639 (-857))) (|:| -3142 (-639 (-857))) (|:| |args| (-639 (-857))))) (-5 *1 (-1168)))) (-3177 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-1168)))) (-2353 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-1168)))) (-3447 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-1168)))) (-2343 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-1168)))) (-3596 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1168)))) (-3716 (*1 *2 *1) (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-1168)))) (-3329 (*1 *1) (-5 *1 (-1168)))) -(-13 (-845) (-610 (-535)) (-823) (-610 (-1168)) (-612 (-1150)) (-610 (-887 (-562))) (-610 (-887 (-378))) (-881 (-562)) (-881 (-378)) (-10 -8 (-15 -1458 ($)) (-15 -1458 ($ $)) (-15 -1865 ((-1261))) (-15 -3253 ($ $)) (-15 -3331 ((-112) $)) (-15 -3652 ((-2 (|:| -1923 (-639 (-857))) (|:| -1593 (-639 (-857))) (|:| |presup| (-639 (-857))) (|:| -3142 (-639 (-857))) (|:| |args| (-639 (-857)))) $)) (-15 -1482 ($ $ (-639 (-639 (-857))))) (-15 -1482 ($ $ (-2 (|:| -1923 (-639 (-857))) (|:| -1593 (-639 (-857))) (|:| |presup| (-639 (-857))) (|:| -3142 (-639 (-857))) (|:| |args| (-639 (-857)))))) (-15 -3177 ($ $ (-639 (-857)))) (-15 -2353 ($ $ (-639 (-857)))) (-15 -3447 ($ $ (-639 (-857)))) (-15 -2343 ($ $ (-639 (-857)))) (-15 -3596 ((-1150) $)) (-15 -3716 ((-639 $) $)) (-15 -3329 ($) -1497))) -((-3622 (((-1256 |#1|) |#1| (-916)) 16) (((-1256 |#1|) (-639 |#1|)) 20))) -(((-1169 |#1|) (-10 -7 (-15 -3622 ((-1256 |#1|) (-639 |#1|))) (-15 -3622 ((-1256 |#1|) |#1| (-916)))) (-1044)) (T -1169)) -((-3622 (*1 *2 *3 *4) (-12 (-5 *4 (-916)) (-5 *2 (-1256 *3)) (-5 *1 (-1169 *3)) (-4 *3 (-1044)))) (-3622 (*1 *2 *3) (-12 (-5 *3 (-639 *4)) (-4 *4 (-1044)) (-5 *2 (-1256 *4)) (-5 *1 (-1169 *4))))) -(-10 -7 (-15 -3622 ((-1256 |#1|) (-639 |#1|))) (-15 -3622 ((-1256 |#1|) |#1| (-916)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-1965 (($ $) NIL (|has| |#1| (-554)))) (-4102 (((-112) $) NIL (|has| |#1| (-554)))) (-2781 (((-3 $ "failed") $ $) NIL)) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL (|has| |#1| (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#1| (-1033 (-406 (-562))))) (((-3 |#1| "failed") $) NIL)) (-3960 (((-562) $) NIL (|has| |#1| (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| |#1| (-1033 (-406 (-562))))) ((|#1| $) NIL)) (-1600 (($ $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-2578 (($ $) NIL (|has| |#1| (-451)))) (-3066 (($ $ |#1| (-966) $) NIL)) (-4367 (((-112) $) NIL)) (-3627 (((-766) $) NIL)) (-2833 (((-112) $) NIL)) (-1377 (($ |#1| (-966)) NIL)) (-3161 (((-966) $) NIL)) (-2363 (($ (-1 (-966) (-966)) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1534 (((-112) $) NIL)) (-1547 ((|#1| $) NIL)) (-1601 (($ $ (-966) |#1| $) NIL (-12 (|has| (-966) (-130)) (|has| |#1| (-554))))) (-1762 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-554)))) (-2250 (((-966) $) NIL)) (-2201 ((|#1| $) NIL (|has| |#1| (-451)))) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ $) NIL (|has| |#1| (-554))) (($ |#1|) NIL) (($ (-406 (-562))) NIL (-4037 (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-1033 (-406 (-562))))))) (-3969 (((-639 |#1|) $) NIL)) (-2266 ((|#1| $ (-966)) NIL)) (-2059 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-1568 (((-766)) NIL)) (-1760 (($ $ $ (-766)) NIL (|has| |#1| (-171)))) (-3799 (((-112) $ $) NIL (|has| |#1| (-554)))) (-2285 (($) 9 T CONST)) (-2294 (($) 14 T CONST)) (-1733 (((-112) $ $) 16)) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) 19)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))))) -(((-1170 |#1|) (-13 (-325 |#1| (-966)) (-10 -8 (IF (|has| |#1| (-554)) (IF (|has| (-966) (-130)) (-15 -1601 ($ $ (-966) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4401)) (-6 -4401) |%noBranch|))) (-1044)) (T -1170)) -((-1601 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-966)) (-4 *2 (-130)) (-5 *1 (-1170 *3)) (-4 *3 (-554)) (-4 *3 (-1044))))) -(-13 (-325 |#1| (-966)) (-10 -8 (IF (|has| |#1| (-554)) (IF (|has| (-966) (-130)) (-15 -1601 ($ $ (-966) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4401)) (-6 -4401) |%noBranch|))) -((-3601 (((-1172) (-1168) $) 25)) (-3768 (($) 29)) (-1890 (((-3 (|:| |fst| (-433)) (|:| -2649 "void")) (-1168) $) 22)) (-2936 (((-1261) (-1168) (-3 (|:| |fst| (-433)) (|:| -2649 "void")) $) 41) (((-1261) (-1168) (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) 42) (((-1261) (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) 43)) (-3175 (((-1261) (-1168)) 58)) (-2747 (((-1261) (-1168) $) 55) (((-1261) (-1168)) 56) (((-1261)) 57)) (-2930 (((-1261) (-1168)) 37)) (-1812 (((-1168)) 36)) (-1663 (($) 34)) (-2601 (((-436) (-1168) (-436) (-1168) $) 45) (((-436) (-639 (-1168)) (-436) (-1168) $) 49) (((-436) (-1168) (-436)) 46) (((-436) (-1168) (-436) (-1168)) 50)) (-2552 (((-1168)) 35)) (-4053 (((-857) $) 28)) (-2986 (((-1261)) 30) (((-1261) (-1168)) 33)) (-2859 (((-639 (-1168)) (-1168) $) 24)) (-4279 (((-1261) (-1168) (-639 (-1168)) $) 38) (((-1261) (-1168) (-639 (-1168))) 39) (((-1261) (-639 (-1168))) 40))) -(((-1171) (-13 (-609 (-857)) (-10 -8 (-15 -3768 ($)) (-15 -2986 ((-1261))) (-15 -2986 ((-1261) (-1168))) (-15 -2601 ((-436) (-1168) (-436) (-1168) $)) (-15 -2601 ((-436) (-639 (-1168)) (-436) (-1168) $)) (-15 -2601 ((-436) (-1168) (-436))) (-15 -2601 ((-436) (-1168) (-436) (-1168))) (-15 -2930 ((-1261) (-1168))) (-15 -2552 ((-1168))) (-15 -1812 ((-1168))) (-15 -4279 ((-1261) (-1168) (-639 (-1168)) $)) (-15 -4279 ((-1261) (-1168) (-639 (-1168)))) (-15 -4279 ((-1261) (-639 (-1168)))) (-15 -2936 ((-1261) (-1168) (-3 (|:| |fst| (-433)) (|:| -2649 "void")) $)) (-15 -2936 ((-1261) (-1168) (-3 (|:| |fst| (-433)) (|:| -2649 "void")))) (-15 -2936 ((-1261) (-3 (|:| |fst| (-433)) (|:| -2649 "void")))) (-15 -2747 ((-1261) (-1168) $)) (-15 -2747 ((-1261) (-1168))) (-15 -2747 ((-1261))) (-15 -3175 ((-1261) (-1168))) (-15 -1663 ($)) (-15 -1890 ((-3 (|:| |fst| (-433)) (|:| -2649 "void")) (-1168) $)) (-15 -2859 ((-639 (-1168)) (-1168) $)) (-15 -3601 ((-1172) (-1168) $))))) (T -1171)) -((-3768 (*1 *1) (-5 *1 (-1171))) (-2986 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-1171)))) (-2986 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1261)) (-5 *1 (-1171)))) (-2601 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-436)) (-5 *3 (-1168)) (-5 *1 (-1171)))) (-2601 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-436)) (-5 *3 (-639 (-1168))) (-5 *4 (-1168)) (-5 *1 (-1171)))) (-2601 (*1 *2 *3 *2) (-12 (-5 *2 (-436)) (-5 *3 (-1168)) (-5 *1 (-1171)))) (-2601 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-436)) (-5 *3 (-1168)) (-5 *1 (-1171)))) (-2930 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1261)) (-5 *1 (-1171)))) (-2552 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1171)))) (-1812 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1171)))) (-4279 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-639 (-1168))) (-5 *3 (-1168)) (-5 *2 (-1261)) (-5 *1 (-1171)))) (-4279 (*1 *2 *3 *4) (-12 (-5 *4 (-639 (-1168))) (-5 *3 (-1168)) (-5 *2 (-1261)) (-5 *1 (-1171)))) (-4279 (*1 *2 *3) (-12 (-5 *3 (-639 (-1168))) (-5 *2 (-1261)) (-5 *1 (-1171)))) (-2936 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1168)) (-5 *4 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) (-5 *2 (-1261)) (-5 *1 (-1171)))) (-2936 (*1 *2 *3 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) (-5 *2 (-1261)) (-5 *1 (-1171)))) (-2936 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) (-5 *2 (-1261)) (-5 *1 (-1171)))) (-2747 (*1 *2 *3 *1) (-12 (-5 *3 (-1168)) (-5 *2 (-1261)) (-5 *1 (-1171)))) (-2747 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1261)) (-5 *1 (-1171)))) (-2747 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-1171)))) (-3175 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1261)) (-5 *1 (-1171)))) (-1663 (*1 *1) (-5 *1 (-1171))) (-1890 (*1 *2 *3 *1) (-12 (-5 *3 (-1168)) (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) (-5 *1 (-1171)))) (-2859 (*1 *2 *3 *1) (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-1171)) (-5 *3 (-1168)))) (-3601 (*1 *2 *3 *1) (-12 (-5 *3 (-1168)) (-5 *2 (-1172)) (-5 *1 (-1171))))) -(-13 (-609 (-857)) (-10 -8 (-15 -3768 ($)) (-15 -2986 ((-1261))) (-15 -2986 ((-1261) (-1168))) (-15 -2601 ((-436) (-1168) (-436) (-1168) $)) (-15 -2601 ((-436) (-639 (-1168)) (-436) (-1168) $)) (-15 -2601 ((-436) (-1168) (-436))) (-15 -2601 ((-436) (-1168) (-436) (-1168))) (-15 -2930 ((-1261) (-1168))) (-15 -2552 ((-1168))) (-15 -1812 ((-1168))) (-15 -4279 ((-1261) (-1168) (-639 (-1168)) $)) (-15 -4279 ((-1261) (-1168) (-639 (-1168)))) (-15 -4279 ((-1261) (-639 (-1168)))) (-15 -2936 ((-1261) (-1168) (-3 (|:| |fst| (-433)) (|:| -2649 "void")) $)) (-15 -2936 ((-1261) (-1168) (-3 (|:| |fst| (-433)) (|:| -2649 "void")))) (-15 -2936 ((-1261) (-3 (|:| |fst| (-433)) (|:| -2649 "void")))) (-15 -2747 ((-1261) (-1168) $)) (-15 -2747 ((-1261) (-1168))) (-15 -2747 ((-1261))) (-15 -3175 ((-1261) (-1168))) (-15 -1663 ($)) (-15 -1890 ((-3 (|:| |fst| (-433)) (|:| -2649 "void")) (-1168) $)) (-15 -2859 ((-639 (-1168)) (-1168) $)) (-15 -3601 ((-1172) (-1168) $)))) -((-4258 (((-639 (-639 (-3 (|:| -3253 (-1168)) (|:| -1852 (-639 (-3 (|:| S (-1168)) (|:| P (-947 (-562))))))))) $) 59)) (-3041 (((-639 (-3 (|:| -3253 (-1168)) (|:| -1852 (-639 (-3 (|:| S (-1168)) (|:| P (-947 (-562)))))))) (-433) $) 43)) (-3134 (($ (-639 (-2 (|:| -2319 (-1168)) (|:| -2693 (-436))))) 17)) (-3175 (((-1261) $) 67)) (-3846 (((-639 (-1168)) $) 22)) (-1608 (((-1096) $) 55)) (-2612 (((-436) (-1168) $) 27)) (-1883 (((-639 (-1168)) $) 30)) (-1663 (($) 19)) (-2601 (((-436) (-639 (-1168)) (-436) $) 25) (((-436) (-1168) (-436) $) 24)) (-4053 (((-857) $) 9) (((-1180 (-1168) (-436)) $) 13))) -(((-1172) (-13 (-609 (-857)) (-10 -8 (-15 -4053 ((-1180 (-1168) (-436)) $)) (-15 -1663 ($)) (-15 -2601 ((-436) (-639 (-1168)) (-436) $)) (-15 -2601 ((-436) (-1168) (-436) $)) (-15 -2612 ((-436) (-1168) $)) (-15 -3846 ((-639 (-1168)) $)) (-15 -3041 ((-639 (-3 (|:| -3253 (-1168)) (|:| -1852 (-639 (-3 (|:| S (-1168)) (|:| P (-947 (-562)))))))) (-433) $)) (-15 -1883 ((-639 (-1168)) $)) (-15 -4258 ((-639 (-639 (-3 (|:| -3253 (-1168)) (|:| -1852 (-639 (-3 (|:| S (-1168)) (|:| P (-947 (-562))))))))) $)) (-15 -1608 ((-1096) $)) (-15 -3175 ((-1261) $)) (-15 -3134 ($ (-639 (-2 (|:| -2319 (-1168)) (|:| -2693 (-436))))))))) (T -1172)) -((-4053 (*1 *2 *1) (-12 (-5 *2 (-1180 (-1168) (-436))) (-5 *1 (-1172)))) (-1663 (*1 *1) (-5 *1 (-1172))) (-2601 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-436)) (-5 *3 (-639 (-1168))) (-5 *1 (-1172)))) (-2601 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-436)) (-5 *3 (-1168)) (-5 *1 (-1172)))) (-2612 (*1 *2 *3 *1) (-12 (-5 *3 (-1168)) (-5 *2 (-436)) (-5 *1 (-1172)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-1172)))) (-3041 (*1 *2 *3 *1) (-12 (-5 *3 (-433)) (-5 *2 (-639 (-3 (|:| -3253 (-1168)) (|:| -1852 (-639 (-3 (|:| S (-1168)) (|:| P (-947 (-562))))))))) (-5 *1 (-1172)))) (-1883 (*1 *2 *1) (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-1172)))) (-4258 (*1 *2 *1) (-12 (-5 *2 (-639 (-639 (-3 (|:| -3253 (-1168)) (|:| -1852 (-639 (-3 (|:| S (-1168)) (|:| P (-947 (-562)))))))))) (-5 *1 (-1172)))) (-1608 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-1172)))) (-3175 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-1172)))) (-3134 (*1 *1 *2) (-12 (-5 *2 (-639 (-2 (|:| -2319 (-1168)) (|:| -2693 (-436))))) (-5 *1 (-1172))))) -(-13 (-609 (-857)) (-10 -8 (-15 -4053 ((-1180 (-1168) (-436)) $)) (-15 -1663 ($)) (-15 -2601 ((-436) (-639 (-1168)) (-436) $)) (-15 -2601 ((-436) (-1168) (-436) $)) (-15 -2612 ((-436) (-1168) $)) (-15 -3846 ((-639 (-1168)) $)) (-15 -3041 ((-639 (-3 (|:| -3253 (-1168)) (|:| -1852 (-639 (-3 (|:| S (-1168)) (|:| P (-947 (-562)))))))) (-433) $)) (-15 -1883 ((-639 (-1168)) $)) (-15 -4258 ((-639 (-639 (-3 (|:| -3253 (-1168)) (|:| -1852 (-639 (-3 (|:| S (-1168)) (|:| P (-947 (-562))))))))) $)) (-15 -1608 ((-1096) $)) (-15 -3175 ((-1261) $)) (-15 -3134 ($ (-639 (-2 (|:| -2319 (-1168)) (|:| -2693 (-436)))))))) -((-4041 (((-112) $ $) NIL)) (-4048 (((-3 (-562) "failed") $) 29) (((-3 (-224) "failed") $) 35) (((-3 (-1168) "failed") $) 41) (((-3 (-1150) "failed") $) 47)) (-3960 (((-562) $) 30) (((-224) $) 36) (((-1168) $) 42) (((-1150) $) 48)) (-4224 (((-112) $) 53)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-3098 (((-3 (-562) (-224) (-1168) (-1150) $) $) 55)) (-3075 (((-639 $) $) 57)) (-4208 (((-1096) $) 24) (($ (-1096)) 25)) (-2354 (((-112) $) 56)) (-4053 (((-857) $) 23) (($ (-562)) 26) (($ (-224)) 32) (($ (-1168)) 38) (($ (-1150)) 44) (((-535) $) 59) (((-562) $) 31) (((-224) $) 37) (((-1168) $) 43) (((-1150) $) 49)) (-2276 (((-112) $ (|[\|\|]| (-562))) 10) (((-112) $ (|[\|\|]| (-224))) 13) (((-112) $ (|[\|\|]| (-1168))) 19) (((-112) $ (|[\|\|]| (-1150))) 16)) (-2502 (($ (-1168) (-639 $)) 51) (($ $ (-639 $)) 52)) (-4248 (((-562) $) 27) (((-224) $) 33) (((-1168) $) 39) (((-1150) $) 45)) (-1733 (((-112) $ $) 7))) -(((-1173) (-13 (-1251) (-1092) (-1033 (-562)) (-1033 (-224)) (-1033 (-1168)) (-1033 (-1150)) (-609 (-535)) (-10 -8 (-15 -4208 ((-1096) $)) (-15 -4208 ($ (-1096))) (-15 -4053 ((-562) $)) (-15 -4248 ((-562) $)) (-15 -4053 ((-224) $)) (-15 -4248 ((-224) $)) (-15 -4053 ((-1168) $)) (-15 -4248 ((-1168) $)) (-15 -4053 ((-1150) $)) (-15 -4248 ((-1150) $)) (-15 -2502 ($ (-1168) (-639 $))) (-15 -2502 ($ $ (-639 $))) (-15 -4224 ((-112) $)) (-15 -3098 ((-3 (-562) (-224) (-1168) (-1150) $) $)) (-15 -3075 ((-639 $) $)) (-15 -2354 ((-112) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-562)))) (-15 -2276 ((-112) $ (|[\|\|]| (-224)))) (-15 -2276 ((-112) $ (|[\|\|]| (-1168)))) (-15 -2276 ((-112) $ (|[\|\|]| (-1150))))))) (T -1173)) -((-4208 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-1173)))) (-4208 (*1 *1 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-1173)))) (-4053 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-1173)))) (-4248 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-1173)))) (-4053 (*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-1173)))) (-4248 (*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-1173)))) (-4053 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1173)))) (-4248 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1173)))) (-4053 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1173)))) (-4248 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1173)))) (-2502 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-1173))) (-5 *1 (-1173)))) (-2502 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-1173))) (-5 *1 (-1173)))) (-4224 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1173)))) (-3098 (*1 *2 *1) (-12 (-5 *2 (-3 (-562) (-224) (-1168) (-1150) (-1173))) (-5 *1 (-1173)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-639 (-1173))) (-5 *1 (-1173)))) (-2354 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1173)))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-562))) (-5 *2 (-112)) (-5 *1 (-1173)))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-224))) (-5 *2 (-112)) (-5 *1 (-1173)))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1168))) (-5 *2 (-112)) (-5 *1 (-1173)))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1150))) (-5 *2 (-112)) (-5 *1 (-1173))))) -(-13 (-1251) (-1092) (-1033 (-562)) (-1033 (-224)) (-1033 (-1168)) (-1033 (-1150)) (-609 (-535)) (-10 -8 (-15 -4208 ((-1096) $)) (-15 -4208 ($ (-1096))) (-15 -4053 ((-562) $)) (-15 -4248 ((-562) $)) (-15 -4053 ((-224) $)) (-15 -4248 ((-224) $)) (-15 -4053 ((-1168) $)) (-15 -4248 ((-1168) $)) (-15 -4053 ((-1150) $)) (-15 -4248 ((-1150) $)) (-15 -2502 ($ (-1168) (-639 $))) (-15 -2502 ($ $ (-639 $))) (-15 -4224 ((-112) $)) (-15 -3098 ((-3 (-562) (-224) (-1168) (-1150) $) $)) (-15 -3075 ((-639 $) $)) (-15 -2354 ((-112) $)) (-15 -2276 ((-112) $ (|[\|\|]| (-562)))) (-15 -2276 ((-112) $ (|[\|\|]| (-224)))) (-15 -2276 ((-112) $ (|[\|\|]| (-1168)))) (-15 -2276 ((-112) $ (|[\|\|]| (-1150)))))) -((-4041 (((-112) $ $) NIL)) (-1382 (((-766)) 10)) (-1447 (($) 14)) (-1551 (($ $ $) NIL) (($) 7 T CONST)) (-2993 (($ $ $) NIL) (($) 8 T CONST)) (-3549 (((-916) $) 13)) (-3696 (((-1150) $) NIL)) (-2464 (($ (-916)) 12)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) NIL))) -(((-1174 |#1|) (-839) (-916)) (T -1174)) -NIL -(-839) +((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-2636 ((|#1| $) 44)) (-2759 (((-112) $ (-767)) 8)) (-4239 (($) 7 T CONST)) (-4325 ((|#1| |#1| $) 46)) (-3017 ((|#1| $) 45)) (-2659 (((-640 |#1|) $) 30 (|has| $ (-6 -4407)))) (-2581 (((-112) $ (-767)) 9)) (-2259 (((-640 |#1|) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-4345 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 35)) (-2382 (((-112) $ (-767)) 10)) (-3573 (((-1151) $) 22 (|has| |#1| (-1093)))) (-2964 ((|#1| $) 39)) (-1812 (($ |#1| $) 40)) (-1694 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3755 ((|#1| $) 41)) (-3138 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) 14)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-2370 (((-767) $) 43)) (-1709 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4407))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1872 (($ $) 13)) (-1693 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-2233 (($ (-640 |#1|)) 42)) (-4383 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-1114 |#1|) (-140) (-1208)) (T -1114)) +((-4325 (*1 *2 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1208)))) (-3017 (*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1208)))) (-2636 (*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1208)))) (-2370 (*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1208)) (-5 *2 (-767))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4407) (-15 -4325 (|t#1| |t#1| $)) (-15 -3017 (|t#1| $)) (-15 -2636 (|t#1| $)) (-15 -2370 ((-767) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4032 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T)) +((-1733 ((|#3| $) 76)) (-2131 (((-3 (-563) "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-2058 (((-563) $) NIL) (((-407 (-563)) $) NIL) ((|#3| $) 37)) (-2950 (((-684 (-563)) (-684 $)) NIL) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-2 (|:| -2835 (-684 |#3|)) (|:| |vec| (-1257 |#3|))) (-684 $) (-1257 $)) 73) (((-684 |#3|) (-684 $)) 65)) (-4202 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169)) NIL) (($ $ (-767)) NIL) (($ $) NIL)) (-3327 ((|#3| $) 78)) (-3154 ((|#4| $) 32)) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ (-407 (-563))) NIL) (($ |#3|) 16)) (** (($ $ (-917)) NIL) (($ $ (-767)) 15) (($ $ (-563)) 82))) +(((-1115 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-563))) (-15 -3327 (|#3| |#1|)) (-15 -1733 (|#3| |#1|)) (-15 -3154 (|#4| |#1|)) (-15 -2950 ((-684 |#3|) (-684 |#1|))) (-15 -2950 ((-2 (|:| -2835 (-684 |#3|)) (|:| |vec| (-1257 |#3|))) (-684 |#1|) (-1257 |#1|))) (-15 -2950 ((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -2950 ((-684 (-563)) (-684 |#1|))) (-15 -1693 (|#1| |#3|)) (-15 -2131 ((-3 |#3| "failed") |#1|)) (-15 -2058 (|#3| |#1|)) (-15 -2058 ((-407 (-563)) |#1|)) (-15 -2131 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -1693 (|#1| (-407 (-563)))) (-15 -2058 ((-563) |#1|)) (-15 -2131 ((-3 (-563) "failed") |#1|)) (-15 -4202 (|#1| |#1|)) (-15 -4202 (|#1| |#1| (-767))) (-15 -4202 (|#1| |#1| (-1169))) (-15 -4202 (|#1| |#1| (-640 (-1169)))) (-15 -4202 (|#1| |#1| (-1169) (-767))) (-15 -4202 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -4202 (|#1| |#1| (-1 |#3| |#3|) (-767))) (-15 -4202 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1693 (|#1| (-563))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917))) (-15 -1693 ((-858) |#1|))) (-1116 |#2| |#3| |#4| |#5|) (-767) (-1045) (-238 |#2| |#3|) (-238 |#2| |#3|)) (T -1115)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-563))) (-15 -3327 (|#3| |#1|)) (-15 -1733 (|#3| |#1|)) (-15 -3154 (|#4| |#1|)) (-15 -2950 ((-684 |#3|) (-684 |#1|))) (-15 -2950 ((-2 (|:| -2835 (-684 |#3|)) (|:| |vec| (-1257 |#3|))) (-684 |#1|) (-1257 |#1|))) (-15 -2950 ((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -2950 ((-684 (-563)) (-684 |#1|))) (-15 -1693 (|#1| |#3|)) (-15 -2131 ((-3 |#3| "failed") |#1|)) (-15 -2058 (|#3| |#1|)) (-15 -2058 ((-407 (-563)) |#1|)) (-15 -2131 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -1693 (|#1| (-407 (-563)))) (-15 -2058 ((-563) |#1|)) (-15 -2131 ((-3 (-563) "failed") |#1|)) (-15 -4202 (|#1| |#1|)) (-15 -4202 (|#1| |#1| (-767))) (-15 -4202 (|#1| |#1| (-1169))) (-15 -4202 (|#1| |#1| (-640 (-1169)))) (-15 -4202 (|#1| |#1| (-1169) (-767))) (-15 -4202 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -4202 (|#1| |#1| (-1 |#3| |#3|) (-767))) (-15 -4202 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1693 (|#1| (-563))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917))) (-15 -1693 ((-858) |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1733 ((|#2| $) 71)) (-3129 (((-112) $) 111)) (-1495 (((-3 $ "failed") $ $) 19)) (-1937 (((-112) $) 109)) (-2759 (((-112) $ (-767)) 101)) (-3845 (($ |#2|) 74)) (-4239 (($) 17 T CONST)) (-4069 (($ $) 128 (|has| |#2| (-307)))) (-2368 ((|#3| $ (-563)) 123)) (-2131 (((-3 (-563) "failed") $) 86 (|has| |#2| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) 83 (|has| |#2| (-1034 (-407 (-563))))) (((-3 |#2| "failed") $) 80)) (-2058 (((-563) $) 85 (|has| |#2| (-1034 (-563)))) (((-407 (-563)) $) 82 (|has| |#2| (-1034 (-407 (-563))))) ((|#2| $) 81)) (-2950 (((-684 (-563)) (-684 $)) 78 (|has| |#2| (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 77 (|has| |#2| (-636 (-563)))) (((-2 (|:| -2835 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) 76) (((-684 |#2|) (-684 $)) 75)) (-3400 (((-3 $ "failed") $) 33)) (-2522 (((-767) $) 129 (|has| |#2| (-555)))) (-4293 ((|#2| $ (-563) (-563)) 121)) (-2659 (((-640 |#2|) $) 94 (|has| $ (-6 -4407)))) (-3827 (((-112) $) 31)) (-1997 (((-767) $) 130 (|has| |#2| (-555)))) (-2345 (((-640 |#4|) $) 131 (|has| |#2| (-555)))) (-2381 (((-767) $) 117)) (-2393 (((-767) $) 118)) (-2581 (((-112) $ (-767)) 102)) (-3977 ((|#2| $) 66 (|has| |#2| (-6 (-4409 "*"))))) (-2013 (((-563) $) 113)) (-3650 (((-563) $) 115)) (-2259 (((-640 |#2|) $) 93 (|has| $ (-6 -4407)))) (-1729 (((-112) |#2| $) 91 (-12 (|has| |#2| (-1093)) (|has| $ (-6 -4407))))) (-1859 (((-563) $) 114)) (-2207 (((-563) $) 116)) (-4038 (($ (-640 (-640 |#2|))) 108)) (-4345 (($ (-1 |#2| |#2|) $) 98 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#2| |#2| |#2|) $ $) 125) (($ (-1 |#2| |#2|) $) 99)) (-4136 (((-640 (-640 |#2|)) $) 119)) (-2382 (((-112) $ (-767)) 103)) (-3573 (((-1151) $) 9)) (-2591 (((-3 $ "failed") $) 65 (|has| |#2| (-363)))) (-1694 (((-1113) $) 10)) (-3008 (((-3 $ "failed") $ |#2|) 126 (|has| |#2| (-555)))) (-3138 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#2|))) 90 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) 89 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) 88 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) 87 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-2026 (((-112) $ $) 107)) (-3756 (((-112) $) 104)) (-3135 (($) 105)) (-2309 ((|#2| $ (-563) (-563) |#2|) 122) ((|#2| $ (-563) (-563)) 120)) (-4202 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-767)) 51) (($ $ (-640 (-1169)) (-640 (-767))) 44 (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) 43 (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) 42 (|has| |#2| (-896 (-1169)))) (($ $ (-1169)) 41 (|has| |#2| (-896 (-1169)))) (($ $ (-767)) 39 (|has| |#2| (-233))) (($ $) 37 (|has| |#2| (-233)))) (-3327 ((|#2| $) 70)) (-2104 (($ (-640 |#2|)) 73)) (-2717 (((-112) $) 110)) (-3154 ((|#3| $) 72)) (-3848 ((|#2| $) 67 (|has| |#2| (-6 (-4409 "*"))))) (-1709 (((-767) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4407))) (((-767) |#2| $) 92 (-12 (|has| |#2| (-1093)) (|has| $ (-6 -4407))))) (-1872 (($ $) 106)) (-1912 ((|#4| $ (-563)) 124)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ (-407 (-563))) 84 (|has| |#2| (-1034 (-407 (-563))))) (($ |#2|) 79)) (-1675 (((-767)) 28)) (-4383 (((-112) (-1 (-112) |#2|) $) 97 (|has| $ (-6 -4407)))) (-3280 (((-112) $) 112)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-3209 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-767)) 49) (($ $ (-640 (-1169)) (-640 (-767))) 48 (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) 47 (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) 46 (|has| |#2| (-896 (-1169)))) (($ $ (-1169)) 45 (|has| |#2| (-896 (-1169)))) (($ $ (-767)) 40 (|has| |#2| (-233))) (($ $) 38 (|has| |#2| (-233)))) (-1718 (((-112) $ $) 6)) (-1837 (($ $ |#2|) 127 (|has| |#2| (-363)))) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 64 (|has| |#2| (-363)))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#2|) 133) (($ |#2| $) 132) ((|#4| $ |#4|) 69) ((|#3| |#3| $) 68)) (-3608 (((-767) $) 100 (|has| $ (-6 -4407))))) +(((-1116 |#1| |#2| |#3| |#4|) (-140) (-767) (-1045) (-238 |t#1| |t#2|) (-238 |t#1| |t#2|)) (T -1116)) +((-3845 (*1 *1 *2) (-12 (-4 *2 (-1045)) (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)))) (-2104 (*1 *1 *2) (-12 (-5 *2 (-640 *4)) (-4 *4 (-1045)) (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)))) (-3154 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *2 *5)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (-1733 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1045)))) (-3327 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1045)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *2 *5)) (-4 *4 (-1045)) (-4 *2 (-238 *3 *4)) (-4 *5 (-238 *3 *4)))) (-3848 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4409 "*"))) (-4 *2 (-1045)))) (-3977 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4409 "*"))) (-4 *2 (-1045)))) (-2591 (*1 *1 *1) (|partial| -12 (-4 *1 (-1116 *2 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-363)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-363))))) +(-13 (-231 |t#2|) (-111 |t#2| |t#2|) (-1048 |t#1| |t#1| |t#2| |t#3| |t#4|) (-411 |t#2|) (-377 |t#2|) (-10 -8 (IF (|has| |t#2| (-172)) (-6 (-713 |t#2|)) |%noBranch|) (-15 -3845 ($ |t#2|)) (-15 -2104 ($ (-640 |t#2|))) (-15 -3154 (|t#3| $)) (-15 -1733 (|t#2| $)) (-15 -3327 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4409 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3848 (|t#2| $)) (-15 -3977 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-363)) (PROGN (-15 -2591 ((-3 $ "failed") $)) (-15 ** ($ $ (-563)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4409 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-613 #0=(-407 (-563))) |has| |#2| (-1034 (-407 (-563)))) ((-613 (-563)) . T) ((-613 |#2|) . T) ((-610 (-858)) . T) ((-231 |#2|) . T) ((-233) |has| |#2| (-233)) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((-377 |#2|) . T) ((-411 |#2|) . T) ((-489 |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((-643 |#2|) . T) ((-643 $) . T) ((-636 (-563)) |has| |#2| (-636 (-563))) ((-636 |#2|) . T) ((-713 |#2|) -4032 (|has| |#2| (-172)) (|has| |#2| (-6 (-4409 "*")))) ((-722) . T) ((-896 (-1169)) |has| |#2| (-896 (-1169))) ((-1048 |#1| |#1| |#2| |#3| |#4|) . T) ((-1034 #0#) |has| |#2| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#2| (-1034 (-563))) ((-1034 |#2|) . T) ((-1051 |#2|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1208) . T)) +((-2352 ((|#4| |#4|) 70)) (-2209 ((|#4| |#4|) 65)) (-1655 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4315 (-640 |#3|))) |#4| |#3|) 78)) (-1966 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-3285 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67))) +(((-1117 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2209 (|#4| |#4|)) (-15 -3285 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2352 (|#4| |#4|)) (-15 -1966 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1655 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4315 (-640 |#3|))) |#4| |#3|))) (-307) (-373 |#1|) (-373 |#1|) (-682 |#1| |#2| |#3|)) (T -1117)) +((-1655 (*1 *2 *3 *4) (-12 (-4 *5 (-307)) (-4 *6 (-373 *5)) (-4 *4 (-373 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4315 (-640 *4)))) (-5 *1 (-1117 *5 *6 *4 *3)) (-4 *3 (-682 *5 *6 *4)))) (-1966 (*1 *2 *3) (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1117 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))) (-2352 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1117 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))) (-3285 (*1 *2 *3) (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1117 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))) (-2209 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1117 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5))))) +(-10 -7 (-15 -2209 (|#4| |#4|)) (-15 -3285 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2352 (|#4| |#4|)) (-15 -1966 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1655 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4315 (-640 |#3|))) |#4| |#3|))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) 17)) (-2606 (((-640 |#2|) $) 158)) (-2139 (((-1165 $) $ |#2|) 53) (((-1165 |#1|) $) 42)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 107 (|has| |#1| (-555)))) (-4223 (($ $) 109 (|has| |#1| (-555)))) (-3156 (((-112) $) 111 (|has| |#1| (-555)))) (-1779 (((-767) $) NIL) (((-767) $ (-640 |#2|)) 191)) (-1495 (((-3 $ "failed") $ $) NIL)) (-2424 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-4335 (($ $) NIL (|has| |#1| (-452)))) (-3205 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#1| "failed") $) 155) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 |#2| "failed") $) NIL)) (-2058 ((|#1| $) 153) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#1| (-1034 (-563)))) ((|#2| $) NIL)) (-2742 (($ $ $ |#2|) NIL (|has| |#1| (-172)))) (-2751 (($ $) 195)) (-2950 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3400 (((-3 $ "failed") $) 81)) (-1300 (($ $) NIL (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-2739 (((-640 $) $) NIL)) (-2468 (((-112) $) NIL (|has| |#1| (-905)))) (-3554 (($ $ |#1| (-531 |#2|) $) NIL)) (-3787 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| |#1| (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| |#1| (-882 (-563))) (|has| |#2| (-882 (-563)))))) (-3827 (((-112) $) 19)) (-4096 (((-767) $) 26)) (-2596 (($ (-1165 |#1|) |#2|) 47) (($ (-1165 $) |#2|) 63)) (-1368 (((-640 $) $) NIL)) (-3920 (((-112) $) 32)) (-2588 (($ |#1| (-531 |#2|)) 70) (($ $ |#2| (-767)) 51) (($ $ (-640 |#2|) (-640 (-767))) NIL)) (-2625 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $ |#2|) NIL)) (-2048 (((-531 |#2|) $) 185) (((-767) $ |#2|) 186) (((-640 (-767)) $ (-640 |#2|)) 187)) (-3084 (($ $ $) NIL (|has| |#1| (-846)))) (-1777 (($ $ $) NIL (|has| |#1| (-846)))) (-2803 (($ (-1 (-531 |#2|) (-531 |#2|)) $) NIL)) (-2240 (($ (-1 |#1| |#1|) $) 119)) (-4234 (((-3 |#2| "failed") $) 160)) (-2716 (($ $) 194)) (-2726 ((|#1| $) 36)) (-3513 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3573 (((-1151) $) NIL)) (-3733 (((-3 (-640 $) "failed") $) NIL)) (-2919 (((-3 (-640 $) "failed") $) NIL)) (-4086 (((-3 (-2 (|:| |var| |#2|) (|:| -1654 (-767))) "failed") $) NIL)) (-1694 (((-1113) $) NIL)) (-2696 (((-112) $) 33)) (-2706 ((|#1| $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 137 (|has| |#1| (-452)))) (-3548 (($ (-640 $)) 142 (|has| |#1| (-452))) (($ $ $) 129 (|has| |#1| (-452)))) (-1876 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-3116 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2174 (((-418 $) $) NIL (|has| |#1| (-905)))) (-3008 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555))) (((-3 $ "failed") $ $) 117 (|has| |#1| (-555)))) (-1540 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ |#2| |#1|) 163) (($ $ (-640 |#2|) (-640 |#1|)) 176) (($ $ |#2| $) 162) (($ $ (-640 |#2|) (-640 $)) 175)) (-2315 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-4202 (($ $ |#2|) 193) (($ $ (-640 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-640 |#2|) (-640 (-767))) NIL)) (-4167 (((-531 |#2|) $) 181) (((-767) $ |#2|) 177) (((-640 (-767)) $ (-640 |#2|)) 179)) (-2220 (((-888 (-379)) $) NIL (-12 (|has| |#1| (-611 (-888 (-379)))) (|has| |#2| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| |#1| (-611 (-888 (-563)))) (|has| |#2| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| |#1| (-611 (-536))) (|has| |#2| (-611 (-536)))))) (-1836 ((|#1| $) 125 (|has| |#1| (-452))) (($ $ |#2|) 128 (|has| |#1| (-452)))) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-1693 (((-858) $) 148) (($ (-563)) 75) (($ |#1|) 76) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-555))) (($ (-407 (-563))) NIL (-4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))))) (-1337 (((-640 |#1|) $) 151)) (-4319 ((|#1| $ (-531 |#2|)) 72) (($ $ |#2| (-767)) NIL) (($ $ (-640 |#2|) (-640 (-767))) NIL)) (-2779 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-1675 (((-767)) 78)) (-2793 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-2126 (((-112) $ $) 114 (|has| |#1| (-555)))) (-2241 (($) 12 T CONST)) (-2254 (($) 14 T CONST)) (-3209 (($ $ |#2|) NIL) (($ $ (-640 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-640 |#2|) (-640 (-767))) NIL)) (-1778 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1756 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) 96)) (-1768 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1744 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1837 (($ $ |#1|) 123 (|has| |#1| (-363)))) (-1826 (($ $) 84) (($ $ $) 94)) (-1814 (($ $ $) 48)) (** (($ $ (-917)) 101) (($ $ (-767)) 99)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 87) (($ $ $) 64) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) 89) (($ $ |#1|) NIL))) +(((-1118 |#1| |#2|) (-945 |#1| (-531 |#2|) |#2|) (-1045) (-846)) (T -1118)) +NIL +(-945 |#1| (-531 |#2|) |#2|) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-2606 (((-640 |#2|) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-4223 (($ $) NIL (|has| |#1| (-555)))) (-3156 (((-112) $) NIL (|has| |#1| (-555)))) (-1771 (($ $) 140 (|has| |#1| (-38 (-407 (-563)))))) (-1619 (($ $) 116 (|has| |#1| (-38 (-407 (-563)))))) (-1495 (((-3 $ "failed") $ $) NIL)) (-2186 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1748 (($ $) 136 (|has| |#1| (-38 (-407 (-563)))))) (-1597 (($ $) 112 (|has| |#1| (-38 (-407 (-563)))))) (-1794 (($ $) 144 (|has| |#1| (-38 (-407 (-563)))))) (-1643 (($ $) 120 (|has| |#1| (-38 (-407 (-563)))))) (-4239 (($) NIL T CONST)) (-2751 (($ $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-3619 (((-948 |#1|) $ (-767)) NIL) (((-948 |#1|) $ (-767) (-767)) NIL)) (-2788 (((-112) $) NIL)) (-2180 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3254 (((-767) $ |#2|) NIL) (((-767) $ |#2| (-767)) NIL)) (-3827 (((-112) $) NIL)) (-1645 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3920 (((-112) $) NIL)) (-2588 (($ $ (-640 |#2|) (-640 (-531 |#2|))) NIL) (($ $ |#2| (-531 |#2|)) NIL) (($ |#1| (-531 |#2|)) NIL) (($ $ |#2| (-767)) 55) (($ $ (-640 |#2|) (-640 (-767))) NIL)) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-4371 (($ $) 110 (|has| |#1| (-38 (-407 (-563)))))) (-2716 (($ $) NIL)) (-2726 ((|#1| $) NIL)) (-3573 (((-1151) $) NIL)) (-3698 (($ $ |#2|) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ |#2| |#1|) 163 (|has| |#1| (-38 (-407 (-563)))))) (-1694 (((-1113) $) NIL)) (-3118 (($ (-1 $) |#2| |#1|) 162 (|has| |#1| (-38 (-407 (-563)))))) (-3320 (($ $ (-767)) 13)) (-3008 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-3368 (($ $) 108 (|has| |#1| (-38 (-407 (-563)))))) (-1540 (($ $ |#2| $) 94) (($ $ (-640 |#2|) (-640 $)) 87) (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL)) (-4202 (($ $ |#2|) 97) (($ $ (-640 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-640 |#2|) (-640 (-767))) NIL)) (-4167 (((-531 |#2|) $) NIL)) (-3687 (((-1 (-1149 |#3|) |#3|) (-640 |#2|) (-640 (-1149 |#3|))) 76)) (-1806 (($ $) 146 (|has| |#1| (-38 (-407 (-563)))))) (-1656 (($ $) 122 (|has| |#1| (-38 (-407 (-563)))))) (-1784 (($ $) 142 (|has| |#1| (-38 (-407 (-563)))))) (-1630 (($ $) 118 (|has| |#1| (-38 (-407 (-563)))))) (-1759 (($ $) 138 (|has| |#1| (-38 (-407 (-563)))))) (-1608 (($ $) 114 (|has| |#1| (-38 (-407 (-563)))))) (-1741 (($ $) 15)) (-1693 (((-858) $) 179) (($ (-563)) NIL) (($ |#1|) 40 (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-555))) (($ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ |#2|) 62) (($ |#3|) 60)) (-4319 ((|#1| $ (-531 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-640 |#2|) (-640 (-767))) NIL) ((|#3| $ (-767)) 38)) (-2779 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1675 (((-767)) NIL)) (-1840 (($ $) 152 (|has| |#1| (-38 (-407 (-563)))))) (-1695 (($ $) 128 (|has| |#1| (-38 (-407 (-563)))))) (-2126 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1817 (($ $) 148 (|has| |#1| (-38 (-407 (-563)))))) (-1667 (($ $) 124 (|has| |#1| (-38 (-407 (-563)))))) (-1862 (($ $) 156 (|has| |#1| (-38 (-407 (-563)))))) (-1722 (($ $) 132 (|has| |#1| (-38 (-407 (-563)))))) (-1311 (($ $) 158 (|has| |#1| (-38 (-407 (-563)))))) (-1735 (($ $) 134 (|has| |#1| (-38 (-407 (-563)))))) (-1851 (($ $) 154 (|has| |#1| (-38 (-407 (-563)))))) (-1710 (($ $) 130 (|has| |#1| (-38 (-407 (-563)))))) (-1829 (($ $) 150 (|has| |#1| (-38 (-407 (-563)))))) (-1680 (($ $) 126 (|has| |#1| (-38 (-407 (-563)))))) (-2241 (($) 47 T CONST)) (-2254 (($) 54 T CONST)) (-3209 (($ $ |#2|) NIL) (($ $ (-640 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-640 |#2|) (-640 (-767))) NIL)) (-1718 (((-112) $ $) NIL)) (-1837 (($ $ |#1|) 181 (|has| |#1| (-363)))) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) 58)) (** (($ $ (-917)) NIL) (($ $ (-767)) 67) (($ $ $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 100 (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 57) (($ $ (-407 (-563))) 105 (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) 103 (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) 43) (($ $ |#1|) 44) (($ |#3| $) 42))) +(((-1119 |#1| |#2| |#3|) (-13 (-736 |#1| |#2|) (-10 -8 (-15 -4319 (|#3| $ (-767))) (-15 -1693 ($ |#2|)) (-15 -1693 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3687 ((-1 (-1149 |#3|) |#3|) (-640 |#2|) (-640 (-1149 |#3|)))) (IF (|has| |#1| (-38 (-407 (-563)))) (PROGN (-15 -3698 ($ $ |#2| |#1|)) (-15 -3118 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1045) (-846) (-945 |#1| (-531 |#2|) |#2|)) (T -1119)) +((-4319 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *2 (-945 *4 (-531 *5) *5)) (-5 *1 (-1119 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-846)))) (-1693 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-4 *2 (-846)) (-5 *1 (-1119 *3 *2 *4)) (-4 *4 (-945 *3 (-531 *2) *2)))) (-1693 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-4 *4 (-846)) (-5 *1 (-1119 *3 *4 *2)) (-4 *2 (-945 *3 (-531 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-846)) (-5 *1 (-1119 *3 *4 *2)) (-4 *2 (-945 *3 (-531 *4) *4)))) (-3687 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *6)) (-5 *4 (-640 (-1149 *7))) (-4 *6 (-846)) (-4 *7 (-945 *5 (-531 *6) *6)) (-4 *5 (-1045)) (-5 *2 (-1 (-1149 *7) *7)) (-5 *1 (-1119 *5 *6 *7)))) (-3698 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-4 *2 (-846)) (-5 *1 (-1119 *3 *2 *4)) (-4 *4 (-945 *3 (-531 *2) *2)))) (-3118 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1119 *4 *3 *5))) (-4 *4 (-38 (-407 (-563)))) (-4 *4 (-1045)) (-4 *3 (-846)) (-5 *1 (-1119 *4 *3 *5)) (-4 *5 (-945 *4 (-531 *3) *3))))) +(-13 (-736 |#1| |#2|) (-10 -8 (-15 -4319 (|#3| $ (-767))) (-15 -1693 ($ |#2|)) (-15 -1693 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3687 ((-1 (-1149 |#3|) |#3|) (-640 |#2|) (-640 (-1149 |#3|)))) (IF (|has| |#1| (-38 (-407 (-563)))) (PROGN (-15 -3698 ($ $ |#2| |#1|)) (-15 -3118 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-1677 (((-112) $ $) 7)) (-1578 (((-640 (-2 (|:| -1442 $) (|:| -3405 (-640 |#4|)))) (-640 |#4|)) 85)) (-3319 (((-640 $) (-640 |#4|)) 86) (((-640 $) (-640 |#4|) (-112)) 111)) (-2606 (((-640 |#3|) $) 33)) (-1706 (((-112) $) 26)) (-3854 (((-112) $) 17 (|has| |#1| (-555)))) (-2620 (((-112) |#4| $) 101) (((-112) $) 97)) (-4053 ((|#4| |#4| $) 92)) (-4335 (((-640 (-2 (|:| |val| |#4|) (|:| -2059 $))) |#4| $) 126)) (-1642 (((-2 (|:| |under| $) (|:| -1583 $) (|:| |upper| $)) $ |#3|) 27)) (-2759 (((-112) $ (-767)) 44)) (-2256 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4407))) (((-3 |#4| "failed") $ |#3|) 79)) (-4239 (($) 45 T CONST)) (-1483 (((-112) $) 22 (|has| |#1| (-555)))) (-1626 (((-112) $ $) 24 (|has| |#1| (-555)))) (-4221 (((-112) $ $) 23 (|has| |#1| (-555)))) (-1763 (((-112) $) 25 (|has| |#1| (-555)))) (-1833 (((-640 |#4|) (-640 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3746 (((-640 |#4|) (-640 |#4|) $) 18 (|has| |#1| (-555)))) (-1866 (((-640 |#4|) (-640 |#4|) $) 19 (|has| |#1| (-555)))) (-2131 (((-3 $ "failed") (-640 |#4|)) 36)) (-2058 (($ (-640 |#4|)) 35)) (-3792 (((-3 $ "failed") $) 82)) (-1719 ((|#4| |#4| $) 89)) (-3813 (($ $) 68 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4407))))) (-1459 (($ |#4| $) 67 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4407)))) (-1972 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-555)))) (-3990 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3948 ((|#4| |#4| $) 87)) (-2444 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4407)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4407))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4407))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2144 (((-2 (|:| -1442 (-640 |#4|)) (|:| -3405 (-640 |#4|))) $) 105)) (-2313 (((-112) |#4| $) 136)) (-3748 (((-112) |#4| $) 133)) (-1871 (((-112) |#4| $) 137) (((-112) $) 134)) (-2659 (((-640 |#4|) $) 52 (|has| $ (-6 -4407)))) (-2299 (((-112) |#4| $) 104) (((-112) $) 103)) (-2957 ((|#3| $) 34)) (-2581 (((-112) $ (-767)) 43)) (-2259 (((-640 |#4|) $) 53 (|has| $ (-6 -4407)))) (-1729 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4407))))) (-4345 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#4| |#4|) $) 47)) (-2965 (((-640 |#3|) $) 32)) (-2780 (((-112) |#3| $) 31)) (-2382 (((-112) $ (-767)) 42)) (-3573 (((-1151) $) 9)) (-3083 (((-3 |#4| (-640 $)) |#4| |#4| $) 128)) (-2898 (((-640 (-2 (|:| |val| |#4|) (|:| -2059 $))) |#4| |#4| $) 127)) (-1481 (((-3 |#4| "failed") $) 83)) (-3764 (((-640 $) |#4| $) 129)) (-1334 (((-3 (-112) (-640 $)) |#4| $) 132)) (-2069 (((-640 (-2 (|:| |val| (-112)) (|:| -2059 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-2550 (((-640 $) |#4| $) 125) (((-640 $) (-640 |#4|) $) 124) (((-640 $) (-640 |#4|) (-640 $)) 123) (((-640 $) |#4| (-640 $)) 122)) (-3291 (($ |#4| $) 117) (($ (-640 |#4|) $) 116)) (-2820 (((-640 |#4|) $) 107)) (-4197 (((-112) |#4| $) 99) (((-112) $) 95)) (-2715 ((|#4| |#4| $) 90)) (-3009 (((-112) $ $) 110)) (-2152 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-555)))) (-2031 (((-112) |#4| $) 100) (((-112) $) 96)) (-4056 ((|#4| |#4| $) 91)) (-1694 (((-1113) $) 10)) (-3781 (((-3 |#4| "failed") $) 84)) (-4203 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3479 (((-3 $ "failed") $ |#4|) 78)) (-3320 (($ $ |#4|) 77) (((-640 $) |#4| $) 115) (((-640 $) |#4| (-640 $)) 114) (((-640 $) (-640 |#4|) $) 113) (((-640 $) (-640 |#4|) (-640 $)) 112)) (-3138 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 |#4|) (-640 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-2026 (((-112) $ $) 38)) (-3756 (((-112) $) 41)) (-3135 (($) 40)) (-4167 (((-767) $) 106)) (-1709 (((-767) |#4| $) 54 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4407)))) (((-767) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4407)))) (-1872 (($ $) 39)) (-2220 (((-536) $) 69 (|has| |#4| (-611 (-536))))) (-1707 (($ (-640 |#4|)) 60)) (-3577 (($ $ |#3|) 28)) (-1593 (($ $ |#3|) 30)) (-1924 (($ $) 88)) (-4192 (($ $ |#3|) 29)) (-1693 (((-858) $) 11) (((-640 |#4|) $) 37)) (-2437 (((-767) $) 76 (|has| |#3| (-368)))) (-2540 (((-3 (-2 (|:| |bas| $) (|:| -2636 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2636 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2691 (((-112) $ (-1 (-112) |#4| (-640 |#4|))) 98)) (-2175 (((-640 $) |#4| $) 121) (((-640 $) |#4| (-640 $)) 120) (((-640 $) (-640 |#4|) $) 119) (((-640 $) (-640 |#4|) (-640 $)) 118)) (-4383 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4407)))) (-1955 (((-640 |#3|) $) 81)) (-4279 (((-112) |#4| $) 135)) (-3152 (((-112) |#3| $) 80)) (-1718 (((-112) $ $) 6)) (-3608 (((-767) $) 46 (|has| $ (-6 -4407))))) +(((-1120 |#1| |#2| |#3| |#4|) (-140) (-452) (-789) (-846) (-1059 |t#1| |t#2| |t#3|)) (T -1120)) +NIL +(-13 (-1102 |t#1| |t#2| |t#3| |t#4|) (-780 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-610 (-640 |#4|)) . T) ((-610 (-858)) . T) ((-151 |#4|) . T) ((-611 (-536)) |has| |#4| (-611 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-780 |#1| |#2| |#3| |#4|) . T) ((-972 |#1| |#2| |#3| |#4|) . T) ((-1065 |#1| |#2| |#3| |#4|) . T) ((-1093) . T) ((-1102 |#1| |#2| |#3| |#4|) . T) ((-1201 |#1| |#2| |#3| |#4|) . T) ((-1208) . T)) +((-1793 (((-640 |#2|) |#1|) 12)) (-4124 (((-640 |#2|) |#2| |#2| |#2| |#2| |#2|) 38) (((-640 |#2|) |#1|) 49)) (-3754 (((-640 |#2|) |#2| |#2| |#2|) 36) (((-640 |#2|) |#1|) 47)) (-2635 ((|#2| |#1|) 43)) (-1505 (((-2 (|:| |solns| (-640 |#2|)) (|:| |maps| (-640 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-3598 (((-640 |#2|) |#2| |#2|) 35) (((-640 |#2|) |#1|) 46)) (-1932 (((-640 |#2|) |#2| |#2| |#2| |#2|) 37) (((-640 |#2|) |#1|) 48)) (-2832 ((|#2| |#2| |#2| |#2| |#2| |#2|) 42)) (-3683 ((|#2| |#2| |#2| |#2|) 40)) (-1445 ((|#2| |#2| |#2|) 39)) (-3776 ((|#2| |#2| |#2| |#2| |#2|) 41))) +(((-1121 |#1| |#2|) (-10 -7 (-15 -1793 ((-640 |#2|) |#1|)) (-15 -2635 (|#2| |#1|)) (-15 -1505 ((-2 (|:| |solns| (-640 |#2|)) (|:| |maps| (-640 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3598 ((-640 |#2|) |#1|)) (-15 -3754 ((-640 |#2|) |#1|)) (-15 -1932 ((-640 |#2|) |#1|)) (-15 -4124 ((-640 |#2|) |#1|)) (-15 -3598 ((-640 |#2|) |#2| |#2|)) (-15 -3754 ((-640 |#2|) |#2| |#2| |#2|)) (-15 -1932 ((-640 |#2|) |#2| |#2| |#2| |#2|)) (-15 -4124 ((-640 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1445 (|#2| |#2| |#2|)) (-15 -3683 (|#2| |#2| |#2| |#2|)) (-15 -3776 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2832 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1233 |#2|) (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (T -1121)) +((-2832 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *1 (-1121 *3 *2)) (-4 *3 (-1233 *2)))) (-3776 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *1 (-1121 *3 *2)) (-4 *3 (-1233 *2)))) (-3683 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *1 (-1121 *3 *2)) (-4 *3 (-1233 *2)))) (-1445 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *1 (-1121 *3 *2)) (-4 *3 (-1233 *2)))) (-4124 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *2 (-640 *3)) (-5 *1 (-1121 *4 *3)) (-4 *4 (-1233 *3)))) (-1932 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *2 (-640 *3)) (-5 *1 (-1121 *4 *3)) (-4 *4 (-1233 *3)))) (-3754 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *2 (-640 *3)) (-5 *1 (-1121 *4 *3)) (-4 *4 (-1233 *3)))) (-3598 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *2 (-640 *3)) (-5 *1 (-1121 *4 *3)) (-4 *4 (-1233 *3)))) (-4124 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *2 (-640 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1233 *4)))) (-1932 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *2 (-640 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1233 *4)))) (-3754 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *2 (-640 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1233 *4)))) (-3598 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *2 (-640 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1233 *4)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *2 (-2 (|:| |solns| (-640 *5)) (|:| |maps| (-640 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1121 *3 *5)) (-4 *3 (-1233 *5)))) (-2635 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *1 (-1121 *3 *2)) (-4 *3 (-1233 *2)))) (-1793 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *2 (-640 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1233 *4))))) +(-10 -7 (-15 -1793 ((-640 |#2|) |#1|)) (-15 -2635 (|#2| |#1|)) (-15 -1505 ((-2 (|:| |solns| (-640 |#2|)) (|:| |maps| (-640 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3598 ((-640 |#2|) |#1|)) (-15 -3754 ((-640 |#2|) |#1|)) (-15 -1932 ((-640 |#2|) |#1|)) (-15 -4124 ((-640 |#2|) |#1|)) (-15 -3598 ((-640 |#2|) |#2| |#2|)) (-15 -3754 ((-640 |#2|) |#2| |#2| |#2|)) (-15 -1932 ((-640 |#2|) |#2| |#2| |#2| |#2|)) (-15 -4124 ((-640 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1445 (|#2| |#2| |#2|)) (-15 -3683 (|#2| |#2| |#2| |#2|)) (-15 -3776 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2832 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-2747 (((-640 (-640 (-294 (-316 |#1|)))) (-640 (-294 (-407 (-948 |#1|))))) 95) (((-640 (-640 (-294 (-316 |#1|)))) (-640 (-294 (-407 (-948 |#1|)))) (-640 (-1169))) 94) (((-640 (-640 (-294 (-316 |#1|)))) (-640 (-407 (-948 |#1|)))) 92) (((-640 (-640 (-294 (-316 |#1|)))) (-640 (-407 (-948 |#1|))) (-640 (-1169))) 90) (((-640 (-294 (-316 |#1|))) (-294 (-407 (-948 |#1|)))) 75) (((-640 (-294 (-316 |#1|))) (-294 (-407 (-948 |#1|))) (-1169)) 76) (((-640 (-294 (-316 |#1|))) (-407 (-948 |#1|))) 70) (((-640 (-294 (-316 |#1|))) (-407 (-948 |#1|)) (-1169)) 59)) (-2363 (((-640 (-640 (-316 |#1|))) (-640 (-407 (-948 |#1|))) (-640 (-1169))) 88) (((-640 (-316 |#1|)) (-407 (-948 |#1|)) (-1169)) 43)) (-3946 (((-1158 (-640 (-316 |#1|)) (-640 (-294 (-316 |#1|)))) (-407 (-948 |#1|)) (-1169)) 98) (((-1158 (-640 (-316 |#1|)) (-640 (-294 (-316 |#1|)))) (-294 (-407 (-948 |#1|))) (-1169)) 97))) +(((-1122 |#1|) (-10 -7 (-15 -2747 ((-640 (-294 (-316 |#1|))) (-407 (-948 |#1|)) (-1169))) (-15 -2747 ((-640 (-294 (-316 |#1|))) (-407 (-948 |#1|)))) (-15 -2747 ((-640 (-294 (-316 |#1|))) (-294 (-407 (-948 |#1|))) (-1169))) (-15 -2747 ((-640 (-294 (-316 |#1|))) (-294 (-407 (-948 |#1|))))) (-15 -2747 ((-640 (-640 (-294 (-316 |#1|)))) (-640 (-407 (-948 |#1|))) (-640 (-1169)))) (-15 -2747 ((-640 (-640 (-294 (-316 |#1|)))) (-640 (-407 (-948 |#1|))))) (-15 -2747 ((-640 (-640 (-294 (-316 |#1|)))) (-640 (-294 (-407 (-948 |#1|)))) (-640 (-1169)))) (-15 -2747 ((-640 (-640 (-294 (-316 |#1|)))) (-640 (-294 (-407 (-948 |#1|)))))) (-15 -2363 ((-640 (-316 |#1|)) (-407 (-948 |#1|)) (-1169))) (-15 -2363 ((-640 (-640 (-316 |#1|))) (-640 (-407 (-948 |#1|))) (-640 (-1169)))) (-15 -3946 ((-1158 (-640 (-316 |#1|)) (-640 (-294 (-316 |#1|)))) (-294 (-407 (-948 |#1|))) (-1169))) (-15 -3946 ((-1158 (-640 (-316 |#1|)) (-640 (-294 (-316 |#1|)))) (-407 (-948 |#1|)) (-1169)))) (-13 (-307) (-846) (-147))) (T -1122)) +((-3946 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-1158 (-640 (-316 *5)) (-640 (-294 (-316 *5))))) (-5 *1 (-1122 *5)))) (-3946 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-948 *5)))) (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-1158 (-640 (-316 *5)) (-640 (-294 (-316 *5))))) (-5 *1 (-1122 *5)))) (-2363 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-407 (-948 *5)))) (-5 *4 (-640 (-1169))) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-640 (-316 *5)))) (-5 *1 (-1122 *5)))) (-2363 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-316 *5))) (-5 *1 (-1122 *5)))) (-2747 (*1 *2 *3) (-12 (-5 *3 (-640 (-294 (-407 (-948 *4))))) (-4 *4 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-640 (-294 (-316 *4))))) (-5 *1 (-1122 *4)))) (-2747 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-294 (-407 (-948 *5))))) (-5 *4 (-640 (-1169))) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-640 (-294 (-316 *5))))) (-5 *1 (-1122 *5)))) (-2747 (*1 *2 *3) (-12 (-5 *3 (-640 (-407 (-948 *4)))) (-4 *4 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-640 (-294 (-316 *4))))) (-5 *1 (-1122 *4)))) (-2747 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-407 (-948 *5)))) (-5 *4 (-640 (-1169))) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-640 (-294 (-316 *5))))) (-5 *1 (-1122 *5)))) (-2747 (*1 *2 *3) (-12 (-5 *3 (-294 (-407 (-948 *4)))) (-4 *4 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-294 (-316 *4)))) (-5 *1 (-1122 *4)))) (-2747 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-948 *5)))) (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-294 (-316 *5)))) (-5 *1 (-1122 *5)))) (-2747 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-294 (-316 *4)))) (-5 *1 (-1122 *4)))) (-2747 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-294 (-316 *5)))) (-5 *1 (-1122 *5))))) +(-10 -7 (-15 -2747 ((-640 (-294 (-316 |#1|))) (-407 (-948 |#1|)) (-1169))) (-15 -2747 ((-640 (-294 (-316 |#1|))) (-407 (-948 |#1|)))) (-15 -2747 ((-640 (-294 (-316 |#1|))) (-294 (-407 (-948 |#1|))) (-1169))) (-15 -2747 ((-640 (-294 (-316 |#1|))) (-294 (-407 (-948 |#1|))))) (-15 -2747 ((-640 (-640 (-294 (-316 |#1|)))) (-640 (-407 (-948 |#1|))) (-640 (-1169)))) (-15 -2747 ((-640 (-640 (-294 (-316 |#1|)))) (-640 (-407 (-948 |#1|))))) (-15 -2747 ((-640 (-640 (-294 (-316 |#1|)))) (-640 (-294 (-407 (-948 |#1|)))) (-640 (-1169)))) (-15 -2747 ((-640 (-640 (-294 (-316 |#1|)))) (-640 (-294 (-407 (-948 |#1|)))))) (-15 -2363 ((-640 (-316 |#1|)) (-407 (-948 |#1|)) (-1169))) (-15 -2363 ((-640 (-640 (-316 |#1|))) (-640 (-407 (-948 |#1|))) (-640 (-1169)))) (-15 -3946 ((-1158 (-640 (-316 |#1|)) (-640 (-294 (-316 |#1|)))) (-294 (-407 (-948 |#1|))) (-1169))) (-15 -3946 ((-1158 (-640 (-316 |#1|)) (-640 (-294 (-316 |#1|)))) (-407 (-948 |#1|)) (-1169)))) +((-3201 (((-407 (-1165 (-316 |#1|))) (-1257 (-316 |#1|)) (-407 (-1165 (-316 |#1|))) (-563)) 29)) (-3896 (((-407 (-1165 (-316 |#1|))) (-407 (-1165 (-316 |#1|))) (-407 (-1165 (-316 |#1|))) (-407 (-1165 (-316 |#1|)))) 40))) +(((-1123 |#1|) (-10 -7 (-15 -3896 ((-407 (-1165 (-316 |#1|))) (-407 (-1165 (-316 |#1|))) (-407 (-1165 (-316 |#1|))) (-407 (-1165 (-316 |#1|))))) (-15 -3201 ((-407 (-1165 (-316 |#1|))) (-1257 (-316 |#1|)) (-407 (-1165 (-316 |#1|))) (-563)))) (-13 (-555) (-846))) (T -1123)) +((-3201 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-407 (-1165 (-316 *5)))) (-5 *3 (-1257 (-316 *5))) (-5 *4 (-563)) (-4 *5 (-13 (-555) (-846))) (-5 *1 (-1123 *5)))) (-3896 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-407 (-1165 (-316 *3)))) (-4 *3 (-13 (-555) (-846))) (-5 *1 (-1123 *3))))) +(-10 -7 (-15 -3896 ((-407 (-1165 (-316 |#1|))) (-407 (-1165 (-316 |#1|))) (-407 (-1165 (-316 |#1|))) (-407 (-1165 (-316 |#1|))))) (-15 -3201 ((-407 (-1165 (-316 |#1|))) (-1257 (-316 |#1|)) (-407 (-1165 (-316 |#1|))) (-563)))) +((-1793 (((-640 (-640 (-294 (-316 |#1|)))) (-640 (-294 (-316 |#1|))) (-640 (-1169))) 222) (((-640 (-294 (-316 |#1|))) (-316 |#1|) (-1169)) 20) (((-640 (-294 (-316 |#1|))) (-294 (-316 |#1|)) (-1169)) 26) (((-640 (-294 (-316 |#1|))) (-294 (-316 |#1|))) 25) (((-640 (-294 (-316 |#1|))) (-316 |#1|)) 21))) +(((-1124 |#1|) (-10 -7 (-15 -1793 ((-640 (-294 (-316 |#1|))) (-316 |#1|))) (-15 -1793 ((-640 (-294 (-316 |#1|))) (-294 (-316 |#1|)))) (-15 -1793 ((-640 (-294 (-316 |#1|))) (-294 (-316 |#1|)) (-1169))) (-15 -1793 ((-640 (-294 (-316 |#1|))) (-316 |#1|) (-1169))) (-15 -1793 ((-640 (-640 (-294 (-316 |#1|)))) (-640 (-294 (-316 |#1|))) (-640 (-1169))))) (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (T -1124)) +((-1793 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-1169))) (-4 *5 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-640 (-640 (-294 (-316 *5))))) (-5 *1 (-1124 *5)) (-5 *3 (-640 (-294 (-316 *5)))))) (-1793 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-640 (-294 (-316 *5)))) (-5 *1 (-1124 *5)) (-5 *3 (-316 *5)))) (-1793 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-640 (-294 (-316 *5)))) (-5 *1 (-1124 *5)) (-5 *3 (-294 (-316 *5))))) (-1793 (*1 *2 *3) (-12 (-4 *4 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-640 (-294 (-316 *4)))) (-5 *1 (-1124 *4)) (-5 *3 (-294 (-316 *4))))) (-1793 (*1 *2 *3) (-12 (-4 *4 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-640 (-294 (-316 *4)))) (-5 *1 (-1124 *4)) (-5 *3 (-316 *4))))) +(-10 -7 (-15 -1793 ((-640 (-294 (-316 |#1|))) (-316 |#1|))) (-15 -1793 ((-640 (-294 (-316 |#1|))) (-294 (-316 |#1|)))) (-15 -1793 ((-640 (-294 (-316 |#1|))) (-294 (-316 |#1|)) (-1169))) (-15 -1793 ((-640 (-294 (-316 |#1|))) (-316 |#1|) (-1169))) (-15 -1793 ((-640 (-640 (-294 (-316 |#1|)))) (-640 (-294 (-316 |#1|))) (-640 (-1169))))) +((-2960 ((|#2| |#2|) 20 (|has| |#1| (-846))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 17)) (-2420 ((|#2| |#2|) 19 (|has| |#1| (-846))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 16))) +(((-1125 |#1| |#2|) (-10 -7 (-15 -2420 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2960 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-846)) (PROGN (-15 -2420 (|#2| |#2|)) (-15 -2960 (|#2| |#2|))) |%noBranch|)) (-1208) (-13 (-601 (-563) |#1|) (-10 -7 (-6 -4407) (-6 -4408)))) (T -1125)) +((-2960 (*1 *2 *2) (-12 (-4 *3 (-846)) (-4 *3 (-1208)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-601 (-563) *3) (-10 -7 (-6 -4407) (-6 -4408)))))) (-2420 (*1 *2 *2) (-12 (-4 *3 (-846)) (-4 *3 (-1208)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-601 (-563) *3) (-10 -7 (-6 -4407) (-6 -4408)))))) (-2960 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1208)) (-5 *1 (-1125 *4 *2)) (-4 *2 (-13 (-601 (-563) *4) (-10 -7 (-6 -4407) (-6 -4408)))))) (-2420 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1208)) (-5 *1 (-1125 *4 *2)) (-4 *2 (-13 (-601 (-563) *4) (-10 -7 (-6 -4407) (-6 -4408))))))) +(-10 -7 (-15 -2420 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2960 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-846)) (PROGN (-15 -2420 (|#2| |#2|)) (-15 -2960 (|#2| |#2|))) |%noBranch|)) +((-1677 (((-112) $ $) NIL)) (-2756 (((-1157 3 |#1|) $) 107)) (-3049 (((-112) $) 72)) (-3693 (($ $ (-640 (-939 |#1|))) 20) (($ $ (-640 (-640 |#1|))) 75) (($ (-640 (-939 |#1|))) 74) (((-640 (-939 |#1|)) $) 73)) (-3005 (((-112) $) 41)) (-3014 (($ $ (-939 |#1|)) 46) (($ $ (-640 |#1|)) 51) (($ $ (-767)) 53) (($ (-939 |#1|)) 47) (((-939 |#1|) $) 45)) (-4201 (((-2 (|:| -2630 (-767)) (|:| |curves| (-767)) (|:| |polygons| (-767)) (|:| |constructs| (-767))) $) 105)) (-1914 (((-767) $) 26)) (-3273 (((-767) $) 25)) (-3823 (($ $ (-767) (-939 |#1|)) 39)) (-1358 (((-112) $) 82)) (-2010 (($ $ (-640 (-640 (-939 |#1|))) (-640 (-171)) (-171)) 89) (($ $ (-640 (-640 (-640 |#1|))) (-640 (-171)) (-171)) 91) (($ $ (-640 (-640 (-939 |#1|))) (-112) (-112)) 85) (($ $ (-640 (-640 (-640 |#1|))) (-112) (-112)) 93) (($ (-640 (-640 (-939 |#1|)))) 86) (($ (-640 (-640 (-939 |#1|))) (-112) (-112)) 87) (((-640 (-640 (-939 |#1|))) $) 84)) (-3164 (($ (-640 $)) 28) (($ $ $) 29)) (-2390 (((-640 (-171)) $) 102)) (-2277 (((-640 (-939 |#1|)) $) 96)) (-2996 (((-640 (-640 (-171))) $) 101)) (-2303 (((-640 (-640 (-640 (-939 |#1|)))) $) NIL)) (-3850 (((-640 (-640 (-640 (-767)))) $) 99)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1781 (((-767) $ (-640 (-939 |#1|))) 37)) (-3002 (((-112) $) 54)) (-3448 (($ $ (-640 (-939 |#1|))) 56) (($ $ (-640 (-640 |#1|))) 62) (($ (-640 (-939 |#1|))) 57) (((-640 (-939 |#1|)) $) 55)) (-3940 (($) 23) (($ (-1157 3 |#1|)) 24)) (-1872 (($ $) 35)) (-3491 (((-640 $) $) 34)) (-1346 (($ (-640 $)) 31)) (-3526 (((-640 $) $) 33)) (-1693 (((-858) $) 111)) (-2575 (((-112) $) 64)) (-2929 (($ $ (-640 (-939 |#1|))) 66) (($ $ (-640 (-640 |#1|))) 69) (($ (-640 (-939 |#1|))) 67) (((-640 (-939 |#1|)) $) 65)) (-4350 (($ $) 106)) (-1718 (((-112) $ $) NIL))) +(((-1126 |#1|) (-1127 |#1|) (-1045)) (T -1126)) +NIL +(-1127 |#1|) +((-1677 (((-112) $ $) 7)) (-2756 (((-1157 3 |#1|) $) 13)) (-3049 (((-112) $) 29)) (-3693 (($ $ (-640 (-939 |#1|))) 33) (($ $ (-640 (-640 |#1|))) 32) (($ (-640 (-939 |#1|))) 31) (((-640 (-939 |#1|)) $) 30)) (-3005 (((-112) $) 44)) (-3014 (($ $ (-939 |#1|)) 49) (($ $ (-640 |#1|)) 48) (($ $ (-767)) 47) (($ (-939 |#1|)) 46) (((-939 |#1|) $) 45)) (-4201 (((-2 (|:| -2630 (-767)) (|:| |curves| (-767)) (|:| |polygons| (-767)) (|:| |constructs| (-767))) $) 15)) (-1914 (((-767) $) 58)) (-3273 (((-767) $) 59)) (-3823 (($ $ (-767) (-939 |#1|)) 50)) (-1358 (((-112) $) 21)) (-2010 (($ $ (-640 (-640 (-939 |#1|))) (-640 (-171)) (-171)) 28) (($ $ (-640 (-640 (-640 |#1|))) (-640 (-171)) (-171)) 27) (($ $ (-640 (-640 (-939 |#1|))) (-112) (-112)) 26) (($ $ (-640 (-640 (-640 |#1|))) (-112) (-112)) 25) (($ (-640 (-640 (-939 |#1|)))) 24) (($ (-640 (-640 (-939 |#1|))) (-112) (-112)) 23) (((-640 (-640 (-939 |#1|))) $) 22)) (-3164 (($ (-640 $)) 57) (($ $ $) 56)) (-2390 (((-640 (-171)) $) 16)) (-2277 (((-640 (-939 |#1|)) $) 20)) (-2996 (((-640 (-640 (-171))) $) 17)) (-2303 (((-640 (-640 (-640 (-939 |#1|)))) $) 18)) (-3850 (((-640 (-640 (-640 (-767)))) $) 19)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1781 (((-767) $ (-640 (-939 |#1|))) 51)) (-3002 (((-112) $) 39)) (-3448 (($ $ (-640 (-939 |#1|))) 43) (($ $ (-640 (-640 |#1|))) 42) (($ (-640 (-939 |#1|))) 41) (((-640 (-939 |#1|)) $) 40)) (-3940 (($) 61) (($ (-1157 3 |#1|)) 60)) (-1872 (($ $) 52)) (-3491 (((-640 $) $) 53)) (-1346 (($ (-640 $)) 55)) (-3526 (((-640 $) $) 54)) (-1693 (((-858) $) 11)) (-2575 (((-112) $) 34)) (-2929 (($ $ (-640 (-939 |#1|))) 38) (($ $ (-640 (-640 |#1|))) 37) (($ (-640 (-939 |#1|))) 36) (((-640 (-939 |#1|)) $) 35)) (-4350 (($ $) 14)) (-1718 (((-112) $ $) 6))) +(((-1127 |#1|) (-140) (-1045)) (T -1127)) +((-1693 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-858)))) (-3940 (*1 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1045)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-1157 3 *3)) (-4 *3 (-1045)) (-4 *1 (-1127 *3)))) (-3273 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-1914 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-3164 (*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-3164 (*1 *1 *1 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1045)))) (-1346 (*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-3526 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-5 *2 (-640 *1)) (-4 *1 (-1127 *3)))) (-3491 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-5 *2 (-640 *1)) (-4 *1 (-1127 *3)))) (-1872 (*1 *1 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1045)))) (-1781 (*1 *2 *1 *3) (-12 (-5 *3 (-640 (-939 *4))) (-4 *1 (-1127 *4)) (-4 *4 (-1045)) (-5 *2 (-767)))) (-3823 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *3 (-939 *4)) (-4 *1 (-1127 *4)) (-4 *4 (-1045)))) (-3014 (*1 *1 *1 *2) (-12 (-5 *2 (-939 *3)) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-3014 (*1 *1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-3014 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-3014 (*1 *1 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-1045)) (-4 *1 (-1127 *3)))) (-3014 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-939 *3)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))) (-3448 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-939 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-3448 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-640 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-3448 (*1 *1 *2) (-12 (-5 *2 (-640 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1127 *3)))) (-3448 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-939 *3))))) (-3002 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))) (-2929 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-939 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-2929 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-640 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-2929 (*1 *1 *2) (-12 (-5 *2 (-640 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1127 *3)))) (-2929 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-939 *3))))) (-2575 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))) (-3693 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-939 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-3693 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-640 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-3693 (*1 *1 *2) (-12 (-5 *2 (-640 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1127 *3)))) (-3693 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-939 *3))))) (-3049 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))) (-2010 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-640 (-640 (-939 *5)))) (-5 *3 (-640 (-171))) (-5 *4 (-171)) (-4 *1 (-1127 *5)) (-4 *5 (-1045)))) (-2010 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-640 (-640 (-640 *5)))) (-5 *3 (-640 (-171))) (-5 *4 (-171)) (-4 *1 (-1127 *5)) (-4 *5 (-1045)))) (-2010 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-640 (-640 (-939 *4)))) (-5 *3 (-112)) (-4 *1 (-1127 *4)) (-4 *4 (-1045)))) (-2010 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-640 (-640 (-640 *4)))) (-5 *3 (-112)) (-4 *1 (-1127 *4)) (-4 *4 (-1045)))) (-2010 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 (-939 *3)))) (-4 *3 (-1045)) (-4 *1 (-1127 *3)))) (-2010 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-640 (-640 (-939 *4)))) (-5 *3 (-112)) (-4 *4 (-1045)) (-4 *1 (-1127 *4)))) (-2010 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-640 (-939 *3)))))) (-1358 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))) (-2277 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-939 *3))))) (-3850 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-640 (-640 (-767))))))) (-2303 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-640 (-640 (-939 *3))))))) (-2996 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-640 (-171)))))) (-2390 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-171))))) (-4201 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -2630 (-767)) (|:| |curves| (-767)) (|:| |polygons| (-767)) (|:| |constructs| (-767)))))) (-4350 (*1 *1 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1045)))) (-2756 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-1157 3 *3))))) +(-13 (-1093) (-10 -8 (-15 -3940 ($)) (-15 -3940 ($ (-1157 3 |t#1|))) (-15 -3273 ((-767) $)) (-15 -1914 ((-767) $)) (-15 -3164 ($ (-640 $))) (-15 -3164 ($ $ $)) (-15 -1346 ($ (-640 $))) (-15 -3526 ((-640 $) $)) (-15 -3491 ((-640 $) $)) (-15 -1872 ($ $)) (-15 -1781 ((-767) $ (-640 (-939 |t#1|)))) (-15 -3823 ($ $ (-767) (-939 |t#1|))) (-15 -3014 ($ $ (-939 |t#1|))) (-15 -3014 ($ $ (-640 |t#1|))) (-15 -3014 ($ $ (-767))) (-15 -3014 ($ (-939 |t#1|))) (-15 -3014 ((-939 |t#1|) $)) (-15 -3005 ((-112) $)) (-15 -3448 ($ $ (-640 (-939 |t#1|)))) (-15 -3448 ($ $ (-640 (-640 |t#1|)))) (-15 -3448 ($ (-640 (-939 |t#1|)))) (-15 -3448 ((-640 (-939 |t#1|)) $)) (-15 -3002 ((-112) $)) (-15 -2929 ($ $ (-640 (-939 |t#1|)))) (-15 -2929 ($ $ (-640 (-640 |t#1|)))) (-15 -2929 ($ (-640 (-939 |t#1|)))) (-15 -2929 ((-640 (-939 |t#1|)) $)) (-15 -2575 ((-112) $)) (-15 -3693 ($ $ (-640 (-939 |t#1|)))) (-15 -3693 ($ $ (-640 (-640 |t#1|)))) (-15 -3693 ($ (-640 (-939 |t#1|)))) (-15 -3693 ((-640 (-939 |t#1|)) $)) (-15 -3049 ((-112) $)) (-15 -2010 ($ $ (-640 (-640 (-939 |t#1|))) (-640 (-171)) (-171))) (-15 -2010 ($ $ (-640 (-640 (-640 |t#1|))) (-640 (-171)) (-171))) (-15 -2010 ($ $ (-640 (-640 (-939 |t#1|))) (-112) (-112))) (-15 -2010 ($ $ (-640 (-640 (-640 |t#1|))) (-112) (-112))) (-15 -2010 ($ (-640 (-640 (-939 |t#1|))))) (-15 -2010 ($ (-640 (-640 (-939 |t#1|))) (-112) (-112))) (-15 -2010 ((-640 (-640 (-939 |t#1|))) $)) (-15 -1358 ((-112) $)) (-15 -2277 ((-640 (-939 |t#1|)) $)) (-15 -3850 ((-640 (-640 (-640 (-767)))) $)) (-15 -2303 ((-640 (-640 (-640 (-939 |t#1|)))) $)) (-15 -2996 ((-640 (-640 (-171))) $)) (-15 -2390 ((-640 (-171)) $)) (-15 -4201 ((-2 (|:| -2630 (-767)) (|:| |curves| (-767)) (|:| |polygons| (-767)) (|:| |constructs| (-767))) $)) (-15 -4350 ($ $)) (-15 -2756 ((-1157 3 |t#1|) $)) (-15 -1693 ((-858) $)))) +(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) +((-1677 (((-112) $ $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 176) (($ (-1174)) NIL) (((-1174) $) 7)) (-2226 (((-112) $ (|[\|\|]| (-524))) 17) (((-112) $ (|[\|\|]| (-218))) 21) (((-112) $ (|[\|\|]| (-671))) 25) (((-112) $ (|[\|\|]| (-1267))) 29) (((-112) $ (|[\|\|]| (-138))) 33) (((-112) $ (|[\|\|]| (-133))) 37) (((-112) $ (|[\|\|]| (-1108))) 41) (((-112) $ (|[\|\|]| (-96))) 45) (((-112) $ (|[\|\|]| (-676))) 49) (((-112) $ (|[\|\|]| (-517))) 53) (((-112) $ (|[\|\|]| (-1060))) 57) (((-112) $ (|[\|\|]| (-1268))) 61) (((-112) $ (|[\|\|]| (-525))) 65) (((-112) $ (|[\|\|]| (-154))) 69) (((-112) $ (|[\|\|]| (-666))) 73) (((-112) $ (|[\|\|]| (-311))) 77) (((-112) $ (|[\|\|]| (-1032))) 81) (((-112) $ (|[\|\|]| (-180))) 85) (((-112) $ (|[\|\|]| (-966))) 89) (((-112) $ (|[\|\|]| (-1067))) 93) (((-112) $ (|[\|\|]| (-1083))) 97) (((-112) $ (|[\|\|]| (-1089))) 101) (((-112) $ (|[\|\|]| (-623))) 105) (((-112) $ (|[\|\|]| (-1159))) 109) (((-112) $ (|[\|\|]| (-156))) 113) (((-112) $ (|[\|\|]| (-137))) 117) (((-112) $ (|[\|\|]| (-478))) 121) (((-112) $ (|[\|\|]| (-590))) 125) (((-112) $ (|[\|\|]| (-506))) 131) (((-112) $ (|[\|\|]| (-1151))) 135) (((-112) $ (|[\|\|]| (-563))) 139)) (-1905 (((-524) $) 18) (((-218) $) 22) (((-671) $) 26) (((-1267) $) 30) (((-138) $) 34) (((-133) $) 38) (((-1108) $) 42) (((-96) $) 46) (((-676) $) 50) (((-517) $) 54) (((-1060) $) 58) (((-1268) $) 62) (((-525) $) 66) (((-154) $) 70) (((-666) $) 74) (((-311) $) 78) (((-1032) $) 82) (((-180) $) 86) (((-966) $) 90) (((-1067) $) 94) (((-1083) $) 98) (((-1089) $) 102) (((-623) $) 106) (((-1159) $) 110) (((-156) $) 114) (((-137) $) 118) (((-478) $) 122) (((-590) $) 126) (((-506) $) 132) (((-1151) $) 136) (((-563) $) 140)) (-1718 (((-112) $ $) NIL))) +(((-1128) (-1130)) (T -1128)) +NIL +(-1130) +((-2432 (((-640 (-1174)) (-1151)) 9))) +(((-1129) (-10 -7 (-15 -2432 ((-640 (-1174)) (-1151))))) (T -1129)) +((-2432 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-640 (-1174))) (-5 *1 (-1129))))) +(-10 -7 (-15 -2432 ((-640 (-1174)) (-1151)))) +((-1677 (((-112) $ $) 7)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11) (($ (-1174)) 16) (((-1174) $) 15)) (-2226 (((-112) $ (|[\|\|]| (-524))) 80) (((-112) $ (|[\|\|]| (-218))) 78) (((-112) $ (|[\|\|]| (-671))) 76) (((-112) $ (|[\|\|]| (-1267))) 74) (((-112) $ (|[\|\|]| (-138))) 72) (((-112) $ (|[\|\|]| (-133))) 70) (((-112) $ (|[\|\|]| (-1108))) 68) (((-112) $ (|[\|\|]| (-96))) 66) (((-112) $ (|[\|\|]| (-676))) 64) (((-112) $ (|[\|\|]| (-517))) 62) (((-112) $ (|[\|\|]| (-1060))) 60) (((-112) $ (|[\|\|]| (-1268))) 58) (((-112) $ (|[\|\|]| (-525))) 56) (((-112) $ (|[\|\|]| (-154))) 54) (((-112) $ (|[\|\|]| (-666))) 52) (((-112) $ (|[\|\|]| (-311))) 50) (((-112) $ (|[\|\|]| (-1032))) 48) (((-112) $ (|[\|\|]| (-180))) 46) (((-112) $ (|[\|\|]| (-966))) 44) (((-112) $ (|[\|\|]| (-1067))) 42) (((-112) $ (|[\|\|]| (-1083))) 40) (((-112) $ (|[\|\|]| (-1089))) 38) (((-112) $ (|[\|\|]| (-623))) 36) (((-112) $ (|[\|\|]| (-1159))) 34) (((-112) $ (|[\|\|]| (-156))) 32) (((-112) $ (|[\|\|]| (-137))) 30) (((-112) $ (|[\|\|]| (-478))) 28) (((-112) $ (|[\|\|]| (-590))) 26) (((-112) $ (|[\|\|]| (-506))) 24) (((-112) $ (|[\|\|]| (-1151))) 22) (((-112) $ (|[\|\|]| (-563))) 20)) (-1905 (((-524) $) 79) (((-218) $) 77) (((-671) $) 75) (((-1267) $) 73) (((-138) $) 71) (((-133) $) 69) (((-1108) $) 67) (((-96) $) 65) (((-676) $) 63) (((-517) $) 61) (((-1060) $) 59) (((-1268) $) 57) (((-525) $) 55) (((-154) $) 53) (((-666) $) 51) (((-311) $) 49) (((-1032) $) 47) (((-180) $) 45) (((-966) $) 43) (((-1067) $) 41) (((-1083) $) 39) (((-1089) $) 37) (((-623) $) 35) (((-1159) $) 33) (((-156) $) 31) (((-137) $) 29) (((-478) $) 27) (((-590) $) 25) (((-506) $) 23) (((-1151) $) 21) (((-563) $) 19)) (-1718 (((-112) $ $) 6))) +(((-1130) (-140)) (T -1130)) +((-2226 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-524))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-524)))) (-2226 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-218)))) (-2226 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-671))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-671)))) (-2226 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1267))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1267)))) (-2226 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-138)))) (-2226 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-133)))) (-2226 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1108))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1108)))) (-2226 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-96)))) (-2226 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-676))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-676)))) (-2226 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-517)))) (-2226 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1060))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1060)))) (-2226 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1268))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1268)))) (-2226 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-525)))) (-2226 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-154)))) (-2226 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-666))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-666)))) (-2226 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-311))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-311)))) (-2226 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1032))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1032)))) (-2226 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-180)))) (-2226 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-966))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-966)))) (-2226 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1067))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1067)))) (-2226 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1083))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1083)))) (-2226 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1089))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1089)))) (-2226 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-623))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-623)))) (-2226 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1159))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1159)))) (-2226 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-156)))) (-2226 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-137)))) (-2226 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-478))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-478)))) (-2226 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-590))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-590)))) (-2226 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-506))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-506)))) (-2226 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1151))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1151)))) (-2226 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-563))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-563))))) +(-13 (-1076) (-1252) (-10 -8 (-15 -2226 ((-112) $ (|[\|\|]| (-524)))) (-15 -1905 ((-524) $)) (-15 -2226 ((-112) $ (|[\|\|]| (-218)))) (-15 -1905 ((-218) $)) (-15 -2226 ((-112) $ (|[\|\|]| (-671)))) (-15 -1905 ((-671) $)) (-15 -2226 ((-112) $ (|[\|\|]| (-1267)))) (-15 -1905 ((-1267) $)) (-15 -2226 ((-112) $ (|[\|\|]| (-138)))) (-15 -1905 ((-138) $)) (-15 -2226 ((-112) $ (|[\|\|]| (-133)))) (-15 -1905 ((-133) $)) (-15 -2226 ((-112) $ (|[\|\|]| (-1108)))) (-15 -1905 ((-1108) $)) (-15 -2226 ((-112) $ (|[\|\|]| (-96)))) (-15 -1905 ((-96) $)) (-15 -2226 ((-112) $ (|[\|\|]| (-676)))) (-15 -1905 ((-676) $)) (-15 -2226 ((-112) $ (|[\|\|]| (-517)))) (-15 -1905 ((-517) $)) (-15 -2226 ((-112) $ (|[\|\|]| (-1060)))) (-15 -1905 ((-1060) $)) (-15 -2226 ((-112) $ (|[\|\|]| (-1268)))) (-15 -1905 ((-1268) $)) (-15 -2226 ((-112) $ (|[\|\|]| (-525)))) (-15 -1905 ((-525) $)) (-15 -2226 ((-112) $ (|[\|\|]| (-154)))) (-15 -1905 ((-154) $)) (-15 -2226 ((-112) $ (|[\|\|]| (-666)))) (-15 -1905 ((-666) $)) (-15 -2226 ((-112) $ (|[\|\|]| (-311)))) (-15 -1905 ((-311) $)) (-15 -2226 ((-112) $ (|[\|\|]| (-1032)))) (-15 -1905 ((-1032) $)) (-15 -2226 ((-112) $ (|[\|\|]| (-180)))) (-15 -1905 ((-180) $)) (-15 -2226 ((-112) $ (|[\|\|]| (-966)))) (-15 -1905 ((-966) $)) (-15 -2226 ((-112) $ (|[\|\|]| (-1067)))) (-15 -1905 ((-1067) $)) (-15 -2226 ((-112) $ (|[\|\|]| (-1083)))) (-15 -1905 ((-1083) $)) (-15 -2226 ((-112) $ (|[\|\|]| (-1089)))) (-15 -1905 ((-1089) $)) (-15 -2226 ((-112) $ (|[\|\|]| (-623)))) (-15 -1905 ((-623) $)) (-15 -2226 ((-112) $ (|[\|\|]| (-1159)))) (-15 -1905 ((-1159) $)) (-15 -2226 ((-112) $ (|[\|\|]| (-156)))) (-15 -1905 ((-156) $)) (-15 -2226 ((-112) $ (|[\|\|]| (-137)))) (-15 -1905 ((-137) $)) (-15 -2226 ((-112) $ (|[\|\|]| (-478)))) (-15 -1905 ((-478) $)) (-15 -2226 ((-112) $ (|[\|\|]| (-590)))) (-15 -1905 ((-590) $)) (-15 -2226 ((-112) $ (|[\|\|]| (-506)))) (-15 -1905 ((-506) $)) (-15 -2226 ((-112) $ (|[\|\|]| (-1151)))) (-15 -1905 ((-1151) $)) (-15 -2226 ((-112) $ (|[\|\|]| (-563)))) (-15 -1905 ((-563) $)))) +(((-93) . T) ((-102) . T) ((-613 #0=(-1174)) . T) ((-610 (-858)) . T) ((-610 #0#) . T) ((-490 #0#) . T) ((-1093) . T) ((-1076) . T) ((-1252) . T)) +((-3473 (((-1262) (-640 (-858))) 23) (((-1262) (-858)) 22)) (-2623 (((-1262) (-640 (-858))) 21) (((-1262) (-858)) 20)) (-2615 (((-1262) (-640 (-858))) 19) (((-1262) (-858)) 11) (((-1262) (-1151) (-858)) 17))) +(((-1131) (-10 -7 (-15 -2615 ((-1262) (-1151) (-858))) (-15 -2615 ((-1262) (-858))) (-15 -2623 ((-1262) (-858))) (-15 -3473 ((-1262) (-858))) (-15 -2615 ((-1262) (-640 (-858)))) (-15 -2623 ((-1262) (-640 (-858)))) (-15 -3473 ((-1262) (-640 (-858)))))) (T -1131)) +((-3473 (*1 *2 *3) (-12 (-5 *3 (-640 (-858))) (-5 *2 (-1262)) (-5 *1 (-1131)))) (-2623 (*1 *2 *3) (-12 (-5 *3 (-640 (-858))) (-5 *2 (-1262)) (-5 *1 (-1131)))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-640 (-858))) (-5 *2 (-1262)) (-5 *1 (-1131)))) (-3473 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1262)) (-5 *1 (-1131)))) (-2623 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1262)) (-5 *1 (-1131)))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1262)) (-5 *1 (-1131)))) (-2615 (*1 *2 *3 *4) (-12 (-5 *3 (-1151)) (-5 *4 (-858)) (-5 *2 (-1262)) (-5 *1 (-1131))))) +(-10 -7 (-15 -2615 ((-1262) (-1151) (-858))) (-15 -2615 ((-1262) (-858))) (-15 -2623 ((-1262) (-858))) (-15 -3473 ((-1262) (-858))) (-15 -2615 ((-1262) (-640 (-858)))) (-15 -2623 ((-1262) (-640 (-858)))) (-15 -3473 ((-1262) (-640 (-858))))) +((-2507 (($ $ $) 10)) (-1760 (($ $) 9)) (-2736 (($ $ $) 13)) (-2040 (($ $ $) 15)) (-4271 (($ $ $) 12)) (-3988 (($ $ $) 14)) (-3336 (($ $) 17)) (-4252 (($ $) 16)) (-2509 (($ $) 6)) (-1341 (($ $ $) 11) (($ $) 7)) (-3929 (($ $ $) 8))) +(((-1132) (-140)) (T -1132)) +((-3336 (*1 *1 *1) (-4 *1 (-1132))) (-4252 (*1 *1 *1) (-4 *1 (-1132))) (-2040 (*1 *1 *1 *1) (-4 *1 (-1132))) (-3988 (*1 *1 *1 *1) (-4 *1 (-1132))) (-2736 (*1 *1 *1 *1) (-4 *1 (-1132))) (-4271 (*1 *1 *1 *1) (-4 *1 (-1132))) (-1341 (*1 *1 *1 *1) (-4 *1 (-1132))) (-2507 (*1 *1 *1 *1) (-4 *1 (-1132))) (-1760 (*1 *1 *1) (-4 *1 (-1132))) (-3929 (*1 *1 *1 *1) (-4 *1 (-1132))) (-1341 (*1 *1 *1) (-4 *1 (-1132))) (-2509 (*1 *1 *1) (-4 *1 (-1132)))) +(-13 (-10 -8 (-15 -2509 ($ $)) (-15 -1341 ($ $)) (-15 -3929 ($ $ $)) (-15 -1760 ($ $)) (-15 -2507 ($ $ $)) (-15 -1341 ($ $ $)) (-15 -4271 ($ $ $)) (-15 -2736 ($ $ $)) (-15 -3988 ($ $ $)) (-15 -2040 ($ $ $)) (-15 -4252 ($ $)) (-15 -3336 ($ $)))) +((-1677 (((-112) $ $) 42)) (-2619 ((|#1| $) 16)) (-3347 (((-112) $ $ (-1 (-112) |#2| |#2|)) 37)) (-2733 (((-112) $) 18)) (-3881 (($ $ |#1|) 29)) (-2032 (($ $ (-112)) 31)) (-1754 (($ $) 32)) (-3943 (($ $ |#2|) 30)) (-3573 (((-1151) $) NIL)) (-1798 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 36)) (-1694 (((-1113) $) NIL)) (-3756 (((-112) $) 15)) (-3135 (($) 11)) (-1872 (($ $) 28)) (-1707 (($ |#1| |#2| (-112)) 19) (($ |#1| |#2|) 20) (($ (-2 (|:| |val| |#1|) (|:| -2059 |#2|))) 22) (((-640 $) (-640 (-2 (|:| |val| |#1|) (|:| -2059 |#2|)))) 25) (((-640 $) |#1| (-640 |#2|)) 27)) (-1394 ((|#2| $) 17)) (-1693 (((-858) $) 51)) (-1718 (((-112) $ $) 40))) +(((-1133 |#1| |#2|) (-13 (-1093) (-10 -8 (-15 -3135 ($)) (-15 -3756 ((-112) $)) (-15 -2619 (|#1| $)) (-15 -1394 (|#2| $)) (-15 -2733 ((-112) $)) (-15 -1707 ($ |#1| |#2| (-112))) (-15 -1707 ($ |#1| |#2|)) (-15 -1707 ($ (-2 (|:| |val| |#1|) (|:| -2059 |#2|)))) (-15 -1707 ((-640 $) (-640 (-2 (|:| |val| |#1|) (|:| -2059 |#2|))))) (-15 -1707 ((-640 $) |#1| (-640 |#2|))) (-15 -1872 ($ $)) (-15 -3881 ($ $ |#1|)) (-15 -3943 ($ $ |#2|)) (-15 -2032 ($ $ (-112))) (-15 -1754 ($ $)) (-15 -1798 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3347 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1093) (-34)) (-13 (-1093) (-34))) (T -1133)) +((-3135 (*1 *1) (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34))) (-4 *3 (-13 (-1093) (-34))))) (-3756 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34))))) (-2619 (*1 *2 *1) (-12 (-4 *2 (-13 (-1093) (-34))) (-5 *1 (-1133 *2 *3)) (-4 *3 (-13 (-1093) (-34))))) (-1394 (*1 *2 *1) (-12 (-4 *2 (-13 (-1093) (-34))) (-5 *1 (-1133 *3 *2)) (-4 *3 (-13 (-1093) (-34))))) (-2733 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34))))) (-1707 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34))) (-4 *3 (-13 (-1093) (-34))))) (-1707 (*1 *1 *2 *3) (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34))) (-4 *3 (-13 (-1093) (-34))))) (-1707 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2059 *4))) (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34))) (-5 *1 (-1133 *3 *4)))) (-1707 (*1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| |val| *4) (|:| -2059 *5)))) (-4 *4 (-13 (-1093) (-34))) (-4 *5 (-13 (-1093) (-34))) (-5 *2 (-640 (-1133 *4 *5))) (-5 *1 (-1133 *4 *5)))) (-1707 (*1 *2 *3 *4) (-12 (-5 *4 (-640 *5)) (-4 *5 (-13 (-1093) (-34))) (-5 *2 (-640 (-1133 *3 *5))) (-5 *1 (-1133 *3 *5)) (-4 *3 (-13 (-1093) (-34))))) (-1872 (*1 *1 *1) (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34))) (-4 *3 (-13 (-1093) (-34))))) (-3881 (*1 *1 *1 *2) (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34))) (-4 *3 (-13 (-1093) (-34))))) (-3943 (*1 *1 *1 *2) (-12 (-5 *1 (-1133 *3 *2)) (-4 *3 (-13 (-1093) (-34))) (-4 *2 (-13 (-1093) (-34))))) (-2032 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34))))) (-1754 (*1 *1 *1) (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34))) (-4 *3 (-13 (-1093) (-34))))) (-1798 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1093) (-34))) (-4 *6 (-13 (-1093) (-34))) (-5 *2 (-112)) (-5 *1 (-1133 *5 *6)))) (-3347 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1093) (-34))) (-5 *2 (-112)) (-5 *1 (-1133 *4 *5)) (-4 *4 (-13 (-1093) (-34)))))) +(-13 (-1093) (-10 -8 (-15 -3135 ($)) (-15 -3756 ((-112) $)) (-15 -2619 (|#1| $)) (-15 -1394 (|#2| $)) (-15 -2733 ((-112) $)) (-15 -1707 ($ |#1| |#2| (-112))) (-15 -1707 ($ |#1| |#2|)) (-15 -1707 ($ (-2 (|:| |val| |#1|) (|:| -2059 |#2|)))) (-15 -1707 ((-640 $) (-640 (-2 (|:| |val| |#1|) (|:| -2059 |#2|))))) (-15 -1707 ((-640 $) |#1| (-640 |#2|))) (-15 -1872 ($ $)) (-15 -3881 ($ $ |#1|)) (-15 -3943 ($ $ |#2|)) (-15 -2032 ($ $ (-112))) (-15 -1754 ($ $)) (-15 -1798 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3347 ((-112) $ $ (-1 (-112) |#2| |#2|))))) +((-1677 (((-112) $ $) NIL (|has| (-1133 |#1| |#2|) (-1093)))) (-2619 (((-1133 |#1| |#2|) $) 26)) (-2883 (($ $) 76)) (-3521 (((-112) (-1133 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 85)) (-1640 (($ $ $ (-640 (-1133 |#1| |#2|))) 90) (($ $ $ (-640 (-1133 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 91)) (-2759 (((-112) $ (-767)) NIL)) (-2936 (((-1133 |#1| |#2|) $ (-1133 |#1| |#2|)) 43 (|has| $ (-6 -4408)))) (-1849 (((-1133 |#1| |#2|) $ "value" (-1133 |#1| |#2|)) NIL (|has| $ (-6 -4408)))) (-2811 (($ $ (-640 $)) 41 (|has| $ (-6 -4408)))) (-4239 (($) NIL T CONST)) (-1921 (((-640 (-2 (|:| |val| |#1|) (|:| -2059 |#2|))) $) 80)) (-2705 (($ (-1133 |#1| |#2|) $) 39)) (-1459 (($ (-1133 |#1| |#2|) $) 31)) (-2659 (((-640 (-1133 |#1| |#2|)) $) NIL (|has| $ (-6 -4407)))) (-2071 (((-640 $) $) 51)) (-3969 (((-112) (-1133 |#1| |#2|) $) 82)) (-1469 (((-112) $ $) NIL (|has| (-1133 |#1| |#2|) (-1093)))) (-2581 (((-112) $ (-767)) NIL)) (-2259 (((-640 (-1133 |#1| |#2|)) $) 55 (|has| $ (-6 -4407)))) (-1729 (((-112) (-1133 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-1133 |#1| |#2|) (-1093))))) (-4345 (($ (-1 (-1133 |#1| |#2|) (-1133 |#1| |#2|)) $) 47 (|has| $ (-6 -4408)))) (-2240 (($ (-1 (-1133 |#1| |#2|) (-1133 |#1| |#2|)) $) 46)) (-2382 (((-112) $ (-767)) NIL)) (-2512 (((-640 (-1133 |#1| |#2|)) $) 53)) (-2194 (((-112) $) 42)) (-3573 (((-1151) $) NIL (|has| (-1133 |#1| |#2|) (-1093)))) (-1694 (((-1113) $) NIL (|has| (-1133 |#1| |#2|) (-1093)))) (-3148 (((-3 $ "failed") $) 75)) (-3138 (((-112) (-1 (-112) (-1133 |#1| |#2|)) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 (-1133 |#1| |#2|)))) NIL (-12 (|has| (-1133 |#1| |#2|) (-309 (-1133 |#1| |#2|))) (|has| (-1133 |#1| |#2|) (-1093)))) (($ $ (-294 (-1133 |#1| |#2|))) NIL (-12 (|has| (-1133 |#1| |#2|) (-309 (-1133 |#1| |#2|))) (|has| (-1133 |#1| |#2|) (-1093)))) (($ $ (-1133 |#1| |#2|) (-1133 |#1| |#2|)) NIL (-12 (|has| (-1133 |#1| |#2|) (-309 (-1133 |#1| |#2|))) (|has| (-1133 |#1| |#2|) (-1093)))) (($ $ (-640 (-1133 |#1| |#2|)) (-640 (-1133 |#1| |#2|))) NIL (-12 (|has| (-1133 |#1| |#2|) (-309 (-1133 |#1| |#2|))) (|has| (-1133 |#1| |#2|) (-1093))))) (-2026 (((-112) $ $) 50)) (-3756 (((-112) $) 23)) (-3135 (($) 25)) (-2309 (((-1133 |#1| |#2|) $ "value") NIL)) (-4071 (((-563) $ $) NIL)) (-1434 (((-112) $) 44)) (-1709 (((-767) (-1 (-112) (-1133 |#1| |#2|)) $) NIL (|has| $ (-6 -4407))) (((-767) (-1133 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-1133 |#1| |#2|) (-1093))))) (-1872 (($ $) 49)) (-1707 (($ (-1133 |#1| |#2|)) 10) (($ |#1| |#2| (-640 $)) 13) (($ |#1| |#2| (-640 (-1133 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-640 |#2|)) 18)) (-1907 (((-640 |#2|) $) 81)) (-1693 (((-858) $) 73 (|has| (-1133 |#1| |#2|) (-610 (-858))))) (-4258 (((-640 $) $) 29)) (-2962 (((-112) $ $) NIL (|has| (-1133 |#1| |#2|) (-1093)))) (-4383 (((-112) (-1 (-112) (-1133 |#1| |#2|)) $) NIL (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 64 (|has| (-1133 |#1| |#2|) (-1093)))) (-3608 (((-767) $) 58 (|has| $ (-6 -4407))))) +(((-1134 |#1| |#2|) (-13 (-1006 (-1133 |#1| |#2|)) (-10 -8 (-6 -4408) (-6 -4407) (-15 -3148 ((-3 $ "failed") $)) (-15 -2883 ($ $)) (-15 -1707 ($ (-1133 |#1| |#2|))) (-15 -1707 ($ |#1| |#2| (-640 $))) (-15 -1707 ($ |#1| |#2| (-640 (-1133 |#1| |#2|)))) (-15 -1707 ($ |#1| |#2| |#1| (-640 |#2|))) (-15 -1907 ((-640 |#2|) $)) (-15 -1921 ((-640 (-2 (|:| |val| |#1|) (|:| -2059 |#2|))) $)) (-15 -3969 ((-112) (-1133 |#1| |#2|) $)) (-15 -3521 ((-112) (-1133 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1459 ($ (-1133 |#1| |#2|) $)) (-15 -2705 ($ (-1133 |#1| |#2|) $)) (-15 -1640 ($ $ $ (-640 (-1133 |#1| |#2|)))) (-15 -1640 ($ $ $ (-640 (-1133 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1093) (-34)) (-13 (-1093) (-34))) (T -1134)) +((-3148 (*1 *1 *1) (|partial| -12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1093) (-34))) (-4 *3 (-13 (-1093) (-34))))) (-2883 (*1 *1 *1) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1093) (-34))) (-4 *3 (-13 (-1093) (-34))))) (-1707 (*1 *1 *2) (-12 (-5 *2 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34))) (-5 *1 (-1134 *3 *4)))) (-1707 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-640 (-1134 *2 *3))) (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1093) (-34))) (-4 *3 (-13 (-1093) (-34))))) (-1707 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-640 (-1133 *2 *3))) (-4 *2 (-13 (-1093) (-34))) (-4 *3 (-13 (-1093) (-34))) (-5 *1 (-1134 *2 *3)))) (-1707 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-640 *3)) (-4 *3 (-13 (-1093) (-34))) (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1093) (-34))))) (-1907 (*1 *2 *1) (-12 (-5 *2 (-640 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34))))) (-1921 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2059 *4)))) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34))))) (-3969 (*1 *2 *3 *1) (-12 (-5 *3 (-1133 *4 *5)) (-4 *4 (-13 (-1093) (-34))) (-4 *5 (-13 (-1093) (-34))) (-5 *2 (-112)) (-5 *1 (-1134 *4 *5)))) (-3521 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1133 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1093) (-34))) (-4 *6 (-13 (-1093) (-34))) (-5 *2 (-112)) (-5 *1 (-1134 *5 *6)))) (-1459 (*1 *1 *2 *1) (-12 (-5 *2 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34))) (-5 *1 (-1134 *3 *4)))) (-2705 (*1 *1 *2 *1) (-12 (-5 *2 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34))) (-5 *1 (-1134 *3 *4)))) (-1640 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-640 (-1133 *3 *4))) (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34))) (-5 *1 (-1134 *3 *4)))) (-1640 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-1133 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1093) (-34))) (-4 *5 (-13 (-1093) (-34))) (-5 *1 (-1134 *4 *5))))) +(-13 (-1006 (-1133 |#1| |#2|)) (-10 -8 (-6 -4408) (-6 -4407) (-15 -3148 ((-3 $ "failed") $)) (-15 -2883 ($ $)) (-15 -1707 ($ (-1133 |#1| |#2|))) (-15 -1707 ($ |#1| |#2| (-640 $))) (-15 -1707 ($ |#1| |#2| (-640 (-1133 |#1| |#2|)))) (-15 -1707 ($ |#1| |#2| |#1| (-640 |#2|))) (-15 -1907 ((-640 |#2|) $)) (-15 -1921 ((-640 (-2 (|:| |val| |#1|) (|:| -2059 |#2|))) $)) (-15 -3969 ((-112) (-1133 |#1| |#2|) $)) (-15 -3521 ((-112) (-1133 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1459 ($ (-1133 |#1| |#2|) $)) (-15 -2705 ($ (-1133 |#1| |#2|) $)) (-15 -1640 ($ $ $ (-640 (-1133 |#1| |#2|)))) (-15 -1640 ($ $ $ (-640 (-1133 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-3493 (($ $) NIL)) (-1733 ((|#2| $) NIL)) (-3129 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-2332 (($ (-684 |#2|)) 50)) (-1937 (((-112) $) NIL)) (-2759 (((-112) $ (-767)) NIL)) (-3845 (($ |#2|) 10)) (-4239 (($) NIL T CONST)) (-4069 (($ $) 63 (|has| |#2| (-307)))) (-2368 (((-240 |#1| |#2|) $ (-563)) 36)) (-2131 (((-3 (-563) "failed") $) NIL (|has| |#2| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-3 |#2| "failed") $) NIL)) (-2058 (((-563) $) NIL (|has| |#2| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#2| (-1034 (-407 (-563))))) ((|#2| $) NIL)) (-2950 (((-684 (-563)) (-684 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -2835 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL) (((-684 |#2|) (-684 $)) NIL)) (-3400 (((-3 $ "failed") $) 77)) (-2522 (((-767) $) 65 (|has| |#2| (-555)))) (-4293 ((|#2| $ (-563) (-563)) NIL)) (-2659 (((-640 |#2|) $) NIL (|has| $ (-6 -4407)))) (-3827 (((-112) $) NIL)) (-1997 (((-767) $) 67 (|has| |#2| (-555)))) (-2345 (((-640 (-240 |#1| |#2|)) $) 71 (|has| |#2| (-555)))) (-2381 (((-767) $) NIL)) (-1566 (($ |#2|) 20)) (-2393 (((-767) $) NIL)) (-2581 (((-112) $ (-767)) NIL)) (-3977 ((|#2| $) 61 (|has| |#2| (-6 (-4409 "*"))))) (-2013 (((-563) $) NIL)) (-3650 (((-563) $) NIL)) (-2259 (((-640 |#2|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093))))) (-1859 (((-563) $) NIL)) (-2207 (((-563) $) NIL)) (-4038 (($ (-640 (-640 |#2|))) 31)) (-4345 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-4136 (((-640 (-640 |#2|)) $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL)) (-2591 (((-3 $ "failed") $) 74 (|has| |#2| (-363)))) (-1694 (((-1113) $) NIL)) (-3008 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-555)))) (-3138 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-2026 (((-112) $ $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) NIL)) (-2309 ((|#2| $ (-563) (-563) |#2|) NIL) ((|#2| $ (-563) (-563)) NIL)) (-4202 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3327 ((|#2| $) NIL)) (-2104 (($ (-640 |#2|)) 44)) (-2717 (((-112) $) NIL)) (-3154 (((-240 |#1| |#2|) $) NIL)) (-3848 ((|#2| $) 59 (|has| |#2| (-6 (-4409 "*"))))) (-1709 (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093))))) (-1872 (($ $) NIL)) (-2220 (((-536) $) 84 (|has| |#2| (-611 (-536))))) (-1912 (((-240 |#1| |#2|) $ (-563)) 38)) (-1693 (((-858) $) 41) (($ (-563)) NIL) (($ (-407 (-563))) NIL (|has| |#2| (-1034 (-407 (-563))))) (($ |#2|) NIL) (((-684 |#2|) $) 46)) (-1675 (((-767)) 18)) (-4383 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-3280 (((-112) $) NIL)) (-2241 (($) 12 T CONST)) (-2254 (($) 15 T CONST)) (-3209 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1718 (((-112) $ $) NIL)) (-1837 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) 57) (($ $ (-563)) 76 (|has| |#2| (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) 53) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) 55)) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-1135 |#1| |#2|) (-13 (-1116 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-610 (-684 |#2|)) (-10 -8 (-15 -1566 ($ |#2|)) (-15 -3493 ($ $)) (-15 -2332 ($ (-684 |#2|))) (IF (|has| |#2| (-6 (-4409 "*"))) (-6 -4396) |%noBranch|) (IF (|has| |#2| (-6 (-4409 "*"))) (IF (|has| |#2| (-6 -4404)) (-6 -4404) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|))) (-767) (-1045)) (T -1135)) +((-1566 (*1 *1 *2) (-12 (-5 *1 (-1135 *3 *2)) (-14 *3 (-767)) (-4 *2 (-1045)))) (-3493 (*1 *1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-767)) (-4 *3 (-1045)))) (-2332 (*1 *1 *2) (-12 (-5 *2 (-684 *4)) (-4 *4 (-1045)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-767))))) +(-13 (-1116 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-610 (-684 |#2|)) (-10 -8 (-15 -1566 ($ |#2|)) (-15 -3493 ($ $)) (-15 -2332 ($ (-684 |#2|))) (IF (|has| |#2| (-6 (-4409 "*"))) (-6 -4396) |%noBranch|) (IF (|has| |#2| (-6 (-4409 "*"))) (IF (|has| |#2| (-6 -4404)) (-6 -4404) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|))) +((-3697 (($ $) 19)) (-1967 (($ $ (-144)) 10) (($ $ (-141)) 14)) (-2580 (((-112) $ $) 24)) (-1652 (($ $) 17)) (-2309 (((-144) $ (-563) (-144)) NIL) (((-144) $ (-563)) NIL) (($ $ (-1224 (-563))) NIL) (($ $ $) 29)) (-1693 (($ (-144)) 27) (((-858) $) NIL))) +(((-1136 |#1|) (-10 -8 (-15 -1693 ((-858) |#1|)) (-15 -2309 (|#1| |#1| |#1|)) (-15 -1967 (|#1| |#1| (-141))) (-15 -1967 (|#1| |#1| (-144))) (-15 -1693 (|#1| (-144))) (-15 -2580 ((-112) |#1| |#1|)) (-15 -3697 (|#1| |#1|)) (-15 -1652 (|#1| |#1|)) (-15 -2309 (|#1| |#1| (-1224 (-563)))) (-15 -2309 ((-144) |#1| (-563))) (-15 -2309 ((-144) |#1| (-563) (-144)))) (-1137)) (T -1136)) +NIL +(-10 -8 (-15 -1693 ((-858) |#1|)) (-15 -2309 (|#1| |#1| |#1|)) (-15 -1967 (|#1| |#1| (-141))) (-15 -1967 (|#1| |#1| (-144))) (-15 -1693 (|#1| (-144))) (-15 -2580 ((-112) |#1| |#1|)) (-15 -3697 (|#1| |#1|)) (-15 -1652 (|#1| |#1|)) (-15 -2309 (|#1| |#1| (-1224 (-563)))) (-15 -2309 ((-144) |#1| (-563))) (-15 -2309 ((-144) |#1| (-563) (-144)))) +((-1677 (((-112) $ $) 19 (|has| (-144) (-1093)))) (-3700 (($ $) 120)) (-3697 (($ $) 121)) (-1967 (($ $ (-144)) 108) (($ $ (-141)) 107)) (-4378 (((-1262) $ (-563) (-563)) 40 (|has| $ (-6 -4408)))) (-2559 (((-112) $ $) 118)) (-2537 (((-112) $ $ (-563)) 117)) (-2335 (((-640 $) $ (-144)) 110) (((-640 $) $ (-141)) 109)) (-3523 (((-112) (-1 (-112) (-144) (-144)) $) 98) (((-112) $) 92 (|has| (-144) (-846)))) (-2770 (($ (-1 (-112) (-144) (-144)) $) 89 (|has| $ (-6 -4408))) (($ $) 88 (-12 (|has| (-144) (-846)) (|has| $ (-6 -4408))))) (-1642 (($ (-1 (-112) (-144) (-144)) $) 99) (($ $) 93 (|has| (-144) (-846)))) (-2759 (((-112) $ (-767)) 8)) (-1849 (((-144) $ (-563) (-144)) 52 (|has| $ (-6 -4408))) (((-144) $ (-1224 (-563)) (-144)) 58 (|has| $ (-6 -4408)))) (-2256 (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4407)))) (-4239 (($) 7 T CONST)) (-2025 (($ $ (-144)) 104) (($ $ (-141)) 103)) (-2907 (($ $) 90 (|has| $ (-6 -4408)))) (-4382 (($ $) 100)) (-1938 (($ $ (-1224 (-563)) $) 114)) (-3813 (($ $) 78 (-12 (|has| (-144) (-1093)) (|has| $ (-6 -4407))))) (-1459 (($ (-144) $) 77 (-12 (|has| (-144) (-1093)) (|has| $ (-6 -4407)))) (($ (-1 (-112) (-144)) $) 74 (|has| $ (-6 -4407)))) (-2444 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 76 (-12 (|has| (-144) (-1093)) (|has| $ (-6 -4407)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 73 (|has| $ (-6 -4407))) (((-144) (-1 (-144) (-144) (-144)) $) 72 (|has| $ (-6 -4407)))) (-4355 (((-144) $ (-563) (-144)) 53 (|has| $ (-6 -4408)))) (-4293 (((-144) $ (-563)) 51)) (-2580 (((-112) $ $) 119)) (-4368 (((-563) (-1 (-112) (-144)) $) 97) (((-563) (-144) $) 96 (|has| (-144) (-1093))) (((-563) (-144) $ (-563)) 95 (|has| (-144) (-1093))) (((-563) $ $ (-563)) 113) (((-563) (-141) $ (-563)) 112)) (-2659 (((-640 (-144)) $) 30 (|has| $ (-6 -4407)))) (-1566 (($ (-767) (-144)) 69)) (-2581 (((-112) $ (-767)) 9)) (-2411 (((-563) $) 43 (|has| (-563) (-846)))) (-3084 (($ $ $) 87 (|has| (-144) (-846)))) (-3164 (($ (-1 (-112) (-144) (-144)) $ $) 101) (($ $ $) 94 (|has| (-144) (-846)))) (-2259 (((-640 (-144)) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) (-144) $) 27 (-12 (|has| (-144) (-1093)) (|has| $ (-6 -4407))))) (-3860 (((-563) $) 44 (|has| (-563) (-846)))) (-1777 (($ $ $) 86 (|has| (-144) (-846)))) (-4367 (((-112) $ $ (-144)) 115)) (-1916 (((-767) $ $ (-144)) 116)) (-4345 (($ (-1 (-144) (-144)) $) 34 (|has| $ (-6 -4408)))) (-2240 (($ (-1 (-144) (-144)) $) 35) (($ (-1 (-144) (-144) (-144)) $ $) 64)) (-2360 (($ $) 122)) (-1652 (($ $) 123)) (-2382 (((-112) $ (-767)) 10)) (-2036 (($ $ (-144)) 106) (($ $ (-141)) 105)) (-3573 (((-1151) $) 22 (|has| (-144) (-1093)))) (-3396 (($ (-144) $ (-563)) 60) (($ $ $ (-563)) 59)) (-4318 (((-640 (-563)) $) 46)) (-3192 (((-112) (-563) $) 47)) (-1694 (((-1113) $) 21 (|has| (-144) (-1093)))) (-3781 (((-144) $) 42 (|has| (-563) (-846)))) (-4203 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 71)) (-2358 (($ $ (-144)) 41 (|has| $ (-6 -4408)))) (-3138 (((-112) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 (-144)))) 26 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-294 (-144))) 25 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-144) (-144)) 24 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-640 (-144)) (-640 (-144))) 23 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093))))) (-2026 (((-112) $ $) 14)) (-2105 (((-112) (-144) $) 45 (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1093))))) (-2836 (((-640 (-144)) $) 48)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-2309 (((-144) $ (-563) (-144)) 50) (((-144) $ (-563)) 49) (($ $ (-1224 (-563))) 63) (($ $ $) 102)) (-2963 (($ $ (-563)) 62) (($ $ (-1224 (-563))) 61)) (-1709 (((-767) (-1 (-112) (-144)) $) 31 (|has| $ (-6 -4407))) (((-767) (-144) $) 28 (-12 (|has| (-144) (-1093)) (|has| $ (-6 -4407))))) (-3076 (($ $ $ (-563)) 91 (|has| $ (-6 -4408)))) (-1872 (($ $) 13)) (-2220 (((-536) $) 79 (|has| (-144) (-611 (-536))))) (-1707 (($ (-640 (-144))) 70)) (-2853 (($ $ (-144)) 68) (($ (-144) $) 67) (($ $ $) 66) (($ (-640 $)) 65)) (-1693 (($ (-144)) 111) (((-858) $) 18 (|has| (-144) (-610 (-858))))) (-4383 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4407)))) (-1778 (((-112) $ $) 84 (|has| (-144) (-846)))) (-1756 (((-112) $ $) 83 (|has| (-144) (-846)))) (-1718 (((-112) $ $) 20 (|has| (-144) (-1093)))) (-1768 (((-112) $ $) 85 (|has| (-144) (-846)))) (-1744 (((-112) $ $) 82 (|has| (-144) (-846)))) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-1137) (-140)) (T -1137)) +((-1652 (*1 *1 *1) (-4 *1 (-1137))) (-2360 (*1 *1 *1) (-4 *1 (-1137))) (-3697 (*1 *1 *1) (-4 *1 (-1137))) (-3700 (*1 *1 *1) (-4 *1 (-1137))) (-2580 (*1 *2 *1 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-112)))) (-2559 (*1 *2 *1 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-112)))) (-2537 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (-563)) (-5 *2 (-112)))) (-1916 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (-144)) (-5 *2 (-767)))) (-4367 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (-144)) (-5 *2 (-112)))) (-1938 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-1224 (-563))))) (-4368 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-563)))) (-4368 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-563)) (-5 *3 (-141)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1137)))) (-2335 (*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-640 *1)) (-4 *1 (-1137)))) (-2335 (*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-640 *1)) (-4 *1 (-1137)))) (-1967 (*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-144)))) (-1967 (*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-141)))) (-2036 (*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-144)))) (-2036 (*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-141)))) (-2025 (*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-144)))) (-2025 (*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-141)))) (-2309 (*1 *1 *1 *1) (-4 *1 (-1137)))) +(-13 (-19 (-144)) (-10 -8 (-15 -1652 ($ $)) (-15 -2360 ($ $)) (-15 -3697 ($ $)) (-15 -3700 ($ $)) (-15 -2580 ((-112) $ $)) (-15 -2559 ((-112) $ $)) (-15 -2537 ((-112) $ $ (-563))) (-15 -1916 ((-767) $ $ (-144))) (-15 -4367 ((-112) $ $ (-144))) (-15 -1938 ($ $ (-1224 (-563)) $)) (-15 -4368 ((-563) $ $ (-563))) (-15 -4368 ((-563) (-141) $ (-563))) (-15 -1693 ($ (-144))) (-15 -2335 ((-640 $) $ (-144))) (-15 -2335 ((-640 $) $ (-141))) (-15 -1967 ($ $ (-144))) (-15 -1967 ($ $ (-141))) (-15 -2036 ($ $ (-144))) (-15 -2036 ($ $ (-141))) (-15 -2025 ($ $ (-144))) (-15 -2025 ($ $ (-141))) (-15 -2309 ($ $ $)))) +(((-34) . T) ((-102) -4032 (|has| (-144) (-1093)) (|has| (-144) (-846))) ((-610 (-858)) -4032 (|has| (-144) (-1093)) (|has| (-144) (-846)) (|has| (-144) (-610 (-858)))) ((-151 #0=(-144)) . T) ((-611 (-536)) |has| (-144) (-611 (-536))) ((-286 #1=(-563) #0#) . T) ((-288 #1# #0#) . T) ((-309 #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093))) ((-373 #0#) . T) ((-489 #0#) . T) ((-601 #1# #0#) . T) ((-514 #0# #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093))) ((-646 #0#) . T) ((-19 #0#) . T) ((-846) |has| (-144) (-846)) ((-1093) -4032 (|has| (-144) (-1093)) (|has| (-144) (-846))) ((-1208) . T)) +((-1672 (((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) (-640 |#4|) (-640 |#5|) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) (-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) (-767)) 93)) (-4037 (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5| (-767)) 54)) (-2672 (((-1262) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) (-767)) 85)) (-3867 (((-767) (-640 |#4|) (-640 |#5|)) 27)) (-4361 (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5| (-767)) 56) (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5| (-767) (-112)) 58)) (-2927 (((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112) (-112) (-112) (-112)) 76) (((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112)) 77)) (-2220 (((-1151) (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) 80)) (-3705 (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5|) 53)) (-3913 (((-767) (-640 |#4|) (-640 |#5|)) 19))) +(((-1138 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3913 ((-767) (-640 |#4|) (-640 |#5|))) (-15 -3867 ((-767) (-640 |#4|) (-640 |#5|))) (-15 -3705 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5|)) (-15 -4037 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5| (-767))) (-15 -4037 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5|)) (-15 -4361 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5| (-767) (-112))) (-15 -4361 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5| (-767))) (-15 -4361 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5|)) (-15 -2927 ((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112))) (-15 -2927 ((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -1672 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) (-640 |#4|) (-640 |#5|) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) (-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) (-767))) (-15 -2220 ((-1151) (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|)))) (-15 -2672 ((-1262) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) (-767)))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1102 |#1| |#2| |#3| |#4|)) (T -1138)) +((-2672 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-2 (|:| |val| (-640 *8)) (|:| -2059 *9)))) (-5 *4 (-767)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-1262)) (-5 *1 (-1138 *5 *6 *7 *8 *9)))) (-2220 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-640 *7)) (|:| -2059 *8))) (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1102 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1151)) (-5 *1 (-1138 *4 *5 *6 *7 *8)))) (-1672 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-640 *11)) (|:| |todo| (-640 (-2 (|:| |val| *3) (|:| -2059 *11)))))) (-5 *6 (-767)) (-5 *2 (-640 (-2 (|:| |val| (-640 *10)) (|:| -2059 *11)))) (-5 *3 (-640 *10)) (-5 *4 (-640 *11)) (-4 *10 (-1059 *7 *8 *9)) (-4 *11 (-1102 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-789)) (-4 *9 (-846)) (-5 *1 (-1138 *7 *8 *9 *10 *11)))) (-2927 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-640 *9)) (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1138 *5 *6 *7 *8 *9)))) (-2927 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-640 *9)) (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1138 *5 *6 *7 *8 *9)))) (-4361 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2059 *4)))))) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-4361 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2059 *4)))))) (-5 *1 (-1138 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3)))) (-4361 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-767)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-789)) (-4 *9 (-846)) (-4 *3 (-1059 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2059 *4)))))) (-5 *1 (-1138 *7 *8 *9 *3 *4)) (-4 *4 (-1102 *7 *8 *9 *3)))) (-4037 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2059 *4)))))) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-4037 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2059 *4)))))) (-5 *1 (-1138 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3)))) (-3705 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2059 *4)))))) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-3867 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 *9)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1138 *5 *6 *7 *8 *9)))) (-3913 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 *9)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1138 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -3913 ((-767) (-640 |#4|) (-640 |#5|))) (-15 -3867 ((-767) (-640 |#4|) (-640 |#5|))) (-15 -3705 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5|)) (-15 -4037 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5| (-767))) (-15 -4037 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5|)) (-15 -4361 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5| (-767) (-112))) (-15 -4361 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5| (-767))) (-15 -4361 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) |#4| |#5|)) (-15 -2927 ((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112))) (-15 -2927 ((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -1672 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) (-640 |#4|) (-640 |#5|) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) (-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))))) (-767))) (-15 -2220 ((-1151) (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|)))) (-15 -2672 ((-1262) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -2059 |#5|))) (-767)))) +((-1677 (((-112) $ $) NIL)) (-1578 (((-640 (-2 (|:| -1442 $) (|:| -3405 (-640 |#4|)))) (-640 |#4|)) NIL)) (-3319 (((-640 $) (-640 |#4|)) 110) (((-640 $) (-640 |#4|) (-112)) 111) (((-640 $) (-640 |#4|) (-112) (-112)) 109) (((-640 $) (-640 |#4|) (-112) (-112) (-112) (-112)) 112)) (-2606 (((-640 |#3|) $) NIL)) (-1706 (((-112) $) NIL)) (-3854 (((-112) $) NIL (|has| |#1| (-555)))) (-2620 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4053 ((|#4| |#4| $) NIL)) (-4335 (((-640 (-2 (|:| |val| |#4|) (|:| -2059 $))) |#4| $) 84)) (-1642 (((-2 (|:| |under| $) (|:| -1583 $) (|:| |upper| $)) $ |#3|) NIL)) (-2759 (((-112) $ (-767)) NIL)) (-2256 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407))) (((-3 |#4| "failed") $ |#3|) 62)) (-4239 (($) NIL T CONST)) (-1483 (((-112) $) 27 (|has| |#1| (-555)))) (-1626 (((-112) $ $) NIL (|has| |#1| (-555)))) (-4221 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1763 (((-112) $) NIL (|has| |#1| (-555)))) (-1833 (((-640 |#4|) (-640 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3746 (((-640 |#4|) (-640 |#4|) $) NIL (|has| |#1| (-555)))) (-1866 (((-640 |#4|) (-640 |#4|) $) NIL (|has| |#1| (-555)))) (-2131 (((-3 $ "failed") (-640 |#4|)) NIL)) (-2058 (($ (-640 |#4|)) NIL)) (-3792 (((-3 $ "failed") $) 40)) (-1719 ((|#4| |#4| $) 65)) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1093))))) (-1459 (($ |#4| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1093)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-1972 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-555)))) (-3990 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3948 ((|#4| |#4| $) NIL)) (-2444 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1093)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4407))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4407))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2144 (((-2 (|:| -1442 (-640 |#4|)) (|:| -3405 (-640 |#4|))) $) NIL)) (-2313 (((-112) |#4| $) NIL)) (-3748 (((-112) |#4| $) NIL)) (-1871 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2984 (((-2 (|:| |val| (-640 |#4|)) (|:| |towers| (-640 $))) (-640 |#4|) (-112) (-112)) 124)) (-2659 (((-640 |#4|) $) 17 (|has| $ (-6 -4407)))) (-2299 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2957 ((|#3| $) 34)) (-2581 (((-112) $ (-767)) NIL)) (-2259 (((-640 |#4|) $) 18 (|has| $ (-6 -4407)))) (-1729 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1093))))) (-4345 (($ (-1 |#4| |#4|) $) 24 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#4| |#4|) $) 22)) (-2965 (((-640 |#3|) $) NIL)) (-2780 (((-112) |#3| $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL)) (-3083 (((-3 |#4| (-640 $)) |#4| |#4| $) NIL)) (-2898 (((-640 (-2 (|:| |val| |#4|) (|:| -2059 $))) |#4| |#4| $) 103)) (-1481 (((-3 |#4| "failed") $) 38)) (-3764 (((-640 $) |#4| $) 88)) (-1334 (((-3 (-112) (-640 $)) |#4| $) NIL)) (-2069 (((-640 (-2 (|:| |val| (-112)) (|:| -2059 $))) |#4| $) 98) (((-112) |#4| $) 53)) (-2550 (((-640 $) |#4| $) 107) (((-640 $) (-640 |#4|) $) NIL) (((-640 $) (-640 |#4|) (-640 $)) 108) (((-640 $) |#4| (-640 $)) NIL)) (-3211 (((-640 $) (-640 |#4|) (-112) (-112) (-112)) 119)) (-3291 (($ |#4| $) 75) (($ (-640 |#4|) $) 76) (((-640 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 74)) (-2820 (((-640 |#4|) $) NIL)) (-4197 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2715 ((|#4| |#4| $) NIL)) (-3009 (((-112) $ $) NIL)) (-2152 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-555)))) (-2031 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4056 ((|#4| |#4| $) NIL)) (-1694 (((-1113) $) NIL)) (-3781 (((-3 |#4| "failed") $) 36)) (-4203 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3479 (((-3 $ "failed") $ |#4|) 48)) (-3320 (($ $ |#4|) NIL) (((-640 $) |#4| $) 90) (((-640 $) |#4| (-640 $)) NIL) (((-640 $) (-640 |#4|) $) NIL) (((-640 $) (-640 |#4|) (-640 $)) 86)) (-3138 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 |#4|) (-640 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-2026 (((-112) $ $) NIL)) (-3756 (((-112) $) 16)) (-3135 (($) 14)) (-4167 (((-767) $) NIL)) (-1709 (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1093)))) (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-1872 (($ $) 13)) (-2220 (((-536) $) NIL (|has| |#4| (-611 (-536))))) (-1707 (($ (-640 |#4|)) 21)) (-3577 (($ $ |#3|) 43)) (-1593 (($ $ |#3|) 44)) (-1924 (($ $) NIL)) (-4192 (($ $ |#3|) NIL)) (-1693 (((-858) $) 32) (((-640 |#4|) $) 41)) (-2437 (((-767) $) NIL (|has| |#3| (-368)))) (-2540 (((-3 (-2 (|:| |bas| $) (|:| -2636 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2636 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2691 (((-112) $ (-1 (-112) |#4| (-640 |#4|))) NIL)) (-2175 (((-640 $) |#4| $) 54) (((-640 $) |#4| (-640 $)) NIL) (((-640 $) (-640 |#4|) $) NIL) (((-640 $) (-640 |#4|) (-640 $)) NIL)) (-4383 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-1955 (((-640 |#3|) $) NIL)) (-4279 (((-112) |#4| $) NIL)) (-3152 (((-112) |#3| $) 61)) (-1718 (((-112) $ $) NIL)) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-1139 |#1| |#2| |#3| |#4|) (-13 (-1102 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3291 ((-640 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3319 ((-640 $) (-640 |#4|) (-112) (-112))) (-15 -3319 ((-640 $) (-640 |#4|) (-112) (-112) (-112) (-112))) (-15 -3211 ((-640 $) (-640 |#4|) (-112) (-112) (-112))) (-15 -2984 ((-2 (|:| |val| (-640 |#4|)) (|:| |towers| (-640 $))) (-640 |#4|) (-112) (-112))))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -1139)) +((-3291 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 (-1139 *5 *6 *7 *3))) (-5 *1 (-1139 *5 *6 *7 *3)) (-4 *3 (-1059 *5 *6 *7)))) (-3319 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 (-1139 *5 *6 *7 *8))) (-5 *1 (-1139 *5 *6 *7 *8)))) (-3319 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 (-1139 *5 *6 *7 *8))) (-5 *1 (-1139 *5 *6 *7 *8)))) (-3211 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 (-1139 *5 *6 *7 *8))) (-5 *1 (-1139 *5 *6 *7 *8)))) (-2984 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-640 *8)) (|:| |towers| (-640 (-1139 *5 *6 *7 *8))))) (-5 *1 (-1139 *5 *6 *7 *8)) (-5 *3 (-640 *8))))) +(-13 (-1102 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3291 ((-640 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3319 ((-640 $) (-640 |#4|) (-112) (-112))) (-15 -3319 ((-640 $) (-640 |#4|) (-112) (-112) (-112) (-112))) (-15 -3211 ((-640 $) (-640 |#4|) (-112) (-112) (-112))) (-15 -2984 ((-2 (|:| |val| (-640 |#4|)) (|:| |towers| (-640 $))) (-640 |#4|) (-112) (-112))))) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2636 ((|#1| $) 34)) (-3535 (($ (-640 |#1|)) 39)) (-2759 (((-112) $ (-767)) NIL)) (-4239 (($) NIL T CONST)) (-4325 ((|#1| |#1| $) 36)) (-3017 ((|#1| $) 32)) (-2659 (((-640 |#1|) $) 18 (|has| $ (-6 -4407)))) (-2581 (((-112) $ (-767)) NIL)) (-2259 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-4345 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 22)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-2964 ((|#1| $) 35)) (-1812 (($ |#1| $) 37)) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3755 ((|#1| $) 33)) (-3138 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) NIL)) (-3756 (((-112) $) 31)) (-3135 (($) 38)) (-2370 (((-767) $) 29)) (-1709 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1872 (($ $) 27)) (-1693 (((-858) $) 14 (|has| |#1| (-610 (-858))))) (-2233 (($ (-640 |#1|)) NIL)) (-4383 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 17 (|has| |#1| (-1093)))) (-3608 (((-767) $) 30 (|has| $ (-6 -4407))))) +(((-1140 |#1|) (-13 (-1114 |#1|) (-10 -8 (-15 -3535 ($ (-640 |#1|))))) (-1208)) (T -1140)) +((-3535 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-1140 *3))))) +(-13 (-1114 |#1|) (-10 -8 (-15 -3535 ($ (-640 |#1|))))) +((-1849 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1224 (-563)) |#2|) 43) ((|#2| $ (-563) |#2|) 40)) (-2018 (((-112) $) 11)) (-4345 (($ (-1 |#2| |#2|) $) 38)) (-3781 ((|#2| $) NIL) (($ $ (-767)) 16)) (-2358 (($ $ |#2|) 39)) (-2833 (((-112) $) 10)) (-2309 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1224 (-563))) 30) ((|#2| $ (-563)) 22) ((|#2| $ (-563) |#2|) NIL)) (-3245 (($ $ $) 46) (($ $ |#2|) NIL)) (-2853 (($ $ $) 32) (($ |#2| $) NIL) (($ (-640 $)) 35) (($ $ |#2|) NIL))) +(((-1141 |#1| |#2|) (-10 -8 (-15 -2018 ((-112) |#1|)) (-15 -2833 ((-112) |#1|)) (-15 -1849 (|#2| |#1| (-563) |#2|)) (-15 -2309 (|#2| |#1| (-563) |#2|)) (-15 -2309 (|#2| |#1| (-563))) (-15 -2358 (|#1| |#1| |#2|)) (-15 -2853 (|#1| |#1| |#2|)) (-15 -2853 (|#1| (-640 |#1|))) (-15 -2309 (|#1| |#1| (-1224 (-563)))) (-15 -1849 (|#2| |#1| (-1224 (-563)) |#2|)) (-15 -1849 (|#2| |#1| "last" |#2|)) (-15 -1849 (|#1| |#1| "rest" |#1|)) (-15 -1849 (|#2| |#1| "first" |#2|)) (-15 -3245 (|#1| |#1| |#2|)) (-15 -3245 (|#1| |#1| |#1|)) (-15 -2309 (|#2| |#1| "last")) (-15 -2309 (|#1| |#1| "rest")) (-15 -3781 (|#1| |#1| (-767))) (-15 -2309 (|#2| |#1| "first")) (-15 -3781 (|#2| |#1|)) (-15 -2853 (|#1| |#2| |#1|)) (-15 -2853 (|#1| |#1| |#1|)) (-15 -1849 (|#2| |#1| "value" |#2|)) (-15 -2309 (|#2| |#1| "value")) (-15 -4345 (|#1| (-1 |#2| |#2|) |#1|))) (-1142 |#2|) (-1208)) (T -1141)) +NIL +(-10 -8 (-15 -2018 ((-112) |#1|)) (-15 -2833 ((-112) |#1|)) (-15 -1849 (|#2| |#1| (-563) |#2|)) (-15 -2309 (|#2| |#1| (-563) |#2|)) (-15 -2309 (|#2| |#1| (-563))) (-15 -2358 (|#1| |#1| |#2|)) (-15 -2853 (|#1| |#1| |#2|)) (-15 -2853 (|#1| (-640 |#1|))) (-15 -2309 (|#1| |#1| (-1224 (-563)))) (-15 -1849 (|#2| |#1| (-1224 (-563)) |#2|)) (-15 -1849 (|#2| |#1| "last" |#2|)) (-15 -1849 (|#1| |#1| "rest" |#1|)) (-15 -1849 (|#2| |#1| "first" |#2|)) (-15 -3245 (|#1| |#1| |#2|)) (-15 -3245 (|#1| |#1| |#1|)) (-15 -2309 (|#2| |#1| "last")) (-15 -2309 (|#1| |#1| "rest")) (-15 -3781 (|#1| |#1| (-767))) (-15 -2309 (|#2| |#1| "first")) (-15 -3781 (|#2| |#1|)) (-15 -2853 (|#1| |#2| |#1|)) (-15 -2853 (|#1| |#1| |#1|)) (-15 -1849 (|#2| |#1| "value" |#2|)) (-15 -2309 (|#2| |#1| "value")) (-15 -4345 (|#1| (-1 |#2| |#2|) |#1|))) +((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-2619 ((|#1| $) 48)) (-3442 ((|#1| $) 65)) (-4302 (($ $) 67)) (-4378 (((-1262) $ (-563) (-563)) 97 (|has| $ (-6 -4408)))) (-1624 (($ $ (-563)) 52 (|has| $ (-6 -4408)))) (-2759 (((-112) $ (-767)) 8)) (-2936 ((|#1| $ |#1|) 39 (|has| $ (-6 -4408)))) (-3692 (($ $ $) 56 (|has| $ (-6 -4408)))) (-3889 ((|#1| $ |#1|) 54 (|has| $ (-6 -4408)))) (-1543 ((|#1| $ |#1|) 58 (|has| $ (-6 -4408)))) (-1849 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4408))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4408))) (($ $ "rest" $) 55 (|has| $ (-6 -4408))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4408))) ((|#1| $ (-1224 (-563)) |#1|) 117 (|has| $ (-6 -4408))) ((|#1| $ (-563) |#1|) 86 (|has| $ (-6 -4408)))) (-2811 (($ $ (-640 $)) 41 (|has| $ (-6 -4408)))) (-2256 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4407)))) (-3431 ((|#1| $) 66)) (-4239 (($) 7 T CONST)) (-3792 (($ $) 73) (($ $ (-767)) 71)) (-3813 (($ $) 99 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1459 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4407))) (($ |#1| $) 100 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-4355 ((|#1| $ (-563) |#1|) 85 (|has| $ (-6 -4408)))) (-4293 ((|#1| $ (-563)) 87)) (-2018 (((-112) $) 83)) (-2659 (((-640 |#1|) $) 30 (|has| $ (-6 -4407)))) (-2071 (((-640 $) $) 50)) (-1469 (((-112) $ $) 42 (|has| |#1| (-1093)))) (-1566 (($ (-767) |#1|) 108)) (-2581 (((-112) $ (-767)) 9)) (-2411 (((-563) $) 95 (|has| (-563) (-846)))) (-2259 (((-640 |#1|) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-3860 (((-563) $) 94 (|has| (-563) (-846)))) (-4345 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2382 (((-112) $ (-767)) 10)) (-2512 (((-640 |#1|) $) 45)) (-2194 (((-112) $) 49)) (-3573 (((-1151) $) 22 (|has| |#1| (-1093)))) (-1481 ((|#1| $) 70) (($ $ (-767)) 68)) (-3396 (($ $ $ (-563)) 116) (($ |#1| $ (-563)) 115)) (-4318 (((-640 (-563)) $) 92)) (-3192 (((-112) (-563) $) 91)) (-1694 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3781 ((|#1| $) 76) (($ $ (-767)) 74)) (-4203 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2358 (($ $ |#1|) 96 (|has| $ (-6 -4408)))) (-2833 (((-112) $) 84)) (-3138 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) 14)) (-2105 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2836 (((-640 |#1|) $) 90)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-2309 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1224 (-563))) 112) ((|#1| $ (-563)) 89) ((|#1| $ (-563) |#1|) 88)) (-4071 (((-563) $ $) 44)) (-2963 (($ $ (-1224 (-563))) 114) (($ $ (-563)) 113)) (-1434 (((-112) $) 46)) (-2749 (($ $) 62)) (-1322 (($ $) 59 (|has| $ (-6 -4408)))) (-1950 (((-767) $) 63)) (-3752 (($ $) 64)) (-1709 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4407))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1872 (($ $) 13)) (-2220 (((-536) $) 98 (|has| |#1| (-611 (-536))))) (-1707 (($ (-640 |#1|)) 107)) (-3245 (($ $ $) 61 (|has| $ (-6 -4408))) (($ $ |#1|) 60 (|has| $ (-6 -4408)))) (-2853 (($ $ $) 78) (($ |#1| $) 77) (($ (-640 $)) 110) (($ $ |#1|) 109)) (-1693 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-4258 (((-640 $) $) 51)) (-2962 (((-112) $ $) 43 (|has| |#1| (-1093)))) (-4383 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-1142 |#1|) (-140) (-1208)) (T -1142)) +((-2833 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1208)) (-5 *2 (-112)))) (-2018 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1208)) (-5 *2 (-112))))) +(-13 (-1245 |t#1|) (-646 |t#1|) (-10 -8 (-15 -2833 ((-112) $)) (-15 -2018 ((-112) $)))) +(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4032 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-286 #0=(-563) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-601 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-646 |#1|) . T) ((-1006 |#1|) . T) ((-1093) |has| |#1| (-1093)) ((-1208) . T) ((-1245 |#1|) . T)) +((-1677 (((-112) $ $) NIL (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1552 (($) NIL) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL)) (-4378 (((-1262) $ |#1| |#1|) NIL (|has| $ (-6 -4408)))) (-2759 (((-112) $ (-767)) NIL)) (-1849 ((|#2| $ |#1| |#2|) NIL)) (-2812 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-2256 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-1577 (((-3 |#2| "failed") |#1| $) NIL)) (-4239 (($) NIL T CONST)) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093))))) (-2705 (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-3 |#2| "failed") |#1| $) NIL)) (-1459 (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-2444 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL (|has| $ (-6 -4407))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-4355 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4408)))) (-4293 ((|#2| $ |#1|) NIL)) (-2659 (((-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-640 |#2|) $) NIL (|has| $ (-6 -4407)))) (-2581 (((-112) $ (-767)) NIL)) (-2411 ((|#1| $) NIL (|has| |#1| (-846)))) (-2259 (((-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-640 |#2|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093))))) (-3860 ((|#1| $) NIL (|has| |#1| (-846)))) (-4345 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4408))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1303 (((-640 |#1|) $) NIL)) (-4173 (((-112) |#1| $) NIL)) (-2964 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL)) (-1812 (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL)) (-4318 (((-640 |#1|) $) NIL)) (-3192 (((-112) |#1| $) NIL)) (-1694 (((-1113) $) NIL (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-3781 ((|#2| $) NIL (|has| |#1| (-846)))) (-4203 (((-3 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) "failed") (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL)) (-2358 (($ $ |#2|) NIL (|has| $ (-6 -4408)))) (-3755 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL)) (-3138 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-2026 (((-112) $ $) NIL)) (-2105 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093))))) (-2836 (((-640 |#2|) $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) NIL)) (-2309 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3890 (($) NIL) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL)) (-1709 (((-767) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-767) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-1872 (($ $) NIL)) (-2220 (((-536) $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-611 (-536))))) (-1707 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL)) (-1693 (((-858) $) NIL (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-610 (-858))) (|has| |#2| (-610 (-858)))))) (-2233 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL)) (-4383 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) NIL (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-1143 |#1| |#2| |#3|) (-1184 |#1| |#2|) (-1093) (-1093) |#2|) (T -1143)) +NIL +(-1184 |#1| |#2|) +((-1677 (((-112) $ $) 7)) (-2408 (((-3 $ "failed") $) 13)) (-3573 (((-1151) $) 9)) (-2523 (($) 14 T CONST)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11)) (-1718 (((-112) $ $) 6))) +(((-1144) (-140)) (T -1144)) +((-2523 (*1 *1) (-4 *1 (-1144))) (-2408 (*1 *1 *1) (|partial| -4 *1 (-1144)))) +(-13 (-1093) (-10 -8 (-15 -2523 ($) -2669) (-15 -2408 ((-3 $ "failed") $)))) +(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) +((-1622 (((-1149 |#1|) (-1149 |#1|)) 17)) (-3462 (((-1149 |#1|) (-1149 |#1|)) 13)) (-3282 (((-1149 |#1|) (-1149 |#1|) (-563) (-563)) 20)) (-2028 (((-1149 |#1|) (-1149 |#1|)) 15))) +(((-1145 |#1|) (-10 -7 (-15 -3462 ((-1149 |#1|) (-1149 |#1|))) (-15 -2028 ((-1149 |#1|) (-1149 |#1|))) (-15 -1622 ((-1149 |#1|) (-1149 |#1|))) (-15 -3282 ((-1149 |#1|) (-1149 |#1|) (-563) (-563)))) (-13 (-555) (-147))) (T -1145)) +((-3282 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1149 *4)) (-5 *3 (-563)) (-4 *4 (-13 (-555) (-147))) (-5 *1 (-1145 *4)))) (-1622 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-13 (-555) (-147))) (-5 *1 (-1145 *3)))) (-2028 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-13 (-555) (-147))) (-5 *1 (-1145 *3)))) (-3462 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-13 (-555) (-147))) (-5 *1 (-1145 *3))))) +(-10 -7 (-15 -3462 ((-1149 |#1|) (-1149 |#1|))) (-15 -2028 ((-1149 |#1|) (-1149 |#1|))) (-15 -1622 ((-1149 |#1|) (-1149 |#1|))) (-15 -3282 ((-1149 |#1|) (-1149 |#1|) (-563) (-563)))) +((-2853 (((-1149 |#1|) (-1149 (-1149 |#1|))) 15))) +(((-1146 |#1|) (-10 -7 (-15 -2853 ((-1149 |#1|) (-1149 (-1149 |#1|))))) (-1208)) (T -1146)) +((-2853 (*1 *2 *3) (-12 (-5 *3 (-1149 (-1149 *4))) (-5 *2 (-1149 *4)) (-5 *1 (-1146 *4)) (-4 *4 (-1208))))) +(-10 -7 (-15 -2853 ((-1149 |#1|) (-1149 (-1149 |#1|))))) +((-1567 (((-1149 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1149 |#1|)) 25)) (-2444 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1149 |#1|)) 26)) (-2240 (((-1149 |#2|) (-1 |#2| |#1|) (-1149 |#1|)) 16))) +(((-1147 |#1| |#2|) (-10 -7 (-15 -2240 ((-1149 |#2|) (-1 |#2| |#1|) (-1149 |#1|))) (-15 -1567 ((-1149 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1149 |#1|))) (-15 -2444 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1149 |#1|)))) (-1208) (-1208)) (T -1147)) +((-2444 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1149 *5)) (-4 *5 (-1208)) (-4 *2 (-1208)) (-5 *1 (-1147 *5 *2)))) (-1567 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1149 *6)) (-4 *6 (-1208)) (-4 *3 (-1208)) (-5 *2 (-1149 *3)) (-5 *1 (-1147 *6 *3)))) (-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1149 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-1149 *6)) (-5 *1 (-1147 *5 *6))))) +(-10 -7 (-15 -2240 ((-1149 |#2|) (-1 |#2| |#1|) (-1149 |#1|))) (-15 -1567 ((-1149 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1149 |#1|))) (-15 -2444 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1149 |#1|)))) +((-2240 (((-1149 |#3|) (-1 |#3| |#1| |#2|) (-1149 |#1|) (-1149 |#2|)) 21))) +(((-1148 |#1| |#2| |#3|) (-10 -7 (-15 -2240 ((-1149 |#3|) (-1 |#3| |#1| |#2|) (-1149 |#1|) (-1149 |#2|)))) (-1208) (-1208) (-1208)) (T -1148)) +((-2240 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1149 *6)) (-5 *5 (-1149 *7)) (-4 *6 (-1208)) (-4 *7 (-1208)) (-4 *8 (-1208)) (-5 *2 (-1149 *8)) (-5 *1 (-1148 *6 *7 *8))))) +(-10 -7 (-15 -2240 ((-1149 |#3|) (-1 |#3| |#1| |#2|) (-1149 |#1|) (-1149 |#2|)))) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2619 ((|#1| $) NIL)) (-3442 ((|#1| $) NIL)) (-4302 (($ $) 51)) (-4378 (((-1262) $ (-563) (-563)) 76 (|has| $ (-6 -4408)))) (-1624 (($ $ (-563)) 110 (|has| $ (-6 -4408)))) (-2759 (((-112) $ (-767)) NIL)) (-3821 (((-858) $) 40 (|has| |#1| (-1093)))) (-3007 (((-112)) 39 (|has| |#1| (-1093)))) (-2936 ((|#1| $ |#1|) NIL (|has| $ (-6 -4408)))) (-3692 (($ $ $) 98 (|has| $ (-6 -4408))) (($ $ (-563) $) 122)) (-3889 ((|#1| $ |#1|) 107 (|has| $ (-6 -4408)))) (-1543 ((|#1| $ |#1|) 102 (|has| $ (-6 -4408)))) (-1849 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4408))) ((|#1| $ "first" |#1|) 104 (|has| $ (-6 -4408))) (($ $ "rest" $) 106 (|has| $ (-6 -4408))) ((|#1| $ "last" |#1|) 109 (|has| $ (-6 -4408))) ((|#1| $ (-1224 (-563)) |#1|) 89 (|has| $ (-6 -4408))) ((|#1| $ (-563) |#1|) 55 (|has| $ (-6 -4408)))) (-2811 (($ $ (-640 $)) NIL (|has| $ (-6 -4408)))) (-2256 (($ (-1 (-112) |#1|) $) 58)) (-3431 ((|#1| $) NIL)) (-4239 (($) NIL T CONST)) (-2310 (($ $) 14)) (-3792 (($ $) 28) (($ $ (-767)) 88)) (-3925 (((-112) (-640 |#1|) $) 116 (|has| |#1| (-1093)))) (-3791 (($ (-640 |#1|)) 112)) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1459 (($ |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) 57)) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-4355 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4408)))) (-4293 ((|#1| $ (-563)) NIL)) (-2018 (((-112) $) NIL)) (-2659 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1555 (((-1262) (-563) $) 121 (|has| |#1| (-1093)))) (-2808 (((-767) $) 118)) (-2071 (((-640 $) $) NIL)) (-1469 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1566 (($ (-767) |#1|) NIL)) (-2581 (((-112) $ (-767)) NIL)) (-2411 (((-563) $) NIL (|has| (-563) (-846)))) (-2259 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-3860 (((-563) $) NIL (|has| (-563) (-846)))) (-4345 (($ (-1 |#1| |#1|) $) 73 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#1| |#1| |#1|) $ $) 67)) (-2382 (((-112) $ (-767)) NIL)) (-2512 (((-640 |#1|) $) NIL)) (-2194 (((-112) $) NIL)) (-1785 (($ $) 90)) (-3858 (((-112) $) 13)) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1481 ((|#1| $) NIL) (($ $ (-767)) NIL)) (-3396 (($ $ $ (-563)) NIL) (($ |#1| $ (-563)) NIL)) (-4318 (((-640 (-563)) $) NIL)) (-3192 (((-112) (-563) $) 74)) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-2177 (($ (-1 |#1|)) 124) (($ (-1 |#1| |#1|) |#1|) 125)) (-2548 ((|#1| $) 10)) (-3781 ((|#1| $) 27) (($ $ (-767)) 49)) (-3361 (((-2 (|:| |cycle?| (-112)) (|:| -3246 (-767)) (|:| |period| (-767))) (-767) $) 24)) (-4203 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2225 (($ (-1 (-112) |#1|) $) 126)) (-2242 (($ (-1 (-112) |#1|) $) 127)) (-2358 (($ $ |#1|) 68 (|has| $ (-6 -4408)))) (-3320 (($ $ (-563)) 31)) (-2833 (((-112) $) 72)) (-4122 (((-112) $) 12)) (-3063 (((-112) $) 117)) (-3138 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) 20)) (-2105 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2836 (((-640 |#1|) $) NIL)) (-3756 (((-112) $) 15)) (-3135 (($) 44)) (-2309 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1224 (-563))) NIL) ((|#1| $ (-563)) 54) ((|#1| $ (-563) |#1|) NIL)) (-4071 (((-563) $ $) 48)) (-2963 (($ $ (-1224 (-563))) NIL) (($ $ (-563)) NIL)) (-1429 (($ (-1 $)) 47)) (-1434 (((-112) $) 69)) (-2749 (($ $) 70)) (-1322 (($ $) 99 (|has| $ (-6 -4408)))) (-1950 (((-767) $) NIL)) (-3752 (($ $) NIL)) (-1709 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1872 (($ $) 43)) (-2220 (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-1707 (($ (-640 |#1|)) 53)) (-4063 (($ |#1| $) 97)) (-3245 (($ $ $) 100 (|has| $ (-6 -4408))) (($ $ |#1|) 101 (|has| $ (-6 -4408)))) (-2853 (($ $ $) 78) (($ |#1| $) 45) (($ (-640 $)) 83) (($ $ |#1|) 77)) (-1741 (($ $) 50)) (-1693 (($ (-640 |#1|)) 111) (((-858) $) 41 (|has| |#1| (-610 (-858))))) (-4258 (((-640 $) $) NIL)) (-2962 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-4383 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 114 (|has| |#1| (-1093)))) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-1149 |#1|) (-13 (-669 |#1|) (-613 (-640 |#1|)) (-10 -8 (-6 -4408) (-15 -3791 ($ (-640 |#1|))) (IF (|has| |#1| (-1093)) (-15 -3925 ((-112) (-640 |#1|) $)) |%noBranch|) (-15 -3361 ((-2 (|:| |cycle?| (-112)) (|:| -3246 (-767)) (|:| |period| (-767))) (-767) $)) (-15 -1429 ($ (-1 $))) (-15 -4063 ($ |#1| $)) (IF (|has| |#1| (-1093)) (PROGN (-15 -1555 ((-1262) (-563) $)) (-15 -3821 ((-858) $)) (-15 -3007 ((-112)))) |%noBranch|) (-15 -3692 ($ $ (-563) $)) (-15 -2177 ($ (-1 |#1|))) (-15 -2177 ($ (-1 |#1| |#1|) |#1|)) (-15 -2225 ($ (-1 (-112) |#1|) $)) (-15 -2242 ($ (-1 (-112) |#1|) $)))) (-1208)) (T -1149)) +((-3791 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-1149 *3)))) (-3925 (*1 *2 *3 *1) (-12 (-5 *3 (-640 *4)) (-4 *4 (-1093)) (-4 *4 (-1208)) (-5 *2 (-112)) (-5 *1 (-1149 *4)))) (-3361 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -3246 (-767)) (|:| |period| (-767)))) (-5 *1 (-1149 *4)) (-4 *4 (-1208)) (-5 *3 (-767)))) (-1429 (*1 *1 *2) (-12 (-5 *2 (-1 (-1149 *3))) (-5 *1 (-1149 *3)) (-4 *3 (-1208)))) (-4063 (*1 *1 *2 *1) (-12 (-5 *1 (-1149 *2)) (-4 *2 (-1208)))) (-1555 (*1 *2 *3 *1) (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-1149 *4)) (-4 *4 (-1093)) (-4 *4 (-1208)))) (-3821 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-1149 *3)) (-4 *3 (-1093)) (-4 *3 (-1208)))) (-3007 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3)) (-4 *3 (-1093)) (-4 *3 (-1208)))) (-3692 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-1149 *3)) (-4 *3 (-1208)))) (-2177 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1208)) (-5 *1 (-1149 *3)))) (-2177 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1208)) (-5 *1 (-1149 *3)))) (-2225 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1208)) (-5 *1 (-1149 *3)))) (-2242 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1208)) (-5 *1 (-1149 *3))))) +(-13 (-669 |#1|) (-613 (-640 |#1|)) (-10 -8 (-6 -4408) (-15 -3791 ($ (-640 |#1|))) (IF (|has| |#1| (-1093)) (-15 -3925 ((-112) (-640 |#1|) $)) |%noBranch|) (-15 -3361 ((-2 (|:| |cycle?| (-112)) (|:| -3246 (-767)) (|:| |period| (-767))) (-767) $)) (-15 -1429 ($ (-1 $))) (-15 -4063 ($ |#1| $)) (IF (|has| |#1| (-1093)) (PROGN (-15 -1555 ((-1262) (-563) $)) (-15 -3821 ((-858) $)) (-15 -3007 ((-112)))) |%noBranch|) (-15 -3692 ($ $ (-563) $)) (-15 -2177 ($ (-1 |#1|))) (-15 -2177 ($ (-1 |#1| |#1|) |#1|)) (-15 -2225 ($ (-1 (-112) |#1|) $)) (-15 -2242 ($ (-1 (-112) |#1|) $)))) +((-1677 (((-112) $ $) 19)) (-3700 (($ $) 120)) (-3697 (($ $) 121)) (-1967 (($ $ (-144)) 108) (($ $ (-141)) 107)) (-4378 (((-1262) $ (-563) (-563)) 40 (|has| $ (-6 -4408)))) (-2559 (((-112) $ $) 118)) (-2537 (((-112) $ $ (-563)) 117)) (-3736 (($ (-563)) 127)) (-2335 (((-640 $) $ (-144)) 110) (((-640 $) $ (-141)) 109)) (-3523 (((-112) (-1 (-112) (-144) (-144)) $) 98) (((-112) $) 92 (|has| (-144) (-846)))) (-2770 (($ (-1 (-112) (-144) (-144)) $) 89 (|has| $ (-6 -4408))) (($ $) 88 (-12 (|has| (-144) (-846)) (|has| $ (-6 -4408))))) (-1642 (($ (-1 (-112) (-144) (-144)) $) 99) (($ $) 93 (|has| (-144) (-846)))) (-2759 (((-112) $ (-767)) 8)) (-1849 (((-144) $ (-563) (-144)) 52 (|has| $ (-6 -4408))) (((-144) $ (-1224 (-563)) (-144)) 58 (|has| $ (-6 -4408)))) (-2256 (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4407)))) (-4239 (($) 7 T CONST)) (-2025 (($ $ (-144)) 104) (($ $ (-141)) 103)) (-2907 (($ $) 90 (|has| $ (-6 -4408)))) (-4382 (($ $) 100)) (-1938 (($ $ (-1224 (-563)) $) 114)) (-3813 (($ $) 78 (-12 (|has| (-144) (-1093)) (|has| $ (-6 -4407))))) (-1459 (($ (-144) $) 77 (-12 (|has| (-144) (-1093)) (|has| $ (-6 -4407)))) (($ (-1 (-112) (-144)) $) 74 (|has| $ (-6 -4407)))) (-2444 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 76 (-12 (|has| (-144) (-1093)) (|has| $ (-6 -4407)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 73 (|has| $ (-6 -4407))) (((-144) (-1 (-144) (-144) (-144)) $) 72 (|has| $ (-6 -4407)))) (-4355 (((-144) $ (-563) (-144)) 53 (|has| $ (-6 -4408)))) (-4293 (((-144) $ (-563)) 51)) (-2580 (((-112) $ $) 119)) (-4368 (((-563) (-1 (-112) (-144)) $) 97) (((-563) (-144) $) 96 (|has| (-144) (-1093))) (((-563) (-144) $ (-563)) 95 (|has| (-144) (-1093))) (((-563) $ $ (-563)) 113) (((-563) (-141) $ (-563)) 112)) (-2659 (((-640 (-144)) $) 30 (|has| $ (-6 -4407)))) (-1566 (($ (-767) (-144)) 69)) (-2581 (((-112) $ (-767)) 9)) (-2411 (((-563) $) 43 (|has| (-563) (-846)))) (-3084 (($ $ $) 87 (|has| (-144) (-846)))) (-3164 (($ (-1 (-112) (-144) (-144)) $ $) 101) (($ $ $) 94 (|has| (-144) (-846)))) (-2259 (((-640 (-144)) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) (-144) $) 27 (-12 (|has| (-144) (-1093)) (|has| $ (-6 -4407))))) (-3860 (((-563) $) 44 (|has| (-563) (-846)))) (-1777 (($ $ $) 86 (|has| (-144) (-846)))) (-4367 (((-112) $ $ (-144)) 115)) (-1916 (((-767) $ $ (-144)) 116)) (-4345 (($ (-1 (-144) (-144)) $) 34 (|has| $ (-6 -4408)))) (-2240 (($ (-1 (-144) (-144)) $) 35) (($ (-1 (-144) (-144) (-144)) $ $) 64)) (-2360 (($ $) 122)) (-1652 (($ $) 123)) (-2382 (((-112) $ (-767)) 10)) (-2036 (($ $ (-144)) 106) (($ $ (-141)) 105)) (-3573 (((-1151) $) 22)) (-3396 (($ (-144) $ (-563)) 60) (($ $ $ (-563)) 59)) (-4318 (((-640 (-563)) $) 46)) (-3192 (((-112) (-563) $) 47)) (-1694 (((-1113) $) 21)) (-3781 (((-144) $) 42 (|has| (-563) (-846)))) (-4203 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 71)) (-2358 (($ $ (-144)) 41 (|has| $ (-6 -4408)))) (-3138 (((-112) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 (-144)))) 26 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-294 (-144))) 25 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-144) (-144)) 24 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-640 (-144)) (-640 (-144))) 23 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093))))) (-2026 (((-112) $ $) 14)) (-2105 (((-112) (-144) $) 45 (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1093))))) (-2836 (((-640 (-144)) $) 48)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-2309 (((-144) $ (-563) (-144)) 50) (((-144) $ (-563)) 49) (($ $ (-1224 (-563))) 63) (($ $ $) 102)) (-2963 (($ $ (-563)) 62) (($ $ (-1224 (-563))) 61)) (-1709 (((-767) (-1 (-112) (-144)) $) 31 (|has| $ (-6 -4407))) (((-767) (-144) $) 28 (-12 (|has| (-144) (-1093)) (|has| $ (-6 -4407))))) (-3076 (($ $ $ (-563)) 91 (|has| $ (-6 -4408)))) (-1872 (($ $) 13)) (-2220 (((-536) $) 79 (|has| (-144) (-611 (-536))))) (-1707 (($ (-640 (-144))) 70)) (-2853 (($ $ (-144)) 68) (($ (-144) $) 67) (($ $ $) 66) (($ (-640 $)) 65)) (-1693 (($ (-144)) 111) (((-858) $) 18)) (-4383 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4407)))) (-3741 (((-1151) $) 131) (((-1151) $ (-112)) 130) (((-1262) (-818) $) 129) (((-1262) (-818) $ (-112)) 128)) (-1778 (((-112) $ $) 84 (|has| (-144) (-846)))) (-1756 (((-112) $ $) 83 (|has| (-144) (-846)))) (-1718 (((-112) $ $) 20)) (-1768 (((-112) $ $) 85 (|has| (-144) (-846)))) (-1744 (((-112) $ $) 82 (|has| (-144) (-846)))) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-1150) (-140)) (T -1150)) +((-3736 (*1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-1150))))) +(-13 (-1137) (-1093) (-824) (-10 -8 (-15 -3736 ($ (-563))))) +(((-34) . T) ((-102) . T) ((-610 (-858)) . T) ((-151 #0=(-144)) . T) ((-611 (-536)) |has| (-144) (-611 (-536))) ((-286 #1=(-563) #0#) . T) ((-288 #1# #0#) . T) ((-309 #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093))) ((-373 #0#) . T) ((-489 #0#) . T) ((-601 #1# #0#) . T) ((-514 #0# #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093))) ((-646 #0#) . T) ((-19 #0#) . T) ((-824) . T) ((-846) |has| (-144) (-846)) ((-1093) . T) ((-1137) . T) ((-1208) . T)) +((-1677 (((-112) $ $) NIL)) (-3700 (($ $) NIL)) (-3697 (($ $) NIL)) (-1967 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-4378 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4408)))) (-2559 (((-112) $ $) NIL)) (-2537 (((-112) $ $ (-563)) NIL)) (-3736 (($ (-563)) 7)) (-2335 (((-640 $) $ (-144)) NIL) (((-640 $) $ (-141)) NIL)) (-3523 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-846)))) (-2770 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4408))) (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-846))))) (-1642 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-846)))) (-2759 (((-112) $ (-767)) NIL)) (-1849 (((-144) $ (-563) (-144)) NIL (|has| $ (-6 -4408))) (((-144) $ (-1224 (-563)) (-144)) NIL (|has| $ (-6 -4408)))) (-2256 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4407)))) (-4239 (($) NIL T CONST)) (-2025 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2907 (($ $) NIL (|has| $ (-6 -4408)))) (-4382 (($ $) NIL)) (-1938 (($ $ (-1224 (-563)) $) NIL)) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1093))))) (-1459 (($ (-144) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1093)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4407)))) (-2444 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1093)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4407))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4407)))) (-4355 (((-144) $ (-563) (-144)) NIL (|has| $ (-6 -4408)))) (-4293 (((-144) $ (-563)) NIL)) (-2580 (((-112) $ $) NIL)) (-4368 (((-563) (-1 (-112) (-144)) $) NIL) (((-563) (-144) $) NIL (|has| (-144) (-1093))) (((-563) (-144) $ (-563)) NIL (|has| (-144) (-1093))) (((-563) $ $ (-563)) NIL) (((-563) (-141) $ (-563)) NIL)) (-2659 (((-640 (-144)) $) NIL (|has| $ (-6 -4407)))) (-1566 (($ (-767) (-144)) NIL)) (-2581 (((-112) $ (-767)) NIL)) (-2411 (((-563) $) NIL (|has| (-563) (-846)))) (-3084 (($ $ $) NIL (|has| (-144) (-846)))) (-3164 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-846)))) (-2259 (((-640 (-144)) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1093))))) (-3860 (((-563) $) NIL (|has| (-563) (-846)))) (-1777 (($ $ $) NIL (|has| (-144) (-846)))) (-4367 (((-112) $ $ (-144)) NIL)) (-1916 (((-767) $ $ (-144)) NIL)) (-4345 (($ (-1 (-144) (-144)) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-2360 (($ $) NIL)) (-1652 (($ $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-2036 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-3573 (((-1151) $) NIL)) (-3396 (($ (-144) $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-4318 (((-640 (-563)) $) NIL)) (-3192 (((-112) (-563) $) NIL)) (-1694 (((-1113) $) NIL)) (-3781 (((-144) $) NIL (|has| (-563) (-846)))) (-4203 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-2358 (($ $ (-144)) NIL (|has| $ (-6 -4408)))) (-3138 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-640 (-144)) (-640 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093))))) (-2026 (((-112) $ $) NIL)) (-2105 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1093))))) (-2836 (((-640 (-144)) $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) NIL)) (-2309 (((-144) $ (-563) (-144)) NIL) (((-144) $ (-563)) NIL) (($ $ (-1224 (-563))) NIL) (($ $ $) NIL)) (-2963 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-1709 (((-767) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4407))) (((-767) (-144) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-144) (-1093))))) (-3076 (($ $ $ (-563)) NIL (|has| $ (-6 -4408)))) (-1872 (($ $) NIL)) (-2220 (((-536) $) NIL (|has| (-144) (-611 (-536))))) (-1707 (($ (-640 (-144))) NIL)) (-2853 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) NIL) (($ (-640 $)) NIL)) (-1693 (($ (-144)) NIL) (((-858) $) NIL)) (-4383 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4407)))) (-3741 (((-1151) $) 18) (((-1151) $ (-112)) 20) (((-1262) (-818) $) 21) (((-1262) (-818) $ (-112)) 22)) (-1778 (((-112) $ $) NIL (|has| (-144) (-846)))) (-1756 (((-112) $ $) NIL (|has| (-144) (-846)))) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL (|has| (-144) (-846)))) (-1744 (((-112) $ $) NIL (|has| (-144) (-846)))) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-1151) (-1150)) (T -1151)) +NIL +(-1150) +((-1677 (((-112) $ $) NIL (-4032 (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-1093)) (|has| |#1| (-1093))))) (-1552 (($) NIL) (($ (-640 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)))) NIL)) (-4378 (((-1262) $ (-1151) (-1151)) NIL (|has| $ (-6 -4408)))) (-2759 (((-112) $ (-767)) NIL)) (-1849 ((|#1| $ (-1151) |#1|) NIL)) (-2812 (($ (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) $) NIL (|has| $ (-6 -4407)))) (-2256 (($ (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) $) NIL (|has| $ (-6 -4407)))) (-1577 (((-3 |#1| "failed") (-1151) $) NIL)) (-4239 (($) NIL T CONST)) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-1093))))) (-2705 (($ (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) $) NIL (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) $) NIL (|has| $ (-6 -4407))) (((-3 |#1| "failed") (-1151) $) NIL)) (-1459 (($ (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-1093)))) (($ (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) $) NIL (|has| $ (-6 -4407)))) (-2444 (((-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-1 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) $ (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-1093)))) (((-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-1 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) $ (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) NIL (|has| $ (-6 -4407))) (((-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-1 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) $) NIL (|has| $ (-6 -4407)))) (-4355 ((|#1| $ (-1151) |#1|) NIL (|has| $ (-6 -4408)))) (-4293 ((|#1| $ (-1151)) NIL)) (-2659 (((-640 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) $) NIL (|has| $ (-6 -4407))) (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-2581 (((-112) $ (-767)) NIL)) (-2411 (((-1151) $) NIL (|has| (-1151) (-846)))) (-2259 (((-640 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) $) NIL (|has| $ (-6 -4407))) (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-1093)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-3860 (((-1151) $) NIL (|has| (-1151) (-846)))) (-4345 (($ (-1 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) $) NIL (|has| $ (-6 -4408))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL (-4032 (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-1093)) (|has| |#1| (-1093))))) (-1303 (((-640 (-1151)) $) NIL)) (-4173 (((-112) (-1151) $) NIL)) (-2964 (((-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) $) NIL)) (-1812 (($ (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) $) NIL)) (-4318 (((-640 (-1151)) $) NIL)) (-3192 (((-112) (-1151) $) NIL)) (-1694 (((-1113) $) NIL (-4032 (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-1093)) (|has| |#1| (-1093))))) (-3781 ((|#1| $) NIL (|has| (-1151) (-846)))) (-4203 (((-3 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) "failed") (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) $) NIL)) (-2358 (($ $ |#1|) NIL (|has| $ (-6 -4408)))) (-3755 (((-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) $) NIL)) (-3138 (((-112) (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))))) NIL (-12 (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-309 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)))) (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-1093)))) (($ $ (-294 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)))) NIL (-12 (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-309 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)))) (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-1093)))) (($ $ (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) NIL (-12 (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-309 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)))) (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-1093)))) (($ $ (-640 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) (-640 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)))) NIL (-12 (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-309 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)))) (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) NIL)) (-2105 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2836 (((-640 |#1|) $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) NIL)) (-2309 ((|#1| $ (-1151)) NIL) ((|#1| $ (-1151) |#1|) NIL)) (-3890 (($) NIL) (($ (-640 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)))) NIL)) (-1709 (((-767) (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) $) NIL (|has| $ (-6 -4407))) (((-767) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-1093)))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093)))) (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1872 (($ $) NIL)) (-2220 (((-536) $) NIL (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-611 (-536))))) (-1707 (($ (-640 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)))) NIL)) (-1693 (((-858) $) NIL (-4032 (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-610 (-858))) (|has| |#1| (-610 (-858)))))) (-2233 (($ (-640 (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)))) NIL)) (-4383 (((-112) (-1 (-112) (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) NIL (-4032 (|has| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (-1093)) (|has| |#1| (-1093))))) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-1152 |#1|) (-13 (-1184 (-1151) |#1|) (-10 -7 (-6 -4407))) (-1093)) (T -1152)) +NIL +(-13 (-1184 (-1151) |#1|) (-10 -7 (-6 -4407))) +((-3337 (((-1149 |#1|) (-1149 |#1|)) 77)) (-3400 (((-3 (-1149 |#1|) "failed") (-1149 |#1|)) 37)) (-2813 (((-1149 |#1|) (-407 (-563)) (-1149 |#1|)) 121 (|has| |#1| (-38 (-407 (-563)))))) (-2269 (((-1149 |#1|) |#1| (-1149 |#1|)) 127 (|has| |#1| (-363)))) (-1291 (((-1149 |#1|) (-1149 |#1|)) 90)) (-2183 (((-1149 (-563)) (-563)) 57)) (-4150 (((-1149 |#1|) (-1149 (-1149 |#1|))) 109 (|has| |#1| (-38 (-407 (-563)))))) (-4205 (((-1149 |#1|) (-563) (-563) (-1149 |#1|)) 95)) (-4222 (((-1149 |#1|) |#1| (-563)) 45)) (-1896 (((-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) 60)) (-4131 (((-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) 124 (|has| |#1| (-363)))) (-4209 (((-1149 |#1|) |#1| (-1 (-1149 |#1|))) 108 (|has| |#1| (-38 (-407 (-563)))))) (-4251 (((-1149 |#1|) (-1 |#1| (-563)) |#1| (-1 (-1149 |#1|))) 125 (|has| |#1| (-363)))) (-4386 (((-1149 |#1|) (-1149 |#1|)) 89)) (-3771 (((-1149 |#1|) (-1149 |#1|)) 76)) (-4033 (((-1149 |#1|) (-563) (-563) (-1149 |#1|)) 96)) (-3698 (((-1149 |#1|) |#1| (-1149 |#1|)) 105 (|has| |#1| (-38 (-407 (-563)))))) (-3432 (((-1149 (-563)) (-563)) 56)) (-1479 (((-1149 |#1|) |#1|) 59)) (-1649 (((-1149 |#1|) (-1149 |#1|) (-563) (-563)) 92)) (-2200 (((-1149 |#1|) (-1 |#1| (-563)) (-1149 |#1|)) 66)) (-3008 (((-3 (-1149 |#1|) "failed") (-1149 |#1|) (-1149 |#1|)) 35)) (-3570 (((-1149 |#1|) (-1149 |#1|)) 91)) (-1540 (((-1149 |#1|) (-1149 |#1|) |#1|) 71)) (-1728 (((-1149 |#1|) (-1149 |#1|)) 62)) (-2337 (((-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) 72)) (-1693 (((-1149 |#1|) |#1|) 67)) (-3159 (((-1149 |#1|) (-1149 (-1149 |#1|))) 82)) (-1837 (((-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) 36)) (-1826 (((-1149 |#1|) (-1149 |#1|)) 21) (((-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) 23)) (-1814 (((-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) 17)) (* (((-1149 |#1|) (-1149 |#1|) |#1|) 29) (((-1149 |#1|) |#1| (-1149 |#1|)) 26) (((-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) 27))) +(((-1153 |#1|) (-10 -7 (-15 -1814 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -1826 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -1826 ((-1149 |#1|) (-1149 |#1|))) (-15 * ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 * ((-1149 |#1|) |#1| (-1149 |#1|))) (-15 * ((-1149 |#1|) (-1149 |#1|) |#1|)) (-15 -3008 ((-3 (-1149 |#1|) "failed") (-1149 |#1|) (-1149 |#1|))) (-15 -1837 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -3400 ((-3 (-1149 |#1|) "failed") (-1149 |#1|))) (-15 -4222 ((-1149 |#1|) |#1| (-563))) (-15 -3432 ((-1149 (-563)) (-563))) (-15 -2183 ((-1149 (-563)) (-563))) (-15 -1479 ((-1149 |#1|) |#1|)) (-15 -1896 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -1728 ((-1149 |#1|) (-1149 |#1|))) (-15 -2200 ((-1149 |#1|) (-1 |#1| (-563)) (-1149 |#1|))) (-15 -1693 ((-1149 |#1|) |#1|)) (-15 -1540 ((-1149 |#1|) (-1149 |#1|) |#1|)) (-15 -2337 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -3771 ((-1149 |#1|) (-1149 |#1|))) (-15 -3337 ((-1149 |#1|) (-1149 |#1|))) (-15 -3159 ((-1149 |#1|) (-1149 (-1149 |#1|)))) (-15 -4386 ((-1149 |#1|) (-1149 |#1|))) (-15 -1291 ((-1149 |#1|) (-1149 |#1|))) (-15 -3570 ((-1149 |#1|) (-1149 |#1|))) (-15 -1649 ((-1149 |#1|) (-1149 |#1|) (-563) (-563))) (-15 -4205 ((-1149 |#1|) (-563) (-563) (-1149 |#1|))) (-15 -4033 ((-1149 |#1|) (-563) (-563) (-1149 |#1|))) (IF (|has| |#1| (-38 (-407 (-563)))) (PROGN (-15 -3698 ((-1149 |#1|) |#1| (-1149 |#1|))) (-15 -4209 ((-1149 |#1|) |#1| (-1 (-1149 |#1|)))) (-15 -4150 ((-1149 |#1|) (-1149 (-1149 |#1|)))) (-15 -2813 ((-1149 |#1|) (-407 (-563)) (-1149 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -4131 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -4251 ((-1149 |#1|) (-1 |#1| (-563)) |#1| (-1 (-1149 |#1|)))) (-15 -2269 ((-1149 |#1|) |#1| (-1149 |#1|)))) |%noBranch|)) (-1045)) (T -1153)) +((-2269 (*1 *2 *3 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-4251 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-563))) (-5 *5 (-1 (-1149 *4))) (-4 *4 (-363)) (-4 *4 (-1045)) (-5 *2 (-1149 *4)) (-5 *1 (-1153 *4)))) (-4131 (*1 *2 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-2813 (*1 *2 *3 *2) (-12 (-5 *2 (-1149 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1045)) (-5 *3 (-407 (-563))) (-5 *1 (-1153 *4)))) (-4150 (*1 *2 *3) (-12 (-5 *3 (-1149 (-1149 *4))) (-5 *2 (-1149 *4)) (-5 *1 (-1153 *4)) (-4 *4 (-38 (-407 (-563)))) (-4 *4 (-1045)))) (-4209 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1149 *3))) (-5 *2 (-1149 *3)) (-5 *1 (-1153 *3)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)))) (-3698 (*1 *2 *3 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-4033 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1149 *4)) (-5 *3 (-563)) (-4 *4 (-1045)) (-5 *1 (-1153 *4)))) (-4205 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1149 *4)) (-5 *3 (-563)) (-4 *4 (-1045)) (-5 *1 (-1153 *4)))) (-1649 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1149 *4)) (-5 *3 (-563)) (-4 *4 (-1045)) (-5 *1 (-1153 *4)))) (-3570 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-1291 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-4386 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-3159 (*1 *2 *3) (-12 (-5 *3 (-1149 (-1149 *4))) (-5 *2 (-1149 *4)) (-5 *1 (-1153 *4)) (-4 *4 (-1045)))) (-3337 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-3771 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-2337 (*1 *2 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-1540 (*1 *2 *2 *3) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-1693 (*1 *2 *3) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-1153 *3)) (-4 *3 (-1045)))) (-2200 (*1 *2 *3 *2) (-12 (-5 *2 (-1149 *4)) (-5 *3 (-1 *4 (-563))) (-4 *4 (-1045)) (-5 *1 (-1153 *4)))) (-1728 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-1896 (*1 *2 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-1479 (*1 *2 *3) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-1153 *3)) (-4 *3 (-1045)))) (-2183 (*1 *2 *3) (-12 (-5 *2 (-1149 (-563))) (-5 *1 (-1153 *4)) (-4 *4 (-1045)) (-5 *3 (-563)))) (-3432 (*1 *2 *3) (-12 (-5 *2 (-1149 (-563))) (-5 *1 (-1153 *4)) (-4 *4 (-1045)) (-5 *3 (-563)))) (-4222 (*1 *2 *3 *4) (-12 (-5 *4 (-563)) (-5 *2 (-1149 *3)) (-5 *1 (-1153 *3)) (-4 *3 (-1045)))) (-3400 (*1 *2 *2) (|partial| -12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-1837 (*1 *2 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-3008 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-1826 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-1826 (*1 *2 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-1814 (*1 *2 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))) +(-10 -7 (-15 -1814 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -1826 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -1826 ((-1149 |#1|) (-1149 |#1|))) (-15 * ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 * ((-1149 |#1|) |#1| (-1149 |#1|))) (-15 * ((-1149 |#1|) (-1149 |#1|) |#1|)) (-15 -3008 ((-3 (-1149 |#1|) "failed") (-1149 |#1|) (-1149 |#1|))) (-15 -1837 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -3400 ((-3 (-1149 |#1|) "failed") (-1149 |#1|))) (-15 -4222 ((-1149 |#1|) |#1| (-563))) (-15 -3432 ((-1149 (-563)) (-563))) (-15 -2183 ((-1149 (-563)) (-563))) (-15 -1479 ((-1149 |#1|) |#1|)) (-15 -1896 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -1728 ((-1149 |#1|) (-1149 |#1|))) (-15 -2200 ((-1149 |#1|) (-1 |#1| (-563)) (-1149 |#1|))) (-15 -1693 ((-1149 |#1|) |#1|)) (-15 -1540 ((-1149 |#1|) (-1149 |#1|) |#1|)) (-15 -2337 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -3771 ((-1149 |#1|) (-1149 |#1|))) (-15 -3337 ((-1149 |#1|) (-1149 |#1|))) (-15 -3159 ((-1149 |#1|) (-1149 (-1149 |#1|)))) (-15 -4386 ((-1149 |#1|) (-1149 |#1|))) (-15 -1291 ((-1149 |#1|) (-1149 |#1|))) (-15 -3570 ((-1149 |#1|) (-1149 |#1|))) (-15 -1649 ((-1149 |#1|) (-1149 |#1|) (-563) (-563))) (-15 -4205 ((-1149 |#1|) (-563) (-563) (-1149 |#1|))) (-15 -4033 ((-1149 |#1|) (-563) (-563) (-1149 |#1|))) (IF (|has| |#1| (-38 (-407 (-563)))) (PROGN (-15 -3698 ((-1149 |#1|) |#1| (-1149 |#1|))) (-15 -4209 ((-1149 |#1|) |#1| (-1 (-1149 |#1|)))) (-15 -4150 ((-1149 |#1|) (-1149 (-1149 |#1|)))) (-15 -2813 ((-1149 |#1|) (-407 (-563)) (-1149 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -4131 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -4251 ((-1149 |#1|) (-1 |#1| (-563)) |#1| (-1 (-1149 |#1|)))) (-15 -2269 ((-1149 |#1|) |#1| (-1149 |#1|)))) |%noBranch|)) +((-1771 (((-1149 |#1|) (-1149 |#1|)) 57)) (-1619 (((-1149 |#1|) (-1149 |#1|)) 39)) (-1748 (((-1149 |#1|) (-1149 |#1|)) 53)) (-1597 (((-1149 |#1|) (-1149 |#1|)) 35)) (-1794 (((-1149 |#1|) (-1149 |#1|)) 60)) (-1643 (((-1149 |#1|) (-1149 |#1|)) 42)) (-4371 (((-1149 |#1|) (-1149 |#1|)) 31)) (-3368 (((-1149 |#1|) (-1149 |#1|)) 27)) (-1806 (((-1149 |#1|) (-1149 |#1|)) 61)) (-1656 (((-1149 |#1|) (-1149 |#1|)) 43)) (-1784 (((-1149 |#1|) (-1149 |#1|)) 58)) (-1630 (((-1149 |#1|) (-1149 |#1|)) 40)) (-1759 (((-1149 |#1|) (-1149 |#1|)) 55)) (-1608 (((-1149 |#1|) (-1149 |#1|)) 37)) (-1840 (((-1149 |#1|) (-1149 |#1|)) 65)) (-1695 (((-1149 |#1|) (-1149 |#1|)) 47)) (-1817 (((-1149 |#1|) (-1149 |#1|)) 63)) (-1667 (((-1149 |#1|) (-1149 |#1|)) 45)) (-1862 (((-1149 |#1|) (-1149 |#1|)) 68)) (-1722 (((-1149 |#1|) (-1149 |#1|)) 50)) (-1311 (((-1149 |#1|) (-1149 |#1|)) 69)) (-1735 (((-1149 |#1|) (-1149 |#1|)) 51)) (-1851 (((-1149 |#1|) (-1149 |#1|)) 67)) (-1710 (((-1149 |#1|) (-1149 |#1|)) 49)) (-1829 (((-1149 |#1|) (-1149 |#1|)) 66)) (-1680 (((-1149 |#1|) (-1149 |#1|)) 48)) (** (((-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) 33))) +(((-1154 |#1|) (-10 -7 (-15 -3368 ((-1149 |#1|) (-1149 |#1|))) (-15 -4371 ((-1149 |#1|) (-1149 |#1|))) (-15 ** ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -1597 ((-1149 |#1|) (-1149 |#1|))) (-15 -1608 ((-1149 |#1|) (-1149 |#1|))) (-15 -1619 ((-1149 |#1|) (-1149 |#1|))) (-15 -1630 ((-1149 |#1|) (-1149 |#1|))) (-15 -1643 ((-1149 |#1|) (-1149 |#1|))) (-15 -1656 ((-1149 |#1|) (-1149 |#1|))) (-15 -1667 ((-1149 |#1|) (-1149 |#1|))) (-15 -1680 ((-1149 |#1|) (-1149 |#1|))) (-15 -1695 ((-1149 |#1|) (-1149 |#1|))) (-15 -1710 ((-1149 |#1|) (-1149 |#1|))) (-15 -1722 ((-1149 |#1|) (-1149 |#1|))) (-15 -1735 ((-1149 |#1|) (-1149 |#1|))) (-15 -1748 ((-1149 |#1|) (-1149 |#1|))) (-15 -1759 ((-1149 |#1|) (-1149 |#1|))) (-15 -1771 ((-1149 |#1|) (-1149 |#1|))) (-15 -1784 ((-1149 |#1|) (-1149 |#1|))) (-15 -1794 ((-1149 |#1|) (-1149 |#1|))) (-15 -1806 ((-1149 |#1|) (-1149 |#1|))) (-15 -1817 ((-1149 |#1|) (-1149 |#1|))) (-15 -1829 ((-1149 |#1|) (-1149 |#1|))) (-15 -1840 ((-1149 |#1|) (-1149 |#1|))) (-15 -1851 ((-1149 |#1|) (-1149 |#1|))) (-15 -1862 ((-1149 |#1|) (-1149 |#1|))) (-15 -1311 ((-1149 |#1|) (-1149 |#1|)))) (-38 (-407 (-563)))) (T -1154)) +((-1311 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1862 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1851 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1840 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1829 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1817 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1806 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1794 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1784 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1771 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1759 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1748 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1735 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1722 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1710 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1695 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1680 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1667 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1656 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1643 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1630 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1619 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1608 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-1597 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-4371 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-3368 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3))))) +(-10 -7 (-15 -3368 ((-1149 |#1|) (-1149 |#1|))) (-15 -4371 ((-1149 |#1|) (-1149 |#1|))) (-15 ** ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -1597 ((-1149 |#1|) (-1149 |#1|))) (-15 -1608 ((-1149 |#1|) (-1149 |#1|))) (-15 -1619 ((-1149 |#1|) (-1149 |#1|))) (-15 -1630 ((-1149 |#1|) (-1149 |#1|))) (-15 -1643 ((-1149 |#1|) (-1149 |#1|))) (-15 -1656 ((-1149 |#1|) (-1149 |#1|))) (-15 -1667 ((-1149 |#1|) (-1149 |#1|))) (-15 -1680 ((-1149 |#1|) (-1149 |#1|))) (-15 -1695 ((-1149 |#1|) (-1149 |#1|))) (-15 -1710 ((-1149 |#1|) (-1149 |#1|))) (-15 -1722 ((-1149 |#1|) (-1149 |#1|))) (-15 -1735 ((-1149 |#1|) (-1149 |#1|))) (-15 -1748 ((-1149 |#1|) (-1149 |#1|))) (-15 -1759 ((-1149 |#1|) (-1149 |#1|))) (-15 -1771 ((-1149 |#1|) (-1149 |#1|))) (-15 -1784 ((-1149 |#1|) (-1149 |#1|))) (-15 -1794 ((-1149 |#1|) (-1149 |#1|))) (-15 -1806 ((-1149 |#1|) (-1149 |#1|))) (-15 -1817 ((-1149 |#1|) (-1149 |#1|))) (-15 -1829 ((-1149 |#1|) (-1149 |#1|))) (-15 -1840 ((-1149 |#1|) (-1149 |#1|))) (-15 -1851 ((-1149 |#1|) (-1149 |#1|))) (-15 -1862 ((-1149 |#1|) (-1149 |#1|))) (-15 -1311 ((-1149 |#1|) (-1149 |#1|)))) +((-1771 (((-1149 |#1|) (-1149 |#1|)) 100)) (-1619 (((-1149 |#1|) (-1149 |#1|)) 64)) (-3971 (((-2 (|:| -1748 (-1149 |#1|)) (|:| -1759 (-1149 |#1|))) (-1149 |#1|)) 96)) (-1748 (((-1149 |#1|) (-1149 |#1|)) 97)) (-4338 (((-2 (|:| -1597 (-1149 |#1|)) (|:| -1608 (-1149 |#1|))) (-1149 |#1|)) 53)) (-1597 (((-1149 |#1|) (-1149 |#1|)) 54)) (-1794 (((-1149 |#1|) (-1149 |#1|)) 102)) (-1643 (((-1149 |#1|) (-1149 |#1|)) 71)) (-4371 (((-1149 |#1|) (-1149 |#1|)) 39)) (-3368 (((-1149 |#1|) (-1149 |#1|)) 36)) (-1806 (((-1149 |#1|) (-1149 |#1|)) 103)) (-1656 (((-1149 |#1|) (-1149 |#1|)) 72)) (-1784 (((-1149 |#1|) (-1149 |#1|)) 101)) (-1630 (((-1149 |#1|) (-1149 |#1|)) 67)) (-1759 (((-1149 |#1|) (-1149 |#1|)) 98)) (-1608 (((-1149 |#1|) (-1149 |#1|)) 55)) (-1840 (((-1149 |#1|) (-1149 |#1|)) 111)) (-1695 (((-1149 |#1|) (-1149 |#1|)) 86)) (-1817 (((-1149 |#1|) (-1149 |#1|)) 105)) (-1667 (((-1149 |#1|) (-1149 |#1|)) 82)) (-1862 (((-1149 |#1|) (-1149 |#1|)) 115)) (-1722 (((-1149 |#1|) (-1149 |#1|)) 90)) (-1311 (((-1149 |#1|) (-1149 |#1|)) 117)) (-1735 (((-1149 |#1|) (-1149 |#1|)) 92)) (-1851 (((-1149 |#1|) (-1149 |#1|)) 113)) (-1710 (((-1149 |#1|) (-1149 |#1|)) 88)) (-1829 (((-1149 |#1|) (-1149 |#1|)) 107)) (-1680 (((-1149 |#1|) (-1149 |#1|)) 84)) (** (((-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) 40))) +(((-1155 |#1|) (-10 -7 (-15 -3368 ((-1149 |#1|) (-1149 |#1|))) (-15 -4371 ((-1149 |#1|) (-1149 |#1|))) (-15 ** ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -4338 ((-2 (|:| -1597 (-1149 |#1|)) (|:| -1608 (-1149 |#1|))) (-1149 |#1|))) (-15 -1597 ((-1149 |#1|) (-1149 |#1|))) (-15 -1608 ((-1149 |#1|) (-1149 |#1|))) (-15 -1619 ((-1149 |#1|) (-1149 |#1|))) (-15 -1630 ((-1149 |#1|) (-1149 |#1|))) (-15 -1643 ((-1149 |#1|) (-1149 |#1|))) (-15 -1656 ((-1149 |#1|) (-1149 |#1|))) (-15 -1667 ((-1149 |#1|) (-1149 |#1|))) (-15 -1680 ((-1149 |#1|) (-1149 |#1|))) (-15 -1695 ((-1149 |#1|) (-1149 |#1|))) (-15 -1710 ((-1149 |#1|) (-1149 |#1|))) (-15 -1722 ((-1149 |#1|) (-1149 |#1|))) (-15 -1735 ((-1149 |#1|) (-1149 |#1|))) (-15 -3971 ((-2 (|:| -1748 (-1149 |#1|)) (|:| -1759 (-1149 |#1|))) (-1149 |#1|))) (-15 -1748 ((-1149 |#1|) (-1149 |#1|))) (-15 -1759 ((-1149 |#1|) (-1149 |#1|))) (-15 -1771 ((-1149 |#1|) (-1149 |#1|))) (-15 -1784 ((-1149 |#1|) (-1149 |#1|))) (-15 -1794 ((-1149 |#1|) (-1149 |#1|))) (-15 -1806 ((-1149 |#1|) (-1149 |#1|))) (-15 -1817 ((-1149 |#1|) (-1149 |#1|))) (-15 -1829 ((-1149 |#1|) (-1149 |#1|))) (-15 -1840 ((-1149 |#1|) (-1149 |#1|))) (-15 -1851 ((-1149 |#1|) (-1149 |#1|))) (-15 -1862 ((-1149 |#1|) (-1149 |#1|))) (-15 -1311 ((-1149 |#1|) (-1149 |#1|)))) (-38 (-407 (-563)))) (T -1155)) +((-1311 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1862 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1851 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1840 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1829 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1817 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1806 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1794 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1784 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1771 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1759 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1748 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-3971 (*1 *2 *3) (-12 (-4 *4 (-38 (-407 (-563)))) (-5 *2 (-2 (|:| -1748 (-1149 *4)) (|:| -1759 (-1149 *4)))) (-5 *1 (-1155 *4)) (-5 *3 (-1149 *4)))) (-1735 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1722 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1710 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1695 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1680 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1667 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1656 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1643 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1630 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1619 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1608 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-1597 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-4338 (*1 *2 *3) (-12 (-4 *4 (-38 (-407 (-563)))) (-5 *2 (-2 (|:| -1597 (-1149 *4)) (|:| -1608 (-1149 *4)))) (-5 *1 (-1155 *4)) (-5 *3 (-1149 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-4371 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-3368 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3))))) +(-10 -7 (-15 -3368 ((-1149 |#1|) (-1149 |#1|))) (-15 -4371 ((-1149 |#1|) (-1149 |#1|))) (-15 ** ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -4338 ((-2 (|:| -1597 (-1149 |#1|)) (|:| -1608 (-1149 |#1|))) (-1149 |#1|))) (-15 -1597 ((-1149 |#1|) (-1149 |#1|))) (-15 -1608 ((-1149 |#1|) (-1149 |#1|))) (-15 -1619 ((-1149 |#1|) (-1149 |#1|))) (-15 -1630 ((-1149 |#1|) (-1149 |#1|))) (-15 -1643 ((-1149 |#1|) (-1149 |#1|))) (-15 -1656 ((-1149 |#1|) (-1149 |#1|))) (-15 -1667 ((-1149 |#1|) (-1149 |#1|))) (-15 -1680 ((-1149 |#1|) (-1149 |#1|))) (-15 -1695 ((-1149 |#1|) (-1149 |#1|))) (-15 -1710 ((-1149 |#1|) (-1149 |#1|))) (-15 -1722 ((-1149 |#1|) (-1149 |#1|))) (-15 -1735 ((-1149 |#1|) (-1149 |#1|))) (-15 -3971 ((-2 (|:| -1748 (-1149 |#1|)) (|:| -1759 (-1149 |#1|))) (-1149 |#1|))) (-15 -1748 ((-1149 |#1|) (-1149 |#1|))) (-15 -1759 ((-1149 |#1|) (-1149 |#1|))) (-15 -1771 ((-1149 |#1|) (-1149 |#1|))) (-15 -1784 ((-1149 |#1|) (-1149 |#1|))) (-15 -1794 ((-1149 |#1|) (-1149 |#1|))) (-15 -1806 ((-1149 |#1|) (-1149 |#1|))) (-15 -1817 ((-1149 |#1|) (-1149 |#1|))) (-15 -1829 ((-1149 |#1|) (-1149 |#1|))) (-15 -1840 ((-1149 |#1|) (-1149 |#1|))) (-15 -1851 ((-1149 |#1|) (-1149 |#1|))) (-15 -1862 ((-1149 |#1|) (-1149 |#1|))) (-15 -1311 ((-1149 |#1|) (-1149 |#1|)))) +((-2985 (((-954 |#2|) |#2| |#2|) 35)) (-1300 ((|#2| |#2| |#1|) 19 (|has| |#1| (-307))))) +(((-1156 |#1| |#2|) (-10 -7 (-15 -2985 ((-954 |#2|) |#2| |#2|)) (IF (|has| |#1| (-307)) (-15 -1300 (|#2| |#2| |#1|)) |%noBranch|)) (-555) (-1233 |#1|)) (T -1156)) +((-1300 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-4 *3 (-555)) (-5 *1 (-1156 *3 *2)) (-4 *2 (-1233 *3)))) (-2985 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-954 *3)) (-5 *1 (-1156 *4 *3)) (-4 *3 (-1233 *4))))) +(-10 -7 (-15 -2985 ((-954 |#2|) |#2| |#2|)) (IF (|has| |#1| (-307)) (-15 -1300 (|#2| |#2| |#1|)) |%noBranch|)) +((-1677 (((-112) $ $) NIL)) (-4321 (($ $ (-640 (-767))) 66)) (-2756 (($) 25)) (-3251 (($ $) 41)) (-3018 (((-640 $) $) 50)) (-3302 (((-112) $) 16)) (-2634 (((-640 (-939 |#2|)) $) 73)) (-3069 (($ $) 67)) (-2162 (((-767) $) 36)) (-1566 (($) 24)) (-3482 (($ $ (-640 (-767)) (-939 |#2|)) 59) (($ $ (-640 (-767)) (-767)) 60) (($ $ (-767) (-939 |#2|)) 62)) (-3164 (($ $ $) 47) (($ (-640 $)) 49)) (-1407 (((-767) $) 74)) (-2194 (((-112) $) 15)) (-3573 (((-1151) $) NIL)) (-2141 (((-112) $) 17)) (-1694 (((-1113) $) NIL)) (-4344 (((-171) $) 72)) (-2725 (((-939 |#2|) $) 68)) (-3615 (((-767) $) 69)) (-2116 (((-112) $) 71)) (-4365 (($ $ (-640 (-767)) (-171)) 65)) (-2649 (($ $) 42)) (-1693 (((-858) $) 85)) (-3057 (($ $ (-640 (-767)) (-112)) 64)) (-4258 (((-640 $) $) 11)) (-2347 (($ $ (-767)) 35)) (-3433 (($ $) 31)) (-2687 (($ $ $ (-939 |#2|) (-767)) 55)) (-4253 (($ $ (-939 |#2|)) 54)) (-2476 (($ $ (-640 (-767)) (-939 |#2|)) 53) (($ $ (-640 (-767)) (-767)) 57) (((-767) $ (-939 |#2|)) 58)) (-1718 (((-112) $ $) 79))) +(((-1157 |#1| |#2|) (-13 (-1093) (-10 -8 (-15 -2194 ((-112) $)) (-15 -3302 ((-112) $)) (-15 -2141 ((-112) $)) (-15 -1566 ($)) (-15 -2756 ($)) (-15 -3433 ($ $)) (-15 -2347 ($ $ (-767))) (-15 -4258 ((-640 $) $)) (-15 -2162 ((-767) $)) (-15 -3251 ($ $)) (-15 -2649 ($ $)) (-15 -3164 ($ $ $)) (-15 -3164 ($ (-640 $))) (-15 -3018 ((-640 $) $)) (-15 -2476 ($ $ (-640 (-767)) (-939 |#2|))) (-15 -4253 ($ $ (-939 |#2|))) (-15 -2687 ($ $ $ (-939 |#2|) (-767))) (-15 -3482 ($ $ (-640 (-767)) (-939 |#2|))) (-15 -2476 ($ $ (-640 (-767)) (-767))) (-15 -3482 ($ $ (-640 (-767)) (-767))) (-15 -2476 ((-767) $ (-939 |#2|))) (-15 -3482 ($ $ (-767) (-939 |#2|))) (-15 -3057 ($ $ (-640 (-767)) (-112))) (-15 -4365 ($ $ (-640 (-767)) (-171))) (-15 -4321 ($ $ (-640 (-767)))) (-15 -2725 ((-939 |#2|) $)) (-15 -3615 ((-767) $)) (-15 -2116 ((-112) $)) (-15 -4344 ((-171) $)) (-15 -1407 ((-767) $)) (-15 -3069 ($ $)) (-15 -2634 ((-640 (-939 |#2|)) $)))) (-917) (-1045)) (T -1157)) +((-2194 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-3302 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-2141 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-1566 (*1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-2756 (*1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-3433 (*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-2347 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-4258 (*1 *2 *1) (-12 (-5 *2 (-640 (-1157 *3 *4))) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-2162 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-3251 (*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-2649 (*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-3164 (*1 *1 *1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-3164 (*1 *1 *2) (-12 (-5 *2 (-640 (-1157 *3 *4))) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-3018 (*1 *2 *1) (-12 (-5 *2 (-640 (-1157 *3 *4))) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-2476 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-767))) (-5 *3 (-939 *5)) (-4 *5 (-1045)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-917)))) (-4253 (*1 *1 *1 *2) (-12 (-5 *2 (-939 *4)) (-4 *4 (-1045)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)))) (-2687 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-939 *5)) (-5 *3 (-767)) (-4 *5 (-1045)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-917)))) (-3482 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-767))) (-5 *3 (-939 *5)) (-4 *5 (-1045)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-917)))) (-2476 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-767))) (-5 *3 (-767)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-917)) (-4 *5 (-1045)))) (-3482 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-767))) (-5 *3 (-767)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-917)) (-4 *5 (-1045)))) (-2476 (*1 *2 *1 *3) (-12 (-5 *3 (-939 *5)) (-4 *5 (-1045)) (-5 *2 (-767)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-917)))) (-3482 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *3 (-939 *5)) (-4 *5 (-1045)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-917)))) (-3057 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-767))) (-5 *3 (-112)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-917)) (-4 *5 (-1045)))) (-4365 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-767))) (-5 *3 (-171)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-917)) (-4 *5 (-1045)))) (-4321 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-767))) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-939 *4)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-3615 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-2116 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-4344 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-3069 (*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-2634 (*1 *2 *1) (-12 (-5 *2 (-640 (-939 *4))) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045))))) +(-13 (-1093) (-10 -8 (-15 -2194 ((-112) $)) (-15 -3302 ((-112) $)) (-15 -2141 ((-112) $)) (-15 -1566 ($)) (-15 -2756 ($)) (-15 -3433 ($ $)) (-15 -2347 ($ $ (-767))) (-15 -4258 ((-640 $) $)) (-15 -2162 ((-767) $)) (-15 -3251 ($ $)) (-15 -2649 ($ $)) (-15 -3164 ($ $ $)) (-15 -3164 ($ (-640 $))) (-15 -3018 ((-640 $) $)) (-15 -2476 ($ $ (-640 (-767)) (-939 |#2|))) (-15 -4253 ($ $ (-939 |#2|))) (-15 -2687 ($ $ $ (-939 |#2|) (-767))) (-15 -3482 ($ $ (-640 (-767)) (-939 |#2|))) (-15 -2476 ($ $ (-640 (-767)) (-767))) (-15 -3482 ($ $ (-640 (-767)) (-767))) (-15 -2476 ((-767) $ (-939 |#2|))) (-15 -3482 ($ $ (-767) (-939 |#2|))) (-15 -3057 ($ $ (-640 (-767)) (-112))) (-15 -4365 ($ $ (-640 (-767)) (-171))) (-15 -4321 ($ $ (-640 (-767)))) (-15 -2725 ((-939 |#2|) $)) (-15 -3615 ((-767) $)) (-15 -2116 ((-112) $)) (-15 -4344 ((-171) $)) (-15 -1407 ((-767) $)) (-15 -3069 ($ $)) (-15 -2634 ((-640 (-939 |#2|)) $)))) +((-1677 (((-112) $ $) NIL)) (-2351 ((|#2| $) 11)) (-2340 ((|#1| $) 10)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1707 (($ |#1| |#2|) 9)) (-1693 (((-858) $) 16)) (-1718 (((-112) $ $) NIL))) +(((-1158 |#1| |#2|) (-13 (-1093) (-10 -8 (-15 -1707 ($ |#1| |#2|)) (-15 -2340 (|#1| $)) (-15 -2351 (|#2| $)))) (-1093) (-1093)) (T -1158)) +((-1707 (*1 *1 *2 *3) (-12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))) (-2340 (*1 *2 *1) (-12 (-4 *2 (-1093)) (-5 *1 (-1158 *2 *3)) (-4 *3 (-1093)))) (-2351 (*1 *2 *1) (-12 (-4 *2 (-1093)) (-5 *1 (-1158 *3 *2)) (-4 *3 (-1093))))) +(-13 (-1093) (-10 -8 (-15 -1707 ($ |#1| |#2|)) (-15 -2340 (|#1| $)) (-15 -2351 (|#2| $)))) +((-1677 (((-112) $ $) NIL)) (-3301 (((-1128) $) 9)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 17) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-1159) (-13 (-1076) (-10 -8 (-15 -3301 ((-1128) $))))) (T -1159)) +((-3301 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1159))))) +(-13 (-1076) (-10 -8 (-15 -3301 ((-1128) $)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-3401 (((-1167 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-2606 (((-640 (-1075)) $) NIL)) (-2518 (((-1169) $) 11)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (-4032 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555))))) (-4223 (($ $) NIL (-4032 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555))))) (-3156 (((-112) $) NIL (-4032 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555))))) (-2421 (($ $ (-563)) NIL) (($ $ (-563) (-563)) 66)) (-1539 (((-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) $) NIL)) (-2084 (((-1167 |#1| |#2| |#3|) $) 36)) (-3258 (((-3 (-1167 |#1| |#2| |#3|) "failed") $) 29)) (-2652 (((-1167 |#1| |#2| |#3|) $) 30)) (-1771 (($ $) 107 (|has| |#1| (-38 (-407 (-563)))))) (-1619 (($ $) 83 (|has| |#1| (-38 (-407 (-563)))))) (-1495 (((-3 $ "failed") $ $) NIL)) (-2424 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-4335 (($ $) NIL (|has| |#1| (-363)))) (-3205 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2186 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-1919 (((-112) $ $) NIL (|has| |#1| (-363)))) (-1748 (($ $) 103 (|has| |#1| (-38 (-407 (-563)))))) (-1597 (($ $) 79 (|has| |#1| (-38 (-407 (-563)))))) (-1857 (((-563) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-3045 (($ (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|)))) NIL)) (-1794 (($ $) 111 (|has| |#1| (-38 (-407 (-563)))))) (-1643 (($ $) 87 (|has| |#1| (-38 (-407 (-563)))))) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-1167 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1169) "failed") $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1034 (-1169))) (|has| |#1| (-363)))) (((-3 (-407 (-563)) "failed") $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1034 (-563))) (|has| |#1| (-363)))) (((-3 (-563) "failed") $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1034 (-563))) (|has| |#1| (-363))))) (-2058 (((-1167 |#1| |#2| |#3|) $) 131) (((-1169) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1034 (-1169))) (|has| |#1| (-363)))) (((-407 (-563)) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1034 (-563))) (|has| |#1| (-363)))) (((-563) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1034 (-563))) (|has| |#1| (-363))))) (-2457 (($ $) 34) (($ (-563) $) 35)) (-3090 (($ $ $) NIL (|has| |#1| (-363)))) (-2751 (($ $) NIL)) (-2950 (((-684 (-1167 |#1| |#2| |#3|)) (-684 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -2835 (-684 (-1167 |#1| |#2| |#3|))) (|:| |vec| (-1257 (-1167 |#1| |#2| |#3|)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-636 (-563))) (|has| |#1| (-363)))) (((-684 (-563)) (-684 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-636 (-563))) (|has| |#1| (-363))))) (-3400 (((-3 $ "failed") $) 48)) (-4064 (((-407 (-948 |#1|)) $ (-563)) 65 (|has| |#1| (-555))) (((-407 (-948 |#1|)) $ (-563) (-563)) 67 (|has| |#1| (-555)))) (-1691 (($) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-3050 (($ $ $) NIL (|has| |#1| (-363)))) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-2468 (((-112) $) NIL (|has| |#1| (-363)))) (-3101 (((-112) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-2788 (((-112) $) 25)) (-2180 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3787 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-882 (-379))) (|has| |#1| (-363)))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-882 (-563))) (|has| |#1| (-363))))) (-3254 (((-563) $) NIL) (((-563) $ (-563)) 24)) (-3827 (((-112) $) NIL)) (-2711 (($ $) NIL (|has| |#1| (-363)))) (-2143 (((-1167 |#1| |#2| |#3|) $) 38 (|has| |#1| (-363)))) (-1645 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2408 (((-3 $ "failed") $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1144)) (|has| |#1| (-363))))) (-1419 (((-112) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-1351 (($ $ (-917)) NIL)) (-2831 (($ (-1 |#1| (-563)) $) NIL)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3920 (((-112) $) NIL)) (-2588 (($ |#1| (-563)) 18) (($ $ (-1075) (-563)) NIL) (($ $ (-640 (-1075)) (-640 (-563))) NIL)) (-3084 (($ $ $) NIL (-4032 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-1777 (($ $ $) NIL (-4032 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-2240 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-363)))) (-4371 (($ $) 72 (|has| |#1| (-38 (-407 (-563)))))) (-2716 (($ $) NIL)) (-2726 ((|#1| $) NIL)) (-3513 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2660 (($ (-563) (-1167 |#1| |#2| |#3|)) 33)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) NIL (|has| |#1| (-363)))) (-3698 (($ $) 70 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) NIL (-4032 (-12 (|has| |#1| (-15 -3698 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -2606 ((-640 (-1169)) |#1|))) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-955)) (|has| |#1| (-1193))))) (($ $ (-1253 |#2|)) 71 (|has| |#1| (-38 (-407 (-563)))))) (-2523 (($) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1144)) (|has| |#1| (-363))) CONST)) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-363)))) (-3548 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4215 (($ $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-1583 (((-1167 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-1876 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-3116 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-2174 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL (|has| |#1| (-363)))) (-3320 (($ $ (-563)) 145)) (-3008 (((-3 $ "failed") $ $) 49 (-4032 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555))))) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3368 (($ $) 73 (|has| |#1| (-38 (-407 (-563)))))) (-1540 (((-1149 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-563))))) (($ $ (-1169) (-1167 |#1| |#2| |#3|)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-514 (-1169) (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-640 (-1169)) (-640 (-1167 |#1| |#2| |#3|))) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-514 (-1169) (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-640 (-294 (-1167 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-309 (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-294 (-1167 |#1| |#2| |#3|))) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-309 (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-309 (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-640 (-1167 |#1| |#2| |#3|)) (-640 (-1167 |#1| |#2| |#3|))) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-309 (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-2628 (((-767) $) NIL (|has| |#1| (-363)))) (-2309 ((|#1| $ (-563)) NIL) (($ $ $) 54 (|has| (-563) (-1105))) (($ $ (-1167 |#1| |#2| |#3|)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-286 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| |#1| (-363)))) (-4202 (($ $ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) (-767)) NIL (|has| |#1| (-363))) (($ $ (-1253 |#2|)) 51) (($ $ (-767)) NIL (-4032 (-12 (|has| (-1167 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $) 50 (-4032 (-12 (|has| (-1167 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-4032 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169) (-767)) NIL (-4032 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-640 (-1169))) NIL (-4032 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169)) NIL (-4032 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))))) (-1801 (($ $) NIL (|has| |#1| (-363)))) (-2154 (((-1167 |#1| |#2| |#3|) $) 41 (|has| |#1| (-363)))) (-4167 (((-563) $) 37)) (-1806 (($ $) 113 (|has| |#1| (-38 (-407 (-563)))))) (-1656 (($ $) 89 (|has| |#1| (-38 (-407 (-563)))))) (-1784 (($ $) 109 (|has| |#1| (-38 (-407 (-563)))))) (-1630 (($ $) 85 (|has| |#1| (-38 (-407 (-563)))))) (-1759 (($ $) 105 (|has| |#1| (-38 (-407 (-563)))))) (-1608 (($ $) 81 (|has| |#1| (-38 (-407 (-563)))))) (-2220 (((-536) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-611 (-536))) (|has| |#1| (-363)))) (((-379) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1018)) (|has| |#1| (-363)))) (((-225) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1018)) (|has| |#1| (-363)))) (((-888 (-379)) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-611 (-888 (-379)))) (|has| |#1| (-363)))) (((-888 (-563)) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-611 (-888 (-563)))) (|has| |#1| (-363))))) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-1741 (($ $) NIL)) (-1693 (((-858) $) 149) (($ (-563)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1167 |#1| |#2| |#3|)) 27) (($ (-1253 |#2|)) 23) (($ (-1169)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1034 (-1169))) (|has| |#1| (-363)))) (($ $) NIL (-4032 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555)))) (($ (-407 (-563))) NIL (-4032 (-12 (|has| (-1167 |#1| |#2| |#3|) (-1034 (-563))) (|has| |#1| (-363))) (|has| |#1| (-38 (-407 (-563))))))) (-4319 ((|#1| $ (-563)) 68)) (-2779 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| $ (-145)) (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-1675 (((-767)) NIL)) (-3408 ((|#1| $) 12)) (-4194 (((-1167 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-1840 (($ $) 119 (|has| |#1| (-38 (-407 (-563)))))) (-1695 (($ $) 95 (|has| |#1| (-38 (-407 (-563)))))) (-2126 (((-112) $ $) NIL (-4032 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555))))) (-1817 (($ $) 115 (|has| |#1| (-38 (-407 (-563)))))) (-1667 (($ $) 91 (|has| |#1| (-38 (-407 (-563)))))) (-1862 (($ $) 123 (|has| |#1| (-38 (-407 (-563)))))) (-1722 (($ $) 99 (|has| |#1| (-38 (-407 (-563)))))) (-1403 ((|#1| $ (-563)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-563)))) (|has| |#1| (-15 -1693 (|#1| (-1169))))))) (-1311 (($ $) 125 (|has| |#1| (-38 (-407 (-563)))))) (-1735 (($ $) 101 (|has| |#1| (-38 (-407 (-563)))))) (-1851 (($ $) 121 (|has| |#1| (-38 (-407 (-563)))))) (-1710 (($ $) 97 (|has| |#1| (-38 (-407 (-563)))))) (-1829 (($ $) 117 (|has| |#1| (-38 (-407 (-563)))))) (-1680 (($ $) 93 (|has| |#1| (-38 (-407 (-563)))))) (-2509 (($ $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-2241 (($) 20 T CONST)) (-2254 (($) 16 T CONST)) (-3209 (($ $ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) (-767)) NIL (|has| |#1| (-363))) (($ $ (-767)) NIL (-4032 (-12 (|has| (-1167 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $) NIL (-4032 (-12 (|has| (-1167 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-4032 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169) (-767)) NIL (-4032 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-640 (-1169))) NIL (-4032 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169)) NIL (-4032 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))))) (-1778 (((-112) $ $) NIL (-4032 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-1756 (((-112) $ $) NIL (-4032 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL (-4032 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-1744 (((-112) $ $) NIL (-4032 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-1837 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 44 (|has| |#1| (-363))) (($ (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) 45 (|has| |#1| (-363)))) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) 21)) (** (($ $ (-917)) NIL) (($ $ (-767)) 53) (($ $ (-563)) NIL (|has| |#1| (-363))) (($ $ $) 74 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 128 (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1167 |#1| |#2| |#3|)) 43 (|has| |#1| (-363))) (($ (-1167 |#1| |#2| |#3|) $) 42 (|has| |#1| (-363))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))))) +(((-1160 |#1| |#2| |#3|) (-13 (-1219 |#1| (-1167 |#1| |#2| |#3|)) (-10 -8 (-15 -1693 ($ (-1253 |#2|))) (-15 -4202 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -3698 ($ $ (-1253 |#2|))) |%noBranch|))) (-1045) (-1169) |#1|) (T -1160)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-4202 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-3698 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3)))) +(-13 (-1219 |#1| (-1167 |#1| |#2| |#3|)) (-10 -8 (-15 -1693 ($ (-1253 |#2|))) (-15 -4202 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -3698 ($ $ (-1253 |#2|))) |%noBranch|))) +((-2236 ((|#2| |#2| (-1085 |#2|)) 26) ((|#2| |#2| (-1169)) 28))) +(((-1161 |#1| |#2|) (-10 -7 (-15 -2236 (|#2| |#2| (-1169))) (-15 -2236 (|#2| |#2| (-1085 |#2|)))) (-13 (-555) (-846) (-1034 (-563)) (-636 (-563))) (-13 (-430 |#1|) (-160) (-27) (-1193))) (T -1161)) +((-2236 (*1 *2 *2 *3) (-12 (-5 *3 (-1085 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1193))) (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-1161 *4 *2)))) (-2236 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-1161 *4 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1193)))))) +(-10 -7 (-15 -2236 (|#2| |#2| (-1169))) (-15 -2236 (|#2| |#2| (-1085 |#2|)))) +((-2236 (((-3 (-407 (-948 |#1|)) (-316 |#1|)) (-407 (-948 |#1|)) (-1085 (-407 (-948 |#1|)))) 31) (((-407 (-948 |#1|)) (-948 |#1|) (-1085 (-948 |#1|))) 44) (((-3 (-407 (-948 |#1|)) (-316 |#1|)) (-407 (-948 |#1|)) (-1169)) 33) (((-407 (-948 |#1|)) (-948 |#1|) (-1169)) 36))) +(((-1162 |#1|) (-10 -7 (-15 -2236 ((-407 (-948 |#1|)) (-948 |#1|) (-1169))) (-15 -2236 ((-3 (-407 (-948 |#1|)) (-316 |#1|)) (-407 (-948 |#1|)) (-1169))) (-15 -2236 ((-407 (-948 |#1|)) (-948 |#1|) (-1085 (-948 |#1|)))) (-15 -2236 ((-3 (-407 (-948 |#1|)) (-316 |#1|)) (-407 (-948 |#1|)) (-1085 (-407 (-948 |#1|)))))) (-13 (-555) (-846) (-1034 (-563)))) (T -1162)) +((-2236 (*1 *2 *3 *4) (-12 (-5 *4 (-1085 (-407 (-948 *5)))) (-5 *3 (-407 (-948 *5))) (-4 *5 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-3 *3 (-316 *5))) (-5 *1 (-1162 *5)))) (-2236 (*1 *2 *3 *4) (-12 (-5 *4 (-1085 (-948 *5))) (-5 *3 (-948 *5)) (-4 *5 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-407 *3)) (-5 *1 (-1162 *5)))) (-2236 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-3 (-407 (-948 *5)) (-316 *5))) (-5 *1 (-1162 *5)) (-5 *3 (-407 (-948 *5))))) (-2236 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-407 (-948 *5))) (-5 *1 (-1162 *5)) (-5 *3 (-948 *5))))) +(-10 -7 (-15 -2236 ((-407 (-948 |#1|)) (-948 |#1|) (-1169))) (-15 -2236 ((-3 (-407 (-948 |#1|)) (-316 |#1|)) (-407 (-948 |#1|)) (-1169))) (-15 -2236 ((-407 (-948 |#1|)) (-948 |#1|) (-1085 (-948 |#1|)))) (-15 -2236 ((-3 (-407 (-948 |#1|)) (-316 |#1|)) (-407 (-948 |#1|)) (-1085 (-407 (-948 |#1|)))))) +((-2240 (((-1165 |#2|) (-1 |#2| |#1|) (-1165 |#1|)) 13))) +(((-1163 |#1| |#2|) (-10 -7 (-15 -2240 ((-1165 |#2|) (-1 |#2| |#1|) (-1165 |#1|)))) (-1045) (-1045)) (T -1163)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1165 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-1165 *6)) (-5 *1 (-1163 *5 *6))))) +(-10 -7 (-15 -2240 ((-1165 |#2|) (-1 |#2| |#1|) (-1165 |#1|)))) +((-3205 (((-418 (-1165 (-407 |#4|))) (-1165 (-407 |#4|))) 51)) (-2174 (((-418 (-1165 (-407 |#4|))) (-1165 (-407 |#4|))) 52))) +(((-1164 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2174 ((-418 (-1165 (-407 |#4|))) (-1165 (-407 |#4|)))) (-15 -3205 ((-418 (-1165 (-407 |#4|))) (-1165 (-407 |#4|))))) (-789) (-846) (-452) (-945 |#3| |#1| |#2|)) (T -1164)) +((-3205 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-452)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-418 (-1165 (-407 *7)))) (-5 *1 (-1164 *4 *5 *6 *7)) (-5 *3 (-1165 (-407 *7))))) (-2174 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-452)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-418 (-1165 (-407 *7)))) (-5 *1 (-1164 *4 *5 *6 *7)) (-5 *3 (-1165 (-407 *7)))))) +(-10 -7 (-15 -2174 ((-418 (-1165 (-407 |#4|))) (-1165 (-407 |#4|)))) (-15 -3205 ((-418 (-1165 (-407 |#4|))) (-1165 (-407 |#4|))))) +((-1677 (((-112) $ $) 136)) (-3411 (((-112) $) 27)) (-4030 (((-1257 |#1|) $ (-767)) NIL)) (-2606 (((-640 (-1075)) $) NIL)) (-1787 (($ (-1165 |#1|)) NIL)) (-2139 (((-1165 $) $ (-1075)) 58) (((-1165 |#1|) $) 47)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-4223 (($ $) 131 (|has| |#1| (-555)))) (-3156 (((-112) $) NIL (|has| |#1| (-555)))) (-1779 (((-767) $) NIL) (((-767) $ (-640 (-1075))) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3724 (($ $ $) 125 (|has| |#1| (-555)))) (-2424 (((-418 (-1165 $)) (-1165 $)) 71 (|has| |#1| (-905)))) (-4335 (($ $) NIL (|has| |#1| (-452)))) (-3205 (((-418 $) $) NIL (|has| |#1| (-452)))) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 91 (|has| |#1| (-905)))) (-1919 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3729 (($ $ (-767)) 39)) (-2618 (($ $ (-767)) 40)) (-3018 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-1075) "failed") $) NIL)) (-2058 ((|#1| $) NIL) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-1075) $) NIL)) (-2742 (($ $ $ (-1075)) NIL (|has| |#1| (-172))) ((|#1| $ $) 127 (|has| |#1| (-172)))) (-3090 (($ $ $) NIL (|has| |#1| (-363)))) (-2751 (($ $) 56)) (-2950 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-3050 (($ $ $) NIL (|has| |#1| (-363)))) (-4369 (($ $ $) 103)) (-2906 (($ $ $) NIL (|has| |#1| (-555)))) (-2521 (((-2 (|:| -2311 |#1|) (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| |#1| (-555)))) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-1300 (($ $) 132 (|has| |#1| (-452))) (($ $ (-1075)) NIL (|has| |#1| (-452)))) (-2739 (((-640 $) $) NIL)) (-2468 (((-112) $) NIL (|has| |#1| (-905)))) (-3554 (($ $ |#1| (-767) $) 45)) (-3787 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1075) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-1075) (-882 (-563))) (|has| |#1| (-882 (-563)))))) (-2349 (((-858) $ (-858)) 116)) (-3254 (((-767) $ $) NIL (|has| |#1| (-555)))) (-3827 (((-112) $) 30)) (-4096 (((-767) $) NIL)) (-2408 (((-3 $ "failed") $) NIL (|has| |#1| (-1144)))) (-2596 (($ (-1165 |#1|) (-1075)) 49) (($ (-1165 $) (-1075)) 65)) (-1351 (($ $ (-767)) 32)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-1368 (((-640 $) $) NIL)) (-3920 (((-112) $) NIL)) (-2588 (($ |#1| (-767)) 63) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL)) (-2625 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $ (-1075)) NIL) (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 120)) (-2048 (((-767) $) NIL) (((-767) $ (-1075)) NIL) (((-640 (-767)) $ (-640 (-1075))) NIL)) (-3084 (($ $ $) NIL (|has| |#1| (-846)))) (-1777 (($ $ $) NIL (|has| |#1| (-846)))) (-2803 (($ (-1 (-767) (-767)) $) NIL)) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-1580 (((-1165 |#1|) $) NIL)) (-4234 (((-3 (-1075) "failed") $) NIL)) (-2716 (($ $) NIL)) (-2726 ((|#1| $) 52)) (-3513 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3573 (((-1151) $) NIL)) (-3839 (((-2 (|:| -3490 $) (|:| -1972 $)) $ (-767)) 38)) (-3733 (((-3 (-640 $) "failed") $) NIL)) (-2919 (((-3 (-640 $) "failed") $) NIL)) (-4086 (((-3 (-2 (|:| |var| (-1075)) (|:| -1654 (-767))) "failed") $) NIL)) (-3698 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2523 (($) NIL (|has| |#1| (-1144)) CONST)) (-1694 (((-1113) $) NIL)) (-2696 (((-112) $) 31)) (-2706 ((|#1| $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 79 (|has| |#1| (-452)))) (-3548 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) 134 (|has| |#1| (-452)))) (-3817 (($ $ (-767) |#1| $) 98)) (-1876 (((-418 (-1165 $)) (-1165 $)) 77 (|has| |#1| (-905)))) (-3116 (((-418 (-1165 $)) (-1165 $)) 76 (|has| |#1| (-905)))) (-2174 (((-418 $) $) 84 (|has| |#1| (-905)))) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL (|has| |#1| (-363)))) (-3008 (((-3 $ "failed") $ |#1|) 130 (|has| |#1| (-555))) (((-3 $ "failed") $ $) 99 (|has| |#1| (-555)))) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-1540 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-1075) |#1|) NIL) (($ $ (-640 (-1075)) (-640 |#1|)) NIL) (($ $ (-1075) $) NIL) (($ $ (-640 (-1075)) (-640 $)) NIL)) (-2628 (((-767) $) NIL (|has| |#1| (-363)))) (-2309 ((|#1| $ |#1|) 118) (($ $ $) 119) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-555))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-555)))) (-3862 (((-3 $ "failed") $ (-767)) 35)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 137 (|has| |#1| (-363)))) (-2315 (($ $ (-1075)) NIL (|has| |#1| (-172))) ((|#1| $) 123 (|has| |#1| (-172)))) (-4202 (($ $ (-1075)) NIL) (($ $ (-640 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4167 (((-767) $) 54) (((-767) $ (-1075)) NIL) (((-640 (-767)) $ (-640 (-1075))) NIL)) (-2220 (((-888 (-379)) $) NIL (-12 (|has| (-1075) (-611 (-888 (-379)))) (|has| |#1| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| (-1075) (-611 (-888 (-563)))) (|has| |#1| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| (-1075) (-611 (-536))) (|has| |#1| (-611 (-536)))))) (-1836 ((|#1| $) 129 (|has| |#1| (-452))) (($ $ (-1075)) NIL (|has| |#1| (-452)))) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-1346 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#1| (-555)))) (-1693 (((-858) $) 117) (($ (-563)) NIL) (($ |#1|) 53) (($ (-1075)) NIL) (($ (-407 (-563))) NIL (-4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#1| (-555)))) (-1337 (((-640 |#1|) $) NIL)) (-4319 ((|#1| $ (-767)) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL)) (-2779 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-1675 (((-767)) NIL)) (-2793 (($ $ $ (-767)) 25 (|has| |#1| (-172)))) (-2126 (((-112) $ $) NIL (|has| |#1| (-555)))) (-2241 (($) 15 T CONST)) (-2254 (($) 16 T CONST)) (-3209 (($ $ (-1075)) NIL) (($ $ (-640 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1778 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1756 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) 96)) (-1768 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1744 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1837 (($ $ |#1|) 138 (|has| |#1| (-363)))) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) 66)) (** (($ $ (-917)) 14) (($ $ (-767)) 12)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 24) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) 101) (($ $ |#1|) NIL))) +(((-1165 |#1|) (-13 (-1233 |#1|) (-10 -8 (-15 -2349 ((-858) $ (-858))) (-15 -3817 ($ $ (-767) |#1| $)))) (-1045)) (T -1165)) +((-2349 (*1 *2 *1 *2) (-12 (-5 *2 (-858)) (-5 *1 (-1165 *3)) (-4 *3 (-1045)))) (-3817 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1165 *3)) (-4 *3 (-1045))))) +(-13 (-1233 |#1|) (-10 -8 (-15 -2349 ((-858) $ (-858))) (-15 -3817 ($ $ (-767) |#1| $)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-2606 (((-640 (-1075)) $) NIL)) (-2518 (((-1169) $) 11)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-4223 (($ $) NIL (|has| |#1| (-555)))) (-3156 (((-112) $) NIL (|has| |#1| (-555)))) (-2421 (($ $ (-407 (-563))) NIL) (($ $ (-407 (-563)) (-407 (-563))) NIL)) (-1539 (((-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|))) $) NIL)) (-1771 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1619 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1495 (((-3 $ "failed") $ $) NIL)) (-4335 (($ $) NIL (|has| |#1| (-363)))) (-3205 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2186 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1919 (((-112) $ $) NIL (|has| |#1| (-363)))) (-1748 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1597 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3045 (($ (-767) (-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|)))) NIL)) (-1794 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1643 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-1160 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1167 |#1| |#2| |#3|) "failed") $) 36)) (-2058 (((-1160 |#1| |#2| |#3|) $) NIL) (((-1167 |#1| |#2| |#3|) $) NIL)) (-3090 (($ $ $) NIL (|has| |#1| (-363)))) (-2751 (($ $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-4031 (((-407 (-563)) $) 55)) (-3050 (($ $ $) NIL (|has| |#1| (-363)))) (-2670 (($ (-407 (-563)) (-1160 |#1| |#2| |#3|)) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-2468 (((-112) $) NIL (|has| |#1| (-363)))) (-2788 (((-112) $) NIL)) (-2180 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3254 (((-407 (-563)) $) NIL) (((-407 (-563)) $ (-407 (-563))) NIL)) (-3827 (((-112) $) NIL)) (-1645 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1351 (($ $ (-917)) NIL) (($ $ (-407 (-563))) NIL)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3920 (((-112) $) NIL)) (-2588 (($ |#1| (-407 (-563))) 20) (($ $ (-1075) (-407 (-563))) NIL) (($ $ (-640 (-1075)) (-640 (-407 (-563)))) NIL)) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-4371 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2716 (($ $) NIL)) (-2726 ((|#1| $) NIL)) (-3513 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3377 (((-1160 |#1| |#2| |#3|) $) 41)) (-2401 (((-3 (-1160 |#1| |#2| |#3|) "failed") $) NIL)) (-2660 (((-1160 |#1| |#2| |#3|) $) NIL)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) NIL (|has| |#1| (-363)))) (-3698 (($ $) 39 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) NIL (-4032 (-12 (|has| |#1| (-15 -3698 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -2606 ((-640 (-1169)) |#1|))) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-955)) (|has| |#1| (-1193))))) (($ $ (-1253 |#2|)) 40 (|has| |#1| (-38 (-407 (-563)))))) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-363)))) (-3548 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2174 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL (|has| |#1| (-363)))) (-3320 (($ $ (-407 (-563))) NIL)) (-3008 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3368 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1540 (((-1149 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))))) (-2628 (((-767) $) NIL (|has| |#1| (-363)))) (-2309 ((|#1| $ (-407 (-563))) NIL) (($ $ $) NIL (|has| (-407 (-563)) (-1105)))) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| |#1| (-363)))) (-4202 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $ (-1253 |#2|)) 38)) (-4167 (((-407 (-563)) $) NIL)) (-1806 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1656 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1784 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1630 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1759 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1608 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1741 (($ $) NIL)) (-1693 (((-858) $) 58) (($ (-563)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1160 |#1| |#2| |#3|)) 30) (($ (-1167 |#1| |#2| |#3|)) 31) (($ (-1253 |#2|)) 26) (($ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $) NIL (|has| |#1| (-555)))) (-4319 ((|#1| $ (-407 (-563))) NIL)) (-2779 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1675 (((-767)) NIL)) (-3408 ((|#1| $) 12)) (-1840 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1695 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2126 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1817 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1667 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1862 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1722 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1403 ((|#1| $ (-407 (-563))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))) (|has| |#1| (-15 -1693 (|#1| (-1169))))))) (-1311 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1735 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1851 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1710 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1829 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1680 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2241 (($) 22 T CONST)) (-2254 (($) 16 T CONST)) (-3209 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (-1718 (((-112) $ $) NIL)) (-1837 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) 24)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))))) +(((-1166 |#1| |#2| |#3|) (-13 (-1240 |#1| (-1160 |#1| |#2| |#3|)) (-1034 (-1167 |#1| |#2| |#3|)) (-613 (-1253 |#2|)) (-10 -8 (-15 -4202 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -3698 ($ $ (-1253 |#2|))) |%noBranch|))) (-1045) (-1169) |#1|) (T -1166)) +((-4202 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-3698 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3)))) +(-13 (-1240 |#1| (-1160 |#1| |#2| |#3|)) (-1034 (-1167 |#1| |#2| |#3|)) (-613 (-1253 |#2|)) (-10 -8 (-15 -4202 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -3698 ($ $ (-1253 |#2|))) |%noBranch|))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) 124)) (-2606 (((-640 (-1075)) $) NIL)) (-2518 (((-1169) $) 115)) (-1987 (((-1230 |#2| |#1|) $ (-767)) 62)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-4223 (($ $) NIL (|has| |#1| (-555)))) (-3156 (((-112) $) NIL (|has| |#1| (-555)))) (-2421 (($ $ (-767)) 78) (($ $ (-767) (-767)) 75)) (-1539 (((-1149 (-2 (|:| |k| (-767)) (|:| |c| |#1|))) $) 101)) (-1771 (($ $) 168 (|has| |#1| (-38 (-407 (-563)))))) (-1619 (($ $) 144 (|has| |#1| (-38 (-407 (-563)))))) (-1495 (((-3 $ "failed") $ $) NIL)) (-2186 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1748 (($ $) 164 (|has| |#1| (-38 (-407 (-563)))))) (-1597 (($ $) 140 (|has| |#1| (-38 (-407 (-563)))))) (-3045 (($ (-1149 (-2 (|:| |k| (-767)) (|:| |c| |#1|)))) 114) (($ (-1149 |#1|)) 109)) (-1794 (($ $) 172 (|has| |#1| (-38 (-407 (-563)))))) (-1643 (($ $) 148 (|has| |#1| (-38 (-407 (-563)))))) (-4239 (($) NIL T CONST)) (-2751 (($ $) NIL)) (-3400 (((-3 $ "failed") $) 23)) (-2655 (($ $) 26)) (-3619 (((-948 |#1|) $ (-767)) 74) (((-948 |#1|) $ (-767) (-767)) 76)) (-2788 (((-112) $) 119)) (-2180 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3254 (((-767) $) 121) (((-767) $ (-767)) 123)) (-3827 (((-112) $) NIL)) (-1645 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1351 (($ $ (-917)) NIL)) (-2831 (($ (-1 |#1| (-563)) $) NIL)) (-3920 (((-112) $) NIL)) (-2588 (($ |#1| (-767)) 13) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL)) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-4371 (($ $) 130 (|has| |#1| (-38 (-407 (-563)))))) (-2716 (($ $) NIL)) (-2726 ((|#1| $) NIL)) (-3573 (((-1151) $) NIL)) (-3698 (($ $) 128 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) NIL (-4032 (-12 (|has| |#1| (-15 -3698 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -2606 ((-640 (-1169)) |#1|))) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-955)) (|has| |#1| (-1193))))) (($ $ (-1253 |#2|)) 129 (|has| |#1| (-38 (-407 (-563)))))) (-1694 (((-1113) $) NIL)) (-3320 (($ $ (-767)) 15)) (-3008 (((-3 $ "failed") $ $) 24 (|has| |#1| (-555)))) (-3368 (($ $) 132 (|has| |#1| (-38 (-407 (-563)))))) (-1540 (((-1149 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-767)))))) (-2309 ((|#1| $ (-767)) 118) (($ $ $) 127 (|has| (-767) (-1105)))) (-4202 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $ (-1253 |#2|)) 29)) (-4167 (((-767) $) NIL)) (-1806 (($ $) 174 (|has| |#1| (-38 (-407 (-563)))))) (-1656 (($ $) 150 (|has| |#1| (-38 (-407 (-563)))))) (-1784 (($ $) 170 (|has| |#1| (-38 (-407 (-563)))))) (-1630 (($ $) 146 (|has| |#1| (-38 (-407 (-563)))))) (-1759 (($ $) 166 (|has| |#1| (-38 (-407 (-563)))))) (-1608 (($ $) 142 (|has| |#1| (-38 (-407 (-563)))))) (-1741 (($ $) NIL)) (-1693 (((-858) $) 200) (($ (-563)) NIL) (($ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $) NIL (|has| |#1| (-555))) (($ |#1|) 125 (|has| |#1| (-172))) (($ (-1230 |#2| |#1|)) 50) (($ (-1253 |#2|)) 32)) (-1337 (((-1149 |#1|) $) 97)) (-4319 ((|#1| $ (-767)) 117)) (-2779 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1675 (((-767)) NIL)) (-3408 ((|#1| $) 53)) (-1840 (($ $) 180 (|has| |#1| (-38 (-407 (-563)))))) (-1695 (($ $) 156 (|has| |#1| (-38 (-407 (-563)))))) (-2126 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1817 (($ $) 176 (|has| |#1| (-38 (-407 (-563)))))) (-1667 (($ $) 152 (|has| |#1| (-38 (-407 (-563)))))) (-1862 (($ $) 184 (|has| |#1| (-38 (-407 (-563)))))) (-1722 (($ $) 160 (|has| |#1| (-38 (-407 (-563)))))) (-1403 ((|#1| $ (-767)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-767)))) (|has| |#1| (-15 -1693 (|#1| (-1169))))))) (-1311 (($ $) 186 (|has| |#1| (-38 (-407 (-563)))))) (-1735 (($ $) 162 (|has| |#1| (-38 (-407 (-563)))))) (-1851 (($ $) 182 (|has| |#1| (-38 (-407 (-563)))))) (-1710 (($ $) 158 (|has| |#1| (-38 (-407 (-563)))))) (-1829 (($ $) 178 (|has| |#1| (-38 (-407 (-563)))))) (-1680 (($ $) 154 (|has| |#1| (-38 (-407 (-563)))))) (-2241 (($) 17 T CONST)) (-2254 (($) 19 T CONST)) (-3209 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (-1718 (((-112) $ $) NIL)) (-1837 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1826 (($ $) NIL) (($ $ $) 193)) (-1814 (($ $ $) 31)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ |#1|) 197 (|has| |#1| (-363))) (($ $ $) 133 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 136 (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 131) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))))) +(((-1167 |#1| |#2| |#3|) (-13 (-1248 |#1|) (-10 -8 (-15 -1693 ($ (-1230 |#2| |#1|))) (-15 -1987 ((-1230 |#2| |#1|) $ (-767))) (-15 -1693 ($ (-1253 |#2|))) (-15 -4202 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -3698 ($ $ (-1253 |#2|))) |%noBranch|))) (-1045) (-1169) |#1|) (T -1167)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-1230 *4 *3)) (-4 *3 (-1045)) (-14 *4 (-1169)) (-14 *5 *3) (-5 *1 (-1167 *3 *4 *5)))) (-1987 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1230 *5 *4)) (-5 *1 (-1167 *4 *5 *6)) (-4 *4 (-1045)) (-14 *5 (-1169)) (-14 *6 *4))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-4202 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-3698 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3)))) +(-13 (-1248 |#1|) (-10 -8 (-15 -1693 ($ (-1230 |#2| |#1|))) (-15 -1987 ((-1230 |#2| |#1|) $ (-767))) (-15 -1693 ($ (-1253 |#2|))) (-15 -4202 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -3698 ($ $ (-1253 |#2|))) |%noBranch|))) +((-1693 (((-858) $) 27) (($ (-1169)) 29)) (-4032 (($ (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 40)) (-4022 (($ (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 33) (($ $) 34)) (-1356 (($ (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 35)) (-1345 (($ (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 37)) (-1336 (($ (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 36)) (-1325 (($ (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 38)) (-3299 (($ (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 39))) +(((-1168) (-13 (-610 (-858)) (-10 -8 (-15 -1693 ($ (-1169))) (-15 -1356 ($ (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -1336 ($ (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -1345 ($ (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -1325 ($ (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -4032 ($ (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -3299 ($ (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -4022 ($ (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -4022 ($ $))))) (T -1168)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1168)))) (-1356 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) (-5 *1 (-1168)))) (-1336 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) (-5 *1 (-1168)))) (-1345 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) (-5 *1 (-1168)))) (-1325 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) (-5 *1 (-1168)))) (-4032 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) (-5 *1 (-1168)))) (-3299 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) (-5 *1 (-1168)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) (-5 *1 (-1168)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) (-5 *1 (-1168)))) (-4022 (*1 *1 *1) (-5 *1 (-1168)))) +(-13 (-610 (-858)) (-10 -8 (-15 -1693 ($ (-1169))) (-15 -1356 ($ (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -1336 ($ (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -1345 ($ (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -1325 ($ (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -4032 ($ (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -3299 ($ (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -4022 ($ (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -4022 ($ $)))) +((-1677 (((-112) $ $) NIL)) (-2719 (($ $ (-640 (-858))) 59)) (-2167 (($ $ (-640 (-858))) 57)) (-3736 (((-1151) $) 84)) (-3428 (((-2 (|:| -3799 (-640 (-858))) (|:| -1901 (-640 (-858))) (|:| |presup| (-640 (-858))) (|:| -3034 (-640 (-858))) (|:| |args| (-640 (-858)))) $) 87)) (-4264 (((-112) $) 22)) (-3557 (($ $ (-640 (-640 (-858)))) 56) (($ $ (-2 (|:| -3799 (-640 (-858))) (|:| -1901 (-640 (-858))) (|:| |presup| (-640 (-858))) (|:| -3034 (-640 (-858))) (|:| |args| (-640 (-858))))) 82)) (-4239 (($) 123 T CONST)) (-1330 (((-1262)) 105)) (-3787 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 66) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 73)) (-1566 (($) 94) (($ $) 100)) (-3348 (($ $) 83)) (-3084 (($ $ $) NIL)) (-1777 (($ $ $) NIL)) (-3651 (((-640 $) $) 106)) (-3573 (((-1151) $) 89)) (-1694 (((-1113) $) NIL)) (-2309 (($ $ (-640 (-858))) 58)) (-2220 (((-536) $) 46) (((-1169) $) 47) (((-888 (-563)) $) 77) (((-888 (-379)) $) 75)) (-1693 (((-858) $) 53) (($ (-1151)) 48)) (-2930 (($ $ (-640 (-858))) 60)) (-3741 (((-1151) $) 33) (((-1151) $ (-112)) 34) (((-1262) (-818) $) 35) (((-1262) (-818) $ (-112)) 36)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) 49)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) 50))) +(((-1169) (-13 (-846) (-611 (-536)) (-824) (-611 (-1169)) (-613 (-1151)) (-611 (-888 (-563))) (-611 (-888 (-379))) (-882 (-563)) (-882 (-379)) (-10 -8 (-15 -1566 ($)) (-15 -1566 ($ $)) (-15 -1330 ((-1262))) (-15 -3348 ($ $)) (-15 -4264 ((-112) $)) (-15 -3428 ((-2 (|:| -3799 (-640 (-858))) (|:| -1901 (-640 (-858))) (|:| |presup| (-640 (-858))) (|:| -3034 (-640 (-858))) (|:| |args| (-640 (-858)))) $)) (-15 -3557 ($ $ (-640 (-640 (-858))))) (-15 -3557 ($ $ (-2 (|:| -3799 (-640 (-858))) (|:| -1901 (-640 (-858))) (|:| |presup| (-640 (-858))) (|:| -3034 (-640 (-858))) (|:| |args| (-640 (-858)))))) (-15 -2167 ($ $ (-640 (-858)))) (-15 -2719 ($ $ (-640 (-858)))) (-15 -2930 ($ $ (-640 (-858)))) (-15 -2309 ($ $ (-640 (-858)))) (-15 -3736 ((-1151) $)) (-15 -3651 ((-640 $) $)) (-15 -4239 ($) -2669)))) (T -1169)) +((-1566 (*1 *1) (-5 *1 (-1169))) (-1566 (*1 *1 *1) (-5 *1 (-1169))) (-1330 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1169)))) (-3348 (*1 *1 *1) (-5 *1 (-1169))) (-4264 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1169)))) (-3428 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3799 (-640 (-858))) (|:| -1901 (-640 (-858))) (|:| |presup| (-640 (-858))) (|:| -3034 (-640 (-858))) (|:| |args| (-640 (-858))))) (-5 *1 (-1169)))) (-3557 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-640 (-858)))) (-5 *1 (-1169)))) (-3557 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3799 (-640 (-858))) (|:| -1901 (-640 (-858))) (|:| |presup| (-640 (-858))) (|:| -3034 (-640 (-858))) (|:| |args| (-640 (-858))))) (-5 *1 (-1169)))) (-2167 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-1169)))) (-2719 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-1169)))) (-2930 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-1169)))) (-2309 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-1169)))) (-3736 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1169)))) (-3651 (*1 *2 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-1169)))) (-4239 (*1 *1) (-5 *1 (-1169)))) +(-13 (-846) (-611 (-536)) (-824) (-611 (-1169)) (-613 (-1151)) (-611 (-888 (-563))) (-611 (-888 (-379))) (-882 (-563)) (-882 (-379)) (-10 -8 (-15 -1566 ($)) (-15 -1566 ($ $)) (-15 -1330 ((-1262))) (-15 -3348 ($ $)) (-15 -4264 ((-112) $)) (-15 -3428 ((-2 (|:| -3799 (-640 (-858))) (|:| -1901 (-640 (-858))) (|:| |presup| (-640 (-858))) (|:| -3034 (-640 (-858))) (|:| |args| (-640 (-858)))) $)) (-15 -3557 ($ $ (-640 (-640 (-858))))) (-15 -3557 ($ $ (-2 (|:| -3799 (-640 (-858))) (|:| -1901 (-640 (-858))) (|:| |presup| (-640 (-858))) (|:| -3034 (-640 (-858))) (|:| |args| (-640 (-858)))))) (-15 -2167 ($ $ (-640 (-858)))) (-15 -2719 ($ $ (-640 (-858)))) (-15 -2930 ($ $ (-640 (-858)))) (-15 -2309 ($ $ (-640 (-858)))) (-15 -3736 ((-1151) $)) (-15 -3651 ((-640 $) $)) (-15 -4239 ($) -2669))) +((-4041 (((-1257 |#1|) |#1| (-917)) 16) (((-1257 |#1|) (-640 |#1|)) 20))) +(((-1170 |#1|) (-10 -7 (-15 -4041 ((-1257 |#1|) (-640 |#1|))) (-15 -4041 ((-1257 |#1|) |#1| (-917)))) (-1045)) (T -1170)) +((-4041 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-5 *2 (-1257 *3)) (-5 *1 (-1170 *3)) (-4 *3 (-1045)))) (-4041 (*1 *2 *3) (-12 (-5 *3 (-640 *4)) (-4 *4 (-1045)) (-5 *2 (-1257 *4)) (-5 *1 (-1170 *4))))) +(-10 -7 (-15 -4041 ((-1257 |#1|) (-640 |#1|))) (-15 -4041 ((-1257 |#1|) |#1| (-917)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-4223 (($ $) NIL (|has| |#1| (-555)))) (-3156 (((-112) $) NIL (|has| |#1| (-555)))) (-1495 (((-3 $ "failed") $ $) NIL)) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) NIL)) (-2058 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) NIL)) (-2751 (($ $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-1300 (($ $) NIL (|has| |#1| (-452)))) (-3554 (($ $ |#1| (-967) $) NIL)) (-3827 (((-112) $) NIL)) (-4096 (((-767) $) NIL)) (-3920 (((-112) $) NIL)) (-2588 (($ |#1| (-967)) NIL)) (-2048 (((-967) $) NIL)) (-2803 (($ (-1 (-967) (-967)) $) NIL)) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-2716 (($ $) NIL)) (-2726 ((|#1| $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-2696 (((-112) $) NIL)) (-2706 ((|#1| $) NIL)) (-3817 (($ $ (-967) |#1| $) NIL (-12 (|has| (-967) (-131)) (|has| |#1| (-555))))) (-3008 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555)))) (-4167 (((-967) $) NIL)) (-1836 ((|#1| $) NIL (|has| |#1| (-452)))) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL (|has| |#1| (-555))) (($ |#1|) NIL) (($ (-407 (-563))) NIL (-4032 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))))) (-1337 (((-640 |#1|) $) NIL)) (-4319 ((|#1| $ (-967)) NIL)) (-2779 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1675 (((-767)) NIL)) (-2793 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-2126 (((-112) $ $) NIL (|has| |#1| (-555)))) (-2241 (($) 9 T CONST)) (-2254 (($) 14 T CONST)) (-1718 (((-112) $ $) 16)) (-1837 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) 19)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))))) +(((-1171 |#1|) (-13 (-326 |#1| (-967)) (-10 -8 (IF (|has| |#1| (-555)) (IF (|has| (-967) (-131)) (-15 -3817 ($ $ (-967) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4405)) (-6 -4405) |%noBranch|))) (-1045)) (T -1171)) +((-3817 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-967)) (-4 *2 (-131)) (-5 *1 (-1171 *3)) (-4 *3 (-555)) (-4 *3 (-1045))))) +(-13 (-326 |#1| (-967)) (-10 -8 (IF (|has| |#1| (-555)) (IF (|has| (-967) (-131)) (-15 -3817 ($ $ (-967) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4405)) (-6 -4405) |%noBranch|))) +((-1996 (((-1173) (-1169) $) 25)) (-3027 (($) 29)) (-1598 (((-3 (|:| |fst| (-434)) (|:| -3784 "void")) (-1169) $) 22)) (-3720 (((-1262) (-1169) (-3 (|:| |fst| (-434)) (|:| -3784 "void")) $) 41) (((-1262) (-1169) (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) 42) (((-1262) (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) 43)) (-2156 (((-1262) (-1169)) 58)) (-2409 (((-1262) (-1169) $) 55) (((-1262) (-1169)) 56) (((-1262)) 57)) (-3658 (((-1262) (-1169)) 37)) (-2042 (((-1169)) 36)) (-3135 (($) 34)) (-4185 (((-437) (-1169) (-437) (-1169) $) 45) (((-437) (-640 (-1169)) (-437) (-1169) $) 49) (((-437) (-1169) (-437)) 46) (((-437) (-1169) (-437) (-1169)) 50)) (-4119 (((-1169)) 35)) (-1693 (((-858) $) 28)) (-2972 (((-1262)) 30) (((-1262) (-1169)) 33)) (-4169 (((-640 (-1169)) (-1169) $) 24)) (-4184 (((-1262) (-1169) (-640 (-1169)) $) 38) (((-1262) (-1169) (-640 (-1169))) 39) (((-1262) (-640 (-1169))) 40))) +(((-1172) (-13 (-610 (-858)) (-10 -8 (-15 -3027 ($)) (-15 -2972 ((-1262))) (-15 -2972 ((-1262) (-1169))) (-15 -4185 ((-437) (-1169) (-437) (-1169) $)) (-15 -4185 ((-437) (-640 (-1169)) (-437) (-1169) $)) (-15 -4185 ((-437) (-1169) (-437))) (-15 -4185 ((-437) (-1169) (-437) (-1169))) (-15 -3658 ((-1262) (-1169))) (-15 -4119 ((-1169))) (-15 -2042 ((-1169))) (-15 -4184 ((-1262) (-1169) (-640 (-1169)) $)) (-15 -4184 ((-1262) (-1169) (-640 (-1169)))) (-15 -4184 ((-1262) (-640 (-1169)))) (-15 -3720 ((-1262) (-1169) (-3 (|:| |fst| (-434)) (|:| -3784 "void")) $)) (-15 -3720 ((-1262) (-1169) (-3 (|:| |fst| (-434)) (|:| -3784 "void")))) (-15 -3720 ((-1262) (-3 (|:| |fst| (-434)) (|:| -3784 "void")))) (-15 -2409 ((-1262) (-1169) $)) (-15 -2409 ((-1262) (-1169))) (-15 -2409 ((-1262))) (-15 -2156 ((-1262) (-1169))) (-15 -3135 ($)) (-15 -1598 ((-3 (|:| |fst| (-434)) (|:| -3784 "void")) (-1169) $)) (-15 -4169 ((-640 (-1169)) (-1169) $)) (-15 -1996 ((-1173) (-1169) $))))) (T -1172)) +((-3027 (*1 *1) (-5 *1 (-1172))) (-2972 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1172)))) (-2972 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-4185 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-437)) (-5 *3 (-1169)) (-5 *1 (-1172)))) (-4185 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-437)) (-5 *3 (-640 (-1169))) (-5 *4 (-1169)) (-5 *1 (-1172)))) (-4185 (*1 *2 *3 *2) (-12 (-5 *2 (-437)) (-5 *3 (-1169)) (-5 *1 (-1172)))) (-4185 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-437)) (-5 *3 (-1169)) (-5 *1 (-1172)))) (-3658 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-4119 (*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1172)))) (-2042 (*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1172)))) (-4184 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-640 (-1169))) (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-4184 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-1169))) (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-4184 (*1 *2 *3) (-12 (-5 *3 (-640 (-1169))) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-3720 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1169)) (-5 *4 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-3720 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-3720 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-2409 (*1 *2 *3 *1) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-2409 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-2409 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1172)))) (-2156 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-3135 (*1 *1) (-5 *1 (-1172))) (-1598 (*1 *2 *3 *1) (-12 (-5 *3 (-1169)) (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) (-5 *1 (-1172)))) (-4169 (*1 *2 *3 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-1172)) (-5 *3 (-1169)))) (-1996 (*1 *2 *3 *1) (-12 (-5 *3 (-1169)) (-5 *2 (-1173)) (-5 *1 (-1172))))) +(-13 (-610 (-858)) (-10 -8 (-15 -3027 ($)) (-15 -2972 ((-1262))) (-15 -2972 ((-1262) (-1169))) (-15 -4185 ((-437) (-1169) (-437) (-1169) $)) (-15 -4185 ((-437) (-640 (-1169)) (-437) (-1169) $)) (-15 -4185 ((-437) (-1169) (-437))) (-15 -4185 ((-437) (-1169) (-437) (-1169))) (-15 -3658 ((-1262) (-1169))) (-15 -4119 ((-1169))) (-15 -2042 ((-1169))) (-15 -4184 ((-1262) (-1169) (-640 (-1169)) $)) (-15 -4184 ((-1262) (-1169) (-640 (-1169)))) (-15 -4184 ((-1262) (-640 (-1169)))) (-15 -3720 ((-1262) (-1169) (-3 (|:| |fst| (-434)) (|:| -3784 "void")) $)) (-15 -3720 ((-1262) (-1169) (-3 (|:| |fst| (-434)) (|:| -3784 "void")))) (-15 -3720 ((-1262) (-3 (|:| |fst| (-434)) (|:| -3784 "void")))) (-15 -2409 ((-1262) (-1169) $)) (-15 -2409 ((-1262) (-1169))) (-15 -2409 ((-1262))) (-15 -2156 ((-1262) (-1169))) (-15 -3135 ($)) (-15 -1598 ((-3 (|:| |fst| (-434)) (|:| -3784 "void")) (-1169) $)) (-15 -4169 ((-640 (-1169)) (-1169) $)) (-15 -1996 ((-1173) (-1169) $)))) +((-3975 (((-640 (-640 (-3 (|:| -3348 (-1169)) (|:| -2445 (-640 (-3 (|:| S (-1169)) (|:| P (-948 (-563))))))))) $) 59)) (-3317 (((-640 (-3 (|:| -3348 (-1169)) (|:| -2445 (-640 (-3 (|:| S (-1169)) (|:| P (-948 (-563)))))))) (-434) $) 43)) (-2778 (($ (-640 (-2 (|:| -2387 (-1169)) (|:| -2557 (-437))))) 17)) (-2156 (((-1262) $) 67)) (-2587 (((-640 (-1169)) $) 22)) (-3846 (((-1097) $) 55)) (-3499 (((-437) (-1169) $) 27)) (-1509 (((-640 (-1169)) $) 30)) (-3135 (($) 19)) (-4185 (((-437) (-640 (-1169)) (-437) $) 25) (((-437) (-1169) (-437) $) 24)) (-1693 (((-858) $) 9) (((-1181 (-1169) (-437)) $) 13))) +(((-1173) (-13 (-610 (-858)) (-10 -8 (-15 -1693 ((-1181 (-1169) (-437)) $)) (-15 -3135 ($)) (-15 -4185 ((-437) (-640 (-1169)) (-437) $)) (-15 -4185 ((-437) (-1169) (-437) $)) (-15 -3499 ((-437) (-1169) $)) (-15 -2587 ((-640 (-1169)) $)) (-15 -3317 ((-640 (-3 (|:| -3348 (-1169)) (|:| -2445 (-640 (-3 (|:| S (-1169)) (|:| P (-948 (-563)))))))) (-434) $)) (-15 -1509 ((-640 (-1169)) $)) (-15 -3975 ((-640 (-640 (-3 (|:| -3348 (-1169)) (|:| -2445 (-640 (-3 (|:| S (-1169)) (|:| P (-948 (-563))))))))) $)) (-15 -3846 ((-1097) $)) (-15 -2156 ((-1262) $)) (-15 -2778 ($ (-640 (-2 (|:| -2387 (-1169)) (|:| -2557 (-437))))))))) (T -1173)) +((-1693 (*1 *2 *1) (-12 (-5 *2 (-1181 (-1169) (-437))) (-5 *1 (-1173)))) (-3135 (*1 *1) (-5 *1 (-1173))) (-4185 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-437)) (-5 *3 (-640 (-1169))) (-5 *1 (-1173)))) (-4185 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-437)) (-5 *3 (-1169)) (-5 *1 (-1173)))) (-3499 (*1 *2 *3 *1) (-12 (-5 *3 (-1169)) (-5 *2 (-437)) (-5 *1 (-1173)))) (-2587 (*1 *2 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-1173)))) (-3317 (*1 *2 *3 *1) (-12 (-5 *3 (-434)) (-5 *2 (-640 (-3 (|:| -3348 (-1169)) (|:| -2445 (-640 (-3 (|:| S (-1169)) (|:| P (-948 (-563))))))))) (-5 *1 (-1173)))) (-1509 (*1 *2 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-1173)))) (-3975 (*1 *2 *1) (-12 (-5 *2 (-640 (-640 (-3 (|:| -3348 (-1169)) (|:| -2445 (-640 (-3 (|:| S (-1169)) (|:| P (-948 (-563)))))))))) (-5 *1 (-1173)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-1173)))) (-2156 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1173)))) (-2778 (*1 *1 *2) (-12 (-5 *2 (-640 (-2 (|:| -2387 (-1169)) (|:| -2557 (-437))))) (-5 *1 (-1173))))) +(-13 (-610 (-858)) (-10 -8 (-15 -1693 ((-1181 (-1169) (-437)) $)) (-15 -3135 ($)) (-15 -4185 ((-437) (-640 (-1169)) (-437) $)) (-15 -4185 ((-437) (-1169) (-437) $)) (-15 -3499 ((-437) (-1169) $)) (-15 -2587 ((-640 (-1169)) $)) (-15 -3317 ((-640 (-3 (|:| -3348 (-1169)) (|:| -2445 (-640 (-3 (|:| S (-1169)) (|:| P (-948 (-563)))))))) (-434) $)) (-15 -1509 ((-640 (-1169)) $)) (-15 -3975 ((-640 (-640 (-3 (|:| -3348 (-1169)) (|:| -2445 (-640 (-3 (|:| S (-1169)) (|:| P (-948 (-563))))))))) $)) (-15 -3846 ((-1097) $)) (-15 -2156 ((-1262) $)) (-15 -2778 ($ (-640 (-2 (|:| -2387 (-1169)) (|:| -2557 (-437)))))))) +((-1677 (((-112) $ $) NIL)) (-2131 (((-3 (-563) "failed") $) 29) (((-3 (-225) "failed") $) 35) (((-3 (-1169) "failed") $) 41) (((-3 (-1151) "failed") $) 47)) (-2058 (((-563) $) 30) (((-225) $) 36) (((-1169) $) 42) (((-1151) $) 48)) (-1799 (((-112) $) 53)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-2658 (((-3 (-563) (-225) (-1169) (-1151) $) $) 55)) (-3639 (((-640 $) $) 57)) (-2220 (((-1097) $) 24) (($ (-1097)) 25)) (-2729 (((-112) $) 56)) (-1693 (((-858) $) 23) (($ (-563)) 26) (($ (-225)) 32) (($ (-1169)) 38) (($ (-1151)) 44) (((-536) $) 59) (((-563) $) 31) (((-225) $) 37) (((-1169) $) 43) (((-1151) $) 49)) (-2226 (((-112) $ (|[\|\|]| (-563))) 10) (((-112) $ (|[\|\|]| (-225))) 13) (((-112) $ (|[\|\|]| (-1169))) 19) (((-112) $ (|[\|\|]| (-1151))) 16)) (-1751 (($ (-1169) (-640 $)) 51) (($ $ (-640 $)) 52)) (-1905 (((-563) $) 27) (((-225) $) 33) (((-1169) $) 39) (((-1151) $) 45)) (-1718 (((-112) $ $) 7))) +(((-1174) (-13 (-1252) (-1093) (-1034 (-563)) (-1034 (-225)) (-1034 (-1169)) (-1034 (-1151)) (-610 (-536)) (-10 -8 (-15 -2220 ((-1097) $)) (-15 -2220 ($ (-1097))) (-15 -1693 ((-563) $)) (-15 -1905 ((-563) $)) (-15 -1693 ((-225) $)) (-15 -1905 ((-225) $)) (-15 -1693 ((-1169) $)) (-15 -1905 ((-1169) $)) (-15 -1693 ((-1151) $)) (-15 -1905 ((-1151) $)) (-15 -1751 ($ (-1169) (-640 $))) (-15 -1751 ($ $ (-640 $))) (-15 -1799 ((-112) $)) (-15 -2658 ((-3 (-563) (-225) (-1169) (-1151) $) $)) (-15 -3639 ((-640 $) $)) (-15 -2729 ((-112) $)) (-15 -2226 ((-112) $ (|[\|\|]| (-563)))) (-15 -2226 ((-112) $ (|[\|\|]| (-225)))) (-15 -2226 ((-112) $ (|[\|\|]| (-1169)))) (-15 -2226 ((-112) $ (|[\|\|]| (-1151))))))) (T -1174)) +((-2220 (*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-1174)))) (-2220 (*1 *1 *2) (-12 (-5 *2 (-1097)) (-5 *1 (-1174)))) (-1693 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-1174)))) (-1905 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-1174)))) (-1693 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1174)))) (-1905 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1174)))) (-1693 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1174)))) (-1905 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1174)))) (-1693 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1174)))) (-1905 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1174)))) (-1751 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-1174))) (-5 *1 (-1174)))) (-1751 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-1174))) (-5 *1 (-1174)))) (-1799 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1174)))) (-2658 (*1 *2 *1) (-12 (-5 *2 (-3 (-563) (-225) (-1169) (-1151) (-1174))) (-5 *1 (-1174)))) (-3639 (*1 *2 *1) (-12 (-5 *2 (-640 (-1174))) (-5 *1 (-1174)))) (-2729 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1174)))) (-2226 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-563))) (-5 *2 (-112)) (-5 *1 (-1174)))) (-2226 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1174)))) (-2226 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1169))) (-5 *2 (-112)) (-5 *1 (-1174)))) (-2226 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1151))) (-5 *2 (-112)) (-5 *1 (-1174))))) +(-13 (-1252) (-1093) (-1034 (-563)) (-1034 (-225)) (-1034 (-1169)) (-1034 (-1151)) (-610 (-536)) (-10 -8 (-15 -2220 ((-1097) $)) (-15 -2220 ($ (-1097))) (-15 -1693 ((-563) $)) (-15 -1905 ((-563) $)) (-15 -1693 ((-225) $)) (-15 -1905 ((-225) $)) (-15 -1693 ((-1169) $)) (-15 -1905 ((-1169) $)) (-15 -1693 ((-1151) $)) (-15 -1905 ((-1151) $)) (-15 -1751 ($ (-1169) (-640 $))) (-15 -1751 ($ $ (-640 $))) (-15 -1799 ((-112) $)) (-15 -2658 ((-3 (-563) (-225) (-1169) (-1151) $) $)) (-15 -3639 ((-640 $) $)) (-15 -2729 ((-112) $)) (-15 -2226 ((-112) $ (|[\|\|]| (-563)))) (-15 -2226 ((-112) $ (|[\|\|]| (-225)))) (-15 -2226 ((-112) $ (|[\|\|]| (-1169)))) (-15 -2226 ((-112) $ (|[\|\|]| (-1151)))))) +((-1677 (((-112) $ $) NIL)) (-3749 (((-767)) 10)) (-1691 (($) 14)) (-3084 (($ $ $) NIL) (($) 7 T CONST)) (-1777 (($ $ $) NIL) (($) 8 T CONST)) (-1476 (((-917) $) 13)) (-3573 (((-1151) $) NIL)) (-2555 (($ (-917)) 12)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) NIL))) +(((-1175 |#1|) (-840) (-917)) (T -1175)) +NIL +(-840) ((|Integer|) (COND ((< @1 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) -((-4041 (((-112) $ $) NIL)) (-1382 (((-766)) NIL)) (-3329 (($) 9)) (-1447 (($) NIL)) (-1551 (($ $ $) NIL) (($) 7 T CONST)) (-2993 (($ $ $) NIL) (($) 8 T CONST)) (-3549 (((-916) $) NIL)) (-3696 (((-1150) $) NIL)) (-2464 (($ (-916)) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-3009 (($ $ $) 11)) (-2997 (($ $ $) 10)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) NIL))) -(((-1175 |#1|) (-13 (-839) (-10 -8 (-15 -2997 ($ $ $)) (-15 -3009 ($ $ $)) (-15 -3329 ($)))) (-916)) (T -1175)) -((-2997 (*1 *1 *1 *1) (-12 (-5 *1 (-1175 *2)) (-14 *2 (-916)))) (-3009 (*1 *1 *1 *1) (-12 (-5 *1 (-1175 *2)) (-14 *2 (-916)))) (-3329 (*1 *1) (-12 (-5 *1 (-1175 *2)) (-14 *2 (-916))))) -(-13 (-839) (-10 -8 (-15 -2997 ($ $ $)) (-15 -3009 ($ $ $)) (-15 -3329 ($)))) +((-1677 (((-112) $ $) NIL)) (-3749 (((-767)) NIL)) (-4239 (($) 9)) (-1691 (($) NIL)) (-3084 (($ $ $) NIL) (($) 7 T CONST)) (-1777 (($ $ $) NIL) (($) 8 T CONST)) (-1476 (((-917) $) NIL)) (-3573 (((-1151) $) NIL)) (-2555 (($ (-917)) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-3119 (($ $ $) 11)) (-3109 (($ $ $) 10)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) NIL))) +(((-1176 |#1|) (-13 (-840) (-10 -8 (-15 -3109 ($ $ $)) (-15 -3119 ($ $ $)) (-15 -4239 ($)))) (-917)) (T -1176)) +((-3109 (*1 *1 *1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-917)))) (-3119 (*1 *1 *1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-917)))) (-4239 (*1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-917))))) +(-13 (-840) (-10 -8 (-15 -3109 ($ $ $)) (-15 -3119 ($ $ $)) (-15 -4239 ($)))) ((|NonNegativeInteger|) (COND ((< @1 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) -((-3519 (((-639 (-639 (-947 |#1|))) (-639 (-406 (-947 |#1|))) (-639 (-1168))) 57)) (-3888 (((-639 (-293 (-406 (-947 |#1|)))) (-293 (-406 (-947 |#1|)))) 69) (((-639 (-293 (-406 (-947 |#1|)))) (-406 (-947 |#1|))) 65) (((-639 (-293 (-406 (-947 |#1|)))) (-293 (-406 (-947 |#1|))) (-1168)) 70) (((-639 (-293 (-406 (-947 |#1|)))) (-406 (-947 |#1|)) (-1168)) 64) (((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-293 (-406 (-947 |#1|))))) 93) (((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-406 (-947 |#1|)))) 92) (((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-293 (-406 (-947 |#1|)))) (-639 (-1168))) 94) (((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-406 (-947 |#1|))) (-639 (-1168))) 91))) -(((-1176 |#1|) (-10 -7 (-15 -3888 ((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-406 (-947 |#1|))) (-639 (-1168)))) (-15 -3888 ((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-293 (-406 (-947 |#1|)))) (-639 (-1168)))) (-15 -3888 ((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-406 (-947 |#1|))))) (-15 -3888 ((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-293 (-406 (-947 |#1|)))))) (-15 -3888 ((-639 (-293 (-406 (-947 |#1|)))) (-406 (-947 |#1|)) (-1168))) (-15 -3888 ((-639 (-293 (-406 (-947 |#1|)))) (-293 (-406 (-947 |#1|))) (-1168))) (-15 -3888 ((-639 (-293 (-406 (-947 |#1|)))) (-406 (-947 |#1|)))) (-15 -3888 ((-639 (-293 (-406 (-947 |#1|)))) (-293 (-406 (-947 |#1|))))) (-15 -3519 ((-639 (-639 (-947 |#1|))) (-639 (-406 (-947 |#1|))) (-639 (-1168))))) (-554)) (T -1176)) -((-3519 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-406 (-947 *5)))) (-5 *4 (-639 (-1168))) (-4 *5 (-554)) (-5 *2 (-639 (-639 (-947 *5)))) (-5 *1 (-1176 *5)))) (-3888 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-639 (-293 (-406 (-947 *4))))) (-5 *1 (-1176 *4)) (-5 *3 (-293 (-406 (-947 *4)))))) (-3888 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-639 (-293 (-406 (-947 *4))))) (-5 *1 (-1176 *4)) (-5 *3 (-406 (-947 *4))))) (-3888 (*1 *2 *3 *4) (-12 (-5 *4 (-1168)) (-4 *5 (-554)) (-5 *2 (-639 (-293 (-406 (-947 *5))))) (-5 *1 (-1176 *5)) (-5 *3 (-293 (-406 (-947 *5)))))) (-3888 (*1 *2 *3 *4) (-12 (-5 *4 (-1168)) (-4 *5 (-554)) (-5 *2 (-639 (-293 (-406 (-947 *5))))) (-5 *1 (-1176 *5)) (-5 *3 (-406 (-947 *5))))) (-3888 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-639 (-639 (-293 (-406 (-947 *4)))))) (-5 *1 (-1176 *4)) (-5 *3 (-639 (-293 (-406 (-947 *4))))))) (-3888 (*1 *2 *3) (-12 (-5 *3 (-639 (-406 (-947 *4)))) (-4 *4 (-554)) (-5 *2 (-639 (-639 (-293 (-406 (-947 *4)))))) (-5 *1 (-1176 *4)))) (-3888 (*1 *2 *3 *4) (-12 (-5 *4 (-639 (-1168))) (-4 *5 (-554)) (-5 *2 (-639 (-639 (-293 (-406 (-947 *5)))))) (-5 *1 (-1176 *5)) (-5 *3 (-639 (-293 (-406 (-947 *5))))))) (-3888 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-406 (-947 *5)))) (-5 *4 (-639 (-1168))) (-4 *5 (-554)) (-5 *2 (-639 (-639 (-293 (-406 (-947 *5)))))) (-5 *1 (-1176 *5))))) -(-10 -7 (-15 -3888 ((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-406 (-947 |#1|))) (-639 (-1168)))) (-15 -3888 ((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-293 (-406 (-947 |#1|)))) (-639 (-1168)))) (-15 -3888 ((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-406 (-947 |#1|))))) (-15 -3888 ((-639 (-639 (-293 (-406 (-947 |#1|))))) (-639 (-293 (-406 (-947 |#1|)))))) (-15 -3888 ((-639 (-293 (-406 (-947 |#1|)))) (-406 (-947 |#1|)) (-1168))) (-15 -3888 ((-639 (-293 (-406 (-947 |#1|)))) (-293 (-406 (-947 |#1|))) (-1168))) (-15 -3888 ((-639 (-293 (-406 (-947 |#1|)))) (-406 (-947 |#1|)))) (-15 -3888 ((-639 (-293 (-406 (-947 |#1|)))) (-293 (-406 (-947 |#1|))))) (-15 -3519 ((-639 (-639 (-947 |#1|))) (-639 (-406 (-947 |#1|))) (-639 (-1168))))) -((-4315 (((-1150)) 7)) (-3694 (((-1150)) 9)) (-2486 (((-1261) (-1150)) 11)) (-2454 (((-1150)) 8))) -(((-1177) (-10 -7 (-15 -4315 ((-1150))) (-15 -2454 ((-1150))) (-15 -3694 ((-1150))) (-15 -2486 ((-1261) (-1150))))) (T -1177)) -((-2486 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1177)))) (-3694 (*1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1177)))) (-2454 (*1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1177)))) (-4315 (*1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1177))))) -(-10 -7 (-15 -4315 ((-1150))) (-15 -2454 ((-1150))) (-15 -3694 ((-1150))) (-15 -2486 ((-1261) (-1150)))) -((-2909 (((-639 (-639 |#1|)) (-639 (-639 |#1|)) (-639 (-639 (-639 |#1|)))) 38)) (-3323 (((-639 (-639 (-639 |#1|))) (-639 (-639 |#1|))) 24)) (-2393 (((-1179 (-639 |#1|)) (-639 |#1|)) 34)) (-2964 (((-639 (-639 |#1|)) (-639 |#1|)) 30)) (-3993 (((-2 (|:| |f1| (-639 |#1|)) (|:| |f2| (-639 (-639 (-639 |#1|)))) (|:| |f3| (-639 (-639 |#1|))) (|:| |f4| (-639 (-639 (-639 |#1|))))) (-639 (-639 (-639 |#1|)))) 37)) (-2802 (((-2 (|:| |f1| (-639 |#1|)) (|:| |f2| (-639 (-639 (-639 |#1|)))) (|:| |f3| (-639 (-639 |#1|))) (|:| |f4| (-639 (-639 (-639 |#1|))))) (-639 |#1|) (-639 (-639 (-639 |#1|))) (-639 (-639 |#1|)) (-639 (-639 (-639 |#1|))) (-639 (-639 (-639 |#1|))) (-639 (-639 (-639 |#1|)))) 36)) (-2741 (((-639 (-639 |#1|)) (-639 (-639 |#1|))) 28)) (-2463 (((-639 |#1|) (-639 |#1|)) 31)) (-3188 (((-639 (-639 (-639 |#1|))) (-639 |#1|) (-639 (-639 (-639 |#1|)))) 18)) (-3580 (((-639 (-639 (-639 |#1|))) (-1 (-112) |#1| |#1|) (-639 |#1|) (-639 (-639 (-639 |#1|)))) 16)) (-3598 (((-2 (|:| |fs| (-112)) (|:| |sd| (-639 |#1|)) (|:| |td| (-639 (-639 |#1|)))) (-1 (-112) |#1| |#1|) (-639 |#1|) (-639 (-639 |#1|))) 14)) (-3925 (((-639 (-639 |#1|)) (-639 (-639 (-639 |#1|)))) 39)) (-2498 (((-639 (-639 |#1|)) (-1179 (-639 |#1|))) 41))) -(((-1178 |#1|) (-10 -7 (-15 -3598 ((-2 (|:| |fs| (-112)) (|:| |sd| (-639 |#1|)) (|:| |td| (-639 (-639 |#1|)))) (-1 (-112) |#1| |#1|) (-639 |#1|) (-639 (-639 |#1|)))) (-15 -3580 ((-639 (-639 (-639 |#1|))) (-1 (-112) |#1| |#1|) (-639 |#1|) (-639 (-639 (-639 |#1|))))) (-15 -3188 ((-639 (-639 (-639 |#1|))) (-639 |#1|) (-639 (-639 (-639 |#1|))))) (-15 -2909 ((-639 (-639 |#1|)) (-639 (-639 |#1|)) (-639 (-639 (-639 |#1|))))) (-15 -3925 ((-639 (-639 |#1|)) (-639 (-639 (-639 |#1|))))) (-15 -2498 ((-639 (-639 |#1|)) (-1179 (-639 |#1|)))) (-15 -3323 ((-639 (-639 (-639 |#1|))) (-639 (-639 |#1|)))) (-15 -2393 ((-1179 (-639 |#1|)) (-639 |#1|))) (-15 -2741 ((-639 (-639 |#1|)) (-639 (-639 |#1|)))) (-15 -2964 ((-639 (-639 |#1|)) (-639 |#1|))) (-15 -2463 ((-639 |#1|) (-639 |#1|))) (-15 -2802 ((-2 (|:| |f1| (-639 |#1|)) (|:| |f2| (-639 (-639 (-639 |#1|)))) (|:| |f3| (-639 (-639 |#1|))) (|:| |f4| (-639 (-639 (-639 |#1|))))) (-639 |#1|) (-639 (-639 (-639 |#1|))) (-639 (-639 |#1|)) (-639 (-639 (-639 |#1|))) (-639 (-639 (-639 |#1|))) (-639 (-639 (-639 |#1|))))) (-15 -3993 ((-2 (|:| |f1| (-639 |#1|)) (|:| |f2| (-639 (-639 (-639 |#1|)))) (|:| |f3| (-639 (-639 |#1|))) (|:| |f4| (-639 (-639 (-639 |#1|))))) (-639 (-639 (-639 |#1|)))))) (-845)) (T -1178)) -((-3993 (*1 *2 *3) (-12 (-4 *4 (-845)) (-5 *2 (-2 (|:| |f1| (-639 *4)) (|:| |f2| (-639 (-639 (-639 *4)))) (|:| |f3| (-639 (-639 *4))) (|:| |f4| (-639 (-639 (-639 *4)))))) (-5 *1 (-1178 *4)) (-5 *3 (-639 (-639 (-639 *4)))))) (-2802 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-845)) (-5 *3 (-639 *6)) (-5 *5 (-639 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-639 *5)) (|:| |f3| *5) (|:| |f4| (-639 *5)))) (-5 *1 (-1178 *6)) (-5 *4 (-639 *5)))) (-2463 (*1 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-845)) (-5 *1 (-1178 *3)))) (-2964 (*1 *2 *3) (-12 (-4 *4 (-845)) (-5 *2 (-639 (-639 *4))) (-5 *1 (-1178 *4)) (-5 *3 (-639 *4)))) (-2741 (*1 *2 *2) (-12 (-5 *2 (-639 (-639 *3))) (-4 *3 (-845)) (-5 *1 (-1178 *3)))) (-2393 (*1 *2 *3) (-12 (-4 *4 (-845)) (-5 *2 (-1179 (-639 *4))) (-5 *1 (-1178 *4)) (-5 *3 (-639 *4)))) (-3323 (*1 *2 *3) (-12 (-4 *4 (-845)) (-5 *2 (-639 (-639 (-639 *4)))) (-5 *1 (-1178 *4)) (-5 *3 (-639 (-639 *4))))) (-2498 (*1 *2 *3) (-12 (-5 *3 (-1179 (-639 *4))) (-4 *4 (-845)) (-5 *2 (-639 (-639 *4))) (-5 *1 (-1178 *4)))) (-3925 (*1 *2 *3) (-12 (-5 *3 (-639 (-639 (-639 *4)))) (-5 *2 (-639 (-639 *4))) (-5 *1 (-1178 *4)) (-4 *4 (-845)))) (-2909 (*1 *2 *2 *3) (-12 (-5 *3 (-639 (-639 (-639 *4)))) (-5 *2 (-639 (-639 *4))) (-4 *4 (-845)) (-5 *1 (-1178 *4)))) (-3188 (*1 *2 *3 *2) (-12 (-5 *2 (-639 (-639 (-639 *4)))) (-5 *3 (-639 *4)) (-4 *4 (-845)) (-5 *1 (-1178 *4)))) (-3580 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-639 (-639 (-639 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-639 *5)) (-4 *5 (-845)) (-5 *1 (-1178 *5)))) (-3598 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-845)) (-5 *4 (-639 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-639 *4)))) (-5 *1 (-1178 *6)) (-5 *5 (-639 *4))))) -(-10 -7 (-15 -3598 ((-2 (|:| |fs| (-112)) (|:| |sd| (-639 |#1|)) (|:| |td| (-639 (-639 |#1|)))) (-1 (-112) |#1| |#1|) (-639 |#1|) (-639 (-639 |#1|)))) (-15 -3580 ((-639 (-639 (-639 |#1|))) (-1 (-112) |#1| |#1|) (-639 |#1|) (-639 (-639 (-639 |#1|))))) (-15 -3188 ((-639 (-639 (-639 |#1|))) (-639 |#1|) (-639 (-639 (-639 |#1|))))) (-15 -2909 ((-639 (-639 |#1|)) (-639 (-639 |#1|)) (-639 (-639 (-639 |#1|))))) (-15 -3925 ((-639 (-639 |#1|)) (-639 (-639 (-639 |#1|))))) (-15 -2498 ((-639 (-639 |#1|)) (-1179 (-639 |#1|)))) (-15 -3323 ((-639 (-639 (-639 |#1|))) (-639 (-639 |#1|)))) (-15 -2393 ((-1179 (-639 |#1|)) (-639 |#1|))) (-15 -2741 ((-639 (-639 |#1|)) (-639 (-639 |#1|)))) (-15 -2964 ((-639 (-639 |#1|)) (-639 |#1|))) (-15 -2463 ((-639 |#1|) (-639 |#1|))) (-15 -2802 ((-2 (|:| |f1| (-639 |#1|)) (|:| |f2| (-639 (-639 (-639 |#1|)))) (|:| |f3| (-639 (-639 |#1|))) (|:| |f4| (-639 (-639 (-639 |#1|))))) (-639 |#1|) (-639 (-639 (-639 |#1|))) (-639 (-639 |#1|)) (-639 (-639 (-639 |#1|))) (-639 (-639 (-639 |#1|))) (-639 (-639 (-639 |#1|))))) (-15 -3993 ((-2 (|:| |f1| (-639 |#1|)) (|:| |f2| (-639 (-639 (-639 |#1|)))) (|:| |f3| (-639 (-639 |#1|))) (|:| |f4| (-639 (-639 (-639 |#1|))))) (-639 (-639 (-639 |#1|)))))) -((-4378 (($ (-639 (-639 |#1|))) 10)) (-2247 (((-639 (-639 |#1|)) $) 11)) (-4053 (((-857) $) 26))) -(((-1179 |#1|) (-10 -8 (-15 -4378 ($ (-639 (-639 |#1|)))) (-15 -2247 ((-639 (-639 |#1|)) $)) (-15 -4053 ((-857) $))) (-1092)) (T -1179)) -((-4053 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-1179 *3)) (-4 *3 (-1092)))) (-2247 (*1 *2 *1) (-12 (-5 *2 (-639 (-639 *3))) (-5 *1 (-1179 *3)) (-4 *3 (-1092)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-639 (-639 *3))) (-4 *3 (-1092)) (-5 *1 (-1179 *3))))) -(-10 -8 (-15 -4378 ($ (-639 (-639 |#1|)))) (-15 -2247 ((-639 (-639 |#1|)) $)) (-15 -4053 ((-857) $))) -((-4041 (((-112) $ $) NIL (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1443 (($) NIL) (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL)) (-3655 (((-1261) $ |#1| |#1|) NIL (|has| $ (-6 -4404)))) (-3735 (((-112) $ (-766)) NIL)) (-4200 ((|#2| $ |#1| |#2|) NIL)) (-2968 (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-1472 (((-3 |#2| "failed") |#1| $) NIL)) (-3329 (($) NIL T CONST)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092))))) (-3729 (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL (|has| $ (-6 -4403))) (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-3 |#2| "failed") |#1| $) NIL)) (-1475 (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-1954 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL (|has| $ (-6 -4403))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403)))) (-1507 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4404)))) (-1420 ((|#2| $ |#1|) NIL)) (-1720 (((-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-639 |#2|) $) NIL (|has| $ (-6 -4403)))) (-4172 (((-112) $ (-766)) NIL)) (-1849 ((|#1| $) NIL (|has| |#1| (-845)))) (-2123 (((-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-639 |#2|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092))))) (-1929 ((|#1| $) NIL (|has| |#1| (-845)))) (-1491 (($ (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4404))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1521 (((-639 |#1|) $) NIL)) (-4278 (((-112) |#1| $) NIL)) (-2078 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL)) (-1581 (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL)) (-3336 (((-639 |#1|) $) NIL)) (-1987 (((-112) |#1| $) NIL)) (-1709 (((-1112) $) NIL (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-1421 ((|#2| $) NIL (|has| |#1| (-845)))) (-1963 (((-3 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) "failed") (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL)) (-3510 (($ $ |#2|) NIL (|has| $ (-6 -4404)))) (-2038 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL)) (-3008 (((-112) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))))) NIL (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-293 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) NIL (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-639 |#2|) (-639 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))))) (-1452 (((-112) $ $) NIL)) (-2716 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092))))) (-2366 (((-639 |#2|) $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) NIL)) (-2343 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1932 (($) NIL) (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL)) (-1723 (((-766) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-766) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) NIL (-12 (|has| $ (-6 -4403)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (((-766) |#2| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092)))) (((-766) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-610 (-535))))) (-4064 (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL)) (-4053 (((-857) $) NIL (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-609 (-857))) (|has| |#2| (-609 (-857)))))) (-4131 (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) NIL)) (-2879 (((-112) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) NIL (|has| $ (-6 -4403))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) NIL (-4037 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| |#2| (-1092))))) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-1180 |#1| |#2|) (-13 (-1183 |#1| |#2|) (-10 -7 (-6 -4403))) (-1092) (-1092)) (T -1180)) -NIL -(-13 (-1183 |#1| |#2|) (-10 -7 (-6 -4403))) -((-4067 ((|#1| (-639 |#1|)) 32)) (-1532 ((|#1| |#1| (-562)) 18)) (-3475 (((-1164 |#1|) |#1| (-916)) 15))) -(((-1181 |#1|) (-10 -7 (-15 -4067 (|#1| (-639 |#1|))) (-15 -3475 ((-1164 |#1|) |#1| (-916))) (-15 -1532 (|#1| |#1| (-562)))) (-362)) (T -1181)) -((-1532 (*1 *2 *2 *3) (-12 (-5 *3 (-562)) (-5 *1 (-1181 *2)) (-4 *2 (-362)))) (-3475 (*1 *2 *3 *4) (-12 (-5 *4 (-916)) (-5 *2 (-1164 *3)) (-5 *1 (-1181 *3)) (-4 *3 (-362)))) (-4067 (*1 *2 *3) (-12 (-5 *3 (-639 *2)) (-5 *1 (-1181 *2)) (-4 *2 (-362))))) -(-10 -7 (-15 -4067 (|#1| (-639 |#1|))) (-15 -3475 ((-1164 |#1|) |#1| (-916))) (-15 -1532 (|#1| |#1| (-562)))) -((-1443 (($) 10) (($ (-639 (-2 (|:| -2319 |#2|) (|:| -2693 |#3|)))) 14)) (-3729 (($ (-2 (|:| -2319 |#2|) (|:| -2693 |#3|)) $) 61) (($ (-1 (-112) (-2 (|:| -2319 |#2|) (|:| -2693 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-1720 (((-639 (-2 (|:| -2319 |#2|) (|:| -2693 |#3|))) $) 39) (((-639 |#3|) $) 41)) (-1491 (($ (-1 (-2 (|:| -2319 |#2|) (|:| -2693 |#3|)) (-2 (|:| -2319 |#2|) (|:| -2693 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-4152 (($ (-1 (-2 (|:| -2319 |#2|) (|:| -2693 |#3|)) (-2 (|:| -2319 |#2|) (|:| -2693 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-2078 (((-2 (|:| -2319 |#2|) (|:| -2693 |#3|)) $) 54)) (-1581 (($ (-2 (|:| -2319 |#2|) (|:| -2693 |#3|)) $) 16)) (-3336 (((-639 |#2|) $) 19)) (-1987 (((-112) |#2| $) 59)) (-1963 (((-3 (-2 (|:| -2319 |#2|) (|:| -2693 |#3|)) "failed") (-1 (-112) (-2 (|:| -2319 |#2|) (|:| -2693 |#3|))) $) 58)) (-2038 (((-2 (|:| -2319 |#2|) (|:| -2693 |#3|)) $) 63)) (-3008 (((-112) (-1 (-112) (-2 (|:| -2319 |#2|) (|:| -2693 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 66)) (-2366 (((-639 |#3|) $) 43)) (-2343 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-1723 (((-766) (-1 (-112) (-2 (|:| -2319 |#2|) (|:| -2693 |#3|))) $) NIL) (((-766) (-2 (|:| -2319 |#2|) (|:| -2693 |#3|)) $) NIL) (((-766) |#3| $) NIL) (((-766) (-1 (-112) |#3|) $) 67)) (-4053 (((-857) $) 27)) (-2879 (((-112) (-1 (-112) (-2 (|:| -2319 |#2|) (|:| -2693 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 65)) (-1733 (((-112) $ $) 49))) -(((-1182 |#1| |#2| |#3|) (-10 -8 (-15 -1733 ((-112) |#1| |#1|)) (-15 -4053 ((-857) |#1|)) (-15 -4152 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1443 (|#1| (-639 (-2 (|:| -2319 |#2|) (|:| -2693 |#3|))))) (-15 -1443 (|#1|)) (-15 -4152 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1491 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2879 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3008 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1723 ((-766) (-1 (-112) |#3|) |#1|)) (-15 -1720 ((-639 |#3|) |#1|)) (-15 -1723 ((-766) |#3| |#1|)) (-15 -2343 (|#3| |#1| |#2| |#3|)) (-15 -2343 (|#3| |#1| |#2|)) (-15 -2366 ((-639 |#3|) |#1|)) (-15 -1987 ((-112) |#2| |#1|)) (-15 -3336 ((-639 |#2|) |#1|)) (-15 -3729 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3729 (|#1| (-1 (-112) (-2 (|:| -2319 |#2|) (|:| -2693 |#3|))) |#1|)) (-15 -3729 (|#1| (-2 (|:| -2319 |#2|) (|:| -2693 |#3|)) |#1|)) (-15 -1963 ((-3 (-2 (|:| -2319 |#2|) (|:| -2693 |#3|)) "failed") (-1 (-112) (-2 (|:| -2319 |#2|) (|:| -2693 |#3|))) |#1|)) (-15 -2078 ((-2 (|:| -2319 |#2|) (|:| -2693 |#3|)) |#1|)) (-15 -1581 (|#1| (-2 (|:| -2319 |#2|) (|:| -2693 |#3|)) |#1|)) (-15 -2038 ((-2 (|:| -2319 |#2|) (|:| -2693 |#3|)) |#1|)) (-15 -1723 ((-766) (-2 (|:| -2319 |#2|) (|:| -2693 |#3|)) |#1|)) (-15 -1720 ((-639 (-2 (|:| -2319 |#2|) (|:| -2693 |#3|))) |#1|)) (-15 -1723 ((-766) (-1 (-112) (-2 (|:| -2319 |#2|) (|:| -2693 |#3|))) |#1|)) (-15 -3008 ((-112) (-1 (-112) (-2 (|:| -2319 |#2|) (|:| -2693 |#3|))) |#1|)) (-15 -2879 ((-112) (-1 (-112) (-2 (|:| -2319 |#2|) (|:| -2693 |#3|))) |#1|)) (-15 -1491 (|#1| (-1 (-2 (|:| -2319 |#2|) (|:| -2693 |#3|)) (-2 (|:| -2319 |#2|) (|:| -2693 |#3|))) |#1|)) (-15 -4152 (|#1| (-1 (-2 (|:| -2319 |#2|) (|:| -2693 |#3|)) (-2 (|:| -2319 |#2|) (|:| -2693 |#3|))) |#1|))) (-1183 |#2| |#3|) (-1092) (-1092)) (T -1182)) -NIL -(-10 -8 (-15 -1733 ((-112) |#1| |#1|)) (-15 -4053 ((-857) |#1|)) (-15 -4152 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1443 (|#1| (-639 (-2 (|:| -2319 |#2|) (|:| -2693 |#3|))))) (-15 -1443 (|#1|)) (-15 -4152 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1491 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2879 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3008 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1723 ((-766) (-1 (-112) |#3|) |#1|)) (-15 -1720 ((-639 |#3|) |#1|)) (-15 -1723 ((-766) |#3| |#1|)) (-15 -2343 (|#3| |#1| |#2| |#3|)) (-15 -2343 (|#3| |#1| |#2|)) (-15 -2366 ((-639 |#3|) |#1|)) (-15 -1987 ((-112) |#2| |#1|)) (-15 -3336 ((-639 |#2|) |#1|)) (-15 -3729 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3729 (|#1| (-1 (-112) (-2 (|:| -2319 |#2|) (|:| -2693 |#3|))) |#1|)) (-15 -3729 (|#1| (-2 (|:| -2319 |#2|) (|:| -2693 |#3|)) |#1|)) (-15 -1963 ((-3 (-2 (|:| -2319 |#2|) (|:| -2693 |#3|)) "failed") (-1 (-112) (-2 (|:| -2319 |#2|) (|:| -2693 |#3|))) |#1|)) (-15 -2078 ((-2 (|:| -2319 |#2|) (|:| -2693 |#3|)) |#1|)) (-15 -1581 (|#1| (-2 (|:| -2319 |#2|) (|:| -2693 |#3|)) |#1|)) (-15 -2038 ((-2 (|:| -2319 |#2|) (|:| -2693 |#3|)) |#1|)) (-15 -1723 ((-766) (-2 (|:| -2319 |#2|) (|:| -2693 |#3|)) |#1|)) (-15 -1720 ((-639 (-2 (|:| -2319 |#2|) (|:| -2693 |#3|))) |#1|)) (-15 -1723 ((-766) (-1 (-112) (-2 (|:| -2319 |#2|) (|:| -2693 |#3|))) |#1|)) (-15 -3008 ((-112) (-1 (-112) (-2 (|:| -2319 |#2|) (|:| -2693 |#3|))) |#1|)) (-15 -2879 ((-112) (-1 (-112) (-2 (|:| -2319 |#2|) (|:| -2693 |#3|))) |#1|)) (-15 -1491 (|#1| (-1 (-2 (|:| -2319 |#2|) (|:| -2693 |#3|)) (-2 (|:| -2319 |#2|) (|:| -2693 |#3|))) |#1|)) (-15 -4152 (|#1| (-1 (-2 (|:| -2319 |#2|) (|:| -2693 |#3|)) (-2 (|:| -2319 |#2|) (|:| -2693 |#3|))) |#1|))) -((-4041 (((-112) $ $) 19 (-4037 (|has| |#2| (-1092)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092))))) (-1443 (($) 72) (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) 71)) (-3655 (((-1261) $ |#1| |#1|) 99 (|has| $ (-6 -4404)))) (-3735 (((-112) $ (-766)) 8)) (-4200 ((|#2| $ |#1| |#2|) 73)) (-2968 (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 45 (|has| $ (-6 -4403)))) (-3556 (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 55 (|has| $ (-6 -4403)))) (-1472 (((-3 |#2| "failed") |#1| $) 61)) (-3329 (($) 7 T CONST)) (-1459 (($ $) 58 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| $ (-6 -4403))))) (-3729 (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 47 (|has| $ (-6 -4403))) (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 46 (|has| $ (-6 -4403))) (((-3 |#2| "failed") |#1| $) 62)) (-1475 (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| $ (-6 -4403)))) (($ (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 54 (|has| $ (-6 -4403)))) (-1954 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) 56 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| $ (-6 -4403)))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) 53 (|has| $ (-6 -4403))) (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 52 (|has| $ (-6 -4403)))) (-1507 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4404)))) (-1420 ((|#2| $ |#1|) 88)) (-1720 (((-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 30 (|has| $ (-6 -4403))) (((-639 |#2|) $) 79 (|has| $ (-6 -4403)))) (-4172 (((-112) $ (-766)) 9)) (-1849 ((|#1| $) 96 (|has| |#1| (-845)))) (-2123 (((-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 29 (|has| $ (-6 -4403))) (((-639 |#2|) $) 80 (|has| $ (-6 -4403)))) (-1572 (((-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| $ (-6 -4403)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1092)) (|has| $ (-6 -4403))))) (-1929 ((|#1| $) 95 (|has| |#1| (-845)))) (-1491 (($ (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 34 (|has| $ (-6 -4404))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4404)))) (-4152 (($ (-1 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-4147 (((-112) $ (-766)) 10)) (-3696 (((-1150) $) 22 (-4037 (|has| |#2| (-1092)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092))))) (-1521 (((-639 |#1|) $) 63)) (-4278 (((-112) |#1| $) 64)) (-2078 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 39)) (-1581 (($ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 40)) (-3336 (((-639 |#1|) $) 93)) (-1987 (((-112) |#1| $) 92)) (-1709 (((-1112) $) 21 (-4037 (|has| |#2| (-1092)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092))))) (-1421 ((|#2| $) 97 (|has| |#1| (-845)))) (-1963 (((-3 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) "failed") (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 51)) (-3510 (($ $ |#2|) 98 (|has| $ (-6 -4404)))) (-2038 (((-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 41)) (-3008 (((-112) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 32 (|has| $ (-6 -4403))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))))) 26 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-293 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) 25 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) 24 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) 23 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)))) (($ $ (-639 |#2|) (-639 |#2|)) 86 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-293 |#2|)) 84 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092)))) (($ $ (-639 (-293 |#2|))) 83 (-12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))))) (-1452 (((-112) $ $) 14)) (-2716 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4403)) (|has| |#2| (-1092))))) (-2366 (((-639 |#2|) $) 91)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-2343 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-1932 (($) 49) (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) 48)) (-1723 (((-766) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 31 (|has| $ (-6 -4403))) (((-766) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| $ (-6 -4403)))) (((-766) |#2| $) 81 (-12 (|has| |#2| (-1092)) (|has| $ (-6 -4403)))) (((-766) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4403)))) (-4220 (($ $) 13)) (-4208 (((-535) $) 59 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-610 (-535))))) (-4064 (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) 50)) (-4053 (((-857) $) 18 (-4037 (|has| |#2| (-609 (-857))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-609 (-857)))))) (-4131 (($ (-639 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) 42)) (-2879 (((-112) (-1 (-112) (-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) $) 33 (|has| $ (-6 -4403))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 20 (-4037 (|has| |#2| (-1092)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092))))) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-1183 |#1| |#2|) (-139) (-1092) (-1092)) (T -1183)) -((-4200 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1183 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1092)))) (-1443 (*1 *1) (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092)))) (-1443 (*1 *1 *2) (-12 (-5 *2 (-639 (-2 (|:| -2319 *3) (|:| -2693 *4)))) (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *1 (-1183 *3 *4)))) (-4152 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1183 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092))))) -(-13 (-606 |t#1| |t#2|) (-600 |t#1| |t#2|) (-10 -8 (-15 -4200 (|t#2| $ |t#1| |t#2|)) (-15 -1443 ($)) (-15 -1443 ($ (-639 (-2 (|:| -2319 |t#1|) (|:| -2693 |t#2|))))) (-15 -4152 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -2319 |#1|) (|:| -2693 |#2|))) . T) ((-102) -4037 (|has| |#2| (-1092)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092))) ((-609 (-857)) -4037 (|has| |#2| (-1092)) (|has| |#2| (-609 (-857))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-609 (-857)))) ((-150 #0#) . T) ((-610 (-535)) |has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-610 (-535))) ((-228 #0#) . T) ((-234 #0#) . T) ((-285 |#1| |#2|) . T) ((-287 |#1| |#2|) . T) ((-308 #0#) -12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092))) ((-308 |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) ((-488 #0#) . T) ((-488 |#2|) . T) ((-600 |#1| |#2|) . T) ((-513 #0# #0#) -12 (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-308 (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)))) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092))) ((-513 |#2| |#2|) -12 (|has| |#2| (-308 |#2|)) (|has| |#2| (-1092))) ((-606 |#1| |#2|) . T) ((-1092) -4037 (|has| |#2| (-1092)) (|has| (-2 (|:| -2319 |#1|) (|:| -2693 |#2|)) (-1092))) ((-1207) . T)) -((-1960 (((-112)) 24)) (-2031 (((-1261) (-1150)) 26)) (-2828 (((-112)) 36)) (-3019 (((-1261)) 34)) (-2290 (((-1261) (-1150) (-1150)) 25)) (-2460 (((-112)) 37)) (-1581 (((-1261) |#1| |#2|) 44)) (-3472 (((-1261)) 20)) (-2249 (((-3 |#2| "failed") |#1|) 42)) (-3565 (((-1261)) 35))) -(((-1184 |#1| |#2|) (-10 -7 (-15 -3472 ((-1261))) (-15 -2290 ((-1261) (-1150) (-1150))) (-15 -2031 ((-1261) (-1150))) (-15 -3019 ((-1261))) (-15 -3565 ((-1261))) (-15 -1960 ((-112))) (-15 -2828 ((-112))) (-15 -2460 ((-112))) (-15 -2249 ((-3 |#2| "failed") |#1|)) (-15 -1581 ((-1261) |#1| |#2|))) (-1092) (-1092)) (T -1184)) -((-1581 (*1 *2 *3 *4) (-12 (-5 *2 (-1261)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)))) (-2249 (*1 *2 *3) (|partial| -12 (-4 *2 (-1092)) (-5 *1 (-1184 *3 *2)) (-4 *3 (-1092)))) (-2460 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)))) (-2828 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)))) (-1960 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)))) (-3565 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)))) (-3019 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)))) (-2031 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1184 *4 *5)) (-4 *4 (-1092)) (-4 *5 (-1092)))) (-2290 (*1 *2 *3 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1184 *4 *5)) (-4 *4 (-1092)) (-4 *5 (-1092)))) (-3472 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092))))) -(-10 -7 (-15 -3472 ((-1261))) (-15 -2290 ((-1261) (-1150) (-1150))) (-15 -2031 ((-1261) (-1150))) (-15 -3019 ((-1261))) (-15 -3565 ((-1261))) (-15 -1960 ((-112))) (-15 -2828 ((-112))) (-15 -2460 ((-112))) (-15 -2249 ((-3 |#2| "failed") |#1|)) (-15 -1581 ((-1261) |#1| |#2|))) -((-2670 (((-1150) (-1150)) 18)) (-2834 (((-52) (-1150)) 21))) -(((-1185) (-10 -7 (-15 -2834 ((-52) (-1150))) (-15 -2670 ((-1150) (-1150))))) (T -1185)) -((-2670 (*1 *2 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1185)))) (-2834 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-52)) (-5 *1 (-1185))))) -(-10 -7 (-15 -2834 ((-52) (-1150))) (-15 -2670 ((-1150) (-1150)))) -((-4053 (((-1187) |#1|) 11))) -(((-1186 |#1|) (-10 -7 (-15 -4053 ((-1187) |#1|))) (-1092)) (T -1186)) -((-4053 (*1 *2 *3) (-12 (-5 *2 (-1187)) (-5 *1 (-1186 *3)) (-4 *3 (-1092))))) -(-10 -7 (-15 -4053 ((-1187) |#1|))) -((-4041 (((-112) $ $) NIL)) (-1522 (((-639 (-1150)) $) 34)) (-1951 (((-639 (-1150)) $ (-639 (-1150))) 37)) (-2442 (((-639 (-1150)) $ (-639 (-1150))) 36)) (-2153 (((-639 (-1150)) $ (-639 (-1150))) 38)) (-2653 (((-639 (-1150)) $) 33)) (-1458 (($) 22)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2945 (((-639 (-1150)) $) 35)) (-1479 (((-1261) $ (-562)) 29) (((-1261) $) 30)) (-4208 (($ (-857) (-562)) 26) (($ (-857) (-562) (-857)) NIL)) (-4053 (((-857) $) 40) (($ (-857)) 24)) (-1733 (((-112) $ $) NIL))) -(((-1187) (-13 (-1092) (-612 (-857)) (-10 -8 (-15 -4208 ($ (-857) (-562))) (-15 -4208 ($ (-857) (-562) (-857))) (-15 -1479 ((-1261) $ (-562))) (-15 -1479 ((-1261) $)) (-15 -2945 ((-639 (-1150)) $)) (-15 -1522 ((-639 (-1150)) $)) (-15 -1458 ($)) (-15 -2653 ((-639 (-1150)) $)) (-15 -2153 ((-639 (-1150)) $ (-639 (-1150)))) (-15 -1951 ((-639 (-1150)) $ (-639 (-1150)))) (-15 -2442 ((-639 (-1150)) $ (-639 (-1150))))))) (T -1187)) -((-4208 (*1 *1 *2 *3) (-12 (-5 *2 (-857)) (-5 *3 (-562)) (-5 *1 (-1187)))) (-4208 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-857)) (-5 *3 (-562)) (-5 *1 (-1187)))) (-1479 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *2 (-1261)) (-5 *1 (-1187)))) (-1479 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-1187)))) (-2945 (*1 *2 *1) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1187)))) (-1522 (*1 *2 *1) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1187)))) (-1458 (*1 *1) (-5 *1 (-1187))) (-2653 (*1 *2 *1) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1187)))) (-2153 (*1 *2 *1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1187)))) (-1951 (*1 *2 *1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1187)))) (-2442 (*1 *2 *1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1187))))) -(-13 (-1092) (-612 (-857)) (-10 -8 (-15 -4208 ($ (-857) (-562))) (-15 -4208 ($ (-857) (-562) (-857))) (-15 -1479 ((-1261) $ (-562))) (-15 -1479 ((-1261) $)) (-15 -2945 ((-639 (-1150)) $)) (-15 -1522 ((-639 (-1150)) $)) (-15 -1458 ($)) (-15 -2653 ((-639 (-1150)) $)) (-15 -2153 ((-639 (-1150)) $ (-639 (-1150)))) (-15 -1951 ((-639 (-1150)) $ (-639 (-1150)))) (-15 -2442 ((-639 (-1150)) $ (-639 (-1150)))))) -((-4041 (((-112) $ $) NIL)) (-1618 (((-1150) $ (-1150)) 17) (((-1150) $) 16)) (-3791 (((-1150) $ (-1150)) 15)) (-2385 (($ $ (-1150)) NIL)) (-2235 (((-3 (-1150) "failed") $) 11)) (-3389 (((-1150) $) 8)) (-2765 (((-3 (-1150) "failed") $) 12)) (-3385 (((-1150) $) 9)) (-3315 (($ (-387)) NIL) (($ (-387) (-1150)) NIL)) (-3253 (((-387) $) NIL)) (-3696 (((-1150) $) NIL)) (-2735 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2912 (((-112) $) 18)) (-4053 (((-857) $) NIL)) (-1380 (($ $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-1188) (-13 (-363 (-387) (-1150)) (-10 -8 (-15 -1618 ((-1150) $ (-1150))) (-15 -1618 ((-1150) $)) (-15 -3389 ((-1150) $)) (-15 -2235 ((-3 (-1150) "failed") $)) (-15 -2765 ((-3 (-1150) "failed") $)) (-15 -2912 ((-112) $))))) (T -1188)) -((-1618 (*1 *2 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1188)))) (-1618 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1188)))) (-3389 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1188)))) (-2235 (*1 *2 *1) (|partial| -12 (-5 *2 (-1150)) (-5 *1 (-1188)))) (-2765 (*1 *2 *1) (|partial| -12 (-5 *2 (-1150)) (-5 *1 (-1188)))) (-2912 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1188))))) -(-13 (-363 (-387) (-1150)) (-10 -8 (-15 -1618 ((-1150) $ (-1150))) (-15 -1618 ((-1150) $)) (-15 -3389 ((-1150) $)) (-15 -2235 ((-3 (-1150) "failed") $)) (-15 -2765 ((-3 (-1150) "failed") $)) (-15 -2912 ((-112) $)))) -((-1587 (((-3 (-562) "failed") |#1|) 19)) (-2138 (((-3 (-562) "failed") |#1|) 14)) (-2892 (((-562) (-1150)) 28))) -(((-1189 |#1|) (-10 -7 (-15 -1587 ((-3 (-562) "failed") |#1|)) (-15 -2138 ((-3 (-562) "failed") |#1|)) (-15 -2892 ((-562) (-1150)))) (-1044)) (T -1189)) -((-2892 (*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-562)) (-5 *1 (-1189 *4)) (-4 *4 (-1044)))) (-2138 (*1 *2 *3) (|partial| -12 (-5 *2 (-562)) (-5 *1 (-1189 *3)) (-4 *3 (-1044)))) (-1587 (*1 *2 *3) (|partial| -12 (-5 *2 (-562)) (-5 *1 (-1189 *3)) (-4 *3 (-1044))))) -(-10 -7 (-15 -1587 ((-3 (-562) "failed") |#1|)) (-15 -2138 ((-3 (-562) "failed") |#1|)) (-15 -2892 ((-562) (-1150)))) -((-4299 (((-1125 (-224))) 9))) -(((-1190) (-10 -7 (-15 -4299 ((-1125 (-224)))))) (T -1190)) -((-4299 (*1 *2) (-12 (-5 *2 (-1125 (-224))) (-5 *1 (-1190))))) -(-10 -7 (-15 -4299 ((-1125 (-224))))) -((-4100 (($) 11)) (-3054 (($ $) 35)) (-3033 (($ $) 33)) (-4139 (($ $) 25)) (-3077 (($ $) 17)) (-1567 (($ $) 15)) (-3065 (($ $) 19)) (-4175 (($ $) 30)) (-3040 (($ $) 34)) (-4151 (($ $) 29))) -(((-1191 |#1|) (-10 -8 (-15 -4100 (|#1|)) (-15 -3054 (|#1| |#1|)) (-15 -3033 (|#1| |#1|)) (-15 -3077 (|#1| |#1|)) (-15 -1567 (|#1| |#1|)) (-15 -3065 (|#1| |#1|)) (-15 -3040 (|#1| |#1|)) (-15 -4139 (|#1| |#1|)) (-15 -4175 (|#1| |#1|)) (-15 -4151 (|#1| |#1|))) (-1192)) (T -1191)) -NIL -(-10 -8 (-15 -4100 (|#1|)) (-15 -3054 (|#1| |#1|)) (-15 -3033 (|#1| |#1|)) (-15 -3077 (|#1| |#1|)) (-15 -1567 (|#1| |#1|)) (-15 -3065 (|#1| |#1|)) (-15 -3040 (|#1| |#1|)) (-15 -4139 (|#1| |#1|)) (-15 -4175 (|#1| |#1|)) (-15 -4151 (|#1| |#1|))) -((-2987 (($ $) 26)) (-4098 (($ $) 11)) (-4206 (($ $) 27)) (-4074 (($ $) 10)) (-3013 (($ $) 28)) (-4120 (($ $) 9)) (-4100 (($) 16)) (-4366 (($ $) 19)) (-3430 (($ $) 18)) (-3022 (($ $) 29)) (-4130 (($ $) 8)) (-3000 (($ $) 30)) (-4108 (($ $) 7)) (-2977 (($ $) 31)) (-4087 (($ $) 6)) (-3054 (($ $) 20)) (-4165 (($ $) 32)) (-3033 (($ $) 21)) (-4139 (($ $) 33)) (-3077 (($ $) 22)) (-4183 (($ $) 34)) (-1567 (($ $) 23)) (-4195 (($ $) 35)) (-3065 (($ $) 24)) (-4175 (($ $) 36)) (-3040 (($ $) 25)) (-4151 (($ $) 37)) (** (($ $ $) 17))) -(((-1192) (-139)) (T -1192)) -((-4100 (*1 *1) (-4 *1 (-1192)))) -(-13 (-1195) (-95) (-492) (-35) (-283) (-10 -8 (-15 -4100 ($)))) -(((-35) . T) ((-95) . T) ((-283) . T) ((-492) . T) ((-1195) . T)) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2533 ((|#1| $) 17)) (-3085 (($ |#1| (-639 $)) 23) (($ (-639 |#1|)) 27) (($ |#1|) 25)) (-3735 (((-112) $ (-766)) 47)) (-2677 ((|#1| $ |#1|) 14 (|has| $ (-6 -4404)))) (-4200 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4404)))) (-3742 (($ $ (-639 $)) 13 (|has| $ (-6 -4404)))) (-3329 (($) NIL T CONST)) (-1720 (((-639 |#1|) $) 51 (|has| $ (-6 -4403)))) (-2409 (((-639 $) $) 42)) (-4188 (((-112) $ $) 32 (|has| |#1| (-1092)))) (-4172 (((-112) $ (-766)) 40)) (-2123 (((-639 |#1|) $) 52 (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) 50 (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1491 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 22)) (-4147 (((-112) $ (-766)) 39)) (-4008 (((-639 |#1|) $) 36)) (-3179 (((-112) $) 35)) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-3008 (((-112) (-1 (-112) |#1|) $) 49 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) 73)) (-3087 (((-112) $) 9)) (-1663 (($) 10)) (-2343 ((|#1| $ "value") NIL)) (-1423 (((-562) $ $) 31)) (-4207 (((-639 $) $) 58)) (-3091 (((-112) $ $) 76)) (-2165 (((-639 $) $) 71)) (-4283 (($ $) 72)) (-2473 (((-112) $) 55)) (-1723 (((-766) (-1 (-112) |#1|) $) 20 (|has| $ (-6 -4403))) (((-766) |#1| $) 16 (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-4220 (($ $) 57)) (-4053 (((-857) $) 60 (|has| |#1| (-609 (-857))))) (-3643 (((-639 $) $) 12)) (-2985 (((-112) $ $) 29 (|has| |#1| (-1092)))) (-2879 (((-112) (-1 (-112) |#1|) $) 48 (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 28 (|has| |#1| (-1092)))) (-3492 (((-766) $) 38 (|has| $ (-6 -4403))))) -(((-1193 |#1|) (-13 (-1005 |#1|) (-10 -8 (-6 -4403) (-6 -4404) (-15 -3085 ($ |#1| (-639 $))) (-15 -3085 ($ (-639 |#1|))) (-15 -3085 ($ |#1|)) (-15 -2473 ((-112) $)) (-15 -4283 ($ $)) (-15 -2165 ((-639 $) $)) (-15 -3091 ((-112) $ $)) (-15 -4207 ((-639 $) $)))) (-1092)) (T -1193)) -((-2473 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1193 *3)) (-4 *3 (-1092)))) (-3085 (*1 *1 *2 *3) (-12 (-5 *3 (-639 (-1193 *2))) (-5 *1 (-1193 *2)) (-4 *2 (-1092)))) (-3085 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-5 *1 (-1193 *3)))) (-3085 (*1 *1 *2) (-12 (-5 *1 (-1193 *2)) (-4 *2 (-1092)))) (-4283 (*1 *1 *1) (-12 (-5 *1 (-1193 *2)) (-4 *2 (-1092)))) (-2165 (*1 *2 *1) (-12 (-5 *2 (-639 (-1193 *3))) (-5 *1 (-1193 *3)) (-4 *3 (-1092)))) (-3091 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1193 *3)) (-4 *3 (-1092)))) (-4207 (*1 *2 *1) (-12 (-5 *2 (-639 (-1193 *3))) (-5 *1 (-1193 *3)) (-4 *3 (-1092))))) -(-13 (-1005 |#1|) (-10 -8 (-6 -4403) (-6 -4404) (-15 -3085 ($ |#1| (-639 $))) (-15 -3085 ($ (-639 |#1|))) (-15 -3085 ($ |#1|)) (-15 -2473 ((-112) $)) (-15 -4283 ($ $)) (-15 -2165 ((-639 $) $)) (-15 -3091 ((-112) $ $)) (-15 -4207 ((-639 $) $)))) -((-4098 (($ $) 15)) (-4120 (($ $) 12)) (-4130 (($ $) 10)) (-4108 (($ $) 17))) -(((-1194 |#1|) (-10 -8 (-15 -4108 (|#1| |#1|)) (-15 -4130 (|#1| |#1|)) (-15 -4120 (|#1| |#1|)) (-15 -4098 (|#1| |#1|))) (-1195)) (T -1194)) -NIL -(-10 -8 (-15 -4108 (|#1| |#1|)) (-15 -4130 (|#1| |#1|)) (-15 -4120 (|#1| |#1|)) (-15 -4098 (|#1| |#1|))) -((-4098 (($ $) 11)) (-4074 (($ $) 10)) (-4120 (($ $) 9)) (-4130 (($ $) 8)) (-4108 (($ $) 7)) (-4087 (($ $) 6))) -(((-1195) (-139)) (T -1195)) -((-4098 (*1 *1 *1) (-4 *1 (-1195))) (-4074 (*1 *1 *1) (-4 *1 (-1195))) (-4120 (*1 *1 *1) (-4 *1 (-1195))) (-4130 (*1 *1 *1) (-4 *1 (-1195))) (-4108 (*1 *1 *1) (-4 *1 (-1195))) (-4087 (*1 *1 *1) (-4 *1 (-1195)))) -(-13 (-10 -8 (-15 -4087 ($ $)) (-15 -4108 ($ $)) (-15 -4130 ($ $)) (-15 -4120 ($ $)) (-15 -4074 ($ $)) (-15 -4098 ($ $)))) -((-3456 ((|#2| |#2|) 88)) (-2091 (((-112) |#2|) 26)) (-1657 ((|#2| |#2|) 30)) (-1670 ((|#2| |#2|) 32)) (-2402 ((|#2| |#2| (-1168)) 83) ((|#2| |#2|) 84)) (-2050 (((-168 |#2|) |#2|) 28)) (-1553 ((|#2| |#2| (-1168)) 85) ((|#2| |#2|) 86))) -(((-1196 |#1| |#2|) (-10 -7 (-15 -2402 (|#2| |#2|)) (-15 -2402 (|#2| |#2| (-1168))) (-15 -1553 (|#2| |#2|)) (-15 -1553 (|#2| |#2| (-1168))) (-15 -3456 (|#2| |#2|)) (-15 -1657 (|#2| |#2|)) (-15 -1670 (|#2| |#2|)) (-15 -2091 ((-112) |#2|)) (-15 -2050 ((-168 |#2|) |#2|))) (-13 (-451) (-845) (-1033 (-562)) (-635 (-562))) (-13 (-27) (-1192) (-429 |#1|))) (T -1196)) -((-2050 (*1 *2 *3) (-12 (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-168 *3)) (-5 *1 (-1196 *4 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *4))))) (-2091 (*1 *2 *3) (-12 (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *2 (-112)) (-5 *1 (-1196 *4 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *4))))) (-1670 (*1 *2 *2) (-12 (-4 *3 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *3))))) (-1657 (*1 *2 *2) (-12 (-4 *3 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *3))))) (-3456 (*1 *2 *2) (-12 (-4 *3 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *3))))) (-1553 (*1 *2 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-1196 *4 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *4))))) (-1553 (*1 *2 *2) (-12 (-4 *3 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *3))))) (-2402 (*1 *2 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-1196 *4 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *4))))) (-2402 (*1 *2 *2) (-12 (-4 *3 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *3)))))) -(-10 -7 (-15 -2402 (|#2| |#2|)) (-15 -2402 (|#2| |#2| (-1168))) (-15 -1553 (|#2| |#2|)) (-15 -1553 (|#2| |#2| (-1168))) (-15 -3456 (|#2| |#2|)) (-15 -1657 (|#2| |#2|)) (-15 -1670 (|#2| |#2|)) (-15 -2091 ((-112) |#2|)) (-15 -2050 ((-168 |#2|) |#2|))) -((-3594 ((|#4| |#4| |#1|) 27)) (-2233 ((|#4| |#4| |#1|) 28))) -(((-1197 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3594 (|#4| |#4| |#1|)) (-15 -2233 (|#4| |#4| |#1|))) (-554) (-372 |#1|) (-372 |#1|) (-681 |#1| |#2| |#3|)) (T -1197)) -((-2233 (*1 *2 *2 *3) (-12 (-4 *3 (-554)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-1197 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))) (-3594 (*1 *2 *2 *3) (-12 (-4 *3 (-554)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-5 *1 (-1197 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5))))) -(-10 -7 (-15 -3594 (|#4| |#4| |#1|)) (-15 -2233 (|#4| |#4| |#1|))) -((-3325 ((|#2| |#2|) 133)) (-3125 ((|#2| |#2|) 130)) (-2634 ((|#2| |#2|) 121)) (-2836 ((|#2| |#2|) 118)) (-1695 ((|#2| |#2|) 126)) (-2630 ((|#2| |#2|) 114)) (-2375 ((|#2| |#2|) 43)) (-2159 ((|#2| |#2|) 94)) (-3537 ((|#2| |#2|) 74)) (-3871 ((|#2| |#2|) 128)) (-3312 ((|#2| |#2|) 116)) (-2182 ((|#2| |#2|) 138)) (-1373 ((|#2| |#2|) 136)) (-3832 ((|#2| |#2|) 137)) (-3136 ((|#2| |#2|) 135)) (-2175 ((|#2| |#2|) 148)) (-2029 ((|#2| |#2|) 30 (-12 (|has| |#2| (-610 (-887 |#1|))) (|has| |#2| (-881 |#1|)) (|has| |#1| (-610 (-887 |#1|))) (|has| |#1| (-881 |#1|))))) (-2405 ((|#2| |#2|) 75)) (-3482 ((|#2| |#2|) 139)) (-3525 ((|#2| |#2|) 140)) (-3935 ((|#2| |#2|) 127)) (-1953 ((|#2| |#2|) 115)) (-3257 ((|#2| |#2|) 134)) (-2785 ((|#2| |#2|) 132)) (-2360 ((|#2| |#2|) 122)) (-2913 ((|#2| |#2|) 120)) (-3094 ((|#2| |#2|) 124)) (-4225 ((|#2| |#2|) 112))) -(((-1198 |#1| |#2|) (-10 -7 (-15 -3525 (|#2| |#2|)) (-15 -3537 (|#2| |#2|)) (-15 -2175 (|#2| |#2|)) (-15 -2159 (|#2| |#2|)) (-15 -2375 (|#2| |#2|)) (-15 -2405 (|#2| |#2|)) (-15 -3482 (|#2| |#2|)) (-15 -4225 (|#2| |#2|)) (-15 -3094 (|#2| |#2|)) (-15 -2360 (|#2| |#2|)) (-15 -3257 (|#2| |#2|)) (-15 -1953 (|#2| |#2|)) (-15 -3935 (|#2| |#2|)) (-15 -3312 (|#2| |#2|)) (-15 -3871 (|#2| |#2|)) (-15 -2630 (|#2| |#2|)) (-15 -1695 (|#2| |#2|)) (-15 -2634 (|#2| |#2|)) (-15 -3325 (|#2| |#2|)) (-15 -2836 (|#2| |#2|)) (-15 -3125 (|#2| |#2|)) (-15 -2913 (|#2| |#2|)) (-15 -2785 (|#2| |#2|)) (-15 -3136 (|#2| |#2|)) (-15 -1373 (|#2| |#2|)) (-15 -3832 (|#2| |#2|)) (-15 -2182 (|#2| |#2|)) (IF (|has| |#1| (-881 |#1|)) (IF (|has| |#1| (-610 (-887 |#1|))) (IF (|has| |#2| (-610 (-887 |#1|))) (IF (|has| |#2| (-881 |#1|)) (-15 -2029 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-845) (-451)) (-13 (-429 |#1|) (-1192))) (T -1198)) -((-2029 (*1 *2 *2) (-12 (-4 *3 (-610 (-887 *3))) (-4 *3 (-881 *3)) (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-610 (-887 *3))) (-4 *2 (-881 *3)) (-4 *2 (-13 (-429 *3) (-1192))))) (-2182 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-3832 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-1373 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-3136 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-2785 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-2913 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-3125 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-2836 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-3325 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-2634 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-1695 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-2630 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-3871 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-3312 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-3935 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-1953 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-3257 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-2360 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-3094 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-4225 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-3482 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-2405 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-2375 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-2159 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-2175 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-3537 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192))))) (-3525 (*1 *2 *2) (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-429 *3) (-1192)))))) -(-10 -7 (-15 -3525 (|#2| |#2|)) (-15 -3537 (|#2| |#2|)) (-15 -2175 (|#2| |#2|)) (-15 -2159 (|#2| |#2|)) (-15 -2375 (|#2| |#2|)) (-15 -2405 (|#2| |#2|)) (-15 -3482 (|#2| |#2|)) (-15 -4225 (|#2| |#2|)) (-15 -3094 (|#2| |#2|)) (-15 -2360 (|#2| |#2|)) (-15 -3257 (|#2| |#2|)) (-15 -1953 (|#2| |#2|)) (-15 -3935 (|#2| |#2|)) (-15 -3312 (|#2| |#2|)) (-15 -3871 (|#2| |#2|)) (-15 -2630 (|#2| |#2|)) (-15 -1695 (|#2| |#2|)) (-15 -2634 (|#2| |#2|)) (-15 -3325 (|#2| |#2|)) (-15 -2836 (|#2| |#2|)) (-15 -3125 (|#2| |#2|)) (-15 -2913 (|#2| |#2|)) (-15 -2785 (|#2| |#2|)) (-15 -3136 (|#2| |#2|)) (-15 -1373 (|#2| |#2|)) (-15 -3832 (|#2| |#2|)) (-15 -2182 (|#2| |#2|)) (IF (|has| |#1| (-881 |#1|)) (IF (|has| |#1| (-610 (-887 |#1|))) (IF (|has| |#2| (-610 (-887 |#1|))) (IF (|has| |#2| (-881 |#1|)) (-15 -2029 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-4177 (((-112) |#5| $) 59) (((-112) $) 101)) (-3623 ((|#5| |#5| $) 74)) (-3556 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 118)) (-4227 (((-639 |#5|) (-639 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 72)) (-4048 (((-3 $ "failed") (-639 |#5|)) 125)) (-1434 (((-3 $ "failed") $) 111)) (-3255 ((|#5| |#5| $) 93)) (-3300 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 30)) (-2227 ((|#5| |#5| $) 97)) (-1954 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 68)) (-1471 (((-2 (|:| -1449 (-639 |#5|)) (|:| -3315 (-639 |#5|))) $) 54)) (-1493 (((-112) |#5| $) 57) (((-112) $) 102)) (-3761 ((|#4| $) 107)) (-1504 (((-3 |#5| "failed") $) 109)) (-2063 (((-639 |#5|) $) 48)) (-1645 (((-112) |#5| $) 66) (((-112) $) 106)) (-2651 ((|#5| |#5| $) 80)) (-1789 (((-112) $ $) 26)) (-2830 (((-112) |#5| $) 62) (((-112) $) 104)) (-1630 ((|#5| |#5| $) 77)) (-1421 (((-3 |#5| "failed") $) 108)) (-4316 (($ $ |#5|) 126)) (-2250 (((-766) $) 51)) (-4064 (($ (-639 |#5|)) 123)) (-2316 (($ $ |#4|) 121)) (-2180 (($ $ |#4|) 120)) (-2209 (($ $) 119)) (-4053 (((-857) $) NIL) (((-639 |#5|) $) 112)) (-4157 (((-766) $) 129)) (-4168 (((-3 (-2 (|:| |bas| $) (|:| -2774 (-639 |#5|))) "failed") (-639 |#5|) (-1 (-112) |#5| |#5|)) 42) (((-3 (-2 (|:| |bas| $) (|:| -2774 (-639 |#5|))) "failed") (-639 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 44)) (-2350 (((-112) $ (-1 (-112) |#5| (-639 |#5|))) 99)) (-3278 (((-639 |#4|) $) 114)) (-3782 (((-112) |#4| $) 117)) (-1733 (((-112) $ $) 19))) -(((-1199 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4157 ((-766) |#1|)) (-15 -4316 (|#1| |#1| |#5|)) (-15 -3556 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3782 ((-112) |#4| |#1|)) (-15 -3278 ((-639 |#4|) |#1|)) (-15 -1434 ((-3 |#1| "failed") |#1|)) (-15 -1504 ((-3 |#5| "failed") |#1|)) (-15 -1421 ((-3 |#5| "failed") |#1|)) (-15 -2227 (|#5| |#5| |#1|)) (-15 -2209 (|#1| |#1|)) (-15 -3255 (|#5| |#5| |#1|)) (-15 -2651 (|#5| |#5| |#1|)) (-15 -1630 (|#5| |#5| |#1|)) (-15 -3623 (|#5| |#5| |#1|)) (-15 -4227 ((-639 |#5|) (-639 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1954 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1645 ((-112) |#1|)) (-15 -2830 ((-112) |#1|)) (-15 -4177 ((-112) |#1|)) (-15 -2350 ((-112) |#1| (-1 (-112) |#5| (-639 |#5|)))) (-15 -1645 ((-112) |#5| |#1|)) (-15 -2830 ((-112) |#5| |#1|)) (-15 -4177 ((-112) |#5| |#1|)) (-15 -3300 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1493 ((-112) |#1|)) (-15 -1493 ((-112) |#5| |#1|)) (-15 -1471 ((-2 (|:| -1449 (-639 |#5|)) (|:| -3315 (-639 |#5|))) |#1|)) (-15 -2250 ((-766) |#1|)) (-15 -2063 ((-639 |#5|) |#1|)) (-15 -4168 ((-3 (-2 (|:| |bas| |#1|) (|:| -2774 (-639 |#5|))) "failed") (-639 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4168 ((-3 (-2 (|:| |bas| |#1|) (|:| -2774 (-639 |#5|))) "failed") (-639 |#5|) (-1 (-112) |#5| |#5|))) (-15 -1789 ((-112) |#1| |#1|)) (-15 -2316 (|#1| |#1| |#4|)) (-15 -2180 (|#1| |#1| |#4|)) (-15 -3761 (|#4| |#1|)) (-15 -4048 ((-3 |#1| "failed") (-639 |#5|))) (-15 -4053 ((-639 |#5|) |#1|)) (-15 -4064 (|#1| (-639 |#5|))) (-15 -1954 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1954 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3556 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -1954 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4053 ((-857) |#1|)) (-15 -1733 ((-112) |#1| |#1|))) (-1200 |#2| |#3| |#4| |#5|) (-554) (-788) (-845) (-1058 |#2| |#3| |#4|)) (T -1199)) -NIL -(-10 -8 (-15 -4157 ((-766) |#1|)) (-15 -4316 (|#1| |#1| |#5|)) (-15 -3556 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3782 ((-112) |#4| |#1|)) (-15 -3278 ((-639 |#4|) |#1|)) (-15 -1434 ((-3 |#1| "failed") |#1|)) (-15 -1504 ((-3 |#5| "failed") |#1|)) (-15 -1421 ((-3 |#5| "failed") |#1|)) (-15 -2227 (|#5| |#5| |#1|)) (-15 -2209 (|#1| |#1|)) (-15 -3255 (|#5| |#5| |#1|)) (-15 -2651 (|#5| |#5| |#1|)) (-15 -1630 (|#5| |#5| |#1|)) (-15 -3623 (|#5| |#5| |#1|)) (-15 -4227 ((-639 |#5|) (-639 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1954 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1645 ((-112) |#1|)) (-15 -2830 ((-112) |#1|)) (-15 -4177 ((-112) |#1|)) (-15 -2350 ((-112) |#1| (-1 (-112) |#5| (-639 |#5|)))) (-15 -1645 ((-112) |#5| |#1|)) (-15 -2830 ((-112) |#5| |#1|)) (-15 -4177 ((-112) |#5| |#1|)) (-15 -3300 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1493 ((-112) |#1|)) (-15 -1493 ((-112) |#5| |#1|)) (-15 -1471 ((-2 (|:| -1449 (-639 |#5|)) (|:| -3315 (-639 |#5|))) |#1|)) (-15 -2250 ((-766) |#1|)) (-15 -2063 ((-639 |#5|) |#1|)) (-15 -4168 ((-3 (-2 (|:| |bas| |#1|) (|:| -2774 (-639 |#5|))) "failed") (-639 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4168 ((-3 (-2 (|:| |bas| |#1|) (|:| -2774 (-639 |#5|))) "failed") (-639 |#5|) (-1 (-112) |#5| |#5|))) (-15 -1789 ((-112) |#1| |#1|)) (-15 -2316 (|#1| |#1| |#4|)) (-15 -2180 (|#1| |#1| |#4|)) (-15 -3761 (|#4| |#1|)) (-15 -4048 ((-3 |#1| "failed") (-639 |#5|))) (-15 -4053 ((-639 |#5|) |#1|)) (-15 -4064 (|#1| (-639 |#5|))) (-15 -1954 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1954 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3556 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -1954 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4053 ((-857) |#1|)) (-15 -1733 ((-112) |#1| |#1|))) -((-4041 (((-112) $ $) 7)) (-1330 (((-639 (-2 (|:| -1449 $) (|:| -3315 (-639 |#4|)))) (-639 |#4|)) 85)) (-3672 (((-639 $) (-639 |#4|)) 86)) (-1401 (((-639 |#3|) $) 33)) (-2799 (((-112) $) 26)) (-4370 (((-112) $) 17 (|has| |#1| (-554)))) (-4177 (((-112) |#4| $) 101) (((-112) $) 97)) (-3623 ((|#4| |#4| $) 92)) (-1395 (((-2 (|:| |under| $) (|:| -3870 $) (|:| |upper| $)) $ |#3|) 27)) (-3735 (((-112) $ (-766)) 44)) (-3556 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4403))) (((-3 |#4| "failed") $ |#3|) 79)) (-3329 (($) 45 T CONST)) (-2169 (((-112) $) 22 (|has| |#1| (-554)))) (-2183 (((-112) $ $) 24 (|has| |#1| (-554)))) (-2864 (((-112) $ $) 23 (|has| |#1| (-554)))) (-4219 (((-112) $) 25 (|has| |#1| (-554)))) (-4227 (((-639 |#4|) (-639 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2037 (((-639 |#4|) (-639 |#4|) $) 18 (|has| |#1| (-554)))) (-4230 (((-639 |#4|) (-639 |#4|) $) 19 (|has| |#1| (-554)))) (-4048 (((-3 $ "failed") (-639 |#4|)) 36)) (-3960 (($ (-639 |#4|)) 35)) (-1434 (((-3 $ "failed") $) 82)) (-3255 ((|#4| |#4| $) 89)) (-1459 (($ $) 68 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4403))))) (-1475 (($ |#4| $) 67 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4403)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4403)))) (-1441 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-554)))) (-3300 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2227 ((|#4| |#4| $) 87)) (-1954 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4403)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4403))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4403))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1471 (((-2 (|:| -1449 (-639 |#4|)) (|:| -3315 (-639 |#4|))) $) 105)) (-1720 (((-639 |#4|) $) 52 (|has| $ (-6 -4403)))) (-1493 (((-112) |#4| $) 104) (((-112) $) 103)) (-3761 ((|#3| $) 34)) (-4172 (((-112) $ (-766)) 43)) (-2123 (((-639 |#4|) $) 53 (|has| $ (-6 -4403)))) (-1572 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4403))))) (-1491 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#4| |#4|) $) 47)) (-3133 (((-639 |#3|) $) 32)) (-3112 (((-112) |#3| $) 31)) (-4147 (((-112) $ (-766)) 42)) (-3696 (((-1150) $) 9)) (-1504 (((-3 |#4| "failed") $) 83)) (-2063 (((-639 |#4|) $) 107)) (-1645 (((-112) |#4| $) 99) (((-112) $) 95)) (-2651 ((|#4| |#4| $) 90)) (-1789 (((-112) $ $) 110)) (-4123 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-554)))) (-2830 (((-112) |#4| $) 100) (((-112) $) 96)) (-1630 ((|#4| |#4| $) 91)) (-1709 (((-1112) $) 10)) (-1421 (((-3 |#4| "failed") $) 84)) (-1963 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4333 (((-3 $ "failed") $ |#4|) 78)) (-4316 (($ $ |#4|) 77)) (-3008 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 |#4|) (-639 |#4|)) 59 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-293 |#4|)) 57 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-639 (-293 |#4|))) 56 (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))))) (-1452 (((-112) $ $) 38)) (-3087 (((-112) $) 41)) (-1663 (($) 40)) (-2250 (((-766) $) 106)) (-1723 (((-766) |#4| $) 54 (-12 (|has| |#4| (-1092)) (|has| $ (-6 -4403)))) (((-766) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4403)))) (-4220 (($ $) 39)) (-4208 (((-535) $) 69 (|has| |#4| (-610 (-535))))) (-4064 (($ (-639 |#4|)) 60)) (-2316 (($ $ |#3|) 28)) (-2180 (($ $ |#3|) 30)) (-2209 (($ $) 88)) (-1962 (($ $ |#3|) 29)) (-4053 (((-857) $) 11) (((-639 |#4|) $) 37)) (-4157 (((-766) $) 76 (|has| |#3| (-367)))) (-4168 (((-3 (-2 (|:| |bas| $) (|:| -2774 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2774 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2350 (((-112) $ (-1 (-112) |#4| (-639 |#4|))) 98)) (-2879 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4403)))) (-3278 (((-639 |#3|) $) 81)) (-3782 (((-112) |#3| $) 80)) (-1733 (((-112) $ $) 6)) (-3492 (((-766) $) 46 (|has| $ (-6 -4403))))) -(((-1200 |#1| |#2| |#3| |#4|) (-139) (-554) (-788) (-845) (-1058 |t#1| |t#2| |t#3|)) (T -1200)) -((-1789 (*1 *2 *1 *1) (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-112)))) (-4168 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2774 (-639 *8)))) (-5 *3 (-639 *8)) (-4 *1 (-1200 *5 *6 *7 *8)))) (-4168 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1058 *6 *7 *8)) (-4 *6 (-554)) (-4 *7 (-788)) (-4 *8 (-845)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2774 (-639 *9)))) (-5 *3 (-639 *9)) (-4 *1 (-1200 *6 *7 *8 *9)))) (-2063 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-639 *6)))) (-2250 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-766)))) (-1471 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-2 (|:| -1449 (-639 *6)) (|:| -3315 (-639 *6)))))) (-1493 (*1 *2 *3 *1) (-12 (-4 *1 (-1200 *4 *5 *6 *3)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112)))) (-1493 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-112)))) (-3300 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1200 *5 *6 *7 *3)) (-4 *5 (-554)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-112)))) (-4177 (*1 *2 *3 *1) (-12 (-4 *1 (-1200 *4 *5 *6 *3)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112)))) (-2830 (*1 *2 *3 *1) (-12 (-4 *1 (-1200 *4 *5 *6 *3)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112)))) (-1645 (*1 *2 *3 *1) (-12 (-4 *1 (-1200 *4 *5 *6 *3)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112)))) (-2350 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-639 *7))) (-4 *1 (-1200 *4 *5 *6 *7)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)))) (-4177 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-112)))) (-2830 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-112)))) (-1645 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-112)))) (-1954 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1200 *5 *6 *7 *2)) (-4 *5 (-554)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *2 (-1058 *5 *6 *7)))) (-4227 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-639 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1200 *5 *6 *7 *8)) (-4 *5 (-554)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *8 (-1058 *5 *6 *7)))) (-3623 (*1 *2 *2 *1) (-12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5)))) (-1630 (*1 *2 *2 *1) (-12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5)))) (-2651 (*1 *2 *2 *1) (-12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5)))) (-3255 (*1 *2 *2 *1) (-12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5)))) (-2209 (*1 *1 *1) (-12 (-4 *1 (-1200 *2 *3 *4 *5)) (-4 *2 (-554)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *5 (-1058 *2 *3 *4)))) (-2227 (*1 *2 *2 *1) (-12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5)))) (-3672 (*1 *2 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 *1)) (-4 *1 (-1200 *4 *5 *6 *7)))) (-1330 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-639 (-2 (|:| -1449 *1) (|:| -3315 (-639 *7))))) (-5 *3 (-639 *7)) (-4 *1 (-1200 *4 *5 *6 *7)))) (-1421 (*1 *2 *1) (|partial| -12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5)))) (-1504 (*1 *2 *1) (|partial| -12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5)))) (-1434 (*1 *1 *1) (|partial| -12 (-4 *1 (-1200 *2 *3 *4 *5)) (-4 *2 (-554)) (-4 *3 (-788)) (-4 *4 (-845)) (-4 *5 (-1058 *2 *3 *4)))) (-3278 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-639 *5)))) (-3782 (*1 *2 *3 *1) (-12 (-4 *1 (-1200 *4 *5 *3 *6)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *3 (-845)) (-4 *6 (-1058 *4 *5 *3)) (-5 *2 (-112)))) (-3556 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1200 *4 *5 *3 *2)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *3 (-845)) (-4 *2 (-1058 *4 *5 *3)))) (-4333 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5)))) (-4316 (*1 *1 *1 *2) (-12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5)))) (-4157 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-4 *5 (-367)) (-5 *2 (-766))))) -(-13 (-971 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4403) (-6 -4404) (-15 -1789 ((-112) $ $)) (-15 -4168 ((-3 (-2 (|:| |bas| $) (|:| -2774 (-639 |t#4|))) "failed") (-639 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4168 ((-3 (-2 (|:| |bas| $) (|:| -2774 (-639 |t#4|))) "failed") (-639 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2063 ((-639 |t#4|) $)) (-15 -2250 ((-766) $)) (-15 -1471 ((-2 (|:| -1449 (-639 |t#4|)) (|:| -3315 (-639 |t#4|))) $)) (-15 -1493 ((-112) |t#4| $)) (-15 -1493 ((-112) $)) (-15 -3300 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -4177 ((-112) |t#4| $)) (-15 -2830 ((-112) |t#4| $)) (-15 -1645 ((-112) |t#4| $)) (-15 -2350 ((-112) $ (-1 (-112) |t#4| (-639 |t#4|)))) (-15 -4177 ((-112) $)) (-15 -2830 ((-112) $)) (-15 -1645 ((-112) $)) (-15 -1954 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4227 ((-639 |t#4|) (-639 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3623 (|t#4| |t#4| $)) (-15 -1630 (|t#4| |t#4| $)) (-15 -2651 (|t#4| |t#4| $)) (-15 -3255 (|t#4| |t#4| $)) (-15 -2209 ($ $)) (-15 -2227 (|t#4| |t#4| $)) (-15 -3672 ((-639 $) (-639 |t#4|))) (-15 -1330 ((-639 (-2 (|:| -1449 $) (|:| -3315 (-639 |t#4|)))) (-639 |t#4|))) (-15 -1421 ((-3 |t#4| "failed") $)) (-15 -1504 ((-3 |t#4| "failed") $)) (-15 -1434 ((-3 $ "failed") $)) (-15 -3278 ((-639 |t#3|) $)) (-15 -3782 ((-112) |t#3| $)) (-15 -3556 ((-3 |t#4| "failed") $ |t#3|)) (-15 -4333 ((-3 $ "failed") $ |t#4|)) (-15 -4316 ($ $ |t#4|)) (IF (|has| |t#3| (-367)) (-15 -4157 ((-766) $)) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-609 (-639 |#4|)) . T) ((-609 (-857)) . T) ((-150 |#4|) . T) ((-610 (-535)) |has| |#4| (-610 (-535))) ((-308 |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))) ((-488 |#4|) . T) ((-513 |#4| |#4|) -12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))) ((-971 |#1| |#2| |#3| |#4|) . T) ((-1092) . T) ((-1207) . T)) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-1401 (((-639 (-1168)) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-1965 (($ $) NIL (|has| |#1| (-554)))) (-4102 (((-112) $) NIL (|has| |#1| (-554)))) (-2987 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4098 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2781 (((-3 $ "failed") $ $) NIL)) (-1644 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4206 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3013 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4120 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3329 (($) NIL T CONST)) (-1600 (($ $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-1455 (((-947 |#1|) $ (-766)) 16) (((-947 |#1|) $ (-766) (-766)) NIL)) (-2965 (((-112) $) NIL)) (-4100 (($) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1993 (((-766) $ (-1168)) NIL) (((-766) $ (-1168) (-766)) NIL)) (-4367 (((-112) $) NIL)) (-1895 (($ $ (-562)) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2833 (((-112) $) NIL)) (-1377 (($ $ (-639 (-1168)) (-639 (-530 (-1168)))) NIL) (($ $ (-1168) (-530 (-1168))) NIL) (($ |#1| (-530 (-1168))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-4366 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-3696 (((-1150) $) NIL)) (-3081 (($ $ (-1168)) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-1168) |#1|) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1709 (((-1112) $) NIL)) (-4096 (($ (-1 $) (-1168) |#1|) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4316 (($ $ (-766)) NIL)) (-1762 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-3430 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1433 (($ $ (-1168) $) NIL) (($ $ (-639 (-1168)) (-639 $)) NIL) (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL)) (-4029 (($ $ (-1168)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL)) (-2250 (((-530 (-1168)) $) NIL)) (-3022 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3000 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2977 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1345 (($ $) NIL)) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ $) NIL (|has| |#1| (-554))) (($ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ (-1168)) NIL) (($ (-947 |#1|)) NIL)) (-2266 ((|#1| $ (-530 (-1168))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL) (((-947 |#1|) $ (-766)) NIL)) (-2059 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-1568 (((-766)) NIL)) (-3054 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3799 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3033 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4139 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3077 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4183 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1567 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3065 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4175 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3040 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2285 (($) NIL T CONST)) (-2294 (($) NIL T CONST)) (-3113 (($ $ (-1168)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL)) (-1733 (((-112) $ $) NIL)) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1201 |#1|) (-13 (-735 |#1| (-1168)) (-10 -8 (-15 -2266 ((-947 |#1|) $ (-766))) (-15 -4053 ($ (-1168))) (-15 -4053 ($ (-947 |#1|))) (IF (|has| |#1| (-38 (-406 (-562)))) (PROGN (-15 -3081 ($ $ (-1168) |#1|)) (-15 -4096 ($ (-1 $) (-1168) |#1|))) |%noBranch|))) (-1044)) (T -1201)) -((-2266 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-5 *2 (-947 *4)) (-5 *1 (-1201 *4)) (-4 *4 (-1044)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1201 *3)) (-4 *3 (-1044)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-947 *3)) (-4 *3 (-1044)) (-5 *1 (-1201 *3)))) (-3081 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *1 (-1201 *3)) (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)))) (-4096 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1201 *4))) (-5 *3 (-1168)) (-5 *1 (-1201 *4)) (-4 *4 (-38 (-406 (-562)))) (-4 *4 (-1044))))) -(-13 (-735 |#1| (-1168)) (-10 -8 (-15 -2266 ((-947 |#1|) $ (-766))) (-15 -4053 ($ (-1168))) (-15 -4053 ($ (-947 |#1|))) (IF (|has| |#1| (-38 (-406 (-562)))) (PROGN (-15 -3081 ($ $ (-1168) |#1|)) (-15 -4096 ($ (-1 $) (-1168) |#1|))) |%noBranch|))) -((-1843 (($ |#1| (-639 (-639 (-938 (-224)))) (-112)) 18)) (-2779 (((-112) $ (-112)) 17)) (-2775 (((-112) $) 16)) (-2573 (((-639 (-639 (-938 (-224)))) $) 13)) (-3372 ((|#1| $) 8)) (-4231 (((-112) $) 15))) -(((-1202 |#1|) (-10 -8 (-15 -3372 (|#1| $)) (-15 -2573 ((-639 (-639 (-938 (-224)))) $)) (-15 -4231 ((-112) $)) (-15 -2775 ((-112) $)) (-15 -2779 ((-112) $ (-112))) (-15 -1843 ($ |#1| (-639 (-639 (-938 (-224)))) (-112)))) (-969)) (T -1202)) -((-1843 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-639 (-639 (-938 (-224))))) (-5 *4 (-112)) (-5 *1 (-1202 *2)) (-4 *2 (-969)))) (-2779 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1202 *3)) (-4 *3 (-969)))) (-2775 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1202 *3)) (-4 *3 (-969)))) (-4231 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1202 *3)) (-4 *3 (-969)))) (-2573 (*1 *2 *1) (-12 (-5 *2 (-639 (-639 (-938 (-224))))) (-5 *1 (-1202 *3)) (-4 *3 (-969)))) (-3372 (*1 *2 *1) (-12 (-5 *1 (-1202 *2)) (-4 *2 (-969))))) -(-10 -8 (-15 -3372 (|#1| $)) (-15 -2573 ((-639 (-639 (-938 (-224)))) $)) (-15 -4231 ((-112) $)) (-15 -2775 ((-112) $)) (-15 -2779 ((-112) $ (-112))) (-15 -1843 ($ |#1| (-639 (-639 (-938 (-224)))) (-112)))) -((-2211 (((-938 (-224)) (-938 (-224))) 25)) (-1460 (((-938 (-224)) (-224) (-224) (-224) (-224)) 10)) (-4328 (((-639 (-938 (-224))) (-938 (-224)) (-938 (-224)) (-938 (-224)) (-224) (-639 (-639 (-224)))) 35)) (-2852 (((-224) (-938 (-224)) (-938 (-224))) 21)) (-3247 (((-938 (-224)) (-938 (-224)) (-938 (-224))) 22)) (-4202 (((-639 (-639 (-224))) (-562)) 31)) (-1847 (((-938 (-224)) (-938 (-224)) (-938 (-224))) 20)) (-1836 (((-938 (-224)) (-938 (-224)) (-938 (-224))) 19)) (* (((-938 (-224)) (-224) (-938 (-224))) 18))) -(((-1203) (-10 -7 (-15 -1460 ((-938 (-224)) (-224) (-224) (-224) (-224))) (-15 * ((-938 (-224)) (-224) (-938 (-224)))) (-15 -1836 ((-938 (-224)) (-938 (-224)) (-938 (-224)))) (-15 -1847 ((-938 (-224)) (-938 (-224)) (-938 (-224)))) (-15 -2852 ((-224) (-938 (-224)) (-938 (-224)))) (-15 -3247 ((-938 (-224)) (-938 (-224)) (-938 (-224)))) (-15 -2211 ((-938 (-224)) (-938 (-224)))) (-15 -4202 ((-639 (-639 (-224))) (-562))) (-15 -4328 ((-639 (-938 (-224))) (-938 (-224)) (-938 (-224)) (-938 (-224)) (-224) (-639 (-639 (-224))))))) (T -1203)) -((-4328 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-639 (-639 (-224)))) (-5 *4 (-224)) (-5 *2 (-639 (-938 *4))) (-5 *1 (-1203)) (-5 *3 (-938 *4)))) (-4202 (*1 *2 *3) (-12 (-5 *3 (-562)) (-5 *2 (-639 (-639 (-224)))) (-5 *1 (-1203)))) (-2211 (*1 *2 *2) (-12 (-5 *2 (-938 (-224))) (-5 *1 (-1203)))) (-3247 (*1 *2 *2 *2) (-12 (-5 *2 (-938 (-224))) (-5 *1 (-1203)))) (-2852 (*1 *2 *3 *3) (-12 (-5 *3 (-938 (-224))) (-5 *2 (-224)) (-5 *1 (-1203)))) (-1847 (*1 *2 *2 *2) (-12 (-5 *2 (-938 (-224))) (-5 *1 (-1203)))) (-1836 (*1 *2 *2 *2) (-12 (-5 *2 (-938 (-224))) (-5 *1 (-1203)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-938 (-224))) (-5 *3 (-224)) (-5 *1 (-1203)))) (-1460 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-938 (-224))) (-5 *1 (-1203)) (-5 *3 (-224))))) -(-10 -7 (-15 -1460 ((-938 (-224)) (-224) (-224) (-224) (-224))) (-15 * ((-938 (-224)) (-224) (-938 (-224)))) (-15 -1836 ((-938 (-224)) (-938 (-224)) (-938 (-224)))) (-15 -1847 ((-938 (-224)) (-938 (-224)) (-938 (-224)))) (-15 -2852 ((-224) (-938 (-224)) (-938 (-224)))) (-15 -3247 ((-938 (-224)) (-938 (-224)) (-938 (-224)))) (-15 -2211 ((-938 (-224)) (-938 (-224)))) (-15 -4202 ((-639 (-639 (-224))) (-562))) (-15 -4328 ((-639 (-938 (-224))) (-938 (-224)) (-938 (-224)) (-938 (-224)) (-224) (-639 (-639 (-224)))))) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-3556 ((|#1| $ (-766)) 13)) (-3641 (((-766) $) 12)) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-4053 (((-953 |#1|) $) 10) (($ (-953 |#1|)) 9) (((-857) $) 23 (|has| |#1| (-609 (-857))))) (-1733 (((-112) $ $) 16 (|has| |#1| (-1092))))) -(((-1204 |#1|) (-13 (-489 (-953 |#1|)) (-10 -8 (-15 -3556 (|#1| $ (-766))) (-15 -3641 ((-766) $)) (IF (|has| |#1| (-609 (-857))) (-6 (-609 (-857))) |%noBranch|) (IF (|has| |#1| (-1092)) (-6 (-1092)) |%noBranch|))) (-1207)) (T -1204)) -((-3556 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-5 *1 (-1204 *2)) (-4 *2 (-1207)))) (-3641 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-1204 *3)) (-4 *3 (-1207))))) -(-13 (-489 (-953 |#1|)) (-10 -8 (-15 -3556 (|#1| $ (-766))) (-15 -3641 ((-766) $)) (IF (|has| |#1| (-609 (-857))) (-6 (-609 (-857))) |%noBranch|) (IF (|has| |#1| (-1092)) (-6 (-1092)) |%noBranch|))) -((-2274 (((-417 (-1164 (-1164 |#1|))) (-1164 (-1164 |#1|)) (-562)) 80)) (-3645 (((-417 (-1164 (-1164 |#1|))) (-1164 (-1164 |#1|))) 74)) (-3650 (((-417 (-1164 (-1164 |#1|))) (-1164 (-1164 |#1|))) 59))) -(((-1205 |#1|) (-10 -7 (-15 -3645 ((-417 (-1164 (-1164 |#1|))) (-1164 (-1164 |#1|)))) (-15 -3650 ((-417 (-1164 (-1164 |#1|))) (-1164 (-1164 |#1|)))) (-15 -2274 ((-417 (-1164 (-1164 |#1|))) (-1164 (-1164 |#1|)) (-562)))) (-348)) (T -1205)) -((-2274 (*1 *2 *3 *4) (-12 (-5 *4 (-562)) (-4 *5 (-348)) (-5 *2 (-417 (-1164 (-1164 *5)))) (-5 *1 (-1205 *5)) (-5 *3 (-1164 (-1164 *5))))) (-3650 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-417 (-1164 (-1164 *4)))) (-5 *1 (-1205 *4)) (-5 *3 (-1164 (-1164 *4))))) (-3645 (*1 *2 *3) (-12 (-4 *4 (-348)) (-5 *2 (-417 (-1164 (-1164 *4)))) (-5 *1 (-1205 *4)) (-5 *3 (-1164 (-1164 *4)))))) -(-10 -7 (-15 -3645 ((-417 (-1164 (-1164 |#1|))) (-1164 (-1164 |#1|)))) (-15 -3650 ((-417 (-1164 (-1164 |#1|))) (-1164 (-1164 |#1|)))) (-15 -2274 ((-417 (-1164 (-1164 |#1|))) (-1164 (-1164 |#1|)) (-562)))) -((-4041 (((-112) $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 9) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-1206) (-1075)) (T -1206)) -NIL -(-1075) -NIL -(((-1207) (-139)) (T -1207)) +((-2447 (((-640 (-640 (-948 |#1|))) (-640 (-407 (-948 |#1|))) (-640 (-1169))) 57)) (-1793 (((-640 (-294 (-407 (-948 |#1|)))) (-294 (-407 (-948 |#1|)))) 69) (((-640 (-294 (-407 (-948 |#1|)))) (-407 (-948 |#1|))) 65) (((-640 (-294 (-407 (-948 |#1|)))) (-294 (-407 (-948 |#1|))) (-1169)) 70) (((-640 (-294 (-407 (-948 |#1|)))) (-407 (-948 |#1|)) (-1169)) 64) (((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-294 (-407 (-948 |#1|))))) 93) (((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-407 (-948 |#1|)))) 92) (((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-294 (-407 (-948 |#1|)))) (-640 (-1169))) 94) (((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-407 (-948 |#1|))) (-640 (-1169))) 91))) +(((-1177 |#1|) (-10 -7 (-15 -1793 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-407 (-948 |#1|))) (-640 (-1169)))) (-15 -1793 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-294 (-407 (-948 |#1|)))) (-640 (-1169)))) (-15 -1793 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-407 (-948 |#1|))))) (-15 -1793 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-294 (-407 (-948 |#1|)))))) (-15 -1793 ((-640 (-294 (-407 (-948 |#1|)))) (-407 (-948 |#1|)) (-1169))) (-15 -1793 ((-640 (-294 (-407 (-948 |#1|)))) (-294 (-407 (-948 |#1|))) (-1169))) (-15 -1793 ((-640 (-294 (-407 (-948 |#1|)))) (-407 (-948 |#1|)))) (-15 -1793 ((-640 (-294 (-407 (-948 |#1|)))) (-294 (-407 (-948 |#1|))))) (-15 -2447 ((-640 (-640 (-948 |#1|))) (-640 (-407 (-948 |#1|))) (-640 (-1169))))) (-555)) (T -1177)) +((-2447 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-407 (-948 *5)))) (-5 *4 (-640 (-1169))) (-4 *5 (-555)) (-5 *2 (-640 (-640 (-948 *5)))) (-5 *1 (-1177 *5)))) (-1793 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-640 (-294 (-407 (-948 *4))))) (-5 *1 (-1177 *4)) (-5 *3 (-294 (-407 (-948 *4)))))) (-1793 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-640 (-294 (-407 (-948 *4))))) (-5 *1 (-1177 *4)) (-5 *3 (-407 (-948 *4))))) (-1793 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-555)) (-5 *2 (-640 (-294 (-407 (-948 *5))))) (-5 *1 (-1177 *5)) (-5 *3 (-294 (-407 (-948 *5)))))) (-1793 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-555)) (-5 *2 (-640 (-294 (-407 (-948 *5))))) (-5 *1 (-1177 *5)) (-5 *3 (-407 (-948 *5))))) (-1793 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-640 (-640 (-294 (-407 (-948 *4)))))) (-5 *1 (-1177 *4)) (-5 *3 (-640 (-294 (-407 (-948 *4))))))) (-1793 (*1 *2 *3) (-12 (-5 *3 (-640 (-407 (-948 *4)))) (-4 *4 (-555)) (-5 *2 (-640 (-640 (-294 (-407 (-948 *4)))))) (-5 *1 (-1177 *4)))) (-1793 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-1169))) (-4 *5 (-555)) (-5 *2 (-640 (-640 (-294 (-407 (-948 *5)))))) (-5 *1 (-1177 *5)) (-5 *3 (-640 (-294 (-407 (-948 *5))))))) (-1793 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-407 (-948 *5)))) (-5 *4 (-640 (-1169))) (-4 *5 (-555)) (-5 *2 (-640 (-640 (-294 (-407 (-948 *5)))))) (-5 *1 (-1177 *5))))) +(-10 -7 (-15 -1793 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-407 (-948 |#1|))) (-640 (-1169)))) (-15 -1793 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-294 (-407 (-948 |#1|)))) (-640 (-1169)))) (-15 -1793 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-407 (-948 |#1|))))) (-15 -1793 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-294 (-407 (-948 |#1|)))))) (-15 -1793 ((-640 (-294 (-407 (-948 |#1|)))) (-407 (-948 |#1|)) (-1169))) (-15 -1793 ((-640 (-294 (-407 (-948 |#1|)))) (-294 (-407 (-948 |#1|))) (-1169))) (-15 -1793 ((-640 (-294 (-407 (-948 |#1|)))) (-407 (-948 |#1|)))) (-15 -1793 ((-640 (-294 (-407 (-948 |#1|)))) (-294 (-407 (-948 |#1|))))) (-15 -2447 ((-640 (-640 (-948 |#1|))) (-640 (-407 (-948 |#1|))) (-640 (-1169))))) +((-3309 (((-1151)) 7)) (-3545 (((-1151)) 9)) (-2465 (((-1262) (-1151)) 11)) (-2492 (((-1151)) 8))) +(((-1178) (-10 -7 (-15 -3309 ((-1151))) (-15 -2492 ((-1151))) (-15 -3545 ((-1151))) (-15 -2465 ((-1262) (-1151))))) (T -1178)) +((-2465 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1178)))) (-3545 (*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1178)))) (-2492 (*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1178)))) (-3309 (*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1178))))) +(-10 -7 (-15 -3309 ((-1151))) (-15 -2492 ((-1151))) (-15 -3545 ((-1151))) (-15 -2465 ((-1262) (-1151)))) +((-3441 (((-640 (-640 |#1|)) (-640 (-640 |#1|)) (-640 (-640 (-640 |#1|)))) 38)) (-4210 (((-640 (-640 (-640 |#1|))) (-640 (-640 |#1|))) 24)) (-3093 (((-1180 (-640 |#1|)) (-640 |#1|)) 34)) (-2777 (((-640 (-640 |#1|)) (-640 |#1|)) 30)) (-4105 (((-2 (|:| |f1| (-640 |#1|)) (|:| |f2| (-640 (-640 (-640 |#1|)))) (|:| |f3| (-640 (-640 |#1|))) (|:| |f4| (-640 (-640 (-640 |#1|))))) (-640 (-640 (-640 |#1|)))) 37)) (-1747 (((-2 (|:| |f1| (-640 |#1|)) (|:| |f2| (-640 (-640 (-640 |#1|)))) (|:| |f3| (-640 (-640 |#1|))) (|:| |f4| (-640 (-640 (-640 |#1|))))) (-640 |#1|) (-640 (-640 (-640 |#1|))) (-640 (-640 |#1|)) (-640 (-640 (-640 |#1|))) (-640 (-640 (-640 |#1|))) (-640 (-640 (-640 |#1|)))) 36)) (-2356 (((-640 (-640 |#1|)) (-640 (-640 |#1|))) 28)) (-2591 (((-640 |#1|) (-640 |#1|)) 31)) (-2301 (((-640 (-640 (-640 |#1|))) (-640 |#1|) (-640 (-640 (-640 |#1|)))) 18)) (-1821 (((-640 (-640 (-640 |#1|))) (-1 (-112) |#1| |#1|) (-640 |#1|) (-640 (-640 (-640 |#1|)))) 16)) (-1970 (((-2 (|:| |fs| (-112)) (|:| |sd| (-640 |#1|)) (|:| |td| (-640 (-640 |#1|)))) (-1 (-112) |#1| |#1|) (-640 |#1|) (-640 (-640 |#1|))) 14)) (-4015 (((-640 (-640 |#1|)) (-640 (-640 (-640 |#1|)))) 39)) (-1699 (((-640 (-640 |#1|)) (-1180 (-640 |#1|))) 41))) +(((-1179 |#1|) (-10 -7 (-15 -1970 ((-2 (|:| |fs| (-112)) (|:| |sd| (-640 |#1|)) (|:| |td| (-640 (-640 |#1|)))) (-1 (-112) |#1| |#1|) (-640 |#1|) (-640 (-640 |#1|)))) (-15 -1821 ((-640 (-640 (-640 |#1|))) (-1 (-112) |#1| |#1|) (-640 |#1|) (-640 (-640 (-640 |#1|))))) (-15 -2301 ((-640 (-640 (-640 |#1|))) (-640 |#1|) (-640 (-640 (-640 |#1|))))) (-15 -3441 ((-640 (-640 |#1|)) (-640 (-640 |#1|)) (-640 (-640 (-640 |#1|))))) (-15 -4015 ((-640 (-640 |#1|)) (-640 (-640 (-640 |#1|))))) (-15 -1699 ((-640 (-640 |#1|)) (-1180 (-640 |#1|)))) (-15 -4210 ((-640 (-640 (-640 |#1|))) (-640 (-640 |#1|)))) (-15 -3093 ((-1180 (-640 |#1|)) (-640 |#1|))) (-15 -2356 ((-640 (-640 |#1|)) (-640 (-640 |#1|)))) (-15 -2777 ((-640 (-640 |#1|)) (-640 |#1|))) (-15 -2591 ((-640 |#1|) (-640 |#1|))) (-15 -1747 ((-2 (|:| |f1| (-640 |#1|)) (|:| |f2| (-640 (-640 (-640 |#1|)))) (|:| |f3| (-640 (-640 |#1|))) (|:| |f4| (-640 (-640 (-640 |#1|))))) (-640 |#1|) (-640 (-640 (-640 |#1|))) (-640 (-640 |#1|)) (-640 (-640 (-640 |#1|))) (-640 (-640 (-640 |#1|))) (-640 (-640 (-640 |#1|))))) (-15 -4105 ((-2 (|:| |f1| (-640 |#1|)) (|:| |f2| (-640 (-640 (-640 |#1|)))) (|:| |f3| (-640 (-640 |#1|))) (|:| |f4| (-640 (-640 (-640 |#1|))))) (-640 (-640 (-640 |#1|)))))) (-846)) (T -1179)) +((-4105 (*1 *2 *3) (-12 (-4 *4 (-846)) (-5 *2 (-2 (|:| |f1| (-640 *4)) (|:| |f2| (-640 (-640 (-640 *4)))) (|:| |f3| (-640 (-640 *4))) (|:| |f4| (-640 (-640 (-640 *4)))))) (-5 *1 (-1179 *4)) (-5 *3 (-640 (-640 (-640 *4)))))) (-1747 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-846)) (-5 *3 (-640 *6)) (-5 *5 (-640 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-640 *5)) (|:| |f3| *5) (|:| |f4| (-640 *5)))) (-5 *1 (-1179 *6)) (-5 *4 (-640 *5)))) (-2591 (*1 *2 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-1179 *3)))) (-2777 (*1 *2 *3) (-12 (-4 *4 (-846)) (-5 *2 (-640 (-640 *4))) (-5 *1 (-1179 *4)) (-5 *3 (-640 *4)))) (-2356 (*1 *2 *2) (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-846)) (-5 *1 (-1179 *3)))) (-3093 (*1 *2 *3) (-12 (-4 *4 (-846)) (-5 *2 (-1180 (-640 *4))) (-5 *1 (-1179 *4)) (-5 *3 (-640 *4)))) (-4210 (*1 *2 *3) (-12 (-4 *4 (-846)) (-5 *2 (-640 (-640 (-640 *4)))) (-5 *1 (-1179 *4)) (-5 *3 (-640 (-640 *4))))) (-1699 (*1 *2 *3) (-12 (-5 *3 (-1180 (-640 *4))) (-4 *4 (-846)) (-5 *2 (-640 (-640 *4))) (-5 *1 (-1179 *4)))) (-4015 (*1 *2 *3) (-12 (-5 *3 (-640 (-640 (-640 *4)))) (-5 *2 (-640 (-640 *4))) (-5 *1 (-1179 *4)) (-4 *4 (-846)))) (-3441 (*1 *2 *2 *3) (-12 (-5 *3 (-640 (-640 (-640 *4)))) (-5 *2 (-640 (-640 *4))) (-4 *4 (-846)) (-5 *1 (-1179 *4)))) (-2301 (*1 *2 *3 *2) (-12 (-5 *2 (-640 (-640 (-640 *4)))) (-5 *3 (-640 *4)) (-4 *4 (-846)) (-5 *1 (-1179 *4)))) (-1821 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-640 (-640 (-640 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-640 *5)) (-4 *5 (-846)) (-5 *1 (-1179 *5)))) (-1970 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-846)) (-5 *4 (-640 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-640 *4)))) (-5 *1 (-1179 *6)) (-5 *5 (-640 *4))))) +(-10 -7 (-15 -1970 ((-2 (|:| |fs| (-112)) (|:| |sd| (-640 |#1|)) (|:| |td| (-640 (-640 |#1|)))) (-1 (-112) |#1| |#1|) (-640 |#1|) (-640 (-640 |#1|)))) (-15 -1821 ((-640 (-640 (-640 |#1|))) (-1 (-112) |#1| |#1|) (-640 |#1|) (-640 (-640 (-640 |#1|))))) (-15 -2301 ((-640 (-640 (-640 |#1|))) (-640 |#1|) (-640 (-640 (-640 |#1|))))) (-15 -3441 ((-640 (-640 |#1|)) (-640 (-640 |#1|)) (-640 (-640 (-640 |#1|))))) (-15 -4015 ((-640 (-640 |#1|)) (-640 (-640 (-640 |#1|))))) (-15 -1699 ((-640 (-640 |#1|)) (-1180 (-640 |#1|)))) (-15 -4210 ((-640 (-640 (-640 |#1|))) (-640 (-640 |#1|)))) (-15 -3093 ((-1180 (-640 |#1|)) (-640 |#1|))) (-15 -2356 ((-640 (-640 |#1|)) (-640 (-640 |#1|)))) (-15 -2777 ((-640 (-640 |#1|)) (-640 |#1|))) (-15 -2591 ((-640 |#1|) (-640 |#1|))) (-15 -1747 ((-2 (|:| |f1| (-640 |#1|)) (|:| |f2| (-640 (-640 (-640 |#1|)))) (|:| |f3| (-640 (-640 |#1|))) (|:| |f4| (-640 (-640 (-640 |#1|))))) (-640 |#1|) (-640 (-640 (-640 |#1|))) (-640 (-640 |#1|)) (-640 (-640 (-640 |#1|))) (-640 (-640 (-640 |#1|))) (-640 (-640 (-640 |#1|))))) (-15 -4105 ((-2 (|:| |f1| (-640 |#1|)) (|:| |f2| (-640 (-640 (-640 |#1|)))) (|:| |f3| (-640 (-640 |#1|))) (|:| |f4| (-640 (-640 (-640 |#1|))))) (-640 (-640 (-640 |#1|)))))) +((-2738 (($ (-640 (-640 |#1|))) 10)) (-4136 (((-640 (-640 |#1|)) $) 11)) (-1693 (((-858) $) 26))) +(((-1180 |#1|) (-10 -8 (-15 -2738 ($ (-640 (-640 |#1|)))) (-15 -4136 ((-640 (-640 |#1|)) $)) (-15 -1693 ((-858) $))) (-1093)) (T -1180)) +((-1693 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-1180 *3)) (-4 *3 (-1093)))) (-4136 (*1 *2 *1) (-12 (-5 *2 (-640 (-640 *3))) (-5 *1 (-1180 *3)) (-4 *3 (-1093)))) (-2738 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1093)) (-5 *1 (-1180 *3))))) +(-10 -8 (-15 -2738 ($ (-640 (-640 |#1|)))) (-15 -4136 ((-640 (-640 |#1|)) $)) (-15 -1693 ((-858) $))) +((-1677 (((-112) $ $) NIL (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1552 (($) NIL) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL)) (-4378 (((-1262) $ |#1| |#1|) NIL (|has| $ (-6 -4408)))) (-2759 (((-112) $ (-767)) NIL)) (-1849 ((|#2| $ |#1| |#2|) NIL)) (-2812 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-2256 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-1577 (((-3 |#2| "failed") |#1| $) NIL)) (-4239 (($) NIL T CONST)) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093))))) (-2705 (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-3 |#2| "failed") |#1| $) NIL)) (-1459 (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-2444 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL (|has| $ (-6 -4407))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407)))) (-4355 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4408)))) (-4293 ((|#2| $ |#1|) NIL)) (-2659 (((-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-640 |#2|) $) NIL (|has| $ (-6 -4407)))) (-2581 (((-112) $ (-767)) NIL)) (-2411 ((|#1| $) NIL (|has| |#1| (-846)))) (-2259 (((-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-640 |#2|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093))))) (-3860 ((|#1| $) NIL (|has| |#1| (-846)))) (-4345 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4408))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1303 (((-640 |#1|) $) NIL)) (-4173 (((-112) |#1| $) NIL)) (-2964 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL)) (-1812 (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL)) (-4318 (((-640 |#1|) $) NIL)) (-3192 (((-112) |#1| $) NIL)) (-1694 (((-1113) $) NIL (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-3781 ((|#2| $) NIL (|has| |#1| (-846)))) (-4203 (((-3 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) "failed") (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL)) (-2358 (($ $ |#2|) NIL (|has| $ (-6 -4408)))) (-3755 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL)) (-3138 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-2026 (((-112) $ $) NIL)) (-2105 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093))))) (-2836 (((-640 |#2|) $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) NIL)) (-2309 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3890 (($) NIL) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL)) (-1709 (((-767) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-767) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) NIL (-12 (|has| $ (-6 -4407)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-1872 (($ $) NIL)) (-2220 (((-536) $) NIL (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-611 (-536))))) (-1707 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL)) (-1693 (((-858) $) NIL (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-610 (-858))) (|has| |#2| (-610 (-858)))))) (-2233 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) NIL)) (-4383 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) NIL (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) NIL (-4032 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-1181 |#1| |#2|) (-13 (-1184 |#1| |#2|) (-10 -7 (-6 -4407))) (-1093) (-1093)) (T -1181)) +NIL +(-13 (-1184 |#1| |#2|) (-10 -7 (-6 -4407))) +((-2867 ((|#1| (-640 |#1|)) 32)) (-1363 ((|#1| |#1| (-563)) 18)) (-3171 (((-1165 |#1|) |#1| (-917)) 15))) +(((-1182 |#1|) (-10 -7 (-15 -2867 (|#1| (-640 |#1|))) (-15 -3171 ((-1165 |#1|) |#1| (-917))) (-15 -1363 (|#1| |#1| (-563)))) (-363)) (T -1182)) +((-1363 (*1 *2 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-1182 *2)) (-4 *2 (-363)))) (-3171 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-5 *2 (-1165 *3)) (-5 *1 (-1182 *3)) (-4 *3 (-363)))) (-2867 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-5 *1 (-1182 *2)) (-4 *2 (-363))))) +(-10 -7 (-15 -2867 (|#1| (-640 |#1|))) (-15 -3171 ((-1165 |#1|) |#1| (-917))) (-15 -1363 (|#1| |#1| (-563)))) +((-1552 (($) 10) (($ (-640 (-2 (|:| -2387 |#2|) (|:| -2557 |#3|)))) 14)) (-2705 (($ (-2 (|:| -2387 |#2|) (|:| -2557 |#3|)) $) 61) (($ (-1 (-112) (-2 (|:| -2387 |#2|) (|:| -2557 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2659 (((-640 (-2 (|:| -2387 |#2|) (|:| -2557 |#3|))) $) 39) (((-640 |#3|) $) 41)) (-4345 (($ (-1 (-2 (|:| -2387 |#2|) (|:| -2557 |#3|)) (-2 (|:| -2387 |#2|) (|:| -2557 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-2240 (($ (-1 (-2 (|:| -2387 |#2|) (|:| -2557 |#3|)) (-2 (|:| -2387 |#2|) (|:| -2557 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-2964 (((-2 (|:| -2387 |#2|) (|:| -2557 |#3|)) $) 54)) (-1812 (($ (-2 (|:| -2387 |#2|) (|:| -2557 |#3|)) $) 16)) (-4318 (((-640 |#2|) $) 19)) (-3192 (((-112) |#2| $) 59)) (-4203 (((-3 (-2 (|:| -2387 |#2|) (|:| -2557 |#3|)) "failed") (-1 (-112) (-2 (|:| -2387 |#2|) (|:| -2557 |#3|))) $) 58)) (-3755 (((-2 (|:| -2387 |#2|) (|:| -2557 |#3|)) $) 63)) (-3138 (((-112) (-1 (-112) (-2 (|:| -2387 |#2|) (|:| -2557 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 66)) (-2836 (((-640 |#3|) $) 43)) (-2309 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-1709 (((-767) (-1 (-112) (-2 (|:| -2387 |#2|) (|:| -2557 |#3|))) $) NIL) (((-767) (-2 (|:| -2387 |#2|) (|:| -2557 |#3|)) $) NIL) (((-767) |#3| $) NIL) (((-767) (-1 (-112) |#3|) $) 67)) (-1693 (((-858) $) 27)) (-4383 (((-112) (-1 (-112) (-2 (|:| -2387 |#2|) (|:| -2557 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 65)) (-1718 (((-112) $ $) 49))) +(((-1183 |#1| |#2| |#3|) (-10 -8 (-15 -1718 ((-112) |#1| |#1|)) (-15 -1693 ((-858) |#1|)) (-15 -2240 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1552 (|#1| (-640 (-2 (|:| -2387 |#2|) (|:| -2557 |#3|))))) (-15 -1552 (|#1|)) (-15 -2240 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4345 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4383 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3138 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1709 ((-767) (-1 (-112) |#3|) |#1|)) (-15 -2659 ((-640 |#3|) |#1|)) (-15 -1709 ((-767) |#3| |#1|)) (-15 -2309 (|#3| |#1| |#2| |#3|)) (-15 -2309 (|#3| |#1| |#2|)) (-15 -2836 ((-640 |#3|) |#1|)) (-15 -3192 ((-112) |#2| |#1|)) (-15 -4318 ((-640 |#2|) |#1|)) (-15 -2705 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2705 (|#1| (-1 (-112) (-2 (|:| -2387 |#2|) (|:| -2557 |#3|))) |#1|)) (-15 -2705 (|#1| (-2 (|:| -2387 |#2|) (|:| -2557 |#3|)) |#1|)) (-15 -4203 ((-3 (-2 (|:| -2387 |#2|) (|:| -2557 |#3|)) "failed") (-1 (-112) (-2 (|:| -2387 |#2|) (|:| -2557 |#3|))) |#1|)) (-15 -2964 ((-2 (|:| -2387 |#2|) (|:| -2557 |#3|)) |#1|)) (-15 -1812 (|#1| (-2 (|:| -2387 |#2|) (|:| -2557 |#3|)) |#1|)) (-15 -3755 ((-2 (|:| -2387 |#2|) (|:| -2557 |#3|)) |#1|)) (-15 -1709 ((-767) (-2 (|:| -2387 |#2|) (|:| -2557 |#3|)) |#1|)) (-15 -2659 ((-640 (-2 (|:| -2387 |#2|) (|:| -2557 |#3|))) |#1|)) (-15 -1709 ((-767) (-1 (-112) (-2 (|:| -2387 |#2|) (|:| -2557 |#3|))) |#1|)) (-15 -3138 ((-112) (-1 (-112) (-2 (|:| -2387 |#2|) (|:| -2557 |#3|))) |#1|)) (-15 -4383 ((-112) (-1 (-112) (-2 (|:| -2387 |#2|) (|:| -2557 |#3|))) |#1|)) (-15 -4345 (|#1| (-1 (-2 (|:| -2387 |#2|) (|:| -2557 |#3|)) (-2 (|:| -2387 |#2|) (|:| -2557 |#3|))) |#1|)) (-15 -2240 (|#1| (-1 (-2 (|:| -2387 |#2|) (|:| -2557 |#3|)) (-2 (|:| -2387 |#2|) (|:| -2557 |#3|))) |#1|))) (-1184 |#2| |#3|) (-1093) (-1093)) (T -1183)) +NIL +(-10 -8 (-15 -1718 ((-112) |#1| |#1|)) (-15 -1693 ((-858) |#1|)) (-15 -2240 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1552 (|#1| (-640 (-2 (|:| -2387 |#2|) (|:| -2557 |#3|))))) (-15 -1552 (|#1|)) (-15 -2240 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4345 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4383 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3138 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1709 ((-767) (-1 (-112) |#3|) |#1|)) (-15 -2659 ((-640 |#3|) |#1|)) (-15 -1709 ((-767) |#3| |#1|)) (-15 -2309 (|#3| |#1| |#2| |#3|)) (-15 -2309 (|#3| |#1| |#2|)) (-15 -2836 ((-640 |#3|) |#1|)) (-15 -3192 ((-112) |#2| |#1|)) (-15 -4318 ((-640 |#2|) |#1|)) (-15 -2705 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2705 (|#1| (-1 (-112) (-2 (|:| -2387 |#2|) (|:| -2557 |#3|))) |#1|)) (-15 -2705 (|#1| (-2 (|:| -2387 |#2|) (|:| -2557 |#3|)) |#1|)) (-15 -4203 ((-3 (-2 (|:| -2387 |#2|) (|:| -2557 |#3|)) "failed") (-1 (-112) (-2 (|:| -2387 |#2|) (|:| -2557 |#3|))) |#1|)) (-15 -2964 ((-2 (|:| -2387 |#2|) (|:| -2557 |#3|)) |#1|)) (-15 -1812 (|#1| (-2 (|:| -2387 |#2|) (|:| -2557 |#3|)) |#1|)) (-15 -3755 ((-2 (|:| -2387 |#2|) (|:| -2557 |#3|)) |#1|)) (-15 -1709 ((-767) (-2 (|:| -2387 |#2|) (|:| -2557 |#3|)) |#1|)) (-15 -2659 ((-640 (-2 (|:| -2387 |#2|) (|:| -2557 |#3|))) |#1|)) (-15 -1709 ((-767) (-1 (-112) (-2 (|:| -2387 |#2|) (|:| -2557 |#3|))) |#1|)) (-15 -3138 ((-112) (-1 (-112) (-2 (|:| -2387 |#2|) (|:| -2557 |#3|))) |#1|)) (-15 -4383 ((-112) (-1 (-112) (-2 (|:| -2387 |#2|) (|:| -2557 |#3|))) |#1|)) (-15 -4345 (|#1| (-1 (-2 (|:| -2387 |#2|) (|:| -2557 |#3|)) (-2 (|:| -2387 |#2|) (|:| -2557 |#3|))) |#1|)) (-15 -2240 (|#1| (-1 (-2 (|:| -2387 |#2|) (|:| -2557 |#3|)) (-2 (|:| -2387 |#2|) (|:| -2557 |#3|))) |#1|))) +((-1677 (((-112) $ $) 19 (-4032 (|has| |#2| (-1093)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093))))) (-1552 (($) 72) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) 71)) (-4378 (((-1262) $ |#1| |#1|) 99 (|has| $ (-6 -4408)))) (-2759 (((-112) $ (-767)) 8)) (-1849 ((|#2| $ |#1| |#2|) 73)) (-2812 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 45 (|has| $ (-6 -4407)))) (-2256 (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 55 (|has| $ (-6 -4407)))) (-1577 (((-3 |#2| "failed") |#1| $) 61)) (-4239 (($) 7 T CONST)) (-3813 (($ $) 58 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| $ (-6 -4407))))) (-2705 (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 47 (|has| $ (-6 -4407))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 46 (|has| $ (-6 -4407))) (((-3 |#2| "failed") |#1| $) 62)) (-1459 (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| $ (-6 -4407)))) (($ (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 54 (|has| $ (-6 -4407)))) (-2444 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) 56 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| $ (-6 -4407)))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) 53 (|has| $ (-6 -4407))) (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 52 (|has| $ (-6 -4407)))) (-4355 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4408)))) (-4293 ((|#2| $ |#1|) 88)) (-2659 (((-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 30 (|has| $ (-6 -4407))) (((-640 |#2|) $) 79 (|has| $ (-6 -4407)))) (-2581 (((-112) $ (-767)) 9)) (-2411 ((|#1| $) 96 (|has| |#1| (-846)))) (-2259 (((-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 29 (|has| $ (-6 -4407))) (((-640 |#2|) $) 80 (|has| $ (-6 -4407)))) (-1729 (((-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| $ (-6 -4407)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1093)) (|has| $ (-6 -4407))))) (-3860 ((|#1| $) 95 (|has| |#1| (-846)))) (-4345 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 34 (|has| $ (-6 -4408))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4408)))) (-2240 (($ (-1 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-2382 (((-112) $ (-767)) 10)) (-3573 (((-1151) $) 22 (-4032 (|has| |#2| (-1093)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093))))) (-1303 (((-640 |#1|) $) 63)) (-4173 (((-112) |#1| $) 64)) (-2964 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 39)) (-1812 (($ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 40)) (-4318 (((-640 |#1|) $) 93)) (-3192 (((-112) |#1| $) 92)) (-1694 (((-1113) $) 21 (-4032 (|has| |#2| (-1093)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093))))) (-3781 ((|#2| $) 97 (|has| |#1| (-846)))) (-4203 (((-3 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) "failed") (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 51)) (-2358 (($ $ |#2|) 98 (|has| $ (-6 -4408)))) (-3755 (((-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 41)) (-3138 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 32 (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))))) 26 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) 25 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) 24 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) 23 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) 86 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) 84 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 (-294 |#2|))) 83 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-2026 (((-112) $ $) 14)) (-2105 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4407)) (|has| |#2| (-1093))))) (-2836 (((-640 |#2|) $) 91)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-2309 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-3890 (($) 49) (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) 48)) (-1709 (((-767) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 31 (|has| $ (-6 -4407))) (((-767) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| $ (-6 -4407)))) (((-767) |#2| $) 81 (-12 (|has| |#2| (-1093)) (|has| $ (-6 -4407)))) (((-767) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4407)))) (-1872 (($ $) 13)) (-2220 (((-536) $) 59 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-611 (-536))))) (-1707 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) 50)) (-1693 (((-858) $) 18 (-4032 (|has| |#2| (-610 (-858))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-610 (-858)))))) (-2233 (($ (-640 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) 42)) (-4383 (((-112) (-1 (-112) (-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) $) 33 (|has| $ (-6 -4407))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 20 (-4032 (|has| |#2| (-1093)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093))))) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-1184 |#1| |#2|) (-140) (-1093) (-1093)) (T -1184)) +((-1849 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093)))) (-1552 (*1 *1) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))) (-1552 (*1 *1 *2) (-12 (-5 *2 (-640 (-2 (|:| -2387 *3) (|:| -2557 *4)))) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *1 (-1184 *3 *4)))) (-2240 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1184 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093))))) +(-13 (-607 |t#1| |t#2|) (-601 |t#1| |t#2|) (-10 -8 (-15 -1849 (|t#2| $ |t#1| |t#2|)) (-15 -1552 ($)) (-15 -1552 ($ (-640 (-2 (|:| -2387 |t#1|) (|:| -2557 |t#2|))))) (-15 -2240 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -2387 |#1|) (|:| -2557 |#2|))) . T) ((-102) -4032 (|has| |#2| (-1093)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093))) ((-610 (-858)) -4032 (|has| |#2| (-1093)) (|has| |#2| (-610 (-858))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-610 (-858)))) ((-151 #0#) . T) ((-611 (-536)) |has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-611 (-536))) ((-229 #0#) . T) ((-235 #0#) . T) ((-286 |#1| |#2|) . T) ((-288 |#1| |#2|) . T) ((-309 #0#) -12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093))) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((-489 #0#) . T) ((-489 |#2|) . T) ((-601 |#1| |#2|) . T) ((-514 #0# #0#) -12 (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-309 (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)))) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093))) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((-607 |#1| |#2|) . T) ((-1093) -4032 (|has| |#2| (-1093)) (|has| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (-1093))) ((-1208) . T)) +((-4170 (((-112)) 24)) (-3684 (((-1262) (-1151)) 26)) (-2012 (((-112)) 36)) (-3222 (((-1262)) 34)) (-3313 (((-1262) (-1151) (-1151)) 25)) (-2560 (((-112)) 37)) (-1812 (((-1262) |#1| |#2|) 44)) (-3155 (((-1262)) 20)) (-4158 (((-3 |#2| "failed") |#1|) 42)) (-1646 (((-1262)) 35))) +(((-1185 |#1| |#2|) (-10 -7 (-15 -3155 ((-1262))) (-15 -3313 ((-1262) (-1151) (-1151))) (-15 -3684 ((-1262) (-1151))) (-15 -3222 ((-1262))) (-15 -1646 ((-1262))) (-15 -4170 ((-112))) (-15 -2012 ((-112))) (-15 -2560 ((-112))) (-15 -4158 ((-3 |#2| "failed") |#1|)) (-15 -1812 ((-1262) |#1| |#2|))) (-1093) (-1093)) (T -1185)) +((-1812 (*1 *2 *3 *4) (-12 (-5 *2 (-1262)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)))) (-4158 (*1 *2 *3) (|partial| -12 (-4 *2 (-1093)) (-5 *1 (-1185 *3 *2)) (-4 *3 (-1093)))) (-2560 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)))) (-2012 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)))) (-4170 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)))) (-1646 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)))) (-3222 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)))) (-3684 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1185 *4 *5)) (-4 *4 (-1093)) (-4 *5 (-1093)))) (-3313 (*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1185 *4 *5)) (-4 *4 (-1093)) (-4 *5 (-1093)))) (-3155 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093))))) +(-10 -7 (-15 -3155 ((-1262))) (-15 -3313 ((-1262) (-1151) (-1151))) (-15 -3684 ((-1262) (-1151))) (-15 -3222 ((-1262))) (-15 -1646 ((-1262))) (-15 -4170 ((-112))) (-15 -2012 ((-112))) (-15 -2560 ((-112))) (-15 -4158 ((-3 |#2| "failed") |#1|)) (-15 -1812 ((-1262) |#1| |#2|))) +((-2889 (((-1151) (-1151)) 18)) (-3931 (((-52) (-1151)) 21))) +(((-1186) (-10 -7 (-15 -3931 ((-52) (-1151))) (-15 -2889 ((-1151) (-1151))))) (T -1186)) +((-2889 (*1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1186)))) (-3931 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-52)) (-5 *1 (-1186))))) +(-10 -7 (-15 -3931 ((-52) (-1151))) (-15 -2889 ((-1151) (-1151)))) +((-1693 (((-1188) |#1|) 11))) +(((-1187 |#1|) (-10 -7 (-15 -1693 ((-1188) |#1|))) (-1093)) (T -1187)) +((-1693 (*1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *1 (-1187 *3)) (-4 *3 (-1093))))) +(-10 -7 (-15 -1693 ((-1188) |#1|))) +((-1677 (((-112) $ $) NIL)) (-3593 (((-640 (-1151)) $) 34)) (-4083 (((-640 (-1151)) $ (-640 (-1151))) 37)) (-2391 (((-640 (-1151)) $ (-640 (-1151))) 36)) (-2573 (((-640 (-1151)) $ (-640 (-1151))) 38)) (-2737 (((-640 (-1151)) $) 33)) (-1566 (($) 22)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-3789 (((-640 (-1151)) $) 35)) (-1463 (((-1262) $ (-563)) 29) (((-1262) $) 30)) (-2220 (($ (-858) (-563)) 26) (($ (-858) (-563) (-858)) NIL)) (-1693 (((-858) $) 40) (($ (-858)) 24)) (-1718 (((-112) $ $) NIL))) +(((-1188) (-13 (-1093) (-613 (-858)) (-10 -8 (-15 -2220 ($ (-858) (-563))) (-15 -2220 ($ (-858) (-563) (-858))) (-15 -1463 ((-1262) $ (-563))) (-15 -1463 ((-1262) $)) (-15 -3789 ((-640 (-1151)) $)) (-15 -3593 ((-640 (-1151)) $)) (-15 -1566 ($)) (-15 -2737 ((-640 (-1151)) $)) (-15 -2573 ((-640 (-1151)) $ (-640 (-1151)))) (-15 -4083 ((-640 (-1151)) $ (-640 (-1151)))) (-15 -2391 ((-640 (-1151)) $ (-640 (-1151))))))) (T -1188)) +((-2220 (*1 *1 *2 *3) (-12 (-5 *2 (-858)) (-5 *3 (-563)) (-5 *1 (-1188)))) (-2220 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-858)) (-5 *3 (-563)) (-5 *1 (-1188)))) (-1463 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-1188)))) (-1463 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1188)))) (-3789 (*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188)))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188)))) (-1566 (*1 *1) (-5 *1 (-1188))) (-2737 (*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188)))) (-2573 (*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188)))) (-4083 (*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188)))) (-2391 (*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188))))) +(-13 (-1093) (-613 (-858)) (-10 -8 (-15 -2220 ($ (-858) (-563))) (-15 -2220 ($ (-858) (-563) (-858))) (-15 -1463 ((-1262) $ (-563))) (-15 -1463 ((-1262) $)) (-15 -3789 ((-640 (-1151)) $)) (-15 -3593 ((-640 (-1151)) $)) (-15 -1566 ($)) (-15 -2737 ((-640 (-1151)) $)) (-15 -2573 ((-640 (-1151)) $ (-640 (-1151)))) (-15 -4083 ((-640 (-1151)) $ (-640 (-1151)))) (-15 -2391 ((-640 (-1151)) $ (-640 (-1151)))))) +((-1677 (((-112) $ $) NIL)) (-3936 (((-1151) $ (-1151)) 17) (((-1151) $) 16)) (-2056 (((-1151) $ (-1151)) 15)) (-3010 (($ $ (-1151)) NIL)) (-4024 (((-3 (-1151) "failed") $) 11)) (-3588 (((-1151) $) 8)) (-2594 (((-3 (-1151) "failed") $) 12)) (-3538 (((-1151) $) 9)) (-3405 (($ (-388)) NIL) (($ (-388) (-1151)) NIL)) (-3348 (((-388) $) NIL)) (-3573 (((-1151) $) NIL)) (-2302 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-3464 (((-112) $) 18)) (-1693 (((-858) $) NIL)) (-3004 (($ $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-1189) (-13 (-364 (-388) (-1151)) (-10 -8 (-15 -3936 ((-1151) $ (-1151))) (-15 -3936 ((-1151) $)) (-15 -3588 ((-1151) $)) (-15 -4024 ((-3 (-1151) "failed") $)) (-15 -2594 ((-3 (-1151) "failed") $)) (-15 -3464 ((-112) $))))) (T -1189)) +((-3936 (*1 *2 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1189)))) (-3936 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1189)))) (-3588 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1189)))) (-4024 (*1 *2 *1) (|partial| -12 (-5 *2 (-1151)) (-5 *1 (-1189)))) (-2594 (*1 *2 *1) (|partial| -12 (-5 *2 (-1151)) (-5 *1 (-1189)))) (-3464 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1189))))) +(-13 (-364 (-388) (-1151)) (-10 -8 (-15 -3936 ((-1151) $ (-1151))) (-15 -3936 ((-1151) $)) (-15 -3588 ((-1151) $)) (-15 -4024 ((-3 (-1151) "failed") $)) (-15 -2594 ((-3 (-1151) "failed") $)) (-15 -3464 ((-112) $)))) +((-1857 (((-3 (-563) "failed") |#1|) 19)) (-2418 (((-3 (-563) "failed") |#1|) 14)) (-1397 (((-563) (-1151)) 28))) +(((-1190 |#1|) (-10 -7 (-15 -1857 ((-3 (-563) "failed") |#1|)) (-15 -2418 ((-3 (-563) "failed") |#1|)) (-15 -1397 ((-563) (-1151)))) (-1045)) (T -1190)) +((-1397 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-563)) (-5 *1 (-1190 *4)) (-4 *4 (-1045)))) (-2418 (*1 *2 *3) (|partial| -12 (-5 *2 (-563)) (-5 *1 (-1190 *3)) (-4 *3 (-1045)))) (-1857 (*1 *2 *3) (|partial| -12 (-5 *2 (-563)) (-5 *1 (-1190 *3)) (-4 *3 (-1045))))) +(-10 -7 (-15 -1857 ((-3 (-563) "failed") |#1|)) (-15 -2418 ((-3 (-563) "failed") |#1|)) (-15 -1397 ((-563) (-1151)))) +((-1301 (((-1126 (-225))) 9))) +(((-1191) (-10 -7 (-15 -1301 ((-1126 (-225)))))) (T -1191)) +((-1301 (*1 *2) (-12 (-5 *2 (-1126 (-225))) (-5 *1 (-1191))))) +(-10 -7 (-15 -1301 ((-1126 (-225))))) +((-2180 (($) 11)) (-1840 (($ $) 35)) (-1817 (($ $) 33)) (-1667 (($ $) 25)) (-1862 (($ $) 17)) (-1311 (($ $) 15)) (-1851 (($ $) 19)) (-1710 (($ $) 30)) (-1829 (($ $) 34)) (-1680 (($ $) 29))) +(((-1192 |#1|) (-10 -8 (-15 -2180 (|#1|)) (-15 -1840 (|#1| |#1|)) (-15 -1817 (|#1| |#1|)) (-15 -1862 (|#1| |#1|)) (-15 -1311 (|#1| |#1|)) (-15 -1851 (|#1| |#1|)) (-15 -1829 (|#1| |#1|)) (-15 -1667 (|#1| |#1|)) (-15 -1710 (|#1| |#1|)) (-15 -1680 (|#1| |#1|))) (-1193)) (T -1192)) +NIL +(-10 -8 (-15 -2180 (|#1|)) (-15 -1840 (|#1| |#1|)) (-15 -1817 (|#1| |#1|)) (-15 -1862 (|#1| |#1|)) (-15 -1311 (|#1| |#1|)) (-15 -1851 (|#1| |#1|)) (-15 -1829 (|#1| |#1|)) (-15 -1667 (|#1| |#1|)) (-15 -1710 (|#1| |#1|)) (-15 -1680 (|#1| |#1|))) +((-1771 (($ $) 26)) (-1619 (($ $) 11)) (-1748 (($ $) 27)) (-1597 (($ $) 10)) (-1794 (($ $) 28)) (-1643 (($ $) 9)) (-2180 (($) 16)) (-4371 (($ $) 19)) (-3368 (($ $) 18)) (-1806 (($ $) 29)) (-1656 (($ $) 8)) (-1784 (($ $) 30)) (-1630 (($ $) 7)) (-1759 (($ $) 31)) (-1608 (($ $) 6)) (-1840 (($ $) 20)) (-1695 (($ $) 32)) (-1817 (($ $) 21)) (-1667 (($ $) 33)) (-1862 (($ $) 22)) (-1722 (($ $) 34)) (-1311 (($ $) 23)) (-1735 (($ $) 35)) (-1851 (($ $) 24)) (-1710 (($ $) 36)) (-1829 (($ $) 25)) (-1680 (($ $) 37)) (** (($ $ $) 17))) +(((-1193) (-140)) (T -1193)) +((-2180 (*1 *1) (-4 *1 (-1193)))) +(-13 (-1196) (-95) (-493) (-35) (-284) (-10 -8 (-15 -2180 ($)))) +(((-35) . T) ((-95) . T) ((-284) . T) ((-493) . T) ((-1196) . T)) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2619 ((|#1| $) 17)) (-4267 (($ |#1| (-640 $)) 23) (($ (-640 |#1|)) 27) (($ |#1|) 25)) (-2759 (((-112) $ (-767)) 47)) (-2936 ((|#1| $ |#1|) 14 (|has| $ (-6 -4408)))) (-1849 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4408)))) (-2811 (($ $ (-640 $)) 13 (|has| $ (-6 -4408)))) (-4239 (($) NIL T CONST)) (-2659 (((-640 |#1|) $) 51 (|has| $ (-6 -4407)))) (-2071 (((-640 $) $) 42)) (-1469 (((-112) $ $) 32 (|has| |#1| (-1093)))) (-2581 (((-112) $ (-767)) 40)) (-2259 (((-640 |#1|) $) 52 (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) 50 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-4345 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 22)) (-2382 (((-112) $ (-767)) 39)) (-2512 (((-640 |#1|) $) 36)) (-2194 (((-112) $) 35)) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3138 (((-112) (-1 (-112) |#1|) $) 49 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) 73)) (-3756 (((-112) $) 9)) (-3135 (($) 10)) (-2309 ((|#1| $ "value") NIL)) (-4071 (((-563) $ $) 31)) (-1634 (((-640 $) $) 58)) (-2612 (((-112) $ $) 76)) (-1449 (((-640 $) $) 71)) (-4226 (($ $) 72)) (-1434 (((-112) $) 55)) (-1709 (((-767) (-1 (-112) |#1|) $) 20 (|has| $ (-6 -4407))) (((-767) |#1| $) 16 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1872 (($ $) 57)) (-1693 (((-858) $) 60 (|has| |#1| (-610 (-858))))) (-4258 (((-640 $) $) 12)) (-2962 (((-112) $ $) 29 (|has| |#1| (-1093)))) (-4383 (((-112) (-1 (-112) |#1|) $) 48 (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 28 (|has| |#1| (-1093)))) (-3608 (((-767) $) 38 (|has| $ (-6 -4407))))) +(((-1194 |#1|) (-13 (-1006 |#1|) (-10 -8 (-6 -4407) (-6 -4408) (-15 -4267 ($ |#1| (-640 $))) (-15 -4267 ($ (-640 |#1|))) (-15 -4267 ($ |#1|)) (-15 -1434 ((-112) $)) (-15 -4226 ($ $)) (-15 -1449 ((-640 $) $)) (-15 -2612 ((-112) $ $)) (-15 -1634 ((-640 $) $)))) (-1093)) (T -1194)) +((-1434 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3)) (-4 *3 (-1093)))) (-4267 (*1 *1 *2 *3) (-12 (-5 *3 (-640 (-1194 *2))) (-5 *1 (-1194 *2)) (-4 *2 (-1093)))) (-4267 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-1194 *3)))) (-4267 (*1 *1 *2) (-12 (-5 *1 (-1194 *2)) (-4 *2 (-1093)))) (-4226 (*1 *1 *1) (-12 (-5 *1 (-1194 *2)) (-4 *2 (-1093)))) (-1449 (*1 *2 *1) (-12 (-5 *2 (-640 (-1194 *3))) (-5 *1 (-1194 *3)) (-4 *3 (-1093)))) (-2612 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3)) (-4 *3 (-1093)))) (-1634 (*1 *2 *1) (-12 (-5 *2 (-640 (-1194 *3))) (-5 *1 (-1194 *3)) (-4 *3 (-1093))))) +(-13 (-1006 |#1|) (-10 -8 (-6 -4407) (-6 -4408) (-15 -4267 ($ |#1| (-640 $))) (-15 -4267 ($ (-640 |#1|))) (-15 -4267 ($ |#1|)) (-15 -1434 ((-112) $)) (-15 -4226 ($ $)) (-15 -1449 ((-640 $) $)) (-15 -2612 ((-112) $ $)) (-15 -1634 ((-640 $) $)))) +((-1619 (($ $) 15)) (-1643 (($ $) 12)) (-1656 (($ $) 10)) (-1630 (($ $) 17))) +(((-1195 |#1|) (-10 -8 (-15 -1630 (|#1| |#1|)) (-15 -1656 (|#1| |#1|)) (-15 -1643 (|#1| |#1|)) (-15 -1619 (|#1| |#1|))) (-1196)) (T -1195)) +NIL +(-10 -8 (-15 -1630 (|#1| |#1|)) (-15 -1656 (|#1| |#1|)) (-15 -1643 (|#1| |#1|)) (-15 -1619 (|#1| |#1|))) +((-1619 (($ $) 11)) (-1597 (($ $) 10)) (-1643 (($ $) 9)) (-1656 (($ $) 8)) (-1630 (($ $) 7)) (-1608 (($ $) 6))) +(((-1196) (-140)) (T -1196)) +((-1619 (*1 *1 *1) (-4 *1 (-1196))) (-1597 (*1 *1 *1) (-4 *1 (-1196))) (-1643 (*1 *1 *1) (-4 *1 (-1196))) (-1656 (*1 *1 *1) (-4 *1 (-1196))) (-1630 (*1 *1 *1) (-4 *1 (-1196))) (-1608 (*1 *1 *1) (-4 *1 (-1196)))) +(-13 (-10 -8 (-15 -1608 ($ $)) (-15 -1630 ($ $)) (-15 -1656 ($ $)) (-15 -1643 ($ $)) (-15 -1597 ($ $)) (-15 -1619 ($ $)))) +((-3021 ((|#2| |#2|) 88)) (-3087 (((-112) |#2|) 26)) (-2489 ((|#2| |#2|) 30)) (-2499 ((|#2| |#2|) 32)) (-3172 ((|#2| |#2| (-1169)) 83) ((|#2| |#2|) 84)) (-2685 (((-169 |#2|) |#2|) 28)) (-1541 ((|#2| |#2| (-1169)) 85) ((|#2| |#2|) 86))) +(((-1197 |#1| |#2|) (-10 -7 (-15 -3172 (|#2| |#2|)) (-15 -3172 (|#2| |#2| (-1169))) (-15 -1541 (|#2| |#2|)) (-15 -1541 (|#2| |#2| (-1169))) (-15 -3021 (|#2| |#2|)) (-15 -2489 (|#2| |#2|)) (-15 -2499 (|#2| |#2|)) (-15 -3087 ((-112) |#2|)) (-15 -2685 ((-169 |#2|) |#2|))) (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))) (-13 (-27) (-1193) (-430 |#1|))) (T -1197)) +((-2685 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-169 *3)) (-5 *1 (-1197 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *4))))) (-3087 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-112)) (-5 *1 (-1197 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *4))))) (-2499 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3))))) (-2489 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3))))) (-3021 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3))))) (-1541 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-1197 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4))))) (-1541 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3))))) (-3172 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-1197 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4))))) (-3172 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3)))))) +(-10 -7 (-15 -3172 (|#2| |#2|)) (-15 -3172 (|#2| |#2| (-1169))) (-15 -1541 (|#2| |#2|)) (-15 -1541 (|#2| |#2| (-1169))) (-15 -3021 (|#2| |#2|)) (-15 -2489 (|#2| |#2|)) (-15 -2499 (|#2| |#2|)) (-15 -3087 ((-112) |#2|)) (-15 -2685 ((-169 |#2|) |#2|))) +((-1941 ((|#4| |#4| |#1|) 27)) (-4013 ((|#4| |#4| |#1|) 28))) +(((-1198 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1941 (|#4| |#4| |#1|)) (-15 -4013 (|#4| |#4| |#1|))) (-555) (-373 |#1|) (-373 |#1|) (-682 |#1| |#2| |#3|)) (T -1198)) +((-4013 (*1 *2 *2 *3) (-12 (-4 *3 (-555)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1198 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))) (-1941 (*1 *2 *2 *3) (-12 (-4 *3 (-555)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1198 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5))))) +(-10 -7 (-15 -1941 (|#4| |#4| |#1|)) (-15 -4013 (|#4| |#4| |#1|))) +((-4229 ((|#2| |#2|) 133)) (-2887 ((|#2| |#2|) 130)) (-3758 ((|#2| |#2|) 121)) (-3950 ((|#2| |#2|) 118)) (-3413 ((|#2| |#2|) 126)) (-3713 ((|#2| |#2|) 114)) (-2911 ((|#2| |#2|) 41)) (-1384 ((|#2| |#2|) 92)) (-2609 ((|#2| |#2|) 72)) (-1596 ((|#2| |#2|) 128)) (-4114 ((|#2| |#2|) 116)) (-1616 ((|#2| |#2|) 138)) (-2255 ((|#2| |#2|) 136)) (-2453 ((|#2| |#2|) 137)) (-2983 ((|#2| |#2|) 135)) (-1542 ((|#2| |#2|) 148)) (-3661 ((|#2| |#2|) 30 (-12 (|has| |#2| (-611 (-888 |#1|))) (|has| |#2| (-882 |#1|)) (|has| |#1| (-611 (-888 |#1|))) (|has| |#1| (-882 |#1|))))) (-2034 ((|#2| |#2|) 73)) (-2072 ((|#2| |#2|) 139)) (-2213 ((|#2| |#2|) 140)) (-4116 ((|#2| |#2|) 127)) (-4106 ((|#2| |#2|) 115)) (-1745 ((|#2| |#2|) 134)) (-1545 ((|#2| |#2|) 132)) (-2775 ((|#2| |#2|) 122)) (-3474 ((|#2| |#2|) 120)) (-2629 ((|#2| |#2|) 124)) (-1810 ((|#2| |#2|) 112))) +(((-1199 |#1| |#2|) (-10 -7 (-15 -2213 (|#2| |#2|)) (-15 -2609 (|#2| |#2|)) (-15 -1542 (|#2| |#2|)) (-15 -1384 (|#2| |#2|)) (-15 -2911 (|#2| |#2|)) (-15 -2034 (|#2| |#2|)) (-15 -2072 (|#2| |#2|)) (-15 -1810 (|#2| |#2|)) (-15 -2629 (|#2| |#2|)) (-15 -2775 (|#2| |#2|)) (-15 -1745 (|#2| |#2|)) (-15 -4106 (|#2| |#2|)) (-15 -4116 (|#2| |#2|)) (-15 -4114 (|#2| |#2|)) (-15 -1596 (|#2| |#2|)) (-15 -3713 (|#2| |#2|)) (-15 -3413 (|#2| |#2|)) (-15 -3758 (|#2| |#2|)) (-15 -4229 (|#2| |#2|)) (-15 -3950 (|#2| |#2|)) (-15 -2887 (|#2| |#2|)) (-15 -3474 (|#2| |#2|)) (-15 -1545 (|#2| |#2|)) (-15 -2983 (|#2| |#2|)) (-15 -2255 (|#2| |#2|)) (-15 -2453 (|#2| |#2|)) (-15 -1616 (|#2| |#2|)) (IF (|has| |#1| (-882 |#1|)) (IF (|has| |#1| (-611 (-888 |#1|))) (IF (|has| |#2| (-611 (-888 |#1|))) (IF (|has| |#2| (-882 |#1|)) (-15 -3661 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-846) (-452)) (-13 (-430 |#1|) (-1193))) (T -1199)) +((-3661 (*1 *2 *2) (-12 (-4 *3 (-611 (-888 *3))) (-4 *3 (-882 *3)) (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-611 (-888 *3))) (-4 *2 (-882 *3)) (-4 *2 (-13 (-430 *3) (-1193))))) (-1616 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-2453 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-2255 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-2983 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-1545 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-3474 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-2887 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-3950 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-4229 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-3758 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-3413 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-3713 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-1596 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-4114 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-4116 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-4106 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-1745 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-2775 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-2629 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-1810 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-2072 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-2034 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-2911 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-1384 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-1542 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-2609 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-2213 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193)))))) +(-10 -7 (-15 -2213 (|#2| |#2|)) (-15 -2609 (|#2| |#2|)) (-15 -1542 (|#2| |#2|)) (-15 -1384 (|#2| |#2|)) (-15 -2911 (|#2| |#2|)) (-15 -2034 (|#2| |#2|)) (-15 -2072 (|#2| |#2|)) (-15 -1810 (|#2| |#2|)) (-15 -2629 (|#2| |#2|)) (-15 -2775 (|#2| |#2|)) (-15 -1745 (|#2| |#2|)) (-15 -4106 (|#2| |#2|)) (-15 -4116 (|#2| |#2|)) (-15 -4114 (|#2| |#2|)) (-15 -1596 (|#2| |#2|)) (-15 -3713 (|#2| |#2|)) (-15 -3413 (|#2| |#2|)) (-15 -3758 (|#2| |#2|)) (-15 -4229 (|#2| |#2|)) (-15 -3950 (|#2| |#2|)) (-15 -2887 (|#2| |#2|)) (-15 -3474 (|#2| |#2|)) (-15 -1545 (|#2| |#2|)) (-15 -2983 (|#2| |#2|)) (-15 -2255 (|#2| |#2|)) (-15 -2453 (|#2| |#2|)) (-15 -1616 (|#2| |#2|)) (IF (|has| |#1| (-882 |#1|)) (IF (|has| |#1| (-611 (-888 |#1|))) (IF (|has| |#2| (-611 (-888 |#1|))) (IF (|has| |#2| (-882 |#1|)) (-15 -3661 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-2620 (((-112) |#5| $) 59) (((-112) $) 101)) (-4053 ((|#5| |#5| $) 74)) (-2256 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 118)) (-1833 (((-640 |#5|) (-640 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 72)) (-2131 (((-3 $ "failed") (-640 |#5|)) 125)) (-3792 (((-3 $ "failed") $) 111)) (-1719 ((|#5| |#5| $) 93)) (-3990 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 30)) (-3948 ((|#5| |#5| $) 97)) (-2444 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 68)) (-2144 (((-2 (|:| -1442 (-640 |#5|)) (|:| -3405 (-640 |#5|))) $) 54)) (-2299 (((-112) |#5| $) 57) (((-112) $) 102)) (-2957 ((|#4| $) 107)) (-1481 (((-3 |#5| "failed") $) 109)) (-2820 (((-640 |#5|) $) 48)) (-4197 (((-112) |#5| $) 66) (((-112) $) 106)) (-2715 ((|#5| |#5| $) 80)) (-3009 (((-112) $ $) 26)) (-2031 (((-112) |#5| $) 62) (((-112) $) 104)) (-4056 ((|#5| |#5| $) 77)) (-3781 (((-3 |#5| "failed") $) 108)) (-3320 (($ $ |#5|) 126)) (-4167 (((-767) $) 51)) (-1707 (($ (-640 |#5|)) 123)) (-3577 (($ $ |#4|) 121)) (-1593 (($ $ |#4|) 120)) (-1924 (($ $) 119)) (-1693 (((-858) $) NIL) (((-640 |#5|) $) 112)) (-2437 (((-767) $) 129)) (-2540 (((-3 (-2 (|:| |bas| $) (|:| -2636 (-640 |#5|))) "failed") (-640 |#5|) (-1 (-112) |#5| |#5|)) 42) (((-3 (-2 (|:| |bas| $) (|:| -2636 (-640 |#5|))) "failed") (-640 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 44)) (-2691 (((-112) $ (-1 (-112) |#5| (-640 |#5|))) 99)) (-1955 (((-640 |#4|) $) 114)) (-3152 (((-112) |#4| $) 117)) (-1718 (((-112) $ $) 19))) +(((-1200 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2437 ((-767) |#1|)) (-15 -3320 (|#1| |#1| |#5|)) (-15 -2256 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3152 ((-112) |#4| |#1|)) (-15 -1955 ((-640 |#4|) |#1|)) (-15 -3792 ((-3 |#1| "failed") |#1|)) (-15 -1481 ((-3 |#5| "failed") |#1|)) (-15 -3781 ((-3 |#5| "failed") |#1|)) (-15 -3948 (|#5| |#5| |#1|)) (-15 -1924 (|#1| |#1|)) (-15 -1719 (|#5| |#5| |#1|)) (-15 -2715 (|#5| |#5| |#1|)) (-15 -4056 (|#5| |#5| |#1|)) (-15 -4053 (|#5| |#5| |#1|)) (-15 -1833 ((-640 |#5|) (-640 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2444 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4197 ((-112) |#1|)) (-15 -2031 ((-112) |#1|)) (-15 -2620 ((-112) |#1|)) (-15 -2691 ((-112) |#1| (-1 (-112) |#5| (-640 |#5|)))) (-15 -4197 ((-112) |#5| |#1|)) (-15 -2031 ((-112) |#5| |#1|)) (-15 -2620 ((-112) |#5| |#1|)) (-15 -3990 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2299 ((-112) |#1|)) (-15 -2299 ((-112) |#5| |#1|)) (-15 -2144 ((-2 (|:| -1442 (-640 |#5|)) (|:| -3405 (-640 |#5|))) |#1|)) (-15 -4167 ((-767) |#1|)) (-15 -2820 ((-640 |#5|) |#1|)) (-15 -2540 ((-3 (-2 (|:| |bas| |#1|) (|:| -2636 (-640 |#5|))) "failed") (-640 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2540 ((-3 (-2 (|:| |bas| |#1|) (|:| -2636 (-640 |#5|))) "failed") (-640 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3009 ((-112) |#1| |#1|)) (-15 -3577 (|#1| |#1| |#4|)) (-15 -1593 (|#1| |#1| |#4|)) (-15 -2957 (|#4| |#1|)) (-15 -2131 ((-3 |#1| "failed") (-640 |#5|))) (-15 -1693 ((-640 |#5|) |#1|)) (-15 -1707 (|#1| (-640 |#5|))) (-15 -2444 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2444 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2256 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2444 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -1693 ((-858) |#1|)) (-15 -1718 ((-112) |#1| |#1|))) (-1201 |#2| |#3| |#4| |#5|) (-555) (-789) (-846) (-1059 |#2| |#3| |#4|)) (T -1200)) +NIL +(-10 -8 (-15 -2437 ((-767) |#1|)) (-15 -3320 (|#1| |#1| |#5|)) (-15 -2256 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3152 ((-112) |#4| |#1|)) (-15 -1955 ((-640 |#4|) |#1|)) (-15 -3792 ((-3 |#1| "failed") |#1|)) (-15 -1481 ((-3 |#5| "failed") |#1|)) (-15 -3781 ((-3 |#5| "failed") |#1|)) (-15 -3948 (|#5| |#5| |#1|)) (-15 -1924 (|#1| |#1|)) (-15 -1719 (|#5| |#5| |#1|)) (-15 -2715 (|#5| |#5| |#1|)) (-15 -4056 (|#5| |#5| |#1|)) (-15 -4053 (|#5| |#5| |#1|)) (-15 -1833 ((-640 |#5|) (-640 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2444 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4197 ((-112) |#1|)) (-15 -2031 ((-112) |#1|)) (-15 -2620 ((-112) |#1|)) (-15 -2691 ((-112) |#1| (-1 (-112) |#5| (-640 |#5|)))) (-15 -4197 ((-112) |#5| |#1|)) (-15 -2031 ((-112) |#5| |#1|)) (-15 -2620 ((-112) |#5| |#1|)) (-15 -3990 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2299 ((-112) |#1|)) (-15 -2299 ((-112) |#5| |#1|)) (-15 -2144 ((-2 (|:| -1442 (-640 |#5|)) (|:| -3405 (-640 |#5|))) |#1|)) (-15 -4167 ((-767) |#1|)) (-15 -2820 ((-640 |#5|) |#1|)) (-15 -2540 ((-3 (-2 (|:| |bas| |#1|) (|:| -2636 (-640 |#5|))) "failed") (-640 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2540 ((-3 (-2 (|:| |bas| |#1|) (|:| -2636 (-640 |#5|))) "failed") (-640 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3009 ((-112) |#1| |#1|)) (-15 -3577 (|#1| |#1| |#4|)) (-15 -1593 (|#1| |#1| |#4|)) (-15 -2957 (|#4| |#1|)) (-15 -2131 ((-3 |#1| "failed") (-640 |#5|))) (-15 -1693 ((-640 |#5|) |#1|)) (-15 -1707 (|#1| (-640 |#5|))) (-15 -2444 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2444 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2256 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2444 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -1693 ((-858) |#1|)) (-15 -1718 ((-112) |#1| |#1|))) +((-1677 (((-112) $ $) 7)) (-1578 (((-640 (-2 (|:| -1442 $) (|:| -3405 (-640 |#4|)))) (-640 |#4|)) 85)) (-3319 (((-640 $) (-640 |#4|)) 86)) (-2606 (((-640 |#3|) $) 33)) (-1706 (((-112) $) 26)) (-3854 (((-112) $) 17 (|has| |#1| (-555)))) (-2620 (((-112) |#4| $) 101) (((-112) $) 97)) (-4053 ((|#4| |#4| $) 92)) (-1642 (((-2 (|:| |under| $) (|:| -1583 $) (|:| |upper| $)) $ |#3|) 27)) (-2759 (((-112) $ (-767)) 44)) (-2256 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4407))) (((-3 |#4| "failed") $ |#3|) 79)) (-4239 (($) 45 T CONST)) (-1483 (((-112) $) 22 (|has| |#1| (-555)))) (-1626 (((-112) $ $) 24 (|has| |#1| (-555)))) (-4221 (((-112) $ $) 23 (|has| |#1| (-555)))) (-1763 (((-112) $) 25 (|has| |#1| (-555)))) (-1833 (((-640 |#4|) (-640 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3746 (((-640 |#4|) (-640 |#4|) $) 18 (|has| |#1| (-555)))) (-1866 (((-640 |#4|) (-640 |#4|) $) 19 (|has| |#1| (-555)))) (-2131 (((-3 $ "failed") (-640 |#4|)) 36)) (-2058 (($ (-640 |#4|)) 35)) (-3792 (((-3 $ "failed") $) 82)) (-1719 ((|#4| |#4| $) 89)) (-3813 (($ $) 68 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4407))))) (-1459 (($ |#4| $) 67 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4407)))) (-1972 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-555)))) (-3990 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3948 ((|#4| |#4| $) 87)) (-2444 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4407)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4407))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4407))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2144 (((-2 (|:| -1442 (-640 |#4|)) (|:| -3405 (-640 |#4|))) $) 105)) (-2659 (((-640 |#4|) $) 52 (|has| $ (-6 -4407)))) (-2299 (((-112) |#4| $) 104) (((-112) $) 103)) (-2957 ((|#3| $) 34)) (-2581 (((-112) $ (-767)) 43)) (-2259 (((-640 |#4|) $) 53 (|has| $ (-6 -4407)))) (-1729 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4407))))) (-4345 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#4| |#4|) $) 47)) (-2965 (((-640 |#3|) $) 32)) (-2780 (((-112) |#3| $) 31)) (-2382 (((-112) $ (-767)) 42)) (-3573 (((-1151) $) 9)) (-1481 (((-3 |#4| "failed") $) 83)) (-2820 (((-640 |#4|) $) 107)) (-4197 (((-112) |#4| $) 99) (((-112) $) 95)) (-2715 ((|#4| |#4| $) 90)) (-3009 (((-112) $ $) 110)) (-2152 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-555)))) (-2031 (((-112) |#4| $) 100) (((-112) $) 96)) (-4056 ((|#4| |#4| $) 91)) (-1694 (((-1113) $) 10)) (-3781 (((-3 |#4| "failed") $) 84)) (-4203 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3479 (((-3 $ "failed") $ |#4|) 78)) (-3320 (($ $ |#4|) 77)) (-3138 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 |#4|) (-640 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-2026 (((-112) $ $) 38)) (-3756 (((-112) $) 41)) (-3135 (($) 40)) (-4167 (((-767) $) 106)) (-1709 (((-767) |#4| $) 54 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4407)))) (((-767) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4407)))) (-1872 (($ $) 39)) (-2220 (((-536) $) 69 (|has| |#4| (-611 (-536))))) (-1707 (($ (-640 |#4|)) 60)) (-3577 (($ $ |#3|) 28)) (-1593 (($ $ |#3|) 30)) (-1924 (($ $) 88)) (-4192 (($ $ |#3|) 29)) (-1693 (((-858) $) 11) (((-640 |#4|) $) 37)) (-2437 (((-767) $) 76 (|has| |#3| (-368)))) (-2540 (((-3 (-2 (|:| |bas| $) (|:| -2636 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2636 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2691 (((-112) $ (-1 (-112) |#4| (-640 |#4|))) 98)) (-4383 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4407)))) (-1955 (((-640 |#3|) $) 81)) (-3152 (((-112) |#3| $) 80)) (-1718 (((-112) $ $) 6)) (-3608 (((-767) $) 46 (|has| $ (-6 -4407))))) +(((-1201 |#1| |#2| |#3| |#4|) (-140) (-555) (-789) (-846) (-1059 |t#1| |t#2| |t#3|)) (T -1201)) +((-3009 (*1 *2 *1 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-2540 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2636 (-640 *8)))) (-5 *3 (-640 *8)) (-4 *1 (-1201 *5 *6 *7 *8)))) (-2540 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-555)) (-4 *7 (-789)) (-4 *8 (-846)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2636 (-640 *9)))) (-5 *3 (-640 *9)) (-4 *1 (-1201 *6 *7 *8 *9)))) (-2820 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-640 *6)))) (-4167 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-767)))) (-2144 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-2 (|:| -1442 (-640 *6)) (|:| -3405 (-640 *6)))))) (-2299 (*1 *2 *3 *1) (-12 (-4 *1 (-1201 *4 *5 *6 *3)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-2299 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-3990 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1201 *5 *6 *7 *3)) (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-112)))) (-2620 (*1 *2 *3 *1) (-12 (-4 *1 (-1201 *4 *5 *6 *3)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-2031 (*1 *2 *3 *1) (-12 (-4 *1 (-1201 *4 *5 *6 *3)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-4197 (*1 *2 *3 *1) (-12 (-4 *1 (-1201 *4 *5 *6 *3)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-2691 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-640 *7))) (-4 *1 (-1201 *4 *5 *6 *7)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-2620 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-2031 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-4197 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-2444 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1201 *5 *6 *7 *2)) (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *2 (-1059 *5 *6 *7)))) (-1833 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-640 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1201 *5 *6 *7 *8)) (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)))) (-4053 (*1 *2 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-4056 (*1 *2 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-2715 (*1 *2 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-1719 (*1 *2 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-1924 (*1 *1 *1) (-12 (-4 *1 (-1201 *2 *3 *4 *5)) (-4 *2 (-555)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-1059 *2 *3 *4)))) (-3948 (*1 *2 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-3319 (*1 *2 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-1201 *4 *5 *6 *7)))) (-1578 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-640 (-2 (|:| -1442 *1) (|:| -3405 (-640 *7))))) (-5 *3 (-640 *7)) (-4 *1 (-1201 *4 *5 *6 *7)))) (-3781 (*1 *2 *1) (|partial| -12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-1481 (*1 *2 *1) (|partial| -12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-3792 (*1 *1 *1) (|partial| -12 (-4 *1 (-1201 *2 *3 *4 *5)) (-4 *2 (-555)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-1059 *2 *3 *4)))) (-1955 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-640 *5)))) (-3152 (*1 *2 *3 *1) (-12 (-4 *1 (-1201 *4 *5 *3 *6)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *3 (-846)) (-4 *6 (-1059 *4 *5 *3)) (-5 *2 (-112)))) (-2256 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1201 *4 *5 *3 *2)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *3 (-846)) (-4 *2 (-1059 *4 *5 *3)))) (-3479 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-3320 (*1 *1 *1 *2) (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-2437 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *5 (-368)) (-5 *2 (-767))))) +(-13 (-972 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4407) (-6 -4408) (-15 -3009 ((-112) $ $)) (-15 -2540 ((-3 (-2 (|:| |bas| $) (|:| -2636 (-640 |t#4|))) "failed") (-640 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2540 ((-3 (-2 (|:| |bas| $) (|:| -2636 (-640 |t#4|))) "failed") (-640 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2820 ((-640 |t#4|) $)) (-15 -4167 ((-767) $)) (-15 -2144 ((-2 (|:| -1442 (-640 |t#4|)) (|:| -3405 (-640 |t#4|))) $)) (-15 -2299 ((-112) |t#4| $)) (-15 -2299 ((-112) $)) (-15 -3990 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -2620 ((-112) |t#4| $)) (-15 -2031 ((-112) |t#4| $)) (-15 -4197 ((-112) |t#4| $)) (-15 -2691 ((-112) $ (-1 (-112) |t#4| (-640 |t#4|)))) (-15 -2620 ((-112) $)) (-15 -2031 ((-112) $)) (-15 -4197 ((-112) $)) (-15 -2444 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1833 ((-640 |t#4|) (-640 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4053 (|t#4| |t#4| $)) (-15 -4056 (|t#4| |t#4| $)) (-15 -2715 (|t#4| |t#4| $)) (-15 -1719 (|t#4| |t#4| $)) (-15 -1924 ($ $)) (-15 -3948 (|t#4| |t#4| $)) (-15 -3319 ((-640 $) (-640 |t#4|))) (-15 -1578 ((-640 (-2 (|:| -1442 $) (|:| -3405 (-640 |t#4|)))) (-640 |t#4|))) (-15 -3781 ((-3 |t#4| "failed") $)) (-15 -1481 ((-3 |t#4| "failed") $)) (-15 -3792 ((-3 $ "failed") $)) (-15 -1955 ((-640 |t#3|) $)) (-15 -3152 ((-112) |t#3| $)) (-15 -2256 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3479 ((-3 $ "failed") $ |t#4|)) (-15 -3320 ($ $ |t#4|)) (IF (|has| |t#3| (-368)) (-15 -2437 ((-767) $)) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-610 (-640 |#4|)) . T) ((-610 (-858)) . T) ((-151 |#4|) . T) ((-611 (-536)) |has| |#4| (-611 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-972 |#1| |#2| |#3| |#4|) . T) ((-1093) . T) ((-1208) . T)) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-2606 (((-640 (-1169)) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-4223 (($ $) NIL (|has| |#1| (-555)))) (-3156 (((-112) $) NIL (|has| |#1| (-555)))) (-1771 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1619 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1495 (((-3 $ "failed") $ $) NIL)) (-2186 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1748 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1597 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1794 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1643 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-4239 (($) NIL T CONST)) (-2751 (($ $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-3619 (((-948 |#1|) $ (-767)) 16) (((-948 |#1|) $ (-767) (-767)) NIL)) (-2788 (((-112) $) NIL)) (-2180 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3254 (((-767) $ (-1169)) NIL) (((-767) $ (-1169) (-767)) NIL)) (-3827 (((-112) $) NIL)) (-1645 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3920 (((-112) $) NIL)) (-2588 (($ $ (-640 (-1169)) (-640 (-531 (-1169)))) NIL) (($ $ (-1169) (-531 (-1169))) NIL) (($ |#1| (-531 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL)) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-4371 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2716 (($ $) NIL)) (-2726 ((|#1| $) NIL)) (-3573 (((-1151) $) NIL)) (-3698 (($ $ (-1169)) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169) |#1|) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1694 (((-1113) $) NIL)) (-3118 (($ (-1 $) (-1169) |#1|) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3320 (($ $ (-767)) NIL)) (-3008 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-3368 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1540 (($ $ (-1169) $) NIL) (($ $ (-640 (-1169)) (-640 $)) NIL) (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL)) (-4202 (($ $ (-1169)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL)) (-4167 (((-531 (-1169)) $) NIL)) (-1806 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1656 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1784 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1630 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1759 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1608 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1741 (($ $) NIL)) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-555))) (($ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ (-1169)) NIL) (($ (-948 |#1|)) NIL)) (-4319 ((|#1| $ (-531 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (((-948 |#1|) $ (-767)) NIL)) (-2779 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1675 (((-767)) NIL)) (-1840 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1695 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2126 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1817 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1667 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1862 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1722 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1311 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1735 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1851 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1710 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1829 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1680 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2241 (($) NIL T CONST)) (-2254 (($) NIL T CONST)) (-3209 (($ $ (-1169)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL)) (-1718 (((-112) $ $) NIL)) (-1837 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1202 |#1|) (-13 (-736 |#1| (-1169)) (-10 -8 (-15 -4319 ((-948 |#1|) $ (-767))) (-15 -1693 ($ (-1169))) (-15 -1693 ($ (-948 |#1|))) (IF (|has| |#1| (-38 (-407 (-563)))) (PROGN (-15 -3698 ($ $ (-1169) |#1|)) (-15 -3118 ($ (-1 $) (-1169) |#1|))) |%noBranch|))) (-1045)) (T -1202)) +((-4319 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-948 *4)) (-5 *1 (-1202 *4)) (-4 *4 (-1045)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1202 *3)) (-4 *3 (-1045)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-948 *3)) (-4 *3 (-1045)) (-5 *1 (-1202 *3)))) (-3698 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *1 (-1202 *3)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)))) (-3118 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1202 *4))) (-5 *3 (-1169)) (-5 *1 (-1202 *4)) (-4 *4 (-38 (-407 (-563)))) (-4 *4 (-1045))))) +(-13 (-736 |#1| (-1169)) (-10 -8 (-15 -4319 ((-948 |#1|) $ (-767))) (-15 -1693 ($ (-1169))) (-15 -1693 ($ (-948 |#1|))) (IF (|has| |#1| (-38 (-407 (-563)))) (PROGN (-15 -3698 ($ $ (-1169) |#1|)) (-15 -3118 ($ (-1 $) (-1169) |#1|))) |%noBranch|))) +((-2357 (($ |#1| (-640 (-640 (-939 (-225)))) (-112)) 18)) (-1474 (((-112) $ (-112)) 17)) (-1430 (((-112) $) 16)) (-4348 (((-640 (-640 (-939 (-225)))) $) 13)) (-3402 ((|#1| $) 8)) (-1877 (((-112) $) 15))) +(((-1203 |#1|) (-10 -8 (-15 -3402 (|#1| $)) (-15 -4348 ((-640 (-640 (-939 (-225)))) $)) (-15 -1877 ((-112) $)) (-15 -1430 ((-112) $)) (-15 -1474 ((-112) $ (-112))) (-15 -2357 ($ |#1| (-640 (-640 (-939 (-225)))) (-112)))) (-970)) (T -1203)) +((-2357 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *4 (-112)) (-5 *1 (-1203 *2)) (-4 *2 (-970)))) (-1474 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1203 *3)) (-4 *3 (-970)))) (-1430 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1203 *3)) (-4 *3 (-970)))) (-1877 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1203 *3)) (-4 *3 (-970)))) (-4348 (*1 *2 *1) (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *1 (-1203 *3)) (-4 *3 (-970)))) (-3402 (*1 *2 *1) (-12 (-5 *1 (-1203 *2)) (-4 *2 (-970))))) +(-10 -8 (-15 -3402 (|#1| $)) (-15 -4348 ((-640 (-640 (-939 (-225)))) $)) (-15 -1877 ((-112) $)) (-15 -1430 ((-112) $)) (-15 -1474 ((-112) $ (-112))) (-15 -2357 ($ |#1| (-640 (-640 (-939 (-225)))) (-112)))) +((-1946 (((-939 (-225)) (-939 (-225))) 25)) (-3014 (((-939 (-225)) (-225) (-225) (-225) (-225)) 10)) (-3436 (((-640 (-939 (-225))) (-939 (-225)) (-939 (-225)) (-939 (-225)) (-225) (-640 (-640 (-225)))) 35)) (-4092 (((-225) (-939 (-225)) (-939 (-225))) 21)) (-1627 (((-939 (-225)) (-939 (-225)) (-939 (-225))) 22)) (-1590 (((-640 (-640 (-225))) (-563)) 31)) (-1826 (((-939 (-225)) (-939 (-225)) (-939 (-225))) 20)) (-1814 (((-939 (-225)) (-939 (-225)) (-939 (-225))) 19)) (* (((-939 (-225)) (-225) (-939 (-225))) 18))) +(((-1204) (-10 -7 (-15 -3014 ((-939 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-939 (-225)) (-225) (-939 (-225)))) (-15 -1814 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -1826 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -4092 ((-225) (-939 (-225)) (-939 (-225)))) (-15 -1627 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -1946 ((-939 (-225)) (-939 (-225)))) (-15 -1590 ((-640 (-640 (-225))) (-563))) (-15 -3436 ((-640 (-939 (-225))) (-939 (-225)) (-939 (-225)) (-939 (-225)) (-225) (-640 (-640 (-225))))))) (T -1204)) +((-3436 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-640 (-640 (-225)))) (-5 *4 (-225)) (-5 *2 (-640 (-939 *4))) (-5 *1 (-1204)) (-5 *3 (-939 *4)))) (-1590 (*1 *2 *3) (-12 (-5 *3 (-563)) (-5 *2 (-640 (-640 (-225)))) (-5 *1 (-1204)))) (-1946 (*1 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204)))) (-1627 (*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204)))) (-4092 (*1 *2 *3 *3) (-12 (-5 *3 (-939 (-225))) (-5 *2 (-225)) (-5 *1 (-1204)))) (-1826 (*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204)))) (-1814 (*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-939 (-225))) (-5 *3 (-225)) (-5 *1 (-1204)))) (-3014 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204)) (-5 *3 (-225))))) +(-10 -7 (-15 -3014 ((-939 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-939 (-225)) (-225) (-939 (-225)))) (-15 -1814 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -1826 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -4092 ((-225) (-939 (-225)) (-939 (-225)))) (-15 -1627 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -1946 ((-939 (-225)) (-939 (-225)))) (-15 -1590 ((-640 (-640 (-225))) (-563))) (-15 -3436 ((-640 (-939 (-225))) (-939 (-225)) (-939 (-225)) (-939 (-225)) (-225) (-640 (-640 (-225)))))) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2256 ((|#1| $ (-767)) 13)) (-3415 (((-767) $) 12)) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-1693 (((-954 |#1|) $) 10) (($ (-954 |#1|)) 9) (((-858) $) 23 (|has| |#1| (-610 (-858))))) (-1718 (((-112) $ $) 16 (|has| |#1| (-1093))))) +(((-1205 |#1|) (-13 (-490 (-954 |#1|)) (-10 -8 (-15 -2256 (|#1| $ (-767))) (-15 -3415 ((-767) $)) (IF (|has| |#1| (-610 (-858))) (-6 (-610 (-858))) |%noBranch|) (IF (|has| |#1| (-1093)) (-6 (-1093)) |%noBranch|))) (-1208)) (T -1205)) +((-2256 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-1205 *2)) (-4 *2 (-1208)))) (-3415 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1205 *3)) (-4 *3 (-1208))))) +(-13 (-490 (-954 |#1|)) (-10 -8 (-15 -2256 (|#1| $ (-767))) (-15 -3415 ((-767) $)) (IF (|has| |#1| (-610 (-858))) (-6 (-610 (-858))) |%noBranch|) (IF (|has| |#1| (-1093)) (-6 (-1093)) |%noBranch|))) +((-1305 (((-418 (-1165 (-1165 |#1|))) (-1165 (-1165 |#1|)) (-563)) 80)) (-4281 (((-418 (-1165 (-1165 |#1|))) (-1165 (-1165 |#1|))) 74)) (-4336 (((-418 (-1165 (-1165 |#1|))) (-1165 (-1165 |#1|))) 59))) +(((-1206 |#1|) (-10 -7 (-15 -4281 ((-418 (-1165 (-1165 |#1|))) (-1165 (-1165 |#1|)))) (-15 -4336 ((-418 (-1165 (-1165 |#1|))) (-1165 (-1165 |#1|)))) (-15 -1305 ((-418 (-1165 (-1165 |#1|))) (-1165 (-1165 |#1|)) (-563)))) (-349)) (T -1206)) +((-1305 (*1 *2 *3 *4) (-12 (-5 *4 (-563)) (-4 *5 (-349)) (-5 *2 (-418 (-1165 (-1165 *5)))) (-5 *1 (-1206 *5)) (-5 *3 (-1165 (-1165 *5))))) (-4336 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1165 (-1165 *4)))) (-5 *1 (-1206 *4)) (-5 *3 (-1165 (-1165 *4))))) (-4281 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1165 (-1165 *4)))) (-5 *1 (-1206 *4)) (-5 *3 (-1165 (-1165 *4)))))) +(-10 -7 (-15 -4281 ((-418 (-1165 (-1165 |#1|))) (-1165 (-1165 |#1|)))) (-15 -4336 ((-418 (-1165 (-1165 |#1|))) (-1165 (-1165 |#1|)))) (-15 -1305 ((-418 (-1165 (-1165 |#1|))) (-1165 (-1165 |#1|)) (-563)))) +((-1677 (((-112) $ $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 9) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-1207) (-1076)) (T -1207)) +NIL +(-1076) +NIL +(((-1208) (-140)) (T -1208)) NIL (-13 (-10 -7 (-6 -1370))) -((-2566 (((-112)) 14)) (-4121 (((-1261) (-639 |#1|) (-639 |#1|)) 18) (((-1261) (-639 |#1|)) 19)) (-4172 (((-112) |#1| |#1|) 31 (|has| |#1| (-845)))) (-4147 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 26) (((-3 (-112) "failed") |#1| |#1|) 24)) (-4295 ((|#1| (-639 |#1|)) 32 (|has| |#1| (-845))) ((|#1| (-639 |#1|) (-1 (-112) |#1| |#1|)) 27)) (-3842 (((-2 (|:| -3665 (-639 |#1|)) (|:| -3979 (-639 |#1|)))) 16))) -(((-1208 |#1|) (-10 -7 (-15 -4121 ((-1261) (-639 |#1|))) (-15 -4121 ((-1261) (-639 |#1|) (-639 |#1|))) (-15 -3842 ((-2 (|:| -3665 (-639 |#1|)) (|:| -3979 (-639 |#1|))))) (-15 -4147 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4147 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4295 (|#1| (-639 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2566 ((-112))) (IF (|has| |#1| (-845)) (PROGN (-15 -4295 (|#1| (-639 |#1|))) (-15 -4172 ((-112) |#1| |#1|))) |%noBranch|)) (-1092)) (T -1208)) -((-4172 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1208 *3)) (-4 *3 (-845)) (-4 *3 (-1092)))) (-4295 (*1 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *2 (-1092)) (-4 *2 (-845)) (-5 *1 (-1208 *2)))) (-2566 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1208 *3)) (-4 *3 (-1092)))) (-4295 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1208 *2)) (-4 *2 (-1092)))) (-4147 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1092)) (-5 *2 (-112)) (-5 *1 (-1208 *3)))) (-4147 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1208 *3)) (-4 *3 (-1092)))) (-3842 (*1 *2) (-12 (-5 *2 (-2 (|:| -3665 (-639 *3)) (|:| -3979 (-639 *3)))) (-5 *1 (-1208 *3)) (-4 *3 (-1092)))) (-4121 (*1 *2 *3 *3) (-12 (-5 *3 (-639 *4)) (-4 *4 (-1092)) (-5 *2 (-1261)) (-5 *1 (-1208 *4)))) (-4121 (*1 *2 *3) (-12 (-5 *3 (-639 *4)) (-4 *4 (-1092)) (-5 *2 (-1261)) (-5 *1 (-1208 *4))))) -(-10 -7 (-15 -4121 ((-1261) (-639 |#1|))) (-15 -4121 ((-1261) (-639 |#1|) (-639 |#1|))) (-15 -3842 ((-2 (|:| -3665 (-639 |#1|)) (|:| -3979 (-639 |#1|))))) (-15 -4147 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4147 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4295 (|#1| (-639 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2566 ((-112))) (IF (|has| |#1| (-845)) (PROGN (-15 -4295 (|#1| (-639 |#1|))) (-15 -4172 ((-112) |#1| |#1|))) |%noBranch|)) -((-2583 (((-1261) (-639 (-1168)) (-639 (-1168))) 13) (((-1261) (-639 (-1168))) 11)) (-3666 (((-1261)) 14)) (-2588 (((-2 (|:| -3979 (-639 (-1168))) (|:| -3665 (-639 (-1168))))) 18))) -(((-1209) (-10 -7 (-15 -2583 ((-1261) (-639 (-1168)))) (-15 -2583 ((-1261) (-639 (-1168)) (-639 (-1168)))) (-15 -2588 ((-2 (|:| -3979 (-639 (-1168))) (|:| -3665 (-639 (-1168)))))) (-15 -3666 ((-1261))))) (T -1209)) -((-3666 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-1209)))) (-2588 (*1 *2) (-12 (-5 *2 (-2 (|:| -3979 (-639 (-1168))) (|:| -3665 (-639 (-1168))))) (-5 *1 (-1209)))) (-2583 (*1 *2 *3 *3) (-12 (-5 *3 (-639 (-1168))) (-5 *2 (-1261)) (-5 *1 (-1209)))) (-2583 (*1 *2 *3) (-12 (-5 *3 (-639 (-1168))) (-5 *2 (-1261)) (-5 *1 (-1209))))) -(-10 -7 (-15 -2583 ((-1261) (-639 (-1168)))) (-15 -2583 ((-1261) (-639 (-1168)) (-639 (-1168)))) (-15 -2588 ((-2 (|:| -3979 (-639 (-1168))) (|:| -3665 (-639 (-1168)))))) (-15 -3666 ((-1261)))) -((-1977 (($ $) 17)) (-3521 (((-112) $) 24))) -(((-1210 |#1|) (-10 -8 (-15 -1977 (|#1| |#1|)) (-15 -3521 ((-112) |#1|))) (-1211)) (T -1210)) -NIL -(-10 -8 (-15 -1977 (|#1| |#1|)) (-15 -3521 ((-112) |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 42)) (-1965 (($ $) 41)) (-4102 (((-112) $) 39)) (-2781 (((-3 $ "failed") $ $) 19)) (-1977 (($ $) 52)) (-3788 (((-417 $) $) 53)) (-3329 (($) 17 T CONST)) (-1694 (((-3 $ "failed") $) 33)) (-3521 (((-112) $) 54)) (-4367 (((-112) $) 31)) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-1635 (((-417 $) $) 51)) (-1762 (((-3 $ "failed") $ $) 43)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ $) 44)) (-1568 (((-766)) 28)) (-3799 (((-112) $ $) 40)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24))) -(((-1211) (-139)) (T -1211)) -((-3521 (*1 *2 *1) (-12 (-4 *1 (-1211)) (-5 *2 (-112)))) (-3788 (*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1211)))) (-1977 (*1 *1 *1) (-4 *1 (-1211))) (-1635 (*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1211))))) -(-13 (-451) (-10 -8 (-15 -3521 ((-112) $)) (-15 -3788 ((-417 $) $)) (-15 -1977 ($ $)) (-15 -1635 ((-417 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-130) . T) ((-612 (-562)) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-289) . T) ((-451) . T) ((-554) . T) ((-642 $) . T) ((-712 $) . T) ((-721) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) -((-4041 (((-112) $ $) NIL)) (-1382 (((-766)) NIL)) (-3329 (($) NIL)) (-1447 (($) NIL)) (-1551 (($ $ $) NIL) (($) NIL T CONST)) (-2993 (($ $ $) NIL) (($) NIL T CONST)) (-3549 (((-916) $) NIL)) (-3696 (((-1150) $) NIL)) (-2464 (($ (-916)) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-3009 (($ $ $) NIL)) (-2997 (($ $ $) NIL)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) NIL))) -(((-1212) (-13 (-839) (-10 -8 (-15 -2997 ($ $ $)) (-15 -3009 ($ $ $)) (-15 -3329 ($))))) (T -1212)) -((-2997 (*1 *1 *1 *1) (-5 *1 (-1212))) (-3009 (*1 *1 *1 *1) (-5 *1 (-1212))) (-3329 (*1 *1) (-5 *1 (-1212)))) -(-13 (-839) (-10 -8 (-15 -2997 ($ $ $)) (-15 -3009 ($ $ $)) (-15 -3329 ($)))) +((-4270 (((-112)) 14)) (-2132 (((-1262) (-640 |#1|) (-640 |#1|)) 18) (((-1262) (-640 |#1|)) 19)) (-2581 (((-112) |#1| |#1|) 31 (|has| |#1| (-846)))) (-2382 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 26) (((-3 (-112) "failed") |#1| |#1|) 24)) (-4359 ((|#1| (-640 |#1|)) 32 (|has| |#1| (-846))) ((|#1| (-640 |#1|) (-1 (-112) |#1| |#1|)) 27)) (-2545 (((-2 (|:| -3244 (-640 |#1|)) (|:| -3289 (-640 |#1|)))) 16))) +(((-1209 |#1|) (-10 -7 (-15 -2132 ((-1262) (-640 |#1|))) (-15 -2132 ((-1262) (-640 |#1|) (-640 |#1|))) (-15 -2545 ((-2 (|:| -3244 (-640 |#1|)) (|:| -3289 (-640 |#1|))))) (-15 -2382 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2382 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4359 (|#1| (-640 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4270 ((-112))) (IF (|has| |#1| (-846)) (PROGN (-15 -4359 (|#1| (-640 |#1|))) (-15 -2581 ((-112) |#1| |#1|))) |%noBranch|)) (-1093)) (T -1209)) +((-2581 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-846)) (-4 *3 (-1093)))) (-4359 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-1093)) (-4 *2 (-846)) (-5 *1 (-1209 *2)))) (-4270 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-1093)))) (-4359 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1209 *2)) (-4 *2 (-1093)))) (-2382 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1093)) (-5 *2 (-112)) (-5 *1 (-1209 *3)))) (-2382 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-1093)))) (-2545 (*1 *2) (-12 (-5 *2 (-2 (|:| -3244 (-640 *3)) (|:| -3289 (-640 *3)))) (-5 *1 (-1209 *3)) (-4 *3 (-1093)))) (-2132 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *4)) (-4 *4 (-1093)) (-5 *2 (-1262)) (-5 *1 (-1209 *4)))) (-2132 (*1 *2 *3) (-12 (-5 *3 (-640 *4)) (-4 *4 (-1093)) (-5 *2 (-1262)) (-5 *1 (-1209 *4))))) +(-10 -7 (-15 -2132 ((-1262) (-640 |#1|))) (-15 -2132 ((-1262) (-640 |#1|) (-640 |#1|))) (-15 -2545 ((-2 (|:| -3244 (-640 |#1|)) (|:| -3289 (-640 |#1|))))) (-15 -2382 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2382 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4359 (|#1| (-640 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4270 ((-112))) (IF (|has| |#1| (-846)) (PROGN (-15 -4359 (|#1| (-640 |#1|))) (-15 -2581 ((-112) |#1| |#1|))) |%noBranch|)) +((-1350 (((-1262) (-640 (-1169)) (-640 (-1169))) 13) (((-1262) (-640 (-1169))) 11)) (-3256 (((-1262)) 14)) (-3255 (((-2 (|:| -3289 (-640 (-1169))) (|:| -3244 (-640 (-1169))))) 18))) +(((-1210) (-10 -7 (-15 -1350 ((-1262) (-640 (-1169)))) (-15 -1350 ((-1262) (-640 (-1169)) (-640 (-1169)))) (-15 -3255 ((-2 (|:| -3289 (-640 (-1169))) (|:| -3244 (-640 (-1169)))))) (-15 -3256 ((-1262))))) (T -1210)) +((-3256 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1210)))) (-3255 (*1 *2) (-12 (-5 *2 (-2 (|:| -3289 (-640 (-1169))) (|:| -3244 (-640 (-1169))))) (-5 *1 (-1210)))) (-1350 (*1 *2 *3 *3) (-12 (-5 *3 (-640 (-1169))) (-5 *2 (-1262)) (-5 *1 (-1210)))) (-1350 (*1 *2 *3) (-12 (-5 *3 (-640 (-1169))) (-5 *2 (-1262)) (-5 *1 (-1210))))) +(-10 -7 (-15 -1350 ((-1262) (-640 (-1169)))) (-15 -1350 ((-1262) (-640 (-1169)) (-640 (-1169)))) (-15 -3255 ((-2 (|:| -3289 (-640 (-1169))) (|:| -3244 (-640 (-1169)))))) (-15 -3256 ((-1262)))) +((-4335 (($ $) 17)) (-2468 (((-112) $) 24))) +(((-1211 |#1|) (-10 -8 (-15 -4335 (|#1| |#1|)) (-15 -2468 ((-112) |#1|))) (-1212)) (T -1211)) +NIL +(-10 -8 (-15 -4335 (|#1| |#1|)) (-15 -2468 ((-112) |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 42)) (-4223 (($ $) 41)) (-3156 (((-112) $) 39)) (-1495 (((-3 $ "failed") $ $) 19)) (-4335 (($ $) 52)) (-3205 (((-418 $) $) 53)) (-4239 (($) 17 T CONST)) (-3400 (((-3 $ "failed") $) 33)) (-2468 (((-112) $) 54)) (-3827 (((-112) $) 31)) (-3513 (($ $ $) 47) (($ (-640 $)) 46)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3548 (($ $ $) 49) (($ (-640 $)) 48)) (-2174 (((-418 $) $) 51)) (-3008 (((-3 $ "failed") $ $) 43)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ $) 44)) (-1675 (((-767)) 28)) (-2126 (((-112) $ $) 40)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) +(((-1212) (-140)) (T -1212)) +((-2468 (*1 *2 *1) (-12 (-4 *1 (-1212)) (-5 *2 (-112)))) (-3205 (*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1212)))) (-4335 (*1 *1 *1) (-4 *1 (-1212))) (-2174 (*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1212))))) +(-13 (-452) (-10 -8 (-15 -2468 ((-112) $)) (-15 -3205 ((-418 $) $)) (-15 -4335 ($ $)) (-15 -2174 ((-418 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-555) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) +((-1677 (((-112) $ $) NIL)) (-3749 (((-767)) NIL)) (-4239 (($) NIL)) (-1691 (($) NIL)) (-3084 (($ $ $) NIL) (($) NIL T CONST)) (-1777 (($ $ $) NIL) (($) NIL T CONST)) (-1476 (((-917) $) NIL)) (-3573 (((-1151) $) NIL)) (-2555 (($ (-917)) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-3119 (($ $ $) NIL)) (-3109 (($ $ $) NIL)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) NIL))) +(((-1213) (-13 (-840) (-10 -8 (-15 -3109 ($ $ $)) (-15 -3119 ($ $ $)) (-15 -4239 ($))))) (T -1213)) +((-3109 (*1 *1 *1 *1) (-5 *1 (-1213))) (-3119 (*1 *1 *1 *1) (-5 *1 (-1213))) (-4239 (*1 *1) (-5 *1 (-1213)))) +(-13 (-840) (-10 -8 (-15 -3109 ($ $ $)) (-15 -3119 ($ $ $)) (-15 -4239 ($)))) ((|NonNegativeInteger|) (COND ((< 16 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) -((-4041 (((-112) $ $) NIL)) (-1382 (((-766)) NIL)) (-3329 (($) NIL)) (-1447 (($) NIL)) (-1551 (($ $ $) NIL) (($) NIL T CONST)) (-2993 (($ $ $) NIL) (($) NIL T CONST)) (-3549 (((-916) $) NIL)) (-3696 (((-1150) $) NIL)) (-2464 (($ (-916)) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-3009 (($ $ $) NIL)) (-2997 (($ $ $) NIL)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) NIL))) -(((-1213) (-13 (-839) (-10 -8 (-15 -2997 ($ $ $)) (-15 -3009 ($ $ $)) (-15 -3329 ($))))) (T -1213)) -((-2997 (*1 *1 *1 *1) (-5 *1 (-1213))) (-3009 (*1 *1 *1 *1) (-5 *1 (-1213))) (-3329 (*1 *1) (-5 *1 (-1213)))) -(-13 (-839) (-10 -8 (-15 -2997 ($ $ $)) (-15 -3009 ($ $ $)) (-15 -3329 ($)))) +((-1677 (((-112) $ $) NIL)) (-3749 (((-767)) NIL)) (-4239 (($) NIL)) (-1691 (($) NIL)) (-3084 (($ $ $) NIL) (($) NIL T CONST)) (-1777 (($ $ $) NIL) (($) NIL T CONST)) (-1476 (((-917) $) NIL)) (-3573 (((-1151) $) NIL)) (-2555 (($ (-917)) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-3119 (($ $ $) NIL)) (-3109 (($ $ $) NIL)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) NIL))) +(((-1214) (-13 (-840) (-10 -8 (-15 -3109 ($ $ $)) (-15 -3119 ($ $ $)) (-15 -4239 ($))))) (T -1214)) +((-3109 (*1 *1 *1 *1) (-5 *1 (-1214))) (-3119 (*1 *1 *1 *1) (-5 *1 (-1214))) (-4239 (*1 *1) (-5 *1 (-1214)))) +(-13 (-840) (-10 -8 (-15 -3109 ($ $ $)) (-15 -3119 ($ $ $)) (-15 -4239 ($)))) ((|NonNegativeInteger|) (COND ((< 32 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) -((-4041 (((-112) $ $) NIL)) (-1382 (((-766)) NIL)) (-3329 (($) NIL)) (-1447 (($) NIL)) (-1551 (($ $ $) NIL) (($) NIL T CONST)) (-2993 (($ $ $) NIL) (($) NIL T CONST)) (-3549 (((-916) $) NIL)) (-3696 (((-1150) $) NIL)) (-2464 (($ (-916)) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) NIL)) (-3009 (($ $ $) NIL)) (-2997 (($ $ $) NIL)) (-1798 (((-112) $ $) NIL)) (-1771 (((-112) $ $) NIL)) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL)) (-1761 (((-112) $ $) NIL))) -(((-1214) (-13 (-839) (-10 -8 (-15 -2997 ($ $ $)) (-15 -3009 ($ $ $)) (-15 -3329 ($))))) (T -1214)) -((-2997 (*1 *1 *1 *1) (-5 *1 (-1214))) (-3009 (*1 *1 *1 *1) (-5 *1 (-1214))) (-3329 (*1 *1) (-5 *1 (-1214)))) -(-13 (-839) (-10 -8 (-15 -2997 ($ $ $)) (-15 -3009 ($ $ $)) (-15 -3329 ($)))) +((-1677 (((-112) $ $) NIL)) (-3749 (((-767)) NIL)) (-4239 (($) NIL)) (-1691 (($) NIL)) (-3084 (($ $ $) NIL) (($) NIL T CONST)) (-1777 (($ $ $) NIL) (($) NIL T CONST)) (-1476 (((-917) $) NIL)) (-3573 (((-1151) $) NIL)) (-2555 (($ (-917)) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) NIL)) (-3119 (($ $ $) NIL)) (-3109 (($ $ $) NIL)) (-1778 (((-112) $ $) NIL)) (-1756 (((-112) $ $) NIL)) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL)) (-1744 (((-112) $ $) NIL))) +(((-1215) (-13 (-840) (-10 -8 (-15 -3109 ($ $ $)) (-15 -3119 ($ $ $)) (-15 -4239 ($))))) (T -1215)) +((-3109 (*1 *1 *1 *1) (-5 *1 (-1215))) (-3119 (*1 *1 *1 *1) (-5 *1 (-1215))) (-4239 (*1 *1) (-5 *1 (-1215)))) +(-13 (-840) (-10 -8 (-15 -3109 ($ $ $)) (-15 -3119 ($ $ $)) (-15 -4239 ($)))) ((|NonNegativeInteger|) (COND ((< 8 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) -((-4152 (((-1220 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1220 |#1| |#3| |#5|)) 23))) -(((-1215 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4152 ((-1220 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1220 |#1| |#3| |#5|)))) (-1044) (-1044) (-1168) (-1168) |#1| |#2|) (T -1215)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1220 *5 *7 *9)) (-4 *5 (-1044)) (-4 *6 (-1044)) (-14 *7 (-1168)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1220 *6 *8 *10)) (-5 *1 (-1215 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1168))))) -(-10 -7 (-15 -4152 ((-1220 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1220 |#1| |#3| |#5|)))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-1401 (((-639 (-1074)) $) 77)) (-2443 (((-1168) $) 106)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-1965 (($ $) 55 (|has| |#1| (-554)))) (-4102 (((-112) $) 57 (|has| |#1| (-554)))) (-1302 (($ $ (-562)) 101) (($ $ (-562) (-562)) 100)) (-4196 (((-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|))) $) 108)) (-2987 (($ $) 138 (|has| |#1| (-38 (-406 (-562)))))) (-4098 (($ $) 121 (|has| |#1| (-38 (-406 (-562)))))) (-2781 (((-3 $ "failed") $ $) 19)) (-1977 (($ $) 165 (|has| |#1| (-362)))) (-3788 (((-417 $) $) 166 (|has| |#1| (-362)))) (-1644 (($ $) 120 (|has| |#1| (-38 (-406 (-562)))))) (-1436 (((-112) $ $) 156 (|has| |#1| (-362)))) (-4206 (($ $) 137 (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) 122 (|has| |#1| (-38 (-406 (-562)))))) (-1503 (($ (-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|)))) 176)) (-3013 (($ $) 136 (|has| |#1| (-38 (-406 (-562)))))) (-4120 (($ $) 123 (|has| |#1| (-38 (-406 (-562)))))) (-3329 (($) 17 T CONST)) (-1810 (($ $ $) 160 (|has| |#1| (-362)))) (-1600 (($ $) 63)) (-1694 (((-3 $ "failed") $) 33)) (-2547 (((-406 (-947 |#1|)) $ (-562)) 174 (|has| |#1| (-554))) (((-406 (-947 |#1|)) $ (-562) (-562)) 173 (|has| |#1| (-554)))) (-1787 (($ $ $) 159 (|has| |#1| (-362)))) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) 154 (|has| |#1| (-362)))) (-3521 (((-112) $) 167 (|has| |#1| (-362)))) (-2965 (((-112) $) 76)) (-4100 (($) 148 (|has| |#1| (-38 (-406 (-562)))))) (-1993 (((-562) $) 103) (((-562) $ (-562)) 102)) (-4367 (((-112) $) 31)) (-1895 (($ $ (-562)) 119 (|has| |#1| (-38 (-406 (-562)))))) (-3662 (($ $ (-916)) 104)) (-2064 (($ (-1 |#1| (-562)) $) 175)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) 163 (|has| |#1| (-362)))) (-2833 (((-112) $) 65)) (-1377 (($ |#1| (-562)) 64) (($ $ (-1074) (-562)) 79) (($ $ (-639 (-1074)) (-639 (-562))) 78)) (-4152 (($ (-1 |#1| |#1|) $) 66)) (-4366 (($ $) 145 (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) 68)) (-1573 ((|#1| $) 69)) (-1564 (($ (-639 $)) 152 (|has| |#1| (-362))) (($ $ $) 151 (|has| |#1| (-362)))) (-3696 (((-1150) $) 9)) (-1525 (($ $) 168 (|has| |#1| (-362)))) (-3081 (($ $) 172 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-1168)) 171 (-4037 (-12 (|has| |#1| (-29 (-562))) (|has| |#1| (-954)) (|has| |#1| (-1192)) (|has| |#1| (-38 (-406 (-562))))) (-12 (|has| |#1| (-15 -1401 ((-639 (-1168)) |#1|))) (|has| |#1| (-15 -3081 (|#1| |#1| (-1168)))) (|has| |#1| (-38 (-406 (-562)))))))) (-1709 (((-1112) $) 10)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 153 (|has| |#1| (-362)))) (-1606 (($ (-639 $)) 150 (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362)))) (-1635 (((-417 $) $) 164 (|has| |#1| (-362)))) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) 161 (|has| |#1| (-362)))) (-4316 (($ $ (-562)) 98)) (-1762 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554)))) (-1879 (((-3 (-639 $) "failed") (-639 $) $) 155 (|has| |#1| (-362)))) (-3430 (($ $) 146 (|has| |#1| (-38 (-406 (-562)))))) (-1433 (((-1148 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-562)))))) (-2044 (((-766) $) 157 (|has| |#1| (-362)))) (-2343 ((|#1| $ (-562)) 107) (($ $ $) 84 (|has| (-562) (-1104)))) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 158 (|has| |#1| (-362)))) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) 92 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $ (-1168) (-766)) 91 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $ (-639 (-1168))) 90 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $ (-1168)) 89 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $ (-766)) 87 (|has| |#1| (-15 * (|#1| (-562) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (-2250 (((-562) $) 67)) (-3022 (($ $) 135 (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) 124 (|has| |#1| (-38 (-406 (-562)))))) (-3000 (($ $) 134 (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) 125 (|has| |#1| (-38 (-406 (-562)))))) (-2977 (($ $) 133 (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) 126 (|has| |#1| (-38 (-406 (-562)))))) (-1345 (($ $) 75)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 50 (|has| |#1| (-171))) (($ (-406 (-562))) 60 (|has| |#1| (-38 (-406 (-562))))) (($ $) 52 (|has| |#1| (-554)))) (-2266 ((|#1| $ (-562)) 62)) (-2059 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-1568 (((-766)) 28)) (-2328 ((|#1| $) 105)) (-3054 (($ $) 144 (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) 132 (|has| |#1| (-38 (-406 (-562)))))) (-3799 (((-112) $ $) 56 (|has| |#1| (-554)))) (-3033 (($ $) 143 (|has| |#1| (-38 (-406 (-562)))))) (-4139 (($ $) 131 (|has| |#1| (-38 (-406 (-562)))))) (-3077 (($ $) 142 (|has| |#1| (-38 (-406 (-562)))))) (-4183 (($ $) 130 (|has| |#1| (-38 (-406 (-562)))))) (-1406 ((|#1| $ (-562)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-562)))) (|has| |#1| (-15 -4053 (|#1| (-1168))))))) (-1567 (($ $) 141 (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) 129 (|has| |#1| (-38 (-406 (-562)))))) (-3065 (($ $) 140 (|has| |#1| (-38 (-406 (-562)))))) (-4175 (($ $) 128 (|has| |#1| (-38 (-406 (-562)))))) (-3040 (($ $) 139 (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) 127 (|has| |#1| (-38 (-406 (-562)))))) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3113 (($ $ (-639 (-1168)) (-639 (-766))) 96 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $ (-1168) (-766)) 95 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $ (-639 (-1168))) 94 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $ (-1168)) 93 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $ (-766)) 88 (|has| |#1| (-15 * (|#1| (-562) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (-1733 (((-112) $ $) 6)) (-1859 (($ $ |#1|) 61 (|has| |#1| (-362))) (($ $ $) 170 (|has| |#1| (-362)))) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 169 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 118 (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-562)) $) 59 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 58 (|has| |#1| (-38 (-406 (-562))))))) -(((-1216 |#1|) (-139) (-1044)) (T -1216)) -((-1503 (*1 *1 *2) (-12 (-5 *2 (-1148 (-2 (|:| |k| (-562)) (|:| |c| *3)))) (-4 *3 (-1044)) (-4 *1 (-1216 *3)))) (-2064 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-562))) (-4 *1 (-1216 *3)) (-4 *3 (-1044)))) (-2547 (*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-4 *1 (-1216 *4)) (-4 *4 (-1044)) (-4 *4 (-554)) (-5 *2 (-406 (-947 *4))))) (-2547 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-562)) (-4 *1 (-1216 *4)) (-4 *4 (-1044)) (-4 *4 (-554)) (-5 *2 (-406 (-947 *4))))) (-3081 (*1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1044)) (-4 *2 (-38 (-406 (-562)))))) (-3081 (*1 *1 *1 *2) (-4037 (-12 (-5 *2 (-1168)) (-4 *1 (-1216 *3)) (-4 *3 (-1044)) (-12 (-4 *3 (-29 (-562))) (-4 *3 (-954)) (-4 *3 (-1192)) (-4 *3 (-38 (-406 (-562)))))) (-12 (-5 *2 (-1168)) (-4 *1 (-1216 *3)) (-4 *3 (-1044)) (-12 (|has| *3 (-15 -1401 ((-639 *2) *3))) (|has| *3 (-15 -3081 (*3 *3 *2))) (-4 *3 (-38 (-406 (-562))))))))) -(-13 (-1234 |t#1| (-562)) (-10 -8 (-15 -1503 ($ (-1148 (-2 (|:| |k| (-562)) (|:| |c| |t#1|))))) (-15 -2064 ($ (-1 |t#1| (-562)) $)) (IF (|has| |t#1| (-554)) (PROGN (-15 -2547 ((-406 (-947 |t#1|)) $ (-562))) (-15 -2547 ((-406 (-947 |t#1|)) $ (-562) (-562)))) |%noBranch|) (IF (|has| |t#1| (-38 (-406 (-562)))) (PROGN (-15 -3081 ($ $)) (IF (|has| |t#1| (-15 -3081 (|t#1| |t#1| (-1168)))) (IF (|has| |t#1| (-15 -1401 ((-639 (-1168)) |t#1|))) (-15 -3081 ($ $ (-1168))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1192)) (IF (|has| |t#1| (-954)) (IF (|has| |t#1| (-29 (-562))) (-15 -3081 ($ $ (-1168))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-997)) (-6 (-1192))) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-362)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-562)) . T) ((-25) . T) ((-38 #1=(-406 (-562))) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-35) |has| |#1| (-38 (-406 (-562)))) ((-95) |has| |#1| (-38 (-406 (-562)))) ((-102) . T) ((-111 #1# #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-612 (-562)) . T) ((-612 |#1|) |has| |#1| (-171)) ((-612 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-609 (-857)) . T) ((-171) -4037 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| (-562) |#1|))) ((-242) |has| |#1| (-362)) ((-283) |has| |#1| (-38 (-406 (-562)))) ((-285 $ $) |has| (-562) (-1104)) ((-289) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-362) |has| |#1| (-362)) ((-451) |has| |#1| (-362)) ((-492) |has| |#1| (-38 (-406 (-562)))) ((-554) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-642 #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-642 |#1|) . T) ((-642 $) . T) ((-712 #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-712 |#1|) |has| |#1| (-171)) ((-712 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-721) . T) ((-895 (-1168)) -12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))) ((-968 |#1| #0# (-1074)) . T) ((-915) |has| |#1| (-362)) ((-997) |has| |#1| (-38 (-406 (-562)))) ((-1050 #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-1050 |#1|) . T) ((-1050 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1192) |has| |#1| (-38 (-406 (-562)))) ((-1195) |has| |#1| (-38 (-406 (-562)))) ((-1211) |has| |#1| (-362)) ((-1234 |#1| #0#) . T)) -((-4325 (((-112) $) 12)) (-4048 (((-3 |#3| "failed") $) 17) (((-3 (-1168) "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL) (((-3 (-562) "failed") $) NIL)) (-3960 ((|#3| $) 14) (((-1168) $) NIL) (((-406 (-562)) $) NIL) (((-562) $) NIL))) -(((-1217 |#1| |#2| |#3|) (-10 -8 (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -3960 ((-562) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3960 ((-406 (-562)) |#1|)) (-15 -4048 ((-3 (-1168) "failed") |#1|)) (-15 -3960 ((-1168) |#1|)) (-15 -4048 ((-3 |#3| "failed") |#1|)) (-15 -3960 (|#3| |#1|)) (-15 -4325 ((-112) |#1|))) (-1218 |#2| |#3|) (-1044) (-1247 |#2|)) (T -1217)) -NIL -(-10 -8 (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -3960 ((-562) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3960 ((-406 (-562)) |#1|)) (-15 -4048 ((-3 (-1168) "failed") |#1|)) (-15 -3960 ((-1168) |#1|)) (-15 -4048 ((-3 |#3| "failed") |#1|)) (-15 -3960 (|#3| |#1|)) (-15 -4325 ((-112) |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2300 ((|#2| $) 231 (-2245 (|has| |#2| (-306)) (|has| |#1| (-362))))) (-1401 (((-639 (-1074)) $) 77)) (-2443 (((-1168) $) 106)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-1965 (($ $) 55 (|has| |#1| (-554)))) (-4102 (((-112) $) 57 (|has| |#1| (-554)))) (-1302 (($ $ (-562)) 101) (($ $ (-562) (-562)) 100)) (-4196 (((-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|))) $) 108)) (-2108 ((|#2| $) 267)) (-3357 (((-3 |#2| "failed") $) 263)) (-1470 ((|#2| $) 264)) (-2987 (($ $) 138 (|has| |#1| (-38 (-406 (-562)))))) (-4098 (($ $) 121 (|has| |#1| (-38 (-406 (-562)))))) (-2781 (((-3 $ "failed") $ $) 19)) (-3517 (((-417 (-1164 $)) (-1164 $)) 240 (-2245 (|has| |#2| (-904)) (|has| |#1| (-362))))) (-1977 (($ $) 165 (|has| |#1| (-362)))) (-3788 (((-417 $) $) 166 (|has| |#1| (-362)))) (-1644 (($ $) 120 (|has| |#1| (-38 (-406 (-562)))))) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) 237 (-2245 (|has| |#2| (-904)) (|has| |#1| (-362))))) (-1436 (((-112) $ $) 156 (|has| |#1| (-362)))) (-4206 (($ $) 137 (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) 122 (|has| |#1| (-38 (-406 (-562)))))) (-1587 (((-562) $) 249 (-2245 (|has| |#2| (-815)) (|has| |#1| (-362))))) (-1503 (($ (-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|)))) 176)) (-3013 (($ $) 136 (|has| |#1| (-38 (-406 (-562)))))) (-4120 (($ $) 123 (|has| |#1| (-38 (-406 (-562)))))) (-3329 (($) 17 T CONST)) (-4048 (((-3 |#2| "failed") $) 270) (((-3 (-562) "failed") $) 260 (-2245 (|has| |#2| (-1033 (-562))) (|has| |#1| (-362)))) (((-3 (-406 (-562)) "failed") $) 258 (-2245 (|has| |#2| (-1033 (-562))) (|has| |#1| (-362)))) (((-3 (-1168) "failed") $) 242 (-2245 (|has| |#2| (-1033 (-1168))) (|has| |#1| (-362))))) (-3960 ((|#2| $) 271) (((-562) $) 259 (-2245 (|has| |#2| (-1033 (-562))) (|has| |#1| (-362)))) (((-406 (-562)) $) 257 (-2245 (|has| |#2| (-1033 (-562))) (|has| |#1| (-362)))) (((-1168) $) 241 (-2245 (|has| |#2| (-1033 (-1168))) (|has| |#1| (-362))))) (-2449 (($ $) 266) (($ (-562) $) 265)) (-1810 (($ $ $) 160 (|has| |#1| (-362)))) (-1600 (($ $) 63)) (-3449 (((-683 |#2|) (-683 $)) 221 (|has| |#1| (-362))) (((-2 (|:| -1767 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) 220 (|has| |#1| (-362))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 219 (-2245 (|has| |#2| (-635 (-562))) (|has| |#1| (-362)))) (((-683 (-562)) (-683 $)) 218 (-2245 (|has| |#2| (-635 (-562))) (|has| |#1| (-362))))) (-1694 (((-3 $ "failed") $) 33)) (-2547 (((-406 (-947 |#1|)) $ (-562)) 174 (|has| |#1| (-554))) (((-406 (-947 |#1|)) $ (-562) (-562)) 173 (|has| |#1| (-554)))) (-1447 (($) 233 (-2245 (|has| |#2| (-544)) (|has| |#1| (-362))))) (-1787 (($ $ $) 159 (|has| |#1| (-362)))) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) 154 (|has| |#1| (-362)))) (-3521 (((-112) $) 167 (|has| |#1| (-362)))) (-2696 (((-112) $) 247 (-2245 (|has| |#2| (-815)) (|has| |#1| (-362))))) (-2965 (((-112) $) 76)) (-4100 (($) 148 (|has| |#1| (-38 (-406 (-562)))))) (-2337 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 225 (-2245 (|has| |#2| (-881 (-378))) (|has| |#1| (-362)))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) 224 (-2245 (|has| |#2| (-881 (-562))) (|has| |#1| (-362))))) (-1993 (((-562) $) 103) (((-562) $ (-562)) 102)) (-4367 (((-112) $) 31)) (-2957 (($ $) 229 (|has| |#1| (-362)))) (-4063 ((|#2| $) 227 (|has| |#1| (-362)))) (-1895 (($ $ (-562)) 119 (|has| |#1| (-38 (-406 (-562)))))) (-3828 (((-3 $ "failed") $) 261 (-2245 (|has| |#2| (-1143)) (|has| |#1| (-362))))) (-3855 (((-112) $) 248 (-2245 (|has| |#2| (-815)) (|has| |#1| (-362))))) (-3662 (($ $ (-916)) 104)) (-2064 (($ (-1 |#1| (-562)) $) 175)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) 163 (|has| |#1| (-362)))) (-2833 (((-112) $) 65)) (-1377 (($ |#1| (-562)) 64) (($ $ (-1074) (-562)) 79) (($ $ (-639 (-1074)) (-639 (-562))) 78)) (-1551 (($ $ $) 251 (-2245 (|has| |#2| (-845)) (|has| |#1| (-362))))) (-2993 (($ $ $) 252 (-2245 (|has| |#2| (-845)) (|has| |#1| (-362))))) (-4152 (($ (-1 |#1| |#1|) $) 66) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-362)))) (-4366 (($ $) 145 (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) 68)) (-1573 ((|#1| $) 69)) (-1564 (($ (-639 $)) 152 (|has| |#1| (-362))) (($ $ $) 151 (|has| |#1| (-362)))) (-1487 (($ (-562) |#2|) 268)) (-3696 (((-1150) $) 9)) (-1525 (($ $) 168 (|has| |#1| (-362)))) (-3081 (($ $) 172 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-1168)) 171 (-4037 (-12 (|has| |#1| (-29 (-562))) (|has| |#1| (-954)) (|has| |#1| (-1192)) (|has| |#1| (-38 (-406 (-562))))) (-12 (|has| |#1| (-15 -1401 ((-639 (-1168)) |#1|))) (|has| |#1| (-15 -3081 (|#1| |#1| (-1168)))) (|has| |#1| (-38 (-406 (-562)))))))) (-3730 (($) 262 (-2245 (|has| |#2| (-1143)) (|has| |#1| (-362))) CONST)) (-1709 (((-1112) $) 10)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 153 (|has| |#1| (-362)))) (-1606 (($ (-639 $)) 150 (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362)))) (-2561 (($ $) 232 (-2245 (|has| |#2| (-306)) (|has| |#1| (-362))))) (-3870 ((|#2| $) 235 (-2245 (|has| |#2| (-544)) (|has| |#1| (-362))))) (-3586 (((-417 (-1164 $)) (-1164 $)) 238 (-2245 (|has| |#2| (-904)) (|has| |#1| (-362))))) (-3468 (((-417 (-1164 $)) (-1164 $)) 239 (-2245 (|has| |#2| (-904)) (|has| |#1| (-362))))) (-1635 (((-417 $) $) 164 (|has| |#1| (-362)))) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) 161 (|has| |#1| (-362)))) (-4316 (($ $ (-562)) 98)) (-1762 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554)))) (-1879 (((-3 (-639 $) "failed") (-639 $) $) 155 (|has| |#1| (-362)))) (-3430 (($ $) 146 (|has| |#1| (-38 (-406 (-562)))))) (-1433 (((-1148 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-562))))) (($ $ (-1168) |#2|) 212 (-2245 (|has| |#2| (-513 (-1168) |#2|)) (|has| |#1| (-362)))) (($ $ (-639 (-1168)) (-639 |#2|)) 211 (-2245 (|has| |#2| (-513 (-1168) |#2|)) (|has| |#1| (-362)))) (($ $ (-639 (-293 |#2|))) 210 (-2245 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ (-293 |#2|)) 209 (-2245 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ |#2| |#2|) 208 (-2245 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ (-639 |#2|) (-639 |#2|)) 207 (-2245 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362))))) (-2044 (((-766) $) 157 (|has| |#1| (-362)))) (-2343 ((|#1| $ (-562)) 107) (($ $ $) 84 (|has| (-562) (-1104))) (($ $ |#2|) 206 (-2245 (|has| |#2| (-285 |#2| |#2|)) (|has| |#1| (-362))))) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 158 (|has| |#1| (-362)))) (-4029 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-362))) (($ $ (-1 |#2| |#2|) (-766)) 216 (|has| |#1| (-362))) (($ $ (-766)) 87 (-4037 (-2245 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $) 85 (-4037 (-2245 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $ (-639 (-1168)) (-639 (-766))) 92 (-4037 (-2245 (|has| |#2| (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-562) |#1|)))))) (($ $ (-1168) (-766)) 91 (-4037 (-2245 (|has| |#2| (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-562) |#1|)))))) (($ $ (-639 (-1168))) 90 (-4037 (-2245 (|has| |#2| (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-562) |#1|)))))) (($ $ (-1168)) 89 (-4037 (-2245 (|has| |#2| (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))))) (-1580 (($ $) 230 (|has| |#1| (-362)))) (-4079 ((|#2| $) 228 (|has| |#1| (-362)))) (-2250 (((-562) $) 67)) (-3022 (($ $) 135 (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) 124 (|has| |#1| (-38 (-406 (-562)))))) (-3000 (($ $) 134 (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) 125 (|has| |#1| (-38 (-406 (-562)))))) (-2977 (($ $) 133 (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) 126 (|has| |#1| (-38 (-406 (-562)))))) (-4208 (((-224) $) 246 (-2245 (|has| |#2| (-1017)) (|has| |#1| (-362)))) (((-378) $) 245 (-2245 (|has| |#2| (-1017)) (|has| |#1| (-362)))) (((-535) $) 244 (-2245 (|has| |#2| (-610 (-535))) (|has| |#1| (-362)))) (((-887 (-378)) $) 223 (-2245 (|has| |#2| (-610 (-887 (-378)))) (|has| |#1| (-362)))) (((-887 (-562)) $) 222 (-2245 (|has| |#2| (-610 (-887 (-562)))) (|has| |#1| (-362))))) (-1870 (((-3 (-1256 $) "failed") (-683 $)) 236 (-2245 (-2245 (|has| $ (-144)) (|has| |#2| (-904))) (|has| |#1| (-362))))) (-1345 (($ $) 75)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 50 (|has| |#1| (-171))) (($ |#2|) 269) (($ (-1168)) 243 (-2245 (|has| |#2| (-1033 (-1168))) (|has| |#1| (-362)))) (($ (-406 (-562))) 60 (|has| |#1| (-38 (-406 (-562))))) (($ $) 52 (|has| |#1| (-554)))) (-2266 ((|#1| $ (-562)) 62)) (-2059 (((-3 $ "failed") $) 51 (-4037 (-2245 (-4037 (|has| |#2| (-144)) (-2245 (|has| $ (-144)) (|has| |#2| (-904)))) (|has| |#1| (-362))) (|has| |#1| (-144))))) (-1568 (((-766)) 28)) (-2328 ((|#1| $) 105)) (-3636 ((|#2| $) 234 (-2245 (|has| |#2| (-544)) (|has| |#1| (-362))))) (-3054 (($ $) 144 (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) 132 (|has| |#1| (-38 (-406 (-562)))))) (-3799 (((-112) $ $) 56 (|has| |#1| (-554)))) (-3033 (($ $) 143 (|has| |#1| (-38 (-406 (-562)))))) (-4139 (($ $) 131 (|has| |#1| (-38 (-406 (-562)))))) (-3077 (($ $) 142 (|has| |#1| (-38 (-406 (-562)))))) (-4183 (($ $) 130 (|has| |#1| (-38 (-406 (-562)))))) (-1406 ((|#1| $ (-562)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-562)))) (|has| |#1| (-15 -4053 (|#1| (-1168))))))) (-1567 (($ $) 141 (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) 129 (|has| |#1| (-38 (-406 (-562)))))) (-3065 (($ $) 140 (|has| |#1| (-38 (-406 (-562)))))) (-4175 (($ $) 128 (|has| |#1| (-38 (-406 (-562)))))) (-3040 (($ $) 139 (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) 127 (|has| |#1| (-38 (-406 (-562)))))) (-2757 (($ $) 250 (-2245 (|has| |#2| (-815)) (|has| |#1| (-362))))) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3113 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-362))) (($ $ (-1 |#2| |#2|) (-766)) 214 (|has| |#1| (-362))) (($ $ (-766)) 88 (-4037 (-2245 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $) 86 (-4037 (-2245 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $ (-639 (-1168)) (-639 (-766))) 96 (-4037 (-2245 (|has| |#2| (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-562) |#1|)))))) (($ $ (-1168) (-766)) 95 (-4037 (-2245 (|has| |#2| (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-562) |#1|)))))) (($ $ (-639 (-1168))) 94 (-4037 (-2245 (|has| |#2| (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-562) |#1|)))))) (($ $ (-1168)) 93 (-4037 (-2245 (|has| |#2| (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))))) (-1798 (((-112) $ $) 254 (-2245 (|has| |#2| (-845)) (|has| |#1| (-362))))) (-1771 (((-112) $ $) 255 (-2245 (|has| |#2| (-845)) (|has| |#1| (-362))))) (-1733 (((-112) $ $) 6)) (-1785 (((-112) $ $) 253 (-2245 (|has| |#2| (-845)) (|has| |#1| (-362))))) (-1761 (((-112) $ $) 256 (-2245 (|has| |#2| (-845)) (|has| |#1| (-362))))) (-1859 (($ $ |#1|) 61 (|has| |#1| (-362))) (($ $ $) 170 (|has| |#1| (-362))) (($ |#2| |#2|) 226 (|has| |#1| (-362)))) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 169 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 118 (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ $ |#2|) 205 (|has| |#1| (-362))) (($ |#2| $) 204 (|has| |#1| (-362))) (($ (-406 (-562)) $) 59 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 58 (|has| |#1| (-38 (-406 (-562))))))) -(((-1218 |#1| |#2|) (-139) (-1044) (-1247 |t#1|)) (T -1218)) -((-2250 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1247 *3)) (-5 *2 (-562)))) (-1487 (*1 *1 *2 *3) (-12 (-5 *2 (-562)) (-4 *4 (-1044)) (-4 *1 (-1218 *4 *3)) (-4 *3 (-1247 *4)))) (-2108 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-1247 *3)))) (-2449 (*1 *1 *1) (-12 (-4 *1 (-1218 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-1247 *2)))) (-2449 (*1 *1 *2 *1) (-12 (-5 *2 (-562)) (-4 *1 (-1218 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1247 *3)))) (-1470 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-1247 *3)))) (-3357 (*1 *2 *1) (|partial| -12 (-4 *1 (-1218 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-1247 *3))))) -(-13 (-1216 |t#1|) (-1033 |t#2|) (-612 |t#2|) (-10 -8 (-15 -1487 ($ (-562) |t#2|)) (-15 -2250 ((-562) $)) (-15 -2108 (|t#2| $)) (-15 -2449 ($ $)) (-15 -2449 ($ (-562) $)) (-15 -1470 (|t#2| $)) (-15 -3357 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-362)) (-6 (-987 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-562)) . T) ((-25) . T) ((-38 #1=(-406 (-562))) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-38 |#1|) |has| |#1| (-171)) ((-38 |#2|) |has| |#1| (-362)) ((-38 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-35) |has| |#1| (-38 (-406 (-562)))) ((-95) |has| |#1| (-38 (-406 (-562)))) ((-102) . T) ((-111 #1# #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-362)) ((-111 $ $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) -4037 (-12 (|has| |#1| (-362)) (|has| |#2| (-144))) (|has| |#1| (-144))) ((-146) -4037 (-12 (|has| |#1| (-362)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-612 #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-612 (-562)) . T) ((-612 #2=(-1168)) -12 (|has| |#1| (-362)) (|has| |#2| (-1033 (-1168)))) ((-612 |#1|) |has| |#1| (-171)) ((-612 |#2|) . T) ((-612 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-609 (-857)) . T) ((-171) -4037 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-610 (-224)) -12 (|has| |#1| (-362)) (|has| |#2| (-1017))) ((-610 (-378)) -12 (|has| |#1| (-362)) (|has| |#2| (-1017))) ((-610 (-535)) -12 (|has| |#1| (-362)) (|has| |#2| (-610 (-535)))) ((-610 (-887 (-378))) -12 (|has| |#1| (-362)) (|has| |#2| (-610 (-887 (-378))))) ((-610 (-887 (-562))) -12 (|has| |#1| (-362)) (|has| |#2| (-610 (-887 (-562))))) ((-230 |#2|) |has| |#1| (-362)) ((-232) -4037 (-12 (|has| |#1| (-362)) (|has| |#2| (-232))) (|has| |#1| (-15 * (|#1| (-562) |#1|)))) ((-242) |has| |#1| (-362)) ((-283) |has| |#1| (-38 (-406 (-562)))) ((-285 |#2| $) -12 (|has| |#1| (-362)) (|has| |#2| (-285 |#2| |#2|))) ((-285 $ $) |has| (-562) (-1104)) ((-289) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-308 |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|))) ((-362) |has| |#1| (-362)) ((-337 |#2|) |has| |#1| (-362)) ((-376 |#2|) |has| |#1| (-362)) ((-399 |#2|) |has| |#1| (-362)) ((-451) |has| |#1| (-362)) ((-492) |has| |#1| (-38 (-406 (-562)))) ((-513 (-1168) |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-513 (-1168) |#2|))) ((-513 |#2| |#2|) -12 (|has| |#1| (-362)) (|has| |#2| (-308 |#2|))) ((-554) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-642 #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-642 |#1|) . T) ((-642 |#2|) |has| |#1| (-362)) ((-642 $) . T) ((-635 (-562)) -12 (|has| |#1| (-362)) (|has| |#2| (-635 (-562)))) ((-635 |#2|) |has| |#1| (-362)) ((-712 #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-712 |#1|) |has| |#1| (-171)) ((-712 |#2|) |has| |#1| (-362)) ((-712 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-721) . T) ((-786) -12 (|has| |#1| (-362)) (|has| |#2| (-815))) ((-787) -12 (|has| |#1| (-362)) (|has| |#2| (-815))) ((-789) -12 (|has| |#1| (-362)) (|has| |#2| (-815))) ((-790) -12 (|has| |#1| (-362)) (|has| |#2| (-815))) ((-815) -12 (|has| |#1| (-362)) (|has| |#2| (-815))) ((-843) -12 (|has| |#1| (-362)) (|has| |#2| (-815))) ((-845) -4037 (-12 (|has| |#1| (-362)) (|has| |#2| (-845))) (-12 (|has| |#1| (-362)) (|has| |#2| (-815)))) ((-895 (-1168)) -4037 (-12 (|has| |#1| (-362)) (|has| |#2| (-895 (-1168)))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168))))) ((-881 (-378)) -12 (|has| |#1| (-362)) (|has| |#2| (-881 (-378)))) ((-881 (-562)) -12 (|has| |#1| (-362)) (|has| |#2| (-881 (-562)))) ((-879 |#2|) |has| |#1| (-362)) ((-904) -12 (|has| |#1| (-362)) (|has| |#2| (-904))) ((-968 |#1| #0# (-1074)) . T) ((-915) |has| |#1| (-362)) ((-987 |#2|) |has| |#1| (-362)) ((-997) |has| |#1| (-38 (-406 (-562)))) ((-1017) -12 (|has| |#1| (-362)) (|has| |#2| (-1017))) ((-1033 (-406 (-562))) -12 (|has| |#1| (-362)) (|has| |#2| (-1033 (-562)))) ((-1033 (-562)) -12 (|has| |#1| (-362)) (|has| |#2| (-1033 (-562)))) ((-1033 #2#) -12 (|has| |#1| (-362)) (|has| |#2| (-1033 (-1168)))) ((-1033 |#2|) . T) ((-1050 #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-1050 |#1|) . T) ((-1050 |#2|) |has| |#1| (-362)) ((-1050 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1143) -12 (|has| |#1| (-362)) (|has| |#2| (-1143))) ((-1192) |has| |#1| (-38 (-406 (-562)))) ((-1195) |has| |#1| (-38 (-406 (-562)))) ((-1207) |has| |#1| (-362)) ((-1211) |has| |#1| (-362)) ((-1216 |#1|) . T) ((-1234 |#1| #0#) . T)) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) 70)) (-2300 ((|#2| $) NIL (-12 (|has| |#2| (-306)) (|has| |#1| (-362))))) (-1401 (((-639 (-1074)) $) NIL)) (-2443 (((-1168) $) 88)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-1965 (($ $) NIL (|has| |#1| (-554)))) (-4102 (((-112) $) NIL (|has| |#1| (-554)))) (-1302 (($ $ (-562)) 97) (($ $ (-562) (-562)) 99)) (-4196 (((-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|))) $) 47)) (-2108 ((|#2| $) 11)) (-3357 (((-3 |#2| "failed") $) 30)) (-1470 ((|#2| $) 31)) (-2987 (($ $) 192 (|has| |#1| (-38 (-406 (-562)))))) (-4098 (($ $) 168 (|has| |#1| (-38 (-406 (-562)))))) (-2781 (((-3 $ "failed") $ $) NIL)) (-3517 (((-417 (-1164 $)) (-1164 $)) NIL (-12 (|has| |#2| (-904)) (|has| |#1| (-362))))) (-1977 (($ $) NIL (|has| |#1| (-362)))) (-3788 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1644 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (-12 (|has| |#2| (-904)) (|has| |#1| (-362))))) (-1436 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4206 (($ $) 188 (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) 164 (|has| |#1| (-38 (-406 (-562)))))) (-1587 (((-562) $) NIL (-12 (|has| |#2| (-815)) (|has| |#1| (-362))))) (-1503 (($ (-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|)))) 57)) (-3013 (($ $) 196 (|has| |#1| (-38 (-406 (-562)))))) (-4120 (($ $) 172 (|has| |#1| (-38 (-406 (-562)))))) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#2| "failed") $) 144) (((-3 (-562) "failed") $) NIL (-12 (|has| |#2| (-1033 (-562))) (|has| |#1| (-362)))) (((-3 (-406 (-562)) "failed") $) NIL (-12 (|has| |#2| (-1033 (-562))) (|has| |#1| (-362)))) (((-3 (-1168) "failed") $) NIL (-12 (|has| |#2| (-1033 (-1168))) (|has| |#1| (-362))))) (-3960 ((|#2| $) 143) (((-562) $) NIL (-12 (|has| |#2| (-1033 (-562))) (|has| |#1| (-362)))) (((-406 (-562)) $) NIL (-12 (|has| |#2| (-1033 (-562))) (|has| |#1| (-362)))) (((-1168) $) NIL (-12 (|has| |#2| (-1033 (-1168))) (|has| |#1| (-362))))) (-2449 (($ $) 61) (($ (-562) $) 24)) (-1810 (($ $ $) NIL (|has| |#1| (-362)))) (-1600 (($ $) NIL)) (-3449 (((-683 |#2|) (-683 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -1767 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (-12 (|has| |#2| (-635 (-562))) (|has| |#1| (-362)))) (((-683 (-562)) (-683 $)) NIL (-12 (|has| |#2| (-635 (-562))) (|has| |#1| (-362))))) (-1694 (((-3 $ "failed") $) 77)) (-2547 (((-406 (-947 |#1|)) $ (-562)) 112 (|has| |#1| (-554))) (((-406 (-947 |#1|)) $ (-562) (-562)) 114 (|has| |#1| (-554)))) (-1447 (($) NIL (-12 (|has| |#2| (-544)) (|has| |#1| (-362))))) (-1787 (($ $ $) NIL (|has| |#1| (-362)))) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL (|has| |#1| (-362)))) (-3521 (((-112) $) NIL (|has| |#1| (-362)))) (-2696 (((-112) $) NIL (-12 (|has| |#2| (-815)) (|has| |#1| (-362))))) (-2965 (((-112) $) 64)) (-4100 (($) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2337 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (-12 (|has| |#2| (-881 (-378))) (|has| |#1| (-362)))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (-12 (|has| |#2| (-881 (-562))) (|has| |#1| (-362))))) (-1993 (((-562) $) 93) (((-562) $ (-562)) 95)) (-4367 (((-112) $) NIL)) (-2957 (($ $) NIL (|has| |#1| (-362)))) (-4063 ((|#2| $) 151 (|has| |#1| (-362)))) (-1895 (($ $ (-562)) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3828 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1143)) (|has| |#1| (-362))))) (-3855 (((-112) $) NIL (-12 (|has| |#2| (-815)) (|has| |#1| (-362))))) (-3662 (($ $ (-916)) 136)) (-2064 (($ (-1 |#1| (-562)) $) 132)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-2833 (((-112) $) NIL)) (-1377 (($ |#1| (-562)) 19) (($ $ (-1074) (-562)) NIL) (($ $ (-639 (-1074)) (-639 (-562))) NIL)) (-1551 (($ $ $) NIL (-12 (|has| |#2| (-845)) (|has| |#1| (-362))))) (-2993 (($ $ $) NIL (-12 (|has| |#2| (-845)) (|has| |#1| (-362))))) (-4152 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-362)))) (-4366 (($ $) 162 (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1487 (($ (-562) |#2|) 10)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) 145 (|has| |#1| (-362)))) (-3081 (($ $) 214 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-1168)) 219 (-4037 (-12 (|has| |#1| (-15 -3081 (|#1| |#1| (-1168)))) (|has| |#1| (-15 -1401 ((-639 (-1168)) |#1|))) (|has| |#1| (-38 (-406 (-562))))) (-12 (|has| |#1| (-29 (-562))) (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-954)) (|has| |#1| (-1192)))))) (-3730 (($) NIL (-12 (|has| |#2| (-1143)) (|has| |#1| (-362))) CONST)) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-362)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-2561 (($ $) NIL (-12 (|has| |#2| (-306)) (|has| |#1| (-362))))) (-3870 ((|#2| $) NIL (-12 (|has| |#2| (-544)) (|has| |#1| (-362))))) (-3586 (((-417 (-1164 $)) (-1164 $)) NIL (-12 (|has| |#2| (-904)) (|has| |#1| (-362))))) (-3468 (((-417 (-1164 $)) (-1164 $)) NIL (-12 (|has| |#2| (-904)) (|has| |#1| (-362))))) (-1635 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL (|has| |#1| (-362)))) (-4316 (($ $ (-562)) 126)) (-1762 (((-3 $ "failed") $ $) 116 (|has| |#1| (-554)))) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-3430 (($ $) 160 (|has| |#1| (-38 (-406 (-562)))))) (-1433 (((-1148 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-562))))) (($ $ (-1168) |#2|) NIL (-12 (|has| |#2| (-513 (-1168) |#2|)) (|has| |#1| (-362)))) (($ $ (-639 (-1168)) (-639 |#2|)) NIL (-12 (|has| |#2| (-513 (-1168) |#2|)) (|has| |#1| (-362)))) (($ $ (-639 (-293 |#2|))) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ (-293 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362)))) (($ $ (-639 |#2|) (-639 |#2|)) NIL (-12 (|has| |#2| (-308 |#2|)) (|has| |#1| (-362))))) (-2044 (((-766) $) NIL (|has| |#1| (-362)))) (-2343 ((|#1| $ (-562)) 91) (($ $ $) 79 (|has| (-562) (-1104))) (($ $ |#2|) NIL (-12 (|has| |#2| (-285 |#2| |#2|)) (|has| |#1| (-362))))) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| |#1| (-362)))) (-4029 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-362))) (($ $ (-1 |#2| |#2|) (-766)) NIL (|has| |#1| (-362))) (($ $ (-766)) NIL (-4037 (-12 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $) 137 (-4037 (-12 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-4037 (-12 (|has| |#2| (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-1168) (-766)) NIL (-4037 (-12 (|has| |#2| (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-639 (-1168))) NIL (-4037 (-12 (|has| |#2| (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-1168)) 140 (-4037 (-12 (|has| |#2| (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168))))))) (-1580 (($ $) NIL (|has| |#1| (-362)))) (-4079 ((|#2| $) 152 (|has| |#1| (-362)))) (-2250 (((-562) $) 12)) (-3022 (($ $) 198 (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) 174 (|has| |#1| (-38 (-406 (-562)))))) (-3000 (($ $) 194 (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) 170 (|has| |#1| (-38 (-406 (-562)))))) (-2977 (($ $) 190 (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) 166 (|has| |#1| (-38 (-406 (-562)))))) (-4208 (((-224) $) NIL (-12 (|has| |#2| (-1017)) (|has| |#1| (-362)))) (((-378) $) NIL (-12 (|has| |#2| (-1017)) (|has| |#1| (-362)))) (((-535) $) NIL (-12 (|has| |#2| (-610 (-535))) (|has| |#1| (-362)))) (((-887 (-378)) $) NIL (-12 (|has| |#2| (-610 (-887 (-378)))) (|has| |#1| (-362)))) (((-887 (-562)) $) NIL (-12 (|has| |#2| (-610 (-887 (-562)))) (|has| |#1| (-362))))) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-904)) (|has| |#1| (-362))))) (-1345 (($ $) 124)) (-4053 (((-857) $) 244) (($ (-562)) 23) (($ |#1|) 21 (|has| |#1| (-171))) (($ |#2|) 20) (($ (-1168)) NIL (-12 (|has| |#2| (-1033 (-1168))) (|has| |#1| (-362)))) (($ (-406 (-562))) 155 (|has| |#1| (-38 (-406 (-562))))) (($ $) NIL (|has| |#1| (-554)))) (-2266 ((|#1| $ (-562)) 74)) (-2059 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#2| (-904)) (|has| |#1| (-362))) (-12 (|has| |#2| (-144)) (|has| |#1| (-362))) (|has| |#1| (-144))))) (-1568 (((-766)) 142)) (-2328 ((|#1| $) 90)) (-3636 ((|#2| $) NIL (-12 (|has| |#2| (-544)) (|has| |#1| (-362))))) (-3054 (($ $) 204 (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) 180 (|has| |#1| (-38 (-406 (-562)))))) (-3799 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3033 (($ $) 200 (|has| |#1| (-38 (-406 (-562)))))) (-4139 (($ $) 176 (|has| |#1| (-38 (-406 (-562)))))) (-3077 (($ $) 208 (|has| |#1| (-38 (-406 (-562)))))) (-4183 (($ $) 184 (|has| |#1| (-38 (-406 (-562)))))) (-1406 ((|#1| $ (-562)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-562)))) (|has| |#1| (-15 -4053 (|#1| (-1168))))))) (-1567 (($ $) 210 (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) 186 (|has| |#1| (-38 (-406 (-562)))))) (-3065 (($ $) 206 (|has| |#1| (-38 (-406 (-562)))))) (-4175 (($ $) 182 (|has| |#1| (-38 (-406 (-562)))))) (-3040 (($ $) 202 (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) 178 (|has| |#1| (-38 (-406 (-562)))))) (-2757 (($ $) NIL (-12 (|has| |#2| (-815)) (|has| |#1| (-362))))) (-2285 (($) 13 T CONST)) (-2294 (($) 17 T CONST)) (-3113 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-362))) (($ $ (-1 |#2| |#2|) (-766)) NIL (|has| |#1| (-362))) (($ $ (-766)) NIL (-4037 (-12 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $) NIL (-4037 (-12 (|has| |#2| (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-4037 (-12 (|has| |#2| (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-1168) (-766)) NIL (-4037 (-12 (|has| |#2| (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-639 (-1168))) NIL (-4037 (-12 (|has| |#2| (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-1168)) NIL (-4037 (-12 (|has| |#2| (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168))))))) (-1798 (((-112) $ $) NIL (-12 (|has| |#2| (-845)) (|has| |#1| (-362))))) (-1771 (((-112) $ $) NIL (-12 (|has| |#2| (-845)) (|has| |#1| (-362))))) (-1733 (((-112) $ $) 63)) (-1785 (((-112) $ $) NIL (-12 (|has| |#2| (-845)) (|has| |#1| (-362))))) (-1761 (((-112) $ $) NIL (-12 (|has| |#2| (-845)) (|has| |#1| (-362))))) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362))) (($ |#2| |#2|) 150 (|has| |#1| (-362)))) (-1847 (($ $) 213) (($ $ $) 68)) (-1836 (($ $ $) 66)) (** (($ $ (-916)) NIL) (($ $ (-766)) 73) (($ $ (-562)) 146 (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 158 (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-362))) (($ |#2| $) 147 (|has| |#1| (-362))) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))))) -(((-1219 |#1| |#2|) (-1218 |#1| |#2|) (-1044) (-1247 |#1|)) (T -1219)) -NIL -(-1218 |#1| |#2|) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2300 (((-1248 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-306)) (|has| |#1| (-362))))) (-1401 (((-639 (-1074)) $) NIL)) (-2443 (((-1168) $) 10)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1248 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-1965 (($ $) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1248 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-4102 (((-112) $) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1248 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-1302 (($ $ (-562)) NIL) (($ $ (-562) (-562)) NIL)) (-4196 (((-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|))) $) NIL)) (-2108 (((-1248 |#1| |#2| |#3|) $) NIL)) (-3357 (((-3 (-1248 |#1| |#2| |#3|) "failed") $) NIL)) (-1470 (((-1248 |#1| |#2| |#3|) $) NIL)) (-2987 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4098 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2781 (((-3 $ "failed") $ $) NIL)) (-3517 (((-417 (-1164 $)) (-1164 $)) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))))) (-1977 (($ $) NIL (|has| |#1| (-362)))) (-3788 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1644 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))))) (-1436 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4206 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1587 (((-562) $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))))) (-1503 (($ (-1148 (-2 (|:| |k| (-562)) (|:| |c| |#1|)))) NIL)) (-3013 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4120 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-1248 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1168) "failed") $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-1033 (-1168))) (|has| |#1| (-362)))) (((-3 (-406 (-562)) "failed") $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-1033 (-562))) (|has| |#1| (-362)))) (((-3 (-562) "failed") $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-1033 (-562))) (|has| |#1| (-362))))) (-3960 (((-1248 |#1| |#2| |#3|) $) NIL) (((-1168) $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-1033 (-1168))) (|has| |#1| (-362)))) (((-406 (-562)) $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-1033 (-562))) (|has| |#1| (-362)))) (((-562) $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-1033 (-562))) (|has| |#1| (-362))))) (-2449 (($ $) NIL) (($ (-562) $) NIL)) (-1810 (($ $ $) NIL (|has| |#1| (-362)))) (-1600 (($ $) NIL)) (-3449 (((-683 (-1248 |#1| |#2| |#3|)) (-683 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -1767 (-683 (-1248 |#1| |#2| |#3|))) (|:| |vec| (-1256 (-1248 |#1| |#2| |#3|)))) (-683 $) (-1256 $)) NIL (|has| |#1| (-362))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-635 (-562))) (|has| |#1| (-362)))) (((-683 (-562)) (-683 $)) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-635 (-562))) (|has| |#1| (-362))))) (-1694 (((-3 $ "failed") $) NIL)) (-2547 (((-406 (-947 |#1|)) $ (-562)) NIL (|has| |#1| (-554))) (((-406 (-947 |#1|)) $ (-562) (-562)) NIL (|has| |#1| (-554)))) (-1447 (($) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-544)) (|has| |#1| (-362))))) (-1787 (($ $ $) NIL (|has| |#1| (-362)))) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL (|has| |#1| (-362)))) (-3521 (((-112) $) NIL (|has| |#1| (-362)))) (-2696 (((-112) $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))))) (-2965 (((-112) $) NIL)) (-4100 (($) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2337 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-881 (-378))) (|has| |#1| (-362)))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-881 (-562))) (|has| |#1| (-362))))) (-1993 (((-562) $) NIL) (((-562) $ (-562)) NIL)) (-4367 (((-112) $) NIL)) (-2957 (($ $) NIL (|has| |#1| (-362)))) (-4063 (((-1248 |#1| |#2| |#3|) $) NIL (|has| |#1| (-362)))) (-1895 (($ $ (-562)) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3828 (((-3 $ "failed") $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-1143)) (|has| |#1| (-362))))) (-3855 (((-112) $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))))) (-3662 (($ $ (-916)) NIL)) (-2064 (($ (-1 |#1| (-562)) $) NIL)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-2833 (((-112) $) NIL)) (-1377 (($ |#1| (-562)) 17) (($ $ (-1074) (-562)) NIL) (($ $ (-639 (-1074)) (-639 (-562))) NIL)) (-1551 (($ $ $) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1248 |#1| |#2| |#3|) (-845)) (|has| |#1| (-362)))))) (-2993 (($ $ $) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1248 |#1| |#2| |#3|) (-845)) (|has| |#1| (-362)))))) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1248 |#1| |#2| |#3|) (-1248 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-362)))) (-4366 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1487 (($ (-562) (-1248 |#1| |#2| |#3|)) NIL)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) NIL (|has| |#1| (-362)))) (-3081 (($ $) 25 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-1168)) NIL (-4037 (-12 (|has| |#1| (-15 -3081 (|#1| |#1| (-1168)))) (|has| |#1| (-15 -1401 ((-639 (-1168)) |#1|))) (|has| |#1| (-38 (-406 (-562))))) (-12 (|has| |#1| (-29 (-562))) (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-954)) (|has| |#1| (-1192))))) (($ $ (-1252 |#2|)) 26 (|has| |#1| (-38 (-406 (-562)))))) (-3730 (($) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-1143)) (|has| |#1| (-362))) CONST)) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-362)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-2561 (($ $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-306)) (|has| |#1| (-362))))) (-3870 (((-1248 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-544)) (|has| |#1| (-362))))) (-3586 (((-417 (-1164 $)) (-1164 $)) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))))) (-3468 (((-417 (-1164 $)) (-1164 $)) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))))) (-1635 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL (|has| |#1| (-362)))) (-4316 (($ $ (-562)) NIL)) (-1762 (((-3 $ "failed") $ $) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1248 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-3430 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1433 (((-1148 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-562))))) (($ $ (-1168) (-1248 |#1| |#2| |#3|)) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-513 (-1168) (-1248 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-639 (-1168)) (-639 (-1248 |#1| |#2| |#3|))) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-513 (-1168) (-1248 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-639 (-293 (-1248 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-308 (-1248 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-293 (-1248 |#1| |#2| |#3|))) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-308 (-1248 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-1248 |#1| |#2| |#3|) (-1248 |#1| |#2| |#3|)) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-308 (-1248 |#1| |#2| |#3|))) (|has| |#1| (-362)))) (($ $ (-639 (-1248 |#1| |#2| |#3|)) (-639 (-1248 |#1| |#2| |#3|))) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-308 (-1248 |#1| |#2| |#3|))) (|has| |#1| (-362))))) (-2044 (((-766) $) NIL (|has| |#1| (-362)))) (-2343 ((|#1| $ (-562)) NIL) (($ $ $) NIL (|has| (-562) (-1104))) (($ $ (-1248 |#1| |#2| |#3|)) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-285 (-1248 |#1| |#2| |#3|) (-1248 |#1| |#2| |#3|))) (|has| |#1| (-362))))) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| |#1| (-362)))) (-4029 (($ $ (-1 (-1248 |#1| |#2| |#3|) (-1248 |#1| |#2| |#3|))) NIL (|has| |#1| (-362))) (($ $ (-1 (-1248 |#1| |#2| |#3|) (-1248 |#1| |#2| |#3|)) (-766)) NIL (|has| |#1| (-362))) (($ $ (-1252 |#2|)) 24) (($ $ (-766)) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $) 23 (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-1168) (-766)) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-639 (-1168))) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-1168)) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168))))))) (-1580 (($ $) NIL (|has| |#1| (-362)))) (-4079 (((-1248 |#1| |#2| |#3|) $) NIL (|has| |#1| (-362)))) (-2250 (((-562) $) NIL)) (-3022 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3000 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2977 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4208 (((-535) $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-610 (-535))) (|has| |#1| (-362)))) (((-378) $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-1017)) (|has| |#1| (-362)))) (((-224) $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-1017)) (|has| |#1| (-362)))) (((-887 (-378)) $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-610 (-887 (-378)))) (|has| |#1| (-362)))) (((-887 (-562)) $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-610 (-887 (-562)))) (|has| |#1| (-362))))) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| (-1248 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))))) (-1345 (($ $) NIL)) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1248 |#1| |#2| |#3|)) NIL) (($ (-1252 |#2|)) 22) (($ (-1168)) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-1033 (-1168))) (|has| |#1| (-362)))) (($ $) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1248 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))) (|has| |#1| (-554)))) (($ (-406 (-562))) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-1033 (-562))) (|has| |#1| (-362))) (|has| |#1| (-38 (-406 (-562))))))) (-2266 ((|#1| $ (-562)) NIL)) (-2059 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| (-1248 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))) (-12 (|has| (-1248 |#1| |#2| |#3|) (-144)) (|has| |#1| (-362))) (|has| |#1| (-144))))) (-1568 (((-766)) NIL)) (-2328 ((|#1| $) 11)) (-3636 (((-1248 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-544)) (|has| |#1| (-362))))) (-3054 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3799 (((-112) $ $) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1248 |#1| |#2| |#3|) (-904)) (|has| |#1| (-362))) (|has| |#1| (-554))))) (-3033 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4139 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3077 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4183 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1406 ((|#1| $ (-562)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-562)))) (|has| |#1| (-15 -4053 (|#1| (-1168))))))) (-1567 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3065 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4175 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3040 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2757 (($ $) NIL (-12 (|has| (-1248 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))))) (-2285 (($) 19 T CONST)) (-2294 (($) 15 T CONST)) (-3113 (($ $ (-1 (-1248 |#1| |#2| |#3|) (-1248 |#1| |#2| |#3|))) NIL (|has| |#1| (-362))) (($ $ (-1 (-1248 |#1| |#2| |#3|) (-1248 |#1| |#2| |#3|)) (-766)) NIL (|has| |#1| (-362))) (($ $ (-766)) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-232)) (|has| |#1| (-362))) (|has| |#1| (-15 * (|#1| (-562) |#1|))))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-1168) (-766)) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-639 (-1168))) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168)))))) (($ $ (-1168)) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-895 (-1168))) (|has| |#1| (-362))) (-12 (|has| |#1| (-15 * (|#1| (-562) |#1|))) (|has| |#1| (-895 (-1168))))))) (-1798 (((-112) $ $) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1248 |#1| |#2| |#3|) (-845)) (|has| |#1| (-362)))))) (-1771 (((-112) $ $) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1248 |#1| |#2| |#3|) (-845)) (|has| |#1| (-362)))))) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1248 |#1| |#2| |#3|) (-845)) (|has| |#1| (-362)))))) (-1761 (((-112) $ $) NIL (-4037 (-12 (|has| (-1248 |#1| |#2| |#3|) (-815)) (|has| |#1| (-362))) (-12 (|has| (-1248 |#1| |#2| |#3|) (-845)) (|has| |#1| (-362)))))) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362))) (($ (-1248 |#1| |#2| |#3|) (-1248 |#1| |#2| |#3|)) NIL (|has| |#1| (-362)))) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) 20)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1248 |#1| |#2| |#3|)) NIL (|has| |#1| (-362))) (($ (-1248 |#1| |#2| |#3|) $) NIL (|has| |#1| (-362))) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))))) -(((-1220 |#1| |#2| |#3|) (-13 (-1218 |#1| (-1248 |#1| |#2| |#3|)) (-10 -8 (-15 -4053 ($ (-1252 |#2|))) (-15 -4029 ($ $ (-1252 |#2|))) (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -3081 ($ $ (-1252 |#2|))) |%noBranch|))) (-1044) (-1168) |#1|) (T -1220)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1220 *3 *4 *5)) (-4 *3 (-1044)) (-14 *5 *3))) (-4029 (*1 *1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1220 *3 *4 *5)) (-4 *3 (-1044)) (-14 *5 *3))) (-3081 (*1 *1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1220 *3 *4 *5)) (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) (-14 *5 *3)))) -(-13 (-1218 |#1| (-1248 |#1| |#2| |#3|)) (-10 -8 (-15 -4053 ($ (-1252 |#2|))) (-15 -4029 ($ $ (-1252 |#2|))) (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -3081 ($ $ (-1252 |#2|))) |%noBranch|))) -((-2323 (((-2 (|:| |contp| (-562)) (|:| -2656 (-639 (-2 (|:| |irr| |#1|) (|:| -2794 (-562)))))) |#1| (-112)) 12)) (-3805 (((-417 |#1|) |#1|) 22)) (-1635 (((-417 |#1|) |#1|) 21))) -(((-1221 |#1|) (-10 -7 (-15 -1635 ((-417 |#1|) |#1|)) (-15 -3805 ((-417 |#1|) |#1|)) (-15 -2323 ((-2 (|:| |contp| (-562)) (|:| -2656 (-639 (-2 (|:| |irr| |#1|) (|:| -2794 (-562)))))) |#1| (-112)))) (-1232 (-562))) (T -1221)) -((-2323 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-562)) (|:| -2656 (-639 (-2 (|:| |irr| *3) (|:| -2794 (-562))))))) (-5 *1 (-1221 *3)) (-4 *3 (-1232 (-562))))) (-3805 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1221 *3)) (-4 *3 (-1232 (-562))))) (-1635 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1221 *3)) (-4 *3 (-1232 (-562)))))) -(-10 -7 (-15 -1635 ((-417 |#1|) |#1|)) (-15 -3805 ((-417 |#1|) |#1|)) (-15 -2323 ((-2 (|:| |contp| (-562)) (|:| -2656 (-639 (-2 (|:| |irr| |#1|) (|:| -2794 (-562)))))) |#1| (-112)))) -((-4152 (((-1148 |#2|) (-1 |#2| |#1|) (-1223 |#1|)) 23 (|has| |#1| (-843))) (((-1223 |#2|) (-1 |#2| |#1|) (-1223 |#1|)) 17))) -(((-1222 |#1| |#2|) (-10 -7 (-15 -4152 ((-1223 |#2|) (-1 |#2| |#1|) (-1223 |#1|))) (IF (|has| |#1| (-843)) (-15 -4152 ((-1148 |#2|) (-1 |#2| |#1|) (-1223 |#1|))) |%noBranch|)) (-1207) (-1207)) (T -1222)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1223 *5)) (-4 *5 (-843)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-1148 *6)) (-5 *1 (-1222 *5 *6)))) (-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1223 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-1223 *6)) (-5 *1 (-1222 *5 *6))))) -(-10 -7 (-15 -4152 ((-1223 |#2|) (-1 |#2| |#1|) (-1223 |#1|))) (IF (|has| |#1| (-843)) (-15 -4152 ((-1148 |#2|) (-1 |#2| |#1|) (-1223 |#1|))) |%noBranch|)) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2668 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-4152 (((-1148 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-843)))) (-3665 ((|#1| $) 14)) (-1750 ((|#1| $) 10)) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-1765 (((-562) $) 18)) (-3979 ((|#1| $) 17)) (-2088 ((|#1| $) 11)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-3487 (((-112) $) 16)) (-3525 (((-1148 |#1|) $) 38 (|has| |#1| (-843))) (((-1148 |#1|) (-639 $)) 37 (|has| |#1| (-843)))) (-4208 (($ |#1|) 25)) (-4053 (($ (-1086 |#1|)) 24) (((-857) $) 34 (|has| |#1| (-1092)))) (-3863 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-1483 (($ $ (-562)) 13)) (-1733 (((-112) $ $) 27 (|has| |#1| (-1092))))) -(((-1223 |#1|) (-13 (-1085 |#1|) (-10 -8 (-15 -3863 ($ |#1|)) (-15 -2668 ($ |#1|)) (-15 -4053 ($ (-1086 |#1|))) (-15 -3487 ((-112) $)) (IF (|has| |#1| (-1092)) (-6 (-1092)) |%noBranch|) (IF (|has| |#1| (-843)) (-6 (-1087 |#1| (-1148 |#1|))) |%noBranch|))) (-1207)) (T -1223)) -((-3863 (*1 *1 *2) (-12 (-5 *1 (-1223 *2)) (-4 *2 (-1207)))) (-2668 (*1 *1 *2) (-12 (-5 *1 (-1223 *2)) (-4 *2 (-1207)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-1207)) (-5 *1 (-1223 *3)))) (-3487 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1223 *3)) (-4 *3 (-1207))))) -(-13 (-1085 |#1|) (-10 -8 (-15 -3863 ($ |#1|)) (-15 -2668 ($ |#1|)) (-15 -4053 ($ (-1086 |#1|))) (-15 -3487 ((-112) $)) (IF (|has| |#1| (-1092)) (-6 (-1092)) |%noBranch|) (IF (|has| |#1| (-843)) (-6 (-1087 |#1| (-1148 |#1|))) |%noBranch|))) -((-4152 (((-1229 |#3| |#4|) (-1 |#4| |#2|) (-1229 |#1| |#2|)) 15))) -(((-1224 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4152 ((-1229 |#3| |#4|) (-1 |#4| |#2|) (-1229 |#1| |#2|)))) (-1168) (-1044) (-1168) (-1044)) (T -1224)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1229 *5 *6)) (-14 *5 (-1168)) (-4 *6 (-1044)) (-4 *8 (-1044)) (-5 *2 (-1229 *7 *8)) (-5 *1 (-1224 *5 *6 *7 *8)) (-14 *7 (-1168))))) -(-10 -7 (-15 -4152 ((-1229 |#3| |#4|) (-1 |#4| |#2|) (-1229 |#1| |#2|)))) -((-3358 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-2162 ((|#1| |#3|) 13)) (-2414 ((|#3| |#3|) 19))) -(((-1225 |#1| |#2| |#3|) (-10 -7 (-15 -2162 (|#1| |#3|)) (-15 -2414 (|#3| |#3|)) (-15 -3358 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-554) (-987 |#1|) (-1232 |#2|)) (T -1225)) -((-3358 (*1 *2 *3) (-12 (-4 *4 (-554)) (-4 *5 (-987 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1225 *4 *5 *3)) (-4 *3 (-1232 *5)))) (-2414 (*1 *2 *2) (-12 (-4 *3 (-554)) (-4 *4 (-987 *3)) (-5 *1 (-1225 *3 *4 *2)) (-4 *2 (-1232 *4)))) (-2162 (*1 *2 *3) (-12 (-4 *4 (-987 *2)) (-4 *2 (-554)) (-5 *1 (-1225 *2 *4 *3)) (-4 *3 (-1232 *4))))) -(-10 -7 (-15 -2162 (|#1| |#3|)) (-15 -2414 (|#3| |#3|)) (-15 -3358 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-3366 (((-3 |#2| "failed") |#2| (-766) |#1|) 29)) (-4032 (((-3 |#2| "failed") |#2| (-766)) 30)) (-1853 (((-3 (-2 (|:| -1589 |#2|) (|:| -1603 |#2|)) "failed") |#2|) 42)) (-3602 (((-639 |#2|) |#2|) 44)) (-1485 (((-3 |#2| "failed") |#2| |#2|) 39))) -(((-1226 |#1| |#2|) (-10 -7 (-15 -4032 ((-3 |#2| "failed") |#2| (-766))) (-15 -3366 ((-3 |#2| "failed") |#2| (-766) |#1|)) (-15 -1485 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1853 ((-3 (-2 (|:| -1589 |#2|) (|:| -1603 |#2|)) "failed") |#2|)) (-15 -3602 ((-639 |#2|) |#2|))) (-13 (-554) (-146)) (-1232 |#1|)) (T -1226)) -((-3602 (*1 *2 *3) (-12 (-4 *4 (-13 (-554) (-146))) (-5 *2 (-639 *3)) (-5 *1 (-1226 *4 *3)) (-4 *3 (-1232 *4)))) (-1853 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-554) (-146))) (-5 *2 (-2 (|:| -1589 *3) (|:| -1603 *3))) (-5 *1 (-1226 *4 *3)) (-4 *3 (-1232 *4)))) (-1485 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-554) (-146))) (-5 *1 (-1226 *3 *2)) (-4 *2 (-1232 *3)))) (-3366 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-766)) (-4 *4 (-13 (-554) (-146))) (-5 *1 (-1226 *4 *2)) (-4 *2 (-1232 *4)))) (-4032 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-766)) (-4 *4 (-13 (-554) (-146))) (-5 *1 (-1226 *4 *2)) (-4 *2 (-1232 *4))))) -(-10 -7 (-15 -4032 ((-3 |#2| "failed") |#2| (-766))) (-15 -3366 ((-3 |#2| "failed") |#2| (-766) |#1|)) (-15 -1485 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1853 ((-3 (-2 (|:| -1589 |#2|) (|:| -1603 |#2|)) "failed") |#2|)) (-15 -3602 ((-639 |#2|) |#2|))) -((-3802 (((-3 (-2 (|:| -3380 |#2|) (|:| -1441 |#2|)) "failed") |#2| |#2|) 31))) -(((-1227 |#1| |#2|) (-10 -7 (-15 -3802 ((-3 (-2 (|:| -3380 |#2|) (|:| -1441 |#2|)) "failed") |#2| |#2|))) (-554) (-1232 |#1|)) (T -1227)) -((-3802 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-554)) (-5 *2 (-2 (|:| -3380 *3) (|:| -1441 *3))) (-5 *1 (-1227 *4 *3)) (-4 *3 (-1232 *4))))) -(-10 -7 (-15 -3802 ((-3 (-2 (|:| -3380 |#2|) (|:| -1441 |#2|)) "failed") |#2| |#2|))) -((-1900 ((|#2| |#2| |#2|) 19)) (-3035 ((|#2| |#2| |#2|) 30)) (-3225 ((|#2| |#2| |#2| (-766) (-766)) 36))) -(((-1228 |#1| |#2|) (-10 -7 (-15 -1900 (|#2| |#2| |#2|)) (-15 -3035 (|#2| |#2| |#2|)) (-15 -3225 (|#2| |#2| |#2| (-766) (-766)))) (-1044) (-1232 |#1|)) (T -1228)) -((-3225 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-766)) (-4 *4 (-1044)) (-5 *1 (-1228 *4 *2)) (-4 *2 (-1232 *4)))) (-3035 (*1 *2 *2 *2) (-12 (-4 *3 (-1044)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-1232 *3)))) (-1900 (*1 *2 *2 *2) (-12 (-4 *3 (-1044)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-1232 *3))))) -(-10 -7 (-15 -1900 (|#2| |#2| |#2|)) (-15 -3035 (|#2| |#2| |#2|)) (-15 -3225 (|#2| |#2| |#2| (-766) (-766)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-4263 (((-1256 |#2|) $ (-766)) NIL)) (-1401 (((-639 (-1074)) $) NIL)) (-2505 (($ (-1164 |#2|)) NIL)) (-1602 (((-1164 $) $ (-1074)) NIL) (((-1164 |#2|) $) NIL)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL (|has| |#2| (-554)))) (-1965 (($ $) NIL (|has| |#2| (-554)))) (-4102 (((-112) $) NIL (|has| |#2| (-554)))) (-1578 (((-766) $) NIL) (((-766) $ (-639 (-1074))) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-2035 (($ $ $) NIL (|has| |#2| (-554)))) (-3517 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-1977 (($ $) NIL (|has| |#2| (-451)))) (-3788 (((-417 $) $) NIL (|has| |#2| (-451)))) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-1436 (((-112) $ $) NIL (|has| |#2| (-362)))) (-1730 (($ $ (-766)) NIL)) (-3538 (($ $ (-766)) NIL)) (-2687 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-451)))) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#2| "failed") $) NIL) (((-3 (-406 (-562)) "failed") $) NIL (|has| |#2| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) NIL (|has| |#2| (-1033 (-562)))) (((-3 (-1074) "failed") $) NIL)) (-3960 ((|#2| $) NIL) (((-406 (-562)) $) NIL (|has| |#2| (-1033 (-406 (-562))))) (((-562) $) NIL (|has| |#2| (-1033 (-562)))) (((-1074) $) NIL)) (-2355 (($ $ $ (-1074)) NIL (|has| |#2| (-171))) ((|#2| $ $) NIL (|has| |#2| (-171)))) (-1810 (($ $ $) NIL (|has| |#2| (-362)))) (-1600 (($ $) NIL)) (-3449 (((-683 (-562)) (-683 $)) NIL (|has| |#2| (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) NIL (|has| |#2| (-635 (-562)))) (((-2 (|:| -1767 (-683 |#2|)) (|:| |vec| (-1256 |#2|))) (-683 $) (-1256 $)) NIL) (((-683 |#2|) (-683 $)) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-1787 (($ $ $) NIL (|has| |#2| (-362)))) (-4296 (($ $ $) NIL)) (-3127 (($ $ $) NIL (|has| |#2| (-554)))) (-3840 (((-2 (|:| -4221 |#2|) (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| |#2| (-554)))) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL (|has| |#2| (-362)))) (-2578 (($ $) NIL (|has| |#2| (-451))) (($ $ (-1074)) NIL (|has| |#2| (-451)))) (-1585 (((-639 $) $) NIL)) (-3521 (((-112) $) NIL (|has| |#2| (-904)))) (-3066 (($ $ |#2| (-766) $) NIL)) (-2337 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) NIL (-12 (|has| (-1074) (-881 (-378))) (|has| |#2| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) NIL (-12 (|has| (-1074) (-881 (-562))) (|has| |#2| (-881 (-562)))))) (-1993 (((-766) $ $) NIL (|has| |#2| (-554)))) (-4367 (((-112) $) NIL)) (-3627 (((-766) $) NIL)) (-3828 (((-3 $ "failed") $) NIL (|has| |#2| (-1143)))) (-1389 (($ (-1164 |#2|) (-1074)) NIL) (($ (-1164 $) (-1074)) NIL)) (-3662 (($ $ (-766)) NIL)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#2| (-362)))) (-1869 (((-639 $) $) NIL)) (-2833 (((-112) $) NIL)) (-1377 (($ |#2| (-766)) 17) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL)) (-3851 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $ (-1074)) NIL) (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL)) (-3161 (((-766) $) NIL) (((-766) $ (-1074)) NIL) (((-639 (-766)) $ (-639 (-1074))) NIL)) (-1551 (($ $ $) NIL (|has| |#2| (-845)))) (-2993 (($ $ $) NIL (|has| |#2| (-845)))) (-2363 (($ (-1 (-766) (-766)) $) NIL)) (-4152 (($ (-1 |#2| |#2|) $) NIL)) (-1556 (((-1164 |#2|) $) NIL)) (-3640 (((-3 (-1074) "failed") $) NIL)) (-1560 (($ $) NIL)) (-1573 ((|#2| $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#2| (-451))) (($ $ $) NIL (|has| |#2| (-451)))) (-3696 (((-1150) $) NIL)) (-2215 (((-2 (|:| -3380 $) (|:| -1441 $)) $ (-766)) NIL)) (-4025 (((-3 (-639 $) "failed") $) NIL)) (-1778 (((-3 (-639 $) "failed") $) NIL)) (-4270 (((-3 (-2 (|:| |var| (-1074)) (|:| -1300 (-766))) "failed") $) NIL)) (-3081 (($ $) NIL (|has| |#2| (-38 (-406 (-562)))))) (-3730 (($) NIL (|has| |#2| (-1143)) CONST)) (-1709 (((-1112) $) NIL)) (-1534 (((-112) $) NIL)) (-1547 ((|#2| $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#2| (-451)))) (-1606 (($ (-639 $)) NIL (|has| |#2| (-451))) (($ $ $) NIL (|has| |#2| (-451)))) (-1601 (($ $ (-766) |#2| $) NIL)) (-3586 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-3468 (((-417 (-1164 $)) (-1164 $)) NIL (|has| |#2| (-904)))) (-1635 (((-417 $) $) NIL (|has| |#2| (-904)))) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL (|has| |#2| (-362)))) (-1762 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-554))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-554)))) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#2| (-362)))) (-1433 (($ $ (-639 (-293 $))) NIL) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-1074) |#2|) NIL) (($ $ (-639 (-1074)) (-639 |#2|)) NIL) (($ $ (-1074) $) NIL) (($ $ (-639 (-1074)) (-639 $)) NIL)) (-2044 (((-766) $) NIL (|has| |#2| (-362)))) (-2343 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-406 $) (-406 $) (-406 $)) NIL (|has| |#2| (-554))) ((|#2| (-406 $) |#2|) NIL (|has| |#2| (-362))) (((-406 $) $ (-406 $)) NIL (|has| |#2| (-554)))) (-1610 (((-3 $ "failed") $ (-766)) NIL)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| |#2| (-362)))) (-2736 (($ $ (-1074)) NIL (|has| |#2| (-171))) ((|#2| $) NIL (|has| |#2| (-171)))) (-4029 (($ $ (-1074)) NIL) (($ $ (-639 (-1074))) NIL) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL) (($ $ (-766)) NIL) (($ $) NIL) (($ $ (-1168)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1 |#2| |#2|) (-766)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-2250 (((-766) $) NIL) (((-766) $ (-1074)) NIL) (((-639 (-766)) $ (-639 (-1074))) NIL)) (-4208 (((-887 (-378)) $) NIL (-12 (|has| (-1074) (-610 (-887 (-378)))) (|has| |#2| (-610 (-887 (-378)))))) (((-887 (-562)) $) NIL (-12 (|has| (-1074) (-610 (-887 (-562)))) (|has| |#2| (-610 (-887 (-562)))))) (((-535) $) NIL (-12 (|has| (-1074) (-610 (-535))) (|has| |#2| (-610 (-535)))))) (-2201 ((|#2| $) NIL (|has| |#2| (-451))) (($ $ (-1074)) NIL (|has| |#2| (-451)))) (-1870 (((-3 (-1256 $) "failed") (-683 $)) NIL (-12 (|has| $ (-144)) (|has| |#2| (-904))))) (-2155 (((-3 $ "failed") $ $) NIL (|has| |#2| (-554))) (((-3 (-406 $) "failed") (-406 $) $) NIL (|has| |#2| (-554)))) (-4053 (((-857) $) 13) (($ (-562)) NIL) (($ |#2|) NIL) (($ (-1074)) NIL) (($ (-1252 |#1|)) 19) (($ (-406 (-562))) NIL (-4037 (|has| |#2| (-38 (-406 (-562)))) (|has| |#2| (-1033 (-406 (-562)))))) (($ $) NIL (|has| |#2| (-554)))) (-3969 (((-639 |#2|) $) NIL)) (-2266 ((|#2| $ (-766)) NIL) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL)) (-2059 (((-3 $ "failed") $) NIL (-4037 (-12 (|has| $ (-144)) (|has| |#2| (-904))) (|has| |#2| (-144))))) (-1568 (((-766)) NIL)) (-1760 (($ $ $ (-766)) NIL (|has| |#2| (-171)))) (-3799 (((-112) $ $) NIL (|has| |#2| (-554)))) (-2285 (($) NIL T CONST)) (-2294 (($) 14 T CONST)) (-3113 (($ $ (-1074)) NIL) (($ $ (-639 (-1074))) NIL) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL) (($ $ (-766)) NIL) (($ $) NIL) (($ $ (-1168)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-639 (-1168))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1168) (-766)) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) NIL (|has| |#2| (-895 (-1168)))) (($ $ (-1 |#2| |#2|) (-766)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1798 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1771 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1733 (((-112) $ $) NIL)) (-1785 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1761 (((-112) $ $) NIL (|has| |#2| (-845)))) (-1859 (($ $ |#2|) NIL (|has| |#2| (-362)))) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-406 (-562))) NIL (|has| |#2| (-38 (-406 (-562))))) (($ (-406 (-562)) $) NIL (|has| |#2| (-38 (-406 (-562))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1229 |#1| |#2|) (-13 (-1232 |#2|) (-612 (-1252 |#1|)) (-10 -8 (-15 -1601 ($ $ (-766) |#2| $)))) (-1168) (-1044)) (T -1229)) -((-1601 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-766)) (-5 *1 (-1229 *4 *3)) (-14 *4 (-1168)) (-4 *3 (-1044))))) -(-13 (-1232 |#2|) (-612 (-1252 |#1|)) (-10 -8 (-15 -1601 ($ $ (-766) |#2| $)))) -((-4152 ((|#4| (-1 |#3| |#1|) |#2|) 22))) -(((-1230 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4152 (|#4| (-1 |#3| |#1|) |#2|))) (-1044) (-1232 |#1|) (-1044) (-1232 |#3|)) (T -1230)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1044)) (-4 *6 (-1044)) (-4 *2 (-1232 *6)) (-5 *1 (-1230 *5 *4 *6 *2)) (-4 *4 (-1232 *5))))) -(-10 -7 (-15 -4152 (|#4| (-1 |#3| |#1|) |#2|))) -((-4263 (((-1256 |#2|) $ (-766)) 114)) (-1401 (((-639 (-1074)) $) 15)) (-2505 (($ (-1164 |#2|)) 67)) (-1578 (((-766) $) NIL) (((-766) $ (-639 (-1074))) 18)) (-3517 (((-417 (-1164 $)) (-1164 $)) 184)) (-1977 (($ $) 174)) (-3788 (((-417 $) $) 172)) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) 82)) (-1730 (($ $ (-766)) 71)) (-3538 (($ $ (-766)) 73)) (-2687 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-4048 (((-3 |#2| "failed") $) 117) (((-3 (-406 (-562)) "failed") $) NIL) (((-3 (-562) "failed") $) NIL) (((-3 (-1074) "failed") $) NIL)) (-3960 ((|#2| $) 115) (((-406 (-562)) $) NIL) (((-562) $) NIL) (((-1074) $) NIL)) (-3127 (($ $ $) 151)) (-3840 (((-2 (|:| -4221 |#2|) (|:| -3380 $) (|:| -1441 $)) $ $) 153)) (-1993 (((-766) $ $) 169)) (-3828 (((-3 $ "failed") $) 123)) (-1377 (($ |#2| (-766)) NIL) (($ $ (-1074) (-766)) 47) (($ $ (-639 (-1074)) (-639 (-766))) NIL)) (-3161 (((-766) $) NIL) (((-766) $ (-1074)) 42) (((-639 (-766)) $ (-639 (-1074))) 43)) (-1556 (((-1164 |#2|) $) 59)) (-3640 (((-3 (-1074) "failed") $) 40)) (-2215 (((-2 (|:| -3380 $) (|:| -1441 $)) $ (-766)) 70)) (-3081 (($ $) 196)) (-3730 (($) 119)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 181)) (-3586 (((-417 (-1164 $)) (-1164 $)) 88)) (-3468 (((-417 (-1164 $)) (-1164 $)) 86)) (-1635 (((-417 $) $) 107)) (-1433 (($ $ (-639 (-293 $))) 39) (($ $ (-293 $)) NIL) (($ $ $ $) NIL) (($ $ (-639 $) (-639 $)) NIL) (($ $ (-1074) |#2|) 31) (($ $ (-639 (-1074)) (-639 |#2|)) 28) (($ $ (-1074) $) 25) (($ $ (-639 (-1074)) (-639 $)) 23)) (-2044 (((-766) $) 187)) (-2343 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-406 $) (-406 $) (-406 $)) 147) ((|#2| (-406 $) |#2|) 186) (((-406 $) $ (-406 $)) 168)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 190)) (-4029 (($ $ (-1074)) 140) (($ $ (-639 (-1074))) NIL) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL) (($ $ (-766)) NIL) (($ $) 138) (($ $ (-1168)) NIL) (($ $ (-639 (-1168))) NIL) (($ $ (-1168) (-766)) NIL) (($ $ (-639 (-1168)) (-639 (-766))) NIL) (($ $ (-1 |#2| |#2|) (-766)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-2250 (((-766) $) NIL) (((-766) $ (-1074)) 16) (((-639 (-766)) $ (-639 (-1074))) 20)) (-2201 ((|#2| $) NIL) (($ $ (-1074)) 125)) (-2155 (((-3 $ "failed") $ $) 161) (((-3 (-406 $) "failed") (-406 $) $) 157)) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ |#2|) NIL) (($ (-1074)) 51) (($ (-406 (-562))) NIL) (($ $) NIL))) -(((-1231 |#1| |#2|) (-10 -8 (-15 -4053 (|#1| |#1|)) (-15 -2602 ((-1164 |#1|) (-1164 |#1|) (-1164 |#1|))) (-15 -3788 ((-417 |#1|) |#1|)) (-15 -1977 (|#1| |#1|)) (-15 -4053 (|#1| (-406 (-562)))) (-15 -3730 (|#1|)) (-15 -3828 ((-3 |#1| "failed") |#1|)) (-15 -2343 ((-406 |#1|) |#1| (-406 |#1|))) (-15 -2044 ((-766) |#1|)) (-15 -3204 ((-2 (|:| -3380 |#1|) (|:| -1441 |#1|)) |#1| |#1|)) (-15 -3081 (|#1| |#1|)) (-15 -2343 (|#2| (-406 |#1|) |#2|)) (-15 -2687 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3840 ((-2 (|:| -4221 |#2|) (|:| -3380 |#1|) (|:| -1441 |#1|)) |#1| |#1|)) (-15 -3127 (|#1| |#1| |#1|)) (-15 -2155 ((-3 (-406 |#1|) "failed") (-406 |#1|) |#1|)) (-15 -2155 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1993 ((-766) |#1| |#1|)) (-15 -2343 ((-406 |#1|) (-406 |#1|) (-406 |#1|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3538 (|#1| |#1| (-766))) (-15 -1730 (|#1| |#1| (-766))) (-15 -2215 ((-2 (|:| -3380 |#1|) (|:| -1441 |#1|)) |#1| (-766))) (-15 -2505 (|#1| (-1164 |#2|))) (-15 -1556 ((-1164 |#2|) |#1|)) (-15 -4263 ((-1256 |#2|) |#1| (-766))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -2343 (|#1| |#1| |#1|)) (-15 -2343 (|#2| |#1| |#2|)) (-15 -1635 ((-417 |#1|) |#1|)) (-15 -3517 ((-417 (-1164 |#1|)) (-1164 |#1|))) (-15 -3468 ((-417 (-1164 |#1|)) (-1164 |#1|))) (-15 -3586 ((-417 (-1164 |#1|)) (-1164 |#1|))) (-15 -2654 ((-3 (-639 (-1164 |#1|)) "failed") (-639 (-1164 |#1|)) (-1164 |#1|))) (-15 -2201 (|#1| |#1| (-1074))) (-15 -1401 ((-639 (-1074)) |#1|)) (-15 -1578 ((-766) |#1| (-639 (-1074)))) (-15 -1578 ((-766) |#1|)) (-15 -1377 (|#1| |#1| (-639 (-1074)) (-639 (-766)))) (-15 -1377 (|#1| |#1| (-1074) (-766))) (-15 -3161 ((-639 (-766)) |#1| (-639 (-1074)))) (-15 -3161 ((-766) |#1| (-1074))) (-15 -3640 ((-3 (-1074) "failed") |#1|)) (-15 -2250 ((-639 (-766)) |#1| (-639 (-1074)))) (-15 -2250 ((-766) |#1| (-1074))) (-15 -4053 (|#1| (-1074))) (-15 -4048 ((-3 (-1074) "failed") |#1|)) (-15 -3960 ((-1074) |#1|)) (-15 -1433 (|#1| |#1| (-639 (-1074)) (-639 |#1|))) (-15 -1433 (|#1| |#1| (-1074) |#1|)) (-15 -1433 (|#1| |#1| (-639 (-1074)) (-639 |#2|))) (-15 -1433 (|#1| |#1| (-1074) |#2|)) (-15 -1433 (|#1| |#1| (-639 |#1|) (-639 |#1|))) (-15 -1433 (|#1| |#1| |#1| |#1|)) (-15 -1433 (|#1| |#1| (-293 |#1|))) (-15 -1433 (|#1| |#1| (-639 (-293 |#1|)))) (-15 -2250 ((-766) |#1|)) (-15 -1377 (|#1| |#2| (-766))) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -3960 ((-562) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3960 ((-406 (-562)) |#1|)) (-15 -3960 (|#2| |#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -4053 (|#1| |#2|)) (-15 -3161 ((-766) |#1|)) (-15 -2201 (|#2| |#1|)) (-15 -4029 (|#1| |#1| (-639 (-1074)) (-639 (-766)))) (-15 -4029 (|#1| |#1| (-1074) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1074)))) (-15 -4029 (|#1| |#1| (-1074))) (-15 -4053 (|#1| (-562))) (-15 -4053 ((-857) |#1|))) (-1232 |#2|) (-1044)) (T -1231)) -NIL -(-10 -8 (-15 -4053 (|#1| |#1|)) (-15 -2602 ((-1164 |#1|) (-1164 |#1|) (-1164 |#1|))) (-15 -3788 ((-417 |#1|) |#1|)) (-15 -1977 (|#1| |#1|)) (-15 -4053 (|#1| (-406 (-562)))) (-15 -3730 (|#1|)) (-15 -3828 ((-3 |#1| "failed") |#1|)) (-15 -2343 ((-406 |#1|) |#1| (-406 |#1|))) (-15 -2044 ((-766) |#1|)) (-15 -3204 ((-2 (|:| -3380 |#1|) (|:| -1441 |#1|)) |#1| |#1|)) (-15 -3081 (|#1| |#1|)) (-15 -2343 (|#2| (-406 |#1|) |#2|)) (-15 -2687 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3840 ((-2 (|:| -4221 |#2|) (|:| -3380 |#1|) (|:| -1441 |#1|)) |#1| |#1|)) (-15 -3127 (|#1| |#1| |#1|)) (-15 -2155 ((-3 (-406 |#1|) "failed") (-406 |#1|) |#1|)) (-15 -2155 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1993 ((-766) |#1| |#1|)) (-15 -2343 ((-406 |#1|) (-406 |#1|) (-406 |#1|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3538 (|#1| |#1| (-766))) (-15 -1730 (|#1| |#1| (-766))) (-15 -2215 ((-2 (|:| -3380 |#1|) (|:| -1441 |#1|)) |#1| (-766))) (-15 -2505 (|#1| (-1164 |#2|))) (-15 -1556 ((-1164 |#2|) |#1|)) (-15 -4263 ((-1256 |#2|) |#1| (-766))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4029 (|#1| |#1| (-1 |#2| |#2|) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)) (-639 (-766)))) (-15 -4029 (|#1| |#1| (-1168) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1168)))) (-15 -4029 (|#1| |#1| (-1168))) (-15 -4029 (|#1| |#1|)) (-15 -4029 (|#1| |#1| (-766))) (-15 -2343 (|#1| |#1| |#1|)) (-15 -2343 (|#2| |#1| |#2|)) (-15 -1635 ((-417 |#1|) |#1|)) (-15 -3517 ((-417 (-1164 |#1|)) (-1164 |#1|))) (-15 -3468 ((-417 (-1164 |#1|)) (-1164 |#1|))) (-15 -3586 ((-417 (-1164 |#1|)) (-1164 |#1|))) (-15 -2654 ((-3 (-639 (-1164 |#1|)) "failed") (-639 (-1164 |#1|)) (-1164 |#1|))) (-15 -2201 (|#1| |#1| (-1074))) (-15 -1401 ((-639 (-1074)) |#1|)) (-15 -1578 ((-766) |#1| (-639 (-1074)))) (-15 -1578 ((-766) |#1|)) (-15 -1377 (|#1| |#1| (-639 (-1074)) (-639 (-766)))) (-15 -1377 (|#1| |#1| (-1074) (-766))) (-15 -3161 ((-639 (-766)) |#1| (-639 (-1074)))) (-15 -3161 ((-766) |#1| (-1074))) (-15 -3640 ((-3 (-1074) "failed") |#1|)) (-15 -2250 ((-639 (-766)) |#1| (-639 (-1074)))) (-15 -2250 ((-766) |#1| (-1074))) (-15 -4053 (|#1| (-1074))) (-15 -4048 ((-3 (-1074) "failed") |#1|)) (-15 -3960 ((-1074) |#1|)) (-15 -1433 (|#1| |#1| (-639 (-1074)) (-639 |#1|))) (-15 -1433 (|#1| |#1| (-1074) |#1|)) (-15 -1433 (|#1| |#1| (-639 (-1074)) (-639 |#2|))) (-15 -1433 (|#1| |#1| (-1074) |#2|)) (-15 -1433 (|#1| |#1| (-639 |#1|) (-639 |#1|))) (-15 -1433 (|#1| |#1| |#1| |#1|)) (-15 -1433 (|#1| |#1| (-293 |#1|))) (-15 -1433 (|#1| |#1| (-639 (-293 |#1|)))) (-15 -2250 ((-766) |#1|)) (-15 -1377 (|#1| |#2| (-766))) (-15 -4048 ((-3 (-562) "failed") |#1|)) (-15 -3960 ((-562) |#1|)) (-15 -4048 ((-3 (-406 (-562)) "failed") |#1|)) (-15 -3960 ((-406 (-562)) |#1|)) (-15 -3960 (|#2| |#1|)) (-15 -4048 ((-3 |#2| "failed") |#1|)) (-15 -4053 (|#1| |#2|)) (-15 -3161 ((-766) |#1|)) (-15 -2201 (|#2| |#1|)) (-15 -4029 (|#1| |#1| (-639 (-1074)) (-639 (-766)))) (-15 -4029 (|#1| |#1| (-1074) (-766))) (-15 -4029 (|#1| |#1| (-639 (-1074)))) (-15 -4029 (|#1| |#1| (-1074))) (-15 -4053 (|#1| (-562))) (-15 -4053 ((-857) |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-4263 (((-1256 |#1|) $ (-766)) 238)) (-1401 (((-639 (-1074)) $) 110)) (-2505 (($ (-1164 |#1|)) 236)) (-1602 (((-1164 $) $ (-1074)) 125) (((-1164 |#1|) $) 124)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 87 (|has| |#1| (-554)))) (-1965 (($ $) 88 (|has| |#1| (-554)))) (-4102 (((-112) $) 90 (|has| |#1| (-554)))) (-1578 (((-766) $) 112) (((-766) $ (-639 (-1074))) 111)) (-2781 (((-3 $ "failed") $ $) 19)) (-2035 (($ $ $) 223 (|has| |#1| (-554)))) (-3517 (((-417 (-1164 $)) (-1164 $)) 100 (|has| |#1| (-904)))) (-1977 (($ $) 98 (|has| |#1| (-451)))) (-3788 (((-417 $) $) 97 (|has| |#1| (-451)))) (-2654 (((-3 (-639 (-1164 $)) "failed") (-639 (-1164 $)) (-1164 $)) 103 (|has| |#1| (-904)))) (-1436 (((-112) $ $) 208 (|has| |#1| (-362)))) (-1730 (($ $ (-766)) 231)) (-3538 (($ $ (-766)) 230)) (-2687 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-451)))) (-3329 (($) 17 T CONST)) (-4048 (((-3 |#1| "failed") $) 164) (((-3 (-406 (-562)) "failed") $) 161 (|has| |#1| (-1033 (-406 (-562))))) (((-3 (-562) "failed") $) 159 (|has| |#1| (-1033 (-562)))) (((-3 (-1074) "failed") $) 136)) (-3960 ((|#1| $) 163) (((-406 (-562)) $) 162 (|has| |#1| (-1033 (-406 (-562))))) (((-562) $) 160 (|has| |#1| (-1033 (-562)))) (((-1074) $) 137)) (-2355 (($ $ $ (-1074)) 108 (|has| |#1| (-171))) ((|#1| $ $) 226 (|has| |#1| (-171)))) (-1810 (($ $ $) 212 (|has| |#1| (-362)))) (-1600 (($ $) 154)) (-3449 (((-683 (-562)) (-683 $)) 134 (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 (-562))) (|:| |vec| (-1256 (-562)))) (-683 $) (-1256 $)) 133 (|has| |#1| (-635 (-562)))) (((-2 (|:| -1767 (-683 |#1|)) (|:| |vec| (-1256 |#1|))) (-683 $) (-1256 $)) 132) (((-683 |#1|) (-683 $)) 131)) (-1694 (((-3 $ "failed") $) 33)) (-1787 (($ $ $) 211 (|has| |#1| (-362)))) (-4296 (($ $ $) 229)) (-3127 (($ $ $) 220 (|has| |#1| (-554)))) (-3840 (((-2 (|:| -4221 |#1|) (|:| -3380 $) (|:| -1441 $)) $ $) 219 (|has| |#1| (-554)))) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) 206 (|has| |#1| (-362)))) (-2578 (($ $) 176 (|has| |#1| (-451))) (($ $ (-1074)) 105 (|has| |#1| (-451)))) (-1585 (((-639 $) $) 109)) (-3521 (((-112) $) 96 (|has| |#1| (-904)))) (-3066 (($ $ |#1| (-766) $) 172)) (-2337 (((-884 (-378) $) $ (-887 (-378)) (-884 (-378) $)) 84 (-12 (|has| (-1074) (-881 (-378))) (|has| |#1| (-881 (-378))))) (((-884 (-562) $) $ (-887 (-562)) (-884 (-562) $)) 83 (-12 (|has| (-1074) (-881 (-562))) (|has| |#1| (-881 (-562)))))) (-1993 (((-766) $ $) 224 (|has| |#1| (-554)))) (-4367 (((-112) $) 31)) (-3627 (((-766) $) 169)) (-3828 (((-3 $ "failed") $) 204 (|has| |#1| (-1143)))) (-1389 (($ (-1164 |#1|) (-1074)) 117) (($ (-1164 $) (-1074)) 116)) (-3662 (($ $ (-766)) 235)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) 215 (|has| |#1| (-362)))) (-1869 (((-639 $) $) 126)) (-2833 (((-112) $) 152)) (-1377 (($ |#1| (-766)) 153) (($ $ (-1074) (-766)) 119) (($ $ (-639 (-1074)) (-639 (-766))) 118)) (-3851 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $ (-1074)) 120) (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 233)) (-3161 (((-766) $) 170) (((-766) $ (-1074)) 122) (((-639 (-766)) $ (-639 (-1074))) 121)) (-1551 (($ $ $) 79 (|has| |#1| (-845)))) (-2993 (($ $ $) 78 (|has| |#1| (-845)))) (-2363 (($ (-1 (-766) (-766)) $) 171)) (-4152 (($ (-1 |#1| |#1|) $) 151)) (-1556 (((-1164 |#1|) $) 237)) (-3640 (((-3 (-1074) "failed") $) 123)) (-1560 (($ $) 149)) (-1573 ((|#1| $) 148)) (-1564 (($ (-639 $)) 94 (|has| |#1| (-451))) (($ $ $) 93 (|has| |#1| (-451)))) (-3696 (((-1150) $) 9)) (-2215 (((-2 (|:| -3380 $) (|:| -1441 $)) $ (-766)) 232)) (-4025 (((-3 (-639 $) "failed") $) 114)) (-1778 (((-3 (-639 $) "failed") $) 115)) (-4270 (((-3 (-2 (|:| |var| (-1074)) (|:| -1300 (-766))) "failed") $) 113)) (-3081 (($ $) 216 (|has| |#1| (-38 (-406 (-562)))))) (-3730 (($) 203 (|has| |#1| (-1143)) CONST)) (-1709 (((-1112) $) 10)) (-1534 (((-112) $) 166)) (-1547 ((|#1| $) 167)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 95 (|has| |#1| (-451)))) (-1606 (($ (-639 $)) 92 (|has| |#1| (-451))) (($ $ $) 91 (|has| |#1| (-451)))) (-3586 (((-417 (-1164 $)) (-1164 $)) 102 (|has| |#1| (-904)))) (-3468 (((-417 (-1164 $)) (-1164 $)) 101 (|has| |#1| (-904)))) (-1635 (((-417 $) $) 99 (|has| |#1| (-904)))) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) 213 (|has| |#1| (-362)))) (-1762 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-554))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-554)))) (-1879 (((-3 (-639 $) "failed") (-639 $) $) 207 (|has| |#1| (-362)))) (-1433 (($ $ (-639 (-293 $))) 145) (($ $ (-293 $)) 144) (($ $ $ $) 143) (($ $ (-639 $) (-639 $)) 142) (($ $ (-1074) |#1|) 141) (($ $ (-639 (-1074)) (-639 |#1|)) 140) (($ $ (-1074) $) 139) (($ $ (-639 (-1074)) (-639 $)) 138)) (-2044 (((-766) $) 209 (|has| |#1| (-362)))) (-2343 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-406 $) (-406 $) (-406 $)) 225 (|has| |#1| (-554))) ((|#1| (-406 $) |#1|) 217 (|has| |#1| (-362))) (((-406 $) $ (-406 $)) 205 (|has| |#1| (-554)))) (-1610 (((-3 $ "failed") $ (-766)) 234)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 210 (|has| |#1| (-362)))) (-2736 (($ $ (-1074)) 107 (|has| |#1| (-171))) ((|#1| $) 227 (|has| |#1| (-171)))) (-4029 (($ $ (-1074)) 42) (($ $ (-639 (-1074))) 41) (($ $ (-1074) (-766)) 40) (($ $ (-639 (-1074)) (-639 (-766))) 39) (($ $ (-766)) 253) (($ $) 251) (($ $ (-1168)) 250 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) 249 (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) 248 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) 247 (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-2250 (((-766) $) 150) (((-766) $ (-1074)) 130) (((-639 (-766)) $ (-639 (-1074))) 129)) (-4208 (((-887 (-378)) $) 82 (-12 (|has| (-1074) (-610 (-887 (-378)))) (|has| |#1| (-610 (-887 (-378)))))) (((-887 (-562)) $) 81 (-12 (|has| (-1074) (-610 (-887 (-562)))) (|has| |#1| (-610 (-887 (-562)))))) (((-535) $) 80 (-12 (|has| (-1074) (-610 (-535))) (|has| |#1| (-610 (-535)))))) (-2201 ((|#1| $) 175 (|has| |#1| (-451))) (($ $ (-1074)) 106 (|has| |#1| (-451)))) (-1870 (((-3 (-1256 $) "failed") (-683 $)) 104 (-2245 (|has| $ (-144)) (|has| |#1| (-904))))) (-2155 (((-3 $ "failed") $ $) 222 (|has| |#1| (-554))) (((-3 (-406 $) "failed") (-406 $) $) 221 (|has| |#1| (-554)))) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 165) (($ (-1074)) 135) (($ (-406 (-562))) 72 (-4037 (|has| |#1| (-1033 (-406 (-562)))) (|has| |#1| (-38 (-406 (-562)))))) (($ $) 85 (|has| |#1| (-554)))) (-3969 (((-639 |#1|) $) 168)) (-2266 ((|#1| $ (-766)) 155) (($ $ (-1074) (-766)) 128) (($ $ (-639 (-1074)) (-639 (-766))) 127)) (-2059 (((-3 $ "failed") $) 73 (-4037 (-2245 (|has| $ (-144)) (|has| |#1| (-904))) (|has| |#1| (-144))))) (-1568 (((-766)) 28)) (-1760 (($ $ $ (-766)) 173 (|has| |#1| (-171)))) (-3799 (((-112) $ $) 89 (|has| |#1| (-554)))) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3113 (($ $ (-1074)) 38) (($ $ (-639 (-1074))) 37) (($ $ (-1074) (-766)) 36) (($ $ (-639 (-1074)) (-639 (-766))) 35) (($ $ (-766)) 254) (($ $) 252) (($ $ (-1168)) 246 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168))) 245 (|has| |#1| (-895 (-1168)))) (($ $ (-1168) (-766)) 244 (|has| |#1| (-895 (-1168)))) (($ $ (-639 (-1168)) (-639 (-766))) 243 (|has| |#1| (-895 (-1168)))) (($ $ (-1 |#1| |#1|) (-766)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-1798 (((-112) $ $) 76 (|has| |#1| (-845)))) (-1771 (((-112) $ $) 75 (|has| |#1| (-845)))) (-1733 (((-112) $ $) 6)) (-1785 (((-112) $ $) 77 (|has| |#1| (-845)))) (-1761 (((-112) $ $) 74 (|has| |#1| (-845)))) (-1859 (($ $ |#1|) 156 (|has| |#1| (-362)))) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ (-406 (-562))) 158 (|has| |#1| (-38 (-406 (-562))))) (($ (-406 (-562)) $) 157 (|has| |#1| (-38 (-406 (-562))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-1232 |#1|) (-139) (-1044)) (T -1232)) -((-4263 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-4 *1 (-1232 *4)) (-4 *4 (-1044)) (-5 *2 (-1256 *4)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1232 *3)) (-4 *3 (-1044)) (-5 *2 (-1164 *3)))) (-2505 (*1 *1 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-1044)) (-4 *1 (-1232 *3)))) (-3662 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-1232 *3)) (-4 *3 (-1044)))) (-1610 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-766)) (-4 *1 (-1232 *3)) (-4 *3 (-1044)))) (-3851 (*1 *2 *1 *1) (-12 (-4 *3 (-1044)) (-5 *2 (-2 (|:| -3380 *1) (|:| -1441 *1))) (-4 *1 (-1232 *3)))) (-2215 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-4 *4 (-1044)) (-5 *2 (-2 (|:| -3380 *1) (|:| -1441 *1))) (-4 *1 (-1232 *4)))) (-1730 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-1232 *3)) (-4 *3 (-1044)))) (-3538 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-1232 *3)) (-4 *3 (-1044)))) (-4296 (*1 *1 *1 *1) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1044)))) (-4029 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1232 *3)) (-4 *3 (-1044)))) (-2736 (*1 *2 *1) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1044)) (-4 *2 (-171)))) (-2355 (*1 *2 *1 *1) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1044)) (-4 *2 (-171)))) (-2343 (*1 *2 *2 *2) (-12 (-5 *2 (-406 *1)) (-4 *1 (-1232 *3)) (-4 *3 (-1044)) (-4 *3 (-554)))) (-1993 (*1 *2 *1 *1) (-12 (-4 *1 (-1232 *3)) (-4 *3 (-1044)) (-4 *3 (-554)) (-5 *2 (-766)))) (-2035 (*1 *1 *1 *1) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1044)) (-4 *2 (-554)))) (-2155 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1232 *2)) (-4 *2 (-1044)) (-4 *2 (-554)))) (-2155 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-406 *1)) (-4 *1 (-1232 *3)) (-4 *3 (-1044)) (-4 *3 (-554)))) (-3127 (*1 *1 *1 *1) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1044)) (-4 *2 (-554)))) (-3840 (*1 *2 *1 *1) (-12 (-4 *3 (-554)) (-4 *3 (-1044)) (-5 *2 (-2 (|:| -4221 *3) (|:| -3380 *1) (|:| -1441 *1))) (-4 *1 (-1232 *3)))) (-2687 (*1 *2 *1 *1) (-12 (-4 *3 (-451)) (-4 *3 (-1044)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1232 *3)))) (-2343 (*1 *2 *3 *2) (-12 (-5 *3 (-406 *1)) (-4 *1 (-1232 *2)) (-4 *2 (-1044)) (-4 *2 (-362)))) (-3081 (*1 *1 *1) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1044)) (-4 *2 (-38 (-406 (-562))))))) -(-13 (-944 |t#1| (-766) (-1074)) (-285 |t#1| |t#1|) (-285 $ $) (-232) (-230 |t#1|) (-10 -8 (-15 -4263 ((-1256 |t#1|) $ (-766))) (-15 -1556 ((-1164 |t#1|) $)) (-15 -2505 ($ (-1164 |t#1|))) (-15 -3662 ($ $ (-766))) (-15 -1610 ((-3 $ "failed") $ (-766))) (-15 -3851 ((-2 (|:| -3380 $) (|:| -1441 $)) $ $)) (-15 -2215 ((-2 (|:| -3380 $) (|:| -1441 $)) $ (-766))) (-15 -1730 ($ $ (-766))) (-15 -3538 ($ $ (-766))) (-15 -4296 ($ $ $)) (-15 -4029 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1143)) (-6 (-1143)) |%noBranch|) (IF (|has| |t#1| (-171)) (PROGN (-15 -2736 (|t#1| $)) (-15 -2355 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-554)) (PROGN (-6 (-285 (-406 $) (-406 $))) (-15 -2343 ((-406 $) (-406 $) (-406 $))) (-15 -1993 ((-766) $ $)) (-15 -2035 ($ $ $)) (-15 -2155 ((-3 $ "failed") $ $)) (-15 -2155 ((-3 (-406 $) "failed") (-406 $) $)) (-15 -3127 ($ $ $)) (-15 -3840 ((-2 (|:| -4221 |t#1|) (|:| -3380 $) (|:| -1441 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-451)) (-15 -2687 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-362)) (PROGN (-6 (-306)) (-6 -4399) (-15 -2343 (|t#1| (-406 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-406 (-562)))) (-15 -3081 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-766)) . T) ((-25) . T) ((-38 #1=(-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451)) (|has| |#1| (-362))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-406 (-562)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #1#) -4037 (|has| |#1| (-1033 (-406 (-562)))) (|has| |#1| (-38 (-406 (-562))))) ((-612 (-562)) . T) ((-612 #2=(-1074)) . T) ((-612 |#1|) . T) ((-612 $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451)) (|has| |#1| (-362))) ((-609 (-857)) . T) ((-171) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-610 (-535)) -12 (|has| (-1074) (-610 (-535))) (|has| |#1| (-610 (-535)))) ((-610 (-887 (-378))) -12 (|has| (-1074) (-610 (-887 (-378)))) (|has| |#1| (-610 (-887 (-378))))) ((-610 (-887 (-562))) -12 (|has| (-1074) (-610 (-887 (-562)))) (|has| |#1| (-610 (-887 (-562))))) ((-230 |#1|) . T) ((-232) . T) ((-285 (-406 $) (-406 $)) |has| |#1| (-554)) ((-285 |#1| |#1|) . T) ((-285 $ $) . T) ((-289) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-308 $) . T) ((-325 |#1| #0#) . T) ((-376 |#1|) . T) ((-410 |#1|) . T) ((-451) -4037 (|has| |#1| (-904)) (|has| |#1| (-451)) (|has| |#1| (-362))) ((-513 #2# |#1|) . T) ((-513 #2# $) . T) ((-513 $ $) . T) ((-554) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451)) (|has| |#1| (-362))) ((-642 #1#) |has| |#1| (-38 (-406 (-562)))) ((-642 |#1|) . T) ((-642 $) . T) ((-635 (-562)) |has| |#1| (-635 (-562))) ((-635 |#1|) . T) ((-712 #1#) |has| |#1| (-38 (-406 (-562)))) ((-712 |#1|) |has| |#1| (-171)) ((-712 $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451)) (|has| |#1| (-362))) ((-721) . T) ((-845) |has| |#1| (-845)) ((-895 #2#) . T) ((-895 (-1168)) |has| |#1| (-895 (-1168))) ((-881 (-378)) -12 (|has| (-1074) (-881 (-378))) (|has| |#1| (-881 (-378)))) ((-881 (-562)) -12 (|has| (-1074) (-881 (-562))) (|has| |#1| (-881 (-562)))) ((-944 |#1| #0# #2#) . T) ((-904) |has| |#1| (-904)) ((-915) |has| |#1| (-362)) ((-1033 (-406 (-562))) |has| |#1| (-1033 (-406 (-562)))) ((-1033 (-562)) |has| |#1| (-1033 (-562))) ((-1033 #2#) . T) ((-1033 |#1|) . T) ((-1050 #1#) |has| |#1| (-38 (-406 (-562)))) ((-1050 |#1|) . T) ((-1050 $) -4037 (|has| |#1| (-904)) (|has| |#1| (-554)) (|has| |#1| (-451)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1143) |has| |#1| (-1143)) ((-1211) |has| |#1| (-904))) -((-1401 (((-639 (-1074)) $) 28)) (-1600 (($ $) 25)) (-1377 (($ |#2| |#3|) NIL) (($ $ (-1074) |#3|) 22) (($ $ (-639 (-1074)) (-639 |#3|)) 21)) (-1560 (($ $) 14)) (-1573 ((|#2| $) 12)) (-2250 ((|#3| $) 10))) -(((-1233 |#1| |#2| |#3|) (-10 -8 (-15 -1401 ((-639 (-1074)) |#1|)) (-15 -1377 (|#1| |#1| (-639 (-1074)) (-639 |#3|))) (-15 -1377 (|#1| |#1| (-1074) |#3|)) (-15 -1600 (|#1| |#1|)) (-15 -1377 (|#1| |#2| |#3|)) (-15 -2250 (|#3| |#1|)) (-15 -1560 (|#1| |#1|)) (-15 -1573 (|#2| |#1|))) (-1234 |#2| |#3|) (-1044) (-787)) (T -1233)) -NIL -(-10 -8 (-15 -1401 ((-639 (-1074)) |#1|)) (-15 -1377 (|#1| |#1| (-639 (-1074)) (-639 |#3|))) (-15 -1377 (|#1| |#1| (-1074) |#3|)) (-15 -1600 (|#1| |#1|)) (-15 -1377 (|#1| |#2| |#3|)) (-15 -2250 (|#3| |#1|)) (-15 -1560 (|#1| |#1|)) (-15 -1573 (|#2| |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-1401 (((-639 (-1074)) $) 77)) (-2443 (((-1168) $) 106)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-1965 (($ $) 55 (|has| |#1| (-554)))) (-4102 (((-112) $) 57 (|has| |#1| (-554)))) (-1302 (($ $ |#2|) 101) (($ $ |#2| |#2|) 100)) (-4196 (((-1148 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 108)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-1600 (($ $) 63)) (-1694 (((-3 $ "failed") $) 33)) (-2965 (((-112) $) 76)) (-1993 ((|#2| $) 103) ((|#2| $ |#2|) 102)) (-4367 (((-112) $) 31)) (-3662 (($ $ (-916)) 104)) (-2833 (((-112) $) 65)) (-1377 (($ |#1| |#2|) 64) (($ $ (-1074) |#2|) 79) (($ $ (-639 (-1074)) (-639 |#2|)) 78)) (-4152 (($ (-1 |#1| |#1|) $) 66)) (-1560 (($ $) 68)) (-1573 ((|#1| $) 69)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4316 (($ $ |#2|) 98)) (-1762 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554)))) (-1433 (((-1148 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2343 ((|#1| $ |#2|) 107) (($ $ $) 84 (|has| |#2| (-1104)))) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) 92 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1168) (-766)) 91 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-639 (-1168))) 90 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1168)) 89 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-766)) 87 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2250 ((|#2| $) 67)) (-1345 (($ $) 75)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ (-406 (-562))) 60 (|has| |#1| (-38 (-406 (-562))))) (($ $) 52 (|has| |#1| (-554))) (($ |#1|) 50 (|has| |#1| (-171)))) (-2266 ((|#1| $ |#2|) 62)) (-2059 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-1568 (((-766)) 28)) (-2328 ((|#1| $) 105)) (-3799 (((-112) $ $) 56 (|has| |#1| (-554)))) (-1406 ((|#1| $ |#2|) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4053 (|#1| (-1168))))))) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3113 (($ $ (-639 (-1168)) (-639 (-766))) 96 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1168) (-766)) 95 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-639 (-1168))) 94 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1168)) 93 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-766)) 88 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1733 (((-112) $ $) 6)) (-1859 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-562)) $) 59 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 58 (|has| |#1| (-38 (-406 (-562))))))) -(((-1234 |#1| |#2|) (-139) (-1044) (-787)) (T -1234)) -((-4196 (*1 *2 *1) (-12 (-4 *1 (-1234 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)) (-5 *2 (-1148 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2343 (*1 *2 *1 *3) (-12 (-4 *1 (-1234 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1044)))) (-2443 (*1 *2 *1) (-12 (-4 *1 (-1234 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)) (-5 *2 (-1168)))) (-2328 (*1 *2 *1) (-12 (-4 *1 (-1234 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1044)))) (-3662 (*1 *1 *1 *2) (-12 (-5 *2 (-916)) (-4 *1 (-1234 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)))) (-1993 (*1 *2 *1) (-12 (-4 *1 (-1234 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-787)))) (-1993 (*1 *2 *1 *2) (-12 (-4 *1 (-1234 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-787)))) (-1302 (*1 *1 *1 *2) (-12 (-4 *1 (-1234 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-787)))) (-1302 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1234 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-787)))) (-1406 (*1 *2 *1 *3) (-12 (-4 *1 (-1234 *2 *3)) (-4 *3 (-787)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4053 (*2 (-1168)))) (-4 *2 (-1044)))) (-4316 (*1 *1 *1 *2) (-12 (-4 *1 (-1234 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-787)))) (-1433 (*1 *2 *1 *3) (-12 (-4 *1 (-1234 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1148 *3))))) -(-13 (-968 |t#1| |t#2| (-1074)) (-10 -8 (-15 -4196 ((-1148 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2343 (|t#1| $ |t#2|)) (-15 -2443 ((-1168) $)) (-15 -2328 (|t#1| $)) (-15 -3662 ($ $ (-916))) (-15 -1993 (|t#2| $)) (-15 -1993 (|t#2| $ |t#2|)) (-15 -1302 ($ $ |t#2|)) (-15 -1302 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4053 (|t#1| (-1168)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -1406 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4316 ($ $ |t#2|)) (IF (|has| |t#2| (-1104)) (-6 (-285 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-232)) (IF (|has| |t#1| (-895 (-1168))) (-6 (-895 (-1168))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -1433 ((-1148 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-554)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-406 (-562)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #0#) |has| |#1| (-38 (-406 (-562)))) ((-612 (-562)) . T) ((-612 |#1|) |has| |#1| (-171)) ((-612 $) |has| |#1| (-554)) ((-609 (-857)) . T) ((-171) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-285 $ $) |has| |#2| (-1104)) ((-289) |has| |#1| (-554)) ((-554) |has| |#1| (-554)) ((-642 #0#) |has| |#1| (-38 (-406 (-562)))) ((-642 |#1|) . T) ((-642 $) . T) ((-712 #0#) |has| |#1| (-38 (-406 (-562)))) ((-712 |#1|) |has| |#1| (-171)) ((-712 $) |has| |#1| (-554)) ((-721) . T) ((-895 (-1168)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-895 (-1168)))) ((-968 |#1| |#2| (-1074)) . T) ((-1050 #0#) |has| |#1| (-38 (-406 (-562)))) ((-1050 |#1|) . T) ((-1050 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) -((-1977 ((|#2| |#2|) 12)) (-3788 (((-417 |#2|) |#2|) 14)) (-1851 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-562))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-562)))) 30))) -(((-1235 |#1| |#2|) (-10 -7 (-15 -3788 ((-417 |#2|) |#2|)) (-15 -1977 (|#2| |#2|)) (-15 -1851 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-562))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-562)))))) (-554) (-13 (-1232 |#1|) (-554) (-10 -8 (-15 -1606 ($ $ $))))) (T -1235)) -((-1851 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-562)))) (-4 *4 (-13 (-1232 *3) (-554) (-10 -8 (-15 -1606 ($ $ $))))) (-4 *3 (-554)) (-5 *1 (-1235 *3 *4)))) (-1977 (*1 *2 *2) (-12 (-4 *3 (-554)) (-5 *1 (-1235 *3 *2)) (-4 *2 (-13 (-1232 *3) (-554) (-10 -8 (-15 -1606 ($ $ $))))))) (-3788 (*1 *2 *3) (-12 (-4 *4 (-554)) (-5 *2 (-417 *3)) (-5 *1 (-1235 *4 *3)) (-4 *3 (-13 (-1232 *4) (-554) (-10 -8 (-15 -1606 ($ $ $)))))))) -(-10 -7 (-15 -3788 ((-417 |#2|) |#2|)) (-15 -1977 (|#2| |#2|)) (-15 -1851 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-562))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-562)))))) -((-4152 (((-1241 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1241 |#1| |#3| |#5|)) 24))) -(((-1236 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4152 ((-1241 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1241 |#1| |#3| |#5|)))) (-1044) (-1044) (-1168) (-1168) |#1| |#2|) (T -1236)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1241 *5 *7 *9)) (-4 *5 (-1044)) (-4 *6 (-1044)) (-14 *7 (-1168)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1241 *6 *8 *10)) (-5 *1 (-1236 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1168))))) -(-10 -7 (-15 -4152 ((-1241 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1241 |#1| |#3| |#5|)))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-1401 (((-639 (-1074)) $) 77)) (-2443 (((-1168) $) 106)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-1965 (($ $) 55 (|has| |#1| (-554)))) (-4102 (((-112) $) 57 (|has| |#1| (-554)))) (-1302 (($ $ (-406 (-562))) 101) (($ $ (-406 (-562)) (-406 (-562))) 100)) (-4196 (((-1148 (-2 (|:| |k| (-406 (-562))) (|:| |c| |#1|))) $) 108)) (-2987 (($ $) 138 (|has| |#1| (-38 (-406 (-562)))))) (-4098 (($ $) 121 (|has| |#1| (-38 (-406 (-562)))))) (-2781 (((-3 $ "failed") $ $) 19)) (-1977 (($ $) 165 (|has| |#1| (-362)))) (-3788 (((-417 $) $) 166 (|has| |#1| (-362)))) (-1644 (($ $) 120 (|has| |#1| (-38 (-406 (-562)))))) (-1436 (((-112) $ $) 156 (|has| |#1| (-362)))) (-4206 (($ $) 137 (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) 122 (|has| |#1| (-38 (-406 (-562)))))) (-1503 (($ (-766) (-1148 (-2 (|:| |k| (-406 (-562))) (|:| |c| |#1|)))) 174)) (-3013 (($ $) 136 (|has| |#1| (-38 (-406 (-562)))))) (-4120 (($ $) 123 (|has| |#1| (-38 (-406 (-562)))))) (-3329 (($) 17 T CONST)) (-1810 (($ $ $) 160 (|has| |#1| (-362)))) (-1600 (($ $) 63)) (-1694 (((-3 $ "failed") $) 33)) (-1787 (($ $ $) 159 (|has| |#1| (-362)))) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) 154 (|has| |#1| (-362)))) (-3521 (((-112) $) 167 (|has| |#1| (-362)))) (-2965 (((-112) $) 76)) (-4100 (($) 148 (|has| |#1| (-38 (-406 (-562)))))) (-1993 (((-406 (-562)) $) 103) (((-406 (-562)) $ (-406 (-562))) 102)) (-4367 (((-112) $) 31)) (-1895 (($ $ (-562)) 119 (|has| |#1| (-38 (-406 (-562)))))) (-3662 (($ $ (-916)) 104) (($ $ (-406 (-562))) 173)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) 163 (|has| |#1| (-362)))) (-2833 (((-112) $) 65)) (-1377 (($ |#1| (-406 (-562))) 64) (($ $ (-1074) (-406 (-562))) 79) (($ $ (-639 (-1074)) (-639 (-406 (-562)))) 78)) (-4152 (($ (-1 |#1| |#1|) $) 66)) (-4366 (($ $) 145 (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) 68)) (-1573 ((|#1| $) 69)) (-1564 (($ (-639 $)) 152 (|has| |#1| (-362))) (($ $ $) 151 (|has| |#1| (-362)))) (-3696 (((-1150) $) 9)) (-1525 (($ $) 168 (|has| |#1| (-362)))) (-3081 (($ $) 172 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-1168)) 171 (-4037 (-12 (|has| |#1| (-29 (-562))) (|has| |#1| (-954)) (|has| |#1| (-1192)) (|has| |#1| (-38 (-406 (-562))))) (-12 (|has| |#1| (-15 -1401 ((-639 (-1168)) |#1|))) (|has| |#1| (-15 -3081 (|#1| |#1| (-1168)))) (|has| |#1| (-38 (-406 (-562)))))))) (-1709 (((-1112) $) 10)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 153 (|has| |#1| (-362)))) (-1606 (($ (-639 $)) 150 (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362)))) (-1635 (((-417 $) $) 164 (|has| |#1| (-362)))) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) 161 (|has| |#1| (-362)))) (-4316 (($ $ (-406 (-562))) 98)) (-1762 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554)))) (-1879 (((-3 (-639 $) "failed") (-639 $) $) 155 (|has| |#1| (-362)))) (-3430 (($ $) 146 (|has| |#1| (-38 (-406 (-562)))))) (-1433 (((-1148 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-562))))))) (-2044 (((-766) $) 157 (|has| |#1| (-362)))) (-2343 ((|#1| $ (-406 (-562))) 107) (($ $ $) 84 (|has| (-406 (-562)) (-1104)))) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 158 (|has| |#1| (-362)))) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) 92 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (($ $ (-1168) (-766)) 91 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (($ $ (-639 (-1168))) 90 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (($ $ (-1168)) 89 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (($ $ (-766)) 87 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (-2250 (((-406 (-562)) $) 67)) (-3022 (($ $) 135 (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) 124 (|has| |#1| (-38 (-406 (-562)))))) (-3000 (($ $) 134 (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) 125 (|has| |#1| (-38 (-406 (-562)))))) (-2977 (($ $) 133 (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) 126 (|has| |#1| (-38 (-406 (-562)))))) (-1345 (($ $) 75)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 50 (|has| |#1| (-171))) (($ (-406 (-562))) 60 (|has| |#1| (-38 (-406 (-562))))) (($ $) 52 (|has| |#1| (-554)))) (-2266 ((|#1| $ (-406 (-562))) 62)) (-2059 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-1568 (((-766)) 28)) (-2328 ((|#1| $) 105)) (-3054 (($ $) 144 (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) 132 (|has| |#1| (-38 (-406 (-562)))))) (-3799 (((-112) $ $) 56 (|has| |#1| (-554)))) (-3033 (($ $) 143 (|has| |#1| (-38 (-406 (-562)))))) (-4139 (($ $) 131 (|has| |#1| (-38 (-406 (-562)))))) (-3077 (($ $) 142 (|has| |#1| (-38 (-406 (-562)))))) (-4183 (($ $) 130 (|has| |#1| (-38 (-406 (-562)))))) (-1406 ((|#1| $ (-406 (-562))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-562))))) (|has| |#1| (-15 -4053 (|#1| (-1168))))))) (-1567 (($ $) 141 (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) 129 (|has| |#1| (-38 (-406 (-562)))))) (-3065 (($ $) 140 (|has| |#1| (-38 (-406 (-562)))))) (-4175 (($ $) 128 (|has| |#1| (-38 (-406 (-562)))))) (-3040 (($ $) 139 (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) 127 (|has| |#1| (-38 (-406 (-562)))))) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3113 (($ $ (-639 (-1168)) (-639 (-766))) 96 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (($ $ (-1168) (-766)) 95 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (($ $ (-639 (-1168))) 94 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (($ $ (-1168)) 93 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (($ $ (-766)) 88 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (-1733 (((-112) $ $) 6)) (-1859 (($ $ |#1|) 61 (|has| |#1| (-362))) (($ $ $) 170 (|has| |#1| (-362)))) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 169 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 118 (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-562)) $) 59 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 58 (|has| |#1| (-38 (-406 (-562))))))) -(((-1237 |#1|) (-139) (-1044)) (T -1237)) -((-1503 (*1 *1 *2 *3) (-12 (-5 *2 (-766)) (-5 *3 (-1148 (-2 (|:| |k| (-406 (-562))) (|:| |c| *4)))) (-4 *4 (-1044)) (-4 *1 (-1237 *4)))) (-3662 (*1 *1 *1 *2) (-12 (-5 *2 (-406 (-562))) (-4 *1 (-1237 *3)) (-4 *3 (-1044)))) (-3081 (*1 *1 *1) (-12 (-4 *1 (-1237 *2)) (-4 *2 (-1044)) (-4 *2 (-38 (-406 (-562)))))) (-3081 (*1 *1 *1 *2) (-4037 (-12 (-5 *2 (-1168)) (-4 *1 (-1237 *3)) (-4 *3 (-1044)) (-12 (-4 *3 (-29 (-562))) (-4 *3 (-954)) (-4 *3 (-1192)) (-4 *3 (-38 (-406 (-562)))))) (-12 (-5 *2 (-1168)) (-4 *1 (-1237 *3)) (-4 *3 (-1044)) (-12 (|has| *3 (-15 -1401 ((-639 *2) *3))) (|has| *3 (-15 -3081 (*3 *3 *2))) (-4 *3 (-38 (-406 (-562))))))))) -(-13 (-1234 |t#1| (-406 (-562))) (-10 -8 (-15 -1503 ($ (-766) (-1148 (-2 (|:| |k| (-406 (-562))) (|:| |c| |t#1|))))) (-15 -3662 ($ $ (-406 (-562)))) (IF (|has| |t#1| (-38 (-406 (-562)))) (PROGN (-15 -3081 ($ $)) (IF (|has| |t#1| (-15 -3081 (|t#1| |t#1| (-1168)))) (IF (|has| |t#1| (-15 -1401 ((-639 (-1168)) |t#1|))) (-15 -3081 ($ $ (-1168))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1192)) (IF (|has| |t#1| (-954)) (IF (|has| |t#1| (-29 (-562))) (-15 -3081 ($ $ (-1168))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-997)) (-6 (-1192))) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-362)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-406 (-562))) . T) ((-25) . T) ((-38 #1=(-406 (-562))) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-35) |has| |#1| (-38 (-406 (-562)))) ((-95) |has| |#1| (-38 (-406 (-562)))) ((-102) . T) ((-111 #1# #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-612 (-562)) . T) ((-612 |#1|) |has| |#1| (-171)) ((-612 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-609 (-857)) . T) ((-171) -4037 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) ((-242) |has| |#1| (-362)) ((-283) |has| |#1| (-38 (-406 (-562)))) ((-285 $ $) |has| (-406 (-562)) (-1104)) ((-289) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-362) |has| |#1| (-362)) ((-451) |has| |#1| (-362)) ((-492) |has| |#1| (-38 (-406 (-562)))) ((-554) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-642 #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-642 |#1|) . T) ((-642 $) . T) ((-712 #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-712 |#1|) |has| |#1| (-171)) ((-712 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-721) . T) ((-895 (-1168)) -12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168)))) ((-968 |#1| #0# (-1074)) . T) ((-915) |has| |#1| (-362)) ((-997) |has| |#1| (-38 (-406 (-562)))) ((-1050 #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-1050 |#1|) . T) ((-1050 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1192) |has| |#1| (-38 (-406 (-562)))) ((-1195) |has| |#1| (-38 (-406 (-562)))) ((-1211) |has| |#1| (-362)) ((-1234 |#1| #0#) . T)) -((-4325 (((-112) $) 12)) (-4048 (((-3 |#3| "failed") $) 17)) (-3960 ((|#3| $) 14))) -(((-1238 |#1| |#2| |#3|) (-10 -8 (-15 -4048 ((-3 |#3| "failed") |#1|)) (-15 -3960 (|#3| |#1|)) (-15 -4325 ((-112) |#1|))) (-1239 |#2| |#3|) (-1044) (-1216 |#2|)) (T -1238)) -NIL -(-10 -8 (-15 -4048 ((-3 |#3| "failed") |#1|)) (-15 -3960 (|#3| |#1|)) (-15 -4325 ((-112) |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-1401 (((-639 (-1074)) $) 77)) (-2443 (((-1168) $) 106)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-1965 (($ $) 55 (|has| |#1| (-554)))) (-4102 (((-112) $) 57 (|has| |#1| (-554)))) (-1302 (($ $ (-406 (-562))) 101) (($ $ (-406 (-562)) (-406 (-562))) 100)) (-4196 (((-1148 (-2 (|:| |k| (-406 (-562))) (|:| |c| |#1|))) $) 108)) (-2987 (($ $) 138 (|has| |#1| (-38 (-406 (-562)))))) (-4098 (($ $) 121 (|has| |#1| (-38 (-406 (-562)))))) (-2781 (((-3 $ "failed") $ $) 19)) (-1977 (($ $) 165 (|has| |#1| (-362)))) (-3788 (((-417 $) $) 166 (|has| |#1| (-362)))) (-1644 (($ $) 120 (|has| |#1| (-38 (-406 (-562)))))) (-1436 (((-112) $ $) 156 (|has| |#1| (-362)))) (-4206 (($ $) 137 (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) 122 (|has| |#1| (-38 (-406 (-562)))))) (-1503 (($ (-766) (-1148 (-2 (|:| |k| (-406 (-562))) (|:| |c| |#1|)))) 174)) (-3013 (($ $) 136 (|has| |#1| (-38 (-406 (-562)))))) (-4120 (($ $) 123 (|has| |#1| (-38 (-406 (-562)))))) (-3329 (($) 17 T CONST)) (-4048 (((-3 |#2| "failed") $) 185)) (-3960 ((|#2| $) 186)) (-1810 (($ $ $) 160 (|has| |#1| (-362)))) (-1600 (($ $) 63)) (-1694 (((-3 $ "failed") $) 33)) (-1417 (((-406 (-562)) $) 182)) (-1787 (($ $ $) 159 (|has| |#1| (-362)))) (-1499 (($ (-406 (-562)) |#2|) 183)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) 154 (|has| |#1| (-362)))) (-3521 (((-112) $) 167 (|has| |#1| (-362)))) (-2965 (((-112) $) 76)) (-4100 (($) 148 (|has| |#1| (-38 (-406 (-562)))))) (-1993 (((-406 (-562)) $) 103) (((-406 (-562)) $ (-406 (-562))) 102)) (-4367 (((-112) $) 31)) (-1895 (($ $ (-562)) 119 (|has| |#1| (-38 (-406 (-562)))))) (-3662 (($ $ (-916)) 104) (($ $ (-406 (-562))) 173)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) 163 (|has| |#1| (-362)))) (-2833 (((-112) $) 65)) (-1377 (($ |#1| (-406 (-562))) 64) (($ $ (-1074) (-406 (-562))) 79) (($ $ (-639 (-1074)) (-639 (-406 (-562)))) 78)) (-4152 (($ (-1 |#1| |#1|) $) 66)) (-4366 (($ $) 145 (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) 68)) (-1573 ((|#1| $) 69)) (-1564 (($ (-639 $)) 152 (|has| |#1| (-362))) (($ $ $) 151 (|has| |#1| (-362)))) (-3370 ((|#2| $) 181)) (-3515 (((-3 |#2| "failed") $) 179)) (-1487 ((|#2| $) 180)) (-3696 (((-1150) $) 9)) (-1525 (($ $) 168 (|has| |#1| (-362)))) (-3081 (($ $) 172 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-1168)) 171 (-4037 (-12 (|has| |#1| (-29 (-562))) (|has| |#1| (-954)) (|has| |#1| (-1192)) (|has| |#1| (-38 (-406 (-562))))) (-12 (|has| |#1| (-15 -1401 ((-639 (-1168)) |#1|))) (|has| |#1| (-15 -3081 (|#1| |#1| (-1168)))) (|has| |#1| (-38 (-406 (-562)))))))) (-1709 (((-1112) $) 10)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 153 (|has| |#1| (-362)))) (-1606 (($ (-639 $)) 150 (|has| |#1| (-362))) (($ $ $) 149 (|has| |#1| (-362)))) (-1635 (((-417 $) $) 164 (|has| |#1| (-362)))) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) 161 (|has| |#1| (-362)))) (-4316 (($ $ (-406 (-562))) 98)) (-1762 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554)))) (-1879 (((-3 (-639 $) "failed") (-639 $) $) 155 (|has| |#1| (-362)))) (-3430 (($ $) 146 (|has| |#1| (-38 (-406 (-562)))))) (-1433 (((-1148 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-562))))))) (-2044 (((-766) $) 157 (|has| |#1| (-362)))) (-2343 ((|#1| $ (-406 (-562))) 107) (($ $ $) 84 (|has| (-406 (-562)) (-1104)))) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 158 (|has| |#1| (-362)))) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) 92 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (($ $ (-1168) (-766)) 91 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (($ $ (-639 (-1168))) 90 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (($ $ (-1168)) 89 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (($ $ (-766)) 87 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (-2250 (((-406 (-562)) $) 67)) (-3022 (($ $) 135 (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) 124 (|has| |#1| (-38 (-406 (-562)))))) (-3000 (($ $) 134 (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) 125 (|has| |#1| (-38 (-406 (-562)))))) (-2977 (($ $) 133 (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) 126 (|has| |#1| (-38 (-406 (-562)))))) (-1345 (($ $) 75)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 50 (|has| |#1| (-171))) (($ |#2|) 184) (($ (-406 (-562))) 60 (|has| |#1| (-38 (-406 (-562))))) (($ $) 52 (|has| |#1| (-554)))) (-2266 ((|#1| $ (-406 (-562))) 62)) (-2059 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-1568 (((-766)) 28)) (-2328 ((|#1| $) 105)) (-3054 (($ $) 144 (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) 132 (|has| |#1| (-38 (-406 (-562)))))) (-3799 (((-112) $ $) 56 (|has| |#1| (-554)))) (-3033 (($ $) 143 (|has| |#1| (-38 (-406 (-562)))))) (-4139 (($ $) 131 (|has| |#1| (-38 (-406 (-562)))))) (-3077 (($ $) 142 (|has| |#1| (-38 (-406 (-562)))))) (-4183 (($ $) 130 (|has| |#1| (-38 (-406 (-562)))))) (-1406 ((|#1| $ (-406 (-562))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-562))))) (|has| |#1| (-15 -4053 (|#1| (-1168))))))) (-1567 (($ $) 141 (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) 129 (|has| |#1| (-38 (-406 (-562)))))) (-3065 (($ $) 140 (|has| |#1| (-38 (-406 (-562)))))) (-4175 (($ $) 128 (|has| |#1| (-38 (-406 (-562)))))) (-3040 (($ $) 139 (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) 127 (|has| |#1| (-38 (-406 (-562)))))) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3113 (($ $ (-639 (-1168)) (-639 (-766))) 96 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (($ $ (-1168) (-766)) 95 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (($ $ (-639 (-1168))) 94 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (($ $ (-1168)) 93 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (($ $ (-766)) 88 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (-1733 (((-112) $ $) 6)) (-1859 (($ $ |#1|) 61 (|has| |#1| (-362))) (($ $ $) 170 (|has| |#1| (-362)))) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 169 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 118 (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-562)) $) 59 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 58 (|has| |#1| (-38 (-406 (-562))))))) -(((-1239 |#1| |#2|) (-139) (-1044) (-1216 |t#1|)) (T -1239)) -((-2250 (*1 *2 *1) (-12 (-4 *1 (-1239 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1216 *3)) (-5 *2 (-406 (-562))))) (-1499 (*1 *1 *2 *3) (-12 (-5 *2 (-406 (-562))) (-4 *4 (-1044)) (-4 *1 (-1239 *4 *3)) (-4 *3 (-1216 *4)))) (-1417 (*1 *2 *1) (-12 (-4 *1 (-1239 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1216 *3)) (-5 *2 (-406 (-562))))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-1239 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-1216 *3)))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-1239 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-1216 *3)))) (-3515 (*1 *2 *1) (|partial| -12 (-4 *1 (-1239 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-1216 *3))))) -(-13 (-1237 |t#1|) (-1033 |t#2|) (-612 |t#2|) (-10 -8 (-15 -1499 ($ (-406 (-562)) |t#2|)) (-15 -1417 ((-406 (-562)) $)) (-15 -3370 (|t#2| $)) (-15 -2250 ((-406 (-562)) $)) (-15 -1487 (|t#2| $)) (-15 -3515 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-406 (-562))) . T) ((-25) . T) ((-38 #1=(-406 (-562))) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-35) |has| |#1| (-38 (-406 (-562)))) ((-95) |has| |#1| (-38 (-406 (-562)))) ((-102) . T) ((-111 #1# #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-612 (-562)) . T) ((-612 |#1|) |has| |#1| (-171)) ((-612 |#2|) . T) ((-612 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-609 (-857)) . T) ((-171) -4037 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) ((-242) |has| |#1| (-362)) ((-283) |has| |#1| (-38 (-406 (-562)))) ((-285 $ $) |has| (-406 (-562)) (-1104)) ((-289) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-306) |has| |#1| (-362)) ((-362) |has| |#1| (-362)) ((-451) |has| |#1| (-362)) ((-492) |has| |#1| (-38 (-406 (-562)))) ((-554) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-642 #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-642 |#1|) . T) ((-642 $) . T) ((-712 #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-712 |#1|) |has| |#1| (-171)) ((-712 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362))) ((-721) . T) ((-895 (-1168)) -12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168)))) ((-968 |#1| #0# (-1074)) . T) ((-915) |has| |#1| (-362)) ((-997) |has| |#1| (-38 (-406 (-562)))) ((-1033 |#2|) . T) ((-1050 #1#) -4037 (|has| |#1| (-362)) (|has| |#1| (-38 (-406 (-562))))) ((-1050 |#1|) . T) ((-1050 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-362)) (|has| |#1| (-171))) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1192) |has| |#1| (-38 (-406 (-562)))) ((-1195) |has| |#1| (-38 (-406 (-562)))) ((-1211) |has| |#1| (-362)) ((-1234 |#1| #0#) . T) ((-1237 |#1|) . T)) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-1401 (((-639 (-1074)) $) NIL)) (-2443 (((-1168) $) 96)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-1965 (($ $) NIL (|has| |#1| (-554)))) (-4102 (((-112) $) NIL (|has| |#1| (-554)))) (-1302 (($ $ (-406 (-562))) 106) (($ $ (-406 (-562)) (-406 (-562))) 108)) (-4196 (((-1148 (-2 (|:| |k| (-406 (-562))) (|:| |c| |#1|))) $) 51)) (-2987 (($ $) 180 (|has| |#1| (-38 (-406 (-562)))))) (-4098 (($ $) 156 (|has| |#1| (-38 (-406 (-562)))))) (-2781 (((-3 $ "failed") $ $) NIL)) (-1977 (($ $) NIL (|has| |#1| (-362)))) (-3788 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1644 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1436 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4206 (($ $) 176 (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) 152 (|has| |#1| (-38 (-406 (-562)))))) (-1503 (($ (-766) (-1148 (-2 (|:| |k| (-406 (-562))) (|:| |c| |#1|)))) 61)) (-3013 (($ $) 184 (|has| |#1| (-38 (-406 (-562)))))) (-4120 (($ $) 160 (|has| |#1| (-38 (-406 (-562)))))) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#2| "failed") $) NIL)) (-3960 ((|#2| $) NIL)) (-1810 (($ $ $) NIL (|has| |#1| (-362)))) (-1600 (($ $) NIL)) (-1694 (((-3 $ "failed") $) 79)) (-1417 (((-406 (-562)) $) 13)) (-1787 (($ $ $) NIL (|has| |#1| (-362)))) (-1499 (($ (-406 (-562)) |#2|) 11)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL (|has| |#1| (-362)))) (-3521 (((-112) $) NIL (|has| |#1| (-362)))) (-2965 (((-112) $) 68)) (-4100 (($) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1993 (((-406 (-562)) $) 103) (((-406 (-562)) $ (-406 (-562))) 104)) (-4367 (((-112) $) NIL)) (-1895 (($ $ (-562)) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3662 (($ $ (-916)) 120) (($ $ (-406 (-562))) 118)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-2833 (((-112) $) NIL)) (-1377 (($ |#1| (-406 (-562))) 31) (($ $ (-1074) (-406 (-562))) NIL) (($ $ (-639 (-1074)) (-639 (-406 (-562)))) NIL)) (-4152 (($ (-1 |#1| |#1|) $) 115)) (-4366 (($ $) 150 (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3370 ((|#2| $) 12)) (-3515 (((-3 |#2| "failed") $) 41)) (-1487 ((|#2| $) 42)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) 93 (|has| |#1| (-362)))) (-3081 (($ $) 135 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-1168)) 140 (-4037 (-12 (|has| |#1| (-15 -3081 (|#1| |#1| (-1168)))) (|has| |#1| (-15 -1401 ((-639 (-1168)) |#1|))) (|has| |#1| (-38 (-406 (-562))))) (-12 (|has| |#1| (-29 (-562))) (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-954)) (|has| |#1| (-1192)))))) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-362)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1635 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL (|has| |#1| (-362)))) (-4316 (($ $ (-406 (-562))) 112)) (-1762 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-3430 (($ $) 148 (|has| |#1| (-38 (-406 (-562)))))) (-1433 (((-1148 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-562))))))) (-2044 (((-766) $) NIL (|has| |#1| (-362)))) (-2343 ((|#1| $ (-406 (-562))) 100) (($ $ $) 86 (|has| (-406 (-562)) (-1104)))) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| |#1| (-362)))) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168)) 127 (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-766)) NIL (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (-2250 (((-406 (-562)) $) 16)) (-3022 (($ $) 186 (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) 162 (|has| |#1| (-38 (-406 (-562)))))) (-3000 (($ $) 182 (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) 158 (|has| |#1| (-38 (-406 (-562)))))) (-2977 (($ $) 178 (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) 154 (|has| |#1| (-38 (-406 (-562)))))) (-1345 (($ $) 110)) (-4053 (((-857) $) NIL) (($ (-562)) 35) (($ |#1|) 27 (|has| |#1| (-171))) (($ |#2|) 32) (($ (-406 (-562))) 128 (|has| |#1| (-38 (-406 (-562))))) (($ $) NIL (|has| |#1| (-554)))) (-2266 ((|#1| $ (-406 (-562))) 99)) (-2059 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-1568 (((-766)) 117)) (-2328 ((|#1| $) 98)) (-3054 (($ $) 192 (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) 168 (|has| |#1| (-38 (-406 (-562)))))) (-3799 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3033 (($ $) 188 (|has| |#1| (-38 (-406 (-562)))))) (-4139 (($ $) 164 (|has| |#1| (-38 (-406 (-562)))))) (-3077 (($ $) 196 (|has| |#1| (-38 (-406 (-562)))))) (-4183 (($ $) 172 (|has| |#1| (-38 (-406 (-562)))))) (-1406 ((|#1| $ (-406 (-562))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-562))))) (|has| |#1| (-15 -4053 (|#1| (-1168))))))) (-1567 (($ $) 198 (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) 174 (|has| |#1| (-38 (-406 (-562)))))) (-3065 (($ $) 194 (|has| |#1| (-38 (-406 (-562)))))) (-4175 (($ $) 170 (|has| |#1| (-38 (-406 (-562)))))) (-3040 (($ $) 190 (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) 166 (|has| |#1| (-38 (-406 (-562)))))) (-2285 (($) 21 T CONST)) (-2294 (($) 17 T CONST)) (-3113 (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-766)) NIL (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (-1733 (((-112) $ $) 66)) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) 92 (|has| |#1| (-362)))) (-1847 (($ $) 131) (($ $ $) 72)) (-1836 (($ $ $) 70)) (** (($ $ (-916)) NIL) (($ $ (-766)) 76) (($ $ (-562)) 145 (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 146 (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))))) -(((-1240 |#1| |#2|) (-1239 |#1| |#2|) (-1044) (-1216 |#1|)) (T -1240)) -NIL -(-1239 |#1| |#2|) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-1401 (((-639 (-1074)) $) NIL)) (-2443 (((-1168) $) 11)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-1965 (($ $) NIL (|has| |#1| (-554)))) (-4102 (((-112) $) NIL (|has| |#1| (-554)))) (-1302 (($ $ (-406 (-562))) NIL) (($ $ (-406 (-562)) (-406 (-562))) NIL)) (-4196 (((-1148 (-2 (|:| |k| (-406 (-562))) (|:| |c| |#1|))) $) NIL)) (-2987 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4098 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2781 (((-3 $ "failed") $ $) NIL)) (-1977 (($ $) NIL (|has| |#1| (-362)))) (-3788 (((-417 $) $) NIL (|has| |#1| (-362)))) (-1644 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1436 (((-112) $ $) NIL (|has| |#1| (-362)))) (-4206 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1503 (($ (-766) (-1148 (-2 (|:| |k| (-406 (-562))) (|:| |c| |#1|)))) NIL)) (-3013 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4120 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-1220 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1248 |#1| |#2| |#3|) "failed") $) 22)) (-3960 (((-1220 |#1| |#2| |#3|) $) NIL) (((-1248 |#1| |#2| |#3|) $) NIL)) (-1810 (($ $ $) NIL (|has| |#1| (-362)))) (-1600 (($ $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-1417 (((-406 (-562)) $) 57)) (-1787 (($ $ $) NIL (|has| |#1| (-362)))) (-1499 (($ (-406 (-562)) (-1220 |#1| |#2| |#3|)) NIL)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) NIL (|has| |#1| (-362)))) (-3521 (((-112) $) NIL (|has| |#1| (-362)))) (-2965 (((-112) $) NIL)) (-4100 (($) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1993 (((-406 (-562)) $) NIL) (((-406 (-562)) $ (-406 (-562))) NIL)) (-4367 (((-112) $) NIL)) (-1895 (($ $ (-562)) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3662 (($ $ (-916)) NIL) (($ $ (-406 (-562))) NIL)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-2833 (((-112) $) NIL)) (-1377 (($ |#1| (-406 (-562))) 30) (($ $ (-1074) (-406 (-562))) NIL) (($ $ (-639 (-1074)) (-639 (-406 (-562)))) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-4366 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-1564 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-3370 (((-1220 |#1| |#2| |#3|) $) 60)) (-3515 (((-3 (-1220 |#1| |#2| |#3|) "failed") $) NIL)) (-1487 (((-1220 |#1| |#2| |#3|) $) NIL)) (-3696 (((-1150) $) NIL)) (-1525 (($ $) NIL (|has| |#1| (-362)))) (-3081 (($ $) 39 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-1168)) NIL (-4037 (-12 (|has| |#1| (-15 -3081 (|#1| |#1| (-1168)))) (|has| |#1| (-15 -1401 ((-639 (-1168)) |#1|))) (|has| |#1| (-38 (-406 (-562))))) (-12 (|has| |#1| (-29 (-562))) (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-954)) (|has| |#1| (-1192))))) (($ $ (-1252 |#2|)) 40 (|has| |#1| (-38 (-406 (-562)))))) (-1709 (((-1112) $) NIL)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) NIL (|has| |#1| (-362)))) (-1606 (($ (-639 $)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1635 (((-417 $) $) NIL (|has| |#1| (-362)))) (-3399 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-362))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) NIL (|has| |#1| (-362)))) (-4316 (($ $ (-406 (-562))) NIL)) (-1762 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-1879 (((-3 (-639 $) "failed") (-639 $) $) NIL (|has| |#1| (-362)))) (-3430 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1433 (((-1148 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-406 (-562))))))) (-2044 (((-766) $) NIL (|has| |#1| (-362)))) (-2343 ((|#1| $ (-406 (-562))) NIL) (($ $ $) NIL (|has| (-406 (-562)) (-1104)))) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) NIL (|has| |#1| (-362)))) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-766)) NIL (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|)))) (($ $ (-1252 |#2|)) 38)) (-2250 (((-406 (-562)) $) NIL)) (-3022 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3000 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2977 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1345 (($ $) NIL)) (-4053 (((-857) $) 88) (($ (-562)) NIL) (($ |#1|) NIL (|has| |#1| (-171))) (($ (-1220 |#1| |#2| |#3|)) 16) (($ (-1248 |#1| |#2| |#3|)) 17) (($ (-1252 |#2|)) 36) (($ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $) NIL (|has| |#1| (-554)))) (-2266 ((|#1| $ (-406 (-562))) NIL)) (-2059 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-1568 (((-766)) NIL)) (-2328 ((|#1| $) 12)) (-3054 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3799 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3033 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4139 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3077 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4183 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1406 ((|#1| $ (-406 (-562))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-406 (-562))))) (|has| |#1| (-15 -4053 (|#1| (-1168))))))) (-1567 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3065 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4175 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3040 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2285 (($) 32 T CONST)) (-2294 (($) 26 T CONST)) (-3113 (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168)) NIL (-12 (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-766)) NIL (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-406 (-562)) |#1|))))) (-1733 (((-112) $ $) NIL)) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-362)))) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) 34)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ (-562)) NIL (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))))) -(((-1241 |#1| |#2| |#3|) (-13 (-1239 |#1| (-1220 |#1| |#2| |#3|)) (-1033 (-1248 |#1| |#2| |#3|)) (-612 (-1252 |#2|)) (-10 -8 (-15 -4029 ($ $ (-1252 |#2|))) (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -3081 ($ $ (-1252 |#2|))) |%noBranch|))) (-1044) (-1168) |#1|) (T -1241)) -((-4029 (*1 *1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1241 *3 *4 *5)) (-4 *3 (-1044)) (-14 *5 *3))) (-3081 (*1 *1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1241 *3 *4 *5)) (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) (-14 *5 *3)))) -(-13 (-1239 |#1| (-1220 |#1| |#2| |#3|)) (-1033 (-1248 |#1| |#2| |#3|)) (-612 (-1252 |#2|)) (-10 -8 (-15 -4029 ($ $ (-1252 |#2|))) (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -3081 ($ $ (-1252 |#2|))) |%noBranch|))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) 34)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL)) (-1965 (($ $) NIL)) (-4102 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3329 (($) NIL T CONST)) (-4048 (((-3 (-562) "failed") $) NIL (|has| (-1241 |#2| |#3| |#4|) (-1033 (-562)))) (((-3 (-406 (-562)) "failed") $) NIL (|has| (-1241 |#2| |#3| |#4|) (-1033 (-406 (-562))))) (((-3 (-1241 |#2| |#3| |#4|) "failed") $) 20)) (-3960 (((-562) $) NIL (|has| (-1241 |#2| |#3| |#4|) (-1033 (-562)))) (((-406 (-562)) $) NIL (|has| (-1241 |#2| |#3| |#4|) (-1033 (-406 (-562))))) (((-1241 |#2| |#3| |#4|) $) NIL)) (-1600 (($ $) 35)) (-1694 (((-3 $ "failed") $) 25)) (-2578 (($ $) NIL (|has| (-1241 |#2| |#3| |#4|) (-451)))) (-3066 (($ $ (-1241 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|) $) NIL)) (-4367 (((-112) $) NIL)) (-3627 (((-766) $) 11)) (-2833 (((-112) $) NIL)) (-1377 (($ (-1241 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) 23)) (-3161 (((-318 |#2| |#3| |#4|) $) NIL)) (-2363 (($ (-1 (-318 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) $) NIL)) (-4152 (($ (-1 (-1241 |#2| |#3| |#4|) (-1241 |#2| |#3| |#4|)) $) NIL)) (-3961 (((-3 (-838 |#2|) "failed") $) 74)) (-1560 (($ $) NIL)) (-1573 (((-1241 |#2| |#3| |#4|) $) 18)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-1534 (((-112) $) NIL)) (-1547 (((-1241 |#2| |#3| |#4|) $) NIL)) (-1762 (((-3 $ "failed") $ (-1241 |#2| |#3| |#4|)) NIL (|has| (-1241 |#2| |#3| |#4|) (-554))) (((-3 $ "failed") $ $) NIL)) (-2269 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1241 |#2| |#3| |#4|)) (|:| |%expon| (-318 |#2| |#3| |#4|)) (|:| |%expTerms| (-639 (-2 (|:| |k| (-406 (-562))) (|:| |c| |#2|)))))) (|:| |%type| (-1150))) "failed") $) 57)) (-2250 (((-318 |#2| |#3| |#4|) $) 14)) (-2201 (((-1241 |#2| |#3| |#4|) $) NIL (|has| (-1241 |#2| |#3| |#4|) (-451)))) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ (-1241 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-406 (-562))) NIL (-4037 (|has| (-1241 |#2| |#3| |#4|) (-38 (-406 (-562)))) (|has| (-1241 |#2| |#3| |#4|) (-1033 (-406 (-562))))))) (-3969 (((-639 (-1241 |#2| |#3| |#4|)) $) NIL)) (-2266 (((-1241 |#2| |#3| |#4|) $ (-318 |#2| |#3| |#4|)) NIL)) (-2059 (((-3 $ "failed") $) NIL (|has| (-1241 |#2| |#3| |#4|) (-144)))) (-1568 (((-766)) NIL)) (-1760 (($ $ $ (-766)) NIL (|has| (-1241 |#2| |#3| |#4|) (-171)))) (-3799 (((-112) $ $) NIL)) (-2285 (($) 62 T CONST)) (-2294 (($) NIL T CONST)) (-1733 (((-112) $ $) NIL)) (-1859 (($ $ (-1241 |#2| |#3| |#4|)) NIL (|has| (-1241 |#2| |#3| |#4|) (-362)))) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ (-1241 |#2| |#3| |#4|)) NIL) (($ (-1241 |#2| |#3| |#4|) $) NIL) (($ (-406 (-562)) $) NIL (|has| (-1241 |#2| |#3| |#4|) (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| (-1241 |#2| |#3| |#4|) (-38 (-406 (-562))))))) -(((-1242 |#1| |#2| |#3| |#4|) (-13 (-325 (-1241 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) (-554) (-10 -8 (-15 -3961 ((-3 (-838 |#2|) "failed") $)) (-15 -2269 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1241 |#2| |#3| |#4|)) (|:| |%expon| (-318 |#2| |#3| |#4|)) (|:| |%expTerms| (-639 (-2 (|:| |k| (-406 (-562))) (|:| |c| |#2|)))))) (|:| |%type| (-1150))) "failed") $)))) (-13 (-845) (-1033 (-562)) (-635 (-562)) (-451)) (-13 (-27) (-1192) (-429 |#1|)) (-1168) |#2|) (T -1242)) -((-3961 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-845) (-1033 (-562)) (-635 (-562)) (-451))) (-5 *2 (-838 *4)) (-5 *1 (-1242 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1192) (-429 *3))) (-14 *5 (-1168)) (-14 *6 *4))) (-2269 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-845) (-1033 (-562)) (-635 (-562)) (-451))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1241 *4 *5 *6)) (|:| |%expon| (-318 *4 *5 *6)) (|:| |%expTerms| (-639 (-2 (|:| |k| (-406 (-562))) (|:| |c| *4)))))) (|:| |%type| (-1150)))) (-5 *1 (-1242 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1192) (-429 *3))) (-14 *5 (-1168)) (-14 *6 *4)))) -(-13 (-325 (-1241 |#2| |#3| |#4|) (-318 |#2| |#3| |#4|)) (-554) (-10 -8 (-15 -3961 ((-3 (-838 |#2|) "failed") $)) (-15 -2269 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1241 |#2| |#3| |#4|)) (|:| |%expon| (-318 |#2| |#3| |#4|)) (|:| |%expTerms| (-639 (-2 (|:| |k| (-406 (-562))) (|:| |c| |#2|)))))) (|:| |%type| (-1150))) "failed") $)))) -((-2533 ((|#2| $) 28)) (-2358 ((|#2| $) 18)) (-3120 (($ $) 35)) (-1335 (($ $ (-562)) 63)) (-3735 (((-112) $ (-766)) 32)) (-2677 ((|#2| $ |#2|) 60)) (-1393 ((|#2| $ |#2|) 58)) (-4200 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 51) (($ $ "rest" $) 55) ((|#2| $ "last" |#2|) 53)) (-3742 (($ $ (-639 $)) 59)) (-2349 ((|#2| $) 17)) (-1434 (($ $) NIL) (($ $ (-766)) 41)) (-2409 (((-639 $) $) 25)) (-4188 (((-112) $ $) 49)) (-4172 (((-112) $ (-766)) 31)) (-4147 (((-112) $ (-766)) 30)) (-3179 (((-112) $) 27)) (-1504 ((|#2| $) 23) (($ $ (-766)) 45)) (-2343 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2473 (((-112) $) 21)) (-3734 (($ $) 38)) (-3659 (($ $) 64)) (-3595 (((-766) $) 40)) (-2333 (($ $) 39)) (-2767 (($ $ $) 57) (($ |#2| $) NIL)) (-3643 (((-639 $) $) 26)) (-1733 (((-112) $ $) 47)) (-3492 (((-766) $) 34))) -(((-1243 |#1| |#2|) (-10 -8 (-15 -1335 (|#1| |#1| (-562))) (-15 -4200 (|#2| |#1| "last" |#2|)) (-15 -1393 (|#2| |#1| |#2|)) (-15 -4200 (|#1| |#1| "rest" |#1|)) (-15 -4200 (|#2| |#1| "first" |#2|)) (-15 -3659 (|#1| |#1|)) (-15 -3734 (|#1| |#1|)) (-15 -3595 ((-766) |#1|)) (-15 -2333 (|#1| |#1|)) (-15 -2358 (|#2| |#1|)) (-15 -2349 (|#2| |#1|)) (-15 -3120 (|#1| |#1|)) (-15 -1504 (|#1| |#1| (-766))) (-15 -2343 (|#2| |#1| "last")) (-15 -1504 (|#2| |#1|)) (-15 -1434 (|#1| |#1| (-766))) (-15 -2343 (|#1| |#1| "rest")) (-15 -1434 (|#1| |#1|)) (-15 -2343 (|#2| |#1| "first")) (-15 -2767 (|#1| |#2| |#1|)) (-15 -2767 (|#1| |#1| |#1|)) (-15 -2677 (|#2| |#1| |#2|)) (-15 -4200 (|#2| |#1| "value" |#2|)) (-15 -3742 (|#1| |#1| (-639 |#1|))) (-15 -4188 ((-112) |#1| |#1|)) (-15 -2473 ((-112) |#1|)) (-15 -2343 (|#2| |#1| "value")) (-15 -2533 (|#2| |#1|)) (-15 -3179 ((-112) |#1|)) (-15 -2409 ((-639 |#1|) |#1|)) (-15 -3643 ((-639 |#1|) |#1|)) (-15 -1733 ((-112) |#1| |#1|)) (-15 -3492 ((-766) |#1|)) (-15 -3735 ((-112) |#1| (-766))) (-15 -4172 ((-112) |#1| (-766))) (-15 -4147 ((-112) |#1| (-766)))) (-1244 |#2|) (-1207)) (T -1243)) -NIL -(-10 -8 (-15 -1335 (|#1| |#1| (-562))) (-15 -4200 (|#2| |#1| "last" |#2|)) (-15 -1393 (|#2| |#1| |#2|)) (-15 -4200 (|#1| |#1| "rest" |#1|)) (-15 -4200 (|#2| |#1| "first" |#2|)) (-15 -3659 (|#1| |#1|)) (-15 -3734 (|#1| |#1|)) (-15 -3595 ((-766) |#1|)) (-15 -2333 (|#1| |#1|)) (-15 -2358 (|#2| |#1|)) (-15 -2349 (|#2| |#1|)) (-15 -3120 (|#1| |#1|)) (-15 -1504 (|#1| |#1| (-766))) (-15 -2343 (|#2| |#1| "last")) (-15 -1504 (|#2| |#1|)) (-15 -1434 (|#1| |#1| (-766))) (-15 -2343 (|#1| |#1| "rest")) (-15 -1434 (|#1| |#1|)) (-15 -2343 (|#2| |#1| "first")) (-15 -2767 (|#1| |#2| |#1|)) (-15 -2767 (|#1| |#1| |#1|)) (-15 -2677 (|#2| |#1| |#2|)) (-15 -4200 (|#2| |#1| "value" |#2|)) (-15 -3742 (|#1| |#1| (-639 |#1|))) (-15 -4188 ((-112) |#1| |#1|)) (-15 -2473 ((-112) |#1|)) (-15 -2343 (|#2| |#1| "value")) (-15 -2533 (|#2| |#1|)) (-15 -3179 ((-112) |#1|)) (-15 -2409 ((-639 |#1|) |#1|)) (-15 -3643 ((-639 |#1|) |#1|)) (-15 -1733 ((-112) |#1| |#1|)) (-15 -3492 ((-766) |#1|)) (-15 -3735 ((-112) |#1| (-766))) (-15 -4172 ((-112) |#1| (-766))) (-15 -4147 ((-112) |#1| (-766)))) -((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-2533 ((|#1| $) 48)) (-2358 ((|#1| $) 65)) (-3120 (($ $) 67)) (-1335 (($ $ (-562)) 52 (|has| $ (-6 -4404)))) (-3735 (((-112) $ (-766)) 8)) (-2677 ((|#1| $ |#1|) 39 (|has| $ (-6 -4404)))) (-3400 (($ $ $) 56 (|has| $ (-6 -4404)))) (-1393 ((|#1| $ |#1|) 54 (|has| $ (-6 -4404)))) (-3239 ((|#1| $ |#1|) 58 (|has| $ (-6 -4404)))) (-4200 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4404))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4404))) (($ $ "rest" $) 55 (|has| $ (-6 -4404))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4404)))) (-3742 (($ $ (-639 $)) 41 (|has| $ (-6 -4404)))) (-2349 ((|#1| $) 66)) (-3329 (($) 7 T CONST)) (-1434 (($ $) 73) (($ $ (-766)) 71)) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4403)))) (-2409 (((-639 $) $) 50)) (-4188 (((-112) $ $) 42 (|has| |#1| (-1092)))) (-4172 (((-112) $ (-766)) 9)) (-2123 (((-639 |#1|) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1491 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 35)) (-4147 (((-112) $ (-766)) 10)) (-4008 (((-639 |#1|) $) 45)) (-3179 (((-112) $) 49)) (-3696 (((-1150) $) 22 (|has| |#1| (-1092)))) (-1504 ((|#1| $) 70) (($ $ (-766)) 68)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-1421 ((|#1| $) 76) (($ $ (-766)) 74)) (-3008 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) 14)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-2343 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-1423 (((-562) $ $) 44)) (-2473 (((-112) $) 46)) (-3734 (($ $) 62)) (-3659 (($ $) 59 (|has| $ (-6 -4404)))) (-3595 (((-766) $) 63)) (-2333 (($ $) 64)) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4403))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-4220 (($ $) 13)) (-2587 (($ $ $) 61 (|has| $ (-6 -4404))) (($ $ |#1|) 60 (|has| $ (-6 -4404)))) (-2767 (($ $ $) 78) (($ |#1| $) 77)) (-4053 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-3643 (((-639 $) $) 51)) (-2985 (((-112) $ $) 43 (|has| |#1| (-1092)))) (-2879 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4403)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-1244 |#1|) (-139) (-1207)) (T -1244)) -((-2767 (*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-2767 (*1 *1 *2 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-1421 (*1 *2 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-2343 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-1421 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-1244 *3)) (-4 *3 (-1207)))) (-1434 (*1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-2343 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1244 *3)) (-4 *3 (-1207)))) (-1434 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-1244 *3)) (-4 *3 (-1207)))) (-1504 (*1 *2 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-2343 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-1504 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-1244 *3)) (-4 *3 (-1207)))) (-3120 (*1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-2358 (*1 *2 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-2333 (*1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-3595 (*1 *2 *1) (-12 (-4 *1 (-1244 *3)) (-4 *3 (-1207)) (-5 *2 (-766)))) (-3734 (*1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-2587 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4404)) (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-2587 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4404)) (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-3659 (*1 *1 *1) (-12 (|has| *1 (-6 -4404)) (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-3239 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4404)) (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-4200 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4404)) (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-3400 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4404)) (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-4200 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4404)) (-4 *1 (-1244 *3)) (-4 *3 (-1207)))) (-1393 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4404)) (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-4200 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4404)) (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) (-1335 (*1 *1 *1 *2) (-12 (-5 *2 (-562)) (|has| *1 (-6 -4404)) (-4 *1 (-1244 *3)) (-4 *3 (-1207))))) -(-13 (-1005 |t#1|) (-10 -8 (-15 -2767 ($ $ $)) (-15 -2767 ($ |t#1| $)) (-15 -1421 (|t#1| $)) (-15 -2343 (|t#1| $ "first")) (-15 -1421 ($ $ (-766))) (-15 -1434 ($ $)) (-15 -2343 ($ $ "rest")) (-15 -1434 ($ $ (-766))) (-15 -1504 (|t#1| $)) (-15 -2343 (|t#1| $ "last")) (-15 -1504 ($ $ (-766))) (-15 -3120 ($ $)) (-15 -2349 (|t#1| $)) (-15 -2358 (|t#1| $)) (-15 -2333 ($ $)) (-15 -3595 ((-766) $)) (-15 -3734 ($ $)) (IF (|has| $ (-6 -4404)) (PROGN (-15 -2587 ($ $ $)) (-15 -2587 ($ $ |t#1|)) (-15 -3659 ($ $)) (-15 -3239 (|t#1| $ |t#1|)) (-15 -4200 (|t#1| $ "first" |t#1|)) (-15 -3400 ($ $ $)) (-15 -4200 ($ $ "rest" $)) (-15 -1393 (|t#1| $ |t#1|)) (-15 -4200 (|t#1| $ "last" |t#1|)) (-15 -1335 ($ $ (-562)))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1092)) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-609 (-857)))) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-488 |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-1005 |#1|) . T) ((-1092) |has| |#1| (-1092)) ((-1207) . T)) -((-4152 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1245 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4152 (|#4| (-1 |#2| |#1|) |#3|))) (-1044) (-1044) (-1247 |#1|) (-1247 |#2|)) (T -1245)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1044)) (-4 *6 (-1044)) (-4 *2 (-1247 *6)) (-5 *1 (-1245 *5 *6 *4 *2)) (-4 *4 (-1247 *5))))) -(-10 -7 (-15 -4152 (|#4| (-1 |#2| |#1|) |#3|))) -((-4325 (((-112) $) 15)) (-2987 (($ $) 91)) (-4098 (($ $) 67)) (-4206 (($ $) 87)) (-4074 (($ $) 63)) (-3013 (($ $) 95)) (-4120 (($ $) 71)) (-4366 (($ $) 61)) (-3430 (($ $) 59)) (-3022 (($ $) 97)) (-4130 (($ $) 73)) (-3000 (($ $) 93)) (-4108 (($ $) 69)) (-2977 (($ $) 89)) (-4087 (($ $) 65)) (-4053 (((-857) $) 47) (($ (-562)) NIL) (($ (-406 (-562))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3054 (($ $) 103)) (-4165 (($ $) 79)) (-3033 (($ $) 99)) (-4139 (($ $) 75)) (-3077 (($ $) 107)) (-4183 (($ $) 83)) (-1567 (($ $) 109)) (-4195 (($ $) 85)) (-3065 (($ $) 105)) (-4175 (($ $) 81)) (-3040 (($ $) 101)) (-4151 (($ $) 77)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ |#2|) 51) (($ $ $) 54) (($ $ (-406 (-562))) 57))) -(((-1246 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-406 (-562)))) (-15 -4098 (|#1| |#1|)) (-15 -4074 (|#1| |#1|)) (-15 -4120 (|#1| |#1|)) (-15 -4130 (|#1| |#1|)) (-15 -4108 (|#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -4175 (|#1| |#1|)) (-15 -4195 (|#1| |#1|)) (-15 -4183 (|#1| |#1|)) (-15 -4139 (|#1| |#1|)) (-15 -4165 (|#1| |#1|)) (-15 -2977 (|#1| |#1|)) (-15 -3000 (|#1| |#1|)) (-15 -3022 (|#1| |#1|)) (-15 -3013 (|#1| |#1|)) (-15 -4206 (|#1| |#1|)) (-15 -2987 (|#1| |#1|)) (-15 -3040 (|#1| |#1|)) (-15 -3065 (|#1| |#1|)) (-15 -1567 (|#1| |#1|)) (-15 -3077 (|#1| |#1|)) (-15 -3033 (|#1| |#1|)) (-15 -3054 (|#1| |#1|)) (-15 -4366 (|#1| |#1|)) (-15 -3430 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4053 (|#1| |#2|)) (-15 -4053 (|#1| |#1|)) (-15 -4053 (|#1| (-406 (-562)))) (-15 -4053 (|#1| (-562))) (-15 ** (|#1| |#1| (-766))) (-15 ** (|#1| |#1| (-916))) (-15 -4325 ((-112) |#1|)) (-15 -4053 ((-857) |#1|))) (-1247 |#2|) (-1044)) (T -1246)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-406 (-562)))) (-15 -4098 (|#1| |#1|)) (-15 -4074 (|#1| |#1|)) (-15 -4120 (|#1| |#1|)) (-15 -4130 (|#1| |#1|)) (-15 -4108 (|#1| |#1|)) (-15 -4087 (|#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -4175 (|#1| |#1|)) (-15 -4195 (|#1| |#1|)) (-15 -4183 (|#1| |#1|)) (-15 -4139 (|#1| |#1|)) (-15 -4165 (|#1| |#1|)) (-15 -2977 (|#1| |#1|)) (-15 -3000 (|#1| |#1|)) (-15 -3022 (|#1| |#1|)) (-15 -3013 (|#1| |#1|)) (-15 -4206 (|#1| |#1|)) (-15 -2987 (|#1| |#1|)) (-15 -3040 (|#1| |#1|)) (-15 -3065 (|#1| |#1|)) (-15 -1567 (|#1| |#1|)) (-15 -3077 (|#1| |#1|)) (-15 -3033 (|#1| |#1|)) (-15 -3054 (|#1| |#1|)) (-15 -4366 (|#1| |#1|)) (-15 -3430 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4053 (|#1| |#2|)) (-15 -4053 (|#1| |#1|)) (-15 -4053 (|#1| (-406 (-562)))) (-15 -4053 (|#1| (-562))) (-15 ** (|#1| |#1| (-766))) (-15 ** (|#1| |#1| (-916))) (-15 -4325 ((-112) |#1|)) (-15 -4053 ((-857) |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-1401 (((-639 (-1074)) $) 77)) (-2443 (((-1168) $) 106)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 54 (|has| |#1| (-554)))) (-1965 (($ $) 55 (|has| |#1| (-554)))) (-4102 (((-112) $) 57 (|has| |#1| (-554)))) (-1302 (($ $ (-766)) 101) (($ $ (-766) (-766)) 100)) (-4196 (((-1148 (-2 (|:| |k| (-766)) (|:| |c| |#1|))) $) 108)) (-2987 (($ $) 138 (|has| |#1| (-38 (-406 (-562)))))) (-4098 (($ $) 121 (|has| |#1| (-38 (-406 (-562)))))) (-2781 (((-3 $ "failed") $ $) 19)) (-1644 (($ $) 120 (|has| |#1| (-38 (-406 (-562)))))) (-4206 (($ $) 137 (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) 122 (|has| |#1| (-38 (-406 (-562)))))) (-1503 (($ (-1148 (-2 (|:| |k| (-766)) (|:| |c| |#1|)))) 158) (($ (-1148 |#1|)) 156)) (-3013 (($ $) 136 (|has| |#1| (-38 (-406 (-562)))))) (-4120 (($ $) 123 (|has| |#1| (-38 (-406 (-562)))))) (-3329 (($) 17 T CONST)) (-1600 (($ $) 63)) (-1694 (((-3 $ "failed") $) 33)) (-2344 (($ $) 155)) (-1455 (((-947 |#1|) $ (-766)) 153) (((-947 |#1|) $ (-766) (-766)) 152)) (-2965 (((-112) $) 76)) (-4100 (($) 148 (|has| |#1| (-38 (-406 (-562)))))) (-1993 (((-766) $) 103) (((-766) $ (-766)) 102)) (-4367 (((-112) $) 31)) (-1895 (($ $ (-562)) 119 (|has| |#1| (-38 (-406 (-562)))))) (-3662 (($ $ (-916)) 104)) (-2064 (($ (-1 |#1| (-562)) $) 154)) (-2833 (((-112) $) 65)) (-1377 (($ |#1| (-766)) 64) (($ $ (-1074) (-766)) 79) (($ $ (-639 (-1074)) (-639 (-766))) 78)) (-4152 (($ (-1 |#1| |#1|) $) 66)) (-4366 (($ $) 145 (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) 68)) (-1573 ((|#1| $) 69)) (-3696 (((-1150) $) 9)) (-3081 (($ $) 150 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-1168)) 149 (-4037 (-12 (|has| |#1| (-29 (-562))) (|has| |#1| (-954)) (|has| |#1| (-1192)) (|has| |#1| (-38 (-406 (-562))))) (-12 (|has| |#1| (-15 -1401 ((-639 (-1168)) |#1|))) (|has| |#1| (-15 -3081 (|#1| |#1| (-1168)))) (|has| |#1| (-38 (-406 (-562)))))))) (-1709 (((-1112) $) 10)) (-4316 (($ $ (-766)) 98)) (-1762 (((-3 $ "failed") $ $) 53 (|has| |#1| (-554)))) (-3430 (($ $) 146 (|has| |#1| (-38 (-406 (-562)))))) (-1433 (((-1148 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-766)))))) (-2343 ((|#1| $ (-766)) 107) (($ $ $) 84 (|has| (-766) (-1104)))) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) 92 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-766) |#1|))))) (($ $ (-1168) (-766)) 91 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-766) |#1|))))) (($ $ (-639 (-1168))) 90 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-766) |#1|))))) (($ $ (-1168)) 89 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-766) |#1|))))) (($ $ (-766)) 87 (|has| |#1| (-15 * (|#1| (-766) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-766) |#1|))))) (-2250 (((-766) $) 67)) (-3022 (($ $) 135 (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) 124 (|has| |#1| (-38 (-406 (-562)))))) (-3000 (($ $) 134 (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) 125 (|has| |#1| (-38 (-406 (-562)))))) (-2977 (($ $) 133 (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) 126 (|has| |#1| (-38 (-406 (-562)))))) (-1345 (($ $) 75)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ (-406 (-562))) 60 (|has| |#1| (-38 (-406 (-562))))) (($ $) 52 (|has| |#1| (-554))) (($ |#1|) 50 (|has| |#1| (-171)))) (-3969 (((-1148 |#1|) $) 157)) (-2266 ((|#1| $ (-766)) 62)) (-2059 (((-3 $ "failed") $) 51 (|has| |#1| (-144)))) (-1568 (((-766)) 28)) (-2328 ((|#1| $) 105)) (-3054 (($ $) 144 (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) 132 (|has| |#1| (-38 (-406 (-562)))))) (-3799 (((-112) $ $) 56 (|has| |#1| (-554)))) (-3033 (($ $) 143 (|has| |#1| (-38 (-406 (-562)))))) (-4139 (($ $) 131 (|has| |#1| (-38 (-406 (-562)))))) (-3077 (($ $) 142 (|has| |#1| (-38 (-406 (-562)))))) (-4183 (($ $) 130 (|has| |#1| (-38 (-406 (-562)))))) (-1406 ((|#1| $ (-766)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-766)))) (|has| |#1| (-15 -4053 (|#1| (-1168))))))) (-1567 (($ $) 141 (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) 129 (|has| |#1| (-38 (-406 (-562)))))) (-3065 (($ $) 140 (|has| |#1| (-38 (-406 (-562)))))) (-4175 (($ $) 128 (|has| |#1| (-38 (-406 (-562)))))) (-3040 (($ $) 139 (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) 127 (|has| |#1| (-38 (-406 (-562)))))) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-3113 (($ $ (-639 (-1168)) (-639 (-766))) 96 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-766) |#1|))))) (($ $ (-1168) (-766)) 95 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-766) |#1|))))) (($ $ (-639 (-1168))) 94 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-766) |#1|))))) (($ $ (-1168)) 93 (-12 (|has| |#1| (-895 (-1168))) (|has| |#1| (-15 * (|#1| (-766) |#1|))))) (($ $ (-766)) 88 (|has| |#1| (-15 * (|#1| (-766) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-766) |#1|))))) (-1733 (((-112) $ $) 6)) (-1859 (($ $ |#1|) 61 (|has| |#1| (-362)))) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ |#1|) 151 (|has| |#1| (-362))) (($ $ $) 147 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 118 (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-406 (-562)) $) 59 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) 58 (|has| |#1| (-38 (-406 (-562))))))) -(((-1247 |#1|) (-139) (-1044)) (T -1247)) -((-1503 (*1 *1 *2) (-12 (-5 *2 (-1148 (-2 (|:| |k| (-766)) (|:| |c| *3)))) (-4 *3 (-1044)) (-4 *1 (-1247 *3)))) (-3969 (*1 *2 *1) (-12 (-4 *1 (-1247 *3)) (-4 *3 (-1044)) (-5 *2 (-1148 *3)))) (-1503 (*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-4 *1 (-1247 *3)))) (-2344 (*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1044)))) (-2064 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-562))) (-4 *1 (-1247 *3)) (-4 *3 (-1044)))) (-1455 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-4 *1 (-1247 *4)) (-4 *4 (-1044)) (-5 *2 (-947 *4)))) (-1455 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-766)) (-4 *1 (-1247 *4)) (-4 *4 (-1044)) (-5 *2 (-947 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1044)) (-4 *2 (-362)))) (-3081 (*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1044)) (-4 *2 (-38 (-406 (-562)))))) (-3081 (*1 *1 *1 *2) (-4037 (-12 (-5 *2 (-1168)) (-4 *1 (-1247 *3)) (-4 *3 (-1044)) (-12 (-4 *3 (-29 (-562))) (-4 *3 (-954)) (-4 *3 (-1192)) (-4 *3 (-38 (-406 (-562)))))) (-12 (-5 *2 (-1168)) (-4 *1 (-1247 *3)) (-4 *3 (-1044)) (-12 (|has| *3 (-15 -1401 ((-639 *2) *3))) (|has| *3 (-15 -3081 (*3 *3 *2))) (-4 *3 (-38 (-406 (-562))))))))) -(-13 (-1234 |t#1| (-766)) (-10 -8 (-15 -1503 ($ (-1148 (-2 (|:| |k| (-766)) (|:| |c| |t#1|))))) (-15 -3969 ((-1148 |t#1|) $)) (-15 -1503 ($ (-1148 |t#1|))) (-15 -2344 ($ $)) (-15 -2064 ($ (-1 |t#1| (-562)) $)) (-15 -1455 ((-947 |t#1|) $ (-766))) (-15 -1455 ((-947 |t#1|) $ (-766) (-766))) (IF (|has| |t#1| (-362)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-406 (-562)))) (PROGN (-15 -3081 ($ $)) (IF (|has| |t#1| (-15 -3081 (|t#1| |t#1| (-1168)))) (IF (|has| |t#1| (-15 -1401 ((-639 (-1168)) |t#1|))) (-15 -3081 ($ $ (-1168))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1192)) (IF (|has| |t#1| (-954)) (IF (|has| |t#1| (-29 (-562))) (-15 -3081 ($ $ (-1168))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-997)) (-6 (-1192))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-766)) . T) ((-25) . T) ((-38 #1=(-406 (-562))) |has| |#1| (-38 (-406 (-562)))) ((-38 |#1|) |has| |#1| (-171)) ((-38 $) |has| |#1| (-554)) ((-35) |has| |#1| (-38 (-406 (-562)))) ((-95) |has| |#1| (-38 (-406 (-562)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-406 (-562)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-130) . T) ((-144) |has| |#1| (-144)) ((-146) |has| |#1| (-146)) ((-612 #1#) |has| |#1| (-38 (-406 (-562)))) ((-612 (-562)) . T) ((-612 |#1|) |has| |#1| (-171)) ((-612 $) |has| |#1| (-554)) ((-609 (-857)) . T) ((-171) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-232) |has| |#1| (-15 * (|#1| (-766) |#1|))) ((-283) |has| |#1| (-38 (-406 (-562)))) ((-285 $ $) |has| (-766) (-1104)) ((-289) |has| |#1| (-554)) ((-492) |has| |#1| (-38 (-406 (-562)))) ((-554) |has| |#1| (-554)) ((-642 #1#) |has| |#1| (-38 (-406 (-562)))) ((-642 |#1|) . T) ((-642 $) . T) ((-712 #1#) |has| |#1| (-38 (-406 (-562)))) ((-712 |#1|) |has| |#1| (-171)) ((-712 $) |has| |#1| (-554)) ((-721) . T) ((-895 (-1168)) -12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168)))) ((-968 |#1| #0# (-1074)) . T) ((-997) |has| |#1| (-38 (-406 (-562)))) ((-1050 #1#) |has| |#1| (-38 (-406 (-562)))) ((-1050 |#1|) . T) ((-1050 $) -4037 (|has| |#1| (-554)) (|has| |#1| (-171))) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1192) |has| |#1| (-38 (-406 (-562)))) ((-1195) |has| |#1| (-38 (-406 (-562)))) ((-1234 |#1| #0#) . T)) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-1401 (((-639 (-1074)) $) NIL)) (-2443 (((-1168) $) 86)) (-3600 (((-1229 |#2| |#1|) $ (-766)) 73)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) NIL (|has| |#1| (-554)))) (-1965 (($ $) NIL (|has| |#1| (-554)))) (-4102 (((-112) $) 136 (|has| |#1| (-554)))) (-1302 (($ $ (-766)) 121) (($ $ (-766) (-766)) 123)) (-4196 (((-1148 (-2 (|:| |k| (-766)) (|:| |c| |#1|))) $) 42)) (-2987 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4098 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2781 (((-3 $ "failed") $ $) NIL)) (-1644 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4206 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4074 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1503 (($ (-1148 (-2 (|:| |k| (-766)) (|:| |c| |#1|)))) 53) (($ (-1148 |#1|)) NIL)) (-3013 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4120 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3329 (($) NIL T CONST)) (-3043 (($ $) 127)) (-1600 (($ $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-2344 (($ $) 134)) (-1455 (((-947 |#1|) $ (-766)) 63) (((-947 |#1|) $ (-766) (-766)) 65)) (-2965 (((-112) $) NIL)) (-4100 (($) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1993 (((-766) $) NIL) (((-766) $ (-766)) NIL)) (-4367 (((-112) $) NIL)) (-3656 (($ $) 111)) (-1895 (($ $ (-562)) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3637 (($ (-562) (-562) $) 129)) (-3662 (($ $ (-916)) 133)) (-2064 (($ (-1 |#1| (-562)) $) 105)) (-2833 (((-112) $) NIL)) (-1377 (($ |#1| (-766)) 15) (($ $ (-1074) (-766)) NIL) (($ $ (-639 (-1074)) (-639 (-766))) NIL)) (-4152 (($ (-1 |#1| |#1|) $) 93)) (-4366 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1560 (($ $) NIL)) (-1573 ((|#1| $) NIL)) (-3696 (((-1150) $) NIL)) (-1376 (($ $) 109)) (-4361 (($ $) 107)) (-1628 (($ (-562) (-562) $) 131)) (-3081 (($ $) 144 (|has| |#1| (-38 (-406 (-562))))) (($ $ (-1168)) 150 (-4037 (-12 (|has| |#1| (-15 -3081 (|#1| |#1| (-1168)))) (|has| |#1| (-15 -1401 ((-639 (-1168)) |#1|))) (|has| |#1| (-38 (-406 (-562))))) (-12 (|has| |#1| (-29 (-562))) (|has| |#1| (-38 (-406 (-562)))) (|has| |#1| (-954)) (|has| |#1| (-1192))))) (($ $ (-1252 |#2|)) 145 (|has| |#1| (-38 (-406 (-562)))))) (-1709 (((-1112) $) NIL)) (-1337 (($ $ (-562) (-562)) 115)) (-4316 (($ $ (-766)) 117)) (-1762 (((-3 $ "failed") $ $) NIL (|has| |#1| (-554)))) (-3430 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2021 (($ $) 113)) (-1433 (((-1148 |#1|) $ |#1|) 95 (|has| |#1| (-15 ** (|#1| |#1| (-766)))))) (-2343 ((|#1| $ (-766)) 90) (($ $ $) 125 (|has| (-766) (-1104)))) (-4029 (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168)) 102 (-12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-766)) NIL (|has| |#1| (-15 * (|#1| (-766) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-766) |#1|)))) (($ $ (-1252 |#2|)) 98)) (-2250 (((-766) $) NIL)) (-3022 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4130 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3000 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4108 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2977 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4087 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1345 (($ $) 119)) (-4053 (((-857) $) NIL) (($ (-562)) 24) (($ (-406 (-562))) 142 (|has| |#1| (-38 (-406 (-562))))) (($ $) NIL (|has| |#1| (-554))) (($ |#1|) 23 (|has| |#1| (-171))) (($ (-1229 |#2| |#1|)) 79) (($ (-1252 |#2|)) 20)) (-3969 (((-1148 |#1|) $) NIL)) (-2266 ((|#1| $ (-766)) 89)) (-2059 (((-3 $ "failed") $) NIL (|has| |#1| (-144)))) (-1568 (((-766)) NIL)) (-2328 ((|#1| $) 87)) (-3054 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4165 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3799 (((-112) $ $) NIL (|has| |#1| (-554)))) (-3033 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4139 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3077 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4183 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-1406 ((|#1| $ (-766)) 85 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-766)))) (|has| |#1| (-15 -4053 (|#1| (-1168))))))) (-1567 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4195 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3065 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4175 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-3040 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-4151 (($ $) NIL (|has| |#1| (-38 (-406 (-562)))))) (-2285 (($) 17 T CONST)) (-2294 (($) 13 T CONST)) (-3113 (($ $ (-639 (-1168)) (-639 (-766))) NIL (-12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168) (-766)) NIL (-12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-639 (-1168))) NIL (-12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-1168)) NIL (-12 (|has| |#1| (-15 * (|#1| (-766) |#1|))) (|has| |#1| (-895 (-1168))))) (($ $ (-766)) NIL (|has| |#1| (-15 * (|#1| (-766) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-766) |#1|))))) (-1733 (((-112) $ $) NIL)) (-1859 (($ $ |#1|) NIL (|has| |#1| (-362)))) (-1847 (($ $) NIL) (($ $ $) 101)) (-1836 (($ $ $) 18)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL) (($ $ |#1|) 139 (|has| |#1| (-362))) (($ $ $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562)))))) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 100) (($ (-406 (-562)) $) NIL (|has| |#1| (-38 (-406 (-562))))) (($ $ (-406 (-562))) NIL (|has| |#1| (-38 (-406 (-562))))))) -(((-1248 |#1| |#2| |#3|) (-13 (-1247 |#1|) (-10 -8 (-15 -4053 ($ (-1229 |#2| |#1|))) (-15 -3600 ((-1229 |#2| |#1|) $ (-766))) (-15 -4053 ($ (-1252 |#2|))) (-15 -4029 ($ $ (-1252 |#2|))) (-15 -4361 ($ $)) (-15 -1376 ($ $)) (-15 -3656 ($ $)) (-15 -2021 ($ $)) (-15 -1337 ($ $ (-562) (-562))) (-15 -3043 ($ $)) (-15 -3637 ($ (-562) (-562) $)) (-15 -1628 ($ (-562) (-562) $)) (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -3081 ($ $ (-1252 |#2|))) |%noBranch|))) (-1044) (-1168) |#1|) (T -1248)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-1229 *4 *3)) (-4 *3 (-1044)) (-14 *4 (-1168)) (-14 *5 *3) (-5 *1 (-1248 *3 *4 *5)))) (-3600 (*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1229 *5 *4)) (-5 *1 (-1248 *4 *5 *6)) (-4 *4 (-1044)) (-14 *5 (-1168)) (-14 *6 *4))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1248 *3 *4 *5)) (-4 *3 (-1044)) (-14 *5 *3))) (-4029 (*1 *1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1248 *3 *4 *5)) (-4 *3 (-1044)) (-14 *5 *3))) (-4361 (*1 *1 *1) (-12 (-5 *1 (-1248 *2 *3 *4)) (-4 *2 (-1044)) (-14 *3 (-1168)) (-14 *4 *2))) (-1376 (*1 *1 *1) (-12 (-5 *1 (-1248 *2 *3 *4)) (-4 *2 (-1044)) (-14 *3 (-1168)) (-14 *4 *2))) (-3656 (*1 *1 *1) (-12 (-5 *1 (-1248 *2 *3 *4)) (-4 *2 (-1044)) (-14 *3 (-1168)) (-14 *4 *2))) (-2021 (*1 *1 *1) (-12 (-5 *1 (-1248 *2 *3 *4)) (-4 *2 (-1044)) (-14 *3 (-1168)) (-14 *4 *2))) (-1337 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-1248 *3 *4 *5)) (-4 *3 (-1044)) (-14 *4 (-1168)) (-14 *5 *3))) (-3043 (*1 *1 *1) (-12 (-5 *1 (-1248 *2 *3 *4)) (-4 *2 (-1044)) (-14 *3 (-1168)) (-14 *4 *2))) (-3637 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-1248 *3 *4 *5)) (-4 *3 (-1044)) (-14 *4 (-1168)) (-14 *5 *3))) (-1628 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-1248 *3 *4 *5)) (-4 *3 (-1044)) (-14 *4 (-1168)) (-14 *5 *3))) (-3081 (*1 *1 *1 *2) (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1248 *3 *4 *5)) (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) (-14 *5 *3)))) -(-13 (-1247 |#1|) (-10 -8 (-15 -4053 ($ (-1229 |#2| |#1|))) (-15 -3600 ((-1229 |#2| |#1|) $ (-766))) (-15 -4053 ($ (-1252 |#2|))) (-15 -4029 ($ $ (-1252 |#2|))) (-15 -4361 ($ $)) (-15 -1376 ($ $)) (-15 -3656 ($ $)) (-15 -2021 ($ $)) (-15 -1337 ($ $ (-562) (-562))) (-15 -3043 ($ $)) (-15 -3637 ($ (-562) (-562) $)) (-15 -1628 ($ (-562) (-562) $)) (IF (|has| |#1| (-38 (-406 (-562)))) (-15 -3081 ($ $ (-1252 |#2|))) |%noBranch|))) -((-2958 (((-1 (-1148 |#1|) (-639 (-1148 |#1|))) (-1 |#2| (-639 |#2|))) 24)) (-3404 (((-1 (-1148 |#1|) (-1148 |#1|) (-1148 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2597 (((-1 (-1148 |#1|) (-1148 |#1|)) (-1 |#2| |#2|)) 13)) (-3497 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-1860 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3262 ((|#2| (-1 |#2| (-639 |#2|)) (-639 |#1|)) 54)) (-2950 (((-639 |#2|) (-639 |#1|) (-639 (-1 |#2| (-639 |#2|)))) 61)) (-2374 ((|#2| |#2| |#2|) 43))) -(((-1249 |#1| |#2|) (-10 -7 (-15 -2597 ((-1 (-1148 |#1|) (-1148 |#1|)) (-1 |#2| |#2|))) (-15 -3404 ((-1 (-1148 |#1|) (-1148 |#1|) (-1148 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2958 ((-1 (-1148 |#1|) (-639 (-1148 |#1|))) (-1 |#2| (-639 |#2|)))) (-15 -2374 (|#2| |#2| |#2|)) (-15 -1860 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3497 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3262 (|#2| (-1 |#2| (-639 |#2|)) (-639 |#1|))) (-15 -2950 ((-639 |#2|) (-639 |#1|) (-639 (-1 |#2| (-639 |#2|)))))) (-38 (-406 (-562))) (-1247 |#1|)) (T -1249)) -((-2950 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *5)) (-5 *4 (-639 (-1 *6 (-639 *6)))) (-4 *5 (-38 (-406 (-562)))) (-4 *6 (-1247 *5)) (-5 *2 (-639 *6)) (-5 *1 (-1249 *5 *6)))) (-3262 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-639 *2))) (-5 *4 (-639 *5)) (-4 *5 (-38 (-406 (-562)))) (-4 *2 (-1247 *5)) (-5 *1 (-1249 *5 *2)))) (-3497 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1247 *4)) (-5 *1 (-1249 *4 *2)) (-4 *4 (-38 (-406 (-562)))))) (-1860 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1247 *4)) (-5 *1 (-1249 *4 *2)) (-4 *4 (-38 (-406 (-562)))))) (-2374 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1249 *3 *2)) (-4 *2 (-1247 *3)))) (-2958 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-639 *5))) (-4 *5 (-1247 *4)) (-4 *4 (-38 (-406 (-562)))) (-5 *2 (-1 (-1148 *4) (-639 (-1148 *4)))) (-5 *1 (-1249 *4 *5)))) (-3404 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1247 *4)) (-4 *4 (-38 (-406 (-562)))) (-5 *2 (-1 (-1148 *4) (-1148 *4) (-1148 *4))) (-5 *1 (-1249 *4 *5)))) (-2597 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1247 *4)) (-4 *4 (-38 (-406 (-562)))) (-5 *2 (-1 (-1148 *4) (-1148 *4))) (-5 *1 (-1249 *4 *5))))) -(-10 -7 (-15 -2597 ((-1 (-1148 |#1|) (-1148 |#1|)) (-1 |#2| |#2|))) (-15 -3404 ((-1 (-1148 |#1|) (-1148 |#1|) (-1148 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2958 ((-1 (-1148 |#1|) (-639 (-1148 |#1|))) (-1 |#2| (-639 |#2|)))) (-15 -2374 (|#2| |#2| |#2|)) (-15 -1860 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3497 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3262 (|#2| (-1 |#2| (-639 |#2|)) (-639 |#1|))) (-15 -2950 ((-639 |#2|) (-639 |#1|) (-639 (-1 |#2| (-639 |#2|)))))) -((-1749 ((|#2| |#4| (-766)) 30)) (-3699 ((|#4| |#2|) 25)) (-2012 ((|#4| (-406 |#2|)) 52 (|has| |#1| (-554)))) (-3190 (((-1 |#4| (-639 |#4|)) |#3|) 46))) -(((-1250 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3699 (|#4| |#2|)) (-15 -1749 (|#2| |#4| (-766))) (-15 -3190 ((-1 |#4| (-639 |#4|)) |#3|)) (IF (|has| |#1| (-554)) (-15 -2012 (|#4| (-406 |#2|))) |%noBranch|)) (-1044) (-1232 |#1|) (-650 |#2|) (-1247 |#1|)) (T -1250)) -((-2012 (*1 *2 *3) (-12 (-5 *3 (-406 *5)) (-4 *5 (-1232 *4)) (-4 *4 (-554)) (-4 *4 (-1044)) (-4 *2 (-1247 *4)) (-5 *1 (-1250 *4 *5 *6 *2)) (-4 *6 (-650 *5)))) (-3190 (*1 *2 *3) (-12 (-4 *4 (-1044)) (-4 *5 (-1232 *4)) (-5 *2 (-1 *6 (-639 *6))) (-5 *1 (-1250 *4 *5 *3 *6)) (-4 *3 (-650 *5)) (-4 *6 (-1247 *4)))) (-1749 (*1 *2 *3 *4) (-12 (-5 *4 (-766)) (-4 *5 (-1044)) (-4 *2 (-1232 *5)) (-5 *1 (-1250 *5 *2 *6 *3)) (-4 *6 (-650 *2)) (-4 *3 (-1247 *5)))) (-3699 (*1 *2 *3) (-12 (-4 *4 (-1044)) (-4 *3 (-1232 *4)) (-4 *2 (-1247 *4)) (-5 *1 (-1250 *4 *3 *5 *2)) (-4 *5 (-650 *3))))) -(-10 -7 (-15 -3699 (|#4| |#2|)) (-15 -1749 (|#2| |#4| (-766))) (-15 -3190 ((-1 |#4| (-639 |#4|)) |#3|)) (IF (|has| |#1| (-554)) (-15 -2012 (|#4| (-406 |#2|))) |%noBranch|)) -NIL -(((-1251) (-139)) (T -1251)) +((-2240 (((-1221 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1221 |#1| |#3| |#5|)) 23))) +(((-1216 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2240 ((-1221 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1221 |#1| |#3| |#5|)))) (-1045) (-1045) (-1169) (-1169) |#1| |#2|) (T -1216)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1221 *5 *7 *9)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-14 *7 (-1169)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1221 *6 *8 *10)) (-5 *1 (-1216 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1169))))) +(-10 -7 (-15 -2240 ((-1221 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1221 |#1| |#3| |#5|)))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-2606 (((-640 (-1075)) $) 77)) (-2518 (((-1169) $) 106)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 54 (|has| |#1| (-555)))) (-4223 (($ $) 55 (|has| |#1| (-555)))) (-3156 (((-112) $) 57 (|has| |#1| (-555)))) (-2421 (($ $ (-563)) 101) (($ $ (-563) (-563)) 100)) (-1539 (((-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) $) 108)) (-1771 (($ $) 138 (|has| |#1| (-38 (-407 (-563)))))) (-1619 (($ $) 121 (|has| |#1| (-38 (-407 (-563)))))) (-1495 (((-3 $ "failed") $ $) 19)) (-4335 (($ $) 165 (|has| |#1| (-363)))) (-3205 (((-418 $) $) 166 (|has| |#1| (-363)))) (-2186 (($ $) 120 (|has| |#1| (-38 (-407 (-563)))))) (-1919 (((-112) $ $) 156 (|has| |#1| (-363)))) (-1748 (($ $) 137 (|has| |#1| (-38 (-407 (-563)))))) (-1597 (($ $) 122 (|has| |#1| (-38 (-407 (-563)))))) (-3045 (($ (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|)))) 176)) (-1794 (($ $) 136 (|has| |#1| (-38 (-407 (-563)))))) (-1643 (($ $) 123 (|has| |#1| (-38 (-407 (-563)))))) (-4239 (($) 17 T CONST)) (-3090 (($ $ $) 160 (|has| |#1| (-363)))) (-2751 (($ $) 63)) (-3400 (((-3 $ "failed") $) 33)) (-4064 (((-407 (-948 |#1|)) $ (-563)) 174 (|has| |#1| (-555))) (((-407 (-948 |#1|)) $ (-563) (-563)) 173 (|has| |#1| (-555)))) (-3050 (($ $ $) 159 (|has| |#1| (-363)))) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) 154 (|has| |#1| (-363)))) (-2468 (((-112) $) 167 (|has| |#1| (-363)))) (-2788 (((-112) $) 76)) (-2180 (($) 148 (|has| |#1| (-38 (-407 (-563)))))) (-3254 (((-563) $) 103) (((-563) $ (-563)) 102)) (-3827 (((-112) $) 31)) (-1645 (($ $ (-563)) 119 (|has| |#1| (-38 (-407 (-563)))))) (-1351 (($ $ (-917)) 104)) (-2831 (($ (-1 |#1| (-563)) $) 175)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) 163 (|has| |#1| (-363)))) (-3920 (((-112) $) 65)) (-2588 (($ |#1| (-563)) 64) (($ $ (-1075) (-563)) 79) (($ $ (-640 (-1075)) (-640 (-563))) 78)) (-2240 (($ (-1 |#1| |#1|) $) 66)) (-4371 (($ $) 145 (|has| |#1| (-38 (-407 (-563)))))) (-2716 (($ $) 68)) (-2726 ((|#1| $) 69)) (-3513 (($ (-640 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-3573 (((-1151) $) 9)) (-2688 (($ $) 168 (|has| |#1| (-363)))) (-3698 (($ $) 172 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) 171 (-4032 (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-955)) (|has| |#1| (-1193)) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-15 -2606 ((-640 (-1169)) |#1|))) (|has| |#1| (-15 -3698 (|#1| |#1| (-1169)))) (|has| |#1| (-38 (-407 (-563)))))))) (-1694 (((-1113) $) 10)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 153 (|has| |#1| (-363)))) (-3548 (($ (-640 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-2174 (((-418 $) $) 164 (|has| |#1| (-363)))) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) 161 (|has| |#1| (-363)))) (-3320 (($ $ (-563)) 98)) (-3008 (((-3 $ "failed") $ $) 53 (|has| |#1| (-555)))) (-1465 (((-3 (-640 $) "failed") (-640 $) $) 155 (|has| |#1| (-363)))) (-3368 (($ $) 146 (|has| |#1| (-38 (-407 (-563)))))) (-1540 (((-1149 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-563)))))) (-2628 (((-767) $) 157 (|has| |#1| (-363)))) (-2309 ((|#1| $ (-563)) 107) (($ $ $) 84 (|has| (-563) (-1105)))) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 158 (|has| |#1| (-363)))) (-4202 (($ $ (-640 (-1169)) (-640 (-767))) 92 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-1169) (-767)) 91 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-640 (-1169))) 90 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-1169)) 89 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-767)) 87 (|has| |#1| (-15 * (|#1| (-563) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (-4167 (((-563) $) 67)) (-1806 (($ $) 135 (|has| |#1| (-38 (-407 (-563)))))) (-1656 (($ $) 124 (|has| |#1| (-38 (-407 (-563)))))) (-1784 (($ $) 134 (|has| |#1| (-38 (-407 (-563)))))) (-1630 (($ $) 125 (|has| |#1| (-38 (-407 (-563)))))) (-1759 (($ $) 133 (|has| |#1| (-38 (-407 (-563)))))) (-1608 (($ $) 126 (|has| |#1| (-38 (-407 (-563)))))) (-1741 (($ $) 75)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ (-407 (-563))) 60 (|has| |#1| (-38 (-407 (-563))))) (($ $) 52 (|has| |#1| (-555)))) (-4319 ((|#1| $ (-563)) 62)) (-2779 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-1675 (((-767)) 28)) (-3408 ((|#1| $) 105)) (-1840 (($ $) 144 (|has| |#1| (-38 (-407 (-563)))))) (-1695 (($ $) 132 (|has| |#1| (-38 (-407 (-563)))))) (-2126 (((-112) $ $) 56 (|has| |#1| (-555)))) (-1817 (($ $) 143 (|has| |#1| (-38 (-407 (-563)))))) (-1667 (($ $) 131 (|has| |#1| (-38 (-407 (-563)))))) (-1862 (($ $) 142 (|has| |#1| (-38 (-407 (-563)))))) (-1722 (($ $) 130 (|has| |#1| (-38 (-407 (-563)))))) (-1403 ((|#1| $ (-563)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-563)))) (|has| |#1| (-15 -1693 (|#1| (-1169))))))) (-1311 (($ $) 141 (|has| |#1| (-38 (-407 (-563)))))) (-1735 (($ $) 129 (|has| |#1| (-38 (-407 (-563)))))) (-1851 (($ $) 140 (|has| |#1| (-38 (-407 (-563)))))) (-1710 (($ $) 128 (|has| |#1| (-38 (-407 (-563)))))) (-1829 (($ $) 139 (|has| |#1| (-38 (-407 (-563)))))) (-1680 (($ $) 127 (|has| |#1| (-38 (-407 (-563)))))) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-3209 (($ $ (-640 (-1169)) (-640 (-767))) 96 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-1169) (-767)) 95 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-640 (-1169))) 94 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-1169)) 93 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-767)) 88 (|has| |#1| (-15 * (|#1| (-563) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (-1718 (((-112) $ $) 6)) (-1837 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363)))) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 118 (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-563)) $) 59 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 58 (|has| |#1| (-38 (-407 (-563))))))) +(((-1217 |#1|) (-140) (-1045)) (T -1217)) +((-3045 (*1 *1 *2) (-12 (-5 *2 (-1149 (-2 (|:| |k| (-563)) (|:| |c| *3)))) (-4 *3 (-1045)) (-4 *1 (-1217 *3)))) (-2831 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-563))) (-4 *1 (-1217 *3)) (-4 *3 (-1045)))) (-4064 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *1 (-1217 *4)) (-4 *4 (-1045)) (-4 *4 (-555)) (-5 *2 (-407 (-948 *4))))) (-4064 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-563)) (-4 *1 (-1217 *4)) (-4 *4 (-1045)) (-4 *4 (-555)) (-5 *2 (-407 (-948 *4))))) (-3698 (*1 *1 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-563)))))) (-3698 (*1 *1 *1 *2) (-4032 (-12 (-5 *2 (-1169)) (-4 *1 (-1217 *3)) (-4 *3 (-1045)) (-12 (-4 *3 (-29 (-563))) (-4 *3 (-955)) (-4 *3 (-1193)) (-4 *3 (-38 (-407 (-563)))))) (-12 (-5 *2 (-1169)) (-4 *1 (-1217 *3)) (-4 *3 (-1045)) (-12 (|has| *3 (-15 -2606 ((-640 *2) *3))) (|has| *3 (-15 -3698 (*3 *3 *2))) (-4 *3 (-38 (-407 (-563))))))))) +(-13 (-1235 |t#1| (-563)) (-10 -8 (-15 -3045 ($ (-1149 (-2 (|:| |k| (-563)) (|:| |c| |t#1|))))) (-15 -2831 ($ (-1 |t#1| (-563)) $)) (IF (|has| |t#1| (-555)) (PROGN (-15 -4064 ((-407 (-948 |t#1|)) $ (-563))) (-15 -4064 ((-407 (-948 |t#1|)) $ (-563) (-563)))) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-563)))) (PROGN (-15 -3698 ($ $)) (IF (|has| |t#1| (-15 -3698 (|t#1| |t#1| (-1169)))) (IF (|has| |t#1| (-15 -2606 ((-640 (-1169)) |t#1|))) (-15 -3698 ($ $ (-1169))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1193)) (IF (|has| |t#1| (-955)) (IF (|has| |t#1| (-29 (-563))) (-15 -3698 ($ $ (-1169))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-998)) (-6 (-1193))) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-563)) . T) ((-25) . T) ((-38 #1=(-407 (-563))) -4032 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4032 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-563)))) ((-95) |has| |#1| (-38 (-407 (-563)))) ((-102) . T) ((-111 #1# #1#) -4032 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4032 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #1#) -4032 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-613 (-563)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-613 $) -4032 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-610 (-858)) . T) ((-172) -4032 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-563) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-563)))) ((-286 $ $) |has| (-563) (-1105)) ((-290) -4032 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-563)))) ((-555) -4032 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-643 #1#) -4032 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #1#) -4032 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -4032 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-722) . T) ((-896 (-1169)) -12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))) ((-969 |#1| #0# (-1075)) . T) ((-916) |has| |#1| (-363)) ((-998) |has| |#1| (-38 (-407 (-563)))) ((-1051 #1#) -4032 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-1051 |#1|) . T) ((-1051 $) -4032 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1193) |has| |#1| (-38 (-407 (-563)))) ((-1196) |has| |#1| (-38 (-407 (-563)))) ((-1212) |has| |#1| (-363)) ((-1235 |#1| #0#) . T)) +((-3411 (((-112) $) 12)) (-2131 (((-3 |#3| "failed") $) 17) (((-3 (-1169) "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 (-563) "failed") $) NIL)) (-2058 ((|#3| $) 14) (((-1169) $) NIL) (((-407 (-563)) $) NIL) (((-563) $) NIL))) +(((-1218 |#1| |#2| |#3|) (-10 -8 (-15 -2131 ((-3 (-563) "failed") |#1|)) (-15 -2058 ((-563) |#1|)) (-15 -2131 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2058 ((-407 (-563)) |#1|)) (-15 -2131 ((-3 (-1169) "failed") |#1|)) (-15 -2058 ((-1169) |#1|)) (-15 -2131 ((-3 |#3| "failed") |#1|)) (-15 -2058 (|#3| |#1|)) (-15 -3411 ((-112) |#1|))) (-1219 |#2| |#3|) (-1045) (-1248 |#2|)) (T -1218)) +NIL +(-10 -8 (-15 -2131 ((-3 (-563) "failed") |#1|)) (-15 -2058 ((-563) |#1|)) (-15 -2131 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2058 ((-407 (-563)) |#1|)) (-15 -2131 ((-3 (-1169) "failed") |#1|)) (-15 -2058 ((-1169) |#1|)) (-15 -2131 ((-3 |#3| "failed") |#1|)) (-15 -2058 (|#3| |#1|)) (-15 -3411 ((-112) |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-3401 ((|#2| $) 231 (-2190 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-2606 (((-640 (-1075)) $) 77)) (-2518 (((-1169) $) 106)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 54 (|has| |#1| (-555)))) (-4223 (($ $) 55 (|has| |#1| (-555)))) (-3156 (((-112) $) 57 (|has| |#1| (-555)))) (-2421 (($ $ (-563)) 101) (($ $ (-563) (-563)) 100)) (-1539 (((-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) $) 108)) (-2084 ((|#2| $) 267)) (-3258 (((-3 |#2| "failed") $) 263)) (-2652 ((|#2| $) 264)) (-1771 (($ $) 138 (|has| |#1| (-38 (-407 (-563)))))) (-1619 (($ $) 121 (|has| |#1| (-38 (-407 (-563)))))) (-1495 (((-3 $ "failed") $ $) 19)) (-2424 (((-418 (-1165 $)) (-1165 $)) 240 (-2190 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-4335 (($ $) 165 (|has| |#1| (-363)))) (-3205 (((-418 $) $) 166 (|has| |#1| (-363)))) (-2186 (($ $) 120 (|has| |#1| (-38 (-407 (-563)))))) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 237 (-2190 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-1919 (((-112) $ $) 156 (|has| |#1| (-363)))) (-1748 (($ $) 137 (|has| |#1| (-38 (-407 (-563)))))) (-1597 (($ $) 122 (|has| |#1| (-38 (-407 (-563)))))) (-1857 (((-563) $) 249 (-2190 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-3045 (($ (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|)))) 176)) (-1794 (($ $) 136 (|has| |#1| (-38 (-407 (-563)))))) (-1643 (($ $) 123 (|has| |#1| (-38 (-407 (-563)))))) (-4239 (($) 17 T CONST)) (-2131 (((-3 |#2| "failed") $) 270) (((-3 (-563) "failed") $) 260 (-2190 (|has| |#2| (-1034 (-563))) (|has| |#1| (-363)))) (((-3 (-407 (-563)) "failed") $) 258 (-2190 (|has| |#2| (-1034 (-563))) (|has| |#1| (-363)))) (((-3 (-1169) "failed") $) 242 (-2190 (|has| |#2| (-1034 (-1169))) (|has| |#1| (-363))))) (-2058 ((|#2| $) 271) (((-563) $) 259 (-2190 (|has| |#2| (-1034 (-563))) (|has| |#1| (-363)))) (((-407 (-563)) $) 257 (-2190 (|has| |#2| (-1034 (-563))) (|has| |#1| (-363)))) (((-1169) $) 241 (-2190 (|has| |#2| (-1034 (-1169))) (|has| |#1| (-363))))) (-2457 (($ $) 266) (($ (-563) $) 265)) (-3090 (($ $ $) 160 (|has| |#1| (-363)))) (-2751 (($ $) 63)) (-2950 (((-684 |#2|) (-684 $)) 221 (|has| |#1| (-363))) (((-2 (|:| -2835 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) 220 (|has| |#1| (-363))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 219 (-2190 (|has| |#2| (-636 (-563))) (|has| |#1| (-363)))) (((-684 (-563)) (-684 $)) 218 (-2190 (|has| |#2| (-636 (-563))) (|has| |#1| (-363))))) (-3400 (((-3 $ "failed") $) 33)) (-4064 (((-407 (-948 |#1|)) $ (-563)) 174 (|has| |#1| (-555))) (((-407 (-948 |#1|)) $ (-563) (-563)) 173 (|has| |#1| (-555)))) (-1691 (($) 233 (-2190 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-3050 (($ $ $) 159 (|has| |#1| (-363)))) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) 154 (|has| |#1| (-363)))) (-2468 (((-112) $) 167 (|has| |#1| (-363)))) (-3101 (((-112) $) 247 (-2190 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-2788 (((-112) $) 76)) (-2180 (($) 148 (|has| |#1| (-38 (-407 (-563)))))) (-3787 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 225 (-2190 (|has| |#2| (-882 (-379))) (|has| |#1| (-363)))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 224 (-2190 (|has| |#2| (-882 (-563))) (|has| |#1| (-363))))) (-3254 (((-563) $) 103) (((-563) $ (-563)) 102)) (-3827 (((-112) $) 31)) (-2711 (($ $) 229 (|has| |#1| (-363)))) (-2143 ((|#2| $) 227 (|has| |#1| (-363)))) (-1645 (($ $ (-563)) 119 (|has| |#1| (-38 (-407 (-563)))))) (-2408 (((-3 $ "failed") $) 261 (-2190 (|has| |#2| (-1144)) (|has| |#1| (-363))))) (-1419 (((-112) $) 248 (-2190 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-1351 (($ $ (-917)) 104)) (-2831 (($ (-1 |#1| (-563)) $) 175)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) 163 (|has| |#1| (-363)))) (-3920 (((-112) $) 65)) (-2588 (($ |#1| (-563)) 64) (($ $ (-1075) (-563)) 79) (($ $ (-640 (-1075)) (-640 (-563))) 78)) (-3084 (($ $ $) 251 (-2190 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-1777 (($ $ $) 252 (-2190 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-2240 (($ (-1 |#1| |#1|) $) 66) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-363)))) (-4371 (($ $) 145 (|has| |#1| (-38 (-407 (-563)))))) (-2716 (($ $) 68)) (-2726 ((|#1| $) 69)) (-3513 (($ (-640 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-2660 (($ (-563) |#2|) 268)) (-3573 (((-1151) $) 9)) (-2688 (($ $) 168 (|has| |#1| (-363)))) (-3698 (($ $) 172 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) 171 (-4032 (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-955)) (|has| |#1| (-1193)) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-15 -2606 ((-640 (-1169)) |#1|))) (|has| |#1| (-15 -3698 (|#1| |#1| (-1169)))) (|has| |#1| (-38 (-407 (-563)))))))) (-2523 (($) 262 (-2190 (|has| |#2| (-1144)) (|has| |#1| (-363))) CONST)) (-1694 (((-1113) $) 10)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 153 (|has| |#1| (-363)))) (-3548 (($ (-640 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-4215 (($ $) 232 (-2190 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-1583 ((|#2| $) 235 (-2190 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-1876 (((-418 (-1165 $)) (-1165 $)) 238 (-2190 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-3116 (((-418 (-1165 $)) (-1165 $)) 239 (-2190 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-2174 (((-418 $) $) 164 (|has| |#1| (-363)))) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) 161 (|has| |#1| (-363)))) (-3320 (($ $ (-563)) 98)) (-3008 (((-3 $ "failed") $ $) 53 (|has| |#1| (-555)))) (-1465 (((-3 (-640 $) "failed") (-640 $) $) 155 (|has| |#1| (-363)))) (-3368 (($ $) 146 (|has| |#1| (-38 (-407 (-563)))))) (-1540 (((-1149 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-563))))) (($ $ (-1169) |#2|) 212 (-2190 (|has| |#2| (-514 (-1169) |#2|)) (|has| |#1| (-363)))) (($ $ (-640 (-1169)) (-640 |#2|)) 211 (-2190 (|has| |#2| (-514 (-1169) |#2|)) (|has| |#1| (-363)))) (($ $ (-640 (-294 |#2|))) 210 (-2190 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-294 |#2|)) 209 (-2190 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ |#2| |#2|) 208 (-2190 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-640 |#2|) (-640 |#2|)) 207 (-2190 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363))))) (-2628 (((-767) $) 157 (|has| |#1| (-363)))) (-2309 ((|#1| $ (-563)) 107) (($ $ $) 84 (|has| (-563) (-1105))) (($ $ |#2|) 206 (-2190 (|has| |#2| (-286 |#2| |#2|)) (|has| |#1| (-363))))) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 158 (|has| |#1| (-363)))) (-4202 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-767)) 216 (|has| |#1| (-363))) (($ $ (-767)) 87 (-4032 (-2190 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $) 85 (-4032 (-2190 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-640 (-1169)) (-640 (-767))) 92 (-4032 (-2190 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|)))))) (($ $ (-1169) (-767)) 91 (-4032 (-2190 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|)))))) (($ $ (-640 (-1169))) 90 (-4032 (-2190 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|)))))) (($ $ (-1169)) 89 (-4032 (-2190 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))))) (-1801 (($ $) 230 (|has| |#1| (-363)))) (-2154 ((|#2| $) 228 (|has| |#1| (-363)))) (-4167 (((-563) $) 67)) (-1806 (($ $) 135 (|has| |#1| (-38 (-407 (-563)))))) (-1656 (($ $) 124 (|has| |#1| (-38 (-407 (-563)))))) (-1784 (($ $) 134 (|has| |#1| (-38 (-407 (-563)))))) (-1630 (($ $) 125 (|has| |#1| (-38 (-407 (-563)))))) (-1759 (($ $) 133 (|has| |#1| (-38 (-407 (-563)))))) (-1608 (($ $) 126 (|has| |#1| (-38 (-407 (-563)))))) (-2220 (((-225) $) 246 (-2190 (|has| |#2| (-1018)) (|has| |#1| (-363)))) (((-379) $) 245 (-2190 (|has| |#2| (-1018)) (|has| |#1| (-363)))) (((-536) $) 244 (-2190 (|has| |#2| (-611 (-536))) (|has| |#1| (-363)))) (((-888 (-379)) $) 223 (-2190 (|has| |#2| (-611 (-888 (-379)))) (|has| |#1| (-363)))) (((-888 (-563)) $) 222 (-2190 (|has| |#2| (-611 (-888 (-563)))) (|has| |#1| (-363))))) (-1377 (((-3 (-1257 $) "failed") (-684 $)) 236 (-2190 (-2190 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#1| (-363))))) (-1741 (($ $) 75)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ |#2|) 269) (($ (-1169)) 243 (-2190 (|has| |#2| (-1034 (-1169))) (|has| |#1| (-363)))) (($ (-407 (-563))) 60 (|has| |#1| (-38 (-407 (-563))))) (($ $) 52 (|has| |#1| (-555)))) (-4319 ((|#1| $ (-563)) 62)) (-2779 (((-3 $ "failed") $) 51 (-4032 (-2190 (-4032 (|has| |#2| (-145)) (-2190 (|has| $ (-145)) (|has| |#2| (-905)))) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-1675 (((-767)) 28)) (-3408 ((|#1| $) 105)) (-4194 ((|#2| $) 234 (-2190 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-1840 (($ $) 144 (|has| |#1| (-38 (-407 (-563)))))) (-1695 (($ $) 132 (|has| |#1| (-38 (-407 (-563)))))) (-2126 (((-112) $ $) 56 (|has| |#1| (-555)))) (-1817 (($ $) 143 (|has| |#1| (-38 (-407 (-563)))))) (-1667 (($ $) 131 (|has| |#1| (-38 (-407 (-563)))))) (-1862 (($ $) 142 (|has| |#1| (-38 (-407 (-563)))))) (-1722 (($ $) 130 (|has| |#1| (-38 (-407 (-563)))))) (-1403 ((|#1| $ (-563)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-563)))) (|has| |#1| (-15 -1693 (|#1| (-1169))))))) (-1311 (($ $) 141 (|has| |#1| (-38 (-407 (-563)))))) (-1735 (($ $) 129 (|has| |#1| (-38 (-407 (-563)))))) (-1851 (($ $) 140 (|has| |#1| (-38 (-407 (-563)))))) (-1710 (($ $) 128 (|has| |#1| (-38 (-407 (-563)))))) (-1829 (($ $) 139 (|has| |#1| (-38 (-407 (-563)))))) (-1680 (($ $) 127 (|has| |#1| (-38 (-407 (-563)))))) (-2509 (($ $) 250 (-2190 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-3209 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-767)) 214 (|has| |#1| (-363))) (($ $ (-767)) 88 (-4032 (-2190 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $) 86 (-4032 (-2190 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-640 (-1169)) (-640 (-767))) 96 (-4032 (-2190 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|)))))) (($ $ (-1169) (-767)) 95 (-4032 (-2190 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|)))))) (($ $ (-640 (-1169))) 94 (-4032 (-2190 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|)))))) (($ $ (-1169)) 93 (-4032 (-2190 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))))) (-1778 (((-112) $ $) 254 (-2190 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-1756 (((-112) $ $) 255 (-2190 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-1718 (((-112) $ $) 6)) (-1768 (((-112) $ $) 253 (-2190 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-1744 (((-112) $ $) 256 (-2190 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-1837 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363))) (($ |#2| |#2|) 226 (|has| |#1| (-363)))) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 118 (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ $ |#2|) 205 (|has| |#1| (-363))) (($ |#2| $) 204 (|has| |#1| (-363))) (($ (-407 (-563)) $) 59 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 58 (|has| |#1| (-38 (-407 (-563))))))) +(((-1219 |#1| |#2|) (-140) (-1045) (-1248 |t#1|)) (T -1219)) +((-4167 (*1 *2 *1) (-12 (-4 *1 (-1219 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1248 *3)) (-5 *2 (-563)))) (-2660 (*1 *1 *2 *3) (-12 (-5 *2 (-563)) (-4 *4 (-1045)) (-4 *1 (-1219 *4 *3)) (-4 *3 (-1248 *4)))) (-2084 (*1 *2 *1) (-12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1248 *3)))) (-2457 (*1 *1 *1) (-12 (-4 *1 (-1219 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1248 *2)))) (-2457 (*1 *1 *2 *1) (-12 (-5 *2 (-563)) (-4 *1 (-1219 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1248 *3)))) (-2652 (*1 *2 *1) (-12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1248 *3)))) (-3258 (*1 *2 *1) (|partial| -12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1248 *3))))) +(-13 (-1217 |t#1|) (-1034 |t#2|) (-613 |t#2|) (-10 -8 (-15 -2660 ($ (-563) |t#2|)) (-15 -4167 ((-563) $)) (-15 -2084 (|t#2| $)) (-15 -2457 ($ $)) (-15 -2457 ($ (-563) $)) (-15 -2652 (|t#2| $)) (-15 -3258 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-363)) (-6 (-988 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-563)) . T) ((-25) . T) ((-38 #1=(-407 (-563))) -4032 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 |#2|) |has| |#1| (-363)) ((-38 $) -4032 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-563)))) ((-95) |has| |#1| (-38 (-407 (-563)))) ((-102) . T) ((-111 #1# #1#) -4032 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-363)) ((-111 $ $) -4032 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) -4032 (-12 (|has| |#1| (-363)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-147) -4032 (-12 (|has| |#1| (-363)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-613 #1#) -4032 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-613 (-563)) . T) ((-613 #2=(-1169)) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-1169)))) ((-613 |#1|) |has| |#1| (-172)) ((-613 |#2|) . T) ((-613 $) -4032 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-610 (-858)) . T) ((-172) -4032 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-611 (-225)) -12 (|has| |#1| (-363)) (|has| |#2| (-1018))) ((-611 (-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-1018))) ((-611 (-536)) -12 (|has| |#1| (-363)) (|has| |#2| (-611 (-536)))) ((-611 (-888 (-379))) -12 (|has| |#1| (-363)) (|has| |#2| (-611 (-888 (-379))))) ((-611 (-888 (-563))) -12 (|has| |#1| (-363)) (|has| |#2| (-611 (-888 (-563))))) ((-231 |#2|) |has| |#1| (-363)) ((-233) -4032 (-12 (|has| |#1| (-363)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-563) |#1|)))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-563)))) ((-286 |#2| $) -12 (|has| |#1| (-363)) (|has| |#2| (-286 |#2| |#2|))) ((-286 $ $) |has| (-563) (-1105)) ((-290) -4032 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-309 |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))) ((-363) |has| |#1| (-363)) ((-338 |#2|) |has| |#1| (-363)) ((-377 |#2|) |has| |#1| (-363)) ((-400 |#2|) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-563)))) ((-514 (-1169) |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-514 (-1169) |#2|))) ((-514 |#2| |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))) ((-555) -4032 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-643 #1#) -4032 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-643 |#1|) . T) ((-643 |#2|) |has| |#1| (-363)) ((-643 $) . T) ((-636 (-563)) -12 (|has| |#1| (-363)) (|has| |#2| (-636 (-563)))) ((-636 |#2|) |has| |#1| (-363)) ((-713 #1#) -4032 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-713 |#1|) |has| |#1| (-172)) ((-713 |#2|) |has| |#1| (-363)) ((-713 $) -4032 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-722) . T) ((-787) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-788) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-790) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-791) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-816) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-844) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-846) -4032 (-12 (|has| |#1| (-363)) (|has| |#2| (-846))) (-12 (|has| |#1| (-363)) (|has| |#2| (-816)))) ((-896 (-1169)) -4032 (-12 (|has| |#1| (-363)) (|has| |#2| (-896 (-1169)))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))) ((-882 (-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-882 (-379)))) ((-882 (-563)) -12 (|has| |#1| (-363)) (|has| |#2| (-882 (-563)))) ((-880 |#2|) |has| |#1| (-363)) ((-905) -12 (|has| |#1| (-363)) (|has| |#2| (-905))) ((-969 |#1| #0# (-1075)) . T) ((-916) |has| |#1| (-363)) ((-988 |#2|) |has| |#1| (-363)) ((-998) |has| |#1| (-38 (-407 (-563)))) ((-1018) -12 (|has| |#1| (-363)) (|has| |#2| (-1018))) ((-1034 (-407 (-563))) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-563)))) ((-1034 (-563)) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-563)))) ((-1034 #2#) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-1169)))) ((-1034 |#2|) . T) ((-1051 #1#) -4032 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-1051 |#1|) . T) ((-1051 |#2|) |has| |#1| (-363)) ((-1051 $) -4032 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1144) -12 (|has| |#1| (-363)) (|has| |#2| (-1144))) ((-1193) |has| |#1| (-38 (-407 (-563)))) ((-1196) |has| |#1| (-38 (-407 (-563)))) ((-1208) |has| |#1| (-363)) ((-1212) |has| |#1| (-363)) ((-1217 |#1|) . T) ((-1235 |#1| #0#) . T)) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) 70)) (-3401 ((|#2| $) NIL (-12 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-2606 (((-640 (-1075)) $) NIL)) (-2518 (((-1169) $) 88)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-4223 (($ $) NIL (|has| |#1| (-555)))) (-3156 (((-112) $) NIL (|has| |#1| (-555)))) (-2421 (($ $ (-563)) 97) (($ $ (-563) (-563)) 99)) (-1539 (((-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) $) 47)) (-2084 ((|#2| $) 11)) (-3258 (((-3 |#2| "failed") $) 30)) (-2652 ((|#2| $) 31)) (-1771 (($ $) 192 (|has| |#1| (-38 (-407 (-563)))))) (-1619 (($ $) 168 (|has| |#1| (-38 (-407 (-563)))))) (-1495 (((-3 $ "failed") $ $) NIL)) (-2424 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-4335 (($ $) NIL (|has| |#1| (-363)))) (-3205 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2186 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (-12 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-1919 (((-112) $ $) NIL (|has| |#1| (-363)))) (-1748 (($ $) 188 (|has| |#1| (-38 (-407 (-563)))))) (-1597 (($ $) 164 (|has| |#1| (-38 (-407 (-563)))))) (-1857 (((-563) $) NIL (-12 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-3045 (($ (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|)))) 57)) (-1794 (($ $) 196 (|has| |#1| (-38 (-407 (-563)))))) (-1643 (($ $) 172 (|has| |#1| (-38 (-407 (-563)))))) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#2| "failed") $) 144) (((-3 (-563) "failed") $) NIL (-12 (|has| |#2| (-1034 (-563))) (|has| |#1| (-363)))) (((-3 (-407 (-563)) "failed") $) NIL (-12 (|has| |#2| (-1034 (-563))) (|has| |#1| (-363)))) (((-3 (-1169) "failed") $) NIL (-12 (|has| |#2| (-1034 (-1169))) (|has| |#1| (-363))))) (-2058 ((|#2| $) 143) (((-563) $) NIL (-12 (|has| |#2| (-1034 (-563))) (|has| |#1| (-363)))) (((-407 (-563)) $) NIL (-12 (|has| |#2| (-1034 (-563))) (|has| |#1| (-363)))) (((-1169) $) NIL (-12 (|has| |#2| (-1034 (-1169))) (|has| |#1| (-363))))) (-2457 (($ $) 61) (($ (-563) $) 24)) (-3090 (($ $ $) NIL (|has| |#1| (-363)))) (-2751 (($ $) NIL)) (-2950 (((-684 |#2|) (-684 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -2835 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (-12 (|has| |#2| (-636 (-563))) (|has| |#1| (-363)))) (((-684 (-563)) (-684 $)) NIL (-12 (|has| |#2| (-636 (-563))) (|has| |#1| (-363))))) (-3400 (((-3 $ "failed") $) 77)) (-4064 (((-407 (-948 |#1|)) $ (-563)) 112 (|has| |#1| (-555))) (((-407 (-948 |#1|)) $ (-563) (-563)) 114 (|has| |#1| (-555)))) (-1691 (($) NIL (-12 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-3050 (($ $ $) NIL (|has| |#1| (-363)))) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-2468 (((-112) $) NIL (|has| |#1| (-363)))) (-3101 (((-112) $) NIL (-12 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-2788 (((-112) $) 64)) (-2180 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3787 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| |#2| (-882 (-379))) (|has| |#1| (-363)))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| |#2| (-882 (-563))) (|has| |#1| (-363))))) (-3254 (((-563) $) 93) (((-563) $ (-563)) 95)) (-3827 (((-112) $) NIL)) (-2711 (($ $) NIL (|has| |#1| (-363)))) (-2143 ((|#2| $) 151 (|has| |#1| (-363)))) (-1645 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2408 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1144)) (|has| |#1| (-363))))) (-1419 (((-112) $) NIL (-12 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-1351 (($ $ (-917)) 136)) (-2831 (($ (-1 |#1| (-563)) $) 132)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3920 (((-112) $) NIL)) (-2588 (($ |#1| (-563)) 19) (($ $ (-1075) (-563)) NIL) (($ $ (-640 (-1075)) (-640 (-563))) NIL)) (-3084 (($ $ $) NIL (-12 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-1777 (($ $ $) NIL (-12 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-2240 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-363)))) (-4371 (($ $) 162 (|has| |#1| (-38 (-407 (-563)))))) (-2716 (($ $) NIL)) (-2726 ((|#1| $) NIL)) (-3513 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2660 (($ (-563) |#2|) 10)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) 145 (|has| |#1| (-363)))) (-3698 (($ $) 214 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) 219 (-4032 (-12 (|has| |#1| (-15 -3698 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -2606 ((-640 (-1169)) |#1|))) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-955)) (|has| |#1| (-1193)))))) (-2523 (($) NIL (-12 (|has| |#2| (-1144)) (|has| |#1| (-363))) CONST)) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-363)))) (-3548 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4215 (($ $) NIL (-12 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-1583 ((|#2| $) NIL (-12 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-1876 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-3116 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-2174 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL (|has| |#1| (-363)))) (-3320 (($ $ (-563)) 126)) (-3008 (((-3 $ "failed") $ $) 116 (|has| |#1| (-555)))) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3368 (($ $) 160 (|has| |#1| (-38 (-407 (-563)))))) (-1540 (((-1149 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-563))))) (($ $ (-1169) |#2|) NIL (-12 (|has| |#2| (-514 (-1169) |#2|)) (|has| |#1| (-363)))) (($ $ (-640 (-1169)) (-640 |#2|)) NIL (-12 (|has| |#2| (-514 (-1169) |#2|)) (|has| |#1| (-363)))) (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363))))) (-2628 (((-767) $) NIL (|has| |#1| (-363)))) (-2309 ((|#1| $ (-563)) 91) (($ $ $) 79 (|has| (-563) (-1105))) (($ $ |#2|) NIL (-12 (|has| |#2| (-286 |#2| |#2|)) (|has| |#1| (-363))))) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| |#1| (-363)))) (-4202 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#1| (-363))) (($ $ (-767)) NIL (-4032 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $) 137 (-4032 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-4032 (-12 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169) (-767)) NIL (-4032 (-12 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-640 (-1169))) NIL (-4032 (-12 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169)) 140 (-4032 (-12 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))))) (-1801 (($ $) NIL (|has| |#1| (-363)))) (-2154 ((|#2| $) 152 (|has| |#1| (-363)))) (-4167 (((-563) $) 12)) (-1806 (($ $) 198 (|has| |#1| (-38 (-407 (-563)))))) (-1656 (($ $) 174 (|has| |#1| (-38 (-407 (-563)))))) (-1784 (($ $) 194 (|has| |#1| (-38 (-407 (-563)))))) (-1630 (($ $) 170 (|has| |#1| (-38 (-407 (-563)))))) (-1759 (($ $) 190 (|has| |#1| (-38 (-407 (-563)))))) (-1608 (($ $) 166 (|has| |#1| (-38 (-407 (-563)))))) (-2220 (((-225) $) NIL (-12 (|has| |#2| (-1018)) (|has| |#1| (-363)))) (((-379) $) NIL (-12 (|has| |#2| (-1018)) (|has| |#1| (-363)))) (((-536) $) NIL (-12 (|has| |#2| (-611 (-536))) (|has| |#1| (-363)))) (((-888 (-379)) $) NIL (-12 (|has| |#2| (-611 (-888 (-379)))) (|has| |#1| (-363)))) (((-888 (-563)) $) NIL (-12 (|has| |#2| (-611 (-888 (-563)))) (|has| |#1| (-363))))) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905)) (|has| |#1| (-363))))) (-1741 (($ $) 124)) (-1693 (((-858) $) 244) (($ (-563)) 23) (($ |#1|) 21 (|has| |#1| (-172))) (($ |#2|) 20) (($ (-1169)) NIL (-12 (|has| |#2| (-1034 (-1169))) (|has| |#1| (-363)))) (($ (-407 (-563))) 155 (|has| |#1| (-38 (-407 (-563))))) (($ $) NIL (|has| |#1| (-555)))) (-4319 ((|#1| $ (-563)) 74)) (-2779 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| $ (-145)) (|has| |#2| (-905)) (|has| |#1| (-363))) (-12 (|has| |#2| (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-1675 (((-767)) 142)) (-3408 ((|#1| $) 90)) (-4194 ((|#2| $) NIL (-12 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-1840 (($ $) 204 (|has| |#1| (-38 (-407 (-563)))))) (-1695 (($ $) 180 (|has| |#1| (-38 (-407 (-563)))))) (-2126 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1817 (($ $) 200 (|has| |#1| (-38 (-407 (-563)))))) (-1667 (($ $) 176 (|has| |#1| (-38 (-407 (-563)))))) (-1862 (($ $) 208 (|has| |#1| (-38 (-407 (-563)))))) (-1722 (($ $) 184 (|has| |#1| (-38 (-407 (-563)))))) (-1403 ((|#1| $ (-563)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-563)))) (|has| |#1| (-15 -1693 (|#1| (-1169))))))) (-1311 (($ $) 210 (|has| |#1| (-38 (-407 (-563)))))) (-1735 (($ $) 186 (|has| |#1| (-38 (-407 (-563)))))) (-1851 (($ $) 206 (|has| |#1| (-38 (-407 (-563)))))) (-1710 (($ $) 182 (|has| |#1| (-38 (-407 (-563)))))) (-1829 (($ $) 202 (|has| |#1| (-38 (-407 (-563)))))) (-1680 (($ $) 178 (|has| |#1| (-38 (-407 (-563)))))) (-2509 (($ $) NIL (-12 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-2241 (($) 13 T CONST)) (-2254 (($) 17 T CONST)) (-3209 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#1| (-363))) (($ $ (-767)) NIL (-4032 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $) NIL (-4032 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-4032 (-12 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169) (-767)) NIL (-4032 (-12 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-640 (-1169))) NIL (-4032 (-12 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169)) NIL (-4032 (-12 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))))) (-1778 (((-112) $ $) NIL (-12 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-1756 (((-112) $ $) NIL (-12 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-1718 (((-112) $ $) 63)) (-1768 (((-112) $ $) NIL (-12 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-1744 (((-112) $ $) NIL (-12 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-1837 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363))) (($ |#2| |#2|) 150 (|has| |#1| (-363)))) (-1826 (($ $) 213) (($ $ $) 68)) (-1814 (($ $ $) 66)) (** (($ $ (-917)) NIL) (($ $ (-767)) 73) (($ $ (-563)) 146 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 158 (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-363))) (($ |#2| $) 147 (|has| |#1| (-363))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))))) +(((-1220 |#1| |#2|) (-1219 |#1| |#2|) (-1045) (-1248 |#1|)) (T -1220)) +NIL +(-1219 |#1| |#2|) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-3401 (((-1249 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-2606 (((-640 (-1075)) $) NIL)) (-2518 (((-1169) $) 10)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (-4032 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555))))) (-4223 (($ $) NIL (-4032 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555))))) (-3156 (((-112) $) NIL (-4032 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555))))) (-2421 (($ $ (-563)) NIL) (($ $ (-563) (-563)) NIL)) (-1539 (((-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) $) NIL)) (-2084 (((-1249 |#1| |#2| |#3|) $) NIL)) (-3258 (((-3 (-1249 |#1| |#2| |#3|) "failed") $) NIL)) (-2652 (((-1249 |#1| |#2| |#3|) $) NIL)) (-1771 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1619 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1495 (((-3 $ "failed") $ $) NIL)) (-2424 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-4335 (($ $) NIL (|has| |#1| (-363)))) (-3205 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2186 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-1919 (((-112) $ $) NIL (|has| |#1| (-363)))) (-1748 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1597 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1857 (((-563) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-3045 (($ (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|)))) NIL)) (-1794 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1643 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-1249 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1169) "failed") $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-1034 (-1169))) (|has| |#1| (-363)))) (((-3 (-407 (-563)) "failed") $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-1034 (-563))) (|has| |#1| (-363)))) (((-3 (-563) "failed") $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-1034 (-563))) (|has| |#1| (-363))))) (-2058 (((-1249 |#1| |#2| |#3|) $) NIL) (((-1169) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-1034 (-1169))) (|has| |#1| (-363)))) (((-407 (-563)) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-1034 (-563))) (|has| |#1| (-363)))) (((-563) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-1034 (-563))) (|has| |#1| (-363))))) (-2457 (($ $) NIL) (($ (-563) $) NIL)) (-3090 (($ $ $) NIL (|has| |#1| (-363)))) (-2751 (($ $) NIL)) (-2950 (((-684 (-1249 |#1| |#2| |#3|)) (-684 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -2835 (-684 (-1249 |#1| |#2| |#3|))) (|:| |vec| (-1257 (-1249 |#1| |#2| |#3|)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-636 (-563))) (|has| |#1| (-363)))) (((-684 (-563)) (-684 $)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-636 (-563))) (|has| |#1| (-363))))) (-3400 (((-3 $ "failed") $) NIL)) (-4064 (((-407 (-948 |#1|)) $ (-563)) NIL (|has| |#1| (-555))) (((-407 (-948 |#1|)) $ (-563) (-563)) NIL (|has| |#1| (-555)))) (-1691 (($) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-3050 (($ $ $) NIL (|has| |#1| (-363)))) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-2468 (((-112) $) NIL (|has| |#1| (-363)))) (-3101 (((-112) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-2788 (((-112) $) NIL)) (-2180 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3787 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-882 (-379))) (|has| |#1| (-363)))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-882 (-563))) (|has| |#1| (-363))))) (-3254 (((-563) $) NIL) (((-563) $ (-563)) NIL)) (-3827 (((-112) $) NIL)) (-2711 (($ $) NIL (|has| |#1| (-363)))) (-2143 (((-1249 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363)))) (-1645 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2408 (((-3 $ "failed") $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-1144)) (|has| |#1| (-363))))) (-1419 (((-112) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-1351 (($ $ (-917)) NIL)) (-2831 (($ (-1 |#1| (-563)) $) NIL)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3920 (((-112) $) NIL)) (-2588 (($ |#1| (-563)) 17) (($ $ (-1075) (-563)) NIL) (($ $ (-640 (-1075)) (-640 (-563))) NIL)) (-3084 (($ $ $) NIL (-4032 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-1777 (($ $ $) NIL (-4032 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-2240 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-363)))) (-4371 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2716 (($ $) NIL)) (-2726 ((|#1| $) NIL)) (-3513 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2660 (($ (-563) (-1249 |#1| |#2| |#3|)) NIL)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) NIL (|has| |#1| (-363)))) (-3698 (($ $) 25 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) NIL (-4032 (-12 (|has| |#1| (-15 -3698 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -2606 ((-640 (-1169)) |#1|))) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-955)) (|has| |#1| (-1193))))) (($ $ (-1253 |#2|)) 26 (|has| |#1| (-38 (-407 (-563)))))) (-2523 (($) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-1144)) (|has| |#1| (-363))) CONST)) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-363)))) (-3548 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4215 (($ $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-1583 (((-1249 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-1876 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-3116 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-2174 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL (|has| |#1| (-363)))) (-3320 (($ $ (-563)) NIL)) (-3008 (((-3 $ "failed") $ $) NIL (-4032 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555))))) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3368 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1540 (((-1149 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-563))))) (($ $ (-1169) (-1249 |#1| |#2| |#3|)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-514 (-1169) (-1249 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-640 (-1169)) (-640 (-1249 |#1| |#2| |#3|))) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-514 (-1169) (-1249 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-640 (-294 (-1249 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-309 (-1249 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-294 (-1249 |#1| |#2| |#3|))) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-309 (-1249 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-309 (-1249 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-640 (-1249 |#1| |#2| |#3|)) (-640 (-1249 |#1| |#2| |#3|))) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-309 (-1249 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-2628 (((-767) $) NIL (|has| |#1| (-363)))) (-2309 ((|#1| $ (-563)) NIL) (($ $ $) NIL (|has| (-563) (-1105))) (($ $ (-1249 |#1| |#2| |#3|)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-286 (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| |#1| (-363)))) (-4202 (($ $ (-1 (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|)) (-767)) NIL (|has| |#1| (-363))) (($ $ (-1253 |#2|)) 24) (($ $ (-767)) NIL (-4032 (-12 (|has| (-1249 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $) 23 (-4032 (-12 (|has| (-1249 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-4032 (-12 (|has| (-1249 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169) (-767)) NIL (-4032 (-12 (|has| (-1249 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-640 (-1169))) NIL (-4032 (-12 (|has| (-1249 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169)) NIL (-4032 (-12 (|has| (-1249 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))))) (-1801 (($ $) NIL (|has| |#1| (-363)))) (-2154 (((-1249 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363)))) (-4167 (((-563) $) NIL)) (-1806 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1656 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1784 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1630 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1759 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1608 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2220 (((-536) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-611 (-536))) (|has| |#1| (-363)))) (((-379) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-1018)) (|has| |#1| (-363)))) (((-225) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-1018)) (|has| |#1| (-363)))) (((-888 (-379)) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-611 (-888 (-379)))) (|has| |#1| (-363)))) (((-888 (-563)) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-611 (-888 (-563)))) (|has| |#1| (-363))))) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-1741 (($ $) NIL)) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1249 |#1| |#2| |#3|)) NIL) (($ (-1253 |#2|)) 22) (($ (-1169)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-1034 (-1169))) (|has| |#1| (-363)))) (($ $) NIL (-4032 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555)))) (($ (-407 (-563))) NIL (-4032 (-12 (|has| (-1249 |#1| |#2| |#3|) (-1034 (-563))) (|has| |#1| (-363))) (|has| |#1| (-38 (-407 (-563))))))) (-4319 ((|#1| $ (-563)) NIL)) (-2779 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| $ (-145)) (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-1675 (((-767)) NIL)) (-3408 ((|#1| $) 11)) (-4194 (((-1249 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-1840 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1695 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2126 (((-112) $ $) NIL (-4032 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555))))) (-1817 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1667 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1862 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1722 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1403 ((|#1| $ (-563)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-563)))) (|has| |#1| (-15 -1693 (|#1| (-1169))))))) (-1311 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1735 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1851 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1710 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1829 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1680 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2509 (($ $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-2241 (($) 19 T CONST)) (-2254 (($) 15 T CONST)) (-3209 (($ $ (-1 (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|)) (-767)) NIL (|has| |#1| (-363))) (($ $ (-767)) NIL (-4032 (-12 (|has| (-1249 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $) NIL (-4032 (-12 (|has| (-1249 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-4032 (-12 (|has| (-1249 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169) (-767)) NIL (-4032 (-12 (|has| (-1249 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-640 (-1169))) NIL (-4032 (-12 (|has| (-1249 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169)) NIL (-4032 (-12 (|has| (-1249 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))))) (-1778 (((-112) $ $) NIL (-4032 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-1756 (((-112) $ $) NIL (-4032 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL (-4032 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-1744 (((-112) $ $) NIL (-4032 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-1837 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363))) (($ (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|)) NIL (|has| |#1| (-363)))) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) 20)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1249 |#1| |#2| |#3|)) NIL (|has| |#1| (-363))) (($ (-1249 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))))) +(((-1221 |#1| |#2| |#3|) (-13 (-1219 |#1| (-1249 |#1| |#2| |#3|)) (-10 -8 (-15 -1693 ($ (-1253 |#2|))) (-15 -4202 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -3698 ($ $ (-1253 |#2|))) |%noBranch|))) (-1045) (-1169) |#1|) (T -1221)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1221 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-4202 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1221 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-3698 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1221 *3 *4 *5)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3)))) +(-13 (-1219 |#1| (-1249 |#1| |#2| |#3|)) (-10 -8 (-15 -1693 ($ (-1253 |#2|))) (-15 -4202 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -3698 ($ $ (-1253 |#2|))) |%noBranch|))) +((-3645 (((-2 (|:| |contp| (-563)) (|:| -2760 (-640 (-2 (|:| |irr| |#1|) (|:| -1650 (-563)))))) |#1| (-112)) 12)) (-2184 (((-418 |#1|) |#1|) 22)) (-2174 (((-418 |#1|) |#1|) 21))) +(((-1222 |#1|) (-10 -7 (-15 -2174 ((-418 |#1|) |#1|)) (-15 -2184 ((-418 |#1|) |#1|)) (-15 -3645 ((-2 (|:| |contp| (-563)) (|:| -2760 (-640 (-2 (|:| |irr| |#1|) (|:| -1650 (-563)))))) |#1| (-112)))) (-1233 (-563))) (T -1222)) +((-3645 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-563)) (|:| -2760 (-640 (-2 (|:| |irr| *3) (|:| -1650 (-563))))))) (-5 *1 (-1222 *3)) (-4 *3 (-1233 (-563))))) (-2184 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1222 *3)) (-4 *3 (-1233 (-563))))) (-2174 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1222 *3)) (-4 *3 (-1233 (-563)))))) +(-10 -7 (-15 -2174 ((-418 |#1|) |#1|)) (-15 -2184 ((-418 |#1|) |#1|)) (-15 -3645 ((-2 (|:| |contp| (-563)) (|:| -2760 (-640 (-2 (|:| |irr| |#1|) (|:| -1650 (-563)))))) |#1| (-112)))) +((-2240 (((-1149 |#2|) (-1 |#2| |#1|) (-1224 |#1|)) 23 (|has| |#1| (-844))) (((-1224 |#2|) (-1 |#2| |#1|) (-1224 |#1|)) 17))) +(((-1223 |#1| |#2|) (-10 -7 (-15 -2240 ((-1224 |#2|) (-1 |#2| |#1|) (-1224 |#1|))) (IF (|has| |#1| (-844)) (-15 -2240 ((-1149 |#2|) (-1 |#2| |#1|) (-1224 |#1|))) |%noBranch|)) (-1208) (-1208)) (T -1223)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1224 *5)) (-4 *5 (-844)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-1149 *6)) (-5 *1 (-1223 *5 *6)))) (-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1224 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-1224 *6)) (-5 *1 (-1223 *5 *6))))) +(-10 -7 (-15 -2240 ((-1224 |#2|) (-1 |#2| |#1|) (-1224 |#1|))) (IF (|has| |#1| (-844)) (-15 -2240 ((-1149 |#2|) (-1 |#2| |#1|) (-1224 |#1|))) |%noBranch|)) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-4260 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-2240 (((-1149 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-844)))) (-3244 ((|#1| $) 14)) (-3284 ((|#1| $) 10)) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3298 (((-563) $) 18)) (-3289 ((|#1| $) 17)) (-3426 ((|#1| $) 11)) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-2118 (((-112) $) 16)) (-2213 (((-1149 |#1|) $) 38 (|has| |#1| (-844))) (((-1149 |#1|) (-640 $)) 37 (|has| |#1| (-844)))) (-2220 (($ |#1|) 25)) (-1693 (($ (-1087 |#1|)) 24) (((-858) $) 34 (|has| |#1| (-1093)))) (-2178 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-1464 (($ $ (-563)) 13)) (-1718 (((-112) $ $) 27 (|has| |#1| (-1093))))) +(((-1224 |#1|) (-13 (-1086 |#1|) (-10 -8 (-15 -2178 ($ |#1|)) (-15 -4260 ($ |#1|)) (-15 -1693 ($ (-1087 |#1|))) (-15 -2118 ((-112) $)) (IF (|has| |#1| (-1093)) (-6 (-1093)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-1088 |#1| (-1149 |#1|))) |%noBranch|))) (-1208)) (T -1224)) +((-2178 (*1 *1 *2) (-12 (-5 *1 (-1224 *2)) (-4 *2 (-1208)))) (-4260 (*1 *1 *2) (-12 (-5 *1 (-1224 *2)) (-4 *2 (-1208)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-1087 *3)) (-4 *3 (-1208)) (-5 *1 (-1224 *3)))) (-2118 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-1208))))) +(-13 (-1086 |#1|) (-10 -8 (-15 -2178 ($ |#1|)) (-15 -4260 ($ |#1|)) (-15 -1693 ($ (-1087 |#1|))) (-15 -2118 ((-112) $)) (IF (|has| |#1| (-1093)) (-6 (-1093)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-1088 |#1| (-1149 |#1|))) |%noBranch|))) +((-2240 (((-1230 |#3| |#4|) (-1 |#4| |#2|) (-1230 |#1| |#2|)) 15))) +(((-1225 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2240 ((-1230 |#3| |#4|) (-1 |#4| |#2|) (-1230 |#1| |#2|)))) (-1169) (-1045) (-1169) (-1045)) (T -1225)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1230 *5 *6)) (-14 *5 (-1169)) (-4 *6 (-1045)) (-4 *8 (-1045)) (-5 *2 (-1230 *7 *8)) (-5 *1 (-1225 *5 *6 *7 *8)) (-14 *7 (-1169))))) +(-10 -7 (-15 -2240 ((-1230 |#3| |#4|) (-1 |#4| |#2|) (-1230 |#1| |#2|)))) +((-3266 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-1417 ((|#1| |#3|) 13)) (-2119 ((|#3| |#3|) 19))) +(((-1226 |#1| |#2| |#3|) (-10 -7 (-15 -1417 (|#1| |#3|)) (-15 -2119 (|#3| |#3|)) (-15 -3266 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-555) (-988 |#1|) (-1233 |#2|)) (T -1226)) +((-3266 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-988 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1226 *4 *5 *3)) (-4 *3 (-1233 *5)))) (-2119 (*1 *2 *2) (-12 (-4 *3 (-555)) (-4 *4 (-988 *3)) (-5 *1 (-1226 *3 *4 *2)) (-4 *2 (-1233 *4)))) (-1417 (*1 *2 *3) (-12 (-4 *4 (-988 *2)) (-4 *2 (-555)) (-5 *1 (-1226 *2 *4 *3)) (-4 *3 (-1233 *4))))) +(-10 -7 (-15 -1417 (|#1| |#3|)) (-15 -2119 (|#3| |#3|)) (-15 -3266 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-3333 (((-3 |#2| "failed") |#2| (-767) |#1|) 29)) (-3798 (((-3 |#2| "failed") |#2| (-767)) 30)) (-2455 (((-3 (-2 (|:| -1686 |#2|) (|:| -1701 |#2|)) "failed") |#2|) 42)) (-2006 (((-640 |#2|) |#2|) 44)) (-2228 (((-3 |#2| "failed") |#2| |#2|) 39))) +(((-1227 |#1| |#2|) (-10 -7 (-15 -3798 ((-3 |#2| "failed") |#2| (-767))) (-15 -3333 ((-3 |#2| "failed") |#2| (-767) |#1|)) (-15 -2228 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2455 ((-3 (-2 (|:| -1686 |#2|) (|:| -1701 |#2|)) "failed") |#2|)) (-15 -2006 ((-640 |#2|) |#2|))) (-13 (-555) (-147)) (-1233 |#1|)) (T -1227)) +((-2006 (*1 *2 *3) (-12 (-4 *4 (-13 (-555) (-147))) (-5 *2 (-640 *3)) (-5 *1 (-1227 *4 *3)) (-4 *3 (-1233 *4)))) (-2455 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-555) (-147))) (-5 *2 (-2 (|:| -1686 *3) (|:| -1701 *3))) (-5 *1 (-1227 *4 *3)) (-4 *3 (-1233 *4)))) (-2228 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-555) (-147))) (-5 *1 (-1227 *3 *2)) (-4 *2 (-1233 *3)))) (-3333 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-767)) (-4 *4 (-13 (-555) (-147))) (-5 *1 (-1227 *4 *2)) (-4 *2 (-1233 *4)))) (-3798 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-767)) (-4 *4 (-13 (-555) (-147))) (-5 *1 (-1227 *4 *2)) (-4 *2 (-1233 *4))))) +(-10 -7 (-15 -3798 ((-3 |#2| "failed") |#2| (-767))) (-15 -3333 ((-3 |#2| "failed") |#2| (-767) |#1|)) (-15 -2228 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2455 ((-3 (-2 (|:| -1686 |#2|) (|:| -1701 |#2|)) "failed") |#2|)) (-15 -2006 ((-640 |#2|) |#2|))) +((-2148 (((-3 (-2 (|:| -3490 |#2|) (|:| -1972 |#2|)) "failed") |#2| |#2|) 31))) +(((-1228 |#1| |#2|) (-10 -7 (-15 -2148 ((-3 (-2 (|:| -3490 |#2|) (|:| -1972 |#2|)) "failed") |#2| |#2|))) (-555) (-1233 |#1|)) (T -1228)) +((-2148 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-555)) (-5 *2 (-2 (|:| -3490 *3) (|:| -1972 *3))) (-5 *1 (-1228 *4 *3)) (-4 *3 (-1233 *4))))) +(-10 -7 (-15 -2148 ((-3 (-2 (|:| -3490 |#2|) (|:| -1972 |#2|)) "failed") |#2| |#2|))) +((-1711 ((|#2| |#2| |#2|) 19)) (-3261 ((|#2| |#2| |#2|) 30)) (-1395 ((|#2| |#2| |#2| (-767) (-767)) 36))) +(((-1229 |#1| |#2|) (-10 -7 (-15 -1711 (|#2| |#2| |#2|)) (-15 -3261 (|#2| |#2| |#2|)) (-15 -1395 (|#2| |#2| |#2| (-767) (-767)))) (-1045) (-1233 |#1|)) (T -1229)) +((-1395 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-767)) (-4 *4 (-1045)) (-5 *1 (-1229 *4 *2)) (-4 *2 (-1233 *4)))) (-3261 (*1 *2 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-1233 *3)))) (-1711 (*1 *2 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-1233 *3))))) +(-10 -7 (-15 -1711 (|#2| |#2| |#2|)) (-15 -3261 (|#2| |#2| |#2|)) (-15 -1395 (|#2| |#2| |#2| (-767) (-767)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-4030 (((-1257 |#2|) $ (-767)) NIL)) (-2606 (((-640 (-1075)) $) NIL)) (-1787 (($ (-1165 |#2|)) NIL)) (-2139 (((-1165 $) $ (-1075)) NIL) (((-1165 |#2|) $) NIL)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#2| (-555)))) (-4223 (($ $) NIL (|has| |#2| (-555)))) (-3156 (((-112) $) NIL (|has| |#2| (-555)))) (-1779 (((-767) $) NIL) (((-767) $ (-640 (-1075))) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3724 (($ $ $) NIL (|has| |#2| (-555)))) (-2424 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-4335 (($ $) NIL (|has| |#2| (-452)))) (-3205 (((-418 $) $) NIL (|has| |#2| (-452)))) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-1919 (((-112) $ $) NIL (|has| |#2| (-363)))) (-3729 (($ $ (-767)) NIL)) (-2618 (($ $ (-767)) NIL)) (-3018 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-452)))) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#2| (-1034 (-563)))) (((-3 (-1075) "failed") $) NIL)) (-2058 ((|#2| $) NIL) (((-407 (-563)) $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#2| (-1034 (-563)))) (((-1075) $) NIL)) (-2742 (($ $ $ (-1075)) NIL (|has| |#2| (-172))) ((|#2| $ $) NIL (|has| |#2| (-172)))) (-3090 (($ $ $) NIL (|has| |#2| (-363)))) (-2751 (($ $) NIL)) (-2950 (((-684 (-563)) (-684 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -2835 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL) (((-684 |#2|) (-684 $)) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-3050 (($ $ $) NIL (|has| |#2| (-363)))) (-4369 (($ $ $) NIL)) (-2906 (($ $ $) NIL (|has| |#2| (-555)))) (-2521 (((-2 (|:| -2311 |#2|) (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| |#2| (-555)))) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL (|has| |#2| (-363)))) (-1300 (($ $) NIL (|has| |#2| (-452))) (($ $ (-1075)) NIL (|has| |#2| (-452)))) (-2739 (((-640 $) $) NIL)) (-2468 (((-112) $) NIL (|has| |#2| (-905)))) (-3554 (($ $ |#2| (-767) $) NIL)) (-3787 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1075) (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-1075) (-882 (-563))) (|has| |#2| (-882 (-563)))))) (-3254 (((-767) $ $) NIL (|has| |#2| (-555)))) (-3827 (((-112) $) NIL)) (-4096 (((-767) $) NIL)) (-2408 (((-3 $ "failed") $) NIL (|has| |#2| (-1144)))) (-2596 (($ (-1165 |#2|) (-1075)) NIL) (($ (-1165 $) (-1075)) NIL)) (-1351 (($ $ (-767)) NIL)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#2| (-363)))) (-1368 (((-640 $) $) NIL)) (-3920 (((-112) $) NIL)) (-2588 (($ |#2| (-767)) 17) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL)) (-2625 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $ (-1075)) NIL) (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL)) (-2048 (((-767) $) NIL) (((-767) $ (-1075)) NIL) (((-640 (-767)) $ (-640 (-1075))) NIL)) (-3084 (($ $ $) NIL (|has| |#2| (-846)))) (-1777 (($ $ $) NIL (|has| |#2| (-846)))) (-2803 (($ (-1 (-767) (-767)) $) NIL)) (-2240 (($ (-1 |#2| |#2|) $) NIL)) (-1580 (((-1165 |#2|) $) NIL)) (-4234 (((-3 (-1075) "failed") $) NIL)) (-2716 (($ $) NIL)) (-2726 ((|#2| $) NIL)) (-3513 (($ (-640 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3573 (((-1151) $) NIL)) (-3839 (((-2 (|:| -3490 $) (|:| -1972 $)) $ (-767)) NIL)) (-3733 (((-3 (-640 $) "failed") $) NIL)) (-2919 (((-3 (-640 $) "failed") $) NIL)) (-4086 (((-3 (-2 (|:| |var| (-1075)) (|:| -1654 (-767))) "failed") $) NIL)) (-3698 (($ $) NIL (|has| |#2| (-38 (-407 (-563)))))) (-2523 (($) NIL (|has| |#2| (-1144)) CONST)) (-1694 (((-1113) $) NIL)) (-2696 (((-112) $) NIL)) (-2706 ((|#2| $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#2| (-452)))) (-3548 (($ (-640 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3817 (($ $ (-767) |#2| $) NIL)) (-1876 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-3116 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2174 (((-418 $) $) NIL (|has| |#2| (-905)))) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL (|has| |#2| (-363)))) (-3008 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-555))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-555)))) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#2| (-363)))) (-1540 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-1075) |#2|) NIL) (($ $ (-640 (-1075)) (-640 |#2|)) NIL) (($ $ (-1075) $) NIL) (($ $ (-640 (-1075)) (-640 $)) NIL)) (-2628 (((-767) $) NIL (|has| |#2| (-363)))) (-2309 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#2| (-555))) ((|#2| (-407 $) |#2|) NIL (|has| |#2| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#2| (-555)))) (-3862 (((-3 $ "failed") $ (-767)) NIL)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| |#2| (-363)))) (-2315 (($ $ (-1075)) NIL (|has| |#2| (-172))) ((|#2| $) NIL (|has| |#2| (-172)))) (-4202 (($ $ (-1075)) NIL) (($ $ (-640 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-4167 (((-767) $) NIL) (((-767) $ (-1075)) NIL) (((-640 (-767)) $ (-640 (-1075))) NIL)) (-2220 (((-888 (-379)) $) NIL (-12 (|has| (-1075) (-611 (-888 (-379)))) (|has| |#2| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| (-1075) (-611 (-888 (-563)))) (|has| |#2| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| (-1075) (-611 (-536))) (|has| |#2| (-611 (-536)))))) (-1836 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-1075)) NIL (|has| |#2| (-452)))) (-1377 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905))))) (-1346 (((-3 $ "failed") $ $) NIL (|has| |#2| (-555))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#2| (-555)))) (-1693 (((-858) $) 13) (($ (-563)) NIL) (($ |#2|) NIL) (($ (-1075)) NIL) (($ (-1253 |#1|)) 19) (($ (-407 (-563))) NIL (-4032 (|has| |#2| (-38 (-407 (-563)))) (|has| |#2| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#2| (-555)))) (-1337 (((-640 |#2|) $) NIL)) (-4319 ((|#2| $ (-767)) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL)) (-2779 (((-3 $ "failed") $) NIL (-4032 (-12 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#2| (-145))))) (-1675 (((-767)) NIL)) (-2793 (($ $ $ (-767)) NIL (|has| |#2| (-172)))) (-2126 (((-112) $ $) NIL (|has| |#2| (-555)))) (-2241 (($) NIL T CONST)) (-2254 (($) 14 T CONST)) (-3209 (($ $ (-1075)) NIL) (($ $ (-640 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1778 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1756 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1718 (((-112) $ $) NIL)) (-1768 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1744 (((-112) $ $) NIL (|has| |#2| (-846)))) (-1837 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL (|has| |#2| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#2| (-38 (-407 (-563))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1230 |#1| |#2|) (-13 (-1233 |#2|) (-613 (-1253 |#1|)) (-10 -8 (-15 -3817 ($ $ (-767) |#2| $)))) (-1169) (-1045)) (T -1230)) +((-3817 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1230 *4 *3)) (-14 *4 (-1169)) (-4 *3 (-1045))))) +(-13 (-1233 |#2|) (-613 (-1253 |#1|)) (-10 -8 (-15 -3817 ($ $ (-767) |#2| $)))) +((-2240 ((|#4| (-1 |#3| |#1|) |#2|) 22))) +(((-1231 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2240 (|#4| (-1 |#3| |#1|) |#2|))) (-1045) (-1233 |#1|) (-1045) (-1233 |#3|)) (T -1231)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1233 *6)) (-5 *1 (-1231 *5 *4 *6 *2)) (-4 *4 (-1233 *5))))) +(-10 -7 (-15 -2240 (|#4| (-1 |#3| |#1|) |#2|))) +((-4030 (((-1257 |#2|) $ (-767)) 114)) (-2606 (((-640 (-1075)) $) 15)) (-1787 (($ (-1165 |#2|)) 67)) (-1779 (((-767) $) NIL) (((-767) $ (-640 (-1075))) 18)) (-2424 (((-418 (-1165 $)) (-1165 $)) 184)) (-4335 (($ $) 174)) (-3205 (((-418 $) $) 172)) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 82)) (-3729 (($ $ (-767)) 71)) (-2618 (($ $ (-767)) 73)) (-3018 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-2131 (((-3 |#2| "failed") $) 117) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 (-563) "failed") $) NIL) (((-3 (-1075) "failed") $) NIL)) (-2058 ((|#2| $) 115) (((-407 (-563)) $) NIL) (((-563) $) NIL) (((-1075) $) NIL)) (-2906 (($ $ $) 151)) (-2521 (((-2 (|:| -2311 |#2|) (|:| -3490 $) (|:| -1972 $)) $ $) 153)) (-3254 (((-767) $ $) 169)) (-2408 (((-3 $ "failed") $) 123)) (-2588 (($ |#2| (-767)) NIL) (($ $ (-1075) (-767)) 47) (($ $ (-640 (-1075)) (-640 (-767))) NIL)) (-2048 (((-767) $) NIL) (((-767) $ (-1075)) 42) (((-640 (-767)) $ (-640 (-1075))) 43)) (-1580 (((-1165 |#2|) $) 59)) (-4234 (((-3 (-1075) "failed") $) 40)) (-3839 (((-2 (|:| -3490 $) (|:| -1972 $)) $ (-767)) 70)) (-3698 (($ $) 196)) (-2523 (($) 119)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 181)) (-1876 (((-418 (-1165 $)) (-1165 $)) 88)) (-3116 (((-418 (-1165 $)) (-1165 $)) 86)) (-2174 (((-418 $) $) 107)) (-1540 (($ $ (-640 (-294 $))) 39) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-1075) |#2|) 31) (($ $ (-640 (-1075)) (-640 |#2|)) 28) (($ $ (-1075) $) 25) (($ $ (-640 (-1075)) (-640 $)) 23)) (-2628 (((-767) $) 187)) (-2309 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) 147) ((|#2| (-407 $) |#2|) 186) (((-407 $) $ (-407 $)) 168)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 190)) (-4202 (($ $ (-1075)) 140) (($ $ (-640 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL) (($ $ (-767)) NIL) (($ $) 138) (($ $ (-1169)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-4167 (((-767) $) NIL) (((-767) $ (-1075)) 16) (((-640 (-767)) $ (-640 (-1075))) 20)) (-1836 ((|#2| $) NIL) (($ $ (-1075)) 125)) (-1346 (((-3 $ "failed") $ $) 161) (((-3 (-407 $) "failed") (-407 $) $) 157)) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ |#2|) NIL) (($ (-1075)) 51) (($ (-407 (-563))) NIL) (($ $) NIL))) +(((-1232 |#1| |#2|) (-10 -8 (-15 -1693 (|#1| |#1|)) (-15 -3385 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -3205 ((-418 |#1|) |#1|)) (-15 -4335 (|#1| |#1|)) (-15 -1693 (|#1| (-407 (-563)))) (-15 -2523 (|#1|)) (-15 -2408 ((-3 |#1| "failed") |#1|)) (-15 -2309 ((-407 |#1|) |#1| (-407 |#1|))) (-15 -2628 ((-767) |#1|)) (-15 -2452 ((-2 (|:| -3490 |#1|) (|:| -1972 |#1|)) |#1| |#1|)) (-15 -3698 (|#1| |#1|)) (-15 -2309 (|#2| (-407 |#1|) |#2|)) (-15 -3018 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2521 ((-2 (|:| -2311 |#2|) (|:| -3490 |#1|) (|:| -1972 |#1|)) |#1| |#1|)) (-15 -2906 (|#1| |#1| |#1|)) (-15 -1346 ((-3 (-407 |#1|) "failed") (-407 |#1|) |#1|)) (-15 -1346 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3254 ((-767) |#1| |#1|)) (-15 -2309 ((-407 |#1|) (-407 |#1|) (-407 |#1|))) (-15 -4202 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2618 (|#1| |#1| (-767))) (-15 -3729 (|#1| |#1| (-767))) (-15 -3839 ((-2 (|:| -3490 |#1|) (|:| -1972 |#1|)) |#1| (-767))) (-15 -1787 (|#1| (-1165 |#2|))) (-15 -1580 ((-1165 |#2|) |#1|)) (-15 -4030 ((-1257 |#2|) |#1| (-767))) (-15 -4202 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4202 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4202 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -4202 (|#1| |#1| (-1169) (-767))) (-15 -4202 (|#1| |#1| (-640 (-1169)))) (-15 -4202 (|#1| |#1| (-1169))) (-15 -4202 (|#1| |#1|)) (-15 -4202 (|#1| |#1| (-767))) (-15 -2309 (|#1| |#1| |#1|)) (-15 -2309 (|#2| |#1| |#2|)) (-15 -2174 ((-418 |#1|) |#1|)) (-15 -2424 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -3116 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -1876 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -2748 ((-3 (-640 (-1165 |#1|)) "failed") (-640 (-1165 |#1|)) (-1165 |#1|))) (-15 -1836 (|#1| |#1| (-1075))) (-15 -2606 ((-640 (-1075)) |#1|)) (-15 -1779 ((-767) |#1| (-640 (-1075)))) (-15 -1779 ((-767) |#1|)) (-15 -2588 (|#1| |#1| (-640 (-1075)) (-640 (-767)))) (-15 -2588 (|#1| |#1| (-1075) (-767))) (-15 -2048 ((-640 (-767)) |#1| (-640 (-1075)))) (-15 -2048 ((-767) |#1| (-1075))) (-15 -4234 ((-3 (-1075) "failed") |#1|)) (-15 -4167 ((-640 (-767)) |#1| (-640 (-1075)))) (-15 -4167 ((-767) |#1| (-1075))) (-15 -1693 (|#1| (-1075))) (-15 -2131 ((-3 (-1075) "failed") |#1|)) (-15 -2058 ((-1075) |#1|)) (-15 -1540 (|#1| |#1| (-640 (-1075)) (-640 |#1|))) (-15 -1540 (|#1| |#1| (-1075) |#1|)) (-15 -1540 (|#1| |#1| (-640 (-1075)) (-640 |#2|))) (-15 -1540 (|#1| |#1| (-1075) |#2|)) (-15 -1540 (|#1| |#1| (-640 |#1|) (-640 |#1|))) (-15 -1540 (|#1| |#1| |#1| |#1|)) (-15 -1540 (|#1| |#1| (-294 |#1|))) (-15 -1540 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -4167 ((-767) |#1|)) (-15 -2588 (|#1| |#2| (-767))) (-15 -2131 ((-3 (-563) "failed") |#1|)) (-15 -2058 ((-563) |#1|)) (-15 -2131 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2058 ((-407 (-563)) |#1|)) (-15 -2058 (|#2| |#1|)) (-15 -2131 ((-3 |#2| "failed") |#1|)) (-15 -1693 (|#1| |#2|)) (-15 -2048 ((-767) |#1|)) (-15 -1836 (|#2| |#1|)) (-15 -4202 (|#1| |#1| (-640 (-1075)) (-640 (-767)))) (-15 -4202 (|#1| |#1| (-1075) (-767))) (-15 -4202 (|#1| |#1| (-640 (-1075)))) (-15 -4202 (|#1| |#1| (-1075))) (-15 -1693 (|#1| (-563))) (-15 -1693 ((-858) |#1|))) (-1233 |#2|) (-1045)) (T -1232)) +NIL +(-10 -8 (-15 -1693 (|#1| |#1|)) (-15 -3385 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -3205 ((-418 |#1|) |#1|)) (-15 -4335 (|#1| |#1|)) (-15 -1693 (|#1| (-407 (-563)))) (-15 -2523 (|#1|)) (-15 -2408 ((-3 |#1| "failed") |#1|)) (-15 -2309 ((-407 |#1|) |#1| (-407 |#1|))) (-15 -2628 ((-767) |#1|)) (-15 -2452 ((-2 (|:| -3490 |#1|) (|:| -1972 |#1|)) |#1| |#1|)) (-15 -3698 (|#1| |#1|)) (-15 -2309 (|#2| (-407 |#1|) |#2|)) (-15 -3018 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2521 ((-2 (|:| -2311 |#2|) (|:| -3490 |#1|) (|:| -1972 |#1|)) |#1| |#1|)) (-15 -2906 (|#1| |#1| |#1|)) (-15 -1346 ((-3 (-407 |#1|) "failed") (-407 |#1|) |#1|)) (-15 -1346 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3254 ((-767) |#1| |#1|)) (-15 -2309 ((-407 |#1|) (-407 |#1|) (-407 |#1|))) (-15 -4202 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2618 (|#1| |#1| (-767))) (-15 -3729 (|#1| |#1| (-767))) (-15 -3839 ((-2 (|:| -3490 |#1|) (|:| -1972 |#1|)) |#1| (-767))) (-15 -1787 (|#1| (-1165 |#2|))) (-15 -1580 ((-1165 |#2|) |#1|)) (-15 -4030 ((-1257 |#2|) |#1| (-767))) (-15 -4202 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4202 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4202 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -4202 (|#1| |#1| (-1169) (-767))) (-15 -4202 (|#1| |#1| (-640 (-1169)))) (-15 -4202 (|#1| |#1| (-1169))) (-15 -4202 (|#1| |#1|)) (-15 -4202 (|#1| |#1| (-767))) (-15 -2309 (|#1| |#1| |#1|)) (-15 -2309 (|#2| |#1| |#2|)) (-15 -2174 ((-418 |#1|) |#1|)) (-15 -2424 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -3116 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -1876 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -2748 ((-3 (-640 (-1165 |#1|)) "failed") (-640 (-1165 |#1|)) (-1165 |#1|))) (-15 -1836 (|#1| |#1| (-1075))) (-15 -2606 ((-640 (-1075)) |#1|)) (-15 -1779 ((-767) |#1| (-640 (-1075)))) (-15 -1779 ((-767) |#1|)) (-15 -2588 (|#1| |#1| (-640 (-1075)) (-640 (-767)))) (-15 -2588 (|#1| |#1| (-1075) (-767))) (-15 -2048 ((-640 (-767)) |#1| (-640 (-1075)))) (-15 -2048 ((-767) |#1| (-1075))) (-15 -4234 ((-3 (-1075) "failed") |#1|)) (-15 -4167 ((-640 (-767)) |#1| (-640 (-1075)))) (-15 -4167 ((-767) |#1| (-1075))) (-15 -1693 (|#1| (-1075))) (-15 -2131 ((-3 (-1075) "failed") |#1|)) (-15 -2058 ((-1075) |#1|)) (-15 -1540 (|#1| |#1| (-640 (-1075)) (-640 |#1|))) (-15 -1540 (|#1| |#1| (-1075) |#1|)) (-15 -1540 (|#1| |#1| (-640 (-1075)) (-640 |#2|))) (-15 -1540 (|#1| |#1| (-1075) |#2|)) (-15 -1540 (|#1| |#1| (-640 |#1|) (-640 |#1|))) (-15 -1540 (|#1| |#1| |#1| |#1|)) (-15 -1540 (|#1| |#1| (-294 |#1|))) (-15 -1540 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -4167 ((-767) |#1|)) (-15 -2588 (|#1| |#2| (-767))) (-15 -2131 ((-3 (-563) "failed") |#1|)) (-15 -2058 ((-563) |#1|)) (-15 -2131 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2058 ((-407 (-563)) |#1|)) (-15 -2058 (|#2| |#1|)) (-15 -2131 ((-3 |#2| "failed") |#1|)) (-15 -1693 (|#1| |#2|)) (-15 -2048 ((-767) |#1|)) (-15 -1836 (|#2| |#1|)) (-15 -4202 (|#1| |#1| (-640 (-1075)) (-640 (-767)))) (-15 -4202 (|#1| |#1| (-1075) (-767))) (-15 -4202 (|#1| |#1| (-640 (-1075)))) (-15 -4202 (|#1| |#1| (-1075))) (-15 -1693 (|#1| (-563))) (-15 -1693 ((-858) |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-4030 (((-1257 |#1|) $ (-767)) 238)) (-2606 (((-640 (-1075)) $) 110)) (-1787 (($ (-1165 |#1|)) 236)) (-2139 (((-1165 $) $ (-1075)) 125) (((-1165 |#1|) $) 124)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 87 (|has| |#1| (-555)))) (-4223 (($ $) 88 (|has| |#1| (-555)))) (-3156 (((-112) $) 90 (|has| |#1| (-555)))) (-1779 (((-767) $) 112) (((-767) $ (-640 (-1075))) 111)) (-1495 (((-3 $ "failed") $ $) 19)) (-3724 (($ $ $) 223 (|has| |#1| (-555)))) (-2424 (((-418 (-1165 $)) (-1165 $)) 100 (|has| |#1| (-905)))) (-4335 (($ $) 98 (|has| |#1| (-452)))) (-3205 (((-418 $) $) 97 (|has| |#1| (-452)))) (-2748 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 103 (|has| |#1| (-905)))) (-1919 (((-112) $ $) 208 (|has| |#1| (-363)))) (-3729 (($ $ (-767)) 231)) (-2618 (($ $ (-767)) 230)) (-3018 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-452)))) (-4239 (($) 17 T CONST)) (-2131 (((-3 |#1| "failed") $) 164) (((-3 (-407 (-563)) "failed") $) 161 (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) 159 (|has| |#1| (-1034 (-563)))) (((-3 (-1075) "failed") $) 136)) (-2058 ((|#1| $) 163) (((-407 (-563)) $) 162 (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) 160 (|has| |#1| (-1034 (-563)))) (((-1075) $) 137)) (-2742 (($ $ $ (-1075)) 108 (|has| |#1| (-172))) ((|#1| $ $) 226 (|has| |#1| (-172)))) (-3090 (($ $ $) 212 (|has| |#1| (-363)))) (-2751 (($ $) 154)) (-2950 (((-684 (-563)) (-684 $)) 134 (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 133 (|has| |#1| (-636 (-563)))) (((-2 (|:| -2835 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 132) (((-684 |#1|) (-684 $)) 131)) (-3400 (((-3 $ "failed") $) 33)) (-3050 (($ $ $) 211 (|has| |#1| (-363)))) (-4369 (($ $ $) 229)) (-2906 (($ $ $) 220 (|has| |#1| (-555)))) (-2521 (((-2 (|:| -2311 |#1|) (|:| -3490 $) (|:| -1972 $)) $ $) 219 (|has| |#1| (-555)))) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) 206 (|has| |#1| (-363)))) (-1300 (($ $) 176 (|has| |#1| (-452))) (($ $ (-1075)) 105 (|has| |#1| (-452)))) (-2739 (((-640 $) $) 109)) (-2468 (((-112) $) 96 (|has| |#1| (-905)))) (-3554 (($ $ |#1| (-767) $) 172)) (-3787 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 84 (-12 (|has| (-1075) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 83 (-12 (|has| (-1075) (-882 (-563))) (|has| |#1| (-882 (-563)))))) (-3254 (((-767) $ $) 224 (|has| |#1| (-555)))) (-3827 (((-112) $) 31)) (-4096 (((-767) $) 169)) (-2408 (((-3 $ "failed") $) 204 (|has| |#1| (-1144)))) (-2596 (($ (-1165 |#1|) (-1075)) 117) (($ (-1165 $) (-1075)) 116)) (-1351 (($ $ (-767)) 235)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) 215 (|has| |#1| (-363)))) (-1368 (((-640 $) $) 126)) (-3920 (((-112) $) 152)) (-2588 (($ |#1| (-767)) 153) (($ $ (-1075) (-767)) 119) (($ $ (-640 (-1075)) (-640 (-767))) 118)) (-2625 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $ (-1075)) 120) (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 233)) (-2048 (((-767) $) 170) (((-767) $ (-1075)) 122) (((-640 (-767)) $ (-640 (-1075))) 121)) (-3084 (($ $ $) 79 (|has| |#1| (-846)))) (-1777 (($ $ $) 78 (|has| |#1| (-846)))) (-2803 (($ (-1 (-767) (-767)) $) 171)) (-2240 (($ (-1 |#1| |#1|) $) 151)) (-1580 (((-1165 |#1|) $) 237)) (-4234 (((-3 (-1075) "failed") $) 123)) (-2716 (($ $) 149)) (-2726 ((|#1| $) 148)) (-3513 (($ (-640 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-3573 (((-1151) $) 9)) (-3839 (((-2 (|:| -3490 $) (|:| -1972 $)) $ (-767)) 232)) (-3733 (((-3 (-640 $) "failed") $) 114)) (-2919 (((-3 (-640 $) "failed") $) 115)) (-4086 (((-3 (-2 (|:| |var| (-1075)) (|:| -1654 (-767))) "failed") $) 113)) (-3698 (($ $) 216 (|has| |#1| (-38 (-407 (-563)))))) (-2523 (($) 203 (|has| |#1| (-1144)) CONST)) (-1694 (((-1113) $) 10)) (-2696 (((-112) $) 166)) (-2706 ((|#1| $) 167)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 95 (|has| |#1| (-452)))) (-3548 (($ (-640 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-1876 (((-418 (-1165 $)) (-1165 $)) 102 (|has| |#1| (-905)))) (-3116 (((-418 (-1165 $)) (-1165 $)) 101 (|has| |#1| (-905)))) (-2174 (((-418 $) $) 99 (|has| |#1| (-905)))) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) 213 (|has| |#1| (-363)))) (-3008 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-555))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-555)))) (-1465 (((-3 (-640 $) "failed") (-640 $) $) 207 (|has| |#1| (-363)))) (-1540 (($ $ (-640 (-294 $))) 145) (($ $ (-294 $)) 144) (($ $ $ $) 143) (($ $ (-640 $) (-640 $)) 142) (($ $ (-1075) |#1|) 141) (($ $ (-640 (-1075)) (-640 |#1|)) 140) (($ $ (-1075) $) 139) (($ $ (-640 (-1075)) (-640 $)) 138)) (-2628 (((-767) $) 209 (|has| |#1| (-363)))) (-2309 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-407 $) (-407 $) (-407 $)) 225 (|has| |#1| (-555))) ((|#1| (-407 $) |#1|) 217 (|has| |#1| (-363))) (((-407 $) $ (-407 $)) 205 (|has| |#1| (-555)))) (-3862 (((-3 $ "failed") $ (-767)) 234)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 210 (|has| |#1| (-363)))) (-2315 (($ $ (-1075)) 107 (|has| |#1| (-172))) ((|#1| $) 227 (|has| |#1| (-172)))) (-4202 (($ $ (-1075)) 42) (($ $ (-640 (-1075))) 41) (($ $ (-1075) (-767)) 40) (($ $ (-640 (-1075)) (-640 (-767))) 39) (($ $ (-767)) 253) (($ $) 251) (($ $ (-1169)) 250 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 249 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 248 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) 247 (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-4167 (((-767) $) 150) (((-767) $ (-1075)) 130) (((-640 (-767)) $ (-640 (-1075))) 129)) (-2220 (((-888 (-379)) $) 82 (-12 (|has| (-1075) (-611 (-888 (-379)))) (|has| |#1| (-611 (-888 (-379)))))) (((-888 (-563)) $) 81 (-12 (|has| (-1075) (-611 (-888 (-563)))) (|has| |#1| (-611 (-888 (-563)))))) (((-536) $) 80 (-12 (|has| (-1075) (-611 (-536))) (|has| |#1| (-611 (-536)))))) (-1836 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ (-1075)) 106 (|has| |#1| (-452)))) (-1377 (((-3 (-1257 $) "failed") (-684 $)) 104 (-2190 (|has| $ (-145)) (|has| |#1| (-905))))) (-1346 (((-3 $ "failed") $ $) 222 (|has| |#1| (-555))) (((-3 (-407 $) "failed") (-407 $) $) 221 (|has| |#1| (-555)))) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 165) (($ (-1075)) 135) (($ (-407 (-563))) 72 (-4032 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-38 (-407 (-563)))))) (($ $) 85 (|has| |#1| (-555)))) (-1337 (((-640 |#1|) $) 168)) (-4319 ((|#1| $ (-767)) 155) (($ $ (-1075) (-767)) 128) (($ $ (-640 (-1075)) (-640 (-767))) 127)) (-2779 (((-3 $ "failed") $) 73 (-4032 (-2190 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-1675 (((-767)) 28)) (-2793 (($ $ $ (-767)) 173 (|has| |#1| (-172)))) (-2126 (((-112) $ $) 89 (|has| |#1| (-555)))) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-3209 (($ $ (-1075)) 38) (($ $ (-640 (-1075))) 37) (($ $ (-1075) (-767)) 36) (($ $ (-640 (-1075)) (-640 (-767))) 35) (($ $ (-767)) 254) (($ $) 252) (($ $ (-1169)) 246 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 245 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 244 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) 243 (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-1778 (((-112) $ $) 76 (|has| |#1| (-846)))) (-1756 (((-112) $ $) 75 (|has| |#1| (-846)))) (-1718 (((-112) $ $) 6)) (-1768 (((-112) $ $) 77 (|has| |#1| (-846)))) (-1744 (((-112) $ $) 74 (|has| |#1| (-846)))) (-1837 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 158 (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) 157 (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-1233 |#1|) (-140) (-1045)) (T -1233)) +((-4030 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-1233 *4)) (-4 *4 (-1045)) (-5 *2 (-1257 *4)))) (-1580 (*1 *2 *1) (-12 (-4 *1 (-1233 *3)) (-4 *3 (-1045)) (-5 *2 (-1165 *3)))) (-1787 (*1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1045)) (-4 *1 (-1233 *3)))) (-1351 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1233 *3)) (-4 *3 (-1045)))) (-3862 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-767)) (-4 *1 (-1233 *3)) (-4 *3 (-1045)))) (-2625 (*1 *2 *1 *1) (-12 (-4 *3 (-1045)) (-5 *2 (-2 (|:| -3490 *1) (|:| -1972 *1))) (-4 *1 (-1233 *3)))) (-3839 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *4 (-1045)) (-5 *2 (-2 (|:| -3490 *1) (|:| -1972 *1))) (-4 *1 (-1233 *4)))) (-3729 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1233 *3)) (-4 *3 (-1045)))) (-2618 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1233 *3)) (-4 *3 (-1045)))) (-4369 (*1 *1 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)))) (-4202 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1233 *3)) (-4 *3 (-1045)))) (-2315 (*1 *2 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-172)))) (-2742 (*1 *2 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-172)))) (-2309 (*1 *2 *2 *2) (-12 (-5 *2 (-407 *1)) (-4 *1 (-1233 *3)) (-4 *3 (-1045)) (-4 *3 (-555)))) (-3254 (*1 *2 *1 *1) (-12 (-4 *1 (-1233 *3)) (-4 *3 (-1045)) (-4 *3 (-555)) (-5 *2 (-767)))) (-3724 (*1 *1 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-555)))) (-1346 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-555)))) (-1346 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-407 *1)) (-4 *1 (-1233 *3)) (-4 *3 (-1045)) (-4 *3 (-555)))) (-2906 (*1 *1 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-555)))) (-2521 (*1 *2 *1 *1) (-12 (-4 *3 (-555)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -2311 *3) (|:| -3490 *1) (|:| -1972 *1))) (-4 *1 (-1233 *3)))) (-3018 (*1 *2 *1 *1) (-12 (-4 *3 (-452)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1233 *3)))) (-2309 (*1 *2 *3 *2) (-12 (-5 *3 (-407 *1)) (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-3698 (*1 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-563))))))) +(-13 (-945 |t#1| (-767) (-1075)) (-286 |t#1| |t#1|) (-286 $ $) (-233) (-231 |t#1|) (-10 -8 (-15 -4030 ((-1257 |t#1|) $ (-767))) (-15 -1580 ((-1165 |t#1|) $)) (-15 -1787 ($ (-1165 |t#1|))) (-15 -1351 ($ $ (-767))) (-15 -3862 ((-3 $ "failed") $ (-767))) (-15 -2625 ((-2 (|:| -3490 $) (|:| -1972 $)) $ $)) (-15 -3839 ((-2 (|:| -3490 $) (|:| -1972 $)) $ (-767))) (-15 -3729 ($ $ (-767))) (-15 -2618 ($ $ (-767))) (-15 -4369 ($ $ $)) (-15 -4202 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1144)) (-6 (-1144)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -2315 (|t#1| $)) (-15 -2742 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-6 (-286 (-407 $) (-407 $))) (-15 -2309 ((-407 $) (-407 $) (-407 $))) (-15 -3254 ((-767) $ $)) (-15 -3724 ($ $ $)) (-15 -1346 ((-3 $ "failed") $ $)) (-15 -1346 ((-3 (-407 $) "failed") (-407 $) $)) (-15 -2906 ($ $ $)) (-15 -2521 ((-2 (|:| -2311 |t#1|) (|:| -3490 $) (|:| -1972 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (-15 -3018 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-6 (-307)) (-6 -4403) (-15 -2309 (|t#1| (-407 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-563)))) (-15 -3698 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-767)) . T) ((-25) . T) ((-38 #1=(-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4032 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-563)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4032 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #1#) -4032 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-38 (-407 (-563))))) ((-613 (-563)) . T) ((-613 #2=(-1075)) . T) ((-613 |#1|) . T) ((-613 $) -4032 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-610 (-858)) . T) ((-172) -4032 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-611 (-536)) -12 (|has| (-1075) (-611 (-536))) (|has| |#1| (-611 (-536)))) ((-611 (-888 (-379))) -12 (|has| (-1075) (-611 (-888 (-379)))) (|has| |#1| (-611 (-888 (-379))))) ((-611 (-888 (-563))) -12 (|has| (-1075) (-611 (-888 (-563)))) (|has| |#1| (-611 (-888 (-563))))) ((-231 |#1|) . T) ((-233) . T) ((-286 (-407 $) (-407 $)) |has| |#1| (-555)) ((-286 |#1| |#1|) . T) ((-286 $ $) . T) ((-290) -4032 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-309 $) . T) ((-326 |#1| #0#) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -4032 (|has| |#1| (-905)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-514 #2# |#1|) . T) ((-514 #2# $) . T) ((-514 $ $) . T) ((-555) -4032 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-643 #1#) |has| |#1| (-38 (-407 (-563)))) ((-643 |#1|) . T) ((-643 $) . T) ((-636 (-563)) |has| |#1| (-636 (-563))) ((-636 |#1|) . T) ((-713 #1#) |has| |#1| (-38 (-407 (-563)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -4032 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-722) . T) ((-846) |has| |#1| (-846)) ((-896 #2#) . T) ((-896 (-1169)) |has| |#1| (-896 (-1169))) ((-882 (-379)) -12 (|has| (-1075) (-882 (-379))) (|has| |#1| (-882 (-379)))) ((-882 (-563)) -12 (|has| (-1075) (-882 (-563))) (|has| |#1| (-882 (-563)))) ((-945 |#1| #0# #2#) . T) ((-905) |has| |#1| (-905)) ((-916) |has| |#1| (-363)) ((-1034 (-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 #2#) . T) ((-1034 |#1|) . T) ((-1051 #1#) |has| |#1| (-38 (-407 (-563)))) ((-1051 |#1|) . T) ((-1051 $) -4032 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1144) |has| |#1| (-1144)) ((-1212) |has| |#1| (-905))) +((-2606 (((-640 (-1075)) $) 28)) (-2751 (($ $) 25)) (-2588 (($ |#2| |#3|) NIL) (($ $ (-1075) |#3|) 22) (($ $ (-640 (-1075)) (-640 |#3|)) 21)) (-2716 (($ $) 14)) (-2726 ((|#2| $) 12)) (-4167 ((|#3| $) 10))) +(((-1234 |#1| |#2| |#3|) (-10 -8 (-15 -2606 ((-640 (-1075)) |#1|)) (-15 -2588 (|#1| |#1| (-640 (-1075)) (-640 |#3|))) (-15 -2588 (|#1| |#1| (-1075) |#3|)) (-15 -2751 (|#1| |#1|)) (-15 -2588 (|#1| |#2| |#3|)) (-15 -4167 (|#3| |#1|)) (-15 -2716 (|#1| |#1|)) (-15 -2726 (|#2| |#1|))) (-1235 |#2| |#3|) (-1045) (-788)) (T -1234)) +NIL +(-10 -8 (-15 -2606 ((-640 (-1075)) |#1|)) (-15 -2588 (|#1| |#1| (-640 (-1075)) (-640 |#3|))) (-15 -2588 (|#1| |#1| (-1075) |#3|)) (-15 -2751 (|#1| |#1|)) (-15 -2588 (|#1| |#2| |#3|)) (-15 -4167 (|#3| |#1|)) (-15 -2716 (|#1| |#1|)) (-15 -2726 (|#2| |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-2606 (((-640 (-1075)) $) 77)) (-2518 (((-1169) $) 106)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 54 (|has| |#1| (-555)))) (-4223 (($ $) 55 (|has| |#1| (-555)))) (-3156 (((-112) $) 57 (|has| |#1| (-555)))) (-2421 (($ $ |#2|) 101) (($ $ |#2| |#2|) 100)) (-1539 (((-1149 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 108)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-2751 (($ $) 63)) (-3400 (((-3 $ "failed") $) 33)) (-2788 (((-112) $) 76)) (-3254 ((|#2| $) 103) ((|#2| $ |#2|) 102)) (-3827 (((-112) $) 31)) (-1351 (($ $ (-917)) 104)) (-3920 (((-112) $) 65)) (-2588 (($ |#1| |#2|) 64) (($ $ (-1075) |#2|) 79) (($ $ (-640 (-1075)) (-640 |#2|)) 78)) (-2240 (($ (-1 |#1| |#1|) $) 66)) (-2716 (($ $) 68)) (-2726 ((|#1| $) 69)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-3320 (($ $ |#2|) 98)) (-3008 (((-3 $ "failed") $ $) 53 (|has| |#1| (-555)))) (-1540 (((-1149 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2309 ((|#1| $ |#2|) 107) (($ $ $) 84 (|has| |#2| (-1105)))) (-4202 (($ $ (-640 (-1169)) (-640 (-767))) 92 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1169) (-767)) 91 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-640 (-1169))) 90 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1169)) 89 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-767)) 87 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-4167 ((|#2| $) 67)) (-1741 (($ $) 75)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ (-407 (-563))) 60 (|has| |#1| (-38 (-407 (-563))))) (($ $) 52 (|has| |#1| (-555))) (($ |#1|) 50 (|has| |#1| (-172)))) (-4319 ((|#1| $ |#2|) 62)) (-2779 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-1675 (((-767)) 28)) (-3408 ((|#1| $) 105)) (-2126 (((-112) $ $) 56 (|has| |#1| (-555)))) (-1403 ((|#1| $ |#2|) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -1693 (|#1| (-1169))))))) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-3209 (($ $ (-640 (-1169)) (-640 (-767))) 96 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1169) (-767)) 95 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-640 (-1169))) 94 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1169)) 93 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-767)) 88 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1718 (((-112) $ $) 6)) (-1837 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-563)) $) 59 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 58 (|has| |#1| (-38 (-407 (-563))))))) +(((-1235 |#1| |#2|) (-140) (-1045) (-788)) (T -1235)) +((-1539 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-1149 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2309 (*1 *2 *1 *3) (-12 (-4 *1 (-1235 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) (-2518 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-1169)))) (-3408 (*1 *2 *1) (-12 (-4 *1 (-1235 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) (-1351 (*1 *1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-1235 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-3254 (*1 *2 *1 *2) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-2421 (*1 *1 *1 *2) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-2421 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-1403 (*1 *2 *1 *3) (-12 (-4 *1 (-1235 *2 *3)) (-4 *3 (-788)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -1693 (*2 (-1169)))) (-4 *2 (-1045)))) (-3320 (*1 *1 *1 *2) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-1540 (*1 *2 *1 *3) (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1149 *3))))) +(-13 (-969 |t#1| |t#2| (-1075)) (-10 -8 (-15 -1539 ((-1149 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2309 (|t#1| $ |t#2|)) (-15 -2518 ((-1169) $)) (-15 -3408 (|t#1| $)) (-15 -1351 ($ $ (-917))) (-15 -3254 (|t#2| $)) (-15 -3254 (|t#2| $ |t#2|)) (-15 -2421 ($ $ |t#2|)) (-15 -2421 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -1693 (|t#1| (-1169)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -1403 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3320 ($ $ |t#2|)) (IF (|has| |t#2| (-1105)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-233)) (IF (|has| |t#1| (-896 (-1169))) (-6 (-896 (-1169))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -1540 ((-1149 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-555)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-563)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4032 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0#) |has| |#1| (-38 (-407 (-563)))) ((-613 (-563)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-613 $) |has| |#1| (-555)) ((-610 (-858)) . T) ((-172) -4032 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-286 $ $) |has| |#2| (-1105)) ((-290) |has| |#1| (-555)) ((-555) |has| |#1| (-555)) ((-643 #0#) |has| |#1| (-38 (-407 (-563)))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-563)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-555)) ((-722) . T) ((-896 (-1169)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-896 (-1169)))) ((-969 |#1| |#2| (-1075)) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-563)))) ((-1051 |#1|) . T) ((-1051 $) -4032 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) +((-4335 ((|#2| |#2|) 12)) (-3205 (((-418 |#2|) |#2|) 14)) (-2434 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-563))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-563)))) 30))) +(((-1236 |#1| |#2|) (-10 -7 (-15 -3205 ((-418 |#2|) |#2|)) (-15 -4335 (|#2| |#2|)) (-15 -2434 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-563))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-563)))))) (-555) (-13 (-1233 |#1|) (-555) (-10 -8 (-15 -3548 ($ $ $))))) (T -1236)) +((-2434 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-563)))) (-4 *4 (-13 (-1233 *3) (-555) (-10 -8 (-15 -3548 ($ $ $))))) (-4 *3 (-555)) (-5 *1 (-1236 *3 *4)))) (-4335 (*1 *2 *2) (-12 (-4 *3 (-555)) (-5 *1 (-1236 *3 *2)) (-4 *2 (-13 (-1233 *3) (-555) (-10 -8 (-15 -3548 ($ $ $))))))) (-3205 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-418 *3)) (-5 *1 (-1236 *4 *3)) (-4 *3 (-13 (-1233 *4) (-555) (-10 -8 (-15 -3548 ($ $ $)))))))) +(-10 -7 (-15 -3205 ((-418 |#2|) |#2|)) (-15 -4335 (|#2| |#2|)) (-15 -2434 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-563))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-563)))))) +((-2240 (((-1242 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1242 |#1| |#3| |#5|)) 24))) +(((-1237 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2240 ((-1242 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1242 |#1| |#3| |#5|)))) (-1045) (-1045) (-1169) (-1169) |#1| |#2|) (T -1237)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1242 *5 *7 *9)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-14 *7 (-1169)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1242 *6 *8 *10)) (-5 *1 (-1237 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1169))))) +(-10 -7 (-15 -2240 ((-1242 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1242 |#1| |#3| |#5|)))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-2606 (((-640 (-1075)) $) 77)) (-2518 (((-1169) $) 106)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 54 (|has| |#1| (-555)))) (-4223 (($ $) 55 (|has| |#1| (-555)))) (-3156 (((-112) $) 57 (|has| |#1| (-555)))) (-2421 (($ $ (-407 (-563))) 101) (($ $ (-407 (-563)) (-407 (-563))) 100)) (-1539 (((-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|))) $) 108)) (-1771 (($ $) 138 (|has| |#1| (-38 (-407 (-563)))))) (-1619 (($ $) 121 (|has| |#1| (-38 (-407 (-563)))))) (-1495 (((-3 $ "failed") $ $) 19)) (-4335 (($ $) 165 (|has| |#1| (-363)))) (-3205 (((-418 $) $) 166 (|has| |#1| (-363)))) (-2186 (($ $) 120 (|has| |#1| (-38 (-407 (-563)))))) (-1919 (((-112) $ $) 156 (|has| |#1| (-363)))) (-1748 (($ $) 137 (|has| |#1| (-38 (-407 (-563)))))) (-1597 (($ $) 122 (|has| |#1| (-38 (-407 (-563)))))) (-3045 (($ (-767) (-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|)))) 174)) (-1794 (($ $) 136 (|has| |#1| (-38 (-407 (-563)))))) (-1643 (($ $) 123 (|has| |#1| (-38 (-407 (-563)))))) (-4239 (($) 17 T CONST)) (-3090 (($ $ $) 160 (|has| |#1| (-363)))) (-2751 (($ $) 63)) (-3400 (((-3 $ "failed") $) 33)) (-3050 (($ $ $) 159 (|has| |#1| (-363)))) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) 154 (|has| |#1| (-363)))) (-2468 (((-112) $) 167 (|has| |#1| (-363)))) (-2788 (((-112) $) 76)) (-2180 (($) 148 (|has| |#1| (-38 (-407 (-563)))))) (-3254 (((-407 (-563)) $) 103) (((-407 (-563)) $ (-407 (-563))) 102)) (-3827 (((-112) $) 31)) (-1645 (($ $ (-563)) 119 (|has| |#1| (-38 (-407 (-563)))))) (-1351 (($ $ (-917)) 104) (($ $ (-407 (-563))) 173)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) 163 (|has| |#1| (-363)))) (-3920 (((-112) $) 65)) (-2588 (($ |#1| (-407 (-563))) 64) (($ $ (-1075) (-407 (-563))) 79) (($ $ (-640 (-1075)) (-640 (-407 (-563)))) 78)) (-2240 (($ (-1 |#1| |#1|) $) 66)) (-4371 (($ $) 145 (|has| |#1| (-38 (-407 (-563)))))) (-2716 (($ $) 68)) (-2726 ((|#1| $) 69)) (-3513 (($ (-640 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-3573 (((-1151) $) 9)) (-2688 (($ $) 168 (|has| |#1| (-363)))) (-3698 (($ $) 172 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) 171 (-4032 (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-955)) (|has| |#1| (-1193)) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-15 -2606 ((-640 (-1169)) |#1|))) (|has| |#1| (-15 -3698 (|#1| |#1| (-1169)))) (|has| |#1| (-38 (-407 (-563)))))))) (-1694 (((-1113) $) 10)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 153 (|has| |#1| (-363)))) (-3548 (($ (-640 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-2174 (((-418 $) $) 164 (|has| |#1| (-363)))) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) 161 (|has| |#1| (-363)))) (-3320 (($ $ (-407 (-563))) 98)) (-3008 (((-3 $ "failed") $ $) 53 (|has| |#1| (-555)))) (-1465 (((-3 (-640 $) "failed") (-640 $) $) 155 (|has| |#1| (-363)))) (-3368 (($ $) 146 (|has| |#1| (-38 (-407 (-563)))))) (-1540 (((-1149 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))))) (-2628 (((-767) $) 157 (|has| |#1| (-363)))) (-2309 ((|#1| $ (-407 (-563))) 107) (($ $ $) 84 (|has| (-407 (-563)) (-1105)))) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 158 (|has| |#1| (-363)))) (-4202 (($ $ (-640 (-1169)) (-640 (-767))) 92 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-1169) (-767)) 91 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-640 (-1169))) 90 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-1169)) 89 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-767)) 87 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (-4167 (((-407 (-563)) $) 67)) (-1806 (($ $) 135 (|has| |#1| (-38 (-407 (-563)))))) (-1656 (($ $) 124 (|has| |#1| (-38 (-407 (-563)))))) (-1784 (($ $) 134 (|has| |#1| (-38 (-407 (-563)))))) (-1630 (($ $) 125 (|has| |#1| (-38 (-407 (-563)))))) (-1759 (($ $) 133 (|has| |#1| (-38 (-407 (-563)))))) (-1608 (($ $) 126 (|has| |#1| (-38 (-407 (-563)))))) (-1741 (($ $) 75)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ (-407 (-563))) 60 (|has| |#1| (-38 (-407 (-563))))) (($ $) 52 (|has| |#1| (-555)))) (-4319 ((|#1| $ (-407 (-563))) 62)) (-2779 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-1675 (((-767)) 28)) (-3408 ((|#1| $) 105)) (-1840 (($ $) 144 (|has| |#1| (-38 (-407 (-563)))))) (-1695 (($ $) 132 (|has| |#1| (-38 (-407 (-563)))))) (-2126 (((-112) $ $) 56 (|has| |#1| (-555)))) (-1817 (($ $) 143 (|has| |#1| (-38 (-407 (-563)))))) (-1667 (($ $) 131 (|has| |#1| (-38 (-407 (-563)))))) (-1862 (($ $) 142 (|has| |#1| (-38 (-407 (-563)))))) (-1722 (($ $) 130 (|has| |#1| (-38 (-407 (-563)))))) (-1403 ((|#1| $ (-407 (-563))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))) (|has| |#1| (-15 -1693 (|#1| (-1169))))))) (-1311 (($ $) 141 (|has| |#1| (-38 (-407 (-563)))))) (-1735 (($ $) 129 (|has| |#1| (-38 (-407 (-563)))))) (-1851 (($ $) 140 (|has| |#1| (-38 (-407 (-563)))))) (-1710 (($ $) 128 (|has| |#1| (-38 (-407 (-563)))))) (-1829 (($ $) 139 (|has| |#1| (-38 (-407 (-563)))))) (-1680 (($ $) 127 (|has| |#1| (-38 (-407 (-563)))))) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-3209 (($ $ (-640 (-1169)) (-640 (-767))) 96 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-1169) (-767)) 95 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-640 (-1169))) 94 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-1169)) 93 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-767)) 88 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (-1718 (((-112) $ $) 6)) (-1837 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363)))) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 118 (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-563)) $) 59 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 58 (|has| |#1| (-38 (-407 (-563))))))) +(((-1238 |#1|) (-140) (-1045)) (T -1238)) +((-3045 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *3 (-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| *4)))) (-4 *4 (-1045)) (-4 *1 (-1238 *4)))) (-1351 (*1 *1 *1 *2) (-12 (-5 *2 (-407 (-563))) (-4 *1 (-1238 *3)) (-4 *3 (-1045)))) (-3698 (*1 *1 *1) (-12 (-4 *1 (-1238 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-563)))))) (-3698 (*1 *1 *1 *2) (-4032 (-12 (-5 *2 (-1169)) (-4 *1 (-1238 *3)) (-4 *3 (-1045)) (-12 (-4 *3 (-29 (-563))) (-4 *3 (-955)) (-4 *3 (-1193)) (-4 *3 (-38 (-407 (-563)))))) (-12 (-5 *2 (-1169)) (-4 *1 (-1238 *3)) (-4 *3 (-1045)) (-12 (|has| *3 (-15 -2606 ((-640 *2) *3))) (|has| *3 (-15 -3698 (*3 *3 *2))) (-4 *3 (-38 (-407 (-563))))))))) +(-13 (-1235 |t#1| (-407 (-563))) (-10 -8 (-15 -3045 ($ (-767) (-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |t#1|))))) (-15 -1351 ($ $ (-407 (-563)))) (IF (|has| |t#1| (-38 (-407 (-563)))) (PROGN (-15 -3698 ($ $)) (IF (|has| |t#1| (-15 -3698 (|t#1| |t#1| (-1169)))) (IF (|has| |t#1| (-15 -2606 ((-640 (-1169)) |t#1|))) (-15 -3698 ($ $ (-1169))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1193)) (IF (|has| |t#1| (-955)) (IF (|has| |t#1| (-29 (-563))) (-15 -3698 ($ $ (-1169))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-998)) (-6 (-1193))) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-407 (-563))) . T) ((-25) . T) ((-38 #1=(-407 (-563))) -4032 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4032 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-563)))) ((-95) |has| |#1| (-38 (-407 (-563)))) ((-102) . T) ((-111 #1# #1#) -4032 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4032 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #1#) -4032 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-613 (-563)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-613 $) -4032 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-610 (-858)) . T) ((-172) -4032 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-563)))) ((-286 $ $) |has| (-407 (-563)) (-1105)) ((-290) -4032 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-563)))) ((-555) -4032 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-643 #1#) -4032 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #1#) -4032 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -4032 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-722) . T) ((-896 (-1169)) -12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169)))) ((-969 |#1| #0# (-1075)) . T) ((-916) |has| |#1| (-363)) ((-998) |has| |#1| (-38 (-407 (-563)))) ((-1051 #1#) -4032 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-1051 |#1|) . T) ((-1051 $) -4032 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1193) |has| |#1| (-38 (-407 (-563)))) ((-1196) |has| |#1| (-38 (-407 (-563)))) ((-1212) |has| |#1| (-363)) ((-1235 |#1| #0#) . T)) +((-3411 (((-112) $) 12)) (-2131 (((-3 |#3| "failed") $) 17)) (-2058 ((|#3| $) 14))) +(((-1239 |#1| |#2| |#3|) (-10 -8 (-15 -2131 ((-3 |#3| "failed") |#1|)) (-15 -2058 (|#3| |#1|)) (-15 -3411 ((-112) |#1|))) (-1240 |#2| |#3|) (-1045) (-1217 |#2|)) (T -1239)) +NIL +(-10 -8 (-15 -2131 ((-3 |#3| "failed") |#1|)) (-15 -2058 (|#3| |#1|)) (-15 -3411 ((-112) |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-2606 (((-640 (-1075)) $) 77)) (-2518 (((-1169) $) 106)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 54 (|has| |#1| (-555)))) (-4223 (($ $) 55 (|has| |#1| (-555)))) (-3156 (((-112) $) 57 (|has| |#1| (-555)))) (-2421 (($ $ (-407 (-563))) 101) (($ $ (-407 (-563)) (-407 (-563))) 100)) (-1539 (((-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|))) $) 108)) (-1771 (($ $) 138 (|has| |#1| (-38 (-407 (-563)))))) (-1619 (($ $) 121 (|has| |#1| (-38 (-407 (-563)))))) (-1495 (((-3 $ "failed") $ $) 19)) (-4335 (($ $) 165 (|has| |#1| (-363)))) (-3205 (((-418 $) $) 166 (|has| |#1| (-363)))) (-2186 (($ $) 120 (|has| |#1| (-38 (-407 (-563)))))) (-1919 (((-112) $ $) 156 (|has| |#1| (-363)))) (-1748 (($ $) 137 (|has| |#1| (-38 (-407 (-563)))))) (-1597 (($ $) 122 (|has| |#1| (-38 (-407 (-563)))))) (-3045 (($ (-767) (-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|)))) 174)) (-1794 (($ $) 136 (|has| |#1| (-38 (-407 (-563)))))) (-1643 (($ $) 123 (|has| |#1| (-38 (-407 (-563)))))) (-4239 (($) 17 T CONST)) (-2131 (((-3 |#2| "failed") $) 185)) (-2058 ((|#2| $) 186)) (-3090 (($ $ $) 160 (|has| |#1| (-363)))) (-2751 (($ $) 63)) (-3400 (((-3 $ "failed") $) 33)) (-4031 (((-407 (-563)) $) 182)) (-3050 (($ $ $) 159 (|has| |#1| (-363)))) (-2670 (($ (-407 (-563)) |#2|) 183)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) 154 (|has| |#1| (-363)))) (-2468 (((-112) $) 167 (|has| |#1| (-363)))) (-2788 (((-112) $) 76)) (-2180 (($) 148 (|has| |#1| (-38 (-407 (-563)))))) (-3254 (((-407 (-563)) $) 103) (((-407 (-563)) $ (-407 (-563))) 102)) (-3827 (((-112) $) 31)) (-1645 (($ $ (-563)) 119 (|has| |#1| (-38 (-407 (-563)))))) (-1351 (($ $ (-917)) 104) (($ $ (-407 (-563))) 173)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) 163 (|has| |#1| (-363)))) (-3920 (((-112) $) 65)) (-2588 (($ |#1| (-407 (-563))) 64) (($ $ (-1075) (-407 (-563))) 79) (($ $ (-640 (-1075)) (-640 (-407 (-563)))) 78)) (-2240 (($ (-1 |#1| |#1|) $) 66)) (-4371 (($ $) 145 (|has| |#1| (-38 (-407 (-563)))))) (-2716 (($ $) 68)) (-2726 ((|#1| $) 69)) (-3513 (($ (-640 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-3377 ((|#2| $) 181)) (-2401 (((-3 |#2| "failed") $) 179)) (-2660 ((|#2| $) 180)) (-3573 (((-1151) $) 9)) (-2688 (($ $) 168 (|has| |#1| (-363)))) (-3698 (($ $) 172 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) 171 (-4032 (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-955)) (|has| |#1| (-1193)) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-15 -2606 ((-640 (-1169)) |#1|))) (|has| |#1| (-15 -3698 (|#1| |#1| (-1169)))) (|has| |#1| (-38 (-407 (-563)))))))) (-1694 (((-1113) $) 10)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 153 (|has| |#1| (-363)))) (-3548 (($ (-640 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-2174 (((-418 $) $) 164 (|has| |#1| (-363)))) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) 161 (|has| |#1| (-363)))) (-3320 (($ $ (-407 (-563))) 98)) (-3008 (((-3 $ "failed") $ $) 53 (|has| |#1| (-555)))) (-1465 (((-3 (-640 $) "failed") (-640 $) $) 155 (|has| |#1| (-363)))) (-3368 (($ $) 146 (|has| |#1| (-38 (-407 (-563)))))) (-1540 (((-1149 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))))) (-2628 (((-767) $) 157 (|has| |#1| (-363)))) (-2309 ((|#1| $ (-407 (-563))) 107) (($ $ $) 84 (|has| (-407 (-563)) (-1105)))) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 158 (|has| |#1| (-363)))) (-4202 (($ $ (-640 (-1169)) (-640 (-767))) 92 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-1169) (-767)) 91 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-640 (-1169))) 90 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-1169)) 89 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-767)) 87 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (-4167 (((-407 (-563)) $) 67)) (-1806 (($ $) 135 (|has| |#1| (-38 (-407 (-563)))))) (-1656 (($ $) 124 (|has| |#1| (-38 (-407 (-563)))))) (-1784 (($ $) 134 (|has| |#1| (-38 (-407 (-563)))))) (-1630 (($ $) 125 (|has| |#1| (-38 (-407 (-563)))))) (-1759 (($ $) 133 (|has| |#1| (-38 (-407 (-563)))))) (-1608 (($ $) 126 (|has| |#1| (-38 (-407 (-563)))))) (-1741 (($ $) 75)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ |#2|) 184) (($ (-407 (-563))) 60 (|has| |#1| (-38 (-407 (-563))))) (($ $) 52 (|has| |#1| (-555)))) (-4319 ((|#1| $ (-407 (-563))) 62)) (-2779 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-1675 (((-767)) 28)) (-3408 ((|#1| $) 105)) (-1840 (($ $) 144 (|has| |#1| (-38 (-407 (-563)))))) (-1695 (($ $) 132 (|has| |#1| (-38 (-407 (-563)))))) (-2126 (((-112) $ $) 56 (|has| |#1| (-555)))) (-1817 (($ $) 143 (|has| |#1| (-38 (-407 (-563)))))) (-1667 (($ $) 131 (|has| |#1| (-38 (-407 (-563)))))) (-1862 (($ $) 142 (|has| |#1| (-38 (-407 (-563)))))) (-1722 (($ $) 130 (|has| |#1| (-38 (-407 (-563)))))) (-1403 ((|#1| $ (-407 (-563))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))) (|has| |#1| (-15 -1693 (|#1| (-1169))))))) (-1311 (($ $) 141 (|has| |#1| (-38 (-407 (-563)))))) (-1735 (($ $) 129 (|has| |#1| (-38 (-407 (-563)))))) (-1851 (($ $) 140 (|has| |#1| (-38 (-407 (-563)))))) (-1710 (($ $) 128 (|has| |#1| (-38 (-407 (-563)))))) (-1829 (($ $) 139 (|has| |#1| (-38 (-407 (-563)))))) (-1680 (($ $) 127 (|has| |#1| (-38 (-407 (-563)))))) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-3209 (($ $ (-640 (-1169)) (-640 (-767))) 96 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-1169) (-767)) 95 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-640 (-1169))) 94 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-1169)) 93 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-767)) 88 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (-1718 (((-112) $ $) 6)) (-1837 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363)))) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 118 (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-563)) $) 59 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 58 (|has| |#1| (-38 (-407 (-563))))))) +(((-1240 |#1| |#2|) (-140) (-1045) (-1217 |t#1|)) (T -1240)) +((-4167 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1217 *3)) (-5 *2 (-407 (-563))))) (-2670 (*1 *1 *2 *3) (-12 (-5 *2 (-407 (-563))) (-4 *4 (-1045)) (-4 *1 (-1240 *4 *3)) (-4 *3 (-1217 *4)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1217 *3)) (-5 *2 (-407 (-563))))) (-3377 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1217 *3)))) (-2660 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1217 *3)))) (-2401 (*1 *2 *1) (|partial| -12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1217 *3))))) +(-13 (-1238 |t#1|) (-1034 |t#2|) (-613 |t#2|) (-10 -8 (-15 -2670 ($ (-407 (-563)) |t#2|)) (-15 -4031 ((-407 (-563)) $)) (-15 -3377 (|t#2| $)) (-15 -4167 ((-407 (-563)) $)) (-15 -2660 (|t#2| $)) (-15 -2401 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-407 (-563))) . T) ((-25) . T) ((-38 #1=(-407 (-563))) -4032 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4032 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-563)))) ((-95) |has| |#1| (-38 (-407 (-563)))) ((-102) . T) ((-111 #1# #1#) -4032 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4032 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #1#) -4032 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-613 (-563)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-613 |#2|) . T) ((-613 $) -4032 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-610 (-858)) . T) ((-172) -4032 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-563)))) ((-286 $ $) |has| (-407 (-563)) (-1105)) ((-290) -4032 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-563)))) ((-555) -4032 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-643 #1#) -4032 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #1#) -4032 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -4032 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-722) . T) ((-896 (-1169)) -12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169)))) ((-969 |#1| #0# (-1075)) . T) ((-916) |has| |#1| (-363)) ((-998) |has| |#1| (-38 (-407 (-563)))) ((-1034 |#2|) . T) ((-1051 #1#) -4032 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-1051 |#1|) . T) ((-1051 $) -4032 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1193) |has| |#1| (-38 (-407 (-563)))) ((-1196) |has| |#1| (-38 (-407 (-563)))) ((-1212) |has| |#1| (-363)) ((-1235 |#1| #0#) . T) ((-1238 |#1|) . T)) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-2606 (((-640 (-1075)) $) NIL)) (-2518 (((-1169) $) 96)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-4223 (($ $) NIL (|has| |#1| (-555)))) (-3156 (((-112) $) NIL (|has| |#1| (-555)))) (-2421 (($ $ (-407 (-563))) 106) (($ $ (-407 (-563)) (-407 (-563))) 108)) (-1539 (((-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|))) $) 51)) (-1771 (($ $) 180 (|has| |#1| (-38 (-407 (-563)))))) (-1619 (($ $) 156 (|has| |#1| (-38 (-407 (-563)))))) (-1495 (((-3 $ "failed") $ $) NIL)) (-4335 (($ $) NIL (|has| |#1| (-363)))) (-3205 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2186 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1919 (((-112) $ $) NIL (|has| |#1| (-363)))) (-1748 (($ $) 176 (|has| |#1| (-38 (-407 (-563)))))) (-1597 (($ $) 152 (|has| |#1| (-38 (-407 (-563)))))) (-3045 (($ (-767) (-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|)))) 61)) (-1794 (($ $) 184 (|has| |#1| (-38 (-407 (-563)))))) (-1643 (($ $) 160 (|has| |#1| (-38 (-407 (-563)))))) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#2| "failed") $) NIL)) (-2058 ((|#2| $) NIL)) (-3090 (($ $ $) NIL (|has| |#1| (-363)))) (-2751 (($ $) NIL)) (-3400 (((-3 $ "failed") $) 79)) (-4031 (((-407 (-563)) $) 13)) (-3050 (($ $ $) NIL (|has| |#1| (-363)))) (-2670 (($ (-407 (-563)) |#2|) 11)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-2468 (((-112) $) NIL (|has| |#1| (-363)))) (-2788 (((-112) $) 68)) (-2180 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3254 (((-407 (-563)) $) 103) (((-407 (-563)) $ (-407 (-563))) 104)) (-3827 (((-112) $) NIL)) (-1645 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1351 (($ $ (-917)) 120) (($ $ (-407 (-563))) 118)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3920 (((-112) $) NIL)) (-2588 (($ |#1| (-407 (-563))) 31) (($ $ (-1075) (-407 (-563))) NIL) (($ $ (-640 (-1075)) (-640 (-407 (-563)))) NIL)) (-2240 (($ (-1 |#1| |#1|) $) 115)) (-4371 (($ $) 150 (|has| |#1| (-38 (-407 (-563)))))) (-2716 (($ $) NIL)) (-2726 ((|#1| $) NIL)) (-3513 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3377 ((|#2| $) 12)) (-2401 (((-3 |#2| "failed") $) 41)) (-2660 ((|#2| $) 42)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) 93 (|has| |#1| (-363)))) (-3698 (($ $) 135 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) 140 (-4032 (-12 (|has| |#1| (-15 -3698 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -2606 ((-640 (-1169)) |#1|))) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-955)) (|has| |#1| (-1193)))))) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-363)))) (-3548 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2174 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL (|has| |#1| (-363)))) (-3320 (($ $ (-407 (-563))) 112)) (-3008 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3368 (($ $) 148 (|has| |#1| (-38 (-407 (-563)))))) (-1540 (((-1149 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))))) (-2628 (((-767) $) NIL (|has| |#1| (-363)))) (-2309 ((|#1| $ (-407 (-563))) 100) (($ $ $) 86 (|has| (-407 (-563)) (-1105)))) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| |#1| (-363)))) (-4202 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) 127 (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (-4167 (((-407 (-563)) $) 16)) (-1806 (($ $) 186 (|has| |#1| (-38 (-407 (-563)))))) (-1656 (($ $) 162 (|has| |#1| (-38 (-407 (-563)))))) (-1784 (($ $) 182 (|has| |#1| (-38 (-407 (-563)))))) (-1630 (($ $) 158 (|has| |#1| (-38 (-407 (-563)))))) (-1759 (($ $) 178 (|has| |#1| (-38 (-407 (-563)))))) (-1608 (($ $) 154 (|has| |#1| (-38 (-407 (-563)))))) (-1741 (($ $) 110)) (-1693 (((-858) $) NIL) (($ (-563)) 35) (($ |#1|) 27 (|has| |#1| (-172))) (($ |#2|) 32) (($ (-407 (-563))) 128 (|has| |#1| (-38 (-407 (-563))))) (($ $) NIL (|has| |#1| (-555)))) (-4319 ((|#1| $ (-407 (-563))) 99)) (-2779 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1675 (((-767)) 117)) (-3408 ((|#1| $) 98)) (-1840 (($ $) 192 (|has| |#1| (-38 (-407 (-563)))))) (-1695 (($ $) 168 (|has| |#1| (-38 (-407 (-563)))))) (-2126 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1817 (($ $) 188 (|has| |#1| (-38 (-407 (-563)))))) (-1667 (($ $) 164 (|has| |#1| (-38 (-407 (-563)))))) (-1862 (($ $) 196 (|has| |#1| (-38 (-407 (-563)))))) (-1722 (($ $) 172 (|has| |#1| (-38 (-407 (-563)))))) (-1403 ((|#1| $ (-407 (-563))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))) (|has| |#1| (-15 -1693 (|#1| (-1169))))))) (-1311 (($ $) 198 (|has| |#1| (-38 (-407 (-563)))))) (-1735 (($ $) 174 (|has| |#1| (-38 (-407 (-563)))))) (-1851 (($ $) 194 (|has| |#1| (-38 (-407 (-563)))))) (-1710 (($ $) 170 (|has| |#1| (-38 (-407 (-563)))))) (-1829 (($ $) 190 (|has| |#1| (-38 (-407 (-563)))))) (-1680 (($ $) 166 (|has| |#1| (-38 (-407 (-563)))))) (-2241 (($) 21 T CONST)) (-2254 (($) 17 T CONST)) (-3209 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (-1718 (((-112) $ $) 66)) (-1837 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 92 (|has| |#1| (-363)))) (-1826 (($ $) 131) (($ $ $) 72)) (-1814 (($ $ $) 70)) (** (($ $ (-917)) NIL) (($ $ (-767)) 76) (($ $ (-563)) 145 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 146 (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))))) +(((-1241 |#1| |#2|) (-1240 |#1| |#2|) (-1045) (-1217 |#1|)) (T -1241)) +NIL +(-1240 |#1| |#2|) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-2606 (((-640 (-1075)) $) NIL)) (-2518 (((-1169) $) 11)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-4223 (($ $) NIL (|has| |#1| (-555)))) (-3156 (((-112) $) NIL (|has| |#1| (-555)))) (-2421 (($ $ (-407 (-563))) NIL) (($ $ (-407 (-563)) (-407 (-563))) NIL)) (-1539 (((-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|))) $) NIL)) (-1771 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1619 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1495 (((-3 $ "failed") $ $) NIL)) (-4335 (($ $) NIL (|has| |#1| (-363)))) (-3205 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2186 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1919 (((-112) $ $) NIL (|has| |#1| (-363)))) (-1748 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1597 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3045 (($ (-767) (-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|)))) NIL)) (-1794 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1643 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-1221 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1249 |#1| |#2| |#3|) "failed") $) 22)) (-2058 (((-1221 |#1| |#2| |#3|) $) NIL) (((-1249 |#1| |#2| |#3|) $) NIL)) (-3090 (($ $ $) NIL (|has| |#1| (-363)))) (-2751 (($ $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-4031 (((-407 (-563)) $) 57)) (-3050 (($ $ $) NIL (|has| |#1| (-363)))) (-2670 (($ (-407 (-563)) (-1221 |#1| |#2| |#3|)) NIL)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-2468 (((-112) $) NIL (|has| |#1| (-363)))) (-2788 (((-112) $) NIL)) (-2180 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3254 (((-407 (-563)) $) NIL) (((-407 (-563)) $ (-407 (-563))) NIL)) (-3827 (((-112) $) NIL)) (-1645 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1351 (($ $ (-917)) NIL) (($ $ (-407 (-563))) NIL)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3920 (((-112) $) NIL)) (-2588 (($ |#1| (-407 (-563))) 30) (($ $ (-1075) (-407 (-563))) NIL) (($ $ (-640 (-1075)) (-640 (-407 (-563)))) NIL)) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-4371 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2716 (($ $) NIL)) (-2726 ((|#1| $) NIL)) (-3513 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3377 (((-1221 |#1| |#2| |#3|) $) 60)) (-2401 (((-3 (-1221 |#1| |#2| |#3|) "failed") $) NIL)) (-2660 (((-1221 |#1| |#2| |#3|) $) NIL)) (-3573 (((-1151) $) NIL)) (-2688 (($ $) NIL (|has| |#1| (-363)))) (-3698 (($ $) 39 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) NIL (-4032 (-12 (|has| |#1| (-15 -3698 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -2606 ((-640 (-1169)) |#1|))) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-955)) (|has| |#1| (-1193))))) (($ $ (-1253 |#2|)) 40 (|has| |#1| (-38 (-407 (-563)))))) (-1694 (((-1113) $) NIL)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-363)))) (-3548 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2174 (((-418 $) $) NIL (|has| |#1| (-363)))) (-3678 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) NIL (|has| |#1| (-363)))) (-3320 (($ $ (-407 (-563))) NIL)) (-3008 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-1465 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3368 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1540 (((-1149 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))))) (-2628 (((-767) $) NIL (|has| |#1| (-363)))) (-2309 ((|#1| $ (-407 (-563))) NIL) (($ $ $) NIL (|has| (-407 (-563)) (-1105)))) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) NIL (|has| |#1| (-363)))) (-4202 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $ (-1253 |#2|)) 38)) (-4167 (((-407 (-563)) $) NIL)) (-1806 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1656 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1784 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1630 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1759 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1608 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1741 (($ $) NIL)) (-1693 (((-858) $) 88) (($ (-563)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1221 |#1| |#2| |#3|)) 16) (($ (-1249 |#1| |#2| |#3|)) 17) (($ (-1253 |#2|)) 36) (($ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $) NIL (|has| |#1| (-555)))) (-4319 ((|#1| $ (-407 (-563))) NIL)) (-2779 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1675 (((-767)) NIL)) (-3408 ((|#1| $) 12)) (-1840 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1695 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2126 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1817 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1667 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1862 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1722 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1403 ((|#1| $ (-407 (-563))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))) (|has| |#1| (-15 -1693 (|#1| (-1169))))))) (-1311 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1735 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1851 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1710 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1829 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1680 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2241 (($) 32 T CONST)) (-2254 (($) 26 T CONST)) (-3209 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (-1718 (((-112) $ $) NIL)) (-1837 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) 34)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))))) +(((-1242 |#1| |#2| |#3|) (-13 (-1240 |#1| (-1221 |#1| |#2| |#3|)) (-1034 (-1249 |#1| |#2| |#3|)) (-613 (-1253 |#2|)) (-10 -8 (-15 -4202 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -3698 ($ $ (-1253 |#2|))) |%noBranch|))) (-1045) (-1169) |#1|) (T -1242)) +((-4202 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1242 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-3698 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1242 *3 *4 *5)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3)))) +(-13 (-1240 |#1| (-1221 |#1| |#2| |#3|)) (-1034 (-1249 |#1| |#2| |#3|)) (-613 (-1253 |#2|)) (-10 -8 (-15 -4202 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -3698 ($ $ (-1253 |#2|))) |%noBranch|))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) 34)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL)) (-4223 (($ $) NIL)) (-3156 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4239 (($) NIL T CONST)) (-2131 (((-3 (-563) "failed") $) NIL (|has| (-1242 |#2| |#3| |#4|) (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| (-1242 |#2| |#3| |#4|) (-1034 (-407 (-563))))) (((-3 (-1242 |#2| |#3| |#4|) "failed") $) 20)) (-2058 (((-563) $) NIL (|has| (-1242 |#2| |#3| |#4|) (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| (-1242 |#2| |#3| |#4|) (-1034 (-407 (-563))))) (((-1242 |#2| |#3| |#4|) $) NIL)) (-2751 (($ $) 35)) (-3400 (((-3 $ "failed") $) 25)) (-1300 (($ $) NIL (|has| (-1242 |#2| |#3| |#4|) (-452)))) (-3554 (($ $ (-1242 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|) $) NIL)) (-3827 (((-112) $) NIL)) (-4096 (((-767) $) 11)) (-3920 (((-112) $) NIL)) (-2588 (($ (-1242 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) 23)) (-2048 (((-319 |#2| |#3| |#4|) $) NIL)) (-2803 (($ (-1 (-319 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) $) NIL)) (-2240 (($ (-1 (-1242 |#2| |#3| |#4|) (-1242 |#2| |#3| |#4|)) $) NIL)) (-4363 (((-3 (-839 |#2|) "failed") $) 74)) (-2716 (($ $) NIL)) (-2726 (((-1242 |#2| |#3| |#4|) $) 18)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-2696 (((-112) $) NIL)) (-2706 (((-1242 |#2| |#3| |#4|) $) NIL)) (-3008 (((-3 $ "failed") $ (-1242 |#2| |#3| |#4|)) NIL (|has| (-1242 |#2| |#3| |#4|) (-555))) (((-3 $ "failed") $ $) NIL)) (-4352 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1242 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-640 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#2|)))))) (|:| |%type| (-1151))) "failed") $) 57)) (-4167 (((-319 |#2| |#3| |#4|) $) 14)) (-1836 (((-1242 |#2| |#3| |#4|) $) NIL (|has| (-1242 |#2| |#3| |#4|) (-452)))) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ (-1242 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL (-4032 (|has| (-1242 |#2| |#3| |#4|) (-38 (-407 (-563)))) (|has| (-1242 |#2| |#3| |#4|) (-1034 (-407 (-563))))))) (-1337 (((-640 (-1242 |#2| |#3| |#4|)) $) NIL)) (-4319 (((-1242 |#2| |#3| |#4|) $ (-319 |#2| |#3| |#4|)) NIL)) (-2779 (((-3 $ "failed") $) NIL (|has| (-1242 |#2| |#3| |#4|) (-145)))) (-1675 (((-767)) NIL)) (-2793 (($ $ $ (-767)) NIL (|has| (-1242 |#2| |#3| |#4|) (-172)))) (-2126 (((-112) $ $) NIL)) (-2241 (($) 62 T CONST)) (-2254 (($) NIL T CONST)) (-1718 (((-112) $ $) NIL)) (-1837 (($ $ (-1242 |#2| |#3| |#4|)) NIL (|has| (-1242 |#2| |#3| |#4|) (-363)))) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-1242 |#2| |#3| |#4|)) NIL) (($ (-1242 |#2| |#3| |#4|) $) NIL) (($ (-407 (-563)) $) NIL (|has| (-1242 |#2| |#3| |#4|) (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| (-1242 |#2| |#3| |#4|) (-38 (-407 (-563))))))) +(((-1243 |#1| |#2| |#3| |#4|) (-13 (-326 (-1242 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) (-555) (-10 -8 (-15 -4363 ((-3 (-839 |#2|) "failed") $)) (-15 -4352 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1242 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-640 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#2|)))))) (|:| |%type| (-1151))) "failed") $)))) (-13 (-846) (-1034 (-563)) (-636 (-563)) (-452)) (-13 (-27) (-1193) (-430 |#1|)) (-1169) |#2|) (T -1243)) +((-4363 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-846) (-1034 (-563)) (-636 (-563)) (-452))) (-5 *2 (-839 *4)) (-5 *1 (-1243 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1193) (-430 *3))) (-14 *5 (-1169)) (-14 *6 *4))) (-4352 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-846) (-1034 (-563)) (-636 (-563)) (-452))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1242 *4 *5 *6)) (|:| |%expon| (-319 *4 *5 *6)) (|:| |%expTerms| (-640 (-2 (|:| |k| (-407 (-563))) (|:| |c| *4)))))) (|:| |%type| (-1151)))) (-5 *1 (-1243 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1193) (-430 *3))) (-14 *5 (-1169)) (-14 *6 *4)))) +(-13 (-326 (-1242 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) (-555) (-10 -8 (-15 -4363 ((-3 (-839 |#2|) "failed") $)) (-15 -4352 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1242 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-640 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#2|)))))) (|:| |%type| (-1151))) "failed") $)))) +((-2619 ((|#2| $) 28)) (-3442 ((|#2| $) 18)) (-4302 (($ $) 35)) (-1624 (($ $ (-563)) 63)) (-2759 (((-112) $ (-767)) 32)) (-2936 ((|#2| $ |#2|) 60)) (-3889 ((|#2| $ |#2|) 58)) (-1849 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 51) (($ $ "rest" $) 55) ((|#2| $ "last" |#2|) 53)) (-2811 (($ $ (-640 $)) 59)) (-3431 ((|#2| $) 17)) (-3792 (($ $) NIL) (($ $ (-767)) 41)) (-2071 (((-640 $) $) 25)) (-1469 (((-112) $ $) 49)) (-2581 (((-112) $ (-767)) 31)) (-2382 (((-112) $ (-767)) 30)) (-2194 (((-112) $) 27)) (-1481 ((|#2| $) 23) (($ $ (-767)) 45)) (-2309 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-1434 (((-112) $) 21)) (-2749 (($ $) 38)) (-1322 (($ $) 64)) (-1950 (((-767) $) 40)) (-3752 (($ $) 39)) (-2853 (($ $ $) 57) (($ |#2| $) NIL)) (-4258 (((-640 $) $) 26)) (-1718 (((-112) $ $) 47)) (-3608 (((-767) $) 34))) +(((-1244 |#1| |#2|) (-10 -8 (-15 -1624 (|#1| |#1| (-563))) (-15 -1849 (|#2| |#1| "last" |#2|)) (-15 -3889 (|#2| |#1| |#2|)) (-15 -1849 (|#1| |#1| "rest" |#1|)) (-15 -1849 (|#2| |#1| "first" |#2|)) (-15 -1322 (|#1| |#1|)) (-15 -2749 (|#1| |#1|)) (-15 -1950 ((-767) |#1|)) (-15 -3752 (|#1| |#1|)) (-15 -3442 (|#2| |#1|)) (-15 -3431 (|#2| |#1|)) (-15 -4302 (|#1| |#1|)) (-15 -1481 (|#1| |#1| (-767))) (-15 -2309 (|#2| |#1| "last")) (-15 -1481 (|#2| |#1|)) (-15 -3792 (|#1| |#1| (-767))) (-15 -2309 (|#1| |#1| "rest")) (-15 -3792 (|#1| |#1|)) (-15 -2309 (|#2| |#1| "first")) (-15 -2853 (|#1| |#2| |#1|)) (-15 -2853 (|#1| |#1| |#1|)) (-15 -2936 (|#2| |#1| |#2|)) (-15 -1849 (|#2| |#1| "value" |#2|)) (-15 -2811 (|#1| |#1| (-640 |#1|))) (-15 -1469 ((-112) |#1| |#1|)) (-15 -1434 ((-112) |#1|)) (-15 -2309 (|#2| |#1| "value")) (-15 -2619 (|#2| |#1|)) (-15 -2194 ((-112) |#1|)) (-15 -2071 ((-640 |#1|) |#1|)) (-15 -4258 ((-640 |#1|) |#1|)) (-15 -1718 ((-112) |#1| |#1|)) (-15 -3608 ((-767) |#1|)) (-15 -2759 ((-112) |#1| (-767))) (-15 -2581 ((-112) |#1| (-767))) (-15 -2382 ((-112) |#1| (-767)))) (-1245 |#2|) (-1208)) (T -1244)) +NIL +(-10 -8 (-15 -1624 (|#1| |#1| (-563))) (-15 -1849 (|#2| |#1| "last" |#2|)) (-15 -3889 (|#2| |#1| |#2|)) (-15 -1849 (|#1| |#1| "rest" |#1|)) (-15 -1849 (|#2| |#1| "first" |#2|)) (-15 -1322 (|#1| |#1|)) (-15 -2749 (|#1| |#1|)) (-15 -1950 ((-767) |#1|)) (-15 -3752 (|#1| |#1|)) (-15 -3442 (|#2| |#1|)) (-15 -3431 (|#2| |#1|)) (-15 -4302 (|#1| |#1|)) (-15 -1481 (|#1| |#1| (-767))) (-15 -2309 (|#2| |#1| "last")) (-15 -1481 (|#2| |#1|)) (-15 -3792 (|#1| |#1| (-767))) (-15 -2309 (|#1| |#1| "rest")) (-15 -3792 (|#1| |#1|)) (-15 -2309 (|#2| |#1| "first")) (-15 -2853 (|#1| |#2| |#1|)) (-15 -2853 (|#1| |#1| |#1|)) (-15 -2936 (|#2| |#1| |#2|)) (-15 -1849 (|#2| |#1| "value" |#2|)) (-15 -2811 (|#1| |#1| (-640 |#1|))) (-15 -1469 ((-112) |#1| |#1|)) (-15 -1434 ((-112) |#1|)) (-15 -2309 (|#2| |#1| "value")) (-15 -2619 (|#2| |#1|)) (-15 -2194 ((-112) |#1|)) (-15 -2071 ((-640 |#1|) |#1|)) (-15 -4258 ((-640 |#1|) |#1|)) (-15 -1718 ((-112) |#1| |#1|)) (-15 -3608 ((-767) |#1|)) (-15 -2759 ((-112) |#1| (-767))) (-15 -2581 ((-112) |#1| (-767))) (-15 -2382 ((-112) |#1| (-767)))) +((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-2619 ((|#1| $) 48)) (-3442 ((|#1| $) 65)) (-4302 (($ $) 67)) (-1624 (($ $ (-563)) 52 (|has| $ (-6 -4408)))) (-2759 (((-112) $ (-767)) 8)) (-2936 ((|#1| $ |#1|) 39 (|has| $ (-6 -4408)))) (-3692 (($ $ $) 56 (|has| $ (-6 -4408)))) (-3889 ((|#1| $ |#1|) 54 (|has| $ (-6 -4408)))) (-1543 ((|#1| $ |#1|) 58 (|has| $ (-6 -4408)))) (-1849 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4408))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4408))) (($ $ "rest" $) 55 (|has| $ (-6 -4408))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4408)))) (-2811 (($ $ (-640 $)) 41 (|has| $ (-6 -4408)))) (-3431 ((|#1| $) 66)) (-4239 (($) 7 T CONST)) (-3792 (($ $) 73) (($ $ (-767)) 71)) (-2659 (((-640 |#1|) $) 30 (|has| $ (-6 -4407)))) (-2071 (((-640 $) $) 50)) (-1469 (((-112) $ $) 42 (|has| |#1| (-1093)))) (-2581 (((-112) $ (-767)) 9)) (-2259 (((-640 |#1|) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-4345 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 35)) (-2382 (((-112) $ (-767)) 10)) (-2512 (((-640 |#1|) $) 45)) (-2194 (((-112) $) 49)) (-3573 (((-1151) $) 22 (|has| |#1| (-1093)))) (-1481 ((|#1| $) 70) (($ $ (-767)) 68)) (-1694 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3781 ((|#1| $) 76) (($ $ (-767)) 74)) (-3138 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) 14)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-2309 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-4071 (((-563) $ $) 44)) (-1434 (((-112) $) 46)) (-2749 (($ $) 62)) (-1322 (($ $) 59 (|has| $ (-6 -4408)))) (-1950 (((-767) $) 63)) (-3752 (($ $) 64)) (-1709 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4407))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1872 (($ $) 13)) (-3245 (($ $ $) 61 (|has| $ (-6 -4408))) (($ $ |#1|) 60 (|has| $ (-6 -4408)))) (-2853 (($ $ $) 78) (($ |#1| $) 77)) (-1693 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-4258 (((-640 $) $) 51)) (-2962 (((-112) $ $) 43 (|has| |#1| (-1093)))) (-4383 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-1245 |#1|) (-140) (-1208)) (T -1245)) +((-2853 (*1 *1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-2853 (*1 *1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-3781 (*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-2309 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-3781 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1245 *3)) (-4 *3 (-1208)))) (-3792 (*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-2309 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1245 *3)) (-4 *3 (-1208)))) (-3792 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1245 *3)) (-4 *3 (-1208)))) (-1481 (*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-2309 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-1481 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1245 *3)) (-4 *3 (-1208)))) (-4302 (*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-3431 (*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-3442 (*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-3752 (*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-1950 (*1 *2 *1) (-12 (-4 *1 (-1245 *3)) (-4 *3 (-1208)) (-5 *2 (-767)))) (-2749 (*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-3245 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-3245 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-1322 (*1 *1 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-1543 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-1849 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4408)) (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-3692 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-1849 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4408)) (-4 *1 (-1245 *3)) (-4 *3 (-1208)))) (-3889 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-1849 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4408)) (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-1624 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (|has| *1 (-6 -4408)) (-4 *1 (-1245 *3)) (-4 *3 (-1208))))) +(-13 (-1006 |t#1|) (-10 -8 (-15 -2853 ($ $ $)) (-15 -2853 ($ |t#1| $)) (-15 -3781 (|t#1| $)) (-15 -2309 (|t#1| $ "first")) (-15 -3781 ($ $ (-767))) (-15 -3792 ($ $)) (-15 -2309 ($ $ "rest")) (-15 -3792 ($ $ (-767))) (-15 -1481 (|t#1| $)) (-15 -2309 (|t#1| $ "last")) (-15 -1481 ($ $ (-767))) (-15 -4302 ($ $)) (-15 -3431 (|t#1| $)) (-15 -3442 (|t#1| $)) (-15 -3752 ($ $)) (-15 -1950 ((-767) $)) (-15 -2749 ($ $)) (IF (|has| $ (-6 -4408)) (PROGN (-15 -3245 ($ $ $)) (-15 -3245 ($ $ |t#1|)) (-15 -1322 ($ $)) (-15 -1543 (|t#1| $ |t#1|)) (-15 -1849 (|t#1| $ "first" |t#1|)) (-15 -3692 ($ $ $)) (-15 -1849 ($ $ "rest" $)) (-15 -3889 (|t#1| $ |t#1|)) (-15 -1849 (|t#1| $ "last" |t#1|)) (-15 -1624 ($ $ (-563)))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -4032 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1006 |#1|) . T) ((-1093) |has| |#1| (-1093)) ((-1208) . T)) +((-2240 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1246 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2240 (|#4| (-1 |#2| |#1|) |#3|))) (-1045) (-1045) (-1248 |#1|) (-1248 |#2|)) (T -1246)) +((-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1248 *6)) (-5 *1 (-1246 *5 *6 *4 *2)) (-4 *4 (-1248 *5))))) +(-10 -7 (-15 -2240 (|#4| (-1 |#2| |#1|) |#3|))) +((-3411 (((-112) $) 15)) (-1771 (($ $) 91)) (-1619 (($ $) 67)) (-1748 (($ $) 87)) (-1597 (($ $) 63)) (-1794 (($ $) 95)) (-1643 (($ $) 71)) (-4371 (($ $) 61)) (-3368 (($ $) 59)) (-1806 (($ $) 97)) (-1656 (($ $) 73)) (-1784 (($ $) 93)) (-1630 (($ $) 69)) (-1759 (($ $) 89)) (-1608 (($ $) 65)) (-1693 (((-858) $) 47) (($ (-563)) NIL) (($ (-407 (-563))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-1840 (($ $) 103)) (-1695 (($ $) 79)) (-1817 (($ $) 99)) (-1667 (($ $) 75)) (-1862 (($ $) 107)) (-1722 (($ $) 83)) (-1311 (($ $) 109)) (-1735 (($ $) 85)) (-1851 (($ $) 105)) (-1710 (($ $) 81)) (-1829 (($ $) 101)) (-1680 (($ $) 77)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ |#2|) 51) (($ $ $) 54) (($ $ (-407 (-563))) 57))) +(((-1247 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-407 (-563)))) (-15 -1619 (|#1| |#1|)) (-15 -1597 (|#1| |#1|)) (-15 -1643 (|#1| |#1|)) (-15 -1656 (|#1| |#1|)) (-15 -1630 (|#1| |#1|)) (-15 -1608 (|#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 -1710 (|#1| |#1|)) (-15 -1735 (|#1| |#1|)) (-15 -1722 (|#1| |#1|)) (-15 -1667 (|#1| |#1|)) (-15 -1695 (|#1| |#1|)) (-15 -1759 (|#1| |#1|)) (-15 -1784 (|#1| |#1|)) (-15 -1806 (|#1| |#1|)) (-15 -1794 (|#1| |#1|)) (-15 -1748 (|#1| |#1|)) (-15 -1771 (|#1| |#1|)) (-15 -1829 (|#1| |#1|)) (-15 -1851 (|#1| |#1|)) (-15 -1311 (|#1| |#1|)) (-15 -1862 (|#1| |#1|)) (-15 -1817 (|#1| |#1|)) (-15 -1840 (|#1| |#1|)) (-15 -4371 (|#1| |#1|)) (-15 -3368 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -1693 (|#1| |#2|)) (-15 -1693 (|#1| |#1|)) (-15 -1693 (|#1| (-407 (-563)))) (-15 -1693 (|#1| (-563))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917))) (-15 -3411 ((-112) |#1|)) (-15 -1693 ((-858) |#1|))) (-1248 |#2|) (-1045)) (T -1247)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-407 (-563)))) (-15 -1619 (|#1| |#1|)) (-15 -1597 (|#1| |#1|)) (-15 -1643 (|#1| |#1|)) (-15 -1656 (|#1| |#1|)) (-15 -1630 (|#1| |#1|)) (-15 -1608 (|#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 -1710 (|#1| |#1|)) (-15 -1735 (|#1| |#1|)) (-15 -1722 (|#1| |#1|)) (-15 -1667 (|#1| |#1|)) (-15 -1695 (|#1| |#1|)) (-15 -1759 (|#1| |#1|)) (-15 -1784 (|#1| |#1|)) (-15 -1806 (|#1| |#1|)) (-15 -1794 (|#1| |#1|)) (-15 -1748 (|#1| |#1|)) (-15 -1771 (|#1| |#1|)) (-15 -1829 (|#1| |#1|)) (-15 -1851 (|#1| |#1|)) (-15 -1311 (|#1| |#1|)) (-15 -1862 (|#1| |#1|)) (-15 -1817 (|#1| |#1|)) (-15 -1840 (|#1| |#1|)) (-15 -4371 (|#1| |#1|)) (-15 -3368 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -1693 (|#1| |#2|)) (-15 -1693 (|#1| |#1|)) (-15 -1693 (|#1| (-407 (-563)))) (-15 -1693 (|#1| (-563))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917))) (-15 -3411 ((-112) |#1|)) (-15 -1693 ((-858) |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-2606 (((-640 (-1075)) $) 77)) (-2518 (((-1169) $) 106)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 54 (|has| |#1| (-555)))) (-4223 (($ $) 55 (|has| |#1| (-555)))) (-3156 (((-112) $) 57 (|has| |#1| (-555)))) (-2421 (($ $ (-767)) 101) (($ $ (-767) (-767)) 100)) (-1539 (((-1149 (-2 (|:| |k| (-767)) (|:| |c| |#1|))) $) 108)) (-1771 (($ $) 138 (|has| |#1| (-38 (-407 (-563)))))) (-1619 (($ $) 121 (|has| |#1| (-38 (-407 (-563)))))) (-1495 (((-3 $ "failed") $ $) 19)) (-2186 (($ $) 120 (|has| |#1| (-38 (-407 (-563)))))) (-1748 (($ $) 137 (|has| |#1| (-38 (-407 (-563)))))) (-1597 (($ $) 122 (|has| |#1| (-38 (-407 (-563)))))) (-3045 (($ (-1149 (-2 (|:| |k| (-767)) (|:| |c| |#1|)))) 158) (($ (-1149 |#1|)) 156)) (-1794 (($ $) 136 (|has| |#1| (-38 (-407 (-563)))))) (-1643 (($ $) 123 (|has| |#1| (-38 (-407 (-563)))))) (-4239 (($) 17 T CONST)) (-2751 (($ $) 63)) (-3400 (((-3 $ "failed") $) 33)) (-2655 (($ $) 155)) (-3619 (((-948 |#1|) $ (-767)) 153) (((-948 |#1|) $ (-767) (-767)) 152)) (-2788 (((-112) $) 76)) (-2180 (($) 148 (|has| |#1| (-38 (-407 (-563)))))) (-3254 (((-767) $) 103) (((-767) $ (-767)) 102)) (-3827 (((-112) $) 31)) (-1645 (($ $ (-563)) 119 (|has| |#1| (-38 (-407 (-563)))))) (-1351 (($ $ (-917)) 104)) (-2831 (($ (-1 |#1| (-563)) $) 154)) (-3920 (((-112) $) 65)) (-2588 (($ |#1| (-767)) 64) (($ $ (-1075) (-767)) 79) (($ $ (-640 (-1075)) (-640 (-767))) 78)) (-2240 (($ (-1 |#1| |#1|) $) 66)) (-4371 (($ $) 145 (|has| |#1| (-38 (-407 (-563)))))) (-2716 (($ $) 68)) (-2726 ((|#1| $) 69)) (-3573 (((-1151) $) 9)) (-3698 (($ $) 150 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) 149 (-4032 (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-955)) (|has| |#1| (-1193)) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-15 -2606 ((-640 (-1169)) |#1|))) (|has| |#1| (-15 -3698 (|#1| |#1| (-1169)))) (|has| |#1| (-38 (-407 (-563)))))))) (-1694 (((-1113) $) 10)) (-3320 (($ $ (-767)) 98)) (-3008 (((-3 $ "failed") $ $) 53 (|has| |#1| (-555)))) (-3368 (($ $) 146 (|has| |#1| (-38 (-407 (-563)))))) (-1540 (((-1149 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-767)))))) (-2309 ((|#1| $ (-767)) 107) (($ $ $) 84 (|has| (-767) (-1105)))) (-4202 (($ $ (-640 (-1169)) (-640 (-767))) 92 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-1169) (-767)) 91 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-640 (-1169))) 90 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-1169)) 89 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-767)) 87 (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (-4167 (((-767) $) 67)) (-1806 (($ $) 135 (|has| |#1| (-38 (-407 (-563)))))) (-1656 (($ $) 124 (|has| |#1| (-38 (-407 (-563)))))) (-1784 (($ $) 134 (|has| |#1| (-38 (-407 (-563)))))) (-1630 (($ $) 125 (|has| |#1| (-38 (-407 (-563)))))) (-1759 (($ $) 133 (|has| |#1| (-38 (-407 (-563)))))) (-1608 (($ $) 126 (|has| |#1| (-38 (-407 (-563)))))) (-1741 (($ $) 75)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ (-407 (-563))) 60 (|has| |#1| (-38 (-407 (-563))))) (($ $) 52 (|has| |#1| (-555))) (($ |#1|) 50 (|has| |#1| (-172)))) (-1337 (((-1149 |#1|) $) 157)) (-4319 ((|#1| $ (-767)) 62)) (-2779 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-1675 (((-767)) 28)) (-3408 ((|#1| $) 105)) (-1840 (($ $) 144 (|has| |#1| (-38 (-407 (-563)))))) (-1695 (($ $) 132 (|has| |#1| (-38 (-407 (-563)))))) (-2126 (((-112) $ $) 56 (|has| |#1| (-555)))) (-1817 (($ $) 143 (|has| |#1| (-38 (-407 (-563)))))) (-1667 (($ $) 131 (|has| |#1| (-38 (-407 (-563)))))) (-1862 (($ $) 142 (|has| |#1| (-38 (-407 (-563)))))) (-1722 (($ $) 130 (|has| |#1| (-38 (-407 (-563)))))) (-1403 ((|#1| $ (-767)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-767)))) (|has| |#1| (-15 -1693 (|#1| (-1169))))))) (-1311 (($ $) 141 (|has| |#1| (-38 (-407 (-563)))))) (-1735 (($ $) 129 (|has| |#1| (-38 (-407 (-563)))))) (-1851 (($ $) 140 (|has| |#1| (-38 (-407 (-563)))))) (-1710 (($ $) 128 (|has| |#1| (-38 (-407 (-563)))))) (-1829 (($ $) 139 (|has| |#1| (-38 (-407 (-563)))))) (-1680 (($ $) 127 (|has| |#1| (-38 (-407 (-563)))))) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-3209 (($ $ (-640 (-1169)) (-640 (-767))) 96 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-1169) (-767)) 95 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-640 (-1169))) 94 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-1169)) 93 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-767)) 88 (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (-1718 (((-112) $ $) 6)) (-1837 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ |#1|) 151 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 118 (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-563)) $) 59 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 58 (|has| |#1| (-38 (-407 (-563))))))) +(((-1248 |#1|) (-140) (-1045)) (T -1248)) +((-3045 (*1 *1 *2) (-12 (-5 *2 (-1149 (-2 (|:| |k| (-767)) (|:| |c| *3)))) (-4 *3 (-1045)) (-4 *1 (-1248 *3)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1248 *3)) (-4 *3 (-1045)) (-5 *2 (-1149 *3)))) (-3045 (*1 *1 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-4 *1 (-1248 *3)))) (-2655 (*1 *1 *1) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1045)))) (-2831 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-563))) (-4 *1 (-1248 *3)) (-4 *3 (-1045)))) (-3619 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-1248 *4)) (-4 *4 (-1045)) (-5 *2 (-948 *4)))) (-3619 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-4 *1 (-1248 *4)) (-4 *4 (-1045)) (-5 *2 (-948 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-3698 (*1 *1 *1) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-563)))))) (-3698 (*1 *1 *1 *2) (-4032 (-12 (-5 *2 (-1169)) (-4 *1 (-1248 *3)) (-4 *3 (-1045)) (-12 (-4 *3 (-29 (-563))) (-4 *3 (-955)) (-4 *3 (-1193)) (-4 *3 (-38 (-407 (-563)))))) (-12 (-5 *2 (-1169)) (-4 *1 (-1248 *3)) (-4 *3 (-1045)) (-12 (|has| *3 (-15 -2606 ((-640 *2) *3))) (|has| *3 (-15 -3698 (*3 *3 *2))) (-4 *3 (-38 (-407 (-563))))))))) +(-13 (-1235 |t#1| (-767)) (-10 -8 (-15 -3045 ($ (-1149 (-2 (|:| |k| (-767)) (|:| |c| |t#1|))))) (-15 -1337 ((-1149 |t#1|) $)) (-15 -3045 ($ (-1149 |t#1|))) (-15 -2655 ($ $)) (-15 -2831 ($ (-1 |t#1| (-563)) $)) (-15 -3619 ((-948 |t#1|) $ (-767))) (-15 -3619 ((-948 |t#1|) $ (-767) (-767))) (IF (|has| |t#1| (-363)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-563)))) (PROGN (-15 -3698 ($ $)) (IF (|has| |t#1| (-15 -3698 (|t#1| |t#1| (-1169)))) (IF (|has| |t#1| (-15 -2606 ((-640 (-1169)) |t#1|))) (-15 -3698 ($ $ (-1169))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1193)) (IF (|has| |t#1| (-955)) (IF (|has| |t#1| (-29 (-563))) (-15 -3698 ($ $ (-1169))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-998)) (-6 (-1193))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-767)) . T) ((-25) . T) ((-38 #1=(-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-555)) ((-35) |has| |#1| (-38 (-407 (-563)))) ((-95) |has| |#1| (-38 (-407 (-563)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-563)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4032 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #1#) |has| |#1| (-38 (-407 (-563)))) ((-613 (-563)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-613 $) |has| |#1| (-555)) ((-610 (-858)) . T) ((-172) -4032 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-767) |#1|))) ((-284) |has| |#1| (-38 (-407 (-563)))) ((-286 $ $) |has| (-767) (-1105)) ((-290) |has| |#1| (-555)) ((-493) |has| |#1| (-38 (-407 (-563)))) ((-555) |has| |#1| (-555)) ((-643 #1#) |has| |#1| (-38 (-407 (-563)))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #1#) |has| |#1| (-38 (-407 (-563)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-555)) ((-722) . T) ((-896 (-1169)) -12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169)))) ((-969 |#1| #0# (-1075)) . T) ((-998) |has| |#1| (-38 (-407 (-563)))) ((-1051 #1#) |has| |#1| (-38 (-407 (-563)))) ((-1051 |#1|) . T) ((-1051 $) -4032 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1193) |has| |#1| (-38 (-407 (-563)))) ((-1196) |has| |#1| (-38 (-407 (-563)))) ((-1235 |#1| #0#) . T)) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-2606 (((-640 (-1075)) $) NIL)) (-2518 (((-1169) $) 86)) (-1987 (((-1230 |#2| |#1|) $ (-767)) 73)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-4223 (($ $) NIL (|has| |#1| (-555)))) (-3156 (((-112) $) 136 (|has| |#1| (-555)))) (-2421 (($ $ (-767)) 121) (($ $ (-767) (-767)) 123)) (-1539 (((-1149 (-2 (|:| |k| (-767)) (|:| |c| |#1|))) $) 42)) (-1771 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1619 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1495 (((-3 $ "failed") $ $) NIL)) (-2186 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1748 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1597 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3045 (($ (-1149 (-2 (|:| |k| (-767)) (|:| |c| |#1|)))) 53) (($ (-1149 |#1|)) NIL)) (-1794 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1643 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-4239 (($) NIL T CONST)) (-3337 (($ $) 127)) (-2751 (($ $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-2655 (($ $) 134)) (-3619 (((-948 |#1|) $ (-767)) 63) (((-948 |#1|) $ (-767) (-767)) 65)) (-2788 (((-112) $) NIL)) (-2180 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3254 (((-767) $) NIL) (((-767) $ (-767)) NIL)) (-3827 (((-112) $) NIL)) (-1291 (($ $) 111)) (-1645 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-4205 (($ (-563) (-563) $) 129)) (-1351 (($ $ (-917)) 133)) (-2831 (($ (-1 |#1| (-563)) $) 105)) (-3920 (((-112) $) NIL)) (-2588 (($ |#1| (-767)) 15) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL)) (-2240 (($ (-1 |#1| |#1|) $) 93)) (-4371 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2716 (($ $) NIL)) (-2726 ((|#1| $) NIL)) (-3573 (((-1151) $) NIL)) (-4386 (($ $) 109)) (-3771 (($ $) 107)) (-4033 (($ (-563) (-563) $) 131)) (-3698 (($ $) 144 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) 150 (-4032 (-12 (|has| |#1| (-15 -3698 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -2606 ((-640 (-1169)) |#1|))) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-955)) (|has| |#1| (-1193))))) (($ $ (-1253 |#2|)) 145 (|has| |#1| (-38 (-407 (-563)))))) (-1694 (((-1113) $) NIL)) (-1649 (($ $ (-563) (-563)) 115)) (-3320 (($ $ (-767)) 117)) (-3008 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-3368 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3570 (($ $) 113)) (-1540 (((-1149 |#1|) $ |#1|) 95 (|has| |#1| (-15 ** (|#1| |#1| (-767)))))) (-2309 ((|#1| $ (-767)) 90) (($ $ $) 125 (|has| (-767) (-1105)))) (-4202 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) 102 (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $ (-1253 |#2|)) 98)) (-4167 (((-767) $) NIL)) (-1806 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1656 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1784 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1630 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1759 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1608 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1741 (($ $) 119)) (-1693 (((-858) $) NIL) (($ (-563)) 24) (($ (-407 (-563))) 142 (|has| |#1| (-38 (-407 (-563))))) (($ $) NIL (|has| |#1| (-555))) (($ |#1|) 23 (|has| |#1| (-172))) (($ (-1230 |#2| |#1|)) 79) (($ (-1253 |#2|)) 20)) (-1337 (((-1149 |#1|) $) NIL)) (-4319 ((|#1| $ (-767)) 89)) (-2779 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1675 (((-767)) NIL)) (-3408 ((|#1| $) 87)) (-1840 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1695 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2126 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1817 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1667 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1862 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1722 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1403 ((|#1| $ (-767)) 85 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-767)))) (|has| |#1| (-15 -1693 (|#1| (-1169))))))) (-1311 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1735 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1851 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1710 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1829 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1680 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2241 (($) 17 T CONST)) (-2254 (($) 13 T CONST)) (-3209 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (-1718 (((-112) $ $) NIL)) (-1837 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1826 (($ $) NIL) (($ $ $) 101)) (-1814 (($ $ $) 18)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ |#1|) 139 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 100) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))))) +(((-1249 |#1| |#2| |#3|) (-13 (-1248 |#1|) (-10 -8 (-15 -1693 ($ (-1230 |#2| |#1|))) (-15 -1987 ((-1230 |#2| |#1|) $ (-767))) (-15 -1693 ($ (-1253 |#2|))) (-15 -4202 ($ $ (-1253 |#2|))) (-15 -3771 ($ $)) (-15 -4386 ($ $)) (-15 -1291 ($ $)) (-15 -3570 ($ $)) (-15 -1649 ($ $ (-563) (-563))) (-15 -3337 ($ $)) (-15 -4205 ($ (-563) (-563) $)) (-15 -4033 ($ (-563) (-563) $)) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -3698 ($ $ (-1253 |#2|))) |%noBranch|))) (-1045) (-1169) |#1|) (T -1249)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-1230 *4 *3)) (-4 *3 (-1045)) (-14 *4 (-1169)) (-14 *5 *3) (-5 *1 (-1249 *3 *4 *5)))) (-1987 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1230 *5 *4)) (-5 *1 (-1249 *4 *5 *6)) (-4 *4 (-1045)) (-14 *5 (-1169)) (-14 *6 *4))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-4202 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-3771 (*1 *1 *1) (-12 (-5 *1 (-1249 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) (-14 *4 *2))) (-4386 (*1 *1 *1) (-12 (-5 *1 (-1249 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) (-14 *4 *2))) (-1291 (*1 *1 *1) (-12 (-5 *1 (-1249 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) (-14 *4 *2))) (-3570 (*1 *1 *1) (-12 (-5 *1 (-1249 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) (-14 *4 *2))) (-1649 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-1169)) (-14 *5 *3))) (-3337 (*1 *1 *1) (-12 (-5 *1 (-1249 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) (-14 *4 *2))) (-4205 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-1169)) (-14 *5 *3))) (-4033 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-1169)) (-14 *5 *3))) (-3698 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3)))) +(-13 (-1248 |#1|) (-10 -8 (-15 -1693 ($ (-1230 |#2| |#1|))) (-15 -1987 ((-1230 |#2| |#1|) $ (-767))) (-15 -1693 ($ (-1253 |#2|))) (-15 -4202 ($ $ (-1253 |#2|))) (-15 -3771 ($ $)) (-15 -4386 ($ $)) (-15 -1291 ($ $)) (-15 -3570 ($ $)) (-15 -1649 ($ $ (-563) (-563))) (-15 -3337 ($ $)) (-15 -4205 ($ (-563) (-563) $)) (-15 -4033 ($ (-563) (-563) $)) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -3698 ($ $ (-1253 |#2|))) |%noBranch|))) +((-2721 (((-1 (-1149 |#1|) (-640 (-1149 |#1|))) (-1 |#2| (-640 |#2|))) 24)) (-3742 (((-1 (-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3339 (((-1 (-1149 |#1|) (-1149 |#1|)) (-1 |#2| |#2|)) 13)) (-2224 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2525 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-1803 ((|#2| (-1 |#2| (-640 |#2|)) (-640 |#1|)) 54)) (-3841 (((-640 |#2|) (-640 |#1|) (-640 (-1 |#2| (-640 |#2|)))) 61)) (-2901 ((|#2| |#2| |#2|) 43))) +(((-1250 |#1| |#2|) (-10 -7 (-15 -3339 ((-1 (-1149 |#1|) (-1149 |#1|)) (-1 |#2| |#2|))) (-15 -3742 ((-1 (-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2721 ((-1 (-1149 |#1|) (-640 (-1149 |#1|))) (-1 |#2| (-640 |#2|)))) (-15 -2901 (|#2| |#2| |#2|)) (-15 -2525 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2224 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1803 (|#2| (-1 |#2| (-640 |#2|)) (-640 |#1|))) (-15 -3841 ((-640 |#2|) (-640 |#1|) (-640 (-1 |#2| (-640 |#2|)))))) (-38 (-407 (-563))) (-1248 |#1|)) (T -1250)) +((-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *5)) (-5 *4 (-640 (-1 *6 (-640 *6)))) (-4 *5 (-38 (-407 (-563)))) (-4 *6 (-1248 *5)) (-5 *2 (-640 *6)) (-5 *1 (-1250 *5 *6)))) (-1803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-640 *2))) (-5 *4 (-640 *5)) (-4 *5 (-38 (-407 (-563)))) (-4 *2 (-1248 *5)) (-5 *1 (-1250 *5 *2)))) (-2224 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1248 *4)) (-5 *1 (-1250 *4 *2)) (-4 *4 (-38 (-407 (-563)))))) (-2525 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1248 *4)) (-5 *1 (-1250 *4 *2)) (-4 *4 (-38 (-407 (-563)))))) (-2901 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1250 *3 *2)) (-4 *2 (-1248 *3)))) (-2721 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-640 *5))) (-4 *5 (-1248 *4)) (-4 *4 (-38 (-407 (-563)))) (-5 *2 (-1 (-1149 *4) (-640 (-1149 *4)))) (-5 *1 (-1250 *4 *5)))) (-3742 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1248 *4)) (-4 *4 (-38 (-407 (-563)))) (-5 *2 (-1 (-1149 *4) (-1149 *4) (-1149 *4))) (-5 *1 (-1250 *4 *5)))) (-3339 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1248 *4)) (-4 *4 (-38 (-407 (-563)))) (-5 *2 (-1 (-1149 *4) (-1149 *4))) (-5 *1 (-1250 *4 *5))))) +(-10 -7 (-15 -3339 ((-1 (-1149 |#1|) (-1149 |#1|)) (-1 |#2| |#2|))) (-15 -3742 ((-1 (-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2721 ((-1 (-1149 |#1|) (-640 (-1149 |#1|))) (-1 |#2| (-640 |#2|)))) (-15 -2901 (|#2| |#2| |#2|)) (-15 -2525 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2224 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1803 (|#2| (-1 |#2| (-640 |#2|)) (-640 |#1|))) (-15 -3841 ((-640 |#2|) (-640 |#1|) (-640 (-1 |#2| (-640 |#2|)))))) +((-2697 ((|#2| |#4| (-767)) 30)) (-3595 ((|#4| |#2|) 25)) (-3465 ((|#4| (-407 |#2|)) 52 (|has| |#1| (-555)))) (-2323 (((-1 |#4| (-640 |#4|)) |#3|) 46))) +(((-1251 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3595 (|#4| |#2|)) (-15 -2697 (|#2| |#4| (-767))) (-15 -2323 ((-1 |#4| (-640 |#4|)) |#3|)) (IF (|has| |#1| (-555)) (-15 -3465 (|#4| (-407 |#2|))) |%noBranch|)) (-1045) (-1233 |#1|) (-651 |#2|) (-1248 |#1|)) (T -1251)) +((-3465 (*1 *2 *3) (-12 (-5 *3 (-407 *5)) (-4 *5 (-1233 *4)) (-4 *4 (-555)) (-4 *4 (-1045)) (-4 *2 (-1248 *4)) (-5 *1 (-1251 *4 *5 *6 *2)) (-4 *6 (-651 *5)))) (-2323 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-1233 *4)) (-5 *2 (-1 *6 (-640 *6))) (-5 *1 (-1251 *4 *5 *3 *6)) (-4 *3 (-651 *5)) (-4 *6 (-1248 *4)))) (-2697 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-1045)) (-4 *2 (-1233 *5)) (-5 *1 (-1251 *5 *2 *6 *3)) (-4 *6 (-651 *2)) (-4 *3 (-1248 *5)))) (-3595 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *3 (-1233 *4)) (-4 *2 (-1248 *4)) (-5 *1 (-1251 *4 *3 *5 *2)) (-4 *5 (-651 *3))))) +(-10 -7 (-15 -3595 (|#4| |#2|)) (-15 -2697 (|#2| |#4| (-767))) (-15 -2323 ((-1 |#4| (-640 |#4|)) |#3|)) (IF (|has| |#1| (-555)) (-15 -3465 (|#4| (-407 |#2|))) |%noBranch|)) +NIL +(((-1252) (-140)) (T -1252)) NIL (-13 (-10 -7 (-6 -1370))) -((-4041 (((-112) $ $) NIL)) (-2443 (((-1168)) 12)) (-3696 (((-1150) $) 17)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 11) (((-1168) $) 8)) (-1733 (((-112) $ $) 14))) -(((-1252 |#1|) (-13 (-1092) (-609 (-1168)) (-10 -8 (-15 -4053 ((-1168) $)) (-15 -2443 ((-1168))))) (-1168)) (T -1252)) -((-4053 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1252 *3)) (-14 *3 *2))) (-2443 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1252 *3)) (-14 *3 *2)))) -(-13 (-1092) (-609 (-1168)) (-10 -8 (-15 -4053 ((-1168) $)) (-15 -2443 ((-1168))))) -((-2910 (($ (-766)) 18)) (-2840 (((-683 |#2|) $ $) 40)) (-3872 ((|#2| $) 48)) (-3641 ((|#2| $) 47)) (-2852 ((|#2| $ $) 35)) (-3247 (($ $ $) 44)) (-1847 (($ $) 22) (($ $ $) 28)) (-1836 (($ $ $) 15)) (* (($ (-562) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30))) -(((-1253 |#1| |#2|) (-10 -8 (-15 -3872 (|#2| |#1|)) (-15 -3641 (|#2| |#1|)) (-15 -3247 (|#1| |#1| |#1|)) (-15 -2840 ((-683 |#2|) |#1| |#1|)) (-15 -2852 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-562) |#1|)) (-15 -1847 (|#1| |#1| |#1|)) (-15 -1847 (|#1| |#1|)) (-15 -2910 (|#1| (-766))) (-15 -1836 (|#1| |#1| |#1|))) (-1254 |#2|) (-1207)) (T -1253)) -NIL -(-10 -8 (-15 -3872 (|#2| |#1|)) (-15 -3641 (|#2| |#1|)) (-15 -3247 (|#1| |#1| |#1|)) (-15 -2840 ((-683 |#2|) |#1| |#1|)) (-15 -2852 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-562) |#1|)) (-15 -1847 (|#1| |#1| |#1|)) (-15 -1847 (|#1| |#1|)) (-15 -2910 (|#1| (-766))) (-15 -1836 (|#1| |#1| |#1|))) -((-4041 (((-112) $ $) 19 (|has| |#1| (-1092)))) (-2910 (($ (-766)) 112 (|has| |#1| (-23)))) (-3655 (((-1261) $ (-562) (-562)) 40 (|has| $ (-6 -4404)))) (-1706 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-845)))) (-3737 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4404))) (($ $) 88 (-12 (|has| |#1| (-845)) (|has| $ (-6 -4404))))) (-1395 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-845)))) (-3735 (((-112) $ (-766)) 8)) (-4200 ((|#1| $ (-562) |#1|) 52 (|has| $ (-6 -4404))) ((|#1| $ (-1223 (-562)) |#1|) 58 (|has| $ (-6 -4404)))) (-3556 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4403)))) (-3329 (($) 7 T CONST)) (-2673 (($ $) 90 (|has| $ (-6 -4404)))) (-2676 (($ $) 100)) (-1459 (($ $) 78 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1475 (($ |#1| $) 77 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4403)))) (-1954 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4403)))) (-1507 ((|#1| $ (-562) |#1|) 53 (|has| $ (-6 -4404)))) (-1420 ((|#1| $ (-562)) 51)) (-4265 (((-562) (-1 (-112) |#1|) $) 97) (((-562) |#1| $) 96 (|has| |#1| (-1092))) (((-562) |#1| $ (-562)) 95 (|has| |#1| (-1092)))) (-1720 (((-639 |#1|) $) 30 (|has| $ (-6 -4403)))) (-2840 (((-683 |#1|) $ $) 105 (|has| |#1| (-1044)))) (-1458 (($ (-766) |#1|) 69)) (-4172 (((-112) $ (-766)) 9)) (-1849 (((-562) $) 43 (|has| (-562) (-845)))) (-1551 (($ $ $) 87 (|has| |#1| (-845)))) (-4103 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-845)))) (-2123 (((-639 |#1|) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-1929 (((-562) $) 44 (|has| (-562) (-845)))) (-2993 (($ $ $) 86 (|has| |#1| (-845)))) (-1491 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3872 ((|#1| $) 102 (-12 (|has| |#1| (-1044)) (|has| |#1| (-997))))) (-4147 (((-112) $ (-766)) 10)) (-3641 ((|#1| $) 103 (-12 (|has| |#1| (-1044)) (|has| |#1| (-997))))) (-3696 (((-1150) $) 22 (|has| |#1| (-1092)))) (-3295 (($ |#1| $ (-562)) 60) (($ $ $ (-562)) 59)) (-3336 (((-639 (-562)) $) 46)) (-1987 (((-112) (-562) $) 47)) (-1709 (((-1112) $) 21 (|has| |#1| (-1092)))) (-1421 ((|#1| $) 42 (|has| (-562) (-845)))) (-1963 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3510 (($ $ |#1|) 41 (|has| $ (-6 -4404)))) (-3008 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) 26 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) 25 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) 23 (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) 14)) (-2716 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2366 (((-639 |#1|) $) 48)) (-3087 (((-112) $) 11)) (-1663 (($) 12)) (-2343 ((|#1| $ (-562) |#1|) 50) ((|#1| $ (-562)) 49) (($ $ (-1223 (-562))) 63)) (-2852 ((|#1| $ $) 106 (|has| |#1| (-1044)))) (-2880 (($ $ (-562)) 62) (($ $ (-1223 (-562))) 61)) (-3247 (($ $ $) 104 (|has| |#1| (-1044)))) (-1723 (((-766) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4403))) (((-766) |#1| $) 28 (-12 (|has| |#1| (-1092)) (|has| $ (-6 -4403))))) (-2694 (($ $ $ (-562)) 91 (|has| $ (-6 -4404)))) (-4220 (($ $) 13)) (-4208 (((-535) $) 79 (|has| |#1| (-610 (-535))))) (-4064 (($ (-639 |#1|)) 70)) (-2767 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-639 $)) 65)) (-4053 (((-857) $) 18 (|has| |#1| (-609 (-857))))) (-2879 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4403)))) (-1798 (((-112) $ $) 84 (|has| |#1| (-845)))) (-1771 (((-112) $ $) 83 (|has| |#1| (-845)))) (-1733 (((-112) $ $) 20 (|has| |#1| (-1092)))) (-1785 (((-112) $ $) 85 (|has| |#1| (-845)))) (-1761 (((-112) $ $) 82 (|has| |#1| (-845)))) (-1847 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1836 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-562) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-721))) (($ $ |#1|) 107 (|has| |#1| (-721)))) (-3492 (((-766) $) 6 (|has| $ (-6 -4403))))) -(((-1254 |#1|) (-139) (-1207)) (T -1254)) -((-1836 (*1 *1 *1 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-25)))) (-2910 (*1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-1254 *3)) (-4 *3 (-23)) (-4 *3 (-1207)))) (-1847 (*1 *1 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-21)))) (-1847 (*1 *1 *1 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-562)) (-4 *1 (-1254 *3)) (-4 *3 (-1207)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-721)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-721)))) (-2852 (*1 *2 *1 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-1044)))) (-2840 (*1 *2 *1 *1) (-12 (-4 *1 (-1254 *3)) (-4 *3 (-1207)) (-4 *3 (-1044)) (-5 *2 (-683 *3)))) (-3247 (*1 *1 *1 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-1044)))) (-3641 (*1 *2 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-997)) (-4 *2 (-1044)))) (-3872 (*1 *2 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-997)) (-4 *2 (-1044))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -1836 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2910 ($ (-766))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -1847 ($ $)) (-15 -1847 ($ $ $)) (-15 * ($ (-562) $))) |%noBranch|) (IF (|has| |t#1| (-721)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1044)) (PROGN (-15 -2852 (|t#1| $ $)) (-15 -2840 ((-683 |t#1|) $ $)) (-15 -3247 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-997)) (IF (|has| |t#1| (-1044)) (PROGN (-15 -3641 (|t#1| $)) (-15 -3872 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-102) -4037 (|has| |#1| (-1092)) (|has| |#1| (-845))) ((-609 (-857)) -4037 (|has| |#1| (-1092)) (|has| |#1| (-845)) (|has| |#1| (-609 (-857)))) ((-150 |#1|) . T) ((-610 (-535)) |has| |#1| (-610 (-535))) ((-285 #0=(-562) |#1|) . T) ((-287 #0# |#1|) . T) ((-308 |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-372 |#1|) . T) ((-488 |#1|) . T) ((-600 #0# |#1|) . T) ((-513 |#1| |#1|) -12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))) ((-645 |#1|) . T) ((-19 |#1|) . T) ((-845) |has| |#1| (-845)) ((-1092) -4037 (|has| |#1| (-1092)) (|has| |#1| (-845))) ((-1207) . T)) -((-1555 (((-1256 |#2|) (-1 |#2| |#1| |#2|) (-1256 |#1|) |#2|) 13)) (-1954 ((|#2| (-1 |#2| |#1| |#2|) (-1256 |#1|) |#2|) 15)) (-4152 (((-3 (-1256 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1256 |#1|)) 28) (((-1256 |#2|) (-1 |#2| |#1|) (-1256 |#1|)) 18))) -(((-1255 |#1| |#2|) (-10 -7 (-15 -1555 ((-1256 |#2|) (-1 |#2| |#1| |#2|) (-1256 |#1|) |#2|)) (-15 -1954 (|#2| (-1 |#2| |#1| |#2|) (-1256 |#1|) |#2|)) (-15 -4152 ((-1256 |#2|) (-1 |#2| |#1|) (-1256 |#1|))) (-15 -4152 ((-3 (-1256 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1256 |#1|)))) (-1207) (-1207)) (T -1255)) -((-4152 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1256 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-1256 *6)) (-5 *1 (-1255 *5 *6)))) (-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1256 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-1256 *6)) (-5 *1 (-1255 *5 *6)))) (-1954 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1256 *5)) (-4 *5 (-1207)) (-4 *2 (-1207)) (-5 *1 (-1255 *5 *2)))) (-1555 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1256 *6)) (-4 *6 (-1207)) (-4 *5 (-1207)) (-5 *2 (-1256 *5)) (-5 *1 (-1255 *6 *5))))) -(-10 -7 (-15 -1555 ((-1256 |#2|) (-1 |#2| |#1| |#2|) (-1256 |#1|) |#2|)) (-15 -1954 (|#2| (-1 |#2| |#1| |#2|) (-1256 |#1|) |#2|)) (-15 -4152 ((-1256 |#2|) (-1 |#2| |#1|) (-1256 |#1|))) (-15 -4152 ((-3 (-1256 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1256 |#1|)))) -((-4041 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-2910 (($ (-766)) NIL (|has| |#1| (-23)))) (-4004 (($ (-639 |#1|)) 9)) (-3655 (((-1261) $ (-562) (-562)) NIL (|has| $ (-6 -4404)))) (-1706 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-845)))) (-3737 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4404))) (($ $) NIL (-12 (|has| $ (-6 -4404)) (|has| |#1| (-845))))) (-1395 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-845)))) (-3735 (((-112) $ (-766)) NIL)) (-4200 ((|#1| $ (-562) |#1|) NIL (|has| $ (-6 -4404))) ((|#1| $ (-1223 (-562)) |#1|) NIL (|has| $ (-6 -4404)))) (-3556 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-3329 (($) NIL T CONST)) (-2673 (($ $) NIL (|has| $ (-6 -4404)))) (-2676 (($ $) NIL)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1475 (($ |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1954 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4403))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4403)))) (-1507 ((|#1| $ (-562) |#1|) NIL (|has| $ (-6 -4404)))) (-1420 ((|#1| $ (-562)) NIL)) (-4265 (((-562) (-1 (-112) |#1|) $) NIL) (((-562) |#1| $) NIL (|has| |#1| (-1092))) (((-562) |#1| $ (-562)) NIL (|has| |#1| (-1092)))) (-1720 (((-639 |#1|) $) 15 (|has| $ (-6 -4403)))) (-2840 (((-683 |#1|) $ $) NIL (|has| |#1| (-1044)))) (-1458 (($ (-766) |#1|) NIL)) (-4172 (((-112) $ (-766)) NIL)) (-1849 (((-562) $) NIL (|has| (-562) (-845)))) (-1551 (($ $ $) NIL (|has| |#1| (-845)))) (-4103 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-845)))) (-2123 (((-639 |#1|) $) NIL (|has| $ (-6 -4403)))) (-1572 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-1929 (((-562) $) NIL (|has| (-562) (-845)))) (-2993 (($ $ $) NIL (|has| |#1| (-845)))) (-1491 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3872 ((|#1| $) NIL (-12 (|has| |#1| (-997)) (|has| |#1| (-1044))))) (-4147 (((-112) $ (-766)) NIL)) (-3641 ((|#1| $) NIL (-12 (|has| |#1| (-997)) (|has| |#1| (-1044))))) (-3696 (((-1150) $) NIL (|has| |#1| (-1092)))) (-3295 (($ |#1| $ (-562)) NIL) (($ $ $ (-562)) NIL)) (-3336 (((-639 (-562)) $) NIL)) (-1987 (((-112) (-562) $) NIL)) (-1709 (((-1112) $) NIL (|has| |#1| (-1092)))) (-1421 ((|#1| $) NIL (|has| (-562) (-845)))) (-1963 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3510 (($ $ |#1|) NIL (|has| $ (-6 -4404)))) (-3008 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 (-293 |#1|))) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-293 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092)))) (($ $ (-639 |#1|) (-639 |#1|)) NIL (-12 (|has| |#1| (-308 |#1|)) (|has| |#1| (-1092))))) (-1452 (((-112) $ $) NIL)) (-2716 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2366 (((-639 |#1|) $) NIL)) (-3087 (((-112) $) NIL)) (-1663 (($) NIL)) (-2343 ((|#1| $ (-562) |#1|) NIL) ((|#1| $ (-562)) NIL) (($ $ (-1223 (-562))) NIL)) (-2852 ((|#1| $ $) NIL (|has| |#1| (-1044)))) (-2880 (($ $ (-562)) NIL) (($ $ (-1223 (-562))) NIL)) (-3247 (($ $ $) NIL (|has| |#1| (-1044)))) (-1723 (((-766) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403))) (((-766) |#1| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#1| (-1092))))) (-2694 (($ $ $ (-562)) NIL (|has| $ (-6 -4404)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) 19 (|has| |#1| (-610 (-535))))) (-4064 (($ (-639 |#1|)) 8)) (-2767 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-639 $)) NIL)) (-4053 (((-857) $) NIL (|has| |#1| (-609 (-857))))) (-2879 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4403)))) (-1798 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1771 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1733 (((-112) $ $) NIL (|has| |#1| (-1092)))) (-1785 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1761 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1847 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1836 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-562) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-721))) (($ $ |#1|) NIL (|has| |#1| (-721)))) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-1256 |#1|) (-13 (-1254 |#1|) (-10 -8 (-15 -4004 ($ (-639 |#1|))))) (-1207)) (T -1256)) -((-4004 (*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-5 *1 (-1256 *3))))) -(-13 (-1254 |#1|) (-10 -8 (-15 -4004 ($ (-639 |#1|))))) -((-4041 (((-112) $ $) NIL)) (-2671 (((-1150) $ (-1150)) 92) (((-1150) $ (-1150) (-1150)) 90) (((-1150) $ (-1150) (-639 (-1150))) 89)) (-3893 (($) 59)) (-4216 (((-1261) $ (-467) (-916)) 45)) (-3426 (((-1261) $ (-916) (-1150)) 75) (((-1261) $ (-916) (-869)) 76)) (-3818 (((-1261) $ (-916) (-378) (-378)) 48)) (-3563 (((-1261) $ (-1150)) 71)) (-1722 (((-1261) $ (-916) (-1150)) 80)) (-1978 (((-1261) $ (-916) (-378) (-378)) 49)) (-1595 (((-1261) $ (-916) (-916)) 46)) (-2650 (((-1261) $) 72)) (-3932 (((-1261) $ (-916) (-1150)) 79)) (-2886 (((-1261) $ (-467) (-916)) 31)) (-1358 (((-1261) $ (-916) (-1150)) 78)) (-3567 (((-639 (-262)) $) 23) (($ $ (-639 (-262))) 24)) (-3803 (((-1261) $ (-766) (-766)) 43)) (-1361 (($ $) 60) (($ (-467) (-639 (-262))) 61)) (-3696 (((-1150) $) NIL)) (-2319 (((-562) $) 38)) (-1709 (((-1112) $) NIL)) (-1880 (((-1256 (-3 (-467) "undefined")) $) 37)) (-2604 (((-1256 (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -1358 (-562)) (|:| -2370 (-562)) (|:| |spline| (-562)) (|:| -2041 (-562)) (|:| |axesColor| (-869)) (|:| -3426 (-562)) (|:| |unitsColor| (-869)) (|:| |showing| (-562)))) $) 36)) (-2728 (((-1261) $ (-916) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-562) (-869) (-562) (-869) (-562)) 70)) (-2900 (((-639 (-938 (-224))) $) NIL)) (-2518 (((-467) $ (-916)) 33)) (-1362 (((-1261) $ (-766) (-766) (-916) (-916)) 40)) (-2941 (((-1261) $ (-1150)) 81)) (-2370 (((-1261) $ (-916) (-1150)) 77)) (-4053 (((-857) $) 87)) (-1449 (((-1261) $) 82)) (-2041 (((-1261) $ (-916) (-1150)) 73) (((-1261) $ (-916) (-869)) 74)) (-1733 (((-112) $ $) NIL))) -(((-1257) (-13 (-1092) (-10 -8 (-15 -2900 ((-639 (-938 (-224))) $)) (-15 -3893 ($)) (-15 -1361 ($ $)) (-15 -3567 ((-639 (-262)) $)) (-15 -3567 ($ $ (-639 (-262)))) (-15 -1361 ($ (-467) (-639 (-262)))) (-15 -2728 ((-1261) $ (-916) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-562) (-869) (-562) (-869) (-562))) (-15 -2604 ((-1256 (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -1358 (-562)) (|:| -2370 (-562)) (|:| |spline| (-562)) (|:| -2041 (-562)) (|:| |axesColor| (-869)) (|:| -3426 (-562)) (|:| |unitsColor| (-869)) (|:| |showing| (-562)))) $)) (-15 -1880 ((-1256 (-3 (-467) "undefined")) $)) (-15 -3563 ((-1261) $ (-1150))) (-15 -2886 ((-1261) $ (-467) (-916))) (-15 -2518 ((-467) $ (-916))) (-15 -2041 ((-1261) $ (-916) (-1150))) (-15 -2041 ((-1261) $ (-916) (-869))) (-15 -3426 ((-1261) $ (-916) (-1150))) (-15 -3426 ((-1261) $ (-916) (-869))) (-15 -1358 ((-1261) $ (-916) (-1150))) (-15 -3932 ((-1261) $ (-916) (-1150))) (-15 -2370 ((-1261) $ (-916) (-1150))) (-15 -2941 ((-1261) $ (-1150))) (-15 -1449 ((-1261) $)) (-15 -1362 ((-1261) $ (-766) (-766) (-916) (-916))) (-15 -1978 ((-1261) $ (-916) (-378) (-378))) (-15 -3818 ((-1261) $ (-916) (-378) (-378))) (-15 -1722 ((-1261) $ (-916) (-1150))) (-15 -3803 ((-1261) $ (-766) (-766))) (-15 -4216 ((-1261) $ (-467) (-916))) (-15 -1595 ((-1261) $ (-916) (-916))) (-15 -2671 ((-1150) $ (-1150))) (-15 -2671 ((-1150) $ (-1150) (-1150))) (-15 -2671 ((-1150) $ (-1150) (-639 (-1150)))) (-15 -2650 ((-1261) $)) (-15 -2319 ((-562) $)) (-15 -4053 ((-857) $))))) (T -1257)) -((-4053 (*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-1257)))) (-2900 (*1 *2 *1) (-12 (-5 *2 (-639 (-938 (-224)))) (-5 *1 (-1257)))) (-3893 (*1 *1) (-5 *1 (-1257))) (-1361 (*1 *1 *1) (-5 *1 (-1257))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-639 (-262))) (-5 *1 (-1257)))) (-3567 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-262))) (-5 *1 (-1257)))) (-1361 (*1 *1 *2 *3) (-12 (-5 *2 (-467)) (-5 *3 (-639 (-262))) (-5 *1 (-1257)))) (-2728 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-916)) (-5 *4 (-224)) (-5 *5 (-562)) (-5 *6 (-869)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-2604 (*1 *2 *1) (-12 (-5 *2 (-1256 (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -1358 (-562)) (|:| -2370 (-562)) (|:| |spline| (-562)) (|:| -2041 (-562)) (|:| |axesColor| (-869)) (|:| -3426 (-562)) (|:| |unitsColor| (-869)) (|:| |showing| (-562))))) (-5 *1 (-1257)))) (-1880 (*1 *2 *1) (-12 (-5 *2 (-1256 (-3 (-467) "undefined"))) (-5 *1 (-1257)))) (-3563 (*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-2886 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-467)) (-5 *4 (-916)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-2518 (*1 *2 *1 *3) (-12 (-5 *3 (-916)) (-5 *2 (-467)) (-5 *1 (-1257)))) (-2041 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-916)) (-5 *4 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-2041 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-916)) (-5 *4 (-869)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-3426 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-916)) (-5 *4 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-3426 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-916)) (-5 *4 (-869)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-1358 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-916)) (-5 *4 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-3932 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-916)) (-5 *4 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-2370 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-916)) (-5 *4 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-2941 (*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-1449 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-1257)))) (-1362 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-766)) (-5 *4 (-916)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-1978 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-916)) (-5 *4 (-378)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-3818 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-916)) (-5 *4 (-378)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-1722 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-916)) (-5 *4 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-3803 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-4216 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-467)) (-5 *4 (-916)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-1595 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1261)) (-5 *1 (-1257)))) (-2671 (*1 *2 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1257)))) (-2671 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1257)))) (-2671 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-639 (-1150))) (-5 *2 (-1150)) (-5 *1 (-1257)))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-1257)))) (-2319 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-1257))))) -(-13 (-1092) (-10 -8 (-15 -2900 ((-639 (-938 (-224))) $)) (-15 -3893 ($)) (-15 -1361 ($ $)) (-15 -3567 ((-639 (-262)) $)) (-15 -3567 ($ $ (-639 (-262)))) (-15 -1361 ($ (-467) (-639 (-262)))) (-15 -2728 ((-1261) $ (-916) (-224) (-224) (-224) (-224) (-562) (-562) (-562) (-562) (-869) (-562) (-869) (-562))) (-15 -2604 ((-1256 (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -1358 (-562)) (|:| -2370 (-562)) (|:| |spline| (-562)) (|:| -2041 (-562)) (|:| |axesColor| (-869)) (|:| -3426 (-562)) (|:| |unitsColor| (-869)) (|:| |showing| (-562)))) $)) (-15 -1880 ((-1256 (-3 (-467) "undefined")) $)) (-15 -3563 ((-1261) $ (-1150))) (-15 -2886 ((-1261) $ (-467) (-916))) (-15 -2518 ((-467) $ (-916))) (-15 -2041 ((-1261) $ (-916) (-1150))) (-15 -2041 ((-1261) $ (-916) (-869))) (-15 -3426 ((-1261) $ (-916) (-1150))) (-15 -3426 ((-1261) $ (-916) (-869))) (-15 -1358 ((-1261) $ (-916) (-1150))) (-15 -3932 ((-1261) $ (-916) (-1150))) (-15 -2370 ((-1261) $ (-916) (-1150))) (-15 -2941 ((-1261) $ (-1150))) (-15 -1449 ((-1261) $)) (-15 -1362 ((-1261) $ (-766) (-766) (-916) (-916))) (-15 -1978 ((-1261) $ (-916) (-378) (-378))) (-15 -3818 ((-1261) $ (-916) (-378) (-378))) (-15 -1722 ((-1261) $ (-916) (-1150))) (-15 -3803 ((-1261) $ (-766) (-766))) (-15 -4216 ((-1261) $ (-467) (-916))) (-15 -1595 ((-1261) $ (-916) (-916))) (-15 -2671 ((-1150) $ (-1150))) (-15 -2671 ((-1150) $ (-1150) (-1150))) (-15 -2671 ((-1150) $ (-1150) (-639 (-1150)))) (-15 -2650 ((-1261) $)) (-15 -2319 ((-562) $)) (-15 -4053 ((-857) $)))) -((-4041 (((-112) $ $) NIL)) (-1677 (((-1261) $ (-378)) 142) (((-1261) $ (-378) (-378) (-378)) 143)) (-2671 (((-1150) $ (-1150)) 150) (((-1150) $ (-1150) (-1150)) 148) (((-1150) $ (-1150) (-639 (-1150))) 147)) (-3342 (($) 50)) (-2113 (((-1261) $ (-378) (-378) (-378) (-378) (-378)) 118) (((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -1978 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) $) 116) (((-1261) $ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -1978 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) 117) (((-1261) $ (-562) (-562) (-378) (-378) (-378)) 119) (((-1261) $ (-378) (-378)) 120) (((-1261) $ (-378) (-378) (-378)) 127)) (-1747 (((-378)) 99) (((-378) (-378)) 100)) (-2660 (((-378)) 94) (((-378) (-378)) 96)) (-3424 (((-378)) 97) (((-378) (-378)) 98)) (-1941 (((-378)) 103) (((-378) (-378)) 104)) (-1724 (((-378)) 101) (((-378) (-378)) 102)) (-3818 (((-1261) $ (-378) (-378)) 144)) (-3563 (((-1261) $ (-1150)) 128)) (-2962 (((-1125 (-224)) $) 51) (($ $ (-1125 (-224))) 52)) (-2222 (((-1261) $ (-1150)) 156)) (-2086 (((-1261) $ (-1150)) 157)) (-3201 (((-1261) $ (-378) (-378)) 126) (((-1261) $ (-562) (-562)) 141)) (-1595 (((-1261) $ (-916) (-916)) 134)) (-2650 (((-1261) $) 114)) (-3484 (((-1261) $ (-1150)) 155)) (-2053 (((-1261) $ (-1150)) 111)) (-3567 (((-639 (-262)) $) 53) (($ $ (-639 (-262))) 54)) (-3803 (((-1261) $ (-766) (-766)) 133)) (-2948 (((-1261) $ (-766) (-938 (-224))) 162)) (-2003 (($ $) 56) (($ (-1125 (-224)) (-1150)) 57) (($ (-1125 (-224)) (-639 (-262))) 58)) (-1928 (((-1261) $ (-378) (-378) (-378)) 108)) (-3696 (((-1150) $) NIL)) (-2319 (((-562) $) 105)) (-4319 (((-1261) $ (-378)) 145)) (-1526 (((-1261) $ (-378)) 160)) (-1709 (((-1112) $) NIL)) (-2520 (((-1261) $ (-378)) 159)) (-3048 (((-1261) $ (-1150)) 113)) (-1362 (((-1261) $ (-766) (-766) (-916) (-916)) 132)) (-2192 (((-1261) $ (-1150)) 110)) (-2941 (((-1261) $ (-1150)) 112)) (-4022 (((-1261) $ (-156) (-156)) 131)) (-4053 (((-857) $) 139)) (-1449 (((-1261) $) 115)) (-1925 (((-1261) $ (-1150)) 158)) (-2041 (((-1261) $ (-1150)) 109)) (-1733 (((-112) $ $) NIL))) -(((-1258) (-13 (-1092) (-10 -8 (-15 -2660 ((-378))) (-15 -2660 ((-378) (-378))) (-15 -3424 ((-378))) (-15 -3424 ((-378) (-378))) (-15 -1747 ((-378))) (-15 -1747 ((-378) (-378))) (-15 -1724 ((-378))) (-15 -1724 ((-378) (-378))) (-15 -1941 ((-378))) (-15 -1941 ((-378) (-378))) (-15 -3342 ($)) (-15 -2003 ($ $)) (-15 -2003 ($ (-1125 (-224)) (-1150))) (-15 -2003 ($ (-1125 (-224)) (-639 (-262)))) (-15 -2962 ((-1125 (-224)) $)) (-15 -2962 ($ $ (-1125 (-224)))) (-15 -2948 ((-1261) $ (-766) (-938 (-224)))) (-15 -3567 ((-639 (-262)) $)) (-15 -3567 ($ $ (-639 (-262)))) (-15 -3803 ((-1261) $ (-766) (-766))) (-15 -1595 ((-1261) $ (-916) (-916))) (-15 -3563 ((-1261) $ (-1150))) (-15 -1362 ((-1261) $ (-766) (-766) (-916) (-916))) (-15 -2113 ((-1261) $ (-378) (-378) (-378) (-378) (-378))) (-15 -2113 ((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -1978 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) $)) (-15 -2113 ((-1261) $ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -1978 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -2113 ((-1261) $ (-562) (-562) (-378) (-378) (-378))) (-15 -2113 ((-1261) $ (-378) (-378))) (-15 -2113 ((-1261) $ (-378) (-378) (-378))) (-15 -2941 ((-1261) $ (-1150))) (-15 -2041 ((-1261) $ (-1150))) (-15 -2192 ((-1261) $ (-1150))) (-15 -2053 ((-1261) $ (-1150))) (-15 -3048 ((-1261) $ (-1150))) (-15 -3201 ((-1261) $ (-378) (-378))) (-15 -3201 ((-1261) $ (-562) (-562))) (-15 -1677 ((-1261) $ (-378))) (-15 -1677 ((-1261) $ (-378) (-378) (-378))) (-15 -3818 ((-1261) $ (-378) (-378))) (-15 -3484 ((-1261) $ (-1150))) (-15 -2520 ((-1261) $ (-378))) (-15 -1526 ((-1261) $ (-378))) (-15 -2222 ((-1261) $ (-1150))) (-15 -2086 ((-1261) $ (-1150))) (-15 -1925 ((-1261) $ (-1150))) (-15 -1928 ((-1261) $ (-378) (-378) (-378))) (-15 -4319 ((-1261) $ (-378))) (-15 -2650 ((-1261) $)) (-15 -4022 ((-1261) $ (-156) (-156))) (-15 -2671 ((-1150) $ (-1150))) (-15 -2671 ((-1150) $ (-1150) (-1150))) (-15 -2671 ((-1150) $ (-1150) (-639 (-1150)))) (-15 -1449 ((-1261) $)) (-15 -2319 ((-562) $))))) (T -1258)) -((-2660 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258)))) (-2660 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258)))) (-3424 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258)))) (-3424 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258)))) (-1747 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258)))) (-1747 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258)))) (-1724 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258)))) (-1724 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258)))) (-1941 (*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258)))) (-1941 (*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258)))) (-3342 (*1 *1) (-5 *1 (-1258))) (-2003 (*1 *1 *1) (-5 *1 (-1258))) (-2003 (*1 *1 *2 *3) (-12 (-5 *2 (-1125 (-224))) (-5 *3 (-1150)) (-5 *1 (-1258)))) (-2003 (*1 *1 *2 *3) (-12 (-5 *2 (-1125 (-224))) (-5 *3 (-639 (-262))) (-5 *1 (-1258)))) (-2962 (*1 *2 *1) (-12 (-5 *2 (-1125 (-224))) (-5 *1 (-1258)))) (-2962 (*1 *1 *1 *2) (-12 (-5 *2 (-1125 (-224))) (-5 *1 (-1258)))) (-2948 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-766)) (-5 *4 (-938 (-224))) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-639 (-262))) (-5 *1 (-1258)))) (-3567 (*1 *1 *1 *2) (-12 (-5 *2 (-639 (-262))) (-5 *1 (-1258)))) (-3803 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-1595 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-3563 (*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-1362 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-766)) (-5 *4 (-916)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-2113 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-2113 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -1978 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) (-5 *1 (-1258)))) (-2113 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -1978 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-2113 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-562)) (-5 *4 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-2113 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-2113 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-2941 (*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-2041 (*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-2192 (*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-2053 (*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-3048 (*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-3201 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-3201 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-562)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-1677 (*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-1677 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-3818 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-3484 (*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-2520 (*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-1526 (*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-2222 (*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-2086 (*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-1925 (*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-1928 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-4319 (*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-1258)))) (-4022 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-156)) (-5 *2 (-1261)) (-5 *1 (-1258)))) (-2671 (*1 *2 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1258)))) (-2671 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1258)))) (-2671 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-639 (-1150))) (-5 *2 (-1150)) (-5 *1 (-1258)))) (-1449 (*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-1258)))) (-2319 (*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-1258))))) -(-13 (-1092) (-10 -8 (-15 -2660 ((-378))) (-15 -2660 ((-378) (-378))) (-15 -3424 ((-378))) (-15 -3424 ((-378) (-378))) (-15 -1747 ((-378))) (-15 -1747 ((-378) (-378))) (-15 -1724 ((-378))) (-15 -1724 ((-378) (-378))) (-15 -1941 ((-378))) (-15 -1941 ((-378) (-378))) (-15 -3342 ($)) (-15 -2003 ($ $)) (-15 -2003 ($ (-1125 (-224)) (-1150))) (-15 -2003 ($ (-1125 (-224)) (-639 (-262)))) (-15 -2962 ((-1125 (-224)) $)) (-15 -2962 ($ $ (-1125 (-224)))) (-15 -2948 ((-1261) $ (-766) (-938 (-224)))) (-15 -3567 ((-639 (-262)) $)) (-15 -3567 ($ $ (-639 (-262)))) (-15 -3803 ((-1261) $ (-766) (-766))) (-15 -1595 ((-1261) $ (-916) (-916))) (-15 -3563 ((-1261) $ (-1150))) (-15 -1362 ((-1261) $ (-766) (-766) (-916) (-916))) (-15 -2113 ((-1261) $ (-378) (-378) (-378) (-378) (-378))) (-15 -2113 ((-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -1978 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))) $)) (-15 -2113 ((-1261) $ (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -1978 (-224)) (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) (|:| |deltaX| (-224)) (|:| |deltaY| (-224))))) (-15 -2113 ((-1261) $ (-562) (-562) (-378) (-378) (-378))) (-15 -2113 ((-1261) $ (-378) (-378))) (-15 -2113 ((-1261) $ (-378) (-378) (-378))) (-15 -2941 ((-1261) $ (-1150))) (-15 -2041 ((-1261) $ (-1150))) (-15 -2192 ((-1261) $ (-1150))) (-15 -2053 ((-1261) $ (-1150))) (-15 -3048 ((-1261) $ (-1150))) (-15 -3201 ((-1261) $ (-378) (-378))) (-15 -3201 ((-1261) $ (-562) (-562))) (-15 -1677 ((-1261) $ (-378))) (-15 -1677 ((-1261) $ (-378) (-378) (-378))) (-15 -3818 ((-1261) $ (-378) (-378))) (-15 -3484 ((-1261) $ (-1150))) (-15 -2520 ((-1261) $ (-378))) (-15 -1526 ((-1261) $ (-378))) (-15 -2222 ((-1261) $ (-1150))) (-15 -2086 ((-1261) $ (-1150))) (-15 -1925 ((-1261) $ (-1150))) (-15 -1928 ((-1261) $ (-378) (-378) (-378))) (-15 -4319 ((-1261) $ (-378))) (-15 -2650 ((-1261) $)) (-15 -4022 ((-1261) $ (-156) (-156))) (-15 -2671 ((-1150) $ (-1150))) (-15 -2671 ((-1150) $ (-1150) (-1150))) (-15 -2671 ((-1150) $ (-1150) (-639 (-1150)))) (-15 -1449 ((-1261) $)) (-15 -2319 ((-562) $)))) -((-2780 (((-639 (-1150)) (-639 (-1150))) 94) (((-639 (-1150))) 90)) (-1419 (((-639 (-1150))) 88)) (-3858 (((-639 (-916)) (-639 (-916))) 63) (((-639 (-916))) 60)) (-3715 (((-639 (-766)) (-639 (-766))) 57) (((-639 (-766))) 53)) (-2295 (((-1261)) 65)) (-4185 (((-916) (-916)) 81) (((-916)) 80)) (-3891 (((-916) (-916)) 79) (((-916)) 78)) (-1649 (((-869) (-869)) 75) (((-869)) 74)) (-3067 (((-224)) 85) (((-224) (-378)) 87)) (-1537 (((-916)) 82) (((-916) (-916)) 83)) (-1397 (((-916) (-916)) 77) (((-916)) 76)) (-3621 (((-869) (-869)) 69) (((-869)) 67)) (-2619 (((-869) (-869)) 71) (((-869)) 70)) (-2493 (((-869) (-869)) 73) (((-869)) 72))) -(((-1259) (-10 -7 (-15 -3621 ((-869))) (-15 -3621 ((-869) (-869))) (-15 -2619 ((-869))) (-15 -2619 ((-869) (-869))) (-15 -2493 ((-869))) (-15 -2493 ((-869) (-869))) (-15 -1649 ((-869))) (-15 -1649 ((-869) (-869))) (-15 -1397 ((-916))) (-15 -1397 ((-916) (-916))) (-15 -3715 ((-639 (-766)))) (-15 -3715 ((-639 (-766)) (-639 (-766)))) (-15 -3858 ((-639 (-916)))) (-15 -3858 ((-639 (-916)) (-639 (-916)))) (-15 -2295 ((-1261))) (-15 -2780 ((-639 (-1150)))) (-15 -2780 ((-639 (-1150)) (-639 (-1150)))) (-15 -1419 ((-639 (-1150)))) (-15 -3891 ((-916))) (-15 -4185 ((-916))) (-15 -3891 ((-916) (-916))) (-15 -4185 ((-916) (-916))) (-15 -1537 ((-916) (-916))) (-15 -1537 ((-916))) (-15 -3067 ((-224) (-378))) (-15 -3067 ((-224))))) (T -1259)) -((-3067 (*1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-1259)))) (-3067 (*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-224)) (-5 *1 (-1259)))) (-1537 (*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-1259)))) (-1537 (*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-1259)))) (-4185 (*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-1259)))) (-3891 (*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-1259)))) (-4185 (*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-1259)))) (-3891 (*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-1259)))) (-1419 (*1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1259)))) (-2780 (*1 *2 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1259)))) (-2780 (*1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1259)))) (-2295 (*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-1259)))) (-3858 (*1 *2 *2) (-12 (-5 *2 (-639 (-916))) (-5 *1 (-1259)))) (-3858 (*1 *2) (-12 (-5 *2 (-639 (-916))) (-5 *1 (-1259)))) (-3715 (*1 *2 *2) (-12 (-5 *2 (-639 (-766))) (-5 *1 (-1259)))) (-3715 (*1 *2) (-12 (-5 *2 (-639 (-766))) (-5 *1 (-1259)))) (-1397 (*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-1259)))) (-1397 (*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-1259)))) (-1649 (*1 *2 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1259)))) (-1649 (*1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1259)))) (-2493 (*1 *2 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1259)))) (-2493 (*1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1259)))) (-2619 (*1 *2 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1259)))) (-2619 (*1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1259)))) (-3621 (*1 *2 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1259)))) (-3621 (*1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1259))))) -(-10 -7 (-15 -3621 ((-869))) (-15 -3621 ((-869) (-869))) (-15 -2619 ((-869))) (-15 -2619 ((-869) (-869))) (-15 -2493 ((-869))) (-15 -2493 ((-869) (-869))) (-15 -1649 ((-869))) (-15 -1649 ((-869) (-869))) (-15 -1397 ((-916))) (-15 -1397 ((-916) (-916))) (-15 -3715 ((-639 (-766)))) (-15 -3715 ((-639 (-766)) (-639 (-766)))) (-15 -3858 ((-639 (-916)))) (-15 -3858 ((-639 (-916)) (-639 (-916)))) (-15 -2295 ((-1261))) (-15 -2780 ((-639 (-1150)))) (-15 -2780 ((-639 (-1150)) (-639 (-1150)))) (-15 -1419 ((-639 (-1150)))) (-15 -3891 ((-916))) (-15 -4185 ((-916))) (-15 -3891 ((-916) (-916))) (-15 -4185 ((-916) (-916))) (-15 -1537 ((-916) (-916))) (-15 -1537 ((-916))) (-15 -3067 ((-224) (-378))) (-15 -3067 ((-224)))) -((-4304 (((-467) (-639 (-639 (-938 (-224)))) (-639 (-262))) 21) (((-467) (-639 (-639 (-938 (-224))))) 20) (((-467) (-639 (-639 (-938 (-224)))) (-869) (-869) (-916) (-639 (-262))) 19)) (-3211 (((-1257) (-639 (-639 (-938 (-224)))) (-639 (-262))) 27) (((-1257) (-639 (-639 (-938 (-224)))) (-869) (-869) (-916) (-639 (-262))) 26)) (-4053 (((-1257) (-467)) 38))) -(((-1260) (-10 -7 (-15 -4304 ((-467) (-639 (-639 (-938 (-224)))) (-869) (-869) (-916) (-639 (-262)))) (-15 -4304 ((-467) (-639 (-639 (-938 (-224)))))) (-15 -4304 ((-467) (-639 (-639 (-938 (-224)))) (-639 (-262)))) (-15 -3211 ((-1257) (-639 (-639 (-938 (-224)))) (-869) (-869) (-916) (-639 (-262)))) (-15 -3211 ((-1257) (-639 (-639 (-938 (-224)))) (-639 (-262)))) (-15 -4053 ((-1257) (-467))))) (T -1260)) -((-4053 (*1 *2 *3) (-12 (-5 *3 (-467)) (-5 *2 (-1257)) (-5 *1 (-1260)))) (-3211 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-639 (-938 (-224))))) (-5 *4 (-639 (-262))) (-5 *2 (-1257)) (-5 *1 (-1260)))) (-3211 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-639 (-639 (-938 (-224))))) (-5 *4 (-869)) (-5 *5 (-916)) (-5 *6 (-639 (-262))) (-5 *2 (-1257)) (-5 *1 (-1260)))) (-4304 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-639 (-938 (-224))))) (-5 *4 (-639 (-262))) (-5 *2 (-467)) (-5 *1 (-1260)))) (-4304 (*1 *2 *3) (-12 (-5 *3 (-639 (-639 (-938 (-224))))) (-5 *2 (-467)) (-5 *1 (-1260)))) (-4304 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-639 (-639 (-938 (-224))))) (-5 *4 (-869)) (-5 *5 (-916)) (-5 *6 (-639 (-262))) (-5 *2 (-467)) (-5 *1 (-1260))))) -(-10 -7 (-15 -4304 ((-467) (-639 (-639 (-938 (-224)))) (-869) (-869) (-916) (-639 (-262)))) (-15 -4304 ((-467) (-639 (-639 (-938 (-224)))))) (-15 -4304 ((-467) (-639 (-639 (-938 (-224)))) (-639 (-262)))) (-15 -3211 ((-1257) (-639 (-639 (-938 (-224)))) (-869) (-869) (-916) (-639 (-262)))) (-15 -3211 ((-1257) (-639 (-639 (-938 (-224)))) (-639 (-262)))) (-15 -4053 ((-1257) (-467)))) -((-2649 (($) 7)) (-4053 (((-857) $) 10))) -(((-1261) (-13 (-609 (-857)) (-10 -8 (-15 -2649 ($))))) (T -1261)) -((-2649 (*1 *1) (-5 *1 (-1261)))) -(-13 (-609 (-857)) (-10 -8 (-15 -2649 ($)))) -((-1859 (($ $ |#2|) 10))) -(((-1262 |#1| |#2|) (-10 -8 (-15 -1859 (|#1| |#1| |#2|))) (-1263 |#2|) (-362)) (T -1262)) -NIL -(-10 -8 (-15 -1859 (|#1| |#1| |#2|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4340 (((-133)) 28)) (-4053 (((-857) $) 11)) (-2285 (($) 18 T CONST)) (-1733 (((-112) $ $) 6)) (-1859 (($ $ |#1|) 29)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-1263 |#1|) (-139) (-362)) (T -1263)) -((-1859 (*1 *1 *1 *2) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-362)))) (-4340 (*1 *2) (-12 (-4 *1 (-1263 *3)) (-4 *3 (-362)) (-5 *2 (-133))))) -(-13 (-712 |t#1|) (-10 -8 (-15 -1859 ($ $ |t#1|)) (-15 -4340 ((-133))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-609 (-857)) . T) ((-642 |#1|) . T) ((-712 |#1|) . T) ((-1050 |#1|) . T) ((-1092) . T)) -((-4242 (((-639 (-1201 |#1|)) (-1168) (-1201 |#1|)) 74)) (-4375 (((-1148 (-1148 (-947 |#1|))) (-1168) (-1148 (-947 |#1|))) 53)) (-3212 (((-1 (-1148 (-1201 |#1|)) (-1148 (-1201 |#1|))) (-766) (-1201 |#1|) (-1148 (-1201 |#1|))) 64)) (-1737 (((-1 (-1148 (-947 |#1|)) (-1148 (-947 |#1|))) (-766)) 55)) (-2232 (((-1 (-1164 (-947 |#1|)) (-947 |#1|)) (-1168)) 29)) (-2988 (((-1 (-1148 (-947 |#1|)) (-1148 (-947 |#1|))) (-766)) 54))) -(((-1264 |#1|) (-10 -7 (-15 -1737 ((-1 (-1148 (-947 |#1|)) (-1148 (-947 |#1|))) (-766))) (-15 -2988 ((-1 (-1148 (-947 |#1|)) (-1148 (-947 |#1|))) (-766))) (-15 -4375 ((-1148 (-1148 (-947 |#1|))) (-1168) (-1148 (-947 |#1|)))) (-15 -2232 ((-1 (-1164 (-947 |#1|)) (-947 |#1|)) (-1168))) (-15 -4242 ((-639 (-1201 |#1|)) (-1168) (-1201 |#1|))) (-15 -3212 ((-1 (-1148 (-1201 |#1|)) (-1148 (-1201 |#1|))) (-766) (-1201 |#1|) (-1148 (-1201 |#1|))))) (-362)) (T -1264)) -((-3212 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-766)) (-4 *6 (-362)) (-5 *4 (-1201 *6)) (-5 *2 (-1 (-1148 *4) (-1148 *4))) (-5 *1 (-1264 *6)) (-5 *5 (-1148 *4)))) (-4242 (*1 *2 *3 *4) (-12 (-5 *3 (-1168)) (-4 *5 (-362)) (-5 *2 (-639 (-1201 *5))) (-5 *1 (-1264 *5)) (-5 *4 (-1201 *5)))) (-2232 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1 (-1164 (-947 *4)) (-947 *4))) (-5 *1 (-1264 *4)) (-4 *4 (-362)))) (-4375 (*1 *2 *3 *4) (-12 (-5 *3 (-1168)) (-4 *5 (-362)) (-5 *2 (-1148 (-1148 (-947 *5)))) (-5 *1 (-1264 *5)) (-5 *4 (-1148 (-947 *5))))) (-2988 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1 (-1148 (-947 *4)) (-1148 (-947 *4)))) (-5 *1 (-1264 *4)) (-4 *4 (-362)))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1 (-1148 (-947 *4)) (-1148 (-947 *4)))) (-5 *1 (-1264 *4)) (-4 *4 (-362))))) -(-10 -7 (-15 -1737 ((-1 (-1148 (-947 |#1|)) (-1148 (-947 |#1|))) (-766))) (-15 -2988 ((-1 (-1148 (-947 |#1|)) (-1148 (-947 |#1|))) (-766))) (-15 -4375 ((-1148 (-1148 (-947 |#1|))) (-1168) (-1148 (-947 |#1|)))) (-15 -2232 ((-1 (-1164 (-947 |#1|)) (-947 |#1|)) (-1168))) (-15 -4242 ((-639 (-1201 |#1|)) (-1168) (-1201 |#1|))) (-15 -3212 ((-1 (-1148 (-1201 |#1|)) (-1148 (-1201 |#1|))) (-766) (-1201 |#1|) (-1148 (-1201 |#1|))))) -((-2606 (((-2 (|:| -4291 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|))) |#2|) 75)) (-2639 (((-2 (|:| -4291 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|)))) 74))) -(((-1265 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2639 ((-2 (|:| -4291 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|))))) (-15 -2606 ((-2 (|:| -4291 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|))) |#2|))) (-348) (-1232 |#1|) (-1232 |#2|) (-408 |#2| |#3|)) (T -1265)) -((-2606 (*1 *2 *3) (-12 (-4 *4 (-348)) (-4 *3 (-1232 *4)) (-4 *5 (-1232 *3)) (-5 *2 (-2 (|:| -4291 (-683 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-683 *3)))) (-5 *1 (-1265 *4 *3 *5 *6)) (-4 *6 (-408 *3 *5)))) (-2639 (*1 *2) (-12 (-4 *3 (-348)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 *4)) (-5 *2 (-2 (|:| -4291 (-683 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-683 *4)))) (-5 *1 (-1265 *3 *4 *5 *6)) (-4 *6 (-408 *4 *5))))) -(-10 -7 (-15 -2639 ((-2 (|:| -4291 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|))))) (-15 -2606 ((-2 (|:| -4291 (-683 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-683 |#2|))) |#2|))) -((-4041 (((-112) $ $) NIL)) (-1574 (((-1127) $) 11)) (-1855 (((-1127) $) 9)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 19) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-1266) (-13 (-1075) (-10 -8 (-15 -1855 ((-1127) $)) (-15 -1574 ((-1127) $))))) (T -1266)) -((-1855 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1266)))) (-1574 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1266))))) -(-13 (-1075) (-10 -8 (-15 -1855 ((-1127) $)) (-15 -1574 ((-1127) $)))) -((-4041 (((-112) $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-3316 (((-1127) $) 9)) (-4053 (((-857) $) 17) (($ (-1173)) NIL) (((-1173) $) NIL)) (-1733 (((-112) $ $) NIL))) -(((-1267) (-13 (-1075) (-10 -8 (-15 -3316 ((-1127) $))))) (T -1267)) -((-3316 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1267))))) -(-13 (-1075) (-10 -8 (-15 -3316 ((-1127) $)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) 42)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3329 (($) NIL T CONST)) (-1694 (((-3 $ "failed") $) NIL)) (-4367 (((-112) $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-4053 (((-857) $) 63) (($ (-562)) NIL) (($ |#4|) 48) ((|#4| $) 53) (($ |#1|) NIL (|has| |#1| (-171)))) (-1568 (((-766)) NIL)) (-2825 (((-1261) (-766)) 16)) (-2285 (($) 27 T CONST)) (-2294 (($) 66 T CONST)) (-1733 (((-112) $ $) 68)) (-1859 (((-3 $ "failed") $ $) NIL (|has| |#1| (-362)))) (-1847 (($ $) 70) (($ $ $) NIL)) (-1836 (($ $ $) 46)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 72) (($ |#1| $) NIL (|has| |#1| (-171))) (($ $ |#1|) NIL (|has| |#1| (-171))))) -(((-1268 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1044) (-489 |#4|) (-10 -8 (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -1859 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2825 ((-1261) (-766))))) (-1044) (-845) (-788) (-944 |#1| |#3| |#2|) (-639 |#2|) (-639 (-766)) (-766)) (T -1268)) -((-1859 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-362)) (-4 *2 (-1044)) (-4 *3 (-845)) (-4 *4 (-788)) (-14 *6 (-639 *3)) (-5 *1 (-1268 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-944 *2 *4 *3)) (-14 *7 (-639 (-766))) (-14 *8 (-766)))) (-2825 (*1 *2 *3) (-12 (-5 *3 (-766)) (-4 *4 (-1044)) (-4 *5 (-845)) (-4 *6 (-788)) (-14 *8 (-639 *5)) (-5 *2 (-1261)) (-5 *1 (-1268 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-944 *4 *6 *5)) (-14 *9 (-639 *3)) (-14 *10 *3)))) -(-13 (-1044) (-489 |#4|) (-10 -8 (IF (|has| |#1| (-171)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (-15 -1859 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2825 ((-1261) (-766))))) -((-4041 (((-112) $ $) NIL)) (-1330 (((-639 (-2 (|:| -1449 $) (|:| -3315 (-639 |#4|)))) (-639 |#4|)) NIL)) (-3672 (((-639 $) (-639 |#4|)) 89)) (-1401 (((-639 |#3|) $) NIL)) (-2799 (((-112) $) NIL)) (-4370 (((-112) $) NIL (|has| |#1| (-554)))) (-4177 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3623 ((|#4| |#4| $) NIL)) (-1395 (((-2 (|:| |under| $) (|:| -3870 $) (|:| |upper| $)) $ |#3|) NIL)) (-3735 (((-112) $ (-766)) NIL)) (-3556 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4403))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3329 (($) NIL T CONST)) (-2169 (((-112) $) NIL (|has| |#1| (-554)))) (-2183 (((-112) $ $) NIL (|has| |#1| (-554)))) (-2864 (((-112) $ $) NIL (|has| |#1| (-554)))) (-4219 (((-112) $) NIL (|has| |#1| (-554)))) (-4227 (((-639 |#4|) (-639 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 28)) (-2037 (((-639 |#4|) (-639 |#4|) $) 25 (|has| |#1| (-554)))) (-4230 (((-639 |#4|) (-639 |#4|) $) NIL (|has| |#1| (-554)))) (-4048 (((-3 $ "failed") (-639 |#4|)) NIL)) (-3960 (($ (-639 |#4|)) NIL)) (-1434 (((-3 $ "failed") $) 71)) (-3255 ((|#4| |#4| $) 76)) (-1459 (($ $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#4| (-1092))))) (-1475 (($ |#4| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#4| (-1092)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4403)))) (-1441 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-554)))) (-3300 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2227 ((|#4| |#4| $) NIL)) (-1954 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4403)) (|has| |#4| (-1092)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4403))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4403))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1471 (((-2 (|:| -1449 (-639 |#4|)) (|:| -3315 (-639 |#4|))) $) NIL)) (-1720 (((-639 |#4|) $) NIL (|has| $ (-6 -4403)))) (-1493 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3761 ((|#3| $) 77)) (-4172 (((-112) $ (-766)) NIL)) (-2123 (((-639 |#4|) $) 29 (|has| $ (-6 -4403)))) (-1572 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#4| (-1092))))) (-3451 (((-3 $ "failed") (-639 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-639 |#4|)) 35)) (-1491 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4404)))) (-4152 (($ (-1 |#4| |#4|) $) NIL)) (-3133 (((-639 |#3|) $) NIL)) (-3112 (((-112) |#3| $) NIL)) (-4147 (((-112) $ (-766)) NIL)) (-3696 (((-1150) $) NIL)) (-1504 (((-3 |#4| "failed") $) NIL)) (-2063 (((-639 |#4|) $) 51)) (-1645 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2651 ((|#4| |#4| $) 75)) (-1789 (((-112) $ $) 86)) (-4123 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-554)))) (-2830 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1630 ((|#4| |#4| $) NIL)) (-1709 (((-1112) $) NIL)) (-1421 (((-3 |#4| "failed") $) 70)) (-1963 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4333 (((-3 $ "failed") $ |#4|) NIL)) (-4316 (($ $ |#4|) NIL)) (-3008 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4403)))) (-1433 (($ $ (-639 |#4|) (-639 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-293 |#4|)) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092)))) (($ $ (-639 (-293 |#4|))) NIL (-12 (|has| |#4| (-308 |#4|)) (|has| |#4| (-1092))))) (-1452 (((-112) $ $) NIL)) (-3087 (((-112) $) 68)) (-1663 (($) 43)) (-2250 (((-766) $) NIL)) (-1723 (((-766) |#4| $) NIL (-12 (|has| $ (-6 -4403)) (|has| |#4| (-1092)))) (((-766) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4403)))) (-4220 (($ $) NIL)) (-4208 (((-535) $) NIL (|has| |#4| (-610 (-535))))) (-4064 (($ (-639 |#4|)) NIL)) (-2316 (($ $ |#3|) NIL)) (-2180 (($ $ |#3|) NIL)) (-2209 (($ $) NIL)) (-1962 (($ $ |#3|) NIL)) (-4053 (((-857) $) NIL) (((-639 |#4|) $) 58)) (-4157 (((-766) $) NIL (|has| |#3| (-367)))) (-3365 (((-3 $ "failed") (-639 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 41) (((-3 $ "failed") (-639 |#4|)) 42)) (-1991 (((-639 $) (-639 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 66) (((-639 $) (-639 |#4|)) 67)) (-4168 (((-3 (-2 (|:| |bas| $) (|:| -2774 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -2774 (-639 |#4|))) "failed") (-639 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2350 (((-112) $ (-1 (-112) |#4| (-639 |#4|))) NIL)) (-2879 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4403)))) (-3278 (((-639 |#3|) $) NIL)) (-3782 (((-112) |#3| $) NIL)) (-1733 (((-112) $ $) NIL)) (-3492 (((-766) $) NIL (|has| $ (-6 -4403))))) -(((-1269 |#1| |#2| |#3| |#4|) (-13 (-1200 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3451 ((-3 $ "failed") (-639 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3451 ((-3 $ "failed") (-639 |#4|))) (-15 -3365 ((-3 $ "failed") (-639 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3365 ((-3 $ "failed") (-639 |#4|))) (-15 -1991 ((-639 $) (-639 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1991 ((-639 $) (-639 |#4|))))) (-554) (-788) (-845) (-1058 |#1| |#2| |#3|)) (T -1269)) -((-3451 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-639 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *1 (-1269 *5 *6 *7 *8)))) (-3451 (*1 *1 *2) (|partial| -12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-1269 *3 *4 *5 *6)))) (-3365 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-639 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *1 (-1269 *5 *6 *7 *8)))) (-3365 (*1 *1 *2) (|partial| -12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-1269 *3 *4 *5 *6)))) (-1991 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1058 *6 *7 *8)) (-4 *6 (-554)) (-4 *7 (-788)) (-4 *8 (-845)) (-5 *2 (-639 (-1269 *6 *7 *8 *9))) (-5 *1 (-1269 *6 *7 *8 *9)))) (-1991 (*1 *2 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 (-1269 *4 *5 *6 *7))) (-5 *1 (-1269 *4 *5 *6 *7))))) -(-13 (-1200 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3451 ((-3 $ "failed") (-639 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3451 ((-3 $ "failed") (-639 |#4|))) (-15 -3365 ((-3 $ "failed") (-639 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3365 ((-3 $ "failed") (-639 |#4|))) (-15 -1991 ((-639 $) (-639 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1991 ((-639 $) (-639 |#4|))))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2781 (((-3 $ "failed") $ $) 19)) (-3329 (($) 17 T CONST)) (-1694 (((-3 $ "failed") $) 33)) (-4367 (((-112) $) 31)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ |#1|) 39)) (-1568 (((-766)) 28)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ |#1|) 41) (($ |#1| $) 40))) -(((-1270 |#1|) (-139) (-1044)) (T -1270)) -NIL -(-13 (-1044) (-111 |t#1| |t#1|) (-612 |t#1|) (-10 -7 (IF (|has| |t#1| (-171)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-171)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-612 (-562)) . T) ((-612 |#1|) . T) ((-609 (-857)) . T) ((-642 |#1|) . T) ((-642 $) . T) ((-712 |#1|) |has| |#1| (-171)) ((-721) . T) ((-1050 |#1|) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T)) -((-4041 (((-112) $ $) 59)) (-4325 (((-112) $) NIL)) (-2850 (((-639 |#1|) $) 45)) (-1772 (($ $ (-766)) 39)) (-2781 (((-3 $ "failed") $ $) NIL)) (-1403 (($ $ (-766)) 18 (|has| |#2| (-171))) (($ $ $) 19 (|has| |#2| (-171)))) (-3329 (($) NIL T CONST)) (-2403 (($ $ $) 62) (($ $ (-814 |#1|)) 48) (($ $ |#1|) 52)) (-4048 (((-3 (-814 |#1|) "failed") $) NIL)) (-3960 (((-814 |#1|) $) NIL)) (-1600 (($ $) 32)) (-1694 (((-3 $ "failed") $) NIL)) (-3056 (((-112) $) NIL)) (-3199 (($ $) NIL)) (-4367 (((-112) $) NIL)) (-3627 (((-766) $) NIL)) (-1869 (((-639 $) $) NIL)) (-2833 (((-112) $) NIL)) (-3044 (($ (-814 |#1|) |#2|) 31)) (-2572 (($ $) 33)) (-2681 (((-2 (|:| |k| (-814 |#1|)) (|:| |c| |#2|)) $) 12)) (-1594 (((-814 |#1|) $) NIL)) (-2251 (((-814 |#1|) $) 34)) (-4152 (($ (-1 |#2| |#2|) $) NIL)) (-2303 (($ $ $) 61) (($ $ (-814 |#1|)) 50) (($ $ |#1|) 54)) (-2395 (((-2 (|:| |k| (-814 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1560 (((-814 |#1|) $) 28)) (-1573 ((|#2| $) 30)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-2250 (((-766) $) 36)) (-3620 (((-112) $) 40)) (-1497 ((|#2| $) NIL)) (-4053 (((-857) $) NIL) (($ (-814 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-562)) NIL)) (-3969 (((-639 |#2|) $) NIL)) (-2266 ((|#2| $ (-814 |#1|)) NIL)) (-4221 ((|#2| $ $) 64) ((|#2| $ (-814 |#1|)) NIL)) (-1568 (((-766)) NIL)) (-2285 (($) 13 T CONST)) (-2294 (($) 15 T CONST)) (-2174 (((-639 (-2 (|:| |k| (-814 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1733 (((-112) $ $) 38)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) 22)) (** (($ $ (-766)) NIL) (($ $ (-916)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 60) (($ |#2| (-814 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) -(((-1271 |#1| |#2|) (-13 (-381 |#2| (-814 |#1|)) (-1277 |#1| |#2|)) (-845) (-1044)) (T -1271)) -NIL -(-13 (-381 |#2| (-814 |#1|)) (-1277 |#1| |#2|)) -((-4366 ((|#3| |#3| (-766)) 23)) (-3430 ((|#3| |#3| (-766)) 27)) (-2151 ((|#3| |#3| |#3| (-766)) 28))) -(((-1272 |#1| |#2| |#3|) (-10 -7 (-15 -3430 (|#3| |#3| (-766))) (-15 -4366 (|#3| |#3| (-766))) (-15 -2151 (|#3| |#3| |#3| (-766)))) (-13 (-1044) (-712 (-406 (-562)))) (-845) (-1277 |#2| |#1|)) (T -1272)) -((-2151 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-766)) (-4 *4 (-13 (-1044) (-712 (-406 (-562))))) (-4 *5 (-845)) (-5 *1 (-1272 *4 *5 *2)) (-4 *2 (-1277 *5 *4)))) (-4366 (*1 *2 *2 *3) (-12 (-5 *3 (-766)) (-4 *4 (-13 (-1044) (-712 (-406 (-562))))) (-4 *5 (-845)) (-5 *1 (-1272 *4 *5 *2)) (-4 *2 (-1277 *5 *4)))) (-3430 (*1 *2 *2 *3) (-12 (-5 *3 (-766)) (-4 *4 (-13 (-1044) (-712 (-406 (-562))))) (-4 *5 (-845)) (-5 *1 (-1272 *4 *5 *2)) (-4 *2 (-1277 *5 *4))))) -(-10 -7 (-15 -3430 (|#3| |#3| (-766))) (-15 -4366 (|#3| |#3| (-766))) (-15 -2151 (|#3| |#3| |#3| (-766)))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2850 (((-639 |#1|) $) 41)) (-2781 (((-3 $ "failed") $ $) 19)) (-1403 (($ $ $) 44 (|has| |#2| (-171))) (($ $ (-766)) 43 (|has| |#2| (-171)))) (-3329 (($) 17 T CONST)) (-2403 (($ $ |#1|) 55) (($ $ (-814 |#1|)) 54) (($ $ $) 53)) (-4048 (((-3 (-814 |#1|) "failed") $) 65)) (-3960 (((-814 |#1|) $) 66)) (-1694 (((-3 $ "failed") $) 33)) (-3056 (((-112) $) 46)) (-3199 (($ $) 45)) (-4367 (((-112) $) 31)) (-2833 (((-112) $) 51)) (-3044 (($ (-814 |#1|) |#2|) 52)) (-2572 (($ $) 50)) (-2681 (((-2 (|:| |k| (-814 |#1|)) (|:| |c| |#2|)) $) 61)) (-1594 (((-814 |#1|) $) 62)) (-4152 (($ (-1 |#2| |#2|) $) 42)) (-2303 (($ $ |#1|) 58) (($ $ (-814 |#1|)) 57) (($ $ $) 56)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-3620 (((-112) $) 48)) (-1497 ((|#2| $) 47)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ |#2|) 69) (($ (-814 |#1|)) 64) (($ |#1|) 49)) (-4221 ((|#2| $ (-814 |#1|)) 60) ((|#2| $ $) 59)) (-1568 (((-766)) 28)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63))) -(((-1273 |#1| |#2|) (-139) (-845) (-1044)) (T -1273)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1273 *3 *2)) (-4 *3 (-845)) (-4 *2 (-1044)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044)))) (-1594 (*1 *2 *1) (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) (-5 *2 (-814 *3)))) (-2681 (*1 *2 *1) (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) (-5 *2 (-2 (|:| |k| (-814 *3)) (|:| |c| *4))))) (-4221 (*1 *2 *1 *3) (-12 (-5 *3 (-814 *4)) (-4 *1 (-1273 *4 *2)) (-4 *4 (-845)) (-4 *2 (-1044)))) (-4221 (*1 *2 *1 *1) (-12 (-4 *1 (-1273 *3 *2)) (-4 *3 (-845)) (-4 *2 (-1044)))) (-2303 (*1 *1 *1 *2) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044)))) (-2303 (*1 *1 *1 *2) (-12 (-5 *2 (-814 *3)) (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)))) (-2303 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044)))) (-2403 (*1 *1 *1 *2) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044)))) (-2403 (*1 *1 *1 *2) (-12 (-5 *2 (-814 *3)) (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)))) (-2403 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044)))) (-3044 (*1 *1 *2 *3) (-12 (-5 *2 (-814 *4)) (-4 *4 (-845)) (-4 *1 (-1273 *4 *3)) (-4 *3 (-1044)))) (-2833 (*1 *2 *1) (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) (-5 *2 (-112)))) (-2572 (*1 *1 *1) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044)))) (-4053 (*1 *1 *2) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044)))) (-3620 (*1 *2 *1) (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) (-5 *2 (-112)))) (-1497 (*1 *2 *1) (-12 (-4 *1 (-1273 *3 *2)) (-4 *3 (-845)) (-4 *2 (-1044)))) (-3056 (*1 *2 *1) (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) (-5 *2 (-112)))) (-3199 (*1 *1 *1) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044)))) (-1403 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044)) (-4 *3 (-171)))) (-1403 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) (-4 *4 (-171)))) (-4152 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)))) (-2850 (*1 *2 *1) (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) (-5 *2 (-639 *3))))) -(-13 (-1044) (-1270 |t#2|) (-1033 (-814 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -1594 ((-814 |t#1|) $)) (-15 -2681 ((-2 (|:| |k| (-814 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -4221 (|t#2| $ (-814 |t#1|))) (-15 -4221 (|t#2| $ $)) (-15 -2303 ($ $ |t#1|)) (-15 -2303 ($ $ (-814 |t#1|))) (-15 -2303 ($ $ $)) (-15 -2403 ($ $ |t#1|)) (-15 -2403 ($ $ (-814 |t#1|))) (-15 -2403 ($ $ $)) (-15 -3044 ($ (-814 |t#1|) |t#2|)) (-15 -2833 ((-112) $)) (-15 -2572 ($ $)) (-15 -4053 ($ |t#1|)) (-15 -3620 ((-112) $)) (-15 -1497 (|t#2| $)) (-15 -3056 ((-112) $)) (-15 -3199 ($ $)) (IF (|has| |t#2| (-171)) (PROGN (-15 -1403 ($ $ $)) (-15 -1403 ($ $ (-766)))) |%noBranch|) (-15 -4152 ($ (-1 |t#2| |t#2|) $)) (-15 -2850 ((-639 |t#1|) $)) (IF (|has| |t#2| (-6 -4396)) (-6 -4396) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-171)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-612 (-562)) . T) ((-612 #0=(-814 |#1|)) . T) ((-612 |#2|) . T) ((-609 (-857)) . T) ((-642 |#2|) . T) ((-642 $) . T) ((-712 |#2|) |has| |#2| (-171)) ((-721) . T) ((-1033 #0#) . T) ((-1050 |#2|) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1270 |#2|) . T)) -((-3826 (((-112) $) 14)) (-3782 (((-112) $) 13)) (-4144 (($ $) 18) (($ $ (-766)) 19))) -(((-1274 |#1| |#2|) (-10 -8 (-15 -4144 (|#1| |#1| (-766))) (-15 -4144 (|#1| |#1|)) (-15 -3826 ((-112) |#1|)) (-15 -3782 ((-112) |#1|))) (-1275 |#2|) (-362)) (T -1274)) -NIL -(-10 -8 (-15 -4144 (|#1| |#1| (-766))) (-15 -4144 (|#1| |#1|)) (-15 -3826 ((-112) |#1|)) (-15 -3782 ((-112) |#1|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2271 (((-2 (|:| -4310 $) (|:| -4390 $) (|:| |associate| $)) $) 42)) (-1965 (($ $) 41)) (-4102 (((-112) $) 39)) (-3826 (((-112) $) 95)) (-2284 (((-766)) 91)) (-2781 (((-3 $ "failed") $ $) 19)) (-1977 (($ $) 74)) (-3788 (((-417 $) $) 73)) (-1436 (((-112) $ $) 60)) (-3329 (($) 17 T CONST)) (-4048 (((-3 |#1| "failed") $) 102)) (-3960 ((|#1| $) 103)) (-1810 (($ $ $) 56)) (-1694 (((-3 $ "failed") $) 33)) (-1787 (($ $ $) 57)) (-2288 (((-2 (|:| -4221 (-639 $)) (|:| -3147 $)) (-639 $)) 52)) (-2184 (($ $ (-766)) 88 (-4037 (|has| |#1| (-144)) (|has| |#1| (-367)))) (($ $) 87 (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-3521 (((-112) $) 72)) (-1993 (((-828 (-916)) $) 85 (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4367 (((-112) $) 31)) (-1719 (((-3 (-639 $) "failed") (-639 $) $) 53)) (-1564 (($ $ $) 47) (($ (-639 $)) 46)) (-3696 (((-1150) $) 9)) (-1525 (($ $) 71)) (-2991 (((-112) $) 94)) (-1709 (((-1112) $) 10)) (-2602 (((-1164 $) (-1164 $) (-1164 $)) 45)) (-1606 (($ $ $) 49) (($ (-639 $)) 48)) (-1635 (((-417 $) $) 75)) (-3548 (((-828 (-916))) 92)) (-3399 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3147 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1762 (((-3 $ "failed") $ $) 43)) (-1879 (((-3 (-639 $) "failed") (-639 $) $) 51)) (-2044 (((-766) $) 59)) (-3204 (((-2 (|:| -3380 $) (|:| -1441 $)) $ $) 58)) (-3543 (((-3 (-766) "failed") $ $) 86 (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-4340 (((-133)) 100)) (-2250 (((-828 (-916)) $) 93)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ $) 44) (($ (-406 (-562))) 67) (($ |#1|) 101)) (-2059 (((-3 $ "failed") $) 84 (-4037 (|has| |#1| (-144)) (|has| |#1| (-367))))) (-1568 (((-766)) 28)) (-3799 (((-112) $ $) 40)) (-3782 (((-112) $) 96)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-4144 (($ $) 90 (|has| |#1| (-367))) (($ $ (-766)) 89 (|has| |#1| (-367)))) (-1733 (((-112) $ $) 6)) (-1859 (($ $ $) 66) (($ $ |#1|) 99)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32) (($ $ (-562)) 70)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ $ (-406 (-562))) 69) (($ (-406 (-562)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97))) -(((-1275 |#1|) (-139) (-362)) (T -1275)) -((-3782 (*1 *2 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-362)) (-5 *2 (-112)))) (-3826 (*1 *2 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-362)) (-5 *2 (-112)))) (-2991 (*1 *2 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-362)) (-5 *2 (-112)))) (-2250 (*1 *2 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-362)) (-5 *2 (-828 (-916))))) (-3548 (*1 *2) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-362)) (-5 *2 (-828 (-916))))) (-2284 (*1 *2) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-362)) (-5 *2 (-766)))) (-4144 (*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-362)) (-4 *2 (-367)))) (-4144 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-1275 *3)) (-4 *3 (-362)) (-4 *3 (-367))))) -(-13 (-362) (-1033 |t#1|) (-1263 |t#1|) (-10 -8 (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-401)) |%noBranch|) (-15 -3782 ((-112) $)) (-15 -3826 ((-112) $)) (-15 -2991 ((-112) $)) (-15 -2250 ((-828 (-916)) $)) (-15 -3548 ((-828 (-916)))) (-15 -2284 ((-766))) (IF (|has| |t#1| (-367)) (PROGN (-6 (-401)) (-15 -4144 ($ $)) (-15 -4144 ($ $ (-766)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-406 (-562))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-144) -4037 (|has| |#1| (-367)) (|has| |#1| (-144))) ((-146) |has| |#1| (-146)) ((-612 #0#) . T) ((-612 (-562)) . T) ((-612 |#1|) . T) ((-612 $) . T) ((-609 (-857)) . T) ((-171) . T) ((-242) . T) ((-289) . T) ((-306) . T) ((-362) . T) ((-401) -4037 (|has| |#1| (-367)) (|has| |#1| (-144))) ((-451) . T) ((-554) . T) ((-642 #0#) . T) ((-642 |#1|) . T) ((-642 $) . T) ((-712 #0#) . T) ((-712 |#1|) . T) ((-712 $) . T) ((-721) . T) ((-915) . T) ((-1033 |#1|) . T) ((-1050 #0#) . T) ((-1050 |#1|) . T) ((-1050 $) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1211) . T) ((-1263 |#1|) . T)) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2850 (((-639 |#1|) $) 85)) (-1772 (($ $ (-766)) 88)) (-2781 (((-3 $ "failed") $ $) NIL)) (-1403 (($ $ $) NIL (|has| |#2| (-171))) (($ $ (-766)) NIL (|has| |#2| (-171)))) (-3329 (($) NIL T CONST)) (-2403 (($ $ |#1|) NIL) (($ $ (-814 |#1|)) NIL) (($ $ $) NIL)) (-4048 (((-3 (-814 |#1|) "failed") $) NIL) (((-3 (-888 |#1|) "failed") $) NIL)) (-3960 (((-814 |#1|) $) NIL) (((-888 |#1|) $) NIL)) (-1600 (($ $) 87)) (-1694 (((-3 $ "failed") $) NIL)) (-3056 (((-112) $) 76)) (-3199 (($ $) 80)) (-3912 (($ $ $ (-766)) 89)) (-4367 (((-112) $) NIL)) (-3627 (((-766) $) NIL)) (-1869 (((-639 $) $) NIL)) (-2833 (((-112) $) NIL)) (-3044 (($ (-814 |#1|) |#2|) NIL) (($ (-888 |#1|) |#2|) 25)) (-2572 (($ $) 102)) (-2681 (((-2 (|:| |k| (-814 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1594 (((-814 |#1|) $) NIL)) (-2251 (((-814 |#1|) $) NIL)) (-4152 (($ (-1 |#2| |#2|) $) NIL)) (-2303 (($ $ |#1|) NIL) (($ $ (-814 |#1|)) NIL) (($ $ $) NIL)) (-4366 (($ $ (-766)) 96 (|has| |#2| (-712 (-406 (-562)))))) (-2395 (((-2 (|:| |k| (-888 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1560 (((-888 |#1|) $) 69)) (-1573 ((|#2| $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-3430 (($ $ (-766)) 93 (|has| |#2| (-712 (-406 (-562)))))) (-2250 (((-766) $) 86)) (-3620 (((-112) $) 70)) (-1497 ((|#2| $) 74)) (-4053 (((-857) $) 56) (($ (-562)) NIL) (($ |#2|) 50) (($ (-814 |#1|)) NIL) (($ |#1|) 58) (($ (-888 |#1|)) NIL) (($ (-658 |#1| |#2|)) 42) (((-1271 |#1| |#2|) $) 63) (((-1280 |#1| |#2|) $) 68)) (-3969 (((-639 |#2|) $) NIL)) (-2266 ((|#2| $ (-888 |#1|)) NIL)) (-4221 ((|#2| $ (-814 |#1|)) NIL) ((|#2| $ $) NIL)) (-1568 (((-766)) NIL)) (-2285 (($) 21 T CONST)) (-2294 (($) 24 T CONST)) (-2174 (((-639 (-2 (|:| |k| (-888 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3192 (((-3 (-658 |#1| |#2|) "failed") $) 101)) (-1733 (((-112) $ $) 64)) (-1847 (($ $) 95) (($ $ $) 94)) (-1836 (($ $ $) 20)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 43) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-888 |#1|)) NIL))) -(((-1276 |#1| |#2|) (-13 (-1277 |#1| |#2|) (-381 |#2| (-888 |#1|)) (-10 -8 (-15 -4053 ($ (-658 |#1| |#2|))) (-15 -4053 ((-1271 |#1| |#2|) $)) (-15 -4053 ((-1280 |#1| |#2|) $)) (-15 -3192 ((-3 (-658 |#1| |#2|) "failed") $)) (-15 -3912 ($ $ $ (-766))) (IF (|has| |#2| (-712 (-406 (-562)))) (PROGN (-15 -3430 ($ $ (-766))) (-15 -4366 ($ $ (-766)))) |%noBranch|))) (-845) (-171)) (T -1276)) -((-4053 (*1 *1 *2) (-12 (-5 *2 (-658 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)) (-5 *1 (-1276 *3 *4)))) (-4053 (*1 *2 *1) (-12 (-5 *2 (-1271 *3 *4)) (-5 *1 (-1276 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)))) (-4053 (*1 *2 *1) (-12 (-5 *2 (-1280 *3 *4)) (-5 *1 (-1276 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)))) (-3192 (*1 *2 *1) (|partial| -12 (-5 *2 (-658 *3 *4)) (-5 *1 (-1276 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)))) (-3912 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-1276 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)))) (-3430 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-1276 *3 *4)) (-4 *4 (-712 (-406 (-562)))) (-4 *3 (-845)) (-4 *4 (-171)))) (-4366 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-1276 *3 *4)) (-4 *4 (-712 (-406 (-562)))) (-4 *3 (-845)) (-4 *4 (-171))))) -(-13 (-1277 |#1| |#2|) (-381 |#2| (-888 |#1|)) (-10 -8 (-15 -4053 ($ (-658 |#1| |#2|))) (-15 -4053 ((-1271 |#1| |#2|) $)) (-15 -4053 ((-1280 |#1| |#2|) $)) (-15 -3192 ((-3 (-658 |#1| |#2|) "failed") $)) (-15 -3912 ($ $ $ (-766))) (IF (|has| |#2| (-712 (-406 (-562)))) (PROGN (-15 -3430 ($ $ (-766))) (-15 -4366 ($ $ (-766)))) |%noBranch|))) -((-4041 (((-112) $ $) 7)) (-4325 (((-112) $) 16)) (-2850 (((-639 |#1|) $) 41)) (-1772 (($ $ (-766)) 74)) (-2781 (((-3 $ "failed") $ $) 19)) (-1403 (($ $ $) 44 (|has| |#2| (-171))) (($ $ (-766)) 43 (|has| |#2| (-171)))) (-3329 (($) 17 T CONST)) (-2403 (($ $ |#1|) 55) (($ $ (-814 |#1|)) 54) (($ $ $) 53)) (-4048 (((-3 (-814 |#1|) "failed") $) 65)) (-3960 (((-814 |#1|) $) 66)) (-1694 (((-3 $ "failed") $) 33)) (-3056 (((-112) $) 46)) (-3199 (($ $) 45)) (-4367 (((-112) $) 31)) (-2833 (((-112) $) 51)) (-3044 (($ (-814 |#1|) |#2|) 52)) (-2572 (($ $) 50)) (-2681 (((-2 (|:| |k| (-814 |#1|)) (|:| |c| |#2|)) $) 61)) (-1594 (((-814 |#1|) $) 62)) (-2251 (((-814 |#1|) $) 76)) (-4152 (($ (-1 |#2| |#2|) $) 42)) (-2303 (($ $ |#1|) 58) (($ $ (-814 |#1|)) 57) (($ $ $) 56)) (-3696 (((-1150) $) 9)) (-1709 (((-1112) $) 10)) (-2250 (((-766) $) 75)) (-3620 (((-112) $) 48)) (-1497 ((|#2| $) 47)) (-4053 (((-857) $) 11) (($ (-562)) 29) (($ |#2|) 69) (($ (-814 |#1|)) 64) (($ |#1|) 49)) (-4221 ((|#2| $ (-814 |#1|)) 60) ((|#2| $ $) 59)) (-1568 (((-766)) 28)) (-2285 (($) 18 T CONST)) (-2294 (($) 30 T CONST)) (-1733 (((-112) $ $) 6)) (-1847 (($ $) 22) (($ $ $) 21)) (-1836 (($ $ $) 14)) (** (($ $ (-916)) 25) (($ $ (-766)) 32)) (* (($ (-916) $) 13) (($ (-766) $) 15) (($ (-562) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63))) -(((-1277 |#1| |#2|) (-139) (-845) (-1044)) (T -1277)) -((-2251 (*1 *2 *1) (-12 (-4 *1 (-1277 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) (-5 *2 (-814 *3)))) (-2250 (*1 *2 *1) (-12 (-4 *1 (-1277 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) (-5 *2 (-766)))) (-1772 (*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-1277 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044))))) -(-13 (-1273 |t#1| |t#2|) (-10 -8 (-15 -2251 ((-814 |t#1|) $)) (-15 -2250 ((-766) $)) (-15 -1772 ($ $ (-766))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-171)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-612 (-562)) . T) ((-612 #0=(-814 |#1|)) . T) ((-612 |#2|) . T) ((-609 (-857)) . T) ((-642 |#2|) . T) ((-642 $) . T) ((-712 |#2|) |has| |#2| (-171)) ((-721) . T) ((-1033 #0#) . T) ((-1050 |#2|) . T) ((-1044) . T) ((-1051) . T) ((-1104) . T) ((-1092) . T) ((-1270 |#2|) . T) ((-1273 |#1| |#2|) . T)) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2850 (((-639 (-1168)) $) NIL)) (-3356 (($ (-1271 (-1168) |#1|)) NIL)) (-1772 (($ $ (-766)) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-1403 (($ $ $) NIL (|has| |#1| (-171))) (($ $ (-766)) NIL (|has| |#1| (-171)))) (-3329 (($) NIL T CONST)) (-2403 (($ $ (-1168)) NIL) (($ $ (-814 (-1168))) NIL) (($ $ $) NIL)) (-4048 (((-3 (-814 (-1168)) "failed") $) NIL)) (-3960 (((-814 (-1168)) $) NIL)) (-1694 (((-3 $ "failed") $) NIL)) (-3056 (((-112) $) NIL)) (-3199 (($ $) NIL)) (-4367 (((-112) $) NIL)) (-2833 (((-112) $) NIL)) (-3044 (($ (-814 (-1168)) |#1|) NIL)) (-2572 (($ $) NIL)) (-2681 (((-2 (|:| |k| (-814 (-1168))) (|:| |c| |#1|)) $) NIL)) (-1594 (((-814 (-1168)) $) NIL)) (-2251 (((-814 (-1168)) $) NIL)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-2303 (($ $ (-1168)) NIL) (($ $ (-814 (-1168))) NIL) (($ $ $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-3525 (((-1271 (-1168) |#1|) $) NIL)) (-2250 (((-766) $) NIL)) (-3620 (((-112) $) NIL)) (-1497 ((|#1| $) NIL)) (-4053 (((-857) $) NIL) (($ (-562)) NIL) (($ |#1|) NIL) (($ (-814 (-1168))) NIL) (($ (-1168)) NIL)) (-4221 ((|#1| $ (-814 (-1168))) NIL) ((|#1| $ $) NIL)) (-1568 (((-766)) NIL)) (-2285 (($) NIL T CONST)) (-2603 (((-639 (-2 (|:| |k| (-1168)) (|:| |c| $))) $) NIL)) (-2294 (($) NIL T CONST)) (-1733 (((-112) $ $) NIL)) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) NIL)) (** (($ $ (-916)) NIL) (($ $ (-766)) NIL)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1168) $) NIL))) -(((-1278 |#1|) (-13 (-1277 (-1168) |#1|) (-10 -8 (-15 -3525 ((-1271 (-1168) |#1|) $)) (-15 -3356 ($ (-1271 (-1168) |#1|))) (-15 -2603 ((-639 (-2 (|:| |k| (-1168)) (|:| |c| $))) $)))) (-1044)) (T -1278)) -((-3525 (*1 *2 *1) (-12 (-5 *2 (-1271 (-1168) *3)) (-5 *1 (-1278 *3)) (-4 *3 (-1044)))) (-3356 (*1 *1 *2) (-12 (-5 *2 (-1271 (-1168) *3)) (-4 *3 (-1044)) (-5 *1 (-1278 *3)))) (-2603 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| |k| (-1168)) (|:| |c| (-1278 *3))))) (-5 *1 (-1278 *3)) (-4 *3 (-1044))))) -(-13 (-1277 (-1168) |#1|) (-10 -8 (-15 -3525 ((-1271 (-1168) |#1|) $)) (-15 -3356 ($ (-1271 (-1168) |#1|))) (-15 -2603 ((-639 (-2 (|:| |k| (-1168)) (|:| |c| $))) $)))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) NIL)) (-2781 (((-3 $ "failed") $ $) NIL)) (-3329 (($) NIL T CONST)) (-4048 (((-3 |#2| "failed") $) NIL)) (-3960 ((|#2| $) NIL)) (-1600 (($ $) NIL)) (-1694 (((-3 $ "failed") $) 35)) (-3056 (((-112) $) 30)) (-3199 (($ $) 31)) (-4367 (((-112) $) NIL)) (-3627 (((-766) $) NIL)) (-1869 (((-639 $) $) NIL)) (-2833 (((-112) $) NIL)) (-3044 (($ |#2| |#1|) NIL)) (-1594 ((|#2| $) 19)) (-2251 ((|#2| $) 16)) (-4152 (($ (-1 |#1| |#1|) $) NIL)) (-2395 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1560 ((|#2| $) NIL)) (-1573 ((|#1| $) NIL)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-3620 (((-112) $) 27)) (-1497 ((|#1| $) 28)) (-4053 (((-857) $) 54) (($ (-562)) 39) (($ |#1|) 34) (($ |#2|) NIL)) (-3969 (((-639 |#1|) $) NIL)) (-2266 ((|#1| $ |#2|) NIL)) (-4221 ((|#1| $ |#2|) 24)) (-1568 (((-766)) 14)) (-2285 (($) 25 T CONST)) (-2294 (($) 11 T CONST)) (-2174 (((-639 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-1733 (((-112) $ $) 26)) (-1859 (($ $ |#1|) 56 (|has| |#1| (-362)))) (-1847 (($ $) NIL) (($ $ $) NIL)) (-1836 (($ $ $) 43)) (** (($ $ (-916)) NIL) (($ $ (-766)) 45)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) NIL) (($ $ $) 44) (($ |#1| $) 40) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3492 (((-766) $) 15))) -(((-1279 |#1| |#2|) (-13 (-1044) (-1270 |#1|) (-381 |#1| |#2|) (-612 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3492 ((-766) $)) (-15 -2251 (|#2| $)) (-15 -1594 (|#2| $)) (-15 -1600 ($ $)) (-15 -4221 (|#1| $ |#2|)) (-15 -3620 ((-112) $)) (-15 -1497 (|#1| $)) (-15 -3056 ((-112) $)) (-15 -3199 ($ $)) (-15 -4152 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-362)) (-15 -1859 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4396)) (-6 -4396) |%noBranch|) (IF (|has| |#1| (-6 -4400)) (-6 -4400) |%noBranch|) (IF (|has| |#1| (-6 -4401)) (-6 -4401) |%noBranch|))) (-1044) (-841)) (T -1279)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1279 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-841)))) (-1600 (*1 *1 *1) (-12 (-5 *1 (-1279 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-841)))) (-4152 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1044)) (-5 *1 (-1279 *3 *4)) (-4 *4 (-841)))) (-3492 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-841)))) (-2251 (*1 *2 *1) (-12 (-4 *2 (-841)) (-5 *1 (-1279 *3 *2)) (-4 *3 (-1044)))) (-1594 (*1 *2 *1) (-12 (-4 *2 (-841)) (-5 *1 (-1279 *3 *2)) (-4 *3 (-1044)))) (-4221 (*1 *2 *1 *3) (-12 (-4 *2 (-1044)) (-5 *1 (-1279 *2 *3)) (-4 *3 (-841)))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-841)))) (-1497 (*1 *2 *1) (-12 (-4 *2 (-1044)) (-5 *1 (-1279 *2 *3)) (-4 *3 (-841)))) (-3056 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-841)))) (-3199 (*1 *1 *1) (-12 (-5 *1 (-1279 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-841)))) (-1859 (*1 *1 *1 *2) (-12 (-5 *1 (-1279 *2 *3)) (-4 *2 (-362)) (-4 *2 (-1044)) (-4 *3 (-841))))) -(-13 (-1044) (-1270 |#1|) (-381 |#1| |#2|) (-612 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3492 ((-766) $)) (-15 -2251 (|#2| $)) (-15 -1594 (|#2| $)) (-15 -1600 ($ $)) (-15 -4221 (|#1| $ |#2|)) (-15 -3620 ((-112) $)) (-15 -1497 (|#1| $)) (-15 -3056 ((-112) $)) (-15 -3199 ($ $)) (-15 -4152 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-362)) (-15 -1859 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4396)) (-6 -4396) |%noBranch|) (IF (|has| |#1| (-6 -4400)) (-6 -4400) |%noBranch|) (IF (|has| |#1| (-6 -4401)) (-6 -4401) |%noBranch|))) -((-4041 (((-112) $ $) 26)) (-4325 (((-112) $) NIL)) (-2850 (((-639 |#1|) $) 120)) (-3356 (($ (-1271 |#1| |#2|)) 44)) (-1772 (($ $ (-766)) 32)) (-2781 (((-3 $ "failed") $ $) NIL)) (-1403 (($ $ $) 48 (|has| |#2| (-171))) (($ $ (-766)) 46 (|has| |#2| (-171)))) (-3329 (($) NIL T CONST)) (-2403 (($ $ |#1|) 102) (($ $ (-814 |#1|)) 103) (($ $ $) 25)) (-4048 (((-3 (-814 |#1|) "failed") $) NIL)) (-3960 (((-814 |#1|) $) NIL)) (-1694 (((-3 $ "failed") $) 110)) (-3056 (((-112) $) 105)) (-3199 (($ $) 106)) (-4367 (((-112) $) NIL)) (-2833 (((-112) $) NIL)) (-3044 (($ (-814 |#1|) |#2|) 19)) (-2572 (($ $) NIL)) (-2681 (((-2 (|:| |k| (-814 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1594 (((-814 |#1|) $) 111)) (-2251 (((-814 |#1|) $) 114)) (-4152 (($ (-1 |#2| |#2|) $) 119)) (-2303 (($ $ |#1|) 100) (($ $ (-814 |#1|)) 101) (($ $ $) 56)) (-3696 (((-1150) $) NIL)) (-1709 (((-1112) $) NIL)) (-3525 (((-1271 |#1| |#2|) $) 84)) (-2250 (((-766) $) 117)) (-3620 (((-112) $) 70)) (-1497 ((|#2| $) 28)) (-4053 (((-857) $) 63) (($ (-562)) 77) (($ |#2|) 74) (($ (-814 |#1|)) 17) (($ |#1|) 73)) (-4221 ((|#2| $ (-814 |#1|)) 104) ((|#2| $ $) 27)) (-1568 (((-766)) 108)) (-2285 (($) 14 T CONST)) (-2603 (((-639 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-2294 (($) 29 T CONST)) (-1733 (((-112) $ $) 13)) (-1847 (($ $) 88) (($ $ $) 91)) (-1836 (($ $ $) 55)) (** (($ $ (-916)) NIL) (($ $ (-766)) 49)) (* (($ (-916) $) NIL) (($ (-766) $) 47) (($ (-562) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82))) -(((-1280 |#1| |#2|) (-13 (-1277 |#1| |#2|) (-10 -8 (-15 -3525 ((-1271 |#1| |#2|) $)) (-15 -3356 ($ (-1271 |#1| |#2|))) (-15 -2603 ((-639 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-845) (-1044)) (T -1280)) -((-3525 (*1 *2 *1) (-12 (-5 *2 (-1271 *3 *4)) (-5 *1 (-1280 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)))) (-3356 (*1 *1 *2) (-12 (-5 *2 (-1271 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) (-5 *1 (-1280 *3 *4)))) (-2603 (*1 *2 *1) (-12 (-5 *2 (-639 (-2 (|:| |k| *3) (|:| |c| (-1280 *3 *4))))) (-5 *1 (-1280 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044))))) -(-13 (-1277 |#1| |#2|) (-10 -8 (-15 -3525 ((-1271 |#1| |#2|) $)) (-15 -3356 ($ (-1271 |#1| |#2|))) (-15 -2603 ((-639 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-3171 (((-639 (-1148 |#1|)) (-1 (-639 (-1148 |#1|)) (-639 (-1148 |#1|))) (-562)) 15) (((-1148 |#1|) (-1 (-1148 |#1|) (-1148 |#1|))) 11))) -(((-1281 |#1|) (-10 -7 (-15 -3171 ((-1148 |#1|) (-1 (-1148 |#1|) (-1148 |#1|)))) (-15 -3171 ((-639 (-1148 |#1|)) (-1 (-639 (-1148 |#1|)) (-639 (-1148 |#1|))) (-562)))) (-1207)) (T -1281)) -((-3171 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-639 (-1148 *5)) (-639 (-1148 *5)))) (-5 *4 (-562)) (-5 *2 (-639 (-1148 *5))) (-5 *1 (-1281 *5)) (-4 *5 (-1207)))) (-3171 (*1 *2 *3) (-12 (-5 *3 (-1 (-1148 *4) (-1148 *4))) (-5 *2 (-1148 *4)) (-5 *1 (-1281 *4)) (-4 *4 (-1207))))) -(-10 -7 (-15 -3171 ((-1148 |#1|) (-1 (-1148 |#1|) (-1148 |#1|)))) (-15 -3171 ((-639 (-1148 |#1|)) (-1 (-639 (-1148 |#1|)) (-639 (-1148 |#1|))) (-562)))) -((-3536 (((-639 (-2 (|:| -1333 (-1164 |#1|)) (|:| -2205 (-639 (-947 |#1|))))) (-639 (-947 |#1|))) 147) (((-639 (-2 (|:| -1333 (-1164 |#1|)) (|:| -2205 (-639 (-947 |#1|))))) (-639 (-947 |#1|)) (-112)) 146) (((-639 (-2 (|:| -1333 (-1164 |#1|)) (|:| -2205 (-639 (-947 |#1|))))) (-639 (-947 |#1|)) (-112) (-112)) 145) (((-639 (-2 (|:| -1333 (-1164 |#1|)) (|:| -2205 (-639 (-947 |#1|))))) (-639 (-947 |#1|)) (-112) (-112) (-112)) 144) (((-639 (-2 (|:| -1333 (-1164 |#1|)) (|:| -2205 (-639 (-947 |#1|))))) (-1041 |#1| |#2|)) 129)) (-1384 (((-639 (-1041 |#1| |#2|)) (-639 (-947 |#1|))) 71) (((-639 (-1041 |#1| |#2|)) (-639 (-947 |#1|)) (-112)) 70) (((-639 (-1041 |#1| |#2|)) (-639 (-947 |#1|)) (-112) (-112)) 69)) (-3788 (((-639 (-1138 |#1| (-530 (-859 |#3|)) (-859 |#3|) (-775 |#1| (-859 |#3|)))) (-1041 |#1| |#2|)) 60)) (-2107 (((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|))) 114) (((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)) (-112)) 113) (((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)) (-112) (-112)) 112) (((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)) (-112) (-112) (-112)) 111) (((-639 (-639 (-1019 (-406 |#1|)))) (-1041 |#1| |#2|)) 106)) (-1976 (((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|))) 119) (((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)) (-112)) 118) (((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)) (-112) (-112)) 117) (((-639 (-639 (-1019 (-406 |#1|)))) (-1041 |#1| |#2|)) 116)) (-4208 (((-639 (-775 |#1| (-859 |#3|))) (-1138 |#1| (-530 (-859 |#3|)) (-859 |#3|) (-775 |#1| (-859 |#3|)))) 97) (((-1164 (-1019 (-406 |#1|))) (-1164 |#1|)) 88) (((-947 (-1019 (-406 |#1|))) (-775 |#1| (-859 |#3|))) 95) (((-947 (-1019 (-406 |#1|))) (-947 |#1|)) 93) (((-775 |#1| (-859 |#3|)) (-775 |#1| (-859 |#2|))) 32))) -(((-1282 |#1| |#2| |#3|) (-10 -7 (-15 -1384 ((-639 (-1041 |#1| |#2|)) (-639 (-947 |#1|)) (-112) (-112))) (-15 -1384 ((-639 (-1041 |#1| |#2|)) (-639 (-947 |#1|)) (-112))) (-15 -1384 ((-639 (-1041 |#1| |#2|)) (-639 (-947 |#1|)))) (-15 -3536 ((-639 (-2 (|:| -1333 (-1164 |#1|)) (|:| -2205 (-639 (-947 |#1|))))) (-1041 |#1| |#2|))) (-15 -3536 ((-639 (-2 (|:| -1333 (-1164 |#1|)) (|:| -2205 (-639 (-947 |#1|))))) (-639 (-947 |#1|)) (-112) (-112) (-112))) (-15 -3536 ((-639 (-2 (|:| -1333 (-1164 |#1|)) (|:| -2205 (-639 (-947 |#1|))))) (-639 (-947 |#1|)) (-112) (-112))) (-15 -3536 ((-639 (-2 (|:| -1333 (-1164 |#1|)) (|:| -2205 (-639 (-947 |#1|))))) (-639 (-947 |#1|)) (-112))) (-15 -3536 ((-639 (-2 (|:| -1333 (-1164 |#1|)) (|:| -2205 (-639 (-947 |#1|))))) (-639 (-947 |#1|)))) (-15 -2107 ((-639 (-639 (-1019 (-406 |#1|)))) (-1041 |#1| |#2|))) (-15 -2107 ((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)) (-112) (-112) (-112))) (-15 -2107 ((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)) (-112) (-112))) (-15 -2107 ((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)) (-112))) (-15 -2107 ((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)))) (-15 -1976 ((-639 (-639 (-1019 (-406 |#1|)))) (-1041 |#1| |#2|))) (-15 -1976 ((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)) (-112) (-112))) (-15 -1976 ((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)) (-112))) (-15 -1976 ((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)))) (-15 -3788 ((-639 (-1138 |#1| (-530 (-859 |#3|)) (-859 |#3|) (-775 |#1| (-859 |#3|)))) (-1041 |#1| |#2|))) (-15 -4208 ((-775 |#1| (-859 |#3|)) (-775 |#1| (-859 |#2|)))) (-15 -4208 ((-947 (-1019 (-406 |#1|))) (-947 |#1|))) (-15 -4208 ((-947 (-1019 (-406 |#1|))) (-775 |#1| (-859 |#3|)))) (-15 -4208 ((-1164 (-1019 (-406 |#1|))) (-1164 |#1|))) (-15 -4208 ((-639 (-775 |#1| (-859 |#3|))) (-1138 |#1| (-530 (-859 |#3|)) (-859 |#3|) (-775 |#1| (-859 |#3|)))))) (-13 (-843) (-306) (-146) (-1017)) (-639 (-1168)) (-639 (-1168))) (T -1282)) -((-4208 (*1 *2 *3) (-12 (-5 *3 (-1138 *4 (-530 (-859 *6)) (-859 *6) (-775 *4 (-859 *6)))) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) (-14 *6 (-639 (-1168))) (-5 *2 (-639 (-775 *4 (-859 *6)))) (-5 *1 (-1282 *4 *5 *6)) (-14 *5 (-639 (-1168))))) (-4208 (*1 *2 *3) (-12 (-5 *3 (-1164 *4)) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 (-1164 (-1019 (-406 *4)))) (-5 *1 (-1282 *4 *5 *6)) (-14 *5 (-639 (-1168))) (-14 *6 (-639 (-1168))))) (-4208 (*1 *2 *3) (-12 (-5 *3 (-775 *4 (-859 *6))) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) (-14 *6 (-639 (-1168))) (-5 *2 (-947 (-1019 (-406 *4)))) (-5 *1 (-1282 *4 *5 *6)) (-14 *5 (-639 (-1168))))) (-4208 (*1 *2 *3) (-12 (-5 *3 (-947 *4)) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 (-947 (-1019 (-406 *4)))) (-5 *1 (-1282 *4 *5 *6)) (-14 *5 (-639 (-1168))) (-14 *6 (-639 (-1168))))) (-4208 (*1 *2 *3) (-12 (-5 *3 (-775 *4 (-859 *5))) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) (-14 *5 (-639 (-1168))) (-5 *2 (-775 *4 (-859 *6))) (-5 *1 (-1282 *4 *5 *6)) (-14 *6 (-639 (-1168))))) (-3788 (*1 *2 *3) (-12 (-5 *3 (-1041 *4 *5)) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) (-14 *5 (-639 (-1168))) (-5 *2 (-639 (-1138 *4 (-530 (-859 *6)) (-859 *6) (-775 *4 (-859 *6))))) (-5 *1 (-1282 *4 *5 *6)) (-14 *6 (-639 (-1168))))) (-1976 (*1 *2 *3) (-12 (-5 *3 (-639 (-947 *4))) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 (-639 (-639 (-1019 (-406 *4))))) (-5 *1 (-1282 *4 *5 *6)) (-14 *5 (-639 (-1168))) (-14 *6 (-639 (-1168))))) (-1976 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 (-639 (-639 (-1019 (-406 *5))))) (-5 *1 (-1282 *5 *6 *7)) (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) (-1976 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 (-639 (-639 (-1019 (-406 *5))))) (-5 *1 (-1282 *5 *6 *7)) (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) (-1976 (*1 *2 *3) (-12 (-5 *3 (-1041 *4 *5)) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) (-14 *5 (-639 (-1168))) (-5 *2 (-639 (-639 (-1019 (-406 *4))))) (-5 *1 (-1282 *4 *5 *6)) (-14 *6 (-639 (-1168))))) (-2107 (*1 *2 *3) (-12 (-5 *3 (-639 (-947 *4))) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 (-639 (-639 (-1019 (-406 *4))))) (-5 *1 (-1282 *4 *5 *6)) (-14 *5 (-639 (-1168))) (-14 *6 (-639 (-1168))))) (-2107 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 (-639 (-639 (-1019 (-406 *5))))) (-5 *1 (-1282 *5 *6 *7)) (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) (-2107 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 (-639 (-639 (-1019 (-406 *5))))) (-5 *1 (-1282 *5 *6 *7)) (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) (-2107 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 (-639 (-639 (-1019 (-406 *5))))) (-5 *1 (-1282 *5 *6 *7)) (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) (-2107 (*1 *2 *3) (-12 (-5 *3 (-1041 *4 *5)) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) (-14 *5 (-639 (-1168))) (-5 *2 (-639 (-639 (-1019 (-406 *4))))) (-5 *1 (-1282 *4 *5 *6)) (-14 *6 (-639 (-1168))))) (-3536 (*1 *2 *3) (-12 (-4 *4 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 (-639 (-2 (|:| -1333 (-1164 *4)) (|:| -2205 (-639 (-947 *4)))))) (-5 *1 (-1282 *4 *5 *6)) (-5 *3 (-639 (-947 *4))) (-14 *5 (-639 (-1168))) (-14 *6 (-639 (-1168))))) (-3536 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 (-639 (-2 (|:| -1333 (-1164 *5)) (|:| -2205 (-639 (-947 *5)))))) (-5 *1 (-1282 *5 *6 *7)) (-5 *3 (-639 (-947 *5))) (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) (-3536 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 (-639 (-2 (|:| -1333 (-1164 *5)) (|:| -2205 (-639 (-947 *5)))))) (-5 *1 (-1282 *5 *6 *7)) (-5 *3 (-639 (-947 *5))) (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) (-3536 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 (-639 (-2 (|:| -1333 (-1164 *5)) (|:| -2205 (-639 (-947 *5)))))) (-5 *1 (-1282 *5 *6 *7)) (-5 *3 (-639 (-947 *5))) (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) (-3536 (*1 *2 *3) (-12 (-5 *3 (-1041 *4 *5)) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) (-14 *5 (-639 (-1168))) (-5 *2 (-639 (-2 (|:| -1333 (-1164 *4)) (|:| -2205 (-639 (-947 *4)))))) (-5 *1 (-1282 *4 *5 *6)) (-14 *6 (-639 (-1168))))) (-1384 (*1 *2 *3) (-12 (-5 *3 (-639 (-947 *4))) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 (-639 (-1041 *4 *5))) (-5 *1 (-1282 *4 *5 *6)) (-14 *5 (-639 (-1168))) (-14 *6 (-639 (-1168))))) (-1384 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 (-639 (-1041 *5 *6))) (-5 *1 (-1282 *5 *6 *7)) (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) (-1384 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-843) (-306) (-146) (-1017))) (-5 *2 (-639 (-1041 *5 *6))) (-5 *1 (-1282 *5 *6 *7)) (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168)))))) -(-10 -7 (-15 -1384 ((-639 (-1041 |#1| |#2|)) (-639 (-947 |#1|)) (-112) (-112))) (-15 -1384 ((-639 (-1041 |#1| |#2|)) (-639 (-947 |#1|)) (-112))) (-15 -1384 ((-639 (-1041 |#1| |#2|)) (-639 (-947 |#1|)))) (-15 -3536 ((-639 (-2 (|:| -1333 (-1164 |#1|)) (|:| -2205 (-639 (-947 |#1|))))) (-1041 |#1| |#2|))) (-15 -3536 ((-639 (-2 (|:| -1333 (-1164 |#1|)) (|:| -2205 (-639 (-947 |#1|))))) (-639 (-947 |#1|)) (-112) (-112) (-112))) (-15 -3536 ((-639 (-2 (|:| -1333 (-1164 |#1|)) (|:| -2205 (-639 (-947 |#1|))))) (-639 (-947 |#1|)) (-112) (-112))) (-15 -3536 ((-639 (-2 (|:| -1333 (-1164 |#1|)) (|:| -2205 (-639 (-947 |#1|))))) (-639 (-947 |#1|)) (-112))) (-15 -3536 ((-639 (-2 (|:| -1333 (-1164 |#1|)) (|:| -2205 (-639 (-947 |#1|))))) (-639 (-947 |#1|)))) (-15 -2107 ((-639 (-639 (-1019 (-406 |#1|)))) (-1041 |#1| |#2|))) (-15 -2107 ((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)) (-112) (-112) (-112))) (-15 -2107 ((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)) (-112) (-112))) (-15 -2107 ((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)) (-112))) (-15 -2107 ((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)))) (-15 -1976 ((-639 (-639 (-1019 (-406 |#1|)))) (-1041 |#1| |#2|))) (-15 -1976 ((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)) (-112) (-112))) (-15 -1976 ((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)) (-112))) (-15 -1976 ((-639 (-639 (-1019 (-406 |#1|)))) (-639 (-947 |#1|)))) (-15 -3788 ((-639 (-1138 |#1| (-530 (-859 |#3|)) (-859 |#3|) (-775 |#1| (-859 |#3|)))) (-1041 |#1| |#2|))) (-15 -4208 ((-775 |#1| (-859 |#3|)) (-775 |#1| (-859 |#2|)))) (-15 -4208 ((-947 (-1019 (-406 |#1|))) (-947 |#1|))) (-15 -4208 ((-947 (-1019 (-406 |#1|))) (-775 |#1| (-859 |#3|)))) (-15 -4208 ((-1164 (-1019 (-406 |#1|))) (-1164 |#1|))) (-15 -4208 ((-639 (-775 |#1| (-859 |#3|))) (-1138 |#1| (-530 (-859 |#3|)) (-859 |#3|) (-775 |#1| (-859 |#3|)))))) -((-2733 (((-3 (-1256 (-406 (-562))) "failed") (-1256 |#1|) |#1|) 21)) (-4269 (((-112) (-1256 |#1|)) 12)) (-3027 (((-3 (-1256 (-562)) "failed") (-1256 |#1|)) 16))) -(((-1283 |#1|) (-10 -7 (-15 -4269 ((-112) (-1256 |#1|))) (-15 -3027 ((-3 (-1256 (-562)) "failed") (-1256 |#1|))) (-15 -2733 ((-3 (-1256 (-406 (-562))) "failed") (-1256 |#1|) |#1|))) (-635 (-562))) (T -1283)) -((-2733 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1256 *4)) (-4 *4 (-635 (-562))) (-5 *2 (-1256 (-406 (-562)))) (-5 *1 (-1283 *4)))) (-3027 (*1 *2 *3) (|partial| -12 (-5 *3 (-1256 *4)) (-4 *4 (-635 (-562))) (-5 *2 (-1256 (-562))) (-5 *1 (-1283 *4)))) (-4269 (*1 *2 *3) (-12 (-5 *3 (-1256 *4)) (-4 *4 (-635 (-562))) (-5 *2 (-112)) (-5 *1 (-1283 *4))))) -(-10 -7 (-15 -4269 ((-112) (-1256 |#1|))) (-15 -3027 ((-3 (-1256 (-562)) "failed") (-1256 |#1|))) (-15 -2733 ((-3 (-1256 (-406 (-562))) "failed") (-1256 |#1|) |#1|))) -((-4041 (((-112) $ $) NIL)) (-4325 (((-112) $) 11)) (-2781 (((-3 $ "failed") $ $) NIL)) (-1382 (((-766)) 8)) (-3329 (($) NIL T CONST)) (-1694 (((-3 $ "failed") $) 43)) (-1447 (($) 36)) (-4367 (((-112) $) NIL)) (-3828 (((-3 $ "failed") $) 29)) (-3549 (((-916) $) 15)) (-3696 (((-1150) $) NIL)) (-3730 (($) 25 T CONST)) (-2464 (($ (-916)) 37)) (-1709 (((-1112) $) NIL)) (-4208 (((-562) $) 13)) (-4053 (((-857) $) 22) (($ (-562)) 19)) (-1568 (((-766)) 9)) (-2285 (($) 23 T CONST)) (-2294 (($) 24 T CONST)) (-1733 (((-112) $ $) 27)) (-1847 (($ $) 38) (($ $ $) 35)) (-1836 (($ $ $) 26)) (** (($ $ (-916)) NIL) (($ $ (-766)) 40)) (* (($ (-916) $) NIL) (($ (-766) $) NIL) (($ (-562) $) 32) (($ $ $) 31))) -(((-1284 |#1|) (-13 (-171) (-367) (-610 (-562)) (-1143)) (-916)) (T -1284)) -NIL -(-13 (-171) (-367) (-610 (-562)) (-1143)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 3194841 3194846 3194851 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3194826 3194831 3194836 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3194811 3194816 3194821 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3194796 3194801 3194806 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1284 3193972 3194671 3194748 "ZMOD" 3194753 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1283 3193082 3193246 3193455 "ZLINDEP" 3193804 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1282 3182386 3184150 3186122 "ZDSOLVE" 3191212 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1281 3181632 3181773 3181962 "YSTREAM" 3182232 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1280 3179443 3180933 3181137 "XRPOLY" 3181475 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1279 3176031 3177314 3177889 "XPR" 3178915 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1278 3173787 3175362 3175566 "XPOLY" 3175862 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1277 3171578 3172912 3172967 "XPOLYC" 3173255 NIL XPOLYC (NIL T T) -9 NIL 3173368 NIL) (-1276 3167996 3170095 3170483 "XPBWPOLY" 3171236 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1275 3163907 3166159 3166201 "XF" 3166822 NIL XF (NIL T) -9 NIL 3167222 NIL) (-1274 3163528 3163616 3163785 "XF-" 3163790 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1273 3158862 3160117 3160172 "XFALG" 3162344 NIL XFALG (NIL T T) -9 NIL 3163133 NIL) (-1272 3157995 3158099 3158304 "XEXPPKG" 3158754 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1271 3156139 3157845 3157941 "XDPOLY" 3157946 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1270 3155084 3155650 3155693 "XALG" 3155698 NIL XALG (NIL T) -9 NIL 3155809 NIL) (-1269 3148553 3153061 3153555 "WUTSET" 3154676 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1268 3146844 3147605 3147928 "WP" 3148364 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1267 3146473 3146666 3146736 "WHILEAST" 3146796 T WHILEAST (NIL) -8 NIL NIL NIL) (-1266 3145972 3146190 3146284 "WHEREAST" 3146401 T WHEREAST (NIL) -8 NIL NIL NIL) (-1265 3144858 3145056 3145351 "WFFINTBS" 3145769 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1264 3142762 3143189 3143651 "WEIER" 3144430 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1263 3141909 3142333 3142375 "VSPACE" 3142511 NIL VSPACE (NIL T) -9 NIL 3142585 NIL) (-1262 3141747 3141774 3141865 "VSPACE-" 3141870 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1261 3141555 3141598 3141666 "VOID" 3141701 T VOID (NIL) -8 NIL NIL NIL) (-1260 3139691 3140050 3140456 "VIEW" 3141171 T VIEW (NIL) -7 NIL NIL NIL) (-1259 3136116 3136754 3137491 "VIEWDEF" 3138976 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1258 3125452 3127664 3129837 "VIEW3D" 3133965 T VIEW3D (NIL) -8 NIL NIL NIL) (-1257 3117734 3119363 3120942 "VIEW2D" 3123895 T VIEW2D (NIL) -8 NIL NIL NIL) (-1256 3113138 3117504 3117596 "VECTOR" 3117677 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1255 3111715 3111974 3112292 "VECTOR2" 3112868 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1254 3105242 3109499 3109542 "VECTCAT" 3110535 NIL VECTCAT (NIL T) -9 NIL 3111121 NIL) (-1253 3104256 3104510 3104900 "VECTCAT-" 3104905 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1252 3103737 3103907 3104027 "VARIABLE" 3104171 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1251 3103670 3103675 3103705 "UTYPE" 3103710 T UTYPE (NIL) -9 NIL NIL NIL) (-1250 3102500 3102654 3102916 "UTSODETL" 3103496 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1249 3099940 3100400 3100924 "UTSODE" 3102041 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1248 3091816 3097566 3098055 "UTS" 3099509 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1247 3083059 3088383 3088426 "UTSCAT" 3089538 NIL UTSCAT (NIL T) -9 NIL 3090295 NIL) (-1246 3080414 3081129 3082118 "UTSCAT-" 3082123 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1245 3080041 3080084 3080217 "UTS2" 3080365 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1244 3074314 3076879 3076922 "URAGG" 3078992 NIL URAGG (NIL T) -9 NIL 3079715 NIL) (-1243 3071253 3072116 3073239 "URAGG-" 3073244 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1242 3066977 3069867 3070339 "UPXSSING" 3070917 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1241 3059079 3066224 3066497 "UPXS" 3066762 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1240 3052192 3058983 3059055 "UPXSCONS" 3059060 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1239 3042437 3049187 3049249 "UPXSCCA" 3049823 NIL UPXSCCA (NIL T T) -9 NIL 3050056 NIL) (-1238 3042075 3042160 3042334 "UPXSCCA-" 3042339 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1237 3032173 3038696 3038739 "UPXSCAT" 3039387 NIL UPXSCAT (NIL T) -9 NIL 3039995 NIL) (-1236 3031603 3031682 3031861 "UPXS2" 3032088 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1235 3030257 3030510 3030861 "UPSQFREE" 3031346 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1234 3024045 3027059 3027114 "UPSCAT" 3028275 NIL UPSCAT (NIL T T) -9 NIL 3029049 NIL) (-1233 3023249 3023456 3023783 "UPSCAT-" 3023788 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1232 3009099 3017097 3017140 "UPOLYC" 3019241 NIL UPOLYC (NIL T) -9 NIL 3020462 NIL) (-1231 3000428 3002853 3006000 "UPOLYC-" 3006005 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1230 3000055 3000098 3000231 "UPOLYC2" 3000379 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1229 2991629 2999738 2999867 "UP" 2999974 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1228 2990968 2991075 2991239 "UPMP" 2991518 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1227 2990521 2990602 2990741 "UPDIVP" 2990881 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1226 2989089 2989338 2989654 "UPDECOMP" 2990270 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1225 2988324 2988436 2988621 "UPCDEN" 2988973 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1224 2987843 2987912 2988061 "UP2" 2988249 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1223 2986360 2987047 2987324 "UNISEG" 2987601 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1222 2985575 2985702 2985907 "UNISEG2" 2986203 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1221 2984635 2984815 2985041 "UNIFACT" 2985391 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1220 2968602 2983812 2984063 "ULS" 2984442 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1219 2956642 2968506 2968578 "ULSCONS" 2968583 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1218 2939258 2951200 2951262 "ULSCCAT" 2951900 NIL ULSCCAT (NIL T T) -9 NIL 2952188 NIL) (-1217 2938308 2938553 2938941 "ULSCCAT-" 2938946 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1216 2928183 2934620 2934663 "ULSCAT" 2935526 NIL ULSCAT (NIL T) -9 NIL 2936256 NIL) (-1215 2927613 2927692 2927871 "ULS2" 2928098 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1214 2926750 2927225 2927326 "UINT8" 2927437 T UINT8 (NIL) -8 NIL NIL 2927516) (-1213 2925886 2926361 2926462 "UINT32" 2926573 T UINT32 (NIL) -8 NIL NIL 2926652) (-1212 2925022 2925497 2925598 "UINT16" 2925709 T UINT16 (NIL) -8 NIL NIL 2925788) (-1211 2923425 2924348 2924378 "UFD" 2924590 T UFD (NIL) -9 NIL 2924704 NIL) (-1210 2923219 2923265 2923360 "UFD-" 2923365 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1209 2922301 2922484 2922700 "UDVO" 2923025 T UDVO (NIL) -7 NIL NIL NIL) (-1208 2920117 2920526 2920997 "UDPO" 2921865 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1207 2920050 2920055 2920085 "TYPE" 2920090 T TYPE (NIL) -9 NIL NIL NIL) (-1206 2919837 2920005 2920036 "TYPEAST" 2920041 T TYPEAST (NIL) -8 NIL NIL NIL) (-1205 2918808 2919010 2919250 "TWOFACT" 2919631 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1204 2917880 2918217 2918452 "TUPLE" 2918608 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1203 2915571 2916090 2916629 "TUBETOOL" 2917363 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1202 2914420 2914625 2914866 "TUBE" 2915364 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1201 2909184 2913392 2913675 "TS" 2914172 NIL TS (NIL T) -8 NIL NIL NIL) (-1200 2897851 2901943 2902040 "TSETCAT" 2907309 NIL TSETCAT (NIL T T T T) -9 NIL 2908840 NIL) (-1199 2892586 2894183 2896074 "TSETCAT-" 2896079 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1198 2886849 2887695 2888637 "TRMANIP" 2891722 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1197 2886290 2886353 2886516 "TRIMAT" 2886781 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1196 2884086 2884323 2884687 "TRIGMNIP" 2886039 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1195 2883606 2883719 2883749 "TRIGCAT" 2883962 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1194 2883275 2883354 2883495 "TRIGCAT-" 2883500 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1193 2880172 2882133 2882414 "TREE" 2883029 NIL TREE (NIL T) -8 NIL NIL NIL) (-1192 2879446 2879974 2880004 "TRANFUN" 2880039 T TRANFUN (NIL) -9 NIL 2880105 NIL) (-1191 2878725 2878916 2879196 "TRANFUN-" 2879201 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1190 2878529 2878561 2878622 "TOPSP" 2878686 T TOPSP (NIL) -7 NIL NIL NIL) (-1189 2877877 2877992 2878146 "TOOLSIGN" 2878410 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1188 2876538 2877054 2877293 "TEXTFILE" 2877660 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1187 2874477 2874991 2875420 "TEX" 2876131 T TEX (NIL) -8 NIL NIL NIL) (-1186 2874258 2874289 2874361 "TEX1" 2874440 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1185 2873906 2873969 2874059 "TEMUTL" 2874190 T TEMUTL (NIL) -7 NIL NIL NIL) (-1184 2872060 2872340 2872665 "TBCMPPK" 2873629 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1183 2863948 2870220 2870276 "TBAGG" 2870676 NIL TBAGG (NIL T T) -9 NIL 2870887 NIL) (-1182 2859018 2860506 2862260 "TBAGG-" 2862265 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1181 2858402 2858509 2858654 "TANEXP" 2858907 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1180 2851903 2858259 2858352 "TABLE" 2858357 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1179 2851315 2851414 2851552 "TABLEAU" 2851800 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1178 2845923 2847143 2848391 "TABLBUMP" 2850101 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1177 2845351 2845451 2845579 "SYSTEM" 2845817 T SYSTEM (NIL) -7 NIL NIL NIL) (-1176 2841814 2842509 2843292 "SYSSOLP" 2844602 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1175 2840871 2841338 2841451 "SYSNNI" 2841637 NIL SYSNNI (NIL NIL) -8 NIL NIL 2841716) (-1174 2840324 2840729 2840771 "SYSINT" 2840776 NIL SYSINT (NIL NIL) -8 NIL NIL 2840784) (-1173 2836658 2837585 2838301 "SYNTAX" 2839630 T SYNTAX (NIL) -8 NIL NIL NIL) (-1172 2833816 2834418 2835050 "SYMTAB" 2836048 T SYMTAB (NIL) -8 NIL NIL NIL) (-1171 2829065 2829967 2830950 "SYMS" 2832855 T SYMS (NIL) -8 NIL NIL NIL) (-1170 2826337 2828523 2828753 "SYMPOLY" 2828870 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1169 2825854 2825929 2826052 "SYMFUNC" 2826249 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1168 2821906 2823166 2823979 "SYMBOL" 2825063 T SYMBOL (NIL) -8 NIL NIL NIL) (-1167 2815445 2817134 2818854 "SWITCH" 2820208 T SWITCH (NIL) -8 NIL NIL NIL) (-1166 2808715 2814266 2814569 "SUTS" 2815200 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1165 2800816 2807962 2808235 "SUPXS" 2808500 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1164 2792346 2800434 2800560 "SUP" 2800725 NIL SUP (NIL T) -8 NIL NIL NIL) (-1163 2791505 2791632 2791849 "SUPFRACF" 2792214 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1162 2791126 2791185 2791298 "SUP2" 2791440 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1161 2789539 2789813 2790176 "SUMRF" 2790825 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1160 2788853 2788919 2789118 "SUMFS" 2789460 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1159 2772860 2788030 2788281 "SULS" 2788660 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1158 2772489 2772682 2772752 "SUCHTAST" 2772812 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1157 2771811 2772014 2772154 "SUCH" 2772397 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1156 2765705 2766717 2767676 "SUBSPACE" 2770899 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1155 2765135 2765225 2765389 "SUBRESP" 2765593 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1154 2758504 2759800 2761111 "STTF" 2763871 NIL STTF (NIL T) -7 NIL NIL NIL) (-1153 2752677 2753797 2754944 "STTFNC" 2757404 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1152 2743992 2745859 2747653 "STTAYLOR" 2750918 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1151 2737236 2743856 2743939 "STRTBL" 2743944 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1150 2732627 2737191 2737222 "STRING" 2737227 T STRING (NIL) -8 NIL NIL NIL) (-1149 2727515 2732000 2732030 "STRICAT" 2732089 T STRICAT (NIL) -9 NIL 2732151 NIL) (-1148 2720325 2725134 2725745 "STREAM" 2726939 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1147 2719835 2719912 2720056 "STREAM3" 2720242 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1146 2718817 2719000 2719235 "STREAM2" 2719648 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1145 2718505 2718557 2718650 "STREAM1" 2718759 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1144 2717521 2717702 2717933 "STINPROD" 2718321 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1143 2717099 2717283 2717313 "STEP" 2717393 T STEP (NIL) -9 NIL 2717471 NIL) (-1142 2710642 2716998 2717075 "STBL" 2717080 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1141 2705816 2709863 2709906 "STAGG" 2710059 NIL STAGG (NIL T) -9 NIL 2710148 NIL) (-1140 2703518 2704120 2704992 "STAGG-" 2704997 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1139 2701713 2703288 2703380 "STACK" 2703461 NIL STACK (NIL T) -8 NIL NIL NIL) (-1138 2694438 2699854 2700310 "SREGSET" 2701343 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1137 2686864 2688232 2689745 "SRDCMPK" 2693044 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1136 2679831 2684304 2684334 "SRAGG" 2685637 T SRAGG (NIL) -9 NIL 2686245 NIL) (-1135 2678848 2679103 2679482 "SRAGG-" 2679487 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1134 2673343 2677795 2678216 "SQMATRIX" 2678474 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1133 2667092 2670061 2670788 "SPLTREE" 2672688 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1132 2663082 2663748 2664394 "SPLNODE" 2666518 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1131 2662129 2662362 2662392 "SPFCAT" 2662836 T SPFCAT (NIL) -9 NIL NIL NIL) (-1130 2660866 2661076 2661340 "SPECOUT" 2661887 T SPECOUT (NIL) -7 NIL NIL NIL) (-1129 2652518 2654262 2654292 "SPADXPT" 2658684 T SPADXPT (NIL) -9 NIL 2660718 NIL) (-1128 2652279 2652319 2652388 "SPADPRSR" 2652471 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1127 2650462 2652234 2652265 "SPADAST" 2652270 T SPADAST (NIL) -8 NIL NIL NIL) (-1126 2642433 2644180 2644223 "SPACEC" 2648596 NIL SPACEC (NIL T) -9 NIL 2650412 NIL) (-1125 2640604 2642365 2642414 "SPACE3" 2642419 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1124 2639356 2639527 2639818 "SORTPAK" 2640409 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1123 2637406 2637709 2638128 "SOLVETRA" 2639020 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1122 2636417 2636639 2636913 "SOLVESER" 2637179 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1121 2631637 2632518 2633520 "SOLVERAD" 2635469 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1120 2627452 2628061 2628790 "SOLVEFOR" 2631004 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1119 2621749 2626801 2626898 "SNTSCAT" 2626903 NIL SNTSCAT (NIL T T T T) -9 NIL 2626973 NIL) (-1118 2615892 2620072 2620463 "SMTS" 2621439 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1117 2610343 2615780 2615857 "SMP" 2615862 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1116 2608502 2608803 2609201 "SMITH" 2610040 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1115 2601397 2605553 2605656 "SMATCAT" 2607007 NIL SMATCAT (NIL NIL T T T) -9 NIL 2607557 NIL) (-1114 2598337 2599160 2600338 "SMATCAT-" 2600343 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1113 2596050 2597573 2597616 "SKAGG" 2597877 NIL SKAGG (NIL T) -9 NIL 2598012 NIL) (-1112 2592392 2595466 2595661 "SINT" 2595848 T SINT (NIL) -8 NIL NIL 2596021) (-1111 2592164 2592202 2592268 "SIMPAN" 2592348 T SIMPAN (NIL) -7 NIL NIL NIL) (-1110 2591471 2591699 2591839 "SIG" 2592046 T SIG (NIL) -8 NIL NIL NIL) (-1109 2590309 2590530 2590805 "SIGNRF" 2591230 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1108 2589114 2589265 2589556 "SIGNEF" 2590138 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1107 2588447 2588697 2588821 "SIGAST" 2589012 T SIGAST (NIL) -8 NIL NIL NIL) (-1106 2586137 2586591 2587097 "SHP" 2587988 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1105 2580043 2586038 2586114 "SHDP" 2586119 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1104 2579642 2579808 2579838 "SGROUP" 2579931 T SGROUP (NIL) -9 NIL 2579993 NIL) (-1103 2579500 2579526 2579599 "SGROUP-" 2579604 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1102 2576336 2577033 2577756 "SGCF" 2578799 T SGCF (NIL) -7 NIL NIL NIL) (-1101 2570731 2575783 2575880 "SFRTCAT" 2575885 NIL SFRTCAT (NIL T T T T) -9 NIL 2575924 NIL) (-1100 2564155 2565170 2566306 "SFRGCD" 2569714 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1099 2557283 2558354 2559540 "SFQCMPK" 2563088 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1098 2556905 2556994 2557104 "SFORT" 2557224 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1097 2556050 2556745 2556866 "SEXOF" 2556871 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1096 2555184 2555931 2555999 "SEX" 2556004 T SEX (NIL) -8 NIL NIL NIL) (-1095 2550723 2551412 2551507 "SEXCAT" 2554444 NIL SEXCAT (NIL T T T T T) -9 NIL 2555022 NIL) (-1094 2547903 2550657 2550705 "SET" 2550710 NIL SET (NIL T) -8 NIL NIL NIL) (-1093 2546154 2546616 2546921 "SETMN" 2547644 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1092 2545760 2545886 2545916 "SETCAT" 2546033 T SETCAT (NIL) -9 NIL 2546118 NIL) (-1091 2545540 2545592 2545691 "SETCAT-" 2545696 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1090 2541927 2544001 2544044 "SETAGG" 2544914 NIL SETAGG (NIL T) -9 NIL 2545254 NIL) (-1089 2541385 2541501 2541738 "SETAGG-" 2541743 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1088 2540855 2541081 2541182 "SEQAST" 2541306 T SEQAST (NIL) -8 NIL NIL NIL) (-1087 2540054 2540348 2540409 "SEGXCAT" 2540695 NIL SEGXCAT (NIL T T) -9 NIL 2540815 NIL) (-1086 2539110 2539720 2539902 "SEG" 2539907 NIL SEG (NIL T) -8 NIL NIL NIL) (-1085 2538089 2538303 2538346 "SEGCAT" 2538868 NIL SEGCAT (NIL T) -9 NIL 2539089 NIL) (-1084 2537138 2537468 2537668 "SEGBIND" 2537924 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1083 2536759 2536818 2536931 "SEGBIND2" 2537073 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1082 2536360 2536560 2536637 "SEGAST" 2536704 T SEGAST (NIL) -8 NIL NIL NIL) (-1081 2535579 2535705 2535909 "SEG2" 2536204 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1080 2535016 2535514 2535561 "SDVAR" 2535566 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1079 2527306 2534786 2534916 "SDPOL" 2534921 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1078 2525899 2526165 2526484 "SCPKG" 2527021 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1077 2525035 2525215 2525415 "SCOPE" 2525721 T SCOPE (NIL) -8 NIL NIL NIL) (-1076 2524256 2524389 2524568 "SCACHE" 2524890 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1075 2523928 2524088 2524118 "SASTCAT" 2524123 T SASTCAT (NIL) -9 NIL 2524136 NIL) (-1074 2523442 2523763 2523839 "SAOS" 2523874 T SAOS (NIL) -8 NIL NIL NIL) (-1073 2523007 2523042 2523215 "SAERFFC" 2523401 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1072 2516981 2522904 2522984 "SAE" 2522989 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1071 2516574 2516609 2516768 "SAEFACT" 2516940 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1070 2514895 2515209 2515610 "RURPK" 2516240 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1069 2513531 2513810 2514122 "RULESET" 2514729 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1068 2510718 2511221 2511686 "RULE" 2513212 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1067 2510357 2510512 2510595 "RULECOLD" 2510670 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1066 2509855 2510074 2510168 "RSTRCAST" 2510285 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1065 2504704 2505498 2506418 "RSETGCD" 2509054 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1064 2493961 2499013 2499110 "RSETCAT" 2503229 NIL RSETCAT (NIL T T T T) -9 NIL 2504326 NIL) (-1063 2491888 2492427 2493251 "RSETCAT-" 2493256 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1062 2484275 2485650 2487170 "RSDCMPK" 2490487 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1061 2482280 2482721 2482795 "RRCC" 2483881 NIL RRCC (NIL T T) -9 NIL 2484225 NIL) (-1060 2481631 2481805 2482084 "RRCC-" 2482089 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1059 2481101 2481327 2481428 "RPTAST" 2481552 T RPTAST (NIL) -8 NIL NIL NIL) (-1058 2455107 2464694 2464761 "RPOLCAT" 2475425 NIL RPOLCAT (NIL T T T) -9 NIL 2478584 NIL) (-1057 2446607 2448945 2452067 "RPOLCAT-" 2452072 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1056 2437654 2444818 2445300 "ROUTINE" 2446147 T ROUTINE (NIL) -8 NIL NIL NIL) (-1055 2434487 2437280 2437420 "ROMAN" 2437536 T ROMAN (NIL) -8 NIL NIL NIL) (-1054 2432762 2433347 2433607 "ROIRC" 2434292 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1053 2429155 2431398 2431428 "RNS" 2431732 T RNS (NIL) -9 NIL 2432005 NIL) (-1052 2427664 2428047 2428581 "RNS-" 2428656 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1051 2427113 2427495 2427525 "RNG" 2427530 T RNG (NIL) -9 NIL 2427551 NIL) (-1050 2426505 2426867 2426910 "RMODULE" 2426972 NIL RMODULE (NIL T) -9 NIL 2427014 NIL) (-1049 2425341 2425435 2425771 "RMCAT2" 2426406 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1048 2422218 2424687 2424984 "RMATRIX" 2425103 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1047 2415160 2417394 2417509 "RMATCAT" 2420868 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2421850 NIL) (-1046 2414535 2414682 2414989 "RMATCAT-" 2414994 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1045 2414102 2414177 2414305 "RINTERP" 2414454 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1044 2413235 2413755 2413785 "RING" 2413841 T RING (NIL) -9 NIL 2413927 NIL) (-1043 2413027 2413071 2413168 "RING-" 2413173 NIL RING- (NIL T) -8 NIL NIL NIL) (-1042 2411868 2412105 2412363 "RIDIST" 2412791 T RIDIST (NIL) -7 NIL NIL NIL) (-1041 2403184 2411336 2411542 "RGCHAIN" 2411716 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1040 2402560 2402940 2402981 "RGBCSPC" 2403039 NIL RGBCSPC (NIL T) -9 NIL 2403091 NIL) (-1039 2401744 2402099 2402140 "RGBCMDL" 2402372 NIL RGBCMDL (NIL T) -9 NIL 2402486 NIL) (-1038 2398738 2399352 2400022 "RF" 2401108 NIL RF (NIL T) -7 NIL NIL NIL) (-1037 2398384 2398447 2398550 "RFFACTOR" 2398669 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1036 2398109 2398144 2398241 "RFFACT" 2398343 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1035 2396226 2396590 2396972 "RFDIST" 2397749 T RFDIST (NIL) -7 NIL NIL NIL) (-1034 2395679 2395771 2395934 "RETSOL" 2396128 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1033 2395315 2395395 2395438 "RETRACT" 2395571 NIL RETRACT (NIL T) -9 NIL 2395658 NIL) (-1032 2395164 2395189 2395276 "RETRACT-" 2395281 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1031 2394793 2394986 2395056 "RETAST" 2395116 T RETAST (NIL) -8 NIL NIL NIL) (-1030 2387647 2394446 2394573 "RESULT" 2394688 T RESULT (NIL) -8 NIL NIL NIL) (-1029 2386273 2386916 2387115 "RESRING" 2387550 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1028 2385909 2385958 2386056 "RESLATC" 2386210 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1027 2385615 2385649 2385756 "REPSQ" 2385868 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1026 2383037 2383617 2384219 "REP" 2385035 T REP (NIL) -7 NIL NIL NIL) (-1025 2382735 2382769 2382880 "REPDB" 2382996 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1024 2376645 2378024 2379247 "REP2" 2381547 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1023 2373022 2373703 2374511 "REP1" 2375872 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1022 2365748 2371163 2371619 "REGSET" 2372652 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1021 2364561 2364896 2365146 "REF" 2365533 NIL REF (NIL T) -8 NIL NIL NIL) (-1020 2363938 2364041 2364208 "REDORDER" 2364445 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1019 2359943 2363151 2363378 "RECLOS" 2363766 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1018 2358995 2359176 2359391 "REALSOLV" 2359750 T REALSOLV (NIL) -7 NIL NIL NIL) (-1017 2358841 2358882 2358912 "REAL" 2358917 T REAL (NIL) -9 NIL 2358952 NIL) (-1016 2355324 2356126 2357010 "REAL0Q" 2358006 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1015 2350925 2351913 2352974 "REAL0" 2354305 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1014 2350423 2350642 2350736 "RDUCEAST" 2350853 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1013 2349828 2349900 2350107 "RDIV" 2350345 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1012 2348896 2349070 2349283 "RDIST" 2349650 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1011 2347493 2347780 2348152 "RDETRS" 2348604 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1010 2345305 2345759 2346297 "RDETR" 2347035 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1009 2343916 2344194 2344598 "RDEEFS" 2345021 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1008 2342411 2342717 2343149 "RDEEF" 2343604 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1007 2336672 2339547 2339577 "RCFIELD" 2340872 T RCFIELD (NIL) -9 NIL 2341602 NIL) (-1006 2334736 2335240 2335936 "RCFIELD-" 2336011 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1005 2331052 2332837 2332880 "RCAGG" 2333964 NIL RCAGG (NIL T) -9 NIL 2334429 NIL) (-1004 2330680 2330774 2330937 "RCAGG-" 2330942 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1003 2330015 2330127 2330292 "RATRET" 2330564 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1002 2329568 2329635 2329756 "RATFACT" 2329943 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1001 2328876 2328996 2329148 "RANDSRC" 2329438 T RANDSRC (NIL) -7 NIL NIL NIL) (-1000 2328610 2328654 2328727 "RADUTIL" 2328825 T RADUTIL (NIL) -7 NIL NIL NIL) (-999 2321772 2327452 2327760 "RADIX" 2328334 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-998 2313429 2321616 2321744 "RADFF" 2321749 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-997 2313081 2313156 2313184 "RADCAT" 2313341 T RADCAT (NIL) -9 NIL NIL NIL) (-996 2312866 2312914 2313011 "RADCAT-" 2313016 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-995 2311017 2312641 2312730 "QUEUE" 2312810 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-994 2307593 2310954 2310999 "QUAT" 2311004 NIL QUAT (NIL T) -8 NIL NIL NIL) (-993 2307231 2307274 2307401 "QUATCT2" 2307544 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-992 2300978 2304280 2304320 "QUATCAT" 2305100 NIL QUATCAT (NIL T) -9 NIL 2305866 NIL) (-991 2297122 2298159 2299546 "QUATCAT-" 2299640 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-990 2294642 2296206 2296247 "QUAGG" 2296622 NIL QUAGG (NIL T) -9 NIL 2296797 NIL) (-989 2294274 2294467 2294535 "QQUTAST" 2294594 T QQUTAST (NIL) -8 NIL NIL NIL) (-988 2293199 2293672 2293844 "QFORM" 2294146 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-987 2284411 2289616 2289656 "QFCAT" 2290314 NIL QFCAT (NIL T) -9 NIL 2291315 NIL) (-986 2279983 2281184 2282775 "QFCAT-" 2282869 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-985 2279621 2279664 2279791 "QFCAT2" 2279934 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-984 2279081 2279191 2279321 "QEQUAT" 2279511 T QEQUAT (NIL) -8 NIL NIL NIL) (-983 2272229 2273300 2274484 "QCMPACK" 2278014 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-982 2269805 2270226 2270654 "QALGSET" 2271884 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-981 2269050 2269224 2269456 "QALGSET2" 2269625 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-980 2267741 2267964 2268281 "PWFFINTB" 2268823 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-979 2265923 2266091 2266445 "PUSHVAR" 2267555 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-978 2261841 2262895 2262936 "PTRANFN" 2264820 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-977 2260243 2260534 2260856 "PTPACK" 2261552 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-976 2259875 2259932 2260041 "PTFUNC2" 2260180 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-975 2254402 2258747 2258788 "PTCAT" 2259084 NIL PTCAT (NIL T) -9 NIL 2259237 NIL) (-974 2254060 2254095 2254219 "PSQFR" 2254361 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-973 2252655 2252953 2253287 "PSEUDLIN" 2253758 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-972 2239425 2241789 2244113 "PSETPK" 2250415 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-971 2232469 2235183 2235279 "PSETCAT" 2238300 NIL PSETCAT (NIL T T T T) -9 NIL 2239114 NIL) (-970 2230305 2230939 2231760 "PSETCAT-" 2231765 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-969 2229654 2229819 2229847 "PSCURVE" 2230115 T PSCURVE (NIL) -9 NIL 2230282 NIL) (-968 2226010 2227492 2227557 "PSCAT" 2228401 NIL PSCAT (NIL T T T) -9 NIL 2228641 NIL) (-967 2225073 2225289 2225689 "PSCAT-" 2225694 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-966 2223805 2224438 2224643 "PRTITION" 2224888 T PRTITION (NIL) -8 NIL NIL NIL) (-965 2223307 2223526 2223618 "PRTDAST" 2223733 T PRTDAST (NIL) -8 NIL NIL NIL) (-964 2212405 2214611 2216799 "PRS" 2221169 NIL PRS (NIL T T) -7 NIL NIL NIL) (-963 2210263 2211755 2211795 "PRQAGG" 2211978 NIL PRQAGG (NIL T) -9 NIL 2212080 NIL) (-962 2209649 2209878 2209906 "PROPLOG" 2210091 T PROPLOG (NIL) -9 NIL 2210213 NIL) (-961 2206819 2207463 2207927 "PROPFRML" 2209217 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-960 2206279 2206389 2206519 "PROPERTY" 2206709 T PROPERTY (NIL) -8 NIL NIL NIL) (-959 2200364 2204445 2205265 "PRODUCT" 2205505 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-958 2197677 2199822 2200056 "PR" 2200175 NIL PR (NIL T T) -8 NIL NIL NIL) (-957 2197473 2197505 2197564 "PRINT" 2197638 T PRINT (NIL) -7 NIL NIL NIL) (-956 2196813 2196930 2197082 "PRIMES" 2197353 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-955 2194878 2195279 2195745 "PRIMELT" 2196392 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-954 2194607 2194656 2194684 "PRIMCAT" 2194808 T PRIMCAT (NIL) -9 NIL NIL NIL) (-953 2190768 2194545 2194590 "PRIMARR" 2194595 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-952 2189775 2189953 2190181 "PRIMARR2" 2190586 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-951 2189418 2189474 2189585 "PREASSOC" 2189713 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-950 2188893 2189026 2189054 "PPCURVE" 2189259 T PPCURVE (NIL) -9 NIL 2189395 NIL) (-949 2188515 2188688 2188771 "PORTNUM" 2188830 T PORTNUM (NIL) -8 NIL NIL NIL) (-948 2185874 2186273 2186865 "POLYROOT" 2188096 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-947 2179819 2185478 2185638 "POLY" 2185747 NIL POLY (NIL T) -8 NIL NIL NIL) (-946 2179202 2179260 2179494 "POLYLIFT" 2179755 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-945 2175477 2175926 2176555 "POLYCATQ" 2178747 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-944 2162294 2167652 2167717 "POLYCAT" 2171231 NIL POLYCAT (NIL T T T) -9 NIL 2173159 NIL) (-943 2155744 2157605 2159989 "POLYCAT-" 2159994 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-942 2155331 2155399 2155519 "POLY2UP" 2155670 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-941 2154963 2155020 2155129 "POLY2" 2155268 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-940 2153648 2153887 2154163 "POLUTIL" 2154737 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-939 2152003 2152280 2152611 "POLTOPOL" 2153370 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-938 2147521 2151939 2151985 "POINT" 2151990 NIL POINT (NIL T) -8 NIL NIL NIL) (-937 2145708 2146065 2146440 "PNTHEORY" 2147166 T PNTHEORY (NIL) -7 NIL NIL NIL) (-936 2144127 2144424 2144836 "PMTOOLS" 2145406 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-935 2143720 2143798 2143915 "PMSYM" 2144043 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-934 2143230 2143299 2143473 "PMQFCAT" 2143645 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-933 2142585 2142695 2142851 "PMPRED" 2143107 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-932 2141981 2142067 2142228 "PMPREDFS" 2142486 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-931 2140624 2140832 2141217 "PMPLCAT" 2141743 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-930 2140156 2140235 2140387 "PMLSAGG" 2140539 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-929 2139631 2139707 2139888 "PMKERNEL" 2140074 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-928 2139248 2139323 2139436 "PMINS" 2139550 NIL PMINS (NIL T) -7 NIL NIL NIL) (-927 2138676 2138745 2138961 "PMFS" 2139173 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-926 2137904 2138022 2138227 "PMDOWN" 2138553 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-925 2137067 2137226 2137408 "PMASS" 2137742 T PMASS (NIL) -7 NIL NIL NIL) (-924 2136341 2136452 2136615 "PMASSFS" 2136953 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-923 2135996 2136064 2136158 "PLOTTOOL" 2136267 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-922 2130618 2131807 2132955 "PLOT" 2134868 T PLOT (NIL) -8 NIL NIL NIL) (-921 2126432 2127466 2128387 "PLOT3D" 2129717 T PLOT3D (NIL) -8 NIL NIL NIL) (-920 2125344 2125521 2125756 "PLOT1" 2126236 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-919 2100738 2105410 2110261 "PLEQN" 2120610 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-918 2100056 2100178 2100358 "PINTERP" 2100603 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-917 2099749 2099796 2099899 "PINTERPA" 2100003 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-916 2098997 2099518 2099605 "PI" 2099645 T PI (NIL) -8 NIL NIL 2099712) (-915 2097394 2098335 2098363 "PID" 2098545 T PID (NIL) -9 NIL 2098679 NIL) (-914 2097119 2097156 2097244 "PICOERCE" 2097351 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-913 2096439 2096578 2096754 "PGROEB" 2096975 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-912 2092026 2092840 2093745 "PGE" 2095554 T PGE (NIL) -7 NIL NIL NIL) (-911 2090150 2090396 2090762 "PGCD" 2091743 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-910 2089488 2089591 2089752 "PFRPAC" 2090034 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-909 2086168 2088036 2088389 "PFR" 2089167 NIL PFR (NIL T) -8 NIL NIL NIL) (-908 2084557 2084801 2085126 "PFOTOOLS" 2085915 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-907 2083090 2083329 2083680 "PFOQ" 2084314 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-906 2081563 2081775 2082138 "PFO" 2082874 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-905 2078151 2081452 2081521 "PF" 2081526 NIL PF (NIL NIL) -8 NIL NIL NIL) (-904 2075585 2076822 2076850 "PFECAT" 2077435 T PFECAT (NIL) -9 NIL 2077819 NIL) (-903 2075030 2075184 2075398 "PFECAT-" 2075403 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-902 2073634 2073885 2074186 "PFBRU" 2074779 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-901 2071501 2071852 2072284 "PFBR" 2073285 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-900 2067417 2068877 2069553 "PERM" 2070858 NIL PERM (NIL T) -8 NIL NIL NIL) (-899 2062683 2063624 2064494 "PERMGRP" 2066580 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-898 2060815 2061746 2061787 "PERMCAT" 2062233 NIL PERMCAT (NIL T) -9 NIL 2062538 NIL) (-897 2060468 2060509 2060633 "PERMAN" 2060768 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-896 2058004 2060133 2060255 "PENDTREE" 2060379 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-895 2056097 2056831 2056872 "PDRING" 2057529 NIL PDRING (NIL T) -9 NIL 2057815 NIL) (-894 2055200 2055418 2055780 "PDRING-" 2055785 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-893 2052442 2053193 2053861 "PDEPROB" 2054552 T PDEPROB (NIL) -8 NIL NIL NIL) (-892 2049989 2050491 2051046 "PDEPACK" 2051907 T PDEPACK (NIL) -7 NIL NIL NIL) (-891 2048901 2049091 2049342 "PDECOMP" 2049788 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-890 2046506 2047323 2047351 "PDECAT" 2048138 T PDECAT (NIL) -9 NIL 2048851 NIL) (-889 2046257 2046290 2046380 "PCOMP" 2046467 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-888 2044462 2045058 2045355 "PBWLB" 2045986 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-887 2036967 2038535 2039873 "PATTERN" 2043145 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-886 2036599 2036656 2036765 "PATTERN2" 2036904 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-885 2034356 2034744 2035201 "PATTERN1" 2036188 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-884 2031751 2032305 2032786 "PATRES" 2033921 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-883 2031315 2031382 2031514 "PATRES2" 2031678 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-882 2029198 2029603 2030010 "PATMATCH" 2030982 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-881 2028734 2028917 2028958 "PATMAB" 2029065 NIL PATMAB (NIL T) -9 NIL 2029148 NIL) (-880 2027279 2027588 2027846 "PATLRES" 2028539 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-879 2026825 2026948 2026989 "PATAB" 2026994 NIL PATAB (NIL T) -9 NIL 2027166 NIL) (-878 2024306 2024838 2025411 "PARTPERM" 2026272 T PARTPERM (NIL) -7 NIL NIL NIL) (-877 2023927 2023990 2024092 "PARSURF" 2024237 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-876 2023559 2023616 2023725 "PARSU2" 2023864 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-875 2023323 2023363 2023430 "PARSER" 2023512 T PARSER (NIL) -7 NIL NIL NIL) (-874 2022944 2023007 2023109 "PARSCURV" 2023254 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-873 2022576 2022633 2022742 "PARSC2" 2022881 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-872 2022215 2022273 2022370 "PARPCURV" 2022512 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-871 2021847 2021904 2022013 "PARPC2" 2022152 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-870 2021367 2021453 2021572 "PAN2EXPR" 2021748 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-869 2020173 2020488 2020716 "PALETTE" 2021159 T PALETTE (NIL) -8 NIL NIL NIL) (-868 2018641 2019178 2019538 "PAIR" 2019859 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-867 2012547 2017900 2018094 "PADICRC" 2018496 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-866 2005811 2011893 2012077 "PADICRAT" 2012395 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-865 2004161 2005748 2005793 "PADIC" 2005798 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-864 2001371 2002901 2002941 "PADICCT" 2003522 NIL PADICCT (NIL NIL) -9 NIL 2003804 NIL) (-863 2000328 2000528 2000796 "PADEPAC" 2001158 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-862 1999540 1999673 1999879 "PADE" 2000190 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-861 1997962 1998748 1999028 "OWP" 1999344 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-860 1997482 1997668 1997765 "OVERSET" 1997885 T OVERSET (NIL) -8 NIL NIL NIL) (-859 1996555 1997087 1997259 "OVAR" 1997350 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-858 1995819 1995940 1996101 "OUT" 1996414 T OUT (NIL) -7 NIL NIL NIL) (-857 1984726 1986928 1989128 "OUTFORM" 1993639 T OUTFORM (NIL) -8 NIL NIL NIL) (-856 1984062 1984323 1984450 "OUTBFILE" 1984619 T OUTBFILE (NIL) -8 NIL NIL NIL) (-855 1983369 1983534 1983562 "OUTBCON" 1983880 T OUTBCON (NIL) -9 NIL 1984046 NIL) (-854 1982970 1983082 1983239 "OUTBCON-" 1983244 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-853 1982378 1982699 1982788 "OSI" 1982901 T OSI (NIL) -8 NIL NIL NIL) (-852 1981934 1982246 1982274 "OSGROUP" 1982279 T OSGROUP (NIL) -9 NIL 1982301 NIL) (-851 1980679 1980906 1981191 "ORTHPOL" 1981681 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-850 1978265 1980514 1980635 "OREUP" 1980640 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-849 1975703 1977956 1978083 "ORESUP" 1978207 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-848 1973231 1973731 1974292 "OREPCTO" 1975192 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-847 1967055 1969222 1969263 "OREPCAT" 1971611 NIL OREPCAT (NIL T) -9 NIL 1972715 NIL) (-846 1964202 1964984 1966042 "OREPCAT-" 1966047 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-845 1963379 1963651 1963679 "ORDSET" 1963988 T ORDSET (NIL) -9 NIL 1964152 NIL) (-844 1962898 1963020 1963213 "ORDSET-" 1963218 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-843 1961532 1962289 1962317 "ORDRING" 1962519 T ORDRING (NIL) -9 NIL 1962644 NIL) (-842 1961177 1961271 1961415 "ORDRING-" 1961420 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-841 1960583 1961020 1961048 "ORDMON" 1961053 T ORDMON (NIL) -9 NIL 1961074 NIL) (-840 1959745 1959892 1960087 "ORDFUNS" 1960432 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-839 1959109 1959502 1959530 "ORDFIN" 1959595 T ORDFIN (NIL) -9 NIL 1959669 NIL) (-838 1955701 1957695 1958104 "ORDCOMP" 1958733 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-837 1954967 1955094 1955280 "ORDCOMP2" 1955561 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-836 1951575 1952458 1953272 "OPTPROB" 1954173 T OPTPROB (NIL) -8 NIL NIL NIL) (-835 1948377 1949016 1949720 "OPTPACK" 1950891 T OPTPACK (NIL) -7 NIL NIL NIL) (-834 1946090 1946830 1946858 "OPTCAT" 1947677 T OPTCAT (NIL) -9 NIL 1948327 NIL) (-833 1945533 1945767 1945872 "OPSIG" 1946005 T OPSIG (NIL) -8 NIL NIL NIL) (-832 1945301 1945340 1945406 "OPQUERY" 1945487 T OPQUERY (NIL) -7 NIL NIL NIL) (-831 1942467 1943612 1944116 "OP" 1944830 NIL OP (NIL T) -8 NIL NIL NIL) (-830 1942002 1942173 1942214 "OPERCAT" 1942349 NIL OPERCAT (NIL T) -9 NIL 1942417 NIL) (-829 1941848 1941875 1941961 "OPERCAT-" 1941966 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-828 1938693 1940645 1941014 "ONECOMP" 1941512 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-827 1937998 1938113 1938287 "ONECOMP2" 1938565 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-826 1937417 1937523 1937653 "OMSERVER" 1937888 T OMSERVER (NIL) -7 NIL NIL NIL) (-825 1934305 1936857 1936897 "OMSAGG" 1936958 NIL OMSAGG (NIL T) -9 NIL 1937022 NIL) (-824 1932928 1933191 1933473 "OMPKG" 1934043 T OMPKG (NIL) -7 NIL NIL NIL) (-823 1932358 1932461 1932489 "OM" 1932788 T OM (NIL) -9 NIL NIL NIL) (-822 1930940 1931907 1932076 "OMLO" 1932239 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-821 1929865 1930012 1930239 "OMEXPR" 1930766 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-820 1929183 1929411 1929547 "OMERR" 1929749 T OMERR (NIL) -8 NIL NIL NIL) (-819 1928361 1928604 1928764 "OMERRK" 1929043 T OMERRK (NIL) -8 NIL NIL NIL) (-818 1927839 1928038 1928146 "OMENC" 1928273 T OMENC (NIL) -8 NIL NIL NIL) (-817 1921734 1922919 1924090 "OMDEV" 1926688 T OMDEV (NIL) -8 NIL NIL NIL) (-816 1920803 1920974 1921168 "OMCONN" 1921560 T OMCONN (NIL) -8 NIL NIL NIL) (-815 1919424 1920366 1920394 "OINTDOM" 1920399 T OINTDOM (NIL) -9 NIL 1920420 NIL) (-814 1915230 1916414 1917130 "OFMONOID" 1918740 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-813 1914668 1915167 1915212 "ODVAR" 1915217 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-812 1912126 1914413 1914568 "ODR" 1914573 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-811 1904470 1911902 1912028 "ODPOL" 1912033 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-810 1898346 1904342 1904447 "ODP" 1904452 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-809 1897112 1897327 1897602 "ODETOOLS" 1898120 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-808 1894081 1894737 1895453 "ODESYS" 1896445 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-807 1888963 1889871 1890896 "ODERTRIC" 1893156 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-806 1888389 1888471 1888665 "ODERED" 1888875 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-805 1885277 1885825 1886502 "ODERAT" 1887812 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-804 1882237 1882701 1883298 "ODEPRRIC" 1884806 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-803 1880207 1880776 1881262 "ODEPROB" 1881771 T ODEPROB (NIL) -8 NIL NIL NIL) (-802 1876729 1877212 1877859 "ODEPRIM" 1879686 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-801 1875978 1876080 1876340 "ODEPAL" 1876621 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-800 1872140 1872931 1873795 "ODEPACK" 1875134 T ODEPACK (NIL) -7 NIL NIL NIL) (-799 1871173 1871280 1871509 "ODEINT" 1872029 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-798 1865274 1866699 1868146 "ODEIFTBL" 1869746 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-797 1860609 1861395 1862354 "ODEEF" 1864433 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-796 1859944 1860033 1860263 "ODECONST" 1860514 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-795 1858095 1858730 1858758 "ODECAT" 1859363 T ODECAT (NIL) -9 NIL 1859894 NIL) (-794 1855002 1857807 1857926 "OCT" 1858008 NIL OCT (NIL T) -8 NIL NIL NIL) (-793 1854640 1854683 1854810 "OCTCT2" 1854953 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-792 1849414 1851814 1851854 "OC" 1852951 NIL OC (NIL T) -9 NIL 1853809 NIL) (-791 1846641 1847389 1848379 "OC-" 1848473 NIL OC- (NIL T T) -8 NIL NIL NIL) (-790 1846019 1846461 1846489 "OCAMON" 1846494 T OCAMON (NIL) -9 NIL 1846515 NIL) (-789 1845576 1845891 1845919 "OASGP" 1845924 T OASGP (NIL) -9 NIL 1845944 NIL) (-788 1844863 1845326 1845354 "OAMONS" 1845394 T OAMONS (NIL) -9 NIL 1845437 NIL) (-787 1844303 1844710 1844738 "OAMON" 1844743 T OAMON (NIL) -9 NIL 1844763 NIL) (-786 1843607 1844099 1844127 "OAGROUP" 1844132 T OAGROUP (NIL) -9 NIL 1844152 NIL) (-785 1843297 1843347 1843435 "NUMTUBE" 1843551 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-784 1836870 1838388 1839924 "NUMQUAD" 1841781 T NUMQUAD (NIL) -7 NIL NIL NIL) (-783 1832626 1833614 1834639 "NUMODE" 1835865 T NUMODE (NIL) -7 NIL NIL NIL) (-782 1830007 1830861 1830889 "NUMINT" 1831812 T NUMINT (NIL) -9 NIL 1832576 NIL) (-781 1828955 1829152 1829370 "NUMFMT" 1829809 T NUMFMT (NIL) -7 NIL NIL NIL) (-780 1815314 1818259 1820791 "NUMERIC" 1826462 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-779 1809711 1814763 1814858 "NTSCAT" 1814863 NIL NTSCAT (NIL T T T T) -9 NIL 1814902 NIL) (-778 1808905 1809070 1809263 "NTPOLFN" 1809550 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-777 1796745 1805730 1806542 "NSUP" 1808126 NIL NSUP (NIL T) -8 NIL NIL NIL) (-776 1796377 1796434 1796543 "NSUP2" 1796682 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-775 1786374 1796151 1796284 "NSMP" 1796289 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-774 1784806 1785107 1785464 "NREP" 1786062 NIL NREP (NIL T) -7 NIL NIL NIL) (-773 1783397 1783649 1784007 "NPCOEF" 1784549 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-772 1782463 1782578 1782794 "NORMRETR" 1783278 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-771 1780504 1780794 1781203 "NORMPK" 1782171 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-770 1780189 1780217 1780341 "NORMMA" 1780470 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-769 1780016 1780146 1780175 "NONE" 1780180 T NONE (NIL) -8 NIL NIL NIL) (-768 1779805 1779834 1779903 "NONE1" 1779980 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-767 1779288 1779350 1779536 "NODE1" 1779737 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-766 1777559 1778382 1778637 "NNI" 1778984 T NNI (NIL) -8 NIL NIL 1779219) (-765 1775979 1776292 1776656 "NLINSOL" 1777227 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-764 1772247 1773215 1774114 "NIPROB" 1775100 T NIPROB (NIL) -8 NIL NIL NIL) (-763 1771004 1771238 1771540 "NFINTBAS" 1772009 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-762 1770178 1770654 1770695 "NETCLT" 1770867 NIL NETCLT (NIL T) -9 NIL 1770949 NIL) (-761 1768886 1769117 1769398 "NCODIV" 1769946 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-760 1768648 1768685 1768760 "NCNTFRAC" 1768843 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-759 1766828 1767192 1767612 "NCEP" 1768273 NIL NCEP (NIL T) -7 NIL NIL NIL) (-758 1765739 1766478 1766506 "NASRING" 1766616 T NASRING (NIL) -9 NIL 1766690 NIL) (-757 1765534 1765578 1765672 "NASRING-" 1765677 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-756 1764687 1765186 1765214 "NARNG" 1765331 T NARNG (NIL) -9 NIL 1765422 NIL) (-755 1764379 1764446 1764580 "NARNG-" 1764585 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-754 1763258 1763465 1763700 "NAGSP" 1764164 T NAGSP (NIL) -7 NIL NIL NIL) (-753 1754530 1756214 1757887 "NAGS" 1761605 T NAGS (NIL) -7 NIL NIL NIL) (-752 1753078 1753386 1753717 "NAGF07" 1754219 T NAGF07 (NIL) -7 NIL NIL NIL) (-751 1747616 1748907 1750214 "NAGF04" 1751791 T NAGF04 (NIL) -7 NIL NIL NIL) (-750 1740584 1742198 1743831 "NAGF02" 1746003 T NAGF02 (NIL) -7 NIL NIL NIL) (-749 1735808 1736908 1738025 "NAGF01" 1739487 T NAGF01 (NIL) -7 NIL NIL NIL) (-748 1729436 1731002 1732587 "NAGE04" 1734243 T NAGE04 (NIL) -7 NIL NIL NIL) (-747 1720605 1722726 1724856 "NAGE02" 1727326 T NAGE02 (NIL) -7 NIL NIL NIL) (-746 1716558 1717505 1718469 "NAGE01" 1719661 T NAGE01 (NIL) -7 NIL NIL NIL) (-745 1714353 1714887 1715445 "NAGD03" 1716020 T NAGD03 (NIL) -7 NIL NIL NIL) (-744 1706103 1708031 1709985 "NAGD02" 1712419 T NAGD02 (NIL) -7 NIL NIL NIL) (-743 1699914 1701339 1702779 "NAGD01" 1704683 T NAGD01 (NIL) -7 NIL NIL NIL) (-742 1696123 1696945 1697782 "NAGC06" 1699097 T NAGC06 (NIL) -7 NIL NIL NIL) (-741 1694588 1694920 1695276 "NAGC05" 1695787 T NAGC05 (NIL) -7 NIL NIL NIL) (-740 1693964 1694083 1694227 "NAGC02" 1694464 T NAGC02 (NIL) -7 NIL NIL NIL) (-739 1693024 1693581 1693621 "NAALG" 1693700 NIL NAALG (NIL T) -9 NIL 1693761 NIL) (-738 1692859 1692888 1692978 "NAALG-" 1692983 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-737 1686809 1687917 1689104 "MULTSQFR" 1691755 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-736 1686128 1686203 1686387 "MULTFACT" 1686721 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-735 1679221 1683091 1683144 "MTSCAT" 1684214 NIL MTSCAT (NIL T T) -9 NIL 1684728 NIL) (-734 1678933 1678987 1679079 "MTHING" 1679161 NIL MTHING (NIL T) -7 NIL NIL NIL) (-733 1678725 1678758 1678818 "MSYSCMD" 1678893 T MSYSCMD (NIL) -7 NIL NIL NIL) (-732 1674837 1677480 1677800 "MSET" 1678438 NIL MSET (NIL T) -8 NIL NIL NIL) (-731 1671932 1674398 1674439 "MSETAGG" 1674444 NIL MSETAGG (NIL T) -9 NIL 1674478 NIL) (-730 1667815 1669311 1670056 "MRING" 1671232 NIL MRING (NIL T T) -8 NIL NIL NIL) (-729 1667381 1667448 1667579 "MRF2" 1667742 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-728 1666999 1667034 1667178 "MRATFAC" 1667340 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-727 1664611 1664906 1665337 "MPRFF" 1666704 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-726 1658671 1664465 1664562 "MPOLY" 1664567 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-725 1658161 1658196 1658404 "MPCPF" 1658630 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-724 1657675 1657718 1657902 "MPC3" 1658112 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-723 1656870 1656951 1657172 "MPC2" 1657590 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-722 1655171 1655508 1655898 "MONOTOOL" 1656530 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-721 1654422 1654713 1654741 "MONOID" 1654960 T MONOID (NIL) -9 NIL 1655107 NIL) (-720 1653968 1654087 1654268 "MONOID-" 1654273 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-719 1644827 1650735 1650794 "MONOGEN" 1651468 NIL MONOGEN (NIL T T) -9 NIL 1651924 NIL) (-718 1642045 1642780 1643780 "MONOGEN-" 1643899 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-717 1640904 1641324 1641352 "MONADWU" 1641744 T MONADWU (NIL) -9 NIL 1641982 NIL) (-716 1640276 1640435 1640683 "MONADWU-" 1640688 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-715 1639661 1639879 1639907 "MONAD" 1640114 T MONAD (NIL) -9 NIL 1640226 NIL) (-714 1639346 1639424 1639556 "MONAD-" 1639561 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-713 1637662 1638259 1638538 "MOEBIUS" 1639099 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-712 1637054 1637432 1637472 "MODULE" 1637477 NIL MODULE (NIL T) -9 NIL 1637503 NIL) (-711 1636622 1636718 1636908 "MODULE-" 1636913 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-710 1634337 1634986 1635313 "MODRING" 1636446 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-709 1631323 1632442 1632963 "MODOP" 1633866 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-708 1629938 1630390 1630667 "MODMONOM" 1631186 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-707 1619745 1628229 1628643 "MODMON" 1629575 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-706 1616936 1618589 1618865 "MODFIELD" 1619620 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-705 1615940 1616217 1616407 "MMLFORM" 1616766 T MMLFORM (NIL) -8 NIL NIL NIL) (-704 1615466 1615509 1615688 "MMAP" 1615891 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-703 1613683 1614416 1614457 "MLO" 1614880 NIL MLO (NIL T) -9 NIL 1615122 NIL) (-702 1611050 1611565 1612167 "MLIFT" 1613164 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-701 1610441 1610525 1610679 "MKUCFUNC" 1610961 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-700 1610040 1610110 1610233 "MKRECORD" 1610364 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-699 1609088 1609249 1609477 "MKFUNC" 1609851 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-698 1608476 1608580 1608736 "MKFLCFN" 1608971 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-697 1608019 1608386 1608445 "MKCHSET" 1608450 NIL MKCHSET (NIL T) -8 NIL NIL NIL) (-696 1607296 1607398 1607583 "MKBCFUNC" 1607912 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-695 1604038 1606850 1606986 "MINT" 1607180 T MINT (NIL) -8 NIL NIL NIL) (-694 1602850 1603093 1603370 "MHROWRED" 1603793 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-693 1598276 1601385 1601790 "MFLOAT" 1602465 T MFLOAT (NIL) -8 NIL NIL NIL) (-692 1597633 1597709 1597880 "MFINFACT" 1598188 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-691 1593948 1594796 1595680 "MESH" 1596769 T MESH (NIL) -7 NIL NIL NIL) (-690 1592338 1592650 1593003 "MDDFACT" 1593635 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-689 1589180 1591497 1591538 "MDAGG" 1591793 NIL MDAGG (NIL T) -9 NIL 1591936 NIL) (-688 1578958 1588473 1588680 "MCMPLX" 1588993 T MCMPLX (NIL) -8 NIL NIL NIL) (-687 1578099 1578245 1578445 "MCDEN" 1578807 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-686 1575989 1576259 1576639 "MCALCFN" 1577829 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-685 1574914 1575154 1575387 "MAYBE" 1575795 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-684 1572526 1573049 1573611 "MATSTOR" 1574385 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-683 1568532 1571898 1572146 "MATRIX" 1572311 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-682 1564301 1565005 1565741 "MATLIN" 1567889 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-681 1554455 1557593 1557670 "MATCAT" 1562550 NIL MATCAT (NIL T T T) -9 NIL 1563967 NIL) (-680 1550819 1551832 1553188 "MATCAT-" 1553193 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-679 1549413 1549566 1549899 "MATCAT2" 1550654 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-678 1547525 1547849 1548233 "MAPPKG3" 1549088 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-677 1546506 1546679 1546901 "MAPPKG2" 1547349 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-676 1545005 1545289 1545616 "MAPPKG1" 1546212 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-675 1544111 1544411 1544588 "MAPPAST" 1544848 T MAPPAST (NIL) -8 NIL NIL NIL) (-674 1543722 1543780 1543903 "MAPHACK3" 1544047 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-673 1543314 1543375 1543489 "MAPHACK2" 1543654 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-672 1542752 1542855 1542997 "MAPHACK1" 1543205 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-671 1540858 1541452 1541756 "MAGMA" 1542480 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-670 1540364 1540582 1540673 "MACROAST" 1540787 T MACROAST (NIL) -8 NIL NIL NIL) (-669 1536831 1538603 1539064 "M3D" 1539936 NIL M3D (NIL T) -8 NIL NIL NIL) (-668 1530985 1535200 1535241 "LZSTAGG" 1536023 NIL LZSTAGG (NIL T) -9 NIL 1536318 NIL) (-667 1526959 1528116 1529573 "LZSTAGG-" 1529578 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-666 1524073 1524850 1525337 "LWORD" 1526504 NIL LWORD (NIL T) -8 NIL NIL NIL) (-665 1523676 1523877 1523952 "LSTAST" 1524018 T LSTAST (NIL) -8 NIL NIL NIL) (-664 1516877 1523447 1523581 "LSQM" 1523586 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-663 1516101 1516240 1516468 "LSPP" 1516732 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-662 1513913 1514214 1514670 "LSMP" 1515790 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-661 1510692 1511366 1512096 "LSMP1" 1513215 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-660 1504617 1509859 1509900 "LSAGG" 1509962 NIL LSAGG (NIL T) -9 NIL 1510040 NIL) (-659 1501312 1502236 1503449 "LSAGG-" 1503454 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-658 1498938 1500456 1500705 "LPOLY" 1501107 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-657 1498520 1498605 1498728 "LPEFRAC" 1498847 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-656 1496867 1497614 1497867 "LO" 1498352 NIL LO (NIL T T T) -8 NIL NIL NIL) (-655 1496519 1496631 1496659 "LOGIC" 1496770 T LOGIC (NIL) -9 NIL 1496851 NIL) (-654 1496381 1496404 1496475 "LOGIC-" 1496480 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-653 1495574 1495714 1495907 "LODOOPS" 1496237 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-652 1493032 1495490 1495556 "LODO" 1495561 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-651 1491570 1491805 1492158 "LODOF" 1492779 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-650 1487926 1490323 1490364 "LODOCAT" 1490802 NIL LODOCAT (NIL T) -9 NIL 1491013 NIL) (-649 1487659 1487717 1487844 "LODOCAT-" 1487849 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-648 1485014 1487500 1487618 "LODO2" 1487623 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-647 1482484 1484951 1484996 "LODO1" 1485001 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-646 1481344 1481509 1481821 "LODEEF" 1482307 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-645 1476630 1479474 1479515 "LNAGG" 1480462 NIL LNAGG (NIL T) -9 NIL 1480906 NIL) (-644 1475777 1475991 1476333 "LNAGG-" 1476338 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-643 1471940 1472702 1473341 "LMOPS" 1475192 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-642 1471335 1471697 1471738 "LMODULE" 1471799 NIL LMODULE (NIL T) -9 NIL 1471841 NIL) (-641 1468581 1470980 1471103 "LMDICT" 1471245 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-640 1468307 1468489 1468549 "LITERAL" 1468554 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-639 1461534 1467253 1467551 "LIST" 1468042 NIL LIST (NIL T) -8 NIL NIL NIL) (-638 1461059 1461133 1461272 "LIST3" 1461454 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-637 1460066 1460244 1460472 "LIST2" 1460877 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-636 1458200 1458512 1458911 "LIST2MAP" 1459713 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-635 1456930 1457566 1457607 "LINEXP" 1457862 NIL LINEXP (NIL T) -9 NIL 1458011 NIL) (-634 1455577 1455837 1456134 "LINDEP" 1456682 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-633 1452344 1453063 1453840 "LIMITRF" 1454832 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-632 1450620 1450915 1451331 "LIMITPS" 1452039 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-631 1445075 1450131 1450359 "LIE" 1450441 NIL LIE (NIL T T) -8 NIL NIL NIL) (-630 1444124 1444567 1444607 "LIECAT" 1444747 NIL LIECAT (NIL T) -9 NIL 1444898 NIL) (-629 1443965 1443992 1444080 "LIECAT-" 1444085 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-628 1436577 1443414 1443579 "LIB" 1443820 T LIB (NIL) -8 NIL NIL NIL) (-627 1432214 1433095 1434030 "LGROBP" 1435694 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-626 1430080 1430354 1430716 "LF" 1431935 NIL LF (NIL T T) -7 NIL NIL NIL) (-625 1428920 1429612 1429640 "LFCAT" 1429847 T LFCAT (NIL) -9 NIL 1429986 NIL) (-624 1425824 1426452 1427140 "LEXTRIPK" 1428284 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-623 1422595 1423394 1423897 "LEXP" 1425404 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-622 1422098 1422316 1422408 "LETAST" 1422523 T LETAST (NIL) -8 NIL NIL NIL) (-621 1420496 1420809 1421210 "LEADCDET" 1421780 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-620 1419686 1419760 1419989 "LAZM3PK" 1420417 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-619 1414641 1417763 1418301 "LAUPOL" 1419198 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-618 1414206 1414250 1414418 "LAPLACE" 1414591 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-617 1412180 1413307 1413558 "LA" 1414039 NIL LA (NIL T T T) -8 NIL NIL NIL) (-616 1411261 1411811 1411852 "LALG" 1411914 NIL LALG (NIL T) -9 NIL 1411973 NIL) (-615 1410975 1411034 1411170 "LALG-" 1411175 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-614 1410810 1410834 1410875 "KVTFROM" 1410937 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-613 1409613 1410027 1410256 "KTVLOGIC" 1410601 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-612 1409448 1409472 1409513 "KRCFROM" 1409575 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-611 1408352 1408539 1408838 "KOVACIC" 1409248 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-610 1408187 1408211 1408252 "KONVERT" 1408314 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-609 1408022 1408046 1408087 "KOERCE" 1408149 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-608 1405756 1406516 1406909 "KERNEL" 1407661 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-607 1405258 1405339 1405469 "KERNEL2" 1405670 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-606 1399109 1403797 1403851 "KDAGG" 1404228 NIL KDAGG (NIL T T) -9 NIL 1404434 NIL) (-605 1398638 1398762 1398967 "KDAGG-" 1398972 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-604 1391813 1398299 1398454 "KAFILE" 1398516 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-603 1386268 1391324 1391552 "JORDAN" 1391634 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-602 1385674 1385917 1386038 "JOINAST" 1386167 T JOINAST (NIL) -8 NIL NIL NIL) (-601 1385520 1385579 1385634 "JAVACODE" 1385639 T JAVACODE (NIL) -8 NIL NIL NIL) (-600 1381819 1383725 1383779 "IXAGG" 1384708 NIL IXAGG (NIL T T) -9 NIL 1385167 NIL) (-599 1380738 1381044 1381463 "IXAGG-" 1381468 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-598 1376318 1380660 1380719 "IVECTOR" 1380724 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-597 1375084 1375321 1375587 "ITUPLE" 1376085 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-596 1373520 1373697 1374003 "ITRIGMNP" 1374906 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-595 1372265 1372469 1372752 "ITFUN3" 1373296 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-594 1371897 1371954 1372063 "ITFUN2" 1372202 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-593 1369734 1370759 1371058 "ITAYLOR" 1371631 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-592 1358717 1363871 1365034 "ISUPS" 1368604 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-591 1357821 1357961 1358197 "ISUMP" 1358564 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-590 1353085 1357622 1357701 "ISTRING" 1357774 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-589 1352588 1352806 1352898 "ISAST" 1353013 T ISAST (NIL) -8 NIL NIL NIL) (-588 1351798 1351879 1352095 "IRURPK" 1352502 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-587 1350734 1350935 1351175 "IRSN" 1351578 T IRSN (NIL) -7 NIL NIL NIL) (-586 1348763 1349118 1349554 "IRRF2F" 1350372 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-585 1348510 1348548 1348624 "IRREDFFX" 1348719 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-584 1347125 1347384 1347683 "IROOT" 1348243 NIL IROOT (NIL T) -7 NIL NIL NIL) (-583 1343757 1344809 1345501 "IR" 1346465 NIL IR (NIL T) -8 NIL NIL NIL) (-582 1341370 1341865 1342431 "IR2" 1343235 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-581 1340442 1340555 1340776 "IR2F" 1341253 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-580 1340233 1340267 1340327 "IPRNTPK" 1340402 T IPRNTPK (NIL) -7 NIL NIL NIL) (-579 1336852 1340122 1340191 "IPF" 1340196 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-578 1335215 1336777 1336834 "IPADIC" 1336839 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-577 1334555 1334775 1334905 "IP4ADDR" 1335105 T IP4ADDR (NIL) -8 NIL NIL NIL) (-576 1334055 1334259 1334369 "IOMODE" 1334465 T IOMODE (NIL) -8 NIL NIL NIL) (-575 1333128 1333652 1333779 "IOBFILE" 1333948 T IOBFILE (NIL) -8 NIL NIL NIL) (-574 1332616 1333032 1333060 "IOBCON" 1333065 T IOBCON (NIL) -9 NIL 1333086 NIL) (-573 1332113 1332171 1332361 "INVLAPLA" 1332552 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-572 1321762 1324115 1326501 "INTTR" 1329777 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-571 1318106 1318848 1319712 "INTTOOLS" 1320947 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-570 1317692 1317783 1317900 "INTSLPE" 1318009 T INTSLPE (NIL) -7 NIL NIL NIL) (-569 1315687 1317615 1317674 "INTRVL" 1317679 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-568 1313289 1313801 1314376 "INTRF" 1315172 NIL INTRF (NIL T) -7 NIL NIL NIL) (-567 1312700 1312797 1312939 "INTRET" 1313187 NIL INTRET (NIL T) -7 NIL NIL NIL) (-566 1310697 1311086 1311556 "INTRAT" 1312308 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-565 1307925 1308508 1309134 "INTPM" 1310182 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-564 1304628 1305227 1305972 "INTPAF" 1307311 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-563 1299807 1300769 1301820 "INTPACK" 1303597 T INTPACK (NIL) -7 NIL NIL NIL) (-562 1296719 1299536 1299663 "INT" 1299700 T INT (NIL) -8 NIL NIL NIL) (-561 1295971 1296123 1296331 "INTHERTR" 1296561 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-560 1295410 1295490 1295678 "INTHERAL" 1295885 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-559 1293256 1293699 1294156 "INTHEORY" 1294973 T INTHEORY (NIL) -7 NIL NIL NIL) (-558 1284564 1286185 1287964 "INTG0" 1291608 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-557 1265137 1269927 1274737 "INTFTBL" 1279774 T INTFTBL (NIL) -8 NIL NIL NIL) (-556 1264386 1264524 1264697 "INTFACT" 1264996 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-555 1261771 1262217 1262781 "INTEF" 1263940 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-554 1260238 1260943 1260971 "INTDOM" 1261272 T INTDOM (NIL) -9 NIL 1261479 NIL) (-553 1259607 1259781 1260023 "INTDOM-" 1260028 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-552 1256102 1257991 1258045 "INTCAT" 1258844 NIL INTCAT (NIL T) -9 NIL 1259164 NIL) (-551 1255575 1255677 1255805 "INTBIT" 1255994 T INTBIT (NIL) -7 NIL NIL NIL) (-550 1254246 1254400 1254714 "INTALG" 1255420 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-549 1253703 1253793 1253963 "INTAF" 1254150 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-548 1247157 1253513 1253653 "INTABL" 1253658 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-547 1246617 1247030 1247058 "INT8" 1247063 T INT8 (NIL) -8 NIL NIL 1247071) (-546 1246076 1246489 1246517 "INT32" 1246522 T INT32 (NIL) -8 NIL NIL 1246530) (-545 1245535 1245948 1245976 "INT16" 1245981 T INT16 (NIL) -8 NIL NIL 1245989) (-544 1240550 1243224 1243252 "INS" 1244186 T INS (NIL) -9 NIL 1244851 NIL) (-543 1237790 1238561 1239535 "INS-" 1239608 NIL INS- (NIL T) -8 NIL NIL NIL) (-542 1236565 1236792 1237090 "INPSIGN" 1237543 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-541 1235683 1235800 1235997 "INPRODPF" 1236445 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-540 1234577 1234694 1234931 "INPRODFF" 1235563 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-539 1233577 1233729 1233989 "INNMFACT" 1234413 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-538 1232774 1232871 1233059 "INMODGCD" 1233476 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-537 1231283 1231527 1231851 "INFSP" 1232519 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-536 1230467 1230584 1230767 "INFPROD0" 1231163 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-535 1227349 1228532 1229047 "INFORM" 1229960 T INFORM (NIL) -8 NIL NIL NIL) (-534 1226959 1227019 1227117 "INFORM1" 1227284 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-533 1226482 1226571 1226685 "INFINITY" 1226865 T INFINITY (NIL) -7 NIL NIL NIL) (-532 1225658 1226202 1226303 "INETCLTS" 1226401 T INETCLTS (NIL) -8 NIL NIL NIL) (-531 1224275 1224524 1224845 "INEP" 1225406 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-530 1223551 1224172 1224237 "INDE" 1224242 NIL INDE (NIL T) -8 NIL NIL NIL) (-529 1223115 1223183 1223300 "INCRMAPS" 1223478 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-528 1221933 1222384 1222590 "INBFILE" 1222929 T INBFILE (NIL) -8 NIL NIL NIL) (-527 1217244 1218169 1219113 "INBFF" 1221021 NIL INBFF (NIL T) -7 NIL NIL NIL) (-526 1216152 1216421 1216449 "INBCON" 1216962 T INBCON (NIL) -9 NIL 1217228 NIL) (-525 1215404 1215627 1215903 "INBCON-" 1215908 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-524 1214906 1215125 1215217 "INAST" 1215332 T INAST (NIL) -8 NIL NIL NIL) (-523 1214360 1214585 1214691 "IMPTAST" 1214820 T IMPTAST (NIL) -8 NIL NIL NIL) (-522 1210854 1214204 1214308 "IMATRIX" 1214313 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-521 1209566 1209689 1210004 "IMATQF" 1210710 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-520 1207786 1208013 1208350 "IMATLIN" 1209322 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-519 1202412 1207710 1207768 "ILIST" 1207773 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-518 1200365 1202272 1202385 "IIARRAY2" 1202390 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-517 1195798 1200276 1200340 "IFF" 1200345 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-516 1195172 1195415 1195531 "IFAST" 1195702 T IFAST (NIL) -8 NIL NIL NIL) (-515 1190215 1194464 1194652 "IFARRAY" 1195029 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-514 1189422 1190119 1190192 "IFAMON" 1190197 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-513 1189006 1189071 1189125 "IEVALAB" 1189332 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-512 1188681 1188749 1188909 "IEVALAB-" 1188914 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-511 1188339 1188595 1188658 "IDPO" 1188663 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-510 1187616 1188228 1188303 "IDPOAMS" 1188308 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-509 1186950 1187505 1187580 "IDPOAM" 1187585 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-508 1186035 1186285 1186338 "IDPC" 1186751 NIL IDPC (NIL T T) -9 NIL 1186900 NIL) (-507 1185531 1185927 1186000 "IDPAM" 1186005 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-506 1184934 1185423 1185496 "IDPAG" 1185501 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-505 1184702 1184849 1184899 "IDENT" 1184904 T IDENT (NIL) -8 NIL NIL NIL) (-504 1180957 1181805 1182700 "IDECOMP" 1183859 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-503 1173831 1174880 1175927 "IDEAL" 1179993 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-502 1172995 1173107 1173306 "ICDEN" 1173715 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-501 1172094 1172475 1172622 "ICARD" 1172868 T ICARD (NIL) -8 NIL NIL NIL) (-500 1170154 1170467 1170872 "IBPTOOLS" 1171771 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-499 1165788 1169774 1169887 "IBITS" 1170073 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-498 1162511 1163087 1163782 "IBATOOL" 1165205 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-497 1160291 1160752 1161285 "IBACHIN" 1162046 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-496 1158168 1160137 1160240 "IARRAY2" 1160245 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-495 1154321 1158094 1158151 "IARRAY1" 1158156 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-494 1148315 1152733 1153214 "IAN" 1153860 T IAN (NIL) -8 NIL NIL NIL) (-493 1147826 1147883 1148056 "IALGFACT" 1148252 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-492 1147354 1147467 1147495 "HYPCAT" 1147702 T HYPCAT (NIL) -9 NIL NIL NIL) (-491 1146892 1147009 1147195 "HYPCAT-" 1147200 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-490 1146514 1146687 1146770 "HOSTNAME" 1146829 T HOSTNAME (NIL) -8 NIL NIL NIL) (-489 1146359 1146396 1146437 "HOMOTOP" 1146442 NIL HOMOTOP (NIL T) -9 NIL 1146475 NIL) (-488 1143038 1144369 1144410 "HOAGG" 1145391 NIL HOAGG (NIL T) -9 NIL 1146070 NIL) (-487 1141632 1142031 1142557 "HOAGG-" 1142562 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-486 1135674 1141229 1141377 "HEXADEC" 1141504 T HEXADEC (NIL) -8 NIL NIL NIL) (-485 1134422 1134644 1134907 "HEUGCD" 1135451 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-484 1133525 1134259 1134389 "HELLFDIV" 1134394 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-483 1131753 1133302 1133390 "HEAP" 1133469 NIL HEAP (NIL T) -8 NIL NIL NIL) (-482 1131044 1131305 1131439 "HEADAST" 1131639 T HEADAST (NIL) -8 NIL NIL NIL) (-481 1124964 1130959 1131021 "HDP" 1131026 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-480 1118715 1124599 1124751 "HDMP" 1124865 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-479 1118040 1118179 1118343 "HB" 1118571 T HB (NIL) -7 NIL NIL NIL) (-478 1111537 1117886 1117990 "HASHTBL" 1117995 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-477 1111040 1111258 1111350 "HASAST" 1111465 T HASAST (NIL) -8 NIL NIL NIL) (-476 1108852 1110662 1110844 "HACKPI" 1110878 T HACKPI (NIL) -8 NIL NIL NIL) (-475 1104547 1108705 1108818 "GTSET" 1108823 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-474 1098073 1104425 1104523 "GSTBL" 1104528 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-473 1090386 1097104 1097369 "GSERIES" 1097864 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-472 1089553 1089944 1089972 "GROUP" 1090175 T GROUP (NIL) -9 NIL 1090309 NIL) (-471 1088919 1089078 1089329 "GROUP-" 1089334 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-470 1087288 1087607 1087994 "GROEBSOL" 1088596 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-469 1086228 1086490 1086541 "GRMOD" 1087070 NIL GRMOD (NIL T T) -9 NIL 1087238 NIL) (-468 1085996 1086032 1086160 "GRMOD-" 1086165 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-467 1081322 1082350 1083350 "GRIMAGE" 1085016 T GRIMAGE (NIL) -8 NIL NIL NIL) (-466 1079789 1080049 1080373 "GRDEF" 1081018 T GRDEF (NIL) -7 NIL NIL NIL) (-465 1079233 1079349 1079490 "GRAY" 1079668 T GRAY (NIL) -7 NIL NIL NIL) (-464 1078446 1078826 1078877 "GRALG" 1079030 NIL GRALG (NIL T T) -9 NIL 1079123 NIL) (-463 1078107 1078180 1078343 "GRALG-" 1078348 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-462 1074911 1077692 1077870 "GPOLSET" 1078014 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-461 1074265 1074322 1074580 "GOSPER" 1074848 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-460 1070024 1070703 1071229 "GMODPOL" 1073964 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-459 1069029 1069213 1069451 "GHENSEL" 1069836 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-458 1063080 1063923 1064950 "GENUPS" 1068113 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-457 1062777 1062828 1062917 "GENUFACT" 1063023 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-456 1062189 1062266 1062431 "GENPGCD" 1062695 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-455 1061663 1061698 1061911 "GENMFACT" 1062148 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-454 1060231 1060486 1060793 "GENEEZ" 1061406 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-453 1054144 1059842 1060004 "GDMP" 1060154 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-452 1043521 1047915 1049021 "GCNAALG" 1053127 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-451 1041948 1042776 1042804 "GCDDOM" 1043059 T GCDDOM (NIL) -9 NIL 1043216 NIL) (-450 1041418 1041545 1041760 "GCDDOM-" 1041765 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-449 1040090 1040275 1040579 "GB" 1041197 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-448 1028710 1031036 1033428 "GBINTERN" 1037781 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-447 1026547 1026839 1027260 "GBF" 1028385 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-446 1025328 1025493 1025760 "GBEUCLID" 1026363 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-445 1024677 1024802 1024951 "GAUSSFAC" 1025199 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-444 1023044 1023346 1023660 "GALUTIL" 1024396 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-443 1021352 1021626 1021950 "GALPOLYU" 1022771 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-442 1018717 1019007 1019414 "GALFACTU" 1021049 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-441 1010523 1012022 1013630 "GALFACT" 1017149 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-440 1007911 1008569 1008597 "FVFUN" 1009753 T FVFUN (NIL) -9 NIL 1010473 NIL) (-439 1007177 1007359 1007387 "FVC" 1007678 T FVC (NIL) -9 NIL 1007861 NIL) (-438 1006847 1007002 1007070 "FUNDESC" 1007129 T FUNDESC (NIL) -8 NIL NIL NIL) (-437 1006489 1006644 1006725 "FUNCTION" 1006799 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-436 1004260 1004811 1005277 "FT" 1006043 T FT (NIL) -8 NIL NIL NIL) (-435 1003078 1003561 1003764 "FTEM" 1004077 T FTEM (NIL) -8 NIL NIL NIL) (-434 1001334 1001623 1002027 "FSUPFACT" 1002769 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-433 999731 1000020 1000352 "FST" 1001022 T FST (NIL) -8 NIL NIL NIL) (-432 998902 999008 999203 "FSRED" 999613 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-431 997581 997836 998190 "FSPRMELT" 998617 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-430 994666 995104 995603 "FSPECF" 997144 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-429 976726 985169 985209 "FS" 989057 NIL FS (NIL T) -9 NIL 991346 NIL) (-428 965376 968366 972422 "FS-" 972719 NIL FS- (NIL T T) -8 NIL NIL NIL) (-427 964890 964944 965121 "FSINT" 965317 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-426 963217 963883 964186 "FSERIES" 964669 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-425 962231 962347 962578 "FSCINT" 963097 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-424 958465 961175 961216 "FSAGG" 961586 NIL FSAGG (NIL T) -9 NIL 961845 NIL) (-423 956227 956828 957624 "FSAGG-" 957719 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-422 955269 955412 955639 "FSAGG2" 956080 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-421 952924 953203 953757 "FS2UPS" 954987 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-420 952506 952549 952704 "FS2" 952875 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-419 951363 951534 951843 "FS2EXPXP" 952331 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-418 950789 950904 951056 "FRUTIL" 951243 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-417 942244 946284 947642 "FR" 949463 NIL FR (NIL T) -8 NIL NIL NIL) (-416 937319 939962 940002 "FRNAALG" 941398 NIL FRNAALG (NIL T) -9 NIL 942005 NIL) (-415 932997 934068 935343 "FRNAALG-" 936093 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-414 932635 932678 932805 "FRNAAF2" 932948 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-413 931042 931489 931784 "FRMOD" 932447 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-412 928821 929425 929742 "FRIDEAL" 930833 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-411 928016 928103 928392 "FRIDEAL2" 928728 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-410 927149 927563 927604 "FRETRCT" 927609 NIL FRETRCT (NIL T) -9 NIL 927785 NIL) (-409 926261 926492 926843 "FRETRCT-" 926848 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-408 923473 924649 924708 "FRAMALG" 925590 NIL FRAMALG (NIL T T) -9 NIL 925882 NIL) (-407 921607 922062 922692 "FRAMALG-" 922915 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-406 915565 921082 921358 "FRAC" 921363 NIL FRAC (NIL T) -8 NIL NIL NIL) (-405 915201 915258 915365 "FRAC2" 915502 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-404 914837 914894 915001 "FR2" 915138 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-403 909510 912362 912390 "FPS" 913509 T FPS (NIL) -9 NIL 914066 NIL) (-402 908959 909068 909232 "FPS-" 909378 NIL FPS- (NIL T) -8 NIL NIL NIL) (-401 906413 908048 908076 "FPC" 908301 T FPC (NIL) -9 NIL 908443 NIL) (-400 906206 906246 906343 "FPC-" 906348 NIL FPC- (NIL T) -8 NIL NIL NIL) (-399 905084 905694 905735 "FPATMAB" 905740 NIL FPATMAB (NIL T) -9 NIL 905892 NIL) (-398 902784 903260 903686 "FPARFRAC" 904721 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-397 898178 898676 899358 "FORTRAN" 902216 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-396 895894 896394 896933 "FORT" 897659 T FORT (NIL) -7 NIL NIL NIL) (-395 893570 894132 894160 "FORTFN" 895220 T FORTFN (NIL) -9 NIL 895844 NIL) (-394 893334 893384 893412 "FORTCAT" 893471 T FORTCAT (NIL) -9 NIL 893533 NIL) (-393 891467 891950 892340 "FORMULA" 892964 T FORMULA (NIL) -8 NIL NIL NIL) (-392 891255 891285 891354 "FORMULA1" 891431 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-391 890778 890830 891003 "FORDER" 891197 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-390 889874 890038 890231 "FOP" 890605 T FOP (NIL) -7 NIL NIL NIL) (-389 888482 889154 889328 "FNLA" 889756 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-388 887237 887626 887654 "FNCAT" 888114 T FNCAT (NIL) -9 NIL 888374 NIL) (-387 886803 887196 887224 "FNAME" 887229 T FNAME (NIL) -8 NIL NIL NIL) (-386 885466 886395 886423 "FMTC" 886428 T FMTC (NIL) -9 NIL 886464 NIL) (-385 881828 882989 883618 "FMONOID" 884870 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-384 881047 881570 881719 "FM" 881724 NIL FM (NIL T T) -8 NIL NIL NIL) (-383 878471 879117 879145 "FMFUN" 880289 T FMFUN (NIL) -9 NIL 880997 NIL) (-382 877740 877921 877949 "FMC" 878239 T FMC (NIL) -9 NIL 878421 NIL) (-381 874934 875768 875822 "FMCAT" 877017 NIL FMCAT (NIL T T) -9 NIL 877512 NIL) (-380 873827 874700 874800 "FM1" 874879 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-379 871601 872017 872511 "FLOATRP" 873378 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-378 865225 869330 869951 "FLOAT" 871000 T FLOAT (NIL) -8 NIL NIL NIL) (-377 862663 863163 863741 "FLOATCP" 864692 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-376 861472 862276 862317 "FLINEXP" 862322 NIL FLINEXP (NIL T) -9 NIL 862415 NIL) (-375 860626 860861 861189 "FLINEXP-" 861194 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-374 859702 859846 860070 "FLASORT" 860478 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-373 856919 857761 857813 "FLALG" 859040 NIL FLALG (NIL T T) -9 NIL 859507 NIL) (-372 850703 854405 854446 "FLAGG" 855708 NIL FLAGG (NIL T) -9 NIL 856360 NIL) (-371 849429 849768 850258 "FLAGG-" 850263 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-370 848471 848614 848841 "FLAGG2" 849282 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-369 845446 846420 846479 "FINRALG" 847607 NIL FINRALG (NIL T T) -9 NIL 848115 NIL) (-368 844606 844835 845174 "FINRALG-" 845179 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-367 844012 844225 844253 "FINITE" 844449 T FINITE (NIL) -9 NIL 844556 NIL) (-366 836470 838631 838671 "FINAALG" 842338 NIL FINAALG (NIL T) -9 NIL 843791 NIL) (-365 831811 832852 833996 "FINAALG-" 835375 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-364 831206 831566 831669 "FILE" 831741 NIL FILE (NIL T) -8 NIL NIL NIL) (-363 829890 830202 830256 "FILECAT" 830940 NIL FILECAT (NIL T T) -9 NIL 831156 NIL) (-362 827758 829252 829280 "FIELD" 829320 T FIELD (NIL) -9 NIL 829400 NIL) (-361 826378 826763 827274 "FIELD-" 827279 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-360 824256 825013 825360 "FGROUP" 826064 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-359 823346 823510 823730 "FGLMICPK" 824088 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-358 819213 823271 823328 "FFX" 823333 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-357 818814 818875 819010 "FFSLPE" 819146 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-356 814807 815586 816382 "FFPOLY" 818050 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-355 814311 814347 814556 "FFPOLY2" 814765 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-354 810197 814230 814293 "FFP" 814298 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-353 805630 810108 810172 "FF" 810177 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-352 800791 804973 805163 "FFNBX" 805484 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-351 795765 799926 800184 "FFNBP" 800645 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-350 790433 795049 795260 "FFNB" 795598 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-349 789265 789463 789778 "FFINTBAS" 790230 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-348 785493 787672 787700 "FFIELDC" 788320 T FFIELDC (NIL) -9 NIL 788696 NIL) (-347 784156 784526 785023 "FFIELDC-" 785028 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-346 783726 783771 783895 "FFHOM" 784098 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-345 781424 781908 782425 "FFF" 783241 NIL FFF (NIL T) -7 NIL NIL NIL) (-344 777077 781166 781267 "FFCGX" 781367 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-343 772744 776809 776916 "FFCGP" 777020 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-342 767962 772471 772579 "FFCG" 772680 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-341 749795 758833 758919 "FFCAT" 764084 NIL FFCAT (NIL T T T) -9 NIL 765535 NIL) (-340 744993 746040 747354 "FFCAT-" 748584 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-339 744404 744447 744682 "FFCAT2" 744944 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-338 733616 737376 738596 "FEXPR" 743256 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-337 732616 733051 733092 "FEVALAB" 733176 NIL FEVALAB (NIL T) -9 NIL 733437 NIL) (-336 731775 731985 732323 "FEVALAB-" 732328 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-335 730368 731158 731361 "FDIV" 731674 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-334 727434 728149 728264 "FDIVCAT" 729832 NIL FDIVCAT (NIL T T T T) -9 NIL 730269 NIL) (-333 727196 727223 727393 "FDIVCAT-" 727398 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-332 726416 726503 726780 "FDIV2" 727103 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-331 725102 725361 725650 "FCPAK1" 726147 T FCPAK1 (NIL) -7 NIL NIL NIL) (-330 724230 724602 724743 "FCOMP" 724993 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-329 707967 711380 714918 "FC" 720712 T FC (NIL) -8 NIL NIL NIL) (-328 700546 704531 704571 "FAXF" 706373 NIL FAXF (NIL T) -9 NIL 707065 NIL) (-327 697825 698480 699305 "FAXF-" 699770 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-326 692925 697201 697377 "FARRAY" 697682 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-325 688178 690210 690263 "FAMR" 691286 NIL FAMR (NIL T T) -9 NIL 691746 NIL) (-324 687068 687370 687805 "FAMR-" 687810 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-323 686264 686990 687043 "FAMONOID" 687048 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-322 684076 684760 684813 "FAMONC" 685754 NIL FAMONC (NIL T T) -9 NIL 686140 NIL) (-321 682768 683830 683967 "FAGROUP" 683972 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-320 680563 680882 681285 "FACUTIL" 682449 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-319 679662 679847 680069 "FACTFUNC" 680373 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-318 672067 678913 679125 "EXPUPXS" 679518 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-317 669550 670090 670676 "EXPRTUBE" 671501 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-316 665744 666336 667073 "EXPRODE" 668889 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-315 651118 664399 664827 "EXPR" 665348 NIL EXPR (NIL T) -8 NIL NIL NIL) (-314 645525 646112 646925 "EXPR2UPS" 650416 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-313 645161 645218 645325 "EXPR2" 645462 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-312 636566 644293 644590 "EXPEXPAN" 644998 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-311 636393 636523 636552 "EXIT" 636557 T EXIT (NIL) -8 NIL NIL NIL) (-310 635900 636117 636208 "EXITAST" 636322 T EXITAST (NIL) -8 NIL NIL NIL) (-309 635527 635589 635702 "EVALCYC" 635832 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-308 635068 635186 635227 "EVALAB" 635397 NIL EVALAB (NIL T) -9 NIL 635501 NIL) (-307 634549 634671 634892 "EVALAB-" 634897 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-306 632017 633285 633313 "EUCDOM" 633868 T EUCDOM (NIL) -9 NIL 634218 NIL) (-305 630422 630864 631454 "EUCDOM-" 631459 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-304 617962 620720 623470 "ESTOOLS" 627692 T ESTOOLS (NIL) -7 NIL NIL NIL) (-303 617594 617651 617760 "ESTOOLS2" 617899 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-302 617345 617387 617467 "ESTOOLS1" 617546 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-301 611250 612978 613006 "ES" 615774 T ES (NIL) -9 NIL 617183 NIL) (-300 606198 607484 609301 "ES-" 609465 NIL ES- (NIL T) -8 NIL NIL NIL) (-299 602573 603333 604113 "ESCONT" 605438 T ESCONT (NIL) -7 NIL NIL NIL) (-298 602318 602350 602432 "ESCONT1" 602535 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-297 601993 602043 602143 "ES2" 602262 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-296 601623 601681 601790 "ES1" 601929 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-295 600839 600968 601144 "ERROR" 601467 T ERROR (NIL) -7 NIL NIL NIL) (-294 594342 600698 600789 "EQTBL" 600794 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-293 586899 589656 591105 "EQ" 592926 NIL -3310 (NIL T) -8 NIL NIL NIL) (-292 586531 586588 586697 "EQ2" 586836 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-291 581823 582869 583962 "EP" 585470 NIL EP (NIL T) -7 NIL NIL NIL) (-290 580405 580706 581023 "ENV" 581526 T ENV (NIL) -8 NIL NIL NIL) (-289 579584 580104 580132 "ENTIRER" 580137 T ENTIRER (NIL) -9 NIL 580183 NIL) (-288 576086 577539 577909 "EMR" 579383 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-287 575230 575415 575469 "ELTAGG" 575849 NIL ELTAGG (NIL T T) -9 NIL 576060 NIL) (-286 574949 575011 575152 "ELTAGG-" 575157 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-285 574738 574767 574821 "ELTAB" 574905 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-284 573864 574010 574209 "ELFUTS" 574589 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-283 573606 573662 573690 "ELEMFUN" 573795 T ELEMFUN (NIL) -9 NIL NIL NIL) (-282 573476 573497 573565 "ELEMFUN-" 573570 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-281 568367 571576 571617 "ELAGG" 572557 NIL ELAGG (NIL T) -9 NIL 573020 NIL) (-280 566652 567086 567749 "ELAGG-" 567754 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-279 565309 565589 565884 "ELABEXPR" 566377 T ELABEXPR (NIL) -8 NIL NIL NIL) (-278 558175 559976 560803 "EFUPXS" 564585 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-277 551625 553426 554236 "EFULS" 557451 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-276 549047 549405 549884 "EFSTRUC" 551257 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-275 538119 539684 541244 "EF" 547562 NIL EF (NIL T T) -7 NIL NIL NIL) (-274 537220 537604 537753 "EAB" 537990 T EAB (NIL) -8 NIL NIL NIL) (-273 536429 537179 537207 "E04UCFA" 537212 T E04UCFA (NIL) -8 NIL NIL NIL) (-272 535638 536388 536416 "E04NAFA" 536421 T E04NAFA (NIL) -8 NIL NIL NIL) (-271 534847 535597 535625 "E04MBFA" 535630 T E04MBFA (NIL) -8 NIL NIL NIL) (-270 534056 534806 534834 "E04JAFA" 534839 T E04JAFA (NIL) -8 NIL NIL NIL) (-269 533267 534015 534043 "E04GCFA" 534048 T E04GCFA (NIL) -8 NIL NIL NIL) (-268 532478 533226 533254 "E04FDFA" 533259 T E04FDFA (NIL) -8 NIL NIL NIL) (-267 531687 532437 532465 "E04DGFA" 532470 T E04DGFA (NIL) -8 NIL NIL NIL) (-266 525865 527212 528576 "E04AGNT" 530343 T E04AGNT (NIL) -7 NIL NIL NIL) (-265 524571 525051 525091 "DVARCAT" 525566 NIL DVARCAT (NIL T) -9 NIL 525765 NIL) (-264 523775 523987 524301 "DVARCAT-" 524306 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-263 516675 523574 523703 "DSMP" 523708 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-262 511485 512620 513688 "DROPT" 515627 T DROPT (NIL) -8 NIL NIL NIL) (-261 511150 511209 511307 "DROPT1" 511420 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-260 506265 507391 508528 "DROPT0" 510033 T DROPT0 (NIL) -7 NIL NIL NIL) (-259 504610 504935 505321 "DRAWPT" 505899 T DRAWPT (NIL) -7 NIL NIL NIL) (-258 499197 500120 501199 "DRAW" 503584 NIL DRAW (NIL T) -7 NIL NIL NIL) (-257 498830 498883 499001 "DRAWHACK" 499138 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-256 497561 497830 498121 "DRAWCX" 498559 T DRAWCX (NIL) -7 NIL NIL NIL) (-255 497077 497145 497296 "DRAWCURV" 497487 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-254 487548 489507 491622 "DRAWCFUN" 494982 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-253 484361 486243 486284 "DQAGG" 486913 NIL DQAGG (NIL T) -9 NIL 487186 NIL) (-252 472640 479339 479422 "DPOLCAT" 481274 NIL DPOLCAT (NIL T T T T) -9 NIL 481819 NIL) (-251 467479 468825 470783 "DPOLCAT-" 470788 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-250 460634 467340 467438 "DPMO" 467443 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-249 453692 460414 460581 "DPMM" 460586 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-248 453324 453611 453659 "DOMCTOR" 453664 T DOMCTOR (NIL) -8 NIL NIL NIL) (-247 452619 452846 452983 "DOMAIN" 453207 T DOMAIN (NIL) -8 NIL NIL NIL) (-246 446370 452254 452406 "DMP" 452520 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-245 445970 446026 446170 "DLP" 446308 NIL DLP (NIL T) -7 NIL NIL NIL) (-244 439840 445297 445487 "DLIST" 445812 NIL DLIST (NIL T) -8 NIL NIL NIL) (-243 436684 438693 438734 "DLAGG" 439284 NIL DLAGG (NIL T) -9 NIL 439514 NIL) (-242 435497 436127 436155 "DIVRING" 436247 T DIVRING (NIL) -9 NIL 436330 NIL) (-241 434734 434924 435224 "DIVRING-" 435229 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-240 432836 433193 433599 "DISPLAY" 434348 T DISPLAY (NIL) -7 NIL NIL NIL) (-239 426778 432750 432813 "DIRPROD" 432818 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-238 425626 425829 426094 "DIRPROD2" 426571 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-237 414889 420841 420894 "DIRPCAT" 421304 NIL DIRPCAT (NIL NIL T) -9 NIL 422144 NIL) (-236 412215 412857 413738 "DIRPCAT-" 414075 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-235 411502 411662 411848 "DIOSP" 412049 T DIOSP (NIL) -7 NIL NIL NIL) (-234 408204 410414 410455 "DIOPS" 410889 NIL DIOPS (NIL T) -9 NIL 411118 NIL) (-233 407753 407867 408058 "DIOPS-" 408063 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-232 406645 407239 407267 "DIFRING" 407454 T DIFRING (NIL) -9 NIL 407564 NIL) (-231 406291 406368 406520 "DIFRING-" 406525 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-230 404096 405334 405375 "DIFEXT" 405738 NIL DIFEXT (NIL T) -9 NIL 406032 NIL) (-229 402381 402809 403475 "DIFEXT-" 403480 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-228 399703 401913 401954 "DIAGG" 401959 NIL DIAGG (NIL T) -9 NIL 401979 NIL) (-227 399087 399244 399496 "DIAGG-" 399501 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-226 394552 398046 398323 "DHMATRIX" 398856 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-225 390164 391073 392083 "DFSFUN" 393562 T DFSFUN (NIL) -7 NIL NIL NIL) (-224 385280 389095 389407 "DFLOAT" 389872 T DFLOAT (NIL) -8 NIL NIL NIL) (-223 383508 383789 384185 "DFINTTLS" 384988 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-222 380573 381529 381929 "DERHAM" 383174 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-221 378422 380348 380437 "DEQUEUE" 380517 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-220 377637 377770 377966 "DEGRED" 378284 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-219 374032 374777 375630 "DEFINTRF" 376865 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-218 371559 372028 372627 "DEFINTEF" 373551 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-217 370936 371179 371294 "DEFAST" 371464 T DEFAST (NIL) -8 NIL NIL NIL) (-216 364978 370533 370681 "DECIMAL" 370808 T DECIMAL (NIL) -8 NIL NIL NIL) (-215 362490 362948 363454 "DDFACT" 364522 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-214 362086 362129 362280 "DBLRESP" 362441 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-213 359985 360319 360679 "DBASE" 361853 NIL DBASE (NIL T) -8 NIL NIL NIL) (-212 359254 359465 359611 "DATAARY" 359884 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-211 358387 359213 359241 "D03FAFA" 359246 T D03FAFA (NIL) -8 NIL NIL NIL) (-210 357521 358346 358374 "D03EEFA" 358379 T D03EEFA (NIL) -8 NIL NIL NIL) (-209 355471 355937 356426 "D03AGNT" 357052 T D03AGNT (NIL) -7 NIL NIL NIL) (-208 354787 355430 355458 "D02EJFA" 355463 T D02EJFA (NIL) -8 NIL NIL NIL) (-207 354103 354746 354774 "D02CJFA" 354779 T D02CJFA (NIL) -8 NIL NIL NIL) (-206 353419 354062 354090 "D02BHFA" 354095 T D02BHFA (NIL) -8 NIL NIL NIL) (-205 352735 353378 353406 "D02BBFA" 353411 T D02BBFA (NIL) -8 NIL NIL NIL) (-204 345933 347521 349127 "D02AGNT" 351149 T D02AGNT (NIL) -7 NIL NIL NIL) (-203 343702 344224 344770 "D01WGTS" 345407 T D01WGTS (NIL) -7 NIL NIL NIL) (-202 342797 343661 343689 "D01TRNS" 343694 T D01TRNS (NIL) -8 NIL NIL NIL) (-201 341892 342756 342784 "D01GBFA" 342789 T D01GBFA (NIL) -8 NIL NIL NIL) (-200 340987 341851 341879 "D01FCFA" 341884 T D01FCFA (NIL) -8 NIL NIL NIL) (-199 340082 340946 340974 "D01ASFA" 340979 T D01ASFA (NIL) -8 NIL NIL NIL) (-198 339177 340041 340069 "D01AQFA" 340074 T D01AQFA (NIL) -8 NIL NIL NIL) (-197 338272 339136 339164 "D01APFA" 339169 T D01APFA (NIL) -8 NIL NIL NIL) (-196 337367 338231 338259 "D01ANFA" 338264 T D01ANFA (NIL) -8 NIL NIL NIL) (-195 336462 337326 337354 "D01AMFA" 337359 T D01AMFA (NIL) -8 NIL NIL NIL) (-194 335557 336421 336449 "D01ALFA" 336454 T D01ALFA (NIL) -8 NIL NIL NIL) (-193 334652 335516 335544 "D01AKFA" 335549 T D01AKFA (NIL) -8 NIL NIL NIL) (-192 333747 334611 334639 "D01AJFA" 334644 T D01AJFA (NIL) -8 NIL NIL NIL) (-191 327044 328595 330156 "D01AGNT" 332206 T D01AGNT (NIL) -7 NIL NIL NIL) (-190 326381 326509 326661 "CYCLOTOM" 326912 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-189 323116 323829 324556 "CYCLES" 325674 T CYCLES (NIL) -7 NIL NIL NIL) (-188 322428 322562 322733 "CVMP" 322977 NIL CVMP (NIL T) -7 NIL NIL NIL) (-187 320199 320457 320833 "CTRIGMNP" 322156 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-186 319690 319990 320064 "CTOR" 320145 T CTOR (NIL) -8 NIL NIL NIL) (-185 319226 319421 319522 "CTORKIND" 319609 T CTORKIND (NIL) -8 NIL NIL NIL) (-184 318574 318833 318861 "CTORCAT" 319043 T CTORCAT (NIL) -9 NIL 319156 NIL) (-183 318172 318283 318442 "CTORCAT-" 318447 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-182 317688 317875 317973 "CTORCALL" 318094 T CTORCALL (NIL) -8 NIL NIL NIL) (-181 317062 317161 317314 "CSTTOOLS" 317585 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-180 312861 313518 314276 "CRFP" 316374 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-179 312363 312582 312674 "CRCEAST" 312789 T CRCEAST (NIL) -8 NIL NIL NIL) (-178 311410 311595 311823 "CRAPACK" 312167 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-177 310794 310895 311099 "CPMATCH" 311286 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-176 310519 310547 310653 "CPIMA" 310760 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-175 306883 307555 308273 "COORDSYS" 309854 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-174 306267 306396 306546 "CONTOUR" 306753 T CONTOUR (NIL) -8 NIL NIL NIL) (-173 302193 304270 304762 "CONTFRAC" 305807 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-172 302073 302094 302122 "CONDUIT" 302159 T CONDUIT (NIL) -9 NIL NIL NIL) (-171 301246 301766 301794 "COMRING" 301799 T COMRING (NIL) -9 NIL 301851 NIL) (-170 300327 300604 300788 "COMPPROP" 301082 T COMPPROP (NIL) -8 NIL NIL NIL) (-169 299988 300023 300151 "COMPLPAT" 300286 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-168 290045 299797 299906 "COMPLEX" 299911 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-167 289681 289738 289845 "COMPLEX2" 289982 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-166 289399 289434 289532 "COMPFACT" 289640 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-165 273572 283792 283832 "COMPCAT" 284836 NIL COMPCAT (NIL T) -9 NIL 286221 NIL) (-164 263088 266011 269638 "COMPCAT-" 269994 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-163 262817 262845 262948 "COMMUPC" 263054 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-162 262612 262645 262704 "COMMONOP" 262778 T COMMONOP (NIL) -7 NIL NIL NIL) (-161 262195 262363 262450 "COMM" 262545 T COMM (NIL) -8 NIL NIL NIL) (-160 261799 261999 262074 "COMMAAST" 262140 T COMMAAST (NIL) -8 NIL NIL NIL) (-159 261048 261242 261270 "COMBOPC" 261608 T COMBOPC (NIL) -9 NIL 261783 NIL) (-158 259944 260154 260396 "COMBINAT" 260838 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-157 256142 256715 257355 "COMBF" 259366 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-156 254928 255258 255493 "COLOR" 255927 T COLOR (NIL) -8 NIL NIL NIL) (-155 254431 254649 254741 "COLONAST" 254856 T COLONAST (NIL) -8 NIL NIL NIL) (-154 254071 254118 254243 "CMPLXRT" 254378 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-153 253546 253771 253870 "CLLCTAST" 253992 T CLLCTAST (NIL) -8 NIL NIL NIL) (-152 249048 250076 251156 "CLIP" 252486 T CLIP (NIL) -7 NIL NIL NIL) (-151 247430 248154 248393 "CLIF" 248875 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-150 243652 245576 245617 "CLAGG" 246546 NIL CLAGG (NIL T) -9 NIL 247082 NIL) (-149 242074 242531 243114 "CLAGG-" 243119 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-148 241618 241703 241843 "CINTSLPE" 241983 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-147 239119 239590 240138 "CHVAR" 241146 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-146 238362 238882 238910 "CHARZ" 238915 T CHARZ (NIL) -9 NIL 238930 NIL) (-145 238116 238156 238234 "CHARPOL" 238316 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-144 237243 237796 237824 "CHARNZ" 237871 T CHARNZ (NIL) -9 NIL 237927 NIL) (-143 235232 235933 236268 "CHAR" 236928 T CHAR (NIL) -8 NIL NIL NIL) (-142 234958 235019 235047 "CFCAT" 235158 T CFCAT (NIL) -9 NIL NIL NIL) (-141 234203 234314 234496 "CDEN" 234842 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-140 230195 233356 233636 "CCLASS" 233943 T CCLASS (NIL) -8 NIL NIL NIL) (-139 229502 229645 229808 "CATEGORY" 230052 T -10 (NIL) -8 NIL NIL NIL) (-138 229134 229421 229469 "CATCTOR" 229474 T CATCTOR (NIL) -8 NIL NIL NIL) (-137 228608 228834 228933 "CATAST" 229055 T CATAST (NIL) -8 NIL NIL NIL) (-136 228111 228329 228421 "CASEAST" 228536 T CASEAST (NIL) -8 NIL NIL NIL) (-135 223163 224140 224893 "CARTEN" 227414 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-134 222271 222419 222640 "CARTEN2" 223010 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-133 220613 221421 221678 "CARD" 222034 T CARD (NIL) -8 NIL NIL NIL) (-132 220216 220417 220492 "CAPSLAST" 220558 T CAPSLAST (NIL) -8 NIL NIL NIL) (-131 219588 219916 219944 "CACHSET" 220076 T CACHSET (NIL) -9 NIL 220153 NIL) (-130 219084 219380 219408 "CABMON" 219458 T CABMON (NIL) -9 NIL 219514 NIL) (-129 218107 218630 218766 "BYTE" 218929 T BYTE (NIL) -8 NIL NIL 219045) (-128 213516 217575 217738 "BYTEBUF" 217964 T BYTEBUF (NIL) -8 NIL NIL NIL) (-127 211073 213208 213315 "BTREE" 213442 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 208571 210721 210843 "BTOURN" 210983 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 205988 208041 208082 "BTCAT" 208150 NIL BTCAT (NIL T) -9 NIL 208227 NIL) (-124 205655 205735 205884 "BTCAT-" 205889 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 200947 204798 204826 "BTAGG" 205048 T BTAGG (NIL) -9 NIL 205209 NIL) (-122 200437 200562 200768 "BTAGG-" 200773 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 197481 199715 199930 "BSTREE" 200254 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 196619 196745 196929 "BRILL" 197337 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 193318 195345 195386 "BRAGG" 196035 NIL BRAGG (NIL T) -9 NIL 196293 NIL) (-118 191847 192253 192808 "BRAGG-" 192813 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 185111 191193 191377 "BPADICRT" 191695 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 183461 185048 185093 "BPADIC" 185098 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 183159 183189 183303 "BOUNDZRO" 183425 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 178674 179765 180632 "BOP" 182312 T BOP (NIL) -8 NIL NIL NIL) (-113 176295 176739 177259 "BOP1" 178187 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-112 174997 175719 175912 "BOOLEAN" 176122 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 174359 174737 174791 "BMODULE" 174796 NIL BMODULE (NIL T T) -9 NIL 174861 NIL) (-110 170189 174157 174230 "BITS" 174306 T BITS (NIL) -8 NIL NIL NIL) (-109 169601 169723 169865 "BINDING" 170067 T BINDING (NIL) -8 NIL NIL NIL) (-108 163646 169200 169347 "BINARY" 169474 T BINARY (NIL) -8 NIL NIL NIL) (-107 161473 162901 162942 "BGAGG" 163202 NIL BGAGG (NIL T) -9 NIL 163339 NIL) (-106 161304 161336 161427 "BGAGG-" 161432 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 160402 160688 160893 "BFUNCT" 161119 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 159092 159270 159558 "BEZOUT" 160226 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 155609 157944 158274 "BBTREE" 158795 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 155343 155396 155424 "BASTYPE" 155543 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 155196 155224 155297 "BASTYPE-" 155302 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 154630 154706 154858 "BALFACT" 155107 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 153513 154045 154231 "AUTOMOR" 154475 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 153239 153244 153270 "ATTREG" 153275 T ATTREG (NIL) -9 NIL NIL NIL) (-97 151518 151936 152288 "ATTRBUT" 152905 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 151153 151346 151412 "ATTRAST" 151470 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 150689 150802 150828 "ATRIG" 151029 T ATRIG (NIL) -9 NIL NIL NIL) (-94 150498 150539 150626 "ATRIG-" 150631 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 150169 150329 150355 "ASTCAT" 150360 T ASTCAT (NIL) -9 NIL 150390 NIL) (-92 149896 149955 150074 "ASTCAT-" 150079 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 148093 149672 149760 "ASTACK" 149839 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 146598 146895 147260 "ASSOCEQ" 147775 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 145630 146257 146381 "ASP9" 146505 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 145394 145578 145617 "ASP8" 145622 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 144263 144999 145141 "ASP80" 145283 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 143162 143898 144030 "ASP7" 144162 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 142116 142839 142957 "ASP78" 143075 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 141085 141796 141913 "ASP77" 142030 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 139997 140723 140854 "ASP74" 140985 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 138897 139632 139764 "ASP73" 139896 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 138001 138723 138823 "ASP6" 138828 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 136949 137678 137796 "ASP55" 137914 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 135899 136623 136742 "ASP50" 136861 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 134987 135600 135710 "ASP4" 135820 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 134075 134688 134798 "ASP49" 134908 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 132860 133614 133782 "ASP42" 133964 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 131637 132393 132563 "ASP41" 132747 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 130587 131314 131432 "ASP35" 131550 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130352 130535 130574 "ASP34" 130579 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 130089 130156 130232 "ASP33" 130307 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 128984 129724 129856 "ASP31" 129988 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 128749 128932 128971 "ASP30" 128976 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 128484 128553 128629 "ASP29" 128704 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128249 128432 128471 "ASP28" 128476 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 128014 128197 128236 "ASP27" 128241 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 127098 127712 127823 "ASP24" 127934 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 126175 126900 127012 "ASP20" 127017 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 125263 125876 125986 "ASP1" 126096 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 124207 124937 125056 "ASP19" 125175 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 123944 124011 124087 "ASP12" 124162 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 122796 123543 123687 "ASP10" 123831 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 120695 122640 122731 "ARRAY2" 122736 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 116511 120343 120457 "ARRAY1" 120612 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 115543 115716 115937 "ARRAY12" 116334 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 109902 111773 111848 "ARR2CAT" 114478 NIL ARR2CAT (NIL T T T) -9 NIL 115236 NIL) (-56 107336 108080 109034 "ARR2CAT-" 109039 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 106930 107163 107242 "ARITY" 107275 T ARITY (NIL) -8 NIL NIL NIL) (-54 105678 105830 106136 "APPRULE" 106766 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105329 105377 105496 "APPLYORE" 105624 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104303 104594 104789 "ANY" 105152 T ANY (NIL) -8 NIL NIL NIL) (-51 103581 103704 103861 "ANY1" 104177 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 101146 102018 102345 "ANTISYM" 103305 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 100661 100850 100947 "ANON" 101067 T ANON (NIL) -8 NIL NIL NIL) (-48 94793 99200 99654 "AN" 100225 T AN (NIL) -8 NIL NIL NIL) (-47 91049 92403 92454 "AMR" 93202 NIL AMR (NIL T T) -9 NIL 93802 NIL) (-46 90161 90382 90745 "AMR-" 90750 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74711 90078 90139 "ALIST" 90144 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71548 74305 74474 "ALGSC" 74629 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68104 68658 69265 "ALGPKG" 70988 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67381 67482 67666 "ALGMFACT" 67990 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63120 63805 64460 "ALGMANIP" 66904 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54526 62746 62896 "ALGFF" 63053 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 53722 53853 54032 "ALGFACT" 54384 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 52787 53353 53391 "ALGEBRA" 53396 NIL ALGEBRA (NIL T) -9 NIL 53437 NIL) (-37 52505 52564 52696 "ALGEBRA-" 52701 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34764 50507 50559 "ALAGG" 50695 NIL ALAGG (NIL T T) -9 NIL 50856 NIL) (-35 34300 34413 34439 "AHYP" 34640 T AHYP (NIL) -9 NIL NIL NIL) (-34 33231 33479 33505 "AGG" 34004 T AGG (NIL) -9 NIL 34283 NIL) (-33 32665 32827 33041 "AGG-" 33046 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30342 30764 31182 "AF" 32307 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 29849 30067 30157 "ADDAST" 30270 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29118 29376 29532 "ACPLOT" 29711 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18410 26331 26382 "ACFS" 27093 NIL ACFS (NIL T) -9 NIL 27332 NIL) (-28 16424 16914 17689 "ACFS-" 17694 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12697 14591 14617 "ACF" 15496 T ACF (NIL) -9 NIL 15908 NIL) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351 NIL) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804 NIL) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812 NIL) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file +((-1677 (((-112) $ $) NIL)) (-2518 (((-1169)) 12)) (-3573 (((-1151) $) 17)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 11) (((-1169) $) 8)) (-1718 (((-112) $ $) 14))) +(((-1253 |#1|) (-13 (-1093) (-610 (-1169)) (-10 -8 (-15 -1693 ((-1169) $)) (-15 -2518 ((-1169))))) (-1169)) (T -1253)) +((-1693 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1253 *3)) (-14 *3 *2))) (-2518 (*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1253 *3)) (-14 *3 *2)))) +(-13 (-1093) (-610 (-1169)) (-10 -8 (-15 -1693 ((-1169) $)) (-15 -2518 ((-1169))))) +((-3212 (($ (-767)) 18)) (-3982 (((-684 |#2|) $ $) 40)) (-1607 ((|#2| $) 48)) (-3415 ((|#2| $) 47)) (-4092 ((|#2| $ $) 35)) (-1627 (($ $ $) 44)) (-1826 (($ $) 22) (($ $ $) 28)) (-1814 (($ $ $) 15)) (* (($ (-563) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30))) +(((-1254 |#1| |#2|) (-10 -8 (-15 -1607 (|#2| |#1|)) (-15 -3415 (|#2| |#1|)) (-15 -1627 (|#1| |#1| |#1|)) (-15 -3982 ((-684 |#2|) |#1| |#1|)) (-15 -4092 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 -1826 (|#1| |#1| |#1|)) (-15 -1826 (|#1| |#1|)) (-15 -3212 (|#1| (-767))) (-15 -1814 (|#1| |#1| |#1|))) (-1255 |#2|) (-1208)) (T -1254)) +NIL +(-10 -8 (-15 -1607 (|#2| |#1|)) (-15 -3415 (|#2| |#1|)) (-15 -1627 (|#1| |#1| |#1|)) (-15 -3982 ((-684 |#2|) |#1| |#1|)) (-15 -4092 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 -1826 (|#1| |#1| |#1|)) (-15 -1826 (|#1| |#1|)) (-15 -3212 (|#1| (-767))) (-15 -1814 (|#1| |#1| |#1|))) +((-1677 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-3212 (($ (-767)) 112 (|has| |#1| (-23)))) (-4378 (((-1262) $ (-563) (-563)) 40 (|has| $ (-6 -4408)))) (-3523 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-846)))) (-2770 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4408))) (($ $) 88 (-12 (|has| |#1| (-846)) (|has| $ (-6 -4408))))) (-1642 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-846)))) (-2759 (((-112) $ (-767)) 8)) (-1849 ((|#1| $ (-563) |#1|) 52 (|has| $ (-6 -4408))) ((|#1| $ (-1224 (-563)) |#1|) 58 (|has| $ (-6 -4408)))) (-2256 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4407)))) (-4239 (($) 7 T CONST)) (-2907 (($ $) 90 (|has| $ (-6 -4408)))) (-4382 (($ $) 100)) (-3813 (($ $) 78 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-1459 (($ |#1| $) 77 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4407)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4407)))) (-4355 ((|#1| $ (-563) |#1|) 53 (|has| $ (-6 -4408)))) (-4293 ((|#1| $ (-563)) 51)) (-4368 (((-563) (-1 (-112) |#1|) $) 97) (((-563) |#1| $) 96 (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) 95 (|has| |#1| (-1093)))) (-2659 (((-640 |#1|) $) 30 (|has| $ (-6 -4407)))) (-3982 (((-684 |#1|) $ $) 105 (|has| |#1| (-1045)))) (-1566 (($ (-767) |#1|) 69)) (-2581 (((-112) $ (-767)) 9)) (-2411 (((-563) $) 43 (|has| (-563) (-846)))) (-3084 (($ $ $) 87 (|has| |#1| (-846)))) (-3164 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-846)))) (-2259 (((-640 |#1|) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-3860 (((-563) $) 44 (|has| (-563) (-846)))) (-1777 (($ $ $) 86 (|has| |#1| (-846)))) (-4345 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1607 ((|#1| $) 102 (-12 (|has| |#1| (-1045)) (|has| |#1| (-998))))) (-2382 (((-112) $ (-767)) 10)) (-3415 ((|#1| $) 103 (-12 (|has| |#1| (-1045)) (|has| |#1| (-998))))) (-3573 (((-1151) $) 22 (|has| |#1| (-1093)))) (-3396 (($ |#1| $ (-563)) 60) (($ $ $ (-563)) 59)) (-4318 (((-640 (-563)) $) 46)) (-3192 (((-112) (-563) $) 47)) (-1694 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3781 ((|#1| $) 42 (|has| (-563) (-846)))) (-4203 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2358 (($ $ |#1|) 41 (|has| $ (-6 -4408)))) (-3138 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) 14)) (-2105 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2836 (((-640 |#1|) $) 48)) (-3756 (((-112) $) 11)) (-3135 (($) 12)) (-2309 ((|#1| $ (-563) |#1|) 50) ((|#1| $ (-563)) 49) (($ $ (-1224 (-563))) 63)) (-4092 ((|#1| $ $) 106 (|has| |#1| (-1045)))) (-2963 (($ $ (-563)) 62) (($ $ (-1224 (-563))) 61)) (-1627 (($ $ $) 104 (|has| |#1| (-1045)))) (-1709 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4407))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4407))))) (-3076 (($ $ $ (-563)) 91 (|has| $ (-6 -4408)))) (-1872 (($ $) 13)) (-2220 (((-536) $) 79 (|has| |#1| (-611 (-536))))) (-1707 (($ (-640 |#1|)) 70)) (-2853 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-640 $)) 65)) (-1693 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-4383 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4407)))) (-1778 (((-112) $ $) 84 (|has| |#1| (-846)))) (-1756 (((-112) $ $) 83 (|has| |#1| (-846)))) (-1718 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-1768 (((-112) $ $) 85 (|has| |#1| (-846)))) (-1744 (((-112) $ $) 82 (|has| |#1| (-846)))) (-1826 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1814 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-563) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-722))) (($ $ |#1|) 107 (|has| |#1| (-722)))) (-3608 (((-767) $) 6 (|has| $ (-6 -4407))))) +(((-1255 |#1|) (-140) (-1208)) (T -1255)) +((-1814 (*1 *1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-25)))) (-3212 (*1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1255 *3)) (-4 *3 (-23)) (-4 *3 (-1208)))) (-1826 (*1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-21)))) (-1826 (*1 *1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-563)) (-4 *1 (-1255 *3)) (-4 *3 (-1208)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-722)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-722)))) (-4092 (*1 *2 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-1045)))) (-3982 (*1 *2 *1 *1) (-12 (-4 *1 (-1255 *3)) (-4 *3 (-1208)) (-4 *3 (-1045)) (-5 *2 (-684 *3)))) (-1627 (*1 *1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-1045)))) (-3415 (*1 *2 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-998)) (-4 *2 (-1045)))) (-1607 (*1 *2 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-998)) (-4 *2 (-1045))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -1814 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3212 ($ (-767))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -1826 ($ $)) (-15 -1826 ($ $ $)) (-15 * ($ (-563) $))) |%noBranch|) (IF (|has| |t#1| (-722)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1045)) (PROGN (-15 -4092 (|t#1| $ $)) (-15 -3982 ((-684 |t#1|) $ $)) (-15 -1627 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-998)) (IF (|has| |t#1| (-1045)) (PROGN (-15 -3415 (|t#1| $)) (-15 -1607 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-102) -4032 (|has| |#1| (-1093)) (|has| |#1| (-846))) ((-610 (-858)) -4032 (|has| |#1| (-1093)) (|has| |#1| (-846)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-286 #0=(-563) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-601 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-646 |#1|) . T) ((-19 |#1|) . T) ((-846) |has| |#1| (-846)) ((-1093) -4032 (|has| |#1| (-1093)) (|has| |#1| (-846))) ((-1208) . T)) +((-1567 (((-1257 |#2|) (-1 |#2| |#1| |#2|) (-1257 |#1|) |#2|) 13)) (-2444 ((|#2| (-1 |#2| |#1| |#2|) (-1257 |#1|) |#2|) 15)) (-2240 (((-3 (-1257 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1257 |#1|)) 28) (((-1257 |#2|) (-1 |#2| |#1|) (-1257 |#1|)) 18))) +(((-1256 |#1| |#2|) (-10 -7 (-15 -1567 ((-1257 |#2|) (-1 |#2| |#1| |#2|) (-1257 |#1|) |#2|)) (-15 -2444 (|#2| (-1 |#2| |#1| |#2|) (-1257 |#1|) |#2|)) (-15 -2240 ((-1257 |#2|) (-1 |#2| |#1|) (-1257 |#1|))) (-15 -2240 ((-3 (-1257 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1257 |#1|)))) (-1208) (-1208)) (T -1256)) +((-2240 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1257 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-1257 *6)) (-5 *1 (-1256 *5 *6)))) (-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1257 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-1257 *6)) (-5 *1 (-1256 *5 *6)))) (-2444 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1257 *5)) (-4 *5 (-1208)) (-4 *2 (-1208)) (-5 *1 (-1256 *5 *2)))) (-1567 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1257 *6)) (-4 *6 (-1208)) (-4 *5 (-1208)) (-5 *2 (-1257 *5)) (-5 *1 (-1256 *6 *5))))) +(-10 -7 (-15 -1567 ((-1257 |#2|) (-1 |#2| |#1| |#2|) (-1257 |#1|) |#2|)) (-15 -2444 (|#2| (-1 |#2| |#1| |#2|) (-1257 |#1|) |#2|)) (-15 -2240 ((-1257 |#2|) (-1 |#2| |#1|) (-1257 |#1|))) (-15 -2240 ((-3 (-1257 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1257 |#1|)))) +((-1677 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3212 (($ (-767)) NIL (|has| |#1| (-23)))) (-4104 (($ (-640 |#1|)) 9)) (-4378 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4408)))) (-3523 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-2770 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4408))) (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-846))))) (-1642 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-2759 (((-112) $ (-767)) NIL)) (-1849 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4408))) ((|#1| $ (-1224 (-563)) |#1|) NIL (|has| $ (-6 -4408)))) (-2256 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-4239 (($) NIL T CONST)) (-2907 (($ $) NIL (|has| $ (-6 -4408)))) (-4382 (($ $) NIL)) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-1459 (($ |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-2444 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4407))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4407)))) (-4355 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4408)))) (-4293 ((|#1| $ (-563)) NIL)) (-4368 (((-563) (-1 (-112) |#1|) $) NIL) (((-563) |#1| $) NIL (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) NIL (|has| |#1| (-1093)))) (-2659 (((-640 |#1|) $) 13 (|has| $ (-6 -4407)))) (-3982 (((-684 |#1|) $ $) NIL (|has| |#1| (-1045)))) (-1566 (($ (-767) |#1|) NIL)) (-2581 (((-112) $ (-767)) NIL)) (-2411 (((-563) $) NIL (|has| (-563) (-846)))) (-3084 (($ $ $) NIL (|has| |#1| (-846)))) (-3164 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-2259 (((-640 |#1|) $) NIL (|has| $ (-6 -4407)))) (-1729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-3860 (((-563) $) NIL (|has| (-563) (-846)))) (-1777 (($ $ $) NIL (|has| |#1| (-846)))) (-4345 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1607 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-2382 (((-112) $ (-767)) NIL)) (-3415 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-3573 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3396 (($ |#1| $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-4318 (((-640 (-563)) $) NIL)) (-3192 (((-112) (-563) $) NIL)) (-1694 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3781 ((|#1| $) NIL (|has| (-563) (-846)))) (-4203 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2358 (($ $ |#1|) NIL (|has| $ (-6 -4408)))) (-3138 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-2026 (((-112) $ $) NIL)) (-2105 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-2836 (((-640 |#1|) $) NIL)) (-3756 (((-112) $) NIL)) (-3135 (($) NIL)) (-2309 ((|#1| $ (-563) |#1|) NIL) ((|#1| $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-4092 ((|#1| $ $) NIL (|has| |#1| (-1045)))) (-2963 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-1627 (($ $ $) NIL (|has| |#1| (-1045)))) (-1709 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#1| (-1093))))) (-3076 (($ $ $ (-563)) NIL (|has| $ (-6 -4408)))) (-1872 (($ $) NIL)) (-2220 (((-536) $) 17 (|has| |#1| (-611 (-536))))) (-1707 (($ (-640 |#1|)) 8)) (-2853 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-640 $)) NIL)) (-1693 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-4383 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4407)))) (-1778 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1756 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1718 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1768 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1744 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1826 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1814 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-563) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-722))) (($ $ |#1|) NIL (|has| |#1| (-722)))) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-1257 |#1|) (-13 (-1255 |#1|) (-10 -8 (-15 -4104 ($ (-640 |#1|))))) (-1208)) (T -1257)) +((-4104 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-1257 *3))))) +(-13 (-1255 |#1|) (-10 -8 (-15 -4104 ($ (-640 |#1|))))) +((-1677 (((-112) $ $) NIL)) (-3807 (((-1151) $ (-1151)) 92) (((-1151) $ (-1151) (-1151)) 90) (((-1151) $ (-1151) (-640 (-1151))) 89)) (-1850 (($) 59)) (-4316 (((-1262) $ (-468) (-917)) 45)) (-3528 (((-1262) $ (-917) (-1151)) 75) (((-1262) $ (-917) (-870)) 76)) (-1944 (((-1262) $ (-917) (-379) (-379)) 48)) (-3694 (((-1262) $ (-1151)) 71)) (-1708 (((-1262) $ (-917) (-1151)) 80)) (-4346 (((-1262) $ (-917) (-379) (-379)) 49)) (-3772 (((-1262) $ (-917) (-917)) 46)) (-3785 (((-1262) $) 72)) (-4081 (((-1262) $ (-917) (-1151)) 79)) (-1338 (((-1262) $ (-468) (-917)) 31)) (-2630 (((-1262) $ (-917) (-1151)) 78)) (-3699 (((-640 (-263)) $) 23) (($ $ (-640 (-263))) 24)) (-2158 (((-1262) $ (-767) (-767)) 43)) (-2818 (($ $) 60) (($ (-468) (-640 (-263))) 61)) (-3573 (((-1151) $) NIL)) (-2387 (((-563) $) 38)) (-1694 (((-1113) $) NIL)) (-1475 (((-1257 (-3 (-468) "undefined")) $) 37)) (-3410 (((-1257 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -2630 (-563)) (|:| -2865 (-563)) (|:| |spline| (-563)) (|:| -2603 (-563)) (|:| |axesColor| (-870)) (|:| -3528 (-563)) (|:| |unitsColor| (-870)) (|:| |showing| (-563)))) $) 36)) (-2218 (((-1262) $ (-917) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-563) (-870) (-563) (-870) (-563)) 70)) (-3345 (((-640 (-939 (-225))) $) NIL)) (-1930 (((-468) $ (-917)) 33)) (-1502 (((-1262) $ (-767) (-767) (-917) (-917)) 40)) (-3766 (((-1262) $ (-1151)) 81)) (-2865 (((-1262) $ (-917) (-1151)) 77)) (-1693 (((-858) $) 87)) (-1442 (((-1262) $) 82)) (-2603 (((-1262) $ (-917) (-1151)) 73) (((-1262) $ (-917) (-870)) 74)) (-1718 (((-112) $ $) NIL))) +(((-1258) (-13 (-1093) (-10 -8 (-15 -3345 ((-640 (-939 (-225))) $)) (-15 -1850 ($)) (-15 -2818 ($ $)) (-15 -3699 ((-640 (-263)) $)) (-15 -3699 ($ $ (-640 (-263)))) (-15 -2818 ($ (-468) (-640 (-263)))) (-15 -2218 ((-1262) $ (-917) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-563) (-870) (-563) (-870) (-563))) (-15 -3410 ((-1257 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -2630 (-563)) (|:| -2865 (-563)) (|:| |spline| (-563)) (|:| -2603 (-563)) (|:| |axesColor| (-870)) (|:| -3528 (-563)) (|:| |unitsColor| (-870)) (|:| |showing| (-563)))) $)) (-15 -1475 ((-1257 (-3 (-468) "undefined")) $)) (-15 -3694 ((-1262) $ (-1151))) (-15 -1338 ((-1262) $ (-468) (-917))) (-15 -1930 ((-468) $ (-917))) (-15 -2603 ((-1262) $ (-917) (-1151))) (-15 -2603 ((-1262) $ (-917) (-870))) (-15 -3528 ((-1262) $ (-917) (-1151))) (-15 -3528 ((-1262) $ (-917) (-870))) (-15 -2630 ((-1262) $ (-917) (-1151))) (-15 -4081 ((-1262) $ (-917) (-1151))) (-15 -2865 ((-1262) $ (-917) (-1151))) (-15 -3766 ((-1262) $ (-1151))) (-15 -1442 ((-1262) $)) (-15 -1502 ((-1262) $ (-767) (-767) (-917) (-917))) (-15 -4346 ((-1262) $ (-917) (-379) (-379))) (-15 -1944 ((-1262) $ (-917) (-379) (-379))) (-15 -1708 ((-1262) $ (-917) (-1151))) (-15 -2158 ((-1262) $ (-767) (-767))) (-15 -4316 ((-1262) $ (-468) (-917))) (-15 -3772 ((-1262) $ (-917) (-917))) (-15 -3807 ((-1151) $ (-1151))) (-15 -3807 ((-1151) $ (-1151) (-1151))) (-15 -3807 ((-1151) $ (-1151) (-640 (-1151)))) (-15 -3785 ((-1262) $)) (-15 -2387 ((-563) $)) (-15 -1693 ((-858) $))))) (T -1258)) +((-1693 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-1258)))) (-3345 (*1 *2 *1) (-12 (-5 *2 (-640 (-939 (-225)))) (-5 *1 (-1258)))) (-1850 (*1 *1) (-5 *1 (-1258))) (-2818 (*1 *1 *1) (-5 *1 (-1258))) (-3699 (*1 *2 *1) (-12 (-5 *2 (-640 (-263))) (-5 *1 (-1258)))) (-3699 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-263))) (-5 *1 (-1258)))) (-2818 (*1 *1 *2 *3) (-12 (-5 *2 (-468)) (-5 *3 (-640 (-263))) (-5 *1 (-1258)))) (-2218 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-917)) (-5 *4 (-225)) (-5 *5 (-563)) (-5 *6 (-870)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-3410 (*1 *2 *1) (-12 (-5 *2 (-1257 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -2630 (-563)) (|:| -2865 (-563)) (|:| |spline| (-563)) (|:| -2603 (-563)) (|:| |axesColor| (-870)) (|:| -3528 (-563)) (|:| |unitsColor| (-870)) (|:| |showing| (-563))))) (-5 *1 (-1258)))) (-1475 (*1 *2 *1) (-12 (-5 *2 (-1257 (-3 (-468) "undefined"))) (-5 *1 (-1258)))) (-3694 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-1338 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-468)) (-5 *4 (-917)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-1930 (*1 *2 *1 *3) (-12 (-5 *3 (-917)) (-5 *2 (-468)) (-5 *1 (-1258)))) (-2603 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-2603 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-870)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-3528 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-3528 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-870)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-2630 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-4081 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-2865 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-3766 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-1442 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1258)))) (-1502 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-767)) (-5 *4 (-917)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-4346 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-917)) (-5 *4 (-379)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-1944 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-917)) (-5 *4 (-379)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-1708 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-2158 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-4316 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-468)) (-5 *4 (-917)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-3772 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-3807 (*1 *2 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1258)))) (-3807 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1258)))) (-3807 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-1151)) (-5 *1 (-1258)))) (-3785 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1258)))) (-2387 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-1258))))) +(-13 (-1093) (-10 -8 (-15 -3345 ((-640 (-939 (-225))) $)) (-15 -1850 ($)) (-15 -2818 ($ $)) (-15 -3699 ((-640 (-263)) $)) (-15 -3699 ($ $ (-640 (-263)))) (-15 -2818 ($ (-468) (-640 (-263)))) (-15 -2218 ((-1262) $ (-917) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-563) (-870) (-563) (-870) (-563))) (-15 -3410 ((-1257 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -2630 (-563)) (|:| -2865 (-563)) (|:| |spline| (-563)) (|:| -2603 (-563)) (|:| |axesColor| (-870)) (|:| -3528 (-563)) (|:| |unitsColor| (-870)) (|:| |showing| (-563)))) $)) (-15 -1475 ((-1257 (-3 (-468) "undefined")) $)) (-15 -3694 ((-1262) $ (-1151))) (-15 -1338 ((-1262) $ (-468) (-917))) (-15 -1930 ((-468) $ (-917))) (-15 -2603 ((-1262) $ (-917) (-1151))) (-15 -2603 ((-1262) $ (-917) (-870))) (-15 -3528 ((-1262) $ (-917) (-1151))) (-15 -3528 ((-1262) $ (-917) (-870))) (-15 -2630 ((-1262) $ (-917) (-1151))) (-15 -4081 ((-1262) $ (-917) (-1151))) (-15 -2865 ((-1262) $ (-917) (-1151))) (-15 -3766 ((-1262) $ (-1151))) (-15 -1442 ((-1262) $)) (-15 -1502 ((-1262) $ (-767) (-767) (-917) (-917))) (-15 -4346 ((-1262) $ (-917) (-379) (-379))) (-15 -1944 ((-1262) $ (-917) (-379) (-379))) (-15 -1708 ((-1262) $ (-917) (-1151))) (-15 -2158 ((-1262) $ (-767) (-767))) (-15 -4316 ((-1262) $ (-468) (-917))) (-15 -3772 ((-1262) $ (-917) (-917))) (-15 -3807 ((-1151) $ (-1151))) (-15 -3807 ((-1151) $ (-1151) (-1151))) (-15 -3807 ((-1151) $ (-1151) (-640 (-1151)))) (-15 -3785 ((-1262) $)) (-15 -2387 ((-563) $)) (-15 -1693 ((-858) $)))) +((-1677 (((-112) $ $) NIL)) (-3236 (((-1262) $ (-379)) 142) (((-1262) $ (-379) (-379) (-379)) 143)) (-3807 (((-1151) $ (-1151)) 150) (((-1151) $ (-1151) (-1151)) 148) (((-1151) $ (-1151) (-640 (-1151))) 147)) (-4373 (($) 50)) (-2135 (((-1262) $ (-379) (-379) (-379) (-379) (-379)) 118) (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4346 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $) 116) (((-1262) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4346 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 117) (((-1262) $ (-563) (-563) (-379) (-379) (-379)) 119) (((-1262) $ (-379) (-379)) 120) (((-1262) $ (-379) (-379) (-379)) 127)) (-2689 (((-379)) 99) (((-379) (-379)) 100)) (-2801 (((-379)) 94) (((-379) (-379)) 96)) (-2730 (((-379)) 97) (((-379) (-379)) 98)) (-3983 (((-379)) 103) (((-379) (-379)) 104)) (-3665 (((-379)) 101) (((-379) (-379)) 102)) (-1944 (((-1262) $ (-379) (-379)) 144)) (-3694 (((-1262) $ (-1151)) 128)) (-2756 (((-1126 (-225)) $) 51) (($ $ (-1126 (-225))) 52)) (-3907 (((-1262) $ (-1151)) 156)) (-3047 (((-1262) $ (-1151)) 157)) (-2419 (((-1262) $ (-379) (-379)) 126) (((-1262) $ (-563) (-563)) 141)) (-3772 (((-1262) $ (-917) (-917)) 134)) (-3785 (((-1262) $) 114)) (-2089 (((-1262) $ (-1151)) 155)) (-2713 (((-1262) $ (-1151)) 111)) (-3699 (((-640 (-263)) $) 53) (($ $ (-640 (-263))) 54)) (-2158 (((-1262) $ (-767) (-767)) 133)) (-3823 (((-1262) $ (-767) (-939 (-225))) 162)) (-3358 (($ $) 56) (($ (-1126 (-225)) (-1151)) 57) (($ (-1126 (-225)) (-640 (-263))) 58)) (-3851 (((-1262) $ (-379) (-379) (-379)) 108)) (-3573 (((-1151) $) NIL)) (-2387 (((-563) $) 105)) (-3340 (((-1262) $ (-379)) 145)) (-1302 (((-1262) $ (-379)) 160)) (-1694 (((-1113) $) NIL)) (-1951 (((-1262) $ (-379)) 159)) (-3383 (((-1262) $ (-1151)) 113)) (-1502 (((-1262) $ (-767) (-767) (-917) (-917)) 132)) (-1730 (((-1262) $ (-1151)) 110)) (-3766 (((-1262) $ (-1151)) 112)) (-3707 (((-1262) $ (-157) (-157)) 131)) (-1693 (((-858) $) 139)) (-1442 (((-1262) $) 115)) (-3824 (((-1262) $ (-1151)) 158)) (-2603 (((-1262) $ (-1151)) 109)) (-1718 (((-112) $ $) NIL))) +(((-1259) (-13 (-1093) (-10 -8 (-15 -2801 ((-379))) (-15 -2801 ((-379) (-379))) (-15 -2730 ((-379))) (-15 -2730 ((-379) (-379))) (-15 -2689 ((-379))) (-15 -2689 ((-379) (-379))) (-15 -3665 ((-379))) (-15 -3665 ((-379) (-379))) (-15 -3983 ((-379))) (-15 -3983 ((-379) (-379))) (-15 -4373 ($)) (-15 -3358 ($ $)) (-15 -3358 ($ (-1126 (-225)) (-1151))) (-15 -3358 ($ (-1126 (-225)) (-640 (-263)))) (-15 -2756 ((-1126 (-225)) $)) (-15 -2756 ($ $ (-1126 (-225)))) (-15 -3823 ((-1262) $ (-767) (-939 (-225)))) (-15 -3699 ((-640 (-263)) $)) (-15 -3699 ($ $ (-640 (-263)))) (-15 -2158 ((-1262) $ (-767) (-767))) (-15 -3772 ((-1262) $ (-917) (-917))) (-15 -3694 ((-1262) $ (-1151))) (-15 -1502 ((-1262) $ (-767) (-767) (-917) (-917))) (-15 -2135 ((-1262) $ (-379) (-379) (-379) (-379) (-379))) (-15 -2135 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4346 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -2135 ((-1262) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4346 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -2135 ((-1262) $ (-563) (-563) (-379) (-379) (-379))) (-15 -2135 ((-1262) $ (-379) (-379))) (-15 -2135 ((-1262) $ (-379) (-379) (-379))) (-15 -3766 ((-1262) $ (-1151))) (-15 -2603 ((-1262) $ (-1151))) (-15 -1730 ((-1262) $ (-1151))) (-15 -2713 ((-1262) $ (-1151))) (-15 -3383 ((-1262) $ (-1151))) (-15 -2419 ((-1262) $ (-379) (-379))) (-15 -2419 ((-1262) $ (-563) (-563))) (-15 -3236 ((-1262) $ (-379))) (-15 -3236 ((-1262) $ (-379) (-379) (-379))) (-15 -1944 ((-1262) $ (-379) (-379))) (-15 -2089 ((-1262) $ (-1151))) (-15 -1951 ((-1262) $ (-379))) (-15 -1302 ((-1262) $ (-379))) (-15 -3907 ((-1262) $ (-1151))) (-15 -3047 ((-1262) $ (-1151))) (-15 -3824 ((-1262) $ (-1151))) (-15 -3851 ((-1262) $ (-379) (-379) (-379))) (-15 -3340 ((-1262) $ (-379))) (-15 -3785 ((-1262) $)) (-15 -3707 ((-1262) $ (-157) (-157))) (-15 -3807 ((-1151) $ (-1151))) (-15 -3807 ((-1151) $ (-1151) (-1151))) (-15 -3807 ((-1151) $ (-1151) (-640 (-1151)))) (-15 -1442 ((-1262) $)) (-15 -2387 ((-563) $))))) (T -1259)) +((-2801 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) (-2801 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) (-2730 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) (-2730 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) (-2689 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) (-2689 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) (-3665 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) (-3665 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) (-3983 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) (-3983 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) (-4373 (*1 *1) (-5 *1 (-1259))) (-3358 (*1 *1 *1) (-5 *1 (-1259))) (-3358 (*1 *1 *2 *3) (-12 (-5 *2 (-1126 (-225))) (-5 *3 (-1151)) (-5 *1 (-1259)))) (-3358 (*1 *1 *2 *3) (-12 (-5 *2 (-1126 (-225))) (-5 *3 (-640 (-263))) (-5 *1 (-1259)))) (-2756 (*1 *2 *1) (-12 (-5 *2 (-1126 (-225))) (-5 *1 (-1259)))) (-2756 (*1 *1 *1 *2) (-12 (-5 *2 (-1126 (-225))) (-5 *1 (-1259)))) (-3823 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-767)) (-5 *4 (-939 (-225))) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-3699 (*1 *2 *1) (-12 (-5 *2 (-640 (-263))) (-5 *1 (-1259)))) (-3699 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-263))) (-5 *1 (-1259)))) (-2158 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-3772 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-3694 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-1502 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-767)) (-5 *4 (-917)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2135 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2135 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4346 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-1259)))) (-2135 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4346 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2135 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-563)) (-5 *4 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2135 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2135 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-3766 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2603 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-1730 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2713 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-3383 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2419 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2419 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-3236 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-3236 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-1944 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2089 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-1951 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-1302 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-3907 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-3047 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-3824 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-3851 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-3340 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-3785 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1259)))) (-3707 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-3807 (*1 *2 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1259)))) (-3807 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1259)))) (-3807 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-1151)) (-5 *1 (-1259)))) (-1442 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2387 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-1259))))) +(-13 (-1093) (-10 -8 (-15 -2801 ((-379))) (-15 -2801 ((-379) (-379))) (-15 -2730 ((-379))) (-15 -2730 ((-379) (-379))) (-15 -2689 ((-379))) (-15 -2689 ((-379) (-379))) (-15 -3665 ((-379))) (-15 -3665 ((-379) (-379))) (-15 -3983 ((-379))) (-15 -3983 ((-379) (-379))) (-15 -4373 ($)) (-15 -3358 ($ $)) (-15 -3358 ($ (-1126 (-225)) (-1151))) (-15 -3358 ($ (-1126 (-225)) (-640 (-263)))) (-15 -2756 ((-1126 (-225)) $)) (-15 -2756 ($ $ (-1126 (-225)))) (-15 -3823 ((-1262) $ (-767) (-939 (-225)))) (-15 -3699 ((-640 (-263)) $)) (-15 -3699 ($ $ (-640 (-263)))) (-15 -2158 ((-1262) $ (-767) (-767))) (-15 -3772 ((-1262) $ (-917) (-917))) (-15 -3694 ((-1262) $ (-1151))) (-15 -1502 ((-1262) $ (-767) (-767) (-917) (-917))) (-15 -2135 ((-1262) $ (-379) (-379) (-379) (-379) (-379))) (-15 -2135 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4346 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -2135 ((-1262) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4346 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -2135 ((-1262) $ (-563) (-563) (-379) (-379) (-379))) (-15 -2135 ((-1262) $ (-379) (-379))) (-15 -2135 ((-1262) $ (-379) (-379) (-379))) (-15 -3766 ((-1262) $ (-1151))) (-15 -2603 ((-1262) $ (-1151))) (-15 -1730 ((-1262) $ (-1151))) (-15 -2713 ((-1262) $ (-1151))) (-15 -3383 ((-1262) $ (-1151))) (-15 -2419 ((-1262) $ (-379) (-379))) (-15 -2419 ((-1262) $ (-563) (-563))) (-15 -3236 ((-1262) $ (-379))) (-15 -3236 ((-1262) $ (-379) (-379) (-379))) (-15 -1944 ((-1262) $ (-379) (-379))) (-15 -2089 ((-1262) $ (-1151))) (-15 -1951 ((-1262) $ (-379))) (-15 -1302 ((-1262) $ (-379))) (-15 -3907 ((-1262) $ (-1151))) (-15 -3047 ((-1262) $ (-1151))) (-15 -3824 ((-1262) $ (-1151))) (-15 -3851 ((-1262) $ (-379) (-379) (-379))) (-15 -3340 ((-1262) $ (-379))) (-15 -3785 ((-1262) $)) (-15 -3707 ((-1262) $ (-157) (-157))) (-15 -3807 ((-1151) $ (-1151))) (-15 -3807 ((-1151) $ (-1151) (-1151))) (-15 -3807 ((-1151) $ (-1151) (-640 (-1151)))) (-15 -1442 ((-1262) $)) (-15 -2387 ((-563) $)))) +((-1485 (((-640 (-1151)) (-640 (-1151))) 94) (((-640 (-1151))) 90)) (-4049 (((-640 (-1151))) 88)) (-1451 (((-640 (-917)) (-640 (-917))) 63) (((-640 (-917))) 60)) (-3780 (((-640 (-767)) (-640 (-767))) 57) (((-640 (-767))) 53)) (-3354 (((-1262)) 65)) (-2675 (((-917) (-917)) 81) (((-917)) 80)) (-1828 (((-917) (-917)) 79) (((-917)) 78)) (-4237 (((-870) (-870)) 75) (((-870)) 74)) (-3571 (((-225)) 85) (((-225) (-379)) 87)) (-1404 (((-917)) 82) (((-917) (-917)) 83)) (-3921 (((-917) (-917)) 77) (((-917)) 76)) (-4029 (((-870) (-870)) 69) (((-870)) 67)) (-3584 (((-870) (-870)) 71) (((-870)) 70)) (-1647 (((-870) (-870)) 73) (((-870)) 72))) +(((-1260) (-10 -7 (-15 -4029 ((-870))) (-15 -4029 ((-870) (-870))) (-15 -3584 ((-870))) (-15 -3584 ((-870) (-870))) (-15 -1647 ((-870))) (-15 -1647 ((-870) (-870))) (-15 -4237 ((-870))) (-15 -4237 ((-870) (-870))) (-15 -3921 ((-917))) (-15 -3921 ((-917) (-917))) (-15 -3780 ((-640 (-767)))) (-15 -3780 ((-640 (-767)) (-640 (-767)))) (-15 -1451 ((-640 (-917)))) (-15 -1451 ((-640 (-917)) (-640 (-917)))) (-15 -3354 ((-1262))) (-15 -1485 ((-640 (-1151)))) (-15 -1485 ((-640 (-1151)) (-640 (-1151)))) (-15 -4049 ((-640 (-1151)))) (-15 -1828 ((-917))) (-15 -2675 ((-917))) (-15 -1828 ((-917) (-917))) (-15 -2675 ((-917) (-917))) (-15 -1404 ((-917) (-917))) (-15 -1404 ((-917))) (-15 -3571 ((-225) (-379))) (-15 -3571 ((-225))))) (T -1260)) +((-3571 (*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1260)))) (-3571 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-1260)))) (-1404 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))) (-1404 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))) (-2675 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))) (-1828 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))) (-2675 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))) (-1828 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))) (-4049 (*1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1260)))) (-1485 (*1 *2 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1260)))) (-1485 (*1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1260)))) (-3354 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1260)))) (-1451 (*1 *2 *2) (-12 (-5 *2 (-640 (-917))) (-5 *1 (-1260)))) (-1451 (*1 *2) (-12 (-5 *2 (-640 (-917))) (-5 *1 (-1260)))) (-3780 (*1 *2 *2) (-12 (-5 *2 (-640 (-767))) (-5 *1 (-1260)))) (-3780 (*1 *2) (-12 (-5 *2 (-640 (-767))) (-5 *1 (-1260)))) (-3921 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))) (-3921 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))) (-4237 (*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260)))) (-4237 (*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260)))) (-1647 (*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260)))) (-1647 (*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260)))) (-3584 (*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260)))) (-3584 (*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260)))) (-4029 (*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260)))) (-4029 (*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260))))) +(-10 -7 (-15 -4029 ((-870))) (-15 -4029 ((-870) (-870))) (-15 -3584 ((-870))) (-15 -3584 ((-870) (-870))) (-15 -1647 ((-870))) (-15 -1647 ((-870) (-870))) (-15 -4237 ((-870))) (-15 -4237 ((-870) (-870))) (-15 -3921 ((-917))) (-15 -3921 ((-917) (-917))) (-15 -3780 ((-640 (-767)))) (-15 -3780 ((-640 (-767)) (-640 (-767)))) (-15 -1451 ((-640 (-917)))) (-15 -1451 ((-640 (-917)) (-640 (-917)))) (-15 -3354 ((-1262))) (-15 -1485 ((-640 (-1151)))) (-15 -1485 ((-640 (-1151)) (-640 (-1151)))) (-15 -4049 ((-640 (-1151)))) (-15 -1828 ((-917))) (-15 -2675 ((-917))) (-15 -1828 ((-917) (-917))) (-15 -2675 ((-917) (-917))) (-15 -1404 ((-917) (-917))) (-15 -1404 ((-917))) (-15 -3571 ((-225) (-379))) (-15 -3571 ((-225)))) +((-1352 (((-468) (-640 (-640 (-939 (-225)))) (-640 (-263))) 21) (((-468) (-640 (-640 (-939 (-225))))) 20) (((-468) (-640 (-640 (-939 (-225)))) (-870) (-870) (-917) (-640 (-263))) 19)) (-2519 (((-1258) (-640 (-640 (-939 (-225)))) (-640 (-263))) 27) (((-1258) (-640 (-640 (-939 (-225)))) (-870) (-870) (-917) (-640 (-263))) 26)) (-1693 (((-1258) (-468)) 38))) +(((-1261) (-10 -7 (-15 -1352 ((-468) (-640 (-640 (-939 (-225)))) (-870) (-870) (-917) (-640 (-263)))) (-15 -1352 ((-468) (-640 (-640 (-939 (-225)))))) (-15 -1352 ((-468) (-640 (-640 (-939 (-225)))) (-640 (-263)))) (-15 -2519 ((-1258) (-640 (-640 (-939 (-225)))) (-870) (-870) (-917) (-640 (-263)))) (-15 -2519 ((-1258) (-640 (-640 (-939 (-225)))) (-640 (-263)))) (-15 -1693 ((-1258) (-468))))) (T -1261)) +((-1693 (*1 *2 *3) (-12 (-5 *3 (-468)) (-5 *2 (-1258)) (-5 *1 (-1261)))) (-2519 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *4 (-640 (-263))) (-5 *2 (-1258)) (-5 *1 (-1261)))) (-2519 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *4 (-870)) (-5 *5 (-917)) (-5 *6 (-640 (-263))) (-5 *2 (-1258)) (-5 *1 (-1261)))) (-1352 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *4 (-640 (-263))) (-5 *2 (-468)) (-5 *1 (-1261)))) (-1352 (*1 *2 *3) (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *2 (-468)) (-5 *1 (-1261)))) (-1352 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *4 (-870)) (-5 *5 (-917)) (-5 *6 (-640 (-263))) (-5 *2 (-468)) (-5 *1 (-1261))))) +(-10 -7 (-15 -1352 ((-468) (-640 (-640 (-939 (-225)))) (-870) (-870) (-917) (-640 (-263)))) (-15 -1352 ((-468) (-640 (-640 (-939 (-225)))))) (-15 -1352 ((-468) (-640 (-640 (-939 (-225)))) (-640 (-263)))) (-15 -2519 ((-1258) (-640 (-640 (-939 (-225)))) (-870) (-870) (-917) (-640 (-263)))) (-15 -2519 ((-1258) (-640 (-640 (-939 (-225)))) (-640 (-263)))) (-15 -1693 ((-1258) (-468)))) +((-3784 (($) 7)) (-1693 (((-858) $) 10))) +(((-1262) (-13 (-610 (-858)) (-10 -8 (-15 -3784 ($))))) (T -1262)) +((-3784 (*1 *1) (-5 *1 (-1262)))) +(-13 (-610 (-858)) (-10 -8 (-15 -3784 ($)))) +((-1837 (($ $ |#2|) 10))) +(((-1263 |#1| |#2|) (-10 -8 (-15 -1837 (|#1| |#1| |#2|))) (-1264 |#2|) (-363)) (T -1263)) +NIL +(-10 -8 (-15 -1837 (|#1| |#1| |#2|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-3533 (((-134)) 28)) (-1693 (((-858) $) 11)) (-2241 (($) 18 T CONST)) (-1718 (((-112) $ $) 6)) (-1837 (($ $ |#1|) 29)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-1264 |#1|) (-140) (-363)) (T -1264)) +((-1837 (*1 *1 *1 *2) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-363)))) (-3533 (*1 *2) (-12 (-4 *1 (-1264 *3)) (-4 *3 (-363)) (-5 *2 (-134))))) +(-13 (-713 |t#1|) (-10 -8 (-15 -1837 ($ $ |t#1|)) (-15 -3533 ((-134))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-713 |#1|) . T) ((-1051 |#1|) . T) ((-1093) . T)) +((-1981 (((-640 (-1202 |#1|)) (-1169) (-1202 |#1|)) 74)) (-3903 (((-1149 (-1149 (-948 |#1|))) (-1169) (-1149 (-948 |#1|))) 53)) (-2531 (((-1 (-1149 (-1202 |#1|)) (-1149 (-1202 |#1|))) (-767) (-1202 |#1|) (-1149 (-1202 |#1|))) 64)) (-2607 (((-1 (-1149 (-948 |#1|)) (-1149 (-948 |#1|))) (-767)) 55)) (-4003 (((-1 (-1165 (-948 |#1|)) (-948 |#1|)) (-1169)) 29)) (-2981 (((-1 (-1149 (-948 |#1|)) (-1149 (-948 |#1|))) (-767)) 54))) +(((-1265 |#1|) (-10 -7 (-15 -2607 ((-1 (-1149 (-948 |#1|)) (-1149 (-948 |#1|))) (-767))) (-15 -2981 ((-1 (-1149 (-948 |#1|)) (-1149 (-948 |#1|))) (-767))) (-15 -3903 ((-1149 (-1149 (-948 |#1|))) (-1169) (-1149 (-948 |#1|)))) (-15 -4003 ((-1 (-1165 (-948 |#1|)) (-948 |#1|)) (-1169))) (-15 -1981 ((-640 (-1202 |#1|)) (-1169) (-1202 |#1|))) (-15 -2531 ((-1 (-1149 (-1202 |#1|)) (-1149 (-1202 |#1|))) (-767) (-1202 |#1|) (-1149 (-1202 |#1|))))) (-363)) (T -1265)) +((-2531 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-767)) (-4 *6 (-363)) (-5 *4 (-1202 *6)) (-5 *2 (-1 (-1149 *4) (-1149 *4))) (-5 *1 (-1265 *6)) (-5 *5 (-1149 *4)))) (-1981 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-4 *5 (-363)) (-5 *2 (-640 (-1202 *5))) (-5 *1 (-1265 *5)) (-5 *4 (-1202 *5)))) (-4003 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1 (-1165 (-948 *4)) (-948 *4))) (-5 *1 (-1265 *4)) (-4 *4 (-363)))) (-3903 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-4 *5 (-363)) (-5 *2 (-1149 (-1149 (-948 *5)))) (-5 *1 (-1265 *5)) (-5 *4 (-1149 (-948 *5))))) (-2981 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-1149 (-948 *4)) (-1149 (-948 *4)))) (-5 *1 (-1265 *4)) (-4 *4 (-363)))) (-2607 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-1149 (-948 *4)) (-1149 (-948 *4)))) (-5 *1 (-1265 *4)) (-4 *4 (-363))))) +(-10 -7 (-15 -2607 ((-1 (-1149 (-948 |#1|)) (-1149 (-948 |#1|))) (-767))) (-15 -2981 ((-1 (-1149 (-948 |#1|)) (-1149 (-948 |#1|))) (-767))) (-15 -3903 ((-1149 (-1149 (-948 |#1|))) (-1169) (-1149 (-948 |#1|)))) (-15 -4003 ((-1 (-1165 (-948 |#1|)) (-948 |#1|)) (-1169))) (-15 -1981 ((-640 (-1202 |#1|)) (-1169) (-1202 |#1|))) (-15 -2531 ((-1 (-1149 (-1202 |#1|)) (-1149 (-1202 |#1|))) (-767) (-1202 |#1|) (-1149 (-1202 |#1|))))) +((-3435 (((-2 (|:| -4315 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) |#2|) 75)) (-3815 (((-2 (|:| -4315 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|)))) 74))) +(((-1266 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3815 ((-2 (|:| -4315 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))))) (-15 -3435 ((-2 (|:| -4315 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) |#2|))) (-349) (-1233 |#1|) (-1233 |#2|) (-409 |#2| |#3|)) (T -1266)) +((-3435 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *3 (-1233 *4)) (-4 *5 (-1233 *3)) (-5 *2 (-2 (|:| -4315 (-684 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-684 *3)))) (-5 *1 (-1266 *4 *3 *5 *6)) (-4 *6 (-409 *3 *5)))) (-3815 (*1 *2) (-12 (-4 *3 (-349)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 *4)) (-5 *2 (-2 (|:| -4315 (-684 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-684 *4)))) (-5 *1 (-1266 *3 *4 *5 *6)) (-4 *6 (-409 *4 *5))))) +(-10 -7 (-15 -3815 ((-2 (|:| -4315 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))))) (-15 -3435 ((-2 (|:| -4315 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) |#2|))) +((-1677 (((-112) $ $) NIL)) (-1743 (((-1128) $) 11)) (-2478 (((-1128) $) 9)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 19) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-1267) (-13 (-1076) (-10 -8 (-15 -2478 ((-1128) $)) (-15 -1743 ((-1128) $))))) (T -1267)) +((-2478 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1267)))) (-1743 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1267))))) +(-13 (-1076) (-10 -8 (-15 -2478 ((-1128) $)) (-15 -1743 ((-1128) $)))) +((-1677 (((-112) $ $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1394 (((-1128) $) 9)) (-1693 (((-858) $) 17) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1718 (((-112) $ $) NIL))) +(((-1268) (-13 (-1076) (-10 -8 (-15 -1394 ((-1128) $))))) (T -1268)) +((-1394 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1268))))) +(-13 (-1076) (-10 -8 (-15 -1394 ((-1128) $)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) 42)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4239 (($) NIL T CONST)) (-3400 (((-3 $ "failed") $) NIL)) (-3827 (((-112) $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-1693 (((-858) $) 63) (($ (-563)) NIL) (($ |#4|) 48) ((|#4| $) 53) (($ |#1|) NIL (|has| |#1| (-172)))) (-1675 (((-767)) NIL)) (-1984 (((-1262) (-767)) 16)) (-2241 (($) 27 T CONST)) (-2254 (($) 66 T CONST)) (-1718 (((-112) $ $) 68)) (-1837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-1826 (($ $) 70) (($ $ $) NIL)) (-1814 (($ $ $) 46)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 72) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) +(((-1269 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1045) (-490 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1837 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1984 ((-1262) (-767))))) (-1045) (-846) (-789) (-945 |#1| |#3| |#2|) (-640 |#2|) (-640 (-767)) (-767)) (T -1269)) +((-1837 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-363)) (-4 *2 (-1045)) (-4 *3 (-846)) (-4 *4 (-789)) (-14 *6 (-640 *3)) (-5 *1 (-1269 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-945 *2 *4 *3)) (-14 *7 (-640 (-767))) (-14 *8 (-767)))) (-1984 (*1 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-1045)) (-4 *5 (-846)) (-4 *6 (-789)) (-14 *8 (-640 *5)) (-5 *2 (-1262)) (-5 *1 (-1269 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-945 *4 *6 *5)) (-14 *9 (-640 *3)) (-14 *10 *3)))) +(-13 (-1045) (-490 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1837 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1984 ((-1262) (-767))))) +((-1677 (((-112) $ $) NIL)) (-1578 (((-640 (-2 (|:| -1442 $) (|:| -3405 (-640 |#4|)))) (-640 |#4|)) NIL)) (-3319 (((-640 $) (-640 |#4|)) 89)) (-2606 (((-640 |#3|) $) NIL)) (-1706 (((-112) $) NIL)) (-3854 (((-112) $) NIL (|has| |#1| (-555)))) (-2620 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4053 ((|#4| |#4| $) NIL)) (-1642 (((-2 (|:| |under| $) (|:| -1583 $) (|:| |upper| $)) $ |#3|) NIL)) (-2759 (((-112) $ (-767)) NIL)) (-2256 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407))) (((-3 |#4| "failed") $ |#3|) NIL)) (-4239 (($) NIL T CONST)) (-1483 (((-112) $) NIL (|has| |#1| (-555)))) (-1626 (((-112) $ $) NIL (|has| |#1| (-555)))) (-4221 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1763 (((-112) $) NIL (|has| |#1| (-555)))) (-1833 (((-640 |#4|) (-640 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 28)) (-3746 (((-640 |#4|) (-640 |#4|) $) 25 (|has| |#1| (-555)))) (-1866 (((-640 |#4|) (-640 |#4|) $) NIL (|has| |#1| (-555)))) (-2131 (((-3 $ "failed") (-640 |#4|)) NIL)) (-2058 (($ (-640 |#4|)) NIL)) (-3792 (((-3 $ "failed") $) 71)) (-1719 ((|#4| |#4| $) 76)) (-3813 (($ $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1093))))) (-1459 (($ |#4| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1093)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-1972 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-555)))) (-3990 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3948 ((|#4| |#4| $) NIL)) (-2444 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1093)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4407))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4407))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2144 (((-2 (|:| -1442 (-640 |#4|)) (|:| -3405 (-640 |#4|))) $) NIL)) (-2659 (((-640 |#4|) $) NIL (|has| $ (-6 -4407)))) (-2299 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2957 ((|#3| $) 77)) (-2581 (((-112) $ (-767)) NIL)) (-2259 (((-640 |#4|) $) 29 (|has| $ (-6 -4407)))) (-1729 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1093))))) (-2970 (((-3 $ "failed") (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-640 |#4|)) 35)) (-4345 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4408)))) (-2240 (($ (-1 |#4| |#4|) $) NIL)) (-2965 (((-640 |#3|) $) NIL)) (-2780 (((-112) |#3| $) NIL)) (-2382 (((-112) $ (-767)) NIL)) (-3573 (((-1151) $) NIL)) (-1481 (((-3 |#4| "failed") $) NIL)) (-2820 (((-640 |#4|) $) 51)) (-4197 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2715 ((|#4| |#4| $) 75)) (-3009 (((-112) $ $) 86)) (-2152 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-555)))) (-2031 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4056 ((|#4| |#4| $) NIL)) (-1694 (((-1113) $) NIL)) (-3781 (((-3 |#4| "failed") $) 70)) (-4203 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3479 (((-3 $ "failed") $ |#4|) NIL)) (-3320 (($ $ |#4|) NIL)) (-3138 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-1540 (($ $ (-640 |#4|) (-640 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-2026 (((-112) $ $) NIL)) (-3756 (((-112) $) 68)) (-3135 (($) 43)) (-4167 (((-767) $) NIL)) (-1709 (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4407)) (|has| |#4| (-1093)))) (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-1872 (($ $) NIL)) (-2220 (((-536) $) NIL (|has| |#4| (-611 (-536))))) (-1707 (($ (-640 |#4|)) NIL)) (-3577 (($ $ |#3|) NIL)) (-1593 (($ $ |#3|) NIL)) (-1924 (($ $) NIL)) (-4192 (($ $ |#3|) NIL)) (-1693 (((-858) $) NIL) (((-640 |#4|) $) 58)) (-2437 (((-767) $) NIL (|has| |#3| (-368)))) (-3323 (((-3 $ "failed") (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 41) (((-3 $ "failed") (-640 |#4|)) 42)) (-3233 (((-640 $) (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 66) (((-640 $) (-640 |#4|)) 67)) (-2540 (((-3 (-2 (|:| |bas| $) (|:| -2636 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -2636 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2691 (((-112) $ (-1 (-112) |#4| (-640 |#4|))) NIL)) (-4383 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4407)))) (-1955 (((-640 |#3|) $) NIL)) (-3152 (((-112) |#3| $) NIL)) (-1718 (((-112) $ $) NIL)) (-3608 (((-767) $) NIL (|has| $ (-6 -4407))))) +(((-1270 |#1| |#2| |#3| |#4|) (-13 (-1201 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2970 ((-3 $ "failed") (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2970 ((-3 $ "failed") (-640 |#4|))) (-15 -3323 ((-3 $ "failed") (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3323 ((-3 $ "failed") (-640 |#4|))) (-15 -3233 ((-640 $) (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3233 ((-640 $) (-640 |#4|))))) (-555) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -1270)) +((-2970 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-640 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1270 *5 *6 *7 *8)))) (-2970 (*1 *1 *2) (|partial| -12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1270 *3 *4 *5 *6)))) (-3323 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-640 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1270 *5 *6 *7 *8)))) (-3323 (*1 *1 *2) (|partial| -12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1270 *3 *4 *5 *6)))) (-3233 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-640 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-555)) (-4 *7 (-789)) (-4 *8 (-846)) (-5 *2 (-640 (-1270 *6 *7 *8 *9))) (-5 *1 (-1270 *6 *7 *8 *9)))) (-3233 (*1 *2 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 (-1270 *4 *5 *6 *7))) (-5 *1 (-1270 *4 *5 *6 *7))))) +(-13 (-1201 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2970 ((-3 $ "failed") (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2970 ((-3 $ "failed") (-640 |#4|))) (-15 -3323 ((-3 $ "failed") (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3323 ((-3 $ "failed") (-640 |#4|))) (-15 -3233 ((-640 $) (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3233 ((-640 $) (-640 |#4|))))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-1495 (((-3 $ "failed") $ $) 19)) (-4239 (($) 17 T CONST)) (-3400 (((-3 $ "failed") $) 33)) (-3827 (((-112) $) 31)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 39)) (-1675 (((-767)) 28)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 41) (($ |#1| $) 40))) +(((-1271 |#1|) (-140) (-1045)) (T -1271)) +NIL +(-13 (-1045) (-111 |t#1| |t#1|) (-613 |t#1|) (-10 -7 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 |#1|) |has| |#1| (-172)) ((-722) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) +((-1677 (((-112) $ $) 59)) (-3411 (((-112) $) NIL)) (-3993 (((-640 |#1|) $) 45)) (-2872 (($ $ (-767)) 39)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3917 (($ $ (-767)) 18 (|has| |#2| (-172))) (($ $ $) 19 (|has| |#2| (-172)))) (-4239 (($) NIL T CONST)) (-3181 (($ $ $) 62) (($ $ (-815 |#1|)) 48) (($ $ |#1|) 52)) (-2131 (((-3 (-815 |#1|) "failed") $) NIL)) (-2058 (((-815 |#1|) $) NIL)) (-2751 (($ $) 32)) (-3400 (((-3 $ "failed") $) NIL)) (-3466 (((-112) $) NIL)) (-2396 (($ $) NIL)) (-3827 (((-112) $) NIL)) (-4096 (((-767) $) NIL)) (-1368 (((-640 $) $) NIL)) (-3920 (((-112) $) NIL)) (-4222 (($ (-815 |#1|) |#2|) 31)) (-4337 (($ $) 33)) (-2976 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) 12)) (-3761 (((-815 |#1|) $) NIL)) (-4176 (((-815 |#1|) $) 34)) (-2240 (($ (-1 |#2| |#2|) $) NIL)) (-3439 (($ $ $) 61) (($ $ (-815 |#1|)) 50) (($ $ |#1|) 54)) (-3115 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2716 (((-815 |#1|) $) 28)) (-2726 ((|#2| $) 30)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-4167 (((-767) $) 36)) (-4018 (((-112) $) 40)) (-2669 ((|#2| $) NIL)) (-1693 (((-858) $) NIL) (($ (-815 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-563)) NIL)) (-1337 (((-640 |#2|) $) NIL)) (-4319 ((|#2| $ (-815 |#1|)) NIL)) (-2311 ((|#2| $ $) 64) ((|#2| $ (-815 |#1|)) NIL)) (-1675 (((-767)) NIL)) (-2241 (($) 13 T CONST)) (-2254 (($) 15 T CONST)) (-1531 (((-640 (-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1718 (((-112) $ $) 38)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) 22)) (** (($ $ (-767)) NIL) (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 60) (($ |#2| (-815 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) +(((-1272 |#1| |#2|) (-13 (-382 |#2| (-815 |#1|)) (-1278 |#1| |#2|)) (-846) (-1045)) (T -1272)) +NIL +(-13 (-382 |#2| (-815 |#1|)) (-1278 |#1| |#2|)) +((-4371 ((|#3| |#3| (-767)) 23)) (-3368 ((|#3| |#3| (-767)) 27)) (-2564 ((|#3| |#3| |#3| (-767)) 28))) +(((-1273 |#1| |#2| |#3|) (-10 -7 (-15 -3368 (|#3| |#3| (-767))) (-15 -4371 (|#3| |#3| (-767))) (-15 -2564 (|#3| |#3| |#3| (-767)))) (-13 (-1045) (-713 (-407 (-563)))) (-846) (-1278 |#2| |#1|)) (T -1273)) +((-2564 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-563))))) (-4 *5 (-846)) (-5 *1 (-1273 *4 *5 *2)) (-4 *2 (-1278 *5 *4)))) (-4371 (*1 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-563))))) (-4 *5 (-846)) (-5 *1 (-1273 *4 *5 *2)) (-4 *2 (-1278 *5 *4)))) (-3368 (*1 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-563))))) (-4 *5 (-846)) (-5 *1 (-1273 *4 *5 *2)) (-4 *2 (-1278 *5 *4))))) +(-10 -7 (-15 -3368 (|#3| |#3| (-767))) (-15 -4371 (|#3| |#3| (-767))) (-15 -2564 (|#3| |#3| |#3| (-767)))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-3993 (((-640 |#1|) $) 41)) (-1495 (((-3 $ "failed") $ $) 19)) (-3917 (($ $ $) 44 (|has| |#2| (-172))) (($ $ (-767)) 43 (|has| |#2| (-172)))) (-4239 (($) 17 T CONST)) (-3181 (($ $ |#1|) 55) (($ $ (-815 |#1|)) 54) (($ $ $) 53)) (-2131 (((-3 (-815 |#1|) "failed") $) 65)) (-2058 (((-815 |#1|) $) 66)) (-3400 (((-3 $ "failed") $) 33)) (-3466 (((-112) $) 46)) (-2396 (($ $) 45)) (-3827 (((-112) $) 31)) (-3920 (((-112) $) 51)) (-4222 (($ (-815 |#1|) |#2|) 52)) (-4337 (($ $) 50)) (-2976 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) 61)) (-3761 (((-815 |#1|) $) 62)) (-2240 (($ (-1 |#2| |#2|) $) 42)) (-3439 (($ $ |#1|) 58) (($ $ (-815 |#1|)) 57) (($ $ $) 56)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-4018 (((-112) $) 48)) (-2669 ((|#2| $) 47)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ |#2|) 69) (($ (-815 |#1|)) 64) (($ |#1|) 49)) (-2311 ((|#2| $ (-815 |#1|)) 60) ((|#2| $ $) 59)) (-1675 (((-767)) 28)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63))) +(((-1274 |#1| |#2|) (-140) (-846) (-1045)) (T -1274)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1274 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-3761 (*1 *2 *1) (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-815 *3)))) (-2976 (*1 *2 *1) (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-2 (|:| |k| (-815 *3)) (|:| |c| *4))))) (-2311 (*1 *2 *1 *3) (-12 (-5 *3 (-815 *4)) (-4 *1 (-1274 *4 *2)) (-4 *4 (-846)) (-4 *2 (-1045)))) (-2311 (*1 *2 *1 *1) (-12 (-4 *1 (-1274 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045)))) (-3439 (*1 *1 *1 *2) (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-3439 (*1 *1 *1 *2) (-12 (-5 *2 (-815 *3)) (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)))) (-3439 (*1 *1 *1 *1) (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-3181 (*1 *1 *1 *2) (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-3181 (*1 *1 *1 *2) (-12 (-5 *2 (-815 *3)) (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)))) (-3181 (*1 *1 *1 *1) (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-4222 (*1 *1 *2 *3) (-12 (-5 *2 (-815 *4)) (-4 *4 (-846)) (-4 *1 (-1274 *4 *3)) (-4 *3 (-1045)))) (-3920 (*1 *2 *1) (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-112)))) (-4337 (*1 *1 *1) (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-1693 (*1 *1 *2) (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-4018 (*1 *2 *1) (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-112)))) (-2669 (*1 *2 *1) (-12 (-4 *1 (-1274 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045)))) (-3466 (*1 *2 *1) (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-112)))) (-2396 (*1 *1 *1) (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-3917 (*1 *1 *1 *1) (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)) (-4 *3 (-172)))) (-3917 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-4 *4 (-172)))) (-2240 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-640 *3))))) +(-13 (-1045) (-1271 |t#2|) (-1034 (-815 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3761 ((-815 |t#1|) $)) (-15 -2976 ((-2 (|:| |k| (-815 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -2311 (|t#2| $ (-815 |t#1|))) (-15 -2311 (|t#2| $ $)) (-15 -3439 ($ $ |t#1|)) (-15 -3439 ($ $ (-815 |t#1|))) (-15 -3439 ($ $ $)) (-15 -3181 ($ $ |t#1|)) (-15 -3181 ($ $ (-815 |t#1|))) (-15 -3181 ($ $ $)) (-15 -4222 ($ (-815 |t#1|) |t#2|)) (-15 -3920 ((-112) $)) (-15 -4337 ($ $)) (-15 -1693 ($ |t#1|)) (-15 -4018 ((-112) $)) (-15 -2669 (|t#2| $)) (-15 -3466 ((-112) $)) (-15 -2396 ($ $)) (IF (|has| |t#2| (-172)) (PROGN (-15 -3917 ($ $ $)) (-15 -3917 ($ $ (-767)))) |%noBranch|) (-15 -2240 ($ (-1 |t#2| |t#2|) $)) (-15 -3993 ((-640 |t#1|) $)) (IF (|has| |t#2| (-6 -4400)) (-6 -4400) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 #0=(-815 |#1|)) . T) ((-613 |#2|) . T) ((-610 (-858)) . T) ((-643 |#2|) . T) ((-643 $) . T) ((-713 |#2|) |has| |#2| (-172)) ((-722) . T) ((-1034 #0#) . T) ((-1051 |#2|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1271 |#2|) . T)) +((-2388 (((-112) $) 14)) (-3152 (((-112) $) 13)) (-2350 (($ $) 18) (($ $ (-767)) 19))) +(((-1275 |#1| |#2|) (-10 -8 (-15 -2350 (|#1| |#1| (-767))) (-15 -2350 (|#1| |#1|)) (-15 -2388 ((-112) |#1|)) (-15 -3152 ((-112) |#1|))) (-1276 |#2|) (-363)) (T -1275)) +NIL +(-10 -8 (-15 -2350 (|#1| |#1| (-767))) (-15 -2350 (|#1| |#1|)) (-15 -2388 ((-112) |#1|)) (-15 -3152 ((-112) |#1|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-4372 (((-2 (|:| -1414 $) (|:| -4394 $) (|:| |associate| $)) $) 42)) (-4223 (($ $) 41)) (-3156 (((-112) $) 39)) (-2388 (((-112) $) 95)) (-3259 (((-767)) 91)) (-1495 (((-3 $ "failed") $ $) 19)) (-4335 (($ $) 74)) (-3205 (((-418 $) $) 73)) (-1919 (((-112) $ $) 60)) (-4239 (($) 17 T CONST)) (-2131 (((-3 |#1| "failed") $) 102)) (-2058 ((|#1| $) 103)) (-3090 (($ $ $) 56)) (-3400 (((-3 $ "failed") $) 33)) (-3050 (($ $ $) 57)) (-3286 (((-2 (|:| -2311 (-640 $)) (|:| -4333 $)) (-640 $)) 52)) (-1637 (($ $ (-767)) 88 (-4032 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) 87 (-4032 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2468 (((-112) $) 72)) (-3254 (((-829 (-917)) $) 85 (-4032 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3827 (((-112) $) 31)) (-3643 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-3513 (($ $ $) 47) (($ (-640 $)) 46)) (-3573 (((-1151) $) 9)) (-2688 (($ $) 71)) (-3013 (((-112) $) 94)) (-1694 (((-1113) $) 10)) (-3385 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-3548 (($ $ $) 49) (($ (-640 $)) 48)) (-2174 (((-418 $) $) 75)) (-1467 (((-829 (-917))) 92)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4333 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3008 (((-3 $ "failed") $ $) 43)) (-1465 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-2628 (((-767) $) 59)) (-2452 (((-2 (|:| -3490 $) (|:| -1972 $)) $ $) 58)) (-1423 (((-3 (-767) "failed") $ $) 86 (-4032 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3533 (((-134)) 100)) (-4167 (((-829 (-917)) $) 93)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-407 (-563))) 67) (($ |#1|) 101)) (-2779 (((-3 $ "failed") $) 84 (-4032 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1675 (((-767)) 28)) (-2126 (((-112) $ $) 40)) (-3152 (((-112) $) 96)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-2350 (($ $) 90 (|has| |#1| (-368))) (($ $ (-767)) 89 (|has| |#1| (-368)))) (-1718 (((-112) $ $) 6)) (-1837 (($ $ $) 66) (($ $ |#1|) 99)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 70)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 69) (($ (-407 (-563)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97))) +(((-1276 |#1|) (-140) (-363)) (T -1276)) +((-3152 (*1 *2 *1) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-2388 (*1 *2 *1) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-3013 (*1 *2 *1) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-4167 (*1 *2 *1) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-829 (-917))))) (-1467 (*1 *2) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-829 (-917))))) (-3259 (*1 *2) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-767)))) (-2350 (*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-363)) (-4 *2 (-368)))) (-2350 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-4 *3 (-368))))) +(-13 (-363) (-1034 |t#1|) (-1264 |t#1|) (-10 -8 (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-402)) |%noBranch|) (-15 -3152 ((-112) $)) (-15 -2388 ((-112) $)) (-15 -3013 ((-112) $)) (-15 -4167 ((-829 (-917)) $)) (-15 -1467 ((-829 (-917)))) (-15 -3259 ((-767))) (IF (|has| |t#1| (-368)) (PROGN (-6 (-402)) (-15 -2350 ($ $)) (-15 -2350 ($ $ (-767)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -4032 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-613 #0#) . T) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-402) -4032 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-452) . T) ((-555) . T) ((-643 #0#) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #0#) . T) ((-713 |#1|) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1034 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1212) . T) ((-1264 |#1|) . T)) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-3993 (((-640 |#1|) $) 85)) (-2872 (($ $ (-767)) 88)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3917 (($ $ $) NIL (|has| |#2| (-172))) (($ $ (-767)) NIL (|has| |#2| (-172)))) (-4239 (($) NIL T CONST)) (-3181 (($ $ |#1|) NIL) (($ $ (-815 |#1|)) NIL) (($ $ $) NIL)) (-2131 (((-3 (-815 |#1|) "failed") $) NIL) (((-3 (-889 |#1|) "failed") $) NIL)) (-2058 (((-815 |#1|) $) NIL) (((-889 |#1|) $) NIL)) (-2751 (($ $) 87)) (-3400 (((-3 $ "failed") $) NIL)) (-3466 (((-112) $) 76)) (-2396 (($ $) 80)) (-2041 (($ $ $ (-767)) 89)) (-3827 (((-112) $) NIL)) (-4096 (((-767) $) NIL)) (-1368 (((-640 $) $) NIL)) (-3920 (((-112) $) NIL)) (-4222 (($ (-815 |#1|) |#2|) NIL) (($ (-889 |#1|) |#2|) 25)) (-4337 (($ $) 102)) (-2976 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3761 (((-815 |#1|) $) NIL)) (-4176 (((-815 |#1|) $) NIL)) (-2240 (($ (-1 |#2| |#2|) $) NIL)) (-3439 (($ $ |#1|) NIL) (($ $ (-815 |#1|)) NIL) (($ $ $) NIL)) (-4371 (($ $ (-767)) 96 (|has| |#2| (-713 (-407 (-563)))))) (-3115 (((-2 (|:| |k| (-889 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2716 (((-889 |#1|) $) 69)) (-2726 ((|#2| $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-3368 (($ $ (-767)) 93 (|has| |#2| (-713 (-407 (-563)))))) (-4167 (((-767) $) 86)) (-4018 (((-112) $) 70)) (-2669 ((|#2| $) 74)) (-1693 (((-858) $) 56) (($ (-563)) NIL) (($ |#2|) 50) (($ (-815 |#1|)) NIL) (($ |#1|) 58) (($ (-889 |#1|)) NIL) (($ (-659 |#1| |#2|)) 42) (((-1272 |#1| |#2|) $) 63) (((-1281 |#1| |#2|) $) 68)) (-1337 (((-640 |#2|) $) NIL)) (-4319 ((|#2| $ (-889 |#1|)) NIL)) (-2311 ((|#2| $ (-815 |#1|)) NIL) ((|#2| $ $) NIL)) (-1675 (((-767)) NIL)) (-2241 (($) 21 T CONST)) (-2254 (($) 24 T CONST)) (-1531 (((-640 (-2 (|:| |k| (-889 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2343 (((-3 (-659 |#1| |#2|) "failed") $) 101)) (-1718 (((-112) $ $) 64)) (-1826 (($ $) 95) (($ $ $) 94)) (-1814 (($ $ $) 20)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 43) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-889 |#1|)) NIL))) +(((-1277 |#1| |#2|) (-13 (-1278 |#1| |#2|) (-382 |#2| (-889 |#1|)) (-10 -8 (-15 -1693 ($ (-659 |#1| |#2|))) (-15 -1693 ((-1272 |#1| |#2|) $)) (-15 -1693 ((-1281 |#1| |#2|) $)) (-15 -2343 ((-3 (-659 |#1| |#2|) "failed") $)) (-15 -2041 ($ $ $ (-767))) (IF (|has| |#2| (-713 (-407 (-563)))) (PROGN (-15 -3368 ($ $ (-767))) (-15 -4371 ($ $ (-767)))) |%noBranch|))) (-846) (-172)) (T -1277)) +((-1693 (*1 *1 *2) (-12 (-5 *2 (-659 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *1 (-1277 *3 *4)))) (-1693 (*1 *2 *1) (-12 (-5 *2 (-1272 *3 *4)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-1693 (*1 *2 *1) (-12 (-5 *2 (-1281 *3 *4)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-2343 (*1 *2 *1) (|partial| -12 (-5 *2 (-659 *3 *4)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-2041 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-3368 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1277 *3 *4)) (-4 *4 (-713 (-407 (-563)))) (-4 *3 (-846)) (-4 *4 (-172)))) (-4371 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1277 *3 *4)) (-4 *4 (-713 (-407 (-563)))) (-4 *3 (-846)) (-4 *4 (-172))))) +(-13 (-1278 |#1| |#2|) (-382 |#2| (-889 |#1|)) (-10 -8 (-15 -1693 ($ (-659 |#1| |#2|))) (-15 -1693 ((-1272 |#1| |#2|) $)) (-15 -1693 ((-1281 |#1| |#2|) $)) (-15 -2343 ((-3 (-659 |#1| |#2|) "failed") $)) (-15 -2041 ($ $ $ (-767))) (IF (|has| |#2| (-713 (-407 (-563)))) (PROGN (-15 -3368 ($ $ (-767))) (-15 -4371 ($ $ (-767)))) |%noBranch|))) +((-1677 (((-112) $ $) 7)) (-3411 (((-112) $) 16)) (-3993 (((-640 |#1|) $) 41)) (-2872 (($ $ (-767)) 74)) (-1495 (((-3 $ "failed") $ $) 19)) (-3917 (($ $ $) 44 (|has| |#2| (-172))) (($ $ (-767)) 43 (|has| |#2| (-172)))) (-4239 (($) 17 T CONST)) (-3181 (($ $ |#1|) 55) (($ $ (-815 |#1|)) 54) (($ $ $) 53)) (-2131 (((-3 (-815 |#1|) "failed") $) 65)) (-2058 (((-815 |#1|) $) 66)) (-3400 (((-3 $ "failed") $) 33)) (-3466 (((-112) $) 46)) (-2396 (($ $) 45)) (-3827 (((-112) $) 31)) (-3920 (((-112) $) 51)) (-4222 (($ (-815 |#1|) |#2|) 52)) (-4337 (($ $) 50)) (-2976 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) 61)) (-3761 (((-815 |#1|) $) 62)) (-4176 (((-815 |#1|) $) 76)) (-2240 (($ (-1 |#2| |#2|) $) 42)) (-3439 (($ $ |#1|) 58) (($ $ (-815 |#1|)) 57) (($ $ $) 56)) (-3573 (((-1151) $) 9)) (-1694 (((-1113) $) 10)) (-4167 (((-767) $) 75)) (-4018 (((-112) $) 48)) (-2669 ((|#2| $) 47)) (-1693 (((-858) $) 11) (($ (-563)) 29) (($ |#2|) 69) (($ (-815 |#1|)) 64) (($ |#1|) 49)) (-2311 ((|#2| $ (-815 |#1|)) 60) ((|#2| $ $) 59)) (-1675 (((-767)) 28)) (-2241 (($) 18 T CONST)) (-2254 (($) 30 T CONST)) (-1718 (((-112) $ $) 6)) (-1826 (($ $) 22) (($ $ $) 21)) (-1814 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63))) +(((-1278 |#1| |#2|) (-140) (-846) (-1045)) (T -1278)) +((-4176 (*1 *2 *1) (-12 (-4 *1 (-1278 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-815 *3)))) (-4167 (*1 *2 *1) (-12 (-4 *1 (-1278 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-767)))) (-2872 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1278 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045))))) +(-13 (-1274 |t#1| |t#2|) (-10 -8 (-15 -4176 ((-815 |t#1|) $)) (-15 -4167 ((-767) $)) (-15 -2872 ($ $ (-767))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 #0=(-815 |#1|)) . T) ((-613 |#2|) . T) ((-610 (-858)) . T) ((-643 |#2|) . T) ((-643 $) . T) ((-713 |#2|) |has| |#2| (-172)) ((-722) . T) ((-1034 #0#) . T) ((-1051 |#2|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1271 |#2|) . T) ((-1274 |#1| |#2|) . T)) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-3993 (((-640 (-1169)) $) NIL)) (-3249 (($ (-1272 (-1169) |#1|)) NIL)) (-2872 (($ $ (-767)) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3917 (($ $ $) NIL (|has| |#1| (-172))) (($ $ (-767)) NIL (|has| |#1| (-172)))) (-4239 (($) NIL T CONST)) (-3181 (($ $ (-1169)) NIL) (($ $ (-815 (-1169))) NIL) (($ $ $) NIL)) (-2131 (((-3 (-815 (-1169)) "failed") $) NIL)) (-2058 (((-815 (-1169)) $) NIL)) (-3400 (((-3 $ "failed") $) NIL)) (-3466 (((-112) $) NIL)) (-2396 (($ $) NIL)) (-3827 (((-112) $) NIL)) (-3920 (((-112) $) NIL)) (-4222 (($ (-815 (-1169)) |#1|) NIL)) (-4337 (($ $) NIL)) (-2976 (((-2 (|:| |k| (-815 (-1169))) (|:| |c| |#1|)) $) NIL)) (-3761 (((-815 (-1169)) $) NIL)) (-4176 (((-815 (-1169)) $) NIL)) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-3439 (($ $ (-1169)) NIL) (($ $ (-815 (-1169))) NIL) (($ $ $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-2213 (((-1272 (-1169) |#1|) $) NIL)) (-4167 (((-767) $) NIL)) (-4018 (((-112) $) NIL)) (-2669 ((|#1| $) NIL)) (-1693 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL) (($ (-815 (-1169))) NIL) (($ (-1169)) NIL)) (-2311 ((|#1| $ (-815 (-1169))) NIL) ((|#1| $ $) NIL)) (-1675 (((-767)) NIL)) (-2241 (($) NIL T CONST)) (-3398 (((-640 (-2 (|:| |k| (-1169)) (|:| |c| $))) $) NIL)) (-2254 (($) NIL T CONST)) (-1718 (((-112) $ $) NIL)) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1169) $) NIL))) +(((-1279 |#1|) (-13 (-1278 (-1169) |#1|) (-10 -8 (-15 -2213 ((-1272 (-1169) |#1|) $)) (-15 -3249 ($ (-1272 (-1169) |#1|))) (-15 -3398 ((-640 (-2 (|:| |k| (-1169)) (|:| |c| $))) $)))) (-1045)) (T -1279)) +((-2213 (*1 *2 *1) (-12 (-5 *2 (-1272 (-1169) *3)) (-5 *1 (-1279 *3)) (-4 *3 (-1045)))) (-3249 (*1 *1 *2) (-12 (-5 *2 (-1272 (-1169) *3)) (-4 *3 (-1045)) (-5 *1 (-1279 *3)))) (-3398 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |k| (-1169)) (|:| |c| (-1279 *3))))) (-5 *1 (-1279 *3)) (-4 *3 (-1045))))) +(-13 (-1278 (-1169) |#1|) (-10 -8 (-15 -2213 ((-1272 (-1169) |#1|) $)) (-15 -3249 ($ (-1272 (-1169) |#1|))) (-15 -3398 ((-640 (-2 (|:| |k| (-1169)) (|:| |c| $))) $)))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) NIL)) (-1495 (((-3 $ "failed") $ $) NIL)) (-4239 (($) NIL T CONST)) (-2131 (((-3 |#2| "failed") $) NIL)) (-2058 ((|#2| $) NIL)) (-2751 (($ $) NIL)) (-3400 (((-3 $ "failed") $) 35)) (-3466 (((-112) $) 30)) (-2396 (($ $) 31)) (-3827 (((-112) $) NIL)) (-4096 (((-767) $) NIL)) (-1368 (((-640 $) $) NIL)) (-3920 (((-112) $) NIL)) (-4222 (($ |#2| |#1|) NIL)) (-3761 ((|#2| $) 19)) (-4176 ((|#2| $) 16)) (-2240 (($ (-1 |#1| |#1|) $) NIL)) (-3115 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2716 ((|#2| $) NIL)) (-2726 ((|#1| $) NIL)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-4018 (((-112) $) 27)) (-2669 ((|#1| $) 28)) (-1693 (((-858) $) 54) (($ (-563)) 39) (($ |#1|) 34) (($ |#2|) NIL)) (-1337 (((-640 |#1|) $) NIL)) (-4319 ((|#1| $ |#2|) NIL)) (-2311 ((|#1| $ |#2|) 24)) (-1675 (((-767)) 14)) (-2241 (($) 25 T CONST)) (-2254 (($) 11 T CONST)) (-1531 (((-640 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-1718 (((-112) $ $) 26)) (-1837 (($ $ |#1|) 56 (|has| |#1| (-363)))) (-1826 (($ $) NIL) (($ $ $) NIL)) (-1814 (($ $ $) 43)) (** (($ $ (-917)) NIL) (($ $ (-767)) 45)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 44) (($ |#1| $) 40) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3608 (((-767) $) 15))) +(((-1280 |#1| |#2|) (-13 (-1045) (-1271 |#1|) (-382 |#1| |#2|) (-613 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3608 ((-767) $)) (-15 -4176 (|#2| $)) (-15 -3761 (|#2| $)) (-15 -2751 ($ $)) (-15 -2311 (|#1| $ |#2|)) (-15 -4018 ((-112) $)) (-15 -2669 (|#1| $)) (-15 -3466 ((-112) $)) (-15 -2396 ($ $)) (-15 -2240 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-363)) (-15 -1837 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4400)) (-6 -4400) |%noBranch|) (IF (|has| |#1| (-6 -4404)) (-6 -4404) |%noBranch|) (IF (|has| |#1| (-6 -4405)) (-6 -4405) |%noBranch|))) (-1045) (-842)) (T -1280)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1280 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842)))) (-2751 (*1 *1 *1) (-12 (-5 *1 (-1280 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842)))) (-2240 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-1280 *3 *4)) (-4 *4 (-842)))) (-3608 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1280 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-842)))) (-4176 (*1 *2 *1) (-12 (-4 *2 (-842)) (-5 *1 (-1280 *3 *2)) (-4 *3 (-1045)))) (-3761 (*1 *2 *1) (-12 (-4 *2 (-842)) (-5 *1 (-1280 *3 *2)) (-4 *3 (-1045)))) (-2311 (*1 *2 *1 *3) (-12 (-4 *2 (-1045)) (-5 *1 (-1280 *2 *3)) (-4 *3 (-842)))) (-4018 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1280 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-842)))) (-2669 (*1 *2 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-1280 *2 *3)) (-4 *3 (-842)))) (-3466 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1280 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-842)))) (-2396 (*1 *1 *1) (-12 (-5 *1 (-1280 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842)))) (-1837 (*1 *1 *1 *2) (-12 (-5 *1 (-1280 *2 *3)) (-4 *2 (-363)) (-4 *2 (-1045)) (-4 *3 (-842))))) +(-13 (-1045) (-1271 |#1|) (-382 |#1| |#2|) (-613 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3608 ((-767) $)) (-15 -4176 (|#2| $)) (-15 -3761 (|#2| $)) (-15 -2751 ($ $)) (-15 -2311 (|#1| $ |#2|)) (-15 -4018 ((-112) $)) (-15 -2669 (|#1| $)) (-15 -3466 ((-112) $)) (-15 -2396 ($ $)) (-15 -2240 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-363)) (-15 -1837 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4400)) (-6 -4400) |%noBranch|) (IF (|has| |#1| (-6 -4404)) (-6 -4404) |%noBranch|) (IF (|has| |#1| (-6 -4405)) (-6 -4405) |%noBranch|))) +((-1677 (((-112) $ $) 26)) (-3411 (((-112) $) NIL)) (-3993 (((-640 |#1|) $) 120)) (-3249 (($ (-1272 |#1| |#2|)) 44)) (-2872 (($ $ (-767)) 32)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3917 (($ $ $) 48 (|has| |#2| (-172))) (($ $ (-767)) 46 (|has| |#2| (-172)))) (-4239 (($) NIL T CONST)) (-3181 (($ $ |#1|) 102) (($ $ (-815 |#1|)) 103) (($ $ $) 25)) (-2131 (((-3 (-815 |#1|) "failed") $) NIL)) (-2058 (((-815 |#1|) $) NIL)) (-3400 (((-3 $ "failed") $) 110)) (-3466 (((-112) $) 105)) (-2396 (($ $) 106)) (-3827 (((-112) $) NIL)) (-3920 (((-112) $) NIL)) (-4222 (($ (-815 |#1|) |#2|) 19)) (-4337 (($ $) NIL)) (-2976 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3761 (((-815 |#1|) $) 111)) (-4176 (((-815 |#1|) $) 114)) (-2240 (($ (-1 |#2| |#2|) $) 119)) (-3439 (($ $ |#1|) 100) (($ $ (-815 |#1|)) 101) (($ $ $) 56)) (-3573 (((-1151) $) NIL)) (-1694 (((-1113) $) NIL)) (-2213 (((-1272 |#1| |#2|) $) 84)) (-4167 (((-767) $) 117)) (-4018 (((-112) $) 70)) (-2669 ((|#2| $) 28)) (-1693 (((-858) $) 63) (($ (-563)) 77) (($ |#2|) 74) (($ (-815 |#1|)) 17) (($ |#1|) 73)) (-2311 ((|#2| $ (-815 |#1|)) 104) ((|#2| $ $) 27)) (-1675 (((-767)) 108)) (-2241 (($) 14 T CONST)) (-3398 (((-640 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-2254 (($) 29 T CONST)) (-1718 (((-112) $ $) 13)) (-1826 (($ $) 88) (($ $ $) 91)) (-1814 (($ $ $) 55)) (** (($ $ (-917)) NIL) (($ $ (-767)) 49)) (* (($ (-917) $) NIL) (($ (-767) $) 47) (($ (-563) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82))) +(((-1281 |#1| |#2|) (-13 (-1278 |#1| |#2|) (-10 -8 (-15 -2213 ((-1272 |#1| |#2|) $)) (-15 -3249 ($ (-1272 |#1| |#2|))) (-15 -3398 ((-640 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-846) (-1045)) (T -1281)) +((-2213 (*1 *2 *1) (-12 (-5 *2 (-1272 *3 *4)) (-5 *1 (-1281 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)))) (-3249 (*1 *1 *2) (-12 (-5 *2 (-1272 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *1 (-1281 *3 *4)))) (-3398 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |k| *3) (|:| |c| (-1281 *3 *4))))) (-5 *1 (-1281 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045))))) +(-13 (-1278 |#1| |#2|) (-10 -8 (-15 -2213 ((-1272 |#1| |#2|) $)) (-15 -3249 ($ (-1272 |#1| |#2|))) (-15 -3398 ((-640 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-3170 (((-640 (-1149 |#1|)) (-1 (-640 (-1149 |#1|)) (-640 (-1149 |#1|))) (-563)) 15) (((-1149 |#1|) (-1 (-1149 |#1|) (-1149 |#1|))) 11))) +(((-1282 |#1|) (-10 -7 (-15 -3170 ((-1149 |#1|) (-1 (-1149 |#1|) (-1149 |#1|)))) (-15 -3170 ((-640 (-1149 |#1|)) (-1 (-640 (-1149 |#1|)) (-640 (-1149 |#1|))) (-563)))) (-1208)) (T -1282)) +((-3170 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-640 (-1149 *5)) (-640 (-1149 *5)))) (-5 *4 (-563)) (-5 *2 (-640 (-1149 *5))) (-5 *1 (-1282 *5)) (-4 *5 (-1208)))) (-3170 (*1 *2 *3) (-12 (-5 *3 (-1 (-1149 *4) (-1149 *4))) (-5 *2 (-1149 *4)) (-5 *1 (-1282 *4)) (-4 *4 (-1208))))) +(-10 -7 (-15 -3170 ((-1149 |#1|) (-1 (-1149 |#1|) (-1149 |#1|)))) (-15 -3170 ((-640 (-1149 |#1|)) (-1 (-640 (-1149 |#1|)) (-640 (-1149 |#1|))) (-563)))) +((-2600 (((-640 (-2 (|:| -1602 (-1165 |#1|)) (|:| -1880 (-640 (-948 |#1|))))) (-640 (-948 |#1|))) 147) (((-640 (-2 (|:| -1602 (-1165 |#1|)) (|:| -1880 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112)) 146) (((-640 (-2 (|:| -1602 (-1165 |#1|)) (|:| -1880 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112) (-112)) 145) (((-640 (-2 (|:| -1602 (-1165 |#1|)) (|:| -1880 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112) (-112) (-112)) 144) (((-640 (-2 (|:| -1602 (-1165 |#1|)) (|:| -1880 (-640 (-948 |#1|))))) (-1042 |#1| |#2|)) 129)) (-1740 (((-640 (-1042 |#1| |#2|)) (-640 (-948 |#1|))) 71) (((-640 (-1042 |#1| |#2|)) (-640 (-948 |#1|)) (-112)) 70) (((-640 (-1042 |#1| |#2|)) (-640 (-948 |#1|)) (-112) (-112)) 69)) (-3205 (((-640 (-1139 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|)))) (-1042 |#1| |#2|)) 60)) (-2076 (((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|))) 114) (((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112)) 113) (((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112) (-112)) 112) (((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112) (-112) (-112)) 111) (((-640 (-640 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|)) 106)) (-4323 (((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|))) 119) (((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112)) 118) (((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112) (-112)) 117) (((-640 (-640 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|)) 116)) (-2220 (((-640 (-776 |#1| (-860 |#3|))) (-1139 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|)))) 97) (((-1165 (-1020 (-407 |#1|))) (-1165 |#1|)) 88) (((-948 (-1020 (-407 |#1|))) (-776 |#1| (-860 |#3|))) 95) (((-948 (-1020 (-407 |#1|))) (-948 |#1|)) 93) (((-776 |#1| (-860 |#3|)) (-776 |#1| (-860 |#2|))) 32))) +(((-1283 |#1| |#2| |#3|) (-10 -7 (-15 -1740 ((-640 (-1042 |#1| |#2|)) (-640 (-948 |#1|)) (-112) (-112))) (-15 -1740 ((-640 (-1042 |#1| |#2|)) (-640 (-948 |#1|)) (-112))) (-15 -1740 ((-640 (-1042 |#1| |#2|)) (-640 (-948 |#1|)))) (-15 -2600 ((-640 (-2 (|:| -1602 (-1165 |#1|)) (|:| -1880 (-640 (-948 |#1|))))) (-1042 |#1| |#2|))) (-15 -2600 ((-640 (-2 (|:| -1602 (-1165 |#1|)) (|:| -1880 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112) (-112) (-112))) (-15 -2600 ((-640 (-2 (|:| -1602 (-1165 |#1|)) (|:| -1880 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112) (-112))) (-15 -2600 ((-640 (-2 (|:| -1602 (-1165 |#1|)) (|:| -1880 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112))) (-15 -2600 ((-640 (-2 (|:| -1602 (-1165 |#1|)) (|:| -1880 (-640 (-948 |#1|))))) (-640 (-948 |#1|)))) (-15 -2076 ((-640 (-640 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|))) (-15 -2076 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112) (-112) (-112))) (-15 -2076 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112) (-112))) (-15 -2076 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112))) (-15 -2076 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)))) (-15 -4323 ((-640 (-640 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|))) (-15 -4323 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112) (-112))) (-15 -4323 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112))) (-15 -4323 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)))) (-15 -3205 ((-640 (-1139 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|)))) (-1042 |#1| |#2|))) (-15 -2220 ((-776 |#1| (-860 |#3|)) (-776 |#1| (-860 |#2|)))) (-15 -2220 ((-948 (-1020 (-407 |#1|))) (-948 |#1|))) (-15 -2220 ((-948 (-1020 (-407 |#1|))) (-776 |#1| (-860 |#3|)))) (-15 -2220 ((-1165 (-1020 (-407 |#1|))) (-1165 |#1|))) (-15 -2220 ((-640 (-776 |#1| (-860 |#3|))) (-1139 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|)))))) (-13 (-844) (-307) (-147) (-1018)) (-640 (-1169)) (-640 (-1169))) (T -1283)) +((-2220 (*1 *2 *3) (-12 (-5 *3 (-1139 *4 (-531 (-860 *6)) (-860 *6) (-776 *4 (-860 *6)))) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *6 (-640 (-1169))) (-5 *2 (-640 (-776 *4 (-860 *6)))) (-5 *1 (-1283 *4 *5 *6)) (-14 *5 (-640 (-1169))))) (-2220 (*1 *2 *3) (-12 (-5 *3 (-1165 *4)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-1165 (-1020 (-407 *4)))) (-5 *1 (-1283 *4 *5 *6)) (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169))))) (-2220 (*1 *2 *3) (-12 (-5 *3 (-776 *4 (-860 *6))) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *6 (-640 (-1169))) (-5 *2 (-948 (-1020 (-407 *4)))) (-5 *1 (-1283 *4 *5 *6)) (-14 *5 (-640 (-1169))))) (-2220 (*1 *2 *3) (-12 (-5 *3 (-948 *4)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-948 (-1020 (-407 *4)))) (-5 *1 (-1283 *4 *5 *6)) (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169))))) (-2220 (*1 *2 *3) (-12 (-5 *3 (-776 *4 (-860 *5))) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *5 (-640 (-1169))) (-5 *2 (-776 *4 (-860 *6))) (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-640 (-1169))))) (-3205 (*1 *2 *3) (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *5 (-640 (-1169))) (-5 *2 (-640 (-1139 *4 (-531 (-860 *6)) (-860 *6) (-776 *4 (-860 *6))))) (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-640 (-1169))))) (-4323 (*1 *2 *3) (-12 (-5 *3 (-640 (-948 *4))) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-640 (-1020 (-407 *4))))) (-5 *1 (-1283 *4 *5 *6)) (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169))))) (-4323 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-640 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7)) (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) (-4323 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-640 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7)) (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) (-4323 (*1 *2 *3) (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *5 (-640 (-1169))) (-5 *2 (-640 (-640 (-1020 (-407 *4))))) (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-640 (-1169))))) (-2076 (*1 *2 *3) (-12 (-5 *3 (-640 (-948 *4))) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-640 (-1020 (-407 *4))))) (-5 *1 (-1283 *4 *5 *6)) (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169))))) (-2076 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-640 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7)) (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) (-2076 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-640 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7)) (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) (-2076 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-640 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7)) (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) (-2076 (*1 *2 *3) (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *5 (-640 (-1169))) (-5 *2 (-640 (-640 (-1020 (-407 *4))))) (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-640 (-1169))))) (-2600 (*1 *2 *3) (-12 (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-2 (|:| -1602 (-1165 *4)) (|:| -1880 (-640 (-948 *4)))))) (-5 *1 (-1283 *4 *5 *6)) (-5 *3 (-640 (-948 *4))) (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169))))) (-2600 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-2 (|:| -1602 (-1165 *5)) (|:| -1880 (-640 (-948 *5)))))) (-5 *1 (-1283 *5 *6 *7)) (-5 *3 (-640 (-948 *5))) (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) (-2600 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-2 (|:| -1602 (-1165 *5)) (|:| -1880 (-640 (-948 *5)))))) (-5 *1 (-1283 *5 *6 *7)) (-5 *3 (-640 (-948 *5))) (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) (-2600 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-2 (|:| -1602 (-1165 *5)) (|:| -1880 (-640 (-948 *5)))))) (-5 *1 (-1283 *5 *6 *7)) (-5 *3 (-640 (-948 *5))) (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) (-2600 (*1 *2 *3) (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *5 (-640 (-1169))) (-5 *2 (-640 (-2 (|:| -1602 (-1165 *4)) (|:| -1880 (-640 (-948 *4)))))) (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-640 (-1169))))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-640 (-948 *4))) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-1042 *4 *5))) (-5 *1 (-1283 *4 *5 *6)) (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169))))) (-1740 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-1042 *5 *6))) (-5 *1 (-1283 *5 *6 *7)) (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) (-1740 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-1042 *5 *6))) (-5 *1 (-1283 *5 *6 *7)) (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169)))))) +(-10 -7 (-15 -1740 ((-640 (-1042 |#1| |#2|)) (-640 (-948 |#1|)) (-112) (-112))) (-15 -1740 ((-640 (-1042 |#1| |#2|)) (-640 (-948 |#1|)) (-112))) (-15 -1740 ((-640 (-1042 |#1| |#2|)) (-640 (-948 |#1|)))) (-15 -2600 ((-640 (-2 (|:| -1602 (-1165 |#1|)) (|:| -1880 (-640 (-948 |#1|))))) (-1042 |#1| |#2|))) (-15 -2600 ((-640 (-2 (|:| -1602 (-1165 |#1|)) (|:| -1880 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112) (-112) (-112))) (-15 -2600 ((-640 (-2 (|:| -1602 (-1165 |#1|)) (|:| -1880 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112) (-112))) (-15 -2600 ((-640 (-2 (|:| -1602 (-1165 |#1|)) (|:| -1880 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112))) (-15 -2600 ((-640 (-2 (|:| -1602 (-1165 |#1|)) (|:| -1880 (-640 (-948 |#1|))))) (-640 (-948 |#1|)))) (-15 -2076 ((-640 (-640 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|))) (-15 -2076 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112) (-112) (-112))) (-15 -2076 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112) (-112))) (-15 -2076 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112))) (-15 -2076 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)))) (-15 -4323 ((-640 (-640 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|))) (-15 -4323 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112) (-112))) (-15 -4323 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112))) (-15 -4323 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)))) (-15 -3205 ((-640 (-1139 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|)))) (-1042 |#1| |#2|))) (-15 -2220 ((-776 |#1| (-860 |#3|)) (-776 |#1| (-860 |#2|)))) (-15 -2220 ((-948 (-1020 (-407 |#1|))) (-948 |#1|))) (-15 -2220 ((-948 (-1020 (-407 |#1|))) (-776 |#1| (-860 |#3|)))) (-15 -2220 ((-1165 (-1020 (-407 |#1|))) (-1165 |#1|))) (-15 -2220 ((-640 (-776 |#1| (-860 |#3|))) (-1139 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|)))))) +((-2281 (((-3 (-1257 (-407 (-563))) "failed") (-1257 |#1|) |#1|) 21)) (-4075 (((-112) (-1257 |#1|)) 12)) (-3193 (((-3 (-1257 (-563)) "failed") (-1257 |#1|)) 16))) +(((-1284 |#1|) (-10 -7 (-15 -4075 ((-112) (-1257 |#1|))) (-15 -3193 ((-3 (-1257 (-563)) "failed") (-1257 |#1|))) (-15 -2281 ((-3 (-1257 (-407 (-563))) "failed") (-1257 |#1|) |#1|))) (-636 (-563))) (T -1284)) +((-2281 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1257 *4)) (-4 *4 (-636 (-563))) (-5 *2 (-1257 (-407 (-563)))) (-5 *1 (-1284 *4)))) (-3193 (*1 *2 *3) (|partial| -12 (-5 *3 (-1257 *4)) (-4 *4 (-636 (-563))) (-5 *2 (-1257 (-563))) (-5 *1 (-1284 *4)))) (-4075 (*1 *2 *3) (-12 (-5 *3 (-1257 *4)) (-4 *4 (-636 (-563))) (-5 *2 (-112)) (-5 *1 (-1284 *4))))) +(-10 -7 (-15 -4075 ((-112) (-1257 |#1|))) (-15 -3193 ((-3 (-1257 (-563)) "failed") (-1257 |#1|))) (-15 -2281 ((-3 (-1257 (-407 (-563))) "failed") (-1257 |#1|) |#1|))) +((-1677 (((-112) $ $) NIL)) (-3411 (((-112) $) 11)) (-1495 (((-3 $ "failed") $ $) NIL)) (-3749 (((-767)) 8)) (-4239 (($) NIL T CONST)) (-3400 (((-3 $ "failed") $) 43)) (-1691 (($) 36)) (-3827 (((-112) $) NIL)) (-2408 (((-3 $ "failed") $) 29)) (-1476 (((-917) $) 15)) (-3573 (((-1151) $) NIL)) (-2523 (($) 25 T CONST)) (-2555 (($ (-917)) 37)) (-1694 (((-1113) $) NIL)) (-2220 (((-563) $) 13)) (-1693 (((-858) $) 22) (($ (-563)) 19)) (-1675 (((-767)) 9)) (-2241 (($) 23 T CONST)) (-2254 (($) 24 T CONST)) (-1718 (((-112) $ $) 27)) (-1826 (($ $) 38) (($ $ $) 35)) (-1814 (($ $ $) 26)) (** (($ $ (-917)) NIL) (($ $ (-767)) 40)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 32) (($ $ $) 31))) +(((-1285 |#1|) (-13 (-172) (-368) (-611 (-563)) (-1144)) (-917)) (T -1285)) +NIL +(-13 (-172) (-368) (-611 (-563)) (-1144)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 3195369 3195374 3195379 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3195354 3195359 3195364 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3195339 3195344 3195349 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3195324 3195329 3195334 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1285 3194500 3195199 3195276 "ZMOD" 3195281 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1284 3193610 3193774 3193983 "ZLINDEP" 3194332 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1283 3182914 3184678 3186650 "ZDSOLVE" 3191740 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1282 3182160 3182301 3182490 "YSTREAM" 3182760 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1281 3179971 3181461 3181665 "XRPOLY" 3182003 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1280 3176559 3177842 3178417 "XPR" 3179443 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1279 3174315 3175890 3176094 "XPOLY" 3176390 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1278 3172106 3173440 3173495 "XPOLYC" 3173783 NIL XPOLYC (NIL T T) -9 NIL 3173896 NIL) (-1277 3168524 3170623 3171011 "XPBWPOLY" 3171764 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1276 3164435 3166687 3166729 "XF" 3167350 NIL XF (NIL T) -9 NIL 3167750 NIL) (-1275 3164056 3164144 3164313 "XF-" 3164318 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1274 3159390 3160645 3160700 "XFALG" 3162872 NIL XFALG (NIL T T) -9 NIL 3163661 NIL) (-1273 3158523 3158627 3158832 "XEXPPKG" 3159282 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1272 3156667 3158373 3158469 "XDPOLY" 3158474 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1271 3155612 3156178 3156221 "XALG" 3156226 NIL XALG (NIL T) -9 NIL 3156337 NIL) (-1270 3149081 3153589 3154083 "WUTSET" 3155204 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1269 3147372 3148133 3148456 "WP" 3148892 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1268 3147001 3147194 3147264 "WHILEAST" 3147324 T WHILEAST (NIL) -8 NIL NIL NIL) (-1267 3146500 3146718 3146812 "WHEREAST" 3146929 T WHEREAST (NIL) -8 NIL NIL NIL) (-1266 3145386 3145584 3145879 "WFFINTBS" 3146297 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1265 3143290 3143717 3144179 "WEIER" 3144958 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1264 3142437 3142861 3142903 "VSPACE" 3143039 NIL VSPACE (NIL T) -9 NIL 3143113 NIL) (-1263 3142275 3142302 3142393 "VSPACE-" 3142398 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1262 3142083 3142126 3142194 "VOID" 3142229 T VOID (NIL) -8 NIL NIL NIL) (-1261 3140219 3140578 3140984 "VIEW" 3141699 T VIEW (NIL) -7 NIL NIL NIL) (-1260 3136644 3137282 3138019 "VIEWDEF" 3139504 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1259 3125980 3128192 3130365 "VIEW3D" 3134493 T VIEW3D (NIL) -8 NIL NIL NIL) (-1258 3118262 3119891 3121470 "VIEW2D" 3124423 T VIEW2D (NIL) -8 NIL NIL NIL) (-1257 3113666 3118032 3118124 "VECTOR" 3118205 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1256 3112243 3112502 3112820 "VECTOR2" 3113396 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1255 3105770 3110027 3110070 "VECTCAT" 3111063 NIL VECTCAT (NIL T) -9 NIL 3111649 NIL) (-1254 3104784 3105038 3105428 "VECTCAT-" 3105433 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1253 3104265 3104435 3104555 "VARIABLE" 3104699 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1252 3104198 3104203 3104233 "UTYPE" 3104238 T UTYPE (NIL) -9 NIL NIL NIL) (-1251 3103028 3103182 3103444 "UTSODETL" 3104024 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1250 3100468 3100928 3101452 "UTSODE" 3102569 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1249 3092344 3098094 3098583 "UTS" 3100037 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1248 3083587 3088911 3088954 "UTSCAT" 3090066 NIL UTSCAT (NIL T) -9 NIL 3090823 NIL) (-1247 3080942 3081657 3082646 "UTSCAT-" 3082651 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1246 3080569 3080612 3080745 "UTS2" 3080893 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1245 3074842 3077407 3077450 "URAGG" 3079520 NIL URAGG (NIL T) -9 NIL 3080243 NIL) (-1244 3071781 3072644 3073767 "URAGG-" 3073772 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1243 3067505 3070395 3070867 "UPXSSING" 3071445 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1242 3059607 3066752 3067025 "UPXS" 3067290 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1241 3052720 3059511 3059583 "UPXSCONS" 3059588 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1240 3042965 3049715 3049777 "UPXSCCA" 3050351 NIL UPXSCCA (NIL T T) -9 NIL 3050584 NIL) (-1239 3042603 3042688 3042862 "UPXSCCA-" 3042867 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1238 3032701 3039224 3039267 "UPXSCAT" 3039915 NIL UPXSCAT (NIL T) -9 NIL 3040523 NIL) (-1237 3032131 3032210 3032389 "UPXS2" 3032616 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1236 3030785 3031038 3031389 "UPSQFREE" 3031874 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1235 3024573 3027587 3027642 "UPSCAT" 3028803 NIL UPSCAT (NIL T T) -9 NIL 3029577 NIL) (-1234 3023777 3023984 3024311 "UPSCAT-" 3024316 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1233 3009627 3017625 3017668 "UPOLYC" 3019769 NIL UPOLYC (NIL T) -9 NIL 3020990 NIL) (-1232 3000956 3003381 3006528 "UPOLYC-" 3006533 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1231 3000583 3000626 3000759 "UPOLYC2" 3000907 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1230 2992157 3000266 3000395 "UP" 3000502 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1229 2991496 2991603 2991767 "UPMP" 2992046 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1228 2991049 2991130 2991269 "UPDIVP" 2991409 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1227 2989617 2989866 2990182 "UPDECOMP" 2990798 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1226 2988852 2988964 2989149 "UPCDEN" 2989501 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1225 2988371 2988440 2988589 "UP2" 2988777 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1224 2986888 2987575 2987852 "UNISEG" 2988129 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1223 2986103 2986230 2986435 "UNISEG2" 2986731 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1222 2985163 2985343 2985569 "UNIFACT" 2985919 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1221 2969130 2984340 2984591 "ULS" 2984970 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1220 2957170 2969034 2969106 "ULSCONS" 2969111 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1219 2939786 2951728 2951790 "ULSCCAT" 2952428 NIL ULSCCAT (NIL T T) -9 NIL 2952716 NIL) (-1218 2938836 2939081 2939469 "ULSCCAT-" 2939474 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1217 2928711 2935148 2935191 "ULSCAT" 2936054 NIL ULSCAT (NIL T) -9 NIL 2936784 NIL) (-1216 2928141 2928220 2928399 "ULS2" 2928626 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1215 2927278 2927753 2927854 "UINT8" 2927965 T UINT8 (NIL) -8 NIL NIL 2928044) (-1214 2926414 2926889 2926990 "UINT32" 2927101 T UINT32 (NIL) -8 NIL NIL 2927180) (-1213 2925550 2926025 2926126 "UINT16" 2926237 T UINT16 (NIL) -8 NIL NIL 2926316) (-1212 2923953 2924876 2924906 "UFD" 2925118 T UFD (NIL) -9 NIL 2925232 NIL) (-1211 2923747 2923793 2923888 "UFD-" 2923893 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1210 2922829 2923012 2923228 "UDVO" 2923553 T UDVO (NIL) -7 NIL NIL NIL) (-1209 2920645 2921054 2921525 "UDPO" 2922393 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1208 2920578 2920583 2920613 "TYPE" 2920618 T TYPE (NIL) -9 NIL NIL NIL) (-1207 2920365 2920533 2920564 "TYPEAST" 2920569 T TYPEAST (NIL) -8 NIL NIL NIL) (-1206 2919336 2919538 2919778 "TWOFACT" 2920159 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1205 2918408 2918745 2918980 "TUPLE" 2919136 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1204 2916099 2916618 2917157 "TUBETOOL" 2917891 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1203 2914948 2915153 2915394 "TUBE" 2915892 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1202 2909712 2913920 2914203 "TS" 2914700 NIL TS (NIL T) -8 NIL NIL NIL) (-1201 2898379 2902471 2902568 "TSETCAT" 2907837 NIL TSETCAT (NIL T T T T) -9 NIL 2909368 NIL) (-1200 2893114 2894711 2896602 "TSETCAT-" 2896607 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1199 2887377 2888223 2889165 "TRMANIP" 2892250 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1198 2886818 2886881 2887044 "TRIMAT" 2887309 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1197 2884614 2884851 2885215 "TRIGMNIP" 2886567 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1196 2884134 2884247 2884277 "TRIGCAT" 2884490 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1195 2883803 2883882 2884023 "TRIGCAT-" 2884028 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1194 2880700 2882661 2882942 "TREE" 2883557 NIL TREE (NIL T) -8 NIL NIL NIL) (-1193 2879974 2880502 2880532 "TRANFUN" 2880567 T TRANFUN (NIL) -9 NIL 2880633 NIL) (-1192 2879253 2879444 2879724 "TRANFUN-" 2879729 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1191 2879057 2879089 2879150 "TOPSP" 2879214 T TOPSP (NIL) -7 NIL NIL NIL) (-1190 2878405 2878520 2878674 "TOOLSIGN" 2878938 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1189 2877066 2877582 2877821 "TEXTFILE" 2878188 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1188 2875005 2875519 2875948 "TEX" 2876659 T TEX (NIL) -8 NIL NIL NIL) (-1187 2874786 2874817 2874889 "TEX1" 2874968 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1186 2874434 2874497 2874587 "TEMUTL" 2874718 T TEMUTL (NIL) -7 NIL NIL NIL) (-1185 2872588 2872868 2873193 "TBCMPPK" 2874157 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1184 2864476 2870748 2870804 "TBAGG" 2871204 NIL TBAGG (NIL T T) -9 NIL 2871415 NIL) (-1183 2859546 2861034 2862788 "TBAGG-" 2862793 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1182 2858930 2859037 2859182 "TANEXP" 2859435 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1181 2852431 2858787 2858880 "TABLE" 2858885 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1180 2851843 2851942 2852080 "TABLEAU" 2852328 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1179 2846451 2847671 2848919 "TABLBUMP" 2850629 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1178 2845879 2845979 2846107 "SYSTEM" 2846345 T SYSTEM (NIL) -7 NIL NIL NIL) (-1177 2842342 2843037 2843820 "SYSSOLP" 2845130 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1176 2841399 2841866 2841979 "SYSNNI" 2842165 NIL SYSNNI (NIL NIL) -8 NIL NIL 2842244) (-1175 2840852 2841257 2841299 "SYSINT" 2841304 NIL SYSINT (NIL NIL) -8 NIL NIL 2841312) (-1174 2837186 2838113 2838829 "SYNTAX" 2840158 T SYNTAX (NIL) -8 NIL NIL NIL) (-1173 2834344 2834946 2835578 "SYMTAB" 2836576 T SYMTAB (NIL) -8 NIL NIL NIL) (-1172 2829593 2830495 2831478 "SYMS" 2833383 T SYMS (NIL) -8 NIL NIL NIL) (-1171 2826865 2829051 2829281 "SYMPOLY" 2829398 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1170 2826382 2826457 2826580 "SYMFUNC" 2826777 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1169 2822434 2823694 2824507 "SYMBOL" 2825591 T SYMBOL (NIL) -8 NIL NIL NIL) (-1168 2815973 2817662 2819382 "SWITCH" 2820736 T SWITCH (NIL) -8 NIL NIL NIL) (-1167 2809243 2814794 2815097 "SUTS" 2815728 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1166 2801344 2808490 2808763 "SUPXS" 2809028 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1165 2792874 2800962 2801088 "SUP" 2801253 NIL SUP (NIL T) -8 NIL NIL NIL) (-1164 2792033 2792160 2792377 "SUPFRACF" 2792742 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1163 2791654 2791713 2791826 "SUP2" 2791968 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1162 2790067 2790341 2790704 "SUMRF" 2791353 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1161 2789381 2789447 2789646 "SUMFS" 2789988 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1160 2773388 2788558 2788809 "SULS" 2789188 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1159 2773017 2773210 2773280 "SUCHTAST" 2773340 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1158 2772339 2772542 2772682 "SUCH" 2772925 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1157 2766233 2767245 2768204 "SUBSPACE" 2771427 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1156 2765663 2765753 2765917 "SUBRESP" 2766121 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1155 2759032 2760328 2761639 "STTF" 2764399 NIL STTF (NIL T) -7 NIL NIL NIL) (-1154 2753205 2754325 2755472 "STTFNC" 2757932 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1153 2744520 2746387 2748181 "STTAYLOR" 2751446 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1152 2737764 2744384 2744467 "STRTBL" 2744472 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1151 2733155 2737719 2737750 "STRING" 2737755 T STRING (NIL) -8 NIL NIL NIL) (-1150 2728043 2732528 2732558 "STRICAT" 2732617 T STRICAT (NIL) -9 NIL 2732679 NIL) (-1149 2720853 2725662 2726273 "STREAM" 2727467 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1148 2720363 2720440 2720584 "STREAM3" 2720770 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1147 2719345 2719528 2719763 "STREAM2" 2720176 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1146 2719033 2719085 2719178 "STREAM1" 2719287 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1145 2718049 2718230 2718461 "STINPROD" 2718849 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1144 2717627 2717811 2717841 "STEP" 2717921 T STEP (NIL) -9 NIL 2717999 NIL) (-1143 2711170 2717526 2717603 "STBL" 2717608 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1142 2706344 2710391 2710434 "STAGG" 2710587 NIL STAGG (NIL T) -9 NIL 2710676 NIL) (-1141 2704046 2704648 2705520 "STAGG-" 2705525 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1140 2702241 2703816 2703908 "STACK" 2703989 NIL STACK (NIL T) -8 NIL NIL NIL) (-1139 2694966 2700382 2700838 "SREGSET" 2701871 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1138 2687392 2688760 2690273 "SRDCMPK" 2693572 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1137 2680359 2684832 2684862 "SRAGG" 2686165 T SRAGG (NIL) -9 NIL 2686773 NIL) (-1136 2679376 2679631 2680010 "SRAGG-" 2680015 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1135 2673871 2678323 2678744 "SQMATRIX" 2679002 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1134 2667620 2670589 2671316 "SPLTREE" 2673216 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1133 2663610 2664276 2664922 "SPLNODE" 2667046 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1132 2662657 2662890 2662920 "SPFCAT" 2663364 T SPFCAT (NIL) -9 NIL NIL NIL) (-1131 2661394 2661604 2661868 "SPECOUT" 2662415 T SPECOUT (NIL) -7 NIL NIL NIL) (-1130 2653046 2654790 2654820 "SPADXPT" 2659212 T SPADXPT (NIL) -9 NIL 2661246 NIL) (-1129 2652807 2652847 2652916 "SPADPRSR" 2652999 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1128 2650990 2652762 2652793 "SPADAST" 2652798 T SPADAST (NIL) -8 NIL NIL NIL) (-1127 2642961 2644708 2644751 "SPACEC" 2649124 NIL SPACEC (NIL T) -9 NIL 2650940 NIL) (-1126 2641132 2642893 2642942 "SPACE3" 2642947 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1125 2639884 2640055 2640346 "SORTPAK" 2640937 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1124 2637934 2638237 2638656 "SOLVETRA" 2639548 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1123 2636945 2637167 2637441 "SOLVESER" 2637707 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1122 2632165 2633046 2634048 "SOLVERAD" 2635997 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1121 2627980 2628589 2629318 "SOLVEFOR" 2631532 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1120 2622277 2627329 2627426 "SNTSCAT" 2627431 NIL SNTSCAT (NIL T T T T) -9 NIL 2627501 NIL) (-1119 2616420 2620600 2620991 "SMTS" 2621967 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1118 2610871 2616308 2616385 "SMP" 2616390 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1117 2609030 2609331 2609729 "SMITH" 2610568 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1116 2601925 2606081 2606184 "SMATCAT" 2607535 NIL SMATCAT (NIL NIL T T T) -9 NIL 2608085 NIL) (-1115 2598865 2599688 2600866 "SMATCAT-" 2600871 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1114 2596578 2598101 2598144 "SKAGG" 2598405 NIL SKAGG (NIL T) -9 NIL 2598540 NIL) (-1113 2592920 2595994 2596189 "SINT" 2596376 T SINT (NIL) -8 NIL NIL 2596549) (-1112 2592692 2592730 2592796 "SIMPAN" 2592876 T SIMPAN (NIL) -7 NIL NIL NIL) (-1111 2591999 2592227 2592367 "SIG" 2592574 T SIG (NIL) -8 NIL NIL NIL) (-1110 2590837 2591058 2591333 "SIGNRF" 2591758 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1109 2589642 2589793 2590084 "SIGNEF" 2590666 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1108 2588975 2589225 2589349 "SIGAST" 2589540 T SIGAST (NIL) -8 NIL NIL NIL) (-1107 2586665 2587119 2587625 "SHP" 2588516 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1106 2580571 2586566 2586642 "SHDP" 2586647 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1105 2580170 2580336 2580366 "SGROUP" 2580459 T SGROUP (NIL) -9 NIL 2580521 NIL) (-1104 2580028 2580054 2580127 "SGROUP-" 2580132 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1103 2576864 2577561 2578284 "SGCF" 2579327 T SGCF (NIL) -7 NIL NIL NIL) (-1102 2571259 2576311 2576408 "SFRTCAT" 2576413 NIL SFRTCAT (NIL T T T T) -9 NIL 2576452 NIL) (-1101 2564683 2565698 2566834 "SFRGCD" 2570242 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1100 2557811 2558882 2560068 "SFQCMPK" 2563616 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1099 2557433 2557522 2557632 "SFORT" 2557752 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1098 2556578 2557273 2557394 "SEXOF" 2557399 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1097 2555712 2556459 2556527 "SEX" 2556532 T SEX (NIL) -8 NIL NIL NIL) (-1096 2551251 2551940 2552035 "SEXCAT" 2554972 NIL SEXCAT (NIL T T T T T) -9 NIL 2555550 NIL) (-1095 2548431 2551185 2551233 "SET" 2551238 NIL SET (NIL T) -8 NIL NIL NIL) (-1094 2546682 2547144 2547449 "SETMN" 2548172 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1093 2546288 2546414 2546444 "SETCAT" 2546561 T SETCAT (NIL) -9 NIL 2546646 NIL) (-1092 2546068 2546120 2546219 "SETCAT-" 2546224 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1091 2542455 2544529 2544572 "SETAGG" 2545442 NIL SETAGG (NIL T) -9 NIL 2545782 NIL) (-1090 2541913 2542029 2542266 "SETAGG-" 2542271 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1089 2541383 2541609 2541710 "SEQAST" 2541834 T SEQAST (NIL) -8 NIL NIL NIL) (-1088 2540582 2540876 2540937 "SEGXCAT" 2541223 NIL SEGXCAT (NIL T T) -9 NIL 2541343 NIL) (-1087 2539638 2540248 2540430 "SEG" 2540435 NIL SEG (NIL T) -8 NIL NIL NIL) (-1086 2538617 2538831 2538874 "SEGCAT" 2539396 NIL SEGCAT (NIL T) -9 NIL 2539617 NIL) (-1085 2537666 2537996 2538196 "SEGBIND" 2538452 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1084 2537287 2537346 2537459 "SEGBIND2" 2537601 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1083 2536888 2537088 2537165 "SEGAST" 2537232 T SEGAST (NIL) -8 NIL NIL NIL) (-1082 2536107 2536233 2536437 "SEG2" 2536732 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1081 2535544 2536042 2536089 "SDVAR" 2536094 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1080 2527834 2535314 2535444 "SDPOL" 2535449 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1079 2526427 2526693 2527012 "SCPKG" 2527549 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1078 2525563 2525743 2525943 "SCOPE" 2526249 T SCOPE (NIL) -8 NIL NIL NIL) (-1077 2524784 2524917 2525096 "SCACHE" 2525418 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1076 2524456 2524616 2524646 "SASTCAT" 2524651 T SASTCAT (NIL) -9 NIL 2524664 NIL) (-1075 2523970 2524291 2524367 "SAOS" 2524402 T SAOS (NIL) -8 NIL NIL NIL) (-1074 2523535 2523570 2523743 "SAERFFC" 2523929 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1073 2517509 2523432 2523512 "SAE" 2523517 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1072 2517102 2517137 2517296 "SAEFACT" 2517468 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1071 2515423 2515737 2516138 "RURPK" 2516768 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1070 2514059 2514338 2514650 "RULESET" 2515257 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1069 2511246 2511749 2512214 "RULE" 2513740 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1068 2510885 2511040 2511123 "RULECOLD" 2511198 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1067 2510383 2510602 2510696 "RSTRCAST" 2510813 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1066 2505232 2506026 2506946 "RSETGCD" 2509582 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1065 2494489 2499541 2499638 "RSETCAT" 2503757 NIL RSETCAT (NIL T T T T) -9 NIL 2504854 NIL) (-1064 2492416 2492955 2493779 "RSETCAT-" 2493784 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1063 2484803 2486178 2487698 "RSDCMPK" 2491015 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1062 2482808 2483249 2483323 "RRCC" 2484409 NIL RRCC (NIL T T) -9 NIL 2484753 NIL) (-1061 2482159 2482333 2482612 "RRCC-" 2482617 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1060 2481629 2481855 2481956 "RPTAST" 2482080 T RPTAST (NIL) -8 NIL NIL NIL) (-1059 2455635 2465222 2465289 "RPOLCAT" 2475953 NIL RPOLCAT (NIL T T T) -9 NIL 2479112 NIL) (-1058 2447135 2449473 2452595 "RPOLCAT-" 2452600 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1057 2438182 2445346 2445828 "ROUTINE" 2446675 T ROUTINE (NIL) -8 NIL NIL NIL) (-1056 2435015 2437808 2437948 "ROMAN" 2438064 T ROMAN (NIL) -8 NIL NIL NIL) (-1055 2433290 2433875 2434135 "ROIRC" 2434820 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1054 2429683 2431926 2431956 "RNS" 2432260 T RNS (NIL) -9 NIL 2432533 NIL) (-1053 2428192 2428575 2429109 "RNS-" 2429184 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1052 2427641 2428023 2428053 "RNG" 2428058 T RNG (NIL) -9 NIL 2428079 NIL) (-1051 2427033 2427395 2427438 "RMODULE" 2427500 NIL RMODULE (NIL T) -9 NIL 2427542 NIL) (-1050 2425869 2425963 2426299 "RMCAT2" 2426934 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1049 2422746 2425215 2425512 "RMATRIX" 2425631 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1048 2415688 2417922 2418037 "RMATCAT" 2421396 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2422378 NIL) (-1047 2415063 2415210 2415517 "RMATCAT-" 2415522 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1046 2414630 2414705 2414833 "RINTERP" 2414982 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1045 2413763 2414283 2414313 "RING" 2414369 T RING (NIL) -9 NIL 2414455 NIL) (-1044 2413555 2413599 2413696 "RING-" 2413701 NIL RING- (NIL T) -8 NIL NIL NIL) (-1043 2412396 2412633 2412891 "RIDIST" 2413319 T RIDIST (NIL) -7 NIL NIL NIL) (-1042 2403712 2411864 2412070 "RGCHAIN" 2412244 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1041 2403088 2403468 2403509 "RGBCSPC" 2403567 NIL RGBCSPC (NIL T) -9 NIL 2403619 NIL) (-1040 2402272 2402627 2402668 "RGBCMDL" 2402900 NIL RGBCMDL (NIL T) -9 NIL 2403014 NIL) (-1039 2399266 2399880 2400550 "RF" 2401636 NIL RF (NIL T) -7 NIL NIL NIL) (-1038 2398912 2398975 2399078 "RFFACTOR" 2399197 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1037 2398637 2398672 2398769 "RFFACT" 2398871 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1036 2396754 2397118 2397500 "RFDIST" 2398277 T RFDIST (NIL) -7 NIL NIL NIL) (-1035 2396207 2396299 2396462 "RETSOL" 2396656 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1034 2395843 2395923 2395966 "RETRACT" 2396099 NIL RETRACT (NIL T) -9 NIL 2396186 NIL) (-1033 2395692 2395717 2395804 "RETRACT-" 2395809 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1032 2395321 2395514 2395584 "RETAST" 2395644 T RETAST (NIL) -8 NIL NIL NIL) (-1031 2388175 2394974 2395101 "RESULT" 2395216 T RESULT (NIL) -8 NIL NIL NIL) (-1030 2386801 2387444 2387643 "RESRING" 2388078 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1029 2386437 2386486 2386584 "RESLATC" 2386738 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1028 2386143 2386177 2386284 "REPSQ" 2386396 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1027 2383565 2384145 2384747 "REP" 2385563 T REP (NIL) -7 NIL NIL NIL) (-1026 2383263 2383297 2383408 "REPDB" 2383524 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1025 2377173 2378552 2379775 "REP2" 2382075 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1024 2373550 2374231 2375039 "REP1" 2376400 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1023 2366276 2371691 2372147 "REGSET" 2373180 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1022 2365089 2365424 2365674 "REF" 2366061 NIL REF (NIL T) -8 NIL NIL NIL) (-1021 2364466 2364569 2364736 "REDORDER" 2364973 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1020 2360471 2363679 2363906 "RECLOS" 2364294 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1019 2359523 2359704 2359919 "REALSOLV" 2360278 T REALSOLV (NIL) -7 NIL NIL NIL) (-1018 2359369 2359410 2359440 "REAL" 2359445 T REAL (NIL) -9 NIL 2359480 NIL) (-1017 2355852 2356654 2357538 "REAL0Q" 2358534 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1016 2351453 2352441 2353502 "REAL0" 2354833 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1015 2350951 2351170 2351264 "RDUCEAST" 2351381 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1014 2350356 2350428 2350635 "RDIV" 2350873 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1013 2349424 2349598 2349811 "RDIST" 2350178 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1012 2348021 2348308 2348680 "RDETRS" 2349132 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1011 2345833 2346287 2346825 "RDETR" 2347563 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1010 2344444 2344722 2345126 "RDEEFS" 2345549 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1009 2342939 2343245 2343677 "RDEEF" 2344132 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1008 2337200 2340075 2340105 "RCFIELD" 2341400 T RCFIELD (NIL) -9 NIL 2342130 NIL) (-1007 2335264 2335768 2336464 "RCFIELD-" 2336539 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1006 2331580 2333365 2333408 "RCAGG" 2334492 NIL RCAGG (NIL T) -9 NIL 2334957 NIL) (-1005 2331208 2331302 2331465 "RCAGG-" 2331470 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1004 2330543 2330655 2330820 "RATRET" 2331092 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1003 2330096 2330163 2330284 "RATFACT" 2330471 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1002 2329404 2329524 2329676 "RANDSRC" 2329966 T RANDSRC (NIL) -7 NIL NIL NIL) (-1001 2329138 2329182 2329255 "RADUTIL" 2329353 T RADUTIL (NIL) -7 NIL NIL NIL) (-1000 2322291 2327971 2328281 "RADIX" 2328862 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-999 2313948 2322135 2322263 "RADFF" 2322268 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-998 2313600 2313675 2313703 "RADCAT" 2313860 T RADCAT (NIL) -9 NIL NIL NIL) (-997 2313385 2313433 2313530 "RADCAT-" 2313535 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-996 2311536 2313160 2313249 "QUEUE" 2313329 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-995 2308112 2311473 2311518 "QUAT" 2311523 NIL QUAT (NIL T) -8 NIL NIL NIL) (-994 2307750 2307793 2307920 "QUATCT2" 2308063 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-993 2301497 2304799 2304839 "QUATCAT" 2305619 NIL QUATCAT (NIL T) -9 NIL 2306385 NIL) (-992 2297641 2298678 2300065 "QUATCAT-" 2300159 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-991 2295161 2296725 2296766 "QUAGG" 2297141 NIL QUAGG (NIL T) -9 NIL 2297316 NIL) (-990 2294793 2294986 2295054 "QQUTAST" 2295113 T QQUTAST (NIL) -8 NIL NIL NIL) (-989 2293718 2294191 2294363 "QFORM" 2294665 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-988 2284930 2290135 2290175 "QFCAT" 2290833 NIL QFCAT (NIL T) -9 NIL 2291834 NIL) (-987 2280502 2281703 2283294 "QFCAT-" 2283388 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-986 2280140 2280183 2280310 "QFCAT2" 2280453 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-985 2279600 2279710 2279840 "QEQUAT" 2280030 T QEQUAT (NIL) -8 NIL NIL NIL) (-984 2272748 2273819 2275003 "QCMPACK" 2278533 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-983 2270324 2270745 2271173 "QALGSET" 2272403 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-982 2269569 2269743 2269975 "QALGSET2" 2270144 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-981 2268260 2268483 2268800 "PWFFINTB" 2269342 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-980 2266442 2266610 2266964 "PUSHVAR" 2268074 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-979 2262360 2263414 2263455 "PTRANFN" 2265339 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-978 2260762 2261053 2261375 "PTPACK" 2262071 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-977 2260394 2260451 2260560 "PTFUNC2" 2260699 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-976 2254921 2259266 2259307 "PTCAT" 2259603 NIL PTCAT (NIL T) -9 NIL 2259756 NIL) (-975 2254579 2254614 2254738 "PSQFR" 2254880 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-974 2253174 2253472 2253806 "PSEUDLIN" 2254277 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-973 2239944 2242308 2244632 "PSETPK" 2250934 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-972 2232988 2235702 2235798 "PSETCAT" 2238819 NIL PSETCAT (NIL T T T T) -9 NIL 2239633 NIL) (-971 2230824 2231458 2232279 "PSETCAT-" 2232284 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-970 2230173 2230338 2230366 "PSCURVE" 2230634 T PSCURVE (NIL) -9 NIL 2230801 NIL) (-969 2226529 2228011 2228076 "PSCAT" 2228920 NIL PSCAT (NIL T T T) -9 NIL 2229160 NIL) (-968 2225592 2225808 2226208 "PSCAT-" 2226213 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-967 2224324 2224957 2225162 "PRTITION" 2225407 T PRTITION (NIL) -8 NIL NIL NIL) (-966 2223826 2224045 2224137 "PRTDAST" 2224252 T PRTDAST (NIL) -8 NIL NIL NIL) (-965 2212924 2215130 2217318 "PRS" 2221688 NIL PRS (NIL T T) -7 NIL NIL NIL) (-964 2210782 2212274 2212314 "PRQAGG" 2212497 NIL PRQAGG (NIL T) -9 NIL 2212599 NIL) (-963 2210168 2210397 2210425 "PROPLOG" 2210610 T PROPLOG (NIL) -9 NIL 2210732 NIL) (-962 2207338 2207982 2208446 "PROPFRML" 2209736 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-961 2206798 2206908 2207038 "PROPERTY" 2207228 T PROPERTY (NIL) -8 NIL NIL NIL) (-960 2200883 2204964 2205784 "PRODUCT" 2206024 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-959 2198196 2200341 2200575 "PR" 2200694 NIL PR (NIL T T) -8 NIL NIL NIL) (-958 2197992 2198024 2198083 "PRINT" 2198157 T PRINT (NIL) -7 NIL NIL NIL) (-957 2197332 2197449 2197601 "PRIMES" 2197872 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-956 2195397 2195798 2196264 "PRIMELT" 2196911 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-955 2195126 2195175 2195203 "PRIMCAT" 2195327 T PRIMCAT (NIL) -9 NIL NIL NIL) (-954 2191287 2195064 2195109 "PRIMARR" 2195114 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-953 2190294 2190472 2190700 "PRIMARR2" 2191105 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-952 2189937 2189993 2190104 "PREASSOC" 2190232 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-951 2189412 2189545 2189573 "PPCURVE" 2189778 T PPCURVE (NIL) -9 NIL 2189914 NIL) (-950 2189034 2189207 2189290 "PORTNUM" 2189349 T PORTNUM (NIL) -8 NIL NIL NIL) (-949 2186393 2186792 2187384 "POLYROOT" 2188615 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-948 2180338 2185997 2186157 "POLY" 2186266 NIL POLY (NIL T) -8 NIL NIL NIL) (-947 2179721 2179779 2180013 "POLYLIFT" 2180274 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-946 2175996 2176445 2177074 "POLYCATQ" 2179266 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-945 2162813 2168171 2168236 "POLYCAT" 2171750 NIL POLYCAT (NIL T T T) -9 NIL 2173678 NIL) (-944 2156263 2158124 2160508 "POLYCAT-" 2160513 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-943 2155850 2155918 2156038 "POLY2UP" 2156189 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-942 2155482 2155539 2155648 "POLY2" 2155787 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-941 2154167 2154406 2154682 "POLUTIL" 2155256 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-940 2152522 2152799 2153130 "POLTOPOL" 2153889 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-939 2148040 2152458 2152504 "POINT" 2152509 NIL POINT (NIL T) -8 NIL NIL NIL) (-938 2146227 2146584 2146959 "PNTHEORY" 2147685 T PNTHEORY (NIL) -7 NIL NIL NIL) (-937 2144646 2144943 2145355 "PMTOOLS" 2145925 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-936 2144239 2144317 2144434 "PMSYM" 2144562 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-935 2143749 2143818 2143992 "PMQFCAT" 2144164 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-934 2143104 2143214 2143370 "PMPRED" 2143626 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-933 2142500 2142586 2142747 "PMPREDFS" 2143005 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-932 2141143 2141351 2141736 "PMPLCAT" 2142262 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-931 2140675 2140754 2140906 "PMLSAGG" 2141058 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-930 2140150 2140226 2140407 "PMKERNEL" 2140593 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-929 2139767 2139842 2139955 "PMINS" 2140069 NIL PMINS (NIL T) -7 NIL NIL NIL) (-928 2139195 2139264 2139480 "PMFS" 2139692 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-927 2138423 2138541 2138746 "PMDOWN" 2139072 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-926 2137586 2137745 2137927 "PMASS" 2138261 T PMASS (NIL) -7 NIL NIL NIL) (-925 2136860 2136971 2137134 "PMASSFS" 2137472 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-924 2136515 2136583 2136677 "PLOTTOOL" 2136786 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-923 2131137 2132326 2133474 "PLOT" 2135387 T PLOT (NIL) -8 NIL NIL NIL) (-922 2126951 2127985 2128906 "PLOT3D" 2130236 T PLOT3D (NIL) -8 NIL NIL NIL) (-921 2125863 2126040 2126275 "PLOT1" 2126755 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-920 2101257 2105929 2110780 "PLEQN" 2121129 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-919 2100575 2100697 2100877 "PINTERP" 2101122 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-918 2100268 2100315 2100418 "PINTERPA" 2100522 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-917 2099516 2100037 2100124 "PI" 2100164 T PI (NIL) -8 NIL NIL 2100231) (-916 2097913 2098854 2098882 "PID" 2099064 T PID (NIL) -9 NIL 2099198 NIL) (-915 2097638 2097675 2097763 "PICOERCE" 2097870 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-914 2096958 2097097 2097273 "PGROEB" 2097494 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-913 2092545 2093359 2094264 "PGE" 2096073 T PGE (NIL) -7 NIL NIL NIL) (-912 2090669 2090915 2091281 "PGCD" 2092262 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-911 2090007 2090110 2090271 "PFRPAC" 2090553 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-910 2086687 2088555 2088908 "PFR" 2089686 NIL PFR (NIL T) -8 NIL NIL NIL) (-909 2085076 2085320 2085645 "PFOTOOLS" 2086434 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-908 2083609 2083848 2084199 "PFOQ" 2084833 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-907 2082082 2082294 2082657 "PFO" 2083393 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-906 2078670 2081971 2082040 "PF" 2082045 NIL PF (NIL NIL) -8 NIL NIL NIL) (-905 2076104 2077341 2077369 "PFECAT" 2077954 T PFECAT (NIL) -9 NIL 2078338 NIL) (-904 2075549 2075703 2075917 "PFECAT-" 2075922 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-903 2074153 2074404 2074705 "PFBRU" 2075298 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-902 2072020 2072371 2072803 "PFBR" 2073804 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-901 2067936 2069396 2070072 "PERM" 2071377 NIL PERM (NIL T) -8 NIL NIL NIL) (-900 2063202 2064143 2065013 "PERMGRP" 2067099 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-899 2061334 2062265 2062306 "PERMCAT" 2062752 NIL PERMCAT (NIL T) -9 NIL 2063057 NIL) (-898 2060987 2061028 2061152 "PERMAN" 2061287 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-897 2058523 2060652 2060774 "PENDTREE" 2060898 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-896 2056616 2057350 2057391 "PDRING" 2058048 NIL PDRING (NIL T) -9 NIL 2058334 NIL) (-895 2055719 2055937 2056299 "PDRING-" 2056304 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-894 2052961 2053712 2054380 "PDEPROB" 2055071 T PDEPROB (NIL) -8 NIL NIL NIL) (-893 2050508 2051010 2051565 "PDEPACK" 2052426 T PDEPACK (NIL) -7 NIL NIL NIL) (-892 2049420 2049610 2049861 "PDECOMP" 2050307 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-891 2047025 2047842 2047870 "PDECAT" 2048657 T PDECAT (NIL) -9 NIL 2049370 NIL) (-890 2046776 2046809 2046899 "PCOMP" 2046986 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-889 2044981 2045577 2045874 "PBWLB" 2046505 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-888 2037486 2039054 2040392 "PATTERN" 2043664 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-887 2037118 2037175 2037284 "PATTERN2" 2037423 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-886 2034875 2035263 2035720 "PATTERN1" 2036707 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-885 2032270 2032824 2033305 "PATRES" 2034440 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-884 2031834 2031901 2032033 "PATRES2" 2032197 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-883 2029717 2030122 2030529 "PATMATCH" 2031501 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-882 2029253 2029436 2029477 "PATMAB" 2029584 NIL PATMAB (NIL T) -9 NIL 2029667 NIL) (-881 2027798 2028107 2028365 "PATLRES" 2029058 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-880 2027344 2027467 2027508 "PATAB" 2027513 NIL PATAB (NIL T) -9 NIL 2027685 NIL) (-879 2024825 2025357 2025930 "PARTPERM" 2026791 T PARTPERM (NIL) -7 NIL NIL NIL) (-878 2024446 2024509 2024611 "PARSURF" 2024756 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-877 2024078 2024135 2024244 "PARSU2" 2024383 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-876 2023842 2023882 2023949 "PARSER" 2024031 T PARSER (NIL) -7 NIL NIL NIL) (-875 2023463 2023526 2023628 "PARSCURV" 2023773 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-874 2023095 2023152 2023261 "PARSC2" 2023400 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-873 2022734 2022792 2022889 "PARPCURV" 2023031 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-872 2022366 2022423 2022532 "PARPC2" 2022671 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-871 2021886 2021972 2022091 "PAN2EXPR" 2022267 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-870 2020692 2021007 2021235 "PALETTE" 2021678 T PALETTE (NIL) -8 NIL NIL NIL) (-869 2019160 2019697 2020057 "PAIR" 2020378 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-868 2013066 2018419 2018613 "PADICRC" 2019015 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-867 2006330 2012412 2012596 "PADICRAT" 2012914 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-866 2004680 2006267 2006312 "PADIC" 2006317 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-865 2001890 2003420 2003460 "PADICCT" 2004041 NIL PADICCT (NIL NIL) -9 NIL 2004323 NIL) (-864 2000847 2001047 2001315 "PADEPAC" 2001677 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-863 2000059 2000192 2000398 "PADE" 2000709 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-862 1998481 1999267 1999547 "OWP" 1999863 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-861 1998001 1998187 1998284 "OVERSET" 1998404 T OVERSET (NIL) -8 NIL NIL NIL) (-860 1997074 1997606 1997778 "OVAR" 1997869 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-859 1996338 1996459 1996620 "OUT" 1996933 T OUT (NIL) -7 NIL NIL NIL) (-858 1985245 1987447 1989647 "OUTFORM" 1994158 T OUTFORM (NIL) -8 NIL NIL NIL) (-857 1984581 1984842 1984969 "OUTBFILE" 1985138 T OUTBFILE (NIL) -8 NIL NIL NIL) (-856 1983888 1984053 1984081 "OUTBCON" 1984399 T OUTBCON (NIL) -9 NIL 1984565 NIL) (-855 1983489 1983601 1983758 "OUTBCON-" 1983763 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-854 1982897 1983218 1983307 "OSI" 1983420 T OSI (NIL) -8 NIL NIL NIL) (-853 1982453 1982765 1982793 "OSGROUP" 1982798 T OSGROUP (NIL) -9 NIL 1982820 NIL) (-852 1981198 1981425 1981710 "ORTHPOL" 1982200 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-851 1978784 1981033 1981154 "OREUP" 1981159 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-850 1976222 1978475 1978602 "ORESUP" 1978726 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-849 1973750 1974250 1974811 "OREPCTO" 1975711 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-848 1967574 1969741 1969782 "OREPCAT" 1972130 NIL OREPCAT (NIL T) -9 NIL 1973234 NIL) (-847 1964721 1965503 1966561 "OREPCAT-" 1966566 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-846 1963898 1964170 1964198 "ORDSET" 1964507 T ORDSET (NIL) -9 NIL 1964671 NIL) (-845 1963417 1963539 1963732 "ORDSET-" 1963737 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-844 1962051 1962808 1962836 "ORDRING" 1963038 T ORDRING (NIL) -9 NIL 1963163 NIL) (-843 1961696 1961790 1961934 "ORDRING-" 1961939 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-842 1961102 1961539 1961567 "ORDMON" 1961572 T ORDMON (NIL) -9 NIL 1961593 NIL) (-841 1960264 1960411 1960606 "ORDFUNS" 1960951 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-840 1959628 1960021 1960049 "ORDFIN" 1960114 T ORDFIN (NIL) -9 NIL 1960188 NIL) (-839 1956220 1958214 1958623 "ORDCOMP" 1959252 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-838 1955486 1955613 1955799 "ORDCOMP2" 1956080 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-837 1952094 1952977 1953791 "OPTPROB" 1954692 T OPTPROB (NIL) -8 NIL NIL NIL) (-836 1948896 1949535 1950239 "OPTPACK" 1951410 T OPTPACK (NIL) -7 NIL NIL NIL) (-835 1946609 1947349 1947377 "OPTCAT" 1948196 T OPTCAT (NIL) -9 NIL 1948846 NIL) (-834 1946052 1946286 1946391 "OPSIG" 1946524 T OPSIG (NIL) -8 NIL NIL NIL) (-833 1945820 1945859 1945925 "OPQUERY" 1946006 T OPQUERY (NIL) -7 NIL NIL NIL) (-832 1942986 1944131 1944635 "OP" 1945349 NIL OP (NIL T) -8 NIL NIL NIL) (-831 1942521 1942692 1942733 "OPERCAT" 1942868 NIL OPERCAT (NIL T) -9 NIL 1942936 NIL) (-830 1942367 1942394 1942480 "OPERCAT-" 1942485 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-829 1939212 1941164 1941533 "ONECOMP" 1942031 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-828 1938517 1938632 1938806 "ONECOMP2" 1939084 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-827 1937936 1938042 1938172 "OMSERVER" 1938407 T OMSERVER (NIL) -7 NIL NIL NIL) (-826 1934824 1937376 1937416 "OMSAGG" 1937477 NIL OMSAGG (NIL T) -9 NIL 1937541 NIL) (-825 1933447 1933710 1933992 "OMPKG" 1934562 T OMPKG (NIL) -7 NIL NIL NIL) (-824 1932877 1932980 1933008 "OM" 1933307 T OM (NIL) -9 NIL NIL NIL) (-823 1931459 1932426 1932595 "OMLO" 1932758 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-822 1930384 1930531 1930758 "OMEXPR" 1931285 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-821 1929702 1929930 1930066 "OMERR" 1930268 T OMERR (NIL) -8 NIL NIL NIL) (-820 1928880 1929123 1929283 "OMERRK" 1929562 T OMERRK (NIL) -8 NIL NIL NIL) (-819 1928358 1928557 1928665 "OMENC" 1928792 T OMENC (NIL) -8 NIL NIL NIL) (-818 1922253 1923438 1924609 "OMDEV" 1927207 T OMDEV (NIL) -8 NIL NIL NIL) (-817 1921322 1921493 1921687 "OMCONN" 1922079 T OMCONN (NIL) -8 NIL NIL NIL) (-816 1919943 1920885 1920913 "OINTDOM" 1920918 T OINTDOM (NIL) -9 NIL 1920939 NIL) (-815 1915749 1916933 1917649 "OFMONOID" 1919259 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-814 1915187 1915686 1915731 "ODVAR" 1915736 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-813 1912645 1914932 1915087 "ODR" 1915092 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-812 1904989 1912421 1912547 "ODPOL" 1912552 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-811 1898865 1904861 1904966 "ODP" 1904971 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-810 1897631 1897846 1898121 "ODETOOLS" 1898639 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-809 1894600 1895256 1895972 "ODESYS" 1896964 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-808 1889482 1890390 1891415 "ODERTRIC" 1893675 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-807 1888908 1888990 1889184 "ODERED" 1889394 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-806 1885796 1886344 1887021 "ODERAT" 1888331 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-805 1882756 1883220 1883817 "ODEPRRIC" 1885325 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-804 1880726 1881295 1881781 "ODEPROB" 1882290 T ODEPROB (NIL) -8 NIL NIL NIL) (-803 1877248 1877731 1878378 "ODEPRIM" 1880205 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-802 1876497 1876599 1876859 "ODEPAL" 1877140 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-801 1872659 1873450 1874314 "ODEPACK" 1875653 T ODEPACK (NIL) -7 NIL NIL NIL) (-800 1871692 1871799 1872028 "ODEINT" 1872548 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-799 1865793 1867218 1868665 "ODEIFTBL" 1870265 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-798 1861128 1861914 1862873 "ODEEF" 1864952 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-797 1860463 1860552 1860782 "ODECONST" 1861033 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-796 1858614 1859249 1859277 "ODECAT" 1859882 T ODECAT (NIL) -9 NIL 1860413 NIL) (-795 1855521 1858326 1858445 "OCT" 1858527 NIL OCT (NIL T) -8 NIL NIL NIL) (-794 1855159 1855202 1855329 "OCTCT2" 1855472 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-793 1849933 1852333 1852373 "OC" 1853470 NIL OC (NIL T) -9 NIL 1854328 NIL) (-792 1847160 1847908 1848898 "OC-" 1848992 NIL OC- (NIL T T) -8 NIL NIL NIL) (-791 1846538 1846980 1847008 "OCAMON" 1847013 T OCAMON (NIL) -9 NIL 1847034 NIL) (-790 1846095 1846410 1846438 "OASGP" 1846443 T OASGP (NIL) -9 NIL 1846463 NIL) (-789 1845382 1845845 1845873 "OAMONS" 1845913 T OAMONS (NIL) -9 NIL 1845956 NIL) (-788 1844822 1845229 1845257 "OAMON" 1845262 T OAMON (NIL) -9 NIL 1845282 NIL) (-787 1844126 1844618 1844646 "OAGROUP" 1844651 T OAGROUP (NIL) -9 NIL 1844671 NIL) (-786 1843816 1843866 1843954 "NUMTUBE" 1844070 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-785 1837389 1838907 1840443 "NUMQUAD" 1842300 T NUMQUAD (NIL) -7 NIL NIL NIL) (-784 1833145 1834133 1835158 "NUMODE" 1836384 T NUMODE (NIL) -7 NIL NIL NIL) (-783 1830526 1831380 1831408 "NUMINT" 1832331 T NUMINT (NIL) -9 NIL 1833095 NIL) (-782 1829474 1829671 1829889 "NUMFMT" 1830328 T NUMFMT (NIL) -7 NIL NIL NIL) (-781 1815833 1818778 1821310 "NUMERIC" 1826981 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-780 1810230 1815282 1815377 "NTSCAT" 1815382 NIL NTSCAT (NIL T T T T) -9 NIL 1815421 NIL) (-779 1809424 1809589 1809782 "NTPOLFN" 1810069 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-778 1797264 1806249 1807061 "NSUP" 1808645 NIL NSUP (NIL T) -8 NIL NIL NIL) (-777 1796896 1796953 1797062 "NSUP2" 1797201 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-776 1786893 1796670 1796803 "NSMP" 1796808 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-775 1785325 1785626 1785983 "NREP" 1786581 NIL NREP (NIL T) -7 NIL NIL NIL) (-774 1783916 1784168 1784526 "NPCOEF" 1785068 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-773 1782982 1783097 1783313 "NORMRETR" 1783797 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-772 1781023 1781313 1781722 "NORMPK" 1782690 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-771 1780708 1780736 1780860 "NORMMA" 1780989 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-770 1780535 1780665 1780694 "NONE" 1780699 T NONE (NIL) -8 NIL NIL NIL) (-769 1780324 1780353 1780422 "NONE1" 1780499 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-768 1779807 1779869 1780055 "NODE1" 1780256 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-767 1778078 1778901 1779156 "NNI" 1779503 T NNI (NIL) -8 NIL NIL 1779738) (-766 1776498 1776811 1777175 "NLINSOL" 1777746 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-765 1772766 1773734 1774633 "NIPROB" 1775619 T NIPROB (NIL) -8 NIL NIL NIL) (-764 1771523 1771757 1772059 "NFINTBAS" 1772528 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-763 1770697 1771173 1771214 "NETCLT" 1771386 NIL NETCLT (NIL T) -9 NIL 1771468 NIL) (-762 1769405 1769636 1769917 "NCODIV" 1770465 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-761 1769167 1769204 1769279 "NCNTFRAC" 1769362 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-760 1767347 1767711 1768131 "NCEP" 1768792 NIL NCEP (NIL T) -7 NIL NIL NIL) (-759 1766258 1766997 1767025 "NASRING" 1767135 T NASRING (NIL) -9 NIL 1767209 NIL) (-758 1766053 1766097 1766191 "NASRING-" 1766196 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-757 1765206 1765705 1765733 "NARNG" 1765850 T NARNG (NIL) -9 NIL 1765941 NIL) (-756 1764898 1764965 1765099 "NARNG-" 1765104 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-755 1763777 1763984 1764219 "NAGSP" 1764683 T NAGSP (NIL) -7 NIL NIL NIL) (-754 1755049 1756733 1758406 "NAGS" 1762124 T NAGS (NIL) -7 NIL NIL NIL) (-753 1753597 1753905 1754236 "NAGF07" 1754738 T NAGF07 (NIL) -7 NIL NIL NIL) (-752 1748135 1749426 1750733 "NAGF04" 1752310 T NAGF04 (NIL) -7 NIL NIL NIL) (-751 1741103 1742717 1744350 "NAGF02" 1746522 T NAGF02 (NIL) -7 NIL NIL NIL) (-750 1736327 1737427 1738544 "NAGF01" 1740006 T NAGF01 (NIL) -7 NIL NIL NIL) (-749 1729955 1731521 1733106 "NAGE04" 1734762 T NAGE04 (NIL) -7 NIL NIL NIL) (-748 1721124 1723245 1725375 "NAGE02" 1727845 T NAGE02 (NIL) -7 NIL NIL NIL) (-747 1717077 1718024 1718988 "NAGE01" 1720180 T NAGE01 (NIL) -7 NIL NIL NIL) (-746 1714872 1715406 1715964 "NAGD03" 1716539 T NAGD03 (NIL) -7 NIL NIL NIL) (-745 1706622 1708550 1710504 "NAGD02" 1712938 T NAGD02 (NIL) -7 NIL NIL NIL) (-744 1700433 1701858 1703298 "NAGD01" 1705202 T NAGD01 (NIL) -7 NIL NIL NIL) (-743 1696642 1697464 1698301 "NAGC06" 1699616 T NAGC06 (NIL) -7 NIL NIL NIL) (-742 1695107 1695439 1695795 "NAGC05" 1696306 T NAGC05 (NIL) -7 NIL NIL NIL) (-741 1694483 1694602 1694746 "NAGC02" 1694983 T NAGC02 (NIL) -7 NIL NIL NIL) (-740 1693543 1694100 1694140 "NAALG" 1694219 NIL NAALG (NIL T) -9 NIL 1694280 NIL) (-739 1693378 1693407 1693497 "NAALG-" 1693502 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-738 1687328 1688436 1689623 "MULTSQFR" 1692274 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-737 1686647 1686722 1686906 "MULTFACT" 1687240 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-736 1679740 1683610 1683663 "MTSCAT" 1684733 NIL MTSCAT (NIL T T) -9 NIL 1685247 NIL) (-735 1679452 1679506 1679598 "MTHING" 1679680 NIL MTHING (NIL T) -7 NIL NIL NIL) (-734 1679244 1679277 1679337 "MSYSCMD" 1679412 T MSYSCMD (NIL) -7 NIL NIL NIL) (-733 1675356 1677999 1678319 "MSET" 1678957 NIL MSET (NIL T) -8 NIL NIL NIL) (-732 1672451 1674917 1674958 "MSETAGG" 1674963 NIL MSETAGG (NIL T) -9 NIL 1674997 NIL) (-731 1668334 1669830 1670575 "MRING" 1671751 NIL MRING (NIL T T) -8 NIL NIL NIL) (-730 1667900 1667967 1668098 "MRF2" 1668261 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-729 1667518 1667553 1667697 "MRATFAC" 1667859 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-728 1665130 1665425 1665856 "MPRFF" 1667223 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-727 1659190 1664984 1665081 "MPOLY" 1665086 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-726 1658680 1658715 1658923 "MPCPF" 1659149 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-725 1658194 1658237 1658421 "MPC3" 1658631 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-724 1657389 1657470 1657691 "MPC2" 1658109 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-723 1655690 1656027 1656417 "MONOTOOL" 1657049 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-722 1654941 1655232 1655260 "MONOID" 1655479 T MONOID (NIL) -9 NIL 1655626 NIL) (-721 1654487 1654606 1654787 "MONOID-" 1654792 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-720 1645346 1651254 1651313 "MONOGEN" 1651987 NIL MONOGEN (NIL T T) -9 NIL 1652443 NIL) (-719 1642564 1643299 1644299 "MONOGEN-" 1644418 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-718 1641423 1641843 1641871 "MONADWU" 1642263 T MONADWU (NIL) -9 NIL 1642501 NIL) (-717 1640795 1640954 1641202 "MONADWU-" 1641207 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-716 1640180 1640398 1640426 "MONAD" 1640633 T MONAD (NIL) -9 NIL 1640745 NIL) (-715 1639865 1639943 1640075 "MONAD-" 1640080 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-714 1638181 1638778 1639057 "MOEBIUS" 1639618 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-713 1637573 1637951 1637991 "MODULE" 1637996 NIL MODULE (NIL T) -9 NIL 1638022 NIL) (-712 1637141 1637237 1637427 "MODULE-" 1637432 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-711 1634856 1635505 1635832 "MODRING" 1636965 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-710 1631842 1632961 1633482 "MODOP" 1634385 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-709 1630457 1630909 1631186 "MODMONOM" 1631705 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-708 1620264 1628748 1629162 "MODMON" 1630094 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-707 1617455 1619108 1619384 "MODFIELD" 1620139 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-706 1616459 1616736 1616926 "MMLFORM" 1617285 T MMLFORM (NIL) -8 NIL NIL NIL) (-705 1615985 1616028 1616207 "MMAP" 1616410 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-704 1614202 1614935 1614976 "MLO" 1615399 NIL MLO (NIL T) -9 NIL 1615641 NIL) (-703 1611569 1612084 1612686 "MLIFT" 1613683 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-702 1610960 1611044 1611198 "MKUCFUNC" 1611480 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-701 1610559 1610629 1610752 "MKRECORD" 1610883 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-700 1609607 1609768 1609996 "MKFUNC" 1610370 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-699 1608995 1609099 1609255 "MKFLCFN" 1609490 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-698 1608538 1608905 1608964 "MKCHSET" 1608969 NIL MKCHSET (NIL T) -8 NIL NIL NIL) (-697 1607815 1607917 1608102 "MKBCFUNC" 1608431 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-696 1604557 1607369 1607505 "MINT" 1607699 T MINT (NIL) -8 NIL NIL NIL) (-695 1603369 1603612 1603889 "MHROWRED" 1604312 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-694 1598795 1601904 1602309 "MFLOAT" 1602984 T MFLOAT (NIL) -8 NIL NIL NIL) (-693 1598152 1598228 1598399 "MFINFACT" 1598707 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-692 1594467 1595315 1596199 "MESH" 1597288 T MESH (NIL) -7 NIL NIL NIL) (-691 1592857 1593169 1593522 "MDDFACT" 1594154 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-690 1589699 1592016 1592057 "MDAGG" 1592312 NIL MDAGG (NIL T) -9 NIL 1592455 NIL) (-689 1579477 1588992 1589199 "MCMPLX" 1589512 T MCMPLX (NIL) -8 NIL NIL NIL) (-688 1578618 1578764 1578964 "MCDEN" 1579326 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-687 1576508 1576778 1577158 "MCALCFN" 1578348 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-686 1575433 1575673 1575906 "MAYBE" 1576314 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-685 1573045 1573568 1574130 "MATSTOR" 1574904 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-684 1569051 1572417 1572665 "MATRIX" 1572830 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-683 1564820 1565524 1566260 "MATLIN" 1568408 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-682 1554974 1558112 1558189 "MATCAT" 1563069 NIL MATCAT (NIL T T T) -9 NIL 1564486 NIL) (-681 1551338 1552351 1553707 "MATCAT-" 1553712 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-680 1549932 1550085 1550418 "MATCAT2" 1551173 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-679 1548044 1548368 1548752 "MAPPKG3" 1549607 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-678 1547025 1547198 1547420 "MAPPKG2" 1547868 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-677 1545524 1545808 1546135 "MAPPKG1" 1546731 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-676 1544630 1544930 1545107 "MAPPAST" 1545367 T MAPPAST (NIL) -8 NIL NIL NIL) (-675 1544241 1544299 1544422 "MAPHACK3" 1544566 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-674 1543833 1543894 1544008 "MAPHACK2" 1544173 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-673 1543271 1543374 1543516 "MAPHACK1" 1543724 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-672 1541377 1541971 1542275 "MAGMA" 1542999 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-671 1540883 1541101 1541192 "MACROAST" 1541306 T MACROAST (NIL) -8 NIL NIL NIL) (-670 1537350 1539122 1539583 "M3D" 1540455 NIL M3D (NIL T) -8 NIL NIL NIL) (-669 1531504 1535719 1535760 "LZSTAGG" 1536542 NIL LZSTAGG (NIL T) -9 NIL 1536837 NIL) (-668 1527478 1528635 1530092 "LZSTAGG-" 1530097 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-667 1524592 1525369 1525856 "LWORD" 1527023 NIL LWORD (NIL T) -8 NIL NIL NIL) (-666 1524195 1524396 1524471 "LSTAST" 1524537 T LSTAST (NIL) -8 NIL NIL NIL) (-665 1517396 1523966 1524100 "LSQM" 1524105 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-664 1516620 1516759 1516987 "LSPP" 1517251 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-663 1514432 1514733 1515189 "LSMP" 1516309 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-662 1511211 1511885 1512615 "LSMP1" 1513734 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-661 1505136 1510378 1510419 "LSAGG" 1510481 NIL LSAGG (NIL T) -9 NIL 1510559 NIL) (-660 1501831 1502755 1503968 "LSAGG-" 1503973 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-659 1499457 1500975 1501224 "LPOLY" 1501626 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-658 1499039 1499124 1499247 "LPEFRAC" 1499366 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-657 1497386 1498133 1498386 "LO" 1498871 NIL LO (NIL T T T) -8 NIL NIL NIL) (-656 1497038 1497150 1497178 "LOGIC" 1497289 T LOGIC (NIL) -9 NIL 1497370 NIL) (-655 1496900 1496923 1496994 "LOGIC-" 1496999 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-654 1496093 1496233 1496426 "LODOOPS" 1496756 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-653 1493551 1496009 1496075 "LODO" 1496080 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-652 1492089 1492324 1492677 "LODOF" 1493298 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-651 1488445 1490842 1490883 "LODOCAT" 1491321 NIL LODOCAT (NIL T) -9 NIL 1491532 NIL) (-650 1488178 1488236 1488363 "LODOCAT-" 1488368 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-649 1485533 1488019 1488137 "LODO2" 1488142 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-648 1483003 1485470 1485515 "LODO1" 1485520 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-647 1481863 1482028 1482340 "LODEEF" 1482826 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-646 1477149 1479993 1480034 "LNAGG" 1480981 NIL LNAGG (NIL T) -9 NIL 1481425 NIL) (-645 1476296 1476510 1476852 "LNAGG-" 1476857 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-644 1472459 1473221 1473860 "LMOPS" 1475711 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-643 1471854 1472216 1472257 "LMODULE" 1472318 NIL LMODULE (NIL T) -9 NIL 1472360 NIL) (-642 1469100 1471499 1471622 "LMDICT" 1471764 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-641 1468826 1469008 1469068 "LITERAL" 1469073 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-640 1462053 1467772 1468070 "LIST" 1468561 NIL LIST (NIL T) -8 NIL NIL NIL) (-639 1461578 1461652 1461791 "LIST3" 1461973 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-638 1460585 1460763 1460991 "LIST2" 1461396 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-637 1458719 1459031 1459430 "LIST2MAP" 1460232 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-636 1457449 1458085 1458126 "LINEXP" 1458381 NIL LINEXP (NIL T) -9 NIL 1458530 NIL) (-635 1456096 1456356 1456653 "LINDEP" 1457201 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-634 1452863 1453582 1454359 "LIMITRF" 1455351 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-633 1451139 1451434 1451850 "LIMITPS" 1452558 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-632 1445594 1450650 1450878 "LIE" 1450960 NIL LIE (NIL T T) -8 NIL NIL NIL) (-631 1444643 1445086 1445126 "LIECAT" 1445266 NIL LIECAT (NIL T) -9 NIL 1445417 NIL) (-630 1444484 1444511 1444599 "LIECAT-" 1444604 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-629 1437096 1443933 1444098 "LIB" 1444339 T LIB (NIL) -8 NIL NIL NIL) (-628 1432733 1433614 1434549 "LGROBP" 1436213 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-627 1430599 1430873 1431235 "LF" 1432454 NIL LF (NIL T T) -7 NIL NIL NIL) (-626 1429439 1430131 1430159 "LFCAT" 1430366 T LFCAT (NIL) -9 NIL 1430505 NIL) (-625 1426343 1426971 1427659 "LEXTRIPK" 1428803 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-624 1423114 1423913 1424416 "LEXP" 1425923 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-623 1422617 1422835 1422927 "LETAST" 1423042 T LETAST (NIL) -8 NIL NIL NIL) (-622 1421015 1421328 1421729 "LEADCDET" 1422299 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-621 1420205 1420279 1420508 "LAZM3PK" 1420936 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-620 1415160 1418282 1418820 "LAUPOL" 1419717 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-619 1414725 1414769 1414937 "LAPLACE" 1415110 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-618 1412699 1413826 1414077 "LA" 1414558 NIL LA (NIL T T T) -8 NIL NIL NIL) (-617 1411780 1412330 1412371 "LALG" 1412433 NIL LALG (NIL T) -9 NIL 1412492 NIL) (-616 1411494 1411553 1411689 "LALG-" 1411694 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-615 1411329 1411353 1411394 "KVTFROM" 1411456 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-614 1410132 1410546 1410775 "KTVLOGIC" 1411120 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-613 1409967 1409991 1410032 "KRCFROM" 1410094 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-612 1408871 1409058 1409357 "KOVACIC" 1409767 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-611 1408706 1408730 1408771 "KONVERT" 1408833 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-610 1408541 1408565 1408606 "KOERCE" 1408668 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-609 1406275 1407035 1407428 "KERNEL" 1408180 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-608 1405777 1405858 1405988 "KERNEL2" 1406189 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-607 1399628 1404316 1404370 "KDAGG" 1404747 NIL KDAGG (NIL T T) -9 NIL 1404953 NIL) (-606 1399157 1399281 1399486 "KDAGG-" 1399491 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-605 1392332 1398818 1398973 "KAFILE" 1399035 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-604 1386787 1391843 1392071 "JORDAN" 1392153 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-603 1386193 1386436 1386557 "JOINAST" 1386686 T JOINAST (NIL) -8 NIL NIL NIL) (-602 1386039 1386098 1386153 "JAVACODE" 1386158 T JAVACODE (NIL) -8 NIL NIL NIL) (-601 1382338 1384244 1384298 "IXAGG" 1385227 NIL IXAGG (NIL T T) -9 NIL 1385686 NIL) (-600 1381257 1381563 1381982 "IXAGG-" 1381987 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-599 1376837 1381179 1381238 "IVECTOR" 1381243 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-598 1375603 1375840 1376106 "ITUPLE" 1376604 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-597 1374039 1374216 1374522 "ITRIGMNP" 1375425 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-596 1372784 1372988 1373271 "ITFUN3" 1373815 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-595 1372416 1372473 1372582 "ITFUN2" 1372721 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-594 1370253 1371278 1371577 "ITAYLOR" 1372150 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-593 1359236 1364390 1365553 "ISUPS" 1369123 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-592 1358340 1358480 1358716 "ISUMP" 1359083 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-591 1353604 1358141 1358220 "ISTRING" 1358293 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-590 1353107 1353325 1353417 "ISAST" 1353532 T ISAST (NIL) -8 NIL NIL NIL) (-589 1352317 1352398 1352614 "IRURPK" 1353021 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-588 1351253 1351454 1351694 "IRSN" 1352097 T IRSN (NIL) -7 NIL NIL NIL) (-587 1349282 1349637 1350073 "IRRF2F" 1350891 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-586 1349029 1349067 1349143 "IRREDFFX" 1349238 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-585 1347644 1347903 1348202 "IROOT" 1348762 NIL IROOT (NIL T) -7 NIL NIL NIL) (-584 1344276 1345328 1346020 "IR" 1346984 NIL IR (NIL T) -8 NIL NIL NIL) (-583 1341889 1342384 1342950 "IR2" 1343754 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-582 1340961 1341074 1341295 "IR2F" 1341772 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-581 1340752 1340786 1340846 "IPRNTPK" 1340921 T IPRNTPK (NIL) -7 NIL NIL NIL) (-580 1337371 1340641 1340710 "IPF" 1340715 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-579 1335734 1337296 1337353 "IPADIC" 1337358 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-578 1335074 1335294 1335424 "IP4ADDR" 1335624 T IP4ADDR (NIL) -8 NIL NIL NIL) (-577 1334574 1334778 1334888 "IOMODE" 1334984 T IOMODE (NIL) -8 NIL NIL NIL) (-576 1333647 1334171 1334298 "IOBFILE" 1334467 T IOBFILE (NIL) -8 NIL NIL NIL) (-575 1333135 1333551 1333579 "IOBCON" 1333584 T IOBCON (NIL) -9 NIL 1333605 NIL) (-574 1332632 1332690 1332880 "INVLAPLA" 1333071 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-573 1322281 1324634 1327020 "INTTR" 1330296 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-572 1318625 1319367 1320231 "INTTOOLS" 1321466 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-571 1318211 1318302 1318419 "INTSLPE" 1318528 T INTSLPE (NIL) -7 NIL NIL NIL) (-570 1316206 1318134 1318193 "INTRVL" 1318198 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-569 1313808 1314320 1314895 "INTRF" 1315691 NIL INTRF (NIL T) -7 NIL NIL NIL) (-568 1313219 1313316 1313458 "INTRET" 1313706 NIL INTRET (NIL T) -7 NIL NIL NIL) (-567 1311216 1311605 1312075 "INTRAT" 1312827 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-566 1308444 1309027 1309653 "INTPM" 1310701 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-565 1305147 1305746 1306491 "INTPAF" 1307830 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-564 1300326 1301288 1302339 "INTPACK" 1304116 T INTPACK (NIL) -7 NIL NIL NIL) (-563 1297238 1300055 1300182 "INT" 1300219 T INT (NIL) -8 NIL NIL NIL) (-562 1296490 1296642 1296850 "INTHERTR" 1297080 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-561 1295929 1296009 1296197 "INTHERAL" 1296404 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-560 1293775 1294218 1294675 "INTHEORY" 1295492 T INTHEORY (NIL) -7 NIL NIL NIL) (-559 1285083 1286704 1288483 "INTG0" 1292127 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-558 1265656 1270446 1275256 "INTFTBL" 1280293 T INTFTBL (NIL) -8 NIL NIL NIL) (-557 1264905 1265043 1265216 "INTFACT" 1265515 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-556 1262290 1262736 1263300 "INTEF" 1264459 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-555 1260757 1261462 1261490 "INTDOM" 1261791 T INTDOM (NIL) -9 NIL 1261998 NIL) (-554 1260126 1260300 1260542 "INTDOM-" 1260547 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-553 1256621 1258510 1258564 "INTCAT" 1259363 NIL INTCAT (NIL T) -9 NIL 1259683 NIL) (-552 1256094 1256196 1256324 "INTBIT" 1256513 T INTBIT (NIL) -7 NIL NIL NIL) (-551 1254765 1254919 1255233 "INTALG" 1255939 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-550 1254222 1254312 1254482 "INTAF" 1254669 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-549 1247676 1254032 1254172 "INTABL" 1254177 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-548 1247136 1247549 1247577 "INT8" 1247582 T INT8 (NIL) -8 NIL NIL 1247590) (-547 1246595 1247008 1247036 "INT32" 1247041 T INT32 (NIL) -8 NIL NIL 1247049) (-546 1246054 1246467 1246495 "INT16" 1246500 T INT16 (NIL) -8 NIL NIL 1246508) (-545 1241069 1243743 1243771 "INS" 1244705 T INS (NIL) -9 NIL 1245370 NIL) (-544 1238309 1239080 1240054 "INS-" 1240127 NIL INS- (NIL T) -8 NIL NIL NIL) (-543 1237084 1237311 1237609 "INPSIGN" 1238062 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-542 1236202 1236319 1236516 "INPRODPF" 1236964 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-541 1235096 1235213 1235450 "INPRODFF" 1236082 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-540 1234096 1234248 1234508 "INNMFACT" 1234932 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-539 1233293 1233390 1233578 "INMODGCD" 1233995 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-538 1231802 1232046 1232370 "INFSP" 1233038 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-537 1230986 1231103 1231286 "INFPROD0" 1231682 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-536 1227868 1229051 1229566 "INFORM" 1230479 T INFORM (NIL) -8 NIL NIL NIL) (-535 1227478 1227538 1227636 "INFORM1" 1227803 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-534 1227001 1227090 1227204 "INFINITY" 1227384 T INFINITY (NIL) -7 NIL NIL NIL) (-533 1226177 1226721 1226822 "INETCLTS" 1226920 T INETCLTS (NIL) -8 NIL NIL NIL) (-532 1224794 1225043 1225364 "INEP" 1225925 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-531 1224070 1224691 1224756 "INDE" 1224761 NIL INDE (NIL T) -8 NIL NIL NIL) (-530 1223634 1223702 1223819 "INCRMAPS" 1223997 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-529 1222452 1222903 1223109 "INBFILE" 1223448 T INBFILE (NIL) -8 NIL NIL NIL) (-528 1217763 1218688 1219632 "INBFF" 1221540 NIL INBFF (NIL T) -7 NIL NIL NIL) (-527 1216671 1216940 1216968 "INBCON" 1217481 T INBCON (NIL) -9 NIL 1217747 NIL) (-526 1215923 1216146 1216422 "INBCON-" 1216427 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-525 1215425 1215644 1215736 "INAST" 1215851 T INAST (NIL) -8 NIL NIL NIL) (-524 1214879 1215104 1215210 "IMPTAST" 1215339 T IMPTAST (NIL) -8 NIL NIL NIL) (-523 1211373 1214723 1214827 "IMATRIX" 1214832 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-522 1210085 1210208 1210523 "IMATQF" 1211229 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-521 1208305 1208532 1208869 "IMATLIN" 1209841 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-520 1202931 1208229 1208287 "ILIST" 1208292 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-519 1200884 1202791 1202904 "IIARRAY2" 1202909 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-518 1196317 1200795 1200859 "IFF" 1200864 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-517 1195691 1195934 1196050 "IFAST" 1196221 T IFAST (NIL) -8 NIL NIL NIL) (-516 1190734 1194983 1195171 "IFARRAY" 1195548 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-515 1189941 1190638 1190711 "IFAMON" 1190716 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-514 1189525 1189590 1189644 "IEVALAB" 1189851 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-513 1189200 1189268 1189428 "IEVALAB-" 1189433 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-512 1188858 1189114 1189177 "IDPO" 1189182 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-511 1188135 1188747 1188822 "IDPOAMS" 1188827 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-510 1187469 1188024 1188099 "IDPOAM" 1188104 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-509 1186554 1186804 1186857 "IDPC" 1187270 NIL IDPC (NIL T T) -9 NIL 1187419 NIL) (-508 1186050 1186446 1186519 "IDPAM" 1186524 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-507 1185453 1185942 1186015 "IDPAG" 1186020 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-506 1185221 1185368 1185418 "IDENT" 1185423 T IDENT (NIL) -8 NIL NIL NIL) (-505 1181476 1182324 1183219 "IDECOMP" 1184378 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-504 1174350 1175399 1176446 "IDEAL" 1180512 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-503 1173514 1173626 1173825 "ICDEN" 1174234 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-502 1172613 1172994 1173141 "ICARD" 1173387 T ICARD (NIL) -8 NIL NIL NIL) (-501 1170673 1170986 1171391 "IBPTOOLS" 1172290 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-500 1166307 1170293 1170406 "IBITS" 1170592 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-499 1163030 1163606 1164301 "IBATOOL" 1165724 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-498 1160810 1161271 1161804 "IBACHIN" 1162565 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-497 1158687 1160656 1160759 "IARRAY2" 1160764 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-496 1154840 1158613 1158670 "IARRAY1" 1158675 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-495 1148834 1153252 1153733 "IAN" 1154379 T IAN (NIL) -8 NIL NIL NIL) (-494 1148345 1148402 1148575 "IALGFACT" 1148771 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-493 1147873 1147986 1148014 "HYPCAT" 1148221 T HYPCAT (NIL) -9 NIL NIL NIL) (-492 1147411 1147528 1147714 "HYPCAT-" 1147719 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-491 1147033 1147206 1147289 "HOSTNAME" 1147348 T HOSTNAME (NIL) -8 NIL NIL NIL) (-490 1146878 1146915 1146956 "HOMOTOP" 1146961 NIL HOMOTOP (NIL T) -9 NIL 1146994 NIL) (-489 1143557 1144888 1144929 "HOAGG" 1145910 NIL HOAGG (NIL T) -9 NIL 1146589 NIL) (-488 1142151 1142550 1143076 "HOAGG-" 1143081 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-487 1136190 1141746 1141895 "HEXADEC" 1142022 T HEXADEC (NIL) -8 NIL NIL NIL) (-486 1134938 1135160 1135423 "HEUGCD" 1135967 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-485 1134041 1134775 1134905 "HELLFDIV" 1134910 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-484 1132269 1133818 1133906 "HEAP" 1133985 NIL HEAP (NIL T) -8 NIL NIL NIL) (-483 1131560 1131821 1131955 "HEADAST" 1132155 T HEADAST (NIL) -8 NIL NIL NIL) (-482 1125480 1131475 1131537 "HDP" 1131542 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-481 1119231 1125115 1125267 "HDMP" 1125381 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-480 1118556 1118695 1118859 "HB" 1119087 T HB (NIL) -7 NIL NIL NIL) (-479 1112053 1118402 1118506 "HASHTBL" 1118511 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-478 1111556 1111774 1111866 "HASAST" 1111981 T HASAST (NIL) -8 NIL NIL NIL) (-477 1109369 1111178 1111360 "HACKPI" 1111394 T HACKPI (NIL) -8 NIL NIL NIL) (-476 1105064 1109222 1109335 "GTSET" 1109340 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-475 1098590 1104942 1105040 "GSTBL" 1105045 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-474 1090903 1097621 1097886 "GSERIES" 1098381 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-473 1090070 1090461 1090489 "GROUP" 1090692 T GROUP (NIL) -9 NIL 1090826 NIL) (-472 1089436 1089595 1089846 "GROUP-" 1089851 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-471 1087805 1088124 1088511 "GROEBSOL" 1089113 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-470 1086745 1087007 1087058 "GRMOD" 1087587 NIL GRMOD (NIL T T) -9 NIL 1087755 NIL) (-469 1086513 1086549 1086677 "GRMOD-" 1086682 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-468 1081839 1082867 1083867 "GRIMAGE" 1085533 T GRIMAGE (NIL) -8 NIL NIL NIL) (-467 1080306 1080566 1080890 "GRDEF" 1081535 T GRDEF (NIL) -7 NIL NIL NIL) (-466 1079750 1079866 1080007 "GRAY" 1080185 T GRAY (NIL) -7 NIL NIL NIL) (-465 1078963 1079343 1079394 "GRALG" 1079547 NIL GRALG (NIL T T) -9 NIL 1079640 NIL) (-464 1078624 1078697 1078860 "GRALG-" 1078865 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-463 1075428 1078209 1078387 "GPOLSET" 1078531 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-462 1074782 1074839 1075097 "GOSPER" 1075365 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-461 1070541 1071220 1071746 "GMODPOL" 1074481 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-460 1069546 1069730 1069968 "GHENSEL" 1070353 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-459 1063597 1064440 1065467 "GENUPS" 1068630 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-458 1063294 1063345 1063434 "GENUFACT" 1063540 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-457 1062706 1062783 1062948 "GENPGCD" 1063212 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-456 1062180 1062215 1062428 "GENMFACT" 1062665 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-455 1060748 1061003 1061310 "GENEEZ" 1061923 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-454 1054661 1060359 1060521 "GDMP" 1060671 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-453 1044038 1048432 1049538 "GCNAALG" 1053644 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-452 1042465 1043293 1043321 "GCDDOM" 1043576 T GCDDOM (NIL) -9 NIL 1043733 NIL) (-451 1041935 1042062 1042277 "GCDDOM-" 1042282 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-450 1040607 1040792 1041096 "GB" 1041714 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-449 1029227 1031553 1033945 "GBINTERN" 1038298 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-448 1027064 1027356 1027777 "GBF" 1028902 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-447 1025845 1026010 1026277 "GBEUCLID" 1026880 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-446 1025194 1025319 1025468 "GAUSSFAC" 1025716 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-445 1023561 1023863 1024177 "GALUTIL" 1024913 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-444 1021869 1022143 1022467 "GALPOLYU" 1023288 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-443 1019234 1019524 1019931 "GALFACTU" 1021566 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-442 1011040 1012539 1014147 "GALFACT" 1017666 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-441 1008428 1009086 1009114 "FVFUN" 1010270 T FVFUN (NIL) -9 NIL 1010990 NIL) (-440 1007694 1007876 1007904 "FVC" 1008195 T FVC (NIL) -9 NIL 1008378 NIL) (-439 1007364 1007519 1007587 "FUNDESC" 1007646 T FUNDESC (NIL) -8 NIL NIL NIL) (-438 1007006 1007161 1007242 "FUNCTION" 1007316 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-437 1004777 1005328 1005794 "FT" 1006560 T FT (NIL) -8 NIL NIL NIL) (-436 1003595 1004078 1004281 "FTEM" 1004594 T FTEM (NIL) -8 NIL NIL NIL) (-435 1001851 1002140 1002544 "FSUPFACT" 1003286 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-434 1000248 1000537 1000869 "FST" 1001539 T FST (NIL) -8 NIL NIL NIL) (-433 999419 999525 999720 "FSRED" 1000130 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-432 998098 998353 998707 "FSPRMELT" 999134 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-431 995183 995621 996120 "FSPECF" 997661 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-430 977243 985686 985726 "FS" 989574 NIL FS (NIL T) -9 NIL 991863 NIL) (-429 965893 968883 972939 "FS-" 973236 NIL FS- (NIL T T) -8 NIL NIL NIL) (-428 965407 965461 965638 "FSINT" 965834 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-427 963734 964400 964703 "FSERIES" 965186 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-426 962748 962864 963095 "FSCINT" 963614 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-425 958982 961692 961733 "FSAGG" 962103 NIL FSAGG (NIL T) -9 NIL 962362 NIL) (-424 956744 957345 958141 "FSAGG-" 958236 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-423 955786 955929 956156 "FSAGG2" 956597 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-422 953441 953720 954274 "FS2UPS" 955504 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-421 953023 953066 953221 "FS2" 953392 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-420 951880 952051 952360 "FS2EXPXP" 952848 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-419 951306 951421 951573 "FRUTIL" 951760 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-418 942761 946801 948159 "FR" 949980 NIL FR (NIL T) -8 NIL NIL NIL) (-417 937836 940479 940519 "FRNAALG" 941915 NIL FRNAALG (NIL T) -9 NIL 942522 NIL) (-416 933514 934585 935860 "FRNAALG-" 936610 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-415 933152 933195 933322 "FRNAAF2" 933465 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-414 931559 932006 932301 "FRMOD" 932964 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-413 929338 929942 930259 "FRIDEAL" 931350 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-412 928533 928620 928909 "FRIDEAL2" 929245 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-411 927666 928080 928121 "FRETRCT" 928126 NIL FRETRCT (NIL T) -9 NIL 928302 NIL) (-410 926778 927009 927360 "FRETRCT-" 927365 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-409 923990 925166 925225 "FRAMALG" 926107 NIL FRAMALG (NIL T T) -9 NIL 926399 NIL) (-408 922124 922579 923209 "FRAMALG-" 923432 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-407 916082 921599 921875 "FRAC" 921880 NIL FRAC (NIL T) -8 NIL NIL NIL) (-406 915718 915775 915882 "FRAC2" 916019 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-405 915354 915411 915518 "FR2" 915655 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-404 910027 912879 912907 "FPS" 914026 T FPS (NIL) -9 NIL 914583 NIL) (-403 909476 909585 909749 "FPS-" 909895 NIL FPS- (NIL T) -8 NIL NIL NIL) (-402 906930 908565 908593 "FPC" 908818 T FPC (NIL) -9 NIL 908960 NIL) (-401 906723 906763 906860 "FPC-" 906865 NIL FPC- (NIL T) -8 NIL NIL NIL) (-400 905601 906211 906252 "FPATMAB" 906257 NIL FPATMAB (NIL T) -9 NIL 906409 NIL) (-399 903301 903777 904203 "FPARFRAC" 905238 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-398 898695 899193 899875 "FORTRAN" 902733 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-397 896411 896911 897450 "FORT" 898176 T FORT (NIL) -7 NIL NIL NIL) (-396 894087 894649 894677 "FORTFN" 895737 T FORTFN (NIL) -9 NIL 896361 NIL) (-395 893851 893901 893929 "FORTCAT" 893988 T FORTCAT (NIL) -9 NIL 894050 NIL) (-394 891984 892467 892857 "FORMULA" 893481 T FORMULA (NIL) -8 NIL NIL NIL) (-393 891772 891802 891871 "FORMULA1" 891948 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-392 891295 891347 891520 "FORDER" 891714 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-391 890391 890555 890748 "FOP" 891122 T FOP (NIL) -7 NIL NIL NIL) (-390 888999 889671 889845 "FNLA" 890273 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-389 887754 888143 888171 "FNCAT" 888631 T FNCAT (NIL) -9 NIL 888891 NIL) (-388 887320 887713 887741 "FNAME" 887746 T FNAME (NIL) -8 NIL NIL NIL) (-387 885983 886912 886940 "FMTC" 886945 T FMTC (NIL) -9 NIL 886981 NIL) (-386 882345 883506 884135 "FMONOID" 885387 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-385 881564 882087 882236 "FM" 882241 NIL FM (NIL T T) -8 NIL NIL NIL) (-384 878988 879634 879662 "FMFUN" 880806 T FMFUN (NIL) -9 NIL 881514 NIL) (-383 878257 878438 878466 "FMC" 878756 T FMC (NIL) -9 NIL 878938 NIL) (-382 875451 876285 876339 "FMCAT" 877534 NIL FMCAT (NIL T T) -9 NIL 878029 NIL) (-381 874344 875217 875317 "FM1" 875396 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-380 872118 872534 873028 "FLOATRP" 873895 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-379 865742 869847 870468 "FLOAT" 871517 T FLOAT (NIL) -8 NIL NIL NIL) (-378 863180 863680 864258 "FLOATCP" 865209 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-377 861989 862793 862834 "FLINEXP" 862839 NIL FLINEXP (NIL T) -9 NIL 862932 NIL) (-376 861143 861378 861706 "FLINEXP-" 861711 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-375 860219 860363 860587 "FLASORT" 860995 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-374 857436 858278 858330 "FLALG" 859557 NIL FLALG (NIL T T) -9 NIL 860024 NIL) (-373 851220 854922 854963 "FLAGG" 856225 NIL FLAGG (NIL T) -9 NIL 856877 NIL) (-372 849946 850285 850775 "FLAGG-" 850780 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-371 848988 849131 849358 "FLAGG2" 849799 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-370 845963 846937 846996 "FINRALG" 848124 NIL FINRALG (NIL T T) -9 NIL 848632 NIL) (-369 845123 845352 845691 "FINRALG-" 845696 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-368 844529 844742 844770 "FINITE" 844966 T FINITE (NIL) -9 NIL 845073 NIL) (-367 836987 839148 839188 "FINAALG" 842855 NIL FINAALG (NIL T) -9 NIL 844308 NIL) (-366 832328 833369 834513 "FINAALG-" 835892 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-365 831723 832083 832186 "FILE" 832258 NIL FILE (NIL T) -8 NIL NIL NIL) (-364 830407 830719 830773 "FILECAT" 831457 NIL FILECAT (NIL T T) -9 NIL 831673 NIL) (-363 828275 829769 829797 "FIELD" 829837 T FIELD (NIL) -9 NIL 829917 NIL) (-362 826895 827280 827791 "FIELD-" 827796 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-361 824773 825530 825877 "FGROUP" 826581 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-360 823863 824027 824247 "FGLMICPK" 824605 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-359 819730 823788 823845 "FFX" 823850 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-358 819331 819392 819527 "FFSLPE" 819663 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-357 815324 816103 816899 "FFPOLY" 818567 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-356 814828 814864 815073 "FFPOLY2" 815282 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-355 810714 814747 814810 "FFP" 814815 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-354 806147 810625 810689 "FF" 810694 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-353 801308 805490 805680 "FFNBX" 806001 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-352 796282 800443 800701 "FFNBP" 801162 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-351 790950 795566 795777 "FFNB" 796115 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-350 789782 789980 790295 "FFINTBAS" 790747 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-349 786010 788189 788217 "FFIELDC" 788837 T FFIELDC (NIL) -9 NIL 789213 NIL) (-348 784673 785043 785540 "FFIELDC-" 785545 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-347 784243 784288 784412 "FFHOM" 784615 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-346 781941 782425 782942 "FFF" 783758 NIL FFF (NIL T) -7 NIL NIL NIL) (-345 777594 781683 781784 "FFCGX" 781884 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-344 773261 777326 777433 "FFCGP" 777537 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-343 768479 772988 773096 "FFCG" 773197 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-342 750312 759350 759436 "FFCAT" 764601 NIL FFCAT (NIL T T T) -9 NIL 766052 NIL) (-341 745510 746557 747871 "FFCAT-" 749101 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-340 744921 744964 745199 "FFCAT2" 745461 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-339 734133 737893 739113 "FEXPR" 743773 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-338 733133 733568 733609 "FEVALAB" 733693 NIL FEVALAB (NIL T) -9 NIL 733954 NIL) (-337 732292 732502 732840 "FEVALAB-" 732845 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-336 730885 731675 731878 "FDIV" 732191 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-335 727951 728666 728781 "FDIVCAT" 730349 NIL FDIVCAT (NIL T T T T) -9 NIL 730786 NIL) (-334 727713 727740 727910 "FDIVCAT-" 727915 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-333 726933 727020 727297 "FDIV2" 727620 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-332 725619 725878 726167 "FCPAK1" 726664 T FCPAK1 (NIL) -7 NIL NIL NIL) (-331 724747 725119 725260 "FCOMP" 725510 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-330 708484 711897 715435 "FC" 721229 T FC (NIL) -8 NIL NIL NIL) (-329 701063 705048 705088 "FAXF" 706890 NIL FAXF (NIL T) -9 NIL 707582 NIL) (-328 698342 698997 699822 "FAXF-" 700287 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-327 693442 697718 697894 "FARRAY" 698199 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-326 688695 690727 690780 "FAMR" 691803 NIL FAMR (NIL T T) -9 NIL 692263 NIL) (-325 687585 687887 688322 "FAMR-" 688327 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-324 686781 687507 687560 "FAMONOID" 687565 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-323 684593 685277 685330 "FAMONC" 686271 NIL FAMONC (NIL T T) -9 NIL 686657 NIL) (-322 683285 684347 684484 "FAGROUP" 684489 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-321 681080 681399 681802 "FACUTIL" 682966 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-320 680179 680364 680586 "FACTFUNC" 680890 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-319 672584 679430 679642 "EXPUPXS" 680035 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-318 670067 670607 671193 "EXPRTUBE" 672018 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-317 666261 666853 667590 "EXPRODE" 669406 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-316 651635 664916 665344 "EXPR" 665865 NIL EXPR (NIL T) -8 NIL NIL NIL) (-315 646042 646629 647442 "EXPR2UPS" 650933 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-314 645678 645735 645842 "EXPR2" 645979 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-313 637083 644810 645107 "EXPEXPAN" 645515 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-312 636910 637040 637069 "EXIT" 637074 T EXIT (NIL) -8 NIL NIL NIL) (-311 636417 636634 636725 "EXITAST" 636839 T EXITAST (NIL) -8 NIL NIL NIL) (-310 636044 636106 636219 "EVALCYC" 636349 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-309 635585 635703 635744 "EVALAB" 635914 NIL EVALAB (NIL T) -9 NIL 636018 NIL) (-308 635066 635188 635409 "EVALAB-" 635414 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-307 632534 633802 633830 "EUCDOM" 634385 T EUCDOM (NIL) -9 NIL 634735 NIL) (-306 630939 631381 631971 "EUCDOM-" 631976 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-305 618479 621237 623987 "ESTOOLS" 628209 T ESTOOLS (NIL) -7 NIL NIL NIL) (-304 618111 618168 618277 "ESTOOLS2" 618416 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-303 617862 617904 617984 "ESTOOLS1" 618063 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-302 611767 613495 613523 "ES" 616291 T ES (NIL) -9 NIL 617700 NIL) (-301 606715 608001 609818 "ES-" 609982 NIL ES- (NIL T) -8 NIL NIL NIL) (-300 603090 603850 604630 "ESCONT" 605955 T ESCONT (NIL) -7 NIL NIL NIL) (-299 602835 602867 602949 "ESCONT1" 603052 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-298 602510 602560 602660 "ES2" 602779 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-297 602140 602198 602307 "ES1" 602446 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-296 601356 601485 601661 "ERROR" 601984 T ERROR (NIL) -7 NIL NIL NIL) (-295 594859 601215 601306 "EQTBL" 601311 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-294 587416 590173 591622 "EQ" 593443 NIL -3299 (NIL T) -8 NIL NIL NIL) (-293 587048 587105 587214 "EQ2" 587353 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-292 582340 583386 584479 "EP" 585987 NIL EP (NIL T) -7 NIL NIL NIL) (-291 580922 581223 581540 "ENV" 582043 T ENV (NIL) -8 NIL NIL NIL) (-290 580101 580621 580649 "ENTIRER" 580654 T ENTIRER (NIL) -9 NIL 580700 NIL) (-289 576603 578056 578426 "EMR" 579900 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-288 575747 575932 575986 "ELTAGG" 576366 NIL ELTAGG (NIL T T) -9 NIL 576577 NIL) (-287 575466 575528 575669 "ELTAGG-" 575674 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-286 575255 575284 575338 "ELTAB" 575422 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-285 574381 574527 574726 "ELFUTS" 575106 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-284 574123 574179 574207 "ELEMFUN" 574312 T ELEMFUN (NIL) -9 NIL NIL NIL) (-283 573993 574014 574082 "ELEMFUN-" 574087 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-282 568884 572093 572134 "ELAGG" 573074 NIL ELAGG (NIL T) -9 NIL 573537 NIL) (-281 567169 567603 568266 "ELAGG-" 568271 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-280 565826 566106 566401 "ELABEXPR" 566894 T ELABEXPR (NIL) -8 NIL NIL NIL) (-279 558692 560493 561320 "EFUPXS" 565102 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-278 552142 553943 554753 "EFULS" 557968 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-277 549564 549922 550401 "EFSTRUC" 551774 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-276 538636 540201 541761 "EF" 548079 NIL EF (NIL T T) -7 NIL NIL NIL) (-275 537737 538121 538270 "EAB" 538507 T EAB (NIL) -8 NIL NIL NIL) (-274 536946 537696 537724 "E04UCFA" 537729 T E04UCFA (NIL) -8 NIL NIL NIL) (-273 536155 536905 536933 "E04NAFA" 536938 T E04NAFA (NIL) -8 NIL NIL NIL) (-272 535364 536114 536142 "E04MBFA" 536147 T E04MBFA (NIL) -8 NIL NIL NIL) (-271 534573 535323 535351 "E04JAFA" 535356 T E04JAFA (NIL) -8 NIL NIL NIL) (-270 533784 534532 534560 "E04GCFA" 534565 T E04GCFA (NIL) -8 NIL NIL NIL) (-269 532995 533743 533771 "E04FDFA" 533776 T E04FDFA (NIL) -8 NIL NIL NIL) (-268 532204 532954 532982 "E04DGFA" 532987 T E04DGFA (NIL) -8 NIL NIL NIL) (-267 526382 527729 529093 "E04AGNT" 530860 T E04AGNT (NIL) -7 NIL NIL NIL) (-266 525088 525568 525608 "DVARCAT" 526083 NIL DVARCAT (NIL T) -9 NIL 526282 NIL) (-265 524292 524504 524818 "DVARCAT-" 524823 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-264 517192 524091 524220 "DSMP" 524225 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-263 512002 513137 514205 "DROPT" 516144 T DROPT (NIL) -8 NIL NIL NIL) (-262 511667 511726 511824 "DROPT1" 511937 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-261 506782 507908 509045 "DROPT0" 510550 T DROPT0 (NIL) -7 NIL NIL NIL) (-260 505127 505452 505838 "DRAWPT" 506416 T DRAWPT (NIL) -7 NIL NIL NIL) (-259 499714 500637 501716 "DRAW" 504101 NIL DRAW (NIL T) -7 NIL NIL NIL) (-258 499347 499400 499518 "DRAWHACK" 499655 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-257 498078 498347 498638 "DRAWCX" 499076 T DRAWCX (NIL) -7 NIL NIL NIL) (-256 497594 497662 497813 "DRAWCURV" 498004 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-255 488065 490024 492139 "DRAWCFUN" 495499 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-254 484878 486760 486801 "DQAGG" 487430 NIL DQAGG (NIL T) -9 NIL 487703 NIL) (-253 473157 479856 479939 "DPOLCAT" 481791 NIL DPOLCAT (NIL T T T T) -9 NIL 482336 NIL) (-252 467996 469342 471300 "DPOLCAT-" 471305 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-251 461151 467857 467955 "DPMO" 467960 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-250 454209 460931 461098 "DPMM" 461103 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-249 453841 454128 454176 "DOMCTOR" 454181 T DOMCTOR (NIL) -8 NIL NIL NIL) (-248 453136 453363 453500 "DOMAIN" 453724 T DOMAIN (NIL) -8 NIL NIL NIL) (-247 446887 452771 452923 "DMP" 453037 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-246 446487 446543 446687 "DLP" 446825 NIL DLP (NIL T) -7 NIL NIL NIL) (-245 440357 445814 446004 "DLIST" 446329 NIL DLIST (NIL T) -8 NIL NIL NIL) (-244 437201 439210 439251 "DLAGG" 439801 NIL DLAGG (NIL T) -9 NIL 440031 NIL) (-243 436014 436644 436672 "DIVRING" 436764 T DIVRING (NIL) -9 NIL 436847 NIL) (-242 435251 435441 435741 "DIVRING-" 435746 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-241 433353 433710 434116 "DISPLAY" 434865 T DISPLAY (NIL) -7 NIL NIL NIL) (-240 427295 433267 433330 "DIRPROD" 433335 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-239 426143 426346 426611 "DIRPROD2" 427088 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-238 415406 421358 421411 "DIRPCAT" 421821 NIL DIRPCAT (NIL NIL T) -9 NIL 422661 NIL) (-237 412732 413374 414255 "DIRPCAT-" 414592 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-236 412019 412179 412365 "DIOSP" 412566 T DIOSP (NIL) -7 NIL NIL NIL) (-235 408721 410931 410972 "DIOPS" 411406 NIL DIOPS (NIL T) -9 NIL 411635 NIL) (-234 408270 408384 408575 "DIOPS-" 408580 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-233 407162 407756 407784 "DIFRING" 407971 T DIFRING (NIL) -9 NIL 408081 NIL) (-232 406808 406885 407037 "DIFRING-" 407042 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-231 404613 405851 405892 "DIFEXT" 406255 NIL DIFEXT (NIL T) -9 NIL 406549 NIL) (-230 402898 403326 403992 "DIFEXT-" 403997 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-229 400220 402430 402471 "DIAGG" 402476 NIL DIAGG (NIL T) -9 NIL 402496 NIL) (-228 399604 399761 400013 "DIAGG-" 400018 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-227 395069 398563 398840 "DHMATRIX" 399373 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-226 390681 391590 392600 "DFSFUN" 394079 T DFSFUN (NIL) -7 NIL NIL NIL) (-225 385797 389612 389924 "DFLOAT" 390389 T DFLOAT (NIL) -8 NIL NIL NIL) (-224 384025 384306 384702 "DFINTTLS" 385505 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-223 381090 382046 382446 "DERHAM" 383691 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-222 378939 380865 380954 "DEQUEUE" 381034 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-221 378154 378287 378483 "DEGRED" 378801 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-220 374549 375294 376147 "DEFINTRF" 377382 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-219 372076 372545 373144 "DEFINTEF" 374068 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-218 371453 371696 371811 "DEFAST" 371981 T DEFAST (NIL) -8 NIL NIL NIL) (-217 365492 371048 371197 "DECIMAL" 371324 T DECIMAL (NIL) -8 NIL NIL NIL) (-216 363004 363462 363968 "DDFACT" 365036 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-215 362600 362643 362794 "DBLRESP" 362955 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-214 360499 360833 361193 "DBASE" 362367 NIL DBASE (NIL T) -8 NIL NIL NIL) (-213 359768 359979 360125 "DATAARY" 360398 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-212 358901 359727 359755 "D03FAFA" 359760 T D03FAFA (NIL) -8 NIL NIL NIL) (-211 358035 358860 358888 "D03EEFA" 358893 T D03EEFA (NIL) -8 NIL NIL NIL) (-210 355985 356451 356940 "D03AGNT" 357566 T D03AGNT (NIL) -7 NIL NIL NIL) (-209 355301 355944 355972 "D02EJFA" 355977 T D02EJFA (NIL) -8 NIL NIL NIL) (-208 354617 355260 355288 "D02CJFA" 355293 T D02CJFA (NIL) -8 NIL NIL NIL) (-207 353933 354576 354604 "D02BHFA" 354609 T D02BHFA (NIL) -8 NIL NIL NIL) (-206 353249 353892 353920 "D02BBFA" 353925 T D02BBFA (NIL) -8 NIL NIL NIL) (-205 346447 348035 349641 "D02AGNT" 351663 T D02AGNT (NIL) -7 NIL NIL NIL) (-204 344216 344738 345284 "D01WGTS" 345921 T D01WGTS (NIL) -7 NIL NIL NIL) (-203 343311 344175 344203 "D01TRNS" 344208 T D01TRNS (NIL) -8 NIL NIL NIL) (-202 342406 343270 343298 "D01GBFA" 343303 T D01GBFA (NIL) -8 NIL NIL NIL) (-201 341501 342365 342393 "D01FCFA" 342398 T D01FCFA (NIL) -8 NIL NIL NIL) (-200 340596 341460 341488 "D01ASFA" 341493 T D01ASFA (NIL) -8 NIL NIL NIL) (-199 339691 340555 340583 "D01AQFA" 340588 T D01AQFA (NIL) -8 NIL NIL NIL) (-198 338786 339650 339678 "D01APFA" 339683 T D01APFA (NIL) -8 NIL NIL NIL) (-197 337881 338745 338773 "D01ANFA" 338778 T D01ANFA (NIL) -8 NIL NIL NIL) (-196 336976 337840 337868 "D01AMFA" 337873 T D01AMFA (NIL) -8 NIL NIL NIL) (-195 336071 336935 336963 "D01ALFA" 336968 T D01ALFA (NIL) -8 NIL NIL NIL) (-194 335166 336030 336058 "D01AKFA" 336063 T D01AKFA (NIL) -8 NIL NIL NIL) (-193 334261 335125 335153 "D01AJFA" 335158 T D01AJFA (NIL) -8 NIL NIL NIL) (-192 327558 329109 330670 "D01AGNT" 332720 T D01AGNT (NIL) -7 NIL NIL NIL) (-191 326895 327023 327175 "CYCLOTOM" 327426 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-190 323630 324343 325070 "CYCLES" 326188 T CYCLES (NIL) -7 NIL NIL NIL) (-189 322942 323076 323247 "CVMP" 323491 NIL CVMP (NIL T) -7 NIL NIL NIL) (-188 320713 320971 321347 "CTRIGMNP" 322670 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-187 320204 320504 320578 "CTOR" 320659 T CTOR (NIL) -8 NIL NIL NIL) (-186 319740 319935 320036 "CTORKIND" 320123 T CTORKIND (NIL) -8 NIL NIL NIL) (-185 319088 319347 319375 "CTORCAT" 319557 T CTORCAT (NIL) -9 NIL 319670 NIL) (-184 318686 318797 318956 "CTORCAT-" 318961 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-183 318202 318389 318487 "CTORCALL" 318608 T CTORCALL (NIL) -8 NIL NIL NIL) (-182 317576 317675 317828 "CSTTOOLS" 318099 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-181 313375 314032 314790 "CRFP" 316888 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-180 312877 313096 313188 "CRCEAST" 313303 T CRCEAST (NIL) -8 NIL NIL NIL) (-179 311924 312109 312337 "CRAPACK" 312681 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-178 311308 311409 311613 "CPMATCH" 311800 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-177 311033 311061 311167 "CPIMA" 311274 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-176 307397 308069 308787 "COORDSYS" 310368 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-175 306781 306910 307060 "CONTOUR" 307267 T CONTOUR (NIL) -8 NIL NIL NIL) (-174 302707 304784 305276 "CONTFRAC" 306321 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-173 302587 302608 302636 "CONDUIT" 302673 T CONDUIT (NIL) -9 NIL NIL NIL) (-172 301760 302280 302308 "COMRING" 302313 T COMRING (NIL) -9 NIL 302365 NIL) (-171 300841 301118 301302 "COMPPROP" 301596 T COMPPROP (NIL) -8 NIL NIL NIL) (-170 300502 300537 300665 "COMPLPAT" 300800 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-169 290559 300311 300420 "COMPLEX" 300425 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-168 290195 290252 290359 "COMPLEX2" 290496 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-167 289913 289948 290046 "COMPFACT" 290154 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-166 274075 284295 284335 "COMPCAT" 285339 NIL COMPCAT (NIL T) -9 NIL 286735 NIL) (-165 263591 266514 270141 "COMPCAT-" 270497 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-164 263320 263348 263451 "COMMUPC" 263557 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-163 263115 263148 263207 "COMMONOP" 263281 T COMMONOP (NIL) -7 NIL NIL NIL) (-162 262698 262866 262953 "COMM" 263048 T COMM (NIL) -8 NIL NIL NIL) (-161 262302 262502 262577 "COMMAAST" 262643 T COMMAAST (NIL) -8 NIL NIL NIL) (-160 261551 261745 261773 "COMBOPC" 262111 T COMBOPC (NIL) -9 NIL 262286 NIL) (-159 260447 260657 260899 "COMBINAT" 261341 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-158 256645 257218 257858 "COMBF" 259869 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-157 255431 255761 255996 "COLOR" 256430 T COLOR (NIL) -8 NIL NIL NIL) (-156 254934 255152 255244 "COLONAST" 255359 T COLONAST (NIL) -8 NIL NIL NIL) (-155 254574 254621 254746 "CMPLXRT" 254881 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-154 254049 254274 254373 "CLLCTAST" 254495 T CLLCTAST (NIL) -8 NIL NIL NIL) (-153 249551 250579 251659 "CLIP" 252989 T CLIP (NIL) -7 NIL NIL NIL) (-152 247933 248657 248896 "CLIF" 249378 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-151 244155 246079 246120 "CLAGG" 247049 NIL CLAGG (NIL T) -9 NIL 247585 NIL) (-150 242577 243034 243617 "CLAGG-" 243622 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-149 242121 242206 242346 "CINTSLPE" 242486 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-148 239622 240093 240641 "CHVAR" 241649 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-147 238865 239385 239413 "CHARZ" 239418 T CHARZ (NIL) -9 NIL 239433 NIL) (-146 238619 238659 238737 "CHARPOL" 238819 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-145 237746 238299 238327 "CHARNZ" 238374 T CHARNZ (NIL) -9 NIL 238430 NIL) (-144 235735 236436 236771 "CHAR" 237431 T CHAR (NIL) -8 NIL NIL NIL) (-143 235461 235522 235550 "CFCAT" 235661 T CFCAT (NIL) -9 NIL NIL NIL) (-142 234706 234817 234999 "CDEN" 235345 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-141 230698 233859 234139 "CCLASS" 234446 T CCLASS (NIL) -8 NIL NIL NIL) (-140 230005 230148 230311 "CATEGORY" 230555 T -10 (NIL) -8 NIL NIL NIL) (-139 229637 229924 229972 "CATCTOR" 229977 T CATCTOR (NIL) -8 NIL NIL NIL) (-138 229111 229337 229436 "CATAST" 229558 T CATAST (NIL) -8 NIL NIL NIL) (-137 228614 228832 228924 "CASEAST" 229039 T CASEAST (NIL) -8 NIL NIL NIL) (-136 223666 224643 225396 "CARTEN" 227917 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-135 222774 222922 223143 "CARTEN2" 223513 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-134 221116 221924 222181 "CARD" 222537 T CARD (NIL) -8 NIL NIL NIL) (-133 220719 220920 220995 "CAPSLAST" 221061 T CAPSLAST (NIL) -8 NIL NIL NIL) (-132 220091 220419 220447 "CACHSET" 220579 T CACHSET (NIL) -9 NIL 220656 NIL) (-131 219587 219883 219911 "CABMON" 219961 T CABMON (NIL) -9 NIL 220017 NIL) (-130 219087 219291 219401 "BYTEORD" 219497 T BYTEORD (NIL) -8 NIL NIL NIL) (-129 218110 218633 218769 "BYTE" 218932 T BYTE (NIL) -8 NIL NIL 219048) (-128 213519 217578 217741 "BYTEBUF" 217967 T BYTEBUF (NIL) -8 NIL NIL NIL) (-127 211076 213211 213318 "BTREE" 213445 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 208574 210724 210846 "BTOURN" 210986 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 205991 208044 208085 "BTCAT" 208153 NIL BTCAT (NIL T) -9 NIL 208230 NIL) (-124 205658 205738 205887 "BTCAT-" 205892 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 200950 204801 204829 "BTAGG" 205051 T BTAGG (NIL) -9 NIL 205212 NIL) (-122 200440 200565 200771 "BTAGG-" 200776 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 197484 199718 199933 "BSTREE" 200257 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 196622 196748 196932 "BRILL" 197340 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 193321 195348 195389 "BRAGG" 196038 NIL BRAGG (NIL T) -9 NIL 196296 NIL) (-118 191850 192256 192811 "BRAGG-" 192816 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 185114 191196 191380 "BPADICRT" 191698 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 183464 185051 185096 "BPADIC" 185101 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 183162 183192 183306 "BOUNDZRO" 183428 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 178677 179768 180635 "BOP" 182315 T BOP (NIL) -8 NIL NIL NIL) (-113 176298 176742 177262 "BOP1" 178190 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-112 175000 175722 175915 "BOOLEAN" 176125 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 174362 174740 174794 "BMODULE" 174799 NIL BMODULE (NIL T T) -9 NIL 174864 NIL) (-110 170192 174160 174233 "BITS" 174309 T BITS (NIL) -8 NIL NIL NIL) (-109 169604 169726 169868 "BINDING" 170070 T BINDING (NIL) -8 NIL NIL NIL) (-108 163646 169201 169349 "BINARY" 169476 T BINARY (NIL) -8 NIL NIL NIL) (-107 161473 162901 162942 "BGAGG" 163202 NIL BGAGG (NIL T) -9 NIL 163339 NIL) (-106 161304 161336 161427 "BGAGG-" 161432 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 160402 160688 160893 "BFUNCT" 161119 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 159092 159270 159558 "BEZOUT" 160226 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 155609 157944 158274 "BBTREE" 158795 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 155343 155396 155424 "BASTYPE" 155543 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 155196 155224 155297 "BASTYPE-" 155302 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 154630 154706 154858 "BALFACT" 155107 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 153513 154045 154231 "AUTOMOR" 154475 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 153239 153244 153270 "ATTREG" 153275 T ATTREG (NIL) -9 NIL NIL NIL) (-97 151518 151936 152288 "ATTRBUT" 152905 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 151153 151346 151412 "ATTRAST" 151470 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 150689 150802 150828 "ATRIG" 151029 T ATRIG (NIL) -9 NIL NIL NIL) (-94 150498 150539 150626 "ATRIG-" 150631 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 150169 150329 150355 "ASTCAT" 150360 T ASTCAT (NIL) -9 NIL 150390 NIL) (-92 149896 149955 150074 "ASTCAT-" 150079 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 148093 149672 149760 "ASTACK" 149839 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 146598 146895 147260 "ASSOCEQ" 147775 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 145630 146257 146381 "ASP9" 146505 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 145394 145578 145617 "ASP8" 145622 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 144263 144999 145141 "ASP80" 145283 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 143162 143898 144030 "ASP7" 144162 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 142116 142839 142957 "ASP78" 143075 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 141085 141796 141913 "ASP77" 142030 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 139997 140723 140854 "ASP74" 140985 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 138897 139632 139764 "ASP73" 139896 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 138001 138723 138823 "ASP6" 138828 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 136949 137678 137796 "ASP55" 137914 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 135899 136623 136742 "ASP50" 136861 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 134987 135600 135710 "ASP4" 135820 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 134075 134688 134798 "ASP49" 134908 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 132860 133614 133782 "ASP42" 133964 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 131637 132393 132563 "ASP41" 132747 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 130587 131314 131432 "ASP35" 131550 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130352 130535 130574 "ASP34" 130579 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 130089 130156 130232 "ASP33" 130307 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 128984 129724 129856 "ASP31" 129988 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 128749 128932 128971 "ASP30" 128976 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 128484 128553 128629 "ASP29" 128704 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128249 128432 128471 "ASP28" 128476 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 128014 128197 128236 "ASP27" 128241 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 127098 127712 127823 "ASP24" 127934 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 126175 126900 127012 "ASP20" 127017 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 125263 125876 125986 "ASP1" 126096 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 124207 124937 125056 "ASP19" 125175 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 123944 124011 124087 "ASP12" 124162 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 122796 123543 123687 "ASP10" 123831 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 120695 122640 122731 "ARRAY2" 122736 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 116511 120343 120457 "ARRAY1" 120612 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 115543 115716 115937 "ARRAY12" 116334 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 109902 111773 111848 "ARR2CAT" 114478 NIL ARR2CAT (NIL T T T) -9 NIL 115236 NIL) (-56 107336 108080 109034 "ARR2CAT-" 109039 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 106930 107163 107242 "ARITY" 107275 T ARITY (NIL) -8 NIL NIL NIL) (-54 105678 105830 106136 "APPRULE" 106766 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105329 105377 105496 "APPLYORE" 105624 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104303 104594 104789 "ANY" 105152 T ANY (NIL) -8 NIL NIL NIL) (-51 103581 103704 103861 "ANY1" 104177 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 101146 102018 102345 "ANTISYM" 103305 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 100661 100850 100947 "ANON" 101067 T ANON (NIL) -8 NIL NIL NIL) (-48 94793 99200 99654 "AN" 100225 T AN (NIL) -8 NIL NIL NIL) (-47 91049 92403 92454 "AMR" 93202 NIL AMR (NIL T T) -9 NIL 93802 NIL) (-46 90161 90382 90745 "AMR-" 90750 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74711 90078 90139 "ALIST" 90144 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71548 74305 74474 "ALGSC" 74629 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68104 68658 69265 "ALGPKG" 70988 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67381 67482 67666 "ALGMFACT" 67990 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63120 63805 64460 "ALGMANIP" 66904 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54526 62746 62896 "ALGFF" 63053 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 53722 53853 54032 "ALGFACT" 54384 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 52787 53353 53391 "ALGEBRA" 53396 NIL ALGEBRA (NIL T) -9 NIL 53437 NIL) (-37 52505 52564 52696 "ALGEBRA-" 52701 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34764 50507 50559 "ALAGG" 50695 NIL ALAGG (NIL T T) -9 NIL 50856 NIL) (-35 34300 34413 34439 "AHYP" 34640 T AHYP (NIL) -9 NIL NIL NIL) (-34 33231 33479 33505 "AGG" 34004 T AGG (NIL) -9 NIL 34283 NIL) (-33 32665 32827 33041 "AGG-" 33046 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30342 30764 31182 "AF" 32307 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 29849 30067 30157 "ADDAST" 30270 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29118 29376 29532 "ACPLOT" 29711 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18410 26331 26382 "ACFS" 27093 NIL ACFS (NIL T) -9 NIL 27332 NIL) (-28 16424 16914 17689 "ACFS-" 17694 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12697 14591 14617 "ACF" 15496 T ACF (NIL) -9 NIL 15908 NIL) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351 NIL) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804 NIL) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812 NIL) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index cc1eb45f..c3fec088 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,3164 +1,2565 @@ -(735629 . 3442698066) -(((*1 *2 *3) - (-12 (-5 *3 (-947 (-562))) (-5 *2 (-639 *1)) (-4 *1 (-1007)))) - ((*1 *2 *3) - (-12 (-5 *3 (-947 (-406 (-562)))) (-5 *2 (-639 *1)) (-4 *1 (-1007)))) - ((*1 *2 *3) (-12 (-5 *3 (-947 *1)) (-4 *1 (-1007)) (-5 *2 (-639 *1)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1164 (-562))) (-5 *2 (-639 *1)) (-4 *1 (-1007)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1164 (-406 (-562)))) (-5 *2 (-639 *1)) (-4 *1 (-1007)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1164 *1)) (-4 *1 (-1007)) (-5 *2 (-639 *1)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-843) (-362))) (-4 *3 (-1232 *4)) (-5 *2 (-639 *1)) - (-4 *1 (-1061 *4 *3))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-766)) (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) - (-4 *4 (-788)) (-4 *5 (-845)) (-4 *3 (-554))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2355 *4))) - (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4))))) -(((*1 *1) (-5 *1 (-613)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-916)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) - ((*1 *1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-262))))) -(((*1 *1 *2) - (-12 (-5 *2 (-639 (-639 *3))) (-4 *3 (-1092)) (-5 *1 (-1179 *3))))) +(735720 . 3443021573) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) + (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) + (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1249 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) + (-14 *4 *2)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 + *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 + *9) + (-12 (-5 *4 (-684 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) + (-5 *7 (-684 (-563))) + (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) + (-5 *3 (-563)) (-5 *2 (-1031)) (-5 *1 (-749))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-639 *4)) (-4 *4 (-1092)) (-4 *4 (-1207)) (-5 *2 (-112)) - (-5 *1 (-1148 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1256 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) - (-4 *5 (-1232 *4)) (-5 *2 (-683 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1232 *3)) - (-5 *2 (-683 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1168)) (-4 *5 (-362)) (-5 *2 (-1148 (-1148 (-947 *5)))) - (-5 *1 (-1264 *5)) (-5 *4 (-1148 (-947 *5)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-13 (-362) (-146))) - (-5 *2 (-639 (-2 (|:| -1300 (-766)) (|:| -2328 *4) (|:| |num| *4)))) - (-5 *1 (-398 *3 *4)) (-4 *4 (-1232 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1132 *2 *3)) (-4 *2 (-13 (-1092) (-34))) - (-4 *3 (-13 (-1092) (-34)))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-921))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-362)) (-5 *1 (-761 *2 *3)) (-4 *2 (-703 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362))))) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4407)) (-4 *1 (-489 *4)) + (-4 *4 (-1208)) (-5 *2 (-112))))) +(((*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1208)))) + ((*1 *2 *2) + (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1233 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *2) + (-12 (-4 *3 (-452)) (-4 *3 (-846)) (-4 *3 (-1034 (-563))) + (-4 *3 (-555)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) + (-4 *2 + (-13 (-363) (-302) + (-10 -8 (-15 -2143 ((-1118 *3 (-609 $)) $)) + (-15 -2154 ((-1118 *3 (-609 $)) $)) + (-15 -1693 ($ (-1118 *3 (-609 $)))))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) + (-4 *4 (-349))))) (((*1 *2 *1) - (-12 (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) - (-5 *2 (-112))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-766)) (-4 *3 (-1044)) (-4 *1 (-681 *3 *4 *5)) - (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) - ((*1 *1 *2) - (-12 (-4 *2 (-1044)) (-4 *1 (-1115 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) - (-4 *5 (-237 *3 *2))))) + (-12 (-5 *2 (-407 (-563))) (-5 *1 (-319 *3 *4 *5)) + (-4 *3 (-13 (-363) (-846))) (-14 *4 (-1169)) (-14 *5 *3)))) +(((*1 *2 *1 *3 *3) + (-12 (|has| *1 (-6 -4408)) (-4 *1 (-601 *3 *4)) (-4 *3 (-1093)) + (-4 *4 (-1208)) (-5 *2 (-1262))))) +(((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-357 *3)) (-4 *3 (-349))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-363)) (-5 *2 (-640 *3)) (-5 *1 (-941 *4 *3)) + (-4 *3 (-1233 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-938 *3) (-938 *3))) (-5 *1 (-175 *3)) - (-4 *3 (-13 (-362) (-1192) (-997)))))) + (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2315 *4))) + (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) +(((*1 *1) (-5 *1 (-1259)))) (((*1 *2 *1) - (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)) - (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-717)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-721)) (-5 *2 (-112))))) + (-12 (-5 *2 (-2 (|:| -1414 *1) (|:| -4394 *1) (|:| |associate| *1))) + (-4 *1 (-555))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997))))) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) - (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) - ((*1 *1 *1) (-4 *1 (-283))) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *1 *1) (-4 *1 (-284))) ((*1 *2 *3) - (-12 (-5 *3 (-417 *4)) (-4 *4 (-554)) - (-5 *2 (-639 (-2 (|:| -4221 (-766)) (|:| |logand| *4)))) - (-5 *1 (-319 *4)))) + (-12 (-5 *3 (-418 *4)) (-4 *4 (-555)) + (-5 *2 (-640 (-2 (|:| -2311 (-767)) (|:| |logand| *4)))) + (-5 *1 (-320 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) - (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) + (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) ((*1 *2 *1) - (-12 (-5 *2 (-658 *3 *4)) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-845)) - (-4 *4 (-13 (-171) (-712 (-406 (-562))))) (-14 *5 (-916)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1153 *3)))) + (-12 (-5 *2 (-659 *3 *4)) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) + (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917)))) ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1155 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-766)) (-4 *4 (-13 (-1044) (-712 (-406 (-562))))) - (-4 *5 (-845)) (-5 *1 (-1272 *4 *5 *2)) (-4 *2 (-1277 *5 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-766)) (-5 *1 (-1276 *3 *4)) - (-4 *4 (-712 (-406 (-562)))) (-4 *3 (-845)) (-4 *4 (-171))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-639 *4)) (-4 *4 (-362)) (-5 *2 (-1256 *4)) - (-5 *1 (-809 *4 *3)) (-4 *3 (-650 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-639 (-114)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-608 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-608 (-48))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1164 (-48))) (-5 *3 (-639 (-608 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1164 (-48))) (-5 *3 (-608 (-48))) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-362) (-843))) (-5 *1 (-180 *2 *3)) - (-4 *3 (-1232 (-168 *2))))) + (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-563))))) + (-4 *5 (-846)) (-5 *1 (-1273 *4 *5 *2)) (-4 *2 (-1278 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-916)) (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)))) - ((*1 *2 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-362)))) - ((*1 *2 *1) - (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1232 *2)) (-4 *2 (-171)))) - ((*1 *2 *1) - (-12 (-4 *4 (-1232 *2)) (-4 *2 (-987 *3)) (-5 *1 (-412 *3 *2 *4 *5)) - (-4 *3 (-306)) (-4 *5 (-13 (-408 *2 *4) (-1033 *2))))) - ((*1 *2 *1) - (-12 (-4 *4 (-1232 *2)) (-4 *2 (-987 *3)) - (-5 *1 (-413 *3 *2 *4 *5 *6)) (-4 *3 (-306)) (-4 *5 (-408 *2 *4)) - (-14 *6 (-1256 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-916)) (-4 *5 (-1044)) - (-4 *2 (-13 (-403) (-1033 *5) (-362) (-1192) (-283))) - (-5 *1 (-442 *5 *3 *2)) (-4 *3 (-1232 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-608 (-494)))) (-5 *1 (-494)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-608 (-494))) (-5 *1 (-494)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1164 (-494))) (-5 *3 (-639 (-608 (-494)))) - (-5 *1 (-494)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1164 (-494))) (-5 *3 (-608 (-494))) (-5 *1 (-494)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1256 *4)) (-5 *3 (-916)) (-4 *4 (-348)) - (-5 *1 (-527 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-451)) (-4 *5 (-719 *4 *2)) (-4 *2 (-1232 *4)) - (-5 *1 (-770 *4 *2 *5 *3)) (-4 *3 (-1232 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) - ((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-171)))) - ((*1 *1 *1) (-4 *1 (-1053)))) -(((*1 *1 *1) - (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1248 *2 *3 *4)) (-4 *2 (-1044)) (-14 *3 (-1168)) - (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-639 (-1206))) (-5 *1 (-523))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-766)) (-4 *5 (-554)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-964 *5 *3)) (-4 *3 (-1232 *5))))) -(((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-766)) (-5 *1 (-669 *2)) (-4 *2 (-1092))))) -(((*1 *2 *2) - (-12 (-5 *2 (-938 *3)) (-4 *3 (-13 (-362) (-1192) (-997))) - (-5 *1 (-175 *3))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) - (-5 *1 (-747))))) -(((*1 *2 *3) - (-12 (-5 *3 (-916)) (-5 *2 (-1164 *4)) (-5 *1 (-356 *4)) - (-4 *4 (-348))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1150)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-1261)) - (-5 *1 (-1065 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1150)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-1261)) - (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2929 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-362)) (-4 *7 (-1232 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-406 *7)) (|:| |a0| *6)) - (-2 (|:| -2929 (-406 *7)) (|:| |coeff| (-406 *7))) "failed")) - (-5 *1 (-572 *6 *7)) (-5 *3 (-406 *7))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-544))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) - (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-70 APROD)))) (-5 *4 (-224)) - (-5 *2 (-1030)) (-5 *1 (-751))))) -(((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) - (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1167)))) - (-5 *1 (-1167))))) -(((*1 *2 *3) - (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) - (-5 *1 (-972 *4 *5 *6 *3)) (-4 *3 (-1058 *4 *5 *6))))) + (-12 (-5 *2 (-767)) (-5 *1 (-1277 *3 *4)) + (-4 *4 (-713 (-407 (-563)))) (-4 *3 (-846)) (-4 *4 (-172))))) +(((*1 *1 *2) (-12 (-5 *1 (-686 *2)) (-4 *2 (-610 (-858)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045))))) +(((*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-767)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *2 (-563)) (-4 *1 (-373 *3)) (-4 *3 (-1208)) + (-4 *3 (-1093)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-373 *3)) (-4 *3 (-1208)) (-4 *3 (-1093)) + (-5 *2 (-563)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-373 *4)) (-4 *4 (-1208)) + (-5 *2 (-563)))) + ((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-529)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-563)) (-5 *3 (-141)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-563))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (-144)) (-5 *2 (-112))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-983 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-639 *3)) (-4 *3 (-1064 *5 *6 *7 *8)) (-4 *5 (-451)) - (-4 *6 (-788)) (-4 *7 (-845)) (-4 *8 (-1058 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-983 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1099 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-639 *3)) (-4 *3 (-1064 *5 *6 *7 *8)) (-4 *5 (-451)) - (-4 *6 (-788)) (-4 *7 (-845)) (-4 *8 (-1058 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1099 *5 *6 *7 *8 *3))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *5 (-1150)) - (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-82 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1030)) - (-5 *1 (-745))))) -(((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1035))))) -(((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-315 (-378))) (-5 *1 (-304))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1256 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) - (-4 *5 (-1232 *4)) (-5 *2 (-683 *4)))) - ((*1 *2) - (-12 (-4 *4 (-171)) (-4 *5 (-1232 *4)) (-5 *2 (-683 *4)) - (-5 *1 (-407 *3 *4 *5)) (-4 *3 (-408 *4 *5)))) - ((*1 *2) - (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1232 *3)) - (-5 *2 (-683 *3))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-639 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-766)) (|:| |poli| *3) - (|:| |polj| *3)))) - (-4 *5 (-788)) (-4 *3 (-944 *4 *5 *6)) (-4 *4 (-451)) (-4 *6 (-845)) - (-5 *1 (-448 *4 *5 *6 *3))))) -(((*1 *2) - (-12 (-14 *4 (-766)) (-4 *5 (-1207)) (-5 *2 (-133)) - (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-362)) (-5 *2 (-133)) (-5 *1 (-327 *3 *4)) - (-4 *3 (-328 *4)))) - ((*1 *2) - (-12 (-5 *2 (-766)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-171)))) - ((*1 *2 *1) - (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-562)) - (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-639 *6)) (-4 *6 (-845)) (-4 *4 (-362)) (-4 *5 (-788)) - (-5 *2 (-562)) (-5 *1 (-503 *4 *5 *6 *7)) (-4 *7 (-944 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-975 *3)) (-4 *3 (-1044)) (-5 *2 (-916)))) - ((*1 *2) (-12 (-4 *1 (-1263 *3)) (-4 *3 (-362)) (-5 *2 (-133))))) -(((*1 *2) - (-12 - (-5 *2 - (-1256 (-639 (-2 (|:| -2533 (-905 *3)) (|:| -2464 (-1112)))))) - (-5 *1 (-350 *3 *4)) (-14 *3 (-916)) (-14 *4 (-916)))) - ((*1 *2) - (-12 (-5 *2 (-1256 (-639 (-2 (|:| -2533 *3) (|:| -2464 (-1112)))))) - (-5 *1 (-351 *3 *4)) (-4 *3 (-348)) (-14 *4 (-3 (-1164 *3) *2)))) - ((*1 *2) - (-12 (-5 *2 (-1256 (-639 (-2 (|:| -2533 *3) (|:| -2464 (-1112)))))) - (-5 *1 (-352 *3 *4)) (-4 *3 (-348)) (-14 *4 (-916))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) - (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1167)))) - (-5 *1 (-1167))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-683 *3)) (-4 *3 (-306)) (-5 *1 (-694 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1207))))) -(((*1 *2) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) - (-4 *5 (-1232 (-406 *4))) (-5 *2 (-683 (-406 *4)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-639 (-262))) (-5 *1 (-260))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) - (-4 *4 (-788)) (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559))))) -(((*1 *2 *3) - (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *7 (-1058 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-639 *7)) (|:| |badPols| (-639 *7)))) - (-5 *1 (-972 *4 *5 *6 *7)) (-5 *3 (-639 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-136)))) - ((*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-155)))) - ((*1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1207)))) - ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-477)))) - ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-589)))) - ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-622)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1092)) - (-4 *2 (-13 (-429 *4) (-881 *3) (-610 (-887 *3)))) - (-5 *1 (-1068 *3 *4 *2)) - (-4 *4 (-13 (-1044) (-881 *3) (-845) (-610 (-887 *3)))))) - ((*1 *2 *1) - (-12 (-4 *2 (-1092)) (-5 *1 (-1157 *3 *2)) (-4 *3 (-1092))))) + (-12 (-5 *3 (-640 (-563))) (-5 *2 (-684 (-563))) (-5 *1 (-1103))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-640 (-767))) (-5 *3 (-171)) (-5 *1 (-1157 *4 *5)) + (-14 *4 (-917)) (-4 *5 (-1045))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1257 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) + (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) - (-4 *5 (-1232 (-406 *4))) - (-5 *2 (-2 (|:| |num| (-1256 *4)) (|:| |den| *4)))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-639 (-639 (-224)))) (-5 *4 (-224)) - (-5 *2 (-639 (-938 *4))) (-5 *1 (-1203)) (-5 *3 (-938 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1232 (-406 *2))) (-5 *2 (-562)) (-5 *1 (-908 *4 *3)) - (-4 *3 (-1232 (-406 *4)))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) - (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1167)))) - (-5 *1 (-1167))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) + (|partial| -12 + (-4 *3 (-13 (-846) (-1034 (-563)) (-636 (-563)) (-452))) + (-5 *2 (-839 *4)) (-5 *1 (-313 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1193) (-430 *3))) (-14 *5 (-1169)) + (-14 *6 *4))) ((*1 *2 *1) - (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)) - (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1061 *4 *3)) (-4 *4 (-13 (-843) (-362))) - (-4 *3 (-1232 *4)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-4 *1 (-756)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-683 *8)) (-4 *8 (-944 *5 *7 *6)) - (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-845) (-610 (-1168)))) - (-4 *7 (-788)) - (-5 *2 - (-639 - (-2 (|:| |eqzro| (-639 *8)) (|:| |neqzro| (-639 *8)) - (|:| |wcond| (-639 (-947 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1256 (-406 (-947 *5)))) - (|:| -4291 (-639 (-1256 (-406 (-947 *5)))))))))) - (-5 *1 (-919 *5 *6 *7 *8)) (-5 *4 (-639 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-683 *8)) (-5 *4 (-639 (-1168))) (-4 *8 (-944 *5 *7 *6)) - (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-845) (-610 (-1168)))) - (-4 *7 (-788)) - (-5 *2 - (-639 - (-2 (|:| |eqzro| (-639 *8)) (|:| |neqzro| (-639 *8)) - (|:| |wcond| (-639 (-947 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1256 (-406 (-947 *5)))) - (|:| -4291 (-639 (-1256 (-406 (-947 *5)))))))))) - (-5 *1 (-919 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-683 *7)) (-4 *7 (-944 *4 *6 *5)) - (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) - (-4 *6 (-788)) - (-5 *2 - (-639 - (-2 (|:| |eqzro| (-639 *7)) (|:| |neqzro| (-639 *7)) - (|:| |wcond| (-639 (-947 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1256 (-406 (-947 *4)))) - (|:| -4291 (-639 (-1256 (-406 (-947 *4)))))))))) - (-5 *1 (-919 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-683 *9)) (-5 *5 (-916)) (-4 *9 (-944 *6 *8 *7)) - (-4 *6 (-13 (-306) (-146))) (-4 *7 (-13 (-845) (-610 (-1168)))) - (-4 *8 (-788)) + (|partial| -12 + (-4 *3 (-13 (-846) (-1034 (-563)) (-636 (-563)) (-452))) + (-5 *2 (-839 *4)) (-5 *1 (-1243 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1193) (-430 *3))) (-14 *5 (-1169)) + (-14 *6 *4)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-545)))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-767)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-789)) + (-4 *9 (-846)) (-4 *3 (-1059 *7 *8 *9)) (-5 *2 - (-639 - (-2 (|:| |eqzro| (-639 *9)) (|:| |neqzro| (-639 *9)) - (|:| |wcond| (-639 (-947 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1256 (-406 (-947 *6)))) - (|:| -4291 (-639 (-1256 (-406 (-947 *6)))))))))) - (-5 *1 (-919 *6 *7 *8 *9)) (-5 *4 (-639 *9)))) + (-2 (|:| |done| (-640 *4)) + (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2059 *4)))))) + (-5 *1 (-1063 *7 *8 *9 *3 *4)) (-4 *4 (-1065 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-683 *9)) (-5 *4 (-639 (-1168))) (-5 *5 (-916)) - (-4 *9 (-944 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) - (-4 *7 (-13 (-845) (-610 (-1168)))) (-4 *8 (-788)) + (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) + (-4 *3 (-1059 *6 *7 *8)) (-5 *2 - (-639 - (-2 (|:| |eqzro| (-639 *9)) (|:| |neqzro| (-639 *9)) - (|:| |wcond| (-639 (-947 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1256 (-406 (-947 *6)))) - (|:| -4291 (-639 (-1256 (-406 (-947 *6)))))))))) - (-5 *1 (-919 *6 *7 *8 *9)))) + (-2 (|:| |done| (-640 *4)) + (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2059 *4)))))) + (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-683 *8)) (-5 *4 (-916)) (-4 *8 (-944 *5 *7 *6)) - (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-845) (-610 (-1168)))) - (-4 *7 (-788)) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) (-5 *2 - (-639 - (-2 (|:| |eqzro| (-639 *8)) (|:| |neqzro| (-639 *8)) - (|:| |wcond| (-639 (-947 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1256 (-406 (-947 *5)))) - (|:| -4291 (-639 (-1256 (-406 (-947 *5)))))))))) - (-5 *1 (-919 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-683 *9)) (-5 *4 (-639 *9)) (-5 *5 (-1150)) - (-4 *9 (-944 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) - (-4 *7 (-13 (-845) (-610 (-1168)))) (-4 *8 (-788)) (-5 *2 (-562)) - (-5 *1 (-919 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-683 *9)) (-5 *4 (-639 (-1168))) (-5 *5 (-1150)) - (-4 *9 (-944 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) - (-4 *7 (-13 (-845) (-610 (-1168)))) (-4 *8 (-788)) (-5 *2 (-562)) - (-5 *1 (-919 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-683 *8)) (-5 *4 (-1150)) (-4 *8 (-944 *5 *7 *6)) - (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-845) (-610 (-1168)))) - (-4 *7 (-788)) (-5 *2 (-562)) (-5 *1 (-919 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-683 *10)) (-5 *4 (-639 *10)) (-5 *5 (-916)) - (-5 *6 (-1150)) (-4 *10 (-944 *7 *9 *8)) (-4 *7 (-13 (-306) (-146))) - (-4 *8 (-13 (-845) (-610 (-1168)))) (-4 *9 (-788)) (-5 *2 (-562)) - (-5 *1 (-919 *7 *8 *9 *10)))) + (-2 (|:| |done| (-640 *4)) + (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2059 *4)))))) + (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-683 *10)) (-5 *4 (-639 (-1168))) (-5 *5 (-916)) - (-5 *6 (-1150)) (-4 *10 (-944 *7 *9 *8)) (-4 *7 (-13 (-306) (-146))) - (-4 *8 (-13 (-845) (-610 (-1168)))) (-4 *9 (-788)) (-5 *2 (-562)) - (-5 *1 (-919 *7 *8 *9 *10)))) + (-12 (-5 *5 (-767)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-789)) + (-4 *9 (-846)) (-4 *3 (-1059 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-640 *4)) + (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2059 *4)))))) + (-5 *1 (-1138 *7 *8 *9 *3 *4)) (-4 *4 (-1102 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-683 *9)) (-5 *4 (-916)) (-5 *5 (-1150)) - (-4 *9 (-944 *6 *8 *7)) (-4 *6 (-13 (-306) (-146))) - (-4 *7 (-13 (-845) (-610 (-1168)))) (-4 *8 (-788)) (-5 *2 (-562)) - (-5 *1 (-919 *6 *7 *8 *9))))) -(((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-5 *1 (-326 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-5 *1 (-515 *3 *4)) - (-14 *4 (-562))))) -(((*1 *2 *3) - (-12 (-5 *3 (-639 *2)) (-4 *2 (-1232 *4)) (-5 *1 (-538 *4 *2 *5 *6)) - (-4 *4 (-306)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-766)))))) -(((*1 *2 *1) (-12 (-4 *1 (-526)) (-5 *2 (-685 (-545)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258))))) -(((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-136)))) - ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-155)))) - ((*1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1207)))) - ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-477)))) - ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-589)))) - ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-622)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1092)) - (-4 *2 (-13 (-429 *4) (-881 *3) (-610 (-887 *3)))) - (-5 *1 (-1068 *3 *4 *2)) - (-4 *4 (-13 (-1044) (-881 *3) (-845) (-610 (-887 *3)))))) - ((*1 *2 *1) - (-12 (-4 *2 (-1092)) (-5 *1 (-1157 *2 *3)) (-4 *3 (-1092))))) -(((*1 *1 *2) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-108)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-535))) (-5 *1 (-535))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-173 *3)) (-4 *3 (-306)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-668 *3)) (-4 *3 (-1207)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-766)) (-4 *1 (-735 *3 *4)) (-4 *3 (-1044)) - (-4 *4 (-845)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-864 *3)) (-5 *2 (-562)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-639 *3)) (-4 *1 (-975 *3)) (-4 *3 (-1044)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-639 *1)) (-5 *3 (-639 *7)) (-4 *1 (-1064 *4 *5 *6 *7)) - (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *7 (-1058 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) - (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 *1)) - (-4 *1 (-1064 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-639 *1)) (-4 *1 (-1064 *4 *5 *6 *3)) (-4 *4 (-451)) - (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-639 *1)) - (-4 *1 (-1064 *4 *5 *6 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-788)) - (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1234 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-787))))) -(((*1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1177))))) -(((*1 *1 *2 *2) - (-12 + (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) + (-4 *3 (-1059 *6 *7 *8)) (-5 *2 - (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) - (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1167)))) - (-5 *1 (-1167))))) -(((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1168)) (-5 *1 (-669 *3)) (-4 *3 (-1092))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1092)) - (-4 *6 (-1092)) (-4 *2 (-1092)) (-5 *1 (-674 *5 *6 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1207))))) -(((*1 *1 *2) (-12 (-5 *2 (-639 (-378))) (-5 *1 (-262)))) - ((*1 *1) - (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-554)) (-4 *2 (-171)))) - ((*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-554))))) -(((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) - (-4 *3 (-366 *4)))) - ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *5 (-112)) - (-5 *2 (-1030)) (-5 *1 (-740))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-378)) (-5 *1 (-1056))))) -(((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1035))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-639 (-639 (-938 (-224))))) (-5 *4 (-869)) - (-5 *5 (-916)) (-5 *6 (-639 (-262))) (-5 *2 (-467)) (-5 *1 (-1260)))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 (-639 (-938 (-224))))) (-5 *2 (-467)) - (-5 *1 (-1260)))) + (-2 (|:| |done| (-640 *4)) + (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2059 *4)))))) + (-5 *1 (-1138 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-639 (-938 (-224))))) (-5 *4 (-639 (-262))) - (-5 *2 (-467)) (-5 *1 (-1260))))) -(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-3 (-112) (-639 *1))) - (-4 *1 (-1064 *4 *5 *6 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) - (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *5 (-224)) - (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1030)) - (-5 *1 (-744))))) -(((*1 *2) (-12 (-5 *2 (-1125 (-224))) (-5 *1 (-1190))))) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-640 *4)) + (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2059 *4)))))) + (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) + (-5 *1 (-753))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-640 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1209 *2)) + (-4 *2 (-1093)))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 *2)) (-4 *2 (-1093)) (-4 *2 (-846)) + (-5 *1 (-1209 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1165 (-948 *6))) (-4 *6 (-555)) + (-4 *2 (-945 (-407 (-948 *6)) *5 *4)) (-5 *1 (-728 *5 *4 *6 *2)) + (-4 *5 (-789)) + (-4 *4 (-13 (-846) (-10 -8 (-15 -2220 ((-1169) $)))))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-722)) (-4 *2 (-1208))))) +(((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-563)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1208)) + (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4408)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1093)) + (-4 *2 (-1208))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-555)) (-4 *2 (-452)) (-5 *1 (-965 *2 *3)) + (-4 *3 (-1233 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1151)) (-5 *1 (-305))))) (((*1 *2 *1) - (-12 (-5 *2 (-639 (-2 (|:| |gen| *3) (|:| -3430 *4)))) - (-5 *1 (-643 *3 *4 *5)) (-4 *3 (-1092)) (-4 *4 (-23)) (-14 *5 *4)))) + (|partial| -12 + (-4 *3 (-13 (-846) (-1034 (-563)) (-636 (-563)) (-452))) + (-5 *2 + (-2 + (|:| |%term| + (-2 (|:| |%coef| (-1242 *4 *5 *6)) + (|:| |%expon| (-319 *4 *5 *6)) + (|:| |%expTerms| + (-640 (-2 (|:| |k| (-407 (-563))) (|:| |c| *4)))))) + (|:| |%type| (-1151)))) + (-5 *1 (-1243 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1193) (-430 *3))) + (-14 *5 (-1169)) (-14 *6 *4)))) +(((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-858))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-640 (-2 (|:| -2174 (-1165 *6)) (|:| -1654 (-563))))) + (-4 *6 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) + (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1045))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-418 *2)) (-4 *2 (-555))))) (((*1 *2 *1) - (-12 (-5 *2 (-406 (-562))) (-5 *1 (-318 *3 *4 *5)) - (-4 *3 (-13 (-362) (-845))) (-14 *4 (-1168)) (-14 *5 *3)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1044))))) + (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *1 (-1203 *3)) + (-4 *3 (-970))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1208 *2)) - (-4 *2 (-1092)))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 *2)) (-4 *2 (-1092)) (-4 *2 (-845)) - (-5 *1 (-1208 *2))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-562)) (-5 *1 (-417 *2)) (-4 *2 (-554))))) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -2059 *4)))) + (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) + ((*1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-917)) (-5 *4 (-379)) (-5 *2 (-1262)) (-5 *1 (-1258))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4408)) (-4 *1 (-489 *3)) + (-4 *3 (-1208))))) +(((*1 *2 *1) + (-12 (-5 *2 (-171)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) + (-4 *4 (-1045))))) +(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) + (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) + (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-563)) (-5 *3 (-917)) (-4 *1 (-404)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-563)) (-4 *1 (-404)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1096 *3 *4 *5 *2 *6)) (-4 *3 (-1093)) (-4 *4 (-1093)) + (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-1093))))) +(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) + ((*1 *1 *1 *1) (-4 *1 (-473))) + ((*1 *1 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) + ((*1 *2 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-879)))) + ((*1 *1 *1) (-5 *1 (-967))) + ((*1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-407 (-563)))) + (-5 *2 (-2 (|:| -1597 (-1149 *4)) (|:| -1608 (-1149 *4)))) + (-5 *1 (-1155 *4)) (-5 *3 (-1149 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172)))) + ((*1 *1 *1) + (-12 (-5 *1 (-624 *2 *3 *4)) (-4 *2 (-846)) + (-4 *3 (-13 (-172) (-713 (-407 (-563))))) (-14 *4 (-917)))) + ((*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) + ((*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-406 (-562)))) - (-5 *2 (-2 (|:| -4074 (-1148 *4)) (|:| -4087 (-1148 *4)))) - (-5 *1 (-1154 *4)) (-5 *3 (-1148 *4))))) + (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1165 (-1165 *4)))) + (-5 *1 (-1206 *4)) (-5 *3 (-1165 (-1165 *4)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-945 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *2 (-452)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *3 (-1059 *4 *5 *6)) + (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2059 *1)))) + (-4 *1 (-1065 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1212))) + ((*1 *2 *2) + (-12 (-4 *3 (-555)) (-5 *1 (-1236 *3 *2)) + (-4 *2 (-13 (-1233 *3) (-555) (-10 -8 (-15 -3548 ($ $ $)))))))) +(((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1087 (-225)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-767)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) + (-14 *4 (-640 (-1169))))) + ((*1 *1 *2) + (-12 (-5 *2 (-767)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) + (-14 *4 (-640 (-1169))))) + ((*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-335 *3 *4 *5 *2)) (-4 *3 (-363)) + (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) + (-4 *2 (-342 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-767)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-172)))) + ((*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-720 *2 *3)) (-4 *3 (-1233 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923))))) +(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1208))))) (((*1 *2 *3) - (-12 (-5 *3 (-639 *4)) (-4 *4 (-845)) (-5 *2 (-639 (-658 *4 *5))) - (-5 *1 (-623 *4 *5 *6)) (-4 *5 (-13 (-171) (-712 (-406 (-562))))) - (-14 *6 (-916))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) + (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-640 (-225))) (-5 *1 (-204))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-363) (-1034 (-407 *2)))) (-5 *2 (-563)) + (-5 *1 (-115 *4 *3)) (-4 *3 (-1233 *4))))) +(((*1 *1 *1 *1) (-5 *1 (-858)))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-563)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1208)) + (-4 *3 (-373 *4)) (-4 *5 (-373 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-640 *4)) (-4 *4 (-846)) (-5 *2 (-640 (-659 *4 *5))) + (-5 *1 (-624 *4 *5 *6)) (-4 *5 (-13 (-172) (-713 (-407 (-563))))) + (-14 *6 (-917))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1208))))) +(((*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-1087 (-225))))) + ((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1087 (-225)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) + (-14 *5 (-640 (-1169))) (-5 *2 (-640 (-640 (-1020 (-407 *4))))) + (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-640 (-1169))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-844) (-307) (-147) (-1018))) + (-5 *2 (-640 (-640 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7)) + (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-844) (-307) (-147) (-1018))) + (-5 *2 (-640 (-640 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7)) + (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 (-948 *4))) + (-4 *4 (-13 (-844) (-307) (-147) (-1018))) + (-5 *2 (-640 (-640 (-1020 (-407 *4))))) (-5 *1 (-1283 *4 *5 *6)) + (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169)))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1233 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *2 (-172)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-640 (-767))) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) + (-4 *4 (-1045))))) +(((*1 *1) + (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767)) + (-4 *4 (-172))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) + ((*1 *2 *1 *1) + (-12 (-4 *2 (-1045)) (-5 *1 (-50 *2 *3)) (-14 *3 (-640 (-1169))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-640 (-917))) (-4 *2 (-363)) (-5 *1 (-152 *4 *2 *5)) + (-14 *4 (-917)) (-14 *5 (-989 *4 *2)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4)) + (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-640 (-1169))))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-131)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1093)) (-4 *2 (-1045)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-563)) (-4 *2 (-555)) (-5 *1 (-620 *2 *4)) + (-4 *4 (-1233 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-704 *2)) (-4 *2 (-1045)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-1045)) (-5 *1 (-731 *2 *3)) (-4 *3 (-722)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-640 *5)) (-5 *3 (-640 (-767))) (-4 *1 (-736 *4 *5)) + (-4 *4 (-1045)) (-4 *5 (-846)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *2)) (-4 *4 (-1045)) + (-4 *2 (-846)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-848 *2)) (-4 *2 (-1045)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-640 *6)) (-5 *3 (-640 (-767))) (-4 *1 (-945 *4 *5 *6)) + (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-767)) (-4 *1 (-945 *4 *5 *2)) (-4 *4 (-1045)) + (-4 *5 (-789)) (-4 *2 (-846)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-767)) (-4 *2 (-945 *4 (-531 *5) *5)) + (-5 *1 (-1119 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-846)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-767)) (-5 *2 (-948 *4)) (-5 *1 (-1202 *4)) + (-4 *4 (-1045))))) +(((*1 *2 *1) + (-12 (-4 *1 (-601 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1208)) + (-5 *2 (-640 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-818))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-468)) (-5 *4 (-917)) (-5 *2 (-1262)) (-5 *1 (-1258))))) (((*1 *2 *2) - (-12 (-5 *2 (-1256 *4)) (-4 *4 (-416 *3)) (-4 *3 (-306)) - (-4 *3 (-554)) (-5 *1 (-43 *3 *4)))) + (-12 (-5 *2 (-1257 *4)) (-4 *4 (-417 *3)) (-4 *3 (-307)) + (-4 *3 (-555)) (-5 *1 (-43 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-916)) (-4 *4 (-362)) (-5 *2 (-1256 *1)) - (-4 *1 (-328 *4)))) - ((*1 *2) (-12 (-4 *3 (-362)) (-5 *2 (-1256 *1)) (-4 *1 (-328 *3)))) + (-12 (-5 *3 (-917)) (-4 *4 (-363)) (-5 *2 (-1257 *1)) + (-4 *1 (-329 *4)))) + ((*1 *2) (-12 (-4 *3 (-363)) (-5 *2 (-1257 *1)) (-4 *1 (-329 *3)))) ((*1 *2) - (-12 (-4 *3 (-171)) (-4 *4 (-1232 *3)) (-5 *2 (-1256 *1)) - (-4 *1 (-408 *3 *4)))) + (-12 (-4 *3 (-172)) (-4 *4 (-1233 *3)) (-5 *2 (-1257 *1)) + (-4 *1 (-409 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-306)) (-4 *4 (-987 *3)) (-4 *5 (-1232 *4)) - (-5 *2 (-1256 *6)) (-5 *1 (-412 *3 *4 *5 *6)) - (-4 *6 (-13 (-408 *4 *5) (-1033 *4))))) + (-12 (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1233 *4)) + (-5 *2 (-1257 *6)) (-5 *1 (-413 *3 *4 *5 *6)) + (-4 *6 (-13 (-409 *4 *5) (-1034 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-306)) (-4 *4 (-987 *3)) (-4 *5 (-1232 *4)) - (-5 *2 (-1256 *6)) (-5 *1 (-413 *3 *4 *5 *6 *7)) - (-4 *6 (-408 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-171)) (-5 *2 (-1256 *1)) (-4 *1 (-416 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-916)) (-5 *2 (-1256 (-1256 *4))) (-5 *1 (-527 *4)) - (-4 *4 (-348))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433))))) -(((*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-356 *3)) (-4 *3 (-348))))) -(((*1 *2 *1) - (-12 (-5 *2 (-868 (-961 *3) (-961 *3))) (-5 *1 (-961 *3)) - (-4 *3 (-962))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) - (-4 *2 (-429 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1131)))) -(((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *2 *1) - (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)) - (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-921))))) -(((*1 *1 *1) (-12 (-5 *1 (-1193 *2)) (-4 *2 (-1092))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) - (-4 *4 (-845))))) -(((*1 *2 *3) - (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *7 (-1058 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-639 *7)) (|:| |badPols| (-639 *7)))) - (-5 *1 (-972 *4 *5 *6 *7)) (-5 *3 (-639 *7))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-766)) (-5 *1 (-851 *2)) (-4 *2 (-38 (-406 (-562)))) - (-4 *2 (-171))))) -(((*1 *2 *3) - (-12 (-5 *3 (-639 (-1168))) (-5 *2 (-1261)) (-5 *1 (-1171)))) + (-12 (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1233 *4)) + (-5 *2 (-1257 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7)) + (-4 *6 (-409 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1257 *1)) (-4 *1 (-417 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-917)) (-5 *2 (-1257 (-1257 *4))) (-5 *1 (-528 *4)) + (-4 *4 (-349))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093))))) +(((*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-1087 (-225))))) + ((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1087 (-225)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1257 (-316 (-225)))) (-5 *4 (-640 (-1169))) + (-5 *2 (-684 (-316 (-225)))) (-5 *1 (-205)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-639 (-1168))) (-5 *3 (-1168)) (-5 *2 (-1261)) - (-5 *1 (-1171)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-639 (-1168))) (-5 *3 (-1168)) (-5 *2 (-1261)) - (-5 *1 (-1171))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-606 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)) - (-5 *2 (-112))))) -(((*1 *1 *1) (-5 *1 (-1056)))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-554)))) - ((*1 *1 *1) (|partial| -4 *1 (-717)))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1150)) (-5 *3 (-818)) (-5 *1 (-817))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-362)) (-4 *3 (-1044)) - (-5 *1 (-1152 *3))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1150)) (-5 *4 (-562)) (-5 *5 (-683 (-224))) - (-5 *2 (-1030)) (-5 *1 (-749))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1606 (-777 *3)) (|:| |coef2| (-777 *3)))) - (-5 *1 (-777 *3)) (-4 *3 (-554)) (-4 *3 (-1044)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-554)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) - (-5 *2 (-2 (|:| -1606 *1) (|:| |coef2| *1))) - (-4 *1 (-1058 *3 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1168)) (-4 *4 (-1044)) (-4 *4 (-845)) - (-5 *2 (-2 (|:| |var| (-608 *1)) (|:| -1300 (-562)))) - (-4 *1 (-429 *4)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1044)) (-4 *4 (-845)) - (-5 *2 (-2 (|:| |var| (-608 *1)) (|:| -1300 (-562)))) - (-4 *1 (-429 *4)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1104)) (-4 *3 (-845)) - (-5 *2 (-2 (|:| |var| (-608 *1)) (|:| -1300 (-562)))) - (-4 *1 (-429 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-887 *3)) (|:| -1300 (-766)))) - (-5 *1 (-887 *3)) (-4 *3 (-1092)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-944 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *5 (-845)) (-5 *2 (-2 (|:| |var| *5) (|:| -1300 (-766)))))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1044)) - (-4 *7 (-944 *6 *4 *5)) - (-5 *2 (-2 (|:| |var| *5) (|:| -1300 (-562)))) - (-5 *1 (-945 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-362) - (-10 -8 (-15 -4053 ($ *7)) (-15 -4063 (*7 $)) - (-15 -4079 (*7 $)))))))) + (-12 (-4 *5 (-1093)) (-4 *6 (-896 *5)) (-5 *2 (-684 *6)) + (-5 *1 (-687 *5 *6 *3 *4)) (-4 *3 (-373 *6)) + (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4407))))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1256 *4)) (-4 *4 (-635 (-562))) (-5 *2 (-112)) - (-5 *1 (-1283 *4))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1054 (-1019 *4) (-1164 (-1019 *4)))) (-5 *3 (-857)) - (-5 *1 (-1019 *4)) (-4 *4 (-13 (-843) (-362) (-1017)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-684 *3))))) -(((*1 *2) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) - (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-766)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-562)) (-4 *1 (-372 *3)) (-4 *3 (-1207)) - (-4 *3 (-1092)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-372 *3)) (-4 *3 (-1207)) (-4 *3 (-1092)) - (-5 *2 (-562)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-372 *4)) (-4 *4 (-1207)) - (-5 *2 (-562)))) - ((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-528)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1136)) (-5 *2 (-562)) (-5 *3 (-140)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1136)) (-5 *2 (-562))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (-143)) (-5 *2 (-112))))) + (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1093) (-1034 *5))) + (-4 *5 (-882 *4)) (-4 *4 (-1093)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-927 *4 *5 *6))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-766)) (-4 *1 (-1232 *4)) (-4 *4 (-1044)) - (-5 *2 (-1256 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-52)) (-5 *1 (-826))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1168)) - (-4 *5 (-13 (-451) (-845) (-146) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-2 (|:| -2929 *3) (|:| |coeff| *3))) (-5 *1 (-555 *5 *3)) - (-4 *3 (-13 (-27) (-1192) (-429 *5)))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-406 (-947 *6)) (-1157 (-1168) (-947 *6)))) - (-5 *5 (-766)) (-4 *6 (-451)) (-5 *2 (-639 (-683 (-406 (-947 *6))))) - (-5 *1 (-291 *6)) (-5 *4 (-683 (-406 (-947 *6)))))) - ((*1 *2 *3 *4) - (-12 - (-5 *3 - (-2 (|:| |eigval| (-3 (-406 (-947 *5)) (-1157 (-1168) (-947 *5)))) - (|:| |eigmult| (-766)) (|:| |eigvec| (-639 *4)))) - (-4 *5 (-451)) (-5 *2 (-639 (-683 (-406 (-947 *5))))) - (-5 *1 (-291 *5)) (-5 *4 (-683 (-406 (-947 *5))))))) + (-12 (-4 *1 (-899 *3)) (-4 *3 (-1093)) (-5 *2 (-1095 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1093)) (-5 *2 (-1095 (-640 *4))) (-5 *1 (-900 *4)) + (-5 *3 (-640 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1093)) (-5 *2 (-1095 (-1095 *4))) (-5 *1 (-900 *4)) + (-5 *3 (-1095 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-1095 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1093))))) (((*1 *2 *1) - (-12 + (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *5 (-609 *4)) (-5 *6 (-1169)) + (-4 *4 (-13 (-430 *7) (-27) (-1193))) + (-4 *7 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 - (-639 - (-639 - (-3 (|:| -3253 (-1168)) - (|:| -1852 (-639 (-3 (|:| S (-1168)) (|:| P (-947 (-562)))))))))) - (-5 *1 (-1172))))) -(((*1 *2 *2) - (-12 (-5 *2 (-639 *7)) (-4 *7 (-1064 *3 *4 *5 *6)) (-4 *3 (-451)) - (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) - (-5 *1 (-983 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-639 *7)) (-4 *7 (-1064 *3 *4 *5 *6)) (-4 *3 (-451)) - (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) - (-5 *1 (-1099 *3 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-766)) (-5 *4 (-562)) (-5 *1 (-444 *2)) (-4 *2 (-1044))))) -(((*1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-754))))) -(((*1 *1) - (-12 (-4 *3 (-1092)) (-5 *1 (-880 *2 *3 *4)) (-4 *2 (-1092)) - (-4 *4 (-660 *3)))) - ((*1 *1) (-12 (-5 *1 (-884 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1150)) (-5 *4 (-168 (-224))) (-5 *5 (-562)) - (-5 *2 (-1030)) (-5 *1 (-753))))) -(((*1 *2 *2) - (-12 (-5 *2 (-639 (-480 *3 *4))) (-14 *3 (-639 (-1168))) - (-4 *4 (-451)) (-5 *1 (-627 *3 *4))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-552 *3)) (-4 *3 (-13 (-403) (-1192))) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-766)) (-4 *5 (-554)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-964 *5 *3)) (-4 *3 (-1232 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997)))))) -(((*1 *2 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-609 (-857))))) - ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-562)))) - ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1150)))) - ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-505)))) - ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-589)))) - ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-477)))) - ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-136)))) - ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-155)))) - ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1158)))) - ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-622)))) - ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1088)))) - ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1082)))) - ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1066)))) - ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-965)))) - ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-179)))) - ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1031)))) - ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-310)))) - ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-665)))) - ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-153)))) - ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-524)))) - ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1267)))) - ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1059)))) - ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-516)))) - ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-675)))) - ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-96)))) - ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1107)))) - ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-132)))) - ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-137)))) - ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1266)))) - ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-670)))) - ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-217)))) - ((*1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-523)))) - ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1173)))) - ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1173)))) - ((*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-1173)))) - ((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-1173))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-5 *1 (-872 *2)) (-4 *2 (-1207)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-5 *1 (-874 *2)) (-4 *2 (-1207)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-5 *1 (-877 *2)) (-4 *2 (-1207))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) - (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1030)) (-5 *1 (-743))))) -(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1150)) (-5 *1 (-52))))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4315 (-640 *4)))) + (-5 *1 (-565 *7 *4 *3)) (-4 *3 (-651 *4)) (-4 *3 (-1093))))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) + (-12 (-5 *3 (-1151)) (-5 *5 (-684 (-225))) (-5 *6 (-684 (-563))) + (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-753))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) (((*1 *2 *3) - (-12 (-4 *4 (-362)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) - (-5 *2 (-766)) (-5 *1 (-520 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) - (-4 *5 (-372 *3)) (-4 *3 (-554)) (-5 *2 (-766)))) + (-12 (-5 *3 (-640 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))) + ((*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))) ((*1 *2 *3) - (-12 (-4 *4 (-554)) (-4 *4 (-171)) (-4 *5 (-372 *4)) - (-4 *6 (-372 *4)) (-5 *2 (-766)) (-5 *1 (-682 *4 *5 *6 *3)) - (-4 *3 (-681 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) - (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-554)) - (-5 *2 (-766))))) -(((*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-224)) (-5 *1 (-304))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1168)) (-4 *5 (-362)) (-5 *2 (-639 (-1201 *5))) - (-5 *1 (-1264 *5)) (-5 *4 (-1201 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-683 *6)) (-5 *5 (-1 (-417 (-1164 *6)) (-1164 *6))) - (-4 *6 (-362)) - (-5 *2 - (-639 - (-2 (|:| |outval| *7) (|:| |outmult| (-562)) - (|:| |outvect| (-639 (-683 *7)))))) - (-5 *1 (-531 *6 *7 *4)) (-4 *7 (-362)) (-4 *4 (-13 (-362) (-843)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1256 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) - (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-683 *5))) (-4 *5 (-306)) (-4 *5 (-1044)) - (-5 *2 (-1256 (-1256 *5))) (-5 *1 (-1024 *5)) (-5 *4 (-1256 *5))))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-683 (-224))) (-5 *5 (-683 (-562))) (-5 *3 (-562)) - (-5 *2 (-1030)) (-5 *1 (-751))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-562)) (-5 *3 (-916)) (-4 *1 (-403)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-562)) (-4 *1 (-403)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1095 *3 *4 *5 *2 *6)) (-4 *3 (-1092)) (-4 *4 (-1092)) - (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *2 (-1092))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) -(((*1 *1) (-5 *1 (-576)))) -(((*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1207))))) + (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) + (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) + (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3)))))) +(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1208)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)))) + ((*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208))))) (((*1 *2 *3) - (-12 (-4 *3 (-1232 (-406 (-562)))) - (-5 *2 (-2 (|:| |den| (-562)) (|:| |gcdnum| (-562)))) - (-5 *1 (-908 *3 *4)) (-4 *4 (-1232 (-406 *3))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1232 (-406 *2))) (-5 *2 (-562)) (-5 *1 (-908 *4 *3)) - (-4 *3 (-1232 (-406 *4)))))) + (-12 (-5 *3 (-1257 *5)) (-4 *5 (-636 *4)) (-4 *4 (-555)) + (-5 *2 (-112)) (-5 *1 (-635 *4 *5))))) +(((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-767)) (-5 *1 (-213 *4 *2)) (-14 *4 (-917)) + (-4 *2 (-1093))))) +(((*1 *1 *1 *1) (-5 *1 (-858)))) (((*1 *2 *1) - (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)) - (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-639 *6)) (-4 *6 (-845)) (-4 *4 (-362)) (-4 *5 (-788)) - (-5 *2 (-112)) (-5 *1 (-503 *4 *5 *6 *7)) (-4 *7 (-944 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1202 *3)) (-4 *3 (-969))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-639 *6)) (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) - (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) - (-4 *3 (-554))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-639 *5)) (-4 *5 (-1232 *3)) (-4 *3 (-306)) - (-5 *2 (-112)) (-5 *1 (-454 *3 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *6)) (-5 *4 (-639 (-1168))) (-4 *6 (-362)) - (-5 *2 (-639 (-293 (-947 *6)))) (-5 *1 (-537 *5 *6 *7)) - (-4 *5 (-451)) (-4 *7 (-13 (-362) (-843)))))) -(((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-639 *8)) (-5 *3 (-1 *8 *8 *8)) - (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1200 *5 *6 *7 *8)) (-4 *5 (-554)) - (-4 *6 (-788)) (-4 *7 (-845)) (-4 *8 (-1058 *5 *6 *7))))) -(((*1 *1) (-5 *1 (-1056)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) - (-4 *2 (-13 (-429 *3) (-1192)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1173))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-845) (-554) (-1033 (-562)))) (-5 *2 (-406 (-562))) - (-5 *1 (-432 *4 *3)) (-4 *3 (-429 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-608 *3)) (-4 *3 (-429 *5)) - (-4 *5 (-13 (-845) (-554) (-1033 (-562)))) - (-5 *2 (-1164 (-406 (-562)))) (-5 *1 (-432 *5 *3))))) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-846)) + (-5 *2 (-2 (|:| -2311 (-563)) (|:| |var| (-609 *1)))) + (-4 *1 (-430 *3))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) - (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) - (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) - (|:| |abserr| (-224)) (|:| |relerr| (-224)))) - (-5 *2 (-378)) (-5 *1 (-204))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1280 *4 *2)) (-4 *1 (-373 *4 *2)) (-4 *4 (-845)) - (-4 *2 (-171)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1273 *3 *2)) (-4 *3 (-845)) (-4 *2 (-1044)))) + (-2 (|:| -2835 (-684 (-407 (-948 *4)))) + (|:| |vec| (-640 (-407 (-948 *4)))) (|:| -2522 (-767)) + (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563))))) + (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) + (-4 *6 (-789)) + (-5 *2 + (-2 (|:| |partsol| (-1257 (-407 (-948 *4)))) + (|:| -4315 (-640 (-1257 (-407 (-948 *4))))))) + (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-4 *1 (-899 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563)))))) +(((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-357 *3)) (-4 *3 (-349))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-563)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2)) + (-4 *5 (-373 *2)) (-4 *2 (-1208)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-814 *4)) (-4 *1 (-1273 *4 *2)) (-4 *4 (-845)) - (-4 *2 (-1044)))) + (-12 (-5 *3 (-767)) (-4 *2 (-1093)) (-5 *1 (-213 *4 *2)) + (-14 *4 (-917)))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-1044)) (-5 *1 (-1279 *2 *3)) (-4 *3 (-841))))) -(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114))) - ((*1 *1 *1) (-5 *1 (-170))) ((*1 *1 *1) (-4 *1 (-544))) - ((*1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1092)))) - ((*1 *1 *1) (-12 (-4 *1 (-1126 *2)) (-4 *2 (-1044)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1132 *2 *3)) (-4 *2 (-13 (-1092) (-34))) - (-4 *3 (-13 (-1092) (-34)))))) + (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1208)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-563)) (-4 *1 (-1048 *4 *5 *2 *6 *7)) + (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1045))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) + (-12 (-5 *3 (-1151)) (-5 *5 (-684 (-225))) (-5 *6 (-225)) + (-5 *7 (-684 (-563))) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-748))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1165 *2)) (-4 *2 (-945 (-407 (-948 *6)) *5 *4)) + (-5 *1 (-728 *5 *4 *6 *2)) (-4 *5 (-789)) + (-4 *4 (-13 (-846) (-10 -8 (-15 -2220 ((-1169) $))))) + (-4 *6 (-555))))) +(((*1 *2) + (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) + ((*1 *2 *2) + (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563)))))) +(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-257))))) +(((*1 *2 *3) + (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-825)) (-5 *3 (-1151))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-640 (-1207))) (-5 *3 (-1207)) (-5 *1 (-676))))) +(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-558))))) +(((*1 *1) (-4 *1 (-349)))) +(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-144)))) + ((*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-144))))) (((*1 *2 *1) - (-12 (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) - (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997)))))) + (-12 (-5 *2 (-869 (-962 *3) (-962 *3))) (-5 *1 (-962 *3)) + (-4 *3 (-963))))) (((*1 *2 *3) - (-12 (-5 *2 (-562)) (-5 *1 (-444 *3)) (-4 *3 (-403)) (-4 *3 (-1044))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-467)) (-5 *4 (-916)) (-5 *2 (-1261)) (-5 *1 (-1257))))) -(((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *2 (-1030)) - (-5 *1 (-743))))) -(((*1 *2 *3 *2) - (-12 + (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1165 (-1165 *4)))) + (-5 *1 (-1206 *4)) (-5 *3 (-1165 (-1165 *4)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1149 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) + (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-640 (-536))) (-5 *2 (-1169)) (-5 *1 (-536))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 (-640 *7) *7 (-1165 *7))) (-5 *5 (-1 (-418 *7) *7)) + (-4 *7 (-1233 *6)) (-4 *6 (-13 (-363) (-147) (-1034 (-407 (-563))))) + (-5 *2 (-640 (-2 (|:| |frac| (-407 *7)) (|:| -1420 *3)))) + (-5 *1 (-805 *6 *7 *3 *8)) (-4 *3 (-651 *7)) + (-4 *8 (-651 (-407 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1233 *5)) + (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-5 *2 - (-639 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-766)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *3 (-788)) (-4 *6 (-944 *4 *3 *5)) (-4 *4 (-451)) (-4 *5 (-845)) - (-5 *1 (-448 *4 *3 *5 *6))))) -(((*1 *2) - (-12 (-4 *3 (-554)) (-5 *2 (-639 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-416 *3))))) -(((*1 *2) - (-12 (-4 *3 (-554)) (-5 *2 (-639 (-683 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-416 *3))))) -(((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-639 *11)) - (|:| |todo| (-639 (-2 (|:| |val| *3) (|:| -1501 *11)))))) - (-5 *6 (-766)) - (-5 *2 (-639 (-2 (|:| |val| (-639 *10)) (|:| -1501 *11)))) - (-5 *3 (-639 *10)) (-5 *4 (-639 *11)) (-4 *10 (-1058 *7 *8 *9)) - (-4 *11 (-1064 *7 *8 *9 *10)) (-4 *7 (-451)) (-4 *8 (-788)) - (-4 *9 (-845)) (-5 *1 (-1062 *7 *8 *9 *10 *11)))) - ((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-639 *11)) - (|:| |todo| (-639 (-2 (|:| |val| *3) (|:| -1501 *11)))))) - (-5 *6 (-766)) - (-5 *2 (-639 (-2 (|:| |val| (-639 *10)) (|:| -1501 *11)))) - (-5 *3 (-639 *10)) (-5 *4 (-639 *11)) (-4 *10 (-1058 *7 *8 *9)) - (-4 *11 (-1101 *7 *8 *9 *10)) (-4 *7 (-451)) (-4 *8 (-788)) - (-4 *9 (-845)) (-5 *1 (-1137 *7 *8 *9 *10 *11))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-406 (-947 (-168 (-562)))))) - (-5 *2 (-639 (-639 (-293 (-947 (-168 *4)))))) (-5 *1 (-377 *4)) - (-4 *4 (-13 (-362) (-843))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-293 (-406 (-947 (-168 (-562))))))) - (-5 *2 (-639 (-639 (-293 (-947 (-168 *4)))))) (-5 *1 (-377 *4)) - (-4 *4 (-13 (-362) (-843))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-947 (-168 (-562))))) - (-5 *2 (-639 (-293 (-947 (-168 *4))))) (-5 *1 (-377 *4)) - (-4 *4 (-13 (-362) (-843))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-293 (-406 (-947 (-168 (-562)))))) - (-5 *2 (-639 (-293 (-947 (-168 *4))))) (-5 *1 (-377 *4)) - (-4 *4 (-13 (-362) (-843)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-639 (-1 *4 (-639 *4)))) (-4 *4 (-1092)) - (-5 *1 (-113 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1092)) - (-5 *1 (-113 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *2 (-639 (-1 *4 (-639 *4)))) - (-5 *1 (-113 *4)) (-4 *4 (-1092))))) + (-640 (-2 (|:| |frac| (-407 *6)) (|:| -1420 (-649 *6 (-407 *6)))))) + (-5 *1 (-808 *5 *6)) (-5 *3 (-649 *6 (-407 *6)))))) (((*1 *2 *3) - (-12 (-4 *5 (-13 (-610 *2) (-171))) (-5 *2 (-887 *4)) - (-5 *1 (-169 *4 *5 *3)) (-4 *4 (-1092)) (-4 *3 (-165 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 (-1086 (-838 (-378))))) - (-5 *2 (-639 (-1086 (-838 (-224))))) (-5 *1 (-304)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-857)) (-5 *3 (-562)) (-5 *1 (-393)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1256 *3)) (-4 *3 (-171)) (-4 *1 (-408 *3 *4)) - (-4 *4 (-1232 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1232 *3)) - (-5 *2 (-1256 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-171)) (-4 *1 (-416 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1256 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-417 *1)) (-4 *1 (-429 *3)) (-4 *3 (-554)) - (-4 *3 (-845)))) - ((*1 *1 *2) - (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-1044)) - (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-462 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-535)))) - ((*1 *2 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1207)))) - ((*1 *1 *2) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1207)))) - ((*1 *1 *2) - (-12 (-4 *3 (-171)) (-4 *1 (-719 *3 *2)) (-4 *2 (-1232 *3)))) + (-12 (-5 *3 (-923)) + (-5 *2 + (-2 (|:| |brans| (-640 (-640 (-939 (-225))))) + (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225))))) + (-5 *1 (-153)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-923)) (-5 *4 (-407 (-563))) + (-5 *2 + (-2 (|:| |brans| (-640 (-640 (-939 (-225))))) + (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225))))) + (-5 *1 (-153))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-818))))) +(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-517))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-948 (-407 (-563)))) (-5 *4 (-1169)) + (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-640 (-225))) (-5 *1 (-300))))) +(((*1 *2 *3) + (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-13 (-846) (-555)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1132)))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-1093))))) +(((*1 *2 *3) + (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-640 (-1169))) (-4 *5 (-1045)) + (-5 *2 (-948 *5)) (-5 *1 (-940 *4 *5))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) + (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP)))) + (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-745))))) +(((*1 *1 *2) (-12 (-5 *1 (-1194 *2)) (-4 *2 (-1093)))) ((*1 *1 *2) - (-12 (-5 *2 (-639 (-887 *3))) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) + (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-1194 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-640 (-1194 *2))) (-5 *1 (-1194 *2)) (-4 *2 (-1093))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1169)) + (-4 *5 (-13 (-846) (-1034 (-563)) (-452) (-636 (-563)))) + (-5 *2 (-2 (|:| -1410 *3) (|:| |nconst| *3))) (-5 *1 (-566 *5 *3)) + (-4 *3 (-13 (-27) (-1193) (-430 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1169))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1257 (-1169))) (-5 *3 (-1257 (-453 *4 *5 *6 *7))) + (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-917)) + (-14 *6 (-640 (-1169))) (-14 *7 (-1257 (-684 *4))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-453 *4 *5 *6 *7))) + (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-917)) + (-14 *6 (-640 *2)) (-14 *7 (-1257 (-684 *4))))) ((*1 *1 *2) - (-12 (-5 *2 (-947 *3)) (-4 *3 (-1044)) (-4 *1 (-1058 *3 *4 *5)) - (-4 *5 (-610 (-1168))) (-4 *4 (-788)) (-4 *5 (-845)))) + (-12 (-5 *2 (-1257 (-453 *3 *4 *5 *6))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) + (-14 *6 (-1257 (-684 *3))))) ((*1 *1 *2) - (-4037 - (-12 (-5 *2 (-947 (-562))) (-4 *1 (-1058 *3 *4 *5)) - (-12 (-2234 (-4 *3 (-38 (-406 (-562))))) (-4 *3 (-38 (-562))) - (-4 *5 (-610 (-1168)))) - (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845))) - (-12 (-5 *2 (-947 (-562))) (-4 *1 (-1058 *3 *4 *5)) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *5 (-610 (-1168)))) - (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845))))) + (-12 (-5 *2 (-1257 (-1169))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) + (-14 *6 (-1257 (-684 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-947 (-406 (-562)))) (-4 *1 (-1058 *3 *4 *5)) - (-4 *3 (-38 (-406 (-562)))) (-4 *5 (-610 (-1168))) (-4 *3 (-1044)) - (-4 *4 (-788)) (-4 *5 (-845)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-639 *7)) (|:| -1501 *8))) - (-4 *7 (-1058 *4 *5 *6)) (-4 *8 (-1064 *4 *5 *6 *7)) (-4 *4 (-451)) - (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-1150)) - (-5 *1 (-1062 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-639 *7)) (|:| -1501 *8))) - (-4 *7 (-1058 *4 *5 *6)) (-4 *8 (-1101 *4 *5 *6 *7)) (-4 *4 (-451)) - (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-1150)) - (-5 *1 (-1137 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-1173)))) - ((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-1173)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-857)) (-5 *3 (-562)) (-5 *1 (-1187)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-857)) (-5 *3 (-562)) (-5 *1 (-1187)))) - ((*1 *2 *3) - (-12 (-5 *3 (-775 *4 (-859 *5))) - (-4 *4 (-13 (-843) (-306) (-146) (-1017))) (-14 *5 (-639 (-1168))) - (-5 *2 (-775 *4 (-859 *6))) (-5 *1 (-1282 *4 *5 *6)) - (-14 *6 (-639 (-1168))))) - ((*1 *2 *3) - (-12 (-5 *3 (-947 *4)) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) - (-5 *2 (-947 (-1019 (-406 *4)))) (-5 *1 (-1282 *4 *5 *6)) - (-14 *5 (-639 (-1168))) (-14 *6 (-639 (-1168))))) - ((*1 *2 *3) - (-12 (-5 *3 (-775 *4 (-859 *6))) - (-4 *4 (-13 (-843) (-306) (-146) (-1017))) (-14 *6 (-639 (-1168))) - (-5 *2 (-947 (-1019 (-406 *4)))) (-5 *1 (-1282 *4 *5 *6)) - (-14 *5 (-639 (-1168))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1164 *4)) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) - (-5 *2 (-1164 (-1019 (-406 *4)))) (-5 *1 (-1282 *4 *5 *6)) - (-14 *5 (-639 (-1168))) (-14 *6 (-639 (-1168))))) - ((*1 *2 *3) - (-12 - (-5 *3 (-1138 *4 (-530 (-859 *6)) (-859 *6) (-775 *4 (-859 *6)))) - (-4 *4 (-13 (-843) (-306) (-146) (-1017))) (-14 *6 (-639 (-1168))) - (-5 *2 (-639 (-775 *4 (-859 *6)))) (-5 *1 (-1282 *4 *5 *6)) - (-14 *5 (-639 (-1168)))))) + (-12 (-5 *2 (-1169)) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) + (-14 *4 (-917)) (-14 *5 (-640 *2)) (-14 *6 (-1257 (-684 *3))))) + ((*1 *1) + (-12 (-5 *1 (-453 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-917)) + (-14 *4 (-640 (-1169))) (-14 *5 (-1257 (-684 *2)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-363)) (-5 *2 (-2 (|:| -3490 *3) (|:| -1972 *3))) + (-5 *1 (-762 *3 *4)) (-4 *3 (-704 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-363)) (-4 *3 (-1045)) + (-5 *2 (-2 (|:| -3490 *1) (|:| -1972 *1))) (-4 *1 (-848 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1045)) + (-5 *2 (-2 (|:| -3490 *3) (|:| -1972 *3))) (-5 *1 (-849 *5 *3)) + (-4 *3 (-848 *5))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563))))) (((*1 *2 *1) - (-12 (-5 *2 (-639 (-1193 *3))) (-5 *1 (-1193 *3)) (-4 *3 (-1092))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) - (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) - (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) - ((*1 *1 *1) (-4 *1 (-492))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1153 *3)))) + (-12 (-5 *2 (-1087 *3)) (-5 *1 (-1085 *3)) (-4 *3 (-1208)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208)))) + ((*1 *1 *2) (-12 (-5 *1 (-1224 *2)) (-4 *2 (-1208))))) +(((*1 *1 *1 *1) (-5 *1 (-858)))) +(((*1 *2 *1) + (-12 (-4 *3 (-1208)) (-5 *2 (-640 *1)) (-4 *1 (-1006 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-640 (-1157 *3 *4))) (-5 *1 (-1157 *3 *4)) + (-14 *3 (-917)) (-4 *4 (-1045))))) +(((*1 *2 *1 *2 *3) + (|partial| -12 (-5 *2 (-1151)) (-5 *3 (-563)) (-5 *1 (-1057))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-640 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-563)) + (-14 *6 (-767)) (-4 *7 (-172)) (-4 *8 (-172)) + (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-640 *9)) (-4 *9 (-1045)) (-4 *5 (-846)) (-4 *6 (-789)) + (-4 *8 (-1045)) (-4 *2 (-945 *9 *7 *5)) + (-5 *1 (-724 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-789)) + (-4 *4 (-945 *8 *6 *5))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1169)) (-5 *4 (-948 (-563))) (-5 *2 (-330)) + (-5 *1 (-332)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1169)) (-5 *4 (-1085 (-948 (-563)))) (-5 *2 (-330)) + (-5 *1 (-332)))) + ((*1 *1 *2 *2 *2) + (-12 (-5 *2 (-767)) (-5 *1 (-670 *3)) (-4 *3 (-1045)) + (-4 *3 (-1093))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-640 (-1169))) (-5 *2 (-1169)) (-5 *1 (-330))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-939 *4)) (-4 *4 (-1045)) (-5 *1 (-1157 *3 *4)) + (-14 *3 (-917))))) +(((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1154 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-554)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) - (-5 *2 (-639 *1)) (-4 *1 (-1058 *3 *4 *5))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-4 *3 (-1058 *5 *6 *7)) - (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1501 *4)))) - (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-114)) (-5 *4 (-766)) (-4 *5 (-451)) (-4 *5 (-845)) - (-4 *5 (-1033 (-562))) (-4 *5 (-554)) (-5 *1 (-41 *5 *2)) - (-4 *2 (-429 *5)) - (-4 *2 - (-13 (-362) (-301) - (-10 -8 (-15 -4063 ((-1117 *5 (-608 $)) $)) - (-15 -4079 ((-1117 *5 (-608 $)) $)) - (-15 -4053 ($ (-1117 *5 (-608 $)))))))))) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *1 *1) (-4 *1 (-1132)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *4 (-563))) (-5 *5 (-1 (-1149 *4))) (-4 *4 (-363)) + (-4 *4 (-1045)) (-5 *2 (-1149 *4)) (-5 *1 (-1153 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-640 (-640 (-939 (-225))))))) + ((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-640 (-640 (-939 (-225)))))))) (((*1 *2 *3) - (-12 (-5 *3 (-562)) (-5 *2 (-639 (-639 (-224)))) (-5 *1 (-1203))))) + (-12 (-5 *3 (-1230 *5 *4)) (-4 *4 (-452)) (-4 *4 (-816)) + (-14 *5 (-1169)) (-5 *2 (-563)) (-5 *1 (-1107 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1256 *4)) (-4 *4 (-348)) (-5 *2 (-1164 *4)) - (-5 *1 (-527 *4))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-562)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1207)) - (-4 *4 (-372 *2)) (-4 *5 (-372 *2)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4404)) (-4 *1 (-119 *3)) - (-4 *3 (-1207)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4404)) (-4 *1 (-119 *3)) - (-4 *3 (-1207)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4404)) (-4 *1 (-287 *3 *2)) (-4 *3 (-1092)) - (-4 *2 (-1207)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1168)) (-5 *1 (-628)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1223 (-562))) (|has| *1 (-6 -4404)) (-4 *1 (-645 *2)) - (-4 *2 (-1207)))) - ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-639 (-562))) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) - (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4404)) (-4 *1 (-1005 *2)) - (-4 *2 (-1207)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-1021 *2)) (-4 *2 (-1207)))) - ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-1183 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1092)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4404)) (-4 *1 (-1244 *2)) - (-4 *2 (-1207)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4404)) (-4 *1 (-1244 *3)) - (-4 *3 (-1207)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4404)) (-4 *1 (-1244 *2)) - (-4 *2 (-1207))))) + (|partial| -12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-782))))) +(((*1 *2 *1) + (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) + (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-640 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563)) + (-14 *4 (-767)) (-4 *5 (-172))))) +(((*1 *2 *2) + (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) + (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6))))) +(((*1 *1) + (-12 (-4 *3 (-1093)) (-5 *1 (-881 *2 *3 *4)) (-4 *2 (-1093)) + (-4 *4 (-661 *3)))) + ((*1 *1) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) +(((*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-52)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) + ((*1 *1) (-5 *1 (-129))) + ((*1 *1) + (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767)) + (-4 *4 (-172)))) + ((*1 *1) (-4 *1 (-722))) ((*1 *1) (-5 *1 (-1169))) + ((*1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-917)))) + ((*1 *1) (-5 *1 (-1213))) ((*1 *1) (-5 *1 (-1214))) + ((*1 *1) (-5 *1 (-1215)))) +(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) +(((*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260)))) + ((*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260))))) +(((*1 *2 *1) (-12 (-4 *1 (-254 *3)) (-4 *3 (-1208)) (-5 *2 (-767)))) + ((*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-767)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1045)) + (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))) + (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1233 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-609 *3)) (-4 *3 (-846)))) + ((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) + ((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-858))))) +(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *2 (-846)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-789)) (-4 *5 (-1045)) (-4 *6 (-945 *5 *4 *2)) + (-4 *2 (-846)) (-5 *1 (-946 *4 *2 *5 *6 *3)) + (-4 *3 + (-13 (-363) + (-10 -8 (-15 -1693 ($ *6)) (-15 -2143 (*6 $)) + (-15 -2154 (*6 $))))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555)) + (-5 *2 (-1169)) (-5 *1 (-1039 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-874 (-1 (-224) (-224)))) (-5 *4 (-1086 (-378))) - (-5 *5 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) + (-12 (-5 *4 (-112)) + (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-4 *3 (-13 (-27) (-1193) (-430 *6) (-10 -8 (-15 -1693 ($ *7))))) + (-4 *7 (-844)) + (-4 *8 + (-13 (-1235 *3 *7) (-363) (-1193) + (-10 -8 (-15 -4202 ($ $)) (-15 -3698 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151)))))) + (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1151)) (-4 *9 (-979 *8)) + (-14 *10 (-1169))))) +(((*1 *1) (-5 *1 (-291)))) +(((*1 *1 *2) + (-12 (-5 *2 (-640 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) + (-14 *3 (-563)) (-14 *4 (-767))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1193)))))) +(((*1 *2 *1) + (-12 (-14 *3 (-640 (-1169))) (-4 *4 (-172)) + (-4 *5 (-238 (-3608 *3) (-767))) + (-14 *6 + (-1 (-112) (-2 (|:| -2555 *2) (|:| -1654 *5)) + (-2 (|:| -2555 *2) (|:| -1654 *5)))) + (-4 *2 (-846)) (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-945 *4 *5 (-860 *3)))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) + (-5 *2 (-2 (|:| -2311 *1) (|:| |gap| (-767)) (|:| -1972 *1))) + (-4 *1 (-1059 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *2 (-2 (|:| -2311 *1) (|:| |gap| (-767)) (|:| -1972 *1))) + (-4 *1 (-1059 *3 *4 *5))))) +(((*1 *1 *1) (-12 (-5 *1 (-1194 *2)) (-4 *2 (-1093))))) +(((*1 *1 *2) + (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1093)) (-4 *1 (-899 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-733 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-733 *2)) (-4 *2 (-1093)))) + ((*1 *1) (-12 (-5 *1 (-733 *2)) (-4 *2 (-1093))))) +(((*1 *1 *1) (-4 *1 (-555)))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1093)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-874 (-1 (-224) (-224)))) (-5 *4 (-1086 (-378))) - (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-938 (-224)) (-224))) (-5 *4 (-1086 (-378))) - (-5 *5 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) + (-12 (-5 *4 (-563)) (-5 *2 (-1149 *3)) (-5 *1 (-1153 *3)) + (-4 *3 (-1045)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-815 *4)) (-4 *4 (-846)) (-4 *1 (-1274 *4 *3)) + (-4 *3 (-1045))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) + (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) + (-5 *2 (-684 *4)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-684 *4)) (-5 *1 (-416 *3 *4)) + (-4 *3 (-417 *4)))) + ((*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-684 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) + (-12 (-5 *4 (-640 (-112))) (-5 *5 (-684 (-225))) + (-5 *6 (-684 (-563))) (-5 *7 (-225)) (-5 *3 (-563)) (-5 *2 (-1031)) + (-5 *1 (-750))))) +(((*1 *2) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) + (-4 *5 (-1233 (-407 *4))) (-5 *2 (-684 (-407 *4)))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846))))) +(((*1 *2 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-217)))) + ((*1 *2 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-487)))) + ((*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)) (-4 *2 (-307)))) + ((*1 *2 *1) + (-12 (-5 *2 (-407 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563)))) + ((*1 *1 *1) (-4 *1 (-1054)))) +(((*1 *1 *2 *2 *3 *1) + (-12 (-5 *2 (-1169)) (-5 *3 (-1097)) (-5 *1 (-291))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1087 (-225))) + (-5 *2 (-1259)) (-5 *1 (-257))))) +(((*1 *2 *3) + (-12 + (-5 *2 + (-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))))) + (-5 *1 (-1016 *3)) (-4 *3 (-1233 (-563))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-938 (-224)) (-224))) (-5 *4 (-1086 (-378))) - (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1086 (-378))) - (-5 *5 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1086 (-378))) - (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-938 (-224)) (-224) (-224))) (-5 *4 (-1086 (-378))) - (-5 *5 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-938 (-224)) (-224) (-224))) (-5 *4 (-1086 (-378))) - (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-877 (-1 (-224) (-224) (-224)))) (-5 *4 (-1086 (-378))) - (-5 *5 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-877 (-1 (-224) (-224) (-224)))) (-5 *4 (-1086 (-378))) - (-5 *2 (-1125 (-224))) (-5 *1 (-254)))) + (-12 + (-5 *2 + (-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))))) + (-5 *1 (-1016 *3)) (-4 *3 (-1233 (-563))) + (-5 *4 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))))) + (-5 *1 (-1016 *3)) (-4 *3 (-1233 (-563))) (-5 *4 (-407 (-563))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-874 *6)) (-5 *4 (-1084 (-378))) (-5 *5 (-639 (-262))) - (-4 *6 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1125 (-224))) - (-5 *1 (-258 *6)))) + (-12 (-5 *5 (-407 (-563))) + (-5 *2 (-640 (-2 (|:| -1686 *5) (|:| -1701 *5)))) (-5 *1 (-1016 *3)) + (-4 *3 (-1233 (-563))) (-5 *4 (-2 (|:| -1686 *5) (|:| -1701 *5))))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))))) + (-5 *1 (-1017 *3)) (-4 *3 (-1233 (-407 (-563)))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-874 *5)) (-5 *4 (-1084 (-378))) - (-4 *5 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1125 (-224))) - (-5 *1 (-258 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1084 (-378))) (-5 *5 (-639 (-262))) - (-5 *2 (-1125 (-224))) (-5 *1 (-258 *3)) - (-4 *3 (-13 (-610 (-535)) (-1092))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1084 (-378))) (-5 *2 (-1125 (-224))) (-5 *1 (-258 *3)) - (-4 *3 (-13 (-610 (-535)) (-1092))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-877 *6)) (-5 *4 (-1084 (-378))) (-5 *5 (-639 (-262))) - (-4 *6 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1125 (-224))) - (-5 *1 (-258 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-877 *5)) (-5 *4 (-1084 (-378))) - (-4 *5 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1125 (-224))) - (-5 *1 (-258 *5))))) -(((*1 *1 *1) (-4 *1 (-625))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-626 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997) (-1192)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-938 *3) (-938 *3))) (-5 *1 (-175 *3)) - (-4 *3 (-13 (-362) (-1192) (-997)))))) + (-12 + (-5 *2 + (-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))))) + (-5 *1 (-1017 *3)) (-4 *3 (-1233 (-407 (-563)))) + (-5 *4 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-407 (-563))) + (-5 *2 (-640 (-2 (|:| -1686 *4) (|:| -1701 *4)))) (-5 *1 (-1017 *3)) + (-4 *3 (-1233 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-407 (-563))) + (-5 *2 (-640 (-2 (|:| -1686 *5) (|:| -1701 *5)))) (-5 *1 (-1017 *3)) + (-4 *3 (-1233 *5)) (-5 *4 (-2 (|:| -1686 *5) (|:| -1701 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917)))) ((*1 *1) (-4 *1 (-545))) + ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-694)))) + ((*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1093))))) +(((*1 *2 *3) + (-12 (-4 *4 (-846)) (-5 *2 (-640 (-640 (-640 *4)))) + (-5 *1 (-1179 *4)) (-5 *3 (-640 (-640 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-1149 *3))) (-5 *2 (-1149 *3)) (-5 *1 (-1153 *3)) + (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-361 *3)) (-4 *3 (-1093)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-563)) (-5 *2 (-767)) (-5 *1 (-386 *4)) (-4 *4 (-1093)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-563)) (-4 *2 (-23)) (-5 *1 (-644 *4 *2 *5)) + (-4 *4 (-1093)) (-14 *5 *2))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-563)) (-5 *2 (-767)) (-5 *1 (-815 *4)) (-4 *4 (-846))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-620 *4 *5)) + (-5 *3 + (-1 (-2 (|:| |ans| *4) (|:| -1701 *4) (|:| |sol?| (-112))) + (-563) *4)) + (-4 *4 (-363)) (-4 *5 (-1233 *4)) (-5 *1 (-573 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-640 *7)) (|:| |badPols| (-640 *7)))) + (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-640 *7))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1149 *4)) (-5 *3 (-563)) (-4 *4 (-1045)) + (-5 *1 (-1153 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-563)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-1045)) + (-14 *4 (-1169)) (-14 *5 *3)))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) + (-5 *2 (-1031)) (-5 *1 (-747))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) + (-4 *2 (-1208))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *1 (-231 *4)) + (-4 *4 (-1045)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1045)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-767)))) + ((*1 *1 *1) (-4 *1 (-233))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-266 *3)) (-4 *3 (-846)))) + ((*1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) + (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) + (-4 *4 (-1233 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) + (-4 *3 (-1233 *2)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-474 *3 *4 *5)) + (-4 *3 (-1045)) (-14 *5 *3))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-363)) (-4 *2 (-896 *3)) (-5 *1 (-584 *2)) + (-5 *3 (-1169)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-584 *2)) (-4 *2 (-363)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-858)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-640 *4)) (-5 *3 (-640 (-767))) (-4 *1 (-896 *4)) + (-4 *4 (-1093)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-767)) (-4 *1 (-896 *2)) (-4 *2 (-1093)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-640 *3)) (-4 *1 (-896 *3)) (-4 *3 (-1093)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-896 *2)) (-4 *2 (-1093)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1160 *3 *4 *5)) + (-4 *3 (-1045)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1166 *3 *4 *5)) + (-4 *3 (-1045)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1167 *3 *4 *5)) + (-4 *3 (-1045)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1221 *3 *4 *5)) + (-4 *3 (-1045)) (-14 *5 *3))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1233 *3)) (-4 *3 (-1045)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1242 *3 *4 *5)) + (-4 *3 (-1045)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1249 *3 *4 *5)) + (-4 *3 (-1045)) (-14 *5 *3)))) (((*1 *2 *1) - (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-130)) - (-5 *2 (-639 (-2 (|:| |gen| *3) (|:| -3430 *4)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-639 (-2 (|:| -4221 *3) (|:| -3044 *4)))) - (-5 *1 (-730 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-721)))) + (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) + (-5 *2 + (-2 (|:| -2630 (-767)) (|:| |curves| (-767)) + (|:| |polygons| (-767)) (|:| |constructs| (-767))))))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) + (-12 (-5 *5 (-684 (-225))) (-5 *6 (-684 (-563))) (-5 *3 (-563)) + (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-38 (-407 (-563)))) + (-4 *2 (-172))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-112)) + (-5 *2 (-1031)) (-5 *1 (-749))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-640 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1234 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)) - (-5 *2 (-1148 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) - (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1153 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1154 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1094 (-1094 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1092))))) + (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1201 *4 *5 *6 *3)) (-4 *4 (-555)) (-4 *5 (-789)) + (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-640 (-506))) (-5 *2 (-506)) (-5 *1 (-483))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-38 (-407 (-563)))) + (-4 *2 (-172))))) +(((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)) (-4 *2 (-545)))) + ((*1 *1 *1) (-4 *1 (-1054)))) +(((*1 *2 *2) (-12 (-5 *2 (-640 (-684 (-316 (-563))))) (-5 *1 (-1027))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-639 (-562))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-562)) - (-14 *4 (-766)) (-4 *5 (-171))))) + (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *2 (-846)) (-4 *5 (-1059 *3 *4 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) + (-4 *4 (-349))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4408)) (-4 *1 (-119 *2)) (-4 *2 (-1208))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *2 (-846)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1165 *7)) (-4 *7 (-945 *6 *4 *5)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1045)) (-5 *2 (-1165 *6)) + (-5 *1 (-321 *4 *5 *6 *7))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-305)))) + ((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| |num| (-888 *3)) (|:| |den| (-888 *3)))) + (-5 *1 (-888 *3)) (-4 *3 (-1093))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-2 (|:| |val| (-639 *8)) (|:| -1501 *9)))) - (-5 *4 (-766)) (-4 *8 (-1058 *5 *6 *7)) (-4 *9 (-1064 *5 *6 *7 *8)) - (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-1261)) - (-5 *1 (-1062 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-2 (|:| |val| (-639 *8)) (|:| -1501 *9)))) - (-5 *4 (-766)) (-4 *8 (-1058 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) - (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-1261)) - (-5 *1 (-1137 *5 *6 *7 *8 *9))))) + (-12 (-5 *3 (-640 *6)) (-5 *4 (-1169)) (-4 *6 (-430 *5)) + (-4 *5 (-846)) (-5 *2 (-640 (-609 *6))) (-5 *1 (-572 *5 *6))))) +(((*1 *2 *3 *2 *3) + (-12 (-5 *2 (-437)) (-5 *3 (-1169)) (-5 *1 (-1172)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-437)) (-5 *3 (-1169)) (-5 *1 (-1172)))) + ((*1 *2 *3 *2 *4 *1) + (-12 (-5 *2 (-437)) (-5 *3 (-640 (-1169))) (-5 *4 (-1169)) + (-5 *1 (-1172)))) + ((*1 *2 *3 *2 *3 *1) + (-12 (-5 *2 (-437)) (-5 *3 (-1169)) (-5 *1 (-1172)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-437)) (-5 *3 (-1169)) (-5 *1 (-1173)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-437)) (-5 *3 (-640 (-1169))) (-5 *1 (-1173))))) +(((*1 *2 *3) + (-12 (-5 *3 (-640 (-1169))) (-5 *2 (-1262)) (-5 *1 (-1172)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-640 (-1169))) (-5 *3 (-1169)) (-5 *2 (-1262)) + (-5 *1 (-1172)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *4 (-640 (-1169))) (-5 *3 (-1169)) (-5 *2 (-1262)) + (-5 *1 (-1172))))) +(((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-180)))) + ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-676)))) + ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-966)))) + ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1067)))) + ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1111))))) +(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-327 *3)) (-4 *3 (-1208)))) + ((*1 *2 *1) + (-12 (-5 *2 (-767)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1208)) + (-14 *4 (-563))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-683 *8)) (-4 *8 (-944 *5 *7 *6)) - (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-845) (-610 (-1168)))) - (-4 *7 (-788)) - (-5 *2 - (-639 - (-2 (|:| -2172 (-766)) - (|:| |eqns| - (-639 - (-2 (|:| |det| *8) (|:| |rows| (-639 (-562))) - (|:| |cols| (-639 (-562)))))) - (|:| |fgb| (-639 *8))))) - (-5 *1 (-919 *5 *6 *7 *8)) (-5 *4 (-766))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-362)) (-4 *3 (-1044)) - (-5 *2 (-2 (|:| -3380 *1) (|:| -1441 *1))) (-4 *1 (-847 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-362)) (-4 *5 (-1044)) - (-5 *2 (-2 (|:| -3380 *3) (|:| -1441 *3))) (-5 *1 (-848 *5 *3)) - (-4 *3 (-847 *5))))) + (-12 (-5 *4 (-640 *3)) (-4 *3 (-945 *5 *6 *7)) (-4 *5 (-452)) + (-4 *6 (-789)) (-4 *7 (-846)) + (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-449 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1164 *5)) (-4 *5 (-362)) (-5 *2 (-639 *6)) - (-5 *1 (-531 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-843)))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1207)) (-4 *3 (-1092)) + (-12 (-4 *5 (-555)) + (-5 *2 (-2 (|:| -2835 (-684 *5)) (|:| |vec| (-1257 (-640 (-917)))))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-917)) (-4 *3 (-651 *5))))) +(((*1 *2 *2 *2 *3 *4) + (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1045)) + (-5 *1 (-849 *5 *2)) (-4 *2 (-848 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-257))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) + (-14 *4 (-640 (-1169))))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) + (-14 *4 (-640 (-1169)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1278 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) + (-5 *2 (-815 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-842)) (-5 *1 (-1280 *3 *2)) (-4 *3 (-1045))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-563)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1208)) + (-4 *5 (-373 *4)) (-4 *3 (-373 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-379))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-607 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-562)) (-5 *4 (-417 *2)) (-4 *2 (-944 *7 *5 *6)) - (-5 *1 (-737 *5 *6 *7 *2)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *7 (-306))))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) - (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))) - (-5 *2 (-2 (|:| -2429 (-114)) (|:| |w| (-224)))) (-5 *1 (-203))))) -(((*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-1259)))) - ((*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-1259))))) -(((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-143)))) - ((*1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-143))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) - (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1153 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1154 *3))))) -(((*1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1092))))) -(((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-97))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-639 (-947 *6))) (-5 *4 (-639 (-1168))) (-4 *6 (-451)) - (-5 *2 (-639 (-639 *7))) (-5 *1 (-537 *6 *7 *5)) (-4 *7 (-362)) - (-4 *5 (-13 (-362) (-843)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-562)) (-5 *1 (-567 *3)) (-4 *3 (-1033 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) - (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1200 *4 *5 *6 *3)) (-4 *4 (-554)) (-4 *5 (-788)) - (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-639 (-916))) (-5 *1 (-1093 *3 *4)) (-14 *3 (-916)) - (-14 *4 (-916))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) - (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1153 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1154 *3))))) + (-12 (-5 *3 (-1135 *4 *2)) (-14 *4 (-917)) + (-4 *2 (-13 (-1045) (-10 -7 (-6 (-4409 "*"))))) + (-5 *1 (-898 *4 *2))))) +(((*1 *2 *3 *4) + (-12 (-4 *6 (-555)) (-4 *2 (-945 *3 *5 *4)) + (-5 *1 (-728 *5 *4 *6 *2)) (-5 *3 (-407 (-948 *6))) (-4 *5 (-789)) + (-4 *4 (-13 (-846) (-10 -8 (-15 -2220 ((-1169) $)))))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) + (-4 *4 (-1093))))) +(((*1 *2 *3 *1) + (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-1172)) (-5 *3 (-1169))))) (((*1 *2 *3) - (-12 (-5 *3 (-639 (-2 (|:| -2533 *4) (|:| -2277 (-562))))) - (-4 *4 (-1092)) (-5 *2 (-1 *4)) (-5 *1 (-1012 *4))))) -(((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) - (-4 *5 (-13 (-362) (-146) (-1033 (-562)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-406 *6)) (|:| |c| (-406 *6)) - (|:| -3354 *6))) - (-5 *1 (-1010 *5 *6)) (-5 *3 (-406 *6))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-766)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1208 *3)) (-4 *3 (-845)) - (-4 *3 (-1092))))) -(((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-922))))) -(((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-293 *6)) (-5 *4 (-114)) (-4 *6 (-429 *5)) - (-4 *5 (-13 (-845) (-554) (-610 (-535)))) (-5 *2 (-52)) - (-5 *1 (-316 *5 *6)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-293 *7)) (-5 *4 (-114)) (-5 *5 (-639 *7)) - (-4 *7 (-429 *6)) (-4 *6 (-13 (-845) (-554) (-610 (-535)))) - (-5 *2 (-52)) (-5 *1 (-316 *6 *7)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-639 (-293 *7))) (-5 *4 (-639 (-114))) (-5 *5 (-293 *7)) - (-4 *7 (-429 *6)) (-4 *6 (-13 (-845) (-554) (-610 (-535)))) - (-5 *2 (-52)) (-5 *1 (-316 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-639 (-293 *8))) (-5 *4 (-639 (-114))) (-5 *5 (-293 *8)) - (-5 *6 (-639 *8)) (-4 *8 (-429 *7)) - (-4 *7 (-13 (-845) (-554) (-610 (-535)))) (-5 *2 (-52)) - (-5 *1 (-316 *7 *8)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-639 *7)) (-5 *4 (-639 (-114))) (-5 *5 (-293 *7)) - (-4 *7 (-429 *6)) (-4 *6 (-13 (-845) (-554) (-610 (-535)))) - (-5 *2 (-52)) (-5 *1 (-316 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-639 *8)) (-5 *4 (-639 (-114))) (-5 *6 (-639 (-293 *8))) - (-4 *8 (-429 *7)) (-5 *5 (-293 *8)) - (-4 *7 (-13 (-845) (-554) (-610 (-535)))) (-5 *2 (-52)) - (-5 *1 (-316 *7 *8)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-293 *5)) (-5 *4 (-114)) (-4 *5 (-429 *6)) - (-4 *6 (-13 (-845) (-554) (-610 (-535)))) (-5 *2 (-52)) - (-5 *1 (-316 *6 *5)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-4 *3 (-429 *6)) - (-4 *6 (-13 (-845) (-554) (-610 (-535)))) (-5 *2 (-52)) - (-5 *1 (-316 *6 *3)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-4 *3 (-429 *6)) - (-4 *6 (-13 (-845) (-554) (-610 (-535)))) (-5 *2 (-52)) - (-5 *1 (-316 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-114)) (-5 *5 (-293 *3)) (-5 *6 (-639 *3)) - (-4 *3 (-429 *7)) (-4 *7 (-13 (-845) (-554) (-610 (-535)))) - (-5 *2 (-52)) (-5 *1 (-316 *7 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-639 (-503 *3 *4 *5 *6))) (-4 *3 (-362)) (-4 *4 (-788)) - (-4 *5 (-845)) (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-362)) (-4 *3 (-788)) (-4 *4 (-845)) - (-5 *1 (-503 *2 *3 *4 *5)) (-4 *5 (-944 *2 *3 *4)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-639 *1)) (-4 *1 (-1064 *4 *5 *6 *3)) (-4 *4 (-451)) - (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-639 *1)) (-5 *3 (-639 *7)) (-4 *1 (-1064 *4 *5 *6 *7)) - (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *7 (-1058 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) - (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 *1)) - (-4 *1 (-1064 *4 *5 *6 *7)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-639 *1)) - (-4 *1 (-1064 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) - (-4 *9 (-1058 *6 *7 *8)) (-4 *6 (-554)) (-4 *7 (-788)) - (-4 *8 (-845)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2774 (-639 *9)))) - (-5 *3 (-639 *9)) (-4 *1 (-1200 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1058 *5 *6 *7)) - (-4 *5 (-554)) (-4 *6 (-788)) (-4 *7 (-845)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -2774 (-639 *8)))) - (-5 *3 (-639 *8)) (-4 *1 (-1200 *5 *6 *7 *8))))) -(((*1 *2 *3) - (-12 (-5 *3 (-315 (-378))) (-5 *2 (-315 (-224))) (-5 *1 (-304))))) -(((*1 *1 *1 *1) (-4 *1 (-962)))) -(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-224))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) - (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) - (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) - ((*1 *1 *1 *1) (-5 *1 (-378))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1153 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1154 *3))))) -(((*1 *1) (-5 *1 (-818)))) -(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) + (-12 (-5 *3 (-1151)) (-5 *2 (-214 (-502))) (-5 *1 (-833))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) + ((*1 *2 *1) + (-12 (-5 *2 (-767)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) + (-14 *4 (-640 (-1169))))) + ((*1 *2 *1) + (-12 (-5 *2 (-563)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) + (-14 *4 (-640 (-1169))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) + (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767)))) + ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-275)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1165 *8)) (-5 *4 (-640 *6)) (-4 *6 (-846)) + (-4 *8 (-945 *7 *5 *6)) (-4 *5 (-789)) (-4 *7 (-1045)) + (-5 *2 (-640 (-767))) (-5 *1 (-321 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-917)))) + ((*1 *2 *1) + (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) + (-5 *2 (-767)))) + ((*1 *2 *1) (-12 (-4 *1 (-470 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) + ((*1 *2 *1) + (-12 (-4 *3 (-555)) (-5 *2 (-563)) (-5 *1 (-620 *3 *4)) + (-4 *4 (-1233 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-704 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) + ((*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) + ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) + ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-640 *6)) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 (-767))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-945 *4 *5 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) + (-4 *3 (-846)) (-5 *2 (-767)))) + ((*1 *2 *1) + (-12 (-4 *1 (-969 *3 *2 *4)) (-4 *3 (-1045)) (-4 *4 (-846)) + (-4 *2 (-788)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-767)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1219 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1248 *3)) + (-5 *2 (-563)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1240 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1217 *3)) + (-5 *2 (-407 (-563))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-829 (-917))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1278 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) + (-5 *2 (-767))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1165 *3)) (-4 *3 (-368)) (-4 *1 (-329 *3)) + (-4 *3 (-363))))) +(((*1 *2) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-105))))) +(((*1 *1 *1) (-5 *1 (-1057)))) +(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) + (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) + (-5 *2 (-1031)) (-5 *1 (-751))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-562)) - (-14 *6 (-766)) (-4 *7 (-171)) (-4 *8 (-171)) - (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *9)) (-4 *9 (-1044)) (-4 *5 (-845)) (-4 *6 (-788)) - (-4 *8 (-1044)) (-4 *2 (-944 *9 *7 *5)) - (-5 *1 (-723 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-788)) - (-4 *4 (-944 *8 *6 *5))))) + (-12 (-5 *4 (-1169)) + (-4 *5 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 + (-2 (|:| |func| *3) (|:| |kers| (-640 (-609 *3))) + (|:| |vals| (-640 *3)))) + (-5 *1 (-277 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5)))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-169 (-225))) (-5 *5 (-563)) (-5 *6 (-1151)) + (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *2 (-640 (-1165 *7))) (-5 *3 (-1165 *7)) + (-4 *7 (-945 *5 *6 *4)) (-4 *5 (-905)) (-4 *6 (-789)) + (-4 *4 (-846)) (-5 *1 (-902 *5 *6 *4 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2355 *4))) - (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1044))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-544)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) - (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-4 *5 (-367)) - (-5 *2 (-766))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-788)) (-4 *4 (-845)) (-4 *6 (-306)) (-5 *2 (-417 *3)) - (-5 *1 (-737 *5 *4 *6 *3)) (-4 *3 (-944 *6 *5 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-224) (-224))) (-5 *4 (-1086 (-378))) - (-5 *5 (-639 (-262))) (-5 *2 (-1257)) (-5 *1 (-254)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-224) (-224))) (-5 *4 (-1086 (-378))) - (-5 *2 (-1257)) (-5 *1 (-254)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1086 (-378))) - (-5 *5 (-639 (-262))) (-5 *2 (-1257)) (-5 *1 (-254)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-872 (-1 (-224) (-224)))) (-5 *4 (-1086 (-378))) - (-5 *2 (-1257)) (-5 *1 (-254)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-874 (-1 (-224) (-224)))) (-5 *4 (-1086 (-378))) - (-5 *5 (-639 (-262))) (-5 *2 (-1258)) (-5 *1 (-254)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-874 (-1 (-224) (-224)))) (-5 *4 (-1086 (-378))) - (-5 *2 (-1258)) (-5 *1 (-254)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-938 (-224)) (-224))) (-5 *4 (-1086 (-378))) - (-5 *5 (-639 (-262))) (-5 *2 (-1258)) (-5 *1 (-254)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-938 (-224)) (-224))) (-5 *4 (-1086 (-378))) - (-5 *2 (-1258)) (-5 *1 (-254)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1086 (-378))) - (-5 *5 (-639 (-262))) (-5 *2 (-1258)) (-5 *1 (-254)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-224) (-224) (-224))) (-5 *4 (-1086 (-378))) - (-5 *2 (-1258)) (-5 *1 (-254)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-938 (-224)) (-224) (-224))) (-5 *4 (-1086 (-378))) - (-5 *5 (-639 (-262))) (-5 *2 (-1258)) (-5 *1 (-254)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-938 (-224)) (-224) (-224))) (-5 *4 (-1086 (-378))) - (-5 *2 (-1258)) (-5 *1 (-254)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-877 (-1 (-224) (-224) (-224)))) (-5 *4 (-1086 (-378))) - (-5 *5 (-639 (-262))) (-5 *2 (-1258)) (-5 *1 (-254)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-877 (-1 (-224) (-224) (-224)))) (-5 *4 (-1086 (-378))) - (-5 *2 (-1258)) (-5 *1 (-254)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-293 *7)) (-5 *4 (-1168)) (-5 *5 (-639 (-262))) - (-4 *7 (-429 *6)) (-4 *6 (-13 (-554) (-845) (-1033 (-562)))) - (-5 *2 (-1257)) (-5 *1 (-255 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1084 (-378))) (-5 *5 (-639 (-262))) (-5 *2 (-1257)) - (-5 *1 (-258 *3)) (-4 *3 (-13 (-610 (-535)) (-1092))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1084 (-378))) (-5 *2 (-1257)) (-5 *1 (-258 *3)) - (-4 *3 (-13 (-610 (-535)) (-1092))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-872 *6)) (-5 *4 (-1084 (-378))) (-5 *5 (-639 (-262))) - (-4 *6 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1257)) - (-5 *1 (-258 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-872 *5)) (-5 *4 (-1084 (-378))) - (-4 *5 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1257)) - (-5 *1 (-258 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-874 *6)) (-5 *4 (-1084 (-378))) (-5 *5 (-639 (-262))) - (-4 *6 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1258)) - (-5 *1 (-258 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-874 *5)) (-5 *4 (-1084 (-378))) - (-4 *5 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1258)) - (-5 *1 (-258 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1084 (-378))) (-5 *5 (-639 (-262))) (-5 *2 (-1258)) - (-5 *1 (-258 *3)) (-4 *3 (-13 (-610 (-535)) (-1092))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1084 (-378))) (-5 *2 (-1258)) (-5 *1 (-258 *3)) - (-4 *3 (-13 (-610 (-535)) (-1092))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-877 *6)) (-5 *4 (-1084 (-378))) (-5 *5 (-639 (-262))) - (-4 *6 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1258)) - (-5 *1 (-258 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-877 *5)) (-5 *4 (-1084 (-378))) - (-4 *5 (-13 (-610 (-535)) (-1092))) (-5 *2 (-1258)) - (-5 *1 (-258 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-639 (-224))) (-5 *2 (-1257)) (-5 *1 (-259)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-639 (-224))) (-5 *4 (-639 (-262))) (-5 *2 (-1257)) - (-5 *1 (-259)))) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-789)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846)) + (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7))))) +(((*1 *2 *3) + (|partial| -12 (-4 *2 (-1093)) (-5 *1 (-1185 *3 *2)) (-4 *3 (-1093))))) +(((*1 *1 *2 *3) + (-12 + (-5 *3 + (-640 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) + (|:| |xpnt| (-563))))) + (-4 *2 (-555)) (-5 *1 (-418 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-639 (-938 (-224)))) (-5 *2 (-1257)) (-5 *1 (-259)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-938 (-224)))) (-5 *4 (-639 (-262))) - (-5 *2 (-1257)) (-5 *1 (-259)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-639 (-224))) (-5 *2 (-1258)) (-5 *1 (-259)))) - ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-639 (-224))) (-5 *4 (-639 (-262))) (-5 *2 (-1258)) - (-5 *1 (-259))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-562)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-766)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-916)))) + (-12 + (-5 *3 + (-2 (|:| |contp| (-563)) + (|:| -2760 (-640 (-2 (|:| |irr| *4) (|:| -1650 (-563))))))) + (-4 *4 (-1233 (-563))) (-5 *2 (-418 *4)) (-5 *1 (-442 *4))))) +(((*1 *1 *1) + (-12 (-4 *2 (-452)) (-4 *3 (-846)) (-4 *4 (-789)) + (-5 *1 (-983 *2 *3 *4 *5)) (-4 *5 (-945 *2 *4 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-349)) + (-5 *2 (-640 (-2 (|:| |deg| (-767)) (|:| -2169 *3)))) + (-5 *1 (-216 *4 *3)) (-4 *3 (-1233 *4))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-555)))) + ((*1 *1 *1) (|partial| -4 *1 (-718)))) +(((*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) + (-5 *2 (-640 (-948 *4))))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-640 (-948 *4))) (-5 *1 (-416 *3 *4)) + (-4 *3 (-417 *4)))) + ((*1 *2) + (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-640 (-948 *3))))) + ((*1 *2) + (-12 (-5 *2 (-640 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) + (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1257 (-453 *4 *5 *6 *7))) (-5 *2 (-640 (-948 *4))) + (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-555)) (-4 *4 (-172)) + (-14 *5 (-917)) (-14 *6 (-640 (-1169))) (-14 *7 (-1257 (-684 *4)))))) +(((*1 *2 *2 *3 *3) + (|partial| -12 (-5 *3 (-1169)) + (-4 *4 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) + (-5 *1 (-574 *4 *2)) + (-4 *2 (-13 (-1193) (-955) (-1132) (-29 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1149 (-1149 *4))) (-5 *2 (-1149 *4)) (-5 *1 (-1153 *4)) + (-4 *4 (-38 (-407 (-563)))) (-4 *4 (-1045))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1091 *3)) (-4 *3 (-1093)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172))))) +(((*1 *2 *3) + (-12 (-5 *3 (-640 (-2 (|:| |deg| (-767)) (|:| -2169 *5)))) + (-4 *5 (-1233 *4)) (-4 *4 (-349)) (-5 *2 (-640 *5)) + (-5 *1 (-216 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-640 (-2 (|:| -2174 *5) (|:| -4167 (-563))))) + (-5 *4 (-563)) (-4 *5 (-1233 *4)) (-5 *2 (-640 *5)) + (-5 *1 (-691 *5))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-563)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-767)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-917)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-562)) (-14 *3 (-766)) - (-4 *4 (-171)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-156)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-916)) (-5 *1 (-156)))) + (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767)) + (-4 *4 (-172)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-157)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-938 *3)) (-4 *3 (-13 (-362) (-1192))) - (-5 *1 (-226 *3)))) + (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193))) + (-5 *1 (-227 *3)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1207)) (-4 *2 (-721)))) + (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1208)) (-4 *2 (-722)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1207)) (-4 *2 (-721)))) + (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1208)) (-4 *2 (-722)))) ((*1 *1 *2 *1) - (-12 (-5 *1 (-293 *2)) (-4 *2 (-1104)) (-4 *2 (-1207)))) + (-12 (-5 *1 (-294 *2)) (-4 *2 (-1105)) (-4 *2 (-1208)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-293 *2)) (-4 *2 (-1104)) (-4 *2 (-1207)))) + (-12 (-5 *1 (-294 *2)) (-4 *2 (-1105)) (-4 *2 (-1208)))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-130)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1092)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1092)))) + (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-131)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1093)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1093)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-380 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-845)))) + (-12 (-5 *1 (-381 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-846)))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-1092)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1092)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1092)))) + (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1093)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1093)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1093)))) ((*1 *1 *2 *1) - (-12 (-14 *3 (-639 (-1168))) (-4 *4 (-171)) - (-4 *6 (-237 (-3492 *3) (-766))) + (-12 (-14 *3 (-640 (-1169))) (-4 *4 (-172)) + (-4 *6 (-238 (-3608 *3) (-767))) (-14 *7 - (-1 (-112) (-2 (|:| -2464 *5) (|:| -1300 *6)) - (-2 (|:| -2464 *5) (|:| -1300 *6)))) - (-5 *1 (-460 *3 *4 *5 *6 *7 *2)) (-4 *5 (-845)) - (-4 *2 (-944 *4 *6 (-859 *3))))) + (-1 (-112) (-2 (|:| -2555 *5) (|:| -1654 *6)) + (-2 (|:| -2555 *5) (|:| -1654 *6)))) + (-5 *1 (-461 *3 *4 *5 *6 *7 *2)) (-4 *5 (-846)) + (-4 *2 (-945 *4 *6 (-860 *3))))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-469 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) + (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-469 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) + (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-362)) (-4 *3 (-788)) (-4 *4 (-845)) - (-5 *1 (-503 *2 *3 *4 *5)) (-4 *5 (-944 *2 *3 *4)))) + (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) + (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1256 *3)) (-4 *3 (-348)) (-5 *1 (-527 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-535))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-593 *3)) (-4 *3 (-1044)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1044)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1044)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-1051)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-845)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1092)) - (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-1 *7 *5)) - (-5 *1 (-678 *5 *6 *7)))) + (-12 (-5 *2 (-1257 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-536))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1045)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1045)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-643 *2)) (-4 *2 (-1052)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1093)) + (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-1 *7 *5)) + (-5 *1 (-679 *5 *6 *7)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-681 *3 *2 *4)) (-4 *3 (-1044)) (-4 *2 (-372 *3)) - (-4 *4 (-372 *3)))) + (-12 (-4 *1 (-682 *3 *2 *4)) (-4 *3 (-1045)) (-4 *2 (-373 *3)) + (-4 *4 (-373 *3)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-681 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) - (-4 *2 (-372 *3)))) + (-12 (-4 *1 (-682 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) + (-4 *2 (-373 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-562)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) - (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) + (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) - (-4 *4 (-372 *2)))) + (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) - (-4 *4 (-372 *2)))) + (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) - (-4 *4 (-372 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-715))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) - ((*1 *1 *1 *1) (-5 *1 (-857))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1092)))) + (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2)))) + ((*1 *1 *1 *1) (-4 *1 (-716))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) + ((*1 *1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1256 *4)) (-4 *4 (-1232 *3)) (-4 *3 (-554)) - (-5 *1 (-964 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1051)))) - ((*1 *1 *1 *1) (-4 *1 (-1104))) + (-12 (-5 *2 (-1257 *4)) (-4 *4 (-1233 *3)) (-4 *3 (-555)) + (-5 *1 (-965 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-1052)))) + ((*1 *1 *1 *1) (-4 *1 (-1105))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1115 *3 *4 *2 *5)) (-4 *4 (-1044)) (-4 *2 (-237 *3 *4)) - (-4 *5 (-237 *3 *4)))) + (-12 (-4 *1 (-1116 *3 *4 *2 *5)) (-4 *4 (-1045)) (-4 *2 (-238 *3 *4)) + (-4 *5 (-238 *3 *4)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-1115 *3 *4 *5 *2)) (-4 *4 (-1044)) (-4 *5 (-237 *3 *4)) - (-4 *2 (-237 *3 *4)))) + (-12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4)) + (-4 *2 (-238 *3 *4)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-1044)) (-4 *4 (-845)) (-5 *1 (-1118 *3 *4 *2)) - (-4 *2 (-944 *3 (-530 *4) *4)))) + (-12 (-4 *3 (-1045)) (-4 *4 (-846)) (-5 *1 (-1119 *3 *4 *2)) + (-4 *2 (-945 *3 (-531 *4) *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-938 (-224))) (-5 *3 (-224)) (-5 *1 (-1203)))) + (-12 (-5 *2 (-939 (-225))) (-5 *3 (-225)) (-5 *1 (-1204)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-721)))) + (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-722)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-721)))) + (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-722)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-562)) (-4 *1 (-1254 *3)) (-4 *3 (-1207)) (-4 *3 (-21)))) + (-12 (-5 *2 (-563)) (-4 *1 (-1255 *3)) (-4 *3 (-1208)) (-4 *3 (-21)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044)))) + (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1273 *3 *2)) (-4 *3 (-845)) (-4 *2 (-1044)))) + (-12 (-4 *1 (-1274 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1279 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-841))))) + (-12 (-5 *1 (-1280 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-563)) (-5 *1 (-316 *3)) (-4 *3 (-555)) (-4 *3 (-846))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1165 *1)) (-5 *4 (-1169)) (-4 *1 (-27)) + (-5 *2 (-640 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-27)) (-5 *2 (-640 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-948 *1)) (-4 *1 (-27)) (-5 *2 (-640 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-640 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *2 (-640 *1)) (-4 *1 (-29 *3))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1151)) (-5 *3 (-819)) (-5 *1 (-818))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-1151)) (-5 *5 (-684 (-225))) + (-5 *2 (-1031)) (-5 *1 (-743))))) +(((*1 *1) (-5 *1 (-144))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-261)))) + ((*1 *1 *2) (-12 (-5 *2 (-1126 (-225))) (-5 *1 (-263))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *2 *3 *1) + (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-670 *2)) (-4 *2 (-1045)) (-4 *2 (-1093))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-452)) (-4 *4 (-846)) + (-4 *5 (-789)) (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1169)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-699 *3)) + (-4 *3 (-611 (-536))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1169)) (-5 *2 (-1 (-225) (-225) (-225))) + (-5 *1 (-699 *3)) (-4 *3 (-611 (-536)))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-315 *3)) (-4 *3 (-554)) (-4 *3 (-845))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1044)) - (-4 *4 (-787)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1044)) (-5 *1 (-50 *3 *4)) - (-14 *4 (-639 (-1168))))) - ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) - (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) - (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) - (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1207)) - (-4 *6 (-1207)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-562)) - (-14 *6 (-766)) (-4 *7 (-171)) (-4 *8 (-171)) - (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-168 *5)) (-4 *5 (-171)) - (-4 *6 (-171)) (-5 *2 (-168 *6)) (-5 *1 (-167 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-315 *3) (-315 *3))) (-4 *3 (-13 (-1044) (-845))) - (-5 *1 (-222 *3 *4)) (-14 *4 (-639 (-1168))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-239 *5 *6)) (-14 *5 (-766)) - (-4 *6 (-1207)) (-4 *7 (-1207)) (-5 *2 (-239 *5 *7)) - (-5 *1 (-238 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-293 *5)) (-4 *5 (-1207)) - (-4 *6 (-1207)) (-5 *2 (-293 *6)) (-5 *1 (-292 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1207)) (-5 *1 (-293 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1150)) (-5 *5 (-608 *6)) - (-4 *6 (-301)) (-4 *2 (-1207)) (-5 *1 (-296 *6 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-608 *5)) (-4 *5 (-301)) - (-4 *2 (-301)) (-5 *1 (-297 *5 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-608 *1)) (-4 *1 (-301)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-683 *5)) (-4 *5 (-1044)) - (-4 *6 (-1044)) (-5 *2 (-683 *6)) (-5 *1 (-303 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-315 *5)) (-4 *5 (-845)) - (-4 *6 (-845)) (-5 *2 (-315 *6)) (-5 *1 (-313 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-335 *5 *6 *7 *8)) (-4 *5 (-362)) - (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) - (-4 *9 (-362)) (-4 *10 (-1232 *9)) (-4 *11 (-1232 (-406 *10))) - (-5 *2 (-335 *9 *10 *11 *12)) - (-5 *1 (-332 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-341 *9 *10 *11)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-337 *3)) (-4 *3 (-1092)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1211)) (-4 *8 (-1211)) - (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-406 *6))) (-4 *9 (-1232 *8)) - (-4 *2 (-341 *8 *9 *10)) (-5 *1 (-339 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-341 *5 *6 *7)) (-4 *10 (-1232 (-406 *9))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1207)) (-4 *6 (-1207)) - (-4 *2 (-372 *6)) (-5 *1 (-370 *5 *4 *6 *2)) (-4 *4 (-372 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-381 *3 *4)) (-4 *3 (-1044)) - (-4 *4 (-1092)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-417 *5)) (-4 *5 (-554)) - (-4 *6 (-554)) (-5 *2 (-417 *6)) (-5 *1 (-404 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-406 *5)) (-4 *5 (-554)) - (-4 *6 (-554)) (-5 *2 (-406 *6)) (-5 *1 (-405 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-412 *5 *6 *7 *8)) (-4 *5 (-306)) - (-4 *6 (-987 *5)) (-4 *7 (-1232 *6)) - (-4 *8 (-13 (-408 *6 *7) (-1033 *6))) (-4 *9 (-306)) - (-4 *10 (-987 *9)) (-4 *11 (-1232 *10)) - (-5 *2 (-412 *9 *10 *11 *12)) - (-5 *1 (-411 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-408 *10 *11) (-1033 *10))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) - (-4 *2 (-416 *6)) (-5 *1 (-414 *4 *5 *2 *6)) (-4 *4 (-416 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-554)) (-5 *1 (-417 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1044) (-845))) - (-4 *6 (-13 (-1044) (-845))) (-4 *2 (-429 *6)) - (-5 *1 (-420 *5 *4 *6 *2)) (-4 *4 (-429 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1092)) (-4 *6 (-1092)) - (-4 *2 (-424 *6)) (-5 *1 (-422 *5 *4 *6 *2)) (-4 *4 (-424 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-488 *3)) (-4 *3 (-1207)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-508 *3 *4)) (-4 *3 (-1092)) - (-4 *4 (-845)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-362)) - (-4 *6 (-362)) (-5 *2 (-583 *6)) (-5 *1 (-582 *5 *6)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -2929 *5) (|:| |coeff| *5)) "failed")) - (-4 *5 (-362)) (-4 *6 (-362)) - (-5 *2 (-2 (|:| -2929 *6) (|:| |coeff| *6))) - (-5 *1 (-582 *5 *6)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) - (-4 *5 (-362)) (-4 *2 (-362)) (-5 *1 (-582 *5 *2)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 - (-3 - (-2 (|:| |mainpart| *5) - (|:| |limitedlogs| - (-639 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) - "failed")) - (-4 *5 (-362)) (-4 *6 (-362)) - (-5 *2 - (-2 (|:| |mainpart| *6) - (|:| |limitedlogs| - (-639 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-582 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-597 *5)) (-4 *5 (-1207)) - (-4 *6 (-1207)) (-5 *2 (-597 *6)) (-5 *1 (-594 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-597 *6)) (-5 *5 (-597 *7)) - (-4 *6 (-1207)) (-4 *7 (-1207)) (-4 *8 (-1207)) (-5 *2 (-597 *8)) - (-5 *1 (-595 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1148 *6)) (-5 *5 (-597 *7)) - (-4 *6 (-1207)) (-4 *7 (-1207)) (-4 *8 (-1207)) (-5 *2 (-1148 *8)) - (-5 *1 (-595 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-597 *6)) (-5 *5 (-1148 *7)) - (-4 *6 (-1207)) (-4 *7 (-1207)) (-4 *8 (-1207)) (-5 *2 (-1148 *8)) - (-5 *1 (-595 *6 *7 *8)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1207)) (-5 *1 (-597 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-639 *5)) (-4 *5 (-1207)) - (-4 *6 (-1207)) (-5 *2 (-639 *6)) (-5 *1 (-637 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-639 *6)) (-5 *5 (-639 *7)) - (-4 *6 (-1207)) (-4 *7 (-1207)) (-4 *8 (-1207)) (-5 *2 (-639 *8)) - (-5 *1 (-638 *6 *7 *8)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-645 *3)) (-4 *3 (-1207)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1044)) (-4 *8 (-1044)) - (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) (-4 *2 (-681 *8 *9 *10)) - (-5 *1 (-679 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-681 *5 *6 *7)) - (-4 *9 (-372 *8)) (-4 *10 (-372 *8)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1044)) - (-4 *8 (-1044)) (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) - (-4 *2 (-681 *8 *9 *10)) (-5 *1 (-679 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-681 *5 *6 *7)) (-4 *9 (-372 *8)) (-4 *10 (-372 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-554)) (-4 *7 (-554)) - (-4 *6 (-1232 *5)) (-4 *2 (-1232 (-406 *8))) - (-5 *1 (-704 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1232 (-406 *6))) - (-4 *8 (-1232 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1044)) (-4 *9 (-1044)) - (-4 *5 (-845)) (-4 *6 (-788)) (-4 *2 (-944 *9 *7 *5)) - (-5 *1 (-723 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-788)) - (-4 *4 (-944 *8 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-845)) (-4 *6 (-845)) (-4 *7 (-788)) - (-4 *9 (-1044)) (-4 *2 (-944 *9 *8 *6)) - (-5 *1 (-724 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-788)) - (-4 *4 (-944 *9 *7 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-730 *5 *7)) (-4 *5 (-1044)) - (-4 *6 (-1044)) (-4 *7 (-721)) (-5 *2 (-730 *6 *7)) - (-5 *1 (-729 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1044)) (-5 *1 (-730 *3 *4)) - (-4 *4 (-721)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-777 *5)) (-4 *5 (-1044)) - (-4 *6 (-1044)) (-5 *2 (-777 *6)) (-5 *1 (-776 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) - (-4 *2 (-792 *6)) (-5 *1 (-793 *4 *5 *2 *6)) (-4 *4 (-792 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-828 *5)) (-4 *5 (-1092)) - (-4 *6 (-1092)) (-5 *2 (-828 *6)) (-5 *1 (-827 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-828 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-828 *5)) - (-4 *5 (-1092)) (-4 *6 (-1092)) (-5 *1 (-827 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-838 *5)) (-4 *5 (-1092)) - (-4 *6 (-1092)) (-5 *2 (-838 *6)) (-5 *1 (-837 *5 *6)))) - ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-838 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-838 *5)) - (-4 *5 (-1092)) (-4 *6 (-1092)) (-5 *1 (-837 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-872 *5)) (-4 *5 (-1207)) - (-4 *6 (-1207)) (-5 *2 (-872 *6)) (-5 *1 (-871 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-874 *5)) (-4 *5 (-1207)) - (-4 *6 (-1207)) (-5 *2 (-874 *6)) (-5 *1 (-873 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1207)) - (-4 *6 (-1207)) (-5 *2 (-877 *6)) (-5 *1 (-876 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-884 *5 *6)) (-4 *5 (-1092)) - (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-884 *5 *7)) - (-5 *1 (-883 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-887 *5)) (-4 *5 (-1092)) - (-4 *6 (-1092)) (-5 *2 (-887 *6)) (-5 *1 (-886 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-947 *5)) (-4 *5 (-1044)) - (-4 *6 (-1044)) (-5 *2 (-947 *6)) (-5 *1 (-941 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-845)) - (-4 *8 (-1044)) (-4 *6 (-788)) - (-4 *2 - (-13 (-1092) - (-10 -8 (-15 -1836 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-766)))))) - (-5 *1 (-946 *6 *7 *8 *5 *2)) (-4 *5 (-944 *8 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-953 *5)) (-4 *5 (-1207)) - (-4 *6 (-1207)) (-5 *2 (-953 *6)) (-5 *1 (-952 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-938 *5)) (-4 *5 (-1044)) - (-4 *6 (-1044)) (-5 *2 (-938 *6)) (-5 *1 (-976 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-947 *4))) (-4 *4 (-1044)) - (-4 *2 (-944 (-947 *4) *5 *6)) (-4 *5 (-788)) - (-4 *6 - (-13 (-845) - (-10 -8 (-15 -4208 ((-1168) $)) - (-15 -2443 ((-3 $ "failed") (-1168)))))) - (-5 *1 (-979 *4 *5 *6 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-554)) (-4 *6 (-554)) - (-4 *2 (-987 *6)) (-5 *1 (-985 *5 *6 *4 *2)) (-4 *4 (-987 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-171)) (-4 *6 (-171)) - (-4 *2 (-992 *6)) (-5 *1 (-993 *4 *5 *2 *6)) (-4 *4 (-992 *5)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1047 *3 *4 *5 *6 *7)) - (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1047 *3 *4 *5 *6 *7)) - (-4 *5 (-1044)) (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1044)) (-4 *10 (-1044)) - (-14 *5 (-766)) (-14 *6 (-766)) (-4 *8 (-237 *6 *7)) - (-4 *9 (-237 *5 *7)) (-4 *2 (-1047 *5 *6 *10 *11 *12)) - (-5 *1 (-1049 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-1047 *5 *6 *7 *8 *9)) (-4 *11 (-237 *6 *10)) - (-4 *12 (-237 *5 *10)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1086 *5)) (-4 *5 (-1207)) - (-4 *6 (-1207)) (-5 *2 (-1086 *6)) (-5 *1 (-1081 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1086 *5)) (-4 *5 (-843)) - (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-639 *6)) - (-5 *1 (-1081 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1084 *5)) (-4 *5 (-1207)) - (-4 *6 (-1207)) (-5 *2 (-1084 *6)) (-5 *1 (-1083 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1087 *4 *2)) (-4 *4 (-843)) - (-4 *2 (-1141 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-1207)) - (-4 *6 (-1207)) (-5 *2 (-1148 *6)) (-5 *1 (-1146 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1148 *6)) (-5 *5 (-1148 *7)) - (-4 *6 (-1207)) (-4 *7 (-1207)) (-4 *8 (-1207)) (-5 *2 (-1148 *8)) - (-5 *1 (-1147 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1164 *5)) (-4 *5 (-1044)) - (-4 *6 (-1044)) (-5 *2 (-1164 *6)) (-5 *1 (-1162 *5 *6)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1183 *3 *4)) (-4 *3 (-1092)) - (-4 *4 (-1092)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1220 *5 *7 *9)) (-4 *5 (-1044)) - (-4 *6 (-1044)) (-14 *7 (-1168)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1220 *6 *8 *10)) (-5 *1 (-1215 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1168)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1223 *5)) (-4 *5 (-1207)) - (-4 *6 (-1207)) (-5 *2 (-1223 *6)) (-5 *1 (-1222 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1223 *5)) (-4 *5 (-843)) - (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-1148 *6)) - (-5 *1 (-1222 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1229 *5 *6)) (-14 *5 (-1168)) - (-4 *6 (-1044)) (-4 *8 (-1044)) (-5 *2 (-1229 *7 *8)) - (-5 *1 (-1224 *5 *6 *7 *8)) (-14 *7 (-1168)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1044)) (-4 *6 (-1044)) - (-4 *2 (-1232 *6)) (-5 *1 (-1230 *5 *4 *6 *2)) (-4 *4 (-1232 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1241 *5 *7 *9)) (-4 *5 (-1044)) - (-4 *6 (-1044)) (-14 *7 (-1168)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1241 *6 *8 *10)) (-5 *1 (-1236 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1168)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1044)) (-4 *6 (-1044)) - (-4 *2 (-1247 *6)) (-5 *1 (-1245 *5 *6 *4 *2)) (-4 *4 (-1247 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1256 *5)) (-4 *5 (-1207)) - (-4 *6 (-1207)) (-5 *2 (-1256 *6)) (-5 *1 (-1255 *5 *6)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1256 *5)) - (-4 *5 (-1207)) (-4 *6 (-1207)) (-5 *2 (-1256 *6)) - (-5 *1 (-1255 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) - (-4 *4 (-1044)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1044)) (-5 *1 (-1279 *3 *4)) - (-4 *4 (-841))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) - (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) - (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1153 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1154 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-683 *4)) (-5 *3 (-916)) (-4 *4 (-1044)) - (-5 *1 (-1023 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-639 (-683 *4))) (-5 *3 (-916)) (-4 *4 (-1044)) - (-5 *1 (-1023 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1168)) (-5 *2 (-1 *6 *5)) (-5 *1 (-701 *4 *5 *6)) - (-4 *4 (-610 (-535))) (-4 *5 (-1207)) (-4 *6 (-1207))))) + (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-640 (-640 *3))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-640 (-640 *5))))) + ((*1 *2 *1) + (-12 (-5 *2 (-640 (-640 *3))) (-5 *1 (-1180 *3)) (-4 *3 (-1093))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) (((*1 *2 *1) - (-12 (-5 *2 (-639 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-562)) - (-14 *4 (-766)) (-4 *5 (-171))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-766)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1208 *3)) (-4 *3 (-1092)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1092)) (-5 *2 (-112)) - (-5 *1 (-1208 *3))))) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) + (-14 *4 (-640 (-1169))))) + ((*1 *2 *3) + (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1208)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) + (-14 *4 (-640 (-1169))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-672 *3)) (-4 *3 (-846)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-846))))) +(((*1 *2 *3) + (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-640 (-1169))) (-4 *5 (-452)) + (-5 *2 (-481 *4 *5)) (-5 *1 (-628 *4 *5))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-302)) (-4 *2 (-1208)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-640 (-609 *1))) (-5 *3 (-640 *1)) (-4 *1 (-302)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-294 *1))) (-4 *1 (-302)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-294 *1)) (-4 *1 (-302))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-363)) (-4 *3 (-1045)) + (-5 *1 (-1153 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-640 (-1207))) (-5 *1 (-676)))) + ((*1 *2 *1) (-12 (-5 *2 (-640 (-1174))) (-5 *1 (-1111))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) -(((*1 *1 *1) (-4 *1 (-1136)))) -(((*1 *2 *2) - (-12 (-4 *3 (-348)) (-4 *4 (-328 *3)) (-4 *5 (-1232 *4)) - (-5 *1 (-772 *3 *4 *5 *2 *6)) (-4 *2 (-1232 *5)) (-14 *6 (-916)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-766)) (-4 *1 (-1275 *3)) (-4 *3 (-362)) (-4 *3 (-367)))) - ((*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-362)) (-4 *2 (-367))))) -(((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-5 *1 (-900 *3))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) - (-5 *2 - (-2 (|:| -2533 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) - (|:| |success| (-112)))) - (-5 *1 (-784)) (-5 *5 (-562))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-639 *1)) (-4 *1 (-301)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) - ((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-608 *3)) (-4 *3 (-845)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-114)) (-5 *3 (-639 *5)) (-5 *4 (-766)) (-4 *5 (-845)) - (-5 *1 (-608 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) - (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) - (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1153 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1154 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) - ((*1 *1 *1) (-5 *1 (-857)))) -(((*1 *1 *1) (-4 *1 (-544)))) -(((*1 *1 *2) - (-12 (-5 *2 (-315 *3)) (-4 *3 (-13 (-1044) (-845))) - (-5 *1 (-222 *3 *4)) (-14 *4 (-639 (-1168)))))) -(((*1 *1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262))))) + (-12 (-5 *3 (-684 (-407 (-563)))) (-5 *2 (-640 *4)) (-5 *1 (-775 *4)) + (-4 *4 (-13 (-363) (-844)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-555)) (-5 *2 (-640 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-417 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) + ((*1 *2 *3) (-12 (-5 *3 (-967)) (-5 *2 (-900 (-563))) (-5 *1 (-913))))) +(((*1 *2 *3) + (-12 (-5 *3 (-640 *2)) (-4 *2 (-1233 *4)) (-5 *1 (-539 *4 *2 *5 *6)) + (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-767)))))) (((*1 *2 *3) - (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-766)) - (-5 *1 (-448 *4 *5 *6 *3)) (-4 *3 (-944 *4 *5 *6))))) + (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) + (-5 *2 (-640 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1233 *4)))) + ((*1 *2 *3 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) + (-5 *2 (-640 *3)) (-5 *1 (-1121 *4 *3)) (-4 *4 (-1233 *3))))) +(((*1 *2) + (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) + (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1208)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193)))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-225))) + (-5 *2 (-1031)) (-5 *1 (-750))))) +(((*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1172))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-562))) (-5 *1 (-1042))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-528))))) -(((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-4 *1 (-107 *3))))) + (-12 (-5 *2 (-563)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045))))) +(((*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-248))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) - (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1153 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1154 *3)))) - ((*1 *1 *1) (-4 *1 (-1195)))) -(((*1 *1 *1) - (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1193)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-683 *5))) (-5 *4 (-562)) (-4 *5 (-362)) - (-4 *5 (-1044)) (-5 *2 (-112)) (-5 *1 (-1024 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 (-683 *4))) (-4 *4 (-362)) (-4 *4 (-1044)) - (-5 *2 (-112)) (-5 *1 (-1024 *4))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1164 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3))))) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) (((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-639 (-1168))) - (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) - ((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-639 (-1168))) - (-14 *4 (-639 (-1168))) (-4 *5 (-386))))) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1193)))))) +(((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-403 *3)) (-4 *3 (-404)))) + ((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-403 *3)) (-4 *3 (-404)))) + ((*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4398)) (-4 *1 (-404)))) + ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917)))) + ((*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-5 *2 (-1149 (-563)))))) +(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560))))) +(((*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) + ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) + ((*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3548 (-778 *3)) (|:| |coef2| (-778 *3)))) + (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-555)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *2 (-2 (|:| -3548 *1) (|:| |coef2| *1))) + (-4 *1 (-1059 *3 *4 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-639 *1)) (-5 *3 (-639 *7)) (-4 *1 (-1064 *4 *5 *6 *7)) - (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *7 (-1058 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) - (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 *1)) - (-4 *1 (-1064 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-639 *1)) (-4 *1 (-1064 *4 *5 *6 *3)) (-4 *4 (-451)) - (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-639 *1)) - (-4 *1 (-1064 *4 *5 *6 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-639 (-639 *8))) (-5 *3 (-639 *8)) - (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-788)) - (-4 *7 (-845)) (-5 *2 (-112)) (-5 *1 (-972 *5 *6 *7 *8))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-971 *4 *5 *6 *3)) (-4 *4 (-1044)) (-4 *5 (-788)) - (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-4 *4 (-554)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) -(((*1 *1) (-5 *1 (-557)))) + (-12 (-5 *3 (-917)) (-5 *1 (-1026 *2)) + (-4 *2 (-13 (-1093) (-10 -8 (-15 -1814 ($ $ $)))))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-677 *3)) (-4 *3 (-1093))))) (((*1 *2 *3) - (-12 (-5 *3 (-639 *4)) (-4 *4 (-1092)) (-5 *2 (-1261)) - (-5 *1 (-1208 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-639 *4)) (-4 *4 (-1092)) (-5 *2 (-1261)) - (-5 *1 (-1208 *4))))) + (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-300)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-305))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) - (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1153 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1154 *3)))) - ((*1 *1 *1) (-4 *1 (-1195)))) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1193)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-846)) + (-5 *2 + (-2 (|:| |f1| (-640 *4)) (|:| |f2| (-640 (-640 (-640 *4)))) + (|:| |f3| (-640 (-640 *4))) (|:| |f4| (-640 (-640 (-640 *4)))))) + (-5 *1 (-1179 *4)) (-5 *3 (-640 (-640 (-640 *4))))))) +(((*1 *1 *2) + (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-1257 *3))))) +(((*1 *2 *3 *4 *4 *5 *3 *6) + (|partial| -12 (-5 *4 (-609 *3)) (-5 *5 (-640 *3)) (-5 *6 (-1165 *3)) + (-4 *3 (-13 (-430 *7) (-27) (-1193))) + (-4 *7 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-559 *7 *3 *8)) (-4 *8 (-1093)))) + ((*1 *2 *3 *4 *4 *5 *4 *3 *6) + (|partial| -12 (-5 *4 (-609 *3)) (-5 *5 (-640 *3)) + (-5 *6 (-407 (-1165 *3))) (-4 *3 (-13 (-430 *7) (-27) (-1193))) + (-4 *7 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-559 *7 *3 *8)) (-4 *8 (-1093))))) +(((*1 *2 *2) (-12 (-5 *2 (-1087 (-839 (-225)))) (-5 *1 (-305))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1165 *6)) (-5 *3 (-563)) (-4 *6 (-307)) (-4 *4 (-789)) + (-4 *5 (-846)) (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) + (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) + (|:| |ub| (-640 (-839 (-225)))))) + (-5 *1 (-267))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *2 (-452))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 (-563))) (-4 *3 (-1045)) (-5 *1 (-99 *3)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-99 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-99 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190))))) (((*1 *2 *1) - (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-639 *1)) - (-4 *1 (-1058 *3 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-869))))) + (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) + (-5 *2 (-767)))) + ((*1 *2 *1) + (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1093)) + (-5 *2 (-767)))) + ((*1 *2 *1) + (-12 (-5 *2 (-767)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-722))))) +(((*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-814 *3)) (-4 *3 (-845)) (-5 *1 (-666 *3))))) -(((*1 *1) (-5 *1 (-140)))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-362) (-843))) - (-5 *2 (-639 (-2 (|:| -2656 (-639 *3)) (|:| -3964 *5)))) - (-5 *1 (-180 *5 *3)) (-4 *3 (-1232 (-168 *5))))) + (-12 (-5 *2 (-1242 *3 *4 *5)) (-4 *3 (-13 (-363) (-846))) + (-14 *4 (-1169)) (-14 *5 *3) (-5 *1 (-319 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1036)) (-5 *3 (-379))))) +(((*1 *2 *1) (-12 (-5 *2 (-640 (-1174))) (-5 *1 (-183))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1208)) (-4 *2 (-1045)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-858)))) + ((*1 *1 *1) (-5 *1 (-858))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-362) (-843))) - (-5 *2 (-639 (-2 (|:| -2656 (-639 *3)) (|:| -3964 *4)))) - (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) -(((*1 *2) (-12 (-5 *2 (-828 (-562))) (-5 *1 (-533)))) - ((*1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-1092))))) + (-12 (-5 *3 (-939 (-225))) (-5 *2 (-225)) (-5 *1 (-1204)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-1045))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1165 *4)) (-4 *4 (-349)) + (-4 *2 + (-13 (-402) + (-10 -7 (-15 -1693 (*2 *4)) (-15 -1476 ((-917) *2)) + (-15 -4315 ((-1257 *2) (-917))) (-15 -2350 (*2 *2))))) + (-5 *1 (-356 *2 *4))))) +(((*1 *2 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) + (-5 *1 (-747))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-869)) (-5 *3 (-639 (-262))) (-5 *1 (-260))))) -(((*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306))))) -(((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) - (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-5 *2 (-639 (-1022 *5 *6 *7 *8))) (-5 *1 (-1022 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) - (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-5 *2 (-639 (-1138 *5 *6 *7 *8))) (-5 *1 (-1138 *5 *6 *7 *8))))) -(((*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-329))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) - (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1153 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1154 *3)))) - ((*1 *1 *1) (-4 *1 (-1195)))) -(((*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044))))) -(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1150)) (-5 *1 (-705))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 - (-5 *3 - (-1 (-3 (-2 (|:| -2929 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-362)) (-5 *1 (-572 *4 *2)) (-4 *2 (-1232 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1207)) (-4 *2 (-845)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-372 *3)) (-4 *3 (-1207)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-845)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1126 *2)) (-4 *2 (-1044)))) - ((*1 *1 *2) - (-12 (-5 *2 (-639 *1)) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) - ((*1 *1 *2) - (-12 (-5 *2 (-639 (-1156 *3 *4))) (-5 *1 (-1156 *3 *4)) - (-14 *3 (-916)) (-4 *4 (-1044)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-1156 *2 *3)) (-14 *2 (-916)) (-4 *3 (-1044))))) -(((*1 *2 *1) (-12 (-4 *1 (-554)) (-5 *2 (-112))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1092) (-34))) - (-4 *3 (-13 (-1092) (-34)))))) + (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) + (-4 *3 (-1233 (-169 *2))))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) + (-4 *3 (-1233 (-169 *2)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-640 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1169)) (-4 *4 (-1045)) (-4 *4 (-846)) + (-5 *2 (-2 (|:| |var| (-609 *1)) (|:| -1654 (-563)))) + (-4 *1 (-430 *4)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1045)) (-4 *4 (-846)) + (-5 *2 (-2 (|:| |var| (-609 *1)) (|:| -1654 (-563)))) + (-4 *1 (-430 *4)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1105)) (-4 *3 (-846)) + (-5 *2 (-2 (|:| |var| (-609 *1)) (|:| -1654 (-563)))) + (-4 *1 (-430 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-888 *3)) (|:| -1654 (-767)))) + (-5 *1 (-888 *3)) (-4 *3 (-1093)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-5 *2 (-2 (|:| |var| *5) (|:| -1654 (-767)))))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) + (-4 *7 (-945 *6 *4 *5)) + (-5 *2 (-2 (|:| |var| *5) (|:| -1654 (-563)))) + (-5 *1 (-946 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-363) + (-10 -8 (-15 -1693 ($ *7)) (-15 -2143 (*7 $)) + (-15 -2154 (*7 $)))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) + ((*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913))))) (((*1 *2) - (-12 (-4 *2 (-13 (-429 *3) (-997))) (-5 *1 (-275 *3 *2)) - (-4 *3 (-13 (-845) (-554))))) - ((*1 *1) - (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) - (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) - ((*1 *1) (-5 *1 (-476))) ((*1 *1) (-4 *1 (-1192)))) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-640 (-684 *5))) (-5 *4 (-1257 *5)) (-4 *5 (-307)) + (-4 *5 (-1045)) (-5 *2 (-684 *5)) (-5 *1 (-1025 *5))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-576)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-857))))) +(((*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-557 *3)) (-4 *3 (-545))))) +(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560))))) +(((*1 *2) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) + (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-312)) (-5 *1 (-296)))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-312)) (-5 *1 (-296)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-312)) (-5 *1 (-296)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-640 (-1151))) (-5 *3 (-1151)) (-5 *2 (-312)) + (-5 *1 (-296))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1257 *4)) (-4 *4 (-636 (-563))) (-5 *2 (-112)) + (-5 *1 (-1284 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) +(((*1 *2 *3) + (-12 (-5 *3 (-316 (-225))) (-5 *2 (-407 (-563))) (-5 *1 (-305))))) (((*1 *2 *1) - (-12 (-5 *2 (-639 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-583 *3)) (-4 *3 (-362))))) + (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) + (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-5 *2 (-563))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) + (-12 (-5 *4 (-563)) (-5 *5 (-684 (-225))) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225)) + (-5 *2 (-1031)) (-5 *1 (-745))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) - (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) + (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) + (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-555)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) + (-4 *7 (-988 *4)) (-4 *2 (-682 *7 *8 *9)) + (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-682 *4 *5 *6)) + (-4 *8 (-373 *7)) (-4 *9 (-373 *7)))) ((*1 *1 *1) - (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) - (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1153 *3)))) + (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2)) (-4 *2 (-307)))) ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1154 *3)))) - ((*1 *1 *1) (-4 *1 (-1195)))) -(((*1 *2 *1) - (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) - (-4 *5 (-372 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) - (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1118 *4 *3 *5))) (-4 *4 (-38 (-406 (-562)))) - (-4 *4 (-1044)) (-4 *3 (-845)) (-5 *1 (-1118 *4 *3 *5)) - (-4 *5 (-944 *4 (-530 *3) *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1201 *4))) (-5 *3 (-1168)) (-5 *1 (-1201 *4)) - (-4 *4 (-38 (-406 (-562)))) (-4 *4 (-1044))))) -(((*1 *1 *2) - (-12 (-5 *2 (-683 *5)) (-4 *5 (-1044)) (-5 *1 (-1048 *3 *4 *5)) - (-14 *3 (-766)) (-14 *4 (-766))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-168 (-224))) (-5 *4 (-562)) (-5 *2 (-1030)) - (-5 *1 (-753))))) -(((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-3 *3 (-639 *1))) - (-4 *1 (-1064 *4 *5 *6 *3))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-417 *3)) (-4 *3 (-554)) (-5 *1 (-418 *3))))) + (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *1 (-683 *3 *4 *5 *2)) + (-4 *2 (-682 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-684 *3)) (-4 *3 (-307)) (-5 *1 (-695 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1048 *2 *3 *4 *5 *6)) (-4 *4 (-1045)) + (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-307))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1031))))) (((*1 *2 *1) - (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *5 (-845)) (-5 *2 (-766))))) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) + (-4 *5 (-1233 (-407 *4))) + (-5 *2 (-2 (|:| |num| (-1257 *4)) (|:| |den| *4)))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1093)))) + ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1093))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1055 (-1020 *4) (-1165 (-1020 *4)))) (-5 *3 (-858)) + (-5 *1 (-1020 *4)) (-4 *4 (-13 (-844) (-363) (-1018)))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-563)) (-4 *1 (-1217 *4)) (-4 *4 (-1045)) (-4 *4 (-555)) + (-5 *2 (-407 (-948 *4))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-563)) (-4 *1 (-1217 *4)) (-4 *4 (-1045)) (-4 *4 (-555)) + (-5 *2 (-407 (-948 *4)))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1208)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1149 *2)) (-4 *2 (-1208))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) -(((*1 *2) - (-12 (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) - (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-1261)) - (-5 *1 (-983 *3 *4 *5 *6 *7)) (-4 *7 (-1064 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) - (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-1261)) - (-5 *1 (-1099 *3 *4 *5 *6 *7)) (-4 *7 (-1064 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-608 *3)) (-5 *5 (-1 (-1164 *3) (-1164 *3))) - (-4 *3 (-13 (-27) (-429 *6))) (-4 *6 (-13 (-845) (-554))) - (-5 *2 (-583 *3)) (-5 *1 (-549 *6 *3))))) + (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-640 (-1169))) (-4 *5 (-555)) + (-5 *2 (-640 (-640 (-294 (-407 (-948 *5)))))) (-5 *1 (-766 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 (-948 *4))) (-4 *4 (-555)) + (-5 *2 (-640 (-640 (-294 (-407 (-948 *4)))))) (-5 *1 (-766 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-684 *7)) + (-5 *5 + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4315 (-640 *6))) + *7 *6)) + (-4 *6 (-363)) (-4 *7 (-651 *6)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1257 *6) "failed")) + (|:| -4315 (-640 (-1257 *6))))) + (-5 *1 (-809 *6 *7)) (-5 *4 (-1257 *6))))) +(((*1 *1) (-5 *1 (-819)))) +(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997))))) + (-12 (-5 *2 (-640 (-948 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4)) + (-14 *4 (-640 (-1169))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) - (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-330 *2)) (-4 *2 (-845)))) + (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) + (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-450 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-640 *7)) (-5 *3 (-1151)) (-4 *7 (-945 *4 *5 *6)) + (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-5 *1 (-450 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-640 *7)) (-5 *3 (-1151)) (-4 *7 (-945 *4 *5 *6)) + (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-5 *1 (-450 *4 *5 *6 *7)))) ((*1 *1 *1) - (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) - (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1153 *3)))) + (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) + (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1154 *3)))) - ((*1 *1 *1) (-4 *1 (-1195)))) -(((*1 *2 *3) - (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-554)) - (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) - (-5 *1 (-972 *4 *5 *6 *7))))) -(((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-179)))) - ((*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-675)))) - ((*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-965)))) - ((*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-1066)))) - ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-1110))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) + (-12 (-5 *2 (-640 (-776 *3 (-860 *4)))) (-4 *3 (-452)) + (-14 *4 (-640 (-1169))) (-5 *1 (-625 *3 *4))))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) + (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *3 (-563)) + (-5 *2 (-1031)) (-5 *1 (-752))))) (((*1 *2 *3) - (-12 (-5 *3 (-639 (-480 *4 *5))) (-14 *4 (-639 (-1168))) - (-4 *5 (-451)) (-5 *2 (-639 (-246 *4 *5))) (-5 *1 (-627 *4 *5))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-494))))) -(((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-966))))) -(((*1 *2 *1) (-12 (-5 *2 (-1117 (-562) (-608 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *1) - (-12 (-4 *3 (-987 *2)) (-4 *4 (-1232 *3)) (-4 *2 (-306)) - (-5 *1 (-412 *2 *3 *4 *5)) (-4 *5 (-13 (-408 *3 *4) (-1033 *3))))) - ((*1 *2 *1) - (-12 (-4 *3 (-554)) (-4 *3 (-845)) (-5 *2 (-1117 *3 (-608 *1))) - (-4 *1 (-429 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1117 (-562) (-608 (-494)))) (-5 *1 (-494)))) - ((*1 *2 *1) - (-12 (-4 *4 (-171)) (-4 *2 (|SubsetCategory| (-721) *4)) - (-5 *1 (-617 *3 *4 *2)) (-4 *3 (-38 *4)))) - ((*1 *2 *1) - (-12 (-4 *4 (-171)) (-4 *2 (|SubsetCategory| (-721) *4)) - (-5 *1 (-656 *3 *4 *2)) (-4 *3 (-712 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1150)) (-5 *4 (-562)) (-5 *5 (-683 (-168 (-224)))) - (-5 *2 (-1030)) (-5 *1 (-749))))) + (-12 (-4 *4 (-1045)) + (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))) + (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1233 *4))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1233 (-48)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) - (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) - (-5 *1 (-983 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) - (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) - (-5 *1 (-1099 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7))))) -(((*1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-367)) (-4 *2 (-1092))))) -(((*1 *2 *1) (-12 (-5 *2 (-639 (-109))) (-5 *1 (-174))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) - (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-330 *2)) (-4 *2 (-845)))) - ((*1 *1 *1) - (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) - (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1153 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1154 *3)))) - ((*1 *1 *1) (-4 *1 (-1195)))) -(((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-551))))) -(((*1 *2 *1) + (-12 (-5 *3 (-1257 *5)) (-4 *5 (-788)) (-5 *2 (-112)) + (-5 *1 (-841 *4 *5)) (-14 *4 (-767))))) +(((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-563)))) + ((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-694))))) +(((*1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1260))))) +(((*1 *2) + (-12 (-5 *2 (-684 (-906 *3))) (-5 *1 (-351 *3 *4)) (-14 *3 (-917)) + (-14 *4 (-917)))) + ((*1 *2) + (-12 (-5 *2 (-684 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) + (-14 *4 + (-3 (-1165 *3) + (-1257 (-640 (-2 (|:| -2619 *3) (|:| -2555 (-1113))))))))) + ((*1 *2) + (-12 (-5 *2 (-684 *3)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) + (-14 *4 (-917))))) +(((*1 *2 *3 *4 *5 *6 *7 *6) + (|partial| -12 + (-5 *5 + (-2 (|:| |contp| *3) + (|:| -2760 (-640 (-2 (|:| |irr| *10) (|:| -1650 (-563))))))) + (-5 *6 (-640 *3)) (-5 *7 (-640 *8)) (-4 *8 (-846)) (-4 *3 (-307)) + (-4 *10 (-945 *3 *9 *8)) (-4 *9 (-789)) + (-5 *2 + (-2 (|:| |polfac| (-640 *10)) (|:| |correct| *3) + (|:| |corrfact| (-640 (-1165 *3))))) + (-5 *1 (-622 *8 *9 *3 *10)) (-5 *4 (-640 (-1165 *3)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-349)) (-5 *2 (-954 (-1165 *4))) (-5 *1 (-357 *4)) + (-5 *3 (-1165 *4))))) +(((*1 *1 *2 *2) (-12 (-5 *2 - (-639 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-562))))) - (-5 *1 (-417 *3)) (-4 *3 (-554)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-766)) (-4 *3 (-348)) (-4 *5 (-1232 *3)) - (-5 *2 (-639 (-1164 *3))) (-5 *1 (-497 *3 *5 *6)) - (-4 *6 (-1232 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-639 *3)) (-4 *3 (-1232 (-562))) (-5 *1 (-485 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-938 (-224))) (-5 *2 (-1261)) (-5 *1 (-467))))) -(((*1 *2 *1 *1) - (-12 + (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) + (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) + (-5 *1 (-1168))))) +(((*1 *2 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-844)) (-5 *1 (-303 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563))))) +(((*1 *2) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) + (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-640 *4)) (-4 *4 (-1045)) (-5 *2 (-1257 *4)) + (-5 *1 (-1170 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-917)) (-5 *2 (-1257 *3)) (-5 *1 (-1170 *3)) + (-4 *3 (-1045))))) +(((*1 *2 *3) + (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) + ((*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-901 *4)) (-4 *4 (-1093)) (-5 *2 (-640 (-767))) + (-5 *1 (-900 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *5)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-640 (-640 (-858)))) (-5 *1 (-858)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1135 *3 *4)) (-5 *1 (-989 *3 *4)) (-14 *3 (-917)) + (-4 *4 (-363)))) + ((*1 *1 *2) + (-12 (-5 *2 (-640 (-640 *5))) (-4 *5 (-1045)) + (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) + (-4 *7 (-238 *3 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) + (-4 *3 (-1059 *6 *7 *8)) (-5 *2 - (-2 (|:| |lm| (-385 *3)) (|:| |mm| (-385 *3)) (|:| |rm| (-385 *3)))) - (-5 *1 (-385 *3)) (-4 *3 (-1092)))) - ((*1 *2 *1 *1) + (-2 (|:| |done| (-640 *4)) + (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2059 *4)))))) + (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-640 *4)) + (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2059 *4)))))) + (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) + (-4 *3 (-1059 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-640 *4)) + (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2059 *4)))))) + (-5 *1 (-1138 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-640 *4)) + (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2059 *4)))))) + (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963))))) +(((*1 *1 *1) (-5 *1 (-1057)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1149 *4)) (-5 *3 (-563)) (-4 *4 (-1045)) + (-5 *1 (-1153 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-563)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-1045)) + (-14 *4 (-1169)) (-14 *5 *3)))) +(((*1 *1 *2 *2) (-12 (-5 *2 - (-2 (|:| |lm| (-814 *3)) (|:| |mm| (-814 *3)) (|:| |rm| (-814 *3)))) - (-5 *1 (-814 *3)) (-4 *3 (-845))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-608 *1)) (-4 *1 (-301))))) -(((*1 *2 *3) (-12 (-5 *3 (-639 *2)) (-5 *1 (-1181 *2)) (-4 *2 (-362))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-857)))) - ((*1 *1 *1) (-5 *1 (-857)))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-766)) (-4 *4 (-554)) (-5 *1 (-964 *4 *2)) - (-4 *2 (-1232 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-4 *1 (-150 *3)))) + (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) + (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) + (-5 *1 (-1168))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1240 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1217 *3)) + (-5 *2 (-407 (-563)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-767)) (-4 *1 (-1233 *4)) (-4 *4 (-1045)) + (-5 *2 (-1257 *4))))) +(((*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260)))) + ((*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1095 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1095 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1093))))) +(((*1 *2 *1) + (-12 (-5 *2 (-640 (-901 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1093))))) +(((*1 *2 *3) + (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) + ((*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1151)) (-5 *1 (-1189))))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) + (-5 *2 (-1031)) (-5 *1 (-752))))) +(((*1 *1 *1) (-5 *1 (-1168))) ((*1 *1 *2) (-12 - (-5 *2 (-639 (-2 (|:| -1300 (-766)) (|:| -2328 *4) (|:| |num| *4)))) - (-4 *4 (-1232 *3)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) - (-5 *3 (-639 (-947 (-562)))) (-5 *4 (-112)) (-5 *1 (-436)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) - (-5 *3 (-639 (-1168))) (-5 *4 (-112)) (-5 *1 (-436)))) + (-5 *2 + (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) + (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) + (-5 *1 (-1168))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-684 *11)) (-5 *4 (-640 (-407 (-948 *8)))) + (-5 *5 (-767)) (-5 *6 (-1151)) (-4 *8 (-13 (-307) (-147))) + (-4 *11 (-945 *8 *10 *9)) (-4 *9 (-13 (-846) (-611 (-1169)))) + (-4 *10 (-789)) + (-5 *2 + (-2 + (|:| |rgl| + (-640 + (-2 (|:| |eqzro| (-640 *11)) (|:| |neqzro| (-640 *11)) + (|:| |wcond| (-640 (-948 *8))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1257 (-407 (-948 *8)))) + (|:| -4315 (-640 (-1257 (-407 (-948 *8)))))))))) + (|:| |rgsz| (-563)))) + (-5 *1 (-920 *8 *9 *10 *11)) (-5 *7 (-563))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) + (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) + (-5 *2 (-1031)) (-5 *1 (-749))))) +(((*1 *2 *3) (-12 (-5 *3 (-817)) (-5 *2 (-52)) (-5 *1 (-827))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) ((*1 *2 *1) - (-12 (-5 *2 (-1148 *3)) (-5 *1 (-597 *3)) (-4 *3 (-1207)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-171)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-666 *3)) (-4 *3 (-845)) (-5 *1 (-658 *3 *4)) - (-4 *4 (-171)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-666 *3)) (-4 *3 (-845)) (-5 *1 (-658 *3 *4)) - (-4 *4 (-171)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-666 *3)) (-4 *3 (-845)) (-5 *1 (-658 *3 *4)) - (-4 *4 (-171)))) - ((*1 *1 *2) - (-12 (-5 *2 (-639 (-639 (-639 *3)))) (-4 *3 (-1092)) - (-5 *1 (-669 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-708 *2 *3 *4)) (-4 *2 (-845)) (-4 *3 (-1092)) - (-14 *4 - (-1 (-112) (-2 (|:| -2464 *2) (|:| -1300 *3)) - (-2 (|:| -2464 *2) (|:| -1300 *3)))))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-505)) (-5 *3 (-1110)) (-5 *1 (-833)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-868 *2 *3)) (-4 *2 (-1207)) (-4 *3 (-1207)))) - ((*1 *1 *2) - (-12 (-5 *2 (-639 (-2 (|:| -2319 (-1168)) (|:| -2693 *4)))) - (-4 *4 (-1092)) (-5 *1 (-884 *3 *4)) (-4 *3 (-1092)))) + (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1280 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-842))))) +(((*1 *1 *1) + (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) + (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *2 *3) + (-12 (-5 *3 (-640 (-640 (-640 *4)))) (-5 *2 (-640 (-640 *4))) + (-5 *1 (-1179 *4)) (-4 *4 (-846))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1233 *5)) + (-4 *5 (-13 (-27) (-430 *4))) + (-4 *4 (-13 (-846) (-555) (-1034 (-563)))) + (-4 *7 (-1233 (-407 *6))) (-5 *1 (-551 *4 *5 *6 *7 *2)) + (-4 *2 (-342 *5 *6 *7))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-555)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) + (-5 *1 (-1198 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467)))) + ((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467)))) + ((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1165 *9)) (-5 *4 (-640 *7)) (-5 *5 (-640 *8)) + (-4 *7 (-846)) (-4 *8 (-1045)) (-4 *9 (-945 *8 *6 *7)) + (-4 *6 (-789)) (-5 *2 (-1165 *8)) (-5 *1 (-321 *6 *7 *8 *9))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1169)) + (-4 *5 (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-2 (|:| -3646 *3) (|:| |coeff| *3))) (-5 *1 (-556 *5 *3)) + (-4 *3 (-13 (-27) (-1193) (-430 *5)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-917)) (-5 *1 (-1028 *2)) + (-4 *2 (-13 (-1093) (-10 -8 (-15 * ($ $ $)))))))) +(((*1 *1 *1) + (-12 (-4 *2 (-307)) (-4 *3 (-988 *2)) (-4 *4 (-1233 *3)) + (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1034 *3)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) +(((*1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1208)) (-4 *2 (-1093)))) + ((*1 *1 *1) (-12 (-4 *1 (-690 *2)) (-4 *2 (-1093))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1169)) (-5 *2 (-1 (-1165 (-948 *4)) (-948 *4))) + (-5 *1 (-1265 *4)) (-4 *4 (-363))))) +(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-858))))) +(((*1 *1 *1) (-5 *1 (-858)))) +(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-407 (-563))) (-5 *1 (-305))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2) + (-12 (-5 *2 (-1257 (-1094 *3 *4))) (-5 *1 (-1094 *3 *4)) + (-14 *3 (-917)) (-14 *4 (-917))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *3 (-640 (-870))) + (-5 *1 (-468))))) +(((*1 *2 *3) + (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-241)) (-5 *3 (-1151)))) + ((*1 *2 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-241)))) + ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-846))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-767)) (-5 *2 (-640 (-1169))) (-5 *1 (-210)) + (-5 *3 (-1169)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-639 *5)) (-4 *5 (-13 (-1092) (-34))) - (-5 *2 (-639 (-1132 *3 *5))) (-5 *1 (-1132 *3 *5)) - (-4 *3 (-13 (-1092) (-34))))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 (-2 (|:| |val| *4) (|:| -1501 *5)))) - (-4 *4 (-13 (-1092) (-34))) (-4 *5 (-13 (-1092) (-34))) - (-5 *2 (-639 (-1132 *4 *5))) (-5 *1 (-1132 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1501 *4))) - (-4 *3 (-13 (-1092) (-34))) (-4 *4 (-13 (-1092) (-34))) - (-5 *1 (-1132 *3 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-1132 *2 *3)) (-4 *2 (-13 (-1092) (-34))) - (-4 *3 (-13 (-1092) (-34))))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-5 *1 (-1132 *2 *3)) (-4 *2 (-13 (-1092) (-34))) - (-4 *3 (-13 (-1092) (-34))))) - ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-639 *3)) (-4 *3 (-13 (-1092) (-34))) - (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1092) (-34))))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-639 (-1132 *2 *3))) (-4 *2 (-13 (-1092) (-34))) - (-4 *3 (-13 (-1092) (-34))) (-5 *1 (-1133 *2 *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-639 (-1133 *2 *3))) (-5 *1 (-1133 *2 *3)) - (-4 *2 (-13 (-1092) (-34))) (-4 *3 (-13 (-1092) (-34))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1132 *3 *4)) (-4 *3 (-13 (-1092) (-34))) - (-4 *4 (-13 (-1092) (-34))) (-5 *1 (-1133 *3 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-1157 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092))))) -(((*1 *2 *1) (-12 (-5 *2 (-1117 (-562) (-608 (-48)))) (-5 *1 (-48)))) + (-12 (-5 *3 (-316 (-225))) (-5 *4 (-767)) (-5 *2 (-640 (-1169))) + (-5 *1 (-267)))) ((*1 *2 *1) - (-12 (-4 *3 (-306)) (-4 *4 (-987 *3)) (-4 *5 (-1232 *4)) - (-5 *2 (-1256 *6)) (-5 *1 (-412 *3 *4 *5 *6)) - (-4 *6 (-13 (-408 *4 *5) (-1033 *4))))) + (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) + (-5 *2 (-640 *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-1044)) (-4 *3 (-845)) (-5 *2 (-1117 *3 (-608 *1))) - (-4 *1 (-429 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1117 (-562) (-608 (-494)))) (-5 *1 (-494)))) + (-12 (-5 *2 (-640 *3)) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) + (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917)))) + ((*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) + ((*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-672 *3)) (-4 *3 (-846)))) + ((*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-815 *3)) (-4 *3 (-846)))) + ((*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) ((*1 *2 *1) - (-12 (-4 *3 (-171)) (-4 *2 (-38 *3)) (-5 *1 (-617 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-721) *3)))) + (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) + (-5 *2 (-640 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-640 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) + (-14 *6 (-640 (-1169))) (-5 *2 (-640 (-1042 *5 *6))) + (-5 *1 (-625 *5 *6))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-640 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-5 *2 (-112)))) + ((*1 *2 *3 *1 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1201 *5 *6 *7 *3)) + (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-169 (-225)))) (-5 *2 (-1031)) + (-5 *1 (-750))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1132)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-3 (-407 (-948 *6)) (-1158 (-1169) (-948 *6)))) + (-5 *5 (-767)) (-4 *6 (-452)) (-5 *2 (-640 (-684 (-407 (-948 *6))))) + (-5 *1 (-292 *6)) (-5 *4 (-684 (-407 (-948 *6)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *3 + (-2 (|:| |eigval| (-3 (-407 (-948 *5)) (-1158 (-1169) (-948 *5)))) + (|:| |eigmult| (-767)) (|:| |eigvec| (-640 *4)))) + (-4 *5 (-452)) (-5 *2 (-640 (-684 (-407 (-948 *5))))) + (-5 *1 (-292 *5)) (-5 *4 (-684 (-407 (-948 *5))))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-983 (-407 (-563)) (-860 *3) (-240 *4 (-767)) + (-247 *3 (-407 (-563))))) + (-14 *3 (-640 (-1169))) (-14 *4 (-767)) (-5 *1 (-982 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-13 (-846) (-555)))))) +(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) + ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1255 *3)) (-4 *3 (-1208)) (-4 *3 (-1045)) + (-5 *2 (-684 *3))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) + (-5 *1 (-743))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563)))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1169)) (-5 *4 (-948 (-563))) (-5 *2 (-330)) + (-5 *1 (-332))))) +(((*1 *2 *1) + (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) + (|has| *2 (-6 (-4409 "*"))) (-4 *2 (-1045)))) + ((*1 *2 *3) + (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172)) + (-5 *1 (-683 *2 *4 *5 *3)) (-4 *3 (-682 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *3 (-171)) (-4 *2 (-712 *3)) (-5 *1 (-656 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-721) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554))))) -(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-639 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-554)) - (-4 *6 (-788)) (-4 *7 (-845)) (-5 *1 (-972 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1164 *9)) (-5 *4 (-639 *7)) (-5 *5 (-639 (-639 *8))) - (-4 *7 (-845)) (-4 *8 (-306)) (-4 *9 (-944 *8 *6 *7)) (-4 *6 (-788)) + (-12 (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) + (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4409 "*"))) (-4 *2 (-1045))))) +(((*1 *2 *3) + (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-13 (-846) (-555)))))) +(((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| |upol| (-1164 *8)) (|:| |Lval| (-639 *8)) - (|:| |Lfact| - (-639 (-2 (|:| -1635 (-1164 *8)) (|:| -1300 (-562))))) - (|:| |ctpol| *8))) - (-5 *1 (-737 *6 *7 *8 *9))))) -(((*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) - ((*1 *1 *1 *1) (-5 *1 (-857)))) + (-640 + (-640 + (-3 (|:| -3348 (-1169)) + (|:| -2445 (-640 (-3 (|:| S (-1169)) (|:| P (-948 (-563)))))))))) + (-5 *1 (-1173))))) (((*1 *2 *3 *4) - (-12 (-4 *2 (-1232 *4)) (-5 *1 (-802 *4 *2 *3 *5)) - (-4 *4 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *3 (-650 *2)) - (-4 *5 (-650 (-406 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1232 *4)) (-5 *1 (-802 *4 *2 *5 *3)) - (-4 *4 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *5 (-650 *2)) - (-4 *3 (-650 (-406 *2)))))) -(((*1 *1 *1) (-4 *1 (-625))) + (-12 (-5 *3 (-1257 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) + (-4 *1 (-720 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1233 *5)) + (-5 *2 (-684 *5))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) +(((*1 *1 *1 *1) (-4 *1 (-143))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-407 (-563)))) + (-5 *2 (-2 (|:| -1748 (-1149 *4)) (|:| -1759 (-1149 *4)))) + (-5 *1 (-1155 *4)) (-5 *3 (-1149 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) + (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) + (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1133 *4 *5)) (-4 *4 (-13 (-1093) (-34))) + (-4 *5 (-13 (-1093) (-34))) (-5 *2 (-112)) (-5 *1 (-1134 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-302)))) + ((*1 *1 *1) (-4 *1 (-302))) + ((*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) + ((*1 *1 *1) (-5 *1 (-858)))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) + (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *1 (-973 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-640 (-860 *5))) (-14 *5 (-640 (-1169))) (-4 *6 (-452)) + (-5 *2 + (-2 (|:| |dpolys| (-640 (-247 *5 *6))) + (|:| |coords| (-640 (-563))))) + (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-640 (-247 *5 *6))) (-4 *7 (-452))))) +(((*1 *2 *2) + (-12 (-5 *2 (-640 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) + (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) + (-5 *1 (-984 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-626 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997) (-1192)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143))))) + (-12 (-5 *2 (-640 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) + (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) + (-5 *1 (-1100 *3 *4 *5 *6 *7))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-418 *2)) (-4 *2 (-307)) (-5 *1 (-910 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169)) + (-4 *5 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-911 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-418 (-948 *6))) (-5 *5 (-1169)) (-5 *3 (-948 *6)) + (-4 *6 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-911 *6))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-1257 *5)) (-5 *3 (-767)) (-5 *4 (-1113)) (-4 *5 (-349)) + (-5 *1 (-528 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-947 *6))) (-5 *4 (-639 (-1168))) - (-4 *6 (-13 (-554) (-1033 *5))) (-4 *5 (-554)) - (-5 *2 (-639 (-639 (-293 (-406 (-947 *6)))))) (-5 *1 (-1034 *5 *6))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-4 *3 (-1058 *5 *6 *7)) - (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1501 *4)))) - (-5 *1 (-1065 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1256 *3)) (-4 *3 (-362)) (-14 *6 (-1256 (-683 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))))) - ((*1 *1 *2) (-12 (-5 *2 (-1117 (-562) (-608 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1207)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1256 (-338 (-4064 'JINT 'X 'ELAM) (-4064) (-693)))) - (-5 *1 (-61 *3)) (-14 *3 (-1168)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1256 (-338 (-4064) (-4064 'XC) (-693)))) - (-5 *1 (-63 *3)) (-14 *3 (-1168)))) - ((*1 *1 *2) - (-12 (-5 *2 (-338 (-4064 'X) (-4064) (-693))) (-5 *1 (-64 *3)) - (-14 *3 (-1168)))) - ((*1 *1 *2) - (-12 (-5 *2 (-338 (-4064) (-4064 'XC) (-693))) (-5 *1 (-66 *3)) - (-14 *3 (-1168)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1256 (-338 (-4064 'X) (-4064 '-3171) (-693)))) - (-5 *1 (-71 *3)) (-14 *3 (-1168)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1256 (-338 (-4064) (-4064 'X) (-693)))) - (-5 *1 (-74 *3)) (-14 *3 (-1168)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1256 (-338 (-4064 'X 'EPS) (-4064 '-3171) (-693)))) - (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1168)) (-14 *4 (-1168)) - (-14 *5 (-1168)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1256 (-338 (-4064 'EPS) (-4064 'YA 'YB) (-693)))) - (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1168)) (-14 *4 (-1168)) - (-14 *5 (-1168)))) - ((*1 *1 *2) - (-12 (-5 *2 (-338 (-4064) (-4064 'X) (-693))) (-5 *1 (-77 *3)) - (-14 *3 (-1168)))) - ((*1 *1 *2) - (-12 (-5 *2 (-338 (-4064) (-4064 'X) (-693))) (-5 *1 (-78 *3)) - (-14 *3 (-1168)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1256 (-338 (-4064) (-4064 'XC) (-693)))) - (-5 *1 (-79 *3)) (-14 *3 (-1168)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1256 (-338 (-4064) (-4064 'X) (-693)))) - (-5 *1 (-80 *3)) (-14 *3 (-1168)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1256 (-338 (-4064 'X '-3171) (-4064) (-693)))) - (-5 *1 (-82 *3)) (-14 *3 (-1168)))) - ((*1 *1 *2) - (-12 (-5 *2 (-683 (-338 (-4064 'X '-3171) (-4064) (-693)))) - (-5 *1 (-83 *3)) (-14 *3 (-1168)))) - ((*1 *1 *2) - (-12 (-5 *2 (-683 (-338 (-4064 'X) (-4064) (-693)))) (-5 *1 (-84 *3)) - (-14 *3 (-1168)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1256 (-338 (-4064 'X) (-4064) (-693)))) - (-5 *1 (-85 *3)) (-14 *3 (-1168)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1256 (-338 (-4064 'X) (-4064 '-3171) (-693)))) - (-5 *1 (-86 *3)) (-14 *3 (-1168)))) - ((*1 *1 *2) - (-12 (-5 *2 (-683 (-338 (-4064 'XL 'XR 'ELAM) (-4064) (-693)))) - (-5 *1 (-87 *3)) (-14 *3 (-1168)))) - ((*1 *1 *2) - (-12 (-5 *2 (-338 (-4064 'X) (-4064 '-3171) (-693))) (-5 *1 (-89 *3)) - (-14 *3 (-1168)))) - ((*1 *1 *2) - (-12 (-5 *2 (-639 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) - (-14 *3 (-562)) (-14 *4 (-766)) (-4 *5 (-171)))) - ((*1 *1 *2) - (-12 (-5 *2 (-639 *5)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5)) - (-14 *3 (-562)) (-14 *4 (-766)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1134 *4 *5)) (-14 *4 (-766)) (-4 *5 (-171)) - (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-562)))) - ((*1 *1 *2) - (-12 (-5 *2 (-239 *4 *5)) (-14 *4 (-766)) (-4 *5 (-171)) - (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-562)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1256 (-683 *4))) (-4 *4 (-171)) - (-5 *2 (-1256 (-683 (-406 (-947 *4))))) (-5 *1 (-188 *4)))) + (-12 (-5 *3 (-684 *5)) (-5 *4 (-1257 *5)) (-4 *5 (-363)) + (-5 *2 (-112)) (-5 *1 (-662 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4408)))) + (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4408)))) (-5 *2 (-112)) + (-5 *1 (-663 *5 *6 *4 *3)) (-4 *3 (-682 *5 *6 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-640 (-684 *4))) (-5 *2 (-684 *4)) (-4 *4 (-1045)) + (-5 *1 (-1025 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-640 *4)) (-4 *4 (-363)) (-5 *2 (-684 *4)) + (-5 *1 (-810 *4 *5)) (-4 *5 (-651 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-640 *5)) (-5 *4 (-767)) (-4 *5 (-363)) + (-5 *2 (-684 *5)) (-5 *1 (-810 *5 *6)) (-4 *6 (-651 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1093)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 *2))) + (-5 *2 (-888 *3)) (-5 *1 (-1069 *3 *4 *5)) + (-4 *5 (-13 (-430 *4) (-882 *3) (-611 *2)))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1208))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-684 (-169 (-407 (-563))))) (-5 *2 (-640 (-169 *4))) + (-5 *1 (-760 *4)) (-4 *4 (-13 (-363) (-844)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-917)) + (-5 *2 + (-3 (-1165 *4) + (-1257 (-640 (-2 (|:| -2619 *4) (|:| -2555 (-1113))))))) + (-5 *1 (-346 *4)) (-4 *4 (-349))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-767)) (-5 *4 (-563)) (-5 *1 (-445 *2)) (-4 *2 (-1045))))) +(((*1 *2 *2) + (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) + (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-191)) (-5 *3 (-563)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-172)))) ((*1 *2 *3) - (-12 (-5 *3 (-1084 (-315 *4))) - (-4 *4 (-13 (-845) (-554) (-610 (-378)))) (-5 *2 (-1084 (-378))) - (-5 *1 (-257 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-265 *2)) (-4 *2 (-845)))) - ((*1 *1 *2) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-274)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1232 *3)) (-5 *1 (-288 *3 *2 *4 *5 *6 *7)) - (-4 *3 (-171)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1241 *4 *5 *6)) (-4 *4 (-13 (-27) (-1192) (-429 *3))) - (-14 *5 (-1168)) (-14 *6 *4) - (-4 *3 (-13 (-845) (-1033 (-562)) (-635 (-562)) (-451))) - (-5 *1 (-312 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-938)) (-5 *3 (-563))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-846)) (-4 *5 (-789)) + (-4 *6 (-555)) (-4 *7 (-945 *6 *5 *3)) + (-5 *1 (-462 *5 *3 *6 *7 *2)) + (-4 *2 + (-13 (-1034 (-407 (-563))) (-363) + (-10 -8 (-15 -1693 ($ *7)) (-15 -2143 (*7 $)) + (-15 -2154 (*7 $)))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1193)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-640 (-640 (-939 (-225))))) + (-5 *2 (-640 (-1087 (-225)))) (-5 *1 (-924))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-1008)) (-5 *2 (-858))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-294 (-407 (-948 *5)))) (-5 *4 (-1169)) + (-4 *5 (-13 (-307) (-846) (-147))) + (-5 *2 (-1158 (-640 (-316 *5)) (-640 (-294 (-316 *5))))) + (-5 *1 (-1122 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169)) + (-4 *5 (-13 (-307) (-846) (-147))) + (-5 *2 (-1158 (-640 (-316 *5)) (-640 (-294 (-316 *5))))) + (-5 *1 (-1122 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-327 *3)) (-4 *3 (-1208)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-563)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1208)) (-14 *4 *2)))) +(((*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-755))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1133 *3 *2)) (-4 *3 (-13 (-1093) (-34))) + (-4 *2 (-13 (-1093) (-34)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1045)) (-4 *3 (-846)) + (-4 *4 (-266 *3)) (-4 *5 (-789))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-917)) (-4 *4 (-368)) (-4 *4 (-363)) (-5 *2 (-1165 *1)) + (-4 *1 (-329 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1165 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-315 *5)) (-5 *1 (-338 *3 *4 *5)) - (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) + (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *3 (-363)) + (-4 *2 (-1233 *3)))) ((*1 *2 *3) - (-12 (-4 *4 (-348)) (-4 *2 (-328 *4)) (-5 *1 (-346 *3 *4 *2)) - (-4 *3 (-328 *4)))) + (-12 (-5 *3 (-1257 *4)) (-4 *4 (-349)) (-5 *2 (-1165 *4)) + (-5 *1 (-528 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1157 3 *3)) (-4 *3 (-1045)) (-4 *1 (-1127 *3)))) + ((*1 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1045))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1093)) (-4 *6 (-1093)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-679 *4 *5 *6)) (-4 *4 (-1093))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846))))) +(((*1 *1 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-363)) (-4 *1 (-329 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1257 *3)) (-4 *3 (-1233 *4)) (-4 *4 (-1212)) + (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1233 (-407 *3))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1257 *4)) (-5 *3 (-1257 *1)) (-4 *4 (-172)) + (-4 *1 (-367 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1257 *4)) (-5 *3 (-1257 *1)) (-4 *4 (-172)) + (-4 *1 (-370 *4 *5)) (-4 *5 (-1233 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1257 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4)) + (-4 *4 (-1233 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1189)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1189))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-640 (-609 *2))) (-5 *4 (-1169)) + (-4 *2 (-13 (-27) (-1193) (-430 *5))) + (-4 *5 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *1 (-277 *5 *2))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-114)) (-5 *4 (-640 *2)) (-5 *1 (-113 *2)) + (-4 *2 (-1093)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-640 *4))) (-4 *4 (-1093)) + (-5 *1 (-113 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1093)) + (-5 *1 (-113 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-348)) (-4 *2 (-328 *4)) (-5 *1 (-346 *2 *4 *3)) - (-4 *3 (-328 *4)))) + (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-640 *4))) + (-5 *1 (-113 *4)) (-4 *4 (-1093)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-643 *3)) (-4 *3 (-1045)) + (-5 *1 (-710 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-832 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1233 *6)) + (-4 *6 (-13 (-27) (-430 *5))) + (-4 *5 (-13 (-846) (-555) (-1034 (-563)))) (-4 *8 (-1233 (-407 *7))) + (-5 *2 (-584 *3)) (-5 *1 (-551 *5 *6 *7 *8 *3)) + (-4 *3 (-342 *6 *7 *8))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-938)) (-5 *3 (-563))))) +(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-52)) (-5 *1 (-1186))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1151)) (-5 *2 (-640 (-1174))) (-5 *1 (-876))))) +(((*1 *1 *1 *1) (-5 *1 (-225))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036)))) + ((*1 *1 *1 *1) (-4 *1 (-1132)))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-858))))) +(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-1213)))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *4 (-225)) + (-5 *2 + (-2 (|:| |brans| (-640 (-640 (-939 *4)))) + (|:| |xValues| (-1087 *4)) (|:| |yValues| (-1087 *4)))) + (-5 *1 (-153)) (-5 *3 (-640 (-640 (-939 *4))))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-640 *4)) (-4 *4 (-1093)) (-4 *4 (-1208)) (-5 *2 (-112)) + (-5 *1 (-1149 *4))))) +(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923))))) +(((*1 *1 *2 *3 *4) + (-12 (-14 *5 (-640 (-1169))) (-4 *2 (-172)) + (-4 *4 (-238 (-3608 *5) (-767))) + (-14 *6 + (-1 (-112) (-2 (|:| -2555 *3) (|:| -1654 *4)) + (-2 (|:| -2555 *3) (|:| -1654 *4)))) + (-5 *1 (-461 *5 *2 *3 *4 *6 *7)) (-4 *3 (-846)) + (-4 *7 (-945 *2 *4 (-860 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1093)) (-4 *5 (-1093)) + (-4 *6 (-1093)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-679 *4 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))) + ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260))))) +(((*1 *2 *1) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) + (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)) - (-5 *2 (-1280 *3 *4)))) + (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1093)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-593 *3)) (-4 *3 (-1045)))) ((*1 *2 *1) - (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)) - (-5 *2 (-1271 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-845)) (-4 *3 (-171)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) - (-4 *1 (-382)))) - ((*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-382)))) - ((*1 *1 *2) (-12 (-5 *2 (-639 (-329))) (-4 *1 (-382)))) - ((*1 *1 *2) (-12 (-5 *2 (-683 (-693))) (-4 *1 (-382)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) - (-4 *1 (-383)))) - ((*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-383)))) - ((*1 *1 *2) (-12 (-5 *2 (-639 (-329))) (-4 *1 (-383)))) - ((*1 *2 *3) (-12 (-5 *2 (-393)) (-5 *1 (-392 *3)) (-4 *3 (-1092)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) - (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-639 (-329))) (-4 *1 (-395)))) - ((*1 *1 *2) - (-12 (-5 *2 (-293 (-315 (-168 (-378))))) (-5 *1 (-397 *3 *4 *5 *6)) - (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) - (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) - ((*1 *1 *2) - (-12 (-5 *2 (-293 (-315 (-378)))) (-5 *1 (-397 *3 *4 *5 *6)) - (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) - (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) - ((*1 *1 *2) - (-12 (-5 *2 (-293 (-315 (-562)))) (-5 *1 (-397 *3 *4 *5 *6)) - (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) - (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) - ((*1 *1 *2) - (-12 (-5 *2 (-315 (-168 (-378)))) (-5 *1 (-397 *3 *4 *5 *6)) - (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) - (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) - ((*1 *1 *2) - (-12 (-5 *2 (-315 (-378))) (-5 *1 (-397 *3 *4 *5 *6)) - (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) - (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) - ((*1 *1 *2) - (-12 (-5 *2 (-315 (-562))) (-5 *1 (-397 *3 *4 *5 *6)) - (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) - (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) - ((*1 *1 *2) - (-12 (-5 *2 (-293 (-315 (-688)))) (-5 *1 (-397 *3 *4 *5 *6)) - (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) - (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) - ((*1 *1 *2) - (-12 (-5 *2 (-293 (-315 (-693)))) (-5 *1 (-397 *3 *4 *5 *6)) - (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) - (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) - ((*1 *1 *2) - (-12 (-5 *2 (-293 (-315 (-695)))) (-5 *1 (-397 *3 *4 *5 *6)) - (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) - (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) - ((*1 *1 *2) - (-12 (-5 *2 (-315 (-688))) (-5 *1 (-397 *3 *4 *5 *6)) - (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) - (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) - ((*1 *1 *2) - (-12 (-5 *2 (-315 (-693))) (-5 *1 (-397 *3 *4 *5 *6)) - (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) - (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) - ((*1 *1 *2) - (-12 (-5 *2 (-315 (-695))) (-5 *1 (-397 *3 *4 *5 *6)) - (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) - (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) - (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1168)) - (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) - (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) - ((*1 *1 *2) - (-12 (-5 *2 (-639 (-329))) (-5 *1 (-397 *3 *4 *5 *6)) - (-14 *3 (-1168)) (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) - (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) - ((*1 *1 *2) - (-12 (-5 *2 (-329)) (-5 *1 (-397 *3 *4 *5 *6)) (-14 *3 (-1168)) - (-14 *4 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) - (-14 *5 (-639 (-1168))) (-14 *6 (-1172)))) - ((*1 *1 *2) - (-12 (-5 *2 (-330 *4)) (-4 *4 (-13 (-845) (-21))) - (-5 *1 (-426 *3 *4)) (-4 *3 (-13 (-171) (-38 (-406 (-562))))))) - ((*1 *1 *2) - (-12 (-5 *1 (-426 *2 *3)) (-4 *2 (-13 (-171) (-38 (-406 (-562))))) - (-4 *3 (-13 (-845) (-21))))) - ((*1 *1 *2) - (-12 (-5 *2 (-406 (-947 (-406 *3)))) (-4 *3 (-554)) (-4 *3 (-845)) - (-4 *1 (-429 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-947 (-406 *3))) (-4 *3 (-554)) (-4 *3 (-845)) - (-4 *1 (-429 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-406 *3)) (-4 *3 (-554)) (-4 *3 (-845)) - (-4 *1 (-429 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1117 *3 (-608 *1))) (-4 *3 (-1044)) (-4 *3 (-845)) - (-4 *1 (-429 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-433)))) - ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-433)))) - ((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-433)))) - ((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-433)))) - ((*1 *1 *2) (-12 (-5 *2 (-433)) (-5 *1 (-436)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) - (-4 *1 (-439)))) - ((*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-439)))) - ((*1 *1 *2) (-12 (-5 *2 (-639 (-329))) (-4 *1 (-439)))) - ((*1 *1 *2) (-12 (-5 *2 (-1256 (-693))) (-4 *1 (-439)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1172)) (|:| -3473 (-639 (-329))))) - (-4 *1 (-440)))) - ((*1 *1 *2) (-12 (-5 *2 (-329)) (-4 *1 (-440)))) - ((*1 *1 *2) (-12 (-5 *2 (-639 (-329))) (-4 *1 (-440)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1256 (-406 (-947 *3)))) (-4 *3 (-171)) - (-14 *6 (-1256 (-683 *3))) (-5 *1 (-452 *3 *4 *5 *6)) - (-14 *4 (-916)) (-14 *5 (-639 (-1168))))) - ((*1 *1 *2) (-12 (-5 *2 (-639 (-639 (-938 (-224))))) (-5 *1 (-467)))) - ((*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-467)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1241 *3 *4 *5)) (-4 *3 (-1044)) (-14 *4 (-1168)) - (-14 *5 *3) (-5 *1 (-473 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-473 *3 *4 *5)) - (-4 *3 (-1044)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-5 *2 (-1117 (-562) (-608 (-494)))) (-5 *1 (-494)))) - ((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-501)))) - ((*1 *1 *2) - (-12 (-5 *2 (-639 *6)) (-4 *6 (-944 *3 *4 *5)) (-4 *3 (-362)) - (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-503 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-639 (-1206))) (-5 *1 (-523)))) - ((*1 *1 *2) (-12 (-5 *2 (-639 (-1206))) (-5 *1 (-602)))) - ((*1 *1 *2) - (-12 (-4 *3 (-171)) (-5 *1 (-603 *3 *2)) (-4 *2 (-739 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1207)))) - ((*1 *1 *2) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1207)))) - ((*1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1044)))) + (-12 (-4 *3 (-555)) (-5 *2 (-112)) (-5 *1 (-620 *3 *4)) + (-4 *4 (-1233 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-1276 *3 *4)) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-845)) - (-4 *4 (-13 (-171) (-712 (-406 (-562))))) (-14 *5 (-916)))) + (-12 (-5 *2 (-112)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-722)))) ((*1 *2 *1) - (-12 (-5 *2 (-1271 *3 *4)) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-845)) - (-4 *4 (-13 (-171) (-712 (-406 (-562))))) (-14 *5 (-916)))) - ((*1 *1 *2) - (-12 (-4 *3 (-171)) (-5 *1 (-631 *3 *2)) (-4 *2 (-739 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-671 *3)) (-5 *1 (-666 *3)) (-4 *3 (-845)))) - ((*1 *2 *1) (-12 (-5 *2 (-814 *3)) (-5 *1 (-666 *3)) (-4 *3 (-845)))) + (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) + (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) + (-5 *2 + (-2 (|:| -2619 *4) (|:| -4076 *4) (|:| |totalpts| (-563)) + (|:| |success| (-112)))) + (-5 *1 (-785)) (-5 *5 (-563))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) + (-4 *4 (-1045)) (-4 *4 (-172)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)) + (-4 *3 (-172))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1093)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846))))) +(((*1 *2 *2) (-12 (-5 *1 (-585 *2)) (-4 *2 (-545))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1257 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) + (-4 *5 (-1233 *4)) (-5 *2 (-684 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-953 (-953 (-953 *3)))) (-5 *1 (-669 *3)) - (-4 *3 (-1092)))) - ((*1 *1 *2) - (-12 (-5 *2 (-953 (-953 (-953 *3)))) (-4 *3 (-1092)) - (-5 *1 (-669 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-814 *3)) (-5 *1 (-671 *3)) (-4 *3 (-845)))) - ((*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-675)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-676 *3)) (-4 *3 (-1092)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1044)) (-4 *1 (-681 *3 *4 *2)) (-4 *4 (-372 *3)) - (-4 *2 (-372 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-688)))) - ((*1 *1 *2) (-12 (-5 *2 (-168 (-695))) (-5 *1 (-688)))) - ((*1 *1 *2) (-12 (-5 *2 (-168 (-693))) (-5 *1 (-688)))) - ((*1 *1 *2) (-12 (-5 *2 (-168 (-562))) (-5 *1 (-688)))) - ((*1 *1 *2) (-12 (-5 *2 (-168 (-378))) (-5 *1 (-688)))) - ((*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-693)))) - ((*1 *2 *1) (-12 (-5 *2 (-378)) (-5 *1 (-693)))) - ((*1 *2 *3) - (-12 (-5 *3 (-315 (-562))) (-5 *2 (-315 (-695))) (-5 *1 (-695)))) - ((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1150)) (-5 *1 (-705)))) + (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1233 *3)) + (-5 *2 (-684 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 *9)) (-4 *8 (-1059 *5 *6 *7)) + (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) + (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 *9)) (-4 *8 (-1059 *5 *6 *7)) + (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) + (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1138 *5 *6 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-5 *3 (-584 *2)) (-4 *2 (-13 (-29 *4) (-1193))) + (-5 *1 (-582 *4 *2)) + (-4 *4 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-584 (-407 (-948 *4)))) + (-4 *4 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) + (-5 *2 (-316 *4)) (-5 *1 (-587 *4))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) +(((*1 *2 *2) + (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) + (-5 *1 (-176 *3))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) + (-5 *2 (-407 (-563))))) ((*1 *2 *1) - (-12 (-4 *2 (-171)) (-5 *1 (-706 *2 *3 *4 *5 *6)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + (|partial| -12 (-5 *2 (-407 (-563))) (-5 *1 (-418 *3)) (-4 *3 (-545)) + (-4 *3 (-555)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-545)) (-5 *2 (-407 (-563))))) ((*1 *2 *1) - (-12 (-4 *2 (-171)) (-5 *1 (-710 *2 *3 *4 *5 *6)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-639 (-2 (|:| -4221 *3) (|:| -3044 *4)))) - (-4 *3 (-1044)) (-4 *4 (-721)) (-5 *1 (-730 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-758)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-3 - (|:| |nia| - (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) - (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))) - (|:| |mdnia| - (-2 (|:| |fn| (-315 (-224))) - (|:| -2147 (-639 (-1086 (-838 (-224))))) - (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) - (-5 *1 (-764)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-315 (-224))) - (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))) - (-5 *1 (-764)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) - (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))) - (-5 *1 (-764)))) - ((*1 *2 *3) (-12 (-5 *2 (-769)) (-5 *1 (-768 *3)) (-4 *3 (-1207)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) - (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) - (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) - (|:| |abserr| (-224)) (|:| |relerr| (-224)))) - (-5 *1 (-803)))) - ((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-819)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) - (|:| |lb| (-639 (-838 (-224)))) - (|:| |cf| (-639 (-315 (-224)))) - (|:| |ub| (-639 (-838 (-224)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-639 (-315 (-224)))) - (|:| -3730 (-639 (-224))))))) - (-5 *1 (-836)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))) - (-5 *1 (-836)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) - (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) - (|:| |ub| (-639 (-838 (-224)))))) - (-5 *1 (-836)))) - ((*1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-853)))) - ((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-869)))) - ((*1 *2 *3) - (-12 (-5 *3 (-947 (-48))) (-5 *2 (-315 (-562))) (-5 *1 (-870)))) - ((*1 *2 *3) - (-12 (-5 *3 (-406 (-947 (-48)))) (-5 *2 (-315 (-562))) - (-5 *1 (-870)))) - ((*1 *1 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-845)))) - ((*1 *2 *1) (-12 (-5 *2 (-814 *3)) (-5 *1 (-888 *3)) (-4 *3 (-845)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |pde| (-639 (-315 (-224)))) - (|:| |constraints| - (-639 - (-2 (|:| |start| (-224)) (|:| |finish| (-224)) - (|:| |grid| (-766)) (|:| |boundaryType| (-562)) - (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) - (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) - (|:| |tol| (-224)))) - (-5 *1 (-893)))) - ((*1 *1 *2) - (-12 (-5 *2 (-639 (-900 *3))) (-4 *3 (-1092)) (-5 *1 (-899 *3)))) + (|partial| -12 (-4 *1 (-793 *3)) (-4 *3 (-172)) (-4 *3 (-545)) + (-5 *2 (-407 (-563))))) ((*1 *2 *1) - (-12 (-5 *2 (-639 (-900 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) - ((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-5 *1 (-900 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-639 (-639 *3))) (-4 *3 (-1092)) (-5 *1 (-900 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-406 (-417 *3))) (-4 *3 (-306)) (-5 *1 (-909 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-406 *3)) (-5 *1 (-909 *3)) (-4 *3 (-306)))) - ((*1 *2 *3) - (-12 (-5 *3 (-476)) (-5 *2 (-315 *4)) (-5 *1 (-914 *4)) - (-4 *4 (-13 (-845) (-554))))) - ((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-961 *3)) (-4 *3 (-962)))) - ((*1 *1 *2) (-12 (-5 *1 (-961 *2)) (-4 *2 (-962)))) - ((*1 *2 *3) (-12 (-5 *2 (-1261)) (-5 *1 (-1028 *3)) (-4 *3 (-1207)))) - ((*1 *2 *3) (-12 (-5 *3 (-311)) (-5 *1 (-1028 *2)) (-4 *2 (-1207)))) - ((*1 *1 *2) - (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) - (-5 *1 (-1029 *3 *4 *5 *2 *6)) (-4 *2 (-944 *3 *4 *5)) - (-14 *6 (-639 *2)))) - ((*1 *2 *3) - (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-1038 *3)) (-4 *3 (-554)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1044)) (-4 *4 (-845)) (-5 *1 (-1118 *3 *4 *2)) - (-4 *2 (-944 *3 (-530 *4) *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1044)) (-4 *2 (-845)) (-5 *1 (-1118 *3 *2 *4)) - (-4 *4 (-944 *3 (-530 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-857)))) - ((*1 *1 *2) (-12 (-5 *2 (-143)) (-4 *1 (-1136)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1148 *3)) (-5 *1 (-1152 *3)) (-4 *3 (-1044)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1159 *3 *4 *5)) - (-4 *3 (-1044)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1166 *3 *4 *5)) - (-4 *3 (-1044)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1229 *4 *3)) (-4 *3 (-1044)) (-14 *4 (-1168)) - (-14 *5 *3) (-5 *1 (-1166 *3 *4 *5)))) - ((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1167)))) - ((*1 *2 *1) (-12 (-5 *2 (-1180 (-1168) (-436))) (-5 *1 (-1172)))) - ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1173)))) - ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1173)))) - ((*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-1173)))) - ((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-1173)))) - ((*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-1179 *3)) (-4 *3 (-1092)))) - ((*1 *2 *3) (-12 (-5 *2 (-1187)) (-5 *1 (-1186 *3)) (-4 *3 (-1092)))) - ((*1 *1 *2) - (-12 (-5 *2 (-947 *3)) (-4 *3 (-1044)) (-5 *1 (-1201 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1201 *3)) (-4 *3 (-1044)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1220 *3 *4 *5)) - (-4 *3 (-1044)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1086 *3)) (-4 *3 (-1207)) (-5 *1 (-1223 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1248 *3 *4 *5)) - (-4 *3 (-1044)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1229 *4 *3)) (-4 *3 (-1044)) (-14 *4 (-1168)) - (-14 *5 *3) (-5 *1 (-1248 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1252 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-1257)))) - ((*1 *2 *3) (-12 (-5 *3 (-467)) (-5 *2 (-1257)) (-5 *1 (-1260)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044)))) + (|partial| -12 (-5 *2 (-407 (-563))) (-5 *1 (-829 *3)) (-4 *3 (-545)) + (-4 *3 (-1093)))) ((*1 *2 *1) - (-12 (-5 *2 (-1280 *3 *4)) (-5 *1 (-1276 *3 *4)) (-4 *3 (-845)) - (-4 *4 (-171)))) + (|partial| -12 (-5 *2 (-407 (-563))) (-5 *1 (-839 *3)) (-4 *3 (-545)) + (-4 *3 (-1093)))) ((*1 *2 *1) - (-12 (-5 *2 (-1271 *3 *4)) (-5 *1 (-1276 *3 *4)) (-4 *3 (-845)) - (-4 *4 (-171)))) - ((*1 *1 *2) - (-12 (-5 *2 (-658 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)) - (-5 *1 (-1276 *3 *4))))) + (|partial| -12 (-4 *1 (-993 *3)) (-4 *3 (-172)) (-4 *3 (-545)) + (-5 *2 (-407 (-563))))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-407 (-563))) (-5 *1 (-1004 *3)) + (-4 *3 (-1034 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363)) + (-5 *2 (-2 (|:| -3646 (-407 *6)) (|:| |coeff| (-407 *6)))) + (-5 *1 (-573 *5 *6)) (-5 *3 (-407 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-870)))) + ((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045))))) +(((*1 *2 *3 *4 *5 *5 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-948 *6)) (-5 *4 (-1169)) + (-5 *5 (-839 *7)) + (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-4 *7 (-13 (-1193) (-29 *6))) (-5 *1 (-224 *6 *7)))) + ((*1 *2 *3 *4 *4 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1165 *6)) (-5 *4 (-839 *6)) + (-4 *6 (-13 (-1193) (-29 *5))) + (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *1 (-224 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-490)) (-5 *4 (-949)) (-5 *2 (-685 (-532))) - (-5 *1 (-532)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-949)) (-4 *3 (-1092)) (-5 *2 (-685 *1)) - (-4 *1 (-762 *3))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-916)) (-4 *5 (-306)) (-4 *3 (-1232 *5)) - (-5 *2 (-2 (|:| |plist| (-639 *3)) (|:| |modulo| *5))) - (-5 *1 (-459 *5 *3)) (-5 *4 (-639 *3))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) - (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1167)))) - (-5 *1 (-1167))))) -(((*1 *2 *3) - (-12 (-5 *3 (-639 (-315 (-224)))) (-5 *2 (-112)) (-5 *1 (-266))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1207)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-947 (-378))) (-5 *1 (-338 *3 *4 *5)) - (-4 *5 (-1033 (-378))) (-14 *3 (-639 (-1168))) - (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-406 (-947 (-378)))) (-5 *1 (-338 *3 *4 *5)) - (-4 *5 (-1033 (-378))) (-14 *3 (-639 (-1168))) - (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-315 (-378))) (-5 *1 (-338 *3 *4 *5)) - (-4 *5 (-1033 (-378))) (-14 *3 (-639 (-1168))) - (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-947 (-562))) (-5 *1 (-338 *3 *4 *5)) - (-4 *5 (-1033 (-562))) (-14 *3 (-639 (-1168))) - (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-406 (-947 (-562)))) (-5 *1 (-338 *3 *4 *5)) - (-4 *5 (-1033 (-562))) (-14 *3 (-639 (-1168))) - (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-315 (-562))) (-5 *1 (-338 *3 *4 *5)) - (-4 *5 (-1033 (-562))) (-14 *3 (-639 (-1168))) - (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1168)) (-5 *1 (-338 *3 *4 *5)) - (-14 *3 (-639 *2)) (-14 *4 (-639 *2)) (-4 *5 (-386)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-315 *5)) (-4 *5 (-386)) - (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-639 (-1168))) - (-14 *4 (-639 (-1168))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-683 (-406 (-947 (-562))))) (-4 *1 (-383)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-683 (-406 (-947 (-378))))) (-4 *1 (-383)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-683 (-947 (-562)))) (-4 *1 (-383)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-683 (-947 (-378)))) (-4 *1 (-383)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-683 (-315 (-562)))) (-4 *1 (-383)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-683 (-315 (-378)))) (-4 *1 (-383)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-406 (-947 (-562)))) (-4 *1 (-395)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-406 (-947 (-378)))) (-4 *1 (-395)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-947 (-562))) (-4 *1 (-395)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-947 (-378))) (-4 *1 (-395)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-562))) (-4 *1 (-395)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-378))) (-4 *1 (-395)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1256 (-406 (-947 (-562))))) (-4 *1 (-440)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1256 (-406 (-947 (-378))))) (-4 *1 (-440)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1256 (-947 (-562)))) (-4 *1 (-440)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1256 (-947 (-378)))) (-4 *1 (-440)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1256 (-315 (-562)))) (-4 *1 (-440)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1256 (-315 (-378)))) (-4 *1 (-440)))) + (-12 (-5 *3 (-1169)) (-4 *5 (-363)) (-5 *2 (-1149 (-1149 (-948 *5)))) + (-5 *1 (-1265 *5)) (-5 *4 (-1149 (-948 *5)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-846)) (-5 *1 (-925 *3 *2)) (-4 *2 (-430 *3)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-348)) (-4 *5 (-328 *4)) (-4 *6 (-1232 *5)) - (-5 *2 (-1164 (-1164 *4))) (-5 *1 (-772 *4 *5 *6 *3 *7)) - (-4 *3 (-1232 *6)) (-14 *7 (-916)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) - (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) - (-4 *1 (-971 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-1033 *2)) (-4 *2 (-1207)))) - ((*1 *1 *2) - (|partial| -4037 - (-12 (-5 *2 (-947 *3)) - (-12 (-2234 (-4 *3 (-38 (-406 (-562))))) - (-2234 (-4 *3 (-38 (-562)))) (-4 *5 (-610 (-1168)))) - (-4 *3 (-1044)) (-4 *1 (-1058 *3 *4 *5)) (-4 *4 (-788)) - (-4 *5 (-845))) - (-12 (-5 *2 (-947 *3)) - (-12 (-2234 (-4 *3 (-544))) (-2234 (-4 *3 (-38 (-406 (-562))))) - (-4 *3 (-38 (-562))) (-4 *5 (-610 (-1168)))) - (-4 *3 (-1044)) (-4 *1 (-1058 *3 *4 *5)) (-4 *4 (-788)) - (-4 *5 (-845))) - (-12 (-5 *2 (-947 *3)) - (-12 (-2234 (-4 *3 (-987 (-562)))) (-4 *3 (-38 (-406 (-562)))) - (-4 *5 (-610 (-1168)))) - (-4 *3 (-1044)) (-4 *1 (-1058 *3 *4 *5)) (-4 *4 (-788)) - (-4 *5 (-845))))) + (-12 (-5 *3 (-1169)) (-5 *2 (-316 (-563))) (-5 *1 (-926))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208))))) +(((*1 *1 *2 *3 *3 *3 *4) + (-12 (-4 *4 (-363)) (-4 *3 (-1233 *4)) (-4 *5 (-1233 (-407 *3))) + (-4 *1 (-335 *4 *3 *5 *2)) (-4 *2 (-342 *4 *3 *5)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-563)) (-4 *2 (-363)) (-4 *4 (-1233 *2)) + (-4 *5 (-1233 (-407 *4))) (-4 *1 (-335 *2 *4 *5 *6)) + (-4 *6 (-342 *2 *4 *5)))) + ((*1 *1 *2 *2) + (-12 (-4 *2 (-363)) (-4 *3 (-1233 *2)) (-4 *4 (-1233 (-407 *3))) + (-4 *1 (-335 *2 *3 *4 *5)) (-4 *5 (-342 *2 *3 *4)))) ((*1 *1 *2) - (|partial| -4037 - (-12 (-5 *2 (-947 (-562))) (-4 *1 (-1058 *3 *4 *5)) - (-12 (-2234 (-4 *3 (-38 (-406 (-562))))) (-4 *3 (-38 (-562))) - (-4 *5 (-610 (-1168)))) - (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845))) - (-12 (-5 *2 (-947 (-562))) (-4 *1 (-1058 *3 *4 *5)) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *5 (-610 (-1168)))) - (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845))))) + (-12 (-4 *3 (-363)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) + (-4 *1 (-335 *3 *4 *5 *2)) (-4 *2 (-342 *3 *4 *5)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-947 (-406 (-562)))) (-4 *1 (-1058 *3 *4 *5)) - (-4 *3 (-38 (-406 (-562)))) (-4 *5 (-610 (-1168))) - (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845))))) + (-12 (-5 *2 (-413 *4 (-407 *4) *5 *6)) (-4 *4 (-1233 *3)) + (-4 *5 (-1233 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-4 *3 (-363)) + (-4 *1 (-335 *3 *4 *5 *6))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-910 *3)) (-4 *3 (-307))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1034 (-563)))) + (-4 *5 (-1233 *4)) (-5 *2 (-640 (-407 *5))) (-5 *1 (-1012 *4 *5)) + (-5 *3 (-407 *5))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-407 (-1165 (-316 *3)))) (-4 *3 (-13 (-555) (-846))) + (-5 *1 (-1123 *3))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-640 (-407 *7))) + (-4 *7 (-1233 *6)) (-5 *3 (-407 *7)) (-4 *6 (-363)) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-573 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1093)) (-4 *3 (-896 *5)) (-5 *2 (-1257 *3)) + (-5 *1 (-687 *5 *3 *6 *4)) (-4 *6 (-373 *3)) + (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4407))))))) +(((*1 *2 *1) + (-12 (-4 *3 (-13 (-363) (-147))) + (-5 *2 (-640 (-2 (|:| -1654 (-767)) (|:| -3408 *4) (|:| |num| *4)))) + (-5 *1 (-399 *3 *4)) (-4 *4 (-1233 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-916)) (-5 *2 (-1164 *4)) (-5 *1 (-585 *4)) - (-4 *4 (-348))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-562)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-766)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-788)) (-4 *4 (-944 *5 *6 *7)) (-4 *5 (-451)) (-4 *7 (-845)) - (-5 *1 (-448 *5 *6 *7 *4))))) -(((*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1044))))) + (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-640 (-1169))) (-4 *5 (-1045)) + (-5 *2 (-247 *4 *5)) (-5 *1 (-940 *4 *5))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-654 *4 *2)) + (-4 *2 (-651 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-4 *1 (-235 *3)))) + ((*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1093))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4408)) (-4 *1 (-1245 *2)) (-4 *2 (-1208))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2))))) +(((*1 *1 *1) (-5 *1 (-536)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997)))))) + (-12 (-4 *3 (-452)) (-4 *3 (-846)) (-4 *3 (-1034 (-563))) + (-4 *3 (-555)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) + (-4 *2 + (-13 (-363) (-302) + (-10 -8 (-15 -2143 ((-1118 *3 (-609 $)) $)) + (-15 -2154 ((-1118 *3 (-609 $)) $)) + (-15 -1693 ($ (-1118 *3 (-609 $)))))))))) +(((*1 *2 *1) (-12 (-5 *2 (-640 (-948 (-563)))) (-5 *1 (-437)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1169)) (-5 *4 (-684 (-225))) (-5 *2 (-1097)) + (-5 *1 (-755)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1169)) (-5 *4 (-684 (-563))) (-5 *2 (-1097)) + (-5 *1 (-755))))) +(((*1 *1 *1) + (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) +(((*1 *2 *3) + (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-418 *3)) + (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-945 *6 *4 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34))) + (-4 *3 (-13 (-1093) (-34)))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) + (-5 *1 (-748))))) +(((*1 *2 *3) + (-12 (-5 *3 (-563)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-5 *2 (-1262)) (-5 *1 (-449 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-121 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1257 (-1257 (-563)))) (-5 *3 (-917)) (-5 *1 (-466))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) - (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))) + (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) + (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| @@ -3167,6663 +2568,6672 @@ "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-191))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-479))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *2 *1) (-12 (-4 *1 (-668 *3)) (-4 *3 (-1207)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1044)) (-4 *2 (-362)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-362)) (-5 *1 (-653 *4 *2)) - (-4 *2 (-650 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-639 (-1206))) (-5 *1 (-602))))) -(((*1 *1 *2 *2) + (-5 *1 (-192))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 + (-4 *4 (-13 (-147) (-27) (-1034 (-563)) (-1034 (-407 (-563))))) + (-4 *5 (-1233 *4)) (-5 *2 (-1165 (-407 *5))) (-5 *1 (-612 *4 *5)) + (-5 *3 (-407 *5)))) + ((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1233 *5)) + (-4 *5 (-13 (-147) (-27) (-1034 (-563)) (-1034 (-407 (-563))))) + (-5 *2 (-1165 (-407 *6))) (-5 *1 (-612 *5 *6)) (-5 *3 (-407 *6))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) +(((*1 *2 *3) (-12 - (-5 *2 - (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) - (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1167)))) - (-5 *1 (-1167))))) + (-5 *3 + (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) + (|:| |expense| (-379)) (|:| |accuracy| (-379)) + (|:| |intermediateResults| (-379)))) + (-5 *2 (-1031)) (-5 *1 (-305))))) +(((*1 *1 *1) (-4 *1 (-545)))) +(((*1 *2 *1) + (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) + (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1256 *4)) (-5 *3 (-766)) (-4 *4 (-348)) - (-5 *1 (-527 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997)))))) + (-12 (-5 *2 (-640 (-609 *5))) (-5 *3 (-1169)) (-4 *5 (-430 *4)) + (-4 *4 (-846)) (-5 *1 (-572 *4 *5))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1232 *5)) (-4 *5 (-362)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) - (-5 *1 (-572 *5 *3))))) + (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 *9)) (-4 *8 (-1059 *5 *6 *7)) + (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) + (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 *9)) (-4 *8 (-1059 *5 *6 *7)) + (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) + (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1138 *5 *6 *7 *8 *9))))) +(((*1 *1 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1208))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-480))))) +(((*1 *2 *3) + (-12 (-5 *2 (-418 (-1165 (-563)))) (-5 *1 (-191)) (-5 *3 (-563))))) +(((*1 *1 *2) (-12 (-5 *2 (-640 (-144))) (-5 *1 (-141)))) + ((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-141))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-767)) (-4 *1 (-1233 *3)) (-4 *3 (-1045))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) (((*1 *2 *1) - (-12 (-5 *2 (-1148 (-406 *3))) (-5 *1 (-173 *3)) (-4 *3 (-306))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-766)) (-4 *4 (-13 (-554) (-146))) - (-5 *1 (-1226 *4 *2)) (-4 *2 (-1232 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-156)))) - ((*1 *2 *1) (-12 (-5 *2 (-156)) (-5 *1 (-869)))) - ((*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044))))) -(((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-766)) (-4 *1 (-230 *4)) - (-4 *4 (-1044)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-230 *3)) (-4 *3 (-1044)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-232)) (-5 *2 (-766)))) - ((*1 *1 *1) (-4 *1 (-232))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-4 *1 (-265 *3)) (-4 *3 (-845)))) - ((*1 *1 *1) (-12 (-4 *1 (-265 *2)) (-4 *2 (-845)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) - (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-766)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)) - (-4 *4 (-1232 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-362) (-146))) (-5 *1 (-398 *2 *3)) - (-4 *3 (-1232 *2)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-473 *3 *4 *5)) - (-4 *3 (-1044)) (-14 *5 *3))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-362)) (-4 *2 (-895 *3)) (-5 *1 (-583 *2)) - (-5 *3 (-1168)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-583 *2)) (-4 *2 (-362)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-857)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-639 *4)) (-5 *3 (-639 (-766))) (-4 *1 (-895 *4)) - (-4 *4 (-1092)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-766)) (-4 *1 (-895 *2)) (-4 *2 (-1092)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-639 *3)) (-4 *1 (-895 *3)) (-4 *3 (-1092)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-895 *2)) (-4 *2 (-1092)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1159 *3 *4 *5)) - (-4 *3 (-1044)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1165 *3 *4 *5)) - (-4 *3 (-1044)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1166 *3 *4 *5)) - (-4 *3 (-1044)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1220 *3 *4 *5)) - (-4 *3 (-1044)) (-14 *5 *3))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1232 *3)) (-4 *3 (-1044)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1241 *3 *4 *5)) - (-4 *3 (-1044)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1248 *3 *4 *5)) - (-4 *3 (-1044)) (-14 *5 *3)))) + (-12 (-4 *1 (-601 *2 *3)) (-4 *3 (-1208)) (-4 *2 (-1093)) + (-4 *2 (-846))))) (((*1 *2 *3) - (-12 (-5 *3 (-1164 *4)) (-4 *4 (-348)) - (-5 *2 (-1256 (-639 (-2 (|:| -2533 *4) (|:| -2464 (-1112)))))) - (-5 *1 (-345 *4))))) + (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) + ((*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913))))) +(((*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1208)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2742 *3) (|:| |coef1| (-778 *3)))) + (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-555)))) + ((*1 *1 *1) (|partial| -4 *1 (-718)))) +(((*1 *2 *2) (-12 (-5 *2 (-640 (-316 (-225)))) (-5 *1 (-267))))) +(((*1 *2 *1) + (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) + (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-5 *1 (-858))) ((*1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1165 (-563))) (-5 *3 (-563)) (-4 *1 (-865 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) - (-5 *2 (-639 *4)) (-5 *1 (-1120 *3 *4)) (-4 *3 (-1232 *4)))) - ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) - (-5 *2 (-639 *3)) (-5 *1 (-1120 *4 *3)) (-4 *4 (-1232 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-845) (-554))) (-5 *1 (-157 *4 *2)) - (-4 *2 (-429 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1084 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-845) (-554))) - (-5 *1 (-157 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-159)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1168))))) + (|partial| -12 (-5 *3 (-917)) + (-5 *2 (-1257 (-640 (-2 (|:| -2619 *4) (|:| -2555 (-1113)))))) + (-5 *1 (-346 *4)) (-4 *4 (-349))))) +(((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1104)) (-4 *3 (-845)) (-5 *2 (-639 *1)) - (-4 *1 (-429 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-639 (-887 *3))) (-5 *1 (-887 *3)) - (-4 *3 (-1092)))) + (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) + (-5 *2 (-640 (-640 (-640 (-767)))))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-654 *4 *2)) + (-4 *2 (-651 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-363)) + (-5 *1 (-521 *2 *4 *5 *3)) (-4 *3 (-682 *2 *4 *5)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) - (-5 *2 (-639 *1)) (-4 *1 (-944 *3 *4 *5)))) + (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) + (|has| *2 (-6 (-4409 "*"))) (-4 *2 (-1045)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1044)) - (-4 *7 (-944 *6 *4 *5)) (-5 *2 (-639 *3)) - (-5 *1 (-945 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-362) - (-10 -8 (-15 -4053 ($ *7)) (-15 -4063 (*7 $)) - (-15 -4079 (*7 $)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-516))))) -(((*1 *1 *1) (-5 *1 (-1167))) + (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172)) + (-5 *1 (-683 *2 *4 *5 *3)) (-4 *3 (-682 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) + (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4409 "*"))) (-4 *2 (-1045))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208))))) +(((*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-1173))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-767)) (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *5)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) ((*1 *1 *2) + (-12 (-4 *2 (-1045)) (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) + (-4 *5 (-238 *3 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-640 (-640 *8))) (-5 *3 (-640 *8)) + (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) + (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-112)) + (-5 *1 (-920 *5 *6 *7 *8))))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) + (|partial| -12 (-5 *4 (-640 *11)) (-5 *5 (-640 (-1165 *9))) + (-5 *6 (-640 *9)) (-5 *7 (-640 *12)) (-5 *8 (-640 (-767))) + (-4 *11 (-846)) (-4 *9 (-307)) (-4 *12 (-945 *9 *10 *11)) + (-4 *10 (-789)) (-5 *2 (-640 (-1165 *12))) + (-5 *1 (-703 *10 *11 *9 *12)) (-5 *3 (-1165 *12))))) +(((*1 *2 *1) (-12 (-5 *2 (-818)) (-5 *1 (-817))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-640 *5)) (-5 *4 (-640 (-1 *6 (-640 *6)))) + (-4 *5 (-38 (-407 (-563)))) (-4 *6 (-1248 *5)) (-5 *2 (-640 *6)) + (-5 *1 (-1250 *5 *6))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1257 *4)) (-5 *3 (-767)) (-4 *4 (-349)) + (-5 *1 (-528 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-767)) (-4 *4 (-1045)) + (-5 *2 (-2 (|:| -3490 *1) (|:| -1972 *1))) (-4 *1 (-1233 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1093)) (-4 *5 (-1093)) + (-4 *6 (-1093)) (-5 *2 (-1 *6 *5)) (-5 *1 (-679 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1151)) (-5 *1 (-706))))) +(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-330))))) +(((*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193))))) + ((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) + ((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-858))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-363) (-1193) (-998)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-640 (-1169))) (-4 *4 (-13 (-307) (-147))) + (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) + (-5 *2 (-640 (-407 (-948 *4)))) (-5 *1 (-920 *4 *5 *6 *7)) + (-4 *7 (-945 *4 *6 *5))))) +(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-436))))) +(((*1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1045)))) + ((*1 *2 *3) + (-12 (-4 *4 (-555)) (-4 *4 (-172)) (-4 *5 (-373 *4)) + (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) + (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3)) + (-4 *3 (-643 *2)))) + ((*1 *1 *1) + (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3)) + (-4 *3 (-643 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-172)) (-4 *2 (-1045)))) + ((*1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-172)) (-4 *2 (-1045))))) +(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *3) (-12 - (-5 *2 - (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) - (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1167)))) - (-5 *1 (-1167))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-156)) (-5 *2 (-1261)) (-5 *1 (-1258))))) -(((*1 *1 *1) (-4 *1 (-625))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-626 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997) (-1192)))))) + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *2) + (|:| |polj| *2))) + (-4 *5 (-789)) (-4 *2 (-945 *4 *5 *6)) (-5 *1 (-449 *4 *5 *6 *2)) + (-4 *4 (-452)) (-4 *6 (-846))))) (((*1 *2 *1) - (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-639 (-938 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-639 (-938 *3))) (-4 *3 (-1044)) (-4 *1 (-1126 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-639 (-639 *3))) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-639 (-938 *3))) (-4 *1 (-1126 *3)) (-4 *3 (-1044))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-766)) (-4 *2 (-554)) (-5 *1 (-964 *2 *4)) - (-4 *4 (-1232 *2))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-959 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092))))) -(((*1 *2 *1) (-12 (-5 *2 (-639 (-1206))) (-5 *1 (-675)))) - ((*1 *2 *1) (-12 (-5 *2 (-639 (-1173))) (-5 *1 (-1110))))) -(((*1 *1 *2) - (-12 (-5 *2 (-666 *3)) (-4 *3 (-845)) (-4 *1 (-373 *3 *4)) - (-4 *4 (-171))))) -(((*1 *1 *2) - (-12 (-5 *2 (-639 (-900 *3))) (-4 *3 (-1092)) (-5 *1 (-899 *3))))) + (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) + (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-718)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-722)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) + (-12 (-5 *4 (-563)) (-5 *5 (-1151)) (-5 *6 (-684 (-225))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1257 *5)) (-4 *5 (-636 *4)) (-4 *4 (-555)) + (-5 *2 (-1257 *4)) (-5 *1 (-635 *4 *5))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-767)) (-5 *3 (-939 *4)) (-4 *1 (-1127 *4)) + (-4 *4 (-1045)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-767)) (-5 *4 (-939 (-225))) (-5 *2 (-1262)) + (-5 *1 (-1259))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1233 *5)) (-4 *5 (-363)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) + (-5 *1 (-573 *5 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) - (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-766)) (|:| -4201 *4))) (-5 *5 (-766)) - (-4 *4 (-944 *6 *7 *8)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) + (-12 (-5 *2 (-858)) (-5 *1 (-1149 *3)) (-4 *3 (-1093)) + (-4 *3 (-1208))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-609 *3)) (-4 *3 (-13 (-430 *5) (-27) (-1193))) + (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) + (-5 *2 (-584 *3)) (-5 *1 (-565 *5 *3 *6)) (-4 *6 (-1093))))) +(((*1 *2 *2) + (-12 (-5 *2 - (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) - (|:| |polj| *4))) - (-5 *1 (-448 *6 *7 *8 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1150)) (-5 *4 (-562)) (-5 *5 (-683 (-224))) - (-5 *6 (-224)) (-5 *2 (-1030)) (-5 *1 (-747))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) + (-504 (-407 (-563)) (-240 *4 (-767)) (-860 *3) + (-247 *3 (-407 (-563))))) + (-14 *3 (-640 (-1169))) (-14 *4 (-767)) (-5 *1 (-505 *3 *4))))) +(((*1 *1) (-5 *1 (-330)))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-767)) (-5 *1 (-778 *3)) (-4 *3 (-1045)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *1 (-959 *3 *2)) (-4 *2 (-131)) (-4 *3 (-555)) + (-4 *3 (-1045)) (-4 *2 (-788)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-767)) (-5 *1 (-1165 *3)) (-4 *3 (-1045)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-967)) (-4 *2 (-131)) (-5 *1 (-1171 *3)) (-4 *3 (-555)) + (-4 *3 (-1045)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-767)) (-5 *1 (-1230 *4 *3)) (-14 *4 (-1169)) + (-4 *3 (-1045))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-640 *4)) (-4 *4 (-363)) (-5 *2 (-1257 *4)) + (-5 *1 (-810 *4 *3)) (-4 *3 (-651 *4))))) +(((*1 *2) + (-12 (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) + (-5 *2 (-1257 *1)) (-4 *1 (-342 *3 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -3205 ((-418 $) $))))) + (-4 *4 (-1233 *3)) (-5 *2 - (-2 (|:| -2533 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) - (|:| |success| (-112)))) - (-5 *1 (-784)) (-5 *5 (-562))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1207)) (-5 *2 (-639 *3))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-887 *4)) (-4 *4 (-1092)) (-5 *1 (-884 *4 *3)) - (-4 *3 (-1092))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-554)) (-4 *3 (-1044)) - (-5 *2 (-2 (|:| -3380 *1) (|:| -1441 *1))) (-4 *1 (-847 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-554)) (-4 *5 (-1044)) - (-5 *2 (-2 (|:| -3380 *3) (|:| -1441 *3))) (-5 *1 (-848 *5 *3)) - (-4 *3 (-847 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) -(((*1 *1 *2) - (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-5 *1 (-1256 *3))))) -(((*1 *1 *1) (-4 *1 (-625))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-626 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997) (-1192)))))) -(((*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912))))) -(((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-256))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-775 *5 (-859 *6)))) (-5 *4 (-112)) (-4 *5 (-451)) - (-14 *6 (-639 (-1168))) + (-2 (|:| -4315 (-684 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-684 *3)))) + (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-1233 (-563))) (-5 *2 - (-639 (-1138 *5 (-530 (-859 *6)) (-859 *6) (-775 *5 (-859 *6))))) - (-5 *1 (-624 *5 *6))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-639 (-562))) (-5 *1 (-246 *3 *4)) - (-14 *3 (-639 (-1168))) (-4 *4 (-1044)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-639 (-562))) (-14 *3 (-639 (-1168))) - (-5 *1 (-453 *3 *4 *5)) (-4 *4 (-1044)) - (-4 *5 (-237 (-3492 *3) (-766))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-639 (-562))) (-5 *1 (-480 *3 *4)) - (-14 *3 (-639 (-1168))) (-4 *4 (-1044))))) -(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1261)) (-5 *1 (-1130)))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 (-857))) (-5 *2 (-1261)) (-5 *1 (-1130))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1168)) - (-4 *5 (-13 (-451) (-845) (-146) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-583 *3)) (-5 *1 (-555 *5 *3)) - (-4 *3 (-13 (-27) (-1192) (-429 *5)))))) -(((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-1164 (-947 *4))) (-5 *1 (-415 *3 *4)) - (-4 *3 (-416 *4)))) + (-2 (|:| -4315 (-684 (-563))) (|:| |basisDen| (-563)) + (|:| |basisInv| (-684 (-563))))) + (-5 *1 (-764 *3 *4)) (-4 *4 (-409 (-563) *3)))) ((*1 *2) - (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-4 *3 (-362)) - (-5 *2 (-1164 (-947 *3))))) + (-12 (-4 *3 (-349)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 *4)) + (-5 *2 + (-2 (|:| -4315 (-684 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-684 *4)))) + (-5 *1 (-981 *3 *4 *5 *6)) (-4 *6 (-720 *4 *5)))) ((*1 *2) - (-12 (-5 *2 (-1164 (-406 (-947 *3)))) (-5 *1 (-452 *3 *4 *5 *6)) - (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) - (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3)))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1247 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-526)) (-5 *2 (-685 (-547)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-845)) + (-12 (-4 *3 (-349)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 *4)) (-5 *2 - (-2 (|:| |f1| (-639 *4)) (|:| |f2| (-639 (-639 (-639 *4)))) - (|:| |f3| (-639 (-639 *4))) (|:| |f4| (-639 (-639 (-639 *4)))))) - (-5 *1 (-1178 *4)) (-5 *3 (-639 (-639 (-639 *4))))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-962))))) + (-2 (|:| -4315 (-684 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-684 *4)))) + (-5 *1 (-1266 *3 *4 *5 *6)) (-4 *6 (-409 *4 *5))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-947 *4)) (-4 *4 (-1044)) (-4 *4 (-610 *2)) - (-5 *2 (-378)) (-5 *1 (-780 *4)))) + (-12 (-5 *3 (-563)) (|has| *1 (-6 -4398)) (-4 *1 (-404)) + (-5 *2 (-917))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4407)) (-4 *1 (-151 *2)) (-4 *2 (-1208)) + (-4 *2 (-1093))))) +(((*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-767)) (-5 *1 (-588))))) +(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1149 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307))))) +(((*1 *2 *1) + (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-1151)) (-5 *1 (-1258)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1258)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1258)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-1151)) (-5 *1 (-1259)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1259)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1259))))) +(((*1 *2 *3) (-12 (-5 *2 (-379)) (-5 *1 (-781 *3)) (-4 *3 (-611 *2)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-947 *5)) (-5 *4 (-916)) (-4 *5 (-1044)) - (-4 *5 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *5)))) + (-12 (-5 *4 (-917)) (-5 *2 (-379)) (-5 *1 (-781 *3)) + (-4 *3 (-611 *2)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-554)) - (-4 *4 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *4)))) + (-12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-611 *2)) + (-5 *2 (-379)) (-5 *1 (-781 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-916)) (-4 *5 (-554)) - (-4 *5 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *5)))) + (-12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045)) + (-4 *5 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-315 *4)) (-4 *4 (-554)) (-4 *4 (-845)) - (-4 *4 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *4)))) + (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555)) (-4 *4 (-611 *2)) + (-5 *2 (-379)) (-5 *1 (-781 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-315 *5)) (-5 *4 (-916)) (-4 *5 (-554)) - (-4 *5 (-845)) (-4 *5 (-610 *2)) (-5 *2 (-378)) - (-5 *1 (-780 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-683 (-315 (-224)))) (-5 *2 (-378)) (-5 *1 (-204))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1256 (-1256 *4))) (-4 *4 (-1044)) (-5 *2 (-683 *4)) - (-5 *1 (-1024 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-766)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-416 *4))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-1042))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1261)) (-5 *1 (-817))))) + (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-555)) + (-4 *5 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-316 *4)) (-4 *4 (-555)) (-4 *4 (-846)) + (-4 *4 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-846)) + (-4 *5 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) + (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *3 (-563)) + (-5 *2 (-1031)) (-5 *1 (-752))))) +(((*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-640 (-114)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-1102))))) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -2059 *4)))) + (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-642 *2)) (-4 *2 (-1093))))) (((*1 *2 *3) - (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-240)) (-5 *3 (-1150)))) - ((*1 *2 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-240)))) - ((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-869))))) + (-12 (-5 *3 (-684 (-316 (-225)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379)))) + (-5 *1 (-205))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-112)) (-5 *5 (-563)) (-4 *6 (-363)) (-4 *6 (-368)) + (-4 *6 (-1045)) (-5 *2 (-640 (-640 (-684 *6)))) (-5 *1 (-1025 *6)) + (-5 *3 (-640 (-684 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-363)) (-4 *4 (-368)) (-4 *4 (-1045)) + (-5 *2 (-640 (-640 (-684 *4)))) (-5 *1 (-1025 *4)) + (-5 *3 (-640 (-684 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045)) + (-5 *2 (-640 (-640 (-684 *5)))) (-5 *1 (-1025 *5)) + (-5 *3 (-640 (-684 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-917)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045)) + (-5 *2 (-640 (-640 (-684 *5)))) (-5 *1 (-1025 *5)) + (-5 *3 (-640 (-684 *5)))))) +(((*1 *1 *1 *1) (-5 *1 (-858)))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-767)) (-4 *4 (-13 (-555) (-147))) + (-5 *1 (-1227 *4 *2)) (-4 *2 (-1233 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-183)) (-5 *1 (-248))))) +(((*1 *1 *1) (-4 *1 (-1054)))) +(((*1 *2 *1) + (-12 (-4 *3 (-1045)) (-5 *2 (-1257 *3)) (-5 *1 (-708 *3 *4)) + (-4 *4 (-1233 *3))))) +(((*1 *2 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) + (-5 *1 (-743))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-609 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-609 (-48))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1165 (-48))) (-5 *3 (-640 (-609 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1165 (-48))) (-5 *3 (-609 (-48))) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) + (-4 *3 (-1233 (-169 *2))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-917)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) + ((*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) + ((*1 *2 *1) + (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1233 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) + (-12 (-4 *4 (-1233 *2)) (-4 *2 (-988 *3)) (-5 *1 (-413 *3 *2 *4 *5)) + (-4 *3 (-307)) (-4 *5 (-13 (-409 *2 *4) (-1034 *2))))) + ((*1 *2 *1) + (-12 (-4 *4 (-1233 *2)) (-4 *2 (-988 *3)) + (-5 *1 (-414 *3 *2 *4 *5 *6)) (-4 *3 (-307)) (-4 *5 (-409 *2 *4)) + (-14 *6 (-1257 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-917)) (-4 *5 (-1045)) + (-4 *2 (-13 (-404) (-1034 *5) (-363) (-1193) (-284))) + (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1233 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-609 (-495)))) (-5 *1 (-495)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-609 (-495))) (-5 *1 (-495)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1165 (-495))) (-5 *3 (-640 (-609 (-495)))) + (-5 *1 (-495)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1165 (-495))) (-5 *3 (-609 (-495))) (-5 *1 (-495)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1257 *4)) (-5 *3 (-917)) (-4 *4 (-349)) + (-5 *1 (-528 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-452)) (-4 *5 (-720 *4 *2)) (-4 *2 (-1233 *4)) + (-5 *1 (-771 *4 *2 *5 *3)) (-4 *3 (-1233 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) + ((*1 *1 *1) (-4 *1 (-1054)))) +(((*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) + ((*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) + ((*1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1201 *2 *3 *4 *5)) (-4 *2 (-555)) + (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-1059 *2 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *1 (-1245 *3)) (-4 *3 (-1208)))) + ((*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208))))) +(((*1 *1 *2) + (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-1149 *3))))) +(((*1 *2 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-684 *4)) (-5 *3 (-767)) (-4 *4 (-1045)) + (-5 *1 (-685 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394)))) + ((*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188))))) +(((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-157)))) + ((*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) + ((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-885 *5 *3)) (-5 *4 (-888 *5)) (-4 *5 (-1093)) + (-4 *3 (-166 *6)) (-4 (-948 *6) (-882 *5)) + (-4 *6 (-13 (-882 *5) (-172))) (-5 *1 (-178 *5 *6 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-885 *4 *1)) (-5 *3 (-888 *4)) (-4 *1 (-882 *4)) + (-4 *4 (-1093)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-885 *5 *6)) (-5 *4 (-888 *5)) (-4 *5 (-1093)) + (-4 *6 (-13 (-1093) (-1034 *3))) (-4 *3 (-882 *5)) + (-5 *1 (-927 *5 *3 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-885 *5 *3)) (-4 *5 (-1093)) + (-4 *3 (-13 (-430 *6) (-611 *4) (-882 *5) (-1034 (-609 $)))) + (-5 *4 (-888 *5)) (-4 *6 (-13 (-555) (-846) (-882 *5))) + (-5 *1 (-928 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-885 (-563) *3)) (-5 *4 (-888 (-563))) (-4 *3 (-545)) + (-5 *1 (-929 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-885 *5 *6)) (-5 *3 (-609 *6)) (-4 *5 (-1093)) + (-4 *6 (-13 (-846) (-1034 (-609 $)) (-611 *4) (-882 *5))) + (-5 *4 (-888 *5)) (-5 *1 (-930 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-881 *5 *6 *3)) (-5 *4 (-888 *5)) (-4 *5 (-1093)) + (-4 *6 (-882 *5)) (-4 *3 (-661 *6)) (-5 *1 (-931 *5 *6 *3)))) + ((*1 *2 *3 *4 *2 *5) + (-12 (-5 *5 (-1 (-885 *6 *3) *8 (-888 *6) (-885 *6 *3))) + (-4 *8 (-846)) (-5 *2 (-885 *6 *3)) (-5 *4 (-888 *6)) + (-4 *6 (-1093)) (-4 *3 (-13 (-945 *9 *7 *8) (-611 *4))) + (-4 *7 (-789)) (-4 *9 (-13 (-1045) (-846) (-882 *6))) + (-5 *1 (-932 *6 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-885 *5 *3)) (-4 *5 (-1093)) + (-4 *3 (-13 (-945 *8 *6 *7) (-611 *4))) (-5 *4 (-888 *5)) + (-4 *7 (-882 *5)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *8 (-13 (-1045) (-846) (-882 *5))) + (-5 *1 (-932 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-885 *5 *3)) (-4 *5 (-1093)) (-4 *3 (-988 *6)) + (-4 *6 (-13 (-555) (-882 *5) (-611 *4))) (-5 *4 (-888 *5)) + (-5 *1 (-935 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-885 *5 (-1169))) (-5 *3 (-1169)) (-5 *4 (-888 *5)) + (-4 *5 (-1093)) (-5 *1 (-936 *5)))) + ((*1 *2 *3 *4 *5 *2 *6) + (-12 (-5 *4 (-640 (-888 *7))) (-5 *5 (-1 *9 (-640 *9))) + (-5 *6 (-1 (-885 *7 *9) *9 (-888 *7) (-885 *7 *9))) (-4 *7 (-1093)) + (-4 *9 (-13 (-1045) (-611 (-888 *7)) (-1034 *8))) + (-5 *2 (-885 *7 *9)) (-5 *3 (-640 *9)) (-4 *8 (-13 (-1045) (-846))) + (-5 *1 (-937 *7 *8 *9))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) + (-12 (-5 *4 (-684 (-563))) (-5 *5 (-112)) (-5 *7 (-684 (-225))) + (-5 *3 (-563)) (-5 *6 (-225)) (-5 *2 (-1031)) (-5 *1 (-750))))) +(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1258)))) + ((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1259))))) +(((*1 *1) (-5 *1 (-1262)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1093)) (-4 *5 (-1093)) + (-5 *2 (-1 *5 *4)) (-5 *1 (-678 *4 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-451)) (-4 *4 (-845)) (-4 *5 (-788)) - (-5 *2 (-112)) (-5 *1 (-982 *3 *4 *5 *6)) - (-4 *6 (-944 *3 *5 *4)))) + (-12 (-4 *1 (-601 *3 *2)) (-4 *3 (-1093)) (-4 *3 (-846)) + (-4 *2 (-1208)))) + ((*1 *2 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) + ((*1 *2 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1132 *3 *4)) (-4 *3 (-13 (-1092) (-34))) - (-4 *4 (-13 (-1092) (-34)))))) -(((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-143))))) -(((*1 *2 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1207))))) + (-12 (-4 *2 (-1208)) (-5 *1 (-869 *2 *3)) (-4 *3 (-1208)))) + ((*1 *2 *1) (-12 (-5 *2 (-667 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) + (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *1 (-1245 *3)) (-4 *3 (-1208)))) + ((*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208))))) +(((*1 *2) (-12 (-5 *2 (-640 (-767))) (-5 *1 (-1260)))) + ((*1 *2 *2) (-12 (-5 *2 (-640 (-767))) (-5 *1 (-1260))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1057)) (-5 *3 (-1151))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1164 *7)) - (-4 *5 (-1044)) (-4 *7 (-1044)) (-4 *2 (-1232 *5)) - (-5 *1 (-500 *5 *2 *6 *7)) (-4 *6 (-1232 *2))))) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) + (-5 *1 (-1121 *3 *2)) (-4 *3 (-1233 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1095 *3)) (-5 *1 (-901 *3)) (-4 *3 (-368)) + (-4 *3 (-1093))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1233 *3)) (-5 *1 (-399 *3 *2)) + (-4 *3 (-13 (-363) (-147)))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-917)) (-5 *2 (-1262)) (-5 *1 (-1258)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-917)) (-5 *2 (-1262)) (-5 *1 (-1259))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1249 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) + (-14 *4 *2)))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1103)) (-5 *3 (-563))))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) + (-5 *2 (-1031)) (-5 *1 (-747))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 *4)) - (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-114)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1150)) (-4 *4 (-845)) (-5 *1 (-924 *4 *2)) - (-4 *2 (-429 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1168)) (-5 *4 (-1150)) (-5 *2 (-315 (-562))) - (-5 *1 (-925))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-766)) (-5 *1 (-114)))) - ((*1 *2 *1) (-12 (-4 *1 (-830 *3)) (-4 *3 (-1092)) (-5 *2 (-55))))) + (-12 (-4 *4 (-363)) (-5 *2 (-640 (-1149 *4))) (-5 *1 (-285 *4 *5)) + (-5 *3 (-1149 *4)) (-4 *5 (-1248 *4))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) + (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-563)) (-5 *1 (-204))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1165 *4)) (-4 *4 (-349)) + (-5 *2 (-1257 (-640 (-2 (|:| -2619 *4) (|:| -2555 (-1113)))))) + (-5 *1 (-346 *4))))) (((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-887 *4)) (-4 *4 (-1092)) (-4 *2 (-1092)) - (-5 *1 (-884 *4 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828 *3)) (-4 *3 (-1092)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-1092))))) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-640 *1)) + (-4 *1 (-1065 *4 *5 *6 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-868 (-961 *3) (-961 *3))) (-5 *1 (-961 *3)) - (-4 *3 (-962))))) -(((*1 *2 *1) (-12 (-5 *2 (-1148 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306))))) -(((*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044))))) + (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-555)) + (-5 *2 (-1165 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) + ((*1 *2 *1) (-12 (-5 *2 (-187)) (-5 *1 (-183)))) + ((*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248))))) (((*1 *2 *1) - (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)) - (-5 *2 (-639 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1092)) - (-5 *2 (-639 *3)))) + (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) + (-5 *2 (-815 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-1148 *3)) (-5 *1 (-593 *3)) (-4 *3 (-1044)))) - ((*1 *2 *1) - (-12 (-5 *2 (-639 *3)) (-5 *1 (-730 *3 *4)) (-4 *3 (-1044)) - (-4 *4 (-721)))) - ((*1 *2 *1) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1044)) (-5 *2 (-639 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1247 *3)) (-4 *3 (-1044)) (-5 *2 (-1148 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-4 *3 (-1058 *5 *6 *7)) - (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1501 *4)))) - (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-639 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-766)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-788)) (-4 *6 (-944 *3 *4 *5)) (-4 *3 (-451)) (-4 *5 (-845)) - (-5 *1 (-448 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) - ((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-171))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-916)) (-5 *4 (-417 *6)) (-4 *6 (-1232 *5)) - (-4 *5 (-1044)) (-5 *2 (-639 *6)) (-5 *1 (-443 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-311)) (-5 *1 (-295)))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 (-1150))) (-5 *2 (-311)) (-5 *1 (-295)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-311)) (-5 *1 (-295)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-639 (-1150))) (-5 *3 (-1150)) (-5 *2 (-311)) - (-5 *1 (-295))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) -(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) + (-12 (-4 *2 (-842)) (-5 *1 (-1280 *3 *2)) (-4 *3 (-1045))))) +(((*1 *2 *1) (-12 (-5 *2 (-640 (-1207))) (-5 *1 (-524))))) (((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-845) (-1033 (-562)) (-635 (-562)) (-451))) - (-5 *2 (-838 *4)) (-5 *1 (-312 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1192) (-429 *3))) (-14 *5 (-1168)) - (-14 *6 *4))) + (-12 (-4 *1 (-253 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-846)) + (-4 *5 (-789)) (-4 *2 (-266 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1193)))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) ((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-845) (-1033 (-562)) (-635 (-562)) (-451))) - (-5 *2 (-838 *4)) (-5 *1 (-1242 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1192) (-429 *3))) (-14 *5 (-1168)) - (-14 *6 *4)))) -(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1207)))) - ((*1 *1 *2) - (-12 (-5 *2 (-947 (-378))) (-5 *1 (-338 *3 *4 *5)) - (-4 *5 (-1033 (-378))) (-14 *3 (-639 (-1168))) - (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) - ((*1 *1 *2) - (-12 (-5 *2 (-406 (-947 (-378)))) (-5 *1 (-338 *3 *4 *5)) - (-4 *5 (-1033 (-378))) (-14 *3 (-639 (-1168))) - (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) - ((*1 *1 *2) - (-12 (-5 *2 (-315 (-378))) (-5 *1 (-338 *3 *4 *5)) - (-4 *5 (-1033 (-378))) (-14 *3 (-639 (-1168))) - (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) - ((*1 *1 *2) - (-12 (-5 *2 (-947 (-562))) (-5 *1 (-338 *3 *4 *5)) - (-4 *5 (-1033 (-562))) (-14 *3 (-639 (-1168))) - (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) - ((*1 *1 *2) - (-12 (-5 *2 (-406 (-947 (-562)))) (-5 *1 (-338 *3 *4 *5)) - (-4 *5 (-1033 (-562))) (-14 *3 (-639 (-1168))) - (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) - ((*1 *1 *2) - (-12 (-5 *2 (-315 (-562))) (-5 *1 (-338 *3 *4 *5)) - (-4 *5 (-1033 (-562))) (-14 *3 (-639 (-1168))) - (-14 *4 (-639 (-1168))) (-4 *5 (-386)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1168)) (-5 *1 (-338 *3 *4 *5)) (-14 *3 (-639 *2)) - (-14 *4 (-639 *2)) (-4 *5 (-386)))) - ((*1 *1 *2) - (-12 (-5 *2 (-315 *5)) (-4 *5 (-386)) (-5 *1 (-338 *3 *4 *5)) - (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-1168))))) - ((*1 *1 *2) (-12 (-5 *2 (-683 (-406 (-947 (-562))))) (-4 *1 (-383)))) - ((*1 *1 *2) (-12 (-5 *2 (-683 (-406 (-947 (-378))))) (-4 *1 (-383)))) - ((*1 *1 *2) (-12 (-5 *2 (-683 (-947 (-562)))) (-4 *1 (-383)))) - ((*1 *1 *2) (-12 (-5 *2 (-683 (-947 (-378)))) (-4 *1 (-383)))) - ((*1 *1 *2) (-12 (-5 *2 (-683 (-315 (-562)))) (-4 *1 (-383)))) - ((*1 *1 *2) (-12 (-5 *2 (-683 (-315 (-378)))) (-4 *1 (-383)))) - ((*1 *1 *2) (-12 (-5 *2 (-406 (-947 (-562)))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-406 (-947 (-378)))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-947 (-562))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-947 (-378))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-315 (-562))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-1256 (-406 (-947 (-562))))) (-4 *1 (-440)))) - ((*1 *1 *2) (-12 (-5 *2 (-1256 (-406 (-947 (-378))))) (-4 *1 (-440)))) - ((*1 *1 *2) (-12 (-5 *2 (-1256 (-947 (-562)))) (-4 *1 (-440)))) - ((*1 *1 *2) (-12 (-5 *2 (-1256 (-947 (-378)))) (-4 *1 (-440)))) - ((*1 *1 *2) (-12 (-5 *2 (-1256 (-315 (-562)))) (-4 *1 (-440)))) - ((*1 *1 *2) (-12 (-5 *2 (-1256 (-315 (-378)))) (-4 *1 (-440)))) + (-12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *2 (-112)) + (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4)))) ((*1 *2 *1) - (-12 + (-12 (-5 *2 (-112)) (-5 *1 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34))) + (-4 *4 (-13 (-1093) (-34)))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1208))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) + (-5 *2 (-640 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1233 *4)))) + ((*1 *2 *3 *3 *3) + (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) + (-5 *2 (-640 *3)) (-5 *1 (-1121 *4 *3)) (-4 *4 (-1233 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -2059 *4)))) + (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208))))) +(((*1 *1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-263)))) + ((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-767)) (-4 *5 (-555)) (-5 *2 - (-3 - (|:| |nia| - (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) - (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))) - (|:| |mdnia| - (-2 (|:| |fn| (-315 (-224))) - (|:| -2147 (-639 (-1086 (-838 (-224))))) - (|:| |abserr| (-224)) (|:| |relerr| (-224)))))) - (-5 *1 (-764)))) + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-965 *5 *3)) (-4 *3 (-1233 *5))))) +(((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1208)) (-5 *2 (-767)) + (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) - (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) - (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) - (|:| |abserr| (-224)) (|:| |relerr| (-224)))) - (-5 *1 (-803)))) + (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-131)) + (-5 *2 (-767)))) + ((*1 *2) + (-12 (-4 *4 (-363)) (-5 *2 (-767)) (-5 *1 (-328 *3 *4)) + (-4 *3 (-329 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-361 *3)) (-4 *3 (-1093)))) + ((*1 *2) (-12 (-4 *1 (-368)) (-5 *2 (-767)))) + ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-386 *3)) (-4 *3 (-1093)))) + ((*1 *2) + (-12 (-4 *4 (-1093)) (-5 *2 (-767)) (-5 *1 (-424 *3 *4)) + (-4 *3 (-425 *4)))) ((*1 *2 *1) - (-12 - (-5 *2 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) - (|:| |lb| (-639 (-838 (-224)))) - (|:| |cf| (-639 (-315 (-224)))) - (|:| |ub| (-639 (-838 (-224)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-639 (-315 (-224)))) - (|:| -3730 (-639 (-224))))))) - (-5 *1 (-836)))) + (-12 (-5 *2 (-767)) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-1093)) + (-4 *4 (-23)) (-14 *5 *4))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-4 *5 (-1233 *4)) (-5 *2 (-767)) + (-5 *1 (-719 *3 *4 *5)) (-4 *3 (-720 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-815 *3)) (-4 *3 (-846)))) + ((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1002)))) ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |pde| (-639 (-315 (-224)))) - (|:| |constraints| - (-639 - (-2 (|:| |start| (-224)) (|:| |finish| (-224)) - (|:| |grid| (-766)) (|:| |boundaryType| (-562)) - (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) - (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) - (|:| |tol| (-224)))) - (-5 *1 (-893)))) - ((*1 *1 *2) - (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-1044)) - (-4 *4 (-788)) (-4 *5 (-845)) (-4 *1 (-971 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1033 *2)) (-4 *2 (-1207)))) - ((*1 *1 *2) - (-4037 - (-12 (-5 *2 (-947 *3)) - (-12 (-2234 (-4 *3 (-38 (-406 (-562))))) - (-2234 (-4 *3 (-38 (-562)))) (-4 *5 (-610 (-1168)))) - (-4 *3 (-1044)) (-4 *1 (-1058 *3 *4 *5)) (-4 *4 (-788)) - (-4 *5 (-845))) - (-12 (-5 *2 (-947 *3)) - (-12 (-2234 (-4 *3 (-544))) (-2234 (-4 *3 (-38 (-406 (-562))))) - (-4 *3 (-38 (-562))) (-4 *5 (-610 (-1168)))) - (-4 *3 (-1044)) (-4 *1 (-1058 *3 *4 *5)) (-4 *4 (-788)) - (-4 *5 (-845))) - (-12 (-5 *2 (-947 *3)) - (-12 (-2234 (-4 *3 (-987 (-562)))) (-4 *3 (-38 (-406 (-562)))) - (-4 *5 (-610 (-1168)))) - (-4 *3 (-1044)) (-4 *1 (-1058 *3 *4 *5)) (-4 *4 (-788)) - (-4 *5 (-845))))) - ((*1 *1 *2) - (-4037 - (-12 (-5 *2 (-947 (-562))) (-4 *1 (-1058 *3 *4 *5)) - (-12 (-2234 (-4 *3 (-38 (-406 (-562))))) (-4 *3 (-38 (-562))) - (-4 *5 (-610 (-1168)))) - (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845))) - (-12 (-5 *2 (-947 (-562))) (-4 *1 (-1058 *3 *4 *5)) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *5 (-610 (-1168)))) - (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845))))) - ((*1 *1 *2) - (-12 (-5 *2 (-947 (-406 (-562)))) (-4 *1 (-1058 *3 *4 *5)) - (-4 *3 (-38 (-406 (-562)))) (-4 *5 (-610 (-1168))) (-4 *3 (-1044)) - (-4 *4 (-788)) (-4 *5 (-845))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-554)) (-4 *2 (-451)) (-5 *1 (-964 *2 *3)) - (-4 *3 (-1232 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) - (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))) - (-5 *2 (-639 (-224))) (-5 *1 (-203))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-639 (-766))) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) - (-4 *4 (-1044))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1092) (-1033 *5))) - (-4 *5 (-881 *4)) (-4 *4 (-1092)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-926 *4 *5 *6))))) -(((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *2) - (-12 (-5 *2 (-916)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) - ((*1 *2 *2) - (-12 (-5 *2 (-916)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-639 *7) *7 (-1164 *7))) (-5 *5 (-1 (-417 *7) *7)) - (-4 *7 (-1232 *6)) (-4 *6 (-13 (-362) (-146) (-1033 (-406 (-562))))) - (-5 *2 (-639 (-2 (|:| |frac| (-406 *7)) (|:| -3339 *3)))) - (-5 *1 (-804 *6 *7 *3 *8)) (-4 *3 (-650 *7)) - (-4 *8 (-650 (-406 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1232 *5)) - (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) - (-5 *2 - (-639 (-2 (|:| |frac| (-406 *6)) (|:| -3339 (-648 *6 (-406 *6)))))) - (-5 *1 (-807 *5 *6)) (-5 *3 (-648 *6 (-406 *6)))))) + (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) + (-4 *3 (-1233 *2))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) + (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1168)) - (-4 *5 (-13 (-845) (-1033 (-562)) (-451) (-635 (-562)))) - (-5 *2 (-2 (|:| -3542 *3) (|:| |nconst| *3))) (-5 *1 (-565 *5 *3)) - (-4 *3 (-13 (-27) (-1192) (-429 *5)))))) -(((*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) - ((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) - (-4 *2 (-429 *3)))) - ((*1 *1 *1) (-4 *1 (-1131)))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-1207)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1148 *2)) (-4 *2 (-1207))))) -(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) -(((*1 *1) (-5 *1 (-290)))) -(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-562)))) - ((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-693))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) - (-5 *2 (-683 *4)))) - ((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-683 *4)) (-5 *1 (-415 *3 *4)) - (-4 *3 (-416 *4)))) - ((*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-683 *3))))) + (-12 (-5 *3 (-640 (-1257 *5))) (-5 *4 (-563)) (-5 *2 (-1257 *5)) + (-5 *1 (-1025 *5)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-640 *6)) (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) + (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) + (-4 *3 (-555))))) +(((*1 *2 *1) + (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) + (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-640 *4))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1093)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-158 *4 *2)) + (-4 *2 (-430 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1085 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-846) (-555))) + (-5 *1 (-158 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-160)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1169))))) (((*1 *2 *3) - (-12 - (-5 *2 - (-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))))) - (-5 *1 (-1015 *3)) (-4 *3 (-1232 (-562))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))))) - (-5 *1 (-1015 *3)) (-4 *3 (-1232 (-562))) - (-5 *4 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))))) - (-5 *1 (-1015 *3)) (-4 *3 (-1232 (-562))) (-5 *4 (-406 (-562))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-406 (-562))) - (-5 *2 (-639 (-2 (|:| -1589 *5) (|:| -1603 *5)))) (-5 *1 (-1015 *3)) - (-4 *3 (-1232 (-562))) (-5 *4 (-2 (|:| -1589 *5) (|:| -1603 *5))))) - ((*1 *2 *3) - (-12 - (-5 *2 - (-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))))) - (-5 *1 (-1016 *3)) (-4 *3 (-1232 (-406 (-562)))))) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1248 *4)) + (-4 *4 (-38 (-407 (-563)))) + (-5 *2 (-1 (-1149 *4) (-1149 *4) (-1149 *4))) (-5 *1 (-1250 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-316 *4)) (-4 *4 (-13 (-824) (-846) (-1045))) + (-5 *2 (-1151)) (-5 *1 (-822 *4)))) ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))))) - (-5 *1 (-1016 *3)) (-4 *3 (-1232 (-406 (-562)))) - (-5 *4 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))))) + (-12 (-5 *3 (-316 *5)) (-5 *4 (-112)) + (-4 *5 (-13 (-824) (-846) (-1045))) (-5 *2 (-1151)) + (-5 *1 (-822 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-406 (-562))) - (-5 *2 (-639 (-2 (|:| -1589 *4) (|:| -1603 *4)))) (-5 *1 (-1016 *3)) - (-4 *3 (-1232 *4)))) + (-12 (-5 *3 (-818)) (-5 *4 (-316 *5)) + (-4 *5 (-13 (-824) (-846) (-1045))) (-5 *2 (-1262)) + (-5 *1 (-822 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-406 (-562))) - (-5 *2 (-639 (-2 (|:| -1589 *5) (|:| -1603 *5)))) (-5 *1 (-1016 *3)) - (-4 *3 (-1232 *5)) (-5 *4 (-2 (|:| -1589 *5) (|:| -1603 *5)))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-639 (-505))) (-5 *2 (-505)) (-5 *1 (-482))))) + (-12 (-5 *3 (-818)) (-5 *4 (-316 *6)) (-5 *5 (-112)) + (-4 *6 (-13 (-824) (-846) (-1045))) (-5 *2 (-1262)) + (-5 *1 (-822 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-824)) (-5 *2 (-1151)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-824)) (-5 *3 (-112)) (-5 *2 (-1151)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-824)) (-5 *3 (-818)) (-5 *2 (-1262)))) + ((*1 *2 *3 *1 *4) + (-12 (-4 *1 (-824)) (-5 *3 (-818)) (-5 *4 (-112)) (-5 *2 (-1262))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *1 *3 *3 *3 *2) + (-12 (-5 *3 (-767)) (-5 *1 (-670 *2)) (-4 *2 (-1093))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) + (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) +(((*1 *1 *1) (-5 *1 (-858))) + ((*1 *2 *1) + (-12 (-4 *1 (-1096 *2 *3 *4 *5 *6)) (-4 *3 (-1093)) (-4 *4 (-1093)) + (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-1093)))) + ((*1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-1150)))) + ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1169))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1093)) (-5 *1 (-960 *2 *3)) (-4 *3 (-1093))))) (((*1 *2 *3) - (-12 (-5 *3 (-916)) (-5 *2 (-1164 *4)) (-5 *1 (-356 *4)) - (-4 *4 (-348))))) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112)) + (-5 *1 (-32 *4 *5)) (-4 *5 (-430 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112)) + (-5 *1 (-158 *4 *5)) (-4 *5 (-430 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112)) + (-5 *1 (-276 *4 *5)) (-4 *5 (-13 (-430 *4) (-998))))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-301 *4)) (-4 *4 (-302)))) + ((*1 *2 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *5 (-846)) (-5 *2 (-112)) + (-5 *1 (-429 *4 *5)) (-4 *4 (-430 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112)) + (-5 *1 (-431 *4 *5)) (-4 *5 (-430 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112)) + (-5 *1 (-627 *4 *5)) (-4 *5 (-13 (-430 *4) (-998) (-1193)))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1044)) - (-14 *4 (-639 (-1168))))) + (|partial| -12 (-4 *3 (-1105)) (-4 *3 (-846)) (-5 *2 (-640 *1)) + (-4 *1 (-430 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1044) (-845))) - (-14 *4 (-639 (-1168)))))) + (|partial| -12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3)) + (-4 *3 (-1093)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *2 (-640 *1)) (-4 *1 (-945 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) + (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-640 *3)) + (-5 *1 (-946 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-363) + (-10 -8 (-15 -1693 ($ *7)) (-15 -2143 (*7 $)) + (-15 -2154 (*7 $)))))))) (((*1 *2 *3) - (-12 (-5 *3 (-1150)) (-5 *2 (-213 (-501))) (-5 *1 (-832))))) -(((*1 *2 *3 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-766)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-788)) (-4 *7 (-944 *4 *5 *6)) (-4 *4 (-451)) (-4 *6 (-845)) - (-5 *2 (-112)) (-5 *1 (-448 *4 *5 *6 *7))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1090 *3)) (-4 *3 (-1092)) (-5 *2 (-112))))) + (-12 (-4 *4 (-13 (-555) (-846))) + (-4 *2 (-13 (-430 (-169 *4)) (-998) (-1193))) + (-5 *1 (-597 *4 *3 *2)) (-4 *3 (-13 (-430 *4) (-998) (-1193)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1168)) (-5 *2 (-1 (-224) (-224))) (-5 *1 (-698 *3)) - (-4 *3 (-610 (-535))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1168)) (-5 *2 (-1 (-224) (-224) (-224))) - (-5 *1 (-698 *3)) (-4 *3 (-610 (-535)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-639 *2)) (-4 *2 (-1232 *4)) (-5 *1 (-538 *4 *2 *5 *6)) - (-4 *4 (-306)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-766)))))) + (-12 (-4 *7 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-555)) + (-4 *8 (-945 *7 *5 *6)) + (-5 *2 (-2 (|:| -1654 (-767)) (|:| -2311 *3) (|:| |radicand| *3))) + (-5 *1 (-949 *5 *6 *7 *8 *3)) (-5 *4 (-767)) + (-4 *3 + (-13 (-363) + (-10 -8 (-15 -1693 ($ *8)) (-15 -2143 (*8 $)) (-15 -2154 (*8 $)))))))) +(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1151)) (-5 *1 (-782))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *1 (-1233 *3)) (-4 *3 (-1045))))) +(((*1 *1 *2) + (-12 (-5 *2 (-917)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) + (-4 *4 (-363)) (-14 *5 (-989 *3 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) - (-4 *2 (-13 (-429 *3) (-1192)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1086 (-838 (-224)))) (-5 *1 (-304))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-639 *3)) (-4 *3 (-306)) (-5 *1 (-178 *3))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-916)) (-5 *4 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1257))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1092)))) - ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1092))))) -(((*1 *1 *1) (-4 *1 (-544)))) -(((*1 *2 *3) - (-12 (-4 *4 (-1044)) - (-4 *2 (-13 (-403) (-1033 *4) (-362) (-1192) (-283))) - (-5 *1 (-442 *4 *3 *2)) (-4 *3 (-1232 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-843)) (-5 *1 (-302 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-962))))) -(((*1 *2 *1) - (-12 (-5 *2 (-639 (-900 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1092))))) -(((*1 *2 *3) - (-12 (-5 *3 (-639 (-639 (-639 *4)))) (-5 *2 (-639 (-639 *4))) - (-5 *1 (-1178 *4)) (-4 *4 (-845))))) -(((*1 *2 *3) (-12 (-5 *3 (-535)) (-5 *1 (-534 *2)) (-4 *2 (-1207)))) - ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-535))))) -(((*1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1207)) (-4 *2 (-1092)))) - ((*1 *1 *1) (-12 (-4 *1 (-689 *2)) (-4 *2 (-1092))))) -(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562)))))) + (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) + (-5 *1 (-176 *3))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-643 *5)) (-4 *5 (-1045)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-848 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-684 *3)) (-4 *1 (-417 *3)) (-4 *3 (-172)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)))) + ((*1 *2 *3 *2 *2 *4 *5) + (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1045)) + (-5 *1 (-849 *2 *3)) (-4 *3 (-848 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-555)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1233 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *2 (-555)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-555))))) +(((*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) + ((*1 *2 *3) + (-12 (-5 *3 (-917)) (-5 *2 (-1257 *4)) (-5 *1 (-528 *4)) + (-4 *4 (-349))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-406 (-562)))) - (-5 *2 (-2 (|:| -4206 (-1148 *4)) (|:| -2977 (-1148 *4)))) - (-5 *1 (-1154 *4)) (-5 *3 (-1148 *4))))) + (|partial| -12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) + (-4 *5 (-430 *4)) (-5 *2 (-418 (-1165 (-407 (-563))))) + (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1233 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-280))))) (((*1 *2 *3) - (-12 (-5 *3 (-639 *4)) (-4 *4 (-362)) (-5 *2 (-683 *4)) - (-5 *1 (-809 *4 *5)) (-4 *5 (-650 *4)))) + (-12 (-5 *3 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) + (-5 *2 (-1262)) (-5 *1 (-1172)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *5)) (-5 *4 (-766)) (-4 *5 (-362)) - (-5 *2 (-683 *5)) (-5 *1 (-809 *5 *6)) (-4 *6 (-650 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-857))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-326 *3)) (-4 *3 (-1207)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-562)) (-5 *1 (-515 *3 *4)) (-4 *3 (-1207)) (-14 *4 *2)))) -(((*1 *1 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-362)) (-4 *1 (-328 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1256 *3)) (-4 *3 (-1232 *4)) (-4 *4 (-1211)) - (-4 *1 (-341 *4 *3 *5)) (-4 *5 (-1232 (-406 *3))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1256 *4)) (-5 *3 (-1256 *1)) (-4 *4 (-171)) - (-4 *1 (-366 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1256 *4)) (-5 *3 (-1256 *1)) (-4 *4 (-171)) - (-4 *1 (-369 *4 *5)) (-4 *5 (-1232 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1256 *3)) (-4 *3 (-171)) (-4 *1 (-408 *3 *4)) - (-4 *4 (-1232 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-171)) (-4 *1 (-416 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1150)) (-5 *2 (-639 (-1173))) (-5 *1 (-875))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) + (-12 (-5 *3 (-1169)) + (-5 *4 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) (-5 *2 (-1262)) + (-5 *1 (-1172)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *3 (-1169)) + (-5 *4 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) (-5 *2 (-1262)) + (-5 *1 (-1172))))) +(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-517))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 - (-2 (|:| -2533 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) + (-2 (|:| -2619 *4) (|:| -4076 *4) (|:| |totalpts| (-563)) (|:| |success| (-112)))) - (-5 *1 (-784)) (-5 *5 (-562))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-544)) - (-5 *2 (-406 (-562))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-406 (-562))) (-5 *1 (-417 *3)) (-4 *3 (-544)) - (-4 *3 (-554)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-544)) (-5 *2 (-406 (-562))))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-792 *3)) (-4 *3 (-171)) (-4 *3 (-544)) - (-5 *2 (-406 (-562))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-406 (-562))) (-5 *1 (-828 *3)) (-4 *3 (-544)) - (-4 *3 (-1092)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-406 (-562))) (-5 *1 (-838 *3)) (-4 *3 (-544)) - (-4 *3 (-1092)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-992 *3)) (-4 *3 (-171)) (-4 *3 (-544)) - (-5 *2 (-406 (-562))))) + (-5 *1 (-785)) (-5 *5 (-563))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-1151)) (-5 *5 (-684 (-225))) + (-5 *2 (-1031)) (-5 *1 (-743))))) +(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-241)))) ((*1 *2 *3) - (|partial| -12 (-5 *2 (-406 (-562))) (-5 *1 (-1003 *3)) - (-4 *3 (-1033 *2))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-562)) (-14 *3 (-766)) - (-4 *4 (-171)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-845) (-554))) (-5 *1 (-157 *4 *2)) - (-4 *2 (-429 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1084 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-845) (-554))) - (-5 *1 (-157 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-159)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1168)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-766)) (-5 *1 (-1276 *3 *4)) (-4 *3 (-845)) - (-4 *4 (-171))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) + (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-1262)) (-5 *1 (-241))))) (((*1 *2 *3) - (-12 (-5 *2 (-639 (-1164 (-562)))) (-5 *1 (-190)) (-5 *3 (-562))))) + (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) + (-5 *1 (-748))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1193)))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-640 *2)) (-4 *2 (-1093)) (-4 *2 (-1208))))) (((*1 *2) - (-12 (-4 *3 (-554)) (-5 *2 (-639 (-683 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-416 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) -(((*1 *2 *1) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-921)))) - ((*1 *2 *1) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-922))))) + (-12 (-4 *1 (-349)) + (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(((*1 *2 *1) + (-12 (-5 *2 (-640 (-294 *3))) (-5 *1 (-294 *3)) (-4 *3 (-555)) + (-4 *3 (-1208))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-640 (-1169))) (-4 *4 (-1093)) + (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4)))) + (-5 *1 (-1069 *4 *5 *2)) + (-4 *2 (-13 (-430 *5) (-882 *4) (-611 (-888 *4)))))) + ((*1 *1 *2 *2) + (-12 (-4 *3 (-1093)) + (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3)))) + (-5 *1 (-1069 *3 *4 *2)) + (-4 *2 (-13 (-430 *4) (-882 *3) (-611 (-888 *3))))))) (((*1 *2 *3) - (-12 (-5 *3 (-1148 (-224))) (-5 *2 (-639 (-1150))) (-5 *1 (-191)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1148 (-224))) (-5 *2 (-639 (-1150))) (-5 *1 (-299)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1148 (-224))) (-5 *2 (-639 (-1150))) (-5 *1 (-304))))) + (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-417 *4))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-157)) (-5 *2 (-1262)) (-5 *1 (-1259))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1257 *5)) (-4 *5 (-788)) (-5 *2 (-112)) + (-5 *1 (-841 *4 *5)) (-14 *4 (-767))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) + (-4 *3 (-1059 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-640 *4)) + (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2059 *4)))))) + (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-640 *4)) + (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -2059 *4)))))) + (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-5 *3 (-563)) (-5 *2 (-112)) (-5 *1 (-480))))) (((*1 *2 *3) - (-12 + (-12 (-4 *1 (-891)) (-5 *3 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) - (|:| |lb| (-639 (-838 (-224)))) - (|:| |cf| (-639 (-315 (-224)))) - (|:| |ub| (-639 (-838 (-224)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-639 (-315 (-224)))) - (|:| -3730 (-639 (-224))))))) - (-5 *2 (-639 (-1150))) (-5 *1 (-266))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1136)) (-5 *2 (-140)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1136)) (-5 *2 (-143))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) -(((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-857))))) -(((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) - (-4 *3 (-366 *4)))) - ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1092)) (-4 *6 (-1092)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-678 *4 *5 *6)) (-4 *5 (-1092))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-816)) (-5 *4 (-52)) (-5 *2 (-1261)) (-5 *1 (-826))))) -(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) -(((*1 *1 *1) - (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) -(((*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1192)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-524))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-544))))) -(((*1 *1) (-5 *1 (-1257)))) -(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) -(((*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-1259)))) - ((*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-1259))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-378)) (-5 *1 (-1056))))) -(((*1 *1 *1 *1) (-5 *1 (-857)))) + (-2 (|:| |pde| (-640 (-316 (-225)))) + (|:| |constraints| + (-640 + (-2 (|:| |start| (-225)) (|:| |finish| (-225)) + (|:| |grid| (-767)) (|:| |boundaryType| (-563)) + (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) + (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) + (|:| |tol| (-225)))) + (-5 *2 (-1031))))) +(((*1 *2 *3) + (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) + (-4 *4 (-349))))) +(((*1 *2 *3) (-12 (-5 *2 (-563)) (-5 *1 (-568 *3)) (-4 *3 (-1034 *2)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1096 *3 *4 *2 *5 *6)) (-4 *3 (-1093)) (-4 *4 (-1093)) + (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-1093))))) +(((*1 *1 *1) (-4 *1 (-1137)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-263))) (-5 *1 (-1258)))) + ((*1 *2 *1) (-12 (-5 *2 (-640 (-263))) (-5 *1 (-1258)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-263))) (-5 *1 (-1259)))) + ((*1 *2 *1) (-12 (-5 *2 (-640 (-263))) (-5 *1 (-1259))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-406 (-947 (-562))))) - (-5 *2 (-639 (-639 (-293 (-947 *4))))) (-5 *1 (-379 *4)) - (-4 *4 (-13 (-843) (-362))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-293 (-406 (-947 (-562)))))) - (-5 *2 (-639 (-639 (-293 (-947 *4))))) (-5 *1 (-379 *4)) - (-4 *4 (-13 (-843) (-362))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-947 (-562)))) (-5 *2 (-639 (-293 (-947 *4)))) - (-5 *1 (-379 *4)) (-4 *4 (-13 (-843) (-362))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-293 (-406 (-947 (-562))))) - (-5 *2 (-639 (-293 (-947 *4)))) (-5 *1 (-379 *4)) - (-4 *4 (-13 (-843) (-362))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1168)) - (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) - (-4 *4 (-13 (-29 *6) (-1192) (-954))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -4291 (-639 *4)))) - (-5 *1 (-646 *6 *4 *3)) (-4 *3 (-650 *4)))) - ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1168)) (-5 *5 (-639 *2)) - (-4 *2 (-13 (-29 *6) (-1192) (-954))) - (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) - (-5 *1 (-646 *6 *2 *3)) (-4 *3 (-650 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-683 *5)) (-4 *5 (-362)) + (-12 (-5 *4 (-1085 (-839 *3))) (-4 *3 (-13 (-1193) (-955) (-29 *5))) + (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 - (-2 (|:| |particular| (-3 (-1256 *5) "failed")) - (|:| -4291 (-639 (-1256 *5))))) - (-5 *1 (-661 *5)) (-5 *4 (-1256 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-639 *5))) (-4 *5 (-362)) + (-3 (|:| |f1| (-839 *3)) (|:| |f2| (-640 (-839 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-219 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1085 (-839 *3))) (-5 *5 (-1151)) + (-4 *3 (-13 (-1193) (-955) (-29 *6))) + (-4 *6 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 - (-2 (|:| |particular| (-3 (-1256 *5) "failed")) - (|:| -4291 (-639 (-1256 *5))))) - (-5 *1 (-661 *5)) (-5 *4 (-1256 *5)))) + (-3 (|:| |f1| (-839 *3)) (|:| |f2| (-640 (-839 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-219 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-683 *5)) (-4 *5 (-362)) + (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1085 (-839 (-316 *5)))) + (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 - (-639 - (-2 (|:| |particular| (-3 (-1256 *5) "failed")) - (|:| -4291 (-639 (-1256 *5)))))) - (-5 *1 (-661 *5)) (-5 *4 (-639 (-1256 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-639 *5))) (-4 *5 (-362)) + (-3 (|:| |f1| (-839 (-316 *5))) (|:| |f2| (-640 (-839 (-316 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-220 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-407 (-948 *6))) (-5 *4 (-1085 (-839 (-316 *6)))) + (-5 *5 (-1151)) + (-4 *6 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 - (-639 - (-2 (|:| |particular| (-3 (-1256 *5) "failed")) - (|:| -4291 (-639 (-1256 *5)))))) - (-5 *1 (-661 *5)) (-5 *4 (-639 (-1256 *5))))) + (-3 (|:| |f1| (-839 (-316 *6))) (|:| |f2| (-640 (-839 (-316 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-220 *6)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4404)))) - (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4404)))) + (-12 (-5 *4 (-1085 (-839 (-407 (-948 *5))))) (-5 *3 (-407 (-948 *5))) + (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4291 (-639 *4)))) - (-5 *1 (-662 *5 *6 *4 *3)) (-4 *3 (-681 *5 *6 *4)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4404)))) - (-4 *7 (-13 (-372 *5) (-10 -7 (-6 -4404)))) + (-3 (|:| |f1| (-839 (-316 *5))) (|:| |f2| (-640 (-839 (-316 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-220 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1085 (-839 (-407 (-948 *6))))) (-5 *5 (-1151)) + (-5 *3 (-407 (-948 *6))) + (-4 *6 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 - (-639 - (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4291 (-639 *7))))) - (-5 *1 (-662 *5 *6 *7 *3)) (-5 *4 (-639 *7)) - (-4 *3 (-681 *5 *6 *7)))) + (-3 (|:| |f1| (-839 (-316 *6))) (|:| |f2| (-640 (-839 (-316 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-220 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-639 (-1168))) (-4 *5 (-554)) - (-5 *2 (-639 (-639 (-293 (-406 (-947 *5)))))) (-5 *1 (-765 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 (-947 *4))) (-4 *4 (-554)) - (-5 *2 (-639 (-639 (-293 (-406 (-947 *4)))))) (-5 *1 (-765 *4)))) - ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1168)) - (-4 *5 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) - (-5 *1 (-767 *5 *2)) (-4 *2 (-13 (-29 *5) (-1192) (-954))))) + (-12 (-5 *4 (-1169)) + (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-3 *3 (-640 *3))) (-5 *1 (-428 *5 *3)) + (-4 *3 (-13 (-1193) (-955) (-29 *5))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-474 *3 *4 *5)) + (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1087 (-839 (-379)))) + (-5 *5 (-379)) (-5 *6 (-1057)) (-5 *2 (-1031)) (-5 *1 (-564)))) + ((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1031)) (-5 *1 (-564)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1087 (-839 (-379)))) + (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-564)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-683 *7)) (-5 *5 (-1168)) - (-4 *7 (-13 (-29 *6) (-1192) (-954))) - (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) - (-5 *2 - (-2 (|:| |particular| (-1256 *7)) (|:| -4291 (-639 (-1256 *7))))) - (-5 *1 (-797 *6 *7)) (-5 *4 (-1256 *7)))) + (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1087 (-839 (-379)))) + (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-564)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-683 *6)) (-5 *4 (-1168)) - (-4 *6 (-13 (-29 *5) (-1192) (-954))) - (-4 *5 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) - (-5 *2 (-639 (-1256 *6))) (-5 *1 (-797 *5 *6)))) + (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1087 (-839 (-379)))) + (-5 *2 (-1031)) (-5 *1 (-564)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-1087 (-839 (-379))))) + (-5 *2 (-1031)) (-5 *1 (-564)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-639 (-293 *7))) (-5 *4 (-639 (-114))) - (-5 *5 (-1168)) (-4 *7 (-13 (-29 *6) (-1192) (-954))) - (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) - (-5 *2 - (-2 (|:| |particular| (-1256 *7)) (|:| -4291 (-639 (-1256 *7))))) - (-5 *1 (-797 *6 *7)))) + (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-1087 (-839 (-379))))) + (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-564)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-1087 (-839 (-379))))) + (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-564)))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-1087 (-839 (-379))))) + (-5 *5 (-379)) (-5 *6 (-1057)) (-5 *2 (-1031)) (-5 *1 (-564)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-639 *7)) (-5 *4 (-639 (-114))) - (-5 *5 (-1168)) (-4 *7 (-13 (-29 *6) (-1192) (-954))) - (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) - (-5 *2 - (-2 (|:| |particular| (-1256 *7)) (|:| -4291 (-639 (-1256 *7))))) - (-5 *1 (-797 *6 *7)))) + (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1085 (-839 (-379)))) + (-5 *5 (-1151)) (-5 *2 (-1031)) (-5 *1 (-564)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-293 *7)) (-5 *4 (-114)) (-5 *5 (-1168)) - (-4 *7 (-13 (-29 *6) (-1192) (-954))) - (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) - (-5 *2 - (-3 (-2 (|:| |particular| *7) (|:| -4291 (-639 *7))) *7 "failed")) - (-5 *1 (-797 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-114)) (-5 *5 (-1168)) - (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) - (-5 *2 - (-3 (-2 (|:| |particular| *3) (|:| -4291 (-639 *3))) *3 "failed")) - (-5 *1 (-797 *6 *3)) (-4 *3 (-13 (-29 *6) (-1192) (-954))))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-293 *2)) (-5 *4 (-114)) (-5 *5 (-639 *2)) - (-4 *2 (-13 (-29 *6) (-1192) (-954))) (-5 *1 (-797 *6 *2)) - (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))))) - ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-114)) (-5 *4 (-293 *2)) (-5 *5 (-639 *2)) - (-4 *2 (-13 (-29 *6) (-1192) (-954))) - (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) - (-5 *1 (-797 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-803)) (-5 *2 (-1030)) (-5 *1 (-800)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-803)) (-5 *4 (-1056)) (-5 *2 (-1030)) (-5 *1 (-800)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1256 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-639 *4)) - (-5 *2 (-1030)) (-5 *1 (-800)))) - ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1256 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-639 *4)) - (-5 *2 (-1030)) (-5 *1 (-800)))) - ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1256 (-315 *4))) (-5 *5 (-639 (-378))) - (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1030)) (-5 *1 (-800)))) - ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1256 (-315 (-378)))) (-5 *4 (-378)) (-5 *5 (-639 *4)) - (-5 *2 (-1030)) (-5 *1 (-800)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1256 (-315 *4))) (-5 *5 (-639 (-378))) - (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1030)) (-5 *1 (-800)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1256 (-315 *4))) (-5 *5 (-639 (-378))) - (-5 *6 (-315 (-378))) (-5 *4 (-378)) (-5 *2 (-1030)) (-5 *1 (-800)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 - (-5 *5 - (-1 - (-3 (-2 (|:| |particular| *6) (|:| -4291 (-639 *6))) "failed") - *7 *6)) - (-4 *6 (-362)) (-4 *7 (-650 *6)) - (-5 *2 (-2 (|:| |particular| (-1256 *6)) (|:| -4291 (-683 *6)))) - (-5 *1 (-808 *6 *7)) (-5 *3 (-683 *6)) (-5 *4 (-1256 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1030)) (-5 *1 (-892)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-893)) (-5 *4 (-1056)) (-5 *2 (-1030)) (-5 *1 (-892)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-766)) (-5 *6 (-639 (-639 (-315 *3)))) (-5 *7 (-1150)) - (-5 *8 (-224)) (-5 *5 (-639 (-315 (-378)))) (-5 *3 (-378)) - (-5 *2 (-1030)) (-5 *1 (-892)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-766)) (-5 *6 (-639 (-639 (-315 *3)))) (-5 *7 (-1150)) - (-5 *5 (-639 (-315 (-378)))) (-5 *3 (-378)) (-5 *2 (-1030)) - (-5 *1 (-892)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-947 (-406 (-562)))) (-5 *2 (-639 (-378))) - (-5 *1 (-1018)) (-5 *4 (-378)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-947 (-562))) (-5 *2 (-639 (-378))) (-5 *1 (-1018)) - (-5 *4 (-378)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) - (-5 *2 (-639 *4)) (-5 *1 (-1120 *3 *4)) (-4 *3 (-1232 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) - (-5 *2 (-639 (-293 (-315 *4)))) (-5 *1 (-1123 *4)) - (-5 *3 (-315 *4)))) + (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1085 (-839 (-379)))) + (-5 *5 (-1169)) (-5 *2 (-1031)) (-5 *1 (-564)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) - (-5 *2 (-639 (-293 (-315 *4)))) (-5 *1 (-1123 *4)) - (-5 *3 (-293 (-315 *4))))) + (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-563)))) (-4 *5 (-1233 *4)) + (-5 *2 (-584 (-407 *5))) (-5 *1 (-567 *4 *5)) (-5 *3 (-407 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1168)) - (-4 *5 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) - (-5 *2 (-639 (-293 (-315 *5)))) (-5 *1 (-1123 *5)) - (-5 *3 (-293 (-315 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1168)) - (-4 *5 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) - (-5 *2 (-639 (-293 (-315 *5)))) (-5 *1 (-1123 *5)) - (-5 *3 (-315 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-639 (-1168))) - (-4 *5 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) - (-5 *2 (-639 (-639 (-293 (-315 *5))))) (-5 *1 (-1123 *5)) - (-5 *3 (-639 (-293 (-315 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-406 (-947 *5)))) (-5 *4 (-639 (-1168))) - (-4 *5 (-554)) (-5 *2 (-639 (-639 (-293 (-406 (-947 *5)))))) - (-5 *1 (-1176 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-639 (-1168))) (-4 *5 (-554)) - (-5 *2 (-639 (-639 (-293 (-406 (-947 *5)))))) (-5 *1 (-1176 *5)) - (-5 *3 (-639 (-293 (-406 (-947 *5))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 (-406 (-947 *4)))) (-4 *4 (-554)) - (-5 *2 (-639 (-639 (-293 (-406 (-947 *4)))))) (-5 *1 (-1176 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-639 (-639 (-293 (-406 (-947 *4)))))) - (-5 *1 (-1176 *4)) (-5 *3 (-639 (-293 (-406 (-947 *4))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1168)) (-4 *5 (-554)) - (-5 *2 (-639 (-293 (-406 (-947 *5))))) (-5 *1 (-1176 *5)) - (-5 *3 (-406 (-947 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1168)) (-4 *5 (-554)) - (-5 *2 (-639 (-293 (-406 (-947 *5))))) (-5 *1 (-1176 *5)) - (-5 *3 (-293 (-406 (-947 *5)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-639 (-293 (-406 (-947 *4))))) - (-5 *1 (-1176 *4)) (-5 *3 (-406 (-947 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-639 (-293 (-406 (-947 *4))))) - (-5 *1 (-1176 *4)) (-5 *3 (-293 (-406 (-947 *4))))))) + (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169)) (-4 *5 (-147)) + (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) + (-5 *2 (-3 (-316 *5) (-640 (-316 *5)))) (-5 *1 (-587 *5)))) + ((*1 *1 *1) + (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-846)) + (-4 *3 (-38 (-407 (-563)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1169)) (-5 *1 (-948 *3)) (-4 *3 (-38 (-407 (-563)))) + (-4 *3 (-1045)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-4 *2 (-846)) + (-5 *1 (-1119 *3 *2 *4)) (-4 *4 (-945 *3 (-531 *2) *2)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) + (-5 *1 (-1153 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1160 *3 *4 *5)) + (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1166 *3 *4 *5)) + (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1167 *3 *4 *5)) + (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1169)) (-5 *1 (-1202 *3)) (-4 *3 (-38 (-407 (-563)))) + (-4 *3 (-1045)))) + ((*1 *1 *1 *2) + (-4032 + (-12 (-5 *2 (-1169)) (-4 *1 (-1217 *3)) (-4 *3 (-1045)) + (-12 (-4 *3 (-29 (-563))) (-4 *3 (-955)) (-4 *3 (-1193)) + (-4 *3 (-38 (-407 (-563)))))) + (-12 (-5 *2 (-1169)) (-4 *1 (-1217 *3)) (-4 *3 (-1045)) + (-12 (|has| *3 (-15 -2606 ((-640 *2) *3))) + (|has| *3 (-15 -3698 (*3 *3 *2))) (-4 *3 (-38 (-407 (-563)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-563)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1221 *3 *4 *5)) + (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3))) + ((*1 *1 *1) + (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-563)))))) + ((*1 *1 *1 *2) + (-4032 + (-12 (-5 *2 (-1169)) (-4 *1 (-1238 *3)) (-4 *3 (-1045)) + (-12 (-4 *3 (-29 (-563))) (-4 *3 (-955)) (-4 *3 (-1193)) + (-4 *3 (-38 (-407 (-563)))))) + (-12 (-5 *2 (-1169)) (-4 *1 (-1238 *3)) (-4 *3 (-1045)) + (-12 (|has| *3 (-15 -2606 ((-640 *2) *3))) + (|has| *3 (-15 -3698 (*3 *3 *2))) (-4 *3 (-38 (-407 (-563)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1238 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-563)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1242 *3 *4 *5)) + (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-4032 + (-12 (-5 *2 (-1169)) (-4 *1 (-1248 *3)) (-4 *3 (-1045)) + (-12 (-4 *3 (-29 (-563))) (-4 *3 (-955)) (-4 *3 (-1193)) + (-4 *3 (-38 (-407 (-563)))))) + (-12 (-5 *2 (-1169)) (-4 *1 (-1248 *3)) (-4 *3 (-1045)) + (-12 (|has| *3 (-15 -2606 ((-640 *2) *3))) + (|has| *3 (-15 -3698 (*3 *3 *2))) (-4 *3 (-38 (-407 (-563)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-563)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1249 *3 *4 *5)) + (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3)))) +(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144))) + ((*1 *1 *1) (-4 *1 (-1137)))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-640 *2)) (-4 *2 (-1093)) (-4 *2 (-1208))))) (((*1 *2 *2) - (-12 - (-5 *2 - (-639 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-766)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-788)) (-4 *6 (-944 *3 *4 *5)) (-4 *3 (-451)) (-4 *5 (-845)) - (-5 *1 (-448 *3 *4 *5 *6))))) -(((*1 *2) - (-12 (-4 *3 (-554)) (-5 *2 (-639 (-683 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-416 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-857))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-639 *7)) (-5 *5 (-639 (-639 *8))) (-4 *7 (-845)) - (-4 *8 (-306)) (-4 *6 (-788)) (-4 *9 (-944 *8 *6 *7)) - (-5 *2 - (-2 (|:| |unitPart| *9) - (|:| |suPart| - (-639 (-2 (|:| -1635 (-1164 *9)) (|:| -1300 (-562))))))) - (-5 *1 (-737 *6 *7 *8 *9)) (-5 *3 (-1164 *9))))) -(((*1 *1) (-5 *1 (-467)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1168)) (-4 *4 (-451)) (-4 *4 (-845)) - (-5 *1 (-571 *4 *2)) (-4 *2 (-283)) (-4 *2 (-429 *4))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-766)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2)) - (-4 *2 (-1232 *4)))) - ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-562)) (-5 *1 (-690 *2)) (-4 *2 (-1232 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-554)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2355 *4))) - (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4))))) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1151)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) + ((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-263)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-939 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-640 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1127 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-640 (-640 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-640 (-939 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045))))) +(((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-563)) (-5 *1 (-1149 *3)) (-4 *3 (-1208)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4408)) (-4 *1 (-1245 *2)) (-4 *2 (-1208))))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-169 (-225)))) (-5 *2 (-1031)) + (-5 *1 (-752))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) + (-5 *1 (-751))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-327 *3)) (-4 *3 (-1208)))) + ((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1208)) + (-14 *4 (-563))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) + (-5 *1 (-1066 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) + (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-562)) (-4 *2 (-429 *3)) (-5 *1 (-32 *3 *2)) - (-4 *3 (-1033 *4)) (-4 *3 (-13 (-845) (-554)))))) + (-12 (-5 *3 (-640 *6)) (-5 *4 (-640 (-1149 *7))) (-4 *6 (-846)) + (-4 *7 (-945 *5 (-531 *6) *6)) (-4 *5 (-1045)) + (-5 *2 (-1 (-1149 *7) *7)) (-5 *1 (-1119 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-306)) (-4 *6 (-372 *5)) (-4 *4 (-372 *5)) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4291 (-639 *4)))) - (-5 *1 (-1116 *5 *6 *4 *3)) (-4 *3 (-681 *5 *6 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-639 *2)) (-4 *2 (-1058 *4 *5 *6)) (-4 *4 (-554)) - (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-972 *4 *5 *6 *2))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1256 *6)) (-5 *4 (-1256 (-562))) (-5 *5 (-562)) - (-4 *6 (-1092)) (-5 *2 (-1 *6)) (-5 *1 (-1012 *6))))) + (|partial| -12 (-5 *4 (-917)) (-4 *5 (-555)) (-5 *2 (-684 *5)) + (-5 *1 (-952 *5 *3)) (-4 *3 (-651 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-180)))) + ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-311)))) + ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-966)))) + ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-990)))) + ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1032)))) + ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1067))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1185 *4 *5)) + (-4 *4 (-1093)) (-4 *5 (-1093))))) +(((*1 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) + (-5 *1 (-1121 *3 *2)) (-4 *3 (-1233 *2))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-640 *2)) (-4 *2 (-1093)) (-4 *2 (-1208))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-767)) (-4 *2 (-555)) (-5 *1 (-965 *2 *4)) + (-4 *4 (-1233 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-330))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-640 (-481 *5 *6))) (-5 *4 (-860 *5)) + (-14 *5 (-640 (-1169))) (-5 *2 (-481 *5 *6)) (-5 *1 (-628 *5 *6)) + (-4 *6 (-452)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-640 (-481 *5 *6))) (-5 *4 (-860 *5)) + (-14 *5 (-640 (-1169))) (-5 *2 (-481 *5 *6)) (-5 *1 (-628 *5 *6)) + (-4 *6 (-452))))) +(((*1 *2 *1 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-307)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4333 *1))) + (-4 *1 (-307))))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-563)) (-5 *5 (-684 (-225))) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225)) + (-5 *2 (-1031)) (-5 *1 (-745))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *3) + (-12 (-5 *3 (-948 *4)) (-4 *4 (-13 (-307) (-147))) + (-4 *2 (-945 *4 *6 *5)) (-5 *1 (-920 *4 *5 *6 *2)) + (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789))))) (((*1 *2 *1) - (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-997)) - (-4 *2 (-1044))))) + (-12 (-4 *1 (-1096 *3 *2 *4 *5 *6)) (-4 *3 (-1093)) (-4 *4 (-1093)) + (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-1093))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1096 *2 *3 *4 *5 *6)) (-4 *2 (-1093)) (-4 *3 (-1093)) + (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-563))) (-5 *1 (-1043))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3548 *3))) + (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1169)) (-5 *2 (-536)) (-5 *1 (-535 *4)) + (-4 *4 (-1208))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-960 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) - (-4 *2 (-13 (-429 *3) (-1192)))))) -(((*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554)) (-4 *2 (-544)))) - ((*1 *1 *1) (-4 *1 (-1053)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-544)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) -(((*1 *1 *1 *1) (-4 *1 (-544)))) -(((*1 *2 *3) - (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1211)) (-4 *3 (-1232 *4)) - (-4 *5 (-1232 (-406 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) - (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112))))) -(((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-947 (-562))) (-5 *3 (-1168)) - (-5 *4 (-1086 (-406 (-562)))) (-5 *1 (-30))))) -(((*1 *1) (-5 *1 (-1074)))) -(((*1 *1 *1) (-5 *1 (-857))) ((*1 *1 *1 *1) (-5 *1 (-857))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1207)))) - ((*1 *1 *2) (-12 (-5 *1 (-1223 *2)) (-4 *2 (-1207))))) -(((*1 *1 *2) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-486))))) -(((*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-562)) (-5 *5 (-112)) (-5 *6 (-683 (-224))) - (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-750))))) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-640 *7)) (|:| |badPols| (-640 *7)))) + (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-640 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) + ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -3646 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-363)) (-4 *7 (-1233 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) + (-2 (|:| -3646 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) + (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7))))) +(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1096 *2 *3 *4 *5 *6)) (-4 *2 (-1093)) (-4 *3 (-1093)) + (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997)))))) -(((*1 *2) (-12 (-5 *2 (-639 (-916))) (-5 *1 (-1259)))) - ((*1 *2 *2) (-12 (-5 *2 (-639 (-916))) (-5 *1 (-1259))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1232 (-562)))))) + (-12 (-4 *3 (-611 (-888 *3))) (-4 *3 (-882 *3)) + (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) + (-4 *2 (-611 (-888 *3))) (-4 *2 (-882 *3)) + (-4 *2 (-13 (-430 *3) (-1193)))))) +(((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-357 *3)) (-4 *3 (-349))))) +(((*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-330)))) + ((*1 *1 *2) (-12 (-5 *2 (-316 (-563))) (-5 *1 (-330)))) + ((*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-330)))) + ((*1 *1 *2) (-12 (-5 *2 (-316 (-689))) (-5 *1 (-330)))) + ((*1 *1 *2) (-12 (-5 *2 (-316 (-696))) (-5 *1 (-330)))) + ((*1 *1 *2) (-12 (-5 *2 (-316 (-694))) (-5 *1 (-330)))) + ((*1 *1) (-5 *1 (-330)))) +(((*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172))))) (((*1 *1 *2) - (-12 (-5 *2 (-1 (-1148 *3))) (-5 *1 (-1148 *3)) (-4 *3 (-1207))))) -(((*1 *2 *1) - (-12 (-4 *1 (-552 *3)) (-4 *3 (-13 (-403) (-1192))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-843)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1061 *4 *3)) (-4 *4 (-13 (-843) (-362))) - (-4 *3 (-1232 *4)) (-5 *2 (-112))))) + (-12 (-5 *2 (-667 *3)) (-4 *3 (-846)) (-4 *1 (-374 *3 *4)) + (-4 *4 (-172))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-563))) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-555)) (-4 *8 (-945 *7 *5 *6)) + (-5 *2 (-2 (|:| -1654 (-767)) (|:| -2311 *9) (|:| |radicand| *9))) + (-5 *1 (-949 *5 *6 *7 *8 *9)) (-5 *4 (-767)) + (-4 *9 + (-13 (-363) + (-10 -8 (-15 -1693 ($ *8)) (-15 -2143 (*8 $)) (-15 -2154 (*8 $)))))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1257 *4)) (-4 *4 (-636 *5)) (-4 *5 (-363)) + (-4 *5 (-555)) (-5 *2 (-1257 *5)) (-5 *1 (-635 *5 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1257 *4)) (-4 *4 (-636 *5)) + (-2176 (-4 *5 (-363))) (-4 *5 (-555)) (-5 *2 (-1257 (-407 *5))) + (-5 *1 (-635 *5 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-917)) (-5 *1 (-1094 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *1 *2) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1208)))) + ((*1 *2 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-1169))))) (((*1 *2 *1) - (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-544)) - (-5 *2 (-406 (-562))))) - ((*1 *2 *1) - (-12 (-5 *2 (-406 (-562))) (-5 *1 (-417 *3)) (-4 *3 (-544)) - (-4 *3 (-554)))) - ((*1 *2 *1) (-12 (-4 *1 (-544)) (-5 *2 (-406 (-562))))) - ((*1 *2 *1) - (-12 (-4 *1 (-792 *3)) (-4 *3 (-171)) (-4 *3 (-544)) - (-5 *2 (-406 (-562))))) - ((*1 *2 *1) - (-12 (-5 *2 (-406 (-562))) (-5 *1 (-828 *3)) (-4 *3 (-544)) - (-4 *3 (-1092)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-563)))) ((*1 *2 *1) - (-12 (-5 *2 (-406 (-562))) (-5 *1 (-838 *3)) (-4 *3 (-544)) - (-4 *3 (-1092)))) - ((*1 *2 *1) - (-12 (-4 *1 (-992 *3)) (-4 *3 (-171)) (-4 *3 (-544)) - (-5 *2 (-406 (-562))))) - ((*1 *2 *3) - (-12 (-5 *2 (-406 (-562))) (-5 *1 (-1003 *3)) (-4 *3 (-1033 *2))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4404)) (-4 *1 (-119 *2)) (-4 *2 (-1207))))) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-563))))) (((*1 *2) - (-12 (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-904)) - (-5 *1 (-456 *3 *4 *2 *5)) (-4 *5 (-944 *2 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-788)) (-4 *4 (-845)) (-4 *2 (-904)) - (-5 *1 (-901 *2 *3 *4 *5)) (-4 *5 (-944 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-904)) (-5 *1 (-902 *2 *3)) (-4 *3 (-1232 *2))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *3 (-845)) - (-5 *2 (-2 (|:| -3380 *1) (|:| -1441 *1))) (-4 *1 (-944 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1044)) (-5 *2 (-2 (|:| -3380 *1) (|:| -1441 *1))) - (-4 *1 (-1232 *3))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-362)) (-5 *1 (-891 *2 *3)) - (-4 *2 (-1232 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-554)) - (-5 *2 (-1164 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-170))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-1172))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1150)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-1261)) - (-5 *1 (-1065 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1150)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-1261)) - (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7))))) + (-12 (-4 *3 (-1045)) (-5 *2 (-954 (-708 *3 *4))) (-5 *1 (-708 *3 *4)) + (-4 *4 (-1233 *3))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-947 (-168 *4))) (-4 *4 (-171)) - (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-947 (-168 *5))) (-5 *4 (-916)) (-4 *5 (-171)) - (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-947 *4)) (-4 *4 (-1044)) - (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-947 *5)) (-5 *4 (-916)) (-4 *5 (-1044)) - (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-554)) - (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-916)) (-4 *5 (-554)) - (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-406 (-947 (-168 *4)))) (-4 *4 (-554)) - (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-406 (-947 (-168 *5)))) (-5 *4 (-916)) - (-4 *5 (-554)) (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) - (-5 *1 (-780 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-315 *4)) (-4 *4 (-554)) (-4 *4 (-845)) - (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-315 *5)) (-5 *4 (-916)) (-4 *5 (-554)) - (-4 *5 (-845)) (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) - (-5 *1 (-780 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-315 (-168 *4))) (-4 *4 (-554)) (-4 *4 (-845)) - (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-315 (-168 *5))) (-5 *4 (-916)) (-4 *5 (-554)) - (-4 *5 (-845)) (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) - (-5 *1 (-780 *5))))) + (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-363) (-1193) (-998)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-640 (-901 *3))) (-4 *3 (-1093)) (-5 *1 (-900 *3))))) +(((*1 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-363))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) -(((*1 *2) - (-12 (-5 *2 (-2 (|:| -3665 (-639 *3)) (|:| -3979 (-639 *3)))) - (-5 *1 (-1208 *3)) (-4 *3 (-1092))))) -(((*1 *2 *1) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) - (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-554)) - (-5 *2 (-2 (|:| -4221 *4) (|:| -3380 *3) (|:| -1441 *3))) - (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) - (-5 *2 (-2 (|:| -3380 *1) (|:| -1441 *1))) (-4 *1 (-1058 *3 *4 *5)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-554)) (-4 *3 (-1044)) - (-5 *2 (-2 (|:| -4221 *3) (|:| -3380 *1) (|:| -1441 *1))) - (-4 *1 (-1232 *3))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-554)) (-4 *2 (-171))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1092)) (-4 *4 (-13 (-1044) (-881 *3) (-845) (-610 *2))) - (-5 *2 (-887 *3)) (-5 *1 (-1068 *3 *4 *5)) - (-4 *5 (-13 (-429 *4) (-881 *3) (-610 *2)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-315 (-224))) (-5 *4 (-1168)) - (-5 *5 (-1086 (-838 (-224)))) (-5 *2 (-639 (-224))) (-5 *1 (-191)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-315 (-224))) (-5 *4 (-1168)) - (-5 *5 (-1086 (-838 (-224)))) (-5 *2 (-639 (-224))) (-5 *1 (-299))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-157 *3 *2)) - (-4 *2 (-429 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-845) (-554))) (-5 *1 (-157 *4 *2)) - (-4 *2 (-429 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1168)))) - ((*1 *1 *1) (-4 *1 (-159)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-535))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-306)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1232 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-306)) (-5 *1 (-459 *3 *2)) (-4 *2 (-1232 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-306)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-766))) - (-5 *1 (-538 *3 *2 *4 *5)) (-4 *2 (-1232 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-329))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) - (-4 *2 (-13 (-429 *3) (-1192)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1164 *9)) (-5 *4 (-639 *7)) (-4 *7 (-845)) - (-4 *9 (-944 *8 *6 *7)) (-4 *6 (-788)) (-4 *8 (-306)) - (-5 *2 (-639 (-766))) (-5 *1 (-737 *6 *7 *8 *9)) (-5 *5 (-766))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-938 (-224)) (-938 (-224)))) (-5 *3 (-639 (-262))) - (-5 *1 (-260)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1 (-938 (-224)) (-938 (-224)))) (-5 *1 (-262)))) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-563)) + (|:| -2760 (-640 (-2 (|:| |irr| *3) (|:| -1650 (-563))))))) + (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-639 (-480 *5 *6))) (-5 *3 (-480 *5 *6)) - (-14 *5 (-639 (-1168))) (-4 *6 (-451)) (-5 *2 (-1256 *6)) - (-5 *1 (-627 *5 *6))))) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-563)) + (|:| -2760 (-640 (-2 (|:| |irr| *3) (|:| -1650 (-563))))))) + (-5 *1 (-1222 *3)) (-4 *3 (-1233 (-563)))))) +(((*1 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1208))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-640 *1)) (-4 *1 (-307))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) + (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) + (-5 *2 (-1031)) (-5 *1 (-752))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1207)) (-5 *1 (-1124 *4 *2)) - (-4 *2 (-13 (-600 (-562) *4) (-10 -7 (-6 -4403) (-6 -4404)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-845)) (-4 *3 (-1207)) (-5 *1 (-1124 *3 *2)) - (-4 *2 (-13 (-600 (-562) *3) (-10 -7 (-6 -4403) (-6 -4404))))))) -(((*1 *1 *1) (|partial| -4 *1 (-1143)))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) - (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1030)) - (-5 *1 (-741))))) -(((*1 *2 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-362)) (-5 *2 (-112))))) + (|partial| -12 + (-5 *3 (-640 (-2 (|:| |func| *2) (|:| |pole| (-112))))) + (-4 *2 (-13 (-430 *4) (-998))) (-4 *4 (-13 (-846) (-555))) + (-5 *1 (-276 *4 *2))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-640 (-280))) (-5 *1 (-280)))) + ((*1 *2 *1) (-12 (-5 *2 (-640 (-1174))) (-5 *1 (-1174))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7))))) +(((*1 *2) (-12 (-5 *2 (-839 (-563))) (-5 *1 (-534)))) + ((*1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-1093))))) (((*1 *2 *1) - (-12 (-5 *2 (-639 (-2 (|:| |k| (-666 *3)) (|:| |c| *4)))) - (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-845)) - (-4 *4 (-13 (-171) (-712 (-406 (-562))))) (-14 *5 (-916))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) + (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) + (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-557 *2)) (-4 *2 (-545))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172))))) +(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-536))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-1212)) (-4 *5 (-1233 *3)) (-4 *6 (-1233 (-407 *5))) + (-5 *2 (-112)) (-5 *1 (-341 *4 *3 *5 *6)) (-4 *4 (-342 *3 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) + (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-52))))) +(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560))))) +(((*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1093)))) + ((*1 *1 *1) (-5 *1 (-629)))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1233 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858))))) +(((*1 *2 *2 *2) (-12 (-5 *2 - (-2 (|:| -4221 *3) (|:| |gap| (-766)) (|:| -3380 (-777 *3)) - (|:| -1441 (-777 *3)))) - (-5 *1 (-777 *3)) (-4 *3 (-1044)))) - ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *3 (-845)) - (-5 *2 - (-2 (|:| -4221 *1) (|:| |gap| (-766)) (|:| -3380 *1) - (|:| -1441 *1))) - (-4 *1 (-1058 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) + (-2 (|:| -4315 (-684 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-684 *3)))) + (-4 *3 (-13 (-307) (-10 -8 (-15 -3205 ((-418 $) $))))) + (-4 *4 (-1233 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) +(((*1 *2) (-12 (-5 *2 (-839 (-563))) (-5 *1 (-534)))) + ((*1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-1093))))) +(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-818))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-2 (|:| |totdeg| (-767)) (|:| -1574 *4))) (-5 *5 (-767)) + (-4 *4 (-945 *6 *7 *8)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-5 *2 - (-2 (|:| -4221 *1) (|:| |gap| (-766)) (|:| -3380 *1) - (|:| -1441 *1))) - (-4 *1 (-1058 *3 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-466)))) - ((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-466)))) - ((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-922))))) -(((*1 *2 *3) - (-12 (|has| *6 (-6 -4404)) (-4 *4 (-362)) (-4 *5 (-372 *4)) - (-4 *6 (-372 *4)) (-5 *2 (-639 *6)) (-5 *1 (-520 *4 *5 *6 *3)) - (-4 *3 (-681 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (|has| *9 (-6 -4404)) (-4 *4 (-554)) (-4 *5 (-372 *4)) - (-4 *6 (-372 *4)) (-4 *7 (-987 *4)) (-4 *8 (-372 *7)) - (-4 *9 (-372 *7)) (-5 *2 (-639 *6)) - (-5 *1 (-521 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-681 *4 *5 *6)) - (-4 *10 (-681 *7 *8 *9)))) - ((*1 *2 *1) - (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) - (-4 *5 (-372 *3)) (-4 *3 (-554)) (-5 *2 (-639 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-554)) (-4 *4 (-171)) (-4 *5 (-372 *4)) - (-4 *6 (-372 *4)) (-5 *2 (-639 *6)) (-5 *1 (-682 *4 *5 *6 *3)) - (-4 *3 (-681 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) - (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-554)) - (-5 *2 (-639 *7))))) -(((*1 *2 *2) - (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-146)) - (-4 *3 (-306)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) - (-5 *1 (-972 *3 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) - (-4 *5 (-13 (-362) (-146) (-1033 (-562)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-406 *6)) (|:| |h| *6) - (|:| |c1| (-406 *6)) (|:| |c2| (-406 *6)) (|:| -3354 *6))) - (-5 *1 (-1011 *5 *6)) (-5 *3 (-406 *6))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1192))))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-916)) (-5 *4 (-378)) (-5 *2 (-1261)) (-5 *1 (-1257)))) + (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) + (|:| |polj| *4))) + (-5 *1 (-449 *6 *7 *8 *4))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-640 (-563))) (-5 *2 (-684 (-563))) (-5 *1 (-1103))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-363)) (-4 *3 (-1045)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4333 *1))) + (-4 *1 (-848 *3))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1103)) (-5 *3 (-563))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045)) + (-4 *5 (-846)) (-5 *2 (-948 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045)) + (-4 *5 (-846)) (-5 *2 (-948 *4)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258))))) -(((*1 *2 *3) - (-12 (-5 *3 (-480 *4 *5)) (-14 *4 (-639 (-1168))) (-4 *5 (-1044)) - (-5 *2 (-947 *5)) (-5 *1 (-939 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) - (-5 *2 (-639 (-639 (-639 (-938 *3)))))))) -(((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-444 *3)) (-4 *3 (-1044))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *7 (-944 *4 *5 *6)) (-5 *2 (-639 (-639 *7))) - (-5 *1 (-447 *4 *5 *6 *7)) (-5 *3 (-639 *7)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-788)) - (-4 *7 (-845)) (-4 *8 (-944 *5 *6 *7)) (-5 *2 (-639 (-639 *8))) - (-5 *1 (-447 *5 *6 *7 *8)) (-5 *3 (-639 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *7 (-944 *4 *5 *6)) (-5 *2 (-639 (-639 *7))) - (-5 *1 (-447 *4 *5 *6 *7)) (-5 *3 (-639 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-788)) - (-4 *7 (-845)) (-4 *8 (-944 *5 *6 *7)) (-5 *2 (-639 (-639 *8))) - (-5 *1 (-447 *5 *6 *7 *8)) (-5 *3 (-639 *8))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1086 (-838 (-378)))) (-5 *2 (-1086 (-838 (-224)))) - (-5 *1 (-304))))) -(((*1 *2 *3) - (-12 (-5 *3 (-887 *4)) (-4 *4 (-1092)) (-5 *2 (-639 *5)) - (-5 *1 (-885 *4 *5)) (-4 *5 (-1207))))) -(((*1 *2 *3) - (-12 (-4 *4 (-348)) (-5 *2 (-112)) (-5 *1 (-215 *4 *3)) - (-4 *3 (-1232 *4))))) + (-12 (-5 *3 (-767)) (-4 *1 (-1248 *4)) (-4 *4 (-1045)) + (-5 *2 (-948 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-767)) (-4 *1 (-1248 *4)) (-4 *4 (-1045)) + (-5 *2 (-948 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-845) (-554))) (-5 *2 (-112)) (-5 *1 (-275 *4 *3)) - (-4 *3 (-13 (-429 *4) (-997)))))) + (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) + (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-838 (-224)))) (-5 *4 (-224)) (-5 *2 (-639 *4)) - (-5 *1 (-266))))) -(((*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) - ((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *1 *1) - (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) - (-4 *4 (-845))))) -(((*1 *2 *1) (-12 (-5 *2 (-639 (-960))) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1150) (-769))) (-5 *1 (-114))))) + (|partial| -12 (-5 *4 (-1169)) (-4 *5 (-611 (-888 (-563)))) + (-4 *5 (-882 (-563))) + (-4 *5 (-13 (-846) (-1034 (-563)) (-452) (-636 (-563)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-566 *5 *3)) (-4 *3 (-626)) + (-4 *3 (-13 (-27) (-1193) (-430 *5)))))) (((*1 *2 *3) - (-12 (-4 *4 (-348)) (-5 *2 (-417 *3)) (-5 *1 (-215 *4 *3)) - (-4 *3 (-1232 *4)))) - ((*1 *2 *3) - (-12 (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-766)) (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) - (-4 *3 (-1232 (-562))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-639 (-766))) (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) - (-4 *3 (-1232 (-562))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-639 (-766))) (-5 *5 (-766)) (-5 *2 (-417 *3)) - (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-766)) (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) - (-4 *3 (-1232 (-562))))) - ((*1 *2 *3) - (-12 (-5 *2 (-417 *3)) (-5 *1 (-1002 *3)) - (-4 *3 (-1232 (-406 (-562)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-417 *3)) (-5 *1 (-1221 *3)) (-4 *3 (-1232 (-562)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-639 *6)) (-4 *6 (-944 *3 *4 *5)) (-4 *3 (-362)) - (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-503 *3 *4 *5 *6))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-766)) (-5 *2 (-1261)) (-5 *1 (-1257)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-766)) (-5 *2 (-1261)) (-5 *1 (-1258))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-554)) - (-5 *2 (-2 (|:| -3380 *3) (|:| -1441 *3))) (-5 *1 (-1227 *4 *3)) - (-4 *3 (-1232 *4))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (-562)) (-5 *2 (-112))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-505)) (-5 *3 (-1110)) (-5 *1 (-1107))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-554)) (-5 *2 (-112))))) + (-12 (-5 *3 (-767)) (-5 *2 (-1165 *4)) (-5 *1 (-528 *4)) + (-4 *4 (-349))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) - (-4 *4 (-1044))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) -(((*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1 (-378))) (-5 *1 (-1035))))) -(((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1164 (-406 (-562)))) (-5 *1 (-937)) (-5 *3 (-562))))) -(((*1 *2 *1) - (-12 (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1501 *4)))) - (-5 *1 (-1133 *3 *4)) (-4 *3 (-13 (-1092) (-34))) - (-4 *4 (-13 (-1092) (-34)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) - (-4 *6 (-1058 *3 *4 *5)) (-5 *1 (-620 *3 *4 *5 *6 *7 *2)) - (-4 *7 (-1064 *3 *4 *5 *6)) (-4 *2 (-1101 *3 *4 *5 *6))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1064 *4 *5 *6 *3)) (-4 *4 (-451)) (-4 *5 (-788)) - (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *3 (-1058 *4 *5 *6)) - (-5 *2 (-639 (-2 (|:| |val| (-112)) (|:| -1501 *1)))) - (-4 *1 (-1064 *4 *5 *6 *3))))) -(((*1 *2 *1 *2) - (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1092))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-293 *2)) (-4 *2 (-721)) (-4 *2 (-1207))))) + (-12 (-5 *2 (-767)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) + (-4 *4 (-1045))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *5)) (-5 *4 (-639 *6)) (-4 *5 (-1092)) - (-4 *6 (-1207)) (-5 *2 (-1 *6 *5)) (-5 *1 (-636 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-639 *5)) (-5 *4 (-639 *2)) (-4 *5 (-1092)) - (-4 *2 (-1207)) (-5 *1 (-636 *5 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-639 *6)) (-5 *4 (-639 *5)) (-4 *6 (-1092)) - (-4 *5 (-1207)) (-5 *2 (-1 *5 *6)) (-5 *1 (-636 *6 *5)))) - ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-639 *5)) (-5 *4 (-639 *2)) (-4 *5 (-1092)) - (-4 *2 (-1207)) (-5 *1 (-636 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-639 *5)) (-5 *4 (-639 *6)) - (-4 *5 (-1092)) (-4 *6 (-1207)) (-5 *1 (-636 *5 *6)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-639 *5)) (-5 *4 (-639 *2)) (-5 *6 (-1 *2 *5)) - (-4 *5 (-1092)) (-4 *2 (-1207)) (-5 *1 (-636 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (-143)) (-5 *2 (-766))))) -(((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-556 *3)) (-4 *3 (-544)))) - ((*1 *2 *3) - (-12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-306)) (-5 *2 (-417 *3)) - (-5 *1 (-737 *4 *5 *6 *3)) (-4 *3 (-944 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-306)) - (-4 *7 (-944 *6 *4 *5)) (-5 *2 (-417 (-1164 *7))) - (-5 *1 (-737 *4 *5 *6 *7)) (-5 *3 (-1164 *7)))) - ((*1 *2 *1) - (-12 (-4 *3 (-451)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) - (-5 *2 (-417 *1)) (-4 *1 (-944 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-845)) (-4 *5 (-788)) (-4 *6 (-451)) (-5 *2 (-417 *3)) - (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-944 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-451)) - (-4 *7 (-944 *6 *4 *5)) (-5 *2 (-417 (-1164 (-406 *7)))) - (-5 *1 (-1163 *4 *5 *6 *7)) (-5 *3 (-1164 (-406 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1211)))) - ((*1 *2 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-417 *3)) (-5 *1 (-1235 *4 *3)) - (-4 *3 (-13 (-1232 *4) (-554) (-10 -8 (-15 -1606 ($ $ $))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1041 *4 *5)) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) - (-14 *5 (-639 (-1168))) - (-5 *2 - (-639 (-1138 *4 (-530 (-859 *6)) (-859 *6) (-775 *4 (-859 *6))))) - (-5 *1 (-1282 *4 *5 *6)) (-14 *6 (-639 (-1168)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-330 *3)) (-4 *3 (-845))))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-363)) (-4 *6 (-1233 (-407 *2))) + (-4 *2 (-1233 *5)) (-5 *1 (-215 *5 *2 *6 *3)) + (-4 *3 (-342 *5 *2 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-2 (|:| -3490 *3) (|:| -1972 *3))) + (-5 *1 (-683 *3 *4 *5 *6)) (-4 *6 (-682 *3 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-2 (|:| -3490 *3) (|:| -1972 *3))) (-5 *1 (-695 *3)) + (-4 *3 (-307))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1054 (-1019 *3) (-1164 (-1019 *3)))) - (-5 *1 (-1019 *3)) (-4 *3 (-13 (-843) (-362) (-1017)))))) + (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) + (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-362) (-843))) (-5 *2 (-417 *3)) - (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4))))) + (-12 (-5 *4 (-767)) (-5 *5 (-640 *3)) (-4 *3 (-307)) (-4 *6 (-846)) + (-4 *7 (-789)) (-5 *2 (-112)) (-5 *1 (-622 *6 *7 *3 *8)) + (-4 *8 (-945 *3 *7 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4407)) (-4 *1 (-34)) (-5 *2 (-767)))) + ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-128)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) + (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-563)))) + ((*1 *2 *1) + (-12 (-5 *2 (-767)) (-5 *1 (-1280 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-842))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-362) (-843))) (-5 *2 (-417 *3)) - (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4)))))) + (-12 (-5 *4 (-640 *3)) (-4 *3 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) + (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-984 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-640 *3)) (-4 *3 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) + (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1100 *5 *6 *7 *8 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093))))) +(((*1 *1 *2) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-217))))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-1034 (-48))) + (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-4 *5 (-430 *4)) + (-5 *2 (-418 (-1165 (-48)))) (-5 *1 (-435 *4 *5 *3)) + (-4 *3 (-1233 *5))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-363) (-1193) (-998)))))) +(((*1 *2 *1) (-12 (-5 *2 (-818)) (-5 *1 (-817))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) + (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-225))) + (-5 *6 (-225)) (-5 *2 (-1031)) (-5 *1 (-748))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-640 (-684 *6))) (-5 *4 (-112)) (-5 *5 (-563)) + (-5 *2 (-684 *6)) (-5 *1 (-1025 *6)) (-4 *6 (-363)) (-4 *6 (-1045)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-640 (-684 *4))) (-5 *2 (-684 *4)) (-5 *1 (-1025 *4)) + (-4 *4 (-363)) (-4 *4 (-1045)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-640 (-684 *5))) (-5 *4 (-563)) (-5 *2 (-684 *5)) + (-5 *1 (-1025 *5)) (-4 *5 (-363)) (-4 *5 (-1045))))) +(((*1 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-307)) (-5 *1 (-695 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) - ((*1 *2) (-12 (-5 *2 (-899 (-562))) (-5 *1 (-912))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1007)) (-5 *2 (-857))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1200 *4 *5 *3 *6)) (-4 *4 (-554)) (-4 *5 (-788)) - (-4 *3 (-845)) (-4 *6 (-1058 *4 *5 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-362)) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1256 *3)) (-4 *3 (-1044)) (-5 *1 (-707 *3 *4)) - (-4 *4 (-1232 *3))))) -(((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-754))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-639 (-947 *3))) (-4 *3 (-451)) - (-5 *1 (-359 *3 *4)) (-14 *4 (-639 (-1168))))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-639 (-775 *3 (-859 *4)))) (-4 *3 (-451)) - (-14 *4 (-639 (-1168))) (-5 *1 (-624 *3 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-845)) (-5 *1 (-924 *3 *2)) (-4 *2 (-429 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1168)) (-5 *2 (-315 (-562))) (-5 *1 (-925))))) -(((*1 *2 *1) - (-12 (-5 *2 (-639 *4)) (-5 *1 (-1133 *3 *4)) - (-4 *3 (-13 (-1092) (-34))) (-4 *4 (-13 (-1092) (-34)))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1164 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-262))) (-5 *4 (-1168)) (-5 *2 (-112)) - (-5 *1 (-262))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-900 *4)) (-4 *4 (-1092)) (-5 *2 (-639 (-766))) - (-5 *1 (-899 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-868 (-961 *3) (-961 *3))) (-5 *1 (-961 *3)) - (-4 *3 (-962))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-683 *7)) (-5 *3 (-639 *7)) (-4 *7 (-944 *4 *6 *5)) - (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) - (-4 *6 (-788)) (-5 *1 (-919 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) - (-5 *1 (-750))))) -(((*1 *1) (-5 *1 (-1171)))) -(((*1 *2 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1207))))) + (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) + (-5 *2 (-640 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1233 *4)))) + ((*1 *2 *3 *3) + (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) + (-5 *2 (-640 *3)) (-5 *1 (-1121 *4 *3)) (-4 *4 (-1233 *3))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) + (-5 *1 (-751))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *5 (-1151)) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1031)) + (-5 *1 (-746))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1045)) (-4 *3 (-1233 *4)) (-4 *2 (-1248 *4)) + (-5 *1 (-1251 *4 *3 *5 *2)) (-4 *5 (-651 *3))))) (((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1148 *3)) (-4 *3 (-1092)) - (-4 *3 (-1207))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-639 (-639 (-170))))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-4 *8 (-1058 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-639 *8)) - (|:| |towers| (-639 (-1022 *5 *6 *7 *8))))) - (-5 *1 (-1022 *5 *6 *7 *8)) (-5 *3 (-639 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-4 *8 (-1058 *5 *6 *7)) + (-12 (-4 *4 (-172)) (-5 *2 (-1165 (-948 *4))) (-5 *1 (-416 *3 *4)) + (-4 *3 (-417 *4)))) + ((*1 *2) + (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363)) + (-5 *2 (-1165 (-948 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1165 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) + (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *3)) + (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *1 (-796)) + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) + (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-1031))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1169)) (-5 *5 (-1087 (-225))) (-5 *2 (-923)) + (-5 *1 (-921 *3)) (-4 *3 (-611 (-536))))) + ((*1 *2 *3 *3 *4 *5) + (-12 (-5 *4 (-1169)) (-5 *5 (-1087 (-225))) (-5 *2 (-923)) + (-5 *1 (-921 *3)) (-4 *3 (-611 (-536))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-922)))) + ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) + (-5 *1 (-922)))) + ((*1 *1 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) + (-5 *1 (-922)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-923)))) + ((*1 *1 *2 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) + (-5 *1 (-923)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) + (-5 *1 (-923)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-640 (-1 (-225) (-225)))) (-5 *3 (-1087 (-225))) + (-5 *1 (-923)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-640 (-1 (-225) (-225)))) (-5 *3 (-1087 (-225))) + (-5 *1 (-923)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) + (-5 *1 (-923)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) + (-5 *1 (-923))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 - (-2 (|:| |val| (-639 *8)) - (|:| |towers| (-639 (-1138 *5 *6 *7 *8))))) - (-5 *1 (-1138 *5 *6 *7 *8)) (-5 *3 (-639 *8))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-639 (-608 *6))) (-5 *4 (-1168)) (-5 *2 (-608 *6)) - (-4 *6 (-429 *5)) (-4 *5 (-845)) (-5 *1 (-571 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1164 *5)) (-4 *5 (-451)) (-5 *2 (-639 *6)) - (-5 *1 (-537 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-843))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-947 *5)) (-4 *5 (-451)) (-5 *2 (-639 *6)) - (-5 *1 (-537 *5 *6 *4)) (-4 *6 (-362)) (-4 *4 (-13 (-362) (-843)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-971 *3 *4 *2 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *5 (-1058 *3 *4 *2)) (-4 *2 (-845)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1058 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *2 (-845))))) + (-2 (|:| -2619 *4) (|:| -4076 *4) (|:| |totalpts| (-563)) + (|:| |success| (-112)))) + (-5 *1 (-785)) (-5 *5 (-563))))) +(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1189))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-640 (-640 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-640 (-3 (|:| |array| (-640 *3)) (|:| |scalar| (-1169))))) + (-5 *6 (-640 (-1169))) (-5 *3 (-1169)) (-5 *2 (-1097)) + (-5 *1 (-397)))) + ((*1 *2 *3 *4 *5 *6 *3) + (-12 (-5 *5 (-640 (-640 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-640 (-3 (|:| |array| (-640 *3)) (|:| |scalar| (-1169))))) + (-5 *6 (-640 (-1169))) (-5 *3 (-1169)) (-5 *2 (-1097)) + (-5 *1 (-397)))) + ((*1 *2 *3 *4 *5 *4) + (-12 (-5 *4 (-640 (-1169))) (-5 *5 (-1172)) (-5 *3 (-1169)) + (-5 *2 (-1097)) (-5 *1 (-397))))) +(((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1036))))) +(((*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260)))) + ((*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-362) (-146) (-1033 (-562)))) - (-4 *5 (-1232 *4)) - (-5 *2 (-2 (|:| -2929 (-406 *5)) (|:| |coeff| (-406 *5)))) - (-5 *1 (-566 *4 *5)) (-5 *3 (-406 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1232 *3)) - (-4 *5 (-1232 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) + (-12 (-4 *4 (-555)) (-5 *2 - (-2 (|:| -1416 (-412 *4 (-406 *4) *5 *6)) (|:| |principalPart| *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-362)) + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-52)) (-5 *1 (-825))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-563)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-418 *2)) (-4 *2 (-555))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-563)) (-5 *3 (-917)) (-5 *1 (-694)))) + ((*1 *2 *2 *2 *3 *4) + (-12 (-5 *2 (-684 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) + (-4 *5 (-363)) (-5 *1 (-974 *5))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *2 (-846)) (-4 *5 (-1059 *3 *4 *2))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-563)) (-5 *6 (-1 (-1262) (-1257 *5) (-1257 *5) (-379))) + (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262)) + (-5 *1 (-784)))) + ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) + (-12 (-5 *4 (-563)) (-5 *6 (-1 (-1262) (-1257 *5) (-1257 *5) (-379))) + (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262)) + (-5 *1 (-784))))) +(((*1 *2 *3) + (-12 (-4 *4 (-452)) (-5 *2 - (-2 (|:| |poly| *6) (|:| -2450 (-406 *6)) - (|:| |special| (-406 *6)))) - (-5 *1 (-722 *5 *6)) (-5 *3 (-406 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-362)) (-5 *2 (-639 *3)) (-5 *1 (-891 *3 *4)) - (-4 *3 (-1232 *4)))) - ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-766)) (-4 *5 (-362)) - (-5 *2 (-2 (|:| -1589 *3) (|:| -1603 *3))) (-5 *1 (-891 *3 *5)) - (-4 *3 (-1232 *5)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-639 *9)) (-5 *3 (-639 *8)) (-5 *4 (-112)) - (-4 *8 (-1058 *5 *6 *7)) (-4 *9 (-1064 *5 *6 *7 *8)) (-4 *5 (-451)) - (-4 *6 (-788)) (-4 *7 (-845)) (-5 *1 (-1062 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-639 *9)) (-5 *3 (-639 *8)) (-5 *4 (-112)) - (-4 *8 (-1058 *5 *6 *7)) (-4 *9 (-1064 *5 *6 *7 *8)) (-4 *5 (-451)) - (-4 *6 (-788)) (-4 *7 (-845)) (-5 *1 (-1062 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-639 *9)) (-5 *3 (-639 *8)) (-5 *4 (-112)) - (-4 *8 (-1058 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-451)) - (-4 *6 (-788)) (-4 *7 (-845)) (-5 *1 (-1137 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-639 *9)) (-5 *3 (-639 *8)) (-5 *4 (-112)) - (-4 *8 (-1058 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-451)) - (-4 *6 (-788)) (-4 *7 (-845)) (-5 *1 (-1137 *5 *6 *7 *8 *9))))) -(((*1 *2 *1) (-12 (-5 *2 (-482)) (-5 *1 (-217)))) - ((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1207)))) - ((*1 *2 *1) (-12 (-5 *2 (-482)) (-5 *1 (-670)))) + (-640 + (-2 (|:| |eigval| (-3 (-407 (-948 *4)) (-1158 (-1169) (-948 *4)))) + (|:| |eigmult| (-767)) + (|:| |eigvec| (-640 (-684 (-407 (-948 *4)))))))) + (-5 *1 (-292 *4)) (-5 *3 (-684 (-407 (-948 *4))))))) +(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-316 (-379))) (-5 *1 (-305))))) +(((*1 *2 *1) (-12 (-4 *1 (-1093)) (-5 *2 (-1151))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) +(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-1260)))) + ((*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1260))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) ((*1 *1 *1) - (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) - (-4 *4 (-845))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-916)) (-5 *2 (-766)) (-5 *1 (-1093 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *3 *2) - (-12 (-5 *1 (-673 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1092))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1168)) (-5 *1 (-608 *3)) (-4 *3 (-845))))) -(((*1 *2 *3) - (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-562)) - (-5 *1 (-448 *4 *5 *6 *3)) (-4 *3 (-944 *4 *5 *6))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-639 (-1164 *7))) (-5 *3 (-1164 *7)) - (-4 *7 (-944 *4 *5 *6)) (-4 *4 (-904)) (-4 *5 (-788)) - (-4 *6 (-845)) (-5 *1 (-901 *4 *5 *6 *7)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-639 (-1164 *5))) (-5 *3 (-1164 *5)) - (-4 *5 (-1232 *4)) (-4 *4 (-904)) (-5 *1 (-902 *4 *5))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-639 *2)) (-4 *2 (-1092)) (-4 *2 (-1207))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-639 (-859 *5))) (-14 *5 (-639 (-1168))) (-4 *6 (-451)) - (-5 *2 (-639 (-639 (-246 *5 *6)))) (-5 *1 (-470 *5 *6 *7)) - (-5 *3 (-639 (-246 *5 *6))) (-4 *7 (-451))))) + (-12 (-5 *1 (-1249 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) + (-14 *4 *2)))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-888 *4)) (-4 *4 (-1093)) (-5 *1 (-885 *4 *3)) + (-4 *3 (-1093))))) +(((*1 *1) (-5 *1 (-130)))) +(((*1 *1 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))) + ((*1 *2 *3 *3 *2) + (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) +(((*1 *1 *1) + (-12 (-4 *2 (-349)) (-4 *2 (-1045)) (-5 *1 (-708 *2 *3)) + (-4 *3 (-1233 *2))))) +(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-614)))) +(((*1 *1 *1) + (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1045)) (-4 *3 (-846)) + (-4 *4 (-266 *3)) (-4 *5 (-789))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-938 *3) (-938 *3))) (-5 *1 (-175 *3)) - (-4 *3 (-13 (-362) (-1192) (-997)))))) + (-12 (-5 *3 (-1257 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) + (-4 *5 (-1233 *4)) (-5 *2 (-684 *4)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-4 *5 (-1233 *4)) (-5 *2 (-684 *4)) + (-5 *1 (-408 *3 *4 *5)) (-4 *3 (-409 *4 *5)))) + ((*1 *2) + (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1233 *3)) + (-5 *2 (-684 *3))))) (((*1 *2 *3) - (-12 (-14 *4 (-639 (-1168))) (-4 *5 (-451)) - (-5 *2 - (-2 (|:| |glbase| (-639 (-246 *4 *5))) (|:| |glval| (-639 (-562))))) - (-5 *1 (-627 *4 *5)) (-5 *3 (-639 (-246 *4 *5)))))) -(((*1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-1055)))) - ((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1055))))) -(((*1 *2 *1) (-12 (-4 *1 (-526)) (-5 *2 (-685 (-1214)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1141 *3)) (-4 *3 (-1207)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-639 (-639 (-938 (-224))))) (-5 *2 (-639 (-224))) - (-5 *1 (-467))))) -(((*1 *2 *2 *3) - (-12 (-5 *1 (-673 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092))))) + (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-417 *4))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1208))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-563)) (-5 *1 (-379))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-639 *1)) (|has| *1 (-6 -4404)) (-4 *1 (-1005 *3)) - (-4 *3 (-1207))))) -(((*1 *2 *2) (-12 (-5 *2 (-639 (-315 (-224)))) (-5 *1 (-266))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1095 *2 *3 *4 *5 *6)) (-4 *2 (-1092)) (-4 *3 (-1092)) - (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1044)) (-5 *2 (-112)) (-5 *1 (-443 *4 *3)) - (-4 *3 (-1232 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *5 (-845)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-5 *2 (-857)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 (-766)) - (-14 *4 (-766)) (-4 *5 (-171))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4404)) (-4 *1 (-372 *2)) (-4 *2 (-1207)) - (-4 *2 (-845)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4404)) - (-4 *1 (-372 *3)) (-4 *3 (-1207))))) -(((*1 *2 *1) - (-12 (-4 *1 (-252 *3 *4 *2 *5)) (-4 *3 (-1044)) (-4 *4 (-845)) - (-4 *5 (-788)) (-4 *2 (-265 *4))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-766)) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) - (-4 *2 (-429 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1131)))) + (-12 + (-5 *2 + (-2 (|:| -3799 (-640 (-858))) (|:| -1901 (-640 (-858))) + (|:| |presup| (-640 (-858))) (|:| -3034 (-640 (-858))) + (|:| |args| (-640 (-858))))) + (-5 *1 (-1169)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-640 (-858)))) (-5 *1 (-1169))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-640 *3)) (-5 *1 (-957 *3)) (-4 *3 (-545))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-639 (-406 (-947 (-562))))) (-5 *4 (-639 (-1168))) - (-5 *2 (-639 (-639 *5))) (-5 *1 (-379 *5)) - (-4 *5 (-13 (-843) (-362))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-947 (-562)))) (-5 *2 (-639 *4)) (-5 *1 (-379 *4)) - (-4 *4 (-13 (-843) (-362)))))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1093)) + (-4 *6 (-1093)) (-4 *2 (-1093)) (-5 *1 (-675 *5 *6 *2))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788))))) +(((*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-5 *2 (-563))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-555)) (-4 *3 (-1045)) + (-5 *2 (-2 (|:| -3490 *1) (|:| -1972 *1))) (-4 *1 (-848 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-555)) (-4 *5 (-1045)) + (-5 *2 (-2 (|:| -3490 *3) (|:| -1972 *3))) (-5 *1 (-849 *5 *3)) + (-4 *3 (-848 *5))))) +(((*1 *2 *3 *4 *3 *5 *3) + (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *3 (-563)) + (-5 *2 (-1031)) (-5 *1 (-750))))) +(((*1 *2 *3 *3 *1) + (|partial| -12 (-5 *3 (-1169)) (-5 *2 (-1097)) (-5 *1 (-291))))) +(((*1 *2) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23))))) +(((*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-452)))) + ((*1 *1 *1 *1) (-4 *1 (-452))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1233 (-563))))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-563)) (-5 *1 (-691 *2)) (-4 *2 (-1233 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-767))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307)) + (-5 *1 (-912 *3 *4 *5 *2)) (-4 *2 (-945 *5 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *6 *4 *5)) + (-5 *1 (-912 *4 *5 *6 *2)) (-4 *4 (-789)) (-4 *5 (-846)) + (-4 *6 (-307)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1165 *6)) (-4 *6 (-945 *5 *3 *4)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 (-1165 *7))) (-4 *4 (-789)) (-4 *5 (-846)) + (-4 *6 (-307)) (-5 *2 (-1165 *7)) (-5 *1 (-912 *4 *5 *6 *7)) + (-4 *7 (-945 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-917))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-452)) (-4 *3 (-555)) (-5 *1 (-965 *3 *2)) + (-4 *2 (-1233 *3)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *2 (-452))))) +(((*1 *1) (-5 *1 (-130)))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1164 *2)) (-4 *2 (-429 *4)) (-4 *4 (-13 (-845) (-554))) - (-5 *1 (-32 *4 *2))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) - (-4 *4 (-845)))) - ((*1 *1) (-4 *1 (-1143)))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4403)) (-4 *1 (-234 *3)) - (-4 *3 (-1092)))) - ((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4403)) (-4 *1 (-234 *2)) (-4 *2 (-1092)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-281 *2)) (-4 *2 (-1207)) (-4 *2 (-1092)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-281 *3)) (-4 *3 (-1207)))) - ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-606 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1092)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-562)) (-4 *4 (-1092)) - (-5 *1 (-732 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-562)) (-5 *1 (-732 *2)) (-4 *2 (-1092)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1132 *3 *4)) (-4 *3 (-13 (-1092) (-34))) - (-4 *4 (-13 (-1092) (-34))) (-5 *1 (-1133 *3 *4))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1095 *2 *3 *4 *5 *6)) (-4 *2 (-1092)) (-4 *3 (-1092)) - (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-819))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-938 *5)) (-5 *3 (-766)) (-4 *5 (-1044)) - (-5 *1 (-1156 *4 *5)) (-14 *4 (-916))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1058 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *2 (-845)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) - (-4 *4 (-845))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-639 *3)) (-4 *3 (-306)) (-5 *1 (-178 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-857))) ((*1 *1 *1) (-5 *1 (-857))) + (-12 + (-5 *2 + (-640 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *3) + (|:| |polj| *3)))) + (-4 *5 (-789)) (-4 *3 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846)) + (-5 *1 (-449 *4 *5 *6 *3))))) +(((*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1178))))) +(((*1 *1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1087 (-225))) + (-5 *1 (-922)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1164 (-562))) (-5 *3 (-562)) (-4 *1 (-864 *4))))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-639 *11)) (-5 *5 (-639 (-1164 *9))) - (-5 *6 (-639 *9)) (-5 *7 (-639 *12)) (-5 *8 (-639 (-766))) - (-4 *11 (-845)) (-4 *9 (-306)) (-4 *12 (-944 *9 *10 *11)) - (-4 *10 (-788)) (-5 *2 (-639 (-1164 *12))) - (-5 *1 (-702 *10 *11 *9 *12)) (-5 *3 (-1164 *12))))) -(((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-435))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-562)) (-5 *5 (-1150)) (-5 *6 (-683 (-224))) - (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-744))))) -(((*1 *2 *3) - (-12 (-5 *3 (-562)) (|has| *1 (-6 -4394)) (-4 *1 (-403)) - (-5 *2 (-916))))) + (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1087 (-225))) + (-5 *1 (-922)))) + ((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1087 (-225))) + (-5 *1 (-923)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1087 (-225))) + (-5 *1 (-923))))) +(((*1 *1 *1) (-5 *1 (-1057)))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -2742 *3) (|:| |coef1| (-778 *3)) (|:| |coef2| (-778 *3)))) + (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-4 *3 (-1058 *5 *6 *7)) - (-5 *2 (-639 (-2 (|:| |val| (-112)) (|:| -1501 *4)))) - (-5 *1 (-771 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) -(((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-683 *4)) (-5 *3 (-766)) (-4 *4 (-1044)) - (-5 *1 (-684 *4))))) -(((*1 *1 *2) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1207)))) - ((*1 *2 *1) (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-1168))))) -(((*1 *2) (-12 (-5 *2 (-639 (-766))) (-5 *1 (-1259)))) - ((*1 *2 *2) (-12 (-5 *2 (-639 (-766))) (-5 *1 (-1259))))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) - (-5 *2 (-1030)) (-5 *1 (-746))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) - (-4 *4 (-372 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-845)) - (-4 *5 (-265 *4)) (-4 *6 (-788)) (-5 *2 (-639 *4))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362))))) -(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-267))))) +(((*1 *2 *3 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-744))))) (((*1 *2 *1) - (-12 (-5 *2 (-639 (-293 *3))) (-5 *1 (-293 *3)) (-4 *3 (-554)) - (-4 *3 (-1207))))) + (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-916)) (-4 *5 (-554)) (-5 *2 (-683 *5)) - (-5 *1 (-951 *5 *3)) (-4 *3 (-650 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1168)) (-5 *2 (-535)) (-5 *1 (-534 *4)) - (-4 *4 (-1207))))) -(((*1 *1 *2) (-12 (-5 *2 (-315 (-168 (-378)))) (-5 *1 (-329)))) - ((*1 *1 *2) (-12 (-5 *2 (-315 (-562))) (-5 *1 (-329)))) - ((*1 *1 *2) (-12 (-5 *2 (-315 (-378))) (-5 *1 (-329)))) - ((*1 *1 *2) (-12 (-5 *2 (-315 (-688))) (-5 *1 (-329)))) - ((*1 *1 *2) (-12 (-5 *2 (-315 (-695))) (-5 *1 (-329)))) - ((*1 *1 *2) (-12 (-5 *2 (-315 (-693))) (-5 *1 (-329)))) - ((*1 *1) (-5 *1 (-329)))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-938 *3) (-938 *3))) (-5 *1 (-175 *3)) - (-4 *3 (-13 (-362) (-1192) (-997)))))) -(((*1 *2 *2 *3) - (|partial| -12 - (-5 *3 (-639 (-2 (|:| |func| *2) (|:| |pole| (-112))))) - (-4 *2 (-13 (-429 *4) (-997))) (-4 *4 (-13 (-845) (-554))) - (-5 *1 (-275 *4 *2))))) -(((*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-1092)))) - ((*1 *1 *1) (-5 *1 (-628)))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1168)) (-4 *5 (-610 (-887 (-562)))) - (-4 *5 (-881 (-562))) - (-4 *5 (-13 (-845) (-1033 (-562)) (-451) (-635 (-562)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-565 *5 *3)) (-4 *3 (-625)) - (-4 *3 (-13 (-27) (-1192) (-429 *5)))))) -(((*1 *1 *2) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-216))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1044)) (-4 *3 (-1232 *4)) (-4 *2 (-1247 *4)) - (-5 *1 (-1250 *4 *3 *5 *2)) (-4 *5 (-650 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-554)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1192))))) - ((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) - ((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-857))))) -(((*1 *2 *1) (-12 (-4 *1 (-1092)) (-5 *2 (-1150))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-562)) (-5 *1 (-378))))) -(((*1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1177))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) - ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-567 *3)) (-4 *3 (-1033 (-562))))) + (-12 (-4 *3 (-1045)) (-5 *1 (-708 *3 *2)) (-4 *2 (-1233 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1208))))) +(((*1 *1 *2) + (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-1140 *3))))) +(((*1 *1) (-5 *1 (-130)))) +(((*1 *2) + (-12 (-14 *4 (-767)) (-4 *5 (-1208)) (-5 *2 (-134)) + (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-363)) (-5 *2 (-134)) (-5 *1 (-328 *3 *4)) + (-4 *3 (-329 *4)))) + ((*1 *2) + (-12 (-5 *2 (-767)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-172)))) ((*1 *2 *1) - (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) - (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112))))) -(((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1132 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1092) (-34))) (-4 *6 (-13 (-1092) (-34))) - (-5 *2 (-112)) (-5 *1 (-1133 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-766)) (-4 *5 (-1044)) (-5 *2 (-562)) - (-5 *1 (-442 *5 *3 *6)) (-4 *3 (-1232 *5)) - (-4 *6 (-13 (-403) (-1033 *5) (-362) (-1192) (-283))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1044)) (-5 *2 (-562)) (-5 *1 (-442 *4 *3 *5)) - (-4 *3 (-1232 *4)) - (-4 *5 (-13 (-403) (-1033 *4) (-362) (-1192) (-283)))))) -(((*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-1207))))) -(((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-5 *1 (-91 *3))))) -(((*1 *2 *3) - (-12 (-4 *2 (-362)) (-4 *2 (-843)) (-5 *1 (-940 *2 *3)) - (-4 *3 (-1232 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-819)) (-5 *1 (-820))))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *2 (-1030)) - (-5 *1 (-750))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-639 (-608 *2))) (-5 *4 (-639 (-1168))) - (-4 *2 (-13 (-429 (-168 *5)) (-997) (-1192))) - (-4 *5 (-13 (-554) (-845))) (-5 *1 (-596 *5 *6 *2)) - (-4 *6 (-13 (-429 *5) (-997) (-1192)))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *1 (-878)) (-5 *3 (-562)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *1 (-878)) (-5 *3 (-562)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *1 (-878)) (-5 *3 (-562))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-683 *2)) (-4 *2 (-171)) (-5 *1 (-145 *2)))) - ((*1 *2 *3) - (-12 (-4 *4 (-171)) (-4 *2 (-1232 *4)) (-5 *1 (-176 *4 *2 *3)) - (-4 *3 (-719 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-683 (-406 (-947 *5)))) (-5 *4 (-1168)) - (-5 *2 (-947 *5)) (-5 *1 (-291 *5)) (-4 *5 (-451)))) + (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-563)) + (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-640 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) + (-5 *2 (-563)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-976 *3)) (-4 *3 (-1045)) (-5 *2 (-917)))) + ((*1 *2) (-12 (-4 *1 (-1264 *3)) (-4 *3 (-363)) (-5 *2 (-134))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) ((*1 *2 *3) - (-12 (-5 *3 (-683 (-406 (-947 *4)))) (-5 *2 (-947 *4)) - (-5 *1 (-291 *4)) (-4 *4 (-451)))) + (-12 (-5 *2 (-112)) (-5 *1 (-568 *3)) (-4 *3 (-1034 (-563))))) ((*1 *2 *1) - (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1232 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-683 (-168 (-406 (-562))))) - (-5 *2 (-947 (-168 (-406 (-562))))) (-5 *1 (-759 *4)) - (-4 *4 (-13 (-362) (-843))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-683 (-168 (-406 (-562))))) (-5 *4 (-1168)) - (-5 *2 (-947 (-168 (-406 (-562))))) (-5 *1 (-759 *5)) - (-4 *5 (-13 (-362) (-843))))) - ((*1 *2 *3) - (-12 (-5 *3 (-683 (-406 (-562)))) (-5 *2 (-947 (-406 (-562)))) - (-5 *1 (-774 *4)) (-4 *4 (-13 (-362) (-843))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-683 (-406 (-562)))) (-5 *4 (-1168)) - (-5 *2 (-947 (-406 (-562)))) (-5 *1 (-774 *5)) - (-4 *5 (-13 (-362) (-843)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) -(((*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-279))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1207)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1150)) (-5 *1 (-984)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-1086 *4)) (-4 *4 (-1207)) - (-5 *1 (-1084 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1168)) - (-4 *4 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-799 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1192) (-954)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-562)) (-5 *2 (-639 (-2 (|:| -1635 *3) (|:| -2250 *4)))) - (-5 *1 (-690 *3)) (-4 *3 (-1232 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) (-4 *5 (-429 *4)) - (-5 *2 (-417 *3)) (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1232 *5))))) -(((*1 *2 *3 *1) + (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) + (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) + (-5 *1 (-747))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1093)) + (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3)))) + (-5 *2 (-640 (-1169))) (-5 *1 (-1069 *3 *4 *5)) + (-4 *5 (-13 (-430 *4) (-882 *3) (-611 (-888 *3))))))) +(((*1 *2 *2) + (-12 (-5 *2 (-640 (-640 *6))) (-4 *6 (-945 *3 *5 *4)) + (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-846) (-611 (-1169)))) + (-4 *5 (-789)) (-5 *1 (-920 *3 *4 *5 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-640 (-379))) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-640 (-379))) (-5 *1 (-468)))) + ((*1 *2 *1) (-12 (-5 *2 (-640 (-379))) (-5 *1 (-468)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-917)) (-5 *4 (-870)) (-5 *2 (-1262)) (-5 *1 (-1258)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-407 (-563))) (-5 *1 (-1020 *3)) + (-4 *3 (-13 (-844) (-363) (-1018))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) + (-4 *3 (-1233 *2)))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1062 *2 *3)) (-4 *2 (-13 (-844) (-363))) + (-4 *3 (-1233 *2))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1045)) (-5 *2 (-640 *1)) (-4 *1 (-1127 *3))))) +(((*1 *1 *1) (-4 *1 (-626))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998) (-1193)))))) +(((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |cycle?| (-112)) (|:| -2177 (-766)) (|:| |period| (-766)))) - (-5 *1 (-1148 *4)) (-4 *4 (-1207)) (-5 *3 (-766))))) -(((*1 *2 *3) + (-640 + (-2 (|:| |scalar| (-407 (-563))) (|:| |coeff| (-1165 *3)) + (|:| |logand| (-1165 *3))))) + (-5 *1 (-584 *3)) (-4 *3 (-363))))) +(((*1 *2 *1) + (-12 (-4 *1 (-373 *3)) (-4 *3 (-1208)) (-4 *3 (-846)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-373 *4)) (-4 *4 (-1208)) + (-5 *2 (-112))))) +(((*1 *2) (-12 - (-5 *3 - (-503 (-406 (-562)) (-239 *5 (-766)) (-859 *4) - (-246 *4 (-406 (-562))))) - (-14 *4 (-639 (-1168))) (-14 *5 (-766)) (-5 *2 (-112)) - (-5 *1 (-504 *4 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) - (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 *3)) - (-5 *1 (-972 *4 *5 *6 *3)) (-4 *3 (-1058 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-639 *3)) (-4 *3 (-1058 *4 *5 *6)) (-4 *4 (-554)) - (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-972 *4 *5 *6 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) - (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-639 *7) (-639 *7))) (-5 *2 (-639 *7)) - (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-554)) (-4 *5 (-788)) - (-4 *6 (-845)) (-5 *1 (-972 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1164 *7)) (-4 *5 (-1044)) - (-4 *7 (-1044)) (-4 *2 (-1232 *5)) (-5 *1 (-500 *5 *2 *6 *7)) - (-4 *6 (-1232 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1044)) (-4 *7 (-1044)) - (-4 *4 (-1232 *5)) (-5 *2 (-1164 *7)) (-5 *1 (-500 *5 *4 *6 *7)) - (-4 *6 (-1232 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) - (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-639 *10)) - (-5 *1 (-620 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1064 *5 *6 *7 *8)) - (-4 *10 (-1101 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-775 *5 (-859 *6)))) (-5 *4 (-112)) (-4 *5 (-451)) - (-14 *6 (-639 (-1168))) (-5 *2 (-639 (-1041 *5 *6))) - (-5 *1 (-624 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-775 *5 (-859 *6)))) (-5 *4 (-112)) (-4 *5 (-451)) - (-14 *6 (-639 (-1168))) (-5 *2 - (-639 (-1138 *5 (-530 (-859 *6)) (-859 *6) (-775 *5 (-859 *6))))) - (-5 *1 (-624 *5 *6)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) - (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-5 *2 (-639 (-1022 *5 *6 *7 *8))) (-5 *1 (-1022 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) - (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-5 *2 (-639 (-1022 *5 *6 *7 *8))) (-5 *1 (-1022 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-639 (-775 *5 (-859 *6)))) (-5 *4 (-112)) (-4 *5 (-451)) - (-14 *6 (-639 (-1168))) (-5 *2 (-639 (-1041 *5 *6))) - (-5 *1 (-1041 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) - (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) (-5 *2 (-639 *1)) - (-4 *1 (-1064 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) - (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-5 *2 (-639 (-1138 *5 *6 *7 *8))) (-5 *1 (-1138 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-639 *8)) (-5 *4 (-112)) (-4 *8 (-1058 *5 *6 *7)) - (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-5 *2 (-639 (-1138 *5 *6 *7 *8))) (-5 *1 (-1138 *5 *6 *7 *8)))) + (-1257 (-640 (-2 (|:| -2619 (-906 *3)) (|:| -2555 (-1113)))))) + (-5 *1 (-351 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) + ((*1 *2) + (-12 (-5 *2 (-1257 (-640 (-2 (|:| -2619 *3) (|:| -2555 (-1113)))))) + (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1165 *3) *2)))) + ((*1 *2) + (-12 (-5 *2 (-1257 (-640 (-2 (|:| -2619 *3) (|:| -2555 (-1113)))))) + (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-917))))) +(((*1 *2 *3 *1 *4) + (-12 (-5 *3 (-1133 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1093) (-34))) (-4 *6 (-13 (-1093) (-34))) + (-5 *2 (-112)) (-5 *1 (-1134 *5 *6))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-103 *3))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) + (-5 *1 (-743))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) + (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) + (-5 *5 (-1087 (-225))) (-5 *6 (-640 (-263))) (-5 *2 (-1126 (-225))) + (-5 *1 (-692)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1087 (-225))) + (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-692)))) + ((*1 *2 *2 *3 *4 *4 *5) + (-12 (-5 *2 (-1126 (-225))) (-5 *3 (-1 (-939 (-225)) (-225) (-225))) + (-5 *4 (-1087 (-225))) (-5 *5 (-640 (-263))) (-5 *1 (-692))))) +(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) ((*1 *2 *3) - (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-554)) - (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 *1)) - (-4 *1 (-1200 *4 *5 *6 *7))))) -(((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) - (-4 *3 (-366 *4)))) - ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) + (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-640 (-2 (|:| |totdeg| (-767)) (|:| -1574 *3)))) + (-5 *4 (-767)) (-4 *3 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) + (-4 *7 (-846)) (-5 *1 (-449 *5 *6 *7 *3))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1092)) (-4 *2 (-845)) - (-5 *1 (-113 *2))))) + (-12 (-5 *3 (-640 (-948 *4))) (-4 *4 (-452)) (-5 *2 (-112)) + (-5 *1 (-360 *4 *5)) (-14 *5 (-640 (-1169))))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 (-776 *4 (-860 *5)))) (-4 *4 (-452)) + (-14 *5 (-640 (-1169))) (-5 *2 (-112)) (-5 *1 (-625 *4 *5))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-562)) (-4 *4 (-13 (-554) (-146))) (-5 *1 (-536 *4 *2)) - (-4 *2 (-1247 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-562)) (-4 *4 (-13 (-362) (-367) (-610 *3))) - (-4 *5 (-1232 *4)) (-4 *6 (-719 *4 *5)) (-5 *1 (-540 *4 *5 *6 *2)) - (-4 *2 (-1247 *6)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-562)) (-4 *4 (-13 (-362) (-367) (-610 *3))) - (-5 *1 (-541 *4 *2)) (-4 *2 (-1247 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1148 *4)) (-5 *3 (-562)) (-4 *4 (-13 (-554) (-146))) - (-5 *1 (-1144 *4))))) -(((*1 *2) - (-12 (-4 *4 (-1211)) (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-406 *5))) - (-5 *2 (-766)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) - (-4 *5 (-1232 (-406 *4))) (-5 *2 (-766)))) - ((*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-766))))) + (-12 (-5 *2 (-1257 *4)) (-5 *3 (-1113)) (-4 *4 (-349)) + (-5 *1 (-528 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-452)))) + ((*1 *1 *1 *1) (-4 *1 (-452)))) +(((*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1229 *4 *5)) (-5 *3 (-639 *5)) (-14 *4 (-1168)) - (-4 *5 (-362)) (-5 *1 (-918 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-639 *5)) (-4 *5 (-362)) (-5 *2 (-1164 *5)) - (-5 *1 (-918 *4 *5)) (-14 *4 (-1168)))) - ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-639 *6)) (-5 *4 (-766)) (-4 *6 (-362)) - (-5 *2 (-406 (-947 *6))) (-5 *1 (-1045 *5 *6)) (-14 *5 (-1168))))) -(((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-1209))))) -(((*1 *2 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1207))))) -(((*1 *1 *1 *1) (-4 *1 (-962)))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-528))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-766)) (-4 *1 (-1232 *3)) (-4 *3 (-1044)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-916)) (-4 *1 (-1234 *3 *4)) (-4 *3 (-1044)) - (-4 *4 (-787)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-406 (-562))) (-4 *1 (-1237 *3)) (-4 *3 (-1044))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-562)) (-5 *1 (-417 *2)) (-4 *2 (-554))))) -(((*1 *2 *1) (-12 (-5 *2 (-639 (-639 (-224)))) (-5 *1 (-921))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4404)) (-4 *1 (-1244 *2)) (-4 *2 (-1207))))) -(((*1 *2 *3) - (-12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-306)) - (-5 *2 (-406 (-417 (-947 *4)))) (-5 *1 (-1037 *4))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-417 *3)) (-4 *3 (-554))))) + (-12 (-5 *2 (-684 *3)) (-4 *3 (-307)) (-5 *1 (-695 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1248 *2 *3 *4)) (-4 *2 (-1044)) (-14 *3 (-1168)) - (-14 *4 *2)))) -(((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4404)) (-4 *1 (-600 *3 *4)) (-4 *3 (-1092)) - (-4 *4 (-1207)) (-5 *2 (-1261))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-639 (-562))) (-5 *2 (-683 (-562))) (-5 *1 (-1102))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1164 (-947 *6))) (-4 *6 (-554)) - (-4 *2 (-944 (-406 (-947 *6)) *5 *4)) (-5 *1 (-727 *5 *4 *6 *2)) - (-4 *5 (-788)) - (-4 *4 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $)))))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| -1923 (-639 (-857))) (|:| -1593 (-639 (-857))) - (|:| |presup| (-639 (-857))) (|:| -3142 (-639 (-857))) - (|:| |args| (-639 (-857))))) - (-5 *1 (-1168))))) + (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *1 (-449 *3 *4 *5 *2)) (-4 *2 (-945 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-4 *3 (-1058 *5 *6 *7)) - (-5 *2 (-639 (-2 (|:| |val| (-112)) (|:| -1501 *4)))) - (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) + (-12 (-5 *4 (-767)) (-4 *5 (-1045)) (-5 *2 (-563)) + (-5 *1 (-443 *5 *3 *6)) (-4 *3 (-1233 *5)) + (-4 *6 (-13 (-404) (-1034 *5) (-363) (-1193) (-284))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1045)) (-5 *2 (-563)) (-5 *1 (-443 *4 *3 *5)) + (-4 *3 (-1233 *4)) + (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1193) (-284)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1230 *5 *4)) (-4 *4 (-452)) (-4 *4 (-816)) + (-14 *5 (-1169)) (-5 *2 (-563)) (-5 *1 (-1107 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-348)) (-5 *2 (-417 (-1164 (-1164 *4)))) - (-5 *1 (-1205 *4)) (-5 *3 (-1164 (-1164 *4)))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1232 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-706 *2 *3 *4 *5 *6)) (-4 *2 (-171)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-710 *2 *3 *4 *5 *6)) (-4 *2 (-171)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1256 (-315 (-224)))) (-5 *4 (-639 (-1168))) - (-5 *2 (-683 (-315 (-224)))) (-5 *1 (-204)))) + (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) + (-5 *2 (-1257 (-684 *4))))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-1257 (-684 *4))) (-5 *1 (-416 *3 *4)) + (-4 *3 (-417 *4)))) + ((*1 *2) + (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1257 (-684 *3))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1092)) (-4 *6 (-895 *5)) (-5 *2 (-683 *6)) - (-5 *1 (-686 *5 *6 *3 *4)) (-4 *3 (-372 *6)) - (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4403))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-639 (-315 (-224)))) (-5 *2 (-112)) (-5 *1 (-266)))) - ((*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-112)) (-5 *1 (-266)))) + (-12 (-5 *3 (-640 (-1169))) (-4 *5 (-363)) + (-5 *2 (-1257 (-684 (-407 (-948 *5))))) (-5 *1 (-1079 *5)) + (-5 *4 (-684 (-407 (-948 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-640 (-1169))) (-4 *5 (-363)) + (-5 *2 (-1257 (-684 (-948 *5)))) (-5 *1 (-1079 *5)) + (-5 *4 (-684 (-948 *5))))) ((*1 *2 *3) - (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) - (-5 *1 (-972 *4 *5 *6 *3)) (-4 *3 (-1058 *4 *5 *6))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1150)) (-5 *5 (-683 (-224))) (-5 *6 (-224)) - (-5 *7 (-683 (-562))) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-747))))) -(((*1 *2 *3) - (-12 (-4 *4 (-348)) (-5 *2 (-417 (-1164 (-1164 *4)))) - (-5 *1 (-1205 *4)) (-5 *3 (-1164 (-1164 *4)))))) + (-12 (-5 *3 (-640 (-684 *4))) (-4 *4 (-363)) + (-5 *2 (-1257 (-684 *4))) (-5 *1 (-1079 *4))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-257))))) +(((*1 *1) (-5 *1 (-157))) + ((*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-767)) (-5 *2 (-407 (-563))) (-5 *1 (-225)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-767)) (-5 *2 (-407 (-563))) (-5 *1 (-225)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-767)) (-5 *2 (-407 (-563))) (-5 *1 (-379)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-767)) (-5 *2 (-407 (-563))) (-5 *1 (-379))))) (((*1 *2 *3) - (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-639 (-1168))) (-4 *5 (-1044)) - (-5 *2 (-947 *5)) (-5 *1 (-939 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1207)) (-5 *2 (-639 *1)) (-4 *1 (-1005 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-639 (-1156 *3 *4))) (-5 *1 (-1156 *3 *4)) - (-14 *3 (-916)) (-4 *4 (-1044))))) -(((*1 *2 *3) (-12 (-5 *3 (-817)) (-5 *2 (-52)) (-5 *1 (-824))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1044)) - (-4 *2 (-13 (-403) (-1033 *4) (-362) (-1192) (-283))) - (-5 *1 (-442 *4 *3 *2)) (-4 *3 (-1232 *4)))) - ((*1 *1 *1) (-4 *1 (-544))) - ((*1 *2 *1) (-12 (-5 *2 (-916)) (-5 *1 (-666 *3)) (-4 *3 (-845)))) - ((*1 *2 *1) (-12 (-5 *2 (-916)) (-5 *1 (-671 *3)) (-4 *3 (-845)))) - ((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-814 *3)) (-4 *3 (-845)))) - ((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-888 *3)) (-4 *3 (-845)))) - ((*1 *2 *1) (-12 (-4 *1 (-990 *3)) (-4 *3 (-1207)) (-5 *2 (-766)))) - ((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-1204 *3)) (-4 *3 (-1207)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-997)) - (-4 *2 (-1044))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-944 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *2 (-845)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-788)) (-4 *5 (-1044)) (-4 *6 (-944 *5 *4 *2)) - (-4 *2 (-845)) (-5 *1 (-945 *4 *2 *5 *6 *3)) - (-4 *3 - (-13 (-362) - (-10 -8 (-15 -4053 ($ *6)) (-15 -4063 (*6 $)) - (-15 -4079 (*6 $))))))) + (-12 (-5 *3 (-640 *7)) (-4 *7 (-945 *4 *6 *5)) + (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) + (-4 *6 (-789)) (-5 *2 (-112)) (-5 *1 (-920 *4 *5 *6 *7)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-554)) - (-5 *2 (-1168)) (-5 *1 (-1038 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-639 (-639 *3))) (-4 *3 (-1092)) (-4 *1 (-898 *3))))) -(((*1 *1 *2 *2 *3 *1) - (-12 (-5 *2 (-1168)) (-5 *3 (-1096)) (-5 *1 (-290))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1148 *4)) (-5 *3 (-562)) (-4 *4 (-1044)) - (-5 *1 (-1152 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-562)) (-5 *1 (-1248 *3 *4 *5)) (-4 *3 (-1044)) - (-14 *4 (-1168)) (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554)) (-4 *2 (-544)))) - ((*1 *1 *1) (-4 *1 (-1053)))) + (-12 (-5 *3 (-640 (-948 *4))) (-4 *4 (-13 (-307) (-147))) + (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-112)) + (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5))))) +(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1077 *3)) (-4 *3 (-132))))) +(((*1 *2) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) + (-4 *5 (-1233 (-407 *4))) (-5 *2 (-684 (-407 *4)))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1169)) (-5 *2 (-437)) (-5 *1 (-1173))))) +(((*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1208))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-639 *3)) (-4 *3 (-944 *5 *6 *7)) (-4 *5 (-451)) - (-4 *6 (-788)) (-4 *7 (-845)) - (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-448 *5 *6 *7 *3))))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363)) + (-4 *7 (-1233 (-407 *6))) + (-5 *2 (-2 (|:| |answer| *3) (|:| -3524 *3))) + (-5 *1 (-561 *5 *6 *7 *3)) (-4 *3 (-342 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363)) + (-5 *2 + (-2 (|:| |answer| (-407 *6)) (|:| -3524 (-407 *6)) + (|:| |specpart| (-407 *6)) (|:| |polypart| *6))) + (-5 *1 (-562 *5 *6)) (-5 *3 (-407 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1134 *4 *2)) (-14 *4 (-916)) - (-4 *2 (-13 (-1044) (-10 -7 (-6 (-4405 "*"))))) - (-5 *1 (-897 *4 *2))))) + (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-407 (-563)))) + (-5 *1 (-305))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1151)) (-5 *2 (-770)) (-5 *1 (-114)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1097)) (-5 *1 (-961))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1168)) - (-4 *5 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-639 (-608 *3))) - (|:| |vals| (-639 *3)))) - (-5 *1 (-276 *5 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5)))))) -(((*1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857))))) + (-12 (-5 *3 (-640 *5)) (-5 *4 (-917)) (-4 *5 (-846)) + (-5 *2 (-59 (-640 (-667 *5)))) (-5 *1 (-667 *5))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-563)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-767)) (-4 *5 (-172)))) + ((*1 *1 *1) + (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767)) + (-4 *4 (-172)))) + ((*1 *1 *1) + (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1045)) (-4 *1 (-682 *3 *2 *4)) (-4 *2 (-373 *3)) + (-4 *4 (-373 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-767)) (-4 *3 (-1045))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) -(((*1 *2 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-639 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-416 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-562)) (-5 *1 (-444 *3)) (-4 *3 (-403)) (-4 *3 (-1044))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1086 (-838 (-224)))) (-5 *2 (-224)) (-5 *1 (-191)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1086 (-838 (-224)))) (-5 *2 (-224)) (-5 *1 (-299)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1086 (-838 (-224)))) (-5 *2 (-224)) (-5 *1 (-304))))) + (-12 (-5 *3 (-640 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) + (-14 *6 (-640 (-1169))) + (-5 *2 + (-640 (-1139 *5 (-531 (-860 *6)) (-860 *6) (-776 *5 (-860 *6))))) + (-5 *1 (-625 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)) - (-5 *2 (-766)))) - ((*1 *2 *1) - (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1092)) - (-5 *2 (-766)))) - ((*1 *2 *1) - (-12 (-5 *2 (-766)) (-5 *1 (-730 *3 *4)) (-4 *3 (-1044)) - (-4 *4 (-721))))) -(((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) - (-4 *3 (-366 *4)))) - ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) -(((*1 *1) (-5 *1 (-818)))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-788)) - (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-639 *4)) (-4 *4 (-1044)) (-5 *2 (-1256 *4)) - (-5 *1 (-1169 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-916)) (-5 *2 (-1256 *3)) (-5 *1 (-1169 *3)) - (-4 *3 (-1044))))) -(((*1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1259)))) - ((*1 *2 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1259))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-1044)) - (-4 *4 (-841))))) -(((*1 *1 *1) - (-12 (-4 *2 (-306)) (-4 *3 (-987 *2)) (-4 *4 (-1232 *3)) - (-5 *1 (-412 *2 *3 *4 *5)) (-4 *5 (-13 (-408 *3 *4) (-1033 *3)))))) + (-12 (-4 *3 (-1045)) (-5 *2 (-640 *1)) (-4 *1 (-1127 *3))))) +(((*1 *1 *1 *2) + (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-945 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) + (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-640 (-263))) (-5 *1 (-261))))) (((*1 *2) - (-12 (-5 *2 (-1256 (-1093 *3 *4))) (-5 *1 (-1093 *3 *4)) - (-14 *3 (-916)) (-14 *4 (-916))))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) - (-5 *1 (-700 *3 *4)) (-4 *3 (-1207)) (-4 *4 (-1207))))) -(((*1 *2) (-12 (-5 *2 (-838 (-562))) (-5 *1 (-533)))) - ((*1 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-1092))))) -(((*1 *2 *3) - (-12 (-5 *3 (-639 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) - (-4 *4 (-13 (-845) (-554)))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-417 *2)) (-4 *2 (-306)) (-5 *1 (-909 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-1168)) - (-4 *5 (-13 (-306) (-146))) (-5 *2 (-52)) (-5 *1 (-910 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-417 (-947 *6))) (-5 *5 (-1168)) (-5 *3 (-947 *6)) - (-4 *6 (-13 (-306) (-146))) (-5 *2 (-52)) (-5 *1 (-910 *6))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1164 (-562))) (-5 *1 (-190)) (-5 *3 (-562)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-766)) (-5 *1 (-778 *2)) (-4 *2 (-171)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1164 (-562))) (-5 *1 (-937)) (-5 *3 (-562))))) -(((*1 *1 *1) - (-12 (-4 *1 (-252 *2 *3 *4 *5)) (-4 *2 (-1044)) (-4 *3 (-845)) - (-4 *4 (-265 *3)) (-4 *5 (-788))))) + (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) + (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3)))))) +(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-91 *3))))) +(((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1036))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) + (-5 *1 (-743))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-114)) (-5 *4 (-639 *2)) (-5 *1 (-113 *2)) - (-4 *2 (-1092)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-639 *4))) (-4 *4 (-1092)) - (-5 *1 (-113 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1092)) - (-5 *1 (-113 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-639 *4))) - (-5 *1 (-113 *4)) (-4 *4 (-1092)))) + (-12 (-5 *4 (-640 *3)) (-4 *3 (-1102 *5 *6 *7 *8)) + (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-589 *5 *6 *7 *8 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-640 (-563))) (-5 *1 (-247 *3 *4)) + (-14 *3 (-640 (-1169))) (-4 *4 (-1045)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-642 *3)) (-4 *3 (-1044)) - (-5 *1 (-709 *3 *4)))) + (-12 (-5 *2 (-640 (-563))) (-14 *3 (-640 (-1169))) + (-5 *1 (-454 *3 *4 *5)) (-4 *4 (-1045)) + (-4 *5 (-238 (-3608 *3) (-767))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1044)) (-5 *1 (-831 *3))))) -(((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-639 (-1168))) (-4 *2 (-171)) - (-4 *4 (-237 (-3492 *5) (-766))) - (-14 *6 - (-1 (-112) (-2 (|:| -2464 *3) (|:| -1300 *4)) - (-2 (|:| -2464 *3) (|:| -1300 *4)))) - (-5 *1 (-460 *5 *2 *3 *4 *6 *7)) (-4 *3 (-845)) - (-4 *7 (-944 *2 *4 (-859 *5)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *8)) (-5 *4 (-639 *9)) (-4 *8 (-1058 *5 *6 *7)) - (-4 *9 (-1064 *5 *6 *7 *8)) (-4 *5 (-451)) (-4 *6 (-788)) - (-4 *7 (-845)) (-5 *2 (-766)) (-5 *1 (-1062 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *8)) (-5 *4 (-639 *9)) (-4 *8 (-1058 *5 *6 *7)) - (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-451)) (-4 *6 (-788)) - (-4 *7 (-845)) (-5 *2 (-766)) (-5 *1 (-1137 *5 *6 *7 *8 *9))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1207))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1044)) (-4 *2 (-362)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-362)) (-5 *1 (-653 *4 *2)) - (-4 *2 (-650 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-562)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) - (-5 *2 (-1261)) (-5 *1 (-448 *4 *5 *6 *7)) (-4 *7 (-944 *4 *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-838 (-562))) (-5 *1 (-533)))) - ((*1 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-1092))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-393))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-554) (-146))) (-5 *2 (-639 *3)) - (-5 *1 (-1226 *4 *3)) (-4 *3 (-1232 *4))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1168)) (-5 *2 (-1172)) (-5 *1 (-1171))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-766)) (-5 *2 (-1229 *5 *4)) (-5 *1 (-1166 *4 *5 *6)) - (-4 *4 (-1044)) (-14 *5 (-1168)) (-14 *6 *4))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-766)) (-5 *2 (-1229 *5 *4)) (-5 *1 (-1248 *4 *5 *6)) - (-4 *4 (-1044)) (-14 *5 (-1168)) (-14 *6 *4)))) -(((*1 *2 *2) (-12 (-5 *1 (-956 *2)) (-4 *2 (-544))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-845)) (-5 *4 (-639 *6)) - (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-639 *4)))) - (-5 *1 (-1178 *6)) (-5 *5 (-639 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1150) (-769))) (-5 *1 (-114))))) -(((*1 *1 *1) (-5 *1 (-857))) - ((*1 *2 *1) - (-12 (-4 *1 (-1095 *2 *3 *4 *5 *6)) (-4 *3 (-1092)) (-4 *4 (-1092)) - (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *2 (-1092)))) - ((*1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-1149)))) - ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1168))))) -(((*1 *2 *1) (-12 (-4 *1 (-1244 *3)) (-4 *3 (-1207)) (-5 *2 (-766))))) + (-12 (-5 *2 (-640 (-563))) (-5 *1 (-481 *3 *4)) + (-14 *3 (-640 (-1169))) (-4 *4 (-1045))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-767)) (-5 *3 (-939 *5)) (-4 *5 (-1045)) + (-5 *1 (-1157 *4 *5)) (-14 *4 (-917)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-640 (-767))) (-5 *3 (-767)) (-5 *1 (-1157 *4 *5)) + (-14 *4 (-917)) (-4 *5 (-1045)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-640 (-767))) (-5 *3 (-939 *5)) (-4 *5 (-1045)) + (-5 *1 (-1157 *4 *5)) (-14 *4 (-917))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-554)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) - (-5 *1 (-1197 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1112)) (-5 *2 (-1261)) (-5 *1 (-826))))) -(((*1 *1 *1) - (-12 (-4 *1 (-252 *2 *3 *4 *5)) (-4 *2 (-1044)) (-4 *3 (-845)) - (-4 *4 (-265 *3)) (-4 *5 (-788))))) + (|partial| -12 (-5 *3 (-767)) (-5 *1 (-585 *2)) (-4 *2 (-545)))) + ((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -4211 *3) (|:| -1654 (-767)))) (-5 *1 (-585 *3)) + (-4 *3 (-545))))) +(((*1 *1) (-5 *1 (-225))) ((*1 *1) (-5 *1 (-379)))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) + (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5))))) (((*1 *1 *2) - (-12 (-5 *2 (-916)) (-5 *1 (-151 *3 *4 *5)) (-14 *3 *2) - (-4 *4 (-362)) (-14 *5 (-988 *3 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-983 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1099 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) -(((*1 *1 *1) - (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1044)) - (-4 *2 (-13 (-403) (-1033 *4) (-362) (-1192) (-283))) - (-5 *1 (-442 *4 *3 *2)) (-4 *3 (-1232 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-916)) (-4 *5 (-1044)) - (-4 *2 (-13 (-403) (-1033 *5) (-362) (-1192) (-283))) - (-5 *1 (-442 *5 *3 *2)) (-4 *3 (-1232 *5))))) -(((*1 *2 *3) - (-12 (-4 *1 (-904)) (-5 *2 (-417 (-1164 *1))) (-5 *3 (-1164 *1))))) + (-12 (-5 *2 (-1135 *3 *4)) (-14 *3 (-917)) (-4 *4 (-363)) + (-5 *1 (-989 *3 *4))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) - (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) - (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) - (|:| |abserr| (-224)) (|:| |relerr| (-224)))) - (-5 *2 (-378)) (-5 *1 (-204))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-639 (-947 *4))) (-5 *3 (-639 (-1168))) (-4 *4 (-451)) - (-5 *1 (-913 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-639 *2)) (-4 *2 (-944 *4 *5 *6)) (-4 *4 (-306)) - (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-446 *4 *5 *6 *2))))) -(((*1 *2 *1) - (-12 + (-12 (-4 *2 (-363)) (-4 *2 (-844)) (-5 *1 (-941 *2 *3)) + (-4 *3 (-1233 *2))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) + (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-4 *3 (-13 (-27) (-1193) (-430 *6) (-10 -8 (-15 -1693 ($ *7))))) + (-4 *7 (-844)) + (-4 *8 + (-13 (-1235 *3 *7) (-363) (-1193) + (-10 -8 (-15 -4202 ($ $)) (-15 -3698 ($ $))))) (-5 *2 - (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") - (|:| |Conditional| "conditional") (|:| |Return| "return") - (|:| |Block| "block") (|:| |Comment| "comment") - (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") - (|:| |Repeat| "repeat") (|:| |Goto| "goto") - (|:| |Continue| "continue") - (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") - (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) - (-5 *1 (-329))))) -(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-378)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-378)) (-5 *1 (-97))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-639 (-639 (-639 *5)))) (-5 *3 (-1 (-112) *5 *5)) - (-5 *4 (-639 *5)) (-4 *5 (-845)) (-5 *1 (-1178 *5))))) + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151)))))) + (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1151)) (-4 *9 (-979 *8)) + (-14 *10 (-1169))))) +(((*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-52))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1193)))))) +(((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1262)) (-5 *1 (-1131)))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 (-858))) (-5 *2 (-1262)) (-5 *1 (-1131))))) +(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-639 *10)) (-5 *5 (-112)) (-4 *10 (-1064 *6 *7 *8 *9)) - (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) - (-4 *9 (-1058 *6 *7 *8)) - (-5 *2 - (-639 - (-2 (|:| -3339 (-639 *9)) (|:| -1501 *10) (|:| |ineq| (-639 *9))))) - (-5 *1 (-983 *6 *7 *8 *9 *10)) (-5 *3 (-639 *9)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-639 *10)) (-5 *5 (-112)) (-4 *10 (-1064 *6 *7 *8 *9)) - (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) - (-4 *9 (-1058 *6 *7 *8)) - (-5 *2 - (-639 - (-2 (|:| -3339 (-639 *9)) (|:| -1501 *10) (|:| |ineq| (-639 *9))))) - (-5 *1 (-1099 *6 *7 *8 *9 *10)) (-5 *3 (-639 *9))))) -(((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1092) (-34))) (-4 *6 (-13 (-1092) (-34))) - (-5 *2 (-112)) (-5 *1 (-1132 *5 *6))))) -(((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-1044))))) + (-12 (-5 *5 (-767)) (-4 *6 (-1093)) (-4 *7 (-896 *6)) + (-5 *2 (-684 *7)) (-5 *1 (-687 *6 *7 *3 *4)) (-4 *3 (-373 *7)) + (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4407))))))) +(((*1 *2 *1) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1208))))) +(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560))))) +(((*1 *2 *1) (-12 (-5 *2 (-820)) (-5 *1 (-821))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-640 (-481 *4 *5))) (-5 *3 (-640 (-860 *4))) + (-14 *4 (-640 (-1169))) (-4 *5 (-452)) (-5 *1 (-471 *4 *5 *6)) + (-4 *6 (-452))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1280 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-842))))) +(((*1 *2 *3) + (-12 (-5 *3 (-407 *5)) (-4 *5 (-1233 *4)) (-4 *4 (-555)) + (-4 *4 (-1045)) (-4 *2 (-1248 *4)) (-5 *1 (-1251 *4 *5 *6 *2)) + (-4 *6 (-651 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1189))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-683 (-406 (-947 (-562))))) - (-5 *2 (-639 (-683 (-315 (-562))))) (-5 *1 (-1026)) - (-5 *3 (-315 (-562)))))) -(((*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857))))) + (-12 (-5 *4 (-1169)) + (-4 *5 (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-584 *3)) (-5 *1 (-556 *5 *3)) + (-4 *3 (-13 (-27) (-1193) (-430 *5)))))) (((*1 *2 *2) - (-12 (-4 *3 (-1232 (-406 (-562)))) (-5 *1 (-908 *3 *2)) - (-4 *2 (-1232 (-406 *3)))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-766)) (-5 *3 (-112)) (-5 *1 (-110)))) - ((*1 *2 *2) (-12 (-5 *2 (-916)) (|has| *1 (-6 -4394)) (-4 *1 (-403)))) - ((*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-916))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *1 (-878)) - (-5 *3 (-639 (-562))))) - ((*1 *2 *3) - (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *1 (-878)) - (-5 *3 (-639 (-562)))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) - (-5 *1 (-746))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-562)) (-4 *3 (-171)) (-4 *5 (-372 *3)) - (-4 *6 (-372 *3)) (-5 *1 (-682 *3 *5 *6 *2)) - (-4 *2 (-681 *3 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) + (-12 (-4 *3 (-13 (-555) (-147))) (-5 *1 (-537 *3 *2)) + (-4 *2 (-1248 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-4 *4 (-1233 *3)) + (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1248 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-5 *1 (-542 *3 *2)) + (-4 *2 (-1248 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-13 (-555) (-147))) + (-5 *1 (-1145 *3))))) (((*1 *1 *1) - (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-262))) (-5 *1 (-1257)))) - ((*1 *2 *1) (-12 (-5 *2 (-639 (-262))) (-5 *1 (-1257)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-262))) (-5 *1 (-1258)))) - ((*1 *2 *1) (-12 (-5 *2 (-639 (-262))) (-5 *1 (-1258))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1092)) (-4 *2 (-895 *5)) (-5 *1 (-686 *5 *2 *3 *4)) - (-4 *3 (-372 *2)) (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4403))))))) -(((*1 *2) - (-12 (-5 *2 (-1261)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-1092)) - (-4 *4 (-1092))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1044)) (-4 *2 (-681 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1232 *4)) (-4 *5 (-372 *4)) - (-4 *6 (-372 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1150)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) - ((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-262)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1257)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-922))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *5 (-112)) - (-5 *2 (-1030)) (-5 *1 (-740))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) - (-5 *1 (-742))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-639 (-766))) (-5 *1 (-964 *4 *3)) - (-4 *3 (-1232 *4))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) - (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3196)))) - (-5 *2 (-1030)) (-5 *1 (-743))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4403)) (-4 *1 (-150 *3)) - (-4 *3 (-1207)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1207)) (-5 *1 (-597 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-668 *3)) (-4 *3 (-1207)))) - ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1200 *4 *5 *3 *2)) (-4 *4 (-554)) - (-4 *5 (-788)) (-4 *3 (-845)) (-4 *2 (-1058 *4 *5 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-766)) (-5 *1 (-1204 *2)) (-4 *2 (-1207))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-916)) (-5 *1 (-441 *2)) - (-4 *2 (-1232 (-562))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-916)) (-5 *4 (-766)) (-5 *1 (-441 *2)) - (-4 *2 (-1232 (-562))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-916)) (-5 *4 (-639 (-766))) (-5 *1 (-441 *2)) - (-4 *2 (-1232 (-562))))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-916)) (-5 *4 (-639 (-766))) (-5 *5 (-766)) - (-5 *1 (-441 *2)) (-4 *2 (-1232 (-562))))) - ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-916)) (-5 *4 (-639 (-766))) (-5 *5 (-766)) - (-5 *6 (-112)) (-5 *1 (-441 *2)) (-4 *2 (-1232 (-562))))) + (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-640 + (-2 (|:| -2522 (-767)) + (|:| |eqns| + (-640 + (-2 (|:| |det| *7) (|:| |rows| (-640 (-563))) + (|:| |cols| (-640 (-563)))))) + (|:| |fgb| (-640 *7))))) + (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) + (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-767)) + (-5 *1 (-920 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-640 *7)) (|:| |badPols| (-640 *7)))) + (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-640 *7))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-379)))) + ((*1 *1 *1 *1) (-4 *1 (-545))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) + ((*1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-767))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1165 *1)) (-5 *3 (-1169)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1165 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-948 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1169)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-846) (-555))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-846) (-555))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-916)) (-5 *4 (-417 *2)) (-4 *2 (-1232 *5)) - (-5 *1 (-443 *5 *2)) (-4 *5 (-1044))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1044)) (-4 *4 (-1232 *3)) (-5 *1 (-163 *3 *4 *2)) - (-4 *2 (-1232 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1207))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-639 *2) *2 *2 *2)) (-4 *2 (-1092)) - (-5 *1 (-103 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1092)) (-5 *1 (-103 *2))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-362)) (-5 *1 (-761 *2 *3)) (-4 *2 (-703 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-639 *6)) (-5 *4 (-639 (-246 *5 *6))) (-4 *6 (-451)) - (-5 *2 (-246 *5 *6)) (-14 *5 (-639 (-1168))) (-5 *1 (-627 *5 *6))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1150)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) - (-4 *4 (-1058 *6 *7 *8)) (-5 *2 (-1261)) - (-5 *1 (-771 *6 *7 *8 *4 *5)) (-4 *5 (-1064 *6 *7 *8 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-916)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1256 *4)) (-4 *4 (-348)) (-5 *2 (-916)) - (-5 *1 (-527 *4))))) + (-12 (-5 *3 (-1165 *2)) (-5 *4 (-1169)) (-4 *2 (-430 *5)) + (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-846) (-555))))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *2 (-1165 *1)) (-5 *3 (-917)) (-4 *1 (-1008)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-1165 *1)) (-5 *3 (-917)) (-5 *4 (-858)) + (-4 *1 (-1008)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *3 (-917)) (-4 *4 (-13 (-844) (-363))) + (-4 *1 (-1062 *4 *2)) (-4 *2 (-1233 *4))))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) + (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *2 (-1031)) + (-5 *1 (-751))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-818))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) + (-5 *1 (-743))))) +(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-640 (-861)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1262)) (-5 *1 (-818))))) (((*1 *2) - (-12 (-4 *4 (-362)) (-5 *2 (-916)) (-5 *1 (-327 *3 *4)) - (-4 *3 (-328 *4)))) + (-12 (-4 *4 (-172)) (-5 *2 (-1165 (-948 *4))) (-5 *1 (-416 *3 *4)) + (-4 *3 (-417 *4)))) ((*1 *2) - (-12 (-4 *4 (-362)) (-5 *2 (-828 (-916))) (-5 *1 (-327 *3 *4)) - (-4 *3 (-328 *4)))) - ((*1 *2) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-916)))) + (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363)) + (-5 *2 (-1165 (-948 *3))))) ((*1 *2) - (-12 (-4 *1 (-1275 *3)) (-4 *3 (-362)) (-5 *2 (-828 (-916)))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) - (-5 *2 (-1030)) (-5 *1 (-746))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1207)) (-5 *1 (-597 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1207)) (-5 *1 (-1148 *3))))) -(((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) - (-5 *1 (-1120 *3 *2)) (-4 *3 (-1232 *2))))) -(((*1 *1 *1 *1) (-4 *1 (-544)))) -(((*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-766)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-401)) (-5 *2 (-766))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-677 *4 *3)) (-4 *4 (-1092)) - (-4 *3 (-1092))))) -(((*1 *2 *3) - (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-1261)) - (-5 *1 (-448 *4 *5 *6 *3)) (-4 *3 (-944 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1232 *2)) (-4 *2 (-1232 *4)) (-5 *1 (-980 *4 *2 *3 *5)) - (-4 *4 (-348)) (-4 *5 (-719 *2 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-583 *3)) (-4 *3 (-362))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-766)) (-4 *1 (-1232 *3)) (-4 *3 (-1044))))) -(((*1 *1 *1) - (-12 (-4 *2 (-146)) (-4 *2 (-306)) (-4 *2 (-451)) (-4 *3 (-845)) - (-4 *4 (-788)) (-5 *1 (-982 *2 *3 *4 *5)) (-4 *5 (-944 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-315 (-562))) (-5 *1 (-1111)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) - (-4 *2 (-13 (-429 *3) (-1192)))))) + (-12 (-5 *2 (-1165 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) + (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) + ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-97))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-1208)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1208)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-939 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-640 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1127 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-640 (-640 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-640 (-939 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045))))) +(((*1 *2 *1) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) + (-4 *5 (-1233 (-407 *4))) + (-5 *2 (-2 (|:| |num| (-1257 *4)) (|:| |den| *4)))))) +(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-379)) (-5 *1 (-1036))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-640 (-609 *2))) (-5 *4 (-640 (-1169))) + (-4 *2 (-13 (-430 (-169 *5)) (-998) (-1193))) + (-4 *5 (-13 (-555) (-846))) (-5 *1 (-597 *5 *6 *2)) + (-4 *6 (-13 (-430 *5) (-998) (-1193)))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1031))))) +(((*1 *2 *3) + (-12 (-4 *4 (-555)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2315 *4))) + (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-640 (-640 (-640 *4)))) (-5 *2 (-640 (-640 *4))) + (-4 *4 (-846)) (-5 *1 (-1179 *4))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1248 *3))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1281 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) + (-4 *4 (-172)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1093)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-815 *3)) (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) + (-4 *4 (-1045)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-642 *3)) (-4 *3 (-1093))))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) + (-12 (-5 *3 (-1151)) (-5 *5 (-684 (-225))) (-5 *6 (-225)) + (-5 *7 (-684 (-563))) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-748))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-640 (-640 (-225)))) (-5 *4 (-225)) + (-5 *2 (-640 (-939 *4))) (-5 *1 (-1204)) (-5 *3 (-939 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1041 *4 *5)) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) - (-14 *5 (-639 (-1168))) + (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -3205 ((-418 $) $))))) + (-4 *4 (-1233 *3)) (-5 *2 - (-639 (-2 (|:| -1333 (-1164 *4)) (|:| -2205 (-639 (-947 *4)))))) - (-5 *1 (-1282 *4 *5 *6)) (-14 *6 (-639 (-1168))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-843) (-306) (-146) (-1017))) + (-2 (|:| -4315 (-684 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-684 *3)))) + (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-563)) (-4 *4 (-1233 *3)) (-5 *2 - (-639 (-2 (|:| -1333 (-1164 *5)) (|:| -2205 (-639 (-947 *5)))))) - (-5 *1 (-1282 *5 *6 *7)) (-5 *3 (-639 (-947 *5))) - (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-843) (-306) (-146) (-1017))) + (-2 (|:| -4315 (-684 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-684 *3)))) + (-5 *1 (-764 *4 *5)) (-4 *5 (-409 *3 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-349)) (-4 *3 (-1233 *4)) (-4 *5 (-1233 *3)) (-5 *2 - (-639 (-2 (|:| -1333 (-1164 *5)) (|:| -2205 (-639 (-947 *5)))))) - (-5 *1 (-1282 *5 *6 *7)) (-5 *3 (-639 (-947 *5))) - (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-843) (-306) (-146) (-1017))) + (-2 (|:| -4315 (-684 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-684 *3)))) + (-5 *1 (-981 *4 *3 *5 *6)) (-4 *6 (-720 *3 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-349)) (-4 *3 (-1233 *4)) (-4 *5 (-1233 *3)) (-5 *2 - (-639 (-2 (|:| -1333 (-1164 *5)) (|:| -2205 (-639 (-947 *5)))))) - (-5 *1 (-1282 *5 *6 *7)) (-5 *3 (-639 (-947 *5))) - (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) + (-2 (|:| -4315 (-684 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-684 *3)))) + (-5 *1 (-1266 *4 *3 *5 *6)) (-4 *6 (-409 *3 *5))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) (-5 *3 (-563)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-843) (-306) (-146) (-1017))) + (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) (-5 *3 (-563)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) (-5 *3 (-563))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1149 (-563))) (-5 *1 (-1153 *4)) (-4 *4 (-1045)) + (-5 *3 (-563))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1208)) (-5 *1 (-869 *3 *2)) (-4 *3 (-1208)))) + ((*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) + (-5 *1 (-743))))) +(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-548)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) + ((*1 *2 *1) + (-12 (-5 *2 - (-639 (-2 (|:| -1333 (-1164 *4)) (|:| -2205 (-639 (-947 *4)))))) - (-5 *1 (-1282 *4 *5 *6)) (-5 *3 (-639 (-947 *4))) - (-14 *5 (-639 (-1168))) (-14 *6 (-639 (-1168)))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1207)) (-5 *1 (-597 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1207)) (-5 *1 (-1148 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-174))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1092))))) + (-2 (|:| -3799 (-640 (-858))) (|:| -1901 (-640 (-858))) + (|:| |presup| (-640 (-858))) (|:| -3034 (-640 (-858))) + (|:| |args| (-640 (-858))))) + (-5 *1 (-1169))))) (((*1 *2 *3) - (-12 (-5 *3 (-639 *5)) (-4 *5 (-429 *4)) (-4 *4 (-13 (-845) (-554))) - (-5 *2 (-857)) (-5 *1 (-32 *4 *5))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1150)) (-5 *4 (-168 (-224))) (-5 *5 (-562)) - (-5 *2 (-1030)) (-5 *1 (-753))))) -(((*1 *2 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1207))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1090 *3)) (-4 *3 (-1092)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-562)) (-5 *1 (-690 *2)) (-4 *2 (-1232 *3))))) + (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-938)) (-5 *3 (-563))))) +(((*1 *2 *1) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208))))) +(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-817))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093))))) (((*1 *2 *3) - (-12 (-5 *3 (-683 (-406 (-947 (-562))))) - (-5 *2 - (-639 - (-2 (|:| |radval| (-315 (-562))) (|:| |radmult| (-562)) - (|:| |radvect| (-639 (-683 (-315 (-562)))))))) - (-5 *1 (-1026))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-916)) (-4 *6 (-13 (-554) (-845))) - (-5 *2 (-639 (-315 *6))) (-5 *1 (-220 *5 *6)) (-5 *3 (-315 *6)) - (-4 *5 (-1044)))) - ((*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-554)))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 *5)) (-4 *5 (-13 (-29 *4) (-1192))) - (-4 *4 (-13 (-451) (-1033 (-562)) (-845) (-635 (-562)))) - (-5 *2 (-639 *5)) (-5 *1 (-581 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 (-406 (-947 *4)))) - (-4 *4 (-13 (-451) (-1033 (-562)) (-845) (-635 (-562)))) - (-5 *2 (-639 (-315 *4))) (-5 *1 (-586 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1087 *3 *2)) (-4 *3 (-843)) (-4 *2 (-1141 *3)))) + (-12 (-4 *4 (-1233 (-407 *2))) (-5 *2 (-563)) (-5 *1 (-909 *4 *3)) + (-4 *3 (-1233 (-407 *4)))))) +(((*1 *2 *3) + (-12 (-4 *1 (-835)) + (-5 *3 + (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) + (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) + (|:| |ub| (-640 (-839 (-225)))))) + (-5 *2 (-1031)))) ((*1 *2 *3) - (-12 (-5 *3 (-639 *1)) (-4 *1 (-1087 *4 *2)) (-4 *4 (-843)) - (-4 *2 (-1141 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) - (-4 *2 (-13 (-429 *3) (-1192))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1271 (-1168) *3)) (-5 *1 (-1278 *3)) (-4 *3 (-1044)))) + (-12 (-4 *1 (-835)) + (-5 *3 + (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))) + (-5 *2 (-1031))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-684 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2)))) + ((*1 *2 *3) + (-12 (-4 *4 (-172)) (-4 *2 (-1233 *4)) (-5 *1 (-177 *4 *2 *3)) + (-4 *3 (-720 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-684 (-407 (-948 *5)))) (-5 *4 (-1169)) + (-5 *2 (-948 *5)) (-5 *1 (-292 *5)) (-4 *5 (-452)))) + ((*1 *2 *3) + (-12 (-5 *3 (-684 (-407 (-948 *4)))) (-5 *2 (-948 *4)) + (-5 *1 (-292 *4)) (-4 *4 (-452)))) ((*1 *2 *1) - (-12 (-5 *2 (-1271 *3 *4)) (-5 *1 (-1280 *3 *4)) (-4 *3 (-845)) - (-4 *4 (-1044))))) -(((*1 *2) (-12 (-5 *2 (-899 (-562))) (-5 *1 (-912))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-683 (-406 (-562)))) - (-5 *2 - (-639 - (-2 (|:| |outval| *4) (|:| |outmult| (-562)) - (|:| |outvect| (-639 (-683 *4)))))) - (-5 *1 (-774 *4)) (-4 *4 (-13 (-362) (-843)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-157 *3 *2)) - (-4 *2 (-429 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-168 (-562))) (-5 *2 (-112)) (-5 *1 (-445)))) + (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1233 *3)))) ((*1 *2 *3) - (-12 - (-5 *3 - (-503 (-406 (-562)) (-239 *5 (-766)) (-859 *4) - (-246 *4 (-406 (-562))))) - (-14 *4 (-639 (-1168))) (-14 *5 (-766)) (-5 *2 (-112)) - (-5 *1 (-504 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-956 *3)) (-4 *3 (-544)))) - ((*1 *2 *1) (-12 (-4 *1 (-1211)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1211)) (-4 *3 (-1232 *4)) - (-4 *5 (-1232 (-406 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) - (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-406 (-947 *5)))) (-5 *4 (-639 (-1168))) - (-4 *5 (-554)) (-5 *2 (-639 (-639 (-947 *5)))) (-5 *1 (-1176 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1164 (-406 (-947 *3)))) (-5 *1 (-452 *3 *4 *5 *6)) - (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) - (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-417 (-1164 *1))) (-5 *1 (-315 *4)) (-5 *3 (-1164 *1)) - (-4 *4 (-451)) (-4 *4 (-554)) (-4 *4 (-845)))) + (-12 (-5 *3 (-684 (-169 (-407 (-563))))) + (-5 *2 (-948 (-169 (-407 (-563))))) (-5 *1 (-760 *4)) + (-4 *4 (-13 (-363) (-844))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-684 (-169 (-407 (-563))))) (-5 *4 (-1169)) + (-5 *2 (-948 (-169 (-407 (-563))))) (-5 *1 (-760 *5)) + (-4 *5 (-13 (-363) (-844))))) ((*1 *2 *3) - (-12 (-4 *1 (-904)) (-5 *2 (-417 (-1164 *1))) (-5 *3 (-1164 *1))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-608 *4)) (-4 *4 (-845)) (-4 *2 (-845)) - (-5 *1 (-607 *2 *4))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1239 *3 *2)) (-4 *3 (-1044)) - (-4 *2 (-1216 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-639 (-170)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-529 *3)) (-4 *3 (-13 (-721) (-25)))))) -(((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-639 (-1168))) (-4 *2 (-171)) - (-4 *3 (-237 (-3492 *4) (-766))) - (-14 *6 - (-1 (-112) (-2 (|:| -2464 *5) (|:| -1300 *3)) - (-2 (|:| -2464 *5) (|:| -1300 *3)))) - (-5 *1 (-460 *4 *2 *5 *3 *6 *7)) (-4 *5 (-845)) - (-4 *7 (-944 *2 *3 (-859 *4)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-562)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1207)) - (-4 *5 (-372 *4)) (-4 *2 (-372 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-562)) (-4 *1 (-1047 *4 *5 *6 *2 *7)) (-4 *6 (-1044)) - (-4 *7 (-237 *4 *6)) (-4 *2 (-237 *5 *6))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1207)) (-4 *3 (-372 *2)) - (-4 *4 (-372 *2)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4404)) (-4 *1 (-600 *3 *2)) (-4 *3 (-1092)) - (-4 *2 (-1207))))) -(((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-52))))) -(((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-857) (-857) (-857))) (-5 *4 (-562)) (-5 *2 (-857)) - (-5 *1 (-643 *5 *6 *7)) (-4 *5 (-1092)) (-4 *6 (-23)) (-14 *7 *6))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-857)) (-5 *1 (-849 *3 *4 *5)) (-4 *3 (-1044)) - (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-857)))) - ((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-857)))) - ((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-857)))) - ((*1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-857)) (-5 *1 (-1164 *3)) (-4 *3 (-1044))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1044)) (-5 *1 (-889 *2 *3)) (-4 *2 (-1232 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3))))) + (-12 (-5 *3 (-684 (-407 (-563)))) (-5 *2 (-948 (-407 (-563)))) + (-5 *1 (-775 *4)) (-4 *4 (-13 (-363) (-844))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-684 (-407 (-563)))) (-5 *4 (-1169)) + (-5 *2 (-948 (-407 (-563)))) (-5 *1 (-775 *5)) + (-4 *5 (-13 (-363) (-844)))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1169)) (-5 *3 (-434)) (-4 *5 (-846)) + (-5 *1 (-1099 *5 *4)) (-4 *4 (-430 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3368 *4)))) + (-4 *3 (-1093)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-644 *3 *4 *5))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1151)) (-5 *3 (-563)) (-5 *1 (-241))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1045)) + (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))) + (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1233 *4)))) + ((*1 *1 *1) (-4 *1 (-545))) + ((*1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) + ((*1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-672 *3)) (-4 *3 (-846)))) + ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-815 *3)) (-4 *3 (-846)))) + ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) + ((*1 *2 *1) (-12 (-4 *1 (-991 *3)) (-4 *3 (-1208)) (-5 *2 (-767)))) + ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1205 *3)) (-4 *3 (-1208)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-998)) + (-4 *2 (-1045))))) (((*1 *2 *3) - (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) - (-5 *2 (-683 *4)))) - ((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-683 *4)) (-5 *1 (-415 *3 *4)) - (-4 *3 (-416 *4)))) - ((*1 *2) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-683 *3))))) + (-12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1233 *5)) + (-5 *2 (-640 *3)) (-5 *1 (-773 *4 *5 *6 *3 *7)) (-4 *3 (-1233 *6)) + (-14 *7 (-917))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997)))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) - (-4 *4 (-845)) (-4 *2 (-554)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) - (-4 *4 (-845)) (-4 *2 (-554))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-647 (-406 *6))) (-5 *4 (-1 (-639 *5) *6)) - (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) - (-4 *6 (-1232 *5)) (-5 *2 (-639 (-406 *6))) (-5 *1 (-807 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-647 (-406 *7))) (-5 *4 (-1 (-639 *6) *7)) - (-5 *5 (-1 (-417 *7) *7)) - (-4 *6 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) - (-4 *7 (-1232 *6)) (-5 *2 (-639 (-406 *7))) (-5 *1 (-807 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-648 *6 (-406 *6))) (-5 *4 (-1 (-639 *5) *6)) - (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) - (-4 *6 (-1232 *5)) (-5 *2 (-639 (-406 *6))) (-5 *1 (-807 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-648 *7 (-406 *7))) (-5 *4 (-1 (-639 *6) *7)) - (-5 *5 (-1 (-417 *7) *7)) - (-4 *6 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) - (-4 *7 (-1232 *6)) (-5 *2 (-639 (-406 *7))) (-5 *1 (-807 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-647 (-406 *5))) (-4 *5 (-1232 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) - (-5 *2 (-639 (-406 *5))) (-5 *1 (-807 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-647 (-406 *6))) (-5 *4 (-1 (-417 *6) *6)) - (-4 *6 (-1232 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) - (-5 *2 (-639 (-406 *6))) (-5 *1 (-807 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-648 *5 (-406 *5))) (-4 *5 (-1232 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) - (-5 *2 (-639 (-406 *5))) (-5 *1 (-807 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-648 *6 (-406 *6))) (-5 *4 (-1 (-417 *6) *6)) - (-4 *6 (-1232 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) - (-5 *2 (-639 (-406 *6))) (-5 *1 (-807 *5 *6))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-554)) (-4 *3 (-171)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -4291 (-639 *1)))) - (-4 *1 (-366 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-452 *3 *4 *5 *6)) - (|:| -4291 (-639 (-452 *3 *4 *5 *6))))) - (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-916)) - (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-639 *6)) - (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5)))) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1193)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) + (-5 *1 (-176 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-5 *2 (-639 (-900 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1092))))) -(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) - (-4 *4 (-845)) (-4 *2 (-554))))) + (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) + (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) + (-4 *3 (-1233 *4)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-544)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-417 *3)) (-4 *3 (-544)) (-4 *3 (-554)))) - ((*1 *2 *1) (-12 (-4 *1 (-544)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-792 *3)) (-4 *3 (-171)) (-4 *3 (-544)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-828 *3)) (-4 *3 (-544)) (-4 *3 (-1092)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-544)) (-4 *3 (-1092)))) + (-12 + (-5 *2 + (-1257 + (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) + (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -2630 (-563)) + (|:| -2865 (-563)) (|:| |spline| (-563)) (|:| -2603 (-563)) + (|:| |axesColor| (-870)) (|:| -3528 (-563)) + (|:| |unitsColor| (-870)) (|:| |showing| (-563))))) + (-5 *1 (-1258))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1151)) (-5 *3 (-563)) (-5 *1 (-241)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-640 (-1151))) (-5 *3 (-563)) (-5 *4 (-1151)) + (-5 *1 (-241)))) + ((*1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) ((*1 *2 *1) - (-12 (-4 *1 (-992 *3)) (-4 *3 (-171)) (-4 *3 (-544)) (-5 *2 (-112)))) + (-12 (-4 *1 (-1235 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045))))) +(((*1 *2 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307))))) +(((*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193)))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1151)) (-4 *1 (-364 *2 *4)) (-4 *2 (-1093)) + (-4 *4 (-1093)))) + ((*1 *1 *2) + (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3548 *3))) + (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-611 *2)) + (-5 *2 (-379)) (-5 *1 (-781 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045)) + (-4 *5 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1003 *3)) (-4 *3 (-1033 (-406 (-562))))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1247 *4)) (-5 *1 (-1249 *4 *2)) - (-4 *4 (-38 (-406 (-562))))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-1256 (-562))) (-5 *3 (-562)) (-5 *1 (-1102)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1256 (-562))) (-5 *3 (-639 (-562))) (-5 *4 (-562)) - (-5 *1 (-1102))))) -(((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171))))) -(((*1 *1) (-5 *1 (-1077)))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1058 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *2 (-845)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) - (-4 *4 (-845))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4403)) (-4 *1 (-34)) (-5 *2 (-766)))) - ((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-128)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) - (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-562)))) - ((*1 *2 *1) - (-12 (-5 *2 (-766)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-1044)) - (-4 *4 (-841))))) + (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555)) + (-4 *4 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-555)) + (-4 *5 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-555)) (-4 *4 (-846)) + (-4 *4 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-555)) + (-4 *5 (-846)) (-4 *5 (-611 *2)) (-5 *2 (-379)) + (-5 *1 (-781 *5))))) +(((*1 *2 *1) (-12 (-5 *1 (-1203 *2)) (-4 *2 (-970))))) +(((*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) + ((*1 *2 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307)))) + ((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)) (-4 *2 (-307)))) + ((*1 *2 *1) (-12 (-4 *1 (-1054)) (-5 *2 (-563))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-917)) (-4 *3 (-363)) + (-14 *4 (-989 *2 *3)))) + ((*1 *1 *1) + (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1233 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-555)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) + ((*1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) + ((*1 *1 *1) (|partial| -4 *1 (-718))) + ((*1 *1 *1) (|partial| -4 *1 (-722))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) + (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) + ((*1 *2 *2 *1) + (|partial| -12 (-4 *1 (-1062 *3 *2)) (-4 *3 (-13 (-844) (-363))) + (-4 *2 (-1233 *3)))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-757)))) (((*1 *2 *1) - (-12 (-5 *2 (-766)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) - (-4 *4 (-1044))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-639 (-315 (-224)))) (-5 *3 (-224)) (-5 *2 (-112)) - (-5 *1 (-209))))) + (-12 (-5 *2 (-640 (-2 (|:| |k| (-1169)) (|:| |c| (-1279 *3))))) + (-5 *1 (-1279 *3)) (-4 *3 (-1045)))) + ((*1 *2 *1) + (-12 (-5 *2 (-640 (-2 (|:| |k| *3) (|:| |c| (-1281 *3 *4))))) + (-5 *1 (-1281 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045))))) (((*1 *2 *3) - (-12 (-5 *3 (-1164 (-562))) (-5 *2 (-562)) (-5 *1 (-937))))) -(((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) - (-4 *3 (-366 *4)))) - ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1223 *3)) (-4 *3 (-1207))))) + (-12 (-5 *3 (-1169)) + (-4 *4 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-800 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1193) (-955)))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1058 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *2 (-845)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) - (-4 *4 (-845))))) -(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-378)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-378)) (-5 *1 (-97))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562)))))) + (-12 (-5 *2 (-563)) (-4 *1 (-646 *3)) (-4 *3 (-1208)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-563)) (-4 *1 (-646 *2)) (-4 *2 (-1208))))) +(((*1 *2 *1) (-12 (-4 *1 (-509 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-846))))) +(((*1 *1) (-5 *1 (-186)))) +(((*1 *1) (-5 *1 (-141)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) +(((*1 *2 *3) + (-12 (-5 *3 (-684 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-205))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) - (-4 *2 (-13 (-429 *3) (-1192)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-451)) (-4 *4 (-845)) (-4 *5 (-788)) (-5 *2 (-639 *6)) - (-5 *1 (-982 *3 *4 *5 *6)) (-4 *6 (-944 *3 *5 *4))))) + (-12 (-4 *3 (-1034 (-563))) (-4 *3 (-13 (-846) (-555))) + (-5 *1 (-32 *3 *2)) (-4 *2 (-430 *3)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-1165 *4)) (-5 *1 (-165 *3 *4)) + (-4 *3 (-166 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-1045)) (-4 *1 (-302)))) + ((*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1165 *3)))) + ((*1 *2) (-12 (-4 *1 (-720 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1233 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1062 *3 *2)) (-4 *3 (-13 (-844) (-363))) + (-4 *2 (-1233 *3))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-112)) (-5 *5 (-684 (-169 (-225)))) + (-5 *2 (-1031)) (-5 *1 (-751))))) +(((*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193)))))) +(((*1 *2 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-640 (-506))) (-5 *1 (-483))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-683 *8)) (-5 *4 (-766)) (-4 *8 (-944 *5 *7 *6)) - (-4 *5 (-13 (-306) (-146))) (-4 *6 (-13 (-845) (-610 (-1168)))) - (-4 *7 (-788)) + (-12 (-5 *3 (-684 *8)) (-4 *8 (-945 *5 *7 *6)) + (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) + (-4 *7 (-789)) (-5 *2 - (-639 - (-2 (|:| |det| *8) (|:| |rows| (-639 (-562))) - (|:| |cols| (-639 (-562)))))) - (-5 *1 (-919 *5 *6 *7 *8))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1192)))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-639 (-887 *3))) (-5 *1 (-887 *3)) - (-4 *3 (-1092))))) -(((*1 *2 *1) (-12 (-5 *2 (-212 4 (-129))) (-5 *1 (-577))))) -(((*1 *2 *3) - (-12 (-5 *3 (-608 *5)) (-4 *5 (-429 *4)) (-4 *4 (-1033 (-562))) - (-4 *4 (-13 (-845) (-554))) (-5 *2 (-1164 *5)) (-5 *1 (-32 *4 *5)))) + (-640 + (-2 (|:| |eqzro| (-640 *8)) (|:| |neqzro| (-640 *8)) + (|:| |wcond| (-640 (-948 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1257 (-407 (-948 *5)))) + (|:| -4315 (-640 (-1257 (-407 (-948 *5)))))))))) + (-5 *1 (-920 *5 *6 *7 *8)) (-5 *4 (-640 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-684 *8)) (-5 *4 (-640 (-1169))) (-4 *8 (-945 *5 *7 *6)) + (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) + (-4 *7 (-789)) + (-5 *2 + (-640 + (-2 (|:| |eqzro| (-640 *8)) (|:| |neqzro| (-640 *8)) + (|:| |wcond| (-640 (-948 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1257 (-407 (-948 *5)))) + (|:| -4315 (-640 (-1257 (-407 (-948 *5)))))))))) + (-5 *1 (-920 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-608 *1)) (-4 *1 (-1044)) (-4 *1 (-301)) - (-5 *2 (-1164 *1))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-916)) (-5 *2 (-1164 *3)) (-5 *1 (-1181 *3)) - (-4 *3 (-362))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-562)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-766)) (-4 *5 (-171)))) - ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-562)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-766)) (-4 *5 (-171)))) - ((*1 *2 *2 *3) - (-12 + (-12 (-5 *3 (-684 *7)) (-4 *7 (-945 *4 *6 *5)) + (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) + (-4 *6 (-789)) (-5 *2 - (-503 (-406 (-562)) (-239 *5 (-766)) (-859 *4) - (-246 *4 (-406 (-562))))) - (-5 *3 (-639 (-859 *4))) (-14 *4 (-639 (-1168))) (-14 *5 (-766)) - (-5 *1 (-504 *4 *5))))) -(((*1 *2 *1) - (-12 + (-640 + (-2 (|:| |eqzro| (-640 *7)) (|:| |neqzro| (-640 *7)) + (|:| |wcond| (-640 (-948 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1257 (-407 (-948 *4)))) + (|:| -4315 (-640 (-1257 (-407 (-948 *4)))))))))) + (-5 *1 (-920 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-684 *9)) (-5 *5 (-917)) (-4 *9 (-945 *6 *8 *7)) + (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-611 (-1169)))) + (-4 *8 (-789)) (-5 *2 - (-3 (|:| |nullBranch| "null") - (|:| |assignmentBranch| - (-2 (|:| |var| (-1168)) - (|:| |arrayIndex| (-639 (-947 (-562)))) - (|:| |rand| - (-2 (|:| |ints2Floats?| (-112)) (|:| -2400 (-857)))))) - (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1168)) (|:| |rand| (-857)) - (|:| |ints2Floats?| (-112)))) - (|:| |conditionalBranch| - (-2 (|:| |switch| (-1167)) (|:| |thenClause| (-329)) - (|:| |elseClause| (-329)))) - (|:| |returnBranch| - (-2 (|:| -3087 (-112)) - (|:| -2533 - (-2 (|:| |ints2Floats?| (-112)) (|:| -2400 (-857)))))) - (|:| |blockBranch| (-639 (-329))) - (|:| |commentBranch| (-639 (-1150))) (|:| |callBranch| (-1150)) - (|:| |forBranch| - (-2 (|:| -2147 (-1084 (-947 (-562)))) - (|:| |span| (-947 (-562))) (|:| -3265 (-329)))) - (|:| |labelBranch| (-1112)) - (|:| |loopBranch| (-2 (|:| |switch| (-1167)) (|:| -3265 (-329)))) - (|:| |commonBranch| - (-2 (|:| -3253 (-1168)) (|:| |contents| (-639 (-1168))))) - (|:| |printBranch| (-639 (-857))))) - (-5 *1 (-329))))) -(((*1 *2) - (-12 (-5 *2 (-1261)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-1092)) - (-4 *4 (-1092))))) -(((*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-329))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4)) - (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-406 *6))) - (-4 *8 (-341 *5 *6 *7)) - (-4 *4 (-13 (-845) (-554) (-1033 (-562)))) - (-5 *2 (-2 (|:| -1993 (-766)) (|:| -1407 *8))) - (-5 *1 (-906 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-335 (-406 (-562)) *4 *5 *6)) - (-4 *4 (-1232 (-406 (-562)))) (-4 *5 (-1232 (-406 *4))) - (-4 *6 (-341 (-406 (-562)) *4 *5)) - (-5 *2 (-2 (|:| -1993 (-766)) (|:| -1407 *6))) - (-5 *1 (-907 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) -(((*1 *2 *3) - (-12 (-5 *2 (-417 (-1164 *1))) (-5 *1 (-315 *4)) (-5 *3 (-1164 *1)) - (-4 *4 (-451)) (-4 *4 (-554)) (-4 *4 (-845)))) - ((*1 *2 *3) - (-12 (-4 *1 (-904)) (-5 *2 (-417 (-1164 *1))) (-5 *3 (-1164 *1))))) -(((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-845)) (-5 *1 (-483 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1096)) (-5 *3 (-769)) (-5 *1 (-52))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-683 (-406 (-947 (-562))))) - (-5 *2 (-683 (-315 (-562)))) (-5 *1 (-1026))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-535))) (-5 *1 (-535))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-554)) - (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) - (-5 *1 (-972 *4 *5 *6 *7))))) -(((*1 *1) (-5 *1 (-576))) - ((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-858)))) - ((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1261)) (-5 *1 (-858)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1150)) (-5 *4 (-857)) (-5 *2 (-1261)) (-5 *1 (-858)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-562)) (-5 *2 (-1261)) (-5 *1 (-1148 *4)) - (-4 *4 (-1092)) (-4 *4 (-1207))))) -(((*1 *1 *1 *1) (-4 *1 (-301))) ((*1 *1 *1) (-4 *1 (-301)))) -(((*1 *2 *1) - (-12 (-5 *2 (-868 (-961 *3) (-961 *3))) (-5 *1 (-961 *3)) - (-4 *3 (-962))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) -(((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-608 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1168))) - (-4 *2 (-13 (-429 *5) (-27) (-1192))) - (-4 *5 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) - (-5 *1 (-564 *5 *2 *6)) (-4 *6 (-1092))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1168)) (-5 *6 (-112)) - (-4 *7 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) - (-4 *3 (-13 (-1192) (-954) (-29 *7))) + (-640 + (-2 (|:| |eqzro| (-640 *9)) (|:| |neqzro| (-640 *9)) + (|:| |wcond| (-640 (-948 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1257 (-407 (-948 *6)))) + (|:| -4315 (-640 (-1257 (-407 (-948 *6)))))))))) + (-5 *1 (-920 *6 *7 *8 *9)) (-5 *4 (-640 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-684 *9)) (-5 *4 (-640 (-1169))) (-5 *5 (-917)) + (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) + (-4 *7 (-13 (-846) (-611 (-1169)))) (-4 *8 (-789)) (-5 *2 - (-3 (|:| |f1| (-838 *3)) (|:| |f2| (-639 (-838 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-218 *7 *3)) (-5 *5 (-838 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-554) (-845) (-1033 (-562)))) (-5 *1 (-187 *3 *2)) - (-4 *2 (-13 (-27) (-1192) (-429 (-168 *3)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *3)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *1 (-878))))) -(((*1 *2 *3) - (-12 (-4 *2 (-1232 *4)) (-5 *1 (-804 *4 *2 *3 *5)) - (-4 *4 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *3 (-650 *2)) - (-4 *5 (-650 (-406 *2)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1256 (-766))) (-5 *1 (-669 *3)) (-4 *3 (-1092))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-766)) (-4 *5 (-348)) (-4 *6 (-1232 *5)) + (-640 + (-2 (|:| |eqzro| (-640 *9)) (|:| |neqzro| (-640 *9)) + (|:| |wcond| (-640 (-948 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1257 (-407 (-948 *6)))) + (|:| -4315 (-640 (-1257 (-407 (-948 *6)))))))))) + (-5 *1 (-920 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-684 *8)) (-5 *4 (-917)) (-4 *8 (-945 *5 *7 *6)) + (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) + (-4 *7 (-789)) (-5 *2 - (-639 - (-2 (|:| -4291 (-683 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-683 *6))))) - (-5 *1 (-497 *5 *6 *7)) - (-5 *3 - (-2 (|:| -4291 (-683 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-683 *6)))) - (-4 *7 (-1232 *6))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) - (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) - (-5 *1 (-1269 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-639 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-554)) - (-4 *6 (-788)) (-4 *7 (-845)) (-5 *1 (-1269 *5 *6 *7 *8))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1207)) (-5 *1 (-1124 *4 *2)) - (-4 *2 (-13 (-600 (-562) *4) (-10 -7 (-6 -4403) (-6 -4404)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-845)) (-4 *3 (-1207)) (-5 *1 (-1124 *3 *2)) - (-4 *2 (-13 (-600 (-562) *3) (-10 -7 (-6 -4403) (-6 -4404))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-683 *1)) (-5 *4 (-1256 *1)) (-4 *1 (-635 *5)) - (-4 *5 (-1044)) - (-5 *2 (-2 (|:| -1767 (-683 *5)) (|:| |vec| (-1256 *5)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-683 *1)) (-4 *1 (-635 *4)) (-4 *4 (-1044)) - (-5 *2 (-683 *4))))) -(((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-639 (-639 (-938 (-224))))) (-5 *3 (-639 (-869))) - (-5 *4 (-639 (-916))) (-5 *5 (-639 (-262))) (-5 *1 (-467)))) - ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-639 (-639 (-938 (-224))))) (-5 *3 (-639 (-869))) - (-5 *4 (-639 (-916))) (-5 *1 (-467)))) - ((*1 *1 *2) (-12 (-5 *2 (-639 (-639 (-938 (-224))))) (-5 *1 (-467)))) - ((*1 *1 *1) (-5 *1 (-467)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-1168))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *5 (-845)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-855)) (-5 *3 (-128)) (-5 *2 (-766))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-788)) - (-4 *3 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $))))) (-4 *5 (-554)) - (-5 *1 (-727 *4 *3 *5 *2)) (-4 *2 (-944 (-406 (-947 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1044)) (-4 *5 (-788)) - (-4 *3 - (-13 (-845) - (-10 -8 (-15 -4208 ((-1168) $)) - (-15 -2443 ((-3 $ "failed") (-1168)))))) - (-5 *1 (-979 *4 *5 *3 *2)) (-4 *2 (-944 (-947 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-639 *6)) - (-4 *6 - (-13 (-845) - (-10 -8 (-15 -4208 ((-1168) $)) - (-15 -2443 ((-3 $ "failed") (-1168)))))) - (-4 *4 (-1044)) (-4 *5 (-788)) (-5 *1 (-979 *4 *5 *6 *2)) - (-4 *2 (-944 (-947 *4) *5 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-559)) (-5 *3 (-562)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1164 (-406 (-562)))) (-5 *1 (-937)) (-5 *3 (-562))))) + (-640 + (-2 (|:| |eqzro| (-640 *8)) (|:| |neqzro| (-640 *8)) + (|:| |wcond| (-640 (-948 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1257 (-407 (-948 *5)))) + (|:| -4315 (-640 (-1257 (-407 (-948 *5)))))))))) + (-5 *1 (-920 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-684 *9)) (-5 *4 (-640 *9)) (-5 *5 (-1151)) + (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) + (-4 *7 (-13 (-846) (-611 (-1169)))) (-4 *8 (-789)) (-5 *2 (-563)) + (-5 *1 (-920 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-684 *9)) (-5 *4 (-640 (-1169))) (-5 *5 (-1151)) + (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) + (-4 *7 (-13 (-846) (-611 (-1169)))) (-4 *8 (-789)) (-5 *2 (-563)) + (-5 *1 (-920 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-684 *8)) (-5 *4 (-1151)) (-4 *8 (-945 *5 *7 *6)) + (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) + (-4 *7 (-789)) (-5 *2 (-563)) (-5 *1 (-920 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-684 *10)) (-5 *4 (-640 *10)) (-5 *5 (-917)) + (-5 *6 (-1151)) (-4 *10 (-945 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) + (-4 *8 (-13 (-846) (-611 (-1169)))) (-4 *9 (-789)) (-5 *2 (-563)) + (-5 *1 (-920 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-684 *10)) (-5 *4 (-640 (-1169))) (-5 *5 (-917)) + (-5 *6 (-1151)) (-4 *10 (-945 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) + (-4 *8 (-13 (-846) (-611 (-1169)))) (-4 *9 (-789)) (-5 *2 (-563)) + (-5 *1 (-920 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-684 *9)) (-5 *4 (-917)) (-5 *5 (-1151)) + (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) + (-4 *7 (-13 (-846) (-611 (-1169)))) (-4 *8 (-789)) (-5 *2 (-563)) + (-5 *1 (-920 *6 *7 *8 *9))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1165 *1)) (-4 *1 (-452)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1165 *6)) (-4 *6 (-945 *5 *3 *4)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *5 (-905)) (-5 *1 (-457 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1165 *1)) (-4 *1 (-905))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562)))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) - (-5 *1 (-747))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-1150)) (-5 *1 (-97)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-378)) (-5 *3 (-1150)) (-5 *1 (-97))))) -(((*1 *2 *2) (-12 (-5 *2 (-315 (-224))) (-5 *1 (-209))))) + (-12 (-5 *4 (-563)) (-5 *2 (-640 (-2 (|:| -2174 *3) (|:| -4167 *4)))) + (-5 *1 (-691 *3)) (-4 *3 (-1233 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259))))) +(((*1 *1 *2 *3 *1 *3) + (-12 (-5 *2 (-888 *4)) (-4 *4 (-1093)) (-5 *1 (-885 *4 *3)) + (-4 *3 (-1093))))) +(((*1 *1) (-5 *1 (-186)))) +(((*1 *1 *1) (-4 *1 (-656)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1257 (-1257 *4))) (-4 *4 (-1045)) (-5 *2 (-684 *4)) + (-5 *1 (-1025 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-788)) - (-4 *7 (-845)) (-4 *8 (-1058 *5 *6 *7)) (-5 *2 (-639 *3)) - (-5 *1 (-588 *5 *6 *7 *8 *3)) (-4 *3 (-1101 *5 *6 *7 *8)))) + (-12 (-5 *3 (-640 (-563))) (-5 *4 (-901 (-563))) + (-5 *2 (-684 (-563))) (-5 *1 (-588)))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 (-563))) (-5 *2 (-640 (-684 (-563)))) + (-5 *1 (-588)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) + (-12 (-5 *3 (-640 (-563))) (-5 *4 (-640 (-901 (-563)))) + (-5 *2 (-640 (-684 (-563)))) (-5 *1 (-588))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1217 *3))))) +(((*1 *2 *1) + (-12 (-4 *3 (-233)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) + (-4 *6 (-789)) (-5 *2 (-1 *1 (-767))) (-4 *1 (-253 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789)) + (-5 *2 (-1 *1 (-767))) (-4 *1 (-253 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-266 *2)) (-4 *2 (-846))))) +(((*1 *2 *1) (-12 (-5 *1 (-962 *2)) (-4 *2 (-963))))) +(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-327 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-516 *3 *4)) + (-14 *4 (-563))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1233 *6)) + (-4 *6 (-13 (-363) (-147) (-1034 *4))) (-5 *4 (-563)) (-5 *2 - (-639 (-2 (|:| -1333 (-1164 *5)) (|:| -2205 (-639 (-947 *5)))))) - (-5 *1 (-1070 *5 *6)) (-5 *3 (-639 (-947 *5))) - (-14 *6 (-639 (-1168))))) + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) + (|:| -1420 + (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) + (|:| |beta| *3))))) + (-5 *1 (-1011 *6 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-4 *5 (-430 *4)) + (-5 *2 (-418 *3)) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1233 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1169)) (-4 *5 (-1212)) (-4 *6 (-1233 *5)) + (-4 *7 (-1233 (-407 *6))) (-5 *2 (-640 (-948 *5))) + (-5 *1 (-341 *4 *5 *6 *7)) (-4 *4 (-342 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-306) (-146))) - (-5 *2 - (-639 (-2 (|:| -1333 (-1164 *4)) (|:| -2205 (-639 (-947 *4)))))) - (-5 *1 (-1070 *4 *5)) (-5 *3 (-639 (-947 *4))) - (-14 *5 (-639 (-1168))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) - (-5 *2 - (-639 (-2 (|:| -1333 (-1164 *5)) (|:| -2205 (-639 (-947 *5)))))) - (-5 *1 (-1070 *5 *6)) (-5 *3 (-639 (-947 *5))) - (-14 *6 (-639 (-1168)))))) -(((*1 *1) (-5 *1 (-143))) ((*1 *1 *1) (-5 *1 (-857)))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-639 *4)) (-4 *4 (-362)) (-4 *2 (-1232 *4)) - (-5 *1 (-917 *4 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) -(((*1 *2 *1) (-12 (-5 *2 (-639 (-1173))) (-5 *1 (-182))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-643 *2 *3 *4)) (-4 *2 (-1092)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-916)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) - ((*1 *1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-262))))) + (-12 (-5 *3 (-1169)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1212)) + (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) (-4 *4 (-363)) + (-5 *2 (-640 (-948 *4)))))) +(((*1 *1) (-5 *1 (-186)))) (((*1 *1 *2) - (-12 (-5 *2 (-639 (-562))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1044)) - (-14 *4 (-639 (-1168))))) + (-12 (-5 *2 (-640 (-563))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) + (-14 *4 (-640 (-1169))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997))))) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) - (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) - ((*1 *1 *1) (-4 *1 (-283))) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *1 *1) (-4 *1 (-284))) ((*1 *1 *1) - (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) - (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) + (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) ((*1 *1 *2) - (-12 (-5 *2 (-658 *3 *4)) (-4 *3 (-845)) - (-4 *4 (-13 (-171) (-712 (-406 (-562))))) (-5 *1 (-623 *3 *4 *5)) - (-14 *5 (-916)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1153 *3)))) + (-12 (-5 *2 (-659 *3 *4)) (-4 *3 (-846)) + (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-5 *1 (-624 *3 *4 *5)) + (-14 *5 (-917)))) ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1155 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-766)) (-4 *4 (-13 (-1044) (-712 (-406 (-562))))) - (-4 *5 (-845)) (-5 *1 (-1272 *4 *5 *2)) (-4 *2 (-1277 *5 *4)))) + (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-563))))) + (-4 *5 (-846)) (-5 *1 (-1273 *4 *5 *2)) (-4 *2 (-1278 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-766)) (-5 *1 (-1276 *3 *4)) - (-4 *4 (-712 (-406 (-562)))) (-4 *3 (-845)) (-4 *4 (-171))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1150)) (-5 *4 (-562)) (-5 *5 (-683 (-168 (-224)))) - (-5 *2 (-1030)) (-5 *1 (-749))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -4066 (-562)) (|:| -2656 (-639 *3)))) - (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562)))))) + (-12 (-5 *2 (-767)) (-5 *1 (-1277 *3 *4)) + (-4 *4 (-713 (-407 (-563)))) (-4 *3 (-846)) (-4 *4 (-172))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-640 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) + (-14 *4 (-640 (-1169))) (-4 *5 (-452)) (-5 *1 (-628 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-608 *4)) (-5 *1 (-607 *3 *4)) (-4 *3 (-845)) - (-4 *4 (-845))))) + (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-417 *4))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-1149 (-2 (|:| |k| (-563)) (|:| |c| *6)))) + (-5 *4 (-1022 (-839 (-563)))) (-5 *5 (-1169)) (-5 *7 (-407 (-563))) + (-4 *6 (-1045)) (-5 *2 (-858)) (-5 *1 (-593 *6))))) +(((*1 *1 *1 *1) (-4 *1 (-545)))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-639 (-378))) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-639 (-378))) (-5 *1 (-467)))) - ((*1 *2 *1) (-12 (-5 *2 (-639 (-378))) (-5 *1 (-467)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-916)) (-5 *4 (-869)) (-5 *2 (-1261)) (-5 *1 (-1257)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-916)) (-5 *4 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1257))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-554)) - (-4 *6 (-788)) (-4 *7 (-845)) - (-5 *2 (-2 (|:| |goodPols| (-639 *8)) (|:| |badPols| (-639 *8)))) - (-5 *1 (-972 *5 *6 *7 *8)) (-5 *4 (-639 *8))))) -(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258)))) - ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258))))) -(((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-417 *3)) (-4 *3 (-554)))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 (-2 (|:| -1635 *4) (|:| -2250 (-562))))) - (-4 *4 (-1232 (-562))) (-5 *2 (-766)) (-5 *1 (-441 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) -(((*1 *2 *3) - (-12 (-14 *4 (-639 (-1168))) (-14 *5 (-766)) - (-5 *2 - (-639 - (-503 (-406 (-562)) (-239 *5 (-766)) (-859 *4) - (-246 *4 (-406 (-562)))))) - (-5 *1 (-504 *4 *5)) - (-5 *3 - (-503 (-406 (-562)) (-239 *5 (-766)) (-859 *4) - (-246 *4 (-406 (-562)))))))) + (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *3 (-640 (-563))) + (-5 *1 (-879))))) (((*1 *2 *3) + (-12 (-5 *3 (-640 *2)) (-4 *2 (-1233 *4)) (-5 *1 (-539 *4 *2 *5 *6)) + (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-767)))))) +(((*1 *2 *3 *1) (-12 - (-5 *3 - (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) - (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))) (-5 *2 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-191))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-608 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1168))) (-5 *5 (-1164 *2)) - (-4 *2 (-13 (-429 *6) (-27) (-1192))) - (-4 *6 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) - (-5 *1 (-558 *6 *2 *7)) (-4 *7 (-1092)))) - ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-608 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1168))) - (-5 *5 (-406 (-1164 *2))) (-4 *2 (-13 (-429 *6) (-27) (-1192))) - (-4 *6 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) - (-5 *1 (-558 *6 *2 *7)) (-4 *7 (-1092))))) -(((*1 *2 *3) - (-12 (-5 *3 (-916)) (-5 *2 (-1256 (-1256 (-562)))) (-5 *1 (-465))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-562)) (-5 *2 (-1261)) (-5 *1 (-899 *4)) - (-4 *4 (-1092)))) - ((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-899 *3)) (-4 *3 (-1092))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-639 *3)) (-5 *1 (-964 *4 *3)) - (-4 *3 (-1232 *4))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *5 (-845)) (-5 *2 (-112))))) + (-2 (|:| |cycle?| (-112)) (|:| -3246 (-767)) (|:| |period| (-767)))) + (-5 *1 (-1149 *4)) (-4 *4 (-1208)) (-5 *3 (-767))))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) + (-12 (-5 *4 (-563)) + (-5 *6 + (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -1333 (-379)))) + (-5 *7 (-1 (-1262) (-1257 *5) (-1257 *5) (-379))) + (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262)) + (-5 *1 (-784)))) + ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) + (-12 (-5 *4 (-563)) + (-5 *6 + (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -1333 (-379)))) + (-5 *7 (-1 (-1262) (-1257 *5) (-1257 *5) (-379))) + (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262)) + (-5 *1 (-784))))) +(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-133)))) + ((*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-161)))) + ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-218)))) + ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-671)))) + ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1015)))) + ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1060)))) + ((*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-1089))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1126 (-225))) (-5 *3 (-640 (-263))) (-5 *1 (-1259)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1126 (-225))) (-5 *3 (-1151)) (-5 *1 (-1259)))) + ((*1 *1 *1) (-5 *1 (-1259)))) +(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) + (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031)) + (-5 *1 (-744))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1043))))) (((*1 *2 *3) - (-12 (-5 *3 (-947 (-224))) (-5 *2 (-315 (-378))) (-5 *1 (-304))))) -(((*1 *2 *1) - (-12 (-5 *2 (-857)) (-5 *1 (-1148 *3)) (-4 *3 (-1092)) - (-4 *3 (-1207))))) -(((*1 *2 *1) - (-12 (-5 *2 (-639 (-562))) (-5 *1 (-999 *3)) (-14 *3 (-562))))) -(((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-1076 *3)) (-4 *3 (-131))))) -(((*1 *1 *1) (-4 *1 (-1053)))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-683 (-562))) (-5 *5 (-112)) (-5 *7 (-683 (-224))) - (-5 *3 (-562)) (-5 *6 (-224)) (-5 *2 (-1030)) (-5 *1 (-749))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1232 *3)) (-5 *1 (-398 *3 *2)) - (-4 *3 (-13 (-362) (-146)))))) + (-12 (-5 *3 (-1257 (-640 (-2 (|:| -2619 *4) (|:| -2555 (-1113)))))) + (-4 *4 (-349)) (-5 *2 (-767)) (-5 *1 (-346 *4)))) + ((*1 *2) + (-12 (-5 *2 (-767)) (-5 *1 (-351 *3 *4)) (-14 *3 (-917)) + (-14 *4 (-917)))) + ((*1 *2) + (-12 (-5 *2 (-767)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) + (-14 *4 + (-3 (-1165 *3) + (-1257 (-640 (-2 (|:| -2619 *3) (|:| -2555 (-1113))))))))) + ((*1 *2) + (-12 (-5 *2 (-767)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) + (-14 *4 (-917))))) +(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1260))))) (((*1 *2 *1) - (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-554)) - (-5 *2 (-1164 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262))))) -(((*1 *1) (-5 *1 (-185)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1247 *4)) - (-4 *4 (-38 (-406 (-562)))) - (-5 *2 (-1 (-1148 *4) (-1148 *4) (-1148 *4))) (-5 *1 (-1249 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1150)) (-5 *1 (-781))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-1150)) (-5 *5 (-683 (-224))) - (-5 *2 (-1030)) (-5 *1 (-742))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-5 *3 (-562)) (-5 *2 (-112)) (-5 *1 (-479))))) -(((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-562)) (-5 *1 (-1148 *3)) (-4 *3 (-1207)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4404)) (-4 *1 (-1244 *2)) (-4 *2 (-1207))))) -(((*1 *2 *1 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-306)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3147 *1))) - (-4 *1 (-306))))) + (-12 (-5 *2 (-2 (|:| |var| (-640 (-1169))) (|:| |pred| (-52)))) + (-5 *1 (-888 *3)) (-4 *3 (-1093))))) (((*1 *2 *3) - (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *7 (-1058 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-639 *7)) (|:| |badPols| (-639 *7)))) - (-5 *1 (-972 *4 *5 *6 *7)) (-5 *3 (-639 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-562))) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *7 (-554)) (-4 *8 (-944 *7 *5 *6)) - (-5 *2 (-2 (|:| -1300 (-766)) (|:| -4221 *9) (|:| |radicand| *9))) - (-5 *1 (-948 *5 *6 *7 *8 *9)) (-5 *4 (-766)) - (-4 *9 - (-13 (-362) - (-10 -8 (-15 -4053 ($ *8)) (-15 -4063 (*8 $)) (-15 -4079 (*8 $)))))))) -(((*1 *1 *2) (-12 (-5 *1 (-1021 *2)) (-4 *2 (-1207))))) -(((*1 *1) (-5 *1 (-185)))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1150)) (-5 *2 (-769)) (-5 *1 (-114)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1096)) (-5 *1 (-960))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-766)) (-5 *1 (-851 *2)) (-4 *2 (-171))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-362)) (-4 *3 (-1044)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3147 *1))) - (-4 *1 (-847 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) - (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-683 *3)) (-4 *3 (-306)) (-5 *1 (-694 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1188))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-562)) (-5 *3 (-916)) (-5 *1 (-693)))) - ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-683 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) - (-4 *5 (-362)) (-5 *1 (-973 *5))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-766)) (-5 *1 (-851 *2)) (-4 *2 (-171)))) - ((*1 *2 *3 *3 *2) - (-12 (-5 *3 (-766)) (-5 *1 (-851 *2)) (-4 *2 (-171))))) -(((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-683 (-224))) (-5 *5 (-683 (-562))) (-5 *3 (-562)) - (-5 *2 (-1030)) (-5 *1 (-749))))) -(((*1 *2 *1) - (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1092))))) -(((*1 *1) (-5 *1 (-185)))) -(((*1 *2 *1) - (-12 (-4 *3 (-1044)) (-5 *2 (-639 *1)) (-4 *1 (-1126 *3))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1256 *4)) (-5 *3 (-1112)) (-4 *4 (-348)) - (-5 *1 (-527 *4))))) -(((*1 *1) (-5 *1 (-156))) - ((*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-23))))) -(((*1 *1 *1 *2) - (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) - (-5 *1 (-503 *3 *4 *5 *2)) (-4 *2 (-944 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-362)) (-4 *3 (-788)) (-4 *4 (-845)) - (-5 *1 (-503 *2 *3 *4 *5)) (-4 *5 (-944 *2 *3 *4))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-766)) (-5 *3 (-938 *5)) (-4 *5 (-1044)) - (-5 *1 (-1156 *4 *5)) (-14 *4 (-916)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-639 (-766))) (-5 *3 (-766)) (-5 *1 (-1156 *4 *5)) - (-14 *4 (-916)) (-4 *5 (-1044)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-639 (-766))) (-5 *3 (-938 *5)) (-4 *5 (-1044)) - (-5 *1 (-1156 *4 *5)) (-14 *4 (-916))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-766)) (-4 *6 (-1092)) (-4 *7 (-895 *6)) - (-5 *2 (-683 *7)) (-5 *1 (-686 *6 *7 *3 *4)) (-4 *3 (-372 *7)) - (-4 *4 (-13 (-372 *6) (-10 -7 (-6 -4403))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-554) (-146))) (-5 *1 (-536 *3 *2)) - (-4 *2 (-1247 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-362) (-367) (-610 (-562)))) (-4 *4 (-1232 *3)) - (-4 *5 (-719 *3 *4)) (-5 *1 (-540 *3 *4 *5 *2)) (-4 *2 (-1247 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-362) (-367) (-610 (-562)))) (-5 *1 (-541 *3 *2)) - (-4 *2 (-1247 *3)))) + (-12 (-5 *3 (-1257 (-316 (-225)))) (-5 *2 (-1257 (-316 (-379)))) + (-5 *1 (-305))))) +(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-546)))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 (-767) *2)) (-5 *4 (-767)) (-4 *2 (-1093)) + (-5 *1 (-673 *2)))) ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-13 (-554) (-146))) - (-5 *1 (-1144 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))) - ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-466)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-466))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-641 *3)) (-4 *3 (-1092))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092))))) -(((*1 *2 *3) - (-12 (-4 *4 (-348)) (-4 *5 (-328 *4)) (-4 *6 (-1232 *5)) - (-5 *2 (-639 *3)) (-5 *1 (-772 *4 *5 *6 *3 *7)) (-4 *3 (-1232 *6)) - (-14 *7 (-916))))) -(((*1 *2 *1) (-12 (-5 *1 (-1202 *2)) (-4 *2 (-969))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1033 (-562))) (-4 *3 (-13 (-845) (-554))) - (-5 *1 (-32 *3 *2)) (-4 *2 (-429 *3)))) - ((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-1164 *4)) (-5 *1 (-164 *3 *4)) - (-4 *3 (-165 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-1044)) (-4 *1 (-301)))) - ((*1 *2) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1164 *3)))) - ((*1 *2) (-12 (-4 *1 (-719 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1232 *3)))) + (-12 (-5 *2 (-1 *3 (-767) *3)) (-4 *3 (-1093)) (-5 *1 (-677 *3))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4) + (-247 *4 (-407 (-563))))) + (-14 *4 (-640 (-1169))) (-14 *5 (-767)) (-5 *2 (-112)) + (-5 *1 (-505 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-96)))) + ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-114)))) ((*1 *2 *1) - (-12 (-4 *1 (-1061 *3 *2)) (-4 *3 (-13 (-843) (-362))) - (-4 *2 (-1232 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1239 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-1216 *3))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1148 (-2 (|:| |k| (-562)) (|:| |c| *6)))) - (-5 *4 (-1021 (-838 (-562)))) (-5 *5 (-1168)) (-5 *7 (-406 (-562))) - (-4 *6 (-1044)) (-5 *2 (-857)) (-5 *1 (-592 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-639 (-1168))) (|:| |pred| (-52)))) - (-5 *1 (-887 *3)) (-4 *3 (-1092))))) + (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1093)) (-4 *2 (-1093)))) + ((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1151)))) + ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-438 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-483)))) + ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-609 *3)) (-4 *3 (-846)))) + ((*1 *2 *1) (-12 (-4 *1 (-831 *2)) (-4 *2 (-1093)))) + ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-861)))) + ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-961)))) + ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1068 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1108)))) + ((*1 *1 *1) (-5 *1 (-1169)))) +(((*1 *2 *1 *1 *3) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1093) (-34))) + (-5 *2 (-112)) (-5 *1 (-1133 *4 *5)) (-4 *4 (-13 (-1093) (-34)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1208)) (-5 *1 (-375 *4 *2)) + (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4408))))))) +(((*1 *2 *1) (-12 (-5 *2 (-640 (-939 (-225)))) (-5 *1 (-1258))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-585 *2)) (-4 *2 (-545))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1045)) (-5 *2 (-563)) (-5 *1 (-443 *4 *3 *5)) + (-4 *3 (-1233 *4)) + (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1193) (-284)))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259))))) (((*1 *2 *3) - (-12 (-4 *4 (-1044)) (-5 *2 (-562)) (-5 *1 (-442 *4 *3 *5)) - (-4 *3 (-1232 *4)) - (-4 *5 (-13 (-403) (-1033 *4) (-362) (-1192) (-283)))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-766)) (-4 *4 (-13 (-554) (-146))) - (-5 *1 (-1226 *4 *2)) (-4 *2 (-1232 *4))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) - (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) - (-5 *1 (-1269 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-639 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1058 *5 *6 *7)) (-4 *5 (-554)) - (-4 *6 (-788)) (-4 *7 (-845)) (-5 *1 (-1269 *5 *6 *7 *8))))) -(((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1207))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-684 *3)))) - ((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-684 *3))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1248 *4)) + (-4 *4 (-38 (-407 (-563)))) (-5 *2 (-1 (-1149 *4) (-1149 *4))) + (-5 *1 (-1250 *4 *5))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1164 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3))))) + (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) + (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *3)) + (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-640 *3)) (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-555)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) + (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 (-640 *7) (-640 *7))) (-5 *2 (-640 *7)) + (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-555)) (-4 *5 (-789)) + (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-146)) - (-4 *3 (-306)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) - (-5 *1 (-972 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-184)) (-5 *2 (-639 (-860)))))) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1249 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) + (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *1 *1) (-4 *1 (-1132)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-819)) (-5 *2 (-1262)) (-5 *1 (-818))))) +(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) + (-5 *1 (-751))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-767)) (-4 *4 (-13 (-555) (-147))) + (-5 *1 (-1227 *4 *2)) (-4 *2 (-1233 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) + (-5 *1 (-437))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) + (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) + (-5 *2 (-1031)) (-5 *1 (-746))))) +(((*1 *1 *2) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-108)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-536))) (-5 *1 (-536))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1169)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-697 *4 *5 *6 *7)) + (-4 *4 (-611 (-536))) (-4 *5 (-1208)) (-4 *6 (-1208)) + (-4 *7 (-1208))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1165 *7)) (-4 *5 (-1045)) + (-4 *7 (-1045)) (-4 *2 (-1233 *5)) (-5 *1 (-501 *5 *2 *6 *7)) + (-4 *6 (-1233 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1045)) (-4 *7 (-1045)) + (-4 *4 (-1233 *5)) (-5 *2 (-1165 *7)) (-5 *1 (-501 *5 *4 *6 *7)) + (-4 *6 (-1233 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-938 *3) (-938 *3))) (-5 *1 (-175 *3)) - (-4 *3 (-13 (-362) (-1192) (-997)))))) + (-12 (-5 *3 (-684 *2)) (-4 *4 (-1233 *2)) + (-4 *2 (-13 (-307) (-10 -8 (-15 -3205 ((-418 $) $))))) + (-5 *1 (-499 *2 *4 *5)) (-4 *5 (-409 *2 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) + (-4 *5 (-238 *3 *2)) (-4 *2 (-1045))))) +(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-782))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) (((*1 *2 *3) - (-12 (-4 *4 (-554)) (-4 *5 (-987 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-141 *4 *5 *3)) - (-4 *3 (-372 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-554)) (-4 *5 (-987 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) - (-5 *1 (-502 *4 *5 *6 *3)) (-4 *6 (-372 *4)) (-4 *3 (-372 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-683 *5)) (-4 *5 (-987 *4)) (-4 *4 (-554)) - (-5 *2 (-2 (|:| |num| (-683 *4)) (|:| |den| *4))) - (-5 *1 (-687 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-362) (-146) (-1033 (-406 (-562))))) - (-4 *6 (-1232 *5)) - (-5 *2 (-2 (|:| -3339 *7) (|:| |rh| (-639 (-406 *6))))) - (-5 *1 (-802 *5 *6 *7 *3)) (-5 *4 (-639 (-406 *6))) - (-4 *7 (-650 *6)) (-4 *3 (-650 (-406 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-554)) (-4 *5 (-987 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1225 *4 *5 *3)) - (-4 *3 (-1232 *5))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1218 *3 *2)) (-4 *3 (-1044)) - (-4 *2 (-1247 *3))))) + (-12 (-5 *3 (-563)) (|has| *1 (-6 -4398)) (-4 *1 (-404)) + (-5 *2 (-917))))) (((*1 *1 *2) - (-12 (-5 *2 (-1271 (-1168) *3)) (-4 *3 (-1044)) (-5 *1 (-1278 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1271 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) - (-5 *1 (-1280 *3 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-378)))) - ((*1 *1 *1 *1) (-4 *1 (-544))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-362)))) - ((*1 *1 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-362)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-766))))) -(((*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1 (-378))) (-5 *1 (-1035))))) -(((*1 *2 *3) - (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) - ((*1 *2) (-12 (-5 *2 (-899 (-562))) (-5 *1 (-912))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) - (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-63 LSFUN2)))) - (-5 *2 (-1030)) (-5 *1 (-748))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-766)) (-4 *2 (-1092)) - (-5 *1 (-672 *2))))) -(((*1 *1 *1) (-4 *1 (-142))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-157 *3 *2)) - (-4 *2 (-429 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-544))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) - (-4 *4 (-845)) (-4 *2 (-451))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-639 (-562))) (-5 *2 (-1170 (-406 (-562)))) - (-5 *1 (-189))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) - (-4 *4 (-845)) (-4 *2 (-554)))) + (|partial| -12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) + (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *1 (-1270 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-640 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) + (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1270 *5 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) +(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-581))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-669 *3)) (-4 *3 (-1208)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *1 (-736 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-846)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-563)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-640 *3)) (-4 *1 (-976 *3)) (-4 *3 (-1045)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-640 *1)) (-5 *3 (-640 *7)) (-4 *1 (-1065 *4 *5 *6 *7)) + (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *1)) + (-4 *1 (-1065 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-640 *1)) + (-4 *1 (-1065 *4 *5 *6 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) - (-4 *4 (-845)) (-4 *2 (-554))))) -(((*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044))))) -(((*1 *1) (-5 *1 (-1056)))) + (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-639 *5) *6)) - (-4 *5 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *6 (-1232 *5)) - (-5 *2 (-639 (-2 (|:| -1497 *5) (|:| -3339 *3)))) - (-5 *1 (-804 *5 *6 *3 *7)) (-4 *3 (-650 *6)) - (-4 *7 (-650 (-406 *6)))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 - *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 - *9) - (-12 (-5 *4 (-683 (-224))) (-5 *5 (-112)) (-5 *6 (-224)) - (-5 *7 (-683 (-562))) - (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-80 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN)))) - (-5 *3 (-562)) (-5 *2 (-1030)) (-5 *1 (-748))))) -(((*1 *1) (-5 *1 (-1258)))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-766)) (-5 *6 (-112)) (-4 *7 (-451)) (-4 *8 (-788)) - (-4 *9 (-845)) (-4 *3 (-1058 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-639 *4)) - (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1501 *4)))))) - (-5 *1 (-1062 *7 *8 *9 *3 *4)) (-4 *4 (-1064 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-766)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) - (-4 *3 (-1058 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-639 *4)) - (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1501 *4)))))) - (-5 *1 (-1062 *6 *7 *8 *3 *4)) (-4 *4 (-1064 *6 *7 *8 *3)))) + (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) + (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 *10)) + (-5 *1 (-621 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1065 *5 *6 *7 *8)) + (-4 *10 (-1102 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-4 *3 (-1058 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-639 *4)) - (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1501 *4)))))) - (-5 *1 (-1062 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-766)) (-5 *6 (-112)) (-4 *7 (-451)) (-4 *8 (-788)) - (-4 *9 (-845)) (-4 *3 (-1058 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-639 *4)) - (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1501 *4)))))) - (-5 *1 (-1137 *7 *8 *9 *3 *4)) (-4 *4 (-1101 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-766)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) - (-4 *3 (-1058 *6 *7 *8)) + (-12 (-5 *3 (-640 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) + (-14 *6 (-640 (-1169))) (-5 *2 (-640 (-1042 *5 *6))) + (-5 *1 (-625 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-640 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) + (-14 *6 (-640 (-1169))) (-5 *2 - (-2 (|:| |done| (-639 *4)) - (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1501 *4)))))) - (-5 *1 (-1137 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) + (-640 (-1139 *5 (-531 (-860 *6)) (-860 *6) (-776 *5 (-860 *6))))) + (-5 *1 (-625 *5 *6)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) + (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-5 *2 (-640 (-1023 *5 *6 *7 *8))) (-5 *1 (-1023 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) + (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-5 *2 (-640 (-1023 *5 *6 *7 *8))) (-5 *1 (-1023 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-640 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) + (-14 *6 (-640 (-1169))) (-5 *2 (-640 (-1042 *5 *6))) + (-5 *1 (-1042 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-4 *3 (-1058 *5 *6 *7)) + (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) + (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 *1)) + (-4 *1 (-1065 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) + (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-5 *2 (-640 (-1139 *5 *6 *7 *8))) (-5 *1 (-1139 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) + (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-5 *2 (-640 (-1139 *5 *6 *7 *8))) (-5 *1 (-1139 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-555)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *1)) + (-4 *1 (-1201 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-560)) (-5 *3 (-563))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-434)) (-5 *2 - (-2 (|:| |done| (-639 *4)) - (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1501 *4)))))) - (-5 *1 (-1137 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-857))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) - (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112))))) + (-640 + (-3 (|:| -3348 (-1169)) + (|:| -2445 (-640 (-3 (|:| S (-1169)) (|:| P (-948 (-563))))))))) + (-5 *1 (-1173))))) +(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-694)))) + ((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-694))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1103))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-545))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) - (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) - (-5 *1 (-983 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) - (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) - (-5 *1 (-1099 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1185 *4 *5)) + (-4 *4 (-1093)) (-4 *5 (-1093))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))) + ((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-491)) (-5 *2 (-686 (-578))) (-5 *1 (-578))))) +(((*1 *1 *2) + (-12 (-5 *2 (-413 *3 *4 *5 *6)) (-4 *6 (-1034 *4)) (-4 *3 (-307)) + (-4 *4 (-988 *3)) (-4 *5 (-1233 *4)) (-4 *6 (-409 *4 *5)) + (-14 *7 (-1257 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1257 *6)) (-4 *6 (-409 *4 *5)) (-4 *4 (-988 *3)) + (-4 *5 (-1233 *4)) (-4 *3 (-307)) (-5 *1 (-414 *3 *4 *5 *6 *7)) + (-14 *7 *2)))) +(((*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1178))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-205)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-640 (-379))) (-5 *2 (-379)) (-5 *1 (-205))))) +(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-917)) (-5 *1 (-782))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-362) (-1033 (-406 *2)))) (-5 *2 (-562)) - (-5 *1 (-115 *4 *3)) (-4 *3 (-1232 *4))))) + (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563))))) +(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870))))) +(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-858)))) + ((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1262)) (-5 *1 (-958))))) (((*1 *2 *1) - (-12 (-4 *1 (-600 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1207)) - (-5 *2 (-639 *3))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-608 *4)) (-5 *6 (-1168)) - (-4 *4 (-13 (-429 *7) (-27) (-1192))) - (-4 *7 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4291 (-639 *4)))) - (-5 *1 (-564 *7 *4 *3)) (-4 *3 (-650 *4)) (-4 *3 (-1092))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) + (-4 *4 (-1045))))) (((*1 *2 *3) + (-12 (-5 *3 (-888 *4)) (-4 *4 (-1093)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-886 *4 *5)) (-4 *5 (-1208)))) + ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1159))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-449 *4 *5 *6 *2))))) +(((*1 *1 *2 *2) (-12 - (-5 *3 - (-2 (|:| -1767 (-683 (-406 (-947 *4)))) - (|:| |vec| (-639 (-406 (-947 *4)))) (|:| -2172 (-766)) - (|:| |rows| (-639 (-562))) (|:| |cols| (-639 (-562))))) - (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) - (-4 *6 (-788)) (-5 *2 - (-2 (|:| |partsol| (-1256 (-406 (-947 *4)))) - (|:| -4291 (-639 (-1256 (-406 (-947 *4))))))) - (-5 *1 (-919 *4 *5 *6 *7)) (-4 *7 (-944 *4 *6 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-824)) (-5 *3 (-1150))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1168))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-562))) (-5 *5 (-1 (-1148 *4))) (-4 *4 (-362)) - (-4 *4 (-1044)) (-5 *2 (-1148 *4)) (-5 *1 (-1152 *4))))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) - ((*1 *1) (-5 *1 (-129))) - ((*1 *1) - (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-562)) (-14 *3 (-766)) - (-4 *4 (-171)))) - ((*1 *1) (-4 *1 (-721))) ((*1 *1) (-5 *1 (-1168))) - ((*1 *1) (-12 (-5 *1 (-1175 *2)) (-14 *2 (-916)))) - ((*1 *1) (-5 *1 (-1212))) ((*1 *1) (-5 *1 (-1213))) - ((*1 *1) (-5 *1 (-1214)))) -(((*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-949))))) -(((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-310)))) - ((*1 *2 *1) - (-12 (-5 *2 (-766)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) - (-4 *4 (-1044))))) -(((*1 *2 *2) (-12 (-5 *2 (-916)) (|has| *1 (-6 -4394)) (-4 *1 (-403)))) - ((*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-916)))) - ((*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-693)))) - ((*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-693))))) + (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) + (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) + (-5 *1 (-1168))))) +(((*1 *2 *1) (-12 (-4 *1 (-1086 *3)) (-4 *3 (-1208)) (-5 *2 (-563))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-363)) (-4 *7 (-1233 *5)) (-4 *4 (-720 *5 *7)) + (-5 *2 (-2 (|:| -2835 (-684 *6)) (|:| |vec| (-1257 *5)))) + (-5 *1 (-807 *5 *6 *7 *4 *3)) (-4 *6 (-651 *5)) (-4 *3 (-651 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) - (-4 *2 (-13 (-429 *3) (-1192)))))) + (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) (((*1 *2) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) - (-4 *5 (-1232 (-406 *4))) (-5 *2 (-683 (-406 *4)))))) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) + (-4 *5 (-1233 (-407 *4))) (-5 *2 (-684 (-407 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-144))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) + (-5 *1 (-752))))) (((*1 *2 *3) - (-12 (-4 *4 (-845)) (-5 *2 (-639 (-639 (-639 *4)))) - (-5 *1 (-1178 *4)) (-5 *3 (-639 (-639 *4)))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-766)) (-5 *1 (-778 *2)) (-4 *2 (-38 (-406 (-562)))) - (-4 *2 (-171))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1058 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *2 (-845)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) - (-4 *4 (-845))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-562)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1207)) - (-4 *5 (-372 *4)) (-4 *3 (-372 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1164 *3)) (-4 *3 (-367)) (-4 *1 (-328 *3)) - (-4 *3 (-362))))) + (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1093)) (-4 *2 (-846)) + (-5 *1 (-113 *2))))) +(((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-5 *2 (-640 (-1023 *5 *6 *7 *3))) (-5 *1 (-1023 *5 *6 *7 *3)) + (-4 *3 (-1059 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-640 *6)) (-4 *1 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) + (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1065 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) + ((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-5 *2 (-640 (-1139 *5 *6 *7 *3))) (-5 *1 (-1139 *5 *6 *7 *3)) + (-4 *3 (-1059 *5 *6 *7))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) + (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *6 (-225)) + (-5 *3 (-563)) (-5 *2 (-1031)) (-5 *1 (-748))))) +(((*1 *2 *1) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-407 *2)) (-4 *2 (-1233 *5)) + (-5 *1 (-803 *5 *2 *3 *6)) + (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) + (-4 *3 (-651 *2)) (-4 *6 (-651 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-640 (-407 *2))) (-4 *2 (-1233 *5)) + (-5 *1 (-803 *5 *2 *3 *6)) + (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *3 (-651 *2)) + (-4 *6 (-651 (-407 *2)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147)) + (-4 *3 (-307)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *1 (-973 *3 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-348)) - (-5 *2 (-639 (-2 (|:| |deg| (-766)) (|:| -2723 *3)))) - (-5 *1 (-215 *4 *3)) (-4 *3 (-1232 *4))))) + (-12 (-4 *1 (-916)) (-5 *2 (-2 (|:| -2311 (-640 *1)) (|:| -4333 *1))) + (-5 *3 (-640 *1))))) (((*1 *2 *3) - (-12 (-5 *3 (-639 (-2 (|:| |deg| (-766)) (|:| -2723 *5)))) - (-4 *5 (-1232 *4)) (-4 *4 (-348)) (-5 *2 (-639 *5)) - (-5 *1 (-215 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-2 (|:| -1635 *5) (|:| -2250 (-562))))) - (-5 *4 (-562)) (-4 *5 (-1232 *4)) (-5 *2 (-639 *5)) - (-5 *1 (-690 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-516)))) + (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) + (-5 *1 (-1117 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208))))) +(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-996 *3))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-563)) (-4 *4 (-13 (-555) (-147))) (-5 *1 (-537 *4 *2)) + (-4 *2 (-1248 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-563)) (-4 *4 (-13 (-363) (-368) (-611 *3))) + (-4 *5 (-1233 *4)) (-4 *6 (-720 *4 *5)) (-5 *1 (-541 *4 *5 *6 *2)) + (-4 *2 (-1248 *6)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-563)) (-4 *4 (-13 (-363) (-368) (-611 *3))) + (-5 *1 (-542 *4 *2)) (-4 *2 (-1248 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1149 *4)) (-5 *3 (-563)) (-4 *4 (-13 (-555) (-147))) + (-5 *1 (-1145 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-536))))) +(((*1 *2 *1) + (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1092) (-34))) (-5 *1 (-1132 *3 *2)) - (-4 *3 (-13 (-1092) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1267))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1150)) (-4 *1 (-363 *2 *4)) (-4 *2 (-1092)) - (-4 *4 (-1092)))) - ((*1 *1 *2) - (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092))))) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) + (-5 *1 (-747))))) +(((*1 *1) (-5 *1 (-157))) + ((*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) -(((*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1192)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) - (-4 *2 (-13 (-429 *3) (-1192)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1164 *6)) (-5 *3 (-562)) (-4 *6 (-306)) (-4 *4 (-788)) - (-4 *5 (-845)) (-5 *1 (-737 *4 *5 *6 *7)) (-4 *7 (-944 *6 *4 *5))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-315 (-562))) (|:| -3196 (-315 (-378))) - (|:| CF (-315 (-168 (-378)))) (|:| |switch| (-1167)))) - (-5 *1 (-1167))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) - (-5 *1 (-746))))) -(((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-556 *3)) (-4 *3 (-544))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1030))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1232 (-48)))))) -(((*1 *2 *3 *4 *5 *6 *7 *6) - (|partial| -12 - (-5 *5 - (-2 (|:| |contp| *3) - (|:| -2656 (-639 (-2 (|:| |irr| *10) (|:| -2794 (-562))))))) - (-5 *6 (-639 *3)) (-5 *7 (-639 *8)) (-4 *8 (-845)) (-4 *3 (-306)) - (-4 *10 (-944 *3 *9 *8)) (-4 *9 (-788)) - (-5 *2 - (-2 (|:| |polfac| (-639 *10)) (|:| |correct| *3) - (|:| |corrfact| (-639 (-1164 *3))))) - (-5 *1 (-621 *8 *9 *3 *10)) (-5 *4 (-639 (-1164 *3)))))) -(((*1 *1 *1) (-5 *1 (-1056)))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *4 (-224)) - (-5 *2 (-1030)) (-5 *1 (-748))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1165 *7)) + (-4 *5 (-1045)) (-4 *7 (-1045)) (-4 *2 (-1233 *5)) + (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1233 *2))))) +(((*1 *2 *3 *4 *4 *5 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) + (-5 *2 (-1031)) (-5 *1 (-748))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-363) (-1193) (-998)))))) +(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1151)) (-5 *1 (-192)))) + ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1151)) (-5 *1 (-300)))) + ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1151)) (-5 *1 (-305))))) (((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) - (-4 *3 (-366 *4)))) - ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-639 *1)) (-4 *1 (-1058 *4 *5 *6)) (-4 *4 (-1044)) - (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *5 (-845)) (-5 *2 (-112)))) - ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1200 *5 *6 *7 *3)) - (-4 *5 (-554)) (-4 *6 (-788)) (-4 *7 (-845)) - (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-643 *2 *3 *4)) (-4 *2 (-1092)) (-4 *3 (-23)) + (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) + (-5 *2 (-767)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) + (-4 *5 (-1233 (-407 *4))) (-5 *2 (-767)))) + ((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-767))))) +(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-694)))) + ((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-694))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-169 (-225))) (-5 *5 (-563)) (-5 *6 (-1151)) + (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *1) + (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1132 *4 *5)) (-4 *4 (-13 (-1092) (-34))) - (-4 *5 (-13 (-1092) (-34))) (-5 *2 (-112)) (-5 *1 (-1133 *4 *5))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-1207))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-1007)) (-5 *2 (-857))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-562)) (-4 *1 (-645 *3)) (-4 *3 (-1207)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-562)) (-4 *1 (-645 *2)) (-4 *2 (-1207))))) -(((*1 *1 *1) (-4 *1 (-655)))) -(((*1 *1 *1) - (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) - (-4 *4 (-845))))) -(((*1 *1) (-5 *1 (-329)))) -(((*1 *1 *1 *1) (-5 *1 (-224))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) - (-4 *2 (-429 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-766)) (-5 *2 (-1 (-378))) (-5 *1 (-1035)))) - ((*1 *1 *1 *1) (-4 *1 (-1131)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) -(((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-947 *6)) (-5 *4 (-1168)) - (-5 *5 (-838 *7)) - (-4 *6 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-4 *7 (-13 (-1192) (-29 *6))) (-5 *1 (-223 *6 *7)))) - ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1164 *6)) (-5 *4 (-838 *6)) - (-4 *6 (-13 (-1192) (-29 *5))) - (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *1 (-223 *5 *6))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-406 (-1164 (-315 *3)))) (-4 *3 (-13 (-554) (-845))) - (-5 *1 (-1122 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) -(((*1 *2 *3) - (-12 (-5 *2 (-417 (-1164 (-562)))) (-5 *1 (-190)) (-5 *3 (-562))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2355 *3) (|:| |coef1| (-777 *3)))) - (-5 *1 (-777 *3)) (-4 *3 (-554)) (-4 *3 (-1044))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-406 (-562))) (-4 *4 (-1033 (-562))) - (-4 *4 (-13 (-845) (-554))) (-5 *1 (-32 *4 *2)) (-4 *2 (-429 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-133))) + (-12 (-5 *3 (-407 (-563))) (-4 *4 (-1034 (-563))) + (-4 *4 (-13 (-846) (-555))) (-5 *1 (-32 *4 *2)) (-4 *2 (-430 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-134))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-157 *3 *2)) - (-4 *2 (-429 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-224))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-242)) (-5 *2 (-562)))) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-225))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-563)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-406 (-562))) (-4 *4 (-362)) (-4 *4 (-38 *3)) - (-4 *5 (-1247 *4)) (-5 *1 (-277 *4 *5 *2)) (-4 *2 (-1218 *4 *5)))) + (-12 (-5 *3 (-407 (-563))) (-4 *4 (-363)) (-4 *4 (-38 *3)) + (-4 *5 (-1248 *4)) (-5 *1 (-278 *4 *5 *2)) (-4 *2 (-1219 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-406 (-562))) (-4 *4 (-362)) (-4 *4 (-38 *3)) - (-4 *5 (-1216 *4)) (-5 *1 (-278 *4 *5 *2 *6)) (-4 *2 (-1239 *4 *5)) - (-4 *6 (-978 *5)))) - ((*1 *1 *1 *1) (-4 *1 (-283))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-562)) (-5 *1 (-360 *2)) (-4 *2 (-1092)))) - ((*1 *1 *1 *1) (-5 *1 (-378))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-766)) (-5 *1 (-385 *2)) (-4 *2 (-1092)))) + (-12 (-5 *3 (-407 (-563))) (-4 *4 (-363)) (-4 *4 (-38 *3)) + (-4 *5 (-1217 *4)) (-5 *1 (-279 *4 *5 *2 *6)) (-4 *2 (-1240 *4 *5)) + (-4 *6 (-979 *5)))) + ((*1 *1 *1 *1) (-4 *1 (-284))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-361 *2)) (-4 *2 (-1093)))) + ((*1 *1 *1 *1) (-5 *1 (-379))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-386 *2)) (-4 *2 (-1093)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-766)) (-4 *1 (-429 *3)) (-4 *3 (-845)) (-4 *3 (-1104)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-472)) (-5 *2 (-562)))) + (-12 (-5 *2 (-767)) (-4 *1 (-430 *3)) (-4 *3 (-846)) (-4 *3 (-1105)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-473)) (-5 *2 (-563)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-766)) (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) - (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5)))) + (-12 (-5 *2 (-767)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1256 *4)) (-5 *3 (-562)) (-4 *4 (-348)) - (-5 *1 (-527 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-535)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-535)))) + (-12 (-5 *2 (-1257 *4)) (-5 *3 (-563)) (-4 *4 (-349)) + (-5 *1 (-528 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-536)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-536)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-766)) (-4 *4 (-1092)) - (-5 *1 (-676 *4)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *4 (-1093)) + (-5 *1 (-677 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-562)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) - (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) (-4 *3 (-362)))) + (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-363)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-766)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) - (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) + (-12 (-5 *2 (-767)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-683 *4)) (-5 *3 (-766)) (-4 *4 (-1044)) - (-5 *1 (-684 *4)))) + (-12 (-5 *2 (-684 *4)) (-5 *3 (-767)) (-4 *4 (-1045)) + (-5 *1 (-685 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-562)) (-4 *3 (-1044)) (-5 *1 (-709 *3 *4)) - (-4 *4 (-642 *3)))) + (-12 (-5 *2 (-563)) (-4 *3 (-1045)) (-5 *1 (-710 *3 *4)) + (-4 *4 (-643 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-562)) (-4 *4 (-1044)) - (-5 *1 (-709 *4 *5)) (-4 *5 (-642 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-715)) (-5 *2 (-916)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-766)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-766)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-766)) (-5 *1 (-814 *2)) (-4 *2 (-845)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-831 *3)) (-4 *3 (-1044)))) + (-12 (-5 *2 (-114)) (-5 *3 (-563)) (-4 *4 (-1045)) + (-5 *1 (-710 *4 *5)) (-4 *5 (-643 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-917)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-767)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-815 *2)) (-4 *2 (-846)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-832 *3)) (-4 *3 (-1045)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-562)) (-5 *1 (-831 *4)) (-4 *4 (-1044)))) - ((*1 *1 *1 *1) (-5 *1 (-857))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1092)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-997)) (-5 *2 (-406 (-562))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-916)))) + (-12 (-5 *2 (-114)) (-5 *3 (-563)) (-5 *1 (-832 *4)) (-4 *4 (-1045)))) + ((*1 *1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-998)) (-5 *2 (-407 (-563))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1105)) (-5 *2 (-917)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-562)) (-4 *1 (-1115 *3 *4 *5 *6)) (-4 *4 (-1044)) - (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *3 *4)) (-4 *4 (-362)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1153 *3)))) + (-12 (-5 *2 (-563)) (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *4 (-1045)) + (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-363)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1155 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1044)) (-4 *2 (-362))))) + (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 *4)) + (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-362)) - (-5 *1 (-520 *2 *4 *5 *3)) (-4 *3 (-681 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) - (|has| *2 (-6 (-4405 "*"))) (-4 *2 (-1044)))) + (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3)) + (-4 *4 (-13 (-363) (-844))) (-4 *3 (-1233 *2))))) +(((*1 *2 *3) + (-12 (-4 *4 (-555)) (-4 *5 (-988 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) + (-4 *3 (-373 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-555)) (-4 *5 (-988 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) + (-5 *1 (-503 *4 *5 *6 *3)) (-4 *6 (-373 *4)) (-4 *3 (-373 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-684 *5)) (-4 *5 (-988 *4)) (-4 *4 (-555)) + (-5 *2 (-2 (|:| |num| (-684 *4)) (|:| |den| *4))) + (-5 *1 (-688 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) + (-4 *6 (-1233 *5)) + (-5 *2 (-2 (|:| -1420 *7) (|:| |rh| (-640 (-407 *6))))) + (-5 *1 (-803 *5 *6 *7 *3)) (-5 *4 (-640 (-407 *6))) + (-4 *7 (-651 *6)) (-4 *3 (-651 (-407 *6))))) ((*1 *2 *3) - (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-171)) - (-5 *1 (-682 *2 *4 *5 *3)) (-4 *3 (-681 *2 *4 *5)))) + (-12 (-4 *4 (-555)) (-4 *5 (-988 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1226 *4 *5 *3)) + (-4 *3 (-1233 *5))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-938)) (-5 *3 (-563))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) ((*1 *2 *1) - (-12 (-4 *1 (-1115 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) - (-4 *5 (-237 *3 *2)) (|has| *2 (-6 (-4405 "*"))) (-4 *2 (-1044))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1092)) (-4 *5 (-1092)) - (-4 *6 (-1092)) (-5 *2 (-1 *6 *5)) (-5 *1 (-678 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-417 *3)) (-5 *1 (-909 *3)) (-4 *3 (-306))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) - (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-79 LSFUN1)))) - (-5 *2 (-1030)) (-5 *1 (-748))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) - (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-639 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-435))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) - (-4 *4 (-845))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) + (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) + (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1230 *4 *5)) (-5 *3 (-640 *5)) (-14 *4 (-1169)) + (-4 *5 (-363)) (-5 *1 (-919 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-640 *5)) (-4 *5 (-363)) (-5 *2 (-1165 *5)) + (-5 *1 (-919 *4 *5)) (-14 *4 (-1169)))) + ((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-640 *6)) (-5 *4 (-767)) (-4 *6 (-363)) + (-5 *2 (-407 (-948 *6))) (-5 *1 (-1046 *5 *6)) (-14 *5 (-1169))))) +(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-1214)))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-146)) - (-4 *3 (-306)) (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) - (-5 *1 (-972 *3 *4 *5 *6))))) -(((*1 *1 *1) - (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1164 *6)) (-4 *6 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) - (-5 *2 (-1164 *7)) (-5 *1 (-320 *4 *5 *6 *7)) - (-4 *7 (-944 *6 *4 *5))))) + (-12 (-4 *3 (-1045)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-1233 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -1701 *6) (|:| |sol?| (-112))) (-563) + *6)) + (-4 *6 (-363)) (-4 *7 (-1233 *6)) + (-5 *2 (-2 (|:| |answer| (-584 (-407 *7))) (|:| |a0| *6))) + (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7))))) +(((*1 *2) + (-12 (-4 *4 (-363)) (-5 *2 (-767)) (-5 *1 (-328 *3 *4)) + (-4 *3 (-329 *4)))) + ((*1 *2) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-767))))) (((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| -2429 (-114)) (|:| |arg| (-639 (-887 *3))))) - (-5 *1 (-887 *3)) (-4 *3 (-1092)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *2 (-639 (-887 *4))) - (-5 *1 (-887 *4)) (-4 *4 (-1092))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-683 (-168 (-406 (-562))))) - (-5 *2 - (-639 - (-2 (|:| |outval| (-168 *4)) (|:| |outmult| (-562)) - (|:| |outvect| (-639 (-683 (-168 *4))))))) - (-5 *1 (-759 *4)) (-4 *4 (-13 (-362) (-843)))))) + (|partial| -12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1045)) + (-4 *2 (-1248 *3))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-112)) (-5 *1 (-825))))) +(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1210))))) +(((*1 *2) + (-12 + (-5 *2 (-2 (|:| -3289 (-640 (-1169))) (|:| -3244 (-640 (-1169))))) + (-5 *1 (-1210))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) - (-4 *5 (-372 *3)) (-5 *2 (-562)))) + (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) + (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-767)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) + (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767)))) + ((*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-846)) (-5 *2 (-767)))) + ((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-917)))) + ((*1 *2 *3) + (-12 (-5 *3 (-336 *4 *5 *6 *7)) (-4 *4 (-13 (-368) (-363))) + (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) (-4 *7 (-342 *4 *5 *6)) + (-5 *2 (-767)) (-5 *1 (-392 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-829 (-917))))) + ((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-563)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) + ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) ((*1 *2 *1) - (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) - (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-562))))) -(((*1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-390))))) + (-12 (-4 *3 (-555)) (-5 *2 (-563)) (-5 *1 (-620 *3 *4)) + (-4 *4 (-1233 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-767)) (-4 *1 (-736 *4 *3)) (-4 *4 (-1045)) + (-4 *3 (-846)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-736 *4 *3)) (-4 *4 (-1045)) (-4 *3 (-846)) + (-5 *2 (-767)))) + ((*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-5 *2 (-767)))) + ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) + ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) + (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6))) + (-4 *8 (-342 *5 *6 *7)) + (-4 *4 (-13 (-846) (-555) (-1034 (-563)))) (-5 *2 (-767)) + (-5 *1 (-907 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-336 (-407 (-563)) *4 *5 *6)) + (-4 *4 (-1233 (-407 (-563)))) (-4 *5 (-1233 (-407 *4))) + (-4 *6 (-342 (-407 (-563)) *4 *5)) (-5 *2 (-767)) + (-5 *1 (-908 *4 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-336 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-363)) + (-4 *7 (-1233 *6)) (-4 *4 (-1233 (-407 *7))) (-4 *8 (-342 *6 *7 *4)) + (-4 *9 (-13 (-368) (-363))) (-5 *2 (-767)) + (-5 *1 (-1014 *6 *7 *4 *8 *9)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1233 *3)) (-4 *3 (-1045)) (-4 *3 (-555)) + (-5 *2 (-767)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788))))) +(((*1 *2 *3) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-446)) (-5 *3 (-563))))) +(((*1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-563)))) + ((*1 *1 *1) (-5 *1 (-1113)))) +(((*1 *1 *1) + (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-363) (-844))) + (-5 *2 (-640 (-2 (|:| -2760 (-640 *3)) (|:| -4076 *5)))) + (-5 *1 (-181 *5 *3)) (-4 *3 (-1233 (-169 *5))))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-363) (-844))) + (-5 *2 (-640 (-2 (|:| -2760 (-640 *3)) (|:| -4076 *4)))) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1272 (-1169) *3)) (-4 *3 (-1045)) (-5 *1 (-1279 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1272 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) + (-5 *1 (-1281 *3 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-639 *3)) (|:| |image| (-639 *3)))) - (-5 *1 (-900 *3)) (-4 *3 (-1092))))) -(((*1 *2 *3) - (-12 (-5 *3 (-639 (-562))) (-5 *2 (-562)) (-5 *1 (-485 *4)) - (-4 *4 (-1232 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1173)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-639 (-1127))) (-5 *1 (-132)))) - ((*1 *2 *1) (-12 (-5 *2 (-639 (-1127))) (-5 *1 (-137)))) - ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-153)))) - ((*1 *2 *1) (-12 (-5 *2 (-639 (-1127))) (-5 *1 (-160)))) - ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-217)))) - ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-670)))) - ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1014)))) - ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1059)))) - ((*1 *2 *1) (-12 (-5 *2 (-639 (-1127))) (-5 *1 (-1088))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-1150)) (-5 *5 (-683 (-224))) - (-5 *2 (-1030)) (-5 *1 (-742))))) -(((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-845)) (-5 *1 (-244 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-639 *2))) (-5 *4 (-639 *5)) - (-4 *5 (-38 (-406 (-562)))) (-4 *2 (-1247 *5)) - (-5 *1 (-1249 *5 *2))))) -(((*1 *2 *2) - (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) - (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-857))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857))))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-562)) (-5 *5 (-683 (-224))) - (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) - (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-744))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-583 *3) *3 (-1168))) - (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 - (-1168))) - (-4 *3 (-283)) (-4 *3 (-625)) (-4 *3 (-1033 *4)) (-4 *3 (-429 *7)) - (-5 *4 (-1168)) (-4 *7 (-610 (-887 (-562)))) (-4 *7 (-451)) - (-4 *7 (-881 (-562))) (-4 *7 (-845)) (-5 *2 (-583 *3)) - (-5 *1 (-571 *7 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) - (-4 *2 (-13 (-429 *3) (-1192)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-788)) - (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5))))) + (-12 (-4 *3 (-1045)) (-5 *2 (-1257 *3)) (-5 *1 (-708 *3 *4)) + (-4 *4 (-1233 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) + (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031)) + (-5 *1 (-744))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4408)) (-4 *1 (-244 *2)) (-4 *2 (-1208)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1208)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1208)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4408)) (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4408)) (-4 *1 (-1245 *2)) (-4 *2 (-1208))))) +(((*1 *2 *1) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) + (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-563)))) + ((*1 *1 *1 *1) (-5 *1 (-1113)))) +(((*1 *2 *3) + (-12 (-5 *3 (-684 (-407 (-948 *4)))) (-4 *4 (-452)) + (-5 *2 (-640 (-3 (-407 (-948 *4)) (-1158 (-1169) (-948 *4))))) + (-5 *1 (-292 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) +(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) +(((*1 *2 *3) + (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) + ((*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913))))) +(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1193)))) + ((*1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846)))) + ((*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-609 *3)) (-4 *3 (-846))))) +(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-922)))) + ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-923)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-923)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) +(((*1 *1 *1 *1) (-4 *1 (-963)))) +(((*1 *2 *3) + (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-555)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 (-1270 *4 *5 *6 *7))) + (-5 *1 (-1270 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-640 *9)) (-5 *4 (-1 (-112) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-555)) + (-4 *7 (-789)) (-4 *8 (-846)) (-5 *2 (-640 (-1270 *6 *7 *8 *9))) + (-5 *1 (-1270 *6 *7 *8 *9))))) +(((*1 *1) (-5 *1 (-819)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-563)))) + ((*1 *1 *1 *1) (-5 *1 (-1113)))) +(((*1 *2 *3) + (-12 (-5 *3 (-839 (-379))) (-5 *2 (-839 (-225))) (-5 *1 (-305))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-870)) (-5 *3 (-640 (-263))) (-5 *1 (-261))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) + (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2)))) + (-5 *2 (-1031)) (-5 *1 (-749))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-640 (-294 *4))) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) + (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917))))) (((*1 *2 *3) - (-12 (-5 *3 (-1168)) + (-12 + (-5 *3 + (-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))))) + (-5 *2 (-640 (-225))) (-5 *1 (-305))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1097)) (-5 *3 (-770)) (-5 *1 (-52))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-294 (-829 *3))) + (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-829 *3)) (-5 *1 (-633 *5 *3)) + (-4 *3 (-13 (-27) (-1193) (-430 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-294 (-829 (-948 *5)))) (-4 *5 (-452)) + (-5 *2 (-829 (-407 (-948 *5)))) (-5 *1 (-634 *5)) + (-5 *3 (-407 (-948 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-294 (-407 (-948 *5)))) (-5 *3 (-407 (-948 *5))) + (-4 *5 (-452)) (-5 *2 (-829 *3)) (-5 *1 (-634 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) +(((*1 *2) + (-12 (-5 *2 (-1262)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) + (-4 *4 (-1093))))) +(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-917)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) + ((*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-263))))) +(((*1 *1 *1) (-4 *1 (-143))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093))))) +(((*1 *1 *1) (-5 *1 (-112)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1169)) + (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-584 *3)) (-5 *1 (-426 *5 *3)) + (-4 *3 (-13 (-1193) (-29 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-555) (-1034 (-563)) (-147))) + (-5 *2 (-584 (-407 (-948 *5)))) (-5 *1 (-569 *5)) + (-5 *3 (-407 (-948 *5)))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-722)) (-4 *2 (-1208))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-363)) (-4 *3 (-1045)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4333 *1))) + (-4 *1 (-848 *3))))) +(((*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-241))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-767)) (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *5)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *1 (-1255 *3)) (-4 *3 (-23)) (-4 *3 (-1208))))) +(((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) + (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-5 *2 (-640 (-1023 *5 *6 *7 *8))) (-5 *1 (-1023 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) + (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-5 *2 (-640 (-1139 *5 *6 *7 *8))) (-5 *1 (-1139 *5 *6 *7 *8))))) +(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *1 (-231 *4)) + (-4 *4 (-1045)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1045)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-767)))) + ((*1 *1 *1) (-4 *1 (-233))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) + (-4 *4 (-1233 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) + (-4 *3 (-1233 *2)))) + ((*1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1045)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-640 *4)) (-5 *3 (-640 (-767))) (-4 *1 (-896 *4)) + (-4 *4 (-1093)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-767)) (-4 *1 (-896 *2)) (-4 *2 (-1093)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-640 *3)) (-4 *1 (-896 *3)) (-4 *3 (-1093)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-896 *2)) (-4 *2 (-1093))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *2 (-452))))) +(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 - (-2 (|:| |zeros| (-1148 (-224))) (|:| |ones| (-1148 (-224))) - (|:| |singularities| (-1148 (-224))))) - (-5 *1 (-105))))) -(((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-96)))) - ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-114)))) + (-2 (|:| |polnum| (-778 *3)) (|:| |polden| *3) (|:| -2269 (-767)))) + (-5 *1 (-778 *3)) (-4 *3 (-1045)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2269 (-767)))) + (-4 *1 (-1059 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-557 *3)) (-4 *3 (-545)))) + ((*1 *2 *3) + (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-418 *3)) + (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-945 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) + (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-418 (-1165 *7))) + (-5 *1 (-738 *4 *5 *6 *7)) (-5 *3 (-1165 *7)))) ((*1 *2 *1) - (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1092)) (-4 *2 (-1092)))) - ((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1150)))) - ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-437 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-505)) (-5 *1 (-482)))) - ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-608 *3)) (-4 *3 (-845)))) - ((*1 *2 *1) (-12 (-4 *1 (-830 *2)) (-4 *2 (-1092)))) - ((*1 *2 *1) (-12 (-5 *2 (-505)) (-5 *1 (-860)))) - ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-960)))) - ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1067 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-505)) (-5 *1 (-1107)))) - ((*1 *1 *1) (-5 *1 (-1168)))) -(((*1 *1) (-5 *1 (-436)))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-112)) (-5 *5 (-683 (-224))) - (-5 *2 (-1030)) (-5 *1 (-750))))) + (-12 (-4 *3 (-452)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *2 (-418 *1)) (-4 *1 (-945 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-452)) (-5 *2 (-418 *3)) + (-5 *1 (-975 *4 *5 *6 *3)) (-4 *3 (-945 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-452)) + (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-418 (-1165 (-407 *7)))) + (-5 *1 (-1164 *4 *5 *6 *7)) (-5 *3 (-1165 (-407 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1212)))) + ((*1 *2 *3) + (-12 (-4 *4 (-555)) (-5 *2 (-418 *3)) (-5 *1 (-1236 *4 *3)) + (-4 *3 (-13 (-1233 *4) (-555) (-10 -8 (-15 -3548 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) + (-14 *5 (-640 (-1169))) + (-5 *2 + (-640 (-1139 *4 (-531 (-860 *6)) (-860 *6) (-776 *4 (-860 *6))))) + (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-640 (-1169)))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-426 *3 *2)) (-4 *3 (-13 (-171) (-38 (-406 (-562))))) - (-4 *2 (-13 (-845) (-21)))))) -(((*1 *1) (-5 *1 (-140))) ((*1 *1 *1) (-5 *1 (-143))) - ((*1 *1 *1) (-4 *1 (-1136)))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-639 (-1132 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) - (-4 *4 (-13 (-1092) (-34))) (-4 *5 (-13 (-1092) (-34))) - (-5 *1 (-1133 *4 *5)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-639 (-1132 *3 *4))) (-4 *3 (-13 (-1092) (-34))) - (-4 *4 (-13 (-1092) (-34))) (-5 *1 (-1133 *3 *4))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2)) (-4 *2 (-1044)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-938 (-224))) (-5 *1 (-1203)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-1044))))) -(((*1 *2 *1) (-12 (-5 *2 (-639 (-174))) (-5 *1 (-1077))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) - (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-639 *7)) (-5 *3 (-112)) (-4 *7 (-1058 *4 *5 *6)) - (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) - (-5 *1 (-972 *4 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-451)) - (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) - (-5 *1 (-972 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-639 *7)) (-5 *3 (-112)) (-4 *7 (-1058 *4 *5 *6)) - (-4 *4 (-451)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) - (-5 *1 (-972 *4 *5 *6 *7))))) -(((*1 *2) - (-12 (-4 *4 (-1211)) (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-406 *5))) - (-5 *2 (-112)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) - (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-1150)) (-5 *5 (-683 (-224))) - (-5 *2 (-1030)) (-5 *1 (-742))))) -(((*1 *2 *3) - (-12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4)) (-4 *6 (-1232 *5)) - (-4 *7 (-1232 (-406 *6))) (-4 *8 (-341 *5 *6 *7)) - (-4 *4 (-13 (-845) (-554) (-1033 (-562)))) (-5 *2 (-112)) - (-5 *1 (-906 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-335 (-406 (-562)) *4 *5 *6)) - (-4 *4 (-1232 (-406 (-562)))) (-4 *5 (-1232 (-406 *4))) - (-4 *6 (-341 (-406 (-562)) *4 *5)) (-5 *2 (-112)) - (-5 *1 (-907 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-916)))) ((*1 *1) (-4 *1 (-544))) - ((*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-693)))) - ((*1 *2 *1) (-12 (-5 *2 (-639 *3)) (-5 *1 (-899 *3)) (-4 *3 (-1092))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4404)) (-4 *1 (-1244 *2)) (-4 *2 (-1207))))) -(((*1 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23))))) + (-12 (-5 *3 (-1149 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1149 (-2 (|:| |k| (-563)) (|:| |c| *3)))) + (-5 *1 (-593 *3)) (-4 *3 (-1045))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-815)) (-14 *5 (-1168)) (-5 *2 (-639 (-1229 *5 *4))) - (-5 *1 (-1106 *4 *5)) (-5 *3 (-1229 *5 *4))))) -(((*1 *2) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) - (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-715)) (-5 *2 (-916)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-766))))) -(((*1 *1 *1) (-4 *1 (-625))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-626 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997) (-1192)))))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-639 (-1164 *13))) (-5 *3 (-1164 *13)) - (-5 *4 (-639 *12)) (-5 *5 (-639 *10)) (-5 *6 (-639 *13)) - (-5 *7 (-639 (-639 (-2 (|:| -2542 (-766)) (|:| |pcoef| *13))))) - (-5 *8 (-639 (-766))) (-5 *9 (-1256 (-639 (-1164 *10)))) - (-4 *12 (-845)) (-4 *10 (-306)) (-4 *13 (-944 *10 *11 *12)) - (-4 *11 (-788)) (-5 *1 (-702 *11 *12 *10 *13))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-869)) (-5 *3 (-639 (-262))) (-5 *1 (-260))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-639 *6)) (-4 *6 (-845)) (-4 *4 (-362)) (-4 *5 (-788)) - (-5 *2 - (-2 (|:| |mval| (-683 *4)) (|:| |invmval| (-683 *4)) - (|:| |genIdeal| (-503 *4 *5 *6 *7)))) - (-5 *1 (-503 *4 *5 *6 *7)) (-4 *7 (-944 *4 *5 *6))))) + (-12 (-4 *4 (-13 (-452) (-147))) (-5 *2 (-418 *3)) + (-5 *1 (-100 *4 *3)) (-4 *3 (-1233 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-640 *3)) (-4 *3 (-1233 *5)) (-4 *5 (-13 (-452) (-147))) + (-5 *2 (-418 *3)) (-5 *1 (-100 *5 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1257 *4)) (-4 *4 (-1045)) (-4 *2 (-1233 *4)) + (-5 *1 (-444 *4 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-407 (-1165 (-316 *5)))) (-5 *3 (-1257 (-316 *5))) + (-5 *4 (-563)) (-4 *5 (-13 (-555) (-846))) (-5 *1 (-1123 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923))))) +(((*1 *2 *3) + (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-299 *4 *5)) (-14 *4 *3) + (-14 *5 *3))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1087 (-839 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) + (-5 *1 (-305)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) + (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-640 (-563))) (-5 *2 (-1171 (-407 (-563)))) + (-5 *1 (-190))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -3646 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-363)) (-4 *7 (-1233 *6)) + (-5 *2 (-2 (|:| |answer| (-584 (-407 *7))) (|:| |a0| *6))) + (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) - (-5 *2 - (-2 (|:| -1358 (-766)) (|:| |curves| (-766)) - (|:| |polygons| (-766)) (|:| |constructs| (-766))))))) -(((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-798))))) + (-12 (-4 *3 (-363)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) + (-5 *2 (-1257 *6)) (-5 *1 (-336 *3 *4 *5 *6)) + (-4 *6 (-342 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-331 *3)) (-4 *3 (-846))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1257 *4)) (-4 *4 (-636 (-563))) + (-5 *2 (-1257 (-563))) (-5 *1 (-1284 *4))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-601 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1208)) + (-5 *2 (-112))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1232 *2)) (-4 *2 (-1211)) (-5 *1 (-147 *2 *4 *3)) - (-4 *3 (-1232 (-406 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-962))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-362) (-843))) (-5 *1 (-180 *3 *2)) - (-4 *2 (-1232 (-168 *3)))))) -(((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-766)) (-4 *4 (-1044)) (-5 *1 (-1228 *4 *2)) - (-4 *2 (-1232 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) + (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036))))) +(((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1151)) (-5 *1 (-706))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1168)) - (-4 *5 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-583 *3)) (-5 *1 (-425 *5 *3)) - (-4 *3 (-13 (-1192) (-29 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-900 *3)) (-4 *3 (-1092))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) - (-5 *1 (-742))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-845)) (-4 *3 (-1092))))) -(((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-62 *3)) (-14 *3 (-1168)))) - ((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-69 *3)) (-14 *3 (-1168)))) - ((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-72 *3)) (-14 *3 (-1168)))) - ((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1261)))) - ((*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1261)) (-5 *1 (-396)))) + (-12 (-4 *5 (-363)) + (-5 *2 + (-2 (|:| A (-684 *5)) + (|:| |eqs| + (-640 + (-2 (|:| C (-684 *5)) (|:| |g| (-1257 *5)) (|:| -1420 *6) + (|:| |rh| *5)))))) + (-5 *1 (-809 *5 *6)) (-5 *3 (-684 *5)) (-5 *4 (-1257 *5)) + (-4 *6 (-651 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1150)) (-5 *4 (-857)) (-5 *2 (-1261)) (-5 *1 (-1130)))) - ((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1261)) (-5 *1 (-1130)))) + (-12 (-4 *5 (-363)) (-4 *6 (-651 *5)) + (-5 *2 (-2 (|:| -2835 (-684 *6)) (|:| |vec| (-1257 *5)))) + (-5 *1 (-809 *5 *6)) (-5 *3 (-684 *6)) (-5 *4 (-1257 *5))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1055 (-1020 *3) (-1165 (-1020 *3)))) + (-5 *1 (-1020 *3)) (-4 *3 (-13 (-844) (-363) (-1018)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) +(((*1 *2 *3) + (-12 (-5 *3 (-648 (-407 *2))) (-4 *2 (-1233 *4)) (-5 *1 (-806 *4 *2)) + (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))))) ((*1 *2 *3) - (-12 (-5 *3 (-639 (-857))) (-5 *2 (-1261)) (-5 *1 (-1130))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-4 *3 (-1058 *5 *6 *7)) - (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1501 *4)))) - (-5 *1 (-1065 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-490)) (-5 *2 (-685 (-577))) (-5 *1 (-577))))) + (-12 (-5 *3 (-649 *2 (-407 *2))) (-4 *2 (-1233 *4)) + (-5 *1 (-806 *4 *2)) + (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563)))))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-640 *7)) (-5 *3 (-563)) (-4 *7 (-945 *4 *5 *6)) + (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-5 *1 (-449 *4 *5 *6 *7))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-639 (-777 *3))) (-5 *1 (-777 *3)) (-4 *3 (-554)) - (-4 *3 (-1044))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997)))))) -(((*1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-274))))) + (-12 (-5 *2 (-2 (|:| -3548 (-778 *3)) (|:| |coef1| (-778 *3)))) + (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-555)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *2 (-2 (|:| -3548 *1) (|:| |coef1| *1))) + (-4 *1 (-1059 *3 *4 *5))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 + (-5 *3 + (-1 (-3 (-2 (|:| -3646 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-363)) (-5 *1 (-573 *4 *2)) (-4 *2 (-1233 *4))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1281 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) + (-4 *4 (-172)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1093)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-815 *3)) (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) + (-4 *4 (-1045)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045))))) +(((*1 *2 *3) + (-12 (-5 *3 (-609 *5)) (-4 *5 (-430 *4)) (-4 *4 (-1034 (-563))) + (-4 *4 (-13 (-846) (-555))) (-5 *2 (-1165 *5)) (-5 *1 (-32 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-609 *1)) (-4 *1 (-1045)) (-4 *1 (-302)) + (-5 *2 (-1165 *1))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) + (-5 *2 + (-2 (|:| -2619 *4) (|:| -4076 *4) (|:| |totalpts| (-563)) + (|:| |success| (-112)))) + (-5 *1 (-785)) (-5 *5 (-563))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1165 *7)) (-5 *3 (-563)) (-4 *7 (-945 *6 *4 *5)) + (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) + (-5 *1 (-321 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-766)) (-4 *6 (-362)) (-5 *4 (-1201 *6)) - (-5 *2 (-1 (-1148 *4) (-1148 *4))) (-5 *1 (-1264 *6)) - (-5 *5 (-1148 *4))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-639 (-639 (-938 (-224))))) (-5 *4 (-869)) - (-5 *5 (-916)) (-5 *6 (-639 (-262))) (-5 *2 (-1257)) - (-5 *1 (-1260)))) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-639 (-938 (-224))))) (-5 *4 (-639 (-262))) - (-5 *2 (-1257)) (-5 *1 (-1260))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-766)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2)) - (-4 *2 (-1232 *4))))) + (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4)))))) +(((*1 *2 *3 *4 *5) + (-12 (-4 *6 (-1233 *9)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-307)) + (-4 *10 (-945 *9 *7 *8)) + (-5 *2 + (-2 (|:| |deter| (-640 (-1165 *10))) + (|:| |dterm| + (-640 (-640 (-2 (|:| -4008 (-767)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-640 *6)) (|:| |nlead| (-640 *10)))) + (-5 *1 (-774 *6 *7 *8 *9 *10)) (-5 *3 (-1165 *10)) (-5 *4 (-640 *6)) + (-5 *5 (-640 *10))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) + (-5 *1 (-751))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) + (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-995 *3)) (-4 *3 (-172)) (-5 *1 (-795 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-555) (-846) (-1034 (-563)))) (-5 *1 (-188 *3 *2)) + (-4 *2 (-13 (-27) (-1193) (-430 (-169 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) + (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 (-169 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1169)) + (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *1 (-1197 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-917)) (-5 *2 (-1165 *3)) (-5 *1 (-1182 *3)) + (-4 *3 (-363))))) (((*1 *2 *3) - (-12 (-5 *3 (-1168)) (-5 *2 (-685 (-186))) (-5 *1 (-186))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-114)) (-4 *4 (-1044)) (-5 *1 (-709 *4 *2)) - (-4 *2 (-642 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-831 *2)) (-4 *2 (-1044))))) + (-12 (-5 *3 (-1 (-1149 *4) (-1149 *4))) (-5 *2 (-1149 *4)) + (-5 *1 (-1282 *4)) (-4 *4 (-1208)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-640 (-1149 *5)) (-640 (-1149 *5)))) (-5 *4 (-563)) + (-5 *2 (-640 (-1149 *5))) (-5 *1 (-1282 *5)) (-4 *5 (-1208))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) + (-5 *1 (-751))))) +(((*1 *2 *3) + (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) + ((*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913))))) +(((*1 *2) (-12 (-5 *2 (-1140 (-1151))) (-5 *1 (-391))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *2 (-1059 *4 *5 *6)) (-5 *1 (-772 *4 *5 *6 *2 *3)) + (-4 *3 (-1065 *4 *5 *6 *2))))) +(((*1 *1) (-5 *1 (-437)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1208)) (-4 *2 (-846)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1208)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1045)))) + ((*1 *1 *2) + (-12 (-5 *2 (-640 *1)) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) + ((*1 *1 *2) + (-12 (-5 *2 (-640 (-1157 *3 *4))) (-5 *1 (-1157 *3 *4)) + (-14 *3 (-917)) (-4 *4 (-1045)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1169)) (-5 *5 (-1087 (-225))) (-5 *2 (-923)) + (-5 *1 (-921 *3)) (-4 *3 (-611 (-536))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1169)) (-5 *2 (-923)) (-5 *1 (-921 *3)) + (-4 *3 (-611 (-536))))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-923)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) + (-5 *1 (-923))))) +(((*1 *1 *1 *1) (-5 *1 (-858)))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-563)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-767)) (-4 *5 (-172)))) + ((*1 *1 *1 *2 *1 *2) + (-12 (-5 *2 (-563)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-767)) (-4 *5 (-172)))) + ((*1 *2 *2 *3) + (-12 + (-5 *2 + (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4) + (-247 *4 (-407 (-563))))) + (-5 *3 (-640 (-860 *4))) (-14 *4 (-640 (-1169))) (-14 *5 (-767)) + (-5 *1 (-505 *4 *5))))) (((*1 *1 *1) - (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) -(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-857)))) - ((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1261)) (-5 *1 (-957))))) + (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) (((*1 *2 *3) - (-12 (-5 *3 (-639 *4)) (-4 *4 (-843)) (-4 *4 (-362)) (-5 *2 (-766)) - (-5 *1 (-940 *4 *5)) (-4 *5 (-1232 *4))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3380 *1) (|:| -1441 *1))) (-4 *1 (-306)))) - ((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-385 *3)) (|:| |rm| (-385 *3)))) - (-5 *1 (-385 *3)) (-4 *3 (-1092)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3380 (-766)) (|:| -1441 (-766)))) - (-5 *1 (-766)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| -3380 *3) (|:| -1441 *3))) - (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-406 (-562))) (-4 *1 (-552 *3)) - (-4 *3 (-13 (-403) (-1192))))) - ((*1 *1 *2) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1192))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1192)))))) + (-12 (-5 *3 (-1149 (-1149 *4))) (-5 *2 (-1149 *4)) (-5 *1 (-1153 *4)) + (-4 *4 (-1045))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-858))))) +(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-818))))) +(((*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *3 (-554)) (-5 *2 (-639 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-416 *3))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-562)) (-5 *2 (-1261)) (-5 *1 (-1258)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258))))) -(((*1 *1 *1) (-5 *1 (-1056)))) -(((*1 *1 *1) - (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1279 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-841))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-451)) (-4 *4 (-554)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -3959 *4))) (-5 *1 (-964 *4 *3)) - (-4 *3 (-1232 *4))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-639 (-406 *6))) (-5 *3 (-406 *6)) - (-4 *6 (-1232 *5)) (-4 *5 (-13 (-362) (-146) (-1033 (-562)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-566 *5 *6))))) + (-12 (-5 *2 (-1262)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) + (-4 *4 (-1093))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1116 *3 *4 *2 *5)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4)) + (-4 *2 (-238 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1201 *4 *5 *3 *6)) (-4 *4 (-555)) (-4 *5 (-789)) + (-4 *3 (-846)) (-4 *6 (-1059 *4 *5 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-766)) (-5 *2 (-1 (-378))) (-5 *1 (-1035))))) -(((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-390))))) + (-12 (-5 *3 (-2 (|:| |val| (-640 *7)) (|:| -2059 *8))) + (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) + (-5 *1 (-984 *4 *5 *6 *7 *8)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-640 *7)) (|:| -2059 *8))) + (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) + (-5 *1 (-1100 *4 *5 *6 *7 *8))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1045))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1093) (-34))) + (-4 *3 (-13 (-1093) (-34)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-555)) (-4 *3 (-172)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *1 (-683 *3 *4 *5 *2)) + (-4 *2 (-682 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-640 (-640 (-767)))) (-5 *1 (-900 *3)) (-4 *3 (-1093))))) +(((*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-330))))) +(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-1168)) - (-4 *5 (-13 (-306) (-845) (-146))) (-5 *2 (-639 (-315 *5))) - (-5 *1 (-1121 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-406 (-947 *5)))) (-5 *4 (-639 (-1168))) - (-4 *5 (-13 (-306) (-845) (-146))) (-5 *2 (-639 (-639 (-315 *5)))) - (-5 *1 (-1121 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1164 *4)) (-4 *4 (-348)) (-5 *2 (-953 (-1112))) - (-5 *1 (-345 *4))))) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 *4)) + (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-1271 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)) - (-5 *1 (-658 *3 *4)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-658 *3 *4)) (-5 *1 (-1276 *3 *4)) - (-4 *3 (-845)) (-4 *4 (-171))))) -(((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-938 (-224))) (-5 *4 (-869)) (-5 *5 (-916)) - (-5 *2 (-1261)) (-5 *1 (-467)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-938 (-224))) (-5 *2 (-1261)) (-5 *1 (-467)))) - ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-639 (-938 (-224)))) (-5 *4 (-869)) (-5 *5 (-916)) - (-5 *2 (-1261)) (-5 *1 (-467))))) + (-12 (-5 *2 (-1257 *3)) (-4 *3 (-1045)) (-5 *1 (-708 *3 *4)) + (-4 *4 (-1233 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-1044)) (-4 *5 (-1232 *4)) (-5 *2 (-1 *6 (-639 *6))) - (-5 *1 (-1250 *4 *5 *3 *6)) (-4 *3 (-650 *5)) (-4 *6 (-1247 *4))))) + (-12 (-4 *4 (-452)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) + (-5 *2 (-640 *3)) (-5 *1 (-973 *4 *5 *6 *3)) + (-4 *3 (-1059 *4 *5 *6))))) +(((*1 *2) + (|partial| -12 (-4 *4 (-1212)) (-4 *5 (-1233 (-407 *2))) + (-4 *2 (-1233 *4)) (-5 *1 (-341 *3 *4 *2 *5)) + (-4 *3 (-342 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1212)) + (-4 *4 (-1233 (-407 *2))) (-4 *2 (-1233 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-640 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-584 *3)) (-4 *3 (-363))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1064 *4 *5 *6 *3)) (-4 *4 (-451)) (-4 *5 (-788)) - (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-639 (-639 (-639 *4)))) (-5 *3 (-639 *4)) (-4 *4 (-845)) - (-5 *1 (-1178 *4))))) -(((*1 *1 *2 *3 *4) - (-12 - (-5 *3 - (-639 - (-2 (|:| |scalar| (-406 (-562))) (|:| |coeff| (-1164 *2)) - (|:| |logand| (-1164 *2))))) - (-5 *4 (-639 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) - (-4 *2 (-362)) (-5 *1 (-583 *2))))) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4407)) (-4 *1 (-489 *4)) + (-4 *4 (-1208)) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) + (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6))) + (-4 *8 (-342 *5 *6 *7)) + (-4 *4 (-13 (-846) (-555) (-1034 (-563)))) + (-5 *2 (-2 (|:| -3254 (-767)) (|:| -1516 *8))) + (-5 *1 (-907 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-336 (-407 (-563)) *4 *5 *6)) + (-4 *4 (-1233 (-407 (-563)))) (-4 *5 (-1233 (-407 *4))) + (-4 *6 (-342 (-407 (-563)) *4 *5)) + (-5 *2 (-2 (|:| -3254 (-767)) (|:| -1516 *6))) + (-5 *1 (-908 *4 *5 *6))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-291))) + ((*1 *1) (-5 *1 (-858))) + ((*1 *1) + (-12 (-4 *2 (-452)) (-4 *3 (-846)) (-4 *4 (-789)) + (-5 *1 (-983 *2 *3 *4 *5)) (-4 *5 (-945 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1078))) + ((*1 *1) + (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34))) + (-4 *3 (-13 (-1093) (-34))))) + ((*1 *1) (-5 *1 (-1172))) ((*1 *1) (-5 *1 (-1173)))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-767)) (-4 *5 (-363)) (-5 *2 (-407 *6)) + (-5 *1 (-863 *5 *4 *6)) (-4 *4 (-1248 *5)) (-4 *6 (-1233 *5)))) + ((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-767)) (-5 *4 (-1249 *5 *6 *7)) (-4 *5 (-363)) + (-14 *6 (-1169)) (-14 *7 *5) (-5 *2 (-407 (-1230 *6 *5))) + (-5 *1 (-864 *5 *6 *7)))) + ((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-767)) (-5 *4 (-1249 *5 *6 *7)) (-4 *5 (-363)) + (-14 *6 (-1169)) (-14 *7 *5) (-5 *2 (-407 (-1230 *6 *5))) + (-5 *1 (-864 *5 *6 *7))))) +(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-755))))) (((*1 *2 *2) - (-12 (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-362) (-301) - (-10 -8 (-15 -4063 ((-1117 *3 (-608 $)) $)) - (-15 -4079 ((-1117 *3 (-608 $)) $)) - (-15 -4053 ($ (-1117 *3 (-608 $)))))))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-362)) (-4 *3 (-1044)) - (-5 *1 (-1152 *3))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-451)) (-4 *3 (-788)) (-4 *5 (-845)) (-5 *2 (-112)) - (-5 *1 (-448 *4 *3 *5 *6)) (-4 *6 (-944 *4 *3 *5))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1092)) (-4 *3 (-895 *5)) (-5 *2 (-683 *3)) - (-5 *1 (-686 *5 *3 *6 *4)) (-4 *6 (-372 *3)) - (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4403))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-766)) (-5 *4 (-1256 *2)) (-4 *5 (-306)) - (-4 *6 (-987 *5)) (-4 *2 (-13 (-408 *6 *7) (-1033 *6))) - (-5 *1 (-412 *5 *6 *7 *2)) (-4 *7 (-1232 *6))))) + (-12 (-5 *2 (-1257 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) + (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1034 (-563))) (-4 *1 (-302)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1093))))) (((*1 *1 *1) - (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) - (-4 *4 (-845)) (-4 *2 (-451))))) -(((*1 *2 *3) - (-12 (-5 *2 (-639 (-639 (-562)))) (-5 *1 (-966)) - (-5 *3 (-639 (-562)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1207)) (-5 *2 (-112)))) + (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) +(((*1 *2 *1) + (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) - (-4 *4 (-1044))))) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-767)) (-4 *4 (-307)) (-4 *6 (-1233 *4)) + (-5 *2 (-1257 (-640 *6))) (-5 *1 (-455 *4 *6)) (-5 *5 (-640 *6))))) +(((*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) +(((*1 *1 *1 *1) (-5 *1 (-858)))) (((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) - (-4 *3 (-366 *4)))) - ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-1168))))) -(((*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1261)) (-5 *1 (-390)))) - ((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-390))))) -(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1261)) (-5 *1 (-1171)))) - ((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-1172))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1256 *3)) (-4 *3 (-1232 *4)) (-4 *4 (-1211)) - (-4 *1 (-341 *4 *3 *5)) (-4 *5 (-1232 (-406 *3)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-639 *1)) - (-4 *1 (-1058 *3 *4 *5))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) - (-5 *1 (-749))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-1148 *4) (-1148 *4))) (-5 *2 (-1148 *4)) - (-5 *1 (-1281 *4)) (-4 *4 (-1207)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-639 (-1148 *5)) (-639 (-1148 *5)))) (-5 *4 (-562)) - (-5 *2 (-639 (-1148 *5))) (-5 *1 (-1281 *5)) (-4 *5 (-1207))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-887 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1092)) - (-4 *5 (-1207)) (-5 *1 (-885 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-887 *4)) (-5 *3 (-639 (-1 (-112) *5))) (-4 *4 (-1092)) - (-4 *5 (-1207)) (-5 *1 (-885 *4 *5)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-887 *5)) (-5 *3 (-639 (-1168))) - (-5 *4 (-1 (-112) (-639 *6))) (-4 *5 (-1092)) (-4 *6 (-1207)) - (-5 *1 (-885 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1207)) (-4 *4 (-845)) - (-5 *1 (-932 *4 *2 *5)) (-4 *2 (-429 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-639 (-1 (-112) *5))) (-4 *5 (-1207)) (-4 *4 (-845)) - (-5 *1 (-932 *4 *2 *5)) (-4 *2 (-429 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1168)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1207)) - (-5 *2 (-315 (-562))) (-5 *1 (-933 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1168)) (-5 *4 (-639 (-1 (-112) *5))) (-4 *5 (-1207)) - (-5 *2 (-315 (-562))) (-5 *1 (-933 *5)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-639 (-1168))) (-5 *3 (-1 (-112) (-639 *6))) - (-4 *6 (-13 (-429 *5) (-881 *4) (-610 (-887 *4)))) (-4 *4 (-1092)) - (-4 *5 (-13 (-1044) (-881 *4) (-845) (-610 (-887 *4)))) - (-5 *1 (-1068 *4 *5 *6))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-722) (-25)))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-788)) (-4 *4 (-845)) (-4 *5 (-306)) - (-5 *1 (-911 *3 *4 *5 *2)) (-4 *2 (-944 *5 *3 *4)))) + (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-1024 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1164 *6)) (-4 *6 (-944 *5 *3 *4)) (-4 *3 (-788)) - (-4 *4 (-845)) (-4 *5 (-306)) (-5 *1 (-911 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 *2)) (-4 *2 (-944 *6 *4 *5)) - (-5 *1 (-911 *4 *5 *6 *2)) (-4 *4 (-788)) (-4 *5 (-845)) - (-4 *6 (-306))))) -(((*1 *1 *2) - (-12 (-5 *2 (-639 *1)) (-4 *3 (-1044)) (-4 *1 (-681 *3 *4 *5)) - (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-639 *3)) (-4 *3 (-1044)) (-4 *1 (-681 *3 *4 *5)) - (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1256 *3)) (-4 *3 (-1044)) (-5 *1 (-683 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-639 *4)) (-4 *4 (-1044)) (-4 *1 (-1115 *3 *4 *5 *6)) - (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-639 (-2 (|:| |den| (-562)) (|:| |gcdnum| (-562))))) - (-4 *4 (-1232 (-406 *2))) (-5 *2 (-562)) (-5 *1 (-908 *4 *5)) - (-4 *5 (-1232 (-406 *4)))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1207)) (-5 *1 (-374 *4 *2)) - (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4404))))))) + (-12 (-5 *2 (-640 (-684 *3))) (-4 *3 (-1045)) (-5 *1 (-1024 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-1024 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-640 (-684 *3))) (-4 *3 (-1045)) (-5 *1 (-1024 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-301)) (-4 *2 (-1207)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-639 (-608 *1))) (-5 *3 (-639 *1)) (-4 *1 (-301)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-293 *1))) (-4 *1 (-301)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-293 *1)) (-4 *1 (-301))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) -(((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-329))))) -(((*1 *2 *1) (-12 (-4 *1 (-325 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-787)))) - ((*1 *2 *1) (-12 (-4 *1 (-703 *3)) (-4 *3 (-1044)) (-5 *2 (-766)))) - ((*1 *2 *1) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1044)) (-5 *2 (-766)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-639 *6)) (-4 *1 (-944 *4 *5 *6)) (-4 *4 (-1044)) - (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 (-766))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-944 *4 *5 *3)) (-4 *4 (-1044)) (-4 *5 (-788)) - (-4 *3 (-845)) (-5 *2 (-766))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-544)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-451)) (-4 *3 (-788)) (-4 *5 (-845)) (-5 *2 (-112)) - (-5 *1 (-448 *4 *3 *5 *6)) (-4 *6 (-944 *4 *3 *5))))) -(((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-838 *4)) (-5 *3 (-608 *4)) (-5 *5 (-112)) - (-4 *4 (-13 (-1192) (-29 *6))) - (-4 *6 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *1 (-223 *6 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) - (-5 *2 (-639 (-639 (-938 *3)))))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-639 (-639 (-938 *4)))) (-5 *3 (-112)) (-4 *4 (-1044)) - (-4 *1 (-1126 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-639 (-639 (-938 *3)))) (-4 *3 (-1044)) - (-4 *1 (-1126 *3)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-639 (-639 (-639 *4)))) (-5 *3 (-112)) - (-4 *1 (-1126 *4)) (-4 *4 (-1044)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-639 (-639 (-938 *4)))) (-5 *3 (-112)) - (-4 *1 (-1126 *4)) (-4 *4 (-1044)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-639 (-639 (-639 *5)))) (-5 *3 (-639 (-170))) - (-5 *4 (-170)) (-4 *1 (-1126 *5)) (-4 *5 (-1044)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-639 (-639 (-938 *5)))) (-5 *3 (-639 (-170))) - (-5 *4 (-170)) (-4 *1 (-1126 *5)) (-4 *5 (-1044))))) + (|partial| -12 (-5 *2 (-640 (-948 *3))) (-4 *3 (-452)) + (-5 *1 (-360 *3 *4)) (-14 *4 (-640 (-1169))))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-640 (-776 *3 (-860 *4)))) (-4 *3 (-452)) + (-14 *4 (-640 (-1169))) (-5 *1 (-625 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-639 *3)) (-4 *3 (-845)) (-5 *1 (-734 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-4 *3 (-1058 *5 *6 *7)) - (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1501 *4)))) - (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1044))))) + (|partial| -12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) +(((*1 *2 *3) + (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) + (-4 *4 (-349))))) +(((*1 *1 *1 *1) (-5 *1 (-129))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-917)))) + ((*1 *1 *1 *1) (-5 *1 (-1213))) ((*1 *1 *1 *1) (-5 *1 (-1214))) + ((*1 *1 *1 *1) (-5 *1 (-1215)))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1119 *4 *3 *5))) (-4 *4 (-38 (-407 (-563)))) + (-4 *4 (-1045)) (-4 *3 (-846)) (-5 *1 (-1119 *4 *3 *5)) + (-4 *5 (-945 *4 (-531 *3) *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1202 *4))) (-5 *3 (-1169)) (-5 *1 (-1202 *4)) + (-4 *4 (-38 (-407 (-563)))) (-4 *4 (-1045))))) (((*1 *2) - (|partial| -12 (-4 *4 (-1211)) (-4 *5 (-1232 (-406 *2))) - (-4 *2 (-1232 *4)) (-5 *1 (-340 *3 *4 *2 *5)) - (-4 *3 (-341 *4 *2 *5)))) + (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) + (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) + (-5 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) ((*1 *2) - (|partial| -12 (-4 *1 (-341 *3 *2 *4)) (-4 *3 (-1211)) - (-4 *4 (-1232 (-406 *2))) (-4 *2 (-1232 *3))))) + (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) + (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) + (-5 *1 (-1101 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *2 (-418 (-1165 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1165 *1)) + (-4 *4 (-452)) (-4 *4 (-555)) (-4 *4 (-846)))) + ((*1 *2 *3) + (-12 (-4 *1 (-905)) (-5 *2 (-418 (-1165 *1))) (-5 *3 (-1165 *1))))) (((*1 *2 *1) - (-12 (-4 *1 (-1033 (-562))) (-4 *1 (-301)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-544)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3)) (-4 *3 (-1092))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-362)) (-5 *1 (-761 *2 *3)) (-4 *2 (-703 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1229 *5 *4)) (-4 *4 (-815)) (-14 *5 (-1168)) - (-5 *2 (-639 *4)) (-5 *1 (-1106 *4 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-639 *2)) (-4 *2 (-544)) (-5 *1 (-158 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-909 *3)) (-4 *3 (-306))))) -(((*1 *1 *2) - (-12 (-5 *2 (-766)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1044)) - (-14 *4 (-639 (-1168))))) - ((*1 *1 *2) - (-12 (-5 *2 (-766)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1044) (-845))) - (-14 *4 (-639 (-1168))))) - ((*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-334 *3 *4 *5 *2)) (-4 *3 (-362)) - (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) - (-4 *2 (-341 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-766)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-171)))) - ((*1 *1) (-12 (-4 *2 (-171)) (-4 *1 (-719 *2 *3)) (-4 *3 (-1232 *2))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-887 *4)) (-4 *4 (-1092)) (-5 *2 (-112)) - (-5 *1 (-884 *4 *5)) (-4 *5 (-1092)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-887 *5)) (-4 *5 (-1092)) (-5 *2 (-112)) - (-5 *1 (-885 *5 *3)) (-4 *3 (-1207)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *6)) (-5 *4 (-887 *5)) (-4 *5 (-1092)) - (-4 *6 (-1207)) (-5 *2 (-112)) (-5 *1 (-885 *5 *6))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1256 *4)) (-5 *3 (-562)) (-4 *4 (-348)) - (-5 *1 (-527 *4))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-362)) - (-5 *2 (-639 (-2 (|:| C (-683 *5)) (|:| |g| (-1256 *5))))) - (-5 *1 (-973 *5)) (-5 *3 (-683 *5)) (-5 *4 (-1256 *5))))) + (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1093)) + (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-639 *2)) (-5 *1 (-178 *2)) (-4 *2 (-306)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-639 (-639 *4))) (-5 *2 (-639 *4)) (-4 *4 (-306)) - (-5 *1 (-178 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-639 *8)) - (-5 *4 - (-639 - (-2 (|:| -4291 (-683 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-683 *7))))) - (-5 *5 (-766)) (-4 *8 (-1232 *7)) (-4 *7 (-1232 *6)) (-4 *6 (-348)) + (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-5 *2 - (-2 (|:| -4291 (-683 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-683 *7)))) - (-5 *1 (-497 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559))))) -(((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-562)) (-5 *6 (-1 (-1261) (-1256 *5) (-1256 *5) (-378))) - (-5 *3 (-1256 (-378))) (-5 *5 (-378)) (-5 *2 (-1261)) - (-5 *1 (-783))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-4 *3 (-1058 *5 *6 *7)) - (-5 *2 (-639 (-2 (|:| |val| (-639 *3)) (|:| -1501 *4)))) - (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-639 (-1068 *3 *4 *5))) (-4 *3 (-1092)) - (-4 *4 (-13 (-1044) (-881 *3) (-845) (-610 (-887 *3)))) - (-4 *5 (-13 (-429 *4) (-881 *3) (-610 (-887 *3)))) - (-5 *1 (-1069 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) - (-5 *2 (-1256 *1)) (-4 *1 (-341 *3 *4 *5))))) + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-407 *5)) + (|:| |c2| (-407 *5)) (|:| |deg| (-767)))) + (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1233 (-407 *5)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) - (-4 *2 (-13 (-429 *3) (-1192)))))) + (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) - (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))) - (-5 *2 (-112)) (-5 *1 (-299))))) + (-12 (-4 *4 (-555)) (-5 *2 (-1165 *3)) (-5 *1 (-41 *4 *3)) + (-4 *3 + (-13 (-363) (-302) + (-10 -8 (-15 -2143 ((-1118 *4 (-609 $)) $)) + (-15 -2154 ((-1118 *4 (-609 $)) $)) + (-15 -1693 ($ (-1118 *4 (-609 $)))))))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1230 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1169)) + (-5 *2 (-640 *4)) (-5 *1 (-1107 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *1 *1 *1) (-5 *1 (-129))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-917)))) + ((*1 *1 *1 *1) (-5 *1 (-1213))) ((*1 *1 *1 *1) (-5 *1 (-1214))) + ((*1 *1 *1 *1) (-5 *1 (-1215)))) +(((*1 *1 *1) (-4 *1 (-626))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998) (-1193)))))) (((*1 *1 *2) - (-12 (-5 *2 (-639 (-2 (|:| -2319 (-1168)) (|:| -2693 (-436))))) - (-5 *1 (-1172))))) + (-12 (-5 *2 (-684 *5)) (-4 *5 (-1045)) (-5 *1 (-1049 *3 *4 *5)) + (-14 *3 (-767)) (-14 *4 (-767))))) +(((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) + ((*1 *1 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-967))))) +(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-484 *3))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-563))) (-5 *4 (-563)) (-5 *2 (-52)) + (-5 *1 (-1001))))) +(((*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4398)) (-4 *1 (-404)))) + ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917)))) + ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-694)))) + ((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-694))))) (((*1 *2 *1) - (-12 (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-639 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) + (-12 (-4 *1 (-553 *3)) (-4 *3 (-13 (-404) (-1193))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) + (-4 *3 (-1233 *4)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *5) + (|partial| -12 (-5 *4 (-609 *3)) (-5 *5 (-640 *3)) + (-4 *3 (-13 (-430 *6) (-27) (-1193))) + (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1093))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) + (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 + (-3 (|:| |%expansion| (-313 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151)))))) + (-5 *1 (-420 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1193) (-430 *5))) + (-14 *6 (-1169)) (-14 *7 *3)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-640 (-263))) (-5 *4 (-1169)) (-5 *2 (-112)) + (-5 *1 (-263))))) +(((*1 *1 *1) (-5 *1 (-225))) + ((*1 *1 *1) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) + (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) + ((*1 *1 *1) (-5 *1 (-379))) ((*1 *1) (-5 *1 (-379)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-640 *2)) (-4 *2 (-545)) (-5 *1 (-159 *2))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1103)) (-5 *3 (-563))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-169 (-225))) (-5 *4 (-563)) (-5 *2 (-1031)) + (-5 *1 (-754))))) (((*1 *2 *3) - (-12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-306)) - (-5 *2 (-639 (-766))) (-5 *1 (-773 *3 *4 *5 *6 *7)) - (-4 *3 (-1232 *6)) (-4 *7 (-944 *6 *4 *5))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-315 (-562))) (-5 *4 (-1 (-224) (-224))) - (-5 *5 (-1086 (-224))) (-5 *6 (-639 (-262))) (-5 *2 (-1125 (-224))) - (-5 *1 (-691))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-406 *4)) (-4 *4 (-1232 *3)) - (-4 *3 (-13 (-362) (-146) (-1033 (-562)))) (-5 *1 (-566 *3 *4))))) + (-12 (-4 *4 (-846)) (-5 *2 (-1180 (-640 *4))) (-5 *1 (-1179 *4)) + (-5 *3 (-640 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-341 *4 *5 *6)) (-4 *4 (-1211)) - (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-406 *5))) - (-5 *2 (-2 (|:| |num| (-683 *5)) (|:| |den| *5)))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1044)) (-4 *2 (-554))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-766)) (-5 *1 (-778 *2)) (-4 *2 (-38 (-406 (-562)))) - (-4 *2 (-171))))) + (|partial| -12 (-5 *3 (-684 (-407 (-948 (-563))))) + (-5 *2 (-684 (-316 (-563)))) (-5 *1 (-1027))))) +(((*1 *1 *1) + (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) +(((*1 *1 *1 *1) (-4 *1 (-307))) ((*1 *1 *1 *1) (-5 *1 (-767))) + ((*1 *1 *1 *1) (-5 *1 (-858)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) +(((*1 *2 *3 *4 *5 *3 *6 *3) + (-12 (-5 *3 (-563)) (-5 *5 (-169 (-225))) (-5 *6 (-1151)) + (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-112)) + (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 (-169 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-112)) (-5 *1 (-1197 *4 *3)) + (-4 *3 (-13 (-27) (-1193) (-430 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-910 *3)) (-4 *3 (-307))))) +(((*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1093)) (-4 *2 (-368))))) +(((*1 *1) + (-12 (-4 *1 (-404)) (-2176 (|has| *1 (-6 -4398))) + (-2176 (|has| *1 (-6 -4390))))) + ((*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1093)) (-4 *2 (-846)))) + ((*1 *2 *1) (-12 (-4 *1 (-826 *2)) (-4 *2 (-846)))) + ((*1 *1) (-4 *1 (-840))) ((*1 *1 *1 *1) (-4 *1 (-846)))) +(((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-3 *3 (-640 *1))) + (-4 *1 (-1065 *4 *5 *6 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) - (-4 *2 (-13 (-429 *3) (-1192)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1207)) (-4 *2 (-845)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-281 *3)) (-4 *3 (-1207)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-845))))) -(((*1 *2 *3) - (-12 (-5 *3 (-639 (-224))) (-5 *2 (-1256 (-693))) (-5 *1 (-304))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-168 (-224))) (-5 *5 (-562)) (-5 *6 (-1150)) - (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-753))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1044)) (-5 *1 (-443 *3 *2)) (-4 *2 (-1232 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1207)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) - (-4 *4 (-845)))) - ((*1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207))))) -(((*1 *1 *1) (-4 *1 (-864 *2)))) -(((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-693)) (-5 *1 (-304))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) - (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1030)) - (-5 *1 (-743))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-112)) (-5 *1 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-1168)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-114)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1168)) (-5 *2 (-112)) (-5 *1 (-608 *4)) (-4 *4 (-845)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-608 *4)) (-4 *4 (-845)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1092)) (-5 *2 (-112)) (-5 *1 (-882 *5 *3 *4)) - (-4 *3 (-881 *5)) (-4 *4 (-610 (-887 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *6)) (-4 *6 (-881 *5)) (-4 *5 (-1092)) - (-5 *2 (-112)) (-5 *1 (-882 *5 *6 *4)) (-4 *4 (-610 (-887 *5)))))) + (-12 (-4 *3 (-452)) (-4 *3 (-846)) (-4 *3 (-1034 (-563))) + (-4 *3 (-555)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) + (-4 *2 + (-13 (-363) (-302) + (-10 -8 (-15 -2143 ((-1118 *3 (-609 $)) $)) + (-15 -2154 ((-1118 *3 (-609 $)) $)) + (-15 -1693 ($ (-1118 *3 (-609 $)))))))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-554)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-766)) (-4 *1 (-230 *4)) - (-4 *4 (-1044)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-230 *3)) (-4 *3 (-1044)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-232)) (-5 *2 (-766)))) - ((*1 *1 *1) (-4 *1 (-232))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-766)) (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *4)) - (-4 *4 (-1232 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-362) (-146))) (-5 *1 (-398 *2 *3)) - (-4 *3 (-1232 *2)))) - ((*1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1044)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-639 *4)) (-5 *3 (-639 (-766))) (-4 *1 (-895 *4)) - (-4 *4 (-1092)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-766)) (-4 *1 (-895 *2)) (-4 *2 (-1092)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-639 *3)) (-4 *1 (-895 *3)) (-4 *3 (-1092)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-895 *2)) (-4 *2 (-1092))))) + (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-555)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) + (-5 *1 (-973 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-640 *5)) (-5 *4 (-563)) (-4 *5 (-844)) (-4 *5 (-363)) + (-5 *2 (-767)) (-5 *1 (-941 *5 *6)) (-4 *6 (-1233 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-302)))) + ((*1 *1 *1) (-4 *1 (-302))) ((*1 *1 *1) (-5 *1 (-858)))) +(((*1 *2 *2) + (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) + (-5 *1 (-176 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-971 *4 *5 *3 *6)) (-4 *4 (-1044)) (-4 *5 (-788)) - (-4 *3 (-845)) (-4 *6 (-1058 *4 *5 *3)) (-5 *2 (-112))))) + (-12 (-5 *3 (-901 *4)) (-4 *4 (-1093)) (-5 *2 (-640 (-767))) + (-5 *1 (-900 *4))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-563)) (|has| *1 (-6 -4408)) (-4 *1 (-373 *3)) + (-4 *3 (-1208))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-562)) (-4 *1 (-322 *2 *4)) (-4 *4 (-130)) - (-4 *2 (-1092)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *1 (-360 *2)) (-4 *2 (-1092)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *1 (-385 *2)) (-4 *2 (-1092)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *1 (-417 *2)) (-4 *2 (-554)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-562)) (-4 *2 (-1092)) (-5 *1 (-643 *2 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *1 (-814 *2)) (-4 *2 (-845))))) -(((*1 *2 *1) - (-12 (-4 *1 (-689 *3)) (-4 *3 (-1092)) - (-5 *2 (-639 (-2 (|:| -2693 *3) (|:| -1723 (-766)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-1168)) - (-4 *5 (-13 (-306) (-845) (-146))) (-5 *2 (-639 (-293 (-315 *5)))) - (-5 *1 (-1121 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-13 (-306) (-845) (-146))) - (-5 *2 (-639 (-293 (-315 *4)))) (-5 *1 (-1121 *4)))) + (|partial| -12 (-5 *3 (-888 *4)) (-4 *4 (-1093)) (-5 *2 (-112)) + (-5 *1 (-885 *4 *5)) (-4 *5 (-1093)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-293 (-406 (-947 *5)))) (-5 *4 (-1168)) - (-4 *5 (-13 (-306) (-845) (-146))) (-5 *2 (-639 (-293 (-315 *5)))) - (-5 *1 (-1121 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-293 (-406 (-947 *4)))) - (-4 *4 (-13 (-306) (-845) (-146))) (-5 *2 (-639 (-293 (-315 *4)))) - (-5 *1 (-1121 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-406 (-947 *5)))) (-5 *4 (-639 (-1168))) - (-4 *5 (-13 (-306) (-845) (-146))) - (-5 *2 (-639 (-639 (-293 (-315 *5))))) (-5 *1 (-1121 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 (-406 (-947 *4)))) - (-4 *4 (-13 (-306) (-845) (-146))) - (-5 *2 (-639 (-639 (-293 (-315 *4))))) (-5 *1 (-1121 *4)))) + (-12 (-5 *4 (-888 *5)) (-4 *5 (-1093)) (-5 *2 (-112)) + (-5 *1 (-886 *5 *3)) (-4 *3 (-1208)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-293 (-406 (-947 *5))))) (-5 *4 (-639 (-1168))) - (-4 *5 (-13 (-306) (-845) (-146))) - (-5 *2 (-639 (-639 (-293 (-315 *5))))) (-5 *1 (-1121 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 (-293 (-406 (-947 *4))))) - (-4 *4 (-13 (-306) (-845) (-146))) - (-5 *2 (-639 (-639 (-293 (-315 *4))))) (-5 *1 (-1121 *4))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-378)) (-5 *1 (-1056))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-684 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-639 *1)) (-4 *1 (-429 *4)) - (-4 *4 (-845)))) - ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1168)) (-4 *1 (-429 *3)) (-4 *3 (-845)))) - ((*1 *1 *2 *1 *1 *1) - (-12 (-5 *2 (-1168)) (-4 *1 (-429 *3)) (-4 *3 (-845)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1168)) (-4 *1 (-429 *3)) (-4 *3 (-845)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1168)) (-4 *1 (-429 *3)) (-4 *3 (-845))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-1211)) (-4 *5 (-1232 *4)) - (-5 *2 (-2 (|:| |radicand| (-406 *5)) (|:| |deg| (-766)))) - (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1232 (-406 *5)))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-921))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092))))) -(((*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-1164 *3))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1168)) (-5 *1 (-279)))) - ((*1 *2 *1) - (-12 (-5 *2 (-3 (-562) (-224) (-1168) (-1150) (-1173))) - (-5 *1 (-1173))))) -(((*1 *2 *2) - (-12 (-4 *3 (-845)) (-5 *1 (-924 *3 *2)) (-4 *2 (-429 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1168)) (-5 *2 (-315 (-562))) (-5 *1 (-925))))) + (-12 (-5 *3 (-640 *6)) (-5 *4 (-888 *5)) (-4 *5 (-1093)) + (-4 *6 (-1208)) (-5 *2 (-112)) (-5 *1 (-886 *5 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) + (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-767)) (-5 *1 (-670 *3)) (-4 *3 (-1045)) + (-4 *3 (-1093))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-418 *3)) (-4 *3 (-555)) (-5 *1 (-419 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-302))) ((*1 *1 *1) (-4 *1 (-302)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1165 *1)) (-5 *3 (-1169)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1165 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-948 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1169)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-846) (-555))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-846) (-555)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045))))) +(((*1 *2 *1) + (-12 (-5 *2 (-869 (-962 *3) (-962 *3))) (-5 *1 (-962 *3)) + (-4 *3 (-963))))) +(((*1 *2 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-545))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-1092)) (-4 *2 (-895 *4)) (-5 *1 (-686 *4 *2 *5 *3)) - (-4 *5 (-372 *2)) (-4 *3 (-13 (-372 *4) (-10 -7 (-6 -4403))))))) + (-12 (-5 *2 (-1257 *4)) (-5 *3 (-563)) (-4 *4 (-349)) + (-5 *1 (-528 *4))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |mval| (-684 *3)) (|:| |invmval| (-684 *3)) + (|:| |genIdeal| (-504 *3 *4 *5 *6)))) + (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-1021 (-838 (-562)))) (-5 *1 (-592 *3)) (-4 *3 (-1044))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) - (-4 *2 (-13 (-429 *3) (-1192)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-639 (-535))) (-5 *2 (-1168)) (-5 *1 (-535))))) + (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-5 *2 (-767))))) +(((*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1208)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-869 (-962 *3) (-962 *3))) (-5 *1 (-962 *3)) + (-4 *3 (-963))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1165 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) + (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-839 *3)) (-4 *3 (-1093))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-684 *7)) (-5 *3 (-640 *7)) (-4 *7 (-945 *4 *6 *5)) + (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) + (-4 *6 (-789)) (-5 *1 (-920 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-938 *3) (-938 *3))) (-5 *1 (-175 *3)) - (-4 *3 (-13 (-362) (-1192) (-997))))) - ((*1 *2) - (|partial| -12 (-4 *4 (-1211)) (-4 *5 (-1232 (-406 *2))) - (-4 *2 (-1232 *4)) (-5 *1 (-340 *3 *4 *2 *5)) - (-4 *3 (-341 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-341 *3 *2 *4)) (-4 *3 (-1211)) - (-4 *4 (-1232 (-406 *2))) (-4 *2 (-1232 *3))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1193 *3)) (-4 *3 (-1092))))) + (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-13 (-846) (-555)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-640 (-767))) (-5 *3 (-112)) (-5 *1 (-1157 *4 *5)) + (-14 *4 (-917)) (-4 *5 (-1045))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1232 *6)) - (-4 *6 (-13 (-27) (-429 *5))) - (-4 *5 (-13 (-845) (-554) (-1033 (-562)))) (-4 *8 (-1232 (-406 *7))) - (-5 *2 (-583 *3)) (-5 *1 (-550 *5 *6 *7 *8 *3)) - (-4 *3 (-341 *6 *7 *8))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1056)) (-5 *3 (-1150))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) - (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))) - (-5 *2 (-562)) (-5 *1 (-203))))) -(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *3 (-451)) (-4 *4 (-845)) (-4 *5 (-788)) (-5 *2 (-112)) - (-5 *1 (-982 *3 *4 *5 *6)) (-4 *6 (-944 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1132 *3 *4)) (-4 *3 (-13 (-1092) (-34))) - (-4 *4 (-13 (-1092) (-34)))))) + (-12 (-4 *5 (-363)) + (-5 *2 (-640 (-2 (|:| C (-684 *5)) (|:| |g| (-1257 *5))))) + (-5 *1 (-974 *5)) (-5 *3 (-684 *5)) (-5 *4 (-1257 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1165 (-407 (-563)))) (-5 *1 (-938)) (-5 *3 (-563))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-1256 *5))) (-5 *4 (-562)) (-5 *2 (-1256 *5)) - (-5 *1 (-1024 *5)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1044))))) -(((*1 *1 *2) (-12 (-5 *1 (-1193 *2)) (-4 *2 (-1092)))) - ((*1 *1 *2) - (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-5 *1 (-1193 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-639 (-1193 *2))) (-5 *1 (-1193 *2)) (-4 *2 (-1092))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1092)) (-5 *1 (-959 *2 *3)) (-4 *3 (-1092))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) - (-4 *5 (-429 *4)) (-5 *2 (-417 (-1164 (-406 (-562))))) - (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1232 *5))))) -(((*1 *2) - (-12 (-4 *1 (-348)) - (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1084 (-838 *3))) (-4 *3 (-13 (-1192) (-954) (-29 *5))) - (-4 *5 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) - (-5 *2 - (-3 (|:| |f1| (-838 *3)) (|:| |f2| (-639 (-838 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-218 *5 *3)))) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-767)) (-5 *2 (-1262))))) +(((*1 *2 *1) + (-12 (-5 *2 (-640 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1093))))) +(((*1 *1 *1 *1) (-4 *1 (-307))) ((*1 *1 *1 *1) (-5 *1 (-767))) + ((*1 *1 *1 *1) (-5 *1 (-858)))) +(((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-52)) (-5 *1 (-888 *4)) + (-4 *4 (-1093))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-640 *2)) (-5 *1 (-179 *2)) (-4 *2 (-307)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-640 (-640 *4))) (-5 *2 (-640 *4)) (-4 *4 (-307)) + (-5 *1 (-179 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1084 (-838 *3))) (-5 *5 (-1150)) - (-4 *3 (-13 (-1192) (-954) (-29 *6))) - (-4 *6 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) + (-12 (-5 *3 (-640 *8)) + (-5 *4 + (-640 + (-2 (|:| -4315 (-684 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-684 *7))))) + (-5 *5 (-767)) (-4 *8 (-1233 *7)) (-4 *7 (-1233 *6)) (-4 *6 (-349)) (-5 *2 - (-3 (|:| |f1| (-838 *3)) (|:| |f2| (-639 (-838 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-218 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-1084 (-838 (-315 *5)))) - (-4 *5 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) + (-2 (|:| -4315 (-684 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-684 *7)))) + (-5 *1 (-498 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1169)) + (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) + (-4 *5 (-13 (-27) (-1193) (-430 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) + (-4 *3 (-13 (-27) (-1193) (-430 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-407 (-563))) + (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) + (-4 *3 (-13 (-27) (-1193) (-430 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))) + (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-563))) + (-4 *3 (-13 (-27) (-1193) (-430 *6))) + (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-563))) (-5 *4 (-294 *6)) + (-4 *6 (-13 (-27) (-1193) (-430 *5))) + (-4 *5 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-52)) (-5 *1 (-459 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) + (-4 *3 (-13 (-27) (-1193) (-430 *6))) + (-4 *6 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-52)) (-5 *1 (-459 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-563))) (-5 *4 (-294 *7)) (-5 *5 (-1224 (-563))) + (-4 *7 (-13 (-27) (-1193) (-430 *6))) + (-4 *6 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-5 *6 (-1224 (-563))) + (-4 *3 (-13 (-27) (-1193) (-430 *7))) + (-4 *7 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-407 (-563)))) (-5 *4 (-294 *8)) + (-5 *5 (-1224 (-407 (-563)))) (-5 *6 (-407 (-563))) + (-4 *8 (-13 (-27) (-1193) (-430 *7))) + (-4 *7 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-52)) (-5 *1 (-459 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-5 *6 (-1224 (-407 (-563)))) + (-5 *7 (-407 (-563))) (-4 *3 (-13 (-27) (-1193) (-430 *8))) + (-4 *8 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-52)) (-5 *1 (-459 *8 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1149 (-2 (|:| |k| (-563)) (|:| |c| *3)))) + (-4 *3 (-1045)) (-5 *1 (-593 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-594 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1149 (-2 (|:| |k| (-563)) (|:| |c| *3)))) + (-4 *3 (-1045)) (-4 *1 (-1217 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-767)) + (-5 *3 (-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| *4)))) + (-4 *4 (-1045)) (-4 *1 (-1238 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-4 *1 (-1248 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1149 (-2 (|:| |k| (-767)) (|:| |c| *3)))) + (-4 *3 (-1045)) (-4 *1 (-1248 *3))))) +(((*1 *2) + (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) + (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) + (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) + (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) + (-5 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) + (-5 *2 (-684 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-684 *3))))) +(((*1 *2 *2 *2 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-609 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1169))) + (-4 *2 (-13 (-430 *5) (-27) (-1193))) + (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) + (-5 *1 (-565 *5 *2 *6)) (-4 *6 (-1093))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1257 (-640 (-2 (|:| -2619 *4) (|:| -2555 (-1113)))))) + (-4 *4 (-349)) (-5 *2 (-684 *4)) (-5 *1 (-346 *4))))) +(((*1 *2 *3 *4 *4 *3 *3 *5) + (|partial| -12 (-5 *4 (-609 *3)) (-5 *5 (-1165 *3)) + (-4 *3 (-13 (-430 *6) (-27) (-1193))) + (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) + (-5 *2 (-2 (|:| -3646 *3) (|:| |coeff| *3))) + (-5 *1 (-559 *6 *3 *7)) (-4 *7 (-1093)))) + ((*1 *2 *3 *4 *4 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-609 *3)) (-5 *5 (-407 (-1165 *3))) + (-4 *3 (-13 (-430 *6) (-27) (-1193))) + (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) + (-5 *2 (-2 (|:| -3646 *3) (|:| |coeff| *3))) + (-5 *1 (-559 *6 *3 *7)) (-4 *7 (-1093))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-330)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-330))))) +(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-245 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) + (-5 *1 (-751))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-555) (-846))) + (-4 *2 (-13 (-430 *4) (-998) (-1193))) (-5 *1 (-597 *4 *2 *3)) + (-4 *3 (-13 (-430 (-169 *4)) (-998) (-1193)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1230 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1169)) + (-5 *2 (-563)) (-5 *1 (-1107 *4 *5))))) +(((*1 *1 *1 *1) (-5 *1 (-858)))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-609 *3)) (-5 *5 (-1 (-1165 *3) (-1165 *3))) + (-4 *3 (-13 (-27) (-430 *6))) (-4 *6 (-13 (-846) (-555))) + (-5 *2 (-584 *3)) (-5 *1 (-550 *6 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1054)) (-4 *3 (-1193)) + (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1169)) (-4 *4 (-555)) (-4 *4 (-846)) + (-5 *1 (-572 *4 *2)) (-4 *2 (-430 *4))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-1169)) (-5 *6 (-112)) + (-4 *7 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) + (-4 *3 (-13 (-1193) (-955) (-29 *7))) (-5 *2 - (-3 (|:| |f1| (-838 (-315 *5))) (|:| |f2| (-639 (-838 (-315 *5)))) + (-3 (|:| |f1| (-839 *3)) (|:| |f2| (-640 (-839 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-219 *5)))) + (-5 *1 (-219 *7 *3)) (-5 *5 (-839 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-363)) + (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-5 *1 (-450 *4 *5 *6 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-406 (-947 *6))) (-5 *4 (-1084 (-838 (-315 *6)))) - (-5 *5 (-1150)) - (-4 *6 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) + (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-363)) (-5 *2 - (-3 (|:| |f1| (-838 (-315 *6))) (|:| |f2| (-639 (-838 (-315 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-219 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1084 (-838 (-406 (-947 *5))))) (-5 *3 (-406 (-947 *5))) - (-4 *5 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) + (-2 (|:| R (-684 *6)) (|:| A (-684 *6)) (|:| |Ainv| (-684 *6)))) + (-5 *1 (-974 *6)) (-5 *3 (-684 *6))))) +(((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-815 *3)) (|:| |rm| (-815 *3)))) + (-5 *1 (-815 *3)) (-4 *3 (-846)))) + ((*1 *1 *1 *1) (-5 *1 (-858)))) +(((*1 *1) (-5 *1 (-1172)))) +(((*1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-825))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *4 (-563)) (-5 *6 (-1 (-1262) (-1257 *5) (-1257 *5) (-379))) + (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262)) + (-5 *1 (-784))))) +(((*1 *1) (-5 *1 (-437)))) +(((*1 *2 *3) + (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-555)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) + (-5 *1 (-973 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 - (-3 (|:| |f1| (-838 (-315 *5))) (|:| |f2| (-639 (-838 (-315 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-219 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1084 (-838 (-406 (-947 *6))))) (-5 *5 (-1150)) - (-5 *3 (-406 (-947 *6))) - (-4 *6 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) + (-2 (|:| -2619 *4) (|:| -4076 *4) (|:| |totalpts| (-563)) + (|:| |success| (-112)))) + (-5 *1 (-785)) (-5 *5 (-563))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-555) (-846) (-1034 (-563)))) (-5 *1 (-188 *3 *2)) + (-4 *2 (-13 (-27) (-1193) (-430 (-169 *3)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3)))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-888 *4)) (-4 *4 (-1093)) (-5 *1 (-885 *4 *3)) + (-4 *3 (-1093))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 - (-3 (|:| |f1| (-838 (-315 *6))) (|:| |f2| (-639 (-838 (-315 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-219 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1168)) - (-4 *5 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-3 *3 (-639 *3))) (-5 *1 (-427 *5 *3)) - (-4 *3 (-13 (-1192) (-954) (-29 *5))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-473 *3 *4 *5)) - (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) (-14 *5 *3))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1086 (-838 (-378)))) - (-5 *5 (-378)) (-5 *6 (-1056)) (-5 *2 (-1030)) (-5 *1 (-563)))) - ((*1 *2 *3) (-12 (-5 *3 (-764)) (-5 *2 (-1030)) (-5 *1 (-563)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1086 (-838 (-378)))) - (-5 *5 (-378)) (-5 *2 (-1030)) (-5 *1 (-563)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1086 (-838 (-378)))) - (-5 *5 (-378)) (-5 *2 (-1030)) (-5 *1 (-563)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-315 (-378))) (-5 *4 (-1086 (-838 (-378)))) - (-5 *2 (-1030)) (-5 *1 (-563)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-315 (-378))) (-5 *4 (-639 (-1086 (-838 (-378))))) - (-5 *2 (-1030)) (-5 *1 (-563)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-315 (-378))) (-5 *4 (-639 (-1086 (-838 (-378))))) - (-5 *5 (-378)) (-5 *2 (-1030)) (-5 *1 (-563)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-315 (-378))) (-5 *4 (-639 (-1086 (-838 (-378))))) - (-5 *5 (-378)) (-5 *2 (-1030)) (-5 *1 (-563)))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-315 (-378))) (-5 *4 (-639 (-1086 (-838 (-378))))) - (-5 *5 (-378)) (-5 *6 (-1056)) (-5 *2 (-1030)) (-5 *1 (-563)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-315 (-378))) (-5 *4 (-1084 (-838 (-378)))) - (-5 *5 (-1150)) (-5 *2 (-1030)) (-5 *1 (-563)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-315 (-378))) (-5 *4 (-1084 (-838 (-378)))) - (-5 *5 (-1168)) (-5 *2 (-1030)) (-5 *1 (-563)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-362) (-146) (-1033 (-562)))) (-4 *5 (-1232 *4)) - (-5 *2 (-583 (-406 *5))) (-5 *1 (-566 *4 *5)) (-5 *3 (-406 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-1168)) (-4 *5 (-146)) - (-4 *5 (-13 (-451) (-1033 (-562)) (-845) (-635 (-562)))) - (-5 *2 (-3 (-315 *5) (-639 (-315 *5)))) (-5 *1 (-586 *5)))) - ((*1 *1 *1) - (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-735 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-845)) - (-4 *3 (-38 (-406 (-562)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1168)) (-5 *1 (-947 *3)) (-4 *3 (-38 (-406 (-562)))) - (-4 *3 (-1044)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) (-4 *2 (-845)) - (-5 *1 (-1118 *3 *2 *4)) (-4 *4 (-944 *3 (-530 *2) *2)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) - (-5 *1 (-1152 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1159 *3 *4 *5)) - (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) (-14 *5 *3))) + (-2 (|:| -2619 *4) (|:| -4076 *4) (|:| |totalpts| (-563)) + (|:| |success| (-112)))) + (-5 *1 (-785)) (-5 *5 (-563))))) +(((*1 *2 *3) + (-12 (-4 *4 (-363)) (-4 *4 (-555)) (-4 *5 (-1233 *4)) + (-5 *2 (-2 (|:| -3773 (-620 *4 *5)) (|:| -3893 (-407 *5)))) + (-5 *1 (-620 *4 *5)) (-5 *3 (-407 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-640 (-1157 *3 *4))) (-5 *1 (-1157 *3 *4)) + (-14 *3 (-917)) (-4 *4 (-1045)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-452)) (-4 *3 (-1045)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) + (-4 *1 (-1233 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1208))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 (-640 (-2 (|:| |val| (-640 *3)) (|:| -2059 *4)))) + (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) + (-4 *4 (-349))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-939 (-225))) (-5 *4 (-870)) (-5 *2 (-1262)) + (-5 *1 (-468)))) + ((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1045)) (-4 *1 (-976 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-939 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-939 *3)) (-4 *3 (-1045)) (-4 *1 (-1127 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1165 *3 *4 *5)) - (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) (-14 *5 *3))) + (-12 (-5 *2 (-767)) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1166 *3 *4 *5)) - (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) (-14 *5 *3))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *1 (-1201 *3)) (-4 *3 (-38 (-406 (-562)))) - (-4 *3 (-1044)))) + (-12 (-5 *2 (-640 *3)) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) ((*1 *1 *1 *2) - (-4037 - (-12 (-5 *2 (-1168)) (-4 *1 (-1216 *3)) (-4 *3 (-1044)) - (-12 (-4 *3 (-29 (-562))) (-4 *3 (-954)) (-4 *3 (-1192)) - (-4 *3 (-38 (-406 (-562)))))) - (-12 (-5 *2 (-1168)) (-4 *1 (-1216 *3)) (-4 *3 (-1044)) - (-12 (|has| *3 (-15 -1401 ((-639 *2) *3))) - (|has| *3 (-15 -3081 (*3 *3 *2))) (-4 *3 (-38 (-406 (-562)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1044)) (-4 *2 (-38 (-406 (-562)))))) + (-12 (-5 *2 (-939 *3)) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204)) (-5 *3 (-225))))) +(((*1 *2 *1) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-5 *1 (-858)))) +(((*1 *2 *2) (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1151)) (-4 *1 (-364 *3 *4)) (-4 *3 (-1093)) + (-4 *4 (-1093))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) + (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) + (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-555)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1220 *3 *4 *5)) - (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) (-14 *5 *3))) - ((*1 *1 *1) - (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1044)) (-4 *2 (-38 (-406 (-562)))))) + (|partial| -12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)) + (-4 *2 (-555)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-555))) ((*1 *1 *1 *2) - (-4037 - (-12 (-5 *2 (-1168)) (-4 *1 (-1237 *3)) (-4 *3 (-1044)) - (-12 (-4 *3 (-29 (-562))) (-4 *3 (-954)) (-4 *3 (-1192)) - (-4 *3 (-38 (-406 (-562)))))) - (-12 (-5 *2 (-1168)) (-4 *1 (-1237 *3)) (-4 *3 (-1044)) - (-12 (|has| *3 (-15 -1401 ((-639 *2) *3))) - (|has| *3 (-15 -3081 (*3 *3 *2))) (-4 *3 (-38 (-406 (-562)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1237 *2)) (-4 *2 (-1044)) (-4 *2 (-38 (-406 (-562)))))) + (|partial| -12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) + (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-555)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-767))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1241 *3 *4 *5)) - (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) (-14 *5 *3))) + (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-555)))) + ((*1 *1 *1 *1) (-5 *1 (-858))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1257 *4)) (-4 *4 (-1233 *3)) (-4 *3 (-555)) + (-5 *1 (-965 *3 *4)))) ((*1 *1 *1 *2) - (-4037 - (-12 (-5 *2 (-1168)) (-4 *1 (-1247 *3)) (-4 *3 (-1044)) - (-12 (-4 *3 (-29 (-562))) (-4 *3 (-954)) (-4 *3 (-1192)) - (-4 *3 (-38 (-406 (-562)))))) - (-12 (-5 *2 (-1168)) (-4 *1 (-1247 *3)) (-4 *3 (-1044)) - (-12 (|has| *3 (-15 -1401 ((-639 *2) *3))) - (|has| *3 (-15 -3081 (*3 *3 *2))) (-4 *3 (-38 (-406 (-562)))))))) + (|partial| -12 (-4 *1 (-1048 *3 *4 *2 *5 *6)) (-4 *2 (-1045)) + (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-555)))) + ((*1 *2 *2 *2) + (|partial| -12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3)) (-4 *3 (-1093)) + (-4 *3 (-1208))))) +(((*1 *2 *3) + (-12 (-5 *3 (-640 (-917))) (-5 *2 (-900 (-563))) (-5 *1 (-913))))) +(((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112))))) +(((*1 *1 *1) (-4 *1 (-173))) ((*1 *1 *1) - (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1044)) (-4 *2 (-38 (-406 (-562)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1252 *4)) (-14 *4 (-1168)) (-5 *1 (-1248 *3 *4 *5)) - (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044)) (-14 *5 *3)))) -(((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) - (-5 *1 (-1120 *3 *2)) (-4 *3 (-1232 *2))))) + (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-562))) (-5 *1 (-1042))))) -(((*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-356 *3)) (-4 *3 (-348))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) - (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1153 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1154 *3))))) -(((*1 *2) - (-12 (-4 *3 (-1044)) (-5 *2 (-953 (-707 *3 *4))) (-5 *1 (-707 *3 *4)) - (-4 *4 (-1232 *3))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-639 (-279))) (-5 *1 (-279)))) - ((*1 *2 *1) (-12 (-5 *2 (-639 (-1173))) (-5 *1 (-1173))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-639 (-1168))) (-5 *2 (-1168)) (-5 *1 (-329))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-362)) (-4 *6 (-1232 (-406 *2))) - (-4 *2 (-1232 *5)) (-5 *1 (-214 *5 *2 *6 *3)) - (-4 *3 (-341 *5 *2 *6))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-938 *3) (-938 *3))) (-5 *1 (-175 *3)) - (-4 *3 (-13 (-362) (-1192) (-997)))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1247 *3))))) + (-12 (-4 *4 (-1208)) (-5 *2 (-767)) (-5 *1 (-182 *4 *3)) + (-4 *3 (-669 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) (((*1 *2 *3) - (-12 (-4 *1 (-795)) - (-5 *3 - (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) - (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) - (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) - (|:| |abserr| (-224)) (|:| |relerr| (-224)))) - (-5 *2 (-1030))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-562)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-417 *2)) (-4 *2 (-554))))) -(((*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-224)) (-5 *1 (-1259)))) - ((*1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-1259))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-787))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) - (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1153 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1154 *3))))) -(((*1 *1 *1) (-5 *1 (-1056)))) + (-12 (-4 *2 (-1233 *4)) (-5 *1 (-805 *4 *2 *3 *5)) + (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *3 (-651 *2)) + (-4 *5 (-651 (-407 *2)))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-407 (-948 *4))) (-5 *3 (-1169)) + (-4 *4 (-13 (-555) (-1034 (-563)) (-147))) (-5 *1 (-569 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1169)) + (-4 *4 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) + (-5 *1 (-426 *4 *2)) (-4 *2 (-13 (-1193) (-29 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169)) (-4 *5 (-147)) + (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) + (-5 *2 (-316 *5)) (-5 *1 (-587 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307))))) (((*1 *2 *1) - (-12 (-4 *3 (-1092)) - (-4 *4 (-13 (-1044) (-881 *3) (-845) (-610 (-887 *3)))) - (-5 *2 (-639 (-1168))) (-5 *1 (-1068 *3 *4 *5)) - (-4 *5 (-13 (-429 *4) (-881 *3) (-610 (-887 *3))))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-224) (-224) (-224))) - (-5 *4 (-3 (-1 (-224) (-224) (-224) (-224)) "undefined")) - (-5 *5 (-1086 (-224))) (-5 *6 (-639 (-262))) (-5 *2 (-1125 (-224))) - (-5 *1 (-691)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-938 (-224)) (-224) (-224))) (-5 *4 (-1086 (-224))) - (-5 *5 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-691)))) - ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1125 (-224))) (-5 *3 (-1 (-938 (-224)) (-224) (-224))) - (-5 *4 (-1086 (-224))) (-5 *5 (-639 (-262))) (-5 *1 (-691))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1229 *5 *4)) (-4 *4 (-451)) (-4 *4 (-815)) - (-14 *5 (-1168)) (-5 *2 (-562)) (-5 *1 (-1106 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-315 (-224))) (-5 *2 (-315 (-406 (-562)))) - (-5 *1 (-304))))) -(((*1 *2 *1) (-12 (-4 *1 (-253 *3)) (-4 *3 (-1207)) (-5 *2 (-766)))) - ((*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-766)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1044)) - (-4 *2 (-13 (-403) (-1033 *4) (-362) (-1192) (-283))) - (-5 *1 (-442 *4 *3 *2)) (-4 *3 (-1232 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-608 *3)) (-4 *3 (-845)))) - ((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) - ((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-857))))) -(((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1035))))) -(((*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-52))))) + (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-640 (-171))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) - (-5 *2 (-112)))) + (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-289 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1233 *3)) (-14 *5 (-1 *4 *4 *2)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2)) + (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-1044)) - (-4 *4 (-841))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) - (-5 *1 (-742))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) - (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1153 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1154 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-554)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2736 *4))) - (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1148 (-562))) (-5 *1 (-1152 *4)) (-4 *4 (-1044)) - (-5 *3 (-562))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1150)) (-5 *3 (-562)) (-5 *1 (-240))))) -(((*1 *1) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1192)))))) -(((*1 *1) (-5 *1 (-140)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258))))) -(((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-921))))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) - (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1030)) - (-5 *1 (-743))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1207)) (-5 *1 (-374 *4 *2)) - (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4404))))))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-1092)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-562)) (-5 *2 (-1148 *3)) (-5 *1 (-1152 *3)) - (-4 *3 (-1044)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-814 *4)) (-4 *4 (-845)) (-4 *1 (-1273 *4 *3)) - (-4 *3 (-1044))))) + (-12 (-4 *2 (-23)) (-5 *1 (-707 *3 *2 *4 *5 *6)) (-4 *3 (-172)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) + (-12 (-4 *2 (-1233 *3)) (-5 *1 (-708 *3 *2)) (-4 *3 (-1045)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-711 *3 *2 *4 *5 *6)) (-4 *3 (-172)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-563))))) +(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) + (-12 (-5 *3 (-563)) (-5 *5 (-112)) (-5 *6 (-684 (-225))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) + (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-749))))) +(((*1 *2) + (-12 (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) + (-5 *2 (-1257 *1)) (-4 *1 (-342 *3 *4 *5))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-280))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-684 *3)) (-4 *3 (-307)) (-5 *1 (-695 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-640 (-481 *4 *5))) (-14 *4 (-640 (-1169))) + (-4 *5 (-452)) (-5 *2 (-640 (-247 *4 *5))) (-5 *1 (-628 *4 *5))))) (((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1248 *2 *3 *4)) (-4 *2 (-1044)) (-14 *3 (-1168)) - (-14 *4 *2)))) + (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3)) + (-4 *3 (-643 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-832 *2)) (-4 *2 (-172)) (-4 *2 (-1045))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1257 (-767))) (-5 *1 (-670 *3)) (-4 *3 (-1093))))) +(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) (((*1 *2 *3) - (-12 (-5 *3 (-683 *2)) (-4 *4 (-1232 *2)) - (-4 *2 (-13 (-306) (-10 -8 (-15 -3788 ((-417 $) $))))) - (-5 *1 (-498 *2 *4 *5)) (-4 *5 (-408 *2 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1115 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) - (-4 *5 (-237 *3 *2)) (-4 *2 (-1044))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-433)) + (-12 + (-5 *3 + (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) + (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-379)) (-5 *1 (-192))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-555)) (-5 *2 (-954 *3)) (-5 *1 (-1156 *4 *3)) + (-4 *3 (-1233 *4))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *8 (-1059 *5 *6 *7)) (-5 *2 - (-639 - (-3 (|:| -3253 (-1168)) - (|:| -1852 (-639 (-3 (|:| S (-1168)) (|:| P (-947 (-562))))))))) - (-5 *1 (-1172))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) - (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1153 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1154 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-916)) (-5 *1 (-781))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-683 (-224))) (-5 *5 (-683 (-562))) (-5 *6 (-224)) - (-5 *3 (-562)) (-5 *2 (-1030)) (-5 *1 (-747))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) - (-5 *1 (-746))))) -(((*1 *1) - (-12 (-5 *1 (-643 *2 *3 *4)) (-4 *2 (-1092)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1044)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-1232 *3))))) -(((*1 *2 *3) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-445)) (-5 *3 (-562))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) - (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1153 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1154 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) - (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-818)))) -(((*1 *1 *1) - (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) -(((*1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-240))))) + (-2 (|:| |val| (-640 *8)) + (|:| |towers| (-640 (-1023 *5 *6 *7 *8))))) + (-5 *1 (-1023 *5 *6 *7 *8)) (-5 *3 (-640 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *8 (-1059 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-640 *8)) + (|:| |towers| (-640 (-1139 *5 *6 *7 *8))))) + (-5 *1 (-1139 *5 *6 *7 *8)) (-5 *3 (-640 *8))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1193)))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-451) (-146))) (-5 *2 (-417 *3)) - (-5 *1 (-100 *4 *3)) (-4 *3 (-1232 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-639 *3)) (-4 *3 (-1232 *5)) (-4 *5 (-13 (-451) (-146))) - (-5 *2 (-417 *3)) (-5 *1 (-100 *5 *3))))) + (-12 (-5 *3 (-1171 (-407 (-563)))) (-5 *2 (-407 (-563))) + (-5 *1 (-190))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1256 *4)) (-4 *4 (-635 (-562))) - (-5 *2 (-1256 (-562))) (-5 *1 (-1283 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-647 (-406 *2))) (-4 *2 (-1232 *4)) (-5 *1 (-805 *4 *2)) - (-4 *4 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-648 *2 (-406 *2))) (-4 *2 (-1232 *4)) - (-5 *1 (-805 *4 *2)) - (-4 *4 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562)))))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) - (-5 *1 (-750))))) -(((*1 *1) (-5 *1 (-436)))) -(((*1 *1 *1) - (-12 (-5 *1 (-1156 *2 *3)) (-14 *2 (-916)) (-4 *3 (-1044))))) + (-12 (-5 *3 (-767)) (-5 *2 (-1 (-1149 (-948 *4)) (-1149 (-948 *4)))) + (-5 *1 (-1265 *4)) (-4 *4 (-363))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-495))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-767)) (-4 *5 (-349)) (-4 *6 (-1233 *5)) + (-5 *2 + (-640 + (-2 (|:| -4315 (-684 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-684 *6))))) + (-5 *1 (-498 *5 *6 *7)) + (-5 *3 + (-2 (|:| -4315 (-684 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-684 *6)))) + (-4 *7 (-1233 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) - (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) - ((*1 *1 *1) (-4 *1 (-492))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1153 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1154 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) + (-12 (-4 *3 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1169)) + (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-430 *4) (-998) (-1193))) + (-4 *4 (-13 (-555) (-846))) + (-4 *2 (-13 (-430 (-169 *4)) (-998) (-1193))) + (-5 *1 (-597 *4 *5 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) + (-5 *2 (-2 (|:| |k| (-815 *3)) (|:| |c| *4)))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-640 (-609 *6))) (-5 *4 (-1169)) (-5 *2 (-609 *6)) + (-4 *6 (-430 *5)) (-4 *5 (-846)) (-5 *1 (-572 *5 *6))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) + (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1)))) + (-5 *2 (-1031)) (-5 *1 (-749))))) (((*1 *2 *3) - (-12 (-5 *3 (-838 (-378))) (-5 *2 (-838 (-224))) (-5 *1 (-304))))) -(((*1 *2) - (-12 (-5 *2 (-1261)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-1092)) - (-4 *4 (-1092))))) -(((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) - ((*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) + (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-112)) (-5 *1 (-300))))) +(((*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))) + ((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1172))))) +(((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-967))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) + (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *1 (-1270 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-640 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) + (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1270 *5 *6 *7 *8))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) + (-5 *2 (-2 (|:| -2311 (-407 *5)) (|:| |poly| *3))) + (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1233 (-407 *5)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1165 *5)) (-4 *5 (-452)) (-5 *2 (-640 *6)) + (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-948 *5)) (-4 *5 (-452)) (-5 *2 (-640 *6)) + (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1256 *4)) (-4 *4 (-1044)) (-4 *2 (-1232 *4)) - (-5 *1 (-443 *4 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-406 (-1164 (-315 *5)))) (-5 *3 (-1256 (-315 *5))) - (-5 *4 (-562)) (-4 *5 (-13 (-554) (-845))) (-5 *1 (-1122 *5))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-466)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-466))))) + (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-13 (-846) (-555)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-640 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1208))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1224 (-563))) (-4 *1 (-646 *3)) (-4 *3 (-1208)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-646 *3)) (-4 *3 (-1208))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1606 (-777 *3)) (|:| |coef1| (-777 *3)))) - (-5 *1 (-777 *3)) (-4 *3 (-554)) (-4 *3 (-1044)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-554)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) - (-5 *2 (-2 (|:| -1606 *1) (|:| |coef1| *1))) - (-4 *1 (-1058 *3 *4 *5))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) - (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-994 *3)) (-4 *3 (-171)) (-5 *1 (-794 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) - (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) - ((*1 *1 *1) (-4 *1 (-492))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1153 *3)))) + (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-4 *3 (-1093)) + (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-169 (-225)))) + (-5 *2 (-1031)) (-5 *1 (-750))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1208)) (-5 *1 (-1125 *4 *2)) + (-4 *2 (-13 (-601 (-563) *4) (-10 -7 (-6 -4407) (-6 -4408)))))) ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1154 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1168)) (-5 *5 (-1086 (-224))) (-5 *2 (-922)) - (-5 *1 (-920 *3)) (-4 *3 (-610 (-535))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1168)) (-5 *2 (-922)) (-5 *1 (-920 *3)) - (-4 *3 (-610 (-535))))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-922)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1086 (-224))) - (-5 *1 (-922))))) -(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-817))))) -(((*1 *2 *2) - (-12 (-4 *3 (-554)) (-4 *3 (-171)) (-4 *4 (-372 *3)) - (-4 *5 (-372 *3)) (-5 *1 (-682 *3 *4 *5 *2)) - (-4 *2 (-681 *3 *4 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-129))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1175 *2)) (-14 *2 (-916)))) - ((*1 *1 *1 *1) (-5 *1 (-1212))) ((*1 *1 *1 *1) (-5 *1 (-1213))) - ((*1 *1 *1 *1) (-5 *1 (-1214)))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4403)) (-4 *1 (-488 *4)) - (-4 *4 (-1207)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-766)) (-4 *4 (-306)) (-4 *6 (-1232 *4)) - (-5 *2 (-1256 (-639 *6))) (-5 *1 (-454 *4 *6)) (-5 *5 (-639 *6))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-315 (-224))) (-5 *1 (-304)))) + (-12 (-4 *3 (-846)) (-4 *3 (-1208)) (-5 *1 (-1125 *3 *2)) + (-4 *2 (-13 (-601 (-563) *3) (-10 -7 (-6 -4407) (-6 -4408))))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1 (-939 (-225)) (-225) (-225))) + (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-255))))) +(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-818))))) +(((*1 *2 *1) + (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-1059 *3 *4 *2)) (-4 *2 (-846)))) ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |num| (-887 *3)) (|:| |den| (-887 *3)))) - (-5 *1 (-887 *3)) (-4 *3 (-1092))))) -(((*1 *2) - (-12 (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) - (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-1261)) - (-5 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *7 (-1064 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) - (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-1261)) - (-5 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *7 (-1064 *3 *4 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-544)))) - ((*1 *1 *2) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-966))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-639 (-562))) (-5 *1 (-1102)) (-5 *3 (-562))))) + (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *2 (-846))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 *7)) (-4 *7 (-846)) + (-4 *8 (-945 *5 *6 *7)) (-4 *5 (-555)) (-4 *6 (-789)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1257 (-407 *8)) "failed")) + (|:| -4315 (-640 (-1257 (-407 *8)))))) + (-5 *1 (-664 *5 *6 *7 *8))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1165 *1)) (-4 *1 (-1008))))) +(((*1 *1 *1) + (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) + (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) + (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-684 *1)) (-5 *4 (-1257 *1)) (-4 *1 (-636 *5)) + (-4 *5 (-1045)) + (-5 *2 (-2 (|:| -2835 (-684 *5)) (|:| |vec| (-1257 *5)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-684 *1)) (-4 *1 (-636 *4)) (-4 *4 (-1045)) + (-5 *2 (-684 *4))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) + (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-379)) (-5 *1 (-205))))) (((*1 *2 *2) - (-12 (-4 *3 (-451)) (-4 *3 (-845)) (-4 *3 (-1033 (-562))) - (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3)) - (-4 *2 - (-13 (-362) (-301) - (-10 -8 (-15 -4063 ((-1117 *3 (-608 $)) $)) - (-15 -4079 ((-1117 *3 (-608 $)) $)) - (-15 -4053 ($ (-1117 *3 (-608 $)))))))))) -(((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1044)) - (-5 *1 (-848 *5 *2)) (-4 *2 (-847 *5))))) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-129))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-318)) (-5 *3 (-225))))) +(((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-818))))) +(((*1 *2 *3) + (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) + (-5 *2 (-640 (-767))) (-5 *1 (-774 *3 *4 *5 *6 *7)) + (-4 *3 (-1233 *6)) (-4 *7 (-945 *6 *4 *5))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) + (-5 *1 (-752))))) +(((*1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-368)) (-4 *2 (-1093))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) + (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3191)))) + (-5 *2 (-1031)) (-5 *1 (-744))))) +(((*1 *1 *2 *3 *3 *4 *5) + (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *3 (-640 (-870))) + (-5 *4 (-640 (-917))) (-5 *5 (-640 (-263))) (-5 *1 (-468)))) + ((*1 *1 *2 *3 *3 *4) + (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *3 (-640 (-870))) + (-5 *4 (-640 (-917))) (-5 *1 (-468)))) + ((*1 *1 *2) (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *1 (-468)))) + ((*1 *1 *1) (-5 *1 (-468)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1151)) (-4 *4 (-13 (-307) (-147))) + (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) + (-5 *2 + (-640 + (-2 (|:| |eqzro| (-640 *7)) (|:| |neqzro| (-640 *7)) + (|:| |wcond| (-640 (-948 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1257 (-407 (-948 *4)))) + (|:| -4315 (-640 (-1257 (-407 (-948 *4)))))))))) + (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4408)) (-4 *1 (-1006 *2)) (-4 *2 (-1208))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1034 (-563)))) + (-4 *5 (-1233 *4)) + (-5 *2 (-2 (|:| -3646 (-407 *5)) (|:| |coeff| (-407 *5)))) + (-5 *1 (-567 *4 *5)) (-5 *3 (-407 *5))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-225))) + (-5 *2 (-1031)) (-5 *1 (-750))))) +(((*1 *2 *3 *3 *3 *4 *5 *6) + (-12 (-5 *3 (-316 (-563))) (-5 *4 (-1 (-225) (-225))) + (-5 *5 (-1087 (-225))) (-5 *6 (-640 (-263))) (-5 *2 (-1126 (-225))) + (-5 *1 (-692))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) - (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) - ((*1 *1 *1) (-4 *1 (-492))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1153 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1154 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-766)) (-5 *1 (-669 *3)) (-4 *3 (-1044)) - (-4 *3 (-1092))))) -(((*1 *2 *1) (-12 (-4 *1 (-668 *3)) (-4 *3 (-1207)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-5 *1 (-129))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1175 *2)) (-14 *2 (-916)))) - ((*1 *1 *1 *1) (-5 *1 (-1212))) ((*1 *1 *1 *1) (-5 *1 (-1213))) - ((*1 *1 *1 *1) (-5 *1 (-1214)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1164 (-406 (-562)))) (-5 *1 (-937)) (-5 *3 (-562))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) - (-5 *2 (-683 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-683 *3))))) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *1) (-12 (-5 *2 (-640 (-109))) (-5 *1 (-175))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-1169))))) (((*1 *2 *1) - (-12 (-4 *1 (-165 *3)) (-4 *3 (-171)) (-4 *3 (-1053)) (-4 *3 (-1192)) - (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) -(((*1 *1) - (-12 (-4 *1 (-403)) (-2234 (|has| *1 (-6 -4394))) - (-2234 (|has| *1 (-6 -4386))))) - ((*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1092)) (-4 *2 (-845)))) - ((*1 *1) (-4 *1 (-839))) ((*1 *1 *1 *1) (-4 *1 (-845))) - ((*1 *2 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-845))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) + (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-939 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-640 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1127 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-640 (-640 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-640 (-939 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) + (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-225))) + (-5 *2 (-1031)) (-5 *1 (-753))))) +(((*1 *2 *1) + (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1233 *3)) + (-4 *5 (-1233 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 - (-2 (|:| -2533 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) - (|:| |success| (-112)))) - (-5 *1 (-784)) (-5 *5 (-562))))) -(((*1 *2 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-362)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-112))))) + (-2 (|:| -1524 (-413 *4 (-407 *4) *5 *6)) (|:| |principalPart| *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363)) + (-5 *2 + (-2 (|:| |poly| *6) (|:| -2377 (-407 *6)) + (|:| |special| (-407 *6)))) + (-5 *1 (-723 *5 *6)) (-5 *3 (-407 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-363)) (-5 *2 (-640 *3)) (-5 *1 (-892 *3 *4)) + (-4 *3 (-1233 *4)))) + ((*1 *2 *3 *4 *4) + (|partial| -12 (-5 *4 (-767)) (-4 *5 (-363)) + (-5 *2 (-2 (|:| -1686 *3) (|:| -1701 *3))) (-5 *1 (-892 *3 *5)) + (-4 *3 (-1233 *5)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-640 *9)) (-5 *3 (-640 *8)) (-5 *4 (-112)) + (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) + (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-640 *9)) (-5 *3 (-640 *8)) (-5 *4 (-112)) + (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) + (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-640 *9)) (-5 *3 (-640 *8)) (-5 *4 (-112)) + (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452)) + (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1138 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-640 *9)) (-5 *3 (-640 *8)) (-5 *4 (-112)) + (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452)) + (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1138 *5 *6 *7 *8 *9))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-683 *3)) (-4 *3 (-306)) (-5 *1 (-694 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-766)) (-5 *2 (-1 (-1148 (-947 *4)) (-1148 (-947 *4)))) - (-5 *1 (-1264 *4)) (-4 *4 (-362))))) + (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1077 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-563) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1077 *2))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) + (-4 *3 (-1059 *6 *7 *8)) + (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2059 *4)))) + (-5 *1 (-1101 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-640 (-2 (|:| |val| (-640 *8)) (|:| -2059 *9)))) + (-5 *5 (-112)) (-4 *8 (-1059 *6 *7 *4)) (-4 *9 (-1065 *6 *7 *4 *8)) + (-4 *6 (-452)) (-4 *7 (-789)) (-4 *4 (-846)) + (-5 *2 (-640 (-2 (|:| |val| *8) (|:| -2059 *9)))) + (-5 *1 (-1101 *6 *7 *4 *8 *9))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) - (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) - (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) - ((*1 *1 *1) (-4 *1 (-492))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1153 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1154 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1261)) (-5 *1 (-1171)))) - ((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-1171))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1207)) (-4 *3 (-1092)) - (-5 *2 (-112))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) - (-5 *1 (-751))))) -(((*1 *1 *1) (-5 *1 (-224))) + (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1233 *3)) + (-4 *3 (-13 (-363) (-147) (-1034 (-563)))) (-5 *1 (-567 *3 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-552))))) +(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-563)) (-5 *1 (-241)))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-563)) (-5 *1 (-241))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *2) + (|partial| -12 (-5 *2 (-767)) + (-4 *3 (-13 (-722) (-368) (-10 -7 (-15 ** (*3 *3 (-563)))))) + (-5 *1 (-246 *3))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-846)) (-5 *2 (-640 *1)) + (-4 *1 (-430 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3)) + (-4 *3 (-1093)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *2 (-640 *1)) (-4 *1 (-945 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) + (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-640 *3)) + (-5 *1 (-946 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-363) + (-10 -8 (-15 -1693 ($ *7)) (-15 -2143 (*7 $)) + (-15 -2154 (*7 $)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-218)))) + ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-439)))) + ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-834)))) + ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1108)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-640 (-1174))) (-5 *3 (-1174)) (-5 *1 (-1111))))) +(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-218)))) + ((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1208)))) + ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-671)))) ((*1 *1 *1) - (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) - (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) - ((*1 *1 *1) (-5 *1 (-378))) ((*1 *1) (-5 *1 (-378)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-562)) (-5 *1 (-240)))) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1095 *4)) (-4 *4 (-1093)) (-5 *2 (-1 *4)) + (-5 *1 (-1013 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1036)) (-5 *3 (-379)))) ((*1 *2 *3) - (-12 (-5 *3 (-639 (-1150))) (-5 *2 (-562)) (-5 *1 (-240))))) + (-12 (-5 *3 (-1087 (-563))) (-5 *2 (-1 (-563))) (-5 *1 (-1043))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1212)) + (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) + (-5 *2 (-2 (|:| |num| (-684 *5)) (|:| |den| *5)))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-683 *3)) - (-4 *3 (-13 (-306) (-10 -8 (-15 -3788 ((-417 $) $))))) - (-4 *4 (-1232 *3)) (-5 *1 (-498 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) + (-12 (-5 *2 (-684 *3)) + (-4 *3 (-13 (-307) (-10 -8 (-15 -3205 ((-418 $) $))))) + (-4 *4 (-1233 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-683 *3)) - (-4 *3 (-13 (-306) (-10 -8 (-15 -3788 ((-417 $) $))))) - (-4 *4 (-1232 *3)) (-5 *1 (-498 *3 *4 *5)) (-4 *5 (-408 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-938 *3) (-938 *3))) (-5 *1 (-175 *3)) - (-4 *3 (-13 (-362) (-1192) (-997)))))) + (-12 (-5 *2 (-684 *3)) + (-4 *3 (-13 (-307) (-10 -8 (-15 -3205 ((-418 $) $))))) + (-4 *4 (-1233 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-640 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) + (|:| |xpnt| (-563))))) + (-5 *1 (-418 *3)) (-4 *3 (-555)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-767)) (-4 *3 (-349)) (-4 *5 (-1233 *3)) + (-5 *2 (-640 (-1165 *3))) (-5 *1 (-498 *3 *5 *6)) + (-4 *6 (-1233 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) - (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) - (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) - ((*1 *1 *1) (-4 *1 (-492))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1153 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1154 *3))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) - (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1030)) - (-5 *1 (-741))))) -(((*1 *2 *3) - (-12 (-5 *3 (-639 (-1150))) (-5 *2 (-1150)) (-5 *1 (-191)))) - ((*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857))))) -(((*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-1164 *3))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) - (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1030)) (-5 *1 (-743))))) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1193)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-856)) (-5 *3 (-128)) (-5 *2 (-767))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4408)) (-4 *1 (-244 *2)) (-4 *2 (-1208))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1168)) (-5 *4 (-947 (-562))) (-5 *2 (-329)) - (-5 *1 (-331))))) -(((*1 *1 *1) - (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559))))) -(((*1 *2 *1) (-12 (-5 *2 (-966)) (-5 *1 (-900 *3)) (-4 *3 (-1092))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4403)) (-4 *1 (-234 *3)) - (-4 *3 (-1092)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-281 *3)) (-4 *3 (-1207))))) + (-12 (-5 *3 (-837)) (-5 *4 (-1057)) (-5 *2 (-1031)) (-5 *1 (-836)))) + ((*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1031)) (-5 *1 (-836)))) + ((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-640 (-379))) (-5 *5 (-640 (-839 (-379)))) + (-5 *6 (-640 (-316 (-379)))) (-5 *3 (-316 (-379))) (-5 *2 (-1031)) + (-5 *1 (-836)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-379))) + (-5 *5 (-640 (-839 (-379)))) (-5 *2 (-1031)) (-5 *1 (-836)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-379))) (-5 *2 (-1031)) + (-5 *1 (-836)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-640 (-316 (-379)))) (-5 *4 (-640 (-379))) + (-5 *2 (-1031)) (-5 *1 (-836))))) +(((*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208)))) + ((*1 *1 *1) + (-12 (|has| *1 (-6 -4408)) (-4 *1 (-373 *2)) (-4 *2 (-1208)))) + ((*1 *1 *1) + (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-555))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-609 *3)) (-4 *3 (-846))))) +(((*1 *2 *1) + (-12 (-5 *2 (-858)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-767)) + (-14 *4 (-767)) (-4 *5 (-172))))) +(((*1 *2 *2) + (-12 (-5 *2 (-640 *3)) (-4 *3 (-1233 (-563))) (-5 *1 (-486 *3))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *7 (-1058 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-475 *4 *5 *6 *7)) (|:| -2774 (-639 *7)))) - (-5 *1 (-972 *4 *5 *6 *7)) (-5 *3 (-639 *7))))) + (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-363) (-1193) (-998)))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1250 *3 *2)) + (-4 *2 (-1248 *3))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-789)) + (-4 *3 (-13 (-846) (-10 -8 (-15 -2220 ((-1169) $))))) (-4 *5 (-555)) + (-5 *1 (-728 *4 *3 *5 *2)) (-4 *2 (-945 (-407 (-948 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1045)) (-4 *5 (-789)) + (-4 *3 + (-13 (-846) + (-10 -8 (-15 -2220 ((-1169) $)) + (-15 -2518 ((-3 $ "failed") (-1169)))))) + (-5 *1 (-980 *4 *5 *3 *2)) (-4 *2 (-945 (-948 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-640 *6)) + (-4 *6 + (-13 (-846) + (-10 -8 (-15 -2220 ((-1169) $)) + (-15 -2518 ((-3 $ "failed") (-1169)))))) + (-4 *4 (-1045)) (-4 *5 (-789)) (-5 *1 (-980 *4 *5 *6 *2)) + (-4 *2 (-945 (-948 *4) *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1092)) (-4 *5 (-1092)) - (-5 *2 (-1 *5)) (-5 *1 (-677 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-593 *3)) (-4 *3 (-1044)))) - ((*1 *2 *1) - (-12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-787)) - (-4 *5 (-845)) (-5 *2 (-112))))) + (-12 (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-555)) + (-4 *3 (-945 *7 *5 *6)) + (-5 *2 + (-2 (|:| -1654 (-767)) (|:| -2311 *3) (|:| |radicand| (-640 *3)))) + (-5 *1 (-949 *5 *6 *7 *3 *8)) (-5 *4 (-767)) + (-4 *8 + (-13 (-363) + (-10 -8 (-15 -1693 ($ *3)) (-15 -2143 (*3 $)) (-15 -2154 (*3 $)))))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-555)) (-4 *2 (-1045)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-555)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1233 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *2 (-555)))) + ((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *3 (-1059 *4 *5 *6)) + (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2059 *1)))) + (-4 *1 (-1065 *4 *5 *6 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-845)) (-5 *2 (-639 (-639 *4))) (-5 *1 (-1178 *4)) - (-5 *3 (-639 *4))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-819)) (-5 *3 (-639 (-1168))) (-5 *1 (-820))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-1156 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1156 *2 *3)) (-14 *2 (-916)) (-4 *3 (-1044)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1125 (-224))) (-5 *1 (-1258)))) - ((*1 *2 *1) (-12 (-5 *2 (-1125 (-224))) (-5 *1 (-1258))))) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-563)) + (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-38 (-407 (-563)))) + (-4 *2 (-172))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997)))))) + (-12 (-4 *3 (-13 (-363) (-844))) (-5 *1 (-181 *3 *2)) + (-4 *2 (-1233 (-169 *3)))))) +(((*1 *2 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1031)) + (-5 *1 (-742))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1232 *4)) (-4 *4 (-1211)) - (-4 *6 (-1232 (-406 *5))) + (-12 (-5 *3 (-939 (-225))) (-5 *2 (-1262)) (-5 *1 (-468))))) +(((*1 *2 *3) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-560)) (-5 *3 (-563)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1165 (-407 (-563)))) (-5 *1 (-938)) (-5 *3 (-563))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 - (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) - (|:| |gd| *5))) - (-4 *1 (-341 *4 *5 *6))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-643 *2 *3 *4)) (-4 *2 (-1092)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-643 *2 *3 *4)) (-4 *2 (-1092)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-669 *2)) (-4 *2 (-1044)) (-4 *2 (-1092))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-639 *5))) (-4 *5 (-1247 *4)) - (-4 *4 (-38 (-406 (-562)))) - (-5 *2 (-1 (-1148 *4) (-639 (-1148 *4)))) (-5 *1 (-1249 *4 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-845)) (-4 *2 (-1044)))) - ((*1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-322 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-130)) - (-4 *3 (-787))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) - (-4 *4 (-372 *2))))) + (-2 (|:| -2619 *4) (|:| -4076 *4) (|:| |totalpts| (-563)) + (|:| |success| (-112)))) + (-5 *1 (-785)) (-5 *5 (-563))))) +(((*1 *2 *1) + (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1165 *4)) (-4 *4 (-349)) (-5 *2 (-112)) + (-5 *1 (-357 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1257 *4)) (-4 *4 (-349)) (-5 *2 (-112)) + (-5 *1 (-528 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1186))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1256 (-1256 (-562)))) (-5 *3 (-916)) (-5 *1 (-465))))) -(((*1 *1 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-1207))))) + (|partial| -12 (-5 *2 (-640 (-1165 *7))) (-5 *3 (-1165 *7)) + (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-905)) (-4 *5 (-789)) + (-4 *6 (-846)) (-5 *1 (-902 *4 *5 *6 *7)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-640 (-1165 *5))) (-5 *3 (-1165 *5)) + (-4 *5 (-1233 *4)) (-4 *4 (-905)) (-5 *1 (-903 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1193)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-555)) + (-4 *7 (-945 *3 *5 *6)) + (-5 *2 (-2 (|:| -1654 (-767)) (|:| -2311 *8) (|:| |radicand| *8))) + (-5 *1 (-949 *5 *6 *3 *7 *8)) (-5 *4 (-767)) + (-4 *8 + (-13 (-363) + (-10 -8 (-15 -1693 ($ *7)) (-15 -2143 (*7 $)) (-15 -2154 (*7 $)))))))) (((*1 *2 *3) - (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) - ((*1 *2) (-12 (-5 *2 (-899 (-562))) (-5 *1 (-912))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) - (-5 *2 (-639 (-639 (-639 (-766)))))))) + (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-1151)) (-5 *1 (-192)))) + ((*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| |lm| (-386 *3)) (|:| |mm| (-386 *3)) (|:| |rm| (-386 *3)))) + (-5 *1 (-386 *3)) (-4 *3 (-1093)))) + ((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| |lm| (-815 *3)) (|:| |mm| (-815 *3)) (|:| |rm| (-815 *3)))) + (-5 *1 (-815 *3)) (-4 *3 (-846))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1093) (-34))) + (-4 *3 (-13 (-1093) (-34)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *5)) (-5 *4 (-639 (-1 *6 (-639 *6)))) - (-4 *5 (-38 (-406 (-562)))) (-4 *6 (-1247 *5)) (-5 *2 (-639 *6)) - (-5 *1 (-1249 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-766)) (-5 *3 (-938 *4)) (-4 *1 (-1126 *4)) - (-4 *4 (-1044)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-766)) (-5 *4 (-938 (-224))) (-5 *2 (-1261)) - (-5 *1 (-1258))))) -(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-182)) (-5 *1 (-247))))) -(((*1 *2 *1) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-393)))) - ((*1 *2 *1) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1187))))) -(((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) - (-5 *1 (-1120 *3 *2)) (-4 *3 (-1232 *2))))) -(((*1 *1 *1) (-12 (-5 *1 (-499 *2)) (-14 *2 (-562)))) - ((*1 *1 *1) (-5 *1 (-1112)))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-329)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-329))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1257)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143))))) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-312)) (-5 *1 (-825))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1065 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-4 *3 (-1058 *5 *6 *7)) - (-5 *2 (-639 (-2 (|:| |val| (-112)) (|:| -1501 *4)))) - (-5 *1 (-1065 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1092)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-845))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-554) (-845))) - (-4 *2 (-13 (-429 (-168 *4)) (-997) (-1192))) - (-5 *1 (-596 *4 *3 *2)) (-4 *3 (-13 (-429 *4) (-997) (-1192)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) - (-5 *2 (-1261)) (-5 *1 (-1171)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1168)) - (-5 *4 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) (-5 *2 (-1261)) - (-5 *1 (-1171)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1168)) - (-5 *4 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) (-5 *2 (-1261)) - (-5 *1 (-1171))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-499 *2)) (-14 *2 (-562)))) - ((*1 *1 *1 *1) (-5 *1 (-1112)))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1256 *5)) (-4 *5 (-787)) (-5 *2 (-112)) - (-5 *1 (-840 *4 *5)) (-14 *4 (-766))))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-168 (-224)))) (-5 *2 (-1030)) - (-5 *1 (-751))))) -(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-329))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1261)) (-5 *1 (-1171))))) -(((*1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-362))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-556 *2)) (-4 *2 (-544))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-499 *2)) (-14 *2 (-562)))) - ((*1 *1 *1 *1) (-5 *1 (-1112)))) -(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-817))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-306)) (-4 *3 (-171)) (-4 *4 (-372 *3)) - (-4 *5 (-372 *3)) (-5 *2 (-2 (|:| -3380 *3) (|:| -1441 *3))) - (-5 *1 (-682 *3 *4 *5 *6)) (-4 *6 (-681 *3 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -3380 *3) (|:| -1441 *3))) (-5 *1 (-694 *3)) - (-4 *3 (-306))))) -(((*1 *2 *1) (-12 (-5 *2 (-817)) (-5 *1 (-816))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1168)) (-5 *5 (-1086 (-224))) (-5 *2 (-922)) - (-5 *1 (-920 *3)) (-4 *3 (-610 (-535))))) - ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1168)) (-5 *5 (-1086 (-224))) (-5 *2 (-922)) - (-5 *1 (-920 *3)) (-4 *3 (-610 (-535))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-921)))) - ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1086 (-224))) - (-5 *1 (-921)))) - ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1086 (-224))) - (-5 *1 (-921)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-922)))) - ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1086 (-224))) - (-5 *1 (-922)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1086 (-224))) - (-5 *1 (-922)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-639 (-1 (-224) (-224)))) (-5 *3 (-1086 (-224))) - (-5 *1 (-922)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-639 (-1 (-224) (-224)))) (-5 *3 (-1086 (-224))) - (-5 *1 (-922)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1086 (-224))) - (-5 *1 (-922)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-224) (-224))) (-5 *3 (-1086 (-224))) - (-5 *1 (-922))))) + (-12 (-5 *4 (-640 (-860 *5))) (-14 *5 (-640 (-1169))) (-4 *6 (-452)) + (-5 *2 (-640 (-640 (-247 *5 *6)))) (-5 *1 (-471 *5 *6 *7)) + (-5 *3 (-640 (-247 *5 *6))) (-4 *7 (-452))))) +(((*1 *2 *3) + (-12 (-4 *4 (-555)) (-5 *2 (-1257 (-684 *4))) (-5 *1 (-90 *4 *5)) + (-5 *3 (-684 *4)) (-4 *5 (-651 *4))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1208)) (-4 *2 (-846)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-282 *3)) (-4 *3 (-1208)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846))))) +(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-525))))) +(((*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1165 *3))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-609 *1)) (-4 *1 (-302))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1078))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563)))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) + (-12 (-5 *2 (-767)) (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) + (-4 *4 (-172)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *1 (-1278 *3 *4)) (-4 *3 (-846)) + (-4 *4 (-1045))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-856)) (-5 *2 (-686 (-548))) (-5 *3 (-548))))) (((*1 *2 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-766)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-416 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-5 *2 (-562))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-315 (-224))) (-5 *1 (-266))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-406 (-562))) (-5 *1 (-1019 *3)) - (-4 *3 (-13 (-843) (-362) (-1017))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-843) (-362))) (-5 *1 (-1054 *2 *3)) - (-4 *3 (-1232 *2)))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1061 *2 *3)) (-4 *2 (-13 (-843) (-362))) - (-4 *3 (-1232 *2))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-639 (-2 (|:| |totdeg| (-766)) (|:| -4201 *3)))) - (-5 *4 (-766)) (-4 *3 (-944 *5 *6 *7)) (-4 *5 (-451)) (-4 *6 (-788)) - (-4 *7 (-845)) (-5 *1 (-448 *5 *6 *7 *3))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-983 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1099 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *5)) (-5 *4 (-916)) (-4 *5 (-845)) - (-5 *2 (-59 (-639 (-666 *5)))) (-5 *1 (-666 *5))))) + (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-363) (-1193) (-998)))))) +(((*1 *1 *1 *1) (-4 *1 (-143))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) + ((*1 *1 *1 *1) (-5 *1 (-858))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-563))) (-5 *1 (-1043)) + (-5 *3 (-563))))) +(((*1 *2 *3) + (-12 (-5 *3 (-640 (-225))) (-5 *2 (-1257 (-694))) (-5 *1 (-305))))) +(((*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-5 *1 (-1182 *2)) (-4 *2 (-363))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1031)) (-5 *1 (-744))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258))))) +(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) + (-5 *1 (-748))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1208)) (-5 *1 (-182 *3 *2)) (-4 *2 (-669 *3))))) +(((*1 *2 *3) + (-12 (-14 *4 (-640 (-1169))) (-4 *5 (-452)) + (-5 *2 + (-2 (|:| |glbase| (-640 (-247 *4 *5))) (|:| |glval| (-640 (-563))))) + (-5 *1 (-628 *4 *5)) (-5 *3 (-640 (-247 *4 *5)))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |pde| (-640 (-316 (-225)))) + (|:| |constraints| + (-640 + (-2 (|:| |start| (-225)) (|:| |finish| (-225)) + (|:| |grid| (-767)) (|:| |boundaryType| (-563)) + (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) + (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) + (|:| |tol| (-225)))) + (-5 *2 (-112)) (-5 *1 (-210))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-169 (-225))) (-5 *5 (-563)) (-5 *6 (-1151)) + (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) + (-5 *1 (-752))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-858)))) + ((*1 *1 *1) (-5 *1 (-858)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-639 *3)) (-4 *3 (-1101 *5 *6 *7 *8)) - (-4 *5 (-13 (-306) (-146))) (-4 *6 (-788)) (-4 *7 (-845)) - (-4 *8 (-1058 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-588 *5 *6 *7 *8 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) - (-4 *2 (-13 (-429 *3) (-1192)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1188))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1261)) (-5 *1 (-817))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-766)) (-4 *3 (-1044)) (-4 *1 (-681 *3 *4 *5)) - (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-766)) (-4 *1 (-1254 *3)) (-4 *3 (-23)) (-4 *3 (-1207))))) + (-12 (-5 *3 (-1169)) (-5 *4 (-948 (-563))) (-5 *2 (-330)) + (-5 *1 (-332))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) + (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3191)))) + (-5 *2 (-1031)) (-5 *1 (-742))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1151)) (-5 *1 (-97)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1151)) (-5 *1 (-97))))) +(((*1 *2) + (-12 (-4 *3 (-13 (-846) (-555) (-1034 (-563)))) (-5 *2 (-1262)) + (-5 *1 (-433 *3 *4)) (-4 *4 (-430 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-305)))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 (-1031))) (-5 *2 (-1031)) (-5 *1 (-305)))) + ((*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-646 *3)) (-4 *3 (-1208)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1208)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1208)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1208)))) + ((*1 *1 *1 *1) (-5 *1 (-1057))) + ((*1 *2 *3) + (-12 (-5 *3 (-1149 (-1149 *4))) (-5 *2 (-1149 *4)) (-5 *1 (-1146 *4)) + (-4 *4 (-1208)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208))))) +(((*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1056)))) + ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1056))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-640 (-640 *7))) + (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-640 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) + (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-640 (-640 *8))) + (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-640 *8))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-639 (-639 (-639 *4)))) (-5 *2 (-639 (-639 *4))) - (-4 *4 (-845)) (-5 *1 (-1178 *4))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) - (-5 *1 (-742))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997)))))) + (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1233 *3))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-767)) (-4 *4 (-555)) (-5 *1 (-965 *4 *2)) + (-4 *2 (-1233 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-767)) (-4 *4 (-363)) (-5 *1 (-892 *2 *4)) + (-4 *2 (-1233 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-210))))) +(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208))))) +(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-1215)))))) +(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172))))) +(((*1 *1 *1) (-5 *1 (-1057)))) +(((*1 *1 *1) (-4 *1 (-865 *2)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560))))) +(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-836)) (-5 *4 (-1056)) (-5 *2 (-1030)) (-5 *1 (-835)))) - ((*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-1030)) (-5 *1 (-835)))) - ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-639 (-378))) (-5 *5 (-639 (-838 (-378)))) - (-5 *6 (-639 (-315 (-378)))) (-5 *3 (-315 (-378))) (-5 *2 (-1030)) - (-5 *1 (-835)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-315 (-378))) (-5 *4 (-639 (-378))) - (-5 *5 (-639 (-838 (-378)))) (-5 *2 (-1030)) (-5 *1 (-835)))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) + (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-640 *3)) + (-5 *1 (-589 *5 *6 *7 *8 *3)) (-4 *3 (-1102 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-315 (-378))) (-5 *4 (-639 (-378))) (-5 *2 (-1030)) - (-5 *1 (-835)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-315 (-378)))) (-5 *4 (-639 (-378))) - (-5 *2 (-1030)) (-5 *1 (-835))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1606 *3))) - (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-562))) (-5 *4 (-900 (-562))) - (-5 *2 (-683 (-562))) (-5 *1 (-587)))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) + (-5 *2 + (-640 (-2 (|:| -1602 (-1165 *5)) (|:| -1880 (-640 (-948 *5)))))) + (-5 *1 (-1071 *5 *6)) (-5 *3 (-640 (-948 *5))) + (-14 *6 (-640 (-1169))))) ((*1 *2 *3) - (-12 (-5 *3 (-639 (-562))) (-5 *2 (-639 (-683 (-562)))) - (-5 *1 (-587)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-562))) (-5 *4 (-639 (-900 (-562)))) - (-5 *2 (-639 (-683 (-562)))) (-5 *1 (-587))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-639 (-246 *4 *5))) (-5 *2 (-246 *4 *5)) - (-14 *4 (-639 (-1168))) (-4 *5 (-451)) (-5 *1 (-627 *4 *5))))) + (-12 (-4 *4 (-13 (-307) (-147))) + (-5 *2 + (-640 (-2 (|:| -1602 (-1165 *4)) (|:| -1880 (-640 (-948 *4)))))) + (-5 *1 (-1071 *4 *5)) (-5 *3 (-640 (-948 *4))) + (-14 *5 (-640 (-1169))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) + (-5 *2 + (-640 (-2 (|:| -1602 (-1165 *5)) (|:| -1880 (-640 (-948 *5)))))) + (-5 *1 (-1071 *5 *6)) (-5 *3 (-640 (-948 *5))) + (-14 *6 (-640 (-1169)))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-640 + (-2 + (|:| -2387 + (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) + (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (|:| -2557 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1149 (-225))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -2516 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-558)))) + ((*1 *2 *1) + (-12 (-4 *1 (-601 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1208)) + (-5 *2 (-640 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-640 (-225))) (-5 *4 (-767)) (-5 *2 (-684 (-225))) + (-5 *1 (-305))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1208)) (-5 *2 (-112))))) +(((*1 *2 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) + (-5 *1 (-1121 *3 *2)) (-4 *3 (-1233 *2))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-563))) (-4 *3 (-1045)) (-5 *1 (-593 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-563))) (-4 *1 (-1217 *3)) (-4 *3 (-1045)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-563))) (-4 *1 (-1248 *3)) (-4 *3 (-1045))))) +(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-694)) (-5 *1 (-305))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-640 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) + (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-973 *5 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-967)) (-5 *1 (-901 *3)) (-4 *3 (-1093))))) +(((*1 *1) (-5 *1 (-144))) ((*1 *1 *1) (-5 *1 (-858)))) +(((*1 *2 *3 *3 *3 *4 *5 *4 *6) + (-12 (-5 *3 (-316 (-563))) (-5 *4 (-1 (-225) (-225))) + (-5 *5 (-1087 (-225))) (-5 *6 (-563)) (-5 *2 (-1203 (-922))) + (-5 *1 (-318)))) + ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-316 (-563))) (-5 *4 (-1 (-225) (-225))) + (-5 *5 (-1087 (-225))) (-5 *6 (-563)) (-5 *7 (-1151)) + (-5 *2 (-1203 (-922))) (-5 *1 (-318)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-316 (-563))) (-5 *4 (-1 (-225) (-225))) + (-5 *5 (-1087 (-225))) (-5 *6 (-225)) (-5 *7 (-563)) + (-5 *2 (-1203 (-922))) (-5 *1 (-318)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) + (-12 (-5 *3 (-316 (-563))) (-5 *4 (-1 (-225) (-225))) + (-5 *5 (-1087 (-225))) (-5 *6 (-225)) (-5 *7 (-563)) (-5 *8 (-1151)) + (-5 *2 (-1203 (-922))) (-5 *1 (-318))))) +(((*1 *2 *2 *3 *4 *5) + (-12 (-5 *2 (-640 *9)) (-5 *3 (-1 (-112) *9)) + (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-555)) (-4 *7 (-789)) + (-4 *8 (-846)) (-5 *1 (-973 *6 *7 *8 *9))))) +(((*1 *1 *1) (-4 *1 (-545)))) (((*1 *2 *3) - (-12 (-5 *3 (-1256 (-639 (-2 (|:| -2533 *4) (|:| -2464 (-1112)))))) - (-4 *4 (-348)) (-5 *2 (-766)) (-5 *1 (-345 *4)))) - ((*1 *2) - (-12 (-5 *2 (-766)) (-5 *1 (-350 *3 *4)) (-14 *3 (-916)) - (-14 *4 (-916)))) - ((*1 *2) - (-12 (-5 *2 (-766)) (-5 *1 (-351 *3 *4)) (-4 *3 (-348)) - (-14 *4 - (-3 (-1164 *3) - (-1256 (-639 (-2 (|:| -2533 *3) (|:| -2464 (-1112))))))))) - ((*1 *2) - (-12 (-5 *2 (-766)) (-5 *1 (-352 *3 *4)) (-4 *3 (-348)) - (-14 *4 (-916))))) -(((*1 *2 *1) (-12 (-5 *2 (-639 (-938 (-224)))) (-5 *1 (-1257))))) -(((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) - (-5 *1 (-750))))) + (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563))))) +(((*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1208))))) (((*1 *2 *3) - (-12 (-5 *3 (-562)) (|has| *1 (-6 -4394)) (-4 *1 (-403)) - (-5 *2 (-916))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-584 *3)) (-4 *3 (-544))))) + (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *2 (-640 (-225))) + (-5 *1 (-468))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) - (-4 *4 (-1044))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-406 *2)) (-4 *2 (-1232 *5)) - (-5 *1 (-802 *5 *2 *3 *6)) - (-4 *5 (-13 (-362) (-146) (-1033 (-406 (-562))))) - (-4 *3 (-650 *2)) (-4 *6 (-650 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-639 (-406 *2))) (-4 *2 (-1232 *5)) - (-5 *1 (-802 *5 *2 *3 *6)) - (-4 *5 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *3 (-650 *2)) - (-4 *6 (-650 (-406 *2)))))) -(((*1 *1) (-5 *1 (-156))) - ((*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-23))))) -(((*1 *2 *3) - (-12 (-5 *2 (-168 *4)) (-5 *1 (-180 *4 *3)) - (-4 *4 (-13 (-362) (-843))) (-4 *3 (-1232 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1150)) (-5 *2 (-562)) (-5 *1 (-1189 *4)) - (-4 *4 (-1044))))) -(((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-5 *1 (-221 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-4 *1 (-253 *3)))) - ((*1 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1207))))) -(((*1 *2) - (-12 (-4 *3 (-554)) (-5 *2 (-639 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-416 *3))))) + (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-640 *6))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-468)) (-5 *3 (-640 (-263))) (-5 *1 (-1258)))) + ((*1 *1 *1) (-5 *1 (-1258)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-897 *2)) (-4 *2 (-1093)))) + ((*1 *1 *2) (-12 (-5 *1 (-897 *2)) (-4 *2 (-1093))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1165 *9)) (-5 *4 (-640 *7)) (-5 *5 (-640 (-640 *8))) + (-4 *7 (-846)) (-4 *8 (-307)) (-4 *9 (-945 *8 *6 *7)) (-4 *6 (-789)) + (-5 *2 + (-2 (|:| |upol| (-1165 *8)) (|:| |Lval| (-640 *8)) + (|:| |Lfact| + (-640 (-2 (|:| -2174 (-1165 *8)) (|:| -1654 (-563))))) + (|:| |ctpol| *8))) + (-5 *1 (-738 *6 *7 *8 *9))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-640 *4)) (-4 *4 (-363)) (-4 *2 (-1233 *4)) + (-5 *1 (-918 *4 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-947 *5)) (-4 *5 (-1044)) (-5 *2 (-246 *4 *5)) - (-5 *1 (-939 *4 *5)) (-14 *4 (-639 (-1168)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-112))))) -(((*1 *1 *1) (-5 *1 (-1056)))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-467)) (-5 *4 (-916)) (-5 *2 (-1261)) (-5 *1 (-1257))))) -(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) -(((*1 *1 *2) - (-12 (-5 *2 (-639 (-639 *3))) (-4 *3 (-1044)) (-4 *1 (-681 *3 *4 *5)) - (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-639 (-639 (-857)))) (-5 *1 (-857)))) + (-12 (-5 *3 (-563)) (-4 *4 (-1233 (-407 *3))) (-5 *2 (-917)) + (-5 *1 (-909 *4 *5)) (-4 *5 (-1233 (-407 *4)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1149 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1045)) + (-5 *3 (-407 (-563))) (-5 *1 (-1153 *4))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4407)) (-4 *1 (-235 *3)) + (-4 *3 (-1093)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1208))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-640 *1)) (|has| *1 (-6 -4408)) (-4 *1 (-1006 *3)) + (-4 *3 (-1208))))) +(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-129)))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) + (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031)) + (-5 *1 (-744))))) +(((*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1208)) (-5 *2 (-767))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-917)) (-5 *2 (-1262)) (-5 *1 (-214 *4)) + (-4 *4 + (-13 (-846) + (-10 -8 (-15 -2309 ((-1151) $ (-1169))) (-15 -1463 (*2 $)) + (-15 -2807 (*2 $))))))) ((*1 *2 *1) - (-12 (-5 *2 (-1134 *3 *4)) (-5 *1 (-988 *3 *4)) (-14 *3 (-916)) - (-4 *4 (-362)))) - ((*1 *1 *2) - (-12 (-5 *2 (-639 (-639 *5))) (-4 *5 (-1044)) - (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *6 (-237 *4 *5)) - (-4 *7 (-237 *3 *5))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-766)) (-4 *4 (-348)) (-5 *1 (-215 *4 *2)) - (-4 *2 (-1232 *4))))) + (-12 (-5 *2 (-1262)) (-5 *1 (-214 *3)) + (-4 *3 + (-13 (-846) + (-10 -8 (-15 -2309 ((-1151) $ (-1169))) (-15 -1463 (*2 $)) + (-15 -2807 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-502))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-476 *4 *5 *6 *7)) (|:| -2636 (-640 *7)))) + (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-640 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) + ((*1 *1 *1 *1) (-5 *1 (-858)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-1 (-112) *8))) (-4 *8 (-1058 *5 *6 *7)) - (-4 *5 (-554)) (-4 *6 (-788)) (-4 *7 (-845)) - (-5 *2 (-2 (|:| |goodPols| (-639 *8)) (|:| |badPols| (-639 *8)))) - (-5 *1 (-972 *5 *6 *7 *8)) (-5 *4 (-639 *8))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1211)) (-4 *3 (-1232 *4)) - (-4 *5 (-1232 (-406 *3))) (-5 *2 (-112)))) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-788))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1165 *1)) (-5 *4 (-1169)) (-4 *1 (-27)) + (-5 *2 (-640 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-27)) (-5 *2 (-640 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-948 *1)) (-4 *1 (-27)) (-5 *2 (-640 *1)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) - (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112)))) + (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-640 *1)) + (-4 *1 (-29 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) - (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112))))) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *2 (-640 *1)) (-4 *1 (-29 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-316 (-225))) (-5 *4 (-640 (-1169))) + (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-1149 (-225))) (-5 *1 (-300))))) +(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) + ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259))))) +(((*1 *2 *2) (-12 (-5 *2 (-640 (-316 (-225)))) (-5 *1 (-267))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-112)) (-5 *1 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1169)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1169)) (-5 *2 (-112)) (-5 *1 (-609 *4)) (-4 *4 (-846)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-609 *4)) (-4 *4 (-846)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1093)) (-5 *2 (-112)) (-5 *1 (-883 *5 *3 *4)) + (-4 *3 (-882 *5)) (-4 *4 (-611 (-888 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-640 *6)) (-4 *6 (-882 *5)) (-4 *5 (-1093)) + (-5 *2 (-112)) (-5 *1 (-883 *5 *6 *4)) (-4 *4 (-611 (-888 *5)))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1223 (-562))) (-4 *1 (-645 *3)) (-4 *3 (-1207)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-645 *3)) (-4 *3 (-1207))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4403)) (-4 *1 (-488 *4)) - (-4 *4 (-1207)) (-5 *2 (-112))))) + (-12 (-5 *2 (-767)) (-4 *1 (-651 *3)) (-4 *3 (-1045)) (-4 *3 (-363)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-767)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) + (-5 *1 (-654 *5 *2)) (-4 *2 (-651 *5))))) +(((*1 *2 *3 *4) + (-12 (-4 *2 (-1233 *4)) (-5 *1 (-803 *4 *2 *3 *5)) + (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *3 (-651 *2)) + (-4 *5 (-651 (-407 *2))))) + ((*1 *2 *3 *4) + (-12 (-4 *2 (-1233 *4)) (-5 *1 (-803 *4 *2 *5 *3)) + (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *5 (-651 *2)) + (-4 *3 (-651 (-407 *2)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1093)) (-4 *5 (-1093)) + (-5 *2 (-1 *5)) (-5 *1 (-678 *4 *5))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *1 (-420 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1193) (-430 *3))) + (-14 *4 (-1169)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-4 *2 (-13 (-27) (-1193) (-430 *3) (-10 -8 (-15 -1693 ($ *4))))) + (-4 *4 (-844)) + (-4 *5 + (-13 (-1235 *2 *4) (-363) (-1193) + (-10 -8 (-15 -4202 ($ $)) (-15 -3698 ($ $))))) + (-5 *1 (-422 *3 *2 *4 *5 *6 *7)) (-4 *6 (-979 *5)) (-14 *7 (-1169))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-788)) (-4 *3 (-172))))) (((*1 *2 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2736 *4))) - (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-544)))) -(((*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1150)) (-5 *1 (-304))))) + (-12 (-4 *4 (-1045)) (-5 *2 (-112)) (-5 *1 (-444 *4 *3)) + (-4 *3 (-1233 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-763 *3)) (-4 *3 (-1093)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-555)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-170)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) - (-4 *4 (-1044))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922))))) -(((*1 *1) - (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-562)) (-14 *3 (-766)) - (-4 *4 (-171))))) + (-12 (-4 *2 (-555)) (-5 *1 (-620 *2 *3)) (-4 *3 (-1233 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) + ((*1 *2 *1) + (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-788)) + (-4 *5 (-846)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-917)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) + ((*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-263))))) +(((*1 *2) + (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-417 *3))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-898 *3)) (-4 *3 (-1092)) (-5 *2 (-1094 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1092)) (-5 *2 (-1094 (-639 *4))) (-5 *1 (-899 *4)) - (-5 *3 (-639 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1092)) (-5 *2 (-1094 (-1094 *4))) (-5 *1 (-899 *4)) - (-5 *3 (-1094 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-1094 *3)) (-5 *1 (-899 *3)) (-4 *3 (-1092))))) + (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) + (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-640 (-767))))) + ((*1 *2 *1) + (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) + (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-640 (-767)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-948 (-563))) (-5 *2 (-640 *1)) (-4 *1 (-1008)))) + ((*1 *2 *3) + (-12 (-5 *3 (-948 (-407 (-563)))) (-5 *2 (-640 *1)) (-4 *1 (-1008)))) + ((*1 *2 *3) (-12 (-5 *3 (-948 *1)) (-4 *1 (-1008)) (-5 *2 (-640 *1)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1165 (-563))) (-5 *2 (-640 *1)) (-4 *1 (-1008)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1165 (-407 (-563)))) (-5 *2 (-640 *1)) (-4 *1 (-1008)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1165 *1)) (-4 *1 (-1008)) (-5 *2 (-640 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1233 *4)) (-5 *2 (-640 *1)) + (-4 *1 (-1062 *4 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-815 *3)) (-4 *3 (-846)) (-5 *1 (-667 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-845)) - (-5 *2 (-2 (|:| -4221 (-562)) (|:| |var| (-608 *1)))) - (-4 *1 (-429 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-256))))) + (-12 (-5 *2 (-858)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-767)) + (-14 *4 (-767)) (-4 *5 (-172))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-972 *4 *5 *3 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) + (-4 *3 (-846)) (-4 *6 (-1059 *4 *5 *3)) (-5 *2 (-112))))) +(((*1 *1 *1) (|partial| -4 *1 (-145))) ((*1 *1 *1) (-4 *1 (-349))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-905))))) +(((*1 *1 *2) + (-12 (-5 *2 (-640 (-2 (|:| -2387 (-1169)) (|:| -2557 (-437))))) + (-5 *1 (-1173))))) (((*1 *2 *3) - (-12 (-5 *3 (-922)) + (-12 (-4 *4 (-846)) (-5 *2 (-640 (-640 *4))) (-5 *1 (-1179 *4)) + (-5 *3 (-640 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-640 (-948 *6))) (-5 *4 (-640 (-1169))) + (-4 *6 (-13 (-555) (-1034 *5))) (-4 *5 (-555)) + (-5 *2 (-640 (-640 (-294 (-407 (-948 *6)))))) (-5 *1 (-1035 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1193)))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-169 (-225)))) + (-5 *2 (-1031)) (-5 *1 (-750))))) +(((*1 *1 *1) (-4 *1 (-626))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998) (-1193)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1045)) (-4 *2 (-682 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1233 *4)) (-4 *5 (-373 *4)) + (-4 *6 (-373 *4))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) + (-4 *4 (-789)) (-4 *5 (-846)) (-4 *3 (-555))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4408)) (-4 *1 (-373 *2)) (-4 *2 (-1208)) + (-4 *2 (-846)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4408)) + (-4 *1 (-373 *3)) (-4 *3 (-1208))))) +(((*1 *2 *3) + (-12 (-5 *3 (-923)) (-5 *2 - (-2 (|:| |brans| (-639 (-639 (-938 (-224))))) - (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224))))) - (-5 *1 (-152)))) + (-2 (|:| |brans| (-640 (-640 (-939 (-225))))) + (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225))))) + (-5 *1 (-153)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-922)) (-5 *4 (-406 (-562))) + (-12 (-5 *3 (-923)) (-5 *4 (-407 (-563))) (-5 *2 - (-2 (|:| |brans| (-639 (-639 (-938 (-224))))) - (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224))))) - (-5 *1 (-152))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-938 *4)) (-4 *4 (-1044)) (-5 *1 (-1156 *3 *4)) - (-14 *3 (-916))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-639 *5)) (-4 *5 (-171)) (-5 *1 (-135 *3 *4 *5)) - (-14 *3 (-562)) (-14 *4 (-766))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) - (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-619 *4 *5)) - (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -1603 *4) (|:| |sol?| (-112))) - (-562) *4)) - (-4 *4 (-362)) (-4 *5 (-1232 *4)) (-5 *1 (-572 *4 *5))))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-683 (-224))) (-5 *6 (-683 (-562))) (-5 *3 (-562)) - (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-747))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4404)) (-4 *1 (-119 *2)) (-4 *2 (-1207))))) -(((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-256))))) -(((*1 *2 *3 *1) - (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-1171)) (-5 *3 (-1168))))) -(((*1 *1 *2 *3) + (-2 (|:| |brans| (-640 (-640 (-939 (-225))))) + (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225))))) + (-5 *1 (-153)))) + ((*1 *2 *3) (-12 - (-5 *3 - (-639 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-562))))) - (-4 *2 (-554)) (-5 *1 (-417 *2)))) + (-5 *2 + (-2 (|:| |brans| (-640 (-640 (-939 (-225))))) + (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225))))) + (-5 *1 (-153)) (-5 *3 (-640 (-939 (-225)))))) ((*1 *2 *3) (-12 - (-5 *3 - (-2 (|:| |contp| (-562)) - (|:| -2656 (-639 (-2 (|:| |irr| *4) (|:| -2794 (-562))))))) - (-4 *4 (-1232 (-562))) (-5 *2 (-417 *4)) (-5 *1 (-441 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1148 (-1148 *4))) (-5 *2 (-1148 *4)) (-5 *1 (-1152 *4)) - (-4 *4 (-38 (-406 (-562)))) (-4 *4 (-1044))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-451)) (-4 *4 (-845)) - (-4 *5 (-788)) (-5 *1 (-982 *3 *4 *5 *6)) (-4 *6 (-944 *3 *5 *4))))) + (-5 *2 + (-2 (|:| |brans| (-640 (-640 (-939 (-225))))) + (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225))))) + (-5 *1 (-153)) (-5 *3 (-640 (-640 (-939 (-225))))))) + ((*1 *1 *2) (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *1 (-263)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-563)) (-4 *1 (-323 *2 *4)) (-4 *4 (-131)) + (-4 *2 (-1093)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *1 (-361 *2)) (-4 *2 (-1093)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *1 (-386 *2)) (-4 *2 (-1093)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *1 (-418 *2)) (-4 *2 (-555)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-563)) (-4 *2 (-1093)) (-5 *1 (-644 *2 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *1 (-815 *2)) (-4 *2 (-846))))) +(((*1 *1 *1) + (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2059 *4)))) + (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-820)) (-5 *3 (-640 (-1169))) (-5 *1 (-821))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-640 (-1165 *4))) (-5 *3 (-1165 *4)) + (-4 *4 (-905)) (-5 *1 (-658 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) - ((*1 *2 *3) (-12 (-5 *3 (-966)) (-5 *2 (-899 (-562))) (-5 *1 (-912))))) -(((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 (-562))) (-4 *3 (-1044)) (-5 *1 (-99 *3)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1044)) (-5 *1 (-99 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1044)) (-5 *1 (-99 *3))))) + (-12 (-5 *2 (-2 (|:| -2858 (-563)) (|:| -2760 (-640 *3)))) + (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-491))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2742 *4))) + (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3368 (-563))))) + (-5 *1 (-361 *3)) (-4 *3 (-1093)))) + ((*1 *2 *1) + (-12 (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3368 (-767))))) + (-5 *1 (-386 *3)) (-4 *3 (-1093)))) + ((*1 *2 *1) + (-12 (-5 *2 (-640 (-2 (|:| -2174 *3) (|:| -1654 (-563))))) + (-5 *1 (-418 *3)) (-4 *3 (-555)))) + ((*1 *2 *1) + (-12 (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3368 (-767))))) + (-5 *1 (-815 *3)) (-4 *3 (-846))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-237 *3 *2)) (-4 *2 (-1207)) (-4 *2 (-1044)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-857)))) - ((*1 *1 *1) (-5 *1 (-857))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-938 (-224))) (-5 *2 (-224)) (-5 *1 (-1203)))) + (-12 + (-5 *2 + (-2 (|:| -3548 (-778 *3)) (|:| |coef1| (-778 *3)) + (|:| |coef2| (-778 *3)))) + (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-1044))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-528)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-575)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-856))))) + (-12 (-4 *3 (-555)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *2 (-2 (|:| -3548 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-1059 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-690 *3)) (-4 *3 (-1093)) + (-5 *2 (-640 (-2 (|:| -2557 *3) (|:| -1709 (-767)))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-1157 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1126 (-225))) (-5 *1 (-1259)))) + ((*1 *2 *1) (-12 (-5 *2 (-1126 (-225))) (-5 *1 (-1259))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-766)) (-5 *2 (-639 (-1168))) (-5 *1 (-209)) - (-5 *3 (-1168)))) + (-12 (-5 *3 (-491)) (-5 *4 (-950)) (-5 *2 (-686 (-533))) + (-5 *1 (-533)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-315 (-224))) (-5 *4 (-766)) (-5 *2 (-639 (-1168))) - (-5 *1 (-266)))) - ((*1 *2 *1) - (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)) - (-5 *2 (-639 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-639 *3)) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-845)) - (-4 *4 (-13 (-171) (-712 (-406 (-562))))) (-14 *5 (-916)))) - ((*1 *2 *1) (-12 (-5 *2 (-639 *3)) (-5 *1 (-666 *3)) (-4 *3 (-845)))) - ((*1 *2 *1) (-12 (-5 *2 (-639 *3)) (-5 *1 (-671 *3)) (-4 *3 (-845)))) - ((*1 *2 *1) (-12 (-5 *2 (-639 *3)) (-5 *1 (-814 *3)) (-4 *3 (-845)))) - ((*1 *2 *1) (-12 (-5 *2 (-639 *3)) (-5 *1 (-888 *3)) (-4 *3 (-845)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) - (-5 *2 (-639 *3))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-562)) (-5 *5 (-683 (-224))) - (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-84 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-224)) - (-5 *2 (-1030)) (-5 *1 (-744))))) -(((*1 *2 *2) - (-12 (-5 *2 (-639 (-947 *3))) (-4 *3 (-451)) (-5 *1 (-359 *3 *4)) - (-14 *4 (-639 (-1168))))) - ((*1 *2 *2) - (-12 (-5 *2 (-639 *6)) (-4 *6 (-944 *3 *4 *5)) (-4 *3 (-451)) - (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-449 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-639 *7)) (-5 *3 (-1150)) (-4 *7 (-944 *4 *5 *6)) - (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) - (-5 *1 (-449 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-639 *7)) (-5 *3 (-1150)) (-4 *7 (-944 *4 *5 *6)) - (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) - (-5 *1 (-449 *4 *5 *6 *7)))) + (-12 (-5 *4 (-950)) (-4 *3 (-1093)) (-5 *2 (-686 *1)) + (-4 *1 (-763 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-609 *4)) (-5 *1 (-608 *3 *4)) (-4 *3 (-846)) + (-4 *4 (-846))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-407 *6)) (-4 *5 (-1212)) (-4 *6 (-1233 *5)) + (-5 *2 (-2 (|:| -1654 (-767)) (|:| -2311 *3) (|:| |radicand| *6))) + (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-767)) (-4 *7 (-1233 *3))))) +(((*1 *2 *3) + (-12 (-4 *1 (-349)) (-5 *3 (-563)) (-5 *2 (-1181 (-917) (-767)))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))) ((*1 *1 *1) - (-12 (-4 *2 (-362)) (-4 *3 (-788)) (-4 *4 (-845)) - (-5 *1 (-503 *2 *3 *4 *5)) (-4 *5 (-944 *2 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-639 (-775 *3 (-859 *4)))) (-4 *3 (-451)) - (-14 *4 (-639 (-1168))) (-5 *1 (-624 *3 *4))))) -(((*1 *2) - (-12 (-5 *2 (-683 (-905 *3))) (-5 *1 (-350 *3 *4)) (-14 *3 (-916)) - (-14 *4 (-916)))) - ((*1 *2) - (-12 (-5 *2 (-683 *3)) (-5 *1 (-351 *3 *4)) (-4 *3 (-348)) - (-14 *4 - (-3 (-1164 *3) - (-1256 (-639 (-2 (|:| -2533 *3) (|:| -2464 (-1112))))))))) - ((*1 *2) - (-12 (-5 *2 (-683 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-348)) - (-14 *4 (-916))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-766)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) - (-4 *3 (-1058 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-639 *4)) - (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1501 *4)))))) - (-5 *1 (-1062 *6 *7 *8 *3 *4)) (-4 *4 (-1064 *6 *7 *8 *3)))) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1045)) (-14 *3 (-640 (-1169))))) + ((*1 *1 *1) + (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846))) + (-14 *3 (-640 (-1169))))) + ((*1 *1 *1) + (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1093)))) + ((*1 *1 *1) + (-12 (-14 *2 (-640 (-1169))) (-4 *3 (-172)) + (-4 *5 (-238 (-3608 *2) (-767))) + (-14 *6 + (-1 (-112) (-2 (|:| -2555 *4) (|:| -1654 *5)) + (-2 (|:| -2555 *4) (|:| -1654 *5)))) + (-5 *1 (-461 *2 *3 *4 *5 *6 *7)) (-4 *4 (-846)) + (-4 *7 (-945 *3 *5 (-860 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-846)))) + ((*1 *1 *1) + (-12 (-4 *2 (-555)) (-5 *1 (-620 *2 *3)) (-4 *3 (-1233 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-704 *2)) (-4 *2 (-1045)))) + ((*1 *1 *1) + (-12 (-5 *1 (-731 *2 *3)) (-4 *3 (-846)) (-4 *2 (-1045)) + (-4 *3 (-722)))) + ((*1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *2 (-846)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1280 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-917)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) + ((*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-263))))) +(((*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-640 (-1165 *5))) (-5 *3 (-1165 *5)) + (-4 *5 (-166 *4)) (-4 *4 (-545)) (-5 *1 (-149 *4 *5)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-640 *3)) (-4 *3 (-1233 *5)) + (-4 *5 (-1233 *4)) (-4 *4 (-349)) (-5 *1 (-358 *4 *5 *3)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-640 (-1165 (-563)))) (-5 *3 (-1165 (-563))) + (-5 *1 (-571)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-640 (-1165 *1))) (-5 *3 (-1165 *1)) + (-4 *1 (-905))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169)) + (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-294 (-316 *5)))) + (-5 *1 (-1122 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-13 (-307) (-846) (-147))) + (-5 *2 (-640 (-294 (-316 *4)))) (-5 *1 (-1122 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-4 *3 (-1058 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-639 *4)) - (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1501 *4)))))) - (-5 *1 (-1062 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-766)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) - (-4 *3 (-1058 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-639 *4)) - (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1501 *4)))))) - (-5 *1 (-1137 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) + (-12 (-5 *3 (-294 (-407 (-948 *5)))) (-5 *4 (-1169)) + (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-294 (-316 *5)))) + (-5 *1 (-1122 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-294 (-407 (-948 *4)))) + (-4 *4 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-294 (-316 *4)))) + (-5 *1 (-1122 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-640 (-407 (-948 *5)))) (-5 *4 (-640 (-1169))) + (-4 *5 (-13 (-307) (-846) (-147))) + (-5 *2 (-640 (-640 (-294 (-316 *5))))) (-5 *1 (-1122 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 (-407 (-948 *4)))) + (-4 *4 (-13 (-307) (-846) (-147))) + (-5 *2 (-640 (-640 (-294 (-316 *4))))) (-5 *1 (-1122 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-4 *3 (-1058 *5 *6 *7)) + (-12 (-5 *3 (-640 (-294 (-407 (-948 *5))))) (-5 *4 (-640 (-1169))) + (-4 *5 (-13 (-307) (-846) (-147))) + (-5 *2 (-640 (-640 (-294 (-316 *5))))) (-5 *1 (-1122 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 (-294 (-407 (-948 *4))))) + (-4 *4 (-13 (-307) (-846) (-147))) + (-5 *2 (-640 (-640 (-294 (-316 *4))))) (-5 *1 (-1122 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-397))))) +(((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| |done| (-639 *4)) - (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1501 *4)))))) - (-5 *1 (-1137 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *4 (-224)) - (-5 *2 (-1030)) (-5 *1 (-751))))) -(((*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-217)))) - ((*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-438)))) - ((*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-833)))) - ((*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-1107)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-639 (-1173))) (-5 *3 (-1173)) (-5 *1 (-1110))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1232 *5)) - (-4 *5 (-13 (-27) (-429 *4))) - (-4 *4 (-13 (-845) (-554) (-1033 (-562)))) - (-4 *7 (-1232 (-406 *6))) (-5 *1 (-550 *4 *5 *6 *7 *2)) - (-4 *2 (-341 *5 *6 *7))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-562)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) - (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-775 *5 (-859 *6)))) (-5 *4 (-112)) (-4 *5 (-451)) - (-14 *6 (-639 (-1168))) (-5 *2 (-639 (-1041 *5 *6))) - (-5 *1 (-624 *5 *6))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1254 *3)) (-4 *3 (-1207)) (-4 *3 (-1044)) - (-5 *2 (-683 *3))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) - (-5 *1 (-742))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) - (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) - (-5 *1 (-983 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) - (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) - (-5 *1 (-1099 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-639 (-683 *4))) (-5 *2 (-683 *4)) (-4 *4 (-1044)) - (-5 *1 (-1024 *4))))) + (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") + (|:| |Conditional| "conditional") (|:| |Return| "return") + (|:| |Block| "block") (|:| |Comment| "comment") + (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") + (|:| |Repeat| "repeat") (|:| |Goto| "goto") + (|:| |Continue| "continue") + (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") + (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) + (-5 *1 (-330))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *6 (-917)) (-4 *5 (-307)) (-4 *3 (-1233 *5)) + (-5 *2 (-2 (|:| |plist| (-640 *3)) (|:| |modulo| *5))) + (-5 *1 (-460 *5 *3)) (-5 *4 (-640 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) - (-4 *2 (-13 (-429 *3) (-1192)))))) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *2 (-846)) (-4 *3 (-172)))) + ((*1 *2 *3 *3) + (-12 (-4 *2 (-555)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1233 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *2 (-555)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-172))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) + (-4 *6 (-789)) (-4 *7 (-846)) + (-5 *2 (-2 (|:| |goodPols| (-640 *8)) (|:| |badPols| (-640 *8)))) + (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-640 *8))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) + (-4 *5 (-1233 *4)) + (-5 *2 (-640 (-2 (|:| |deg| (-767)) (|:| -1420 *5)))) + (-5 *1 (-805 *4 *5 *3 *6)) (-4 *3 (-651 *5)) + (-4 *6 (-651 (-407 *5)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1)) + (-4 *1 (-945 *3 *4 *5))))) (((*1 *1 *2) - (-12 (-5 *2 (-1156 3 *3)) (-4 *3 (-1044)) (-4 *1 (-1126 *3)))) - ((*1 *1) (-12 (-4 *1 (-1126 *2)) (-4 *2 (-1044))))) -(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-52)) (-5 *1 (-1185))))) + (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1093)) (-5 *1 (-1180 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394)))) + ((*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1132)))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1169)) (-5 *3 (-379)) (-5 *1 (-1057))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) + (-4 *5 (-1233 *4)) (-5 *2 (-640 (-2 (|:| -3408 *5) (|:| -2378 *5)))) + (-5 *1 (-803 *4 *5 *3 *6)) (-4 *3 (-651 *5)) + (-4 *6 (-651 (-407 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) + (-4 *4 (-1233 *5)) (-5 *2 (-640 (-2 (|:| -3408 *4) (|:| -2378 *4)))) + (-5 *1 (-803 *5 *4 *3 *6)) (-4 *3 (-651 *4)) + (-4 *6 (-651 (-407 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) + (-4 *5 (-1233 *4)) (-5 *2 (-640 (-2 (|:| -3408 *5) (|:| -2378 *5)))) + (-5 *1 (-803 *4 *5 *6 *3)) (-4 *6 (-651 *5)) + (-4 *3 (-651 (-407 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) + (-4 *4 (-1233 *5)) (-5 *2 (-640 (-2 (|:| -3408 *4) (|:| -2378 *4)))) + (-5 *1 (-803 *5 *4 *6 *3)) (-4 *6 (-651 *4)) + (-4 *3 (-651 (-407 *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)) - (-5 *2 (-112)))) + (|partial| -12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) + (-5 *2 (-112)) (-5 *1 (-983 *3 *4 *5 *6)) + (-4 *6 (-945 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1092)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-1044)))) + (-12 (-5 *2 (-112)) (-5 *1 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34))) + (-4 *4 (-13 (-1093) (-34)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1233 *4)) (-4 *4 (-1212)) + (-4 *6 (-1233 (-407 *5))) + (-5 *2 + (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) + (|:| |gd| *5))) + (-4 *1 (-342 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-640 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267))))) +(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) + ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1174))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1093)) + (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3)))) + (-5 *2 (-640 (-1069 *3 *4 *5))) (-5 *1 (-1070 *3 *4 *5)) + (-4 *5 (-13 (-430 *4) (-882 *3) (-611 (-888 *3))))))) +(((*1 *2) + (-12 (-4 *1 (-349)) + (-5 *2 (-640 (-2 (|:| -2174 (-563)) (|:| -1654 (-563)))))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) ((*1 *2 *1) - (-12 (-4 *3 (-554)) (-5 *2 (-112)) (-5 *1 (-619 *3 *4)) - (-4 *4 (-1232 *3)))) + (-12 (-4 *2 (-1045)) (-5 *1 (-50 *2 *3)) (-14 *3 (-640 (-1169))))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-730 *3 *4)) (-4 *3 (-1044)) - (-4 *4 (-721)))) + (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4)) + (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-640 (-1169))))) ((*1 *2 *1) - (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) - (-5 *2 (-112))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-362)) - (-5 *2 (-2 (|:| -2929 (-406 *6)) (|:| |coeff| (-406 *6)))) - (-5 *1 (-572 *5 *6)) (-5 *3 (-406 *6))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) - (-4 *2 (-429 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1131)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-639 *1)) (-4 *1 (-1058 *4 *5 *6)) (-4 *4 (-1044)) - (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *5 (-845)) (-5 *2 (-112)))) + (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1093)) (-4 *2 (-1045)))) ((*1 *2 *1) - (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) - (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1200 *4 *5 *6 *3)) (-4 *4 (-554)) (-4 *5 (-788)) - (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-14 *3 (-640 (-1169))) (-4 *5 (-238 (-3608 *3) (-767))) + (-14 *6 + (-1 (-112) (-2 (|:| -2555 *4) (|:| -1654 *5)) + (-2 (|:| -2555 *4) (|:| -1654 *5)))) + (-4 *2 (-172)) (-5 *1 (-461 *3 *2 *4 *5 *6 *7)) (-4 *4 (-846)) + (-4 *7 (-945 *2 *5 (-860 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *3 (-846)) (-4 *2 (-1093)))) + ((*1 *2 *1) + (-12 (-4 *2 (-555)) (-5 *1 (-620 *2 *3)) (-4 *3 (-1233 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-704 *2)) (-4 *2 (-1045)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1045)) (-5 *1 (-731 *2 *3)) (-4 *3 (-846)) + (-4 *3 (-722)))) + ((*1 *2 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)))) + ((*1 *2 *1) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *3 (-788)) (-4 *4 (-846)) + (-4 *2 (-1045)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *2 (-846))))) +(((*1 *2 *1) + (-12 (-5 *2 (-939 *4)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) + (-4 *4 (-1045))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-640 (-407 (-948 (-563))))) (-5 *4 (-640 (-1169))) + (-5 *2 (-640 (-640 *5))) (-5 *1 (-380 *5)) + (-4 *5 (-13 (-844) (-363))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-948 (-563)))) (-5 *2 (-640 *4)) (-5 *1 (-380 *4)) + (-4 *4 (-13 (-844) (-363)))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-639 - (-2 (|:| -2172 (-766)) - (|:| |eqns| - (-639 - (-2 (|:| |det| *7) (|:| |rows| (-639 (-562))) - (|:| |cols| (-639 (-562)))))) - (|:| |fgb| (-639 *7))))) - (-4 *7 (-944 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) - (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *2 (-766)) - (-5 *1 (-919 *4 *5 *6 *7))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-1092)) - (-4 *4 (-1092))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) - (-4 *4 (-845)) (-4 *2 (-554))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-562)) (-4 *1 (-322 *4 *2)) (-4 *4 (-1092)) - (-4 *2 (-130))))) + (-12 (-5 *3 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) + (-5 *2 (-407 (-563))) (-5 *1 (-1016 *4)) (-4 *4 (-1233 (-563)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093))))) (((*1 *2 *3) - (-12 (-5 *3 (-766)) (-5 *2 (-1261)) (-5 *1 (-861 *4 *5 *6 *7)) - (-4 *4 (-1044)) (-14 *5 (-639 (-1168))) (-14 *6 (-639 *3)) - (-14 *7 *3))) + (-12 (-5 *3 (-1 *5 (-640 *5))) (-4 *5 (-1248 *4)) + (-4 *4 (-38 (-407 (-563)))) + (-5 *2 (-1 (-1149 *4) (-640 (-1149 *4)))) (-5 *1 (-1250 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-586 *4)) + (-4 *4 (-349))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-1169))))) +(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-418 *3)) (-4 *3 (-555)))) ((*1 *2 *3) - (-12 (-5 *3 (-766)) (-4 *4 (-1044)) (-4 *5 (-845)) (-4 *6 (-788)) - (-14 *8 (-639 *5)) (-5 *2 (-1261)) - (-5 *1 (-1268 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-944 *4 *6 *5)) - (-14 *9 (-639 *3)) (-14 *10 *3)))) + (-12 (-5 *3 (-640 (-2 (|:| -2174 *4) (|:| -4167 (-563))))) + (-4 *4 (-1233 (-563))) (-5 *2 (-767)) (-5 *1 (-442 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))) + ((*1 *2 *1) + (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1093)))) + ((*1 *2 *1) + (-12 (-14 *3 (-640 (-1169))) (-4 *4 (-172)) + (-4 *6 (-238 (-3608 *3) (-767))) + (-14 *7 + (-1 (-112) (-2 (|:| -2555 *5) (|:| -1654 *6)) + (-2 (|:| -2555 *5) (|:| -1654 *6)))) + (-5 *2 (-709 *5 *6 *7)) (-5 *1 (-461 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-846)) (-4 *8 (-945 *4 *6 (-860 *3))))) + ((*1 *2 *1) + (-12 (-4 *2 (-722)) (-4 *2 (-846)) (-5 *1 (-731 *3 *2)) + (-4 *3 (-1045)))) + ((*1 *1 *1) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-788)) + (-4 *4 (-846))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1165 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-846) (-555))) + (-5 *1 (-32 *4 *2))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-846)) (-4 *2 (-1045)))) + ((*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555))))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) + (-12 (-5 *2 (-563)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-767)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-789)) (-4 *4 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-846)) + (-5 *1 (-449 *5 *6 *7 *4))))) (((*1 *1 *2) - (-12 (-5 *2 (-639 (-639 *3))) (-4 *3 (-1092)) (-5 *1 (-900 *3))))) + (-12 (-5 *2 (-407 *4)) (-4 *4 (-1233 *3)) (-4 *3 (-13 (-363) (-147))) + (-5 *1 (-399 *3 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) +(((*1 *2 *3) + (-12 (-5 *3 (-640 (-563))) (-5 *2 (-640 (-684 (-563)))) + (-5 *1 (-1103))))) +(((*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) + ((*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-846))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4407)) (-4 *1 (-235 *3)) + (-4 *3 (-1093)))) + ((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4407)) (-4 *1 (-235 *2)) (-4 *2 (-1093)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-282 *2)) (-4 *2 (-1208)) (-4 *2 (-1093)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1208)))) + ((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-607 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-563)) (-4 *4 (-1093)) + (-5 *1 (-733 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-563)) (-5 *1 (-733 *2)) (-4 *2 (-1093)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34))) + (-4 *4 (-13 (-1093) (-34))) (-5 *1 (-1134 *3 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-576)))) + ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-576))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-407 (-563))) (-5 *1 (-593 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-1045))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) + (-5 *2 (-2 (|:| |radicand| (-407 *5)) (|:| |deg| (-767)))) + (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1233 (-407 *5)))))) +(((*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1045))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-131)) + (-4 *3 (-788))))) (((*1 *2 *3) - (-12 (-4 *4 (-306)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) + (-12 (-14 *4 (-640 (-1169))) (-14 *5 (-767)) (-5 *2 - (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1116 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6))))) + (-640 + (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4) + (-247 *4 (-407 (-563)))))) + (-5 *1 (-505 *4 *5)) + (-5 *3 + (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4) + (-247 *4 (-407 (-563)))))))) +(((*1 *2 *3) (-12 (-5 *3 (-948 (-225))) (-5 *2 (-225)) (-5 *1 (-305))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-767)) (-4 *5 (-1045)) (-4 *2 (-1233 *5)) + (-5 *1 (-1251 *5 *2 *6 *3)) (-4 *6 (-651 *2)) (-4 *3 (-1248 *5))))) (((*1 *2 *1) - (-12 (-4 *4 (-1092)) (-5 *2 (-884 *3 *5)) (-5 *1 (-880 *3 *4 *5)) - (-4 *3 (-1092)) (-4 *5 (-660 *4))))) -(((*1 *1) (-5 *1 (-156))) - ((*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-23))))) -(((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1044)) (-14 *3 (-639 (-1168))))) + (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-846)) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-545)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 (-112) *7 (-640 *7))) (-4 *1 (-1201 *4 *5 *6 *7)) + (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) + (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))) + (-5 *1 (-192))))) +(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) + ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259))))) +(((*1 *1 *1) (-4 *1 (-243))) ((*1 *1 *1) - (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1044) (-845))) - (-14 *3 (-639 (-1168)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) - (-4 *5 (-372 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) - (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1044)) (-4 *2 (-362))))) -(((*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-766))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-562)) (-5 *1 (-417 *2)) (-4 *2 (-554))))) -(((*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1261)) (-5 *1 (-378)))) - ((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-378))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1168)) (-5 *5 (-639 *3)) - (-4 *3 (-13 (-27) (-1192) (-429 *6))) - (-4 *6 (-13 (-451) (-845) (-146) (-1033 (-562)) (-635 (-562)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-555 *6 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1064 *3 *4 *5 *6)) (-4 *3 (-451)) (-4 *4 (-788)) - (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1064 *4 *5 *6 *3)) (-4 *4 (-451)) (-4 *5 (-788)) - (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-156))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-1044)) (-4 *3 (-845)) - (-5 *2 (-2 (|:| |val| *1) (|:| -1300 (-562)))) (-4 *1 (-429 *3)))) - ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |val| (-887 *3)) (|:| -1300 (-887 *3)))) - (-5 *1 (-887 *3)) (-4 *3 (-1092)))) + (-12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1233 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (-4032 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1208))) + (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1208))))) + ((*1 *1 *1) (-4 *1 (-473))) + ((*1 *2 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)) (-4 *2 (-363))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-939 *5)) (-5 *3 (-767)) (-4 *5 (-1045)) + (-5 *1 (-1157 *4 *5)) (-14 *4 (-917))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) + (-5 *2 (-169 (-316 *4))) (-5 *1 (-188 *4 *3)) + (-4 *3 (-13 (-27) (-1193) (-430 (-169 *4)))))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1044)) - (-4 *7 (-944 *6 *4 *5)) - (-5 *2 (-2 (|:| |val| *3) (|:| -1300 (-562)))) - (-5 *1 (-945 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-362) - (-10 -8 (-15 -4053 ($ *7)) (-15 -4063 (*7 $)) - (-15 -4079 (*7 $)))))))) -(((*1 *1 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-554))))) -(((*1 *2 *1) (-12 (-5 *2 (-639 (-1077))) (-5 *1 (-290))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-608 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *4))) - (-4 *4 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *1 (-276 *4 *2))))) + (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-169 *3)) (-5 *1 (-1197 *4 *3)) + (-4 *3 (-13 (-27) (-1193) (-430 *4)))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) + (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-2 (|:| -2517 (-114)) (|:| |w| (-225)))) (-5 *1 (-204))))) +(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1002))))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) + (|partial| -12 (-5 *3 (-609 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1169))) (-5 *5 (-1165 *2)) + (-4 *2 (-13 (-430 *6) (-27) (-1193))) + (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) + (-5 *1 (-559 *6 *2 *7)) (-4 *7 (-1093)))) + ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) + (|partial| -12 (-5 *3 (-609 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1169))) + (-5 *5 (-407 (-1165 *2))) (-4 *2 (-13 (-430 *6) (-27) (-1193))) + (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) + (-5 *1 (-559 *6 *2 *7)) (-4 *7 (-1093))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 *4)) - (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-683 *3)) - (-4 *3 (-13 (-306) (-10 -8 (-15 -3788 ((-417 $) $))))) - (-4 *4 (-1232 *3)) (-5 *1 (-498 *3 *4 *5)) (-4 *5 (-408 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1092)) (-5 *1 (-959 *3 *2)) (-4 *3 (-1092))))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-562)) (-5 *5 (-1150)) (-5 *6 (-683 (-224))) - (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-387)) (|:| |fp| (-71 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-387)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-744))))) -(((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-845)) (-5 *3 (-639 *6)) (-5 *5 (-639 *3)) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363)) (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-639 *5)) (|:| |f3| *5) - (|:| |f4| (-639 *5)))) - (-5 *1 (-1178 *6)) (-5 *4 (-639 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-922))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-815)) (-14 *5 (-1168)) (-5 *2 (-639 (-1229 *5 *4))) - (-5 *1 (-1106 *4 *5)) (-5 *3 (-1229 *5 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-362) (-146) (-1033 (-562)))) (-4 *5 (-1232 *4)) - (-5 *2 (-2 (|:| |ans| (-406 *5)) (|:| |nosol| (-112)))) - (-5 *1 (-1010 *4 *5)) (-5 *3 (-406 *5))))) + (-2 (|:| |ir| (-584 (-407 *6))) (|:| |specpart| (-407 *6)) + (|:| |polypart| *6))) + (-5 *1 (-573 *5 *6)) (-5 *3 (-407 *6))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *2 (-846)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-563)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-418 *4)) (-4 *4 (-555))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-639 (-947 *4))) (-5 *3 (-639 (-1168))) (-4 *4 (-451)) - (-5 *1 (-913 *4))))) -(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-613)))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-960))) (-5 *1 (-109))))) -(((*1 *2) - (-12 (-4 *3 (-1044)) (-5 *2 (-953 (-707 *3 *4))) (-5 *1 (-707 *3 *4)) - (-4 *4 (-1232 *3))))) + (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1248 *3))))) +(((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))) + ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260))))) (((*1 *2 *3) - (-12 (-5 *3 (-639 (-224))) (-5 *2 (-639 (-1150))) (-5 *1 (-191)))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 (-224))) (-5 *2 (-639 (-1150))) (-5 *1 (-299)))) + (-12 (-5 *3 (-917)) (-5 *2 (-1257 (-1257 (-563)))) (-5 *1 (-466))))) +(((*1 *2 *2) + (-12 (-4 *3 (-555)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-363) (-302) + (-10 -8 (-15 -2143 ((-1118 *3 (-609 $)) $)) + (-15 -2154 ((-1118 *3 (-609 $)) $)) + (-15 -1693 ($ (-1118 *3 (-609 $))))))))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-555)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-363) (-302) + (-10 -8 (-15 -2143 ((-1118 *3 (-609 $)) $)) + (-15 -2154 ((-1118 *3 (-609 $)) $)) + (-15 -1693 ($ (-1118 *3 (-609 $))))))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-640 *2)) + (-4 *2 + (-13 (-363) (-302) + (-10 -8 (-15 -2143 ((-1118 *4 (-609 $)) $)) + (-15 -2154 ((-1118 *4 (-609 $)) $)) + (-15 -1693 ($ (-1118 *4 (-609 $))))))) + (-4 *4 (-555)) (-5 *1 (-41 *4 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-640 (-609 *2))) + (-4 *2 + (-13 (-363) (-302) + (-10 -8 (-15 -2143 ((-1118 *4 (-609 $)) $)) + (-15 -2154 ((-1118 *4 (-609 $)) $)) + (-15 -1693 ($ (-1118 *4 (-609 $))))))) + (-4 *4 (-555)) (-5 *1 (-41 *4 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-640 (-2 (|:| |val| (-640 *8)) (|:| -2059 *9)))) + (-5 *4 (-767)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) + (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-1262)) + (-5 *1 (-1063 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-640 (-2 (|:| |val| (-640 *8)) (|:| -2059 *9)))) + (-5 *4 (-767)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) + (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-1262)) + (-5 *1 (-1138 *5 *6 *7 *8 *9))))) +(((*1 *2 *3) (-12 (-5 *3 (-407 (-563))) (-5 *2 (-225)) (-5 *1 (-305))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1169)) + (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) + (-4 *5 (-13 (-27) (-1193) (-430 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) + (-4 *3 (-13 (-27) (-1193) (-430 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-407 (-563))) + (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) + (-4 *3 (-13 (-27) (-1193) (-430 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))) + (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-563))) + (-4 *3 (-13 (-27) (-1193) (-430 *6))) + (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-407 (-563)))) (-5 *4 (-294 *8)) + (-5 *5 (-1224 (-407 (-563)))) (-5 *6 (-407 (-563))) + (-4 *8 (-13 (-27) (-1193) (-430 *7))) + (-4 *7 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-52)) (-5 *1 (-459 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-5 *6 (-1224 (-407 (-563)))) + (-5 *7 (-407 (-563))) (-4 *3 (-13 (-27) (-1193) (-430 *8))) + (-4 *8 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-52)) (-5 *1 (-459 *8 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-407 (-563))) (-4 *4 (-1045)) (-4 *1 (-1240 *4 *3)) + (-4 *3 (-1217 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1093)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-678 *4 *5)) (-4 *4 (-1093)))) + ((*1 *2 *2) + (-12 (-4 *3 (-846)) (-5 *1 (-925 *3 *2)) (-4 *2 (-430 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-639 (-224))) (-5 *2 (-639 (-1150))) (-5 *1 (-304))))) -(((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-577))))) + (-12 (-5 *3 (-1169)) (-5 *2 (-316 (-563))) (-5 *1 (-926)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1274 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1045)) (-5 *1 (-1280 *2 *3)) (-4 *3 (-842))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1087 (-225))) + (-5 *5 (-112)) (-5 *2 (-1259)) (-5 *1 (-257))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-640 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-666)))) + ((*1 *2 *1) + (-12 (-5 *2 (-640 (-917))) (-5 *1 (-1094 *3 *4)) (-14 *3 (-917)) + (-14 *4 (-917))))) +(((*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1165 *3))))) +(((*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-900 *4)) + (-4 *4 (-1093)))) + ((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-900 *3)) (-4 *3 (-1093))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1151)) (-5 *3 (-770)) (-5 *1 (-114))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *1 (-59 *3)) (-4 *3 (-1208)))) + ((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-59 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1169)) + (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) + (-4 *5 (-13 (-27) (-1193) (-430 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) + (-4 *3 (-13 (-27) (-1193) (-430 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-563)) (-4 *5 (-13 (-452) (-846) (-1034 *4) (-636 *4))) + (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) + (-4 *3 (-13 (-27) (-1193) (-430 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))) + (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *6))) + (-4 *6 (-13 (-452) (-846) (-1034 *5) (-636 *5))) (-5 *5 (-563)) + (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-563))) (-5 *4 (-294 *7)) (-5 *5 (-1224 (-563))) + (-4 *7 (-13 (-27) (-1193) (-430 *6))) + (-4 *6 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-5 *6 (-1224 (-563))) + (-4 *3 (-13 (-27) (-1193) (-430 *7))) + (-4 *7 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-563)) (-4 *4 (-1045)) (-4 *1 (-1219 *4 *3)) + (-4 *3 (-1248 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1217 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-640 *3)))) + ((*1 *2 *1) + (-12 (|has| *1 (-6 -4407)) (-4 *1 (-489 *3)) (-4 *3 (-1208)) + (-5 *2 (-640 *3))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-280)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-563) (-225) (-1169) (-1151) (-1174))) + (-5 *1 (-1174))))) +(((*1 *2 *2) + (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) + (-4 *3 (-1233 (-169 *2)))))) +(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-97))))) +(((*1 *1 *1) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1045))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-555)) (-5 *2 (-640 *3)) (-5 *1 (-965 *4 *3)) + (-4 *3 (-1233 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1044)) (-4 *7 (-1044)) - (-4 *6 (-1232 *5)) (-5 *2 (-1164 (-1164 *7))) - (-5 *1 (-500 *5 *6 *4 *7)) (-4 *4 (-1232 *6))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1168)) (-5 *5 (-639 (-406 (-947 *6)))) - (-5 *3 (-406 (-947 *6))) - (-4 *6 (-13 (-554) (-1033 (-562)) (-146))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-568 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-639 (-833))) (-5 *1 (-139))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *1) (-4 *1 (-348))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 *5)) (-4 *5 (-429 *4)) - (-4 *4 (-13 (-554) (-845) (-146))) - (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-639 (-1164 *5))) - (|:| |prim| (-1164 *5)))) - (-5 *1 (-431 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-554) (-845) (-146))) + (-12 (-5 *3 (-648 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1233 *5)) + (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1164 *3)) - (|:| |pol2| (-1164 *3)) (|:| |prim| (-1164 *3)))) - (-5 *1 (-431 *4 *3)) (-4 *3 (-27)) (-4 *3 (-429 *4)))) - ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-947 *5)) (-5 *4 (-1168)) (-4 *5 (-13 (-362) (-146))) - (-5 *2 - (-2 (|:| |coef1| (-562)) (|:| |coef2| (-562)) - (|:| |prim| (-1164 *5)))) - (-5 *1 (-955 *5)))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4315 (-640 *4)))) + (-5 *1 (-806 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-639 (-1168))) - (-4 *5 (-13 (-362) (-146))) + (-12 (-5 *3 (-648 (-407 *6))) (-4 *6 (-1233 *5)) + (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) + (-5 *2 (-2 (|:| -4315 (-640 (-407 *6))) (|:| -2835 (-684 *5)))) + (-5 *1 (-806 *5 *6)) (-5 *4 (-640 (-407 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-649 *6 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1233 *5)) + (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-5 *2 - (-2 (|:| -4221 (-639 (-562))) (|:| |poly| (-639 (-1164 *5))) - (|:| |prim| (-1164 *5)))) - (-5 *1 (-955 *5)))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4315 (-640 *4)))) + (-5 *1 (-806 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-649 *6 (-407 *6))) (-4 *6 (-1233 *5)) + (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) + (-5 *2 (-2 (|:| -4315 (-640 (-407 *6))) (|:| -2835 (-684 *5)))) + (-5 *1 (-806 *5 *6)) (-5 *4 (-640 (-407 *6)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1169)) + (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) + (-4 *5 (-13 (-27) (-1193) (-430 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) + (-4 *3 (-13 (-27) (-1193) (-430 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-767)) + (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) + (-4 *3 (-13 (-27) (-1193) (-430 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))) + (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-294 *3)) (-5 *5 (-767)) + (-4 *3 (-13 (-27) (-1193) (-430 *6))) + (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-563))) (-5 *4 (-294 *6)) + (-4 *6 (-13 (-27) (-1193) (-430 *5))) + (-4 *5 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-52)) (-5 *1 (-459 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-639 (-947 *6))) (-5 *4 (-639 (-1168))) (-5 *5 (-1168)) - (-4 *6 (-13 (-362) (-146))) + (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) + (-4 *3 (-13 (-27) (-1193) (-430 *6))) + (-4 *6 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-52)) (-5 *1 (-459 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-563))) (-5 *4 (-294 *7)) (-5 *5 (-1224 (-767))) + (-4 *7 (-13 (-27) (-1193) (-430 *6))) + (-4 *6 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-5 *6 (-1224 (-767))) + (-4 *3 (-13 (-27) (-1193) (-430 *7))) + (-4 *7 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1248 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) + (-5 *2 (-407 (-563))))) + ((*1 *2 *1) + (-12 (-5 *2 (-407 (-563))) (-5 *1 (-418 *3)) (-4 *3 (-545)) + (-4 *3 (-555)))) + ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-407 (-563))))) + ((*1 *2 *1) + (-12 (-4 *1 (-793 *3)) (-4 *3 (-172)) (-4 *3 (-545)) + (-5 *2 (-407 (-563))))) + ((*1 *2 *1) + (-12 (-5 *2 (-407 (-563))) (-5 *1 (-829 *3)) (-4 *3 (-545)) + (-4 *3 (-1093)))) + ((*1 *2 *1) + (-12 (-5 *2 (-407 (-563))) (-5 *1 (-839 *3)) (-4 *3 (-545)) + (-4 *3 (-1093)))) + ((*1 *2 *1) + (-12 (-4 *1 (-993 *3)) (-4 *3 (-172)) (-4 *3 (-545)) + (-5 *2 (-407 (-563))))) + ((*1 *2 *3) + (-12 (-5 *2 (-407 (-563))) (-5 *1 (-1004 *3)) (-4 *3 (-1034 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1169)) (-5 *4 (-948 (-563))) (-5 *2 (-330)) + (-5 *1 (-332))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-1093)) (-4 *2 (-896 *4)) (-5 *1 (-687 *4 *2 *5 *3)) + (-4 *5 (-373 *2)) (-4 *3 (-13 (-373 *4) (-10 -7 (-6 -4407))))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-640 (-948 *6))) (-5 *4 (-640 (-1169))) (-4 *6 (-452)) + (-5 *2 (-640 (-640 *7))) (-5 *1 (-538 *6 *7 *5)) (-4 *7 (-363)) + (-4 *5 (-13 (-363) (-844)))))) +(((*1 *1 *1) (-4 *1 (-545)))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4408)) (-4 *1 (-244 *2)) (-4 *2 (-1208))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-648 *4)) (-4 *4 (-342 *5 *6 *7)) + (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) + (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6))) (-5 *2 - (-2 (|:| -4221 (-639 (-562))) (|:| |poly| (-639 (-1164 *6))) - (|:| |prim| (-1164 *6)))) - (-5 *1 (-955 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-857)) (-5 *1 (-52))))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4315 (-640 *4)))) + (-5 *1 (-802 *5 *6 *7 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-305))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4408)) (-4 *1 (-119 *2)) (-4 *2 (-1208))))) +(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-858))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1022 (-839 (-563)))) (-5 *1 (-593 *3)) (-4 *3 (-1045))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) - (-4 *2 (-13 (-429 *3) (-1192)))))) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-858))))) +(((*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1208))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *2 (-1257 *4)) (-5 *3 (-684 *4)) (-4 *4 (-363)) + (-5 *1 (-662 *4)))) + ((*1 *2 *3 *2) + (|partial| -12 (-4 *4 (-363)) + (-4 *5 (-13 (-373 *4) (-10 -7 (-6 -4408)))) + (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4408)))) + (-5 *1 (-663 *4 *5 *2 *3)) (-4 *3 (-682 *4 *5 *2)))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *4 (-640 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-363)) + (-5 *1 (-810 *2 *3)) (-4 *3 (-651 *2)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) + (-5 *1 (-1121 *3 *2)) (-4 *3 (-1233 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-640 (-939 *4))) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) + (-4 *4 (-1045))))) (((*1 *2 *3) - (-12 (-5 *3 (-639 *7)) (-4 *7 (-944 *4 *5 *6)) (-4 *6 (-610 (-1168))) - (-4 *4 (-362)) (-4 *5 (-788)) (-4 *6 (-845)) - (-5 *2 (-1157 (-639 (-947 *4)) (-639 (-293 (-947 *4))))) - (-5 *1 (-503 *4 *5 *6 *7))))) + (-12 (-5 *3 (-948 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305))))) +(((*1 *2) + (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-905)) + (-5 *1 (-457 *3 *4 *2 *5)) (-4 *5 (-945 *2 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-905)) + (-5 *1 (-902 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-905)) (-5 *1 (-903 *2 *3)) (-4 *3 (-1233 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-1044)) (-5 *2 (-562)) (-5 *1 (-442 *4 *3 *5)) - (-4 *3 (-1232 *4)) - (-4 *5 (-13 (-403) (-1033 *4) (-362) (-1192) (-283)))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1256 (-639 *3))) (-4 *4 (-306)) - (-5 *2 (-639 *3)) (-5 *1 (-454 *4 *3)) (-4 *3 (-1232 *4))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-130)))) -(((*1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1259)))) - ((*1 *2 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1259))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1202 *3)) (-4 *3 (-969))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1164 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1056))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-224)) (-5 *1 (-30)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-417 *4) *4)) (-4 *4 (-554)) (-5 *2 (-417 *4)) - (-5 *1 (-418 *4)))) - ((*1 *1 *1) (-5 *1 (-921))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-921)))) - ((*1 *1 *1) (-5 *1 (-922))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-922)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) - (-5 *4 (-406 (-562))) (-5 *1 (-1015 *3)) (-4 *3 (-1232 (-562))))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) - (-5 *1 (-1015 *3)) (-4 *3 (-1232 (-562))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) - (-5 *4 (-406 (-562))) (-5 *1 (-1016 *3)) (-4 *3 (-1232 *4)))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) - (-5 *1 (-1016 *3)) (-4 *3 (-1232 (-406 (-562)))))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-843) (-362))) (-5 *1 (-1054 *2 *3)) - (-4 *3 (-1232 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1202 *3)) (-4 *3 (-969))))) -(((*1 *2 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1207))))) + (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-13 (-846) (-555)))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1150)) (-5 *4 (-1112)) (-5 *2 (-112)) (-5 *1 (-816))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1168)) (-5 *4 (-947 (-562))) (-5 *2 (-329)) - (-5 *1 (-331))))) -(((*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-224)) (-5 *1 (-304))))) -(((*1 *2 *3) - (-12 (-5 *3 (-639 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) - (-4 *4 (-13 (-845) (-554)))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-684 *3))))) -(((*1 *1) (-5 *1 (-140)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1030)) (-5 *1 (-304)))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 (-1030))) (-5 *2 (-1030)) (-5 *1 (-304)))) - ((*1 *1 *2) (-12 (-5 *2 (-639 *1)) (-4 *1 (-645 *3)) (-4 *3 (-1207)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-1207)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-1207)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-645 *2)) (-4 *2 (-1207)))) - ((*1 *1 *1 *1) (-5 *1 (-1056))) - ((*1 *2 *3) - (-12 (-5 *3 (-1148 (-1148 *4))) (-5 *2 (-1148 *4)) (-5 *1 (-1145 *4)) - (-4 *4 (-1207)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) - (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) - (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3)))))) -(((*1 *2 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1092)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1150)) (-5 *1 (-1188))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-426 *3 *2)) (-4 *3 (-13 (-171) (-38 (-406 (-562))))) - (-4 *2 (-13 (-845) (-21)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-143)))) + (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997)))))) -(((*1 *2 *1) (-12 (-4 *1 (-184)) (-5 *2 (-639 (-112)))))) -(((*1 *1) (-5 *1 (-436)))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-608 *4)) (-5 *6 (-1164 *4)) - (-4 *4 (-13 (-429 *7) (-27) (-1192))) - (-4 *7 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4291 (-639 *4)))) - (-5 *1 (-558 *7 *4 *3)) (-4 *3 (-650 *4)) (-4 *3 (-1092)))) - ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-608 *4)) (-5 *6 (-406 (-1164 *4))) - (-4 *4 (-13 (-429 *7) (-27) (-1192))) - (-4 *7 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4291 (-639 *4)))) - (-5 *1 (-558 *7 *4 *3)) (-4 *3 (-650 *4)) (-4 *3 (-1092))))) -(((*1 *1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-1053)))) - ((*1 *1 *1) - (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) - (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) - (-4 *2 (-429 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)) (-4 *2 (-1053)))) - ((*1 *1 *1) (-4 *1 (-843))) - ((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-171)) (-4 *2 (-1053)))) - ((*1 *1 *1) (-4 *1 (-1053))) ((*1 *1 *1) (-4 *1 (-1131)))) -(((*1 *1 *1) (-5 *1 (-1056)))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-360 (-114))) (-4 *2 (-1044)) (-5 *1 (-709 *2 *4)) - (-4 *4 (-642 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-360 (-114))) (-5 *1 (-831 *2)) (-4 *2 (-1044))))) -(((*1 *1 *1) (-5 *1 (-535)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-938 *5)) (-4 *5 (-1044)) (-5 *2 (-766)) - (-5 *1 (-1156 *4 *5)) (-14 *4 (-916)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-639 (-766))) (-5 *3 (-766)) (-5 *1 (-1156 *4 *5)) - (-14 *4 (-916)) (-4 *5 (-1044)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-639 (-766))) (-5 *3 (-938 *5)) (-4 *5 (-1044)) - (-5 *1 (-1156 *4 *5)) (-14 *4 (-916))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-766)) (-4 *5 (-362)) (-5 *2 (-173 *6)) - (-5 *1 (-862 *5 *4 *6)) (-4 *4 (-1247 *5)) (-4 *6 (-1232 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-639 (-639 *3))) (-4 *3 (-1092)) (-5 *1 (-900 *3))))) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1193)))))) +(((*1 *2 *1) (-12 (-4 *1 (-307)) (-5 *2 (-767))))) (((*1 *2 *3) - (-12 (-5 *3 (-293 (-947 (-562)))) + (|partial| -12 (-5 *2 (-563)) (-5 *1 (-568 *3)) (-4 *3 (-1034 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-294 (-839 *3))) (-4 *3 (-13 (-27) (-1193) (-430 *5))) + (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 - (-2 (|:| |varOrder| (-639 (-1168))) - (|:| |inhom| (-3 (-639 (-1256 (-766))) "failed")) - (|:| |hom| (-639 (-1256 (-766)))))) - (-5 *1 (-235))))) -(((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-554)) (-5 *1 (-964 *3 *2)) (-4 *2 (-1232 *3))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) - (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))) - (-5 *2 (-1148 (-224))) (-5 *1 (-191)))) + (-3 (-839 *3) + (-2 (|:| |leftHandLimit| (-3 (-839 *3) "failed")) + (|:| |rightHandLimit| (-3 (-839 *3) "failed"))) + "failed")) + (-5 *1 (-633 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-315 (-224))) (-5 *4 (-639 (-1168))) - (-5 *5 (-1086 (-838 (-224)))) (-5 *2 (-1148 (-224))) (-5 *1 (-299)))) + (|partial| -12 (-5 *4 (-294 *3)) (-5 *5 (-1151)) + (-4 *3 (-13 (-27) (-1193) (-430 *6))) + (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-839 *3)) (-5 *1 (-633 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-294 (-839 (-948 *5)))) (-4 *5 (-452)) + (-5 *2 + (-3 (-839 (-407 (-948 *5))) + (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 *5))) "failed")) + (|:| |rightHandLimit| (-3 (-839 (-407 (-948 *5))) "failed"))) + "failed")) + (-5 *1 (-634 *5)) (-5 *3 (-407 (-948 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-294 (-407 (-948 *5)))) (-5 *3 (-407 (-948 *5))) + (-4 *5 (-452)) + (-5 *2 + (-3 (-839 *3) + (-2 (|:| |leftHandLimit| (-3 (-839 *3) "failed")) + (|:| |rightHandLimit| (-3 (-839 *3) "failed"))) + "failed")) + (-5 *1 (-634 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1256 (-315 (-224)))) (-5 *4 (-639 (-1168))) - (-5 *5 (-1086 (-838 (-224)))) (-5 *2 (-1148 (-224))) (-5 *1 (-299))))) -(((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-1171)))) - ((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1261)) (-5 *1 (-1171)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1168)) (-5 *2 (-1261)) (-5 *1 (-1171))))) -(((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) - (-4 *4 (-845)) (-4 *2 (-554))))) -(((*1 *1 *2) (-12 (-5 *2 (-639 *1)) (-4 *1 (-301)))) - ((*1 *1 *1) (-4 *1 (-301))) ((*1 *1 *1) (-5 *1 (-857)))) -(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-916)) (-5 *1 (-781))))) + (|partial| -12 (-5 *4 (-294 (-407 (-948 *6)))) (-5 *5 (-1151)) + (-5 *3 (-407 (-948 *6))) (-4 *6 (-452)) (-5 *2 (-839 *3)) + (-5 *1 (-634 *6))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) + (-5 *2 (-2 (|:| -3490 *1) (|:| -1972 *1))) (-4 *1 (-945 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1045)) (-5 *2 (-2 (|:| -3490 *1) (|:| -1972 *1))) + (-4 *1 (-1233 *3))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1262)) (-5 *1 (-1131)))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 (-858))) (-5 *2 (-1262)) (-5 *1 (-1131))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-1169)) + (-4 *4 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) + (-5 *1 (-619 *4 *2)) (-4 *2 (-13 (-1193) (-955) (-29 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) (-4 *5 (-429 *4)) - (-5 *2 - (-3 (|:| |overq| (-1164 (-406 (-562)))) - (|:| |overan| (-1164 (-48))) (|:| -4254 (-112)))) - (-5 *1 (-434 *4 *5 *3)) (-4 *3 (-1232 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-315 (-224)))) (-5 *4 (-766)) - (-5 *2 (-683 (-224))) (-5 *1 (-266))))) -(((*1 *2 *2) - (-12 (-5 *2 (-639 (-639 *3))) (-4 *3 (-845)) (-5 *1 (-1178 *3))))) + (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-363) (-1193) (-998))))) + ((*1 *2) + (|partial| -12 (-4 *4 (-1212)) (-4 *5 (-1233 (-407 *2))) + (-4 *2 (-1233 *4)) (-5 *1 (-341 *3 *4 *2 *5)) + (-4 *3 (-342 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1212)) + (-4 *4 (-1233 (-407 *2))) (-4 *2 (-1233 *3))))) (((*1 *2 *1) - (-12 (-4 *4 (-1092)) (-5 *2 (-884 *3 *4)) (-5 *1 (-880 *3 *4 *5)) - (-4 *3 (-1092)) (-4 *5 (-660 *4))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-683 (-562))) (-5 *3 (-639 (-562))) (-5 *1 (-1102))))) -(((*1 *2 *1) (-12 (-5 *2 (-639 (-182))) (-5 *1 (-139))))) + (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1201 *4 *5 *6 *3)) (-4 *4 (-555)) (-4 *5 (-789)) + (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-854)))) + ((*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-961)))) + ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-985)))) + ((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1208)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1093) (-34))) (-5 *1 (-1133 *2 *3)) + (-4 *3 (-13 (-1093) (-34)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *1 (-1233 *3)) (-4 *3 (-1045))))) +(((*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) +(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-62 *3)) (-14 *3 (-1169)))) + ((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-69 *3)) (-14 *3 (-1169)))) + ((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-72 *3)) (-14 *3 (-1169)))) + ((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1262)))) + ((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1262)) (-5 *1 (-397)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1151)) (-5 *4 (-858)) (-5 *2 (-1262)) (-5 *1 (-1131)))) + ((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1262)) (-5 *1 (-1131)))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 (-858))) (-5 *2 (-1262)) (-5 *1 (-1131))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-363)) (-5 *1 (-892 *2 *3)) + (-4 *2 (-1233 *3))))) +(((*1 *1) (-5 *1 (-141)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3)) (-4 *3 (-1093))))) +(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-379)))) + ((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-379))))) +(((*1 *1 *2) + (-12 (-5 *2 (-640 (-917))) (-5 *1 (-1094 *3 *4)) (-14 *3 (-917)) + (-14 *4 (-917))))) +(((*1 *1 *1) + (-12 (-4 *2 (-147)) (-4 *2 (-307)) (-4 *2 (-452)) (-4 *3 (-846)) + (-4 *4 (-789)) (-5 *1 (-983 *2 *3 *4 *5)) (-4 *5 (-945 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-316 (-563))) (-5 *1 (-1112)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1193)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) + (-5 *1 (-176 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1232 (-562))))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1232 (-562)))))) -(((*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-164 *3 *2)) (-4 *3 (-165 *2)))) + (-12 (-5 *3 (-767)) (-5 *2 (-1 (-1149 (-948 *4)) (-1149 (-948 *4)))) + (-5 *1 (-1265 *4)) (-4 *4 (-363))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))) + (-5 *2 (-640 (-1169))) (-5 *1 (-267)))) ((*1 *2 *3) - (-12 (-5 *3 (-1256 *1)) (-4 *1 (-369 *2 *4)) (-4 *4 (-1232 *2)) - (-4 *2 (-171)))) - ((*1 *2) - (-12 (-4 *4 (-1232 *2)) (-4 *2 (-171)) (-5 *1 (-407 *3 *2 *4)) - (-4 *3 (-408 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-408 *2 *3)) (-4 *3 (-1232 *2)) (-4 *2 (-171)))) - ((*1 *2) - (-12 (-4 *3 (-1232 *2)) (-5 *2 (-562)) (-5 *1 (-763 *3 *4)) - (-4 *4 (-408 *2 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-944 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *2 (-845)) (-4 *3 (-171)))) + (-12 (-5 *3 (-1165 *7)) (-4 *7 (-945 *6 *4 *5)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1045)) (-5 *2 (-640 *5)) + (-5 *1 (-321 *4 *5 *6 *7)))) + ((*1 *2 *1) + (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-339 *3 *4 *5)) (-14 *3 *2) + (-14 *4 *2) (-4 *5 (-387)))) + ((*1 *2 *1) + (-12 (-4 *1 (-430 *3)) (-4 *3 (-846)) (-5 *2 (-640 (-1169))))) + ((*1 *2 *1) + (-12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) + ((*1 *2 *1) + (-12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-5 *2 (-640 *5)))) ((*1 *2 *3) - (-12 (-4 *2 (-554)) (-5 *1 (-964 *2 *3)) (-4 *3 (-1232 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1044)) (-4 *2 (-171))))) + (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) + (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-640 *5)) + (-5 *1 (-946 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-363) + (-10 -8 (-15 -1693 ($ *7)) (-15 -2143 (*7 $)) (-15 -2154 (*7 $))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1095 (-1169))) (-5 *1 (-962 *3)) (-4 *3 (-963)))) + ((*1 *2 *1) + (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-788)) + (-4 *5 (-846)) (-5 *2 (-640 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-640 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555)) (-5 *2 (-640 (-1169))) + (-5 *1 (-1039 *4))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) + (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)) - (-5 *2 (-1150))))) -(((*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-695)))) - ((*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-695))))) + (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-555)) + (-5 *2 (-1165 *3))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-917)) (-5 *4 (-870)) (-5 *2 (-1262)) (-5 *1 (-1258)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1256 *4)) (-4 *4 (-635 (-562))) - (-5 *2 (-1256 (-406 (-562)))) (-5 *1 (-1283 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-161))) - ((*1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-161))))) -(((*1 *2 *1) - (-12 (-4 *2 (-944 *3 *5 *4)) (-5 *1 (-982 *3 *4 *5 *2)) - (-4 *3 (-451)) (-4 *4 (-845)) (-4 *5 (-788))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) - (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) - (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3)))))) -(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-916)) (-5 *4 (-224)) (-5 *5 (-562)) (-5 *6 (-869)) - (-5 *2 (-1261)) (-5 *1 (-1257))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) - (-4 *5 (-372 *3)) (-5 *2 (-562)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) - (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-562))))) -(((*1 *2 *2) - (-12 (-5 *2 (-938 *3)) (-4 *3 (-13 (-362) (-1192) (-997))) - (-5 *1 (-175 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1148 (-562))) (-5 *1 (-1152 *4)) (-4 *4 (-1044)) - (-5 *3 (-562))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-754))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-857))) ((*1 *1 *1 *1) (-5 *1 (-857))) - ((*1 *1 *1) (-5 *1 (-857)))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-683 (-224))) (-5 *5 (-683 (-562))) (-5 *6 (-224)) - (-5 *3 (-562)) (-5 *2 (-1030)) (-5 *1 (-746))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-224) (-224) (-224))) - (-5 *4 (-3 (-1 (-224) (-224) (-224) (-224)) "undefined")) - (-5 *5 (-1086 (-224))) (-5 *6 (-639 (-262))) (-5 *2 (-1125 (-224))) - (-5 *1 (-691))))) -(((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) - (-4 *3 (-366 *4)))) - ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1233 *6)) + (-4 *6 (-13 (-27) (-430 *5))) + (-4 *5 (-13 (-846) (-555) (-1034 (-563)))) (-4 *8 (-1233 (-407 *7))) + (-5 *2 (-584 *3)) (-5 *1 (-551 *5 *6 *7 *8 *3)) + (-4 *3 (-342 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-640 (-2 (|:| -2619 *4) (|:| -1326 (-563))))) + (-4 *4 (-1093)) (-5 *2 (-1 *4)) (-5 *1 (-1013 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-451)) + (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) + (-14 *5 (-640 (-1169))) (-5 *2 - (-639 - (-2 (|:| |eigval| (-3 (-406 (-947 *4)) (-1157 (-1168) (-947 *4)))) - (|:| |geneigvec| (-639 (-683 (-406 (-947 *4)))))))) - (-5 *1 (-291 *4)) (-5 *3 (-683 (-406 (-947 *4))))))) -(((*1 *1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-329)))) - ((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-329))))) -(((*1 *1 *1) - (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1044) (-845))) - (-14 *3 (-639 (-1168)))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4403)) (-4 *1 (-600 *4 *3)) (-4 *4 (-1092)) - (-4 *3 (-1207)) (-4 *3 (-1092)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) - (-4 *5 (-1232 (-406 *4))) (-5 *2 (-683 (-406 *4)))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-947 (-562)))) - (-5 *4 (-315 (-168 (-378)))) (-5 *1 (-329)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-947 (-562)))) - (-5 *4 (-315 (-378))) (-5 *1 (-329)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-947 (-562)))) - (-5 *4 (-315 (-562))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-315 (-168 (-378))))) - (-5 *1 (-329)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-315 (-378)))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-315 (-562)))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-315 (-168 (-378))))) - (-5 *1 (-329)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-315 (-378)))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-315 (-562)))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-315 (-168 (-378)))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-315 (-378))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-315 (-562))) (-5 *1 (-329)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-947 (-562)))) - (-5 *4 (-315 (-688))) (-5 *1 (-329)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-947 (-562)))) - (-5 *4 (-315 (-693))) (-5 *1 (-329)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-947 (-562)))) - (-5 *4 (-315 (-695))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-315 (-688)))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-315 (-693)))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-315 (-695)))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-315 (-688)))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-315 (-693)))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-315 (-695)))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-688))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-693))) (-5 *1 (-329)))) + (-640 (-2 (|:| -1602 (-1165 *4)) (|:| -1880 (-640 (-948 *4)))))) + (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-640 (-1169))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) + (-5 *2 + (-640 (-2 (|:| -1602 (-1165 *5)) (|:| -1880 (-640 (-948 *5)))))) + (-5 *1 (-1283 *5 *6 *7)) (-5 *3 (-640 (-948 *5))) + (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) + (-5 *2 + (-640 (-2 (|:| -1602 (-1165 *5)) (|:| -1880 (-640 (-948 *5)))))) + (-5 *1 (-1283 *5 *6 *7)) (-5 *3 (-640 (-948 *5))) + (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) + (-5 *2 + (-640 (-2 (|:| -1602 (-1165 *5)) (|:| -1880 (-640 (-948 *5)))))) + (-5 *1 (-1283 *5 *6 *7)) (-5 *3 (-640 (-948 *5))) + (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-844) (-307) (-147) (-1018))) + (-5 *2 + (-640 (-2 (|:| -1602 (-1165 *4)) (|:| -1880 (-640 (-948 *4)))))) + (-5 *1 (-1283 *4 *5 *6)) (-5 *3 (-640 (-948 *4))) + (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) +(((*1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-610 (-858)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-767)) (-5 *2 (-684 (-948 *4))) (-5 *1 (-1024 *4)) + (-4 *4 (-1045))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1165 (-407 (-1165 *2)))) (-5 *4 (-609 *2)) + (-4 *2 (-13 (-430 *5) (-27) (-1193))) + (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) + (-5 *1 (-559 *5 *2 *6)) (-4 *6 (-1093)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-695))) (-5 *1 (-329)))) + (-12 (-5 *2 (-1165 *1)) (-4 *1 (-945 *4 *5 *3)) (-4 *4 (-1045)) + (-4 *5 (-789)) (-4 *3 (-846)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-688))) (-5 *1 (-329)))) + (-12 (-5 *2 (-1165 *4)) (-4 *4 (-1045)) (-4 *1 (-945 *4 *5 *3)) + (-4 *5 (-789)) (-4 *3 (-846)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-1165 *2))) (-4 *5 (-789)) (-4 *4 (-846)) + (-4 *6 (-1045)) + (-4 *2 + (-13 (-363) + (-10 -8 (-15 -1693 ($ *7)) (-15 -2143 (*7 $)) (-15 -2154 (*7 $))))) + (-5 *1 (-946 *5 *4 *6 *7 *2)) (-4 *7 (-945 *6 *5 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-1165 (-407 (-948 *5))))) (-5 *4 (-1169)) + (-5 *2 (-407 (-948 *5))) (-5 *1 (-1039 *5)) (-4 *5 (-555))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1093)) (-5 *2 (-885 *3 *5)) (-5 *1 (-881 *3 *4 *5)) + (-4 *3 (-1093)) (-4 *5 (-661 *4))))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-365 *2)) (-4 *2 (-1093)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1151)) (-5 *1 (-1189))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171))))) +(((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) + (-4 *5 (-13 (-363) (-147) (-1034 (-563)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |c| (-407 *6)) + (|:| -2288 *6))) + (-5 *1 (-1011 *5 *6)) (-5 *3 (-407 *6))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) + (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-555)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) + (-4 *7 (-988 *4)) (-4 *2 (-682 *7 *8 *9)) + (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-682 *4 *5 *6)) + (-4 *8 (-373 *7)) (-4 *9 (-373 *7)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) + (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-363)))) + ((*1 *2 *2) + (|partial| -12 (-4 *3 (-363)) (-4 *3 (-172)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *1 (-683 *3 *4 *5 *2)) + (-4 *2 (-682 *3 *4 *5)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-684 *2)) (-4 *2 (-363)) (-4 *2 (-1045)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1116 *2 *3 *4 *5)) (-4 *3 (-1045)) + (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-363)))) + ((*1 *2 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-1179 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |cd| (-1151)) (|:| -3348 (-1151)))) + (-5 *1 (-818))))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-693))) (-5 *1 (-329)))) + (-12 (-5 *3 (-640 (-917))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-917)) + (-4 *2 (-363)) (-14 *5 (-989 *4 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-683 (-695))) (-5 *1 (-329)))) + (-12 (-5 *3 (-709 *5 *6 *7)) (-4 *5 (-846)) + (-4 *6 (-238 (-3608 *4) (-767))) + (-14 *7 + (-1 (-112) (-2 (|:| -2555 *5) (|:| -1654 *6)) + (-2 (|:| -2555 *5) (|:| -1654 *6)))) + (-14 *4 (-640 (-1169))) (-4 *2 (-172)) + (-5 *1 (-461 *4 *2 *5 *6 *7 *8)) (-4 *8 (-945 *2 *6 (-860 *4))))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-315 (-688))) (-5 *1 (-329)))) + (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-846)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-315 (-693))) (-5 *1 (-329)))) + (-12 (-5 *3 (-563)) (-4 *2 (-555)) (-5 *1 (-620 *2 *4)) + (-4 *4 (-1233 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-704 *2)) (-4 *2 (-1045)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-315 (-695))) (-5 *1 (-329)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-1150)) (-5 *1 (-329)))) - ((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *2) - (-12 (-4 *4 (-1211)) (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-406 *5))) - (-5 *2 (-639 (-639 *4))) (-5 *1 (-340 *3 *4 *5 *6)) - (-4 *3 (-341 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) - (-4 *5 (-1232 (-406 *4))) (-4 *3 (-367)) (-5 *2 (-639 (-639 *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1207))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-3 (-2 (|:| -2929 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-639 (-406 *8))) (-4 *7 (-362)) (-4 *8 (-1232 *7)) - (-5 *3 (-406 *8)) + (-12 (-5 *1 (-731 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-722)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-640 *5)) (-5 *3 (-640 (-767))) (-4 *1 (-736 *4 *5)) + (-4 *4 (-1045)) (-4 *5 (-846)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *2)) (-4 *4 (-1045)) + (-4 *2 (-846)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-848 *2)) (-4 *2 (-1045)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-640 *6)) (-5 *3 (-640 (-767))) (-4 *1 (-945 *4 *5 *6)) + (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-767)) (-4 *1 (-945 *4 *5 *2)) (-4 *4 (-1045)) + (-4 *5 (-789)) (-4 *2 (-846)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-640 *6)) (-5 *3 (-640 *5)) (-4 *1 (-969 *4 *5 *6)) + (-4 *4 (-1045)) (-4 *5 (-788)) (-4 *6 (-846)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-969 *4 *3 *2)) (-4 *4 (-1045)) (-4 *3 (-788)) + (-4 *2 (-846))))) +(((*1 *2 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-1173))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-869 *2 *3)) (-4 *2 (-1208)) (-4 *3 (-1208))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) + (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-572 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1168)) - (-4 *5 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-583 *3)) (-5 *1 (-425 *5 *3)) - (-4 *3 (-13 (-1192) (-29 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1168)) (-4 *5 (-13 (-554) (-1033 (-562)) (-146))) - (-5 *2 (-583 (-406 (-947 *5)))) (-5 *1 (-568 *5)) - (-5 *3 (-406 (-947 *5)))))) + (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) + (|:| |expense| (-379)) (|:| |accuracy| (-379)) + (|:| |intermediateResults| (-379)))) + (-5 *1 (-799))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1148 *2)) (-4 *2 (-306)) (-5 *1 (-173 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) - (-4 *5 (-372 *3)) (-5 *2 (-766)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) - (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-766))))) -(((*1 *2 *1) - (-12 (-4 *3 (-362)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) - (-5 *2 (-1256 *6)) (-5 *1 (-335 *3 *4 *5 *6)) - (-4 *6 (-341 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1164 *7)) (-5 *3 (-562)) (-4 *7 (-944 *6 *4 *5)) - (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1044)) - (-5 *1 (-320 *4 *5 *6 *7))))) -(((*1 *2) (-12 (-5 *2 (-1139 (-1150))) (-5 *1 (-390))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1148 (-1148 *4))) (-5 *2 (-1148 *4)) (-5 *1 (-1152 *4)) - (-4 *4 (-1044))))) -(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) + (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-563))))) + (-4 *2 (-13 (-846) (-21)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-640 (-609 *4))) (-4 *4 (-430 *3)) (-4 *3 (-846)) + (-5 *1 (-572 *3 *4)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093))))) +(((*1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-846)) (-4 *3 (-1093))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-846)) + (-4 *3 (-1093))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) + (-5 *2 (-1031)) (-5 *1 (-748))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-856)) (-5 *2 (-686 (-1215))) (-5 *3 (-1215))))) +(((*1 *1) (-5 *1 (-291)))) +(((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) + (-5 *1 (-1066 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) + (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 *4)) - (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2059 *4)))) + (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1151)) (-5 *1 (-782))))) +(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923))))) (((*1 *2 *2) - (-12 (-5 *2 (-1256 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) - (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-1023 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-639 (-683 *3))) (-4 *3 (-1044)) (-5 *1 (-1023 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-1023 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-639 (-683 *3))) (-4 *3 (-1044)) (-5 *1 (-1023 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) - (-4 *5 (-372 *3)) (-5 *2 (-766)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) - (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-766))))) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-1164 *3)) (-5 *1 (-41 *4 *3)) - (-4 *3 - (-13 (-362) (-301) - (-10 -8 (-15 -4063 ((-1117 *4 (-608 $)) $)) - (-15 -4079 ((-1117 *4 (-608 $)) $)) - (-15 -4053 ($ (-1117 *4 (-608 $)))))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-552 *3)) (-4 *3 (-13 (-403) (-1192))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-843)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1061 *4 *3)) (-4 *4 (-13 (-843) (-362))) - (-4 *3 (-1232 *4)) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1092)) (-4 *2 (-367))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-562)) (|has| *1 (-6 -4404)) (-4 *1 (-372 *3)) - (-4 *3 (-1207))))) + (-12 (-5 *3 (-640 *5)) (-4 *5 (-430 *4)) (-4 *4 (-13 (-846) (-555))) + (-5 *2 (-858)) (-5 *1 (-32 *4 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *3 (-640 (-263))) + (-5 *1 (-261)))) + ((*1 *1 *2) (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *1 (-263)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *1 (-468)))) + ((*1 *2 *1) (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *1 (-468))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-948 (-169 *4))) (-4 *4 (-172)) + (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-948 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-172)) + (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) + (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045)) + (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555)) + (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-555)) + (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-407 (-948 (-169 *4)))) (-4 *4 (-555)) + (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-407 (-948 (-169 *5)))) (-5 *4 (-917)) + (-4 *5 (-555)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) + (-5 *1 (-781 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-555)) (-4 *4 (-846)) + (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-555)) + (-4 *5 (-846)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) + (-5 *1 (-781 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-555)) (-4 *4 (-846)) + (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-555)) + (-4 *5 (-846)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) + (-5 *1 (-781 *5))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-563))))) + (-4 *5 (-846)) (-5 *1 (-1273 *4 *5 *2)) (-4 *2 (-1278 *5 *4))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-640 (-778 *3))) (-5 *1 (-778 *3)) (-4 *3 (-555)) + (-4 *3 (-1045))))) +(((*1 *1) (-5 *1 (-144)))) +(((*1 *2 *3 *4 *3 *3) + (-12 (-5 *3 (-294 *6)) (-5 *4 (-114)) (-4 *6 (-430 *5)) + (-4 *5 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) + (-5 *1 (-317 *5 *6)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-640 *7)) + (-4 *7 (-430 *6)) (-4 *6 (-13 (-846) (-555) (-611 (-536)))) + (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-640 (-294 *7))) (-5 *4 (-640 (-114))) (-5 *5 (-294 *7)) + (-4 *7 (-430 *6)) (-4 *6 (-13 (-846) (-555) (-611 (-536)))) + (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-640 (-294 *8))) (-5 *4 (-640 (-114))) (-5 *5 (-294 *8)) + (-5 *6 (-640 *8)) (-4 *8 (-430 *7)) + (-4 *7 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) + (-5 *1 (-317 *7 *8)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-640 *7)) (-5 *4 (-640 (-114))) (-5 *5 (-294 *7)) + (-4 *7 (-430 *6)) (-4 *6 (-13 (-846) (-555) (-611 (-536)))) + (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 (-114))) (-5 *6 (-640 (-294 *8))) + (-4 *8 (-430 *7)) (-5 *5 (-294 *8)) + (-4 *7 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) + (-5 *1 (-317 *7 *8)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-294 *5)) (-5 *4 (-114)) (-4 *5 (-430 *6)) + (-4 *6 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) + (-5 *1 (-317 *6 *5)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6)) + (-4 *6 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) + (-5 *1 (-317 *6 *3)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6)) + (-4 *6 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) + (-5 *1 (-317 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-5 *6 (-640 *3)) + (-4 *3 (-430 *7)) (-4 *7 (-13 (-846) (-555) (-611 (-536)))) + (-5 *2 (-52)) (-5 *1 (-317 *7 *3))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) + (-4 *4 (-1093))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1151)) (-5 *4 (-169 (-225))) (-5 *5 (-563)) + (-5 *2 (-1031)) (-5 *1 (-754))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) - (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))) + (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) + (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| @@ -9837,2898 +9247,3245 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1148 (-224))) + (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -2147 + (|:| -2516 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-557))))) -(((*1 *2 *2) (-12 (-5 *1 (-956 *2)) (-4 *2 (-544))))) -(((*1 *2 *3) - (-12 (-5 *3 (-639 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) - (-4 *4 (-13 (-845) (-554)))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-639 (-1168))) (-5 *3 (-52)) (-5 *1 (-887 *4)) - (-4 *4 (-1092))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-554) (-845))) - (-4 *2 (-13 (-429 *4) (-997) (-1192))) (-5 *1 (-596 *4 *2 *3)) - (-4 *3 (-13 (-429 (-168 *4)) (-997) (-1192)))))) -(((*1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-824))))) -(((*1 *2 *3) - (-12 (-4 *4 (-362)) (-4 *4 (-554)) (-4 *5 (-1232 *4)) - (-5 *2 (-2 (|:| -3408 (-619 *4 *5)) (|:| -4374 (-406 *5)))) - (-5 *1 (-619 *4 *5)) (-5 *3 (-406 *5)))) + (-5 *1 (-558))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-368)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-917)) (-5 *2 (-1257 *4)) (-5 *1 (-528 *4)) + (-4 *4 (-349)))) ((*1 *2 *1) - (-12 (-5 *2 (-639 (-1156 *3 *4))) (-5 *1 (-1156 *3 *4)) - (-14 *3 (-916)) (-4 *4 (-1044)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-451)) (-4 *3 (-1044)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) - (-4 *1 (-1232 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-639 (-916))) (-5 *2 (-899 (-562))) (-5 *1 (-912))))) + (-12 (-4 *2 (-846)) (-5 *1 (-709 *2 *3 *4)) (-4 *3 (-1093)) + (-14 *4 + (-1 (-112) (-2 (|:| -2555 *2) (|:| -1654 *3)) + (-2 (|:| -2555 *2) (|:| -1654 *3))))))) +(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923))))) (((*1 *2 *1) - (-12 (-4 *3 (-171)) (-4 *2 (-23)) (-5 *1 (-288 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1232 *3)) (-14 *5 (-1 *4 *4 *2)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2)) - (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-706 *3 *2 *4 *5 *6)) (-4 *3 (-171)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) - (-12 (-4 *2 (-1232 *3)) (-5 *1 (-707 *3 *2)) (-4 *3 (-1044)))) + (-12 (-5 *2 (-640 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1093))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-640 (-504 *3 *4 *5 *6))) (-4 *3 (-363)) (-4 *4 (-789)) + (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) + (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-640 *1)) (-5 *3 (-640 *7)) (-4 *1 (-1065 *4 *5 *6 *7)) + (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *1)) + (-4 *1 (-1065 *4 *5 *6 *7)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-640 *1)) + (-4 *1 (-1065 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-363)) (-5 *1 (-1021 *3 *2)) (-4 *2 (-651 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| -1420 *3) (|:| -2517 (-640 *5)))) + (-5 *1 (-1021 *5 *3)) (-5 *4 (-640 *5)) (-4 *3 (-651 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1208))))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-112)) + (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD)))) + (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE)))) + (-5 *2 (-1031)) (-5 *1 (-752))))) +(((*1 *2 *1) + (-12 (-5 *2 (-640 (-2 (|:| -2387 (-1169)) (|:| -2557 *4)))) + (-5 *1 (-885 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-710 *3 *2 *4 *5 *6)) (-4 *3 (-171)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-864 *3)) (-5 *2 (-562))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-953 *3)) (-5 *1 (-1155 *4 *3)) - (-4 *3 (-1232 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1150))))) -(((*1 *1) (-5 *1 (-329)))) + (-12 (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) + (-4 *7 (-1093)) (-5 *2 (-640 *1)) (-4 *1 (-1096 *3 *4 *5 *6 *7))))) +(((*1 *2) + (-12 (-5 *2 (-2 (|:| -3244 (-640 *3)) (|:| -3289 (-640 *3)))) + (-5 *1 (-1209 *3)) (-4 *3 (-1093))))) +(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-640 (-112)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-407 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1233 *5)) + (-5 *1 (-723 *5 *2)) (-4 *5 (-363))))) +(((*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-275))))) +(((*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) + (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-555)) (-4 *7 (-789)) + (-4 *8 (-846)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2636 (-640 *9)))) + (-5 *3 (-640 *9)) (-4 *1 (-1201 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1059 *5 *6 *7)) + (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -2636 (-640 *8)))) + (-5 *3 (-640 *8)) (-4 *1 (-1201 *5 *6 *7 *8))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1091 *3)) (-4 *3 (-1093)) (-5 *2 (-112))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) + (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *1 (-973 *3 *4 *5 *6))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (-563)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) + (-5 *1 (-748))))) +(((*1 *2 *3) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-560)) (-5 *3 (-563))))) +(((*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) + ((*1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *2) + (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-4 *1 (-1091 *3)))) + ((*1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093))))) +(((*1 *1) (-5 *1 (-437)))) (((*1 *2 *1) - (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) - (-5 *2 (-2 (|:| |k| (-814 *3)) (|:| |c| *4)))))) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) + (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-767)) (-4 *6 (-363)) (-5 *4 (-1202 *6)) + (-5 *2 (-1 (-1149 *4) (-1149 *4))) (-5 *1 (-1265 *6)) + (-5 *5 (-1149 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-1060))))) (((*1 *2 *3) - (-12 (-5 *3 (-639 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) - (-4 *4 (-13 (-845) (-554)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *8)) (-5 *4 (-639 *7)) (-4 *7 (-845)) - (-4 *8 (-944 *5 *6 *7)) (-4 *5 (-554)) (-4 *6 (-788)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1256 (-406 *8)) "failed")) - (|:| -4291 (-639 (-1256 (-406 *8)))))) - (-5 *1 (-663 *5 *6 *7 *8))))) + (-12 (-4 *4 (-555)) (-5 *2 (-640 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-417 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-317)) (-5 *3 (-224))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4404)) (-4 *1 (-1005 *2)) (-4 *2 (-1207))))) -(((*1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1207)))) - ((*1 *2 *2) - (-12 (-4 *3 (-1044)) (-5 *1 (-443 *3 *2)) (-4 *2 (-1232 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-643 *2 *3 *4)) (-4 *2 (-1092)) (-4 *3 (-23)) - (-14 *4 *3)))) + (-12 (-5 *3 (-316 (-379))) (-5 *2 (-316 (-225))) (-5 *1 (-305))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) + (-5 *1 (-751))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1076 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-562) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1076 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1094 *4)) (-4 *4 (-1092)) (-5 *2 (-1 *4)) - (-5 *1 (-1012 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1035)) (-5 *3 (-378)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1086 (-562))) (-5 *2 (-1 (-562))) (-5 *1 (-1042))))) -(((*1 *1 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1207)))) - ((*1 *1 *1) - (-12 (|has| *1 (-6 -4404)) (-4 *1 (-372 *2)) (-4 *2 (-1207)))) - ((*1 *1 *1) - (-12 (-5 *1 (-643 *2 *3 *4)) (-4 *2 (-1092)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-554)) (-4 *2 (-1044)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-554)) (-5 *1 (-964 *3 *2)) (-4 *2 (-1232 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) - (-4 *4 (-845)) (-4 *2 (-554)))) - ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *3 (-1058 *4 *5 *6)) - (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1501 *1)))) - (-4 *1 (-1064 *4 *5 *6 *3))))) -(((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-639 (-1150))) (-5 *2 (-1150)) (-5 *1 (-1257)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1257)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1257)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-639 (-1150))) (-5 *2 (-1150)) (-5 *1 (-1258)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1258)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1258))))) -(((*1 *2 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1185))))) -(((*1 *2 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-1256 (-683 *4))) (-5 *1 (-90 *4 *5)) - (-5 *3 (-683 *4)) (-4 *5 (-650 *4))))) + (-12 (-5 *3 (-563)) (-5 *1 (-691 *2)) (-4 *2 (-1233 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1248 *4)) (-5 *1 (-1250 *4 *2)) + (-4 *4 (-38 (-407 (-563))))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-563)) (-5 *2 (-112)) (-5 *1 (-552))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)))) + ((*1 *1) (-4 *1 (-1144)))) (((*1 *2 *1) - (-12 (-5 *2 (-1086 *3)) (-5 *1 (-1084 *3)) (-4 *3 (-1207)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1207)))) - ((*1 *1 *2) (-12 (-5 *1 (-1223 *2)) (-4 *2 (-1207))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-855)) (-5 *2 (-685 (-547))) (-5 *3 (-547))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |pde| (-639 (-315 (-224)))) - (|:| |constraints| - (-639 - (-2 (|:| |start| (-224)) (|:| |finish| (-224)) - (|:| |grid| (-766)) (|:| |boundaryType| (-562)) - (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) - (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) - (|:| |tol| (-224)))) - (-5 *2 (-112)) (-5 *1 (-209))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-170))))) -(((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171))))) -(((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) - (-5 *1 (-1120 *3 *2)) (-4 *3 (-1232 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-1207))))) -(((*1 *2 *1) (-12 (-4 *1 (-526)) (-5 *2 (-685 (-129)))))) -(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258)))) - ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258))))) -(((*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-1092)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-814 *3)) (-4 *3 (-845)) (-5 *1 (-666 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-922)) - (-5 *2 - (-2 (|:| |brans| (-639 (-639 (-938 (-224))))) - (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224))))) - (-5 *1 (-152)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-922)) (-5 *4 (-406 (-562))) - (-5 *2 - (-2 (|:| |brans| (-639 (-639 (-938 (-224))))) - (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224))))) - (-5 *1 (-152)))) - ((*1 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |brans| (-639 (-639 (-938 (-224))))) - (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224))))) - (-5 *1 (-152)) (-5 *3 (-639 (-938 (-224)))))) + (-12 (-5 *2 (-767)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563)) + (-14 *4 *2) (-4 *5 (-172)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-917)) (-5 *1 (-165 *3 *4)) + (-4 *3 (-166 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-917)))) + ((*1 *2) + (-12 (-4 *1 (-370 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1233 *3)) + (-5 *2 (-917)))) ((*1 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |brans| (-639 (-639 (-938 (-224))))) - (|:| |xValues| (-1086 (-224))) (|:| |yValues| (-1086 (-224))))) - (-5 *1 (-152)) (-5 *3 (-639 (-639 (-938 (-224))))))) - ((*1 *1 *2) (-12 (-5 *2 (-639 (-1086 (-378)))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262))))) -(((*1 *2 *1) - (-12 (-5 *2 (-639 (-2 (|:| |gen| *3) (|:| -3430 (-562))))) - (-5 *1 (-360 *3)) (-4 *3 (-1092)))) - ((*1 *2 *1) - (-12 (-5 *2 (-639 (-2 (|:| |gen| *3) (|:| -3430 (-766))))) - (-5 *1 (-385 *3)) (-4 *3 (-1092)))) + (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) + (-5 *2 (-767)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-684 *5)) (-5 *4 (-1257 *5)) (-4 *5 (-363)) + (-5 *2 (-767)) (-5 *1 (-662 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4408)))) + (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4408)))) (-5 *2 (-767)) + (-5 *1 (-663 *5 *6 *4 *3)) (-4 *3 (-682 *5 *6 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-639 (-2 (|:| -1635 *3) (|:| -1300 (-562))))) - (-5 *1 (-417 *3)) (-4 *3 (-554)))) + (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-4 *3 (-555)) (-5 *2 (-767)))) + ((*1 *2 *3) + (-12 (-4 *4 (-555)) (-4 *4 (-172)) (-4 *5 (-373 *4)) + (-4 *6 (-373 *4)) (-5 *2 (-767)) (-5 *1 (-683 *4 *5 *6 *3)) + (-4 *3 (-682 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-5 *2 (-639 (-2 (|:| |gen| *3) (|:| -3430 (-766))))) - (-5 *1 (-814 *3)) (-4 *3 (-845))))) -(((*1 *2 *1) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-393))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-639 (-1164 *5))) (-5 *3 (-1164 *5)) - (-4 *5 (-165 *4)) (-4 *4 (-544)) (-5 *1 (-148 *4 *5)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-639 *3)) (-4 *3 (-1232 *5)) - (-4 *5 (-1232 *4)) (-4 *4 (-348)) (-5 *1 (-357 *4 *5 *3)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-639 (-1164 (-562)))) (-5 *3 (-1164 (-562))) - (-5 *1 (-570)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-639 (-1164 *1))) (-5 *3 (-1164 *1)) - (-4 *1 (-904))))) -(((*1 *2 *1) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-393)))) - ((*1 *2 *1) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1187))))) -(((*1 *2 *1) - (-12 (-5 *2 (-938 *4)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) - (-4 *4 (-1044))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) - (-4 *4 (-845)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-788)) - (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-1257)))) - ((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-1258))))) -(((*1 *1) (-5 *1 (-1261)))) -(((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-575)))) - ((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-575))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-562)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-417 *4)) (-4 *4 (-554))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-168 (-224)) (-168 (-224)))) (-5 *4 (-1086 (-224))) - (-5 *5 (-112)) (-5 *2 (-1258)) (-5 *1 (-256))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-916)) - (-5 *2 (-1256 (-639 (-2 (|:| -2533 *4) (|:| -2464 (-1112)))))) - (-5 *1 (-345 *4)) (-4 *4 (-348))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-639 (-639 *8))) (-5 *3 (-639 *8)) - (-4 *8 (-944 *5 *7 *6)) (-4 *5 (-13 (-306) (-146))) - (-4 *6 (-13 (-845) (-610 (-1168)))) (-4 *7 (-788)) (-5 *2 (-112)) - (-5 *1 (-919 *5 *6 *7 *8))))) -(((*1 *2 *3) - (-12 (-5 *3 (-639 (-1168))) (-4 *4 (-13 (-306) (-146))) - (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) - (-5 *2 (-639 (-406 (-947 *4)))) (-5 *1 (-919 *4 *5 *6 *7)) - (-4 *7 (-944 *4 *6 *5))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1256 *5)) (-4 *5 (-635 *4)) (-4 *4 (-554)) - (-5 *2 (-1256 *4)) (-5 *1 (-634 *4 *5))))) -(((*1 *2) - (-12 (-4 *3 (-1211)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) - (-5 *2 (-1256 *1)) (-4 *1 (-341 *3 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-13 (-306) (-10 -8 (-15 -3788 ((-417 $) $))))) - (-4 *4 (-1232 *3)) - (-5 *2 - (-2 (|:| -4291 (-683 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-683 *3)))) - (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-1232 (-562))) - (-5 *2 - (-2 (|:| -4291 (-683 (-562))) (|:| |basisDen| (-562)) - (|:| |basisInv| (-683 (-562))))) - (-5 *1 (-763 *3 *4)) (-4 *4 (-408 (-562) *3)))) - ((*1 *2) - (-12 (-4 *3 (-348)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 *4)) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-555)) + (-5 *2 (-767))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-555)) + (-5 *2 (-2 (|:| -2311 *4) (|:| -3490 *3) (|:| -1972 *3))) + (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *2 (-2 (|:| -3490 *1) (|:| -1972 *1))) (-4 *1 (-1059 *3 *4 *5)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-555)) (-4 *3 (-1045)) + (-5 *2 (-2 (|:| -2311 *3) (|:| -3490 *1) (|:| -1972 *1))) + (-4 *1 (-1233 *3))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *5 (-609 *4)) (-5 *6 (-1165 *4)) + (-4 *4 (-13 (-430 *7) (-27) (-1193))) + (-4 *7 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 - (-2 (|:| -4291 (-683 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-683 *4)))) - (-5 *1 (-980 *3 *4 *5 *6)) (-4 *6 (-719 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-348)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 *4)) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4315 (-640 *4)))) + (-5 *1 (-559 *7 *4 *3)) (-4 *3 (-651 *4)) (-4 *3 (-1093)))) + ((*1 *2 *3 *4 *5 *5 *5 *4 *6) + (-12 (-5 *5 (-609 *4)) (-5 *6 (-407 (-1165 *4))) + (-4 *4 (-13 (-430 *7) (-27) (-1193))) + (-4 *7 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 - (-2 (|:| -4291 (-683 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-683 *4)))) - (-5 *1 (-1265 *3 *4 *5 *6)) (-4 *6 (-408 *4 *5))))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4315 (-640 *4)))) + (-5 *1 (-559 *7 *4 *3)) (-4 *3 (-651 *4)) (-4 *3 (-1093))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *4 (-870)) + (-5 *5 (-917)) (-5 *6 (-640 (-263))) (-5 *2 (-1258)) + (-5 *1 (-1261)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *4 (-640 (-263))) + (-5 *2 (-1258)) (-5 *1 (-1261))))) +(((*1 *2 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-860 *3)) (-14 *3 (-640 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) + ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-985)))) + ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1085 *3)) (-4 *3 (-1208)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) + (-5 *2 (-1169)))) + ((*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1253 *3)) (-14 *3 *2)))) +(((*1 *1 *2) + (-12 (-4 *3 (-1045)) (-5 *1 (-823 *2 *3)) (-4 *2 (-704 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-640 (-1087 (-407 (-563))))) (-5 *1 (-263)))) + ((*1 *1 *2) (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *1 (-263))))) +(((*1 *1 *1 *1) (-4 *1 (-963)))) (((*1 *2 *3) - (-12 (-5 *3 (-683 (-315 (-224)))) + (-12 (-5 *3 (-684 (-407 (-948 (-563))))) (-5 *2 - (-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378)))) - (-5 *1 (-204))))) -(((*1 *1 *2) - (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-5 *1 (-1148 *3))))) -(((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) - (-4 *3 (-366 *4)))) - ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-639 (-562))) (-5 *1 (-1102)) (-5 *3 (-562))))) + (-640 + (-2 (|:| |radval| (-316 (-563))) (|:| |radmult| (-563)) + (|:| |radvect| (-640 (-684 (-316 (-563)))))))) + (-5 *1 (-1027))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-527)) (-5 *3 (-128)) (-5 *2 (-767))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-5 *2 (-640 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) - (-4 *2 (-13 (-429 *3) (-1192)))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1064 *4 *5 *6 *3)) (-4 *4 (-451)) (-4 *5 (-788)) - (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) - (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112))))) -(((*1 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-367)) (-4 *2 (-362)))) + (-12 (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-846) (-611 (-1169)))) + (-4 *5 (-789)) (-5 *1 (-920 *3 *4 *5 *2)) (-4 *2 (-945 *3 *5 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1257 *4)) (-4 *4 (-1208)) (-4 *1 (-238 *3 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1054)))) + ((*1 *1 *1) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) + (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)) (-4 *2 (-1054)))) + ((*1 *1 *1) (-4 *1 (-844))) + ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)) (-4 *2 (-1054)))) + ((*1 *1 *1) (-4 *1 (-1054))) ((*1 *1 *1) (-4 *1 (-1132)))) +(((*1 *1) + (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-555)) (-4 *2 (-172))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-767)) (-5 *1 (-226)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-169 (-225))) (-5 *3 (-767)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1132)))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) + (-4 *2 (-1233 *4))))) +(((*1 *1 *1) (-12 (-5 *1 (-962 *2)) (-4 *2 (-963))))) +(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186))))) +(((*1 *1) (-5 *1 (-819)))) +(((*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-3 (-407 (-948 *5)) (-1158 (-1169) (-948 *5)))) + (-4 *5 (-452)) (-5 *2 (-640 (-684 (-407 (-948 *5))))) + (-5 *1 (-292 *5)) (-5 *4 (-684 (-407 (-948 *5))))))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 + *4 *6 *4) + (-12 (-5 *4 (-563)) (-5 *5 (-684 (-225))) (-5 *6 (-670 (-225))) + (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-746))))) +(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) ((*1 *2 *3) - (-12 (-5 *3 (-916)) (-5 *2 (-1256 *4)) (-5 *1 (-527 *4)) - (-4 *4 (-348))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) - (-4 *2 (-13 (-429 *3) (-1192)))))) -(((*1 *1 *1) (-4 *1 (-1136)))) + (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-316 *4)) + (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 (-169 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3)))))) +(((*1 *1 *1) (-5 *1 (-1057)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1169)) + (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-640 (-225))) (-5 *1 (-192)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1169)) + (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-640 (-225))) (-5 *1 (-300))))) +(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1169)) (-5 *2 (-686 (-187))) (-5 *1 (-187))))) +(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) +(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) +(((*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1178))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *6)) (-5 *4 (-639 (-1148 *7))) (-4 *6 (-845)) - (-4 *7 (-944 *5 (-530 *6) *6)) (-4 *5 (-1044)) - (-5 *2 (-1 (-1148 *7) *7)) (-5 *1 (-1118 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-947 *4)) (-4 *4 (-13 (-306) (-146))) - (-4 *2 (-944 *4 *6 *5)) (-5 *1 (-919 *4 *5 *6 *2)) - (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788))))) -(((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-921))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-916)) (-5 *1 (-1093 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1044)) (-5 *1 (-443 *3 *2)) (-4 *2 (-1232 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-766)) (-5 *2 (-1164 *4)) (-5 *1 (-527 *4)) - (-4 *4 (-348))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092))))) -(((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-1164 (-947 *4))) (-5 *1 (-415 *3 *4)) - (-4 *3 (-416 *4)))) - ((*1 *2) - (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-4 *3 (-362)) - (-5 *2 (-1164 (-947 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1164 (-406 (-947 *3)))) (-5 *1 (-452 *3 *4 *5 *6)) - (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) - (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3)))))) -(((*1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1259)))) - ((*1 *2 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1259))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-1021 *2)) (-4 *2 (-1207))))) -(((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-938 (-224)) (-224))) (-5 *3 (-1086 (-224))) - (-5 *1 (-921)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-938 (-224)) (-224))) (-5 *3 (-1086 (-224))) - (-5 *1 (-921)))) - ((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-938 (-224)) (-224))) (-5 *3 (-1086 (-224))) - (-5 *1 (-922)))) + (-12 (-5 *3 (-684 (-407 (-563)))) + (-5 *2 + (-640 + (-2 (|:| |outval| *4) (|:| |outmult| (-563)) + (|:| |outvect| (-640 (-684 *4)))))) + (-5 *1 (-775 *4)) (-4 *4 (-13 (-363) (-844)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-767)) + (-4 *3 (-13 (-307) (-10 -8 (-15 -3205 ((-418 $) $))))) + (-4 *4 (-1233 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-316 *4)) + (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 (-169 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3)))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-361 (-114))) (-4 *2 (-1045)) (-5 *1 (-710 *2 *4)) + (-4 *4 (-643 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-938 (-224)) (-224))) (-5 *3 (-1086 (-224))) - (-5 *1 (-922))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) - (-5 *1 (-746))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-5 *1 (-103 *3))))) + (-12 (-5 *3 (-361 (-114))) (-5 *1 (-832 *2)) (-4 *2 (-1045))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-158 *4 *2)) + (-4 *2 (-430 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1169)))) + ((*1 *1 *1) (-4 *1 (-160)))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-114)) (-4 *4 (-1045)) (-5 *1 (-710 *4 *2)) + (-4 *2 (-643 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-832 *2)) (-4 *2 (-1045))))) (((*1 *2 *2) - (-12 (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) - (-5 *1 (-448 *3 *4 *5 *2)) (-4 *2 (-944 *3 *4 *5))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1168)) (-5 *2 (-436)) (-5 *1 (-1172))))) + (|partial| -12 (-4 *3 (-555)) (-4 *3 (-172)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *1 (-683 *3 *4 *5 *2)) + (-4 *2 (-682 *3 *4 *5))))) +(((*1 *1) (-5 *1 (-614)))) (((*1 *2) - (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) - (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) - (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1134 *3 *4)) (-14 *3 (-916)) (-4 *4 (-362)) - (-5 *1 (-988 *3 *4))))) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2742 *4))) + (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-97))))) +(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2)) + (-4 *2 (-430 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1267))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1257 *5)) (-4 *5 (-788)) (-5 *2 (-112)) + (-5 *1 (-841 *4 *5)) (-14 *4 (-767))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-939 *5)) (-4 *5 (-1045)) (-5 *2 (-767)) + (-5 *1 (-1157 *4 *5)) (-14 *4 (-917)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-640 (-767))) (-5 *3 (-767)) (-5 *1 (-1157 *4 *5)) + (-14 *4 (-917)) (-4 *5 (-1045)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-640 (-767))) (-5 *3 (-939 *5)) (-4 *5 (-1045)) + (-5 *1 (-1157 *4 *5)) (-14 *4 (-917))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-639 (-480 *4 *5))) (-5 *3 (-639 (-859 *4))) - (-14 *4 (-639 (-1168))) (-4 *5 (-451)) (-5 *1 (-470 *4 *5 *6)) - (-4 *6 (-451))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1164 *1)) (-5 *3 (-1168)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1164 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-947 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1168)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-845) (-554))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-845) (-554))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1164 *2)) (-5 *4 (-1168)) (-4 *2 (-429 *5)) - (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-845) (-554))))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1164 *1)) (-5 *3 (-916)) (-4 *1 (-1007)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1164 *1)) (-5 *3 (-916)) (-5 *4 (-857)) - (-4 *1 (-1007)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-916)) (-4 *4 (-13 (-843) (-362))) - (-4 *1 (-1061 *4 *2)) (-4 *2 (-1232 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-378)) (-5 *1 (-1035))))) + (-12 (-5 *2 (-684 *4)) (-5 *3 (-917)) (|has| *4 (-6 (-4409 "*"))) + (-4 *4 (-1045)) (-5 *1 (-1024 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-640 (-684 *4))) (-5 *3 (-917)) + (|has| *4 (-6 (-4409 "*"))) (-4 *4 (-1045)) (-5 *1 (-1024 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1096 *3 *4 *5 *6 *2)) (-4 *3 (-1093)) (-4 *4 (-1093)) + (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-1093))))) +(((*1 *1 *1) + (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-307)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1233 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-307)) (-5 *1 (-460 *3 *2)) (-4 *2 (-1233 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-307)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-767))) + (-5 *1 (-539 *3 *2 *4 *5)) (-4 *2 (-1233 *3))))) (((*1 *2 *3) - (-12 (-4 *3 (-13 (-306) (-10 -8 (-15 -3788 ((-417 $) $))))) - (-4 *4 (-1232 *3)) - (-5 *2 - (-2 (|:| -4291 (-683 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-683 *3)))) - (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-408 *3 *4)))) + (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) ((*1 *2 *3) - (-12 (-5 *3 (-562)) (-4 *4 (-1232 *3)) - (-5 *2 - (-2 (|:| -4291 (-683 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-683 *3)))) - (-5 *1 (-763 *4 *5)) (-4 *5 (-408 *3 *4)))) + (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-300)))) ((*1 *2 *3) - (-12 (-4 *4 (-348)) (-4 *3 (-1232 *4)) (-4 *5 (-1232 *3)) + (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-305))))) +(((*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1257 (-316 (-225)))) (-5 *2 - (-2 (|:| -4291 (-683 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-683 *3)))) - (-5 *1 (-980 *4 *3 *5 *6)) (-4 *6 (-719 *3 *5)))) + (-2 (|:| |additions| (-563)) (|:| |multiplications| (-563)) + (|:| |exponentiations| (-563)) (|:| |functionCalls| (-563)))) + (-5 *1 (-305))))) +(((*1 *2 *3) (-12 (-5 *3 (-169 (-563))) (-5 *2 (-112)) (-5 *1 (-446)))) ((*1 *2 *3) - (-12 (-4 *4 (-348)) (-4 *3 (-1232 *4)) (-4 *5 (-1232 *3)) - (-5 *2 - (-2 (|:| -4291 (-683 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-683 *3)))) - (-5 *1 (-1265 *4 *3 *5 *6)) (-4 *6 (-408 *3 *5))))) + (-12 + (-5 *3 + (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4) + (-247 *4 (-407 (-563))))) + (-14 *4 (-640 (-1169))) (-14 *5 (-767)) (-5 *2 (-112)) + (-5 *1 (-505 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-957 *3)) (-4 *3 (-545)))) + ((*1 *2 *1) (-12 (-4 *1 (-1212)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) + (-5 *1 (-176 *3))))) (((*1 *2 *3) - (-12 (-4 *1 (-834)) + (-12 (-5 *3 - (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) - (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) - (|:| |ub| (-639 (-838 (-224)))))) - (-5 *2 (-1030)))) + (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))) + (-5 *2 (-379)) (-5 *1 (-267)))) ((*1 *2 *3) - (-12 (-4 *1 (-834)) - (-5 *3 - (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))) - (-5 *2 (-1030))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-1256 - (-2 (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) - (|:| |deltaX| (-224)) (|:| |deltaY| (-224)) (|:| -1358 (-562)) - (|:| -2370 (-562)) (|:| |spline| (-562)) (|:| -2041 (-562)) - (|:| |axesColor| (-869)) (|:| -3426 (-562)) - (|:| |unitsColor| (-869)) (|:| |showing| (-562))))) - (-5 *1 (-1257))))) -(((*1 *2 *1) - (-12 (-5 *2 (-639 (-2 (|:| |k| (-1168)) (|:| |c| (-1278 *3))))) - (-5 *1 (-1278 *3)) (-4 *3 (-1044)))) - ((*1 *2 *1) - (-12 (-5 *2 (-639 (-2 (|:| |k| *3) (|:| |c| (-1280 *3 *4))))) - (-5 *1 (-1280 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1164 *1)) (-4 *1 (-451)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1164 *6)) (-4 *6 (-944 *5 *3 *4)) (-4 *3 (-788)) - (-4 *4 (-845)) (-4 *5 (-904)) (-5 *1 (-456 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1164 *1)) (-4 *1 (-904))))) -(((*1 *2 *3 *2 *3) - (-12 (-5 *2 (-436)) (-5 *3 (-1168)) (-5 *1 (-1171)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-436)) (-5 *3 (-1168)) (-5 *1 (-1171)))) - ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-436)) (-5 *3 (-639 (-1168))) (-5 *4 (-1168)) - (-5 *1 (-1171)))) - ((*1 *2 *3 *2 *3 *1) - (-12 (-5 *2 (-436)) (-5 *3 (-1168)) (-5 *1 (-1171)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-436)) (-5 *3 (-1168)) (-5 *1 (-1172)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-436)) (-5 *3 (-639 (-1168))) (-5 *1 (-1172))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1232 *6)) - (-4 *6 (-13 (-362) (-146) (-1033 *4))) (-5 *4 (-562)) - (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) - (|:| -3339 - (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) - (|:| |beta| *3))))) - (-5 *1 (-1010 *6 *3))))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-562)) - (-5 *6 - (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4336 (-378)))) - (-5 *7 (-1 (-1261) (-1256 *5) (-1256 *5) (-378))) - (-5 *3 (-1256 (-378))) (-5 *5 (-378)) (-5 *2 (-1261)) - (-5 *1 (-783)))) - ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-562)) - (-5 *6 - (-2 (|:| |try| (-378)) (|:| |did| (-378)) (|:| -4336 (-378)))) - (-5 *7 (-1 (-1261) (-1256 *5) (-1256 *5) (-378))) - (-5 *3 (-1256 (-378))) (-5 *5 (-378)) (-5 *2 (-1261)) - (-5 *1 (-783))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-766) *2)) (-5 *4 (-766)) (-4 *2 (-1092)) - (-5 *1 (-672 *2)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1 *3 (-766) *3)) (-4 *3 (-1092)) (-5 *1 (-676 *3))))) + (-12 (-5 *3 (-1257 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-305))))) +(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1178))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1247 *4)) - (-4 *4 (-38 (-406 (-562)))) (-5 *2 (-1 (-1148 *4) (-1148 *4))) - (-5 *1 (-1249 *4 *5))))) + (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) + (-4 *6 (-789)) (-5 *2 (-407 (-948 *4))) (-5 *1 (-920 *4 *5 *6 *3)) + (-4 *3 (-945 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-684 *7)) (-4 *7 (-945 *4 *6 *5)) + (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) + (-4 *6 (-789)) (-5 *2 (-684 (-407 (-948 *4)))) + (-5 *1 (-920 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 *7)) (-4 *7 (-945 *4 *6 *5)) + (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) + (-4 *6 (-789)) (-5 *2 (-640 (-407 (-948 *4)))) + (-5 *1 (-920 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-767)) (-4 *5 (-363)) (-5 *2 (-174 *6)) + (-5 *1 (-863 *5 *4 *6)) (-4 *4 (-1248 *5)) (-4 *6 (-1233 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1168)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-696 *4 *5 *6 *7)) - (-4 *4 (-610 (-535))) (-4 *5 (-1207)) (-4 *6 (-1207)) - (-4 *7 (-1207))))) -(((*1 *2 *3) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-559)) (-5 *3 (-562))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-204)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-639 (-378))) (-5 *2 (-378)) (-5 *1 (-204))))) -(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-240)))) + (-12 (-5 *3 (-640 *4)) (-4 *4 (-844)) (-4 *4 (-363)) (-5 *2 (-767)) + (-5 *1 (-941 *4 *5)) (-4 *5 (-1233 *4))))) +(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) + (-12 (-5 *4 (-563)) (-5 *5 (-684 (-225))) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3191)))) (-5 *3 (-225)) + (-5 *2 (-1031)) (-5 *1 (-744))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-640 (-563))) (-5 *3 (-684 (-563))) (-5 *1 (-1103))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-330))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-1045))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-117 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-563)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-867 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-867 *2)) (-14 *2 (-563)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-563)) (-14 *3 *2) (-5 *1 (-868 *3 *4)) + (-4 *4 (-865 *3)))) + ((*1 *1 *1) + (-12 (-14 *2 (-563)) (-5 *1 (-868 *2 *3)) (-4 *3 (-865 *2)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-563)) (-4 *1 (-1219 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-1248 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1219 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1248 *2))))) +(((*1 *2 *3) + (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1212)) (-4 *3 (-1233 *4)) + (-4 *5 (-1233 (-407 *3))) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *3 (-639 (-1150))) (-5 *2 (-1261)) (-5 *1 (-240))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) - (-5 *1 (-751))))) -(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-535))))) -(((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-693)))) - ((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-693))))) -(((*1 *2 *1) (-12 (-4 *1 (-526)) (-5 *2 (-685 (-1213)))))) -(((*1 *2) - (-12 - (-5 *2 (-2 (|:| -3979 (-639 (-1168))) (|:| -3665 (-639 (-1168))))) - (-5 *1 (-1209))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4404)) (-4 *1 (-243 *2)) (-4 *2 (-1207)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1207)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-281 *2)) (-4 *2 (-1207)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4404)) (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4404)) (-4 *1 (-1244 *2)) (-4 *2 (-1207))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-639 (-1168))) (-4 *4 (-1092)) - (-4 *5 (-13 (-1044) (-881 *4) (-845) (-610 (-887 *4)))) - (-5 *1 (-1068 *4 *5 *2)) - (-4 *2 (-13 (-429 *5) (-881 *4) (-610 (-887 *4)))))) - ((*1 *1 *2 *2) - (-12 (-4 *3 (-1092)) - (-4 *4 (-13 (-1044) (-881 *3) (-845) (-610 (-887 *3)))) - (-5 *1 (-1068 *3 *4 *2)) - (-4 *2 (-13 (-429 *4) (-881 *3) (-610 (-887 *3))))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-756)))) -(((*1 *2 *3) - (-12 (-5 *3 (-639 (-1168))) (-5 *2 (-1261)) (-5 *1 (-1209)))) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) + (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-555) (-147))) + (-5 *2 (-2 (|:| -1686 *3) (|:| -1701 *3))) (-5 *1 (-1227 *4 *3)) + (-4 *3 (-1233 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-640 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1093))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1193)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3490 *1) (|:| -1972 *1))) (-4 *1 (-307)))) + ((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |rm| (-386 *3)))) + (-5 *1 (-386 *3)) (-4 *3 (-1093)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3490 (-767)) (|:| -1972 (-767)))) + (-5 *1 (-767)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-639 (-1168))) (-5 *2 (-1261)) (-5 *1 (-1209))))) -(((*1 *1 *1) (-5 *1 (-224))) - ((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) - ((*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) - (-4 *2 (-429 *3)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) - (-4 *2 (-429 *3)))) - ((*1 *1 *1) (-4 *1 (-1131))) ((*1 *1 *1 *1) (-4 *1 (-1131)))) -(((*1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-156)))) - ((*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) - (-4 *3 (-1058 *6 *7 *8)) - (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1501 *4)))) - (-5 *1 (-1065 *6 *7 *8 *3 *4)) (-4 *4 (-1064 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-639 (-2 (|:| |val| (-639 *8)) (|:| -1501 *9)))) - (-5 *5 (-112)) (-4 *8 (-1058 *6 *7 *4)) (-4 *9 (-1064 *6 *7 *4 *8)) - (-4 *6 (-451)) (-4 *7 (-788)) (-4 *4 (-845)) - (-5 *2 (-639 (-2 (|:| |val| *8) (|:| -1501 *9)))) - (-5 *1 (-1065 *6 *7 *4 *8 *9))))) + (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| -3490 *3) (|:| -1972 *3))) + (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1093)) (-5 *1 (-901 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-684 *2)) (-5 *4 (-767)) + (-4 *2 (-13 (-307) (-10 -8 (-15 -3205 ((-418 $) $))))) + (-4 *5 (-1233 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-545)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-766)) (-5 *2 (-112)) (-5 *1 (-584 *3)) (-4 *3 (-544))))) -(((*1 *1 *1) - (-12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-787)) - (-4 *2 (-451)))) - ((*1 *1 *1) - (-12 (-4 *1 (-341 *2 *3 *4)) (-4 *2 (-1211)) (-4 *3 (-1232 *2)) - (-4 *4 (-1232 (-406 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-451)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-944 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *2 (-845)) (-4 *3 (-451)))) + (-12 (-5 *3 (-640 (-407 (-948 *5)))) (-5 *4 (-640 (-1169))) + (-4 *5 (-555)) (-5 *2 (-640 (-640 (-948 *5)))) (-5 *1 (-1177 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1151)) (-5 *1 (-305))))) +(((*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-1083))))) +(((*1 *1 *1) (-5 *1 (-48))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1208)) + (-4 *2 (-1208)) (-5 *1 (-58 *5 *2)))) + ((*1 *2 *3 *1 *2 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1093)) (|has| *1 (-6 -4407)) + (-4 *1 (-151 *2)) (-4 *2 (-1208)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4407)) (-4 *1 (-151 *2)) + (-4 *2 (-1208)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4407)) (-4 *1 (-151 *2)) + (-4 *2 (-1208)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1045)) + (-5 *2 (-2 (|:| -1574 (-1165 *4)) (|:| |deg| (-917)))) + (-5 *1 (-221 *4 *5)) (-5 *3 (-1165 *4)) (-4 *5 (-13 (-555) (-846))))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-767)) + (-4 *6 (-1208)) (-4 *2 (-1208)) (-5 *1 (-239 *5 *6 *2)))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-172)) (-5 *1 (-289 *4 *2 *3 *5 *6 *7)) + (-4 *2 (-1233 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-316 *2)) (-4 *2 (-555)) (-4 *2 (-846)))) ((*1 *1 *1) - (-12 (-4 *1 (-944 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) - (-4 *4 (-845)) (-4 *2 (-451)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-306)) (-4 *3 (-554)) (-5 *1 (-1155 *3 *2)) - (-4 *2 (-1232 *3))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 - *7 *3 *8) - (-12 (-5 *5 (-683 (-224))) (-5 *6 (-112)) (-5 *7 (-683 (-562))) - (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-65 QPHESS)))) - (-5 *3 (-562)) (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-748))))) -(((*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-356 *3)) (-4 *3 (-348))))) + (-12 (-4 *1 (-335 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *3 (-1233 *2)) + (-4 *4 (-1233 (-407 *3))) (-4 *5 (-342 *2 *3 *4)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1208)) (-4 *2 (-1208)) + (-5 *1 (-371 *5 *4 *2 *6)) (-4 *4 (-373 *5)) (-4 *6 (-373 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1093)) (-4 *2 (-1093)) + (-5 *1 (-423 *5 *4 *2 *6)) (-4 *4 (-425 *5)) (-4 *6 (-425 *2)))) + ((*1 *1 *1) (-5 *1 (-495))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-640 *5)) (-4 *5 (-1208)) + (-4 *2 (-1208)) (-5 *1 (-638 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1045)) (-4 *2 (-1045)) + (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *8 (-373 *2)) + (-4 *9 (-373 *2)) (-5 *1 (-680 *5 *6 *7 *4 *2 *8 *9 *10)) + (-4 *4 (-682 *5 *6 *7)) (-4 *10 (-682 *2 *8 *9)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1045)) (-5 *1 (-708 *3 *2)) (-4 *2 (-1233 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1233 *3)) (-4 *3 (-363)) + (-4 *3 (-172)) (-4 *1 (-720 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-172)) (-4 *1 (-720 *3 *2)) (-4 *2 (-1233 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-954 *5)) (-4 *5 (-1208)) + (-4 *2 (-1208)) (-5 *1 (-953 *5 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *2 (-945 *3 *4 *5)) + (-14 *6 (-640 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1045)) (-4 *2 (-1045)) + (-14 *5 (-767)) (-14 *6 (-767)) (-4 *8 (-238 *6 *7)) + (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) + (-5 *1 (-1050 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-1048 *5 *6 *7 *8 *9)) (-4 *12 (-1048 *5 *6 *2 *10 *11)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1149 *5)) (-4 *5 (-1208)) + (-4 *2 (-1208)) (-5 *1 (-1147 *5 *2)))) + ((*1 *2 *2 *1 *3 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) + (-4 *1 (-1201 *5 *6 *7 *2)) (-4 *5 (-555)) (-4 *6 (-789)) + (-4 *7 (-846)) (-4 *2 (-1059 *5 *6 *7)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1257 *5)) (-4 *5 (-1208)) + (-4 *2 (-1208)) (-5 *1 (-1256 *5 *2))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1165 *9)) (-5 *4 (-640 *7)) (-4 *7 (-846)) + (-4 *9 (-945 *8 *6 *7)) (-4 *6 (-789)) (-4 *8 (-307)) + (-5 *2 (-640 (-767))) (-5 *1 (-738 *6 *7 *8 *9)) (-5 *5 (-767))))) +(((*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-267))))) (((*1 *2 *2) - (-12 (-5 *2 (-1256 *1)) (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) - (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4)))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-293 *2)) (-4 *2 (-721)) (-4 *2 (-1207))))) + (-12 (-4 *3 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1169)) + (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4))))) + ((*1 *1 *1) (-5 *1 (-379))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2059 *4)))) + (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-407 (-563))) (-4 *1 (-553 *3)) + (-4 *3 (-13 (-404) (-1193))))) + ((*1 *1 *2) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193)))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) + (-5 *1 (-747))))) +(((*1 *2 *3) + (-12 (-5 *3 (-294 (-948 (-563)))) + (-5 *2 + (-2 (|:| |varOrder| (-640 (-1169))) + (|:| |inhom| (-3 (-640 (-1257 (-767))) "failed")) + (|:| |hom| (-640 (-1257 (-767)))))) + (-5 *1 (-236))))) (((*1 *2 *1) - (-12 (-5 *2 (-639 (-639 (-938 (-224))))) (-5 *1 (-1202 *3)) - (-4 *3 (-969))))) -(((*1 *1 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-845)) (-4 *3 (-171)))) - ((*1 *1 *1) - (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-845)) - (-4 *3 (-13 (-171) (-712 (-406 (-562))))) (-14 *4 (-916)))) - ((*1 *1 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-845)))) - ((*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1113 *2)) (-4 *2 (-1207))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) - (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) - (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1164 *2)) (-4 *2 (-944 (-406 (-947 *6)) *5 *4)) - (-5 *1 (-727 *5 *4 *6 *2)) (-4 *5 (-788)) - (-4 *4 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $))))) - (-4 *6 (-554))))) + (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *5 (-368)) + (-5 *2 (-767))))) (((*1 *2 *1) - (-12 (-5 *2 (-1148 (-406 *3))) (-5 *1 (-173 *3)) (-4 *3 (-306))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1208 *3)) (-4 *3 (-1092))))) -(((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1150)) (-5 *3 (-562)) (-5 *1 (-1056))))) + (-12 (-5 *2 (-1165 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) + (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3)))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-555)) (-4 *2 (-172))))) (((*1 *2 *2) - (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) - (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857))))) -(((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-5 *1 (-732 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-732 *2)) (-4 *2 (-1092)))) - ((*1 *1) (-12 (-5 *1 (-732 *2)) (-4 *2 (-1092))))) -(((*1 *2 *1) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-216)))) - ((*1 *2 *1) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-486)))) - ((*1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554)) (-4 *2 (-306)))) + (-12 + (-5 *2 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) + (|:| |xpnt| (-563)))) + (-4 *4 (-13 (-1233 *3) (-555) (-10 -8 (-15 -3548 ($ $ $))))) + (-4 *3 (-555)) (-5 *1 (-1236 *3 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-609 *6)) (-4 *6 (-13 (-430 *5) (-27) (-1193))) + (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) + (-5 *2 (-1165 (-407 (-1165 *6)))) (-5 *1 (-559 *5 *6 *7)) + (-5 *3 (-1165 *6)) (-4 *7 (-1093)))) ((*1 *2 *1) - (-12 (-5 *2 (-406 (-562))) (-5 *1 (-999 *3)) (-14 *3 (-562)))) - ((*1 *1 *1) (-4 *1 (-1053)))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) - (-5 *2 (-1030)) (-5 *1 (-746))))) -(((*1 *2 *2) (-12 (-5 *2 (-639 (-683 (-315 (-562))))) (-5 *1 (-1026))))) -(((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-326 *3)) (-4 *3 (-1207)))) + (-12 (-4 *2 (-1233 *3)) (-5 *1 (-708 *3 *2)) (-4 *3 (-1045)))) + ((*1 *2 *1) + (-12 (-4 *1 (-720 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1233 *3)))) + ((*1 *2 *3 *4 *4 *5 *6 *7 *8) + (|partial| -12 (-5 *4 (-1165 *11)) (-5 *6 (-640 *10)) + (-5 *7 (-640 (-767))) (-5 *8 (-640 *11)) (-4 *10 (-846)) + (-4 *11 (-307)) (-4 *9 (-789)) (-4 *5 (-945 *11 *9 *10)) + (-5 *2 (-640 (-1165 *5))) (-5 *1 (-738 *9 *10 *11 *5)) + (-5 *3 (-1165 *5)))) ((*1 *2 *1) - (-12 (-5 *2 (-766)) (-5 *1 (-515 *3 *4)) (-4 *3 (-1207)) - (-14 *4 (-562))))) + (-12 (-4 *2 (-945 *3 *4 *5)) (-5 *1 (-1030 *3 *4 *5 *2 *6)) + (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-14 *6 (-640 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1151)) (-5 *2 (-640 (-1174))) (-5 *1 (-1129))))) +(((*1 *2 *2 *2 *2 *3) + (-12 (-4 *3 (-555)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1233 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *3 (-640 (-263))) + (-5 *1 (-261)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *1 (-263)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-640 (-481 *5 *6))) (-5 *3 (-481 *5 *6)) + (-14 *5 (-640 (-1169))) (-4 *6 (-452)) (-5 *2 (-1257 *6)) + (-5 *1 (-628 *5 *6))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-114))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-418 *2)) (-4 *2 (-555))))) +(((*1 *1) (-5 *1 (-55)))) +(((*1 *2) + (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-417 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *6 (-554)) (-4 *2 (-944 *3 *5 *4)) - (-5 *1 (-727 *5 *4 *6 *2)) (-5 *3 (-406 (-947 *6))) (-4 *5 (-788)) - (-4 *4 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $)))))))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *4 (-224)) - (-5 *2 (-1030)) (-5 *1 (-750))))) + (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-307)) (-5 *2 (-418 *3)) + (-5 *1 (-738 *5 *4 *6 *3)) (-4 *3 (-945 *6 *5 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) - (-5 *2 (-639 (-947 *4))))) - ((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-639 (-947 *4))) (-5 *1 (-415 *3 *4)) - (-4 *3 (-416 *4)))) - ((*1 *2) - (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-639 (-947 *3))))) - ((*1 *2) - (-12 (-5 *2 (-639 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) - (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) - (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3))))) + (-12 (-5 *2 (-418 (-1165 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1165 *1)) + (-4 *4 (-452)) (-4 *4 (-555)) (-4 *4 (-846)))) ((*1 *2 *3) - (-12 (-5 *3 (-1256 (-452 *4 *5 *6 *7))) (-5 *2 (-639 (-947 *4))) - (-5 *1 (-452 *4 *5 *6 *7)) (-4 *4 (-554)) (-4 *4 (-171)) - (-14 *5 (-916)) (-14 *6 (-639 (-1168))) (-14 *7 (-1256 (-683 *4)))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-1150)) (-5 *5 (-683 (-224))) - (-5 *2 (-1030)) (-5 *1 (-742))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433))))) -(((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1171))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-676 *3)) (-4 *3 (-1092))))) -(((*1 *2 *1) (-12 (-5 *2 (-1148 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306))))) + (-12 (-4 *1 (-905)) (-5 *2 (-418 (-1165 *1))) (-5 *3 (-1165 *1))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-640 (-1169))) (-4 *4 (-1093)) + (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4)))) + (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-430 *5) (-882 *4) (-611 (-888 *4))))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-640 *3)) (-4 *3 (-945 *4 *6 *5)) (-4 *4 (-452)) + (-4 *5 (-846)) (-4 *6 (-789)) (-5 *1 (-983 *4 *5 *6 *3))))) +(((*1 *1 *1) (-4 *1 (-1054))) + ((*1 *1 *1 *2 *2) + (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1208)) (-5 *1 (-1125 *4 *2)) + (-4 *2 (-13 (-601 (-563) *4) (-10 -7 (-6 -4407) (-6 -4408)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-846)) (-4 *3 (-1208)) (-5 *1 (-1125 *3 *2)) + (-4 *2 (-13 (-601 (-563) *3) (-10 -7 (-6 -4407) (-6 -4408))))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-1259)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259))))) (((*1 *2 *3) - (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) - ((*1 *2) (-12 (-5 *2 (-899 (-562))) (-5 *1 (-912))))) + (|partial| -12 (-5 *2 (-563)) (-5 *1 (-1190 *3)) (-4 *3 (-1045))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-885 *4 *5)) (-5 *3 (-885 *4 *6)) (-4 *4 (-1093)) + (-4 *5 (-1093)) (-4 *6 (-661 *5)) (-5 *1 (-881 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-315 (-224))) (-5 *2 (-406 (-562))) (-5 *1 (-304))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-562)) (-4 *1 (-1216 *4)) (-4 *4 (-1044)) (-4 *4 (-554)) - (-5 *2 (-406 (-947 *4))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-562)) (-4 *1 (-1216 *4)) (-4 *4 (-1044)) (-4 *4 (-554)) - (-5 *2 (-406 (-947 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) + (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-1149 (-225))) (-5 *1 (-192)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-316 (-225))) (-5 *4 (-640 (-1169))) + (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-1149 (-225))) (-5 *1 (-300)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1257 (-316 (-225)))) (-5 *4 (-640 (-1169))) + (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-1149 (-225))) (-5 *1 (-300))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-316 *3)) (-4 *3 (-555)) (-4 *3 (-846))))) (((*1 *2 *3) - (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) - ((*1 *2) (-12 (-5 *2 (-899 (-562))) (-5 *1 (-912))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1164 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3))))) -(((*1 *1 *1) - (-12 (-4 *2 (-362)) (-4 *3 (-788)) (-4 *4 (-845)) - (-5 *1 (-503 *2 *3 *4 *5)) (-4 *5 (-944 *2 *3 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-916)) (-5 *1 (-1027 *2)) - (-4 *2 (-13 (-1092) (-10 -8 (-15 * ($ $ $)))))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-639 (-639 (-938 (-224))))) (-5 *3 (-639 (-869))) - (-5 *1 (-467))))) -(((*1 *2 *2) + (|partial| -12 (-5 *3 (-609 *4)) (-4 *4 (-846)) (-4 *2 (-846)) + (-5 *1 (-608 *2 *4))))) +(((*1 *2 *1) (-12 (-5 *2 - (-982 (-406 (-562)) (-859 *3) (-239 *4 (-766)) - (-246 *3 (-406 (-562))))) - (-14 *3 (-639 (-1168))) (-14 *4 (-766)) (-5 *1 (-981 *3 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1256 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362)) - (-4 *1 (-719 *5 *6)) (-4 *5 (-171)) (-4 *6 (-1232 *5)) - (-5 *2 (-683 *5))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1256 *5)) (-5 *3 (-766)) (-5 *4 (-1112)) (-4 *5 (-348)) - (-5 *1 (-527 *5))))) + (-3 (|:| |nullBranch| "null") + (|:| |assignmentBranch| + (-2 (|:| |var| (-1169)) + (|:| |arrayIndex| (-640 (-948 (-563)))) + (|:| |rand| + (-2 (|:| |ints2Floats?| (-112)) (|:| -2474 (-858)))))) + (|:| |arrayAssignmentBranch| + (-2 (|:| |var| (-1169)) (|:| |rand| (-858)) + (|:| |ints2Floats?| (-112)))) + (|:| |conditionalBranch| + (-2 (|:| |switch| (-1168)) (|:| |thenClause| (-330)) + (|:| |elseClause| (-330)))) + (|:| |returnBranch| + (-2 (|:| -3756 (-112)) + (|:| -2619 + (-2 (|:| |ints2Floats?| (-112)) (|:| -2474 (-858)))))) + (|:| |blockBranch| (-640 (-330))) + (|:| |commentBranch| (-640 (-1151))) (|:| |callBranch| (-1151)) + (|:| |forBranch| + (-2 (|:| -2516 (-1085 (-948 (-563)))) + (|:| |span| (-948 (-563))) (|:| -3359 (-330)))) + (|:| |labelBranch| (-1113)) + (|:| |loopBranch| (-2 (|:| |switch| (-1168)) (|:| -3359 (-330)))) + (|:| |commonBranch| + (-2 (|:| -3348 (-1169)) (|:| |contents| (-640 (-1169))))) + (|:| |printBranch| (-640 (-858))))) + (-5 *1 (-330))))) +(((*1 *2 *1) + (-12 (-4 *1 (-601 *2 *3)) (-4 *3 (-1208)) (-4 *2 (-1093)) + (-4 *2 (-846))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1097)) (-5 *1 (-280))))) +(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1172)))) + ((*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172))))) +(((*1 *1 *1) (|partial| -4 *1 (-1144)))) +(((*1 *1 *1) (-5 *1 (-1057)))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) + (-12 (-5 *6 (-640 (-112))) (-5 *7 (-684 (-225))) + (-5 *8 (-684 (-563))) (-5 *3 (-563)) (-5 *4 (-225)) (-5 *5 (-112)) + (-5 *2 (-1031)) (-5 *1 (-750))))) +(((*1 *2 *1) + (-12 (-4 *2 (-704 *3)) (-5 *1 (-823 *2 *3)) (-4 *3 (-1045))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1151)) (-4 *1 (-389))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-430 *3) (-998))) (-5 *1 (-276 *3 *2)) + (-4 *3 (-13 (-846) (-555)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-684 *4)) (-5 *3 (-917)) (-4 *4 (-1045)) + (-5 *1 (-1024 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-640 (-684 *4))) (-5 *3 (-917)) (-4 *4 (-1045)) + (-5 *1 (-1024 *4))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1045)) + (-4 *2 (-1217 *3))))) +(((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1208))))) +(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870))))) +(((*1 *1 *1 *1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *2 (-555))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1031)) + (-5 *1 (-742))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1280 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842))))) (((*1 *2 *2) - (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) - (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-972 *3 *4 *5 *6))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1132 *3 *2)) (-4 *3 (-13 (-1092) (-34))) - (-4 *2 (-13 (-1092) (-34)))))) + (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) + (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-449 *3 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1232 *6)) - (-4 *6 (-13 (-27) (-429 *5))) - (-4 *5 (-13 (-845) (-554) (-1033 (-562)))) (-4 *8 (-1232 (-406 *7))) - (-5 *2 (-583 *3)) (-5 *1 (-550 *5 *6 *7 *8 *3)) - (-4 *3 (-341 *6 *7 *8))))) -(((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-922))))) -(((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-853)))) - ((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-960)))) - ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-984)))) - ((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1207)))) + (-12 (-5 *4 (-1 (-640 *5) *6)) + (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *6 (-1233 *5)) + (-5 *2 (-640 (-2 (|:| |poly| *6) (|:| -1420 *3)))) + (-5 *1 (-805 *5 *6 *3 *7)) (-4 *3 (-651 *6)) + (-4 *7 (-651 (-407 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-640 *5) *6)) + (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) + (-4 *6 (-1233 *5)) + (-5 *2 (-640 (-2 (|:| |poly| *6) (|:| -1420 (-649 *6 (-407 *6)))))) + (-5 *1 (-808 *5 *6)) (-5 *3 (-649 *6 (-407 *6)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-767)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1092) (-34))) (-5 *1 (-1132 *2 *3)) - (-4 *3 (-13 (-1092) (-34)))))) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-767))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 *2)) (-4 *2 (-13 (-29 *4) (-1192))) - (-5 *1 (-581 *4 *2)) - (-4 *4 (-13 (-451) (-1033 (-562)) (-845) (-635 (-562)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 (-406 (-947 *4)))) - (-4 *4 (-13 (-451) (-1033 (-562)) (-845) (-635 (-562)))) - (-5 *2 (-315 *4)) (-5 *1 (-586 *4))))) -(((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) - (-4 *3 (-366 *4)))) - ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) + (-12 (-5 *3 (-1169)) (-5 *2 (-1 *6 *5)) (-5 *1 (-702 *4 *5 *6)) + (-4 *4 (-611 (-536))) (-4 *5 (-1208)) (-4 *6 (-1208))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-171)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-817))))) +(((*1 *2 *1) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-468)))) + ((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-1258)))) + ((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-1259))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-789)) + (-4 *3 (-13 (-846) (-10 -8 (-15 -2220 ((-1169) $))))) (-4 *5 (-555)) + (-5 *1 (-728 *4 *3 *5 *2)) (-4 *2 (-945 (-407 (-948 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1045)) (-4 *5 (-789)) + (-4 *3 + (-13 (-846) + (-10 -8 (-15 -2220 ((-1169) $)) + (-15 -2518 ((-3 $ "failed") (-1169)))))) + (-5 *1 (-980 *4 *5 *3 *2)) (-4 *2 (-945 (-948 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-640 *6)) + (-4 *6 + (-13 (-846) + (-10 -8 (-15 -2220 ((-1169) $)) + (-15 -2518 ((-3 $ "failed") (-1169)))))) + (-4 *4 (-1045)) (-4 *5 (-789)) (-5 *1 (-980 *4 *5 *6 *2)) + (-4 *2 (-945 (-948 *4) *5 *6))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-452)) (-4 *4 (-555)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -4354 *4))) (-5 *1 (-965 *4 *3)) + (-4 *3 (-1233 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-917)) (-5 *1 (-782))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-916)) (-5 *1 (-1025 *2)) - (-4 *2 (-13 (-1092) (-10 -8 (-15 -1836 ($ $ $)))))))) + (-12 (-5 *2 (-1151)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) + ((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-263))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-1093)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1093)) (-5 *2 (-112)) + (-5 *1 (-1209 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-767)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-767))))) +(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172))))) +(((*1 *1 *2 *3 *1) + (-12 (-14 *4 (-640 (-1169))) (-4 *2 (-172)) + (-4 *3 (-238 (-3608 *4) (-767))) + (-14 *6 + (-1 (-112) (-2 (|:| -2555 *5) (|:| -1654 *3)) + (-2 (|:| -2555 *5) (|:| -1654 *3)))) + (-5 *1 (-461 *4 *2 *5 *3 *6 *7)) (-4 *5 (-846)) + (-4 *7 (-945 *2 *3 (-860 *4)))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1208)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1151)) (-5 *1 (-985)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1169)) (-5 *3 (-1087 *4)) (-4 *4 (-1208)) + (-5 *1 (-1085 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1036)) (-5 *3 (-379))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1169)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-697 *3 *5 *6 *7)) + (-4 *3 (-611 (-536))) (-4 *5 (-1208)) (-4 *6 (-1208)) + (-4 *7 (-1208)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1169)) (-5 *2 (-1 *6 *5)) (-5 *1 (-702 *3 *5 *6)) + (-4 *3 (-611 (-536))) (-4 *5 (-1208)) (-4 *6 (-1208))))) +(((*1 *2 *1) + (-12 (-5 *2 (-640 (-2 (|:| |k| (-667 *3)) (|:| |c| *4)))) + (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) + (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917))))) (((*1 *2 *3) - (-12 (-5 *3 (-480 *4 *5)) (-14 *4 (-639 (-1168))) (-4 *5 (-1044)) - (-5 *2 (-246 *4 *5)) (-5 *1 (-939 *4 *5))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) - (-5 *1 (-747))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-639 (-608 *5))) (-5 *3 (-1168)) (-4 *5 (-429 *4)) - (-4 *4 (-845)) (-5 *1 (-571 *4 *5))))) + (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-4 *5 (-430 *4)) + (-5 *2 + (-3 (|:| |overq| (-1165 (-407 (-563)))) + (|:| |overan| (-1165 (-48))) (|:| -4244 (-112)))) + (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1233 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *7)) (-4 *7 (-845)) (-4 *5 (-904)) (-4 *6 (-788)) - (-4 *8 (-944 *5 *6 *7)) (-5 *2 (-417 (-1164 *8))) - (-5 *1 (-901 *5 *6 *7 *8)) (-5 *4 (-1164 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-904)) (-4 *5 (-1232 *4)) (-5 *2 (-417 (-1164 *5))) - (-5 *1 (-902 *4 *5)) (-5 *3 (-1164 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1168)) - (-4 *6 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) - (-4 *4 (-13 (-29 *6) (-1192) (-954))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -4291 (-639 *4)))) - (-5 *1 (-796 *6 *4 *3)) (-4 *3 (-650 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-676 *2)) (-4 *2 (-1092)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-639 *5) (-639 *5))) (-5 *4 (-562)) - (-5 *2 (-639 *5)) (-5 *1 (-676 *5)) (-4 *5 (-1092))))) -(((*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-962))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -1603 *7) (|:| |sol?| (-112))) - (-562) *7)) - (-5 *6 (-639 (-406 *8))) (-4 *7 (-362)) (-4 *8 (-1232 *7)) - (-5 *3 (-406 *8)) + (|partial| -12 (-5 *4 (-640 (-407 *6))) (-5 *3 (-407 *6)) + (-4 *6 (-1233 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)))) (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-572 *7 *8))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-224) (-224) (-224) (-224))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224) (-224))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-224) (-224))) (-5 *1 (-262))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-916)) (-5 *2 (-467)) (-5 *1 (-1257))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-362)) (-5 *1 (-761 *2 *3)) (-4 *2 (-703 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-362)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) - (-5 *1 (-503 *4 *5 *6 *3)) (-4 *3 (-944 *4 *5 *6))))) + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-567 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-128))))) +(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) + ((*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1208)) (-5 *2 (-767))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-639 *3)) (-4 *3 (-1232 *5)) (-4 *5 (-306)) - (-5 *2 (-766)) (-5 *1 (-454 *5 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) - (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) - (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-639 *7)) (-4 *7 (-944 *4 *5 *6)) (-4 *4 (-451)) - (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-1261)) - (-5 *1 (-448 *4 *5 *6 *7))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-329))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-562)) (-4 *3 (-171)) (-4 *5 (-372 *3)) - (-4 *6 (-372 *3)) (-5 *1 (-682 *3 *5 *6 *2)) - (-4 *2 (-681 *3 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) - (-4 *2 (-429 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-639 (-329))) (-5 *1 (-329))))) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-563)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1208)) + (-4 *5 (-373 *4)) (-4 *2 (-373 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-563)) (-4 *1 (-1048 *4 *5 *6 *2 *7)) (-4 *6 (-1045)) + (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6))))) +(((*1 *1) (-5 *1 (-819)))) +(((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1165 *4)) (-4 *4 (-349)) (-5 *2 (-112)) + (-5 *1 (-357 *4))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-643 *3 *4 *5)) (-4 *3 (-1092)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-329))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1164 *3)) (-4 *3 (-1044)) (-4 *1 (-1232 *3))))) -(((*1 *1) (-5 *1 (-156)))) -(((*1 *2 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-766)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-416 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-1173))) (-5 *1 (-1173)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-1173))) (-5 *1 (-1173))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-429 *3) (-997))) (-5 *1 (-275 *3 *2)) - (-4 *3 (-13 (-845) (-554)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-766)) (-4 *4 (-362)) (-4 *5 (-1232 *4)) (-5 *2 (-1261)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1232 (-406 *5))) (-14 *7 *6)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1179 (-639 *4))) (-4 *4 (-845)) - (-5 *2 (-639 (-639 *4))) (-5 *1 (-1178 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-4 *3 (-1058 *5 *6 *7)) - (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1501 *4)))) - (-5 *1 (-1065 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-868 *2 *3)) (-4 *2 (-1207)) (-4 *3 (-1207))))) -(((*1 *2 *3 *4) (-12 - (-5 *3 - (-639 - (-2 (|:| |eqzro| (-639 *8)) (|:| |neqzro| (-639 *8)) - (|:| |wcond| (-639 (-947 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1256 (-406 (-947 *5)))) - (|:| -4291 (-639 (-1256 (-406 (-947 *5)))))))))) - (-5 *4 (-1150)) (-4 *5 (-13 (-306) (-146))) (-4 *8 (-944 *5 *7 *6)) - (-4 *6 (-13 (-845) (-610 (-1168)))) (-4 *7 (-788)) (-5 *2 (-562)) - (-5 *1 (-919 *5 *6 *7 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-820))))) -(((*1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1259)))) - ((*1 *2 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1259))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-639 (-608 *4))) (-4 *4 (-429 *3)) (-4 *3 (-845)) - (-5 *1 (-571 *3 *4)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-884 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-322 *3 *4)) (-4 *3 (-1092)) - (-4 *4 (-130)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1092)) (-5 *1 (-360 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1092)) (-5 *1 (-385 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1092)) (-5 *1 (-643 *3 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) + (-5 *2 + (-2 (|:| -2311 *3) (|:| |gap| (-767)) (|:| -3490 (-778 *3)) + (|:| -1972 (-778 *3)))) + (-5 *1 (-778 *3)) (-4 *3 (-1045)))) + ((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) + (-5 *2 + (-2 (|:| -2311 *1) (|:| |gap| (-767)) (|:| -3490 *1) + (|:| -1972 *1))) + (-4 *1 (-1059 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *2 + (-2 (|:| -2311 *1) (|:| |gap| (-767)) (|:| -3490 *1) + (|:| -1972 *1))) + (-4 *1 (-1059 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-640 (-316 (-225)))) (-5 *4 (-767)) + (-5 *2 (-684 (-225))) (-5 *1 (-267))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169)) + (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-316 *5))) + (-5 *1 (-1122 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-640 (-407 (-948 *5)))) (-5 *4 (-640 (-1169))) + (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-640 (-316 *5)))) + (-5 *1 (-1122 *5))))) +(((*1 *2 *3 *4 *4 *3) + (|partial| -12 (-5 *4 (-609 *3)) + (-4 *3 (-13 (-430 *5) (-27) (-1193))) + (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) + (-5 *2 (-2 (|:| -3646 *3) (|:| |coeff| *3))) + (-5 *1 (-565 *5 *3 *6)) (-4 *6 (-1093))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-554) (-146))) (-5 *1 (-536 *3 *2)) - (-4 *2 (-1247 *3)))) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-555))) (-5 *1 (-32 *3 *4)) + (-4 *4 (-430 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-767)) (-5 *1 (-114)))) + ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-114)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-362) (-367) (-610 (-562)))) (-4 *4 (-1232 *3)) - (-4 *5 (-719 *3 *4)) (-5 *1 (-540 *3 *4 *5 *2)) (-4 *2 (-1247 *5)))) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *4)) + (-4 *4 (-430 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-114)) (-5 *1 (-163)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-362) (-367) (-610 (-562)))) (-5 *1 (-541 *3 *2)) - (-4 *2 (-1247 *3)))) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *4)) + (-4 *4 (-13 (-430 *3) (-998))))) + ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-301 *3)) (-4 *3 (-302)))) + ((*1 *2 *2) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-13 (-554) (-146))) - (-5 *1 (-1144 *3))))) -(((*1 *1) (-5 *1 (-140)))) -(((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1168)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-639 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-639 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -2929 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1192) (-27) (-429 *8))) - (-4 *8 (-13 (-451) (-845) (-146) (-1033 *3) (-635 *3))) - (-5 *3 (-562)) (-5 *2 (-639 *4)) (-5 *1 (-1009 *8 *4))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-992 *2)) (-4 *2 (-171))))) -(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1177))))) -(((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-921))))) -(((*1 *1 *2) - (-12 (-5 *2 (-639 (-562))) (-5 *1 (-999 *3)) (-14 *3 (-562))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-666 *3)) (-4 *3 (-845)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-671 *3)) (-4 *3 (-845)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-814 *3)) (-4 *3 (-845))))) -(((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559))))) -(((*1 *2 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |partsol| (-1256 (-406 (-947 *4)))) - (|:| -4291 (-639 (-1256 (-406 (-947 *4))))))) - (-5 *3 (-639 *7)) (-4 *4 (-13 (-306) (-146))) - (-4 *7 (-944 *4 *6 *5)) (-4 *5 (-13 (-845) (-610 (-1168)))) - (-4 *6 (-788)) (-5 *1 (-919 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1168)) (-5 *6 (-639 (-608 *3))) - (-5 *5 (-608 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *7))) - (-4 *7 (-13 (-451) (-845) (-146) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-2 (|:| -2929 *3) (|:| |coeff| *3))) - (-5 *1 (-555 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-4 *3 (-1058 *5 *6 *7)) - (-5 *2 (-639 (-2 (|:| |val| (-112)) (|:| -1501 *4)))) - (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-921))))) + (-12 (-5 *2 (-114)) (-4 *4 (-846)) (-5 *1 (-429 *3 *4)) + (-4 *3 (-430 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *4)) + (-4 *4 (-430 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-609 *3)) (-4 *3 (-846)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *4)) + (-4 *4 (-13 (-430 *3) (-998) (-1193))))) + ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1015))))) +(((*1 *1 *1) (-4 *1 (-1137)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1034 (-563))) (-4 *1 (-302)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1093))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1208)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4408)) (-4 *1 (-601 *3 *2)) (-4 *3 (-1093)) + (-4 *2 (-1208))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-225)) (-5 *5 (-563)) (-5 *2 (-1203 *3)) + (-5 *1 (-786 *3)) (-4 *3 (-970)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *4 (-112)) + (-5 *1 (-1203 *2)) (-4 *2 (-970))))) +(((*1 *2 *2) + (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-846)) (-5 *1 (-1179 *3))))) +(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467)))) + ((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467)))) + ((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) - (-4 *6 (-788)) (-5 *2 (-639 (-639 (-562)))) - (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-562)) (-4 *7 (-944 *4 *6 *5))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-128))))) -(((*1 *2 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-857))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857))))) -(((*1 *2 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1207)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1193 *3)) (-4 *3 (-1092))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143))))) -(((*1 *2 *3) - (-12 (-4 *4 (-788)) - (-4 *5 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $))))) (-4 *6 (-554)) - (-5 *2 (-2 (|:| -1593 (-947 *6)) (|:| -1693 (-947 *6)))) - (-5 *1 (-727 *4 *5 *6 *3)) (-4 *3 (-944 (-406 (-947 *6)) *4 *5))))) -(((*1 *2 *3 *4 *5 *6 *7 *7 *8) - (-12 - (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-639 (-562))) - (|:| |cols| (-639 (-562))))) - (-5 *4 (-683 *12)) (-5 *5 (-639 (-406 (-947 *9)))) - (-5 *6 (-639 (-639 *12))) (-5 *7 (-766)) (-5 *8 (-562)) - (-4 *9 (-13 (-306) (-146))) (-4 *12 (-944 *9 *11 *10)) - (-4 *10 (-13 (-845) (-610 (-1168)))) (-4 *11 (-788)) - (-5 *2 - (-2 (|:| |eqzro| (-639 *12)) (|:| |neqzro| (-639 *12)) - (|:| |wcond| (-639 (-947 *9))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1256 (-406 (-947 *9)))) - (|:| -4291 (-639 (-1256 (-406 (-947 *9))))))))) - (-5 *1 (-919 *9 *10 *11 *12))))) -(((*1 *2 *3) - (-12 (-4 *4 (-904)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *7 (-944 *4 *5 *6)) (-5 *2 (-417 (-1164 *7))) - (-5 *1 (-901 *4 *5 *6 *7)) (-5 *3 (-1164 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-904)) (-4 *5 (-1232 *4)) (-5 *2 (-417 (-1164 *5))) - (-5 *1 (-902 *4 *5)) (-5 *3 (-1164 *5))))) + (-12 (-4 *2 (-555)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1233 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-904)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *7 (-944 *4 *5 *6)) (-5 *2 (-417 (-1164 *7))) - (-5 *1 (-901 *4 *5 *6 *7)) (-5 *3 (-1164 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-904)) (-4 *5 (-1232 *4)) (-5 *2 (-417 (-1164 *5))) - (-5 *1 (-902 *4 *5)) (-5 *3 (-1164 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857))))) + (-12 (-5 *3 (-1165 *4)) (-4 *4 (-349)) (-5 *2 (-954 (-1113))) + (-5 *1 (-346 *4))))) (((*1 *2 *2) - (-12 (-5 *2 (-938 *3)) (-4 *3 (-13 (-362) (-1192) (-997))) - (-5 *1 (-175 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) -(((*1 *1 *2) (-12 (-5 *2 (-916)) (-4 *1 (-367)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-916)) (-5 *2 (-1256 *4)) (-5 *1 (-527 *4)) - (-4 *4 (-348)))) + (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) + (-5 *1 (-1117 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-137)))) + ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-156)))) + ((*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1208)))) + ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-478)))) + ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-590)))) + ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-623)))) ((*1 *2 *1) - (-12 (-4 *2 (-845)) (-5 *1 (-708 *2 *3 *4)) (-4 *3 (-1092)) - (-14 *4 - (-1 (-112) (-2 (|:| -2464 *2) (|:| -1300 *3)) - (-2 (|:| -2464 *2) (|:| -1300 *3))))))) + (-12 (-4 *3 (-1093)) + (-4 *2 (-13 (-430 *4) (-882 *3) (-611 (-888 *3)))) + (-5 *1 (-1069 *3 *4 *2)) + (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3)))))) + ((*1 *2 *1) + (-12 (-4 *2 (-1093)) (-5 *1 (-1158 *3 *2)) (-4 *3 (-1093))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) - (-5 *1 (-520 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))) + (-12 (-4 *3 (-349)) (-4 *4 (-329 *3)) (-4 *5 (-1233 *4)) + (-5 *1 (-773 *3 *4 *5 *2 *6)) (-4 *2 (-1233 *5)) (-14 *6 (-917)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) + ((*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-363)) (-4 *2 (-368))))) +(((*1 *2 *1 *3 *3 *4) + (-12 (-5 *3 (-1 (-858) (-858) (-858))) (-5 *4 (-563)) (-5 *2 (-858)) + (-5 *1 (-644 *5 *6 *7)) (-4 *5 (-1093)) (-4 *6 (-23)) (-14 *7 *6))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-858)) (-5 *1 (-850 *3 *4 *5)) (-4 *3 (-1045)) + (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-858)))) + ((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-858)))) + ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-858)))) + ((*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-858)) (-5 *1 (-1165 *3)) (-4 *3 (-1045))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1165 *1)) (-4 *1 (-1008))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) + (-4 *4 (-1045))))) +(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-734))))) +(((*1 *2 *3) + (-12 (|has| *6 (-6 -4408)) (-4 *4 (-363)) (-4 *5 (-373 *4)) + (-4 *6 (-373 *4)) (-5 *2 (-640 *6)) (-5 *1 (-521 *4 *5 *6 *3)) + (-4 *3 (-682 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (|has| *9 (-6 -4408)) (-4 *4 (-555)) (-4 *5 (-373 *4)) + (-4 *6 (-373 *4)) (-4 *7 (-988 *4)) (-4 *8 (-373 *7)) + (-4 *9 (-373 *7)) (-5 *2 (-640 *6)) + (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-682 *4 *5 *6)) + (-4 *10 (-682 *7 *8 *9)))) + ((*1 *2 *1) + (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-4 *3 (-555)) (-5 *2 (-640 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-554)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) - (-4 *7 (-987 *4)) (-4 *2 (-681 *7 *8 *9)) - (-5 *1 (-521 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-681 *4 *5 *6)) - (-4 *8 (-372 *7)) (-4 *9 (-372 *7)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) - (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-362)))) - ((*1 *2 *2) - (|partial| -12 (-4 *3 (-362)) (-4 *3 (-171)) (-4 *4 (-372 *3)) - (-4 *5 (-372 *3)) (-5 *1 (-682 *3 *4 *5 *2)) - (-4 *2 (-681 *3 *4 *5)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-683 *2)) (-4 *2 (-362)) (-4 *2 (-1044)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1115 *2 *3 *4 *5)) (-4 *3 (-1044)) - (-4 *4 (-237 *2 *3)) (-4 *5 (-237 *2 *3)) (-4 *3 (-362)))) - ((*1 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-845)) (-5 *1 (-1178 *3))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *4 (-224)) - (-5 *2 (-1030)) (-5 *1 (-747))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) - (-4 *2 (-429 *3))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-1092)) - (-4 *4 (-1092))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-362)) (-5 *1 (-1020 *3 *2)) (-4 *2 (-650 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-362)) (-5 *2 (-2 (|:| -3339 *3) (|:| -2429 (-639 *5)))) - (-5 *1 (-1020 *5 *3)) (-5 *4 (-639 *5)) (-4 *3 (-650 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-406 (-562))) (-5 *1 (-559)) (-5 *3 (-562))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-562)) (-5 *2 (-112)) (-5 *1 (-551))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-526)) (-5 *3 (-128)) (-5 *2 (-766))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-406 (-947 *5)) (-1157 (-1168) (-947 *5)))) - (-4 *5 (-451)) (-5 *2 (-639 (-683 (-406 (-947 *5))))) - (-5 *1 (-291 *5)) (-5 *4 (-683 (-406 (-947 *5))))))) -(((*1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1177))))) -(((*1 *2 *1) (-12 (-5 *2 (-639 (-1127))) (-5 *1 (-153)))) - ((*1 *2 *1) (-12 (-5 *2 (-639 (-1127))) (-5 *1 (-1059))))) -(((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-171))))) -(((*1 *2 *2) - (-12 (-5 *2 (-938 *3)) (-4 *3 (-13 (-362) (-1192) (-997))) - (-5 *1 (-175 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1035)) (-5 *3 (-378))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-117 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-562)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-866 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-866 *2)) (-14 *2 (-562)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-562)) (-14 *3 *2) (-5 *1 (-867 *3 *4)) - (-4 *4 (-864 *3)))) - ((*1 *1 *1) - (-12 (-14 *2 (-562)) (-5 *1 (-867 *2 *3)) (-4 *3 (-864 *2)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-562)) (-4 *1 (-1218 *3 *4)) (-4 *3 (-1044)) - (-4 *4 (-1247 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1218 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-1247 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1150)) (-5 *1 (-304))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-554)) (-4 *2 (-171))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-639 (-1168))) (-4 *4 (-1092)) - (-4 *5 (-13 (-1044) (-881 *4) (-845) (-610 (-887 *4)))) - (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-429 *5) (-881 *4) (-610 (-887 *4))))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1096)) (-5 *1 (-279))))) -(((*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1207))))) -(((*1 *2 *1) (-12 (-4 *1 (-265 *2)) (-4 *2 (-845)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1168)) (-5 *1 (-859 *3)) (-14 *3 (-639 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-961 *3)) (-4 *3 (-962)))) - ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-984)))) - ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1084 *3)) (-4 *3 (-1207)))) + (-12 (-4 *4 (-555)) (-4 *4 (-172)) (-4 *5 (-373 *4)) + (-4 *6 (-373 *4)) (-5 *2 (-640 *6)) (-5 *1 (-683 *4 *5 *6 *3)) + (-4 *3 (-682 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-1234 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)) - (-5 *2 (-1168)))) - ((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1252 *3)) (-14 *3 *2)))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-393)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1187))))) -(((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171))))) -(((*1 *1) (-5 *1 (-818)))) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-555)) + (-5 *2 (-640 *7))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1093)) (-5 *2 (-885 *3 *4)) (-5 *1 (-881 *3 *4 *5)) + (-4 *3 (-1093)) (-4 *5 (-661 *4))))) (((*1 *1 *2) - (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-5 *1 (-1139 *3))))) + (|partial| -12 (-5 *2 (-1272 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) + (-5 *1 (-659 *3 *4)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-659 *3 *4)) (-5 *1 (-1277 *3 *4)) + (-4 *3 (-846)) (-4 *4 (-172))))) +(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) (((*1 *2 *1) - (-12 (-4 *1 (-1033 (-562))) (-4 *1 (-301)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-544)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3)) (-4 *3 (-1092))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1164 *1)) (-4 *1 (-1007))))) + (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) + (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-137)))) + ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-156)))) + ((*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1208)))) + ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-478)))) + ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-590)))) + ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-623)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1093)) + (-4 *2 (-13 (-430 *4) (-882 *3) (-611 (-888 *3)))) + (-5 *1 (-1069 *3 *4 *2)) + (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3)))))) + ((*1 *2 *1) + (-12 (-4 *2 (-1093)) (-5 *1 (-1158 *2 *3)) (-4 *3 (-1093))))) +(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-901 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1045)) (-5 *1 (-890 *2 *3)) (-4 *2 (-1233 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))) (((*1 *2 *1) - (-12 (-4 *4 (-1092)) (-5 *2 (-112)) (-5 *1 (-880 *3 *4 *5)) - (-4 *3 (-1092)) (-4 *5 (-660 *4)))) + (-12 (-4 *4 (-1093)) (-5 *2 (-112)) (-5 *1 (-881 *3 *4 *5)) + (-4 *3 (-1093)) (-4 *5 (-661 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-884 *3 *4)) (-4 *3 (-1092)) - (-4 *4 (-1092))))) -(((*1 *2) - (-12 (-4 *4 (-1211)) (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-406 *5))) - (-5 *2 (-766)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-341 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) - (-4 *5 (-1232 (-406 *4))) (-5 *2 (-766))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189))))) + (-12 (-5 *2 (-112)) (-5 *1 (-885 *3 *4)) (-4 *3 (-1093)) + (-4 *4 (-1093))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))))) - (-5 *2 (-639 (-406 (-562)))) (-5 *1 (-1015 *4)) - (-4 *4 (-1232 (-562)))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) - (|:| |explanations| (-639 (-1150))))) - (-5 *2 (-1030)) (-5 *1 (-304)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) - (|:| |explanations| (-639 (-1150))) (|:| |extra| (-1030)))) - (-5 *2 (-1030)) (-5 *1 (-304))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) - (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) - (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) - (|:| |abserr| (-224)) (|:| |relerr| (-224)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-378)) (|:| |stabilityFactor| (-378)))) - (-5 *1 (-204))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092))))) -(((*1 *1 *2) - (-12 (-4 *3 (-1044)) (-5 *1 (-822 *2 *3)) (-4 *2 (-703 *3))))) -(((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-921))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) -(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-112)) (-5 *1 (-824))))) -(((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) - (-5 *2 (-1030)) (-5 *1 (-747))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-4 *3 (-1058 *5 *6 *7)) - (-5 *2 (-639 (-2 (|:| |val| (-639 *3)) (|:| -1501 *4)))) - (-5 *1 (-1065 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1148 *4)) (-5 *3 (-1 *4 (-562))) (-4 *4 (-1044)) - (-5 *1 (-1152 *4))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) - (-5 *2 (-1030)) (-5 *1 (-747))))) -(((*1 *1) (-5 *1 (-436)))) -(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-137)))) - ((*1 *2 *1) (-12 (-4 *1 (-184)) (-5 *2 (-185))))) -(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-733))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-843) (-362))) (-5 *2 (-112)) (-5 *1 (-1054 *4 *3)) - (-4 *3 (-1232 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-639 (-182))) (-5 *1 (-139))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) - (-4 *4 (-1044))))) -(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1150)) (-5 *1 (-705))))) -(((*1 *2 *2) - (-12 (-4 *3 (-554)) (-4 *4 (-987 *3)) (-5 *1 (-141 *3 *4 *2)) - (-4 *2 (-372 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-554)) (-4 *5 (-987 *4)) (-4 *2 (-372 *4)) - (-5 *1 (-502 *4 *5 *2 *3)) (-4 *3 (-372 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-683 *5)) (-4 *5 (-987 *4)) (-4 *4 (-554)) - (-5 *2 (-683 *4)) (-5 *1 (-687 *4 *5)))) + (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1233 (-48))))) + ((*1 *2 *3 *1) + (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) + (-5 *1 (-121 *3)) (-4 *3 (-846)))) ((*1 *2 *2) - (-12 (-4 *3 (-554)) (-4 *4 (-987 *3)) (-5 *1 (-1225 *3 *4 *2)) - (-4 *2 (-1232 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-639 - (-2 - (|:| -2319 - (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) - (|:| |fn| (-1256 (-315 (-224)))) - (|:| |yinit| (-639 (-224))) (|:| |intvals| (-639 (-224))) - (|:| |g| (-315 (-224))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))) - (|:| -2693 - (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) - (|:| |expense| (-378)) (|:| |accuracy| (-378)) - (|:| |intermediateResults| (-378))))))) - (-5 *1 (-798))))) -(((*1 *2 *3) - (-12 (-5 *3 (-639 (-608 *5))) (-4 *4 (-845)) (-5 *2 (-608 *5)) - (-5 *1 (-571 *4 *5)) (-4 *5 (-429 *4))))) -(((*1 *2 *3) - (-12 (|has| *2 (-6 (-4405 "*"))) (-4 *5 (-372 *2)) (-4 *6 (-372 *2)) - (-4 *2 (-1044)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1232 *2)) - (-4 *4 (-681 *2 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1207)) (-5 *2 (-639 *1)) (-4 *1 (-1005 *3))))) -(((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-683 *2)) (-5 *4 (-562)) - (-4 *2 (-13 (-306) (-10 -8 (-15 -3788 ((-417 $) $))))) - (-4 *5 (-1232 *2)) (-5 *1 (-498 *2 *5 *6)) (-4 *6 (-408 *2 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-1030)) (-5 *1 (-835)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-315 (-378)))) (-5 *4 (-639 (-378))) - (-5 *2 (-1030)) (-5 *1 (-835))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-562) "failed") *5)) (-4 *5 (-1044)) - (-5 *2 (-562)) (-5 *1 (-542 *5 *3)) (-4 *3 (-1232 *5)))) - ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-562) "failed") *4)) (-4 *4 (-1044)) - (-5 *2 (-562)) (-5 *1 (-542 *4 *3)) (-4 *3 (-1232 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-562) "failed") *4)) (-4 *4 (-1044)) - (-5 *2 (-562)) (-5 *1 (-542 *4 *3)) (-4 *3 (-1232 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) - (-4 *2 (-13 (-429 *3) (-1192)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1280 *3 *4)) (-4 *1 (-373 *3 *4)) (-4 *3 (-845)) - (-4 *4 (-171)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-385 *2)) (-4 *2 (-1092)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-814 *3)) (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) - (-4 *4 (-1044)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-554) (-845) (-1033 (-562)))) (-5 *1 (-187 *3 *2)) - (-4 *2 (-13 (-27) (-1192) (-429 (-168 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) - (-5 *1 (-187 *4 *2)) (-4 *2 (-13 (-27) (-1192) (-429 (-168 *4)))))) + (-12 (-5 *2 (-584 *4)) (-4 *4 (-13 (-29 *3) (-1193))) + (-4 *3 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) + (-5 *1 (-582 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1168)) - (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *1 (-1196 *4 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *4)))))) -(((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1095 *3 *4 *5 *6 *2)) (-4 *3 (-1092)) (-4 *4 (-1092)) - (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *2 (-1092))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1115 *3 *4 *2 *5)) (-4 *4 (-1044)) (-4 *5 (-237 *3 *4)) - (-4 *2 (-237 *3 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-639 (-639 (-766)))) (-5 *1 (-899 *3)) (-4 *3 (-1092))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) -(((*1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171))))) -(((*1 *2 *1) - (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1092)) - (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) -(((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) - (-4 *3 (-366 *4)))) - ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *4 (-845)) (-5 *2 (-1179 (-639 *4))) (-5 *1 (-1178 *4)) - (-5 *3 (-639 *4))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-639 *5)) (-5 *4 (-562)) (-4 *5 (-843)) (-4 *5 (-362)) - (-5 *2 (-766)) (-5 *1 (-940 *5 *6)) (-4 *6 (-1232 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1164 *1)) (-5 *3 (-1168)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1164 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-947 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1168)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-845) (-554))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-845) (-554)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1164 (-406 (-947 *3)))) (-5 *1 (-452 *3 *4 *5 *6)) - (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) - (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-766)) (-5 *2 (-1261))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1256 (-639 (-2 (|:| -2533 *4) (|:| -2464 (-1112)))))) - (-4 *4 (-348)) (-5 *2 (-683 *4)) (-5 *1 (-345 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1168)) (-4 *4 (-554)) (-4 *4 (-845)) - (-5 *1 (-571 *4 *2)) (-4 *2 (-429 *4))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-887 *4)) (-4 *4 (-1092)) (-5 *1 (-884 *4 *3)) - (-4 *3 (-1092))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1150)) (-4 *1 (-363 *3 *4)) (-4 *3 (-1092)) - (-4 *4 (-1092))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-406 (-947 *4))) (-5 *3 (-1168)) - (-4 *4 (-13 (-554) (-1033 (-562)) (-146))) (-5 *1 (-568 *4))))) -(((*1 *2 *2) - (-12 (-4 *2 (-171)) (-4 *2 (-1044)) (-5 *1 (-709 *2 *3)) - (-4 *3 (-642 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-831 *2)) (-4 *2 (-171)) (-4 *2 (-1044))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1168)) - (-4 *4 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *4)))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-362))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-938 (-224)) (-224) (-224))) - (-5 *3 (-1 (-224) (-224) (-224) (-224))) (-5 *1 (-254))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) - (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) - (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) - (|:| |abserr| (-224)) (|:| |relerr| (-224)))) - (-5 *2 (-378)) (-5 *1 (-204))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) - (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3196)))) - (-5 *2 (-1030)) (-5 *1 (-743))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-639 (-938 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-639 (-938 *3))) (-4 *3 (-1044)) (-4 *1 (-1126 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-639 (-639 *3))) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-639 (-938 *3))) (-4 *1 (-1126 *3)) (-4 *3 (-1044))))) + (-12 (-5 *2 (-584 (-407 (-948 *3)))) + (-4 *3 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) + (-5 *1 (-587 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1233 *5)) (-4 *5 (-363)) + (-5 *2 (-2 (|:| -2377 *3) (|:| |special| *3))) (-5 *1 (-723 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1257 *5)) (-4 *5 (-363)) (-4 *5 (-1045)) + (-5 *2 (-640 (-640 (-684 *5)))) (-5 *1 (-1025 *5)) + (-5 *3 (-640 (-684 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1257 (-1257 *5))) (-4 *5 (-363)) (-4 *5 (-1045)) + (-5 *2 (-640 (-640 (-684 *5)))) (-5 *1 (-1025 *5)) + (-5 *3 (-640 (-684 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-640 *1)) (-4 *1 (-1137)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-640 *1)) (-4 *1 (-1137))))) (((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-766)) - (-4 *3 (-13 (-721) (-367) (-10 -7 (-15 ** (*3 *3 (-562)))))) - (-5 *1 (-245 *3))))) + (-12 (-5 *2 (-684 (-563))) (-5 *3 (-640 (-563))) (-5 *1 (-1103))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) - (-4 *2 (-13 (-429 *3) (-1192)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-5 *1 (-1249 *3 *2)) - (-4 *2 (-1247 *3))))) + (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147)) + (-4 *3 (-307)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *1 (-973 *3 *4 *5 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-684 *4)) (-4 *4 (-1045)) (-5 *1 (-1135 *3 *4)) + (-14 *3 (-767))))) +(((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-939 (-225))) (-5 *4 (-870)) (-5 *5 (-917)) + (-5 *2 (-1262)) (-5 *1 (-468)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-939 (-225))) (-5 *2 (-1262)) (-5 *1 (-468)))) + ((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-640 (-939 (-225)))) (-5 *4 (-870)) (-5 *5 (-917)) + (-5 *2 (-1262)) (-5 *1 (-468))))) +(((*1 *2 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-330))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) + (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 - (-2 (|:| -2533 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) + (-2 (|:| -2619 *4) (|:| -4076 *4) (|:| |totalpts| (-563)) (|:| |success| (-112)))) - (-5 *1 (-784)) (-5 *5 (-562))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1092) (-34))) - (-4 *3 (-13 (-1092) (-34)))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1077))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-916)) (-5 *4 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1257))))) -(((*1 *1 *1) (-4 *1 (-544)))) -(((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) - (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3196)))) - (-5 *2 (-1030)) (-5 *1 (-741))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-766)) (-4 *4 (-362)) (-5 *1 (-891 *2 *4)) - (-4 *2 (-1232 *4))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-639 - (-2 - (|:| -2319 - (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) - (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))) - (|:| -2693 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1148 (-224))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2147 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-557)))) - ((*1 *2 *1) - (-12 (-4 *1 (-600 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1207)) - (-5 *2 (-639 *4))))) -(((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-315 (-562))) (-5 *4 (-1 (-224) (-224))) - (-5 *5 (-1086 (-224))) (-5 *6 (-562)) (-5 *2 (-1202 (-921))) - (-5 *1 (-317)))) - ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-315 (-562))) (-5 *4 (-1 (-224) (-224))) - (-5 *5 (-1086 (-224))) (-5 *6 (-562)) (-5 *7 (-1150)) - (-5 *2 (-1202 (-921))) (-5 *1 (-317)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-315 (-562))) (-5 *4 (-1 (-224) (-224))) - (-5 *5 (-1086 (-224))) (-5 *6 (-224)) (-5 *7 (-562)) - (-5 *2 (-1202 (-921))) (-5 *1 (-317)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-315 (-562))) (-5 *4 (-1 (-224) (-224))) - (-5 *5 (-1086 (-224))) (-5 *6 (-224)) (-5 *7 (-562)) (-5 *8 (-1150)) - (-5 *2 (-1202 (-921))) (-5 *1 (-317))))) + (-5 *1 (-785)) (-5 *5 (-563))))) (((*1 *2 *3) - (-12 (-5 *3 (-562)) (-4 *4 (-1232 (-406 *3))) (-5 *2 (-916)) - (-5 *1 (-908 *4 *5)) (-4 *5 (-1232 (-406 *4)))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1044)) - (-4 *4 (-787))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *1 (-419 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1192) (-429 *3))) - (-14 *4 (-1168)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-4 *2 (-13 (-27) (-1192) (-429 *3) (-10 -8 (-15 -4053 ($ *4))))) - (-4 *4 (-843)) - (-4 *5 - (-13 (-1234 *2 *4) (-362) (-1192) - (-10 -8 (-15 -4029 ($ $)) (-15 -3081 ($ $))))) - (-5 *1 (-421 *3 *2 *4 *5 *6 *7)) (-4 *6 (-978 *5)) (-14 *7 (-1168))))) + (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) + (-5 *2 (-684 *4)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-684 *4)) (-5 *1 (-416 *3 *4)) + (-4 *3 (-417 *4)))) + ((*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-684 *3))))) (((*1 *2) - (-12 (-4 *3 (-554)) (-5 *2 (-639 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-416 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) - (-4 *2 (-13 (-429 *3) (-1192)))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-639 (-1164 *4))) (-5 *3 (-1164 *4)) - (-4 *4 (-904)) (-5 *1 (-657 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207))))) + (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) + (-5 *2 (-767)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) + (-4 *5 (-1233 (-407 *4))) (-5 *2 (-767))))) +(((*1 *1 *1 *1) (-5 *1 (-858)))) +(((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) + (-4 *5 (-13 (-363) (-147) (-1034 (-563)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |h| *6) + (|:| |c1| (-407 *6)) (|:| |c2| (-407 *6)) (|:| -2288 *6))) + (-5 *1 (-1012 *5 *6)) (-5 *3 (-407 *6))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1233 (-563))))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1233 (-563)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1150)) (-5 *2 (-639 (-1173))) (-5 *1 (-1128))))) + (-12 (-4 *4 (-1045)) (-4 *5 (-1233 *4)) (-5 *2 (-1 *6 (-640 *6))) + (-5 *1 (-1251 *4 *5 *3 *6)) (-4 *3 (-651 *5)) (-4 *6 (-1248 *4))))) +(((*1 *1) + (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767)) + (-4 *4 (-172))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-407 (-563))) + (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-406 *6)) (-4 *5 (-1211)) (-4 *6 (-1232 *5)) - (-5 *2 (-2 (|:| -1300 (-766)) (|:| -4221 *3) (|:| |radicand| *6))) - (-5 *1 (-147 *5 *6 *7)) (-5 *4 (-766)) (-4 *7 (-1232 *3))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-944 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *2 (-845)) (-4 *3 (-171)))) - ((*1 *2 *3 *3) - (-12 (-4 *2 (-554)) (-5 *1 (-964 *2 *3)) (-4 *3 (-1232 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) - (-4 *4 (-845)) (-4 *2 (-554)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1044)) (-4 *2 (-171))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1173))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-1168))))) -(((*1 *1 *2) - (-12 (-5 *2 (-406 *4)) (-4 *4 (-1232 *3)) (-4 *3 (-13 (-362) (-146))) - (-5 *1 (-398 *3 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-947 (-224))) (-5 *2 (-224)) (-5 *1 (-304))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-112) *7 (-639 *7))) (-4 *1 (-1200 *4 *5 *6 *7)) - (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1207)) (-5 *1 (-868 *3 *2)) (-4 *3 (-1207)))) - ((*1 *2 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-962))))) -(((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-1001))))) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) + (-5 *1 (-701 *3 *4)) (-4 *3 (-1208)) (-4 *4 (-1208))))) +(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-362) (-301) - (-10 -8 (-15 -4063 ((-1117 *3 (-608 $)) $)) - (-15 -4079 ((-1117 *3 (-608 $)) $)) - (-15 -4053 ($ (-1117 *3 (-608 $))))))))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-362) (-301) - (-10 -8 (-15 -4063 ((-1117 *3 (-608 $)) $)) - (-15 -4079 ((-1117 *3 (-608 $)) $)) - (-15 -4053 ($ (-1117 *3 (-608 $))))))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-639 *2)) - (-4 *2 - (-13 (-362) (-301) - (-10 -8 (-15 -4063 ((-1117 *4 (-608 $)) $)) - (-15 -4079 ((-1117 *4 (-608 $)) $)) - (-15 -4053 ($ (-1117 *4 (-608 $))))))) - (-4 *4 (-554)) (-5 *1 (-41 *4 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-639 (-608 *2))) - (-4 *2 - (-13 (-362) (-301) - (-10 -8 (-15 -4063 ((-1117 *4 (-608 $)) $)) - (-15 -4079 ((-1117 *4 (-608 $)) $)) - (-15 -4053 ($ (-1117 *4 (-608 $))))))) - (-4 *4 (-554)) (-5 *1 (-41 *4 *2))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1150)) (-5 *3 (-769)) (-5 *1 (-114))))) -(((*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1044))))) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1233 *5)) (-4 *5 (-363)) + (-5 *2 (-2 (|:| -2377 (-418 *3)) (|:| |special| (-418 *3)))) + (-5 *1 (-723 *5 *3))))) +(((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1257 *1)) (-4 *1 (-370 *2 *4)) (-4 *4 (-1233 *2)) + (-4 *2 (-172)))) + ((*1 *2) + (-12 (-4 *4 (-1233 *2)) (-4 *2 (-172)) (-5 *1 (-408 *3 *2 *4)) + (-4 *3 (-409 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-409 *2 *3)) (-4 *3 (-1233 *2)) (-4 *2 (-172)))) + ((*1 *2) + (-12 (-4 *3 (-1233 *2)) (-5 *2 (-563)) (-5 *1 (-764 *3 *4)) + (-4 *4 (-409 *2 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *2 (-846)) (-4 *3 (-172)))) + ((*1 *2 *3) + (-12 (-4 *2 (-555)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1233 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-172))))) +(((*1 *2 *3) + (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-640 (-1169))) (-4 *5 (-1045)) + (-5 *2 (-948 *5)) (-5 *1 (-940 *4 *5))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) + (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) (-5 *3 (-563))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1281 *4 *2)) (-4 *1 (-374 *4 *2)) (-4 *4 (-846)) + (-4 *2 (-172)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1274 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-815 *4)) (-4 *1 (-1274 *4 *2)) (-4 *4 (-846)) + (-4 *2 (-1045)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-1045)) (-5 *1 (-1280 *2 *3)) (-4 *3 (-842))))) +(((*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1208))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-562)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1207)) - (-4 *4 (-372 *2)) (-4 *5 (-372 *2)))) + (-12 (-5 *3 (-563)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1208)) + (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-562)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-372 *2)) - (-4 *5 (-372 *2)) (-4 *2 (-1207)))) + (-12 (-5 *3 (-563)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2)) + (-4 *5 (-373 *2)) (-4 *2 (-1208)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1207)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1207)))) + (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1208)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1208)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-639 (-562))) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) - (-14 *4 (-562)) (-14 *5 (-766)))) + (-12 (-5 *3 (-640 (-563))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) + (-14 *4 (-563)) (-14 *5 (-767)))) ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-562)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-766)))) + (-12 (-5 *3 (-563)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-767)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-562)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-766)))) + (-12 (-5 *3 (-563)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-767)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-562)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-766)))) + (-12 (-5 *3 (-563)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-767)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-562)) (-4 *2 (-171)) (-5 *1 (-135 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-766)))) + (-12 (-5 *3 (-563)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-767)))) ((*1 *2 *1) - (-12 (-4 *2 (-171)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-562)) - (-14 *4 (-766)))) + (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-563)) + (-14 *4 (-767)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1168)) (-5 *2 (-244 (-1150))) (-5 *1 (-213 *4)) + (-12 (-5 *3 (-1169)) (-5 *2 (-245 (-1151))) (-5 *1 (-214 *4)) (-4 *4 - (-13 (-845) - (-10 -8 (-15 -2343 ((-1150) $ *3)) (-15 -1479 ((-1261) $)) - (-15 -1359 ((-1261) $))))))) + (-13 (-846) + (-10 -8 (-15 -2309 ((-1151) $ *3)) (-15 -1463 ((-1262) $)) + (-15 -2807 ((-1262) $))))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-984)) (-5 *1 (-213 *3)) + (-12 (-5 *2 (-985)) (-5 *1 (-214 *3)) (-4 *3 - (-13 (-845) - (-10 -8 (-15 -2343 ((-1150) $ (-1168))) (-15 -1479 ((-1261) $)) - (-15 -1359 ((-1261) $))))))) + (-13 (-846) + (-10 -8 (-15 -2309 ((-1151) $ (-1169))) (-15 -1463 ((-1262) $)) + (-15 -2807 ((-1262) $))))))) ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-766)) (-5 *1 (-244 *4)) (-4 *4 (-845)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-244 *3)) (-4 *3 (-845)))) + (-12 (-5 *3 "count") (-5 *2 (-767)) (-5 *1 (-245 *4)) (-4 *4 (-846)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-846)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "unique") (-5 *1 (-244 *3)) (-4 *3 (-845)))) + (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-846)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-285 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1207)))) + (-12 (-4 *1 (-286 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1208)))) ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1207)))) + (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1208)))) ((*1 *2 *1 *2) - (-12 (-4 *3 (-171)) (-5 *1 (-288 *3 *2 *4 *5 *6 *7)) - (-4 *2 (-1232 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) + (-12 (-4 *3 (-172)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) + (-4 *2 (-1233 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-639 *1)) (-4 *1 (-301)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-640 *1)) (-4 *1 (-302)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-341 *2 *3 *4)) (-4 *2 (-1211)) (-4 *3 (-1232 *2)) - (-4 *4 (-1232 (-406 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-4 *1 (-416 *2)) (-4 *2 (-171)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1150)) (-5 *1 (-501)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-52)) (-5 *1 (-628)))) + (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1212)) (-4 *3 (-1233 *2)) + (-4 *4 (-1233 (-407 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *1 (-417 *2)) (-4 *2 (-172)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1151)) (-5 *1 (-502)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-52)) (-5 *1 (-629)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1223 (-562))) (-4 *1 (-645 *3)) (-4 *3 (-1207)))) + (-12 (-5 *2 (-1224 (-563))) (-4 *1 (-646 *3)) (-4 *3 (-1208)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-766)) (-5 *1 (-669 *2)) (-4 *2 (-1092)))) + (-12 (-5 *3 (-767)) (-5 *1 (-670 *2)) (-4 *2 (-1093)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-639 (-562))) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) - (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) + (-12 (-5 *2 (-640 (-563))) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-639 (-887 *4))) (-5 *1 (-887 *4)) - (-4 *4 (-1092)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-898 *2)) (-4 *2 (-1092)))) + (-12 (-5 *2 (-114)) (-5 *3 (-640 (-888 *4))) (-5 *1 (-888 *4)) + (-4 *4 (-1093)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-899 *2)) (-4 *2 (-1093)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-766)) (-5 *2 (-900 *4)) (-5 *1 (-899 *4)) - (-4 *4 (-1092)))) + (-12 (-5 *3 (-767)) (-5 *2 (-901 *4)) (-5 *1 (-900 *4)) + (-4 *4 (-1093)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-239 *4 *2)) (-14 *4 (-916)) (-4 *2 (-362)) - (-5 *1 (-988 *4 *2)))) + (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-917)) (-4 *2 (-363)) + (-5 *1 (-989 *4 *2)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "value") (-4 *1 (-1005 *2)) (-4 *2 (-1207)))) - ((*1 *2 *1) (-12 (-5 *1 (-1021 *2)) (-4 *2 (-1207)))) + (-12 (-5 *3 "value") (-4 *1 (-1006 *2)) (-4 *2 (-1208)))) + ((*1 *2 *1) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1208)))) ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-562)) (-4 *1 (-1047 *4 *5 *2 *6 *7)) (-4 *2 (-1044)) - (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)))) + (-12 (-5 *3 (-563)) (-4 *1 (-1048 *4 *5 *2 *6 *7)) (-4 *2 (-1045)) + (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-562)) (-4 *1 (-1047 *4 *5 *2 *6 *7)) - (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)) (-4 *2 (-1044)))) + (-12 (-5 *3 (-563)) (-4 *1 (-1048 *4 *5 *2 *6 *7)) + (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1045)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-916)) (-4 *4 (-1092)) - (-4 *5 (-13 (-1044) (-881 *4) (-845) (-610 (-887 *4)))) - (-5 *1 (-1068 *4 *5 *2)) - (-4 *2 (-13 (-429 *5) (-881 *4) (-610 (-887 *4)))))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-916)) (-4 *4 (-1092)) - (-4 *5 (-13 (-1044) (-881 *4) (-845) (-610 (-887 *4)))) + (-12 (-5 *3 (-917)) (-4 *4 (-1093)) + (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4)))) (-5 *1 (-1069 *4 *5 *2)) - (-4 *2 (-13 (-429 *5) (-881 *4) (-610 (-887 *4)))))) + (-4 *2 (-13 (-430 *5) (-882 *4) (-611 (-888 *4)))))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-917)) (-4 *4 (-1093)) + (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4)))) + (-5 *1 (-1070 *4 *5 *2)) + (-4 *2 (-13 (-430 *5) (-882 *4) (-611 (-888 *4)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-639 (-562))) (-4 *1 (-1095 *3 *4 *5 *6 *7)) - (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) - (-4 *7 (-1092)))) + (-12 (-5 *2 (-640 (-563))) (-4 *1 (-1096 *3 *4 *5 *6 *7)) + (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) + (-4 *7 (-1093)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-562)) (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) - (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)))) - ((*1 *1 *1 *1) (-4 *1 (-1136))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-1168)))) + (-12 (-5 *2 (-563)) (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) + (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)))) + ((*1 *1 *1 *1) (-4 *1 (-1137))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-1169)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-406 *1)) (-4 *1 (-1232 *2)) (-4 *2 (-1044)) - (-4 *2 (-362)))) + (-12 (-5 *3 (-407 *1)) (-4 *1 (-1233 *2)) (-4 *2 (-1045)) + (-4 *2 (-363)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-406 *1)) (-4 *1 (-1232 *3)) (-4 *3 (-1044)) - (-4 *3 (-554)))) + (-12 (-5 *2 (-407 *1)) (-4 *1 (-1233 *3)) (-4 *3 (-1045)) + (-4 *3 (-555)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1234 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1044)))) + (-12 (-4 *1 (-1235 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "last") (-4 *1 (-1244 *2)) (-4 *2 (-1207)))) + (-12 (-5 *3 "last") (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "rest") (-4 *1 (-1244 *3)) (-4 *3 (-1207)))) + (-12 (-5 *2 "rest") (-4 *1 (-1245 *3)) (-4 *3 (-1208)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "first") (-4 *1 (-1244 *2)) (-4 *2 (-1207))))) + (-12 (-5 *3 "first") (-4 *1 (-1245 *2)) (-4 *2 (-1208))))) +(((*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) + ((*1 *1 *1) (-5 *1 (-858)))) (((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4404)) (-4 *1 (-243 *2)) (-4 *2 (-1207))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1256 *4)) (-5 *3 (-683 *4)) (-4 *4 (-362)) - (-5 *1 (-661 *4)))) - ((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-362)) - (-4 *5 (-13 (-372 *4) (-10 -7 (-6 -4404)))) - (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4404)))) - (-5 *1 (-662 *4 *5 *2 *3)) (-4 *3 (-681 *4 *5 *2)))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-639 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-362)) - (-5 *1 (-809 *2 *3)) (-4 *3 (-650 *2)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) - (-5 *1 (-1120 *3 *2)) (-4 *3 (-1232 *2))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-608 *3)) (-4 *3 (-13 (-429 *5) (-27) (-1192))) - (-4 *5 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) - (-5 *2 (-583 *3)) (-5 *1 (-564 *5 *3 *6)) (-4 *6 (-1092))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *2 (-555)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *2 (-555))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-640 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563)))))) + (-5 *2 (-640 (-407 (-563)))) (-5 *1 (-1016 *4)) + (-4 *4 (-1233 (-563)))))) (((*1 *2 *1) - (-12 (-4 *3 (-1044)) (-5 *2 (-1256 *3)) (-5 *1 (-707 *3 *4)) - (-4 *4 (-1232 *3))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-884 *5 *3)) (-5 *4 (-887 *5)) (-4 *5 (-1092)) - (-4 *3 (-165 *6)) (-4 (-947 *6) (-881 *5)) - (-4 *6 (-13 (-881 *5) (-171))) (-5 *1 (-177 *5 *6 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-884 *4 *1)) (-5 *3 (-887 *4)) (-4 *1 (-881 *4)) - (-4 *4 (-1092)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-884 *5 *6)) (-5 *4 (-887 *5)) (-4 *5 (-1092)) - (-4 *6 (-13 (-1092) (-1033 *3))) (-4 *3 (-881 *5)) - (-5 *1 (-926 *5 *3 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-884 *5 *3)) (-4 *5 (-1092)) - (-4 *3 (-13 (-429 *6) (-610 *4) (-881 *5) (-1033 (-608 $)))) - (-5 *4 (-887 *5)) (-4 *6 (-13 (-554) (-845) (-881 *5))) - (-5 *1 (-927 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-884 (-562) *3)) (-5 *4 (-887 (-562))) (-4 *3 (-544)) - (-5 *1 (-928 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-884 *5 *6)) (-5 *3 (-608 *6)) (-4 *5 (-1092)) - (-4 *6 (-13 (-845) (-1033 (-608 $)) (-610 *4) (-881 *5))) - (-5 *4 (-887 *5)) (-5 *1 (-929 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-880 *5 *6 *3)) (-5 *4 (-887 *5)) (-4 *5 (-1092)) - (-4 *6 (-881 *5)) (-4 *3 (-660 *6)) (-5 *1 (-930 *5 *6 *3)))) - ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-884 *6 *3) *8 (-887 *6) (-884 *6 *3))) - (-4 *8 (-845)) (-5 *2 (-884 *6 *3)) (-5 *4 (-887 *6)) - (-4 *6 (-1092)) (-4 *3 (-13 (-944 *9 *7 *8) (-610 *4))) - (-4 *7 (-788)) (-4 *9 (-13 (-1044) (-845) (-881 *6))) - (-5 *1 (-931 *6 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-884 *5 *3)) (-4 *5 (-1092)) - (-4 *3 (-13 (-944 *8 *6 *7) (-610 *4))) (-5 *4 (-887 *5)) - (-4 *7 (-881 *5)) (-4 *6 (-788)) (-4 *7 (-845)) - (-4 *8 (-13 (-1044) (-845) (-881 *5))) - (-5 *1 (-931 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-884 *5 *3)) (-4 *5 (-1092)) (-4 *3 (-987 *6)) - (-4 *6 (-13 (-554) (-881 *5) (-610 *4))) (-5 *4 (-887 *5)) - (-5 *1 (-934 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-884 *5 (-1168))) (-5 *3 (-1168)) (-5 *4 (-887 *5)) - (-4 *5 (-1092)) (-5 *1 (-935 *5)))) - ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-639 (-887 *7))) (-5 *5 (-1 *9 (-639 *9))) - (-5 *6 (-1 (-884 *7 *9) *9 (-887 *7) (-884 *7 *9))) (-4 *7 (-1092)) - (-4 *9 (-13 (-1044) (-610 (-887 *7)) (-1033 *8))) - (-5 *2 (-884 *7 *9)) (-5 *3 (-639 *9)) (-4 *8 (-13 (-1044) (-845))) - (-5 *1 (-936 *7 *8 *9))))) + (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1)) + (-4 *1 (-1059 *3 *4 *5))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1113)) (-5 *2 (-112)) (-5 *1 (-817))))) (((*1 *2 *1) - (-12 (-5 *2 (-1094 *3)) (-5 *1 (-900 *3)) (-4 *3 (-367)) - (-4 *3 (-1092))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1150)) (-4 *1 (-388))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-639 *1)) - (-4 *1 (-1064 *4 *5 *6 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207))))) -(((*1 *2 *3) - (-12 (-5 *3 (-315 *4)) (-4 *4 (-13 (-823) (-845) (-1044))) - (-5 *2 (-1150)) (-5 *1 (-821 *4)))) + (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) + (-5 *2 (-640 (-640 (-640 (-939 *3)))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)) + (-5 *2 (-1151))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-640 (-640 (-640 *4)))) (-5 *3 (-640 *4)) (-4 *4 (-846)) + (-5 *1 (-1179 *4))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-917)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-640 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1201 *4 *5 *6 *3)) (-4 *4 (-555)) (-4 *5 (-789)) + (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-316 *3)) (-4 *3 (-13 (-1045) (-846))) + (-5 *1 (-223 *3 *4)) (-14 *4 (-640 (-1169)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-648 (-407 *6))) (-5 *4 (-1 (-640 *5) *6)) + (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) + (-4 *6 (-1233 *5)) (-5 *2 (-640 (-407 *6))) (-5 *1 (-808 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-648 (-407 *7))) (-5 *4 (-1 (-640 *6) *7)) + (-5 *5 (-1 (-418 *7) *7)) + (-4 *6 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) + (-4 *7 (-1233 *6)) (-5 *2 (-640 (-407 *7))) (-5 *1 (-808 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-649 *6 (-407 *6))) (-5 *4 (-1 (-640 *5) *6)) + (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) + (-4 *6 (-1233 *5)) (-5 *2 (-640 (-407 *6))) (-5 *1 (-808 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-649 *7 (-407 *7))) (-5 *4 (-1 (-640 *6) *7)) + (-5 *5 (-1 (-418 *7) *7)) + (-4 *6 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) + (-4 *7 (-1233 *6)) (-5 *2 (-640 (-407 *7))) (-5 *1 (-808 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-648 (-407 *5))) (-4 *5 (-1233 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) + (-5 *2 (-640 (-407 *5))) (-5 *1 (-808 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-315 *5)) (-5 *4 (-112)) - (-4 *5 (-13 (-823) (-845) (-1044))) (-5 *2 (-1150)) - (-5 *1 (-821 *5)))) + (-12 (-5 *3 (-648 (-407 *6))) (-5 *4 (-1 (-418 *6) *6)) + (-4 *6 (-1233 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) + (-5 *2 (-640 (-407 *6))) (-5 *1 (-808 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-649 *5 (-407 *5))) (-4 *5 (-1233 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) + (-5 *2 (-640 (-407 *5))) (-5 *1 (-808 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-817)) (-5 *4 (-315 *5)) - (-4 *5 (-13 (-823) (-845) (-1044))) (-5 *2 (-1261)) - (-5 *1 (-821 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-817)) (-5 *4 (-315 *6)) (-5 *5 (-112)) - (-4 *6 (-13 (-823) (-845) (-1044))) (-5 *2 (-1261)) - (-5 *1 (-821 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-823)) (-5 *2 (-1150)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-823)) (-5 *3 (-112)) (-5 *2 (-1150)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-823)) (-5 *3 (-817)) (-5 *2 (-1261)))) - ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-823)) (-5 *3 (-817)) (-5 *4 (-112)) (-5 *2 (-1261))))) + (-12 (-5 *3 (-649 *6 (-407 *6))) (-5 *4 (-1 (-418 *6) *6)) + (-4 *6 (-1233 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) + (-5 *2 (-640 (-407 *6))) (-5 *1 (-808 *5 *6))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) + (|:| |explanations| (-640 (-1151))))) + (-5 *2 (-1031)) (-5 *1 (-305)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) + (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031)))) + (-5 *2 (-1031)) (-5 *1 (-305))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-114)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1151)) (-4 *4 (-846)) (-5 *1 (-925 *4 *2)) + (-4 *2 (-430 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1169)) (-5 *4 (-1151)) (-5 *2 (-316 (-563))) + (-5 *1 (-926))))) (((*1 *2 *3 *4) - (-12 (-4 *7 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-554)) - (-4 *8 (-944 *7 *5 *6)) - (-5 *2 (-2 (|:| -1300 (-766)) (|:| -4221 *3) (|:| |radicand| *3))) - (-5 *1 (-948 *5 *6 *7 *8 *3)) (-5 *4 (-766)) - (-4 *3 - (-13 (-362) - (-10 -8 (-15 -4053 ($ *8)) (-15 -4063 (*8 $)) (-15 -4079 (*8 $)))))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) - (-5 *2 - (-2 (|:| -2533 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) - (|:| |success| (-112)))) - (-5 *1 (-784)) (-5 *5 (-562))))) + (-12 (-5 *3 (-1257 (-640 (-2 (|:| -2619 *4) (|:| -2555 (-1113)))))) + (-4 *4 (-349)) (-5 *2 (-1262)) (-5 *1 (-528 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-449 *4 *5 *6 *2))))) +(((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-696)))) + ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-696))))) +(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-445 *3)) (-4 *3 (-1045))))) +(((*1 *1 *2 *3 *4) + (-12 + (-5 *3 + (-640 + (-2 (|:| |scalar| (-407 (-563))) (|:| |coeff| (-1165 *2)) + (|:| |logand| (-1165 *2))))) + (-5 *4 (-640 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) + (-4 *2 (-363)) (-5 *1 (-584 *2))))) +(((*1 *2) + (-12 (-5 *2 (-767)) (-5 *1 (-120 *3)) (-4 *3 (-1233 (-563))))) + ((*1 *2 *2) + (-12 (-5 *2 (-767)) (-5 *1 (-120 *3)) (-4 *3 (-1233 (-563)))))) +(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-740 *3)) (-4 *3 (-172))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) - (-4 *3 (-1058 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-639 *4)) - (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1501 *4)))))) - (-5 *1 (-1062 *6 *7 *8 *3 *4)) (-4 *4 (-1064 *6 *7 *8 *3)))) + (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379))) + (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-4 *3 (-1058 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-639 *4)) - (|:| |todo| (-639 (-2 (|:| |val| (-639 *3)) (|:| -1501 *4)))))) - (-5 *1 (-1137 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1150)) (-5 *3 (-562)) (-5 *1 (-240)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-639 (-1150))) (-5 *3 (-562)) (-5 *4 (-1150)) - (-5 *1 (-240)))) - ((*1 *1 *1) (-5 *1 (-857))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1234 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1044))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-1207)))) - ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-515 *3 *4)) (-4 *3 (-1207)) - (-14 *4 (-562))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-639 (-480 *5 *6))) (-5 *4 (-859 *5)) - (-14 *5 (-639 (-1168))) (-5 *2 (-480 *5 *6)) (-5 *1 (-627 *5 *6)) - (-4 *6 (-451)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-480 *5 *6))) (-5 *4 (-859 *5)) - (-14 *5 (-639 (-1168))) (-5 *2 (-480 *5 *6)) (-5 *1 (-627 *5 *6)) - (-4 *6 (-451))))) -(((*1 *2 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-348)) (-5 *1 (-356 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-962))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) - (-5 *2 - (-2 (|:| |contp| (-562)) - (|:| -2656 (-639 (-2 (|:| |irr| *3) (|:| -2794 (-562))))))) - (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) + (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379))) + (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1087 (-379))) + (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) + (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1087 (-379))) + (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1087 (-379))) + (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1087 (-379))) + (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1087 (-379))) + (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1087 (-379))) + (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1087 (-379))) + (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1087 (-379))) + (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-875 *6)) (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) + (-4 *6 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1126 (-225))) + (-5 *1 (-259 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-875 *5)) (-5 *4 (-1085 (-379))) + (-4 *5 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1126 (-225))) + (-5 *1 (-259 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) + (-5 *2 (-1126 (-225))) (-5 *1 (-259 *3)) + (-4 *3 (-13 (-611 (-536)) (-1093))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1085 (-379))) (-5 *2 (-1126 (-225))) (-5 *1 (-259 *3)) + (-4 *3 (-13 (-611 (-536)) (-1093))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-878 *6)) (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) + (-4 *6 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1126 (-225))) + (-5 *1 (-259 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-878 *5)) (-5 *4 (-1085 (-379))) + (-4 *5 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1126 (-225))) + (-5 *1 (-259 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-263)))) + ((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-555)) (-4 *3 (-172)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -4315 (-640 *1)))) + (-4 *1 (-367 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-453 *3 *4 *5 *6)) + (|:| -4315 (-640 (-453 *3 *4 *5 *6))))) + (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) + (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3)))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) + (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 - (-2 (|:| |contp| (-562)) - (|:| -2656 (-639 (-2 (|:| |irr| *3) (|:| -2794 (-562))))))) - (-5 *1 (-1221 *3)) (-4 *3 (-1232 (-562)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-535))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-639 (-562))) (-5 *2 (-683 (-562))) (-5 *1 (-1102))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-766)) (-5 *5 (-639 *3)) (-4 *3 (-306)) (-4 *6 (-845)) - (-4 *7 (-788)) (-5 *2 (-112)) (-5 *1 (-621 *6 *7 *3 *8)) - (-4 *8 (-944 *3 *7 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-467)))) - ((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-1257)))) - ((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-1258))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-639 (-683 *6))) (-5 *4 (-112)) (-5 *5 (-562)) - (-5 *2 (-683 *6)) (-5 *1 (-1024 *6)) (-4 *6 (-362)) (-4 *6 (-1044)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-639 (-683 *4))) (-5 *2 (-683 *4)) (-5 *1 (-1024 *4)) - (-4 *4 (-362)) (-4 *4 (-1044)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-639 (-683 *5))) (-5 *4 (-562)) (-5 *2 (-683 *5)) - (-5 *1 (-1024 *5)) (-4 *5 (-362)) (-4 *5 (-1044))))) + (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379)))) + (-5 *1 (-205))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-552))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-971 *3 *4 *2 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *2 (-845)) (-4 *5 (-1058 *3 *4 *2))))) -(((*1 *1 *1) (-12 (-5 *1 (-909 *2)) (-4 *2 (-306))))) -(((*1 *2 *3 *3 *1) - (|partial| -12 (-5 *3 (-1168)) (-5 *2 (-1096)) (-5 *1 (-290))))) -(((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-743))))) + (|partial| -12 (-5 *3 (-1257 *4)) (-4 *4 (-636 (-563))) + (-5 *2 (-1257 (-407 (-563)))) (-5 *1 (-1284 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-640 (-640 *7))) + (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-640 *7)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) + (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-640 (-640 *8))) + (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-640 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-640 (-640 *7))) + (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-640 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) + (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-640 (-640 *8))) + (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-640 *8))))) +(((*1 *2) + (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) + (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) + (-5 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) + (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) + (-5 *1 (-1101 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-555)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-363) (-302) + (-10 -8 (-15 -2143 ((-1118 *3 (-609 $)) $)) + (-15 -2154 ((-1118 *3 (-609 $)) $)) + (-15 -1693 ($ (-1118 *3 (-609 $)))))))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-639 - (-2 (|:| |scalar| (-406 (-562))) (|:| |coeff| (-1164 *3)) - (|:| |logand| (-1164 *3))))) - (-5 *1 (-583 *3)) (-4 *3 (-362))))) + (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-939 *3)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *1 (-103 *3)) (-4 *3 (-1093))))) (((*1 *2 *3) - (-12 (-5 *3 (-639 (-947 *4))) (-4 *4 (-451)) (-5 *2 (-112)) - (-5 *1 (-359 *4 *5)) (-14 *5 (-639 (-1168))))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 (-775 *4 (-859 *5)))) (-4 *4 (-451)) - (-14 *5 (-639 (-1168))) (-5 *2 (-112)) (-5 *1 (-624 *4 *5))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-766)) (-5 *2 (-406 (-562))) (-5 *1 (-224)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-766)) (-5 *2 (-406 (-562))) (-5 *1 (-224)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-766)) (-5 *2 (-406 (-562))) (-5 *1 (-378)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-766)) (-5 *2 (-406 (-562))) (-5 *1 (-378))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-562)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-766)) (-4 *5 (-171)))) - ((*1 *1 *1) - (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-562)) (-14 *3 (-766)) - (-4 *4 (-171)))) - ((*1 *1 *1) - (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) - (-4 *4 (-372 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1044)) (-4 *1 (-681 *3 *2 *4)) (-4 *2 (-372 *3)) - (-4 *4 (-372 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1134 *2 *3)) (-14 *2 (-766)) (-4 *3 (-1044))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-766)) (-5 *1 (-584 *2)) (-4 *2 (-544)))) - ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -3240 *3) (|:| -1300 (-766)))) (-5 *1 (-584 *3)) - (-4 *3 (-544))))) -(((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-921))))) -(((*1 *1 *1 *1) (-4 *1 (-655)))) -(((*1 *1 *1) - (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-378)) (-5 *1 (-97))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1280 *3 *4)) (-4 *1 (-373 *3 *4)) (-4 *3 (-845)) - (-4 *4 (-171)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-385 *2)) (-4 *2 (-1092)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-814 *3)) (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) - (-4 *4 (-1044)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044))))) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-767)) + (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *6)) + (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-640 (-901 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1093))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-363)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) + (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *2 (-1164 (-562))) (-5 *1 (-937)) (-5 *3 (-562))))) -(((*1 *2 *2) - (-12 (-5 *2 (-938 *3)) (-4 *3 (-13 (-362) (-1192) (-997))) - (-5 *1 (-175 *3))))) -(((*1 *2 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306)))) - ((*1 *2 *1) (-12 (-5 *1 (-909 *2)) (-4 *2 (-306)))) - ((*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554)) (-4 *2 (-306)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-562))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-112)) (-5 *5 (-683 (-168 (-224)))) - (-5 *2 (-1030)) (-5 *1 (-750))))) + (-12 (-5 *3 (-1087 (-839 (-379)))) (-5 *2 (-1087 (-839 (-225)))) + (-5 *1 (-305))))) +(((*1 *1 *1 *1) (-5 *1 (-162))) + ((*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-162))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-363)) (-4 *3 (-1045)) + (-5 *1 (-1153 *3))))) +(((*1 *1 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307))))) +(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) +(((*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-950))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-563))) (-5 *1 (-1043))))) +(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922))))) +(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1045)) + (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))) + (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1233 *4))))) (((*1 *2 *1) - (-12 (-4 *3 (-232)) (-4 *3 (-1044)) (-4 *4 (-845)) (-4 *5 (-265 *4)) - (-4 *6 (-788)) (-5 *2 (-1 *1 (-766))) (-4 *1 (-252 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1044)) (-4 *3 (-845)) (-4 *5 (-265 *3)) (-4 *6 (-788)) - (-5 *2 (-1 *1 (-766))) (-4 *1 (-252 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-766)) (-4 *1 (-265 *2)) (-4 *2 (-845))))) -(((*1 *1 *1 *1) (-4 *1 (-655)))) -(((*1 *1 *1 *1) (-4 *1 (-544)))) -(((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-1259))))) -(((*1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-535))) ((*1 *1) (-4 *1 (-717))) - ((*1 *1) (-4 *1 (-721))) - ((*1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1092)))) - ((*1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-845))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-766)) (-5 *1 (-584 *2)) (-4 *2 (-544))))) + (-12 (-4 *2 (-945 *3 *5 *4)) (-5 *1 (-983 *3 *4 *5 *2)) + (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789))))) +(((*1 *2 *3) + (-12 (-5 *3 (-888 *4)) (-4 *4 (-1093)) (-5 *2 (-640 *5)) + (-5 *1 (-886 *4 *5)) (-4 *5 (-1208))))) (((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) - (-5 *1 (-436))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1184 *4 *5)) - (-4 *4 (-1092)) (-4 *5 (-1092))))) + (-12 (|has| *1 (-6 -4407)) (-4 *1 (-489 *3)) (-4 *3 (-1208)) + (-5 *2 (-640 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-733 *3)) (-4 *3 (-1093)))) + ((*1 *2 *1) (-12 (-5 *2 (-640 (-439))) (-5 *1 (-861))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-4 *4 (-452)) (-4 *3 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) + (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-945 *4 *3 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1233 *3)) + (-4 *5 (-1233 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4407)) (-4 *1 (-151 *3)) + (-4 *3 (-1208)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1208)) (-5 *1 (-598 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-669 *3)) (-4 *3 (-1208)))) + ((*1 *2 *1 *3) + (|partial| -12 (-4 *1 (-1201 *4 *5 *3 *2)) (-4 *4 (-555)) + (-4 *5 (-789)) (-4 *3 (-846)) (-4 *2 (-1059 *4 *5 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-767)) (-5 *1 (-1205 *2)) (-4 *2 (-1208))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1193)))))) +(((*1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-536))) ((*1 *1) (-4 *1 (-718))) + ((*1 *1) (-4 *1 (-722))) + ((*1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) + ((*1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *2 (-555))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) + (-5 *1 (-751))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529))))) +(((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) (((*1 *2) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) - (-4 *5 (-1232 (-406 *4))) (-5 *2 (-683 (-406 *4)))))) + (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563)))))) (((*1 *2 *3) - (-12 (-4 *1 (-915)) (-5 *2 (-2 (|:| -4221 (-639 *1)) (|:| -3147 *1))) - (-5 *3 (-639 *1))))) -(((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-224)) - (-5 *2 (-1030)) (-5 *1 (-747))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-766)) (-5 *1 (-851 *2)) (-4 *2 (-171)))) + (-12 (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) + (-4 *3 (-1233 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-755))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1093)) (-4 *3 (-896 *5)) (-5 *2 (-684 *3)) + (-5 *1 (-687 *5 *3 *6 *4)) (-4 *6 (-373 *3)) + (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4407))))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -1701 *6) (|:| |sol?| (-112))) (-563) + *6)) + (-4 *6 (-363)) (-4 *7 (-1233 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) + (-2 (|:| -3646 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) + (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1087 (-379))) + (-5 *5 (-640 (-263))) (-5 *2 (-1258)) (-5 *1 (-255)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1087 (-379))) + (-5 *2 (-1258)) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-873 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379))) + (-5 *5 (-640 (-263))) (-5 *2 (-1258)) (-5 *1 (-255)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-873 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379))) + (-5 *2 (-1258)) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379))) + (-5 *5 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-255)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379))) + (-5 *2 (-1259)) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1087 (-379))) + (-5 *5 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-255)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1087 (-379))) + (-5 *2 (-1259)) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1087 (-379))) + (-5 *5 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1087 (-379))) + (-5 *2 (-1259)) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1087 (-379))) + (-5 *5 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1087 (-379))) + (-5 *2 (-1259)) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1087 (-379))) + (-5 *5 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1087 (-379))) + (-5 *2 (-1259)) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-294 *7)) (-5 *4 (-1169)) (-5 *5 (-640 (-263))) + (-4 *7 (-430 *6)) (-4 *6 (-13 (-555) (-846) (-1034 (-563)))) + (-5 *2 (-1258)) (-5 *1 (-256 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1258)) + (-5 *1 (-259 *3)) (-4 *3 (-13 (-611 (-536)) (-1093))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1085 (-379))) (-5 *2 (-1258)) (-5 *1 (-259 *3)) + (-4 *3 (-13 (-611 (-536)) (-1093))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-873 *6)) (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) + (-4 *6 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1258)) + (-5 *1 (-259 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-873 *5)) (-5 *4 (-1085 (-379))) + (-4 *5 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1258)) + (-5 *1 (-259 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-875 *6)) (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) + (-4 *6 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1259)) + (-5 *1 (-259 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-875 *5)) (-5 *4 (-1085 (-379))) + (-4 *5 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1259)) + (-5 *1 (-259 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1259)) + (-5 *1 (-259 *3)) (-4 *3 (-13 (-611 (-536)) (-1093))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1085 (-379))) (-5 *2 (-1259)) (-5 *1 (-259 *3)) + (-4 *3 (-13 (-611 (-536)) (-1093))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-878 *6)) (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) + (-4 *6 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1259)) + (-5 *1 (-259 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-878 *5)) (-5 *4 (-1085 (-379))) + (-4 *5 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1259)) + (-5 *1 (-259 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-640 (-225))) (-5 *2 (-1258)) (-5 *1 (-260)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-640 (-225))) (-5 *4 (-640 (-263))) (-5 *2 (-1258)) + (-5 *1 (-260)))) ((*1 *2 *3) - (-12 (-5 *2 (-1164 (-562))) (-5 *1 (-937)) (-5 *3 (-562))))) + (-12 (-5 *3 (-640 (-939 (-225)))) (-5 *2 (-1258)) (-5 *1 (-260)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-640 (-939 (-225)))) (-5 *4 (-640 (-263))) + (-5 *2 (-1258)) (-5 *1 (-260)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-640 (-225))) (-5 *2 (-1259)) (-5 *1 (-260)))) + ((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-640 (-225))) (-5 *4 (-640 (-263))) (-5 *2 (-1259)) + (-5 *1 (-260))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1208)) (-5 *1 (-598 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1208)) (-5 *1 (-1149 *3))))) (((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-469 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-535))) - ((*1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1092))))) -(((*1 *2) - (-12 (-4 *4 (-362)) (-5 *2 (-766)) (-5 *1 (-327 *3 *4)) - (-4 *3 (-328 *4)))) - ((*1 *2) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-362)) (-5 *2 (-766))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1044)) (-5 *2 (-1256 *3)) (-5 *1 (-707 *3 *4)) - (-4 *4 (-1232 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-1192)))) - ((*1 *2 *1) (-12 (-5 *1 (-330 *2)) (-4 *2 (-845)))) - ((*1 *2 *1) (-12 (-5 *2 (-639 *3)) (-5 *1 (-608 *3)) (-4 *3 (-845))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-639 (-293 *4))) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-845)) - (-4 *4 (-13 (-171) (-712 (-406 (-562))))) (-14 *5 (-916))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-916)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) - ((*1 *1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-262))))) -(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-869))))) -(((*1 *2 *3) - (-12 (-5 *3 (-224)) (-5 *2 (-112)) (-5 *1 (-298 *4 *5)) (-14 *4 *3) - (-14 *5 *3))) + ((*1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-536))) + ((*1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-788)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-50 *3 *4)) + (-14 *4 (-640 (-1169))))) + ((*1 *1 *2 *1 *1 *3) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1086 (-838 (-224)))) (-5 *3 (-224)) (-5 *2 (-112)) - (-5 *1 (-304)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)) - (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-114)))) - ((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-114)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1044)) (-4 *3 (-845)) - (-4 *5 (-265 *3)) (-4 *6 (-788)) (-5 *2 (-766)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1208)) + (-4 *6 (-1208)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-563)) + (-14 *6 (-767)) (-4 *7 (-172)) (-4 *8 (-172)) + (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-172)) + (-4 *6 (-172)) (-5 *2 (-169 *6)) (-5 *1 (-168 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-316 *3) (-316 *3))) (-4 *3 (-13 (-1045) (-846))) + (-5 *1 (-223 *3 *4)) (-14 *4 (-640 (-1169))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-767)) + (-4 *6 (-1208)) (-4 *7 (-1208)) (-5 *2 (-240 *5 *7)) + (-5 *1 (-239 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-294 *5)) (-4 *5 (-1208)) + (-4 *6 (-1208)) (-5 *2 (-294 *6)) (-5 *1 (-293 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1208)) (-5 *1 (-294 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1151)) (-5 *5 (-609 *6)) + (-4 *6 (-302)) (-4 *2 (-1208)) (-5 *1 (-297 *6 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-609 *5)) (-4 *5 (-302)) + (-4 *2 (-302)) (-5 *1 (-298 *5 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-609 *1)) (-4 *1 (-302)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-684 *5)) (-4 *5 (-1045)) + (-4 *6 (-1045)) (-5 *2 (-684 *6)) (-5 *1 (-304 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-316 *5)) (-4 *5 (-846)) + (-4 *6 (-846)) (-5 *2 (-316 *6)) (-5 *1 (-314 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-336 *5 *6 *7 *8)) (-4 *5 (-363)) + (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) + (-4 *9 (-363)) (-4 *10 (-1233 *9)) (-4 *11 (-1233 (-407 *10))) + (-5 *2 (-336 *9 *10 *11 *12)) + (-5 *1 (-333 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-342 *9 *10 *11)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-338 *3)) (-4 *3 (-1093)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1212)) (-4 *8 (-1212)) + (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6))) (-4 *9 (-1233 *8)) + (-4 *2 (-342 *8 *9 *10)) (-5 *1 (-340 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-342 *5 *6 *7)) (-4 *10 (-1233 (-407 *9))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) + (-4 *2 (-373 *6)) (-5 *1 (-371 *5 *4 *6 *2)) (-4 *4 (-373 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-1093)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-418 *5)) (-4 *5 (-555)) + (-4 *6 (-555)) (-5 *2 (-418 *6)) (-5 *1 (-405 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-407 *5)) (-4 *5 (-555)) + (-4 *6 (-555)) (-5 *2 (-407 *6)) (-5 *1 (-406 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-413 *5 *6 *7 *8)) (-4 *5 (-307)) + (-4 *6 (-988 *5)) (-4 *7 (-1233 *6)) + (-4 *8 (-13 (-409 *6 *7) (-1034 *6))) (-4 *9 (-307)) + (-4 *10 (-988 *9)) (-4 *11 (-1233 *10)) + (-5 *2 (-413 *9 *10 *11 *12)) + (-5 *1 (-412 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-409 *10 *11) (-1034 *10))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) + (-4 *2 (-417 *6)) (-5 *1 (-415 *4 *5 *2 *6)) (-4 *4 (-417 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-555)) (-5 *1 (-418 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1045) (-846))) + (-4 *6 (-13 (-1045) (-846))) (-4 *2 (-430 *6)) + (-5 *1 (-421 *5 *4 *6 *2)) (-4 *4 (-430 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1093)) (-4 *6 (-1093)) + (-4 *2 (-425 *6)) (-5 *1 (-423 *5 *4 *6 *2)) (-4 *4 (-425 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-489 *3)) (-4 *3 (-1208)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-509 *3 *4)) (-4 *3 (-1093)) + (-4 *4 (-846)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-584 *5)) (-4 *5 (-363)) + (-4 *6 (-363)) (-5 *2 (-584 *6)) (-5 *1 (-583 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *6 *5)) + (-5 *4 (-3 (-2 (|:| -3646 *5) (|:| |coeff| *5)) "failed")) + (-4 *5 (-363)) (-4 *6 (-363)) + (-5 *2 (-2 (|:| -3646 *6) (|:| |coeff| *6))) + (-5 *1 (-583 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) + (-4 *5 (-363)) (-4 *2 (-363)) (-5 *1 (-583 *5 *2)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *6 *5)) + (-5 *4 + (-3 + (-2 (|:| |mainpart| *5) + (|:| |limitedlogs| + (-640 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + "failed")) + (-4 *5 (-363)) (-4 *6 (-363)) + (-5 *2 + (-2 (|:| |mainpart| *6) + (|:| |limitedlogs| + (-640 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-583 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-598 *5)) (-4 *5 (-1208)) + (-4 *6 (-1208)) (-5 *2 (-598 *6)) (-5 *1 (-595 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-598 *6)) (-5 *5 (-598 *7)) + (-4 *6 (-1208)) (-4 *7 (-1208)) (-4 *8 (-1208)) (-5 *2 (-598 *8)) + (-5 *1 (-596 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1149 *6)) (-5 *5 (-598 *7)) + (-4 *6 (-1208)) (-4 *7 (-1208)) (-4 *8 (-1208)) (-5 *2 (-1149 *8)) + (-5 *1 (-596 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-598 *6)) (-5 *5 (-1149 *7)) + (-4 *6 (-1208)) (-4 *7 (-1208)) (-4 *8 (-1208)) (-5 *2 (-1149 *8)) + (-5 *1 (-596 *6 *7 *8)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1208)) (-5 *1 (-598 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-640 *5)) (-4 *5 (-1208)) + (-4 *6 (-1208)) (-5 *2 (-640 *6)) (-5 *1 (-638 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-640 *6)) (-5 *5 (-640 *7)) + (-4 *6 (-1208)) (-4 *7 (-1208)) (-4 *8 (-1208)) (-5 *2 (-640 *8)) + (-5 *1 (-639 *6 *7 *8)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-646 *3)) (-4 *3 (-1208)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1045)) (-4 *8 (-1045)) + (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *2 (-682 *8 *9 *10)) + (-5 *1 (-680 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-682 *5 *6 *7)) + (-4 *9 (-373 *8)) (-4 *10 (-373 *8)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1045)) + (-4 *8 (-1045)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) + (-4 *2 (-682 *8 *9 *10)) (-5 *1 (-680 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-682 *5 *6 *7)) (-4 *9 (-373 *8)) (-4 *10 (-373 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-555)) (-4 *7 (-555)) + (-4 *6 (-1233 *5)) (-4 *2 (-1233 (-407 *8))) + (-5 *1 (-705 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1233 (-407 *6))) + (-4 *8 (-1233 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1045)) (-4 *9 (-1045)) + (-4 *5 (-846)) (-4 *6 (-789)) (-4 *2 (-945 *9 *7 *5)) + (-5 *1 (-724 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-789)) + (-4 *4 (-945 *8 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-846)) (-4 *6 (-846)) (-4 *7 (-789)) + (-4 *9 (-1045)) (-4 *2 (-945 *9 *8 *6)) + (-5 *1 (-725 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-789)) + (-4 *4 (-945 *9 *7 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-731 *5 *7)) (-4 *5 (-1045)) + (-4 *6 (-1045)) (-4 *7 (-722)) (-5 *2 (-731 *6 *7)) + (-5 *1 (-730 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-731 *3 *4)) + (-4 *4 (-722)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-778 *5)) (-4 *5 (-1045)) + (-4 *6 (-1045)) (-5 *2 (-778 *6)) (-5 *1 (-777 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) + (-4 *2 (-793 *6)) (-5 *1 (-794 *4 *5 *2 *6)) (-4 *4 (-793 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-829 *5)) (-4 *5 (-1093)) + (-4 *6 (-1093)) (-5 *2 (-829 *6)) (-5 *1 (-828 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-829 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-829 *5)) + (-4 *5 (-1093)) (-4 *6 (-1093)) (-5 *1 (-828 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-839 *5)) (-4 *5 (-1093)) + (-4 *6 (-1093)) (-5 *2 (-839 *6)) (-5 *1 (-838 *5 *6)))) + ((*1 *2 *3 *4 *2 *2) + (-12 (-5 *2 (-839 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-839 *5)) + (-4 *5 (-1093)) (-4 *6 (-1093)) (-5 *1 (-838 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-873 *5)) (-4 *5 (-1208)) + (-4 *6 (-1208)) (-5 *2 (-873 *6)) (-5 *1 (-872 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-875 *5)) (-4 *5 (-1208)) + (-4 *6 (-1208)) (-5 *2 (-875 *6)) (-5 *1 (-874 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-878 *5)) (-4 *5 (-1208)) + (-4 *6 (-1208)) (-5 *2 (-878 *6)) (-5 *1 (-877 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-885 *5 *6)) (-4 *5 (-1093)) + (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-885 *5 *7)) + (-5 *1 (-884 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1093)) + (-4 *6 (-1093)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-948 *5)) (-4 *5 (-1045)) + (-4 *6 (-1045)) (-5 *2 (-948 *6)) (-5 *1 (-942 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-846)) + (-4 *8 (-1045)) (-4 *6 (-789)) + (-4 *2 + (-13 (-1093) + (-10 -8 (-15 -1814 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-767)))))) + (-5 *1 (-947 *6 *7 *8 *5 *2)) (-4 *5 (-945 *8 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-954 *5)) (-4 *5 (-1208)) + (-4 *6 (-1208)) (-5 *2 (-954 *6)) (-5 *1 (-953 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-939 *5)) (-4 *5 (-1045)) + (-4 *6 (-1045)) (-5 *2 (-939 *6)) (-5 *1 (-977 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-1 *2 (-948 *4))) (-4 *4 (-1045)) + (-4 *2 (-945 (-948 *4) *5 *6)) (-4 *5 (-789)) + (-4 *6 + (-13 (-846) + (-10 -8 (-15 -2220 ((-1169) $)) + (-15 -2518 ((-3 $ "failed") (-1169)))))) + (-5 *1 (-980 *4 *5 *6 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-555)) (-4 *6 (-555)) + (-4 *2 (-988 *6)) (-5 *1 (-986 *5 *6 *4 *2)) (-4 *4 (-988 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) + (-4 *2 (-993 *6)) (-5 *1 (-994 *4 *5 *2 *6)) (-4 *4 (-993 *5)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1048 *3 *4 *5 *6 *7)) + (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1048 *3 *4 *5 *6 *7)) + (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1045)) (-4 *10 (-1045)) + (-14 *5 (-767)) (-14 *6 (-767)) (-4 *8 (-238 *6 *7)) + (-4 *9 (-238 *5 *7)) (-4 *2 (-1048 *5 *6 *10 *11 *12)) + (-5 *1 (-1050 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-1048 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) + (-4 *12 (-238 *5 *10)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1087 *5)) (-4 *5 (-1208)) + (-4 *6 (-1208)) (-5 *2 (-1087 *6)) (-5 *1 (-1082 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1087 *5)) (-4 *5 (-844)) + (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-640 *6)) + (-5 *1 (-1082 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1085 *5)) (-4 *5 (-1208)) + (-4 *6 (-1208)) (-5 *2 (-1085 *6)) (-5 *1 (-1084 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1088 *4 *2)) (-4 *4 (-844)) + (-4 *2 (-1142 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1149 *5)) (-4 *5 (-1208)) + (-4 *6 (-1208)) (-5 *2 (-1149 *6)) (-5 *1 (-1147 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1149 *6)) (-5 *5 (-1149 *7)) + (-4 *6 (-1208)) (-4 *7 (-1208)) (-4 *8 (-1208)) (-5 *2 (-1149 *8)) + (-5 *1 (-1148 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1165 *5)) (-4 *5 (-1045)) + (-4 *6 (-1045)) (-5 *2 (-1165 *6)) (-5 *1 (-1163 *5 *6)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1184 *3 *4)) (-4 *3 (-1093)) + (-4 *4 (-1093)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1221 *5 *7 *9)) (-4 *5 (-1045)) + (-4 *6 (-1045)) (-14 *7 (-1169)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1221 *6 *8 *10)) (-5 *1 (-1216 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1169)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1224 *5)) (-4 *5 (-1208)) + (-4 *6 (-1208)) (-5 *2 (-1224 *6)) (-5 *1 (-1223 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1224 *5)) (-4 *5 (-844)) + (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-1149 *6)) + (-5 *1 (-1223 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1230 *5 *6)) (-14 *5 (-1169)) + (-4 *6 (-1045)) (-4 *8 (-1045)) (-5 *2 (-1230 *7 *8)) + (-5 *1 (-1225 *5 *6 *7 *8)) (-14 *7 (-1169)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) + (-4 *2 (-1233 *6)) (-5 *1 (-1231 *5 *4 *6 *2)) (-4 *4 (-1233 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1242 *5 *7 *9)) (-4 *5 (-1045)) + (-4 *6 (-1045)) (-14 *7 (-1169)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1242 *6 *8 *10)) (-5 *1 (-1237 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1169)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) + (-4 *2 (-1248 *6)) (-5 *1 (-1246 *5 *6 *4 *2)) (-4 *4 (-1248 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1257 *5)) (-4 *5 (-1208)) + (-4 *6 (-1208)) (-5 *2 (-1257 *6)) (-5 *1 (-1256 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1257 *5)) + (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-1257 *6)) + (-5 *1 (-1256 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) + (-4 *4 (-1045)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-1280 *3 *4)) + (-4 *4 (-842))))) +(((*1 *2 *1) + (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-555)))) + ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-845)) - (-4 *5 (-265 *4)) (-4 *6 (-788)) (-5 *2 (-766)))) - ((*1 *2 *1) (-12 (-4 *1 (-265 *3)) (-4 *3 (-845)) (-5 *2 (-766))))) + (-12 (-4 *1 (-793 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-545)) (-4 *3 (-1093)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-545)) (-4 *3 (-1093)))) + ((*1 *2 *1) + (-12 (-4 *1 (-993 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1004 *3)) (-4 *3 (-1034 (-407 (-563))))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-767)) (-4 *4 (-555)) (-5 *1 (-965 *4 *2)) + (-4 *2 (-1233 *4))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1087 *3)) (-4 *3 (-945 *7 *6 *4)) (-4 *6 (-789)) + (-4 *4 (-846)) (-4 *7 (-555)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-563)))) + (-5 *1 (-592 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-555)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-563)))) + (-5 *1 (-592 *5 *4 *6 *3)) (-4 *3 (-945 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-858))) ((*1 *1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *1) (-5 *1 (-858))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1169)) + (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *1 (-1161 *4 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1193))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1085 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1193))) + (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *1 (-1161 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-555) (-846) (-1034 (-563)))) + (-5 *2 (-407 (-948 *5))) (-5 *1 (-1162 *5)) (-5 *3 (-948 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-555) (-846) (-1034 (-563)))) + (-5 *2 (-3 (-407 (-948 *5)) (-316 *5))) (-5 *1 (-1162 *5)) + (-5 *3 (-407 (-948 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1085 (-948 *5))) (-5 *3 (-948 *5)) + (-4 *5 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-407 *3)) + (-5 *1 (-1162 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1085 (-407 (-948 *5)))) (-5 *3 (-407 (-948 *5))) + (-4 *5 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-3 *3 (-316 *5))) + (-5 *1 (-1162 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-112)) (-5 *1 (-825))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) + (-5 *2 (-1031)) (-5 *1 (-748))))) +(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-4 *1 (-107 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) + (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112)) (-5 *1 (-276 *4 *3)) + (-4 *3 (-13 (-430 *4) (-998)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-767)) (-5 *4 (-1257 *2)) (-4 *5 (-307)) + (-4 *6 (-988 *5)) (-4 *2 (-13 (-409 *6 *7) (-1034 *6))) + (-5 *1 (-413 *5 *6 *7 *2)) (-4 *7 (-1233 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) + (-5 *2 (-1165 *3))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-13 (-555) (-147))) (-5 *1 (-1227 *3 *2)) + (-4 *2 (-1233 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-640 *1)) (-4 *1 (-302)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) + ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-609 *3)) (-4 *3 (-846)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-114)) (-5 *3 (-640 *5)) (-5 *4 (-767)) (-4 *5 (-846)) + (-5 *1 (-609 *5))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2796)) (-5 *2 (-112)) (-5 *1 (-613)))) + (-12 (-5 *3 (|[\|\|]| -1674)) (-5 *2 (-112)) (-5 *1 (-614)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -4380)) (-5 *2 (-112)) (-5 *1 (-613)))) + (-12 (-5 *3 (|[\|\|]| -2484)) (-5 *2 (-112)) (-5 *1 (-614)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -1615)) (-5 *2 (-112)) (-5 *1 (-613)))) + (-12 (-5 *3 (|[\|\|]| -3563)) (-5 *2 (-112)) (-5 *1 (-614)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -1918)) (-5 *2 (-112)) (-5 *1 (-685 *4)) - (-4 *4 (-609 (-857))))) + (-12 (-5 *3 (|[\|\|]| -2598)) (-5 *2 (-112)) (-5 *1 (-686 *4)) + (-4 *4 (-610 (-858))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-609 (-857))) (-5 *2 (-112)) - (-5 *1 (-685 *4)))) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-610 (-858))) (-5 *2 (-112)) + (-5 *1 (-686 *4)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-562))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-563))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1150))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1151))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-505))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-506))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-589))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-590))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-477))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-478))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1158))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1159))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-622))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-623))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1088))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1089))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1082))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1083))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1066))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1067))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-965))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-966))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1031))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1032))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-310))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-311))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-665))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-666))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-153))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-524))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1267))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1268))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1059))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1060))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-675))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-676))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1107))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1108))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-1266))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1267))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-670))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-671))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-217))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1129)) (-5 *3 (|[\|\|]| (-523))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-524))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1150))) (-5 *2 (-112)) (-5 *1 (-1173)))) + (-12 (-5 *3 (|[\|\|]| (-1151))) (-5 *2 (-112)) (-5 *1 (-1174)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1168))) (-5 *2 (-112)) (-5 *1 (-1173)))) + (-12 (-5 *3 (|[\|\|]| (-1169))) (-5 *2 (-112)) (-5 *1 (-1174)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-224))) (-5 *2 (-112)) (-5 *1 (-1173)))) + (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1174)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-562))) (-5 *2 (-112)) (-5 *1 (-1173))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-224) (-224) (-224))) - (-5 *4 (-1 (-224) (-224) (-224) (-224))) - (-5 *2 (-1 (-938 (-224)) (-224) (-224))) (-5 *1 (-691))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-562)) (-4 *5 (-348)) (-5 *2 (-417 (-1164 (-1164 *5)))) - (-5 *1 (-1205 *5)) (-5 *3 (-1164 (-1164 *5)))))) -(((*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-435)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-435))))) + (-12 (-5 *3 (|[\|\|]| (-563))) (-5 *2 (-112)) (-5 *1 (-1174))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1208)) (-5 *1 (-598 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1208)) (-5 *1 (-1149 *3))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1248 *4)) (-5 *1 (-1250 *4 *2)) + (-4 *4 (-38 (-407 (-563))))))) +(((*1 *2 *3 *4 *4 *5 *3 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) + (-5 *2 (-1031)) (-5 *1 (-748))))) +(((*1 *1 *1) + (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) (((*1 *2 *2) - (-12 (-4 *3 (-451)) (-4 *3 (-845)) (-4 *3 (-1033 (-562))) - (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3)) - (-4 *2 - (-13 (-362) (-301) - (-10 -8 (-15 -4063 ((-1117 *3 (-608 $)) $)) - (-15 -4079 ((-1117 *3 (-608 $)) $)) - (-15 -4053 ($ (-1117 *3 (-608 $)))))))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -4310 *1) (|:| -4390 *1) (|:| |associate| *1))) - (-4 *1 (-554))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) - (-5 *1 (-752))))) -(((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-845) (-1033 (-562)) (-635 (-562)) (-451))) - (-5 *2 - (-2 - (|:| |%term| - (-2 (|:| |%coef| (-1241 *4 *5 *6)) - (|:| |%expon| (-318 *4 *5 *6)) - (|:| |%expTerms| - (-639 (-2 (|:| |k| (-406 (-562))) (|:| |c| *4)))))) - (|:| |%type| (-1150)))) - (-5 *1 (-1242 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1192) (-429 *3))) - (-14 *5 (-1168)) (-14 *6 *4)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-279))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-562)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1207)) - (-4 *3 (-372 *4)) (-4 *5 (-372 *4))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1044)))) - ((*1 *2 *1 *1) - (-12 (-4 *2 (-1044)) (-5 *1 (-50 *2 *3)) (-14 *3 (-639 (-1168))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-639 (-916))) (-4 *2 (-362)) (-5 *1 (-151 *4 *2 *5)) - (-14 *4 (-916)) (-14 *5 (-988 *4 *2)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-315 *3)) (-5 *1 (-222 *3 *4)) - (-4 *3 (-13 (-1044) (-845))) (-14 *4 (-639 (-1168))))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-130)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1092)) (-4 *2 (-1044)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-562)) (-4 *2 (-554)) (-5 *1 (-619 *2 *4)) - (-4 *4 (-1232 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-4 *1 (-703 *2)) (-4 *2 (-1044)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-1044)) (-5 *1 (-730 *2 *3)) (-4 *3 (-721)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-639 *5)) (-5 *3 (-639 (-766))) (-4 *1 (-735 *4 *5)) - (-4 *4 (-1044)) (-4 *5 (-845)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-766)) (-4 *1 (-735 *4 *2)) (-4 *4 (-1044)) - (-4 *2 (-845)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-766)) (-4 *1 (-847 *2)) (-4 *2 (-1044)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-639 *6)) (-5 *3 (-639 (-766))) (-4 *1 (-944 *4 *5 *6)) - (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *6 (-845)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-766)) (-4 *1 (-944 *4 *5 *2)) (-4 *4 (-1044)) - (-4 *5 (-788)) (-4 *2 (-845)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-766)) (-4 *2 (-944 *4 (-530 *5) *5)) - (-5 *1 (-1118 *4 *5 *2)) (-4 *4 (-1044)) (-4 *5 (-845)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-766)) (-5 *2 (-947 *4)) (-5 *1 (-1201 *4)) - (-4 *4 (-1044))))) -(((*1 *2 *1) - (-12 (-5 *2 (-639 (-562))) (-5 *1 (-999 *3)) (-14 *3 (-562))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))) - ((*1 *1 *1 *1) (-5 *1 (-1112)))) -(((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-4 *1 (-898 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-639 (-1206))) (-5 *3 (-1206)) (-5 *1 (-675))))) -(((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-516))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1256 (-1168))) (-5 *3 (-1256 (-452 *4 *5 *6 *7))) - (-5 *1 (-452 *4 *5 *6 *7)) (-4 *4 (-171)) (-14 *5 (-916)) - (-14 *6 (-639 (-1168))) (-14 *7 (-1256 (-683 *4))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-1256 (-452 *4 *5 *6 *7))) - (-5 *1 (-452 *4 *5 *6 *7)) (-4 *4 (-171)) (-14 *5 (-916)) - (-14 *6 (-639 *2)) (-14 *7 (-1256 (-683 *4))))) + (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) + (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *5 (-13 (-611 *2) (-172))) (-5 *2 (-888 *4)) + (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1093)) (-4 *3 (-166 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 (-1087 (-839 (-379))))) + (-5 *2 (-640 (-1087 (-839 (-225))))) (-5 *1 (-305)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-858)) (-5 *3 (-563)) (-5 *1 (-394)))) ((*1 *1 *2) - (-12 (-5 *2 (-1256 (-452 *3 *4 *5 *6))) (-5 *1 (-452 *3 *4 *5 *6)) - (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) - (-14 *6 (-1256 (-683 *3))))) + (-12 (-5 *2 (-1257 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4)) + (-4 *4 (-1233 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1233 *3)) + (-5 *2 (-1257 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1257 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1256 (-1168))) (-5 *1 (-452 *3 *4 *5 *6)) - (-4 *3 (-171)) (-14 *4 (-916)) (-14 *5 (-639 (-1168))) - (-14 *6 (-1256 (-683 *3))))) + (-12 (-5 *2 (-418 *1)) (-4 *1 (-430 *3)) (-4 *3 (-555)) + (-4 *3 (-846)))) ((*1 *1 *2) - (-12 (-5 *2 (-1168)) (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-171)) - (-14 *4 (-916)) (-14 *5 (-639 *2)) (-14 *6 (-1256 (-683 *3))))) - ((*1 *1) - (-12 (-5 *1 (-452 *2 *3 *4 *5)) (-4 *2 (-171)) (-14 *3 (-916)) - (-14 *4 (-639 (-1168))) (-14 *5 (-1256 (-683 *2)))))) -(((*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-639 (-639 (-938 (-224))))))) - ((*1 *2 *1) (-12 (-4 *1 (-969)) (-5 *2 (-639 (-639 (-938 (-224)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) -(((*1 *2 *1) - (-12 (-14 *3 (-639 (-1168))) (-4 *4 (-171)) - (-4 *5 (-237 (-3492 *3) (-766))) - (-14 *6 - (-1 (-112) (-2 (|:| -2464 *2) (|:| -1300 *5)) - (-2 (|:| -2464 *2) (|:| -1300 *5)))) - (-4 *2 (-845)) (-5 *1 (-460 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-944 *4 *5 (-859 *3)))))) -(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-857))) - ((*1 *1 *1 *1) (-4 *1 (-962)))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-639 (-112))) (-5 *5 (-683 (-224))) - (-5 *6 (-683 (-562))) (-5 *7 (-224)) (-5 *3 (-562)) (-5 *2 (-1030)) - (-5 *1 (-749))))) + (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-1045)) + (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-463 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1097)) (-5 *1 (-536)))) + ((*1 *2 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1208)))) + ((*1 *1 *2) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1208)))) + ((*1 *1 *2) + (-12 (-4 *3 (-172)) (-4 *1 (-720 *3 *2)) (-4 *2 (-1233 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) + ((*1 *1 *2) + (-12 (-5 *2 (-948 *3)) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) + (-4 *5 (-611 (-1169))) (-4 *4 (-789)) (-4 *5 (-846)))) + ((*1 *1 *2) + (-4032 + (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5)) + (-12 (-2176 (-4 *3 (-38 (-407 (-563))))) (-4 *3 (-38 (-563))) + (-4 *5 (-611 (-1169)))) + (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))) + (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5)) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169)))) + (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))))) + ((*1 *1 *2) + (-12 (-5 *2 (-948 (-407 (-563)))) (-4 *1 (-1059 *3 *4 *5)) + (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169))) (-4 *3 (-1045)) + (-4 *4 (-789)) (-4 *5 (-846)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-640 *7)) (|:| -2059 *8))) + (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1151)) + (-5 *1 (-1063 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-640 *7)) (|:| -2059 *8))) + (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1102 *4 *5 *6 *7)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1151)) + (-5 *1 (-1138 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1097)) (-5 *1 (-1174)))) + ((*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-1174)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-858)) (-5 *3 (-563)) (-5 *1 (-1188)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-858)) (-5 *3 (-563)) (-5 *1 (-1188)))) + ((*1 *2 *3) + (-12 (-5 *3 (-776 *4 (-860 *5))) + (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *5 (-640 (-1169))) + (-5 *2 (-776 *4 (-860 *6))) (-5 *1 (-1283 *4 *5 *6)) + (-14 *6 (-640 (-1169))))) + ((*1 *2 *3) + (-12 (-5 *3 (-948 *4)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) + (-5 *2 (-948 (-1020 (-407 *4)))) (-5 *1 (-1283 *4 *5 *6)) + (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169))))) + ((*1 *2 *3) + (-12 (-5 *3 (-776 *4 (-860 *6))) + (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *6 (-640 (-1169))) + (-5 *2 (-948 (-1020 (-407 *4)))) (-5 *1 (-1283 *4 *5 *6)) + (-14 *5 (-640 (-1169))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1165 *4)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) + (-5 *2 (-1165 (-1020 (-407 *4)))) (-5 *1 (-1283 *4 *5 *6)) + (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169))))) + ((*1 *2 *3) + (-12 + (-5 *3 (-1139 *4 (-531 (-860 *6)) (-860 *6) (-776 *4 (-860 *6)))) + (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *6 (-640 (-1169))) + (-5 *2 (-640 (-776 *4 (-860 *6)))) (-5 *1 (-1283 *4 *5 *6)) + (-14 *5 (-640 (-1169)))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1093))))) +(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) + (-12 (-5 *3 (-917)) (-5 *4 (-225)) (-5 *5 (-563)) (-5 *6 (-870)) + (-5 *2 (-1262)) (-5 *1 (-1258))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1148 *3))) (-5 *2 (-1148 *3)) (-5 *1 (-1152 *3)) - (-4 *3 (-38 (-406 (-562)))) (-4 *3 (-1044))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-112)) - (-5 *2 (-1030)) (-5 *1 (-748))))) + (-12 (-5 *3 (-640 (-839 (-225)))) (-5 *4 (-225)) (-5 *2 (-640 *4)) + (-5 *1 (-267))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *2 (-452))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1165 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307))))) (((*1 *2 *3) - (-12 (-5 *3 (-1164 *7)) (-4 *7 (-944 *6 *4 *5)) (-4 *4 (-788)) - (-4 *5 (-845)) (-4 *6 (-1044)) (-5 *2 (-1164 *6)) - (-5 *1 (-320 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1277 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) - (-5 *2 (-814 *3)))) - ((*1 *2 *1) - (-12 (-4 *2 (-841)) (-5 *1 (-1279 *3 *2)) (-4 *3 (-1044))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-787)))) - ((*1 *2 *1) - (-12 (-5 *2 (-766)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1044)) - (-14 *4 (-639 (-1168))))) - ((*1 *2 *1) - (-12 (-5 *2 (-562)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1044) (-845))) - (-14 *4 (-639 (-1168))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1044)) (-4 *3 (-845)) - (-4 *5 (-265 *3)) (-4 *6 (-788)) (-5 *2 (-766)))) - ((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-274)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1164 *8)) (-5 *4 (-639 *6)) (-4 *6 (-845)) - (-4 *8 (-944 *7 *5 *6)) (-4 *5 (-788)) (-4 *7 (-1044)) - (-5 *2 (-639 (-766))) (-5 *1 (-320 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-916)))) - ((*1 *2 *1) - (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-845)) (-4 *4 (-171)) - (-5 *2 (-766)))) - ((*1 *2 *1) (-12 (-4 *1 (-469 *3 *2)) (-4 *3 (-171)) (-4 *2 (-23)))) - ((*1 *2 *1) - (-12 (-4 *3 (-554)) (-5 *2 (-562)) (-5 *1 (-619 *3 *4)) - (-4 *4 (-1232 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-703 *3)) (-4 *3 (-1044)) (-5 *2 (-766)))) - ((*1 *2 *1) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1044)) (-5 *2 (-766)))) - ((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) - ((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-900 *3)) (-4 *3 (-1092)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-639 *6)) (-4 *1 (-944 *4 *5 *6)) (-4 *4 (-1044)) - (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 (-766))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-944 *4 *5 *3)) (-4 *4 (-1044)) (-4 *5 (-788)) - (-4 *3 (-845)) (-5 *2 (-766)))) - ((*1 *2 *1) - (-12 (-4 *1 (-968 *3 *2 *4)) (-4 *3 (-1044)) (-4 *4 (-845)) - (-4 *2 (-787)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) - (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-766)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1218 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1247 *3)) - (-5 *2 (-562)))) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-789)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846)) + (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-917)) (-4 *6 (-13 (-555) (-846))) + (-5 *2 (-640 (-316 *6))) (-5 *1 (-221 *5 *6)) (-5 *3 (-316 *6)) + (-4 *5 (-1045)))) + ((*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-555)))) + ((*1 *2 *3) + (-12 (-5 *3 (-584 *5)) (-4 *5 (-13 (-29 *4) (-1193))) + (-4 *4 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) + (-5 *2 (-640 *5)) (-5 *1 (-582 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-584 (-407 (-948 *4)))) + (-4 *4 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) + (-5 *2 (-640 (-316 *4))) (-5 *1 (-587 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1239 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1216 *3)) - (-5 *2 (-406 (-562))))) + (-12 (-4 *1 (-1088 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1142 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 *1)) (-4 *1 (-1088 *4 *2)) (-4 *4 (-844)) + (-4 *2 (-1142 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1193))))) ((*1 *2 *1) - (-12 (-4 *1 (-1275 *3)) (-4 *3 (-362)) (-5 *2 (-828 (-916))))) + (-12 (-5 *2 (-1272 (-1169) *3)) (-5 *1 (-1279 *3)) (-4 *3 (-1045)))) ((*1 *2 *1) - (-12 (-4 *1 (-1277 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) - (-5 *2 (-766))))) + (-12 (-5 *2 (-1272 *3 *4)) (-5 *1 (-1281 *3 *4)) (-4 *3 (-846)) + (-4 *4 (-1045))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))) + ((*1 *1 *1 *1) (-5 *1 (-1113)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-640 (-684 *5))) (-5 *4 (-563)) (-4 *5 (-363)) + (-4 *5 (-1045)) (-5 *2 (-112)) (-5 *1 (-1025 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 (-684 *4))) (-4 *4 (-363)) (-4 *4 (-1045)) + (-5 *2 (-112)) (-5 *1 (-1025 *4))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-1257 (-563))) (-5 *3 (-563)) (-5 *1 (-1103)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-1257 (-563))) (-5 *3 (-640 (-563))) (-5 *4 (-563)) + (-5 *1 (-1103))))) (((*1 *2 *3) - (|partial| -12 (-4 *2 (-1092)) (-5 *1 (-1184 *3 *2)) (-4 *3 (-1092))))) -(((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171))))) + (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-938)) (-5 *3 (-563)))) + ((*1 *2 *2) + (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) + (-5 *1 (-1117 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 (-640 (-2 (|:| |val| (-640 *3)) (|:| -2059 *4)))) + (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) - (-4 *5 (-372 *3)) (-5 *2 (-639 (-639 *3))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) - (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-639 (-639 *5))))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-563)))) ((*1 *2 *1) - (-12 (-5 *2 (-639 (-639 *3))) (-5 *1 (-1179 *3)) (-4 *3 (-1092))))) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-563))))) +(((*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) + ((*1 *1 *1 *1) (-5 *1 (-858)))) +(((*1 *2 *3) + (-12 (-5 *2 (-640 (-640 (-563)))) (-5 *1 (-967)) + (-5 *3 (-640 (-563)))))) +(((*1 *1) (-5 *1 (-799)))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-767)) (-4 *5 (-555)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-965 *5 *3)) (-4 *3 (-1233 *5))))) +(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *1 *1) (-4 *1 (-963)))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) - (-5 *2 (-639 *4)) (-5 *1 (-1120 *3 *4)) (-4 *3 (-1232 *4)))) - ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) - (-5 *2 (-639 *3)) (-5 *1 (-1120 *4 *3)) (-4 *4 (-1232 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-857))) - ((*1 *1 *1 *1) (-4 *1 (-962)))) -(((*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-402 *3)) (-4 *3 (-403)))) - ((*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-402 *3)) (-4 *3 (-403)))) - ((*1 *2 *2) (-12 (-5 *2 (-916)) (|has| *1 (-6 -4394)) (-4 *1 (-403)))) - ((*1 *2) (-12 (-4 *1 (-403)) (-5 *2 (-916)))) - ((*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-5 *2 (-1148 (-562)))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) - (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) - (|:| |ub| (-639 (-838 (-224)))))) - (-5 *1 (-266))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-722) (-25)))))) (((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-362) (-843))) (-5 *1 (-180 *2 *3)) - (-4 *3 (-1232 (-168 *2))))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-362) (-843))) (-5 *1 (-180 *2 *3)) - (-4 *3 (-1232 (-168 *2)))))) -(((*1 *2) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) - (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-869))))) + (-12 (-5 *2 (-1149 *4)) (-5 *3 (-1 *4 (-563))) (-4 *4 (-1045)) + (-5 *1 (-1153 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-169 (-225))) (-5 *5 (-563)) (-5 *6 (-1151)) + (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754))))) (((*1 *2 *2) - (-12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) - (-5 *1 (-520 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-554)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) - (-4 *7 (-987 *4)) (-4 *2 (-681 *7 *8 *9)) - (-5 *1 (-521 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-681 *4 *5 *6)) - (-4 *8 (-372 *7)) (-4 *9 (-372 *7)))) - ((*1 *1 *1) - (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) - (-4 *4 (-372 *2)) (-4 *2 (-306)))) - ((*1 *2 *2) - (-12 (-4 *3 (-306)) (-4 *3 (-171)) (-4 *4 (-372 *3)) - (-4 *5 (-372 *3)) (-5 *1 (-682 *3 *4 *5 *2)) - (-4 *2 (-681 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-683 *3)) (-4 *3 (-306)) (-5 *1 (-694 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1047 *2 *3 *4 *5 *6)) (-4 *4 (-1044)) - (-4 *5 (-237 *3 *4)) (-4 *6 (-237 *2 *4)) (-4 *4 (-306))))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-683 (-224))) (-5 *5 (-683 (-562))) (-5 *3 (-562)) - (-5 *2 (-1030)) (-5 *1 (-751))))) -(((*1 *2 *3) - (-12 (-4 *4 (-348)) (-5 *2 (-953 (-1164 *4))) (-5 *1 (-356 *4)) - (-5 *3 (-1164 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1150)) (-5 *1 (-1188))))) -(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-857))) - ((*1 *1 *1) (-4 *1 (-962))) ((*1 *1 *1) (-5 *1 (-1112)))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-554)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) - (-5 *1 (-1197 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1168)) (-5 *2 (-1 (-1164 (-947 *4)) (-947 *4))) - (-5 *1 (-1264 *4)) (-4 *4 (-362))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-168 (-224)))) (-5 *2 (-1030)) - (-5 *1 (-749))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1168)) (-5 *4 (-947 (-562))) (-5 *2 (-329)) - (-5 *1 (-331))))) -(((*1 *1 *2) (-12 (-5 *2 (-639 *1)) (-4 *1 (-301)))) - ((*1 *1 *1) (-4 *1 (-301))) - ((*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) - ((*1 *1 *1) (-5 *1 (-857)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-683 (-168 (-406 (-562))))) (-5 *2 (-639 (-168 *4))) - (-5 *1 (-759 *4)) (-4 *4 (-13 (-362) (-843)))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-788)) - (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-639 (-608 *2))) (-5 *4 (-1168)) - (-4 *2 (-13 (-27) (-1192) (-429 *5))) - (-4 *5 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *1 (-276 *5 *2))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1007)) (-5 *2 (-857))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-639 *3)) (-4 *3 (-1207))))) -(((*1 *2 *2) (-12 (-5 *1 (-584 *2)) (-4 *2 (-544))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-639 (-406 *7))) - (-4 *7 (-1232 *6)) (-5 *3 (-406 *7)) (-4 *6 (-362)) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-572 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-639 (-947 (-562)))) (-5 *1 (-436)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1168)) (-5 *4 (-683 (-224))) (-5 *2 (-1096)) - (-5 *1 (-754)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1168)) (-5 *4 (-683 (-562))) (-5 *2 (-1096)) - (-5 *1 (-754))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) - (|:| |expense| (-378)) (|:| |accuracy| (-378)) - (|:| |intermediateResults| (-378)))) - (-5 *2 (-1030)) (-5 *1 (-304))))) -(((*1 *1 *2) (-12 (-5 *2 (-639 (-143))) (-5 *1 (-140)))) - ((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-140))))) + (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) (((*1 *1 *1) - (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-554)))) - ((*1 *1 *1) (|partial| -4 *1 (-717)))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1207))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-766)) (-4 *4 (-1044)) - (-5 *2 (-2 (|:| -3380 *1) (|:| -1441 *1))) (-4 *1 (-1232 *4))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) - (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) - (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) - (|:| |abserr| (-224)) (|:| |relerr| (-224)))) - (-5 *2 (-378)) (-5 *1 (-204))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-1 (-112) *8))) (-4 *8 (-1058 *5 *6 *7)) - (-4 *5 (-554)) (-4 *6 (-788)) (-4 *7 (-845)) - (-5 *2 (-2 (|:| |goodPols| (-639 *8)) (|:| |badPols| (-639 *8)))) - (-5 *1 (-972 *5 *6 *7 *8)) (-5 *4 (-639 *8))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-4 *3 (-1058 *5 *6 *7)) - (-5 *2 (-639 (-2 (|:| |val| (-112)) (|:| -1501 *4)))) - (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-916)) (-4 *1 (-237 *3 *4)) (-4 *4 (-1044)) - (-4 *4 (-1207)))) - ((*1 *1 *2) - (-12 (-14 *3 (-639 (-1168))) (-4 *4 (-171)) - (-4 *5 (-237 (-3492 *3) (-766))) - (-14 *6 - (-1 (-112) (-2 (|:| -2464 *2) (|:| -1300 *5)) - (-2 (|:| -2464 *2) (|:| -1300 *5)))) - (-5 *1 (-460 *3 *4 *2 *5 *6 *7)) (-4 *2 (-845)) - (-4 *7 (-944 *4 *5 (-859 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-938 (-224))) (-5 *1 (-1203))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1168)) - (-4 *4 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) - (-5 *1 (-799 *4 *2)) (-4 *2 (-13 (-29 *4) (-1192) (-954)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1200 *2 *3 *4 *5)) (-4 *2 (-554)) (-4 *3 (-788)) - (-4 *4 (-845)) (-4 *5 (-1058 *2 *3 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-562)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1207)) - (-4 *5 (-372 *4)) (-4 *2 (-372 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-562)) (-4 *1 (-1047 *4 *5 *6 *7 *2)) (-4 *6 (-1044)) - (-4 *7 (-237 *5 *6)) (-4 *2 (-237 *4 *6))))) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846))))) (((*1 *2 *2) - (-12 (-5 *2 (-766)) (-5 *1 (-444 *3)) (-4 *3 (-403)) (-4 *3 (-1044)))) - ((*1 *2) - (-12 (-5 *2 (-766)) (-5 *1 (-444 *3)) (-4 *3 (-403)) (-4 *3 (-1044))))) -(((*1 *1 *1) - (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-938 (-224)) (-938 (-224)))) (-5 *1 (-262)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1256 *1)) (-4 *1 (-328 *4)) (-4 *4 (-362)) - (-5 *2 (-683 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1256 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) - (-5 *2 (-683 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) - (-5 *2 (-1256 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1256 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) - (-4 *5 (-1232 *4)) (-5 *2 (-683 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1256 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-171)) - (-4 *5 (-1232 *4)) (-5 *2 (-1256 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1256 *1)) (-4 *1 (-408 *4 *5)) (-4 *4 (-171)) - (-4 *5 (-1232 *4)) (-5 *2 (-683 *4)))) + (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) + (-5 *1 (-176 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-408 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1232 *3)) - (-5 *2 (-1256 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1256 *1)) (-4 *1 (-416 *4)) (-4 *4 (-171)) - (-5 *2 (-683 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1256 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-639 (-683 *5))) (-5 *3 (-683 *5)) (-4 *5 (-362)) - (-5 *2 (-1256 *5)) (-5 *1 (-1078 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-362)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) - (-5 *2 (-1256 *6)) (-5 *1 (-335 *3 *4 *5 *6)) - (-4 *6 (-341 *3 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *1 (-878)) - (-5 *3 (-639 (-562)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-562)) (-4 *6 (-788)) (-4 *7 (-845)) (-4 *8 (-306)) - (-4 *9 (-944 *8 *6 *7)) - (-5 *2 (-2 (|:| -4201 (-1164 *9)) (|:| |polval| (-1164 *8)))) - (-5 *1 (-737 *6 *7 *8 *9)) (-5 *3 (-1164 *9)) (-5 *4 (-1164 *8))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) + (-4 *4 (-1045))))) +(((*1 *2 *3 *4 *4 *5 *6 *7) + (-12 (-5 *5 (-1169)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-640 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-640 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -3646 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1193) (-27) (-430 *8))) + (-4 *8 (-13 (-452) (-846) (-147) (-1034 *3) (-636 *3))) + (-5 *3 (-563)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -1701 *4) (|:| |sol?| (-112)))) + (-5 *1 (-1009 *8 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1044)) - (-4 *2 (-451)))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 *4)) (-4 *4 (-1232 (-562))) (-5 *2 (-639 (-562))) - (-5 *1 (-485 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-451)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-944 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *2 (-845)) (-4 *3 (-451))))) -(((*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *2)) (-4 *2 (-171)))) - ((*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-415 *3 *2)) (-4 *3 (-416 *2)))) - ((*1 *2) (-12 (-4 *1 (-416 *2)) (-4 *2 (-171))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-554)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1606 *3))) - (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-856)))) - ((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-856))))) -(((*1 *2 *2) (-12 (-5 *2 (-766)) (-5 *1 (-444 *3)) (-4 *3 (-1044)))) - ((*1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-444 *3)) (-4 *3 (-1044))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-639 (-938 *4))) (-4 *1 (-1126 *4)) (-4 *4 (-1044)) - (-5 *2 (-766))))) -(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) -(((*1 *2 *3) - (-12 (-5 *3 (-639 (-2 (|:| -1635 *4) (|:| -2250 (-562))))) - (-4 *4 (-1232 (-562))) (-5 *2 (-732 (-766))) (-5 *1 (-441 *4)))) + (-12 (-5 *2 (-174 (-407 (-563)))) (-5 *1 (-117 *3)) (-14 *3 (-563)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *3 (-1149 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-307)) (-5 *1 (-174 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-417 *5)) (-4 *5 (-1232 *4)) (-4 *4 (-1044)) - (-5 *2 (-732 (-766))) (-5 *1 (-443 *4 *5))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *5 (-224)) - (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL)))) - (-5 *2 (-1030)) (-5 *1 (-744)))) - ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *5 (-224)) - (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-87 BDYVAL)))) - (-5 *8 (-387)) (-5 *2 (-1030)) (-5 *1 (-744))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258))))) -(((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) - ((*1 *2 *1) (-12 (-4 *1 (-1113 *3)) (-4 *3 (-1207)) (-5 *2 (-766))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) - (-4 *6 (-788)) (-5 *2 (-639 *3)) (-5 *1 (-919 *4 *5 *6 *3)) - (-4 *3 (-944 *4 *6 *5))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *4 (-224)) - (-5 *2 (-1030)) (-5 *1 (-747))))) -(((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-639 *3)) (-5 *5 (-916)) (-4 *3 (-1232 *4)) - (-4 *4 (-306)) (-5 *1 (-459 *4 *3))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1168)) (-5 *3 (-639 (-960))) (-5 *1 (-290))))) -(((*1 *2 *1) (-12 (-4 *1 (-424 *3)) (-4 *3 (-1092)) (-5 *2 (-766))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1261)) (-5 *1 (-817))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-401)) (-5 *2 (-766)))) - ((*1 *1 *1) (-4 *1 (-401)))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) - (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) - (-4 *2 (-13 (-429 *3) (-1192)))))) -(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-1150))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-971 *3 *4 *2 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *2 (-845)) (-4 *5 (-1058 *3 *4 *2))))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-112)) (-5 *1 (-887 *4)) - (-4 *4 (-1092))))) -(((*1 *2 *3) - (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-639 (-1168))) (-4 *5 (-1044)) - (-5 *2 (-480 *4 *5)) (-5 *1 (-939 *4 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-639 (-1068 *4 *5 *2))) (-4 *4 (-1092)) - (-4 *5 (-13 (-1044) (-881 *4) (-845) (-610 (-887 *4)))) - (-4 *2 (-13 (-429 *5) (-881 *4) (-610 (-887 *4)))) - (-5 *1 (-54 *4 *5 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-639 (-1068 *5 *6 *2))) (-5 *4 (-916)) (-4 *5 (-1092)) - (-4 *6 (-13 (-1044) (-881 *5) (-845) (-610 (-887 *5)))) - (-4 *2 (-13 (-429 *6) (-881 *5) (-610 (-887 *5)))) - (-5 *1 (-54 *5 *6 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) - (-4 *2 (-13 (-429 *3) (-1192)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1092)) - (-5 *2 (-639 (-2 (|:| |k| *4) (|:| |c| *3)))))) + (-12 (-5 *2 (-174 (-563))) (-5 *1 (-761 *3)) (-4 *3 (-404)))) ((*1 *2 *1) - (-12 (-5 *2 (-639 (-2 (|:| |k| (-888 *3)) (|:| |c| *4)))) - (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-845)) - (-4 *4 (-13 (-171) (-712 (-406 (-562))))) (-14 *5 (-916)))) + (-12 (-5 *2 (-174 (-407 (-563)))) (-5 *1 (-867 *3)) (-14 *3 (-563)))) ((*1 *2 *1) - (-12 (-5 *2 (-639 (-666 *3))) (-5 *1 (-888 *3)) (-4 *3 (-845))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) - (-5 *1 (-747))))) -(((*1 *2 *1) - (-12 (-5 *2 (-766)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-562)) - (-14 *4 *2) (-4 *5 (-171)))) - ((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-916)) (-5 *1 (-164 *3 *4)) - (-4 *3 (-165 *4)))) - ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-916)))) + (-12 (-14 *3 (-563)) (-5 *2 (-174 (-407 (-563)))) + (-5 *1 (-868 *3 *4)) (-4 *4 (-865 *3))))) +(((*1 *2) (-12 (-5 *2 (-829 (-563))) (-5 *1 (-534)))) + ((*1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-1093))))) +(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *1 *1) (-4 *1 (-963)))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-640 (-1169))) + (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) ((*1 *2) - (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-171)) (-4 *4 (-1232 *3)) - (-5 *2 (-916)))) + (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-640 (-1169))) + (-14 *4 (-640 (-1169))) (-4 *5 (-387))))) +(((*1 *1) (-5 *1 (-1078)))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) + (-5 *2 (-1031)) (-5 *1 (-748))))) +(((*1 *1 *1) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) + (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-563)))) + ((*1 *1 *1) (-4 *1 (-998))) + ((*1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-1008)))) + ((*1 *1 *2) (-12 (-5 *2 (-407 (-563))) (-4 *1 (-1008)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-917)))) + ((*1 *1 *1) (-4 *1 (-1008)))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-379)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) + ((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263))))) +(((*1 *2 *3) + (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3)) + (-4 *3 (-1233 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-362)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) - (-5 *2 (-766)) (-5 *1 (-520 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6)))) + (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-683 *5)) (-5 *4 (-1256 *5)) (-4 *5 (-362)) - (-5 *2 (-766)) (-5 *1 (-661 *5)))) + (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) + (-4 *3 (-1233 (-563))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4404)))) - (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4404)))) (-5 *2 (-766)) - (-5 *1 (-662 *5 *6 *4 *3)) (-4 *3 (-681 *5 *6 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) - (-4 *5 (-372 *3)) (-4 *3 (-554)) (-5 *2 (-766)))) + (-12 (-5 *4 (-640 (-767))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) + (-4 *3 (-1233 (-563))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-640 (-767))) (-5 *5 (-767)) (-5 *2 (-418 *3)) + (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) + (-4 *3 (-1233 (-563))))) ((*1 *2 *3) - (-12 (-4 *4 (-554)) (-4 *4 (-171)) (-4 *5 (-372 *4)) - (-4 *6 (-372 *4)) (-5 *2 (-766)) (-5 *1 (-682 *4 *5 *6 *3)) - (-4 *3 (-681 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) - (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-4 *5 (-554)) - (-5 *2 (-766))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) - (-5 *2 - (-2 (|:| |solns| (-639 *5)) - (|:| |maps| (-639 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1120 *3 *5)) (-4 *3 (-1232 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-554)) - (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2355 *3) (|:| |coef2| (-777 *3)))) - (-5 *1 (-777 *3)) (-4 *3 (-554)) (-4 *3 (-1044))))) -(((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-562)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) - (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))) + (-12 (-5 *2 (-418 *3)) (-5 *1 (-1003 *3)) + (-4 *3 (-1233 (-407 (-563)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-418 *3)) (-5 *1 (-1222 *3)) (-4 *3 (-1233 (-563)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1149 (-563))) (-5 *1 (-1153 *4)) (-4 *4 (-1045)) + (-5 *3 (-563))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-128))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-430 *3) (-998))) (-5 *1 (-276 *3 *2)) + (-4 *3 (-13 (-846) (-555))))) + ((*1 *1) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) + (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) + ((*1 *1) (-5 *1 (-477))) ((*1 *1) (-4 *1 (-1193)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-767)) (-4 *6 (-1093)) (-4 *3 (-896 *6)) + (-5 *2 (-684 *3)) (-5 *1 (-687 *6 *3 *7 *4)) (-4 *7 (-373 *3)) + (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4407))))))) +(((*1 *1 *1) (-5 *1 (-858))) ((*1 *1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208)))) + ((*1 *1 *2) (-12 (-5 *1 (-1224 *2)) (-4 *2 (-1208))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-766)) (-5 *2 (-1256 (-639 (-562)))) (-5 *1 (-479)))) + (-12 (-5 *3 (-767)) (-5 *2 (-1257 (-640 (-563)))) (-5 *1 (-480)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1207)) (-5 *1 (-597 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1208)) (-5 *1 (-598 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1207)) (-5 *1 (-1148 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1207)) (-5 *1 (-1148 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-639 (-1193 *3))) (-5 *1 (-1193 *3)) (-4 *3 (-1092))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-362) (-146) (-1033 (-406 (-562))))) - (-4 *3 (-1232 *4)) (-5 *1 (-804 *4 *3 *2 *5)) (-4 *2 (-650 *3)) - (-4 *5 (-650 (-406 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-406 *5)) - (-4 *4 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *5 (-1232 *4)) - (-5 *1 (-804 *4 *5 *2 *6)) (-4 *2 (-650 *5)) (-4 *6 (-650 *3))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1208)) (-5 *1 (-1149 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1208)) (-5 *1 (-1149 *3))))) +(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *1) (-4 *1 (-963))) ((*1 *1 *1) (-5 *1 (-1113)))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-640 *1)) (-5 *3 (-640 *7)) (-4 *1 (-1065 *4 *5 *6 *7)) + (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *1)) + (-4 *1 (-1065 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-640 *1)) + (-4 *1 (-1065 *4 *5 *6 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) -(((*1 *2 *3) - (-12 (-4 *4 (-987 *2)) (-4 *2 (-554)) (-5 *1 (-141 *2 *4 *3)) - (-4 *3 (-372 *4)))) + (-12 (-5 *4 (-640 (-48))) (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1233 (-48))))) + ((*1 *2 *3) + (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1233 (-48))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-640 (-48))) (-4 *5 (-846)) (-4 *6 (-789)) + (-5 *2 (-418 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-945 (-48) *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-640 (-48))) (-4 *5 (-846)) (-4 *6 (-789)) + (-4 *7 (-945 (-48) *6 *5)) (-5 *2 (-418 (-1165 *7))) + (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1165 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-987 *2)) (-4 *2 (-554)) (-5 *1 (-502 *2 *4 *5 *3)) - (-4 *5 (-372 *2)) (-4 *3 (-372 *4)))) + (-12 (-4 *4 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-167 *4 *3)) + (-4 *3 (-1233 (-169 *4))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))) ((*1 *2 *3) - (-12 (-5 *3 (-683 *4)) (-4 *4 (-987 *2)) (-4 *2 (-554)) - (-5 *1 (-687 *2 *4)))) + (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-987 *2)) (-4 *2 (-554)) (-5 *1 (-1225 *2 *4 *3)) - (-4 *3 (-1232 *4))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) - (-5 *1 (-747))))) -(((*1 *1 *1) - (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) - (-4 *2 (-13 (-429 *3) (-1192)))))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-639 (-1164 *11))) (-5 *3 (-1164 *11)) - (-5 *4 (-639 *10)) (-5 *5 (-639 *8)) (-5 *6 (-639 (-766))) - (-5 *7 (-1256 (-639 (-1164 *8)))) (-4 *10 (-845)) - (-4 *8 (-306)) (-4 *11 (-944 *8 *9 *10)) (-4 *9 (-788)) - (-5 *1 (-702 *9 *10 *8 *11))))) + (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3)) + (-4 *3 (-1233 *4)))) + ((*1 *2 *3) + (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) + (-4 *3 (-1233 (-563))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-640 (-767))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) + (-4 *3 (-1233 (-563))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-640 (-767))) (-5 *5 (-767)) (-5 *2 (-418 *3)) + (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) + (-4 *3 (-1233 (-563))))) + ((*1 *2 *3) + (-12 (-5 *2 (-418 (-169 (-563)))) (-5 *1 (-446)) + (-5 *3 (-169 (-563))))) + ((*1 *2 *3) + (-12 + (-4 *4 + (-13 (-846) + (-10 -8 (-15 -2220 ((-1169) $)) + (-15 -2518 ((-3 $ "failed") (-1169)))))) + (-4 *5 (-789)) (-4 *7 (-555)) (-5 *2 (-418 *3)) + (-5 *1 (-456 *4 *5 *6 *7 *3)) (-4 *6 (-555)) + (-4 *3 (-945 *7 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-307)) (-5 *2 (-418 (-1165 *4))) (-5 *1 (-458 *4)) + (-5 *3 (-1165 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363)) + (-4 *7 (-13 (-363) (-147) (-720 *5 *6))) (-5 *2 (-418 *3)) + (-5 *1 (-494 *5 *6 *7 *3)) (-4 *3 (-1233 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-418 (-1165 *7)) (-1165 *7))) + (-4 *7 (-13 (-307) (-147))) (-4 *5 (-846)) (-4 *6 (-789)) + (-5 *2 (-418 *3)) (-5 *1 (-540 *5 *6 *7 *3)) + (-4 *3 (-945 *7 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-418 (-1165 *7)) (-1165 *7))) + (-4 *7 (-13 (-307) (-147))) (-4 *5 (-846)) (-4 *6 (-789)) + (-4 *8 (-945 *7 *6 *5)) (-5 *2 (-418 (-1165 *8))) + (-5 *1 (-540 *5 *6 *7 *8)) (-5 *3 (-1165 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-557 *3)) (-4 *3 (-545)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-640 *5) *6)) + (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) + (-4 *6 (-1233 *5)) (-5 *2 (-640 (-648 (-407 *6)))) + (-5 *1 (-652 *5 *6)) (-5 *3 (-648 (-407 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) + (-4 *5 (-1233 *4)) (-5 *2 (-640 (-648 (-407 *5)))) + (-5 *1 (-652 *4 *5)) (-5 *3 (-648 (-407 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-815 *4)) (-4 *4 (-846)) (-5 *2 (-640 (-667 *4))) + (-5 *1 (-667 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-563)) (-5 *2 (-640 *3)) (-5 *1 (-691 *3)) + (-4 *3 (-1233 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-349)) (-5 *2 (-418 *3)) + (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-945 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-349)) + (-4 *7 (-945 *6 *5 *4)) (-5 *2 (-418 (-1165 *7))) + (-5 *1 (-693 *4 *5 *6 *7)) (-5 *3 (-1165 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-789)) + (-4 *5 + (-13 (-846) + (-10 -8 (-15 -2220 ((-1169) $)) + (-15 -2518 ((-3 $ "failed") (-1169)))))) + (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-726 *4 *5 *6 *3)) + (-4 *3 (-945 (-948 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-789)) + (-4 *5 (-13 (-846) (-10 -8 (-15 -2220 ((-1169) $))))) (-4 *6 (-555)) + (-5 *2 (-418 *3)) (-5 *1 (-728 *4 *5 *6 *3)) + (-4 *3 (-945 (-407 (-948 *6)) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-13 (-307) (-147))) + (-5 *2 (-418 *3)) (-5 *1 (-729 *4 *5 *6 *3)) + (-4 *3 (-945 (-407 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-13 (-307) (-147))) + (-5 *2 (-418 *3)) (-5 *1 (-737 *4 *5 *6 *3)) + (-4 *3 (-945 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-13 (-307) (-147))) + (-4 *7 (-945 *6 *5 *4)) (-5 *2 (-418 (-1165 *7))) + (-5 *1 (-737 *4 *5 *6 *7)) (-5 *3 (-1165 *7)))) + ((*1 *2 *3) + (-12 (-5 *2 (-418 *3)) (-5 *1 (-1003 *3)) + (-4 *3 (-1233 (-407 (-563)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-418 *3)) (-5 *1 (-1037 *3)) + (-4 *3 (-1233 (-407 (-948 (-563))))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1233 (-407 (-563)))) + (-4 *5 (-13 (-363) (-147) (-720 (-407 (-563)) *4))) + (-5 *2 (-418 *3)) (-5 *1 (-1072 *4 *5 *3)) (-4 *3 (-1233 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1233 (-407 (-948 (-563))))) + (-4 *5 (-13 (-363) (-147) (-720 (-407 (-948 (-563))) *4))) + (-5 *2 (-418 *3)) (-5 *1 (-1074 *4 *5 *3)) (-4 *3 (-1233 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-452)) + (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-418 (-1165 (-407 *7)))) + (-5 *1 (-1164 *4 *5 *6 *7)) (-5 *3 (-1165 (-407 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1212)))) + ((*1 *2 *3) + (-12 (-5 *2 (-418 *3)) (-5 *1 (-1222 *3)) (-4 *3 (-1233 (-563)))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *2 (-846)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846))))) +(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) + (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) + (-5 *2 (-1031)) (-5 *1 (-751)))) + ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) + (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-388)) + (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751))))) (((*1 *1 *1) - (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262))))) + (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) +(((*1 *1) (-5 *1 (-437)))) +(((*1 *1 *1 *1 *1) (-5 *1 (-858))) ((*1 *1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *1) (-5 *1 (-858)))) (((*1 *1 *2) - (-12 (-5 *2 (-639 *1)) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) - ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-406 *1)) (-4 *1 (-1232 *3)) (-4 *3 (-1044)) - (-4 *3 (-554)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1232 *2)) (-4 *2 (-1044)) (-4 *2 (-554))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) - (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) - (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) - (|:| |abserr| (-224)) (|:| |relerr| (-224)))) - (-5 *2 - (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) - (|:| |expense| (-378)) (|:| |accuracy| (-378)) - (|:| |intermediateResults| (-378)))) - (-5 *1 (-798))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-393)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1187))))) -(((*1 *1 *1) (-5 *1 (-112)))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-766)) (-4 *4 (-13 (-1044) (-712 (-406 (-562))))) - (-4 *5 (-845)) (-5 *1 (-1272 *4 *5 *2)) (-4 *2 (-1277 *5 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-922))))) + (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-363)) + (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-1169))))) +(((*1 *2 *3) + (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) + (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6))))) +(((*1 *1 *1) (-5 *1 (-225))) ((*1 *1 *1) (-5 *1 (-379))) + ((*1 *1) (-5 *1 (-379)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-406 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1232 *5)) - (-5 *1 (-722 *5 *2)) (-4 *5 (-362))))) -(((*1 *2 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-639 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-416 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-639 (-1086 (-406 (-562))))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-639 (-1086 (-378)))) (-5 *1 (-262))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-224)) (-5 *3 (-766)) (-5 *1 (-225)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-168 (-224))) (-5 *3 (-766)) (-5 *1 (-225)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) - (-4 *2 (-429 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1131)))) -(((*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-554)) (-4 *3 (-171)) (-4 *4 (-372 *3)) - (-4 *5 (-372 *3)) (-5 *1 (-682 *3 *4 *5 *2)) - (-4 *2 (-681 *3 *4 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-683 *4)) (-5 *3 (-916)) (|has| *4 (-6 (-4405 "*"))) - (-4 *4 (-1044)) (-5 *1 (-1023 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-639 (-683 *4))) (-5 *3 (-916)) - (|has| *4 (-6 (-4405 "*"))) (-4 *4 (-1044)) (-5 *1 (-1023 *4))))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-562)) (-5 *5 (-683 (-224))) - (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3196)))) (-5 *3 (-224)) - (-5 *2 (-1030)) (-5 *1 (-743))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-683 *2)) (-5 *4 (-766)) - (-4 *2 (-13 (-306) (-10 -8 (-15 -3788 ((-417 $) $))))) - (-4 *5 (-1232 *2)) (-5 *1 (-498 *2 *5 *6)) (-4 *6 (-408 *2 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1168)) - (-4 *4 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *4))))) - ((*1 *1 *1) (-5 *1 (-378))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-4 *3 (-1058 *5 *6 *7)) - (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1501 *4)))) - (-5 *1 (-771 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) -(((*1 *1) (-5 *1 (-55)))) + (-12 (-5 *4 (-640 (-640 *8))) (-5 *3 (-640 *8)) + (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) (-4 *6 (-789)) + (-4 *7 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *5 *6 *7 *8))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-563) (-563))) (-5 *1 (-361 *3)) (-4 *3 (-1093)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-767) (-767))) (-5 *1 (-386 *3)) (-4 *3 (-1093)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) + (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-1093))))) +(((*1 *2 *1) + (-12 (-5 *2 (-767)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) + (-4 *4 (-1045))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-13 (-844) (-363))) (-5 *2 (-112)) (-5 *1 (-1055 *4 *3)) + (-4 *3 (-1233 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-640 *3)) (-4 *3 (-1208))))) +(((*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-1258)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-1259))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) + (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *6 (-225)) + (-5 *3 (-563)) (-5 *2 (-1031)) (-5 *1 (-747))))) +(((*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))) + ((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1173))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-640 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1093))))) +(((*1 *2 *1) (-12 (-5 *2 (-1118 (-563) (-609 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *1) + (-12 (-4 *3 (-988 *2)) (-4 *4 (-1233 *3)) (-4 *2 (-307)) + (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1034 *3))))) + ((*1 *2 *1) + (-12 (-4 *3 (-555)) (-4 *3 (-846)) (-5 *2 (-1118 *3 (-609 *1))) + (-4 *1 (-430 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1118 (-563) (-609 (-495)))) (-5 *1 (-495)))) + ((*1 *2 *1) + (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-722) *4)) + (-5 *1 (-618 *3 *4 *2)) (-4 *3 (-38 *4)))) + ((*1 *2 *1) + (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-722) *4)) + (-5 *1 (-657 *3 *4 *2)) (-4 *3 (-713 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-562)) (-5 *1 (-1189 *3)) (-4 *3 (-1044))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-639 (-112))) (-5 *7 (-683 (-224))) - (-5 *8 (-683 (-562))) (-5 *3 (-562)) (-5 *4 (-224)) (-5 *5 (-112)) - (-5 *2 (-1030)) (-5 *1 (-749))))) -(((*1 *2 *2) - (-12 (-5 *2 (-639 *6)) (-4 *6 (-944 *3 *4 *5)) (-4 *3 (-451)) - (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-448 *3 *4 *5 *6))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-788)) - (-4 *3 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $))))) (-4 *5 (-554)) - (-5 *1 (-727 *4 *3 *5 *2)) (-4 *2 (-944 (-406 (-947 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1044)) (-4 *5 (-788)) - (-4 *3 - (-13 (-845) - (-10 -8 (-15 -4208 ((-1168) $)) - (-15 -2443 ((-3 $ "failed") (-1168)))))) - (-5 *1 (-979 *4 *5 *3 *2)) (-4 *2 (-944 (-947 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-639 *6)) - (-4 *6 - (-13 (-845) - (-10 -8 (-15 -4208 ((-1168) $)) - (-15 -2443 ((-3 $ "failed") (-1168)))))) - (-4 *4 (-1044)) (-4 *5 (-788)) (-5 *1 (-979 *4 *5 *6 *2)) - (-4 *2 (-944 (-947 *4) *5 *6))))) -(((*1 *1 *1) - (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) -(((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-608 *3)) - (-4 *3 (-13 (-429 *5) (-27) (-1192))) - (-4 *5 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) - (-5 *2 (-2 (|:| -2929 *3) (|:| |coeff| *3))) - (-5 *1 (-564 *5 *3 *6)) (-4 *6 (-1092))))) + (-12 (-5 *3 (-640 (-2 (|:| -2174 (-1165 *6)) (|:| -1654 (-563))))) + (-4 *6 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-563)) + (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-972 *4 *5 *6 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) + (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-555)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-640 (-316 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) + (-5 *1 (-210))))) +(((*1 *2 *1) (-12 (-5 *2 (-640 (-183))) (-5 *1 (-140))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1169)) + (-4 *5 (-13 (-555) (-1034 (-563)) (-147))) + (-5 *2 + (-2 (|:| -3646 (-407 (-948 *5))) (|:| |coeff| (-407 (-948 *5))))) + (-5 *1 (-569 *5)) (-5 *3 (-407 (-948 *5)))))) (((*1 *2 *3 *3) - (-12 (-4 *2 (-554)) (-5 *1 (-964 *2 *3)) (-4 *3 (-1232 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) -(((*1 *1 *2) - (-12 (-5 *2 (-683 *4)) (-4 *4 (-1044)) (-5 *1 (-1134 *3 *4)) - (-14 *3 (-766))))) -(((*1 *1) - (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-562)) (-14 *3 (-766)) - (-4 *4 (-171))))) + (|partial| -12 (-4 *4 (-555)) + (-5 *2 (-2 (|:| -3490 *3) (|:| -1972 *3))) (-5 *1 (-1228 *4 *3)) + (-4 *3 (-1233 *4))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) + (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) + (-5 *5 (-1087 (-225))) (-5 *6 (-640 (-263))) (-5 *2 (-1126 (-225))) + (-5 *1 (-692))))) +(((*1 *1 *1 *1) (-4 *1 (-473))) ((*1 *1 *1 *1) (-4 *1 (-757)))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1257 *3)) (-4 *3 (-1233 *4)) (-4 *4 (-1212)) + (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1233 (-407 *3)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) + (-5 *2 (-2 (|:| -1442 (-640 *6)) (|:| -3405 (-640 *6))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1118 (-563) (-609 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *1) + (-12 (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1233 *4)) + (-5 *2 (-1257 *6)) (-5 *1 (-413 *3 *4 *5 *6)) + (-4 *6 (-13 (-409 *4 *5) (-1034 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-1045)) (-4 *3 (-846)) (-5 *2 (-1118 *3 (-609 *1))) + (-4 *1 (-430 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1118 (-563) (-609 (-495)))) (-5 *1 (-495)))) + ((*1 *2 *1) + (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-618 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-722) *3)))) + ((*1 *2 *1) + (-12 (-4 *3 (-172)) (-4 *2 (-713 *3)) (-5 *1 (-657 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-722) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555))))) +(((*1 *1) (-5 *1 (-558)))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) + (-4 *4 (-1045))))) (((*1 *2 *3) - (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *1 (-878)) (-5 *3 (-562))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-715)) (-5 *2 (-916)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-766))))) -(((*1 *2) - (-12 (-5 *2 (-766)) (-5 *1 (-120 *3)) (-4 *3 (-1232 (-562))))) - ((*1 *2 *2) - (-12 (-5 *2 (-766)) (-5 *1 (-120 *3)) (-4 *3 (-1232 (-562)))))) + (-12 (-5 *3 (-1165 (-563))) (-5 *2 (-563)) (-5 *1 (-938))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-609 *1)) (-4 *1 (-430 *4)) (-4 *4 (-846)) + (-4 *4 (-555)) (-5 *2 (-407 (-1165 *1))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-609 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1193))) + (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) + (-5 *2 (-1165 (-407 (-1165 *3)))) (-5 *1 (-559 *6 *3 *7)) + (-5 *5 (-1165 *3)) (-4 *7 (-1093)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1253 *5)) (-14 *5 (-1169)) (-4 *6 (-1045)) + (-5 *2 (-1230 *5 (-948 *6))) (-5 *1 (-943 *5 *6)) (-5 *3 (-948 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-5 *2 (-1165 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-1165 *1)) + (-4 *1 (-945 *4 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-1045)) + (-4 *7 (-945 *6 *5 *4)) (-5 *2 (-407 (-1165 *3))) + (-5 *1 (-946 *5 *4 *6 *7 *3)) + (-4 *3 + (-13 (-363) + (-10 -8 (-15 -1693 ($ *7)) (-15 -2143 (*7 $)) (-15 -2154 (*7 $))))))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1165 *3)) + (-4 *3 + (-13 (-363) + (-10 -8 (-15 -1693 ($ *7)) (-15 -2143 (*7 $)) (-15 -2154 (*7 $))))) + (-4 *7 (-945 *6 *5 *4)) (-4 *5 (-789)) (-4 *4 (-846)) + (-4 *6 (-1045)) (-5 *1 (-946 *5 *4 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1169)) (-4 *5 (-555)) + (-5 *2 (-407 (-1165 (-407 (-948 *5))))) (-5 *1 (-1039 *5)) + (-5 *3 (-407 (-948 *5)))))) (((*1 *2) - (-12 (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) - (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-1261)) - (-5 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *7 (-1064 *3 *4 *5 *6)))) + (-12 (-4 *4 (-172)) (-5 *2 (-640 (-1257 *4))) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) ((*1 *2) - (-12 (-4 *3 (-451)) (-4 *4 (-788)) (-4 *5 (-845)) - (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-1261)) - (-5 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *7 (-1064 *3 *4 *5 *6))))) -(((*1 *1 *1) (-12 (-5 *1 (-909 *2)) (-4 *2 (-306))))) -(((*1 *2 *1) - (-12 (|has| *1 (-6 -4403)) (-4 *1 (-488 *3)) (-4 *3 (-1207)) - (-5 *2 (-639 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-639 *3)) (-5 *1 (-732 *3)) (-4 *3 (-1092)))) - ((*1 *2 *1) (-12 (-5 *2 (-639 (-438))) (-5 *1 (-860))))) -(((*1 *2 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-754))))) -(((*1 *2 *1) - (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) - (-5 *2 (-1164 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1164 *3)) (-5 *1 (-909 *3)) (-4 *3 (-306))))) -(((*1 *1) (-5 *1 (-798)))) -(((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1168)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-639 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-639 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -2929 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1192) (-27) (-429 *8))) - (-4 *8 (-13 (-451) (-845) (-146) (-1033 *3) (-635 *3))) - (-5 *3 (-562)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -1603 *4) (|:| |sol?| (-112)))) - (-5 *1 (-1008 *8 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-128))))) -(((*1 *2 *3) - (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) - (-5 *1 (-972 *4 *5 *6 *3)) (-4 *3 (-1058 *4 *5 *6))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-639 (-52))) (-5 *1 (-887 *3)) (-4 *3 (-1092))))) -(((*1 *1 *1 *1) (-4 *1 (-472))) ((*1 *1 *1 *1) (-4 *1 (-756)))) + (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-555)) + (-5 *2 (-640 (-1257 *3)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1111)) (-5 *1 (-1108))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) (((*1 *2 *3 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -1978 (-224)) - (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) - (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) - (-5 *3 (-639 (-262))) (-5 *1 (-260)))) + (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4346 (-225)) + (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) + (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) + (-5 *3 (-640 (-263))) (-5 *1 (-261)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -1978 (-224)) - (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) - (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) - (-5 *1 (-262)))) + (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4346 (-225)) + (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) + (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) + (-5 *1 (-263)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258)))) + (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258)))) + (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-562)) (-5 *4 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258)))) + (-12 (-5 *3 (-563)) (-5 *4 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) ((*1 *2 *1 *3) (-12 (-5 *3 - (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -1978 (-224)) - (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) - (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) - (-5 *2 (-1261)) (-5 *1 (-1258)))) + (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4346 (-225)) + (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) + (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) + (-5 *2 (-1262)) (-5 *1 (-1259)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |theta| (-224)) (|:| |phi| (-224)) (|:| -1978 (-224)) - (|:| |scaleX| (-224)) (|:| |scaleY| (-224)) (|:| |scaleZ| (-224)) - (|:| |deltaX| (-224)) (|:| |deltaY| (-224)))) - (-5 *1 (-1258)))) + (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4346 (-225)) + (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) + (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) + (-5 *1 (-1259)))) ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258))))) + (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1)) + (-4 *1 (-1059 *3 *4 *5))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-555)) (-4 *3 (-172)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -4315 (-640 *1)))) + (-4 *1 (-367 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-453 *3 *4 *5 *6)) + (|:| -4315 (-640 (-453 *3 *4 *5 *6))))) + (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) + (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-640 *4)) (-4 *4 (-1093)) (-5 *2 (-1262)) + (-5 *1 (-1209 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-640 *4)) (-4 *4 (-1093)) (-5 *2 (-1262)) + (-5 *1 (-1209 *4))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1208)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-948 (-379))) (-5 *1 (-339 *3 *4 *5)) + (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169))) + (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-407 (-948 (-379)))) (-5 *1 (-339 *3 *4 *5)) + (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169))) + (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5)) + (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169))) + (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-948 (-563))) (-5 *1 (-339 *3 *4 *5)) + (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169))) + (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-407 (-948 (-563)))) (-5 *1 (-339 *3 *4 *5)) + (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169))) + (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-316 (-563))) (-5 *1 (-339 *3 *4 *5)) + (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169))) + (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-339 *3 *4 *5)) + (-14 *3 (-640 *2)) (-14 *4 (-640 *2)) (-4 *5 (-387)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-316 *5)) (-4 *5 (-387)) + (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-640 (-1169))) + (-14 *4 (-640 (-1169))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-684 (-407 (-948 (-563))))) (-4 *1 (-384)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-684 (-407 (-948 (-379))))) (-4 *1 (-384)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-684 (-948 (-563)))) (-4 *1 (-384)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-684 (-948 (-379)))) (-4 *1 (-384)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-684 (-316 (-563)))) (-4 *1 (-384)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-684 (-316 (-379)))) (-4 *1 (-384)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-407 (-948 (-563)))) (-4 *1 (-396)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-407 (-948 (-379)))) (-4 *1 (-396)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-563))) (-4 *1 (-396)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-379))) (-4 *1 (-396)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-563))) (-4 *1 (-396)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-379))) (-4 *1 (-396)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1257 (-407 (-948 (-563))))) (-4 *1 (-441)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1257 (-407 (-948 (-379))))) (-4 *1 (-441)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1257 (-948 (-563)))) (-4 *1 (-441)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1257 (-948 (-379)))) (-4 *1 (-441)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1257 (-316 (-563)))) (-4 *1 (-441)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1257 (-316 (-379)))) (-4 *1 (-441)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1233 *5)) + (-5 *2 (-1165 (-1165 *4))) (-5 *1 (-773 *4 *5 *6 *3 *7)) + (-4 *3 (-1233 *6)) (-14 *7 (-917)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) + (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) + (-4 *1 (-972 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-1034 *2)) (-4 *2 (-1208)))) + ((*1 *1 *2) + (|partial| -4032 + (-12 (-5 *2 (-948 *3)) + (-12 (-2176 (-4 *3 (-38 (-407 (-563))))) + (-2176 (-4 *3 (-38 (-563)))) (-4 *5 (-611 (-1169)))) + (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) + (-4 *5 (-846))) + (-12 (-5 *2 (-948 *3)) + (-12 (-2176 (-4 *3 (-545))) (-2176 (-4 *3 (-38 (-407 (-563))))) + (-4 *3 (-38 (-563))) (-4 *5 (-611 (-1169)))) + (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) + (-4 *5 (-846))) + (-12 (-5 *2 (-948 *3)) + (-12 (-2176 (-4 *3 (-988 (-563)))) (-4 *3 (-38 (-407 (-563)))) + (-4 *5 (-611 (-1169)))) + (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) + (-4 *5 (-846))))) + ((*1 *1 *2) + (|partial| -4032 + (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5)) + (-12 (-2176 (-4 *3 (-38 (-407 (-563))))) (-4 *3 (-38 (-563))) + (-4 *5 (-611 (-1169)))) + (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))) + (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5)) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169)))) + (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-948 (-407 (-563)))) (-4 *1 (-1059 *3 *4 *5)) + (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169))) + (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))))) +(((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1151)) (-5 *1 (-706))))) +(((*1 *2 *2) + (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-307)) + (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-447 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-640 *7)) (-5 *3 (-1151)) (-4 *7 (-945 *4 *5 *6)) + (-4 *4 (-307)) (-4 *5 (-789)) (-4 *6 (-846)) + (-5 *1 (-447 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-640 *7)) (-5 *3 (-1151)) (-4 *7 (-945 *4 *5 *6)) + (-4 *4 (-307)) (-4 *5 (-789)) (-4 *6 (-846)) + (-5 *1 (-447 *4 *5 *6 *7))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-640 (-609 *1))) (-4 *1 (-302))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-814 *4)) (-4 *4 (-845)) (-5 *2 (-112)) - (-5 *1 (-666 *4))))) + (-12 (-4 *4 (-452)) + (-5 *2 + (-640 + (-2 (|:| |eigval| (-3 (-407 (-948 *4)) (-1158 (-1169) (-948 *4)))) + (|:| |geneigvec| (-640 (-684 (-407 (-948 *4)))))))) + (-5 *1 (-292 *4)) (-5 *3 (-684 (-407 (-948 *4))))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) + (-5 *1 (-750))))) (((*1 *2 *3) - (-12 (-5 *3 (-683 *4)) (-4 *4 (-362)) (-5 *2 (-1164 *4)) - (-5 *1 (-531 *4 *5 *6)) (-4 *5 (-362)) (-4 *6 (-13 (-362) (-843)))))) + (-12 (-5 *3 (-815 *4)) (-4 *4 (-846)) (-5 *2 (-112)) + (-5 *1 (-667 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-640 (-1207))) (-5 *1 (-603))))) +(((*1 *2) + (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) + ((*1 *2 *2) + (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1)) + (-4 *1 (-1059 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-555)) (-4 *4 (-988 *3)) (-5 *1 (-142 *3 *4 *2)) + (-4 *2 (-373 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-555)) (-4 *5 (-988 *4)) (-4 *2 (-373 *4)) + (-5 *1 (-503 *4 *5 *2 *3)) (-4 *3 (-373 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-684 *5)) (-4 *5 (-988 *4)) (-4 *4 (-555)) + (-5 *2 (-684 *4)) (-5 *1 (-688 *4 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-555)) (-4 *4 (-988 *3)) (-5 *1 (-1226 *3 *4 *2)) + (-4 *2 (-1233 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-1208))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) + (-4 *4 (-1045))))) +(((*1 *1 *1) + (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846))) + (-14 *3 (-640 (-1169)))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307)) + (-5 *1 (-912 *3 *4 *5 *2)) (-4 *2 (-945 *5 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1165 *6)) (-4 *6 (-945 *5 *3 *4)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *6 *4 *5)) + (-5 *1 (-912 *4 *5 *6 *2)) (-4 *4 (-789)) (-4 *5 (-846)) + (-4 *6 (-307))))) +(((*1 *2 *3) + (-12 (-5 *3 (-684 *4)) (-4 *4 (-363)) (-5 *2 (-1165 *4)) + (-5 *1 (-532 *4 *5 *6)) (-4 *5 (-363)) (-4 *6 (-13 (-363) (-844)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-349)) + (-5 *2 + (-2 (|:| |cont| *5) + (|:| -2760 (-640 (-2 (|:| |irr| *3) (|:| -1650 (-563))))))) + (-5 *1 (-216 *5 *3)) (-4 *3 (-1233 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *2 (-846)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846))))) +(((*1 *1 *1) + (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) +(((*1 *2 *3) + (-12 (-5 *2 (-169 (-379))) (-5 *1 (-781 *3)) (-4 *3 (-611 (-379))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-917)) (-5 *2 (-169 (-379))) (-5 *1 (-781 *3)) + (-4 *3 (-611 (-379))))) + ((*1 *2 *3) + (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-611 (-379))) + (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-169 *5)) (-5 *4 (-917)) (-4 *5 (-172)) + (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-948 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-611 (-379))) + (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-948 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-172)) + (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-611 (-379))) + (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045)) + (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555)) (-4 *4 (-611 (-379))) + (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-555)) + (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-407 (-948 (-169 *4)))) (-4 *4 (-555)) + (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-948 (-169 *5)))) (-5 *4 (-917)) (-4 *5 (-555)) + (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-316 *4)) (-4 *4 (-555)) (-4 *4 (-846)) + (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-846)) + (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-555)) (-4 *4 (-846)) + (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-555)) + (-4 *5 (-846)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) + (-5 *1 (-781 *5))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1169)) (-5 *2 (-640 (-961))) (-5 *1 (-291))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4407)) (-4 *1 (-601 *4 *3)) (-4 *4 (-1093)) + (-4 *3 (-1208)) (-4 *3 (-1093)) (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-640 *1)) (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *5)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-640 *3)) (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *5)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1257 *3)) (-4 *3 (-1045)) (-5 *1 (-684 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-640 *4)) (-4 *4 (-1045)) (-4 *1 (-1116 *3 *4 *5 *6)) + (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4))))) (((*1 *2 *3) (-12 (-5 *3 @@ -12744,2915 +12501,1294 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1148 (-224))) + (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -2147 + (|:| -2516 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-1030)) (-5 *1 (-304))))) -(((*1 *2 *1) - (-12 (-14 *3 (-639 (-1168))) (-4 *4 (-171)) - (-14 *6 - (-1 (-112) (-2 (|:| -2464 *5) (|:| -1300 *2)) - (-2 (|:| -2464 *5) (|:| -1300 *2)))) - (-4 *2 (-237 (-3492 *3) (-766))) (-5 *1 (-460 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-845)) (-4 *7 (-944 *4 *2 (-859 *3)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1218 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-1247 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-639 (-947 (-562)))) (-5 *4 (-639 (-1168))) - (-5 *2 (-639 (-639 (-378)))) (-5 *1 (-1018)) (-5 *5 (-378)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1041 *4 *5)) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) - (-14 *5 (-639 (-1168))) (-5 *2 (-639 (-639 (-1019 (-406 *4))))) - (-5 *1 (-1282 *4 *5 *6)) (-14 *6 (-639 (-1168))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-843) (-306) (-146) (-1017))) - (-5 *2 (-639 (-639 (-1019 (-406 *5))))) (-5 *1 (-1282 *5 *6 *7)) - (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-843) (-306) (-146) (-1017))) - (-5 *2 (-639 (-639 (-1019 (-406 *5))))) (-5 *1 (-1282 *5 *6 *7)) - (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-843) (-306) (-146) (-1017))) - (-5 *2 (-639 (-639 (-1019 (-406 *5))))) (-5 *1 (-1282 *5 *6 *7)) - (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 (-947 *4))) - (-4 *4 (-13 (-843) (-306) (-146) (-1017))) - (-5 *2 (-639 (-639 (-1019 (-406 *4))))) (-5 *1 (-1282 *4 *5 *6)) - (-14 *5 (-639 (-1168))) (-14 *6 (-639 (-1168)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-683 (-406 (-947 (-562))))) - (-5 *2 (-639 (-683 (-315 (-562))))) (-5 *1 (-1026))))) -(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) -(((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) - (-4 *3 (-366 *4)))) - ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1030)) (-5 *3 (-1168)) (-5 *1 (-191))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-554) (-146))) (-5 *1 (-536 *3 *2)) - (-4 *2 (-1247 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-362) (-367) (-610 (-562)))) (-4 *4 (-1232 *3)) - (-4 *5 (-719 *3 *4)) (-5 *1 (-540 *3 *4 *5 *2)) (-4 *2 (-1247 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-362) (-367) (-610 (-562)))) (-5 *1 (-541 *3 *2)) - (-4 *2 (-1247 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-13 (-554) (-146))) - (-5 *1 (-1144 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1141 *3)) (-4 *3 (-1207)) (-5 *2 (-112))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1092)) (-5 *1 (-103 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1092))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828 *3)) (-4 *3 (-1092)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-1092))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-639 *7)) (|:| -1501 *8))) - (-4 *7 (-1058 *4 *5 *6)) (-4 *8 (-1064 *4 *5 *6 *7)) (-4 *4 (-451)) - (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) - (-5 *1 (-983 *4 *5 *6 *7 *8)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-639 *7)) (|:| -1501 *8))) - (-4 *7 (-1058 *4 *5 *6)) (-4 *8 (-1064 *4 *5 *6 *7)) (-4 *4 (-451)) - (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) - (-5 *1 (-1099 *4 *5 *6 *7 *8))))) -(((*1 *2 *3) - (-12 (-4 *4 (-451)) (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) - (-5 *2 (-639 *3)) (-5 *1 (-972 *4 *5 *6 *3)) - (-4 *3 (-1058 *4 *5 *6))))) -(((*1 *1 *1) - (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) + (-5 *2 (-1031)) (-5 *1 (-305))))) (((*1 *2 *3) - (-12 (-5 *3 (-916)) (-5 *2 (-1164 *4)) (-5 *1 (-356 *4)) - (-4 *4 (-348))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) - (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 - (-3 (|:| |%expansion| (-312 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1150)) (|:| |prob| (-1150)))))) - (-5 *1 (-419 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1192) (-429 *5))) - (-14 *6 (-1168)) (-14 *7 *3)))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) (-5 *2 (-112)) - (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1192) (-429 (-168 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-112)) (-5 *1 (-1196 *4 *3)) - (-4 *3 (-13 (-27) (-1192) (-429 *4)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) - (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) - (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3)))))) + (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563)))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-815 *3)) (-4 *3 (-846)) (-5 *1 (-667 *3))))) (((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |mval| (-683 *3)) (|:| |invmval| (-683 *3)) - (|:| |genIdeal| (-503 *3 *4 *5 *6)))) - (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) - (-5 *1 (-503 *3 *4 *5 *6)) (-4 *6 (-944 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1207))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-639 (-766))) (-5 *3 (-112)) (-5 *1 (-1156 *4 *5)) - (-14 *4 (-916)) (-4 *5 (-1044))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1229 *5 *4)) (-4 *4 (-815)) (-14 *5 (-1168)) - (-5 *2 (-562)) (-5 *1 (-1106 *4 *5))))) -(((*1 *1) (-5 *1 (-436)))) -(((*1 *2 *3) - (-12 (-5 *3 (-916)) (-5 *2 (-1164 *4)) (-5 *1 (-356 *4)) - (-4 *4 (-348))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1207)) (-5 *2 (-766)) (-5 *1 (-181 *4 *3)) - (-4 *3 (-668 *4))))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-562)) (-5 *5 (-112)) (-5 *6 (-683 (-224))) - (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-77 OBJFUN)))) - (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-748))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1170 (-406 (-562)))) (-5 *2 (-406 (-562))) - (-5 *1 (-189))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) - (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-66 FUNCT1)))) - (-5 *2 (-1030)) (-5 *1 (-748))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1207))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1164 *1)) (-4 *1 (-1007))))) -(((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-817))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1150)) (-5 *4 (-562)) (-5 *5 (-683 (-224))) - (-5 *2 (-1030)) (-5 *1 (-749))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-451)) (-4 *7 (-788)) (-4 *8 (-845)) - (-4 *3 (-1058 *6 *7 *8)) - (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1501 *4)))) - (-5 *1 (-1100 *6 *7 *8 *3 *4)) (-4 *4 (-1064 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-639 (-2 (|:| |val| (-639 *8)) (|:| -1501 *9)))) - (-5 *5 (-112)) (-4 *8 (-1058 *6 *7 *4)) (-4 *9 (-1064 *6 *7 *4 *8)) - (-4 *6 (-451)) (-4 *7 (-788)) (-4 *4 (-845)) - (-5 *2 (-639 (-2 (|:| |val| *8) (|:| -1501 *9)))) - (-5 *1 (-1100 *6 *7 *4 *8 *9))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) -(((*1 *2 *1) - (-12 (-5 *2 (-857)) (-5 *1 (-389 *3 *4 *5)) (-14 *3 (-766)) - (-14 *4 (-766)) (-4 *5 (-171))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-362) (-843))) (-5 *1 (-180 *3 *2)) - (-4 *2 (-1232 (-168 *3)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-788)) (-4 *6 (-845)) (-4 *3 (-554)) - (-4 *7 (-944 *3 *5 *6)) - (-5 *2 (-2 (|:| -1300 (-766)) (|:| -4221 *8) (|:| |radicand| *8))) - (-5 *1 (-948 *5 *6 *3 *7 *8)) (-5 *4 (-766)) - (-4 *8 - (-13 (-362) - (-10 -8 (-15 -4053 ($ *7)) (-15 -4063 (*7 $)) (-15 -4079 (*7 $)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-524))))) -(((*1 *1 *1 *1) (-4 *1 (-142))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-157 *3 *2)) - (-4 *2 (-429 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-544)))) - ((*1 *1 *1 *1) (-5 *1 (-857))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-562))) (-5 *1 (-1042)) - (-5 *3 (-562))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) - (-5 *1 (-751))))) + (-640 + (-2 + (|:| -2387 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1257 (-316 (-225)))) + (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) + (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (|:| -2557 + (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) + (|:| |expense| (-379)) (|:| |accuracy| (-379)) + (|:| |intermediateResults| (-379))))))) + (-5 *1 (-799))))) +(((*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-330))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1230 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1169)) + (-5 *2 (-563)) (-5 *1 (-1107 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-97))))) +(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036))))) +(((*1 *2) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) + (-4 *5 (-1233 (-407 *4))) (-5 *2 (-684 (-407 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *7 (-944 *4 *5 *6)) (-5 *2 (-639 (-639 *7))) - (-5 *1 (-447 *4 *5 *6 *7)) (-5 *3 (-639 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-306) (-146))) (-4 *6 (-788)) - (-4 *7 (-845)) (-4 *8 (-944 *5 *6 *7)) (-5 *2 (-639 (-639 *8))) - (-5 *1 (-447 *5 *6 *7 *8)) (-5 *3 (-639 *8))))) -(((*1 *1 *1) (-5 *1 (-1056)))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-562))) (-4 *3 (-1044)) (-5 *1 (-592 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-562))) (-4 *1 (-1216 *3)) (-4 *3 (-1044)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-562))) (-4 *1 (-1247 *3)) (-4 *3 (-1044))))) + (-12 (-5 *3 (-640 (-2 (|:| |den| (-563)) (|:| |gcdnum| (-563))))) + (-4 *4 (-1233 (-407 *2))) (-5 *2 (-563)) (-5 *1 (-909 *4 *5)) + (-4 *5 (-1233 (-407 *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) - (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-639 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-668 *3)) (-4 *3 (-1207)) (-5 *2 (-766))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-766)) (-4 *1 (-650 *3)) (-4 *3 (-1044)) (-4 *3 (-362)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-766)) (-5 *4 (-1 *5 *5)) (-4 *5 (-362)) - (-5 *1 (-653 *5 *2)) (-4 *2 (-650 *5))))) -(((*1 *2 *1) - (-12 (-4 *2 (-554)) (-5 *1 (-619 *2 *3)) (-4 *3 (-1232 *2))))) -(((*1 *1 *1) (|partial| -4 *1 (-144))) ((*1 *1 *1) (-4 *1 (-348))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-144)) (-4 *1 (-904))))) -(((*1 *1 *1) - (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) - (-4 *4 (-372 *2))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -1606 (-777 *3)) (|:| |coef1| (-777 *3)) - (|:| |coef2| (-777 *3)))) - (-5 *1 (-777 *3)) (-4 *3 (-554)) (-4 *3 (-1044)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-554)) (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) - (-5 *2 (-2 (|:| -1606 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1058 *3 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-396))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-362) (-146) (-1033 (-406 (-562))))) - (-4 *5 (-1232 *4)) (-5 *2 (-639 (-2 (|:| -2328 *5) (|:| -3680 *5)))) - (-5 *1 (-802 *4 *5 *3 *6)) (-4 *3 (-650 *5)) - (-4 *6 (-650 (-406 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-362) (-146) (-1033 (-406 (-562))))) - (-4 *4 (-1232 *5)) (-5 *2 (-639 (-2 (|:| -2328 *4) (|:| -3680 *4)))) - (-5 *1 (-802 *5 *4 *3 *6)) (-4 *3 (-650 *4)) - (-4 *6 (-650 (-406 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-362) (-146) (-1033 (-406 (-562))))) - (-4 *5 (-1232 *4)) (-5 *2 (-639 (-2 (|:| -2328 *5) (|:| -3680 *5)))) - (-5 *1 (-802 *4 *5 *6 *3)) (-4 *6 (-650 *5)) - (-4 *3 (-650 (-406 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-362) (-146) (-1033 (-406 (-562))))) - (-4 *4 (-1232 *5)) (-5 *2 (-639 (-2 (|:| -2328 *4) (|:| -3680 *4)))) - (-5 *1 (-802 *5 *4 *6 *3)) (-4 *6 (-650 *4)) - (-4 *3 (-650 (-406 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562))))) - (-5 *2 (-406 (-562))) (-5 *1 (-1015 *4)) (-4 *4 (-1232 (-562)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-406 (-562))) (-5 *1 (-592 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-1044))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-544)))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) - (-5 *2 (-168 (-315 *4))) (-5 *1 (-187 *4 *3)) - (-4 *3 (-13 (-27) (-1192) (-429 (-168 *4)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-168 *3)) (-5 *1 (-1196 *4 *3)) - (-4 *3 (-13 (-27) (-1192) (-429 *4)))))) + (-12 (-14 *3 (-640 (-1169))) (-4 *4 (-172)) + (-14 *6 + (-1 (-112) (-2 (|:| -2555 *5) (|:| -1654 *2)) + (-2 (|:| -2555 *5) (|:| -1654 *2)))) + (-4 *2 (-238 (-3608 *3) (-767))) (-5 *1 (-461 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-846)) (-4 *7 (-945 *4 *2 (-860 *3)))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-362)) (-5 *1 (-284 *3 *2)) (-4 *2 (-1247 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-639 (-1127))) (-5 *1 (-665)))) - ((*1 *2 *1) - (-12 (-5 *2 (-639 (-916))) (-5 *1 (-1093 *3 *4)) (-14 *3 (-916)) - (-14 *4 (-916))))) -(((*1 *2 *2) - (-12 (-4 *2 (-13 (-362) (-843))) (-5 *1 (-180 *2 *3)) - (-4 *3 (-1232 (-168 *2)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1156 *2 *3)) (-14 *2 (-916)) (-4 *3 (-1044))))) -(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-857))))) -(((*1 *2 *1) (-12 (-4 *1 (-306)) (-5 *2 (-766))))) -(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1261)) (-5 *1 (-1130)))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 (-857))) (-5 *2 (-1261)) (-5 *1 (-1130))))) -(((*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1261)) (-5 *1 (-378)))) - ((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-378))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-916)) (-5 *4 (-869)) (-5 *2 (-1261)) (-5 *1 (-1257)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-916)) (-5 *4 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1257)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-362)) (-5 *2 (-639 (-1148 *4))) (-5 *1 (-284 *4 *5)) - (-5 *3 (-1148 *4)) (-4 *5 (-1247 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1207))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-639 *6)) (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) - (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) - (-4 *3 (-554))))) + (|partial| -12 (-5 *3 (-767)) (-4 *1 (-979 *2)) (-4 *2 (-1193))))) +(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1151))))) +(((*1 *1) (-5 *1 (-141)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259))))) (((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-13 (-845) (-554))) (-5 *2 (-112)) - (-5 *1 (-32 *4 *5)) (-4 *5 (-429 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-13 (-845) (-554))) (-5 *2 (-112)) - (-5 *1 (-157 *4 *5)) (-4 *5 (-429 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-13 (-845) (-554))) (-5 *2 (-112)) - (-5 *1 (-275 *4 *5)) (-4 *5 (-13 (-429 *4) (-997))))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-300 *4)) (-4 *4 (-301)))) - ((*1 *2 *3) (-12 (-4 *1 (-301)) (-5 *3 (-114)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *5 (-845)) (-5 *2 (-112)) - (-5 *1 (-428 *4 *5)) (-4 *4 (-429 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-13 (-845) (-554))) (-5 *2 (-112)) - (-5 *1 (-430 *4 *5)) (-4 *5 (-429 *4)))) + (-12 (-5 *3 (-640 (-609 *5))) (-4 *4 (-846)) (-5 *2 (-609 *5)) + (-5 *1 (-572 *4 *5)) (-4 *5 (-430 *4))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1169)) (-5 *2 (-109)) (-5 *1 (-175)))) + ((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1169)) (-5 *2 (-109)) (-5 *1 (-1078))))) +(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))) ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-13 (-845) (-554))) (-5 *2 (-112)) - (-5 *1 (-626 *4 *5)) (-4 *5 (-13 (-429 *4) (-997) (-1192)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-554)) (-5 *1 (-964 *3 *2)) (-4 *2 (-1232 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) - (-4 *4 (-845)) (-4 *2 (-554)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1044)) (-4 *2 (-554))))) -(((*1 *2 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-766)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-416 *4))))) -(((*1 *1) (-5 *1 (-140))) ((*1 *1 *1) (-5 *1 (-143))) - ((*1 *1 *1) (-4 *1 (-1136)))) -(((*1 *1 *1) (-4 *1 (-625))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-626 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997) (-1192)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1184 *4 *5)) - (-4 *4 (-1092)) (-4 *5 (-1092))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1606 *3))) - (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-610 (-887 *3))) (-4 *3 (-881 *3)) - (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) - (-4 *2 (-610 (-887 *3))) (-4 *2 (-881 *3)) - (-4 *2 (-13 (-429 *3) (-1192)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) - (-4 *5 (-372 *3)) (-5 *2 (-562)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) - (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-562))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-983 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1099 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-2 (|:| -4291 (-683 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-683 *3)))) - (-4 *3 (-13 (-306) (-10 -8 (-15 -3788 ((-417 $) $))))) - (-4 *4 (-1232 *3)) (-5 *1 (-498 *3 *4 *5)) (-4 *5 (-408 *3 *4))))) + (-12 (-5 *2 (-1165 (-407 (-563)))) (-5 *1 (-938)) (-5 *3 (-563))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563)))) + (-5 *4 (-316 (-169 (-379)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563)))) + (-5 *4 (-316 (-379))) (-5 *1 (-330)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563)))) + (-5 *4 (-316 (-563))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-169 (-379))))) + (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-379)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-563)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-169 (-379))))) + (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-379)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-563)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-169 (-379)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-379))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-563))) (-5 *1 (-330)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563)))) + (-5 *4 (-316 (-689))) (-5 *1 (-330)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563)))) + (-5 *4 (-316 (-694))) (-5 *1 (-330)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563)))) + (-5 *4 (-316 (-696))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-689)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-694)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-696)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-689)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-694)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-696)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-689))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-694))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-696))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-689))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-694))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-696))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-689))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-694))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-696))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1151)) (-5 *1 (-330)))) + ((*1 *1 *1 *1) (-5 *1 (-858)))) (((*1 *2 *1) - (-12 (-5 *2 (-766)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) - (-4 *4 (-1044))))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-1033 (-48))) - (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) (-4 *5 (-429 *4)) - (-5 *2 (-417 (-1164 (-48)))) (-5 *1 (-434 *4 *5 *3)) - (-4 *3 (-1232 *5))))) + (-12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1248 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1208)) (-5 *1 (-375 *4 *2)) + (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4408))))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 *3)) - (-5 *1 (-972 *4 *5 *6 *3)) (-4 *3 (-1058 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-52)) (-5 *1 (-824))))) + (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2742 *4))) + (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4))))) (((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1248 *2 *3 *4)) (-4 *2 (-1044)) (-14 *3 (-1168)) - (-14 *4 *2)))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-639 *3)) (-5 *1 (-956 *3)) (-4 *3 (-544))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -2355 *3) (|:| |coef1| (-777 *3)) (|:| |coef2| (-777 *3)))) - (-5 *1 (-777 *3)) (-4 *3 (-554)) (-4 *3 (-1044))))) -(((*1 *2 *2) - (-12 (-5 *2 (-639 (-639 *6))) (-4 *6 (-944 *3 *5 *4)) - (-4 *3 (-13 (-306) (-146))) (-4 *4 (-13 (-845) (-610 (-1168)))) - (-4 *5 (-788)) (-5 *1 (-919 *3 *4 *5 *6))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) - (-5 *1 (-742))))) + (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) - (-5 *2 (-1256 (-683 *4))))) - ((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-1256 (-683 *4))) (-5 *1 (-415 *3 *4)) - (-4 *3 (-416 *4)))) + (-12 (|has| *2 (-6 (-4409 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2)) + (-4 *2 (-1045)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1233 *2)) + (-4 *4 (-682 *2 *5 *6))))) +(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) + (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3191)))) + (-5 *2 (-1031)) (-5 *1 (-744))))) +(((*1 *2 *2) + (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) + (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-621 *3 *4 *5 *6 *7 *2)) + (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *2 (-1102 *3 *4 *5 *6))))) +(((*1 *2) + (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) + (-5 *2 (-640 (-640 *4))) (-5 *1 (-341 *3 *4 *5 *6)) + (-4 *3 (-342 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-1256 (-683 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-1168))) (-4 *5 (-362)) - (-5 *2 (-1256 (-683 (-406 (-947 *5))))) (-5 *1 (-1078 *5)) - (-5 *4 (-683 (-406 (-947 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-1168))) (-4 *5 (-362)) - (-5 *2 (-1256 (-683 (-947 *5)))) (-5 *1 (-1078 *5)) - (-5 *4 (-683 (-947 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 (-683 *4))) (-4 *4 (-362)) - (-5 *2 (-1256 (-683 *4))) (-5 *1 (-1078 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-362)) - (-4 *7 (-1232 (-406 *6))) - (-5 *2 (-2 (|:| |answer| *3) (|:| -2312 *3))) - (-5 *1 (-560 *5 *6 *7 *3)) (-4 *3 (-341 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-362)) - (-5 *2 - (-2 (|:| |answer| (-406 *6)) (|:| -2312 (-406 *6)) - (|:| |specpart| (-406 *6)) (|:| |polypart| *6))) - (-5 *1 (-561 *5 *6)) (-5 *3 (-406 *6))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) - (-5 *1 (-742))))) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) + (-4 *5 (-1233 (-407 *4))) (-4 *3 (-368)) (-5 *2 (-640 (-640 *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) - (-4 *6 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-4 *3 (-13 (-27) (-1192) (-429 *6) (-10 -8 (-15 -4053 ($ *7))))) - (-4 *7 (-843)) - (-4 *8 - (-13 (-1234 *3 *7) (-362) (-1192) - (-10 -8 (-15 -4029 ($ $)) (-15 -3081 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1150)) (|:| |prob| (-1150)))))) - (-5 *1 (-421 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1150)) (-4 *9 (-978 *8)) - (-14 *10 (-1168))))) -(((*1 *2 *3) - (-12 (-5 *3 (-406 *5)) (-4 *5 (-1232 *4)) (-4 *4 (-554)) - (-4 *4 (-1044)) (-4 *2 (-1247 *4)) (-5 *1 (-1250 *4 *5 *6 *2)) - (-4 *6 (-650 *5))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *2 (-1261)) (-5 *1 (-817))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1030))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1156 *2 *3)) (-14 *2 (-916)) (-4 *3 (-1044))))) -(((*1 *1 *2) - (-12 (-5 *2 (-639 (-2 (|:| |gen| *3) (|:| -3430 *4)))) - (-4 *3 (-1092)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-643 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *1 (-909 *2)) (-4 *2 (-306))))) -(((*1 *2 *1) (-12 (-4 *1 (-508 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-845))))) -(((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-887 *4)) (-4 *4 (-1092)) (-5 *1 (-884 *4 *3)) - (-4 *3 (-1092))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1168)) (-4 *5 (-1211)) (-4 *6 (-1232 *5)) - (-4 *7 (-1232 (-406 *6))) (-5 *2 (-639 (-947 *5))) - (-5 *1 (-340 *4 *5 *6 *7)) (-4 *4 (-341 *5 *6 *7)))) + (-12 (-5 *3 (-640 (-948 (-563)))) (-5 *4 (-640 (-1169))) + (-5 *2 (-640 (-640 (-379)))) (-5 *1 (-1019)) (-5 *5 (-379)))) ((*1 *2 *3) - (-12 (-5 *3 (-1168)) (-4 *1 (-341 *4 *5 *6)) (-4 *4 (-1211)) - (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-406 *5))) (-4 *4 (-362)) - (-5 *2 (-639 (-947 *4)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1125 (-224))) (-5 *3 (-639 (-262))) (-5 *1 (-1258)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1125 (-224))) (-5 *3 (-1150)) (-5 *1 (-1258)))) - ((*1 *1 *1) (-5 *1 (-1258)))) -(((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1092) (-34))) - (-5 *2 (-112)) (-5 *1 (-1132 *4 *5)) (-4 *4 (-13 (-1092) (-34)))))) -(((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) - ((*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) - (-4 *2 (-429 *3)))) - ((*1 *1 *1) (-4 *1 (-1131)))) -(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-378)) (-5 *1 (-781))))) -(((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-693)))) - ((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-693))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)) (-5 *3 (-562))))) -(((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-5 *2 (-639 (-1022 *5 *6 *7 *3))) (-5 *1 (-1022 *5 *6 *7 *3)) - (-4 *3 (-1058 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-639 *6)) (-4 *1 (-1064 *3 *4 *5 *6)) (-4 *3 (-451)) - (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1064 *3 *4 *5 *2)) (-4 *3 (-451)) (-4 *4 (-788)) - (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5)))) - ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-5 *2 (-639 (-1138 *5 *6 *7 *3))) (-5 *1 (-1138 *5 *6 *7 *3)) - (-4 *3 (-1058 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) - (-4 *5 (-372 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) - (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-168 (-224))) (-5 *5 (-562)) (-5 *6 (-1150)) - (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-753))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -1603 *6) (|:| |sol?| (-112))) (-562) - *6)) - (-4 *6 (-362)) (-4 *7 (-1232 *6)) - (-5 *2 (-2 (|:| |answer| (-583 (-406 *7))) (|:| |a0| *6))) - (-5 *1 (-572 *6 *7)) (-5 *3 (-406 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-845)) - (-4 *5 (-265 *4)) (-4 *6 (-788)) (-5 *2 (-766)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1044)) (-4 *3 (-845)) - (-4 *5 (-265 *3)) (-4 *6 (-788)) (-5 *2 (-766)))) - ((*1 *2 *1) (-12 (-4 *1 (-265 *3)) (-4 *3 (-845)) (-5 *2 (-766)))) - ((*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-916)))) - ((*1 *2 *3) - (-12 (-5 *3 (-335 *4 *5 *6 *7)) (-4 *4 (-13 (-367) (-362))) - (-4 *5 (-1232 *4)) (-4 *6 (-1232 (-406 *5))) (-4 *7 (-341 *4 *5 *6)) - (-5 *2 (-766)) (-5 *1 (-391 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-828 (-916))))) - ((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-562)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-593 *3)) (-4 *3 (-1044)))) - ((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-593 *3)) (-4 *3 (-1044)))) - ((*1 *2 *1) - (-12 (-4 *3 (-554)) (-5 *2 (-562)) (-5 *1 (-619 *3 *4)) - (-4 *4 (-1232 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-766)) (-4 *1 (-735 *4 *3)) (-4 *4 (-1044)) - (-4 *3 (-845)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-735 *4 *3)) (-4 *4 (-1044)) (-4 *3 (-845)) - (-5 *2 (-766)))) - ((*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-5 *2 (-766)))) - ((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) - ((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-900 *3)) (-4 *3 (-1092)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-429 *4)) - (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-406 *6))) - (-4 *8 (-341 *5 *6 *7)) - (-4 *4 (-13 (-845) (-554) (-1033 (-562)))) (-5 *2 (-766)) - (-5 *1 (-906 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-335 (-406 (-562)) *4 *5 *6)) - (-4 *4 (-1232 (-406 (-562)))) (-4 *5 (-1232 (-406 *4))) - (-4 *6 (-341 (-406 (-562)) *4 *5)) (-5 *2 (-766)) - (-5 *1 (-907 *4 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-335 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-362)) - (-4 *7 (-1232 *6)) (-4 *4 (-1232 (-406 *7))) (-4 *8 (-341 *6 *7 *4)) - (-4 *9 (-13 (-367) (-362))) (-5 *2 (-766)) - (-5 *1 (-1013 *6 *7 *4 *8 *9)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1232 *3)) (-4 *3 (-1044)) (-4 *3 (-554)) - (-5 *2 (-766)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1234 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-787)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1234 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-787))))) -(((*1 *2 *3) - (-12 (-5 *3 (-683 (-406 (-947 *4)))) (-4 *4 (-451)) - (-5 *2 (-639 (-3 (-406 (-947 *4)) (-1157 (-1168) (-947 *4))))) - (-5 *1 (-291 *4))))) + (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) + (-14 *5 (-640 (-1169))) (-5 *2 (-640 (-640 (-1020 (-407 *4))))) + (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-640 (-1169))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-844) (-307) (-147) (-1018))) + (-5 *2 (-640 (-640 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7)) + (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-844) (-307) (-147) (-1018))) + (-5 *2 (-640 (-640 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7)) + (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-844) (-307) (-147) (-1018))) + (-5 *2 (-640 (-640 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7)) + (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 (-948 *4))) + (-4 *4 (-13 (-844) (-307) (-147) (-1018))) + (-5 *2 (-640 (-640 (-1020 (-407 *4))))) (-5 *1 (-1283 *4 *5 *6)) + (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) (((*1 *2 *3) - (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-554)) - (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-639 (-1269 *4 *5 *6 *7))) - (-5 *1 (-1269 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-639 *9)) (-5 *4 (-1 (-112) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1058 *6 *7 *8)) (-4 *6 (-554)) - (-4 *7 (-788)) (-4 *8 (-845)) (-5 *2 (-639 (-1269 *6 *7 *8 *9))) - (-5 *1 (-1269 *6 *7 *8 *9))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-293 (-828 *3))) - (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-828 *3)) (-5 *1 (-632 *5 *3)) - (-4 *3 (-13 (-27) (-1192) (-429 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-293 (-828 (-947 *5)))) (-4 *5 (-451)) - (-5 *2 (-828 (-406 (-947 *5)))) (-5 *1 (-633 *5)) - (-5 *3 (-406 (-947 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-293 (-406 (-947 *5)))) (-5 *3 (-406 (-947 *5))) - (-4 *5 (-451)) (-5 *2 (-828 *3)) (-5 *1 (-633 *5))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-362)) (-4 *3 (-1044)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3147 *1))) - (-4 *1 (-847 *3))))) + (-12 (-5 *3 (-640 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1233 (-563)))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1151)) (-5 *4 (-169 (-225))) (-5 *5 (-563)) + (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1193)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1148 (-2 (|:| |k| (-562)) (|:| |c| *3)))) - (-5 *1 (-592 *3)) (-4 *3 (-1044))))) + (-12 (-4 *3 (-1208)) (-5 *2 (-640 *1)) (-4 *1 (-1006 *3))))) +(((*1 *2) + (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-417 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-600 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1207)) - (-5 *2 (-112))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-639 *7)) (-5 *3 (-562)) (-4 *7 (-944 *4 *5 *6)) - (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) - (-5 *1 (-448 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1232 *9)) (-4 *7 (-788)) (-4 *8 (-845)) (-4 *9 (-306)) - (-4 *10 (-944 *9 *7 *8)) - (-5 *2 - (-2 (|:| |deter| (-639 (-1164 *10))) - (|:| |dterm| - (-639 (-639 (-2 (|:| -2542 (-766)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-639 *6)) (|:| |nlead| (-639 *10)))) - (-5 *1 (-773 *6 *7 *8 *9 *10)) (-5 *3 (-1164 *10)) (-5 *4 (-639 *6)) - (-5 *5 (-639 *10))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *2 (-1058 *4 *5 *6)) (-5 *1 (-771 *4 *5 *6 *2 *3)) - (-4 *3 (-1064 *4 *5 *6 *2))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1150)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-1261)) - (-5 *1 (-983 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1150)) (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-1261)) - (-5 *1 (-1099 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-362)) (-5 *2 (-639 *3)) (-5 *1 (-940 *4 *3)) - (-4 *3 (-1232 *4))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-639 (-766))) (-5 *3 (-170)) (-5 *1 (-1156 *4 *5)) - (-14 *4 (-916)) (-4 *5 (-1044))))) -(((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-562)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) - (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1136)) (-5 *2 (-140)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1136)) (-5 *2 (-143))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1192))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-362)))) - ((*1 *1 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-362)))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-916)) (-5 *4 (-378)) (-5 *2 (-1261)) (-5 *1 (-1257))))) -(((*1 *1 *1) - (-12 (-4 *1 (-944 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) - (-4 *4 (-845)) (-4 *2 (-451)))) + (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) + (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *3 (-1058 *4 *5 *6)) - (-5 *2 (-639 (-2 (|:| |val| *3) (|:| -1501 *1)))) - (-4 *1 (-1064 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1211))) - ((*1 *2 *2) - (-12 (-4 *3 (-554)) (-5 *1 (-1235 *3 *2)) - (-4 *2 (-13 (-1232 *3) (-554) (-10 -8 (-15 -1606 ($ $ $)))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1041 *4 *5)) (-4 *4 (-13 (-843) (-306) (-146) (-1017))) - (-14 *5 (-639 (-1168))) (-5 *2 (-639 (-639 (-1019 (-406 *4))))) - (-5 *1 (-1282 *4 *5 *6)) (-14 *6 (-639 (-1168))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-843) (-306) (-146) (-1017))) - (-5 *2 (-639 (-639 (-1019 (-406 *5))))) (-5 *1 (-1282 *5 *6 *7)) - (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-843) (-306) (-146) (-1017))) - (-5 *2 (-639 (-639 (-1019 (-406 *5))))) (-5 *1 (-1282 *5 *6 *7)) - (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 (-947 *4))) - (-4 *4 (-13 (-843) (-306) (-146) (-1017))) - (-5 *2 (-639 (-639 (-1019 (-406 *4))))) (-5 *1 (-1282 *4 *5 *6)) - (-14 *5 (-639 (-1168))) (-14 *6 (-639 (-1168)))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-562)) (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) - (-4 *4 (-372 *3)) (-4 *5 (-372 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1256 *5)) (-4 *5 (-635 *4)) (-4 *4 (-554)) - (-5 *2 (-112)) (-5 *1 (-634 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-819))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1064 *4 *5 *6 *3)) (-4 *4 (-451)) (-4 *5 (-788)) - (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) - (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-76 G JACOBG JACGEP)))) - (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-744))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1168)) (-5 *4 (-947 (-562))) (-5 *2 (-329)) - (-5 *1 (-331)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1168)) (-5 *4 (-1084 (-947 (-562)))) (-5 *2 (-329)) - (-5 *1 (-331)))) - ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-766)) (-5 *1 (-669 *3)) (-4 *3 (-1044)) - (-4 *3 (-1092))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) - (-4 *6 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-4 *3 (-13 (-27) (-1192) (-429 *6) (-10 -8 (-15 -4053 ($ *7))))) - (-4 *7 (-843)) - (-4 *8 - (-13 (-1234 *3 *7) (-362) (-1192) - (-10 -8 (-15 -4029 ($ $)) (-15 -3081 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1150)) (|:| |prob| (-1150)))))) - (-5 *1 (-421 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1150)) (-4 *9 (-978 *8)) - (-14 *10 (-1168))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1136)) (-5 *2 (-140)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1136)) (-5 *2 (-143))))) -(((*1 *2 *3) (-12 (-5 *3 (-639 (-52))) (-5 *2 (-1261)) (-5 *1 (-858))))) -(((*1 *1 *1) (-4 *1 (-554)))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-168 (-224)) (-168 (-224)))) (-5 *4 (-1086 (-224))) - (-5 *2 (-1258)) (-5 *1 (-256))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-150 *2)) - (-4 *2 (-1207))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-971 *3 *4 *2 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *2 (-845)) (-4 *5 (-1058 *3 *4 *2))))) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *3 (-1059 *4 *5 *6)) + (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -2059 *1)))) + (-4 *1 (-1065 *4 *5 *6 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208))))) +(((*1 *2 *3) + (-12 (-5 *3 (-684 (-407 (-948 (-563))))) + (-5 *2 (-640 (-684 (-316 (-563))))) (-5 *1 (-1027))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-554)) - (-5 *2 (-2 (|:| -1767 (-683 *5)) (|:| |vec| (-1256 (-639 (-916)))))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-916)) (-4 *3 (-650 *5))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-1092)) - (-4 *4 (-1092))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-168 (-224))) (-5 *5 (-562)) (-5 *6 (-1150)) - (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-753))))) -(((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1168)) - (-4 *4 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) - (-5 *1 (-573 *4 *2)) - (-4 *2 (-13 (-1192) (-954) (-1131) (-29 *4)))))) -(((*1 *1) (-5 *1 (-143))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 (-262))) (-5 *2 (-1125 (-224))) (-5 *1 (-260)))) - ((*1 *1 *2) (-12 (-5 *2 (-1125 (-224))) (-5 *1 (-262))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-683 (-406 (-562)))) (-5 *2 (-639 *4)) (-5 *1 (-774 *4)) - (-4 *4 (-13 (-362) (-843)))))) -(((*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-247))))) -(((*1 *1 *1) (-5 *1 (-48))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1207)) - (-4 *2 (-1207)) (-5 *1 (-58 *5 *2)))) - ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1092)) (|has| *1 (-6 -4403)) - (-4 *1 (-150 *2)) (-4 *2 (-1207)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4403)) (-4 *1 (-150 *2)) - (-4 *2 (-1207)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4403)) (-4 *1 (-150 *2)) - (-4 *2 (-1207)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1044)) - (-5 *2 (-2 (|:| -4201 (-1164 *4)) (|:| |deg| (-916)))) - (-5 *1 (-220 *4 *5)) (-5 *3 (-1164 *4)) (-4 *5 (-13 (-554) (-845))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-239 *5 *6)) (-14 *5 (-766)) - (-4 *6 (-1207)) (-4 *2 (-1207)) (-5 *1 (-238 *5 *6 *2)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-171)) (-5 *1 (-288 *4 *2 *3 *5 *6 *7)) - (-4 *2 (-1232 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-315 *2)) (-4 *2 (-554)) (-4 *2 (-845)))) - ((*1 *1 *1) - (-12 (-4 *1 (-334 *2 *3 *4 *5)) (-4 *2 (-362)) (-4 *3 (-1232 *2)) - (-4 *4 (-1232 (-406 *3))) (-4 *5 (-341 *2 *3 *4)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1207)) (-4 *2 (-1207)) - (-5 *1 (-370 *5 *4 *2 *6)) (-4 *4 (-372 *5)) (-4 *6 (-372 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1092)) (-4 *2 (-1092)) - (-5 *1 (-422 *5 *4 *2 *6)) (-4 *4 (-424 *5)) (-4 *6 (-424 *2)))) - ((*1 *1 *1) (-5 *1 (-494))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-639 *5)) (-4 *5 (-1207)) - (-4 *2 (-1207)) (-5 *1 (-637 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1044)) (-4 *2 (-1044)) - (-4 *6 (-372 *5)) (-4 *7 (-372 *5)) (-4 *8 (-372 *2)) - (-4 *9 (-372 *2)) (-5 *1 (-679 *5 *6 *7 *4 *2 *8 *9 *10)) - (-4 *4 (-681 *5 *6 *7)) (-4 *10 (-681 *2 *8 *9)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-706 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *3) + (-12 (-5 *3 (-948 *5)) (-4 *5 (-1045)) (-5 *2 (-481 *4 *5)) + (-5 *1 (-940 *4 *5)) (-14 *4 (-640 (-1169)))))) +(((*1 *1) (-5 *1 (-330)))) +(((*1 *2 *2) + (-12 (-5 *2 (-640 (-481 *3 *4))) (-14 *3 (-640 (-1169))) + (-4 *4 (-452)) (-5 *1 (-628 *3 *4))))) +(((*1 *2 *1) + (-12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *2 (-640 *6)) + (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4))))) +(((*1 *2 *3 *3 *2 *4) + (-12 (-5 *3 (-684 *2)) (-5 *4 (-563)) + (-4 *2 (-13 (-307) (-10 -8 (-15 -3205 ((-418 $) $))))) + (-4 *5 (-1233 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *2 (-452))))) +(((*1 *2 *1) (-12 (-5 *2 (-640 (-609 *1))) (-4 *1 (-302))))) +(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1208)))) ((*1 *1 *2) - (-12 (-4 *3 (-1044)) (-5 *1 (-707 *3 *2)) (-4 *2 (-1232 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-710 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + (-12 (-5 *2 (-948 (-379))) (-5 *1 (-339 *3 *4 *5)) + (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169))) + (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-406 *4)) (-4 *4 (-1232 *3)) (-4 *3 (-362)) - (-4 *3 (-171)) (-4 *1 (-719 *3 *4)))) + (-12 (-5 *2 (-407 (-948 (-379)))) (-5 *1 (-339 *3 *4 *5)) + (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169))) + (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) ((*1 *1 *2) - (-12 (-4 *3 (-171)) (-4 *1 (-719 *3 *2)) (-4 *2 (-1232 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-953 *5)) (-4 *5 (-1207)) - (-4 *2 (-1207)) (-5 *1 (-952 *5 *2)))) + (-12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5)) + (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169))) + (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) ((*1 *1 *2) - (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) - (-5 *1 (-1029 *3 *4 *5 *2 *6)) (-4 *2 (-944 *3 *4 *5)) - (-14 *6 (-639 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1044)) (-4 *2 (-1044)) - (-14 *5 (-766)) (-14 *6 (-766)) (-4 *8 (-237 *6 *7)) - (-4 *9 (-237 *5 *7)) (-4 *10 (-237 *6 *2)) (-4 *11 (-237 *5 *2)) - (-5 *1 (-1049 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-1047 *5 *6 *7 *8 *9)) (-4 *12 (-1047 *5 *6 *2 *10 *11)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1148 *5)) (-4 *5 (-1207)) - (-4 *2 (-1207)) (-5 *1 (-1146 *5 *2)))) - ((*1 *2 *2 *1 *3 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) - (-4 *1 (-1200 *5 *6 *7 *2)) (-4 *5 (-554)) (-4 *6 (-788)) - (-4 *7 (-845)) (-4 *2 (-1058 *5 *6 *7)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1256 *5)) (-4 *5 (-1207)) - (-4 *2 (-1207)) (-5 *1 (-1255 *5 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) - (-4 *2 (-13 (-429 *3) (-1192)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1241 *3 *4 *5)) (-4 *3 (-13 (-362) (-845))) - (-14 *4 (-1168)) (-14 *5 *3) (-5 *1 (-318 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-378))) (-5 *1 (-1035)) (-5 *3 (-378))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1187))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) - (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-639 (-1168))) (-4 *5 (-554)) - (-5 *2 (-639 (-639 (-293 (-406 (-947 *5)))))) (-5 *1 (-765 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 (-947 *4))) (-4 *4 (-554)) - (-5 *2 (-639 (-639 (-293 (-406 (-947 *4)))))) (-5 *1 (-765 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-683 *7)) - (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4291 (-639 *6))) - *7 *6)) - (-4 *6 (-362)) (-4 *7 (-650 *6)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1256 *6) "failed")) - (|:| -4291 (-639 (-1256 *6))))) - (-5 *1 (-808 *6 *7)) (-5 *4 (-1256 *6))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1256 *5)) (-4 *5 (-787)) (-5 *2 (-112)) - (-5 *1 (-840 *4 *5)) (-14 *4 (-766))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-900 *4)) (-4 *4 (-1092)) (-5 *2 (-639 (-766))) - (-5 *1 (-899 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1094 *3)) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1094 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1092))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-143))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-845))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-608 *6)) (-4 *6 (-13 (-429 *5) (-27) (-1192))) - (-4 *5 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) - (-5 *2 (-1164 (-406 (-1164 *6)))) (-5 *1 (-558 *5 *6 *7)) - (-5 *3 (-1164 *6)) (-4 *7 (-1092)))) + (-12 (-5 *2 (-948 (-563))) (-5 *1 (-339 *3 *4 *5)) + (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169))) + (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) + ((*1 *1 *2) + (-12 (-5 *2 (-407 (-948 (-563)))) (-5 *1 (-339 *3 *4 *5)) + (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169))) + (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) + ((*1 *1 *2) + (-12 (-5 *2 (-316 (-563))) (-5 *1 (-339 *3 *4 *5)) + (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169))) + (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1169)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-640 *2)) + (-14 *4 (-640 *2)) (-4 *5 (-387)))) + ((*1 *1 *2) + (-12 (-5 *2 (-316 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5)) + (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))))) + ((*1 *1 *2) (-12 (-5 *2 (-684 (-407 (-948 (-563))))) (-4 *1 (-384)))) + ((*1 *1 *2) (-12 (-5 *2 (-684 (-407 (-948 (-379))))) (-4 *1 (-384)))) + ((*1 *1 *2) (-12 (-5 *2 (-684 (-948 (-563)))) (-4 *1 (-384)))) + ((*1 *1 *2) (-12 (-5 *2 (-684 (-948 (-379)))) (-4 *1 (-384)))) + ((*1 *1 *2) (-12 (-5 *2 (-684 (-316 (-563)))) (-4 *1 (-384)))) + ((*1 *1 *2) (-12 (-5 *2 (-684 (-316 (-379)))) (-4 *1 (-384)))) + ((*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-563)))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-379)))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-948 (-563))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-948 (-379))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-316 (-563))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-1257 (-407 (-948 (-563))))) (-4 *1 (-441)))) + ((*1 *1 *2) (-12 (-5 *2 (-1257 (-407 (-948 (-379))))) (-4 *1 (-441)))) + ((*1 *1 *2) (-12 (-5 *2 (-1257 (-948 (-563)))) (-4 *1 (-441)))) + ((*1 *1 *2) (-12 (-5 *2 (-1257 (-948 (-379)))) (-4 *1 (-441)))) + ((*1 *1 *2) (-12 (-5 *2 (-1257 (-316 (-563)))) (-4 *1 (-441)))) + ((*1 *1 *2) (-12 (-5 *2 (-1257 (-316 (-379)))) (-4 *1 (-441)))) ((*1 *2 *1) - (-12 (-4 *2 (-1232 *3)) (-5 *1 (-707 *3 *2)) (-4 *3 (-1044)))) + (-12 + (-5 *2 + (-3 + (|:| |nia| + (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) + (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (|:| |mdnia| + (-2 (|:| |fn| (-316 (-225))) + (|:| -2516 (-640 (-1087 (-839 (-225))))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) + (-5 *1 (-765)))) ((*1 *2 *1) - (-12 (-4 *1 (-719 *3 *2)) (-4 *3 (-171)) (-4 *2 (-1232 *3)))) - ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1164 *11)) (-5 *6 (-639 *10)) - (-5 *7 (-639 (-766))) (-5 *8 (-639 *11)) (-4 *10 (-845)) - (-4 *11 (-306)) (-4 *9 (-788)) (-4 *5 (-944 *11 *9 *10)) - (-5 *2 (-639 (-1164 *5))) (-5 *1 (-737 *9 *10 *11 *5)) - (-5 *3 (-1164 *5)))) + (-12 + (-5 *2 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) + (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *1 (-804)))) ((*1 *2 *1) - (-12 (-4 *2 (-944 *3 *4 *5)) (-5 *1 (-1029 *3 *4 *5 *2 *6)) - (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) (-14 *6 (-639 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258)))) - ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258))))) -(((*1 *1 *1 *1) (-4 *1 (-142))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-157 *3 *2)) - (-4 *2 (-429 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-544))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-683 *5)) (-5 *4 (-1256 *5)) (-4 *5 (-362)) - (-5 *2 (-112)) (-5 *1 (-661 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-362)) (-4 *6 (-13 (-372 *5) (-10 -7 (-6 -4404)))) - (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4404)))) (-5 *2 (-112)) - (-5 *1 (-662 *5 *6 *4 *3)) (-4 *3 (-681 *5 *6 *4))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-845)) (-4 *5 (-788)) - (-4 *6 (-554)) (-4 *7 (-944 *6 *5 *3)) - (-5 *1 (-461 *5 *3 *6 *7 *2)) - (-4 *2 - (-13 (-1033 (-406 (-562))) (-362) - (-10 -8 (-15 -4053 ($ *7)) (-15 -4063 (*7 $)) - (-15 -4079 (*7 $)))))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-916)) (-4 *4 (-367)) (-4 *4 (-362)) (-5 *2 (-1164 *1)) - (-4 *1 (-328 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-5 *2 (-1164 *3)))) + (-12 + (-5 *2 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) + (|:| |lb| (-640 (-839 (-225)))) + (|:| |cf| (-640 (-316 (-225)))) + (|:| |ub| (-640 (-839 (-225)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-640 (-316 (-225)))) + (|:| -2523 (-640 (-225))))))) + (-5 *1 (-837)))) ((*1 *2 *1) - (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-171)) (-4 *3 (-362)) - (-4 *2 (-1232 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1256 *4)) (-4 *4 (-348)) (-5 *2 (-1164 *4)) - (-5 *1 (-527 *4))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-766)) (-5 *1 (-851 *2)) (-4 *2 (-171)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1164 (-562))) (-5 *1 (-937)) (-5 *3 (-562))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1092)) (-4 *5 (-1092)) - (-4 *6 (-1092)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-678 *4 *5 *6))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-362)) (-5 *1 (-761 *2 *3)) (-4 *2 (-703 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362))))) -(((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-362)) (-4 *3 (-1232 *4)) (-4 *5 (-1232 (-406 *3))) - (-4 *1 (-334 *4 *3 *5 *2)) (-4 *2 (-341 *4 *3 *5)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-562)) (-4 *2 (-362)) (-4 *4 (-1232 *2)) - (-4 *5 (-1232 (-406 *4))) (-4 *1 (-334 *2 *4 *5 *6)) - (-4 *6 (-341 *2 *4 *5)))) - ((*1 *1 *2 *2) - (-12 (-4 *2 (-362)) (-4 *3 (-1232 *2)) (-4 *4 (-1232 (-406 *3))) - (-4 *1 (-334 *2 *3 *4 *5)) (-4 *5 (-341 *2 *3 *4)))) + (-12 + (-5 *2 + (-2 (|:| |pde| (-640 (-316 (-225)))) + (|:| |constraints| + (-640 + (-2 (|:| |start| (-225)) (|:| |finish| (-225)) + (|:| |grid| (-767)) (|:| |boundaryType| (-563)) + (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) + (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) + (|:| |tol| (-225)))) + (-5 *1 (-894)))) ((*1 *1 *2) - (-12 (-4 *3 (-362)) (-4 *4 (-1232 *3)) (-4 *5 (-1232 (-406 *4))) - (-4 *1 (-334 *3 *4 *5 *2)) (-4 *2 (-341 *3 *4 *5)))) + (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-1045)) + (-4 *4 (-789)) (-4 *5 (-846)) (-4 *1 (-972 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1208)))) ((*1 *1 *2) - (-12 (-5 *2 (-412 *4 (-406 *4) *5 *6)) (-4 *4 (-1232 *3)) - (-4 *5 (-1232 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-4 *3 (-362)) - (-4 *1 (-334 *3 *4 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-4 *1 (-234 *3)))) - ((*1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1092))))) -(((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-845)) (-5 *1 (-121 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *8)) (-5 *4 (-639 *9)) (-4 *8 (-1058 *5 *6 *7)) - (-4 *9 (-1064 *5 *6 *7 *8)) (-4 *5 (-451)) (-4 *6 (-788)) - (-4 *7 (-845)) (-5 *2 (-766)) (-5 *1 (-1062 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *8)) (-5 *4 (-639 *9)) (-4 *8 (-1058 *5 *6 *7)) - (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-451)) (-4 *6 (-788)) - (-4 *7 (-845)) (-5 *2 (-766)) (-5 *1 (-1137 *5 *6 *7 *8 *9))))) -(((*1 *2 *1) - (-12 (-4 *1 (-600 *2 *3)) (-4 *3 (-1207)) (-4 *2 (-1092)) - (-4 *2 (-845))))) -(((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258))))) -(((*1 *2 *1) (-12 (-5 *2 (-817)) (-5 *1 (-816))))) -(((*1 *1 *1) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1044)))) - ((*1 *2 *3) - (-12 (-4 *4 (-554)) (-4 *4 (-171)) (-4 *5 (-372 *4)) - (-4 *6 (-372 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) - (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-171)) (-4 *2 (-1044)) (-5 *1 (-709 *2 *3)) - (-4 *3 (-642 *2)))) - ((*1 *1 *1) - (-12 (-4 *2 (-171)) (-4 *2 (-1044)) (-5 *1 (-709 *2 *3)) - (-4 *3 (-642 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-171)) (-4 *2 (-1044)))) - ((*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-171)) (-4 *2 (-1044))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1258))))) -(((*1 *2 *3) (-12 (-5 *3 (-639 (-562))) (-5 *2 (-766)) (-5 *1 (-587))))) -(((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-52)) (-5 *1 (-824))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-766)) (-4 *5 (-554)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-964 *5 *3)) (-4 *3 (-1232 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-274))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) - (-5 *4 (-683 (-1164 *8))) (-4 *5 (-1044)) (-4 *8 (-1044)) - (-4 *6 (-1232 *5)) (-5 *2 (-683 *6)) (-5 *1 (-500 *5 *6 *7 *8)) - (-4 *7 (-1232 *6))))) -(((*1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-609 (-857)))))) -(((*1 *2 *1) (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-639 (-505))) (-5 *1 (-482))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3))))) -(((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-1001)))) - ((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-1001))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-983 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *7 (-1058 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1099 *4 *5 *6 *7 *3)) (-4 *3 (-1064 *4 *5 *6 *7))))) -(((*1 *2) - (-12 (-5 *2 (-953 (-1112))) (-5 *1 (-342 *3 *4)) (-14 *3 (-916)) - (-14 *4 (-916)))) - ((*1 *2) - (-12 (-5 *2 (-953 (-1112))) (-5 *1 (-343 *3 *4)) (-4 *3 (-348)) - (-14 *4 (-1164 *3)))) - ((*1 *2) - (-12 (-5 *2 (-953 (-1112))) (-5 *1 (-344 *3 *4)) (-4 *3 (-348)) - (-14 *4 (-916))))) -(((*1 *2 *3) - (-12 (-4 *1 (-341 *4 *3 *5)) (-4 *4 (-1211)) (-4 *3 (-1232 *4)) - (-4 *5 (-1232 (-406 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) - (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-683 (-315 (-562)))) (-5 *1 (-1026))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-642 *3)) (-4 *3 (-1044)) - (-5 *1 (-709 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1044)) (-5 *1 (-831 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) -(((*1 *2 *3 *2) - (-12 (-4 *1 (-782)) (-5 *2 (-1030)) - (-5 *3 - (-2 (|:| |fn| (-315 (-224))) - (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))))) - ((*1 *2 *3 *2) - (-12 (-4 *1 (-782)) (-5 *2 (-1030)) - (-5 *3 - (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) - (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224))))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-562)) (-4 *4 (-171)) (-4 *5 (-372 *4)) - (-4 *6 (-372 *4)) (-5 *1 (-682 *4 *5 *6 *2)) - (-4 *2 (-681 *4 *5 *6))))) -(((*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1207))))) -(((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-639 (-480 *4 *5))) (-5 *3 (-859 *4)) - (-14 *4 (-639 (-1168))) (-4 *5 (-451)) (-5 *1 (-627 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) - ((*1 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) - (-4 *2 (-429 *3)))) - ((*1 *1 *1) (-4 *1 (-1131)))) -(((*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-1207))))) -(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-451)) (-4 *7 (-788)) - (-4 *8 (-845)) (-4 *9 (-1058 *6 *7 *8)) - (-5 *2 - (-2 (|:| -3339 (-639 *9)) (|:| -1501 *4) (|:| |ineq| (-639 *9)))) - (-5 *1 (-983 *6 *7 *8 *9 *4)) (-5 *3 (-639 *9)) - (-4 *4 (-1064 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-451)) (-4 *7 (-788)) - (-4 *8 (-845)) (-4 *9 (-1058 *6 *7 *8)) + (-4032 + (-12 (-5 *2 (-948 *3)) + (-12 (-2176 (-4 *3 (-38 (-407 (-563))))) + (-2176 (-4 *3 (-38 (-563)))) (-4 *5 (-611 (-1169)))) + (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) + (-4 *5 (-846))) + (-12 (-5 *2 (-948 *3)) + (-12 (-2176 (-4 *3 (-545))) (-2176 (-4 *3 (-38 (-407 (-563))))) + (-4 *3 (-38 (-563))) (-4 *5 (-611 (-1169)))) + (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) + (-4 *5 (-846))) + (-12 (-5 *2 (-948 *3)) + (-12 (-2176 (-4 *3 (-988 (-563)))) (-4 *3 (-38 (-407 (-563)))) + (-4 *5 (-611 (-1169)))) + (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) + (-4 *5 (-846))))) + ((*1 *1 *2) + (-4032 + (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5)) + (-12 (-2176 (-4 *3 (-38 (-407 (-563))))) (-4 *3 (-38 (-563))) + (-4 *5 (-611 (-1169)))) + (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))) + (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5)) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169)))) + (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))))) + ((*1 *1 *2) + (-12 (-5 *2 (-948 (-407 (-563)))) (-4 *1 (-1059 *3 *4 *5)) + (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169))) (-4 *3 (-1045)) + (-4 *4 (-789)) (-4 *5 (-846))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-3 (-2 (|:| -3646 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-640 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1233 *7)) + (-5 *3 (-407 *8)) (-5 *2 - (-2 (|:| -3339 (-639 *9)) (|:| -1501 *4) (|:| |ineq| (-639 *9)))) - (-5 *1 (-1099 *6 *7 *8 *9 *4)) (-5 *3 (-639 *9)) - (-4 *4 (-1064 *6 *7 *8 *9))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-466)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-466))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1044)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-1232 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-554)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2355 *4))) - (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4))))) -(((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-639 *8)) (-5 *4 (-639 (-887 *6))) - (-5 *5 (-1 (-884 *6 *8) *8 (-887 *6) (-884 *6 *8))) (-4 *6 (-1092)) - (-4 *8 (-13 (-1044) (-610 (-887 *6)) (-1033 *7))) - (-5 *2 (-884 *6 *8)) (-4 *7 (-13 (-1044) (-845))) - (-5 *1 (-936 *6 *7 *8))))) -(((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-916)) (-5 *1 (-1093 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-451)) (-4 *4 (-554)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3959 *4))) - (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4))))) + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-573 *7 *8))))) +(((*1 *2 *1 *2) + (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093))))) +(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) +(((*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-330))))) +(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-553 *3)) (-4 *3 (-13 (-404) (-1193))) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-417 *5)) (-4 *5 (-554)) + (-12 (-5 *3 (-684 *8)) (-5 *4 (-767)) (-4 *8 (-945 *5 *7 *6)) + (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) + (-4 *7 (-789)) (-5 *2 - (-2 (|:| -1300 (-766)) (|:| -4221 *5) (|:| |radicand| (-639 *5)))) - (-5 *1 (-319 *5)) (-5 *4 (-766)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-997)) (-5 *2 (-562))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) - (-5 *2 (-1164 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) - (-5 *2 (-1164 *3))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-639 (-262))) (-5 *4 (-1168)) - (-5 *1 (-261 *2)) (-4 *2 (-1207)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-639 (-262))) (-5 *4 (-1168)) (-5 *2 (-52)) - (-5 *1 (-262))))) -(((*1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-754))))) -(((*1 *1 *1) - (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1168)) - (-5 *2 (-3 (|:| |fst| (-433)) (|:| -2649 "void"))) (-5 *1 (-1171))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1021 (-838 (-562)))) - (-5 *3 (-1148 (-2 (|:| |k| (-562)) (|:| |c| *4)))) (-4 *4 (-1044)) - (-5 *1 (-592 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-639 *3)) (-4 *3 (-1232 (-562))) (-5 *1 (-485 *3))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-639 (-887 *3))) (-5 *1 (-887 *3)) - (-4 *3 (-1092))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) -(((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-466)))) - ((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-466)))) - ((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-922))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362))))) -(((*1 *2 *1) (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-1172))))) -(((*1 *2 *1) (-12 (-4 *1 (-526)) (-5 *2 (-685 (-546)))))) -(((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4405 "*"))) (-4 *5 (-372 *2)) (-4 *6 (-372 *2)) - (-4 *2 (-1044)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1232 *2)) - (-4 *4 (-681 *2 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)) (-5 *3 (-562)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1256 (-3 (-467) "undefined"))) (-5 *1 (-1257))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-639 *1)) (-4 *1 (-915))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-639 *4)) - (-5 *1 (-1065 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-639 (-639 (-938 (-224))))) (-5 *1 (-467))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997)))))) -(((*1 *2 *1) (-12 (-5 *2 (-138)) (-5 *1 (-139)))) - ((*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-182)))) - ((*1 *2 *1) (-12 (-5 *2 (-248)) (-5 *1 (-247))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1044)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) - (-4 *4 (-845))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-887 *4)) (-4 *4 (-1092)) (-5 *1 (-885 *4 *3)) - (-4 *3 (-1207)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-887 *3)) (-4 *3 (-1092))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-639 (-562))) (-5 *3 (-112)) (-5 *1 (-1102))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1150)) (-5 *4 (-562)) (-5 *5 (-683 (-224))) - (-5 *2 (-1030)) (-5 *1 (-752))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-683 *1)) (-4 *1 (-348)) (-5 *2 (-1256 *1)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-683 *1)) (-4 *1 (-144)) (-4 *1 (-904)) - (-5 *2 (-1256 *1))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1044)) (-4 *4 (-1092)) (-5 *2 (-639 *1)) - (-4 *1 (-381 *3 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-639 (-730 *3 *4))) (-5 *1 (-730 *3 *4)) (-4 *3 (-1044)) - (-4 *4 (-721)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-639 *1)) - (-4 *1 (-944 *3 *4 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) + (-640 + (-2 (|:| |det| *8) (|:| |rows| (-640 (-563))) + (|:| |cols| (-640 (-563)))))) + (-5 *1 (-920 *5 *6 *7 *8))))) +(((*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1031)) (-5 *1 (-836)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-640 (-316 (-379)))) (-5 *4 (-640 (-379))) + (-5 *2 (-1031)) (-5 *1 (-836))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1151)) + (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1193) (-29 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) + ((*1 *2 *1) (-12 (-4 *1 (-704 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) + ((*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-640 *6)) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 (-767))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-945 *4 *5 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) + (-4 *3 (-846)) (-5 *2 (-767))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-639 (-480 *4 *5))) (-14 *4 (-639 (-1168))) - (-4 *5 (-451)) - (-5 *2 - (-2 (|:| |gblist| (-639 (-246 *4 *5))) - (|:| |gvlist| (-639 (-562))))) - (-5 *1 (-627 *4 *5))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-1207)) (-5 *1 (-181 *3 *2)) - (-4 *2 (-668 *3))))) -(((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-1168))))) -(((*1 *1 *1) (-5 *1 (-1056)))) -(((*1 *1) (-5 *1 (-436)))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *5 (-112)) - (-5 *6 (-224)) (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 APROD)))) - (-5 *8 (-3 (|:| |fn| (-387)) (|:| |fp| (-73 MSOLVE)))) - (-5 *2 (-1030)) (-5 *1 (-751))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) - (-5 *1 (-747))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1247 *4)) (-5 *1 (-1249 *4 *2)) - (-4 *4 (-38 (-406 (-562))))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-787)) - (-4 *2 (-362)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-224)))) - ((*1 *1 *1 *1) - (-4037 (-12 (-5 *1 (-293 *2)) (-4 *2 (-362)) (-4 *2 (-1207))) - (-12 (-5 *1 (-293 *2)) (-4 *2 (-472)) (-4 *2 (-1207))))) - ((*1 *1 *1 *1) (-4 *1 (-362))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-378)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1117 *3 (-608 *1))) (-4 *3 (-554)) (-4 *3 (-845)) - (-4 *1 (-429 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-472))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1256 *3)) (-4 *3 (-348)) (-5 *1 (-527 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-535))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-171)) (-5 *1 (-617 *2 *4 *3)) (-4 *2 (-38 *4)) - (-4 *3 (|SubsetCategory| (-721) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *4 (-171)) (-5 *1 (-617 *3 *4 *2)) (-4 *3 (-38 *4)) - (-4 *2 (|SubsetCategory| (-721) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-171)) (-4 *2 (-362)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-171)) (-5 *1 (-656 *2 *4 *3)) (-4 *2 (-712 *4)) - (-4 *3 (|SubsetCategory| (-721) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *4 (-171)) (-5 *1 (-656 *3 *4 *2)) (-4 *3 (-712 *4)) - (-4 *2 (|SubsetCategory| (-721) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) - (-4 *4 (-372 *2)) (-4 *2 (-362)))) - ((*1 *1 *1 *1) (-5 *1 (-857))) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) + (-4 *5 (-1233 *4)) (-5 *2 (-640 (-648 (-407 *5)))) + (-5 *1 (-652 *4 *5)) (-5 *3 (-648 (-407 *5)))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-767)) (-4 *5 (-555)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-965 *5 *3)) (-4 *3 (-1233 *5))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193)))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *4 (-1 (-3 (-563) "failed") *5)) (-4 *5 (-1045)) + (-5 *2 (-563)) (-5 *1 (-543 *5 *3)) (-4 *3 (-1233 *5)))) + ((*1 *2 *3 *4 *2 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-563) "failed") *4)) (-4 *4 (-1045)) + (-5 *2 (-563)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1233 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-563) "failed") *4)) (-4 *4 (-1045)) + (-5 *2 (-563)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1233 *4))))) +(((*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1172))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767)) + (-4 *4 (-172)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-158 *4 *2)) + (-4 *2 (-430 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1085 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-846) (-555))) + (-5 *1 (-158 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-160)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1169)))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-861 *2 *3 *4 *5)) (-4 *2 (-362)) - (-4 *2 (-1044)) (-14 *3 (-639 (-1168))) (-14 *4 (-639 (-766))) - (-14 *5 (-766)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1092)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1047 *3 *4 *2 *5 *6)) (-4 *2 (-1044)) - (-4 *5 (-237 *4 *2)) (-4 *6 (-237 *3 *2)) (-4 *2 (-362)))) + (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-846)) + (-4 *4 (-172))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-362)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-362)) (-4 *2 (-1044)) (-4 *3 (-845)) - (-4 *4 (-788)) (-14 *6 (-639 *3)) - (-5 *1 (-1268 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-944 *2 *4 *3)) - (-14 *7 (-639 (-766))) (-14 *8 (-766)))) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1132)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-545)))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1031)) (-5 *3 (-1169)) (-5 *1 (-192))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-640 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) + (-5 *1 (-504 *4 *5 *6 *2)) (-4 *2 (-945 *4 *5 *6)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1279 *2 *3)) (-4 *2 (-362)) (-4 *2 (-1044)) - (-4 *3 (-841))))) + (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-945 *3 *4 *5))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-141)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-144))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-306) (-146))) (-4 *4 (-13 (-845) (-610 (-1168)))) - (-4 *5 (-788)) (-5 *1 (-919 *3 *4 *5 *2)) (-4 *2 (-944 *3 *5 *4))))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 - *4 *6 *4) - (-12 (-5 *4 (-562)) (-5 *5 (-683 (-224))) (-5 *6 (-669 (-224))) - (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-745))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-766)) - (-4 *3 (-13 (-306) (-10 -8 (-15 -3788 ((-417 $) $))))) - (-4 *4 (-1232 *3)) (-5 *1 (-498 *3 *4 *5)) (-4 *5 (-408 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1266))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))) - (-5 *2 (-378)) (-5 *1 (-266)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1256 (-315 (-224)))) (-5 *2 (-378)) (-5 *1 (-304))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-554) (-146))) - (-5 *2 (-2 (|:| -1589 *3) (|:| -1603 *3))) (-5 *1 (-1226 *4 *3)) - (-4 *3 (-1232 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-639 (-1127))) (-5 *1 (-1082))))) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) (((*1 *2 *2) - (-12 - (-5 *2 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-562)))) - (-4 *4 (-13 (-1232 *3) (-554) (-10 -8 (-15 -1606 ($ $ $))))) - (-4 *3 (-554)) (-5 *1 (-1235 *3 *4))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-639 *3)) (-4 *3 (-944 *4 *6 *5)) (-4 *4 (-451)) - (-4 *5 (-845)) (-4 *6 (-788)) (-5 *1 (-982 *4 *5 *6 *3))))) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1193)))))) (((*1 *2 *1) - (-12 (-4 *1 (-600 *2 *3)) (-4 *3 (-1207)) (-4 *2 (-1092)) - (-4 *2 (-845))))) -(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-869))))) -(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-133))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-213 *2)) - (-4 *2 - (-13 (-845) - (-10 -8 (-15 -2343 ((-1150) $ (-1168))) (-15 -1479 ((-1261) $)) - (-15 -1359 ((-1261) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1207)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1207)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-469 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-469 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) - ((*1 *1 *1) - (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) - (-4 *4 (-372 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) - (-4 *4 (-372 *2)))) - ((*1 *1 *1) (-5 *1 (-857))) ((*1 *1 *1 *1) (-5 *1 (-857))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-938 (-224))) (-5 *1 (-1203)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-21))))) -(((*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-816))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1168)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-696 *3 *5 *6 *7)) - (-4 *3 (-610 (-535))) (-4 *5 (-1207)) (-4 *6 (-1207)) - (-4 *7 (-1207)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1168)) (-5 *2 (-1 *6 *5)) (-5 *1 (-701 *3 *5 *6)) - (-4 *3 (-610 (-535))) (-4 *5 (-1207)) (-4 *6 (-1207))))) -(((*1 *2 *1) (-12 (-4 *1 (-348)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1164 *4)) (-4 *4 (-348)) (-5 *2 (-112)) - (-5 *1 (-356 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-224)) (-5 *5 (-562)) (-5 *2 (-1202 *3)) - (-5 *1 (-785 *3)) (-4 *3 (-969)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-639 (-639 (-938 (-224))))) (-5 *4 (-112)) - (-5 *1 (-1202 *2)) (-4 *2 (-969))))) + (|partial| -12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3)) + (-4 *3 (-1093))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-766)) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) - (-4 *4 (-1044))))) -(((*1 *2 *3) - (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1232 (-48))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34))) + (-4 *4 (-13 (-1093) (-34)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-640 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) - (-5 *1 (-121 *3)) (-4 *3 (-845)))) + (-12 (-4 *1 (-1201 *4 *5 *6 *3)) (-4 *4 (-555)) (-4 *5 (-789)) + (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) +(((*1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-535 *2)) (-4 *2 (-1208)))) + ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-536))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-555) (-147))) (-5 *1 (-537 *3 *2)) + (-4 *2 (-1248 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-583 *4)) (-4 *4 (-13 (-29 *3) (-1192))) - (-4 *3 (-13 (-451) (-1033 (-562)) (-845) (-635 (-562)))) - (-5 *1 (-581 *3 *4)))) + (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-4 *4 (-1233 *3)) + (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1248 *5)))) ((*1 *2 *2) - (-12 (-5 *2 (-583 (-406 (-947 *3)))) - (-4 *3 (-13 (-451) (-1033 (-562)) (-845) (-635 (-562)))) - (-5 *1 (-586 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1232 *5)) (-4 *5 (-362)) - (-5 *2 (-2 (|:| -2450 *3) (|:| |special| *3))) (-5 *1 (-722 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1256 *5)) (-4 *5 (-362)) (-4 *5 (-1044)) - (-5 *2 (-639 (-639 (-683 *5)))) (-5 *1 (-1024 *5)) - (-5 *3 (-639 (-683 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1256 (-1256 *5))) (-4 *5 (-362)) (-4 *5 (-1044)) - (-5 *2 (-639 (-639 (-683 *5)))) (-5 *1 (-1024 *5)) - (-5 *3 (-639 (-683 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-140)) (-5 *2 (-639 *1)) (-4 *1 (-1136)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-143)) (-5 *2 (-639 *1)) (-4 *1 (-1136))))) -(((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1232 *5)) (-4 *5 (-362)) - (-5 *2 (-2 (|:| -2450 (-417 *3)) (|:| |special| (-417 *3)))) - (-5 *1 (-722 *5 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-639 *1)) - (-4 *1 (-1058 *3 *4 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-639 *2)) (-4 *2 (-944 *4 *5 *6)) (-4 *4 (-451)) - (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-448 *4 *5 *6 *2))))) -(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-156))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-213 *2)) - (-4 *2 - (-13 (-845) - (-10 -8 (-15 -2343 ((-1150) $ (-1168))) (-15 -1479 ((-1261) $)) - (-15 -1359 ((-1261) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-25)) (-4 *2 (-1207)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-25)) (-4 *2 (-1207)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-322 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-130)))) - ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-362) (-146))) (-5 *1 (-398 *3 *2)) - (-4 *2 (-1232 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-469 *2 *3)) (-4 *2 (-171)) (-4 *3 (-23)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-362)) (-4 *3 (-788)) (-4 *4 (-845)) - (-5 *1 (-503 *2 *3 *4 *5)) (-4 *5 (-944 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-535))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-372 *2)) - (-4 *4 (-372 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-857))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1092)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-938 (-224))) (-5 *1 (-1203)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1207)) (-4 *2 (-25))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-551))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-362)) (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) - (-5 *1 (-503 *4 *5 *6 *3)) (-4 *3 (-944 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1044)) - (-4 *2 (-13 (-403) (-1033 *4) (-362) (-1192) (-283))) - (-5 *1 (-442 *4 *3 *2)) (-4 *3 (-1232 *4))))) -(((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-766)) (-4 *4 (-554)) (-5 *1 (-964 *4 *2)) - (-4 *2 (-1232 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-362)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) - (-5 *1 (-520 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1164 (-562))) (-5 *1 (-937)) (-5 *3 (-562)))) + (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-5 *1 (-542 *3 *2)) + (-4 *2 (-1248 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-306)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) - (-5 *1 (-1116 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-168 (-224))) (-5 *5 (-562)) (-5 *6 (-1150)) - (-5 *3 (-224)) (-5 *2 (-1030)) (-5 *1 (-753))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-378)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) - ((*1 *1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-262))))) -(((*1 *1 *1) - (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) -(((*1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-444 *3)) (-4 *3 (-1044))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1168)) - (-4 *5 (-13 (-554) (-1033 (-562)) (-146))) - (-5 *2 - (-2 (|:| -2929 (-406 (-947 *5))) (|:| |coeff| (-406 (-947 *5))))) - (-5 *1 (-568 *5)) (-5 *3 (-406 (-947 *5)))))) -(((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-639 (-1256 *4))) (-5 *1 (-365 *3 *4)) - (-4 *3 (-366 *4)))) - ((*1 *2) - (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-4 *3 (-554)) - (-5 *2 (-639 (-1256 *3)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-639 *6)) (-4 *6 (-944 *3 *4 *5)) (-4 *3 (-306)) - (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-446 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-639 *7)) (-5 *3 (-1150)) (-4 *7 (-944 *4 *5 *6)) - (-4 *4 (-306)) (-4 *5 (-788)) (-4 *6 (-845)) - (-5 *1 (-446 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-639 *7)) (-5 *3 (-1150)) (-4 *7 (-944 *4 *5 *6)) - (-4 *4 (-306)) (-4 *5 (-788)) (-4 *6 (-845)) - (-5 *1 (-446 *4 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-887 *4)) (-4 *4 (-1092)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-885 *4 *5)) (-4 *5 (-1207)))) - ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1158))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1168)) (-5 *2 (-639 (-960))) (-5 *1 (-290))))) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-13 (-555) (-147))) + (-5 *1 (-1145 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-452)) (-4 *3 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) + (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-945 *4 *3 *5))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-141)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-144))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-873 *2)) (-4 *2 (-1208)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-875 *2)) (-4 *2 (-1208)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-878 *2)) (-4 *2 (-1208))))) +(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) +(((*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-578))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-1045))))) (((*1 *2 *3) - (-12 (-5 *3 (-1229 *5 *4)) (-4 *4 (-815)) (-14 *5 (-1168)) - (-5 *2 (-562)) (-5 *1 (-1106 *4 *5))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1168)) (-5 *2 (-109)) (-5 *1 (-174)))) - ((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1168)) (-5 *2 (-109)) (-5 *1 (-1077))))) -(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) - (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 -3196)))) - (-5 *2 (-1030)) (-5 *1 (-743))))) + (-12 + (-5 *3 + (-640 + (-2 (|:| -2522 (-767)) + (|:| |eqns| + (-640 + (-2 (|:| |det| *7) (|:| |rows| (-640 (-563))) + (|:| |cols| (-640 (-563)))))) + (|:| |fgb| (-640 *7))))) + (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) + (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-767)) + (-5 *1 (-920 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *2 (-640 (-1165 (-563)))) (-5 *1 (-191)) (-5 *3 (-563))))) +(((*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1208)) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-585 *2)) (-4 *2 (-545))))) +(((*1 *2 *3 *4 *2 *2 *5) + (|partial| -12 (-5 *2 (-839 *4)) (-5 *3 (-609 *4)) (-5 *5 (-112)) + (-4 *4 (-13 (-1193) (-29 *6))) + (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *1 (-224 *6 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-363) (-844))) + (-5 *2 (-2 (|:| |start| *3) (|:| -2760 (-418 *3)))) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4)))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1031)) (-5 *1 (-744))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-563)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-563))))) (((*1 *2) - (-12 (-4 *3 (-554)) (-5 *2 (-639 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-416 *3))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) + (-4 *4 (-1093))))) +(((*1 *2) + (-12 (-4 *3 (-555)) (-5 *2 (-640 (-684 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-417 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) + (-5 *2 (-640 (-640 (-939 *3)))))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-640 (-640 (-939 *4)))) (-5 *3 (-112)) (-4 *4 (-1045)) + (-4 *1 (-1127 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-640 (-640 (-939 *3)))) (-4 *3 (-1045)) + (-4 *1 (-1127 *3)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-640 (-640 (-640 *4)))) (-5 *3 (-112)) + (-4 *1 (-1127 *4)) (-4 *4 (-1045)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-640 (-640 (-939 *4)))) (-5 *3 (-112)) + (-4 *1 (-1127 *4)) (-4 *4 (-1045)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-640 (-640 (-640 *5)))) (-5 *3 (-640 (-171))) + (-5 *4 (-171)) (-4 *1 (-1127 *5)) (-4 *5 (-1045)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-640 (-640 (-939 *5)))) (-5 *3 (-640 (-171))) + (-5 *4 (-171)) (-4 *1 (-1127 *5)) (-4 *5 (-1045))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1093)) (-5 *1 (-103 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1093))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1151)) (-5 *3 (-819)) (-5 *1 (-818))))) +(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1151)) (-5 *1 (-52))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-555) (-147))) (-5 *2 (-640 *3)) + (-5 *1 (-1227 *4 *3)) (-4 *3 (-1233 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-640 *7)) (-4 *7 (-846)) (-4 *5 (-905)) (-4 *6 (-789)) + (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-418 (-1165 *8))) + (-5 *1 (-902 *5 *6 *7 *8)) (-5 *4 (-1165 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-905)) (-4 *5 (-1233 *4)) (-5 *2 (-418 (-1165 *5))) + (-5 *1 (-903 *4 *5)) (-5 *3 (-1165 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1208)) (-5 *1 (-375 *4 *2)) + (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4408))))))) (((*1 *1 *1) - (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) - (-4 *4 (-845)) (-4 *2 (-451))))) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *2 (-555))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-755))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-735 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) (((*1 *2 *3) - (-12 (-5 *3 (-1150)) - (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-112)) (-5 *1 (-223 *4 *5)) (-4 *5 (-13 (-1192) (-29 *4)))))) -(((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1171))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1132 *3 *4)) (-4 *3 (-13 (-1092) (-34))) - (-4 *4 (-13 (-1092) (-34)))))) -(((*1 *1 *1 *1) (-4 *1 (-306))) ((*1 *1 *1 *1) (-5 *1 (-766))) - ((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1044))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) - (-4 *5 (-372 *3)) (-5 *2 (-562)))) + (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) + (-5 *2 (-767)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) - (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-562))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1207)) (-5 *1 (-374 *4 *2)) - (-4 *2 (-13 (-372 *4) (-10 -7 (-6 -4404))))))) + (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-4 *3 (-555)) (-5 *2 (-767)))) + ((*1 *2 *3) + (-12 (-4 *4 (-555)) (-4 *4 (-172)) (-4 *5 (-373 *4)) + (-4 *6 (-373 *4)) (-5 *2 (-767)) (-5 *1 (-683 *4 *5 *6 *3)) + (-4 *3 (-682 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-555)) + (-5 *2 (-767))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1169)) (-5 *2 (-1173)) (-5 *1 (-1172))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1169)) + (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) + (-4 *4 (-13 (-29 *6) (-1193) (-955))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -4315 (-640 *4)))) + (-5 *1 (-797 *6 *4 *3)) (-4 *3 (-651 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-764)) + (-12 (-5 *3 (-765)) (-5 *2 - (-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) - (|:| |explanations| (-639 (-1150))) (|:| |extra| (-1030)))) - (-5 *1 (-563)))) + (-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) + (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031)))) + (-5 *1 (-564)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-764)) (-5 *4 (-1056)) + (-12 (-5 *3 (-765)) (-5 *4 (-1057)) (-5 *2 - (-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) - (|:| |explanations| (-639 (-1150))) (|:| |extra| (-1030)))) - (-5 *1 (-563)))) + (-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) + (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031)))) + (-5 *1 (-564)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-782)) (-5 *3 (-1056)) + (-12 (-4 *1 (-783)) (-5 *3 (-1057)) (-5 *4 - (-2 (|:| |fn| (-315 (-224))) - (|:| -2147 (-639 (-1086 (-838 (-224))))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))) + (-2 (|:| |fn| (-316 (-225))) + (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) (-5 *2 - (-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)) - (|:| |extra| (-1030)))))) + (-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)) + (|:| |extra| (-1031)))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-782)) (-5 *3 (-1056)) + (-12 (-4 *1 (-783)) (-5 *3 (-1057)) (-5 *4 - (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) - (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))) + (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) + (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) (-5 *2 - (-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)) - (|:| |extra| (-1030)))))) + (-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)) + (|:| |extra| (-1031)))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-795)) (-5 *3 (-1056)) + (-12 (-4 *1 (-796)) (-5 *3 (-1057)) (-5 *4 - (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) - (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) - (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) - (|:| |abserr| (-224)) (|:| |relerr| (-224)))) - (-5 *2 (-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)))))) + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) + (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)))))) ((*1 *2 *3) - (-12 (-5 *3 (-803)) + (-12 (-5 *3 (-804)) (-5 *2 - (-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) - (|:| |explanations| (-639 (-1150))))) - (-5 *1 (-800)))) + (-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) + (|:| |explanations| (-640 (-1151))))) + (-5 *1 (-801)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-803)) (-5 *4 (-1056)) + (-12 (-5 *3 (-804)) (-5 *4 (-1057)) (-5 *2 - (-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) - (|:| |explanations| (-639 (-1150))))) - (-5 *1 (-800)))) + (-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) + (|:| |explanations| (-640 (-1151))))) + (-5 *1 (-801)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-834)) (-5 *3 (-1056)) + (-12 (-4 *1 (-835)) (-5 *3 (-1057)) (-5 *4 - (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))) - (-5 *2 (-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)))))) + (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))) + (-5 *2 (-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-834)) (-5 *3 (-1056)) + (-12 (-4 *1 (-835)) (-5 *3 (-1057)) (-5 *4 - (-2 (|:| |fn| (-315 (-224))) (|:| -3730 (-639 (-224))) - (|:| |lb| (-639 (-838 (-224)))) (|:| |cf| (-639 (-315 (-224)))) - (|:| |ub| (-639 (-838 (-224)))))) - (-5 *2 (-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)))))) + (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) + (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) + (|:| |ub| (-640 (-839 (-225)))))) + (-5 *2 (-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)))))) ((*1 *2 *3) - (-12 (-5 *3 (-836)) + (-12 (-5 *3 (-837)) (-5 *2 - (-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) - (|:| |explanations| (-639 (-1150))))) - (-5 *1 (-835)))) + (-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) + (|:| |explanations| (-640 (-1151))))) + (-5 *1 (-836)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-836)) (-5 *4 (-1056)) + (-12 (-5 *3 (-837)) (-5 *4 (-1057)) (-5 *2 - (-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) - (|:| |explanations| (-639 (-1150))))) - (-5 *1 (-835)))) + (-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) + (|:| |explanations| (-640 (-1151))))) + (-5 *1 (-836)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-890)) (-5 *3 (-1056)) + (-12 (-4 *1 (-891)) (-5 *3 (-1057)) (-5 *4 - (-2 (|:| |pde| (-639 (-315 (-224)))) + (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| - (-639 - (-2 (|:| |start| (-224)) (|:| |finish| (-224)) - (|:| |grid| (-766)) (|:| |boundaryType| (-562)) - (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) - (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) - (|:| |tol| (-224)))) - (-5 *2 (-2 (|:| -1806 (-378)) (|:| |explanations| (-1150)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-893)) + (-640 + (-2 (|:| |start| (-225)) (|:| |finish| (-225)) + (|:| |grid| (-767)) (|:| |boundaryType| (-563)) + (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) + (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) + (|:| |tol| (-225)))) + (-5 *2 (-2 (|:| -1994 (-379)) (|:| |explanations| (-1151)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-894)) (-5 *2 - (-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) - (|:| |explanations| (-639 (-1150))))) - (-5 *1 (-892)))) + (-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) + (|:| |explanations| (-640 (-1151))))) + (-5 *1 (-893)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-893)) (-5 *4 (-1056)) + (-12 (-5 *3 (-894)) (-5 *4 (-1057)) (-5 *2 - (-2 (|:| -1806 (-378)) (|:| -3253 (-1150)) - (|:| |explanations| (-639 (-1150))))) - (-5 *1 (-892))))) + (-2 (|:| -1994 (-379)) (|:| -3348 (-1151)) + (|:| |explanations| (-640 (-1151))))) + (-5 *1 (-893))))) +(((*1 *2 *1) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-922)))) + ((*1 *2 *1) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-923))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-563)) (-4 *1 (-323 *4 *2)) (-4 *4 (-1093)) + (-4 *2 (-131))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2059 *4)))) + (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-1093)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-1093))))) +(((*1 *2 *3) + (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-417 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-225)) (-5 *1 (-305))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-767)) (-5 *2 (-1230 *5 *4)) (-5 *1 (-1167 *4 *5 *6)) + (-4 *4 (-1045)) (-14 *5 (-1169)) (-14 *6 *4))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-767)) (-5 *2 (-1230 *5 *4)) (-5 *1 (-1249 *4 *5 *6)) + (-4 *4 (-1045)) (-14 *5 (-1169)) (-14 *6 *4)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-677 *2)) (-4 *2 (-1093)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-640 *5) (-640 *5))) (-5 *4 (-563)) + (-5 *2 (-640 *5)) (-5 *1 (-677 *5)) (-4 *5 (-1093))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *2 *3) + (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-862 *4 *5 *6 *7)) + (-4 *4 (-1045)) (-14 *5 (-640 (-1169))) (-14 *6 (-640 *3)) + (-14 *7 *3))) + ((*1 *2 *3) + (-12 (-5 *3 (-767)) (-4 *4 (-1045)) (-4 *5 (-846)) (-4 *6 (-789)) + (-14 *8 (-640 *5)) (-5 *2 (-1262)) + (-5 *1 (-1269 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-945 *4 *6 *5)) + (-14 *9 (-640 *3)) (-14 *10 *3)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1149 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-192)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1149 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-300)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1149 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-305))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1093)) (-4 *4 (-1093)) + (-4 *6 (-1093)) (-5 *2 (-1 *6 *5)) (-5 *1 (-679 *5 *4 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1169)) (-4 *5 (-363)) (-5 *2 (-640 (-1202 *5))) + (-5 *1 (-1265 *5)) (-5 *4 (-1202 *5))))) +(((*1 *2 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-545))))) +(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913))))) (((*1 *1 *2 *1) - (-12 (-5 *1 (-643 *2 *3 *4)) (-4 *2 (-1092)) (-4 *3 (-23)) + (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *1 *2) + (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1093)) (-5 *1 (-901 *3))))) (((*1 *2 *3) (-12 (-5 *3 - (-503 (-406 (-562)) (-239 *5 (-766)) (-859 *4) - (-246 *4 (-406 (-562))))) - (-14 *4 (-639 (-1168))) (-14 *5 (-766)) (-5 *2 (-112)) - (-5 *1 (-504 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *1 (-226 *2)) (-4 *2 (-13 (-362) (-1192)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1211)) (-4 *5 (-1232 *4)) - (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-406 *5)) - (|:| |c2| (-406 *5)) (|:| |deg| (-766)))) - (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1232 (-406 *5)))))) + (-3 + (|:| |noa| + (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) + (|:| |lb| (-640 (-839 (-225)))) + (|:| |cf| (-640 (-316 (-225)))) + (|:| |ub| (-640 (-839 (-225)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-640 (-316 (-225)))) + (|:| -2523 (-640 (-225))))))) + (-5 *2 (-640 (-1151))) (-5 *1 (-267))))) +(((*1 *2 *1) (-12 (-5 *2 (-418 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-562))) (-5 *4 (-562)) (-5 *2 (-52)) - (-5 *1 (-1000))))) -(((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-845)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *1 *1) - (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) -(((*1 *2 *2) - (-12 (-5 *2 (-938 *3)) (-4 *3 (-13 (-362) (-1192) (-997))) - (-5 *1 (-175 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1156 *2 *3)) (-14 *2 (-916)) (-4 *3 (-1044))))) -(((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-838 *3)) (-4 *3 (-1092))))) -(((*1 *2 *1) - (-12 (-5 *2 (-639 (-52))) (-5 *1 (-887 *3)) (-4 *3 (-1092))))) -(((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-608 *3)) (-5 *5 (-1164 *3)) - (-4 *3 (-13 (-429 *6) (-27) (-1192))) - (-4 *6 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) - (-5 *2 (-2 (|:| -2929 *3) (|:| |coeff| *3))) - (-5 *1 (-558 *6 *3 *7)) (-4 *7 (-1092)))) - ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-608 *3)) (-5 *5 (-406 (-1164 *3))) - (-4 *3 (-13 (-429 *6) (-27) (-1192))) - (-4 *6 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) - (-5 *2 (-2 (|:| -2929 *3) (|:| |coeff| *3))) - (-5 *1 (-558 *6 *3 *7)) (-4 *7 (-1092))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-639 *2)) (-4 *2 (-944 *4 *5 *6)) (-4 *4 (-362)) - (-4 *4 (-451)) (-4 *5 (-788)) (-4 *6 (-845)) - (-5 *1 (-449 *4 *5 *6 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-362)) - (-5 *2 - (-2 (|:| R (-683 *6)) (|:| A (-683 *6)) (|:| |Ainv| (-683 *6)))) - (-5 *1 (-973 *6)) (-5 *3 (-683 *6))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) - (-5 *2 - (-2 (|:| -2533 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) - (|:| |success| (-112)))) - (-5 *1 (-784)) (-5 *5 (-562))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) - (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) - (-5 *1 (-983 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *5 (-845)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-639 *7)) (-4 *7 (-1058 *4 *5 *6)) (-4 *4 (-451)) - (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)) - (-5 *1 (-1099 *4 *5 *6 *7 *8)) (-4 *8 (-1064 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) - (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1168)) - (-4 *4 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) - (-5 *1 (-425 *4 *2)) (-4 *2 (-13 (-1192) (-29 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-1168)) (-4 *5 (-146)) - (-4 *5 (-13 (-451) (-1033 (-562)) (-845) (-635 (-562)))) - (-5 *2 (-315 *5)) (-5 *1 (-586 *5))))) -(((*1 *1 *1 *1) (-4 *1 (-306))) ((*1 *1 *1 *1) (-5 *1 (-766))) - ((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-845)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-857))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1092))))) -(((*1 *2 *3) - (-12 (-5 *3 (-168 *5)) (-4 *5 (-13 (-429 *4) (-997) (-1192))) - (-4 *4 (-13 (-554) (-845))) - (-4 *2 (-13 (-429 (-168 *4)) (-997) (-1192))) - (-5 *1 (-596 *4 *5 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1211)) (-4 *5 (-1232 *4)) - (-5 *2 (-2 (|:| -4221 (-406 *5)) (|:| |poly| *3))) - (-5 *1 (-147 *4 *5 *3)) (-4 *3 (-1232 (-406 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-817))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997)))))) + (|partial| -12 (-5 *3 (-640 (-263))) (-5 *4 (-1169)) + (-5 *1 (-262 *2)) (-4 *2 (-1208)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-640 (-263))) (-5 *4 (-1169)) (-5 *2 (-52)) + (-5 *1 (-263))))) (((*1 *2 *3) - (-12 (-5 *3 (-1150)) (-4 *4 (-13 (-306) (-146))) - (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) + (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-379)) (-5 *1 (-205))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-972 *4 *5 *6 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) + (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-555)) + (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-684 *6)) (-5 *5 (-1 (-418 (-1165 *6)) (-1165 *6))) + (-4 *6 (-363)) (-5 *2 - (-639 - (-2 (|:| |eqzro| (-639 *7)) (|:| |neqzro| (-639 *7)) - (|:| |wcond| (-639 (-947 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1256 (-406 (-947 *4)))) - (|:| -4291 (-639 (-1256 (-406 (-947 *4)))))))))) - (-5 *1 (-919 *4 *5 *6 *7)) (-4 *7 (-944 *4 *6 *5))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1150)) (-5 *4 (-562)) (-5 *5 (-683 (-224))) - (-5 *2 (-1030)) (-5 *1 (-752))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-845)) (-5 *2 (-639 *1)) - (-4 *1 (-429 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-639 (-887 *3))) (-5 *1 (-887 *3)) - (-4 *3 (-1092)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) - (-5 *2 (-639 *1)) (-4 *1 (-944 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1044)) - (-4 *7 (-944 *6 *4 *5)) (-5 *2 (-639 *3)) - (-5 *1 (-945 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-362) - (-10 -8 (-15 -4053 ($ *7)) (-15 -4063 (*7 $)) - (-15 -4079 (*7 $)))))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4404)) (-4 *1 (-243 *2)) (-4 *2 (-1207))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-788)) (-4 *6 (-845)) (-4 *7 (-554)) - (-4 *3 (-944 *7 *5 *6)) + (-640 + (-2 (|:| |outval| *7) (|:| |outmult| (-563)) + (|:| |outvect| (-640 (-684 *7)))))) + (-5 *1 (-532 *6 *7 *4)) (-4 *7 (-363)) (-4 *4 (-13 (-363) (-844)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-846)) (-5 *4 (-640 *6)) + (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-640 *4)))) + (-5 *1 (-1179 *6)) (-5 *5 (-640 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4) + (-247 *4 (-407 (-563))))) + (-14 *4 (-640 (-1169))) (-14 *5 (-767)) (-5 *2 (-112)) + (-5 *1 (-505 *4 *5))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-141)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-144))))) +(((*1 *2 *3) + (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 - (-2 (|:| -1300 (-766)) (|:| -4221 *3) (|:| |radicand| (-639 *3)))) - (-5 *1 (-948 *5 *6 *7 *3 *8)) (-5 *4 (-766)) - (-4 *8 - (-13 (-362) - (-10 -8 (-15 -4053 ($ *3)) (-15 -4063 (*3 $)) (-15 -4079 (*3 $)))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1164 *4)) (-4 *4 (-348)) (-5 *2 (-112)) - (-5 *1 (-356 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1256 *4)) (-4 *4 (-348)) (-5 *2 (-112)) - (-5 *1 (-527 *4))))) -(((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-814 *3)) (|:| |rm| (-814 *3)))) - (-5 *1 (-814 *3)) (-4 *3 (-845)))) - ((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-311)) (-5 *1 (-824))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-766)) (-4 *1 (-373 *3 *4)) (-4 *3 (-845)) - (-4 *4 (-171)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-766)) (-4 *1 (-1277 *3 *4)) (-4 *3 (-845)) - (-4 *4 (-1044))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-845)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1207)) (-5 *1 (-181 *3 *2)) (-4 *2 (-668 *3))))) -(((*1 *2) - (-12 (-4 *3 (-13 (-845) (-554) (-1033 (-562)))) (-5 *2 (-1261)) - (-5 *1 (-432 *3 *4)) (-4 *4 (-429 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1207))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-224))) (-5 *4 (-766)) (-5 *2 (-683 (-224))) - (-5 *1 (-304))))) -(((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-639 *9)) (-5 *3 (-1 (-112) *9)) - (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1058 *6 *7 *8)) (-4 *6 (-554)) (-4 *7 (-788)) - (-4 *8 (-845)) (-5 *1 (-972 *6 *7 *8 *9))))) -(((*1 *2 *1) (-12 (-4 *1 (-1085 *3)) (-4 *3 (-1207)) (-5 *2 (-562))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1148 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1044)) - (-5 *3 (-406 (-562))) (-5 *1 (-1152 *4))))) + (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) + (-5 *1 (-1117 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1164 *1)) (-5 *4 (-1168)) (-4 *1 (-27)) - (-5 *2 (-639 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-27)) (-5 *2 (-639 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-947 *1)) (-4 *1 (-27)) (-5 *2 (-639 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-845) (-554))) (-5 *2 (-639 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *2 (-639 *1)) (-4 *1 (-29 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-315 (-224))) (-5 *4 (-639 (-1168))) - (-5 *5 (-1086 (-838 (-224)))) (-5 *2 (-1148 (-224))) (-5 *1 (-299))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-165 *2)) (-4 *2 (-171)) (-4 *2 (-554)))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-325 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-787)) - (-4 *2 (-554)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-554))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-681 *2 *3 *4)) (-4 *2 (-1044)) - (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) (-4 *2 (-554)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-766))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-554)))) - ((*1 *1 *1 *1) (-5 *1 (-857))) + (-12 (-5 *3 (-640 (-1 (-112) *8))) (-4 *8 (-1059 *5 *6 *7)) + (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) + (-5 *2 (-2 (|:| |goodPols| (-640 *8)) (|:| |badPols| (-640 *8)))) + (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-640 *8))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) + (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1)))) + (-5 *2 (-1031)) (-5 *1 (-749))))) +(((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1208))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1257 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) + (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4)))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-2 (|:| |ans| *7) (|:| -1701 *7) (|:| |sol?| (-112))) + (-563) *7)) + (-5 *6 (-640 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1233 *7)) + (-5 *3 (-407 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-573 *7 *8))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1151) (-770))) (-5 *1 (-114))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-888 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1093)) + (-4 *5 (-1208)) (-5 *1 (-886 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1256 *4)) (-4 *4 (-1232 *3)) (-4 *3 (-554)) - (-5 *1 (-964 *3 *4)))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1047 *3 *4 *2 *5 *6)) (-4 *2 (-1044)) - (-4 *5 (-237 *4 *2)) (-4 *6 (-237 *3 *2)) (-4 *2 (-554)))) - ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-845)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-857))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-898 *3)) (-4 *3 (-1092)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1092))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-766)) (-4 *1 (-325 *3 *4)) (-4 *3 (-1044)) - (-4 *4 (-787)) (-4 *3 (-171))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-252 *4 *3 *5 *6)) (-4 *4 (-1044)) (-4 *3 (-845)) - (-4 *5 (-265 *3)) (-4 *6 (-788)) (-5 *2 (-639 (-766))))) - ((*1 *2 *1) - (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-845)) - (-4 *5 (-265 *4)) (-4 *6 (-788)) (-5 *2 (-639 (-766)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1044)) (-4 *2 (-681 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1232 *4)) (-4 *5 (-372 *4)) - (-4 *6 (-372 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-562)) (-5 *1 (-567 *3)) (-4 *3 (-1033 *2)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1095 *3 *4 *2 *5 *6)) (-4 *3 (-1092)) (-4 *4 (-1092)) - (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *2 (-1092))))) -(((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-490))))) -(((*1 *2 *3) - (-12 (-4 *1 (-348)) (-5 *3 (-562)) (-5 *2 (-1180 (-916) (-766)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-362) (-146) (-1033 (-406 (-562))))) - (-4 *5 (-1232 *4)) - (-5 *2 (-639 (-2 (|:| |deg| (-766)) (|:| -3339 *5)))) - (-5 *1 (-804 *4 *5 *3 *6)) (-4 *3 (-650 *5)) - (-4 *6 (-650 (-406 *5)))))) -(((*1 *2) - (-12 (-4 *1 (-348)) - (-5 *2 (-639 (-2 (|:| -1635 (-562)) (|:| -1300 (-562)))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-681 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-372 *3)) - (-4 *5 (-372 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1047 *3 *4 *5 *6 *7)) (-4 *5 (-1044)) - (-4 *6 (-237 *4 *5)) (-4 *7 (-237 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-639 (-562))) (-5 *2 (-639 (-683 (-562)))) - (-5 *1 (-1102))))) -(((*1 *2 *1) (-12 (-4 *1 (-1085 *2)) (-4 *2 (-1207))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-766)) (-4 *5 (-1044)) (-4 *2 (-1232 *5)) - (-5 *1 (-1250 *5 *2 *6 *3)) (-4 *6 (-650 *2)) (-4 *3 (-1247 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-916)) (-4 *1 (-328 *3)) (-4 *3 (-362)) (-4 *3 (-367)))) - ((*1 *2 *1) (-12 (-4 *1 (-328 *2)) (-4 *2 (-362)))) - ((*1 *2 *1) - (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1232 *2)) (-4 *2 (-171)))) + (-12 (-5 *2 (-888 *4)) (-5 *3 (-640 (-1 (-112) *5))) (-4 *4 (-1093)) + (-4 *5 (-1208)) (-5 *1 (-886 *4 *5)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-888 *5)) (-5 *3 (-640 (-1169))) + (-5 *4 (-1 (-112) (-640 *6))) (-4 *5 (-1093)) (-4 *6 (-1208)) + (-5 *1 (-886 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1256 *4)) (-5 *3 (-916)) (-4 *4 (-348)) - (-5 *1 (-527 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1115 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) - (-4 *5 (-237 *3 *2)) (-4 *2 (-1044))))) -(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258)))) - ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1232 *5)) (-4 *5 (-362)) - (-5 *2 - (-2 (|:| |ir| (-583 (-406 *6))) (|:| |specpart| (-406 *6)) - (|:| |polypart| *6))) - (-5 *1 (-572 *5 *6)) (-5 *3 (-406 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-406 (-562))) (-5 *2 (-224)) (-5 *1 (-304))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-766)) (-5 *1 (-59 *3)) (-4 *3 (-1207)))) - ((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1207)) (-5 *1 (-59 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-179)))) - ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-310)))) - ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-965)))) - ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-989)))) - ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1031)))) - ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1066))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-647 (-406 *6))) (-5 *4 (-406 *6)) (-4 *6 (-1232 *5)) - (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4291 (-639 *4)))) - (-5 *1 (-805 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-647 (-406 *6))) (-4 *6 (-1232 *5)) - (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) - (-5 *2 (-2 (|:| -4291 (-639 (-406 *6))) (|:| -1767 (-683 *5)))) - (-5 *1 (-805 *5 *6)) (-5 *4 (-639 (-406 *6))))) + (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1208)) (-4 *4 (-846)) + (-5 *1 (-933 *4 *2 *5)) (-4 *2 (-430 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-640 (-1 (-112) *5))) (-4 *5 (-1208)) (-4 *4 (-846)) + (-5 *1 (-933 *4 *2 *5)) (-4 *2 (-430 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-648 *6 (-406 *6))) (-5 *4 (-406 *6)) (-4 *6 (-1232 *5)) - (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4291 (-639 *4)))) - (-5 *1 (-805 *5 *6)))) + (-12 (-5 *3 (-1169)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1208)) + (-5 *2 (-316 (-563))) (-5 *1 (-934 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-648 *6 (-406 *6))) (-4 *6 (-1232 *5)) - (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) - (-5 *2 (-2 (|:| -4291 (-639 (-406 *6))) (|:| -1767 (-683 *5)))) - (-5 *1 (-805 *5 *6)) (-5 *4 (-639 (-406 *6)))))) + (-12 (-5 *3 (-1169)) (-5 *4 (-640 (-1 (-112) *5))) (-4 *5 (-1208)) + (-5 *2 (-316 (-563))) (-5 *1 (-934 *5)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-1 (-112) (-640 *6))) + (-4 *6 (-13 (-430 *5) (-882 *4) (-611 (-888 *4)))) (-4 *4 (-1093)) + (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4)))) + (-5 *1 (-1069 *4 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193)))))) +(((*1 *1) (-5 *1 (-157))) + ((*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-647 *4)) (-4 *4 (-341 *5 *6 *7)) - (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) - (-4 *6 (-1232 *5)) (-4 *7 (-1232 (-406 *6))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4291 (-639 *4)))) - (-5 *1 (-801 *5 *6 *7 *4))))) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) (((*1 *2 *1) - (-12 (-5 *2 (-639 (-938 *4))) (-5 *1 (-1156 *3 *4)) (-14 *3 (-916)) - (-4 *4 (-1044))))) + (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-640 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-293 (-838 *3))) (-4 *3 (-13 (-27) (-1192) (-429 *5))) - (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 - (-3 (-838 *3) - (-2 (|:| |leftHandLimit| (-3 (-838 *3) "failed")) - (|:| |rightHandLimit| (-3 (-838 *3) "failed"))) - "failed")) - (-5 *1 (-632 *5 *3)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-293 *3)) (-5 *5 (-1150)) - (-4 *3 (-13 (-27) (-1192) (-429 *6))) - (-4 *6 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-838 *3)) (-5 *1 (-632 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-293 (-838 (-947 *5)))) (-4 *5 (-451)) - (-5 *2 - (-3 (-838 (-406 (-947 *5))) - (-2 (|:| |leftHandLimit| (-3 (-838 (-406 (-947 *5))) "failed")) - (|:| |rightHandLimit| (-3 (-838 (-406 (-947 *5))) "failed"))) - "failed")) - (-5 *1 (-633 *5)) (-5 *3 (-406 (-947 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-293 (-406 (-947 *5)))) (-5 *3 (-406 (-947 *5))) - (-4 *5 (-451)) - (-5 *2 - (-3 (-838 *3) - (-2 (|:| |leftHandLimit| (-3 (-838 *3) "failed")) - (|:| |rightHandLimit| (-3 (-838 *3) "failed"))) - "failed")) - (-5 *1 (-633 *5)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-293 (-406 (-947 *6)))) (-5 *5 (-1150)) - (-5 *3 (-406 (-947 *6))) (-4 *6 (-451)) (-5 *2 (-838 *3)) - (-5 *1 (-633 *6))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) -(((*1 *2 *3) - (-12 (-5 *3 (-766)) (-5 *2 (-1 (-1148 (-947 *4)) (-1148 (-947 *4)))) - (-5 *1 (-1264 *4)) (-4 *4 (-362))))) -(((*1 *2 *3) - (-12 (-5 *3 (-766)) (-5 *2 (-683 (-947 *4))) (-5 *1 (-1023 *4)) - (-4 *4 (-1044))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1150)) (|:| -3253 (-1150)))) - (-5 *1 (-817))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-855)) (-5 *2 (-685 (-1214))) (-5 *3 (-1214))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-293 *2)) (-4 *2 (-1207)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-433)))) - ((*1 *1 *1 *1) (-5 *1 (-857))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1021 *3)) (-4 *3 (-1207))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-639 (-1086 (-378)))) (-5 *3 (-639 (-262))) - (-5 *1 (-260)))) - ((*1 *1 *2) (-12 (-5 *2 (-639 (-1086 (-378)))) (-5 *1 (-262)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-639 (-1086 (-378)))) (-5 *1 (-467)))) - ((*1 *2 *1) (-12 (-5 *2 (-639 (-1086 (-378)))) (-5 *1 (-467))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-766)) (-4 *1 (-1232 *3)) (-4 *3 (-1044))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1095 *3 *2 *4 *5 *6)) (-4 *3 (-1092)) (-4 *4 (-1092)) - (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *2 (-1092))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)) (-5 *3 (-562))))) -(((*1 *2 *3) - (-12 (-4 *1 (-890)) - (-5 *3 - (-2 (|:| |pde| (-639 (-315 (-224)))) - (|:| |constraints| - (-639 - (-2 (|:| |start| (-224)) (|:| |finish| (-224)) - (|:| |grid| (-766)) (|:| |boundaryType| (-562)) - (|:| |dStart| (-683 (-224))) (|:| |dFinish| (-683 (-224)))))) - (|:| |f| (-639 (-639 (-315 (-224))))) (|:| |st| (-1150)) - (|:| |tol| (-224)))) - (-5 *2 (-1030))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) - (-5 *1 (-750))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-562)) (-5 *5 (-683 (-224))) - (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-89 G)))) - (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-86 FCN)))) (-5 *3 (-224)) - (-5 *2 (-1030)) (-5 *1 (-744))))) -(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258)))) - ((*1 *2) (-12 (-5 *2 (-378)) (-5 *1 (-1258))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4403)) (-4 *1 (-488 *3)) (-4 *3 (-1207)) - (-4 *3 (-1092)) (-5 *2 (-766)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4403)) (-4 *1 (-488 *4)) - (-4 *4 (-1207)) (-5 *2 (-766))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-916)) (-5 *4 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1257))))) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -2059 *4)))) + (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1256 *4)) (-4 *4 (-635 *5)) (-4 *5 (-362)) - (-4 *5 (-554)) (-5 *2 (-1256 *5)) (-5 *1 (-634 *5 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1256 *4)) (-4 *4 (-635 *5)) - (-2234 (-4 *5 (-362))) (-4 *5 (-554)) (-5 *2 (-1256 (-406 *5))) - (-5 *1 (-634 *5 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) (-4 *4 (-372 *3)) - (-4 *5 (-372 *3)) (-5 *2 (-639 *3)))) - ((*1 *2 *1) - (-12 (|has| *1 (-6 -4403)) (-4 *1 (-488 *3)) (-4 *3 (-1207)) - (-5 *2 (-639 *3))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-639 *1)) (-4 *1 (-306))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-1211)) (-4 *5 (-1232 *3)) (-4 *6 (-1232 (-406 *5))) - (-5 *2 (-112)) (-5 *1 (-340 *4 *3 *5 *6)) (-4 *4 (-341 *3 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) - (-4 *5 (-1232 (-406 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-639 (-562))) (-5 *1 (-1102)) (-5 *3 (-562))))) -(((*1 *2 *1) - (-12 (-5 *2 (-639 (-2 (|:| -2319 (-1168)) (|:| -2693 *4)))) - (-5 *1 (-884 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *5 (-1092)) (-4 *6 (-1092)) - (-4 *7 (-1092)) (-5 *2 (-639 *1)) (-4 *1 (-1095 *3 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-5 *2 (-639 (-562))) (-5 *1 (-999 *3)) (-14 *3 (-562))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) - (-5 *1 (-750))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) - (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))) - (-5 *2 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1148 (-224))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2147 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-557))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-639 (-639 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-639 (-3 (|:| |array| (-639 *3)) (|:| |scalar| (-1168))))) - (-5 *6 (-639 (-1168))) (-5 *3 (-1168)) (-5 *2 (-1096)) - (-5 *1 (-396)))) - ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-639 (-639 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-639 (-3 (|:| |array| (-639 *3)) (|:| |scalar| (-1168))))) - (-5 *6 (-639 (-1168))) (-5 *3 (-1168)) (-5 *2 (-1096)) - (-5 *1 (-396)))) - ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-639 (-1168))) (-5 *5 (-1171)) (-5 *3 (-1168)) - (-5 *2 (-1096)) (-5 *1 (-396))))) -(((*1 *2 *3) - (-12 (-4 *4 (-451)) - (-5 *2 - (-639 - (-2 (|:| |eigval| (-3 (-406 (-947 *4)) (-1157 (-1168) (-947 *4)))) - (|:| |eigmult| (-766)) - (|:| |eigvec| (-639 (-683 (-406 (-947 *4)))))))) - (-5 *1 (-291 *4)) (-5 *3 (-683 (-406 (-947 *4))))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) -(((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-590 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-4 *1 (-1092)) (-5 *2 (-1112))))) -(((*1 *2) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-23))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1044)) (-5 *1 (-707 *3 *2)) (-4 *2 (-1232 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-372 *3)) (-4 *3 (-1207)) (-4 *3 (-845)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-372 *4)) (-4 *4 (-1207)) - (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-315 (-224))) (-5 *2 (-112)) (-5 *1 (-266))))) -(((*1 *2 *3) - (-12 (-5 *3 (-639 *7)) (-4 *7 (-944 *4 *6 *5)) - (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) - (-4 *6 (-788)) (-5 *2 (-112)) (-5 *1 (-919 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 (-947 *4))) (-4 *4 (-13 (-306) (-146))) - (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *2 (-112)) - (-5 *1 (-919 *4 *5 *6 *7)) (-4 *7 (-944 *4 *6 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1044)) (-5 *2 (-639 *1)) (-4 *1 (-1126 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-639 (-857))) (-5 *1 (-857)))) - ((*1 *1 *1) (-5 *1 (-857))) - ((*1 *1 *2) - (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-4 *1 (-1090 *3)))) - ((*1 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092))))) -(((*1 *1) (-5 *1 (-224))) ((*1 *1) (-5 *1 (-378)))) -(((*1 *2 *1) (-12 (-5 *1 (-1021 *2)) (-4 *2 (-1207))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-639 - (-2 (|:| -2172 (-766)) - (|:| |eqns| - (-639 - (-2 (|:| |det| *7) (|:| |rows| (-639 (-562))) - (|:| |cols| (-639 (-562)))))) - (|:| |fgb| (-639 *7))))) - (-4 *7 (-944 *4 *6 *5)) (-4 *4 (-13 (-306) (-146))) - (-4 *5 (-13 (-845) (-610 (-1168)))) (-4 *6 (-788)) (-5 *2 (-766)) - (-5 *1 (-919 *4 *5 *6 *7))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-872 *2)) (-4 *2 (-1207)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-1207)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-639 (-938 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-639 (-938 *3))) (-4 *3 (-1044)) (-4 *1 (-1126 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-639 (-639 *3))) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-639 (-938 *3))) (-4 *1 (-1126 *3)) (-4 *3 (-1044))))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1150)) (-5 *5 (-683 (-224))) (-5 *6 (-224)) - (-5 *7 (-683 (-562))) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-747))))) -(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-816))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) - (-4 *2 (-13 (-429 *3) (-1192)))))) + (-12 (-5 *3 (-640 (-684 *5))) (-4 *5 (-307)) (-4 *5 (-1045)) + (-5 *2 (-1257 (-1257 *5))) (-5 *1 (-1025 *5)) (-5 *4 (-1257 *5))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259))))) +(((*1 *2 *1) (-12 (-4 *1 (-1245 *3)) (-4 *3 (-1208)) (-5 *2 (-767))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-858))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-151 *2 *3 *4)) (-14 *2 (-916)) (-4 *3 (-362)) - (-14 *4 (-988 *2 *3)))) - ((*1 *1 *1) - (|partial| -12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1232 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1045)) (-14 *3 (-640 (-1169))))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-366 *2)) (-4 *2 (-171)) (-4 *2 (-554)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-710 *2 *3 *4 *5 *6)) (-4 *2 (-171)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-713 *2)) (-4 *2 (-362)))) - ((*1 *1) (-12 (-5 *1 (-713 *2)) (-4 *2 (-362)))) - ((*1 *1 *1) (|partial| -4 *1 (-717))) - ((*1 *1 *1) (|partial| -4 *1 (-721))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-451)) (-4 *6 (-788)) (-4 *7 (-845)) - (-4 *3 (-1058 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) - (-5 *1 (-771 *5 *6 *7 *3 *4)) (-4 *4 (-1064 *5 *6 *7 *3)))) - ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1061 *3 *2)) (-4 *3 (-13 (-843) (-362))) - (-4 *2 (-1232 *3)))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1192)))))) -(((*1 *2 *1) (-12 (-5 *1 (-961 *2)) (-4 *2 (-962))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1148 (-639 (-562)))) (-5 *3 (-639 (-562))) - (-5 *1 (-878))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1256 (-315 (-224)))) (-5 *2 (-1256 (-315 (-378)))) - (-5 *1 (-304))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *4 (-224)) - (-5 *2 (-1030)) (-5 *1 (-745))))) -(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-580))))) -(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-247))))) + (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846))) + (-14 *3 (-640 (-1169)))))) (((*1 *1 *2) - (-12 (-5 *2 (-412 *3 *4 *5 *6)) (-4 *6 (-1033 *4)) (-4 *3 (-306)) - (-4 *4 (-987 *3)) (-4 *5 (-1232 *4)) (-4 *6 (-408 *4 *5)) - (-14 *7 (-1256 *6)) (-5 *1 (-413 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-917)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1045)) + (-4 *4 (-1208)))) ((*1 *1 *2) - (-12 (-5 *2 (-1256 *6)) (-4 *6 (-408 *4 *5)) (-4 *4 (-987 *3)) - (-4 *5 (-1232 *4)) (-4 *3 (-306)) (-5 *1 (-413 *3 *4 *5 *6 *7)) - (-14 *7 *2)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-362)) (-4 *7 (-1232 *5)) (-4 *4 (-719 *5 *7)) - (-5 *2 (-2 (|:| -1767 (-683 *6)) (|:| |vec| (-1256 *5)))) - (-5 *1 (-806 *5 *6 *7 *4 *3)) (-4 *6 (-650 *5)) (-4 *3 (-650 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-306)) (-4 *5 (-372 *4)) (-4 *6 (-372 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) - (-5 *1 (-1116 *4 *5 *6 *3)) (-4 *3 (-681 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1150)) (-5 *1 (-191)))) - ((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1150)) (-5 *1 (-299)))) - ((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-1150)) (-5 *1 (-304))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) - (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-112)) (-5 *1 (-824))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) - (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1030)) - (-5 *1 (-743))))) + (-12 (-14 *3 (-640 (-1169))) (-4 *4 (-172)) + (-4 *5 (-238 (-3608 *3) (-767))) + (-14 *6 + (-1 (-112) (-2 (|:| -2555 *2) (|:| -1654 *5)) + (-2 (|:| -2555 *2) (|:| -1654 *5)))) + (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *2 (-846)) + (-4 *7 (-945 *4 *5 (-860 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204))))) +(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-436))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193))))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-917)) (-5 *4 (-379)) (-5 *2 (-1262)) (-5 *1 (-1258)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259))))) +(((*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-134))))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) + (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *3 (-563)) + (-5 *2 (-1031)) (-5 *1 (-752))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-555)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) + (-5 *1 (-1198 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5))))) (((*1 *1 *2) - (-12 (-5 *2 (-1256 *4)) (-4 *4 (-1207)) (-4 *1 (-237 *3 *4))))) -(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-921)))) - ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-922)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1086 (-224))) (-5 *1 (-922)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-639 (-2 (|:| -1589 (-406 (-562))) (|:| -1603 (-406 (-562)))))) - (-5 *2 (-639 (-224))) (-5 *1 (-304))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-887 *3)) (-4 *3 (-1092))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |polnum| (-777 *3)) (|:| |polden| *3) (|:| -3185 (-766)))) - (-5 *1 (-777 *3)) (-4 *3 (-1044)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3185 (-766)))) - (-4 *1 (-1058 *3 *4 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2929 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-362)) (-4 *7 (-1232 *6)) - (-5 *2 (-2 (|:| |answer| (-583 (-406 *7))) (|:| |a0| *6))) - (-5 *1 (-572 *6 *7)) (-5 *3 (-406 *7))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1092)))) - ((*1 *1 *2) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1092))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-362)) - (-5 *2 - (-2 (|:| A (-683 *5)) - (|:| |eqs| - (-639 - (-2 (|:| C (-683 *5)) (|:| |g| (-1256 *5)) (|:| -3339 *6) - (|:| |rh| *5)))))) - (-5 *1 (-808 *5 *6)) (-5 *3 (-683 *5)) (-5 *4 (-1256 *5)) - (-4 *6 (-650 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-362)) (-4 *6 (-650 *5)) - (-5 *2 (-2 (|:| -1767 (-683 *6)) (|:| |vec| (-1256 *5)))) - (-5 *1 (-808 *5 *6)) (-5 *3 (-683 *6)) (-5 *4 (-1256 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) (-5 *2 (-315 *4)) - (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1192) (-429 (-168 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *3)))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) - (-5 *2 - (-2 (|:| -2533 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) - (|:| |success| (-112)))) - (-5 *1 (-784)) (-5 *5 (-562))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) - (-5 *1 (-750))))) -(((*1 *1 *1) - (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-503 (-406 (-562)) (-239 *4 (-766)) (-859 *3) - (-246 *3 (-406 (-562))))) - (-14 *3 (-639 (-1168))) (-14 *4 (-766)) (-5 *1 (-504 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1148 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306))))) -(((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) - ((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-171))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-290))) - ((*1 *1) (-5 *1 (-857))) - ((*1 *1) - (-12 (-4 *2 (-451)) (-4 *3 (-845)) (-4 *4 (-788)) - (-5 *1 (-982 *2 *3 *4 *5)) (-4 *5 (-944 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1077))) - ((*1 *1) - (-12 (-5 *1 (-1132 *2 *3)) (-4 *2 (-13 (-1092) (-34))) - (-4 *3 (-13 (-1092) (-34))))) - ((*1 *1) (-5 *1 (-1171))) ((*1 *1) (-5 *1 (-1172)))) + (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-263)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-263)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-263))))) +(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-52)) (-5 *1 (-825))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-1224 (-563)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-639 (-938 *3)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-639 (-2 (|:| -1635 (-1164 *6)) (|:| -1300 (-562))))) - (-4 *6 (-306)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-112)) - (-5 *1 (-737 *4 *5 *6 *7)) (-4 *7 (-944 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1126 *2)) (-4 *2 (-1044))))) -(((*1 *1 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) - ((*1 *1 *1 *1) (-4 *1 (-472))) - ((*1 *1 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) - ((*1 *2 *2) (-12 (-5 *2 (-639 (-562))) (-5 *1 (-878)))) - ((*1 *1 *1) (-5 *1 (-966))) - ((*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-171))))) -(((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *2 *1) (-12 (-5 *2 (-224)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) (-5 *2 (-315 *4)) - (-5 *1 (-187 *4 *3)) (-4 *3 (-13 (-27) (-1192) (-429 (-168 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) - ((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-171)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *3)))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1150)) (-5 *5 (-683 (-224))) (-5 *6 (-683 (-562))) - (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-752))))) -(((*1 *2 *3) (-12 (-5 *2 (-378)) (-5 *1 (-780 *3)) (-4 *3 (-610 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-916)) (-5 *2 (-378)) (-5 *1 (-780 *3)) - (-4 *3 (-610 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-947 *4)) (-4 *4 (-1044)) (-4 *4 (-610 *2)) - (-5 *2 (-378)) (-5 *1 (-780 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-947 *5)) (-5 *4 (-916)) (-4 *5 (-1044)) - (-4 *5 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-554)) (-4 *4 (-610 *2)) - (-5 *2 (-378)) (-5 *1 (-780 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-916)) (-4 *5 (-554)) - (-4 *5 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-315 *4)) (-4 *4 (-554)) (-4 *4 (-845)) - (-4 *4 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-315 *5)) (-5 *4 (-916)) (-4 *5 (-554)) (-4 *5 (-845)) - (-4 *5 (-610 *2)) (-5 *2 (-378)) (-5 *1 (-780 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562)))))) -(((*1 *1) (-4 *1 (-348)))) -(((*1 *2 *3) - (-12 (-5 *3 (-639 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) - (-4 *4 (-13 (-845) (-554)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-362)) (-5 *2 (-2 (|:| -3380 *3) (|:| -1441 *3))) - (-5 *1 (-761 *3 *4)) (-4 *3 (-703 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-362)) (-4 *3 (-1044)) - (-5 *2 (-2 (|:| -3380 *1) (|:| -1441 *1))) (-4 *1 (-847 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-362)) (-4 *5 (-1044)) - (-5 *2 (-2 (|:| -3380 *3) (|:| -1441 *3))) (-5 *1 (-848 *5 *3)) - (-4 *3 (-847 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1229 *5 *4)) (-4 *4 (-451)) (-4 *4 (-815)) - (-14 *5 (-1168)) (-5 *2 (-562)) (-5 *1 (-1106 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1259)))) - ((*1 *2 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1259))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *3 (-845)) - (-5 *2 (-2 (|:| -4221 *1) (|:| |gap| (-766)) (|:| -1441 *1))) - (-4 *1 (-1058 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) - (-5 *2 (-2 (|:| -4221 *1) (|:| |gap| (-766)) (|:| -1441 *1))) - (-4 *1 (-1058 *3 *4 *5))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-639 (-562))) (-5 *1 (-999 *3)) (-14 *3 (-562))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-360 *3)) (-4 *3 (-1092)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-562)) (-5 *2 (-766)) (-5 *1 (-385 *4)) (-4 *4 (-1092)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-562)) (-4 *2 (-23)) (-5 *1 (-643 *4 *2 *5)) - (-4 *4 (-1092)) (-14 *5 *2))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-562)) (-5 *2 (-766)) (-5 *1 (-814 *4)) (-4 *4 (-845))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-639 *1)) (-4 *1 (-1058 *4 *5 *6)) (-4 *4 (-1044)) - (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *5 (-845)) (-5 *2 (-112)))) + (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) - (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1200 *4 *5 *6 *3)) (-4 *4 (-554)) (-4 *5 (-788)) - (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) (((*1 *1 *1) - (-12 (-5 *1 (-338 *2 *3 *4)) (-14 *2 (-639 (-1168))) - (-14 *3 (-639 (-1168))) (-4 *4 (-386)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-864 *3)) (-5 *2 (-562)))) - ((*1 *1 *1) (-4 *1 (-997))) - ((*1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-1007)))) - ((*1 *1 *2) (-12 (-5 *2 (-406 (-562))) (-4 *1 (-1007)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1007)) (-5 *2 (-916)))) - ((*1 *1 *1) (-4 *1 (-1007)))) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1169)) + (-4 *4 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) + (-5 *1 (-800 *4 *2)) (-4 *2 (-13 (-29 *4) (-1193) (-955)))))) +(((*1 *2 *1) (-12 (-5 *2 (-640 (-961))) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1151) (-770))) (-5 *1 (-114))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) + (-5 *2 (-640 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1233 *4)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) + (-5 *2 (-640 *3)) (-5 *1 (-1121 *4 *3)) (-4 *4 (-1233 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *6)) (-5 *4 (-1168)) (-4 *6 (-429 *5)) - (-4 *5 (-845)) (-5 *2 (-639 (-608 *6))) (-5 *1 (-571 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1261)) (-5 *1 (-378))))) -(((*1 *2) (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-105))))) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-917)) (-5 *2 (-468)) (-5 *1 (-1258))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1113)) (-5 *2 (-1262)) (-5 *1 (-827))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-767)) (-4 *5 (-555)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-965 *5 *3)) (-4 *3 (-1233 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-640 (-1069 *3 *4 *5))) (-4 *3 (-1093)) + (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3)))) + (-4 *5 (-13 (-430 *4) (-882 *3) (-611 (-888 *3)))) + (-5 *1 (-1070 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1093)) (-4 *6 (-1093)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-679 *4 *5 *6)) (-4 *5 (-1093))))) +(((*1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) (((*1 *1 *1) - (-12 (-4 *2 (-451)) (-4 *3 (-845)) (-4 *4 (-788)) - (-5 *1 (-982 *2 *3 *4 *5)) (-4 *5 (-944 *2 *4 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-562)) (-5 *1 (-315 *3)) (-4 *3 (-554)) (-4 *3 (-845))))) + (-12 (-4 *1 (-1201 *2 *3 *4 *5)) (-4 *2 (-555)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *5 (-1059 *2 *3 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) +(((*1 *2 *3) (-12 (-5 *3 (-640 (-52))) (-5 *2 (-1262)) (-5 *1 (-859))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1044)) - (-14 *4 (-639 (-1168))))) - ((*1 *2 *3) - (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1207)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-222 *3 *4)) (-4 *3 (-13 (-1044) (-845))) - (-14 *4 (-639 (-1168))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-666 *3)) (-4 *3 (-845)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-671 *3)) (-4 *3 (-845)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-845))))) -(((*1 *2 *1) (-12 (-4 *1 (-668 *3)) (-4 *3 (-1207)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *2)) (-4 *2 (-171)))) - ((*1 *2) (-12 (-4 *2 (-171)) (-5 *1 (-415 *3 *2)) (-4 *3 (-416 *2)))) - ((*1 *2) (-12 (-4 *1 (-416 *2)) (-4 *2 (-171))))) + (-12 (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2059 *4)))) + (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1093) (-34))) + (-4 *4 (-13 (-1093) (-34)))))) +(((*1 *1) (-5 *1 (-577)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-307)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-639 (-48))) (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1232 (-48))))) - ((*1 *2 *3) - (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1232 (-48))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-639 (-48))) (-4 *5 (-845)) (-4 *6 (-788)) - (-5 *2 (-417 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-944 (-48) *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-639 (-48))) (-4 *5 (-845)) (-4 *6 (-788)) - (-4 *7 (-944 (-48) *6 *5)) (-5 *2 (-417 (-1164 *7))) - (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1164 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-166 *4 *3)) - (-4 *3 (-1232 (-168 *4))))) + (-12 (-5 *3 (-640 *5)) (-5 *4 (-640 *6)) (-4 *5 (-1093)) + (-4 *6 (-1208)) (-5 *2 (-1 *6 *5)) (-5 *1 (-637 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-362) (-843))) (-5 *2 (-417 *3)) - (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-362) (-843))) (-5 *2 (-417 *3)) - (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-362) (-843))) (-5 *2 (-417 *3)) - (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-348)) (-5 *2 (-417 *3)) (-5 *1 (-215 *4 *3)) - (-4 *3 (-1232 *4)))) - ((*1 *2 *3) - (-12 (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-766)) (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) - (-4 *3 (-1232 (-562))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-639 (-766))) (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) - (-4 *3 (-1232 (-562))))) + (-12 (-5 *3 (-640 *5)) (-5 *4 (-640 *2)) (-4 *5 (-1093)) + (-4 *2 (-1208)) (-5 *1 (-637 *5 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-639 (-766))) (-5 *5 (-766)) (-5 *2 (-417 *3)) - (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-766)) (-5 *2 (-417 *3)) (-5 *1 (-441 *3)) - (-4 *3 (-1232 (-562))))) - ((*1 *2 *3) - (-12 (-5 *2 (-417 (-168 (-562)))) (-5 *1 (-445)) - (-5 *3 (-168 (-562))))) - ((*1 *2 *3) - (-12 - (-4 *4 - (-13 (-845) - (-10 -8 (-15 -4208 ((-1168) $)) - (-15 -2443 ((-3 $ "failed") (-1168)))))) - (-4 *5 (-788)) (-4 *7 (-554)) (-5 *2 (-417 *3)) - (-5 *1 (-455 *4 *5 *6 *7 *3)) (-4 *6 (-554)) - (-4 *3 (-944 *7 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-306)) (-5 *2 (-417 (-1164 *4))) (-5 *1 (-457 *4)) - (-5 *3 (-1164 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1232 *5)) (-4 *5 (-362)) - (-4 *7 (-13 (-362) (-146) (-719 *5 *6))) (-5 *2 (-417 *3)) - (-5 *1 (-493 *5 *6 *7 *3)) (-4 *3 (-1232 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-417 (-1164 *7)) (-1164 *7))) - (-4 *7 (-13 (-306) (-146))) (-4 *5 (-845)) (-4 *6 (-788)) - (-5 *2 (-417 *3)) (-5 *1 (-539 *5 *6 *7 *3)) - (-4 *3 (-944 *7 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-417 (-1164 *7)) (-1164 *7))) - (-4 *7 (-13 (-306) (-146))) (-4 *5 (-845)) (-4 *6 (-788)) - (-4 *8 (-944 *7 *6 *5)) (-5 *2 (-417 (-1164 *8))) - (-5 *1 (-539 *5 *6 *7 *8)) (-5 *3 (-1164 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-556 *3)) (-4 *3 (-544)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-639 *5) *6)) - (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) - (-4 *6 (-1232 *5)) (-5 *2 (-639 (-647 (-406 *6)))) - (-5 *1 (-651 *5 *6)) (-5 *3 (-647 (-406 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) - (-4 *5 (-1232 *4)) (-5 *2 (-639 (-647 (-406 *5)))) - (-5 *1 (-651 *4 *5)) (-5 *3 (-647 (-406 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-814 *4)) (-4 *4 (-845)) (-5 *2 (-639 (-666 *4))) - (-5 *1 (-666 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-562)) (-5 *2 (-639 *3)) (-5 *1 (-690 *3)) - (-4 *3 (-1232 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-845)) (-4 *5 (-788)) (-4 *6 (-348)) (-5 *2 (-417 *3)) - (-5 *1 (-692 *4 *5 *6 *3)) (-4 *3 (-944 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-845)) (-4 *5 (-788)) (-4 *6 (-348)) - (-4 *7 (-944 *6 *5 *4)) (-5 *2 (-417 (-1164 *7))) - (-5 *1 (-692 *4 *5 *6 *7)) (-5 *3 (-1164 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-788)) - (-4 *5 - (-13 (-845) - (-10 -8 (-15 -4208 ((-1168) $)) - (-15 -2443 ((-3 $ "failed") (-1168)))))) - (-4 *6 (-306)) (-5 *2 (-417 *3)) (-5 *1 (-725 *4 *5 *6 *3)) - (-4 *3 (-944 (-947 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-788)) - (-4 *5 (-13 (-845) (-10 -8 (-15 -4208 ((-1168) $))))) (-4 *6 (-554)) - (-5 *2 (-417 *3)) (-5 *1 (-727 *4 *5 *6 *3)) - (-4 *3 (-944 (-406 (-947 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-13 (-306) (-146))) - (-5 *2 (-417 *3)) (-5 *1 (-728 *4 *5 *6 *3)) - (-4 *3 (-944 (-406 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-845)) (-4 *5 (-788)) (-4 *6 (-13 (-306) (-146))) - (-5 *2 (-417 *3)) (-5 *1 (-736 *4 *5 *6 *3)) - (-4 *3 (-944 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-845)) (-4 *5 (-788)) (-4 *6 (-13 (-306) (-146))) - (-4 *7 (-944 *6 *5 *4)) (-5 *2 (-417 (-1164 *7))) - (-5 *1 (-736 *4 *5 *6 *7)) (-5 *3 (-1164 *7)))) - ((*1 *2 *3) - (-12 (-5 *2 (-417 *3)) (-5 *1 (-1002 *3)) - (-4 *3 (-1232 (-406 (-562)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-417 *3)) (-5 *1 (-1036 *3)) - (-4 *3 (-1232 (-406 (-947 (-562))))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1232 (-406 (-562)))) - (-4 *5 (-13 (-362) (-146) (-719 (-406 (-562)) *4))) - (-5 *2 (-417 *3)) (-5 *1 (-1071 *4 *5 *3)) (-4 *3 (-1232 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1232 (-406 (-947 (-562))))) - (-4 *5 (-13 (-362) (-146) (-719 (-406 (-947 (-562))) *4))) - (-5 *2 (-417 *3)) (-5 *1 (-1073 *4 *5 *3)) (-4 *3 (-1232 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-451)) - (-4 *7 (-944 *6 *4 *5)) (-5 *2 (-417 (-1164 (-406 *7)))) - (-5 *1 (-1163 *4 *5 *6 *7)) (-5 *3 (-1164 (-406 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1211)))) + (-12 (-5 *3 (-640 *6)) (-5 *4 (-640 *5)) (-4 *6 (-1093)) + (-4 *5 (-1208)) (-5 *2 (-1 *5 *6)) (-5 *1 (-637 *6 *5)))) + ((*1 *2 *3 *4 *5 *2) + (-12 (-5 *3 (-640 *5)) (-5 *4 (-640 *2)) (-4 *5 (-1093)) + (-4 *2 (-1208)) (-5 *1 (-637 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-640 *5)) (-5 *4 (-640 *6)) + (-4 *5 (-1093)) (-4 *6 (-1208)) (-5 *1 (-637 *5 *6)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-640 *5)) (-5 *4 (-640 *2)) (-5 *6 (-1 *2 *5)) + (-4 *5 (-1093)) (-4 *2 (-1208)) (-5 *1 (-637 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (-144)) (-5 *2 (-767))))) +(((*1 *2 *1) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-275))))) +(((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-767))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-817)) (-5 *4 (-52)) (-5 *2 (-1262)) (-5 *1 (-827))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-563)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1208)) + (-4 *5 (-373 *4)) (-4 *2 (-373 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-563)) (-4 *1 (-1048 *4 *5 *6 *7 *2)) (-4 *6 (-1045)) + (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147)) + (-4 *3 (-307)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *1 (-973 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *2 *1) + (-12 (-5 *2 (-640 *4)) (-5 *1 (-1134 *3 *4)) + (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) + (-5 *4 (-684 (-1165 *8))) (-4 *5 (-1045)) (-4 *8 (-1045)) + (-4 *6 (-1233 *5)) (-5 *2 (-684 *6)) (-5 *1 (-501 *5 *6 *7 *8)) + (-4 *7 (-1233 *6))))) +(((*1 *2 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-610 (-858))))) + ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-563)))) + ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1151)))) + ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-506)))) + ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-590)))) + ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-478)))) + ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-137)))) + ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-156)))) + ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1159)))) + ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-623)))) + ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1089)))) + ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1083)))) + ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1067)))) + ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-966)))) + ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-180)))) + ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1032)))) + ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-311)))) + ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-666)))) + ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-154)))) + ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-525)))) + ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1268)))) + ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1060)))) + ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-517)))) + ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-676)))) + ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-96)))) + ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1108)))) + ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-133)))) + ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-138)))) + ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1267)))) + ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-671)))) + ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-218)))) + ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-524)))) + ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1174)))) + ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1174)))) + ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1174)))) + ((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-1174))))) +(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) +(((*1 *1 *1) + (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) +(((*1 *2 *2) + (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))) + ((*1 *2) + (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045))))) +(((*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193))))) + ((*1 *1 *1 *1) (-4 *1 (-789)))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-418 *2)) (-4 *2 (-555))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1233 (-407 (-563)))) + (-5 *2 (-2 (|:| |den| (-563)) (|:| |gcdnum| (-563)))) + (-5 *1 (-909 *3 *4)) (-4 *4 (-1233 (-407 *3))))) ((*1 *2 *3) - (-12 (-5 *2 (-417 *3)) (-5 *1 (-1221 *3)) (-4 *3 (-1232 (-562)))))) + (-12 (-4 *4 (-1233 (-407 *2))) (-5 *2 (-563)) (-5 *1 (-909 *4 *3)) + (-4 *3 (-1233 (-407 *4)))))) (((*1 *1 *1) - (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) - (-4 *4 (-845)) (-4 *2 (-451))))) -(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) -(((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-559))))) -(((*1 *2 *1) - (-12 (-4 *1 (-341 *3 *4 *5)) (-4 *3 (-1211)) (-4 *4 (-1232 *3)) - (-4 *5 (-1232 (-406 *4))) - (-5 *2 (-2 (|:| |num| (-1256 *4)) (|:| |den| *4)))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) - (-4 *4 (-845)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) (-4 *4 (-788)) - (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5))))) + (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-363)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) + (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1169)) (-5 *3 (-640 *1)) (-4 *1 (-430 *4)) + (-4 *4 (-846)))) + ((*1 *1 *2 *1 *1 *1 *1) + (-12 (-5 *2 (-1169)) (-4 *1 (-430 *3)) (-4 *3 (-846)))) + ((*1 *1 *2 *1 *1 *1) + (-12 (-5 *2 (-1169)) (-4 *1 (-430 *3)) (-4 *3 (-846)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1169)) (-4 *1 (-430 *3)) (-4 *3 (-846)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-4 *1 (-430 *3)) (-4 *3 (-846))))) +(((*1 *1 *1) + (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) +(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-379)))) + ((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-379))))) +(((*1 *1 *1 *1) (-5 *1 (-858)))) +(((*1 *1 *1) + (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) +(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172))))) (((*1 *2 *3) - (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)) (-5 *3 (-562))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1148 *4)) (-5 *3 (-562)) (-4 *4 (-1044)) - (-5 *1 (-1152 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-562)) (-5 *1 (-1248 *3 *4 *5)) (-4 *3 (-1044)) - (-14 *4 (-1168)) (-14 *5 *3)))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-683 *11)) (-5 *4 (-639 (-406 (-947 *8)))) - (-5 *5 (-766)) (-5 *6 (-1150)) (-4 *8 (-13 (-306) (-146))) - (-4 *11 (-944 *8 *10 *9)) (-4 *9 (-13 (-845) (-610 (-1168)))) - (-4 *10 (-788)) - (-5 *2 - (-2 - (|:| |rgl| - (-639 - (-2 (|:| |eqzro| (-639 *11)) (|:| |neqzro| (-639 *11)) - (|:| |wcond| (-639 (-947 *8))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1256 (-406 (-947 *8)))) - (|:| -4291 (-639 (-1256 (-406 (-947 *8)))))))))) - (|:| |rgsz| (-562)))) - (-5 *1 (-919 *8 *9 *10 *11)) (-5 *7 (-562))))) -(((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-466)))) - ((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-466)))) - ((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-922))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1086 *3)) (-4 *3 (-944 *7 *6 *4)) (-4 *6 (-788)) - (-4 *4 (-845)) (-4 *7 (-554)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-562)))) - (-5 *1 (-591 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-788)) (-4 *4 (-845)) (-4 *6 (-554)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-562)))) - (-5 *1 (-591 *5 *4 *6 *3)) (-4 *3 (-944 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-857))) ((*1 *1 *1 *1) (-5 *1 (-857))) - ((*1 *1 *1) (-5 *1 (-857))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1168)) - (-4 *4 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *1 (-1160 *4 *2)) (-4 *2 (-13 (-429 *4) (-159) (-27) (-1192))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1084 *2)) (-4 *2 (-13 (-429 *4) (-159) (-27) (-1192))) - (-4 *4 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *1 (-1160 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1168)) (-4 *5 (-13 (-554) (-845) (-1033 (-562)))) - (-5 *2 (-406 (-947 *5))) (-5 *1 (-1161 *5)) (-5 *3 (-947 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1168)) (-4 *5 (-13 (-554) (-845) (-1033 (-562)))) - (-5 *2 (-3 (-406 (-947 *5)) (-315 *5))) (-5 *1 (-1161 *5)) - (-5 *3 (-406 (-947 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1084 (-947 *5))) (-5 *3 (-947 *5)) - (-4 *5 (-13 (-554) (-845) (-1033 (-562)))) (-5 *2 (-406 *3)) - (-5 *1 (-1161 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1084 (-406 (-947 *5)))) (-5 *3 (-406 (-947 *5))) - (-4 *5 (-13 (-554) (-845) (-1033 (-562)))) (-5 *2 (-3 *3 (-315 *5))) - (-5 *1 (-1161 *5))))) -(((*1 *1 *1) (-5 *1 (-857)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-224)) (-5 *1 (-225)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-224))) (-5 *1 (-225)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *2)) - (-4 *2 (-429 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1131)))) + (-12 (-5 *3 (-1165 *6)) (-4 *6 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *2 (-1165 *7)) (-5 *1 (-321 *4 *5 *6 *7)) + (-4 *7 (-945 *6 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-681 *2 *3 *4)) (-4 *3 (-372 *2)) (-4 *4 (-372 *2)) - (|has| *2 (-6 (-4405 "*"))) (-4 *2 (-1044)))) - ((*1 *2 *3) - (-12 (-4 *4 (-372 *2)) (-4 *5 (-372 *2)) (-4 *2 (-171)) - (-5 *1 (-682 *2 *4 *5 *3)) (-4 *3 (-681 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1115 *3 *2 *4 *5)) (-4 *4 (-237 *3 *2)) - (-4 *5 (-237 *3 *2)) (|has| *2 (-6 (-4405 "*"))) (-4 *2 (-1044))))) + (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) + (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-640 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) + (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-639 (-859 *5))) (-14 *5 (-639 (-1168))) (-4 *6 (-451)) - (-5 *2 - (-2 (|:| |dpolys| (-639 (-246 *5 *6))) - (|:| |coords| (-639 (-562))))) - (-5 *1 (-470 *5 *6 *7)) (-5 *3 (-639 (-246 *5 *6))) (-4 *7 (-451))))) + (-12 (-5 *4 (-640 *3)) (-4 *3 (-1233 *5)) (-4 *5 (-307)) + (-5 *2 (-767)) (-5 *1 (-455 *5 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1045)) + (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))) + (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1233 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-917)) (-4 *5 (-1045)) + (-4 *2 (-13 (-404) (-1034 *5) (-363) (-1193) (-284))) + (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1233 *5))))) +(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1002)))) + ((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1002))))) +(((*1 *2 *3 *2) + (-12 (-5 *1 (-674 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093))))) (((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-293 (-406 (-947 *5)))) (-5 *4 (-1168)) - (-4 *5 (-13 (-306) (-845) (-146))) - (-5 *2 (-1157 (-639 (-315 *5)) (-639 (-293 (-315 *5))))) - (-5 *1 (-1121 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-1168)) - (-4 *5 (-13 (-306) (-845) (-146))) - (-5 *2 (-1157 (-639 (-315 *5)) (-639 (-293 (-315 *5))))) - (-5 *1 (-1121 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-1188)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-1188))))) -(((*1 *2 *1) (-12 (-4 *1 (-526)) (-5 *2 (-685 (-1212)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-385 *2)) (-4 *2 (-1092)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-845))))) -(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-613)))) -(((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-869)))) - ((*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1092)) (-4 *3 (-895 *5)) (-5 *2 (-1256 *3)) - (-5 *1 (-686 *5 *3 *6 *4)) (-4 *6 (-372 *3)) - (-4 *4 (-13 (-372 *5) (-10 -7 (-6 -4403))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-306)) (-5 *2 (-417 *3)) - (-5 *1 (-737 *4 *5 *6 *3)) (-4 *3 (-944 *6 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-252 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-845)) - (-4 *5 (-265 *4)) (-4 *6 (-788)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-766)) (-4 *1 (-1232 *3)) (-4 *3 (-1044))))) -(((*1 *2 *2) (-12 (-5 *2 (-639 (-315 (-224)))) (-5 *1 (-266))))) -(((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-1172))))) -(((*1 *1 *2) - (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-4 *1 (-1090 *3)))) - ((*1 *1) (-12 (-4 *1 (-1090 *2)) (-4 *2 (-1092))))) -(((*1 *1 *2) (-12 (-5 *2 (-639 *1)) (-4 *1 (-451)))) - ((*1 *1 *1 *1) (-4 *1 (-451))) + (-12 (-4 *3 (-846)) (-5 *1 (-925 *3 *2)) (-4 *2 (-430 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-639 *2)) (-5 *1 (-485 *2)) (-4 *2 (-1232 (-562))))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-562)) (-5 *1 (-690 *2)) (-4 *2 (-1232 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-766))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-788)) (-4 *4 (-845)) (-4 *5 (-306)) - (-5 *1 (-911 *3 *4 *5 *2)) (-4 *2 (-944 *5 *3 *4)))) + (-12 (-5 *3 (-1169)) (-5 *2 (-316 (-563))) (-5 *1 (-926))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-640 *3)) + (-4 *3 (-13 (-27) (-1193) (-430 *6))) + (-4 *6 (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-556 *6 *3))))) +(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *1 (-263)))) ((*1 *2 *3) - (-12 (-5 *3 (-639 *2)) (-4 *2 (-944 *6 *4 *5)) - (-5 *1 (-911 *4 *5 *6 *2)) (-4 *4 (-788)) (-4 *5 (-845)) - (-4 *6 (-306)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1164 *6)) (-4 *6 (-944 *5 *3 *4)) (-4 *3 (-788)) - (-4 *4 (-845)) (-4 *5 (-306)) (-5 *1 (-911 *3 *4 *5 *6)))) + (-12 (-5 *3 (-1257 *1)) (-4 *1 (-329 *4)) (-4 *4 (-363)) + (-5 *2 (-684 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1257 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) + (-5 *2 (-684 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) + (-5 *2 (-1257 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1257 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) + (-4 *5 (-1233 *4)) (-5 *2 (-684 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1257 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) + (-4 *5 (-1233 *4)) (-5 *2 (-1257 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-639 (-1164 *7))) (-4 *4 (-788)) (-4 *5 (-845)) - (-4 *6 (-306)) (-5 *2 (-1164 *7)) (-5 *1 (-911 *4 *5 *6 *7)) - (-4 *7 (-944 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-916))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-451)) (-4 *3 (-554)) (-5 *1 (-964 *3 *2)) - (-4 *2 (-1232 *3)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1058 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-788)) - (-4 *4 (-845)) (-4 *2 (-451))))) -(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1150)) (-5 *1 (-705))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-766)) (|:| |poli| *2) - (|:| |polj| *2))) - (-4 *5 (-788)) (-4 *2 (-944 *4 *5 *6)) (-5 *1 (-448 *4 *5 *6 *2)) - (-4 *4 (-451)) (-4 *6 (-845))))) -(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1207)))) - ((*1 *1 *1) (-12 (-5 *1 (-666 *2)) (-4 *2 (-845)))) - ((*1 *1 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-845)))) - ((*1 *1 *1) (-5 *1 (-857))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) + (-12 (-5 *3 (-1257 *1)) (-4 *1 (-409 *4 *5)) (-4 *4 (-172)) + (-4 *5 (-1233 *4)) (-5 *2 (-684 *4)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-843) (-362))) (-5 *1 (-1054 *2 *3)) - (-4 *3 (-1232 *2))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-608 *1)) (-4 *1 (-429 *4)) (-4 *4 (-845)) - (-4 *4 (-554)) (-5 *2 (-406 (-1164 *1))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-608 *3)) (-4 *3 (-13 (-429 *6) (-27) (-1192))) - (-4 *6 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) - (-5 *2 (-1164 (-406 (-1164 *3)))) (-5 *1 (-558 *6 *3 *7)) - (-5 *5 (-1164 *3)) (-4 *7 (-1092)))) + (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1233 *3)) + (-5 *2 (-1257 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1257 *1)) (-4 *1 (-417 *4)) (-4 *4 (-172)) + (-5 *2 (-684 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1257 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1252 *5)) (-14 *5 (-1168)) (-4 *6 (-1044)) - (-5 *2 (-1229 *5 (-947 *6))) (-5 *1 (-942 *5 *6)) (-5 *3 (-947 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-944 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *5 (-845)) (-5 *2 (-1164 *3)))) + (-12 (-5 *4 (-640 (-684 *5))) (-5 *3 (-684 *5)) (-4 *5 (-363)) + (-5 *2 (-1257 *5)) (-5 *1 (-1079 *5))))) +(((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| -2517 (-114)) (|:| |arg| (-640 (-888 *3))))) + (-5 *1 (-888 *3)) (-4 *3 (-1093)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *3 (-845)) (-5 *2 (-1164 *1)) - (-4 *1 (-944 *4 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-788)) (-4 *4 (-845)) (-4 *6 (-1044)) - (-4 *7 (-944 *6 *5 *4)) (-5 *2 (-406 (-1164 *3))) - (-5 *1 (-945 *5 *4 *6 *7 *3)) - (-4 *3 - (-13 (-362) - (-10 -8 (-15 -4053 ($ *7)) (-15 -4063 (*7 $)) (-15 -4079 (*7 $))))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1164 *3)) - (-4 *3 - (-13 (-362) - (-10 -8 (-15 -4053 ($ *7)) (-15 -4063 (*7 $)) (-15 -4079 (*7 $))))) - (-4 *7 (-944 *6 *5 *4)) (-4 *5 (-788)) (-4 *4 (-845)) - (-4 *6 (-1044)) (-5 *1 (-945 *5 *4 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1168)) (-4 *5 (-554)) - (-5 *2 (-406 (-1164 (-406 (-947 *5))))) (-5 *1 (-1038 *5)) - (-5 *3 (-406 (-947 *5)))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-766)) (-5 *1 (-777 *3)) (-4 *3 (-1044)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-958 *3 *2)) (-4 *2 (-130)) (-4 *3 (-554)) - (-4 *3 (-1044)) (-4 *2 (-787)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-766)) (-5 *1 (-1164 *3)) (-4 *3 (-1044)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-966)) (-4 *2 (-130)) (-5 *1 (-1170 *3)) (-4 *3 (-554)) - (-4 *3 (-1044)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-766)) (-5 *1 (-1229 *4 *3)) (-14 *4 (-1168)) - (-4 *3 (-1044))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-787)))) - ((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1044)) (-14 *3 (-639 (-1168))))) - ((*1 *1 *1) - (-12 (-5 *1 (-222 *2 *3)) (-4 *2 (-13 (-1044) (-845))) - (-14 *3 (-639 (-1168))))) - ((*1 *1 *1) - (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-1092)))) - ((*1 *1 *1) - (-12 (-14 *2 (-639 (-1168))) (-4 *3 (-171)) - (-4 *5 (-237 (-3492 *2) (-766))) - (-14 *6 - (-1 (-112) (-2 (|:| -2464 *4) (|:| -1300 *5)) - (-2 (|:| -2464 *4) (|:| -1300 *5)))) - (-5 *1 (-460 *2 *3 *4 *5 *6 *7)) (-4 *4 (-845)) - (-4 *7 (-944 *3 *5 (-859 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-508 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-845)))) - ((*1 *1 *1) - (-12 (-4 *2 (-554)) (-5 *1 (-619 *2 *3)) (-4 *3 (-1232 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-703 *2)) (-4 *2 (-1044)))) - ((*1 *1 *1) - (-12 (-5 *1 (-730 *2 *3)) (-4 *3 (-845)) (-4 *2 (-1044)) - (-4 *3 (-721)))) - ((*1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1058 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *2 (-845)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1279 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-841))))) -(((*1 *1 *1 *1) (-5 *1 (-857)))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-683 (-224))) (-5 *5 (-683 (-562))) (-5 *3 (-562)) - (-5 *2 (-1030)) (-5 *1 (-751))))) -(((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) - (-5 *1 (-742))))) + (|partial| -12 (-5 *3 (-114)) (-5 *2 (-640 (-888 *4))) + (-5 *1 (-888 *4)) (-4 *4 (-1093))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1092)) (-4 *5 (-1092)) - (-5 *2 (-1 *5 *4)) (-5 *1 (-677 *4 *5))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-916)) (-5 *2 (-1261)) (-5 *1 (-1257)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-916)) (-5 *2 (-1261)) (-5 *1 (-1258))))) + (-12 (-5 *3 (-563)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1045)) + (-5 *1 (-321 *4 *5 *2 *6)) (-4 *6 (-945 *2 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1203 *3)) (-4 *3 (-970))))) +(((*1 *2 *3) + (-12 (-4 *1 (-905)) (-5 *2 (-418 (-1165 *1))) (-5 *3 (-1165 *1))))) (((*1 *2 *1) - (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) (-4 *4 (-1044)) - (-5 *2 (-814 *3)))) - ((*1 *2 *1) - (-12 (-4 *2 (-841)) (-5 *1 (-1279 *3 *2)) (-4 *3 (-1044))))) -(((*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-13 (-403) (-1192))))) - ((*1 *1 *1 *1) (-4 *1 (-788)))) -(((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-1207))))) -(((*1 *2 *3) - (-12 (-5 *3 (-562)) (-4 *4 (-788)) (-4 *5 (-845)) (-4 *2 (-1044)) - (-5 *1 (-320 *4 *5 *2 *6)) (-4 *6 (-944 *2 *4 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1207)))) - ((*1 *1 *1) (-12 (-5 *1 (-666 *2)) (-4 *2 (-845)))) - ((*1 *1 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-845)))) - ((*1 *1 *1) (-5 *1 (-857))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-857)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-843) (-362))) (-5 *1 (-1054 *2 *3)) - (-4 *3 (-1232 *2))))) + (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) + (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7))))) +(((*1 *2 *2 *3) + (-12 (-5 *1 (-674 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114))) + ((*1 *1 *1) (-5 *1 (-171))) ((*1 *1 *1) (-4 *1 (-545))) + ((*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) + ((*1 *1 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1045)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34))) + (-4 *3 (-13 (-1093) (-34)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) + (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-684 (-169 (-407 (-563))))) + (-5 *2 + (-640 + (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-563)) + (|:| |outvect| (-640 (-684 (-169 *4))))))) + (-5 *1 (-760 *4)) (-4 *4 (-13 (-363) (-844)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-525))))) (((*1 *1 *2) (-12 (-5 *2 - (-639 + (-640 (-2 - (|:| -2319 - (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) - (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))) - (|:| -2693 + (|:| -2387 + (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) + (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (|:| -2557 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -15665,10 +13801,10 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1148 (-224))) + (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -2147 + (|:| -2516 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") @@ -15676,77 +13812,469 @@ (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-557))))) -(((*1 *2 *1) (-12 (-4 *1 (-843)) (-5 *2 (-562)))) - ((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-900 *3)) (-4 *3 (-1092)))) + (-5 *1 (-558))))) +(((*1 *2 *1) + (-12 (-4 *3 (-363)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) + (-5 *2 (-1257 *6)) (-5 *1 (-336 *3 *4 *5 *6)) + (-4 *6 (-342 *3 *4 *5))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-640 *6)) (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) + (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) + (-4 *3 (-555))))) +(((*1 *2 *3) + (-12 (-5 *3 (-640 *7)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1262)) + (-5 *1 (-449 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) + (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-379)) (-5 *1 (-205))))) +(((*1 *2) + (-12 (-5 *2 (-954 (-1113))) (-5 *1 (-343 *3 *4)) (-14 *3 (-917)) + (-14 *4 (-917)))) + ((*1 *2) + (-12 (-5 *2 (-954 (-1113))) (-5 *1 (-344 *3 *4)) (-4 *3 (-349)) + (-14 *4 (-1165 *3)))) + ((*1 *2) + (-12 (-5 *2 (-954 (-1113))) (-5 *1 (-345 *3 *4)) (-4 *3 (-349)) + (-14 *4 (-917))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1154 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1155 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))) +(((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-157))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-563)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-563))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) + (-5 *3 (-640 (-563)))))) +(((*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-563)))) + ((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1061 *4 *3)) (-4 *4 (-13 (-843) (-362))) - (-4 *3 (-1232 *4)) (-5 *2 (-562)))) + (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) + (-4 *3 (-1233 *4)) (-5 *2 (-563)))) ((*1 *2 *3) (|partial| -12 - (-4 *4 (-13 (-554) (-845) (-1033 *2) (-635 *2) (-451))) - (-5 *2 (-562)) (-5 *1 (-1108 *4 *3)) - (-4 *3 (-13 (-27) (-1192) (-429 *4))))) + (-4 *4 (-13 (-555) (-846) (-1034 *2) (-636 *2) (-452))) + (-5 *2 (-563)) (-5 *1 (-1109 *4 *3)) + (-4 *3 (-13 (-27) (-1193) (-430 *4))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1168)) (-5 *5 (-838 *3)) - (-4 *3 (-13 (-27) (-1192) (-429 *6))) - (-4 *6 (-13 (-554) (-845) (-1033 *2) (-635 *2) (-451))) - (-5 *2 (-562)) (-5 *1 (-1108 *6 *3)))) + (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-839 *3)) + (-4 *3 (-13 (-27) (-1193) (-430 *6))) + (-4 *6 (-13 (-555) (-846) (-1034 *2) (-636 *2) (-452))) + (-5 *2 (-563)) (-5 *1 (-1109 *6 *3)))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1168)) (-5 *5 (-1150)) - (-4 *6 (-13 (-554) (-845) (-1033 *2) (-635 *2) (-451))) - (-5 *2 (-562)) (-5 *1 (-1108 *6 *3)) - (-4 *3 (-13 (-27) (-1192) (-429 *6))))) + (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-1151)) + (-4 *6 (-13 (-555) (-846) (-1034 *2) (-636 *2) (-452))) + (-5 *2 (-563)) (-5 *1 (-1109 *6 *3)) + (-4 *3 (-13 (-27) (-1193) (-430 *6))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-451)) (-5 *2 (-562)) - (-5 *1 (-1109 *4)))) + (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-452)) (-5 *2 (-563)) + (-5 *1 (-1110 *4)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1168)) (-5 *5 (-838 (-406 (-947 *6)))) - (-5 *3 (-406 (-947 *6))) (-4 *6 (-451)) (-5 *2 (-562)) - (-5 *1 (-1109 *6)))) + (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-839 (-407 (-948 *6)))) + (-5 *3 (-407 (-948 *6))) (-4 *6 (-452)) (-5 *2 (-563)) + (-5 *1 (-1110 *6)))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-406 (-947 *6))) (-5 *4 (-1168)) - (-5 *5 (-1150)) (-4 *6 (-451)) (-5 *2 (-562)) (-5 *1 (-1109 *6)))) + (|partial| -12 (-5 *3 (-407 (-948 *6))) (-5 *4 (-1169)) + (-5 *5 (-1151)) (-4 *6 (-452)) (-5 *2 (-563)) (-5 *1 (-1110 *6)))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-563)) (-5 *1 (-1190 *3)) (-4 *3 (-1045))))) +(((*1 *2 *1) (-12 (-5 *2 (-640 (-183))) (-5 *1 (-140))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-640 *5)) (-4 *5 (-1233 *3)) (-4 *3 (-307)) + (-5 *2 (-112)) (-5 *1 (-455 *3 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-640 (-948 *4))) (-5 *3 (-640 (-1169))) (-4 *4 (-452)) + (-5 *1 (-914 *4))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-330))))) +(((*1 *2 *3) + (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1212)) (-4 *3 (-1233 *4)) + (-4 *5 (-1233 (-407 *3))) (-5 *2 (-112)))) ((*1 *2 *3) - (|partial| -12 (-5 *2 (-562)) (-5 *1 (-1189 *3)) (-4 *3 (-1044))))) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) + (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1154 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1155 *3))))) +(((*1 *1) (-5 *1 (-1258)))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-563)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1208)) + (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "right") (|has| *1 (-6 -4408)) (-4 *1 (-119 *3)) + (-4 *3 (-1208)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "left") (|has| *1 (-6 -4408)) (-4 *1 (-119 *3)) + (-4 *3 (-1208)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4408)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1093)) + (-4 *2 (-1208)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1169)) (-5 *1 (-629)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-1224 (-563))) (|has| *1 (-6 -4408)) (-4 *1 (-646 *2)) + (-4 *2 (-1208)))) + ((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-640 (-563))) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "value") (|has| *1 (-6 -4408)) (-4 *1 (-1006 *2)) + (-4 *2 (-1208)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1208)))) + ((*1 *2 *1 *3 *2) + (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "last") (|has| *1 (-6 -4408)) (-4 *1 (-1245 *2)) + (-4 *2 (-1208)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4408)) (-4 *1 (-1245 *3)) + (-4 *3 (-1208)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "first") (|has| *1 (-6 -4408)) (-4 *1 (-1245 *2)) + (-4 *2 (-1208))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-1045)) (-4 *3 (-846)) + (-5 *2 (-2 (|:| |val| *1) (|:| -1654 (-563)))) (-4 *1 (-430 *3)))) + ((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| |val| (-888 *3)) (|:| -1654 (-888 *3)))) + (-5 *1 (-888 *3)) (-4 *3 (-1093)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) + (-4 *7 (-945 *6 *4 *5)) + (-5 *2 (-2 (|:| |val| *3) (|:| -1654 (-563)))) + (-5 *1 (-946 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-363) + (-10 -8 (-15 -1693 ($ *7)) (-15 -2143 (*7 $)) + (-15 -2154 (*7 $)))))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-563)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-307)) + (-4 *9 (-945 *8 *6 *7)) + (-5 *2 (-2 (|:| -1574 (-1165 *9)) (|:| |polval| (-1165 *8)))) + (-5 *1 (-738 *6 *7 *8 *9)) (-5 *3 (-1165 *9)) (-5 *4 (-1165 *8))))) (((*1 *2 *2) - (-12 (-5 *2 (-639 *7)) (-4 *7 (-1064 *3 *4 *5 *6)) (-4 *3 (-451)) - (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) - (-5 *1 (-983 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-640 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) + (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) + (-5 *1 (-984 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-639 *7)) (-4 *7 (-1064 *3 *4 *5 *6)) (-4 *3 (-451)) - (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) - (-5 *1 (-1099 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-640 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) + (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) + (-5 *1 (-1100 *3 *4 *5 *6 *7))))) +(((*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-391))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-640 *6)) (-5 *4 (-640 (-1169))) (-4 *6 (-363)) + (-5 *2 (-640 (-294 (-948 *6)))) (-5 *1 (-538 *5 *6 *7)) + (-4 *5 (-452)) (-4 *7 (-13 (-363) (-844)))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-563)) (-4 *3 (-172)) (-4 *5 (-373 *3)) + (-4 *6 (-373 *3)) (-5 *1 (-683 *3 *5 *6 *2)) + (-4 *2 (-682 *3 *5 *6))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-307)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-447 *4 *5 *6 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-684 (-316 (-563)))) (-5 *1 (-1027))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1154 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1155 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) +(((*1 *1 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-555))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)) + (-4 *2 (-363)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-225)))) + ((*1 *1 *1 *1) + (-4032 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1208))) + (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1208))))) + ((*1 *1 *1 *1) (-4 *1 (-363))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-379)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1118 *3 (-609 *1))) (-4 *3 (-555)) (-4 *3 (-846)) + (-4 *1 (-430 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-473))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1257 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-536))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-172)) (-5 *1 (-618 *2 *4 *3)) (-4 *2 (-38 *4)) + (-4 *3 (|SubsetCategory| (-722) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *4 (-172)) (-5 *1 (-618 *3 *4 *2)) (-4 *3 (-38 *4)) + (-4 *2 (|SubsetCategory| (-722) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-631 *2)) (-4 *2 (-172)) (-4 *2 (-363)))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-172)) (-5 *1 (-657 *2 *4 *3)) (-4 *2 (-713 *4)) + (-4 *3 (|SubsetCategory| (-722) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *4 (-172)) (-5 *1 (-657 *3 *4 *2)) (-4 *3 (-713 *4)) + (-4 *2 (|SubsetCategory| (-722) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2)) (-4 *2 (-363)))) + ((*1 *1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-862 *2 *3 *4 *5)) (-4 *2 (-363)) + (-4 *2 (-1045)) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-767))) + (-14 *5 (-767)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1048 *3 *4 *2 *5 *6)) (-4 *2 (-1045)) + (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-363)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-363)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-363)) (-4 *2 (-1045)) (-4 *3 (-846)) + (-4 *4 (-789)) (-14 *6 (-640 *3)) + (-5 *1 (-1269 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-945 *2 *4 *3)) + (-14 *7 (-640 (-767))) (-14 *8 (-767)))) + ((*1 *1 *1 *2) + (-12 (-5 *1 (-1280 *2 *3)) (-4 *2 (-363)) (-4 *2 (-1045)) + (-4 *3 (-842))))) +(((*1 *2 *1) + (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)) + (-4 *2 (-452)))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 *4)) (-4 *4 (-1233 (-563))) (-5 *2 (-640 (-563))) + (-5 *1 (-486 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-452)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *2 (-846)) (-4 *3 (-452))))) (((*1 *2 *1) - (-12 (-4 *3 (-1044)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-639 *1)) - (-4 *1 (-944 *3 *4 *5))))) + (-12 (-5 *2 (-2 (|:| |preimage| (-640 *3)) (|:| |image| (-640 *3)))) + (-5 *1 (-901 *3)) (-4 *3 (-1093))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-112)) (-5 *5 (-1094 (-766))) (-5 *6 (-766)) + (-12 (-5 *4 (-112)) (-5 *5 (-1095 (-767))) (-5 *6 (-767)) (-5 *2 - (-2 (|:| |contp| (-562)) - (|:| -2656 (-639 (-2 (|:| |irr| *3) (|:| -2794 (-562))))))) - (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562)))))) + (-2 (|:| |contp| (-563)) + (|:| -2760 (-640 (-2 (|:| |irr| *3) (|:| -1650 (-563))))))) + (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563)))))) +(((*1 *2 *2 *1 *3 *4) + (-12 (-5 *2 (-640 *8)) (-5 *3 (-1 *8 *8 *8)) + (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1201 *5 *6 *7 *8)) (-4 *5 (-555)) + (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-97))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-643 *3)) (-4 *3 (-1045)) + (-5 *1 (-710 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-832 *3))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1154 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1155 *3))))) +(((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))) + ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260))))) +(((*1 *2 *1) (-12 (-5 *2 (-640 (-1078))) (-5 *1 (-291))))) +(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-134))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-214 *2)) + (-4 *2 + (-13 (-846) + (-10 -8 (-15 -2309 ((-1151) $ (-1169))) (-15 -1463 ((-1262) $)) + (-15 -2807 ((-1262) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1208)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1208)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1 *1) + (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2)))) + ((*1 *1 *1) (-5 *1 (-858))) ((*1 *1 *1 *1) (-5 *1 (-858))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-21))))) +(((*1 *2 *3) + (-12 (-5 *3 (-640 (-563))) (-5 *2 (-563)) (-5 *1 (-486 *4)) + (-4 *4 (-1233 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) + ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) + ((*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1256 *1)) (-4 *1 (-366 *4)) (-4 *4 (-171)) - (-5 *2 (-683 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-171)) (-5 *2 (-683 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-639 (-608 *1))) (-4 *1 (-301))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1207)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-845)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-845)))) + (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) + (-5 *2 (-684 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-684 *3))))) +(((*1 *1) (-5 *1 (-1057)))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-640 (-640 (-640 *5)))) (-5 *3 (-1 (-112) *5 *5)) + (-5 *4 (-640 *5)) (-4 *5 (-846)) (-5 *1 (-1179 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-5 *1 (-330))))) +(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) + (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1149 (-225))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -2516 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *1 (-558))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1154 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1155 *3))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1169)) (-5 *3 (-379)) (-5 *1 (-1057))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-609 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4))) + (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *1 (-277 *4 *2))))) +(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-157))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-214 *2)) + (-4 *2 + (-13 (-846) + (-10 -8 (-15 -2309 ((-1151) $ (-1169))) (-15 -1463 ((-1262) $)) + (-15 -2807 ((-1262) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1208)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1208)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-131)))) + ((*1 *1 *2 *1) + (-12 (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *2)) + (-4 *2 (-1233 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) + (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-536))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2)))) + ((*1 *1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-25))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-555)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3548 *3))) + (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1208)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-846)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-846)))) ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-562)) (-4 *1 (-281 *3)) (-4 *3 (-1207)))) + (-12 (-5 *2 (-563)) (-4 *1 (-282 *3)) (-4 *3 (-1208)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-562)) (-4 *1 (-281 *2)) (-4 *2 (-1207)))) + (-12 (-5 *3 (-563)) (-4 *1 (-282 *2)) (-4 *2 (-1208)))) ((*1 *1 *2) (-12 (-5 *2 (-2 - (|:| -2319 - (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) - (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))) - (|:| -2693 + (|:| -2387 + (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) + (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (|:| -2557 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -15759,10 +14287,10 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1148 (-224))) + (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -2147 + (|:| -2516 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") @@ -15770,2596 +14298,4072 @@ (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) - (-5 *1 (-557)))) + (-5 *1 (-558)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-766)) (-4 *1 (-689 *2)) (-4 *2 (-1092)))) + (-12 (-5 *3 (-767)) (-4 *1 (-690 *2)) (-4 *2 (-1093)))) ((*1 *1 *2) (-12 (-5 *2 (-2 - (|:| -2319 - (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) - (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) - (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) - (|:| |abserr| (-224)) (|:| |relerr| (-224)))) - (|:| -2693 - (-2 (|:| |stiffness| (-378)) (|:| |stability| (-378)) - (|:| |expense| (-378)) (|:| |accuracy| (-378)) - (|:| |intermediateResults| (-378)))))) - (-5 *1 (-798)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1261)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-1092)) - (-4 *4 (-1092))))) -(((*1 *1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-845)) (-4 *2 (-554)))) - ((*1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-554))))) -(((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) - (-4 *3 (-366 *4)))) - ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-639 *6)) (-4 *1 (-944 *4 *5 *6)) (-4 *4 (-1044)) - (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-766)))) - ((*1 *2 *1) - (-12 (-4 *1 (-944 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *5 (-845)) (-5 *2 (-766))))) -(((*1 *2) - (-12 (-4 *3 (-554)) (-5 *2 (-639 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-416 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1132 *2 *3)) (-4 *2 (-13 (-1092) (-34))) - (-4 *3 (-13 (-1092) (-34)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1092)) - (-4 *4 (-13 (-1044) (-881 *3) (-845) (-610 (-887 *3)))) - (-5 *2 (-639 (-1068 *3 *4 *5))) (-5 *1 (-1069 *3 *4 *5)) - (-4 *5 (-13 (-429 *4) (-881 *3) (-610 (-887 *3))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1266))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1044)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1044)) (-5 *1 (-50 *2 *3)) (-14 *3 (-639 (-1168))))) - ((*1 *2 *1) - (-12 (-5 *2 (-315 *3)) (-5 *1 (-222 *3 *4)) - (-4 *3 (-13 (-1044) (-845))) (-14 *4 (-639 (-1168))))) - ((*1 *2 *1) - (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1092)) (-4 *2 (-1044)))) - ((*1 *2 *1) - (-12 (-14 *3 (-639 (-1168))) (-4 *5 (-237 (-3492 *3) (-766))) - (-14 *6 - (-1 (-112) (-2 (|:| -2464 *4) (|:| -1300 *5)) - (-2 (|:| -2464 *4) (|:| -1300 *5)))) - (-4 *2 (-171)) (-5 *1 (-460 *3 *2 *4 *5 *6 *7)) (-4 *4 (-845)) - (-4 *7 (-944 *2 *5 (-859 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-508 *2 *3)) (-4 *3 (-845)) (-4 *2 (-1092)))) - ((*1 *2 *1) - (-12 (-4 *2 (-554)) (-5 *1 (-619 *2 *3)) (-4 *3 (-1232 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-703 *2)) (-4 *2 (-1044)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1044)) (-5 *1 (-730 *2 *3)) (-4 *3 (-845)) - (-4 *3 (-721)))) - ((*1 *2 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)))) - ((*1 *2 *1) - (-12 (-4 *1 (-968 *2 *3 *4)) (-4 *3 (-787)) (-4 *4 (-845)) - (-4 *2 (-1044)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1058 *3 *4 *2)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *2 (-845))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4403)) (-4 *1 (-488 *3)) (-4 *3 (-1207)) - (-4 *3 (-1092)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-900 *4)) (-4 *4 (-1092)) (-5 *2 (-112)) - (-5 *1 (-899 *4)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-916)) (-5 *2 (-112)) (-5 *1 (-1093 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-855)) (-5 *2 (-685 (-129))) (-5 *3 (-129))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-362)) (-4 *5 (-554)) + (|:| -2387 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) + (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (|:| -2557 + (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) + (|:| |expense| (-379)) (|:| |accuracy| (-379)) + (|:| |intermediateResults| (-379)))))) + (-5 *1 (-799)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1262)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) + (-4 *4 (-1093))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-1151)) (-5 *5 (-684 (-225))) + (-5 *2 (-1031)) (-5 *1 (-743))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1193)))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-640 *10)) (-5 *5 (-112)) (-4 *10 (-1065 *6 *7 *8 *9)) + (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) + (-4 *9 (-1059 *6 *7 *8)) (-5 *2 - (-2 (|:| |minor| (-639 (-916))) (|:| -3339 *3) - (|:| |minors| (-639 (-639 (-916)))) (|:| |ops| (-639 *3)))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-916)) (-4 *3 (-650 *5))))) -(((*1 *1) (-5 *1 (-1077)))) -(((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-766)) (-5 *1 (-164 *3 *4)) - (-4 *3 (-165 *4)))) - ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1207)) (-5 *2 (-766)) - (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-845)) (-5 *2 (-766)) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) - ((*1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-543 *3)) (-4 *3 (-544)))) - ((*1 *2) (-12 (-4 *1 (-758)) (-5 *2 (-766)))) - ((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-766)) (-5 *1 (-791 *3 *4)) - (-4 *3 (-792 *4)))) - ((*1 *2) - (-12 (-4 *4 (-554)) (-5 *2 (-766)) (-5 *1 (-986 *3 *4)) - (-4 *3 (-987 *4)))) - ((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-766)) (-5 *1 (-991 *3 *4)) - (-4 *3 (-992 *4)))) - ((*1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-1006 *3)) (-4 *3 (-1007)))) - ((*1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-766)))) - ((*1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-1052 *3)) (-4 *3 (-1053))))) -(((*1 *1 *1) (-4 *1 (-35))) + (-640 + (-2 (|:| -1420 (-640 *9)) (|:| -2059 *10) (|:| |ineq| (-640 *9))))) + (-5 *1 (-984 *6 *7 *8 *9 *10)) (-5 *3 (-640 *9)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-640 *10)) (-5 *5 (-112)) (-4 *10 (-1065 *6 *7 *8 *9)) + (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) + (-4 *9 (-1059 *6 *7 *8)) + (-5 *2 + (-640 + (-2 (|:| -1420 (-640 *9)) (|:| -2059 *10) (|:| |ineq| (-640 *9))))) + (-5 *1 (-1100 *6 *7 *8 *9 *10)) (-5 *3 (-640 *9))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-1093)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3 *2) + (-12 (-4 *1 (-783)) (-5 *2 (-1031)) + (-5 *3 + (-2 (|:| |fn| (-316 (-225))) + (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))))) + ((*1 *2 *3 *2) + (-12 (-4 *1 (-783)) (-5 *2 (-1031)) + (-5 *3 + (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) + (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997))))) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1247 *3)) - (-5 *1 (-277 *3 *4 *2)) (-4 *2 (-1218 *3 *4)))) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *1 *1) (-4 *1 (-493))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-406 (-562)))) (-4 *4 (-1216 *3)) - (-5 *1 (-278 *3 *4 *2 *5)) (-4 *2 (-1239 *3 *4)) (-4 *5 (-978 *4)))) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1154 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1153 *3)))) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1155 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 *4)) + (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-858)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 (-640 *2))) (-5 *4 (-640 *5)) + (-4 *5 (-38 (-407 (-563)))) (-4 *2 (-1248 *5)) + (-5 *1 (-1250 *5 *2))))) +(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-857)))) + ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-857))))) +(((*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-846)) (-4 *2 (-555)))) + ((*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1248 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1174))))) +(((*1 *2 *1 *1 *3 *4) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1093) (-34))) (-4 *6 (-13 (-1093) (-34))) + (-5 *2 (-112)) (-5 *1 (-1133 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-330))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-563)) (-4 *4 (-172)) (-4 *5 (-373 *4)) + (-4 *6 (-373 *4)) (-5 *1 (-683 *4 *5 *6 *2)) + (-4 *2 (-682 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-248))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-38 (-406 (-562)))) - (-5 *1 (-1154 *3))))) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *1 *1) (-4 *1 (-493))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1154 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1155 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1092)) (-4 *6 (-881 *5)) (-5 *2 (-880 *5 *6 (-639 *6))) - (-5 *1 (-882 *5 *6 *4)) (-5 *3 (-639 *6)) (-4 *4 (-610 (-887 *5))))) + (-12 (-5 *3 (-640 (-407 (-948 (-563))))) + (-5 *2 (-640 (-640 (-294 (-948 *4))))) (-5 *1 (-380 *4)) + (-4 *4 (-13 (-844) (-363))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1092)) (-5 *2 (-639 (-293 *3))) (-5 *1 (-882 *5 *3 *4)) - (-4 *3 (-1033 (-1168))) (-4 *3 (-881 *5)) (-4 *4 (-610 (-887 *5))))) + (-12 (-5 *3 (-640 (-294 (-407 (-948 (-563)))))) + (-5 *2 (-640 (-640 (-294 (-948 *4))))) (-5 *1 (-380 *4)) + (-4 *4 (-13 (-844) (-363))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1092)) (-5 *2 (-639 (-293 (-947 *3)))) - (-5 *1 (-882 *5 *3 *4)) (-4 *3 (-1044)) - (-2234 (-4 *3 (-1033 (-1168)))) (-4 *3 (-881 *5)) - (-4 *4 (-610 (-887 *5))))) + (-12 (-5 *3 (-407 (-948 (-563)))) (-5 *2 (-640 (-294 (-948 *4)))) + (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1092)) (-5 *2 (-884 *5 *3)) (-5 *1 (-882 *5 *3 *4)) - (-2234 (-4 *3 (-1033 (-1168)))) (-2234 (-4 *3 (-1044))) - (-4 *3 (-881 *5)) (-4 *4 (-610 (-887 *5)))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *2 (-1030)) - (-5 *1 (-750))))) -(((*1 *1 *2) (-12 (-5 *2 (-639 *1)) (-4 *1 (-451)))) - ((*1 *1 *1 *1) (-4 *1 (-451)))) -(((*1 *2 *3) - (-12 (-5 *2 (-168 (-378))) (-5 *1 (-780 *3)) (-4 *3 (-610 (-378))))) + (-12 (-5 *3 (-294 (-407 (-948 (-563))))) + (-5 *2 (-640 (-294 (-948 *4)))) (-5 *1 (-380 *4)) + (-4 *4 (-13 (-844) (-363))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1169)) + (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) + (-4 *4 (-13 (-29 *6) (-1193) (-955))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -4315 (-640 *4)))) + (-5 *1 (-647 *6 *4 *3)) (-4 *3 (-651 *4)))) + ((*1 *2 *3 *2 *4 *2 *5) + (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-640 *2)) + (-4 *2 (-13 (-29 *6) (-1193) (-955))) + (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) + (-5 *1 (-647 *6 *2 *3)) (-4 *3 (-651 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-916)) (-5 *2 (-168 (-378))) (-5 *1 (-780 *3)) - (-4 *3 (-610 (-378))))) - ((*1 *2 *3) - (-12 (-5 *3 (-168 *4)) (-4 *4 (-171)) (-4 *4 (-610 (-378))) - (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) + (-12 (-5 *3 (-684 *5)) (-4 *5 (-363)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1257 *5) "failed")) + (|:| -4315 (-640 (-1257 *5))))) + (-5 *1 (-662 *5)) (-5 *4 (-1257 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-168 *5)) (-5 *4 (-916)) (-4 *5 (-171)) - (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-947 (-168 *4))) (-4 *4 (-171)) (-4 *4 (-610 (-378))) - (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) + (-12 (-5 *3 (-640 (-640 *5))) (-4 *5 (-363)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1257 *5) "failed")) + (|:| -4315 (-640 (-1257 *5))))) + (-5 *1 (-662 *5)) (-5 *4 (-1257 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-947 (-168 *5))) (-5 *4 (-916)) (-4 *5 (-171)) - (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-947 *4)) (-4 *4 (-1044)) (-4 *4 (-610 (-378))) - (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) + (-12 (-5 *3 (-684 *5)) (-4 *5 (-363)) + (-5 *2 + (-640 + (-2 (|:| |particular| (-3 (-1257 *5) "failed")) + (|:| -4315 (-640 (-1257 *5)))))) + (-5 *1 (-662 *5)) (-5 *4 (-640 (-1257 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-947 *5)) (-5 *4 (-916)) (-4 *5 (-1044)) - (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-554)) (-4 *4 (-610 (-378))) - (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) + (-12 (-5 *3 (-640 (-640 *5))) (-4 *5 (-363)) + (-5 *2 + (-640 + (-2 (|:| |particular| (-3 (-1257 *5) "failed")) + (|:| -4315 (-640 (-1257 *5)))))) + (-5 *1 (-662 *5)) (-5 *4 (-640 (-1257 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-947 *5))) (-5 *4 (-916)) (-4 *5 (-554)) - (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-406 (-947 (-168 *4)))) (-4 *4 (-554)) - (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) + (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4408)))) + (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4408)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4315 (-640 *4)))) + (-5 *1 (-663 *5 *6 *4 *3)) (-4 *3 (-682 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-947 (-168 *5)))) (-5 *4 (-916)) (-4 *5 (-554)) - (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-315 *4)) (-4 *4 (-554)) (-4 *4 (-845)) - (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) + (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4408)))) + (-4 *7 (-13 (-373 *5) (-10 -7 (-6 -4408)))) + (-5 *2 + (-640 + (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4315 (-640 *7))))) + (-5 *1 (-663 *5 *6 *7 *3)) (-5 *4 (-640 *7)) + (-4 *3 (-682 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-315 *5)) (-5 *4 (-916)) (-4 *5 (-554)) (-4 *5 (-845)) - (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *5)))) + (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-640 (-1169))) (-4 *5 (-555)) + (-5 *2 (-640 (-640 (-294 (-407 (-948 *5)))))) (-5 *1 (-766 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-315 (-168 *4))) (-4 *4 (-554)) (-4 *4 (-845)) - (-4 *4 (-610 (-378))) (-5 *2 (-168 (-378))) (-5 *1 (-780 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-315 (-168 *5))) (-5 *4 (-916)) (-4 *5 (-554)) - (-4 *5 (-845)) (-4 *5 (-610 (-378))) (-5 *2 (-168 (-378))) - (-5 *1 (-780 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-817))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-787)))) - ((*1 *2 *1) - (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-1092)))) - ((*1 *2 *1) - (-12 (-14 *3 (-639 (-1168))) (-4 *4 (-171)) - (-4 *6 (-237 (-3492 *3) (-766))) - (-14 *7 - (-1 (-112) (-2 (|:| -2464 *5) (|:| -1300 *6)) - (-2 (|:| -2464 *5) (|:| -1300 *6)))) - (-5 *2 (-708 *5 *6 *7)) (-5 *1 (-460 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-845)) (-4 *8 (-944 *4 *6 (-859 *3))))) - ((*1 *2 *1) - (-12 (-4 *2 (-721)) (-4 *2 (-845)) (-5 *1 (-730 *3 *2)) - (-4 *3 (-1044)))) - ((*1 *1 *1) - (-12 (-4 *1 (-968 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-787)) - (-4 *4 (-845))))) -(((*1 *2 *3) (-12 (-5 *3 (-562)) (-5 *2 (-1261)) (-5 *1 (-1001))))) -(((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) - (-5 *1 (-746))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-562)) (-5 *3 (-766)) (-5 *1 (-559))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1232 *3)) (-4 *3 (-1044)) (-5 *2 (-1164 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1207)) - (-4 *5 (-1207)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-239 *6 *7)) (-14 *6 (-766)) - (-4 *7 (-1207)) (-4 *5 (-1207)) (-5 *2 (-239 *6 *5)) - (-5 *1 (-238 *6 *7 *5)))) + (-12 (-5 *3 (-640 (-948 *4))) (-4 *4 (-555)) + (-5 *2 (-640 (-640 (-294 (-407 (-948 *4)))))) (-5 *1 (-766 *4)))) + ((*1 *2 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1169)) + (-4 *5 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) + (-5 *1 (-768 *5 *2)) (-4 *2 (-13 (-29 *5) (-1193) (-955))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1207)) (-4 *5 (-1207)) - (-4 *2 (-372 *5)) (-5 *1 (-370 *6 *4 *5 *2)) (-4 *4 (-372 *6)))) + (|partial| -12 (-5 *3 (-684 *7)) (-5 *5 (-1169)) + (-4 *7 (-13 (-29 *6) (-1193) (-955))) + (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) + (-5 *2 + (-2 (|:| |particular| (-1257 *7)) (|:| -4315 (-640 (-1257 *7))))) + (-5 *1 (-798 *6 *7)) (-5 *4 (-1257 *7)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-684 *6)) (-5 *4 (-1169)) + (-4 *6 (-13 (-29 *5) (-1193) (-955))) + (-4 *5 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) + (-5 *2 (-640 (-1257 *6))) (-5 *1 (-798 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1092)) (-4 *5 (-1092)) - (-4 *2 (-424 *5)) (-5 *1 (-422 *6 *4 *5 *2)) (-4 *4 (-424 *6)))) + (|partial| -12 (-5 *3 (-640 (-294 *7))) (-5 *4 (-640 (-114))) + (-5 *5 (-1169)) (-4 *7 (-13 (-29 *6) (-1193) (-955))) + (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) + (-5 *2 + (-2 (|:| |particular| (-1257 *7)) (|:| -4315 (-640 (-1257 *7))))) + (-5 *1 (-798 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-639 *6)) (-4 *6 (-1207)) - (-4 *5 (-1207)) (-5 *2 (-639 *5)) (-5 *1 (-637 *6 *5)))) + (|partial| -12 (-5 *3 (-640 *7)) (-5 *4 (-640 (-114))) + (-5 *5 (-1169)) (-4 *7 (-13 (-29 *6) (-1193) (-955))) + (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) + (-5 *2 + (-2 (|:| |particular| (-1257 *7)) (|:| -4315 (-640 (-1257 *7))))) + (-5 *1 (-798 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-953 *6)) (-4 *6 (-1207)) - (-4 *5 (-1207)) (-5 *2 (-953 *5)) (-5 *1 (-952 *6 *5)))) + (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-1169)) + (-4 *7 (-13 (-29 *6) (-1193) (-955))) + (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) + (-5 *2 + (-3 (-2 (|:| |particular| *7) (|:| -4315 (-640 *7))) *7 "failed")) + (-5 *1 (-798 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1148 *6)) (-4 *6 (-1207)) - (-4 *3 (-1207)) (-5 *2 (-1148 *3)) (-5 *1 (-1146 *6 *3)))) + (-12 (-5 *4 (-114)) (-5 *5 (-1169)) + (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) + (-5 *2 + (-3 (-2 (|:| |particular| *3) (|:| -4315 (-640 *3))) *3 "failed")) + (-5 *1 (-798 *6 *3)) (-4 *3 (-13 (-29 *6) (-1193) (-955))))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-294 *2)) (-5 *4 (-114)) (-5 *5 (-640 *2)) + (-4 *2 (-13 (-29 *6) (-1193) (-955))) (-5 *1 (-798 *6 *2)) + (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))))) + ((*1 *2 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-114)) (-5 *4 (-294 *2)) (-5 *5 (-640 *2)) + (-4 *2 (-13 (-29 *6) (-1193) (-955))) + (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) + (-5 *1 (-798 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1031)) (-5 *1 (-801)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-804)) (-5 *4 (-1057)) (-5 *2 (-1031)) (-5 *1 (-801)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1257 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-640 *4)) + (-5 *2 (-1031)) (-5 *1 (-801)))) + ((*1 *2 *3 *4 *4 *5 *4) + (-12 (-5 *3 (-1257 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-640 *4)) + (-5 *2 (-1031)) (-5 *1 (-801)))) + ((*1 *2 *3 *4 *4 *5 *6 *4) + (-12 (-5 *3 (-1257 (-316 *4))) (-5 *5 (-640 (-379))) + (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1031)) (-5 *1 (-801)))) + ((*1 *2 *3 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1257 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-640 *4)) + (-5 *2 (-1031)) (-5 *1 (-801)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4) + (-12 (-5 *3 (-1257 (-316 *4))) (-5 *5 (-640 (-379))) + (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1031)) (-5 *1 (-801)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) + (-12 (-5 *3 (-1257 (-316 *4))) (-5 *5 (-640 (-379))) + (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1031)) (-5 *1 (-801)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1256 *6)) (-4 *6 (-1207)) - (-4 *5 (-1207)) (-5 *2 (-1256 *5)) (-5 *1 (-1255 *6 *5))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) - (-5 *5 (-3 (|:| |fn| (-387)) (|:| |fp| (-64 G)))) (-5 *2 (-1030)) - (-5 *1 (-743))))) + (|partial| -12 + (-5 *5 + (-1 + (-3 (-2 (|:| |particular| *6) (|:| -4315 (-640 *6))) "failed") + *7 *6)) + (-4 *6 (-363)) (-4 *7 (-651 *6)) + (-5 *2 (-2 (|:| |particular| (-1257 *6)) (|:| -4315 (-684 *6)))) + (-5 *1 (-809 *6 *7)) (-5 *3 (-684 *6)) (-5 *4 (-1257 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-1031)) (-5 *1 (-893)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-894)) (-5 *4 (-1057)) (-5 *2 (-1031)) (-5 *1 (-893)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) + (-12 (-5 *4 (-767)) (-5 *6 (-640 (-640 (-316 *3)))) (-5 *7 (-1151)) + (-5 *8 (-225)) (-5 *5 (-640 (-316 (-379)))) (-5 *3 (-379)) + (-5 *2 (-1031)) (-5 *1 (-893)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) + (-12 (-5 *4 (-767)) (-5 *6 (-640 (-640 (-316 *3)))) (-5 *7 (-1151)) + (-5 *5 (-640 (-316 (-379)))) (-5 *3 (-379)) (-5 *2 (-1031)) + (-5 *1 (-893)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-948 (-407 (-563)))) (-5 *2 (-640 (-379))) + (-5 *1 (-1019)) (-5 *4 (-379)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-948 (-563))) (-5 *2 (-640 (-379))) (-5 *1 (-1019)) + (-5 *4 (-379)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) + (-5 *2 (-640 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1233 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) + (-5 *2 (-640 (-294 (-316 *4)))) (-5 *1 (-1124 *4)) + (-5 *3 (-316 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) + (-5 *2 (-640 (-294 (-316 *4)))) (-5 *1 (-1124 *4)) + (-5 *3 (-294 (-316 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1169)) + (-4 *5 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) + (-5 *2 (-640 (-294 (-316 *5)))) (-5 *1 (-1124 *5)) + (-5 *3 (-294 (-316 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1169)) + (-4 *5 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) + (-5 *2 (-640 (-294 (-316 *5)))) (-5 *1 (-1124 *5)) + (-5 *3 (-316 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-640 (-1169))) + (-4 *5 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) + (-5 *2 (-640 (-640 (-294 (-316 *5))))) (-5 *1 (-1124 *5)) + (-5 *3 (-640 (-294 (-316 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-640 (-407 (-948 *5)))) (-5 *4 (-640 (-1169))) + (-4 *5 (-555)) (-5 *2 (-640 (-640 (-294 (-407 (-948 *5)))))) + (-5 *1 (-1177 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-640 (-1169))) (-4 *5 (-555)) + (-5 *2 (-640 (-640 (-294 (-407 (-948 *5)))))) (-5 *1 (-1177 *5)) + (-5 *3 (-640 (-294 (-407 (-948 *5))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 (-407 (-948 *4)))) (-4 *4 (-555)) + (-5 *2 (-640 (-640 (-294 (-407 (-948 *4)))))) (-5 *1 (-1177 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-555)) (-5 *2 (-640 (-640 (-294 (-407 (-948 *4)))))) + (-5 *1 (-1177 *4)) (-5 *3 (-640 (-294 (-407 (-948 *4))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1169)) (-4 *5 (-555)) + (-5 *2 (-640 (-294 (-407 (-948 *5))))) (-5 *1 (-1177 *5)) + (-5 *3 (-407 (-948 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1169)) (-4 *5 (-555)) + (-5 *2 (-640 (-294 (-407 (-948 *5))))) (-5 *1 (-1177 *5)) + (-5 *3 (-294 (-407 (-948 *5)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-555)) (-5 *2 (-640 (-294 (-407 (-948 *4))))) + (-5 *1 (-1177 *4)) (-5 *3 (-407 (-948 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-555)) (-5 *2 (-640 (-294 (-407 (-948 *4))))) + (-5 *1 (-1177 *4)) (-5 *3 (-294 (-407 (-948 *4))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-554) (-845) (-1033 (-562)))) (-5 *1 (-187 *3 *2)) - (-4 *2 (-13 (-27) (-1192) (-429 (-168 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-554) (-845) (-1033 (-562)))) - (-5 *1 (-187 *4 *2)) (-4 *2 (-13 (-27) (-1192) (-429 (-168 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *1 (-1196 *3 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1168)) - (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *1 (-1196 *4 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-628))))) -(((*1 *1) - (-12 (-4 *1 (-403)) (-2234 (|has| *1 (-6 -4394))) - (-2234 (|has| *1 (-6 -4386))))) - ((*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1092)) (-4 *2 (-845)))) - ((*1 *2 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-845)))) - ((*1 *1) (-4 *1 (-839))) ((*1 *1 *1 *1) (-4 *1 (-845)))) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) + (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))) + ((*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-846) (-555) (-1034 (-563)))) (-5 *2 (-407 (-563))) + (-5 *1 (-433 *4 *3)) (-4 *3 (-430 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-609 *3)) (-4 *3 (-430 *5)) + (-4 *5 (-13 (-846) (-555) (-1034 (-563)))) + (-5 *2 (-1165 (-407 (-563)))) (-5 *1 (-433 *5 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1045)) (-4 *1 (-1233 *3))))) +(((*1 *1 *1 *1 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-593 *3)) (-4 *3 (-1045))))) +(((*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1208))))) (((*1 *2 *2) - (-12 (-5 *2 (-639 (-2 (|:| |val| (-639 *6)) (|:| -1501 *7)))) - (-4 *6 (-1058 *3 *4 *5)) (-4 *7 (-1064 *3 *4 *5 *6)) (-4 *3 (-451)) - (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-983 *3 *4 *5 *6 *7)))) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) ((*1 *2 *2) - (-12 (-5 *2 (-639 (-2 (|:| |val| (-639 *6)) (|:| -1501 *7)))) - (-4 *6 (-1058 *3 *4 *5)) (-4 *7 (-1064 *3 *4 *5 *6)) (-4 *3 (-451)) - (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-1099 *3 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) -(((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-528)))) - ((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-528))))) -(((*1 *2 *1) (-12 (-4 *1 (-325 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1044)))) - ((*1 *2 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-845))))) -(((*1 *1 *1) - (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-322 *3 *4)) (-4 *3 (-1092)) - (-4 *4 (-130))))) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *1 *1) (-4 *1 (-493))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1154 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1155 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-684 *3)) + (-4 *3 (-13 (-307) (-10 -8 (-15 -3205 ((-418 $) $))))) + (-4 *4 (-1233 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-640 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-767)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-789)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-846)) + (-5 *1 (-449 *3 *4 *5 *6))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-640 (-939 *4))) (-4 *1 (-1127 *4)) (-4 *4 (-1045)) + (-5 *2 (-767))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-640 *6)) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-767)))) + ((*1 *2 *1) + (-12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-5 *2 (-767))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-858)))) +(((*1 *1) + (-12 (-4 *1 (-404)) (-2176 (|has| *1 (-6 -4398))) + (-2176 (|has| *1 (-6 -4390))))) + ((*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1093)) (-4 *2 (-846)))) + ((*1 *1) (-4 *1 (-840))) ((*1 *1 *1 *1) (-4 *1 (-846))) + ((*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846))))) +(((*1 *2 *1) + (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1233 *3)) + (-4 *5 (-1233 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) + (-5 *2 (-413 *4 (-407 *4) *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1257 *6)) (-4 *6 (-13 (-409 *4 *5) (-1034 *4))) + (-4 *4 (-988 *3)) (-4 *5 (-1233 *4)) (-4 *3 (-307)) + (-5 *1 (-413 *3 *4 *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-363)) + (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-554) (-845))) (-5 *2 (-168 *5)) - (-5 *1 (-596 *4 *5 *3)) (-4 *5 (-13 (-429 *4) (-997) (-1192))) - (-4 *3 (-13 (-429 (-168 *4)) (-997) (-1192)))))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) + (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-379)) (-5 *1 (-205))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *5)) (-5 *4 (-916)) (-4 *5 (-845)) - (-5 *2 (-639 (-666 *5))) (-5 *1 (-666 *5))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-535) (-639 (-535)))) (-5 *1 (-114)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-535) (-639 (-535)))) (-5 *1 (-114)))) - ((*1 *1) (-5 *1 (-576)))) -(((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-766)) (-4 *3 (-554)) (-5 *1 (-964 *3 *2)) - (-4 *2 (-1232 *3))))) -(((*1 *2) (-12 (-4 *3 (-171)) (-5 *2 (-1256 *1)) (-4 *1 (-366 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-562)) (-5 *6 (-1 (-1261) (-1256 *5) (-1256 *5) (-378))) - (-5 *3 (-1256 (-378))) (-5 *5 (-378)) (-5 *2 (-1261)) - (-5 *1 (-783))))) -(((*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-1259)))) - ((*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-1259))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-378) (-378))) (-5 *4 (-378)) - (-5 *2 - (-2 (|:| -2533 *4) (|:| -3964 *4) (|:| |totalpts| (-562)) - (|:| |success| (-112)))) - (-5 *1 (-784)) (-5 *5 (-562))))) + (-12 (-5 *4 (-684 (-407 (-948 (-563))))) + (-5 *2 (-640 (-684 (-316 (-563))))) (-5 *1 (-1027)) + (-5 *3 (-316 (-563)))))) +(((*1 *1) (-5 *1 (-157)))) +(((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-640 (-481 *4 *5))) (-5 *3 (-860 *4)) + (-14 *4 (-640 (-1169))) (-4 *5 (-452)) (-5 *1 (-628 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) + (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) + ((*1 *1 *1) (-4 *1 (-493))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1154 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1155 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) - (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) - (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3)))))) + (-12 (-4 *2 (-1093)) (-5 *1 (-960 *3 *2)) (-4 *3 (-1093))))) +(((*1 *2) + (-12 (-4 *3 (-555)) (-5 *2 (-640 (-684 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-417 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-858))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3)) (-4 *3 (-1093))))) +(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) +(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-563)) (-5 *5 (-684 (-225))) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745))))) +(((*1 *2) + (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-417 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-325 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-845)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-301)) (-5 *3 (-1168)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-562)) (-5 *1 (-1181 *2)) (-4 *2 (-362))))) + (-12 (-5 *2 (-1149 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563))))) (((*1 *2 *1) - (-12 (-4 *2 (-13 (-843) (-362))) (-5 *1 (-1054 *2 *3)) - (-4 *3 (-1232 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-819))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1168)) (-5 *1 (-583 *2)) (-4 *2 (-1033 *3)) - (-4 *2 (-362)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-583 *2)) (-4 *2 (-362)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-845) (-554))) (-5 *1 (-626 *4 *2)) - (-4 *2 (-13 (-429 *4) (-997) (-1192))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1084 *2)) (-4 *2 (-13 (-429 *4) (-997) (-1192))) - (-4 *4 (-13 (-845) (-554))) (-5 *1 (-626 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-954)) (-5 *2 (-1168)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-954))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *4 (-224)) - (-5 *2 (-1030)) (-5 *1 (-747))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1223 (-562))) (-4 *1 (-281 *3)) (-4 *3 (-1207)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-4 *1 (-281 *3)) (-4 *3 (-1207))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-378)) (-5 *2 (-1261)) (-5 *1 (-1258))))) -(((*1 *1 *1) (-4 *1 (-242))) + (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) + (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858))))) +(((*1 *2 *3) + (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-417 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *1 *1) (-4 *1 (-1132)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) ((*1 *1 *1) - (-12 (-4 *2 (-171)) (-5 *1 (-288 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1232 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) + (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) + ((*1 *1 *1) (-4 *1 (-493))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1154 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1155 *3))))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) + (-12 (-5 *4 (-563)) (-5 *5 (-1151)) (-5 *6 (-684 (-225))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-640 *7)) (-5 *5 (-640 (-640 *8))) (-4 *7 (-846)) + (-4 *8 (-307)) (-4 *6 (-789)) (-4 *9 (-945 *8 *6 *7)) + (-5 *2 + (-2 (|:| |unitPart| *9) + (|:| |suPart| + (-640 (-2 (|:| -2174 (-1165 *9)) (|:| -1654 (-563))))))) + (-5 *1 (-738 *6 *7 *8 *9)) (-5 *3 (-1165 *9))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-858)))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-1 (-584 *3) *3 (-1169))) + (-5 *6 + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 + (-1169))) + (-4 *3 (-284)) (-4 *3 (-626)) (-4 *3 (-1034 *4)) (-4 *3 (-430 *7)) + (-5 *4 (-1169)) (-4 *7 (-611 (-888 (-563)))) (-4 *7 (-452)) + (-4 *7 (-882 (-563))) (-4 *7 (-846)) (-5 *2 (-584 *3)) + (-5 *1 (-572 *7 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34))) + (-4 *3 (-13 (-1093) (-34)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-640 (-2 (|:| -2174 *4) (|:| -4167 (-563))))) + (-4 *4 (-1233 (-563))) (-5 *2 (-733 (-767))) (-5 *1 (-442 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-418 *5)) (-4 *5 (-1233 *4)) (-4 *4 (-1045)) + (-5 *2 (-733 (-767))) (-5 *1 (-444 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-1174))) (-5 *1 (-1174)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-1174))) (-5 *1 (-1174))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1233 (-407 (-563)))) (-5 *1 (-909 *3 *2)) + (-4 *2 (-1233 (-407 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1208))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) ((*1 *1 *1) - (-4037 (-12 (-5 *1 (-293 *2)) (-4 *2 (-362)) (-4 *2 (-1207))) - (-12 (-5 *1 (-293 *2)) (-4 *2 (-472)) (-4 *2 (-1207))))) - ((*1 *1 *1) (-4 *1 (-472))) - ((*1 *2 *2) (-12 (-5 *2 (-1256 *3)) (-4 *3 (-348)) (-5 *1 (-527 *3)))) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) + (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) + ((*1 *1 *1) (-4 *1 (-493))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1154 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1155 *3))))) +(((*1 *2 *3 *4 *5 *4 *4 *4) + (-12 (-4 *6 (-846)) (-5 *3 (-640 *6)) (-5 *5 (-640 *3)) + (-5 *2 + (-2 (|:| |f1| *3) (|:| |f2| (-640 *5)) (|:| |f3| *5) + (|:| |f4| (-640 *5)))) + (-5 *1 (-1179 *6)) (-5 *4 (-640 *5))))) +(((*1 *1) (-5 *1 (-468)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1193)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-858))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-899 *3)) (-4 *3 (-1093)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3)) (-4 *3 (-1093))))) +(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1267))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) + (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) + (-5 *2 (-1031)) (-5 *1 (-745)))) + ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) + (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) + (-5 *8 (-388)) (-5 *2 (-1031)) (-5 *1 (-745))))) +(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563)))) + ((*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1208)))) + ((*1 *1 *1) (-4 *1 (-865 *2))) ((*1 *1 *1) - (-12 (-5 *1 (-710 *2 *3 *4 *5 *6)) (-4 *2 (-171)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)) (-4 *2 (-362))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-554)) (-4 *3 (-1044)) - (-5 *2 (-2 (|:| -3380 *1) (|:| -1441 *1))) (-4 *1 (-847 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-554)) (-4 *5 (-1044)) - (-5 *2 (-2 (|:| -3380 *3) (|:| -1441 *3))) (-5 *1 (-848 *5 *3)) - (-4 *3 (-847 *5))))) + (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-788)) + (-4 *4 (-846))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-844) (-307) (-147) (-1018))) + (-5 *2 (-640 (-1042 *5 *6))) (-5 *1 (-1283 *5 *6 *7)) + (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-844) (-307) (-147) (-1018))) + (-5 *2 (-640 (-1042 *5 *6))) (-5 *1 (-1283 *5 *6 *7)) + (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 (-948 *4))) + (-4 *4 (-13 (-844) (-307) (-147) (-1018))) + (-5 *2 (-640 (-1042 *4 *5))) (-5 *1 (-1283 *4 *5 *6)) + (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-536))))) +(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) + (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8)) + (-5 *2 + (-2 (|:| -1420 (-640 *9)) (|:| -2059 *4) (|:| |ineq| (-640 *9)))) + (-5 *1 (-984 *6 *7 *8 *9 *4)) (-5 *3 (-640 *9)) + (-4 *4 (-1065 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) + (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8)) + (-5 *2 + (-2 (|:| -1420 (-640 *9)) (|:| -2059 *4) (|:| |ineq| (-640 *9)))) + (-5 *1 (-1100 *6 *7 *8 *9 *4)) (-5 *3 (-640 *9)) + (-4 *4 (-1065 *6 *7 *8 *9))))) (((*1 *2 *3) - (-12 (-5 *3 (-916)) (-5 *2 (-1164 *4)) (-5 *1 (-356 *4)) - (-4 *4 (-348))))) -(((*1 *2 *1) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1187))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-639 - (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) - (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224))))) - (-5 *1 (-557)))) + (-12 (-5 *2 (-563)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1154 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1155 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *3 (-112)) (-5 *1 (-110)))) + ((*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4398)) (-4 *1 (-404)))) + ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-917)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) + ((*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) ((*1 *2 *1) - (-12 (-4 *1 (-606 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)) - (-5 *2 (-639 *3)))) + (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1233 *2)) (-4 *2 (-172)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1257 *4)) (-5 *3 (-917)) (-4 *4 (-349)) + (-5 *1 (-528 *4)))) ((*1 *2 *1) + (-12 (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) + (-4 *5 (-238 *3 *2)) (-4 *2 (-1045))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) +(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4407)) (-4 *1 (-489 *3)) (-4 *3 (-1208)) + (-4 *3 (-1093)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-901 *4)) (-4 *4 (-1093)) (-5 *2 (-112)) + (-5 *1 (-900 *4)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-917)) (-5 *2 (-112)) (-5 *1 (-1094 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))) +(((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *2 (-1031)) + (-5 *1 (-744))))) +(((*1 *1) (-5 *1 (-437)))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) + (-5 *3 (-640 (-563))))) + ((*1 *2 *3) + (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) + (-5 *3 (-640 (-563)))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-430 *3) (-998))) (-5 *1 (-276 *3 *2)) + (-4 *3 (-13 (-846) (-555)))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1154 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1155 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-640 (-1230 *5 *4))) + (-5 *1 (-1107 *4 *5)) (-5 *3 (-1230 *5 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1169)) (-4 *4 (-452)) (-4 *4 (-846)) + (-5 *1 (-572 *4 *2)) (-4 *2 (-284)) (-4 *2 (-430 *4))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1208)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) + ((*1 *1 *1 *1) (-5 *1 (-858))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1022 *3)) (-4 *3 (-1208))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-856)) (-5 *2 (-686 (-129))) (-5 *3 (-129))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) + (-4 *6 (-789)) (-5 *2 (-640 *3)) (-5 *1 (-920 *4 *5 *6 *3)) + (-4 *3 (-945 *4 *6 *5))))) +(((*1 *2 *3 *4 *4 *2 *2 *2) + (-12 (-5 *2 (-563)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-767)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-789)) (-4 *4 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-846)) + (-5 *1 (-449 *5 *6 *7 *4))))) +(((*1 *2 *3 *2) (-12 (-5 *2 - (-639 - (-2 (|:| |xinit| (-224)) (|:| |xend| (-224)) - (|:| |fn| (-1256 (-315 (-224)))) (|:| |yinit| (-639 (-224))) - (|:| |intvals| (-639 (-224))) (|:| |g| (-315 (-224))) - (|:| |abserr| (-224)) (|:| |relerr| (-224))))) - (-5 *1 (-798))))) -(((*1 *1 *2) (-12 (-5 *1 (-685 *2)) (-4 *2 (-609 (-857)))))) -(((*1 *1 *1) (-12 (-5 *1 (-961 *2)) (-4 *2 (-962))))) -(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) -(((*1 *2) - (-12 (-4 *4 (-171)) (-5 *2 (-112)) (-5 *1 (-365 *3 *4)) - (-4 *3 (-366 *4)))) - ((*1 *2) (-12 (-4 *1 (-366 *3)) (-4 *3 (-171)) (-5 *2 (-112))))) + (-640 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-767)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *3 (-789)) (-4 *6 (-945 *4 *3 *5)) (-4 *4 (-452)) (-4 *5 (-846)) + (-5 *1 (-449 *4 *3 *5 *6))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) + (-5 *1 (-747))))) (((*1 *2 *3) - (-12 (-5 *3 (-1086 (-838 (-224)))) (-5 *2 (-224)) (-5 *1 (-191)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1086 (-838 (-224)))) (-5 *2 (-224)) (-5 *1 (-299)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1086 (-838 (-224)))) (-5 *2 (-224)) (-5 *1 (-304))))) + (-12 (-5 *3 (-767)) (-4 *4 (-363)) (-4 *5 (-1233 *4)) (-5 *2 (-1262)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1233 (-407 *5))) (-14 *7 *6)))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1045)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-1233 *3))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1154 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1155 *3))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-1092)) - (-5 *2 (-2 (|:| -2319 *3) (|:| -2693 *4)))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-639 (-562))) (-5 *3 (-683 (-562))) (-5 *1 (-1102))))) -(((*1 *2 *2) (-12 (-5 *2 (-562)) (-5 *1 (-921))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) - (-5 *1 (-746))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-562)) (-5 *1 (-417 *2)) (-4 *2 (-554))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-884 *4 *5)) (-5 *3 (-884 *4 *6)) (-4 *4 (-1092)) - (-4 *5 (-1092)) (-4 *6 (-660 *5)) (-5 *1 (-880 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *2 (-703 *3)) (-5 *1 (-822 *2 *3)) (-4 *3 (-1044))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-639 *5) *6)) - (-4 *5 (-13 (-362) (-146) (-1033 (-406 (-562))))) (-4 *6 (-1232 *5)) - (-5 *2 (-639 (-2 (|:| |poly| *6) (|:| -3339 *3)))) - (-5 *1 (-804 *5 *6 *3 *7)) (-4 *3 (-650 *6)) - (-4 *7 (-650 (-406 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-639 *5) *6)) - (-4 *5 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) - (-4 *6 (-1232 *5)) - (-5 *2 (-639 (-2 (|:| |poly| *6) (|:| -3339 (-648 *6 (-406 *6)))))) - (-5 *1 (-807 *5 *6)) (-5 *3 (-648 *6 (-406 *6)))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-562)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1207)) - (-4 *4 (-372 *2)) (-4 *5 (-372 *2)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4404)) (-4 *1 (-287 *3 *2)) (-4 *3 (-1092)) - (-4 *2 (-1207))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1150)) (-5 *3 (-639 (-262))) (-5 *1 (-260)))) - ((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-262))))) -(((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-128))))) -(((*1 *2 *1) (-12 (-4 *1 (-243 *2)) (-4 *2 (-1207)))) - ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1088)))) + (-12 (|has| *1 (-6 -4407)) (-4 *1 (-489 *3)) (-4 *3 (-1208)) + (-4 *3 (-1093)) (-5 *2 (-767)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4407)) (-4 *1 (-489 *4)) + (-4 *4 (-1208)) (-5 *2 (-767))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258))))) +(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-4 *1 (-151 *3)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-640 (-2 (|:| -1654 (-767)) (|:| -3408 *4) (|:| |num| *4)))) + (-4 *4 (-1233 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) + (-5 *3 (-640 (-948 (-563)))) (-5 *4 (-112)) (-5 *1 (-437)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) + (-5 *3 (-640 (-1169))) (-5 *4 (-112)) (-5 *1 (-437)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) - (-4 *4 (-788)) (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5)))) + (-12 (-5 *2 (-1149 *3)) (-5 *1 (-598 *3)) (-4 *3 (-1208)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-631 *2)) (-4 *2 (-172)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-766)) (-4 *1 (-1244 *3)) (-4 *3 (-1207)))) - ((*1 *2 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1168)) - (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-52)) (-5 *1 (-314 *4 *5)) - (-4 *5 (-13 (-27) (-1192) (-429 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-52)) (-5 *1 (-314 *4 *3)) - (-4 *3 (-13 (-27) (-1192) (-429 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-406 (-562))) - (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-52)) (-5 *1 (-314 *5 *3)) - (-4 *3 (-13 (-27) (-1192) (-429 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5))) - (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-52)) (-5 *1 (-314 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-293 *3)) (-5 *5 (-406 (-562))) - (-4 *3 (-13 (-27) (-1192) (-429 *6))) - (-4 *6 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-52)) (-5 *1 (-314 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-562))) (-5 *4 (-293 *6)) - (-4 *6 (-13 (-27) (-1192) (-429 *5))) - (-4 *5 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-52)) (-5 *1 (-458 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1168)) (-5 *5 (-293 *3)) - (-4 *3 (-13 (-27) (-1192) (-429 *6))) - (-4 *6 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-52)) (-5 *1 (-458 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-562))) (-5 *4 (-293 *7)) (-5 *5 (-1223 (-562))) - (-4 *7 (-13 (-27) (-1192) (-429 *6))) - (-4 *6 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-52)) (-5 *1 (-458 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1168)) (-5 *5 (-293 *3)) (-5 *6 (-1223 (-562))) - (-4 *3 (-13 (-27) (-1192) (-429 *7))) - (-4 *7 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-52)) (-5 *1 (-458 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-406 (-562)))) (-5 *4 (-293 *8)) - (-5 *5 (-1223 (-406 (-562)))) (-5 *6 (-406 (-562))) - (-4 *8 (-13 (-27) (-1192) (-429 *7))) - (-4 *7 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-52)) (-5 *1 (-458 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1168)) (-5 *5 (-293 *3)) (-5 *6 (-1223 (-406 (-562)))) - (-5 *7 (-406 (-562))) (-4 *3 (-13 (-27) (-1192) (-429 *8))) - (-4 *8 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-52)) (-5 *1 (-458 *8 *3)))) + (-12 (-5 *2 (-667 *3)) (-4 *3 (-846)) (-5 *1 (-659 *3 *4)) + (-4 *4 (-172)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-667 *3)) (-4 *3 (-846)) (-5 *1 (-659 *3 *4)) + (-4 *4 (-172)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-667 *3)) (-4 *3 (-846)) (-5 *1 (-659 *3 *4)) + (-4 *4 (-172)))) ((*1 *1 *2) - (-12 (-5 *2 (-1148 (-2 (|:| |k| (-562)) (|:| |c| *3)))) - (-4 *3 (-1044)) (-5 *1 (-592 *3)))) + (-12 (-5 *2 (-640 (-640 (-640 *3)))) (-4 *3 (-1093)) + (-5 *1 (-670 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-709 *2 *3 *4)) (-4 *2 (-846)) (-4 *3 (-1093)) + (-14 *4 + (-1 (-112) (-2 (|:| -2555 *2) (|:| -1654 *3)) + (-2 (|:| -2555 *2) (|:| -1654 *3)))))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1111)) (-5 *1 (-834)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-869 *2 *3)) (-4 *2 (-1208)) (-4 *3 (-1208)))) ((*1 *1 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-593 *3)))) + (-12 (-5 *2 (-640 (-2 (|:| -2387 (-1169)) (|:| -2557 *4)))) + (-4 *4 (-1093)) (-5 *1 (-885 *3 *4)) (-4 *3 (-1093)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-640 *5)) (-4 *5 (-13 (-1093) (-34))) + (-5 *2 (-640 (-1133 *3 *5))) (-5 *1 (-1133 *3 *5)) + (-4 *3 (-13 (-1093) (-34))))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 (-2 (|:| |val| *4) (|:| -2059 *5)))) + (-4 *4 (-13 (-1093) (-34))) (-4 *5 (-13 (-1093) (-34))) + (-5 *2 (-640 (-1133 *4 *5))) (-5 *1 (-1133 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1148 (-2 (|:| |k| (-562)) (|:| |c| *3)))) - (-4 *3 (-1044)) (-4 *1 (-1216 *3)))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2059 *4))) + (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34))) + (-5 *1 (-1133 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-766)) - (-5 *3 (-1148 (-2 (|:| |k| (-406 (-562))) (|:| |c| *4)))) - (-4 *4 (-1044)) (-4 *1 (-1237 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-4 *1 (-1247 *3)))) + (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34))) + (-4 *3 (-13 (-1093) (-34))))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34))) + (-4 *3 (-13 (-1093) (-34))))) + ((*1 *1 *2 *3 *2 *4) + (-12 (-5 *4 (-640 *3)) (-4 *3 (-13 (-1093) (-34))) + (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1093) (-34))))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-640 (-1133 *2 *3))) (-4 *2 (-13 (-1093) (-34))) + (-4 *3 (-13 (-1093) (-34))) (-5 *1 (-1134 *2 *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-640 (-1134 *2 *3))) (-5 *1 (-1134 *2 *3)) + (-4 *2 (-13 (-1093) (-34))) (-4 *3 (-13 (-1093) (-34))))) ((*1 *1 *2) - (-12 (-5 *2 (-1148 (-2 (|:| |k| (-766)) (|:| |c| *3)))) - (-4 *3 (-1044)) (-4 *1 (-1247 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-13 (-845) (-554))) (-5 *1 (-32 *3 *4)) - (-4 *4 (-429 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-766)) (-5 *1 (-114)))) - ((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-114)))) - ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-13 (-845) (-554))) (-5 *1 (-157 *3 *4)) - (-4 *4 (-429 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-114)) (-5 *1 (-162)))) + (-12 (-5 *2 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34))) + (-4 *4 (-13 (-1093) (-34))) (-5 *1 (-1134 *3 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093))))) +(((*1 *2 *1) + (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) + (-5 *2 (-1031)) (-5 *1 (-748))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) + (-4 *2 (-1233 *4)))) + ((*1 *2 *2 *3 *2 *3) + (-12 (-5 *3 (-563)) (-5 *1 (-691 *2)) (-4 *2 (-1233 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1169)) + (-5 *2 + (-2 (|:| |zeros| (-1149 (-225))) (|:| |ones| (-1149 (-225))) + (|:| |singularities| (-1149 (-225))))) + (-5 *1 (-105))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-363)) (-4 *5 (-555)) + (-5 *2 + (-2 (|:| |minor| (-640 (-917))) (|:| -1420 *3) + (|:| |minors| (-640 (-640 (-917)))) (|:| |ops| (-640 *3)))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-917)) (-4 *3 (-651 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1208)))) + ((*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-846)))) + ((*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) + ((*1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) + (-4 *3 (-1233 *2))))) +(((*1 *2 *3 *4 *3 *4 *4 *4) + (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *2 (-1031)) + (-5 *1 (-752))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1180 (-640 *4))) (-4 *4 (-846)) + (-5 *2 (-640 (-640 *4))) (-5 *1 (-1179 *4))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-563)) (-4 *3 (-172)) (-4 *5 (-373 *3)) + (-4 *6 (-373 *3)) (-5 *1 (-683 *3 *5 *6 *2)) + (-4 *2 (-682 *3 *5 *6))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-555)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2742 *4))) + (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4))))) +(((*1 *2) + (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-417 *3))))) +(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-225))) ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *4)) - (-4 *4 (-13 (-429 *3) (-997))))) - ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-300 *3)) (-4 *3 (-301)))) - ((*1 *2 *2) (-12 (-4 *1 (-301)) (-5 *2 (-114)))) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *4 (-845)) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-13 (-845) (-554))) (-5 *1 (-430 *3 *4)) - (-4 *4 (-429 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-608 *3)) (-4 *3 (-845)))) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) + (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) + ((*1 *1 *1 *1) (-5 *1 (-379))) ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-13 (-845) (-554))) (-5 *1 (-626 *3 *4)) - (-4 *4 (-13 (-429 *3) (-997) (-1192))))) - ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1014))))) -(((*1 *2 *1) (-12 (-5 *2 (-639 (-608 *1))) (-4 *1 (-301))))) -(((*1 *2 *2) - (-12 (-4 *3 (-306)) (-4 *4 (-372 *3)) (-4 *5 (-372 *3)) - (-5 *1 (-1116 *3 *4 *5 *2)) (-4 *2 (-681 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1168)) - (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-52)) (-5 *1 (-314 *4 *5)) - (-4 *5 (-13 (-27) (-1192) (-429 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-52)) (-5 *1 (-314 *4 *3)) - (-4 *3 (-13 (-27) (-1192) (-429 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-406 (-562))) - (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-52)) (-5 *1 (-314 *5 *3)) - (-4 *3 (-13 (-27) (-1192) (-429 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5))) - (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-52)) (-5 *1 (-314 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-293 *3)) (-5 *5 (-406 (-562))) - (-4 *3 (-13 (-27) (-1192) (-429 *6))) - (-4 *6 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-52)) (-5 *1 (-314 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-406 (-562)))) (-5 *4 (-293 *8)) - (-5 *5 (-1223 (-406 (-562)))) (-5 *6 (-406 (-562))) - (-4 *8 (-13 (-27) (-1192) (-429 *7))) - (-4 *7 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-52)) (-5 *1 (-458 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1168)) (-5 *5 (-293 *3)) (-5 *6 (-1223 (-406 (-562)))) - (-5 *7 (-406 (-562))) (-4 *3 (-13 (-27) (-1192) (-429 *8))) - (-4 *8 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-52)) (-5 *1 (-458 *8 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-406 (-562))) (-4 *4 (-1044)) (-4 *1 (-1239 *4 *3)) - (-4 *3 (-1216 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1095 *3 *4 *5 *6 *7)) (-4 *3 (-1092)) (-4 *4 (-1092)) - (-4 *5 (-1092)) (-4 *6 (-1092)) (-4 *7 (-1092)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1092)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-677 *4 *5)) (-4 *4 (-1092)))) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1154 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-845)) (-5 *1 (-924 *3 *2)) (-4 *2 (-429 *3)))) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1155 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-591 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-4 *1 (-1093)) (-5 *2 (-1113))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1257 *3)) (-4 *3 (-363)) (-14 *6 (-1257 (-684 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))))) + ((*1 *1 *2) (-12 (-5 *2 (-1118 (-563) (-609 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1208)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1257 (-339 (-1707 'JINT 'X 'ELAM) (-1707) (-694)))) + (-5 *1 (-61 *3)) (-14 *3 (-1169)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1257 (-339 (-1707) (-1707 'XC) (-694)))) + (-5 *1 (-63 *3)) (-14 *3 (-1169)))) + ((*1 *1 *2) + (-12 (-5 *2 (-339 (-1707 'X) (-1707) (-694))) (-5 *1 (-64 *3)) + (-14 *3 (-1169)))) + ((*1 *1 *2) + (-12 (-5 *2 (-339 (-1707) (-1707 'XC) (-694))) (-5 *1 (-66 *3)) + (-14 *3 (-1169)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1257 (-339 (-1707 'X) (-1707 '-3170) (-694)))) + (-5 *1 (-71 *3)) (-14 *3 (-1169)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1257 (-339 (-1707) (-1707 'X) (-694)))) + (-5 *1 (-74 *3)) (-14 *3 (-1169)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1257 (-339 (-1707 'X 'EPS) (-1707 '-3170) (-694)))) + (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1169)) (-14 *4 (-1169)) + (-14 *5 (-1169)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1257 (-339 (-1707 'EPS) (-1707 'YA 'YB) (-694)))) + (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1169)) (-14 *4 (-1169)) + (-14 *5 (-1169)))) + ((*1 *1 *2) + (-12 (-5 *2 (-339 (-1707) (-1707 'X) (-694))) (-5 *1 (-77 *3)) + (-14 *3 (-1169)))) + ((*1 *1 *2) + (-12 (-5 *2 (-339 (-1707) (-1707 'X) (-694))) (-5 *1 (-78 *3)) + (-14 *3 (-1169)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1257 (-339 (-1707) (-1707 'XC) (-694)))) + (-5 *1 (-79 *3)) (-14 *3 (-1169)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1257 (-339 (-1707) (-1707 'X) (-694)))) + (-5 *1 (-80 *3)) (-14 *3 (-1169)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1257 (-339 (-1707 'X '-3170) (-1707) (-694)))) + (-5 *1 (-82 *3)) (-14 *3 (-1169)))) + ((*1 *1 *2) + (-12 (-5 *2 (-684 (-339 (-1707 'X '-3170) (-1707) (-694)))) + (-5 *1 (-83 *3)) (-14 *3 (-1169)))) + ((*1 *1 *2) + (-12 (-5 *2 (-684 (-339 (-1707 'X) (-1707) (-694)))) (-5 *1 (-84 *3)) + (-14 *3 (-1169)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1257 (-339 (-1707 'X) (-1707) (-694)))) + (-5 *1 (-85 *3)) (-14 *3 (-1169)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1257 (-339 (-1707 'X) (-1707 '-3170) (-694)))) + (-5 *1 (-86 *3)) (-14 *3 (-1169)))) + ((*1 *1 *2) + (-12 (-5 *2 (-684 (-339 (-1707 'XL 'XR 'ELAM) (-1707) (-694)))) + (-5 *1 (-87 *3)) (-14 *3 (-1169)))) + ((*1 *1 *2) + (-12 (-5 *2 (-339 (-1707 'X) (-1707 '-3170) (-694))) (-5 *1 (-89 *3)) + (-14 *3 (-1169)))) + ((*1 *1 *2) + (-12 (-5 *2 (-640 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) + (-14 *3 (-563)) (-14 *4 (-767)) (-4 *5 (-172)))) + ((*1 *1 *2) + (-12 (-5 *2 (-640 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) + (-14 *3 (-563)) (-14 *4 (-767)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1135 *4 *5)) (-14 *4 (-767)) (-4 *5 (-172)) + (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563)))) + ((*1 *1 *2) + (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-767)) (-4 *5 (-172)) + (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563)))) ((*1 *2 *3) - (-12 (-5 *3 (-1168)) (-5 *2 (-315 (-562))) (-5 *1 (-925)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1273 *3 *2)) (-4 *3 (-845)) (-4 *2 (-1044)))) + (-12 (-5 *3 (-1257 (-684 *4))) (-4 *4 (-172)) + (-5 *2 (-1257 (-684 (-407 (-948 *4))))) (-5 *1 (-189 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1085 (-316 *4))) + (-4 *4 (-13 (-846) (-555) (-611 (-379)))) (-5 *2 (-1085 (-379))) + (-5 *1 (-258 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846)))) + ((*1 *1 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-275)))) ((*1 *2 *1) - (-12 (-4 *2 (-1044)) (-5 *1 (-1279 *2 *3)) (-4 *3 (-841))))) -(((*1 *2 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-329))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-406 (-562))) - (-4 *4 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *1 (-276 *4 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *4)))))) -(((*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1207))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-639 *1)) (-4 *1 (-1058 *4 *5 *6)) (-4 *4 (-1044)) - (-4 *5 (-788)) (-4 *6 (-845)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *5 (-845)) (-5 *2 (-112)))) + (-12 (-4 *2 (-1233 *3)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) + (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1242 *4 *5 *6)) (-4 *4 (-13 (-27) (-1193) (-430 *3))) + (-14 *5 (-1169)) (-14 *6 *4) + (-4 *3 (-13 (-846) (-1034 (-563)) (-636 (-563)) (-452))) + (-5 *1 (-313 *3 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) - (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1200 *4 *5 *6 *3)) (-4 *4 (-554)) (-4 *5 (-788)) - (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-916)) (-4 *1 (-739 *3)) (-4 *3 (-171))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1207)) - (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4404)) (-4 *1 (-488 *3)) - (-4 *3 (-1207))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-766)) (-5 *1 (-103 *3)) (-4 *3 (-1092))))) -(((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-817))))) -(((*1 *2 *1) - (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1232 *3)) - (-4 *5 (-1232 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1168)) - (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-52)) (-5 *1 (-314 *4 *5)) - (-4 *5 (-13 (-27) (-1192) (-429 *4))))) + (-12 (-5 *2 (-316 *5)) (-5 *1 (-339 *3 *4 *5)) + (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-52)) (-5 *1 (-314 *4 *3)) - (-4 *3 (-13 (-27) (-1192) (-429 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-562)) (-4 *5 (-13 (-451) (-845) (-1033 *4) (-635 *4))) - (-5 *2 (-52)) (-5 *1 (-314 *5 *3)) - (-4 *3 (-13 (-27) (-1192) (-429 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5))) - (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-52)) (-5 *1 (-314 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *6))) - (-4 *6 (-13 (-451) (-845) (-1033 *5) (-635 *5))) (-5 *5 (-562)) - (-5 *2 (-52)) (-5 *1 (-314 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-562))) (-5 *4 (-293 *7)) (-5 *5 (-1223 (-562))) - (-4 *7 (-13 (-27) (-1192) (-429 *6))) - (-4 *6 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-52)) (-5 *1 (-458 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1168)) (-5 *5 (-293 *3)) (-5 *6 (-1223 (-562))) - (-4 *3 (-13 (-27) (-1192) (-429 *7))) - (-4 *7 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-52)) (-5 *1 (-458 *7 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-562)) (-4 *4 (-1044)) (-4 *1 (-1218 *4 *3)) - (-4 *3 (-1247 *4)))) + (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *3 *4 *2)) + (-4 *3 (-329 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *2 *4 *3)) + (-4 *3 (-329 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1239 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-1216 *3))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -1603 *6) (|:| |sol?| (-112))) (-562) - *6)) - (-4 *6 (-362)) (-4 *7 (-1232 *6)) + (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) + (-5 *2 (-1281 *3 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) + (-5 *2 (-1272 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) + (-4 *1 (-383)))) + ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-383)))) + ((*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-4 *1 (-383)))) + ((*1 *1 *2) (-12 (-5 *2 (-684 (-694))) (-4 *1 (-383)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) + (-4 *1 (-384)))) + ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-384)))) + ((*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-4 *1 (-384)))) + ((*1 *2 *3) (-12 (-5 *2 (-394)) (-5 *1 (-393 *3)) (-4 *3 (-1093)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) + (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-4 *1 (-396)))) + ((*1 *1 *2) + (-12 (-5 *2 (-294 (-316 (-169 (-379))))) (-5 *1 (-398 *3 *4 *5 *6)) + (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) + (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) + ((*1 *1 *2) + (-12 (-5 *2 (-294 (-316 (-379)))) (-5 *1 (-398 *3 *4 *5 *6)) + (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) + (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) + ((*1 *1 *2) + (-12 (-5 *2 (-294 (-316 (-563)))) (-5 *1 (-398 *3 *4 *5 *6)) + (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) + (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) + ((*1 *1 *2) + (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-398 *3 *4 *5 *6)) + (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) + (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) + ((*1 *1 *2) + (-12 (-5 *2 (-316 (-379))) (-5 *1 (-398 *3 *4 *5 *6)) + (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) + (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) + ((*1 *1 *2) + (-12 (-5 *2 (-316 (-563))) (-5 *1 (-398 *3 *4 *5 *6)) + (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) + (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) + ((*1 *1 *2) + (-12 (-5 *2 (-294 (-316 (-689)))) (-5 *1 (-398 *3 *4 *5 *6)) + (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) + (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) + ((*1 *1 *2) + (-12 (-5 *2 (-294 (-316 (-694)))) (-5 *1 (-398 *3 *4 *5 *6)) + (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) + (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) + ((*1 *1 *2) + (-12 (-5 *2 (-294 (-316 (-696)))) (-5 *1 (-398 *3 *4 *5 *6)) + (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) + (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) + ((*1 *1 *2) + (-12 (-5 *2 (-316 (-689))) (-5 *1 (-398 *3 *4 *5 *6)) + (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) + (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) + ((*1 *1 *2) + (-12 (-5 *2 (-316 (-694))) (-5 *1 (-398 *3 *4 *5 *6)) + (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) + (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) + ((*1 *1 *2) + (-12 (-5 *2 (-316 (-696))) (-5 *1 (-398 *3 *4 *5 *6)) + (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) + (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) + (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) + (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) + (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) + ((*1 *1 *2) + (-12 (-5 *2 (-640 (-330))) (-5 *1 (-398 *3 *4 *5 *6)) + (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) + (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) + ((*1 *1 *2) + (-12 (-5 *2 (-330)) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) + (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) + (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) + ((*1 *1 *2) + (-12 (-5 *2 (-331 *4)) (-4 *4 (-13 (-846) (-21))) + (-5 *1 (-427 *3 *4)) (-4 *3 (-13 (-172) (-38 (-407 (-563))))))) + ((*1 *1 *2) + (-12 (-5 *1 (-427 *2 *3)) (-4 *2 (-13 (-172) (-38 (-407 (-563))))) + (-4 *3 (-13 (-846) (-21))))) + ((*1 *1 *2) + (-12 (-5 *2 (-407 (-948 (-407 *3)))) (-4 *3 (-555)) (-4 *3 (-846)) + (-4 *1 (-430 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-948 (-407 *3))) (-4 *3 (-555)) (-4 *3 (-846)) + (-4 *1 (-430 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-407 *3)) (-4 *3 (-555)) (-4 *3 (-846)) + (-4 *1 (-430 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1118 *3 (-609 *1))) (-4 *3 (-1045)) (-4 *3 (-846)) + (-4 *1 (-430 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-434)))) + ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-434)))) + ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-434)))) + ((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-434)))) + ((*1 *1 *2) (-12 (-5 *2 (-434)) (-5 *1 (-437)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) + (-4 *1 (-440)))) + ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-440)))) + ((*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-4 *1 (-440)))) + ((*1 *1 *2) (-12 (-5 *2 (-1257 (-694))) (-4 *1 (-440)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -2412 (-640 (-330))))) + (-4 *1 (-441)))) + ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-441)))) + ((*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-4 *1 (-441)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1257 (-407 (-948 *3)))) (-4 *3 (-172)) + (-14 *6 (-1257 (-684 *3))) (-5 *1 (-453 *3 *4 *5 *6)) + (-14 *4 (-917)) (-14 *5 (-640 (-1169))))) + ((*1 *1 *2) (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *1 (-468)))) + ((*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-468)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1242 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-1169)) + (-14 *5 *3) (-5 *1 (-474 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-474 *3 *4 *5)) + (-4 *3 (-1045)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-5 *2 (-1118 (-563) (-609 (-495)))) (-5 *1 (-495)))) + ((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-502)))) + ((*1 *1 *2) + (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-363)) + (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-640 (-1207))) (-5 *1 (-524)))) + ((*1 *1 *2) (-12 (-5 *2 (-640 (-1207))) (-5 *1 (-603)))) + ((*1 *1 *2) + (-12 (-4 *3 (-172)) (-5 *1 (-604 *3 *2)) (-4 *2 (-740 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1208)))) + ((*1 *1 *2) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1208)))) + ((*1 *1 *2) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1045)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1277 *3 *4)) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) + (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1272 *3 *4)) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) + (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917)))) + ((*1 *1 *2) + (-12 (-4 *3 (-172)) (-5 *1 (-632 *3 *2)) (-4 *2 (-740 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-672 *3)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) + ((*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) + ((*1 *2 *1) + (-12 (-5 *2 (-954 (-954 (-954 *3)))) (-5 *1 (-670 *3)) + (-4 *3 (-1093)))) + ((*1 *1 *2) + (-12 (-5 *2 (-954 (-954 (-954 *3)))) (-4 *3 (-1093)) + (-5 *1 (-670 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-672 *3)) (-4 *3 (-846)))) + ((*1 *1 *2) (-12 (-5 *2 (-1111)) (-5 *1 (-676)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-677 *3)) (-4 *3 (-1093)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *2)) (-4 *4 (-373 *3)) + (-4 *2 (-373 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-689)))) + ((*1 *1 *2) (-12 (-5 *2 (-169 (-696))) (-5 *1 (-689)))) + ((*1 *1 *2) (-12 (-5 *2 (-169 (-694))) (-5 *1 (-689)))) + ((*1 *1 *2) (-12 (-5 *2 (-169 (-563))) (-5 *1 (-689)))) + ((*1 *1 *2) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-689)))) + ((*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-694)))) + ((*1 *2 *1) (-12 (-5 *2 (-379)) (-5 *1 (-694)))) + ((*1 *2 *3) + (-12 (-5 *3 (-316 (-563))) (-5 *2 (-316 (-696))) (-5 *1 (-696)))) + ((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1151)) (-5 *1 (-706)))) + ((*1 *2 *1) + (-12 (-4 *2 (-172)) (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-172)) (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-640 (-2 (|:| -2311 *3) (|:| -4222 *4)))) + (-4 *3 (-1045)) (-4 *4 (-722)) (-5 *1 (-731 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-759)))) + ((*1 *1 *2) + (-12 (-5 *2 - (-3 (-2 (|:| |answer| (-406 *7)) (|:| |a0| *6)) - (-2 (|:| -2929 (-406 *7)) (|:| |coeff| (-406 *7))) "failed")) - (-5 *1 (-572 *6 *7)) (-5 *3 (-406 *7))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-554) (-146))) (-5 *1 (-1226 *3 *2)) - (-4 *2 (-1232 *3))))) -(((*1 *2 *3) + (-3 + (|:| |nia| + (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) + (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (|:| |mdnia| + (-2 (|:| |fn| (-316 (-225))) + (|:| -2516 (-640 (-1087 (-839 (-225))))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) + (-5 *1 (-765)))) + ((*1 *1 *2) (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-766)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-788)) (-4 *7 (-944 *4 *5 *6)) (-4 *4 (-451)) (-4 *6 (-845)) - (-5 *2 (-112)) (-5 *1 (-448 *4 *5 *6 *7))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-562)) (-4 *1 (-1085 *3)) (-4 *3 (-1207))))) -(((*1 *1 *1 *2) + (-5 *2 + (-2 (|:| |fn| (-316 (-225))) + (|:| -2516 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *1 (-765)))) + ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| -1923 (-639 (-857))) (|:| -1593 (-639 (-857))) - (|:| |presup| (-639 (-857))) (|:| -3142 (-639 (-857))) - (|:| |args| (-639 (-857))))) - (-5 *1 (-1168)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-639 (-639 (-857)))) (-5 *1 (-1168))))) -(((*1 *2) (-12 (-5 *2 (-639 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-131))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-766)) (-4 *5 (-554)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-964 *5 *3)) (-4 *3 (-1232 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-857) (-857))) (-5 *1 (-114)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-857) (-639 (-857)))) (-5 *1 (-114)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-857) (-639 (-857)))) (-5 *1 (-114)))) + (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) + (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *1 (-765)))) + ((*1 *2 *3) (-12 (-5 *2 (-770)) (-5 *1 (-769 *3)) (-4 *3 (-1208)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) + (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *1 (-804)))) + ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-820)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) + (|:| |lb| (-640 (-839 (-225)))) + (|:| |cf| (-640 (-316 (-225)))) + (|:| |ub| (-640 (-839 (-225)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-640 (-316 (-225)))) + (|:| -2523 (-640 (-225))))))) + (-5 *1 (-837)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2523 (-640 (-225))))) + (-5 *1 (-837)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |fn| (-316 (-225))) (|:| -2523 (-640 (-225))) + (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) + (|:| |ub| (-640 (-839 (-225)))))) + (-5 *1 (-837)))) + ((*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-854)))) + ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) + ((*1 *2 *3) + (-12 (-5 *3 (-948 (-48))) (-5 *2 (-316 (-563))) (-5 *1 (-871)))) + ((*1 *2 *3) + (-12 (-5 *3 (-407 (-948 (-48)))) (-5 *2 (-316 (-563))) + (-5 *1 (-871)))) + ((*1 *1 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846)))) + ((*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |pde| (-640 (-316 (-225)))) + (|:| |constraints| + (-640 + (-2 (|:| |start| (-225)) (|:| |finish| (-225)) + (|:| |grid| (-767)) (|:| |boundaryType| (-563)) + (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) + (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) + (|:| |tol| (-225)))) + (-5 *1 (-894)))) + ((*1 *1 *2) + (-12 (-5 *2 (-640 (-901 *3))) (-4 *3 (-1093)) (-5 *1 (-900 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-1261)) (-5 *1 (-213 *3)) - (-4 *3 - (-13 (-845) - (-10 -8 (-15 -2343 ((-1150) $ (-1168))) (-15 -1479 (*2 $)) - (-15 -1359 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-393)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *2 (-1261)) (-5 *1 (-393)))) - ((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-501)))) - ((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-705)))) - ((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-1187)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-562)) (-5 *2 (-1261)) (-5 *1 (-1187))))) -(((*1 *2 *1) (-12 (-4 *1 (-969)) (-5 *2 (-1086 (-224)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-173 (-406 (-562)))) (-5 *1 (-117 *3)) (-14 *3 (-562)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *3 (-1148 *2)) (-4 *2 (-306)) (-5 *1 (-173 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-406 *3)) (-4 *3 (-306)) (-5 *1 (-173 *3)))) + (-12 (-5 *2 (-640 (-901 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) + ((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-901 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1093)) (-5 *1 (-901 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-407 (-418 *3))) (-4 *3 (-307)) (-5 *1 (-910 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-407 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307)))) + ((*1 *2 *3) + (-12 (-5 *3 (-477)) (-5 *2 (-316 *4)) (-5 *1 (-915 *4)) + (-4 *4 (-13 (-846) (-555))))) + ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) + ((*1 *1 *2) (-12 (-5 *1 (-962 *2)) (-4 *2 (-963)))) + ((*1 *2 *3) (-12 (-5 *2 (-1262)) (-5 *1 (-1029 *3)) (-4 *3 (-1208)))) + ((*1 *2 *3) (-12 (-5 *3 (-312)) (-5 *1 (-1029 *2)) (-4 *2 (-1208)))) + ((*1 *1 *2) + (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *2 (-945 *3 *4 *5)) + (-14 *6 (-640 *2)))) + ((*1 *2 *3) + (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-1039 *3)) (-4 *3 (-555)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1045)) (-4 *4 (-846)) (-5 *1 (-1119 *3 *4 *2)) + (-4 *2 (-945 *3 (-531 *4) *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1045)) (-4 *2 (-846)) (-5 *1 (-1119 *3 *2 *4)) + (-4 *4 (-945 *3 (-531 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-858)))) + ((*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1137)))) ((*1 *2 *3) - (-12 (-5 *2 (-173 (-562))) (-5 *1 (-760 *3)) (-4 *3 (-403)))) + (-12 (-5 *2 (-1149 *3)) (-5 *1 (-1153 *3)) (-4 *3 (-1045)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1160 *3 *4 *5)) + (-4 *3 (-1045)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1167 *3 *4 *5)) + (-4 *3 (-1045)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1230 *4 *3)) (-4 *3 (-1045)) (-14 *4 (-1169)) + (-14 *5 *3) (-5 *1 (-1167 *3 *4 *5)))) + ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1168)))) + ((*1 *2 *1) (-12 (-5 *2 (-1181 (-1169) (-437))) (-5 *1 (-1173)))) + ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1174)))) + ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1174)))) + ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1174)))) + ((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-1174)))) + ((*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-1180 *3)) (-4 *3 (-1093)))) + ((*1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *1 (-1187 *3)) (-4 *3 (-1093)))) + ((*1 *1 *2) + (-12 (-5 *2 (-948 *3)) (-4 *3 (-1045)) (-5 *1 (-1202 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1202 *3)) (-4 *3 (-1045)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1221 *3 *4 *5)) + (-4 *3 (-1045)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1087 *3)) (-4 *3 (-1208)) (-5 *1 (-1224 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1249 *3 *4 *5)) + (-4 *3 (-1045)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1230 *4 *3)) (-4 *3 (-1045)) (-14 *4 (-1169)) + (-14 *5 *3) (-5 *1 (-1249 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1253 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-1258)))) + ((*1 *2 *3) (-12 (-5 *3 (-468)) (-5 *2 (-1258)) (-5 *1 (-1261)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) ((*1 *2 *1) - (-12 (-5 *2 (-173 (-406 (-562)))) (-5 *1 (-866 *3)) (-14 *3 (-562)))) + (-12 (-5 *2 (-1281 *3 *4)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-846)) + (-4 *4 (-172)))) ((*1 *2 *1) - (-12 (-14 *3 (-562)) (-5 *2 (-173 (-406 (-562)))) - (-5 *1 (-867 *3 *4)) (-4 *4 (-864 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-766)) (-4 *6 (-1092)) (-4 *3 (-895 *6)) - (-5 *2 (-683 *3)) (-5 *1 (-686 *6 *3 *7 *4)) (-4 *7 (-372 *3)) - (-4 *4 (-13 (-372 *6) (-10 -7 (-6 -4403))))))) -(((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4403)) (-4 *1 (-150 *2)) (-4 *2 (-1207)) - (-4 *2 (-1092)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4403)) (-4 *1 (-150 *3)) - (-4 *3 (-1207)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-668 *3)) (-4 *3 (-1207)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-562)) (-4 *4 (-1092)) - (-5 *1 (-732 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-562)) (-5 *1 (-732 *2)) (-4 *2 (-1092)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1132 *3 *4)) (-4 *3 (-13 (-1092) (-34))) - (-4 *4 (-13 (-1092) (-34))) (-5 *1 (-1133 *3 *4))))) -(((*1 *1 *1) (-5 *1 (-224))) ((*1 *1 *1) (-5 *1 (-378))) - ((*1 *1) (-5 *1 (-378)))) -(((*1 *2 *3) - (-12 (-5 *3 (-639 (-2 (|:| -1635 (-1164 *6)) (|:| -1300 (-562))))) - (-4 *6 (-306)) (-4 *4 (-788)) (-4 *5 (-845)) (-5 *2 (-562)) - (-5 *1 (-737 *4 *5 *6 *7)) (-4 *7 (-944 *6 *4 *5))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-606 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1092))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1200 *3 *4 *5 *6)) (-4 *3 (-554)) (-4 *4 (-788)) - (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) - (-5 *2 (-2 (|:| -1449 (-639 *6)) (|:| -3315 (-639 *6))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1168)) - (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-52)) (-5 *1 (-314 *4 *5)) - (-4 *5 (-13 (-27) (-1192) (-429 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-52)) (-5 *1 (-314 *4 *3)) - (-4 *3 (-13 (-27) (-1192) (-429 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-766)) - (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-52)) (-5 *1 (-314 *5 *3)) - (-4 *3 (-13 (-27) (-1192) (-429 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-293 *3)) (-4 *3 (-13 (-27) (-1192) (-429 *5))) - (-4 *5 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-52)) (-5 *1 (-314 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-293 *3)) (-5 *5 (-766)) - (-4 *3 (-13 (-27) (-1192) (-429 *6))) - (-4 *6 (-13 (-451) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-52)) (-5 *1 (-314 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-562))) (-5 *4 (-293 *6)) - (-4 *6 (-13 (-27) (-1192) (-429 *5))) - (-4 *5 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-52)) (-5 *1 (-458 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1168)) (-5 *5 (-293 *3)) - (-4 *3 (-13 (-27) (-1192) (-429 *6))) - (-4 *6 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-52)) (-5 *1 (-458 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-562))) (-5 *4 (-293 *7)) (-5 *5 (-1223 (-766))) - (-4 *7 (-13 (-27) (-1192) (-429 *6))) - (-4 *6 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-52)) (-5 *1 (-458 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1168)) (-5 *5 (-293 *3)) (-5 *6 (-1223 (-766))) - (-4 *3 (-13 (-27) (-1192) (-429 *7))) - (-4 *7 (-13 (-554) (-845) (-1033 (-562)) (-635 (-562)))) - (-5 *2 (-52)) (-5 *1 (-458 *7 *3)))) + (-12 (-5 *2 (-1272 *3 *4)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-846)) + (-4 *4 (-172)))) + ((*1 *1 *2) + (-12 (-5 *2 (-659 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) + (-5 *1 (-1277 *3 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-563)))) (-4 *5 (-1233 *4)) + (-5 *2 (-2 (|:| |ans| (-407 *5)) (|:| |nosol| (-112)))) + (-5 *1 (-1011 *4 *5)) (-5 *3 (-407 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) + (-4 *4 (-349)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) + (-4 *4 (-349)))) + ((*1 *1) (-4 *1 (-368))) + ((*1 *2 *3) + (-12 (-5 *3 (-917)) (-5 *2 (-1257 *4)) (-5 *1 (-528 *4)) + (-4 *4 (-349)))) + ((*1 *1 *1) (-4 *1 (-545))) ((*1 *1) (-4 *1 (-545))) + ((*1 *1 *1) (-5 *1 (-563))) ((*1 *1 *1) (-5 *1 (-767))) + ((*1 *2 *1) (-12 (-5 *2 (-901 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-563)) (-5 *2 (-901 *4)) (-5 *1 (-900 *4)) + (-4 *4 (-1093)))) + ((*1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-545)) (-4 *2 (-555))))) +(((*1 *2 *3 *2 *4 *5) + (-12 (-5 *2 (-640 *3)) (-5 *5 (-917)) (-4 *3 (-1233 *4)) + (-4 *4 (-307)) (-5 *1 (-460 *4 *3))))) +(((*1 *1) (-5 *1 (-1078)))) +(((*1 *1) (-5 *1 (-437)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1208)))) + ((*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-846)))) + ((*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) + ((*1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) ((*1 *2 *1) - (-12 (-4 *1 (-1218 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-1247 *3))))) + (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) + (-4 *3 (-1233 *2))))) +(((*1 *2 *3 *4 *4 *3 *5) + (-12 (-5 *4 (-609 *3)) (-5 *5 (-1165 *3)) + (-4 *3 (-13 (-430 *6) (-27) (-1193))) + (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) + (-5 *2 (-584 *3)) (-5 *1 (-559 *6 *3 *7)) (-4 *7 (-1093)))) + ((*1 *2 *3 *4 *4 *4 *3 *5) + (-12 (-5 *4 (-609 *3)) (-5 *5 (-407 (-1165 *3))) + (-4 *3 (-13 (-430 *6) (-27) (-1193))) + (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) + (-5 *2 (-584 *3)) (-5 *1 (-559 *6 *3 *7)) (-4 *7 (-1093))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2059 *4)))) + (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) +(((*1 *2 *3 *4 *2 *5) + (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 (-888 *6))) + (-5 *5 (-1 (-885 *6 *8) *8 (-888 *6) (-885 *6 *8))) (-4 *6 (-1093)) + (-4 *8 (-13 (-1045) (-611 (-888 *6)) (-1034 *7))) + (-5 *2 (-885 *6 *8)) (-4 *7 (-13 (-1045) (-846))) + (-5 *1 (-937 *6 *7 *8))))) (((*1 *2) - (|partial| -12 (-4 *3 (-554)) (-4 *3 (-171)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -4291 (-639 *1)))) - (-4 *1 (-366 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-452 *3 *4 *5 *6)) - (|:| -4291 (-639 (-452 *3 *4 *5 *6))))) - (-5 *1 (-452 *3 *4 *5 *6)) (-4 *3 (-171)) (-14 *4 (-916)) - (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3)))))) + (-12 (-4 *3 (-555)) (-5 *2 (-640 (-684 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-417 *3))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) + (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1154 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1155 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-555)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2742 *4))) + (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-640 (-948 *4))) (-5 *3 (-640 (-1169))) (-4 *4 (-452)) + (-5 *1 (-914 *4))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-858)))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-112)) (-5 *5 (-684 (-225))) + (-5 *2 (-1031)) (-5 *1 (-751))))) (((*1 *2) - (-12 (-5 *2 (-916)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562))))) + (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-165 *3 *4)) + (-4 *3 (-166 *4)))) + ((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1208)) (-5 *2 (-767)) + (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-846)) (-5 *2 (-767)) (-5 *1 (-429 *3 *4)) + (-4 *3 (-430 *4)))) + ((*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-544 *3)) (-4 *3 (-545)))) + ((*1 *2) (-12 (-4 *1 (-759)) (-5 *2 (-767)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-792 *3 *4)) + (-4 *3 (-793 *4)))) + ((*1 *2) + (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-987 *3 *4)) + (-4 *3 (-988 *4)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-992 *3 *4)) + (-4 *3 (-993 *4)))) + ((*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1007 *3)) (-4 *3 (-1008)))) + ((*1 *2) (-12 (-4 *1 (-1045)) (-5 *2 (-767)))) + ((*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1053 *3)) (-4 *3 (-1054))))) +(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-614)))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-961))) (-5 *1 (-291))))) +(((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-640 *11)) + (|:| |todo| (-640 (-2 (|:| |val| *3) (|:| -2059 *11)))))) + (-5 *6 (-767)) + (-5 *2 (-640 (-2 (|:| |val| (-640 *10)) (|:| -2059 *11)))) + (-5 *3 (-640 *10)) (-5 *4 (-640 *11)) (-4 *10 (-1059 *7 *8 *9)) + (-4 *11 (-1065 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-789)) + (-4 *9 (-846)) (-5 *1 (-1063 *7 *8 *9 *10 *11)))) + ((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-640 *11)) + (|:| |todo| (-640 (-2 (|:| |val| *3) (|:| -2059 *11)))))) + (-5 *6 (-767)) + (-5 *2 (-640 (-2 (|:| |val| (-640 *10)) (|:| -2059 *11)))) + (-5 *3 (-640 *10)) (-5 *4 (-640 *11)) (-4 *10 (-1059 *7 *8 *9)) + (-4 *11 (-1102 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-789)) + (-4 *9 (-846)) (-5 *1 (-1138 *7 *8 *9 *10 *11))))) +(((*1 *2 *3) + (-12 (-5 *3 (-640 (-563))) (-5 *2 (-1171 (-407 (-563)))) + (-5 *1 (-190))))) +(((*1 *2 *3 *4) + (-12 + (-5 *3 + (-640 + (-2 (|:| |eqzro| (-640 *8)) (|:| |neqzro| (-640 *8)) + (|:| |wcond| (-640 (-948 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1257 (-407 (-948 *5)))) + (|:| -4315 (-640 (-1257 (-407 (-948 *5)))))))))) + (-5 *4 (-1151)) (-4 *5 (-13 (-307) (-147))) (-4 *8 (-945 *5 *7 *6)) + (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-563)) + (-5 *1 (-920 *5 *6 *7 *8))))) +(((*1 *1 *1) + (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) +(((*1 *1 *1 *2 *2) + (|partial| -12 (-5 *2 (-917)) (-5 *1 (-1094 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-916)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562)))))) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) + (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1154 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1155 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-961))) (-5 *1 (-109))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-563)) (-4 *2 (-430 *3)) (-5 *1 (-32 *3 *2)) + (-4 *3 (-1034 *4)) (-4 *3 (-13 (-846) (-555)))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-563))))) + (-4 *2 (-13 (-846) (-21)))))) +(((*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-1093)) (-5 *2 (-767))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1093)) (-4 *6 (-882 *5)) (-5 *2 (-881 *5 *6 (-640 *6))) + (-5 *1 (-883 *5 *6 *4)) (-5 *3 (-640 *6)) (-4 *4 (-611 (-888 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1093)) (-5 *2 (-640 (-294 *3))) (-5 *1 (-883 *5 *3 *4)) + (-4 *3 (-1034 (-1169))) (-4 *3 (-882 *5)) (-4 *4 (-611 (-888 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1093)) (-5 *2 (-640 (-294 (-948 *3)))) + (-5 *1 (-883 *5 *3 *4)) (-4 *3 (-1045)) + (-2176 (-4 *3 (-1034 (-1169)))) (-4 *3 (-882 *5)) + (-4 *4 (-611 (-888 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1093)) (-5 *2 (-885 *5 *3)) (-5 *1 (-883 *5 *3 *4)) + (-2176 (-4 *3 (-1034 (-1169)))) (-2176 (-4 *3 (-1045))) + (-4 *3 (-882 *5)) (-4 *4 (-611 (-888 *5)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-436))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-640 (-407 (-948 (-169 (-563)))))) + (-5 *2 (-640 (-640 (-294 (-948 (-169 *4)))))) (-5 *1 (-378 *4)) + (-4 *4 (-13 (-363) (-844))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-640 (-294 (-407 (-948 (-169 (-563))))))) + (-5 *2 (-640 (-640 (-294 (-948 (-169 *4)))))) (-5 *1 (-378 *4)) + (-4 *4 (-13 (-363) (-844))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-948 (-169 (-563))))) + (-5 *2 (-640 (-294 (-948 (-169 *4))))) (-5 *1 (-378 *4)) + (-4 *4 (-13 (-363) (-844))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-294 (-407 (-948 (-169 (-563)))))) + (-5 *2 (-640 (-294 (-948 (-169 *4))))) (-5 *1 (-378 *4)) + (-4 *4 (-13 (-363) (-844)))))) +(((*1 *2 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-821))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1093)) (-4 *2 (-896 *5)) (-5 *1 (-687 *5 *2 *3 *4)) + (-4 *3 (-373 *2)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4407))))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-452)) (-4 *4 (-555)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4354 *4))) + (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1154 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1155 *3)))) + ((*1 *1 *1) (-4 *1 (-1196)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-348)) + (-12 (-4 *5 (-307)) (-4 *6 (-373 *5)) (-4 *4 (-373 *5)) (-5 *2 - (-2 (|:| |cont| *5) - (|:| -2656 (-639 (-2 (|:| |irr| *3) (|:| -2794 (-562))))))) - (-5 *1 (-215 *5 *3)) (-4 *3 (-1232 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-441 *3)) (-4 *3 (-1232 (-562)))))) -(((*1 *2 *1) (-12 (-5 *2 (-769)) (-5 *1 (-52))))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4315 (-640 *4)))) + (-5 *1 (-1117 *5 *6 *4 *3)) (-4 *3 (-682 *5 *6 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1242 *3 *4 *5)) (-5 *1 (-319 *3 *4 *5)) + (-4 *3 (-13 (-363) (-846))) (-14 *4 (-1169)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-563)))) + ((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-418 *3)) (-4 *3 (-555)))) + ((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-694)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1093)) (-5 *1 (-709 *3 *2 *4)) (-4 *3 (-846)) + (-14 *4 + (-1 (-112) (-2 (|:| -2555 *3) (|:| -1654 *2)) + (-2 (|:| -2555 *3) (|:| -1654 *2))))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-818))))) +(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144))) + ((*1 *1 *1) (-4 *1 (-1137)))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *2 (-1031)) + (-5 *1 (-751))))) +(((*1 *2) + (-12 (-4 *3 (-1045)) (-5 *2 (-954 (-708 *3 *4))) (-5 *1 (-708 *3 *4)) + (-4 *4 (-1233 *3))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1149 *4)) (-5 *3 (-563)) (-4 *4 (-1045)) + (-5 *1 (-1153 *4)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-563)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-1045)) + (-14 *4 (-1169)) (-14 *5 *3)))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-917)) (-5 *2 (-767)) (-5 *1 (-1094 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260)))) + ((*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260))))) +(((*1 *2) + (-12 (-5 *2 (-1262)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) + (-4 *4 (-1093))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-418 *5)) (-4 *5 (-555)) + (-5 *2 + (-2 (|:| -1654 (-767)) (|:| -2311 *5) (|:| |radicand| (-640 *5)))) + (-5 *1 (-320 *5)) (-5 *4 (-767)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-998)) (-5 *2 (-563))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-766)) (-4 *1 (-978 *2)) (-4 *2 (-1192))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2355 *4))) - (-5 *1 (-964 *4 *3)) (-4 *3 (-1232 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-1086 (-224))))) - ((*1 *2 *1) (-12 (-4 *1 (-969)) (-5 *2 (-1086 (-224)))))) + (-12 (-5 *2 (-114)) (-5 *3 (-640 (-1 *4 (-640 *4)))) (-4 *4 (-1093)) + (-5 *1 (-113 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1093)) + (-5 *1 (-113 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-114)) (-5 *2 (-640 (-1 *4 (-640 *4)))) + (-5 *1 (-113 *4)) (-4 *4 (-1093))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1154 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1155 *3)))) + ((*1 *1 *1) (-4 *1 (-1196)))) +(((*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1208)) (-4 *2 (-846)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1208)))) + ((*1 *2 *2) + (-12 (-5 *2 (-640 (-901 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) + (-4 *6 (-1059 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -1583 *1) (|:| |upper| *1))) + (-4 *1 (-972 *4 *5 *3 *6))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) + (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *1 (-973 *3 *4 *5 *6))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-640 (-1133 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) + (-4 *4 (-13 (-1093) (-34))) (-4 *5 (-13 (-1093) (-34))) + (-5 *1 (-1134 *4 *5)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-640 (-1133 *3 *4))) (-4 *3 (-13 (-1093) (-34))) + (-4 *4 (-13 (-1093) (-34))) (-5 *1 (-1134 *3 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-640 *2)) (-4 *2 (-1059 *4 *5 *6)) (-4 *4 (-555)) + (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-402)) (-5 *2 (-767)))) + ((*1 *1 *1) (-4 *1 (-402)))) (((*1 *2 *3) - (-12 (-5 *3 (-639 *2)) (-5 *1 (-485 *2)) (-4 *2 (-1232 (-562)))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-938 (-224))) (-5 *4 (-869)) (-5 *2 (-1261)) - (-5 *1 (-467)))) - ((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1044)) (-4 *1 (-975 *3)))) + (-12 (-5 *3 (-640 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-192)))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-300)))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-305))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1208))))) +(((*1 *2 *1) + (-12 (-5 *2 (-640 (-1194 *3))) (-5 *1 (-1194 *3)) (-4 *3 (-1093))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1093)) + (-4 *4 (-131)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1093)) (-5 *1 (-361 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1093)) (-5 *1 (-386 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1093)) (-5 *1 (-644 *3 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1045)) (-4 *2 (-682 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1233 *4)) (-4 *5 (-373 *4)) + (-4 *6 (-373 *4))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) + (-5 *2 (-1165 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1044)) (-5 *2 (-938 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-938 *3)) (-4 *3 (-1044)) (-4 *1 (-1126 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-766)) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-639 *3)) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-938 *3)) (-4 *1 (-1126 *3)) (-4 *3 (-1044)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-938 (-224))) (-5 *1 (-1203)) (-5 *3 (-224))))) + (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) + (-5 *2 (-1165 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1154 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1155 *3)))) + ((*1 *1 *1) (-4 *1 (-1196)))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093))))) +(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-578))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-1045)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-1045))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) + (-5 *2 (-112))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-818))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-563)) (|has| *1 (-6 -4408)) (-4 *1 (-1245 *3)) + (-4 *3 (-1208))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-555)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *2 (-640 *1)) (-4 *1 (-1059 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-555) (-147))) (-5 *1 (-537 *3 *2)) + (-4 *2 (-1248 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-4 *4 (-1233 *3)) + (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1248 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-5 *1 (-542 *3 *2)) + (-4 *2 (-1248 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-13 (-555) (-147))) + (-5 *1 (-1145 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-923))))) +(((*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-755))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) + (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1154 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1155 *3)))) + ((*1 *1 *1) (-4 *1 (-1196)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1257 *6)) (-5 *4 (-1257 (-563))) (-5 *5 (-563)) + (-4 *6 (-1093)) (-5 *2 (-1 *6)) (-5 *1 (-1013 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1045)) (-4 *7 (-1045)) + (-4 *6 (-1233 *5)) (-5 *2 (-1165 (-1165 *7))) + (-5 *1 (-501 *5 *6 *4 *7)) (-4 *4 (-1233 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1193)))))) +(((*1 *2 *1) (-12 (-5 *2 (-640 (-175))) (-5 *1 (-1078))))) +(((*1 *2 *3) (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-1002))))) +(((*1 *2 *3) + (-12 (-4 *4 (-363)) (-5 *2 (-640 *3)) (-5 *1 (-941 *4 *3)) + (-4 *3 (-1233 *4))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2059 *4)))) + (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *5 (-112)) + (-5 *2 (-1031)) (-5 *1 (-741))))) +(((*1 *1) (-5 *1 (-141)))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -4403)) (-4 *1 (-150 *2)) (-4 *2 (-1207)) - (-4 *2 (-1092))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-766)) (-4 *3 (-1207)) (-4 *1 (-57 *3 *4 *5)) - (-4 *4 (-372 *3)) (-4 *5 (-372 *3)))) - ((*1 *1) (-5 *1 (-170))) - ((*1 *1) (-12 (-5 *1 (-212 *2 *3)) (-14 *2 (-916)) (-4 *3 (-1092)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1150)) (-4 *1 (-388)))) - ((*1 *1) (-5 *1 (-393))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-766)) (-4 *1 (-645 *3)) (-4 *3 (-1207)))) - ((*1 *1) - (-12 (-4 *3 (-1092)) (-5 *1 (-880 *2 *3 *4)) (-4 *2 (-1092)) - (-4 *4 (-660 *3)))) - ((*1 *1) (-12 (-5 *1 (-884 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092)))) - ((*1 *1 *2) - (-12 (-5 *1 (-1134 *3 *2)) (-14 *3 (-766)) (-4 *2 (-1044)))) - ((*1 *1) (-12 (-5 *1 (-1156 *2 *3)) (-14 *2 (-916)) (-4 *3 (-1044)))) - ((*1 *1 *1) (-5 *1 (-1168))) ((*1 *1) (-5 *1 (-1168))) - ((*1 *1) (-5 *1 (-1187)))) -(((*1 *2 *3) - (-12 (-5 *3 (-947 *5)) (-4 *5 (-1044)) (-5 *2 (-480 *4 *5)) - (-5 *1 (-939 *4 *5)) (-14 *4 (-639 (-1168)))))) -(((*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-766)) (-4 *1 (-735 *4 *5)) (-4 *4 (-1044)) - (-4 *5 (-845)) (-5 *2 (-947 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-766)) (-4 *1 (-735 *4 *5)) (-4 *4 (-1044)) - (-4 *5 (-845)) (-5 *2 (-947 *4)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-766)) (-4 *1 (-1247 *4)) (-4 *4 (-1044)) - (-5 *2 (-947 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-766)) (-4 *1 (-1247 *4)) (-4 *4 (-1044)) - (-5 *2 (-947 *4))))) + (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846)))) + ((*1 *1 *1) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) + (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1154 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1155 *3)))) + ((*1 *1 *1) (-4 *1 (-1196)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-998)) + (-4 *2 (-1045))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-640 (-407 (-948 *6)))) + (-5 *3 (-407 (-948 *6))) + (-4 *6 (-13 (-555) (-1034 (-563)) (-147))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-569 *6))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) + (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-640 *7)) (-5 *3 (-112)) (-4 *7 (-1059 *4 *5 *6)) + (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) + (-5 *1 (-973 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1151))))) +(((*1 *2 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) + (-5 *1 (-747))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-948 (-169 (-563))))) (-5 *2 (-640 (-169 *4))) + (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-844))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-640 (-407 (-948 (-169 (-563)))))) + (-5 *4 (-640 (-1169))) (-5 *2 (-640 (-640 (-169 *5)))) + (-5 *1 (-378 *5)) (-4 *5 (-13 (-363) (-844)))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-114)) (-5 *4 (-767)) (-4 *5 (-452)) (-4 *5 (-846)) + (-4 *5 (-1034 (-563))) (-4 *5 (-555)) (-5 *1 (-41 *5 *2)) + (-4 *2 (-430 *5)) + (-4 *2 + (-13 (-363) (-302) + (-10 -8 (-15 -2143 ((-1118 *5 (-609 $)) $)) + (-15 -2154 ((-1118 *5 (-609 $)) $)) + (-15 -1693 ($ (-1118 *5 (-609 $)))))))))) +(((*1 *2 *3 *4 *4 *4 *5 *6 *7) + (|partial| -12 (-5 *5 (-1169)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-640 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-640 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -3646 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1193) (-27) (-430 *8))) + (-4 *8 (-13 (-452) (-846) (-147) (-1034 *3) (-636 *3))) + (-5 *3 (-563)) (-5 *2 (-640 *4)) (-5 *1 (-1010 *8 *4))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1169)) + (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3784 "void"))) (-5 *1 (-1172))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846)))) + ((*1 *1 *1) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) + (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1154 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1155 *3)))) + ((*1 *1 *1) (-4 *1 (-1196)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1193)))))) +(((*1 *2 *1) (-12 (-5 *2 (-640 (-834))) (-5 *1 (-140))))) +(((*1 *2 *2) + (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) + (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) + (-5 *1 (-973 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-640 *7)) (-5 *3 (-112)) (-4 *7 (-1059 *4 *5 *6)) + (-4 *4 (-452)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) + (-5 *1 (-973 *4 *5 *6 *7))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *2 (-846)) (-4 *5 (-1059 *3 *4 *2))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-563)) (-5 *3 (-767)) (-5 *1 (-560))))) (((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-362) (-146) (-1033 (-562)) (-1033 (-406 (-562))))) - (-4 *5 (-1232 *4)) (-5 *2 (-639 (-647 (-406 *5)))) - (-5 *1 (-651 *4 *5)) (-5 *3 (-647 (-406 *5)))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-639 *6)) (-4 *6 (-845)) (-4 *4 (-362)) (-4 *5 (-788)) - (-5 *1 (-503 *4 *5 *6 *2)) (-4 *2 (-944 *4 *5 *6)))) - ((*1 *1 *1 *2) - (-12 (-4 *3 (-362)) (-4 *4 (-788)) (-4 *5 (-845)) - (-5 *1 (-503 *3 *4 *5 *2)) (-4 *2 (-944 *3 *4 *5))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) + (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-640 *7)) (|:| |badPols| (-640 *7)))) + (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-640 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-563)) (-5 *2 (-640 (-640 (-225)))) (-5 *1 (-1204))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) + (-5 *1 (-743))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1022 (-839 (-563)))) + (-5 *3 (-1149 (-2 (|:| |k| (-563)) (|:| |c| *4)))) (-4 *4 (-1045)) + (-5 *1 (-593 *4))))) +(((*1 *1 *1) (-4 *1 (-626))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998) (-1193)))))) +(((*1 *2) (-12 (-5 *2 (-640 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-132))))) +(((*1 *1 *2) + (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-4 *1 (-1091 *3)))) + ((*1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093))))) +(((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)) (-4 *2 (-545)))) + ((*1 *1 *1) (-4 *1 (-1054)))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1169)) (-5 *3 (-112)) (-5 *1 (-888 *4)) + (-4 *4 (-1093))))) +(((*1 *2) + (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) + (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) + (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1233 *3)) (-4 *3 (-1045)) (-5 *2 (-1165 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-112)) (-5 *1 (-114))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-362) (-843))) - (-5 *2 (-2 (|:| |start| *3) (|:| -2656 (-417 *3)))) - (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4)))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1150)) (-5 *3 (-818)) (-5 *1 (-817))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-170)))) - ((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-1257)))) - ((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-1258))))) -(((*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-1086 (-224))))) - ((*1 *2 *1) (-12 (-4 *1 (-969)) (-5 *2 (-1086 (-224)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-916)) (-5 *2 (-1164 *4)) (-5 *1 (-356 *4)) - (-4 *4 (-348)))) + (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-1059 *4 *5 *6)) + (-5 *2 (-640 (-2 (|:| -1442 *1) (|:| -3405 (-640 *7))))) + (-5 *3 (-640 *7)) (-4 *1 (-1201 *4 *5 *6 *7))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-607 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-555)) (-5 *2 (-640 (-767))) (-5 *1 (-965 *4 *3)) + (-4 *3 (-1233 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1257 *4)) (-4 *4 (-349)) (-5 *2 (-1165 *4)) + (-5 *1 (-528 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-640 *3)) (-4 *3 (-1233 (-563))) (-5 *1 (-486 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-770)) (-5 *1 (-52))))) +(((*1 *1) (-4 *1 (-349))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 *5)) (-4 *5 (-430 *4)) + (-4 *4 (-13 (-555) (-846) (-147))) + (-5 *2 + (-2 (|:| |primelt| *5) (|:| |poly| (-640 (-1165 *5))) + (|:| |prim| (-1165 *5)))) + (-5 *1 (-432 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-916)) (-5 *2 (-1164 *4)) (-5 *1 (-356 *4)) - (-4 *4 (-348)))) - ((*1 *1) (-4 *1 (-367))) - ((*1 *2 *3) - (-12 (-5 *3 (-916)) (-5 *2 (-1256 *4)) (-5 *1 (-527 *4)) - (-4 *4 (-348)))) - ((*1 *1 *1) (-4 *1 (-544))) ((*1 *1) (-4 *1 (-544))) - ((*1 *1 *1) (-5 *1 (-562))) ((*1 *1 *1) (-5 *1 (-766))) - ((*1 *2 *1) (-12 (-5 *2 (-900 *3)) (-5 *1 (-899 *3)) (-4 *3 (-1092)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-562)) (-5 *2 (-900 *4)) (-5 *1 (-899 *4)) - (-4 *4 (-1092)))) - ((*1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-544)) (-4 *2 (-554))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1092))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) + (-12 (-4 *4 (-13 (-555) (-846) (-147))) + (-5 *2 + (-2 (|:| |primelt| *3) (|:| |pol1| (-1165 *3)) + (|:| |pol2| (-1165 *3)) (|:| |prim| (-1165 *3)))) + (-5 *1 (-432 *4 *3)) (-4 *3 (-27)) (-4 *3 (-430 *4)))) + ((*1 *2 *3 *4 *3 *4) + (-12 (-5 *3 (-948 *5)) (-5 *4 (-1169)) (-4 *5 (-13 (-363) (-147))) + (-5 *2 + (-2 (|:| |coef1| (-563)) (|:| |coef2| (-563)) + (|:| |prim| (-1165 *5)))) + (-5 *1 (-956 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-640 (-1169))) + (-4 *5 (-13 (-363) (-147))) + (-5 *2 + (-2 (|:| -2311 (-640 (-563))) (|:| |poly| (-640 (-1165 *5))) + (|:| |prim| (-1165 *5)))) + (-5 *1 (-956 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-640 (-948 *6))) (-5 *4 (-640 (-1169))) (-5 *5 (-1169)) + (-4 *6 (-13 (-363) (-147))) + (-5 *2 + (-2 (|:| -2311 (-640 (-563))) (|:| |poly| (-640 (-1165 *6))) + (|:| |prim| (-1165 *6)))) + (-5 *1 (-956 *6))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *4 (-554)) (-5 *2 (-766)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-416 *4))))) + (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-640 (-1169))) (-4 *5 (-1045)) + (-5 *2 (-481 *4 *5)) (-5 *1 (-940 *4 *5))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-1151)) (-5 *5 (-684 (-225))) + (-5 *2 (-1031)) (-5 *1 (-743))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1208)) + (-4 *5 (-1208)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-767)) + (-4 *7 (-1208)) (-4 *5 (-1208)) (-5 *2 (-240 *6 *5)) + (-5 *1 (-239 *6 *7 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1208)) (-4 *5 (-1208)) + (-4 *2 (-373 *5)) (-5 *1 (-371 *6 *4 *5 *2)) (-4 *4 (-373 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1093)) (-4 *5 (-1093)) + (-4 *2 (-425 *5)) (-5 *1 (-423 *6 *4 *5 *2)) (-4 *4 (-425 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-640 *6)) (-4 *6 (-1208)) + (-4 *5 (-1208)) (-5 *2 (-640 *5)) (-5 *1 (-638 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-954 *6)) (-4 *6 (-1208)) + (-4 *5 (-1208)) (-5 *2 (-954 *5)) (-5 *1 (-953 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1149 *6)) (-4 *6 (-1208)) + (-4 *3 (-1208)) (-5 *2 (-1149 *3)) (-5 *1 (-1147 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1257 *6)) (-4 *6 (-1208)) + (-4 *5 (-1208)) (-5 *2 (-1257 *5)) (-5 *1 (-1256 *6 *5))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-767)) (-4 *3 (-1208)) (-4 *1 (-57 *3 *4 *5)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + ((*1 *1) (-5 *1 (-171))) + ((*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1093)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1151)) (-4 *1 (-389)))) + ((*1 *1) (-5 *1 (-394))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-4 *1 (-646 *3)) (-4 *3 (-1208)))) + ((*1 *1) + (-12 (-4 *3 (-1093)) (-5 *1 (-881 *2 *3 *4)) (-4 *2 (-1093)) + (-4 *4 (-661 *3)))) + ((*1 *1) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))) + ((*1 *1 *2) + (-12 (-5 *1 (-1135 *3 *2)) (-14 *3 (-767)) (-4 *2 (-1045)))) + ((*1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) + ((*1 *1 *1) (-5 *1 (-1169))) ((*1 *1) (-5 *1 (-1169))) + ((*1 *1) (-5 *1 (-1188)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963))))) (((*1 *1 *2) - (-12 (-5 *2 (-639 (-2 (|:| -2319 *3) (|:| -2693 *4)))) - (-4 *3 (-1092)) (-4 *4 (-1092)) (-4 *1 (-1183 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1183 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1092)) (-4 *4 (-1092)) - (-4 *6 (-1092)) (-5 *2 (-1 *6 *5)) (-5 *1 (-678 *5 *4 *6))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-971 *4 *5 *6 *3)) (-4 *4 (-1044)) (-4 *5 (-788)) - (-4 *6 (-845)) (-4 *3 (-1058 *4 *5 *6)) (-4 *4 (-554)) - (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) -(((*1 *1 *1) (-12 (-5 *1 (-293 *2)) (-4 *2 (-21)) (-4 *2 (-1207))))) -(((*1 *2 *3) (-12 (-5 *3 (-938 *2)) (-5 *1 (-977 *2)) (-4 *2 (-1044))))) -(((*1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-133))))) + (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) + (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3191)))) + (-5 *2 (-1031)) (-5 *1 (-744))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3)) + (-4 *3 (-1093))))) +(((*1 *1 *1) (-4 *1 (-626))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998) (-1193)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) +(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) +(((*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-52))))) +(((*1 *2 *3) + (-12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1233 *5)) + (-4 *7 (-1233 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) + (-4 *4 (-13 (-846) (-555) (-1034 (-563)))) (-5 *2 (-112)) + (-5 *1 (-907 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-336 (-407 (-563)) *4 *5 *6)) + (-4 *4 (-1233 (-407 (-563)))) (-4 *5 (-1233 (-407 *4))) + (-4 *6 (-342 (-407 (-563)) *4 *5)) (-5 *2 (-112)) + (-5 *1 (-908 *4 *5 *6))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-536))) (-5 *1 (-536))))) +(((*1 *1) (-5 *1 (-577))) + ((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-859)))) + ((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1262)) (-5 *1 (-859)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1151)) (-5 *4 (-858)) (-5 *2 (-1262)) (-5 *1 (-859)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-1149 *4)) + (-4 *4 (-1093)) (-4 *4 (-1208))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) + (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031)) + (-5 *1 (-744))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-640 (-1069 *4 *5 *2))) (-4 *4 (-1093)) + (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4)))) + (-4 *2 (-13 (-430 *5) (-882 *4) (-611 (-888 *4)))) + (-5 *1 (-54 *4 *5 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-640 (-1069 *5 *6 *2))) (-5 *4 (-917)) (-4 *5 (-1093)) + (-4 *6 (-13 (-1045) (-882 *5) (-846) (-611 (-888 *5)))) + (-4 *2 (-13 (-430 *6) (-882 *5) (-611 (-888 *5)))) + (-5 *1 (-54 *5 *6 *2))))) +(((*1 *1 *2) + (-12 (-5 *2 (-640 (-2 (|:| -2387 *3) (|:| -2557 *4)))) + (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *1 (-1184 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093))))) +(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-379)))) + ((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-379))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-672 *3)) (-4 *3 (-846)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815 *3)) (-4 *3 (-846))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *3 (-917)) (-5 *1 (-442 *2)) + (-4 *2 (-1233 (-563))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-917)) (-5 *4 (-767)) (-5 *1 (-442 *2)) + (-4 *2 (-1233 (-563))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-917)) (-5 *4 (-640 (-767))) (-5 *1 (-442 *2)) + (-4 *2 (-1233 (-563))))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *3 (-917)) (-5 *4 (-640 (-767))) (-5 *5 (-767)) + (-5 *1 (-442 *2)) (-4 *2 (-1233 (-563))))) + ((*1 *2 *3 *2 *4 *5 *6) + (|partial| -12 (-5 *3 (-917)) (-5 *4 (-640 (-767))) (-5 *5 (-767)) + (-5 *6 (-112)) (-5 *1 (-442 *2)) (-4 *2 (-1233 (-563))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-917)) (-5 *4 (-418 *2)) (-4 *2 (-1233 *5)) + (-5 *1 (-444 *5 *2)) (-4 *5 (-1045))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-640 *6) "failed") (-563) *6 *6)) (-4 *6 (-363)) + (-4 *7 (-1233 *6)) + (-5 *2 (-2 (|:| |answer| (-584 (-407 *7))) (|:| |a0| *6))) + (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) - (-5 *2 (-639 *4)) (-5 *1 (-1120 *3 *4)) (-4 *3 (-1232 *4)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) - (-5 *2 (-639 *3)) (-5 *1 (-1120 *4 *3)) (-4 *4 (-1232 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-306)) (-5 *2 (-112))))) -(((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-766)) (-5 *1 (-212 *4 *2)) (-14 *4 (-916)) - (-4 *2 (-1092))))) -(((*1 *1 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-845)))) - ((*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) - ((*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-845)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1200 *2 *3 *4 *5)) (-4 *2 (-554)) - (-4 *3 (-788)) (-4 *4 (-845)) (-4 *5 (-1058 *2 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-766)) (-4 *1 (-1244 *3)) (-4 *3 (-1207)))) - ((*1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207))))) + (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-363) (-1193) (-998)))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1193)))))) +(((*1 *1 *1 *1) (-4 *1 (-545)))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4408)) (-4 *1 (-1245 *2)) (-4 *2 (-1208))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1193)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-555) (-846) (-1034 (-563)))) (-5 *1 (-188 *3 *2)) + (-4 *2 (-13 (-27) (-1193) (-430 (-169 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) + (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 (-169 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1169)) + (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-5 *1 (-1197 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4)))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-406 *5)) (-4 *4 (-1211)) (-4 *5 (-1232 *4)) - (-5 *1 (-147 *4 *5 *2)) (-4 *2 (-1232 *3)))) + (-12 (-5 *3 (-407 *5)) (-4 *4 (-1212)) (-4 *5 (-1233 *4)) + (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1233 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1170 (-406 (-562)))) (-5 *2 (-406 (-562))) - (-5 *1 (-189)))) + (-12 (-5 *3 (-1171 (-407 (-563)))) (-5 *2 (-407 (-563))) + (-5 *1 (-190)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-683 (-315 (-224)))) (-5 *3 (-639 (-1168))) - (-5 *4 (-1256 (-315 (-224)))) (-5 *1 (-204)))) + (-12 (-5 *2 (-684 (-316 (-225)))) (-5 *3 (-640 (-1169))) + (-5 *4 (-1257 (-316 (-225)))) (-5 *1 (-205)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-639 (-293 *3))) (-4 *3 (-308 *3)) (-4 *3 (-1092)) - (-4 *3 (-1207)) (-5 *1 (-293 *3)))) + (-12 (-5 *2 (-640 (-294 *3))) (-4 *3 (-309 *3)) (-4 *3 (-1093)) + (-4 *3 (-1208)) (-5 *1 (-294 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-308 *2)) (-4 *2 (-1092)) (-4 *2 (-1207)) - (-5 *1 (-293 *2)))) + (-12 (-4 *2 (-309 *2)) (-4 *2 (-1093)) (-4 *2 (-1208)) + (-5 *1 (-294 *2)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-301)))) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-639 *1))) (-4 *1 (-301)))) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-640 *1))) (-4 *1 (-302)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-639 (-114))) (-5 *3 (-639 (-1 *1 (-639 *1)))) - (-4 *1 (-301)))) + (-12 (-5 *2 (-640 (-114))) (-5 *3 (-640 (-1 *1 (-640 *1)))) + (-4 *1 (-302)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-639 (-114))) (-5 *3 (-639 (-1 *1 *1))) (-4 *1 (-301)))) + (-12 (-5 *2 (-640 (-114))) (-5 *3 (-640 (-1 *1 *1))) (-4 *1 (-302)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-1 *1 *1)) (-4 *1 (-301)))) + (-12 (-5 *2 (-1169)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1168)) (-5 *3 (-1 *1 (-639 *1))) (-4 *1 (-301)))) + (-12 (-5 *2 (-1169)) (-5 *3 (-1 *1 (-640 *1))) (-4 *1 (-302)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-639 (-1168))) (-5 *3 (-639 (-1 *1 (-639 *1)))) - (-4 *1 (-301)))) + (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-640 (-1 *1 (-640 *1)))) + (-4 *1 (-302)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-639 (-1168))) (-5 *3 (-639 (-1 *1 *1))) (-4 *1 (-301)))) + (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-640 (-1 *1 *1))) (-4 *1 (-302)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-639 (-293 *3))) (-4 *1 (-308 *3)) (-4 *3 (-1092)))) + (-12 (-5 *2 (-640 (-294 *3))) (-4 *1 (-309 *3)) (-4 *3 (-1093)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-293 *3)) (-4 *1 (-308 *3)) (-4 *3 (-1092)))) + (-12 (-5 *2 (-294 *3)) (-4 *1 (-309 *3)) (-4 *3 (-1093)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-562))) (-5 *4 (-1170 (-406 (-562)))) - (-5 *1 (-309 *2)) (-4 *2 (-38 (-406 (-562)))))) + (-12 (-5 *3 (-1 *2 (-563))) (-5 *4 (-1171 (-407 (-563)))) + (-5 *1 (-310 *2)) (-4 *2 (-38 (-407 (-563)))))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-639 *4)) (-5 *3 (-639 *1)) (-4 *1 (-373 *4 *5)) - (-4 *4 (-845)) (-4 *5 (-171)))) + (-12 (-5 *2 (-640 *4)) (-5 *3 (-640 *1)) (-4 *1 (-374 *4 *5)) + (-4 *4 (-846)) (-4 *5 (-172)))) ((*1 *1 *1 *2 *1) - (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-845)) (-4 *3 (-171)))) + (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1168)) (-5 *3 (-766)) (-5 *4 (-1 *1 *1)) - (-4 *1 (-429 *5)) (-4 *5 (-845)) (-4 *5 (-1044)))) + (-12 (-5 *2 (-1169)) (-5 *3 (-767)) (-5 *4 (-1 *1 *1)) + (-4 *1 (-430 *5)) (-4 *5 (-846)) (-4 *5 (-1045)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1168)) (-5 *3 (-766)) (-5 *4 (-1 *1 (-639 *1))) - (-4 *1 (-429 *5)) (-4 *5 (-845)) (-4 *5 (-1044)))) + (-12 (-5 *2 (-1169)) (-5 *3 (-767)) (-5 *4 (-1 *1 (-640 *1))) + (-4 *1 (-430 *5)) (-4 *5 (-846)) (-4 *5 (-1045)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-639 (-1168))) (-5 *3 (-639 (-766))) - (-5 *4 (-639 (-1 *1 (-639 *1)))) (-4 *1 (-429 *5)) (-4 *5 (-845)) - (-4 *5 (-1044)))) + (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-640 (-767))) + (-5 *4 (-640 (-1 *1 (-640 *1)))) (-4 *1 (-430 *5)) (-4 *5 (-846)) + (-4 *5 (-1045)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-639 (-1168))) (-5 *3 (-639 (-766))) - (-5 *4 (-639 (-1 *1 *1))) (-4 *1 (-429 *5)) (-4 *5 (-845)) - (-4 *5 (-1044)))) + (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-640 (-767))) + (-5 *4 (-640 (-1 *1 *1))) (-4 *1 (-430 *5)) (-4 *5 (-846)) + (-4 *5 (-1045)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-639 (-114))) (-5 *3 (-639 *1)) (-5 *4 (-1168)) - (-4 *1 (-429 *5)) (-4 *5 (-845)) (-4 *5 (-610 (-535))))) + (-12 (-5 *2 (-640 (-114))) (-5 *3 (-640 *1)) (-5 *4 (-1169)) + (-4 *1 (-430 *5)) (-4 *5 (-846)) (-4 *5 (-611 (-536))))) ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1168)) (-4 *1 (-429 *4)) (-4 *4 (-845)) - (-4 *4 (-610 (-535))))) + (-12 (-5 *2 (-114)) (-5 *3 (-1169)) (-4 *1 (-430 *4)) (-4 *4 (-846)) + (-4 *4 (-611 (-536))))) ((*1 *1 *1) - (-12 (-4 *1 (-429 *2)) (-4 *2 (-845)) (-4 *2 (-610 (-535))))) + (-12 (-4 *1 (-430 *2)) (-4 *2 (-846)) (-4 *2 (-611 (-536))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-639 (-1168))) (-4 *1 (-429 *3)) (-4 *3 (-845)) - (-4 *3 (-610 (-535))))) + (-12 (-5 *2 (-640 (-1169))) (-4 *1 (-430 *3)) (-4 *3 (-846)) + (-4 *3 (-611 (-536))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1168)) (-4 *1 (-429 *3)) (-4 *3 (-845)) - (-4 *3 (-610 (-535))))) + (-12 (-5 *2 (-1169)) (-4 *1 (-430 *3)) (-4 *3 (-846)) + (-4 *3 (-611 (-536))))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-513 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1207)))) + (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1208)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-639 *4)) (-5 *3 (-639 *5)) (-4 *1 (-513 *4 *5)) - (-4 *4 (-1092)) (-4 *5 (-1207)))) + (-12 (-5 *2 (-640 *4)) (-5 *3 (-640 *5)) (-4 *1 (-514 *4 *5)) + (-4 *4 (-1093)) (-4 *5 (-1208)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-828 *3)) (-4 *3 (-362)) (-5 *1 (-713 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-362)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-898 *2)) (-4 *2 (-1092)))) + (-12 (-5 *2 (-829 *3)) (-4 *3 (-363)) (-5 *1 (-714 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-899 *2)) (-4 *2 (-1093)))) ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-406 (-947 *4))) (-5 *3 (-1168)) (-4 *4 (-554)) - (-5 *1 (-1038 *4)))) + (-12 (-5 *2 (-407 (-948 *4))) (-5 *3 (-1169)) (-4 *4 (-555)) + (-5 *1 (-1039 *4)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-639 (-1168))) (-5 *4 (-639 (-406 (-947 *5)))) - (-5 *2 (-406 (-947 *5))) (-4 *5 (-554)) (-5 *1 (-1038 *5)))) + (-12 (-5 *3 (-640 (-1169))) (-5 *4 (-640 (-407 (-948 *5)))) + (-5 *2 (-407 (-948 *5))) (-4 *5 (-555)) (-5 *1 (-1039 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-293 (-406 (-947 *4)))) (-5 *2 (-406 (-947 *4))) - (-4 *4 (-554)) (-5 *1 (-1038 *4)))) + (-12 (-5 *3 (-294 (-407 (-948 *4)))) (-5 *2 (-407 (-948 *4))) + (-4 *4 (-555)) (-5 *1 (-1039 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-639 (-293 (-406 (-947 *4))))) (-5 *2 (-406 (-947 *4))) - (-4 *4 (-554)) (-5 *1 (-1038 *4)))) + (-12 (-5 *3 (-640 (-294 (-407 (-948 *4))))) (-5 *2 (-407 (-948 *4))) + (-4 *4 (-555)) (-5 *1 (-1039 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1234 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-787)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1148 *3))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-639 (-1164 *7))) (-5 *3 (-1164 *7)) - (-4 *7 (-944 *5 *6 *4)) (-4 *5 (-904)) (-4 *6 (-788)) - (-4 *4 (-845)) (-5 *1 (-901 *5 *6 *4 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1164 *1)) (-5 *4 (-1168)) (-4 *1 (-27)) - (-5 *2 (-639 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-27)) (-5 *2 (-639 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-947 *1)) (-4 *1 (-27)) (-5 *2 (-639 *1)))) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-845) (-554))) (-5 *2 (-639 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *2 (-639 *1)) (-4 *1 (-29 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-246 *4 *5)) (-14 *4 (-639 (-1168))) (-4 *5 (-451)) - (-5 *2 (-480 *4 *5)) (-5 *1 (-627 *4 *5))))) -(((*1 *2) - (-12 (-5 *2 (-406 (-947 *3))) (-5 *1 (-452 *3 *4 *5 *6)) - (-4 *3 (-554)) (-4 *3 (-171)) (-14 *4 (-916)) - (-14 *5 (-639 (-1168))) (-14 *6 (-1256 (-683 *3)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) - (-5 *2 (-639 *4)) (-5 *1 (-1120 *3 *4)) (-4 *3 (-1232 *4)))) - ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-362) (-10 -8 (-15 ** ($ $ (-406 (-562))))))) - (-5 *2 (-639 *3)) (-5 *1 (-1120 *4 *3)) (-4 *4 (-1232 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) -(((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-608 *3)) (-5 *5 (-639 *3)) (-5 *6 (-1164 *3)) - (-4 *3 (-13 (-429 *7) (-27) (-1192))) - (-4 *7 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-558 *7 *3 *8)) (-4 *8 (-1092)))) - ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-608 *3)) (-5 *5 (-639 *3)) - (-5 *6 (-406 (-1164 *3))) (-4 *3 (-13 (-429 *7) (-27) (-1192))) - (-4 *7 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-558 *7 *3 *8)) (-4 *8 (-1092))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1164 *4)) (-4 *4 (-348)) - (-4 *2 - (-13 (-401) - (-10 -7 (-15 -4053 (*2 *4)) (-15 -3549 ((-916) *2)) - (-15 -4291 ((-1256 *2) (-916))) (-15 -4144 (*2 *2))))) - (-5 *1 (-355 *2 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-683 *5))) (-5 *4 (-1256 *5)) (-4 *5 (-306)) - (-4 *5 (-1044)) (-5 *2 (-683 *5)) (-5 *1 (-1024 *5))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1207)) (-5 *2 (-562))))) -(((*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912))))) + (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1149 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-600 *3 *2)) (-4 *3 (-1092)) (-4 *3 (-845)) - (-4 *2 (-1207)))) - ((*1 *2 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-845)))) - ((*1 *2 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-845)))) + (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-131)) + (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3368 *4)))))) ((*1 *2 *1) - (-12 (-4 *2 (-1207)) (-5 *1 (-868 *2 *3)) (-4 *3 (-1207)))) - ((*1 *2 *1) (-12 (-5 *2 (-666 *3)) (-5 *1 (-888 *3)) (-4 *3 (-845)))) + (-12 (-5 *2 (-640 (-2 (|:| -2311 *3) (|:| -4222 *4)))) + (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1200 *3 *4 *5 *2)) (-4 *3 (-554)) - (-4 *4 (-788)) (-4 *5 (-845)) (-4 *2 (-1058 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-766)) (-4 *1 (-1244 *3)) (-4 *3 (-1207)))) - ((*1 *2 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1207))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-562)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-372 *2)) - (-4 *5 (-372 *2)) (-4 *2 (-1207)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-766)) (-4 *2 (-1092)) (-5 *1 (-212 *4 *2)) - (-14 *4 (-916)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1092)) (-4 *2 (-1207)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-562)) (-4 *1 (-1047 *4 *5 *2 *6 *7)) - (-4 *6 (-237 *5 *2)) (-4 *7 (-237 *4 *2)) (-4 *2 (-1044))))) -(((*1 *2) (-12 (-5 *2 (-639 (-1150))) (-5 *1 (-1259))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-165 *2)) (-4 *2 (-171))))) + (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) + (-5 *2 (-1149 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1085 (-948 (-563)))) (-5 *3 (-948 (-563))) + (-5 *1 (-330)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1085 (-948 (-563)))) (-5 *1 (-330))))) +(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1045)) (-4 *4 (-1233 *3)) (-5 *1 (-164 *3 *4 *2)) + (-4 *2 (-1233 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1208))))) +(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467)))) + ((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467)))) + ((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923))))) +(((*1 *1 *1 *1) (-4 *1 (-656)))) +(((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-629))))) +(((*1 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23))))) (((*1 *2 *1) - (-12 (-4 *1 (-1239 *3 *4)) (-4 *3 (-1044)) (-4 *4 (-1216 *3)) - (-5 *2 (-406 (-562)))))) -(((*1 *2 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-1092))))) -(((*1 *2 *3) - (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) - ((*1 *2) (-12 (-5 *2 (-899 (-562))) (-5 *1 (-912))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1164 *9)) (-5 *4 (-639 *7)) (-5 *5 (-639 *8)) - (-4 *7 (-845)) (-4 *8 (-1044)) (-4 *9 (-944 *8 *6 *7)) - (-4 *6 (-788)) (-5 *2 (-1164 *8)) (-5 *1 (-320 *6 *7 *8 *9))))) -(((*1 *2 *3) (-12 (-5 *3 (-224)) (-5 *2 (-406 (-562))) (-5 *1 (-304))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) + (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1093)) + (-5 *2 (-640 (-2 (|:| |k| *4) (|:| |c| *3)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-640 (-2 (|:| |k| (-889 *3)) (|:| |c| *4)))) + (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) + (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917)))) + ((*1 *2 *1) + (-12 (-5 *2 (-640 (-667 *3))) (-5 *1 (-889 *3)) (-4 *3 (-846))))) +(((*1 *2 *2) + (-12 (-5 *2 (-640 (-2 (|:| |val| (-640 *6)) (|:| -2059 *7)))) + (-4 *6 (-1059 *3 *4 *5)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) + (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-984 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-640 (-2 (|:| |val| (-640 *6)) (|:| -2059 *7)))) + (-4 *6 (-1059 *3 *4 *5)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) + (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1100 *3 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-639 *2)) (-4 *2 (-429 *4)) (-5 *1 (-157 *4 *2)) - (-4 *4 (-13 (-845) (-554)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-451)) - (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) - (-5 *1 (-972 *3 *4 *5 *6))))) + (-12 (-5 *3 (-640 *7)) (-4 *7 (-945 *4 *5 *6)) (-4 *6 (-611 (-1169))) + (-4 *4 (-363)) (-4 *5 (-789)) (-4 *6 (-846)) + (-5 *2 (-1158 (-640 (-948 *4)) (-640 (-294 (-948 *4))))) + (-5 *1 (-504 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-916)) + (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1212)) (-4 *3 (-1233 *4)) + (-4 *5 (-1233 (-407 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) + (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1095 (-1095 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1093))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 - (-3 (-1164 *4) - (-1256 (-639 (-2 (|:| -2533 *4) (|:| -2464 (-1112))))))) - (-5 *1 (-345 *4)) (-4 *4 (-348))))) -(((*1 *2 *3) - (-12 (-5 *3 (-639 (-639 (-938 (-224))))) - (-5 *2 (-639 (-1086 (-224)))) (-5 *1 (-923))))) + (-2 (|:| |partsol| (-1257 (-407 (-948 *4)))) + (|:| -4315 (-640 (-1257 (-407 (-948 *4))))))) + (-5 *3 (-640 *7)) (-4 *4 (-13 (-307) (-147))) + (-4 *7 (-945 *4 *6 *5)) (-4 *5 (-13 (-846) (-611 (-1169)))) + (-4 *6 (-789)) (-5 *1 (-920 *4 *5 *6 *7))))) +(((*1 *2 *2) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1093))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 (-640 *2) *2 *2 *2)) (-4 *2 (-1093)) + (-5 *1 (-103 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1093)) (-5 *1 (-103 *2))))) +(((*1 *1 *1 *1) (-4 *1 (-656)))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1 (-536) (-640 (-536)))) (-5 *1 (-114)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-536) (-640 (-536)))) (-5 *1 (-114)))) + ((*1 *1) (-5 *1 (-577)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-640 (-1230 *5 *4))) + (-5 *1 (-1107 *4 *5)) (-5 *3 (-1230 *5 *4))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) + (-5 *1 (-748))))) +(((*1 *2 *3 *3 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-639 (-1168))) (-5 *3 (-1168)) (-5 *1 (-535)))) + (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-1169)) (-5 *1 (-536)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1168)) (-5 *1 (-699 *3)) (-4 *3 (-610 (-535))))) + (-12 (-5 *2 (-1169)) (-5 *1 (-700 *3)) (-4 *3 (-611 (-536))))) ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1168)) (-5 *1 (-699 *3)) (-4 *3 (-610 (-535))))) + (-12 (-5 *2 (-1169)) (-5 *1 (-700 *3)) (-4 *3 (-611 (-536))))) ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1168)) (-5 *1 (-699 *3)) (-4 *3 (-610 (-535))))) + (-12 (-5 *2 (-1169)) (-5 *1 (-700 *3)) (-4 *3 (-611 (-536))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-639 (-1168))) (-5 *2 (-1168)) (-5 *1 (-699 *3)) - (-4 *3 (-610 (-535)))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-406 (-562))) (-5 *1 (-117 *4)) (-14 *4 *3) - (-5 *3 (-562)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-864 *3)) (-5 *2 (-562)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-406 (-562))) (-5 *1 (-866 *4)) (-14 *4 *3) - (-5 *3 (-562)))) - ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-406 (-562))) (-5 *1 (-867 *4 *5)) - (-5 *3 (-562)) (-4 *5 (-864 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1007)) (-5 *2 (-406 (-562))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1061 *2 *3)) (-4 *2 (-13 (-843) (-362))) - (-4 *3 (-1232 *2)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1234 *2 *3)) (-4 *3 (-787)) - (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4053 (*2 (-1168)))) - (-4 *2 (-1044))))) + (-12 (-5 *4 (-640 (-1169))) (-5 *2 (-1169)) (-5 *1 (-700 *3)) + (-4 *3 (-611 (-536)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1092)) (-4 *6 (-1092)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-678 *4 *5 *6)) (-4 *4 (-1092))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-224)) - (-5 *2 - (-2 (|:| |brans| (-639 (-639 (-938 *4)))) - (|:| |xValues| (-1086 *4)) (|:| |yValues| (-1086 *4)))) - (-5 *1 (-152)) (-5 *3 (-639 (-639 (-938 *4))))))) + (-12 (-4 *4 (-1045)) (-5 *2 (-563)) (-5 *1 (-443 *4 *3 *5)) + (-4 *3 (-1233 *4)) + (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1193) (-284)))))) +(((*1 *1 *2 *3 *3 *4 *4) + (-12 (-5 *2 (-948 (-563))) (-5 *3 (-1169)) + (-5 *4 (-1087 (-407 (-563)))) (-5 *1 (-30))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-766)) (-4 *1 (-1273 *3 *4)) (-4 *3 (-845)) - (-4 *4 (-1044)) (-4 *4 (-171)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1273 *2 *3)) (-4 *2 (-845)) (-4 *3 (-1044)) - (-4 *3 (-171))))) -(((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-171)))) - ((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-171))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lfn| (-639 (-315 (-224)))) (|:| -3730 (-639 (-224))))) - (-5 *2 (-639 (-1168))) (-5 *1 (-266)))) + (-12 (-5 *2 (-640 (-563))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563)) + (-14 *4 (-767)) (-4 *5 (-172))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1169)) (-5 *6 (-640 (-609 *3))) + (-5 *5 (-609 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *7))) + (-4 *7 (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-2 (|:| -3646 *3) (|:| |coeff| *3))) + (-5 *1 (-556 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-1173))))) +(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-126 *3))))) +(((*1 *1) (-5 *1 (-1075)))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1257 (-640 *3))) (-4 *4 (-307)) + (-5 *2 (-640 *3)) (-5 *1 (-455 *4 *3)) (-4 *3 (-1233 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *5 *5)) + (-4 *5 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) + (-5 *2 + (-2 (|:| |solns| (-640 *5)) + (|:| |maps| (-640 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1121 *3 *5)) (-4 *3 (-1233 *5))))) +(((*1 *2) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) + (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-529)))) + ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-529))))) +(((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-767)) (-5 *4 (-917)) (-5 *2 (-1262)) (-5 *1 (-1258)))) + ((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-767)) (-5 *4 (-917)) (-5 *2 (-1262)) (-5 *1 (-1259))))) +(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) ((*1 *2 *3) - (-12 (-5 *3 (-1164 *7)) (-4 *7 (-944 *6 *4 *5)) (-4 *4 (-788)) - (-4 *5 (-845)) (-4 *6 (-1044)) (-5 *2 (-639 *5)) - (-5 *1 (-320 *4 *5 *6 *7)))) - ((*1 *2 *1) - (-12 (-5 *2 (-639 (-1168))) (-5 *1 (-338 *3 *4 *5)) (-14 *3 *2) - (-14 *4 *2) (-4 *5 (-386)))) - ((*1 *2 *1) - (-12 (-4 *1 (-429 *3)) (-4 *3 (-845)) (-5 *2 (-639 (-1168))))) - ((*1 *2 *1) - (-12 (-5 *2 (-639 (-887 *3))) (-5 *1 (-887 *3)) (-4 *3 (-1092)))) + (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -2059 *4)))) + (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-684 *8)) (-4 *8 (-945 *5 *7 *6)) + (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) + (-4 *7 (-789)) + (-5 *2 + (-640 + (-2 (|:| -2522 (-767)) + (|:| |eqns| + (-640 + (-2 (|:| |det| *8) (|:| |rows| (-640 (-563))) + (|:| |cols| (-640 (-563)))))) + (|:| |fgb| (-640 *8))))) + (-5 *1 (-920 *5 *6 *7 *8)) (-5 *4 (-767))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-640 *6)) (-5 *4 (-640 (-247 *5 *6))) (-4 *6 (-452)) + (-5 *2 (-247 *5 *6)) (-14 *5 (-640 (-1169))) (-5 *1 (-628 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-547)))))) +(((*1 *1 *2) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-487))))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-131)))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-917)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)) + (-5 *2 (-2 (|:| -2387 *3) (|:| -2557 *4)))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-363)) (-4 *3 (-1045)) + (-5 *2 (-2 (|:| -3490 *1) (|:| -1972 *1))) (-4 *1 (-848 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1045)) + (-5 *2 (-2 (|:| -3490 *3) (|:| -1972 *3))) (-5 *1 (-849 *5 *3)) + (-4 *3 (-848 *5))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1169)) + (-4 *4 (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563)))) + (-5 *1 (-556 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4)))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-1151)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) + (-4 *4 (-1059 *6 *7 *8)) (-5 *2 (-1262)) + (-5 *1 (-772 *6 *7 *8 *4 *5)) (-4 *5 (-1065 *6 *7 *8 *4))))) +(((*1 *2 *3 *3) + (-12 (|has| *2 (-6 (-4409 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2)) + (-4 *2 (-1045)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1233 *2)) + (-4 *4 (-682 *2 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1260)))) + ((*1 *2 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1260))))) +(((*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363))))) +(((*1 *2 *1) + (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) + (-5 *2 (-112))))) +(((*1 *1 *1) (-4 *1 (-626))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998) (-1193)))))) +(((*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1208)))) + ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1089)))) ((*1 *2 *1) - (-12 (-4 *1 (-944 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *5 (-845)) (-5 *2 (-639 *5)))) + (|partial| -12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) + (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *1 (-1245 *3)) (-4 *3 (-1208)))) + ((*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1093)) + (-4 *4 (-131))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1169)) + (-4 *4 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) + (-5 *1 (-800 *4 *2)) (-4 *2 (-13 (-29 *4) (-1193) (-955))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-858))) ((*1 *1 *1 *1) (-5 *1 (-858))) + ((*1 *1 *1) (-5 *1 (-858))) ((*1 *2 *3) - (-12 (-4 *4 (-788)) (-4 *5 (-845)) (-4 *6 (-1044)) - (-4 *7 (-944 *6 *4 *5)) (-5 *2 (-639 *5)) - (-5 *1 (-945 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-362) - (-10 -8 (-15 -4053 ($ *7)) (-15 -4063 (*7 $)) (-15 -4079 (*7 $))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1094 (-1168))) (-5 *1 (-961 *3)) (-4 *3 (-962)))) - ((*1 *2 *1) - (-12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1044)) (-4 *4 (-787)) - (-4 *5 (-845)) (-5 *2 (-639 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-971 *3 *4 *5 *6)) (-4 *3 (-1044)) (-4 *4 (-788)) - (-4 *5 (-845)) (-4 *6 (-1058 *3 *4 *5)) (-5 *2 (-639 *5)))) + (-12 (-5 *2 (-1149 *3)) (-5 *1 (-1153 *3)) (-4 *3 (-1045))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1165 *5)) (-4 *5 (-363)) (-5 *2 (-640 *6)) + (-5 *1 (-532 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) + (-4 *6 (-789)) (-5 *2 (-640 (-640 (-563)))) + (-5 *1 (-920 *4 *5 *6 *7)) (-5 *3 (-563)) (-4 *7 (-945 *4 *6 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-368)) (-5 *2 (-917)))) ((*1 *2 *3) - (-12 (-5 *3 (-406 (-947 *4))) (-4 *4 (-554)) (-5 *2 (-639 (-1168))) - (-5 *1 (-1038 *4))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-362) (-146) (-1033 (-562)))) - (-4 *5 (-1232 *4)) (-5 *2 (-639 (-406 *5))) (-5 *1 (-1011 *4 *5)) - (-5 *3 (-406 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-451)) (-4 *3 (-845)) (-4 *3 (-1033 (-562))) - (-4 *3 (-554)) (-5 *1 (-41 *3 *2)) (-4 *2 (-429 *3)) - (-4 *2 - (-13 (-362) (-301) - (-10 -8 (-15 -4063 ((-1117 *3 (-608 $)) $)) - (-15 -4079 ((-1117 *3 (-608 $)) $)) - (-15 -4053 ($ (-1117 *3 (-608 $)))))))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 - (-4 *4 (-13 (-146) (-27) (-1033 (-562)) (-1033 (-406 (-562))))) - (-4 *5 (-1232 *4)) (-5 *2 (-1164 (-406 *5))) (-5 *1 (-611 *4 *5)) - (-5 *3 (-406 *5)))) - ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1232 *5)) - (-4 *5 (-13 (-146) (-27) (-1033 (-562)) (-1033 (-406 (-562))))) - (-5 *2 (-1164 (-406 *6))) (-5 *1 (-611 *5 *6)) (-5 *3 (-406 *6))))) -(((*1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-1259)))) - ((*1 *2 *2) (-12 (-5 *2 (-916)) (-5 *1 (-1259))))) -(((*1 *2 *2) - (-12 (-5 *2 (-938 *3)) (-4 *3 (-13 (-362) (-1192) (-997))) - (-5 *1 (-175 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-1207)) (-4 *2 (-845)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-372 *3)) (-4 *3 (-1207)))) - ((*1 *2 *2) - (-12 (-5 *2 (-639 (-900 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1092)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *3 (-845)) - (-4 *6 (-1058 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -3870 *1) (|:| |upper| *1))) - (-4 *1 (-971 *4 *5 *3 *6))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-909 *3)) (-4 *3 (-306))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4404)) (-4 *1 (-1244 *2)) (-4 *2 (-1207))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-584 *2)) (-4 *2 (-544))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-112)) (-5 *5 (-562)) (-4 *6 (-362)) (-4 *6 (-367)) - (-4 *6 (-1044)) (-5 *2 (-639 (-639 (-683 *6)))) (-5 *1 (-1024 *6)) - (-5 *3 (-639 (-683 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-362)) (-4 *4 (-367)) (-4 *4 (-1044)) - (-5 *2 (-639 (-639 (-683 *4)))) (-5 *1 (-1024 *4)) - (-5 *3 (-639 (-683 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1044)) - (-5 *2 (-639 (-639 (-683 *5)))) (-5 *1 (-1024 *5)) - (-5 *3 (-639 (-683 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-916)) (-4 *5 (-362)) (-4 *5 (-367)) (-4 *5 (-1044)) - (-5 *2 (-639 (-639 (-683 *5)))) (-5 *1 (-1024 *5)) - (-5 *3 (-639 (-683 *5)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1112)) (-5 *2 (-112)) (-5 *1 (-816))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1164 (-406 (-1164 *2)))) (-5 *4 (-608 *2)) - (-4 *2 (-13 (-429 *5) (-27) (-1192))) - (-4 *5 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) - (-5 *1 (-558 *5 *2 *6)) (-4 *6 (-1092)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1164 *1)) (-4 *1 (-944 *4 *5 *3)) (-4 *4 (-1044)) - (-4 *5 (-788)) (-4 *3 (-845)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1164 *4)) (-4 *4 (-1044)) (-4 *1 (-944 *4 *5 *3)) - (-4 *5 (-788)) (-4 *3 (-845)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-1164 *2))) (-4 *5 (-788)) (-4 *4 (-845)) - (-4 *6 (-1044)) - (-4 *2 - (-13 (-362) - (-10 -8 (-15 -4053 ($ *7)) (-15 -4063 (*7 $)) (-15 -4079 (*7 $))))) - (-5 *1 (-945 *5 *4 *6 *7 *2)) (-4 *7 (-944 *6 *5 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-1164 (-406 (-947 *5))))) (-5 *4 (-1168)) - (-5 *2 (-406 (-947 *5))) (-5 *1 (-1038 *5)) (-4 *5 (-554))))) + (-12 (-5 *3 (-1257 *4)) (-4 *4 (-349)) (-5 *2 (-917)) + (-5 *1 (-528 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1257 (-3 (-468) "undefined"))) (-5 *1 (-1258))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1203 *3)) (-4 *3 (-970))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) + (-12 (-5 *3 (-563)) (-5 *5 (-112)) (-5 *6 (-684 (-225))) + (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2742 *3) (|:| |coef2| (-778 *3)))) + (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) + (|partial| -12 (-5 *2 (-640 (-1165 *13))) (-5 *3 (-1165 *13)) + (-5 *4 (-640 *12)) (-5 *5 (-640 *10)) (-5 *6 (-640 *13)) + (-5 *7 (-640 (-640 (-2 (|:| -4008 (-767)) (|:| |pcoef| *13))))) + (-5 *8 (-640 (-767))) (-5 *9 (-1257 (-640 (-1165 *10)))) + (-4 *12 (-846)) (-4 *10 (-307)) (-4 *13 (-945 *10 *11 *12)) + (-4 *11 (-789)) (-5 *1 (-703 *11 *12 *10 *13))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-555) (-846))) (-5 *2 (-169 *5)) + (-5 *1 (-597 *4 *5 *3)) (-4 *5 (-13 (-430 *4) (-998) (-1193))) + (-4 *3 (-13 (-430 (-169 *4)) (-998) (-1193)))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-4 *3 (-1093)) + (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1256 (-639 (-2 (|:| -2533 *4) (|:| -2464 (-1112)))))) - (-4 *4 (-348)) (-5 *2 (-1261)) (-5 *1 (-527 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-362)) (-4 *4 (-1232 *3)) - (-4 *5 (-1232 (-406 *4))) (-4 *6 (-341 *3 *4 *5)) - (-5 *2 (-412 *4 (-406 *4) *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1256 *6)) (-4 *6 (-13 (-408 *4 *5) (-1033 *4))) - (-4 *4 (-987 *3)) (-4 *5 (-1232 *4)) (-4 *3 (-306)) - (-5 *1 (-412 *3 *4 *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-639 *6)) (-4 *6 (-944 *3 *4 *5)) (-4 *3 (-362)) - (-4 *4 (-788)) (-4 *5 (-845)) (-5 *1 (-503 *3 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1148 (-562))) (-5 *1 (-999 *3)) (-14 *3 (-562))))) -(((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-329))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-843) (-306) (-146) (-1017))) - (-5 *2 (-639 (-1041 *5 *6))) (-5 *1 (-1282 *5 *6 *7)) - (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-947 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-843) (-306) (-146) (-1017))) - (-5 *2 (-639 (-1041 *5 *6))) (-5 *1 (-1282 *5 *6 *7)) - (-14 *6 (-639 (-1168))) (-14 *7 (-639 (-1168))))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 (-947 *4))) - (-4 *4 (-13 (-843) (-306) (-146) (-1017))) - (-5 *2 (-639 (-1041 *4 *5))) (-5 *1 (-1282 *4 *5 *6)) - (-14 *5 (-639 (-1168))) (-14 *6 (-639 (-1168)))))) -(((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-608 *3)) (-5 *5 (-639 *3)) - (-4 *3 (-13 (-429 *6) (-27) (-1192))) - (-4 *6 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-639 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-564 *6 *3 *7)) (-4 *7 (-1092))))) + (|partial| -12 (-5 *4 (-1169)) (-4 *5 (-611 (-888 (-563)))) + (-4 *5 (-882 (-563))) + (-4 *5 (-13 (-846) (-1034 (-563)) (-452) (-636 (-563)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-566 *5 *3)) (-4 *3 (-626)) + (-4 *3 (-13 (-27) (-1193) (-430 *5))))) + ((*1 *2 *2 *3 *4 *4) + (|partial| -12 (-5 *3 (-1169)) (-5 *4 (-839 *2)) (-4 *2 (-1132)) + (-4 *2 (-13 (-27) (-1193) (-430 *5))) + (-4 *5 (-611 (-888 (-563)))) (-4 *5 (-882 (-563))) + (-4 *5 (-13 (-846) (-1034 (-563)) (-452) (-636 (-563)))) + (-5 *1 (-566 *5 *2))))) (((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1207)) (-5 *2 (-766)) - (-5 *1 (-236 *3 *4 *5)) (-4 *3 (-237 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-1092)) (-4 *4 (-130)) - (-5 *2 (-766)))) + (-12 (-4 *4 (-363)) (-5 *2 (-917)) (-5 *1 (-328 *3 *4)) + (-4 *3 (-329 *4)))) ((*1 *2) - (-12 (-4 *4 (-362)) (-5 *2 (-766)) (-5 *1 (-327 *3 *4)) - (-4 *3 (-328 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-360 *3)) (-4 *3 (-1092)))) - ((*1 *2) (-12 (-4 *1 (-367)) (-5 *2 (-766)))) - ((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-385 *3)) (-4 *3 (-1092)))) + (-12 (-4 *4 (-363)) (-5 *2 (-829 (-917))) (-5 *1 (-328 *3 *4)) + (-4 *3 (-329 *4)))) + ((*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-917)))) ((*1 *2) - (-12 (-4 *4 (-1092)) (-5 *2 (-766)) (-5 *1 (-423 *3 *4)) - (-4 *3 (-424 *4)))) + (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-829 (-917)))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-128))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-640 *1)) (-4 *1 (-916))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-563)) (-4 *1 (-1086 *3)) (-4 *3 (-1208))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-858) (-858))) (-5 *1 (-114)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-858) (-640 (-858)))) (-5 *1 (-114)))) ((*1 *2 *1) - (-12 (-5 *2 (-766)) (-5 *1 (-643 *3 *4 *5)) (-4 *3 (-1092)) - (-4 *4 (-23)) (-14 *5 *4))) - ((*1 *2) - (-12 (-4 *4 (-171)) (-4 *5 (-1232 *4)) (-5 *2 (-766)) - (-5 *1 (-718 *3 *4 *5)) (-4 *3 (-719 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-814 *3)) (-4 *3 (-845)))) - ((*1 *2) (-12 (-5 *2 (-562)) (-5 *1 (-1001)))) + (|partial| -12 (-5 *2 (-1 (-858) (-640 (-858)))) (-5 *1 (-114)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-843) (-362))) (-5 *1 (-1054 *2 *3)) - (-4 *3 (-1232 *2))))) -(((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-562)) (-5 *5 (-168 (-224))) (-5 *6 (-1150)) - (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-753))))) -(((*1 *1 *1) (-4 *1 (-172))) - ((*1 *1 *1) - (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-1092))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1168)) (-5 *1 (-279))))) -(((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-766)) (-4 *1 (-1058 *3 *4 *5)) (-4 *3 (-1044)) - (-4 *4 (-788)) (-4 *5 (-845)) (-4 *3 (-554))))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-787)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-639 (-916))) (-5 *1 (-151 *4 *2 *5)) (-14 *4 (-916)) - (-4 *2 (-362)) (-14 *5 (-988 *4 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-708 *5 *6 *7)) (-4 *5 (-845)) - (-4 *6 (-237 (-3492 *4) (-766))) - (-14 *7 - (-1 (-112) (-2 (|:| -2464 *5) (|:| -1300 *6)) - (-2 (|:| -2464 *5) (|:| -1300 *6)))) - (-14 *4 (-639 (-1168))) (-4 *2 (-171)) - (-5 *1 (-460 *4 *2 *5 *6 *7 *8)) (-4 *8 (-944 *2 *6 (-859 *4))))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-508 *2 *3)) (-4 *2 (-1092)) (-4 *3 (-845)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-562)) (-4 *2 (-554)) (-5 *1 (-619 *2 *4)) - (-4 *4 (-1232 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-766)) (-4 *1 (-703 *2)) (-4 *2 (-1044)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-730 *2 *3)) (-4 *2 (-1044)) (-4 *3 (-721)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-639 *5)) (-5 *3 (-639 (-766))) (-4 *1 (-735 *4 *5)) - (-4 *4 (-1044)) (-4 *5 (-845)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-766)) (-4 *1 (-735 *4 *2)) (-4 *4 (-1044)) - (-4 *2 (-845)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-766)) (-4 *1 (-847 *2)) (-4 *2 (-1044)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-639 *6)) (-5 *3 (-639 (-766))) (-4 *1 (-944 *4 *5 *6)) - (-4 *4 (-1044)) (-4 *5 (-788)) (-4 *6 (-845)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-766)) (-4 *1 (-944 *4 *5 *2)) (-4 *4 (-1044)) - (-4 *5 (-788)) (-4 *2 (-845)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-639 *6)) (-5 *3 (-639 *5)) (-4 *1 (-968 *4 *5 *6)) - (-4 *4 (-1044)) (-4 *5 (-787)) (-4 *6 (-845)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-968 *4 *3 *2)) (-4 *4 (-1044)) (-4 *3 (-787)) - (-4 *2 (-845))))) + (-12 (-5 *2 (-1262)) (-5 *1 (-214 *3)) + (-4 *3 + (-13 (-846) + (-10 -8 (-15 -2309 ((-1151) $ (-1169))) (-15 -1463 (*2 $)) + (-15 -2807 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-394)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-394)))) + ((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-502)))) + ((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-706)))) + ((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1188)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-1188))))) (((*1 *2 *2) - (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1044)) (-5 *1 (-1152 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1248 *2 *3 *4)) (-4 *2 (-1044)) (-14 *3 (-1168)) - (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-378)) (-5 *1 (-97))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1256 (-315 (-224)))) - (-5 *2 - (-2 (|:| |additions| (-562)) (|:| |multiplications| (-562)) - (|:| |exponentiations| (-562)) (|:| |functionCalls| (-562)))) - (-5 *1 (-304))))) + (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) +(((*1 *1 *1 *2 *2 *2 *2) + (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-451))) (-5 *1 (-1198 *3 *2)) - (-4 *2 (-13 (-429 *3) (-1192)))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) (-5 *4 (-224)) - (-5 *2 (-1030)) (-5 *1 (-747))))) -(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) - (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-224)) - (-5 *2 (-1030)) (-5 *1 (-750)))) - ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-562)) (-5 *5 (-683 (-224))) - (-5 *6 (-3 (|:| |fn| (-387)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-387)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-387)) - (-5 *4 (-224)) (-5 *2 (-1030)) (-5 *1 (-750))))) -(((*1 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-1207))))) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-562) (-562))) (-5 *1 (-360 *3)) (-4 *3 (-1092)))) + (-12 (|has| *1 (-6 -4407)) (-4 *1 (-151 *2)) (-4 *2 (-1208)) + (-4 *2 (-1093)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-766) (-766))) (-5 *1 (-385 *3)) (-4 *3 (-1092)))) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4407)) (-4 *1 (-151 *3)) + (-4 *3 (-1208)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) - (-5 *1 (-643 *3 *4 *5)) (-4 *3 (-1092))))) -(((*1 *1) (-5 *1 (-290)))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-562)) (-5 *6 (-1 (-1261) (-1256 *5) (-1256 *5) (-378))) - (-5 *3 (-1256 (-378))) (-5 *5 (-378)) (-5 *2 (-1261)) - (-5 *1 (-783)))) - ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-562)) (-5 *6 (-1 (-1261) (-1256 *5) (-1256 *5) (-378))) - (-5 *3 (-1256 (-378))) (-5 *5 (-378)) (-5 *2 (-1261)) - (-5 *1 (-783))))) -(((*1 *1 *1) - (-12 (-4 *2 (-348)) (-4 *2 (-1044)) (-5 *1 (-707 *2 *3)) - (-4 *3 (-1232 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-639 (-52))) (-5 *1 (-887 *3)) (-4 *3 (-1092))))) -(((*1 *2 *1) (-12 (-5 *2 (-1148 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-684 *3))))) -(((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-766)) (-5 *4 (-916)) (-5 *2 (-1261)) (-5 *1 (-1257)))) - ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-766)) (-5 *4 (-916)) (-5 *2 (-1261)) (-5 *1 (-1258))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-467)) (-5 *3 (-639 (-262))) (-5 *1 (-1257)))) - ((*1 *1 *1) (-5 *1 (-1257)))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-642 *5)) (-4 *5 (-1044)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-847 *5)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-669 *3)) (-4 *3 (-1208)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-563)) (-4 *4 (-1093)) + (-5 *1 (-733 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-563)) (-5 *1 (-733 *2)) (-4 *2 (-1093)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-683 *3)) (-4 *1 (-416 *3)) (-4 *3 (-171)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)))) - ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1044)) - (-5 *1 (-848 *2 *3)) (-4 *3 (-847 *2))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-916)) (-5 *2 (-1261)) (-5 *1 (-213 *4)) - (-4 *4 - (-13 (-845) - (-10 -8 (-15 -2343 ((-1150) $ (-1168))) (-15 -1479 (*2 $)) - (-15 -1359 (*2 $))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1261)) (-5 *1 (-213 *3)) - (-4 *3 - (-13 (-845) - (-10 -8 (-15 -2343 ((-1150) $ (-1168))) (-15 -1479 (*2 $)) - (-15 -1359 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1261)) (-5 *1 (-501))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-916)) (-5 *4 (-1150)) (-5 *2 (-1261)) (-5 *1 (-1257))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1168)) - (-4 *4 (-13 (-306) (-845) (-146) (-1033 (-562)) (-635 (-562)))) - (-5 *1 (-618 *4 *2)) (-4 *2 (-13 (-1192) (-954) (-29 *4)))))) + (-12 (-5 *2 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34))) + (-4 *4 (-13 (-1093) (-34))) (-5 *1 (-1134 *3 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-640 *5)) (-5 *4 (-917)) (-4 *5 (-846)) + (-5 *2 (-640 (-667 *5))) (-5 *1 (-667 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-870)) (-5 *3 (-640 (-263))) (-5 *1 (-261))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) + (-4 *6 (-789)) (-4 *7 (-945 *4 *6 *5)) + (-5 *2 + (-2 (|:| |sysok| (-112)) (|:| |z0| (-640 *7)) (|:| |n0| (-640 *7)))) + (-5 *1 (-920 *4 *5 *6 *7)) (-5 *3 (-640 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-563)) (-5 *4 (-418 *2)) (-4 *2 (-945 *7 *5 *6)) + (-5 *1 (-738 *5 *6 *7 *2)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-307))))) +(((*1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-858))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) + (-5 *2 (-1031)) (-5 *1 (-747))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 *4)) + (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) +(((*1 *2) (-12 (-5 *2 (-640 (-917))) (-5 *1 (-1260)))) + ((*1 *2 *2) (-12 (-5 *2 (-640 (-917))) (-5 *1 (-1260))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1057))))) +(((*1 *2 *1) + (-12 (-5 *2 (-640 (-1194 *3))) (-5 *1 (-1194 *3)) (-4 *3 (-1093))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-640 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) + (-5 *2 + (-2 (|:| |mval| (-684 *4)) (|:| |invmval| (-684 *4)) + (|:| |genIdeal| (-504 *4 *5 *6 *7)))) + (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6))))) +(((*1 *2 *2 *3 *3 *4) + (-12 (-5 *4 (-767)) (-4 *3 (-555)) (-5 *1 (-965 *3 *2)) + (-4 *2 (-1233 *3))))) +(((*1 *2) (-12 (-5 *2 (-1140 (-1151))) (-5 *1 (-391))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-451)) - (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) - (-5 *1 (-972 *3 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) - (-5 *1 (-750))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-562)) (-5 *4 (-683 (-224))) (-5 *2 (-1030)) - (-5 *1 (-750))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1044)) (-4 *2 (-362))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-766)) (-4 *5 (-362)) (-5 *2 (-406 *6)) - (-5 *1 (-862 *5 *4 *6)) (-4 *4 (-1247 *5)) (-4 *6 (-1232 *5)))) - ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-766)) (-5 *4 (-1248 *5 *6 *7)) (-4 *5 (-362)) - (-14 *6 (-1168)) (-14 *7 *5) (-5 *2 (-406 (-1229 *6 *5))) - (-5 *1 (-863 *5 *6 *7)))) - ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-766)) (-5 *4 (-1248 *5 *6 *7)) (-4 *5 (-362)) - (-14 *6 (-1168)) (-14 *7 *5) (-5 *2 (-406 (-1229 *6 *5))) - (-5 *1 (-863 *5 *6 *7))))) -(((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-529 *3)) (-4 *3 (-13 (-721) (-25)))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-683 *3)) (-4 *3 (-1044)) (-5 *1 (-684 *3))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-639 *2)) (-4 *2 (-1092)) (-4 *2 (-1207))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1223 (-562)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-639 *2)) (-4 *2 (-944 *4 *5 *6)) (-4 *4 (-451)) - (-4 *5 (-788)) (-4 *6 (-845)) (-5 *1 (-448 *4 *5 *6 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-1092)) (-5 *1 (-995 *3))))) -(((*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-306)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)) (-5 *3 (-562)))) - ((*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1207)))) - ((*1 *1 *1) (-4 *1 (-864 *2))) + (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) + (-5 *1 (-1121 *3 *2)) (-4 *3 (-1233 *2))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858))))) +(((*1 *2 *1) (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *1 (-468))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) + ((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1258)))) + ((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1259))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-418 *4) *4)) (-4 *4 (-555)) (-5 *2 (-418 *4)) + (-5 *1 (-419 *4)))) + ((*1 *1 *1) (-5 *1 (-922))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-922)))) + ((*1 *1 *1) (-5 *1 (-923))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-923)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) + (-5 *4 (-407 (-563))) (-5 *1 (-1016 *3)) (-4 *3 (-1233 (-563))))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) + (-5 *1 (-1016 *3)) (-4 *3 (-1233 (-563))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) + (-5 *4 (-407 (-563))) (-5 *1 (-1017 *3)) (-4 *3 (-1233 *4)))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -1686 (-407 (-563))) (|:| -1701 (-407 (-563))))) + (-5 *1 (-1017 *3)) (-4 *3 (-1233 (-407 (-563)))))) ((*1 *1 *1) - (-12 (-4 *1 (-968 *2 *3 *4)) (-4 *2 (-1044)) (-4 *3 (-787)) - (-4 *4 (-845))))) -(((*1 *1) (-5 *1 (-436)))) -(((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-562)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-766)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-788)) (-4 *4 (-944 *5 *6 *7)) (-4 *5 (-451)) (-4 *7 (-845)) - (-5 *1 (-448 *5 *6 *7 *4))))) -(((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-683 (-224))) (-5 *4 (-562)) (-5 *2 (-1030)) - (-5 *1 (-751))))) -(((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-608 *3)) (-5 *5 (-1164 *3)) - (-4 *3 (-13 (-429 *6) (-27) (-1192))) - (-4 *6 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) - (-5 *2 (-583 *3)) (-5 *1 (-558 *6 *3 *7)) (-4 *7 (-1092)))) - ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-608 *3)) (-5 *5 (-406 (-1164 *3))) - (-4 *3 (-13 (-429 *6) (-27) (-1192))) - (-4 *6 (-13 (-451) (-1033 (-562)) (-845) (-146) (-635 (-562)))) - (-5 *2 (-583 *3)) (-5 *1 (-558 *6 *3 *7)) (-4 *7 (-1092))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-639 *2)) (-4 *2 (-1092)) (-4 *2 (-1207))))) -(((*1 *2 *3) - (-12 (-5 *3 (-639 (-562))) (-5 *2 (-1170 (-406 (-562)))) - (-5 *1 (-189))))) -(((*1 *2 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1261)) (-5 *1 (-435))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1148 *4)) (-5 *3 (-562)) (-4 *4 (-1044)) - (-5 *1 (-1152 *4)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-562)) (-5 *1 (-1248 *3 *4 *5)) (-4 *3 (-1044)) - (-14 *4 (-1168)) (-14 *5 *3)))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1207))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-562)) (|has| *1 (-6 -4404)) (-4 *1 (-1244 *3)) - (-4 *3 (-1207))))) + (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) + (-4 *3 (-1233 *2))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) + (-4 *3 (-1233 *4)) (-5 *1 (-805 *4 *3 *2 *5)) (-4 *2 (-651 *3)) + (-4 *5 (-651 (-407 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-407 *5)) + (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *5 (-1233 *4)) + (-5 *1 (-805 *4 *5 *2 *6)) (-4 *2 (-651 *5)) (-4 *6 (-651 *3))))) +(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-799))))) +(((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1257 *1)) (-4 *1 (-367 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-362)) (-5 *2 (-639 *3)) (-5 *1 (-940 *4 *3)) - (-4 *3 (-1232 *4))))) + (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1233 (-563)))))) +(((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1169)) (-5 *1 (-670 *3)) (-4 *3 (-1093))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-406 (-947 (-168 (-562))))) (-5 *2 (-639 (-168 *4))) - (-5 *1 (-377 *4)) (-4 *4 (-13 (-362) (-843))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-639 (-406 (-947 (-168 (-562)))))) - (-5 *4 (-639 (-1168))) (-5 *2 (-639 (-639 (-168 *5)))) - (-5 *1 (-377 *5)) (-4 *5 (-13 (-362) (-843)))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1168)) (-5 *3 (-433)) (-4 *5 (-845)) - (-5 *1 (-1098 *5 *4)) (-4 *4 (-429 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *7 (-1058 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-639 *7)) (|:| |badPols| (-639 *7)))) - (-5 *1 (-972 *4 *5 *6 *7)) (-5 *3 (-639 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-554)) (-4 *5 (-788)) (-4 *6 (-845)) - (-4 *7 (-1058 *4 *5 *6)) - (-5 *2 (-639 (-2 (|:| -1449 *1) (|:| -3315 (-639 *7))))) - (-5 *3 (-639 *7)) (-4 *1 (-1200 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-962))))) -(((*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1261)) (-5 *1 (-378)))) - ((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-378))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1084 (-947 (-562)))) (-5 *3 (-947 (-562))) - (-5 *1 (-329)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1084 (-947 (-562)))) (-5 *1 (-329))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-819))))) -(((*1 *1 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-845)) (-5 *1 (-126 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-899 (-562))) (-5 *1 (-912)))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 (-562))) (-5 *2 (-899 (-562))) (-5 *1 (-912))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1168)) - (-4 *4 (-13 (-451) (-845) (-146) (-1033 (-562)) (-635 (-562)))) - (-5 *1 (-555 *4 *2)) (-4 *2 (-13 (-27) (-1192) (-429 *4)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1168)) - (-4 *4 (-13 (-845) (-306) (-1033 (-562)) (-635 (-562)) (-146))) - (-5 *1 (-799 *4 *2)) (-4 *2 (-13 (-29 *4) (-1192) (-954))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-857))) ((*1 *1 *1 *1) (-5 *1 (-857))) - ((*1 *1 *1) (-5 *1 (-857))) + (-12 (-5 *2 (-640 (-169 *4))) (-5 *1 (-155 *3 *4)) + (-4 *3 (-1233 (-169 (-563)))) (-4 *4 (-13 (-363) (-844))))) ((*1 *2 *3) - (-12 (-5 *2 (-1148 *3)) (-5 *1 (-1152 *3)) (-4 *3 (-1044))))) + (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-640 (-169 *4))) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-640 (-169 *4))) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3)) (-4 *3 (-1093))))) +(((*1 *1 *1 *1) (-4 *1 (-545)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-767)) (-4 *2 (-1093)) + (-5 *1 (-673 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1203 *3)) (-4 *3 (-970))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-1149 *3))) (-5 *1 (-1149 *3)) (-4 *3 (-1208))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1168)) (-4 *5 (-610 (-887 (-562)))) - (-4 *5 (-881 (-562))) - (-4 *5 (-13 (-845) (-1033 (-562)) (-451) (-635 (-562)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-565 *5 *3)) (-4 *3 (-625)) - (-4 *3 (-13 (-27) (-1192) (-429 *5))))) - ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1168)) (-5 *4 (-838 *2)) (-4 *2 (-1131)) - (-4 *2 (-13 (-27) (-1192) (-429 *5))) - (-4 *5 (-610 (-887 (-562)))) (-4 *5 (-881 (-562))) - (-4 *5 (-13 (-845) (-1033 (-562)) (-451) (-635 (-562)))) - (-5 *1 (-565 *5 *2))))) + (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) - (-4 *6 (-788)) (-4 *7 (-944 *4 *6 *5)) - (-5 *2 - (-2 (|:| |sysok| (-112)) (|:| |z0| (-639 *7)) (|:| |n0| (-639 *7)))) - (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-639 *7))))) -(((*1 *2) (-12 (-5 *2 (-1139 (-1150))) (-5 *1 (-390))))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-639 (-168 *4))) (-5 *1 (-154 *3 *4)) - (-4 *3 (-1232 (-168 (-562)))) (-4 *4 (-13 (-362) (-843))))) + (-12 (-4 *4 (-1233 *2)) (-4 *2 (-1212)) (-5 *1 (-148 *2 *4 *3)) + (-4 *3 (-1233 (-407 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) +(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1257 (-684 *4))) (-4 *4 (-172)) + (-5 *2 (-1257 (-684 (-948 *4)))) (-5 *1 (-189 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-767)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-402)) (-5 *2 (-767))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-1045)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) + (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-553 *3)) (-4 *3 (-13 (-404) (-1193))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) + (-4 *3 (-1233 *4)) (-5 *2 (-112))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-1151)) (-5 *4 (-1113)) (-5 *2 (-112)) (-5 *1 (-817))))) +(((*1 *2 *3) + (-12 (-4 *4 (-988 *2)) (-4 *2 (-555)) (-5 *1 (-142 *2 *4 *3)) + (-4 *3 (-373 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-362) (-843))) (-5 *2 (-639 (-168 *4))) - (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-362) (-843))) (-5 *2 (-639 (-168 *4))) - (-5 *1 (-180 *4 *3)) (-4 *3 (-1232 (-168 *4)))))) + (-12 (-4 *4 (-988 *2)) (-4 *2 (-555)) (-5 *1 (-503 *2 *4 *5 *3)) + (-4 *5 (-373 *2)) (-4 *3 (-373 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-684 *4)) (-4 *4 (-988 *2)) (-4 *2 (-555)) + (-5 *1 (-688 *2 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-988 *2)) (-4 *2 (-555)) (-5 *1 (-1226 *2 *4 *3)) + (-4 *3 (-1233 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) + (-12 (-5 *4 (-563)) (-5 *6 (-1 (-1262) (-1257 *5) (-1257 *5) (-379))) + (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262)) + (-5 *1 (-784))))) +(((*1 *1 *2) (-12 (-5 *2 (-640 (-379))) (-5 *1 (-263)))) + ((*1 *1) + (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-555)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-555))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))) +(((*1 *2) + (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-417 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-789)) + (-4 *5 (-13 (-846) (-10 -8 (-15 -2220 ((-1169) $))))) (-4 *6 (-555)) + (-5 *2 (-2 (|:| -1901 (-948 *6)) (|:| -3388 (-948 *6)))) + (-5 *1 (-728 *4 *5 *6 *3)) (-4 *3 (-945 (-407 (-948 *6)) *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1256 (-683 *4))) (-4 *4 (-171)) - (-5 *2 (-1256 (-683 (-947 *4)))) (-5 *1 (-188 *4))))) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-678 *4 *3)) (-4 *4 (-1093)) + (-4 *3 (-1093))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-888 *4)) (-4 *4 (-1093)) (-5 *1 (-886 *4 *3)) + (-4 *3 (-1208)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-888 *3)) (-4 *3 (-1093))))) +(((*1 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-330)))) + ((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-330))))) +(((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-311)))) + ((*1 *2 *1) + (-12 (-5 *2 (-767)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) + (-4 *4 (-1045))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) + (-5 *1 (-748))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-363) (-844))) (-5 *1 (-181 *3 *2)) + (-4 *2 (-1233 (-169 *3)))))) +(((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))) + ((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-407 (-563))) (-5 *1 (-117 *4)) (-14 *4 *3) + (-5 *3 (-563)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-563)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-407 (-563))) (-5 *1 (-867 *4)) (-14 *4 *3) + (-5 *3 (-563)))) + ((*1 *2 *1 *3) + (-12 (-14 *4 *3) (-5 *2 (-407 (-563))) (-5 *1 (-868 *4 *5)) + (-5 *3 (-563)) (-4 *5 (-865 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1008)) (-5 *2 (-407 (-563))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1062 *2 *3)) (-4 *2 (-13 (-844) (-363))) + (-4 *3 (-1233 *2)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1235 *2 *3)) (-4 *3 (-788)) + (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -1693 (*2 (-1169)))) + (-4 *2 (-1045))))) (((*1 *2) - (-12 (-4 *3 (-554)) (-5 *2 (-639 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-416 *3))))) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-684 (-407 (-948 (-563))))) (-5 *2 (-640 (-316 (-563)))) + (-5 *1 (-1027))))) +(((*1 *2 *3 *4 *5 *6 *7 *7 *8) + (-12 + (-5 *3 + (-2 (|:| |det| *12) (|:| |rows| (-640 (-563))) + (|:| |cols| (-640 (-563))))) + (-5 *4 (-684 *12)) (-5 *5 (-640 (-407 (-948 *9)))) + (-5 *6 (-640 (-640 *12))) (-5 *7 (-767)) (-5 *8 (-563)) + (-4 *9 (-13 (-307) (-147))) (-4 *12 (-945 *9 *11 *10)) + (-4 *10 (-13 (-846) (-611 (-1169)))) (-4 *11 (-789)) + (-5 *2 + (-2 (|:| |eqzro| (-640 *12)) (|:| |neqzro| (-640 *12)) + (|:| |wcond| (-640 (-948 *9))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1257 (-407 (-948 *9)))) + (|:| -4315 (-640 (-1257 (-407 (-948 *9))))))))) + (-5 *1 (-920 *9 *10 *11 *12))))) +(((*1 *2 *3) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1262)) + (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-640 (-563))) (-5 *3 (-112)) (-5 *1 (-1103))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1151)) (-5 *2 (-563)) (-5 *1 (-1190 *4)) + (-4 *4 (-1045))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-767)) (-5 *1 (-114)))) + ((*1 *2 *1) (-12 (-4 *1 (-831 *3)) (-4 *3 (-1093)) (-5 *2 (-55))))) +(((*1 *2 *2 *2 *3 *3) + (-12 (-5 *3 (-767)) (-4 *4 (-1045)) (-5 *1 (-1229 *4 *2)) + (-4 *2 (-1233 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-517)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1093) (-34))) (-5 *1 (-1133 *3 *2)) + (-4 *3 (-13 (-1093) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1268))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) + (-5 *2 + (-2 (|:| -2619 *4) (|:| -4076 *4) (|:| |totalpts| (-563)) + (|:| |success| (-112)))) + (-5 *1 (-785)) (-5 *5 (-563))))) +(((*1 *1 *1) + (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *5 (-112)) + (-5 *2 (-1031)) (-5 *1 (-741))))) (((*1 *2 *3) - (-12 (-5 *3 (-683 (-406 (-947 (-562))))) (-5 *2 (-639 (-315 (-562)))) - (-5 *1 (-1026))))) + (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305))))) (((*1 *2 *3) - (-12 (-5 *3 (-315 (-224))) (-5 *2 (-315 (-378))) (-5 *1 (-304))))) + (-12 (-4 *3 (-1233 *2)) (-4 *2 (-1233 *4)) (-5 *1 (-981 *4 *2 *3 *5)) + (-4 *4 (-349)) (-4 *5 (-720 *2 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-905)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-418 (-1165 *7))) + (-5 *1 (-902 *4 *5 *6 *7)) (-5 *3 (-1165 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-905)) (-4 *5 (-1233 *4)) (-5 *2 (-418 (-1165 *5))) + (-5 *1 (-903 *4 *5)) (-5 *3 (-1165 *5))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-225))) + (-5 *2 (-1031)) (-5 *1 (-753))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-888 *4)) (-4 *4 (-1093)) (-4 *2 (-1093)) + (-5 *1 (-885 *4 *2))))) +(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-222 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-4 *1 (-254 *3)))) + ((*1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1193)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) +(((*1 *2 *1) + (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) + (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-900 (-562))) (-5 *4 (-562)) (-5 *2 (-683 *4)) - (-5 *1 (-1023 *5)) (-4 *5 (-1044)))) + (-12 (-5 *3 (-901 (-563))) (-5 *4 (-563)) (-5 *2 (-684 *4)) + (-5 *1 (-1024 *5)) (-4 *5 (-1045)))) ((*1 *2 *3) - (-12 (-5 *3 (-639 (-562))) (-5 *2 (-683 (-562))) (-5 *1 (-1023 *4)) - (-4 *4 (-1044)))) + (-12 (-5 *3 (-640 (-563))) (-5 *2 (-684 (-563))) (-5 *1 (-1024 *4)) + (-4 *4 (-1045)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-900 (-562)))) (-5 *4 (-562)) - (-5 *2 (-639 (-683 *4))) (-5 *1 (-1023 *5)) (-4 *5 (-1044)))) + (-12 (-5 *3 (-640 (-901 (-563)))) (-5 *4 (-563)) + (-5 *2 (-640 (-684 *4))) (-5 *1 (-1024 *5)) (-4 *5 (-1045)))) ((*1 *2 *3) - (-12 (-5 *3 (-639 (-639 (-562)))) (-5 *2 (-639 (-683 (-562)))) - (-5 *1 (-1023 *4)) (-4 *4 (-1044))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1030)) (-5 *3 (-1168)) (-5 *1 (-266))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-845) (-554))) (-5 *1 (-275 *3 *2)) - (-4 *2 (-13 (-429 *3) (-997)))))) + (-12 (-5 *3 (-640 (-640 (-563)))) (-5 *2 (-640 (-684 (-563)))) + (-5 *1 (-1024 *4)) (-4 *4 (-1045))))) (((*1 *2 *3) - (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)) (-5 *3 (-562))))) -(((*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1150)) (-5 *1 (-781))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-978 *2)) (-4 *2 (-1192))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1256 *5)) (-4 *5 (-787)) (-5 *2 (-112)) - (-5 *1 (-840 *4 *5)) (-14 *4 (-766))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) - (-4 *6 (-788)) (-5 *2 (-406 (-947 *4))) (-5 *1 (-919 *4 *5 *6 *3)) - (-4 *3 (-944 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-683 *7)) (-4 *7 (-944 *4 *6 *5)) - (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) - (-4 *6 (-788)) (-5 *2 (-683 (-406 (-947 *4)))) - (-5 *1 (-919 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 *7)) (-4 *7 (-944 *4 *6 *5)) - (-4 *4 (-13 (-306) (-146))) (-4 *5 (-13 (-845) (-610 (-1168)))) - (-4 *6 (-788)) (-5 *2 (-639 (-406 (-947 *4)))) - (-5 *1 (-919 *4 *5 *6 *7))))) + (-12 (-4 *4 (-905)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-418 (-1165 *7))) + (-5 *1 (-902 *4 *5 *6 *7)) (-5 *3 (-1165 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-905)) (-4 *5 (-1233 *4)) (-5 *2 (-418 (-1165 *5))) + (-5 *1 (-903 *4 *5)) (-5 *3 (-1165 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-584 *3)) (-4 *3 (-363))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-684 *1)) (-4 *1 (-349)) (-5 *2 (-1257 *1)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-684 *1)) (-4 *1 (-145)) (-4 *1 (-905)) + (-5 *2 (-1257 *1))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-1093)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-1093))))) +(((*1 *2) + (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-417 *3))))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) + (|partial| -12 (-5 *2 (-640 (-1165 *11))) (-5 *3 (-1165 *11)) + (-5 *4 (-640 *10)) (-5 *5 (-640 *8)) (-5 *6 (-640 (-767))) + (-5 *7 (-1257 (-640 (-1165 *8)))) (-4 *10 (-846)) + (-4 *8 (-307)) (-4 *11 (-945 *8 *9 *10)) (-4 *9 (-789)) + (-5 *1 (-703 *9 *10 *8 *11))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1169)) + (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) + (-5 *2 (-584 *3)) (-5 *1 (-426 *5 *3)) + (-4 *3 (-13 (-1193) (-29 *5)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1169)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-379)) (-5 *1 (-1057))))) +(((*1 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1208))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1031)) (-5 *3 (-1169)) (-5 *1 (-267))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1045)) (-4 *4 (-1093)) (-5 *2 (-640 *1)) + (-4 *1 (-382 *3 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-640 (-731 *3 *4))) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-722)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1)) + (-4 *1 (-945 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-869 (-962 *3) (-962 *3))) (-5 *1 (-962 *3)) + (-4 *3 (-963))))) +(((*1 *2 *3) + (-12 (-5 *3 (-948 *5)) (-4 *5 (-1045)) (-5 *2 (-247 *4 *5)) + (-5 *1 (-940 *4 *5)) (-14 *4 (-640 (-1169)))))) +(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-901 *3)) (-4 *3 (-1093))))) +(((*1 *1 *1) + (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-1182 *2)) (-4 *2 (-363))))) +(((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1036))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-757)))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-529))))) +(((*1 *1 *1) + (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) +(((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) + (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) + (-5 *1 (-1168))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) + (-5 *1 (-743))))) +(((*1 *2 *1) + (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) + (-4 *3 (-1233 *2))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *4 (-870)) + (-5 *5 (-917)) (-5 *6 (-640 (-263))) (-5 *2 (-468)) (-5 *1 (-1261)))) + ((*1 *2 *3) + (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *2 (-468)) + (-5 *1 (-1261)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *4 (-640 (-263))) + (-5 *2 (-468)) (-5 *1 (-1261))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-639 (-52))) (-5 *1 (-887 *3)) (-4 *3 (-1092))))) -(((*1 *2 *2) (-12 (-5 *2 (-315 (-224))) (-5 *1 (-266))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-114))))) -(((*1 *1 *1) (-4 *1 (-1053))) - ((*1 *1 *1 *2 *2) - (-12 (-4 *1 (-1234 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-787)))) + (-12 (-5 *2 (-767)) (-4 *1 (-1233 *3)) (-4 *3 (-1045)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1234 *3 *2)) (-4 *3 (-1044)) (-4 *2 (-787))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-429 *3) (-997))) (-5 *1 (-275 *3 *2)) - (-4 *3 (-13 (-845) (-554)))))) + (-12 (-5 *2 (-917)) (-4 *1 (-1235 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-788)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-407 (-563))) (-4 *1 (-1238 *3)) (-4 *3 (-1045))))) +(((*1 *2 *3) + (-12 (-5 *3 (-640 (-1169))) (-5 *2 (-1262)) (-5 *1 (-1210)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-640 (-1169))) (-5 *2 (-1262)) (-5 *1 (-1210))))) +(((*1 *2 *3) + (-12 (-5 *3 (-640 (-481 *4 *5))) (-14 *4 (-640 (-1169))) + (-4 *5 (-452)) + (-5 *2 + (-2 (|:| |gblist| (-640 (-247 *4 *5))) + (|:| |gvlist| (-640 (-563))))) + (-5 *1 (-628 *4 *5))))) +(((*1 *1 *1) (-5 *1 (-1057)))) +(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045))))) +(((*1 *1 *2) + (-12 (-5 *2 (-640 *1)) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) + ((*1 *2 *2 *1) + (|partial| -12 (-5 *2 (-407 *1)) (-4 *1 (-1233 *3)) (-4 *3 (-1045)) + (-4 *3 (-555)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-555))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) + (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) + (-5 *1 (-1168))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) +(((*1 *1 *1) (-5 *1 (-225))) + ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *1 *1) (-4 *1 (-1132))) ((*1 *1 *1 *1) (-4 *1 (-1132)))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-418 *2)) (-4 *2 (-555))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-1208)) (-5 *1 (-182 *3 *2)) + (-4 *2 (-669 *3))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-468)) (-5 *4 (-917)) (-5 *2 (-1262)) (-5 *1 (-1258))))) (((*1 *2 *1) - (-12 (-5 *2 (-1241 *3 *4 *5)) (-5 *1 (-318 *3 *4 *5)) - (-4 *3 (-13 (-362) (-845))) (-14 *4 (-1168)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-562)))) - ((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-417 *3)) (-4 *3 (-554)))) - ((*1 *2 *1) (-12 (-5 *2 (-562)) (-5 *1 (-693)))) + (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) + (-5 *2 (-640 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-1092)) (-5 *1 (-708 *3 *2 *4)) (-4 *3 (-845)) - (-14 *4 - (-1 (-112) (-2 (|:| -2464 *3) (|:| -1300 *2)) - (-2 (|:| -2464 *3) (|:| -1300 *2))))))) + (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1093)) + (-5 *2 (-640 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1149 *3)) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) + ((*1 *2 *1) + (-12 (-5 *2 (-640 *3)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-722)))) + ((*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-640 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1248 *3)) (-4 *3 (-1045)) (-5 *2 (-1149 *3))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) + (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) + (-5 *1 (-1168))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1169)) (-5 *1 (-584 *2)) (-4 *2 (-1034 *3)) + (-4 *2 (-363)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-584 *2)) (-4 *2 (-363)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-627 *4 *2)) + (-4 *2 (-13 (-430 *4) (-998) (-1193))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1085 *2)) (-4 *2 (-13 (-430 *4) (-998) (-1193))) + (-4 *4 (-13 (-846) (-555))) (-5 *1 (-627 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-955)) (-5 *2 (-1169)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-955))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) + (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-3 (-112) (-640 *1))) + (-4 *1 (-1065 *4 *5 *6 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1208))))) +(((*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-157)))) + ((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045))))) +(((*1 *2 *1) (-12 (-5 *2 (-640 (-640 (-225)))) (-5 *1 (-922))))) +(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1169))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) + (-4 *3 (-1059 *5 *6 *7)) + (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2059 *4)))) + (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *2 (-555)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *2 (-555))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-114)))) + ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-114)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) + (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767)))) + ((*1 *2 *1) + (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) + (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-767)))) + ((*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-846)) (-5 *2 (-767))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-316 (-563))) (|:| -3191 (-316 (-379))) + (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) + (-5 *1 (-1168))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) + (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) + (-5 *2 (-1031)) (-5 *1 (-748))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) + (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4408)) (-4 *1 (-1245 *2)) (-4 *2 (-1208))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) + (-4 *3 (-1059 *6 *7 *8)) + (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -2059 *4)))) + (-5 *1 (-1066 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-640 (-2 (|:| |val| (-640 *8)) (|:| -2059 *9)))) + (-5 *5 (-112)) (-4 *8 (-1059 *6 *7 *4)) (-4 *9 (-1065 *6 *7 *4 *8)) + (-4 *6 (-452)) (-4 *7 (-789)) (-4 *4 (-846)) + (-5 *2 (-640 (-2 (|:| |val| *8) (|:| -2059 *9)))) + (-5 *1 (-1066 *6 *7 *4 *8 *9))))) +(((*1 *1 *1) (-5 *1 (-1057)))) +(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-391))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-639 *6)) (-4 *6 (-1058 *3 *4 *5)) (-4 *3 (-451)) - (-4 *3 (-554)) (-4 *4 (-788)) (-4 *5 (-845)) - (-5 *1 (-972 *3 *4 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-129))))) + (-12 + (-5 *2 + (-640 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-767)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-789)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-846)) + (-5 *1 (-449 *3 *4 *5 *6))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) + (-4 *2 (-1233 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045))))) (((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-224)) (-5 *4 (-562)) (-5 *2 (-1030)) (-5 *1 (-753))))) -(((*1 *2 *1) (-12 (-5 *2 (-1148 *3)) (-5 *1 (-173 *3)) (-4 *3 (-306))))) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) + (-5 *4 (-1 (-225) (-225) (-225) (-225))) + (-5 *2 (-1 (-939 (-225)) (-225) (-225))) (-5 *1 (-692))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1224 (-563))) (-4 *1 (-282 *3)) (-4 *3 (-1208)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-282 *3)) (-4 *3 (-1208))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) + (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1031)) + (-5 *1 (-745))))) (((*1 *2 *3) + (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-307)) + (-5 *2 (-407 (-418 (-948 *4)))) (-5 *1 (-1038 *4))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-998))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1154 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) + (-5 *1 (-1155 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-767)) (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-545))))) +(((*1 *1) (-5 *1 (-437)))) +(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1262)) (-5 *1 (-391)))) + ((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-391))))) +(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-640 (-1 (-112) *8))) (-4 *8 (-1059 *5 *6 *7)) + (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) + (-5 *2 (-2 (|:| |goodPols| (-640 *8)) (|:| |badPols| (-640 *8)))) + (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-640 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-563)) (-4 *5 (-349)) (-5 *2 (-418 (-1165 (-1165 *5)))) + (-5 *1 (-1206 *5)) (-5 *3 (-1165 (-1165 *5)))))) +(((*1 *1) (-5 *1 (-1057)))) +(((*1 *2 *1) (-12 - (-5 *3 - (-2 (|:| |var| (-1168)) (|:| |fn| (-315 (-224))) - (|:| -2147 (-1086 (-838 (-224)))) (|:| |abserr| (-224)) - (|:| |relerr| (-224)))) - (-5 *2 (-378)) (-5 *1 (-191))))) -(((*1 *2) (-12 (-5 *2 (-1261)) (-5 *1 (-557))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-947 (-406 (-562)))) (-5 *4 (-1168)) - (-5 *5 (-1086 (-838 (-224)))) (-5 *2 (-639 (-224))) (-5 *1 (-299))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1170 (-406 (-562)))) (-5 *1 (-189)) (-5 *3 (-562))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1150)) (-5 *2 (-378)) (-5 *1 (-781))))) + (-5 *2 + (-640 + (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) + (|:| -2516 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225))))) + (-5 *1 (-558)))) + ((*1 *2 *1) + (-12 (-4 *1 (-607 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)) + (-5 *2 (-640 *3)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-640 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) + (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225))))) + (-5 *1 (-799))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259))))) +(((*1 *2) (-12 (-5 *2 (-1126 (-225))) (-5 *1 (-1191))))) (((*1 *1 *1) - (-12 (-5 *1 (-592 *2)) (-4 *2 (-38 (-406 (-562)))) (-4 *2 (-1044))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-639 *6) "failed") (-562) *6 *6)) (-4 *6 (-362)) - (-4 *7 (-1232 *6)) - (-5 *2 (-2 (|:| |answer| (-583 (-406 *7))) (|:| |a0| *6))) - (-5 *1 (-572 *6 *7)) (-5 *3 (-406 *7))))) -((-1289 . 735386) (-1290 . 735300) (-1291 . 735220) (-1292 . 735136) - (-1293 . 734991) (-1294 . 734941) (-1295 . 734731) (-1296 . 734657) - (-1297 . 734563) (-1298 . 734511) (-1299 . 734348) (-1300 . 733867) - (-1301 . 733763) (-1302 . 733572) (-1303 . 733516) (-1304 . 733457) - (-1305 . 733375) (-1306 . 732768) (-1307 . 732652) (-1308 . 732586) - (-1309 . 732518) (-1310 . 732434) (-1311 . 732327) (-1312 . 732255) - (-1313 . 731781) (-1314 . 731698) (-1315 . 731590) (-1316 . 731495) - (-1317 . 731376) (-1318 . 730989) (-1319 . 730931) (-1320 . 730667) - (-1321 . 730067) (-1322 . 729724) (-1323 . 729536) (-1324 . 729381) - (-1325 . 729308) (-1326 . 729256) (-1327 . 729088) (-1328 . 728972) - (-1329 . 728902) (-1330 . 728696) (-1331 . 728482) (-1332 . 728363) - (-1333 . 728048) (-1334 . 727948) (-1335 . 727846) (-1336 . 727784) - (-1337 . 727566) (-1338 . 727497) (-1339 . 727403) (-1340 . 727326) - (-1341 . 726834) (-1342 . 726724) (-1343 . 726471) (-1344 . 726443) - (-1345 . 726125) (-1346 . 726051) (-1347 . 725907) (-1348 . 725840) - (-1349 . 725763) (-1350 . 725681) (-1351 . 725596) (-1352 . 725060) - (-1353 . 724986) (-1354 . 724870) (-1355 . 724760) (-1356 . 724597) - (-1357 . 724422) (-1358 . 724329) (-1359 . 723907) (-1360 . 723516) - (-1361 . 723406) (-1362 . 723212) (-1363 . 723130) (-1364 . 723056) - (-1365 . 722977) (-1366 . 722879) (-1367 . 722517) (-1368 . 722489) - (-1369 . 722202) (-1370 . 722149) (-1371 . 721611) (-1372 . 721477) - (-1373 . 721368) (-1374 . 721155) (-1375 . 721104) (-1376 . 720931) - (-1377 . 719302) (-1378 . 719165) (-1379 . 719102) (-1380 . 718996) - (-1381 . 718855) (-1382 . 717851) (-1383 . 717478) (-1384 . 716834) - (-1385 . 716781) (-1386 . 716700) (-1387 . 716222) (-1388 . 716080) - (-1389 . 715214) (-1390 . 715143) (-1391 . 714466) (-1392 . 714401) - (-1393 . 714317) (-1394 . 714244) (-1395 . 713813) (-1396 . 713714) - (-1397 . 713613) (-1398 . 713180) (-1399 . 712878) (-1400 . 712699) - (-1401 . 711325) (-1402 . 711217) (-1403 . 711008) (-1404 . 710790) - (-1405 . 710650) (-1406 . 709974) (-1407 . 709528) (-1408 . 709420) - (-1409 . 709254) (-1410 . 709091) (-1411 . 708979) (-1412 . 708927) - (-1413 . 708853) (-1414 . 708646) (-1415 . 708509) (-1416 . 708453) - (-1417 . 708347) (-1418 . 708289) (-1419 . 708231) (-1420 . 707799) - (-1421 . 707186) (-1422 . 707031) (-1423 . 706954) (-1424 . 706812) - (-1425 . 706586) (-1426 . 705782) (-1427 . 705694) (-1428 . 705403) - (-1429 . 705227) (-1430 . 705098) (-1431 . 704668) (-1432 . 704475) - (-1433 . 700477) (-1434 . 700050) (-1435 . 699949) (-1436 . 699894) - (-1437 . 699597) (-1438 . 699545) (-1439 . 699471) (-1440 . 699401) - (-1441 . 699193) (-1442 . 699050) (-1443 . 698848) (-1444 . 698753) - (-1445 . 698679) (-1446 . 698617) (-1447 . 697967) (-1448 . 697849) - (-1449 . 697690) (-1450 . 697619) (-1451 . 697462) (-1452 . 697408) - (-1453 . 697137) (-1454 . 696928) (-1455 . 696502) (-1456 . 696428) - (-1457 . 696301) (-1458 . 695531) (-1459 . 695432) (-1460 . 694794) - (-1461 . 694711) (-1462 . 694593) (-1463 . 694463) (-1464 . 694377) - (-1465 . 694326) (-1466 . 694246) (-1467 . 694047) (-1468 . 693892) - (-1469 . 693484) (-1470 . 691646) (-1471 . 691461) (-1472 . 691371) - (-1473 . 691168) (-1474 . 691083) (-1475 . 690484) (-1476 . 690292) - (-1477 . 689783) (-1478 . 689723) (-1479 . 688969) (-1480 . 688809) - (-1481 . 688738) (-1482 . 688460) (-1483 . 688383) (-1484 . 688145) - (-1485 . 688033) (-1486 . 687683) (-1487 . 686173) (-1488 . 686020) - (-1489 . 685967) (-1490 . 685893) (-1491 . 685666) (-1492 . 685593) - (-1493 . 685066) (-1494 . 685010) (-1495 . 684839) (-1496 . 684786) - (-1497 . 684370) (-1498 . 684217) (-1499 . 682669) (-1500 . 682539) - (-1501 . 682477) (-1502 . 681389) (-1503 . 678462) (-1504 . 678088) - (-1505 . 678036) (-1506 . 677905) (-1507 . 677673) (-1508 . 677154) - (-1509 . 677075) (-1510 . 676929) (-1511 . 676856) (-1512 . 676743) - (-1513 . 676691) (-1514 . 676601) (-1515 . 676463) (-1516 . 676215) - (-1517 . 676057) (-1518 . 676004) (-1519 . 675949) (-1520 . 675887) - (-1521 . 675292) (-1522 . 675231) (-1523 . 675137) (-1524 . 674851) - (-1525 . 674115) (-1526 . 674043) (-1527 . 673887) (-1528 . 673750) - (-1529 . 673218) (-1530 . 673166) (-1531 . 673070) (-1532 . 672996) - (-1533 . 672872) (-1534 . 672710) (-1535 . 672531) (-1536 . 672312) - (-1537 . 672211) (-1538 . 672026) (-1539 . 671973) (-1540 . 671902) - (-1541 . 671796) (-1542 . 671615) (-1543 . 671494) (-1544 . 671309) - (-1545 . 671208) (-1546 . 671122) (-1547 . 670995) (-1548 . 670892) - (-1549 . 670795) (-1550 . 670366) (-1551 . 670088) (-1552 . 670036) - (-1553 . 669441) (-1554 . 669276) (-1555 . 668095) (-1556 . 668017) - (-1557 . 667947) (-1558 . 667840) (-1559 . 667771) (-1560 . 667127) - (-1561 . 667055) (-1562 . 666967) (-1563 . 664835) (-1564 . 664748) - (-1565 . 664641) (-1566 . 663931) (-1567 . 663357) (-1568 . 662496) - (-1569 . 662467) (-1570 . 662228) (-1571 . 662149) (-1572 . 661833) - (-1573 . 660661) (-1574 . 660607) (-1575 . 660394) (-1576 . 660289) - (-1577 . 660194) (-1578 . 659951) (-1579 . 659793) (-1580 . 659670) - (-1581 . 657255) (-1582 . 657193) (-1583 . 657022) (-1584 . 656788) - (-1585 . 656673) (-1586 . 656322) (-1587 . 654946) (-1588 . 653500) - (-1589 . 653162) (-1590 . 653023) (-1591 . 652964) (-1592 . 652909) - (-1593 . 652808) (-1594 . 652635) (-1595 . 652483) (-1596 . 652362) - (-1597 . 652255) (-1598 . 652108) (-1599 . 652074) (-1600 . 650937) - (-1601 . 650440) (-1602 . 649032) (-1603 . 648694) (-1604 . 648471) - (-1605 . 648403) (-1606 . 647301) (-1607 . 647172) (-1608 . 647118) - (-1609 . 647052) (-1610 . 646965) (-1611 . 646832) (-1612 . 646691) - (-1613 . 646516) (-1614 . 646392) (-1615 . 646339) (-1616 . 646224) - (-1617 . 646164) (-1618 . 646055) (-1619 . 645674) (-1620 . 645594) - (-1621 . 645344) (-1622 . 644947) (-1623 . 644704) (-1624 . 644673) - (-1625 . 643203) (-1626 . 643057) (-1627 . 642437) (-1628 . 642219) - (-1629 . 642135) (-1630 . 641908) (-1631 . 641742) (-1632 . 641690) - (-1633 . 641637) (-1634 . 641524) (-1635 . 636010) (-1636 . 635815) - (-1637 . 635744) (-1638 . 635240) (-1639 . 635150) (-1640 . 635027) - (-1641 . 634970) (-1642 . 634902) (-1643 . 634759) (-1644 . 634367) - (-1645 . 633840) (-1646 . 633480) (-1647 . 633397) (-1648 . 633064) - (-1649 . 632963) (-1650 . 632830) (-1651 . 632419) (-1652 . 632307) - (-1653 . 632279) (-1654 . 632199) (-1655 . 631278) (-1656 . 631124) - (-1657 . 630669) (-1658 . 630617) (-1659 . 630583) (-1660 . 630304) - (-1661 . 630043) (-1662 . 629959) (-1663 . 629583) (-1664 . 629475) - (-1665 . 629401) (-1666 . 629221) (-1667 . 629135) (-1668 . 629031) - (-1669 . 628809) (-1670 . 628460) (-1671 . 627988) (-1672 . 627875) - (-1673 . 627615) (-1674 . 627299) (-1675 . 627228) (-1676 . 627085) - (-1677 . 626743) (-1678 . 626663) (-1679 . 626492) (-1680 . 626421) - (-1681 . 626199) (-1682 . 625999) (-1683 . 625817) (-1684 . 625605) - (-1685 . 625244) (-1686 . 625191) (-1687 . 625122) (-1688 . 624985) - (-1689 . 624891) (-1690 . 624789) (-1691 . 624692) (-1692 . 624637) - (-1693 . 624568) (-1694 . 623352) (-1695 . 623243) (-1696 . 623190) - (-1697 . 622991) (-1698 . 622538) (-1699 . 622145) (-1700 . 622088) - (-1701 . 622035) (-1702 . 621820) (-1703 . 621743) (-1704 . 621352) - (-1705 . 621278) (-1706 . 621087) (-1707 . 621007) (-1708 . 620955) - (-1709 . 620836) (-1710 . 620770) (-1711 . 620502) (-1712 . 619899) - (-1713 . 618603) (-1714 . 618499) (-1715 . 618419) (-1716 . 618130) - (-1717 . 618047) (-1718 . 617762) (-1719 . 617694) (-1720 . 617475) - (-1721 . 617156) (-1722 . 617063) (-1723 . 616824) (-1724 . 616723) - (-1725 . 616478) (-1726 . 616368) (-1727 . 615939) (-1728 . 615855) - (-1729 . 615717) (-1730 . 615640) (-1731 . 615533) (-1732 . 615238) - (-1733 . 614966) (-1734 . 614885) (-1735 . 614791) (-1736 . 614689) - (-1737 . 614564) (-1738 . 614498) (-1739 . 613186) (-1740 . 613080) - (-1741 . 612787) (-1742 . 611759) (-1743 . 611449) (-1744 . 611305) - (-1745 . 611231) (-1746 . 611009) (-1747 . 610908) (-1748 . 610482) - (-1749 . 610337) (-1750 . 610280) (-1751 . 610186) (-1752 . 609939) - (-1753 . 609842) (-1754 . 609613) (-1755 . 609529) (-1756 . 609476) - (-1757 . 609266) (-1758 . 609108) (-1759 . 608827) (-1760 . 608712) - (-1761 . 608481) (-1762 . 607620) (-1763 . 607046) (-1764 . 606923) - (-1765 . 606851) (-1766 . 606623) (-1767 . 606519) (-1768 . 606463) - (-1769 . 606341) (-1770 . 606259) (-1771 . 606172) (-1772 . 605980) - (-1773 . 605909) (-1774 . 605746) (-1775 . 605475) (-1776 . 605148) - (-1777 . 605065) (-1778 . 604458) (-1779 . 604329) (-1780 . 603902) - (-1781 . 603795) (-1782 . 603742) (-1783 . 603576) (-1784 . 603388) - (-1785 . 603229) (-1786 . 603176) (-1787 . 603079) (-1788 . 602734) - (-1789 . 602092) (-1790 . 601873) (-1791 . 601514) (-1792 . 600912) - (-1793 . 600833) (-1794 . 600761) (-1795 . 600683) (-1796 . 600584) - (-1797 . 600498) (-1798 . 600411) (-1799 . 600377) (-1800 . 600280) - (-1801 . 600047) (-1802 . 599978) (-1803 . 599780) (-1804 . 599684) - (-1805 . 599632) (-1806 . 596333) (-1807 . 596196) (-1808 . 595950) - (-1809 . 595891) (-1810 . 595794) (-1811 . 595671) (-1812 . 595620) - (-1813 . 595450) (-1814 . 595337) (-1815 . 595242) (-1816 . 595076) - (-1817 . 594911) (-1818 . 594793) (-1819 . 594703) (-1820 . 594530) - (-1821 . 594423) (-1822 . 593957) (-1823 . 593757) (-1824 . 593517) - (-1825 . 593449) (-1826 . 593363) (-1827 . 593234) (-1828 . 593096) - (-1829 . 592891) (-1830 . 592762) (-1831 . 592659) (-1832 . 592592) - (-1833 . 592449) (-1834 . 592308) (-1835 . 592253) (-1836 . 591067) - (-1837 . 590923) (-1838 . 590807) (-1839 . 590639) (-1840 . 590605) - (-1841 . 589496) (-1842 . 589397) (-1843 . 589166) (-1844 . 589022) - (-1845 . 588710) (-1846 . 588657) (-1847 . 587475) (-1848 . 587423) - (-1849 . 587328) (-1850 . 587184) (-1851 . 586949) (-1852 . 586888) - (-1853 . 586730) (-1854 . 586512) (-1855 . 586458) (-1856 . 586291) - (-1857 . 586084) (-1858 . 585927) (-1859 . 583721) (-1860 . 583603) - (-1861 . 583475) (-1862 . 583202) (-1863 . 583174) (-1864 . 583142) - (-1865 . 583091) (-1866 . 582996) (-1867 . 582789) (-1868 . 582703) - (-1869 . 582387) (-1870 . 582196) (-1871 . 582076) (-1872 . 581993) - (-1873 . 581821) (-1874 . 581663) (-1875 . 581511) (-1876 . 581404) - (-1877 . 581331) (-1878 . 581151) (-1879 . 581083) (-1880 . 580921) - (-1881 . 580735) (-1882 . 580676) (-1883 . 580615) (-1884 . 580541) - (-1885 . 580395) (-1886 . 580330) (-1887 . 580231) (-1888 . 580148) - (-1889 . 580000) (-1890 . 579887) (-1891 . 579801) (-1892 . 579751) - (-1893 . 579528) (-1894 . 579326) (-1895 . 579096) (-1896 . 578931) - (-1897 . 578824) (-1898 . 578544) (-1899 . 578394) (-1900 . 578310) - (-1901 . 578211) (-1902 . 577572) (-1903 . 577516) (-1904 . 577285) - (-1905 . 577146) (-1906 . 577090) (-1907 . 576937) (-1908 . 576530) - (-1909 . 576477) (-1910 . 576295) (-1911 . 576228) (-1912 . 575976) - (-1913 . 575678) (-1914 . 575327) (-1915 . 575226) (-1916 . 575145) - (-1917 . 575029) (-1918 . 574970) (-1919 . 574741) (-1920 . 574682) - (-1921 . 574501) (-1922 . 574434) (-1923 . 574400) (-1924 . 574326) - (-1925 . 574253) (-1926 . 573669) (-1927 . 573617) (-1928 . 573537) - (-1929 . 573442) (-1930 . 573018) (-1931 . 572945) (-1932 . 572820) - (-1933 . 572062) (-1934 . 571909) (-1935 . 571766) (-1936 . 571618) - (-1937 . 571243) (-1938 . 570937) (-1939 . 570622) (-1940 . 570437) - (-1941 . 570336) (-1942 . 569487) (-1943 . 569429) (-1944 . 569355) - (-1945 . 569303) (-1946 . 569151) (-1947 . 569047) (-1948 . 568931) - (-1949 . 568327) (-1950 . 568174) (-1951 . 568110) (-1952 . 567906) - (-1953 . 567797) (-1954 . 564176) (-1955 . 564124) (-1956 . 564001) - (-1957 . 563833) (-1958 . 563628) (-1959 . 563490) (-1960 . 563397) - (-1961 . 563227) (-1962 . 563099) (-1963 . 562999) (-1964 . 562871) - (-1965 . 562840) (-1966 . 562766) (-1967 . 562656) (-1968 . 562164) - (-1969 . 562098) (-1970 . 561794) (-1971 . 561500) (-1972 . 561357) - (-1973 . 561305) (-1974 . 561190) (-1975 . 561066) (-1976 . 560183) - (-1977 . 559736) (-1978 . 559457) (-1979 . 559347) (-1980 . 559220) - (-1981 . 559096) (-1982 . 558993) (-1983 . 558602) (-1984 . 558441) - (-1985 . 558032) (-1986 . 557867) (-1987 . 557769) (-1988 . 557657) - (-1989 . 557513) (-1990 . 557010) (-1991 . 556593) (-1992 . 556435) - (-1993 . 554166) (-1994 . 553886) (-1995 . 553748) (-1996 . 553501) - (-1997 . 552841) (-1998 . 552757) (-1999 . 552658) (-2000 . 552590) - (-2001 . 552359) (-2002 . 552207) (-2003 . 552009) (-2004 . 551657) - (-2005 . 551550) (-2006 . 551476) (-2007 . 551421) (-2008 . 551278) - (-2009 . 551200) (-2010 . 551147) (-2011 . 551076) (-2012 . 550913) - (-2013 . 550421) (-2014 . 550320) (-2015 . 549869) (-2016 . 549168) - (-2017 . 549064) (-2018 . 548879) (-2019 . 548717) (-2020 . 548639) - (-2021 . 548466) (-2022 . 548399) (-2023 . 548254) (-2024 . 548047) - (-2025 . 547951) (-2026 . 547705) (-2027 . 547354) (-2028 . 547108) - (-2029 . 546907) (-2030 . 546777) (-2031 . 546664) (-2032 . 546520) - (-2033 . 546434) (-2034 . 546339) (-2035 . 546068) (-2036 . 545164) - (-2037 . 545000) (-2038 . 544944) (-2039 . 544814) (-2040 . 544726) - (-2041 . 544472) (-2042 . 544356) (-2043 . 544211) (-2044 . 544159) - (-2045 . 544090) (-2046 . 544012) (-2047 . 543910) (-2048 . 543749) - (-2049 . 543667) (-2050 . 543340) (-2051 . 543303) (-2052 . 543200) - (-2053 . 543127) (-2054 . 542971) (-2055 . 542083) (-2056 . 542023) - (-2057 . 541670) (-2058 . 541567) (-2059 . 541438) (-2060 . 541359) - (-2061 . 541149) (-2062 . 541078) (-2063 . 540935) (-2064 . 540685) - (-2065 . 540653) (-2066 . 540273) (-2067 . 540166) (-2068 . 539845) - (-2069 . 539792) (-2070 . 539476) (-2071 . 539374) (-2072 . 539261) - (-2073 . 539195) (-2074 . 538665) (-2075 . 538533) (-2076 . 538481) - (-2077 . 538414) (-2078 . 538358) (-2079 . 538181) (-2080 . 538084) - (-2081 . 537859) (-2082 . 537762) (-2083 . 537668) (-2084 . 537640) - (-2085 . 537519) (-2086 . 537446) (-2087 . 537322) (-2088 . 537265) - (-2089 . 537029) (-2090 . 536850) (-2091 . 536489) (-2092 . 536160) - (-2093 . 536072) (-2094 . 535978) (-2095 . 535892) (-2096 . 535732) - (-2097 . 535275) (-2098 . 535135) (-2099 . 535069) (-2100 . 534896) - (-2101 . 534824) (-2102 . 534378) (-2103 . 534301) (-2104 . 534143) - (-2105 . 534090) (-2106 . 533975) (-2107 . 532713) (-2108 . 532632) - (-2109 . 532348) (-2110 . 531283) (-2111 . 531137) (-2112 . 531044) - (-2113 . 529704) (-2114 . 529639) (-2115 . 529557) (-2116 . 529418) - (-2117 . 529366) (-2118 . 528845) (-2119 . 528817) (-2120 . 528738) - (-2121 . 528644) (-2122 . 528591) (-2123 . 528361) (-2124 . 528306) - (-2125 . 527964) (-2126 . 527809) (-2127 . 527701) (-2128 . 527617) - (-2129 . 527522) (-2130 . 527423) (-2131 . 527370) (-2132 . 527288) - (-2133 . 527016) (-2134 . 526930) (-2135 . 526273) (-2136 . 526132) - (-2137 . 525927) (-2138 . 525843) (-2139 . 525816) (-2140 . 525269) - (-2141 . 525081) (-2142 . 524887) (-2143 . 524630) (-2144 . 524467) - (-2145 . 524393) (-2146 . 524118) (-2147 . 523979) (-2148 . 523881) - (-2149 . 523759) (-2150 . 523707) (-2151 . 523554) (-2152 . 523523) - (-2153 . 523398) (-2154 . 522919) (-2155 . 522648) (-2156 . 522519) - (-2157 . 522433) (-2158 . 522088) (-2159 . 521979) (-2160 . 521893) - (-2161 . 521780) (-2162 . 521358) (-2163 . 521270) (-2164 . 520917) - (-2165 . 520832) (-2166 . 520517) (-2167 . 520387) (-2168 . 520256) - (-2169 . 520098) (-2170 . 519991) (-2171 . 519735) (-2172 . 518485) - (-2173 . 518381) (-2174 . 517997) (-2175 . 517888) (-2176 . 517444) - (-2177 . 517382) (-2178 . 517252) (-2179 . 517151) (-2180 . 517023) - (-2181 . 516970) (-2182 . 516861) (-2183 . 516700) (-2184 . 516616) - (-2185 . 516544) (-2186 . 516473) (-2187 . 516390) (-2188 . 516266) - (-2189 . 516138) (-2190 . 515960) (-2191 . 515819) (-2192 . 515746) - (-2193 . 515203) (-2194 . 514938) (-2195 . 514885) (-2196 . 514780) - (-2197 . 514643) (-2198 . 514540) (-2199 . 514390) (-2200 . 514195) - (-2201 . 513813) (-2202 . 513563) (-2203 . 513466) (-2204 . 513306) - (-2205 . 512114) (-2206 . 512028) (-2207 . 511857) (-2208 . 511605) - (-2209 . 511480) (-2210 . 511308) (-2211 . 510870) (-2212 . 510476) - (-2213 . 510229) (-2214 . 509937) (-2215 . 509814) (-2216 . 509755) - (-2217 . 509634) (-2218 . 509524) (-2219 . 509304) (-2220 . 509044) - (-2221 . 508741) (-2222 . 508668) (-2223 . 508613) (-2224 . 508542) - (-2225 . 508486) (-2226 . 508271) (-2227 . 508143) (-2228 . 508006) - (-2229 . 507836) (-2230 . 507738) (-2231 . 507624) (-2232 . 507506) - (-2233 . 507373) (-2234 . 507256) (-2235 . 507192) (-2236 . 507121) - (-2237 . 507016) (-2238 . 506878) (-2239 . 506060) (-2240 . 506008) - (-2241 . 505884) (-2242 . 505679) (-2243 . 505460) (-2244 . 505145) - (-2245 . 505048) (-2246 . 504748) (-2247 . 504399) (-2248 . 504344) - (-2249 . 504256) (-2250 . 502142) (-2251 . 501969) (-2252 . 501804) - (-2253 . 501652) (-2254 . 501516) (-2255 . 501329) (-2256 . 501232) - (-2257 . 500945) (-2258 . 500892) (-2259 . 500748) (-2260 . 499752) - (-2261 . 499699) (-2262 . 499618) (-2263 . 499544) (-2264 . 499446) - (-2265 . 499366) (-2266 . 497778) (-2267 . 497655) (-2268 . 497603) - (-2269 . 497127) (-2270 . 497023) (-2271 . 496917) (-2272 . 496615) - (-2273 . 496510) (-2274 . 496370) (-2275 . 496200) (-2276 . 492864) - (-2277 . 492426) (-2278 . 492082) (-2279 . 492030) (-2280 . 491901) - (-2281 . 491749) (-2282 . 491554) (-2283 . 491452) (-2284 . 491293) - (-2285 . 491122) (-2286 . 490974) (-2287 . 490852) (-2288 . 490742) - (-2289 . 490608) (-2290 . 490492) (-2291 . 490440) (-2292 . 490347) - (-2293 . 490274) (-2294 . 490027) (-2295 . 489976) (-2296 . 489942) - (-2297 . 489908) (-2298 . 489542) (-2299 . 489392) (-2300 . 489165) - (-2301 . 489066) (-2302 . 488989) (-2303 . 488432) (-2304 . 488362) - (-2305 . 488276) (-2306 . 488242) (-2307 . 488193) (-2308 . 488003) - (-2309 . 487514) (-2310 . 487198) (-2311 . 486936) (-2312 . 486758) - (-2313 . 486658) (-2314 . 486571) (-2315 . 486516) (-2316 . 486388) - (-2317 . 486300) (-2318 . 485881) (-2319 . 485727) (-2320 . 485547) - (-2321 . 485457) (-2322 . 485404) (-2323 . 485025) (-2324 . 484955) - (-2325 . 484881) (-2326 . 484560) (-2327 . 484396) (-2328 . 484065) - (-2329 . 483505) (-2330 . 483286) (-2331 . 482955) (-2332 . 482142) - (-2333 . 482085) (-2334 . 481936) (-2335 . 481877) (-2336 . 481782) - (-2337 . 479519) (-2338 . 479417) (-2339 . 479329) (-2340 . 479115) - (-2341 . 478532) (-2342 . 478449) (-2343 . 473336) (-2344 . 473279) - (-2345 . 473205) (-2346 . 472241) (-2347 . 472191) (-2348 . 472121) - (-2349 . 471989) (-2350 . 471810) (-2351 . 471736) (-2352 . 471623) - (-2353 . 471560) (-2354 . 471507) (-2355 . 471120) (-2356 . 470909) - (-2357 . 470830) (-2358 . 470773) (-2359 . 470652) (-2360 . 470543) - (-2361 . 470448) (-2362 . 469930) (-2363 . 469829) (-2364 . 469699) - (-2365 . 468945) (-2366 . 467403) (-2367 . 467303) (-2368 . 467143) - (-2369 . 467112) (-2370 . 467019) (-2371 . 466963) (-2372 . 466858) - (-2373 . 466639) (-2374 . 466540) (-2375 . 466431) (-2376 . 466285) - (-2377 . 465949) (-2378 . 465783) (-2379 . 465491) (-2380 . 465364) - (-2381 . 465300) (-2382 . 464994) (-2383 . 464828) (-2384 . 464683) - (-2385 . 464584) (-2386 . 464480) (-2387 . 464365) (-2388 . 464224) - (-2389 . 464153) (-2390 . 463966) (-2391 . 463636) (-2392 . 463485) - (-2393 . 463380) (-2394 . 463222) (-2395 . 463103) (-2396 . 463051) - (-2397 . 462985) (-2398 . 462898) (-2399 . 462785) (-2400 . 462647) - (-2401 . 462613) (-2402 . 462018) (-2403 . 461461) (-2404 . 461408) - (-2405 . 461299) (-2406 . 460838) (-2407 . 460660) (-2408 . 460469) - (-2409 . 460392) (-2410 . 460209) (-2411 . 460085) (-2412 . 459539) - (-2413 . 459453) (-2414 . 459013) (-2415 . 458945) (-2416 . 458849) - (-2417 . 458790) (-2418 . 458676) (-2419 . 458607) (-2420 . 458504) - (-2421 . 458476) (-2422 . 458357) (-2423 . 458250) (-2424 . 458025) - (-2425 . 457900) (-2426 . 457832) (-2427 . 457758) (-2428 . 457709) - (-2429 . 457630) (-2430 . 457559) (-2431 . 457200) (-2432 . 456864) - (-2433 . 456684) (-2434 . 456614) (-2435 . 456341) (-2436 . 456132) - (-2437 . 456065) (-2438 . 455869) (-2439 . 455792) (-2440 . 455764) - (-2441 . 455709) (-2442 . 455584) (-2443 . 455095) (-2444 . 455025) - (-2445 . 454962) (-2446 . 454757) (-2447 . 454678) (-2448 . 454610) - (-2449 . 454014) (-2450 . 453936) (-2451 . 453837) (-2452 . 453782) - (-2453 . 453663) (-2454 . 453612) (-2455 . 453419) (-2456 . 453349) - (-2457 . 453279) (-2458 . 453205) (-2459 . 452972) (-2460 . 452879) - (-2461 . 452785) (-2462 . 452654) (-2463 . 451688) (-2464 . 451361) - (-2465 . 451308) (-2466 . 451209) (-2467 . 451150) (-2468 . 450854) - (-2469 . 450558) (-2470 . 449924) (-2471 . 449685) (-2472 . 449633) - (-2473 . 449491) (-2474 . 449436) (-2475 . 449383) (-2476 . 449328) - (-2477 . 449121) (-2478 . 449069) (-2479 . 448850) (-2480 . 448556) - (-2481 . 448262) (-2482 . 448210) (-2483 . 447995) (-2484 . 447915) - (-2485 . 447863) (-2486 . 447793) (-2487 . 447729) (-2488 . 447207) - (-2489 . 447179) (-2490 . 446733) (-2491 . 446363) (-2492 . 446002) - (-2493 . 445901) (-2494 . 445841) (-2495 . 445393) (-2496 . 445313) - (-2497 . 445095) (-2498 . 444983) (-2499 . 444827) (-2500 . 444723) - (-2501 . 444657) (-2502 . 444513) (-2503 . 444418) (-2504 . 444390) - (-2505 . 444312) (-2506 . 444259) (-2507 . 444148) (-2508 . 444089) - (-2509 . 443995) (-2510 . 443839) (-2511 . 443783) (-2512 . 443623) - (-2513 . 443444) (-2514 . 443326) (-2515 . 443185) (-2516 . 443032) - (-2517 . 442980) (-2518 . 442909) (-2519 . 442698) (-2520 . 442626) - (-2521 . 442140) (-2522 . 442070) (-2523 . 441915) (-2524 . 441710) - (-2525 . 441451) (-2526 . 441134) (-2527 . 441009) (-2528 . 440896) - (-2529 . 440766) (-2530 . 440651) (-2531 . 440493) (-2532 . 440183) - (-2533 . 439871) (-2534 . 439822) (-2535 . 439574) (-2536 . 439466) - (-2537 . 439324) (-2538 . 439208) (-2539 . 439049) (-2540 . 438869) - (-2541 . 438766) (-2542 . 438655) (-2543 . 438532) (-2544 . 438446) - (-2545 . 438309) (-2546 . 438221) (-2547 . 437980) (-2548 . 437897) - (-2549 . 437760) (-2550 . 437686) (-2551 . 437614) (-2552 . 437563) - (-2553 . 437511) (-2554 . 437385) (-2555 . 436717) (-2556 . 436586) - (-2557 . 436393) (-2558 . 436229) (-2559 . 436155) (-2560 . 436027) - (-2561 . 435678) (-2562 . 435499) (-2563 . 435440) (-2564 . 435298) - (-2565 . 435211) (-2566 . 435142) (-2567 . 435059) (-2568 . 434855) - (-2569 . 434673) (-2570 . 434613) (-2571 . 434553) (-2572 . 434177) - (-2573 . 434080) (-2574 . 433997) (-2575 . 433866) (-2576 . 433796) - (-2577 . 433516) (-2578 . 432921) (-2579 . 432831) (-2580 . 432301) - (-2581 . 432177) (-2582 . 431790) (-2583 . 431631) (-2584 . 431594) - (-2585 . 431528) (-2586 . 431136) (-2587 . 430775) (-2588 . 430665) - (-2589 . 430605) (-2590 . 430506) (-2591 . 430453) (-2592 . 430346) - (-2593 . 430201) (-2594 . 430069) (-2595 . 429995) (-2596 . 429830) - (-2597 . 429677) (-2598 . 429487) (-2599 . 428944) (-2600 . 428600) - (-2601 . 428114) (-2602 . 427855) (-2603 . 427599) (-2604 . 427239) - (-2605 . 426869) (-2606 . 425990) (-2607 . 425922) (-2608 . 425144) - (-2609 . 424964) (-2610 . 424863) (-2611 . 424687) (-2612 . 424615) - (-2613 . 424492) (-2614 . 424413) (-2615 . 424303) (-2616 . 423886) - (-2617 . 423826) (-2618 . 423761) (-2619 . 423660) (-2620 . 423278) - (-2621 . 423207) (-2622 . 423113) (-2623 . 423030) (-2624 . 422981) - (-2625 . 422877) (-2626 . 422828) (-2627 . 422650) (-2628 . 422459) - (-2629 . 422427) (-2630 . 422318) (-2631 . 422159) (-2632 . 422030) - (-2633 . 421887) (-2634 . 421778) (-2635 . 421695) (-2636 . 421537) - (-2637 . 421460) (-2638 . 421307) (-2639 . 420309) (-2640 . 420177) - (-2641 . 419959) (-2642 . 419735) (-2643 . 419578) (-2644 . 419432) - (-2645 . 419312) (-2646 . 419260) (-2647 . 419194) (-2648 . 419091) - (-2649 . 419062) (-2650 . 418956) (-2651 . 418729) (-2652 . 418630) - (-2653 . 418511) (-2654 . 418023) (-2655 . 417963) (-2656 . 417511) - (-2657 . 416595) (-2658 . 416522) (-2659 . 416451) (-2660 . 416350) - (-2661 . 416291) (-2662 . 416235) (-2663 . 416096) (-2664 . 416041) - (-2665 . 415986) (-2666 . 415558) (-2667 . 415479) (-2668 . 415288) - (-2669 . 415164) (-2670 . 415110) (-2671 . 414716) (-2672 . 414263) - (-2673 . 414038) (-2674 . 413784) (-2675 . 413615) (-2676 . 413390) - (-2677 . 413306) (-2678 . 413225) (-2679 . 412947) (-2680 . 412835) - (-2681 . 412709) (-2682 . 412681) (-2683 . 412628) (-2684 . 412524) - (-2685 . 411811) (-2686 . 411728) (-2687 . 411305) (-2688 . 411248) - (-2689 . 411081) (-2690 . 410977) (-2691 . 410865) (-2692 . 410810) - (-2693 . 409608) (-2694 . 409504) (-2695 . 409433) (-2696 . 409185) - (-2697 . 408938) (-2698 . 408692) (-2699 . 408370) (-2700 . 408239) - (-2701 . 408059) (-2702 . 408006) (-2703 . 407898) (-2704 . 407840) - (-2705 . 407676) (-2706 . 407624) (-2707 . 407464) (-2708 . 407218) - (-2709 . 407139) (-2710 . 406788) (-2711 . 406321) (-2712 . 406265) - (-2713 . 405954) (-2714 . 403173) (-2715 . 403039) (-2716 . 402903) - (-2717 . 402802) (-2718 . 402691) (-2719 . 402449) (-2720 . 402291) - (-2721 . 402071) (-2722 . 401915) (-2723 . 401818) (-2724 . 401769) - (-2725 . 401669) (-2726 . 401570) (-2727 . 401324) (-2728 . 401166) - (-2729 . 400987) (-2730 . 400910) (-2731 . 400787) (-2732 . 400703) - (-2733 . 400570) (-2734 . 400471) (-2735 . 400375) (-2736 . 399672) - (-2737 . 399511) (-2738 . 399452) (-2739 . 399362) (-2740 . 399240) - (-2741 . 399157) (-2742 . 399046) (-2743 . 398806) (-2744 . 398738) - (-2745 . 398626) (-2746 . 398504) (-2747 . 398314) (-2748 . 397800) - (-2749 . 397712) (-2750 . 397495) (-2751 . 397412) (-2752 . 397253) - (-2753 . 396889) (-2754 . 396858) (-2755 . 396670) (-2756 . 396638) - (-2757 . 396137) (-2758 . 395483) (-2759 . 395455) (-2760 . 395396) - (-2761 . 395289) (-2762 . 395261) (-2763 . 395189) (-2764 . 395070) - (-2765 . 394942) (-2766 . 394760) (-2767 . 394130) (-2768 . 394102) - (-2769 . 394020) (-2770 . 393908) (-2771 . 393841) (-2772 . 393743) - (-2773 . 393651) (-2774 . 393594) (-2775 . 393523) (-2776 . 392453) - (-2777 . 392396) (-2778 . 392310) (-2779 . 392236) (-2780 . 392119) - (-2781 . 392075) (-2782 . 391930) (-2783 . 391772) (-2784 . 391545) - (-2785 . 391436) (-2786 . 391385) (-2787 . 390220) (-2788 . 390149) - (-2789 . 390090) (-2790 . 389764) (-2791 . 389588) (-2792 . 389535) - (-2793 . 389287) (-2794 . 389179) (-2795 . 389099) (-2796 . 389046) - (-2797 . 388935) (-2798 . 388744) (-2799 . 388604) (-2800 . 388469) - (-2801 . 388417) (-2802 . 388192) (-2803 . 387804) (-2804 . 387727) - (-2805 . 387557) (-2806 . 387450) (-2807 . 387270) (-2808 . 387103) - (-2809 . 387043) (-2810 . 386988) (-2811 . 386403) (-2812 . 386354) - (-2813 . 386073) (-2814 . 385724) (-2815 . 385608) (-2816 . 385535) - (-2817 . 385463) (-2818 . 385392) (-2819 . 385145) (-2820 . 384962) - (-2821 . 384881) (-2822 . 384759) (-2823 . 384549) (-2824 . 384466) - (-2825 . 384086) (-2826 . 383989) (-2827 . 383876) (-2828 . 383783) - (-2829 . 383390) (-2830 . 382863) (-2831 . 382620) (-2832 . 382417) - (-2833 . 381882) (-2834 . 381814) (-2835 . 381682) (-2836 . 381573) - (-2837 . 381465) (-2838 . 381078) (-2839 . 380977) (-2840 . 380878) - (-2841 . 380706) (-2842 . 380582) (-2843 . 380330) (-2844 . 380043) - (-2845 . 379912) (-2846 . 378794) (-2847 . 378435) (-2848 . 377618) - (-2849 . 377354) (-2850 . 376538) (-2851 . 376386) (-2852 . 376070) - (-2853 . 375838) (-2854 . 375786) (-2855 . 375631) (-2856 . 375476) - (-2857 . 375340) (-2858 . 374969) (-2859 . 374887) (-2860 . 374835) - (-2861 . 374752) (-2862 . 374575) (-2863 . 374357) (-2864 . 374196) - (-2865 . 374080) (-2866 . 373973) (-2867 . 373871) (-2868 . 373819) - (-2869 . 373421) (-2870 . 373369) (-2871 . 373222) (-2872 . 372850) - (-2873 . 372755) (-2874 . 372703) (-2875 . 372607) (-2876 . 372539) - (-2877 . 372502) (-2878 . 372375) (-2879 . 372251) (-2880 . 372095) - (-2881 . 371712) (-2882 . 371465) (-2883 . 371362) (-2884 . 370929) - (-2885 . 370876) (-2886 . 370784) (-2887 . 370752) (-2888 . 370680) - (-2889 . 370553) (-2890 . 370458) (-2891 . 370261) (-2892 . 370168) - (-2893 . 370055) (-2894 . 369974) (-2895 . 369571) (-2896 . 369475) - (-2897 . 369405) (-2898 . 369311) (-2899 . 369201) (-2900 . 369134) - (-2901 . 368655) (-2902 . 368516) (-2903 . 368191) (-2904 . 368125) - (-2905 . 367995) (-2906 . 367316) (-2907 . 367209) (-2908 . 367105) - (-2909 . 366984) (-2910 . 366777) (-2911 . 366706) (-2912 . 366653) - (-2913 . 366544) (-2914 . 366334) (-2915 . 366207) (-2916 . 365824) - (-2917 . 365620) (-2918 . 365313) (-2919 . 365244) (-2920 . 365189) - (-2921 . 365094) (-2922 . 365005) (-2923 . 363825) (-2924 . 363773) - (-2925 . 363476) (-2926 . 363423) (-2927 . 363331) (-2928 . 363266) - (-2929 . 363211) (-2930 . 363141) (-2931 . 363034) (-2932 . 362981) - (-2933 . 362858) (-2934 . 362742) (-2935 . 362650) (-2936 . 362277) - (-2937 . 362110) (-2938 . 361995) (-2939 . 361601) (-2940 . 361549) - (-2941 . 361405) (-2942 . 361292) (-2943 . 361206) (-2944 . 361070) - (-2945 . 360951) (-2946 . 360899) (-2947 . 360847) (-2948 . 360646) - (-2949 . 360591) (-2950 . 360420) (-2951 . 360322) (-2952 . 360185) - (-2953 . 360129) (-2954 . 360041) (-2955 . 359935) (-2956 . 359838) - (-2957 . 359714) (-2958 . 359547) (-2959 . 359279) (-2960 . 359053) - (-2961 . 358946) (-2962 . 358674) (-2963 . 358594) (-2964 . 358490) - (-2965 . 358309) (-2966 . 358191) (-2967 . 357958) (-2968 . 357767) - (-2969 . 357696) (-2970 . 357641) (-2971 . 357555) (-2972 . 357457) - (-2973 . 357262) (-2974 . 357188) (-2975 . 357053) (-2976 . 356873) - (-2977 . 356186) (-2978 . 356072) (-2979 . 355731) (-2980 . 355588) - (-2981 . 355481) (-2982 . 355284) (-2983 . 355174) (-2984 . 355108) - (-2985 . 355012) (-2986 . 354893) (-2987 . 354206) (-2988 . 354081) - (-2989 . 354003) (-2990 . 353931) (-2991 . 353860) (-2992 . 353641) - (-2993 . 353363) (-2994 . 353230) (-2995 . 353059) (-2996 . 352922) - (-2997 . 352732) (-2998 . 352661) (-2999 . 352569) (-3000 . 351994) - (-3001 . 351867) (-3002 . 351565) (-3003 . 351482) (-3004 . 351370) - (-3005 . 351028) (-3006 . 350824) (-3007 . 350664) (-3008 . 350540) - (-3009 . 350350) (-3010 . 350203) (-3011 . 350150) (-3012 . 349769) - (-3013 . 349194) (-3014 . 349040) (-3015 . 348740) (-3016 . 348641) - (-3017 . 348387) (-3018 . 348278) (-3019 . 348184) (-3020 . 348101) - (-3021 . 348035) (-3022 . 347460) (-3023 . 347382) (-3024 . 347354) - (-3025 . 347244) (-3026 . 346926) (-3027 . 346803) (-3028 . 346555) - (-3029 . 346505) (-3030 . 346419) (-3031 . 346391) (-3032 . 346238) - (-3033 . 345664) (-3034 . 345590) (-3035 . 345506) (-3036 . 345416) - (-3037 . 345312) (-3038 . 345138) (-3039 . 345070) (-3040 . 344496) - (-3041 . 344315) (-3042 . 344037) (-3043 . 343864) (-3044 . 343588) - (-3045 . 343451) (-3046 . 343283) (-3047 . 343231) (-3048 . 343158) - (-3049 . 343130) (-3050 . 343064) (-3051 . 342993) (-3052 . 342893) - (-3053 . 342746) (-3054 . 342172) (-3055 . 342071) (-3056 . 341883) - (-3057 . 341832) (-3058 . 341782) (-3059 . 341355) (-3060 . 341262) - (-3061 . 341126) (-3062 . 340581) (-3063 . 340377) (-3064 . 340345) - (-3065 . 339771) (-3066 . 339686) (-3067 . 339570) (-3068 . 339447) - (-3069 . 339154) (-3070 . 339072) (-3071 . 338955) (-3072 . 338792) - (-3073 . 338711) (-3074 . 338649) (-3075 . 338521) (-3076 . 338413) - (-3077 . 337839) (-3078 . 337769) (-3079 . 337684) (-3080 . 337551) - (-3081 . 330552) (-3082 . 330461) (-3083 . 330274) (-3084 . 330197) - (-3085 . 329979) (-3086 . 329824) (-3087 . 329519) (-3088 . 329309) - (-3089 . 329227) (-3090 . 328979) (-3091 . 328902) (-3092 . 328515) - (-3093 . 328438) (-3094 . 328329) (-3095 . 328241) (-3096 . 328088) - (-3097 . 327935) (-3098 . 327780) (-3099 . 327706) (-3100 . 327635) - (-3101 . 327586) (-3102 . 327498) (-3103 . 327446) (-3104 . 327256) - (-3105 . 326847) (-3106 . 326765) (-3107 . 326694) (-3108 . 326617) - (-3109 . 325332) (-3110 . 325217) (-3111 . 324725) (-3112 . 324582) - (-3113 . 323750) (-3114 . 323608) (-3115 . 322953) (-3116 . 322788) - (-3117 . 322722) (-3118 . 322655) (-3119 . 322621) (-3120 . 322414) - (-3121 . 322331) (-3122 . 322193) (-3123 . 322109) (-3124 . 321891) - (-3125 . 321782) (-3126 . 321676) (-3127 . 321599) (-3128 . 321415) - (-3129 . 321274) (-3130 . 321097) (-3131 . 320927) (-3132 . 320841) - (-3133 . 320698) (-3134 . 320596) (-3135 . 320386) (-3136 . 320277) - (-3137 . 320149) (-3138 . 320077) (-3139 . 319864) (-3140 . 319639) - (-3141 . 319460) (-3142 . 319426) (-3143 . 318840) (-3144 . 318678) - (-3145 . 318581) (-3146 . 318206) (-3147 . 317595) (-3148 . 317525) - (-3149 . 317447) (-3150 . 317323) (-3151 . 317148) (-3152 . 316952) - (-3153 . 316677) (-3154 . 316618) (-3155 . 316403) (-3156 . 316325) - (-3157 . 315518) (-3158 . 315294) (-3159 . 315153) (-3160 . 315116) - (-3161 . 314653) (-3162 . 314600) (-3163 . 314512) (-3164 . 314233) - (-3165 . 314126) (-3166 . 313989) (-3167 . 313810) (-3168 . 313366) - (-3169 . 312955) (-3170 . 311798) (-3171 . 311529) (-3172 . 311422) - (-3173 . 311306) (-3174 . 311172) (-3175 . 311050) (-3176 . 310915) - (-3177 . 310852) (-3178 . 310694) (-3179 . 310528) (-3180 . 310435) - (-3181 . 310322) (-3182 . 310138) (-3183 . 309964) (-3184 . 309817) - (-3185 . 309718) (-3186 . 309490) (-3187 . 309244) (-3188 . 309130) - (-3189 . 308987) (-3190 . 308834) (-3191 . 308507) (-3192 . 308283) - (-3193 . 308181) (-3194 . 307856) (-3195 . 307806) (-3196 . 307728) - (-3197 . 307419) (-3198 . 307271) (-3199 . 307119) (-3200 . 307087) - (-3201 . 306935) (-3202 . 306840) (-3203 . 306607) (-3204 . 306172) - (-3205 . 306042) (-3206 . 305923) (-3207 . 305837) (-3208 . 305665) - (-3209 . 305588) (-3210 . 305485) (-3211 . 305205) (-3212 . 305047) - (-3213 . 304995) (-3214 . 304888) (-3215 . 304784) (-3216 . 304710) - (-3217 . 304495) (-3218 . 303944) (-3219 . 303856) (-3220 . 303749) - (-3221 . 303648) (-3222 . 303577) (-3223 . 303391) (-3224 . 303305) - (-3225 . 303197) (-3226 . 303095) (-3227 . 303025) (-3228 . 302910) - (-3229 . 302860) (-3230 . 302685) (-3231 . 302431) (-3232 . 302352) - (-3233 . 301931) (-3234 . 301787) (-3235 . 301679) (-3236 . 301555) - (-3237 . 301420) (-3238 . 301368) (-3239 . 301284) (-3240 . 301038) - (-3241 . 300604) (-3242 . 300472) (-3243 . 300199) (-3244 . 299863) - (-3245 . 299554) (-3246 . 299494) (-3247 . 299298) (-3248 . 298988) - (-3249 . 298902) (-3250 . 298783) (-3251 . 298640) (-3252 . 298612) - (-3253 . 297844) (-3254 . 297667) (-3255 . 297539) (-3256 . 297461) - (-3257 . 297352) (-3258 . 296975) (-3259 . 296725) (-3260 . 296628) - (-3261 . 296486) (-3262 . 296340) (-3263 . 296267) (-3264 . 296141) - (-3265 . 295549) (-3266 . 295448) (-3267 . 295323) (-3268 . 295273) - (-3269 . 295027) (-3270 . 294789) (-3271 . 294533) (-3272 . 294368) - (-3273 . 294282) (-3274 . 294104) (-3275 . 294038) (-3276 . 293940) - (-3277 . 293871) (-3278 . 293728) (-3279 . 293557) (-3280 . 293484) - (-3281 . 293341) (-3282 . 292817) (** . 289728) (-3284 . 289597) - (-3285 . 289513) (-3286 . 289447) (-3287 . 289361) (-3288 . 289248) - (-3289 . 288788) (-3290 . 288722) (-3291 . 288371) (-3292 . 288343) - (-3293 . 288245) (-3294 . 288214) (-3295 . 288058) (-3296 . 287995) - (-3297 . 287936) (-3298 . 287791) (-3299 . 287695) (-3300 . 287274) - (-3301 . 287167) (-3302 . 287009) (-3303 . 286878) (-3304 . 286846) - (-3305 . 286395) (-3306 . 286317) (-3307 . 286264) (-3308 . 286191) - (-3309 . 286081) (-3310 . 285909) (-3311 . 285749) (-3312 . 285640) - (-3313 . 285571) (-3314 . 285483) (-3315 . 285309) (-3316 . 285101) - (-3317 . 284789) (-3318 . 284650) (-3319 . 284553) (-3320 . 284430) - (-3321 . 284227) (-3322 . 284121) (-3323 . 284003) (-3324 . 283869) - (-3325 . 283760) (-3326 . 283542) (-3327 . 283396) (-3328 . 283343) - (-3329 . 282989) (-3330 . 282840) (-3331 . 282787) (-3332 . 282710) - (-3333 . 282632) (-3334 . 282184) (-3335 . 281867) (-3336 . 281769) - (-3337 . 281648) (-3338 . 281261) (-3339 . 281105) (-3340 . 281053) - (-3341 . 279323) (-3342 . 279294) (-3343 . 278890) (-3344 . 278636) - (-3345 . 278607) (-3346 . 278533) (-3347 . 278303) (-3348 . 278206) - (-3349 . 278093) (-3350 . 277917) (-3351 . 277816) (-3352 . 277645) - (-3353 . 277508) (-3354 . 277435) (-3355 . 277186) (-3356 . 277000) - (-3357 . 276903) (-3358 . 276033) (-3359 . 275919) (-3360 . 275860) - (-3361 . 275685) (-3362 . 275599) (-3363 . 275440) (-3364 . 275384) - (-3365 . 275008) (-3366 . 274878) (-3367 . 274720) (-3368 . 274600) - (-3369 . 274390) (-3370 . 274309) (-3371 . 273812) (-3372 . 273756) - (-3373 . 273591) (-3374 . 273520) (-3375 . 273449) (-3376 . 273223) - (-3377 . 272777) (-3378 . 272582) (-3379 . 272215) (-3380 . 271965) - (-3381 . 271884) (-3382 . 271783) (-3383 . 271706) (-9 . 271678) - (-3385 . 271601) (-3386 . 271472) (-3387 . 271323) (-3388 . 271129) - (-3389 . 271075) (-3390 . 271002) (-3391 . 270849) (-3392 . 270705) - (-3393 . 270632) (-3394 . 270479) (-8 . 270451) (-3396 . 270394) - (-3397 . 270056) (-3398 . 269842) (-3399 . 269629) (-3400 . 269467) - (-3401 . 269389) (-3402 . 269260) (-3403 . 269192) (-3404 . 269025) - (-7 . 268997) (-3406 . 268895) (-3407 . 268801) (-3408 . 268706) - (-3409 . 268523) (-3410 . 268491) (-3411 . 268422) (-3412 . 268342) - (-3413 . 268249) (-3414 . 268166) (-3415 . 268050) (-3416 . 267947) - (-3417 . 267779) (-3418 . 267694) (-3419 . 267088) (-3420 . 266597) - (-3421 . 266312) (-3422 . 266260) (-3423 . 266055) (-3424 . 265954) - (-3425 . 265714) (-3426 . 265330) (-3427 . 265234) (-3428 . 265112) - (-3429 . 264964) (-3430 . 263752) (-3431 . 263623) (-3432 . 263527) - (-3433 . 263467) (-3434 . 263379) (-3435 . 263276) (-3436 . 263220) - (-3437 . 262356) (-3438 . 262297) (-3439 . 262156) (-3440 . 262034) - (-3441 . 261957) (-3442 . 261869) (-3443 . 261713) (-3444 . 261056) - (-3445 . 260986) (-3446 . 260873) (-3447 . 260810) (-3448 . 260425) - (-3449 . 260168) (-3450 . 259872) (-3451 . 259496) (-3452 . 259167) - (-3453 . 259086) (-3454 . 258917) (-3455 . 258850) (-3456 . 258572) - (-3457 . 258230) (-3458 . 257953) (-3459 . 257865) (-3460 . 257770) - (-3461 . 257708) (-3462 . 257350) (-3463 . 257187) (-3464 . 257107) - (-3465 . 256986) (-3466 . 256916) (-3467 . 256843) (-3468 . 256626) - (-3469 . 256574) (-3470 . 256020) (-3471 . 255961) (-3472 . 255867) - (-3473 . 254686) (-3474 . 254246) (-3475 . 254148) (-3476 . 253902) - (-3477 . 253841) (-3478 . 253742) (-3479 . 253670) (-3480 . 253364) - (-3481 . 253223) (-3482 . 253114) (-3483 . 253034) (-3484 . 252961) - (-3485 . 252826) (-3486 . 252623) (-3487 . 252551) (-3488 . 252393) - (-3489 . 252316) (-3490 . 252209) (-3491 . 252113) (-3492 . 251746) - (-3493 . 251543) (-3494 . 251514) (-3495 . 251459) (-3496 . 251268) - (-3497 . 251144) (-3498 . 250494) (-3499 . 250381) (-3500 . 250328) - (-3501 . 250106) (-3502 . 249698) (-3503 . 247920) (-3504 . 247690) - (-3505 . 247583) (-3506 . 247324) (-3507 . 247162) (-3508 . 246598) - (-3509 . 246546) (-3510 . 246338) (-3511 . 246086) (-3512 . 245793) - (-3513 . 245705) (-3514 . 245624) (-3515 . 245527) (-3516 . 245418) - (-3517 . 245201) (-3518 . 245014) (-3519 . 244863) (-3520 . 244611) - (-3521 . 244222) (-3522 . 244128) (-3523 . 243911) (-3524 . 243855) - (-3525 . 242845) (-3526 . 242632) (-3527 . 242553) (-3528 . 242476) - (-3529 . 242420) (-3530 . 242300) (-3531 . 242174) (-3532 . 242112) - (-3533 . 242057) (-3534 . 242004) (-3535 . 241837) (-3536 . 240535) - (-3537 . 240203) (-3538 . 240126) (-3539 . 240056) (-3540 . 239928) - (-3541 . 239789) (-3542 . 239690) (-3543 . 239575) (-3544 . 239541) - (-3545 . 239411) (-3546 . 239244) (-3547 . 239110) (-3548 . 238779) - (-3549 . 238635) (-3550 . 238436) (-3551 . 238276) (-3552 . 238123) - (-3553 . 237940) (-3554 . 237781) (-3555 . 237030) (-3556 . 236543) - (-3557 . 236377) (-3558 . 236270) (-3559 . 236166) (-3560 . 236080) - (-3561 . 235961) (-3562 . 235909) (-3563 . 235636) (-3564 . 235478) - (-3565 . 235384) (-3566 . 235231) (-3567 . 234991) (-3568 . 234905) - (-3569 . 234852) (-3570 . 234696) (-3571 . 234583) (-3572 . 234394) - (-3573 . 234205) (-3574 . 234101) (-3575 . 234042) (-3576 . 233899) - (-3577 . 233810) (-3578 . 233626) (-3579 . 232993) (-3580 . 232850) - (-3581 . 232715) (-3582 . 232200) (-3583 . 232056) (-3584 . 231945) - (-3585 . 231653) (-3586 . 231569) (-3587 . 231267) (-3588 . 231181) - (-3589 . 231093) (-3590 . 230742) (-3591 . 230627) (-3592 . 230509) - (-3593 . 230437) (-3594 . 230304) (-3595 . 230232) (-3596 . 229962) - (-3597 . 229893) (-3598 . 229695) (-3599 . 229640) (-3600 . 229368) - (-3601 . 229295) (-3602 . 229181) (-3603 . 229118) (-3604 . 229011) - (-3605 . 228857) (-3606 . 228679) (-3607 . 228620) (-3608 . 228196) - (-3609 . 227903) (-3610 . 227301) (-3611 . 227183) (-3612 . 226960) - (-3613 . 226603) (-3614 . 226554) (-3615 . 226442) (-3616 . 226335) - (-3617 . 226205) (-3618 . 226097) (-3619 . 225953) (-3620 . 225646) - (-3621 . 225545) (-3622 . 225349) (-3623 . 225221) (-3624 . 225193) - (-3625 . 225127) (-3626 . 224969) (-3627 . 224690) (-3628 . 224442) - (-3629 . 224354) (-3630 . 224256) (-3631 . 224168) (-3632 . 224116) - (-3633 . 223857) (-3634 . 223720) (-3635 . 223525) (-3636 . 223425) - (-3637 . 223207) (-3638 . 223127) (-3639 . 223044) (-3640 . 222566) - (-3641 . 221892) (-3642 . 221826) (-3643 . 221641) (-3644 . 221514) - (-3645 . 221392) (-3646 . 221208) (-3647 . 220916) (-3648 . 220617) - (-3649 . 219957) (-3650 . 219835) (-3651 . 219616) (-3652 . 219349) - (-3653 . 219138) (-3654 . 219051) (-3655 . 218927) (-3656 . 218754) - (-3657 . 218681) (-3658 . 218563) (-3659 . 218482) (-3660 . 218416) - (-3661 . 218343) (-3662 . 218088) (-3663 . 218032) (-3664 . 217998) - (-3665 . 217941) (-3666 . 217890) (-3667 . 217500) (-3668 . 217157) - (-3669 . 216632) (-3670 . 216528) (-3671 . 216370) (-3672 . 214402) - (-3673 . 214068) (-3674 . 213315) (-3675 . 213117) (-3676 . 212954) - (-3677 . 212805) (-3678 . 212673) (-3679 . 212482) (-3680 . 212255) - (-3681 . 212203) (-3682 . 212137) (-3683 . 211052) (-3684 . 210795) - (-3685 . 210571) (-3686 . 210455) (-3687 . 210403) (-3688 . 210306) - (-3689 . 210233) (-3690 . 210177) (-3691 . 209845) (-3692 . 209668) - (-3693 . 209387) (-3694 . 209336) (-3695 . 209281) (-3696 . 209227) - (-3697 . 209061) (-3698 . 208898) (-3699 . 208771) (-3700 . 208712) - (-3701 . 208394) (-3702 . 208309) (-3703 . 208118) (-3704 . 208004) - (-3705 . 207627) (-3706 . 207535) (-3707 . 207405) (-3708 . 207298) - (-3709 . 207197) (-3710 . 207144) (-3711 . 207070) (-3712 . 206934) - (-3713 . 206828) (-3714 . 206694) (-3715 . 206579) (-3716 . 206464) - (-3717 . 206358) (-3718 . 206140) (-3719 . 206046) (-3720 . 205724) - (-3721 . 205674) (-3722 . 205343) (-3723 . 205200) (-3724 . 205122) - (-3725 . 204919) (-3726 . 204796) (-3727 . 204744) (-3728 . 204606) - (-3729 . 203863) (-3730 . 203738) (-3731 . 203623) (-3732 . 203336) - (-3733 . 203093) (-3734 . 203036) (-3735 . 202967) (-3736 . 202849) - (-3737 . 202641) (-3738 . 202528) (-3739 . 202319) (-3740 . 202181) - (-3741 . 202115) (-3742 . 202010) (-3743 . 201930) (-3744 . 201830) - (-3745 . 201758) (-3746 . 201698) (-3747 . 201593) (-3748 . 201395) - (-3749 . 201281) (-3750 . 201082) (-3751 . 201005) (-3752 . 200674) - (-3753 . 200536) (-3754 . 200453) (-3755 . 200373) (-3756 . 200264) - (-3757 . 200012) (-3758 . 198435) (-3759 . 198220) (-3760 . 198132) - (-3761 . 197911) (-3762 . 197616) (-3763 . 197470) (-3764 . 196960) - (-3765 . 196872) (-3766 . 196782) (-3767 . 196725) (-3768 . 196696) - (-3769 . 196583) (-3770 . 196511) (-3771 . 196312) (-3772 . 196217) - (-3773 . 196113) (-3774 . 196047) (-3775 . 195949) (-3776 . 195863) - (-3777 . 195740) (-3778 . 195587) (-3779 . 195329) (-3780 . 195279) - (-3781 . 195177) (-3782 . 194965) (-3783 . 194909) (-3784 . 194772) - (-3785 . 194510) (-3786 . 194369) (-3787 . 194299) (-3788 . 193026) - (-3789 . 192153) (-3790 . 192070) (-3791 . 191990) (-3792 . 191661) - (-3793 . 191472) (-3794 . 191314) (-3795 . 191180) (-3796 . 191107) - (-3797 . 191041) (-3798 . 190945) (-3799 . 190890) (-3800 . 190818) - (-3801 . 190744) (-3802 . 190596) (-3803 . 190444) (-3804 . 190303) - (-3805 . 189505) (-3806 . 189382) (-3807 . 189284) (-3808 . 189193) - (-3809 . 189086) (-3810 . 188964) (-3811 . 188867) (-3812 . 188751) - (-3813 . 188649) (-3814 . 187885) (-3815 . 187816) (-3816 . 187715) - (-3817 . 187588) (-3818 . 187343) (-3819 . 187030) (-3820 . 186855) - (-3821 . 185968) (-3822 . 185822) (-3823 . 185276) (-3824 . 185220) - (-3825 . 185040) (-3826 . 184969) (-3827 . 184786) (-3828 . 184744) - (-3829 . 184448) (-3830 . 184103) (-3831 . 183897) (-3832 . 183788) - (-3833 . 183732) (-3834 . 183442) (-3835 . 183379) (-3836 . 183091) - (-3837 . 182817) (-3838 . 182635) (-3839 . 182556) (-3840 . 182129) - (-3841 . 182002) (-3842 . 181886) (-3843 . 181798) (-3844 . 179942) - (-3845 . 179550) (-3846 . 179489) (-3847 . 179433) (-3848 . 179381) - (-3849 . 179287) (-3850 . 179189) (-3851 . 178937) (-3852 . 178627) - (-3853 . 178544) (-3854 . 177831) (-3855 . 177583) (-3856 . 177500) - (-3857 . 177420) (-3858 . 177305) (-3859 . 177198) (-3860 . 177049) - (-3861 . 176982) (-3862 . 176923) (-3863 . 176748) (-3864 . 176719) - (-3865 . 176598) (-3866 . 176346) (-3867 . 176312) (-3868 . 176259) - (-3869 . 176204) (-3870 . 176104) (-3871 . 175995) (-3872 . 175902) - (-3873 . 175761) (-3874 . 175643) (-3875 . 175498) (-3876 . 175287) - (-3877 . 175157) (-3878 . 175007) (-3879 . 174955) (-3880 . 174769) - (-3881 . 174639) (-3882 . 174573) (-3883 . 174545) (-3884 . 174227) - (-3885 . 174174) (-3886 . 174072) (-3887 . 173836) (-3888 . 164274) - (-3889 . 164240) (-3890 . 164163) (-3891 . 164062) (-3892 . 164009) - (-3893 . 163980) (-3894 . 163922) (-3895 . 163869) (-3896 . 163800) - (-3897 . 163714) (-3898 . 163661) (-3899 . 163574) (-3900 . 163434) - (-3901 . 163276) (-3902 . 163224) (-3903 . 163136) (-3904 . 163026) - (-3905 . 162627) (-3906 . 162376) (-3907 . 162258) (-3908 . 162192) - (-3909 . 162090) (-3910 . 162006) (-3911 . 161940) (-3912 . 161330) - (-3913 . 160513) (-3914 . 160291) (-3915 . 160213) (-3916 . 159616) - (-3917 . 159453) (-3918 . 159401) (-3919 . 159151) (-3920 . 158996) - (-3921 . 158919) (-3922 . 158866) (-3923 . 158740) (-3924 . 158620) - (-3925 . 158502) (-3926 . 158419) (-3927 . 158299) (-3928 . 158226) - (-3929 . 158083) (-3930 . 158052) (-3931 . 157936) (-3932 . 157843) - (-3933 . 157765) (-3934 . 157698) (-3935 . 157589) (-3936 . 157444) - (-3937 . 157210) (-3938 . 157133) (-3939 . 156892) (-3940 . 156815) - (-3941 . 156599) (-3942 . 156505) (-3943 . 156426) (-3944 . 154994) - (-3945 . 154735) (-3946 . 154633) (-3947 . 154605) (-3948 . 154552) - (-3949 . 154435) (-3950 . 154204) (-3951 . 153990) (-3952 . 153416) - (-3953 . 153261) (-3954 . 153227) (-3955 . 153060) (-3956 . 152954) - (-3957 . 152712) (-3958 . 152659) (-3959 . 152559) (-3960 . 147221) - (-3961 . 146768) (-3962 . 146715) (-3963 . 146649) (-3964 . 146340) - (-3965 . 146203) (-3966 . 146095) (-3967 . 145856) (-3968 . 145638) - (-3969 . 145127) (-3970 . 145053) (-3971 . 144979) (-3972 . 144884) - (-3973 . 144694) (-3974 . 144580) (-3975 . 144450) (-3976 . 144199) - (-3977 . 144019) (-3978 . 143821) (-3979 . 143764) (-3980 . 143712) - (-3981 . 143437) (-3982 . 143251) (-3983 . 143195) (-3984 . 143107) - (-3985 . 143036) (-3986 . 142970) (-3987 . 142908) (-3988 . 142813) - (-3989 . 142706) (-3990 . 142623) (-3991 . 141783) (-3992 . 141713) - (-3993 . 141476) (-3994 . 141417) (-3995 . 141335) (-3996 . 140953) - (-3997 . 140760) (-3998 . 140615) (-3999 . 140241) (-4000 . 140018) - (-4001 . 139966) (-4002 . 139811) (-4003 . 139667) (-4004 . 139590) - (-4005 . 139502) (-4006 . 139216) (-4007 . 139112) (-4008 . 139035) - (-4009 . 138920) (-4010 . 138698) (-4011 . 138524) (-4012 . 138471) - (-4013 . 138181) (-4014 . 138028) (-4015 . 137945) (-4016 . 137849) - (-4017 . 137730) (-4018 . 137650) (-4019 . 137547) (-4020 . 137211) - (-4021 . 137067) (-4022 . 136990) (-4023 . 136791) (-4024 . 136738) - (-4025 . 136129) (-4026 . 135791) (-4027 . 135497) (-4028 . 135352) - (-4029 . 133190) (-4030 . 133135) (-4031 . 132961) (-4032 . 132834) - (-4033 . 132751) (-4034 . 132593) (-4035 . 132486) (-4036 . 132389) - (-4037 . 132217) (-4038 . 132157) (-4039 . 131979) (-4040 . 131908) - (-4041 . 131821) (-4042 . 131766) (-4043 . 131193) (-4044 . 131086) - (-4045 . 131030) (-4046 . 130774) (-4047 . 130680) (-4048 . 126138) - (-4049 . 126055) (-12 . 125883) (-4051 . 125701) (-4052 . 125509) - (-4053 . 106795) (-4054 . 106577) (-4055 . 106381) (-4056 . 106329) - (-4057 . 106185) (-4058 . 105843) (-4059 . 105752) (-4060 . 105386) - (-4061 . 105187) (-4062 . 105135) (-4063 . 104434) (-4064 . 101613) - (-4065 . 101510) (-4066 . 101426) (-4067 . 101352) (-4068 . 101287) - (-4069 . 100996) (-4070 . 100916) (-4071 . 100833) (-4072 . 100498) - (-4073 . 100446) (-4074 . 99705) (-4075 . 99646) (-4076 . 99578) - (-4077 . 99191) (-4078 . 99052) (-4079 . 98374) (-4080 . 98322) - (-4081 . 98267) (-4082 . 98124) (-4083 . 98030) (-4084 . 97771) - (-4085 . 97737) (-4086 . 97577) (-4087 . 96836) (-4088 . 96647) - (-4089 . 96306) (-4090 . 96218) (-4091 . 96105) (-4092 . 96027) - (-4093 . 95867) (-4094 . 95769) (-4095 . 95651) (-4096 . 95336) - (-4097 . 95089) (-4098 . 94401) (-4099 . 94282) (-4100 . 94017) - (-4101 . 93899) (-4102 . 93847) (-4103 . 93309) (-4104 . 93202) - (-4105 . 93021) (-4106 . 92953) (-4107 . 92879) (-4108 . 92303) - (-4109 . 92250) (-4110 . 91842) (-4111 . 91787) (-4112 . 91708) - (-4113 . 91601) (-4114 . 91548) (-4115 . 91202) (-4116 . 91174) - (-4117 . 91089) (-4118 . 91037) (-4119 . 90921) (-4120 . 90345) - (-4121 . 90152) (-4122 . 90124) (-4123 . 89935) (-4124 . 89747) - (-4125 . 89124) (-4126 . 88871) (-4127 . 88785) (-4128 . 88535) - (-4129 . 88449) (-4130 . 87873) (-4131 . 87799) (-4132 . 87747) - (-4133 . 87662) (-4134 . 87524) (-4135 . 87422) (-4136 . 87303) - (-4137 . 87272) (-4138 . 87184) (-4139 . 86498) (-4140 . 86446) - (-4141 . 86139) (-4142 . 85920) (-4143 . 85846) (-4144 . 85544) - (-4145 . 85512) (-4146 . 85424) (-4147 . 85163) (-4148 . 85047) - (-4149 . 84907) (-4150 . 84706) (-4151 . 84020) (-4152 . 69906) - (-4153 . 69819) (* . 65273) (-4155 . 61210) (-4156 . 61066) - (-4157 . 60908) (-4158 . 60871) (-4159 . 60812) (-4160 . 60760) - (-4161 . 60630) (-4162 . 60229) (-4163 . 60176) (-4164 . 60148) - (-4165 . 59399) (-4166 . 59365) (-4167 . 59282) (-4168 . 58764) - (-4169 . 57804) (-4170 . 55953) (-4171 . 55901) (-4172 . 55739) - (-4173 . 55464) (-4174 . 55332) (-4175 . 54758) (-4176 . 54655) - (-4177 . 54374) (-4178 . 54288) (-4179 . 54181) (-4180 . 53987) - (-4181 . 53938) (-4182 . 53882) (-4183 . 53308) (-4184 . 53205) - (-4185 . 53104) (-4186 . 52835) (-4187 . 52673) (-4188 . 52577) - (-4189 . 52428) (-4190 . 52142) (-4191 . 51728) (-4192 . 51224) - (-4193 . 51101) (-4194 . 51016) (-4195 . 50442) (-4196 . 50061) - (-4197 . 49947) (-4198 . 49803) (-4199 . 47458) (-4200 . 46154) - (-4201 . 46056) (-4202 . 45972) (-4203 . 45631) (-4204 . 45413) - (-4205 . 45279) (-4206 . 44592) (-4207 . 44507) (-4208 . 40841) - (-4209 . 40513) (-4210 . 39861) (-4211 . 39059) (-4212 . 38957) - (-4213 . 38862) (-4214 . 38623) (-4215 . 38519) (-4216 . 38427) - (-4217 . 38339) (-4218 . 38232) (-4219 . 38074) (-4220 . 37747) - (-4221 . 37389) (-4222 . 37097) (-4223 . 36805) (-4224 . 36752) - (-4225 . 36643) (-4226 . 36614) (-4227 . 36411) (-4228 . 36223) - (-4229 . 36105) (-4230 . 35941) (-4231 . 35820) (-4232 . 35525) - (-4233 . 35251) (-4234 . 35195) (-4235 . 35167) (-4236 . 35079) - (-4237 . 34817) (-4238 . 34661) (-4239 . 34510) (-4240 . 34379) - (-4241 . 34089) (-4242 . 33964) (-4243 . 33890) (-4244 . 33308) - (-4245 . 33241) (-4246 . 33049) (-4247 . 32831) (-4248 . 30973) - (-4249 . 30866) (-4250 . 30706) (-4251 . 30617) (-4252 . 30502) - (-4253 . 30382) (-4254 . 30214) (-4255 . 30164) (-4256 . 30073) - (-4257 . 29722) (-4258 . 29545) (-4259 . 29060) (-4260 . 28969) - (-4261 . 28727) (-4262 . 28661) (-4263 . 28562) (-4264 . 28488) - (-4265 . 27967) (-4266 . 27843) (-4267 . 27764) (-4268 . 27618) - (-4269 . 27516) (-4270 . 26441) (-4271 . 26371) (-4272 . 26071) - (-4273 . 25930) (-4274 . 25831) (-4275 . 25757) (-4276 . 25636) - (-4277 . 25604) (-4278 . 25506) (-4279 . 25226) (-4280 . 25120) - (-4281 . 24906) (-4282 . 24808) (-4283 . 24751) (-4284 . 24702) - (-4285 . 24564) (-4286 . 24530) (-4287 . 24287) (-4288 . 24192) - (-4289 . 24122) (-4290 . 24070) (-4291 . 23204) (-4292 . 23031) - (-4293 . 22876) (-4294 . 22803) (-4295 . 22601) (-4296 . 22541) - (-4297 . 22411) (-4298 . 22268) (-4299 . 22210) (-4300 . 22009) - (-4301 . 21856) (-4302 . 21695) (-4303 . 21642) (-4304 . 21275) - (-4305 . 21225) (-4306 . 21153) (-4307 . 21101) (-4308 . 20982) - (-4309 . 20824) (-4310 . 20635) (-4311 . 20579) (-4312 . 20436) - (-4313 . 20356) (-4314 . 20184) (-4315 . 20133) (-4316 . 18935) - (-4317 . 18816) (-4318 . 18250) (-4319 . 18178) (-4320 . 18119) - (-4321 . 17974) (-4322 . 17804) (-4323 . 13644) (-4324 . 13610) - (-4325 . 13311) (-4326 . 13139) (-4327 . 13024) (-4328 . 12882) - (-4329 . 12716) (-4330 . 12150) (-4331 . 11936) (-4332 . 11884) - (-4333 . 11743) (-4334 . 11664) (-4335 . 11530) (-4336 . 11474) - (-4337 . 11393) (-4338 . 11221) (-4339 . 10781) (-4340 . 10046) - (-4341 . 9807) (-4342 . 9474) (-4343 . 9400) (-4344 . 9350) - (-4345 . 9104) (-4346 . 8368) (-4347 . 8229) (-4348 . 8057) - (-4349 . 8005) (-4350 . 7802) (-4351 . 7744) (-4352 . 7414) - (-4353 . 7326) (-4354 . 6934) (-4355 . 6840) (-4356 . 6721) - (-4357 . 6622) (-4358 . 6537) (-4359 . 6356) (-4360 . 6296) - (-4361 . 6123) (-4362 . 6037) (-4363 . 4254) (-4364 . 4195) - (-4365 . 4058) (-4366 . 2820) (-4367 . 2582) (-4368 . 2468) - (-4369 . 2236) (-4370 . 2078) (-4371 . 1925) (-4372 . 1873) - (-4373 . 1765) (-4374 . 1598) (-4375 . 1458) (-4376 . 1238) - (-4377 . 1124) (-4378 . 1040) (-4379 . 911) (-4380 . 883) - (-4381 . 753) (-4382 . 619) (-4383 . 30))
\ No newline at end of file + (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)) + (-4 *2 (-452)))) + ((*1 *1 *1) + (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1212)) (-4 *3 (-1233 *2)) + (-4 *4 (-1233 (-407 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-452)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) + (-4 *2 (-846)) (-4 *3 (-452)))) + ((*1 *1 *1) + (-12 (-4 *1 (-945 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) + (-4 *4 (-846)) (-4 *2 (-452)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-307)) (-4 *3 (-555)) (-5 *1 (-1156 *3 *2)) + (-4 *2 (-1233 *3))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-418 *3)) (-4 *3 (-555))))) +(((*1 *1 *1 *1 *1 *2) + (-12 (-5 *2 (-767)) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) + (-4 *4 (-789)) (-4 *5 (-846)) (-4 *3 (-555))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-917)) (-5 *4 (-418 *6)) (-4 *6 (-1233 *5)) + (-4 *5 (-1045)) (-5 *2 (-640 *6)) (-5 *1 (-444 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-640 *5) *6)) + (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *6 (-1233 *5)) + (-5 *2 (-640 (-2 (|:| -2669 *5) (|:| -1420 *3)))) + (-5 *1 (-805 *5 *6 *3 *7)) (-4 *3 (-651 *6)) + (-4 *7 (-651 (-407 *6)))))) +(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1212)) (-4 *3 (-1233 *4)) + (-4 *5 (-1233 (-407 *3))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) + (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) + (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-555)) (-4 *3 (-1045)) + (-5 *2 (-2 (|:| -3490 *1) (|:| -1972 *1))) (-4 *1 (-848 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-555)) (-4 *5 (-1045)) + (-5 *2 (-2 (|:| -3490 *3) (|:| -1972 *3))) (-5 *1 (-849 *5 *3)) + (-4 *3 (-848 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3368 *4)))) + (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-1093)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *2) + (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1249 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) + (-14 *4 *2)))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 + *7 *3 *8) + (-12 (-5 *5 (-684 (-225))) (-5 *6 (-112)) (-5 *7 (-684 (-563))) + (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS)))) + (-5 *3 (-563)) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-749))))) +((-1290 . 735440) (-1291 . 735267) (-1292 . 735124) (-1293 . 734838) + (-1294 . 734455) (-1295 . 734350) (-1296 . 734096) (-1297 . 733959) + (-1298 . 733822) (-1299 . 733749) (-1300 . 733154) (-1301 . 733096) + (-1302 . 733024) (-1303 . 732429) (-1304 . 732400) (-1305 . 732260) + (-1306 . 732013) (-1307 . 731905) (-1308 . 731770) (-1309 . 731742) + (-1310 . 731652) (-1311 . 731078) (-1312 . 730960) (-1313 . 730759) + (-1314 . 730603) (-1315 . 730433) (-1316 . 730359) (-1317 . 730256) + (-1318 . 730017) (-1319 . 729967) (-1320 . 729935) (-1321 . 729405) + (-1322 . 729324) (-1323 . 729171) (-1324 . 729034) (-1325 . 728862) + (-1326 . 728424) (-1327 . 728194) (-1328 . 728141) (-1329 . 727923) + (-1330 . 727872) (-1331 . 727806) (-1332 . 727682) (-1333 . 727626) + (-1334 . 727465) (-1335 . 726933) (-1336 . 726761) (-1337 . 726250) + (-1338 . 726158) (-1339 . 726063) (-1340 . 725990) (-1341 . 725603) + (-1342 . 725550) (-1343 . 725443) (-1344 . 725391) (-1345 . 725219) + (-1346 . 724948) (-1347 . 724874) (-1348 . 724842) (-1349 . 724635) + (-1350 . 724476) (-1351 . 724221) (-1352 . 723854) (-1353 . 723725) + (-1354 . 723629) (-1355 . 723528) (-1356 . 723356) (-1357 . 723282) + (-1358 . 723210) (-1359 . 723124) (-1360 . 723068) (-1361 . 723031) + (-1362 . 722981) (-1363 . 722907) (-1364 . 722821) (-1365 . 722750) + (-1366 . 722623) (-1367 . 722528) (-1368 . 722212) (-1369 . 722140) + (-1370 . 722087) (-1371 . 722015) (-1372 . 721891) (-1373 . 721705) + (-1374 . 721360) (-1375 . 721265) (-1376 . 721075) (-1377 . 720884) + (-1378 . 720814) (-1379 . 720518) (-1380 . 720044) (-1381 . 719992) + (-1382 . 719813) (-1383 . 719727) (-1384 . 719618) (-1385 . 719421) + (-1386 . 719307) (-1387 . 719187) (-1388 . 718891) (-1389 . 718763) + (-1390 . 718680) (-1391 . 718561) (-1392 . 718475) (-1393 . 718256) + (-1394 . 718048) (-1395 . 717940) (-1396 . 717810) (-1397 . 717717) + (-1398 . 717634) (-1399 . 717495) (-1400 . 716861) (-1401 . 716753) + (-1402 . 716595) (-1403 . 715919) (-1404 . 715818) (-1405 . 715716) + (-1406 . 715603) (-1407 . 715457) (-1408 . 715346) (-1409 . 715174) + (-1410 . 715075) (-1411 . 714836) (-1412 . 714741) (-1413 . 714683) + (-1414 . 714494) (-1415 . 714309) (-1416 . 714239) (-1417 . 713817) + (-1418 . 713725) (-1419 . 713477) (-1420 . 713321) (-1421 . 713163) + (-1422 . 713111) (-1423 . 712996) (-1424 . 712877) (-1425 . 712821) + (-1426 . 712768) (-1427 . 712653) (-1428 . 712565) (-1429 . 712482) + (-1430 . 712411) (-1431 . 712310) (-1432 . 712203) (-1433 . 712169) + (-1434 . 712027) (-1435 . 711640) (-1436 . 711560) (-1437 . 711480) + (-1438 . 711409) (-1439 . 711359) (-1440 . 711006) (-1441 . 709936) + (-1442 . 709777) (-1443 . 709704) (-1444 . 709649) (-1445 . 709519) + (-1446 . 709461) (-1447 . 709355) (-1448 . 709101) (-1449 . 709016) + (-1450 . 708959) (-1451 . 708844) (-1452 . 708664) (-1453 . 708530) + (-1454 . 708477) (-1455 . 708315) (-1456 . 708051) (-1457 . 707972) + (-1458 . 707851) (-1459 . 707252) (-1460 . 707145) (-1461 . 707015) + (-1462 . 706929) (-1463 . 706175) (-1464 . 706098) (-1465 . 706030) + (-1466 . 705975) (-1467 . 705644) (-1468 . 705044) (-1469 . 704948) + (-1470 . 704763) (-1471 . 704342) (-1472 . 704211) (-1473 . 704062) + (-1474 . 703988) (-1475 . 703826) (-1476 . 703682) (-1477 . 703475) + (-1478 . 703326) (-1479 . 702983) (-1480 . 702882) (-1481 . 702508) + (-1482 . 702364) (-1483 . 702206) (-1484 . 702139) (-1485 . 702022) + (-1486 . 701836) (-1487 . 701637) (-1488 . 701585) (-1489 . 701397) + (-1490 . 701111) (-1491 . 700973) (-1492 . 700887) (-1493 . 700780) + (-1494 . 700672) (-1495 . 700628) (-1496 . 700569) (-1497 . 700510) + (-1498 . 700350) (-1499 . 699936) (-1500 . 699717) (-1501 . 699562) + (-1502 . 699368) (-1503 . 699265) (-1504 . 699141) (-1505 . 698885) + (-1506 . 698740) (-1507 . 698711) (-1508 . 698638) (-1509 . 698577) + (-1510 . 698283) (-1511 . 698130) (-1512 . 698007) (-1513 . 697925) + (-1514 . 697804) (-1515 . 697646) (-1516 . 697200) (-1517 . 697103) + (-1518 . 696999) (-1519 . 696864) (-1520 . 696683) (-1521 . 696649) + (-1522 . 696466) (-1523 . 696392) (-1524 . 696336) (-1525 . 696042) + (-1526 . 695957) (-1527 . 695905) (-1528 . 695653) (-1529 . 695426) + (-1530 . 694997) (-1531 . 694613) (-1532 . 694561) (-1533 . 694509) + (-1534 . 694475) (-1535 . 694329) (-1536 . 694170) (-1537 . 694118) + (-1538 . 693950) (-1539 . 693569) (-1540 . 689571) (-1541 . 688976) + (-1542 . 688867) (-1543 . 688783) (-1544 . 688749) (-1545 . 688640) + (-1546 . 688575) (-1547 . 688461) (-1548 . 688218) (-1549 . 687467) + (-1550 . 687252) (-1551 . 687136) (-1552 . 686934) (-1553 . 686490) + (-1554 . 686325) (-1555 . 685967) (-1556 . 685887) (-1557 . 685453) + (-1558 . 685402) (-1559 . 685349) (-1560 . 685263) (-1561 . 685119) + (-1562 . 685020) (-1563 . 684854) (-1564 . 684773) (-1565 . 684703) + (-1566 . 683933) (-1567 . 682752) (-1568 . 682620) (-1569 . 682490) + (-1570 . 682435) (-1571 . 681270) (-1572 . 681219) (-1573 . 681136) + (-1574 . 681038) (-1575 . 680986) (-1576 . 680879) (-1577 . 680789) + (-1578 . 680583) (-1579 . 680512) (-1580 . 680434) (-1581 . 680161) + (-1582 . 680060) (-1583 . 679960) (-1584 . 679831) (-1585 . 679760) + (-1586 . 679616) (-1587 . 679468) (-1588 . 679364) (-1589 . 679300) + (-1590 . 679216) (-1591 . 679002) (-1592 . 678932) (-1593 . 678804) + (-1594 . 678468) (-1595 . 678409) (-1596 . 678300) (-1597 . 677559) + (-1598 . 677446) (-1599 . 677360) (-1600 . 676838) (-1601 . 676497) + (-1602 . 676182) (-1603 . 676075) (-1604 . 676022) (-1605 . 675713) + (-1606 . 675387) (-1607 . 675294) (-1608 . 674553) (-1609 . 674467) + (-1610 . 674439) (-1611 . 674320) (-1612 . 674102) (-1613 . 674002) + (-1614 . 673933) (-1615 . 673873) (-1616 . 673764) (-1617 . 673588) + (-1618 . 673447) (-1619 . 672759) (-1620 . 672709) (-1621 . 672657) + (-1622 . 672211) (-1623 . 672077) (-1624 . 671975) (-1625 . 671903) + (-1626 . 671742) (-1627 . 671546) (-1628 . 671493) (-1629 . 671375) + (-1630 . 670799) (-1631 . 670597) (-1632 . 670439) (-1633 . 670069) + (-1634 . 669984) (-1635 . 669922) (-1636 . 669674) (-1637 . 669590) + (-1638 . 669502) (-1639 . 669357) (-1640 . 669047) (-1641 . 668884) + (-1642 . 668453) (-1643 . 667877) (-1644 . 667549) (-1645 . 667319) + (-1646 . 667225) (-1647 . 667124) (-1648 . 667015) (-1649 . 666797) + (-1650 . 666689) (-1651 . 666582) (-1652 . 666496) (-1653 . 666424) + (-1654 . 665943) (-1655 . 665732) (-1656 . 665156) (-1657 . 664991) + (-1658 . 664838) (-1659 . 664778) (-1660 . 664126) (-1661 . 664057) + (-1662 . 663347) (-1663 . 663276) (-1664 . 663157) (-1665 . 663027) + (-1666 . 662947) (-1667 . 662261) (-1668 . 662154) (-1669 . 662068) + (-1670 . 661620) (-1671 . 661526) (-1672 . 660724) (-1673 . 660641) + (-1674 . 660588) (-1675 . 659727) (-1676 . 659584) (-1677 . 659497) + (-1678 . 659386) (-1679 . 659236) (-1680 . 658550) (-1681 . 658448) + (-1682 . 658168) (-1683 . 658115) (-1684 . 657897) (-1685 . 657405) + (-1686 . 657067) (-1687 . 657015) (-1688 . 656987) (-1689 . 656958) + (-1690 . 656834) (-1691 . 656184) (-1692 . 655993) (-1693 . 637279) + (-1694 . 637160) (-1695 . 636411) (-1696 . 636316) (-1697 . 636166) + (-1698 . 636010) (-1699 . 635898) (-1700 . 635788) (-1701 . 635450) + (-1702 . 635211) (-1703 . 635034) (-1704 . 634848) (-1705 . 634720) + (-1706 . 634580) (-1707 . 631759) (-1708 . 631666) (-1709 . 631427) + (-1710 . 630853) (-1711 . 630769) (-1712 . 630613) (-1713 . 630500) + (-1714 . 630261) (-1715 . 630008) (-1716 . 629830) (-1717 . 629751) + (-1718 . 629479) (-1719 . 629351) (-1720 . 629221) (-1721 . 629086) + (-1722 . 628512) (-1723 . 628413) (-1724 . 628309) (-1725 . 628120) + (-1726 . 628092) (-1727 . 627988) (-1728 . 627910) (-1729 . 627594) + (-1730 . 627521) (-1731 . 627469) (-1732 . 627403) (-1733 . 626977) + (-1734 . 626788) (-1735 . 626214) (-1736 . 626126) (-1737 . 625487) + (-1738 . 625424) (-1739 . 625358) (-1740 . 624714) (-1741 . 624396) + (-1742 . 623853) (-1743 . 623799) (-1744 . 623568) (-1745 . 623459) + (-1746 . 623431) (-1747 . 623206) (-1748 . 622519) (-1749 . 622463) + (-1750 . 622359) (-1751 . 622215) (-1752 . 622108) (-1753 . 621843) + (-1754 . 621738) (-1755 . 621361) (-1756 . 621274) (-1757 . 620956) + (-1758 . 620568) (-1759 . 619881) (-1760 . 619650) (-1761 . 619555) + (-1762 . 619496) (-1763 . 619338) (-1764 . 619256) (-1765 . 619161) + (-1766 . 618911) (-1767 . 618858) (-1768 . 618699) (-1769 . 618597) + (-1770 . 618520) (-1771 . 617833) (-1772 . 617694) (-1773 . 617666) + (-1774 . 617523) (-1775 . 617231) (-1776 . 616753) (-1777 . 616475) + (-1778 . 616388) (-1779 . 616145) (-1780 . 616048) (-1781 . 615943) + (-1782 . 615707) (-1783 . 615537) (-1784 . 614962) (-1785 . 614906) + (-1786 . 614817) (-1787 . 614739) (-1788 . 614447) (-1789 . 614289) + (-1790 . 614152) (-1791 . 614010) (-1792 . 613903) (-1793 . 604341) + (-1794 . 603766) (-1795 . 603713) (-1796 . 603560) (-1797 . 603507) + (-1798 . 603323) (-1799 . 603270) (-1800 . 603188) (-1801 . 603065) + (-1802 . 602962) (-1803 . 602816) (-1804 . 602782) (-1805 . 602602) + (-1806 . 602027) (-1807 . 601620) (-1808 . 601509) (-1809 . 600876) + (-1810 . 600767) (-1811 . 600641) (-1812 . 598226) (-1813 . 598076) + (-1814 . 596890) (-1815 . 596723) (-1816 . 596646) (-1817 . 596072) + (-1818 . 594776) (-1819 . 594723) (-1820 . 594664) (-1821 . 594521) + (-1822 . 594492) (-1823 . 594321) (-1824 . 594126) (-1825 . 594025) + (-1826 . 592843) (-1827 . 592783) (-1828 . 592682) (-1829 . 592108) + (-1830 . 591926) (-1831 . 591791) (-1832 . 591697) (-1833 . 591494) + (-1834 . 591260) (-1835 . 591135) (-1836 . 590753) (-1837 . 588547) + (-1838 . 588492) (-1839 . 588439) (-1840 . 587865) (-1841 . 587798) + (-1842 . 587654) (-1843 . 587498) (-1844 . 587310) (-1845 . 587260) + (-1846 . 586909) (-1847 . 586659) (-1848 . 586074) (-1849 . 584770) + (-1850 . 584741) (-1851 . 584167) (-1852 . 583915) (-1853 . 583859) + (-1854 . 583748) (-1855 . 583630) (-1856 . 583571) (-1857 . 582195) + (-1858 . 582098) (-1859 . 581852) (-1860 . 581803) (-1861 . 581745) + (-1862 . 581171) (-1863 . 580873) (-1864 . 580581) (-1865 . 580421) + (-1866 . 580257) (-1867 . 580097) (-1868 . 578651) (-1869 . 578598) + (-1870 . 578360) (-1871 . 578079) (-1872 . 577752) (-1873 . 577672) + (-1874 . 577321) (-1875 . 577142) (-1876 . 577058) (-1877 . 576937) + (-1878 . 576798) (-1879 . 576542) (-1880 . 575350) (-1881 . 575281) + (-1882 . 574932) (-1883 . 574779) (-1884 . 574699) (-1885 . 574598) + (-1886 . 574296) (-1887 . 574178) (-1888 . 573883) (-1889 . 573718) + (-1890 . 573663) (-1891 . 573577) (-1892 . 573543) (-1893 . 573427) + (-1894 . 573341) (-1895 . 572932) (-1896 . 572851) (-1897 . 572710) + (-1898 . 572624) (-1899 . 572350) (-1900 . 572277) (-1901 . 572176) + (-1902 . 572005) (-1903 . 571919) (-1904 . 571866) (-1905 . 570008) + (-1906 . 569779) (-1907 . 569656) (-1908 . 569568) (-1909 . 569415) + (-1910 . 569359) (-1911 . 569181) (-1912 . 568929) (-1913 . 568842) + (-1914 . 568770) (-1915 . 568711) (-1916 . 567838) (-1917 . 567786) + (-1918 . 567435) (-1919 . 567380) (-1920 . 567352) (-1921 . 567194) + (-1922 . 567120) (-1923 . 567054) (-1924 . 566929) (-1925 . 566858) + (-1926 . 566718) (-1927 . 566505) (-1928 . 566324) (-1929 . 566252) + (-1930 . 566181) (-1931 . 566093) (-1932 . 565796) (-1933 . 565673) + (-1934 . 565501) (-1935 . 565403) (-1936 . 565245) (-1937 . 564998) + (-1938 . 564931) (-1939 . 564864) (-1940 . 564653) (-1941 . 564520) + (-1942 . 564364) (-1943 . 564312) (-1944 . 564067) (-1945 . 563998) + (-1946 . 563560) (-1947 . 563377) (-1948 . 563325) (-1949 . 563243) + (-1950 . 563171) (-1951 . 563099) (-1952 . 562948) (-1953 . 562874) + (-1954 . 562480) (-1955 . 562337) (-1956 . 562249) (-1957 . 562168) + (-1958 . 562099) (-1959 . 560942) (-1960 . 560873) (-1961 . 560387) + (-1962 . 560256) (-1963 . 560186) (-1964 . 560015) (-1965 . 559768) + (-1966 . 559558) (-1967 . 559448) (-1968 . 559250) (-1969 . 559180) + (-1970 . 558982) (-1971 . 558692) (-1972 . 558484) (-1973 . 558192) + (-1974 . 557969) (-1975 . 557896) (-1976 . 557497) (-1977 . 557414) + (-1978 . 557318) (-1979 . 557163) (-1980 . 557108) (-1981 . 556983) + (-1982 . 556840) (-1983 . 556589) (-1984 . 556209) (-1985 . 556157) + (-1986 . 555952) (-1987 . 555680) (-1988 . 555606) (-1989 . 555511) + (-1990 . 555371) (-1991 . 555156) (-1992 . 555059) (-1993 . 554941) + (-1994 . 551642) (-1995 . 551383) (-1996 . 551310) (-1997 . 550728) + (-1998 . 550654) (-1999 . 550576) (-2000 . 550510) (-2001 . 550461) + (-2002 . 550395) (-2003 . 550282) (-2004 . 550145) (-2005 . 549828) + (-2006 . 549714) (-2007 . 549647) (-2008 . 549576) (-2009 . 549403) + (-2010 . 548596) (-2011 . 548494) (-2012 . 548401) (-2013 . 548155) + (-2014 . 547963) (-2015 . 547806) (-2016 . 547582) (-2017 . 547517) + (-2018 . 547445) (-2019 . 547361) (-2020 . 546968) (-2021 . 546909) + (-2022 . 546848) (-2023 . 546795) (-2024 . 546577) (-2025 . 546467) + (-2026 . 546413) (-2027 . 546272) (-2028 . 545826) (-2029 . 545706) + (-2030 . 545640) (-2031 . 545113) (-2032 . 544990) (-2033 . 544891) + (-2034 . 544782) (-2035 . 544675) (-2036 . 544565) (-2037 . 544294) + (-2038 . 544217) (-2039 . 544180) (-2040 . 543937) (-2041 . 543327) + (-2042 . 543276) (-2043 . 542815) (-2044 . 542743) (-2045 . 542583) + (-2046 . 542374) (-2047 . 542216) (-2048 . 541753) (-2049 . 541583) + (-2050 . 541405) (-2051 . 541099) (-2052 . 541010) (-2053 . 540936) + (-2054 . 540883) (-2055 . 540830) (-2056 . 540750) (-2057 . 540283) + (-2058 . 534945) (-2059 . 534883) (-2060 . 534770) (-2061 . 534579) + (-2062 . 534438) (-2063 . 534323) (-2064 . 534295) (-2065 . 534168) + (-2066 . 534080) (-2067 . 533965) (-2068 . 533909) (-2069 . 533580) + (-2070 . 533485) (-2071 . 533408) (-2072 . 533299) (-2073 . 533179) + (-2074 . 533096) (-2075 . 532989) (-2076 . 531727) (-2077 . 531416) + (-2078 . 531227) (-2079 . 531061) (-2080 . 530878) (-2081 . 530798) + (-2082 . 530668) (-2083 . 530531) (-2084 . 530450) (-2085 . 527669) + (-2086 . 527535) (-2087 . 527370) (-2088 . 527246) (-2089 . 527173) + (-2090 . 527145) (-2091 . 527092) (-2092 . 527006) (-2093 . 526722) + (-2094 . 526543) (-2095 . 526409) (-2096 . 526336) (-2097 . 526201) + (-2098 . 526083) (-2099 . 526030) (-2100 . 525484) (-2101 . 525399) + (-2102 . 525319) (-2103 . 524254) (-2104 . 523810) (-2105 . 523674) + (-2106 . 523608) (-2107 . 523518) (-2108 . 521386) (-2109 . 521300) + (-2110 . 521097) (-2111 . 521045) (-2112 . 520846) (-2113 . 520700) + (-2114 . 520289) (-2115 . 520188) (-2116 . 520092) (-2117 . 519985) + (-2118 . 519913) (-2119 . 519473) (-2120 . 519357) (-2121 . 519202) + (-2122 . 519142) (-2123 . 519049) (-2124 . 518942) (-2125 . 518700) + (-2126 . 518645) (-2127 . 518583) (-2128 . 518425) (-2129 . 517959) + (-2130 . 517891) (-2131 . 513349) (-2132 . 513156) (-2133 . 512748) + (-2134 . 512632) (-2135 . 511292) (-2136 . 511134) (-2137 . 511062) + (-2138 . 510862) (-2139 . 509454) (-2140 . 509377) (-2141 . 509281) + (-2142 . 509253) (-2143 . 508552) (-2144 . 508367) (-2145 . 508233) + (-2146 . 508168) (-2147 . 507948) (-2148 . 507800) (-2149 . 507560) + (-2150 . 507501) (-2151 . 507394) (-2152 . 507205) (-2153 . 507002) + (-2154 . 506324) (-2155 . 506242) (-2156 . 506120) (-2157 . 505964) + (-2158 . 505812) (-2159 . 505744) (-2160 . 505673) (-2161 . 505559) + (-2162 . 505463) (-2163 . 505176) (-2164 . 504988) (-2165 . 504903) + (-2166 . 504764) (-2167 . 504701) (-2168 . 504560) (-2169 . 504463) + (-2170 . 504435) (-2171 . 504349) (-2172 . 503811) (-2173 . 503608) + (-2174 . 498094) (-2175 . 497471) (-2176 . 497354) (-2177 . 497039) + (-2178 . 496864) (-2179 . 496672) (-2180 . 496407) (-2181 . 496355) + (-2182 . 496197) (-2183 . 496097) (-2184 . 495299) (-2185 . 495170) + (-2186 . 494778) (-2187 . 494659) (-2188 . 494630) (-2189 . 494377) + (-2190 . 494280) (-2191 . 494173) (-2192 . 493664) (-2193 . 493143) + (-2194 . 492977) (-2195 . 492878) (-2196 . 492780) (-2197 . 492694) + (-2198 . 492556) (-2199 . 492501) (-2200 . 492394) (-2201 . 492306) + (-2202 . 492209) (-2203 . 492049) (-2204 . 492021) (-2205 . 491928) + (-2206 . 491837) (-2207 . 491591) (-2208 . 491366) (-2209 . 491161) + (-2210 . 490970) (-2211 . 490720) (-2212 . 490622) (-2213 . 489612) + (-2214 . 489374) (-2215 . 489295) (-2216 . 489182) (-2217 . 489075) + (-2218 . 488917) (-2219 . 488855) (-2220 . 485189) (-2221 . 485060) + (-2222 . 484974) (-2223 . 484849) (-2224 . 484725) (-2225 . 484558) + (-2226 . 481222) (-2227 . 480915) (-2228 . 480803) (-2229 . 480709) + (-2230 . 480525) (-2231 . 480403) (-2232 . 480224) (-2233 . 480150) + (-2234 . 480016) (-2235 . 479948) (-2236 . 478478) (-2237 . 478404) + (-2238 . 478301) (-2239 . 477651) (-2240 . 463537) (-2241 . 463366) + (-2242 . 463199) (-2243 . 459136) (-2244 . 458786) (-2245 . 458612) + (-2246 . 458559) (-2247 . 458462) (-2248 . 458385) (-2249 . 458311) + (-2250 . 458244) (-2251 . 458192) (-2252 . 458076) (-2253 . 457963) + (-2254 . 457716) (-2255 . 457607) (-2256 . 457120) (-2257 . 456967) + (-2258 . 456820) (-2259 . 456590) (-2260 . 456474) (-2261 . 456351) + (-2262 . 456208) (-2263 . 456155) (-2264 . 456106) (-2265 . 456021) + (-2266 . 455968) (-2267 . 455915) (-2268 . 455860) (-2269 . 455761) + (-2270 . 455677) (-2271 . 455575) (-2272 . 455434) (-2273 . 455363) + (-2274 . 455141) (-2275 . 455003) (-2276 . 454929) (-2277 . 454845) + (-2278 . 454617) (-2279 . 454275) (-2280 . 453511) (-2281 . 453378) + (-2282 . 453323) (-2283 . 452964) (-2284 . 452556) (-2285 . 452454) + (-2286 . 450109) (-2287 . 450036) (-2288 . 449963) (-2289 . 449808) + (-2290 . 449562) (-2291 . 449493) (-2292 . 449394) (-2293 . 449250) + (-2294 . 449108) (-2295 . 448857) (-2296 . 448521) (-2297 . 446743) + (-2298 . 446624) (-2299 . 446097) (-2300 . 445989) (-2301 . 445875) + (-2302 . 445779) (-2303 . 445678) (-2304 . 445607) (-2305 . 445491) + (-2306 . 445311) (-2307 . 445081) (-2308 . 444993) (-2309 . 439880) + (-2310 . 439824) (-2311 . 439466) (-2312 . 439382) (-2313 . 439239) + (-2314 . 439112) (-2315 . 438409) (-2316 . 438241) (-2317 . 438171) + (-2318 . 438064) (-2319 . 438012) (-2320 . 437882) (-2321 . 437711) + (-2322 . 437616) (-2323 . 437463) (-2324 . 437302) (-2325 . 436989) + (-2326 . 436955) (-2327 . 436682) (-2328 . 436423) (-2329 . 436204) + (-2330 . 436151) (-2331 . 435824) (-2332 . 435725) (-2333 . 435550) + (-2334 . 435460) (-2335 . 434351) (-2336 . 434142) (-2337 . 433980) + (-2338 . 433920) (-2339 . 433846) (-2340 . 433280) (-2341 . 433127) + (-2342 . 433074) (-2343 . 432850) (-2344 . 432728) (-2345 . 431841) + (-2346 . 431772) (-2347 . 431673) (-2348 . 431606) (-2349 . 431042) + (-2350 . 430740) (-2351 . 430174) (-2352 . 430044) (-2353 . 429942) + (-2354 . 429860) (-2355 . 429714) (-2356 . 429631) (-2357 . 429400) + (-2358 . 429192) (-2359 . 428996) (-2360 . 428964) (-2361 . 427876) + (-2362 . 427604) (-2363 . 427279) (-2364 . 427168) (-2365 . 426622) + (-2366 . 426478) (-2367 . 426450) (-2368 . 426198) (-2369 . 426110) + (-2370 . 425969) (-2371 . 425917) (-2372 . 425608) (-2373 . 425522) + (-2374 . 425282) (-2375 . 425102) (-2376 . 424790) (-2377 . 424712) + (-2378 . 424485) (-2379 . 424192) (-2380 . 424137) (-2381 . 423891) + (-2382 . 423630) (-2383 . 423499) (-2384 . 423431) (-2385 . 423283) + (-2386 . 422626) (-2387 . 422472) (-2388 . 422401) (-2389 . 422348) + (-2390 . 422267) (-2391 . 422142) (-2392 . 422002) (-2393 . 421756) + (-2394 . 421237) (-2395 . 421096) (-2396 . 420944) (-2397 . 420761) + (-2398 . 420639) (-2399 . 420587) (-2400 . 420517) (-2401 . 420420) + (-2402 . 420219) (-2403 . 420115) (-2404 . 420056) (-2405 . 419977) + (-2406 . 419772) (-2407 . 419740) (-2408 . 419698) (-2409 . 419508) + (-2410 . 419445) (-2411 . 419350) (-2412 . 418169) (-2413 . 418060) + (-2414 . 417973) (-2415 . 417459) (-2416 . 417313) (-2417 . 417243) + (-2418 . 417159) (-2419 . 417007) (-2420 . 416711) (-2421 . 416520) + (-2422 . 416376) (-2423 . 416171) (-2424 . 415954) (-2425 . 415810) + (-2426 . 415715) (-2427 . 415688) (-2428 . 415615) (-2429 . 415559) + (-2430 . 415214) (-2431 . 415126) (-2432 . 415047) (-2433 . 414198) + (-2434 . 413963) (-2435 . 413884) (-2436 . 413697) (-2437 . 413539) + (-2438 . 413322) (-2439 . 413209) (-2440 . 412976) (-2441 . 412429) + (-2442 . 412370) (-2443 . 412164) (-2444 . 408543) (-2445 . 408482) + (-2446 . 408414) (-2447 . 408263) (-2448 . 408226) (-2449 . 408038) + (-2450 . 407986) (-2451 . 407903) (-2452 . 407468) (-2453 . 407359) + (-2454 . 407277) (-2455 . 407119) (-2456 . 406867) (-2457 . 406271) + (-2458 . 406212) (-2459 . 406156) (-2460 . 406066) (-2461 . 405872) + (-2462 . 405742) (-2463 . 405583) (-2464 . 404976) (-2465 . 404906) + (-2466 . 404688) (-2467 . 404589) (-2468 . 404200) (-2469 . 403987) + (-2470 . 403935) (-2471 . 403687) (-2472 . 403397) (-2473 . 403311) + (-2474 . 403173) (-2475 . 402916) (-2476 . 402552) (-2477 . 402436) + (-2478 . 402382) (-2479 . 402288) (-2480 . 402233) (-2481 . 402182) + (-2482 . 402052) (-2483 . 401894) (-2484 . 401866) (-2485 . 401703) + (-2486 . 401531) (-2487 . 401243) (-2488 . 401055) (-2489 . 400600) + (-2490 . 400433) (-2491 . 400216) (-2492 . 400165) (-2493 . 400112) + (-2494 . 400059) (-2495 . 399982) (-2496 . 399908) (-2497 . 399634) + (-2498 . 399602) (-2499 . 399253) (-2500 . 399046) (-2501 . 398853) + (-2502 . 398797) (-2503 . 398769) (-2504 . 398666) (-2505 . 398611) + (-2506 . 398508) (-2507 . 398233) (-2508 . 398154) (-2509 . 397653) + (-2510 . 397573) (-2511 . 397416) (-2512 . 397339) (-2513 . 397269) + (-2514 . 397056) (-2515 . 397022) (-2516 . 396883) (-2517 . 396804) + (-2518 . 396315) (-2519 . 396035) (-2520 . 395381) (-2521 . 394954) + (-2522 . 393704) (-2523 . 393579) (-2524 . 393509) (-2525 . 393391) + (-2526 . 393312) (-2527 . 393202) (-2528 . 393119) (-2529 . 393021) + (-2530 . 392902) (-2531 . 392744) (-2532 . 392617) (-2533 . 392589) + (-2534 . 392374) (-2535 . 392300) (-2536 . 392172) (-2537 . 392098) + (-2538 . 391935) (-2539 . 391858) (-2540 . 391340) (-2541 . 391266) + (-2542 . 391214) (-2543 . 391092) (-2544 . 391033) (-2545 . 390917) + (-2546 . 390628) (-2547 . 390355) (-2548 . 390299) (-2549 . 390066) + (-2550 . 389106) (-2551 . 388999) (-2552 . 388892) (-2553 . 388813) + (-2554 . 388761) (-2555 . 388434) (-2556 . 388346) (-2557 . 387144) + (-2558 . 387024) (-2559 . 386968) (-2560 . 386875) (-2561 . 385024) + (-2562 . 384996) (-2563 . 384892) (-2564 . 384739) (-2565 . 382883) + (-2566 . 382817) (-2567 . 382522) (-2568 . 382396) (-2569 . 382302) + (-2570 . 382250) (-2571 . 382182) (-2572 . 381967) (-2573 . 381842) + (-2574 . 381450) (-2575 . 381378) (-2576 . 381350) (-2577 . 381269) + (-2578 . 381214) (-2579 . 381083) (-2580 . 381027) (-2581 . 380865) + (-2582 . 380777) (-2583 . 380416) (-2584 . 380297) (-2585 . 379818) + (-2586 . 379738) (-2587 . 379677) (-2588 . 378048) (-2589 . 377954) + (-2590 . 377901) (-2591 . 376935) (-2592 . 376660) (-2593 . 376608) + (-2594 . 376480) (-2595 . 376358) (-2596 . 375492) (-2597 . 375390) + (-2598 . 375331) (-2599 . 375278) (-2600 . 373976) (-2601 . 373844) + (-2602 . 373596) (-2603 . 373342) (-2604 . 373248) (-2605 . 373066) + (-2606 . 371692) (-2607 . 371567) (-2608 . 371468) (-2609 . 371136) + (-2610 . 371033) (-2611 . 370917) (-2612 . 370840) (-2613 . 370812) + (-2614 . 370714) (-2615 . 370163) (-2616 . 370097) (-2617 . 370038) + (-2618 . 369961) (-2619 . 369649) (-2620 . 369368) (-2621 . 368981) + (-2622 . 368806) (-2623 . 368661) (-2624 . 368579) (-2625 . 368327) + (-2626 . 367015) (-2627 . 366929) (-2628 . 366877) (-2629 . 366768) + (-2630 . 366675) (-2631 . 366563) (-2632 . 366253) (-2633 . 366170) + (-2634 . 366064) (-2635 . 365481) (-2636 . 365424) (-2637 . 365372) + (-2638 . 365265) (-2639 . 365177) (-2640 . 365108) (-2641 . 365025) + (-2642 . 364958) (-2643 . 364665) (-2644 . 364582) (-2645 . 364466) + (-2646 . 364435) (-2647 . 364241) (-2648 . 364088) (-2649 . 364010) + (-2650 . 363912) (-2651 . 363199) (-2652 . 361361) (-2653 . 360333) + (-2654 . 360230) (-2655 . 360173) (-2656 . 360124) (-2657 . 360022) + (-2658 . 359867) (-2659 . 359648) (-2660 . 358138) (-2661 . 357994) + (-2662 . 357920) (-2663 . 357752) (-2664 . 357696) (-2665 . 357622) + (-2666 . 357461) (-2667 . 357383) (-2668 . 357237) (-2669 . 356821) + (-2670 . 355273) (-2671 . 355199) (-2672 . 354695) (-2673 . 353731) + (-2674 . 353646) (-2675 . 353545) (-2676 . 353463) (-2677 . 353392) + (-2678 . 353272) (-2679 . 353069) (-2680 . 352847) (-2681 . 352241) + (-2682 . 352191) (-2683 . 351922) (-2684 . 351873) (-2685 . 351546) + (-2686 . 351494) (-2687 . 351371) (-2688 . 350635) (-2689 . 350534) + (-2690 . 350043) (-2691 . 349864) (-2692 . 349827) (-2693 . 349739) + (-2694 . 349687) (-2695 . 349621) (-2696 . 349459) (-2697 . 349314) + (-2698 . 349240) (-2699 . 348955) (-2700 . 348858) (-2701 . 348802) + (-2702 . 348612) (-2703 . 348509) (-2704 . 348406) (-2705 . 347663) + (-2706 . 347536) (-2707 . 347442) (-2708 . 347390) (-2709 . 347277) + (-2710 . 347021) (-2711 . 346897) (-2712 . 346815) (-2713 . 346742) + (-2714 . 346627) (-2715 . 346400) (-2716 . 345756) (-2717 . 345509) + (-2718 . 345304) (-2719 . 345241) (-2720 . 345147) (-2721 . 344980) + (-2722 . 344909) (-2723 . 344753) (-2724 . 344466) (-2725 . 344367) + (-2726 . 343195) (-2727 . 343098) (-2728 . 342885) (-2729 . 342832) + (-2730 . 342731) (-2731 . 342648) (-2732 . 342422) (-2733 . 342147) + (-2734 . 341259) (-2735 . 341182) (-2736 . 340939) (-2737 . 340820) + (-2738 . 340736) (-2739 . 340621) (-2740 . 340392) (-2741 . 340152) + (-2742 . 339765) (-2743 . 339658) (-2744 . 339476) (-2745 . 338961) + (-2746 . 338901) (-2747 . 337616) (-2748 . 337128) (-2749 . 337071) + (-2750 . 336942) (-2751 . 335805) (-2752 . 335721) (-2753 . 335510) + (-2754 . 335414) (-2755 . 335222) (-2756 . 334950) (-2757 . 334835) + (-2758 . 334482) (-2759 . 334413) (-2760 . 333961) (-2761 . 333831) + (-2762 . 333778) (-2763 . 333656) (-2764 . 333535) (-2765 . 333455) + (-2766 . 333237) (-2767 . 333134) (-2768 . 332642) (-2769 . 331726) + (-2770 . 331518) (-2771 . 331384) (-2772 . 331226) (-2773 . 331082) + (-2774 . 330934) (-2775 . 330825) (-2776 . 330629) (-2777 . 330525) + (-2778 . 330423) (-2779 . 330294) (-2780 . 330151) (-2781 . 330038) + (-2782 . 329965) (-2783 . 329376) (-2784 . 329095) (-2785 . 329000) + (-2786 . 328871) (-2787 . 328819) (-2788 . 328638) (-2789 . 328559) + (-2790 . 328417) (-2791 . 328346) (-2792 . 328137) (-2793 . 328022) + (-2794 . 327504) (-2795 . 327408) (-2796 . 327290) (-2797 . 326948) + (-2798 . 326738) (-2799 . 326083) (-2800 . 326017) (-2801 . 325916) + (-2802 . 325342) (-2803 . 325241) (-2804 . 325153) (-2805 . 325062) + (-2806 . 324829) (-2807 . 324407) (-2808 . 324336) (-2809 . 324171) + (-2810 . 324112) (-2811 . 324007) (-2812 . 323816) (-2813 . 323693) + (-2814 . 323563) (-2815 . 323460) (-2816 . 323094) (-2817 . 322981) + (-2818 . 322871) (-2819 . 322805) (-2820 . 322662) (-2821 . 322562) + (-2822 . 322506) (-2823 . 322422) (-2824 . 322391) (-2825 . 322163) + (-2826 . 321409) (-2827 . 321353) (-2828 . 321282) (-2829 . 321083) + (-2830 . 321016) (-2831 . 320766) (-2832 . 320627) (-2833 . 320555) + (-2834 . 320448) (-2835 . 320344) (-2836 . 318802) (-2837 . 317938) + (-2838 . 317886) (-2839 . 317831) (-2840 . 317797) (-2841 . 317765) + (-2842 . 317710) (-2843 . 317650) (-2844 . 317594) (-2845 . 317535) + (-2846 . 317435) (-2847 . 317349) (-2848 . 317246) (-2849 . 317191) + (-2850 . 317108) (-2851 . 316728) (-2852 . 316623) (-2853 . 315993) + (-2854 . 315871) (-2855 . 315730) (-2856 . 315570) (-2857 . 315472) + (-2858 . 315388) (-2859 . 315281) (-2860 . 315143) (-2861 . 314715) + (-2862 . 314517) (-2863 . 314435) (-2864 . 314313) (-2865 . 314220) + (-2866 . 314025) (-2867 . 313951) (-2868 . 313867) (-2869 . 313546) + (-2870 . 313432) (-2871 . 313353) (-2872 . 313161) (-2873 . 313084) + (-2874 . 313028) (-2875 . 312963) (-2876 . 312889) (-2877 . 312836) + (-2878 . 312618) (-2879 . 312494) (-2880 . 312295) (-2881 . 312224) + (-2882 . 312136) (-2883 . 312031) (-2884 . 311740) (-2885 . 311605) + (-2886 . 311289) (-2887 . 311180) (-2888 . 310849) (-2889 . 310795) + (-2890 . 310524) (-2891 . 310305) (-2892 . 310149) (-2893 . 310069) + (-2894 . 309889) (-2895 . 309787) (-2896 . 309681) (-2897 . 309543) + (-2898 . 309090) (-2899 . 308763) (-2900 . 308106) (-2901 . 308007) + (-2902 . 307893) (-2903 . 307810) (-2904 . 307697) (-2905 . 307614) + (-2906 . 307537) (-2907 . 307312) (-2908 . 306633) (-2909 . 306550) + (-2910 . 306480) (-2911 . 306371) (-2912 . 306036) (-2913 . 305695) + (-2914 . 305511) (-2915 . 305445) (-2916 . 305191) (-2917 . 304939) + (-2918 . 304652) (-2919 . 304045) (-2920 . 303899) (-2921 . 303786) + (-2922 . 303643) (-2923 . 303591) (-2924 . 303450) (-2925 . 302920) + (-2926 . 302751) (-2927 . 301174) (-2928 . 301045) (-2929 . 300709) + (-2930 . 300646) (-2931 . 300587) (-2932 . 300480) (-2933 . 300303) + (-2934 . 300171) (-2935 . 299956) (-2936 . 299872) (-2937 . 299778) + (-2938 . 299351) (-2939 . 298966) (-2940 . 298800) (-2941 . 298732) + (-2942 . 298622) (-2943 . 298452) (-2944 . 298400) (-2945 . 298319) + (-2946 . 298231) (-2947 . 298179) (-2948 . 298072) (-2949 . 297780) + (-2950 . 297523) (-2951 . 297457) (-2952 . 297070) (-2953 . 297018) + (-2954 . 296932) (-2955 . 296865) (-2956 . 296587) (-2957 . 296366) + (-2958 . 296313) (-2959 . 296186) (-2960 . 295890) (-2961 . 295751) + (-2962 . 295655) (-2963 . 295499) (-2964 . 295443) (-2965 . 295300) + (-2966 . 295188) (-2967 . 294893) (-2968 . 294727) (-2969 . 294663) + (-2970 . 294287) (-2971 . 294235) (-2972 . 294116) (-2973 . 293906) + (-2974 . 293729) (-2975 . 293583) (-2976 . 293457) (-2977 . 293269) + (-2978 . 292963) (-2979 . 292634) (-2980 . 292579) (-2981 . 292454) + (-2982 . 292357) (-2983 . 292248) (-2984 . 291738) (-2985 . 291634) + (-2986 . 291424) (-2987 . 291371) (-2988 . 291290) (-2989 . 291124) + (-2990 . 290981) (-2991 . 290903) (-2992 . 290840) (-2993 . 290712) + (-2994 . 290487) (-2995 . 289774) (-2996 . 289686) (-2997 . 289612) + (-2998 . 289267) (-2999 . 289122) (-3000 . 288953) (-3001 . 288859) + (-3002 . 288787) (-3003 . 288690) (-3004 . 288584) (-3005 . 288512) + (-3006 . 288429) (-3007 . 288339) (-3008 . 287478) (-3009 . 286836) + (-3010 . 286737) (-3011 . 286670) (-3012 . 286636) (-3013 . 286565) + (-3014 . 285927) (-3015 . 285833) (-3016 . 285608) (-3017 . 285551) + (-3018 . 285128) (-3019 . 284909) (-3020 . 284805) (-3021 . 284527) + (-3022 . 284308) (-3023 . 284148) (-3024 . 284120) (-3025 . 283941) + (-3026 . 283884) (-3027 . 283855) (-3028 . 283692) (-3029 . 283333) + (-3030 . 282991) (-3031 . 282876) (-3032 . 282743) (-3033 . 282554) + (-3034 . 282520) (-3035 . 282399) (-3036 . 282232) (-3037 . 282119) + (-3038 . 282046) (-3039 . 281933) (-3040 . 281331) (-3041 . 281190) + (-3042 . 280913) (-3043 . 280742) (-3044 . 280401) (-3045 . 277474) + (-3046 . 276888) (-3047 . 276815) (-3048 . 276711) (-3049 . 276639) + (-3050 . 276542) (-3051 . 276463) (-3052 . 276392) (-3053 . 276304) + (-3054 . 276216) (-3055 . 276079) (-3056 . 275917) (-3057 . 275793) + (-3058 . 275681) (-3059 . 275482) (-3060 . 275410) (-3061 . 275223) + (-3062 . 275128) (-3063 . 275057) (-3064 . 274944) (-3065 . 274708) + (-3066 . 274611) (-3067 . 274556) (-3068 . 274461) (-3069 . 274383) + (-3070 . 274053) (-3071 . 273991) (-3072 . 273913) (-3073 . 273821) + (-3074 . 273642) (-3075 . 273267) (-3076 . 273163) (-3077 . 273059) + (-3078 . 272960) (-3079 . 272848) (-3080 . 272697) (-3081 . 272534) + (-3082 . 272232) (-3083 . 272072) (-3084 . 271794) (-3085 . 271723) + (-3086 . 271653) (-3087 . 271292) (-3088 . 271151) (-3089 . 271085) + (-3090 . 270988) (-3091 . 270902) (-3092 . 270781) (-3093 . 270676) + (-3094 . 270578) (-3095 . 270495) (-3096 . 270417) (-3097 . 270220) + (-3098 . 270122) (-3099 . 269793) (-3100 . 269420) (-3101 . 269172) + (-3102 . 268954) (-3103 . 268857) (-3104 . 268699) (-3105 . 268626) + (-3106 . 268514) (-3107 . 268396) (-3108 . 268252) (-3109 . 268062) + (-3110 . 267974) (-3111 . 267850) (-3112 . 267603) (-3113 . 267517) + (-3114 . 267284) (-3115 . 267165) (-3116 . 266948) (-3117 . 266606) + (-3118 . 266291) (-3119 . 266101) (-3120 . 266007) (-3121 . 265832) + (-3122 . 265574) (-3123 . 265252) (-3124 . 265167) (-3125 . 265133) + (-3126 . 265081) (-3127 . 265029) (-3128 . 264869) (-3129 . 264622) + (-3130 . 264536) (-3131 . 264340) (-3132 . 264209) (-3133 . 264159) + (-3134 . 263623) (-3135 . 263247) (-3136 . 262693) (-3137 . 262627) + (-3138 . 262503) (-3139 . 262384) (-3140 . 262109) (-3141 . 261949) + (-3142 . 261847) (-3143 . 261667) (-3144 . 261559) (-3145 . 261500) + (-3146 . 261413) (-3147 . 261266) (-3148 . 261148) (-3149 . 261089) + (-3150 . 260632) (-3151 . 260579) (-3152 . 260367) (-3153 . 260293) + (-3154 . 260180) (-3155 . 260086) (-3156 . 260034) (-3157 . 259981) + (-3158 . 259925) (-3159 . 259817) (-3160 . 259731) (-3161 . 259291) + (-3162 . 259257) (-3163 . 258876) (-3164 . 258338) (-3165 . 258310) + (-3166 . 258149) (-3167 . 258091) (-3168 . 257954) (-3169 . 257850) + (-3170 . 257581) (-3171 . 257483) (-3172 . 256888) (-3173 . 256781) + (-3174 . 256627) (-3175 . 256517) (-3176 . 256108) (-3177 . 255846) + (-3178 . 255682) (-3179 . 255460) (-3180 . 255214) (-3181 . 254657) + (-3182 . 254476) (-3183 . 254176) (-3184 . 254011) (-3185 . 253693) + (-3186 . 253641) (-3187 . 253500) (-3188 . 253028) (-3189 . 252929) + (-3190 . 252861) (-3191 . 252783) (-3192 . 252685) (-3193 . 252562) + (-3194 . 252492) (-3195 . 252332) (-3196 . 252072) (-3197 . 251975) + (-3198 . 251631) (-3199 . 251579) (-3200 . 251505) (-3201 . 251251) + (-3202 . 251003) (-3203 . 250891) (-3204 . 250812) (-3205 . 249539) + (-3206 . 249223) (-3207 . 249171) (-3208 . 249058) (-3209 . 248226) + (-3210 . 248117) (-3211 . 247709) (-3212 . 247502) (-3213 . 247452) + (-3214 . 247308) (-3215 . 247225) (-3216 . 246874) (-3217 . 246843) + (-3218 . 246772) (-3219 . 246596) (-3220 . 246467) (-3221 . 246412) + (-3222 . 246318) (-3223 . 246232) (-3224 . 245729) (-3225 . 245659) + (-3226 . 245516) (-3227 . 245364) (-3228 . 245193) (-3229 . 245114) + (-3230 . 245031) (-3231 . 244939) (-3232 . 244911) (-3233 . 244494) + (-3234 . 244460) (-3235 . 244394) (-3236 . 244052) (-3237 . 243857) + (-3238 . 243720) (-3239 . 243667) (-3240 . 243601) (-3241 . 243443) + (-3242 . 243351) (-3243 . 243198) (-3244 . 243141) (-3245 . 242780) + (-3246 . 242718) (-3247 . 242547) (-3248 . 242445) (-3249 . 242259) + (-3250 . 241913) (-3251 . 241835) (-3252 . 241749) (-3253 . 241675) + (-3254 . 239406) (-3255 . 239296) (-3256 . 239245) (-3257 . 239174) + (-3258 . 239077) (-3259 . 238918) (-3260 . 238638) (-3261 . 238554) + (-3262 . 238494) (-3263 . 238104) (-3264 . 237882) (-3265 . 237734) + (-3266 . 236864) (-3267 . 236751) (-3268 . 236571) (** . 233482) + (-3270 . 233392) (-3271 . 233254) (-3272 . 233155) (-3273 . 232812) + (-3274 . 232612) (-3275 . 232498) (-3276 . 232376) (-3277 . 232178) + (-3278 . 232097) (-3279 . 231993) (-3280 . 231746) (-3281 . 231693) + (-3282 . 231168) (-3283 . 231094) (-3284 . 231037) (-3285 . 230855) + (-3286 . 230745) (-3287 . 230570) (-3288 . 230167) (-3289 . 230110) + (-3290 . 229936) (-3291 . 229276) (-3292 . 229172) (-3293 . 229065) + (-3294 . 229013) (-3295 . 228879) (-3296 . 228793) (-3297 . 228581) + (-3298 . 228509) (-3299 . 228337) (-3300 . 228193) (-3301 . 228020) + (-3302 . 227924) (-3303 . 227805) (-3304 . 227753) (-3305 . 227669) + (-3306 . 227601) (-3307 . 227469) (-3308 . 227311) (-3309 . 227260) + (-3310 . 226899) (-3311 . 226825) (-3312 . 226666) (-3313 . 226550) + (-3314 . 226480) (-3315 . 226424) (-3316 . 226325) (-3317 . 226144) + (-3318 . 226070) (-3319 . 224102) (-3320 . 222904) (-3321 . 222835) + (-3322 . 222783) (-3323 . 222407) (-3324 . 222313) (-3325 . 222225) + (-3326 . 222157) (-3327 . 221879) (-3328 . 221545) (-3329 . 221380) + (-3330 . 221261) (-3331 . 221124) (-3332 . 221031) (-3333 . 220901) + (-3334 . 220791) (-3335 . 220720) (-3336 . 220489) (-3337 . 220316) + (-3338 . 219563) (-3339 . 219410) (-3340 . 219338) (-3341 . 219244) + (-3342 . 219086) (-3343 . 219013) (-3344 . 218947) (-3345 . 218880) + (-3346 . 218743) (-3347 . 218591) (-3348 . 217823) (-3349 . 217625) + (-3350 . 217435) (-3351 . 217376) (-3352 . 217274) (-3353 . 217154) + (-3354 . 217103) (-3355 . 216624) (-3356 . 216562) (-3357 . 216394) + (-3358 . 216196) (-3359 . 215604) (-3360 . 215061) (-3361 . 214898) + (-3362 . 214753) (-3363 . 214656) (-3364 . 214622) (-3365 . 214412) + (-3366 . 214317) (-3367 . 214178) (-3368 . 212966) (-9 . 212938) + (-3370 . 212586) (-3371 . 212534) (-3372 . 212385) (-3373 . 212041) + (-3374 . 211871) (-3375 . 211816) (-3376 . 211450) (-3377 . 211369) + (-3378 . 211044) (-3379 . 210937) (-3380 . 210906) (-8 . 210878) + (-3382 . 210771) (-3383 . 210698) (-3384 . 210566) (-3385 . 210307) + (-3386 . 206147) (-3387 . 206031) (-3388 . 205962) (-3389 . 205812) + (-3390 . 205315) (-3391 . 205232) (-3392 . 205166) (-3393 . 205138) + (-7 . 205110) (-3395 . 205036) (-3396 . 204880) (-3397 . 204689) + (-3398 . 204433) (-3399 . 204399) (-3400 . 203183) (-3401 . 202956) + (-3402 . 202900) (-3403 . 202060) (-3404 . 201930) (-3405 . 201756) + (-3406 . 201690) (-3407 . 201635) (-3408 . 201304) (-3409 . 201238) + (-3410 . 200878) (-3411 . 200579) (-3412 . 200480) (-3413 . 200371) + (-3414 . 200206) (-3415 . 199532) (-3416 . 199425) (-3417 . 199355) + (-3418 . 199284) (-3419 . 199141) (-3420 . 199022) (-3421 . 197937) + (-3422 . 197567) (-3423 . 197452) (-3424 . 197381) (-3425 . 197328) + (-3426 . 197271) (-3427 . 197194) (-3428 . 196927) (-3429 . 196868) + (-3430 . 196764) (-3431 . 196632) (-3432 . 196532) (-3433 . 196454) + (-3434 . 196197) (-3435 . 195318) (-3436 . 195176) (-3437 . 194977) + (-3438 . 194906) (-3439 . 194349) (-3440 . 194267) (-3441 . 194146) + (-3442 . 194089) (-3443 . 193942) (-3444 . 193889) (-3445 . 193665) + (-3446 . 193597) (-3447 . 193431) (-3448 . 192978) (-3449 . 192908) + (-3450 . 192682) (-3451 . 192300) (-3452 . 192229) (-3453 . 192170) + (-3454 . 192069) (-3455 . 191998) (-3456 . 191882) (-3457 . 191104) + (-3458 . 190855) (-3459 . 190641) (-3460 . 190248) (-3461 . 190162) + (-3462 . 189716) (-3463 . 189523) (-3464 . 189470) (-3465 . 189307) + (-3466 . 189119) (-3467 . 188939) (-3468 . 188887) (-3469 . 188835) + (-3470 . 188778) (-3471 . 188583) (-3472 . 188534) (-3473 . 188389) + (-3474 . 188280) (-3475 . 188229) (-3476 . 187737) (-3477 . 187640) + (-3478 . 187539) (-3479 . 187398) (-3480 . 187345) (-3481 . 187155) + (-3482 . 186788) (-3483 . 186414) (-3484 . 186204) (-3485 . 186103) + (-3486 . 186053) (-3487 . 185980) (-3488 . 185804) (-3489 . 185725) + (-3490 . 185475) (-3491 . 185398) (-3492 . 185175) (-3493 . 184686) + (-3494 . 184559) (-3495 . 184406) (-3496 . 184313) (-3497 . 183862) + (-3498 . 183806) (-3499 . 183734) (-3500 . 183600) (-3501 . 183531) + (-3502 . 183140) (-3503 . 182824) (-3504 . 182743) (-3505 . 182691) + (-3506 . 182308) (-3507 . 181607) (-3508 . 181471) (-3509 . 181139) + (-3510 . 181016) (-3511 . 180935) (-3512 . 180861) (-3513 . 180774) + (-3514 . 180673) (-3515 . 180411) (-3516 . 180207) (-3517 . 180052) + (-3518 . 179507) (-3519 . 179403) (-3520 . 179324) (-3521 . 179147) + (-3522 . 178707) (-3523 . 178516) (-3524 . 178338) (-3525 . 178194) + (-3526 . 178117) (-3527 . 177810) (-3528 . 177426) (-3529 . 177241) + (-3530 . 177037) (-3531 . 176927) (-3532 . 176646) (-3533 . 175911) + (-3534 . 175883) (-3535 . 175806) (-3536 . 175747) (-3537 . 175667) + (-3538 . 175590) (-3539 . 175490) (-3540 . 175421) (-3541 . 175333) + (-3542 . 175171) (-3543 . 175139) (-3544 . 174722) (-3545 . 174671) + (-3546 . 174432) (-3547 . 174404) (-3548 . 173302) (-3549 . 173250) + (-3550 . 173163) (-3551 . 173034) (-3552 . 172748) (-3553 . 172693) + (-3554 . 172608) (-3555 . 172465) (-3556 . 172387) (-3557 . 172109) + (-3558 . 172054) (-3559 . 171994) (-3560 . 171899) (-3561 . 171566) + (-3562 . 171448) (-3563 . 171395) (-3564 . 171297) (-3565 . 171231) + (-3566 . 171082) (-3567 . 171027) (-3568 . 170999) (-3569 . 170895) + (-3570 . 170722) (-3571 . 170606) (-3572 . 170541) (-3573 . 170487) + (-3574 . 170413) (-3575 . 170145) (-3576 . 169783) (-3577 . 169655) + (-3578 . 169461) (-3579 . 169346) (-3580 . 169257) (-3581 . 169134) + (-3582 . 169067) (-3583 . 168904) (-3584 . 168803) (-3585 . 168753) + (-3586 . 168150) (-3587 . 168062) (-3588 . 168008) (-3589 . 167786) + (-3590 . 166606) (-3591 . 166313) (-3592 . 166168) (-3593 . 166107) + (-3594 . 165725) (-3595 . 165598) (-3596 . 165352) (-3597 . 165248) + (-3598 . 164957) (-3599 . 164884) (-3600 . 164465) (-3601 . 164291) + (-3602 . 164239) (-3603 . 164122) (-3604 . 163915) (-3605 . 163856) + (-3606 . 163785) (-3607 . 163049) (-3608 . 162682) (-3609 . 162601) + (-3610 . 162421) (-3611 . 162268) (-3612 . 161971) (-3613 . 161918) + (-3614 . 161755) (-3615 . 161659) (-3616 . 161565) (-3617 . 161247) + (-3618 . 161108) (-3619 . 160682) (-3620 . 160599) (-3621 . 160455) + (-3622 . 160365) (-3623 . 160075) (-3624 . 160022) (-3625 . 159915) + (-3626 . 159669) (-3627 . 159607) (-3628 . 159524) (-3629 . 159439) + (-3630 . 159387) (-3631 . 159335) (-3632 . 159050) (-3633 . 158997) + (-3634 . 158924) (-3635 . 158859) (-3636 . 158706) (-3637 . 158599) + (-3638 . 158248) (-3639 . 158120) (-3640 . 157929) (-3641 . 157880) + (-3642 . 157677) (-3643 . 157609) (-3644 . 157552) (-3645 . 157173) + (-3646 . 157118) (-3647 . 157035) (-3648 . 156921) (-3649 . 156813) + (-3650 . 156567) (-3651 . 156452) (-3652 . 156348) (-3653 . 156290) + (-3654 . 155971) (-3655 . 155633) (-3656 . 155563) (-3657 . 155467) + (-3658 . 155397) (-3659 . 155020) (-3660 . 154950) (-3661 . 154749) + (-3662 . 154611) (-3663 . 154562) (-3664 . 154232) (-3665 . 154131) + (-3666 . 154057) (-3667 . 153843) (-3668 . 153736) (-3669 . 153656) + (-3670 . 153564) (-3671 . 153434) (-3672 . 153349) (-3673 . 153211) + (-3674 . 153073) (-3675 . 152895) (-3676 . 152807) (-3677 . 152562) + (-3678 . 152349) (-3679 . 152028) (-3680 . 151975) (-3681 . 151872) + (-3682 . 151795) (-3683 . 151662) (-3684 . 151549) (-3685 . 151239) + (-3686 . 151109) (-3687 . 150918) (-3688 . 150526) (-3689 . 150362) + (-3690 . 150252) (-3691 . 150129) (-3692 . 149967) (-3693 . 149631) + (-3694 . 149358) (-3695 . 149251) (-3696 . 149174) (-3697 . 149088) + (-3698 . 142089) (-3699 . 141849) (-3700 . 141817) (-3701 . 141607) + (-3702 . 141513) (-3703 . 141084) (-3704 . 141006) (-3705 . 140446) + (-3706 . 140330) (-3707 . 140253) (-3708 . 140158) (-3709 . 139766) + (-3710 . 139665) (-3711 . 139574) (-3712 . 139497) (-3713 . 139388) + (-3714 . 139269) (-3715 . 139185) (-3716 . 139040) (-3717 . 138911) + (-3718 . 138692) (-3719 . 138639) (-3720 . 138266) (-3721 . 138214) + (-3722 . 138027) (-3723 . 137868) (-3724 . 137597) (-3725 . 137544) + (-3726 . 137153) (-3727 . 137054) (-3728 . 136939) (-3729 . 136862) + (-3730 . 136794) (-3731 . 136463) (-3732 . 136296) (-3733 . 135687) + (-3734 . 134783) (-3735 . 134706) (-3736 . 134436) (-3737 . 134362) + (-3738 . 134233) (-3739 . 134148) (-3740 . 134041) (-3741 . 133228) + (-3742 . 133061) (-3743 . 132723) (-3744 . 132608) (-3745 . 132472) + (-3746 . 132308) (-3747 . 132153) (-3748 . 132010) (-3749 . 131006) + (-3750 . 130825) (-3751 . 130723) (-3752 . 130666) (-3753 . 130272) + (-3754 . 129978) (-3755 . 129922) (-3756 . 129617) (-3757 . 129511) + (-3758 . 129402) (-3759 . 129284) (-3760 . 129224) (-3761 . 129051) + (-3762 . 128899) (-3763 . 128805) (-3764 . 128656) (-3765 . 128511) + (-3766 . 128367) (-3767 . 128157) (-3768 . 128027) (-3769 . 127893) + (-3770 . 127810) (-3771 . 127637) (-3772 . 127485) (-3773 . 127390) + (-3774 . 127295) (-3775 . 127240) (-3776 . 127104) (-3777 . 126946) + (-3778 . 126858) (-3779 . 126776) (-3780 . 126661) (-3781 . 126048) + (-3782 . 125962) (-3783 . 125841) (-3784 . 125812) (-3785 . 125706) + (-3786 . 125523) (-3787 . 123260) (-3788 . 123086) (-3789 . 122967) + (-3790 . 122861) (-3791 . 122784) (-3792 . 122357) (-3793 . 120574) + (-3794 . 120467) (-3795 . 120365) (-3796 . 120333) (-3797 . 120281) + (-3798 . 120154) (-3799 . 120120) (-3800 . 119443) (-3801 . 119290) + (-3802 . 119228) (-3803 . 119010) (-3804 . 118951) (-3805 . 118804) + (-3806 . 117883) (-3807 . 117489) (-3808 . 117401) (-3809 . 117320) + (-3810 . 117237) (-3811 . 117185) (-3812 . 117111) (-3813 . 117012) + (-3814 . 116918) (-3815 . 115920) (-3816 . 115783) (-3817 . 115286) + (-3818 . 115258) (-3819 . 115078) (-3820 . 114864) (-3821 . 114771) + (-3822 . 114613) (-3823 . 114412) (-3824 . 114339) (-3825 . 114207) + (-3826 . 113885) (-3827 . 113647) (-3828 . 113424) (-3829 . 113317) + (-3830 . 113262) (-3831 . 112678) (-3832 . 112628) (-3833 . 112410) + (-3834 . 112296) (-3835 . 112130) (-3836 . 112077) (-3837 . 112009) + (-3838 . 111866) (-3839 . 111743) (-3840 . 111646) (-3841 . 111475) + (-3842 . 111423) (-3843 . 111092) (-3844 . 110868) (-3845 . 110636) + (-3846 . 110582) (-3847 . 110523) (-3848 . 109999) (-3849 . 109821) + (-3850 . 109723) (-3851 . 109643) (-3852 . 109486) (-3853 . 109343) + (-3854 . 109185) (-3855 . 109119) (-3856 . 108998) (-3857 . 108867) + (-3858 . 108796) (-3859 . 108659) (-3860 . 108564) (-3861 . 108411) + (-3862 . 108324) (-3863 . 108214) (-3864 . 108130) (-3865 . 108075) + (-3866 . 108019) (-3867 . 107595) (-3868 . 107532) (-3869 . 107407) + (-3870 . 107355) (-3871 . 107222) (-3872 . 107191) (-3873 . 106971) + (-3874 . 106905) (-3875 . 106472) (-3876 . 105899) (-3877 . 105811) + (-3878 . 105738) (-3879 . 105584) (-3880 . 105471) (-3881 . 105363) + (-3882 . 105222) (-3883 . 105136) (-3884 . 104876) (-3885 . 104574) + (-3886 . 104467) (-3887 . 104436) (-3888 . 104330) (-3889 . 104246) + (-3890 . 104121) (-3891 . 103943) (-3892 . 103813) (-3893 . 103646) + (-3894 . 103471) (-3895 . 103168) (-3896 . 103055) (-3897 . 102876) + (-3898 . 102803) (-3899 . 102045) (-3900 . 101986) (-3901 . 101828) + (-3902 . 101675) (-3903 . 101535) (-3904 . 101075) (-3905 . 100951) + (-3906 . 100748) (-3907 . 100675) (-3908 . 100567) (-3909 . 99750) + (-3910 . 99651) (-3911 . 99498) (-3912 . 99188) (-3913 . 98764) + (-3914 . 98544) (-3915 . 98489) (-3916 . 98374) (-3917 . 98165) + (-3918 . 98099) (-3919 . 97877) (-3920 . 97342) (-3921 . 97241) + (-3922 . 97098) (-3923 . 96805) (-3924 . 96756) (-3925 . 96642) + (-3926 . 96424) (-3927 . 96364) (-3928 . 96308) (-3929 . 95957) + (-3930 . 95879) (-3931 . 95811) (-3932 . 95663) (-3933 . 95415) + (-3934 . 94813) (-3935 . 94598) (-3936 . 94489) (-3937 . 93892) + (-3938 . 93794) (-3939 . 93654) (-3940 . 93522) (-3941 . 93147) + (-3942 . 93029) (-3943 . 92921) (-3944 . 92871) (-3945 . 92708) + (-3946 . 92327) (-3947 . 92264) (-3948 . 92136) (-3949 . 92028) + (-3950 . 91919) (-3951 . 91613) (-3952 . 91390) (-3953 . 91248) + (-3954 . 91157) (-3955 . 90991) (-3956 . 90911) (-3957 . 90774) + (-3958 . 90715) (-3959 . 90533) (-3960 . 90283) (-3961 . 90175) + (-3962 . 89860) (-3963 . 89744) (-3964 . 89387) (-3965 . 89036) + (-3966 . 88786) (-3967 . 88623) (-3968 . 88453) (-3969 . 88308) + (-3970 . 87921) (-3971 . 87766) (-3972 . 87581) (-3973 . 87532) + (-3974 . 87373) (-3975 . 87196) (-3976 . 87084) (-3977 . 86687) + (-3978 . 86589) (-3979 . 86493) (-3980 . 86416) (-3981 . 86315) + (-3982 . 86216) (-3983 . 86115) (-3984 . 86003) (-3985 . 85823) + (-3986 . 85338) (-3987 . 85286) (-3988 . 85043) (-3989 . 84929) + (-3990 . 84508) (-3991 . 84336) (-3992 . 84283) (-3993 . 83467) + (-3994 . 83409) (-3995 . 83223) (-3996 . 83120) (-3997 . 83012) + (-3998 . 82921) (-3999 . 82814) (-4000 . 82740) (-4001 . 82709) + (-4002 . 82656) (-4003 . 82538) (-4004 . 82414) (-4005 . 82288) + (-4006 . 82214) (-4007 . 82070) (-4008 . 81959) (-4009 . 81717) + (-4010 . 81510) (-4011 . 81364) (-4012 . 81206) (-4013 . 81073) + (-4014 . 80821) (-4015 . 80703) (-4016 . 80651) (-4017 . 80528) + (-4018 . 80221) (-4019 . 80155) (-4020 . 80024) (-4021 . 79404) + (-4022 . 79205) (-4023 . 79074) (-4024 . 79010) (-4025 . 78873) + (-4026 . 78790) (-4027 . 78638) (-4028 . 78552) (-4029 . 78451) + (-4030 . 78352) (-4031 . 78246) (-4032 . 78074) (-4033 . 77856) + (-4034 . 77785) (-4035 . 77753) (-4036 . 77633) (-4037 . 76515) + (-4038 . 76082) (-4039 . 75978) (-4040 . 75841) (-4041 . 75645) + (-4042 . 75521) (-4043 . 75437) (-4044 . 75364) (-12 . 75192) + (-4046 . 75087) (-4047 . 74636) (-4048 . 74277) (-4049 . 74219) + (-4050 . 74117) (-4051 . 74001) (-4052 . 73913) (-4053 . 73785) + (-4054 . 73706) (-4055 . 73628) (-4056 . 73401) (-4057 . 73258) + (-4058 . 73120) (-4059 . 72303) (-4060 . 72148) (-4061 . 72120) + (-4062 . 71516) (-4063 . 71399) (-4064 . 71158) (-4065 . 71012) + (-4066 . 70896) (-4067 . 70730) (-4068 . 70677) (-4069 . 69859) + (-4070 . 69595) (-4071 . 69518) (-4072 . 69365) (-4073 . 69282) + (-4074 . 69216) (-4075 . 69114) (-4076 . 68805) (-4077 . 68681) + (-4078 . 68629) (-4079 . 68556) (-4080 . 68404) (-4081 . 68311) + (-4082 . 68169) (-4083 . 68105) (-4084 . 67947) (-4085 . 67810) + (-4086 . 66735) (-4087 . 66657) (-4088 . 66604) (-4089 . 66399) + (-4090 . 66289) (-4091 . 66063) (-4092 . 65747) (-4093 . 65687) + (-4094 . 65483) (-4095 . 65409) (-4096 . 65130) (-4097 . 65060) + (-4098 . 64828) (-4099 . 64715) (-4100 . 64496) (-4101 . 64336) + (-4102 . 64269) (-4103 . 63465) (-4104 . 63388) (-4105 . 63151) + (-4106 . 63042) (-4107 . 62794) (-4108 . 62722) (-4109 . 62607) + (-4110 . 62307) (-4111 . 62112) (-4112 . 62060) (-4113 . 61745) + (-4114 . 61636) (-4115 . 61548) (-4116 . 61439) (-4117 . 61387) + (-4118 . 61299) (-4119 . 61248) (-4120 . 61107) (-4121 . 61038) + (-4122 . 60967) (-4123 . 60791) (-4124 . 60491) (-4125 . 60346) + (-4126 . 60191) (-4127 . 60093) (-4128 . 59970) (-4129 . 59918) + (-4130 . 59799) (-4131 . 59700) (-4132 . 59421) (-4133 . 59292) + (-4134 . 58788) (-4135 . 58700) (-4136 . 58351) (-4137 . 58117) + (-4138 . 57962) (-4139 . 57694) (-4140 . 57526) (-4141 . 57400) + (-4142 . 57312) (-4143 . 57238) (-4144 . 56808) (-4145 . 56718) + (* . 52172) (-4147 . 51860) (-4148 . 51805) (-4149 . 51728) + (-4150 . 51592) (-4151 . 51387) (-4152 . 50719) (-4153 . 50667) + (-4154 . 50546) (-4155 . 50407) (-4156 . 50284) (-4157 . 49913) + (-4158 . 49825) (-4159 . 49584) (-4160 . 49391) (-4161 . 49253) + (-4162 . 48994) (-4163 . 48863) (-4164 . 48831) (-4165 . 48774) + (-4166 . 48677) (-4167 . 46563) (-4168 . 46486) (-4169 . 46404) + (-4170 . 46311) (-4171 . 46118) (-4172 . 45981) (-4173 . 45883) + (-4174 . 45815) (-4175 . 45692) (-4176 . 45519) (-4177 . 45303) + (-4178 . 45251) (-4179 . 45124) (-4180 . 44954) (-4181 . 44759) + (-4182 . 44595) (-4183 . 44336) (-4184 . 44056) (-4185 . 43570) + (-4186 . 43427) (-4187 . 43223) (-4188 . 43058) (-4189 . 42855) + (-4190 . 42772) (-4191 . 42678) (-4192 . 42550) (-4193 . 42476) + (-4194 . 42376) (-4195 . 42270) (-4196 . 42191) (-4197 . 41664) + (-4198 . 41512) (-4199 . 41406) (-4200 . 41229) (-4201 . 41054) + (-4202 . 38892) (-4203 . 38792) (-4204 . 38664) (-4205 . 38446) + (-4206 . 38232) (-4207 . 38014) (-4208 . 37654) (-4209 . 37518) + (-4210 . 37400) (-4211 . 37154) (-4212 . 35722) (-4213 . 35594) + (-4214 . 35514) (-4215 . 35164) (-4216 . 35066) (-4217 . 34982) + (-4218 . 34848) (-4219 . 34661) (-4220 . 34402) (-4221 . 34241) + (-4222 . 33965) (-4223 . 33934) (-4224 . 33755) (-4225 . 33672) + (-4226 . 33615) (-4227 . 33282) (-4228 . 32995) (-4229 . 32886) + (-4230 . 32770) (-4231 . 32742) (-4232 . 32250) (-4233 . 32191) + (-4234 . 31713) (-4235 . 31664) (-4236 . 31237) (-4237 . 31136) + (-4238 . 31083) (-4239 . 30729) (-4240 . 30622) (-4241 . 30569) + (-4242 . 30503) (-4243 . 30437) (-4244 . 30269) (-4245 . 30127) + (-4246 . 30011) (-4247 . 29873) (-4248 . 29793) (-4249 . 29660) + (-4250 . 29516) (-4251 . 29367) (-4252 . 29136) (-4253 . 29034) + (-4254 . 28953) (-4255 . 28649) (-4256 . 28248) (-4257 . 28161) + (-4258 . 27976) (-4259 . 27942) (-4260 . 27751) (-4261 . 27667) + (-4262 . 27256) (-4263 . 26260) (-4264 . 26207) (-4265 . 26155) + (-4266 . 25941) (-4267 . 25723) (-4268 . 25429) (-4269 . 25302) + (-4270 . 25233) (-4271 . 24990) (-4272 . 24878) (-4273 . 24733) + (-4274 . 24680) (-4275 . 24603) (-4276 . 24205) (-4277 . 23631) + (-4278 . 23554) (-4279 . 23411) (-4280 . 23328) (-4281 . 23206) + (-4282 . 23111) (-4283 . 23008) (-4284 . 22980) (-4285 . 22930) + (-4286 . 22849) (-4287 . 22771) (-4288 . 22719) (-4289 . 22564) + (-4290 . 22360) (-4291 . 22308) (-4292 . 22124) (-4293 . 21692) + (-4294 . 21622) (-4295 . 21542) (-4296 . 21468) (-4297 . 21020) + (-4298 . 20873) (-4299 . 20839) (-4300 . 20738) (-4301 . 20623) + (-4302 . 20416) (-4303 . 20234) (-4304 . 19942) (-4305 . 19890) + (-4306 . 19736) (-4307 . 19419) (-4308 . 19338) (-4309 . 18966) + (-4310 . 18799) (-4311 . 18675) (-4312 . 18376) (-4313 . 18258) + (-4314 . 18198) (-4315 . 17332) (-4316 . 17240) (-4317 . 17188) + (-4318 . 17090) (-4319 . 15502) (-4320 . 15407) (-4321 . 15301) + (-4322 . 14641) (-4323 . 13758) (-4324 . 13640) (-4325 . 13580) + (-4326 . 13407) (-4327 . 13284) (-4328 . 13250) (-4329 . 13129) + (-4330 . 12887) (-4331 . 12831) (-4332 . 12779) (-4333 . 12168) + (-4334 . 12108) (-4335 . 11661) (-4336 . 11539) (-4337 . 11163) + (-4338 . 11008) (-4339 . 10729) (-4340 . 10467) (-4341 . 10415) + (-4342 . 10028) (-4343 . 9975) (-4344 . 9879) (-4345 . 9652) + (-4346 . 9373) (-4347 . 9154) (-4348 . 9057) (-4349 . 8984) + (-4350 . 8723) (-4351 . 8671) (-4352 . 8195) (-4353 . 8127) + (-4354 . 8027) (-4355 . 7795) (-4356 . 7668) (-4357 . 7585) + (-4358 . 7374) (-4359 . 7172) (-4360 . 7068) (-4361 . 5338) + (-4362 . 5301) (-4363 . 4848) (-4364 . 4717) (-4365 . 4593) + (-4366 . 4506) (-4367 . 4432) (-4368 . 3911) (-4369 . 3851) + (-4370 . 3789) (-4371 . 2551) (-4372 . 2445) (-4373 . 2416) + (-4374 . 2363) (-4375 . 2236) (-4376 . 2133) (-4377 . 2063) + (-4378 . 1939) (-4379 . 1809) (-4380 . 1715) (-4381 . 1413) + (-4382 . 1188) (-4383 . 1064) (-4384 . 660) (-4385 . 594) + (-4386 . 421) (-4387 . 30))
\ No newline at end of file |